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PREFACE

Some readers may be surprised or even disturbed at the mix-

ture of problems assembled in this book. These problems

actually extend from electrical engineering to electromagnetism

and wave mechanics of the spinning electron, but the link con-

necting this variety of problems will soon be discovered in their

common mathematical background.

Waves always behave in a similar way, whether they are longi-

tudinal or transverse, elastic or electric. Scientists of the last

century always kept this idea in mind. When Lord Kelvin

built up his model for a dispersive medium or when Lord Ray-
leigh discovered radiation pressure, they never failed to try the

same methods again and again on all conceivable types of waves.

This general philosophy of wave propagation, forgotten for a

time, has been strongly revived in the last decade and represents

the backbone of this book.

All problems discussed deal with periodic structures of various

kinds, and they all lead to similar results: these structures, be

they electric lines or crystal lattices, behave like band-pass filters.

If energy dissipation is omitted, there is a sharp distinction

between frequency bands exhibiting wave propagation without

attenuation (passing bands) and those showing attenuation and

no propagation (stopping bands). These general properties are

defined for an infinite unbounded medium, but they bear a very

close relation to selective reflections shown by a bounded medium.
A wave striking from outside may be partly reflected from the

surface, if the second medium is able to transmit the correspond-

ing frequency. The amount of reflection depends upon how well

the media are matched at their common boundary. But when
the frequency falls inside a stopping band of the reflecting

medium, there is no longer any matching problem; the wave can-

not be transmitted, and hence it must be totally reflected. This

same explanation applies to electric filters, rest rays, anomalous

optical reflections, and selective reflection of X rays or electrons

from a crystal. In the case of rest rays, the theory was developed
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by M. Born and his school; for X rays, it corresponds to Bragg^s

reflections and P. P. Ewald^s now classical investigations summa-
rized in his book ‘^Kristalle iind Roentgen Strahlen^^ (Springer,

1923), and a paper in the Annales de VInstitut Poincare (voL 7, p.

79, 1938). Many practical examples of electric filters may be

found in the treatises of K. S, Johnson and T. E. Shea, in the

collection of books from the Bell Telephone Laboratories (van

Nostrand). The general connection between stopping bands and

selectivereflection is exemplified in the definition of the zones for a

crystal lattice, a theory first developed by the author in his original

papers and in a book ^^Quantenstatistik^' (Springer, 1931). A
general discussion of the zone theory is found in the present book

and will serve as an introduction to Mott and Jones, ^'Theory of

Metals and Alloys” (Oxford, 1936), and to F. Seitz's '^The

Modern Theory of Solids” (McGraw-Hill, 1940), where the

theory is applied to many practical discussions.

Apart from physical and engineering problems, the general

theory developed in this book bears a close connection with many
problems of applied mathematics, such as the Mathieu functions

and Mathieu's and Hill's equations.

The author discussed these general problems in his lectures at

the College de France (1937-1938) and at the University of Wis-

consin (1942), when Mary Hewlett Payne very kindly proposed

to write down her notes and to prepare them for publication.

Circumstances resulted in great delays before this could be com-
pleted, and the author's present duties would never have per-

mitted him to undertake such a work if Mrs. Payne had not

made a really excellent record of his lectures, so that very few

corrections and additions were necessary on her manuscript.

Let her find here the author's very best thanks for her valuable

collaboration.

L]^on Brillouin.
New Yoke, N. Y.,

January, 1946.
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WAVE PROPAGATION
IN PERIODIC STRUCTURES

CHAPTER I

ELASTIC WAVES IN A ONE-DIMENSIONAL LATTICE OF

POINT MASSES: EARLY WORK AND INTRODUCTION

1. Historical Background
;
Eighteenth Century

The first work done on a one-dimensional lattice was that of

Newton^ in his attempt to derive a formula for the velocity of

sound. Newton assumed that sound was propagated in air in

the same manner in which an elastic wave would be propagated

along a lattice of point masses. He assumed the simplest possi-

ble such lattice, viz.^ one consisting of equal masses spaced

m m m m

^

^

^

J

ELASTIC CONSTANT =e
Fig. 1.1.

equally along the direction of propagation (Fig. 1.1). Neigh-

boring masses were assumed to attract one another with an
elastic force with constant e. Taking m to be the mass of each

of the particles and d to be the distance between neighboring-

particles in the state of equilibrium, Newton obtained for the

velocity V of propagation of an elastic wave

*

To compare this result with the experimental value of the velocity

of sound in air, Newton took p to be the density of air and ed to

be the isothermal bulk modulus of air. The theoretical value

thus computed was smaller than the experimental value. In

1822 Laplace pointed out that the expansions and condensations

1 Newton, ^^Principia,^^ Book II, 1686.

1



2 WAVE PROPAGATION [Chap. I

associated with sound waves take place adiabatically and that,

therefore, the adiabatic elastic constant should be used instead

of the isothermal. A computation using the adiabatic constant

in Newton’s formula gave excellent agreement with experiment.

It should be mentioned that Newton’s formula holds only for

wave lengths large compared with d.

The reason why Newton considered the one-dimensional lattice

of Fig. 1.1 was that at that time a continuous structure repre-

sented an insoluble problem, and nothing was known about

partial differential equations. Hence, a model had to be chosen

that would lead to a number of simultaneous equations of motion

of the usual type.

The work on one-dimensional lattices was continued in a series

of letters, starting in 1727, between John Bernoulli in Basel and

his son Daniel in St. Petersburg at that time. They showed that

a system with n point masses has n independent modes of vibra-

tion, f.e., n proper frequencies. Later (1753), Daniel Bernoulli

formulated the principle of superposition, which states that the

general motion of a vibrating system is given by a superposition

of its proper vibrations. This investigation may be said to form

the beginning of theoretical physics as distinct from mechanics,

in the sense that it is the first attempt to formulate laws for the

motion of a system of particles rather than for that of a single

particle. The principle of superposition is important, as it is a

special case of a Fourier series, and in time it was extended to

become a statement of Fourier’s theorem.

The laws of vibrating strings were first discovered empirically,

and in 1713 Taylor started a theoi'etical investigation. Euler’s

treatment of the continuous string by means of partial differential

equations (1748) was much more complete. He took the string

to be along the x axis and to be vibrating in some plane perpen-

dicular to this axis. The result he obtained was that the dis-

placement of the string was given by an arbitrary function of

{x ± vt), where v is the velocity of propagation of the wave and t

is the time, provided that the function satisfied certain continuity

conditions. Euler’s result started a controversy lasting until

1 807. If one takes Euler’s result and the principle of superposi-

tion together, one must conclude that any arbitrary function of

{x ± vt) may be described by a superposition of sine and (cosine

functions, since it is well known that the proper vibrations of a
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string are given by sine and cosine functions. This is, of course,

merely a statement of Fourier^s theorem, but Fourier^s theorem

was not proved until 1807, and to Euler’s mind the theorem was
almost an absurdity. Since he could not doubt the validity of

his solution to the problem of the vibrating continuous string,

Euler refused to accept the principle of superposition.

The Bernoullis had given the problem of the one-dimensional

lattice of point masses a fairly complete treatment. Euler had
solved the problem of the vibrating continuous string. The task

of treating the continuous string as a limiting case of the one-

dimensional lattice of point masses still remained. This problem

was solved by Lagrange in 1759.

Lagrange followed Euler in refusing to accept the principle of

superposition. This is very strange, since Lagrange’s paper

practically contains the principle of the Fourier series. A num-
ber of examples of trigonometric series were already known
at the time, but it was not believed that such expansions could

be used to represent any arbitrary function. In a paper on

celestial mechanics, Clairaut (1754) actually had the proof,

but it remained unnoticed; and it was left for Fourier to give

the general statement and to emphasize its great practical and

theoretical importance.

All this. work at the end of the eighteenth century is most

interesting since it cleared the way for a number of modern
problems in theoretical physics as well as for pure mathematics

:

Proper functions, proper values; first discovered in connection

with proper vibrations of strings, plates, etc.

Fourier expansion; expansion in series of proper functions.

Partial differential equations.

Wave propagation.

Atomic theory of solids and crystal structure.

Lagrange’s paper was often quoted by the famous electrical

engineer Pupin, who discovered in Lagrange’s theory the solu-

tion of an important problem of electrical engineering, the

loaded cable.

2. Historical Background; Nineteenth Century. Cauchy,

Baden-Powell, and Kelvin

In -1830, Cauchy used Newton’s model in an attempt to

account for dispersion of optical waves. Cauchy assumed that
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light waves were just elastic waves of very high frequency. He
obtained the result that for waves with wave length large com-

pared vdth. the distances between the point masses in the one-

dimensional lattice, the velocity was independent of wave length.

For shorter wave lengths and hence for higher frequencies, how-

ever, he showed that the velocity of propagation was a function

of wave length. The result is correct for elastic waves; however,

it did not agree quantitatively with values obtained experi-

mentally for light waves.

m m m m m m

INTERACTION BETWEEN NEIGHBORING PARTICLES

Fig. 2.1.

Fig. 2.2.—Wave velocity F as a function of a along the row of particles shown
on Fig. 2.1,

In 1841, Baden-Powell computed the velocity of a wave propa-

gating along one axis of a cubic lattice structure as a function of

wave length. This is equivalent to considering a wave propa-

gating along a one-dimensional lattice of point masses. Baden-

PowelPs lattice consisted of point masses of mass m spaced along

a straight line at distance d from one another (see Fig, 2.1),

Then he assumed each mass to be elastically bound to each of

its neighbors with the restoring force the same for all masses.

His equation for the propagation velocity V of the wave as a

function of wave length is

. |sin 7rd/Xl

rd/\ (2 . 1 )

where X is the wave length and is the velocity for infinite wave
length. The curve of V plotted against reciprocal wave length

is shown in Fig. 2.2, It is evident that if velocity is a function
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of wave length, the frequency must also be a function of the

wave length. However, Baden-Powell neglected to consider

the frequency as a function of the wave length and thus missed

a very important point. The curve of velocity as a function of

reciprocal wave length appears to be perfectly normal at the

point X = 2d; not so, however, for the frequency vs. reciprocal-

Avave-length curve. This point was noted by Kelvin, vKo gave

a detailed discussion in 1881.^

Kelvin assumed the same lattice that Baden-Powell treated

(see Fig. 2.3). Let us number the particles in such a way that

0
MTI

1

/7\m
2
/7\m _

3
/<7\m .

4 n^l
0JQ—

n n + 1

0ir!
s
0

vP'—
d 2d 3d 4d (ri-l)d nd (n+l)d

the z coordinate of the nth particle in its equilibrium position is

given by

Xn = nd
(2 .2)

In a sine wave, we obtain for yn, the displacement of the nth

particle,

2/n = A cos 27r{vt — ax) = A cof^2Tr(vt — and) (2.3)

where v is the frequency, a the wave number or reciprocal wave
length, A an arbitrary constant, and t the time. Now in Eq.

(2.3) we may replace a by

a' = a ± ^ m an integer (2.4)

without changing the value of the displacement. This means
that V must be a periodic function of a with period 1/d.

Now the phase velocity 7, with which the waves propagate,

is given by

7 = - (2.5)

Therefore, if we draw a curve of ^ = v{a) as a function of a, the

phase velocity for a given wave length will be given by the slope

of the line drawn from the origin to the point on the v{a) curve

corresponding to the given wave length. The function v{ci) may
1 '^Popular Lectures,” vol. I, p, 185.
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be calculated and turns out to be

v{a) = B |sin 7rad\ (2.6)

where 5 is a constant that is a function of the constants of the

lattice. From Eq. (2.6) we see that

V — = B
sin Trad\

y —
a a

1

.
I

sin Tad\

liradl
(2.7)

in agreement with Baden-PowelPs equation (2.1), if we take

=TrdB (2 .8)

From Eq. (2.6) we see that v(a) is a straight line for small values

of a, i,e,, for large values of wave length. This means that the

(a)

Fig. 2.4.—Frequency v as a function of a 1/X for the row of particles shown
on Fig. 2.1.

velocity of propagation should be constant for large wave
lengths, in agreement with the earlier calculations.

The curve of v vs. a is shown in Fig. 2.4a. The periodicity of

p as a function of a means that for a given frequency the wave
length is not completely determined. In fact, any a', where a'

is defined by Eq. (2.4), will give the same p. The ambiguity in

wave length results in an ambiguity in the direction of propaga-
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tion—an uncertainty both in magnitude and in direction. This

is easily seen by referring to Eq. (2.7).

The physical meaning of the ambiguity in wave length may be

seen from Fig. 2.5. The solid circles give the equilibrium posi-

tions of the point masses and the open circles the displaced posi-

tions at some instant. Through the displaced positions are

dra\vn three possible sine waves. All three waves give equally

good descriptions of the motion, as far as observation of the

Fig. 2.5.—Different sine curves passing through the position of the particles.

points is concerned. The solid line gives the wave form for the

only value of a such that

2d
^ a ^

2d
(2.9)

Changing a by l/d will take a out of this interval, as is immedi-

ately obvious. The dashed curve corresponds to a + (1/d), and

the dotted curve to a — (1/d). A glance at the diagram shows

that the solid and the dashed curves must propagate in the same

direction for a given motion of the particles, and the dotted curve

propagates in the opposite direction.

From now on, we shall adopt the convention expressed by
Eq. (2.9). All ambiguity in wave length and direction of motion

is removed if we restrict a to this interval, except in the two

special cases where

a = ± ^ (2.10)

We shall discuss these special cases shortly. The convention is

not so arbitrary as might appear at first sight. It allows any

wave length such that

00 ^ X ^ 2d (2.11)

to have either direction of propagation, and excludes only wave

lengths that lie in the interval

0 g X g 2d (2 . 12)
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If we had a continuous structure so that the motion of all points

lying on a straight line could be observed, the wave lengths

included in the interval (2.11) would be the only ones observed,

since in this case d == 0. Thus there will be no inconsistency in

what we mean by wave length when we go from a continuous to a

Fig. 2.6.—The limit X — 2d.

(b) (c)

Fig. 2.7.

discontinuous structure, and vice versa. Furthermore, the

allowed interval contains a complete period of p(a), so that none
of the frequencies that can be propagated are omitted.

The special case noted in Eq. (2.10) is shown in Fig. 2.6,

Here there is no way of distinguishing between the two possible

wave numbers allowed by our convention, or between the two
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possible directions of propagation. In fact, the wave might even

be considered as a standing ware, f.c,, a superposition of the two

allowed wave numbers. The wave length is, of course, in both

cases 2d,

Engineers frequently find it

convenient to use other curves

giving essentially the same infor-

mation as our vvB. a curve. The
one of greatest interest is the at-

tenuation curve (Fig. 2.7a) . The
solid part of the curve is our WS. 2.8.-—An example given by

a curve rotated through 90 deg.
^

The dotted, or jS, part gives the attenuation ^ for frequencies

higher than those that may be propagated. The attenuation

Avill be discussed in detail in a later chapter. A lattice such as

this, which allows propagation of all frequencies up to a maxi-

Fig. 2.9.—Other examples given Fig. 2.10.—Attenuation of the

by Lord Kelvin. The lower vibra- wave for a frequency above cutoff

tion corresponds to the limit X — 2d, (Lord Kelvin).

mum, or critical, frequency and damps all others, is called a

low-pass filter; i.e,, it will pass low frequencies and stop higher

frequencies. Figures 2.76 and 2.7o give 7, the phase velocity,

and M, the index of refraction or reciprocal of phase velocity, as

functions of frequency. Both curves terminate at the critical
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frequency, as phase velocity is not defined for attenuated waves.

The curves sho^vn in Figs. 2.7a, b, and c are very useful for some
practical purposes. However, in general, we shall find the v vs.

a curve (Fig. 2.46) most useful for our analytical discussions.

Lord Kelvin's discussion is of great significance, since it con-

tains the discovery of the cutoff frequency. Figures 2.8 to 2.11

are reproductions of Kelvin's original drawings and show the vari-

ation of wave velocity as a function of iV == X/d, the number of

atoms per wave length. Modes of vibration are shown for large

N and for iV = 2 (cutoff), together with the attenuated wave
corresponding to a frequency above cutoff. All this shows how
clearly Kelvin understood the problem.

N W

2 63,64

4 90,03

8 97,45

12 98,86

16 99,36

20 99,59
00 100,00

Fig. 2,11.

The paper was often overlooked, since its title, ^^The Size of

Atoms," did not imply any discussion of wave propagation. The
connection is found in Cauchy's theory of dispersion. The curve

in Fig. 2.2 shows that a material change in the wave velocity can

be expected only if the wave length is just larger than 2d. Hence,

Cauchy's theory leads to the conclusion that interatomic dis-

tances should be just smaller than X/2, giving a distance d of

about 2,000 angstroms. This, however, sounded impossible

since there was, at Kelvin's time, plenty of experimental evidence

that interatomic distances could not amount to more than a few

angstrom units. The thickness of oil films on water, for instance,

had been measured and was quite well known.

Kelvin's conception of the molecular structure of matter may
be illustrated by the following quotation:

I believe that by imagining each molecule to be loaded in a certain

definite way by elastic connection with heavier matter ... we shall



Sec. 3
]

EARLY WORK AND INTRODUCTION 11

have a rude mechanical explanation for refractive dispersion. . . .

It is not seventeen hours since I saw the possibility of this explanation.^

This was a remarkable guess, which led Kelvin to the discovery

of the modern refraction formula, usually knoTO as the Lorentz

formula,

3, Later Work on Models Similar to That Treated in Sec. 2

After analyzing Baden-PowelFs work and discussing the critical

wave length and frequency, Kelvin proceeded to devise a theory

M M M M M M—e © e © © ©
m *111 •m •m *111 *01

Fig. 3 , 1 .—Kelvin’s model for optical dispersion.

of dispersion based on a more complicated lattice than Baden-
PowelFs. He used the lattice shown in Fig. 3.1. Each of the

masses in this model is supposed to have a small mass associated

with it. The large masses are taken to have mass M and are the

large circles in Fig. 3.1, while the small masses have mass m and
are represented by dots. Each of the large masses interacts with

the nearest large masses and ivith the small mass associated with

it, so that there are two elastic con-

stants in the system. Introducing

two masses effectively doubles the

number of degrees of freedom of the

system, and hence one would expect

to find twice as many proper vibra-

tions as if there were only one mass.

The curve of v vs. a is shown in Fig.

3 .2 . The curve is restricted to val-

ues of a between ± l/2d. It is seen

that for each a there are two modes v. .. ..

of vibration of the system, so that

we do indeed have twice the number of modes obtained by Baden-
Powell for his model with one mass. Frequencies below 3^1 and
between V2 and vz are propagated by the lattice, and all others are

stopped. This lattice is an example of a band-pass filter. The
interval between vi and is known as a stopping hand, while that

between and vz is known as a passing band. The frequencies vi

and v% are very near the proper frequency of oscillation of one iso-

^ Op. cii.j p. 194.
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lated M-m molecule. This resonance frequency has nothing to do

with the distance bet^ween molecules, and a material change in

wave velocity is obtained when the resonance frequency lies in the

near ultraviolet, just above the optical spectrum. Thus Kelvin

explains refraction and escapes Cauchy’s paradox.

mmmmmmmm
Fig. 3.3.—Vincent’s model of the first mechanical filter.

Vincent^ built a mechanical model to which Kelvin^s theory

was assumed to apply. The model is shown in Fig. 3.3. The

large masses M are suspended from a beam on strings of equal

length and connected to one another by springs. The small

masses m are each suspended

from one of the large masses.

This model is evidently equival-

ent to Kelvin’s more abstract

scheme and was the first mechan--

icalfilter to be built. The motion

of the system was observed for

different frequencies. Vincent

plotted curves of index of refrac-

tion ju against the frequency for

comparison with standard disper-

sion curves. These curves are shown in Fig. 3.4. The solid curve

is for negligible damping and the dotted curve for large damping.

It is to be noted that the dotted curve is a typical anomalous

dispersion curve. ' Vincent’s curve of v vs. a agreed with Kelvin’s

curve. The ratio V = v/a can be measured on Fig. 3.2 and curve

3.4 obtained for ix = 1/V as a function of frequency r,

Kelvin’s paper received little notice, and the analogy between

the propagation of electromagnetic radiation and the propagation

of elastic waves along a loaded string was forgotten.

Fig. 3.4.—Index of refraction ju as a

function of frequency i^for Vincent’s

model.

^FhiL Mag,, 46, 537 (1898).
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In 1887, Heaviside noted that increasing the inductance per

unit length of a cable should reduce the attenuation of waves

propagating along the cable. However, he discussed no experi-

mental details. Two years later, in 1889, Vaschy tried loading a

very long cable with four inductances, an experiment much too

crude to give any observable result. In 1900, Pupin developed

the analogy between mechanical and electric lines and, referring

to Lagrange\s work on the discontinuous string, succeeded in

building loaded lines and low-pass electric filters. The line is

vshown in Fig. 3.5a. The inductances U were spaced so that

l' l' L'

(a)

L' L' L'

(6)

Fig. 3.5.—^Low-pass electric filter and loaded line.

there were about ten inductances per wave length. Calling the

capacitance per section d between the two halves of the line C',

Pupin obtained a critical frequency of

Figure 3.55 shows an equivalent line with the capacitance of the

line lumped and placed along the line as indicated.

The first high-pass electric filter (i.e., a line passing all fre-

quencies higher than a certain critical frequency and stopping

all others) was built by Campbell in 1906. The line is shown in

Fig. 3.6. Campbell followed up his high-pass filter by designing

various band-pass filters. Figure 3.7 is the band-pass filter

analogous to Vincentes mechanical band-pass filter.

It is somewhat easier than in the analogous mechanical lines
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to see why the electric lines mentioned above should pass some

frequencies and stop others. The impedance offered by an

electric circuit to a current passing through it is propoi'tional to

vL and inversely proportional to vC where v is the frequency, L is

the inductance, and C is the capacitance. Thus in the low-pass

filter shown in Fig. B.5b the impedance offered by the coils L'

increases with the frequency, while the impedance of the capacities

Fig. 3.7.—Band filter.

connected acrosKS the line decreaseis. The occurrence of a critic'.al

frequency is a result of the spacing and lumping of the inductances

and capacities. In the high-pass filter the low frequencies will be

shunted to the returning line through the inductances while the

high frequencies will be passed. Again, the occurrence of a

critical frequency is due to the discontinuous nature of the struc-

ture. These problems will be discussed in detail in a later section.

1 ^ i © © ©-^—P—^
^

—

X

0 d 2d 3d 4d 5d 6d 7d 8d 9d lOd lid

Fig. 3.8.—Born’s model for sodium chloride.

In 1912, Born investigated the propagation of waves in crystals

and rediscovered Kelvin's analysis. Using the model shown in

Fig. 3.8, with large masses M and small masses m alternating at

the points along the x axis defined by nd, where d is the distance

between nearest neighbors, he obtained the curves shown in

Figs. 3.9a and h. Figure 3.9a shows v as function of a. There

are two branches to the curve because we have effectively
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doubled the number of degrees of freedom of the system by add-

ing another constant. The additional constant is, of course,

the second value for mass. We shall find that in general the

number of branches will equal the number of different masses

occurring in the model; i.e., the number of frequencies correspond-

ing to a given wave number is equal to the number of degrees of

freedom associated with each element or cell of the lattice. In

this case the cell consists of a large mass and either of its neigh-

boring small masses. If there were two different masses between

2cl 2d

a given mass and the next one like it, and if this structure were

repeated all along the lattice, each cell would have three degrees

of freedom, and the v vs. a curve would have one lower branch and

two upper branches as in Fig. 3.9c. This property of discon-

tinuous media will be discussed in greater detail later.

In general, the lower branch is called the acoustical branch.

It corresponds to motion of the particles such that in each short

section of the line all particles move in the same direction at a

given instant. The upper branches are called optical branches

and correspond to one or more types of particles moving in the
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direction opposite to that of the others at any given instant. In
Born’s model, where we have only two types of particle, the
optical branch corresponds to the motion of the large masses in

one direction while the small masses move in the other.

Figure 3.96 is the attenuation curve for Born’s inodel and
represents the generalization of Fig. 2.7a. There are one stopping
band and two passing bands associated with this model. The

—vilMfiASb diiib KSiSlSmSU yJAlSU \MSiSmj \MSLr-
Fig. 3.10.—Electric filter corresponding to Born’s sodium-chloride model.

Fig. 3.11.—NaCl crystal lattice.

electrical analogue to Born’s lattice is a line with small and large
inductances alternating (Fig. 3.10).

Born’s problem is usually referred to as the NaCl crystal lattice

problem, since a very similar situation is found in the NaCl
crystal structure: it is a cubic lattice with Na+ and Cl~ ions
alternately located at the lattice points, as shown in Fig. 3.11.
Along one axis, the x axis, for instance, the structure is exactly
the same as that in Fig. 3.8.



CHAPTER II

PROPAGATION OF WAVES ALONG
ONE-DIMENSIONAL LATTICES.

GENERAL RESULTS AND QUALITATIVE DISCUSSION

4. General Remarks

Before proceeding to the mathematical treatment of waves

propagating along a one-dimensional lattice, we shall make some
general remarks about the problem and discuss some particular

cases qualitatively. The simplest example of a one-dimensional

lattice is Baden-PowelFs model with equal masses spaced uni-

formly in a line. If we take the masses along the x axis, the x

coordinate of the nth mass will be given by

X = nd + (4,1)

where ypn is the displacement of the nth particle from its equilib-

rium position. \l/n may be taken to represent transverse or

longitudinal displacement, or any other quantity whose value

may be defined at the points occupied by the masses but not

elsewhere (electric polarization, for instance); i.e., we may
regard as a property associated with point mass n. This

property is propagated as a wave if the physical problem admits

a solution of the type

(X = i
fc = 27radj oj = 2irv

A

where v is the frequency, t the time, a the wave number, X the

wave length, d the period of the lattice, co the angular frequency,

k the product of the wave number and the period of the lattice

multiplied by 27r, and A a constant amplitude. The quantity k

is the change in phase in passing from a point n to its right-hand

neighbor n + 1

:

^„4.i = \l/n€r^

17

(4.3)
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Thus k is essentially defined as an angle and can be known only

as modulus 27r. The same solution of the problem is obtained for

k or fc' = fc +2m7r (4.4)

when m is a positive or negative integer. Equations of the

physical problem must yield the same value of co or v for every

equivalent k or ¥

^

which means that the frequency p is a periodic

function of or a:

CO = f{k) period 27r in = 2xad 1

= F{a) period i in a f
(4-^)

This is a general and direct consequence of the periodic and dis-

continuous structure of the one-dimensional line. It was

explained in Chap. I in Eq. (2.4) by saying that if t// could be

measured between particles, the uncertainty ink ox a would be

eliminated, but since is measured only at the discrete points nd,

the condition (4.5) is unavoidable.

On account of the periodic properties of the line, it is sufficient

to discuss the properties of the functions f ox F inside one period

of k or a. The most convenient choice is

2d

(4.6)

since a wave always propagates in the same way to the right and
to the left. This means that the functions / and F have the addi-

tional property of being even functions. Positive k means a

wave propagating to the right; negative k a wave propagating

to the left. If ko is a positive number in the fundamental inter-

val (4.6), it represents a wave going to the right, and so does

ko -b 2t; but ~ is negative and represents a wave going to

the left (Fig. 2.5). Hence, the uncertainty is not only in the

magnitude of a or k but also in the direction of propagation.

The limitation (4.6) means

X - p i (4.7)

The shortest wave length is thus equal to twice the distan(‘o

between particles and (iorresponds to a certain critical frequency
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or cutoff frequency Vm that is characteristic of the structure. In

many important cases Vm is the maximum frequency, and the

system works as a low-pass filter for all frequencies

V ^ Vm (4.8)

Frequencies above are strongly attenuated. Condition (4.8)

is, however, not the only possible one, and other situations may
arise when Vm would be a minimum. The system as a whole is

always a filter, but it can be of the low-pass, high-pass, or band-

pass type.

These general results, plus a direct discussion of the waves

corresponding to the limiting cases, X = oo, a = 0, and X = 2d,

a maximum, may in a number of instances give enough informa-

tion to enable one to describe, at least qualitatively, the general

properties of the structure. In the next few sections we shall

apply this discussion to specific examples of one-dimensional

lattices.

5. A Lattice of Free Particles

By a lattice of free particles we mean particles in a one-

dimensional lattice with no forces present except those due to

interactions of the particles among themselves. For purposes of

this discussion we shall limit the interactions to nearest neigh-

bors. An example of this is a loaded elastic cord with the masses

distributed uniformly, where the elasticity of the cord remains

constant along its length and plays the part of the interaction

forces.

Let us first consider longitudinal displacements. The case

a = 0 corresponds to infinite wave length. In this case the lat-

tice as a whole is displaced, and no change in the distance between

masses occurs. Thus -no force is brought into play. The fre-

quency is zero. For a 9^ 0, but still very small, the wave length

is large compared with the distance between masses, and hence

the waves are propagated as if the lattice were a continuous string.

The velocity of propagation of waves along a continuous string is

constant for all wave lengths; i.e., for long wave lengths, the

frequency is proportional to |a|. A rigorous treatment shows

that the velocity decreases for wave lengths comparable with the

distance between masses. Now if a wave is to be propagated at

all, the frequency must be a periodic function of a. Further-
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more, the curve of v vs. a must be symmetrical about the origin.

If it were not, the frequencies for a given wave length propa-

gating in opposite directions would be different, a fact that would

be in contradiction with the symmetry of the structure. If v is

to be both periodic and symmetrical about the origin, there must

be a maximum in the value of v at l/2d, since the period of v is

1/d. Thus we obtain a curve of the general shape of that in

Fig. 2.4a. We shall, of course, justify the exact shape mathe-

matically in a later section.

The remarks made on the longitudinal vibrations also apply

to transverse vibrations. Qualitatively, they may be treated in

just the same way. Quantitatively, however, there is a differ-

ence. The velocities of propagation for large wave length are

Fig. 5.1.—^Longitudinal and transverse vibration along the row of particles

shown on Fig. 2.1.

different in the longitudinal and transverse cases, and the maxi-

mum frequencies are also different. A typical curve for a one-

dimensional lattice with particles with two- degrees of freedom is

shown in Fig. 5.1. The subscripts t and I on the maximum

frequencies refer to transverse and longitudinal vibrations,

respectively. The lower curve, representing transverse vibra-

tions, should properly be considered a superposition of two

branches of the same frequency, since there are two independent

directions perpendicular to the lattice in which the masses might

move. If there were an asymmetry in the elastic cord (e.g., if it

were of elliptical cross section), the lower branch would split into

two distinct branches to give the extra frequencies demanded by

the added degree of freedom. The solid curve corresponds to the

interval (4.6), and its periodic continuation is shown as a dashed

curve.

The transverse branches will usually be below the longitudinal

branch in a loaded string, since the force required for a given dis-
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placement is smaller in the transverse than in the longitudinal

direction. The frequency of displacement is proportional to the

square root of the elastic constant, which vdll be smaller in the

case of transverse displacements.

6. Longitudinal Vibration in a Row of Equidistant Coupled

Oscillators

A particle attracted to some equilibrium position by an elastic

restoring force acts as a harmonic oscillator. It has one proper

frequency that depends on the elastic restoring force and the

mass of the particle. If its elastic restoring force is different in the

X, y, and z directions, we have what is called an anisotropic

oscillator. An anisotropic oscillator has three proper frequencies,

Fig. 6.1.—A row of harmonic oscillators coupled together.

yox, roy, and vqzj corresponding to vibrations in the x, y, and z

directions, respectively.

Let us consider a row of similar harmonic oscillators (isotropic)

spaced at distance d from one another along the x axis and allow

interactions between nearest neighbors (Fig. 6.1). We wish to

study the longitudinal modes of vibration of this system. For

infinite wave length, a = 0. Infinite wave length means that

all the particles are displaced simultaneously by the same amount.

Since the distances between the particles do not change, the forces

of interaction do not enter into the problem. Each particle is

attracted to its equilibrium position with the same elastic force,

and the system will oscillate with frequency vq. For a slightly

smaller wave length the particles will be displaced relatively to

one another, and the forces of interaction will play a part in the

motion of the system. The frequency associated with this wave

length will be slightly different from vq. Whether the frequency

increases or decreases will depend on whether the resulting forces

(elastic plus interaction) are larger or smaller than the restoring

force tending to return each particle to its equilibrium position.
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It may be shown that for large wave lengths v is given by

V = vq + ba^ (6 . 1 )

The sign of b depends on the constants of the system and deter-

mines whether v shall increase or decrease as \a\ increases. As

the wave length becomes comparable with 2d, the considerations

of the previous sections on one-dimensional lattices apply, and v

approaches an extremum. Thus we will have two limiting fre-

quencies, vq and Vm (where m stands for maximum or minimum
as the case may be). Frequencies between vq and will propa-

gate along the system, and other frequencies will be damped out.

The system therefore forms a band-pass filter. The solid curve

Fig. 6.2.—Frequency p as a function of a * 1/X for the row of harmonic
oscillators.

in Fig. 6.2 shows the curve v vs. a in the fundamental interval

(4.6) for the case 6 > 0. If each particle represented an aniso-

tropic oscillator instead of an isotropic oscillator, there would be

three curves, one for longitudinal and two for transverse vibra-

tions. These curves might overlap and would not necessarily all

rise as \a\ increases from 25ero.

7. Longitudinal Vibrations in a Row of Diatomic Molecules

The scheme described in the last section is somewhat artificial.

It is rather difficult to imagine a particle in nature being tied to

an equilibrium position by a little spring. A more realistic pic-

ture is obtained by considering diatomic molecules. This is a

more complicated problem, since we must introduce a second

type of particle that may interact with the first type as well as

with its own type.

A lattice of diatomic molecules is shown in Fig. 7.1. The open

circles are to have mass AT, and the dots are to have mass m. An
isolated molecule will have a certain proper frequency of vibra-
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tion that we call po. This frequency corresponds to an oscilla-

tion of the two masses along the x axis in opposite directions in

such a way that their center of mass remains at rest.

Let us consider the motion of a row of diatomic molecules

spaced at distance d from one another along the x axis. We
assume, of course, that the molecules interact, but we limit the

interaction to nearest neighbors. There will now be two wave
functions, both imaginary exponential, one describing the motion

of the masses M and the other describing the motion of the masses

m. These two functions may be written

= A and (7.1)

The frequencies and wave numbers will be the same, but the

amplitudes may be different. The frequency v may be found as

Fig. 7.1.—A row of diatomic molecules.

a function of the constants of the system and of a. It turns out

to be double valued in v, as will be shown in the rigorous theory,

corresponding to the doubly infinite set of degrees of freedom of

the system.

For infinite wave length, the atoms all oscillate in phase, and

we may take

Ajyr = Am (7.2)

This corresponds to a translation of the lattice as a whole without

alteration of the distance between particles, and hence the fre-

quency is zero. Another frequency for infinite wave length is

obtained if we take the small and large masses moving in opposite

directions in such a way that the centers of gravity of the mole-

cules remain at rest. This frequency would be vo if there were

no interaction between molecules. The presence of interactions

would change this frequency. If the wave length is decreased,

the lower branch of the v vs. a curve will rise. This branch is

just what would be obtained if we took each molecule to be a

single particle. The upper branch will increase or decrease from

its frequency at a = 0, depending on the relative values of the

constants involved. Figure 7.2 shows the frequency curves.

The limit to the frequency of the upper branch is for a = 0.

Either, but not both, of the two upper branches shown may
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occur. Figure 3.2 (Vincent) and Fig. 3.9 (Born) represent two

typical examples A\ith different upper curves. The size of

relative to the maximum frequency of the lower branch depends

on the constants of the system, as does also the width of the

Fig. 7.2.—Frequency as a function of a « 1/X for a row of diatomic molecules.

upper branch. Frequencies located in the stopping bands may
be shown to decay exponentially, as in the other models we have

discussed. The a corresponding to these frequencies are com-

plex with imaginary part is therefore the attenuation con-

stant for a given frequency. The attenuation curves are shown

Fig. 7.3.“Attenuation as a function of frequency for a row of diatomic molecules.

in Fig. 7.3. The solid curve is for the solid upper branch and

the dashed curve for the dashed upper branch of Fig. 7.2.

In these examples, the following features can be recognized

that will be proved in the detailed analysis of later chapters:

1. Periodicity of v as a function of A; or a (4.5).
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2. The possibility of a reduction of k or a inside the funda-

mental interval (4.6).

3. If the elementary cell of the one-dimensional lattice con-

tains a system with N degrees of freedom, there will be N different

waves corresponding to each k value, with N different frequencies.

Examples with N = 1, 2, 3 were given in Secs. 5, 6, and 7.

4. Hence, the number of degrees of freedom inside an ele-

mentary cell equals the number of branches in the curve v = F{a)

and the number of passing bands of the structure (with possible

overlapping of the passing bands).

5. Frequencies outside the passing bands ai-e not propagated

but decay exponentially along the line.

These are the general properties of one-dimensional periodic

structures that will be investigated mathematically in the follow-

ing sections.



CHAPTER III

MATHEMATICAL TREATMENT OF A

ONE-DIMENSIONAL LATTICE OF IDENTICAL PARTICLES

8. Equation of Motion of a One-dimensional Lattice of Identical

Particles

In this and the following sections we shall derive rigorously

the results discussed qualitatively in the first two chapters. We
shall assume an infinite lattice of identical particles of mass M.
The particles in equilibrium are separated by a distance d along

the X axis, and we shall take the oscillations of the particles to

be longitudinal. We number the particles by calling the particle

at the origin 0, the next particle to the right 1, etc. The dis-

placement of the nth particle is denoted by yn, so that Xn, the

coordinate of particle n, will be given by

Xn - nd + Vn (8.1)

We shall assume interactions between all particles, and for this

we require the expression for the distance between two particles

n and n + m. This distance is

rn,n+m = = md + "" Vn (8.2)

This expression may be either positive or negative, depending on

whether m is positive or negative. The energy of interaction

between two particles will be expressed as a potential function

that will be assumed to depend only on the distance between the

two particles:

U(r) = U(\Xn^m - Xnl) (8.3)

The total potential energy of the lattice will then be given by

= X D (8-4)
n m>0

m must be restricted to positive values so that the interaction

between a given pair of particles will be counted only once. We
26
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might take the .sum over all values of w and divide by two to

compensate for counting each pair of particles twice. However,

we prefer to restrict m to positive values, since this enables us to

drop the absolute-value sign in the argument of I \ If we assume

that the displacements yn are small compared with d, we ma}"

expand ?7 in a Taylor series. Thus

U{XnJrm — Xn) == V — yn)U'{md)

+ }'2{yn+ra ““ yn)^U"(md) + ’ *
*

,

where U'{md) and U"(md) are the derivatives dV/dr and Jdr'

evaluated at md. Substituting the Taylor expansion in Eq, (8.4),

and neglecting powers of (t/n+m — yn) higher than the second, we
obtain for the potential energy of the lattice

U(jnd) “b (^yn-^-m tlf/) ^ (fttd)

n m>0

+ I
- yr.yU"{md)\

or

U = const+2:5:[ (2/n+m — U'{md)

n m >0

+ 2 “ ynYU''{md) , (8 .6)

where the constant is given by

Const. = U{md) = ^ U{md)

n m>0 m>0

The force Fp acting on the pih particle is obtained by taking

the negative derivative of the potential energy with respect to the

displacement of this particle. Before performing the differenti-

ation it should be noted that only two terms from the sum over

all values of n will remain, the others dropping out because they

do not contain the variable yp. The two remaining terms will be

those for which n = p and n + m = p. m is to be positive, so

the terms for which n ^ p will give the force on particle p due to

particles to the right, while terms for which n -f- m = p give the

force on particle p due to particles on the left. Therefore,
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= _££=--l-VV
n m >0

[(2/,*+» - yp)("imcl) + i (Vn+m - ynYVimR)

= - ^ [^(2/;h-.»
- yp)l'’(.md) + \

iyp+M - ypyu''imd')

m >0

A" {yp — yp—m)f- ' irnd) ~1“ iyp 2/p—

»

i)^t (jnd)

= - 2 [-rimd) - {yp+„ - yp)V"{md)

m >0

+ r'(mrf) + (Vp - yp-m)U''(md)] (8.6a)

or, writing U"m instead of U^^imd)^

^ p — ^ m(2/2J-+-»n d” Vp—m

These formulas require some discussion and explanation. In

Eq. (8.6a), for instance, we find in the first row a term — V'irnd)

representing the force of atom (^ + m) on atom p. In an

„7 _5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

FINITE ROW OF ATOMS END OF MISSING ATOMS
THE ROW

Fig, 8 . 1 .

infinite lattice this term is compensated by an opposite for(*o

+ (/'(mrf) found in the second row of Eq. (8.6a) and representing

Lhe force of atom (p m) on atom p.

The situation is different in finite lattice (Fig. 8.1). Let us

assume the row of atoms to extend from n—— oo ton = 0,

with all atoms n == 1, 2, 3, . . . missing, and let us discuss the

forces to be added in order to keep the structure undisturbed

near the end of the row. External forces that would make up

exactly for the forces that the missing atoms would produce on
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the end of the row must be pro\dded for. For instance, we must

add the forces

j-r, jr, JT,
^ 3j 0 4, C 5, , . .

on atom n = ”2, This means a very complicated set of forces

acting on the last atoms of the row, if the row is to be kept unper-

turbed with the constant distance d up to the last atom. The
total force required on all the last atoms of the row is

Ft = r'l + 2U', + SU's • • = X mr„, (8.7)
m~l

since there are m pairs of atoms interacting at distances md
across the border. The sketch in Fig. 8.1 visualizes the situation

for m = 5. In order to obtain a one-dimensional lattice with

distance d between neighboring particles, it is necessary that the

total force acting upon the end of the lattice be Ft, but the condi-

tion is not sufficient.

If this total force Ft, is differently distributed between the

particles at the end of the row, two things may happen:

1. It is possible that a local perturbation of the row is produced

near the end, but that at large distances from the end the equi-

distance d is obtained. This is usually the case, with forces

decreasing rapidly when the distance is increased, such as the

ones encountered in most physical problems of crystal lattices.

If the forces extend only to a distance Ld, the sum in Eq. (8.7)

must be taken from m = 1 to m = L, and the distance upon
which the perturbation of the lattice occurs is of the order of Ld.

2. The perturbation may extend throughout the lattice and

offer a periodic character as a function of the distance, thus

resulting in a sort of superlattice or periodic structure with a

distance D > d. There may also be different values di, d^, . . .

corresponding to the same total end force Ft.

For instance, a free row of particles is one terminating freely

with no external forces added. This means that no perturbation

will occur only if all teims C/'i = C/'2 = . . , = U'l = 0, and

in this case the lattice will keep the interval d up to its end. If

all U^m are not zero, a perturbation appears near the end of the

lattice (case 1) or even along the whole lattice (case 2).

This one-dimensional example corresponds to the problem of
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surface structure and surface tension for solids or liquids. In the

three-dimensional problems of physics, the interaction between

particles decreases very rapidly for increasing distances, and

case 1 above is practically always obtained. The last L atoms of

each row build a surface layer Xd deep, which surrounds the solid

or liquid structure. The perturbation of the lattice inside this

surface layer results in additional forces, the resultant of which

is known as surface tension.

The type of perturbation in the lattice and the extent of this

perturbation will be discussed later on (see Sec. 10), but we

should immediately emphasize the great complexity of the hoUnd-

ary conditions for structures including particles interacting at large

distances. The situation at the boundary cannot be defined by a

set of forces acting on the last particles, but the whole distribu-

tion of these forces on the different particles at the end of the row

must be specified. The usual mathematical statements about

forces on the boundary are completely inadequate. A similar

situation will be found in connection with problems of wave

propagation across the junction of two lattices, or reflection of

waves at the boundary of a lattice (see Sec. 24), where a minute

description of the type of junction extending all through a

boundary layer’ of order of thickness Ld would be required.

As for Eq. (8.66) and vibrations inside an infinite lattice, the

force Fp will be balanced by the inertial force so that the equation

of motion for the system will be

F, = M (8.8)

w>0

Let us assume a wave solution for Eq. (8.8).

yp = ^ = 1 (8.9)
A

V is, of counse, the fre(piency and a the wave number. This gives
A

yp¥m + Vv-m ~ 2?/p = ^ f.trimda _ 2)

= —2yp{\ — cos 2Tramd) = —4:yp sin^ iramd

Therefore, Eq, (8.9) will be a solution of Eq. (8.8) if the following

relation between v and a is satisfied:
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^ U^'m sin^ iramd

m>0

= i^ U^'rn{l — COS 27ramd) (8.10)

m >0

with {7"m = U"{md). From Eq. (8.10) we may verify at once

that I' is a periodic function of a and has period 1/d, since

and V must be positive.

9. Rigorous Discussion for the Case of Interactions between

Nearest Neighbors Only

If we assume that the interactions among the particles are

negligible except for nearest neighbors, Eq. (8.10) reduces to

= U" sin2 Trad U’ = V'\ (9.1)

This is the equation on which the qualitative discussions in the

first two chapters were biased. We may compute the velocity of

propagation of the wave.

- M - Id _ ,/ /“ a " v M lira|
" V

|sin TT ad|

If Ixadl

The velocity for infinite wave length is therefore

ilfFf

(9.2)

(9.2a)

and Eq. (9.2) checks with Baden-Poweirs equation (2.1).

In order to set up the connection between these results and

Newton^s calculation for the velocity of sound in air, we must

define a modulus for our discontinuous system; and this must be

done in such a way that in the limit of dense spacing of our par-

ticles (i.e.j a continuous structure) the modulus Avill go over into

the ordinary extension modulus, defined as tension divided by

strain. In our discontinuous structure, we can define the ten-

sion between two particles as simply the force between them, and

this will be equal, for the pth and (p + l)st particles, to

- y,)
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since the resultant force on the pth particle, due to both particles

(p + 1) and (p — 1), is

+ Vv-i
-

2P2>)

Furthermore, we can define the strain between particles p and

(p + 1) as (pp+i — y^/d. The modulus will, accordingly, be

e = dU"{d) (9.3)

and it is evident that in the limiting case of dense spacing all

our definitions will go over into the usual definitions.

If we call our modulus e and the average linear density of our

system p (i.e., p == M/d), Eq. (9.2a) becomes

T (9.3a)

which is Nevvton\s formula [Eq. (l.l)] with e in place of Newton^s

bulk modulus cd. We can identify our 17" with Newton^s elastic

constant e.

For the wave length large compared with d, i.e., if the lattice

may be regarded as a continuous medium, the velocity is

and is independent of the wave length. As the wave length

decreases, the velocity decreases and approaches or

0.635 times the value for infinite wave length (see Fig. 2.2).

This velocity is reached at the wave length X = 2d. For X == 2d,

there is an ambiguity in the velocity of propagation, as pointed

out in an earlier section, since the wave may be propagating in

either direction with velocity 0.635F^ or may be a standing

wave. The cutoff frequency Vm is obtained from Eq. (9.1) by

setting ad =

For frequencies lower than the limiting frequency Vm we obtain

real solutions for a. For higher frequencies a is complex, since

ttVW == I/" sin^ Trad (9.1)

If we set

a = ± ^ ± k = 2m’ad == Att + i2Trfid

sin Trad = ± sin
^

cos iirfid = ± cosh rfid

(9.5)
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then

cosh^ Trfid (9.6)

or

1 /p77

kl == Icoshx^rfl (9.7)

P is called the attenuation coefficient

j

and in the attenuation curves

the magnitude of p is plotted as a function of v. Curves repre-

senting the real and imaginary parts of a = a + 0 as functions

of the frequency v have been drawn in Fig. 2.7 (Sec. 2). Between

.

0 and Vrtij a is real, and above the real part of a keeps a constant

value ±l/2d while the imaginary part P increases very rapidly.

This means that for frequencies above the cutoff Vm the vibration

decays exponentially along the string 0 term) while successive

atoms oscillate in opposite directions (real part l/2d). This is

easily seen in Fig. 2.10, which is a reproduction of one of Kelvin^s

original drawings. It shows that Kelvin had actually grasped

all the details of this problem.

10. Discussion of the Distance of Interaction

In the case of interactions between nearest neighbors only, we
find that there is a single frequency corresponding to a given

wave length and that there is only one wave length larger than

2d for each frequency- Now if the interactions extend to the

Lth neighbor, i.e., to a distance of Ldj we obtain the following

expression relating frequency and wave number [Eq. (8.10)]:

== ^ sin^ TTomd

0 <m<L

= i ^ r"m(l — cos %ramd) (10.1)

0 <m <L

For very large wave lengths

1 V dxi^Ttamd
^ a^

0 <m <L
I ^ (10.2)

0 <m <L

Thus Foo is still a constant whose value depends on the constants

of the system. As the wave length decreases, the velocity of
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propagation varies. The frequency corresponding to the limit-

ing wave length X = 2d, a = l/2d, may be computed.

1

s
0<m<L

wm
U"m sin® -TT = rm I

0 <m<L
m odd

U''{md) (10.3)

since

. Tvm f 0
sm-2 =

{

m even

m odd
(10.4)

so that the even terms in the sum drop out.

Returning to the general equation for v [Eq. (10.1)], we note

that to each value of a there will correspond a single frequency

regardless of the extent of the interactions. Now cos 2Tramd

may be expanded as a polynomial of degree m in cos 2Tad. Thus

the frequency will be expressed as a

polynomial of degree L in cos 2m-ad.

This means that for a given frequency

there will be L solutions for cos 2irad

and hence L solutions for a in the

interval — l/2d to -\-l/2d. The re-

sult of these remarks is that p is a

single-valued function of a, but a is

not a single-valued function of v, as

shown in Fig. 10.1. It is not neces-

sary in this case that the maximum value of the frequency appear

at the ends of the interval -l/2d g a ^ -l-l/2d, but the curve

must end with a horizontal tangent in any case.

The L solutions for a for a given frequency need not all be

real; some may be imaginary or complex. Such solutions are to

be interpreted as meaning that the wave decays exponentially

along the lattice. This is of special importance in the case of a

finite lattice such as the one already discussed in Sec. 8 with Fig.

8.1. If we assume a sinusoidal motion of frequency v imposed on

the last particle of the lattice, the different waves corresponding to

this frequency will be excited in various proportions. Those for

which a is real will propagate along the lattice, and those for

which a is imaginary or complex will decay exponentially from

the point of excitation. If we wish to excite only one of the

waves on a semiinfinite row of particles, we must impose on the
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first L particles the motion characteristic of this special wave.

In the case of interactions between nearest neighbors only, the

boundary conditions were simple: we had only to specify the

motion of the first particle. However, added interactions com-

plicate the procedure, and the boundary conditions must be

specified over a length Ld of the lattice.

The problem of the lattice at rest corresponds to the case = 0.

In drawing the curve in Fig. 10.1, it was assumed that the forces

between the particles were such as to give only one real solution

a for low V values. The remaining (L — 1) solutions must then

be complex and result in a perturbation of the lattice that would

decay exponentially from the border. The whole distance over

which these exponential perturbations extend (at the limit

^ = 0) represents the thickness of the border in the one-dimen-

sional case or of the surface layer in the three-dimensional

problem. This assumption corresponds to case 1 discussed in

Sec. 8 after Eq. (8.7). Another pos-

sibility would correspond to a curve

going down to v = 0 for some ±ai
value of a, such as the curve of Fig.

10.2. Under such circumstances a

steady periodic perturbation of wave 2 <i

length Xi = 1/ai may obtain through-

out the lattice and realize a superlattice structure of period

\i/d = l/aidi

as anticipated in Sec. 8, case 2.

Equation (10.1) gives as a finite Fourier expansion in a. We
may use Fourier’s theorem to obtain the interactions among the

various particles if we assume v = F(a) is a known function.

U"{md) == --“47rWd {gob 2Tramd)da (10,5)

As an example, let us seek the interactions that would give a

constant velocity of propagation W throughout the passing band.

Then

a is, of course, to be taken in the usual interval. Curves corre-

sponding to this problem are shown in Fig. (10.3). Then
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XJ'' = a^(cos 2iramd)da

Now L' is the second derivative of the interaction energy of the

two particles separated by md and appears as a function defined

at discrete points at intervals of d along the x axis. We may take

the continuous function

r'{x) ^ MW^ TTX
- 2 s—' cos “T (10.7)

to represent the discontinuous function. The function (10.7)

has the same values as r'\7nd) at the points where U"(md) is

2d 2d

Fig. 10.3.

defined, but it is continuous, and hence we may integrate twi(‘e

to find the interaction energy. The integration must be done

by tables in this case. Once the function (7"(x) is known, how-

ever, one may construct a discontinuous line with the proper

elastic forces between the elements to obtain a low-pass mechan-

ical filter having a constant velocity of propagation for all fre-

quencies in the passing band. The same method may be

applied to a high-pass filter or to more complicated filters having

one or more passing bands. For this simple example we may
easily obtain where a? is the angular frequency, 2t times the

frequency v, as a Fourier series.



Sue. 11] LATTICE OF IDENTICAL P IRTICLES 37

lO- = Air-v- — 4 COS 2Tcamd)

4( “ 2TTamd)

= 1^(1
— cos 2'Knd) “ ^

4:7rad)

+ I
(1 — cos &jrad) — ^ (1 cos Sirad) +

[\ 4 9 16
COS 2^ad

+ i cos 4:7rad — ^ cos (y^ad + i cos Swad
4 9 lo

4:W'^ r TT*-^ o / ^
f ^= —— — — cos 2Traa + -r cos 4:7raa

d^ 112 4

— i cos 67rad + ~ cos 8irad * * •

9 16
(10 .8)

12 4 ^ 9 16
^ ^

i

Let us replace 2Tad by k and recall that a = v/W to obtain

¥ =

cos fc + ^
cos 2fc — i cos Sk + (10 . 10)

Thus we have k^ as a well-known Fouiier expansion in k in the

interval — tt, +7r.

11. The Low-pass Electric Filter

The electric filter shown in Fig. 11.1 is a low-pass electric filter.

The equal self-inductances L alternate with equal capacities C.

The capacities shunt out the high frequencies; and the low fre-

quencies are allowed to pass. To obtain the equations of this

line, we call Qn and Vn the charge and potential, respectively, on

condenser n, while in will be the current flowing between con-

densers (n — 1) and n. Then

T din TT Tr Qn-^1 Qn
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(ll.i)

F„ = ^' (11-2)

Differentiating Eq. (11.1), we obtain

^ - 5(%-' - t) - 5 <“'>

The solution of Eq. (11.3) gives the flow of current in the line,

and from this the potential differences and charges on the con-

denser plates may be found. Equation (11.3) is identical with

IlLii 'jLt?i±i±,i±iJL
Fig. 11.1.

the equation of motion of a one-dimensional mechanical lattice

[Eq. (8.8)] with interaction between nearest neighbors only

(Chap. I, Sec. 2, or Chap. Ill, Sec. 9).

+ 2/«+i - 2yrd (11.4)

U"/M is replaced by l/LC, and yn is replaced by Thus all

the results obtained for the low-pass mechanical filter apply

automatically. The velocity of propagation for very long waves
is d/'s/LC where d is the distance between condensers; there is a

cutoff frequency and all frequencies higher than Vm decay

exponentially; j' is a periodic function of the wave number.
From Eq. (9.4) we may compute the cutoff frequency.

The low-pass electric filter shown in Fig. 11.1, to which Eq.

(11.3) applies, contains no resistance. Introduction of resistance

changes the properties of the line slightly. There will be a slight

attenuation of frequencies in the passing band due to energy
losses in the resistance, and the cutoff frequency will be less
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abrupt; i.e., there will be a region of rapidly increasing attenu-

ation for increasing frequency near This problem will be

discussed in detail in Chap IX. The curves in Fig. 2.7 vill be

changed into those in Fig. 11.2.

LINE

L L

T-C -rC

J-C

Fig. 11.3.

GROUND
LINE

. in—2“— In—1“^ I n * in+1 ^ i n+2 *

L L L L L L

nnnrr'--T--^7MF'—T—

V„_JL V„_iJL V„_L V„+1_L Vn+aJ-

Qn-2Tc„_2 ‘3n-rTc„_i Qn'TCn Qi+llCn+l Q"+2Tc „+2

vJMlb—
L L L L L L

-^ln-2 -^ln-1 ““•n “^in+i “*“in+2

Fig. 11.4.

The single-line structure of Fig. 11.1 is equivalent to a double

line (Fig. 11.3) constructed from the original line of Fig. 11.1

and its image. This can be simplified in the scheme of Fig. 11.4

with the same L values as in the single line but with capacities

HC.

L' = L,- C' = ^ ( 11 .6)
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Hence, the double line of Fig. 11.4 has exactly the same proper-

ties as the .single line, ^nth the values

d _ d

Vie V2L'C' .

(11-7)

as announced in Eq. (3.1).

12. Analogies between Electrical and Mechanical Systems

In the last section we saw that the equation for the propaga-

tion of electric waves along a low-pass electric line was of exactly

the same form as that for the propagation of elastic waves along

a low-pass mechanical lattice. This suggests the possibility of

mfllflng an analogy between electrical and mechanical lines that

^v^ll hold generally. The detailed discussion of electrical lines

mil be reserved for Chap. IX. However, we shall examine the

problem in sufficient detail here to form a basis for an analogy

mth mechanical lattices.

In the last section we found that the quantity sJl/LC played

the part for electrical lines that y/U"/M plays for mechanical

lattices. The classical method for drawing an analogy between

electromagnetic and mechanical effects is to associate electro-

magnetic energy with kinetic energy and electrostatic energy

with potential energy. This leads to associating

i with IJ" and L with M (12.1)
0

However, this method is not the only one that can be used, and

we ah a ll find another method more convenient for some purposes.

The design of the system under consideration will, in general,

determine the analogy to be used.

Another way in which we could make the analogy would be i.<)

take

and Mr^C (12.2)
JLjp

For instance, this is the proper analogy to use if we wish to con-

struct an electrical line with the same propagation properties as a

lattice with equally spaced particles of equal mass and inter-

actions between all particles. This can best be shown by con-
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structing such a line according to Eq. (12.2) and verifying that

the line equations of the two systems are exactly the same.

The line is shown in Fig. 12.1. Each condenser has capacity C
and is connected to its nearest neighbors through an inductance

Li. The condensers are connected to next nearest neighbors by
inductances and to the pth neighbors by inductances Lp.

Only Li and L 2 are shown in the diagram in order not to compli-

cate it too much. The condensers are numbered as before. The
current flowing through Lx will be tn-i.n, and, in

general, that flowing through Lp will be fn—-p,?!.? frt—p-f-l,n+lj • • • ?

n-2 n-1 n n + 1 n+2
Vn-l Vn Vn+l Vn+2

Qn-2 Qn-1 Qn Qn-l-l Qn+2

Fig. 12.1.

in-i.n+p-i, The sccoud subscript on the current indicates

the condenser into which the current flows, and the first sub-

script indicates the condenser from ivhich the current started.

The charge Qn on condenser n will be given by

.
.

.
I
...

I

•

~7lt~
^n-~p,n I 'Z’n—p-j-l.n i“

* * ’

“i >l,n

(fn,-7i+l 4” fn,n+2 -j- " ’
' 4~ fri,n+p)

“ (f/i—Pjri 'Znj/i+p) (12.3)

We have the following equations for the current in the various

branches of the circuit denoted by Lp, if we take the potential

of condenser n to be Vn.

ai>

= - Fn =

=: Vn-2 - F. =

= Fn--p - F. =

Qn—l Qn

c
Qn—

2

Qn
c

Qn—p Qn

(12.4)
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Differentiating Eq. (12.3) and combining with Eq. (12.4), we

obtain

di„,^n,»4-p \

dt )

Qn—p “f" Qn+p ^Qn

ip
(12.5)

Equation (12.5) is indeed identical with that for a row of par-

ticles, each having mass ilf
,
with interactions allowed among all

neighbors [Eq. (8.8)], if we make the correlation.

M ~ <7 and U'\ ~ ~ (12.2)
L/p

The line shown in Fig. 12.1 will thus have the same propagation

properties as the lattice of like particles with unlimited inter-

actions (Chap. Ill, Sec. 8).

A geometrical argument lead-

ing to Eq. (12.2) may be given.

The mechanical low-pass filter

consists of point masses joined by
elastic elements that we might
visualize as springs. The elastic

elements (Fig. 12.2) each have
two ends, one connected to one

mass and one to another mass, while the masses are represented

by single points. An electric line having all its condensers
shunting the high frequencies may be regarded as a single line

with the condensers connected between the line and ground at

regular intervals. Then the inductances appear as having two
ends connected to different condensers, and the condensers are

essentially points in the structure. Another way of looking at

the problem is to regard the elastic forces as coupling forces in

the lattice and the inductances as coupling forces in the electric

line, while the masses and condensers are thought of as supplying
inertial forces to their respective systems.

In the case of a high-pass filter, the electric circuit would have
inductances leading to ground with condensers incorporated in
the line and separating the inductances. In this case the induct-
ances would have to be regarded as the points of the system and

/MASS SPRING

MECHANICAL

t'" t
’

—

ELECTRICAL

Tig. 12.2.
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the condensers as the parts having two ends, so that the classical

analogy [Eq. (12.1)] would again hold. For a band-pass filter

with a low-pass band and higher bands in addition, the induct-

ances would have to be shunted by condensers that would be
regarded as masses, since one plate of each condenser could still

be taken as grounded. However, a closer analysis of the system
would be necessary to decide which analogy to use, since there

might be condensers elsewhere in the circuit.

There is a limit to which these analogies may be carried. It is

not possible, for instance, to construct an electrical line by Eq.

(12.5), giving an arbitrary relation between a and v, as it is for a
mechanical lattice (discussed in Sec. 10). The reason is that

it is sometimes necessary to allow U'^p to take on negative values.

This is easy to realize mechanically, but it would not be possible

to obtain a negative self-inductance for the analogous electrical

line.



CHAPTER IV

MATHEMATICAL TREATMENT OF

MORE COMPLICATED ONE-DIMENSIONAL LATTICES

13. Equations of Motion for the One-dimensional NaCl Lattice

The one-dimensional NaCl lattice is a special ease of the one-

dimensional diatomic lattice that was discussed qualitatively in

Secs. 3 and 7. The general lattice is shown in Fig. 13.1. There

are two masses ilfi and ilia alternating. A given mass Mi will

have its right-hand neighbor a distance di away and its left-hand

O di *(12 0 d] • da O di • da O di • da O di •

Ml Ma Ml Ma Mi Ma Mj Ma Mi Mj

n-2 n-1 n-1 n n n+ 1 n+ 1 n+2 n+2

Fig. 13.1.—A row of diatomic molecules.

neighbor a distance dt on the other side. The period of the lat-

tice is then

+ (13 . 1 )

In Sec. 7 we assumed one mass, say If2 ,
much smaller than the

other. Then Mi was supposed to interact with the small mass

nearest to it and with each of the two large masses nearest to it.

The small masses were supposed to interact only with the nearest

large mass. In other words, we allowed molecules as a whole to

interact and then included the internal degree of freedom in our

discussion.

In this section we shall discuss a ^slightly different lattice.

The two will have the same type of curve, however, since we shall

change only the rules of interaction. The interactions shall take

place between nearest neighbors without reference to the size

of the masses. This implies, of course, that we are dealing with

particles that are comparable. If we limit the problem to

one in which the distances are equal and the interactions of a par-

ticle with its two nearest neighbors are equal, we obtain the one-

dimensional analogue of the NaCl lattice used by Born in his

44
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theory of specific heats. The lattice is shown in Fig. 13.2. The
solid dots represent particles of mass and the open circles

those of mass M i. The particles can be numbered in two differ-

ent ways as shown in Figs. 13.1 and 13.2. We use the second

one, where we have assigned even numbers to solid dots and
odd numbers to the open circles. This means that the equilib-

rium coordinates of the particles with mass Mi are (2n + l)d/2,

while the equilibrium coordinates of particles with mass are

2nd/

2

= nrf.

O cl/2 •

Ml M2

n-3 n-2

d/2 O d/2 • d/2 O d/2 • d/2 O d/2 * d/2 O
Ml M2 Ml M2 Ml

n”"l n n+ 1 11+2 n+3

Fig. 13.2.—M. Born’s model for sodium chloride.

M2

n+4
Ml

n+5

The equations of motion of the two types of particles are differ-

ent because of their different masses. If we denote the force on

the mth particle by Fm, which is computed exactly as in Sec. 8,

Eq. (8.6) or Eq. (11.4), we obtain for the equations of motion

F-2. = U"l(y2n-1 + 2/2n+l - 2y,„) )

f (13.2)

F2n+1 = + y2n+2 — 2^2n+l) = Ml —

j

wnere yk is the displacement of the kth particle from its equilib-

rium position. Let us assume a wave solution to these equations

of the following form:

where

y^n =
^2n+l = A

k = 2Trad

(13.3)

It should be noted that the first of Eqs. (13.3) represents a wave

propagating only through the particles of mass M2 ,
while the

second represents a wave propagating only through those of
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mfl.ss Ml. The wave lengths and frequencies for a given dis-

turbance must be equal. The amplitudes of the two waves, on

the other hand, are not necessarily equal. They may differ in

magnitude as well as in phase.

In order that Eq. (13.3) may satisfy Eq. (13.2), certain rela-

tions must be imposed on the constants in the solution. These

relations are obtained by substituting the assumed solution (13.3)

in Eq. (13.2). The substitution yields

il/2(-A2a)2) = r"i{Aie^' 4- - 2A^)

= r"i(^of*‘ + rise-** - 2rii)

The exponential term divides out of the first equation,

while divides out of the second. Making use of the

relation
gihi g-ihi — 2 COS Til

and rearranging terms, we obtain two linear equations in rii and

A 2.

ri 2(Ms«^ - 2U’\) -t- 2AiV"i cos h = 0\ .
.

rii(Mi«2 - 2U"i) + 2A2 U"i cos fci = 0 j

^ ^ ^

The condition that these equations give nontrivial solutions for

rii and ris is that the determinant of the coefficients of rii and ris

shall vanish. This condition gives us a relation between w and

k\ in terms of the constants of the lattice: ikfi, M^, and XJ''i.

Thus

(rifico^ - 2U"i){M2fj}^ - 2U"i) = W'l^ cos' ki

or, expanding,

(k + k) ^S - 0 (13,5)

This equation possesses two solutions for and hence two solu-

tions for Wy since the frequency is always taken to be positive; i.e.,

for each value of fci there will be two values of the frequency, so

that the oj vs. ki curve will have two branches.

CO
2 == i\^ /r 1 ^ Y

mJ - \\Mi ^ mJ MiMt^
(13.6)

Substitution of Eq. (13.6) into Eq. (13.4) yields two equations

for rill and These two equations are, however, not linearly
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independent and hence may be used only to determine the ratio

Ai/ilo, which is real. The magnitudes and actual phases of the

amplitudes for the two waves will depend on the initial conditions.

14. Electrical Analogue of the One“dimensional Diatomic Lattice

To construct the electrical line analogoiiKS to the one-dimen-

sional diatomic lattice, we must use the classical method of associ-

ation [Eq. (12.1)]. This means that since we have two masses

in the mechanical model, we must have two inductances in the

electrical model. We could generalize the problem treated in the

preceding section and allow different coupling between the two
masses or, what amounts to the same thing, allow the distance

betweenM i and to be different on the two sides of the particle.

•pn-I

X '* J_ ‘-2 X X X X

2n-2 2n-l 2n 2n + l 2n-H 2 2n+3
Q 2n-2 Q 2n“l Qan Qan+l Q 2n+2 Q 2n+

V 2n-2 ^
2n-l Vzn V

2n^l V 2n+2 V 2n+3

Fig. 14.1.—Electric line corresponding to the sodium-chloride model.

This would give an electric line with condensers Ci and C2 alter-

nating. The condenser Ci to the right of a given condenser C2

would be joined to it by an inductance L 2 ,
while the condenser

C

I

to the left would be j oined by an inductance Li. This arrange-

ment would, in general, be analogous to the mechanical model

described in Sec. 7.

The electric line is shown in Fig. 14.1. As before, im represents

current flowing from condenser (m — 1) to condenser m as in the

case of Fig. 11.3. The fundamental equations are

^2n
* dQ^n

,

d'l2n-\-l

^2n+l
““

'i2n+2
dQ^n-^l

dt

d%2n

“ dt

= F2

= 72

V:2n+l

Fan -

dt

Q2n

Cl

Q2n-1

Q 2W+I

C2

Q^n

C~1

(14.1)

(14.2)

Differentiating Eq. (14.2) and combining with Eq. (14.1) will

3deld



48 WAVE PROPAGATION [Chap IV

y _ ^'2n ^ 2m4-1 2^ 2 h4~2

J d'i^n — ^2» '2271 ?'2n+l

These two equations would be identical with Eq. (13.2) for the

diatomic lattice treated in the last section if (7i = C 2 and we

replaced capacitance by the elastic constant and inductance by

mass.

The solution of Eq. (14.3) is carried out in exactly the same

way as that of Eq. (13.2), We assume wave solutions for and

f 2n+i with the same frequency and wave number but with differ-

ent amplitudes, as in Eq. (13.3).

•2271 = I2n4-1 = J

(14.3)

Substitution in Eq. (14.3) gives two equations linear in the

amplitudes

+ ^ + i) '1
‘ ^ = 0

+ ^ + i
.4i = 0

These simultaneous linear equations in Ai and A 2 have a non-

trivial solution if their determinant vanishes.

4* ^ Ĵ;)(- )

Cl
0 (14.6)

which reduces to

(14.7)

the solution of which is

“ - Ke +5) fe + A)
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This reduces to the expression (13.6) obtained for the mechanical

case if ii = J/2, L2 = d/i, and = Ci = There will

be two branches to the w vs. ki curve whether Li 7^ or not, but

taking Ci 9^ would distort the shape of the curves.

This problem was discussed by electrical engineers^ who did not

notice the similarity with the one-dimensional NaCl lattice

discussed by Born. The problem originated from an attempt to

join an aerial telephonic line with a city cable, as shown in

Fig. 14.2.—Junction of an aerial line with an underground cable.

2 ^2 Li L 2 Li

•jjiSiSij
—tjQQOQy— oofiti—juuair—

—

INFINITY--^

-|lOOO i >. 0000 i >, Qopo i i QQQQj

I H

Fig, 14.3.

Fig. 14.2. In order to obtain a correct junction at 4, where the

line is connected with the cable, it would be necessary to load

the cable with equal coils at a distance This results

from two conditions that must be satisfied in order to match the

line and the cable at their junction: (1) to have the same passing

bands, and (2) to have the same characteristic impedances (see

Chap. V). The difficulty was that the underground city cable

was already built to receive its loading coils at given distances x,

rr, . . . . The solution proposed consists in using alternately

two types of coils Li and L2 (Fig. 14.3), resulting in a structure

1 Febnoh, N. R., U.S, patent 1,741,926, Dec. 31, 1929; S. P. Mead and

N. R. Fkench, U.S. patent 1,769,959, July 8, 1930.
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0 0.2 0.4 0.6 0.8 J.O^ 1.2. 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

m=0,5
Fig. 14.4.—Curves computed by Mead and French. Compare with Fig. 7.3

or 3.96.

practically identical with the one of Fig. 14.1. Attenuation

curves for different values of m [Li == mLo, Z/2 = (1 ~
Lo a constant] were computed and are shown in Fig. 14.4.

They are identical with the attenuation curves jS shown in Fig.

3.96, which were obtained by Born for the NaCl structure, the

theory of which will now be discussed.

16. Discussion of the One-dimensional NaCl Lattice

In this section we shall discuss the motion given by the two
branches of the co vs. ki = k12 curve with particular attention

to the case = 0 and ki = ±Tr/2. The relation between w and
ki is given by Eq. (13.6).

or, rearranging terms,

4 sin^ ki

iravJ

w 2

M1M2
(Ml + Ma ± VMi' + Mj* + 2MiMii cos 2k0

(13.0)

(15.1)
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Equation (15.1) is completely symmetrical in Mi and If2 ,
and

we may therefore assumeM 1 the larger of the two masses without

loss of generality.

Ml > Mt

The ratio of the amplitudes of the waves may be obtained from

either of Eqs. (13.4). Both give the same result in terms of hi.

Using the first,

4- = (15.2)
2U^ I cos hi

^ ^

and, substituting Eq. (15.1) for we obtain

A

I

Ml — M2 + "x/Mi^ + M2
^
"h 2M 1M2 cos 2k

I

/i cT2 2Mi cos hi

The minus sign in Eq. (15.3) corresponds to the plus sign in

Eq. (15.1) or the upper branch of the co vs. hi curve, while the

plus sign of Eq. (15.3) corresponds to the minus sign of Eq. (15.1)

or the lower branch. It should be noted that the amplitude

ratio is always real; therefore, the waves may have only two
phase relations: phase difference zero if A ifA 2 > 0, and phase

difference tt if A 1/A 2 < 0. This is typical of a system without

any resistance and with no damping.

For large wave lengths X, —> 0 as does k. For this case we
may set

cos 2ki ^ 1 — 2ki^ = 1 — « cos k
where

ki = 2Tadi = wad = y^k

and the radical in Eq. (15.1) becomes

2 + il/2* + 2MiM.

= (Ml + Ml) -
fcWiMa

(Ml + Ml) 2

/Tl/T 1 Tlyf \ ^ 1 ^ k^MlM2 \ /ic(Ml + Ml) (1-2 (Ml + M 2)V
and Eq. (15.1) reduces to

, _ km"i
” 2(Mi + Ml)

<0+2 = 2C7" rj_ + i__
[Ml ^ Ml 4(Ml + Ml)

lower branch

upper branch

(15.5)
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The subscripts + and — denote the sign used before the radical.

Thus co_ is linear in k near the origin as in the case of like particles;

has a maximum at the origin and decreases parabolically as iA:|

increases.

To interpret properly the meaning of a second frequency for

infinite wave length, we must compute the amplitude ratio for

small ^ 1 . Substitution of Eq. (15.4) into Eq. (15.3) yields the

following relations for small k (powers of k higher than the second

are neglected)

:

{aA _ Pifi - 1/2

\aJ+ 8 1/1 + Ms

[Ai\ M,[ k^Mi-Mi\
\aJ- Ml V 8 Ml + mJ

lower branch

upper branch

(15.6)

Thus the lower branch increases parabolically at the origin as |A:|

increases from zero. At = 0

\k\«l (15.7)

The waves corresponding to the lower branch have equal ampli-

tudes and phase difference zero; thus all the particles are dis-

placed by the same amount and in the same direction. The
wave length of each of the waves is infinite, and the lattice is

displaced as a whole. There is thus no restoring force, and the

frequency is zero. On the other hand, the waves for the upper
branch are exactly out of phase; t.c., the displacement of particles

of mass Ml is opposite to that of the neighboring particles Ms.
Evidently the center of mass of two neighboring particles is

stationary, but restoring forces enter in so that the frequencies

of the waves are no longer zero. The lengths of the waves are

still infinite since each wave is regarded as propagating through
just one type of particle.

The values for k on the limits of the interval to which k is

restricted are ±7r. The two limits will be symmetrical, and we
consider only the case

k = T — € 2ki € small

cos k == cos (x — e) == — cos e « *--
1 +

2

Then
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and the radical in Eq. (15.1) becomes

53

v • • = (J/l - J/o)
eWid/.,

2(il/i -

if (dfi — d/o) is not too small. Hnbstitution in K(i. (15.1) yields

, _ 2U"x \

Mi 2(il/i - il/.,) /

., _ 2U"x U'\ 6^
(

Ml 2(Mi - Mi) )

80 that the upper branch increases parabolically from

while the low'er I)ranch decreases parabolically from

as H increases from zero. It should be noted that co+ > at

the limits of the interval since ilfi > il/2 ,
and between these

limiting values of co we have a stopping band to be discussed later.

The amplitude ratio at the ends of the interval is easily

obtained. We have

(since h — 2/01), and therefore from Eq. (15.3)

Ml ~ M2 - {Ml - M:) 1 + MiM^
2{Mi -

Ml - M2 + (Ml - ilfo)

eMi

eAI1M2 /ten \~
2)1/1(Ml - M2)

^

«2MiM..
1 + nn

2(Mi - MiY^j

eMi

"i(M M \ -L
i^MiMi

7M\
"

as e —> 0. The interpretation of these ratios is not very difficult.

We have already seen that for the upper branch [(.41/A 2)-, «-+]
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the amplitude ratio is negative and different from zero at and

near the origin. Equation (15.9<2) shows that it is negative near

the ends of the interval 1*1 ^ tt and zero at the ends. Then for

infinite wave length the particles oscillate in opposite directions,

the lighter particles with larger amplitude. As the wave length

decreases, the amplitude of the heavy particles decreases, and

for the limiting wave length the light particles oscillate while the

heavy particles remain at rest.

For the lower branch [(Ai/Ao)j., wj, on the other hand, the

particles start out all in phase and with equal amplitudes for

infinite wave length. As the wave length decreases, the ampli-

tude of the light particles decreases, and they remain at rest for

Fig. 15.1. Fig. 15.2.

the limiting wave length while the heavy particles are still

oscillating.

These results are summarized in Figs. 15.1 through 15.3.

Figure 15.1 shows co as a function of h for Mi > Figure

15.2 shows the variation of the amplitude ratio for the two

branches, and Fig. 15.3 gives the motion of the particles for the

various cases discussed. The arrows in Fig. 15.3 indicate the

amplitudes with which the two types of particles oscillate. Figure

15.3 shows clearly that the motions obtained for vi and are very

similar: for Pi the particles are all at rest, and particles Mi
move in alternate directions. For P2 ,

ilf i is at rest andM2 moving.

The forces involved are the same in both cases, since changes in

the distances between particles are the same; hence, the frequency

ratio must be proportional to the square root of the inverse ratio

of the masses.
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Hi =
V, \IMi

as is actually obtained.

The lower branch is frequently called the acoustical branch.

This name comes from the fact that the frequencies in it are of

the same order of magnitude as acoustical or supersonic vibra-

tions. The upper branch is frequently called the optical branch,

because of the fact that its frequencies are of the order of magni-

tude of infrared frequencies. Further, if we think of the lattice

Mg Ml Mg Ml Mg Ml Mg Mj Mg Mj Mg Mi
o

—

»_ o - ». .mq. —e-. » o

Mi>M2

^2 EQUILIBRIUM
POSITIONS

OPTICALl /c*0
BRANCH/

K increasing

V decreasing

Pz <v<v^

OPTICAL’
BRANCH

OPTICALl K^Tt
BRANCH/ V^Vz <P3

ACOUSTICALI K^ir
BRANCH iv^Py<P2

ACOUSTICAL
BRANCH }

/c decreasing

V decreasing

0<P<Pi

ACOUSTICALI
BRANCH JP^^O

as being composed of ions having alternate signs, e.g,, Na+ ions

alteimating with Cl" ions, an alternating electric field could not

excite the acoustical type of wave in which two neighboring

particles are in phase, but it could excite the optical type and

displace neighboring particles in opposite directions.

So far we have discussed only the passing bands of our lattice.

We now consider the stopping bands. These occur for fre-

quencies between coi and 032 and for frequencies above coa. We
return to Eq. (13.5).

- + 2^ (Ml + M,) = sin^ fci = sin^
|
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We riuiy rewrite^ this in the form

(Ml + .l/j

\ 2r\' 4r-r^ /
(lo.lO)

We have seen that as ijs in{*reases from zero to cjoi = 2tpi, the

expression on the ri^ht inereases from zero to one. If w increases

still further, the expression on the right becomes greater than one,

and k 2 must he(X)me complex. Let

llien

k = a + /d (15.11)

. A'

sin
^

sin
2

<*<>‘‘^h cos
^
sinh

9
(15.12)

and since this (expression must lx* real, we have the c<mdition that

(‘OS
^
sinh ~ = 0 or

f
===

^
(15.13)

That is, R.P. A = X = 2xad so that R.P, a = l/2d throughout^

the stopping hand o3i < o> < R.P. means ^^the real part of.’'

Somewhere between coi and the expression on the right of Eq.

(15,10) reaches a maximum and starts to decrease- It equals

one at W2 and is positive and less than one between 0)2 and

wg. At ttjg it is zero, and as increases still further, it becomes

negative. In other words, Eq. (15.12) becomes pure imaginary

and therefore

sin
g
cosh

^
~ 0 (15.14)

This means that

Hence

k = iff = 27rad

R.P. a = 0 CO C03

Since the real part of A is constant throughout both stopping

bands and only the imaginary part varies, we have attenuation

of the waves. In the first ease coi < co < coj at the low frequency
end «i of the stopping band, the light particles are at rest and the

heavy particles are in motion, neighboring heavy particles being
just out of phase; and at the other end ws the heavy particles

are at rest with the light particles vibrating out of phase. The
motion is attenuated along the lattice (i.e., the amplitude of

the vibrations decreases from particle to particle) with an



Se<*. i51 (KXE-DIMEXSIONAL LA TTiCES 57

uttoniuition ecmstaiit that first in(*reasos with the fre(|ueii<*y.

Somewhere in the stopping ban<l the motion changes from

acoustical type to optical ty{>e, and as w increases the attenuation

decreases until co = where it beccanes zero.

In the other stopping band w > m the particles are vibrating

in opposite phase with the limiting wave length. This motion is

attenuated with an attenuation coefficient that increases as w

increases.

Fig. 15 .4 .

Curves of wave number a and of attenuation coefficient jS

against frequency are shown in Fig. 15.4. (Compare with Fig.

14.4.)

16. Transition from a Diatomic to a Monatomic Lattice

The diatomic lattice discussed in the last section is exactly

like the monatomic lattice discussed previously except that two
masses appear instead of only one; the distances between

neighboring particles are all the same and the interactions are

restricted to nearest neighbors. The diatomic lattice may be

reduced to a monatomic lattice in three ways:

1. Let M2 —^ 0.

2. Let Ml 00 .

3. Let Ml —> M2 ^

The first two methods leave the period d of the lattice unchanged,

while the last halves the period and results in a lattice d/2 = di.

We shall discuss the three methods in the order given above.

1. Let M2 —> 0.—In this case o>i = \/"2U^\/Mi is unchanged,

while 632 = and 633 = \/coi^ + 672^ both go to

infinity. The width of the upper passing band goes to zero; for

0 (16.1)
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Thus the up|>er hnud rises and l>ecomes narrower, finally dis-

ap|>earing entirely. Tlie lower branch remains, and we have a

low-pass filter with ix'rifKl d = 2(li left.

2. Lei x. -IIere coi = \/2r"i /J/i goes to zero. w.

remains unchanged and ws Thus in the limiting case

there is only a single frecpiency o>^2 = \/2C’'" 1/^/2 ,
and this fre-

({iimey does not really propagate. Jilach of the light particles

oscillates separately with frequency aJ2 . This corresponds to the

c*ase ()f a row of harmonic oscillators with no interaction. The

heavy masses are responsible for the restoring force on the oscilla-

tors but take no part in the motion themselves. The amplitude

Fxg, 16.1.

of the vibration is, of course, restricted to values less than di; the

light particles must not go through the heavy particles.

Had we allowed interactions between second neighbors as

well as nearest neighbors, we would have obtained in the limiting

case a lattice of coupled harmonic oscillators that would lead to a

band-pass filter. The single frequency present for independent

oscillators would spread out into a band; the lower branch

present in the diatomic lattice would still be missing.

3. Let —This process is considerably more compli-

cated than the previous two because a sudden change in the

periodicity of the lattice is involved. The original structure,

with Ml > Mtj repeats itself after a distance d, but when
Ml == ilf2,

the period suddenly drops to di = d/2, Let us

first discuss the relation between frequency and wave number
a == 1/X. This relation was shown in Fig. 15.1, which must be
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understood as representing only one setdion of a periodic eurvCy

m drawn in Fig. 10.1. The central section (Fig. 15.1) corre-

sponds to —x < k < T where k = 2'wad as usual, and the com-
plete curve is obtained when k takes any arbitrary value.

When Ml = il/2 ,
two changes must be made:

a. The change in periodicity results in a sudden extension of

the fundamental interval. For a lattice with period d, the wave
number a has period 1/d, and its fundamental interval extends

from — l/2d to +l/2d. When the lattice period changes to

di = d/2, the wave-number period becomes 1/di — 2/d, and
the fundamental interval is ±l/2di = ± 1/d.

The following table summarizes the changes in a, k, and kii

iVriod for
Fundamental

interval

Lattice a k hi k hi

Ml > i/2 d

d

1

d

1 2

27r

^ (16.2)

II

di d
47r 2r i-JT

where k = 27rad and ki == 27radi = k/2.

b. Another change in the curve is that it must become a single

curve as in Fig. 2.4 instead of the double curve of Fig. 15.1.

The single curve is drawn as a dotted line in Fig. 16.1, assuming

that Ml, M2 M = 2 \^MiM2/{Mi + M2) simultaneously.

All this can be obtained from Eq. (13.6), giving the frequency

as a function of ki. If we take Mi = M2 — M, the formula

reduces to

Mo)2 = 1 ± -v/l — sin^ ki = 1 + cos ki

* 2 sin^

L4 (16.3)

Selecting the sine function, we obtain

(16.4)

which is identical with Eq. (9.1) for the monatomic stracture

(Fig. 2.4). The cosine curve duplicates the results and in its
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middle part represents the upper curve of Fig. 16.1. Ihe sin^^

and cosine curves intersect at a point that is the common limit

and 002 ,

J/i d/o M

and the stopping band disappears.

Another aspect of this transformation refers to the description

of the wave and of the motion of the particles of the lattice.

Referring to Eq. (13.3),

2/2»
==

==

4,
2«A i»

A —(2n+l jA;i]
(13.3)

we see that the solution for the lattice (with M i > is

represented as two waves, one propagating along particles of

mass Mi and the other propagating along particles of mass Mi.

The wave number Tci is therefoi'e to be restricted to values

between —ir/2 and 4-t/2. For the discussion of this section, it

will be convenient to change our conventions and obtain the

solution (13.3) as a wave 'propagating through all of the particles.

This means that we must allow h to take on values in the larger

interval from —rr to t. To achieve this we introduce two now

quantities C and Z), defined by

= C - D = <7 +
= (7 + Z> = 0 + 1

(16.5)

From Eq. (16.5) it follows that

D _ Ai - A I

C Ai d" Ai

Equation (13.3) may now be written

and the sum of the two waves

ym = (16.6)

gives a single wave propagating through all (both Mi and

particles. The two methodvS of representing the wave are shown

in Figs. 16.2a to 16.36. Figure 16.2 shows the representation
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with two waves, one pavssing through each set of pa^’ticles. The

a part is for the acoustical and the b part for the optical branch.

Figure 16.3 shows the ^*1 and ki — t waves and their sums for

the acoustical and optical branches in a and 6, respectively. It

{a) ACOUSTICAL BRANCH

(6) OPTICAL BRANCH
Fia. 16.3.

should be noted that the h and kvT waves propagate in opposite

directions, so that one may think of the wave propagating to the

right as being partially reflected as it traverses each particle,

thus giving rise to a disturbance that consists of a transmitted

and a reflected wave.
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In order to see clearly how the transition from the diatomic to

the monatomic lattice takes place, we must refer to Table (16.2),

which shows the interval of variation for ki in both cases. The

original hi was restricted to values between —t/2 and ir/2, which

means that hi — ir varies between —r and —t/2 for > 0 or

ir/2 and ir for hi < 0, since hi and hi + 2t are equivalent. This

extends the interval to —tt, t as shown in Table (16.2). The
following scheme summarizes this transformation

:

(fcl - T + 27r = + tt) (16.7)

This explains the correspondence between the different branches

of the curves in Fig. 16.1.

We have previously discussed the variation of the ratio Ai/Ai
for the different types of waves [Eq. (15.3) and Fig. 16.2]. These

same curves were drawn again in Fig. 16.4a under the assumption

of a very small difference between the masses.

Mi = Miil -
«) € << 1
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In this case Eq. (15.3) reduces to

63

.4.
‘ ~

IT.
+ + (jrj + ^ jT,

^

4 2 2 cos k-i

6 + \/2 + 2(1 — e) cos 2kx — 26 +
2 cos A:i

j + yjoOH^Ul - e) +
^ , -

("l -
COS ki

"^2
cos \ 2/2 cos ^

cos ki >> € (16.8)

since J^(l + cos 2fci) = cos^ ki.

The plus sign gives the acoustical branch, and the minus sign

corresponds to the optical branch. The curves remain very

near the horizontals ± 1 except at the ends of the interval.

These results can be expressed in terms of the ratio D/C of

our new waves [Eq. (16.5)].

Acoustical branch:

I ^ Ai — €
,

je

^ — A 2 _ 2 cos ki’' 2

^ l_L.4i o I __1_ __ i^ A 2 ^2cosAi 2

The C wave is dominant with a very small D wave.

Optical branch:

D
C
^

2
€ e

2 cos ki 2

€

2 cos ki

(16.10)

The D wave is dominant with a small C wave.

Here we see that in the limit Mi ^ M2 the description of the

wave motion is much simpler with the C, D waves of Eq. (16.6)

than with the Ai, A 2 waves previously used.

Let us allow ki to run from —tt to +7r as shown in the diagram

16.7. For the acomtical branch
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D-^O C9^0 (16.11)

while for the optical branch we obtain

“TT 1— TT < A*i < — o /

C->() D^Q (16.12)

I
< A'l < TT

j

There is only one wave left (either C or D) almost everywhere

except in the immediate neighborhood of == ±7r/2, which are

the branching points Avhere the curves separate in case Mi > ilf 2

and give place to a stopping band.

The example just discussed is very important, since it repre-

sents the first instance of a general type of problem very often

JUNCTION
CONTINUOUS STRING 1 DIATOMIC LATTICE—— K O X G X O X

^ INCIDENT WAVE—^ TRANSMITTED WAVE
REFLECTED WAVE —

Fig. 16.5.

encountered on other occasions. Here it was possible to follow

the transformation from the unperturbed case Mi = M2 = M
to the perturbed problem Mi 9^ M 2 in all details. This is not

always possible, and the method followed in more complicated

problems will be to start from the unperturbed C, D plane waves
and to make linear combinations of them [as in Eq. (16.6)]

before discussing the perturbation near the branching points.

Such examples may be found in connection with electromagnetic*,

waves (X rays) or with electronic De Broglie waves in crystals,

^vhen the periodic distribution of atoms in the crystal lattice

can be treated as a small perturbation.

One more remark should be added to show the connection

between passing or stopping bands and reflection of waves. If a
continuous line capable of transmitting all frequencies is joined
to the diatomic lattice (see Fig. 16.5), the coefficient of reflection

at the junction will depend on the frequency incident from thc^

continuous line. If the frequency is in one of the stopping
bands of the lattice, total reflection will occur; i.e.j

R = coefficient of reflection = 1
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while for a frequency in a passing band both a reflected and a

transmitted wave will be excited. The coefficient of reflection

will be less than one, and the actual value will depend on the

chax'acteristics of the lattice in this case.

17. The One-dimensional Lattice of Polyatomic Molecules

To treat a lattice of polyatomic molecules, we divide the lattice

into cells. A cell contains one period of the lattice; i.e., if we

start out with atom 1, then the first cell consistvS of atom 1 to N,

where atom N + 1 has the same relation to atom A + 1 + m
as atom 1 has to atom 1 + Having defined what we mean by

cell (in general, the same as molecule, unless the molecule itself

possesses a periodic structure that is a period of the lattice), we

CELL (n-2) CELL (n-1) CELL n CELL (n+1) CELL {n+2)

:
—

X"
' '

""'X "JXX K X )

1 23 r N

^— d—^
123 r N

1

j ^

^

123 r N 12 3 r N 12 3 r N

Fig. 17.1.—A row of polyatomic molecules.

change our notation slightly-. We number the atoms in a given

cell from 1 to N. The cells are also numbered, n being used to

denote an arbitrary cell and n + p being the number of the pth

cell to the right of cell n. The notation is illustrated in Fig. 17.1.

The crosses indicate the equilibrium positions of the atoms, and

the vertical lines the positions of the first atom in each cell, i.e.,

the boundaries of the cells. We take the length of a cell to be d.

We shall assume small displacements of the atoms when a

wave propagates along the lattice and also shall assume that all

interactions are elastic. We shall not limit the distance at which

interactions occur. The force on atom r in cell n due to atom s in

cell n + P is therefore

fn,r;n-^p,9 ” ^priiiyn+p,B (W-f)

where Cpra is the interaction constant and is independent of n.

It follows that the force on particle s in cell n + p due to

particle r in cell n i.s

fn{‘P,»;n,r “ p<r(2/n,r (W*^)

According to Newton’s third law

fn,r;n+p,a — fn+p,i;n,i ( 17 .3 )
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and substituting Eqs. (17.1) and (17.2) into Eq. (17.3), we obtain

C^pr5((/n+p.8 yn.r} ^—pstiiyntT

or
= (7-p,r (17.4)

We take

Co.. = 0 (17.5)

since the term

CorrC^/w.** ^

and does not enter any of the calculations.

The total force acting on particle r in cell n will be given by

/n,r ~ ^ '^fn,r,n+p,8 ^ ^ ^ CprsiVn+p^s Vn.r) ,17.6)

V s P s

We assume a wave solution to Eq. (17.6) of the form

yn,T = (17.7)

Ar is to be complex so as to contain the phase difference of particle

r with particle 0, while x is the distance of the origin of the cellfrom

the origin of the lattice,

X nd

We may thus write Eq. (17.7) in the form

yn,r therefore has period l/d in a and 2x in k as in Sec. 4. This

means that k may be replaced by = ^ + 2xp without affecting

the solution. Substitution of Eq. (17.8) into Eq. (17.6) gives

fn.r
= 6*'“'-*’*'

2^ Cj,rs{A,(r^» - Ar)

= (17.9)

from which we obtain the following relation between w and k:

^ Dr..i^)A, = - U^rAr (17. 10)
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where the function Z>r,s(A is defined by

^r,s(^) “ ^ Gprs^ T ^ S

P

DrA^) = - ^ C^rs + 2)
C,rre-^^'^

P8 P

The sum over s is to be taken over all atoms in a given cell and

the sum over p is to be taken over all the cells.

The acoustical branch gives = A* at A; = 0, and hence

Dr,.(0) = 2 Dr,M + Dr.riO)

S 89^r

= D D - I) ^ C^rr
8y£r p pa p

CJpra 2/ ^pra ~ 0
ap^r p p,89^r

0) = 0

For other values of k we write Eq. (17.10) as

^ [DUk) + 0>^MrSr,]A. = 0 (17.12)

8

where 5 is the Kronecker 5, defined by

0 r 7^ s

1 r = s

Equation (17.12) gives N linear homogeneous equations for

and the condition that they be consistent is that the determinant

of the coefficients vanish; i.e.,

\DrM + 6)W,5„| = 0 (17.13)

Equation (17.13) is an equation of degree N in co*, and hence

there will be N values of o>^ for a given k, i.e., there will be N
branches in the <» vs. k curve or the v vs. a curve. One of these

branches will be the acoustical branch, and the remaining

(N — 1) will be optical branches. will be a periodic function

of k since D„(k) is a periodic function of k.

If we let —> 00
,
the number of optical branches becomes

infinite, since we must have the total number of branches equal

to the number of degrees of freedom of the system. The lattice

will become a continuous string with some sort of periodic struc-

ture. We shall discuss the problem of the continuous periodic
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string in a later chapter. If the string is continuous and uniform,

is a linear function of k. Figure 17.2 shows the general appear-

ance of the £0 vs. k curves. The dotted curves are w vs. k for a

uniform continuous string.

The transition from the uniform continuous string to the con-

tinuous string with periodic structure fa loaded string, for

Fig. 17.2.

instance) is one of the problems of periodic perturbation sketched

at the end of Sec. 16, and for the discussion of which the example

of Sec. 16 will be used as a model. The change from the V-shaped

dotted curve in Fig. 17.2 to the wavy curves occurs in a way
similar to the change from the single dotted sine curve to the two
solid curves in Fig. 16.1.



CHAPTER V

ENERGY VELOCITY, ENERGY FLOW,
AND CHARACTERISTIC IMPEDANCE

13. General Discussion; Phase Velocity

So far we have discussed infinite lattices only. If we wish to

apply our results to a finite lattice, we must add forces at the

ends that will satisfy the boundary conditions. At the left end
we must have a source of energy that will supply to the first

particle the power that would have come to it if the lattice had
extended indefinitely to the left. Then the propagation will

depend on the frequency as noted at the end of Sec. 16 . On the

right end we must have a device that will absorb the energy

that would have been absorbed by the omitted portion of the

lattice extending indefinitely to the right. To set up the bound-
ary conditions rigorously requires a discussion of the energy

density, energy flow, and energy velocity in the lattice. This

discussion will be carried on in the next few sections.

The one-dimensional mechanical lattice is an academic rather

than a practical problem, and the only important instance of

one-dimensional structui'es is found in electric lines, a discussion

of, which will be given in detail in the last chapters. It is, how-
ever, very useful to know how to set up the boundary conditions

for the applications of the theory to two- and three-dimensional

lattices. The method developed in this chapter is general and
will be extended later to these problems, but it is easier to under-

stand in the one-dimensional case.

The problems discussed are closely connected with the prop-

erty of the structures of exhibiting dispersion. The wave velocity

defined in the preceding chapters is known as phase velocity^

since it is obtained from a comparison of the relative phase of

the oscillations of two neighboring atoms. This phase velocity

is the one to be used in formulas like

\ = Vr, V = V = i, a = l (18.1)
^ a r \ ^ '

69
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where r is the period, v the frequency, X the wave length, and a

the wave number. A dispersive medium is one for which the

phase velocity F depends upon the frequency v of oscillations.

Many classical problems of wave propagation do not exhibit any

such variation. MaxwelPs equations of electromagnetism in

vacuum lead to the equations of propagation of light and yield a

constant velocity of propagation. Such is also the case for the

standard equations for the propagation of sound waves, which

result from a number of simplifications practically eliminating any

frequency dependence of F. In such cases there is no difficulty in

defining the velocity with which energy is transmitted through the

medium by the wave motion. This velocity is simply equal to F.

When, however, the transmitting medium is dispersive, the defini-

tion of energy velocity requires special attention and will be found

to differ from phase velocity. This results from the fact that sine

waves extending from — oo to + oo are the only waves to be

transmitted without a change in their shape. Shoi't signals or

short impulses are distorted while they travel through the

medium, and this distortion makes it difficult to define their

average velocity. This is w'here the concept of group velocity

comes in. A group of waves, or a wave packet (in the language of

wave mechanics), is a signal of finite length, comprising only a

limited number of wave lengths. We shall discuss the properties

of such groups and the way in which they propagate through the

medium and then compare the average velocity of the group with

the energy velocity obtained from other definitions.

19. A Theorem from the Theory of Complex Variables

Following a method very commonly used, complex exponentials

were introduced to represent waves or oscillations. For instance,

the displacement and velocity of a particle in a wave were written

respectively. Time derivatives are indicated by dots over the

function. The order of the derivative is given by the number of

dots.

^ = V etc
dt^

2/, etc.

It must be recalled that such expressions should always be pre-
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ceded by the sign R.P., meaning that only the real part of the

quantity is taken into consideration, m.,

y = A cos 27r(vt — arc), y = —2tvA sin 2T(vt — arc)

As long as we were working with equations linear my^y^yj . , , ^

we could drop the R.P. sign. But this is no longer allowed when
double products or powders are encountered, since yy, for instance,

means

yy -^ 2tvA^ cos 27r(vt — ax) sin 2Tr{vt — arc) 9^

This question will now be discussed.

We shall require the time average of the product of the real

parts of complex functions on numerous occasions. There is a

simple way of doing this by the following equation:

R.P./ XR.P.F = KR.P- (19.1)

where / and F are complex functions of time of the form

/ = F == (19.2)

The star means ^'complex conjugate of.'^ Note that the time

dependence of the two functions is the same.

We now prove that Eq. (19.1) is an identity.

R.P. / X R.P F = foFo cos (co/ — <p) cos {o^t — <^)

cos {wt — <p) cos {o>t — (t))dtj (19.3)

where r is the period of / and F and is equal to 2t/co. We may
expand the integrand in Eq. (19.3) and obtain

R.P. / X R.P. F = j cos (cat — <p) cos (cat — <p + <p

Jo

== f cos (cat — (p)
r Jo

[cos (0t — <p) cos (<p — 0) — sin (cat — <p) sin (<p — (t>)]dt
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We replace — ^) by ^ in the above so that

R.P./X R.P. F =^
/T Jo

[cos ^ cos^ {oot — — sin sin - <p) cos — ^)]dt

The second term in the integrand becomes zero on integration,

while the first term gives
^

cos Therefore,

R.P./X R.P. F = ^
/oif’o

I
cos ^ J

/oFo cos lA = 5
R.P. (fF*)

since

ff* z=s = foFQe~^'f'

which proves the theorem.

20. Energy Density, Energy Flow, and Energy Velocity

First, we discuss the energy density and derive a mathematical

expression for it. For the moment we shall confine ourselves to

the monatomic lattice vith interactions between nearest neighbors

only. The theory of wave propagation in such a medium was
discussed in Chap. Ill, Secs. 8 and 9.

We shall require the following relations, already derived in

Eqs. (8.8), (8.10), and (9.2), for the discussion:

Vn = k = irrad

2C7" 4C/-
(1 — cos h) =m m Sin^

(20. i;

W = phase velocity ~ ^ ~ ^ ~ sin k/2\

k/2

We shall temporarily drop the subscript-on U"i.

The average energy density of the lattice will be the sum of

the average potential-energy density and the average kinetic-

energy density. The average potential-energy density is the
average potential energy per cell divided by d, the length of the
cell. Thus

= 2
P-P-

\ iV” - Vn-iy (20.2)

and since

t/n
—

2/«-i = R.P. — e®)
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it follows that

1
-fi'pot = *2^ 2

l) iVn yn—l) *

A2TTf/ 4 2rv/

= (1 ^ ^ (2 - ™

AHT" AHT" h

=^ 2(1 -- cos k) =^ sin^
I

(20.3)

The average kinetic-energy density is obtained in a similar

manner; it is the average kinetic energy per cell divided by d, the

length of the cell.

= R.P.iiw!.(^ (20.4)

and since

2/„ = R.P.^ = R.P. -4 ^ = R.P.

we have

= R.P. g (wynY =
o^m
2(i 2

R.P. (iyn)(iyn)*
mo)^A^

“4d“ (20.5)

Making use of the equation for 6?^ as a function of k in Eq. (20.1),

we find that Eq. (20.5) reduces to

Eun — Sin^ ;r

k U"A^ k

4d m 2 d

The total energy density therefore is

2?7"A2

d
sin^

sin2 ~ = E^t (20.6)

(20.7)

We shall need this relation later when we discuss the energy

velocity.

The energy flow from one cell to the next will be the average

power absorbed by the second cell from the first. With the

first cell as cell n, this will be given by the negative product of

the real part of the force /n,n+i on cell n due to cell n + 1 and the

real part of the velocity of the particle in cell n (for the case of

the monatomic lattice). The negative product must be taken

since /n.n+i is ^ force acting on particle n; and hence the positive

product would be the power furnished while the negative product

would be the power absorbed by particle n + 1. We have
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^ 2/«)
I

2/„
= y (20.8)

yn = = z«2/» j

The average power 4> (time average) absorbed by cell n + 1 i.s

thus

# = -R.P. /n.„+I X KT. Vn = - ^
R-P. iU.n+iyn*)

JJ" A 2

= - R.P. (e-*" - l)(to)*

— i A-^ R.p. [sin h — z(l ” ^)] = — sin k (20.9)

Substituting the value for o) given in Eq. (20.1),

# = ^(~— sin I sin k (20.10)
\ m 2

The energy flow gives us the energy passing from cell n to

cell (n + 1) per unit time. A quantity closely connected with

this is the energy velocity. It is defined as the energy flow

divided by the energy density and gives the rate at which energy

flows along the lattice. We denote the energy velocity by Ue-

Ue = 1E

U'^A 4
U'' . ,

, k— sin k sm ^m 2

2—j- A^ sm^ Ha 2

= d (20 . 11 )

The energy velocity can always be defined, even if absorption is

present. The meaning of Eq. (20.11) will appear clearly if it is

compared with the formula giving the flow of matter in a fluid:

let p be the density of the fluid and v its velocity. The flow of

matter is # = pv] hence the ratio #/p is the velocity of the fluid.

In a similar way the ratio ^/E of energy flow to energy density

obviously yields a velocity that is the velocity with which energy

is flowing through the system. More detailed explanations and

examples can be found in a report by the author,^

21. Group Velocity and Propagation of a Signal

Having explained in Sec. 18 the meaning attached to the

expression group or ^Vave packet, we may immediately
^ ^^Congr^ international d^41ectricit6,'' Paris, 1932, voL II, p, 739.
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proceed to the discussion of the simplest example, obtained by
considering the wave motion due to the superposition of two
sine waves of frequencies vq ± Av and equal amplitudes A. The
wave vq + Av has wave number ao + Aa, while vq — Av has wave
number ao — Aa. Thus the wave vq — Av has the equation of

motion

y-. = A cos 2t[(z^o “ Av)t — (ao — Aa)a;J

while the equation for the wave ro + Av is

= A cos 2t[(vq + Av)i — (ao + Aa)z]

To obtain the resultant motion, we add the two disturbances

algebraically.

y = 2/-. + 2/+ = ^ {cos 2ir[(vo — Av)t ~ (ao — Aa)a;]

+ cos 2‘3r[(vo + Av)t — (ao + Aa)a:]}

= 2A cos 2T(vot — aox) cos 2t(Av ' t — Aa * x) (21.1)

This represents a modulated wave with an average frequency pq in

the carrier wave

cos 2T{vQt — aox) (21.2)

and a slowly variable amplitude considered as the modulation

A cos 2'7r(Aj' • t — Aa - x) (21,3)

The phase velocity of the carrier wave is

F = - (21.4)
ao

In the same way the modulation is seen to move with a velocity

given by Av/Aa. In the limit when the two frequencies become

equal,

Ug = group velocity = (21.5)

There is no difficulty in defining Ug m long as the medium is

purely dispersive, i.e,, v = p(a); but if absorption also occurs, a

becomes complex or imaginary and the group velocity ceases to

have a clear physical meaning.

So far we have assumed zero coefficient of absorption in the

monatomic lattice. Therefore,



WAVE PROPAGATION [Chap. V
fiy

Thus if no absorption is present, the group velocity and tho

energy velocity are the same. However, the group velocity

breaks down for cases with absorption, while the energy velocity

can always be defined.

The motion represented by Eq. (21.1) is best described in the

follovdng way: It consists of a succession of wavelets (21.2) of

frequency vo and wave length l/Xn- A-t a certain instant of time

the average amplitude of these w'avelets is given by the modula-

tion (21.3). If we do not pay attention to the detailed motion of

the wavelets and look only at the average amplitude distribution,

we see this amplitude curve (21.3) move forward with the group

velocity Ug. But if we look at the phenomenon more carefully,

we notice the wavelets moving inside the envelope (21.3) with

their own phase velocity V (Fig. 21.1). A well-known example

of such an appearance is found when surface waves are created

by throwing a stone into a pond. The preceding example is just

one among many similar ones, and the results obtained are to a

large extent independent of the shape of the group or of the type

of the modulation curve. It is characterized by the following

feature: The modulation curve propagates without distortion and

exhibits a well-defined velocity. The absence of distortion is

obviously connected with the absence of attenuation. In an

absorbing medium with attenuation the definition of a group

velocity loses its accuracy.

Furthermore, the absence of distortion can be obtained only if

the wave packet results from the superposition of elementary

waves whose frequencies lie within a small interval. In the

preceding example we had just two frequencies vo and
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vq — Np within a finite interval 2Av. We should find similar

results with wave groups obtained by superposition of any num-
ber of waves with frequencies within a given interval Az^. In

other words, the Fourier analysis of the group must yield a

spectrum of finite length, which in the limit can be made infinitely

small and can allow for the transition from Ap/Aa to the deriva-

tive dp/da of Eq. (21.5).

There are other types of groups or signals whose Fourier spectra

extend from — co to + oo in the frequency range. For such

signals it is impossible to go to the limit Ar —> 0, and the defini-

tion of a group velocity again loses its accuracy. This results in

the fact that the modulation curve progressively changes its

shape in the course of propagation and is more and more dis-

torted as time goes on. These general remarks will be illustrated

in a few precise examples, where we shall use some well-known

formulas involving Fourier integrals. Let C(t) be an even func-

tion of time and B(p) its frequency spectrum.

Cit) = C(~^)

Then the Fourier transformation reads

C(t) = J B(p) QOS 27rpt dp

B{v) = C(t) cos 2Trvt dt

The last formula obviously yields B as an even function.

B(p) =B(-p)

and the reciprocity between C and B results in the following

statement: If a signal C(t) has a spectrum B(p), then a reciprocal

signal B{t) will be represented by a spectrum C{p). We may use

the signal C(t) as a modulation curve on a carrier oscillation of

frequency pq, and we obtain a new even function

Ci(t) = C{t) cos 2irPQt (21.8)

The frequency spectrum of Ci is easily obtained.

Bi(p) = J
Ci(t) cos 2Trpt dt = ^

C(t) cos 2TPt cos 27rro^ dt

C(i)[cos %r(pQ + p)t + cos — v)t]dt

= “ + *') + -B(ro — r)] = ^
[5(r+ z^o) + B{v — z^o)]. (21.9)

(21.7)



78 WA VE PROPAGATION [Chap. V

Fig. 21.2.

Bi(v) is again an even function of v. The spectrum B(v) of the

original signal is centered on the origin 0. The new spectrum is

obtained by the average of two such curves, translated by ±
Let us give a few examples of Fourier transformations, corre-

sponding to the reciprocal curves of Fig. 21.2.

Spectrum B{v) Signal C{t)

I. Rectangular

o
!1 li'l < Pi

kl > vi
(21.10)

II. Triangular

1!
- — li-l < Vi

V\

\v\ > Vi

cm - ..(“>7^' (21.11)

Both signals exhibit a finite spectrum, while the signals them-
selves extend from ^ — oo to ^ == oo with a strong maximum
at i = 0. The reciprocal signals would be finite signals (rec-

tangular or triangular) B{t) with infinite spectra C{v),

We now want to prove that a signal with a finite spectrum
propagates in a way similar to the beats of Eq. (21.1). Let us

take a C{t) modulation impressed upon a vq carrier, as in Eq.

(21.8). We assume this motion to be impressed on the atom at
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a: = 0, and we compute the motion at a distance x from the

origin. This means only replacing

vt by vt — a{y)x

whei’e a(^) is the wave number 1/X as a function of v for the

transmitting medium. Taking our modulated signal (21.8), we
obtain according to Eq. (21.9)

C\{t) = J Bi{v) cos %rvt dv = 2 Bi cos 2Tvtdv

= [B(p + vq) + B(v — i^o)] cos 2x1^^ dj/ (21.12)

Let us write

j; = ^0 + M > ^1

Then, for both examples (21.10) and (21.11), the first term in

B(p + j^o) is always zero, and we find

Ci(t) = B(/x) cos 2x(j'o + fx)tdix (21.13)
jfj,== — PI

This is the motion of the point at the origin a; = 0. For a point

at distance x we obtain

Ci(tjX) = B(fx) cos 2x[(vo + /JL)t — a(vo + fj)x]dfi (21.14)
j — PI

But vi is supposed to be small enough to allow for an expansion.

+ m) = (^(vo) + H ^ (21.15)

Hence

(vo + fi)t — ax == vot — aox + ^ ^ X

Expanding the cosine in Eq. (21.14) and recalling that B is even,

we obtain

rn
Ci(tjX) ~ cos 2]r(vot — aox) / B(/i) cos m

J —VI

= COS 2'K{v%i — aox)(7 (21.16)

This is the result announced: Individual wavelets propagate with

their own phase velocity as shown by the cosine term. The
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modulation curv'e C
(‘

da

dvii
moves along without distortion

with group velocity (2L5).

The proof rests upon the assumption of a finite spectrum whose

limit can be taken small enough to use Eq. (21.15). Signals

with an infinite spectrum are always more or less distorted.

The results are plotted on the curves of Fig. 21.3. The upper

curve is the familiar one of v against a, as in Fig. 2.4, for the mona-

tomic lattice with interactions between nearest neighbors only.

If a point M is taken on the curve, the absolute value of the

slope of a chord OM gives the phase velocity V v/a^ while the

tangent at M yields the group velocity U == dv/da. Curves for

V and U as functions of a are given at the bottom. The V
curve does not exhibit any singularity at a = l/2d (cf. discus-

sion of Fig. 2.2), but the group velocity U drops to zero on the

limit ± l/2rf of the interval, a feature that checks very well with

our description of these limit waves as standing waves (Secs. 2, 4,

and 9).

22. Preliminary Definition of Characteristic Impedance

Impedance for a mechanical system is defined as the ratio of

force exerted to velocity. In discussing periodic lines, i,e., lat-

tice structures with cells that repeat themselves periodically or a
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continuous line with a periodic structure, we mean by character-

istic impedance the ratio between force and velocity for a single

sine wave at the entrances or exits of the cells. For an infinite

line, along which a single wave is propagated, this should be the

same for all cells. The same is true if the line is finite but has

been provided with suitable forces for absorbing and furnishing

energy, so that, except at the ends, the line behaves as though it

were infinite. Obviously, a determination of characteristic

impedance gives us the impedances that must terminate a finite

line if it is to behave as an infinite line exhibiting no reflection.

In this section we shall consider only the lattice consisting of

like particles Avith interactions between nearest neighbors only.

Then the characteristic impedance is given by

fn,7i+l = ~^yn (22 . 1 )

where fn,n+i is the force exerted by particle n + 1 on particle

ijn its velocity, and Z the impedance. From the earlier discus-

sion of the problem [cf. Eqs. (20.1) and (20.8)]

yn =
fn,n+l = ^ Vn) = U'^ynie''^^ - 1 )

yn = io)yn

and therefore

Zio3 ~ [/''(! — 6~^^) == U^'(l — cos k + i sin k) (22.2)

We allow Z to be complex and set

Z = Zr + iZ, (22.3)

Equating real and imaginary parts in Eq. (22.2), we obtain

Zi = — (cos fc “ 1)
= sm^ K 1

= — \/U"m 8bx^\ (22.4)

^ U” . ,
2U" . k k /Tjrr- k \

Z. =— sin fc sm K cos K = V U"m cos s ;
0} (a Z Z Z I

on use of w = 2VIf'/m sin k/2. With the results of the

last section,

Wh
Zf = U'tf, energy velocity (22.5)
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We can interpret Zr and Z,- completely by replacing

U"{1 — cos A-)

by C and noting that C is always positive. Further, Zr is posi-

tive for the fundamental interval —x < k < t, since cos k/2 is

positive in this region.

C
/n,n+l = —Zyn = —ZrVn — iZ.lIn = -ZrVn + i-Vn

= —ZrVn — ^Vn = —ZrPn ” Cyn (22 .6 )
lO)

We have now split the force acting on naass n into two parts: the

first term gives a viscous force and the second an elastic force.

^—e|—^ ^—e|—e|—^ ^ ^—eh
ASYMMETRIC CELLS

^ ^ ^

^

0 ^ ^

^

SYMMETRIC CELLS

Fig. 22.1.

There is a disadvantage to the treatment we have just given;

we have taken the cells to contain a whole particle at one end.

If we try to find the impedance at the other end of the cell, we

run into a difficulty because there is nothing there to exert a

force or to have a velocity, since the cell must contain exactly

one period of the lattice. The cells, as we have chosen them,

are asymmetric and do not lend themselves conveniently to

impedance considerations.

The difficulty may be obviated by defining the cells differently

and making them symmetric. We take the cells to be of length d

(where d is the distance between the particles) as before, but we

associate with the cell half of each of the masses at the ends.

This makes the cell symmetric. The symmetric and asymmetric

cells are shown in Fig. 22.1, where the vertical lines denote the

boundaries of the cells in the two cases. Figure 22.2 shows a line

composed of symmetric cells and terminating on an impedance

Let us find this impedance Zs at the right end of the cell

containing half of mass n — 1 at the left and half of mass n at the

right end. The force on mass n due to mass n — 1 is given by

ELEMENTARY
CELL

2^
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U"(yn-i — yn)j and the impedance term is —Z,yn.. Therefore,

the equation of motion at the right end of the eell will be

- yn) - Zsi/n = }imyn (22.7)

The force due to mass + 1 is thought of as acting on the half of

mass n in the next cell to the right. If that force were added to

this, we would find exactly the equation of motion obtained

before; the impedance would have opposite signs for the two
halves of mass n and would cancel, so that the solution for y^

would be the same as before. Substituting the solution in Eq,

(22.7) gives an equation for Z*.

- 1 )
-- ia^Z, - (22 .8)

We want to show that Z^ gives rise only to a viscous force in

this model, and that the elastic force has already been explicitly

n--2 n~l n

-Zs/n

m m - m

A LINE WITH SYMMETRIC CELLS AND
TERMINATION ON A CHARACTERISTIC IMPEDANCE Zs

|l |l y |L |L

included; i.e,, we now have Z« real. Equating the real and

imaginary parts of Eq. (22.8), we obtain

Z. = U‘

TJff

2~ (1m cos k)

sin k = cos h
0) 2

U"

Zr

(22.9)

m sin^ ^ — 03
^

The impedance at the other end of the cell is easily obtained in

exactly the same manner. The equation of motion will be

U''{y>n. “ 2/n-l) + Z'a^n-1 =

and Eq. (22.8) will be replaced by

^7//(g^^^ ^ 1) + ia)Z, =
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from which we obtain

z.

Summarizing the whole discussion, we have found that if we

wish to end the line with particle n (mass m) on the right we

must use asymmetric cells and "apply an impedance Zr + iZ,

where Zr is the viscous force and Zi is an elastic force. If such

an impedance is applied, the remaining masses will vibrate

exactly as if the lattice were infinite. If we wished to make mass

n the last mass on the left, we should have to take asymmetric

cells with masses on the left instead of on the right end of the

ceUs.

On the other hand, we may take symmetric cells and take

particle n with to be the end of the lattice, either on the

right or on the left. The remaining masses will vibrate as if the

line were infinite if we apply only a viscous force with impedance

Z> to the remaining half of mass n; and the elastic force Zi

occurring in the case of asymmetric cells is automatically taken

care of by removing half of the terminating mass.

We may make a few remarks on the low-pass electric line of

Fig. 22.2. Using the classical analogy

Mr^L,

we obtain

Z, = ^cos^ (
22 . 11 )

f

or, for infinite wave length,

L and C are, of course, to be taken as inductance and capacity

per cell, respectively, though inductance and capacity per unit

length of line give the same result since the ratio is the quantity

occurring. The impedance of electric lines will be discussed in

detail later.

— sin k = Zr
(jO

. r" . ,k
4 sin- Hm 2

(22 . 10)
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The energy flow through the lattice was defined in Sec. 20,

Eq. (20.9), by the formula

^ = --R:P. /.,n+l X R.P. yj = --H R.P. iUn^llJn^)

and now we obtain the characteristic impedance from Eq. (22.1).

fn,n+l “ Zyn

Comparing these formulas, we find

# = R.P. (Z7j,yn^) = }iZr\y.\^^ (22.12)

This yields a relation between energy flow and the real part of the

characteristic impedance

,

and it must be emphasized here that this

real part Zr is the one upon which all our difierent definitions

agree simultaneously.

At the limit of indefinitely long wave lengths, our formulas will

reduce to the well-known ones for a continuous striudure. We
have already discussed this transition in Sec. 9 and obtained

e = elasticity modulus (9.3)

m
p = density

In the same way we find now

When there is no dispersion and
'

phase velocity (9.3a)

is a constant, then, of course,

U =
da a

= V

The group velocity is equal to the phase velocity. The formula

(22.13) for the characteristic impedance is the usual one.

23. Junction of Two Lattices

We are now in a position to discuss the behavior of waves at

the junction of two monatomic lattices with the particles spaced

at distance d from one another and with interactions between

nearest neighbors only. Let us suppose that we have two such

lattices with phase velocities Wi and W2 ,
group velocities Ui and
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Ui, energy flows $1 and €>2 ,
impedances Zi and and ampli-

tude’s -4 1 and j42 at the ends to be joined. We shall call the ratio

of the amplitudes the transformer ratio T.

r = 4-' or A« = TAi (23.1)
A 1

We have obtained a relation between energy flow and charac-

teristic impedance for any lattice [Eq. (22.12)]. If we substitute

the value of yn and take the time average in the usual fashion,

Eq. (22.12) becomes

^ (23.2)

Later we shall find it convenient to use Eq. (23.2) as the defining

equation for the characteristic impedance.

(J)—WA—(J)
—VWV~(^—

^

iT>i 1^1 n2 rn2

2

Fig. 23.1.

If we now join the two lines described above and require that

the ends to be joined be the ends of cells in the two lattices, we
obtain

(23.3)

^2 = ^^..012^2^ (23.4)

In general, we shall take 6Ji = co 2 and the condition that there be

no 'energy loss and no reflected wave is

<*>1 = $2 or Zr,Ai^ = Z„Ai^ or (23.5)
Zi r„

T may be easily computed for two monatomic lattices when
the conditions at the junction are specified. Let us take, for

instance, the lattices as divided into symmetrical cells; then Zi

and Z-i are real. At the junction in this structure we have a

particle, one half of which belongs to one lattice and the other

half of which belongs to the other lattice (see Fig. 23.1). Since

the two halves must move together, we have the condition

Ai = Ai or r = 1 (23.6)

Hence, the condition for zero energy loss and no reflection at the

junction is

Zi = Z% (23.7)
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We obtained the expression for the characteristic impedance in

the last section. If the masses in the two lattices are different, it

follows that the elastic coefficients must also be different.

In general, reflection occurs at the junction of two lattices, and

the coeflScient of reflection may be obtained in terms of the con-

stants of the lattices. If reflection occurs, we have three waves

at the junction: the incident wave with amplitude 4i, the trans-

mitted wave with amplitude A 2 ,
and the reflected wave with

amplitude A 3 . The energy flows associated with these waves are

given by

<i>i =
]

^2 = 3^^r.co2A2- i (23.8)

<J>3 =
j

since the incident and reflected waves propagate in the first lat-

tice and the transmitted wave in the second lattice. We wish to

obtain the coefficient of reflection

i? = (23.9)

To do this, we note that we have two conditions for the expres-

sions in Eq. (23.8). Conservation of energy requires that

<l>i = #2 + (23.10)

and the condition that the two halves of the particle at the junc-

tion move together is

A 2 = Ai + A 3 (23.11)

since the resultant of the motion due to the incident and reflected

waves is an algebraic sum of these waves.

From Eq. (23.10) we obtain

or

or

ZrAi^ = ZU^^ -f ^.^Aa^

(23.12)
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and from Eq. (23.11)

Combining Eq. (23.12) with Eq. (23.13), we obtain a quadratic

equation in (.43/^ 1)
= -K*

or

{‘•8 + 2E + 1 - p = 0

(R +l)^ + p {R^ - 1) = 0

The solution

(E + 1) E + 1 + 1^' (E - 1)

E = -1

= 0

(23.14)

(23.15)

(23.16)

is trivial. The incident and reflected waves are just out of

phase, and the particle at the junction is at rest. The trans-

mitted wave has amplitude zero, as may be seen by substitution

of Eq. (23.16) in Eqs. (23.11) to (23.13). The other solution is

E = (23.17)

which gives the coefficient of reflection for amplitudes. The

coefficient of reflection for intensities is

W = \R\^

The coefficient of transmission T' for intensities and the trans-

formation ratio T are given by

T = transformation ratio = 1 + i? =
Zri + Zr^

T' = coefficient of transmission^ \T\^ — ^ {1 — E^)

(Z,, + Zr^y

24. General Definitions of Characteristic Impedance

So far we have discussed the monatomic lattice with inter-

actions between nearest neighbors only. We may extend the
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treatment to the case of a monatomic lattice mth the range of

interaction unlimited and use the definitions and formulas of

Secs. 8 and 10. The potential energy was obtained in Eq. (8.5).

L = L 0 “h {ijn+p ^ 2 p (8.5)

n p >0

The potential-energy density is the energy per cell divided by d.

In a single wave, each particle has a sinusoidal motion and

(Vn+p VnY is zero; hence

p>0

A single wave yn = propagating to the right gives

{Vn ^/n+p)** ~ R.P. {yn ^w+p) (^/n 2/«+p)
*

= R.P. (1 - c-^^^)(l -
= A‘^(l — cos kp) (24.2)

and hence

p>0

The average kinetic-energy density is the same as before [Eq.

(20.5)]:

= g M2
P>0

on substitution for [Eq. (10.1)]. Thus

1^:“ = lU' = 5
S' = ^ ~ (24.5)

p>0

The larger range of interaction complicates the problem of

finding the energy flow. Let us compute the flow of energy to the

right from all of the cells to the left of a certain particle that can

be taken at the origin (n = 0). To do this, we must compute the

force exerted by a particle n < 0 on all particles interacting with

it on the right. The force on particle n due to particle w + p is

/„,„+p in the previous notation. The subscripts denoting par-
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tide numbers have been omitted since each cell contains essen-

tially only one particle.

fn,n+p ” t ''piVn-hp Pn)

and the average energy flow due to this force will be given by

P-P- (24.6)

Again the minus sign occurs since fn,n+p is the force acting on

particle n due tp particle n + p rather than the force exerted by

particle n on particle n + p. The latter is, of course, the nega-

tive of the former. The right-hand side of Eq. (24.6) may be

ENERGY FLOW
THROUGH THIS WALL

OOOOOOOOO
-4 -3 -2 -1 0 1 2 3 4

4 INTERACTIONS AT

DISTANCE p=4
Pia. 24.1.

given explicitly by substituting the well-known exponential

expressions for y„ and y^+p-

iR.P. (/„.«+p2/»*)
= ^-^R.P. - l)(ico)*

= — sin hp

which gives for Eq. (24.6)

= V2 U"pA^<c sin hp (24.7)

There will be p terms of the type (24.7) contributing to the

energy flow across particle w = 0, since each of the particles

n = 0, —1, —2, . . . ,
—p + I'will furnish this amount of

power to the first p particles to the right of particle 0 (see Fig.

24.1). Thus the total energy flow will be given by the following

sum over p:

# = ^ “ U"pA^(ap sin hp

V

(24.8)
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The energy velocity is defined as in Eq. (20.11) and accordingly

IS

^ ^
C/"p-.4“cop sin kp

r- — ^ — p

' E m AW
A
mcos V^^pP sin A’p (24.9)

2d^ p

It is easy to verify that this is the same as the group velocity^ for

o> = 27rp

" ^ ~ ^ ~ ^'Jk
since

k = 27rad

We have already shown [Eq. (10.1)] that

p

and hence

p

and substitution yields the equation

C/, = ^ 2^ W^v sin ftp = U, (24.10)

P

In the previous section we defined the characteristic impedance by

U = -Zyn (24.11)

where /n is the force acting on particle n and ijn its velocity.

Here, however, we have more than one particle affected by the

particles to the right of particle n, and thus the characteristic

impedance cannot be defined by Eq. (24.11) since it is not the

impedance that would be required to terminate the lattice at

particle n in such a way that no reflection occurs. It would

be necessary to combine the impedances due to the different L
particles near the end of the line. A convenient way of doing

this is offered by Eq. (23.2). According to this equation

= }iZAW (24.12)

where Z is the characteristic impedance and always remains

real. The combination of the impedances offered by the differ-
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ent particles is implicit in the equation since the contribution of

each particle to the total energy flow has been taken into con-

sideration. We note that Eq. (24.12) is equivalent to

$ = (24 . 13 )

and we use Eq. (24. 13) as the general defiinition of the character-

istic impedance of a one-dimensional lattice. This definition

introduces no inconsistencies, and once we have computed $, we

need consider only the particle terminating the lattice in prob-

lems of finite lattices and the junction of lattices. Z is to be real

and the cells so chosen that any imaginary part of Z that might

arise is taken care of by the interactions of the particles in the

lattice. This definition of the characteristic impedance enables

one to state the necessary condition for no reflection at the end of

the lattice: that the lattice be terminated on a system of imped-

ances resulting in a total impedance equal to the characteristic

impedance. This condition is necessary but not sufficient, and

the general situation near the boundary is very similar to the

one obtained in Secs. 8 and 10, where the problem of steady-

state equilibrium was discussed.

For cases where the cells contain particles of various masses

the problem is more complicated, but the same general methods

are applicable. To obtain the average potential and kinetic

energies, the average contributions of each particle in the cell to

the energy are summed and divided by the length of the cell.

The energy flow # is obtained by summing the contributions of

all particles through a junction between cells. Once the flux $

and the energy density E are obtained, the energy velocity Ih is

defined by Eq. (20.11) and found equal to the group velocity

[Eq. (21.5)] for all structures exhibiting no absorption.

The curve v{a) always has a horizontal tangent on the limits

of the interval a = ±\/2d. This means dv/da = 0 and zero

group velocity and checks very well with the fact that these

special waves behave practically like standing waves. This was

observed, for instance, in the NaCl problem discussed in Chap.

IV, for the waves corresponding to wi and 03%, the limits of the

passing bands.

The characteristic impedance becomes increasingly difficult to

define and loses more and more of its practical significance.

Different values would be found for Z according to the assump-
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tions made about the distribution of Z between the particles of

the last cell, and, furthermore, the Z value gives a necessary but

not a suflBcient condition for no reflection.

To conclude, let us emphasize the importance of quantities

such as energy flow, energy density, energy velocity, and group

velocity, in addition to the usual phase velocity. These defini-

tions were introduced long ago by theoretical physicists. They
can be extended from one to two or three dimensions. For

electromagnetic waves, for instance, a most general definition of

the energy flow leads to Poynting’s vector.

The characteristic or surge impedance, familiar to electrical

engineers, is very useful for one-dimensional structures with

interactions between nearest neighbors only. This includes

practically all problems of filters, lines, and cables for electrical

communications. We have just found how delicate is the exten-

sion to one-dimensional structures with interactions at large

distances. Despite many interesting attempts, the extension to

two or three dimensions remains rather artificial.^

1 See ScHELKXTNOFF, S. A., Electromagnetic Waves,” Chap. XII, Van
Nostrand, New York, 1943.



CHAPTER VI

TWO-DIMENSIONAL LATTICES

26, Direct and Reciprocal Lattices in Two Dimensions

Lattices in two dimensions offer much the same sort of diffi-

culties as those in three dimensions, but they are easier to discuss

since drawings are simpler and clearer to understand. This is

the reason why a whole chapter is devoted to the two-dimensional

problem.

We shall start with a two-dimensional lattice composed of

particles all having the same mass and spaced at equal distances

from one another along two lines intersecting at an arbitrary

angle d. Later we shall find the generalization to more compli-

cated lattices easy to make. This lattice is shown in Fig. 26.1.

94
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The dots represent the masses. The distance between particles

in direction di is not necessarily the same as in direction da.

We take di and da as basis vectors drawn from the particle

chosen as the origin of the lattice. The vector coordinate of any
point in the lattice is then given by

ry, == Wi + Zada (25.1)

where h and h are integers. The basis system is not, of course,

unique, di and d'a would serve just as well and, in fact, any two
linearly independent vectors d"i and d"2 given by

d"i = Midi + nido 1 Hh
d"a = madi + nada

)
ma ^ /la

^

where mi, ma, Ui, and na are integers, ^ would give a satisfactory

basis. The d"’s correspond to nd in the one-dimensional system,

and there we used n = 1, i.e., the vector with the smallest

absolute value greater than zero. Similarly, here we shall more
or less arbitrarily designate di and da, the smallest pair of basis

vectors greater than zero, as the basis vectors of the lattice.

When we assume two basis vectors di and da for a lattice, then

the lattice is completely determined if we restrict ourselves to a

single type of particle and require that the particles be equally

spaced along the two independent directions. We refer to the

lattice described by the vectors di and da as the direct lattice.

For each direct lattice we may define a reciprocal lattice that is

to have basis vectors bi and ba given by the equation

(brd*) = 5.. (25.3)

where da is the Kronecker 5 symbol, defined by

The reasons for the term reciprocal lattice become apparent

with a little calculation. For, if we take the origin of a pair of

orthogonal axes x and y at the origin of the basis system, the

vectoi's di and da may be written in terms of their Cartesian

components as follows

:

^ The area of the new cell should equal that of di d2 ;
otherwise

the simple lattice is changed into a lattice with basis (see p. 128).
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di — {dix ^lu) 1

d« = {dix din) I

or, in terms of the matrix notation, the matrix

(25.5)

(25.6)

represents the basis system,

tern has the matrix

B =

Similarly, the reciprocal basis sys-

(25.7)

The subscripts on the elements of the matrix D must be trans-

posed for the matrix B since, if di and d2 are thought of as row

vectors, bi and ba must be column vectors because the latter are

defined by taking a scalar product with the former [Eq. (25.3) |.

It is readily verified that D and B are reciprocal matrices. Let

us form the matrix product.

D-B = l^.^
diAAi* biA

\d2a: \Oly 02y /

(dlJ}lx + dlJiix + dlybiy\

{dij^lx diyhly diJjix ”f" diyhiyj

Vi-bi) (di-b2)\ (^1 o\

bi) (d2-b2)y \0 1/

where 5 is the unit matrix. From this it follows that

B = D-i

_ /(ui

"Vcds
(25.8)

(25.9)

From Eq. (25.3) we see that

bi is perpendicular to da

ba is perpendicular to di
(25.10)

and therefore

(bi • di) = 1 = Ibilldil cos (I
- 0

)
= Ibilldil sin 6 )

y (
(26.11)

(ba • da) = 1 = (balldal cos
(|

~ ^ = l^alldal sin d
j

where 6 is the angle between di and da. This is easily seen by

inspection of Fig. 25.1. Now the area of the elementary cell in
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the direct lattice {i.e,, the parallelogi'am with di and d2 for two of

its sides) is given by

Sd = |di X d.l = Idjjdoi sin d (25.12)

from elementary vector analysis, while that of the elementary

cell in the reciprocal lattice is

Sb = Ibillb-il sin 6

The product of these areas is

Sd' Sb = |dil|d 2
|

sin 0 |bi|jb 2
l

sin 6

== Idilldal sin 6
i

sin 6

|di| sin dld^l sin 6

(25 . 13 )

= 1 (25.14)

from Eq. (25.11). In other words, the areas of the direct and
reciprocal cells are reciprocals.

In the one-dimensional lattice the length of the cell in the

direct lattice was d. The length of the cell in the frequency vs.

wave-number space was 1/d, and this was, therefore, the recipro-

cal cell of the lattice. Thus the direct lattice gave the periodicity

of the medium, and the reciprocal lattice gave that of the fre-

quency of the waves propagating through the medium. Similar

results will be obtained for two dimensions.

For readers accustomed to the definitions of tensor analysis,

the following comment may be added. The di and d2 basis

vectors of the direct lattice play essentially the role of the

covariant unit vectors, while bi and b 2 represent the contra-

variant unit vectors in an oblique coordinate system.^

As a matter of fact, many discussions are simplified if the

di and d2 vectors are used as unit vectors defining an oblique

axis system, and any arbitrary vector r is given by its and ^2

components along the d vectors.

r = ^idi + ^2 (25.15)

The oblique (di,d2) cell in the xy space is thus reduced to a

square cell in the ^ space, since

vector di means == 1,
” 0

'^"ector d 2 means ?i == 0, ^2 = 1

BRiiiLOuiN, L., ^‘Les Tenseurs en m^canique et en 41asticit6," pp. 27-30,

97, iuV, 305 , Masson, Paris, 1938.

Stbattoi^, 7 A., “Eliectromagnetic Theory," p. 39, McGraw-Hill, Ne\/

York, im.
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Furthermore, according to the defining equation (25.3)

= (r -bi), h = (r •b 2) (25.16;

A straight line in the plane (this line will become a plane in

three dimensions) is represented by a linear relation.

(a • r) == aix + a^y = c

or ai^x + = c oil = (a • di)
I

0:2 == (a * d 2) I

as is easily seen by direct substitution. Conversely,

a = aibi d- oj2b 2 (26.18)

In these equations a obviously represents a vector orthogonal

to the straight line (25.17), and c/la| is the distance 5 of the line

from the origin.

A lattice point is one with integral coordinates h and h.

= Zi, ?2 = Z2,
r = Zidi + Z2d2 (25.19)

and a vector h in the reciprocal lattice is

h = Aibi + A2b2 h and A2 integers (25.20)

If such an h vector is taken as vector a in Eq. (25.17), it defines

(for different values of c) a set of parallel lines, some of which

go through an infinite number of points of the direct lattice.

One of these lines is

(h • r) = hi(hi • r) + * r) = “b Zi2?2 = c (25.21)

For c = 0 the line passes through the origin and through all

lattice points for which

hUi “h A2Z2 = 0

such^s

Zi = h% and Z2 = —Zix *•

Other lattice rows will correspond to different c values. Now we

ask the following question : What is the distance from the origin

of the lattice row in this set nearest to the origin? This is the

same as asking: What is the smallest nonzero value of |c| ? Since

Ai, fi, A2 ,
and are all integers (positive or negative), c is also

an integer for a lattice row, and the smallest nonzero value of |c| is,

provided hi A2 have no common factor and h is the smallest

possible vector.

N = i
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This means that the distance between each of the lattice rows
in the set is

8
lh| lh|

(25.22)

Thus we have the following statement: A point (A 1,^ 2) in the

reciprocal lattice defines a set of lattice rows in the direct lattice.

These straight rows are perpendicular to the vector h and are

spaced at a distance of l/|h| from one another. This is known
as the Bravais notation for crystal planes. In Fig. 25.1, the

(1,0) rows are the vertical lines, and the (0,1) set is parallel to di.

The vector dT is in a (1,1) row, while d'2 is in (1,-1).

According to the physical properties to be discussed, sometimes

the direct and at other times the reciprocal lattice will yield the

better description of the periodic structure.

26. Doubly and Triply Periodic Functions

We shall have use for doubly periodic functions only in this

chapter. Since, however, triply periodic functions will arise

in the theory of three-dimensional lattices, we shall treat the two

together. By a doubly or triply periodic function we mean a

function of two or three independent variables, periodic in each

of its variables. The mathematical theory of such functions

would be considerably simplified if we could split an arbitrary

function, say D{x,y)j that is periodic in x and y into a product

of two functions Fi{x) 2iidF^{y) periodic in x and y, respectively.

This can be done, however, only in very special cases. Suppose,

for instance, that

F(x,y) =
1

0

X, y both integers,

otherwise
(26.1)

Figure 26.1 shows F{Xjy) plotted in the xy plane. The dots

represent points at which Fix^y) is not zero. Then

Fi{x) =

Uy) = I

X integer

otherwise

y integer

otherwise

(26.2)

are two functions of one variable each whose product is F{x^y).

Evidently Fi{x) and F^iy) are both periodic functions. Consider,

however, the function
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, I
1 X ovy integer

r {x,y) "
I
0 neither x nor y integer

(26.3)

Figure 26.2 shows the function F{x,y) plotted on the xy plane.

The horizontal and vertical lines represent the points at which

F(x,y) is not zero. Let us assume that

F{x,y) = Fx{x)F,{y) (26.4)

holds for all x and y. Then, if Xi and yi are neither integers,

Fx{x{)F,{y,) = 0 (26.5)

so that

Fi(j'i) = 0 or Fiiyi)
—

0 (26.6)

Let us suppose F->{yi) = 0; then

Fi(n)F2 (yi) =0 n an integer (26.7)

contradicts the hypothesis that Fix,y) defined by Eq. (26.3) has

the form (26.4). Starting from Fiixi) would lead to a similar

y

<N
CM•••

1
' • . • 1

. # - ^ » - V

'll 12 3 0 1 2 3

Fio. 26 . 1 . Fig. 26 .2 .

conclusion; hence the decomposition is impossible. Many
authors have also tried a sum.

F(x,y) = F^(x) + F,(y) (26.8)

An example of this would be given by taking Ft and Fi as in

Eq. (26.2).

1

2 z and y integers

1 z or y integer

0 elsewhere

Such an example is obviously a very special case of little practical

use.
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We shall, however, find it possible to expand doubly or triply

periodic functions in double or triple Fourier series, and this will

be done by means of the reciprocal lattice defined in Sec. 25.

A periodic function F{x,y) in the direct lattice has the same
value at points

r = {x,y) and r' = r + Zidi + hd2 (26.9)

Changing to coordinates and I2 as in Eq. (25.15), we obtain a

function /(^i,| 2) with period 1 in both and I2 . This periodic

function can be expanded in a double Fourier series of imaginary

exponentials.

Fi.^,y) = = X (26.10)
hihn

where hi and are integers, and the coeflScients of this series are

given by

&
The integral is zero whenever hi ^ h\ or ht /I'o and the only

remaining term is the one for which hi — h'l and A2 = h'^.

CH.k. = // d$2 (26.11)

The Chxht coefficient is generally complex and includes the ampli-

tude and phase angles. Returning to the original F{x,y) func-

tion and making use of Eq. (26.21), we obtain

hihi hih%

h, = /iibi ^262

(26.12)

where h defines one of the vectors of the reciprocal lattice. The
periodic character of this expansion can be checked directly

from Eqs. (25.20) and (25.3).

(h • r') = [h (r + Zidi + Z2d2)]

= (h • r) + hili(hi • di) + hj,2{}>2 d2) = (h • r) + hih + h^h

The imaginary exponential in Eq. (26. 12) obviously has the same

value at (h • r) as at [(h • r) + integer].
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In the transcription of Eq. (26.11) 'vve must be cautious, since

^1 and ^2 correspond to oblique coordinates, and the length of a

vector r is

|r|2 = ^2 _j_ ^2 = + 2(di * d2)^i?2 + |d2|“^2^ (26.13)

The area Sd of the d cell is transformed into an area 1 in the ^

system; hence

Sd = idi|id,| sin 6, dxdy = Sad^id^^ (26.14)

and

Chj.. = 4 r r Fix, (26.15)
Jo Jo

To give a physical interpretation to expansion (26.12), we may
say that the periodic function is decomposed into plane waves,

corresponding to each of the lattice rows (lattice planes in three

dimensions) defined by the points h in the reciprocal lattice. A
periodic function F(x,y) that can be represented by a product

Fi{x)F^{y) offers the very special property that

Cmk, = CnfiK, mth Ck, = (26.16)

and a similar equation for Chr This, obviously, cannot be

general, but it retains the whole set of coefficients C, The
assumption in Eq. (26.8) of a sum Fi{x) + F^iy) is much more
restricting since it knocks out all the coefficients except Chio and

C0A2 ,
which means that all oblique atomic rows are ruled out.

To emphasize the importance of these definitions, let us state

that X-ray reflections from a crystal yield directly the values of

in the expansion of electronic density inside the crystal.

Only the absolute value of the coefficients is obtained from the

experimental data, but symmetry considerations often enable

one to guess the* phase angles and to reconstruct the whole

periodic function representing the average density of electrons

throughout the crystal lattice.

27. Zones in a Two-dimensional Lattice

In the discussion of the one-dimensional case, we found that

the frequency was a periodic function of the wave number, and
hence for a given frequency there was ambiguity in the wave
length and the direction of propagation. We chose an interval

containing one period of the frequency and taken symmetrically
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about the origin, and then we restricted the wave number to

values in this interval. In the language of this section, we should

call this interval the first zone. The second zone in one dimen-

sion would consist of two intervals containing half a period each,

one on each side of the first zone, etc., for higher order zones.

The zones for one dimension are shown in Fig. 27.1.

We now proceed to find the analogues of these zones in the two-

dimensional case. The zones will be regions in the reciprocal

lattice, since this is the lattice describing the periodicity of

a
K

frequency as a function of wave number. Let us consider a

plane wave propagating through the two-dimensional medium.

It will have the form

^ 2ir<Z2^)
(27.1)

or if we let a be a vector with components ai and and r a

vector with components x and y,

^ = ^gi[o,<-2T(a.r)]
|a|2 — ^^^2 ^ (27.2)

a will be a vector in the direction of propagation, and its magni-

tude will be the reciprocal of the wave length X. In a discon-

tinuous medium, ^ is defined only at points r at which particles

are located; i.e., at the points of the direct lattice. Thus

2T(a * = 27r(a * hdi) + 27r(a • 12^.2) = h^i + ^2^2 (27.3)

where we have set

ki = 2ir(a • di) and ^2 ~ 27r(a • d2) (27.4)

Accordingly, Eq. (27.2) may be written

(27.5)
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NoWj as in the one-dimensional ease, we may replace ki and fc‘> by

k\ and /:'*> where

+ 27rm, 7n^ integers (27.6)

without changing either the motion of the particles or the fre-

quency. This ambiguity in the value of k i and k -2 is the analogue

of that in k in the one-dimensional case (Sec. 4). The values of

k'l and ¥2 in Eq. (27.6) correspond to the following value for a'

:

a' = a 4- wibi + msbo (27.7)

for

k'l = 27r(a' ’ di) = 27r(a • di) + 27rWi(bi * di)

-h 2T??22(b2 * di) = + 27rmi

k'i = 27r(a' • do) = 2T(a • d2) + 27r??2i(bi • do)

f- 2T^W2(b2 ' do) = Alo 4" 27rM2

(27.8)

The direction of propagation is given by a', and this, as well as

the magnitude of the wave length, will depend on mi and m 2

in Eq. (27.7). Various a' vectors corresponding to a given a

are shown drawn in the reciprocal lattice in Fig. 27.2. This

discussion shows that the frequency v of the wave, in a two-

dimensional lattice, is a periodic function of the wave vector a

in the reciprocal lattice with basis vectors bi and b 2 .

We must now formulate a rule for choosing the area to which a

is to be confined. We might start at the origin of the basis
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system and confine all vectors a to the first elementary cell of

the reciprocal lattice—/.c., to the parallelogram bounded by the
points (0,0), (0,1), (1,0), and (1,1) in Fig. 27.2. There are two
disadvantages to this. In the first place, this method singles out
the directions contained in the angle tt — (9 as preferred direc-

tions of propagation for the waves. Further, it does not require

the use of the longest possible wave length for a given disturbance

and thus is inconsistent with the conventions set up for the

one-dimensional case.

To do away with these objections, we try to construct a zone
that will be analogous to the first zone in the one-dimensional

case. This means, first, that we must place the origin in the

center of the zone. The remainder of the construction is accom-

plished by drawing perpendicular bisectors of the lines joining

the origin to each of the other points in the reciprocal lattice.

The smallest closed polygon formed by these perpendicular

bisectors is taken as the fifst zone. It is independent of the

basis system chosen and allows propagation in all directions.

Furthermore, it requires the longest wave length describing a

given disturbance to be used, as is easily seen by inspection since

a complete period for each direction of propagation is included

in the zone. There is still an ambiguity on the boundaries of the

zone just as in the one-dimensional case. The construction

for the first zone is shown in Fig. 27.3. The first zone has the

same area as the first elementary cell of the reciprocal lattice, as
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may be seen by comparing elements of the two areas containing

the same numbers. These elements are easily seen to be con-

gi'uent from plane geometry.

The construction of the second zone and higher order zones is

more complicated. They must all be boimded by perpendicular

bisectors of lines joining the origin with other lattice points, and

there can be no perpendicular bisectors passing through the

interior of a zone. The significance of this will be seen later.

• • •

Notice

Alf lines limiting the zones are

perpendicular bisectors upon

lines joining the center O to

Fig. 27.4.

If a wave propagates through a continuous medium with small

periodic variations in such a manner that its wave vector meas-

ured from the origin terminates on a perpendicular bisector of a

line joining the origin with a lattice point, a discontinuity occurs

in the v vs. \a\ curve. The object of introducing zones is to

eliminate discontinuities in the v vs. \a\ curve except at the

boundaries. This is exactly analogous to the one-dimensional

case.

To construct the second zone, we draw the second smallest

closed figure about the origin and bounded by perpendicular
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bisectors. The second zone is the area enclosed between the
boundary of the first zone and the boundary of this second figure.

The construction is shown in Fig. 27.4. Similarly, one may
construct a third zone that is the area enclosed between the

boundary of the second zone and the third smallest closed figure

bounded by perpendicular bisectors. This is also sho^m in

Fig. 27.4. Higher order zones are constructed in just the same
manner. It should be noted that the {n + l)st zone consists of

figures having at least one side in common with one side of the nth
zone and all vertices in common with the (n — l)st zone.

Each zone has the same area as the elementary cell in the

reciprocal lattice. This is shown by taking sections of the zone

under consideration and noting their position relative to some
lattice point. Now the wave vectors terminating in the cor-

responding section of any other cell will give the same value for

^|/J
since the only change in is the addition of 2m7r in the exponent

of the exponential. Therefore, we may consider the two sections

equivalent. The matching of sections in the elementary cell

with sections in the first and second zones is shown in Fig. 27.4.

In all these cases the area of each of the zones is equal to the

area of the elementary cell in the reciprocal lattice, and this is

true for all cases that have been worked out. However, a gen-

eral proof that this will always be the case has never been given.

28. Propagation of Waves in a Continuous Two-dimensional

Medium with a Periodic Perturbation

We are considering waves propagating in a tw^o-dimensional

continuum with a nonuniformity in the structure of the medium
that is periodic in each of the two independent directions. This

problem was sketched in Sec. 17 for the one-dimensional case

and will be fully discussed now. We can define a direct lattice

with basis vectors pointing in the two directions di and d^ and

having magnitudes equal to the periods of the structure in these

two directions. Each point in the first elementary cell may be

defined by a vector of the form [Eq. (25.15)]

r — ^idi + |2d2

0 < < 1

0 < |2 < 1

The vectors from the origin of the lattice for each point in the

lattice are obtained by adding the vector for the corresponding
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point in the first cell to the vector of the oiigin of the cell in

which the point lies.

r' = (lidi + lada) + Midi +

A reciprocal lattice with basis vectors bi and ba defined by

(b. • di.) =

as in Sec. 25 may be constructed. The vectors in this lattice

are the propagation vectors of a wave propagating in the direct

lattice, and the frequency of the wave is a function of the propa-

gation vectors.

The general wave equation for a two-dimensional continuum

with periodic nonuniformities is

= 0 (28 - 1 )

where is the two-dimensional Laplacian operator, i]; is the wave

function, and V is the phase velocity of the wave, assumed to be

a periodic function with periods di and da- tl' is a function of

{x,y) and of the time f. We assume that the time-dependent

part of is separable from the space-dependent part, i.e.,

t[r = u{x,y)e'^‘ (28.2)

from which we obtain a differential equation for u.

Vhi -I-^ w = 0 (28.3)

Now the wave equation for a two-dimensional homogeneous

isotropic continuum is (after the time part is eliminated)

+ "f/"2
'^0 = 0 (28.4)

y 0

where Vo is a constant depending on the constants of the medium.

A solution of Eq. (28.4) is

uo = (28.5)

where

4,r>|^ = |al^ = (28.6)

Equation (28.5) represents a plane wave. We may think of the
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wave as an ordinary sound wave or as an electromagnetic wave.

Both of these have constant velocities in a homogeneous medium.
We solve the problem of propagation of waves through a

continuum with periodic structure by perturbation methods.

Thus we set

U — Uq eiii

co^ = 6)0^ + eki

y2

(28.7)

We take a, the propagation vector, as fixed both in magnitude

and in direction. 1/F^, and are all functions of a in the

reciprocal and r in the direct lattice, e is a constant small

enough so that any terms in encounter

may be neglected in comparison with terms in e, at least to a

first approximation. The function / is periodic, and its average

is zero in order to ensure

1

We substitute Eq. (28.7) in the general wave equation (28.3).

Vhi + 72
^ = 0 == V^Uo +

+ € ^ Ml +
V 0“

+ coo^/ Mo (28.8)

if we neglect terms in e® and higher powers of e. The zero-order

approximation is obtained by neglecting the term in e. This is

just the wave equation for the continuum without variations, and

the solution has already been given. The first-order correction

to the zero-order approximation is given by equating the term in

e to zero.

V^Mi -f- Ml = — ^0 (28.9)

This is an inhomogeneous differential equation as it stands. The

homogeneous differential equation in Mi is identical with the

zero-order approximation and has the solutions

Ml = (28 . 10)
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where

To obtain, the solution of the inhomogeneous equation we expand

the periodic function / in a double Fourier series as in Sec. 26.

/ = (28.12)

where the are constants (in general complex to take care

of phase factors) that may be evaluated from Fourier’s theorem

and Coo = 0. |i and ^2 are the coordinates of the point in the

direct lattice at which / is to be evaluated with respect to the

origin of the cell in which it lies, and nti and m2 are integers.

We may write / as a function of the vectors in the reciprocal

lattice as in Eq. (26.12) by noting that

(bi • r) = (bi • lidi) + (bi • ^2d2) — ?i

(b 2 • r) = (b 2 lidi) + (b 2 • |2d2) = ^2 ,

(28.13)

and, therefore,

(28.14)

Substituting Eq. (28.14) into Eq. (28.9), substituting the

solution [Eq. (28.5)] of Eq. (28.4) for Uo, and introducing the

abbreviation

yields

v 0
"

a mivii “ a w?-ibi ?W'2b2 (28.15)

A ( p—2Ti(a‘r)

^ \7o‘^

+ 0) 0
^^ = R(x) (28.16)

This is an equation with right-hand term of the type

V^ui + Ui = R(r)

As is well known, such an equation possesses a finite solution only

if the righUhand term is orthogonal to all solutions of the homogene-

ous equation^ by which we understand the condition

I f Ui*R{T)dr = 0
all space



Sec. 28] TWO-DIMENSIONAL LATTICES 111

where Ui* is the complex conjugate of ui in Eq. (28.10). In our
problem this means that first of all we must write

J f
= 0, |a"| = ;a| (28.17)

all space

where a," is any vector of length |a[ according to Eq. (28.11).

Once this condition is satisfied, the general solution of Eq. (28.16)

has the form

Ul = (28.18)

and we shall be able to evaluate the B,nmt coefficients of this

expansion in terms of known quantities. The general char-

acter of the solution will perhaps be better understood if it is

Avritten in a slightly different way.

This means that the solution ^ is a plane wave.

^ == e^^iuo + eui) = e 2iriEvi-(o-r)]^ = A + eF(x)

with an amplitude A (r) that is a periodic function in the direct

lattice.

In the discussion of condition (28.17) two cases must be

distinguished

:

1, Among all vectors a" having the same magnitude as vector

a, a must be considered separately, but there is no other vector

a" coinciding with any of the vectors.

a all a

2. An exact (or approximate) coincidence can be found for a

certain vector a" and a corresponding a'^imr

a" « a'miTns and a^mimi = a ^ mibi ~ m2b 2

which implies the condition

[a mmxal ~ |a|

If this happens, both a and this special a^' must be singled out

in the discussion of condition (28.17).

Case 1.—In this case we first write the necessary condition

(28,17) for vector a, and we obtain a relation that determines the

value of the unknown coefficient ifci. The integral in Eq. (28.17)
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becomes

or

since

fci = 0 (28.19)

a — a' = mibi + m2b2

is zero only for mi = m2 = 0 and Coo = 0, and hence all the

exponential terms become zero on integration. Equation

(28.19) means that the average perturbation on the unperturbed

wave is zero for this case. For all other vectors a" we have

a" a and \a!'\ 9^ la'^iwal for all mi and m2 values. This con-

dition implies that none of the a' vectors may have the same

magnitude as a. The orthogonahty condition (28.17) is auto-

matically fulfilled for these other a" values, since the integrals

will all go to zero. Using now our value ki = 0, we may
attempt to solve Eq. (28.16) with an expansion of the type

(28.18).

= (28.20)

where

(28.21)
y o*'

We may combirie the two sums in Eq. (28.20) and set the coeffi-

cients of equal to zero. This gives

- A (28.22)

and solving for BmmH in terms of we obtain

Acoo^Fo^ ^B.
CCo^

2 ^mimt (28.23)

We have assumed that la'mimj 9̂ |al, and therefore coo^ 9̂

so that Bmim^ is always finite. Summarizing the results for case 1,
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we see that there is no first-order correctioyi to the frequency (since

fci = 0) and the sha-pe of the waves is slightly perturbed, in accord-

ance the general scheme (28.18). Case 1 is characterized

by the fact that one of the coefBcients in A is much larger than
the others, which are all of the order of e.

Case 2.—We first discuss the case of an exact coincidence:

a 5?^ a
5
a — a mim^ for some mi and values, say ni and

In this case then

la'mnal = la], ^!nin2 = a — nibi — 7i2h2 (28.24)

This means that there are two values of a that describe the motion

equally well; i.e.j there are two solutions for the unperturbed

problem that are equivalent. This degenerate motion is the ana-

logue of the motion in the one-dimensional case when a = ± 1 /2r/.

We must write uq as a linear combination of two exponentials

in this case, one for each of the solutions.

%lQ = (28.25)

with arbitrary coefficients C and C' to be discussed later. The
terms in a'nma will turn out to represent the reflected wave in

Bragg reflection. Substituting Eq. (28.25) into Eq. (28.9) and

using Eq. (28.14) will yield

+ coo^

7o^
Ui =

ki
((^^— 2rt(a'r) -

1

_

= -
-I-

— n%

-f- Wo* (28 .26)
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The two sums give no trouble since their exponentials are never

zero, even when multiplied by in the orthogonality rela-

tion (28.17). Therefore, we need consider only terms in

and We use the orthogonality relation to determine

ki. All terms in the integral (28.17) vanish except the two

already noted. We must allow' two values for a", one corre-

sponding to a and one to a'„,„,. The first gives the equation

-f + CCo^CCnrn^ e-2Ti{a'„,,,.r)

j

= y
dr == 0

Since a 5^ a' except in magnitude, the second term vanishes on

integration. The constant coefficient of the integral must van-

ish, and this gives one equation in ki, C, and C'.

^ = 0 (28.27a)
V 0

The other orthogonality relation is

j
e2«(av,-r)

-b + o^o^CCmn^ e-2-(«V..,-r)

j
dr

= “o^C'C«iBs^ J
dr = 0

by the same reasoning, and this gives a second equation in ki, C,

and C'.

^ -t- coo“CC„,„, = 0 (28.276)
V 0

These two equations must give the same ratio of C to C'. The
condition for this is that the determinant of the coefficients of C
and C' vanish. Thus
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since is necessary to keep / real Sohing Eq.

(28.28) for ki gives

2

I

- = 0 or fci = ±a)o"7o'lCn,„J (28.29)

Once ki is obtained, the ratio C'/C results from Eq. (28.27),

and the remaining coefficients of expansion (28.18) are computed
without difficulty.

Summarizing the results for case 2, we obtain a first-order

correction on the frequency

co‘-^ = 0)0- + ehi = ± ecoo^Fo^jCwmsI (28.30)

and a wave whoso general shape is still represented by Eq. (28. 18)

,

but which has two large coefficients {C and C') in its expansion

instead of a single one as in case 1. All other coefficients in the

amplitude function A (r) are of the first order in €.

PASSING BAND

STOPPING BAND
AQ

PASSING BAND

0

Fig. 28 . 1 .

We have already seen in case 1 that the perturoation is small

when a is not too close to any a When it is, however, the

perturbation becomes larger and when a = a nma, the frequency has

two possible values, one for each of the values of hi given by

Eq, (28.29). Thus for the unperturbed wave the frequency is a

linear function of la| as shown by the solid line in Fig. 28.1.

The dotted line shows co as a function of a for the perturbed

wave. For a certain value of a the curve splits up and the

perturbation becomes less as a gets farther away from

29. The Exceptional Waves of Case 2 and Bragg Reflection

We shall discuss later the transition from the portion of the

curve that remains unperturbed and the exceptional point at

which the splitting occurs, but first we wish to compare the

conditions for case 2 with Bragg’s formula for reflection from

crystal planes. Bragg discovered that X rays can be selectively
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reflected from some of the atomic planes in crystal lattices,

provided a certain relation among wave length, the distance of

separation of the planes, and the direction of propagation is

satisfied. We want to prove that this condition is equivalent to

la] = (29.1)

for the (ni,n2) values that define the atomic planes (which in the

two-dimensional ease are just rows of atoms). This is, of course,

exactly the condition for case 2 of Sec. 28.

We consider the vector in the reciprocal lattice

B == nibi + ^2b2

This vector defines a direction in the two-dimensional reciprocal

lattice and a row of atoms perpendicular to this direction in the

plane of the direct lattice. This row is the row responsible for the

Bragg reflection. For the reflection to take place, Eq. (29.1)

must hold. We denote the a for which Bragg's condition holds

by ao and replace a'^ms by a'o« Thus

a'o = ao — B
and

|a'o[ = laol

In other words,'

la'oP = laol^ - lao - B^ = [ao^i ~ 2(ao * B) + 1B|2

and

laol' = la'ol^ = |a'o + B\^ - |a'o|' + 2(a'o * B) + iBj^

These two equations yield

1B|2 = 2(ao * B) = -2(a'o • B)

or

|ao| cos (ao,B) = -|a'o| cos (a'o,B) = ^B] (29.3)

and since ao and a'o differ only in direction but have the same
length,

cos (ao,B) = — cos (a'o,B)

)r ao makes the same angle with B that a'o makes with — B.
From Eq. (29.3) it now follows at once that ao terminates on the
jerpendicular bisector of B, while a'o terminates on the perpen-
liciilar bisector of — B. This means that the projection of a on

(29.2)

(29.1)
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B has magnitude lB|/2 or

I ,

1 IB| 1

|al cos ^ - cos ^ ^
or

X = 25 cos <p (29.4)

where <p is the angle between a and B and 5 is the distance

between successive rows passing through the lattice points in the

direct lattice and perpendicular to the basis vector conjugate to B
[Eq. (25.22)]. This is illustrated in Fig. 29.1, showing a set of

parallel rows in the direct lattice, with a distance of separation

5, with the incident beam ao, and with the reflected beam a'o.

The elementary theory of Bragg reflection is as follows

:

CRYSTAL
LAHICE
ROWS

Fig. 29.1.—Bragg’s reflection.

1. Angles ^ and <p' must be equal, ensuring a uniform reflection

from each lattice row.

2. Waves reflected from two successive lattice rows must be in

phase; hence

AOB = 25 cos ip = mk (29.5)

This is Bragg’s formula, which checks with Eq. (29.4) when

m = 1. Let us specify the integers defining the particular vector

B corresponding to m = 1 by ni and na. We note that other

vectors of the reciprocal lattice are obtained if we take

Bm = wB = mnihi + mnihi

and yield rows in the direct lattice separated by a distance

, - _L _ J_ = A
~ |B„1 m|B| m

from which we obtain the generalization contained in Eq.

(29.5).
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All this proves that case 2 , with its two large components in

the wave, corresponds exactly to Bragg’s condition for reflection;

f.e., to the situation in which an incident C wave (ao) can be

reflected from atomic rows in the lattice and generate a C' wave

(a'o) of large amplitude.

30. Transition near the Discontinuity

We wish now to investigate the region where a almost satisfies

Bragg’s condition but not quite; f.c., we allow

a = ao + where rj is small (30.1)

Then
a' = a - B = ao - B + 77B = a'o + (30.2)

where ao and a'o are the vectors defined in Secs. 28 and 29 and

exactly satisfy Bragg’s reflection condition. The new vectors

a and a' satisfy these same conditions approximately only,

according to the rj terms. This is shown in Fig. 30.1. The
squares of the absolute values of a and a' are given by

lap = laop^ + 277(a() • B) I . . ...

|a'p = la'ol*^ + 277(a'o • B) - |aoP - 2ri(eio * B)
j

^

according to Eq. (29.3) and by dropping term. Furthermore,

we define the following expressions

:

= 47r1aoP

^ = 4x^|a|2 = ^ + SxMao • B) \ (30.4)

^ = 4x2ia'|2 = —5 — B)
|
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Also

(30.5)

as in Eq. (28.25), and

u = Uo + eui

Y^=^2 + ^f (30-6)

The frequency w of the uq wave is given by

03^ = C0o“ “f"

as in Eq. (28.7). This frequency 03 is the same for both terms

entering Uo and should not be confused with coa and ooa'y which

represent the frequencies of the (C,C') wa\^es in the unperturbed

medium, while w is the common frequency of both terms in the

medium with periodic perturbation.

We start again from Eq. (28.8), and we take Eq. (30.4) into

account. The Vhio term yields

= - Mo - 87r^i7(ao • B)(Cfi-2--<“"> - CV-2-<“'-)) (30.7)
V 0

*'

The new v terms characterize our present problem, v and e are

both perturbation coefficients and are assumed to be of the same

order of magnitude. We set

h - (30.8)
€

We now separate the perturbation terms from the rest of the

equation and set them equal to zero as before.

V^Mi + Ml = -

+ 8ir“;i(ao • B)(Ce-2"(‘>-^ - (30.9)

This is exactly Eq. (28.9) but for the additional h term. The

discussion from now on parallels that given in Sec. 28, case 2.

We again expand/ according to Eq. (28.14) and group the terms

that contribute to the perturbation as in Eq. (28.26). The

two important terms are
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- 8^=/i(ao - B)C
I

and / (30.10)

+ 0>^CC.,n. + 8t%(&0 B)C'
I

When we substitute the right-hand side of Eq. (30.9) in the

orthogonality relation (28.17), all terms contribute zero to the

integral except the two above. The first will give rise to one

equation similar to Eq. (28.27a) for C and C' when the solution
^-2TKa*r) Qf homogeneous equation for ui is used.

^ - 87r2/i(ao • B)C = 0 (30.11a)
V 0

“

The second one gives another relation similar to Eq. (28.276),

when Ui ~ is used.

^ + 87r2A(a„ • B)C' = 0 (30.116)

The determinant of the coefficients of C and C' must vanish as

before. This determinant is

p, - 8T^/l(ao • B)

, =0 (30.12)

^oo^C'n.n. + 8r*A(ao • B)
r 0

Solving for ki yields

^2 = ± V«oiC„,„,|2 + [8T^A(ao-B)]2 (30.13)

For A = 0 we have the Bragg condition and the same results as

before. When h is large,

pi = +8x26(ao • B) A > > 1 (30.14)

But

6)^ _ _ 0)0^

Vo^
~ VV ^ V? ~ V? + e87r^A(ao • B)

I

)
Fo*

)

\ Fo“

according to Eq. (30.4). Thus a will be in one zone and a' in
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another, and the values for 03 will lie on the dotted transition

curve shovn in Fig. 28.1.

The whole discussion of Secs. 28 and 30 shows that discon-

tinuities in the function p(a) appear only when the a vector has

its extremity on the perpendicular bisector of the vectoi'S in the

reciprocal lattice. This justifies the rule given in Sec. 27 for the

construction of successive zones. Some examples of the shape

of the first zone have been found by various authors, and the

general rule was given by the present writer, with a comprehen-

sive discussion of the structure of higher zones in two and three

dimensions.

31, Examples and Discussion of Zones in Two Dimensions
The theory just developed in Secs. 28, 29, and 30 contains the

principle of X-ray reflection from crystal lattices. X rays

propagate through the crystal with the velocity of light in

vacuum, and atoms or molecules may just slightly perturb the

propagation. The perturbation is practically proportional to

the electronic density, and an equation of propagation of the type

of Eq. (28.8) is obtained, with a perturbation term / proportional

to the electronic density. In a crystal lattice, atoms are regu-

larly distributed along a direct lattice, each atomic nucleus

being surrounded by a cloud of electrons that may partly overlap

that of its neighbors. The electronic density is a periodic

function with the periodicity of the lattice and can be expanded

in a multiple Fourier series like Eq. (28.14). In the final results

given by Eq. (28.30) or Eq, (30.13) only the absolute value

\Cmimt\ of the coefficients of the Fourier terms appeared. Hence,

any experiment on wave propagation through the crystal lattice

will give only the absolute value and not the phase angle. This

latter may often be obtained from symmetry considerations and
some general knowledge of the lattice structure, and then the

whole Fourier expansion of the electronic space charge is found,

from which the distribution of the space charge at any point

can be computed. Figure 31.1 gives an example of such experi-

mental results.

This is the principle of the procedure announced at the end of

Sec. 26. As a rule, all coefficients Cm of the Fourier expansion

are required, and there is practically no example of actual lattices

where simplified assumptions such as Eq. (26.1) or (26.8) could

be used. Sometimes a few exceptional terms may happen to be

zero, but this is not very frequent.
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The relation between the conditioni? yielding discoiiliniiities in

tne v{a) curve and Bragg's reflection condition was explained in

Sec, 29. In principle the explanation is the vsaine as for the rela-

tion between passing bands and stopping bands in the one-

dimensional lattices discussed in Sec. 16: Let a certain direction

Fig. 31.1.—Crystal structure of pentaerythritol tetracetate C*(CH20-C0'CHs)4
showing the position of carbon and oxygen atoms as resulting from a Fourier
analysis based on X-rays diffraction. {Courtesy of T, H. Goodwin and R. Hardy,
Proc. Roy, Soc, {London) A, wl. 164 (1938), p. 369.)

of propagation be given (direction of a) and the frequency v

of the wave be varied. If the frequency corresponds to a passing

band, then the wave falling upon the lattice with this direction

of propagation and frequency may be propagated through the

crystal. Surface conditions at the boundary of the crystal

will give only partial reflection from the surface. If, however,

the frequency v falls inside one of the stopping bands, like the

intervals obtained in Fig. 28.1, then the corresponding wave
cannot be propagated through the crystal and must be totally

reflected from the surface.

The elementary Bragg theory, as sketched in Fig. 29.1,

predicted reflection for just one frequency, while our more com-
prehensive treatment yields reflection for the whole stopping
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Ixind Av. For X raj-s, the perturbation of the wave by the

crystal lattice is extremely small and the bands for ideal

{‘rystals are A’cry narrow.

AIl this was explained here for a two-dimensional lattice

structure, but X-i-ay reflection actually occurs in three-dimen-

sional structures. Electron reflection according to wave mechan-

ics (electrons being represented by De Broglie waves) is a more

accurate example of a two-dimensional problem, since in many
experiments (Davi^sson and Germer) the reflection takes place

on the surface of the crystal (two dimensions) and electronic

waves do not penetrate inside the crystal.

We now give a few examples of direct and reciprocal lattices in

two dimensions, with the corresponding zone structures. Where
a certain direct lattice is given, the shortest way to find the

reciprocal lattice is to use Eq. (26.22) and look for some parallel

rows of lattice points in the direct lattice, compute their distance

of separation 5, and obtain a vector of the reciprocal lattice by
taking a length 1/5 in the direction perpendicular to the rows.

This is shown in Fig. 31.2 for a hexagonal lattice based on two
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vectors d making an angle tt '3. The reciprocal lattice is another

hexagonal lattice, turned through an angle x/6 and with vectore

b.

K _
‘

‘ V3 :dj

as sho'wn in Fig. 3L3, The first five zones have been drawn and

Y Q 1st ZONE

Ka / 2nd ZONE
PUZZLE FOR THE Wm 3rd ZONE

3/^ V\4 3rd ZONE nUD 4th ZONE^ 5th ZONE

Fig. 31.3.—Zones for a hexagonal lattice.

the sixth one is easily recognized. Each zone covers an area equal

to that of the first one or to that of the (b,b) parallelogram.

Ai = |bp sin - = |bl® =
3 2 V3 Idl^

while the area of the cell in the direct lattice is

Ad = IdP sin s IdP = 4-
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Each zone can be reduced to the first zone by taking its sec-

tions and giving them a translation parallel and equal to one

of the vectors of the reciprocal lattice. This is obvious for the

second zone in Fig. 31.3. The case of the third zone is illustrated

by a mosaic showing how the different sections of the third zone

exactly cover the first one after being given the necessary trans-

lation. Similar mosaics can be drawn for higher zones.

Oblique lattices were used in Figs. 25.1, 27.2, and 27.4. The
case of a rectangular lattice is shown in Fig. 31.4, where the first

four zones have been drawn, each of which has an area equal to

\ I 1st ZONE

2nd ZONE

3rd ZONE

ITTTTn 4th ZONE
Fig. 31.4,—Kectangular lattice.

4th ZONE
PUZZLE

that of the first one. Translation of the different sections of one

zone by vectors of the reciprocal lattice can be used to superpose

them on the first zone. The corresponding mosaic is shown for

the fourth zone. Figures 31.5 and 31.6 refer to the square-

lattice structure and are original drawings given by the writer

in a paper published in 1930. Figure 31.6 contains the mosaics

for the successive zones in the square lattice.

All this theory is based upon the assumption of the periodicity

of the function / of Sec. 28. It is not inconceivable that in

certain physical problems the perturbation function / (the

electronic density, for instance) may have a lower symmetry

than the atomic lattice, and that its periodicity may offer a

different character. In such cases the zone structure would
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ZONE 123456789 10

DID DDI
Fro. 31.5.—Zones for a saiiare lattice.

n mMmm mM MMtnM

m mMmm mM MMmM
2nd ZONE, M 3rd ZONE, 4th ZONE, m 5th ZONE, m 6th ZONE, M

SADDLE POINTMM M

7th ZONE, 8th ZONE, m 9th ZONE, m
SADDLE POINT

Fig. 31.6.—Square lattice, reduction of the first zones.
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(‘orrespond to the actual periodicity and symmetry of the

perturbation function and not to those of the lattice itself.

This may be the case when the individual electronic clouds

around each atonaic nucleus already possess a certain structure

(atoms in P, D, . . . states) and do not exhibit spherical sym-

metry (S state) for the isolated atoms.

Once the zonal structure has been obtained, most of the results

established in the first chapters for one-dimensional structures

can be readily extended to two-dimensional problems. Zones

where = 0 (/>) Cross-section at ay= 0

2dx 2dx

(0 Cross-section at ay+0 id) Cross-section along Op

Fig. 31.7.

1, 2, 3, . . . correspond to intervals of similar numbers in one

dimension, as explained in Fig. 27.1. The frequency v was a

periodic function of period 1/d in one dimension, and continuity

across the boundary of the first zone meant that the v{a) curve

should reach this boundary with a horizontal tangent. In two

dimensions i'(a) is a function of the two variables a^; and Oy

(components of a), and it must reach the boundary of the first

zone with a zero normal derivative. We can plot a map of y

inside the zone, using lines of equal v values (like lines of equal

altitude on a map), and obtain a drawing like the one represented

in Fig. 31.7a. A cross section of the map along Ox yields a
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curve similar to those of Chaps. I, II, and III (Fig. 31.7fe).

Another cross section at gives the curve of Fig. 31.7c with

horizontal tangents in the middle and at the ends of the interval.

A radial cross section along Op, as shown in Fig. 31.7d, shows

no horizontal tangents at the ends of the interval The dis-

tinction betw’een the radial derivative dv/dp or a normal deriv-

ative is also exemplified in Fig. 31.7a, where the normal derivative

is zero along the border of the zone, while the locus of point

dv/dp = 0 is represented by the dotted curve. One must ahvays

be very careful not to confuse these two different definitions.

Figure 31.7 would represent the qualitative behavior of a

monatomic lattice for elastic vibrations in the case of a rectangular

lattice (daffdy), and it corresponds more closely to problems of

the type discussed in Chap. Ill with a low passing band. The
phase velocity in the x and y directions is different, and the

limiting frequency (cutoff) varies all along the boundary of

the first zone. It depends upon the direction of propagation as

well as the lattice structure.

A polyatomic lattice is one containing several atoms in the

fundamental cell, as showm schematically in Fig. 31.8. It is

often called a lattice with hasis^ where the word basis is used

for the bundle of vectors n, ta, • • . defining the positions

of particles ikf2 ,
Ifs? * . • ,

Mn of the cell with respect to a

certain particle Mi taken as the origin. This is the two-dimen-

sional generalization of Fig. 17.1. Such problems resulted, in

the one-dimensional case, in a v{a) curve with N branches, one

acoustical and the remaining (AT — 1) optical Here w^e obtain

N surfaces covering the first zone. The ci’oss section of these N
surfaces along a given direction is very similar to the curves in

Figs. 3.2 and 3.9 in one dimension.

The NaCl problem may be discussed more accurately in con-
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nection with the theory developed in Chap. lY, When the

particles Mi and differ in mass, the lattice is a square-

centered lattice as shown in Fig. 31.9 and represents a lattice

with basis, built upon two equal orthogonal vectors d and d.

Its first two zones are shown at the bottom of the dra\\ing.

When, however, Mi = M^, the lattice suddenly changes its

character and becomes a simple square lattice, built on two

vectors d' = d/\/2 at 45 deg. Its first zone includes both the

O O

O

cl=W \

Na Cl TWO DIMENSIONS

N
N
SA

y

k J,
1

2d
N
\
\
\
\

y
/

/
y

/ 1 111
0 2d

1st ZONE

2nd ZONE

Fig. 31.9.

PUZZLE FOR THE
. 2nd ZONE

first and the second zones of the previous structure. In this case

{Ml ^ we obtain r(a) as a single-valued function of a

over the whole big zone. When Mit^ the four outer

triangular sections (second zone) must be translated to the

reduced first zone, and v(a) becomes a double-valued function of a

inside this new first zone. The limits of these zones are at

±l/2d and ±l/d along the x or the y axis (as in the one-dimen-

sional problem) except for directions at 45 deg.
;
here the limits

of the zones coincide. The mosaic of the sections of the second
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^one shows how two points P and P' come in contact with the

new representation. Since p obviomsly has the same values at P
and P', by Ksymmetry there is no discontinuity of p(a) along the

diagonals of the mosaic. Both branches of the p(a) function

are continuous except at the boundary of the new first zone.

N particles per cell mean N branches in the v{si) function

when a is restricted to the interior of the first zone. It may also

be thought of as an extension of one branch p(a) over N zones, as

in the preceding paragraph.

A continuous periodic structure is obtained at the limit N ^
and yields an infinite number of branches inside the first zone or a
one-branch function extending over the whole plane. This is

the problem studied in Sees. 28 and 30. For a uniform medium
with constant properties, the one-branch function

= IFia!

extends all over the a plane. Periodic perturbation introduces

discontinuities in the function p(a) on all lines chosen as the
limits of a zone (Secs. 27 and 29) and corresponding to Bragg
reflection. A large perturbation simply increases the discon-

tinuities without ever changing their location in the a plane.
All the sections of an arbitrary zone can be brought back to the
first zone by translations Aibi + in the reciprocal lattice

and fit into a mosaic just covering the first zone. When this is

done, each zone yields one branch of the p(a) function reduced
inside the first zone.

As stated before, experimental evidence shows that an actual
crystal lattice exhibits the complete row or plane system, with no
set missing. Therefore, the complete Fourier expansion of

Sec- 26 and the complete system of discontinuity lines or zone
limits must occur.



CHAPTER VH

THREE-DIMENSIONAL LATTICES

32 . Direct and Reciprocal Lattices in Three Dimensions

The lattice in three dimensions is usually defined by three

oblique coordinates. The elementary cell is thus a parallele-

piped. We take the basis vectors di, d 2 ,
and da to be the vectors

joining the origin of the lattice with three particles in the lattice

that do not all lie in the same plane. These vectors define the

first elementary cell. Then any other set of basis vectors^ is

defined by

d'l = aiidi + ai2d2 + (Xisd’i

d^2 “ Oi^ldl “h <3J22d‘2 “h <>i23d3

d^3 = ojaidi + a32d2 + asads

atk == positive or

negative integers (32.1)

where the determinant of the aa must not be zero to ensure that

d'l, d' 2 )
and d'3 are not linearly dependent; i.e., d'l, d' 2 ,

and d'g do

not all lie in the same plane. A lattice point is given by the vector

^hhh = ^idi + ^ada + Zada (32.2)

where Zi, Z2 ,
and Is are integers. Points in the first elementary

cell have vectors of the form

r = ^idi + ^2d2 + ^sds (32.3)

where |^t| < 1. Any other point in the lattice may be obtained

by adding vectorially the vector for the origin of the cell in

which the point lies to its vector from the origin of its cell.

The reci'grocal lattice is defined in exactly the same fashion as

for two dimensions: Its basis vectors bi, bg, and hs satisfy the

nine equations analogous to Eq. (25.3).

(b, • dk) = 8ik (32.4)

The propagation vector for a wave propagating in the direct

lattice is drawn in the reciprocal lattice as before. The analogue

^ See footnote on p. 95.

131
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to the fact that direct and reciproctd cells have reciprocal areas

in two dimensions [K(i. (25.14)] is that they have reciprocal

volumes in three dimensions.

VuVi, = 1 (32.5)

To prove this, we note that b., Is perpendicular to di and d-. from

Eq. (32.4). Thus we may write

b, = k{di X d.) (32.6)

Xow
(b3 • dj) = 1 = ^:[ds • (di X d.,)] = kVi (32.7)

Therefore, k = 1/Fd, and from Eq. (32.6) it follows that

bs = (di X do)

Similarly,

bi == (d.2 X ds)

ba = i (ds X di)

and conversely

ds = (bi X b2)> di
y b

Therefore,

(bs • ds) = 1

and if we break the vectors in the numerator up into their

Cartesian components and rearrange them, it becomes

(di * bi)(d2 * bs) (d2 ‘ bi)(di * b2) “ 1

so that we obtain the desired relation.
*

Another theorem that we shall find useful is that the position

vector of any lattice point in the reciprocal lattice is perpen-

dicular to an infinite set of lattice planes in the direct lattice

[the two-dimensional analogue is expressed by Eq. (25.22)] where

a lattice plane is defined as a plane passing through a set of

lattice points. Thus, if we denote the position vector of a

= (b2 X bs),

d2==4(b3Xbx) (32.10)
Vb

[(di X d2) • (bi X b-i)]

VaV,

(32.8)

(32.9)
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lattice point in the reciprocal lattice by

H = Aibi “h *4“

where hi, and hz are integers, and let

H
""

IHl

be the unit vector in the direction H, the vector equation repre-

senting a plane perpendicular to the vector H is

(32.11)

(32.12)

(n • r) = (H-r)
!H|

(32.13)

where C represents the distance of the plane from the origin.

Such a plane passes through a point RzjZ.Zg of the direct lattice if

H • RziZjZs _ ^1^1 + h^h + hzh

IHl IH,
= C (32.14)

by direct substitution for H and RziZ>Z3 from Eqs. (32.2) and

(32.11). The numerator is an integer m. Now the distance

between these lattice planes in the direct lattice is given by the

smallest allowable variation of the right-hand member of Eq.

(32.14). Since the numerator must be integral/ its smallest

value is 1 and the distance:

8 = 1

|H|
(32.15)

if Eq. (32.14) is reduced to lowest terms. One may also state

this theorem by saying that the distance between the lattice

planes perpendicular to a given direction n is the reciprocal

of the distance of the lattice point in the reciprocal lattice nearest

to the origin and in the direction n from the origin. An analogous

theorem may be stated and proved in the reciprocal lattice.

The density of points in the lattice planes is proportional to

8 = For the volume density is constant, and hence the

number of points per unit area of the plane is directly pro-

portional to 8. This result is, of course, also true for reciprocal

lattices with appropriate changes in notation.

A vector in the direct lattice may be written

X = “j- ^2^2 + fads

^ See last sentence on p. 98.

(32.16)
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where we have the relations

= (bi • r), h = (bs • r), Js = (ba • r)

as may easily be verified. Similarly, for a vector in the reciprocal

lattice

H = Tjibj + ij-jb-i + vshz (32.17)

we have

n, = (di • H), 77.. = (d.> H), m = (da ' H)

Before going on to the propagation of waves, it is well to give

some examples of three-dimensional lattices and their reciprocals.

JL
d

(6)

RECIPROCAL CUBIC UTTICE

Fig. 32 . 1 .

The simplest three-dimensional lattice structure is probably the

cubic lattice shown in Fig. 32. la. Here

(a)

CUBIC LATTICE

(d,- • d,) =
0

i = fc

I
i 7^ k }

where d is the length of one edge of the cube. From Eq. (32.9)

we obtain the reciprocal lattice |b,l = 1/d and b, parallel to

d,-. This reciprocal lattice, shown in Fig. 32.16, is also cubic.

The simple cubic lattice does not occur naturally. There are,

however, some related lattices that do. Let us consider the

face-centered cubic lattice shown in Fig. 32.2a. This lattice has

atoms in the center of each of the faces of the cube as well as at

the corners. We think of the elementary cell in this lattice as the

parallelepiped determined by the lines AE, AF, and AG. The

volume of this cell is Vd = d*/4 if the edge of the cube is d.

The cell based on these vectors contains only one atom A, all

others being considered as belonging to similar adjacent cells.

It is easily verified that linear combinations of these three

fundamental vectors give all the points in the lattice. The sum
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of the three vectors leads to while AE + AF — AG yields

point D. The cube d cannot be used as a fundamental cell,

since it contains four atoms instead of one. If the atoms

located in the faces of the cube were different from those at the

corners, the lattice would become a cubic lattice with a basis

AEFG, but this point of view is not logical for equal particles.

To obtain the reciprocal of the face-centered cubic lattice we
make use of the theorem that a vector in the recipro(‘al lattice

drawn to the point nearest to the origin in a given direction is

perpendicular to a set of lattice planes in the direct lattice and

has a magnitude equal to the reciprocal of the distance between

(a) (6)

FACE CENTERED CUBIC LATTICE BODY CENTERED CUBIC UTTICE
AE, AF, AG BASIC VECTORS A'D'. A'C', A'H' BASIC VECTORS

Fig. 32.2.

these lattice planes. The distance between the lattice planes

in the direction AD is d/2, and hence there is a point D' of the

reciprocal lattice in this direction at a distance 2/d from the

point A' (see Fig. 32.26). Similarly, there are points at distance

d/2 from A in the directions AI and AH, The corresponding-

points are indicated by /' and H' in the reciprocal lattice. There

is only one set of planes in the direct lattice separated by a

distance greater than d/2, viz., those parallel to the plane deter-

mined by DEIGHF. Thus there can be only one point in the

first cube of the reciprocal lattice besides those already found.

All other points will be in different cells. The planes are shown

in Fig. 32.2a. These planes are separated by a distance

i = \aB = \\/ld ^ -A



H'.n’A' PROP.KfATWK [Chap. MI18(i

and hence

1 where !, = |d d 2 d 2 d

gives the position of a lattice point in the recipi’ocal lattice in

the direction A'B'. This point is at the center C of the cube.

This structure—a cube with a point at its center—is called a

body-centered cube. Thus the reciprocal of the face-centered

cubic lattice is a body-centered cubic lattice. It may easily be

shown by similar reasoning that the converse statement is true;

The reciprocal of a body-centered cubic lattice is a face-centered

cubic lattice. The first cell of the body-centered cubic lattice is

taken as the parallelepiped determined by the lines A'D', A'H',

and A'C. The volume of this cell is one-half the volume of the

cube

as it should be. Many other examples may be found in books on

crystal structure, for instance, P. P. Ewald’s book.

33. Zones in Three Dimensions and Bragg Reflection; Ewald’s

Construction

The discussion given in Chap. VI can be used without any

change for three-dimensional problems. We used vector nota-

tion, which works just as well for three as for two components.

The areas Sd and Sb are to be replaced by the volumes Vd and

Vb as in Eq. (32.5), and atomic planes in the direct lattice replace

the atomic rows occurring m two dimensions, as explained in

Eq. (32.14).

Triply periodic functions are expanded in triple Fourier

series in exactly the same way as in Sec. 26 for two dimensions.

The coefScients Chihth, with three integral indices hi, h, h will

simply be written Ch for convenience. The proof of the perio-

dicity of y as a function of a is carried out exactly as in Sec. 27

and may be briefly repeated here on account of its importance.

A point in the direct lattice is given by

R = lidi -f" fsdj -f- Zsds (33.1)

where h, k, and h are integers and di, d-a, and da are the lattice
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vectors. An arbitrary vector in the direct lattice is given by

r = lid I + lode + Isds (33.2)

where |i, I2 ,
and I3 are the components of r in the directions

di, do, and ds, respectively. If a wave is propagating through

the lattice and can be observed only at the lattice points R, we
may express the disturbance yp by

^ (33 ,3 )

where a is the wave vector and is regarded as a vector of the

reciprocal lattice. The function yp is evidently periodic in a and

R. The vector

a^/j = a "b /?ibi ’4“ Aobo 4" /^sbs (33.4)

where Ai, and hz are integers, will describe the motion at the

lattice points just as well as a; for

(a';, • R) = (a • R) + Ai(bx • R) + A 2 (bo • R) + ^^(ba • R)

= (a * R) 4" 4” ^2^2 4“ ^ 3^3 ~ (a * R) 4" integer

Since the same motion can be represented by a or any arbitrary

the frequency must be a periodic function of a also, with

the periodicity bi, b 2 ,
and bs of the reciprocal lattice.

We wish to set up conventions for eliminating all but one of

the values for a, t.c., define zones to which a is to be restricted,

as was done in Sec. 27 for the two-dimensional case. The
method is exactly the same, and we take the first zone to be a

volume centered upon the origin 0 of the reciprocal lattice and

limited by plane perpendicular bisectors of vectors in the recip-

rocal lattice. The first zone has a volume Vh equal to the

volume of the elementary cell in the reciprocal lattice, and any
point in space can be brought back into the first zone by H
translations in the reciprocal lattice.

H = hihi + h2h2 + Agbs

Higher zones surrounding the first one are built in a similar way,

and some actual examples will be given below.

The choice of these particular planes, bisecting and perpen-

dicular to the vectors of the reciprocal lattice, is based on the

analysis previously given in Secs. 28 and 30 for two dimensions.

The theory of waves propagating through a continuous medium
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Avith a small periodit* perturbation is identical with the two-

dimensional theory, and one must distinguish between

Case 1 ,
where all ja'^l 9^ \b\

Case 2, where one certain e'a, say a'n, is |a'»| [aj

where a'^ is a vector (33.4). Case 2 arises when two vectors

a'n and a having almost the same length can be found, such that

their difference is a vector of the reciprocal lattice.

a'n -* a = H = hihi + + hhz (33.6)

A geometrical interpretation of this condition was presented in

Sec. 29 where it was proved that the circumstances leading to

(^ase 2 were identical with those yielding Bragg's reflections in

the crystal. This is always true if atomic rows are replaced by

atomic planes in the direct lattice.

Another geometrical interpretation Avas given by P. P. EAvald.

^ From point 0 of the reciprocal

RECIPROCAL lattice he draAvs a vector a to

point P. A sphere is draAvn with

radius |a| about the point P at

the end of the vector a. If it

happens that this sphere passes

through or near to a second point

B of the reciprocal lattice, we
obtain a discontinuity in the

frequency as a function of a.

The reason for this is that there is some a'n that just fulfills

Eq. (33.6). There is no way of telling from the motion of the

lattice points which of vectors a and a'n should be preferred.

Since the two vectors have different directions, we must assume
that the motion is given by a superposition of the two waves.

One of these is an incident wave and the other a reflected Avave

(Bragg Avave). There will be two values for the frequency for

this single value of |a| and hence a discontinuity in the v vs. a

curve.

We note that when Bragg reflection occurs, the vector ter-

minates on a plane that is the perpendicular bisector of the line H
joining two lattice points of the reciprocal lattice. This justifies

the rule for constructing zones. We construct planes that are

perpendicular bisectors of lines joining lattice points Avith the

LATTICE

Fig. 33.1.

(33.5)
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origin. The smallest polyhedron bounded by such planes is

the first zone. The area bounded by the first zone and the

second smallest polyhedron is the second zone and similarly for

higher order zones.

34. General Results for a Wave Propagating in a Three-dimen-
sional Periodic Medium

The problem of wave propagation in a continuous medium
with a small periodic perturbation was discussed in Secs. 28 to 30

for two dimensions. The results immediately extend to three

dimensions without any difficulty.

We shall now discuss the general problem of wave propaga-

tion in a periodic medium, without restricting our discussion

to the case of a small periodic perturbation. The following

sections will contain various applications and examples of this

general theory.

The three-dimensional wave equation is

+ = 0 (34.1)

We confine ourselves to waves in a periodic medium, and there-

fore we may assume

y-, = F(r) (34.2)

where F{r) is periodic in the three directions specified by the

lattice vectors di, d 2 ,
and da; f.e..,

F(x) = F(t + nidi + n 2d2 + nada) ni, and na integers

The basis vectors of the reciprocal lattice are bi, b 2, and bai where

(bi dy) == dxj

F(i) may be expanded in a triple Fourier sum.

F = (34.3)

The solution of Fjq. (34.1) may also be expressed as a Fourier

sum.

^ (34.4)

where A is to he 'periodic in r and may be written

A (r) = (34.5)
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The form taken for the f solution in Eq. (34.4) will be justified

by the following discussion. It is generally known as P. Bloch \s

theorem and represents the generalization for three dimensions

of an old theorem dating back to Floquet for the one-dimensional

problem of ]Mathieids equation, which is discussed in the next

chapter. Combining Eq. (34.4) with Eq. (34.5) yields as a

Fourier sum.

^ (34.6)

where

a'mim2w» = a ~ mibi — m2b 2 — msba (34.7)

The last three terms in Eq. (34.7) specify a lattice point in the

reciprocal lattice.

Substitution of the solution (34.6) into the wave equation

gives a relation between co and a. The Laplacian V‘^ of an

arbitrary term of the sum in Eq. (34.6) is

y2^~2Ti(a'mim2f«3-r) ““

and substitution in Eq. (34.1) gives

= ~C0^F(r)^

mi

= D C'„,„,„3e2-*sn.<6.T)
. £ (34.8)

m Pi

replacing a'p,p,p, by its equivalent given in Eq. (34.7). We
introduce new subscripts mi, mi, and m3 in the last form of

Eq. (34.8) as follows:

mi = n{ + Pi (34.9)

Equation (34.8) may now be written in the form

V A In'
|2p-2Ti(®'„,«,«,.r)

^2 / j
»ni7M3»»3l v

mi,

“ 0mi-~pi,mz--~-ii2,mi~pz-^pil>tp3^
27ri(a miwgwj.f) (34. 10)

mi Pi

and equating corresponding terms, we obtain, finally,

p (34.11)
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where m and p stand for each set of three indices mim^niz and

P1P2PB, respectively. This gives an infinite set of linear homoge-

neous equations to be solved simultaneously for the .4’s. This

can be written

2) i
= 0 (34.12)

P

where Sn.p is a Kronecker symbol that is unity when mi = pi,

m« = Pi, and m3 = ps, and zero otherwise. After dividing by

l&'mY' Ibfi equation reads

(34.13)

This set of simultaneous homogeneous equations in the A p’s has

a nontrivial solution only if the infinite determinant is zero.

Cm-p
(34.14)

This means that the l/v'^ are the proper values of the infinite

determinant The structure of the general equation is

better understood if the determinant is explicitly written, with a

one-dimensional problem (one subscript m or p instead of three)

as an example.

V = . . . -2

7n = -2 (7o _ 1 c_,

|a'_2|»

-1 Cl Co

k-c l«'_C

0
c^ Cl

la'ol*

1
c. Co

la'il^

0 1 2

C_2 C_s

|a'_2p lo'-sl’

C_i C_2

k-il* !a'_i|*

Co _ J_
C_i

|<l'ol“ v* la'ol^

Cl Co 1 C_i

lo'il* la'C la'll*

(34.15)
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where one should remember that expansion (34.3) must represent

a real function F, hence the relation

C^n = Cn*

The equation is obviously symmetrical in all \si'm\^i and so are the

solutions

=/(• •

‘ia'.p
• •

•) (34.1())

Some general results are thus provided;

. The frequency p is a periodic function of the a vectors,

with the periods bi, b‘>, and ba of the reciprocal lattice, since

replacing a by any a'm just changes the names of the a vectors

without changing the set of a vectors as a whole. This is also

shown by the fact that the wave itself [Eq. (34.6)] contains all

the a'm vectors in a similar way and offers no possibility of assign-

ing to any one of these vectors special importance.

. Changing a into —a makes a similar change in all vectors,

since

— a'm = —(a — rriihi — m2b2 — m^hz) — —a + mihi +
+ nizhz = (~a)'_M (34.17)

Hence, the same frequency is obtained for two similar waves

propagating in opposite directions.

c. The frequency v depends symmeti'ically upon all vectors

a'm and contains only the absolute value of these vectors, not their

direction. This supports the rule used for the definition of the

boundary of the zones, which was based only on the existence

of certain relations between the lengths of the vectors a'^. The
zone boundaries are obtained for a small periodic perturbation,

as discussed in the next section.

Zone boundary: |a| == |a'm| (34.18)

The definition of the first zone, for instance, is justified in this

way. Among all the dim entering the expansion of the wave
[Eq. (34.6)] we chose the smallest |al as the parameter. This

special vector a is used to specify the wave, but for each a we
obtain an infinite number of waves, with an infinite number of

frequencies that are the roots of the infinite determinant [Eq.

(34.14)].

These infinite determinants will be encountered in the theory

of Mathieu^s equation, which will be discussed in the next
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chapter. The ilathieii problem corresponds to one dimension

when the determinant (34.15) is obtained, and this special case

has been completely computed b}” Hill and Whittaker (see

Sec. 43). It would be very interesting to obtain an extension of

Hilhs results for three dimensions, but this problem has not yet

been discussed.

We shall now examine the problem for the case of a small

periodic perturbation.

35. Waves in a Homogeneous Isotropic Medium with a Small

Periodic Perturbation

The problem of the propagation of waves through a three-

dimensional homogeneous isotropic medium with a small periodic

perturbation does not differ from that for two dimensions

treated in Sec. 28. We assume that 1/F- is almost constant with a

small periodic variation.

r, = ^, + <f (35 . 1 )

To continue the discussion we expand / in Eq. (35.1) as a

Fourier sum.

/ = with Cooo = 0 (35.2)

Then Cnm^ni in the expansion of F(t) — 1/V^ may be written

in the following form:

Cnin^nz

1
^Oni^Orja^Ona + €Cniranz

with Kronecker symbols 8, which mean

(35.3)

C^OOO — rr o finitjp
V 0

and all other

C/nimfiz ” infinitely small

This means that the determinant (34.14) or (34.15) has finite

terms only along the principal diagonal, while all off-diagonal

terms are infinitely small. We want to expand the determinant

in powers of e. The term independent of e is the diagonal term
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which we may write as

1 Cooo _ 1
(35.6)

The next terms in the expansion are in and are obtained by

replacing the terms n and p on the diagonal by the (n • p) and

ip • n) nondiagonal terms. These terms have a minus sign

according to the law of determinants.

n,p m 9̂ n
rriT^p

--•‘'.‘2 n (3W)
n,p m

To make this process clear, let us consider the determinant

(34.15) and Avrite the term n = 0, p = 1.

/ Co iV Co
1V ^ V

V|a'-2? ^VV|a'-i|^ ^V\ Ca'oNa'iiVVIa^f vV'

"

We shall not attempt to compute terms in . . . . Group-

ing terms (35.6) and (35.7) together, we obtain for our determinant

D = 0 =2 0
n,p m

nj^mT^p

\Cn -V
(35.8)

We can now discuss the solution of this equation. The first

approximation is obviously obtained by making the product

(35.6) of the diagonal terms zero, which means that v must be

equal to one of the :

V = (35.9)

This is correct as long as no two values Vn and Vp are too close

together, which means

Case 1:

All Vn 9^ Vp or all |a'np |a'pp (35,10)
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An exception arises when two values and are close enough

to make both terms of equal order of magnitude in one of the

square brackets of expansion (35.8).

Case 2:

Vn ^ Vp or la'pj- (35.11)

When this occurs, we can no longer neglect the terms, and
instead of simply writing

we must take the complete square bracket from Eq. (35.8) and
write

VnW 0 (35.12)

an equation that includes both case 2 of Sec. 28 and the case

discussed in Sec. 30.

In order to see this clearly, let us use the same notation as in

Chap. VI, Secs. 28 and 30, and choose one of our two vectors,

a'n for instance, as vector a. This is always allowed on account

of the equivalence of all vectors a'm. Hence we write, instead of

(35.11),

Vfi — vqj |a n| — |a 712^2 ^ jaj (35.13)

To make the comparison with Sec. 30 easier, let us call ao the

vector for which the relation (35.13) would be exactly satisfied

and take

]ao — B] = jaol, B = tiibi + ?^2b2 + ^sbs (35.14)

Then the case of the approximate condition (35.13) is defined by

a = ao + 17B

a'n = ao — B + 17B
77 small

[
(35.15)

which corresponds to the definitions (30.1) and yields, as in

Eqs. (30.3) and (30.4),

or

lal^ = [aol^ + 277(ao * B) )

la'np laol^ - 27?(ao • B)
J

7/2 = + 2vVoK^o • B)
I

• B) J

(35.16)

(35.17)



140 propagatkkx [(’HAP. VII

With this notation, Eq. (35. 12) can be transcribed as

4: + —,
TV(a„ • B) - 1 1 27} _v 1

5 ^
T o“(ao • B) 5

Po" Vo^
_

- -

i

but Vn^v^ can be replaced by in the last term, which is already

small like

I
- Fo^(ao • By - = 0 (35.18)

Vo Vo

which yields

= A + + l2h(ao B)]S h =
^

(35.19)

This is exactly the same as Eq. (30.13), where we had

CO® = coo® + efci (28.7)

h = ±7„24t2 Vi'o^lcnl® + [2A(ao • B)]^ (30.13)

which means

- vo2 +
47r^

€

Vo^
fcl

and checks with Eq. (35.19).

Thus the general method developed in Sec. 34 checks com-
pletely with the approximation previously discussed in Secs. 28

and 30. Just as in this previous discussion, case 1 is character-

ized by one amplitude coefficient A much larger than all other A
coefficients in expansion (35.6), and the definition that gives

the best connection with the problem of the uniform homogeneous
medium consists in calling .Aooo this specially large coefficient, as

was done in Sec. 28. In case 2, two A coefficients are of the

same order of magnitude, and according to the notation (35.14)

one of them is called .4ooo and the other one Anmtm-
The whole theory #f zone structure was based on the discus-

sion of Secs. 28 and 30 and finds here a more complete and general

foundation.
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36. General Remarks on Waves in a Discontinuous Lattice

We have defined in See. 31 a lattice tvith basis for two dimen-

sions (Fig. 31.8), and the same definition applies for three

dimensions. The whole lattice is based on three vectors di, ds,

and dz as before, and inside each d cell thei'e is a certain number

N of particles, whose positions with respect to the origin of the

cell are

Tlj ^2,
* *

‘
,
Tat

and whose masses are taken as ilfi, il/2 ,
. . . respectively.

If JV' = 1, we obtain the monatomic lattice, mth one particle per

cell, and it is convenient to take r1 = 0 and have this particle at

the origin of the cell. In the general case, an arbitrary particle

k anywhere in the lattice is located at

r — ry + nidi + n 2d2 + nsda (36.1)

where particle k is the jth particle in cell (ni,n 2,ns). A general

scheme for propagation of waves through such a lattice was

given in Sec. 17 for the one-dimensional case. It could be

developed in a similar way for three dimensions. For each

j type of particle in the lattice we could write a wave

i/j = (36.2)

but it is more comvenient to include the exponential

in the complex amplitude Aj and to keep the same i.naginary

exponential in all the j waves.

—7hiki—n2k>>—n^ki)

ki = 2jr(a • di), = 2ir(a • dj)) fcs = 2x(a ds)

as we did in Sec. 27 for two dimensions. The wave motion of

particles j is then described by '

\l/j
= Aj = ^ (36.4)

There will be N constants: Ai, Ai, . . .
,

in general complex

to include the phase of particle j with particle 1.

As in the one-dhnensional case we will have N equations of

motion, and substitution of Eq. (36.4) in the equations of motion

will yield N linear equations in the Ai. Each At is a vector

function and has therefore three components, thus yielding

altogether 3iV linear homogeneous equations to be solved simul-

(36.3)
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taiHH)iisly. As befons we equate tlie deterininant of the coeffi-

cients of the Aj to zero, which yields an eciuation of degree 3

A

in This means that for each

value of a in the first zone of the

reciprocal lattice, there will be

ZN \'alues for the frequency.

This is shown schematically in

Fig. 36.1.

The number of branches for the

function p(a) is thus equal to three

times the number N of particles

K per cell. A continuous periodic

“T T medium may be regarded as the

limit iV 00 . Uncertainty in

the wave vector a is ])est avoided by restricting a to the interior

of the first zone.

37. Some Examples of Zones in Three Dimensions

The face-centered and body-centered cubic lattices w.ere dis-

cussed in Sec. 32 (Fig. 32.2) where it was proved that they are

mutually reciprocal. The face-centered cubic lattice is of special

Fig. 37.1.—Face-centered cubic lattice.

importance since it represents one of the possible structures for

close-packed spheres. The lattice can be described as in Fig.

32.2a, and also as in Fig. 37.1, which obviously represents the

same structure since it is derived from Fig. 32.2a by translation

of parallel to the axis. Looking at this cubic structure

from the direction of the arrow and taking the diagonal OZ
as the vertical axis, we obtain the drawing of Fig. 37.2, which
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represents the same lattice as the hexagonal structure shown in

Fig. 37.3. This is one of the possible structures obtained by

piling up equal spheres pi'ovided that the distance from the

central sphere to its twelve neighbors is the same, and this is the

case for

1
- 2^- 1.633 (37.1 )

where the distance c measured vertically from .4 to .B is slightly

less than the distance BE = -s/3 d = 1.732d. The structure

repeats itself after a vertical distance

• ••• Main Horizontal Plane

• • • Top

© © © Bottom

Fig. 37.2,—Face-centered cubic lattice. Fig. 37.3.
—

^Face-centered cu-

bic lattice.

There is another possible structure for close-packed spheres

shown in Figs. 37.4 and 37.5. It obviously has exactly the

same density as the face-centered cubic lattice. Comparing
Fig. 37.3 with Fig. 37.4, we notice that in Fig. 37.3 the lower

atoms are diagonally opposite to the upper ones. In Fig. 37.4,

on the other hand, the lower atoms lie just below the upper

ones, and the structure repeats itself after a vertical distance c.

This remark shows immediately that the hexagonal lattice of

Figs. 37.4 and 37.5 is not a simple Bravais lattice built on three

vectors di, dg, and ds, but that it represents a lattice with basis

according to the definition given in Sec. 31 (Fig. 31.8).

In the case of lattices containing only one type of particle, the

following criterion can be used to distinguish between a simple
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Bravais lattice and lattices with a basis: Taking a vector Od
from one particle 0 to another -.*1, we construct its negative OA'
(Fig. 37.6). If the lattice is a simple Bravais latticCj there

must l)e an atom at the point A' (as in Figs. 37.2 and 37.3). If

there is no atom at A' (as in Figs. 37.4 and 37.5), the lattice

has a basis. Hence, the face-centered cubic structure, which

packed lattice.

• • • Mam Horizontal Plane

o o o Top and Bottom

Fig. 37,5.—Hexagonal close-packed
• lattice.

Fig. 37. 7.—Hexagonal close-packed
lattice.

looked like a structure with a basis, actually represents a simple

Bravais lattice. The hexagonal close-packed lattice, however,

cannot be represented that way and actually possesses a basis.

The fundamental cell contains two atoms as shown in Fig. 37.7

where AQ represents the basis vector. In this hexagonal lattice

as in the face-centered cubic lattice of Fig. 37.3

= c = 1.633d, BE = 1.732d
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for spherical particles. Both structures can be projected on a

vertical plane passing through DF as shown in Fig. 37.8. In the

reciprocal-lattice discussion of a lattice with a basis, all additional

atoms inside the basis must be ignored, and the discussion refers

only to the three fundamental vectors di, da, and dg. In the

hexagonal structure of Fig. 37.7, for instance, we ignore the Q
points on the level look only for lattice planes running

through the points on levels 0 or c. In a horizontal projection,

1.732 d

1.633 d

1.732 d

'e

"

*Q

1 1

H
^

ill
3 3 3

ib)

HEXAGONAL
Fig. 37.8.

the hexagonal structure is the same as in Fig. 31.2 for two

dimensions and the reciprocal is ^another hexagonal structure

with the side

6 =
2

y/Zd
(37.2)

as drawn in Fig. 31.3. Looking at the vertical projection in

Fig. 37.86, we obtain the fundamental cell represented by ABEH
with dimensions

AB (37.3)
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This gives us the reciprocal lattice shown in Fig. 37.9, a flat

hexagonal structure whose vertical projection is also given.

Let us now discuss the zone structures. Starting with a cubic

lattice

j

we obtain the zones represented in Fig. 37.10, where the

first four surfaces have been drawn and the reduction to the first

cubic zone is indicated on the right with the three-dimensional

mosaics obtained by translations parallel to the side of the cube.

A face-centered cubic lattice has a body-centered cubic lattice

as its reciprocal. The first zone is shown in Fig. 37.11 and has

the same shape as the fourth zone of the cubic lattice. The
fundamental cell of the direct lattice has a volume (four

Fig. 37.11.—Face-centered cubic Fig. 37.12.—Body-centered cubic
lattice, first zone. lattice, first zone.

points per cube)
;
hence the first zone and each fundamental cell

of the reciprocal lattice have a volume of 4/d®.

A body-centered cubic lattice has a face-centered cubic lattice

as its reciprocal. The first zone is shown in Fig. 37.12 and is

similar to the second zone of the cubic lattice. The volumes

are for the direct lattice and 2/d® for the reciprocal lattice

and the first zone. The second zone is similar to Fig. 37.11.

A hexagonal lattice with arbitrary d and c has a hexagonal

reciprocal with 2/a/S d and 1/c as shown in Fig. 37.9. The first

zone is a hexagonal cell looking exactly like Fig. 37.9. First

and second zones are shown in Fig, 37.13.

Let us now consider the transition from a continuous medium
to a discontinuous lattice. Starting from a homogeneous
isotropic continuum and a certain typ)e of wave (longitudinal

elastic waves, for instance), we first introduce a slight periodic
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perturbation with the face-(‘entered cubic distribution. This

introduces disc’-ontinuities in the v(b) relation on all plane surfaces

corresponding to zone boundaries. Instead of letting a run from

0 to oc
,
we may reduce all vectors a inside the first zone, since

each higher zone possesses sections that give a continuous p(a)

branch inside the first zone, and finally we obtain an infinite

set of successive branches inside the first zone. This is the

three-dimensional equivalent of the process described by Fig.

17.2 for one dimension. Increasing the periodic perturbation,

we finally reduce the structure to the discrete atoms located

at the points of the face-centered lattice. In this process all

the upper branches of the p(a) curves rise to infinity and dis-

appear. The only remaining branch is the lower one, and

Fig. 37.13.—Hexagonal lattice, first and second zone.

Fig. 17.2 reduces to Fig. 2.46. A very similar process of trans-

formation was discussed at the beginning of Sec. 16.

Let us now follow the same procedure with a hexagonal close

packing. The periodicity is hexagonal, but there are two atoms
in each cell. The transformation will leave us with two branches

in the first zone instead of one. The final p(a) will be similar

to the double curve or the one-dimensional NaCl lattice (Fig.

16.1), instead of the single curve of Fig. 2.46. In Sec. 16 we
discussed the transition from the case of two different masses

Ml 9^ to two equal masses Mi = M^, and Fig. 16.1 explained

the transformation. A similar discussion could be applied to the

transformation indicated in Fig. 37.14 and obtained by straight-

ening the vertical atomic line, thus going from the close-packed

hexagonal lattice of height c to the simple Bravais hexagonal

lattice of height }ic. The fundamental cell of the latter has a
volume one-half that of the originaL Its first zone has a double
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\'olurae, being twice as high as the original one of Fig. 37. 13. In

this first zone we should find just one j^(a) branch, but as soon

as the perturbation corresponding to the zigzag the vertical

lines is introduced, this zone Is cut in two, and the single branch

splits into two branches in the new first zone. The procedure^

((f)
( 6)

Fig. 37 . 14 .

along the z axis is exactly the same as in BornV discussion of the

NaCl reduction.

38. Zones in the Direct Lattice; Principle cf the Wigner-Seitz

Method

Let us return to the problem of wave propagation in a periodic

medium for three dimensions, as discussed in Sec. 34. We found

that the general solution could be written as in Eq. (34.4).

(34.4)

with an amplitude A(r) that is a periodic function in the direct

lattice. This offers the possibility of defining the function A (r)

inside a single d cell or inside a closed surface containing a volume

equal to that of an elementary d cell.

This is the basis of the Wigner-Seitz method of treating the

theory of solids that we shall discuss briefly in this section. To
do this, we break the vector r of a point in the cell inin2nz)

into a number of terms.

r = To 4“ ri + ^idi + ^ 2d2 + uzd^ (38.1)

To is the vector for some point in the first cell relative to the

origin of the cell, ^idi + nAz + n^dz the vector for the origin

of the cell (niu^nz) relative to the origin of the lattice, and r'

the coordinate of the point under consideration relative to the

point ro in the cell (nin%nz)- ri is to be restricted to values inside
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a single cell or an etiuivalenl surface. This is illustrated in

Tig. 38.1.

Now we must rewrite the solution (34.4) in terms of r'. First,

we note that (a • r) becomes

(a • r) = (a ‘ ro) + (a • r') + «i(a * di) + * do)

+ n^iei • dz) (38.2)

We set

27r(a • dr) == h (38.3)

Then

4L(r) = .4 (ro + r') = (33.4)

and we regard A"{r') as defined in the first cell only. Substi-

tuting the expression ..4(r) into Eq. (34.4), we obtain

^ (38.5)

This is the wave function inside the cell (nin^ns). The ampli-

tude A'' is defined inside the first cell and is independent of

One may notice immediately

that Eq. (38.5) is the translation

for a continuous medium of the

type of definitions recommended
in Sec. 36 for a discontinuous

structure. The choice of the first

cell is, of course, arbitrary since

the choice of the basis vectors

in the direct lattice is arbitrary. Wigner and Seitz choose their

elementary cell in a manner similar to that in which zones are

constructed for the reciprocal lattice, viz., by constructing a

polyhedron about a lattice point. The faces of the polyhedron

are planes that are perpendicular bisectors of the lines joining

the point taken as the origin with neighboring lattice points.

This is shown schematically in Fig. 38.2 for a two-dimensional

lattice.

Some conditions are required to insure continuity of the

function throughout the lattice and to prevent any discontinuity

across the border of the zone in the direct lattice. Let r' be a

point on the boundary; the vector r defining the analogous point

in the next cell (Fig. 38.2) is then

r = T + nidi + n%d% +

Fig. 38 . 1 .

(38.6)
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This results from the definition of the zones in the direct lattice,

and 7^2; and nz are small integers such as 0 or ±1 if the first

zone is being used. We must obtain a continuity condition for

^ and its normal derivative at r'. The condition

*4"(r') = (38.7)

ensures the continuity of the wave function A similar condi-

tion holds for the normal derivative. For very long wave length,

hi, hi, and kz are small, as ai^e 7ii, and Uz, and one may approxi-

mately state

A"(r') = A"(r) (38.8)

along the boundary.

This is a first approximation, but it is generally necessary to

use a second simplifying assumption, since the polyhedron

limiting the Wigner-Seitz zone offers considerable difficulty as a

boundary. The simplification used is to replace the polyhedron

by a sphere of equal inside volume and radius R, The corre-

sponding points r' and r are replaced by diametrically opposite

points ±r'.

A"(rO = A"(-r')
]

aA" _ . (38.9)

dR )

This can give only a first approximation for long wave lengths,

and the discussion of corrections for small wave lengths offers

serious difficulties.

39. Frequency Distribution for Waves in an Actual Crystal

The general discussion of the preceding sections leads to very

important results, which play a prominent role in a number of
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problems in theoretic^al physics. We do not intend, to discuss all

these problems, but we shall select the oldest one as the most

typical; the theory of specific heat of solid bodies. Let us first

summarize our main results:

For any kind of waves (elastic, electromagnetic, or wave

mechanical De Broglie waves) propagating in a medium vith

periodic structure, discontinuities are found in the relation

between the frequency v and the wave vector a (a vector of

length lal = 1/X and pointing in the direction of propagation).

These discontinuities are obtained whenever the vector a ter-

minates on a plane that is a perpendicular bisector of one of the

vectors of the reciprocal lattice. These planes play the same

role for all waves, whatever their particular nature may be.

For instance, in electromagnetic waves the discontinuities in

v{a.) are directly responsible for the selective reflection of X rays

(Bragg-Laue spots). This general property is the reason for

choosing these special planes as limits of the zones defined in the

preceding section, and the zone structure in a given crystal lattice

is the same for all waves.

Elastic vibrations, for instance, are propagated through a

crystal lattice as elastic waves. Their properties result from the

discussions of Chaps. II, III, and IV and their generalizations in

three dimensions. Assuming N atoms per lattice cell (lattice

with basis), the best representation of the waves is obtained by

restricting the a vector to the first zone. Each a vector yields

3N different wave motions, of which three are of the acoustic

type and 3(iV’ — 1) of the optical type, as Fig. 36.1 shows

schematically for the case N — 3. The three acoustic waves

correspond to the well-known waves in an isotropic solid: one

longitudinal and two transverse vibrations. In an ideal con-

tinuous anisotropic medium three vibrations at right angles are

obtained, none of which is exactly longitudinal or transverse.

In the crystal lattice with discontinuous structure, there -are

still three different acoustic waves for each a vector, but their

properties are much* more complicated than for a continuous

medium. We may, for the sake of visualization, call the waves

longitudinal (1) and transverse (^i,<2), but these names do not

correspond exactly to the properties of waves in a lattice structure.

The hexagonal lattice, although it contains only one type of

atom, is a lattice with basis and yields three acoustic branches
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and three branches of higher frequency, which may be called

optical. A real monatomic crystal lattice (such as the face- or

body-centered cubic structure) is one mthout basis and contains

only one atom per cell. It yields only three acoustic branches

and no optical branches.

The volume of the first zone equals the volume F& of the

fundamental cell in the reciprocal lattice, and

n = A (39.1)

where Va is the volume of the cell in the direct lattice.

All this refers to an infinite crystal lattice. Now what can

be said about a finite piece of crystal of volume F, containing,

for instance, one gram molecule and a total of 91 atoms?

91 = 6.06 X 10^^ Avogadro^s number (39.2)

The vibrations of such a bounded crystal lattice depend upon the

properties of the infinite lattice and upon the boundary conditions.

These conditions are usually very troublesome in all problems of

elasticity. Even in the case of an isotropic continuum, boundary

conditions generally result in mixing all the wave types. A lon-

gitudinal wave, for instance, falling upon a plane boundary

gives a reflected longitudinal wave but also excites a transverse

reflected wave. For an ideal isotropic continuum, there is a

boundary condition that avoids these complications—a perfect,

smooth, and rigid boundary—but it does not work for crystal

lattices. M. Bom invented for that purpose a very ingenious type

of condition which he characterizes as cyclic condition. He
takes an infinite unbounded medium through which plane waves

can propagate freely and selects inside this infinite medium a

finite volume F, which is a rectangular parallelepiped.

0 SLi, 0 ^y 0 ^ z ^ Ls,

F = LiLJL, (39.3)

The condition for the waves is to take the same value at a point

{x,yjz) and at points (x + niLi), (y + n%L%)j and (z + nJLz)

where ni, n2 ,
and ns are any arbitrary integers.

^l/{x + niLuy + n%L%,z + nJLz) = ^{x,y,z) (39.4)

Since

yp = ni7hin% integer (39.5)
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this requires that

nil
j

m 2 ...

a = 7—7 b = y-j c = j- rnim^mB integer (39.6)
Jjl jL2 Ez

X characteristic frequency of the crystal will be excited \vhen-

ever the w^ave vector terminates on a point with components

given by Eq. (39.6). The number of such points per unit

volume of the reciprocal lattice is LJLJLz (since the points are

spaced at intervals l/Li, I/L 2 ,
and I/L 3 along the x, y, and z

axes, respectively).

The number 91 of atoms contained in the volume V is stu-

pendous [Eq. (39.2)], and Li, is, and Lz are very large, compared

with the dimensions di, and da of the elementary lattice cell.

This means that the density of the vibration points given by
Eq.. (39.6) is extremely high. Even if w^e take a very small

volume element dr in the ahc space, w'e may obtain the average

number of points inside dr by just taking

du = LiLJLz dr = V dr

Let us, for instance, consider a certain direction of propagation

and a small cone of aperture dQ. around this average direction.

The number of a vectors that terminate inside this cone between

the distances r and r + dr is

dn = LiLJjzrHr dVt = Fr^drdO

1 !

1r-W-j
Hence

where W is the phase velocity for one special type of wave.
A-ccording to the definitions given in Sec. 21

,
the group velocity U

is defined by

F = T^;
|a|

1! 1 d
(
v\

U~ dv \w)1
(39.9)

and we finally obtain

dn — F do
vHv
W^U (39.10)

In a crystal lattice the difficulty is that phase and group velocities

(39.7)

(39.8)
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depend upon both v and the orientation of the cone. In an

ideal isotropic body this last dependence disappears, and one

may immediately integrate about all orientations, thus replacing

dQ by 47r.

v^dv
dn = 4^7 isotropic in all directions (39.11)

There is, however, a general result that can be deduced directly

from Eq. (39.7): For each type of elastic warn, the total number

of vibrations (with cyclic conditions) is exactly equal to the number

91 of atoms in the volume F. This is easily seen, since the total

number of vibrations of a certain type is obtained by integrating

Eq. (39.7) over the whole first zone, the volume of which is Fa.

T^dr dQ = Fi )

f y (39.12)

n = /dn=FF6 = t^“2il\

according to Eq. (39.1). This is a very important and general

result of the zone theory.

How can this general scheme be

simplified to be applied to the prob-

lem of an ideal isotropic solid bodyf

The word ^^IdeaT' is necessary to

remind us of the somewhat artificial

character of the assumptions: ac-

tual so-called isotropic solids are only

mixtures of tiny crystals oriented

at random. Our ideal isotropic

solid will represent a sort of average of crystal properties for the

purpose of simplification. Two assumptions will be made:

. We assume that the curves of Fig. 36.1 are replaced by

straight lines, as sho^vn in Fig. 39.1. This means that the upper

optical branches are supposed to correspond to single frequencies

(instead of the actual frequency bands of finite width) and that

for the acoustic branches we assume a constant phase velocity

17 = r; = const. (39.13)

. We simplify the shape of the first zone and replace it by a

sphere. But here we must not forget the general results empha-

sized at the beginning of this section, and we assume the same

Fia. 39.1.
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spherical first zone for all waves (whether electromagnetic or

longitudinal and tranisver.se acoustical waves). Let the sphere

have a radius R. Then the volume is

= 7, = = I (39.14)

where Vd is the volume of the cell in the direct lattice and 91 the

number of atoms in a total volume V. Accordingly, we main-

tain the validity of Eq. (39.12) as necessary.

In order to comply with the requirements of the general

theory we see that we have to introduce the same R for all

types of waves, hence the same limit for the wave length.

J? = lalmax = cutoff wave length
)

J

(39.15)

common to all waves
|

which means different cutoff frequencies for different waves.

We may speak now of longitudinal waves (phase velocity PFz)

and transverse waves (phase velocity TF<), and we obtain the

maximum frequencies

(sT- (sr
These assumptions are very close to the ones introduced by

Debye in his famous theory of specific heats, but not quite the

same. At the time of Debye^s original paper, the theory of zones

was not known, although some of the main results had already

been obtained by Bom. Hence, Debye did not realize the

necessity of taking the same minimum wave length (and differ-

ent cutoff frequencies) for the different waves. He found it

easier to assume the same cutoff frequency and different cutoff

wave lengths and stated the condition

is Debye^s single cutoff frequency. His reasoning was as

follows: Starting from Eq. (39.11) and taking

Wi = Ui — const.

Wt = Ut = const.
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he first computed the total number of vibrations in the fre-

quency interval (v^v + dv) for all waves (one longitudinal and

two transverse) and wrote

dfii + 2dnt = -LttVpMv (39.18)

Then he integrated from v == 0 io vd and assumed that the

total number of vibrations was 391. Hence

391 = (.L + (39.19)

which is the same as Eq. (39.17). The weak point in Debye’s

argument is that this oversimplification does not satisfy the

necessary condition (39.12). We must always have 91 longi-

tudinal and 291 transverse vibrations. With Debye’s assump-

tion the distribution between longitudinal and transverse modes

is modified; only the total number is maintained by 391.

Figure 39.2 shows Debye’s distribution function, while Fig.

39.3 shows ours. In Fig. 39.3 the two curves are to be added

(the sum is given by the heavy curve) to obtain the actual distribu-

tion. Figure 39.4 shows the curves that would be obtained for

an anisotropic medium. The sharp points on our curves are
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due to the assuniption of a spherical fii'st zone. A l)etter approxi-

mation yields a curve of the type shown in Fig. 39.5.

40. The Energy of a Solid; the Characteristic Temperatures

We regard the solid as made up of 331 harmonic oscillatom.

The energy of a harmonic oscillator vibrating with frequency v

is, according to Planck (quantum theory),

+ I

where k is Boltzmann\s constant, h is Planck^s constant, and T
is the absolute temperature. The constant did not appear

in the original Planck treatment, but quantum mechanical

considerations indicate that this, and not zero, is the correct

energy at T = 0. Each longitudinal or transverae vibration of

frequency v receives an amount of energy Uj,^ and the total

energy of the ideal solid at temperature T is

Ut = D j (40.2)

The upper limit of integration is the cutoff frequency for the

corresponding type of wave.

These frequencies can be used to define characteristic tempera-

tures. A first definition Qd is the one of Debye and is based

upon his single frequency limit vd.

kQo = hpi, or ^ 00.3)

Our theory will evidently yield two characteristic temperatures,

since the cutoff frequencies are different for longitudinal and

transverse waves [Eq. (39,16)],

„ _kPi hWi/S^Y
" k \47r7/

a -hjn -
k k

If we denote the type of wave by the subscript m, the total

energy at temperature T is, according to Eqs, (39.11), (40.1),

and (40.2),

(40.4)
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m = l\U4i.

-gTvAF—l (^0-5)

We make the following change of variables:

^ ^ tn

kT " T
and Eq. (40.5) becomes

V iiK4 wj
1

,

1

c5 - 1 2
(40.6)

This integration must be performed by approximate methods

for most cases. We define the Debye function

D(x) = ^ wn + 5i>J„ lei - 1 ' 2
(40. 1 )

Now the coefficient of the integi-al in Eq. (40.6) is given by

irV (kTY
WJ (40.8)

and, if we multiply by ^mV3, we can replace the integral by the

Debye function. Then

iirVikTy^J^ 47r7 {kTyhHJ^

wy 3 3WJ k^T^

“ 3 UtV = %kT = RT

Thus we may write Eq. (40.6) in the form

and, if the two transverse waves are alike, this becomes

Ut - RTp
The Debye treatment gives

^)+2d(|);

Ut = ZRTD

(40.9)

(40.10)
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In general, E(|. (40,9) is more reliable than Eq. (40.10). How-
ever, the two characteristic temperatures 0^ and ©^ are often

both fairly close to B/^ and for very high or very low temperatures

the two theories agree.

For very high temperatures, classical thermodynamics holds

with equipartition of energy, as can be seen from Eq. (40.1).

“ - + §
s)- (j+TJjl+T-, + 5

i)

+ = (40.11)

Each of the oscillators has an energy kT, Both theories have

been formulated in such a way as to yield the correct number
391 for the total number of degrees of freedom; hence we obtain

a total energy 3^kT or 3RT in both cases. This may also be

seen from Eq. (40.7), since for very high temperatures Debye^s

function approaches one and both theories yield the result

Ut -=3RT (40.12)

which is just the law of Dulong and Petit. For temperatures

so small that

T << Be, Bn, Bt

holds, 0w/T is very large, and the upper limit in the integral of

Eq. (40.5) may be replaced by oo . Physically this means that

only the low frequencies are excited and the number and value

of the higher frequencies is unimportant. The Debye function

becomes *

Jim CW - UmJ + i)m

The last integral is a constant that is found equal to ttVIS.

RT^^ + ZRT

8
R (0! + 200 + RT (40.14)
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The first term is a constant and will not enter into the applica-

tions to specific heats, etc., since these involve derivatives of Vt.

Debye’s solution for Ut is

where C is a constant, and so the two theories agree for low

temperatures, on a(*coimt of the relation

, _2 ^ L^
Qt^ Bd^

(40.1 ())

which is easily obtained from Eqs. (40.3), (40.4), and (39.17).

41. Thermal Expansion and Entropy cf a Solid Body

We close our treatment of solids with a discussion of the

entropy. To do this, we must take account of the radiation

pressure due to elastic waves. The radiation pressure is due to

deviations from Hooke’s law and has been computed by Rayleigh

and L. Brillouin:

V \3 Wm dV )
(41.1)

where I ' m denotes the total energy of the waves of type ni. For

electromagnetic radiation in vacuum,

Vm =
3 V

since in this case there is no

also be written in the form

dW^
~dV

term.

since from Eq. (40.4)

Urn dBm

Bm dV

Equation (41.1) may

(41.2)

d log 0,^ ^ 1 dBm
dV BmdV

d

dV (
log log

47r7\

391 /

J_ai7„
17™ dT

1

3F

F ae™ _ 1 F aiF™

aF 3 IF™ dV

or



WAVE 1‘ROPAGATIOXKiS [Chap. \'1I

The external pressure must balance the internal pressure.

The latter is given by the sum of the pressure due to the inter-

actions of the molecules of the crystal and the radiation pressure.

P = RV) +Zpn. (41.3)

m

If the external pressure is zero, then

KV) =

and we may think of the radiation pressure as doing work against

the cohesive forces of the molecules during an expansion due to

rise in temperature.

The total energy of the solid is

r = FiV) + Ui+ + Uh
where

FiV) - -J/(F)d7

During a small expansion the work done is

dtr = p = /dF - J
m

m

(41.4)

(41.5)

where Um is assumed to be given by Eq. (40.9). The change

in energy is given by

dC = + ft'dl’ - -SdV + 5) + 2)
’>EpdT

m tn

-fdV + R^ [z)' ^dV +DdT - ^ D' dT

Now' the heat change wall be

dQ = dU + dW

and the change in entropy

(41.6)

dS
dQ _dU + dW
T T (41.7)
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Substituting Eqs. (.41.5) and (41.6) into Eq. (41.7) gives

169

R
T

DdT D^ + D
dm

,, [ 3fln

Vaf
m

m

on replacing by rf©m. If 've let Xm = Qm/T

e
^tlT

and

^ = r(d' -
-.f-)

(41.8)
dX m \ Am/

We can write this as an explicit function of Xm by using Eci.

(40.7) m ^3
8D{Xm) “ Y * /nffi JO

in Eq. (41.8), which then becomes

.v»

0 ^ + 1 Xm

dS
dXr ^ \ XJ' Jo - 1 e^™ — 1 Xm* jo — V

3R
gXm — 1

12E

X,* ef - 1

(41.9)

It is interesting to note that Eq. (41.9) agrees with the quan-

tum mechanical result for the entropy of our system of harmonic

oscillators. The quantum theory offers a possibility for a direct

statistical computation of entropy. A distribution of n quanta

hv (total energy nhv) among g resonators is found to have an

entropy

S = kg ;(i+!)iog(.1 + - - - log
9

n

9
(41.10)

The most probable distribution corresponds to Planck s formula

for the average energy per resonator.

nhv hv
t —~

~g
e*"'*”' — 1

^ kT
(41.11)

n
ef

1 + - = -j
g

Hence
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On the other hand, we have obtained an expression (39.11) for the

niiml>er of resonators of frequeiKw p(dp). Using this value for g,

g == V (41.12)

and integrating on v from 0 to the limit Pm, we obtain the total

entropy of the solid.

The method followed for entropy is exactly the same as the one

used for energy, in Eqs. (40.2) to (40.9). Some regrouping of

terms and elementary transformations finally yields

=S /o'”
~

We may integrate by parts to eliminate the logarithmic term.

- log (e« — log (e^™ - 1)

m

Differentiation with respect to Xm yields

dS _ Re^" 12K
f^"- 1 XJ Jo e( - 1

SiSe^" 12R P'“
- 1 Jo ei~ 1

gXm _ 1

(41.16)

This is easily seen to check with Eq. (41.9) by the following

transfonnation

:

dX„ m
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The (+1) term in the second bracket yields, after integration,

_
V 1 j.Am ,“±0

which cancels the (+1) term in the first bracket and yields

Eq. (41.9).

Thus the whole theory is proved to be entirely consistent.

Debye^s theory with its single characteristic temperature doe^s not

work, since it is not consistent with Eq. (41.2) for internal

pressure.

Further details on the theory of solids and the direct compu-

tation of Eq. (41.1) for the radiation pressure can be found in

the author^s book, “Les Tenseurs en mecanique et en elasticite.^^^

This short summary of the problem was intended to emphasize

the connection of this problem with the theory of zones, as

explained in Secs. 39 and 40, and to show the necessity of a

correction to the original Debye theory involving the use of tw’o

characteristic temperatures, as pointed out by Born in his dis-

cussion of the theory of solids.
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CHAPTER Till

MATHIEU^S-EQUATION AND RELATED PROBLEMS

42. Mathieu’s Equation

The problem of the propagation of waves in a periodic con-

tinuous medium was discussed in Sec. 34, and there some general

results were obtained on the type of the solution and its proper-

ties. Few examples of such problems have been completely

discussed. Some of the best known relate to the one-dimensional

problem. The general equation given in Eq. (34.1) reduces to

gf + .
0
I

J)

Mathieu^s equation is obtained when the periodic function F (of

period d in x) contains only one cosine term and the expansion

(34.3) can be written

F(x) = Co + = Co + 2Ci cos^ (42.2)

So far we have discussed equations of this type in detail only

for very small Ci (corresponding to a very small perturbation)

when we assumed from Eqs. (35.1) and (35.3)

F = Cq + ef € very small

Now we wish to discuss the solutions for any arbitrary value of

both Co and Ci. We may use the following notation to reduce

the equation to standard type: We introduce a new variable

ttZ
(42.3)

which has period tt instead of d, and we obtain

+ + 7 cos 20m = 0

oo^~.Co = 7 = SvWCi
(42.4)

172
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This equation was first obtained by iMathieu in connection with

the problem of vibrations of an elliptic membrane, and this is the

reason for the choice of x as the period. The same equation is

found for the oscillations of an elliptic lake, for the tides in an

elliptic sea, and, in general, in all problems concerning waves or

vibrations with an elliptic boundary, such as propagation of

acoustic or electromagnetic waves along a pipe of elliptic cross

section. We shall indicate in a later section some other interest-

ing problems of physics and engineering where Mathieu’s equa-

tion plays a major role."

Floquet discovered that the general solution of the equation

could be WTitten

u = DiA 4- D>A ( - (42.5)

with an amplitude T(Q that is a periodic function of f with

period x. This solution is thus a superposition of two waves

propagated (or attenuated) in opposite directions. This is

clearly seen if we retain the factor and WTite the original rf'

function of Eq. (42.1). Di and D 2 are arbitrary constants. If

we keep only one of these waves, we obtain

u = A(0e'‘^ A(^) has period x. (42.6)

This corresponds exactly to our general solution (34.4).

In our previous discussion we assumed that we had to deal

with actual waves, and we therefore took

Jc Jcx

^ = i = i— i27rax

and determined afterwards the corresponding co value and the

frequency. Here the discussion is conducted in the opposite

way. The frequency has been chosen as primary data, and the

problem is to obtain ju? which may be

ju = ip pure imaginary, unattenuated sine waves
) 7 n

=: a + ip complex or real, attenuated motion
|

Both r) and y are proportional to [from Eq. (42.4)], and hence

increasing frequency means increasing rj and 7 . Their ratio is

constant. The diagram in Fig. 42.1 summarizes the results.

1 Different authors writing on Mathieu functions use widely different

notations: this text, 17
, 7 ;

Mathieu, R, ±2h^; Strutt, X, 2h^; Strutt and

van der Pol, 4<o^ Whittaker and Humbert, a, I6q.
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The coordinates are 7/ and 7* The plain white regions correspond

to (7?,7) values for which ^ is complex or real and attenuation

occurs. The shaded regions are those for which /i is pure imagi-

nary and yields imatteniiated waves. In the language of the

engineers, blank regions mean absorption or stopping bands and

shaded regions mean passing bands.

The two lines 7? = 7 and 7/
== -7 are drawn as guides. All the

passing bands become straight lines parallel to 7;
= —7 at

Fig. 42.1.

infinity. These lines intersect a line parallel to the 77 axis at the

point given by

77 == —
-y “b (271 “hi) '\/27 (42.8)

if the line is drawn sufficiently far above the 77 axis. Evidently,

then, they also become parallel to one another at infinity.

There is no propagation for any value of 77 < —7. We can

make the following statements about the character of the waves

:

1. 77 < -7,

2. —7 < 77 < 7

3 . 77 > 7

fjL complex or real, absorption \

jLt real or complex, broad \

absorption bands I

/X pure imaginary, narrow f

transmission bands \

M real or complex, narrow (

absorption bands I

/X pure imaginary, broad trans-
|

mission bands /

(42 ,9)
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The boundary between blank and shaded regions is the curve

R.P. ju = 0 (R.P. means ^^real part of.”) (42.10)

The rj axis corresponds to 7 = 0 and hence to a continuous uni-

form medium with no periodic structure whatever. The entire

positive part of the rj axis lies inside the shaded region, since our

definitions in Eq. (42.4) mean, in case of propagation,

Co = ^ > 0 (42.11)

A small perturbation is obtained when y << Vf “t^he

immediate neighborhood of the r} axis. The boundary curves

(42.10) leave the rj axis at the points

7}
= n = integer (42.12)

and have contacts of order (n — 1) at these points:

n = 1, two curves crossing each other

n = 2, two curves with a common vertical tangent

n = Z, a common vertical tangent and the same curvature, etc.

These curves were very carefully computed by Mathieu himself

and checked by later computations.

43. Mathieu Functions : General Discussion

The general solution, according to Floquet, was written in

Eq. (42.5), and in this discussion emphasis can be laid either upon

the imaginary exponentials [free waves as in Eq. (42.6)] or upon

the real combinations that correspond to standing waves. This

latter type of solution is the one mostly used by mathematicians

who have computed the numerical solutions of Mathieu^s equa-

tion. They start from the solution obtained along the tj axis

(7 = 0, no periodic perturbation), which they write

cos m^, sin ^to = im = i (43.1)

In this case, A(^) is a constant, and the correspondence with

Eq. (42.5) is contained in the well-known relations

cos mi = Di = D2 =

sin mi = ^ Di = —D2 ==

For 7 7^ 0, Mathieu functions have been defined:

Ce^{y,i) and Se,n{y,i) (43.2)
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They are known as expansions in powers of y, starting with either

cos or sin as the independent term. Each of these

functions corresponds to the same value of m, hence to the same ju.

M = im = fiv.j), 7-^0, m \/?7 (43.3)

Lines of given m (or m) run through the shaded areas of Fig. 42.1,

as schematically shown in Fig. 43.1. On each line, two functions

Gem and Sem may be computed, except on the boundaries of the

shaded area. On these boundaries only one of the two functions

is obtained, as shown in Fig. 43.1. The boundaries correspond

to integral values for m according to Eqs. (42.12) and (43.1)

and start from the point rj = =
1, 4, 9, 16, . . . on the r)

axis. Two m curves start from each of these points: one curve

yields the function Sem^ and the other curve corresponds to Ccw
On each curve there is an additional aperiodic solution.

From these diagrams we can see how to obtain information

about waves propagating through a periodic medium. The
medium is defined by two constant coefficients Co and Ci, and
Eq. (42.4) yields tj and y each proportional to with a fixed

ratio
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1 = £.t

7 2Ci
(43.4)

This means a straight line running from the origin as shown in Fig.

43.1. The line cuts the successive curves corresponding to differ-

ent m values. The shaded area of Fig. 42.1 gives passing bands,

and the blank areas give stopping bands. The correspondence

with our former notation results from Eqs. (42.6) and (43.3).

ijLt = = —m (43.5)
T

Hence H-mx plays the same role as our former k. The type of

the resulting (j^,m) curve is shown in Fig. 43.2. Here, again,

instead of choosing k (or m) values that insure continuity with

the unperturbed uniform medium (t = 0), we may select each

time the smallest \k\ and reduce all curves inside the first zone

“TT ^ fc ^ TT. The important point is that increased perturba-

tion (increased Ci) does not modify the position of the discon-

tinuities but orAy increases the magnitude of the discontinuities.

The general theory of Mathieu's equation is very thoroughly

discussed in Whittaker and Watson^s Modem Analysis,”^

which contains some important results concerning the infinite

determinants that we obtained in Sec. 34 in the preceding chap-

1 Chap. IX, Sec. 19.41.



178 WAVE PROPAGATION [Chap. VIII

ter. Whittaker considers Hill’s equation, which is a generaliza-

tion of Mathieu’s and which he writes as

= 0 (43.6)

where J is a periodic function (period x) of x. This is our general

equation of Chap. VII, reduced to one dimension. The cor-

respondence of notations is as follows:

Brilloiiin: d ^ ~ ^
\

Whittaker and 1 , . r \

Watson: x /

and Eq. (43.6) reduces to our former Eq. (42.1).

The discussion of Secs. 34 and 35 centered on the determinant

given in Eqs. (34.14) and (34.15).

^ ~ “ {a^-mhy
(43.8)

which according to Eq. (43.7) corresponds to the determinant

with the elements

A i_ r
2my (43.9)

Whittaker and Watson assume that the Bn series is absolutely

convergent and compute another determinant

Aiiifx) = \Bn

Bfnp ~ '

Bjnm ~ 1

(2m — ^V)2 — Bq
m 9^ p) (43.10)

These elements can be represented by the general formula

P Bnh—’p “h “^m)^ ^ 2 * (2m ^m)^

- +l2m“^ i^)' (^Co - (2m -W
(43.11)

which gives the correspondence with our former notation. The
determinant Ai of Whittaker and Watson is shown to be equal to

== I + if cot” (in + V^) “ \/^) (43.12)
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where the constant K can ])e obtained by computing Ai(0).

179

Ai(i}i) = I — K sin TT

sin
I

{in + \/%) sin
|

(i/i — s/dn)

Ai(0) = 1 + 22?: cot
I
y/%,

K = Ai(0) - 1 _ Ai(0) - 1

2 cot
^

tan “

Hence

sin*
I

Aj{in) = 1 - [Ai(0) - 1]
— ^

sin
I

{in + \/%) sin
|

{in — y/fo)

(43.13)

This enables one to write the fundamental equation stating that

the determinant is zero.

sin
^

{in+ V^) sin
| {in — V^) = [Ai(0) — 1] sin*| (43.14)

or

- cos* in^ + cos* V00^
= [Ai(0) - 1] sin*

|
\/Ta

Hence

sin* in^ = Ai(0) sin*
^
y/do (43.15)

which is Whittaker’s result, except that he introduces another

determinant A{in) that is equal to Ai(0) for /x = 0-

These relations are very interesting since they apply to Hill’s

general equation and not only to the Mathieu problem. An
attempt to find an extension of these results for the three-

dimensional problem of Sec. 34 would, if successful, be very

important.

From our former notation, according to Eq. (43.7), Whittaker’s

equation (43.15) becomes

sin* (5r*a) = Ai(0) sin*
^
w y/Cl = Ai(0) sin* (43.16)
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and yields the general relation between w^ave number a and fre-

quency V for a one-dimensional lattice of period d — t in x. The
fact that V appears as a periodic function of period 1/d = 1/xin

a is obvious, as are the discontinuities in the v{a) relation when

Ai(0) > 1. The similarity of this equation with those obtained

in Chap. Ill is also very striking.

44. Hill’s Equation with a Rectangular Curve

As already stated, HilPs equation is obtained when the cosine

term in Mathieu’s equation is

replaced by an arbitrary periodic

function of x. Let us write it as

dhi

dx^
+ h + yf(x)]u = 0 (44.1)

Strutt has shown that some gen-

eral results about this equation

can be obtained. Assuming the integral of / over a period to b (3

zero so as to make

7 = 0

and calling /k and —fm the maximum and minimum values of /,

respectively, it is possible to show that the r}y plane is again

1 - 1

1—i J—1
1

—

1

ll '

} Ml
Ls t

1

1

1
F

1

! 1

_1 1 1 1 1 1

^2

Fig. 44 .2 .

divided into three regions (Fig. 44.1) by the lines

V = — t/m, V = yfm (44.2)

In the first region /x is complex. In region II, m is generally com-
plex with some narrow bands where it becomes pure imaginary.

In region III, m is generally imaginary with some narrow bands
where it is complex.
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This may be shown in an example where the computations

can be carried out explicitly. Let us assume a line built as shown
in Fig. 44.2j with alternate portions of lengths h and h with

values fi and/2 . This is obviously a special case of Eq. (44.1)

with the function / represented by a rectangular curve.

— ?i < X < 0: ^ + 7/1 = = ““Xi^ 1

0 < X < h: ^ + 7/2 = 172 = — X2^ I

In the first interval we obtain a solution

-h < X < Q: u ^

while in the next interval, the solution is

0 < X < k: u =

Furthermore, the entire solution must fit the form given by
Floquet’s theorem [Eq. (42.5)]. Choosing one of FloqueCs

exponentials, as in Eq. (42.6), we w'rite

u = A{x)€^^ (44.G)

where A(x) has period d. This means, for instance,

u{x) = — d) (44.7)

Using this relation, we write the solution in the second h interval

h<x <liA-l2 ^ d: u{x) = (44.8)

The problem is to find the A, B,Cj and D coefiicients that satisfy

these relations and the continuity condition at the junctions

(0,Z2), where u and — must join smoothly. This yields four

relations:

ic — O: ui A A" B ^ C A" I)

Axi — -Sxi = 0x2 - I>X2

X = h'- u:

dx'

= Cx2ex'‘> — Dxi(r^'‘‘

(44.3)

(44.4)

(44.5)
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This set of four linear homogeneous equations in .4, jB, —C, and

—D can be soh^ed only if its determinant is zero.

11 1 11
Xi ~Xi X2 ~X2 = 0

€-Xth

-Xae-**

(44.10)

It is a matter of elementary computations to expand this deter-

minant and to obtain the equation

-- 2r <‘<)sh xdl cosh X2^2 + 1 (xi

2 VX‘Z
+ ~ J sinh xi^i sinh xda

Xi/

+ 1=0 (44.11)

where Y — This second-order equation has two solutions

(Ti+'s) whose product is unity

Y, = Fs = F1F2 = 1

and whovse sum is twice the bracket in Eq. (44.11).

Fi + F 2 = = 2 cosh fxd = 2[- *
•]

cosh fid == cosh xdl cosh X2I2

+ s + ^
)
sinh xdl sinh X'lh

2 VX2 xi/

To check this equation, let us take xi = X 2 ?
a continuous line.

Then fid = xi^i + xd^ is the obvious solution.

We shall discuss a whole class of problems of this type in

Chap. X and develop a more direct and very powerful method

for solving them. Equation (44.12) will appear as a special case

of a more general equation. According to whether xi and xs

are real or imaginary, some of the hyperbolic sines and cosines

may become ordinary sines and cosines. For instance, van der

Pol and Strutt consider the problem of equal sections. Let us

take

li = k = l
d = TT

in order to obtain the same period it as occurs in Mathieu’s

equation,

1/1 = ’? + '>' ni = V — 7

(44.12)
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Case 1:

1? > 7 > 0

Xih = 2’rXi = I V—
»?i

both 7ji and rj2 positu’e

fx = iju' = i2xa

i T /= 2 = 2
V i

Equation (44.12) becomes

cos Tfx' = cos cos X2
1 /Xi

,
X2\ .

i
1

j Xi sir
2 \X2 Xi/

Case 2:

rj < y » 7 > 0

•v/-??! = iXi

(44.13)

Vi > 0, 7)2 <0} (44.14)

’7)2 = Xi

cos ttm' = cos Xi cosh ^3
1 _ £3\

2 Vs ^i/
sin Xi sinh :C 3 (44.15)

The problem is to follow the variation of expressions (44.12) or

(44.14) and (44.15) in the 7)y plane and to distinguish between

the regions giving fx real or complex. Three cases are obtained:

A. cosh )xd ^ 1 M = Mo real

jB. — 1 ^ cosh jtxd ^ 1 fx = ip!
^

p' real

C, “ 1 ^ cosh pd p = po + iTT

(44.16)

Case B gives waves propagating through the whole line without

attenuation, which means passing bands^ and is represented in

Fig. 44.3 by shaded regions. Both cases A and C yield waves

attenuated exponentially either to the right or to the left

factor in Eq. (44.6)] and differ only in the relative phases of

oscillations in successive (hfh) sections. This means stopping

bands and blank regions in Fig. 44.3.

The whole map in Fig. 44.3 is very similar to that in Fig. 42.1

for Mathieu functions, except for some intersections of boundary

curves. The boundaries are obtained for k = 0 or p = iir.

They are denoted by CoCtCi and SqSiS^j these symbols corre-

sponding to the Ce and 8e Mathieu functions, respectively.

The discussion given by van der Pol and Strutt covers all cases
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Fio. 44.3.

of (r),7) variations. Kronig and Penney limited their discussion

to the case of (—vi) very large and positive, with h very small,

while va is positive and h » d. The exact conditions assumed

are

\ TT’\ lih

where c is a constant. Then Eq. (44.12) yields

2 2

cosh jud = cosh xih cos ah + ^ ^ sinh Xih sin ah (44.17)

According to these conditions

and we obtain

cosh nd = cos ^ (44.18)

The variation of this expression is represented in Fig. 44.4 where

the limits ±1 corresponding to cases A, 5, and C of Eq. (44.16)

are clearly seen.

A general formula giving the relation between v and a was

obtained in Sec. 43 by using a result proved by Whittaker under

the assumption that the coefficients of the Fourier

expansion for the function J constituted an absolutely convergent

series. This is not true of the step function used in this section.
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Fig. 44.4.

The function can be expanded in a Fourier series, but the con-

vergence of the series of coeflScients is not secured.

Equation (43.16) is

sin^ Trad = Ai(0) sin^ (43.16)
V 0

where Ai(0) did not depend upon a or and d was supposed

ecpial to TT, while

In the present section we obtained Eq. (44.14)

cos 27rad = cos :ri cos x%

^2 = (^2
)

average

btained Eq. (44.14)

— 1 sin sin xt (44.14)
2 \x2 xx)

osd Tcvd (ad Tvvd V

= 27; = 77

This equation can be written

cos %rad = cos {xi + + Xi^ + Xi^
sm 0:1 sin X2.

1 ^ = _ (a;i - x^y ^ (72 - Fi)^

2x10:2 2x1X2 2F1F2

We may replace cos 2^ by (1 — 2 sin® <p) and obtain

(44.19)

sin® Trad = sin

^{v,-Vxy^.vd
,
{V,- Vxy . Tvd . -Kvd ,,,+
4F.F2

-^
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which dov^ not reduce to the general Ujpe (43.16), For very small

jM'rturhations, however, we may take

I
= (1 + e), A — Jl (1TT" T?"

V 2 Vo

(V, ~ 7i)2

47x72
= €2 +

Hence

sin^ rad — (1 + 6^ (44.21)

dropping higher powers of e. This equation, rather than the

general one, is of the Whittaker type.

This example shows the limitations of the general equations

of Sec. 43, which should not be used when the series of the Fourier

coefficients <9„ (or Cn) does not converge absolutely.

46. The Self-excited Oscillator

A circuit containing only a:^inductance and a capacity will

oscillate with frequency 1/\/LC, where L is the inductance and

C the capacity. The equation of the circuit is

r I ^ _ n fAR -IN

If we vary the capacity periodically, the equation may be written

in the form of Mathieu’s equation.

^
^ + 5 eofi (45.2)

where A and B are constants and wi the frequency with which

we vary the capacity. F]quation (46.1) becomes

“t" + jB cos o)it)Q = 0 (45.3)

If we set

Q - u and $ =

then Eq. (45.3) is

where

fit'll

^ + (v + T cos 2^)u = 0

4.A AB
’’

Lwi*’ Lwi*

(45.4)

(46.5)
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Equation (45.4) is Mathieu’s eciiiation and has solutions of the

type (42.5)

(45.6)

where the exponent ju is pure imaginary in the shaded regions of

Fig. 42.1 and real or complex in the blank regions. This means

Shaded regions: fx = i0 stable oscillations of constant

average amplitude

Blank regions
:

/z real or complex; unstable oscilla-

tions, one term increasing to infin-

ity, the other term decreasing to

zero

Thus the map in Fig. 42.1 completely describes the situation.

If the variation of capacity were stepwise instead of sinusoidal,

we should use the map in Fig. 44.3.

An example of an electric circuit with variation of the capacity

is shown in Fig. 45.1. This device was proposed in the last

century as a self-excited high-frequency oscillator. A self-

excited oscillator can also be built with a periodic variation of

the self-inductance, such as a standard alternator with stator and

rotor windings connected in series, and a fixed capacity. Self-

excitation means unstable conditions, which yield oscillations of

increasing amplitude: the amplitude would start from zero and

continue to increase, finally reaching a constant value when

some of the nonlinear terms omitted in the equation become

sufficiently important; such terms might be sparks in the con-

denser or finite power of the engine turning the condenser.

In the electric examples, L and C are always positive, which

means

yj > y > 0 (45,8)

i.e,, case 1 in Sec. 44 [Eq, (44.14)], which corresponds to region III

in Figs. 42.1, 44.1, and 44.4^, where stability is the rule and

instability the exception. Looking at Fig, 42.1, we notice that
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U

the main region of instability (or self-excitaiion) is the \ -shaped

region near rj = I, which means, according to Eqs. (45.2) and

(45.5),

4i4 __ 4 . 6Jo“ ^ I

A = 0)0^ = 2oiQf^0)i
C/O i^t-o

a?o is the frequency of the circuit (L,Cq) and should be nearly

equal to the frequency of excitation cat.

This result was found by an elementary discussion, relating to

the case of small excitation (J? < < *4) before the complete

theory was developed. The situation is easier to explain if the

S
z e

C

condenser is supposed to be plane (Fig. 45.2) with a varying

distance e between the plates.

Fig. 45,2.

1

C
(45-10)

If the electric surface density on the condenser plates is o- = Q/S,

then the force acting per unit area is 27rcr2, force of

attraction between the plates is

/ = S2r<T^ = |- Q2 == g (45.11)

The variation of capacity is obtained by varying the distance.

e =
1

C

eo + h cos 0?!^

1
,

4x6 (45.12)

For small perturbation, small 6, the oscillations in the circuit

will have a frequency very close to the proper frequency coo, and

hence will vary with twice this frequency.

Q = A cos (cooi! + ¥?) 1

Q2 il^.cos^ (ojat At (p)
= + cos 2(coo^ + ^)]
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The work done per oscillation by the engine operating the system

is

= —

^

cos 2{coof + <p) «in wd (45.14)

This is zero unless wi = 2coo and may be positive or negative

according to the phase <p. When the work done is positive,

oscillations in the circuit increase in amplitude (instability and

self-excitation). This is a crude explanation of the physical

M

Fio. 45.3.

M

meaning of condition (45.9). The physical explanation for

excitation near the points

7? = 4, 9,
• •

*
,
n®

corresponding to

4.4 _ 4 _ 40)0^

LlCOi^ LCqCjOi^ 0) 1
^ 2coo = noil (45.15)

is not so elementary and must be found in the harmonic content

of oscillations in the circuit with varying capacity.

Mechanical oscillators can also be taken as examples, and

some models are shown in Fig. 45.3. Here the mass M (replac-

ing L) is always positive, but the A and B coefficients in the

restoring force [replacing 1/C, Eq. (45.2)] may become negative,

as for a reversed pendulum or for a spring pushing the mass away
instead of pulling it toward its equilibrium position. This means

that the whole map of Fig. 42.1 or 44.3 can be used. Region II

is very interesting: an unstable pendulum can be made stable

by a periodic perturbation of appropriate frequency. Some
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Other examples follow: the movement of a direct or reversed

pendulum whose support is moved up and down with a frequency

coi; oscillations along a string whose tension is varied periodically.

More detailed explanations and equations may be found in the

paper by van der Pol and Strutt already quoted.

46. Free Electrons in Metals

According to wave mechanics, the motion of electrons in a
,

potential field (x,y,z) is obtained from the solution of the Schroe-

dinger wave equation:

VV + hHE - P)4^ = 0, =^ (46.1)

where h is Planck’s constant. In a crystal lattice the potential

P results from the positive charge of the ions located at the

lattice points and from the equal negative charge of the electron

cloud distributed among the ions. All this yields a periodic P
function with the same periods di, d2 ,

and ds as the crystal

lattice itself, and hence Eq. (46.1) reduces to a type similar to the

one studied in Sec. 34, where we had

VV + = 0 (34.1)

H (34.2)

while here the correspondence is

H = h^[E - P(r)] (46.2)

E is the energy of the electrons and P(r) the periodic potential.

The whole theory of Sec. 34 applies directly to the problem of

free electrons and yields the usual rules about zone structure.

As a matter of fact, the zone structure is completely independent

of the special physical meaning of the waves considered, and it

must be the same for elastic, electromagnetic, and Schroedinger

electronic waves. Some authors did not pay enough attention to

this very general result and based their definitions of the zones on

different criteria for different waves, thus obtaining discrepancies

that are not consistent with the mathematical nature of the

problem. As we emphasized in Secs. 26 and 31, another error

to be avoided is an oversimplification of the problem, such as an

assumption

P(r)«Pi(a;) + P,iy) + P,{z) (46.3)
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This is an academic problem of no actual interest whatever, since

no crystal lattice is known that would give a field of the type

(46.3), even as a first rough approximation. Such a structure

would mean a disappearance of most Bragg spots in X rays

except for the few reflections from planes parallel to coordinate

planes, a circumstance never realized in any known crystal.

Actual physical problems yield periodic potentials P with their

complete set of Amimimt coefiicients in the triple Fourier expansion,

which means a complete set of lattice planes with indices mi,

m‘2 ,
and m3 .

Fig. 46.1a,

The problem of a small perturbation for usual waves was

discussed in Sec. 35 under the assumption

F = ~ + 6/ = Cooo + eS, ^

In the electronic problem we may assume the average potential

inside the crystal to be zero, since this merely means a special

choice of the zero energy level, and we state

P == e<p

H = k^iE - ecp)
(.46.4)

Writing Planck’s relation

E = hv (46.5)

we define a frequency for the electron waves. The difference

between the two problems results from a comparison of the

equations

Elastic waves jf-s = w^Cooo = hk^v electron waves (46.6)
V 0
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The Y-shaped curves obtained for unperturbed elastic waves with

~ = 2xlai (46.7)
Y 0

now result in parabolic curves for unperturbed electron waves

with

hr-v == (46.8)

and curves relating to a small perturbation differ from this

parabola only in discontinuities on the boundaries of the zones,

as shown in Fig. 46.1.

The whole problem, however, is more complicated than the

simple scheme developed here, since the periodic potential P is

not known a priori. This potential, as we said before, results

from the distribution of both ions and electrons. The average

electron density can be computed once the ^f/ functions of Eq,

(46.1) have been obtained. The potential P is deduced from the

electron density, and it must check with the P function upon
which the whole computation was initially based. This is a

typical problem of the self-consistent field, as Hartree calls it,

and the solution of Eq. (46.1) represents only one step in a more
complicated problem.
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CHAPTER IX

MATRICES AND THE PROPAGATION OF WAVES
ALONG AN ELECTRIC LINE

47. General Remarks

In the historical summary given in the first chapters, it was
explained how the theory of wave propagation first started with
the discussion of waves along a discontinuous string. Then
followed the theory of waves in a continuous medium, and we
emphasized the importance of some of Lord Kelvin^s remarks on
waves in a discontinuous structure and the existence of a cutoff
frequency. Up to Kelvin^s time only one type of wave had been
discussed, viz., elastic waves. Later electromagnetic waves and,
still later, electron waves in wave mechanics were discovered,

and the properties first obtained for elastic waves were immedi-
ately translated for these new waves. For instance, Lagrange^s
theory of how to pass from the discontinuous string to the limit

of a continuous string was used by Pupin in his discussion of

loaded telephonic cables. The deep discussion of Kelvin, related

in Sec. 2, led him to imagine a new model for an optical medium.
A similar mechanical model was built by Vincent and proved
to have the properties of a mechanical band-pass filter. This
model was translated into an electrical circuit by Campbell
and was the point of departure for his invention of electric filters,

of which he gave a number of important applications.

Hence, for scientists of the last century, it was common knowl-
edge that the special nature of the waves did not matter and that
the same general properties could be found for any type of

waves. The general relations among the various types of waves
seem fo have been forgotten for some time. Physicists devel-

oped the theory of electromagnetic waves for optics and X rays.

Then theoreticians discussed very carefully the properties of

electron waves (wave mechanics) in crystals and too often did

not pay attention to the fact that a great part of the work had
already been done in the theory of X-ray propagation in crystals.

193
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On the other hand, electrical engineers did a wonderful analysis

on the theoiy of propagation of waves along lines, cables, filters,

etc., but omitted to notice that many important facts had already

been discovered by theoretical physicists (see Secs. 13 and 14).

More recently, practical acoustics was revived, mostly by

electrical engineers, who were especially well trained in electric-

circuit theory and found it easier to translate mechanical prob-

lems into the equivalent electric circuits before discussion.

These scientists at last rediscovered the similarity of all prob-

lems of vibration and wave propagation, but they did just the

opposite of what their ancestors had done. Pupin and Campbell

started from mechanical models to discuss electric lines and

filters. A modern engineer, wishing to discuss wave propagation

along a train of railway cars, translates the problem into an

electrical one (an impulse propagating along a filter) and then

translates the answer back into mechanical terms.

This explains why we want to include a general discussion of

wave propagation along electric lines and filters in this book.

Many modern theoretical physicists have hardly heard of these

problems and do not realize the very great advance in the theory

by this engineer's art. Engineers, on the other hand, have a

tendency to imagine that any wave problem can be reduced to a

problem in electric lines, and this is not entirely true. We have

already discussed in Chap. V the importance and the limitations

of the concept of characteristic or surge impedance. This concept

is fundamental for one-dimensional structures such as mechanical

or electric lines and filters. Its generalization for three dimen-

sions is not so easy, and we noted that the definition of energy

flow, exemplified by the Poynting vector for electromagnetic

waves or similar definitions in wave mechanics, is better adapted

to the three- or four-dimensional problems.

Recent developments in wave mechanics point to the impor-

tance of matrix calculus and its very close connection with a
number of problems of wave propagation. It is very interesting

to note that electrical engineers have independently come to the

same conclusion. Matrix theory is now commonly used in the

discussion of problems of waves in electric filters. Furthermore,

these problems seem to represent the only classical example
where some special matrices, of great importance for the theory
of electron spin, appear for practical purposes, and we shall try
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in the next chapter to show the connection between the theory

of electric filters and the Pauli-Dirac wave theory of the spinning

electron.

The discussion in this chapter will be on the propagation of

waves along electric lines. Let us, once for all, give the correla-

tion between the electric quantities and the mechanical quanti-

ties arising in similar mechanical problems. This can be done in

different ways, but the most direct translation is obtained by the

use of the following glossary:

Electrical

Electric charge

Electric current

Electric current, time derivative

Self-inductance

Mutual inductance

Magnetic energy

Electric energy

Capacity C
Voltage

Mechanical

Displacement or coordinate

Velocity

Acceleration

Mass
No direct equivalent; it appears,

however, in problems with (con-

straints, where generalized La-

grange coordinates are used

Kinetic energy

Potential energy

Elastic coefficient « 1/(7

Tension

We shall discuss in this chapter the propagation of electric

disturbances along electric lines. This can be translated into a

problem of mechanical disturbances propagating along a periodic

mechanical line structure. Electric lines are schematically repre-

sented in Fig. 51.1 or 55.1, for instance. The same general

scheme may be just as well interpreted in mechanical terms. A
square box with four terminals is supposed to represent a certain

electric circuit. Let us imagine the box to contain a given

mechanical device. We have two terminals on the left for input

current and voltage and the two others on the right for output

current and voltage when we think of the box as containing an

electric circuit. With a mechanical structure, we have only one

connection on each side (a rod or a string going from one box

to the next one), but we need two quantities to specify the con-

nection: the velocity of the string motion (analogous to electric

current) and the elastic tension along the string (analogous to the

voltage). Hence the correlation is complete, and the glossary

will help in translating from one problem to the other.

As noted earlier, there are, however, some cases where
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difficulties are encountered: electrical mutual inductances

between circuit elements have no direct counterpart in mechan-

ical problems. However, a general expression for the kinetic

energy was introduced long ago in analytical mechanics and has

the same form as Eq. (48.2) of the next section. Such expressions

are obtained in mechanical problems with constraints when

generalized Lagrange coordinates must be used instead of the

usual position coordinates of the mass points.

Other limitations refer to the range of possible values for some

quantities. We have already pointed out in Secs. 11 and 12 the

fact that capacities are always positive in electrical theory, while

elastic coefficients may be either positive or negative in mechan-

ics. Thus, if the general scheme and theory are common to all

problems of wave propagation, there are restricting conditions

or practical limitations for each separate class of problems, which

should always be kept in mind.

The first sections of this chapter are devoted to essential

definitions and to the systematic introduction of the matrix

notation, visualizing elementary matrix computations by their

equivalent circuit connections. Then we shall go on to a discus-

sion of the role of characteristic impedance of the line and the

propagation of waves. Finally, in the next chapter we shall

let the elements of the line become infinitesimal and thus will be

enabled to draw some analogies between the propagation of the

waves and the quantum mechanical problem of electron spin.

The electric lines that we shall discuss are to consist of identical

circuits connected together. Each circuit is an electric circuit,

which may be as complicated as desired with the following

restrictions. First, all circuit elements must be linear; z.c.,

we allow resistances, self-inductances, mutual inductances, and
capacities. Rectifiers, coils containing iron, and other non-

linear elements are excluded. Negative resistances are allowed

if care is exercised in their use. They will appear in the mathe-
matical equations, and, if they are to be used in an experiment,

one must be sure that the linear portion of the characteristic

curve is used. The second restriction is that no sources of

current are to appear in the circuit. All electromotive forces

will appear as external parts.

We shall represent the circuits composing the line as rectangles

with pairs of terminals, as shown in Fig. 47.1. At present, we
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shall place no I'estriction on the number of terminals. The

electromotive forces are to be applied to these terminals, which

we number. Each electromotive force Ek will then give rise to a

current 4, both of the same frequency. For the present we shall

choose the signs of Ek and 4 so that the product R.P. EkU"^ is

the power furnished to the circuit. We shall assume that the

circuit is a simple circuit; 4c., that it does not contain two or

more circuits completely separate from one another. Further,

we shall assume that the number of terminals is reduced to a

minimum. For instance, if two or more pairs of terminals are

in series, they may be replaced by a single pair of terminals with

an applied electromotive force equal to the sum of the separate

electromotive forces.

48. Expressions for Energy

We shall assume that the minimum number of pairs of ter-

minals is n. The fcth pair of terminals will have an electromotive

force jBifc. The meaning of = 0 is just that the fcth pair of

terminals is short-circuited. Each electromotive force Ek will

furnish charge g* to the pair of terminals across which it is con-

nected. The qk will form a complete set of independent variables

for the system if there are n branches to the circuit. If there

are more than n, then it is necessary to introduce more terminals

with an applied electromotive force of mm at these additional

terminals. We shall assume that this has been done.

There will be two types of energy present in the general circuit:

electrostatic due to capacities, magnetic due to self-inductances

and mutual inductances, and, in addition, dissipation of energy
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due to resistances. If we let Qa be the charge on condenser a,

then the electrostatic energy is given by

Er = 1V ^
24 C.

(48.1)

where C« 13 the capacity of condenser a. Similarly, if is the

current in inductance a, the magnetic energy is

"
'2 S = IX 08.2)

a oc >/9 afi

where

La = Maa = self-inductancc of inductance oj

][f^^ == = mutual inductance of inductances a and 0
when a 9^ p

Finally, if Qa i« the current flowing through resistance a, the

dissipated energy per unit time is

^ RaQJ (48.3)

where Ra is the resistance of resistance a.

Now all of our circuit elements are to be linear and it follows

that we may express the Qa as a linear sum of the qi defined in the

first paragraph of this section; i.e.j

Qct ~ O/cckQk (48.4)

k

where the aak are constant coefficients. We may substitute

Eq. (48.4) into Eqs. (48,1), (48.2), and (48.3) to obtain first

~ 2 2) ^ = 2 2)
(48.5)

a k j kj

where

CH = 2)-^' = cy. (48.6)

Next

§ 2) X X I X (48.7)

j k jk
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where

nijk - (48.8)

Finally,

«/S

2 (48.9)

where

a 3 k jk

Tjk ^ Rot^aj^^ak “ 'i'kj (48.10)

The coefficients Ckj^ nikj, and n, may be computed in terms of the

circuit elements; they will be homogeneous in the Ca, and Ra,

respectively. Furthermore, they are all symmetrical in k and

The general circuit equations may be written

Rk = ^ + rkiQt + CkiQi) (48.11)

i

where Ek is the electromotive force across the terminals k. The
work furnished to the circuit in time dt is

dW ii {rrikS + rk4i + dt

= 2^
(mkiqk dq, + VkiMk dt + Ck^qi dqk)

ik

= dEfn 4“ dE(i <j) dt

This means that we have not omitted any energy from considigra-

tion.

We shall assume that all the applied electromotive forces

have the same frequency w. Then

ik = g* = Ek = O’ = V^) (48.12)

and Eq. (48.11) may be written

7. = 2 f

i

(48.13)
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where

+ rjfc, + 1^' = (48.14)

from Eqs. (48.6), (48.8), and (48.10).

49. Definition of a Four-terminal and Equations for Its Circuit

A four-terminal is a special ease of the circuits we have dis-

cussed in the previous sections. It is a circuit for which

E, = 0 ky^l,2 (49.1)

For a four-terminal, Eq. (48.13) becomes

where n is the number of branches. We may solve the equations

(49.2) since the number of equations is equal to the number of

independent variables I*.

h = XiiFi + X12F2
'I

^2 = X21F 1 + X22F2 > (49.3)

Ik = XkiV I + XA2F2 A = 3, 4,
• *

*
,
n

J

It can be shown that xh = Xik follows from == Uk^ The first

two relations are the only ones of interest. Solving them for

Vi and 72 gives

Vi = ziih + Zvzh

72== Z2ili Hh Z22I 2

Z21 = 2:12 (49.4)

where the z^J are constants of the circuit.

So far we have taken the Vi and U to have signs so that the

product Ei^r is the power furnished by the electromotive force.

A different convention will be more useful in the discussion of

electric lines since we shall regard the line as composed of a row

of four-terminals each with a current flowing in one direction

along one set of connections and in the opposite direction along
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the other set. This is shown in Fig. 49.1. If we consider four^

terminal n, we have a potential difference Bi at the left end and
E2 at the right end. The current i'l at the left end flows into

the four-terminal, and J'2 flows out of the right end. Then
and J'2 bear the following relation to 7i and I2 :

I\ = /i, = -I 2 (49.5)

Then Eq. (49.4) becomes on dropping the prime from V

\

and V

i

V I — Ziili — Z12I2

V2 ~ ^12^1 — ^22!1
(49.6)

There is one further change in the equations to be made for

convenience in discussing line problems. In general, we are

h I 2

Vi

n-1 n n+1

Fig. 49.1.

interested in comparing conditions at one end of the four-

terminal with conditions at the other end, rather than currents

with electromotive forces. This means that Ave should express

Vi and 7i in terms of 72 and 12 . Rearranging Eqs. (49.6) gives

where

7x = ai72 + 572 1

7 i = cV

2

“f“ (12I2
j

2^11 ^ 222
<Xi = j (J2 — •—

zn 2 i2

, ZllZii — 2i2* 1
J)
= Q ZSS

Zl2 2 i2

(49.7)

(49.8)

on taking account of the fact that 2112 = 2: 21 - The four constants

are not independent, for it is obvious that

UiUa — 6c = 1 (49.9)

60. Matrix Notation for a Fonr-terminal

We shall find it useful to regard the current and voltage at the

exit of a four-terminal as two quantities that are transformed
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by a matrix to give the current and voltage at the entrance.

The matrix will, of course, be the matrix of the coefficients in

Eq. (49.7). Trom this point of view, it is convenient to change

our notation as follows:

Electromotive force at entrance — Fi === \

Electromotive force at exit V2 — x'l I

(59 j)

Current at entrance = Ii == 0:2 (

Current at exit = J2 == a:'2 /

Then Eq. (49.7) may be written

Xi = aiix'i +
| (50.2)

= a2ix'i + a22x'% j

where

an = ai, === h \

(50.3)
0^21 = Cj <X22 “ ^2 J

Then we may call the matrix (a,,) the matrix of the four-terminal.

It depends only on the constants of the four-terminal circuit and

is thus characteristic of the four-terminal.

It follows immediately from Eqs. (49.9) and (49.3) that the

determinant of the matrix (a^j) is unity.

(50.2)

(50.3)

jail ai2

a21 ^22
aiia22 — ai2a2i he - 1 (50.4)

Equation (50.2) may he solved for x\ and x'2 in terms of :ri

and X2.

x' I hnXi + 5 12^:2

I
x't = h^iXx -f b2tx^

j

where

622 = _ au
(50.6)

It is evident that the determinant of the matrix (6*^) is unity.

The matrix (5,v) is the inverse of the matrix (au), and we may
write Eqs. (50.2) and (50.5) symbolically as follows:

B = (50.7)

where A and B stand for the matrices (an) and (5^), respectively.
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Thus we see that there are two matrices, one the inverse of the

other, that are of significance for a given four-terminal. One of

these, A, would be used if we thought of a wave propagating

through the four-terminal from right to left, and the other

would be used for a wave propagating from left to right.

It should be noted that the elements of the matrices A and B
are not all pure members; some have dimensions:

ail, a22, bn, 622 pure numbers

ai2, 612 impedance

a2i, &21 admittance (reciprocal of impedance)

61. Combination of Two Four-terminals; Multiplication of

Matrices

In this and the following two sections, we shall illustrate

various rules from the theory of matrices by means of four-

terminals. First, we consider the effect of connecting two four-

?‘2
1

1

><2:
1 Lil'

Xl C Xl' D V

Fio. 51.1.

terminals in cascade, as in Fig. 51.1. These two four-terminals

together constitute a composite four-terminal. We wish to find

the matrix of the resultant four-terminal in terms of the matrices

of the two component four-terminals.

If the matrix (5,7) of the previous section is denoted by (c^;)

for the left-hand four-terminal and by for the right-hand

four-terminal, then

i “ ^ ^ d,7
I

\ ^

[
(51d)

^ ^ dxjCjkJ ~ ^ftk^k
j

where the double-primed letters represent conditions at the exit

(right end) of the right-hand four-terminal, the single-primed

letters conditions between the two four-terminals, and the

unprimed letters conditions at the entrance of the left-hand

four-terminal.
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Now

U = 'Zdi,Ci, or F = D-C (51.2)

3

are the elements of a matrix (f^k) that is the product of the

matrices {d,j) and The order in which the matrices appear

makes a difference in the product except in certain cases. We
shall have occasion -^o note some of these cases in later sections.

In general, however,

^ c,idi, = C-D^DC = difiik (51.3)

3 3

In the previous section we noted that A and B were inverse

matrices. It is readily verified by direct calculation that

A-B B-A = (51.4)

5 is called the unit matrix since it is evident that

A • 5 = 5 • A = A (51.5)

for any arbitrary matrix A. Moreover, it is also easily shown

that the determinant of the product P of any two matrices R
and S is the product of the determinants of R and S.

IPI = \R-S\== IPI • 1>S| (51.6)

52. Inverse and Reversed Four-terminals and Transformations

If two four-terminals, connected in cascade, produce no change

in the electromotive force or in the current, then we say that one

four-terminal is the inverse of the other; i.e., if A is the matrix

of the first and B the matrix of the second,

A • B ^ h B • A (52.1)

In this case, evidently, the order of the four-terminals with

respect to the direction of propagation is immaterial.

Now making use of the fact that A and B each have deter-

minant one and Eq. (50.6), we see that

dll = ^22 dn ==

CI21 = —621 ^22 = 611

Evidently to construct the four-terminal inverse to that with

matrix A will require self and mutual inductances, capacities,

(52.2)
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and resistances that are the negatives of those occurring in four-

terminal A, This is not always impossible, but often quite

difficult to achieve experimentally.

By a reversed four-terminal^ we mean one in which the sense of

the current is changed and the entrance and exit are interchanged.

This is, it should be noted, not the same as changing the direction

of propagation of waves. The latter involves only interchanging

the entrance and exit.

We shall denote the transformation of a four-terminal by B
and the corresponding one for the reversed four-terminal by i?.

Then the direct four-terminal gives

x'l = bnXi + bux%
- = 621:^1 + ?> 22X 2

Interchanging the entrance and exit requires us to use the matrix

(a*;) inverse to {b^J).

x\ = aiiXi + ai2X2.

x\ = a^iXi + a22X2

and changing the sign of the currents {x ^2 and x'f) yields

x'l = anXi - anX2

x\ — —a2\Xi + a2^X2

Therefore, the matrix R = (n^) is given by

frn ^i2\ ^ / un -ai2\ ^ /b22 bi2\

\r2 i ^22/ \”"U2 i U22/ \b2i bnj

on making use of [a] = i and Eq. (50.6). Evidently,

Ifi/I = |uvl = \bij\ = 1

The elements of the matrix of the reversed four-terminal are

equal to elements of the matrix of the direct four-terminal, so the

construction of the reverse of a given four-terminal will not

involve negative resistances except as they occur in the direct

four-terminal.

We call a four-terminal reversible if it is identical with its

reverse; f.e., a four-terminal is reversible if

B (52.5)

which yields

bn = 622 (52,6)

(52.3)

(52.4)
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Since the determinant of B is unity,

6n = 622 — "v/l "t" bx2b‘zi (52./)

so that the matrix of a reversible four-terminal is

+ bizbzx bxz \
(52

\b2i vl + hnbn/

63* Four"terminal Matrices and the Group C 2

The remarks that we have made in the previous sections are

sufficient to show that the matrices arising in the theory of four-

terminals form a group of two-rowed complex matrices of

determinant one. The conditions that must be fulfilled in

order for a set of matrices to form a group of the above type arc

1. The matrices must be two-rowed complex matrices with

determinant one (see Sec. 50).

2. Each matrix must possess an inverse matrix that is an ele-

ment of the group. Evidently each four-terminal must have an

inverse, since the number of equations involved is equal to the

number of independent variables, and hence the matrix is non-

singular and possesses an inverse (see Sec. 50).

3. Two matrices multiplied together must give a matrix

in the group (see Sec. 51).

4. There is a unit matrix, i,e., 5 (see Sec. 51).

The group composed of matrices of four-terminals is at least

a subgroup of the group C2 . The group C% is well known to

mathematicians and is an integral part of the theory of electron

spin and relativistic quantum mechanics. We shall find these

matrices appearing in a similar fashion in the next chapter on

the propagation of waves along lines composed of infinitesimal

circuits.

Matrices have been introduced in the preceding sections in

connection with the electrical problem of four-terminals. It is

important to compare these definitions with the standard

geometrical definitions given by mathematicians: In a plane, two
coordinates xi and 0:2 define a vector P, while x'l and x\ yield

P'. The fundamental linear relations (50.7) show that the

matrix A transforms any arbitrary P' vector into another P,

while the inverse matrix B brings the transformed P back to P'.

This geometrical representation is perfectly adequate when
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the are real numbers. In our electrical example, we always

deal with complex numbers, and Fig. 53,1 must be considered

only as a geometrical visualization of the matrix properties.

. Multiplication of matrices was explained in Sec. 51 as repre-

senting the connection of two four-terminals in cascade. Look-

ing at Eqs, (51.1) and (51.2), ^ve notice that they represent two

successive transformations of the vector P first from P to P'

by matrix C and then from P' to P" by matrix D,

The reversed four-terminal defined in Sec. 52 is typical of the

electrical problem. Its geometrical counterpart was never con-

sidered in the theory of matrices. It can, however, be stated

this way: We take Pi to be the reflection in the xi axis of P',

and the reflection in the Xi axis of P. The R matrix (52.3)

represents the transformation from Pi to P'l. A reversible

four-terminal is represented by a matrix built in such a way that

R is identical with B where R transforms Pi into P'l.

The next step in the geometrical description of matrices is to

look for the axes of the matrix, which are defined by the condition

that P and P' lie in the same direction.

P' = ^P \

= ^xi = bnXi + bi2X2 i (53.1)

X'2 = = b$iXi + i>22iC2
j

These two linear equations can be solved only if their detei*-

minant is zero.

bii ? bi2

bn bn
= 0 (53.2)
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This is known as the equation for the 'proper values of the matrix,

and it yields two | coefficients, one corresponding to each of the

axes of the matrix. The orientations of the axes are obtained

when the | values of Eq. (53.2) are used in Eq. (53.1). Their

slopes are given by the condition

,S = — = —
x'l Xi

Q — + ?>22>S

hii + bnS
?>i2>S‘^ + {bn - b2^)S - 621 = 0

(53.3)

(53.4)

We shall soon discover the physical meaning of these quantities

and find that they correspond to very important definitions in the

theory of electric four-terminals.

Fig. 53.2.

Once the axes of the matrix and the proper values have been

determined, the matrix transformation acquires a simple geo-

metrical meaning. A vector P is decomposed into its com-
ponents Yi and along the axes. Then each component is

multiplied by the corresponding proper value, yielding

- ?iFx, r, = ^,Y, (53.6)

which represent the components of the transformed vector P',

as shown in Fig. 53.2.

This was just explained for the matrix (6„), of which (aij)is

the inverse matrix. Matrix (a^) has the same axes as (5i/), but
its proper values are and and the (a^) transformation

carries P' into P
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The relation between and (xi^x^) is

Let us state

Si = tan di, S2 — tan 62

Then

Xi = Yi cos di + Y-y cos 62 )

X2 = Ti sin 61 + F2 sin 62
j

which we can also write

= 2/1 + 2/ 2, yi = Yi sin

xi = 2/1 + 2/2, 2/2 = ^2 sin

We shall use these last formulas for a comparison with the four-

terminal problem.

The geometrical representation gives a very simple explanation

of the following theorem, which says that two matrices C and D
whose axes coincide are commutative^ in the sense of Eq. (51.3).

D C (53.8)

This results directly from the fact that after the decomposition

along the common Fi and Y 2 axes the transformation reduces to

usual multiplication.

easily obtained.

(53.6)

^1

^2
(53.7)

F'l = ^c^jyYi = ^d^cYi

and the same is true for F 2 .

54. Stirge, Iterative, or Characteristic Impedance of a Four-

terminal

In Chap. V we discussed the characteristic impedance of a one-

dimensional mechanical lattice in some detail. The character-

istic impedance of the lattice was taken equal to the mechanical

impedance offered by a single cell with its particles vibrating

as if a single wave were propagating through an infinite lattice.

We shall define the impedance of an electrical line composed of

four-terminals in a similar fashion.

We take the impedance connected at the exit of a four-terminal

to be z'; i.e.,

^ Cl/ 1 ^ z!x\ z* — output impedance (64.1)
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Substitution of this relation in Eq. (50.2) yields

Xi = {anz' + av2)x'^ = — bi2)x'2 ]

X2 = (U2125' + a^2)x'^y = + hii)x^2
J

upon making use of Eqs. (50.4) and (50.(5). Now a four-terminal

with its exit shunted by an impedance z' has an impedance 2;

at the entrance given by

2: = input impedance (54.3)
:r2 -5212!' + Oil

A similar calculation may be made for the reversed four-

terminal. We take f and for the input and output impedances,

respectively (Fig. 54.1).

5iif' — 5 i2

52lf^ — ^22
(54.4)

from Eq. (52.3) for the matrix of a reversed four-terminal.

X 2 X2

^
1

,’*

z' r

direct reversed
Fig. 54.1.

The four-terminal will have two iterative, surge, or character-

istic impedances, obtained by the condition that

z — z' or f = f
'

' (54.5)

These two conditions are equivalent. The two roots of

6212!^ (^22 — bii)z — bi2 = 0 (54.(5)

are z and — f. Equation (54.6) is obtained from Eq. (54.3).

The analogous equation obtained from Eq. (54.4) has roots —2
and f

.

Comparing Eq. (54.3) with Eq. (53.3), we note the relation

The characteristic impedance is the inverse of the slope of the

axis of the matrix (Fig. 53.2). Equation (54.6) is thus similar

to Eq. (53.4). The choice of z and — f as characteristic imped-



^tic. 55
] MATRICEjS and 211

ances would yield two positive numbers in our geometrical

I’epresentation instead of a positive and a negative one. It is

just a matter of conventions and is connected with the definition

of the reversed four-terminal.

The two impedances z and f are called the surge or character-

istic impedances in the direct and in the reverse senses, respec-

tively. They are often denoted by ki and k%. A reversible

Jour-terminal is characterized by 6 ii = 622 and hence

fci = fc2, z = f (54.7)

The axes in Fig. 53.2 are symmetrical with respect to the xi

and coordinate axes in this case.

One of the characteristic impedances corresponds to the

situation obtained in a row of identical four-terminals when a

pure wave is propagating from left to right along the row. The

Fig. 55.1.

other characteristic impedance corresponds to a wave propagat-

ing from right to left. This will be explained in Sec. 55.

56, Propagation along a Line of Four-terminals

We start by assuming an infinite number of four-terminals

connected in cascade, as in Fig. 55.1. Later we shall see how to

terminate the line without disturbing the propagation of waves

along it.

A single wave that propagates along this infinite line is char-

acterized by the fact that the electromotive force and current are

multiplied by the same complex factor ^ as the wave passes from

four-terminal n to four-terminal (n + 1 ).

X2,n+1 ~

Equation (55.1) together with Eq. (50.5) gives us two linear

homogeneous equations in xi,n and X2 ,n:

= biiXi^n + 612X 2 ,

n

JX2,n = 621X1,n + 622X2,n

(55.1)

(55.2)
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which can be solved only if the determinant of the coefficients

vanishes.

bn -
I hi,

I

= +1=0 (55.3)
0‘2l 02% —

where we make use of the fact that the determinant \bij\ == 1.

Thus the complex factor ? is deteianined by the constants of the

four-terminal circuit.

The equation (55.3) is well known in the theory of matrices.

The solutions for ^ are the proper values of the matiix (5,;), or

the diagonal elements if the matrix is reduced to diagonal form,

as explained in Eq. (53.2). The two solutions are

^^(6u + hn) ± \/M(^ii + h 22Y -
1 (55.4)

Let us take

^

Then, since ^1^2 = 1 from Eq. (55.4), we may write

I, = r-- = ^ ^ ^
= c“+^ 2

^

If a = 0, then l^i] = 1^2| = 1 and

. a =

cosh 7 = 2

(55.6)

In this case one obtains propagation of waves without attenua-

tion, and the two solutions given in Eq. (55.6) correspond to

propagation in opposite directions: gives propagation to the

right and ^2 to the left.

If a 0, attenuation is present, a is the attenuation con-

stant and ^ the change in phase per four-terminal. When
a > 0, and ^2 give propagation to the right and left, respec-

tively, as before.

Let us compute the ratio of electromotive force to current at

the entrance to four-terminal n. From Eq. (55.2), we obtain

^l,n _ bn _ ^ 522

~ bii 621
(55.7)

which is a constant complex number that we may call z. There
are two values of Zi and corresponding to and ^2 . A
simple calculation shows that these two solutions are the two
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characteristic impedances corresponding to the directions of

propagation associated with and ^2 . Thus in the notation

of the last paragraph of the previous section

Zi = Aji, ^2 = —kz = —

f

We may ask how to terminate the line at four-terminal n in

such a way as to avoid reflection of waves coming from the left.

This is done by using an output impedance fci on the right side

of four-terminal n. In the same AV’-ay we terminate a line on the

left side and prevent reflection for waves coming from the right

by using an impedance kz on the left of the last four-terminal.

An arbitrary wave propagating along a line of four-terminals

may be split up into a sum of two simple waves traveling in

opposite directions. Evidently, from Eq. (55.1), the matrix of

each four-terminal is * diagonal for the simple waves. This

procedure of splitting the vibration up into two waves is anal-

ogous to taking the principal axes for a transformation in matrix

theory. Thus we may take the current to be yi for propagation

to the right and yz for propagation to the left. Then the total

electromotive force will be given by the sum of the electromotive

forces Zxyi and Zzy% for the two currents, and the total current

will be the sum of yi and 2/2 . We add a subscript n to the

2/^s to indicate the four-terminal under consideration. Then
if we take n == 0 for the first four-terminal,

xi,Q = 2: 1^ 1,

0

+ ^2,0 = 2/ 1,0 + 2/2,0 (55.8)

These equations are identical with those for the reduction of the

matrix to its axis, given in Eq. (53.7). Equation (55.8) holds

for any n since we assume a stable condition in the line. Equa-

tion (55.8) may also be written in the form

iri,o — ^2^2,0

Zi — 252

“•" 3^ 1,0 + ZiXz,Q

Zi - 2:3

These equations will be of use shortly.

Now to obtain the current and electromotive force at four-

terminal n, we merely note that

(55.9)

2/ 1,0
=

2/2,0 =

yi,n = ?l”2^1.0, y%n = ^2
’^

2/2 . 0i (55.10)
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where
= Q~~'^y == (r-'>^{.ex+}^)

ssz

We have taken oc positive when the propagation to the right is

represented by In this case ?i'‘ becomes negligible for very

large n while I2
” is large.

If we have an arbitrary impedance fo = —Ti,o/x2 ,o placed

at the beginning of the line, the impedance at the nth four-

terminal rvill be, for very large n,

(56.11)

X>.u
~

|2
'‘

2/2 .

since from Eqs. (55 .8) and (55.10) the exact solution is

Xl,» = Zl£l”i/l,0 + Z2?2'‘2/!.0
I

2:2,n = ?l’*2/l,0 + ^2"2/2,0
j

(55.12)

(55.13)

and is negligible for very large n. This means that, except

for the first few four-terminals, the impedance for very large n

does not depend on the impedance at the end. This impedance

is one of the characteristic impedances of the four-terminals that

make up the line; the other one Zi is obtained by reversing the

condition.

Substitution of Eqs. (55.9) and (55.11) into Eq. (55.13) yields

the relations

Ti,n = X [((«’*' + ze~"'')xi,o — 2fz(sinh ny)x%t^
)

(55.14)

= -T"!. [“ 2(sinh nj)xi,Q + + re"^'^)x2 ,o]
)

2! “T r /

vvhei-e we have 8et

. Zi == z, 02 = —f (55.15)

Equation (55.14) is called the canonical form of the line equa-

tions. They contain only three constants: the two character-

istic impedances of the four-terminal and the propagation

constant 7 .

66 . Application of the Theory to a Reversible Four-terminal

Equation (54,6) gives us the characteristic impedance of a

four-terminal in terms of the constants of its circuit. A reversible

four-terminal is characterized by the condition hn = hn', hence,
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for a reversible four-terminal we have
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* = f.^ (66.1)

This value is the geometric mean of the impedances of the four-

terminal with open circuit and with short circuit. For the open
circuit 2' == co^ and z = -“(622/& 21), while for the short circuit

z' = 0 and 2:
= — (bia/fcn) [Eq, (54.3)]. The impedances

[— ^
yb^i bii

and
bift bn

621 522
(56.2)

are called the image impedances. They are the geometric mean
of the impedance z on open circuit and short circuit for the four-

terminal and the reversed four-terminal, respectively. They

(a) (6)

Fig. 56.1.

are the same and equal to the characteristic impedance in the

case of a reversible four-terminal. This coincidence disappears

for other cases.

Equation (55.14) becomes for a reversible four-terminal

== D
Xi,n == (cosh ny)xi,Q — {z sinh ny)x2 ,o

+ (cosh nj)X 2 ^Q

The image impedances (56.2) are not directly connected with the

properties of the row of similar four-terminals. This is better

shown by proving that they represent the surge impedances of a

row of symmetrical reversible four-terminals obtained by joining

a given four-terminal B to its reverse R, Figure 56.1 shows a

row of alternate R and B four-terminals. It can be considered

either as a row of cells in the order (B^R) or as a row of cells in

the order {R,B),

Let us take the first case and write down the corresponding
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matrix [Eq. (51.2)], which is simply the product of R and B
matrices in this order:

a, (B,R) four-terminal

Matrix: H ‘ P = (
”

1
“ ^12521 Tiibi2 + Ti2b2^

Hh ^22^21 r2i&i2 "f* ^22^22/
(56.4)

When the nt coefficients from Eq. (52.3) are substituted,

R'B /biib22 + 5 i2521

\26 11621

2612622

611622 + 612621
(56.5)

This represents a reversible four-terminal since the two diagonal

elements are equal [Eq. (52.6)]. It has only one surge impedance,

which, according to Eq. (56.1), is given by the square root of the

ratio of the nondiagonal elements, and this is just Zj,, the first

image impedance. The second combination yields Zjtr Electri-

cal engineers have frequently paid too much attention to these

image impedances, which correspond to no essential property

of the B matrix itself.

67. Passing Bands and Attenuation in a Line of Four-terminals

Whether the waves propagating along a line of four-terminals

are attenuated or not is determined by a [Eq. (55.5)]. If a = 0,

then there is no attenuation and the waves will be passed by

the line. This condition yields

?i = cos P ± j sin p (57.1)
2

If we set b = + 622), then Eq. (55.4) becomes

= 6 + - 1 = ± i (57.2)
2

Comparison of Eqs. (57.1) and (57.2) shows that

cos = 6 real, — 1 < 6 < 1 (57.3)

This is the general condition for propagation of waves without

attenuation. It can be obtained also from (55.5) since a == 0

leaves us with

cosh 7 = cos = 6 = yiQ)n + 622)

If our four-terminal circuits contain no resistance, the Uk of

Eq. (48.14) and the Xik and the Zik of Eqs. (49.3) and (49.4)

are all pure imaginary. It follows that ai and 02 of Eq. (49.8)

are real and 6 and c of Eq. (49.8) are pure imaginary. Hence, the
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matrix elements for a four-terminal without resistance are
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with
^11, fei2, 622

&12 = jl^i2 and 621 = jlS^i
(57 .4)

where 5 ii, 622, 1^12, and P21 are all real. Thus for this case the

conditions that propagation without attenuation occur are

&11, f)22 real

— 2 ^ bii -f- 622 = 2 (57 .5)

If resistances are present, the first of these conditions is replaced

by Eq. (57 .3), which says that the sum of &11 and 622 shall be real,

i.e.j that 611 and 622 be complex conjugates. This is equivalent

to saying that, in general, we may have propagation without

attenuation if Ifcn + 622! ^ 2 and either the circuit contains zero

resistance, or positive and negative resistances occur so that the

net resistance is zero (611 = ?)22*)*

For a reversible four-terminal, the characteristic impedance is

given by Eq. (55 .7).

^ ~ ^22

bn 621
622) (bn + 622)^ (57 .6)

on using Eq. (57 .2). For a reversible four-terminal 611 — 622 = 0

and hence

. ,

jVi-
Z = ± jT

O21
(57 .7)

If Eq. (57 .3 ) is satisfied, both numerator and denominator of

Eq. (57 .7) are pure imaginary, which means that z is real Thus
z is real in a passing band and pure imaginary for other frequen-

cies for a reversible four-terminal The statement cannot, of

course, be extended to nonreversible four-terminals.

68, Reflected Waves in a Line Terminated by an Impedance {0

Let us assume z and f are the characteristic impedances of a

line of four-terminals, and fo is the impedance at the left end,

terminated by four-terminal 0 . Then

-fo = ^ (
68 . 1 )

A wave propagated to the left will be partly reflected. With the

notation of Sec. 55
,
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p = coefficient of reflection = —
2/2,0

— ^2^2,0 _ ^2+^0 _ r To
2)

Xi,Q — ^1X2,0 —fo — 2:1 fo + ^

since 2^2 = -f. Evidently, if fo = f, there will be no reflection.

From this it follows that, to connect two lines of four-terminals

without reflection, the characteristic impedances of the two must

be equal. In all other cases there will be at least partial reflec-

tion (for frequencies in the passing band of the line that receives

waves) and total reflection for waves in the stopping bands of the

receiving line. The lack of reflection when the characteristic

impedances are equal is very closely connected with the theorem

explained at the end of Sec. 53 [Eq. (53.8)]. Four-terminals

having the same characteristic impedances are represented by

matrices whose axes have the same slope and coincide. Such

matrices are commutative. This corresponds to the possibility

of reversing the order of the four-terminals without changing the

properties of the line. Now if the four-terminals C and D
taken in either order, (0,D) or (D,C) give the same result, it

certainly means that there is no reflection at their junction.

All these properties of four-terminal lines and their character-

istic impedances represent a systematic generalization of the

simple problems discussed in the first chapters.

59. A Continuous Line Loaded with Two-terminals

In this section we shall consider a line loaded with two-

terminals as an example of the power of the matrix method.

iz IZ

Fig. 59 . 1 ,

Such a line is shown in Fig. 59.1. The line consists of impedances

spaced a distance I from one another on each of the upper and
lower wires of the line. This is very similar to the line loaded

with uniformly spaced equal self-inductances discussed in Sec. 11.

Here, however, we do not specify the elements contributing to

the impedance except to assume that there is no resistance;

t.c., z is pure imaginary.

2:' real (59.1)
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The impedance z' of any arbitrary two-terminal can be shown
to vary with the frecpiency according to the general law

— 0)0*^) (o)- — 0^4^)
‘ * '

(w“ — a>i)(cij“ — ^3“) ' * *
(69.2)

where co = 2vv and oji < ^02 < <^>3 < • • . Equation (59.2)

is valid as long as the two-terminal contains only a finite number
of circuit elements and no portions of a continuous line. A
typical curve of z' as a function of co is plotted in Fig. 59.2. The

Fig. 59 .2 .

points o>x and 6?3 correspond to points of antiresonanee, and

and W4 correspond to points of resonance. The number of such

points can be increased at will by properly choosing the arrange-

ment of the two-terminals, since this determines the number of

branches in the {Z,oy) curve. An impedance law (59.2) can be

obtained with a number of different circuits, some examples of

which are shown on Fig. 59.3. In Fig. 59.3a, Lt is the self-

inductance at very high frequencies, and the circuit LiCi has a

proper frequency £t?i, while LzCz has a proper frequency W3 .

XiCia)i2 = 1 LzCz^z^ = 1

Frequencies C02 and c«>4 lie between c>>i and W 3 and above 0) 3 .

Another type of circuit is shown on Fig. 59.3 where

Lo = “h = 1? = 1

We shall find different types of passing and stopping bands in

the continuous line loaded with two-terniinals, some of them

l)eing characteristic of the two-terminal and some others of the

loaded structure. The frequencies wi, C03 ,
0)4 .. . are char-

acteristic of the two-terminals used for loading. In the neigh-
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borhood of wo and 6>4, = 0 and the line works as if it were not

loaded at all; hence we find passing bands. In the neighborhood

of o>i and coz we find 2?' == oc, hence stopping bands. These

bands are referred to as two-terminal bands. In addition, the

arrangement of the two-terminals may yield further bands, and

these we refer to as structure bands. These latter bands depend

principally on the distance of separation of the two-terminals.

Lo

(a) (b)

Fig. 59.3.

Now let US apply the theory of matrices to this line to obtain

further information on these bands. There will be two parts

of the line to be considered: the two-terminals themselves and the

lines joining them. The matrix for the lines is obtained from

Eq. (55.14) or (56.3). In this case the two values of the char-

acteristic impedance f and z are to be set equal:

^ z = k (59.3)

and we assume zero resistance so that y, the propagation con-

stant per unit length, is given by

y = j0 (59.4)

Then the matrix is obtained from Eq. (56.3), where we substitute

I for Uj assuming 7 to correspond to a unit length of the line.

(

cosh yl —k sinh

— ~ sinh yl cosh yl

From inspection, we see that the matrix for the two-terminal

itself is

A'n b'uN /I -A
\b',i b'J -“Vo 1 /

(59.6)
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Then the matrix for a complete section of the line is given by

/Bn £i 2\ _ /b'n /bn bi^
\B21 B^2/ \b'2l b' 22/ \b2l ^22/

(

cosh 7^ + I
sinh yl

- i sinh yl

—z cosh yl — k sinh yl

cosh yl

(59.7)

To investigate the passing bands of our line loaded vith two-

terminals, we refer to Eq. (57.5). According to this equation,

the line will pass frequencies whenever

\Bn + ^22
! ^ 2 (59.8)

The other conditions in Eq. (57.5) are automatically satisfied

because of our assumption that z and 7 are pure imaginary.

Using Eqs. (59.7) and (59.8), we obtain the condition

I

cos = cosh 7^ +^ sinh yl = cos SI (69.9)

The limits of the passing bands are given by

jcos B\ = cos ^l — sin ^l\ (59.10)

There are two cases to be considered, corresponding to the two

types of bands mentioned earlier:

1 . Two-terminal Bands.—Two-terminal bands contain the

point = 0, since for this case Eq. (59.9) is always satisfied.

There will be a certain range of values for z^ including the point

=rr 0 for which Eq. (59.9) is satisfied, and this range comprises

the two-terminal passing band.

2 . Structure Bands .—A structure passing band will have for

one of its limits

= Ntt where jS =

since this gives

sin fil = 0, cos = ±1 (59.11)

and condition (59.10) is satisfied. The width of the band can

be obtained in the following way: If one limit of the band cor-

responds to cos JSi = ±1 (when Bi == Ax), the other limit is

found for cos £2 = + 1 and B%^ {N + l) 7r. Let us assume,

for instance, l^'l > > k] the second limit is obtained for
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= NtT + € small

cos {N + l)7r = — cos Ntt = cos
2k

sin pi

= cos (Ntt + e)
2k

sin {Nt + e)

cos Nw — ^ cos Ntv * €

Hence

e =
Ak

(59.12)

This gives the width of narrow bands, assuming that z' is approxi-

mately constant throughout this passing band, and \z'\ >> k.

Let us apply this theory to two simple cases : a line loaded with

inductances, and a line loaded mth capacitances.

a. A line loaded with inductances.—In this case

Z' = LoO)

where Lo is the value of the inductances. 2 ' = 0 only for co = 0.

The corresponding two-terminal passing band is the well-known

low-frequency band. The structure passing bands are found

for high frequencies. One of the band limits is

0) = —^

—

(59.13)

and the band width is given by

Ak^ _ ^ h
Lqo) LqNtW Nt Lo

(59.14)

since, if Ls and Cs are the inductance and capacity per section I

of the line,

k = w = -jL=: (59.15)

Figure 59.4 shows the curve of co vs.

B == cos“^ cos pi
2k

sin pi

b, A line loaded with condensers.—In this case we obtain

1 Ah^ ^ (59.10)

where Co is the capacity of the condensers and e the width of the
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Fig. 58.5.

structure bands. The two-terminal band disappears since

z' = 0 only for CO = oo . The upper limits of the structure bands

again appear at

N'kW
(59.17)

Figure 69.5 shows the frequency as a function of B.
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60. A Continuous Line Loaded with Four-terminals

In this section we shall treat a problem similar to that of the

last section except that we replace the two-terminals with four-

terminals. Then the matrix for the four-terminals has the

general form given in Eq. (55.14). The matrix (fc,-,) for the line

B

Fiq. 60 . 1 .

connecting the four-terminals is given by Eq. ,(59.5). Multiply-

ing these matrices as we did in the last section, we obtain for

one section of the line (see Fig. 60.1)

A'n h'lA

\h'n h'J

^ /te-*' -f- 26
-^'

2 sinh y'

—2z^ sinh

2^^ -t- te-'>

inh 7'\

re-r' )

1

z + t

cosh yl ~k sinh yt

— i sinh yl cosh yl

(60.1)

(60.2)

J.Z./

^(h'n b\,\(bn hiA
\i'n Vn) \& 2 i ^ 22/

1

z + ^

-—sinh 7' sinh yl + cosh + ^e'^)

—2 sinh 7' cosh yl — -f
^

sinh yl

-k sinh yl{ze^'^ + — 2zt sinh y' cosh yl

2k sinh y' sinh yl + cosh ylize'^ +

where k is the characteristic impedance and y the propagation
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constant of the line net unit length, z and f are the character-

istic impedances, 7 ' is the propagation constant of the four-

terminal, and I is the distance between four-terminals.

We assume that the four-terminals contain no resistance that

gives the condition

¥22 real

5 'i2 ,
b^2 i pure imaginary

(60.4)

In a passing band of the four-terminals, 7 ' = jfi' is pure imaginary,

and this together with condition (60.4) tells us that

(60.5)

In a stopping band of the four-terminals

7 ' = a' real, z and f pure imaginary (60.6)

If the four-terminal is reversible, we know that z and f are equal

and hence real in the passing bands, a result obtained in Eq. (57.7).

Now the condition for a passing band in the line as a whole is

given by

jcos
2

IBii “b £ 22
!

“ jcosh 7 ' cosh yl + - sinh 7 ' sinh 7 ^!

I

^ T" S
'

g 1 (60.7)

Again we shall find that we can divide the passing bands into two

classes: ( 1 ) four-terminal bands due to the four-terminals, and (2)

structure bands due to the spacing of the four-terminals.

To obtain the four-terminal bands we must consider fre-

quencies in the passing bands of the-four-terminal. Both 7 =
and 7' = ijS' must be pure imaginary. We set

Z = Zr+ jZi
I

^ = Zr jZi
I

(60.8)

on using Eq, (60.5). Zr and Zi are the real and imaginary parts,

respectively, of z and ^ This gives on referring to Eq. (60.7)

|cos Bj =
j!/.2

I

I g 2 - 2

cos i3' cos sin sin ^l\ £ 1 (60.9)

Passing bands will include points for which

+ Zr^ + Zi^

2kZr
= +1 cos B = cos O' + /3Z) (60.10)
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holds. To obtain further results, we must know the character-

istic impedances of the four-terminal as functions of the fre-

quency. If the four-terminal is reversible, = 0, and condition

(60.10) reduces to

Zr= ±k (60.11)

The condition (60.11) means that the loaded line has passing

bands containing all frequencies (in the passing bands of the

four-terminals) for which the characteristic impedance of the

four-terminal equals that of the line (no reflection at their junc-

tion). For frequencies in a stopping band of the four-terminal,

2 == jz', r == if' (60.12)

Equation (60.7) becomes

[cos jB| = icosh a! cos -f
k‘^ - 2'r

k{z' -H f')

sinh a' sin m g 1 (60.13)

In general, Eq. (60. 13) is not satisfied. However, there will be

a structure passing band around the frequency for which the

cos B is zero. This is given by

cot = 2'f' - k^

k{z' -b n tanh of (60.14)

In connection with this problem it is interesting to note that

the matrix method greatly simplifies some of the computations

discussed in Chap. VIII. For a reversible four-terminal,

Eq. (60.7) becomes

cosh t' cosh + 50 + 0 sinh 7 smn yL\ g 1 (60.15)

since z = f. This problem corresponds exactly to the one

discussed in Sec. 44, and if we set

y' — X'J'h ' yl = xth
I

k = Xh z ~ Xi
\

(60.16)

we obtain Eq. (44.12). The direct computation given in Sec. 44

led to a fourth-order determinant that is equivalent to the

determinant of the matrix in Eq. (60.3). The theory developed

in this chapter thus appears as an important generalization of

the problem of Sec. 44.

Selected References

Brillouin, L.: Rev. gin. ilec., 3S, 3-16 (Jan. 4, 1936); 42, 771-778, (Dec. 18,

1937); 42, 803-816 (Dec. 23, 1937).



CHAPTER X
CONTINUOUS ELECTRIC LINES

61. Transition from a Line of Four-terminals to a Continuous
Line

In the previous sections vre discussed lines composed of four-

terminals. Each four-terminal was characterized by a matrix
that produced finite changes in the current and electromotive
force. We may think of these four-terminals as becoming
very small so that their matrices produce very small changes
and in the limit these changes will be zero. Thus, if dz is an
infinitesimal portion of the line, we may take the matrix (b^j)

to be

/ 1 -|- €ii dz €12 dz

\€21 dz 1 -f €‘22 dz
(61.1)

which differs very little from the unit matrix. Equation (61,1)

may be written

(f,,.) =: = 1 + + • •
• (61.2)

where we neglect terms in dz higher that the first and

Now the determinant of {h,j) must be equal to one. This

condition is fulfilled to the first order in dz by setting

€11 — — €22 (61.3)

Since our transformation is now an infinitesimal transforma-

tion, it follows that

X\ s= bixXx + bi2X2 = + dXi = OJl + (ciiXi + ex20!^2)dZ

x'

2

= ^21^1 + b22^2 = 3^2 “h dx2 “ iCa + (€21^1 + €22X2)dZ

227

(61.4)
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from which we obtain

dxi

dz

dx±

dz

€11^1 + €12^2

€21X1 + €22X2

€22 = *”€11 (61.5)

For the special case of a reversible four-terminal, bn == 622 or

€11 = € 22 - This result combined with Eq. (61.3) yields

€11 = €22 = 0 (61.6)

An example is given by a telegraphic cable. Let the cable have

series resistance, series self-inductance, shunt conductance, and

shunt capacity per unit length given by i?, L, G, and C, respec-

tively. Then

dV = (i? + i<x>L)dzIj d/ = ((? + io)C)dzV

which in the usual notation becomes

where

dxi dxz

€11 = «22 — 0)
*12 = 72 + iwL

*21 = G + i<iiC

(61.7)

(01 .8)

The first of Eqs. (61.8) shows that the cable is composed of

reversible four-terminals. The four-terminals are, of course,

infinitesimal.

We may obtain equations for the propagation of waves along

a line composed of nonreversible infinitesimal four-terminals by

splitting the waves up into two simple waves propagating in

opposite directions, as before. If we let y be the propagation

constant (attenuation and phase shift) per ubit length of the

line, a single wave propagating in a given direction is represented

by
dx^

dz
yxs (61.9)

Combining Eq. (61.5) with Eq. (61.9), we obtain

(6U - y)Xx + 61^2 = 0
j

€21^1 — (7 + €il)a?2 — 0 j

The condition that Eq. (61.10) be soluble for xi and xt is that the

determinant of the coefficients vanish. The resulting equation
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for y is
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y2 _ — € i2€21 “ 0
or

7 = ± V^ll^ + €12€21 (61.11)

The values of 7 given by Eq. (61.11) are the proper values of the
matrix (€,*j). They are, in general, complex. For the case of

reversible four-terminals

and
7 = ± \/€12€21

X2 7 \ €21
(61.12)

k is the characteristic impedance of the line and has the same
value for the two directions of propagation given by ± 7 . The
characteristic impedances in the general case are different.

fci

^'2

_ ±7 + €11

^^2 ±7 “ €n €21
(61.13)

62. Examples of Four-terminal Representation of Continuous
Lines

A line of infinitesimal four-terminals may be used to repre-

sent certain continuous lines. In this section we shall discuss

some particular examples of this.

1 . A Line with Coefficients Varying Exponentially ,—In a num-
ber of practical problems (exponential electric line, exponential

horn for a loud speaker, etc.) one has to deal with continuous

lines whose coefficients vary exponentially with the distance.

There is a close connection between such exponential lines

and our general type of (e,/) line. Let us start from the equa-

tions of Sec. 61 and make the following transformation:

Xi == xi = X2 =
X2 = (62.1)

Ai2 = A 2 I =

Then our general equations (61.5) yield
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These are the equations of propagation of Xi and X 2 along the

exponential line characterized by Au and A 21 .

The solution obtained in Eq. (6L9) for a wave {xijX^ on the

line was

xi = xt = x±,Qe^^^

where y is the propagation constant (61.11); hence the solution

for the exponential line is

XT = X 2 = (62.3)

The plus and minus signs before y correspond to the two direc-

tions of propagation. Thus a finite length of exponential line

behaves as a finite length of (e) line terminated by a transformer

of ratio

As an instance of an exponential line, let us consider an electric

line with the following values of L and C per unit length:

L.=: C =

w’^here en is any real number. Calling Xi the voltage amplitude

and X 2 the current amplitude and dropping the common
we obtain the usual line equations

J = io>LXi, = i^CXt
dz ’ dz

which are similar to Eq. (61.7) when i? = (7 == 0. These

equations of the exponential line have exactly the same form
as Eq. (62.2) and possess solutions of the type (62.3). Sub-
stituting Eq. (62.3) in the line equations gives

(“€n i: t)Xi = ioiLXi

ioiCXi = (eii + 7)X2

which are two simultaneous linear equations whose determinant
must be zero in order to yield a nontrivial solution; hence

= €u' - 0>^UC, (62.4)

which is exactly the same as Eq. (61.11). The interesting point
here is the frequency dependence. The exponential line behaves
like a high-pass filter mth a lower cutoff frequency at cao.

LoCqC^O^ = €xi^
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since

w < Wo, 7 ^ = LoCo(wo^ — 6)
2
), 7 real: attenuation

w > 6>o, 7 - = —LoC'o(6)2 — wo“), 7 pure imaginary: propagation

This result is familiar to electrical engineers and was given here

as an example of the general theory. The characteristic imped-

ance of the line varies exponentially as phase

velocity above cutoff is 1/\/LoCo(1 — cooV^^)-

2. € 11 , €i2 ,
621 Arbitrary Functions of z.—As in the first example,

we express Xi and X2 in terms of cn:

Xi — XiC^, X2 — A'2C“^ (62.5)

where

<P= 1
^
€u dz

3
(62.6)

The coefficients Av> and A 21 become

A 12 — €126 A 21 — €2 iC^^ (62.7)

and Eq. (61.5) yields

"I-'
-

17 - (62.8)

To obtain a four-terminal corresponding to a finite length of

the line, we write

Xi{z) = biXz)xi{0) + bi,Xz)z2iO) i = 1, 2 (62.9)

Increasing the length of dz yields (from the rule for the multipli-

cation of matrices to obtain the effective four-terminal resulting

from two four-terminals connected in cascade)

b{z + dz) == h{z)b{dz) = [1 + (e)dz]h(z) (62.10)

on substitution of Eq. (61.2). Equation (62.10) may be written

explicitly

dbn
dz

^ ^nbii + € 12621 ,

db%i

dz
€21611 + €22621,

dbi2

dz

db22

dz

€1x612 + €12622

€21612 + €22622

(62.11)

Equations (62.11) consist of two sets of equations of the type

(61.5). The four-terminal equivalent to a length z of the line is

obtained by integrating these equations.
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3. A Line with Constant e Coefficients .—We have already seen

that such a line gives propagation with the propagation constant

y of Eq. (61.11) and the characteristic impedances hi and fcs of

Eq. (61.13). Then the matrix (6,/) at 2 = 0 is just the unit

matrix

?)

The matrix elements

ki + fe

^12 = 7—
ki "t" ^2

^21 —
~1

ki + fci

f>22 ==
1

ki -f* ^2

(62 , 12 )

(/ci6T'^ + k2e~^^)

satisfy the initial conditions and the relation (61.13). Further,

(bij) has determinant one and, in general, represents a finite

nonreversible four-terminal. The matrix (€,7) may be found by

taking the z derivatives of the matrix (bij) at 2: = 0.

€n

€12

^2 — ki

k^ ^
- 1

hi + k2
2t,

^kik2 o
€21 = i~S. hki + kt

k\ — k^
=

fci +1-;
^

"

(62.13)

-en

If fci = ki, we have eu = 0, which means that the four-terminal

is reversible. The line will have zero resistance if

eu is real; €12,621 pure imaginary (62.14)

Equation (62. 12) is identical with Eq. (55. 14) of Chap. IX.

63. Application of Hill’s Equation to a Continuous Line

The most general example of a continuous periodic line is

given by assuming eu, eu, and €21 periodic functions of z, with a

common period L. The general wave solution is given by a

superposition of the two particular solutions (Floquet's theorem)

:

a:i(z) = e±'^7i(z) 1

Xi{z) = e^'>'‘fi(z)
I

(63.1)
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where fi and /2 are two periodic function, each with period L.

Equations (63.1) are of the same form as the solutions for

Jylathieu’s and Hill’s equations, discussed in Chap. YIIL Hill’s

equation is the appropriate one if \ve take

(63.2)

where F{z) is periodic in z wdth period L. Mathieu’s equation

is obtained by taking F(z) a sine or cosine function. Equation

(61.5) then becomes

so that

dxi

dz
CX2,

dx%

dz
\F{z)Xr

^ = F{z)x^ (HUl) (63.3)

Equation (63.2) implies, evidently, that we are dealing with

reversible circuits that may, if desired, contain positive and

negative resistance, since en = €22 == 0 but 612 is not pure imag-

inary. Resistances are avoided by taking c == i.

We may reduce more general examples to Hill’s equation.

To do this, we set, as in Eq. (62.5) to Eq. (62.8)

dXi
<P =!endz,

An =

^21

€126""^^,

dz

dX2
dz

= A 12X2

- A21X1 (63.4)

where €n, €12, and €21 are assumed periodic with period L in z.

Increasing the length of the line by L gives

<p(z + Z/) = (p(z) -h I where I - (63.5)

where I will be zero only if eu has an average value of zero.

Ai2 and An will be multiplied by and respectively.

Then Eqs. (63.4) become

A 21X1

and if we set

z^ == iAxtdz (63.6)
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we obtain

dz'^ Ai2^
Equation (63.7) is HilFs equation if

if = 4^ =
A 12 €12

(63.7)

(63.8)

is periodic. This is the case only if I is zero; i.e., only if eu

has an average of zero. This means that we may reduce the

equations for a periodic line of nonreversible infinitesimal

four-terminals to Hill’s form only if a section L as a whole

appears as a reversible four-terminal. If this is the case, the

corresponding continuous periodic line may be reduced to a

line of identical reversible four-terminals.

64. Normalization of the Matrix (c^;) and the Pauli Matrices

We have been led in the study of continuous lines to

introduce matrices of the form

(6.f) = )
(64.1)

\e2l €22/ \€2I “€ii/

The square of the matrix (eif) is diagonal.

where l€i,| ’is the determinant of (e,*;)* We may introduce a

normalization factor £!(z) so that the square of (€x;) is 1. Assxinv

ing this to be done, we may write

If we assume (ct/) to be normalized, the factor £I(z) will appear

explicitly in the other equations.

== “h €i2a;2)

(64.4)
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If we let X represent a column matrix, \xith. elements Xi and x^j we
may write Eq. (64.4) symbolically as follows:

dx

dz
— E (2?) (€if)X

From Eq. (64.3) it follows that

= 1; (ctj) == (etv)-’^

Hence Eq. (64.5) becomes

1 . .dx
E{z) dz^^

or

1 /

B{z) V“ Hz

1 ( dxi dx^
Eiz) V'' 'dz dz)~

. dx^

dx^

Xi

x%

(64.5)

(64.6)

(64.7)

(64.8)

From Eq. (64.7) it follows that we may write the operator

equation

I / \ ^ 1

B Tz
~ ^ (64.9)

If we now assume E and the Ui to be constant and not to depend

upon Zy the matrix operator (ei;) and the differential operator

didz become independent and hence commute on squarinj^

Eq. (64.9).

Then

i-ii
E^dz^

(64.10)

E^dz^
(64.11)

which is the usual wave equation after the time-dependent part

of the solution has been separated out. We assume xi and xt

both periodic in t with the same frequency (a.

We may now generalize to the three-dimensional wave equation.

We take the three space variables to be Ziy Z 2 y
and Zz and intro-

duce the three constant matrices (€)x, (e) 2 ,
and (6)3 and a con-

stant E such that ’

(64.12)
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The operator equation analogous to Eq. (64.9) is

and squaring yields

provided that

(^)^2 5. {€)i{€)k + (€)fc(€)i = 0,

(64.13)

i 9̂ k (64.14)

The first set of conditions is analogous to the normalization

condition (64.3) for one dimension. The second set requires

that the matrices anticommute. Three solutions satisfy Eq.

(64.14) and are the Pauli matrices

(0i = (e)3 =
(^0

^ (64.15)

It can be shown that any other set of solutions is reducible to

a linear combination of the solutions (64.15).

The Pauli matrices are Hermitian symmetrical, a type that

we encounter for the first time in this discussion. The first two

matrices are reversible, and the third is not. This corresponds

to the fact in the Pauli theory of electron spin that these matrices

refer to the magnetic moment of an electron having its spin

directed along the axis, a special feature that introduces an

asymmetry along the zz axis.

The method that we have employed is based on Dirac^s

method for the linearization of the relativistic wave equation

of the electron. Dirac^s problem involves four-rowed matrices

instead of the two-rowed matrices that we have so far encount-

ered. In the next section we discuss a problem closely connected

with Dirac^s.

65. Three-phase and Polyphase Lines

Matrices with more than two rows occur in polyphase lines.

For instance, a six-terminal inserted in a three-phase line, as in

Fig. 65.1, will have four variables at the entrance and an equal

number at the exit. We let
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= t? x'l

X2 = i x\

x\
Xi I x'a

where the variables are as in Fig. 65.1. Then the matrix for

the six-terminal will have four rows and four columns. The
elements will be defined by

x'i = h hihXk (65.2)
k

It is a general rule that a 4n-tenmnal in (n + 1) parallel lines

will require a matrix with 2n rows and 2n columns.

Fio-. 65.2*

The determinant of the matrix (6^,) for the six-terminal is

no longer unity as for the four-terminal. There are six con-

ditions resulting from the circuit theory, and their form is

quite different and leads to consequences different from the

four-terminal.

The diagonal form of the matrix (bn) corresponds to the super-

position of two simple waves traveling in opposite directions

for the four-terimnaL The same general statement is true

for the six-terminal except that there will be four simple waves

to be superposed instead of two. It does not appear possible, in

general, to obtain a simple relation among these four waves.

We shall consider a particular type of six-terminal, built

up out of two four-terminals as in Fig. 65.2. Then we may
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write Eq. (66.2) in terms of the matrices of the component

four-terminals.

x'l = qnXi -f- qi2SC2

x'i = qnXi + qnXi

x'i = pnX3 + P12X

x'i = pnXs + P22X

so that the matrix for the six terminal is

::1
(65.3)

(hi)

/qn ?i2 0 0

qn 322 0 0

0 0 pn Pn
(0 0 P21 pi%j

(65.4)

Another matrix may be obtained for the six-terminal by making
the connections as in Fig. 65.3.

(hd - (65.5)

If we let the four-terminals making up the six-terminal become
infinitesimal, we have

/pii Pi2\ ^ /I + iriidz TTi-idz \

\P2i P22) \7r21 dz 1 -h 7r22 dz

)

(qn 3 i2\ ^ /I + xiidz xxidz

\32i 322j \X2i dz 1 -j- X22 dz

so that Eq. (65.4) becomes

(hO =

)
(65.6)

/I 0 0 /Xu X12 0

1

0

0

1

o'

1

+ dz

1

' X21

,0

X22

0

0

Til

\o 0 0 1 lo 0 ir2i

0

0
(65.7)
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The four-terniinals (and hence the six-terminal) will be reversible

if

Xll ~ -TTii — X22 = X 22 = 0 (65.8)

We may use the expansion (65.7) in Eq. (65.2) to obtain four
linear differential equations of the first order for xi^ X2, x^, and X4 .

These four equations are of the same form as the Dirac equations
for the relativistic electron provided we make the generalization

to three dimensions. A set of four-rowed matrices will occur
in the theory. There are four possible independent choices

for these matrices, and all these matrices are made up of the
Pauli matrices. All the matrices are Hermitian and have the
following diagonal form:

7i 0 0 • * • •

0 72 0 • • • *

0 0 73 • • • •

—71 0 0 •

0 —72 0 •

0 0 —73 •

In other words, for each wave with propagation constant 7i*,

there is a wave with propagation constant -—yi. These two
waves will propagate in opposite senses. ^

^ Brillouin, L., J, phys.f 7» 401 (1936).
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Branch, acoustical, 15, 55, 63, 67,

128, 158, 161

optical, 15, 55, 63, 67

Bravais hexagonal lattice, 149, 154

notation for crystal planes, 99

Brillouin, L., 97, 167, 171, 178, 192

C

Cable, 3, 194

Campbell, 13, 193, 194

Canonical form of the line equations,

214

Capacity, 188, 228

Carrier wave, 75

Cauchy, A. L., 3~10

Cell (cells), 97

asymmetric, 82, 84

direct and reciprocal, 132
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Cell (cells), elementary, 97, 131

of the lattice, 15, 65

Change in periodicity, 59

Characteristic impedance, 49, 69,

80, 81, 83, 85, 86, 88, 91, 92, 194,

196, 209-211, 213, 214, 217, 218,

224, 226, 229, 231, 232

Characteristic temperatures, 164,

166, 171

Chodorov, M. L, and Manning,

M. F., 171

Clairaut, A. C., 3

Classical thermodynamics, 166

Close-packed hexagonal lattice, 154

Close-packed spheres, 149, 150

Cloud of electrons, 121

Cohesive forces, 168

Complete row or plane system, 130

Complex amplitude, 147

Complex variables, 70

Conductance, 228

Continuity across the boundary, 127

Continuous medium, 32

with periodic variations, 106, 108

Continuous periodic structure, 130

Continuous string, 19

with periodic structure, 67, 68

Contravariant unit vectors, 97

Coupled harmonic oscillators, 58

Covariant unit vectors, 97

Critical frequency, 9, 13, 14, 18

Cross section, 127

Crystals, 121, 122, 193

Cubic lattice, 152, 153

body-centered, 135, 148, 153, 159

face-centered, 134, 135, 148, 150,

153, 159

Cutoff, 9, 10, 33

frequencies, for longitudinal and

transverse waves, 164

frequency, 19, 32, 38, 162, 164,

230, 231

wave length, 162

Cyclic conditions, 159, 161

D

Davisson, 123

De Broglie, M., 64, 123, 158

Debye, 162, 164-166, 167, 171

Dense spacing, 31

Density, 85

of points in the lattice planes, 133

Determinant, 202, 204, 206, 212,

226, 228, 230, 232, 237

infinite, 141, 142, 179

Diagonal elements, 212

Differential operator, 235

Dirac method, 236, 239

Direct and reciprocal cells, having

reciprocal volumes, 132

Direct and reciprocal lattice, 94, 95,

107, 123, 131

Direct or reversed pendulum, 190

Discontinuities, 130

in the v vs. (a) curve, 106

Discontinuous string, 13, 193

Dispersion, 10, 69, 70

Distance, of interaction, 33

between lattice rows or planes,

117, 133

Distortion, 70, 76

Double line, 39

Doubly and triply periodic func-

tions, 99

Dulong P. L., and Petit, A. T., 166

E

Elastic force, 81

Elastic waves, 158, 191, 193

Elasticity modulus, 85

Electric-circuit theory, 194

Electric lines, 69, 193-196

continuous, 227

loaded, 40, 84

Electrical analogue of the one-

dimensional diatomic lattice, 47

glossary, 195

Electromagnetic energy, 40

Electromagnetic waves, 158, 193,

194

Electron cloud, 127

Electron spin, 194, 196, 206, 236

Electronic density, 102, 121, 125,

127, 192

Electronic waves, 190, 191, 193
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Electrostatic energy, 40

Elementary cell, 131

in the direct or reciprocal lattice,

97

Elementary lattice, 160

Plnergy (energies), average potential

and kinetic, 92

density, 72, 73, 89

equipartition of, 166

flow of, 69, 72, 73, 85, 86, 89, 90

of a solid, 164

velocity, 69, 70, 72, 74, 81, 91

Entropy, 168

of a solid body, 167

Equidistant coupled oscillators, 21

Equipartition of energy, 166

Euler, L., 2

Ewald, P. P., 136, 138

Expansion, 168

lOxponential horn, 229

Exponential line, 229, 230

p]xtension modulus, 31

External pressure, 168

F

Pace-centered cubic lattice, 134, 135,

148, 150, 153, 159

Filter, band-pass, 193

high-pass, 13, 14, 19, 36, 42, 230

low-pass, 9, 13, 19, 36, 37, 40, 42,

84

Filters, 12, 193, 194

Finite, 81

Finite lattice, 28, 34, 69

Finite piece of crystal, 159

First-order correction on the fre-

quency, 115

First zone, 137, 138, 154

Floquet, 140, 173, 175, 181, 232

Flow of energy, 69, 72, 73, 85, 86, 89,

90

Four-terminals, 195, 200, 203, 205,

208, 213, 214, 225, 227, 237

ha cascade, 211, 231

infinitesimal, 234

infinitesimal, nonreversible, 228

ipyerse, 204

Four-terminals, nonreversible, 217,

228, 232

representation of continuous lines,

229

reversed, 204, 205, 207, 210

reversible, 205, 211, 214, 216, 217,

226, 228, 229, 232, 234, 239

Fourier, J. B. J., 77, 130

series, 2, 3, 35, 143, 184, 185, 191

multiple, 101, 109, 121

French, N. R., 49

Frequency, cutoff, 128

distribution for waves, 157

as a periodic function of the wave
vector, 104, 142

Fundamental interval, 25

G

Generalized Lagrange coordinates,

196

Geometrical representation of mat-

rices, 206, 207

Germer, 123

Goodwin, T. H., 122

Group C 2,
206

velocity, 70, 74, 75, 80, 91, 160

of waves, 70

H

Hardy, R., 122

Harmonic content of oscillations, 189

oscillator, 21, 164, 169

Hartree, 192

Heaviside, 0., 13

Hermitian matrices, 236, 239

Herring, C., 171

Hexagonal lattice, 123, 149, 150, 153,

154, 158

close-packed, 150

first and second zone of, 154

High-pass filter, 13, 14, 19, 36, 42,

230

Hifl's equation, 143, 178-180, 232,

234

with a rectangular curve, 180

Historical background, eighteenth

century, 1

nineteenth century, 3
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Homogeneous isotropic medium with

a small periodic perturbation,

137, 139, 143

Hooke, R., 167

Horizontal tangent, 127

Humbert, J., 173, 192

Hund, F., 171

I

Ideal isotropic solid body, 161

Impedances, 203

characteristic (see Characteristic

impedance)

of electric lines, 84, 209

image, 215, 216

iterative, 209

mechanical, 209

Index of refraction, 9, 12

Inductance mutual, 195, 196

Infinite determinant, 141, 142, 179

Infinite line, 81

Infinite number of branches, 130

Infinite set of lattice planes, 132

Infinitesimal portion of the line, 227

Infinitesimal transformation, 227

Inhomogeneous differential equation,

109

Input impedance, 210

Instability and self-excitation, 189

Interaction between molecules, 23

nearest neighbors only, 31, 72, 80

Interatomic distances, 10

Internal pressure, 168

Ions, 192

Isotropic solid, 158

J

Jones, H,, 171

Junction, of an aerial telephonic line

with a city cable, 49

of two lattices, 30, 85, 87

K

Kelvin, W. T., 5, 10, 11, 33, 193

Kronecker, L,, 67, 141, 143

Kronig, R.de L., 184, 192

L

Lagrange, J. L., 3, 13, 193

Laplace, P. S., 1, 108, 140

Lattice, with basis, 128, 129, 147,

149, 158

body-centered cubic, 135, 148,

153, 159

crystal, 121, 122, 193

cubic, 152, 153

direct, 72, 80, 94, 95, 107, 123,

128, 131, 159

elementary cell in the direct or

reciprocal, 15, 65, 97, 131, 159

finite, 28, 34, 69

hexagonal, 123, 149, 150, 153,

154, 158

of idehtical particles, 19, 26

NaCl, 44, 49, 52, 55, 154

oblique, 97, 102, 125

one-dimensional, 2, 3, 4, 17, 44,

65, 69

polyatomic, 128

reciprocal, 101, 116, 125, 132,

134, 159

rows and planes, 98, 102, 116, 117,

133, 135, 151

Line, 81

with constants coefficients, 232

electric, 69, 193, 194, 195, 196,

227, 236

of four-terminals, 211, 216

impedance of an electrical, 209

loaded {see Loaded line)

Linear combinations, of plane waves,

64

of two exponentials, 113

Linearization of the relativistic

wave equation, 236

Loaded line, 3, 13, 221

with condensers, 222

with inductances, 222

with four-terminals, 224

string, 12, 19, 68

with two-terminals, 218

Longitudinal vibrations, 20, 158,

162, 163, 164

Lorentz, formula of, 11
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Loud-speaker, 229

Low-pass filter, 9, 13, 19, 37

electrical, 13, 37, 40, 84

mechanical, 36, 38, 40, 42

M

Magnetic moment, 236

Manning, M. F., 171

Mathieu, P., 140, 142, 172-182, 187,

192, 233

Matrices, 96, 193, 194, 196, 201, 206,

207, 213, 218, 220, 226, 227,

232, 237

commutative, 209, 218

complex, 206

Heimitian symmetrical, 236, 239

inverse, 202, 206

multiplication of, 203, 207, 209, 231

Pauli, 234, 236, 239

principal axes of, 207, 208, 210, 213

proper values of, 208, 212, 229

reversible, 236

six-terminal, 238

unit, 96, 204, 206, 227

Maximum frequencies, 162

Maxwell’s equations of electro-

magnetism, 70

Mead, S. P., 49

Mechanical filter, 12, 36, 38, 40, 42,

193

oscillators, 189

Medium with periodic structure, 158

Metals, free electrons in, 190

Mixtures of tiny crystals in, 161

Modes of vibration, 2

Modulation, 75

Molecular structure of matter, 10

Monatomic lattice, 72, 80, 128, .159

Morse, P. M., 171, 192

Mosaic, 125, 129, 130

Mott, N. F., 171

Mutual inductance, 195, 196

N

NaCl crystal lattice, 16, 44, 49, 52,

55, 154

Newton, I,, 1, 3, 31, 32

Normalization condition, 236

Number of degrees of freedom, 11, 15

0

Oblique coordinate system and lat-

tice, 97, 102, 125

Oil films on water, 10

One-dimensional diatomic lattice, 44

lattice of polyatomic molecules,

65

lattices, 2, 3, 4, 17, 44

mechanical lattice, 69

NaCl lattice, 44

Operator, 235

Optical branch, 15, 55, 63, 67

medium, 193

type, 128, 158

Orthogonality condition, 110, 112,

114

Oscillations of an elliptic lake, 173

Oscillator harmonic, 21, 164, 166,

169

Output impedance, 209

P

Particles interacting at large dis-

tances, 30

Passing bands, 11, 16, 25, 49, 55,

174, 177, 183

Pauli matrices, 234, 236, 239

Peierls, R., 171

Pendulum, 190

Penney, W. G., 184, 192

Periodic functions, 99

Periodic perturbation, 68; 154, 189

Periodic structure, continuous string

with, 67, 68, 195

continuum with, 106, 107, 108

Perpendicular bisector, 105, 106,

116, 121, 137, 156, 158

Perturbation, 35, 68, 108, 115, 119,

121, 154, 188, 189

of the lattice, 35

small, 64, 186, 191

Phase velocity, 6, 69, 70, 75, 85, 108,

160

Planck, M., 164, 169, 190, 191

Planes, atomic, 136, 138
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Polyatomic lattice, 128

Polyphase lines, 236

Potential-energy density, 89

Poynting^s vector, 93, 194

Principle of superposition, 2

Propagation, of a signal, 74

of waves, 70, 175, 193

of waves in a continuous two-

dimensional medium with a

periodic perturbation, 107

Propagation vector, 109, 131

Proper frequencies, functions, val-

ues, and vibrations of, 2, 3, 11,

212, 229

Pupin, M. L, 3, 13, 193, 194

Q

Quantum mechanics, 196

theory of, 164, 169

R

Radiation pressure, 167, 168

Rayleigh, 167

Reciprocal lattice, 94, 95, 108, 123,

130, 136, 139, 142, 151

Reciprocity, 77

Rectangular lattice, 125

Rectifiers, 196

Reducing all vectors a inside the first

zone, 154

Reflection, 30, 64, 86-88, 91, 207,

213

Bragg's, 113, 115, 118, 120, 122,

136, 138, 191

at a junction, 217, 218

from lattice row, 117

partial, 217, 218

prevented, 81, 86, 92

total, 218

of waves, connection between

passing or stopping bands

and, 64

Refractive dispersion, 11

Relativistic quantum mechanics,

206

Resistance, 38, 217, 225, 228

negative, 196

Resonance, 12, 219

Restricted interval for the wave
number, 7, 18

Row of diatomic molecules, 22

harmonic oscillators, 58

lattice points, 28, 123, 136, 138

S

Schelkunoff, S. A., 93

Schroedinger, E., 190

Seitz F., 171

Self-consistent field, 192

Self-excited oscillator, 186, 187

Self-inductance, 228

Semiinfinite row of particles, 34

Signal, 78, 80

with a finite spectrum, 78

with an infinite spectrum, 80

Six-terminal, 237, 238

matrix for, 238

Size of atoms, 10

Skinne, H. W. B., 171

Slater, J. C., 171

Smoluchowski, R., 171

Space charge, electronic, 121

Specific heat, 45, 158, 167

Spectrum, 78, 80

Spherical first zone, 162, 164

Square-centered lattice, 126, 129

Stable oscillations, 187

Standing wave, 9, 80

Statistical computation of entropy,

169

Stopping band, 11, 16, 24, 56, 174,

177, 183

Straight line in the plane, 98

Strain, 32

Stratton, J. A., 97, 192

String, discontinuous, 13, 193 .

loaded, 12

Strutt, M. J. 0., 180, 192

Superlattice, 29, 35

Surface layer, 35

Surface tension, 30

Surge impedance, 209, 216

Symmetric cells, 82, 84

Symmetry considerations, 121

of the perturbation function, 126
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T

Taylor, B., 2

Telegraphic cable, 228

Temperatures, characteristic, 164,

166, 171

Tensors, 97, 171

Tides in an elliptic sea, 173

Thermal expansion, 167

Three-dimensional lattices, 131

Tlnee-dimensional wave equation,

235

Three-phase line, 236

Transformer ratio, 86, 88

Transition, from a continuous me-
dium to a discontinuous lattice,

153

from a diatomic to a monatomic

lattice, 57, 62

near the discontinuity, 118

Transmission, 88

Transmission bands {see Bands)

Transverse vibrations, 20, 158, 162,

164

Triple Fourier series, 136, 139

Triply periodic functions, 136

Two-dimensional homogeneous iso-

tropic continuum, 108

Two-dimensional lattice, 94

Two-terminal, 219, 220

U

Unperturbed wave, 115

Unstable oscillations, 187, 189

V

Van der Pol, B., 173, 182, 183, 190,

192

Vaschy, 13

Velocity, energy, 69, 70, 72, 74, 81,

91

group, 70, 74, SO, 91, 160

phase, 9, 69, 70, 75, 85, 108, 160

of propagation, 1, 4, 6, 19, 20, 31,

32, 35.38

Vibrating strings, 2, 3

Vibrations with an elliptic boundary,

173

Vincent, 12, 13, 193

Viscous force, 81

W
Watson, 177, 178, 192

Wave, in crystals, 14

in a discontinuous lattice, 147

elastic, 158, 191, 193

in electric filters, 194

electron, 191, 193

equation for a two-dimensional

continuum, 108, 109

longitudinal and transverse acou-

stical, 20, 158, 162, 163, 164

mechanics, 190, 193, 194

modulated, 75

number, 17

packet, 70

in a periodic continuous medium,
172

propagating, in a three-dimen-

sional periodic medium, 139

propagation, 5, 70, 175, 193, 194,

196, 212, 214, 224, 228, 230,

232

through the lattice, 137

Whittaker, 143, 173, 177, 179, 184,

192

Wigner, E., 155, 171

X

X-ray reflection from crystal lattices,

102, 115, 118, 120, 121, 158

X rays, 64, 123, 191, 193

Z

Zone, 121, 137, 152, 155

boundary, 142

.

first, 105, 126, 129, 137, 138, 154,

158

second, 106, 129

structure of, 146, 190

Zones, for a hexagonal lattice, 124

in one dimension, 102

for a square lattice, 126

in three dimensions, 136, 148

in two dimensions, 102, 121
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