Cochlear Compression and Voltage Mapping Explained

Chris Sullivan
5/8/2016

Consider a basic feedback compressor with a threshold of compression of T_{db} and an instantaneous ratio of k [dB/dB]. Let X_{db} be the input level and Y_{db} by the output. Compression is performed via a nonlinear gain G_{db} applied to the input signal. The equations describing this system are

$$Y_{db} = T_{db} + k(X_{db} - T_{db})$$ \hspace{1cm} (1)

and

$$Y_{db} = X_{db} + G_{db}.$$ \hspace{1cm} (2)

In general, there are also time constants associated, but we will consider only the steady state. We seek G_{db} as a function of only Y_{db} and the known parameters T_{db} and k. Because the system is a feedback compressor, G_{db} cannot be a function of X_{db}. We can substitute Eq. 1 into Eq. 2 to remove X_{db}:

$$G_{db} = Y_{db} - T_{db}(k - 1) + Y_{db} = (Y_{db} - T_{db})(1 - \frac{1}{k}).$$ \hspace{1cm} (3)

Equation 3 gives us a form for the gain of the feedback compressor for a given value of Y_{db} with the system parameters.

In the specific case of the cochlea, k and T_{db} are somewhat functions of place, but they are generally constant with respect to X_{db}. The exception is that $k \to 1$ when $X_{db} < T_{db}$, but we are less interested in the low level, linear range of the cochlea. We are instead interested in why the voltage on the hair cell is a log-linear mapping of the input level X_{db} for levels where compression is active.

By the Sewell effect,

$$G_{db} \approx -m(v - v_0)$$ \hspace{1cm} (4)

where m is about 1 [mV/dB] at most cochlear places, v is the voltage in [mV] on the hair cell (here the OHC), and v_0 is some threshold voltage in [mV], below which compression is inactive. If we set Eq. 3 and Eq. 4 equal to each other and simplify, we find

$$Y_{db} - T_{db} = \left(\frac{m}{k - 1}\right)(v - v_0),$$ \hspace{1cm} (5)

and if we then substitute X_{db} back in for Y_{db}, we find the final relationship

$$X_{db} - T_{db} = \left(\frac{m}{1 - k}\right)(v - v_0).$$ \hspace{1cm} (6)

Equation 6 shows that X_{db} and v are linearly related. For every change in X_{db} by ΔX_{db} there must be a corresponding change in v by $(m/(1 - k))\Delta X_{db}$.

This satisfying relationship is only log-linear for approximately constant parameters, and $k < 1$ (such as the $\approx 1/3$-law empirically predicted for the human compression curve). If k, m, or T_{db} were strong functions of X_{db}, the relationship would no longer be log-linear. However, T_{db} is guaranteed to be constant, m is assumed to be nearly a constant by the Sewell effect, and k is only a strong function of X_{db} around the breakpoint T_{db} (and possibly when the cochlea saturates at very high levels). This means that, as expected, the log-linear mapping holds only while compression is active: where $X_{db} > T_{db}$.