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FOREWORD 

Munich, in the sprin~ 1913, was a very lively city with a famous 
University, anq. th~ Institute for Th.eoretical Physics of this Univer
~ity h~d won/ a high reputation under the leadership of Professor 
A. · Sommerfeld. This young professor had already achieved great 
1\.me. He had published a remarkable book on the' theory of the 
gyroscope, and had presented a very extraordinary paper at the first 
Solvay Congress in Brussels in 1911 [French edition at Gauthier
Villars, Paris 1912, p. 316 and 'p. 403] .. In a stroke of genius,- he noted 
that Planck's constant h represented a quantum of 4ctio1~, and that 
the familiar quantum of energy h·v was only an indirect result of 
quantizing the action. He made a few curious applications of this 
revolutionary idea, which P. Langevin immediately u~d to c.ompute 
a magneton, which differed frorn the prese.ntl Bohr magneton only by 
a factor 2n. 

When Bohr's paper on the hydrogen atom wacs published in, 1913, 
Sommerfeld immedi~tely saw ~h-~ importance of this new idea4" I hap
pened to be i.n his off.~c~_ w\l~n he Qpened the issue of the Philo$ophical 
M agazi,.e.,_ whic.h had just arrived; he glanced through it and told me : 
.. There is a most important paper here by N. Bohr, it \vill mark a 
date in theoretical physics.', And ~oon after, Somm~rf~ld started 
applying his own ((quantum of action" method to rebuild a cor1sistent 
theory of BohrJs atom. This is how the first quan.t·i~ed mechanics 
was born, and why it progressed so fast. It wa,Ei definitely Sommer-.. 
feld·s discovery of the importanc~ of the jPtllq:_ in..t~grals that paved 
the way and these integrals still are at tht) basis of the whole quantum 
theory. 

Everybody wonder~(\ {~~d stit\ wo!.}ders) why the Stockliolm 
committee system~~i~~ iglt}oteq Sommerfeld's pion_eer work in 
IXlOd6n p~y~. Such an Q~is1ion is actually imposlible to un-/ 
ct.ent.nd. 

),Jy- friend f. P. E\vald gave an excellent $Ummary of Sommer
{eld•s_ ~evementa, and described the life at the Munich I11stitute 

v 



vi FOREWORD 

for Theoretica~ Physics, in a Foreword to Volume I of Sommerfeld's 
lectures ("Methanics,,Acad·emic Press, 1952). The special clarity 
an.d the mathematic~ accuracy of Sommerfeld's lectures w~re really 
remarkable. I had the great privilege of attending, as a student, 
lectures given by some prominent physicists, such as H. J\. Lorentz, 
H. Poincare, and P. Langevin. But I was especially impressed by 
Sommerfeld's mastery as a teacher. In his ~oreword to Volume I, 
Ewald quotes a few problems in which Sommerfeld was interested 
in~ 1913. Among them is the question of signal velocity in a dispersive 
medium, a short summary of which is presented in Volume 5, § 22. 
'rhis was the subject of research suggested to me by Somnterfeld arid 
it resulted in twin papers published by us in the .. 4n,nalen der .Physik 
of 1914. The subject was a fascinating 011e, but it had, at that time, 
only academic importance .. ~xperimental verifications were discovered 
much later, in connection with reflections of radio signals froin the 
lleaviside layers, and also for problems of radar systems. Theoretical 
applications Sl}ddenly appeared with wave mechanics, . when 
Schrooinger discovered that group velocity should be identified with 
the velocity of particles guided by the waves. 

All these modern developments made it advisable to assemble 
llere a systematic presentat_ion of the original papers, which are 
rather difficult to find nowadays. It 'is l1oped th<:tt the present book 
will be helpful to many readers and save them time and trouble, 
especially tl1e trouble of recomputing and rediscovering tnany irnpor
tant features of the general theory. 

It is a pleasant duty to thank Dr. E. ErJbach of tl1e Watson 
Laboratory for preparing translations of the German and French 
papers. 

New York 
!3eptember, 1959 

L. BRILLOUIN 



PREFACE 

When a mathematician thinks of wave propagation, he starts by 
writi11g a well-known second order differential equation a.11d discussing 
its peculiar properties. The physicist is i11terested in these results, 
but he immediately asks some indiscreet questions about waves in a 
dispersive meditttn, when the velocity of propagation is n~t a constant, 
but strongly depend~ upon the frequency. The well-known differential 
equation is no longe~ satisfied a11d n1ust be replaced by a 1nore com .. 
plicated system of equations, which include the model, the physic~.! 
mechanism, reacting on the "'aves and modifying fhe "v"elocity. Each 
problem seems different, but nevertheless some general properties 
may be deduced and sorne definitions can be found to apply ·to a 
wide class of systems. 

One of the most important definitions refers to the grou,p velocity. 
It seems to l1ave been first discovered by Lord Rayleigh1 \Vho char
acterized this velocity in sound waves. It is now known to apply. to 
practically all kinds of waves. Let 11s use the vocabulary of radio 
engineers and consider a carrier wave, with a superimposed modula
tion. The phase velocity yields the motion of elementary· wavelets 
in the carrier, while tl1e group velocity gives the propagatio11 of the 
modulation. Lord Rayleigh considered that the group velocity 
corresponds to the velocity of energy· or signals. 

Thi.s powever raised difficulties with the theory· of relativity which 
states that no velocity can be higher than c, the velocity of light in 
vacuun1. Group velocity, as originally defined, became larger than c 
or even negative witltin an absorption band. Such· a contradiction 
llad to be resolved and was extensively discussed in many meetings 
about 1910. Sommerfeld stated the problem corre~tly and proved 
tl1at no signal velocity could exceed c. I discussed the solution in 
great detail and gave a complete answer. These originaJ papers and 
discussions· are presented in the first chapters of this book. It \Vas 
found desirable to reprint completely these papers, \Vhich were 

vii 



viii PREFACE 

publislle(i during the F'irst \t\'orld \\'ar and are Inissing in xnany 
libraries. 

In the follo,ving cl1ar}ters \Ve- give a later discussion of the st1bject, 
and introdtlce three <.ii!ferent definitions of velocities: A ·-- the g1·'oup 
velocity of Lord Ray'leigl1; B -- the signal velocity of ~ommerfeld; 
C -the velocity ot e11-er~y tr'tlnsfer, which yields the rate of energy 
flow through a continuous \vave an.d is strongl)' related to the char
acteristic impedance. 

These tt1ree vtlocities are id.entical for nonabsorbing xnedia, ·hut 
tl1ey differ considera.bly in. a12 absorption band. 

Some example!S are discussed in tl1e last chapter dealil1g with 
gui<ied waves .. and rnany Dther cases of apr>lication of these definitions 
are quQted. 

These problexn\3 'have corrie aga1n ir1to the foreground, in connec
tion with the propagation of radio signals and radar. Reflection in 
the Heavi5ide layers requires a real knovvledge of all tl1ese different 
definitions. Group velocity alFrJ plays a very, important role in wav·e 
mechanics and correspond~ 4;o the speed of a particle. 

'The present book sl1ou.ld be ''e:y usefl!l to ph)rsicists and radio 
engineers artd should give thern a good l)asis for new discussions and 
applications .. 

New York 
September; 1 fJ.59 

I BRil.,. ... "'."N .... • ..._.,...,UlJJ. 
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CliAPTER I 

INTRODUCT!ON 

1. Phase Velocity and Group Velocity 

Many n1odern ideas on wave propagation originated in tl1c famous 
works. of Lord Rayleigh, and the 1)roblen1s V\<-e intend to dis::.us:; ~lre no 
exception to tl1is rule. The distinction between phase ·velortty and 
group velocity appears very early in I{ayleigh ~s papers. 1 lt ci~.n be found 
in his ".rfheory of Soundn 2 and in many articles reprinted in ttis (#Sci
entific Papers$, The problerr1 is discussed i:n particular i~ conn~ction 
v.rith measurements of the velocit:y of light ;8 and lhis i~ the piace \Vl1ere 
a curious error was introduced regarding the angle of aben:·ation. \Ve 
shall come back to this point later when discnssing a '-'"t.:ry irnportant 
paper by P. Ehrenfest (see Section 5 of this cha}Jter). 

Let us first remind the reader of ~~he fact that the usual velocity W 
of waves is defined as giving the phase difference between the vibrations 
observed at two djfferent points in a free plane wave. lt is prhr1arily 
used for computing interference fringes that rnake phclse differences 
visible. In a wave 

(1) I A ' k A ( ~r.\ tp = . cos < (tJt - x > = cos (0 t -- Tv 1 
. I 

lft·le observe the phase velocity }ii 

(2) 
w 

W=
k 

1 The very first idea of group velocity appears in a paper by \~/. B. Hamilton, 
Proc. Roy. lflish Acad. 1 •. 267, 3jl (1839). 

1 Lord Rayleigh. "Theory of Sound," 2nd ed. ( l894), Fnst ed. pnbFshed~ 1877. 
3 l~Jrd Rayleigh, ... Scientific Papers," Vol. I, p. fi::!-7. l88L 

l 



2 I. INTRODUCTION 

Another velocity can be defined, if we consider the propagation of 
a peculiarity (to use Rayleigh's tem1). that is, of a change in amplitude 
impressed on a· train of waves. 

This is what we now call a modu:tation impressed on a carrier. The 
modulation results in the building up of some ugroups" of large 
amplitude (Rayleigh) which move along vnth the group velocity U. 
In wave mecl1anics, Schrodinger called these groups '(wave-packets." 
.-\ simple combination of groups obtains when two waves 

(3) 
ro1 = c.o + Llw 

w2 = w -Aro 

kl = k + Llk 

kg= k -L1k 

are su J,.."lerin1posed, giving: 

(4) 
t/1 =A cos (co1t -- k1x) +A cos (w,j- k9x) 

= 21:1 cos (wt ·- kx) cos (Ac.ot- Jkx) 

This represents a carrier ·with freq·ue11cy ro and a modulation with 
frequency L1w. The wave rr.tay be described as a succession of moving 
beats (or groups, or "tvave-packets). The carrier's velocity is W [Eq. (2)], 
while tl1e group velocity· is gbler1 by U 

(5) for 

The situation iE~ re.Dresented in Fig·. 1 \\There vve see a succession of 
!- ,_.... 

wavelets (o1~k) with ~~lariable amplitude (Lifn, L1k). If \Ve do not pay 
attention to the detailed n1otion and observe only the av ... crage am
plitude distribution. v~~e verify that the amplitude curve 1noves forward 
\Vith the group velocity U. Looking :more carefully at the detailed 
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vibrations, we rnay see the wavelets movit1g within the envelo_pe \Vith 
their own velocity W. We distinguish two different cases: ~ 

(6) 

(7) 

U>W 

U<W 

The wavelets are bt1ilding up in front of the group 
and disappearing in the rear end of the group. 

The wavelets are building up at the back end of the 
group, progressing through the group, and dis
appearing in the front. 

2.. Examples and Discussion: Dispersive Media 

In a mediwn where the phase velocity W is a constant and does not 
depend upon frequency, we l1a\,.e 

(8) []=W 

and any kind of signal is propagated without distortion. 
More generally, \vhen W is a function of w (or k), we have 

with w = kW, hence: 

(9a) 

u-aw - ok 

This is often written \vith the wave length ;t as variat)J.e instead of k, 
'.i\7hen k = 2nfA.; hence, 

(9b} 
aw 

U = W-A- 0A--

i\ medium exhibiting a wave velocity W(k) is called a dispersive tnediun1. 
\ 7acuum is nondispersive for light (W = U =-= c), but all rrtaterial media 
are dispersive. It is impossible to think of a refractive medium without 
dispersion. The situation is even more complicated, since ~V depends 
upon the variables A. (or i.o), the density p. and the temperature T In 



4 I. INTRODUCTION 

crystals, the direction of propagation is also to be taken into account. 
~1e shall restrict our discussions to isotropic media, but we must assume 

(10) W = W(k,p,T) 

~Ibis is \vhere th.e pl1ysicist's viewpoint differs from the mathematician's 
idealization~ Many textbooks on electromagnetic tl1eory discuss material 
media with 

( ll) 
e ~ e0 

. /l. ~ !1-o 

dielectric constants of matter and vacuum 
permeabiiities of tnaxter an.d vacuum 

but they usually assume e and p. to be constant! and this is a physical 
impossibilit:-,.r. ~fhe complete problem dealing \Vith the tl1ree variables 
k, p 1"' 'vill be examined in Chapter V~ 

w 

SlopeU __ r ---

FIG .. 2, 

l\. very useful graphical representation obtains if we plot w as a 
function of k (l'"ig. 2). The slope of the cl1ord 0 P gives the phase "veloc
ity W, while the slope of the tangent at point P y·ields the group 
~velocity U. 

'The velocity of light is a constant in vacuum, but depends upo11 
frequency in material media. The velocity of sound is approximately 
constant for long wavelengths, but depends strongly on the frequency 
at short \Vavelengths, especially when the \Vavelength is of the order 

f the distance bet\veen molecules. Many 6uch exampl~ have been 
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discussed in the literature.' The group velocity for sound is then equal 
to the phase velocity only for long wavelengths. 

It was as5wned, at the beginning, that the group velocity was ac
tually the velocity at wh1ch a finite signaJ ma.y propagate through the 
medium, but this is only a11 approximation. 1vVe sl1all see la.ter that a 
finite signal is distorted while tra·v·eling througl: ttte mediwn, and that 
its velocity may become very hard to define~ on account of the change 
in the shape. 

This is especially true for 3.n absorbing 111edlurn. ..~bsorption is 
strongly frequency dependent, ancl is alvlays associated with strong 
dispersion. 

As a rule. vve sltall see that t.he velocity· of a signal does not differ 
too much fron1 the group velocity" ;vhenever absorption and disper· 
. Jt 0 h . l 1 • • d. i t ' ~ ., ~non are s1na. ~ t ... erw1se, t 1c vetr.>e1t1es n1~y t 1 Ier \v.vJe1y. 

l,et u~ novv discuss a few interesting exan1pJes, to v:~'h.ich tl1e reader 
1nay add a great ~,ariz~ty· of pro.blems disc11~sed by L, Brillouin in a 
previous book .t 

R_ayleigh discusses~ the problem cf wave propagation along a bar, 
and obtains an equation for lateral vibrations: 

( 12) 

"fl1is propagation is freqttency depe11dent, and for a \vavelength .A. one 
obtains a velocity_ 

. h ., 2 I"' \}1:1 t I( -:.:;";: n 1 )~. 

Ir ... this exan1.ple. R.ayleigh discusses the p1·oblem of group V'elocity. 
He ~:,ssun1es, more generally~ 

( i4) l,fJ __ B' ~n --- B'k-· n 
Pr - A ---· 

" See, !or instance: L. lirH~ou.in,. uwave Propagation tn P~riodic Structures.n 
~\·1cG:aw-!iill, P,!e~· Yo:r~. 1946. R,.··pnnted~ Dover, ~tew York, 19qa. L .. Brillouin 

and 1\1. Paroch.t ··'Propagation des on.:.it:~.s dans les miii(!U> .. periodiq ues." ~fasson~ Paris, 
1956. 

l\ L<Yrd Ray!d,gh, reference 2. Vol. I~ S~ctiun lB1 p. 30L 
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which results, by our formulas (8) or (9), in 

(15) U= W(I-n) 

For lateral "·ibrations of bars, 

(16) n=-1 U=2W 

The group velocity is thus twice as large as the phase velocity. 1'hi~ 
is a typical example of case (7) in Section 1 above. 

In another chapter of "Theory of Sound,''& Rayleigh discusses 
surface waves on water. Assuming a density p, a depth l. gravity g, 
and surface tension T, he obtains the general formula for the phase 
v"'elocity7 

(17) W2 = f + :k tanh (kl) 

a formula exhibiting a strong depe11dence on k. 
In many important cases, the depth l can be considered as prac

tically infinite (deep water waves); thtls the hyperbolic tangent 
is 1, and hence 

(18) W2=_[ + Tk 
k p 

2n 
k=-. ;. 

\Vhen A is great, k is small, and the waves mo,~c main1)1 under gravity, 
witl1 a velocity 

(19} when 

1.~his is the case of long waves on deep sea. For small ripples, ll is .i? .. rge. 
the second term in Eq. (18) is dominailt, and 

(20) W= --) (
Tk' 1/2 

p I 

tl Lo'fd I-<ay~r~igh. n~fereuce 2, Vol. II, Chapter XX. 
7 Lord Ray~·'.~igh., reff--rence 2, Vol. II. p. 344, Eq. (7). 
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Between these extreme cases, there is a minimun1 velocity W 0 

corresponding to )~.0 and -r0 values for wavelength and period, respec-
tively. 

(21) 
. - (41"g)l/4 

Wo- --
p 

. ( )1'2 Ao=2n ~, ( 
T )t/4 

-r0 = 2:t' --
4gap_ 

According to Eq. (19), long waves on deep sea yield a power of 
n = i and hence a group velocity 

(22) 
1 

U=--W 
2 

according to Eq. (15). This is a typical example of case (6) in Section 1 
above. 

Short ripples moving under surface tension, on the contrar:y, 
correspond to n = -l in Eq. {20); hence 

(23) 

""·hich is an e>:ample of case (7). 
A very simple experiment can easily be made and provi(tes an 

excellent example of group velocit)r. Just throw a stone i11 a pond. 
and look at the Hrings" produced on the surface. 1"'hey are composed 
of a small number of short ripples. The system as a '"hole propagates 
with the group velocity U but each individual ripple rnov·es with the 
phase velocity W. Since W < U, these ripples are building up along 
the outside ring, moving rr1ore slov;ly than the ring, and disappearing 
on the inside of the ring. 

3. Groups and Signals 

l'he preceding exa1nple ma~y serve as an introduction to the discus-
sion of signals. Groups \vere defined by Ra~,'leigl1 as moving beats 
[Eqs. (4) and (5)] following each other i11 a regular pattern. A signal 
is a short isolated succession of ·~v·a,J'elets, ·.,vith the systeirt at rest 
before the signal arrived and also after it has passed. A signal may 
be sharply defined in tim.e and duration, in \¥hicl1 case its freqttency 
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spectrum extends from - oo to -r oo, or it rrtay have a finite 
spectrum, and exl1ibit no absolutely sharp boundaries. I'hese problems 
were extensively discussed elsewhere.s 

We shall assume a signal carried by a carrier-frequency w0 and char
acterized by a modulation curve C(t). The complete signal sent along 
the line at the input x = 0 is 

(24) 

Let us now analyze the n10dulation C(t) in a f"otirier integral, 
assuming that this modulation has a finite spectrum extending fro1n 
0 to O.)m: 

ti)*H 

(25) C(t) = J Bt» cos (wt + t/Jw) Llw 
cu==O 

where B w is the amplitude and ~w the phase of the cu component. 
1"he input signal [Eq. (24)] is represented by the Fourier integral 

ru,_ 

C1(t,O) = J Bw cos {rot+ <fo~~.~) cos (ro.,t) dw 
w==O 

(26) 
'»m 

= ! J B ... {cos [(ro0 + w)t + </>"'] +cos ((roil- Q))t -~0]} dw 
w~:O 

1 .. he resulting spectrum now extends from (ro0 -- w.) to (w0 + co.) 
and thus covers a band 2wm. For simplicity's sake, we may assume 

(27) 

and avoid negative frequencies. The line along which propagation 
occurs is characterized by a certain relation between w and k, as 
visualized in Fig. 2. 

1 L. Brillouin. reference 4, Chapter V. p. 18. L. Brillouin and ~1. Parodi. ref
erence 4, Chapter V, p. 81. L. Brillouin, ''Science and Information Theory/' Chapter 8, 
p. 86. Academic Press, New \"ork, 1956. 



3. GROUPS AND SIGNALS 9 

Let us now assume a simplified problem, exemplified in .Fig 3. 
This problem was stated by Schustero a11d represents a limiting case 
fo1 many actual problems. The assump• 
tion is tl1at 

(28) 
2nb 

W =---: a + b). = a + T 

in which a and b are constants; hence 

<v = Wk = ak + 2nb 

aru 
u = ak =a 

a constant 
The quantity k is supposed to be posiii,re, but negative values 

would yield the dotted curve of Fig~ 3* \Ve now have to sl1arpen 
condition (27), assuming that 

{30) 

since the line does not transmit frequencies below !lnb* \Vith this 
model, we have the follovving situation: 

the carrier frequency w0 corresponds to k0• 

a frequency ru0 + w couesponds to k0 + (a'JfU). 
{31) 

\Ve now can rebuild the signal as it arrives at point x, simply by 
replacing, in Eq. (26), co0t by (cu.,t- k0x) and (w0 + ru)t by 
{r~Jo + a~)t ~-~ [k0 + (wJU)]x. 

This transformation yields: 

w,. 

C1(t,x) = ! I B..,[cos (80 + 0) +co~ (00 - 6)] dw 
tu-0 

{32) 

=cos 60 I B., cos 8 dw =cos 00C (t- ~) 

• A. Schuster, ••Boltzmann Festschrift," p. 569. 1904. 
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with 00 = w0t- k0x and ()(JJ = w [t- (x/U)] + cp(». The last trans
formation results directly from Eq. (25). Finally, tl1e signal reaching 
the distance x is .given by 

(:13) 

and we have proved, for the Schuster model, the following poirtts: 
(a). The modulation C[t- (xjU)] is propagated without any 

distortion, and yields the gro-up velocity U. 
(b). The carrier Wo exhibits its own phase velocity w. 

w 

(1)2: Wo+Wm --------------------------

FIG. 4. 

In the Schuster example, the signal velocity is a constant, exactly 
equal to the group velocity. This is, however, an oversimplified model. 
t\ n1ore realistic case corresponds to the situation sketched in Figs. (2) 
and (4)~ Here, the preceding result is only a first aJ>proximation, 

; valid only .. if it is possible to replace the cttrve by its tangent over the 
frequenC)' band ( tv0 :t: .t:om) around the carrier frequency w0 . 

In ger1eral, the signal velocity will differ from the group velocity, 
especially· if the phase velocity is strongly frequency-dependent and 
if the absorption cannot be ignored (as it was in the Schuster model). 

4$ Sisnal Velocity, First Attempts 

Some earlier authors managed to take one step farther, and to 
obtain examples i11 which the signal velocity S could be compared 
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to the group velocity r;. W. Voigt10 studied very carefully the 
properties of the telegraphists' equati9n 

(34) 

and he \\'as able to show that the velocity of the front of the disturbance 
is smaller than the group velocity. The front is defined as a surface 
beyond which, at a given instant of time, the medium is completely 

• at rest. \'oigt's result proves definitely that there must be a distinc-
tion between signal and group velocity. We shall even have to 
distinguisl1 between the front velocity and the signal velocity. Front 
velocity will correspond to the speed at which the ·very first, extremely 
small (perhaps invisible) vibrations will occur, while the signal velocity 
yields the arrival of the main signal, with intensities of the order of 
rnagnitude of thP input signal. 

I>. Ehrenfest 11 obtains results similar to those of Voigt on a 
different equation 

(35) 

This would correspond to a string, pusrted away from its equilibrium 
position b~y a force P2tfo. The system is unstable; a distllrbance 
propagates with the front velocity tX and increases progressively,. in 
amplitude. Infinitely long sine waves propagate without amplitude 
change, and exhibit a phase velocity 

(36) 

hence a group velocity 

(37) 

to \V. \'oigt, Ann.- Physik [3] 68, 598 (1899); [4] 4, 203 (1901). 
11 P. Ehrenfest, Ann. Physik [41 38, 1571 (1910). 
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and the group velocity is larger than the front veloci1y oc. Many other 
examples of greater importance for the physicist will be discussed in 
the following chapters. 

A. Sommerfeld12 started a very fundatnental discussion when l1e 
compared the theory of signal propagation witl1 the relativistic 
statement that no signal, no particle can move faster than c, tb.e 
velocity of light in ''acuum. This point required an explanation, since 
the laws of dispersion in refractive media yield, in a regicn vf anom-
alous· dispersion, velocities !fl and U that may becor.ne larger tl1ar~ c. 
Sommerfeld immediately .. noted that the group V"elocity U cannot 
represent the velocity S of a signal, especially in a irequE.ncy~ region 
where tl1e frequency~ depenclence is higl1 and absorptio!l is stro~ng. 

In this short note, Son1merfeld. sketched briefly the general 
mathematical method wl1ich he invented for this di:~cussjoni ~nd 

which Vlill be given in details in the follo\ving· ~hapter. He could 
imrnediately show that rto signal can !llove faster than c and· that 
actually. the .fron! of the signa] was progressing Vl/ltl·l fhe ·velocity· c 
through the dispersive mediun.1. Let us q_uote: 

·nit can be proven that tl1e sig11al "'velocity· is exactly eq.ual t~; c, 
if \v.e a.ssume the observ·er to be equipped vlith a detec.t\)r of infir=1te 
sensivity, and this L.; true for normal or anotnalous dj.si>ersi:"Jn, for 
is(!tropic or anisotropic mediu1r1, that n1ay or may not cc;.-~tain conduc;. .. 
tion electrons. 'flu: signal \telocity h.as absolutely not:b.ing tu •lc \Vith 
the phase velocity. There is nothir1g: ln tl1is pro[)lern. t:n th~ vv"ay· of 
Rela ti vi ty tl1eory. '' 

'I'he tl1eor:y· si'lows that the signal is very strongly distort\~d. ·
4

rhe 
medium is ir1itially at rest, tl1en tb.e front appears 'flitb \!elocity c, 
but this front correspond,s to infinitely small fields and electronic. 
motions. ·Both fields and electronic n1otions builcl up progressively, 
but So1nmerfeld did not obtain the complete shape of tlris complicated 
signal distortion. Thus the rnathematical theory vvas given a very 
precise formulation, but tl1e physical' IJicture rer:n;;;,:ned rather myste
rious. as \Vas proved in the discussion follo\ving the paper. The 

J.~ A. Srnnrnerfeld, Ein Einwanfl gegen die Relativtheorie z~er :F:lektrodynamik 
una seine Beseitigung. Ph,,.sih. Z. 8, 841 (!907). (\rortrage von der 79. Naturfor!c.her
vers~;tnmlung zu Dresden.) 
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complete physical explanation came later in this discussion and was 
bri,ren by Voigt. It is worth quoting alrrtost literall~/: 

~'The n1odern theory of dispersion and absorptio11 uses the a.ssurrtp
tion of point electrotls having a finite mass, and distributed in the 
(~o-called) ether. The assumption of an inertial mass results imme
diatel)7 in the fact that these particles can in no ,.Nay, react upon 
the beginning of a. wave. It is only after tJ1e wa·ve is started that the 
electrons are set in motion a11d react on tl1e wave. Accordin.gly, I am 
not at all SUIJJrised witl1 Sommerfeld's result, that the 'front of the 
vvave al\vays trav·els with. tile velocit)' c of light h1 vacuum." . 

This explanation was obviously su.ggested by the ·very important 
results obtained by Voigt u1 his previous 'IJurk, which. was quoted 
at the beginning of this section. 

Wien added, in conclusion to this meeting, tha.t he would like 
very mttch to know the shape of the whole signaL This is \vhat we 
are going to discuss in the following chapters. 

5. Actual Measurements of the Velocity o·r Light 

It was recognizee! by Rayleigh tba.t all experimental 11ietl1ods for 
rGeasuring the velocity of light did operate \vith Hght sig·nals, and 
~1ence did not measure the phase velocity but the signal velocit}", 
and this velocity was assumed to coincide ·~rith the group velocity. 
\'-le do not intend to disc11ss here the vvell··kncnNtl experitnents of 
J.'~.omer, Fizeatt)l or J1oucault. 1"'he reader rna}' find all tl1e necessary 
f.:xr;1anation ir1 Son1n1erfeld's lect,tres on optics 1 ~ In ]{6rner\~. 

methocl~ th.e signal~ are defined by the rotation of Jupiter~s satellite, 
;ind in the other rnethods, the signals result frorn the Iotating Jnirror 
or the rotating toothed wheel. . 

l"'he significance of the measurement of a parallax is not so ob .. vious. 
l<ayleigll first assumed that it was reJated to phase velocity, but this 
·:~tate.racnt vvas later corrected by Ehrenfest.11,

14 

~ 1 ... J:~.. Sorn.nH:r-f<!dd, n()r.,tics,H Chapter II, pp. t\0-7.5. Acadernic Pre~s~ 'le\v 
.,.{I:Jrk, IG54. 

1v.. T. I-I. H~~.vek~k~ "'I1te Propagation of "Disturbances in Di~pers:tv~) 1:.1edi~. '· 
2arnbridgP Tr:::i.ct i.n Math. and Phys. !~o. l'J'. Carnhridge lJn,v. P~·"~~~s, Lorta;:..'>'.:L if-H·~, .. 
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Figure 5 explains the situation, assuming a simplified device 
consisting of two parallel plates moving with a uniform velocity v in 

FIG. 5. 

the horizontal direction. Monochro
matic light is falling normally on the 
first plate and generates an oblique 
ray. It is obvious that the obliquit)r 
is determined by tl1e signal (or group) 
velocity of the finite signals making 
.up the ray. Altogether, the exper
iment is fundamentally similar to tl1e 
Fizeau procedure. Both of them can 
only measure the signal velocity, 
which is practically the group veloc
ity. 

6. Havelock's Pamphlet 

.(~ general review of the situation was published in 1914 by 
T. H. Havelock. 14 ,It contains a very exter1sive bibliography of earlier 
publications, up to the first paper by SommerfeJd. Let us note, for 
instance, an illuminating discussion of Kelvi-n's method of stationary 
phase: jf '''e have a Fourier decomposition of the propagating signal 

(3S) 

(~ 

y '"' J A cos k(x -· Wt) dk 
0 

\:ve may Lind l)Ositions and times at ''yhich a large number of C(>Inpo

nents hav{-~ the same phase and reinforce each other. '!'hey \Vill thus 
produce the predominant part of the signal, \Vhile other elements 
are 1)ractically de~troyed by interferences. This leads to the condition 

(39) 
d~ d 
---- =--== ----- k(x -- Wt) -== 0 
dk dk 

or~ 

x--[7!::=::;:0 ,,·here 
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cr is the group velocity previou5ly dt,fined. "ftte a.pproximate ~llaJ)e 
of the don1inant group in the signal can be computed. "fhis method 
~.vas repeatedly llsed by I.,ord Kel\~in and proved very poV\terf11l in 
n1JD)l l'roblem~. ()ne dra\vback is that it requires Jt:-- to be real (no 

absorption.). Whe11 there is absorption, the method rr1ust be reJ)laced 
by tqe rnore general "'saddle point method," as ,1ve shaH see 111 

Chapter IJ I. _ 
Ha·velock gives interesting discussions of a \-"ariety of special 

examples, and often succeeds in obtaining simple solutions. He has 
a numher of })foblems in 'vhich a short ptilse is the jnitial signal; l1e 
then cornp11tes the progressive distortion of the ~ignal for (iifferent 
1ypes of propagation. Similar discltssions regaine(l a great cical of 
in11)ortance later in connection \\'itll wave-mechanical problems,~ in 
'\.rhich a ''group)J or '\vavepacket" was taken as representing a 
particle, and group velocity was identified with particle speed. 
Havelock systematically uses tl1e Cornu spiral to build some solutions 
of waves on water and presents a number of interesting examples 
fro1n I...ord Kelvin and Green. 

There is also. in Havelock's booR, an interesting chapter on energy 
flou,, \Vitll thf· tnodern definition of a tJe/ocity of energy tran.sje1', 

illustrated by exan1ples of vib~ations of springs, \\~aves on \Vate..,..f and 
electrrnnagnetic waves. 

l'hesc problems shall be discussed in Chapter IV; other exarnples 
are found in the books quoted under reference 4. 

7. General Remarks 

The preceding sections snmmari1.e the situation in about 1910 
\vhen Son1merfeld starte<i discussing the problen1 and atten1pted to 
apply the general method sketched in Section 4 of this chapter. \Ve 
noted the interest in the problerr1, a11d ho\V a galaxy of etninent 
scientists, from \,. oigt to Einstein, attacl1ed great itnportance to 
these fut1dan1ental definitions. We shall discuss the quest. ion of. 
groups, signals: and fronts in the following chapters, where we \vill 
also discover a fourth velocity, defining the average speed of energy 
transfer. A detailed comparison of these four different velocities 
\vill follow. 
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rfhese problenls were of theoretical itnp·ortance at that tjnle > 

Sommerfeld gave a general account of the question in hit~. l,~ctures 011 

opticsl5 which he. al~o quoted in his lectures on electrodynaJnics. 
From tt1ese academic discussionsf a number of practical af)plication.s 
of great in1portance progressively emerged during the last twenty 
years. l{eflections and echos of radio waves on the Heaviside layers 
in the upper atmospl1ere were arnong the first actual problem.s to be 
discussed, then came radar signals, sonar, soundi11g by ultrasonics, 
wave-guides, and a v·ariety of devices for guiding p~lanes or ships. 
,~side fro1n tl1ese technical applications, we have the n1ost im:portant 
problern of v\/ave rr1eehanics, with the Schrodit1ger identification of 
grou1) velocity (in tl1e vvave description) with }:.)article velocity {in 
the visualization b~y partieles). i\ltogether, \vave propagation is one 
of the n1ost irnportant chapters in theoretical phy'Sies, one ~vhicl1 is 
encountered O'V'er and 0\,...er again, even in nuclear e~nergy~ 

Son1e of the ·old papers on the subject seem to have been ignored 
by man).r young physicists and radio engineers, wl1o frequently spend 
tou mucl1 time rediscovering some of th.e classical results. Let this 
book be helpful to them. · 

15 J\. Scn1merfeld, reference 13, pp. 114-123; HElectrodynamics," p. 231. Academic 
Prt•ss. New )(ork, 1952. 



CHAPT:ER II 

ABOUT THE PROPAGATIO~'\t Of LIGHT !N DISPERSIVE 
MEDIA· 

by 

1. lntroductictln and R~ult~ 

The following investigation whose results hc.tve already been 
reporte!d on at the Dresden Scientific Conference1 is a shortened 
version of a paper appearing in the Festschrtft oit the 70th birthday 
of Heinrich Weber. 2 The reason for re\vriting it is given ·by ·~he fol
lo\\;ing Vlork of Dr. L .. Brillouin~ Vv"ho has s·uccessfu1Jy extended the 
n1ethods of corrtplex integration used hertr.. 

Since the title refers to the propagation of ~'light/' it rntist be 
stated that we will not deal with natural (polarized or unpolarized) 
light, i.e., light which can be obtained from real light '-''aves with the 
aid of real polarizers or frequency analyzers. Such light al\¥ays 
contains many \Vavelengths~ and only the average \Vavelengtll can 
be controlled. • Instead, we set up, as our incoming light sig11al, a 
we!l ... defined special waveforrn consisting of a reg"tlla.:r series of similar 
sine \Vaves. If this signal \\~ere unter1ninatcd ou either end, one could 
not even define a velocity of pro~)agation. Since the only char-

* This Chapter is an authorized translation of A. Sommerfeld, Antt. Physik l4] 
44, 177 (1914). 

1 Under the title: Ein Einwand. gegen die Relativtheorie der Elektrodynamik 
und seine Beseitigung [A. Sommerfeld) Physik. Z. 8, 841 (1907). 

1 A. So1nmerfeld, i.n ,.Festschrift zum 70. G·eburtsta.ge von 1-Ieinrich Weber." 
Teubner, Leipzig, 1912. 
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acteristic of an unterrninated sine wave is its phase, the11 we coulti 
assigr1 only the phase of the incomi11g light at a certain deptl1 of the 
medium of propagation. Vle thus come to the concept of the phase 
velocity, which i~ the relevant quantity for all questions of interfer
ence, in otl1er words, for the majority of optical phei1omer1a. What 
is usually 11nderstood as the velocity of ligl1t (in a material n1ediun1), 
i.e., the velocity of light in vacuum, c, divided by the index of refrac
tion f.l, is just this :phar;e velocity._,"' Only in an optically empty medium 
(vacuum, air) is th~ phase velocity.the same as the velocity of propaga
tion. In a different rnedium, the phase velocity tells you only how 
the phase of the ~ight is delayed by interaction with the medium 
(according to tl1e present theory of dispersion, due to the forced 
oscillations of the ions or electrons in the medium) but teaches you 
nothing about the process of propagation; the light excitation at 
every point in the medium is alread~y present forever, for an infinitely 
long sine \Va ve. 

In order to be able to say something about the propagation, we 
must, instead, have a lin1ited wave n1otion: no~hing untiJ a certain 
rnomen"t i11 time, then, for instance, a series of regular sine "'a""'es, • 
which stop after a certain time or whicl1 co11tinue indefinitely. Such 
a \vave motion will bP. calle(i a signal. Here, one can speak of a prop
agation of the front of the \\"ave ,(,vavefront velocity) or also, \Vhen 
the wave motion is tertninated~ we can speak in a certain sen~e;, 
of a velocity \vith which the end of the signal travels through the 
n1edium. The end of tl1e signal is naturally not as distinct as the vvave 
front which divides a region-of complete rest frorn a region of motion. 
Instead, the end of the signal is followed by a long (act\lally, infinitely 
long) tail of decaying oscillations. Nevertheless, the end of the signal 
can be distinguished in the· formulas, even if it is not too clear fron1 
the point of view of the ter1nination of \Va:ve motion, by tl1e condition 
that the forced osciHati• Hl~ are no lo~ger present, and only the decaying 
free oscillations (,f the\ inns rt::rnain. ¥/e can always consider a ter
minated signal a~~ tlH' superposition of an earlier unterminated signal 
and a second unt{-lrn11na ted signal beginning at the end of tl1e ter
minated signal \vith opposite phase whiclt just cancels the first signal; 
we thus see that t ht ·velocjty of the end of the terminated signal is 
identical with the v~:'locitv of tl1e \Vave front of an incident signaL 
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One must distinguish between this wavefront velocity and the signal 
velo~ity, i.e_, tl1at velocity with which the main pari of the wave motion 
propagates in the dispersive medt"u"'r It turns out that the signal, 
upon propagation, does not retain its original form, that at a certain 
depth in the medium, very weak signals appear at first, called 
nforerunners," which increase to an intensity corresponding to the 
incident intensity. It is the essential result of Dr. Brillouin's work 
that the signal velocity is practic..1.lly the same as tlle group velocity, 
,vhenever the incoming wavelength is different from the charact~ris
tic wavelength of the dispersive medium, i.e., when th.e wave motion 
procee(ls without strong absorption. 

V\'e \\rill show here that the wave front velocity is always identical 
with the velocity of ligl1t in vacuum, c, irrespective of whether the 
material is normally or anomalously dispersive, whether it is transpar .. 
ent or opaque, or ~rhether it is simply or dot.1bly refractive. The proof 
is based on the theory of dispersion of ligl1t, which explains the 
various optical properties of materials on the basis of the forced 
oscillations of the particles of the material, eitl1er electrons or ions. 
In the following, we call these particles ions, but include the case ·af 
pure electronic oscillations under this name. Fron1 the viewpoint of 
the original Maxwell theory, whicl1 considered the dielectric constant e 

and consequently also the index of refraction v; as a characteristic 

constant of the material, the phase velocity lt" = cfl/; would be an 
actual velocity of propagation \\yith whicl1 the disturbances spread 
in the tnedium, in the same way a~ cis the velocity of propagation in 
vacuum. According to our present knowledge and our understanding 
of electron theory, tl1ere exists only one isotropic medium for electro
dynamic phenomena, the vacuum, and the deviations from vacuum 
properties can be traced back to the forced oscillations of charges. 
\\'hen the \\,ave front of onr signal makes its way tl1rough the optical. 
1H~di11n1, it finds the !;articles whicb are capable of oscillating orig
:.naU_y at rest, a (except for their th.eJ1nal ntotion \vhicl:t has no effect 
qfl propagation, due tc its rando.rnr1ess). ().r;r~·inally, tlu:!refore~ ihe 
r::?l~dittn1 seei'ns optically empty·~ only after the part1cles are set into 

3 This method is the result of remarks nl.de by W. Voigt a.t the discussion of my 
paper at I.lresd.en (reference l). 
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motion, can they influence the phase and form of the light waves. 
The propagation of the wavefront, however, proceeds undisturbed 
with the velocity of light in vacvum, independently of the character 
of thft dispersing ions. 

From this remark, the subsequent conclusions of our investigation 
inunediately become clear. Unfortunately, these conclusions are 
purely theoretical, and can hardly be compared with experiment, due 
to . ..the smallness of the energies involved and the sh~rtness of the 
periods of time available for observation. Also, we use the formulas 
of the dispersion theory in a somewhat more general way tr~.an can be 
justified physically. Namely, we extend these formulas to infinites
imally small wavelengths, while their deri·vation is justified only for 
wavelengths large co111pared with the distance between dispersing 
particles. Our conclusions state: 

If we let white light fall perpendicularly on a dispersive plate, 
then tl1e less refracted (and hence "faster") components of the white 
light do not precede the n1ore refracted (and hence "slower") compo
nents, and the light is not red at the first instant of emergence. Instead, 
the wave front of each component propagates with,'the same velocity c 
through tl1e plate, and each component contributes equally to the 
energy of the initially emerging light. These initially emerging 
forerunners do not sl1ow the colors of the components of which th~y 

·are composed; instead, they have an ultraviolet wavelength deter
mined by the dispersive power and thickness of :the plate, and a very 
small intensity. The form of the wave motion~is so greatly altered 
at the initial traversal of tl1e plate while the ions are being set into 
motion, that there is no similarity between the form of the in~ident 
and the initially emergent light. ~~lso, so much energy is given up itJ 
setting the ions in n1otion, tl1a.t the initially emergent energy is very 
small compared with the incident energy. 

We can add another 'closely related result of this argun1ent: if 
tbe light sigr.tal is incident at an angle with the 11ormal, then tl1e 
sig11al ''itiH. at first not be refracted or reflected at all. The index of 
refractiot1 bccon1es effective only after the ions have been set into 
rnotion~ \Vtllle the front of tlte signal and the just rr1entioned short 
t_va,Telen.gth forerur\ners travers- the plate as if it were air. Further: 
if one has un.r~olarized ligl1t iucider.tt on a plate of calcite or quartz', 
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then one does r1ot get; at first, linear or circularly polarized light such 
as one could expect if the "faster" ray actually~ propagated faster than 
the uslowerH ray. Moreo"ler, here too the cr.ystal ~tructure is non
existent, frotn ar1 optical point of view» a.t the oegin_ning, ar1d on_ly 
gradually does it become effective; in the same manner} tht!re is no 
double refraction at the beginning. 

The original interest in our problen1 ~"vas. conn~~~terl with the theory 
of relativity. This theory.r sho\ved that a \7e1ocit:y greater tl1an tl'-~t 
of light was imJ?ossible, whether the ·velocity 1\t'2.S that (~f electronic 
or particle rnotions, or of tl1e propagation of an electrodynax~ic or 
tnechanical signal. 4 ·w. Wiert ff~r11arked, ho\XTever, that in ttl~ spectntm 
uf a medium with axlomalous dispersio11, there c::l_.n exist a region near 
the absorption line where the index of refractiol; < .. 1, of e(luivalently, 
\vhere tl1e velocity of light (w:hether tl1is refers to tht: phase or the 
gro11p velocity of light) becomes greater than ~. Thi~ a.pparent con~ 
tradiction to the theory of relativity· had te br_~ resolv~d4 

Let n be the frequency of the ligh·t {number,'.:.)f wav·f"S itl a time of 
2:r),~ k the wave number (number of wavele11gtl1s in a <list:Luce of 21!) 
lil the phase velocity~ U the group velocity at the freq·uency n, and 
let us ignore the absorption~ i.e.~ let k be real. l'hen_v it is \Vell kno\vn 
that 

\Vhicb can also be written 

f·or anomalous dispersion~ dt1ljdA < 0 and tl1us [} .>~ F/. Tl1us» if 
Hl is greater tl1a11 c~ then the prcpa.g.ation of tile sit{n.a1 .. :JV;th th.e group 
-velocity U will certainly lead to a v·elocity gr(:ater than 1~-sht 1 whicl1 
is relati ' .. tistically impossible . 

• ~ccording to the preceding results. th~re is In fact oo dtfficulty: 
the fron.t of the signai propagates under e1Jl circun1stances with the 

' A. Einstein, )ahtlbuch lkr Radioakt:vitct 4. 4J2 (1912). S!;ctif:7l 0; '5e~ aJ$0 
~1. Laue, J.lhysik. Z~ lt, 48 (1911). 

a The frequency n corresponds to ()) in othe·:r chapters. 
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'"velocity 0f Ugl1t iil vacuum t; the major part of the t:Itergy" follo,vs 
\\'t~ll & n~:·(.:es~.J.rily smalle"" signal V(:tucity.. This latter is .. according to 
r1r. Brillouint generally the same as the group velocity except near 
t!1e absntption 1Y~"ld, 1,\~hicll is t.he region of anonJalcns d~~pe-rsion. 
Here- tllE; gTOUl> \·elocitJ" I:)ses its rneaning as a sigf1al vf'.locity; t.b.us 
the fte"\~_((}U.s,~;· !l1Cr.ttiot\e'~ ilifficultj.es 'Wi.tb. the titeory of relativity 
re~;t t)ni>· on a11 overrati11g of the concept of gr<Jnp velocity co-tn-.. 
J-mred '"~it11 VJ!tat i~ usually· used as tl1e velocity of ligl1t, the phJ.st~ 
V€locit:y., 

We no,,~ make son1e general ren1arks about the C\Yncept of gr9up 
vel(){-:ity. One can, as is well kt1own~ shovv6 through in(lrvidual exan1ples 
that fer an aggregate (~onsistir1g of several·neigl1borir1g wavelengths, 
a '~"' .. a"··e g·rotlp/ a; maximum, or other\vise determined amplitude 
proJ>agates Itot \.vith velocity· U' but rather with L'~ Fron1 this .. 
M. l .. aue" ~ho\\·ed that for natural light which is c.tta.racteriZf\;1 by~ the 
w·avelc.:I"\gtll of its average intensity·, the group v·elocity· is the r~lev·ant 
<}Uantity fnr th.\~ propu.gation of the energy into the dispersive medium~ 
He rerr.t.a:.··k$ at great length that, "'tith anomalous dispersion, due to 
the strcrn€~ absorption which destroys the significance of a cllaracteris
tic wa,,.ela1gth after a. short path length., one ~~ no longer sharply 
~efine tht~ velocity of .pro}Yagation of tl1e energy. Thus, ir1 cases "'¥here 
the group velocity· is greater than c (s>r even negative -· see ref
erenc,e 7) the prir1ciple of the equivalence of group velocity~ and velocity 
of f.J:ropagati.on St1ffers an exceptiOn; since for a statistically delz"ned 
light there rlot~ not exist a precise ·velocit.r of propagation. ·Tl1at the 
wave front tnust aiwaj.:s propagate \Vitll a "'elocits~ ~ c is d~.duced 
from general ideas about electron theory. This resttlt agrees with 
our sp~cific result.. Whether tl1e grottp velocity plays a role e\'en for 
indivit/.u.al light signals~ as we are understanding tl1em~ cannot be 
decideti l.)~l Laue•s theory. Due to the work of Dr. Brillouin however, 

$ S~, ior lnst.a!lcek A. ~huater~ .. Einliihrung in die theoreti~he Optik," Sec
tion 183. "~"he !at.t that these cxampl~.a do not constitute a general proof has already 
been lta~.d by \V. ·wieu, Ett&ykl. Math. Wis.s. 21, No .. 28 and by P. Ehreufest, .Ann. 
Pla·y:tik [4-J 31, 1571 (l):}\0). Concer·r.ling the pouibj.lity of a ~~~itJe gro11p velocity 
(A. Schust·er\ loc. c#.) n.-r the absorption band, see the viewpoint of M. Laue men
tioned belo._·. 

1 l\1. Laue, Ann, PhysiA [4] 18~ o23 (1906), see especially Sectiotl 6. 
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thh~ question can lJe answered affir1native1~~, with tl1e I ~striction 

already· noted by l.,aue, tlainely·, the t~xclu..;ion of regions of ab~~orption ... 
~rh.e pie:seni \\'urk gives the ger"eral so1ution of tl1is problem by 

ni~:ans cf Ct)rnplex ir1tegrals in St-ctions 2 and 3 of this chapter. The 
di~;cussio11 o.f the so1utiort in Sectior1 4 is based on alternative paths 
of integration. Ii the 11atl1 can l"'e def<)rnled to the positive semi
infinite half pla11e of the variable of intcgrt-ttion!' then everything is at 
rf·st; this is the cage Ior t <: xjc (.x ::-: th-!ptl1 traversed in the tlispersive 
ns~diltnl). Ou tl1e otl1er l1and~ fort> x·;c, the path tnust be deformed 
to\·\~ard th(~ negative ha.lf plane: in which case it is stopped by· either 
a !>,)le or a branci1 line in the plane. "l'he fact that tl1e separation of 
the t\\:o ca~es occurs just vvhe-n t ~~. x/c ::.ltows that the front of the 
~d.gnal l)l"opagates with the ·v·elority of h~ht in vacuum c. The residue 
at the I}()le gives an undamped excit .. 1t1(·n \Vith tl1e wavelengtl1 of tl1e 
incident vva\.'"CS) and witl1 that arn}llittld~~ and p:t1ase corresponding to a 
reg~lar, undistorterl, propagation of ihis \\"a·ve n1otion. with the phase 
\·elocity ur. 'fhis is the forcecl part of the Tilotion. ~file path around 
the cut in the plane, on the other hand. gi·v~ a v.'·ave motit)n which. is 
a function of tirne, depending ort the chara.c·teristic frequeucy and 
dan1ping of tlte ions. This part~ then, describes tl1e free oscillations 
of the iollS set in motion by the signal. However, such a separation 
into forced and free oscillations is J-10SSible only· for large \"alttes of 
t -- x/c. The conditions for small values of t -- xfc. i.e. I' for titnes 
soon after the incidence of tl1e signal, are discussed in Section 6; the 
ctforeruriners" which occur here and cannot be separa~,d into the 
abo·ve two parts, as yet, are very \Veak waves of short wav·e lengths, 
whose intensity and wavelength gradually increase. in Section 5 
we prove the uniqueness of the solution from the conservation of 
energy, with special emphasis on the fact that the field is continuous 
at the v.·ave front, but the gradient is not. 

2. Th• Incident Sianal 

Let the dispersive medium extend from x = 0 where it joins the 
vacuum to x . oo_ Let the wave be incident normally. so that the 
optical conditions depend only on x and t; for x =- 0 the wave will 
be given as a function of t. Since the rt.~lected wav·e does not interest 
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us, let this /(t) correspond to the situation just behind the surface 
of the dispersive medium. '['he motion begins at t = 0 and is given 
either as Fig. la or by the formulas 

(1) /(t) = { . 
0

2nt 
SlU-

T 

FrG. la. 

-- T-

FIG. lb. 

(t < 0) 

(t > 0} 

---~~ 

! 
- -------t 

t=T 

Irt order to be able to use the formulas of dispersion theory, we must 
decompos~ /(t) into its harmonic components of the forTn eim 
(n = frequency). If one tries to do this with Fourier integrals using 
only· real frequencies, one encourtters convergence difficulties; since 
f(t) does not '$1at1ish at t = oo, the Fourier integral has no meaning. 
If one wants to use only the usual real form of the Fourier integral 
analysis, then one must consider wave forms \Vhich are termir1ated 
at both ends [i(t) = 0 fort< 0 and for t > T, see Fig. lb]. Such a 
wave form is composed of two unterminated '\vaves~ one beginni11g 
at t = 0 and the second at t = 1"' with 9pposite phase. so that the two 
cancel for all time t > T. 

For the wave terrninated ~t both ends~ one has 
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In Fig. lb we have set 

(2} T=N-r 

i.e~, T is an integral multiple of T. Then our function reduces to 

ao 

2 J · tln f(t) =- 8 (
2 

I )2 [cosn(t- T) -cosnt] 
T n - :rt T 

0 

In real from, one can rewrite this as 

ao 

(3} 
4 f . ( T) sin nT/2 

f(t) = -:; J dn sm n t- 2 nt _ (2n/-r)' 
0 

In complex form, instead: 

+co 

(4) j(t) = _..!_ r __ tJn ( e-ift(t- Tl _ e- itt#) 

T J n2 - (2n{'r) 2 

-co 

+co 

(5) /(t)·=_!_ReJ tln· (e-iot(t-n_e-•) 
2n n .- 2n/'r 

-ac 

\vhere Rc rrH;ans (tthe real part of." Equation (3) supplies the fre
quency distribution of our terminated wa:vefonn in terms of infinite 
\vav·es. T!1e factor of sin n(t - T/2) is the amplitude of the individual 
elementary· wave, its square giving the specific intensity (intensity 
per frequency interval). 

(6) ( 
4 sin nTj2 ) 2 

]= Tn2-(2:n:/r) 2 . 

One sees. therefore, that every frequency including the characteristic 
one of n == 2niT: has a finite intensity. The vanishing of the denom-

~ Ti1at Eqs. (4} and (5) are identical, !q easily proven in the same manner by 
"'hi(.'h it is shown in Section 4 that F:q (it) ~s identical with Eqs. (9a. b). 
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inator at n -= 2n/t i:; corr1pensated fur by the vanishing of the nu
nlerator si11 nTf2 :::::: 3in Nn [E'q. (:i) ]. Tlte result of this is that 

(7) 

For Eq. (5), therefore .. it follo\vs that at n =:: 2n/r the integrand 
is also not infinite as long as \Ve do not separate the t,,.o exponentials. 
1'hus we can replace the integration along tl1e real axis through this 
:point b~7 a srnall sernicircle in the ur:"J?er half cd the eomplsx plane. 
()nee this bas been df;ne, we ca11 defortn the path still further (see 
I;ig. 2) and ' .. 'an integrate the t\vo exponentials h1 Eq. (5) separately: 

\Ve co1v~ider u {frorn + :X) to - oo .. see Fig. 2) to be the path of 
integratio11, and since this is in the op:posite direction from the path 
of a Fourier integral, ,,,e need a change of sign.in. Eq. (8). In Eq. (~), 
Vt'e are evidently describing the signal terminated at both en{is as 
the suiJl of tv~vo sen1i-infinite sig11als terxrdnated only at one en.d (at 
t ·= 0 and at f. =: T); thh; description 'vould not have been possible 
if v'e had used 3. real path of integration. 

Beh.•re \Ve i1lvestigate the J)roperties of this singly terminated 
• 1 f 1: 1 .. h ,, ·~ ,. h . 'I! J.. • + d s1gna.1 urtner, .et us plot t e srJectrunl· o! t e stgnal lerm1na"e on 

both sidt~s, as giv·en. in li:q."(6). ~i'h~ intensit)' ''anis.hes, according to 

Eq. (6), for 

and is a n1aximun1 approxin1ately hali\vay bet\veen the~e zeros. 'The 
point ·n =-·: 2nlJ)T ==- 2;.rjr: ~see l~q. {2)] is an exception)! ~ince tl1ere, 
instead of l1aving zeru in tens it r \Ve ha.~ .. ,e the high.est rnaxiinum in 
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the s:pectrum, whose intensity is given. b~)t E.q. {7). 1"herefore, the 
curve of intensity (schen1atically sho~71 ir1 l7.ig·. 3j consist~5 of an 
infin]te n11mber of arcs of width 2nfi" 'xtith !nc .. reasin.g an<.i tht;n again 
de(reasing height. Only in the 11eighborhood of 2n:fr: de~ tl1e cwo 
adjacent arcs fuse into one of double \vidtlt artd r.nal'~imuru l1eight 
which [see Eq. (7)] increases with i:ncTeasing .:..V; i.e., v;ith incrt~asing 
length of the signal. ~. 

FIG. 3. 

If wt smootl1 out the intensity· curve b)' .. dra-rving it~ envelope 
instead of each arc, and use .J I] m.~x as the ordinate jnstead of J, then 
V\'e get th_e schematic Fig. 4 in which fhe curves 1,2t3~ ~.,. d.enote 
increasing values of T or corresporldingl:f of lv. Th.us!' the Sj)tt~a.d-out 
s11ectrurn gets closer and closer to a single line of freq ~t=:HC)/ 2n/7: J 

as v;as to be expected. 
1'~· aturally·, the Sinootl1ed-out inten.sjt}r CllrVe no longer gb:es the 

correct time variation of our original signaL Thi~ c~1rve r•_:~presents 

an unterminated wav·f.' and brings out only the more or h~s5 1110n
ochromatic character of the light (depending on fhe Jengt i.1- of the 
wave motion). On the other hand, the original spec1:run1 in ~F'ig. :J 
i'; exactly equivalent to our signal. THis means: if one add.s together 
many pure harmonic and periodic \vaves of different fr~quenciest an(i 
assigns the intensity· J of F~ig. 3 and the pl1ase of Eq. (:l) tc the \Va\re 

of frequency ·fl. and adds these for the time -- oo to --~ oo. then on~ 
gets not an urtterminated wave, but rather a \Vave wh!ch :s te~Ininateq 
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at both ends.- v.'ith a characteristic frequency of 2n/-r. Evidently~ it 
is just the large fluctuations in Fig. 3 which make it possible to 
reproduce the ~xact time variation of the signaL 

a 
J/JmtlX 

FIG. 4. FIG. 5. 

3. General Solution of the Problem 

The first integral in Eq. (8) gives the signal shown ir1 Fig. la, 
which starts at t = 0 and lasts ttntil t = oo; the path of integration 
is along" in Fig. 5. 

(9) /(t) = _!___ Re f r ••<~ dn 
23r: J n - 2n/T: 

Although we ha·ve alrc:a.ady sho\vn this by Fourier analysis in the 
last section, let us verify this again by a method which .we will need 
anj.rway for the later analysis.. For this purpose, we replace the 
original path of integration u by two equivalent paths~ 

a. t < 0. In this case --int has, in the upper half plane, a negative 
real part \vhictt increases indefinitely with increasing distance from 
the axis4 One can replace the original path of integration u by the' 
path a (Fig. 5); the integral ""a11ishes along this path if one le~s a 
approach infinity in the uppet half plane; thus 

(10) /(t) = 0 (t < 0) 

b~ t > 0. Now -int has a negative real part in the 1ewer half 
plane, so tllat the exponential vanishes at infinity in this llalf plane. 
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If one tries to deform the path of integration to infinity in the lower 
half plane, he is _held up by the singularity of the integrand at 
·n = 2n/T (Fig. 5). The path of integration b therefore. consists of 
thr$!e parts: the part at infinity, b1, where the integral vanishes due 
to the exponential factor e-'"'; b1, the two parts leading to infinity 
which cancel each other and thus contribute nothing to the integral~ 
and the path b8 around the singula~y. This latter can immediately 
be evaluated by the Cauchv residue theorem: 

(11) b I R {o-· o~·~,} . 2nt =- e .,,e-~T =sin-
a k T 

(t> 0) 

Thus, it is proven that the expression (9) actually describes the 
type of light wave beginning at t = 0 defined by the conditions in 
Eq. (1). • 

Hence, the general solution of oUi' problem can immediately be 
written in the fonn: · 

(12) j(t,x) = -1
- Re J e-••+••• tln 

2n: n- 2n/T 

where the integral is taken over the path u in Fig. 5 or Fig. 6. 
This is true, because ,the theory of dispersion shows that an 

unterminated wave motion at x = 0 of the fonn e-•"' takes the form 
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e-int+iltz after rnoving a distance x in the dispersive medium, provided 
we define k by 

k<J.=!!_~{I+ as ) 
v ci , n0

2 --2inp-nl, 

with the abbreviation at -== me2(;n .. 
Here, in, e, n0 , p. and m represent the rtumber per-cubic centin1eter, 

charge, characteristic frequency, damping constant, and mass of tl1e 
oscillating particles, respectively. One has to consider each of these 
quantities as carr:ving a subscript if there are several kinds of os
cUlating particles, and sum over these subscripts. Since nothing 
essential is cl1anged by doing this, \Ve \Viii restrict ottr attention to 
formula (13).. More details on tl1is Lcrentz-Lorenz refraction formula 
1nay be found in Cl:apter \t. 

'"I'hat r1o solution other thau ~~,·q. ( 12) exists ""~ill be sl1own in 
Section 5. 

4. Discussion of the Obtaine.d Solution 

\Ve follo\v tlu: exan1ple of the previous discussion for /(t). I.,et 

t::::::: t- xfc 
We consider the two cases (a) t < 0 and (b) t > 0, and n1aintain that 
t ::..-::: 0 represents the arri:val of our ligl1t signal at a depth x. 

a. t < 0. We defonn the path 'l.f. in Fig .. 5 or Fig. 6 into ti1e patll a. 
This is allright, so long as the real part of --int -f- ikx becomes negati\Te 
at infinit)r in the upper half plane. For n == oo, k === n,'c, ·according 
to Eq. (6), and tl1us 

-- (n.t + ikx = - in.(t- xjc) = in-t 

.. fhus) the change to the path a is permitted if t < 0. Then the integral 
vanishes. Thus 

( 14) /(t,x) = 0 

b~ t > 0. We deform the path u into the lou:er }talf plane, since 
- int + ikx =--= - i11-t l1a~ a negative real part at infinity in this 
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bali plane.. In doing tl1is,: the path becomes stuck not only at the 
singularity of the de:nominator \V}l€:n tlr = 2nf'r, but also at the branch 
points of the expression fork. ·r11ese latter can be found from Eq. (13), 

by Spttl'"-:g k ==. 00 "':;'rr1d k = (}· ~· .. LJ. ) t.~-'"" 0 

(13a) k = oo, 
when n 2 + 2inp = 1t.0

2 

that is, when n = -ip -+- Vn;2-_ p2 

(13b) k = 0, 
when n 2 + 2inp = n0

2 + a 2 

that is, \vhen n =-= -ip ± Vn0 2 +~-a2--.-p2. 

Tl1e bra_nch. j)Oh1ts thus lie symmetrically ahout the itnaginary 
axis in the lo,,rer half plane; the first two (k = oo) are called U v U 2 

in ~Fig. 6, the last two (k = 0) are called N 1, 1V2. 1"he imagiqary parts· 
of n fox-- all of the-rn is --p; the real pa:ts (for stnall p and a) 'do not' 
differ 1nnch frorn ··1: 110" i.e., the characteristic frequency' of the 
electron:;. The positions of the bra11ch points (n0 > 2n/T) in Fig. ts 
corresponds to ~Il absorption in th.e ultraviolet~ if the frequency 2:n:i-r 
of the incident Wa\re lies in the ~risible range. We join U 1 to N 1 anfl 
U 2 to N 2 by two branch Jines. 

The path of integration b now l1as the parts b1, b3 , b4 , and b5 , 

since '~e neglected ttu~ dotted patJ::t b2 right from the start, because 
its t1;vo sections always cancel. 1'he contribution of b1 vanishes because 
of tl1e large negative real pa:rt of --int. 1"'he value along b3 can again 
be evaluated by the resit.lue 1 heorem: 

(] 5) b 1 R {2 · ··- 2ni(t/T) +ik ~} 
8 =- e :r~e t' 
· 2n 

Here, k" means tl1e value of k corresponding ton=== 2nf'r in Eq. (13)~ 
We let 

(16) 

i.e., \Ve let ) .. equal the distance x between \vaves of the same pl-.tase, 
and let « eq11al the logarithn1ic decrement of the a1nplitude as the 
\\-ave rno'~les thro11gh one waveJtngth. 
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Then we get from Eq. (15) 

(17) 

The integrals along b4 and b6 cannot be simplified further. We 
write: 

(18) B = b + b = _I_{f\e-illl+t.b dn 
4 6 2n \JJ n - 2n/T 

in which the parentheses about the integral sign indicate the path 
around both branch lines. In all, ~e then have 

{19) f(t,x) = e- 2-"/J. sin 2n (: - ; ) + B t>o·" 

c. t = 0. In this case, we can change the original path of 
integration to one at infinity in either the upper or the lower half 
plane, since the integrand \'anishes in either case, though no longer 
exponentially (since e- int+ilu: = e-int = 1), but rather as l/n1. 

We can see this, for instance, in the following manner: If we 
take the real part in Eq. (9), we get 

(9a) /(t) =_I {f e-""- dn + Je'* _ dn_·-.-) 
4n \J n - 2nf'r: n - 2njr: 

Substitution of + n for - 1J in the second integral yields 

(9b) l(t - .!. r e- illl dn -
)- T j n 2 - (2nf'r) 11 

Now, applying dispersion theory, we get from Eq. (9b), just as 
we got Eq. (12) from Eq. (9) earlier, 

(12a) I ) 1 J _ .,., + ;~ dn 
(t,x = - e • " • ( 2 / ) 2 T n - jt T 

Here, the integrand decreases as e-'•*jn1 as n gets very large; 
thus it vanishes as l/n2 for t = 0. 
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Since we can calculate f(t,x) by using either path a or path b, 
we see that 

(20) 0 = e- 2ntcx/A sin 2n( f- i) + B t= 0 ' 

Thus, there is continuity in the transition fro1n the region t < 0 
to the region t > 0. 

All together, one gets the following picture of the course of the 
signal at a depth x (Fig. 7): 

FIG. 7. 

a. Until the tirr1e t = x,fc there is no tnotion. Even if the phase 
velocity W > c, no optical effect could set in earlier than one 
propagating \Vith the velocity of light in vacuum c. If one uses xfc 
as the ordinate in F'ig. 7, then the ray a.t 45° corresponds to a proJ>aga
tion with velocity c. This ray cuts the line at a depth x at the point 
t = 0 \Vhich is the time the signal begins to arrive there. If \Ve assume 
norn-Ial dispersion, which means ~f~ < c, and draw tl1e dotted. ray at 
an angle fJ such that ctnf3 = W/c"' then this ra)' denotes those points 
corresponding to a velocity of propagation Vfl. .~ctually, ho,vever, 
the velocity W has nothing to do w1th the propagation of the light; 
instead, it detennines the distribution of the phases) and even this, 
strictly speaking, only for untenninated \\'aves. 
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b. The \Vave motion fort:> 0 consi~ts of t'Aro parts, which we can 
div·ide into free and forced c~sci11ations, tl1e first given by B [Eq. (18)], 
and the second [see Eq. (Itt)] given by 

~fhe lorced, osc·iltat£o·n (see 'Fig. 7) is undan1ped in t~n1e, and has the 
san1e sine \vav·e charc.cteristics as the il1cident .... va"le; onlv the v 

an1plitude is dirrtinished by the d~11DfJing coeffifient. thougl1 this is 
neg'lected in the figure. ~Ne t~onstruct the ph~i~\e ot the forc.ed oscilla
tions by drawing the ~~vave as starting at i == .t'_:l,J7 {the intersection 
\Vith the dotted :ray} with the pha::;e of tl1e start oi the incident ""vave, 
and this deterxnines the phase at the time t ·.::..~ xjc Actually, the 
\vave rr1otion given by Eq. (19) begins at this tirrH~; (t = 0), and the 
forced motion does nnt actually begin at t =--: .:t:,/l"':r· Our construction 
shows grar>hicall}' that the velocity #'V dcterrnincs the phase and c 
detern1ines the propagation. · 

\Vitl1 anon·,ta]ous dts~persion {Jl' :::? c).·the dotted ray would intersect 
at an earlier tirne than t == x;'c. The phase at the ioreed oscillation 
\Vonld be detem~ined by this point of intersection~ but the oscillation 
would actttally bt-gin only at· time t = xjc. 

'The free oscillations (not sho .. wn in Fig. 7) art: damped ·in time, 
since i .in the expression for B is 111ultiplied by the cornplex factor n, 
whose imaginary part equals the damping constant p of the oscillating 
ions, if one takes the path of integrati011 for .l3 (as one is ·perrnitted to) 
rigl1t at the branch points ·u 1N 1, U 2lV ~· It1 any case, tl1e free oscilla
tions begin at the time t = xfc because the ions n1ust first be set into 
n1otion, and it takes sotne time for thetn to accommodate themselves 
to the incom.ing wave motion! on account of their inertia and their 
elastic forces. With increasjng t this free (Jscillation' vanishes, and 
only the forced oscillations (ntodified b)' the oscillations of the ions) 
remain. 

c. Fo·r t = 0, the free and forced oscillations just cancel [Eq. (20)], 
so that the total wa"'ve rrtotion is continuous and of zero intensity. 

As \\ras already stated in the introduction, there is no point in 
dividing the n1otion into forced and free oscillations at this time. 
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Tbe a~tual character of the tnotion 'beginning at t :~.:: 0, \vhicll \Ve \Vill 
soon describe as "forerunners/' has neither th.e I}eriod of the 1ncnming 
sign~tl nor tl1at of the free os·:Ula tions of the ions. 

Thus, most of the statements made in the in·troduction have been 
proven. 

5. Uniqueness of the 5oh.af~lon and Boundary Conditions 

Since our results are at least partly surprising, it is probably not 
superfluous to prove tltat 011r solution is the ~1nl~l possible one --·~- tliat 
any other method of solution leads to the -sa1ne resn~t. Vle make 
use of tl1e interesting method that was u:1ed b:;.r II, \Veber9 on the 
problem of tht~ _pure ~r1axwell theory", and we ext~nd it to include the 
theory of disJ)ersion. The uniqueness will be pro·\ren directly· from 
the conservation of energy. 

Let (f :=: <fy and .f; =.:=; i), be the elect.rornagnetic: field. and let 
s :-= s, be tl1e disJ)lacements of the iotls fron1 tl1eir e-quilibrium posi
tions, all of \vhi('ll are functions of only x and t and have nonzero 
va!pes only for ~~ > 0 and t ~> 0. Then the basic equatious are: 10 

1 . olt - ~ ::;:: - ----
c ox 

(21) 
1 . . a~ 
-- (<f + me s) :::.::: -- ~~--
c ox 

if one neglects the effe~t of the magnetic field on the i<nls to fir~t ordert 
-vvhich \>Vouid contribute another term e$f>fc on the right side of tht~ 
last equation. l\{ultii.Jlying the three equations by c .S.) i cG;, 'and ms 
and ~dding grves 

9 H. \Vebcr, '' P~rtie-lle J)ifferentialgleichungen," "~v"'oL Il. Scchon 167. The n'!ethod 
actvaBy comes fron1 E. Cohn, '(Elektromagnetisches Ff'ld,, Chapter VI, Section 5. 
It ~:~n €asily be generalized to the case of several bounrtanes and a field depending on 
an -r:hree space coordinates. For the purposes of this pape-r, only one coordinate x is 
D1~eded and only one boundary at x = ct. 

10 In the notation of Section 3, Eq. {13), hfm = p and flm = n6
2 



36 II. LIGHT PROPAGATION IN DISPERSIVE MEDIA 

. • m · • • h • 1 • ( ai) O<f) ~t; + (f(f + 4'1-(mSS + 2 S +/iS)= -c (fax+ f) ax 
as 

=-ax 

where S ·denotes the energy flux. In~egrating with respect to x 
from 0 to <?0 and with respect to t from 0 to t results in 

f-t t ao I z.eO) 

! J ($j2 + (fll + 9l(m52 + fs 11J dx + 2h9t J dt J S2dx = - [J Sdt] 
1=-0 0 0 0 .1'1:80 

(22) 

Now, let <f1:f,1,s1 and (f2,~2,s2 be two different solutions of these 
basic eq1.1ations, satisfying the conditions: 

(23) for .% == 0 and all t > 0: <f1 = <t2 

for x = co and all t > 0: c:f1 = 0:1 

for t -= ·o and all x > 0: \t1 = (f2, ~1 = .£)2, s1 = s, 

Then (f = <f1 --- <f2, ~ = ~~ - .62, s = s! - s2 must also satisfy 
not only the basic Eqs. (21) but also Eq. (22) in which, by virtue of 
Eq. {23), the terms to be evaluated at t = 0, x -= 0, and x = oo 

vanish. Then the only remaining terms are: 

' ~ 

(24) ~ l ((t2 + $j 2)dx + ~ j (m$ 2 + fs')dx + 2h91 1 di 1$'dx = 0 
0 0 

where the first two integrals refer to tl1e time t. From this we may 
infer that 

since each term on the left side can ne,rer be negative. The above 
three terms refer to magnetic and electric energy of the field, kinetic 
and potential energy of the ions, and the energy lost by· the damping 
of the ionic motions, respectively. 
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If we had several types of ions instead of just one, then Eq. (24) 
would consist of the sums of their energies and their energy losses, 
and the conclusion would not be altered. Even more important for 
us is the· fact that our result will still be valid if the domain of integra
tion 0 < x -<. oo is broken up into several parts 0 < x < %1, 

x1 < x < x2~ ••• , in each of which the basic equations are satisfied, 
so lo-ng as (f and ~ and also s and 5 are continuous at the boundaries, 
which can change with t. Their derivatives, however, can be dis
continuous. Then~ since one integrates over x in parts, from 0 to ~1, 

x1 to x1 •• • , one has to replace [6]cf with [6]~1 + [SJ!: + ... 
which becomes [6]0· because of the postulated continuity of (t and.». 
Similarly, one has to integrate in parts overt on the left side of Eq. (22), 
from 0 to t1, t1 to t2, where t1, t,. . . are the times at which the bound
aries pass the just-mentioned points. Because of the postulated 
continuity of (f,~,s, and s, none of these points contribute to Eq. (22). 
Thus, the uniqueness is proven in this case also .. 

The use of these results in the problem discussed in the previous 
paragraphs is as follows: when t = 0, there is no motion in the whole 
dispersive medium: 

(25) for t = 0 and x > 0 

The thermal tnotions of the ions are here neglected; their cotltribu
tions can be made negligibly small by increasing the intensity <?f the 
signal or by decreaRing the temperature. For x = oo, which is reached 
by the signal only after an infinite time, there is likewise no motion 
at any time; tl1us it is true, in particular, that 

(25a) for x = oo and t > 0 . 
For x == 0, (f is given. 

(25b) (f = /(t) for x = 0 and t > 0 

Tl1ese conditions (25) are just those required earlier 1n condi
tions (23). 

. ' 
ot. As boundaries, we have to consider the plane x = ct. At these 
boundaries, <f is continuous. It was shown earlier (cf. the previous 
paragraphs under c.) that lt = 0 whether one approaches the boundary 
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from x < ct or from x >ct. One can prove similarly, that ~, s, and s 
are also continuous. Namely, if (f is given by Eq. (12a) 

(f = J e-W+~As4>(n)dn 
where 

1 1 
tfo(n) = T n2 - (2n/T) 2 

then the corresponding » and s are given by the first and third basic 
equation as 

~ = J ~ e- i•tJ+iAx 4>(n) dn 

S = e r e-i111Hios ~(n) dn. 
J -mn'-2hln +I 

One can directly apply the same analysis used under c in the 
preceding paragraphs to these integrals. Thus, just as (f vanishes as 
one approa~hes the boundary x = ct from either side, so also do 
f,, s, and s~ With this, as well as the conditions (25), we have proven 
the uniqueness of our solution and sho\vn that no other solution exists. 

Concerning the validity of dispersion theory, we wish to mention 
one restriction which underlies all calculations of dispersion: that 
there must be very many particles within a wa·velength. Only under 
this condition can \Ve reckon on a continuous distribution of displace
ment vectors s and disregard the molecular discontinuities. This 
condition is, as is v.rell known, satisfied for wavelengths as short as 
ultraviolet, but not for very high (x-ray) frequencies. In so far as 
\Ve must include these frequencies in our a11alytical method, we are 
applying an extrapolation of the formulas of dispersion theorj~ in a 
realm where their validity is not physically justified. 

I want to include another interesting remark. for which I am 
indebted to a letter from Dr. T. Levi-Civita. He brought my attention 
to the fact that one can prove that the propagation of the wave front 

~ •'. 

proceeds with the velocity of light in vacuum c directly from the basic 
relations (21), due to the so-called "compatibility relations.'" 11 

11 ?vlore about this can be found, for example, in G. Zemplen, Encykl. M athc 
Wiss. 4, Art. 19. 
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Let 

(26) 

be the discontinuities in (o~jox), (ofjfox) at the boundary (the wave 
front). Since ~~ ~~ and $ prove to be continuous we have: 

(26a) [<fJ = r~J = [sJ = o 

If v represents the velocity with \lwhich. the discontinuity moves in 
the direction of its normal, then the ''identity cornpatibility relations~' 
state that: 

(26b) [cf] = -ve [~] = -?Jh 

This follows directly, if 011e writes the equation 

T 

& olt 
tf(t + At, x + L1 x) - <f(t,x) -=.:: 'fLit + ox Ax 

for the two sides of the boundary .. subtracts them, and sets L1x = vAt. 
Proceeding similarly with the basic Eq.s. (21), and usin_g Eqs. (26), 
(26a), and (26b), we ,get: 

v 
--h=-e c 

so that upon multiplying the two, 

(27) 

v ---e= -h 
c 

which is our result: the velocity of the wave front is the velocity of 
light in vacuum. 

6. The Forerunners 

We can l1andle the situation arising immediately after the start of 
the signal, i.e., for small values of t = t - xfc, in the following 
manner. 
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We start with Eq. (12a) of Section 4 which is to be evaluated 
along the original path u. This is 

(28) /( ) 1 J ·-~ + .K dn t x - - e- ,,.. ' :c 
' - 'T- n 2 - (2njr) 2 

with the abbreviation 

(28a) 

Here and in the ensuing we neglect the damping of the ionic 
oscillations, i.e., we set p = 0 which also makes the coefficient of 
absorption 1t = 0. 

FIG. 8. 

We a~d another path of,'integration u' in the lo\ver half plane to 
the path u {Fig. 8); this is permissible since, fort> 0, we can deform 
the path u' to one at infinity in the lower half plane just as we did 
with path b1 in Figs. 5 and 6. The two paths u and u' can be combined 
to a path U far from the origin of the n plane, upon which the integra
tion in Eq. (28) is to be performed. 

Since n is very large dlong the whole path U, we expand the square 
:oot in ,K and retain only the lo\vest power of Ifn. 

We then get / 

T·" a2x n I J a2 
) ~ 

.iix =- --·--2 --,\1-- --2----~ +. · · = ---2c n.0 -, n 4tt·a·-n n 

with tl1e notatiort 

(29) 



6. THE FORERUNNERS 41 

Our integral (28) now reaqs~ if we replace the denominator 
n 2 - (2n/T)1 by n 2, 

(30) 
1 r - tflt - i l dn 

f(t,x) = -;; J e " ns 

We can write the above exponential in the following manner: 

where the new variable of integration u is defined by 

(31) . VT e',. = n E 

where by 

dn ~ .d Vi . - = • u -e-"' 
n' ~ 

Thus, Eq. (30) is rewritten as 

(32) f(t,x) = ! Vi I e- s>Vt~cos .. e- ... idu 

Here we let the variable u vary from 0 t'o 2n. According to Eq. (31)1 
this corresponds to a circuit about the origin of the n-plane in a 
circle of radius fnf = V Eft, i.e., for very small t a path U, as was 
required in Fig. 8. The integral appearing in Eq. (32) is nothing but 
a well ... known integral representation of the Bessel function12 of the 
first order of ~rgument 2Vt~ and we thus have 

(33) 2nl/T v
f(t,x) =TV 7 lt<2 U) 

From the well-known char~ter of the function J 1, we find the 
following aS the condition of our signal right after it arrives, i.e., for 

11 E. Jahnke and F. Emde, "Funktionentafeln, 4th" ed., p. 149. Dover, New York, 
1945. 
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smal1 values of t. "fhe initial arnplitude is t1egligibly small compared 
\Vith 1, i.e., com1)ared \Vith the amplitude of the incoming wave,. and 
the initial period of the \Vave is small compakd \vith -r, i.e., corr1pared 
with the incident period. Period and amplitude increase because of 

the occurrence of Vtbefore and in the function ] 11 respectively, as is 
schematically shov~.rn in Fig. 9, where one znust rerr1ember that our 
1ast Eq. (32), from the n1anner in which it was derived, is valid only 
for small values of tj~. I'he situation for large values oft and the way 
the foren1nners join on to the main signal of period T', are taken up 
by Dr. Brillouin in the following chapters. 

FIG. 9. 

One point of exceptional interest should still be 1nade . 
.:\~cording to Eq. (H2), the period of the initial forerunner is given 

by the first root of the function ] 1(z) which is approximately z = n. 
Fron1 this, one calculates the initial period t0 using Eq. (29) as 

nt n;2c 

to"= 2E = a2x 

Tl1is ti1ne is independent of the period T of the incident light, as 
well as of the characteristic- frequency of the oscillating ions, and is 
deterrnined only· by the depth x and the dispersive capability of the 
medium, i.e., by the number of ions 91. This ~ndependence 'of the 
period fron1 tl1e color of the incident light was already used in some 
inferences in the introduction. 



CHAPTER III 

ABOUT THE PROPAGATION OF LIGHT IN DISPERSIVE 
MEDIA* 

t. How to Use the Saddi&-Point Method of Integration 

In tl1e present chapter, we discuss the problem which Dr. Sommer
feld proposed in the preceding chapter. The propagation of a signa] 
terminated on one side, which is what is involved here, leads to the 
integral 

(1) 
1 J e- i<n: -· ki:} 

f(t,x) = -- Re --- drt 
2n n-- 11 

which is to be evaluated in the corr1plex plane ·;t frorn -~- oo to - oo 

o-ver the patl1 u [compare Vlith Section 2, Fig. 2 a11d E(l, (9) .. of 
Chapter II]. v = 2n/-r: is the frequency, 1: the period of the signal:. 
k has the value 

(2) 
n 

k=-!.t 
·c 

wher~ c is tl1e ·velocity of light in \:acuurn, an<lt.t denotes the cornplex 
index of refraction for the frequen.c:y n, [Compare Chapter II, 
forrnula (la).J 

a2 
112 = 1 + ·--~-------·· 

' 11-0
2 - 2inp- n2 

1'he integral (1) gives the signal at time t and a depth x of the 
rnediu1n with index of refraction Jt. The exponent of e is denoted by tet. 

* L .. Brillouin, Attn. Physik [4] 44, 203 (1914). 
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(3) 

(4) 

(4a) 

111. LIC7HT PROPAGATION IN DISPERSIVE MEDIA 

w = -i(nt-kx) = x v 
c 

t-' = -in(8 -Jt) 

@= ct 
X 

A signal propagating with velocity c would arrive at a depth x at 
a timet = xfc, that is, fore = I. In Chapter III Sommerfelcl showed 
that a signal never propagates with a velocity greater than that of 
light, i.e. that /(t,x} vanislles for e < 1. l.,et us denote 

(4b) 

(4c) 

8--l=b 

X 
t --· = t 

c 

This chapter will examine the form of the signal and show th.at 
one can give an exact definition. of the concept of the signal velocity 
and that this velocity is· identical with the group velocity, except fot 
signals whose wavelengths are in the region of tl1e anomalous disper
sion of the medium. 

Let E, tJ be the cotlrdinates of the complex plane n: 

n = E + i17 

and let X, Y be the real and imaginary parts of the function v 

v=X+iY 

F·or a discussion of the integral. it is simplest to deform the path of 
integration in such a way that X, in general) takes on large negative 
values;· then the integral vanishes, and one has to evaluate the 
integral only for those parts of the path for V\~hich the absolute value 
of X is not too large. 

It is well known that, due to the equations 

ox oY 
aTJ =-a~ 
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the fttnction X has no maximum or minimum of finite value; 
there can be only saddle points, wt1ere 

At such a point, Y also has a saddle point; the point is determined 
by the equation 

(5) 
dv 
·- :::::": 0 
dn 

In tl1e follo\ving, the complex plane will be regarded as a top
ograJ)hical map with X as the elevation~ and th.e equipotential lines 
and lines of steepest descent of X will be considered. The lines of 
descent for X are equipotential lines for Y. They can .originate only 
from those points at which X is infinite, since no finite maxima or 
minima occur. The transition from one valley to another proceeds 
most easily across a saddle point. The integration in the neighborhood 
of the saddle point will be of greatest interest. 1 It will turn out that 
those saddle points which are of interest always lie near the real axis. 

Accordiug to Eq. (5), the condition for a saddle point, taking 
Eq. (3) into account, is: 

{6) 
dk 

t--x=O dn 

If n is real .. i.e., if it corresponds to an actual frequency, then the 
group velocity of this frequency (comrJare with Chapter II, Section 1) 
is equal to dn/dk. Consequently, at tiine t the saddle point is at that 
frequency rt whose group velocity is xft. In the evaluation of the 
integral, one can restrict one's attention to the neighborhood of the 
saddle poir1t, i.e1, to the neighborhood of this frequenc:v. I'herefore, 
it is approximately true that every elerr1entary wave rnotion of the 
sigual spreads with its group velocity, at least so long as its domain 
ren1ains nom1ally dispersive. · 

:. ·For a. di&:u.ssion of the 1nethod of saddl(:: point~ and its u;.;;e Bee P. Debye-» J:viath. 
Ann. S 7, 535 ( 191 0); Sitzbef. bayer. Aka-d. Wis.:;. J'\1.1 aih"-notttt''f.o. 10. ( Ull 0); first 
used ~y (; .. F. B. Riemann., "Gesammelte Werk~.'· p, 40H. Leif~Lig~ i876. 
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Survey 

In Section 2, the complex n plane will be examined, especially 
near the points where X becomes zero or infinite. Section 3 gi\res the 
position of the various saddle points, their motion as a function of 
time, and a little about _the order of magnitude of the quantities 
entering the fotmulas.. In Section 4, the variation of the path of 

I 

integration with time is recorded. From· this, several general state-
ments about the signal velocity follow. Section 5 contains the integra
tion in the neighborhood of the saddle points, i.e., the calculation of 
the forerunners. These results enable one to calculate, in Section 6, 
the signal velocity also for the case of anomalous dispersion. The 
conclusion contains a few remarks about the comparison between 
the method used here, tithe method of saddle points/' and the so
called umethod of statior1ary phase.'' 

2. Examination of the Complex n Plane 

It is important to know tl1e areas of the complex n plane, in wl1ich 
the real part .}( of the exponent is negative. The border of this area 
is given by the equation X = 0.. It is known ho\\} X behaves at 
infinity (see Chapter II, Section 4): 

'""') \ * 

for e < 1, X is at infinity: -oo in the upper half plane, and 
+ oo in the lower half plane. 

for €J = 1, X vanishes at infinity. 

for e > 1, ... 'C is at infinity: + 00 in the upper half plane, and 
_ .. _ oo in tl1e lower half plane. 

Besides this, on the real axis [se·e Chapter II, formula (16)]~ 

(.~ :-:. \\·aV{~lengtb in the dispersive mediun1, K == ~oefficien.t of absorp
tion.'! ()~F; can re\-vrj te I~q. ( 2) as 



2. EXAMINATION OF THE COM.l''LEX n·PLANE 47 

if the complex index of refractio11 is given by 

(7') 

As is well kno,vn, cj~, gives the phase velocity W. Now, according 
to Eq. (4), the real part of v = - .. {n(& .. _. ~-t) Is 

'"fhust X is negative along the real HXis except for those fre
quencies n at which the coefficient bf absorption vanishes. The 
absolute value of X is large for th\~ regions of anomalous dispersion, 
small for very srnall or very large n. 

Now consider X along the straig:ht lines 11 = - p, determined by 
the points N 1, N 2 (where X va11ishes) and l/1;/ U2 (w:here .,.J( becomes 
infinite) and in the neighborhood of the branch lines N 1 [11 and N 2U2 . 

The coordinates of these points are (Chapter II, Section 4): 

( 

r")\ 

~} 

1J = --p 

'Yj=-p 

i\long the straight lines TJ = - pj p, I1a.s the value 

i.e., ~l is real and positive in the regions 0 <~ $ <:: ~ oo' en< ,; < 001 pure 
iroaginary for e 00 < ~ < ~,., and actually positive on one side of the 
cut ~"~ 00 , negative on the other side" In order to detern1inc these 
sign.=>~ consider f.l in the neigl1borhood of the points l.T1, N 1• 

F"or the region about N 1:' 

n = -ip + ~n + 'Yt~ia. 
'NhE\r~ r, iX. are polar coordinates abopt the point N 1 ; iron1 this, 

(P) 
1'-21::-V +;nr . '2 p ·= ------ e'~-.. X! 

a 
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'fhertft)re, for 

Jt ' 1-i 
~ :---7.--"!"- --

2 
ll , ... :..-:::= ~~ -- ···~~ 
r- ~- :-:r.-' tvo v 2 ' 

Sin1ilarly, tn the regton about lJ 1 let 

and then 

( 10) 

'fr1us for 

. ,., R. 
·Jt = - tp -i- C:oc + etru 

(1) = 0 

3n 
(() = ---

2 

oJ = 2n 

/1-n/2 = ( 1 + i) 00 

/l3n/2 = (1 ~ i) 00 

f.1.2n = -- ~ 00 

This is shown in the adjoining Fig. 1. l~hus, one can easily see, 
tl1at X [ = real part of v :::::; -in(@ --ll)] is negative on both sides 
of tt1e cut near N 1. "fhis is 'because e ? 1 (see Section 1). Near l11, 
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however, X is negative on the upper side of the cut and positive on 
the other. 

Formula (8) gives the value of p, on the straight lines YJ = - p. 
The value of X is derived from this: 

if p, is real, X= -p(9 -p,,), 

X = - (p8 ± ~#i), if .u is pure imaginary. 

., 
x, 

o-
1~~--~~--~~~-

+1 + +1 
-------~ >-----

1/= -p fU -i Nt 
1-i 1-i 

FIG. 1. FIG. 2~ Key: --, p,.; 
..... , ± (~/p)J.tt 

Inf"'ig. 2, tJ.,., ± P,;, and± (~/p)J"i are plotted as ordinates, taking E 
as the abscissa (along the straight line 'YJ = - p). The points X -:--- 0 
are then given by the intersections of p., or of ± (~/p)p,i with a line 
parallel to the E-axis at the value e. For e ~ 1, one of these points 

'lies between N 1 and U 1 and actually at the bottom side of the cut. 
Its abscissa is ,: = AC. With increasing e, it moves from Nl'tO\Vard 
U 1. A second intersection with an abscissa of ~ = A B can occur 
between 0 and ul. 

From the behavior of X near U 1, it is seen that the curve X =- 0 
must start at this point U 1. For the neighborhood of U 1 ~ 

p = , . stn - + z cos -a ( . w . co) 
V 2E(X)R 2 2 
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so that 

X = - p8 + V a (p sin ru - E «J cos w) 
2EooR 2 2 

Let w1 be a solution of the equation 

w1 ~co 
tan-=--

2 p 

'fhen, assuming E a) ~ p, w1 is an angle near n defined modulo 2n. 
Then, 

TJ 

FIG. 3. 

b . ro- w1 X=-p8+VRsm 
2 

vvith the abbreviation 

b =a 1/e2 + ~ccz 
v 2;00 

The curve X = 0 is then, 
for small R and small ( oJ - l.o1), 

the spiral 

which touches the stra1ght line 
o; = w1 at U1. 

The adjoining Fig. 3 show·s a picture of tl1e complex plane near 
the cut U1N 1. In the shaded regions, X is negative. 

3. Location of the Saddle Points; 

What is of 1nost interest is not so much tl1e curve X = 0 as the 
locati?_n of the saddle points. Once these are four1d, then the path .of 
integration will be taken along the lines of steepest descent through., 
the saddle points y;ithout any difficulty. 'fhe curve X = 0 is one of: 
the equipotentials orthogonal to these lir1es of steepest descent. 
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A. The resion about the orlaln 

In order to find the saddle points near the origin p is expanded in 
increasing· power.s of .n : 

,vhere 

n 2
2 - 2ipn- n2 

n0
2 - 2ipiJ-=- n2 

Then (n~2 - rx)/(n0
2 -· oc) must be expanded, with rx = 2ip·n + n 2 

small compared with n0
2 and with n2

2 : 

n2:-oc=n2~(l- oc2)(1 + rx2 + ... ) 
no - « no n2 no 

If at is inserted and A is defined as 

one gets 

(11) 

a2 
A=--

2n 8n 0 2 

n2 . 
p = --- + An(n + 2~p) + 4 •• 

no 

'fhus, according to Eq. (4) 

(12) v =-in(@ -p) = -in[b' -An(n -+ 2ip}] 

if (see Eq. 4b) 

( 12') 

In order to get the saddle points, one n1ust write 

and b' -"'iln(3n + 4ip) .=-: 0 
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The roots of this equation are 

2 . 1 l(3b' --
n = -a•P ± 3 VA -4p2 

Case A 1: b' < t Ap2• 

ThP saddle points are given by 

(13) .. ( .2 1 1 ;-2-3b') n = -: - ·;; p ± - 1 4p - --.:s 3 ... 4 1 

1"hey He or1 the imaginary axis and are symmetric about the point 
~ = 0, "1 == - i p. One can easily sho\v that the ~ines of steepest 
descent through these points are parallel to the axes (see Fig. 4). 
The ar..ro\\rs show the directions of ascent along the lines of descent. 

TJ 

0 

~c=;----~-----· --·--x----Ie-~~-
~ ~ « ~ 

FIG. 4~ FIG. 5. 

Case A 1: 01 > i .t:4p2• 

'fhe saddle points lie on the straight line 17 = f p symn1etrically 
about the irr1aginary axis: 

(14) 



3. LOCATION OF THE SADDLE POINTS 53 

The corresponding lines of steepest descent are at an angle of 45() 

to the axes (see Fig. 5). 

-
Case A 3: h' = t Ap2 • 

In tl1is case, a special saddle point exists at 

(15) 
2 . 

n = ---~tp 
3 

at which both dvfdtt and d2vfdn 2 = i.ll(6n -t- 4ip) vanish. {n order 
to calculate v in the 'vicinity of this point~ polar coordinates r, ~ 
aro11nd the saddle point are introduced: 

1'hetl, 

v :·= i(- b'n + Att 3 + 2ipAtt2) 

= £A (-- :- p'l1z + 2ipn2 + na.) 
= Vp + iAr3ei3a. 

with 
I 

8 
Vp == --·Ap3 

27 

X = X p - A r3 sin 3cx 

FIG. 6. 

Figure 6 shows this special saddle point of higher order, and the 
character of the lines of descent through it. 

The t"..vo saddle "points, \vhich are at first on the imaginary ~xis, 
move closer together with increasing ti!l1e, come togf .. ther into a 
special saddle _point when 

4(11> 

( h . e n2 4 A ~ \ t at lS ,. =--==- ·-- -+· --- P .. j ' n t 3 0 I 

and then move apa~t symmetrically about the in1aginary axts. 
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B. Saddle flOints far from the orlafn 

Consider the n-plane for large n, and neglect n0' compared with n1• 

Then Eq. (2) becomes 
I 

as at 
JA2= 1 + ~ 1-~.---

no•- 2tnp -n1 n(2ip + n) 

or, since the second part is ve~ small~ 

(16) 
a2 I 

P. = I-2 n(2ip + n).-

Formula (4) then becomes 

. l CJ ) " • ~ • a• I v =-~no- p = -~nu -~---. ---
~ 2 2tp + n 

where 8- 1 = b [see Eq. (4b)]. The saddle point~ are given by 

dv 
dn = O, 

a2 l 
b -2 (2ip + n)1 = 0 

Therefore, 

(17) np = - 2ip ± E~' 

Tl1us there are two saddle points, symmetric about the 11-axis, 
on the straight line fJ == --· 2p. One can write v as 

"= ---i;~(~s + 2ip ~ n) 
1"lle equipotentials oi X through nP are the lines parallel to the 

axes.. (Along the whole straight line 1J ~~ .. - 2p, X = - 2pb, within 
the limits in which the 'approximations are valid.) The lines of steepest 
descent are inclined a.t 45" (see Fig .. 7). I~or b = 0 the saddle points 
are at infinity· on the line yt :.:: _, 2p, and with increasing b they move 
along this line toward values of smaller lEI~ When b gets large enough, 
so that ~"' is no longer large compared with n0, i.e., when the saddle 
point con1es near to the branch line, then the approximation loses 
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its validity. One can show that the saddle points leave the line 
'1J = - 2p, and move along the curve shown in .Fig. 7 toward the · 
branch line. 

FIG. 7' Key: - - - -, path. 

For very short times b (8 nearly equal to 1), there are two other 
saddle points whi~h are on the imaginary axis on both sides of the 
origin, and which move closer to the real axis with increasing 
time e. These are the saddle points which we found near the origin 
for slightly greater times in Case A 1. 1''heir exact location is not 
important .. 

Orders of Magnitude 

This is the time to make some statements about the orders of 
n1agnitude of the various constants antering the formulas. 

Sttppose the depth inside the dispersive medium is 

~ = 1 em. 

Let the wavelength of the incident signal, measured 1n air be 

A0 = 0.5p, = 5 x I0-6 cm. 

then the frequency is 

= 2nc = 2 X 1011 
___ _.4 1016 

'V A.
0 

5 X I0-6 ~ X 
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The characteristic frequency of the medium is taken as 

n0 = 10 v = 4 x 1016 

l .. et "the index of refraction of the·mediurn at the frequency v be 

p, = 1.5 

'T'his information, together with the assun1ption of zero absorption 
(p == 0) allows a calculation of th~ order of magnitude of a 2• 

According to .f~q. (2'), 

Ct 2 = (.a 2 -l)[(~f-l]v2 = 1.25 X 9ft X P
2 == 1.24 x n0

2 

'"rhus, a is neady equ~l to n0 . Therefore,· 

n2 = ·vn0
2T a2 = 1.5 ·tt0 == 6 X 1016 

1'he coefficient .4 was defined by 

A~_!_ X Io-ss 
5 

It is also worthwhile giving some data on the order of magnitude 
of the coefficient p according to Goldhammer, in Dispersio-n, und 
Absorption des Lichtes. 2 On p. 126 of that book is given data on the, 
order of magnitude of the logarithmic decrerrtent y for several mate
rials. This decrement is related to p by the equation 

yn 
p==-

2n 
• 

Experiments witl1 ·eosine and fuchsine give 

I'==-= 0.45 

}'or n1ercury·, y -= (').8, while for iodine the damping (loc. cit. p. 5, 
Is very smalL 

2 GoJdhammer, "Disp~rsion 1\nd Absorption des I...ichtes." J...eipzig, 1913. 
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The following table gives the corresponding values of p. 

y 0.06 0.3 0.45 0.6 <T.9 

to--~ 5 X lO-t '1.5 X to-s 1.5 y IO-r1 

In all ordinary cases, p1 is therefore small /cotnpared \Vith n0·2, 

being approxin1ately 

4. Successive Motion of the Saddle Points as a Function of Time. 
Choice of the Path of lnte1ratioP 

The following }='igs. 8-14 sl1ow the vie\V of the c.o1nplex plane 
for se·veral different times. Only one half plane is sho\vri, but one 
can easily see that tpe two points -;~~= ± ~ +· £17 whlcl1 are syrrtmet
rical about the imaginary axis correspond to the value v = X ± il~, 

... 
"' ~~~~~~~~~ 

t<O 

FIG. 8. FIG. 9. 

so that the figure is symmetrical about the irnaginary axis. In the 
shaded regions, X is negative. The most in1portant lines of steepest 
descent are drawn in. They start fron1 the points where X is 
negativelx; infinite and go to the points where ~~ is positively infinite. 
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These ~ints are the two points V and (except ~or t = 0) the point 
at infiruty on the imaginary axis. It is-probably worthwhile reminding 
the reac~£ of the notation. 

8-l=b 

X 
t--=t c 

X 
-b=t c 

For t < (xjc) everything.is at 
rest; the integral vanishes. The 
first forerunners . of the signal 
arrive with the velocity c, that 
is, at the time t = 0 (compare 
Chapter II). 

Figure 8 shows the picture of 
the complex plane for t < 0. The 
path of integration can be take& 
to infinity in the direction of 
the· positive imaginary axis. The 
integral vanishes, since X is neg
atively infinite there. 

FIG. 11. 

1J 

FIG.. 10. Key: ----, path of 
integration. 

FIG. 12 .. 
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For the timet= 0, shQ\tn in Fig. 9, the circle with infinite radius 
is part of the curve X = 0. Here one can still deform the path in 
the upper half plane to infinity~ but the integral now vanishes as 
1/(n - v), rather than -exponentially. 

FIG. 13. 

For t > 0, one can see from Figs. 10-14 the changes in the 
complex plarie. From one section in \vl1ich }{ has large negative 
values, one goes over a saddle point to another such section. The 
path of integration will be deformed so tl1at it stays in such sections 
for a large part of its path, since the integral is practically zero there. 
Then, one only has to evaluate the integral near the saddle point, 
and, in fact, it is best to choose a line of steepest descent through the 
saddle point. This path of integration is shown. in the figures,- and its 
change with time is easily followed .. 

Near the saddle points.. it is easier to do the integration if the 
saddle points are not too near tl1e cuts UN or the point 1~ :x: "· Then 
one can replace th.e path of integration by its tangent line through 
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the saddle point, and consider 1/(n- 11) as constant_; thus one gets 
elementary integrals to perform (see Section 5). With these given 
conditions;· tl1e integration gives r~sults corresponding to fore~nners, 
wl1ose amplitude is exceedingly small com.pared to tl1e final amplitude 
of the signal. 

FIG~ 14. 

Now, to see what happens when the path of integration comes 
near the point 1t = v ( v real). This point is taken between the origin 
and the branch line, 0 < v < 1't0• I'l1is is the case calculated earlier 
\\rhen orders of magnitude were considere(l: the signal was in the 
visible part of the spectrum propagating in a medium whose char
acteristic frequency was in the ultraviolet. The opposite case "> n 
would give analogotts results. 

Witl1 increasing time, the patl1 of integration is first above and 
to the left of the pole v, then passes through it, and finally ends ~eup 
to the right and belo\v it. One must ther1 add a curve around the 
pole [Figs. (15a, b, c)]. In the first case [Fig. (15a)], tl1e integration 
gives an oscillating part whose amplitude increases fo about 1/2 the 
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final amplitude [Fig. (15b)]. Then one must add together a constant 
oscillating expression with a final amplitude which comes from a 
term ·t:epresenting the added ct:irv·e about v, and a negative term 
whose amplitude decreases from 1/2 the final amplitude to very small 
values; representing the other part of t!_le path of integration. Fig
ures 16 and 17 illustrate these several expressions and their super:· 
position. 

(a) (b) (c) 

FlG. 15. 

................. --t 

~- ----- ----~--

FIG. 16. FIG. 1.7 • 

. ~ctually, if the path of integration is very near the _pole, then 
the parts far away from it contribute negligil)ly : it is st1fficient to 
cot1sider only the immediate neighborhood of the pole. 1~hen, one 
can consider nt- kx as constant and equal to vt-- kx in the integral 

where (see Eq. 7) 

1 J e- J(nt -- k~) 
~Re dn 
;::.n n- v 

2n . 
k = --- (1 ·+ 1K) 

1 

If p, oJ are polar coordinates about l'; then 

dn- = idru 
1J -P 
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and for the integral, it follows that · 

[ 
. - i (vt - 2n x) - tn_. X~. 1 r ] -2n" !_ • ( X ) (1) 

Re 1e .t e .t '2n J dco = e .t sm vt - 2n T in 

. For the complete curve about the pole, wf2n = 1. The first term 
thus gives the final oscillation. For the path in Fig. 15b, one has 
(J)/2n = l, which proves the previous statement. The complete 
calculation of the integration near the pole will not be given here, 
since it is quite tedious and does not give anything more than the 
remarks already made. 

Thus, it is seen that at that moment when the path of integration~· 
reaches the pole, the intensity of the oscillation ·increases very rapidly;· 
previously, it was very small (compare further with the order of 
magnitude of the forerunners) and it now gets the magnitude of the·· 
final intensity. This moment, marking the arrival of the signal, 
permits one to define a signal velocity. This velocity will be shown 
to be equal to the group velocity, if the path is far from the branch 
line, i.e., if the frequency of the signal is far from the characteristic 
frequency of the medium. The saddle point C moves with increasing 
time in the direction of increasing E (Fig. \8) along a straight line, 

11] 
I 
I 
i 

which is Parallel to the real axis 
and near it.• (CD = f p is very 
small compared with '~'' cf. Fig. 5.) 
Of the lines of descent through 
the saddle point which are at 
angles of 45°, one is the path of 
integration; it cuts the real axis 
at B. If the lines of descent are 
drawn in the neighborhood of the 
saddle point, then it is seen that 

FIG. 1 A. one of them touches the real axis at 
the point D, which has the same 
abscissa as the saddle point C. 

By definition) the time of arrival of the signal is the time when B 
arrives at the pole P. The dis~ance DB = CD is very small. It will 
be shown that the signal arrives with a veloct"ty exactly equal to the 
group velocity, if the arrival of the sig11ai is defined as the time when the 
poi1tt L> reaches the pole P. 
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Actually, on ,tl1e real axis (n real), k = kr + ik•; if real and 
imaginary J>arts are separated, then 

w =- i(nt- kx} = -k;x- i(nt -k,x) =~(X+ iY") 
c 

At D, the real axis is tangent to a line of descent of X, and the 
directibn perpendicular to it is an equipotential for ... J(: 

thus 

or 

ax · av 
--=0=---
dTJ a; 

dk . 
t--.!x=O 

dn 

X t-u=o 

'vhere U is the group velocity. Now, the abscissa of the pole P is 
equal to ,, the frequency of the signal. Let U, be the group velocity 
corresponding to 11; the pole Preaches Data timet= xJUIP where x 
is the depth attained by the signal. If this defines the time of arrival 
of the signal, then this means that the signal propagates with the 
group velocity. 

Concerning the velocity of propagation of a signal wl1ose frequency 
is in the region of anomalot1s dispersion, see Section 6. 

The signal velocity thllS defines the moment of arriv~ of the 
signal with noticeable amplitude, whereas the pha~e velocity only 

. determines the arrangement of the phases of tl1e signal as explained 
in Cl1apter II, Section 4. 

5. The Forerunne~-

In the previous paragraphs) the positions of the saddle points 
were calculated and it was shown how the path of integration passes 
through them; now the integration near the ·saddle points will be 
carried out. While the time when the path of integration passes . 
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over tl1e pole provides the signal velocity, the i11tegration near the 
saddle points will give secondary parts, the forerunners, whose 
intensit:v is 'rery weak com-pared \vith that of the signal. The calcula~ 
tion is performed h1 the sarne order in which tl1e positions of the 
saddle points were designated in Section 3. 

A, Saddle points near the origin 

Case A 1 

For b' < t Ap2, two saddle points were found on tlte imaginary 
axis. Tbe path of integration goes through the saddle point \vith 
'Ordinate [see formula (13)~ and Fig. 4] 

2 1 ~ 3b' 1'/#J = - - p + - 4p2 - ------3 3 ~4 

parallel to the real axis. Near the saddle point,_ 

n = i1]p + E 

where ~ denotes a small real quantity; this function can be expande4 
near this saddle point by using Eq. (12). '"fhe first order parts va.nis~ 
(dvfdn = 0 at the saddle point) and the second order parts are real~ 
since one sta.ys on a line of descent of X (i.e., on a curve Y = con-1 
stant). Then, one finds 

where 

Vp = 1Jp [b' +· ArJp('YJp + 2p)] 

B = A(3YJp + 2p) 
- , 

v9 , the value of the function v at the saddle point, is real; vP =-.:. X;~~ 
YP = 0, which is scmething which will be used later. This result i~~ 
actually easily understood, and is valid even -for saddle points far~ 
frem the origin, for which the approxin1ate formula ( 11) is not exact.: 
The saddle point lies on tl1e irnaginary axis, an(l tl1e line of descent,1 
which is used as a path of integration goes through tl1e point and iS.l 
symtnetric about the, imaginary axis. On this curve Y must be,

1l ,_, 
j 

A 
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firstly, constant (Section 1), and secondly·, it rnust have the same 
value at points which lie symmetrically about the i1naginary axis 
(compare the beginning of Sectiotl 4); thus it nTnst necessarily be 
that Y = 0. 

No,v, the integral f near the saddle point n1nst be evaluated. 

( 18) 

In order that the approxirnate 1netl1od sl1ou.ld be valid, tl1e: lirnjts ±: £, 

bet~Neen vv·hich the integral is taken, n1ust be small c:ornp~:u:ed with 
the other magnitudes in the n..-plane, such as ·n0 • 1\t i:he end of 
Section 3~ tt1e followitlg orders of rnagnitnde were shoY¥n to be 
admissible. 

A --·~-- ~- ">< 1 o-33 . ~-- 5 '" 

On the other. hand, the ar~proxin1at.e formula for fhe index of refrac
tion requires that at the saddle point 1Jp 2 is much s1naller than n0

2• 

If one takes 'YJp = 2 x I0-· 2 1f,0 .~..~ 1015, one finds that 

and 

!._ B = x _ _?. ___ x to~-ta-to = 2x x I0-·29 
c 3 >< 5 

The approximation \\'ill be valid, if one can find a value e so rrtuch 
smaller than n0 that exp {-- (xjc)Be 2} is practically zero. It is 
sufficient to require tl1at 

If the depth traversed by the l1ght x =: l crn.s this requires that: 
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For a depth x = 100 em., one finds that e = o x IOU = n0fl000. 
'fhese values are admissible for the calculation. 

n - " will be considered constant in these limits: 

and then tl1e integral 

-e 

--~- e-~ (x/c)B~ d J: = - _l_lf ~c_ = --- .. ~- 1.' ~--·· 1 
;-;.,- r---

2n ~ 2n ~ Bx 2 V nBx 
~t- .. 

'"faking the real part; one fir1ally finds from Eq. (18), 

I )1 v-C- (x/c)Vp 

= 2(v2 + rJp2) nBx e 

Now to investigate the order of magnitude of f and its variation 
\vith tirne. The square root is of order of magnitude t x 1014, and 
increases slo,¥ly; the first factor is of order 1j2v, in other words 
about t x IQ-15; The product of the two factors is about 1/60 and 
increases with thne. 1'he bel1avior of tl1e expo11ent must still be 
·considered. No""'~ 

where 

2 1, r----3b'. 
rJp = - 3 P + 3 V 4p2 - -A-

fJp is thus of order of n1agnitude ~1jh'Tt3A, \Vhicl1 gi·ves 

.~,. 2 ...... 
~~ ""' "'A., 
-·· V r1 "'"'., -- --- 11...._u C I' 3 C "IY 

'This is a negative nlti11ber of large absolute value f~(x/c)b' < 0, 'Yip large], 
which approaches zero for bi -:=! 0. The approxirnation doe~~ not give 
the ·exact variation for b' -= 0. 
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All in all, the function f is at first nearly zero, then increases 
taking on the still small value of 

/b'=o= ;, ~xA 
forb' = 0 .. The value off for times b' ~ t Ap1 will not be calculated 
here. A slow transition occurs from the 11onoscillatory solution found 
here to the oscillating function which will be found for b' > t .. 4 p2. 
1-hroughout this region, l1owever, f retains the order of rnagni.tude 

of fb'=O· 

Case A 2 

If h' > ! Ap2 , then there are two saddle points symmetric about 
the imaginary axis (see Fig. 5): 

.2 ~ 
n = - ~ 3 P ± f;fJ 

(see formula 14). The path of integration through them is in the 
direction of straight lines at 45°. Thus~ near these saddle points, 

thus 
dn = (1 ± i)de = V2 ~± tx/4 de 

As in the previously handled case, the exponent v near the saddle 
point takes on the form 

v = Vp -- Ce2 

One finds 

Vp = - b' (! p ± iep) + iA ( ± ep - i ~ p r ( ± ~p + i : p) 

Vp = Xp ± iYp, c = 6AEp 

Xp = ! p( -· b' + : Ap2
), Yp = E11 [-b' +A (~pLt- ~ p2

)] 
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It is still IlecessaT)1 to evaluate tl1e 1>~1tegral 

in the in1rn~--~rliate neighborhood of the above n1entioned saddle points. 
'"rhe ('Oefflcient G~ has the sa1ne order of tnagniturle as the coefficient 
B 1n the previous case.~ In tl1e first i:ll)ftroximation, the fc;;.ctor lf('n - v) 
is con~;idt_~red o~S constant fo1 eacJ\ o£ the i1ttegrals at the saddle points~ 
and is taken in front of the integral ~ign a1ong ·\vith a factor of 
·value et -:';;}vP. 1"'he ren1aining integra f tor one or the otl1er of the saddle 

points is 

\Vherc ~has a sn1all value. Considering tl1e magnitude of C, the integral 
has the sarne value as it \Voulcl have if oc were infinite, namel)' 

1 li·-- , . 1 ~-1 rc- 1 . l;--c-
---· --::-:-·. -- I 2 e:r z.n/·l ,/ n I -- = - -- t•± f,:n;/4 ·-------

2n; ' ~· xC 2 3n~pxA 

replacing c· b.Y its equ1valent. l~hus, all in all, the integration near 
the saddle points gi·ves 

After sorr1e ele1nencary rn.anil)U.lat}on~ one finally gets 

( 19) 
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The exponent (xjc)Xp is always negative, its absolute value 
increases with tirne approximatel:,- as 

2 2 
·-1- -

3 
(xfc)pb' = -1- -;}Y· pt' 

\11JI 

The value of exp {(x/c)Xp}, which at first (b' = 0) is nearly" 1, decreases 
finally ancl approaches zero, as the saddle poir1ts near the branch. Hne. 
1'he square root varies in the san1e way with the tin1e. 1'he otl1er 
factor wiJl be slightl:y simplified (so tl1at its bel1avior can be \)etter 
seen) by neglecting p2 vvith respect to v2 --- ~P 2J whic1t is al\vays vaJid 
exce1)t '.rVl1en the saddle point. is near the pole v. One then finds 

I 
V C -Xp ··v----- X = ec X 

v2 - ~p2 3n~pxA ., 

( 19') [ (
n X Y ) 4 ~p • {n X ""\." ) ·~x cos - -+· - p + - p -·--,, s1n , -- -t- - l p 
4 c 3 P 2 - ;p... \4 c . 

One sees that in general the cosine tem1 is n1uch greater then the 
sine tern1. but when. the saddle point approaches the pnle, a change 
in phase occurs, since the sine terra is no lo11ger negligil>le. The factor 
j!/(v2 ~- ~p~) whicl1 is ust1ally of the order 1/v., that is, very srnall, 
be<;omes very large V\7hen tl1e saddle point nears tl1e pole. 

No\v it is appropriate to find the instanta~eous frequency 
ru =--= 27tJT of this oscillation, which is arbit1arily rlefined as t~e ti:rne 
derivative of the phase, at least \Vlu~rl the cosine part dorninates, i.e., 
when Ep deviates greatly from ": 

w= ;t (: + 7 Yp) = _di/ = ~:~~-
thus 
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1''he instantaneous frequency is thus equal to the abscissa ~, of the 
saddle point- i.e., according to the above (the end of Section 4) 
it is equal to the frequency of an oscillation whose group velocity 
is xjt. 

The order of magnitude of the amplitude of the wave motion 
will be calculated using the same magnitudes assumed in the pre
vious case: 

~P = 2 X I0-1 n0 = 1011 

C= 2B, 
1 X 
--C = 2x x 10-29 
2 c 

The amplitude is, except for the exponential factor 

l"j/2C 1 
-; V n:Cx = 30 

The forerunners thus have an amplitude of the order 1/30, i.e. an 
intensity of about 1/1000 of that of the signaL This intensity, however, 
depends directly on !he spectral distribution of the initial signal. 
Actually, the factor 

,. - ¢p2 

occurs in the expression for the amplitude of the oscillation under 
consideration, wl1ich, except for the numerical factor - 1/n, gives 
the amplitude of the oscillation of the frequency E11 in the original 
signal (Chapter II, Section 2): 

v 2 1 ----=-,.,------
,..,- ¢p2 T Ep2- (2n/-r:)2 

The expression (19') can also be written in another form, in which. 
only the values of x and t' occur. This representation is approxin1ate 
only for saddle points which do not lie too near the origin or the 
pole 1.1. The previous approximate relation is used 
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and we thus get from Eq. (19): 

- C • 'J.' - (1/S)pt' 1 
( )

1/4 

I - V j'J 3Axt' ,•- ct1 /3Ax e X 

[ (! v c t'3/2 - ~) - t P V ct.' f3A x . (! 1 /c t'S/2 - n )] 
cos 3 3Ax 4 ,,_ ct'/3Ax 51n 3 V 3Ax 4 

( 19") 

The integration around the saddle points near the or1gtn has 
thus revealed an oscillatory motion of the following kind: until times 
near t' = (xjc)b' = 0 (t = xn1fn0c), no noticeable motion; for t' 
nearly zero, a small deflection; then fort'> 0, an oscillatory motion 
with small amplitude whose frequency increases from zero. The 
amplitude increases quickly, as the frequency of these forerunners 
approaches that of the signal. The signal approaches with the group 
velocity and quickly takes on its final amplitude. It is still influenced 
for some time by the forerunners whose amplitude decreases quickl)' 
while their frequency continues to increase. As their frequency 
approaches the characteristic frequency of the oscillating electrons in 
the medium, their amplitude becomes unnoticeable. 

This applies for the case where 0 < v < 1l0 , i.e., for a visible signal 
and a characteristic frequency of the electrons in the ultraviolet. 

The part of the forerunners which were just f9und will be called 
the second forerunners; the integration around the saddle points 
lying far from the imaginary axis will produce the first forerunners. 

B.. Saddle points at a great distance 

It was seen tl1at for srr1all times b account must be taken of one 
saddle point on the imaginary axis and two additional ones symn1etric 
about this axis at the points [see Eq. (17), and Fig» 7] 

?]p =-- 2p 

'"fhe integration near the saddle point on the ·imaginary axis 
contributes a negligible amount, since it is a flat sa{ldle point. It was 
already shown (Case A 1), that the integration near this point can be 
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neglected except when the point is near the origin. It was also Inetl

tioned that on. the line of descent through this saddle point, i.e., 
on -th.e path of integration, Y vanishes. 

~fl1us7 only the two remaining saddle points througll wh!r.h the 
path ot intP.gratiqn passes at 45° must be considered. Near tl1ese 
points. 

n = - 2ip ± Ep + ( 1 =F i)e 

~·" 1/- ,...1-
d·n = ( 1 =F i) de = v 2 e 4 de 

and one can expan(} v as 

fl a 2 • a2 a2 

v :::::: Vp -· De 2 = - p--- + t -- - -- e 2 

~P2 ;p ;pa 

Jt~or tl1ese saddle points, the limits ± eX In the integral 

-« 
1 1 e<%fc)v ---. - Re _: __ dn 

2.n -n --- ·v 
-t~ a:. 

must be cl1osen in such a way, that tf- Cxfc)D~· 'lanisl1es at these limits. 
l'he approximations are valid if one ca11 choose a.. so that it is sn1all 
compared \llith ¢p· In order to be able to give a nurnerical example of 
tbi.s, th.e following values are chosen: 

a = n.0 = 4 x 1 016 

a2 1 1 
1,.) ~- ____ ·--· ~- ....._,. 10--16 .,,,. 1 (;·-3 --- _ v 10--19 

~ --- ~ p 3 -- 4 /', "' ,., 4 " 

X 
-D = I0-30 

c 

·rhe· exponential is r}rac.tically zero if ~- (x/c)Ds?. ~ ~-- 10. 1·hus 
1. t 1.:.;: '§-:i.·(P y,; fP (l t}-;a t. 

"' L.# .~ ... . }. ~.4 ). '·• •Ji IL.- A 

T'hu~; e is of tll~ order '~j:,/100. 'Vllich i:~ qu~te adn1issibleo .~fhe arJproxima .... 
tion i~ ·valid if the abscissa ~ J"; \)i~ the sadd.le point is greater than n0 t 
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but not too great, as would be the case for times b very ne·ar zero 
[see Eq. ( 17)]. 

If the factor 1/(n- v) is considered as constant and taken in 
front of the integral sign, then the integral 

Depending on which saddle point is under consideration, it must be 
multiplied by 

. n % a' x Ja.1 s n \ 
V2e 'f • 4 e7"P - e- P ~P· 7 e 'f '\ep -;+ 41 

--== V2 ---
np - v • - 2ip ± ~P -· v 

Then the two parts are added and the real part of the sum is taken; 
finally giving 

(20) 

or replacing ~P everywhere by t, accordit1g to formula ( 17): 

(20') ( 2c )
3

'' ( 1 i2X \ I = - " - , t114e-2Pt cos· a l- t + ~ ,. 
Vnas x I c 4 

The first forerunners thus arrive with the ·v·elocity of ligl1t in vacuum, 
since they ~gin at t~= t - (xjc) == 0. Their period is at first very 
small, and increases steadily. If an instantaneous frequency is defined 
as was done for the second forerunners, tlteil one can easily see that 
here too the frequency is ~qual to the abscissa ~;-; of the saddle point 
at any moment. The amplitude is at first zero; then increases. and 
(neglecting the darr1ping) then decreases as 

For the nun1erical example chosen, the an1plitnde of the first 
forerunners is found to be of the order of 2 x 10 -a, i.e., the intensit}' 
is of the order of 4 x I0-8• 
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The arrproxin1ations given here Jose their validity for very small t, 
i.e .• for very~ ui$tant saddle points. This is because the first forerunners 
are actually given by the expression 

I=; 11¥ J1(2a ~~) 
as Somrrterfeld sllO"~tved [Chapter II, Eq. (33)]. If one replaces the 
Bessel f11nction by its as)'mptotic expansion, one gets formula (20'), 
and thus one sees that its v"'alidity is limited to not too small values 
of t. ·rbP factor e- 2Pt is missing because Sommerfeld's formula was 
derived under the condition p = 0. Returning to the magnitudes 
given at the et1d of Section 3, it is easy to see that in that example, 
p cannot be neglected. compared with n0 • 

6e Slsnal Velocity 

In the preceeding paragraphs, the forerunners were calculated 
and it was showr1 by numerical examples that their intensity was 
verj' small compared with that of the actual signal. Now, the signal 
velocity will be discussed .. 

Near the end of Section 4, it was shown that at the mon1ent when 
the path of integration meets the pole, the amplitude of the oscillation 
becomes appreciable - of the order of half the final an1plitude. 
Thus, the arri~Jal of the signal can be arbitrarily defined as the tnoment 
when the path of i1t-tegration reaches the pole "'· 

All of these consi(lerations referred to the case in whidh v was far 
different from n0, that is, to the case of normal dispersion. It seems 
appropriate to retain the previous definition in all cases, even if the 
signal has a period i-n the region of ano1nalous dispersion. 

Since 1' i5 an actual frequency and thus is a positive real number, 
the pole ,, is alvlays on the ¢ axis bet\\reen 0 and + oo. 

Considerin& a signal as it is seen at a depth x at timet, and drawing 
the complex plane (Figs. 8·--14), then the figure depends only on the 
magnitude 

t• = -in(fJ -p,) =X+ iY 
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;~comJ)a\e Eq. (4)]; it is independent of the frequency 1' of the signal; 
it is the same for a different depth x' at a timet' satisfying the relation 
Lcompare Eq. (4a)] 

(21) 8= @', 

'The positiv·e real axis intersects the path of integration at the points 
B1 ~ B2,. ~. with the abscissa v1, v1 .. r. (cornpare, for example, :B~igs. 13 
and 14). ..J\ccording to the definition just introduced, a signal of 
frequency ·v1 will acquire an appreciable intensity at the time t cor
responding to the figure. Relation (21) shows that the time t is 
proportional to the depth x; the signal thus propagates with constant 
signal velocity ... S. One has 

The reduced time e gives the ratio of the velocity in vacuurn to the 
signal velocity for a frequency 111• Figures 10-14 show the displace
ment of the points· B 1_ B 2, •• • with increasing e. A plot of cjS == FJ 
as ordinate versus v1 J 112 • • • as abscissas, yields the curve shown in 
Fig. 19. The points B correspond to the points b having the same 
abscissas. 

In Section 4 it was sltown that for a point D (Fig. 18) in the 
complex plane, through which a line of descent for x is tangent to 
the real axis~ 

t = xfll, 8=c/U 

where U is the group velocity for a frequency ~ = 0 D. In Fig. 19 
the curve cJU is drawn, the points D corresponding to the points d. 

In Figs. 10-14 it is easy to draw the complete set of lines of 
descent and to compare the positions of the points Band D. One then 
finds (see Section 4, Fig. 18), that a saddle point not too near the 
branch line is very near the two poi'nts Band D, which are themselves 
very close to each other (for instance, B and D of Fig. 18, B1D1 and 
l34D4 of Fig. 13, B1D1 of Fig. 14). This means, however, that far 
from the region of anomalous dispersion, the curves cfS and cjU 
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coincide: in other words, that the signal velocity is equal to the 
group velocity (cf. the end of Section 4). This no longer applies 
if the saddle point moves into the neighborhood of the branch line. 
Nevertheless, even then the corresponding positions of the points 
B and D give information about the unknown curve for the signal 
velocity frotn the known curve for the group velocity. 

FIG. 19. Key: 

~------·~----~--~-------------v 

-·-·-, 

\ 
! f •.,. 

c/phase velocity= cfW; • • • ·, cfgroup 
---, cfsignal velocity :a cfS. 

velocity = cJU; 

At first, the path of integration intersects tl1e real axis at t\VO 

points B3 , B4 between \Vhich lies one point D3 (see Fig. 13). At one 
certain time, the path is tangent to the real axis and the points 
B 3, B 4 , and D 3 coincide, as is also the case for points b3, b4 , and d3 

in Fig. 19. From this time ori, this part of the path of integration 
no longer touches the real axis (Fig. 14). This means the maxima 
of the curve c/S are the points of intersection of the curves cfS 
and cfU. 

The path of integration, which is ch.osen as a line of descent 
through the saddle points, is made up of several parts., each of wl1ich 
goes through only one saddle point (Figs. 10-14): 
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Part 1: -t .oo > ~ > ~ 00 , 

Part 2: 

from + oo to the point U 1 

to U 2 

Part 3: - ~oo> ~ > -oo, from U 2 to -oo. 

For Case A 2 (Section 3), where 

b' >~Ap2 
3 

par£ 2 of the path is itself split into two parts (Figs. 13 and 14) .. 

77 

The imaginary part Y of the exponent v remains constant along 
the path of integration which is a line of steepest descent for X; 
thus, for each part, 

In Section 5 where the integrals near the saddle points were calculated, 
the correspo11ding values of Y were given: 

Part 1 : Saddle point far from the origin (Section 5, Case B): 

a2 1 , __ _ 
-y~P == -ep = --ay'2b 

Part 2: Saddle point near the origin: 

Case A 1 t 

{ ~) •)) 
\J".Jk 

Cast-~ .A. ? -, 

~rhe next step is to detern1ine the po!nt::-: B 2 and Ba where the 
tb ot integration cuts the real axis near the brar>ch line ()·1V (Fig. 13). 
()n the real ax;.s 1! rf~·~d), Eq. ~ ,4:) sbuv.:{:; that 

,. ... "" , 

~-·· :r _:_::_ .. _ I 
· n.(. (~ ·-- pY,\ .=-:.:.. -- n ~ 

\ 

\ 

c \ 
--·· ' 1;rrJ 
~~ r 
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\-~;here ;t,. =-~- index of r~fractiont W = phase velocity at the frequency n .. 
l~l1e curve llr = cji-il is know11; it is also shown in Fig. 19. The 
rh>~nts B2 , B<J are those points on tl1e real axis where Eq. (22} and 
Eq. (23} agree. In (~ase 4-A.. l; i.e .• v1tu:~n 

thr:: sccf1nd part of the patl1 of integration requires that Y = 0; thus 
it r.:uts the rea] axis near tl1e branch line at a point for which 

For the~e values of €J, the curve c/S thus coincides \\·ith the Cllr~Jc:: c/W 
( '-.:;,},P I;·;._.... ; 9 the n-r.tt' 1t fr•)'t"l c to (' ) ~A.-.,.- .it.;.: • .£.. t i ;~._, ! t,_ d. 2_ ., -"' 2_. • 

In particu.la~i, it can be seen thai 11ear n0 tl1ere exists one frequency 
(point (~ ~) for v,~hich the signal propagates '~vith the v·elocity of ligl1t 
in v~Jcuu1n., and the corresponding index of refraction. ·ts unity: 

Irt all ether cases (,\ 2 and 11) a.nd the path iro!n c2 to 

on the path of integration. 'Thus, for the points of intersectton \Vith 
_the real axis, 

..::,o that 

.. c ~ ( \ 
~-11 & ----, <~ 0 Jl', . J 

~ t 1. '" ' r:-- .. · -· ~ f 'JX ,. \l r • +- i · i · · f anu. nne CUrVe 10r Cj,_~, ilt'S ab0\7 C tt1e CUrVe or i:/ t/. 'v l. .... l t HS lU orrna .. 

r.ion the curve for cjS', \.\'hich \vas to be investigat.~d, can be dra\vn. 
'fhe sibtnal \telocity does not differ from the group ·vr.J<,city; except 

in the region of anernalou~ di;~~persion. 'Ibere the grOU}J ""veloc.it~ 

becorn<::s greater than the velocity'" in vacuum if the rec1procal r.fU < 1 ~ 
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it even becomes negative. a The signal velocity is alv~·a:vs less than or 
at most equal to tl1e velocity of ligl1t in vacuunL ]'he curves for the 
group velocity and tl1e signal -v1elocity intersect at t \VO j-)()ints: '"'hich; 
as was shown grapl1ically1 are rnaxima of the ~1g1;al 1/.c-;ocity 

Ren1en1bering that the definition of the signal velocit~~ i~ sornewhat 
arbitrary, it seems :.tppropriate to draw a strip ratllt:r th;.~n a cut ve 
in Fig. 19 to represent tl1e signal velocity, \vho~:e thicknes~ Indicates 
this arbitrariness. ~fhe signal does 11ot arrive :;uddenly; there is a 
quick but still continuous transition frorn tlle 'llery ~'eak !ntt:nsity 
of tl1e forerunners to that corresponding to the ~igna.L /\ detector 
set to detect an intensity equal to l/4 the final iutensity will detect 
the arrival of the signal in agreen1ent with the above <irbil.r(lry defini
tion; if the detector is tnore or less ~ensiti,re: then ii ~viH detect the 
arrival of tl1e signal a little earlier or later .. 

7. Summary of Results 

·rhe results can be surnn1arized in the following "'.d)'': 'fh(! p~ropaga
tion of a special kind of signal in a <lispersive Inedintn vJas inve~tigated. 
It was found that after penetrating to a certain (lPJ';·h in the medium, 
the signal cha:nges. The _first forert.titner3 arr~ve vFj+h a velocity ':, 
th_eir originally very stnall period increases cont'inU<)nsl 1.', their nrnpli
tude increases and, taking the damping into account, then decreases, 
until the ·period is equal to the characteristic period o1 t~1e oscillating 
electrons. The second forerunners arri\:-e with the '-"eiocity :>(tt1/'~·r 0 ) <::.. c 
determined b)' the cliel~ctric constHJlt.s; thei1" per~od i~ ::\t first very 
large anrl then decreases, ·vthi1e their attlftHtude :Jt:.hcl"~;:··e~ in a rr~anner 
similar to that of the first forerunners. 'These t\<\:~) forerunners can 
partly overla}). In general, their atnplit11de is ·very sn,aB~ t»ut in
creases rapif'Jly as their period approaehes that ot the signal. The 
signal arrives with the signal velocity; it is still deforrr~ed for St.~n1e 

tin1e thereafter by the overlapping forerunners. 'Tll~: halt.; var·iation 
of the signal is scl1ematicaHy sho\\'n in 1~--;g. 20 for the ca.se i::r, "·~vh1ch 

3 Sf-'c ,A. Schuster, .. EirifUhrung in die theoretis~he Upt~t. H L(•jy,;;:ig, 19(~7 ~at

nrally, the group velocity h~..; a me-aning only so k,htg .G.~ ~t agn';.:::!, "':ith th-e stgnaJ 
\·clocity. The negative parts of tile gro•;p velocity n1\v~ nc phys~Ch..i 1neanu~g. 
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the period of tl1e signal is greater than the characteristic period of the 
electrons in the dispersive medium. 

1 Amplitude 
l 

I 

----+---1 ---T't'J ~-v·o~"""-~~: =~'I;IO>~ev,.._.......,..'\1'-+--+r}-+-J'+--t--t-~·-+--t-v - t 

First Second t 
Forerunners Forerunnars Arrival of the siQnal 

FIG. 20. 

A few remarks about the dependence of the intensity of the 
· forerunners on the depth should still be made. Let the part of the 
wave motJon determined by a certain instantaneous frequency (see 
after Eq. 19') arrive at a depth x1 at time t1 and at x~ at time t2• Then 

'fhe value of the reduced time e \Vhich has the dimensions of a 
pure nurnber determines the frequency of the wave motion in
dependently of the depth. Also, the abscissa ¢p of the saddle point 
is dependtnt on t and x only througl1 the relationsl1ip in (:ji. In order 
to corr~pare the intensity of the forerunners of the same frequency at 
different. depths, forn1ulas (19), or (19'), and (20), which relate the 
quantities ~; e; b, or b1

, must be used. It is then seen that for a given 
J)etiod, the arnplitude varies as 

for tl1e second forerunners 

for the first forerunners 

1-he tvro tor<~runners thus experience a decrease in intensity, which 
is j!2dependent of the period and is inversely proportional to x, and 
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besides this has an absorption which increases exponentially with 
depth. The latter is selective; the coefficient depe11ds on the period, 
vanishing for a period of 0 or oo. 

The performance of the following experiment seems to be feasible. 
Send a signal into an absorbing medium. At a sufficient depth, lhe 
signal itself as well as t4ese fOTerunners which are exponentially 
damped will be undetectable. One can detett only those forerun11ers 
with frequency 0 or oo: 

Although in this paper only the case of a material having one 
characteristic frequency and only one absorption band \Vas treated, 
it is hoped that soon it will be possible to generalize this to tl1e case 
of several absorption bands. Presently~ it seems probable that in 
this case there will not be only two kinds of forerunners, but rather 
that betvveen adjacent absorption bands there will be forerunners 
with periods l~ying between the bands. \Vhile it is pretty difficult to 
detect signals of periods 0 and oo, the forerunners in the visible 
spectrum or its neighborhood could easily be detected. 

8. The Method of the Stationary Phase Compared to the 
Saddle Point Method 

Suppose one wishes to examine an integral of the form 

J tf.(n) cos Yd~- or 

\Vhich is to be evaluated along the real rt axis. Suppose <fo is slowly 
varying everywhere. In those places vvhere 1,. varies rapidly, cos Y 
or e~Y oscillates very rapidly and the integral is practically zero. 
It is therefore necessary to examine only those points on tl1e real 
n-axis where Y is either a maximum or a n1inimum; i.e., those points 
on the real axis for which 

dY 
--~ ::::;::: 0 
dn 

}~ is the stationary phase at these points. 1'his n1ethod was used 
by I;amb for an investigation of waves caused by ships; it actually 
dates back to Lord Kelvin. 
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An attempt could be made to extend this method to the case 
where the expo11ent has the fohn X + iY instead of the pure imag
inar)1 iY. It seems that 'ex could be taken as one part, provided X 
is slowly varying, and the above procedures ·could be a}Jplied. I-I ow ever, 
X is no longer slowly varying if X and Y are the real and imaginary 
parts of the same fttnction f. They are connected by the well known 
relations 

ax ay 
--=-, 
oE OtJ 

where 

I= 2( -t- iY 

Thus, even if X is, in general, slowly varying along the real axis, 
still, just where the imaginary part is stationary, X varies rapidly. 
l;or a point on the real axis where oYjo; = 0, an equipotential of Y 
must be tangent to the real axis. But, since equipotentials of Y (see 
Section 1 j are lines of steepest descent of X, then at this point on the 
real axis, ax jo~ is large. 

At the start of this investigation it was sl1own that by deforn1ing 
the path •.)f integration in the complex 1t- plane, only tl1e neighborl~ood 
of tl1e sati<ile points had to be considered. 

For the case X = 0 on the real axis, the points of stationary 
phase are saddle points. Then, one g.ctually has 

X=- 0~ I.e., 
av 
-a-;;-~= o 

·and, as the condition for stationary phase, aYjoE = 0.. For this 
case, then, the metl1ods of saddle points and of stationary phase agree. 

If ~¥. is not zero, then, in general, a point of stationary phase is 
not a saddle point, and only one line of descent is tangent to the real 
axis. This is of no special interest; the saddle points will lie sornewhere 
else but not upon the real axis. 

As an example, it \vill be shown that in the case which was 
discussed here, the stationary phase method leads to results which 
are partly incorrect. 
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The integral 
·- cr.; ,.. ... 1 1 ~- ;.{Tfit - ... x} 

_:_ Re t ~--~---- ---dn 
2~ ! n·---v 

~ 

+co 

has to be ev·aluated, ar1d tl1e real axis is now 11sed as the path of 
integration. For real n, it is kn{nvn that (see Eqs. 2 and 7'): 

n k = ->.- u, 
t..~ • 

Tlte pl1ase 1s statjonary for 

R d(n,u,.) __ 
0 --~- --dn:--

wh.ere ll is the group velocity, vvhich is sho'h·n in F'ig. 19 as a function 
of 1t. In the region of anotnalous dispersic1n, tl1is curve extends belo\\" 1 
and eve11 below zero. The fJnints of stationary phase are given by 
the intersections of this curve \Vitll a line parallel to the a.xis at a 
value e. TllUS points of statior;ary phase could exist for values of e 
Jess than l and even less than ~~ero. The integration near these points 
\vould give a result different than zero~ i.e., forerunners \Vonld exist 
whi\h propagate with a velocity greater than t11at of light,. vvl1icl1 is 
in1possibl~. ' 



CHAPTER IV 

PROPAGATION O.f ELECTROMAGNETIC WAVES IN 
MATERIAL MEDIA* 

1. Definitions: Role of a Dielectric Coefficient Depending on Density 
and Temperature 

The discussion of Chapter III indicates a variety of circumstances 
in which the group velocity plays an important role. These results 
were obtained on a special example, but their significance appears 
to be very general. It is therefore appropriate to state the problem in 
general terms, without using a special model, and to see how mucl1 
can be proved in this way. We shall see that all the most important 
results can be obtained, provided the absorption coefficient is small 
enough to be neglected. 

Let us first recall the fundamental equations of electromagnetism in 
vacuum: calling D and E the displacement and electric field, B and H 
the induction field and magnetic intensity, p and J the charge density 
and electric current density, Maxwellls equations are \Vritten as 

(l) curl H = 4n J + ~~ , div B = 0 

(2) 
oB 

curiE=--- div D == 4np at $ 

(3) 

s0 is the dielectric coefficient (or permittivity) and p,0 the n1agnetic 
perrneability of free space. These two coefficients have magnitudes 

* Chapters IV and V were first published by L, BrilJouin: "Congres International 
d'Electricite .. Paris, 1932," Vol. 2, pp. /39-788. C~a·.tthier-VHlars. Paris, 1933. 
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~.vhich depend on the chosen system of units, and are con11ected by 
the relation 

(4) 

c being the velocity,. of light in vacuun1~· 
Since the coeffic1er~ts e0 and ~u are constants, it 1s possible to 

define a11 en~~rgy den.s1ty 8 given by 

(5) 

i i 
In general, these equations are written. in the 

same form for a rr1aterial 1nedium, with the 
t:oefficients € and 1U being characteristic of the 
medium. ~fhis leads to the prediction that the 
velocity of propagation Ul for electromagnetic 
\Vaves is given by 

(6) 

h Experience sho,vs that (even setting aside 
sa tlle phenonlenon of hysteresis) the problem 

rapidly becomes more complicated. In Eqs. (3), 
the coefficients e and 

4
U in a material medium 

l.--e------+- depend on temperature, on elastic deformations, 
FIG. 1. and on frequency. In a fluid, e and Jl· will still 

be functions of Ty v (specific volume), and fre· 
quency. 

It is appropriate no\v to recall bri~fly the role play·ed, in tl1ermo-· 
dynan1ics and electrostatics, by a dielectric coefficient e(v. T). Assume 
a .paraJlel capacitor of volume v0 in which there exists .a constant 
electric field E. The liquid fills this condenser and occupies a total 
volun1e v > v0 . ·rhe pressurf· p is measured outside the condenser. 
Simple ther1nodynan1ic considerations then lead to the following 
relations for the internal energy U(v,T,E'), the pressure p(v,T,E),· 
and the entropy s· considered as ~ function of the sarne variables: 

(7a) . U(v,T,E) = U(v,T,O) + ~~2 (e + T :f) 
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(7b) 
.. vo£ 2 de 

Pft 1 1 E) =.:: P(t} T 0) _L -------
\ / ' ' , ' ' 1 Sn 01.' 

(7c) 
1_"'2 ... 

S'( T E S( T 0) ' 'l'o.c, dH ~', , ( ) = v' , -r- ---;;---- -~ ,~ 
~n cJl 

<:otnparing Eq. (7a) with Eq. (5) which is valid if E is constant, 
it can be seen that tlpon charging a condenser (at constant volame) 
au arr1ount of work v0(eE 2/8n) rnust be done and an a1nount of heat 
v0(E 2J8n)T(osjdT) ·must be snpplied. The increase in internal energy 
is the sum of these two. 1 Expression (8) rep!·esents tl1e free energy (or 
I1elmholtz thermodynamic potential): 

(8) 
..,_2 

lJf(v,T,E) = U- TS = P'(v,T,O) + v0 ~in 

1 The electric charge on the plates is q = So$E/47t if s0 is t.h.-; area of the p1ates. 
For an infinitesimal change dv~ dT. and dE. the T..vork (me-s:h.anicaJ and electrf.cal) 
furn:ished by the system is 

. f VuE2 oe J ..VoeE - Vo t OE .. d.r = pdv- eEdq = p- ---- dv --- dE-- ~EJ -~aT 
4:r. iJv 4n 4n oT 

if e is the distance between plates (es0 = v0). The internal energy U(v, 1 .. ,E) Is in
creased by 

arJ au au 
dU = -dv +~-dE+ --~dT av aE o1"' 

The heat dQ into the system is equal to d U + d:T 9 .. nd the change in entropy dSJ is 
written as 

dS = dQ == au + d:T == [ar1 + P _ ~0£_: !.~] dt' + 
T T ov 4n iJv T 

[
(Jl..l Vc;£E l dE ' r a l] VoE 2 CJ£ ] d T 
ar.:-- · 4n-J 7,- -r leT-~:; a1: T 

Then, one uses the fact that dS is an exact differential. Considering p as a function 
of v, T, and E, one finally gets the relations 

~·hich give the relations in Eq. (7). 
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Hence, the electrical free energy density 'YJ can be represented by 
a formula identical with Eq. (5), while the electrical energy density le , 
is different, and contains a term in T(iJejoT) corresponding to heat 
exchange. 

{9) 

e£2 
f]e = -Sn 

E2 ( oe) ~~= -- e+ T-
. 8n oT 

Forinulas (7) also show that the electric field contributes to the 
pressure. p. This contribution yields electrostriction. A field E 
applied to a liquid under constant pressure produces a contraction. 
Let ~v be the change in the total volun1e : 

(10) ov =- (·Ot')~ ~oE2 oe =- KV vo£ 2 
OB =- ~_oE 21oe) 

op Sn iJv S;rt 0v S;rt \ op E = o 
T= constant 

where K is the compressibility. Tl1is last formula is known as the law 
of Helmholtz-Lippman. These effects are usually very small except 
in some special chemicals, and we shall ignore them. 

l. Dependence of the Dielectric Coefficient on Frequency; Evaluation . 
of the Electrical Energy 

For rapid electrical oscillations, no exchange of heat can practically 
occur, and the pl1enomena occur adiabatically. Keeping tt1e volume 
constant and negHgible electrostriction results in a simplification of 
tl1e forrnulas, and the energy density takes the effective value of 

(11) 
e£2 

{ ~e)adiabatic = S.n-

The con1plications envisaged in the preceeding paragraphs therefore 
disappear for electrical oscillations of high frequency, and in particular 
for electroin8gnetic waves. 

It is still necessary to cope with the difficulties arising from the 
fact tl1at the dielectric.coefficient e depends greatly on the frequency. 
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The permeability p, causes no difficulty, since it differs only very 
slightly from f.to for all the usual transparent media. 

Since e depends on frequency, it becotnes very difficult to define 
an electrical energy. Even if the value of the electric field E is known 
at an insta11t t, still, the energy stored is completely unknown. It is 
necessary to kno\v how the field was established. If the field was 
established by a slow and continuous variation, Eq. ( 11) can be used, 
in which e is the dielectric coefficient appropriate for very low 
frequencies. If the field E reaches its value after a succession of 
oscillations~ all their frequencies must be kno\vn. If these frequencies· 
can·not be defined even approximately, it becomes impossible to 
evaluate the energy! 

These ideas will now be illustrated by an example. Consider a 
plane capacitor of unit volume containing a field E. Then the surface 
charge density on the plates will be Df4n. If E and D are changed, 
the work done by the electrical forces is 

D1 

.'T. = 4~ J EdD = 8 1 --80 

D, 

( 12) 

assuming an adiabatic 
situation and calling I 0 

and 8 1 the initial and 
final energies, respectively. 
Consider no-vv an oscillating 
field E and a correspond-
ingly varying D. 

E =a sin wt, 

D -:- e( w )a sin wt 

h 

FIG. 2. 

It is simple to evaluate the difference between the energy at 
time t = 0 when the field is zero and at time t = n/2w when the 
field has its maximum value a, and 

( 13) 



90 IV. WAVES IN MATERIAL MEDIA 

Does this represent the total en~rgy when E = a? Certainly not. 
The energy 1 0 at the time when E passes througl1 zero is quite different 
from the zero energy that the dielectric has after being isolated 
from an electric field for a long time. in order to explain the fact 
that the permittivity e of the dielectric is different from that of the 
vacuum, e0, one must admit that the medium co11tains rnobile charges, 
electrons or ions in motion or electric dipoles capable of orientation; 
then, one takes as the zero energy of the system the condition that 
all of the charged particles are at rest in their equilibrh1m positions. 
In the previous example, all the charged particles may pass by their 
equilibrium positions at the time t = 0 when the field vanishes, but 
they pass them with nonzero velocity. In formula (13), the energy 1 0 

represents the kinetic energy of all \the charged particles contained in 
the dielectric. The average energy during the oscillations is 

(14) - e a2 

~'• = lo + ---8n 2 

In order to obtain the total value of the energy in an oscillating 
electric field, it is necessary to consider a process which, starting at 
rest (E = 0 for a certain time), slowly builds up to an oscillating 
field of amplitude a. The total energy can be obtained by considering 
the phenomenon of slow beats between two oscillating fields having 
frequencies w' and w" only slightly different, ro' = w + , and 
w" = en ·- "'· 

(15) 

E = ; (cos w't -cos w"t) = -a sin "t sin rot 

a 
D = - (e' cos w't- e" coo w"t) 

2 

, dD = - ~ (£' ro' sin ru't- e" w'' sin ru"t) 
dt 2 

( 
. a(ew) . ) = - a ew Slll vt COS rot + 'V Otn COS vt Sln rot 
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This last formula is obtained by expanding sin (1./t and sin w"t, 
and vlriting 

(16) 
11 !I 0(ell)) 

B W = eW - 'V Oro ••• 

1'his calculation rests on the assu1nption that the approxhnations (16) 
are 511fficient, wl1ich requires that the dielectric coefficient t! must 
not vary too qu.ickly as a function of frequency, and must always 
remain real (no lo~ses. no hysteresis)~ 

t 

FIG. 3~ 

'The field E (Fig. 3) starts from zero at t0 :::.~~ 0~ and. consists of 
oscillations nf increasing atni)litude, reaching Ll1e value a at t1 ~:-: :rr.J2·v. 
If the difference 2,~ between the two frequencies uJ' and a/' is ''ery 
small, the field E will remain ·very s1nall for a long tirr.te 11ear t0 = 0, 
and the establisbtnent of the osciUations will .require a lo1Jtg time . 
. Evaluating the energy' gaine(\ during tl1e time t1 .. _ t(J vv-e get5 
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tl t, 

tl = 4~ J E dD = :: w J sin 2 vt cos wt sin wt dt 
0 0 

'1 
a9 o(ew) J . 2 • d + 4n 'V aco - SID rot COS vt Slll vt t 

0 

1"he terms in cos vt or sin vt are slowly varying. Those with cos wt 
or sin wt vary very rapidly. The first integral 

! J sin 2 vt sin 2wt dt 

averages to zero. It contributes a term which oscillates between 
± 1/Sw, since at t 1 the instantaneous value of the field is + a or- a. 
'fherefore, this first term can be neglected in calculating the average 
energy .. In the second integral sin2 f.ut can be replaced by its average 
value 1/2 and the term re\\'ritten as 

nf2" 

1 J . d 1 [ n/2• 1 - cos vt Sin 1Ji t = - -- cos 2vt]0 = -
2 Sv 4v 

0 ' 

Tl1e final result is therefore 

( 17) i == a2
_ o(erol = --~=- (e + w Oe_) 

I 6~ ow l61r ow 
A~ n1ore exact calculation 9f the integraJs gives the same result. i\ 
~.:omparison of formu.las (14) and (17) shows that at the moment 
when the field passes through zero (during a series of regular oscilla
tions), the energy of the dielectric is not zero, but rather it is equal to 

( 17') 

This term repre3ents the kinetic energy of the charge carriers in the 
dielectric. 
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1'he preceding results are independent of the particular n1anner 
in which the amplitude varies. The same result ensues for any manner 
of variation as long as the variation is sufficiently slow. For example, 
the variation shown in the second part of Fig. 3 given by 

E ==: ; (cos w't +cos w"t)- a cos rot= a cos wt (cos vt- 1) 

is easily analyzed in the same manner. The minimun1 in the field at 
t = 0 is more prolonged than tl1at for the variation of E given in 
Eq. (15), and the maximum occurs at t1 = ~fv. 

3. Waves; Phase Velocity; Energy Density of a Plane Wave 

It is easy to see that Maxwell's equations ( 1 ), (2), (3), written \Vith 
the coefficients e and J.l, predict a velocity W, defined by Eq. (6), for 
a plane monochromatic wave. 

Consider a polarized wave p~opagating in the x direction and 
given by 

( 18) H y = A cos w (t - ;, ) , E. = a cos w (t - W) 
It is easy to obtain from these relationships, inserted into Maxwell's 
equations, the relations 

(19} e,aW1 = 1, 
a A 

ea2 = W = pA2 

What is the average energy density in the region traversed by 
this plane wave? It is not difficult to find the magnetic energy, and 
the electrical energy is given by Eq. (17). Thus, 

1 ( oe ) 8 = -- a2e + a 2ro- + pA 2 
16n ow 

(20) 
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making use of tire relations (19). Thus, the energy is proportional to 
the intensity a2 of the wave~ thnes a ne~r coefficient 21 wh1~ch is different 
jrorn the dielectr£c coefficient: 

(20') 
' 1 oe 

e l =-== s -t~ -2· (J,) a (J) 

This value for e1 is ev·idently only the beginning of an expansion, 
and this abbreviated expression ca:nnot be used unless e varies slovNly 
with oJ., a condition which is necessary for the 'lalidity of the calcula
tion in the preceeding secr,ions. It is j11st as necessary~ that e must be 
real; in ottu~r '\i\rords there ca11 be no absorption of the wave (neither 
losses,, nor h~ysteresi~ ). 

'fhe velocity W wl1icl1 was just discussed is the pJJase velocity. 
F·orrnulas ( 18) give its precitse !iieanir1g. This velocity W enables 
one to calculate the pt.tase difference between two points x1 ancl x2• 

:\)t enters ir1 all pher1onier1a in.volving interference and stationary 
~vaves~ It serves to define tl1e Y{ave

length of the wave 

and also is 11sed in tlxe definition 
of th~~ index of refraction ~n, 

(21) n=~= W.:~ 
and enters into the law·s of refrac
tii.''n at the interface betwee:n two 
1)(,.(1 ~ !f.'-t"' s t..£, ....... ).. 

The lH\/trS of refraction foH0w 
frc~1n the l)OUnflarj' COilditions for 

f~le.;"tl''lr·l·,(\ "•nt-'J l 11 ·~at/ll"'lt+l·.-.. {1'./:.;.r{t: ~~t t~~,p. l. nt·.t~~··i··~',.l('e of t 1le JTiarlt"a· 'fh~ ~~ • .....,.. .. \... f.~ J .li!. () "-' f,. "" .. <,. .... u., ··•· t,;;. •' -'- '"'1...-J. •-'•"" ) .... \\/U • v 

tz.ngentiaJ cnn1poneJ1ts of E and li :1nd tl1e r1otn1al con1ponents of 
D and B n1nst be c.or1tinuous. 

Consider tl1e following example: A wave is incident norrnally 
on a plane surface separating t\vo D1t~dia of dielectric po;.vers e and c.'; 
assume tl1at tt --= U 1

• .~fhe various wa·ves are tlten: 



Incident 

Refracted 

Reflected 
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E.= a cosw(t- ~) 

E, = a' cos w (t - ~,) 

E, =a" cos w(.t +~) 
WI ( \ 

II ' ' X H y -::::.:: ··-- A cos (1J t ·+ -:;-.;;·;; l n: I 
' 1 

Tl1e norn1al components are zero. The conditions of continuit~y· 
for the tangential components (for x = 0) giv·e 

(22) a+ a''= a', A-A"=A' 

Using tl1e relatio11s ( 1 9), the second condition can he \Vritten 

(22a) 

but 

t=eW and Vf;= e'W' 

Multiplyitlg the two conditions (22) an.<.i ( 22a) together give:::. 

(22b) 

This relation will be very useful later on. It is valid even if the 
permittivities of the dielectrics e and e' are junctions of the freque,ncy. 
In case e and e1 are independent of frequency, this relation has a 
clear physical meGtning: the velocities JV anrl W' are indepen(lent of 
frequency and represent the velocity ~.rith ~vhich energy is transported 
in the \Vave. (The following Section. vviH show that this is no longer 
true if U' de1)ends on frequency.) 

The energy transported across a lJnit surface perpt~ndicular to the 
direction of propagation during one second is tllus 

2 
t!W =c.~ W 

S.n 

since in Eq. (20) there is no difference bet'.\'een e and e1. Form.u1~: (~!:~b) 

thus simply expresses the fact that the incident energy is eqnal to 
the sum of the reflected and refracted energy'. 
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... The Group Velocity U 

In a medium in which all waves have the same velocity of propaga .. 
tion (such as vacuun1 for electromagnetic waves) a signal of any form 
at all will propagate without deformation. The form of the wave 
plays no part in the propagation. The velocity of propagation can be 
defined as the phase velocity, since it also represents the velocity with 
which the energy or any other quantity is transported. 

In a dispersive medium, the situation is otherwise. All propaga
tion is accompanied by a change in the form of the signal, except for 
an infinitely long sinusoidal wave. In one word-- if there is dispersion, 
there is also distortion. The example of propagation of electrical 
perturbations along cables is well known. 

In attempting to define a velocity of energy transport, several 
different possibilities exist. It is the intention of this paper to exa111ine 
several of these, and to show that the)' are~ in g~neral, consistent with 
each other. 

F'irst, consider the group velocity. Wl1en an infinite sinusoidal wave 

E =a cos (wt -ax- by•- cz) 
(23) 

travels through a medium,· there is a uniform average energy density 
throughout the space, given by Eq. (17). Does this energy remain 
where it is, or does it propagate through the medium? It is impossible 
to kno\v this. In order to observe a propagation of energy, it is 
necessary to suppose that an excess of energy [in comparison with 
the uniform energy of the wave described h}7 Eq. (23)] exists at a 
certain time at some point in space, and then to ascertain whether 
this energy moves with time. 

'fhe simplest definition is obtained by assuming that initially 
there exists a small excess of energy regularly distributed throughout 
the. space, as if it resulted from the superposition of two plane waves 
\Vith only slightly different frequencies and/or directions of propaga· 
tion. These two waves produce beats and the propagation of t4ese 
beats will be observed. 
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Assutne two closely similar waves 

with 

(24) 

E' =acos(w't -a'x -b'y -c'z) 

E" = a cos ( w"t- a" x- b" y- c"z) 

ro' = w + v, 

w" = ro - P, 

a' =a -t- «, 
, 

a =a -tX, 

b' = b + p, 
b" = b- {J, 

The result of superposing these two waves is 
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c' = c + y 

C
11 = c -r 

E' + E" = 2a cos (vt- «X- py -yz) cos (cot -ax- by- cz) 

which can be described as a plane \Vave of frequency ro and wavelength 
A., where 

(25) 
2n l/~---
- :L= v a2 + b2 + ct 
). 

The wave:s amplitude varies with beats of frequency v and a law 
of propagation given by 

cos (vt- ocx- {Jy- yz) 

'"fhis defines a wavelength A of the beats and a velocity of propaga
tion U 

(26) 

This velocity U can be zero, if the two interfering waves have 
the san1e frequency, i.e., if vis zero (stationary waves). The velocity U 
has its maximum value \Vhen the beats are produced by t'"'"o waves 
having tl1e san1e direction of propagation and only slightly different 
frequencies. This requires setting 

tX = ra ~ ' p == Cb, y = Cc ( v and C very srr1all) 

The values a -t- oc, b + {J, c + y, and w + v, used with the conven
tions of Eq. (24), require that the \Vave E' have a. wavelength i .. 
such that 
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using Eq. (25). TJ1erefore; 

C 1 1 d(l/A) - = -- -··-· --·- = 'J-1 ~------
~ JL' ;t aco 

v;hen the t\vo wa-v·~lengtl1s A.' and .:1. differ only slightly~ ~fhe velocity 
of proJ:•agation of these lJeats is therefore 

u = ___ w-'!_ .. ,___ == ~~~ = _!_ -o( (0)-
V rx2 -t- f~2-.+ y2 2~"cC 2n Cl(l/ A) 

\vhich can also be written as 

(27) 
1 o(w/~) ok 
[r =-=.: -a~;-- = a ro 

vvhere k = {2n/ IL} = ( wjft''). 
Tl1is 111axhnum ,v~eJocity of propagation of beats is called tlte group 

velocity [l. 
I'l1cse calcttlations, a.s \Veil as th,e preceding ones; neglect the 

effects of absorption. 

5. Velocity of Energy Transport U1 

Consider a llotriogeneous mediun1 througl1 whic.h. an infinite 
sinusoidal wave [:Eq# (18)] is propag·ating. tb.e value of the average 
energy density has been. defined in Eq. (20) as 

(20) 

If this energy propagates \vitl1 a \velocity [111 then In this medium 
there will be an energy t1ux density 

{28) 



5 .. VELOCITY OF ENERGY t'RANSPORT (71 

This is, by defjnitiotl, the energy passing per second through a surface 
of unit area perpendicular to the direction of propagation. Can this 
energy flux actually be calculated·? Yes, by pro~eeding as in Section 3 
[Fig. 4, Eq. (22)]. Consider a f>lane x = 0 bounding the n1edium 
under study, and inquire as to what incident wave a falling on this 
surface x = 0 produces a refracted \Vave a~, which is just the one 
being considered, inside the medium. There vtill also be a reflected 
wave a", and it has bee:1 shown that the condition of refraction gives 
the relationship 

{22b) 

Using the condition that the energy flux in the refracted wav·e is 
equal to the difference in the energy flux of the incident and reflected 
wave, one finds that 

{29) 

using the definitions for terms in Eq. (28). These two cor1ditions, 
(28) and (29), are valid if the first n1edh1m is a vacuum and 

e = £ 1 = 1, 

which leads to the curious relation 

(30) 

The primes in these formulas can be removed from now on. It is 
easy to see that this ?)elocity of energy t1ansport is equal to the group 
velocity when the approximations rrtade in Sections 2, 3, and 4 are 
fulfilled, i.e., when e is a slowly varying function of the frequenc:.,r w. 

Condition (30) states, in effect~ that 

(31) -~-=- EL= _ _!._('l-1-~-~~-\= -~(l+w 01?~_¥8) ul e~V w 2e flwj w \ OaJ I 

h •} th 1 "t • .f L""' ( .,...,~ w 1 e . e group ve ... oc1 y 15, a~.ter 1-::.q. l., j, 

(31') 
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\\rhich is tl1e saine, as that given in Eq. (31), since 

W=-1-
Ve~-t 

This agreement loses its validity only in regions where e varies rapidly 
with w, or if there is absorption. 

6. $ignal Velocity, S 

The problem of e11ergy transport can be attacked differently, by 
. ascertaining how a well-defined signal propagates in a material 
medium. Suppose that at the point x = 0 a light wave is emitted , 
with a period T, but only for a limited time T; the problem is to 
investigate the character of the wave at a distance x fron1 the point 
of emission. The resultant wave will be greatly defortned. Immediately 
after the signal front some very weak oscillations or "forerunners" 
will arrive. 1'hen, at a certain moment, the amplitude of th~ signal 
\Vill take on large values, which will signify clearly the arrival of the 
~-~ignal. In many cases, it is possible to deterrr1ine the exact moment 
\Vhen the tnain signal arrives, which defines the signal velocity. 

In general, the signal velocity n1easured depends on the sensitivity 
of the detecting apparatus used. \\lith a very sensitive detector, even 
The forerunners, or certain parts of them, might be detected, and the 
resulting measurement would imply a very large ·velocity of propaga
tion. B11t if the sensitivity of the detector is restricted to a quarter 
or half the final signal intensity, then an unambiguous definition of 
the signal velocity can, in general, be given. 

Instead of considering the advent of the sign~l, it is possible to 
consider the end of the signal. Evidently, the same result \Vill ensue 
~!ince a signal terminated at both ends can l:>e considered as composed 
of two signals, one terminated in front (starting at t == 0 and contin
uing indefinitely) and an9ther similar signal of opposite sign beginning 
at t = T and continuing indefinitely. 1'he end of the·signal is therefore 
characterized by the same features as the wa·ve front, with signs of 
forerunners, and an equally well-defined end corresponding to a 
velocity S. 

'fhe mathematical methods used here are a bit complicated. The 
signal is represented by a Fourier integral, i.e., by a sun1 of infinitely 



6. SIGNAL VELOCITY, S ]01 

long oscillations. For each term of this sum, there is a kno,~yn law of 
propagation with a phase velocity corresponding to its frequency. 
The form of the wave after travelling a distance x is tl1en given by 
another Fourier integral which must then be evaluated. The main 
difficulty lies in this resumming of the component oscillations after 
each of them has travelled through this distance x and undergone 
different change of phase. 

The Fourier analysis of the signal represented by Fig. 5, i.e., the 
function 

(32) 

\Vith 

Si9nol emitted at x a o 

Su;1n01 teceived of x 

(t < 0) 

(0< t< T) 

(T< t) 

-r----

1 
Front of signal 

FIG. 5. 

2Nn 
T=NT= --

Wo 

proceeds as follows. The well kno\\rn relations 

(33) 

CX) 

/(t) = J (Cw cos wt + S.,. sin wt) dw 
0 

00 

Cw = ! J /(IX.) COS OJ« dot 
--oo 

«t 

S"' = ~ J /( tX.) si~ w« dot 
-CQ 
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are use~. For tt1e function f, the two integrals Cw and Sw reduce to 
integrals between 0 and T and are easil:y evaluated. After several 
sitnple transfor1nations, the~y yield: 

ex) 

(a4) f{t) =i--f {_-:-1-.-- --~-)[cos ro(t- T)- cos wt] dw 
A.Jn J \ tV - wo w -+- too 

0 

+GO 

I f r ( f) ., dw =:::-~ ,--· L COS W t - - COS fJJt j -----
2:rt r.1 w -- w0 

--no 

. t· (() 

1 }) f ( . (l . T' t·· d OJ 
·.-~::;.: -~---~ '\..C I eHIJ .... j - esw ) --·-~-·-·· 

2n ~~J w- oJ0 
-{U 

J)ependirtg' on the situation, one or the other of these equivalent 
expressh)ns is the n1.ost ccn"\ter1ient one to use. l'he signal is thus 
i:ln-1.dyzt:d. ;,nto a sun1 of infinitely long \Naves. "fhe wave of frequency (.O 

(.~rn intensity," of 

(35) 'T' 2Nn 
J.. -=---= ·----

Wo 

[See l~q. (34), second form.] 
·rhis expression has a very high maximum for w -= co0 , whicl1 is 

not infinite because the sine in the nurr1erator becon1es zero at the 
same tirne as the denominator. This maximum is 

Figure 6 is a graph of expression (35) and is similar to Figs. 3 
a.nd 4 of Chapter II. T'he curves 1) 2, and 3 of the second figure show 
how the envelope of tl1e cur\"e reacts to an increase in the time T = lV-r: 
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of the signal. The spectrum actually extends through all frequencies, 
from zero to infinity, but it has a well defined maximum at w = ro0• 

If only a band of frequencies around w0 is retained while the other 
frequencies are suppressed, the form of the signal is not greatly 
changed, but the front and the end of the signal lose their definiteness 
and beco1ne slightly blurred. 

J/Jmax. 

FIG. 6. 

l~he first, third, and fourth forms of Eq. (34) separate into terms 
in cos wt and in cos ro(t - T). The cos wt terms, if they are 
separated, give a sinusoidal signal beginning at t = 0 and lasting 
indefinitely thereafter, \vhile the cos w(t- T) terms correspond to a 
similar signal (but witl1 opposite sign) beginning at t = T and can
celling the first signal at all later times. 

It is tempting to separate these groups of terms. The unfortunate 
thing, however, is that a pole then appears for ro = ro0 and the integral 
cannot retain its real form. It is necessary to use a path of integration 
in the complex w plane which goes around this pole. This method 
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was used in Chapters II and III but its mathematical complications 
will not be introduced here .. 

\Vhat happens to the signal after it traverses a distance x? Each 
wave w propagates with its phase velocity W(w) and the integral (34) 
becomes 

(36) 
I +Jco { iw(t - T - .=..) iw(t - !..)} d ()) 

f(x,t) = -Re e w-e w ----
2n co- fn0 

-co 

This integral must be evaluated. A complete discussion of the process 
was given in Chapter III; it requires recourse to integrations in the 
complex plane. The discussion will no\\' be limited to the case of 
propagation u1ithout absorption, i.e., to the case of W remaining 
always reaL 2 

The waves with frequencies near w0 always have a mucl1 greater· 
amplitude than all the others. For these \\'aves the second exponent 
in Eq. (36) may be expanded: 

1 
U = a(w/W)fo(JJ 

·r11e first exponent. may be expanded similarly. This contributes 

(37) 
1 iroo (e- ~) woJ+ 

11 

[ i(w- (t'•) (t- T - ~) i(w- wo) (t- .!_,.] doJ ' 
-Ree w. e u. -e u, ---------
~ w-~ 

C&Jo- 'YJ 

st If there is absorption, ·with a coefficient 1<, then a wave eiwt becomes,. aftel 
traversing a distance x, 

• ( ~) • ( % • l('t') ~w t -- - JW t - - + J-
e- ~<~e W = e IV (}) 

which results in the definition of a complex velocity of propagation 

1 1 I( 

-=--i-
W; W w 
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which can be compared to the integral (34) written in an analogous 
form 

w, +11 

(37') f(t) = _!_ Re e>w.t f [etc .... - "'•H'- T> - e''"'- "'•>'] __ !:__w _ 
2n J w - oJ0 

We- '1 

The integral (37') is just Eq. (34) with the suppression of the fre
quencies very different from w0 in (34). It presents a signal beginning 
progressively at t = 0 and ending at t = T, while Eq. (34) yields a 
signal with a sudden start and a sudden end. The analogous integral 
(37) represents the 'same signal beginning gradually at t = (x/Uo) and 
ending gradually at t = T + (xfU0 ). The principal part of the signal 
thus arrives at a depth x with a noticeable amplitude at about the 
time t = (x/U0 ) and ends at T + (x/U0). The front and end of the 
signal propagate with the gtoup velocity U0• But, at the same time, 
the signal has been distorted; the front and end of the signal are 
continuous rather than discontinuous as it was previously (cf. Fig. 5). 

With these approximations, the velocity ~5 of the wave-front is 
equal to the group velocity·. 

(38) 

It is to be noted that there is an exponential factor in (37) with 
argument ioJ[t- (x/W0)], which shows that in the midst of tlte 
signal, the phase of the oscillations are determined by the phase 
\~elocity W. 

7. The Forerunners 

The forerunners mentioned earlier will now be investigated. After 
eliminating the frequencies near w0 , we still have _two integrals of 
tl1e form 

2~ Re J A(m )e"~> dm 

in Eq. (36), where the amplitude 

1 
A(w)=--

w- w0 
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varies slowly and where the phase is <fo. If the phase varies rapidly 
with w, the integral is negligibly small. The amplitude A, multiplied 
by a periodic function of short period, makes a very small contribution 
to the integral. However, an appreciable contribution comes from 
those frequer1cies near which cf> passes through a maximums or a 
minimum, 

(39) 

If c.o1 is one root of Eq. (39), then - w1 is another root, since it has 
been shown that ± ru have the same phase velocity W. 

First, the integral arouttd ro1 will be calculated, and then the 
integral around -- w1 will be added to this. 'can be expanded about 
co1 in a Taylor series, and the linear term will disappear by virtue 
of Eq. (39): 

4> = 4>t + (ru- ro1)2 (az,p2) + ~ .. 
2 a w a; =- ,1)1 

t/>1 = ru1 [t- W~ru1)] • 
(:~\ = t- utwl) = 0 

(40) 

(~~s\ = -x (:~ )
1 

Only values of w near cv1 play a noticeable part. Since A varies 
slowly, it can be taken in front of the integral sign, and tl1e integral 
can then be written as 

2~ Re A ( ru1) 1 ei¢ dru 

1 {. ( X \)! { . ~ X o( 1/U)} = -Reexp ~ru1 t- ... -. exp - ~(ln-- ro1) 2 ------- d(J) 
2n( ru1 - w0 ) W 1 2 ow 

8 This method of integration is called the ~~method of stationary phase"; its 
limits of application were discussed in Chapter III, Section 8. 
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Since only an approximate answer is necessary, the integral can be 
extended over the range - oo to + oo and becomes a Fresnel type 

+co 

J e;f'dE = -w (I -f. i) = Vn ei<"I'J 
-oo 

Thus, the integration near w1 results in 

Assuming that (}(Ij[T)Jow is negati\re~ the abov'e is rewritten as 

~o~_{w1 [t- (x/W1)] + (n/4]} 
1/ o(I/l.i) 

( w1 - w0} V -- 2nx ---aro-
In case a(l/U)/ow is positive, the expression is changed only by a 

reversal of the sign and by a change of -t~ (n/4) to - (n/4). In effect, 
by changing the negative sign of the radical, a factor i = - e- i(:c/

2
} 

is added, which modifies the real part of the expression. 
To this result mtlSt be added the integral for - ru1.. The second 

integral has the sarr1e cosine factor, b11t a factor of - l/(w1 + w0) 
instead of 1/( w1 + ro0). The sum of these two is 

{41) 

At time t preceding the arrival of the principal part of the signal~ 
the forerunners arrive at a poi11t x with a velocity given by their 
group velocity [Eqw (40)]. 'fl1ese forerunners have a very small 
amplitude [Eq. (41)], except v;;h.en the group velocity is a maxim~'m 
or a minimum. 

In the latter case" formula (41} gives an infinite amplitude! This 
rnerely sho'YlS that the approximations used up to this point are no 
longer valid. Since tl1e secox1d derivative of ¢ is zero, the expansion 
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must be carried to tl1e third ternt. Let fJ>L be the frequency and tL 

tl1e time at which. this anomaly occurs. This time is called the ~'quasi
latent tinle., b:y some authors. 

(JJL is defined by 

(42) 

is defin·ed by 

'The forert1nners at times 

\viii no~r be sought. 

X 
tL- -- ------- === 0 

[I ( oJL) 

(T' small, 

c{> can be expan<ied near t1 and lo1 by v;riting 

'fhe integr:ttion near coL then gives, after the amplitude ... 4 is removed 
to the left of the integral sign, 

This is an integral of the "-\iry type: 

co 

d' ( ") = J e•(eo- ~E> d~ 
-00 
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1n which 

. , [x o2(1/U)] --tn " = + T - _ _...._.._......_. 
6 om2 

l~or small values of v it is easy to calculate an approxhnate value for 
this integral. • 

a 
2·45 

I 
I 
I 
I __ __.2 _______ ..... 1 _...__~o--"""'"--____,i·-----m--ax-. 2_,___ v 

Frn. 7. 

The curve in Fig. 7 gives the approximate variation of .#. as a 
function of v for srnaJl value~ of v . ..W is very small for negative values 
of v anrl·has a maximum of about 2.45 for v about 1.74. lJnder these 
conditions, tl1e forerunners have a sizable an1plitude grven by 

(44) ------1 [!_ 02(l/U)] -liS d(v) cos WL (t -- --~--) 
2;7t( CO I., -- w0 ) 6 iJw 2 JV L 

If wL is not zero, the integration about - wL mt1st also be added to 
this formula. · 

4 G. Airy, Trans. Ca,nb,idge Phil. Soc. 8, Part V, p. 593 (1848); L. Brillouin, 
A~n. ecole norm. sup. 88, 37 (1916). 
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This discussion can be summarized as follows. The pure harmonic 
waves into \vhich the signal has been decomposed are separated from 
eath other. Those waves with frequency w arrive with group velocity 
U(co) and an amplitude [Eq. (41)] which is directly proportional to 
l/(w8 - w0

2), which factor enters into formulas (34) and (35) and 
whose effect is shown in Fig. 6. 

At the times tL (quasi-latent times) defined by Eqs. (42), the 
forerunners pile up and make a very considerable contribution, with 
a maximum amplitude of the order of magnitude of 

(44') 2.45 ro0 _ [~ -~2( 1/U) ] -·t/S 

3t(Wo2 - WL2) 6 OW2 

This factor is obtained by superposition of the t\Vo expressions (44) 
correspQnding to ± ru1. 

These results are valid only if the absorption is negligible and the 
phase velocity W does not vary too rapidly with w. The more exact 
integration done in the complex plane by tl1e saddle point method 
confirms these r~sults. 

The group velocity U, the velocity of energy transport U~. and the 
signal velocity S are practically equal under these conditions. 

8. Summary of the Most Important Results; Generalization to 
Other Types of Waves 

This chapter was devoted to a very general discussion of elec
ttomagnetic waves in a dispersive medium, and we were very cautious 
not to introduce any special model. The results obtained can be 
easily translated for other types of waves, for instance, elastic waves. 

In a problem involving transverse elastic \vaves) vve would obtain 
equations very similar to tl1ose of Sectior1 1, but t would represent 
the ~lastic properties and 1-' would correspond to density~ The energy 
density would be evaluated as in Section.s 2 and 3, and formulas 
similar to Eqs. (20) and (20') would result. Continuity conditions at 
a boundary could be worked out as in Section 3, and would be 
summarized in a formula corresponding to Eq. (22b). 

Group velocity U (Sectjo:t 4) and velocity U1 for energy transport 
(Section 5) would be defineJ in a similar way, and we would arrive 
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at the relation (30). AH tlte t'esults of Se<:tion 6 on signal vel()tity 
could be repeated. 

'Il1e reader ""'·ill find son1e more exam1iles in (~.hapter \' of 
I.,. Brillouin·s book Wave Propagatiott t'tz, Periodic St1··ucturcs. (New 
York: McGraw-Hill Book: 1946~ f)o'lyer, 195!3.) In the next chapter, 
we will study in more detail the t:,.rpical model of a dielectric, 
~nd cornpare the results \\~ith those of C:harJter II. 
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CHAPTER V 

WAVE PROPAGATION IN A DISPERSIVE DIELECTRIC* 

In tl1is chapter we want to specify the properties of a real dielectric 
and apply· to this problem the general formulas of C-hapter 1\1. 

1. Formula of Lorentz-Lorenz 

In the simplest hypott1esis explaining the structure of dielectric~ 
it is assu1ned that dielectrics are composed of small particles which 
can be polarized under the influence of an electric fielrl. 'fl1ese 
particles can be colloidal suspensions, or, for pure materials, they 
can be molecules or eve11 atoms. In the absence of a field, there is nc~ 
polarization. One of the following assumptions must be made: 

(1). The particles have no permanent electric dipole rnoment and 
acquire such a moment only when subjected to a field. This \vill bt 
the case for atoms or for molecules with homopolar bonds. 

(2). Alternativel)7 , the molecules have a permane11t dipole moment 
(l1eteropolar bonds). In the absence of an external field, these moments 
are st1bject to thertnal motion whicl1 orients tl1em in all directions 
with equal probability. The average electric moment for a molecule 
'\\1ill then be zero, in the absence of a field. In the presence of a field. 
the molecules tend to orie11t themselves, and the average dipole 
n1oment will r1o longer be zero. 

I..et lv be the number of particles per unit \lolume.. Each of thest
particles, wl1en, subjected to a field R, acquires an average electric 
moment yR in the direction of R. The resultant dipole moment 
per unit volume will then be 

(l) P = NyR 

\\
7hat is the relation bet\veen the external field E and the field R 

to \Vl1ich each molecule is subjected? Each molecule is separated 

• See footnote on page 83. 

113 
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front tt1e nt:xt one b)r an a·ver~\f5'~ dista11ce p. ~ro a first approxi1na
ti~ul, the iield R (at the point '1Vl1ere tl1e molecule is located) ~~a.n be 
considered as the field found at tl1e center of a h.ollovr Sl)hericciJ 
cavity of r::tdiu~~ p in the n1idst of a mediun1 r1aving a polariz,ation P. 
This will be 

FIG. L 

(4} 

(2) 

This result is independent of 
the radius p, if the 11olarization 
P is uniform.. The electric dis
placement D is l 

D = E + 4~P = eE (3) 

where e is the pennitti,rity of the 
dielectric. Elimination of Rand E 
bet\~reen tltese tl1ree relations re
sults in 

wl1ere .. At/' is .(1j,.~)ogadro's nurnber, or the Ilumber of molecules per 
gram mole, M tl1e molecular weight, and d t:he density of the material 
und~r consideration. Formula (4) is called the forn1ula oi I..orentz 
and Lore:nz. It shows that (e- 1)/(e -t- 2) rr1ust be proportional to 
tl1c density d and to the average polarizabilit)' y of a molectde. This 
coefficient y receives contributions of three distinct types (at least 
to a first approximation): 

( 1 ). Electronic polarizability by displacement of the electroi)S of 
the atoms. 

(2) Ionic polarizability by the spreading apart of the ions of the 
tnolecule. 

1 From now on the units will be chbsen so that the permittivity of free space will 
be unity. 
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(3}., Dipolar or rotation;:J.t })Olarizability, due to the a'lerage 
orientation of the Inolecllles \vhich have a pert11anent electric (lipolr· 
moment. This orientatior1 is opposed by the .thermal motion of 
rotation. 

In cases (1) or (2), the displacement of the electrons (or ions) is 
opposed by forces of attraction. Since the moving charges l1ave 
nonzero masses$ t.here wi~l be one (or several) frequencies of free 
oscillation in the molecule. The frequencies for ty·pe ( 1) are ·ver·y 
high (ultraviolet and visible). -rhose of type (2) are lower {red or 
infrared). The rotations of the molecules following (3) are in the far 
infrared and the radio region. 1'hese different orders of 1nagnitude 
make it possible to distinguish betweep the above mention~d three 
types of polarizability. ·· 

Tl1e reasoning which led to formula (4) contair1s a number .of 
approximations. It can be predicted that the fornlllla will cease to 
be applicable in the following cases: 

( 1 ). Large de1·~s£t£es: In this case, the tnolecules, since t:hcy are 
cro\vded together, c.an affect one another by tl1eir forn:1 and structu.re..., 
and thus the vibrations will not be described completely by the 
simplified scheme sugge~ted above. Trte field due to each individ11al 
charge making up the tnolccule is very complicated at small distances 
and does not redu.ce to the f1eld of a dipole linless it is \.,iewcd at' a 
sufficiently "large distance. 

(2). Molecules of a·nomalnus for111;: For molecules in the forrn of 
long sticks, it is evident that the above calct1lations would be inexact. 
A theory of liquid crystals can be based on these assumption" (Oseen). 

(3). v,. ery h£gh frequencz"es: ~fhe above calculatiotl assumes that the 
polarization P is practically constant over a distance of the order of 
several molecular separations p. The reasoning certainl~y becornes 
faulty for wavelengths of the order of p. 

, '".fhis last situation begins to arise for x-ray·s if the body considered 
is in the solid state, or for ultra"violet rays if the body is in the gaseous 
state. In order to extend the theory to these short wavelengths, the 
exact stnJ.cture of the body rnllSt be given. t~v/ald has given a ·very 
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cl~ar discussion of these problems, wl1ich are quite tricky, for different 
types of CT)tstal structure. 

For very small waveler1gths (x-rays) a defitlitio·n of an average 
dielectric coefficient is no longer possible. 'fhe Bragg-l .. aue selective 
reflections, which have contributed remarkably to the study of 
crystal structures, will occur. 

It is moreover evident that for very short wavelengths it is unrea
sonable to apply to the discontinuous medil1m, the Max,vell equations 
!Chapter IV, Eqs. (1), (2), and (3)] which are valid for a continuous 
mediu1n. It is only for wavelengths large compar~d \Vith the separa
tion bet)veen two molecules tl1at the reasoning of Lorentz is correct 
and that the use of Maxwell's equations is justified. The fine work 
of Ewald and Born . on these questions \Vill not be described here, 

if,ll 

and the ensuing discussion will be limited to wavelerigtl1s fron1 the 
radio to tl1e visible region for which the Lorentz approximations are 
vhlid. 

2. Material Medium of Low Density, Consisting of Harmonic 
Oscillators 

I;or a gas, in \VIlich the concer1tration of n1olec11les is small) the 
dielectric constant differs only slightly from unit)'· Formula (4) can 
then be simplified and rewritten as 

(5} E == I + 4-:rNy 

The atoms or molecules are structures containing electrical charges 
(electrons or ions). l'l1ese charges are attracted to their equilibrium. 
positions by forces of mtttual attraction [hypotheses ( 1) and ( 2) of 
Section ( 1)]. A simplified IJroblem in ""'·hich the molecule is pictured 
as a harmonic oscillator can be considered a~ an example, i .. e., the 
problern of a charge e of n1ass 11t, characteristic frequency w0, atlti 

datnping factor pm. If 1 is the displacetnent of tl1e. charge, then the 
equation of motion will be 

(6J d 2s ') ds ·> e E -- -t- ~P ----- -f- co ""S ~=-.:- --~ 
dt1 dt 0 

1ft 
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when the charge is subjected' to an external field E. (It is to be noted 
that Eq. (6) is an approximation in that no distinction is made between 
the fields R and E.) When the chargee is at its rest position (s = 0) 
the molecule is not electrified. Thus the dipole moment \viii be 

[8] 

(7) yE = eJ 

One possibility for the field is a 
sinusoidal variation: 

(8) E = a cos wt == a Re eiwt 

A solution of Eq. (6) with a 
complex amplitude B correspond
ing to a phase difference cp be
tweeil S and E is: 

(9) s = Re (Beiwt) 

~.-------~========~~ 

FIG. 2. 

tan cf> = -----( 
2pw ) 

ruo2- c:o2 

Figure 2 represents the variation of IBI and ~ with w in resonance 
cunres that are well known to physicists and technicians. 

Using Eqs. (5)- (9), one can find the average dielectric coefficient 

(10) 
_ 1 + 4nNe'fm 

e - ro0
2 - 2ipw- w2 

;fhis is a complex number, which means a complex velocity of propaga
tion U'. Instead of W, consider the index of refraction n, 

( 11) c v- . n = W = e = n, + tni 
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It l1as alread)r been noted in the preceding paragraphs~ that a con1plex 
velocity (or refractive index) signifies that the propagation is accom
panied b~' absorption 

{ 
• ( X )} { • ( nrX) nt,W X} exp ,- f(!J t - W = exp - tw t - C - --c-

( 12) = exp {- tcx} exp {- iw .. (t - n~~)} 
with a coefficient of absorption 

(13) 
(J} 

K :::::= -:..... n;, 
c 

'The real part of the index of refraction is useful for calculating the 
differences of phase between two ·points which are a distance x apart. 
'"I'hus, cj1zr actually plays tl1e role of phase t'elocity. 

n 

--nr 
n -------:r: 

:~ 
I ' : '-.... __ ...-...;;,; ____ ..__ __ (J) 

Wo 

FIG. 3. 

I ~ 
I I\ 
I I \ 

I ; \ 
I I \ 

I I \ 

I ' \ I t \ 

I I ' 
/ I ' 

// : ',, 
I I '-...._ 

--------~--~----------~~--

l :c 
~o .fW"S~a2 

FIG. 4. Key: --· --, n = cfW where 
TV == phase ·velocity; ---- cfU 

where lJ = group velocity. 

Figure 3 sho,vs how the index of refraction n, and the coefficient 
of absorption ~< vary near the. resonance w 0 • The curve for the index n, 
crosses the line n = 1 near w0 and varies rapidly near there. The 
steepness of this slope is closely related to the sudden variation of 
t_he phase <f;., shown in Fig. 2. The absorption K is directly related to 
the amplitude IBI of the oscillations of the elementary oscillators. 
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At frequencies far from ro0 th~ 'imaginary terms can be neglected 
and then 

( -e2) 
a 2 = 4:tJ.V 1n-

( 14) c v-n = -w = E (K = 0) 

c dn --=n+w--U dw 

The curves of Fig. 4 indicate the. nature of the results obtained 
with these asymptotic formulas. 

3. Propagation of the Waves in the Medium 

First of al1, the exact nature of the waves in the above mentioned 
medium will be studied, taking the absorption into account . 

.. A,.. wave propagating in the x direction can be written as 

( 15) E r = aetw(t - x/W)' H -·~ Aeiw(t- zfi..Y) y --· 

If a is real, then A will be complex, indicating that there is a phase 
difference between these two vectors~ Max\vell's equations (with e 
complex) require tl1at 

(16) 
A 
-=ea w . ' 

a 
W =!loA, E/l0W 2 = 1 

Let A denote the complex conjugate of A. The preceding equations 
then give 

.. 4 -
--;;-- = ca 
w 

Tl1e intensities of the electric and magnetic fields are related by 

- a.<'i iW a 2 } a2 
#o}Af2=ttoAA == -w = w-a2 = ------=-= IWI2-= ltla2 

;t0WW Po 
(17) 



120 V. WtVE PROPAGATIO~ IN A DISPERSIVE DIELECTRIC 

but, 

I I - 1 + ~ N ell ( 1 ) - 1 + 4nN e2fm e - n m mo•- 2ipw- rot - V<wo•- w2)2 + 4plco2. 
. . 

What is the energy density in the medium through which the wave 
is prQpagating? This can ~be found by adding together the energies 
of the electric and magnetic fields (in the vacuum between the atoms) 
artd the potential and kinetic energies of the N oscillators. 

(18) 8 = _J_Et +_!!HI+ N - ms 2 + -m oJ 1s2 e --- p, - (1 -- 1 -) 
8n 8n ~2 2 ° 

. 'fhis relationslfip then leads, by virtue of the relations (9) and ( 17), 
and after setting e0 = 1 as in the previous two sections, to 

~~coefficient e1 can be defined, as in Chapter IV, Eqs. (20) and (20'); 
the expression for it, derived from Eqs. ( 17) and ( 18), will be real 
and equal to 

(20) 

'fhe expression obtained· in Chapter IV, Section 3, is no longer 
applicable l1ere, since there is absorption. The role of the residual 
energy 8 0 at the time when the electric field is zero can be clearly seert. 
1'his notion was introduced in Eqs. (13), (14), and (i7) of Chapter IV 
in a somewhat arbitrary manner. From. Eq. (18) it is seen that at, 
the time when the electric field E is zeto, the magnetic field H is 
not zero, because of the phase difference between the t\vo. The 
potential energy of the oscillators is small, but their kinetic energy 
is very important. 'fhese several terms enter ir1to 4 0. 

In order to avoid any error, the laws of refraction must also be 
rewritten. As at ~the end of Section ~' Chapter IV, tl1e discussion \Vill 
be restricted to the case of norn1al incidence. 
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Irfcident wave: E.=a eioJ(t - z/c:) H,= A eiw(t- x/c) 

(21) Refracted wave: E 6 = a' eiw(t ._ ~i ~V) H y = A ' e'ro(t- x/W, 

Reflected wave: E:r = a" eitu(t+%/c) H y = A II eiw(t +xlc) 

If a' is real, then A' is complex as in Eq. (15). Similarly, a, ~4, a" 
and A" are complex. The conditions of refraction, Eq. (22) of 
Chapter IV require that 

(22) 

but, 

a -+-a" =a', 

a 
.-:4 = ----' 

p,oc 

.1- A''= ... 4' 

a' 41 
"" .::::::-::---.--

P,of1l 

"fhe second relation in Eq. (22) can thus be written as 

II C f I 

a -a = -tt~;-a = na 

\\rher(\ n = complex index of refraction. 
Fron1 these various relations, it is easy to derive that 

a = ex -1- i{J, " ' ·p a =a-cx-z, 

-a' + 2oc + 2ip = na' == (n, -t- in,)a' 

and 

( 23) l a ! 2 --- ! a" /2 -::-= ex 2 - (a' ---- ex) 2 -==- a' ( - a' + 2«) = n ,a · 2 

'This last relation replaces formula (22) of Chapter IV. 

4. The Velocities U, U1, and S in the Medium 

'fhe next point to consider is the e1Ject of absorptic.Hl on the group 
velneity [ 7

, the velocit}"' of energy transport (J v and the signa t 
velocity ,"i. .Far frorn the resonance region ( (1) very differt~nt fron1 w0) 
the a b~orption is negligible, and tl1e imaginary parts of e and the 
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index of refraction n can be neglected. ··rhen the asytnptotic furJ.!lulas 
(14) can be tlSed. It is almost obvious tl1at this case is the same as 
the cases treated in Sections 2 and 7 o{ Chapter IV and that the 
v~elocities U, U 1, and S are identicaL 'This point will be verified by 
using the complete formulas. 

'Thr~ group velocity [T vvas defined by formula {27) of Chapter IV 
\¥her~~ the real part of 1/lV must be used. This can be written in 
the 

c d(n,o>) . dn,. 
---·-· = ---------- == n J' -1- ()) -----
U dw dw 

In f"'ig. 2, the curve for the variation of n, is drawn. It is then easy 
tc construct graphi .. ~a.lly tl1e curve for cjlJ. This curve presents a 
r.~urious anomalj· in the absorption band. cfl.I can become less tl1an 1, 
and e:ve11 less tr1an zero. 'fhis means that the group velocity U can 
be greater tl1an tl1e velocity of ~ight c, can be infinite and eve11 negative i 
]~l1cse results are sufficient to show that, in tl1is region, the group 
velocity no longer represents tlte velocity of a sjgnal or of energ)' 
&-a·~~srv·~r·t , • J.iirr k,.'t_g .r 

l"lar from the absorption band. fon1.1ulas ( l4) give 

-~f '"~- n, { l + w ~ ~d~~ ~~) ~ n { 1 + w2 _d_d_~~~~) 
\/ \ (J) \ (U 

~ 1'/- r l -l- -~:!_!'!_e2 ______ w=-----] l sm (w2- wo2)2 

'l'h~~ rt~~al part of cfl! is al\vays less than the valne of Eq. (25). 'The 
iatter is 7 as can be seen} alv;a:ys greater tha11 n,. and infinite at w0 . 

'The ttloc~£ty U1 of e,nergy transport can be gotten from C.hapter IV,, 
JorrnnJas (Z2a) and (20) which gave relation (:lO). According to the 
calculations of the preceding sectionsf Eq. (22a) of Chapter IV is 
replaced b:yr I~q~ (~:$)1 and I~q. (29) oi Chapter rvT retains the sanle 
forrn if absolute values are used. 1"'hus equation (30) of Chapter IV 
bf:CODtCS 
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e1 has been calculated in (20). Far fron1 the absorption band these 
formulas sl1ow that 

_c_\ = n_ e = !!_ [ 1 + 2xN~ (- __ I __ + w0 2 + w2 )] 
U e J

1 e m w 2 - ro 2 (w 2 - ro 2) 2 
1 • 0 0 

(27) 

after making use of (14). Thus U and U1 are the sa1ne, since formulas 
(25) and (27) are equal. 

In the absoq)tion band, e1 follows a regular variation and has a 
pronounced n1aximurn n~ar co0. This Cf\Il immediately be seen from 
Eq. (20). J~'orr11ula (26) thus sho,Ns that cjU1 follows an analagous 
v~riation with a distinct maximum in this dangerous region. The 
velocity U 1 thus decreases greatly in this anomalous region and 
passes througl1 a minimum. It is quite different from the group 
velocity U. 

1'he signal velocity S is defined as in Section 6 of Chapter IV, 
and requires a detailed discussion of the integral (36), in which W 
is a complex velocity. Since this was discussed in detail in Chapter III 
it'i;is enough to give the results here. The velocity Sis found to equal 
the group velocity U, except in the region of absorption. In this 
region, it is very difficult to def£ne a signal 'oelocity precisely, since the 
signal arrives very gradually without a distinct front. The cfS curv~ 
in Fig. 5 was calculated from a certain definition of the front, but, 
depending on the sensitivity of the detector, any value between S 
and U1 could be found. The curve of U1 approaches, moreover, the 
curve U, having the forrn shown in Fig. 4, if the absorption is neglect~!.d. 
One result, at least, is clear: the velocity of the front ~f the signal 
cannot exceed the velocity c. The first forerunners travel through 
the medium in which all the oscillators are still at rest, since no wave 
has as yet hit them. 'fhese oscillators are only gradually set into 
motion as the various forerunners hit tl1em. But nothing can prop
agate faster than c. 
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_c_ 
Veaoc•t:v 

1\ 
I \ 
I 
I 
I 
I 

FIG. 5. Key: ~--- -. &/W where W -= phase velocity; 
---, cf U wliere U = group velocity; 

• • • ·t c/S where S == signal velocity; 
·-·-, cJll1 where f.T1 ==velocity of energy transport. 

5. The Forerunners 

Consider a signal of frequency m far different from lu0. 1'he n1ain · 
part of the signal arrives with the signal velocity 5) wt1i~l1 . is nearl~r . 
equal to the group velocity. What about the forerunners? For those 
forerunners whicl1 l1ave frequencies far fron1 rv0 , tl1e discussion of 
Sect1on 7 of Cl1apter I \T applies. 'Il1us, a series of forerunners are to 
be expected, each starting with those frequencies at which the group 
velocity is st;d ionary (maxirr1um or minimurn). 

Using ~Fig. :1, 011e can see tl1at outside tl1e absorption region, the 
gi(()up t'elocity is a maxitnum for: 

Infinite frequencies Ua:;=C 

Zero frequetlcies 
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Thus, a first group of forerunners will arrive with ,~elocity c and 
will be con1posed of very high frequencies. Tl1e exact nature of these 

· forerunners is given by formula (41) of Section 7, Chapter IV. 

(28) 

Since for very high frequencies 

2 4ttNe2 

a = ---m , 
c at 
-~ 1----w 2ru 2 

o(cfU) a 2 -- ~-aw w 2 

On the other hand, for stationary phase, cu and t are related b~r 
condition (39), see Chapter IV. 

whence 

since 

x x a2x a2x 
t-- = t----- =-.: T- --- = o 

U c 2cw 2 2cw 2 

X 
T=t-

c 

w t- --- = aJ t-- + -- = 2wT:::: a I----( x) ( x a2x) l'2-xt 
l'V c 2cw1 c 

w=al(J; 
~ntrodu€ing these values into Eq. (28), and carrying out some simple 
manipulations, \\l"e obtain the result: 

(29) --~~----(2c)sr• T•J•cos {a 1/2xT + n_} 
Vna312 x ~ c 4 
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which is valid when T is not too small. This result is confirmed by a 
more exact analysis, 1 which takes the damping constant pinto account. 
The onl)' modification in Eq. (29) for the first forerunners is a factor 
e- 2PT which is equal to 1 for very small T but thereafter decreases 
the amplitude of the forerunners considerably·. 

Now, the second group of forerunners is characterized by very low 
frequencies. The calculations for these will be done only very briefly .. 
The result, after making the suitable approximations, is 

o(cfU) _ aA 
::l - w uw 

is positive, oz(cjU) = 6A 
ow2 

... ] 

Since the derivative of lj[J is positive, it is necessary· to observe the 
changes of sign in formula (41) of Section 7, Chapter IV. The relation 
between ro and t is given by Eq. (39), of Chapter IV. 

with 

whence 

x xn0 3Aw2 x , 3A (.0 2 x 
t-- = t--- -----= T -------= 0 u c c c 

I'' === t- ~1t~ 
c 

w (t - ~·) = w ( T' - ~ w 
2 x) = _! w T' = _! ( T' )3/2 1 jc 

w \ c a a VaAX 

I See Chapter III, Eq. (20a}. 
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Formula (41) of Chapter IV, with the suitable changes of sign, is 
written as 

(30) 

Tl1is fs the equation for the second forerunners which arrive a little 
later than the first ones and start at T 1 = 0. This result agrees with 
tl1e more exact calculation vvhich take the {lam ping coefficient p, 3 

neglected h1 Eq. (30), into account. · 
The forerunners [Eq. (30)] have an important characteristic, 

namely, that they begin at 1'' = 0 with a rather large amplitude which 
decreases bit by bit afterwards. l~"ormula (30) actually would give 
an infinite amplitude at T' = 0, but it loses its validity for this tirne~ 
The e~act form of the start of the signal has been calculated in Eq. ( 44), 
Chapter IV, Section 7 and is given b~y an Air)' function d(v) (F'ig. 7). 
Formula (44) of Chapter IV reduces to 

(31} 
1 ( )1/3 

-- ~ d(v) 
2:n;w0 Ax 

( )

113 

'l'=-T' ;X, 
u~i\}g Eqs. (42), (43), (44) of Chapter IV and Eq. (30) above. 

Several orders ·of magnitude \Vill serve to illustrate. these results. 
Using a yellow incident signal, which travels one centimeter through 
a medium whose characteristic frequency is in the ultraviolet, the 
numbers are 

k= 1 em., w = 4 X 1015 (A = 0.5;tt), w0 = 4 X 1016 

3 See Chapter III, Eq. (l9b). 



128 V. WAVE PROPAGATION IN A DISPERSIVE DIELECTRIC 

If the index of refraction n is 1.5, this gives 

1 
A~- X I0-33 

5 

The first toreru11,ners arrive with the velocity c of light in vacuum. 
They require a time t x I0-10 sec. to travel 1 em. Their original 
am11litude is zero. After a time T = 10-12 after the start of these 
forerunners, their amplitude has a magnitude around 

using Eq. (29), \\·hich means an intensity aro11nd 10-1 compared with 
that of the actual signal. 

For the seco1td forerunners, the start is given by Eq. (31). The 
Airy functio11 has a maximum value of about 2.45 and thus, using the 
abo\'e orders of magnit11de, the initial amplitude is about l ?< I0-2, 

or the relative intensity is 1 x I0-4. As the tin1e T' increases, these 
forerunners decrease slowly, according to Eq .. (30). After a time T' 
of I0-12 the amplitude has decreased .. to I0-3 or a'relative intensity 
of IQ-6, and is already very weak. 

The front of these second forerunners may possibly be observ·able I 

6. A Real Transparent Medium, Havin1 Several Absorption Bands 

Actttal materials l1ave more than one absorption band, and thus 
have several characteristic frequencies ro0 , oJ0 ', .... , so thai: the 
dielectric constant is given by a sum of temts sucl1 as Eq. (10), 

(32) na = e = 1 + I. 2 ~,.z ---·--
" WOk- 2tpJta)- ru 2 

The curves of the index of refraction n = c/W and of cfU (U ~group 
velocity) have the form shown in Fig. 6, where the case of a medium 
with two characteristic frequencies w0 and (JJ0 ' has been sketched. 
The results for this case will be analagous to those of the preceding 
sections. Far from the absorption bands, the velocities U, U ,, and .S 
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will coincide.. f"'or each absorption band, the velocities will be equiv
alent to those shown in F"'ig. 5, the signal velocity being then ill-defined 
and having any v·alue between -u 1 and S, depending on the sensitivity 
of the detector., 

c 
Velocity 

1 

0 

I 
. I 

I 
! 

' 
I 
I 

\.,I !l 
Wo 

FIG. 6. Key~ --------. c 1 J.V 'vhere W ;_-;: phasE> velocity; 
• ·- • -, cf ll where (f =: group velocity (part of the usable curve outside the absorp· 
tion bands); 
----, cj U (pa.rts whi,-~h are unusable, situated in the absorption bands). 

1'he nature of the forerunners can also. be read directly from these 
curves. The jo'l'erun.tters U.Jith ·velocity c will still exist, being the first 
to arrive and having very high frequencies. They will be given by 
a formula like Eq. (29). 1'he forerttnneJ'S of velocity cfn0 and very 
low frequencies vvill also occur, represented by a formul~ similar lo 
Eq. (30). Btlt also, a third grou.p of forerunners will be found, cor
responding to those frequencies Q between ro0 and lu0 ' with an incoming 
velocity. U,., which, for the case sho'\\rn in the figure, is iess than the 
velocity cjn0 of the zero frequcn,jy forerunners. But there is nothing 
which shows a priori that this is a general condition. At tl1e fre
quency D. the group velocity has a maxi~urn (quasi-latent tinte). 
Tl1e form of the corresponding forerunners would be found by using 
fonnulas (44) and (44') of C.hapter IV, and summing th~. contribu ... 
tio11s for + f) and -!J. · 

At a timet, the systen1 of forerunn~rs is obtained by superposition 
of the frequencies wl1ose group velocity U is equal to xjt. AI~ line 
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parallel to the w axis can be drawn at the height ctjx \Vhich cuts the 
curve cjU at the points 44,B,C,D, and at the symmetric points 
A',B',,C',D'. 

This gives a superposition of four foreiunners of different fre-
quencies, which interfere with each other. 'fhe frequencies situated 
inside the absorption bands are suppressed so that, for predicting 
the forerunners, only the parts ( ·- ·- · -) of the curve cfU situated 
outside the absorption bands need be used, and the parts ( --~-----) 
in the absorptior1 bands can be disregarded .. 

In the general case, one frequency !J \Vill be found bet\\reen each 
absorption region., which means that there will be (n + 1) e-rouns 
of forerunners for n absorption regions. 

7. Quantized Atomic States, Kramers' Dispersion Formulr 

An actual material Inedium possesses a certain number of char
acteristic frequencies for emission and for absorption. This is the 
empirical fact which·· Section 2 tried to account for by considering 
each atom q.s a harmonic oscillator with a characteristic frequency ro0 • 

Actually, it is now we}} ... known that such a model is just a gross 
approximation. The atomic structure is a separate worlcl obeying 
special mechanical laws, those of quant11m theory. The atotn can exist 
in a series of states, with energies 

each of which is stable to some extent. While the atom is in one of 
these states, it does not emit any radiation. Emission or absorption 
occurs only '"then the atom jumps fron1 one state Ei to another Ek, 
and the freqttency v of the emitted radiation is then given by Bohr's 
relation, which contains the quanttml. contant h; 

(33) (w = 2nv) 

During the trapsition tin1e, the atom may be regarded as a sort of 
harmonic oscillator of frequency vik and the amplitude f[;,k of these 
vibrations can be calculated. The square of this magnitude fqikl 2 

is a measure of the intensity of the radiation of frequency vik· If 
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qik represents e111ission of ligi-rt associated \Vitll a transition i ___,. k, 
then qk;, re1)resents absorption of light in a transition k __ ,. i. Tl1ese 
two quantities are complex conjugates, so that jqikl 2 = jqM\ 2. Tl1us, 
a strong emission line for (i __.. k) corresponds to a strong absorptioR for 
(k -+ i). 

· If, now, a ray· -of light of frequencY. ·v is incident on. a medium 
composed of quantized atoms, what will happen? 

Eacl1 atom \vill be the source of secondary rays of tl1e sa•e fre
quency as the incident radiation; but \vitl1 different phases. Tl1is is 
tlte cohere·nt radiation, which corresponds to the effpct studied in 
Section 2 from the classical point •Jf yiew. ~fhis coherent radiatio11 
adds to the incilient radiation to forn1 the refracted wave. ·rhe index 
of refraction n is given by· a fcnnons for1nuJa of }{:ran1crss 

(34) 

This forrnula is qltite analagous to that of classical tl1eor~y ~Eq. (32)]. 
I-Iere, there are no damping factors p included, but thib is due to the 
approxirnations made in the fb.eory. .A more exact application of 
-f.}Uantum theory wnuld result in introducing tlle qu~nturn equivalent 
of p. 

The numbers j1k are directl~l proper tional to tl1e a1nr~litudes q1k 

of the various characteristic frequencies. If lJ;k is the a1nplitude 
for the direction of the electric field of the inl':ident vv~ave, and y11 
is the amplitude for the direction of propagation, then 

(35) 

Kramers' forJnula (34) calls for several ren"larks. If the ato1ns are all 
originallv in their norn1al state E r., \Vitl1 rninimU!l1 enerD"l.:·, aU the 

~ ~ bJ 

frequencies v.Jik are absorption lines corres_ponding to the possil)le 
tt ansitior1s to states of l1igher energ)r 1:·;- 'fher1 forn1ula ( 34) cot
responds exactl)' to the classical equj·valent ( :-l~;). 

It is l1owever possible, tl-lat the aton1s 'f-viJJ pe found in an excited 
state E'k, i.e. 1 not in their state of lovvest energy. Tl1enl' in Eq. (34), 
not only· 1:he frequencies for absor-ption fron1 E k to sta .. tes of higl1er 
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e~ergy than Ek, will occur but also the frequencies of emission cor
responding to transition fron1 E k to states E1 \\?ith less energy than E k· 

By virtue of formulas (35) and (33), the coefficients fik for emission 
\\·ill be negative, while tl1osc for absorption are positive. 

1"his peculiaritj-T ca11not occur in the classical formula ( 32), since 
the frequencies of absorption and emission are' identical there. 
Classically, the frequencies were assumed to be independent of the 
initif\1 energy Ek of the atom. 

Finall}', the coefficients f;k are directly proportional to qik' 
Tln.ts, the only frequencies aJik which are effective in Kramers' formula 
are those \"v·hich are actttally found in the spectrum of the atont. 
T'here are forbidden transitions f --~ k (noncombining levels), for which 
the correspondiug amplitude is always zero. These transitio11s also 
\Vill contribute uo tern1s to the dispersion fortnula {34). 

"fhu~, the I< rarners' formula makes it possible to apply the classical 
results with practically no changes. The frequencies which are 
ob~erved are those given by the energy differences (33). The fre
quencies of the electrons in their orbits (as in the old tnodel of Bohr) 
are never ol)sen7ed . 

.J3e~ide the coherent radiation \vhicl1 has the same frequency as 
the incident \vav·e, the atoms can emit an incoherent radiation, or can 
even be ionized and ernit secondary electrons. The incoherent radia
tion has a different frequency than tl1e incident wave. If ,,. is the 
incident frequency and ,~ik one of the characteristic frequencies of the 
aton1, then the ernitted radiation 'vill have frequencies v ± v1k. This 
~.:hangl! of frequeucy is typical of the phenomena predicted by the 
theory o_f Kramers, I-Ieisenberg, anrl Smekal, and discovered exper
irnentally by the noted Indian physicist Raman. liurthern1ore, if 
there is n1uch absorption, i.e., if the frequency v is near one of the . 
,_~haracteristic frequencies v1k of t'he atom, the11 a certain number of'. 
frequencies l'

1
'k' of the atorr1 can be en1itted. These result from the 

fact that if th~ atom is initially in the state Ek. then by absorbing a 
quantnn1 of energy it undergoes a transition to a higher state E; and 
in returning to the nor1nal st~~ 1 e E k' it can etnit different frequencies. 
If the frequency v is very high, then it may even ionize the atom,, 
ejecting one or more electrons (photoelectric effect}. Finally, for very: 
s1nall wavelengths (x·- or y-rays)) the Compton effect ca11 also occur. 
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Tltese several effects are mentioned here only for the purpose of 
putting Kramers' dispersion formula into tl1e correct context, and to 
show ltow it can be distinguished from tl1e other optical effects. 

8. The Relation Between the Problem Treated and the AitaloJoUs 

Technical Problems 

It is believed that the previous discussion contains the essential 
facts on the st1bject of the propagation of wa\res in material rnedia. 
The existence of dispersion and characteristic frequencies of tl1e 
mediurn introduces, as has been sho\\'n, some serious con1plication~, 
and leads to very delicate n1athematical problems. 

A large number of researchers have attacked thesP problems in 
th~ last few years, because the problem treated l1ere is closely 
connected to ·veFjt ilnportant technical problems. }:4irst of all, there 
are the problems posed by the propagation of radio wav~s in the 
H eavist'de layer, and by the reflections of those radio \\'aves which 
can be observed. ·rhe I-Ieaviside layer is assumed to be situated in 
th~ upper atmosphere and to consist of ions and free electrons. These 
free charges result in a mediun1 with a characteristic frequency 'vo == 0, 
and the propagation of radio waves in this medium is very similar 
to the problem treated here. 

If the damping constant p is neglected (it is very' small for free 
charges), then the curves of Fig. 4 \\'"ill look like the ones in l~ig. 7. 
The coefficient 

a = v~i;.I\T(e2/m.) 

is directly related to th~ number N of free electrons p~r cubic cen
timeter. \\iaves with frequencies w less than a cannot propagate; · 
they are absorbed. For (o = a. the phase velocity Tt'" is infinite and 
the group velocity is zero. so that the oscillator:r energy remains 
stationary, i.e., is not 11ropagated. As the frequency w increases, the 
""'aves are propagated \Vitlt a still stnall group velocity, \vhich gradually 
increases. 

J.A,. complete tl1eor_y~ must include the effect of datu ping; this caB b~ 
done by inserting a suitable dan1ping factor p. Then, a velocity of 
energj' t ranspo~t [] 1 \\·ill be obtained (sho\\'ll as tl1e dotted curve in tht• 
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right part oi Fig. 7 ). This velocity has very small v·alue..s (cjU1 

is very large), in the regiqp bet\veen 0 and a. "fhis qualitative result 
can easily be obtained also by examining the curves of Fig. 5. 

0 _......._.._, _________ _ 

w0 a 

Ftc. 7. K~y: ----~-----) n = cfW 

-- -- - -~ ~ cf U 
"• • ·~ cfU1 

0 

"t-·here f¥ = phase velocity; 
where U == group velocity; 
where {! 1 = velocity of ertergy trans~ort. 

Th.e velocity U 1 and the signal \relocity S coincide with the group 
velocity U for those frequencies w far from a. In the region between 0 
and a there will be a curve similar to that in Fig. 5_ However, as has 
already been stated, the definition of a signal velocity is ver~' difficult 
in the absorr>tiorl region. It seems that the velocity S given in Fig. 5 

is actually too tligh, ana that the CtlP/e for U 1 represents a DlOre 
reasonable estimate. Thus, for tl1e very lo~ frequencies (ru ~a), 
the signal velocity \viii be very small, b1.1t not zero. 

Tl1e evaluation of the signal velocity l1as been discussed thoroughly 
by Baerwald, who uses a method of integration in the ~omplex plane 
which is more exact than the one used previously by the author. 
The result is a curve for cfS which has a very· sharp maximum in 
each absorption region. This curve for cJS is 're:ry close to tl1e curve 
cfU 1 shown in Fig. 5. One of the curves calculated by Baer\1\rald is 
given here. In Fig. 8, the curve for cfS ev·aluated by the n1ethod 
used by the author is sho\vn (lower curve, clearly, a lower limit) and 
also tl1e asymptotic curve of Baerwald' upper curve, upJ_.>er limit). 

4 For the units used and a detaJled discussion, refer to the paper by H. Baer,vald, 
.Ann. Ph'!,tsik 7, 731 {1930). 
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Depending on the sensitivity of the detector 1.1sed, any value bet",~.reer~ 
these curves could be found. 

FIG. 8. Brillouin1
S curve (lower limit) ~~nd asyrn.ptoti" curve (upper limit) for the 

inverse of the signal velocity in a region of selt;ctive absorption. 

Very similar problems are also encountered in tl1e propagation 
of telepl1onic or telegraphic signals. Loaded transmission linf!~'r Plters, 
and lines prodllCe problems of th.e sarr1e t:)rpe Vlhich are of v:er;7 great 
practical interest. The existence of substantial forerunners is 2: srAJJ'Ce 

of great annoyance for transn1issions. Tl1ey result in a :repetitiun of 
the signal (artificial echo) which is often intolerable in pract1ce. All 
these problems are treated by,. the general methods outlined here. 
Their connection with the subject matter covered in this chapter is 
mentioned, even though no discussion of th~se problerr1s will be given~ 
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WAVES IN WAVE GUIDES AND OTHER EXAMPLES 

1. Guided Waves 

Guided waves provide an excellent example for the distinctions 
between phase, group, signal, or energy velocities which we shall discuss 
in the present chapter. The electromagnetic theory of these waves 
was discussed extensively by Sommerfeld, 1 who showed how the 
phase velocity always exceeds the velocity of light in vacuum c; 
actual wave propagation occurs, for each mode, on frequencies above 
the cut-off frequency for which the phase velocity is infinite. The 
point we want to ernphasize is the fact that all other ·velocities 
(especially the group velocity) are below the velocity of light. We shall 
use a very simple discussion, which applies particularly \\·ell for 
rectangular wave. guides, and provides a clear pl1ysical explanation 
of these properties. 1 

2. Acoustic Waves 

The problem of sound vibrq.tions in hollow pipes was studied 
theoretically many years before the corresponding electromagnetic 
problem, n.otably by Lord Rayleigh3 in 1897. Probably because of 
experimental difficulties, tl1e importance of his results •.vas not 
appreciated a.t tl1e time. They were not experimentally verified until 
much later, after accurate metl1ods and appropriate equipment for 
wave generation and detection (loudspeakers and microphones) had 
become available. 

1 A. Sommerfeld, ~~Electrodynamics," Sections 22-25, especially pp. 193-197. 
Academic Press, New Y.ork, 1952. 

a L. Brillouin. Rev. gen. elec. 40, 227 (1936), quoted in reference 1. 
a Lord Rayleigh, ''Theory of Sound," Vol. 2. 1897. 
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As in other ways, Lord Rayleigh was much ah~ad of his titne. 
r nterest in ultraltigh frequencies revived an interest in acottstic waves, 
and the f'arlier experimental studies \\rerc repeated in refined form, 
allo\\~ing for the observation of all the higher modes3

•4 of \\laves 
predicted by Lord Rayleigh. 

For a sound \vave in air, it. can he sho\\~n that the velocity potential 
1 satisfies tl1e wave equation 

(l) 

\Vhere Cis tl1c natural velocity· of sound in free air, L1 is the Laplacian 
operator 

a~ 02 iJ2 
J = V2 = ----- + - ·+ --ox2 oy2 az~ 

and the disp~acement velocity of the 
air particles is given by 

that is, 

(Jj 
1J.t = ~' ux 

V =~grad I a 
FIG. 1. 

Consider now a \\7ave traveJling in th<~ z direction do\\'11 a cylindrical 
tube or pipe (Fig. 1) and try for a solution of the forn1 

f(x,y,z,t) ~ </J(x,y) e£(rut- kz) 

the exponential factor giving the propagation in tl1e z direction~ and </> 

giving the transverse ·variation of amplitude. 
~fhe v~locity in the pipe is the phase velocity (JJ/A, --= lr·, and the. 

v~'ave length in the pipe is ~1.=-~-~ 2n/k. 
Substitution of this fornt cf solution i_nto the differential equation 

gives us an equation for cp: 

(4) 

4 li E. I-Iartig and C. E. Swanson, PAys. Rev. o4, 618 (1938). 
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with 

'['he solution of this equation \\rill be given by certain functions of 
x and )' \Vhicl1 involve K. If the walls of the tube are rigid, there can 
be no velocity perpendicular to the wall, that is 

(5) 
of 

Vn = ~- = 0 un 

~here n is a norrnal to the side \Vall of tlte tube, or 

'!'his cannot be true for any solution of Eq. ( 4 ), but may be possible 
for the proper values of K. \\Te find (as will be clearer \Vhen we cons-ider 
a little later tl1e r>afticular case of a rectangular pipe) th.-1t these 
values vf K forrn a double infinity \Vhich \Ve can the characteristic . 
or proper ?..!alues K~~ .. n' and the corresponding solutions ~(x,y,J(nm) arP. 
the proper fun~rion~, ~,.,,. 

f•~or a drun1 or rnembrane, we have an ~quation of tl1e sarr1e tvpe~ 
\vhere cfo is then the displacern.t'nt itself, and 'Nhere K is a multiple 
of w, the proper \ 7alues thu~ giving dire~·tly those frequencies at \Vhich 
the membrane can v·ibrate and :still sa~isfy tl1e boundary conditions. 

In our case, U) is not givt'\n directly, and does not forrn a discrtlote 
set. It is only limited by the condition that J( be -.nt of tl1e Knm ~ 

(6) ( 
2 ) Y2 --- (I] ], 2, R nt•~ ---· (-.,- ff -- r\-

, -· 1 

according to l~q. ('i), ur 

so tl1at fur a given mode of vibrat£1.'rn (n,rn), t}H--~r~: is a lov.test possible 
frequency, th~ critical frequency (k ·= 0) r)r ~-1 == ::>-~): 

(7) 
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The (n,n2-) mode ~""' ei(wt·-Jur> is dan1ped out for all frequencies below 
thi~~ value. l-Ienee tl1e tube acts as a high pass filter. Note that the 
sound velocity in the pipe is greater than its velocity C in free ·air. 

· ( R ... 2 )112 
w = i = c 1 + -k~"' 

or, 

(9) 

\\rhich result is shoV\rn in Figs. 2, 3, and 4. 

F1G. 2. 

·rhe group velocity U is gi\rex1 by 

and su1cc· 

an.d 

wdro = kC 2dk 

kC 2 C 2 

U=-=-
w w 

FIG. 3 .. 
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or 

(10) UW=C 1 

so that 

It is easy to show that for frequencies l?elow cut-off one obtains 
attenuation instead of propagation along the pipe. 

--~0~~--------------~w Wnm 
L, 

0 

FIG. 4:. FIG. 5. 

3. Rectan1ular Tube 

In the case of the rectangular pipe (Fig. 5), the condition that 
there be no velocity normal to the walls gives us tl1e boundary 
condition 

at x = 0, L1 

at y = 0, L2 

and the function ~ must satisfy Eq. (4). 
The possible functions ~ are therefore 

(11) 
nn mn 

c/>,.,n = XnY m = Anm COST X COS -L Y 
1 2 
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( 12) K!m = n2[(;)2 
+ (~Yj ~~~ E; -k2 

'The resulting wave ts 

I = A,.. cos nn x cos _!!_~_ y ei(wt- kt) 

L 1 L 1 

.. fhe elementary solution (ttm) ==- 00) is 

I -~ .,I.. ei(wt- k.r) 
00 --- ~00 

Now let us see how the different modes vary· in tJ1e cross section. 
P'or the (0, I) solution, the term cos (njL 2 )y sho'v~ that there is a 
node (/ = 0) at 

n n 
-·v=--L2 ~ 2 

or y = l L 2 . And, similarly, the mode (10) has a norh· at x ::-= ll .. l. 

FIG. 6. 

More generally, the {n,tn) n1ode exhibits n nodes in the x direction 
and 1n nodes in the y direction as sketcheci in f'ig. 6. 

4~ Physical Significance of Guided Waves 

'"fhc 'vaves 1n a pipe can propagate only a long certain modes of 
vibration, and they exhibit a phase velocity Jfl largt:r than the qound 
\relocit)l C in free space. 
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l'he shape of the wave results from the reflecting boundaries of 
the pipe. Let us consider a rectangular pipe open at one end (Fig. 7) 
with a \Vave falling obliquely on its bottom surface. 

FIG. 7. 

"I'his structure will reflect the wave over and o'.ter again, so that 
the velocity of sound along the ne\v, zigzag path is still C, but tl1e 
\relocity· U at "'~l1ich the signal actually progresses do\vn the pipe is 
much s)ov.·er, in fact we see that U =- C sin 0. And W is the phase 
velocity of the interference patterns set up by the incident and 
reflected waves. 1"o see that this latter is the case, let us superpose 
the t\VO \Vaves, as sho\vn in Fig. 8. 

\ 

, 
, .... '' 

, , ,... , 

.~---~'~-~~~-~~~~~~~~~~~~ 
l J. .t. ,t. J. .\ .t. .1. J. ,t J. 

A 

infer(erfinces 

" 2cosfl 

FlG. 8. An incid~nt wave] is falling upon a mtrror ltl and n·flected along R. Interfer
ence fringes build up in the region 'vhere both \vaves 1 and R are superitnpt>sed. 
A series of dark fringes, numbered 0,1,2, ... 10 ar~ parallel to the mirror; bet,veen 
these dark fringes the supe-rposition :results in new waves, ·with a wave length /J >· ) .. 

I and a velocity W > C. 
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If the incident wave has its normal in the direction (0, -k2, k3), 

the reflected wave must be in the direction {0, k2, k3), so that the 
sum of the two is 

(13) 
== 2A cos ( k

2
y )ei( wt - k,..) 

which is a system of fixed nodes parallel to the mirror, with amplitude 
between nodes constituting a wave in the z direction. We see that f 
automaticall~y satisfies the condition that offoy = 0 at the mirror 
surface. We also have iJjjay = 0 in the parallel planes k1y = mn, or 

y= ~n(m=0,1,2.:.) 
2 

so that a second mirror could be placed at any one of these planes 
without disturbing the motion. 

A second mirror at y = (m + l)n/k2 yields our previous solution 
(0, m). The physical picture shows tl1at 

(14) U = __ c = sin £J 
c w 

We now "Nish to show that 
the group velocity U and the 
veloc-ity of transfer of energy 

Fig. 9. uen are equal. Let p be the 
energy density and f/J tt1e flux 

of energy per em. 2 per sec. in the pipe. The velocity Uen is defined 
by 

If (/)1 is the flux in the incident free wa,re, \Ve have {Fig. 9) and 
energy density p1 = A 2 in the incident wave 

sl = 25 sin() 
(15) 
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Now, the energy density is measured by f/2 f. Hence, 

fP1 = /11 C :;::: P1C = A 8C 

since cos2 k2y:::::: t· 
And sot 

or 

( 17) 

(/J = /1 U m = 4A I (! U .,. ) 

U~n = C sin 0 = U 

•--------M(y=O) 

--------tTx 

147 

Fig. 10. An incident beam I falls upon two mirrors M and l'vl' at right angles. 
The lines T1 nnd T3 shov, the position of black fringes parallel to both mirrors 

Now let us consid~r an incident wave not parallel to tl1e yz plane, 
so that there will also be reflection from a mirror in this plane. That 
is, consider a wave with normals in any direction (kvk2,k3). 

( 18) 

This will be reflected from a mirror in the xz plane (Fig. 10) in the 
direction (k1, -k2, k3), and we have, as wave of superposition, 
retTlembering that dffoy ~--= 0 at y = 0, as before: 

(19) 

J)togressing now in the (kv k3) direction instead of in tl1e z direction. 
I 
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But this wave is in turn reflected on the yz plane x = 0, giving for 
the wave of superposition, noting that 8ffox = 0 at x = 0: 

(20) 

• L3 n=5 
+ I - I + 

----t----~----n=4 
- I + I -

----r----~--- n=3 + I - I + ----r---i-----n=2 
- I + 1 -· 

---~---;---- n=1 L2 + 1 - r + 
y m=3 m=2 m=1 10 

f' 
FIG. ll. Distribution of positive and negative vibrations in the cross section of 

a rectangular pipe (n ;::. 5J m = 3). 

or the (ntn.) s0lutiot1s on proper choice of k 1 and k 2 : k 1 =-:::: n1r) L1· ancl 
k2 =-== nznJ L 2 . I·~ig 11 shovtrs the distribution of vibrations in a cross
section. 

5. Electromagnetic Guided Waves 

Results very sin1ilar to the preceding ones may be obtained for 
electromagnetic \\'aves propagating along a pipe. \Ve shall consider 
a metallic pipe and simplify the problem b)' assuming the n1etal's 
conductivity to be infinite. Within the pipe. eJectromagnetic \\laves 
follow M·axwell's equations. Let us call z a coordinate taken along 
the pipe and x and y two cartesian coordinates in the cross-section. 
We assume all fields to depend upon z ancl t by an exponential 

(21) 

which indicates propagation along the pipe. 
We may discuss the SQ)ution to Maxwell'" equations for this 

case in a way analogous to that in wl1ich we treated the acoustic case, 
looking for propagation down the tube. \~le find that E: and Hz 
satisfy the equations 

(22) 
L1Hz + K 2H: = 0 
X)' 



5. ELECTROMAGNETIC GUIDED WAVES 149 

with the other components E %' E,. H x' H :v expressed in terms of E, 
artd 11

6
, respectively·. Th.e conditions at the boundary are E1 = 0, 

aH /on =--= 0. 
$1 

1'wo important t)rpes of solution are the electric type (HJ = 0, 
E

1 
;:f: 0, i.e., tran,sverse tnagnetic, or TM), and the magnetic type (E

1 
= 0, 

H, =!= 0, i.e., transtJerse electr£c, or TE) . 
• ~s in the acoustic case, we find the relation sijnilar to Eqs. (6) 

and Eq. (8): 

(23) 

and agai11 
l] < c 

Ho\vever, the (00) solution no longer exists. 
For the H-waves, \Ve have the same boundar)t condition, oHfon = 0, 

a~f in the acoustic case, and l1ence the satne solution, \vhich for a 
rectangular pipe IS: 

nnx n~:rcy . H: = cos-- cos---=- e'(<tJI-- kz} 

Lt " L2 
(24) 

For the E-wa·ve, the boundary condition is Ez: -=== 0, and hence tht~ 

solution is, for a rectangular pipe. 

(25) E . n.n:x . mny '(!Jl k) 
.t ::::: stn --L----~ Sln ---r-:··- -· ez I - z 

l 2 

' t ' - . t t I 

' ...,._~ 

~+-

x-~x ...... ~ 
x,~.x 

FIG. 12. FIG. 13. 

Figures 12 and 13 indicate the distribution of electric and magnetic 
lines of forces in the cross-section for some typical waves: solid lines 
correspond to electric lines of forces and dotted lines represent 
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magnetic lines of forces. Figure 12 shows, on the left, a pipe of square 
cross-section enclosing a wave E11, while on the right there is a pipe 
of circular cross-section in which the fields correspond to the so
called E0 solution. The similarity of the two waves is easily recognized. 
Figure 13 shows two similar H01 solutions for a square or a circular pipe. 

6. Some Other Typical Examples 

There is hardly any problem of wave propagation where the 
preceding definitions would not play an important role. G·roup, 
signal, and energy velocities have always to be defined, in addition 
to the usual phase velocity. A variety of such examples was given 
in another book by the author.5 The one-dimensional problem is 
first discussed for a variety of discrete structures, and the definition 
of group, signal, and energy velocities is given in Chapter V, where 
it is also proven that the energy velocity is directly related to the 
"characteristic impedance" of the system. Chapter VI discusses 
problems in t\\ro dirrtensions, and Chapter '/II deals with three
dimensional structures and discusses the zo11e structure. 1~he general 
results obtained for mechanical vibrations and waves can easily be 
extended to any kind of wave~ propag·ating in periodic stn1ctures. 
Electronic tfo-waves in a crystal lattice have exactly similar properties, 
and the zone -structure is of great impottance for tltem. (;roup \telocity 
for the tjJ-waves cotTesponds directly to electron-particle-velocity, 
and this correspondence explains all the peculiar properties of electrons 
in metals or in semiconcluctors. Tl1e whole theory of electrons in 
semiconductors developed by Shockley is based entirely on the 
author's results, as can be easily seen in Shockley's book. 

,,Not only in crystalline structures, but for all problems of wave
mechanics, it was proven by Schrodinger that the group velocity 
of the wave represented the particle velocity of the electrons. This 
relation is one of the most important applications of the notion of 
group velocity. 

' L. Brillouin, "Wave Propagation in Periodic Structures.'~ First edition, McGraw-
1-Iill, New York, 1946; second edition. Dover, New York, 1953. French edition, 
with M. Parodi as coauthor: "Propagation des on des dans le$ milieux periodiques." 
Masson, Paris, 195ft 
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