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CHAPTER 4

Harmonic Functions and Conformal Mapping

19 Harmonic Functions

19A. Definitions

To say that a function u(x,y) is harmonic in a region D means that u satisfies
Laplace’s equation,

∂ 2u
∂x2 +

∂ 2u
∂y2 = 0,

which is more conveniently written in subscript notation as u11 + u22 = 0. It is
customary to consider only real-valued harmonic functions.

Eventually we shall be able to show (Sec. 20E) that if a function u is continuous
in a region and has just enough differentiability that u can and does satisfy Laplace’s
equation, then u actually has continuous partial derivatives of all orders. For the
present, however, we adopt the working definition that a harmonic function has
continuous first-order and second-order partial derivatives and satisfies Laplace’s
equation in a region.

The connection between harmonic functions and analytic functions is that both
the real part u and the imaginary part v of an analytic function f satisfy Laplace’s
equation. This property follows from differentiating the Cauchy–Riemann equa-
tions (using that analytic functions have continuous second-order derivatives, as
we have known since Sec. 7C):

∂u
∂x

=
∂v
∂y

,
∂ 2u
∂x2 =

∂ 2v
∂x∂y

,

∂u
∂y

= −
∂v
∂x

,
∂ 2u
∂y2 = −

∂ 2v
∂y∂x

.

Since the two mixed second-order derivatives are equal, the function u is harmonic.
Similarly (or because v is the real part of −i f ), the function v is harmonic.

Since one always cherishes the hope that sufficient conditions will turn out to
be necessary, we might hope that, conversely, every harmonic function is the real
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160 Harmonic Functions 19

part of some analytic function. This equivalence is not quite true. For example,
if u(x,y) = ln(x2 + y2), then u is harmonic in the annulus where 1 < |z| < 2, but
there is no (single-valued) analytic function in this annulus whose real part is u. In-
deed, u(x,y) is the real part of logz2, which cannot be defined even as a continuous
function in the whole annulus.

In a simply connected region, however, a harmonic function u is indeed the real
part of a function f that is analytic in the region.

We can (and shall in the next section) prove this proposition by actually con-
structing such an f . The imaginary part of f is called a harmonic conjugate of u
[“a,” not “the,” because if c is any real number, then f (z) + ic has the same real
part as f ]. The word “conjugate” here is supposed to convey the meaning of “as-
sociated,” as does the same word in “complex conjugate,” although the kind of
association is quite different in the two phrases.

Because harmonic functions are connected with analytic functions in the way
just described, theorems that we have proved about real parts of analytic functions
(Exercises 16.2 and 16.4, for example, and the analog of Liouville’s theorem in
Sec. 16C) are really theorems about harmonic functions.

The term “harmonic” is not restricted to two dimensions (although we shall not
be concerned with harmonic functions in space): a solution of Laplace’s equation in
any number of dimensions is called harmonic. The theory of analytic functions in
higher dimensions does not, however, correspond to harmonic functions in the same
way as in two dimensions. Consequently, the study of Laplace’s equation (and of
the physical problems that it models) is more difficult in higher dimensions. In one
dimension, on the other hand, the harmonic functions are just the affine functions
ax+b, about which there is little to say.

19B. Finding a harmonic conjugate

Suppose now that we have a harmonic function u in a simply connected region D.
To look for a harmonic function v such that u + iv is analytic in D, we start from
the Cauchy–Riemann equations: u1 = v2 and u2 =−v1. The first equation suggests
that we ought to be able to find v by integrating u1 with respect to y, since v2
( = u1) is obtained by differentiating v with respect to y. This approach will work
locally, but not necessarily over the whole of D, because if we start from a given
point (x0,y0) of D, we cannot necessarily reach all points of D by moving just in
the y direction. How to proceed? We could construct v, and hence our analytic
function, in a neighborhood of (x0,y0) in this way and hope to extend the function
to all of D by analytic continuation; we shall see that this approach works well for
some specific functions. Alternatively, we ought to be able to find v by integrating
−u2 with respect to x, but this approach runs into the same difficulty as integrating
with respect to y. Having progressed this far, we might have the idea to combine
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the two integration methods and to define v globally by a line integral:

v(x,y) =
� (x,y)

(x0,y0)
[u1(s, t)dt −u2(s, t)ds],

where the integral is taken over an arc in D from (x0,y0) to (x,y). If this formula is
to define a function v, then the integral needs to be independent of the path along
which we integrate. Now Green’s theorem shows that the integral is independent
of the path (in a simply connected region) precisely when u satisfies Laplace’s
equation.

EXERCISE 19.1 Calculate the partial derivatives of v and so show that u and v
are indeed the real part and the imaginary part of an analytic function in D.

19C. Formulas

Sometimes we are given a formula for a harmonic function, and we want to find
a harmonic conjugate, or the associated analytic function, explicitly. If we have u
and want v, then it is often convenient to do the integration locally and in stages.
Integrating u1 “partially” with respect to y gives a function that, after the addition of
some function ϕ(x), will be equal to v(x,y). Now differentiate with respect to x to
get v1(x,y), which is also equal to−u2(x,y). We can now find ϕ(x) up to an additive
constant, and hence obtain a formula for v. An example will clarify the procedure.
Suppose u(x,y) = x2

−y2. Then u1 = 2x and
�

u1 dy = 2xy+ϕ(x) = v(x,y), whence
v1(x,y) = 2y + ϕ �(x) = −u2(x,y) = 2y. Hence ϕ �(x) = 0, so ϕ is a constant, and
v(x,y) = 2xy+ c.

EXERCISE 19.2 Find conjugate harmonic functions of

(a) x3
−3xy2, (b) e−y cosx,

(c) log(x2 + y2), (d) y/[(1− x)2 + y2].

Often we are less interested in finding the harmonic conjugate function v(x,y)
than in finding the analytic function f (z) explicitly in terms of z. In our example
where u(x,y) = x2

− y2, it is easy to guess that f (z) = z2 + c, but in more compli-
cated cases, it is not always easy to express u(x,y)+ iv(x,y) as f (z) even when we
have explicit formulas for u and v. There are several short-cut methods for finding
f (z), and I list them here for reference. Caution: If you start from a function u that
is not harmonic and use the general procedure, you will be stopped automatically
at some stage, but short-cuts can produce spurious results if you do not start from
a harmonic u.

There are three special methods for finding f (z). At first sight, they all look
fishy, but they are really all right, as we shall show after describing and illustrating
them. You may prefer to skip ahead and read the proofs first before trying out the
methods.1
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RULE A If you know the function u, and it is harmonic in some disk that
contains an interval I of the real axis, define f � as follows:

f �(z) = u1(z,0)− iu2(z,0).

Then integrate f � to get f in a neighborhood of I, and extend f by analytic contin-
uation.

Note that the indicated partial derivatives have to be computed before replacing
(x,y) by (z,0).

Of course f is not uniquely determined by u: one can add to f a purely imagi-
nary constant.

RULE B If u is harmonic in a neighborhood of a point z0 (= x0 + iy0), then in
this neighborhood we have, up to an additive imaginary constant,

f (z) = 2u
�

z+ z0

2
,
z− z0

2i

�

−u(x0,y0).

We may take z0 equal to 0 if u is harmonic in a neighborhood of 0.

RULE C If you know both u and v, and you know that they are harmonic
conjugates in a neighborhood of 0, then

f (z) = u(z,0)+ iv(z,0).

These rules look outrageous at first sight, because we do not know (yet) that
it makes any sense to replace the real variables x and y by complex numbers. Let
us begin, however, by giving some illustrations to indicate that the rules are useful
enough to justify some effort in proving that they really work.

Example 1 u(x,y) = x2
− y2.

Here u1 = 2x, u2 = −2y, and Rule A gives

f �(z) = 2z, so f (z) = z2 + constant.

By Rule B, with z0 = 0,

f (z) = 2u
� z

2
,

z
2i

�

= 2
�

z2

4
+

z2

4

�

= z2.

For Rule C, we are supposed to know that v(x,y) = 2xy; then

f (z) = (z2
−0)+ i0 = z2.
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Example 2 u(x,y) = e−y sinx.
By Rule A,

f �(z) = cosz+ isinz = eiz, so f (z) = −ieiz + constant.

By Rule B, with z0 = 0,

f (z) = 2exp
�

−z
2i

�

sin
� z

2

�

=
1
i

exp
�

iz
2

�

(eiz/2
− e−iz/2)

= −ieiz + i.

By Rule C, if we know that v = −e−y cosx, then f (z) = sinz + i(−cosz) =
−ieiz.

Example 3 u =
x

x2 + y2 , u1 =
y2
− x2

(x2 + y2)2 , u2 =
−2xy

(x2 + y2)2 .

By Rule A,

f �(z) = −
z2

z4 = −
1
z2 , so f (z) =

1
z

+ constant.

By Rule B,

f (z) = 2
(z+ z0)/2

[(z+ z0)/2]2 +[(z− z0)/(2i)]2
−

x0

x2
0 + y2

0

=
z+ z0

zz0
−

x0

x2
0 + y2

0
=

1
z

+ i
y0

x2
0 + y2

0
.

Rule C is not applicable as it stands, because u is not defined at 0, but see the
following exercise.

EXERCISE 19.3 Adapt Rule C to the case where u and v are harmonic conju-
gates in a neighborhood of a nonzero point z0.

EXERCISE 19.4 Find analytic functions whose real parts are the functions in
Exercise 19.2 and also (x2 + y2)1/4 cos[ 1

2 tan−1(y/x)].

Supplementary exercises

Find analytic functions with the following real parts.

1. tan−1
�y

x

�

2. x3y− xy3


