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FOREWORD

Munich, in the spring 1813, was a very lively city with a famous
University, and.the Institute for Theoretical Physics of this Univer-
sity had won.a high reputation under the leadership of Professor
A. Sommerfeld. This young professor had already achieved great
fAme. He had published a remarkable book on the theory of the
gyroscope, and had presented a very extraordinary paper at the first
Solvay Congress in Brussels in 7977 [French edition at Gauthier-
Villars, Paris 1912, p. 316 and p. 403]. In a stroke of genius, he noted
that Planck’s constant k represented a quantum of action, and that
the familiar quantum of energy s» was only an indirect result of
quantizing the action. He made a few curious applications of this
revolutionary idea, which P. Langevin immediately used to compute
a magneton, which differed from the present’ Bohr magneton only by
a factor 2x.

When Bohr’s paper on the hydrogen atom was published in 1913,
Sommerfeld immediately saw the importance of this new idea. I hap-
pened to be in his office when he opened the issue of the Philosophical
Magazine, which had just arrived; he glanced through it and told me:
“There is a most important paper here by N. Bohr, it will mark a
date in theoretical physics.” And soon after, Sommerfeld started
applying his own “quantum of action” method to rebuild a consistent
theory of Bohr’'s atom. This is how the first quantized mechanics
was born, and why if progressed so fast. It was definitely Sommer-
feld's discovery of the importance of the fpdg integrals that paved
the way and these integrals still are at the basis of the whole quantum
theory.

Everybody wondered {and still wonders) why the Stockholm
committee systematically ignored Sommerfeld’s pioncer work in
modern physics. Such an omission is a,ctually imposfible to un-
derstand.

My friend P. P. Ewald gave an excellent summary of Sommer-
feld’s achievements, and described the life at the Munich Institute

v



vi FOREWORD

for Theoretical Physics, in a Foreword to Volume I of Sommerfeld’s
lectures (“Mechanics,”Academic Press, 1952). The special clarity
and the mathematicgl accuracy of Sommerfeld’s lectures were really
remarkable. I had the great privilege of attending, as a student,
lectures given by some prominent physicists, such as H. A. Lorentz,
H. Poincaré, and P. Langevin. But I was especially impressed by
Sommerfeld’s mastery as a teacher. In his Foreword to Volume I,
Ewald quotes a few problems in which Sommerfeld was interested
in.1913. Among them is the question of signal velocity in a dispersive
medium, a short summary of which is presented in Volume 5, § 22
This was the subject of research suggested to me by Sommerfeld and
it resulted in twin papers published by us in the dnnalen der Physik
of 1914. The subject was a fascinating one, but it had, at that time,
only academic importance. . Experimental verifications were discovered
much later, in connection with reflections of radio signals froimn the
Heaviside layers, and also for problems of radar systems. Theoretical
applications suddenly appeared with wave mechanics, when
Schrédinger discovered that group velocity should be identified with
the velocity of particles guided by the waves.

All these modern developments made it advisable to assemble
here a systematic presentation of the original papers, which are
rather difficult to find nowadays. It 'is hoped that the present book
will be helpful to many readers and save them time and trouble,
especially the trouble of recomputing and rediscovering many impor-
tant features of the general theory.

It is a pleasant duty to thank Dr. E. Erlbach of the Watson
Laboratory for preparing translations of the German and French

papers.
L. BriLLovIN

New York
September, 71959



PREFACE

When a mathematician thinks of wave propagation, he starts by
writing a well-known second order differential equation and discussing
its peculiar properties. The physicist is interested in these results,
but he immediately asks some indiscreet questions about waves in a
dispersive medinm, when the velocity of propagation is nst a constant,
but strongly depends upon the frequency. The weli-known differential
equation is no longer satisfied and must be replaced by a more com-
plicated system of equations, which include the model, the physical
mechanism, reacting on the waves and modifying the velocity. ¥ach
problem seems different, but nevertheless some general properties
may be deduced and some definitions can be found to apply to a
wide class of systems.

One of the most important definitions refers to the group velocity.
It seems to have been first discovered by Lord Rayleigh, who char-
acterized this velocity in sound waves. It is now known to apply to
practically all kinds of waves. Let us use the vocabulary of radio
engineers and consider a carrier wave, with a superimposed modula-
tion. The phase velocity yields the motion of elementary wavelets
in the carrier, while the group velocity gives the propagation of the
modulation. Lord Rayleigh considered that the group velocity
corresponds to the velocity of energy or signals.

This however raised difficulties with the theory of relativity which
states that no velocity can be higher than ¢, the velocity of light in
vacuum. Group velocity, as originally defined, became larger than ¢
or even negative within an absorption band. Such a contradiction
had to be resolved and was extensively discussed in many meetings
about 1910. Sommerfeld stated the problem correctly and proved
that no signal velocity could exceed ¢. I discussed the solution in
great detail and gave a complete answer. These original papers and
discussions are presented in the first chapters of this book. It was
found desirable to reprint completely these papers, which were

vii



viil PREFACE

published during the First World War and are missing in many
libraries.

in the following chapters we give a later discussion of the subject,
and introduce three different definitions of velocities: A -— the group
velocity of Lord Rayleigh; B — the signal velocity of Sommerfeld;
C — the velocity of energy transfer, which yields the rate of energy
flow through a continuous wave and is strongly related to the char-
acteristic impedance.

These three velocities are identical for nonabsorbing media, but
they diifer considerably in an absorption band.

Some exampies are discussed in the last chapter dealing with
guided waves, and many sather cases of application of these definitions
are queted.

These problens have come agaw into the foreground, in connec-
tion with the propagation of radic signals and radar. Reflection in
the Heavisile layers requires 3 real knowledge of all these different
definitions. Group velecity also plays a verv important role in wave
mechanics and corresponde o the speed of a particle.

The present book should be very useful to physicists and radio
engineers and shouid give therm a good basis for new discussions and
applications.

I.. Brizrouin

New York
September, 1959
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CHAPTER I

INTRODUCTIONM

{. Phase Velocity and Group Velocity

Many modern ideas on wave propagation originated in the famous
works of Lord Rayleigh, and the problems we intend to diecuss are no
exception to this rule. The distinction between phase velocity and
group velocity appears very early in Rayleigh's papers.? It cen be found
in his “Theory of Sound’'# and in many articles reprinted in his ' Sci-
entific Papers.” The problem is discussed in particular in connection
with measurements of the velocity of light;?® and this is the piace where
a curious error was intrcduced regarding the angle of aberration. We
shall come back to this point later when discussing a very imiportant
paper by P. Ehrenfest (see Section 5 of this chapter).

Let us first remind the reader of the fact that the usua! velocity W
of waves is defined as giving the phase difierence between the vibrations
observed at two different points in a free plane wave. 1t is primarily
used for computing interference fringes that make phese differences
visible, In a wave
¥\

(1} Yy = A cos (ol — kx) = A cos m(t W

we observe the phase velocity W

. o
(2) W:?

! The very first idea of group velocity appears in & paper by W, F. Hamiiton,
Proc. Roy. Ivish Acad. 1, 267, 341 (1839).

? Lord Rayleigh, ‘Theory of Sound,” 2nd ed. (1884). First ed. pukbiished, 1877.

* J.ord Rayleigh, ““Scientific Papers,” Vol. I, p. 537. 1881,

i



2 1. INTRODUCTION

Ancther velocity can be defined, if we consider the propagation of
a peculiarity (to use Rayleigh’s term), that is, of & change in amplitude
impressed on a train of waves.

This is what we now call a modulation impressed on a carrier. The
modulation results in the building up of some “groups” of large
amplitude (Rayleigh) which move along with the group velocity U.
In wave mechanics, Schrédinger called these groups ‘‘wave-packets.”
A simple combination of groups obtains when two waves

' 0, =w+ dw ky=Fk+ 4k
) wy=w—Adw Ry =k — 4k
are superimposed, giving:
¥ = A cos (o — &%) + A cos (wgf — Rgx)

4
(4) = 24 cos (wt — kx) cos (dwté — Akx)

This represents a carrier with frequency @ and a modulation with
frequency Adw. The wave may be described as a succession of moving
beats (or groups, or wave-packets). The carrier’s velocity is W [Eq. (2)],
while the group velocity is given by U

Ao dw
L A ow

) V=% %R

fOI‘ tljk - 0

“CARRIER WAVE L__,_-.M,. GROUP ——

The situation ic represented in Iig. 1 where we see a succession of
wavelets {w,£) with variabie amplitude (dw, 4k). 1i we do not pay
attention to the detailed motion and observe only the average am-
phitude distribution, we verify that the amplitude curve moves forward
with the group velocity U. Looking mors carefully at the detailed
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vibrations, we may see the wavelets moving within the envelope w:th
their own velocity W. We distinguish two different cases:

The wavelets are building up in front of the group

6 .
(6) U>w and disappearing in the rear end of the group.

The wavelets are building up at the back end of the
(7) U< W group, progressing through the group, and dis-
appearing in the front.

2. Examples and Discussion: Dispersive Media

In a medium where the phase velocity W is a constant and does not
depend upon frequency, we have

(8) U=W

and any kind of signal is propagated without distortion.
More generally, when W is a function of o (or %), we have

dw
with w = kW, hence:
(9a) U=W + k — oW

ok

This is often written with the wave length A as variabie instead of %,
when % = 2n/2; hence,

114
i —— ’ - -
(9b) U=W—15%;

A medium exhibiting a wave velocity W(k) is called a dispersive medium.
Vacuum is nondispersive for light (W = U = ¢}, but all material media
are dispersive. It is impossible to think of a refractive medium without
dispersion. The situation is even more compiicated, since W depends
upon the variables 4 (or w), the density p, and the temperature 7 In



4 1. INTRODUCTION

crystals, the direction of propagation is also to be taken into account.
We shall restrict our discussions to isotropic media, but we must assume

This is where the physicist’s viewpoint differs from the mathematician’s
idealization. Many textbooks on electromagnetic theory discuss naterial
media with

£ =& dielectric constants of matter and vacuum
= permeabiiities of martter and vacuum

o~
st
sonat
i

but they usually assume ¢ and p to be constant, and this is a physical
impossibility. The complete problem dealing with the three variables
k, p I will be examined in Chapter V.

[ 1]
u
P Slope ~.. ¥+
LA alal|
L ]
/J/
< !
&
il :
PRl 5
/, :
13
]
0 ' *
Frc. ¢

A very useful graphical representation cbtains it we plot w as a
function of £ (Fig. 2). The slope of the chord O 2 gives the phase veloc-
ity W, while the slope of the tangent at point £ vizlds the group
velocity U.

‘The velocity of light is a constant in vacuum, but depends upon
frequency in material media. The velocity of sound is approximately
censtant for long wavelengths, but depends strongly on the frequency
at short wavelengths, especially when the wavelength is of the order

{

sl the distance between molecules. Many such examples have been
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discussed in the literature.* The group velocity for sound is then equal
to the phase velocity only for long wavelengths.

It was assumed, at the beginning, that the group velocity was ac-
tually the velocity at which a finite signal may propagate through the
medium, but this is only an approximation. “We shall see later that a
finite signal is distorted while traveling through the medium, and that
its velocity may become very hard to define, or account of the change
in the shape.

This is especially true for an absorbing medium. Absorption is
strongly frequency dependent, and is always associated with strong
dispersion.

As a rule, we shall see that the velocity of a signal does not differ
too much from the group velocity, whenever absorptien and disper-
sion are small. Otherwise, the velocities may dilier widely.

Let us now discuss a few interesting examples, to which the reader
may add a great variety of probiems discussed by L. Brillouin in a
previous book 4

Rayleigh discusses® the preblem of wave propagation along a bar,
and obtains an equation for latera! vibrations:

92+ ay _

(12) . K2h;

ETE dxt =0

This propagation is frequency dependent, arsd for a wavelength A one
obtains a velocity.

{“3 :;} I,i?’ e ij}’j%”‘ == Agk
with & o= 27/4,

Ez& }wzs example, Rayleigh discusses the problem of group velocity.
He sssumes, more generally,

(i4) ?37 bl 31" e B’k"'”

t See, for instance: L. Brillouin, “"Wave Propagation irn Periodic Structures.”
McGraw-Hill, New York, 1946, Reprnted, Dover, New York. 1953, L. Brillouin
and M. Paroc:, “‘Propagation des ondcs dans les milicux périocdiyues.” Masson, Paris,
1936. |

® Lord Ravieigh, reference 2, Vol. I, Sectiun 18I p. 301,
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which results, by our formulas (8) or (9), in
(15) U=W1—n)
For lateral vibrations of bars,

(16) n=—1 U=2W

The group velocity is thus twice as large as the phase velocity. This
is a typical example of case (7) in Section 1 above.

In another chapter of “Theory of Sound,”® Rayleigh discusses
surface waves on water. Assuming a density p, a depth /, gravity g,
and surface tension T, he obtains the general formula for the phase
velocity?

(17) Wﬁx%-i——l?tanh (ki)

a formula exhibiting a strong dependence on k.
In many important cases, the depth / can be considered as prac-

tically infinite (deep Wwater waves); thus the hyperbolic tangent
is 1, and hence

g , Tk 2n
18 wer=8 4 18 57
(18) P k=
‘When 2 is great, % is small, and the waves move mainly under gravity,
with a velecity

12
47T
(19) W o= (»gj-) when k288 iz L
k 1 gp
This is the case of long waves on deep sea. For small ripples, % is izrge,
the second term in Eq. (18) is dominant, and

1/2
(20) W= (Z;f")

¢ Lovd Rayieigh, reference 2, Vol. II, Chapter XX.
7 Lord Ravizigh, reference 2, Vol. II, p. 344, Eq. (7).



3. GROUPS AND SIGNALS 7

Between these extreme cases, there is a mimimum velocity W,
corresponding to 4, and 7, values for wavelength and period, respec-
tively.

. 4Tg 1/4 _' (T 1/2 _ T 1/4
ev W= ()7 amm(E) (il

According to Eq. (19), long waves on deep sea yield a power of
n = % and hence a group velocity

1

according to Eq. (15). This is a typical example of case (8) in Section 1
above.

Short ripples moving under surface ifemsion, on the contrary,
correspond to # = — } in Eq. (20); hence

;3w
(23) U=<W

which is an example of case (7).

A very simple experiment can easily be made and provides an
excellent example of group velocity. Just throw a stone in a pond,
and look at the “rings’” produced on the surface. They are composed
of a small number of short ripples. The system as a whole propagates
with the group velocity U but each individual ripple moves with the
phase velocity W. Since W < U, these ripples are building up along
the outside ring, moving more slowly than the ring, and disappearing
on the inside of the ring.

3. Groups and Signais

The preceding example may serve as an introduction to the discus-
ston of signals. Groups were defined by Rayleigh as moving beats
[Egs. (4) and (5)] following each other in & regular pattern. A signal
1s a short isolated succession of wavelets, with the system at rest
before the signal arrived and also after it has passed. A signal may
be sharply defined in time and duration, in which case its frequency
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spectrum extends from -- oo to -} oo, or it may have a finite
spectrum, and exhibit no absolutely sharp boundaries. These problems
were extensively discussed elsewhere$

We shall assume a signal carried by a carrier-frequency wy and char-
acterized by a modulation curve C(f). The complete signal sent along
the line at the input » = 0 is

(24) C1{2,0) = C(t) cos wyt

Let us now analyze the wmodulation C(f) in a Fourier integral,
assuming that this modulation has a finite spectrum extending froin
0 to o,:

Doy
L]

{25) C(2) = j B, cos (wt + ¢} dw

w=0

where B, is the amplitude and ¢, the phase of the o component.
The input signal [Eq. (24)] is represented by the Fourier integral

Do

Cy(t,0) = S B, cos (wt 4 ¢,) cos (wet) dw
(26) =t
1
2

w

e

Ba{cos [(wg + @) + ¢.] + cos [{wg — w) — ]} dw

]

The resulting spectrum now extends from (wy — w,,) to (wy + )
and thus covers a band 2w,. For simplicity’s sake, we may assume

(27) Wy = O

and avoid negative frequencies. The line along which propagation
occurs is characterized by a certain relation between w and %, as
visualized in Fig. 2.

8 L. Brillouin, reference 4, Chapter V, p. 78. L. Brillonin and M. Parodi, ref-
erence 4, Chapter V, p. 81. L. Brillouin, ‘*Science and Information Theory,”” Chapter 8,
p. 86. Academic Press, New York, 1956.
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Let us now assume a simplified problem, exemplitied in Fig 3.
This problem was stated by Schuster? and represents a limiting case
for many actual problems. The assump-
+ion 1s that

L4
2nb
(28) Wwa—}-bl::a-i»—:é— 3‘34‘0
c\0
k)
in which @ and & are constants; hence = " Wop -
osa.‘.... \‘94« !.:‘;
w = Wk = ak + 2nb w=zme ¥ o
{29) A k
. a 0 ka
w
U= -é"k“ == a4 Fra. 4.

a constant

The quantity % is supposed to be positive, but negative values
would vield the dotted curve of Fig. 3. We now have to sharpen
condition (27), assuming that

130) Wy ~— Wy, = 21

since the line does not transmit frequencies below 2xb. With this
model, we have the following situation:

the carrier frequency w, corresponds to %,

31} a frequency wy + @ corresponds to kg -+ (w/U).

We now can rebuild the signal as it arrives at point x, simply by
replacing, in Eq. (26), wy by (wyf — kyx) and (wy + w)t by
{0, + @)t — [k + (w/U)]x.

This transformation yields:

Citx) = %_ g B,[cos (g + 6) + cos (6, — 0) | dw

@ =0

= €OS§ GOSB.,, cos B dw = cos 6,C (t - %)

® A. Schuster, ‘‘Boltzmann Festschrift,” p. 569. 1904.
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with 6y = wy —kyx and 0, = w[t — (x/U)] + ¢,. The last trans-
formation results directly from Eq. (25). Finally, the signal reaching
the distance x is given by

(33) Cy(t,x) = C(t — %7) coS @y (t —_ —%—,—)

and we have proved, for the Schuster model, the following poirits:
(@). The modulation C[t — (x/U)] is propagated without any
distortion, and yields the group velocity U.
(b). The carrier w, exhibits its own phase velocity W.

Wo= W+ W= =rmrmmmemmmm ety

w’ = wo"'w’" “““““““““

ol SRR

S
o

In the Schuster example, the signal velocity is a constant, exactly
equal to the group velocity. This is, however, an oversimplified model.
A more realistic case corresponds to the situation sketched in Figs. (2)
and (4). Here, the preceding result is only a first approximation,

-valid oniy if it is possible to replace the curve by its tangent over the
frequency band {w, -+ ®,,) around the carrier frequency ws.

In general, the signal velocity will differ from the group velocity,
especially if the phase velocity is strongly frequency-dependent and
if the absorption cannot be ignored (as it was in the Schuster model}.

4. Signal Velocity, First Attempts

Some earlier authors managed to take one step farther, and to
obtain examples in which the signal velocity S could be compared
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to the group velocity U. W Voigt1® studied very carefully the
properties of the telegraphists’ equation

3 33 P
(34) a:f—c a'g Do af

and he was able to show that the velocity of the front of the disturbance
is smaller than the group velocity. The front is defined as a surface
beyond which, at a given instant of time, the medium is completely
at rest. Voigt’s result proves definitely that there must be a distinc-
tion between signal and group velocity. We shall even have to
distinguish between the front velocity and the signal velocity. Front
velocity will correspond to the speed at which the very first, extremely
small (perhaps invisible) vibrations will occur, while the signal velocity
yields the arrival of the main signal, with intensities of the order of
magnitude of the input signal.

P. Ehrenfest!! obtains results similar to those of Voigt on a
different equation

2
(35) P TS gy
This would correspond to a string, pushed away from its equilibrium
position by a force B%f. The system is unstable; a disturbance
propagates with the front velocity a and increases progressively in
amplitude. Infinitely long sine waves propagate without amplitude
change, and exhibit a phase velocity

242 1/2
(36) w=a(1 - F 3 <

hence a group velocity

o
222 \1/2
1 — 2 5

dna?|

10 W. Voigt, Ann.-Physik [3] 68, 598 (1899); [4] 4, 203 (1901).
11 P, Ehrenfest, Ann. Physik (4] 88, 1571 (1910).

(37) UW = o? U= >
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and the group velocity is larger than the front velocity «. Many other
examples of greater importance for the physicist will be discussed in
the following chapters.

A. Sommerfeld?? started a very fundamental discussion wher he
compared the theory of signal propagation with the relativistic
statement that no signal, no particle can move faster than ¢, the
velocity of light in vacuum. This point required an explenation, since
the laws of dispersion in refractive media yield, in z regicn of anom-
alous’dispersion, velocities W and U that may become jargar than ¢
Sommerfeld zmmer’latew noted that the group velscity U canunot
represent the velocity S of a signal, especially in a *r*qwnrv regio
where the frequency dependence is high and absorption is strong.

In this short note, Sommerfeld sketched briefiy gne Fenieral
mathematical method which he invented for this discuss: :
which willi be given in details in the following cuaster. He couwid

immediately show that no signal can move faster than ¢ and that
actually the fronf of the signal was progressing with the velocity ¢

through the dispersive mediuni. Let us quote:

It car be proven that the signal velocity is exactiv equal to ¢,
if we assume the cbserver to be equipped with a detecior of infimte
sensivity, and this is ftrue for normal or anomalous dispersion, ior
isotropic or anisotropic medium, that may or may not contain concuce
tion electrons. The signal velocity bas absolutely nothing to de with
the phase veiccity. There is nothing, in this problem. in the way o
Relativity theory.”

The theory shows that the signal is very strongly distoried. The
medium is initially at rest, then the front appears with veiccity c,
but this front corresponds to infinitely small fields and electronic
motions. -Both fields and electronic motions buiid up progressively,
but Sommerfeld did not obtain the complete shape of this complicated
signal distortion. Thus the mathematical theory was given a very
pracise formulation, but the physicai picture remsined rather myste-
rious, as was proved in the discussion following the paper. The

# A, Snmmerfeld, Ein Einwand gegen die Relativtheorie der Elektrodynamik
unéi seine Beseitigung, Physik, Z. 8, 841 (19 ) {Vortrige von der 78, Naturforscher-
versammlung zu Dresden.)
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complete physical explanation came later in this discussion and was
given by Voigt. It is worth quoting almost literaily:
~ ‘““The modern theory of dispersion and absorption uses the assump-
tion of point electrons having a finite mass, and distributed in the
{so-called) ether. The assumption of an inertial mass resuits imme-
diately in the fact that these particles can in no wav react upon
the beginning of a wave. It is only after the wave is started that the
electrons are set in motion and react on the wave. Accordingly, I am
not at all surprised with Sommerfeld’s result, that the front of the
wave always travels with the velocity ¢ of light in vacuum.” |

This explanation was obviously suggested by the very important
results obtained by Voigt in his previous work, which was quoted
at the beginning of this section,

Wien added, in conclusion to this meeting, that he would like
very much to know the shape of the whole signal. This is what we
are going to discuss in the following chapters.

5. Actual Measurements of the Velocity of Light

It was recognized by Rayleigh that all experimental wnethods for
measuring the velocity of light did operate with light signals, and
henee did not measure the phase velocity but the signal velocity,
and this velocity was assumed to coincide with the group velocity.
We do rot intend to discuss here the well-known experiments of
Rémer, Fizean, or Foucault. The reader mayv find all the necessary
sxplanation in Sommerfeld’s lectnres on  optics 4 In Romer's
method, the signals are defined by the rotation of Jupiter's sateliite,
and in the other methods, the signals result from the rotating mirror
or the rotating toothed wheel. '

The significance of the measurement of a parallax is not so obvious,
Hayleigh first assumed that it was related to phase velocity, but this
stntement was later corrected by Ehrenfest 't

- e

A, Somunerfeld, “Opties,” Chapter II, pp. &0-75. Acadersic Press, New
Vork, 1964,

% T, . Haveleck, "The Propagation of Disturbances in Dispersive Madie.
Cambridge Tract in Math. and Phys. No. 17. Cambridge Univ. Prass, Loagon, 1214,

5
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Figure 5 explains the situation, assuming a simplified device
consisting of two parallel plates moving with a uniform velocity v in
: the horizontal direction. Monochro-

L | 1 ' matic light is falling normally on the
| Y.t first plate and generates an oblique

11 ray. It is obvious that the obliquity

1‘? velocity of the finite signals making
1 up the ray. Altogether, the exper-
‘1’{ iment is fundamentally similar to the
v Fizeau procedure. Both of them can
l" only measure the signal velocity,
which is practically the group veloc-

F1G. 5. 1ty.

VV is determined by the signal (or group)
v

6. Havelock‘s Pamphlet

A general review of the situation was published in 1914 by
T. H. Havelock.}* It contains a very extensive bibliography of earlier
publications, up to the first paper by Sommerfeld. Let us note, for
instance, an illuminating discussion of Kelvin’s method of stationary
phase: if we have a Fourier decomposition of the propagating signal

(38) Vo= 3 A cosk(x — Wty dk
0

we may {ind positions and times at which a large number of compo-
nents have the same phase and reinforce each other. They will thus
produce the predominant part of the signal, while other elements
are practicallv destroyed by interferences. This leads to the condition

dp d _
ik R W =0

. AT
XUt =10 where U = = (kW)
dk
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{7 is the group velocity previously defined. The approximate shape
of the dominant group in the signal can be compated. This method
was repeatedly used by Lord Kelvin and proved very powerful in
many problems. One drawback is that it requires W to be real (ns
absorption), When there is absorption, the method must be replaced
by the more general “‘saddle point method,” as we shall see in
Chapter 111 A

Havelock gives interesting discussions of a wvariety of special
examples, and often succeeds in obtaining simple solutions. He has
a number of problems in which a short puise is the initial signal; he
ihen computes the progressive distortion of the signal lor different
types of propagaticn. Similar discussions regained a great deal of
importance later in connection with wave-mechanical problems,. in
which a “‘group” or “‘wavepacket’”” was taken as representing a
particle, and group velocity was identified with particle speed.
Havelock systematically uses the Cornu spiral to build some solutions
of waves on water and presents a number of interesting examples
from Lord Kelvin and Green.

There is also. in Havelock’s book, an interesting chapter on energy
flow, with the modern definition of a wvelocity of emergy tramsfer,
illustrated by examples of vibrations of springs, waves on water, and
electromagnetic waves.

These problems shall be discussed in Chapter IV; other examples
are found in the books quoted under reference 4.

7. General Remarks

The preceding sections summarize the situation in about {910
when Sommerfeld started discussing the problem and attempted to
apply the general method sketched in Section 4 of this chapter. We
noted the interest in the problem, and how a galaxy of eminent
scientists, from Voigt to Einstein, attached great importance to
these fundamental definitions. We shall discuss the question of
groups, signals, and fronts in the following chapters, where we will
also discover a fourth velocity, defining the aveérage speed of energy
transfer. A detailed comparison of these four different velocities
will follow.
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These problems were of theoretical importance at that time,
Sommerfeld gave a general account of the question in his lectures o
optics’® which he also quoted in his lectures on electrodvramics.
From these academic discussions, a number of practical applications
of great importance progressively emerged during the last twenty
years. Reflections and echos of radio waves on the Heaviside layers
in the upper atmosphere were among the first actual problems to be
discussed, then came radar signals, sonar, sounding by ultrasonics,
wave-guides, and a variety of devices for guiding planes or ships.
Aside from these technical applications, we have the most important
problem of wave mechanics, with the Schridinger identification of
group velocity (in the wave description) with particle velocity (in
the visualization by particles). Altogether, wave propagation is ene
of the most important chapters in theoretical physics, ene which is
encountered over and over again, even in nuclear energy.

Some of the old papers on the subject seem to have becn ignored
by many young physicists and radio engineers, who frequentiy spend
too much time rediscovering some of the classical results. Let this
book be helpful to them. ’

18 A, Semmerfeld, reference 13, pp. 114-123; “Electrodynamics,” p. 231, Academic
Press. New York, 1952, '



CHAPTER It

ABOUT THE PROPAGATION OF LIGHT IN DISPERSIVE
MEDiA

hy
J

A. SOMMERFELD

i. Introduction and Resulis

The following investigation whose resuits have already been
reported on at the Dresden Scientific Conference! is a shortened
version of a paper appearing in the Festschrift on the 70th birthday
of Heinrich Weber.? The reason for rewriting it is given by the fol-
lowing work of Dr. L. Brillouin, who has successfully extended the
methods of complex integration used here,

Since the title refers to the propagation of “light,” it must be
stated that we will not deal with natural (polarized or unpolarized)
light, i.e., light which can be obtained from real light waves with the
aid of real polarizers or frequency analyzers. Such light always
contains many wavelengths; and only the average wavelength can
be controlled.» Instead, we set up, as our incoming light signal, a
well-defined special waveform consisting of a regular series of similar
sine waves. If this siganal were unteriminated o1 either end, one could
not even define a velocity of prepagation. Since the caly char-

* This Chapter is an authorized translation of A. Sommerfeld. Aun. Physik [4]
44, 177 (1914).

! Under the title: Ein Einwand gegen die Relativthecrie der Elektrodynamik
und seine Beseitigung [A. Sommerfeld. Phaysik. Z. 8, 841 (1907).

% A. Sommerfeld, in “Festschrift zum 70. Geburtstage von Heinrich Weber.”
Teubner, Leipzig, 1912.
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acteristic of an unterminated sine wave is its phase, then we could
assign only the phase of the incoming light at a certain depth of the
medium of propagation. We thus come to the concept of the phase
velocity, which is the relevant quantity for all questions of interfer-
ence, in other words, for the majority of optical phenomena. What
1s usually understood as the velocity of light (in a material medium),
i.e., the velocity of light in vacuum, ¢, divided by the index of refrac-
tion g, 15 just this phase velocity. Only in an optically empty medium
{vacuum, air) is the phase velocity the same as the velocity of propaga-
tion. In a different medium, the phase velocity tells you only how
the phase of the light is delayed by interaction with the medium
{(according to the present theory of dispersion, due to the forced
oscillations of the ions or electrons in the medium) but teaches you
nothing about the process of propagation; the light excitation at
every point in the medium is already present forever, for an infinitely
long sine wave.

In order to be able to say something about the propagation, we
must, instead, have a limited wave motion: nothing until a certain
moment in time, then, for instance, a series of regular sine waves,
which stop after a certain time or which continue indefinitely. Such
a wave motion will be called a signal. Here, one can speak of a prop-
agation of the front of the wave (wavefront velocity) or also, when
the wave motion is terminated, we can speak in a certain sense;
of a velocity with which the end of the signal travels through the
medium. The end of the signal is naturally not as distinct as the wave
front which divides a regionof complete rest from a region of motion.
Instead, the end of the signal is followed by a long (actually, infinitely
long) tail of decaying oscillations. Nevertheless, the end of the signal
can be distinguished in the-formulas, even if it is not too clear from
the point of view of the termination of wave motion, by the condition
that the forced osciilations are no longer present, and only the decaying
free oscillations of the tons remain. We can always consider a ter-
minated signal as the superposition of an earlier unterminated signal
and a second untermiinated signal beginning at the end of the ter-
minated signal with opposite phase which just cancels the first signal;
we thus see that the velocity of the end of the tcrminated signal 1s
identical with the velocity of the wave front of an incident signal.
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One must distinguish between this wavefront velocity and the signal
gelocity, 1.e., that velocity with which the main part of the wave motion
propagates in the dispersive medium, It turns out that the signal,
gpon propagation, does not retain its original form, that at a certain
depth in the medium, very weak signals appear at first, called
“forerunners,”’ which increase to an intensity corresponding to the
incident intensity. It is the essential result of Dr. Brillouin’s work
that the signal velocity is practically the same as the group velocity,
whenever the incoming wavelength is different from the characteris-
tic wavelength of the dispersive medium, i.e., when the wave motion
proceeds without strong absorption.

We will show here that the wave front velocity is always identical
with the velocity of light in vacuum, c, irrespective of whether the
material is normally or anomalously dispersive, whether it is transpar-
ent or opaque, or whether it is simply or doubly refractive. The proof
is based on the theory of dispersion of light, which explains the
various optical properties of materials on the basis of the forced
oscillations of the particles of the material, either electrons or jons.
In the following, we call these particles ions, but include the case of
pure electronic oscillations under this name. From the viewpoint of
the original Maxwell theory, which considered the dielectric constant &

and consequently also the index of refraction J/e as a characteristic

constant of the material, the phase velocity W = c/V; would be an
actual velocity of propagation with which the disturbances spread
in the medium, in the same way as ¢ is the velocity of propagation in
vacuum. According to our present knowledge and our understanding
of electron theory, there exists only one isotropic medium for electro-
dynamic phenomena, the vacuum, and the deviations from vacuum
properties can be traced back to the forced oscillations of charges.
When the wave front of our signal makes its way through the optical
wiedium, it finds the particles which are capable of oscillating orig-
dweily at rest,® (except jor their thermal mouon whichk has no effect
w2 propagation, duc tc its randomness). Ornginally, therefore, the
median seems optically empty, only after the particles are set into

3 This method is the result of remarks nflde by W. Voigt at the discussion of my
paper at Dresden (reference 1).
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motion, can they influence the phase and form of the light waves.
The propagation of the wavefront, however, proceeds undisturbed
with the velocity of light in vacgum, independently of the character
of the dispersing ions.

From this remark, the subsequent conclusions of our investigation
immediately become clear. Unfortunately, these conclusions are
purely theoretical, and can hardly be compared with experiment, due
to the smallness of the energies involved and the shortness of the
periods of time available for observation. Also, we use the formulas
of the dispersion theory in a somewhat more géneral way than can be
justified physically. Namely, we extend these formulas to infinites-
imally small wavelengths, while their derivation is justified only for
wavelengths large compared with the distance between dispersing
particles. Our conclusions state: '

If we let white light fall perpendicularly on a dispersive plate,
then the less refracted (and hence “‘faster’’) components of the white
light do not precede the more refracted (and hence ‘‘slower’”’) compo-
nents, and the light is not red at the first instant of emergence. Instead,
the wave front of each component propagates with the same velocity ¢
through the plate, and each component contributes equally to the
energy of the initially emerging light. These initially emerging
forerunners do not show the colors of the components of which they

‘are composed; instead, they have an ultraviolet wavelength deter-
mined by the dispersive power and thickness of the plate, and a very
small intensity. The form of the wave motion'is so greatly altered
at the initial traversal of the plate while the ions are being set into
motion, that there is no similarity between the form of the inc_:idenls
and the initially emergent light. Also, so much energy is given up i
setting the ions in motion, that the initially emergent energy is very
small compared with the incident energy.

We can add another ‘closely related result of this argument: if
the light signal is incident at an angle with the normal, then the
signal wiii at first not be refracted or reflected at zll. The index of
refraction becomes effective only after the lons have been set into
motion, while the front of the signal and the just mentioned short
wavelength forérunners travers® the plate as if it were air. Further:
it one has unpolarized light iucident on a plate of calcite or quartz,
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then one does not get, at first, linear or circularly polarized light such
as one could expect if the “faster” ray actually propagated faster than
the “‘slower” ray. Morecover, here toc the crystal structure is non-
existent, from an optical point of view, at the peginning, and only
gradually does it become effective; in the same manner, there is no
double refraction at the beginning.

The original interest in cur problem was connected with the theory
of relativity. This theory showed that a velocity greater than that
of light was impossible, whether the velocity was that ol slectrenic
or particle motions, or of the propagation of an electrodynamic or
mechanical signal.* W. Wien remarked, however, that in the spectrum
of a medium with anomalous dispersion, there can exist a tegion near
the absorption line where the index of refractior. <. 1, or equivalently,
where the velocity of light (whether this refers to the phase or the
group velocity of light) becomes greater than ¢ This apparent con-
tradiction to the theory of relativity had tc be resolved.

Let # be the frequency of the light {number of waves in a time of
27),* k the wave nurnber (number of wavelengths in a distance of &)
W the phase velocity, U the group velocity at the frequency #, and
let us ignore the absorption, i.e., let & be real. Then, it is well known
that
n ; an

W= — L

TR dk

which can also be written

d(Wk) AW AW
7 I, it s ST E{; e ,‘I-Z ———— Poen ‘;’;5/7 r— 1 S
U= ak S - “da

For anomalous dispersion, dW/4i < 0 and thas 77 .- % Thus, if
W is greater than ¢, then the propagation of the signal w:th the group
velocity IV will certainly lead to a velocity greater than hght, which
is relativistically impossible.
According to the preceding results, there is :n fact no difficulty:
the {ront of the signai propagates under all circumstances with the
% A. Einstein, Jakvbuch der Radicakbwitst 4. 412 (1912), Scetinn §; ses aiso

M. Laue, Physik. Z. 12, 48 (1911},
5 The frequency »n corresponds to ¢ in other chapters.
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velocity of light in vacunm ¢; the major part of the energy follows
with a ascessurily smaller signal velocity. This latter s, according to
Uz, Brillomin, generally the same as the group velociiy except near
the absception band, which is the region of anomaleus dispersion.
Here the group velocity inses its meaning as a signal velocity; tius
the previousy mentioned difficalties with the theory of relativity
rest only on an oversating of the concept of grenp velecity com-
pared wich what i« usvally used as the velocity of tight, the phase
velocity,

We now make some general remarks about the concept of group
velocity. One can, as is well known, show® through individual examples
that for an aggregate consisting of several neighboring wavelengths,
a “wave group,” a maximum, or otherwise determined amplitude
propagates not with velocity W but rather with U'. From this,
M. Laue’ showed that for natural light which is characterized by the
waveiength of its average intensity, the group velocity is the relevant
quantity for the propagation of the energy into the dispersive medium.
He remarks at great length that, with anomalous dispersion, due to
the strong absorption which destroys the significance of a characteris-
tic wavelength after a short path length, one can no longer sharply
define the velocity of propagation of the energy. Thus, in cases where
the group velocity is greater than ¢ (or even negative — see ref-
erence 7) the principle of the equivalence of group velocity and velocity
of propagation suffers an exception, since for a staiistically defined
light there does not exist a precise velocity of propagation. That the
wave front must aiways propagate with a velocity < ¢ is deduced
from genecral ideas about électron theory. This result agrees with
our specific result. Whether the group velocity plays a role even for
individual lLight signals, as we are understanding them. cannot be
decided by Laue's theoty. Due to the work of Dr. Brillouin however,

———— et A o

$ See, ior instzace, A. Schuster, "'Einfithrung in die theoretische Optik,” Sec-
tion 183. The fact that these examples do not constitute a general proof has already
been stated by W. Wiew, Encyvil. Marh. Wiss. 22, No. 28 and by P. Ehrenfest, Ann.
Physik {41 38, 1571 {1510). Concerning the possibjlity of a megutive gronp velocity
(A. Schustar, loc. ¢it.) near the absorption band, see the viewpoint of M. Laue men-
tioned beiow,

“ M. Laue, Ann. Physik (4] 18, 323 (1905), see especially Section 6.
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this question can be answered affirinatively, with the iestriction
siready noted by lLaue, namely, the exclusion of regions of absorption.”

The pieseni work gives the general solution of this problem by
means of complex integrals in Sections 2 and 3 of this chapter. The
discussion of the solution in Section 4 is based on alternative paths
of integration. If the path can he deformed to the positive semi-
infinite half plane of the variable of integration, then everything is at
vest; thisis the case for ¢ < xje (& = depth traversed in the dispersive
medium). On the other hand, for ¢ > xj¢, the path must be deformed
toward the negative hali plane, in which case it is stepped by either
a pole or a branch line in the plane. The fact that the separation of
the two cases occurs just when § == x/c shows that the front of the
signal propagates with the velncity of ight in vacuum ¢. The residue
at the pele gives an undamped excitaticn with the wavelength of the
incident waves, and with that amplitude and phase corresponding to a
regular, undistorted, propagation of this wave motion with the phase
velocity W. This is the forced part of the motion. Tae path around
the cut in the plane, on the other hand, gives a wave motion which is
a function of time, depending on the characreristic frequency and
damping of the ions. This part, then, describes the free oscillations
of the ions set in maotion by the signal. However, such a éeparation
into forced and free oscillations is possible only for large values of
{ ——xJ/c. The conditions for small values of ¢ — x/c, i.e., for times
socn after the incidence of the signal, are discussed in Section 6; the
“forerunners” which occur here and cannot be separated into the
above two parts, as yet, are very weak waves of short wave lengths,
whose intensity and wavelength gradually increase. In Section 5
we prove the uniqueness of the solution from the conservation of
energy, with special emphasis on the fact that the field is continuous
at the wave front, but the gradient is not.

2. The Incident Signal

Let the dispersive medium extend from x = 0 where it joins the
vacuum to x = oo. Let the wave be incident normally, so that the
optical conditions depend only on x and ¢; for x == 0 the wave will
be given as a function of £. Since the reflected wave does not interest
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us, let this f(¢) correspond to the situation just behind the surface
of the dispersive medium. The motion begins at ¢ == 0 and is given
either as Fig. 1a or by the formulas

0 (t<0)
(E>0)

(1) f(t):‘: singfi{i
T

In order to be able to use the formulas of dispersion theory, we must
decompose f(¢) into its harmonic components of the form ™
(n = frequency). If one tries to do this with Fourier integrals using
only real frequencies, one encounters convergence difficulties; since
f(t) does not vanish at f = oo, the Fourier integral has no meaning.
1f one wants to use only the usual real form of the Fourier integral
analysis, then one must consider wave forms which are terminated
at both ends [f{¢} = 0 for £ << 0 and for ¢ > T, see Fig. 1b]. Such a
wave form is composed of two unterminated waves. one beginning
at ¢ = 0 and the second at ¢ = 1" with opposite phase, so that the two
cancel for all time ¢ > T.
For the wave terminated at both ends, one has

o]

() = = g Esm 27 % cos n{t —a) da,
0 G

e=7

) f
{cos ;f?fr-w -+ n(tf — a\j cos | 27 % — n(t — m)}
] 7

T om )T i n — 2njt 1+ 2aft s
0
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In Fig. 15 we have set
(2) T = Nz
jie., T is an integral multiple of v. Then our function reduces to

)= —f— X o ___d(gn Bk [cos n(t — T') — cos nt]

In real from, one can rewrite this as

@

‘ _ 4 . T\ sinnT/2
(3) &)= ;—“.dn smn(t —_— "é') P iy ey
0

In complex form, instead:

4

1 dn ‘ )
A gt =T} __ g— i
(4) f(t) T S ng (27‘/,[)2 (“ ¢ € )
ors
. + 00
1 an : .
2, = e S, "mit" T) e 8
(5) f(t) = 5-Re g r— (e e~ ™)

-

where Re means ‘‘the real part of.” Egquation (3) supplies the fre-
quency distribution of our terminated waveform in terms of infinite
waves. The factor of sin #(f — 7/2) is the amplitude of the individual
elementary wave, its square giving the specific intensity (intensity
per freguency interval).

() ]x(4 sinn7/2 )

T n%—(2n/1)2,

One sees, therefore, that every frequency inctuding the characteristic
one of #n == 2x/tr has a finite intensity. The vanishing of the denom-

? That Eqs. (4) and {5) are identical, is easily proven in the same manner by
which it is shown in Section 4 that Fq (#) s identical with Eqs. (9a, b).
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inator at # = 2n/v i3 compensated for by the vauishing of the nu-
merator sinxn7/2 = zsin Nn [Eq. (2)]. The result of this is that

Nr\?

7 F SR i
(7) S saax 5 )

For Eq. (5), therefore, it follows that at # == 2n/r the integrand
15 afso uot infinite as long as we do not separate the two exponentials.
Thus we can replace the integration along the real axis through this
point bv a small semicircle in the upper half of the a‘ompiex plane.
Once this bas been done, we can deform the path stll further (see
Fig. 2) and ran integrate the 1wo exponentials in Eq. (5) separately:

T an . 4 i10
(8) A& = Rl ——o— g 15_ Re R A
“J‘S n T~ 24;1? ’,t

N, 2,

We consider # {from + «c to — =0, see Fig. 2) to be the path of
integration, and since this is in the opposite direction from the path
of a Fourier integral, we need a change of sign.in Eq. {8). In Eq. (%),
we are evidently describiag the signal terminated at both ends as
the sum of two semi-infinite signals terminated only at cne end (at

= 0 and at £ = T),; this descrigtion would not have been possible
1f we bad uvsed 2 recxl path of iniegration.

Betore we iuvestigate the prcspext*e» of this singly terminated
signal further, let us plot the “spectrum” of the signal terminated on
both sides, as given in Eg."(6). ‘thei }*ensztv vanishes, according to
Eq. (8), for

W = e e =

and is & maximum approxzrmtel" balfway between these zeros. The
point n = 2aN/T = 2=/t Tsee Eg. {2)] is an exception, since there,
instead of having zero intensity we have the highest masimum in

»
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the spectrum, whose intensity is given by Eg (7). Therefore, the
curve of intensity (schematically shown in Fig. 3} consists of an
infinite number of arcs of width 2x/7" with *nc:reasmg and then again
decreasing height. Only in the neighborheod of 2a/r do the cwo
adjacent arcs fuse into one of double width and maximurs height
which [see Eq. (7)] increases with increasing N, i.e., with increasing
length of the signal. )

wnreriacvemns WU

If we smooth out the intensity curve by drawing its mvelopefe
instead of each arc, and use 7/J . as the ordinate instead <! J, then
we get the schematic Fig. 4 in which the curves 1,2,3,... denote
increasing values of T or correspondingly of V. Thus, the spread-out
spectrum gets closer and closer te a single line of irequency 2n/r,
as was to be cxpected.

Naturally, the smoothed-out intensity curve no looger gives the
correct time variation of our original signal. This curve ropresents
an unterminated wave and brings out only the more oy less mon-
ochromatic character of the light {depending on the length oi the
wave motion). On the other hand, the original spectrum in Fig. 3
is exactly equivalent to our signal. This means: if one adds together
many pure harmonic and periodic waves of different freguenscies, and
assigns the intensity J of Fig. 3 and the phase of Eq. (3} {c the wave
of frequency # and adds these for the time — oo to -+ oo, 13“ en one
gets not an unterminated wave, but rather a wave which s terrninated
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at both ends, with a characteristic frequency of 2xn/r. Evidently, it
is just the large fluctuations in Fig. 3 which make it possible to
reproduce the exact time variation of the signal.

_a<

u
/———-—'1\6\
' Jg'/.:: 2T

b,

I}

: N

FiG. 4. FiG. §.

3. General Solution of the Probiem

The first integral in Eq. (8) gives the signal shown in Fig. la,
which starts at £ = 0 and lasts nntil £ = oo; the path of integration
is along % in Fig. &.

an
n — 2njt

(9) )= g Re [ o=

Although we have already shown this by Fourier analysis in the
last section, let us verify this again by a method which we will need
anyway for the later analysis. For this purpose, we replace the
original path of integration # by two equivalent paths.

a. t <. 0. In this case -—4n¢ has, in the upper half plane, a negative
real part which increases indefinitely with increasing distance from
the axis. One can replace the original path of integration » by the’
path a (Fig. 5); the integral vanishes along this path if one lets a
approach infinity in the upper half plane; thus

(10) fy=0 (¢<0)

b. t> 0. Now —int has a negative real part in the lower half
plane, so that the exponential vanishes at infinity in this half plane.
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If one tries to deform the path of integration to infinity in the lower
half plane, he is held up by the singularity of the integrand at
n = 2nfv (Fig. 5). The path of integration b therefore consists of
three parts: the part at infinity, 4,, where the integral vanishes due
to the exponential facter e~*; b,, the two parts leading to infinity
which cancel each other and thus contribute nothing to the integral;
and the path b; around the singularity. This latter can immediately
be evaluated by the Cauchv residue theorem:

1 . . 27
= em—— 1 —W/T b~ R
(11) by 5 Re {2nie } == sin . (t>0)
Thus, it is proven that the expression (9) actually describes the
type of light wave beginning at ¢ = 0 defined by the conditions in

Eg. (1).

b=~ 0 ‘;:{7=2’rﬁ' ..... b,
W R, g e

A i I

‘\\ b, i

b\ 1! 11Dy
[} 1’ i I;,l
II‘L g ¥ j1
b, b, b
Fic. 6.

Hence, the general solution of our problem can immediately be
written in the form: ‘

an
n — 2xfv

1 )
5 — ~ %8 +~$R%
(12 flt,x) = 5 Re§6 +

where the integral is taken over the path « in Fig. 5 or Fig. 6.
This is true, because the theory of dispersion shows that an
unterminated wave motion at x = 0 of the form =" takes the form
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g™ W *#% sfter moving a distance ¥ in the dispersive medium, provided
we define &2 by

.. . a?
(13) - kémwﬁm(l—{n o )

with the abbreviation a2 = Re?/m.

Here, R, ¢, 1y, p, and m represent the number perscubic centimeter,
charge, characteristic frequency, damping constant, and mass of the
oscillating particles, respectively. One has to consider each of these
quantities as carrying a subscript if there are several kinds of os-
cillating particles, and sum over these subscripts. Since nothing
essential is changed by doing this, we will restrict our attention to
formulia (13). More details on this Lerentz-Lorenz refraction formula
may be found in Chapter V.

That no solution other thain Eq. (12) exists will be shown in
mection 5.

4. Discussion of the Obtained Solution

We follow the example of the previous discussion for f(¢). Let
f=t—xc

We consider the two cases (g) t < 0 and (5} t > 0, and maintain that
t == 0 represents the arrival of our light signal at a depth x.

a. 1< 0. We deform the path « in Fig. 5 or Fig. 6 into the path «.
This is allright, so long as the real part of —4n{ -} tkx becomes negative
at infinity in the upper half plane. For # =, k = n'c, according
to Eq. (6), and thus

— it + thx = — in(t — x/c) == int

Thus, the change to the path a is permitted if t < 0. Then the integral
vanishes. Thus

(14) flt,x) =0 1< 6

b. t> 0. We deform the path w into the lower half plane, since
— tnt + 3kx == — snt has a negative real part at infinity in this
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half plene. In doing this, the path becomes stuck not only at the
singularity of the denominator when » = 2a/v, but alsc at the branch
points of the expression for k. These latter can be found from Eq. (13),
by setting & == o0 and & = O:

- when n? - 2imp = n,?
(132) =% that is, when %= —ip - Vg — p?
o b0 when n? -+ 2np = ny® + a®
(13b) B that is, when # = —1p + V'no” + 2% - p?

The branch points thus e symmetrically dabout the imaginary
axis in the lower balf plane; the {irst two (k = o0} are called U,, U,
in Fig. 8, the last two (& = 0) are called N, N,. The imaginary parts-
of # for all of tham is —pg; the real parts (for small p and a) do not’
differ much from - g, 1e., the characteristic frequency of the
electrons. The positions of the brauch points (w, > 2x/7) in Fig. ¢
corresponds to an absorption in the ultraviolet, if the frequency 2n/r
of the incident wave lies in the visible range. We join U, to N, and
U, to N, by two branch lines.

The path of integration & now has the parts &, by, 6,, and b,
since we neglected the dotted path b, right from the start, because
its iwo sections always cancel. The contribution of &, vanishes because
of the large negative real part of —int. The value zlong b, can again
be evaluated by the residue theorem:

(15) by = 5~ Re {2mie ) + ik
Here, 2, means the value of & corresponding {o # == 2a/rin Eq. (13).
We et

(16) ke = i (1 +ix) €™ = g 2mwmid . gaiaih

le., we let 4 equal the distance x between waves of the same phase,
and let « equal the logarithmic decrement of the amplitude as the
wave moves through one wavelength.
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Then we get from Eq. (15)

‘ . t «x
= o 2nxx[d e e
(17) by =e sin 2n(r /1)

The integrals along b, and b; cannot be simplified further. We
write:

dan
n — 2xnft

(18) B=b‘+bs.~=..2!;(j)e~m+m

in which the parentheses about the integral sign indicate the path
around both branch lines. In all, we then have

(19) f(t,x) = e~ ¥wrlAsin 21 ({— —-—;) +~B >0
¢. t=0. In this case, we can change the original path of

integration to one at infinity in either the upper or the lower half
plane, since the integrand vanishes in either case, though no longer
exponentially (since e~ +#* — g=it = 1), but rather as 1/n2.

We can see this, for instance, in the following manner: If we
take the real part in Eq. (9), we get

(9a) Ht) = .,L e—m__. dn + Jem d",{_ )

dn n — 2nfv " — 2nft
Substitution of 4+ # for — » in the second integral yields

dn
nt — (2n/7)

(9b) 6= _}je— e

Now, applying dispersion theory, we get from Eq. (9b), just as
we got Eq. (12) from Eq. (9) earlier,

an
n® — (2z/7)?

(12a) Jt.x) = -}je“""“’"

Here, the integrand decreases as e~ ™/n? as n gets very large;
thus it vanishes as 1/n2 for t = 0.
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Since we can calculate f(f,x) by using either path a or path b,
we see that

(20) 0 = g~ 2mxld gin 2py (—f; -—%) + B t==0 .

Thus, there is continuity in the transition from the region t < 0
to the region { > 0.

All together, one gets the following picture of the course of the

signal at a depth x (Fig. 7):

Fig. 7.

a. Until the time ¢ = x/c there is no motion. Even it the phase
velocity W > ¢, no optical effect could set in earlier than cne
propagating with the velocity of light in vacuum c. If one uses x/c
as the ordinate in Fig. 7, then the ray at 45° corresponds to a propaga-
tion with velocity c. This ray cuts the line at a depth x at the point
t = 0 which is the time the signal begins to arrive there. If we assume
normal dispersion, which means W < ¢, and draw the dotted ray at
an angle g such that ctnf = W/c, then this ray denotes those points
corresponding to a velocity of propagation W. Actually, however,
the velocity W has nothing to do with the propagation of the light;
instead, it determines the distribution of the phases, and even this,
strictly speaking, only for unterminated waves.
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b. The wave motion for { > § consists of two parts, which we can
divide into free and forced osciliations, the first given by B [Eq. (18)],
angd the second [ses Eg. (12)] given by

)

J J \
g~ Ereill giny 27;{ E ——«-f-}' o= g Al gin —2?» ' g ~“~)
T A v L W

The forced oscillation (see Fig. 7} is un dampe d in time, and has the
same sine wave characieristics as %e incident wave; only the
amplitude is diminished by the dax pmg coctlicient, though this is
neglected in the figure. We construct the phase of the forced oscilia-
ticns by drawing the wave s starting at § == z/W (the intersection
with the dotted ray) with the phase of the start of the incident wave,
and this deterinines the phase at the time £ == x/tr Actually, the
wave motion given by £q. (19) begins at this time {f = €), and the
forced motion does not actually begin at ¢ = a/W. Our construction
shows graphically that the velocity ¥V determines the phase and ¢
determines the propagation. '

With anomalous ehspersion (W - ¢), the dotted ray would intersect
at an earlier titoe than ¢ = x/c. The phase at the forced oscillation
would be determined by this point of intersection, but the oscillation
would actually begin only at time ¢ = x/c.

The free esciliations {not shown in Fig. 7} are damped in time,
since ¢ in the expression for B is multiplied by the complex factor =,
whose 1maginary part equals the damping constant p of the oscillating
ions, if oné takes the path of integration for B (as one is permitted to)
right at the branch points UN,, U,N,. In any case, the free oscilla-
tions begin at the time ¢ = x/c because the ions must first be set into
motion, and it takes some time for them to accommodate themselves
to the incoming wave motion, on account of their inertia and their
elastic forces. With increasing ¢ this free oscillation vanishes, and
only the forced oscillations (modified by the osciilations of the ions)
remain. 2

¢. Fort = 0, the free and forced oscillations just cancel [Eq. (20)],
so that the total wawve motion is continuous and of zero intensity.

As was already stated in the introduction, there is no point in
dividing the motion into forced and free oscillations at this time.
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500D aescnb» as forerunners has neither the pertod ot the mmmmg
signal nor that of the free oscillations of the ions.

Thus, most of the statements made in the introduction have been
proven. '

5. Uniqueness of the Soilution and Boundary Conditicns

Since our results are at least partly surprising, it 15 probably not
superfluous to prove that our solution is the only possible one - that
any other method of solution leads to the saine result. We make
ase of the interesting mcthod that was used by il Weber? on the
problem of the pure Maxwell theory, and we extend it to include the
theory of dispersion. The unigueness will be proven directly {rom
the conservaticn of energy.

Let € =€, and $ ==, be the electromagnetic field. and let
5 == 5, be the \,,xpfactmems of the ions from their equilibrium posi-
tivns, all of which are functions of only x and ¢ and have nonzero
valpes only for x> 0 and £ > 0. Then the basic equations are:!?

. o
‘ L . o5
21) L Y e R
{21) — (€ + Nes) 5.

ms 4 2hs + fs5 = o

if one neglects the effect of the magnetic field cn the ions to {irst order,
which would contribute another term es$/c on the right side of the
last equation. Multiplying the three equations by ¢§, ¢€ and Ns
and sdding gives

8 M. Weber, " Particile Differentialgleichungen,” Vol. I, Scction 187, The method
actvally comes from E. Lohn, “Elektromagnetisches Feld,” Chapter VI, Section 5.
It can easily be generalized to the case of several boundaries and a field depending on
all *hree space coordinates. For the purposes of this paper, only one coordinate x is
needed and only one boundary at x = ¢t.

'* Tn the notation of Section 3, Eq. (13), h/m = p and f/m = n,?
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$9 -+ CE + NEmSE + 2482 + fo8) = wc( _g_?+5_g_;6§)

where & ‘denotes the energy flux. Integrating with respect to x
from 0 to o« and with respect to ¢ from 0 to ¢ results in

==t t ® [4 x=a)
%g [532 + &2 4 RN(mse + fs”} dx + 2h?ljdt§ §2dx = — HGJ}S}
t==g 0 0 0 2=

(22)

Now, let €,.9,.5;, and §,,9,,5, be two different solutions of these
basic equations, satisfying the conditions:

(23) for x==0 and all ¢ >0: G, =G,
for x = ooand all £ > 0: E, =G,
for i =0 and all x> 0: €, =€, H; = He. 5, = S

Then € = €, G, § = H; — Ha, 5§ = 8, — &, must ako satisfy
not only the basic Egs. (21} but also Eq. (22) in which, by virtue of
Eq. (23), the terms to be evaluated at £t =0, x =0, and ¥ =
vanish. Then the only remaining terms are:

¢

(24) —H(@w gz)dx+f‘g§<més + fs¥)dx + 2hm§di§§wx =0
0 0

where the first two integrals refer to the time £, From this we may
infer that

since each term on the left side can never be negative. The above
three terms refer to magnetic and electric energy of the field, kinetic
and potential energy of the ions, and the energy lost by the damping
of the ionic motions, respectively.
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If we had several types of ions instead of just one, then Eq. (24)
would consist of the sums of their energies and their energy losses,
and the conclusion would not be altered. Even more important for
us is the fact that our result will still be valid if the domain of integra-
tion 0< x< oo is broken up into several parts 0< x< x,,
%, < %< Xy,..., in each of which the basic equations are satisfied,
so long as € and § and also s and $ are continuous at the boundaries,
which can change with £. Their derivatives, however, can be dis-
continuous. Then, since one integrates over x in parts, from 0 to x,,
%, to ¥3..., one has to replace [§]y with [G]§+ [€]2+ ...
which becomes [&]g> because of the postulated continuity of € and §.
Similarly, one has to integrate in parts over ¢ on the left side of Eq. (22),
from 0 to ¢, ¢, to f,, where 4, ¢,. .. are the times at which the bound-
aries pass the just-mentioned points. Because of the postulated
continuity of €,§,s, and §, none of these points contribute to Eq. (22).
Thus, the uniqueness is proven in this case also.

The use of these results in the problem discussed in the previous
paragraphs is as follows: when ¢ = 0, there is no motion in the whole
dispersive medium:

(25) CE=H=6=0 fori=0and x>0

The thermal motions of the ions are here neglected; their contribu-
tions can be made negligibly small by increasing the intensity of the
signal or by decreasing the temperature. For ¥ = o, which is reached
by the signal only after an infinite time, there is likewise no motion
at any time; thus it is true, in particular, that

(25a) =0 for x = and £>0
For x =0, € is given.
(25b) € = /) for x=0 and t>0

These conditions (25) are just those required earlier in condi-
tions (23).
« As boundaries, we have to consider the plane x = ¢f. At these
boundaries, € is continuous. It was shown earlier (cf. the previous
paragraphs under c.) that § = 0 whether one approaches the boundary

N~
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from x < ¢t or from x > ¢t. One can prove similarly, that §, s, and §
are also continuous. Namely, if € is given by Eq. (12a)

¢ = je*w-%ikx $(n)dn
where

1 1
) = T Gy

then the corresponding § and s are given by the first and third basic
equation as

n

— — int bz P(n) dn
9“‘5‘“’ Y i —2hin 17

5 — jk__ce m+zkx¢(n) dn

One can directly apply the same analysis used under ¢ in the
preceding paragraphs to these integrals. Thus, just as € vanishes as_
one approaches the boundary x = ct from either side, so also do
9, s, and 5. With this, as well as the conditions {25), we have proven
the uniqueness of our solution and shown that no other solution exists.

Concerning the validity of dispersion theory, we wish to mention
one restriction which underlies all calculations of dispersion: that
there must be very many particles within a wavelength. Only under
this condition can we reckon on a continuous distribution of displace-
ment vectors s and disregard the molecular discontinuities. This
condition is, as is well known, satisfied for wavelengths as short as
ultraviolet, but not for very high (x-ray) frequencies. In so far as
we must include these frequencies in our analytical method, we are
applying an extrapolation of the formulas of dispersion theory in a
realm where their validity is not physically justified.

I want to include another interesting remark. for which I am
indebted to a letter from Dr. T. Levi-Civita. He brought my attention
to the fact that one can prove that the propagation of the wave front
proceeds with the velomty of light in vacuum ¢ directly from the basic
relations (21), due to the so-called “compatibility relations.’”’ !

11 More about this can be found, for example, in G. Zemplen, Encykl. Math.
Wiss. 4, Art. 19.
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Let

(26) e = [g%] h= {g?-}

[ 4

be the discontinuities in (3€/0x), (09/0x) at the boundary (the wave
front). Since €, $, and § prove to be continuous we have:

(26a) €] =[] =[5]=0

If v represents the velocity with which the discontinuity moves in
the direction of its normal, then the “identity compatibility relations”
state that:

(26b) [l = —ve [H]=—vh

This follows directly, if one writes the cquation

t

E(t + A, x + Ax) — G4, x) = EAi + S%Ax

for the two sides of the boundary, subtracts them, and sets 4x = vA4!.
Proceeding similarly with the basic Eqgs. (21), and using Egs. (26),
(26a), and (26b), we get:

v v
—Zh=—e —Le—_u
¢ ¢

so that upon multiplying the two,
(27) =

which is our result: the velocity of the wave front is the vclocity of
light in vacuum. *

8. The Forerunners

We can handle the situation arising immediately after the start of
the signal, i.e., for small values of t = ¢ — x/c, in the iollowing
manner.
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We start with Eq. (12a) of Section 4 which is to be evaluated
along the original path #. This is

1

(28) 1, %) = ;5 g~ int +iKx an

n? — (2n/7)?

with the abbreviation

n " a?
(28a) K = —T =7 {l/l + %ﬁ:ﬁ;ﬁ -— 1}

Here and in the ensuing we neglect the damping of the ionic
oscillations, i.e., we set p == 0 which also makes the coefficient of
absorption « == 0.

U

Ui

Fic. 8.

We add another path of integration u’ in the lower half plane to
the path u (Fig. 8); this is permissible since, for { > 0, we can deform
the path #' to one at infinity in the lower half plane just as we did
with path b, in Figs. 5 and 6. The two paths « and #' can be combined
to a path U far from the origin of the » plane, upon which the integra-
tion in Eq. (28) is to be performed.

Since # is very large 2long the whole path U, we expand the square
root in"K and retain only the lowest power of 1/x.

We then get

Ky =

3y { i 2 ;
ady % a +) &

2 my? — 722\ 4 ny? — nt

with the notation

(20) £
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Our integral (28) now reads, if we replace the denominator
n? — (2n/7)® by #?, |

1 [ —mt-itdn
(30) ft.x) = < 58 ol

We can write the above exponential in the following manmer:

-~i(nt+~i——)= —-—-z'ViE(nl/j}-{——;—l/—%—)m——- 2i J/t& cos u

where the new variable of integration « is defined by

(31) ¢in — nV-:;

where by
‘—ig = 1du V—T—.e“ "
n ¢

Thus, Eq. (30) is rewritten as

(32) f(t,x) = % ij— j e~ 2Vt cosu g—iu 1y

Here we let the variable u vary from 0 to 2z. According te Eq. (31),
this corresponds to a circuit about the origin of the s-plane in a

circle of radius |n| = V&, i.e., for very small t a path U, as was
required in Fig. 8. The integral appearing in Eq. (32) is nothing but
a well-known integral representation of the Bessel function? of the
first order of argument 2}/t¢ and we thus have

(33) fit,%) = 2,—-"]/—'*5-11(2 45

From the well-known character of the function J,, we find the
following as the condition of our signal right after it arrives, i.e., for

12 E. Jahnke and F. Emde, “‘Funktionentafeln, 4th’ ed., p. 149. Dover, New York,
1945.
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small values of t. The initial amplitude is negligibly small compared
with 1, i.e., compared with the amplitude of the incoming wave, and
the initial period of the wave is small compafed with 7, i.e., compared
with the incident period. Period and amplitude increase because of

the occurrence of |t before and in the function J,, respectively, as is
schematically shown in Fig. 9, where one must remember that our
fast Eq. (32), from the manner in which it was derived, is valid only
for small values of t/&. The situation for large values of { and the way
the forerunners join on to the main signal of period 7, are taken up
by Dr. Brillouin in the following chapters.

One point of exceptional interest should still be made.

According to Eq. (32), the period of the initial forerunner is given
by the first root of the function J,(z) which is approximately z = =.
From this, one calculates the initial period t, using Eq. (29) as

This time is independent of the period v of the incident light, as
well as of the characteristic-frequency of the oscillating ions, and is
determined only by the depth x and the dispersive capability of the
medium, i.e., by the number of ions R|. This independence ‘of the
period from the color of the incident light was already used in some
inferences 1n the introduction.



CHAPTER III

ABOUT THE PROPAGATION OF LIGHT IN DISPERSIVE
MEDIA*

1. How to Use the Saddle-Point Method of integration

In the present chapter, we discuss the problem which Dr. Sommer-
feld proposed in the preceding chapter. The propagation of a signal
terminated on one side, which is what is involved here, leads to the
integral

e osk — }4‘-4)

(1) ‘ f¢.x) = Q% Re S e an

n—y

which is to be evaluated in the complex plane # from -+ o to — o0
over the path # [compare with Section 2, Fig. 2 and Eq. (9) of
Chapter 1I]. » = 2xn/r is the frequency, 7 the period of the signal,
k has the value

(2) h=2p

where ¢ ig the velocity of light in vacuum, and x denotes the complex
index of refraction for the irequency n. [Compare Chapter II,
formula (131

a?
2 ;
0. — 2np —mn?

(2’ 2 =1 4
(2" J +

The integral (1) gives the signal at time ¢ and a depth x of the
medium with index of refraction x. The exponent of ¢ is denoted by w.

D R —

* L. Brillouin, Ann. Physik [4] 44, 203 (1914).
43
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(3) wx-—i(nt-———kx)x-:—-v
(4) v = — (6 — u)

K ct
(e&a) O = ";

A signal propagating with velocity ¢ would arrive at a depth x at
a time ¢ == x/c, that is, for ® = 1. In Chapter I1, Sommerfeld showed
that a signal never propagates with a velocity greater than that of
light, i.e. that f{f,x) vanishes for ® < 1. Let us denote

(4b) @—1=9»
x
(4¢c) i — =

This chapter will examine the form of the signal and show that
one can give an exact definition of the concept of the signal velocity
and that this velocity is identical with the group velocity, except for
signals whose wavelengths are in the region of the anomalous disper-
sion of the medium.

Let & % be the coordinates of the complex plane #»:
=&+ 1y
and let X, Y be the real and imaginary parts of the function v
v=X+1Y

For a discussion of the integral, it is simplest to deform the path of
integration in such a way that X, in general, takes on large negative
values;” then the integral vanishes, and one has to evaluate the
integral only for those parts of the path for which the absolute value
of X is not too large.

It 1s well known that, due to the equations

X 9y X _ 9Y
F " T W W
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the function X has no maximum or minimum of finite value;
there can be only saddle points, where
0X L oX
0t on
At such a point, Y also has a saddle point; the point is determined
by the equation
av
{5) in = 0
In the following, the complex plane will be regarded as a top-
ographical map with X as the elevation, and the equipotential lines
and lines of steepest descent of X will be considered. The lines of
descent for X are equipotential lines for ¥. They can originate only
from those points at which X is infinite, since no finite maxima or
minima occur. The transition from one valley to another proceeds
most easily across a saddle point. The integration in the neighborhood
of the saddle point will be of greatest interest.! It will turn out that
those saddle points which are of interest always lie near the real axis.
According to Eq. (5), the condition for a saddle point, taking
Eq. (3) into account, is:

If » is real, i.e, if it corresponds to an actual frequency, then the
group velocity of this frequency (compare with Chapter II, Section 1)
is equal to dn/dk. Consequently, at time ¢ the saddle point is at that
frequency » whose group velocity is x/f. In the evaluation of the
integral, one can restrict one’s attention to the neighborhood of the
saddle point, i.e,, to the neighborhood of this frequency. Therefore,
it is approximately true that every elementary wave motion of the
sigual spreads with its group velocity, at least so long as its domain
remains normally dispersive. '

! For a discugsion of the method of saddle points and its use see P, Debye, Mata.
Ans, 47, 5358 (1810); Sitzber. bayer. Akad. Wiss. Math -noturw, FH. {1810); first
used by . F. B. Riemann, “Gesammelte Werke,”' p. 400, Lzipuig, i876,
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Survey

In Section 2, the complex n plane will be examined, especially
near the points where X becomes zero or infinite. Section 3 gives the
position of the various saddle points, their motion as a function of
time, and a little about the order of magnitude of the quantities
entering the formulas. In Section 4, the variation of the path of
integration with time is recorded. From this, several general state-
ments about the signal velocity follow, Section 5 contains the integra-
tion in the neighborhood of the saddle points, i.e., the calculation of
the forerunners. These results enable one to calculate, in Section 6,
the signal velocity also for the case of anomalous dispersion. The
conclusion contains a few remarks about the comparison between
the method used here, “the method of saddle points,” and the so-
called “method of stationary phase.”

2. Examination of the Complex n Plane

It is important to know the areas of the complex # plane, in which
the real part X of the exponent is negative. The border of this area
is given by the equation X = 0. It is known how X behaves at
infinity (see Chapter II, Section 4):

for ® < 1, X is at infinity: —oc in the upper half plane, and
+4 oo in the lower half plane.

for @ = 1, X vanishes at infinity.

for @ > 1, X is at infinity: -+ oo in the upper half plane, and
-—o0 in the lower half plane.

Besides this, on the real axis [see Chapter 1I, formula (16)],
(7) ﬁ:—.z?;?(l 1 4x)

(% == wavelengrh in the dispersive medium, « = coefficient of absoip-
tion.s Cnz can rewote BEq. {2} as

Ji == i:- il A ix)
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if the complex index of refraction is given by

(7) M=y O = Kl
As is well known, ¢/u, gives the phase velocity W. Now, according
to Eq. (4), the real part of v = — (& — pu) is
X = —np; = — 0y,

Thus, X is negative along the real axis except for those fre-
quencies # at which the coefficient of absorption vanishes. The
absolute value of X is large for the regions of anomaloue dispersion,
small for very small or very large #.

Now consider X along the straight lines 5 = — p, determined by
the points N,, N, (where X vanishes) and U,, U, (where X becomes
infinite) and in the neighborhood of the branch lines N, U, and N,U,.
The coordinates of these points are (Chapter 11, Section 4):

U, U, n==—p o = + V;z?w——:;ﬂi

Ny Ny =P § == [ne? + ¥ —p?
Along the straight lines » == — p, u has the value
g 7 P @
. . at
(3} "= V LR ey
L&
., ¢ is real and positive in the regions ¢ < &< &, & < & < oo, pure

Jﬁdgmary for £, << E<§,, and a(,t_maﬂy pasdwe on one side of the
cut £,£_, negative on the other side. In order to determine these
sizns, consider ¢ in the neighborhood of the points U, N,.

For the region about N,/

n == ”"‘7/P+ &ﬁ-*;_r’ﬂa

where 7, « are polar coordinates abojt the point N,; irom this,

25
2 . " yoia
# a e
(%) -

H = “'a”“‘

i-x,"2
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Ther«fore, for

e
V2&.7
¥ == 0 fro == T
a
. L+
o= Mal2 == fo "7
2 V:
& = Hon = -+ lig?,
i 1—1
&% 5 e e Hom oz 7= fhg iz
; /2
O Zzr e JF fomm = “‘igai

Similarly, in tie region about U, let
= — ip - £, + Re™

and theo

H 2
p = — _a. e 10 4 __etiln—w)
ZGQR 25@8
(10) o
e { y
p 7= g gl )2
V260K
Thus for
w = s = + o0,
yr .
@ == < Baje = (1 4 1) 0
w = { ;‘50=’+‘i°°
37 )
@ =y Pange = (1 — 1) 00
w = 23{ Hen == .—-—-im

This is shown in the adjoining Fig. 1. Thus, one can easily see,
that X [= real part of v = — in(® — p)] is negative on both sides
of the cut near NV;. This iz because & 2> 1 (see Section i). Near U,
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however, X is negative on the upper side of the cut and positive on
the other.

Formula (8) gives the value of u on the straight lines = — p.
The value of X is derived from this:

X = —p(® —u), if u is real,

= — (p® + &uw), if u is pure imaginary.

1+i . el
,-...........:.Z......-‘C__——_t_":—_;g..a.t’.._

FiG. 1.

InFig. 2, u,, 4 p;, and + (&/p)u,; are plotted as ordinates, taking &
as the abscissa (along the straight line 5 = — p). The points X = 0
are then given by the intersections of u, or of + (&/p)u, with a line
‘parallel to the §-axis at the value @. For @ > 1, one of these points
lies between N; and U, and actually at the bottom side of the cut.
Its abscissa is § = AC. With increasing @, it moves from N, toward
U,. A second intersection with an abscissa of § = AB can occur
between 0 and U,.

From the behavior of X near U,, it is seen that the curve X = 0
must start at this point U;. For the neighborhood of U,

=-——2_(sinZ +icos 2
# J26.R\ 2 2
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so that
X = — in% © @
P +v2 R(p 2 E 0052)

Let w, be a solution of the equation

Then, assuming &_ > p, w0 is an angle near n defined modulo 2.
Then,

w"""wl

X = —p@® + V% sin
with the abbreviation

p p? | &2
b-«al/ T

The curve X =0 1is then,
for small R and small (v — w,),
the spiral

< J—
o= o+ 2R

Fig. 3.

which touches the straight line
w = w, at U,.
The adjoining Fig. 3 shows a picture of the complex plane near
the cut U,N,. In the shaded regions, X is negative.

3. Loacation of the Saddiz Points

What is of most interest is not so much the curve X = 0 as the
location of the saddle points. Once these are found, then the path of
integration will be taken along the lines of steepest descent through’
the saddle points without any difficulty. The curve X = 0 is cne of
the equipotentials orthogonal to these lines of steepest descent.



3. LOCATION OF THE SADDLE POINTS 51

A. The region about the origin

In order to find the saddle points near the origin u is expanded in
increasing powers of #: “

at ny% — 2ipn — n?
= |/1 2 .
“ l/ + —2pn —n? l/;o2 — 2tpn —n?

where

Then (ny% — @)/(n,% — ) must be expanded, with « = 2ipn + n?
small compared with #,2 and with 7,2:

Te T _ T2 [y
Ng?—a ”02( ny? )( Lt 2 t- )

=" x_ 2
“no(l 211‘*’%2+ )

If « is inserted and A is defined as

a?
= g3,
one gets
(11) uo=2 4 dn(n + 2ip) + ..
0
Thus, according to Eq. (4)
(12) v = — (@ —u) = —in(d' — An{n + 2ip)]
if (see Eq. 4b)
Ny
12') =6 —-2 P
1) =0 ) =0 (”o })

In order to get the saddle points, nne must write

dv : :
—— T s, V= 0
T 0 and D' —An(3n + 41p) = 0
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The roots of this equation are
2 . 3’
”n = — '--'39 + — l/";f' — 4p

Case A 1: D' < $A4p

The saddle points are given by

| 2 11/, , 3
(13) %ww(*mpi 31/4,, ““'“5‘}

They lie on the imaginary axis and are symmetric about the point
E=10, = —4%p. One can easily show that the lines of steepest
descent through these points are parallel to the axes (see ¥ig. 4).
The awows show the directions of ascent along the lines of descent.

9 ¢ T3
I F7e ; 0
—--it?-—w.; ______ i......._.......u e e e BRIy e e e 0 % -.-.‘.-—....._..Q;X_a_._—. L ACh

Fig. 4. Fic. 5.

Case A 2: d' > § Ap2
The saddle points lie on the straight line n = % p symmetrically

about the imaginary axis:

2
ﬂ"""‘*i“‘}):{:fp
(14)

§p =
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The corresponding lines of steepest descent are at an angle of 45°
to the axes (see Fig. 5).
Case A 3: ' = §Axp2.
in this case,‘ a special saddle poing exists at

‘ 2.
(15) ?’l-:—-**é-'bp

at which both dv/dn and d%v/dn? = {A(6n -+ 4ip) vanish. in order
to calculate v in the wicinity of this point, polar coordirates 7, «
around the saddle point are introduced: )
2. _
= =1 - yer
3P+
Thef,

v =i —b'n + An? + 2ipAn?)

=74 (w %— p*n + 2ipn? + na) !
' 0
o g
= Uy + 1A --..?.’@P.--.*ﬁ ___________
with 1
8 3
s e A 8
ve 57 4P
Fi;. 6.
Thus,

X = X, — Ar3sin 3«

Figure 6 shows this special saddle point of higher order, and the
character of the lines of descent through it.

The two saddle ‘points, which are at first on the imaginary axis,
move closer together with increasing time, come together into a
special saddle point when

-

4 . # 4 \
'3 2 e 2 LT A2
b’ =5 Ap (that is, @ v g Ar )

and then move apart symmetrically about the imaginary axis.
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B. Saddle points far from the origin

Consider the n-plane for large », and neglect 7,2 compared with »2.
Then Eq. {2) becomes

or, since the second part is very small,

a? 1
(16) = Y @ T A,
Formula (4) then becomes

= —— 1l — u) = ;inbmigi«—:-j-u—
: 22ip+n

where @ — 1 = [see Eq. (4b)]. The saddle points are given by

@ _o A S
dn 2 (2ip +n)2
Therefore,
(17) Moo= —2p + &  bp= e
p = - = ==
1 P b4 V2b
Thus there are two saddle points, symmetric about the #-axis,
on the straight line 5 == — 2p. One can write v as

.a? 11
Uty (5 =+2zp+n)

The equipotentials of X through #, are the lines paralilel to the
axes. (Along the whole straight line n = -— 2p, X = — 2pd, within
the limits in which the ‘approximations are valid.) The lines of steepest
descent are inclined at 45° {see Fig. 7). For b = 0 the saddle points
are at infinity on the Ime n == — 2p, and with increasing d they move
along this line toward values of smaller |£|. When b gets large enough,
so that £, is no longer large compared with #,, i.e., when the saddle
point comes near to the branch line, then the approximation loses
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its validity. One can show that the saddle points leave the line

n = — 2p, and move along the curve shown in Fig. 7 toward the
branch line. :

F1c. 7. Key: — — — —, path.

For very short times d (€ nearly equal to 1), there are two other
saddle points which are on the imaginary axis on both sides of the
origin, and which move closer to the real axis with increasing
time &. These are the saddle points which we found near the origin
for slightly greater times in Case A 1. Their exact location is not
important. ‘

Orders of Magnitude

This is the time to make some statements about the orders of
magnitude of the various constants entering the formulas.
Suppose the depth inside the dispersive medium is °

x¥ = 1lcm.
Let the wavelength of the incident signal, measured in air be
Ag=005u=25x 10-5cm.

then the frequency is

v___27zcm2>< 1011
I P T

=gd x 1015
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The characteristic {requency of the medium is taken as
ng = 10v =4 X 1616
Let ‘the index of refraction of the‘medium at the frequency » be
u==15

This information, together with the assumption of zero absorption
(p = 0) allows a calculation of the order of magnitude of a2
According to Eq. (2'),

a‘2
2. ]

a? = (u® — (?) 1 X 99 X vZ== 1.24 X ny?
i

Thus, a is neady equal to n,. Therefore,
fy = [T T At = L3mg = 6 x 101
The coefficient 4 was defined by

a? a8
2ug3ny  3my

1
Fa O jp—33

It is also worthwhile giving some data on the order of magnitude
of the coefficient p according to Goldhammer, in Dispersion und
Absorption des Lichtes.* On p. 126 of that book is given data on the
order of magnitude of the logarithmic decrement y for several mate-
rials. This decrement is related to p by the equation

Y dia
P =5

L]
Experiments with ecsine and fuchsine give
y = 0.45

For mercury, y = 0.8, while for iodine the damping (loc cit. p. 5
is very smalil

? Geldhammer, “Dispersion find Absorption des Lichtes.” Leipzig, 1913.
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The following table gives the corresponding values of p.

y 0.08 0.3 0.45 0.6 09

ping 10~ 6 x 10-% .5 x 102 101 1.5 x 1071

In all ordinary cases, p? is therefore small,compared with #,42,
being approximately

pt=75 X 10“3?%}

4. Successive Motion of the Saddle Points as a3 Function of Time.
Choice of the Path of integration

The following i'igs. 8-—14 show the view of the comnplex plane
for several different times. Only one half plane is shown, but one
can easily see that the itwo points n.= 4= § + 4% which are symmet-
rical about the imaginary axis correspond to the value v = X + 7Y,

%f,/// , : /:’ i
m
$<0
- Fic. 9.

so that the figure is symmetrical about the lmaginary axis. In the
shaded regions, X is negative. The most important lines of steepest
descent are drawn in. They start from the points where X is
negatively infinite and go to the points where X is positively infinite.
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These Poi:nts are the two points {/ and (except for t = 0) the point
at infinity on the imaginary axis. It is'probably worthwhile reminding
the read.r of the notation.

For ¢t< (x/c) everythingeis at : < /
rest; the integral vanishes. The 767 / A\

. . It A
first forerunners of the signal "//4/

arrive with the velocity ¢, that
is, at the time t = 0 (compare

Chapter II).
Figure 8 shows the picture of
the complex plane for t < 0. The
path of integration can be taken
to infinity in the direction of 7,97 ( 7 //A

the positive imaginary axis. The
integral vanishes, since X is neg- g 19, Key: ————, path of
atively infinite there. integration.

7

p O

Fie. 11, Fic. 12.
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For the time t = 0, shown in Fig. 9, the circle with infinite radius
is part of the curve X = 0. Here one can still deform the path in
the upper half plane to infinity, but the integral now vanishes as
1/(n — »), rather than exponentially.

% ’%}7/// o

7 NP1
— :@

N

For t> 0, one can see from Figs. 16—14 the changes in the
complex plane. From one section in which X has large negative
values, one goes over a saddle point to another such section. The
path of integration will be deformed so that it stays in such sections
for a large part of its path, since the integral is practically zero there.
Then, one only has to evaluate the integral near the saddle point,
and, in fact, it is best to choose a line of steepest descent through the
saddle point. This path of integration is shown in the figures,.and its
change with time is easily followed.

Near the saddle points, it is easier to do the integration if the
saddle points are not too near the cuts UN or the point # = ». Then
one can replace the path of integration by its tangent line through
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the saddle point, and consider 1/{(n — ») as constant; thus one gets
elementary integrals to perform (see Section 5). With these given
conditions, the integration gives results corresponding tc forerunners,
whose amplitude is exceedingly small compared to the final amplitude
of the signal.

/

Frc. 14.

Now, to see what happens when the path of integration comes
near the point # = » (v real). This point is taken between the origin
and the branch line, 0 < » << n, This is the case calculated earlier
when orders of magnitude were considered: the signal was in the
visible part of the spectrum propagating in a medium whose char-
acteristic frequency was in the ultraviclet. The opposite case » > »
would give analogous results.

With increasing time, the path of integration is first above and
to the left of the pole », then passes through it, and finally ends-up
to the right and below it. One must then add a curve around the
pole [Figs. (15a, b, ¢)]. In the first case [Fig. (15a)], the integration
gives an oscillating part whose amplitude increases to about 1/2 the
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final amplitude [Fig. (15b)]. The? one must add together a constant
oscillating expression with a final amplitude which comes from a
term representing the added cdrve about », and a negative term
whose amplitude decreases from 1/2 the final amplitude to very small
values, representing the other part of the path of integration. Fig-
ures 16 and 17 illustrate these several expressions and their super-
position.

Actually, if the path of integration is very near the pole, then
the parts far away from it contribute negligibly: it is sufficient to
consider only the immediate neighborhood of the pole. Then, one
can consider n¢ — &x as constant and equal to »f — kx in the integral

e~ nt ~ kz)

.l Rej " dn
Pdes A n—9v

where (see Eq. 7)

2

= —1— (14 1K)

<

If p, w are polar coordinates about »; then
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and for the integral, it follows that -

) 2n 2 - m‘_i_
Re[z’e ’(”‘ 1’)8 ‘x*'—ﬁjdw]=e 2 zsin(vz.-zni‘-)“’

AJ2n
. For the complete curve about the pole, w/27x = 1. The first term
thus gives the final oscillation. For the path in Fig. 15b, one has
w/2n = }, which proves the previous statement. The complete
calculation of the integration near the pole will not be given here,
since it is quite tedious and does not give anything more than the
remarks already made.

Thus, it is seen that at that moment when the path of integration
veaches the pole, the intensity of the oscillation increases very rapidly;
previously, it was very small (compare further with the order of
magnitude of the forerunners) and it now gets the magnitude of the
final intensity. This moment, marking the arrival of the signal,
permits one fo define a signal velocity. This velocity will be shown
to be equal to the group velocity, if the path is far from the branch
line, i.e., if the frequency of the signal is far from the characteristic
frequency of the medium. The saddle point C moves with increasing
time in the direction of increasing & (Fig. 18) along a straight line,

which is parallel to the real axis

and near it* (CD = § p is very

n small compared with 5#* cf. Fig.5.)
Of the lines of descent through
the saddle point which are at
angles of 45°, one is the path of
integration; it cuts the real axis
at B. If the lines of descent are
drawn in the neighborhood of the
saddle point, then it is seen that
Fic. 18. oneof them touches the realaxis at

the point D, which has the same

abscissa as the saddle point C.

By definition, the time of arrival of the signal is the time when B
arnves at the pole P. The distance DB = CD is very small. It will
be shown that the signal arrives with a velocity exactly equal to the
group velocity, if the arrival of the signal is defined as the time when the
pond D reaches the pole P.
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Actually, on -the real axis (nreal), 2 = %, 4 1k;; if real and
imaginary parts are separated, then

W = — i(nt — k%) = — k% — i(nt — kyx) z%(X—kiY)

At D, the real axis is tangent to a line of descent of X, and the
directibn perpendicular to it is an equipotential for X:

X _,__ 9%
o~ ot
thus
ak,
t"‘-"—{’;‘x-»-—-
or
x
tw—ﬁ--—-()

where U is the group velocity. Now, the abscissa of the pole P is
equal to », the frequency of the signal. Let U, be the group velocity
corresponding to »; the pole P reaches D at a time { = x/U_ where x
is the depth attained by the signal. If this defines the time of arrival
of the signal, then this means that the signal propagates with the
group velocity.

Concerning the velocity of propagation of a signal whose frequency
is in the region of anomalous dispersion, see Section 6.

The signal velocity thus defines the moment of arrivg]l of the
signal with noticeable amplitude, whereas the pha-e velocity only
‘determines the arrangement of the phases of the signal as explained
in Chapter II, Section 4.

5. The Forerunners

In the previous paragraphs, the positions of the saddle points
were calculated and it was shown how the path of integration passes
through them; now the integration near the saddle points will be
carried out. While the time when the path of integration passes
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over the pole provides the signal velocity, the integration near the
saddle points will give secondary parts, the forerunners, whose
intensity is very weak compared with that of the signal. The caicula:
tion is performed in the same order in which the positions of the
saddle points were designated in Section 3.

A. Saddle points near the origin

Case A 1

For b’ < § Ap?, two saddle points were found on the imaginary
axis. The path of integration goes through the saddle point with
ordinate [see formula (13), and Fig. 4]

parallel to the real axis. Near the saddle point,\.

n=1n + &

where ¢ denotes a small real quantity; this function can be expazxde&?
near this saddle point by using Eq. (12). The first order parts vanism:
(dv/dn = 0 at the saddle point) and the second order parts are real
since one stays on a line of descent of X (i.e., on a curve Y = con-
stant). Then, one finds

v = v, — B&?
where
Up = 1p [D" + Anp(np + 2p)]
B = A{3n, + 2p) '
v,, the value oi the function v at the saddle point, is real; v, = X ,,,W

Y, = 0, which is something which will be used later. This result is
actually easily understood, and is valid even for saddle points fare
from the origin, for which the approximate formula (11) is not exact.
The saddle point lies on the irmaginary axis, and the line of descent’
which is used as a path of integration goes through the point and 1&
syminetric about the  imaginary axis. On this curve Y mast be)

i
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firstly, constant (Section 1), and secondly, it must have the same
value at points which lie symmetrically about the iinaginary axis
(compare the beginning of Section 4); thus it must necessarily be
that Y = 0.

Now, the integral / mnear the saddle point must be evaluated.

-~

1 giricly g(-"q"p ¥ g (¥ic)BE
18 e Rel S g D T g
(18) 27 no— v 2§ m—y
+a

In order that the approximate method should be valid, the limits + &,
between which the integral is taken, must be small comparved with
the other magnitudes in the #n-plane, such as #n,; At the end of
Section 3, the following orders of magnitude were shown to be
admissible.

i

v=4 X 10%, fy == 4 X 1578, A == o x 10738

el

On the other hand, the approximate formula for the index of refrac-
tion requires that at the saddle point 7,2 is much smaller than n,®
If one takes 7, = 2 X 1072 n; ~ 10%, one finds that
. 3 Nk 3

B == :3A?’jp piid —!'.{ e 1025»-33 = 5« X 1(}"’18

and
3 .

ZB=xrte x 1071810 = 25 x 10-2

c 3 X 8
" The approximation will be valid, if one can find a value & so much
smaller than #n, that exp {— (x/c)Be?®} is practically zero. It is
sufficient to require that

1f the depfh traversed by the Light ¥ == 1 cwm., this requires that:
2w e?  107¥ = §, g == 85 o 140

7
£== 8 X [OM = "":"'0.
160
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For a depth x = 100 cm., one finds that e = § x 108 = #,/1000,
These values are admissible for the calculation.
n — » will be considered constant in these limits:

1 ! v -+ 1%

——— s

—_ 2 e K s e

M= ¥ »? - 2
and then the integral

-

1 1 /| nc 11/ ¢
- (2B Jo s s o 3 o m i § ) e
2 g 4 Bx i/ nBx
+

Taking the real part, one finally finds from Eq. (18),

f — 14 c e(x/c)vp
2(v? +np?) | wBx

Now to investigate the order of magnitude of f and its variation
with time. The square root is of order of magnitude § x 10¢, and
increases slowly; the first factor is of order 1/2», in other words
about 4 x 10715; The product of the two factors is about 1/60 and

increases with time. The behavior of the exponent must still be
‘considered. Now

X oo ;
% vp =~ [med” + Anp®(np + 2p)]

where
Ny == --—--—p ~+- 1/ ip —
1, is thus of order of magritude V I6']/24, which gives

2 X
vp s =

f)‘e:j

This is a negative number of large absolute value i{x/c)b’ < 0, », large],
which approaches zero for ¥’ =: 0. The approximation does not give
the exact variation for ' = 0.
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All in all, the function f is at first nearly zero, then increases
taking on the still small value of

for = 11/_¢
¥=0= %y | 2mpxA

for b’ = 0. The value of } for times d’ a~ § 4p® will not be calculated
here. A slow transition occurs from the nonoscillatory solution found
here to the oscillating function which will be found for b’ > § Ap%
Throughout this region, however, f retains the order of magnitude

Of fb'*—‘=0'
Case A 2
If " > ¢4 Ap? then there are two saddle points symmetric about

the imaginary axis (see Fig. 5):

.2
m*‘"’“gpi'.fp

(see formula 14). The path of integration through them is in the
direction of straight lines at 45°. Thus, near these saddle points,

. 2 .
nx-—-z~§~pi£,,+(l 4 2)e
thus
an = (1 ;{;z’)de:]/é—ai""/‘de

As in the previously handled case, the exponent v near the saddle
point takes on the form

v = ¢y — Ce?

One finds

(2 . . .2\ .4
Up=—1D “3‘9:!:&5» + 14 i:fr‘“z*gi’ :t5p+1"§P
Vp == Xp + Z.Yp, C = 6A£p

. .
Xp = 39(“'b'+*§AP2). Yy=§; [““b'“l'/i(fﬁ + %‘P2)}
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It 1s still necessary to evaluate the integral

in the immediate neighborhood of the above menticned saddle points.
The coefficient C has the same order of magnitude as the coefficient
B 1n the previous case. In the first f;_.‘;g,xmmmaflg 1, the factor 1/(n — »)
is conzidered as constant for each of tive integrals at the saddie points;
and is taken in frent of the integral sign along with a factor of
value ¢"""p, The remaining m*‘cegms tor oue or the other of the saddle
points is

-

1 . !/}T 2 wid e {xjc)Ce* d&‘
2
Fo
where 2 hins a small value. Considering the magnitude of C, the integral
has the same value as it would have if « were infinite, namely

_— ]// 9 gt imit 1' i /:C._. I ._1__ pEinld .______E«._.w
Zlv 2{ )‘vC 2

replacing by its equivalent. Thus, all in all, the integration near

L

the saddie points gives

e me——— = =

I [
f=—3 | mE

x LN j*__ , o
ﬂ“‘j" {Fsp-% sz) e - (Xi) "YF}
f & et . pETE[4 . e inld
And ; . 2 e / + ‘)
% ”Mi}%-*;)“f‘é?{z*““'}“ o ‘~p-——§¢mr’

After sorue elewnenary manipulations one finally gets

e e e e i

! L
/ & e X
{ ¢ P
Yy~ w0 €F

E‘ 2mipid

je=

— w__.,-_.._-ﬂ/&. T ¢
{w“‘." + r 2 ‘K__ . ) o 41)‘2 ‘pﬁ
A\

r o

4 ) ( X ) 4 x| %
. 22— ptleos| s - = Vol b opdpsinl 4+ =Y
(19) Kv SpP g erjens\ g b V)b gedpsinp s Y
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The exponent (x/c)X, is always negative, its absolute value A

increases with time approximately as
2 2
+ 5 (#/e)pd’ = A4 5 pt!

The value of exp {(%/c)X,}, which at first (b’ = 0) is nearly 1, decreases
finally and approaches zero, as the saddle puints near the branch Jine.
The square root varies in the same way with the time. The other
factor will be slightly simplitied (so that its behavicr can be better
seen) by neglecting p? with respect to 2 — £ 2, which is always valid
except when the saddle point is near the pole ». One then finds

— v ¢ %
! b4 X 4 5 o1 4
e joos (34 2v)+ 5 psfrsn(F+ 2w,

One sees that in general the cosiue term is much greater then the
sine term:, but when the saddle point approaches the pnle, a change
in phase occurs, since the sine term is no longer negligible. The factor
#/(v? — £,%) which is usually of the order 1/», that is, very small,
becomes very large when the saddle point nears the pole.

Now it is appropriate to find the instantaneous frequency
w == 2x|T of this oscillation, which is arbitiarily defined as the time
derivative of the phase, at least when the cosine part dominates, e,
when £, deviates greatly from »:

d ) dy, dYy,
dt( tg Vo) =gt =0

thus
2 N
- ..:“ { ..-.b_ [, lgi:“))'.; prcamig : -
Y \ f;{ f 3 4‘%

if p? can be neglected in comparison with v'/.4. Thas

. : ) 9 V 3 i
Yp = =g fpb = = e 4
Vg 112 }
Q) =5 e TR e g:b

3 X giE

3
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The instantaneous frequency is thus equal to the abscissa &, of the
saddle point, i.e., according to the above (the end of Section 4)
it is equal to the frequency of an oscillation whose group velocity
is xft.

The order of magnitude of the amplitude of the wave motion
will be calculated using the same magnitudes assumed in the pre-
vious case:

C = 2B, C=2x x10"%

1 x
2 ¢

The amplitude is, except for the exponential factor

i/ 2c ____L
vl/an~30

The forerunners thus have an amplitude of the order 1/30, i.e. an
intensity of about 1/1000 of that of the signal. This intensity, however,
depends directly on the spectral distribution of the initial signal.
Actually, the factor

4
% J—

occurs in the expression for the amplitude of the oscillation under
consideration, which, except for the numerical factor — 1/n, gives
the amplitude of the oscillation of the frequency &, in the original
signal (Chapter II, Sectien 2):

P 2 1

SR —— n e .
e — £,°2 T &% — (2m/t)?

The expression (19') can also be written in another form, in which
only the values of x and {’ occur. This representation is approximate
only for saddle points which do not lie too near the origin or the
pole ». The previous approximate relation is used

E___l 3bl___ ctl
PT 3 4 T ) 34x
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and we thus get from Eq. (19):

e~ @3t

. 1 c 1/4 P
/= V;(ant') v ol [3dx

21/ ¢ ey % gpl/ct/?,Ax . [2 n
—_ e 41342 T 32 .
{COS(?’v:SAxt 4) ' 3dx \3 3Axt8 3

(19")

The integration around the saddle points near the origin has
thus revealed an oscillatory motion of the following kind: until times
near t' = (x/c)d’' = 0 (¢ = ang/n,), no noticeable motion; for t’
nearly zero, a small deflection; then for t' > 0, an oscillatory motion
with small amplitude whose frequency increases from zero. The
amplitude increases quickly, as the frequency of these forerunners
approaches that of the signal. The signal approaches with the group
velocity and quickly takes on its final amplitude. It is still influenced
for some time by the forerunners whose amplitude decreases quickly
while their frequency continues to increase. As their frequency
approaches the characteristic frequency of the oscillating electrons in
the medium, their amplitude becomes unnoticeable.

This applies for the case where 0 < v < n,, i.e., for a visible signal
and a characteristic frequency of the electrons in the ultraviolet.

The part of the forerunners which were just found will be called
the second forerunners: the integration around the saddle points
lying far from the imaginary axis will produce the first forerunners.

B. Saddie points at a great distance

It was seen that for small times & account must be taken of one
saddle point on the imaginary axis and two additional ones symmetric
about this axis at the points [see Eq. (17), and Fig. 7]

§p= & Vr—f: Np = —2p

The integration near the saddle point on the ‘imaginary axis
contributes a negligible amount, since it is a flat saddle point. It was
already shown (Case A 1), that the integration near this point can be
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neglected except when the point is near the origin. It was also men-
tioned that on the line of descent through this saddie point, i.e.,
on the path of integration, Y vanishes.

Thus, only the two remaining saddle points through which the
path ot integration passes at 45° must be considered. Near these
points,

n=—2p 4 & + (1 F 1)

N
- Vs Fio
dn = (1 F 1)de = V/2e tde
and one can expand v as

2 2 2
a . a a
vt Dot —pps 1 — et

For these saddle points, the limits 4 « in the integral

-

1 3(2/4:)0

P RC‘ j d%

2n W~
+a

must be chosen in such a way, that ¢~ /9P¢ vanishes at these limiis.
The approximations are valid if one can choose a so that it is small
compared with £,. In order to be abie to give a numerical example of
this, the following values are chosen:

£p = 10 X n, a=ng=4 x 101
D = ol X 10718 o 133 == 1 K 1019
T &Y 4 4
2 p=10-30
¢

The exponential is practically zero if — (#/c)De® & — 10. Thus
118 required that

1078058 =10, a== 3 x 108

Thus ¢1s of the order £,/190. which is quite admissible. The approxima-
tion is valid if the abscissa &, of the saddle point is greater than #,
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but not too great, as would be the case for times d very near zero
[see Eq. (17)].

If the factor 1/(» — ») is considered as constant and taken in
front of the integral sign, then the integral

-

@ X .
[« & e L)/
a

x
+ w

Depending on which saddle point is under consideration, it must be
multiplied by

_ sz a‘.x Ti at x n\
V2e™ T V—* EE, (5erd)
Ty — P — — 2p + Ep—»

Then the two parts are added and the real part of the sum is taken,
finally giving

1/2
90 SR I RO C .
\ ) f a( N ) ces(&p C r 4/:

or replacing &, everywhere by t, according to formuia (17):
3/4 \
(20) f=— ~L<2—£) /g2t cos‘( l —-t + ﬁ}

The first forerunners thus arrive with the velocity of light in vacuum,
since they Regin at t'= ¢ — (x/c) = 0. Their period is at first very
small, and increases steadily. If an instantaneous frequency is defined
as was done for the second forerunners, then one can easily see that
here too the frequency is ~qual to the abscissa £, of the saddle point
at any moment. The amplitude is at first zero, then increases, and
(neglecting the damping) then decreases as

tl/-i e 2t
For the numerical example chosen, the amplitude of the first

forerunners is found to be of the order of 2 x 10-3, i.e., the intensity
1s of the order of 4 x 10-¢,
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The approximations given here lose their validity for very small t,
1.e., for very distant saddle points. This is because the first forerunners
are actually given by the expression

j= v /2t 7 (2a /;f \
=75 )%
as Sommerfeld showed [Chapter 11, Eq. (33)]. If one replaces the
Bessel function: by its asymptotic expansion, one gets formula (207},
and thus one sees that its validity is limited to not too small values
of t. The factor ¢~ *! is missing because Sommerfeld’s formula was
derived under the condition p = 0. Returning to the magnitudes
given at the end of Section 3, it is easy to see that in that example,
p cannot be neglected compared with .

6. Signal Yelocity

In the preceeding paragraphs, the forerunners were calculated
and it was shown by numerical examples that their intensity was
very small compared with that of the actual signal. Now, the signal
velocity will be discussed.

Near the end of Section 4, it was shown that at the moment when
the path of integration meets the pole, the amplitude of the oscillation
becomes appreciable — of the order of half the final amplitude.
Thus, the arvival of the signal can be arbitrarily defined as the moment
when the path of integration reaches the pole v.

All of these considerations referred to the case in which » was far
different from »,, that is, to the case of normal dispersion. It seems
appropriate to retain the previous definition tn all cases, even if the
signal has = period in the region of anomalous dispersion.

Since v is an actual frequency and thus is a positive real number,
the pole » is always on the & axis between 0 and + oo.

Considering a signal as it is seen at a depth x at time ¢, and drawing
the complex plane (Figs. 8-—14), then the figure depends only on the
magnitude

ve=—n(@ —u)=X +1Y
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compare Eq. (4)]; it is independent cf the frequency » of the signal;
it is the same for a different depth x’ ut a time ¢’ satisfying the relation
icompare Eq. (4a)]

c te
) — @ e 2T
(21) & = @, p o

The positive real axis intersects the path of integration at the points
B,, B,,... with the abscissa »,, v,. .. {compare, for example, Figs. 13
and 14). According to the definition just introduced, a signal of
frequency »; will acquire an appreciable intensity at the time ¢ cor-
responding to the figure. Relation (21} shows that the time ¢ is
proportional to the depth x; the signal thus propagates with constant
signal velocity §. One has

X ' ct c
‘S‘; @*——""

xS

=

The reduced time @ gives the ratio of the velocity in vacuum to the
signal velocity for a frequency »,. Figures 10—14 show the displace-
ment of the points B,, B,,... with increasing @. A plot of ¢/S = &
as ordinate versus v, ¥,... as abscissas, yields the curve shown in
Fig. 19. The points B correspond to the points b having the same
abscissas.

In Section 4 it was shown that for a point D (Fig. 18) in the
complex plane, through which a line of descent for x is tungent to
the real axis,

t=x/U, @ =c/U

where U is the group velocity for a frequency & = OD. In Fig. 19
the curve ¢/U is drawn, the points D corresponding to the points 4.

In Figs. 10—14 it is easy to draw the complete set of lines of
descent and to compare the positions of the points B and D. One then
finds (see Section 4, Fig. 18), that a saddle point not too near the
branch line is very near the two points B and D, which are themselves
very close to each other (for instance, B and D of Fig. 18, B,D, and
B,D, of Fig. 13, B,D, of Fig. 14). This means, however, that far
from the region of anomalous dispersion, the curves ¢/S and ¢/U
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coincide: in other words, that the signal velocity is equal to the
group velocity (cf. the end of Section 4). This no longer applies
if the saddle point moves into the neighborhood of the branch line.
Nevertheless, even then the corresponding positions of the points
B and D give information about the unknown curve for the signal
velocity from the known curve for the group velocity.

7 i

-
LR
%0

Fic. 19. Key: —-—:—, ¢/phase velocity = ¢/W; -+-+, c/group velocity = ¢/U;
~————, ¢[signal velocity = ¢/S.

At first, the path of integration intersects the real axis at two
points B, B, between which lies one point Dy (see Fig. 13). At one
certain time, the path is tangent to the real axis and the points
By, B,, and Dj; coincide, as is also the case for points &,, §,, and d,
in Fig. 19. From this time on, this part of the path of integration
no longer touches the real axis (Fig. 14). This means the maxima
of the curve ¢/S are the points of intersection of the curves ¢/S
and ¢/U.

The path of integration, which is chosen as a line of descent
through the saddle points, is made up of several parts, each of which
goes through only one saddle point (Figs. 10—14):
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Part 1: 4 oo0>E&> ¢, from -+ oo to the point U,
Part 2: E,>&>—¢& , from U, to U,
Part 3: —¢&,>&>—o, from U, to —os.

f?or Case A 2 (Section 3), where
4
D' > Ap?

part 2 of the path is itself split into two parts (Figs. 13 and 14).

The imaginary part Y of the exponent v remains constant along
the path of integration which is a line of steepest descent for X;
thus, for each part,

yv-:'- Y¢

In Section 5 where the integrals near the saddle points were calculated,
the corresponding values of Y were given:

Part 1: Saddle point far from the origin (Section 5, Case B):

2 R
Vp= —2 = -—al2
&

Part 2: Saddle peint near the origin:

+
Case A 1, D' <5dp® Yp=0

(22)
4 §
Cdclp AA& 2: i)’ > Y ‘4P2 3 p = Epé el \ N A 5{72 - ‘i Pz
! 1 [/iés/- - "ﬂ‘,“
£ o e e e G
{\2;7’ 3 A £ }

The next step is to determine the pomnis: 8, and B, where the
seth of integration cuts the real axis near the branch ine UN (Fig. 13).
On the real ams (w2 real), Eq. (4) shows that

'( i”)‘ iy ‘Qy‘" N %l 27 —— E? 3o b ’:: }
(2% immwmlwmywwﬁpnow}
A\ L
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where u, = index of refraction, W = phase velocity at the frequency »n.
The curve py, = ¢/®W is known; it is also shown in Fig. 18. The
ponts B,, B, are those points on the real axis where Eq. (22) and
Eq. {23) agree. In Case A i, ie., when

g 4
n0+3

N

O ifip% L Ap?

hie second part of the path of integration requires that ¥V == 0; thus
it cuts the real axis near the branch line at a point for which

i c g ¢
& e == () e == ) = e
44 ’ S W

For these values of @, the curve ¢/S thus coincides with the curve ¢/W
(cee Fig. i8, the path from C, to C,).

o particula:, it can be seen that near #y there exists one frequency
{point ;) for which the signal propagates with the wvelocity of light
in vacuum, and the corresponding index of refraction s unuty:

/W =¢/S ==
Iw all cther cases (A 2 and B, and the path rom ¢, to 2, in Fig. 19,
Y@

on the path of integration. Thus, for the points of intersection with
_the real axis,

: ¢\ 'S
—p | — e f < 0, G x> b
( W) i
30 that
S =W

5~

and the curve for ¢/5 lies above the curve for ¢/, With this informa-
rion the curve for ¢/S, which was to be investigated, can be drawn,

The signal velocity does niot differ from the group velocity, except
' the region of ancmaleus dispersion.  There the group velocity
becomes greater than the velocity in vacuum if the reciprocal ¢/U < 1
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it even becomes negative.? The signal velocity is always less than or
at most equal to the velocity of light in vacvum. The curves for the
group velocity and the signal velocity intersect at two points which,
as was shown graphically, are maxima of the sigual velocity

Remembering that the definition of the signai velocity s somewhat
arbitrary, it seems appropriaie to draw a strip rather than a cuwve
in Fig. 19 to represent the signal velocity, whose thickness mdicates
this arbitrariness. The signal does not arrive suddenly; there is a
quick but still continuous transition from the very weak intensity
of the forerunners to that corresponding to the signsl. A detector
set to detect an intensity equal to 1/4 the {inal intensiiy will detect
the arrival of the signal in agreement with the above arbitrary defini-
tion; if the detector is more or less sensitive, then it will detect the
arrival of the signal a little earlier or later.

7. Summary of Resuits

The resuits can be summarized in the following wuy: The propaga-
tion of a special kind of signal in a dispersive medinm was investigated.
[t was found that after penetrating to a certain deprh i the medium,
the signal changes. The first forerunners arrive with a velacity «,
their originaily very small period increases continueusiv, their ampli-
tude increases and, taking the damping into account, then decreases,
uritil the period is equal to the characteristic period o: ras oscillating
clectrons. The second forerunners arrive with the velocity eimg/ngh <( ¢
determined by the dielectric constants; their period is ot first very
large and then decreases, while their ampiitude behaves m a maoner
similar to that of the first forerunners. These two forertnners can
partly overlap. In general, their amplitude is very small, bat in-
creases rapidly as their period approaches that of the signal. The
signal arrives with the signal velocity; it is still deformed for some
time thereafter by the cverlapping forerunners. The Hime variution
of the signal is schematically shown in Fig. 20 for the rase in which

3 See A. Schuster, “Einfiihrung in die theoretische Upnk.” Leipug, 1867 Nate

nrally, the group velocity has a meaning only so loug g5 it agreen with the signal
velocity. The negative parts of the group velocity navéd no phyvmca! meanmng,




80 I1I. LIGHT PROPAGATION IN DISPERSIVE MEDIA

the period of the signal is greater than the characteristic period of the
electrons in the dispersive medium.

Amplitude

I
T T
First Second
Forerunners  Forerunnars Arrival of the signal
Frc. 20.

A few remarks about the dependence of the intensity of the
“forerunners on the depth should still be made. Let the part of the
wave metion determined by a certain instantaneous frequency (see
after £q. 19') arrive at a depth «x, at time 4, and at x,at time#,. Then

timtﬂ, @imﬁfzfzfzga
X1 *a X1 %Xy

The value of the reduced time @ which has the dimensions of a
pure number determines the frequency of the wave motion in-
dependently of the depth. Also, the abscissa £, of the saddle point
1s dependent on £ and x only through the relationship in . In order
to comipare the intensity of the forerunners of the same frequency at
different depiks, formulas (19), or (19'), and (20), which relate the
quantities &, 9, i, or ', must be used. It is then seen that for a given
period, the amplitude varies as

{for the second forerunners

for the first forerunners

The two torerunners thus experience 2 decrease in intensity, which
15 andependent of the period and is inversely proportional to x, and
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besides this has an absorption which increases exponentially with
depth. The latter is selective; the coefficient depends on the period,
vanishing for a period of 0 or oc.

The performance of the following experiment seems to be feasible.
Send a signal into an absorbing medium. At a sufficient depth, ‘the
signal itself as well as these forerunners which are exponentially
damped will be undetectable. One can detett only those forerunners
with frequency 0 or oo,

Although in this paper only the case of a material having one
characteristic frequency and only one absorption band was treated,
it is hoped that soon it will be possible to generalize this to the case
of several absorption bands. Presently, it seems probable that in
this case there will not be only two kinds of forerunners, but rather
that between adjacent absorption bands there will be forerunners
with periods lying between the bands. While it is pretty difficult to
detect signals of periods 0 and oo, the forerunners in the visible
spectrum or its neighborhood could easily be detected.

8. The Method of the Stationary Phase Compared ta the
Saddie Point Method

Suppose one wishes to examine an integral of the formn

K $(n)cos Ydn  or gqﬁ(n etY dn

which is to be evaluated along the real # axis. Suppose ¢ is slowly
varying everywhere. In those places where Y wvaries rapidly, cos Y
or ¢ oscillates very rapidly and the integral is practically zero.
It is therefore necessary to examine only those points on the real
n-axis where Y is either a maximum or a minimum, i.e., those points
on the real axis for which

X

an
Y is the stationary phase at these points. This method was used
by Lamb for an investigation of waves caused by ships; it actually
dates back to Lord Kelvin.
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An attempt could be made to extend this method to the case
where the exponent has the form X + ¢Y instead of the pure imag-
inary Y. It seems that ¢e* could be taken as one part, provided X
is slowly varying, and the above procedures could be applied. However,
X is no longer slowly varying if X and Y are the real and imaginary

parts of the same function f. They are connected by the well known
relations

ox oy aXx _ _ v
FH on ' oy dé
where

n=§& 4 1y, f=X+4+1Y

Thus, even if X is, in general, slowly varying along the real axis,
still, just where the imaginary part is stationary, X varies rapidly.
Ior a point on the real axis where d¥Y /0% = 0, an equipotential of Y
must be tangent to the real axis. But, since equipotentials of Y (see
Section 1; are lines of steepest descent of X, then at this point on the
real axis, 0X/9¢ is large.

At the start of this investigation it was shown that by deforming
the path of integration in the complex » plane, only the neighborhood
ot the saddle points had to be considered.

For the case X = 0 on the real axis, the points of stationary
phase are saddle points. Then, one actually has

x=0 X _o e, X
on

9 — 0

and, as the condition for stationary phase, 8Y/dé = 0. For this
case, then, the methods of saddle points and of stationary phase agree.

If X is not zero, then, in general, a point of stationary phase is
not a saddle point, and only one line of descent 1s tangent to the real
axis. This is of no special interest; the saddle points will lie somewhere
eise but not upon the real axis.

As an example, it will be shown that in the case which was
discussed here, the stationary phase method leads to results which
are partly incorrect.
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The integral

[

1 f p— it ~ Ax)
s—Re | T —dn
It oV

g

has to be evaluated, and the reai axis is now used as the path of
integration. For real x, it is known that (see Eqs. 2 and 7'):

% .
R=-—u, o= 2, -

%

(9

The phase is stationary for

gk A(nu
P4 i e (Y @ — ,,(__L_'.)_ 0O
1 an

or

where {7 is the group velocity, which is shown in Fig. 19 as a function
of n. In the region of anomalous dispersicu, this curve extends below 1
and even below zero. The points of stationary phase are given by
the intersections of this curve with a line paralle] to the axis at a
value @. Thus peints of statiorary phase could exist for values of @
less than 1 and even less than zern. The integration near these points
would give a result different than zero, Le., forerunners wonld exist
which propagate with a veiocity greater than that of hght: which is
impossible. é



CHAPTER 1V

PROPAGATION OF ELECTROMAGNETIC WAVES IN
MATERIAL MEDIA*

1. Definitions: Role of a Dielectric Coefficient Depending on Density
and Temperature

The discussion of Chapter 1II indicates a variety of circumstances
in which the group velocity plays an important role. These results
were obtained on a special example, but their significance appears
to be very general. It is therefore appropriate to state the problem in
general terms, without using a special model, and to see how much
can be proved in this way. We shall see that all the most important
results can be obtained, provided the absorption coefficient is small
enough to be neglected.

Let us first recall the fundamental equations of electromagnetism in
vacuum: calling D and E the displacement and electric field, B and H
the induction field and magnetic intensity, p and J the charge density
and electric current density, Maxwell's equations are written as

(1) curl H = 4z J -+ %? divB = ¢
: B .

(2) curl E = -%—tf . div D = 4mp

(3) D = 80E§ B = ;i"’(}‘;i

go 1s the dielectric coefficient (or permittivity) and ug; the magnetic
permeability of free space. These two coefficients have magnitudes

* Chapters IV and V were first published by .. Brillouin: “Congrés International
d’Electricité, Paris, 1932, Vol. 2, pp. 139-788. Gauthier-Villars, Paris, 1933.

B&
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which depend on the chosen system of units, and are connected by
the relation

{4) Eoltgt® =1

¢ being the veiority of light in vacuum.

Since the coeificients g, and p, are constants, it is possible to
define an energy density € given by
€

0 Fe oy o e

(5) &= 3n Hat

In general, these equations are written in the
same form for a material medium, with the
coefiicients ¢ and u being characteristic of the
medium. This leads to the prediction that the
velocity of propagation W for electromagnetic
waves is given by

i S v, (6) euW? = 1

h Experience shows that (even setting aside
s; the phenomenon of hysteresis) the problem
rapidly becomes more complicated. In Egs. (3),
the coefficients ¢ and u# in a material medium

e depend on temperature, on elastic deformations,
F1c. 1. and on frequency. In a fluid, ¢ and p will still
be functions of T, v (specific volume), and fre-

quency.

It 1s appropriate now to recall briefly the role played, in thermo-
dynamics and electrostatics, by a dielectric coefficient &(v, 7). Assume
a parallel capacitor of volume z, in which there exists.a constant
electric field £. The liquid fills this condenser and occupies a total
volume v > v, The pressurc p is measured outside the condenser.
Simple thermodynamic considerations then lead to the following
relations for the internal energy U(v,T,E), the pressure p(v,T,E),
‘and the entropy S considered as a function of the same variables:

' 2
(7a) A U(v.T,E)=b’(v,r,0)+3§‘€”(“” a"e")
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. voE? Oc

o, T ,E) = ) T

(7b) P, T.E) = p0.T,0) + 25
VK2 g

(7c) S(,T,E) = S(v,T,9) -+ Cok i

Y 8x di

Comparing Eq. (7a) with Eq. (5) which is valid if ¢ is constant,
it can be seen that upon charging a condenser (at constant volume)
an amount of work vy(eE?/8x) must be done and an amount of heat
vo{ E2/87)T(8e/0T) 'must be supplied. The increase in internal energy
is the sum of these two.? Expression (8) represents the free energy (or
Helmholtz thermodynamic potential):

H D
(8) W(o,T,E) = U — 'S = ¥(,T,0) + v, *%

¥
! The eleciric charge ou the plates is ¢ == s;cE/4m i & is the area of the plates.
For an infinitesimal change dy, d7, and 4E, the work {mechauical and electrical)

furnisbhed by the system 3

v E? B¢ weeE vy . OF
AF = pdy — cEdg= 1t — —— —| dgt —~ —— dE — - E$__ 4T
pow—ende {;b 4 av} ‘ 4n an 8T

if ¢ is the distance between plates (es, = vy). The internal energy Ul{y,7,E) 1s in-
creased by
ou oU oU

QU =Zgy + 2+ ar
5 T IEYE Yy

The heat dQ into the system is equal to dU + 4F and the change in entropy dS.is
written as

dS = — = ——— =
T T

— e — e 2

dQ aU + 4T {aU o gER as} dv

oE 'mj:r‘ {éT  4x 2T

{EU vell |dE  [3U  vE? ae]dy'
T T

Then, one uses the fact that ¢S is an exact differential. Considering £ as a function
of v,T, and E, one finally gets the relations

oU voE(e+T2€)’ op vE B¢

"a‘E“Z; _3‘5"4::50

which give the relations in Eq. (7).
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Hence, the electrical free energy density n can be represented by
a formula identical with Eq. (6), while the electrical energy density &, -
is different, and contains a term in 7'(0¢/0T) corresponding to heat
exchange.

- °E?
M= Sn
© E? o
[
é’,, —-—-;i’-m—(e + Té”j;)

Formulas {7} also show that the electric field contributes to the
pressure. p. This contribution yields electrostriction. A field E
applied to a liquid under constant pressure produces a contraction.
Let dv be the change in the total volume:

, . dv\v,E2 e voE? 0¢ v 2T 0
10) v = “(‘a‘}) Swav - 8w T 8a \3p)e-o

T = constant
where « is the compressibility. This last formula is known as the law
of Helmholtz-Lippman. These effects are usually very small except
in some special chemicals, and we shall ignore them.

2. Dependence of the Dielectric Coefficient on Frequency; Evaluation
of the Electrical Energy

For rapid electrical oscillations, no exchange of heat can practically
occur, and the phenomena occur adiabatically. Keeping the volume
constant and negligible electrostriction results in a simplification of
the formulas, and the energy density takes the effective value of

, , eE?
{ 11 ) (éoe)adiabatic = g

87z
The complications envisaged in the preceeding paragraphs therefore
disappear for electrical oscillations of high frequency, and in particular
for electromagnetic waves.
It is still necessary to cope with the difficulties arising from the
fact that the dielectric coefficient ¢ depends greatly on the frequency.
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The permeability ¢ causes no difficulty, since it differs only very
slightly from u, for all the usual transparent media.

Since ¢ depends on frequency, it becomes very difficult to define
an electrical energy. Even if the value of the electric field £ is known
at an instant ¢, still, the energy stored is completely unknown. It is
necessary to know how the field was established. If the field was
established by a slow and continuous variation, Eq. (11) can be used,
in which ¢ is the dielectric coefficient appropriate for very low
frequencies. If the field E reaches its value after a succession of
oscillations, all their frequencies must be known. If these frequencies
cannot be defined even approximately, it becomes impossible to
evaluate the energy!

These ideas will now be illustrated by an example. Consider a
plane capacitor of unit volume containing a field E. Then the surface
charge density on the plates will be D/4n. 1f E and D are changed,
the work done by the electrical forces is

D,

gEdD::dfl -—&, h

D,

1
T = -
47

(12)

assuming an  adiabatic

situation and calling &, ’\
and &, the initial and 5
final energies, respectively.
Consider now an oscillating

field £ and a correspond-
ingly varying D.

/

E = asin wt, Fic. 2.
D = ¢(w)a sin wi

It is simple to evaluate the difference between the energy at
time £ = 0 when the field is zero and at time ¢ = n/2w when the
field has its maximum value a4, and

(13) 8 — 8, ="
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Does this represent the total energy when E = a? Certainly not.
The energy &, at the time when E passes through zero is quite different
from the zero energy that the dielectric has after being isolated
from an electric field for a long time. In order to explain the fact
that the permittivity ¢ of the dielectric is different frem that of the
vacuum, &, one must admit that the medium contains mobile charges,
electrons or ions in motion or electric dipoles capable of orientation;
then, one takes as the zero energy of the system the condition that
all of the charged particles are at rest in their equilibrium positions.
In the previous example, all the charged particles may pass by their
equilibrium positions at the time / = 0 when 'the field vanishes, but
they pass them with nonzero velocity. In formula (13), the energy &,
represents the kinelic energy of all ihe charged particles contained in
the dielectric. The average energy during the oscillations is

- e a?
(14) o= 0 + gj‘; )

In order to obtain the total value of the energy in an oscillating
electric field, it is necessary to consider a process which, starting at
rest (E = 0 for a certain time), slowly builds up to an oscillating
field of amplitude a. The total energy can be obtained by considering
the phenomenon of slow beats between two oscillating fields having
frequencies o’ and o’ only slightly different, o' = o + » and

w' = w —u

a : .
E = 5 (cos w't — cos w''t) = — a sin ¥ sin wt

D = % (&' cos w't — &' cos w''t)

(15)
%l-; == — %(e'w' sin w't — &’ w'’ sin w’'t)

d(ew)

= —g (ew sin vf cos wi - » 3o cos »¢ sin wt)
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This last formula is obtained by expanding sin ' and sin w'’t,
and writing

o O(ew)
Ew = ew - v-~am;u oo
(16)
d(ew)

aw . e

e'w = gw —v

This calculation rests on the assumption that the approximations (18)
are sufficient, which requires that the dielectric coefficient & must
not vary too quickly as a function of frequency, and musi always
remain real (no losses. no hysteresis).

Fic. 3.

The field E (Fig. 3) starts from zero at iy == 0, and consists of
osciliztinns of increasing amplitude, reaching the value g at §) == =/%.
if the difference 2 between the two frequencies o' and @’ is very
small, the field E will remain very small for a long time near ¢y = 0,
and the establishiment of the oscillations will require a long time.
Evaluating the energy gained during the time {; - {, we gef,
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t t

1 eal . o )
ﬁ—EEEdD --_—E;ws‘sm vt COS wi sin wt dt
0 0

4

2 9
2y (ew) sin? wt cos vt sin v dt
4n = Odw

0

+

The terms in cos ¥ or sin » are slowly varying. Those with cos w¢
or sin wf vary very rapidly. The first integral

11. .
5 jsmz vt sin 2wt dt

averages to zero. It contributes a termm which oscillates between
+ 1/8w, since at ¢, the instantaneous value of the field is 4 @ or — a.
Therefore, this first term can be neglected in calculating the average
energy. In the second integral sin? w¢ can be replaced by its average
vaiue 1/2 and the term rewritten as

n/2v

]. . 1 LV
-§cos vi sin v dt = ~ % [cos 2vt]o/2 =

1
2 4p
é

The final result is therefore

:  a’ Oew)  a? , Oe
(17) ¢ = 16n 0o lﬁn(Enga;)

A more exact calculation of the integrals gives the same result. A
comparison of formulas (14) and (17) shows that at the moment
when the field passes through zero {during a series of regular oscilla-
tions), the energy of the dielectric is not zero, but rather it is equal to

a? Os
7) ¢ 16n waw

This term represents the kinetic energy of the charge carriers in the
dielectric.
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The preceding results are independent of the particular manner
in which the amplitude varies. The same result ensues for any manner
of variation as long as the variation is sufficiently slow. For example,
the variation shown in the second part of Fig. 3 given by

E = %(cos w't -+ cos w''t) — a cos wt = a cos wt (cos vt — 1)
is easily analyzed in the same manner. The minimum in the field at
t = 0 is more prolonged than that for the variation of E given in

Eq. (15), and the maximum occurs at ¢, = /.

3. Waves; Phase Velocity; Energy Density of a Plane Wave

It is easy to see that Maxwell’s equations (1), (2), (3), written with
the coefficients ¢ and u, predict a velocity W, defined by Eq. (6), for
a plane monochromatic wave.

Consider a polarized wave propagating in the x direction and
given by

x x
(18) H,= A4 cos w(t -——--W~), E,=acos w(f—“—ﬁ/:‘)
It is easy to obtain from these relationships, inserted into Maxwell’s
equations, the relations

(19) eaW? =1, saz-—f'-pi;luyAz

What is the average energy density in the region traversed by
this plane wave? It is not difficult to find the magnetic energy, and
the electrical energy is given by Eq. (17). Thus,

= 16m <a28 + a2w5—~ + ,qu)

a? 1 0e &4
=8 (”‘““’aw)““g;;
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making use of the relations {18). Thus, the energy is proportional to
the intensity a? of the wave, times a new coefficient ¢, which 1s different
from the dielectric coefficient:

(20") 8y ==& + é @ ;3

This value for £, is evidently only the beginning of an expansion,
and this abbreviated expression cannot be used unless ¢ varies slowly
with w, a condition which is necessary for the validity of the calcula-
tion in the preceeding sections. It is just as necessary that & must be
real; in wther words there can be no absorption of the wave (neither
losses, nor hvsteresis).

The velocity W which was just discussed is the phase velocity.
Formulas (18) give its precise meening. This velocity W enables
one to calculate the phase difference between two points x; and x,.
it enters in all phenomena involving interference and stationary

waves. [t serves to define the wave-
tength of the wave

£
! 2aW
3 A= Wr= ———n
4 w
5 &’
! and also is used in the definition
] » . B
§ of the index of vefraction n,
tncldant mrw» g —_—
e tasmenied o emarmmesfmemoninsasiosnn
Rof::;;ad wuE "',w Asfracted wave 215 — _f_ — _Etli
/ ( » - W -
/ €olto
/ and enters into the laws of refrac-
g tion at the interface between two
TG, & bodiss.

The luws of refraction {oliow

frosn the boundary conditions for

electric and wagnetic telds at tle intertace of the media. The

tengential components of £ and # and the normal components of

D and B mist be continuous.

Consider the following example: A wave is incident normally

ou a plane surface separating twe media of dielectric powers ¢ and ¢';
assume that i = u'. The various waves are then:
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Incident E,=a cosw (t — %7) H,=4 cosw (t _—s )

, { x ) x
Refracted E,=4a' cosw \t — W H,=A'" cos w{t— WT)
' x %)
Reflected E.=a"cosw (f -+ 1% Hy = — A" cos wli + + }

747}

\ bi',f

The normal components are zero. The counditions of continuity
for the tangential components (for ¥ = 0) give

(22) a+a' ' =a, A—A"=A

Using the relations (18), the second condition can be written

>y N
- [Ewmen=]a
but

R "
]/g == 8W and l/f,? ———_

Multiplying the two conditions (22} and (22a) together gives
(22b) eWia?—a''?) = ¢Na'?

This relation will be very useful later on. It is valid even if the
permittivities of the dielectrics ¢ and &' are functions of the frequency.
In case ¢ and ¢’ are independent of frequency, this relation has o
clear physical medning: the velocities W and W’ are independent of
frequency and represent the velocity with which energy is transported
in the wave. (The following Section wiil show that this is no longer
true if W depends on frequency.)

The energy transported across a unit surface perpendicular to the
direction of propagation during one second is thus

ea?

since in Eq. (20) there is no difference between ¢ and ¢,. Formulz {2ib)
thus simply expresses the fact that the incident energy is equal to
the sum of the reflected and refracted energy.
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4. The Group Velocity U

In a medium in which all waves have the same velocity of propaga-
tion (such as vacuum for electromagnetic waves) a signal of any form
at all will propagate without deformation. The form of the wave
plays no part in the propagation. The velocity of propagation can be
defined as the phase velocity, since it also represents the velocity with
which the energy or any other quantity is transported.

In a dispersive medium, the situation is otherwise. All propaga-
tion is accompanied by a change in the form of the signal, except for
an infinitely long sinusoidal wave. In one word — if there is dispersion,
there is also distortion. The example of propagation of electrical
perturbations along cables is well known.

In attempting to define a velocity of energy transport, scveral
different possibilities exist. It is the intention of this paper to examine
several of these, and to show that they are, in general, consistent with
each other.

First, consider the group velocity. When an infinite sinusoidal wave

E = acos(wt —ax — by — cz)
(23) .
a2+b2+c”==i;t~2~zwg,—;
travels through a medium, there is a uniform average energy density
throughout the space, given by Eq. (17). Does this energy remain
where it is, or does it propagate through the medium? It is impossible
to know this. In order to observe a propagation of energy, it is
necessary to suppose that an excess of energy [in comparison with
the uniform energy of the wave described by Eq. (23)] exists at a
certain time at some point in space, and then to ascertain whether
this energy moves with time.

The simplest definition is obtained by assuming that initially
there exists a small excess of energy regularly distributed throughout
the. space, as if it resulted from the superposition of two plane waves
with only slightly different frequencies and/or directions of propaga-
tion. These two waves produce beats and the propagation of these
beats will be observed.
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Assume two closely similar waves

" E' =acos(w't —a'x —b'y —c'z)

E" =acos(w't—a"x —b'"y —c'"z)
with
o = w4+, a =a-+4 a, b =b+ B, ¢ =c4vy
(24)
wu_____w__’,, a”-—-ﬂ*d, b“mb-—wﬂ, C”:C-—y

The result of superposing these two waves is
E' 4+ E'" = 2acos (3 — ax — By — pz) cos (ot — ax — by — cz)

which can be described as a plane wave of frequency w and wavelength
A, where

(25) %’f == Ja? + b2 4 ¢?

The wave’s amplitude varies with beats of frequency » and a law
of propagation given by

cos (v — ax — fy — y2)

This defines a wavelength 4 of the beats and a velocity of propaga-
tion U

2n Av v
(26) S=l?+ A+, U=7 =i

A 2 JaF pE 4 2

This velocity U can be zero, if the two interfering waves have

the same frequency, i.e., if » is zero (stationary waves). The velocity U
has its maximum value when the beats are produced by two waves
having the same direction of propagation and only slightly different
frequencies. This requires setting

«="Ca, f = Cb, y = {c (» and { very small)

The values ¢ -+ «, b + B, ¢ + y, and w + », used with the conven-
tions of Eq. {24), require that the wave E’ have a wavelength 2
such that
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Ve T B = Y@ TR A = (4 2

3 R _

using Eq. (28). Therefore,

S R NV

T e N R

AT dw

when the two wavelengths 2’ and 4 differ only slightly. The velocity
of propagation of these beats is therefore

- A A /) )
C Vatp gEyt 26l 2mo(1/3)

which can also be written as

1 /W) ok
27 T 90~ e
where k= (2n/4) = (w/W).

This maxtmum velocity of propagation of beats is called the grousp
velocity U.

These calculations, as well as the preceding ones, neglect the
effects of absorption.

5. Velocity of Energy Transport U,

Consider a homogeneous medium through which an infinite
sinusoidal wave [Eq. (318)] is propagating. The value of the average
energy deusity has been defined in Eg. (20) as

_ &t [ w 0O
=0) =% |a=e¢ty s;;;)

If this energy propagates with a velocity U,, then in this medium
there will be an energy flux density

, a*®
(28) I = 01‘3) = EIU}_"S-;
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This is, by definition, the energy passing per second through a surface
of unit area perpendicular to the direction of propagation. Can this
energy flux actually be caiculated? Yes, by proCeeding as in Section 3
(Fig. 4, Eq. (22)}. Consider a piane x == 0 bounding the medium
under study, and inquire as to what incident wave « falling on this
surface x = 0 produces a refracted wave ', which is just the one
being considered, inside the medium. There will also be a reflected
wave a'’, and it has been shown that the condition of refraction gives
the relationship

(22b) 8W [a2 — (afl)z] — E!W,d"z

Using the condition that the energy flux in the refracted wave is
equal to the difference in the energy ilux of the incident and reflected
wave, one finds that

(29) & U, (a2 — (@")8] = &,'U,'a’?

using the definitions for terms in Eq. (28). These two conditions,
(28) and (29), are valid if the first medium is a vacuum and

£=¢g =1, W=U,=c¢
which leads to the curious relation
(30) W' = ¢&'U,

The primes in these formulas can be removed from now on. It is
easy to see that this velocity of energy transport is equal to the group
velocity when the approximations made in Sections 2, 3, and 4 are
fulfilled, i.e., when & is a slowly varying function of the frequency w.

Condition (30) states, in effect, that

4

1y 1 ) aﬁ\h 1 . dlogle
60 g=ag=wlit e - W(" T

while the group velocity is, after Eq. (27},

(31') 1 w/W) 1(1 waw)m%( 9log W)

W im —a—st—

ow /
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which is the same, as that given in Eq. (31), since

1
W = ==
Ve
This agreement loses its validity only in regions where ¢ varies rapidly
with w, or if there is absorption.

6. Signal Velocity, S

The problem of energy transport can be attacked differently, by
.ascertaining how a well-defined signal propagates in a material
medium. Suppose that at the point x = 0 a light wave is emitted -
with a period 7, but only for a limited time T'; the problem is to
investigate the character of the wave at a distance x from the point
of emission. The resultant wave will be greatly deformed. Immediately
after the signal front some very weak oscillations or ‘‘forerunners”
will arrive. Then, at a certain moment, the amplitude of the signal
will take on large values, which will signify clearly the arrival of the
signal. In many cases, it is possible to determine the exact moment
when the main signal arrives, which defines the signal velocity.

In general, the signal velocity measured depends on the sensitivity
of the detecting apparatus used. With a very sensitive detector, even
the forerunners, or certain parts of them, might be detected, and the
resulting measurement would imply a very large velocity of propaga-
tion. But if the sensitivity of the detector is restricted to a quarter
or half the final signal intensity, then an unambiguous definition of
the signal velocity can, in general, be given.

Instead of considering the advent of the signal, it is possible to
consider the end of the signal. Evidently, the same result will ensue
since a signal terminated at both ends can be considered as composed
of two signals, one terminated in front (starting at ¢ = 0 and contin-
uing indefinitely) and another similar signal of opposite sign beginning
at ¢t = T and continuing indefinitely. The end of the signal is therefore
characterized by the same features as the wave front, with signs of
forerunners, and an equally well-defined end corresponding to a
velocity S.

The mathematical methods used here are a bit complicated. The
signal is represented by a Fourier integral, i.e., by a sum of infinitely
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long oscillations. For each term of this sum, there is a knovn law of
propagation with a phase velocity corresponding to its frequency.
The form of the wave after travelling a distance x is then given by
another Fourier integral which must then be evaluated. The main
difficulty lies in this resumming of the component oscillations after
each of them has travelled through this distance x and undergone
different change of phase.

The Fourier analysis of the signal represented by Fig. 5, i.e., the
function

0 (t< 0)
(32) f(t) = { sin wyt (0<t<T)
0 (T <)
» ’ ]
— N\ N\N\NNNNS——
-+ 7 |-
—

Signal emitted at rao

Signal received at x Front of signal

FiG. 5.

with
T =Nrt= 2N~
@o
proceeds as follows. The well known relations

@«

/() = S (Cwcos wt + S, sin wt) de

0

(33) Co= —}i f(«) cos wa da
1, .
S, = p f(2) sin wa da

»
- a0
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are used. For the function f, the two integrals C, and S, reduce to

integrals between 0 and T and are easily evaluated. After several
sitnple transformations, they yield:

T 1 1 1 :
(d4) f) = ~-»~§(~~-~~—7-— — «T) [cos w(t — T') — cos wt] dw
i Wy

D7 }\iv — wy w -
0
oG
2w, {sm wl 3in (t T} de
T e —— SiN W el
2 2
¢
-+ &y
1 dew
== o | [cos @t — ) — cos wt] ——
Zﬂi [£3 B Cl)o
-0
ko
1 f .
s .:.i, };{e i (g"w(‘ R J— g’“‘) " d:ﬁwm
27 } W = (g
XY

Depending on the situarion, one or the other of these equivalent
e:ex;u'gs::as;itms 1s the most convenient one to use. The signal is thus
nalyzed into a sum of infinitely long waves. The wave of frequency w

has an sfi’ﬁ’fi%ﬁ{? o1

T \?
in —
I Y ¥ Qu}{‘ 2 ] 2N v
(35) J=\"2 |, T1==Z
T w - g Wq

[See Eq. (34), second form.]

This expression has a very high maximum for w = w,, which is
not infinite because the sine in the numerator becomes zero at the
same tirne as the denominator. This maximum is

e = (g;;)

Figure 6 is a graph of expression (35) and is similar to Figs. 3
and 4 of Chapter 1I. The curves 1, 2, and 3 of the second figure show
how the envelope of the curve reacts to an increase in the time T = N«
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of the signal. The spectrum actually extends through all frequencies,
from zero to infinity, but it has a well defined maximum at w = w,.
If only a band of frequencies around w, is retained while the other
frequencies are suppressed, the form of the signal is not greatly
changed, but the front and the end of the signal lose their definiteness
and become slightly blurred.

The first, third, and fourth forms of Eq. (34) separate into terms
in coswt and in cos w(t — T). The cos wf terms, if they are
separated, give a sinusoidal signal beginning at ¢ = 0 and lasting
indefinitely thereafter, while the cos w(¢ — T') terms correspond to a
similar signal (but with opposite sign) beginning at £ = T and can-
celling the first signal at all later times.

It is tempting to separate these groups of terms. The unfortunate
thing, however, is that a pole then appears for w = w, and the integral
cannot retain its real form. It is necessary to use a path of integration
in the complex w plane which goes around this pole. This method
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was used in Chapters II and IIT but its mathematical complications
will not be introduced here.

What happens to the signal after it traverses a distance x? Each
wave w propagates with its phase velocity W{(w) and the integral (34)
becomes

+

(36) f(x,t) = -2-% Re s {eiw(‘u = i":’") — g""'(‘";")} _do

w""‘wO

This integral must be evaluated. A complete discussion of the process
was given in Chapter III; it requires recourse to integrations in the
complex plane. The discussion will now be limited to the case of
propagation without absorption, ie., to the case of W remaining
always real.?

The waves with frequencies near w, always have a much greater-
amplitude than all the others. For these waves the second exponent
in Eq. (36) may be expanded:

X X
ofi—7)= "*’0(‘ )+l vo) (=)
%—j:—— d(w/W)/dw

The first exponent may be expanded similarly. This contributes

L @etn L
(37) %Reei - j [““"“’"’(‘"’“‘“)-—_e““’ ‘”""“‘tf‘;]&_é‘i’a‘_
wln ‘

2 If there is absorption, with a coefficient x, then a wave e becomes, aftel
traversing a distance z,

, KX
o Kxguu(t-—-*) tw(t—-w H—-—‘
which results in the definition of a complex velocity of propagation

] 1

K
-.—._-z.a-.
W,' w w



7. THE FORERUNNERS 105

which can be compared to the integral (34) written in an analogous
form

wy +1

(37) f(¢) = §1—7; Re et -‘. [gitw — @t —=T) _ gilw— ] .(L.é{f’.a;‘;
Wy — 17
The integral (37') is just Eq. (34) with the suppression of the fre-
quencies very different from w, in (34). It presents a signal beginning
progressively at ¢ = 0 and ending at ¢ = T, while Eq. (34) yields a
signal with a sudden start and a sudden end. The analogous integral
(37) represents the same signal beginning gradually at ¢ = (x/U,) and
ending gradually at ¢ = T + (x/U,). The principal part of the signal
thus arrives at a depth x with a noticeable amplitude at about the
time ¢ = (x/U,) and ends at T + (x/U,). The front and end of the
signal propagate with the group velocity U, But, at the same time,
the signal has been distorted; the front and end of the signal are
continuous rather than discontinuous as it was previously (cf. Fig. 5).
With these approximations, the velocity S of the wave-front is
equal to the group velocity.

(38) S = U(w,)

It is to be noted that there is an exponential factor in (37) with
argument iw([t — (x/W,)], which shows that in the midst of the
signal, the phase of the oscillations are determined by the phase
velocity W.

7. The Forerunners

The forerunners mentioned earlier will now be investigated. After
eliminating the frequencies near w,, we still have two integrals of
the form

1 .

— i%

5 ReXA(w)e dw
in Eq. (36), where the amplitude

1
w""'wo

A(w) =
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varies slowly and where the phase is ¢. If the phase varies rapidly
with o, the integral is negligibly small. The amplitude 4, multiplied
by a periodic function of short pericd, makes a very small contribution
to the integral. However, an appreciable contribution comes from
those frequencies near which ¢ passes through a maximum? or a
minimum,

(hid
If w, is one root of Eq. (39), then — w, is another root, since it has
been shown that + w have the same phase velocity W.

First, the integral around @, will be calculated, and then the
integral around — w, will be added to this. ¢ can be expanded about
w, in a Taylor series, and the linear term will disappear by virtue
of Eq. (39):

_ o (e— oo
¢""¢1+ 2 L (aw2>m==w,+“.
X

¢1’"‘“’1[‘“‘m5}'
b\ _ X
(éz;)r"“m‘ar"

-~

(40)

-— X
dw?, dw /1

Only values of w near w; play a noticeable part. Since 4 varies
slowly, it can be taken in front of the integral sign, and the integral
can then be written as

1 .
5 Re A(w,) S et dw

_ 1 . %) : 2
T Pp—— Reexp {zwl( — W;);[ exp {_- 2w ~— wy) 5 "“5;,“} dw

’

3 This method of integration is called the ‘“method oif stationary phase’; its
limits of application were discussed in Chapter III, Section 8.
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Since only an approximate answer is necessary, the integral can be
extended over the range —oc to 4+ o and becomes a Fresnel type

+ @
Seff‘dg = V.gi (1 + §) = ]/;;ganm

Thus, the integration near w,; results in

V= Re l/_—-i‘_'_ eim;(t——;-;;)i-i%

27w, —— y) [ —x o(1/U)
dw

Assuming that ¢(1/U)/dw is negative, the above is rewritten as
cos {wy [t — (x/W1)] + (w/4)}
o(1/U
(e — wy) V——- 2nx %-—2

In case 8(1/U)/dw is positive, the expression is changed only by a
reversal of the sign and by a change of 4 (#/4) to — (n/4). In effect,
by changing the negative sign of the radical, a factor ¢ = — ¢~
i1s added, which modifies the real part of the expression.

To this result must be added the integral for — w,. The second
integral has the same cosine factor, but a factor of — 1/(w, 4+ )
instead of 1/(w; + w,). The sum of these two is

2% cosml(t——wjf-l—&-%)
“““"wo 1—-—2 8(1/U

{41)

0w

At time ¢ preceding the arrival of the principal part of the signal,
the forerunmers arrive at a point x with a velocity given by their
group velocity [Eq. (40)]. These forerunners have a very small
amplitude [Eq. (41)], except when the group velocity is a maximum
or @ mingmum.

In the latter case, formula (41) gives an infinite amplitude! This
merely shows that the approximations used up to this point are no
longer valid. Since the second derivative of ¢ is zero, the expansion
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must be carried to the third term. Let w, be the frequency and ¢,
the time at which this anomaly occurs. This time is called the “quasi-
latent time'’ by some authors.

wr is defined by [ 9%[{7)] —0
8 wy

w
(42)
¢ is defined by L — E”(z‘)},‘) 0
The forerunners at times
=t + T (T' smali,

will now be sought.
¢ can be expanded near ¢, and o, by writing

$(t,0) = $(t,on) + (0 — o) (g;j,) +
twyp

(0 — wp)? az¢) (u~—wL)3 2%
o P4 (awz t,wL+ 6 aa)a iwL {h o

3
_ (1
= wL(t i/-V~-)+ (0 — w )T —x (e 60)[’ (a 80{2U) )“’L e

The integration near o, then gives, after the amplitude 4 is removed
to the left of the integral sign,

. :
5o Re A(w) exp {W’L (’ T ?{T)} %
. 1 21
Jerp fi7(0 — ) % (0 — anp P a0

This is an integral of the Airy type:

A (v) = 5 e - g
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in which

2 7‘ t
v~+T’[;aéla{£] : E-*m—z-‘——(w———m,‘)

For small values of » it is easy to calculate an approximate value for
this integral, 4

(43) A (v) = VE’;{ ( )+ vf( ) —gil"(—;)w}
( 2.68: I‘(§)~1.354

LM

n

155

-
- - o —— —— —— &

,_
-
-

-2 ‘ -1 ' 0 7 max.2

Fic. 7

The curve in Fig. 7 gives the approximate variation of .of as a
function of » for small values of ». & is very small for negative values
of » and has a maximum of about 2.45 for » about 1.74. Under these
conditions, the forerunners have a sizable amplitude given by

(44) — ! [% az(l/U)}“Lad(v) cos wL( — 3—6--)

2n(cwyr, — wy) dw? Wi

If w, is not zero, the integration about — w, must also be added to
this formula.

4 G. Airy, Trans. Cambridge Phil. Soc. 8, Part V, p. 593 (1848); L. Brillouin,
Ann. école norm. sup. 38, 37 (1916).
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This discussion can be summarized as follows. The pure harmonic
waves into which the signal has been decomposed are separated from
each other. Those waves with frequency w arrive with group velocity
U(w) and an amplitude [Eq. (41)] which is directly proportional to
1/(w? — wy?), which factor enters into formulas (34) and (35) and
whose effect is shown in Fig. 6.

At the times ¢, (quasi-latent times) defined by Eqs. (42), the
forerunners pile up and make a very considerable contribution, with
a maximum amplitude of the order of magnitude of

(44) 2.45 w, [x 92(1/U) ]‘”3

Mwy® — wi?) |6 dw?

This factor is obtained by superposition of the two expressions (44)
corresponding to &+ w,.

These results are valid only if the absorption is negligible and the
phase velocity W does not vary too rapidly with w. The more exact
integration done in the complex plane by the saddle point method
confirms these results.

The group velocity U, the velocity of energy transport U, and the
signal velocity S are practically equal under these conditions.

8. Summary of the Most Important Results; Generalization to
Other Types of Waves

This chapter was devoted to a very general discussion of elec-
tromagnetic waves in a dispersive medium, and we were very cautious
not to introduce any special model. The results obtained can be
easily translated for other types of waves, for instance, elastic waves.

In a problem involving transverse elastic waves, we would obtain
equations very similar to those of Section 1, but ¢ would represent
the elastic properties and u would correspond to density. The energy
density would be evaluated as in Sections 2 and 3, and formulas
similar to Eqgs. (20) and (20') would result. Continuity conditions at
a boundary could be worked out as in Section 3, and would be
summarized in a formula corresponding to Eq. {22b).

Group velocity U (Section 4) and velocity U, for energy transport
(Section 5) would be defined in a similar way, and we would arrive
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at the velation (30). All the resuits of Section 8 on signal velocity

could be repeated.

The reader will find some more examples in Chapter V ot
{(New
York: McGraw-Hill Book, 1946; Dover, 1953.) In the next chapter,
we will study in more detail the typical model of a dielectric,

L. Briliouin's book Wave Propagation in Periodic Structures.

and compare the resuits with those of Chapter II.
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CHAPTER V
WAVE PROPAGATION iN A DISPERSIVE DIELECTRIC*

In this chapter we want to specify the properties of a real dielectric
and apply to this problem the general formulas of Chapter 1V,

f. Formula of Lorentz-Lorenz

In the simplest hypothesis explaining the structure of dielectrics
it is assumed that dielectrics are composed of small particles which
can be polarized under the influence of an electric field. These
particles can be colloidal suspensions, or, for pure materials, they
can be molecules or even atoms. In the absence of a field, there is nc
polarization. Oné of the following assumptions must be made:

(1). The particles have no permanent electric dipole moment and
acquire such a moment only when subjected to a field. This will be
the case for atoms or for molecules with homopolar bonds.

(2). Alternatively, the molecules have a permanent dipole moment
(heteropolar bonds). In the absence of an external field, these moments
are subject to thermal motion which orients them in all directions
with equal probability. The average electric moment for a molecule
will then be zero, in the absence of a field. In the presence of a field,
the molecules tend to orient themselves, and the average dipole
moment will no longer be zero.

Let N be the number of particles per unit volume. Each of these
particles, when subjected to a field R, acquires an average electric
moment yR in the direction of R. The resultant dipole moment
per unit volume will then be

(1) P = NyR
What is the relation between the external field £ and the field R
to which each molecule is subjected? FEach molecule is separated

* See footnote on page 83.

113
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from the next one by aun averags distance p. To 2 first approxivia-
t1on, the field R (2t the point where ihe molecule is located) van be
considered as the field found at the center of a hollow spherical
cavity of radius p in the midst of a medium having a polarization P.
This will be

4
e (2) R == E + "'5"* P
oTTTe. ®
e hY - This result is independent of
h .- " \ - . . .
4 @{‘W 2 & ., theradius p, if the polarization
1 7 P is uniform. The electric dis-
‘\\ S piacement I? is ?}
7 1
G @ D=E-+4xP =cE  (3)
. where ¢ is the permittivity of the
2 dielectric. Elimination of Rand £
Fie. 1. between these three relations re-
sults in
3 £—1 . d
{4 e 2D e My A
4) dre g " L4 mwY

where 47 is Avogadro’s number, or the number of molecules per
gram mole, M the molecular weight, and & the density of the material
under consideration. Formula (4) is called the formula of Lorentz
and Lorenz. It shows that (¢ — 1)/(e + 2) must be proporticnal to
tire density 4 and to the average polarizability ¢ of a molecufe. This
coefficient y receives contributions of three distinct types (at least
to a first approximation):

(1). Electronic polarizability by displacement of the electrons of
the atoms.

(2) Ionic polarizability by the spreading apart of the ions of the
molecule.

1 From now on the units will be chosen so that the permittivity of free space wili
be umty.
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(3). Dipolar or rotatiena: polarizability, due to the average
orientation of the molecules which have a permanent electric dipoic
moment. This orientation is opposed by the .thermal motion of
rotation.

In cases (1) or {2), the displacement of the electrons (or ions) is
opposed by forces of attraction. Since the moving charges have
nonzero masses, there will be one (or several) frequencies of free
oscillation in the molecule. The frequencies for type (1) are very
high (ultraviolet and visible}. Those of type (2) are lower {red or
infrared). The roeations of the molecules following (3) are in the far
infrared and the radio region. These different orders of magnitude
make it possible tc distinguish between the above mentioned three
types of polarizability. )

The reasoning which led to formula (4) contains a number of
approximations. It can be predicted that the formula will cease fo
be applicable in the following cases:

(1). Large densities: In this case, the molecules, since they are
crowded together, can affect one another by their form and structure,
and thus the vibrations will not be described completely by the
simplified scheme suggested above. The field due to each individual
charge making up the molecule is very complicated at small distances
and does not reduce to the freid of a dipole unless it is viewed at' a
sufficiently .large distance.

(2). Molecules of anomalous form: For molecules in the form of
long sticks, it 1s evident that the above calculations would be inexact.
A theory of liquid crystals can be based on these assumptions (Oseen).

(3). Very high frequencies: The above calculation assumes that the
polarization P is practically constant over a distance of the order of
several molecular separations p. The reasoning certainly becomes
faulty for wavelengths of the order of p.

~ This last situation begins to arise for x-rays if the body counsidered
is in the solid state, or for ultraviolet rays if the body is in the gaseous
state. In order to extend the theory to these short wavelengths, the
exact structure of the body must be given. Ewald has given a very

i
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clear discussion of these problems, which are quite tricky, for different
types of crystal structure.

For very small wavelengths (x-rays) a definition of an average
dielectric coefficient is no longer possible. The Bragg-l.aue selective
reflections, which have contributed remarkably to the study of
crystal structures, will occur.

It is moreover evident that for very short wavelengths it is unrea-
sonable to apply to the discontinnous medium, the Maxwell equations
iChapter IV, Egs. (1), (2), and (3)] which are valid for a continuous
medium. It is only for wavelengths large compargd with the separa-
tion between two molecules that the reasoning of Lorentz is correct
and that the use of Maxwell’s equations is justified. The fine work
of Ewald and Born on these questions will not be described here,
and the ensuing discussion will be limited to wavelengths from the
radio to the visible region for which the Lorentz approximations are
valid.

2. Material Medium of Low Density, Consisting of Harmonic
Oscillators

For a gas, in which the concentration of molecules is small, the
dielectric constant differs only slightly from unity. Formula (4) can
then be simplified and rewritten as

(5) g==1- 4aNy

The atoms or molecules are structures containing electrical charges
(electrons or ions). These charges are attracted to their equilibrium
positions by forces of mutual attraction [hypotheses (1) and (2) of
Section (1)]. A simplified problem in which the molecule is pictured
as a harmonic oscillator can be considered as an example, i.e., the
problem of a charge ¢ of mass m, characteristic frequency w,, and
damping factor pm. If s is the displacement of the charge, then the
equation of motion will be

) dis  _ ds .. €
() A I
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when the charge is subjected to an external field E. (It is to be noted
that Eq. (6) is an approximation in that no distinction is made between
the fields R and E.) When the charge e is at its rest position (s = 0)
the molecule is not electrified. Thus the dipole moment will be

(7) yvE = es

One possibility for the field is a
(8] sinusoidal variation:

(8) E = acos wt = a Re ¢

A solution of Eq. (8) with a

complex amplitude B correspond-

« 1ng to a phase difference ¢ be-
tween S and E is:

¢ (9) s = Re (Be'*)

e
2 2pw — w?) = a —,
B(wy? — 2ipw — w?) = a o

B a(e/m)

o e
V(we? — w2 + 4p2w?

Figure 2 represents the variation of |B| and ¢ with w in resonance
curves that are well known to physicists and technicians.

Using Eqs. (8) — (9), one can find the average dielectric coefficient

4nN e:fm
10 =1 ;
(19) & + we? — 2tpw — w?

This is a complex number, which means a complex velocity of propaga-
tion W. Instead of W, consider the index of refraction #,

(11) =g =lr=ntn
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It has already been noted in the preceding paragraphs, that a complex

velocity (or refractive index) signifies that the propagation is accom-
panied by abscrption

ol s t*____x_)__ ioli X\ o
exp |— tw 7 |i = exp ® . -

(12) = exp {— xx} exp {— i ( — n—;{)}

with a coefficient of absorption

1 = - My
(13) K=

The real part of the index of refraction is useful for calculating the
differences of phase between two points which are a distance x apart.
Thus, ¢/n, actually plays the role of phase velocity.

nf"
n e T
)
Iy
A
1\ \t
[ -
7 ' i . e
' L3
H \
, M’*
TN
- . TR W
@y
FiG. 3. Fic. 4. Key: -, # == ¢{W where

W == phase -wveiocity; ———~, ¢/U
where U = group velocity.

Figure 3 shows how the index of refraction », and the coetficient
of absorption « vary near the.resonance w, The curve for the index #,
crosses the line # = 1 near w, and varies rapidly near there. The
steepness of this slope is closely related to the sudden variation of
the phase ¢, shown in Fig. 2. The absorption « is directly related to
the amplitude |B| of the oscillations of the elementary oscillators.
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At frequencies far from w, the imaginary terms can be neglected
and then

2 22
e~ 1+ 2a 5 (42 = 4aN i-—)
c —
(14) n=gy=le (x = 0)
c an
[/ P

The curves of Fig. 4 indicate the nature of the results obtained
with these asymptotic formulas.

3. Propagation of the Waves in the Medium

First of all, the exact nature of the waves in the above mentioned
medium will be studied, taking the absorption into account.
A wave propagating in the x direction can be written as

( 15) E, === agw'(‘ -~ xIW)’ Hy = A glelt— x{W)

If a is real, then 4 will be complex, indicating that there is a phase
difference between these twc vectors. Maxwell’s equations (with &
complex) require that '

(16) ’;7:7 = &4, “g’f = phod, W2 =1

Let A denote the complex conjugate of 4. The preceding equations
then give *

A

EueW? =1, lel | W2 = 1, = = &a

The intensities of the electric and magnetic fields are related by

. ‘". W 2 D a2
(17)  pold|? = pedd = ad = C—ngaz = -—-ci; S S lela?
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but,

1

, 4nN e2fm
we? — 2ipw —

V(wet — 0¥ + 4p%w?.

o2
]e]—-—l—i—@zN;—n—( )-ql-l»-
* What is the energy densify in the medium through which the wave
i1s propagating? This can be found by adding together the energies
of the electric and magnetic fields (in the vacuum between the atoms)
and the potential and kinetic energies of the N oscillators.

(18) &= 0 E’-—i—-‘u"H”—{-—N( msz+1mwo’s)

. This relationsh’xp then leads, by virtue of the relations (9) and (17),
and after setting ¢, = 1 as in the previous two sections, to

E?
81 ‘4_;;

E? w? 4 we® —
(19) &= [1 + [e] + 4N — (woz — w?)? 4p”w’} B

A coefficient ¢, can be defined, as in Chapter IV, Eqgs. (20) and (20');
the expression for it, derived from Egs. (17) and (18), will be real
and equal to

ey =1+ 27N 2 [ 1 @t o ]

m | Y(we? — 0?)? + 4p%0? e (wo? — w?)? + 4p2w?
(20)

The expression obtained  in Chapter 1V, Section 3, is no longer
applicable here, since there is absorption. The role of the residual
energy &, at the time when the electric field is zero can be clearly seen.
This notion was introduced in Egs. (13), (14), and (17) of Chapter IV
in a somewhat arbitrary manner. From Eq. (18) it is seen that at,
the time when the electric field E is zeto, the magnetic field H is
not zero, because of the phase difference between the two. The
potential energy of the oscillators is small, but their kinetic energy
is very important. These several terms enter into &,.

In order to avoid any error, the laws of refraction must also be
rewritten. As at the end of Section 3, Chapter IV, the discussion will
be restricted to the case of normal incidence.
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Ittcident wave: E, = a et~/ H,=A4 ewt— =
(21) Refracted wave: E,=a’ eiolt~ W) H, == A’ grote—+W
Reflected wave: E, = a'’e'w(t+zx/) H, = A'eiwit +xl)

If @' is real, then A’ is complex as in Eq. (15). Similarly, a, 4, a”’
and A" are complex. The conditions of refraction, Eq. (22) of
Chapter 1V require that

(22) ata’ =a, A—A"=4
but,
4=_2 | g r ®
B T N | 4

The second relation in Eq. (22) can thus be written as

! 7

LX - c —
4 —a"' = rra = na

where # = complex index of refraction.
From these various relations, it is easy to derive that

s —a—if

a= a4 18, a
—a' + 20 4 2t = na' = (n, -+ in,)a’
and

(23) al? —lg"|2 = o?—(a' —-a)? =a'(—a + 2a) = n,a?

This last relation replaces formula (22) of Chapter IV.

4. The Velocities U, U;, and S in the Medium

The next point to consider is the effect of absorption on the group
velocity U7, the velocity of energy transport U, acd the signal
velocity S. Irar from the resonance region {« very different from wy)
the absorption is negiigible, and the imaginary parts of ¢ and the
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i‘)

index of refraction # can be neglected. Then the asymptotic formulas
(14) can be used. It is almost cbvicus that this case is the same as
the cases treated in Sections 2 and 7 of Chapter IV and that the
velocities U, U,, and § are identical. This point will be verified by
using the complete formulas.

The group velocity U was defined by formula (27) of Chapter IV
where the real part of 1/W must be used. This can be written in
the form

£ o) an,
) U~ do =" e

In Fig. 2, the curve for the variation of #, is drawn. It is then easy
te construct graphically the curve for ¢/U. This curve presents a
curious anomaly in the absorption band. ¢/U can become less than 1,
and even less than zero. This means that the group velocity U can
be greater than the velocity of light ¢, can be infinite and even negative!
These results are sufficient to show that, in this region, the group
velocity no longer represents the velocity of a signal or of energy

@ausport.
Tar fvom the absorption band formulas (14) give

!"'» =y

/
S 1 e T
77 n,( -+ w Je

The veal part of ¢/U is always less thun the vajue of Lq. (25). The
iafter 1s, as can be seen, always greater than n, and infinite at w,.

The velocity U, of energy transport can be gotten from Chapter IV,
formulas (22a) and (29) which gave relation {30). According to the
caleulations of the pxe' eding sections, Eq. (22a) of Chapter IV is
reploced by Eq. (23), and Eq. (29) of Chapter 1V retains the same
form if absolute values are used. Thus equation (30) of Chapter 1V
becomes

.

26\, Fl (jl et C7zfr e T 2
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¢, has been calculated in (20). Far from the absorption band these
formulas show that -

after making use of (14). Thus U and U, are the same, since formulas
(25) and (27) are equal.

In the absorption band, ¢ follows a regular variation and has a
pronounced maximum near wy. This can immediately be seen from
Eq. (20). Formula (28) thus shows that ¢/U, follows an analagous
variation with a distinct maximum in this dangerous region. The
velocity U, thus decreases greatly in this anomalous region and
passes through a minimum. It is quite different from the group
velocity U. ‘

The signal velocity S is defined as in Section 6 of Chapter 1V,
and requires a detailed discussion of the integral (36), in which W
1s a complex velocity. Since this was discussed in detail in Chapter I1I
it'is enough to give the results here. The velocity S is found to equal
the group velocity U, except in the region of absorption. In this
region, ¢ ts very difficult to define a signal velocity precisely, since the
signal arrives very gradually without a distinct front. The ¢/S curve
in Fig. § was calculated from a certain definition of the front, but,
depending on the sensitivity of the detector, any value between S
and U, could be found. The curve of U, approaches, moreover, the
curve U, having the form shown in Fig. 4, if the absorption is neglected.
One result, at least, is clear: the velocity of the front of the signal
cannot exceed the velocity ¢. The first forerunners travel through
the medium in which all the oscillators are still at rest, since no wave
has as yet hit them. These oscillators are only gradually sét into
motion as the various forerunners hit them. But nothing can prop-
agate faster than c.
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Fi16. 5. Key: — — — —, ¢/W where W = phase velocity;
—-——o, ¢/U where U = group velocity;
sove, ¢/S where S == gignal velocity;

+—<—, ¢/U, where U, = velocity of energy transport.

5. The Forerunners

Consider a signal of frequency w far different from w,. The main
part of the signal arrives with the signal velocity S which .is nearly
equal to the group velocity. What about the forerunners? For those
tforerunners which have frequencies far from w,, the discussion of
Section 7 of Chapter 1V applies. Thus, a series of forerunners are to
be expected, each starting with those frequencies at which the group
velocity is st tionary (maximum or minimum). .

Using Fig. 3, one can see that outside the absorption region, the
group velocity is a maximum for:

Infinite frequencies Usn=c¢

Zero f{requencies Uy=W,= B S
]/ | . Sl
/
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Thus, a first group of forerunners will arrive with velocity ¢ and
will be composed of very high frequencies. The exact nature of these
forerunners is given by formula (41) of Section 7, Chapter IV.

2wy " {“’(t"fW“) }_aszé?w*wS{ (__,3_{)‘*_ :m}

;02._.. w02 l/.__ a(l/U) w 4

(28)

Since for very high frequencies

a2 = e -2 -2
o ! EN T W 202
c a(c/U)
[ l+'2“£7=' rFra w2

On the other hand, for stationary phase, w and ¢ are related by
condition (39), see Chapter 1IV.

X ax ayc

x
T T T R T T e
with
T=t—2
c
whence
x x . ax 2xT
w(t I——) w(t —+2cwz) 2wT = a]/
since

w-——a ...i‘.
- 2cT

Introdueing these values into Eq. (28), and carrying out some simple
manipulations, we obtain the result:

3/4
(20) S (—zf—) T4 cos {a L ?-%z + z}

x
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which is valid when T is not too small. This result is confirmed by a
more exact analysis,® which takes the damping constant p into account.
The only modification in Eq. (29) for the first forerunners is a factor
¢~ %7 which is equal to 1 for very small T but thereafter decreases
the amplitude of the forerunners considerably.

Now, the second group of forerunners is characterized by very low
frequencies. The calculations for these will be done only very briefly.
The result, after making the suitable approximations, is

2 2,2
e o) 2)

Aw? 142 A @
C D i Y e

c

U

= #y + 34 w?

ac/U) . "
5 = 64w i1s positive,

2%(c/U)

ez 04

Since the derivative of 1/U is positive, it is necessary to observe the
changes of sign in formula (41) of Section 7, Chapter IV. The relation
between @ and ¢ is given by Eq. (39), of Chapter IV.

: 2 2
tw_{c‘zt__xng__?Aw X _ T’——i‘/—l»?——ﬁzo
U ¢ ¢ c
with
T == ¢ — ol
¢
whence

xi__ , Aofx) 2 , ,3/2|/ c
w(t——W)mw(\T—« - ) ol = (T) SA%

? See Chapter III, Eq. (20a).
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Formula (41) of Chapter 1V, with the suitable changes of sign, is
written as

cos (1 — ) — %
2w, (VW) T 1

wy? — o? [ a(1]U)
1/2“"?"5‘;7

(30) = w11 ¢ o cOoS JE 7732 |/ =z
, T [=l34xT |3 34x 4

34x

Wy

This fs the equation for the second forerunners which arrive a little
later than the first ones and start at 7’ == 0. This resuit agrees with
the more exact calculation which take the damping coefficient p,3
neglected in Eq. (30), into account. '

The forerunners [Eq. (30)] have an important characteristic,
namely, that they begin at 7' = 0 with a rather large amplitude which
decreases bit by bit afterwards. Formula (30) actually would give
an infinite amplitude at T’ = 0, but it loses its validity for this time.
The exact form of the start of the signal has been calculated in Eq. (44),
Chapter 1V, Section 7 and is given by an Airy function «/(v) (Fig. 7).
Formula (44) of Chapter IV reduces to

1/3
(31) ! (f-) () (wp = 0)

2rnwy \A x

13
I c )
v —T (71'56)

using Eqs. (42), (43), (44) of Chapter IV and Eq. (30) above.

Several orders-of magnitude will serve to illustrate these results.
Using a yellow incident signal, which travels one centimeter through
a medium whose characteristic frequency is in the ultraviolet, the
numbers are

with

x = 1cm., w=4 x 101 (4= 0.5u), we = 4 x 1018

3 See Chapter III, Eq. (19b).
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If the index of refraction » is 1.5, this gives

a? 1 _
”23—“-1-‘*-—(;;5'-::“&;‘5, a9==l.24woz, AN"B‘ X 10 33
The first forerunners arrive with the velocity ¢ of light in vacuum.
They require a time } x 10-1® sec. to travel 1 cm. Their original
amplitude is zero. After a time T = 10-12 after the start of these
forerunners, their amplitude has a magnitude around

e 2 (2c)34 T4 » 1085

V 7 a3

using Eq. (29), which means an intensity around 10-? compared with
that of the actual signal. ~

For the second forerunners, the start is given by Eq. (31). The
Airy function has a maximum value of about 2.45 and thus, using the
above orders of magnitude, the initial amplitude is about } x 102
or the relative intensity is } x 10—%. As the time T’ increases, these
forerunners decrease slowly, according to Eq. (30). After a time T’
of 10~!2 the amplitude has decreased-to 10—3 or a relative intensity
of 108, and is already very weak.

The front of these second forerunners may possibly be observable!

6. A Real Transparent Medium, Having Several Absorption Bands

Actual materials have more than one absorption band, and thus
have several characteristic frequencies g, ,y,..., so that the
dielectric constant is given by a sum of terms such as Eq. (10),

ak’
nt=c=1+4 >’
(32) ‘i" wg;,———2ipkw—-—w2 ;

The curves of the index of refraction » = ¢/W and of ¢/U (U = group
velocity) have the form shown in Fig. 6, where the case of a medium
with two characteristic frequencies w, and w," has been sketched.
The results for this case will be analagous to those of the preceding
sections. Far from the absorption bands, the velocities U, U,, and S
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will coincide. For each absorption band, the velocities will be equiv-
alent to those shown in Fig. b, the signal velocity being then ill-defined
and having any value between U, and S, depending on the sensitivity
of the detector.

—— C -
Velocity

}
\
1
I
(]
{
1
i
\

]
L3
S

s

Fig. 8. Key: ———, ¢/W where W == phase velocity;

+—+—, ¢/UJ where U == group velocity (part of the usable curve outside the absorp-
tion bands);

- —— —, ¢/U {parts which are unusable, situated in the absorption bands).

The nature of the forerunners can also be read directly from these
curves. The forerunners with velocity ¢ will still exist, being the first
to arrive and having very high frequencies. They will be given by
a formula like Eq. (29). The forerunners of velocity c/n, and very
low frequencies will also occur, represented by a formula similar to
Eq. (30). But also, a third group of forerunners will be found, cor-
responding to those frequencies 2 between w, and w," with an incoming
velocity. U, which, for the case shown in the figure, is less than the
velocity c¢/n, of the zero frequeniy forerunners. But there is nothing
which shows a priori that this is a general condition. At the fre-
quency £, the group velocity has a maximum (quasi-latent time).
The form of the corresponding forerunners would be found by using
formulas (44) and (44') of Chapter IV, and summing the contribu-
tions for +2 and —Q. - |

At a time ¢, the system of forerunners is obtained by superposition
of the frequencies whose group velocity U is equal to x/f. A line
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parallel to the w axis can be drawn at the height c¢¢/x which cuts the
curve ¢/U at the points 4,B,C,D, and at the symmetric points
A',B',C'\D'.

This gives a superposition of four forerunners of different fre-
quencies, which interfere with each other. The frequencies situated
inside the absorption bands are suppressed so that, for predicting
the forerunners, only the parts (- —-—- —) of the curve ¢/U situated
outside the absorption bands need be used, and the parts (————)
in the absorption bands can be disregarded.

In the general case, one frequency £ will be found between each
absorption region, which means that there will be (n 4 1) eroups
of forerunners for »# absorption regions.

7. @uantized Atomic States, Kramers’ Dispersion Formuls

An actual material medium possesses a certain number of char-
acteristic frequencies for emission and for absorption. This is the
empirical fact which Section 2 tried to account for by considering
each atom as a harmonic oscillator with a characteristic frequency w,.
Actually, it is now well-known that such a model is just a gross
approximation. The atomic structure is a separate world obeying
special mechanical laws, those of quantum theory. The atom can exist
in a series of states, with energies

Eo,E&,..-E;‘,-a.Ek,.-n

each of which is stable to some extent. While the atom is in one of
these states, it does not emit any radiation. Emission or absorption
occurs only when the atom jumps from one state E; to another £,
and the frequency » of the emitted radiation is then given by Bohr’s
relation, which contains the quantufn contant #;

(33) hvik == E,‘ — Ek (w = 2.7!51’)

During the transition time, the atom may be regarded as a sort of
harmonic oscillator of frequency », and the amplitude ¢, of these
vibrations can be calculated. The square of this magnitude |g,|?
is a measure of the intensity of the radiation of frequency v, If
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g, Tepresents emission of light associated with a transition £ — &,
then g,;, represents absorption of light in a transition 2-+¢. These
two quantities are complex conjugates, so that |g,|%? = lg,,/% Thus,
a strong emission line for (# — %} corresponds tc a strong absorption for
(k- 1i}.

If, now, a ray of light of frequency » is incident on a medium
composed of quantized atoms, what will happen?

Each atom will be the source of secondary rays of the same fre-
quency as the incident radiation, but with different phases. This is
the coherent radiation, which corresponds to the effect studied in
Section 2 from the classical point of yiew. This coherent radiation
adds to the incident radiation to form the refracted wave. The index
of refraction # is given by a famous formula of Kramers,

4}7’:&?\;’ e 2 , ¥ "’k
(34) 3‘&2 —_— ] = .;;i-,,“ 2 ‘____;‘;_w!mv‘w
’ ; Whp-— v

This formula is quite analagous to that of classical theory Eq. (32)].
Here, there are no damping factors p included, but this is due to the
approximations made in the theory. A more exact application of
gquantum theory wnuld result in intreducing the quantum equivalent
of p.

The numbers f, are directly propertional to the amplitudes ¢
of the various characteristic frequencies. If g, ix the amplitude
for the direction of the electric field of the incident wave, amcl Vi
is the amplitude for the direction of propagation, then

Sn% 4dnm

{35) fﬂ ViRYirgik ==~ Ok in

Kramers' formula (34) calls for several remarks. It the atoms are all
originally in their normal state E, with minmimum energy, zll the
frequencies @, are absorption lines corresponding t¢ the possible
transitions to states of higher energy F; Then formula (34) cor-
responds exactly to the classical em:vvalmz (33,

It is however possible, that the atoms will be found in an excited
state £,, i.e., not in their state of lowest energy. Theu, in Eq. (34),
not only the frequencies for absorpiton from E, to states of higher
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energy than E,, will occur but also the frequencies of emission cor-
responding to transition from E, to states E; with less energy than E,.
By virtue of formulas (35) and (33), the coefficients f;, for emission
will be negative, while those for absorption are positive.

This peculiarity cannot occur in the classical formula (32), since
the frequencies of absorption and emission are identical there.
Classically, the frequencies were assumed to be independent of the
initidl energy E, of the atom.

Finally, the coefficients f, are directly proportional to g,
Thus, the only frequencies w;, which are effective in Kramers’ formula
are those which are actually found in the spectrum of the atom.
There are forbidden transitions 7 -» & (noncombining levels), for which
the corresponding amplitude is always zero. These transitions also
will contribnte no terms to the dispersion formula (34).

Thus, the Kramers' formula makes it possible to apply the classical
results with practically no changes. The frequencies which are
observed are those given by the energy differences (33). The fre-
quencies of the electrons in their orbits (as in the old model of Bohr)
are never observed.

Beside the coherent radiation which has the same frequency as
the mncident wave, the atoms can emit an incoherent radiation, or can
even be ionized and emit secondary electrons. The incoherent radia-
tion has a different frequency than the incident wave. If » is the
incident frequency and »;, one of the characteristic frequencies of the
atom, then the emitted radiation will have frequencies » + »,. This
change of frequeuncy is typical of the phenomena predicted by the
theory of Kramers, Heisenberg, and Smekal, and discovered exper-
imentally by the noted Indian physicist Raman. Furthermore, if
there is much absorption, i.e., if the frequency » is near one of the
characteristic frequencies », of the atom, then a certain number of \;
requencies v ,, of the atom can be emitted. These result from the
fact that if the atom is initially in the state E,. then by absorbing a
quantum of energy it andergoes a transition to a higher state £, andf
i returning to the normal state E,, it can emit different frequencies.
If the frequency v is very high, then it may even ionize the atom,.
ejecting one or more electrons (photoelectric effect). Finally, for very
small wavelengths (x- or y-rays), the Compton effect can also occur.i
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These several effects are mentioned here only for the purpose of
putting Kramers' dispersion formula into the correct context, and to
show how it can be distinguished from the other optical effects.

8. The Relation Between the Problem Treated and the Analogous
Technical Problems

It is believed that the previous discussion contains the essential
facts on the subject of the propagation of waves in material media.
The existence of dispersion and characteristic frequencies of the
medium introduces, as has been shown, some serious complications,
and leads to very delicate mathematical problems.

A large number of researchers have attacked these problems in
the last few years, because the problem treated here is closely
connected to very important technical problems. First of all, there
are the problems posed by the propagation of radio waves in the
Heaviside layer, and by the reflections of those radio waves which
can be observed. The Heaviside layer is assumed to be situated in
the upper atmosphere and to consist of ions and free electrons. These
free charges result in a medium with a characteristic frequency wy = 0,
and the propagation of radio waves in this medium is very similar
to the problem treated here.

If the damping constant p is neglected (it is very small for free
charges), then the curves of Fig. 4 will look like the ones in Fig. 7.
The coefficient

a = V4aN{em)

is directly related to the number N of free electrons per cubic cen-
timeter. Waves with frequencies w less than a cannot propagate; .
they are absorbed. Tor o = a, the phase velocity W is infinite and
the group velocity is zero, so that the oscillatory energy remains
stationary, i.e., is not propagated. As the frequency w increases, the
waves are propagated with a still small group velocity, which gradually
increases.

A complete theory must include the effect of damping; this can be
done by inserting a suitable damping factor p. Then, a velocity of
energytransp(ﬁ‘t U, will be obtained (shown as the dotted curve in the
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right part oi Fig. 7). This velocity has very small values {¢/U,
is very large). in the regian between 0 and 4. This qualitative resuit
can easily be obtained also by examining the curves of Fig. 5.
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Fic, 7. Kev: —— m = ¢/W  where W = phase velocity;
e 1 ¥ where U == group velacity;
e, clU where U, = velocity of edergy transport.
1Y 1 y P

The velocity U, and the signal velocity S coincide with the group
velocity U for those frequencies w far from a. In the region between 0
and a there will be a curve similar to that in Fig. 5. However, as has
already been stated, the definition of a signal velocity is very difficult
in the absorption region. It seems that the velocity S given in Fig. 6
is actually toc high, and that the curve for U, represents a more
reasonable estimate. Thus, for the very low frequencies (w < a),
the signal velocity will be very small, but not zero.

The evaluation of the signal velocity has been discussed thoroughly
by Baerwald, who uses a method of integration in the complex plane
which is more exact than the one used previously by the author.
The result is a curve for ¢/S which has a very sharp maximum in
each absorption region. This curve for ¢/S is very close to the curve
¢/U, shown in Fig. 5. One of the curves calculated by Baerwald is
given here. In Fig. 8, the curve for ¢/S evaluated by the method
used by the author is shown (lower curve, clearly, a lower limit) and
also the asymptotic curve of Baerwald® upper curve, upper limit).

4 For the units used and a detailed discussion, refer to the paper by H. Baerwald,
Ann. Physik 7, 731 (1930).
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Depending on the sensitivity of the detector nsed, any value between
these curves could be found.
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Fic. 8. Brillouin's curve {lower limit} and asymptotic curve (upper limit) for the
inverse of the signal wvelocity in a region of selective absorption,

Very similar problems are also encountersd in the propagation
of telephonic or telegraphic signals. Loaded transmission lines, [ilters,
and lines produce prcblems of the same type which are of vary great
practical interest. The existence of substantial forerunners is 2 scurce
of great annoyance for transmissions. They result in & repetitivn of
the signal (artificial echo} which is often intolerable in practice. All
these problems are treated by the general methods outlined here
Their connection with the subject matter covered in this chapter is
mentioned, even though no discussion of these problems will be given.
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CHAPTER VI

WAVES IMN WAVE GUIDES AND OTHER EXAMPLES

1. Guided Waves

Guided waves provide an excellent example for the distinctions
between phase, group, signal, or energy velocities which we shall discuss
in the present chapter. The electromagnetic theory of these waves
was discussed extensively by Sommerfeld,! who showed how the
phase velocity always exceeds the velocity of light in vacuum c;
actual wave propagation occurs, for each mode, on frequencies above
the cut-off frequency for which the phase velocity is infinite. The
point we want to emphasize is the fact that all other velocities
(especially the group velocity) are below the velocity of light. We shall
use a very simple discussion, which applies particularly well for
rectangular wave guides, and provides a clear physical explanation
of these properties.?

2. Acoustic Waves

The problem of sound vibrations in hollow pipes was studied
theoretically many years before the corresponding electromagnetic
problem, notably by Lord Rayleigh? in 1897. Probably because of
experimental difficulties, the importance of his results was not
appreciated at the time. They were not experimentally verified until
much later, after accurate methods and appropriate equipment for
wave generation and detection (loudspeakers and microphones) had
become available.

1 A. Sommerfeld, ‘“Electrodynamics,” Sections 22-25, especially pp. 193-197.
Academic Press, New York, 1952.

i 1. Brillouin, Rev. gén. elec. 40, 227 (1936), quoted in reference 1.

3 Lord Rayleigh, “Theory of Sound,” Vol. 2. 1897.

139
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As in other ways, Lord Rayleigh was much ahead of his time.
Interest in ultrahigh frequencies revived an interest in acoustic waves,
and the earlier experimental studies were repeated in refined form,
allowing for the observation of all the higher modes** of waves
predicted by Lord Rayleigh.

For a sound wave in air, it can be shown that the velocity potential
/ satisfies the wave equation

2
(1) Af — -C-l-é ‘g‘fi ~0
where C is the natural velocity of sound in free air, 4 is the Laplacian
operator

9T 9z @2
A::szé"§?+3}_2+§}?

and the displacement velocity of the
air particles is given by

V =-grad f
that is, —2
. Fic. 1.
’(,x g —a—'{ s ‘v} == -é{ , vl =z -—a»l(- .
ox oy 0z

Consider now a wave travelling in the z direction down a cylindrical
tube or pipe (Fig. 1) and try for & solution of the form

(3) f(x;y,z,t) == ¢(x,y) ei(ml—-kz)

the exponential factor giving the propagation in the z direction, and ¢
giving the transverse variation of amplitude.

The velocity in the pipe is the phase velocity w/k = W, and the
wave length in the pipe is .1 — 2n/k.

Substitution of this form ¢f solution into the differential equation
gives us an equation for ¢:

0% 0% w? ) o

(4 Tt (s m)e =0 = de 1 Ky

4 1 K. Hartig and C. E. Swanson, Phys. Rev. 84, 618 (1938).
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with

2
K2 ch"ﬁ — ke

The solution of this equation will be given by certain functions of

x and y which involve K. If the walls of the tube are rigid, there can
be no velocity perpendicular to the wall, that is

(M Vy == ~—a~f~ ==

on

where # is a normal to the side wall of the tube, or

i
=0
on

This cannot be true for any solution of Eq. (4), but may be possible
for the proper values of K. We {ind (as will be clearer when we consider
a little later the paiticular case of a rectangular pipe) that these
values of K form a double infinity which we call the charecteristic .
or proper values K, and the corresponding selutions éix,v, K ) are
the proper funcrions ¢, .

For a drum or membrane, we have an equation of the same type,
where ¢ is then the displacement itself, and where K is a multiple
of w, the proper values thus giving directly those {requencies at which
the membrane can vibrate and still sa*isfy the boundary conditions.

In our case, w is not given directly, and does not form 2 discrete
set. It is only limited by the condition thut K be e of the K :

»9 w? \
(6) — ((.?.é, — kz}

= I

according to Lg. (4), or
(02 — Cz(;‘;?. _1;” }" ﬁ.“ﬂ}

so that for a given mode of vibration (n,m), there is a lowest possible
frequency, the critical frequency {(k == 0, v A = o0):

~
{7) Weriy == e Anm =5 Wi
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The (n,m) mode ¢, ‘¥~ * is damped out for all frequencies below
this value. Hence the tube acts as a high pass filter. Note that the
sound velocity in the pipe is greater than its velocity C in free air.

w K \?
(%) =5 = C(l + 7?2-)
or,
C\? Wrpm |2 _
@ () + (%) =

which resuolt is shown in Figs. 2, 3, and 4.
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{he group velocity U is given by

dw

L:E’E

and since
2
w? =k ? 4 Wym

w¢ have
wdw = kRC2dk

andd

»
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£
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or
(10) UW = C?
so that
W>C, U<C

It is easy to show that for frequencies below cut-off one obtains
attenuation instead of propagation along the pipe.

Ly

0 Wom

Fic. 4. Fic. &.

3. Rectangular Tube

In the case of the rectangular pipe (Fig. 5), the condition that
there be no velocity normal to the walls gives us the boundary
condition

o
=0 atxz=0 I,
o
5—3—"—-0 at y—~0, Lz

and the function ¢ must satisfy Eq. (4).
The possible functions ¢ are therefore

nw mm
(]_l) ¢nm—X”Ym~—-A”mCOS°EI—xCOST2‘y



144 VI. WAVES IN WAVE GUIDES AND OTHER EXAMPLES

with

2 2 2
' ) rz) LAY
12 g (2) 4 (1) ] -

The resulting wave is

BT x cos 2% y giewt — ke

The elementary solution (mm) = 00) is

) ;oo _ ‘ﬁo() gifot — k)

Now let us see how the different modes vary in the cross section.
For the (0, 1) solution, the term cos (z/L,)y shows that there is a
node (f = 0) at ' '

T b 2

A ==

LY"%

or y = 4 L, And, similarly, the mode (10) has a node at x = } L.

) — .
/ £ ! o /
,y 153 ; -~ ﬁ -
s = il
z e 2t -
T (o0 (10} wy 2

FiG. 6.

More generally, the {#,m) mode exhibits » nodes in the x direction
and m nodes in the v direction as sketched in Fig. 6.

&

4. Physical Significance of Guided Waves

The waves 1n a pipe can propagate only a long certain modes of
vibration, and they exhibit a phase velocity W larger than the sound
velocity C in free space.
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The shape of the wave results from the reflecting boundaries of
the pipe. Let us consider a rectangular pipe open at one end (Fig. 7)
with a wave falling obliquely on its bottom surface.

FiGc. 7.

This structure will reflect the wave over and over again, so that
the velocity of sound along the new, zigzag path is still C, but the
velocity U at which the signal actually progresses down the pipe is
much slower, in fact we see that U = Csin#. And W is the phase
velocity of the interference patterns set up by the incident and
reflected waves. To see that this latter is the case, let us superpose
the two waves, as shown in Fig. 8.

interferences

A
2cosf

2ecstr

Fic. 8. An incident wave [ is falling upon a mirror A and reflected along R. Interfer-

ence fringes build up in the region where both waves | and R/ are superimpused.

A series of dark fringes, numbered 0,1,2,...10 are parallel to the mirror; between

these dark fringes the superposition results in new waves, with a wave length />4
/ and a velocity W > C.
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If the incident wave has its normal in the direction (0, -—£,, &),
the reflected wave must be in the direction (0, &,, &), so that the
sum of the two is

f= A —(—hy+ha] 4 Agilat— sy + k)
(13)
= 24 cos (kyy)eit — )

which is a system of fixed nodes parallel to the mirror, with amplitude
between nodes constituting a wave in the z direction. We see that f
automatically satisfies the condition that df/dy = 0 at the mirror
surface. We also have df/0y = 0 in the parallel planes R,y = mz, or

y =" (m =012.:.)
Ry

so that a second mirror could be placed at any one of these planes
without disturbing the motion.

A second mirror at y = (m + 1)n/k, yields our previous solution
(0, m). The physical picture shows that

U

. _Cc .
s/\ (14) E—»~W—»51n0

We now wish to show that
the group velocity U and the
velocity of transfer of energy
Fig. 9. U,, are equal. Let p be the

energy density and @ the flux
of energy per cm.? per sec. in the pipe, The velocity U,, is defined

by

616

e >

D = pU,,

If @, is the flux in the incident free wave, we have (Fig. 9) and
energy density p, = 4?2 in the incident wave

S, =2S5sin6
(15)
®,S, = &S
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Now, the energy density is measured by |f2|. Hence,
@, =[,2C = p,C = A*C

¢=FU,,,= 4A2(—;—U,,.)

since cos? R,y == §.

And so,
or
(1n Upw=Csin8=U
X
MO{:O‘)
T

M =0}

Fig. 10. An incident beam i {falls npon two mirrors M and M’ at right angles.
The lines 7; and 7, show the position of black fringes parallel to both mirrors

Now let us consider an incident wave not parallel to the yz plane,
so that there will also be reflection from a mirror in this plane. That
is, consider a wave with normals in any direction (%,%,,4;).

(18) fy == Aeiot—hx— by~ k)

This wiil be reflected from a mirror in the xz plane (Fig. 10) in the
direction (k,, —&,, £;), and we have, as wave of superposition,
remembering that df/dy == 0 at y = 0, as before:

(19) Jo = 24 cos kyy el —hx—Ra)

progressing now in the (k,, k,) direction instead of in the 2z direction.
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But this wave is in turn reflected on the yz plane x = 0, giving for
the wave of superposition, noting that df/dx = 0 at » = 0:

(20) f = 44 cos k x cos kyy et — k)

Y g Ljn‘:.ﬁ'

L i B
Gatadede Bbaleded SR ELD AL

S S
s-———’--—-—-——:—m——.-n:a

+ - +
....-_...:..-....J'..-_...,n:g

— ‘ -+ i -
..........:_-.....1 _____ n=1

y [‘l_ + d - ! +

m=3 m=2 m=1 0
FI

Fig. 11. Distribution of positive and negative vibrations in the cross section of
a rectangular pipe (n == 5, m = 3).

or the (mm) solutions on proper choice of £, and %,: %, == nn/L, and
ks = m=n/L,. ¥ig 11 shows the distribution of vibrations in a cross-
section.

5. Electromagnetic Guided Waves

Results very similar to the preceding ones may be obtained for
electromagnetic waves propagating along a pipe. We shall consider
a metallic pipe and simplify the problem by assuming the metal’s
conductivity to be infinite. Within the pipe. electromagnetic waves
follow Maxwell’s equations. Let us call z a coordinate taken along
the pipe and x and y two cartesian coordinates in the cross-section.
We assume all fields to depend upon z and ¢ by an exponential

(21) gilot — kz)

which indicates propagation along the pipe.

We may discuss the solution to Maxwell’s equations for this
case in a way analogous to that in which we treated the acoustic case,
looking for propagation down the tube. We find that E, and H,

satisfy the equations
AE, + K, =0

ry

(22) A4H, + K®H, =0
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with the other components E,, E,, H,, H, expressed in terms of E,
and H,, respectively. The conditions at the boundary are E, = 0,
aH jon == 0.

Two important types of solution are the electric type (H, = 0,
E, # 0,1.e., transverse magnetic, or TM), and the magnetic type (E, = 0,
H, = 0, i.e., transverse electric, or TE).

As in the acoustic case, we find the relation synilar to Eqs. (6)
and Eq. (8):

(23) K* = aﬂ(-l— S )

and again '
UW = C?, W=, U<C

However, the (00) solution no longer exists.

For the H-waves, we have the same boundary condition, 0H /on = 0,
as’ in the acoustic case, and hence the same solution, which for a
rectangular pipe is:

wt -~ kz}

nx may
cos el
Ll L-’)

-

(24) H, = cos

For the E-wave, the boundary condition is E, = 0, and hence the
solution is, for a rectangular pipe,

. MAX ., mEY
(25) E, = sin ~j o sin T, giteot = ko

Figures 12 and 13 indicate the distribution of electric and magnetic
lines of forces in the cross-section for some typical waves: solid lines
correspond to electric lines of forces and dotted lines represent
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magnetic lines of forces. Figure 12 shows, on the left, a pipe of square
cross-section enclosing a wave E,;, while on the right there is a pipe
of circular cross-section in which the fields correspond to the so-
called E, solution. The similarity of the two waves is easily recognized.
Figure 13 shows two similar H,, solutions for a square or a circular pipe.

6. Some Other Typical Examples

There is hardly any problem of wave propagation where the
preceding definitions would not play an important role. Group,
signal, and energy velocities have always to be defined, in addition
to the usual phase velocity. A variety of such examples was given
in another book by the author.’ The one-dimensional problem is
first discussed for a variety of discrete structures, and the definition
of group, signal, and energy velocities is given in Chapter V, where
it is also proven that the energy velocity is directly related to the
“characteristic impedance’” of the system. Chapter VI discusses
problems in two dimensions, and Chapter VII deals with three-
dimensional structures and discusses the zone structure. The general
results obtained for mechanical vibrations and waves can easily be
extended to any kind of waves propagating in periodic structures.
Electronic $-waves in a crystal lattice have exactly similar properties,
and the zone structure is of great importance {or them. Group velocity
for the y-waves corresponds directly to electron-particle-velocity,
and this correspondence explains all the peculiar properties of electrons
in metals or in semiconductors. The whole theory of electrons in
semiconductors developed by Shockley is based entirely on the
author’s results, as can be easily seen in Shockley’s book.

:‘Not only in crystalline structures, but for all problems of wave-
mechanics, it was proven by Schrédinger that the group velocity
of the wave represented the particle velocity of the electrons. This
relation is one of the most important applications of the notion of
group velocity.

§ L. Brillouin, ‘“Wave Propagation in Periodic Structures.” First edition, McGraw-
Hill, New York, 1948; second edition, Dover, New York, 1953. French edition,
with M, Parodi as coauthor: ‘“‘Propagation des ondes dans les milieux périodiques.”
Masson, Paris, 1956.
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