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Preface 
Purpose and Prerequisites 

This book is written primarily for a single- or multi-semester course in applied mathematics 

for students of engineering or science, but it is also designed for self-study and reference. 

By self-study we do not necessarily mean outside the context of a formal course. Even 

within a course setting, if the text can be read independently and understood, then more 

pedagogical options become available to the instructor. 

The prerequisite is a full year sequence in calculus, but the book is written so as to be 

usable at both the undergraduate level and also for first-year graduate students of engineer- 

ing and science. The flexibility that permits this broad range of use is described below in 

the section on Course Use. 

Changes from the First Edition 

Principal changes from the first edition are as follows: 

1. Part I on ordinary differential equations. In the first edition we assumed that the 

reader had previously completed a first course in ordinary differential equations. How- 

ever, differential equations is traditionally the first major topic in books on advanced 

engineering mathematics so we begin this edition with a seven chapter sequence on or- 

dinary differential equations. Just as the book becomes increasingly sophisticated from 

beginning to end, these seven chapters are written that way as well, with the final chapter 

on nonlinear equations being the most challenging. 

2. Incorporation of a computer-algebra-system. Several powerful computer environ- 

ments are available, such as Maple, Mathematica, and MATLAB. We selected Maple, 

as a representative and user-friendly software. In addition to an Instructor’s Manual, a 

brief student supplement is also available, which presents parallel discussions of Math- 

ematica and MATLAB. 

3. Revision of existing material and format. Pedagogical improvements that evolved 

through eight years of class use led to a complete rewriting rather than minor modifica- 

tions of the text. The end-of-section exercises are refined and expanded. 

Format 

The book is comprised of five parts: 

I Ordinary Differential Equations 

II Linear Algebra 

WII Multivariable Calculus and Field Theory 

IV Fourier Methods and Partial Differential Equations 

¥V Complex Variable Theory 

XV
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This breakdown is explicit only in the Contents, to suggest the major groupings of the chap- 

ters. Within the text there are no formal divisions between parts, only between chapters, 

Each chapter begins with an introduction and (except for the first chapter) ends with a 

chapter review. Likewise, each section ends with a review called a closure, which is often 

followed by a section on computer software that discusses the Maple commands that are 

relevant to the material covered in that section; see, for example, pages 29-31. Subsections 

are used extensively to offer the instructor more options in terms of skipping or including 

material. 

Course Use at Different Levels 

To illustrate how the text might serve at different levels, we begin by outlining how we 

have been using it for courses at the University of Delaware: a sophomore/junior level 

mathematics course for mechanical engineers, and a first-year graduate level two-semester 

sequence in applied mathematics for students of mechanical, civil, and chemical engineer- 

ing, and materials science. We denote these courses as U, GI, and G2, respectively. 

Sophomore/junior level course (U). This course follows the calculus/differential equa- 

tions sequence taught in the mathematics department. We cover three main topics: 

Linear Algebra: Chapter 8, Sections 9.1—9.5 (plus a one lecture overview of Secs. %.7-9.9), 

10.1-10.6, and {1.1-11.3. The focus is n-space and applications, such as the mass-spring 

system in Sec. 10.6.2, Markov population dynamics in Sec. [1.2, and orthogonal modes of 

vibration in Sec. 11.3. 

Field Theory: Chapters 14 and 16. The heart of this material is Chapter 16. Having skipped 

Chapter.15, we distribute a one page “handout” on the area element formula (18) in Sec. 

15.5 since that formula is needed for the surface integrals that occur in Chapter 16. Em- 

phasis is placed on the physical applications in the sections on the divergence theorem and 

irrotational fields since those applications lead to two of the three chief partial differential 

equations that will be studied in the third part of the course—the diffusion equation and the 

Laplace equation. 

Fourier Series and PDE’s: Sections 17.1-17.4, 18.1, 18.3, 18.6.1, 19.1-19.2.2, 20.1- 

20.3.1, 20.5.1~20.5.2. Solutions are by separation of variables, using only the half- and 

quarter-range Fourier series, and by finite differences. 

First semester of graduate level course (G1). Text coverage is as follows: Sections 4.4— 

4.6, 5.1-5.6, Chapter 9, Secs. 11.1-11.4, 11.6, 13.5-13.8, 14.6, 15.4—15.6, Chapter 16, 

Secs. 17.3, 17.6-17.11, 18.1-18.3.1, 18.3.3-18.4, 19.1-19.2, 20,1-20.4. As in “U” we do 

cover the important Chapter 16, although quickly, Otherwise, the approach complements 

that in “U.” For instance, in Chapter 9, “U” focuses on n-space, but “G1” focuses on gener- 

alized vector space (Sec. 9.6), to get ready for the Sturm—Liouville theory (Section 17.7), 

in Chapter {1 we emphasize the more advanced sections on. diagonalization and quadratic 

forms, as well as Section 11.3.2 on the eigenvector expansion method in finite-dimensional 

space, so we can use that method to solve nonhomogeneous partial differential equations 

in later chapters. Likewise, in covering Chapter 17 we assume that the student has worked 

with Fourier series before so we move quickly, emphasizing the vector space approach (Sec. 

17.6), the Sturm~Liouville theory, and the Fourier integral and transform. When we come
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to partial differential equations we use Sturm—Liouville eigenfunction expansions (rather 

than the half- and quarter-range formulas that suffice in “U"), integral transforms, delta 

functions, and Bessel and Legendre functions. In solving the diffusion equation in “U” we 

work only with the homogeneous equation and constant end conditions, but in “G1” we 

discuss the nonhomogeneous equation and nonconstant end conditions, uniqueness, and so 

on; these topics are discussed in the exercises. 

Second semester of graduate level course (G2). In the second semester we complete the 

partial differential equation coverage with the methods of images and Green’s functions, 

then turn to complex variable theory, the variatiorial calculus, and an introduction to pertur- 

bation methods. For Green’s functions we use a “handout,” and for the variational calculus 

and perturbation methods we copy the relevant chapters from M.D. Greenberg, Founda- 

tions of Applied Mathematics (Englewood Cliffs, NJ: Prentice Hall, 1978). Cf you are 

interested in using any of these materials please contact the College Mathematics Editor 

office at Prentice-Hall, Inc., One Lake Street, Upper Saddle River, NJ 07458.) 

Text coverage is as follows: Chapters 21-24 on complex variable theory; then we re- 

turn to PDE’s, first covering Secs. 18.5~18.6, 19.3-19.4, and 20.3,2-20.4 that were skipped 

in “G1”; “handouts” on Green’s functions, perturbation methods, and the variational cal- 

culus. 

Shorter courses and optional Sections. A number of sections and subsections are listed 

as Optional in the Contents, as a guide to instructors in using this text for shorter or more 

introductory courses. In the chapters on field theory, for example, one could work only with 

Cartesian coordinates, and avoid the more difficult non-Cartesian case, by omitting those 

optional sections. We could have labeled the Sturm—Liouville theory section (17.7) as 

optional but chose not to, because it is such an important topic. Nonetheless, if one wishes 

to omit it, as we do in “U,” that is possible, since subsequent use of the Sturm—Liouville 

theory in the PDE chapters is confined to optional sections and exercises, 

Let us mention Chapter 4, in particular, since its development of series solutions, the 

method of Frobenius, and Legendre and Bessel functions might seem more detailed than 

you have time for in your course. One minimal route is to cover only Sections 4.2.2 on 

power series solutions of ordinary differential equations (ODE’s) and 4.4.1 on Legendre 

polynomials, since the latter does not depend on the more detailed Frobenius material in 

Section 4.3. Then one can have Legendre functions available when the Laplace equation is 

studied in spherical coordinates. You might also want to cover Bessel functions but do not 

want to use class time to go through the Frobenius material. In my own course (“G1”) I deal 

with Bessel functions by using a “handout” that is simpler and shorter, which complements 

the more thorough treatment in the text. 

Exercises 

Exercises are of different kinds and arranged, typically, as follows. First, and usually near 

the beginning of the exercise group, are exercises that follow up on the text or fill in gaps or 

relate to proofs of theorems stated in that section, thus engaging the student more fully in 

the reading (e.g., Exercises |—3 in Section 7.2, Exercise 8 in Section 16.8). Second, there 

are usually numerous “drill type” exercises that ask the reader to mimic steps or calculations 

that are essentially like those demonstrated in the text (e.g., there are 19 matrices to invert 

by hand in Exercise | of Section 10.6, and again by computer software in Exercise 3).
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Third, there are exercises that require the use of a computer, usually employing software 

that is explained at the end of the section or in an earlier section; these vary from drill type 

(e.g., Exercise 1, Section 10.6) to more substantial calculations (e.g., Exercise 15, Section 

19.2). Fourth, there are exercises that involve physical applications (e.g., Exercises 8, 9, and 

12 of Section 16.10, on the stream function, the entropy of an ideal gas, and integrating the 

equation of motion of fluid mechanics to obtain the Bernoulli equation). And, fifth, there 

are exercises intended to extend the text and increase its value as a reference book. In these, 

we usually guide the student through the steps so that the exercise becomes more usable 

for subsequent reference or self-study (e.g., see Exercises 17-22 of Section 18.3). Answers 

to selected exercises (which are denoted in the text by underlining the exercise number) 

are provided at the end of the book; a more complete set is available for instructors in the 

Instructor’s Manual. 

Specific Pedagogical Decisions 

In Chapter 2 we consider the linear first-order equation and then the case of separable first- 

order equations. It is tempting to reverse the order, as some authors do, but we prefer to 

elevate the linear/nonlinear distinction, which grows increasingly important in engineering 

mathematics; to do that, it seems best to begin with the linear equation. 

It is stated, at the beginning of Chapter 3 on linear differential equations of second 

order and higher, that the reader is expected to be familiar with the theory of the exis- 

tence and uniqueness of solutions of linear algebraic equations, especially the role of the 

determinant of the coefficient matrix, even though this topic occurs later in the text. The in- 

structor is advised to handle this need either by assigning, as prerequisite reading, the brief 

summary of the needed information given in Appendix B or, if a tighter blending of the 

differential equation and linear algebra material is desired, by covering Sections 8.1-10.6 

before continuing with Chapter 3. Similarly, it is stated at the beginning of Chapter 3 that 

an elementary knowledge of the complex plane and complex numbers is anticipated. If the 

class does not meet that prerequisite, then Section 21.2 should be covered before Chapter 

3. Alternatively, we could have made that material the first section of Chapter 3, but it 

seemed better to keep the major topics together—in this case, to keep the complex variable 

material together. 

Some authors prefer to cover second-order equations in one chapter and then higher- 

order equations in another. My opinion about that choice is that: (i) it is difficult to grasp 

clearly the second-order case (especially insofar as the case of repeated roots is concerned) 

without seeing the extension to higher order, and (ii) the higher-order case can be covered 

readily, so that it becomes more efficient to cover both cases simultaneously. 

Finally, let us explain why Chapter 8, on systems of linear algebraic equations and 

Gauss elimination, is so brief. Just as one discusses the real number axis before discussing 

functions that map one real axis to another, it seénis best to discuss vectors before dis- 

cussing matrices, which map one vector space into another. But to discuss vectors, span, 

linear dependence, bases, and expansions, one needs to know the essentials regarding the 

existence and uniqueness of solutions of systems of linear algebraic equations. Thus, Chap- 

ter 8 is intended merely to suffice until, having introduced matrices in Chapter 10, we can 

provide a more complete discussion.
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Appendices 

Appendix A reviews partial fraction expansions, needed in the application of Laplace and 

Fourier transforms. Appendix B summarizes the theory of the existence and uniqueness 

of solutions of linear algebraic equations, especially the role of the determinant of the 

coefficient matrix, and is a minimum prerequisite for Chapter 3. Appendices C through F 

are tables of transforms and conformal maps. 

Instructor’s Manual 

An Instructor’s Manual will be available to instructors from the office of the Mathematics 

Editor, College Department, Prentice-Hall, Inc., | Lake Street, Upper Saddle River, NJ 

07458. Besides solutions to exercises, this manual contains additional pedagogical ideas 

for lecture material and some additional coverage, such as the Fast Fourier Transform, that 

can be used as “handouts.” 
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Chapter 1 

Introduction 

to Differential Equations 

1.1 Introduction 

The mathematical formulation of problems in engineering and science usually leads 
to equations involving derivatives of one or more unknown functions. Such equa- 
tions are called differential equations. 

Consider, for instance, the motion of a body of mass m along a straight line, 
which we designate as an x axis. Let the mass be subjected to a force F(t) along 
that axis, where t is the time. Then according to Newton’s second law of motion 

a 

where a(t) is the mass’s displacement measured from the origin. If we prescribe 
the displacement a (¢) and wish to determine the force F(t) required to produce that 
displacement, then the solution is simple: according to (1), we merely differentiate 
the given w(¢) twice and multiply by m. 

However, if we know the applied force F(t) and wish to determine the dis- 
placement x(t) that results, then (1) is a “differential equation” on x(t) since it 
involves the derivative, more precisely the second derivative, of the unknown func- 
tion w(t) with respect to t. To solve for « we need to “undo” the differentiations. 
That is, we need to integrate (1), twice in fact. For definiteness and simplicity, 

suppose that F(t) = Fp is a constant. Then, integrating (1) once with respect to t 
gives 

me = Ft + A, (2) 
dt 

where A is an arbitrary constant of integration, and integrating again gives 

EF 
ma = st + At+ B,
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Figure 1. Mass/spring system. 

or, 

m \ 2 4 
a(t) = A (2 2-4 At + 2) (3) 

The constants of integration, A and B, can be found from (2) and (3) if the displace- 

ment x and velocity dx/dt are prescribed at the initial time (¢ = 0). If both z(0) and 

di 
| (0) are zero, for instance, then (by setting t = 0) we find from (2) that A = 0, d 

and then from (3) that B = 0. Thus, (3) gives the solution as a(t) = Fot? /2m, and 

this solution holds for all t > 0. 

Unfortunately, most differential equations cannot be solved this easily, that is, 

by merely undoing the derivatives. For instance, suppose that the mass is restrained 

by a coil spring that supplies a restoring force proportional to the displacement z, 

with constant of proportionality & (Fig. 1). Then in place of (1), the differential 

equation governing the motion is 

d?x 
maa = —kx + F(t) 

or, 
dx 

After one integration, (4) becomes 

dz: 
ma +k f vit) dt = [ Pw) dt + A, (5) 

where A is the constant of integration. Since F(t) is a prescribed function, the 

integral of F(t) can be evaluated, but since x(t) is the unknown, the integral of 

a(t) cannot be evaluated, and we cannot proceed with our solution—by—integration. 

Thus, we see that solving differential equations is not merely a matter of undo- 

ing the derivatives by direct integration. Indeed, the theory and technique involved 

is considerable, and will occupy us for these first seven chapters. 

1.2 Definitions 

In this section we introduce some of the basic terminology. 

Differential equation. By a differential equation we mean an equation contain- 

ing one or more derivatives of the function under consideration. Here are some 

examples of differential equations that we will study in later chapters: 

d?x 
Mowe + ha = F(t), 1 m5 + ka (t) (1) 

di oi. dé 
LE (2) 4 de CO ae’



d’og 
7 + 7 sind = Q), (3) 

d . 

wt on, (4) 

d?y dy ° ~ 9 14+ (2 
da? Cyit (Z) © 

d*y 
BI = ~w(2), (6) 

Equation (1) is the differential equation governing the linear displacement x(t) 
of a body of mass m, subjected to an applied force F(t) and a restraining spring of 
stiffness &, as mentioned in the preceding section. 

Equation (2) governs the current i(t) in an electrical circuit containing an in- 
ductor with inductance L, a capacitor with capacitance C’, and an applied voltage 
source of strength E(t) (Fig. 1), where t is the time. 

Equation (3) governs the angular motion @(t) of a pendulum of length /, under 
the action of gravity, where g is the acceleration of gravity and ¢ is the time (Fig. 2). 

Equation (4) governs the population x(t) of a single species, where ¢ is the 
time and c is a net birth/death rate constant. 

Equation (5) governs the shape of a flexible cable or string, hanging under the 
action of gravity, where y() is the deflection and C is a constant that depends upon 
the mass density of the cable and the tension at the midpoint « = 0 (Fig. 3). 

Finally, equation (6) governs the deflection y(a) of a beam subjected to a load- 
ing w(x) (Fig. 4), where & and J are physical constants of the beam material and 
cross section, respectively. 

Ordinary and partial differential equations. We classify a differential equa- 
tion as an ordinary differential equation if it contains ordinary derivatives with 
respect to a single independent variable, and as a 
    
Thus, equations (1)—(6) are ordinary differential equations (often abbreviated as 
ODE’s). The independent variable is ¢ in (1)—(4) and zx in (5) and (6). 

Some representative and important partial differential equations (PDE’s) are 
as follows: 

O7u = Ou 
2 — 2 

° Our = Ot’ ) 

fu Pui Gu 

da? * Oy? * a ~ " 
Au Ou Pu 2 

a ) = 
9 ° E * x) Oe ©) 

4, 4, 4, 
O*u L Oou 47% 29, (10) 

Ox! * ~Ax2Ay2 * dy! 
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+ L 

f 

E(t) . a(t) 

1 
C 

Figure lL. Electrical circuit, 

equation (2). 

a 

Figure 2. Pendulum, equation (3). 

  
PR 

Figure 3. Hanging cable, 

equation (5). 

            

  

Figure 4. Loaded beam, 

equation (6).
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Equation (7) is the heat equation, governing the time-varying temperature dis- 

tribution uw(w, ¢) in a one-dimensional rod or slab; a locates the point under consid- 

eration within the material, ¢ is the time, and a? is a material property called the 

diffusivity. 

Equation (8) is the Laplace equation, governing the steady-state temperature 

distribution u(, y, z) within a three-dimensional body; x, y, z are the coordinates 

of the point within the material. 

Equation (9) is the wave equation, governing the deflection ula, y,t) of a vi- 

brating membrane such as a drum head. 

Equation (10) is the biharmonic equation, governing the stream function u(x, y) 

in the case of the slow (creeping) motion of a viscous fluid such as a film of wet 

paint. 
Besides the possibility of having more than one independent variable, there 

could be more than one dependent variable. For instance, 

  

dz 
> = —(kar + kgi)er + kite + kiges 

dx 
i = korv1 — (ki + kga)ae + kgaey (1h) 

da: 
= = kgiay + karo — (kig + hog) 

is aset, or system, of three ODE’s governing the three unknowns a’; (¢), x(t), 2a(t): 

(11) arises in chemical kinetics, where 21, 72,3 are concentrations of three react- 

ing chemical species, such as in a combustion chamber, where the 4;;’s are reaction 

rate constants, and where the reactions are, in chemical jargon, first-order reactions. 

Similarly, 

    

  

OFy OF _ = 0 

OE, 4 OE, — a(x,y) 
Ox dys 

is a system of two PDE’s governing the two unknowns Ey (x,y) and E(x, y), 

which are the x and y components of the electric field intensity, respectively, a(x, y) 

is the charge distribution density, and € is the permittivity, these are the Maxwell’s 

equations governing two-dimensional electrostatics. 

At this point, we limit our subsequent attention to ordinary differential equa- 

tions. We will not return to partial differential equations until much later on in this 

book. Thus, we will generally omit the adjective “ordinary,” for brevity, and will 

speak only of “differential equations” over the next several chapters. 

Order. We define the order of a differential equation as the order of the high- 

est derivative therein. Thus, (4) is of first order, (1), (2), (3), and (5) are of second 

order, (6) is of fourth order, and (11) is a system of first-order ODE’s. 

More generally, 

F («, u(x), ul(a),u"(a),... ul") (x)) = 0) (13)



is said to be an nth-order differential equation on the unknown u(a:), where n 
is the order of the highest derivative present in (13). Here, we use the standard 

prime notation for derivatives: u’(a) denotes du/dax, u(x) denotes the second 

derivative, ..., and ul (2) denotes the nth derivative. In the fourth-order differ- 
ential equation (6), for instance, in which the dependent variable is y rather than wu, 
Flay yy yy”) = Ely!" + w(x), which happens not to contain y, y’, y", 
or yf" . 

Solution. A function is said to be a solution of a differential equation, over a 

particular domain of the independent variable, if its substitution into the equation 
reduces that equation to an identity everywhere within that domain. 

EXAMPLE 1. The function y(z) = 4sina — «cosz is a solution of the differential 
equation 

y +y = 2sinz (14) 

on the entire x axis because its substitution into (14) yields 

(—4sinz + 2sinew + xcosx) + (4sing — xcosz) = 2sina, 

which is an identity for all z. Note that we said “a” solution rather than “the” solution since 

there are many solutions of (14): 

y(z) = Asing + Boosz —xcosz (15) 

is a solution for any values of the constants A and B, as is verified by substitution of (15) 

into (14). [In a later chapter, we will be in a position to derive the solution (15), and to 

show that it is the most general possible solution, that is, that every solution of (14) can be 
expressed in the form (15).] @ 

EXAMPLE 2. The function y(x) = 1/z is a solution of the differential equation 

y ty? =0 (16) 

over any interval that does not contain the origin since its substitution into (16) gives 

~1/x? + 1/x? = 0, which relation is an identity, provided that #0. U 

EXAMPLE 3. Whereas (14) admits an infinity of solutions [one for each choice of A 
and B in (15)], the equation 

ly'| +lyl +3 =0 (17) 

evidently admits none since the two nonnegative terms and one positive term cannot possi- 
bly sum to zero for any choice of y(z). @ 

In applications, however, one normally expects that if a problem is formulated 
carefully then it should indeed have a solution, and that the solution should be 

1.2. Definitions 5
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Figure 5. Loaded cantilever beam. 

unique, that is, there should be one and only one. Thus, the issues of existence 
(Does the equation have any solution?) and uniqueness (If it does have a solution, 
is that solution unique?) are of important interest. 

Initial-value problems and boundary-value problems. Besides the differential 
equation to be satisfied, the unknown function is often subjected to conditions at 

one or more points on the interval under consideration. Conditions specified at 
a single point (often the left end point of the interval), are called initial condi- 
tions, and the differential equation together with those initial conditions is called 
an initial-value problem. Conditions specified at both ends are called boundary 
conditions, and the differential equation together with the boundary conditions 
is called a boundary-value problem. For initial-value problems the independent 
variable is often the time, though not necessarily, and for boundary-value problems 

the independent variable is often a space variable. 

EXAMPLE 4. Straight-Line Motion of a Mass. Consider once again the problem of pre- 
dicting the straight-line motion of a body of mass m subjected to a force F(t). According 

to Newton's second law of motion, the governing differential equation on the displacement 

x(t) is ma” = F(t). Besides the differential equation, suppose that we wish to impose the 
conditions z(0) = 0 and x’(0) = V;; that is, the initial displacement and velocity are 0 and 
V, respectively, Then the complete problem statement is the initial-value problem 

2(0)=0, 2 (0)=V. 

That is, x(t) is to satisfy the differential equation mx” = F(t) on the interval 0 < t < co 
and the initial conditions 2(0) = 0 and 2’(0) = V. #f 

EXAMPLE 5. Deflection of a Loaded Cantilever Beam. Consider the deflection y(x) 

of a cantilever beam of length L, under a loading w(x) newtons per meter (Fig. 5). Using 

the so-called Euler beam theory, one finds that the governing problem is as follows: 

Ely!" = —w(z) (O0<a<L) 

y0)=0, y(0)=0, y"(L)=0, y"(L)=0, ” 
where & and J are known physical constants. The appended conditions are boundary 

conditions because some are specified at one end, and some at the other end, and (19) is 

therefore a boundary-value problem. The physical significance of the boundary conditions 

is as follows: y(0) = 0 is true simply by virtue of our chosen placement of the origin of the 

r,y coordinate system; y'(0) = 0 follows since the beam is cantilevered out of the wall, 
so that its slope at z = 0 is zero; y”(L) = 0 and y/”(L) = 0 because the “moment” and 
“shear force,” respectively, are zero at the end of the beam. &



Linear and nonlinear differential equations. An mth-order differential equation 

is said to be linear if it is expressible in the form 

  

  ag(x)y™ (x) + ay(x)y") (a) +++ an(x)y(x) = f(x), (20) 
  

where ag(x),..., @n(a) are functions of the independent variable « alone, and non- 

linear otherwise. Thus, equations (1), (2), (4), and (6) are linear, and (3) and (5) 

are nonlinear. If f(«) = 0, we say that (20) is homogeneous; if not, it is nonho- 

mogeneous. If ag(z) does not vanish on the zx interval of interest, then we may 

divide (20) by ag(a) (to normalize the leading coefficient) and re-express it as 

y) (x) + pr(x)y""Y (ew) ++ + pala)y(e) = a(a). (21) 

We will find that the theory of linear differential equations is quite comprehensive 

insofar as all of our major concerns — the existence and uniqueness of solutions, 

and how to find them, especially if the coefficients ag(x),...,@n(a) are constants. 

Even in the nonconstant coefficient case the theory provides substantial guidance. 

Nonlinear equations are, in general, far more difficult, and the available theory 

is not nearly as comprehensive as for linear equations. Whereas for linear equa- 

tions solutions can generally be found either in closed form or as infinite series, for 

nonlinear equations one might focus instead upon obtaining qualitative informa- 

tion about the solution, rather than the solution itself, or upon pursuing numerical 

solutions by computer simulation, or both. 
The tendency in science and engineering, until around 1960, when high-speed 

digital computers became widely available, was to try to get by almost exclusively 

with linear theory. For instance, consider the nonlinear equation (3), namely, 

gl + f sind = 0, (22) 

governing the motion of a pendulum, where 6(t) is the angular displacement from 
the vertical and t is the time. If one is willing to limit one’s attention to small 
motions, that is, where @ is small compared to unity (i.e., 1 radian), then one can 

use the approximation 

aoa. Lag, los _ 
sin@ = — > + 54 ~~... eG 

to replace the nonlinear equation (2) by the approximate “linearized” equation 

g 
g” + 7 = 0, (23) 

which (as we shall see in Chapter 3) is readily solved. 
Unfortunately, the linearized version (23) is not only less and less accurate as 

larger motions are considered, it may even be incorrect in a qualitative sense as 
well. That is, from a phenomenological standpoint, replacing a nonlinear differen- 

tial equation by an approximate linear one may amount to “throwing out the baby 

with the bathwater.” 

1.2. Definitions 
7
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Thus, it is extremely important for us to keep the distinction between linear 
and nonlinear clearly in mind as we proceed with our study of differential equa- 
tions. Aside from Sections 2.4 and 2.5, most of our study of nonlinear equations 
takes place in Chapters 6 and 7. 

Closure. Notice that we have begun, in this section, to classify differential equa- 
tions, that is, to categorize them by types. Thus far we have distinguished ODE’s 
(ordinary differential equations) from PDE’s (partial differential equations), estab- 
lished the order of a differential equation, distinguished initial-value problems from 
boundary-value problems, linear equations from nonlinear ones, and homogeneous 
equations from nonhomogeneous ones. 

Why do we classify so extensively? Because the most general differential 
equation is far too difficult for us to deal with. The most reasonable program, then, 
is to break the set of all possible differential equations into various categories and to 
try to develop theory and solution strategies that are tailored to the specific nature 
of a given category. Historically, however, the early work on differential equations 
~by such mathematicians as Leonhard Euler (1707-1783), Jakob (James) Berreulli 
(1654-1705) and his brother Johann (John) (1667—1748), Joseph-Louis Lagrange 
(1736-1813), Alexis-Claude Clairaut (1713-1765), and Jean le Rond d’Alembert 
(1717-1783) — generally involved attempts at solving specific equations rather than 
the development of a general theory. 

From an applications point of view, we shall find that in many cases diverse 
physical phenomena are governed by the same differential equation. For example, 
consider equations (1) and (2) and observe that they are actually the same equation, 
to within a change in the names of the various quantities: m > L, k + 1/C, 
F(t) + dE(t)/dt, and x(t) - i(t). Thus, to within these correspondences, their 
solutions are identical. We speak of the mechanical system and the electrical circuit 
as analogs of each other. This idea is deeper and more general than can be seen 
from this one example, and the result is that if one knows a lot about mechanical 
systems, for example, then one thereby knows a lot about electrical, biological, and 
social systems, for example, to whatever extent they are governed by differential 
equations of the same form. 

Or, returning to PDE’s for the moment, consider equation (7), which we in- 
troduced as the one-dimensional heat equation. Actually, (7) governs any one- 
dimensional diffusion process, be it the diffusion of heat by conduction, or the 
diffusion of material such as a pollutant in a river. Thus, when one is studying heat 
conduction one is also learning about all diffusion processes because the govern- 
ing differential equation is the same. The significance of this fact can hardly be 
overstated as a justification for a careful study of the mathematical field of differ- 
ential equations, or as a cause for marvel at the underlying design of the physical 
universe,
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EXERCISES 1.2 
  

1. Determine the order of each differential equation, and 

whether or not the given functions are solutions of that equa- 
tion. 

(a) (y')? =4y; yn(x) = 2°, 
(b) 2yy' =Qsin22; y,(a) = sing, 

y3(a) = e7* 
yo(z) = 3sin a, 

Yyo(a) = 2a”, 

y3(z) = et 

(O ~ oy = 0; yal) =e —e*,  yo(x) = 3sinh 32, 
yg(aw) = 2e°* ~ ew" 

yi(z) = 2° 2, (d) (y’)?-4ay'+4y = 0; 
(e)y" +9y=0; yil(x) = 4sin 3z + 3cos3z, 
yo(z) = 6sin (32 + 2) 

(f)y"—y'-2y = 6; yi(x) = 5e?*-3, yo(x) = ~2e7* ~3 

(g) y!” — 6y” + 12y' — 8y = 32 — 162; 

yi(z) = 2x ~1+ (A+ Be + Cx)e** for any constants 
A,B,C 

(h) y+ 2ey=1;  y:(x) = Aem™ et dt, 

yo(x) =e~® f* ef dt for any constants A and a. 

2. Verify that 

u(z,t) = Ar + B+ (Csinkaz + Dcos Kx) exp (—k* at) is 
a solution of (7) for any constants A, B,C, D,«. NOTE: We 

will sometimes use the notation exp( ) in place of e') because 

it takes up less vertical space. 

yo(x) = 22-1 

3. Verify that u(z, y, z) = Asin az sin by sinh cz isa solution 

of (8) for any constants A, a, 6, c, provided that a? + 6? = c?. 

4. (a) Verify that u(w,t) = (Ar + B)(Ct+ D)+(Esingae + 
F cos«r)(G sin kct + Hcos«ct) is a solution of the one- 
dimensional wave equation 

207u — Ou 
Cm = or, 

Or? sO? 

for any constants A, B,..., Hk. 

(b) Verify that u(x,t) = f(x — ct) + g(x + ct) is a solution of 

that equation for any twice-differentiable functions f and g. 
(c) For what value(s) of the constant m is u(a,t) = 

sin (a + mé) a solution of that equation ? 

5. For what value(s) of the constant A will y = exp (Az) bea 

solution of the given differential equation? If there are no such 

’s, state that. 

(b) y! + 3y? = 0 
(d) y"” — 2y'+y =0 
(f) yl _ 2y" _ y’ + 2y = 0 

(h) y” + 5yy’ +y = 0 

(a) y' + 8y = 0 
(c) y” — 3y' + 2y =0 
(e) y —y' =0 

(g) yl” — by" + 5y = 0 

6. First, verify that the given function is a solution of the given 

differential equation, for any constants A,B. Then, solve for 

A, B so that y satisfies the given initial or boundary conditions. 

(a) y"+4y = 827; y(x) = 22? -1+Asin2xr+ B cos 22; 

y(0)=1, y'(0) =0 
(b)y”—y=a?; y(x) = -2? - 24 Asinhe+ Bcoshz; 
0)=-2, y'(0)=0 

is by Mo =(A+Ba)e*; y(0)=1 y+ 2y t+y=0; y(z)=(At+ Brje®, y(0)=1, 
y(2) = 0 
(dy"-—y =0, y(z)=A+Be™ y'(0)=1, y(3) =0 

7. Classify each equation as linear or nonlinear: 

(b) yy =at+y 
(d) y’ ~ expy =sinz 

"_y=exps 
Oy P 

(hyo =y 

(ajy’+e*y=4 
(c) eTy’ =a — 2y 
(e) y” + (sinz)y = 2? 

(g) yy!” + dy = 3x 

8. Recall that the nonlinear equation (5) governs the deflection 

y(x) of the flexible cable shown in Fig. 3. Supposing that the 

sag is small compared to the span, suggest a linearized version 

of (5) that can be expected to give good accuracy in predicting 

the shape y(x). 

  

1.3 Introduction to Modeling 

Emphasis in this book is on the mathematical analysis that begins once the problem 
has been formulated — that is, once the modeling phase has been completed. De- 
tailed discussion of the modeling is handled best within applications courses, such



LO. Chapter 1. Introduction to Differential Equations 

x(t) 

F(t) 

Le ee Po 
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as Heat Transfer, Fluid Mechanics, and Circuit Theory. However, we wish to em- 
phasize the close relationship between the mathematics and the underlying physics, 
and to motivate the mathematics more fully. Thus, besides the purely mathemat- 
ical examples in the text, we will include physical applications and some of the 

underlying modeling as well. 
Our intention in this section is only to illustrate the nature of the modeling 

process, and we will do so through two examples. We suggest that you pay special 
attention to Example | because we will come back to it at numerous points later on 

in the text. 

EXAMPLE 1. Mechanical Oscillator. Consider a block of mass m lying on a table and 
restrained laterally by an ordinary coil spring (Fig. 1), and denote by x the displacement of 

the mass (measured as positive to the right) from its “equilibrium position,” that is, when 

x = 0 the spring is neither stretched nor compressed. We imagine the mass to be disturbed 

from its equilibrium position by an initial disturbance and/or an applied force F(t), where 

t is the time, and we seek the differential equation governing the resulting displacement 

history x(t). 
Our first step is to identify the relevant physics which, in this case, is Newton’s second 

law of motion. Since the motion is constrained to be along a straight line, we need consider 

only the forces in the x direction, and these are shown in Fig. 2: Fy is the force exerted 

by the spring on the mass (the spring force, for brevity), F is the aerodynamic drag, F’y is 

the force exerted on the bottom of the mass due to its sliding friction, and F’ is the applied 

force, the driving force. How do we know if F,, Fy, and Fy act to the left or to the right? 

The idea is to make assumptions on the signs of the displacement x(¢) and the velocity 

z'(t) at the instant under consideration. For definiteness, suppose that x > 0 and 2’ > 0. 
Then it follows that each of the forces F,, Fy, and F, is directed to the left, as shown in 

Fig. 2. (The equation of motion that we obtain will be insensitive to those assumptions, as 

we shall see.) Newton’s second law then gives 

(mass)(x acceleration) = sum of x forces 

or, 

mao" = F — F,- Fy - Fa, (1) 

and we now need to express each of the forces F,, Fy, and F, in terms of the dependent 

and independent variables x and ¢. 

Consider F, first. If one knows enough about the geometry of the spring and the 
material of which it is made, one can derive an expression for /, as a function of the 

extension x, as might be discussed in a course in Advanced Strength of Materials. In 

practice, however, one can proceed empirically, and more simply, by actually applying 

various positive (i.e., to the right, in the positive a direction) and negative forces (to the 

left) to the spring and measuring the resulting displacement x (Fig. 3). For a typical coil 

spring, the resulting graph will be somewhat as sketched in Fig. 4, where its steepening at 

A and B is due to the coils becoming completely compressed and completely extended, 

respectively. Thus, F, in (1) is the function the graph of which is shown as the curve AB, 

(Ignore the dashed line Z for the moment.) 

Next, consider the friction force Fy. The modeling of Fy will depend upon the nature 
of the contact between the mass and the table — in particular, upon whether it is dry or
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lubricated. Let us suppose it is lubricated, so that the mass rides on a thin film of lubricant 

such as oil. To model /’;, then, we must consider the fluid mechanics of the lubricating 

film. The essential idea is that the stress 7 (force per unit area) on the bottom of the mass 

is proportional to the gradient du/dy of the fluid velocity u (Fig. 5), where the constant 

of proportionality is the coefficient of viscosity yu: 7 = pdu/dy. But u(y) is found, in a 

course in Fluid Mechanics, to be a linear function, namely, 

u(h) ~ u(0) a(t)-0O a(t) 
  u(y) = OY a 

so 
= ae _ wu (t) 

“+t dy he 

Thus, 

Fy = (stress rT) (area A of bottom of block) 

= (#22) ca, 

Fy = ca'(t), (2) 
That is, itis of the form 

for some constant c that we may consider as known. Thus, the upshot is that the friction 

force is proportional to the velocity. We will call c the damping coefficient because, as we 

will see in Chapter 3, the effect of the cx’ term in the governing differential equation is to 

cause the motion to “damp out.” 

Likewise, one can model the aerodynamic drag force F,, but let us neglect /*, on the 

tentative assumption that it can be shown to be small compared to the other two forces. 

Then (1) becomes 

ma'(t) + cx'(t) + F,(x) = F(t). (3) 
Equation (3) is nonlinear because F(x) is not a linear function of z, as seen from its 

graph AB in Fig. 4. Asa final simplifying approximation, let us suppose that the x motion 

is small enough, say between a and 6 in Fig. 4, so that we can linearize F,, and hence the 

governing differential equation, by approximating the graph of F’, by its tangent line L. 

Since L is a straight line through the origin, it follows that we can express 

F(a) & ka. (4) 

We call & the spring stiffness. 

Thus, the final form of our governing differential equation, or equation of motion, is 

the linearized approximation 

  

ma" + er’ +kxe = F(t), (3) 

onQ << oo, where the constants m, c, & and the applied force F(t) are known. Equation 

(5) is important, and we will return to it repeatedly. 

To this equation we wish to append suitable initial or boundary conditions. This partic- 

ular problem is most naturally of initial-value type since we envision initiating the motion 

Il 

  

A 

graph. 

   
   

Figure 4. Force-displacement 
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Figure 5. Lubricating film. 

  



12. Chapter [. Introduction to Differential Equations 

(a) x>0, x <0 

  

      
ff, <—] | fe 

ae 

ty 
(b) x <0, x >0 

  

  Fy F 
      

¢———— 

Fy 
Figure 6. Other assumptions on 

the signs of x and 2’. 

in some manner at the initial time, say ¢ = 0, and then considering the motion that results. 

Thus, to (5) we append initial conditions 

a(0)= x9 and 2'(0) = x9, (6) 

for some (positive, negative, or zero) specified constants ¢o and xg. It should be plausible 

intuitively that we do need to specify both the initial displacement x(0) and the initial 

velocity «/(Q) if we are to ensure a unique resulting motion. In any case, the theoretical 

appropriateness of the conditions (6) are covered in Chapter 3. 

The differential equation (5) and initial conditions (6) comprise our resulting math- 

ematical model of the physical system. By no means is there an exact correspondence 

between the model and the system since approximations were made in modeling the forces 

F, and Fy, and in neglecting F, entirely. Indeed, even our use of Newtonian mechanics, 

rather than relativistic mechanics, was an approximation. 

This completes the modeling phase. The next step would be to solve the differential 

equation (5) subject to the initial conditions (6), for the motion x(t). 

COMMENT J. Let us examine our claim that the resulting differential equation is insen- 

sitive to the assumptions made as to the signs of x and 2’. In place of our assumption that 

z > Qand x’ > 0 at the instant under consideration, suppose we assume that z > 0 and 

zx’ <0, Since x > 0, it follows that F, acts to the left, and since x’ < 0, it follows that F's 

acts to the right. Then (Fig. 6a) 

ma" =F-P+F, (7) 

where we continue to neglect F,. The sign of the Fy term is different in (7), compared 

with (1), because Fy now acts to the right, but notice that Fy now needs to be written as 

F, = c(~a'(t)), rather than cv‘(#) since x’ is negative. Further, F’, is still ka, so (7) 

becomes 

ma" = F(t) — kx + (—c2’), (8) 

which is indeed equivalent to (5), as claimed. 

Next, what if z <Q and 2’ > 0? This time (Fig. 6b) 

ma" =F +F,— Fy, (9) 

which differs from (1) in the sign of the F, term. But now £’, needs to be written as 

F, = k (—x(t)) since x is negative. Further, Fy is cx’, so (9) becomes 

ma" = F +k(-x)- cr’, 

which, again, is equivalent to (5). The remaining case, where x < 0 and x’ <0, is left for 

the exercises. 

COMMENT 2. The approximation (4) was introduced from consideration of the graph 

shown in Fig. 4, but it amounts to expanding F,() in a Taylor series about the equilibrium 

point 2 = 0, as 
; Fe). 

Fa) = F,(0) + F(O)a + rt) ) 42 aoe 

and linearizing — that is, cutting off after the first-order term: 

Po(x) m2 F,(0) + F(O)e 
=O+ke = ko. 
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This idea, the simplification of a differential equation by such tangent-line approximation, 

is of great importance in modeling. 

COMMENT 3. The final equation for F,, Ff, = kz is well known as Hooke’s law, after 

Robert Hooke (1635-1703). Hooke published his law of elastic behavior in 1676 as the 

anagram ceiiinosssttuy and, two years later, the solution ut tensio sic vis: roughly, “as 

the force, so is the displacement.” In view of the complexity with which we can now 

deal, Hooke’s law must look quite modest, but one must appreciate it within its historical 

context. In spirit, it followed Galileo Galilei (1564-1642) who, in breaking lines established 

by the ancient Greeks, sought to establish a quantitative science, expressed in formulas and 

mathematical terms. For example, where Aristotle explained the increasing speed of a 

falling body in terms of the body moving more and more jubilantly as it approached its 

natural place (the center of the earth, which was believed to coincide with the center of the 

universe), Galileo sidestepped the question of cause entirely, and instead put forward the 

formula v = 9.8t, where v is the speed (in meters per second) and ¢ is the time (in seconds). 

It may be argued that such departure from the less productive Greek tradition marked the 

beginning of modern science. 

COMMENT 4. In science and engineering it is useful to think in terms of inputs and 

outputs. Here, there are three inputs, the two initial conditions and the applied force F(t), 

and the output is the resulting solution, or response, x(t). 

The foregoing introductory example illustrates several general truths about 

modeling. First, we see that it is not necessarily an easy task and generally re- 

quires a sound understanding of the underlying physics. Even in this little example 

one senses that obtaining suitable expressions for Fy and Fy (if one does include 

F,) requires skillful handling of the fluid mechanics of the lubrication film and the 

aerodynamics of the moving block. 

Second, we see that approximations will no doubt be necessary, and the idea 

is to make them judiciously. In this example we made several approximations. The 

expression u(y) = 2'(t)y/h, for instance, is probably quite accurate but is not 

exact, especially near the ends of the block. Further, one can imagine that as the 

motion continues, the lubricant will heat up so that the viscosity ju will decrease. 

This effect is probably negligible, but we mention it in order to suggest that there 

is virtually no end to the levels of complexity that one may address, or suppress, 

in the modeling process. The key is to seek a level of complexity that will pro- 

vide sufficient accuracy for the purpose at hand, and to seek a uniform level of 

approximation. For instance, it would hardly make sense to model F'y with great 

sophistication and accuracy if F, is of comparable magnitude and is modeled only 

crudely. 

To stay on this point a bit longer, note several more approximations that were 

implicit to our discussion. First, we implicitly assumed that the block is rigid, 

whereas the applied forces will cause some slight distortion of its shape and di- 

mensions; again, neglect of this effect is surely an excellent approximation when 

considering the motion x(t). Second, and more serious, notice that our empirical 

determination of F,(x) was based on a static test whereas, like the block, the spring 

13
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is itself in motion. Thus, there is an inertial effect for the spring, analogous to the 

me" term for the mass, that we have neglected. If the mass of the spring is not neg- 

ligible compared to that of the block, then that approximation may be insufficiently 

accurate. 

Finally, notice carefully that we neglect a particular effect, in modeling, not on 

the grounds that it is small in an absolute sense, but because it is small relative to 

other effects. For instance, an aerodynamic force F, = 0.001 newton may seem 

small numerically, but would not be negligible if F, F, and Fy were of comparable 

size. 
Let us consider one more example. 

EXAMPLE 2. Suspension Bridge Cable. To design a suspension bridge cable, one 

needs to know the relationships among the deflected shape of the cable, the tension in it, 

and the weight distribution that it needs to support. 

In the case of a typical suspension bridge, the roadbed supported by the cables is 

much heavier than the cables themselves, so let us neglect the weight of the cables, and 

assume that the loading is due entirely to the roadbed. Consider the configuration shown 

schematically in Fig. 7. 

A cable is a distributed system, rather than one or more point masses, and for such 

systems a useful modeling approach is to isolate a typical element of the system and apply 

to-it the relevant physical laws. In the present case a typical element is an incremental 

portion of the cable lying between x and x + Az, for any r between —L/2 and L/2, as 

shown in Fig. 8: Ass is the arc length, T the tension in the cable, @ the inclination with 

respect to the horizontal, and AW the load supported by the element. If the roadbed is 

uniform and weighs 2w newtons per meter, then each of the two cables supports w newtons 

per meter, so AW = wAz. 

Besides neglecting the weight of the cable itself, as mentioned above, there are three 

additional approximations that are implicit in the foregoing. First, in assuming a uniform 

load w per unit length, we have really assumed that the vertical support spacing d is very 

small compared to the span L, so that the intermittent support forces can be distributed as 

a uniform load. Second, in assuming that the tension is in the direction of the cable we 

have really assumed that the cable is flexible, a term that we now need to explain. The 

general state of affairs at any section, such as at the 2 + Az end of the element, is as shown 

in Fig. 9, namely, there can be a shear force V, a tensile force J’ through the centerline, 

and a moment or “couple” M. (V is the net effect of shearing stresses distributed over the 

face, and T and M are the net effect of normal stresses distributed over the face.) By a 

flexible string or cable, we mean one that is unable to support any shear V or moment M; 

that is, V = M = 0. For instance, if one takes a typical household string between the 

thumb and forefinger of each hand one finds that it offers virtually no resistance to shearing 

or bending, but considerable resistance to stretching. Thus, when we include only tensile 

forces in Fig. 8 we are assuming that the cable is flexible. Of course, if we imagine taking 

the suspension cables on the Golden Gate Bridge “between our fingers” we can imagine 

quite a bit of resistance to shearing and bending! But the point to keep in mind is that even 

those heavy cables would offer little resistance to shearing and bending by the enormous 

loads to which they are actually subjected by the weight of the roadbed. 

Finally, we assume that the cable is inextensible, even under the large tensions that are
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anticipated. 

If we can accept these assumptions we can now apply the relevant physics which, 

again, is Newton’s second law of motion. But this time there is no acceleration, so the 

element is in static equilibrium. Thus, the x and y forces must each sum to zero: 

zc: T(a+ Ax) cos (a + Ar) — T(x) cos O(x) = 0, (10a) 

y: T(e+ Ac)sin@(2 + Av) — T(x) sin O(r) — wAx = 0. (10b) 

Dividing each of these equations by Az and letting Az —- 0, we obtain 

dd 
= (cos) = 0, (Ila) 

Lor sind) = 7 (11b) de sin @) = w, 

or, upon integration, 

Tcosé = A, (12a) 

Tsin@=wr+B, (12b) 

where A, B are arbitrary constants. Dividing (12b) by (12a), to eliminate the unknown 

tension T(z), and noting that tan @ = dy/dz, we obtain the differential equation 

dy ow B 2 = pp 13 
dz A~ t A (13) 

governing the cable shape y(z)}, which we are trying to determine. 

In this case, the solution is simple enough so that we might as well complete the 

solution. To solve, we merely integrate (13), obtaining 

wi, B 
y(@) = a" + —2 +C y(t) = 54 A 

where A, B,C are arbitrary constants, To evaluate them, we invoke the associated bound- 

ary conditions: 

y(0) =0 (by choice of location of origin), (14a) 

y'(0) =0 (by symmetry about x = 0), (14b) 

DL 
y (5) = H (from Fig. 7). (14c) 

Equation (14a) gives C' = 0, and (14b) gives B/A = 0, and hence B = 0. Thus far, 

We. 

y(z) = vue 

and (14c) then gives A = wl? /8H. Thus, the cable’s shape is given by the parabola 

_, 4H. 
y(a) = ae (15) 

15



16 Chapter 1. Introduction to Differential Equations 

Finally, the distribution of tension T(z) may be found by squaring and adding (12a) 

and (12b): 

T(x) = V/A? +(we+ B= 

[A 

64H?" 

  

= w/c? + (16) 

Ina sense, obtaining y(x) and T(x) marks the end of the analysis, and if we are content 

that the expressions (15) and (16) are sufficiently accurate, then the next step would be to 

use them to help in the actual bridge design. Before doing that, however, we should check 

those results, for there may be errors in our analysis. Also, the approximations that we have 

made may prove to be insufficiently accurate. 

One of the standard ways of checking results is by means of special cases and limiting 

cases, for which the correct results are known or obvious. Considering (15), we observe 

first that the parabolic shape looks reasonable. Furthermore, (15) implies that y{x) — 0, 

over ~L/2 < x < L/2,as H — 0 with L fixed, and also that y(x) - 0 at each z, as 

L ~+ co with HT fixed. These results look reasonable too. Turning to (16), observe that the 

tension becomes infinite throughout the cable as H — 0, as expected. (Try straightening 

out a loaded washline by pulling on one end!) Finally, consider the limiting case H > 00, 

with L fixed, In that case, (16) gives T(L/2) + wL/2, which agrees with the result 

obtained from a simple consideration of the physics (Exercise 2). @ 

Closure. The purpose of this section is to illustrate the modeling process, whereby 

one begins with the physical problem at hand and ends up with an equivalent math- 

ematical statement, or model. Actually, we should say approximately equivalent 

since the modeling process normally involves a number of assumptions and ap- 

proximations. By no means do we claim to show how to model in general, but only 

to illustrate the modeling process and the intimate connection between the physics 

and the mathematics. As we proceed through this text we will attempt to keep that 

connection in view, even though our emphasis will be on the mathematics. 

Finally, let us note that when we speak of the physical problem and the physics 

we intend those words to cover a much broader range of possibilities. For instance, 

the problem might be in the realm of economics, such as predicting the behavior of 

the Dow Jones Stock Index as a function of time. In that case the relevant “physical 

laws” would be economic laws such as the law of supply and demand. Or, the 

problem might fall in the realm of sociology, ecology, biology, chemistry, and so 

on. In any case, the general modeling approach is essentially the same, independent 

of the field of application.
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EXERCISES 1.3 
  

1. In Example { we showed that the same differential equa- 

tion, (5), results, independent of whether 2 > 0 and x’ > 0, 

orz > Oand az’ < Qorae < Oand z’ > O. Consider the last 

remaining case, x < QO and x’ < 0, and show that, once again, 

one obtains equation (5). 

2. At the end of Example 2, we stated that the result 

T(L/2) — wL/2, obtained from (16), for the limiting case 
where H — oo with L fixed, agrees with the result obtained 

from a simple consideration of the physics. Explain that state- 

ment, 

3. (Catenary) In our Suspension Bridge Cable example we ne- 

glected the weight of the cable itself relative to the weight of 

the roadbed. At the other extreme, suppose that the weight of 

the roadbed (or other loading) is negligible compared to the 
weight of the cable. Indeed, consider a uniform flexible ca- 

ble, or catenary, hanging under the action of its own weight 

only, as sketched in the figure. Then Fig. 8 still holds, but 

with AW = :As, where p is the weight per unit arc length of 

the cable. 

y 

Py, 
~L1/2 L/2 x 

(a) Proceeding somewhat as in (10)—(12), derive the govern- 

ing differential equation 

yl =Cylty”, 
where C’ is an unknown constant. 

(b) Since y(z) is symmetric about z = 0, it suffices to con- 

sider the interval 0 < 2 < L/2. Then we have the boundary 

conditions y(0) = 0, y’/(0) = 0, and y(L/2) = H. Verify 
(you need not derive it) that 

(3.1) 

1 
y(z) = = (cosh Cx — 1) G (3.2) 

satisfies (3.1) and the boundary conditions y(0) = 0 and 

y’(0) = 0. But it remains to determine C’. Invoking the re- 
maining boundary condition, y(L/2} = H, show that C’ satis- 
fies the equation 

, iL CL 
H= a (cost 37 i}. 

Unfortunately, (3.3) is a transcendental equation for C’, so that 

we cannot solve it explicitly. We can solve it numerically, for 

given values of H and L, but you need not do that. 

(c) As a partial check on these results, notice that they should 

reduce to the parabolic cable solution in the limiting case 

where the sag-to-span ratio H/L tends to zero, for then the 

load per unit 2 length, due to the weight of the cable, ap- 

proaches a constant, as it is in Example 2, where the load is due 

entirely to the uniform roadbed. The problem that we pose for 

you is to carry out that check. HINT: Think of Z as fixed and 

Hf tending to zero. For H to approach zero, in (3.3), we need 

C'L/2 to approach zero — that is, C —> 0. Thus, we can expand 
the cosh C'x — 1 in (3.2) in a Maclaurin series in C and retain 

the leading term. Show that that step gives y(x) ~ Cax?/2, 
and the boundary condition y(Z/2) = H enables us to deter- 
mine C’. The result should be identical to (15). 

(d) Actually, for small sag-to-span ratio we should be able to 

neglect the y” term in (3.1), relative to unity, so that (3.1) can 

be linearized as 

(3.3) 

y" =C. (3.4) 

Integrating (3.4) and using the boundary conditions y(0) = 0, 

y'(0) = 0, and y(L/2) = H, show that one obtains (15) once 

again, 

 



Chapter 2 

Differential Equations 

of First Order 

2.1 Introduction 

In studying algebraic equations, one considers the very simple first-degree polyno- 

mial equation aw = 0 first, then the second-degree polynomial equation (quadratic 

equation), and so on. Likewise, in the theory of differential equations it is reason- 

able and traditional to begin with first-order equations, and that is the subject of 

this chapter. In Chapter 3 we turn to equations of second order and higher. 

Recall that the general first-order equation is given by 

F(a,y,y') = 0, (1) 

where x and y are independent and dependent variables, respectively. In spite of 

our analogy with algebraic equations, first-order differential equations can fall any- 

where in the spectrum of complexity, from extremely simple to hopelessly difficult. 

Thus, we identify several different subclasses of (1), each of which is susceptible 

to a particular solution method, and develop them in turn. Specifically, we consider 

these subclasses: the linear equation ag(x)y’ +a1(x)y = f(x) in Section 2.2, “sep- 

arable” equations in Section 2.4, equations that are “exact” (or can be made exact) 

in Section 2.5, and various other more specialized cases within the exercises. 

These subclasses are not mutually exclusive. For instance, a given equation 

could be both linear and separable, in which case we could solve it by one method 

or the other, Given such a choice, choose whichever you prefer. In other cases the 

given equation might not fit into any of these subclasses and might be hopelessly 

difficult from an analytical point of view. Thus, it will be important to comple- 

ment our analytical methods with numerical solution techniques. But that is a long 

way off, in Chapter 6. Analytical methods and the general theory of differential 

equations will occupy us in Chapters 2 through 5. 

It should be stressed that the equation types that are susceptible to the analyt- 

ical solution techniques described in these chapters can also be solved analytically 

18



by computer algebra software that is currently available, such as Maple, Mathe- 

matica, and MATLAB, and this approach is discussed here as well. One needs to 

know both: the underlying theory and solution methodology on one hand, and the 

available computer software on the other. 

2.2 The Linear Equation 

The first case that we consider is the general first-order linear differential equation 

ag(x)y’ + ai(x)y = f(z). (1) 

Dividing through by ag(x) [which is permissible if ap(x) # 0 over the x interval 
of interest], we can re-express (1) in the more concise form 

  

    y' + p(x)y = (a). (2) 
  

We assume that p(x) and q(x) are continuous over the «x interval of interest. 

2.2.1. Homogeneous case. It is tempting to think that to solve (2) for y(x) we 
need to get rid of the derivative, and that we can accomplish that merely by inte- 

gration. It’s true that if we integrate (2) with respect to z, 

[veer [ovde= fade 

then the first term reduces nicely to y (plus a constant of integration), but the catch 
is that the [ py dz term becomes a stumbling block because we cannot evaluate it 
since y(z) is unknown! Essentially, then, we have merely converted the differential 
equation (2) to an “integral equation” — that is, one involving the integral of the 

unknown function. Thus, we are no better off. 
To solve (2), we begin with the simpler special case where q(«) is zero, 

y' + p(x)y = 0, (3) 
which is called the homogeneous version of (2). To solve (3), divide by y (assum- 
ing that y is nonzero on the x interval of interest. This assumption is tentative since 
y is not yet known) and integrate on x. Using the fact that y/dx = dy, from the 

calculus, we thus obtain 

“dd 
[2+ [vod =o. (4) 

and recalling that 
dz: 

= In |x| + constant, (5) 

(4) gives 

In|y| = — [oe dz + C, 

2.2, The Linear Equation 19
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where the arbitrary constant C’ can include the arbitrary constant of integration from 

the p integral as well. Thus, 

iy()| _ en J ple) de+C — e ew J P(x) dx _. Be7 JP) da (6) 

where we have set e" = B for simplicity. Since C is real, e is nonnegative, so 

B is an arbitrary nonnegative constant: B > 0. The integral f p(x) da does indeed 

exist since we have assumed that p(x) is continuous. Finally, it follows from (6) 

that y(x) = +B exp(— f pde) or, 

  

y(2) = Aen J P(e) de (7) 
    
  

if we now allow the arbitrary constant A to be positive, zero, or negative. 

Observe that our tentative assumption, just below (3), that y(«) # 0, is now 

seen to be justified because the exponential function in (7) is strictly positive. [Of 

course y(x) = 0 if A = 0, but in that simple case y(x) = 0 is seen to satisfy (3) 

without further ado.] Summarizing, the solution of the homogeneous equation (3) 

is given by (7), where A is an arbitrary constant. 

The presence of the arbitrary constant A, in (7), permits the solution (7) to 

satisfy an initial condition, if one is specified. Thus, suppose that we seek a solution 

y(x) of our differential equation y’ + p(x)y = 0 that satisfies an initial condition 

y(a) = 6, for specified values of a and b. For this purpose, it is convenient to 

re-express (7) as 

y(a) = Aen Jo PO) a, (8) 

which is equivalent to (7) since f p(x) dx and [* p(€) dé differ at most by an ad- 

ditive constant, say D, and the resulting e factor in (8) can be absorbed into the 

arbitrary constant A. 

A point of notation: why do we change the integration variable from x to € 

in (8)? Because fe p(€) dé means that we integrate along some axis, say a € axis, 

from a to x. Thus, x is a fixed endpoint, and is different from the integration 

variable that runs from a to x. To write [” p(x) dx runs the risk of confusing 

the x’s inside the integral with the fixed endpoint «. The name of the integration 

variable is immaterial, so one calls it a “dummy variable.” For instance, fo E dé, 

to 1 dn, and fo p dp are all the same, namely, x*/2. One often sees the letter € 

used as a dummy « variable because it is the Greek version of a. In Roman letters 

it is written as xi and is pronounced as ksé. Occasionally, we may be guilty of 

bad notation and write an integral as fe f(x) dz, simply to minimize the letters 

used, but even then we need to remember the distinction between the x in the upper 

limit and the «’s inside the integral. In fact, this notation is typical in books on 

engineering and science, where there is less focus on such points of rigor. 

Now imposing the condition y(a) = b on (8) gives y(a) = 6 = Ae® = A, so 

A = band hence 
  

y(x) = bev Ja P(E) ae 
(0) 

     



Thus, (9) satisfies the initial condition y(a) = 6. To verify that it also satisfies 

the differential equation (3), we use the fundamental theorem of the calculus: If 

f(a) is continuous on an interval J, namely cy < @ < we, and 

Pa) = fo re)ae, (108) 
on I, then 

F'(x) = f(a) (10b) 
on J. Using this theorem, and chain differentiation [let the — fe p(&) dé in the 
exponent be u, say, and write de“/dz = (de“/du)(du/da) ], it is shown that (9) 
does indeed satisfy the differential equation y’ + p(x)y = 0 on an interval I if p(x) 
is continuous on J. 

EXAMPLE 1. Consider the differential equation 

y’ + 2Qary = 0 (11) 

on —co < £ < 00, over which interval p(x) = 2z is continuous, as we have assumed. 

Then (7) gives 

y(z) = de J 2ede & Ae~™” (12) 

on —oo < x < oo. The graphs of the solutions, (12), are called the solution curves or in- 

tegral curves corresponding to the given differential equation (11), and these are displayed 

for several values of A in Fig. 1. Those above and below the z axis correspond to A > 0 

(A = 1,2,3) and A < 0(A = ~—1, —2), respectively, and A = 0 gives the solution curve 

y(z) = 0. @ 

In Example | we used the term “solution curve.” A solution curve, or integral 
curve, corresponding to a differential equation y'(x) = f(a, y), is simply the graph 
of a solution to that equation. 

Besides several solution curves, Fig. | also contains a field of lineal elements 
through a discrete set of points, or grid. By a lineal element at a point (zo, yo), 

corresponding to a differential equation y/(x) = f(x,y), we mean a short straight- 
line segment through the point (wo, yo), centered at that point and having the slope 
f(o, yo). That is, each lineal element has the same slope as the solution curve 

passing through that point and is therefore a small part of the tangent line to that 
solution curve. The set of all of the lineal elements is called the direction field 
corresponding to the given differential equation. 

In intuitive language, the direction field shows the “flow” of solution curves. 
Given a sufficiently dense (computer) plot of the direction field, one can visualize 
the various solution curves, or sketch the solution curve through a given initial 
point. 

EXAMPLE 2. Consider the problem 

(a + 2)y’ — cy =0, (13a) 

2.2. The Linear Equation 21 

  

  

  

  
Figure 1. The solution curves and 

direction field for y’ + 2xy = 0. 
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Figure 2. Solution to 

(x + 2)y' — sy = 0; y(0) = 3, 
together with the direction field. 

y(0) = 3. (13b) 

Since an initial value is prescribed, let us use (9) rather than (7), with p(z) = —2/(x + 2): 

y(w) = Bele §46/EH2) — gelé+2-2In\e-r2]]" 

  

0 

—_ 3ela+2—2 In |e+2|— (2—21n2)] __ = 3e%e In |e-+2|~ ~2 elt 2? 

et et 

= 12 = 12——__-_____ 14 
lc + 2|° xz? +4e 44! 4) 

where we have used the identity elnf — f, Of course, we could have used (7) instead, and 

then imposed the initial condition on that result: 

ez et 

— Ael ede/(e+2) — Apt+2—2ln|at+2| _ 4 
y(z) € Ae aap re 

where y(0) = 3 = Ae?/4 gives A = 12e~? and, once again, we obtain the solution 

et 

ue) = aed (15) 

The graph of that solution is given in Fig. 2, in which we show the direction field of 

the equation (13a), as well. 

On what x interval is the solution (15) valid? Recall that the solution (9) was guar- 

anteed over the broadest interval, containing the initial point z = a, over which p(x ) is 

continuous. ‘In this case a = 0 and p(z) = —x/(x + 2), which is undefined (infinite) at 

x = —2, so (15) is valid at least on ~2 < x < oo. In fact, the interval of validity cannot be 

extended any further to the left in this example, because whereas we need both y and y’ to 

have uniquely defined finite values satisfying (2 + 2)y’ — ry = 0, both y and y’ given by 

(15) are undefined at z = —2. Thus, the interval of validity of (15)is-2<2<00. G 

With the homogeneous problem (3) solved, we now turn to the more difficult 

case, the nonhomogeneous equation (2). We will show how to solve (2) by two 

different methods: first, by using an integrating factor and, second, by the method 

of variation of parameters. 

2.2.2. Integrating factor method. To solve (2) by the integrating factor method, 

we begin by multiplying both sides by a yet to be determined function a(x), so that 

(2) becomes 

oy’ +opy = 04. (16) 

[For (2) and (16) to be equivalent, we require o(a) to be nonzero on the x interval 

of interest, for if ¢(x) = 0 at one or more points, then it does not follow from (16) 

that y’ + py equals q at those points.] The idea is to seek o(a) so that the left-hand 

side of (16) is a derivative: 

d 
oy +opy = in (oy), (17)



because then (16) becomes 
d 
— (oy) = 07”, 18 =, (ou) = 4 (18) 

. ; . ; 1 
which can be solved by integration. For instance, to solve the equation y’+—y = 4, 

x 
observe that if we multiply through by x, then we have xy'+y = 42, or (xy)! = 4a, 
which can be integrated to give ey = 2x7+C and hence the solution y = 22+C'/z. 
In this case o(a) was simply x. Such a function a(2) is called an integrating 
factor, and its use is called the integrating factor method. The idea was invented by 
Leonhard Euler (1707-1783), one of the greatest and most prolific mathematicians 
of all time. He contributed to virtually every branch of mathematics and to the 
application of mathematics to the science of mechanics. 

One might say that the integrating factor method is similar to the familiar 
method of solving a quadratic equation by completing the square. In complet- 
ing the square, we add a suitable quantity to both sides so that the left-hand side 
becomes a “perfect square,” and the equation can then be solved by taking square 
roots. In the integrating factor method we multiply both sides by a suitable quantity 
so that the left-hand side becomes a “‘perfect derivative,” and the equation can then 
be solved by integration. 

How do we find o(2), if indeed such a function exists? Writing out the right- 
hand side of (17) gives 

oy +opy = oy’ +0'y, 

which is satisfied identically if we choose o(2) so that 

o'(x) = p(x)o(z). (19) 

But (19) is of the same form as (3), with y changed to o and p to —p, so its solution 

follows from (7) as a(x) = Ae* fp(e) de From (16), we see that any constant scale 
factor in g is inconsequential, so we can take A = 1 without loss. Thus, the desired 

integrating factor is 

a(x) = ef P(e) de, (20) 
Putting this o(x) into (18) gives 

da (cf ne) dey) _ ef P(e) de g(q), 

dx 

SO 

ed PCH) dit gy _ | ef P(x) de g(a) dz +C, 

or 
  

  

y(e) _ on { p(x) de (| ed P(®) dt o(x) dz + c’) (21) 

    

where C’ is an arbitrary constant of integration. 
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Not only does (21) satisfy (2), but it can be seen from the steps leading to (21) 
that every solution to (2) must be of the form (21). Thus, we call (21) the general 

solution of (2). 

EXAMPLE 3. Solve 
y + 3y = 2. (22) 

With p(x) = 3 and g(x) = «, we have 

ed pla) de — ed 3de = est 

so (21) gives 
, l 

y(x) = e** (/ ee dx + c) = 5 9 + Ce, (23) 

as the general solution to (22), @ 

If we wish to solve for C, in (21), so as to satisfy an initial condition y(a) = 6, 
then it is convenient to return to (20) and use the definite integral fe p(€) dé in place 

of the indefinite integral [ p(w) dx. These integrals differ by at most an arbitrary 

additive constant, say B, and the scale factor e? that results, in the right-hand side 
of (20), can be discarded without loss. Thus, let us change both p integrals in (21) 

to definite integrals, with a as lower limit. Likewise, the gq integral in (21) can 
be changed to a definite integral with a as lower limit since this step changes the 
integral by an arbitrary additive constant at most, which constant can be absorbed 

by the arbitrary constant C’. Thus, equivalent to (21), we have 

ula) =e Kemeras ( [ele merteg(e) de +c), 
a 

where ¢ is zeta. If we impose on this result the initial condition y(a) = 6, we obtain 
y(a) = b = e~°(0 + C), where each € integral is zero because its lower and upper 
integration limits are the same. Thus, C' = 6, and 

  

yl) = en Se we) ae ( / © ela 1) G(e) dé + s) | (24) 
a       

As a partial check, notice that (24) does reduce to (9) in the event that g(x) = 0. 
Whereas (21) was the general solution to (2), we call (24) a particular solu- 

tion since it corresponds to one particular solution curve, the solution curve through 

the point (a, b). 

EXAMPLE 4. Solve 

y’ — 2cy = sing, (25a) 

y(O) = 3. (25b) 

 



This time an titial condition is prescribed, so it is more convenient to use (24) than (21). 

With p(a) = —2z, q(x) = sina, a = 0, and b = 3, we have 

elo P(E AE . plo (—28) dg go? 

so that (24) gives the desired solution as 

y(e) = ee ([ ee sin € d€ + 3) (26) 
0 

The integral in (26) is said to be nonelementary in that it cannot be evaluated in 

closed form in terms of the so-called elementary functions: powers of x, trigonometric 

and inverse trigonometric functions, exponentials, and logarithms. Thus, we will leave it 

as it is. It can be evaluated in terms of nonelementary functions, or integrated numerically, 

but such discussion is beyond the scope of this example. # 

2.2.3. Existence and uniqueness for the linear equation. A fundamental is- 
sue, in the theory of differential equations, is whether a given differential equation 
F(z,y,y’) = 0 Aas a solution through a given initial point y(a) = b in the a,y 
plane. That is the question of existence. If a solution does exist, then our next 
question is: is that solution unique, or is there more than one such solution? That 
is the question of uniqueness. Finally, if we do indeed have a unique solution, then 
over what x interval does it apply? 

For the linear problem 

y' + p(x)y = q(2), y(a) = 6, (27) 

all of these questions are readily answered. Our proof of existence is said to be 
constructive because we actually found a solution, (24). We are also assured that 
that solution is unique because our derivation of (24) did not offer any alternatives: 
each step was uniquely implied by the preceding one, as you can verify by review- 
ing those steps. Nonetheless, let us show how to prove uniqueness, for (27), by a 
different line of approach. 

Suppose that we have two solutions of (27), y1(x) and y2(z), on any z interval 
J containing the initial point a. That is, 

Yi+ple)y =r), — yr(a) =, (28a) 
and 

Uo + p(x)yz= ale), — ya(a) = 0. (28b) 
Next, denote the difference yj (x) — yg(x) as u(x), say. If we subtract (28b) from 
(28a), and use the fact that (f ~ g)’ = f’ — g’, known from the calculus, we obtain 

the “homogenized” problem 

ul + p(a)u = 0, u(a) = 0, (29) 

on u(x). But u! + pu = 0 implies that fdu/u + [pdx = 0, which implies 
that In jul = — {pdx + C, which implies that |u| = exp(— {pdx +C) and, 
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finally, that u(x) = Aexp(— f pdx), where A is an arbitrary constant. Since 

u(a) = 0 and the exponential is nonzero, it follows that A must be zero, so u(a) = 

yi(a) — yo(x) must be identically zero. Thus, y,(a) and yo(x) must be identical 

on I. Since y;(a) and ye(a) are any two solutions of (27), the solution must be 

unique. 

That approach, in proving uniqueness, is somewhat standard. Namely, we 

suppose that we have two solutions to the given problem, we let their difference be 

u, say, obtain a homogenized problem on u, and show that u must be identically 

zero. 

Finally, what is the interval of existence of our solution (24)? The only pos- 

sible breakdown of (24) is that one or more of the integrals might not exist (be 

convergent). But since p is continuous, by assumption, it follows that the € and ¢ 

integrals of p both exist and, indeed, are continuous functions of x and &, respec- 

tively. Thus exp cfs p(C) dC) is continuous too, and since q is also continuous by 

assumption, then the integral of the exponential times g must exist. 

In summary, we have the following result. 

  

THEOREM 2.2.1 Existence and Uniqueness, for the Linear Equation. 

The linear equation y’ + p(x)y = q(x) does admit a solution through an initial 

point y(a) = bif p(x) and q(x) are continuous at a. That solution is unique, and it 

exists at least on the largest x interval containing x = a, over which p(x) and q(x) 

are continuous. 
  

In Example 1, for instance, p(x) = 2x and g(x) = 0 were continuous for all x, 

so every solution was valid over oo < x < co. In Example 2, p(w) = —2/(x+2) 

and q(x) = 0, so the broadest interval containing the initial point « = 0, over 

which p and q were continuous, was ~2 < & < oo and, sure enough, we found 

that the solution (15) was valid over that interval but not beyond it because of the 

singularity in the solution at 2 = —2. We might think of the solution as “inheriting” 

that singularity from the singular behavior of p(x) = —a/(x + 2) at that point. 

EXAMPLE 5. A Narrow Escape. The condition of continuity of p(a) and q(x) is 

sufficient to imply the conclusions stated in the theorem, but is not necessary, as illustrated 

by the problem 
ay’ + 3y = 62°. (30) 

The general solution of (30) is readily found, from (21), to be 

y{a) = 2° +. (31) 

The graphs of the solution for several values of C (i.e., the solution curves) are shown 

in Fig. 3. Now, p(x) = 3/x is continuous for all « except ¢ = 0, and q(z) = 6x is 

continuous for all x, so if we append to (30) an initial condition y(a) = 6, for some a > 0, 

then Theorem 2.2.1 tells us that the solution (31) that passes through that initial point will



be valid over the interval 0 < x < oo atleast. For instance, if a = 1 and 6 = 2.5 (the point 

P,), then C = 1, and the solution (31) is valid only over 0 < x < 00 since it is undefined 

at « = 0 because of the 1/x* term, as can also be seen from the figure. However, if a = 1 

and b = 1 (the point P2) then C’ = 0, and the solution (31) is valid over the broader interval 

—oo < x < oo because C = 0 removes the singular 1/2? term in (31). That is, if the initial 

point happens to lie on the solution curve y(z) = x® through the origin, then the solution 

y(x) = x° is valid on —co < x < 00; if not, then the solution (30) is valid on 0 < 2 < 00 
ifa>Oandon-co<a<Oifa<0. E 

  

  

        

  

Figure 3. Representative integral curves (31) for the equation (30). 

2.2.4, Variation of parameter method. A second method for the solution of 
the general first-order linear equation 

y+ p(«)y = q(x) (32) 

is the method of variation of parameters, due to the great French mathematician 
Joseph Louis Lagrange (1736-1813) who, like Euler, also worked on the applica- 
tions of mathematics to mechanics, especially celestial mechanics. 

Lagrange’s method is as follows. We begin by considering the homogeneous 
version of (32), 

y+ p(x)y = 0, (33) 
which is more readily solved. Recall that we solved it by integrating 

di 
[ 2+ [(@)ae=0 

and obtaining the general solution 

p(x) = AeW J P(e) ae, (34) 
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We use the subscript h because y;,(a) is called the homogeneous solution of (32). 
That is, it is the solution of the homogeneous version (33) of the original nonhomo- 
geneous equation (32). [In place of y,(a), some authors write y-(x) and call it the 
complementary solution.| Lagrange’s idea is to try varying the “parameter” A, the 
arbitrary constant in (34). Thus, we seek a solution y(a) of the nonhomogeneous 

equation in the form 

y(2) = A(aje~ Ff P(@) de, (35) 

(The general idea of seeking a solution of a differential equation in a particular 

form is important and is developed further in subsequent chapters.) 

Putting (35) into (32) gives 

(Alen Sete 4 A(=pje /?4*) + pAew Pd = 9. (36) 

Cancelling the two A terms and solving for A’ gives 

Al(a) = g(x)ef PO) 4, (37) 

which can be integrated to give 

A(x) = [em dt a(a)\dxe+C 

and hence the general solution 

y(c) = A(x)e~ Jp(e)de — 9m [ r(x) de (/ ef P(®) 4 oe) da + c) ; (38) 

which is identical to our previous result (21). 
It is easy to miss how remarkable is the idea behind Lagrange’s method be- 

cause it starts out looking like a foolish idea and ends up working beautifully. Why 
do we say that it looks foolish? Because it is completely nonspecific. To explain 
what we mean by that, let us put Lagrange’s idea aside, for a moment, and consider 
the second-order linear equation y”+y/—2y = 0, for instance. In Chapter 3 we will 
learn to seek solutions of such equations in the exponential form y = e*©, where 
is a constant that needs to be determined. Putting that form into y” + y’ — 2y = 0 
gives the equation (\? + \ — 2)e** = 0, which implies that \ needs to satisfy 
the quadratic equation \7 + \ — 2 = 0, with roots \ = 1 and \ = —2. Thus, 
we are successful, in this example, in finding two solutions of the assumed form, 
y(x) = e* and y(x) = e7?*. Notice how easily this idea works. It is easily imple- 
mented because most of the work has been done by deciding to look for solutions 
in the correct form, exponentials, rather than looking within the set of all possible 
functions. Similarly, if we lose our eyeglasses, the task of finding them is much 
easier if we know that they are somewhere on our desk, than if we know that they 

are somewhere in the universe. 
Returning to Lagrange’s idea, observe that the form (35) is completely non- 

specific. That is, every function can be expressed in that form by a suitable choice



of A(x). Thus, (35) seems useless in that it does not narrow down the search in 

the least. That’s why we say that at first glance Lagrange’s idea looks like a foolish 

idea. 
Next, why do we say that, nevertheless, it works beautifully? Notice that the 

equation (36), governing A(a), is itself a first-order nonhomogeneous equation of 

the same form as the original equation (32), and looks even harder than (32)—except 
for the fact that the two A terms cancel, so that we obtain the simple equation (37) 

that can be solved by direct integration. The cancellation of the two A terms was 
not serendipitous. For suppose that A(x) is a constant. Then the A‘ term in (36) 
drops out, and the two A terms must cancel to zero because if A is a constant then 
(35) is a solution of the homogeneous equation! 

In Chapter 3 we generalize Lagrange’s method to higher-order differential 
equations. 

Closure. In this chapter we begin to solve differential equations. In particular, 
we consider the general first-order linear equation 

y+ p(x)y = q(2), (39) 

where p(a) and q(x) are given. We begin with the homogeneous case, 

y' + p(x)y = 0 (40) 

because it is simpler, and find its general solution 

y(@) = AeW J pe) de, (41) 

If an initial condition y(a) = b is appended to (40), then (41) gives the particular 
solution of (40) through the initial point (a, b) as 

y(xv) = be~ Ja p(s) ds (42) 

Turning next to the full nonhomogeneous equation (39), we derive the general 
solution 

y(w) =e FP(@) ae (/ ef P(®) de 9p) de + c) . (43) 

first by the integrating factor method, and then again by the method of variation of 
parameters. Both of these methods will come up again in subsequent sections and 
chapters. 

If an initial condition y{a) = 6 is appended to (39), then (43) gives the partic- 

wlar solution of (39) through the initial point (a, b) as 

y(a) = en fe Pe) ag ([ ele WO) Mg (€) dé + s) (44) 
Sa 

which solution is unique, and which is valid on the broadest x interval containing 
x = a, on which both p(x) and q(x) are continuous, and possibly even on a broader 

interval than that. 
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Finally, we introduce the idea of lineal elements and the direction field of a 

differential equation y’ = f(z, y). 
It is noteworthy that we are successful in finding the general solution of the 

general first-order linear equation y' + p(x)y = q(x) explicitly and in closed form. 
For other equation types we may not be so successful, as we shall see. 

In closing, we call attention to the exercises, to follow, that introduce addi- 

tional important special cases, the Bernoulli, Riccati, d’Alembert-Lagrange, and 
Clairaut equations. In subsequent sections we occasionally refer to those equa- 

tions and to those exercises. 

Computer software. There are now several powerful computer-algebra systems, 
such as Mathematica, MATLAB, and Maple, that can be used to implement much of 

the mathematics presented in this text — numerically, symbolically, and graphically. 
Consider the application of Maple, as a representative software, to the material in 

this section. 
There are two types of applications involved in this section. One entails find- 

ing the general solution of a given first-order differential equation, or a particular 
solution satisfying a given initial condition. These can be carried out on Maple 
using the dsolve command (“function,” in Maple terminology). 

For example, to solve the equation (x + 2)y’ — ry = 0 of Example 2, for y(z), 

enter 
dsolve((x + 2) * diff(y(z), rz) — a * y(x) =0,y(2)); 

(including the semicolon) and return; dsolve is the differential equation solver, and 
diff is the derivative command for y’. [The command for y” would be diff(y(z), x, z), 
and so on for higher derivatives.] The output is the general solution 

(2) = C1 exp (x) 

IT Gi de +4 

where _C'l is Maple notation for an arbitrary constant. 
To solve the same equation, but this time with the initial condition y(0) = 3, 

enter 

dsolve({(w + 2) * diff(y(e), 2) — 2 y(x) =0, y(0) = 3}, y(e)); 
and return. The output is the particular solution 

exp (x) 
gv) = 12—-—__—_ 

ye) x? +4044 

which agrees with our result in Example 2. 
The dsolve command can cope with differential equations that contain unspec- 

ified parameters or functions. For example, to solve y’ + p()y = 0, where p(x) is 

not specified, enter 

dsolve(diff(y(x), 2) — p(x) * y(z) = 0, y(x));
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and return. The output is the general solution 

ule) = exo ( [ p(2)de) 01 

The second type of application entails generating the graphical display of vari- 
ous solution curves and/or the direction field for a given differential equation. Both 
of these tasks can be carried out on Maple using the phaseportrait command. For 
example, to obtain the plot shown as Fig. 1, enter 

with(DEtools): 

to access the phaseportrait command; then return and enter 

phaseportrait (-2*a*y, [wy], « = —1.5..1.5, {[0, —2], [0, —1], 

[0, O}, (0, 1], (0, 2], (0, 3]}, arrows = LINE); 

and return. The items within the outer parentheses are as follows: 

phaseportrait(right-hand side of y’ = f(x,y), [variables], xrange, 

{initial points}, optional specification to include direction 

field lineal elements and choice of their line thickness); 

The yrange is set automatically, but it can be specified as an additional optional 
item if you wish. All items following the { initial points } are optional, so if you 
want the yrange to be —1 < y < 3, say, then modify the phaseportrait command as 
follows: 

phaseportrait (-2*a*y, [v,y], © = —1.5..1.5, {[0, -2], [0, —1], 

(0, 0}, [0, 1], [0, 2], (0, 3]}, y = —1..3, arrows = LINE); 

To run phaseportrait over and over, one needs to enter “with(DEtools):” only at the 

beginning of the session. 

To obtain a listing of the mathematical functions and operators (or commands) 
available in Maple, enter 2lib and return. Within that list one would find such 
commands as dsolve and phaseportrait. To learn how to use a command enter a 
question mark, then the command name, then return. For example, type ?dsolve 
and return. 

In the exercises that follow, and those in subsequent sections, problems are in- 
cluded that require the use of a computer-algebra system such as one of the systems 

mentioned above. These are important, and we strongly urge you to develop skill in 
the use of at least one such system in parallel with, but not in place of, developing 

understanding of the underlying mathematics presented in this text.
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EXERCISES 2.2 
  

1. Assuming that p(z) and q(x) are continuous, verify by di- 
rect substitution 

(a) that (9) satisfies (3) (b) that (21) satisfies (2) 

2. In each case find the general solution, both using the “off- 

the-shelf” formula (21) and then again by actually carrying out 

the steps of the integrating factor method. That is, find the inte- 

grating factor o(2) and then carry out solution steps analogous 

to those in our derivation of (21). Understand the « interval 

on which the equation is defined to be the broadest interval on 

which both p(a) and g(x) are continuous. For example, in part 
(a) the xz interval is -oo < x < oo, in part (e) it is any interval 

on which tan x is continuous (such as 7/2 < x < 37/2), and 
in part (f) it is either —-co < @ < Qor0 < x < oo [to ensure 

the continuity of p(x) = 2/z]. 

(a) y’ — y = de® 
(c)y ty =a 
(e)y’ ~ (tanx)y = 6 

(g) zy’ —2y = 2° 

(i) (w — 5)(wy’ + 3y) = 2 

(b)y' +4y =8 
(d) y’ = y — sin 2x 

(f) zy! + 2y = 2° 
(h) y’ + (cot x)y = 2cosz 
de. 1 

i) dy — 6x2 =e! 

d: 
Oy +ay-4y? =1 

dy 
dr 

(n) wo + 2(cot 2@)r = 1 

dz rs 
(Kyg —y tse=0 

t——4tP =a (m) ait x 

3.(a)~(n) For the equation given in Exercise 2, solve by the 

method of variation of parameters. That is, first find the ho- 

mogeneous solution, then vary the parameter, and so on — as 

we did in (34)-(37) for the general equation (31). 

4,(a)~(n) For the equation given in Exercise 2, find the gen- 

eral solution using computer software (such as Mathematica, 

MATLAB, or Maple). Verify your result by showing that it 

does satisfy the given differential equation. 

5. Solve zy’ + y = 62x? subject to the given initial condition 

using any method of this section, and state the (broadest) in- 

terval of validity of the solution. Also, sketch the graph of the 

solution, by hand, and label any key values. 

(a) y(1) =0 (b) yd) = 2 (c) y(2) = 2 
(d)y(—3) = 18 Ce) y(—38) = -5 — (f) y(-2) = 8 

6. Solve xy’ + 2y = x + 2 subject to the given initial condi- 

tion using any method of this section, and state the (broadest) 

interval of validity of the solution. Also, sketch the graph of 

the solution, by hand, and label any key values. 

(a) y(2) =0 (b) y(0) = 1 () y(-l) = 
(dy) = 1 (e) y(-2) = 0 (f) y(-3) = 0 
7. Find the general solution using any method of this section. 

The answer may be left in implicit form, rather than explicit 

form, if necessary. HINT: Remember that which variable is 

the independent variable and which is the dependent variable 

is a matter of viewpoint, and one can change one’s viewpoint. 

In these problems, consider whether it might be better to re- 

gard x as a function of y, and recall from the calculus that 

dy/dx = 1/(da/dy). 

  
dy 1 dy 1 

a= = b) 2 = ——— 
() dx a+ Sev ( ) oe boty 

2 /¥ we ein: ay 
(c) (6y e) y=0 (d) (y siny +t) 7" y 

8. (Direction fields) The direction field concept was discussed 

within Example |. For the differential equation given, use 

computer software to plot the direction field over the speci- 

fied rectangular region in the z, y plane, as well as the integral 

curve through the specified point P. Also, if you can identify 

any integral curves exactly, from an inspection of the direction 

field, then give the equations of those curves, and verify that 

they do satisfy the given differential equation. 

=2+(2xe—-y)® onal <4, ly) <4; P=(2,1) 
on ja] < 4, ly) <4; P= (1,1) 
on |a| < 2, fy] <3; P= 

(d)y’ +2y=e7* onfal <3, jy) <2; P= 
(e)y! = a?/(y2?-1) onl2| <3, jy) <3; P= 
Hy +te=y oniz| <20,0<y<20; P= (0,1) 

(g)y =ety on0<a2<50,0<y<50; P=(0,10) 

(a) y/ 
(b) y! = y(y? — 4) 
(c)y’ = (3 ~y") 

(h)y’=esiny on0d<«#<10,0<y< 10; P=(2,2) 

9, (Bernoulli equation) The equation 

y! + play = qa)y", (9.1)     
where nm is a constant (not necessarily an integer), is called 

Bernoulli’s equation, after the Swiss mathematician Jakob 

Bernoulli. Jakob (1654-1705), his brother Johann (1667-1748), 

and Johann’s son Daniel (1700-1782), are the best known of 

the eight members of the Bernoulli family who were promi- 

nent mathematicians and scientists. 

(a) Give the general solution of (9.1) for the special cases 

nma=zQandn = 1. 

(b) If 2 is neither 0 nor 1, then (9.1) is nonlinear. Neverthe- 

less, show that by transforming the dependent variable from



y(x) to v(x) according to v = yio® (forn # 0,1), (9.1) can 

be converted to the equation 

vo +(1—n)p(a)v = (1 — n)a(2), (9.2) 

which is linear and can be solved by the methods developed in 
this section. This method of solution was discovered by Got- 

ifried Wilhelm Leibniz (1646-1716) in 1696, 

10. Use the method suggested in Exercise 9(b) to find the gen- 
eral solution to each of the following. 

(b) zy! — 2y = x3 y? 

@) fy(3y' +y) = 
(Hy! = ay? 

(g)y" =(y')? — HINT: First, let y/(z) = u(z). 
(hy) y’” + (y”)? =0 HINT: First, let y”(x) = u(x). 

11. (Riccati equation) The equation 

(a) y’ — dy = 4y? 
(c) Qayy’ + y? = 22 

@y=y 

  

    y’ = p(z)y” + a(z)y +r(a) (11.1) 
  

is called Riccati’s equation, after the Italian mathematician 

Jacopo Francesco Riccati (1676-1754). The Riccati equation 

is nonlinear if p(a) is not identically zero, Recall from Exer- 

cise 9 that the Bernoulli equation can always be reduced to a 

linear equation by a suitable change of variables. Likewise, for 

the Riccati equation, provided that any one particular solution 
can be found. 

Let Y (2) be any one particular solution of (11.1), as found 
by inspection, trial and error, or any other means. [Depending 

on p(x), g(x), and r(x), finding such a Y(x) may be easy, 
or it may prove too great a task.] Show that by changing the 

dependent variable from y(a) to u(x) according to 

y=¥(a)+— (11.2) 
Uu 

the Riccati equation (11.1) can be converted to the equation 

u’ + (2p(a)¥ (x) + g(a) u = —p(a), (11.3) 

which is linear and can be solved by the methods developed in 
this section. This method of solution was discovered by Leon- 
hard Euler (1707-1783) in 1760. 

12. Use the method suggested in Exercise || to find the gen- 
eral solution to each of the following. Nonelementary inte- 
grals, such as f exp (ax?) dx, may be left as is. 

(a)y’~4y=y? HINT: ¥(x) = —4 
(b)y’=y?-ay+1 HINT: Y(2z)=2 
(c) (cosz)y!=1—y? HINT: Y(x) =sinz 

Go
 

wa
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HINT: (a) = 2e* 
HINT: See if you can find a Y (2) 

(Dy =e ty ~y | 
(e)y! = ay? + 2a —- 2° 
in the form azx?. 

(f) y= (I - He —y) 
(Qy =y— 
(h) y! = (2—y)y 
13. (d’Alembert-Lagrange equation) The first- order nonlin- 

ear differential equation 

y = xf(p) + g(p) (13.1) 

on y(z), where it will be convenient to denote y’ as p, and f 
and g are given functions of p, is known as a d’Alembert— 

Lagrange equation after the French mathematicians Jean le 

Rond d’Alembert (1717-1783) and Joseph-Louis Lagrange 

(1736—1813). 

(a) Differentiating (13.1) with respect to x, show that 

dp p— fp) = [ef'(p) + 9’) F- (13.2) 

Observe that this nonlinear equation on p(x) can be converted 

to a linear equation if we interchange the roles of x and p by 

now regarding x as the independent variable and p as the de- 

pendent variable. Thus, obtain from (13.2) the linear equation 

f'(p) 
—f(p) p- f(p) 

on x(p). Since we have divided by p — f(p) we must restrict 
f(p) so that f(p) 4 p. Solving the simpler equation (13.3) for 
z(p), the solution of (13.1) is thereby obtained in parametric 
form: x = x(p) from solving (13.3), and y = 2(p)f(p) + 9(p) 
from (13.1). This result is the key idea of this exercise, and is 

illustrated in parts (b)-(c). In parts (d)-(k) we consider a more 

specialized result, namely, for the case where f(p) happens to 

have a “fixed point.” 
(b) To illustrate part (a), consider the equation y = 2xy' + 3y’ 

[ie., where f(p) = 2p and g(p) = 3p], and derive a paramet- 
ric solution as discussed in (a). 

(c) To illustrate part (a), consider the equation y = x(y! + y'*) 

fie., f(p) = p+ p? and g(p) = 0], and derive the parametric 
solution discussed in (a). 

(d) Suppose that f(p) has a fixed point Po, that is, such that 

f( Po) = Po. [A given function f may have none, one, or any 

number of fixed points. They are found as the solutions of the 

equation f(p) = p.] Show that (13.1) then has the straight line 

dz 

dp 

g'(p) (13.3) 

y = Pox + g(Po) (13.4)
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cases where the integrals that occur in the general solution of 

(13.3) are too difficult to evaluate. | 

(e) Show that f(p) = 3p? has two fixed points, p = 0 and 

p = 1/3, and hence show that the equation y = 3ep” + g(p) 

1 1 
has straight-line solutions y = g(0) and y = 3° +g 3 for 

any given function g. 

(f) Determine all particular solutions of the form (13.4), if any, 

for the equation y = x (y’? ~ 2y! + 2) + ev. 

(2) Same as (f), for y = re! —5cos y'. 

(h) Same as (f), for y = w (y = 2y') + 6y”. 

(i) Same as (f), for y = 2 (y? ~ 3y’) — 2siny’. 
(j) Same as (f), for y — x (y’? +3) = y”. 

(k) Same as (f), for y + 2 (2y’ + 3) = enw, 

14. (Clairaut equation) For the special case f(p) = p, the 
d’ Alembert~Lagrange equation (13.1) in the preceding exer- 

cise becomes 

y=«p+g(p), (14.1) 

which is known as the Clairaut equation, after the French 

mathematician Alexis Claude Clairaut (1713-1765). (Recall 

that p denotes y’ here.) 

(a) Verify, by direct substitution into (14.1), that (14.1) admits 

the family of solutions 

y =Ca+(C), (14.2) 

where C’ is an arbitrary constant. 

(b) Recall that (13.3) does not hold if f(p) = p, but (13.2) 

does. Letting f(p) = p in (13.2), derive the family of solu- 

tions (14.2), as well as the additional particular solution given 

parametrically by 
(14.3a) 

(14.3b) 

v= ~g'(p), 

y = —pg'(p) + 9(p). 

(c) To illustrate, find the parametric solution (14.3) for the 

equation y = zy’ — y’®. Show that in this example (14.3) 

can be gotten into the explicit form y = x? /4 by eliminating 

the parameter p between (14.3a) and (14.3b). Plot, by hand, 

the family (14.2), for C = 0,+1/2, +1, +2, together with the 

solution y = 27/4. (Observe, from that plot, that the partic- 

ular solution y = 2?/4 forms an “envelope” of the family of 

straight-line solutions. Such a solution is called a singular so- 

lution of the differential equation.} 

(d) Instead of a hand plot, do a computer plot of y = x? /4 and 

the family (14.2), for C = 0, £0.25, +0.5, +0.75,..., £3, on 

—-8<a<8-l0<y< 12. 

  

2.3 Applications of the Linear Equation 

In this section we consider representative physical applications that are governed 

by linear first-order equations: electrical circuits, radioactivity, population dynam- 

ics, and mixing problems, with additional applications introduced in the exercises. 

2.3.1. Electrical circuits. In Section 1.3 we discussed the mathematical model- 

ing of a mechanical oscillator. The relevant physics was Newton’s second law of 

motion, which relates the net force on a body to its resulting motion. Thus, we 

needed to find sufficiently accurate expressions for the forces contributed by the 

individual elements within that system — the forces due to the spring, the friction 

between the block and the table, and the aerodynamic drag. 

In the case of electrical circuits the relevant underlying physics, analogous 

to Newton’s second law for mechanical systems, is provided by Kirchhoff’s laws. 

Instead of forces and displacements in a mechanical system comprised of various 

elements such as masses and springs, we are interested now in voltages and currents
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in an electrical system comprised of various elements such as resistors, inductors, 

and capacitors. 
First, by a current we mean a flow of charges: the current through a given con- 

trol surface, such as the cross section of a wire, is the charge per unit time crossing 
that surface. Each electron carries a negative charge of 1.6 x 107° coulomb, and 
each proton carries an equal positive charge. Current is measured in amperes, with 
one ampere being a flow of one coulomb per second. By convention, a current is 
counted as positive in a given direction if it is the flow of positive charge in that 
direction. While, in general, currents can involve the flow of positive or negative 
charges, in an electrical circuit the flow is of negative charges, free electrons. Thus, 
when one speaks of a current of one ampere in a given direction in an electrical 
circuit one really means the flow of one coulomb per second of negative charges 
(electrons) in the opposite direction. 

Just as heat flows due to a temperature difference, from one point to another, 

an electric current flows due to a difference in the electric potential, or voltage, 
measured in volts. 

We will need to know the relationship between the voltage difference across a 
given circuit element and the corresponding current flow, The circuit elements of 
interest here are resistors, inductors, and capacitors. 

For a resistor, the voltage drop E(t), where t is the time (in seconds), is pro- 
portional to the current i() through it: 

E(t) = Ri(t), (1) 
where the constant of proportionality R is called the resistance and is measured 
in ohms; (1) is called Ohm’s law. By a resistor we usually mean an “off-the- 
shelf” electrical device, often made of carbon, that offers a specified resistance — 

such as 100 ohms, 500 ohms, and so on. But even the current-carrying wire in a 
circuit is itself a resistor, with its resistance directly proportional to its length and 
inversely proportional to its cross-sectional area, though that resistance is probably 
negligible compared to that of other resistors in the circuit. The standard symbolic 
representation of a resistor is shown in Fig. 1. 

For an inductor, the voltage drop is proportional to the time rate of change of 
current through it: 

| dilt) 

where the constant of proportionality Z is called the inductance and is measured 
in henrys. Physically, most inductors are coils of wire, hence the symbolic repre- 
sentation shown in Fig. 1. 

For a capacitor, the voltage drop is proportional to the charge @(t) on the 
capacitor: 

E(t) = ZOU) 3) 
where C’ is called the capacitance and is measured in farads. Physically, a capaci- 
tor is normally comprised of two plates separated by a gap across which no current 

Resistor: 

di 
E,- Ey =E=L— 

i 2 dt 

Capacitor : 

Figure 1. The circuit elements.
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(a) 

  

(b) p 

Figure 2. RLC circuit. 

flows, and Q(t) is the charge on one plate relative to the other. Though no cur- 

rent flows across the gap, there will be a current ¢(¢) that flows through the circuit 

that links the two plates and is equal to the time rate of change of charge on the 

capacitor: 
way AQ(t) i(t) = (4) 

From (3) and (4) it follows that the desired voltage/current relation for a capacitor 

can be expressed as 

  

E(t) = A | i(t) dt. (5) 

Now that we have equations (1), (2), and (5) relating the voltage drop to the 

current, for our various circuit elements, how do we deal with a grouping of such 

elements within a circuit? The relevant physics that we need, for that purpose, 

is given by Kirchhoff’s laws, named after the German physicist Gustav Robert 

Kirchhoff (1824-1887): 

Kirchhoff’s current law states that the algebraic sum of the currents approach- 

ing (or leaving) any point of a Circuit is zero. 

Kirchhoff’s voltage law states that the algebraic sum of the voltage drops around 

any loop of a circuit is zero. 

To apply these ideas, consider the circuit shown in Fig. 2a, consisting of a 

single loop containing a resistor, an inductor, a capacitor, a voltage source (such as 

a battery or generator), and the necessary wiring. Let us consider the current i(t) to 

be positive clockwise; if it actually flows counterclockwise then its numerical value 

will be negative. In this case Kirchhoff’s current law simply says that the current 

i is a constant from point to point within the circuit and therefore varies only with 

time. That is, the current law states that at any given point P in the circuit (Fig. 2b), 

iy + (—i2) = 0 or, iy = zg. Kirchhoff’s voltage law, which is really the self-evident 

algebraic identity 

(Va — Va) + (Vo — Va) + (Ve — Vo) + (Va = Ve) = 9, (6) 

gives 
do1. ef 

itp) pe a adt— Q. E(t) — Ri La a | a dt (7) 

The latter is called an integrodifferential equation because it contains both deriva- 

tives and integrals of the unknown function, but we can convert it to a differential 

equation in either of two ways. 

First, we could differentiate with respect to t to eliminate the integral sign, 

thereby obtaining 
  

di pdi 1 dE (t) (8) 
po 4 RO 4 Sy 

wm at oO ad 
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Alternatively, we could use ((¢) instead of 7(t) as our dependent variable, for then 

f idt = Q(t), and (7) becomes 

  

PQ dQ 
Loy + Ro + a0 = E(t). (9) 

      

Either way, we obtain a linear second-order differential equation. 
Since we are discussing applications of first-order linear equations here, let us 

treat two special cases. 

EXAMPLE 1. RE Circuit. If we omit the capacitor from our circuit, then (7) reduces to 

the first-order linear equation* 
di 
Lo + Ri = B(t ). (10) 

If £(t) is a continuous function of time and the current at the initial instant t = 0 is 

i(0) = do, then the solution to the initial-value problem consisting of (10) plus the initial 

condition 7(0) = ig is given by (24) in Section 2.2, with “p” = R/L and “q? = E(t)/L: 

ot 

i(t) =e lo tar (| els Fu E@) 4, +i 0) 
re] L 

or 
1 t 

i(t) = ine BYP + if eh —OIE Br) dr (11) 
0 

over 0) < tf < 00, where 7 and yz have been used as cummy integration variables. 

For instance, if &(¢) = constant = Ep, then (11) gives 

  

. 8 E + 
i(t) = 19€ RE/L + 7 (1 _ e RE) ; (12) 

or 

Eo .  Lo\ pe i(t) = ig — = | eT REE, 13 i(t) R + (i R/° (13) 

As t — oo, the exponential term in (13) tends to zero, and i(t) > Eo/R. Thus we call the 
Eo/R term in (13) the steady-state solution and the (io — 42) e~ **/ term the transient 
part of the solution. The approach to steady state, for several different initial conditions, is 
shown in Fig. 3 

As another case, let E(t) = Eo sin wt and ig = 0. Then (11) gives 

Bowl 

(0) = Bone 
op R 

(em -+- — sinwt — cos ut) . (14) 
wh, 

  

{t may seem curious that if we try deleting the capacitor by setting C’ = 0, then the capacitor 
term in (7) becomes infinite rather than zero. Physically, however, one can imagine removing the 
capacitor, in effect, by moving its plates together until they touch. Since the capacitance C’ varies as 
the inverse of the gap dimension, then as the gap diminishes to zero C' + oo, and the capacitor term 
in the differential equation does indeed drop out because of the 1/C factor. 

E,/R 

37 

  

()—— E/R 
  

    
Figure 3. Response 7(t) for the 

case E(t) = constant = Eo; 

approach to steady state. 
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Input ——»| System » Output 

lig, ECO] [i(t)]   

Figure 4. Schematic of the system. 

As t — 00, the exponential term in (14) tends to zero, and we are left with the steady-state 

solution L R 
Eiguw t 

i(t) > =p [| —— sinwt ~ coswt |. t— co {5 
(> RET oDp (= ) (t + 0) (15) 

Observe that by a steady-state solution we mean that which remains after transients 

have died out; it is not necessarily a constant. For the case where i(0) = ig and E(t) = 0 

the steady-state solution is the constant £o/R, and for the case where i(0) = Oand E(t) = 

Ep sin wt the steady-state solution is the oscillatory function given by (15). ol 

EXAMPLE 2. RC Circuit. If, instead of removing the capacitor from the circuit shown 

in Fig. 2, we remove the inductor (so that L = 0), then (8) becomes 

di 1, d&(t) 
R-+ 51 a 1 

dt dt ’ (16) 

which, again, is a first-order linear equation. If we also impose an initial condition 7(0) = 

to, then 

. L fio dE(r) — pe t/RO (r—t)/RO ON 17 a(t) = ipe + al e dr °° (17) 

gives the solution in terms of ip and E(t). @ 

Let us use the electrical circuit problem of Example 1 to make some general 

remarks. We speak of the initial condition ig and the applied voltage E(¢) as the 

inputs to the system consisting of the electrical circuit, and the resulting current 

i(t) as the output (or response), as denoted symbolically in Fig. 4. From (11), we 

see that if ig = 0 and E(t) = 0, then i(t) = 0: if we put nothing in we get nothing 

out.* 

Consider the inputs and their respective responses separately. If & (t) = 0 and 

ig % 0, then the response 

i(t) = ipe P/E 

to the input ip is seen to be proportional to ig: if we double to we double its re- 

sponse, if we triple ig we triple its response, and so on. Similarly, if i9 = O and 

E(t) is not identically zero, then the response 

1 f° it) =F [ et—O/F E(r) dr 

to the input E(t) is proportional to E(t). This result illustrates an important general 

property of linear systems: the response to a particular input ts proportional to that 

input. 
  

“In contrast with linear initial-value problems, linear boundary-value problems can yield nonzero 

solutions even with zero input — that is, even if the boundary conditions are zero and the equation is 

homogeneous. These are called eigensolutions, and are studied in later chapters.
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Further, observe from (11) that the total response 7(£) is the sum of the indi- 
vidual responses to ig and E(t). This result illustrates the second key property of 

linear systems: the response to more than one input is the sum of the responses to 
the individual inputs. 

In Chapter 3 we prove these two important properties and use them in devel- 
oping the theory of linear differential equations of second order and higher. 

Before closing this discussion of electrical circuits, we wish to emphasize the 

correspondence, or analogy, between the RLC electrical circuit and the mechani- 

cal oscillator studied in Section 1.3, and governed by the equation 

da dx k 
map + oR +ke = F(t). (18) 

For we see that both equations (8) (the current formulation) and (9) (the charge for- 

mulation) are of exactly the same form as (18). Thus, their mathematical solutions 

are identical, and hence their physical behavior is identical too. Consider (8), for 
instance. Comparing it with (18), we note the correspondence . 

dE(t) 
dt 

Thus, given the values of m,c,k, and the function F(t), we can tf an ee 
trical analog circuit by setting L =m, R = c, C = 1/k, and E(t) = f F(t) 

d. 
If we also match the initial conditions by setting i(0) = x(0) and i = tr) 

Lem, Ree 1/CeHk, i(t) + x(t), & F(t). (19) 

then the resulting current z(t) will be identical to the motion x(t). 
Or, we could use (9) to create a different analog, namely, 

Liem, Ree, I/Cok, Q(t) oa(t), E(t) o F(t). (20) 

In either case we see that, in mechanical terminology, the inductor provides “iner- 
tia” (as does the mass), the resistor provides energy dissipation (as does the friction 
force), and the capacitor provides a means of energy storage (as does the spring). 

Our interest in such analogs is at least twofold. First, to whatever extent we un- 
derstand the mechanical oscillator, we thereby also understand its electrical analog 
circuit, and vice versa. Second, if the system is too complex to solve analytically, 
we may wish to study it experimentally. If so, by virtue of the analogy we have the 
option of studying whichever is more convenient. For instance, it would no doubt 
be simpler, experimentally, to study the RLC circuit than the mechanical oscillator. 

Finally, just as Hooke’s law can be derived theoretically using the governing 
partial differential equations of the theory of elasticity, our circuit element relations 
(1)~(S) can be derived using the theory of electromagnetism, the governing equa- 

tions of which are the celebrated Maxwell’s equations. We will meet some of the 
Maxwell’s equations later on in this book, when we study scalar and vector field 
theory. 

2.3.2. Radioactive decay; carbon dating. Another important application of first- 
order linear equations involves radioactive decay and carbon dating. 
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Mg 

_ 
Figure 5. Exponential decay. 

t 

Radioactive materials, such as carbon—14, einsteinium—253, plutonium—241, 

radium—226, and thorium—234, are found to decay at a rate that is proportional 

to the amount of mass present. This observation is consistent with the supposition 

that the disintegration of a given nucleus, within the mass, is independent of the 

past or future disintegrations of the other nuclei, for then the number of nuclei 

disintegrating, per unit time, will be proportional to the total number of nuclei 

present: 
dN 
—— = —k 21 di N, (21) 

where & is known as the disintegration constant, or decay rate. Actually, the graph 

of N(t) proceeds in unit steps since N(¢) is integer-valued, so N(¢) is discontin- 

uous and hence nondifferentiable. However, if N is very large, then the steps are 

very small compared to N. Thus, we can regard NV, approximately, as a continuous 

function of ¢ and can tolerate the dN/dt derivative in (21). However, it is incon- 

venient to work with N since one cannot count the number of atoms in a given 

mass. Thus, we multiply both sides of (21) by the atomic mass, in which case (21) 

becomes the simple first-order linear equation 

dm 
a 2 i km, (22) 

where m/(t) is the total mass, a quantity which is more readily measured. Solving, 

by means of either (9) or (24) in Section 2.2, we obtain 

m(t) = mye—™, (23) 

where m(0) = mo is the initial amount of mass (Fig. 5). This result is indeed the 

exponential decay that is observed experimentally. 

Since k gives the rate of decay, it can be expressed in terms of the half-life 7’ 

of the material, the time required for any initial amount of mass 7 to be reduced 

by half, to mg/2. Then (23) gives 

mo kT 
ya moe 

so k = (In2)/T, and (23) can be re-expressed in terms of T’ as 

m(t) = mg27/7. (24) 

Thus, ift = T,27,37,4T ..., then m(t) = mo, mo/2, mo/4, m9/8, and so on. 

Radioactivity has had an important archeological application in connection 

with dating. The basic idea behind any dating technique is to identify a physical 

process that proceeds at a known rate. If we measure the state of the system now, 

and we know its state at the initial time, then from these two quantities together 

with the known rate of the process, we can infer how much time has elapsed; the 

mathematics enables us to “travel back in time as easily as a wanderer walks up a 
2 frozen river. 
  

“Ivar Ekeland, Mathematics and the Unexpected. Chicago: University of Chicago Press, 1988.
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[In particular, consider carbon dating, developed by the American chemist Willard 
Libby in the 1950’s. The essential idea is as follows. Cosmic rays consisting of 
high-velocity nuclei penetrate the earth’s lower atmosphere. Collisions of these 
nuclei with atmospheric gases produce free neutrons. These, in turn, collide with 
nitrogen, thus changing some of the nitrogen to carbon—14, which is radioactive, 

and which decays to nitrogen-14 with a half-life of around 5,570 years. Thus, some 
of the carbon dioxide which is formed in the atmosphere contains this radioactive 
C—14. Plants absorb both radioactive and nonradioactive COo, and humans and 

animals inhale both and also eat the plants. Consequently, the countless plants and 
animals living today contain both C-[2 and, to a much lesser extent, its radioactive 

isotope C—14, in a ratio that is essentially the same from one plant or animal to 

another. 

EXAMPLE 3. Carbon Dating. Consider a wood sample that we wish to date. Since 
C—14 emits approximately 15 beta particles per minute per gram, we can determine how 

many grams of C—14 are contained in the sample by measuring the rate of beta particle 

emission. Suppose that we find that the sample contains 0.2 gram of C—14, whereas if 

it were alive today it would, based upon its weight, contain around 2.6 grams. Thus, we 

assume that it contained 2.6 grams of C14 when it died. That mass of C—14 will have 

decayed, over the subsequent time span t, to 0.2 gram. Then (24) gives 

0.2 = (2.6) 2774/5570 

and, solving for t, we determine the sample to be around t = 2,100 years old. 

However, it must be emphasized that this method (and the various others that are 

based upon radioactive decay) depend critically upon assumptions of uniformity. To date 
the wood sample studied in this example, for instance. we need to know the amount of 

C~14 present in the sample when the tree died, and what the decay rate was over the time 

period in question. To apply the method, we assume, first, that the decay rate has remained 
constant over the time period in question and, second, that the ratio of the amounts of C- 
14 to C-12 was the same when the tree died as it is today. Observe that although these 
assumptions are usually stated as fact they can never be proved, since it is too late for direct 

observation and the only evidence available now is necessarily circumstantial. @ 

4.3.3. Population dynamics. In this application, we are again interested in the 
variation of a population N(t) with the time t, not the population of atoms this 
time, but the population of a particular species such as fruit flies or human beings. 

According to the simplest model, the rate of change dN/dt is proportional to 
the population NV: 

dN 

dt 
where the constant of proportionality « is the net birth/death rate, that is, the birth 
rate minus the death rate. As in our discussion of radioactive decay, we regard 
nt) as continuous because the unit steps in N are extremely small compared to 

itself. 

= KN, (25) 
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ae 

Figure 6. Exponential growth. 

  

  

  

Q(t), eC) 

Figure 7. Mixing tank. 

Solving (25), we obtain the exponential behavior 

N(t) = Noe, (26) 

where N(0) = No is the initial condition. If the death rate exceeds the birth rate, 

then & < 0 and (26) expresses exponential decrease, with N -+ OQ ast + o. 

That result seems fair enough. However, if « > 0, then (26) expresses exponential 

growth, with N — oo as t -> 00, as displayed in Fig. 6 for several different initial 

conditions No. That result is unrealistic because as N becomes sufficiently large 

other factors will undoubtedly come into play, such as insufficient food or other 

resources. In other words, we expect that « will not really be a constant but will 

vary with N. In particular, we expect it to decrease as N increases. As a simple 

model of such behavior, suppose that « varies linearly with N: « = a — ON, with 

a and b positive, so that « diminishes as N increases, and even becomes negative 

when N exceeds a/b. Then (25) is to be replaced by the equation 

dN =(a—bN)N. (27) 
dt 

The latter is known as the logistic equation, or the Verhulst equation, after the 

Belgian mathematician PF. Verhulst (1804-1849) who introduced it in his work 

on population dynamics. Due to the N? term, the equation is nonlinear, so that the 

solution that we developed in Section 2.2 does not apply. However, the Verhulst 

equation is interesting, and we will return to it. 

2.3.4. Mixing problems. In this final application we consider a mixing tank with 

an inflow of Q(t) gallons per minute and an equal outflow, where ¢ is the time; see 

Fig. 7. The inflow is at a constant concentration c, of a particular solute (pounds 

per gallon), and the tank is constantly stirred, so that the concentration c(t) within 

the tank is uniform. Hence, the outflow is at concentration c(t). Let v denote the 

volume within the tank, in gallons; v is a constant because the inflow and outflow 

rates are equal. To keep track of the instantaneous mass of solute a(t) within the 

tank, let us carry out a mass balance for the “control volume” V (dashed lines in 

the figure): 

Rate of increase 

of mass of solute = Ratein — _ Rate out, (28) 

within V 

dx ib gal Ib gal Ib 
= — t “(t)— 29 

dt min (aw) (« =) (aw 5) (« =a) 9) 

or, since c(t) = x(t)/v, 

      

    a(t) = c Q(t), (30)
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which is a first-order linear equation on x(t). Alternatively, we have the first-order 
linear equation 

de{t) | Q(t) cr Q(t) + c(t) = —— 31 
dt v (t) v GL) 

on the concentration c(t). 
Recall that in modeling a physical system one needs to incorporate the relevant 

physics such as Newton’s second law or Kirchoff’s laws. In the present application, 
the relevant physics is provided entirely by (28). To better understand (28), suppose 
we rewrite it with one more term included on the right-hand side: 

Rate of increase Rate Rate Rate of creation 

of mass of solute = into ~— outof + of mass (32) 

within V V V within V. 

The equation (32) is merely a matter of logic, or bookkeeping, not physics. Since 
(28) follows from (32) only if there is no creation (or destruction) of mass, we can 
now understand (28) to be a statement of the physical principle of conservation of 
mass, namely, that matter can neither be created nor destroyed (except under ex- 
ceptional circumstances that are not present in this situation). 

Closure. In this section we study applications of first-order linear equations to 
electrical circuit theory, to radioactivity and population dynamics, and to mixing 
problems. Although our RLC circuit gives rise to a second-order differential equa- 
tion, we find that we can work with first-order equations if we omit either the in- 
ductor or the capacitor. We will return to the RLC circuit when we discuss second- 
order equations, so the background provided here, including the expressions for the 
voltage/current relations and Kirchoff’s two laws, will be drawn upon at that time. 

The electrical circuit applications also gives us an opportunity to emphasize the 
extremely important consequences of the linearity of the differential equation upon 
the relationship between the input and output. The key ideas are that for a linear 
system: (1) the response to a particular input is proportional to that input, and (2) 
the response to more than one input is the sum of the responses to the individual 
inputs. These ideas are developed and proved in Chapter 3. 

  

EXERCISES 2.3 
  

NOTE: Thus far we have assumed that p(x) and q(x) in We state that in such cases, where E(t) has one or more jump 
y' +p(x)y = q(z) are continuous, yet in applications that may discontinuities, the solution (11) [more generally, (24) in Sec- 
not be the case. In particular, the “input” g(x) may be discon- _ tion 2.2] is still valid, and can be used in these exercises. 
tinuous. In Example 1, for instance, E(t) in Ldi/dt + Ri = i, Sea 
E(t) may well be discontinuous, such as 1. (RL circuit) For the RL circuit of Example 1, with ig = 0 

and &(t) = Epo, determine the 

7 Eo, O<t<t (a) time required for i(t) to reach 99% of its steady-state value; 
E(t) = 0, tr<t<oo. (b) resistance R needed to ensure that z(t) will attain 99% of
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its steady-state value within 2 seconds, if L = 0.001 henry; 

(c) inductance L needed to ensure that 2(¢) will attain 99% of 
its steady-state value within 0.5 seconds, if R = 50 ohm. 

2. (RL circuit) For the RL circuit of Example |, suppose that 

i(O) = io and that £(#) is as given below. In each case, de- 
termine i(t) and identify the steady-state solution. If a steady 

state does not exist, then state that. Also, sketch the graph of 

i(t) and label key values. 

, 5 _ fo, O<t<ty 
(a) Et) = { 0, ti<t<o 

_f 0, O<t<t 
(b) B(t) = { Eo, ty <t<oo 

0, O<t<t; 

(c) E(t) = Eo, t1 <t<te 

0, tg <t< oo 

3. (RC circuit) (a) For the RC circuit of Example 2, suppose 

that i¢ = 0 and that E(t) = Ege~**/". Solve for i(t) and 
identify the steady-state solution, treating these cases sepa- 

rately: R?C # L, and R?C = L. If there does not exist a 
steady state, then state that. Sketch the graph of z(t) and label 

any key values. 
(b) Same as (a), but with R= C = 1 and E(t) = Eqsint. 

4. Verify that (14) can be re-expressed as 

Bowl Eo 
i(t) = —— ee Eg 

R? + (wb)? R2 + (wl)? 
sin (wt — ¢), t 

where @ is the (unique) angle between 0 and 7/2 such that 

tan @ = wL/R; ¢ is called the phase angle. 

5, A seashell contains 90% as much C—/4 as a living shell of 

the same size. How old is it? Approximately how many years 

did it take for its C-14 content to diminish from its initial value 

to 99% of that? 

6. If 10 grams of some radioactive substance will be reduced 

to 8 grams in 60 years, in how many years will 2 grams be left? 

In how many years will 0.1 gram be left? 

7. If 20% of a radioactive substance disappears in 70 days, 

what is its half-life? 

8. Show that tf m, and mm. grams of a radioactive substance 

are present at times ¢, and tg, respectively, then its half-life is 

In2 
T= —_-ernre es 

In (m1 /m2) (t2 — ti) 

9. (Verhulst equation) Solve the Verhulst equation (27), sub- 

ject to the initial condition N(0) = No, two ways: 

(a) by noting that it is a Bernoulli equation; 

(b) by noting that it is (also) a Riccati equation. 

NOTE: The Bernoulli and Riccati equations, and their solu- 

tions, were discussed in the exercises for Section 2.2. (The 

Verhulst equation can also be solved by the method of sep- 

aration of variables, which method is the subject of the next 

section.) 

10. (Mixing tank) For the mixing tank governed by (31): 

(a) Let Q(t) = constant = Q and c(0) = co. Solve for c(t). 

(b) Let Q(t) = 4 forO < t < land 2 fort > 1, and let 

vy = cy = 1 and c(0) = 0. Solve for c(t). HINT: The appli- 

cation of (24) in Section 2.2 is not so hard when q(x) in the 

differential equation y' + p(xz)y = q(a) is defined piecewise 

(e.g., as in Exercise 2 above), but is tricky when p(x) is de- 

fined piecewise. In this exercise we suggest that you use (24) 

to solve for c(t) first for 0 < ¢ < 1, with “a”=0 and “0” = 

c(0) = 0. Then, use that solution to evaluate c(1) and use (24) 

again, for 1 < t < oo, this time with “a’= I and “b” = c(1), 

where c(1) has already been determined. 

(c) Let Q(t) = 2, c, = 0, v = 1, and c(0) = 0.3. Solve for 

c(t) and thus show that although c(t) + 0 as t + oo, it never 

actually reduces to zero, so that it is not possible to wash ev- 

ery molecule of solute out of the tank. Does this result make 

sense? Explain. 

11. (Mass on an inclined plane) The equation ma” + ca’ = 

mg sina governs the straight-line displacement z(t) of a mass 

m. along a plane that is inclined at an angle a with respect to 

the horizontal, if it slides under the action of gravity and fric- 

tion. If «(0) = 0 and 2’(0) = 0, solve for z(t). HINT: First, 

integrate the equation once with respect to ¢ to reduce it to a 

first-order linear equation. 

12. (Free fall; terminal velocity) The equation of motion of a 

body of mass m falling vertically under the action of a down- 

ward gravitational force mg and an upward aerodynamic drag 

force f(v), is 

mu’ = mg — flv), (12.1) 

where u(t) is the velocity [so that u’(¢) is the acceleration]. 

The determination of the form of f(v), for the given body 

shape, would require either careful wind tunnel measurements, 

or sophisticated theoretical and/or numerical analysis, the re- 

sult being a plot of the nondimensional drag coefficient versus 

the nondimensional Reynolds number. All we need to know 

here is that for a variety of body shapes, the result of such an 

analysis is the determination that f(v) can be approximated



(over some limited range of velocities) in the form cv, for 

suitable constants c and (. For low velocities (more precisely, 

for low Reynolds numbers) ( = 1, and for high velocities (i.c., 
for high Reynolds numbers) 6 = 2. 

(a) Solve (12.1), together with the initial condition v(0) = 0, 
for the case where f(v) = cv. What is the terminal (..c., 

steady-state) velocity? 

(b) Same as (a), for f(v) & cu®. HINT: Read Exercise 11 in 
Section 2.2. 

13. (Light extinction) As light passes through window glass 

some of it is absorbed. If x is a coordinate normal to the glass 

(with x = Q at the incident face) and [(2) is the light inten- 
sity at 2, then the fractional loss in intensity, ~d//J (with the 

minus sign included because dJ will be negative), will be pro- 

portional to da: ~dI/I = k dz, where k is a positive constant. 

Thus, /(z) satisfies the differential equation [’(2) = —kI(a). 
The problem: If 80% of the light penetrates a l-inch thick slab 

of this glass, how thin must the glass be to let 95% penetrate? 

NOTE: Your answer should be numerical, not in terms of an 
unknown k. 

14. (Pollution in a river) Suppose that a pollutant is discharged 

into a river at a steady rate Q (grams/second) over a distance 

L, as sketched in the figure, and we wish to 

  

determine the distribution of pollutant in the river — that is, its 

concentration c (grams/meter®). Measure z as arc length along 

the river, positive downstream. The river flows with velocity 

U (meters/second) and has a cross-sectional area A (meters”), 

both of which, for simplicity, we assume to be constant. Also 

for simplicity, suppose that ¢ is a function of x only. That is, 

it is a constant over each cross section of the stream, This is 

evidently a poor approximation near the intervalO < x < J, 

where we expect appreciable across-stream and vertical varia- 

tions in c, but it should suffice if we are concerned mostly with 

the far field, that is, more than several river widths upstream or 

downstream of the interval 0 < 2 < ZL. Then it can be shown 
that c(x) is governed by the differential equation 

Q(z) 
A’ 
  

ke" —~Uc — Beo= —- (-co<a<oo) (14.1) 
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where k (meters/second) is a diffusion constant, @ (grams per 

second per gram) is a chemical decay constant, and Q(z) is 
the constant Q over 0 < « < L and 0 outside that interval. 

[Physically, (14.1) expresses a mass balance between the in- 

put ~Q(«)/A, the transport of pollutant by diffusion, ke", the 
transport of pollutant by convection with the moving stream, 

Uc’, and by disappearance through chemical decay, Bc.| We 

assume that the river is clear upstream; that is, we have the 
initial condition c(—co) = 0. 

(a) Let L = oo. Suppose that & is sufficiently smail so that 

we can neglect the diffusion term. Then (14.1) reduces to the 

first-order linear equation Uc! + Gc = Q(x)/A. Solve for c(x) 
and sketch its graph, labeling any key values. 

(b) Repeat part (a) for the case where L. is finite. 

15. (Newton’s law of cooling) Suppose that a body initially at 

a uniform temperature up is exposed to a surrounding environ- 

ment that is at a lower temperature U. Then the outer portion 

of the body will cool relative to its interior, and this tempera- 

ture differential within the body will cause heat to flow from 

the interior to the surface. If the body is a sufficiently good 

conductor of heat so that the heat transfer within the body is 

much more rapid than the rate of heat loss to the environment 

at the outer surface, then it can be assumed, as an approxima- 

tion, that heat transfer will be so rapid that the interior tempera- 

ture will adjust to the surface temperature instantaneously, and 

the body will be at a uniform temperature u(t) at each instant 
t. Newton’s law of cooling states that the time rate of change 

of u(t) will be proportional to the instantaneous temperature 
difference U — u, so that 

@ _ WU ~u), aa (15.1) 

where & is a constant. 

(a) Solve (15.1) for u(t) subject to the initial condition u(0) = 

uo. NOTE: Actually, it is not necessary that U < uo; (15.1) is 

equally valid if U > uo. In most physical applications, how- 

ever, one is interested in a hot body (such as a cup of coffee or 

a hot ingot) in a cooler environment. 

(b) An interesting application of (15.1) occurs in connection 

with the determination of the time of death in a homicide. Sup- 

pose that a body is discovered at a time 7 after death and its 

temperature is measured to be 90° F. We wish to solve for 

ZT’. Suppose that the ambient temperature is UV = 70° F and 
assume that ua = 98.6° F. Putting this information into the 

solution to (15.1) we can solve for T, provided that we know
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k, but we don’t. Proceeding indirectly, we can infer the value and if the compounding is done n times per year, then 

of k by taking one more temperature reading. Thus, suppose 
- +4 x . oy nt 

that we wait an hour and again measure the temperature of the S(t) = Sy (1 k 162 

body, and find that u(Z' + 1) = 87° F. Use this information to (t) = So (1+ n (16.2) 

solve for T’. 
(a) Show that if we let n -+ oo in (16.2), then we do re- 

cover the continous compounding result (16.1). HINT: Re- 

call, from the calculus, that 

16. (Compound interest) Suppose that a sum of money earns 

interest at a rate k, compounded yearly, monthly, weekly, or 

even daily. If it is compounded continuously, then dS/dt = 

kS, where S(t) denotes the sum at time ¢. If S(0) = So, then 1\™ 

the solution is lim (: + ~) =e, 

S(t) = Soe*. (16.1) mores m 

Instead, suppose that interest is compounded yearly. Then af-  (b) Let k = 0.05 (ie., 5% interest) and compare S(t)/So af- 

ter t years ter 1 year (t = 1) if interest is compounded yearly, monthly, 

S(t) = So(L +k)’, weekly, daily, and continuously. 

  

2.4 Separable Equations 

2.4.1. Separable equations. The general first-order differential equation is of the 

form 

F(z,y,y') =9. (1) 

If we can solve (1), by algebra, for y’, then we can re-express it in the form 

y= f(x,y), (2) 

which form we take as our starting point for this section. 

Actually, it is conceivable that we cannot solve (1) for y’. For instance, the 

equation 
ry —~y=siny’ +4 

or, equivalently, 

F(z,y,y’) = vy! —Y7 sin y! —4= 0, 

cannot be solved, by algebra, for y’ in terms of « and y. However, such cases 

are rarely encountered in applications and will not be considered here. Thus, we 

assume that the equation can be expressed in the form (2). 

If, further, f(x, y) can be expressed as a function of x times a function of y, so 

that (2) can be written as 
  

  
y= X(x)Y(y), (3) 

then we say that the differential equation is separable. For instance, y = 2 exp(x + 2y) 

is separable because we can factor « exp (x + 2y) as © expax times exp (2y), but 

y! = 3x — y is not. 

  
 



To solve (3), we divide both sides by Y(y) Gif Y(y) 4 0) and integrate both 

sides with respect to a: 

  

oy 

~y devez | X(x)dx 4 | Py! da | X (a) dx, (4) 

or, since y/da = dy, from the differential calculus, 

‘dy — f on 
| ¥(y) = | X (x) daz. (5) 

We also know from the integral calculus that if 1/Y(y) is a continuous function of 
y (over the relevant y interval) and A(z) is a continuous function of x (over the 
relevant x interval), then the two integrals in (5) exist, in which case (5) gives the 

general solution of (2). 

  

      

EXAMPLE I. Solve the equation 

yoony. (6) 

Though not linear, (6) is separable. Separating the variables and integrating gives 

ay = - | ae. (7) 
Y 

Ll . 
-- $C, = -84+Co, (8) 

y 

where Cy, and Cp are arbitrary. With C = C, — Co, we have the general solution 

1 
ye) = se (9)   

If we impose an initial condition y(0) = yo then we can solve for C and obtain the partic- 

ular solution | 

ye) =———— = (10) 
r+ l/yo L+yow 

which is plotted in Fig. | for the representative values yg = 1 and yo = 2. The solution 
through the initial point (0,1) exists over ~1 < 2 < 00, the one through (0,2) exists over 

~1/2 < x < oo. More generally, the one through (0, yo) exists over —1/yo < @ < 00 
because the denominator in (10) becomes zero at x = —1/yp. We could plot (10) to the 

left of that point as well, but such extension of the graph would be meaningless because the 

point x = —1/yo serves as a “barrier: y and y’ fail to exist there, so the solution cannot 

be continued beyond that point. @ 

EXAMPLE 2. Solve the initial-value problem 

1 4a 

1+ 2ey' y y(0) = 1. cn 
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Figure 1. Particular solutions 

given by (10).
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Figure 2. The solution (14) of(11). 

  

Though not linear, the differential equation is separable and can be solved accordingly: 

/ (1+ 2e") dy = | 4a dx, (12) 

y + 2e¥ = 207 +C. (13) 

Unfortunately, the latter is a transcendental equation in y, 80 we cannot solve it for y ex- 

plicitly as a function of x, as we were able to solve (8). Nevertheless, we can impose the 

initial condition on (13) to evaluate C: 1 + 2e =0+C,soC =1+ 2 and the solution is 

given, in “implicit” form, by 

yt 2e% = Qa" +1 + 2e. (14) 

The resulting solution is plotted in Fig. 2, along with the direction field. {Actually, we did 

not plot (14) in Fig. 2; we used the following Maple phaseportrait commands to solve (11) 

and to plot the solution: 

with (DEtools): 

phaseportrait(4 + #/(1 + 2 * exp(y), [x,y], « = —20..20, {[0, 1]}, stepsize = 0.05, 

arrows=LINE), 

where the default stepsize was too large and gave a jagged curve, so we reduced it to 0.05, 

and where we also included the direction field to give us a feeling for the overall “flow.”] 

COMMENT |. Observe that if we use the definite integrals 

y x 

/ (1 +2") dy = | da dz, 
1 0 

with the lower limits dictated by the initial condition y(O) = 1, then we bypass the need 

for an integration constant C' and its subsequent evaluation. 

COMMENT 2. What is the interval of existence of the solution? In Example | we were able 

to ascertain that interval by direct examination of the solution (10). Here, however, such 

examination is not possible because the solution (14) is in implicit form. It appears, from 

Fig. 2, that the solution exists for all 2, but of course Fig. 2 covers only —20 < x < 20. 

Equation (14) reveals the asymptotic behavior 2e¥ ~ 2x”, or y ~ 2In |x| as |z| —+ 00, so 

it seems clear that the solution continues to grow smoothly as || increases. 4 
  

  

2.4.2. Existence and uniqueness. (Optional) In this section we have begun to 

solve nonlinear differential equations. Before we get too deeply involved in solu- 

tion techniques, let us return to the more fundamental questions of existence and 

uniqueness of solutions. For the linear equation 

y + play = q(x) (15) 

we have Theorem 2.2.1, which tells us that (15) does admit a solution through an 

initial point y(a) = bif p(w) and g(x) are continuous at a. That solution is unique, 

and it exists at least on the largest x interval containing « = a, over which p(a) and 

q(x) are continuous. What can be said about existence and uniqueness for the more 

general equation y’ = f(x,y) (which could, of course, be linear, but, in general, is 

not)? \
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THEOREM 2.4.1 Existence and Uniqueness 

If f(x, y) is continuous on some rectangle F in the x, y plane containing the point 

(a, 6), then the problem 

y=fay);  yla)=b (16) 

has at least one solution defined on some open «x interval* containing x = a. If, in 
addition, Of /Oy is continuous on F, then the solution to (16) is unique on some 
open interval containing @ = a. 
  

Notice that whereas Theorem 2.2.1 predicts the minimum interval of existence 
and uniqueness, Theorem 2.4.1 merely ensures existence and uniqueness over some 
interval; it gives no clue as to how broad that interval will be. Thus, we say that 
Theorem 2.4.1 is a /ocal result; it tells us that under the stipulated conditions all is 
well locally, in some neighborhood of z = a. More informative theorems could be 
cited, but this one will suffice here. 

Let us illustrate Theorem 2.4.1 with two examples. 

EXAMPLE 3. The equation 

  

yf a Y=?) (17) 

x(y — 1) 
is separable, and separating the variables gives 

“ y-1 dx 
——_ dy = | —. (18) 

la x 

By partial fractions (which method is reviewed in Appendix A), 

y-1 ii oil fe DI 19 
y(y — 2) dy 2y-2 ” 

With this result, integration of (18) gives 

1 1 . 
5 In |y| + 5 Injy — 2| = In |2| + C, (-00 < C < 00) (20) 

where C’ is the arbitrary constant of integration. Equivalently, 

| ~2 
in| = 2C, (21) 

x 

  

  

“By an open interval we mean 21 < a¢ < 2, and by a closed interval we mean xv, <x < we. 

Thus, a closed interval includes its endpoints, an open interval does not. It is common to use the 
notation (a4, #2) and [x1, x9] for open and closed intervals, respectively. Further, (21, 2] means 
uy <we < av, and ([z1, 22) means xy <2 < ay,
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so ; 

y(y ~ 2) |= P= B, (0< B<oco) (22) 

    

where B is introduced for convenience and is nonnegative because exp (2C’) is nonnega- 

tive. Thus, 
yly — 2 wy —*) =+B2A,  (-c0<A<oo) (23) 

where A replaces the “+.B.” Finally, (23) gives y? — 2y ~ Ax? = 0 so, by the quadratic 

formula, we have the general solution 

y(e) = 1+ V1 + Ac? (24) 

of (17). 

  

rm
 

        ' An 

  

Figure 3. Solution curves corresponding to equation (17). 

These solution curves are plotted in Fig. 3. The choice A = 0 gives the solution curves 

y(xz) = 0 and y(z) = 2. As representative of solutions above the line y = 2, con- 

sider the initial condition y(1) = 4. Then (24) gives i) = = 1+ V1 + A, which 

requires that we select the plus sign and A = 8, so y(x . + V1+ 8x7. As repre- 

sentative of solutions below ia line y = 0, consider he initial condition y(1) = —3. 

Then (24) gives y(1) = = 1+ /1+A, which requires that we select the mi- 

nus sign and A = 15, 0 ula) = 1—vVJVl+4+ 1522. Finally, as representative of the 

solutions between y = 0 and y = 2, consider the initial condition y(2) = 3/2, say. 

Then y(2) = 3/2 = 14 vi * 4A, so we choose the plus sign and A = ~—3/16, in 

which case (24) gives y(a) = 1 ~ 322/16, namely, the upper branch of the ellipse 

ae +(y-1P=1, 

In terms of the Existence and Uniqueness Theorem 2.4.1, observe that the conditions 

of the theorem are met everywhere in the , y plane except along the vertical line x = Oand 

the horizontal line y = 1, and indeed we do have breakdowns in existence and uniqueness 

all along these lines. On 2 = 0 (the y axis) there are no solutions through initial points 

other than y = 0 and y = 2 (lack of existence), and through each of those points there



are an infinite number of solutions (lack of uniqueness). Initial points on the line y = 1 

are a bit more subtle. We do have elliptical solution curves through each such point, yet 

at the initial point (on y = 1) the slope is infinite, so the differential equation (17) cannot 

be satisfied at that point. Thus, we have a breakdown in existence for each initial point on 

y = 1. Further, realize that for any such ellipse, between y = 0 and y = 2, the upper 

and lower halves are separate solutions. For instance, the ellipse (82/4)? + (y — 1)? = 1, 
mentioned above, really amounts to the separate solutions y(z) = 1+ /1 — (3a/4)?, each 
valid over ~4/3 <a < 4/3. 

COMMENT. Observe that the right side of (17) is asymptotic to y/z as y 4 too, so the 

solutions of (17) should be asymptotic to the solutions of the simpler equation y’. = y/x 

as y -> -tco, namely, the family of straight lines through the origin, and that result can be 
seen, somewhat, in Fig. 3. # 

EXAMPLE 4. Free Fail. This time consider a physical application. Suppose that a 
body of mass m is dropped, from rest, at time t = 0. With its displacement x(t) measured 
downward from the point of release, the equation of motion is mz” = mg, where g is the 

acceleration of gravity and t is the time. Thus, 

w"=9, (0<t<0o) (25a) 
z(0) = 0, (25b) 
z'(0) = 0. (25c) 

Equation (25a) is of second order, whereas this chapter is about first-order equations, but it 

is readily integrated twice with respect to t. Doing so, and invoking (25b) and (25c) gives 
the solution 

a(t) = ae, (26) 
which result is probably familiar to you from a first course in physics. 

However, instead of multiplying (25a) through by dé and integrating on t, let us mul- 

tiply it by dz and integrate on x. Then x”dx = g dz and since, from the calculus, 

dx! da! dz we ade = dam en dt = x' dr! 27 c= WT at dt = 7 dt = x'da', (27) 

edz = g dx becomes 

z'dz' = gdz. (28) 
Integrating (28) gives 

1 
a =ga+ A, (29) 

and z(0) = 2'(0) = 0 imply that A = 0. Thus, we have reduced (25) to the first-order 
problem 

v= /2ga'/?, (0<t<o) (30a) 
x(0) = 0, (30b) 

which shall now be the focus of this example. Equation (30a) is separable and readily 
solved. The result is the general solution 

=< (vitro), G1) 
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O Q t=T t 

Figure 4. Nonuniqueness of the 

solution to (30). 

  

  

which is shown, for various values of C, in Fig. 4. Applying (30b) gives C’ = 0, so 

(31) gives a(t) = gt?/2, in agreement with (26). However, from the figure we can see 

that although a solution exists over the full ¢ interval of interest (£ > 0), that solution is 

not unique because other solutions satisfying both (30a) and (30b) are given by the curve 

a(t) = 0 from the origin up to any point Q, followed by the parabola QR. Physically, the 

solution OQ R corresponds to the mass levitating until time Q, then beginning its descent. 

Surely that sounds physically impossible, but let us look at the mathematics. We 

cannot apply Theorem 2.2.1 because (30) is nonlinear, but we can use Theorem 2.4.1 (with 

x and y replaced by ¢ and 2, of course). Since f(t,2) = /2ga1/?, we see that f is 

continuous for all t > O and > 0, but f,(t, 2) = Vg/2 x !/? is not continuous over any 

interval containing the initial point z = 0. Thus, the theorem tells us that there does exist 

a solution over some ¢ interval containing ¢ = 0 (which turns out to be the entire positive ¢ 

axis), but it does not guarantee uniqueness over any such interval, and as it turns out we do 

not have uniqueness over any such interval. 

Next, consider the physics. When we multiply force by distance we get work, and 

work shows up (in a system without dissipation, as in this example) as energy. Thus, 

multiplying (25a) by dx and integrating converted the original force equation (Newton’s 

second law) to an energy equation. That is, (29) tells us that the total energy (kinetic 

plus potential) is conserved; it is constant for all time: «’*/2 + (—gx) = constant or, 

equivalently, 
1 
sine" + (—mgz) = A. (32) 

Kinetic energy + Potential energy = Constant. 

Since z(0) = x’(0) = 0, the total energy A is zero. When the mass falls, its kinetic energy 

becomes positive and its potential energy becomes negative such that their total remains 

zero for all ¢ > 0. However, the energy equation is also satisfied if the released mass 

levitates for any amount of time and then falls, or if indeed it levitates for all time [that is 

x(t) = 0 for all t > 0]. Thus, our additional solutions are indeed physically meaningful in 

that they do satisfy the requirement of conservation of energy. Observe, however, that they 

do not satisfy the equation of motion (25a) since the insertion of x(¢) = 0 into that equation 

gives 0 = g. Thus, the spurious additional solution z(t) = 0 must have entered somewhere 

between (25) and (30). In fact, we introduced it inadvertently when we multiplied (25a) 

by dx because 2dx = g dz is satisfied not only by x” = g, but also by dz = 0 [ie., by 

x(t) = constant]. 
The upshot is that although the solution to (30) is nonunique, a look at our derivation 

of (30) shows that we should discount the solution z(t) = 0 of (30) since it does not also 

satisfy the original equation of motion «” = g. In that case we are indeed left with the 

unique solution z(t) = gt? /2, corresponding to the parabola OP in Fig. 4. # 

It is important to understand that the solution x(t) = 0 of (30) is not contained 

within the general solution (31), for any finite choice of C. Such an additional 

solution is known as a singular solution, and brief consideration of these will be 

reserved for the exercises.



2.4.3. Applications. Let us study two physical applications of the method of sepa- 
ration of variables. 

EXAMPLE 5. Gravitational Attraction. Newton’s law of gravitation states that the 
force of attraction F’ exerted by any one point mass M on any other point mass m is* 

Mm 

d2? 
  F=H=G (33) 

where d is the distance between them and G(= 6.67 x 1078 cm®/g sec?) is called the 
universal gravitational constant; (33) is said to be an inverse-square law since the force 

varies as the inverse square of the distance. (By AZ and m being point masses, we mean 

that their sizes are negligible compared with d.) 

Consider the linear motion of a rocket of mass m that is launched from the surface 

of the earth, as sketched in Fig. 5, where Mf and R are the mass and radius of the earth, 

respectively. From Newton’s second law of motion and his law of gravitation, it follows 

that the equation of motion of the rocket is 

d’z Mm 
= = -G-. 34) e (c+ RP C4) 

Although (34) is a second-order equation, we can reduce it to one of first order by noting 
that 

ac d (dz du dudz du 
= = — Sa Se Se, (35) 
dt? dt \ dt dt dz dt dx 

  

*Newton derived (33) from Kepler's laws of planetary motion which. in turn, were inferred em- 

pirically from the voluminous measurements recorded by the Danish astronomer Tycho Brahe (1546- 
1601). Usually, in applications (not to mention homework assignments in mechanics), one is given 
the force exerted on a mass and asked to determine the motion by twice integrating Newton's second 
law of motion. In deriving (33), however, Newton worked “backwards:” the motion of the planets 

was supplied in sufficient detail by Kepler’s laws, and Newton used those laws to infer the force 
needed to sustain that motion. It turned out to be an inverse-square force directed toward the sun. 
Being aware of other such forces between masses, for example, the force that kept his shoes on the 
floor, Newton then proposed the bold generalization that (33) holds not just between planets and the 
sun, but between any two bodies in the universe; hence the name universal law of gravitation. Just 
as it is difficult to overestimate the importance of Newton's law of gravitation and its impact upon 
science, it is also difficult to overestimate how the idea of a force acting at a distance, rather than 
through physical contact, must have been incredible when first proposed. 

In fact, such eminent scientists and mathematicians as Huygens, Leibniz, and John Bernoulli re- 
ferred to Newton's idea of gravitation as absurd and revolting. Imagine Newton’s willingness to stand 
nonetheless upon the results of his mathematics, in inferring the concept of gravitation, even in the 
absence of any physical mechanism or physical plausibility, and in the face of such opposition. 

Remarkably, Coulomb's law subsequently stated an inverse-square type of electrical attraction 
or repulsion between two charges. Why these two types of force field turn out to be of the same 
mathematical form is not known. Equally remarkable is the fact that although the forms of the two 
laws are identical, the magnitudes of the forces are staggeringly different. Specifically, the ratio of the 
electrical force of repulsion to the gravitational force exerted on each other by two electrons (which 
is independent of the distance of separation) is 4.17 x 102°. 

2.4, Separable Equations 

  

Figure 5. Rocket launch. 
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where v is the velocity, and where the third equality follows from the chain rule. Thus (34) 

becomes the first-order equation 

du GM 
= “GER? +B?" (36) 

which is separable and gives 

  

dx 
[vd=-om | Sipe (37) 

aye GM 

If the launch velocity is v(0) = V, then (38) gives C = (V?/2) — GM/R, so 

, _ 2GM x 

vay¥ R «t+ 
  (39) 

is the desired expression of v as a function of z. 

If we wish to know z(t) as well, then we can re-write (39) as 

dz IGM 
f= ,/V2- 40 
dt Vv R «+R (40) 

which once again is variable separable and can be solved for z(t). However, let us be 

content with (39). 

Observe from (39) that v decreases monotonically with increasing 2, from its initial 

value v = V tov = 0, the latter occurring at 

V2 R? 

st 4 
2GM —V?R (41) lmaz = 

Subsequently, the rocket will be drawn back toward the earth and will strike it with speed 

V. [We need to choose the negative square root in (39) to track the return motion.] Equation 

(41) can be simplified by noting that when x = 0, the right-hand side of (34) must be —mg, 

where g is the familiar gravitational acceleration at the earth’s surface. Thus, -mg = 

—GMm/R?,s0 GM/R?* = g, and (41) becomes 

V7R 
Uman = WaT: 42 

° 2gh — V? “) 

We see from (42) that. mae increases as V is increased, as one would expect, and be- 

comes infinite as V > /2gR. Thus, the critical value Ve = J2gFt is the escape velocity. 

Numerically, V. = 6.9 miles/sec. 

COMMENT 1. Recall that the law of gravitation (33) applies to two point masses separated 

by a distance d, whereas the earth is hardly a point mass. Thus, it is appropriate to question 

the validity of (34). In principle, to find the correct attractive force exerted on the rocket 

by the earth we need to consider the earth as a collection of point masses dM, compute the 

force dF’ induced by each dM, and add the dF’s vectorially to find the resultant force F,



This calculation is carried out later, in Section 15.7, and the result, remarkably, is that the 

resultant F' acting at any point P outside the earth (or any homogeneous spherical mass), 

per unit mass at P, is the same as if its entire mass MM were concentrated at a single point, 
namely, at its center! Thus, the earth might as weil be thought of as a point mass, of mass 

M, located at its center, so (34) is exactly true, if we are willing to approximate the earth 

as a homogeneous sphere. 

COMMENT 2. The steps in (35), whereby we were able to reduce our second-order equa- 

tion (34) to the first-order equation (36), were not limited to this specific application, They 

apply whenever the force is a function of x alone, for if we apply (35) to the equation 

2 
moe = f(x), (43) 

_we get the separable first-order equation 

  

dv = flax 44 mo f(x) (44) 

with solution 5 

m = [ f(e)dx +0 (45) 

or, equivalently, 

mv? |"? m2 ~ =| h(é) dé. (46) 
zy zy   

In the language of mechanics, the right-hand side is the work done by the force f(z) as the 

body moves from x; to x2, and mv*/2 is the kinetic energy. Thus, the physical significance 

of (46) is that it is a work-energy statement: the change in the kinetic energy of the body is 

equal to the work done on it. 

COMMENT 3. Observe the change in viewpoint as we progressed from (34) to (36). Until 

the third equality in (35), we regarded x and v as dependent variables — functions of the 
independent variable t. But beginning with the right-hand side of that equality, we began 
to regard v as a function of x. However, once we solved (36) for v in terms of z, in (39), we 
replaced v by dx/dt, and x changed from independent variable to dependent variable once 
again. In general, then, which variable is regarded as the independent variable and which 
is the dependent variable is not so much figured out, as it is a decision that we make, and 
that decision, or viewpoint, can sometimes change, profitably, over the course of the 
solution. @ 

EXAMPLE 6. Verhulst Population Model. Consider the Verhulst population model 

N'(t) = (a -bN)N; N(Q) = No (47) 

that was introduced in Section 2.3.3, where N(t) is the population of a given species. 
This example emphasizes that a given equation might be solvable by a number of different 
methods. Though (47) is not a linear equation, it is both a Bernoulli equation and a Riccati 
equation, which equations were discussed in the exercises of Section 2.2. Now we see that 
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it is also separable, since the right side is a function of NV [namely, (@ — bN)N] times a 

function of ¢ (namely, 1). Thus, 

  

° aN ° 

/ (a— bN)N [s “) 
By partial fractions, 

1 _ oil 1 ee | 1 i 

(a-bN)N” b(N-4#£)N  aN-G aN 

so (48) gives 
1 a I 

-=In|N - 5 +—onN =t+C, (49) 
a b a 

  

where C’ is an arbitrary constant (—co < C < 00). [Whether we write In|] or InN in 

(49) is immaterial since NV > 0.] Equivalently, , 

l/a 
— euttac _ Be, (50)     

| N 

N-§ 

  

N 

N— 

  

= ebt© | ~ 
6 

where we have replaced exp (aC’) by B, so0 < B < co. Thus 

N ———— = + Be" = Ae™ 51 N a/b e ev; (1) 

where A is arbitrary (—co < A < 00). Finally, imposing the initial condition N(0) = No 

gives A = No/(No — a/b), and putting that expression into (50) and solving for N gives 

aNo 
NG) = 

( ) (a _ bNojew™ +6No 
(52) 

What can be learned of the behavior of N(t) from (52)? We can see from (52) that 

for every initial value No (other than No = 0), N(t) tends to the constant value a/b as 

t -+ oo. [If No = 0, then N(t) = 0 for all ¢, as it should, because if a species starts with 

no members it can hardly wax or wane.] Beyond observing that asymptotic information, 

it is an excellent idea to plot the results, especially now that one has such powerful and 

convenient computer software for that purpose. However, observe that the solution (52) 

contains the three parameters a, 6, and No, and to use plotting software we need to choose 

numerical values for these parameters. If, for instance, we wish to plot V(t) versus ¢ for 

five values of a, five of b, and five of Ng, then we will be generating 58 = 125 curves! 

Thus, the point is that if we wish to do a parametric study of the solution (Le., examine the 

solution for a range of values of the various parameters), then there is a serious problem 

with managing all of the needed plots. In Section 2.4.4 below, we offer advice on how to 

deal with this common and serious predicament. @ 

2.4.4. Nondimensionalization. (Optional) One can usually reduce the number 

of parameters in a problem, sometimes dramatically, by a suitable scaling of the



independent and dependent variables so that the new variables are nondimensional 
(i.e,, dimensionless). 

EXAMPLE 7. Example 6, Continued. To begin such a process of nondimensionaliza- 
tion, we list all dependent and independent variables and parameters, and their dimensions: 

  
Variable Dimensions Parameter Dimensions 

Independent: t time a 1/time 
Dependent: N number b 1/[(time)(number)] 

No number 

(By number we mean the number of living members of the species.) How did we know 

that a has dimensions of 1/time, and that b has dimensions of 1/{(time)(number)]? From 
dN 

the differential equation iz aN — oN*. That is, the dimensions of the term on 

the left are number/time, so the dimensions of aN and bN? must be the same. Dimen- 

sionally, then, aN = number/time, soa = 1/time. Similarly, bN? = number/time, so 

b = 1/[(time)(number)]. 

Next, we nondimensionalize the independent and dependent variables (¢ and N) using 

suitable combinations of the parameters. From the parameter list, observe that 1/a has 
dimensions of time and can therefore be used as a “reference time” to nondimensionalize 

the independent variable ¢. That is, we can introduce a nondimensional version of t, say t, 

by t=¢t/(1/a) = at. 
Next, we need to nondimensionalize the dependent variable N. From the parameter 

list, observe that No has dimensions of number, so let us introduce a nondimensional ver- 

sion of NV, say N, by N= N/No. In case the notion of nondimensionalization still seems 

unclear, realize that it is merely a change of variables, from ¢ and N to = and N; a rather 

simple change of variables in fact, since # is simply a constant times ¢, and N is simply a 

constant times NV. 

Putting t = #/a and N = NoN into (47) gives 

dN — =< 
aNo-~Z = (a@-bNoN) NoN; — NoN(0) = No, (53) 

where the left side of the differential equation follows from the chain differentiation —- = 
— dt 

dN dN dt dN IN 
in dd (No) (=) (a) = aNy (More simply, but less rigorously, we could 

merely replace the dN in dN/dt by Nod and the dt by di/a.) Simplifying (53) gives 

< =(l-aN)N; N(0)=1, (54) 

where a = bNo/a. Thus, (54) contains only the single parameter a. The solution of (54) 

is 
ee 1 N(t) = ————_—__.. (55) 

a+(1~ajen® 
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=i
 

    
  

Figure 6. Nondimensional 

solution of Verhulst problem. 

The idea is that if we plot N(£) versus @ (rather than N(t) versus ¢), then we have only 

the one-parameter family of solutions given by (55), where the parameter is the nondimen- 

sional quantity a = bNo/a. Those solutions are shown in Fig. 6 for several different values 

of a. As £ - 00 (and hence ¢ -+ 00), N > 1/a, so N/Ng > 1/(bNo/a), or N — a/b, 

as found in Example 4. 

COMMENT. The nondimensionalization of the independent and dependent variables can 

often be done in more than one way. In the present example, for instance, we used No 

to nondimensionalize N: N = N/No. However, a/b also has the dimensions of number, 

so we could have defined NV = N/(a/b) = bN/a instead. Similarly, we could have 

nondimensinalized ¢ differently, as # = Nobt, because Nob has dimensions of 1/time. Any 

nondimensionalization will work, and we leave these other choices for the exercises. #f 

EXAMPLE 8. Example 5, Continued. As one more example of the simplifying use of 

nondimensionalization, consider the initial-value problem 

dx , 2GM oe 
—— = 4/V*? — ————; z(0)=R (56) 
dt R «+h 

from Example 5. As above, we begin by listing all variables and parameters, and their 

dimensions: 

Variable Dimensions Parameter Dimensions 

Independent. t time V length/time 
Dependent: x length R length 

We didn’t bother with G and M in the parameter list because V and F are all we need to 

nondimensionalize ¢ and «. Specifically, R has dimensions of length, so we can choose 

= = x/R, and R/V has dimensions of time. so we can choose t = t/(R/V). Putting 

xz = RT andt = RE/V into (56) gives 

    

    

R_ dt 
R/V dé 

2GM ORE a _. Rx) = RB 57 R RE+R’ 70) e7) 
Or 

z(0) = 1, (58) 

  

with the single parameter a = 2GM/RV*. Since all other quantities in the final differ- 

ential equation are nondimensional, it follows that a@ must be nondimensional as well, as 

could be checked from the known dimensions of G, AM, R, and V. 

Of course. whereas we've used the generic dimensions “time” and “length,” we could 

have used specific dimensions such as seconds and meters. & 

[t is common in engineering and science to nondimensionalize the governing 

equations and initial or boundary conditions even before beginning the solution, so 

as to reduce the number of parameters as much as possible. In each of the fore- 

going two examples we ended up with a single parameter, but the final number of



parameters will vary from case to case. The nondimensional parameters that re- 

sult (such as w in Example 6) are sometimes well known and of great importance. 
For instance, if one nondimensionalizes the differential equations governing fluid 
flow, two nondimensional parameters that arise are the Reynolds number Re and 
the Mach number M. Without getting into the fluid mechanics, let it suffice to say 
that the Reynolds number is a measure of the relative importance of viscous effects 
to inertial effects: if the Reynolds number is sufficiently large one can neglect the 
viscous terms in the governing equations of motion, and if it is sufficiently small 
then one can neglect the inertial terms. Similarly, the Mach number is a measure of 
the importance of the effects of the compressibility of the fluid: if M7 is sufficiently 
small then one can neglect those effects and consider the fluid to be incompressible. 
In fact, any given approximation that is made in engineering science is probably 
based upon whether some relevant nondimensional parameter is sufficiently large 
or small, for one is always neglecting one effect relative to others. 

Closure. We see that the method of separation of variables is relatively simple: 
one separates the variables and integrates. Thus, given a specific differential equa- 
tion, one is well advised to see immediately if the equation is of separable type and, 
if it is, to solve by separation of variables. Of course, it might turn out that one or 
both of the integrations are difficult, but the general rule of thumb is that there is a 
conservation of difficulty, so that if the integrations are difficult, then an equivalent 
difficulty will show up if one tries a different solution technique. 

In the last part of this section we discuss the idea of nondimensionalization. 
The latter is not central to the topic of this section, separation of variables, but 
arises tangentially with regard to the efficient management of systems that contain 
numerous parameters, which situation makes graphical display and general under- 
standing of the results more difficult. 

Computer software. A potential difficulty with the method of separation of vari- 
ables is that the integrations involved may be difficult. Using Maple, for instance, 
integrations can be carried out using the int command. For example, to evaluate 
the integral on the left side of (48), enter 

int(1/((a — bx N)* N), N); 

and return. The output is 

  
In(a~bN) In(N n(a—b yy n(NV) 

a a 

which (to within an additive constant) is the same as the left side of equation (49). 
That is not to say that all integrals can be evaluated in closed form by computer 
software. To illustrate the use of the int command for definite integrals, consider 
the integral of e~** from x = 0 to z = oo. Enter 

int(exp(—2x), w = 0..infinity); 

and return. The output is 1. 
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Of course, if we are going to use Maple to evaluate the integrals that arise, 

then we might as well see if the Maple dsolve command will solve the differential 

equation directly, as is discussed at the end of Section 2.2. For instance, to solve 

the equation y! = 

dsolve(diff(y(x), x) = 

—3a*y°, enter 

—3 «02 * (y(x))°5, y(e))s 

and return. The output is the general solution 

1 
— = 40° + C1 
yey 

in implicit form, where _C'l is the arbitrary constant of integration. 

  

EXERCISES 2.4 
  

NOTE: Solutions should be expressed in explicit form if pos- 

sible. 

1. Use separation of variables to find the general solution. 

Then, obtain the particular solution satisfying the given ini- 

tial condition. Sketch the graph of the solution, showing the 

key features, and label any key values. 

(a) y! — 3z7e7"¥ = 0; -y(0) =0 
(b) y! = 6x? + 5; (0) =0 
(c) y! + dy = 0; y(-l) = 

  

(dy =1ty?; y(2) : 
(e) y= (y" ~ yje*; y(0) = 2 

(Hy=y +y—6; y(5) = 10 
(gy =yly+3); y(0) = -4 

(yy = 6224, ya) = 
(i) y! = et P78, yo)=1 
“OF 4 - . 

Oy = 5 y(3) = -1 
(k) oy! + 3y(y +1)sin2x=0; y(0)=1 

Qy=lny’; y(0)=5 
(my = ylny;, y(0) =5 
(ny +2y=y? +1; y(-3) =0 

2.(a)—(n) For the equation given in Exercise |, use computer 

software to solve for y(a). Verify, by direct substitution, that 

your solution does satisfy the given differential equation and 

initial condition. 

3. The problem du/dét = k(U ~ uw); u(O) = uo , where & and 
U are constants, occurred in the exercises for Section 2.3 in 

connection with Newton’s law of cooling. Solve by separation 

of variables. 

4, The Verhulst population problem 

N'(t) = (a— bN)N; N(0) = No (a >0, b> 0) 

was studied in Section 2.3 and solved as a Bernoulli equation, 

and also as a Riccati equation. Here we ask you to solve it by 

separation of variables. 

5. The Bernoulli equation y’ + p(x)y = q(x)y” is not variable 
separable, in general, but it is if p and q are constants, if one 

of the functions p(x) and q(x) is zero, or if one is a constant 
times the other. Obtain the general solution for the case where 

each is a nonzero constant, for any real number n. HINT: A 

difficult integral will occur. Our discussion of the Bernoulli 

equation in the exercises for Section 2.2 should help you to 

find a change of variables that will simplify that integration. 

6. Solve y’ = (6x? + 1)/(y — 1), subject to the given initial 
condition. 

(a) y(0) = — (b) y(0) = 4 (c) y(0) = 0 
(d) y(1) = 3 (e) y(2) = 4 (fH y(-1) =0 

7. Solve y’ = (3x — 1)/2y, subject to the given initial condi- 

tion. 

(a) y(0) = —3 (b) y(0) = —1 (c) y(4) = 5 
(d) y(-1) =0 (e)y(-2) =-4 (fH y(1) = 6 
8. (Homogeneous functions) A function f(t1,...,€n) is 

said to be homogeneous of degree k if f(Av1,...,A€n) = 

A¥ f(a1,--+,2n) for any A. For example, 

de? sin ¢ giz 
y? + 32? Re 

ie
 

f(2,y, z) = ™



is homogeneous of degree 3 because 

x)? A | 
4(A2) sin (3) = \ f(x,y, 2). PO, AY A2) = arya 

State whether f is homogeneous or not. If it is, determine its 

degree. 

(a) f(t,y) = 0? + 4y? —7 

(c) f(a, y) = a? — y? + 7x2 — 32y 

(d) f(x,y) = sin (x? + y*) 
9. (Homogeneous equation) The equation 

v=1) 
is said to be homogeneous because f(y/x) is homogeneous 
(of degree zero); see the preceding exercise. CAUTION: The 

term homogeneous is also used to describe a linear differential 

equation that has zero as its “forcing function” on the right- 

hand side, as defined in Section 1.2. Thus, one needs to use 

the context to determine which meaning is intended. 

  

  

(9.1) 
      

(a) Show, by examples, that (9.1) may, but need not, be sepa- 
rable. 

(b) In any case, show that the change of dependent variable 

w = y/a, from y(z) to w(x), reduces (9.1) to the separable 
form 

1 fw) —w 
7 x 

w (9.1) 

10. Use the idea contained in the preceding exercise, to find 

the general solution to each of the following equations, 

  
y L 2y- 2 

(a)y’=—=4+3 _ b ' - y= , (by yon 

ry + 2y? an +y 
(oy! = (y= -—— 

x 

(e) y! = e/* + - 

11. (Almost-homogeneous equation) (a) Show that 

,_ ac+by+e 
yu abe ~ y da bey +f (a,b,..., f constants) (11.1) 

can be reduced to homogeneous form by the change of vari- 
ables x = u+h, y = v-+k, where h and k are suitably chosen 
constants, provided that ae — bd 4 0, 
(b) Thus, find the general solution of y’ = (2a — y ~ 6)/(« — 
y — 3). 
(c) Similarly, for y/ = (1 — y)/(@ + 4y — 3). 
(d) Similarly, for y! = (a + w)/(@ — y +1). 
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(e) Similarly, for y’ = (a ~ y ~ 4)/(a@ + y — 4). 
(f) Devise a method of solution that will work in the excep- 

tional case where ae — bd = 0, and apply it to the case 

yf = (© + 2y — 1)/(2e + dy — 1). 

12. (Algebraic, exponential, and explosive growth) We saw, in 

Section 2.3.3, that the population model 

dN 

aN 
gives exponential growth, whereby N’ —+ oo as t + oo. More 

generally, consider the model 

dN p 
i RNP, 

where p is a positive constant. Solve (12.2) and show that if 

0 <p < 1 then the solution exhibits algebraic growth [1.c., 

N(t) ~ at® as t + oo]. Show that as p — 0 the exponent @ 

tends to unity, and as p > 1 the exponent ( tends to infinity. 
(Of course, when p = 1 we then have exponential growth, as 

mentioned above, so we can think — crudely ~ of exponential 

growth as a limiting case of algebraic growth, in the limit as 

the exponent 7 becomes infinite. Thus, exponential growth is 

powerful indeed.) If p is increased beyond | then we expect 

the growth to be even more spectacular. Show that if p > 1 

then the solution exhibits explosive growth, explosive in the 

sense that N -+ oo in finite time, as > T’, where 

1 T = ———; 12.3 
n(p —1)Ng “ 

(x > 0) (12.1) 

(« > 0) (12.2) 

No denotes the initial value N(0). Observe that T’ diminishes 

as p increases. 

13. (Nondimensionalization) In Example 7 we nondimension- 

alized according tof = at and N = N/No._ Instead, nondi- 

mensionalize (47) according to? = at and N = bN/a, and 

thus derive the solution 

N(t) = 8 
B+ (1—Bje* 

where 9 = bNo/a. Sketch the graph of N(é) versus ¢, for 
several different values of @, labeling any key value(s). 

14. The initial-value problem 

ma” - ca’ + ka = Fsinwt; z(0)=2, 2 (0)= 24 

(14.1) 

corresponding to a damped mechanical oscillator driven 

by the force Fsinwt, contains seven parameters: 

m,¢c,k, F,w,zo,vp. Nondimensionalize (14.1). How many 

parameters are present in the nondimensionalized system?
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2.5 Exact Equations and Integrating Factors 

Thus far we have developed solution techniques for first-order differential equa- 

tions that are linear or separable. In addition, Bernoulli, Riccati, Clairaut, homoge- 

neous, and almost-homogeneous equations were discussed in the exercises. In this 

section we consider one more important case, equations that are “exact,” and ones 

that are not exact but can be made exact. 

First, let us review some information, from the calculus, about Paral deriva- 

  
a 0 

tives. Specifically, recall that the symbol An . is understood to mean az > (55). 

if we use the standard subscript notation instead, then this quantity would be ex- 

pressed as fy, that is, ( fy)x- Does the order of differentiation matter? That is, is 

fyc = fey? [tis shown in the calculus that a sufficient condition for Foy to equal 

tye is that fz, fy, fye, and fey all be continuous within the region in question. 

These conditions are met so typically in applications, that in textbooks on engi- 

neering and science f,, and fy, are generally treated as indistinguishable. Here, 

however, we will treat them as equal only if we explicitly assume the continuity of 

Fes fy» fue and Fry: 

2.5.1. Exact differential equations. To motivate the idea of exact equations, con- 

sider the equation 
d sin 
oY 8 ae (1) 
dz d2Ay—-xcosy 

or, rewritten in differential form, 

siny dz + (xcosy — 2y)dy = 0. (2) 

If we notice that the left-hand side is the differential of F(z, y) = xsiny— y?, then 

(2) is simply dF = 0, which can be integrated to give F' = constant; that is, 

F(a,y) = vsiny—y? =C, (3) 

where C is an arbitrary constant of integration. Equation (3) gives the general 

solution to (1), in implicit form. 

Really, our use of the differential form (2) begs justification since we seem 

to have thereby treated dy/dz as a fraction of computable quantities dy and dz, 

whereas it is actually the limit of a difference quotient. Such justification is possi- 

ble, but it may suffice to note that the use of differentials is a matter of convenience 

and is not essential to the method. For instance, observe that if we write 

dy 

dz =0 © 
siny + («cosy — 2y)—— 

in place of (2), to avoid any questionable use of differentials, then the left-hand side 

of (4) is the x derivative (total, not partial) of F(z, y) = xsiny — y?: 

d dy » afm) < a 3} ay?) = 3} on 1 4 qh eye) = (wsiny — y*) =siny + (xcosy — 2y) a
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so dF /dx = Q. Integrating the latter gives F(x, y) = wsiny ~— y* = C, just as 
before. 

Thus, let us continue, without concern about manipulating dy/da as though it 
were a fraction. Seeking to generalize the method outlined above, we consider the 
differential equation 

dy — M(z,y) 
dx N(a,y)’ 

where the minus sign is included so that when we re-express (5) in the differential 
form 

(5) 

M(x,y)dz + N(x, y)dy = 0, (6) 

then both signs on the left will be positive. It is important to be aware that in 
equation (5) y is regarded as a function of «x, as is clear from the presence of the 

derivative dy/da. That is, there is a hierarchy whereby z is the independent variable 
and y is the dependent variable. But upon re-expressing (5) in the form (6) we 
change our viewpoint and now consider z and y as having the same status; now 
they are both independent variables. 

We observe that integration of (6) is simple if Afdx + Ndy happens to be the 
differential of some function F(z, y), for if there does exist a function F(z, y) such 
that 

dF (x,y) = M(a,y)dz + N(z, y)dy, (7) 

then (6) is 

dF (x,y) = 0, (8) 
which can be integrated to give the general solution 

Fay) =C, (9) 
where C’ is an arbitrary constant. 

Given AI(x, y) and N(x, y), suppose that there does exist an F(z, y) such that 
Mdz + Ndy = dF. Then we say that Adz + Ndy is an exact differential, and 
that (6) is an exact differential equation. That case is of great interest because its 

general solution is given immediately, in implicit form, by (9). 

Two questions arise. How do we determine if such an F’ exists and, if it does, 
then how do we find it? The first is addressed by the following theorem. 

  

THEOREM 2.5.1 Test for Exactness 
Let AL (x,y), N(x,y), OM/Oy, and ON/Ozx be continuous within a rectangle R in 
the x, y plane. Then A/dx + Ndy is an exact differential, in A, if and only if 

  

OM _ ON (10) 
Oy Ou       

everywhere in R. 
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Partial Proof, Let us suppose that Afdx + Ndy is exact, so that there is an F’ 

satisfying (7). Then it must be true, according to the chain rule of the calculus, that 

OF 

Ox (11a) 

and OF 

N = {1b By (1b) 

Differentiating (11a) partially with respect to y, and (11b) partially with respect to 

x, gives 
My = Fry, (12a) 

and 
Ny = Fyz- (12b) 

Since M, N, M,, and Nz have been assumed continuous in R, it follows from 

(11) and (12) that Fy, Fy, Fay, and Fy< are too, so Fy, = Fy. Then it follows 

from (12) that Af, = Nz, which is equation (10). Becaus< of the ~if and only if” 

wording in the theorem, we also need to prove the reverse: that the truth of (10) 

implies the existence of F’, That part of the proof can be carried out using results 

established in Section 16.12, and will not be given here. @ 

Actually R need not be a rectangle; it merely needs to be “simply connected,” 

that is, a region without holes. Simple connectedness will be defined and used 

extensively in Chapter 16 on Field Theory. 

Assuming that the conditions of the theorem are met, so that we are assured 

that such an F' exists, how do we find F? We can find it by integrating (11a) 

with respect to z, and (11b) with respect to y. Let us illustrate the method by 

reconsidering the example given above. 

EXAMPLE 1. Consider equation (1) once again, or, in differential form, 

siny dx + (xcosy — 2y)dy = 0. (13) 

First, we identify Mf = siny, and N = axcosy — 2y. Clearly, Mf, N, My, and Nz are 

continuous in the whole plane, so we turn to the exactness condition (10): MZ, = cos y, and 

Nz = cos y, so (10) is satisfied, and it follows from Theorem 2.5.1 that there does exist an 

F (x,y) such that the left-hand side of (13) is dF. Next, we find F’ from (11): 

an sin y, (14a) 

OF 

Oy 
Integrating (14a) partially, with respect to x, gives 

= ecosy — 2y. (14b)   

F(a,y) = | siny Ox = asiny + A(y), (15)
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where the sin y integrand was treated as a constant in the integration since it was a “partial 

integration” on 2, holding y fixed [just as y was held fixed in computing OF /Oz in (14a)]. 

The constant of integration A must therefore be allowed to depend upon y since y was held 

fixed and was therefore constant. If you are not convinced of this point, observe that taking 

a partial -derivative of (15) does indeed recover (14a). 

Observe that initially F(a, y) was unknown. The integration of (14a) reduced the 

problem from an unknown function F' of x and y to an unknown function A of y alone. 
A(y), in turn, can now be determined from (14b). Specifically, we put the right-hand side 

of (15) into the left-hand side of (14b) and obtain 

xcosy + A'(y) = xcosy — 2y, (16) 

where the prime denotes d/dy. Cancelling terms gives A’(y) = —2y, so 

Aly) = -| 2y dy = -y" + B, (17) 

where this integration was not a “partial integration,” it was an ordinary integration on y 

since A’(y) was an ordinary derivative of A. Combining (17) and (15) gives 

F(z,y) =xsiny — y? + B = constant. (18) 

Finally, absorbing B into the constant, and calling the result C, gives the general solution 

rsiny-y’=C (19) 

of (1), in implicit form. 

COMMENT 1. Be aware that the partial integration notation [( )Ox and [( )Oy is not 
standard; we use it here because we find it reasonable, and helpful in reminding us that any 

y’s in the integrand of {( )Oz are to be treated as constants, and likewise any for any 2’s 
in [( )Oy. 

COMMENT 2. From (13) all the way through (19), 2 and y have been regarded as inde- 
pendent variables. With (19) in hand, we can now return to our original viewpoint of y 
being a function of z. We can, if possible, solve (19) by algebra for y(z) [in this case it is 
not because (19) is transcendental], plot the result, and so on. Even failing to solve (19) for 
y(x), we can nevertheless verify that 7 sin y — y* = C satisfies (1) by differentiating with 
respect to x. That step gives sin y + x(cos y)y’ — 2yy’ = Oory’ = (siny)/(2y — acosy), 
which does agree with (1). 

COMMENT 3. It would be natural to wonder how this method can fail to work. That is, 
whether or not M, = N,, why can’t we always successfully integrate (11) to find £? The 
answer is to be found in (16). For suppose (16) were 2x cosy + A'(y) = xcosy — 2y 
instead, Then the 2 cos y terms would not cancel, as they did in (16), and we would have 
A'(y) = -x cosy — 2y, which is impossible because it expresses a relationship between z 
and y, whereas x and y are regarded here as independent variables. Thus, the cancellation 
of the x cos y terms in (16) was crucial and was not an accident; it was a consequence of 
the fact that AZ and NV satisfied the exactness condition (10). 

COMMENT 4. Though we used (14a) first, then (14b), the order is immaterial and could 
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have been reversed. & 

2.5.2. Integrating factors. It may be discouraging to realize that for any given 

pair of functions Mf and JN it is unlikely that the exactness condition (10) will be 

satisfied. However, there is power available to us that we have not yet tapped, for 

even if Af and N fail to satisfy (10), so that the equation 

M(a,y)du + N(x, y)dy = 0 (20) 

is not exact, it may be possible to find a multiplicative factor a(x, y) so that 

o(x,y)M(a,y)dx + o(a,y) N(x, y)dy = 0 (21) 

is exact. That is, we seek a function o(z, y) so that the revised exactness condition 

  

0 0 

      
is satisfied. Of course, we need o(z, y) # 0 for (21) to be equivalent to (20). 

If we can find a o(z, y) satisfying (22), then we call it an integrating factor of 

(20) because then (21) is equivalent to dF’ = 0, for some F(z, y), and dF = 0 can 

be integrated immediately to give the solution of the original differential equation 

as F(a, y) = constant. 
How do we find such a a? It is any (nonzero) solution of (22), that is, of 

oyM +oMy = orN +o0Nyz. (23) 

Of course, (23) is a first-order partial differential equation on o, so we have made 

dubious headway: to solve our original first-order ordinary differential equation 

on y(x), we now need to solve the first-order partial differential equation (23) on 

a(z,y)! 
However, perhaps an integrating factor 7 can be found that is a function of a 

alone: a(z). Then (23) reduces to the differential equation 

oMy = doy +oNz 
dx 

or 
do My — Ne 
a oy 24 
dx” ( N ) *) 

which is separable. This idea succeeds if and only if the (AL, — N,,)/N ratio on the 

right-hand side of (24) is a function of only, for if it did contain any y dependence 

then (24) would amount to the impossible situation of a function of x equalling a 

function of x and y, where a and y are independent variables, Thus, if 

  

ML, ~ Nz . . ; 
an a = function of x alone, (25) 

f      
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then integration of (24) gives 

  

o(a) = ef Shr de, (26)       

Actually, the general solution of (24) includes an arbitrary constant factor, but that 

factor is inconsequential and can be taken to be [. Also, remember that we need o 

to be nonzero and we are pleased to see, a posteriori, that the o given in (26) cannot 
equal zero because it is an exponential function. 

If (M, — N,)/N is not a function of « alone, then an integrating factor o(x) 
does not exist, but we can try to find o as a function of y alone: o(y). Then (23) 

  

      

  

      

reduces to 1 
a 

dy +aM, =oN, 

or 
da M, — Nz 
ae og | 
dy M , 

which, again, is separable. If 

M, — N. 
—#__* = function of y alone, (27) 

M 

then 
My—Na 

oly) =e FY, (28) 

EXAMPLE 2. Consider the equation (already expressed in differential form) 

dx + (3x — e~*¥) dy = 0. (29) 

Then M = land N = 3x — e~Y, so (10) is not satisfied and (29) is not exact. Seeking an 
integrating factor that is a function of x alone, we find that 

My,-N, 0-3 
NV 3p en ky 3£ function of z alone, (30) 

and conclude that o(x) is not possible. Seeking instead an integrating factor that is a 
function of y alone, 

M, ™~ Nz 0 —_ 3 . . . 

Tr = TT = ~3 = function of y alone, G1) 

so that o(y) is possible, and is given by 

o(y) el Mya Ne dy _ ed 8dy — @3¥, (32) 

Multiply (29) through by the integrating factor ¢ = e°¥ and obtain 

eda + e8Y (34 — e~¥) dy = 0,
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which is now exact. Thus, 

  
OF — eed 

Ou 

and OF 

By = e9Y (3a — e7*") 

SO 

F(a,y) = / el Ox = we" + Aly), 

and ar 

By =: eV (32 _ e7*9) = 3re°4 + A’(y). (33) 

The latter gives 

A'(y) = —e! 
so 

A(y) = -e + B. 

Thus, 
F(x,y) = ce! + Aly) = xe*! + (~eY + B) = constant 

or 
re’ ~e =C, (34) 

where C’ is an arbitrary constant; (34) is the general solution of (29), in implicit form. 

COMMENT. Can we solve (34) for y? If we let eY = z, then (34) is the cubic equation 

res ~ 2 = Cin z, and there is a known solution to cubic equations. If we can solve for 

z, then we have y as y = Inz. However, the solution of that cubic equation (as can be 

obtained using the Maple solve command) is quite a messy expression. Hf 

EXAMPLE 3. First-Order Linear Equation. We've already solved the general first- 

order linear equation 

+ n(a)y = a(o) (35) 
dx 

in Section 2.2. but let us see if we can solve it again, using the ideas of this section. First, 

express (35) in the form 

[p(x)y — g(x)| da + dy = 0. (36) 

Thus, Af = p(x)y ~ q(x) and N = 1, so M, = p(x) and N, = 0. Hence My # Ny, $0 

(36) is not exact [except in the trivial case when p(a) = 0]. Since 

No 4 

My,-Ne p(t) -0 

M ~ p(x)y — q(x) 

we can find an integrating factor that is a function of x alone. but not one that is a function 

of y alone. We leave it for the exercises to show that the integrating factor is 

M,—Ne — ple) —- ‘uncti F fy 7 ite pla) = 0 = function of x alone, 

# function of y alone, 

a(x) = el p(x) de
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and that the final solution (this time obtainable in explicit form) is 

y(x) — ew f pdx (/ el pd o da ob c) : (37) 

as found earlier, in Section 2.2. 8 

Closure. Let us summarize the main results. Given a differential equation dy/dz = 
f(x,y), the first step in using the method of exact differentials is to re-express it 
in the differential form M(x, y)dx + N(x,y)dy = 0. If M, N, My, and Ny 
are all continuous in the region of interest, check to see if the exactness condition 
(10) is satisfied. If it is, then the equation is exact, and its general solution is 
F(a,y) = C, where F is found by integrating (11a) and (11b). As a check on your 
work, a differential of F(a,y) = C should give you back the original equation 
Mdz + Ndy = 0. 

If it is not exact, see if (AZ, ~ N,)/N is a function of z alone. If it is, then 
an integrating factor ¢(x) can be found from (26). Multiplying the given equation 
Mdz + Ndy = 0 through by that (2), the new equation is exact, and you can 
proceed as outlined above for an exact equation. 

If (My —Nz)/N is not a function of x alone, check to see if (M, —N,)/M isa 
function of y alone. If it is, then an integrating factor o(y) can be found from (28). 
Multiplying Mdx + Ndy = 0 through by that o(y), the new equation is exact, and 
you can proceed as ating above for an exact equation. 

If My # Nz, (Ady — Nz)/N is not a function of x alone, and (Aly — Nz)/M is - 
not a function of y alone, then the method is of no help unless an integrating factor 
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o can be found that is a function of both x and y. 

  

EXERCISES 2.5 
  

NOTE: Solutions should be expressed in explicit form if pos- 
sible. 

1. Show that the equation is exact, and obtain its general so- 
lution. Also, find the particular solution corresponding to the 
given initial condition as well. 

(a) 3dx —dy=0; y(0) =6 
(b) x°de + y?dy =0; (9) = a 
(c)adx+2ydy=0; y)= 
(d) 4cos2udu—e7°"dy =0; “v(0 )= 
(e) eMda + (xe¥ ~1)dy =0;  y(— 5)= 5 
(A) (e" + z)dy ~(sinz —y)dz =0; (0) =0 
(g) (w — 2z)du ~ (Qe — z)dz = 0: (3) = 5 
(h) (sin y + y cos x)dx + (sin & + COs yjdy =0; y(2)=3 
(i) (sin ary + xy cosxy)de + 2° * cos xy dy = 0; y() =~] 
() (8° sin2y — 2ey)dez + (223 cos2y ~ x*)dy = 0: 

y(0.5) = 3.1 

(k) (4a3y° sin 32 + 3ay° cos 3a)dx + 5aty* sin 3x dy = 0: 

y(0) = 1 
(1) 3a%y In.y dx + (2* Iny + a — 2y)dy = 0; y(8) = -3 
(m) (2ye?*¥ sin az + e?* cosa + 1)dx + 2xe?*Y sin x dy = 0; 
y(2.3) = -1.25 

2.(a)—(m) Find the general solution of the equation given in 

Exercise | using computer software, and also the particular 
solution corresponding to the given initial condition. 

3. Make up three different examples of exact equations. 

4, eetermine whatever conditions, if any, are needed on the 

constants a, .,f, A, B,...,F for the equation to be exact. 

(a) (ax + i, + “ede 4 + (Ar- ++ By + C)dy =0 . 

(b) (au? + by? + cry + dx + ey + f)dx + (Aa? + By? + 
Cry + Da + By + F)dy =0
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5, Find a suitable integrating factor o(a) or a{y), and use it to 

find the general solution of the differential equation. 

(a) 3yda + dy = 0 

(b) ydx + elnady = 0 

(c) ylnydz + (a + y)dy =0 
(d) dx + (a — e~¥)dy = 0 
(e) dx + ady = 0 

(f) (ye~* + l)da + (xe) dy = 0 

(g) cos y dx — [2(a — y)siny + cos yjdy = 0 

(h) (1-2 — z)dz + dz =0 

(i) (2 + tan? z)(1 + e7¥)dz — e~¥ tana dy = 0 

(j) (Bu? sinh 3 — 2u)du + 3u3 cosh 3u du = 0 

(k) cosa dz + (3sinz + 3cosy — sin y)dy = 0 

(1) (ylny + 2ay*)de + (a + 27y)dy = 0 

(m) (32 — 2p)dz —xdp =0 
(n) ydax + (2? ~ x)dy = 0 
(0) 2cy dx + (y* — x*)dy = 0 

6. (First-order linear equation) Verify that a(x) = ed P(x) de 

is an integrating factor for the general linear first-order equa- 

tion (35), and use it to derive the general solution (37). 

7. Show that the given equation is not exact and that an inte- 

grating factor depending on x alone or y alone does not exist. 

If possible, find an integrating factor in the form o(z,y) = 

ety, where a and 6 are suitably chosen constants. If such ao 

can be found, then use it to obtain the general solution of the 

differential equation; if not, state that. 

(a) (Bay ~ 2y”)da + (207 — 32y)dy = 0 

(b) (3zy + 2y?)dz + (3x? + day)dy = 0 

(c) (a + y*)dx + (« — y)dy = 0 
(d) ydz — (x?y — x)dy = 0 

8. Show that the equation is not exact and that an integrating 

factor depending on x alone or y alone does not exist. Nev- 

ertheless, find a suitable integrating factor by inspection, and 

use it to obtain the general solution. 

(a) edz + e*dy = 0 (b) y2da ~ 8% dy = 0 

(c) e%dx — tanx dy = 0 

9, Obtain the general solution, using the methods of this sec- 

tion. 

  dy «@-y dr _ r* cos @ 

(@ de «rt+y (b) dos @rsin6 +4 

dy  2uny—-e¥ dy y(2z —Iny) 

()—=—— 
(d) = =“ 

dz x(e¥ — x) da: £ 
dy _ siny + ycosz 

dz = sing + xcosy 

10. What do the integrating factors defined by (26) and (28) 

turn out to be if the equation is exact to begin with? 

11.(a) Show that (x? + y)dz + (y* + x)dy = 0 is exact. 

(b) More generally, is M(z, y)dx+M (y, x)dy exact? Explain. 

{e) 

12. If F(x, y) = C is the general solution (in implicit form) of 

a given first-order equation, then what is the particular solution 

(in implicit form) satisfying the initial condition y(a) = 0? 

13. If Mdz + Ndy = 0 and Pdz + Qdy = 0 are exact, is 

(M + P)dx + (N + Q)dy = 0 exact? Explain. 

14. Show that for [p(x) + q(y)|dx + [r(x) + s(y)|dy = 0 to 

be exact, it is necessary and sufficient that ¢(y)dx + r(z)dy be 

an exact differential. 

15. Show that for p(x)de + q(x)r(y)dy = 0 to be exact, it is 

necessary and sufficient that g(x) be a constant. 
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Chapter 2 Review 

Following is a listing of the types of equations covered in this chapter. 

SECTION 2.2 

First-order linear: y' + p(x)y = q(x). 

This equation can be solved by the integrating factor method or by solving the 
homogeneous equation and using variation of parameters. Its general solution is 

y(x) = ew J p(x) de (/ el P(e) de a¢) dx + c) 

A particular solution satisfying y(a) = b is 

yla) = on Le mle) de (/ ele word gg) de 4 s) . 

Bernoulli: yy’ + p(x)y = q(x)y”. (n 40,1). 

This equation can be converted to the first-order linear equation vu! +_ 
(1 — n)p(x)v = (1 — n)q(a) by the change of variables v = y'~” (Exercise 9). 

Riccati: y/ = p(x)y* + q(x)y + r(2). 

This equation can be solved by setting y = Y(r)+ —, if a particular solution 
Y (a) of the Riccati equation can be found (Exercise | 1). 

d’Alembert-Lagrange: y= x f(y’) + g(y’). ify) 4 y'] 

By letting y’ = p be a new independent variable, one can obtain a linear first- 
order equation on x(p) (Exercise 13), 

Clairaut: y= xy’ + g(y’). 

This equation admits the family of straight-line solutions y = Cx + g(C) and, 
in general, a singular solution as well (Exercise 14). 

SECTION 2.4 

Separable: yy! = X(x)¥(y). 

General solution obtained by integrating 
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f(t 
Homogeneous: y= f (*). 

x 

Can be made separable by setting v = y/x (Exercise 9). 

_ ax+ byte 

~ dx+ey +f 

Can be made homogeneous by settings = uth, y=utk (Exercise [1). 

Almost Homogeneous: 4’ (ae ~— bd # 0) 

SECTION 2.5 

Exact: M(a,y)dz + N(a,y)dy =0. (My = Nz) 

General solution F(x,y) = C found by integrating F, = M, Fy = N. if 

M, # Nz, can make exact by means of an integrating factor a(x) if (My ~ Nz)/N 

is a function of x only, or by an integrating factor o(y) if (My — Nx)/M isa 

function of y only.



Chapter 3 

Linear Differential Equations 

of Second Order and Higher 

PREREQUISITES: In this chapter on linear differential equations, we encounter 

systems of linear algebraic equations, and it is presumed that the reader is familiar 
with the theory of the existence and uniqueness of solutions to such equations, 
especially as regards the role of the determinant of the coefficient matrix. That 
material is covered in Chapters 8-10, but the essential results that are needed for the 
present chapter are summarized briefly in Appendix B. Thus, either Sections 8.1— 
10.6 or Appendix B is a prerequisite for this chapter. Also presumed is a familiarity 
with the complex plane and the algebra of complex numbers. That material is 
covered in Section 21.2 which, likewise, is a prerequisite for Chapter 3. 

3.1 Introduction 

As we prepare to move from first-order equations to those of higher order, this is 
a good time to pause for an overview that looks back to Chapter 2 and ahead to 
Chapters 3—7. If, as you proceed through Chapters 3-7, you lose sight of the forest 
for the trees, we urge you to come back to this overview. 

LINEAR EQUATIONS 

First order: 

vl + p(a)y = (2). (1) 
General solution found [(2.1) in Section 2.2] in explicit form. Existence and 
uniqueness of solution of initial-value problem [with y(a) = 6] guaranteed 
over a predetermined interval, based upon the continuity of p(x) and q(x). 
Solution of initial-value problem expressible as a superposition of responses 
to the two inputs [the initial value 6 and the forcing function g(a)] with each 
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response being proportional to that input: for example, if we double the input 

we double the output. 

Second order and higher: 

q?- 1 y 

den 1 

d™ y 

da” 
  

d: 
ee dn (tt) + an(x)y = f(a). (2) ag(x) Te + ay(x) 

Constant coefficients (the aj;’s are constants ) and homogeneous (f = 0): 

This is the simplest case. We will see (Section 3.4) that the general solution 

can be found in terms of exponential functions, and perhaps powers of « 

times exponential functions. 

Constant coefficients and nonhomogeneous: 

Additional solution is needed due to the forcing function f(a) and can be 

found by the method of undetermined coefficients (Section 3.7.2) or the 

method of variation of parameters (Sections 3.7.3 and 3.7.4). Still simple. 

An alternative approach, the Laplace transform, is given in Chapter 5. 

Nonconstant coefficients: 

Essentially, the only simple case is the Cauchy — Euler equation (Section 

3.6.1). Other cases are so much more difficult that we give up on finding 

closed form solutions and use power series methods (Chapter 4). Two par- 

ticularly important cases are the Legendre (Section 4.4) and Bessel (Section 

4,6) equations, which will be needed later in the chapters on partial differen- 

tial equations. 

NONLINEAR EQUATIONS 

First order: 

y= f(a,y). (3) 

No solution available for the general case. Need to identify subcategories 

that are susceptible to special solution techniques. The most important of 

these subcategories are separable equations (Section 2.4) and exact equations 

(Section 2.5), and these methods give solutions in implicit form. Several im- 

portant but more specialized cases are given in the exercises: the Bernoulli, 

Riccati, d’ Alembert-Lagrange, and Clairaut equations in Section 2.2, and 

“homogeneous” equations in Section 2.4. The idea of the response being 

a superposition of responses, as it is for the linear equation, is not applica- 

ble for nonlinear equations. The subcategories and special cases mentioned 

above by no means cover all possible equations of the form y = flay), 

so that many first-order nonlinear equations simply are not solvable by any 

known means. A powerful alternative to analytical methods, [i.e., methods



designed to obtain an analytical expression for y(x)], is to seek a solution in 

numerical form, with the help of a computational algorithm and a computer, 
and these methods are discussed in Chapter 6. 

Second order and higher: 

Some nonlinear equations of first order can be solved analytically, as we 
have seen, but for nonlinear equations of higher order analytical solution is 

generally out of the question, and we rely instead upon a blend of numerical 

solution (Chapter 6) and qualitative methods, such as the phase plane method 

described in Chapter 7. 

To get started, we limit our attention in the next several sections to the ho- 
mogeneous version of the linear equation (2), namely, where f(x) = 0, because 
that case is simpler and because to solve the nonhomogeneous case we will need to 
solve the homogeneous version first, anyhow. 

To attach physical significance to the distinction between homogeneous and 
nonhomogeneous equations, it may help to recall from Section 1.3 that the differ- 
ential equation governing a mechanical oscillator is 

2 
mos + = +kx = F(t), (4) 

where m,c, k are the mass, damping coefficient, and spring stiffness, respectively, 
and F(t) is the applied force. (In this case, of course, the variables happen to be x 
and t rather than y and x.) If F(t) = 0, then (4) governs the unforced, or “free,” 
vibration of the mass m. Likewise, for any linear differential equation, if all terms 
containing the unknown and its derivatives are moved to the left-hand side, then 
whatever is left on the right-hand side is regarded as a “forcing function.” From a 
physical point of view then, when we consider the homogeneous case in the next 
several sections, we are really limiting our attention to unforced systems. 

A brief outline of this chapter follows: 

3.2 Linear Dependence and Linear Independence. The concept of a general 
solution to a linear differential equation requires the idea of linear dependence and 
linear independence, so these ideas are introduced first. 

3.3 Homogeneous Equation: General Solution. Here we establish the concept 
of a general solution to the homogeneous equation (2), but do not yet show how to 
obtain it. 

3.4 Solution of Homogeneous Equation: Constant Coefficients. Tt is shown 
how to find the general solution in the form of a linear combination of solutions 
that are either exponentials or powers of x times exponentials. 

3.5 Application to Harmonic Oscillator: Free Oscillation. The foregoing con- 
cepts and methods are applied to an extremely important physical application: the 
free oscillation of a harmonic oscillator. 

3.1. Introduction 75
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3.6 Solution of Homogeneous Equation: —Nonconstant Coefficients. 

Nonconstant-coefficient equations can be solved in closed form only in exceptional 

cases. The most important such case is the Cauchy—Euler equation, and that case 

occupies most of this section. 

3.7 Solution of Nonhomogeneous Equation. It is shown how to find the addi- 

tional solution, due to the forcing function, by the methods of undetermined coef- 

ficients and variation of parameters. 

3.8 Application to Harmonic Oscillator: Forced Oscillation. We return to 

the example of the harmonic oscillator, begun in Section 3.5, and obtain and discuss 

the solution for the forced oscillation. 

3.9 Systems of Linear Differential Equations. We consider linear systems 

of n coupled first-order differential equations on n unkowns and show how to ob- 

tain uncoupled nth-order differential equations on each of the n unknowns, which 

equations can then be solved by the methods described in the preceding sections of 

this chapter. 

3.2 Linear Dependence and Linear Independence 

Asked how many different paints he had, a painter replied five: red, blue, green, 

yellow, and purple. However, it could be argued that the count was inflated since 

only three (for instance red, blue, and yellow) are independent: the green can be 

obtained from a certain proportion of the blue and the yellow, and the purple can be 

obtained from the red and the blue. Similarly, in studying linear differential equa- 

tions, we will need to determine how many “different,” or “independent,” functions 

are contained within a given set of functions. The concept is made precise as fol- 

lows. We begin by defining a linear combination of a set of functions f,,..., fx 

as any function of the form ay f; + +--+ ag fg, where the a;’s are constants. For 

instance, 2sin « — 7 cos z is a linear combination of sin z and cos z. 

  

DEFINITION 3.2.1 Linear Dependence and Linear Independence 

A set of functions {u1,...,U,} is said to be linearly dependent on an interval J 
if at least one of them can be expressed as a linear combination of the others on J. 
If none can be so expressed, then the set is linearly independent. 
  

If we do not specify the interval J, then it will be understood to be the entire 

x axis. NOTE: Since the terms linearly dependent and linearly independent will 

appear repeatedly, it will be convenient to abbreviate them in this book as LD and
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LI, respectively, but be aware that this notation is not standard outside of this text. 

EXAMPLE 1. The set {,e*,e~*, sinh x} is seen to be LD (linearly dependent) 
because we can express sinh x as a linear combination of the others: 

sinha = ———“— = =e" — se +02. (1) 

In fact, we could express e* as a linear combination of the others too, for solving (1) for e® 
gives e* = 2sinha +e7* +02. Likewise, we could express e~® = e* —2sinhr +02, 
We cannot express x? as a linear combination of the others [since we cannot solve (1) for 
z?], but the set is LD nonetheless, because we only need to be able to express “at least 
one” member as a linear combination of the others. NOTE: The hyperbolic sine and cosine 
functions, sinh x and cosh x, were studied in the calculus, but if these functions and their 
graphs and properties are not familiar to you, you may wish to turn to the review in Section 
3.4.1. ff 

The foregoing example was simple enough to be worked by inspection. In 
more complicated cases, the following theorem provides a test for determining 
whether a given set is LD or LI. 

  

THEOREM 3.2.1 Test for Linear Dependence/Independence 
A finite set of functions {u,,...,un} is LD on an interval J if and only if there 
exist scalars a;, not all zero, such that 

ayur(2) + ague(x) +--+ + antn(z) = 0 (2) 

identically on J. If (2) is true only if all the a’s are zero, then the set is LI on J. 
  

Proof: Because of the “if and only if” we need to prove the statement in both direc- 
tions. First, suppose that the set is LD. Then, according to the definition of linear 
dependence, one of the functions, say uj, can be expressed as a linear combination 
of the others: 

uj(@) = ayur(2) + +--+ Qj—1Uj—1(@) + Ojy1uj4i(e) +++ + OnUn(2), CG) 

which equation can be rewritten as 

ayuy (x) i Oj —1Uj—1(2) + (—1)u;(x) + j41Uj41(2) +++ Qn Un(Z) = 0. 

(4) 
Even if all the other a’s are zero, the coefficient a; of uj(a) in (4) is nonzero, 
namely, —1, so there do exist scalars Q1,...,@,, not all zero such that (2) holds. 
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Conversely, suppose that (2) holds with the a’s not all zero. If a, for in- 

stance, is nonzero, then (2) can be divided by a, and solved for uz(x) as a linear 

combination of the other wu’s, in which case {u,...,Un}is LD. s 

EXAMPLE 2. To determine if the set {1, a,a*} is LD or Lf using Theorem 3.2.1, write 

equation (2), 

y+ Age + age” = 0, (5) 

and see if the truth of (5) requires all the a’s to be zero. Since (5) needs to hold for all ’s 

in the interval (which we take to be —co < x < oo), let us write it for «© = 0,1, 2, say, to 

generate three equations on the three a’s: 

ay = 0, 

ay + a2 +03 =0, (6) 

Oy + 2aq + dag = 0. 

Solution of (6) gives @1 = @g = a3 = 0, so the set is LI. 

In fact, (5) really amounts to an infinite number of linear algebraic equations on the 

three a’s since there is no limit to the number of zx values that could be chosen. However, 

three different x values sufficed to establish that all of the a’s must be zero. @ 

Alternative to writing out (2) for n specific x values, to generate n equations 

On Q1,..., Qn, it is more common to generate n such equations by writing (2) and 

its first m — 1 derivatives (assuming, of course, that wy,...,Un are n — 1 times 

differentiable on J), 

ayuy(z) +++: + antn(£) = 90 

ayuh (x) +++: + anuy,(x) =0, 

  

: (7) 

oul (2) ++ +t anu’) (2) =0. 
Let us denote the determinant of the coefficients as 

uy(2) Un(x) 

uy (a se ul (x) 
W (ui,..., Un] (e) = u ) . ) (8) 

ul?) (x) ee uf) (x)       
which is known as the Wronskian determinant of u1,..., tn, or simply the Wron- 

skian of w1,...,Un, after the Polish mathematician Josef M. H. Wronski (1778 —- 

1853). The Wronskian W is itself a function of z. 

From the theory of linear algebraic equations, we know that if there is any 

value of x in I, say xg, such that W [uy,..., Un] (wo) # 0, then it follows from (7) 

with x set equal to xo, that all the a’s must be zero, so the set {w1,... Un} is LI.
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THEOREM 3.2.2, Wronskian Condition for Linear Independence 

If, for a set of functions {u1,..., %n } having derivatives through order n — 1 on an 

interval J, W [uy,..., tn] (x) is not identically zero on I, then the set is LI on J. 
  

Be careful not to read into Theorem 3.2.2 a converse, namely, that if 

W [ur,..., Un] (x) is identically zero on I (which we write as W = 0), then the 
set is LD on J. In fact, the latter is not true, as shown by the following example. 

EXAMPLE 3. Consider the set {u1, uo}, where 

xv, xr<0 0, «<0 

un(a) = { 0 t>0 ule) = { 2 a> 0. (9) 

(Sketch their graphs.) Then (2) becomes 

ax" + a2(0) 

ai (0) + agx? 

0 forza <0 

= () fora > 0, 

The first implies that a; = 0, and the second implies that a. = 0. Hence {uy, ug} is LL 

Yet, W [ui, ve] (2) = r ; | =Oone < 0, and W [uy, ua] (2) = 0 x 

x > 0,so W (uy, ue] (vz) = Oforalla. @ 

= Qon 

  

However, our interest in linear dependence and independence, in this chapter, 
is not going to be in connection with sets of randomly chosen functions, but with 
sets of functions which have in common that they are solutions of a given linear 
homogeneous differential equation. In that case, it can be shown that the inverse of 
Theorem 3.2.2 is true: that is, if W = 0, then the set is LD. Thus, for that case we 
have the following stronger theorem which, for our subsequent purposes, will be 
more important to us than Theorem 3.2.2. 

  

THEOREM 3.2.3 A Necessary and Sufficient Condition for Linear Dependence 
If ui,..., Up are solutions of an nth-order linear homogeneous differential equa- 
tion 

di” y qr 1 y d y 

dan Pile) 77 eee + Pn-1(e) + prlx)y = 9, (10)   

where the coefficients pj (x) are continuous on an interval J, then W [tiy,.-.,Un| (x) 
= 0 on J is both necessary and sufficient for the linear dependence of the set 
{u1,...,Un} on J. 
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EXAMPLE 4.  {t is readily verified that each of the functions 1,e",e~* satisfies the 

equation y’” — y’ = 0. Since their Wronskian is 

Ww [1,e",e7"] (x) = © e® |= 240, 

Q
o
c
r
 

m 

it follows from Theorem 3.2.3 that the set {1,e",e~*} is LI. Another set of solutions of 

yf 

  

yl” — y! = Ois e*,e~*, cosh z. Their Wronskian is 

e e~* cosha 

W [e*,e~®, cosh] (a) =|) e* ~e~" sinha | =0, 
e* e~* coshaz 

so the set {e”,e~*, cosh x} is LD. @ 

In connection with Theorem 3.2.3, it would be natural to wonder if W could be 

zero for some «’s and nonzero for others. Subject to the conditions of that theorem, 

it can be shown (Exercise 5) that 

W(x) = W(é) exp |- | p(t) at), Ci) 

where € is any point in the interval and pj is the coefficient of the next-to-highest 

derivative in (10), and where we have written W [ui,-.., Un] (x) as W (a), and 

W [u1,---;Unl (€) as W(€), for brevity. Due to the French mathematican Joseph 

Liouville (1809-1882), and known as Liouville’s formula, (11) shows that under 

the conditions of Theorem 3.2.3 the Wronskian is either everywhere zero or every- 

where nonzero, for the exponential function is positive for all finite values of its 

argument and the constant W (€) is either zero or not. This fact is illustrated by the 

two Wronskians in Example 4. 

Finally, it is useful to cite the following three simple results, proofs of which 

are left for the exercises. 

  

THEOREM 3.2.4 Linear Dependence/Independence of Two Functions 

A set of two functions, {u1, ua}, is LD if and only if one is expressible as a scalar 

multiple of the other. 
  

  

THEOREM 3.2.5 Linear Dependence of Sets Containing the Zero Function 

If a set {uy,...,Un} contains the zero function [that is, u;(a) = 0 for some jh 

then the set is LD. 
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THEOREM 3.2.6 Equating Coefficients 
Let {u1,..., Un} be LI on an interval J. Then, for 

ayus(@) +++ + dn tin(@) = byur (x) + +++ + bp tn (2) 

to hold on J, it is necessary and sufficient that a; = b; foreach j = 1,...,n. That 
is, the coefficients of corresponding terms on the left- and right-hand sides must 
match. 
  

EXAMPLE 5. The set {x,sin x} is LI on —oo < x < 00 according to Theorem 3.2.4 
because zx is surely not expressible as a constant times sin x (for x/ sin x is not a constant), 

nor is sin x expressible as a constant times x. @ 

EXAMPLE 6. We've seen that {1,e”,e7*} is LI on —co < a < oo. Thus, if we meet 
the equation 

at be* +ce7™* =6—2e7*, (12) 

then it follows from Theorem 3.2.6 that we must have a = 6, b = 0, c = —2, for if we 

rewrite (12) as 

(a — b)(1) + be* + (c+ 2)e7* = 0, 

then it follows from the linear independence of 1, e*, e~* thata -6 = 0,b = 0,c+2=0; 
thatis,a=6,b6=0,c= —2. 

Closure. We have introduced the concept of linear dependence and linear inde- 
pendence as preliminary to our development of the theory of linear differential 
equations, which follows next. Following the definitions of these terms, we gave 
three theorems for the testing of a given set of functions to determine if they are LI 
or LD. Of these, Theorem 3.2.3 will be most useful to us in the sections to follow 
because it applies to sets of functions that arise as solutions of a given differential 
equation. 

In case you have trouble remembering which of the conditions W = 0 and 
W # 0 corresponds to linear dependence and which to linear independence, think 
of it this way. If we randomly make up a determinant, the chances are that its 
value is nonzero; that is the generic case. Likewise, if we randomly select a set of 
functions out of the set of all possible functions, the generic case is for them to be 
unrelated — namely, LI. The generic cases go together (W + 0 corresponding to 
linear independence) and the nongeneric cases go together (W = 0 corresponding 
to linear dependence). 

The concept of linear dependence and independence will prove to be important 
to us later as well, when we study n-dimensional vector spaces and the expansion 
of a given vector in terms of a set of base vectors. 
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EXERCISES 3.2 
  

1. (a) Can a set be neither LD nor LI? Explain. 

(b) Can a set be both LD and LI? Explain. 

2. Show that the following sets are LD by expressing one of 

the functions as a linear combination of the others. 

(a) {1, 2+ 2, 3a —5} 
(b) fz? a? +2, 0? +a+1,0- 1} 
(c) fat tar +1, at —a? +1, a7 - av? — 1} 
(d) {e*, e**, sinh x, cosh a } 

(e) {sinh 3x, e®, e8%, e®®, e7 3* 

(f) {e*, e?”, xe*, (7a — 2)e”} 

(g) {0, 2, 2°} 
(h) {x, 2x, a? } 

3. Show whether the given set is LD or LI. HINT: In most 

cases, the brief discussion of determinants given in Appendix 

B will suffice; in others, you will need to use known proper- 

ties of determinants given in Section 10.4. Also, note that the 

Maple command for calculating determinants (the elements of 

which need not be constants) is given at the end of Section 

Se 
d 

10.4. 

(a) {1, 2, v,...,0"} (b) {e%!”, eRe | etnt} 

(c) {1,1 +2, 142°} (d) fe, 2} 

(e) {sinz, cos, sinh x} 

(g) {1, sin 3x} 

(i) {a, 1+ a, e*} 

(f) {a, a} 
(h) {1 -2, 1 +a, 2°} 
(j) {z, e*, cos x} 

4. Verify that each of the given functions is a solution of the 

given differential equation, and then use Theorem 3.2.3 to de- 

termine if the set is LD or LI. As a check, use Theorem 3.2.4 

if that theorem applies. 

(a) yl _ 6y"” 4 Lly’ _ 6y = 0, fe®, ert et | 

(b) y+ 4y = 0, {sin 2a, cos 2a} 
(c) yl" — by" + 9y’ — dy = 0, {e*,re*, e4*} 

(d) y!” — by" + 9y! ~4y =0, {e*, ve, (1 — x)e*} 
(e) yl" _ yl"! _ Qy! — 0, {1, ev, er \ 

(f) yl" _ by" + Ay = 0), {e®, en eee e~2#} 

(g) x?y” — 3ey' + 3y=0, f{a,2°}, onze >0 

(h) ey" — 3ay’ + 4y = 0, {a?, x? Ina} , onz>d 

(jy — dy! +4y = 0, {e?*, xe? } 
m {e,aln z,v (In x)’} . onze >0 (j)ety” + xy! —y = 9, 

5. (Liouville’s formula) (a) Derive Liouville’s formula, (11), 

for the special case where n = 2, by writing out W' (2), show- 

ing that 

W'(a) = —pi(2)W (2), (5.1) 

and integrating the latter to obtain (11). 

(b) Derive (11) for the general case (i.e., where n need not 

equal 2), by showing that W’() is the sum of n determinants 

where the jth one is obtained from the W determinant by dif- 

ferentiating the jth row and leaving the other rows unchanged. 

Show that each of these n determinants, except the nth one, 

has two identical rows and hence vanishes, so that 

us(z) Un (2) 

W'(a) = : (5.2) 
ul )(2) un) (e) 
ul") (x) uk? (a) 

In the last row, substitute u(x) = —pi(x)u-) (2) — 

.++ — py(x)u(x) from (10), again omit vanishing determi- 

nants, and again obtain (5.1) and hence the solution (11). 

HINT: You may use the various properties of determinants, 

given in Section 10.4. 

6. (a) Prove Theorem 3.2.4. 

(b) Prove Theorem 3.2.5, 

(c) Prove Theorem 3.2.6. 

7. Tf uy and we are LI, uy and wg are LI, and uw and uy are 

LI, does it follow that {u;, wz, ug} is LI? Prove or disprove. 

HINT: If a proposition is false it can be disproved by a single 

counterexample, but if it is true then a single example does not 

suffice as proof. 

8. Verify that x? and a are solutions of ey” —4zy' + 6y = 0 

on —co < x < oo. Also verify, from Theorem 3.2.4, that 

they are LI on that interval. Does the fact that their Wronskian 

W(x", 2°](x) = v! vanishes at 2 = 0, together with their lin- 

ear independence on ~co < x < 00 violate Theorem 3.2.3? 

Explain. 
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3.3. Homogeneous Equation: General Solution 

3.3.1. General solution. We studied the first-order linear homogeneous equation 

J + p(a)y = 0 (1) 

in Chapter 2, where p(x) is continuous on the x interval of interest, J, and found 
the solution to be 

y(w) = Cen LP), (2) 
where C’ is an arbitrary constant. If we append to (1) an initial condition y(a) = b, 
where a is a point in J, then we obtain, from (2), 

y(a) = bem Ja P(E) 6, (3) 

as was shown in Section 2.2. 

The solution (2) is really a family of solutions because of the arbitrary constant 
C’, We showed that (2) contains all solutions of (1), so we called it a general 

solution of (1). In contrast, (3) was only one member of that family, so we called it 
a particular solution. , 

Now we turn to the nth-order linear equation 

qd” nm—L, 

ot + ale) ot + + ale) + pa(x)y = 0, (4) 

and once again we are interested in general and particular solutions. By a general 
solution of (4), on an interval J, we mean a family of solutions that contains every 
solution of (4) on that interval, and by a particular solution of (4), we mean any 
one member of that family of solutions. 

We begin with a fundamental existence and uniqueness theorem.* 

  

THEOREM 3.3.1 Existence and Uniqueness for Initial-Value Problem 
If pi(z),...,Pn(x) are continuous on a closed interval J, then the initial-value 
problem consisting of the differential equation 

d’y d'~ly 

aan + pi(@) ay 

together with initial conditions 

di 
feeb Pula) + pr(x)y = 0, (Sa) 

y(a) = bi, y'(a) = ba, tans yrd (a) = bn, (5b) 

  

“For a more complete sequence of theorems, and their proofs, we refer the interested reader to the 
little book by J. C. Burkill, The Theory of Ordinary Differential Equations (Edinburgh: Oliver and 
Boyd, 1956) or to William E. Boyce and Richard C. DiPrima, Elementary Differential Equations and 
Boundary Value Problems, Sth ed. (New York: Wiley, 1992), 
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where the initial point a is in J, has a solution on J, and that solution is unique. 
  

Notice how the initial conditions listed in (5b) are perfect — not too few and not 

too many — in narrowing the general solution of (Sa) down to a unique particular 

solution, for (5a) gives y‘") (x) as a linear combination of y-D(e),...,y(a), the 

derivative of (5a) gives y+) (a) as a linear combination of y™ (x),..., (2), 

and so on. Thus, knowing y(a),... yy) (a) we can use the differential equation 

(Sa) and its derivatives to compute y” (a), y'"*1)(q), and so on, and therefore to 

develop the Taylor series of y(x) about the point a; that is, to determine y(x). 

Let us leave the initial-value problem (5) now, and turn our attention to de- 

termining the nature of the general solution of the nth-order linear homogeneous 

equation (4). We begin by re-expressing (4) in the compact form 

Lly| = 0, (6) 

where 
Th m1 

aga * PY Ga 
is called an nth-order differential operator and 

  
d 

401+ pnt) + Pal) 7) b= 
dx 

  

me m—1 

biol = (2 + ey tt alee + Pal@)) 
Th m—1 

= F(a) + rule) Sule) +--+ Pale )ul2) 6) 

defines the action of L on any n-times differentiable function y. L[y] is itself 

a function of 2, with values L[y](x). For instance, ifn = 2, pi(x) = sina, 

po(z) = ba, and y(x) = x, then Lly|(x) = (2) + (sinz)(a?)! + 5a(x*) = 

2+ 2esinz + 52°. 
The key property of the operator L defined by (8) is that 

  

|i [ou + Gv] = aL [ul + BL [vu] (9) 
  

  

for any (n-times differentiable) functions u, v and any constants a, G. Let us verify 

(9) for the representative case where L is of second order: 

2 
Llau+ Bu] = (Sa tre + »2) (au + v) 

= (au+ Bv)" + pi (aut Buy + po (au + Bv) 

= au"! + Bo" + pra’ + pi Bu! + poau + poBv 

=a (u" + piu! + pou) +B (o" + piv’ + pov) 

=aL ful + GL [vu]. (10) 

Similarly for n > 3.
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Recall that the differential equation (4) was classified as linear. Likewise, the 
corresponding operator L given by (8) is said to be a linear differential operator. 
The key and defining feature of a linear differential operator is the linearity property 
(9), which will be of great importance to us. 

In fact, Q) holds not just for two functions u and v, but for any finite number 
of functions, say u,,..., ux. That is, 

  

  
Llaquy +--+ + apug) = al [uy] +--+: + ap [ug] (11) 

    

for any functions u,,..., ug, and any constants a,,...,@%. (Of course it should be 

understood, whether we say so explicitly or not, that w ,..., uw, must be n times 
differentiable since they are being operated on by the nth-order differential operator 
LL.) To prove (11) we apply (9) step by step. For instance, if k = 3 we have 

Efayuy + agua + agu3] = Llayuy + 1 (agua + agus)| 

=a,LD fu) + 1L [agua + agus] from (9) 

= 0,0 [uy] + aL [ug] + ag [us] from (9) again. 

From (11) we have the following superposition theorem: 

  

THEOREM 3.3.2 Superposition of Solutions of (4) 
If yy... , ye, are solutions of (4), then Cyy, +---+ Cry, is too, for any constants 
Cy,...,C. 
  

Proof : It follows from (11) that 

LiCyyy ++ + Ceyn| = CL (yi) +--+ + Cel [ys] 
=C,(0) +. +C,(0). a 

EXAMPLE 1. Superposition. It is readily verified, by direct substitution, that y, = e°* 
and y2 = e~°* are solutions of the equation 

y’ —9y = 0. (12) 

(We are not yet concerned with how to find such solutions; we will come to that in the next 

section.) Thus y = Cye** + Ce~%* is also a solution, as can be verified by substituting it 

into (12), for any constants C), Co. Of 

To emphasize that the theorem does not hold for nonlinear or nonhomogeneous 

equations, we offer two counter-examples: 

EXAMPLE 2. It can be verified that y; = 1 and y2 = x are solutions of the nonlinear 
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equation x?y" — yy’ = 0, yet their linear combination 4 + 3a° isnot. 

EXAMPLE 3. It can be verified that y; = 4e3* — 2 and yy = e** — 2 are solutions of 

the nonhomogeneous equation y” — 9y = 18, yet their sum 5e°* — 4 is not. # 

We can now prove the following fundamental result. 

  

THEOREM 3.3.3 General Solution of (4) 

Let pi(2),... ,Pn(x) be continuous on an open interval [. Then the nth-order 

linear homogeneous differential equation (4) admits exactly n LI solutions; that is, 

at least n and no more than n. If yy (a),..-, Yn(w) is such a set of LI solutions on 

I, then the general solution of (4), on J, is 

y(z) = Cryi(2) soe Cryn(#), (13) 

where C,,..., Cy are arbitrary constants. 
  

Proof To show that (4) has no more than n LI solutions, suppose that yi(Z),..-, 

Ym(x) are solutions of (4), where m > n. Let € be some point in J. The 7 linear 

algebraic equations 

eryi(€) + cre + CmYm (E) = 0 

: (14) 

cy (E) + “ee + emy (6) = 0 

in the m unknown c’s have nontrivial solutions because m > n. Choosing such a 

nontrivial set of c’s, define 

v(x) = crys (@) +++ + Gn Ym(2), (15) 

and observe first that 

L (v] = [ery toe CmYm} 

= cL iyi] tt + Om [Um] = c1(0) sep Cm (0) = 0, (16) 

where L is the differential operator in (4) and, second, that v(€) = v'(€) =: = 

v-)(€) = 0. One function v(x) that satisfies Liv] = 0 and v() = = 

vi" (€) = Ois simply v(x) = 0. By the uniqueness part of Theorem 3.3.1 it is 

the only such function, so v(a) = 0. Recalling that the c’s in v(x) = c1yi(x) + 

+++ + GmYm(x) = 0 are not all zero, it follows that y)(x),... -Ym (x) must be LD. 

Thus, (4) cannot have more than 7 LI solutions.
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To show that there are indeed mn LI solutions of (4), let us put forward n such 

solutions. According to the existence part of Theorem 3.3.1, there must be solutions 
yi(2),...;Yn() of (4) satisfying the initial conditions 

(n~1) 
yi(a)= an, yi(@)=aw, --: yy (4)=a1n, 

: : (17) 

n-1 
Yn(@) = Ont, yL(a@)=an2, °°: yr (a) = Onn, 

where a is any chosen point in J and the @’s are any chosen numbers such that their 
determinant is nonzero. (For instance, one such set of a’s is given by a,; = 1 for 
each 2 = 1 through n and a;; = 0 whenever 7 4 j.) According to Theorem 3.2.3, 
yi(@),.-.,Yn(a) must be LI since their Wronskian is nonzero at x = a. Thus, 
there are indeed n LI solutions of (4). 

Finally, every solution of (4) must be expressible as a linear combination of 
those n LI solutions, as in (13), for otherwise there would be more than 7 LI solu- 

tions of (4). @ 

Any such set of n LI solutions is called a basis, or fundamental set, of solu- 
tions of the differential equation. 

EXAMPLE 4. Suppose we begin writing solutions of the equation y” — 9y = 0, 
from Example |: e°*, 5e*, e~8*, 2e°* + e78*, sinh 3a, cosh 3a, e8* — 4cosh 3z, and so 
on. (That each is a solution is easily verified.) From among these we can indeed find 

two that are LI, but no more than two. For instance, {e9*,e~**}, {e9*, 269% + e~%*}, 
{e8*, sinh 3c}, {sinh 32, cosh 32}, {sinh 3u, ew 3e} are bases, so the general solution can 

be expressed in any of these ways: 

y(z) = Cie** + Cpe7*”, (18a) 

y(x) = Cre** + Co (2e7* + eF*) , (18b) 

y(x) = Cye®* + Co sinh 32, (18c) 

y(z) = Cy sinh 3a + C2 cosh 32, (18d) 

and so on. Each of these is a general solution of y"’ —9y = 0, and all of them are equivalent. 

For instance, (18a) implies (18d) because 

y(t) = Cye** + Ce" 

= C, (cosh 8x + sinh 3x) + Cy (cosh 3x — sinh 3z) 

= (C, + C2) cosh 3x + (Cy ~ Co) sinh 3x 

= Cl cosh 3x + Ch sinh 32, 
. t ho. Inthe = : where C’;, C) are arbitrary constants (Exercise 15). @ 

EXAMPLE 5. Solve the initial-value problem 

yy" +y' =0 (19a) 

87
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y(O) = 3, y/(0) =5, y (0) = —4. (19b) 

A general solution of (19a) is 

y(x) = Cy cosx + Cysina + Cs, (20) 

because cos z, sin xz, and | are LI solutions of (19a). Imposing (19b) gives 

which equations admit the unique solution C; = 4, Cy = 5,C5 = —1. Thus, 

y(x) = 4cosaz+5sing —1 

is the unique solution to the initial-value problem (19). @ 

3.3.2. Boundary-value problems. It must be remembered that the existence and 

uniqueness theorem, Theorem 3.3.1, is for initial-value problems. Though most of 

our interest is in initial-value problems, one also encounters problems of boundary- 

value type, where conditions are specified at two points, normally the ends of the 

interval J. Not only are boundary-value problems not covered by Theorem 3.3.1, 

it is striking that boundary-value problems need not have unique solutions. In fact, 

they may have no solution, a unique solution, or a nonunique solution, as shown 

by the following example. 

EXAMPLE 6. Boundary-Value Problem. It is readily verified that the differential equa- 

tion 
iW 

admits a general solution 

y(x) = Cy cosa + Cy sina. 
(22) 

Consider three different sets of boundary values. 

Case 1: y(0) = 2, y(r) = 1. Then 

y(0) 

y(7) 

I 2=C,+0, 

L=-C, +9, it 

which has no solution for Cy, C2, so the boundary-value problem has no solution for y(). 

Case 2: y(0) = 2, y(m/2) = 3. Then
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so Cy = 2,Cy = 3, and the boundary-value problem has the unique solution y(a) = 

2cosx + dsin a. 

Case 3: y(0) = 2, y(w) = -—2. Then 

y(0) =2=C1 +0, 
y(t) = -2=-C, +0, 

so Cy = 2, and C> is arbitrary, and the boundary-value problem has the nonunique solution 

(indeed, the infinity of solutions) y(z) = 2cosx + Cgsina, where Cz is an arbitrary 

constant. ff 

Boundary-value problems are studied further in Sections 6.4, 17.7, and 17.8. 

Closure. In this section we have considered the nth-order linear homogeneous 
differential equation L[y} = 0. The principal result was that a general solution 

y(2) = Crys (2) che CrYn(2) 

can be built up by the superposition of n LI solutions y;(z),...,Yn(a), thanks to 
the linearity of L, namely, the property of L that 

Llau + Bu] = aLlul + BLIv] 

for any n-times differentiable functions u,v and any constants a, G. Any such set 

of n LI solutions {y1,..., ye} of L[y] = 0 is called a basis of solutions (or basis, 
for brevity) for that equation. 

For the initial-value problem consisting of the differential equation L[y] = 
Q together with the initial conditions (Sb), we found that a solution exists and is 

unique, but for the boundary-value version we found that a solution need not exist, 
it may exist and be unique, or there may exist a nonunique solution. 

Theorems 3.3.1 and 3.3.3 are especially important. 

  

EXERCISES 3.3 
  

NOTE: If not specified, the interval J is understood to be the (g) y/” — 2y” + y' = 0; (Ci + Cou + C32) e* 
entire © axis. (h) y!” — 2y" + y = 0; (Cy + Cov) e* + C3 

ty) fH a fh al apf) 1 et 4 ee Mh x 
1. Show whether or not each of the following is a general so- (Oy y yity=0; Cret + Cae + Cave 
lution to the equation given. 2. Show whether or not each of the following is a basis for the 
(a) y ~ By! #2y = 0; Cye® + Coe given equation. 

(b) y" = 3y + 2y = 0;  Cy(e® — 2") + Coe® (a) y" — 9y = 0; {e%*, cosh 3z, sinh 3x} 

(c)y ~~ y' ~ 2y=0; Cy(e~* + e**) (b) y” — 9y = 0; {ee*, cosh 3a} 
(d) y"” —y' —2y =0; Cye7™® + Coe?” (c)y—-y=0; {sinh 3z,2cosh 3x} 
fe) y"” + 4y' =0; Cy cos 2x + Cy sin 2x (d) y!” — By" + 3y!-y=0;  {e*, xe, 27e*} 
(fy! + 4y' =0; Cy + Cocos 2a + C2 sin 2a (e) y'” — 3y" = 0; {1, x, ee}
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(Hy + 2y" + y = 0; 
3. Are the following general solutions of 2?y" + cy! ~4y = 0 
onQ <a < 00? On —o00 < & < co? Explain. 

(a) Ca? 
(c) Cy (a? + 27 

{cos x, sin @, © Cos v, asin x} 

5 (b) Cyx? oa Coa~ 2 

*) + Cx(a® ~ x~*) 

4, Are the following bases for the equation ey” —ay' +y =0 

on <x < 00? On —oco < & < 0? On —co < & < co? On 

6 <a < 10? Explain. 

(a) {a,x} 
(b) {e*,e7*} 

(c) {a, x In |x|} 
(d) {2 + ln |2|,2 - eln |x|} 

5. Show whether or not the following is a general solution of 
yor _ Ayr) _ 1dy +L 56yo) +4 A9y!" _ 196y” _ 36y! + 

1l44y = 0. 

(a) Cye™ + Cre* + Cye"* + Oye? + Cre3* + Cee” 

(b) Che® + Coe™® + Cge?® + Cye7?® + Cre®® + Cee? + 
Czsinh x + C's cosh 2z 

6. Show that y, = 1 and ye = 2 are solutions of 

(° — 6y? +lly-6)y" =O Ily=yty=lt+2=3 
a solution as well? Does your result contradict the sentence 

preceding Example 2? Explain. 

7. Show that each of the functions y, = 3x7 — x and 

yo = x? — x is a solution of the equation a°y” ~ 2y = 2z. Is 
the linear combination Cy, + Coy2 a solution as well, for all 

choices of the constants C’, and C2? 

8. (Taylor series method) Use the Taylor series method de- 

scribed below Theorem 3.3.1 to solve each of the following 

initial-value problems for y(x), up to and including terms of 

fifth order, NOTE: The term f”)(a)(a ~ a)"/n! in the Taylor 
series of f(x) about x = a is said to be of nth-order. 

ay" +y=0; y(0) =4, y'(0) = 3 
(b) yy" ~4y = 0; y(0) = -1, y/(0) =0 
(c) y" + 5y! + by = 0; WO) = = 2, y/(0) = —-5 
(d) y" +ey=0; y(0) = v0) =0 
yy" + ey = 0; y(0) = 2, y'(0) = —3 
(f) yy” — 3y = 0; y(5) = 4, y'(5) = 6 HINT: Expand 
about z == 5. 

(gy +3y’—y =O; yO) = 2, y)=0 HINT: Expand 

about @ = 1. 

(h) yl” ~y! + 2y =0;  y(0) =0, y/(0) =0, y"(0) = 1 
(yy ry =O: y(0)=0, y'(0) =3, y"(0) = 2 
9, Does the problem stated have a unique solution? No solu- 

tion? A nonunique solution? Explain. 
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(a) y" + 2y/ -+ 38y = 0; y(0) =5, y(0)=—1 

(b) y+ 2y' + 8y = 0; (3) = 2, y'(8) = 37 

(c)y" + ay! —~y = 0; (3) = y'(3) = 0 
(d) ey!” + wy! —y=0; 

(e)a?y" —y'- y= 0; 
(f) (sina)y” + cy” = 0; 

y!"(2) = -9 
10. Verify that (22) is indeed a general solution of (21). 

11. Consider the boundary-value problem consisting of the 

differential equation y” + y = 0 plus the boundary conditions 

given. Does the problem have any solutions? [f so, find them. 

Is the solution unique? HINT: A general solution of the differ- 

~ ential equation is y = Cy cosa@ + Cy sin 2. 

(a) y(0) = 0, y(2) = 0 
(b) y(0) = 0, y(27) = —3 
(c)y(1) = 1, y(2) =2 
(d) y'(0) = 0, y(5) = 1 
Ce) yD) = Os ‘(r) =0 
(A) y/(0) = 0, y/(6m) = 0 
g) y/(0 )= 0, y' (217) = 38 
12. Consider the boundary-value problem consisting of the 

differential equation y’”” + 2y"" + y = 0 plus the boundary 
conditions given. Does the problem have any solutions? If 

so, find them. Is the solution unique? HINT: A general so- 

lution of the differential equation is y = (C) + Cox) cose + 
(C3 + Cyr) sin x. 

(a) y(0) = y'(0) = 0, y(a) = 0, y(t) = 2 
(b) y(0) = y'(0) = y"(0) = 0, y() = 1 
(c) y(0) = y"(0) = 0, y(m) =0 = y"(m) =0 
(d) y(0) = y"(0) = 0, (7) = y"(7) = 3 
13. Prove that the linearity property (10) is equivalent to the 

two properties 

Llu+v] = L[u) + £[v), (13. 1a) 

L fou] = aL [u. (13.1b) 

That is, show that the truth of (10) implies the truth of (13.1), 

and conversely. 

14. We showed that (11) holds for the case A = 3, but did not 

prove it in general. Here, we ask you to prove (11) for any in- 

teger & > 1, HINT: It is suggested that you use mathematical 

induction, whereby a proposition P(k), for & > 1, is proved 

by first showing that it holds for & = 1, and then showing that 

if it holds for & then it must also hold for & + 1. In the present 

example, the proposition P(k) is the equation (11). 

15. (Example 4, Continued) (a) Verify that each of (18a)
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through (18d) is a general solution of y’ — 9y = 0. able to show that corresponding to any chosen values C{, C4 

(b) It seems reasonable that if C,, Cy are arbitrary constants, the equations (15.1) on Cy, Cz are consistent — that is, that 

and if we call they admit one or more solutions for C,, Ce. Show that (15.1) 

is indeed consistent. 

Cy +Cg=C, and Cy - Cy = Ch, (15.1) (c) Show that if, instead, we had Cy + Cg = Cy and 
2C1 + 2C'2 = C4, where Cy, C2 are arbitrary constants, then 

then Ci, C3 are arbitrary too, as we claimed at the end of it is not true that C{,C% are arbitrary too. 12 y bo y 
Example 4. Actually, for that claim to be true we need to be 

  

3.4 Solution of Homogeneous Equation: 

Constant Coefficients 

Knowing that the general solution of an nth-order homogeneous differential equa- 
tion is an arbitrary linear combination of nm LI (linearly independent) solutions, the 
question is: How do we find those solutions? That question will occupy us for the 
remainder of this chapter and for the next three chapters as well. In this section we 
consider the constant-coefficient case, 

mn m—1 

ee (1) 

that is, where the a; coefficients are constants, not functions of x. This case 
is said to be “elementary” in the sense that the solutions will always be found 
among the elementary functions (powers of x, trigonometric functions, exponen- 
tials, and logarithms), but it is also elementary in the sense that it is the simplest 
case: nonconstant-coefficient equations are generally much harder, and nonlinear 
equations are much harder still. 

Fortunately, the constant-coefficient case is not only the simplest, it is also of 
great importance in science and engineering. For instance, the equations 

  

ma" + ca’ +kr = 0 

and 

Li" + Ri + ai = 0, 

governing mechanical and electrical oscillators, where primes denote derivatives 
with respect to the independent variable ¢, are both of the type (1) because m, c, k 
and L, 2, C are constants; they do not vary with ¢. 

3.4.1. Euler’s formula and review of the circular and hyperbolic functions. 
We are going to be involved with the exponential function e*, where z = x + ty 
is complex and 7 = V=1. The first point to appreciate is that we cannot figure out 
how to evaluate e**¥ from our knowledge of the function e® where wx is real. That
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is, e® + is a “new object,” and its values are a matter of definition, not a matter of 

figuring out. To motivate that definition, let us proceed as follows: 

= erty = et el 

  
mT 3p tat 

2 4 3 5 

2 yo 4 yy 
=e (HB )ai- G45 -~)]: @) 

Recognizing the two series as the Taylor series representations of cos y and sin y, 

respectively, we obtain 

tn 2 S 3 : 4 

_e fv (y)* _ Gu) | 

  

  
ett! — e® (cosy tisiny), (3) 

    

which is known as Euler’s formula, after the great Swiss mathematician Leonhard 

Euler (1707-1783), whose many contributions to mathematics included the system- 

atic development of the theory of linear constant-coefficient differential equations. 

We say that (3) defines e*+*¥ since it gives e*+t¥ in the standard Cartesian 

form a + ib, where the real part a is e” cos y and the imaginary part bis e* siny. 

Observe carefully that we cannot defend certain steps in (2). Specifically, the sec- 

ond equality seems to be the familiar formula ett — e%e, but the latter is for real 

numbers a and 6, whereas iy is not real. Likewise, the third equality rests upon the 
2 

Taylor series formulae“ = 1 +u+ — +. ..- that is derived in the calculus for the 

case where u is real, but iy is not real. The point to understand, then, is that the 

steps in (2) are merely heuristic, trying to stay as close to real-variable theory as 

possible, we arrive at (3). Once (3) is obtained, we throw out (2) and take (3) as our 

(i.e., Euler’s) definition of e+i¥ Of course, there are an infinite number of ways 

one can define a given quantity, but some are more fruitful than others. To fully 

appreciate why Euler’s definition is the perfect one for e*+Y one needs to study 

complex-variable theory, as we will in later chapters. For the present, we merely 

propose that the steps in (2) make (3) a reasonable choice as a definition of e*. 

As a special case of (3), let x = 0. Then (3) becomes 

e'Y = cosy + isiny. (4a) 

For instance, e™ = cos isin = —1+0i = —1,and e?~*' = e? (cos3 — isin 3) 

= 7,39(—0.990 — 0.1442) = —7.32 — 1.042. Since (4a) holds for all y, it must hold 

also with y changed to —y: 

eY = cos(—y) +isin(—y), 

and since cos (—y) = cosy and sin(—y) = —siny, it follows that 

e Y = cosy —isiny. (4b)
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Conversely, we can express cos y and sin y as linear combinations of the com- 

plex exponentials e'Y and e~"Y, for adding (4a) and (4b) and subtracting them gives 
COs y= (ev + ev) /2and siny = (e¥ ~~ ev) /(2i). Let us frame these for- 
mulas, for emphasis and reference: 

  

      

  

iy — ane, dein: 
e’ = cosy +isimy 

; (5a,b) 
e 'Y = cosy —isiny 

and 

cosy = 
; _. (6a,b. 

IY = 
21       

Observe that all four of these formulas come from the single formula (4a). (Of 

course there is nothing essential about the name of the variable in these formulas. 
For instance, e® = cosx2 +isinz, e? = cosé + isin@, and so on.) 

There is a similarity between (5) and (6), relating the cosine and sine to the 
complex exponentials, to analogous formulas relating the hyperbolic cosine and 
hyperbolic sine to real exponentials. If we recall the definitions 

  

ev +e 4 
coshy = ———-,, (ab) 

a, J 

sinhy = 5       

of the hyperbolic cosine and hyperbolic sine, we find, by addition and subtraction 
of these formulas, that 
  

Y ce I sinh y, e€ coshy + sinh y (8a,b) 

    e~¥ = coshy — sinh y. 
  

Compare (5) with (8), and (6) with (7). The graphs of cosh, sinh x, e*, and e~* 

are given in Fig. 1. 

Using (6) and (7) we obtain the properties 

cos” y + sin? y = 1, (9) 

cosh? y ~ sinh? y = 1. (10) 

From a geometric point of view, if we paraimetrize a curve C’ by the relations 

C= COST, YyY=sint (14) 

over 0 <r < 27, say, then it follows from (9) that a + y" = 1, so that C isa 
circle. And if we parametrize C’ by 

z=coshrT, y=sinhr (12) 
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4 
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Figure 1. cosh z, sinh z, e*, 

ande”*.
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instead, then it follows from (10) that 2? — y* = 1, so Cis a hyperbola. Thus, one 

refers to cos x and sin x as circular functions and to cosh and sinh « as hyperbolic 

functions, the hyperbolic cosine and the hyperbolic sine, respectively. 

Besides (9) and (10), various useful identities, such as 

  sin(A + B)=sin Acos B+ sin Bcos A, (13a) 

cos(A + B) =cosAcos B ~ sin Asin B, (13b) 

sinh (A + B) = sinh Acosh B + sinh B cosh A, (13c) 

cosh (A+ B)=cosh Acosh B + sinh Asinh B, (13d) 

can be derived from (6) and (7), as well as the derivative formulas 

—cose =—singz, —sing = cose, 
da dz (14) 

, d | 
—cosha =sinhrz, —sinhaz = coshz. 
dz dx 

We shall be interested specifically in the function e*® and its derivatives with 

respect to x, where \ is a constant that may be complex, say \ = a + ib. We know 

from the calculus that 
d 
et = \e™ (15) | 
dz 

when \ is a real constant. Does (15) hold when \ is complex? To answer the 

question, use Euler’s formula (3) to express 

ert — elatibe _ par (cos bz + isin ba). 

Thus, 

d AD __ d ax - os i° in [e** (cos bx + isin bx)] 

d ag ; d art os =i (e°* cos bx) + i (e** sin bx) 

= (ae™ cos bx — be* sin br) + i (ae™ sin bx + be** cos bx) 

=e (a + ib) (cos ba + isin bz) 

= \e™ (cos ba + isin ba) = \e™, 

so the familiar formula (15) does hold even for complex A. 

There is one more fact about the exponential function that we will be needing, 

namely, that the exponential function e? cannot be zero for any choice of z; that is, 

it has no zeros, for 

je*| = |e" *™| = |e* (cosy + isiny)| 

vl cosy +isiny| = e* |cosy + isiny| = e*. 
  

=|e
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The fourth equality follows from the fact that the real exponential is everywhere 
positive, and the fifth equality from the fact that ja -+- ib| is the square root of the 
sum of the squares of a and b, and cos* y + sin*y = 1. Finally, we know that 
e* > 0 for all x, so je*| > 0 for all z, and hence e* # 0 for all z, as claimed. 

3.4.2. Exponential solutions. To guide our search for solutions of (1), it is a 
good idea to begin with the simplest case, n = 1: 

dy 
Say = , (16) 
da 

the general solution of which is 

y(z) = Ce, (17) 

where C’ is an arbitrary constant. One can derive (17) by noticing that (16) is a 

first-order linear equation and using the general solution developed in Section 2.2, 
or by using the fact that (16) is separable. 

Observing that (17) is of exponential form, it is natural to wonder if higher- 
order equations admit exponential solutions too. Consider the second-order equa- 
tion 

y" + ary’ + agy = 0, (18) 

where a, and ay are real numbers, and let us seek a solution in the form 

me\  pA® y(x) =e. (19) 

If (19) is to be a solution of (18), then it must be true that 

Mer + ay Ae + aye = 0, (20) 

or 

(\? + ai\ + a2) e*” = 0, (21) 

where (20) holds, according to (15), even if the not-yet-determined constant \ turns 

out to be complex. For (19) to be a solution of (18) on some interval J, we need 

(21) to be satisfied on J. That is, we need the left side of (21) to vanish identically 
on I. Since e** is not identically zero on any interval J for any choice of A, we 
need A to be such that 

M@ + ayA\ +a = 0. (22) 

This equation and its left-hand side are called the characteristic equation and 
characteristic polynomial, respectively, corresponding to the differential equation 
(18). In general, (22) gives two distinct roots, say Ay and 2, which can be found 

from the quadratic formula as 

‘y 
ay ck \fay — 4a9 

9 . 
a 

A= 

95
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(The nongeneric case of repeated roots, which occurs if as — 4a vanishes, is dis- 

cussed separately, below.) 

Thus, our choice of the exponential form (19) has been successful. Indeed, we 

have found two solutions of that form, e*!* and e*2”. Next, from Theorem 3.3.2 it 

follows [thanks to the linearity of (18)] that if e*!” and e*2” are solutions of (18) 

then so is any linear combination of them, 

y(x) = Cre! + Coe, (23) 

Theorem 3.3.3 guarantees that (23) is a general solution of (18) if eM and e*2* 

are LI on J, and Theorem 3.2.4 tells us that they are indeed LI since neither one is 

expressible as a scalar multiple of the other. Thus, by seeking solutions in the form 

(19) we were successful in finding the general solution (23) of (18). 

EXAMPLE 1. For the equation 

y ~y' — by = 9, (24) 

the characteristic equation is M—A\—6 = 0, with roots \ = —2,3, so 

y(z) = Cre ?* + Cye°* (25) 

is a general solution of (24). 2 

EXAMPLE 2. For the equation 

y" — 9y = 0, (26) 

the characteristic equation ts d\2 — 9 = 0, with roots \ = £3, so a general solution of (26) 

is 

y(a) = Cye®* + Coe **. (27) 

COMMENT 1. As discussed in Example 4 of Section 3.3, an infinite number of forms of 

the general solution to (26) are equivalent to (27), such as 

y(z) = C, cosh 3x + C2 sinh 32, (28) 

y(e) = Cy sinh3a+ Co (5e7%* — 2cosh 32) , (29) 

y(a@jp=C, (e°* +4sinh 3c) + Coy (cosh 3a — f/m sinh 30) ; (30) 

and so on: Of these; one would normally choose either (27) or (28): What is. wrong with 

(29) and (30)? Nothing, except that they are ugly; e** and e73* make a “handsome couple,” 

and cosh 32 and sinh 3 do too, but the choices in (29) and (30) seem ugly and purposeless. 

COMMENT 2. [f (27) and (28) are equivalent, does it matter whether we choose one or 

the other? No, since they are equivalent. However, one may be more convenient than the 

other insofar as the application of initial or boundary conditions.
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For instance, suppose we append to (26) the initial conditions y(0) = 4, y/(0) = —5. 

Applying these to (27) gives 

y(0) = 4 = CL +Co, G1) 

y'(0) = —5 = 30, — 3C2, 

so C, = 7/6, Cz = 17/6, and y(z) = (7e3* + 17e7%*)/6. Applying these initial condi- 
tions to (28), instead, gives 

y(0) =4=Ch, 
y'(0) = —5 = 3C», 

so Cy = 4, Co = ~5/3, and y(w) = 4cosh 32 — (5/3) sinh 3z. Whereas our final results 
are equivalent, we see that (32) was more readily solved than (31). Thus, cosh3z and 

sinh 3x make a slightly better choice in this case than e3” and e~8* — namely, when initial 
conditions are given at x = 0. 

Or, suppose we consider J to be 0 < x < co and impose the boundary conditions that 

y(0) = 6, and that y({z) is to be bounded as x —+ 00. That is, rather than impose a numerical 
value on y at infinity, we impose a boundedness condition, that |y(x)| < M for all z, 
for some constant AZ. Applying these conditions to (27) we see, from the boundedness 

condition, that we need C, = 0 since otherwise the e?* will give unbounded growth. 

Next, y(0) = 6 = Cy, and hence the solution is y(z) = 6e~%*. Notice how easily the 
boundedness condition was applied to (27). 

If we use (28) instead, the solution is harder since both cosh 3z and sinh 3a grow 

unboundedly as  — oo. We can’t afford to set both C, = 0 and Cy = 0, in (28) 

since then we would have y(xz) = 0, which does indeed satisfy both the equation (26) and 

the boundedness condition, but cannot satisfy the remaining initial condition y(0) = 6. 

However, perhaps the growth in cosh 3z and sinh 3x can be made to cancel. That is, write 

(32) 

y(xz) = C, cosh 3x + C2 sinh 3x 

est a e738t est _ eo 3e 

= Cy (| ——--— Cy | ————— 33 1 ( 5 ) +09 ( 9 ) (33) 

_ Cr+ Cy ,3o Ci — Cy —32 
= 5 é + 5 ) 

so for boundedness we need C, + Cz = 0 (and hence Cy = —Cy). Then (33) gives 

y(z) = Cye~** and y(0) = 6 gives Cy = 6 and y(x) = 6e7**, as before. Thus, in the 

case of a boundedness boundary condition at infinity we see that the exponential form (27) 

is more convenient than the hyperbolic form (28). 

To summarize, when confronted with a choice, such as between (27) and (28), look 

ahead to the application of any initial or boundary conditions to see if one form will be 

more convenient than the other. 

EXAMPLE 3. For 

y" + Oy = 0, (34) 

the characteristic equation is \? +9 = 0, with roots A = +33, so a general solution of (34) 
is 

y(2) — Cy e8* a Coe B®, (35) 
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COMMENT 1. Just as the general solution of y” — 9y = 0 was expressible in terms of 

the real exponentials e**, e~8* or the hyperbolic functions cosh 3, sinh 3x, the general 

solution of (34) is expressible in terms of the complex exponentials e“**, e~* or in terms 

of the circular functions cos 3z, sin 32, for we can use Euler’s formula to re-express (35) as 

y(x) = Cy (cos 3a + isin 3x) + C2 (cos 3x — isin 32) 

= (Cy + C2) cos 3a +4 (Cy — C2) sin 3z. (36) 

Since C, and C» are arbitrary constants, we can simplify this result by letting Cy + C2 be 

a new constant A, and letting i(C, — C2) be a new constant B, so we have, from (36), the 

form 
y(z) = Acos3a + Bsin 3a, (37) 

where A, B are arbitrary constants. As in Example |, we note that (35) and (37) are but 

two out of an infinite number of equivalent forms. 

COMMENT 2. You may be concerned that if y(x) is a physical quantity such as the dis- 

placement of a mass or the current in an electrical circuit, then it should be real, whereas 

the right side of (35) seems to be complex. To explore this point, let us solve a complete 

problem, the differential equation (34) plus a representative set of initial conditions, say 

y(0) = 7,y'(0) = 3, and see if the final answer is real or not. Imposing the initial condi- 

tions on (35), 

y(0)=7=Cy+Co, 

y’(0) =3 = i38C) — 13C2, 

so Cy = (7—i)/2 and Cy = (7+7)/2. Putting these values into (35), we see from (36) that 

y(x) = 4[(7-1) + (7 +2)] cos 3x+ $i[(7 —i) — (7 +4)] sin 3x = 7 cos 32 + sin dz, which 

is indeed real. Put differently, if the differential equation and initial conditions represent 

some physical system, then the mathematics “knows all about” the physics; it is built in, 

and we need not be anxious. @ 

Having already made the point that the general solution can always be ex- 

pressed in various different (but equivalent) forms, we will generally adopt the 

exponential form when the exponentials are real, and the circular function form 

when they are complex. This decision is one of personal preference. 

EXAMPLE 4. The equation 

yl + 4y' + Ty = 0 (38) 

has the characteristic equation \? + 4\ +7 = 0, with distinct roots \ = —2 + iV3, soa 

general solution of (38) is 

y(2) _ Gye tv ae 4 Cel? V8) 

_ ent (Cre 4 Coe! *e) 

=e (4 cos 3x + Bsin v3e) . (39)
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That is, first we factor out the common factor e~°*, then we re-express the complex expo- 

nentials in terms of the circular functions. 

If we impose initial conditions y(0) = 1,y’(0) = 0, say, we find that A = 1 and 

B= 2/V3, so y(a) = en ** (cos V3a + a sin V3z). According to Theorem 3.3.1, that 

solution is unique. # 

3.4.3. Higher-order equations (n > 2). Examples 1—4 are representative of the 
four possible cases for second-order equations having distinct roots of the char- 
acteristic equation: if the roots are both real then the solution is expressible as a 
linear combination of two real exponentials (Example 1); if they are both real and 

equal and opposite in sign, then the solution is expressible either as exponentials 
or as a hyperbolic cosine and a hyperbolic sine (Example 2); if they are not both 
real then they will be complex conjugates. If those complex conjugates are purely 
imaginary, then the solution is expressible as a linear combination of two complex 
exponentials or as a sine and a cosine (Example 3); if they are not purely imaginary, 
then the solution is expressible as a real exponential times a linear combination of 
complex exponentials or a sine and a cosine (Example 4). 

Turning to higher-order equations (mn > 2), our attention focuses on the char- 
acteristic equation 

A” + ayAPh He Han A + an = 0. (40) 

Ifn = 1, then (40) becomes A+a,; = 0 which, of course, has the root \ = —a, 

on the real axis. If n = 2, then (40) becomes \? + aA + a2 = 0, and to be assured 
of the existence of solutions we need to extend our number system from a real axis 
to a complex plane. If the roots are indeed complex (and both a; and ag are real) 
they will necessarily occur as a complex conjugate pair, as in Example 4. 

One might wonder if a further extension of the number system, beyond the 
complex plane, is required to assure the existence of solutions to (40) forn > 3. 

However, it turns out that the complex plane continues to suffice. The character- 
istic equation (40) necessarily admits n roots. As for the case n = 2, they need 
not be distinct and they need not be real, but if there are complex roots then they 
necessarily occur in complex conjugate pairs (if all of the a;’s are real). 

In this subsection we limit attention to the case where there are n distinct 
roots of (40), which we denote as \y, A9,..., An. Then each of the exponentials 
erie Liey eAn® is a solution of (1) and, by Theorem 3.3.3, 

y(x) = Cye™® +... + Cred? (41) 
is a general solution of (1) if and only if the set of exponentials is LI. 

  

THEOREM 3.4.1 Linear Independence of a Set of Exponentials 
Let \j,...,An, be any numbers, real or complex. The set {er®, ee ern} is LI 
(on any given interval I) if and only if the \’s are distinct. 
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Proof: Recall from Theorem 3.2.2 that if the Wronskian determinant 

erie a gerne 

Myeri® we ern 
were] (a=) _ (42) 

\ivtede cae \r~teAnt 

is not identically zero on J, then the set is LI on I. According to the properties of 
determinants (Section 10.4), we can factor e*!® out of the first column, e*?” out of 

the second, and so on, so that we can re-express W as 

Low. | 
Moen 

Ww eM, beey eu] (2) = Arter Ande |” . ; (43) 

Net ee MRT 

The exponential function on the right-hand side is nonzero. Further, the deter- 

minant is of Vandermonde type (Section 10.4), a key property of which is that it 
is nonzero if the ’s are distinct, as indeed has been assumed here. Thus, W is 

nonzero (on any interval), so the given set is LI. 

Conversely, if the \’s are not distinct, then surely the set is LD because at least 

two of its members are identical. @ 

Consider the following examples. 

EXAMPLE 5. The equation 

y — 8y' + 8y =0 (44) 

has the characteristic equation \? — 8 + 8 = 0. Trial and error reveals that A = 2 is 
one root. Hence we can factor \3 — 8\ + 8 as (A — 2)p(A), where p(A) is a quadratic 
function of \. To find p(\) we divide A — 2 into A? — 8\ + 8, by long division, and obtain 
p(A) = A? + 2\ — 4 which, in turn, can be factored as [A — (-1 + V5)][A ~ (-1 - V5)). 
Thus, \ equals 2 and —1 + V5, so 

y(z) = Cye* + Coel bt v5)2 + Cyel- lV 88 

= Ce?" ob et (Coe L Cre") 
(45) 

is a general solution of (44). 

COMMENT. Alternative to long division, we can find p(A) by writing M-8A\+8 = 

(\ ~ 2)(a\? + bX +c) = ad® + (6 ~ 2a)A? + (c — 26)A — 2c and determining a, b,c so 
that coefficients of like powers of \ match on both sides of the equation. @ 

EXAMPLE 6. The equation
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has the characteristic equation \* ~ 1 = 0, which surely has the root \ = 1. Thus, \° — 1 
is A ~ | times a quadratic function of \, which function can be found, as above, by long 

division. Thus, we obtain 

(A~1) (QQ? +A+1) =0, 

so A equals 1 and (~1 + V/3i)/2. Hence 

y(v) = Cye® + Cgc V8I8/2 4 Cye(-1- Vii)e/2 

= Cye® + e7#/? (Coe'¥9? 4 Cye'¥5"/2) 

- ae ft 3 3 = Cre® + e7#/? (ce COS a, + Cysin Pe) , (47) 

where C|, C, C3 are arbitrary constants. (Of course, we don’t really need the primes in 
the final answer.) # 

EXAMPLE 7. The equation 

y) — yl" + 12y' = 0 (48) 

has the characteristic equation \° — 7\3 + 12\ = 0 or, \(A* — 7\2 + 12) = 0. The A 
factor gives the root A = 0. The quartic factor is actually a quadratic in A, so the quadratic 

equation gives \* = 4 and \? = 3. Thus, A equals 0, +2, £V3, so 

y(z) = Cy + Coe? + Cge72® + CyeY®® 4 Cryo V8" (49) 

is a general solution of (48). @ 

EXAMPLE 8. The equation 

y) + ky =0 (50) 

arises in studying the deflected shape y(x) of a beam on an elastic foundation, where k is 

a known positive physical constant. Since the characteristic equation \* + k = 0 gives 

\* = ~k, to find \ we need to evaluate (~k)!/4, The general result is that 24/”, for any 
complex number z = a + 7b and any integer n > 1, has n values in the complex plane. 

These values are equally spaced on a circle of radius r = Va? + 6? centered at the origin 

of the complex plane, as is explained in Section 22.4. For our present purpose, let it suffice 
no L+2 1-7 

to merely give the result: \ = (—k)!/4 = +k1/4 ——— and £k!/4 ——, so 
V2 v2 

y(x) = Cre “U+de/ V2 4 Cock U-ia/ v2 

++ Ce (-L+i)a/ V2 4 Cok (1 ae/ v2 

Wd hl/4 pila 
= oh te/ V2 Cl cos ea + Ch sin +) 

V2 a 2 
Wa Kila Kila 

pen ki a/ Va ( 3 COS FE z+Cysin 6% °) (51) 
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is a general solution of (50). @ 

3.4.4. Repeated roots. Thus far we have considered only the generic case, where 

the nth-order characteristic equation (40) admits n distinct roots Ai,... ,An- To 

complete our discussion, we need to consider the case where one or more of the 

roots is repeated. We say that a root A, of (40) is repeated if (40) contains the factor 

A — Aj; more than once. More specifically, we say that A; is a root of order k if (40) 

contains the factor \ ~ A; k times. For instance, if the characterisitic equation for 

some given sixth-order equation can be factored as (A + 2)(\ — 5)3(\ — 1)? = 0, 

then the roots \ = 5 and \ = 1 are repeated; \ = 5 is a root of order 3 and A = 1 

is a root of order 2. We can say that 

y(x) = Cye"** + Coe* + Ce” 

is a solution for any constants C1, C2, C3, but the latter falls short of being a general 

solution of the sixth-order differential equation since it is not a linear combination 

of six LI solutions. The problem, in such a case of repeated roots, is how to find 

the missing solutions. Evidently, they will not be of the form e**, for if they were 

then we would have found them when we sought y(zx) in that form. 

We will use a simple example to show how to obtain such “missing solutions,” 

and will then state the general result as a theorem. 

EXAMPLE 9. Reduction of Order. The equation 

y" +2y'+y=0 (52) 

has the characteristic equation \? + 2\+1 = (A+1)? = 0,so \ = —1 isa root of order 2. 

Thus, we have the solution Ae~* but are missing a second linearly independent solution, 

which is needed if we are to obtain a general solution of (52). 

To find the missing solution, we use Lagrange’s method of reduction of order, which 

works as follows. Suppose that we know one solution, say y: (zx), of a given linear homoge- 

neous differential equation, and we seek one or more other linearly independent solutions. 

If y,(z) is a solution then, of course, so is Ay,(), where A is an arbitrary constant. Ac- 

cording to the method of reduction of order, we let A vary and seek y(x) in the form 

y(x) = A(x)y;(a). Putting that form into the given differential equation results in another 

differential equation on the unknown A(a), but that equation inevitably will be simpler 

than the original differential equation on y, as we shall see. 

In the present example, y;(z) is e~”, so to find the missing solution we seek 

y(z) = A(xje*. (53) 

From (53), y! = (A’— A)e7® and y” = (A” ~2A' + A)e™®, and putting these expressions 

into (52) gives 

(A” —~2A'+ A+ 2A'-2A+ A)e™* =0, (54) 

so that A(z) must satisfy the second-order differential equation obtained by equating the 

coefficient of e~* in (54) to zero, namely, A” — 24’ + A+ 2A’ —~ 2A + A = 0. The 
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cancellation of the three A terms in that equation is not a coincidence, for if A(x) were 

a constant [in which case the A’ and A” terms in (54) would drop out] then the terms on 

the left-hand side of (54) would have to cancel to zero because Ae~* is a solution of the 

original homogeneous differential equation if A is a constant. Thanks to that (inevitable) 

cancellation, the differential equation governing A(x) will be of the form 

A” +aA' = 0, (55) 

for some constant a, and this second-order equation can be reduced to the first-order equa- 

tion uv’ + av = 0 by setting A’ = v; hence the name reduction of order for the method. In 

fact, not only do the A terms cancel, as they must, the A‘ terms happen to cancel as well, 

so in place of (55) we have the even simpler equation 

A” =0 (56) 

on A(x). Integration gives A(x) = Cy + Coz, so that (53) becomes 

y(2) = Che" + Core™”. (57) 

The Ce~* term merely reproduces that which was already known (recall the second sen- 

tence of this example), and the Cave~* term is the desired missing solution. Since the two 

are LI, (57) is a general solution of (52). @ 

Similarly, suppose we have an eighth-order equation, the characteristic equa- 
tion of which can be factored as (\ — 2)?(A + 1)*(\ + 5), say, so that 2 is a root 
of order 3 and —1 is a root of order 4. If we take the solution Ae”® associated with 
the root \ = 2, and apply reduction of order by seeking y in the form A(x)e?*, 
then we obtain A” = 0 and A(z) = Cy + Cow + Cyx” and hence the “string” 
of solutions Ce?”, Cove?" , Cax" e** coming from the root A = 2. Likewise, if 

we take the solution Ae~* associated with the root \ = —1, and apply reduction 
of order, we obtain A(z) = Cy + Csx + Cea? + Cza and hence the string of 
solutions Cye~*, Csze™*, Cox*e~*, C7x3e7* coming from the root \ = —1, so 
that we have a general solution 

y(x) = (Ci + Cot + Cx") et 

+ (Ca + Cae + Cou® + Cra®) e® + Cge™* (58) 

of the original differential equation. [To verify that this is indeed a general solution 

one would need to show that the eight solutions contained within (58) are LI, as 

could be done by working out the Wronskian W and showing that W # 0.] 

EXAMPLE 10. For 
yf" _ y" =0 (59) 

the characteristic equation At — \* = 0 gives \ = 0,0, 1, —1 and hence the solution y(z) = 

A+ Be® + Ce~*, The latter falls short of being a general solution of (59) because the 

repeated root \ = 0 gave the single solution A. To find the missing solution by reduction 
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of order we could vary the parameter A and seek y(x) = A(x), but surely there can be 

no gain in that step since it merely amounts to a name change, from y(x) to A(z). This 

situation will always occcur when the repeated root is zero, but in that case we can achieve 

a reduction of order more directly. In the case of (59) we can set y” = p. Then the 

fourth-order equation (59) is reduced to the second-order equation pl — p= 0, so 

p(x) = Ae® + Bew*. 

But y” = p, so 

y'(x) = [ote dc = Ae® — Be" +. 

Hence 

u(x) = / (Ae® — Be~*® + C) de = Ae* + Be“* + Ca +D 

is the general solution of (59). Observe that the pattern is the same: the repeated root A=0 

gives the solution (Ci + C2z)e°*, where C) is D and Cz is C. @ 

We organize these results as the following theorem. 

  

THEOREM 3.4.2 Repeated Roots of Characteristic Equation 

  

If A; is a root of order k, of the characteristic equation (40), then ee gerAl® 

gk-1e%1% are k LI solutions of the differential equation (1). 

Proof: Denote (1) in operator form as L[y] = 0, where 

qd qin-) d 
b= my tg PO gy Tae (60) 

Then 

L [e**| = (\" + ayAPl ee tan A+ Gn) ent 

or 
L le**] = (A—d1)* p(A)e™, (61) 

where p(A) is a polynomial in A, of degree n — hk. Since (61) holds for all A, we 

can set \ = A, in that formula. Doing so, the right-hand side of (61) vanishes, so 

that L [e1*] = 0 and hence e*'* is a solution of L [y] = 0. Our object, now, is to 

show that ve*!*,..., c*~1e*1 are solutions as well. 
To proceed, differentiate (61) with respect to A (A, not 2): 

d 1 . dd x 
pe [e**| = k(\—A1)*! p(Aje** + (A - di) — (pOre* ) . (62) 

ad 

The left-hand side of (62) calls for e*” to be differentiated first with respect to x, 

according to the operator L defined in (60) and then with respect to A. Since we can
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interchange the order of these differentiations, we can express the left-hand side as 
DL [Ae], that is, as D [ve]. Thus, one differentiation of (61) with respect to 4 
gives 

L [ce | =k(\—A,)8! p(y + (A — Ay) < (p(Je**) (63) 

Setting A = A, in (63) gives L [ze™!*] == 0. Hence, not only is e*!® a solution, so is 

xe™®, Repeated differentiation with respect to \ reveals that z2e™', .. . pak-leAie 
are solutions as well, as was to be proved. 

That’s as far as we can go because at that point one more differentiation would 

give a leading term of k!(\—.4)°p(A)e™* plus terms with factors of 

(A - M1), (A= A1)*,.-., (A — \1)* on the right-hand side. The latter terms van- 
ish for \ = Aj, but the leading term does not because p(\1) # 0 (because \ — Ay 
is not among the factors of p) and e*!* 4 0. 

Verification that the solutions e™!*, re™!*,... , c*~4e%1 are LI is left for the 
exercises. Mf 

EXAMPLE 11. Asa final example, consider the equation 

ys) _ By!” + 26y"" _ AOy + 25By = 0 (64) 

with characteristic equation \* — 8\3 + 26A? ~ 40 + 25 = 0 and repeated complex roots 
A= 24+12,2+17, 2-1, 2-1. It follows that 

y(x) = (Cy + Cox) ePt9* + (Cg + Cyr) ef -1* 
= ett [(Cie™* + Cye7'*) +24 (Ce"* as Cae**)| 

=e" [(Acosz + Bsina) +4 (C cosa + Dsinz)| 

is a general solution of (64). @ 

3.4.5. Stability. An important consideration in applications, especially feedback 
control systems, is whether or not a system is “stable.” Normally, stability has 
to do with the behavior of a system over time, so let us change the name of the 
independent variable from = to t in (1): 

d™y d™ly 

qin +a tet ante + any = 0, (65) 

and let us denote the general solution of (65) as y(t) = Cry. (t) +--+ + Cryn(t). 
We say that the system described by (65) (be it mechanical, electrical, economic, 
or whatever) is stable if all of its solutions are bounded — that is, if there exists a 

constant Md; for each solution y;(t) such that |y;(t)| <M, for all f > 0. If the 
system is not stable, then it is unstable. 
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THEOREM 3.4.3 Stability 

For the system described by (65) to be stable, it is necessary and sufficient that the 

characteristic equation of (65) have no roots to the right of the imaginary axis in 

the complex plane and that any roots on the imaginary axis be nonrepeated. 
  

Proof; Let \ = a + ib be any nonrepeated root of the characteristic equation; we 

call a the real part of \ and write Red = a, and b the imaginary part of and write 

Im\ = b. Such a root will contribute a solution e+)! = e% (cos bt + isin bf). 

Since the magnitude (modulus, to be more precise) of a complex number wx + 7y 

is defined as |x + ty| = \/x? + y*, and the magnitude of the product of complex 

numbers is the product of their magnitudes, we see that elation) = lew (cos bt 

+isin bt)| = le*!| |cos bt + isin bt| = e* V cos? bt + sin? bt = e* so that solu- 

tion will be bounded if and only if a < 0, that is, if A does not lie to the right of the 

imaginary axis, 

Next, let \ = a -+ ib be a repeated root of order k, with a # 0. Sucha 

root will contribute solutions of the form t?e(¢+#)! = te (cos bt + isin bt), for 

p = 0,...,& —1, with magnitude tPe. Surely the latter grows unboundedly if 

a > 0 because both factors do, but its behavior is less obvious ifa < 0 since 

then the ¢? factor grows and the e*’ decays. To see which one “wins,” one can 

rewrite the product as ¢?/e~ and then apply 1’ H6pital’s rule p times. Doing so, 

one finds that the ratio tends to zero as t —> oo. [Recall that | Hépital’s rule applies 

to indeterminate forms of the type 0/0 or oo/oo, not (0o)(0); that is why we first 

rewrite ¢?e% in the form ¢?/e~“.] The upshot is that such solutions are bounded if 

\ = a+ ib lies in the left half plane (a < 0), and unbounded if it lies in the right 

half plane (a > Q). If \ lies on the imaginary axis (a = 0), then [ePrelorerre| = 

|tPet | = |t?(cos bt + isin bt)| = t?, which grows unboundedly. 

Our conclusion is that all solutions are bounded if and only if no roots lie to 

the right of the imaginary axis and no repeated roots lie on the imaginary axis, as 

was to be proved. m 

One is often interested in being able to determine whether the system is stable 

or not without actually evaluating the n roots of the characteristic equation (40). 

There are theorems that provide information about stability based directly upon the 

a; coefficients in (40). One such theorem is stated below. Another, the Routh— 

Hurwitz criterion, is given in the exercises to Section 10.4. 

  

THEOREM 3.4.4 Coefficients of Mixed Sign 

If the coefficients in (40) are real and of mixed sign (there is at least one positive 

and at least one negative), then there is at least one root A with Red > Q, so the 

system is unstable. 
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These theorems are not as important as they were before the availability of 
computer software that can determine the roots of (40) numerically and with great 
ease. For instance, using Maple, one can obtain all roots of the equation 

av + 304-3 +a? +04+5=0 

simply by using the fsolve command. Enter 

fsolve(w*5 + 3%2°4—-2%2°3+a°2+e+5=0, a, complex); 

and return. This gives the following printout of the five solutions: 

—3.6339286, —.58045036 — .797312497, —.58045036 + .79731249, 

89741468 — .78056850/, .89741468 + .78056850L 

In this example, observe that there are, indeed, roots with positive real parts, as 
predicted by Theorem 3.4.4, so the system is unstable. 

For equations of fourth degree or lower, such software works even if one or 
more of the coefficients are unspecified, in which case the roots are given in terms 
of those parameters. 

Closure. In this section we limited our attention to linear homogeneous differen- 
tial equations with constant coefficients, a case of great importance in applications. 
Seeking solutions in exponential form, we found the characteristic equation to be 

central. According to the fundamental theorem of algebra, such equations always 
have at least one root, so we are guaranteed of finding at least one exponential so- 
lution of the differential equation. If the n roots Ay,..., A, are distinct, then each 

root \; contributes a solution e*?*, and their superposition gives a general solution 
of (1) in the form 

y(x) = Cre ™™ +--+ Cye™®, (66) 

If any root A; is repeated, say of order k, then it contributes not only the solu- 

tion e*i®, but the & LI solutions eNi®, ve®i®,...,2*-le’s® to the general solution. 
Thus, in the generic case of distinct roots, the general solution of (1) is of the form 
(66); in the nongeneric case of repeated roots, the solution also contains one or 
more terms which are powers of x times exponentials. 

It should be striking how simple is the solution process for linear constant- 
coefficient homogeneous equations, with the only difficulty being algebraic — the 
need to find the roots of the characteristic equation. The reason for this simplicity 
is that most of the work was done simply in deciding to look for solutions in the 
right place, within the set of exponential functions. Also, observe that although in 
a fundamental sense the solving of a differential equation in some way involves in- 
tegration, the methods discussed in this section required no integrations, in contrast 

to most of the methods of solution of first-order equations in Chapter 1. 
In the final (optional) section we introduced the concept of stability, and in 

Theorem 3.4.3 we related the stability of the physical system to the placement of 

the roots of the characteristic equation in the complex plane.
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Computer software. To obtain a general solution of y’” — 9y’ = 0 using Maple, | 
use the command 

dsolve({diff(y(x), a, 2,2) — 9 * diff(y(z), 7) = 0},y(x)); | 

and to solve the ODE subject to the initial conditions y(0) = 5, y/(0) = 2, y”(0) = 
—4, use the command 

dsolve({diff(y(x), x, 2,2) — 9 * diff(y(a), 2) = 0, y(0) = 5, 

D(y)(0) = 2, D(D(y))(0) = —4} , w(x); 

In place of diff(y(x), 7, x, x) we could use diff(y(x), x$3), for brevity. 

EXERCISES 3.4 
  

1. Use whichever of equations (5)—(8) are needed to derive 

these relations between the circular and hyperbolic functions: 

(b) sin (iz) = isinhaz 

(d) sinh (iz) = ising 
(a) cos (iz) = cosh x 
(c) cosh (iz) = cosa 

2. Use equations (6) and/or (7) to derive or verify 

(b) equation (10) 

(d) equation (13b) 

(f) equation (13d) 

.., 8-1 are LI. 

(a) equation (9) 

(c) equation (13a) 

(e) equation (13c) 

3. Theorem 3.4.2 states that e*1", re", 
Prove that claim. 

4. (Nonrepeated roots) Find a general solution of each of the 

following equations, and a particular solution satisfying the 

given conditions, if such conditions are given. 

(a) y" + by’ =0 
(b) yy" —y' =0 
(c)y"+y'=0; y(0)=3, y/(0) =0 
(d)y" —3y'+2y=0; yO)=1, y'(G)=0 
(e) y” —4y'-5y=0; yA) =1,y/(1) =0 
Dy! +y'-y=0; y(-1)=2, y(-1)=5 
(g)y" —4y'+5y=0; y(0)=2, y'(0)=5 
(hy y” — 2y'+3y=0; y(0)=4, y'(0)=-1 
(Gi) y" — 2y'+2y=0; y(0)=0, y/(0) = —5 
Gy" + 2y'+3y=0; y(0)=0, y'(0)=3 
(kK) y!"+3y'-4y =0; y(0)=0, y(0)=0, y'(0)=6 
Dy” —y"+2y'=0; y(0)=1, y'(0)=0, y"(0)=0 
(m) yi" -- y" _ 2y = 0 

(ny yy? —y =0 

(0) y) — 2y — By = 0 
(p) y™ + by" + 8y = 0 
(q) yo) + Ty” + 12y = 0 
(r) yo) _ Qy!" _ y" as 2y! =0 

5. (a)—(r) Solve the corresponding problem in Exercise 4 

using computer software. 

6. (Repeated roots) Find-a general solution of each of the fol- 

lowing equations, and a particular solution satisfying the given 

conditions, if such conditions are given. 

(ay =0;  y(-3) =5, W9) =-1 
(b) yy" + 6y' +9y=0; y(l)= vO, = —-2 
(c)y”=0; y(0)=3, y'(0)= y"(0) =1 

(0) = 0, y"(0) =0 @y"+5y" =0; y(0) =1, 
(e) yl" + 3y” + by’ + y= = 0 

(f) yl _ 3y" + 3y’ ~y=0 

(g) yy" -y' +y=0 

(h) y) 4 3y!” = 

(i) yr) 4 yl” 4 y” =0 

(j) yor) + 8y" + l6y =0 
(kK) y) = 0; y(0) = y'(0) = 
y™(0) =0, (0) =3 

7. (a)=(k) Solve the corresponding 

using computer software. 

problem in Exercise 6 

8. If the roots of the characteristic equation are as follows, 

then find the original differential equation and also a general 

solution of it: 

(a) 2,6 (b) 2i, —2i 

(c) 4 — 21,44 2i (d) -2,3,5
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(e) 2,3,-1 (f) 1,1, -2 

(g) 4, 4,4, 3, ~i (h) 1,-1,244,2-% We Nu =0. (11.2) 
(1) 0,0, 0,0, 7,9 @1+i,1+i,l—i,1-i da 

9, (Complex a;'s) Find a general solution of each of the fol- 

lowing equations. NOTE: Normally, the a; coefficients in 

(1) are real, but the results of this section hold even if they 

are not (except for Theorem 3.4.4, which explicitly requires 

that the coefficients be real). However, be aware that if the 

a; coefficients are not all real, then complex roots do not 

necessarily occur in complex conjugate pairs. For instance, 

2 421A + 1 = Ohas the roots A = (/2 — 1)i, —(V2 + 1a. 

(a) y" ~ 2iy’ +y = 0 (b) y" — 3iy’ — 2y = 0 
yl +i —y=0 (d) y" ~ 2iy’-—y =0 

(e) y’ — iy = 0 HINT: Verify, and use, the fact that 

Vi=t(1+i) V3. 
(f) yl" + diy” — y' = 0 
(gy + iy’ = 0 
(i= +(1—1)/V2 
(h) y!” — (1+ 2i)y” + (1 +a)y’ — 201+ Dus 0 
root is found, by inspection, to be A = 

HINT: Verify, and use, the fact that 

HINT: One 

10. (a)—(h) Solve the corresponding oroblem in Exercise 9 

using computer software. 

Li. (Solution by factorization of the operator) We motivated 

the idea of seeking solutions to (1) in the form e** by ob- 

serving that the general solution of the first-order equation 

y + ayy = 0 is an exponential, C'e~%!*, and wondering if 
higher. order equations might admit exponential solutions too. 

A more compelling approach is as follows. Having already 

seen that the first-order equation admits an exponential solu- 

tion, consider the second-order equation (18). 

(a) Show that (18) can be written, equivalently, as 

(D—1)(D — A2)y = 9, di.) 

where D denotes d/dz, and A, and A» are the two roots of 

2 + a,\ + a2 = 0. NOTE: In (11.1) we accomplish a factor- 
ization of the original differential operator L = D? +a,D+ae 

as (D—.,)(D— Ag). By the left-hand side of (11.1), we mean 
(D — »:)((D — 2)y). That is, first let the operator to the left 
of y (namely, D — Az) act on y, then let the operator to the left 

of (D — A2)y (namely, D — \,) act on that. 
(b) To solve (11.1), let (D — Az)y = u, so that (18) reduces to 

the first-order equation 

Solve (11.2) for u, put that uw on the right-hand side of 
d 
= — Axy = u, which is again of first order, and solve the 
la 

latter for y. Show that if A,, A2 are distinct, then the result is 

given by (23), whereas if they are repeated, then the result is 

y(z) = (Cy + Cox)e™”. 

(c) Solve y” ~ 3y’ + 2y = 0 by factoring the operator as 
(D ~1)(D — 2)y = 0. Solve the latter by the method outlined 
in (b): Setting (D — 2)y = u, solve (D —1)u=u' -u=0 
for u(z). Then, knowing u(x), solve (D ~ 2)y = u, namely, 

y' — 2y = u(z), for y(z). 
(d) Same as (c), for y” — 4y = 0. 
(e) Same as (c), for y” + 4y’ + 3y = 0. 
(f) Same as (c), for y” + 2y’ +y = 0. 
(g) Same as (c), for y” + 4y’ + 4y = 0. 
NOTE: Similarly for higher-order equations. For instance, 

yl"! ~ Qy" — y! + 2y = (D — 2)(D + 1)(D — 1)y = 0 can 
be solved by setting (D + 1)(D — 1)y = u and solving 
(D — 2)u = 0 for u(x); then set (D — 1)y = v and solve 
(D + 1)v = u for v(x); finally, solve (D — l)y = v for 
y(x). The upshot is that the solution of an nth-order linear 
homogeneous differential equation with constant coefficients 

can be reduced to the solution of a sequence of n first-order 

linear equations. 

12. Use computer software to obtain the roots of the given 

characteristic equation, state whether the system is stable or 

unstable, and explain why. If Theorem 3.4.4 applies, then 

show that your results are consistent with the predictions of 

that theorem. 

(a) \®8 — 3A? + 26A — 2 
(b) 8 + 3\2 + 2A 42 =0 
(c) 44 + 8 + 3A? + 2142 =0 

(d)A*4 + 34 5A2+A44=0 
(e) 8 + 5 4 5A\4 + 2A8 — 2 +443 =0 
(f) AS + 9A5 + BAS + 2\3 + 77+ A4+3=0 
(g) AS + 8 + 5A4 + 43 + 42 4+ 8A 44=0 

(hy AS + \5 + BAY 4+ 2A3 4+ 717 +A43=0 
(i) AB — AS + AP 4+ SAA + 2A 4+ TAP + A43=0 
GY AS FAT + AS + AE 4 BAS + 21 + 712 4+A4+3 = 0 
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Figure 1. Mechanical oscillator, 

3.5 Application to Harmonic Oscillator: Free Oscillation 

In Section 1.3 we discussed the modeling of the mechanical oscillator reproduced 

here in Fig. 1. Neglecting air resistance, the block of mass m is subjected to a 

restoring force due to the spring, a “drag” force due to the friction between the 

block and the lubricated table top, and an applied force f(t). (By a restoring force, 

we mean that the force opposes the stretch or compression in the spring.) Most of 

that discussion focused on the modeling of the spring force and friction force, and 

we derived the approximate equation of motion 

mex" +ca'+kx = f(t), (1) 

where c is the damping coefficient, k is the spring stiffness. Besides the differential 

equation, let us regard the initial displacement and initial velocity, 

a(0)=29 and 2'(0)= 29, (2) 

respectively, as specified values. 
In this section we consider the solution for the case where f(t) = 0: 

ma" + cx’ + ka = 0. (3) 

This is the so-called unforced, or free, oscillation. According to Theorem 3.3.1, the 

solution «(t) to (3) and (2) does exist and is unique. To find it, we seek x(t) = ent 

and obtain the characteristic equation mA? + cA + k = 0, with roots 

—ct Vc? —4mk jo eee (4) 
2m 

Consider first the case where there is no damping, so c = 0 and (3) becomes 

8 
That is, the friction is small enough so that it can be neglected altogether. Then (4) 

gives A = +1,/k/m, and the solution of (5) is 

  

a(t) = Ae! + Be'*, (6) 
      

where w = \/k/m is the so-called natural frequency of the system, in rad/sec. 

Or, equivalent to (6) and favored in this text, 

  

[a(t = Ccoswt + Dsinuwt. (7) 
  

  

In fact, there is another useful form of the general solution, namely, 

z(t) = Esin(wt + ¢), (8) 
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where the integration constants & and ¢ can be determined in terms of C and D 
as follows. To establish the equivalence of (8) and (7), recall the trigonometric 

identity sin (A + B) = sin Bcos A+ sin Acos B. Then 

Esin (wt + ¢) = Esindécoswt + Ecos ¢sinwt, 

which is identical to C coswt + D sinwt if 

  

C=FEsing and D= Ecos¢. (9a,b) 

Squaring and adding equations (9), and also dividing one by the other, gives 

: Cc 
E=V/C?2+D? and ¢=tan7! B° (10a,b) 

      

respectively, as the connection between the equivalent forms (7) and (8). It will be 
important to be completely comfortable with the equivalence between the solution 
forms (6), (7), and (8). Both the square root and the tan~! in (10) are multi-valued. 

We will understand the square root as the positive one and the tan™! to lie between 
—7w and 7. Specifically, it follows from (9), with EF > 0, that if C > 0 and D > 0 
thenO0<@< 7/2,ifC > Oand D < Othen7/2<d<7,ifC <OandD>0O 
then ~7/2 < 6 < 0, andif C <Oand D < Othen —1 < ¢ < —n/2. 

For instance, consider 6 cost — 2sint. Then E = /36-+4 = \/40 and og= 

tan7! (+8). A calculator or typical computer software will interpret tan7!( ) 

as —/2 < tan7'() < 7/2, namely, in the first or fourth quadrant. Not able 
to distinguish (+6)/(~2) from (—6)/(+2), it will give tan~+ (—$) = -1.25 
rad, which is incorrect. The correct value is in the second quadrant, namely, ¢ = 
m ~ 1.25 = 1.89 rad. Thus, 6 cost — 2sint = //40 sin (t + 1.89). 

Whereas C’ and D in (7) have no special physical significance, FE and ¢ in (8) 
are the amplitude and phase angle of the vibration, respectively (Fig. 2a). 

(a) (6) 
9 

2 : . nt . 2 x . = od 
he— period =—— | slape = x4 period = D 
! w i 
a VF | 

phase} f es E'sin at ; _ | v4 2 wy 
shift 77 4 amplitude = E Xoo amplitude = | x@ + oa fy yo be a Y Y 

gi ! ‘ 
oO 

~Esin(ot +) 

Figure 2. (a) Graphical significance of w, @. (b) Undamped free oscillation. 

     

  
Although (8) is advantageous conceptually, in that the amplitude & and phase 

angle @ are physically and graphically meaningful, it is a bit easier to apply the 
initial conditions to (7): 

x(0) = ip =C, x (0) = rp =wD
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Figure 3. Underdamped free 

oscillation. 

  

  

so C = 29, D = x9 /w, and the solution is 

al 

a(t) = ap coswt +  sinwt, (11) 
w 

a plot of which is shown in Fig. 2b for representative initial conditions x and 2. 

Before continuing, consider the relationship between the mathematics and the 

physics. For example, the frequency w = \/k/m increases with k, decreases with 

m, and is independent of the initial conditions xo and xg, and hence the ampli- 

tude which, according to (11) and (10), is 4 [x3 + (x/w)*. Do these results make 

sense? Probably the increase of w with & fits with our experience with springs, 

and its decrease with m makes sense as well. However, one might well expect the 

frequency to vary with the amplitude of the vibration. We will come back to this 

point in Chapter 7, where we consider more realistic nonlinear models. 

Now suppose there is some damping, c > 0. From (4) we see that there are 

three cases of interest. If we define the critical damping as c., = V4mk = 

2/7 mk, then the solution is qualitatively different depending upon whether ¢ < Cer 

(the “underdamped” case), c = Cer (the “critically damped” case), or ¢ > Cop (the 

“overdamped” case). 

Underdamped vibration (c < Cer). In this case (4) gives two complex conju- 

gate roots 

1 1 ; 
\= = (-e+- o-,) =. (-ctivee, — &) 

so a general solution of (1) is 

c 
—_-——t Cc \2 c 2 

, —e 2 f 2 inafw? — (—— 12 a(t)=e 2m |Acos4/w (=) t+ Bsiny/w (=) t}|, (2) 

where A and B can be determined from the initial conditions (2). Of course, we 

could express the bracketed part in the form (8) if we like. 

Comparing (7) and (12), observe that the damping has two effects. First, it in- 

troduces the e7 (¢/2”™ factor, which causes the oscillation to “damp out” as t — 00, 

as illustrated in Fig. 3. That is, the amplitude tends to zero as t — oo. Second, it 

reduces the frequency from the natural frequency w to,/ w — (c/2m)?; that is, it 

makes the system more sluggish, as seems intuitively reasonable. (It might appear 

from Fig. 2b and 3 that the damping increases the frequency, but that appearance is 

only because we have compressed the ¢ scale in Fig. 3.) 

Critically damped vibration (c = ccr). As c is increased further, the system
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becomes so sluggish that when c attains the critical value c,,. the oscillation ceases 
altogether. In this case (4) gives the repeated root \ = ~—c/2rm, of order two, so 

Cc 

z(t) =(A+ Bt)e 2m. (13) 

Although the tin A+ Bt grows unboundedly, the exponential function decays more 
powerfully (as discussed within the proof of Theorem 3.4.3) and the solution (13) 

decays without oscillation, as shown in the c = c,, part of Fig. 4. 

Overdamped vibration (c > c¢,,). As c increases beyond c,,, (4) once again gives p cr y cr & g 

two distinct roots, but now they are both real and negative (because the Vc? — 4mk 
is smaller than ¢), so 

c 
-——t fp, @\2 [7 e\2 

=e 2m ‘ =) —w* in —w? l z(t) =e A cosh (— w* t+ Bsinh (—) wet), (4) 

where A and B can be determined from the initial conditions (2). Indeed, if one 
or both roots were positive then we could have exponential growth, which would 

make no sense, physically. If that did happen we should expect that either there is 
an error in our mathematics or that our mathematical modeling of the phenomenon 
is grossly inaccurate. 

A representative plot of that solution is shown in the c > cg, part of Fig. 4. 
For the sake of comparison we have used the same initial conditions to generate the 
three plots in Figures 3 and 4. Though one can use positive and negative exponen- 
tials within the parentheses in (14), in place of the hyperbolic cosine and sine, the 
latter are more convenient for the application of the initial conditions since the sinh 
is zero at t = 0 and so is the derivative of the cosh. 

This completes our solution of equation (3), governing the free oscillation of 
the mechanical oscillator shown in Fig. |. It should be emphasized that Fig. 1 
is intended only as a schematic equivalent of the actual physical system. For in- 
Stance, suppose the actual system consists of a beam cantilevered downward, with 
a mass 7 at its end, as shown in Fig. 5a. We assume the mass of the beam to 
be negligible compared to m. It is known from Euler beam theory that if we ap- 
ply a constant force F’, as shown in Fig. Sb, then the end deflection « is given by 
xz = FL°/(3EI), where L is the length of the beam and £’J is its “stiffness” (E 
is Young’s modulus of the material and I is a cross-sectional moment of inertia). 
Re-expressing the latter as F = (3EI/L°)zx, we see that it is of the form F = ka, 
as for a linear spring of stiffness &. Thus, insofar as the modeling and analysis is 
concerned, the physical beam system is equivalent to the mass-spring arrangement 
shown in Fig. 6c, where keq = 3EI/L° is the stiffness of the equivalent spring 
and where there is no friction between the block and the table top. The governing 
equation of motion is 

(15) 
Just as we neglected the mass of the beam, compared to 7n, likewise let us neglect 

it 
mx + Kegt = 0. 
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Figure 6. Electrical oscillator; 

RIC circuit. 

the mass of the spring compared to m. (How to account for that mass, approxi- 

mately, is discussed in the exercises.) It should be noted that, in addition, we are 

neglecting the rotational motion of the mass, in Fig. 5b, since we have already 

limited ourselves to the case of small deflections of the beam. 

Finally, it has already been pointed out, in Section 2.3, that the force-driven 

mechanical oscillator is analogous to the voltage-driven REC electrical circuit re- 

produced here in Fig. 6, under the equivalence 

+ +k, i(t) + a(t), dE(t) + F(t), (16) Loam, Ree, 
m™ “GC dt 

s0 whatever results we have obtained in this section for the mechanical oscilla- 

tor apply equally well to the electrical oscillator shown in Fig. 6, according to the 

equivalence given above. 

Closure. In this section we have considered the free oscillations of the mechan- 

ical harmonic oscillator. We found that for the undamped case the solution is a 

pure sine wave with an amplitude and phase shift that depend upon the initial con- 

ditions — that is, the solution is “harmonic.” In the presence of light damping (Le., 

for © < Cor), the solution suffers exponential decay and a reduction in frequency, 

these effects becoming more pronounced as c is increased. When c reaches a crit- 

ical value cep the oscillation ceases altogether, and as c is increased further the 

exponential decay is increasingly pronounced. 

It should be emphasized that by the damped harmonic oscillator we mean a 

system that can be modeled by a linear equation of the form mz" + ca’ + ka = 0. 

In most applications, however, the restoring force can be regarded as a linear func- 

tion of z (namely, kx) only for motions that are sufficiently small departures from 

an equilibrium configuration; if the motion is not sufficiently small, then one must 

deal with a more difficult nonlinear differential equation. Thus, for the harmonic 

oscillator, damped or not, we are able to generate simple closed form solutions, as 

we have done in this section. For nonlinear oscillators one often gives up on the 

possibility of finding closed form analytical solutions and relies instead on numer- 

ical simulation, as will be discussed in Chapter 6. To illustrate how such nonlinear 

oscillators arise in applications, we have included several such examples in the 

exercises that follow. 

In terms of formulas, the equivalence of the three forms (6), (7), and (8) 

should be clearly understood and remembered. In a given application we will use 

whichever of these seems most convenient, usually (7). 

  

EXERCISES 3.5 
  

1. Re-express each expression in the form E sin (wt + @); that (b) 3cos 6t ~ 4sin 6¢ 

is, evaluate £7, dw. 

(a) 6cost + sint 

(c) 5cos 2 ~ 12 sin 2¢ 

(d) ~2cos 3¢ + 2sin 3t 

(e) cos 5¢ — sin 5t
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af 

(f) x9 cos wt + “0 sin wt, from (11) 
Ww 

2. We emphasized the equivalence of the solution forms (6), 

(7), and (8), and discussed the equations (10a,b) that relate C’ 

and D in (7) to FE and ¢ in (8). Of course, we could have used 

the cosine in place of the sine, and expressed 

a(t) = Geos (wut + w) (2.1) 

instead. Derive formulas analogous to (10a,b), expressing 

G and ~ in terms of C and D. 

3. Apply the initial conditions (2) to the general solution (12), 

and solve for the integration constants A and B in terms of 

M,C, W,£o and x. 

4. Apply the initial conditions (2) to the general solution (14), 

and solve for the integration constants A and B in terms of 
M,C,W, vo and x. 

5. Consider an undamped harmonic oscillator governed by 

the equation ma” + ka = 0, with initial conditions 2(0) = 
zo, x'(0) = x. One might expect the frequency of oscillation 
to depend on the initial displacement x9. Does it? Explain. 

6. We mentioned in the text that the oscillation ceases alto- 

gether when c is increased to c,, or beyond. Let us make that 

statement more precise: for c > c., the graph of x(t) has at 

most one “flat spot” (on 0 < t < oo), that is, where 2’ = 0. 

(a) Prove that claim. 

(b) Make up a case (ie., give numerical values of 

mc, k, £9, £q) where there is no flat spot on 0 < t < oo. 

(c) Make up a case where there is one flat spot on 0 < t < co. 

7. (Logarithmic decrement) For the underdamped case (c < 

Cer), let Z, and 2,41 denote any two successive maxima of 
x(t). 

(a) Show that the ratior, = ¢,/@n+41 is a constant, say r; that 

is, 21 /To = to/€g = SP. 

(b) Further, show that the natural logarithm of r, called the log- 

arithmic decrement 6, is given by 6 = £ z 

8. (Grandfather clock) Consider a pendulum governed by the 

equation of motion mL6” + mgsin@ = 0, or 

al" + $ sind =0, (8.1) 

where g is the acceleration of gravity. (See the figure.) If 
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m 

|0| < 1 (where < means much smaller than), then sin @ = @, 

and the nonlinear equation of motion (8.1) can be simplified 

to the linear equation 

"+ F0=0, 

or, if we allow for some inevitable amount of damping due 

to friction and air resistance, 

(8.2) 

6! + 66! + 26 =0, (8.3) 

where 0 < ¢€ < 1. Now imagine the pendulum to be part 

of a grandfather’s clock. If a ratchet mechanism converts each 

oscillation to one second of recorded time, how does the clock 

maintain its accuracy even as it runs down, that is, even when 

its amplitude of oscillation has diminished to a small fraction 

of its initial value? Explain. 

9. (Correction for the mass of the spring) Recall that our model 

of the mechanical oscillator neglects the effect of the mass of 

the spring on the grounds that it is sufficiently small compared 

to that of the mass m. In this exercise we seek to improve our 

model so as to account, if only approximately, for the mass of 

the spring. In doing so, we consider the undamped case, for 

which the equation of motion is ma” + kx = 0. 

(a) Multiplying that equation by dz and integrating, derive the 

“first integral” 

1. 
1 ae? + 5 he” =C, (9.1) 
2 

which states that the total energy, the kinetic energy of the 

mass plus the potential energy of the spring, is a constant. 

(b} Let the mass of the spring be ms. Suppose that the ve- 

locity of the elements within the spring at any time ¢ varies 

linearly from 0 at the fixed end to 2’(¢) at its attachment to 
the mass m. Show, subject to that assumption, that the kinetic 

energy in the spring is }m.2'?(t). Improving (9.1) to the form 

I (m + zm) alt she =C, (9.2) 
2 3
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obtain, by differentiation with respect to ¢, the improved equa- 

tion of motion 

(m + sins w+ ka = 0. (9.3) 

Thus, as a correction, to take into account the mass of the 

spring, we merely replace the mass m in ma” + kx = 0 by 

an “effective mass” m + sMs, which incorporates the effect 

of the mass of the spring. NOTE: This analysis is approximate 

in that it assumes the velocity distribution within the spring, 

whereas that distribution itself needs to be determined, which 

determination involves the solution of a partial differential 

equation of wave type, as studied in a later chapter. 

(c) In obtaining an effective mass of the form m + am,, why 

is it reasonable that a turns out to be less than 1? 

10. (Piston oscillator) Let a piston of mass m be place at the 

midpoint of a closed cylinder of cross-sectional area A and 

length 2, as sketched. Assume that the pressure p on either 

il coy 
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Wb ae   
side of the piston satisfies Boyle’s law (namely, that the pres- 

sure times the volume is constant), and let po be the pressure 

on both sides when x = 0. 

(a) If the piston is disturbed from its equilibrium position 

x = 0, show that the governing equation of motion is 

ma" + 2p AL = 0. (10.1) 
x 

T2— 4 

(b) Is (10.1) linear or nonlinear? Explain. 

(c) Expand the 2/(L? — x*) term in a Taylor series about 
x = 0, up to the third-order term. Keeping only the leading 

term, derive the linearized version 

2poA ma" + 7 =0 (10.2) 
£L 

of (10.1), which is restricted to the case of small oscillations — 

that is, where the amplitude of oscillation is small compared 

to L. 
(d) From (10.2), determine the frequency of oscillation, in cy- 

cles per second. 

(e) Is the resulting linearized model equivalent to the vibration 

of a mass/spring system, with an equivalent spring stiffness of 

keq = 2poA/L? Explain. 

U1. (Lateral vibration of a bead on a string) Consider a mass 

m, such as a bead, restrained by strings (of negligible mass), 

in each of which there is a tension 7), as shown in Fig. a. 

      

(a) (c) 

r“ 

lo 

ion 
lg 

TEEFP. ! 

  

We seek the frequency of small lateral oscillations of m. A 

lateral displacement x (Fig. 6) will cause the length of each 

string to increase from Ip to I(x) = \/l¢ + £*. Suppose that 

the tension r is found, empirically, to increase with /, from its 

initial value 79, as shown in Fig. c. 

(a) Show that the governing equation of lateral motion is 

T (Vie +24 ) 
Ne 

Jig + x? 

where 7 (Vie + x? ) is a function, not a product. 

(b) Is (11.1) linear or nonlinear? Explain. 

(c) Expand the + (Va + a) z//fl¢ + x? term in a Taylor 

series about x = 0, up to the third-order term. [You should 

find that the coefficients of these terms involve lg, 79, and 

r'(lo).] 

(d) Linearize the equation of motion by retaining only the 

leading term of that Taylor series, show that the equivalent 

spring stiffness is keq = 27 /lo, and that the frequency of 

ma” + z=0, CL.) 

1 /2 
smail oscillations is -— £0 cycles/sec. 

2nr V mio 

12. (Oscillating platform) A uniform horizontal platform 

of mass m is supported by counter-rotating cylinders a dis- 

tance L apart (see figure). The friction force f exerted on the 
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ZX which rotates without friction about an axis that is tilted by an 

| i angle of @ with respect to the vertical (see figure). Let 6 denote 

a 

ot y , 

BE 
the angle of rotation of the pendulum, with respect to its 

equilibrium position (where m is at its lowest possible point, 

namely, in the plane of the paper). 
platform by each cylinder is proportional to the normal force 

N between the platform and the cylinder, with constant of pro- 

portionality (coefficient of sliding friction) z: f = wN. Show 

that if the cylinder is disturbed from its equilibrium position 

(x = 0), then it will undergo a lateral oscillation of frequency 

w = 4/2ug/L rad/sec, where g is the acceleration of gravity. 

  

N, N2 

(a) Derive the governing equation of motion 

o” + Fsinasind = 0. (13.1) 

As a partial check of this result, observe that fora = 1/2 

HINT: Derive the equation of motion governing the lateral dis- 

placement z of the midpoint of the platform relative to a point 
midway between the cylinders. 

13. (Tilted pendulum) Consider a rod of length D with a point 

mass m at its end, where the mass of the rod is negligible com- 

pared to m. The rod is welded at a right angle to another, 

(14.1) does reduce to the equation of motion of the ordinary 

pendulum (see Exercise 8). HINT: Write down an equation of 

conservation of energy (kinetic plus potential energy equal a 

constant), and differentiate it with respect to the time ¢. 

(b) What is the frequency of small amplitude oscillations, in 

rad/sec? In cycles/sec? 
e 

  

3.6 Solution of Homogeneous Equation: 

Nonconstant Coefficients 

We return to the nth-order linear homogeneous equation 

any 
dx 

d™—ty 
+ a1(x) Tact 

dy 
+++ + Gn~1(2) Te 

and this time allow the a; coefficients to be nonconstant. The theory of the homo- 
geneous equation, given in Section 3.3, holds whether the coefficients are constant 
or not. However, the task of finding solutions is generally much more difficult if 
the coefficients in (1) are not all constants. Only in special cases are we able to find 
solutions in terms of the elementary functions and in closed form (as opposed, say, 
to infinite series). This section is devoted to those special cases ~ most notably, 
to equations of Cauchy—Euler type. In other cases we generally give up on find- 
ing closed-form solutions and, instead, seek solutions in the form of infinite series 

    a(x)
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(Chapter 4) or pursue a numerical approach (Chapter 6). 

3.6.1. Cauchy—Euler equation. If (1) is of the special form 

  

_ dl _, drat, dy 

a ee (2)     

    
  

where the c;’s are constants, it is called a Cauchy—Euler equation, and is also 

called an equidimensional equation. 
Of most importance to us will be the case where n = 2, so let us consider tint 

case first, namely, 

vy” + ccy! + coy = 0, (3) 

and let us consider the x interval to be 0 < x < oo; the «xse of negative z’s will 

be treated separately, below. Suppose we try to solve (3) vy seeking y in the form 
y = e**, where ) is a yet-to-bé-determined constant, which form proved successful 
for the constant-coefficient case. Then x’ = Ae** and y” = A?e**, so (3) becomes 

rMxrer” + \eyze®™™ + cpe** = 0. (4) 

If we cancel the (nonzero) exponentials we obtain a quadratic equation for 4, solu- 
tion of which gives \ as a function of x. However, \ was supposed to be a constant, 
so we have a contradiction, and the method fails. (Specifically, if A turns out to 
be a function of x, then y’ = \e** and y” = \?e**, above, were incorrect.) Said 
differently, the x2e**, re**, e** terms in (4) are LI and cannot be made to cancel 

identically to zero on any given z interval. 
The reason we have discussed this fruitless approach is to emphasize that it 

is incorrect, and to caution against using it. By contrast, if the equation were of 
constant-coefficient type, say y” + cyy’ + coy = 0, then y = e* would work 
because y = e**, y! = A/e**, y"” = A%e%* are LD, so the combination y” + cry! + 
cgay could be made to cancel to zero by suitable choice of A. 

Although the form e** will not work for Cauchy—Euler equations, the form 

  

    
y= x (5) 
  

will, because y = 2, cy! = Av, 2?y = MA — 1)x4,... are LD since each is a 
constant times 2. Putting (5) into the second-order equation (3) gives 

[MA — 1) + cA + co] 2* = 0. 

Since x* + 0, we require of \ that 

MM (1—a)A+e2 = 0, 

so 

yaad ay te (6) 
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We distinguish three cases, depending upon whether the discriminant A = 

(4 —- cy)” — deg is positive, zero, or negative: 

A > 0: Distinct real roots. If A > 0, then (6) gives two distinct real roots, 

say \; and Ag, so we have the general solution to (3) as 
  

      

y(a) = Ag™ + Ba. (7) 

EXAMPLE 1. To solve 

gy" — Ixy’ — 10y = 0, (8) 

seek y = a. That form gives \? — 3\ — 10 = 0, with roots \ = —2 and 5, so the general 

solution of (8) is 

A 5 y(z) = = + Ba". ul 

1- Cl 

2 
\1. Thus we have the solution Aa*!, but are missing a second linearly independent 
solution, which is needed if we are to obtain a general solution of (3). Evidently, 
the missing solution is not of. the form x, or we would have found it when we 

sought y(z) = 2. 
To find the missing solution we use Lagrange’s method of reduction of or- 

der, as we did in Section 3.3.3 for constant-coefficient differential equations with 
repeated roots of the characteristic equation. That is, we let A vary, and seek 

  A = 0: Repeated real roots. In this case (6) gives the repeated root A = 

y(a) = A(x)a*!. (9) 

Putting (9) into (3) gives (we leave the details to the reader, as Exercise 3) 

tA” + A’ =0. 

Next, set A’ = p, say, to reduce the order: 

dp 

daz 

sop = D/xand A(x) = Dina +C, where C, D are arbitrary constants (Exercise 
4). Finally, putting the latter back into (9) gives the general solution of (3) as 

+p =0, (10) wc 

  

  
y(z) = (C+ Dina) a™. (11) 

  
  

EXAMPLE 2. To solve 

ay" + Tay! + 9y = 0, (12) 

119
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seek y = x. That form gives \? + 6A +9 = 0, with the repeated root A = —3, so the 

general solution of (12) is 

y(v) =(A+Blna)27*. Of 

A < 0: Complex roots. In this case (6) gives the distinct complex-conjugate roots 

l-« \/4c2 ~ (1 — 1)? ya ey VITO ey" Lata, (13) 
2 2 

so we have the general solution of (3) as 

y(a) = Aa®t? + Bar 

= 7° (Ac + Bu~**) (14) 

However, since we normally prefer real solution forms, let us use the identity u = 
eB 4 to re-express (14) as* 

y(a) = «* (Aetna 4 Bene) = xt (Aci? 4 BeWi*) 

= 2° {A[cos(@ Ina) + isin(@lnz)} + B [cos (Gln z) — isin (Bln x)]} 

=x*|{(A+ B)cos(Ginz) +i(A— B)sin(@ Ina). (15) 

Or, letting A+ B=C andi(A— B) = D, 

  

y(x) = «* [C'cos (GInz) + Dsin(Glnz)}. (16) 
    

  

EXAMPLE 3. To solve 

xy” — 2ay' + 4y = 0, (17) 
  

“Tt is important to appreciate that the «***? quantities, in (14), are “new objects” for us, for we 
have not yet (in this book) defined a real number « raised to a complex power (unless x happens to 
be e, in which case the already-discussed Euler’s formulas apply). Staying as close as possible to 
familiar real variable results, let us write 

pet gt pi® pe ( ) _ gr eiflne 

and similarly for z*~**. None of these three equalities are justifiable, since they rely on the formulas 
att? = gta? u = el”, and Ine’ = clna, which assume z,a,b,e to be real, but we hereby 
understand them to hold by definition. Observe that complex quantities and complex functions keep 
forcing themselves upon us. Therefore, it behooves us to establish a general theory of complex 
functions, rather than deal with these issues one by one. We will do exactly that, but not until much 
later in the text.
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seek y = x. That form gives \? — 3\-+4=0,so\ = 3 + 4M, Hence 

y(x) = Ag8/24iV7/2 4. By 3/2-iV7/2 93/2 (se 4 BaV7/*) 

— q3/? Cr Inw +4 Be we) 

= g3/? cco (Fue) + Dsin (Yine)] . gg 

Recall that we have limited our discussion of (3) to the case where x > 0. The 

reason for that limitation is as follows. For a function y(z) to be a solution of (3) 
on an z interval J, we first of all need each of y, y’, and y” to exist on J; that is, to 
be defined there. The function In x and its derivatives are not defined at x = 0, nor 

is nx defined (as a real-valued function) for x < 0. The functions ato? in (7), 

x™ in (11), and 2® in (16) cause similar problems. To deal with the case where 
x < 0, it is more convenient to make the change of variable c = —€ in (3), so that 

E will be positive. Letting y(x) = y(—€) = Y(€),* 

dy dv dg _ Yd _ a (dv) dg PY yy 
dz d&dz dé’ = du®_—d€ | dx dé2’ 

so (3) becomes 

2f¥ + _ 

which is the same as (3)! Thus, its solutions are the same, but with x changed to €. 

For the case of distinct real roots, for instance, 

y(“) = Ac™ + Ba? 

for x > Q, and 

u(x) = ¥(€) = Y¥(-«) = A(—2)** + B(-2)” 

for xz < 0. Observe that both of these forms are accounted for by the single expres- 

wv y(x) = Ajal + Bla|*?. 

Similarly for the other cases (repeated real roots and complex roots). Let us state 

these results, for reference, as a theorem. 
  

*Why do we change the name of the dependent variable from y to Y? Because they are different 

functions. To illustrate, suppose y(x) = 5 + 2°. Then Y(€) = 5 +(—€)® = 5 — €°. For instance, 
if the argument of y is 2, then y is 13, but when the argument of Y is 2, then Y is —3.
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THEOREM 3.6.1 Second-Order Cauchy—Euler Equation 
The general solution of the second-order Cauchy—Euler equation 

ay” + ey’ + coy =0, (20) 

on any « interval not containing the origin, is 

Ala|™! 

y(z) = 4 (A+ Bln|x}) fal! (21) 
|z|“ [A cos (3 In |x|) + B sin (6 In |z])] 

       

  

if the roots Ay, A2 of A? + (cy —1)A+c2 = Oare real and distinct, real and repeated, 
or complex (\ = a + 2), respectively, 
  

Of course, if the x interval is to the right of the origin, then the absolute value 
signs in (21) can be dropped. 

To close our discussion of the Cauchy~Euler equation, consider the higher- 
order case, n > 2. For simplicity, we consider x > 0; as for the second-order case 

treated above, « < 0 can be handled simply by changing all x’s in the soi:ion to 

Iz. 

EXAMPLE 4. Consider the third-order Cauchy—Euler equation 

e1 yf 
—~ Bay" + 7xy' — 8y = 0. (22) 

Seeking y(z) = 2° gives 
NW —6\? + 12A-8 =0, 

with the roots \ = 2,2,2. Thus we have the solution y(z) = Azx?, but we need two 

more linearly independent solutions. To find them, we use reduction of order and seek 

y(z) = A(x)x?. Putting that form into (22) gives the equation 

eA” + 302A" + A’ =0 

on A(x), which can be reduced to the second-order equation 

vp" + 3xp' + p= 0 (23) 

by letting A’ = p. The latter is again of Cauchy—Euler type, and letting p(x) = 2° gives 

A = —1,-1, so that 

1 
plz) = (B+Clnz)-. 

x 

Since A’ = p, 

(nay 
A(c) = [pave = = Blna+C+—— + D,
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and 

y(x) = [Cy + Colna + Cy(Inz)?] a? (24) 

is the desired general solution of (22). 4 

Comparing the latter result with the solution (11) for the second-order Cauchy— 

Euler equation with repeated root 4,, we might well suspect that if any Cauchy— 
Euler equation has a repeated root A; of order &, then that root contributes the form 

Cy + Cylna + C3(Inxz)? +--+. + Cy(In wy] ue (25) 

to the general solution. We state, without proof, that that is indeed the case. 

EXAMPLE 5. Asa summary example, suppose that upon seeking solutions of a given 

eighth-order Cauchy~Euler equation in the form y(z) = «> we obtain the roots 

A= —2.4, 1.7, 1.7, 1.7, -34+ 42, -34+ 41, -3 - 41, -3—- 41. 

Then the general solution is 

y(x) = Cya7? 4 + (C2, + C3(Inz) + Cy(Inx)*] a? 

+(Cs5+Cglnz) x3" + (C7 + Cglnz) a ™, (26) 

or (Exercise 5), 

y(x) = Cya7? 4 + [Cy + C3(Inz) + Cy(In x)”} at! 

+{[Co cos (4Inz) + Cio sin (4Inz)} 

+Inz [Ci cos (4Inz) + Cygsin(4Ina)]} a7. (27) 

Although such high-order Cauchy-Euler equations are uncommon, we include this example 

to illustrate the general solution pattern for any ordern > 2. Hf 

This concludes our discussion of the Cauchy—Euler equation. We will meet 
Cauchy—Euler equations again in the next chapter, in connection with power series 
solutions of differential equations, and again when we study the partial differential 
equations governing such phenomena as heat conduction, electric potential, and 

certain types of fluid flow, in later chapters. 

3.6.2. Reduction of order. (Optional) We have already used Lagrange’s method 
of reduction of order to find “missing solutions,” for constant-coefficient equations 
and for Cauchy—Euler equations as well. Here, we focus not on constant-coefficient 
or Cauchy—Euler equations, but on the method itself and indicate its more general 

application to any linear homogeneous differential equation. 
For definiteness, consider the second-order case, 

y” +ay(x)y! + ao(x)y = 0. (28)
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Suppose that one solution is known to us, say Y (x), and that a second linearly 
independent solution is sought. If Y(x) is a solution, then so is AY (x) for any 
constant A. The idea behind Lagrange’s method of reduction of order is to seek 

the missing solution in the form 

y(2) = A(x) ¥ (2), (29) 

where A(z) is to be determined. 
The method is similar to Lagrange’s method of variation of parameters, in- 

troduced in Section 2.2, but its purpose is different. The latter was used to find 
the general solution of the nonhomogeneous equation y’ + p(x)y = q(x) from the 

solution y,(x) = Aew/?(*) 4" of the homogeneous equation y’ + p(x)y = 0, by 

varying the parameter A and seeking y(a) = A(z)e7 fre) de Reduction of order 
is similar in that we vary the parameter A in y = AY (zx), but different in that it is 
used to find a missing solution of a homogeneous equation from a known solution 

Y (x) of that homogeneous equation. 
We begin by emphasizing that at first glance the form (29) seems to be without 

promise. To explain that statement, observe that the search for a pair of lost glasses 
can be expected to be long and arduous if we merely know that they are somewhere 
in North America, but shorter and easier to whatever extent we are able to narrow 
the domain of the search. If, for instance, we know that they are somewhere on 
our desk, then the search is short and simple. Likewise, when we solve a constant- 
coefficient equation by seeking y in the form e** then the search is short and simple 
since, first, solutions will indeed be found within that subset and, second, because 
that subset is tiny compared to the set of all possible functions, just as one’s desk 
is tiny compared to North America. Similarly, when we solve a Cauchy —Euler 

equation by seeking y in the form a. 
With this idea in mind, observe that the form (29) does not narrow our search 

in the slightest, since it includes all functions! That is, any given function f(a) can 
be expressed as A(x)Y (x) simply by choosing A(z) to be f(x)/Y(z). 

Proceeding nonetheless, we put (29) into (28) and obtain the differential equa- 

tion 
ANY + (2Y’ + a,Y)A' +(¥" + a1Y' + a2Y)A=0 (30) 

on A(x). At first glance it appears that this differential equation on A(z) is proba- 

bly even harder than the original equation, (28), on y(x). However, and this is the 

heart of Lagrange’s idea, all of the undifferentiated A terms must cancel, because 

if A were a constant (in which case the A’ and A” terms would all drop out), then 

the remaining terms would have to cancel to zero because AY (x) is a solution of 

(28). Thus, the coefficient of A in (30) is zero, so (30) becomes 

ANY + (2Y' + a1Y)A’ = 0, (31) 

the order of which can now be reduced from two to one by letting A’ = p: 

dp 2y' + ayy 
— —— = 0. 32 
dx + ( Y Jp (2) 

si
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Integrating the latter gives 

ay'+a,¥ 

p(x) = Be fy den 

_— BY (x)~e7 fas) dae 

Finally, integration of A’ = p gives 

A(z) = J) dz = B [r@re! a(n) de qe 4 Cl 

so (29) becomes 

y(z) = B / ¥ (x)~2e7 J 2) de gy + c| Y (x). (33) 

The CY (x) term merely reproduces the solution that was already known; the miss- 

ing solution is provided by the other term, BY (x) [ Y(x)~2e7 f 1 ) eda, That 

this solution and the original solution Y (x) are necessarily LI is left for Exercise 6. 

Incidentally, the result (33) could also be written using definite integrals if one 

prefers, as 

y(a) = B / "y(E)2e a ge c| ¥ (2), (34) 
where the lower limits a and @ are arbitrary numbers, for the effect of changing 

a is simply to add some constant to the € integral, and that constant times B can 

be absorbed by the arbitrary constant C. Likewise, changing @ simply adds some 

constant, say P, to the 7 integral, and the resulting e—P factor can be absorbed by 

the arbitrary constant B. 

EXAMPLE 6. Legendre’s equation. The equation 

(1 —2*)y"” — 2ry’ + 2y = 0, (-l<a<1) (35) 

is known as Legendre’s equation, after the French mathematician Adrien Marie Legendre 

(1752-1833). It is studied in Chapter 4, and used in later chapters when it arises in physical 

applications. 

Observe that (35) admits the simple solution y(x) = x. To find a second solution, 

and hence a general solution, we can seek y(x) = A(zx)a and follow the steps outlined 

above. Rather, let us simply use the derived result (33). First, we divide (35) by 1 — x” to 

; oy aee ; 2 
reduce it to the form (28), so that we can identify a, (x). Thus, with a,(z) = “and 

“=x? 

Y(az) = x, (33) gives 

ef 2uda/(—2*) dx 

lo odado.4 =|Bp/(++- : . 
[(4+3eticn)erele 
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or, equivalently, 

  
x, l+ez 

y(a) = Cyr + Ce (1-$in7*2). a 

In this example we were able to evaluate the integrals that occurred. In other 

cases we may not be able to, even with the help of computer software, and may 

therefore need to leave the answer in integral form. 

3.6.3. Factoring the operator. (Optional) We have been considering the nth- 

order linear homogeneous equation 

: d” qr} 

or 
(D™ + aD" 1 +-+-+an)y =0, (36) 

d. d? 
where D = —,D? = DD = aod = —5, and so on. 

L x dx 
Suppose, first, that (36) is of constant-coefficient type (i.e., each aj is a con- 

stant), and that the characteristic polynomial \” +a,A"~! +--+ -+an can be focwred 

as (A—A1)(A—A2) «+» (A—An), where one or more of the roots A; may be repeated. 

Then the differential operator L = D™ + a,D"~! +--+ + ap can be factored in 

precisely the same way, as (D — A1)(D — A2)-+:(D — An), where we understand 

(D — \1)(D — A2)-+»(D — An)y to mean that first y is operated on by D — An, 

then the result of that step is operated on by D — \n—1, and so on. That is, we begin 

at the right and proceed to the left. Further, it is readily verified that the sequential 

order of the D — A, factors is immaterial, that is, they commute. If n = 2, for 

instance, 

(D — 1)(D — A2)y = (D = Ar) (y' — Ay) 
= D(y! — A2xy) — Aly’ — Aay) 

= yl" — (Ao + Ardy’ + AtAgy 

and 

(D — d2)(D — Ar)y = (D — Aa) (y! = A2y) 

= Dy! — My) — daly’ ~ Ary) 

=y" — (Ao +Aidy! + A2Ary 

are the same. 
By factoring DL, we are able to reduce the solution of 

(D ~ \1)(D — A2) ++ (D = An)y = 9 (37) 

s
e
a
n
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to the solution of a sequence of 1 first-order equations, each of which is of the form 

y' — py = gor 
(D—p)y = 4, (38) 

where p is a constant and q(x) is known. From Section 2.2, we know that the 

solution of (38) is 

y(a) = eP® (/ e P¥q(a) du + A) , (39) 

where A is an arbitrary constant. 
Let us illustrate with an example. 

EXAMPLE 7. The equation 

yf _ 3y" + dy — 0 (40) 

admits the characteristic roots A = —1, 2,2, so we can factor (40) as 

(D +1)(D — 2)(D — 2)y = 0. . (41) 

We begin the solution procedure by setting 

(D —2)(D —2)y =u, (42) 

so that (41) becomes 

(D+ 1)u = 0, 

with the solution 

u(x) = Ae”. 

Putting the latter into (42) gives 

€D — 2)(D — 2)y = Ae, (43) 

in which we set 

(D —2)y =v. (44) 

Then (43) becomes 

(D —2)v = Ae, 

with the solution 

on | [ -2e 4 As, oa 
v(x) =e" e “Ae *de+B) = “ze “+4 Be*™, 

Finally, putting the latter into (44) gives 

A q Day 

(D ” 2)y = “ge “+ Be**™,
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with the solution 

y(a) — e2® / eat (-$ 58 + pe) daz + c| 

A 7 Yas day 

= 9° + Bre + Ce*™*, 

or, equivalently, 

y(x) = Cye~* + (C2 + Cx) ert 

which is the same solution as obtained by methods discussed in earlier sections. Notice, 

in particular, that the presence of the repeated root \ = 2,2 presented no additional 

difficulty. 

Although the factorization method reduces an nth-order equation to a sequence 

of n first-order equations, it is quite different from the method of reduction of order 

described above in Section 3.6.2. 

Thus far we have limited our discussion of factorization to the constant-coefficient 

case. The nonconstant-coefficient case is more difficult. To appreciate the diffi- 

culty, consider the equation 

yl — a?y = (D? — 2*)y = 0. (45) 

If we can factor D? ~ x? as (D + x)(D — 2), then we can solve (45) by the method 

outlined above. However, 

(D +2)(D —a)y=(D + 2)(y! — 2y) = Diy! —2y) + oly! — 29) 
=y" ay —ytay—ey=y"—(a? +1)y, (46) 

so (D+2)(D—«) = D?—(x? +1) is not the same as D? —x*. The problem is that 

the differential operator on the left-hand side of (46) acts not only on y but also on 

itself, in the sense that an additional term is contributed to the final result, namely 

—y, through the action of the underlined D on the underlined «x. Observe, further, 

that D + x and D — x do not commute since (D + z)(D — x) = D? — (2? +1), 

whereas (D — x)(D +2) = D? — (a? — 1). 
Thus, the following practical question arises: given a nonconstant coefficient 

operator, can it be factored and, if so, how? 

Limiting our attention to equations of second order (which, arguably, is the 

most important case in applications), suppose that a(x) and a(x) are given, and 

that we seek a(x) and b(x) so that 

y! + ay(x)y! + a2(a)y = [D — afx)|[D — b(@)]y. (47) 

Writing out the right-hand side, 

y tary! + aay = (D —a)(y' — by) : 
=y" —(a+b)y + (ab—b')y. (48)
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3.6. Solution of Homogeneous Equation: Nonconstant Coefficients 

Since this equation needs to hold for all (twice-differentiable) functions y, a@ and b 

must satisfy the conditions (Exercise 13) 

a+b=~ay, (49a) 

ab — b! = ag, (49b) 

or, isolating a and b (Exercise 14), 

a’ =a" + (a,)a + (az — a4), (50a) 

b! = —b? — (a1)b — (ag). (50b) 

Each of these equations is a special case of the nonlinear Riccati equation 

  

    y! = p(x)y? + q(x)y + r(x), (51) 
  

which was discussed in Exercise 11 of Section 2.2. 
Thus, from a global point of view, it is interesting to observe that the class of 

second-order equations with nonconstant coefficients is, in a sense, equivalent in 

difficulty to the class of nonlinear first-order Riccati equations. We saw, in Exercise 
11 of Section 2.2 that in the exceptional case where a particular solution Y (2) 
of (51) can be found, perhaps by inspection, the nonlinear equation (51) can be 

converted to the linear equation 

vu! + [2p(2)¥ (x) + q(@)] v = —p(a) (52) 

by the change of variables 
1 

y=Y(a)+ (53) 

Thus, just as we are able to solve the Riccati equation only in exceptional cases, 
we are able to factor second-order nonconstant coefficient equations (and solve 
them readily) only in exceptional cases. In general, then, nonconstant-coefficient 
differential equations are hard in that we are unable to find closed form solutions. 

EXAMPLE 8. Consider the equation 

y ~(a? +1)y=0. (54) 

Here a(x) = O and ag(z) = —(x* + 1), so (50a,b) are 

a =a’ —x* 1, (55a) 

=P +a? $1, (55b) 

In this case we are lucky enough to notice the particular solution a(x) = —x of (55a). 

Putting this result into (49a) then gives (a) = x. [Equivalently, we could have noticed the 
particular solution 6(z2) = a of (55b) and then obtained a(x) = —a from (49a).] Thus, we 

have the factorization 

y" — (a? + 1)y =(D+2)(D —-z)y = 0. (56) 
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Proceeding as outlined above, we are able (Exercise 15) to derive the general solution 

y(z) = Ae® /* + Be® 2 fe ee, (ST) 

Going one step further, suppose that initial conditions y(0) = 0 and y'(0) = 1 are 

prescribed and that we wish to evaluate A and B. First, we re-express (57) in the equivalent 

and more convenient form 

y(e) = Ae®? + Be® 2 fe oF ae, (58) 
0 

We could have used any lower integration limit, but 0 will be most convenient because the 

initial conditions are at 2 = 0. Then 

(0) =0= 0) + (B)(0), 
=1 

where we have used the fundamental theorem of the calculus (Section 2.2) to differentiate 

the integral term. Thus, A = 0 and B = 1, so 

y(z) =e? | en § dé (59) 
0 

is the desired particular solution. # 

The integral in (59) is nonelementary in that it cannot be evaluated in closed 

form in terms of the elementary functions. But it arises often enough so that it has 

been used to define a new function, the so-called error function 

_ = . ed, (60) 

where the 2/\/7 is included to normalize erf(x) to unity as 7 —+ 09 since (as will 

be shown in a later chapter) 

oO 

/ eee (61) 
0 

  

      

2 

The graph of erf(a) is shown in Fig. | for a > 0. For z < 0 we rely on the fact 

that erf(—2) == ~erf(x) (Exercise 18); for instance, erf(—oo) = —erf(oo) = —1. 

Since e~®° is (to within a scale factor) a normal probability distribution, one way 

in which the error function arises is in the study of phenomena that are governed 

by normal distributions. For instance, we will encounter the error function when 

we study the movement of heat by the physical process of f conduction. 

Thus, our solution (59) can be re-expressed as y(x) = \/7/2e"" */2 erf(x). Just 

as we know the values of sin z, its Taylor series, and its various properties, like- 

wise we know the values of erf(x), its Taylor series, and its various properties, so 

n
o
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3.6. Solution of Homogeneous Equation: Nonconstant Coefficients 

we should feel comfortable with erf(x) and regard it henceforth as a known func- 
tion. Though not included among the so-called “elementary functions,” it is one 
of many “special functions” that are now available in the engineering science and 

mathematics literature. 

Closure. We have seen, in this section, that nonconstant-coefficient equations can 
be solved in closed form only in exceptional cases. The most important of these is 
the case of the Cauchy—Euler equation 

7 m—1 
mm d y nol d y 

x + Cio : 
dx” drt 
    

d 
t+ Cyt + Cry = 0. 

dx 

Recall that a constant-coefficient equation necessarily admits at least one so- 
lution in the form e*”, and that in the case of a repeated root of order k the 

solutions corresponding to that root can be found by reduction of order to be 
(Ci + Coe t-0+ + C,ak—1) e**, Analogously, a Cauchy—Euler equation neces- 

sarily admits at least one solution in the form x, and in the case of a repeated root 

of order & the solutions corresponding to that root can be found by reduction of 

order to be [Cy +Colnx+---+C,(In v)P-}] x. 
In fact, it turns out that the connection between constant-coefficient equations 

and Cauchy — Euler equations is even closer than that in as much as any given 
Cauchy—Euler equation can be reduced to a constant-coefficient equation by a 
change of independent variable according to x = e’. Discussion of that point is 
reserved for the exercises. 

Beyond our striking success with the Cauchy—Euler equation, other successes 
for nonconstant-coefficient equations are few and far between. For instance, we 
might be able to obtain one solution by inspection and others, from it, by reduc- 
tion of order. Or, we might, in exceptional cases, be successful in factoring the 

differential operator but, again, such successes are exceptional. Thus, other lines of 
approach will be needed for nonconstant-coefficient equations, and they are devel- 
oped in Chapters 4 and 6. 
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EXERCISES 3.6 
  

1. Derive a general solution for the given Cauchy—Euler equa- (f) x?y"’ + xy! + y = 0; 
tion by seeking y(x) = x. That is, derive the solution, rather (g) x*y’" + 3ay! + 2y = 0; 

conditions, if such conditions are given, and state the interval (j) xy" + zy’ + 4y = 0 

of validity of that solution. (k) xy 4+ Qxy' — Qy = 0; 

(b) ay’ y= 0; y(2)=5 (m) ay!" — 2y! = 0; y 
(c)ay"” +y' =0 (n) ay!” —y"” =0; y(0) = 

(0) a?y"" + wy! — Key = 0 (dj ay ~dy=0; y1)=0, y'(1)=3 in , 
( +ay’—y=0 (e)27y"” +2y'-9y=0; y(2)=1, y'(2)=2 (p) 2°y 

ya)=1, y'G)=0 
8 y(1)=0, y/(l)=2 

than merely use any stated result such as Theorem 3.6.1. Inad- (h) 2?y” —2y=0; y(—5)=3, y'(-5)=0 
dition, find the particular solution corresponding to the initial (j) da2y”+5y=0; y(1)=0, y’Q)=1 

y(3) = 2, y/(3) =2 
(a) ay’ +y =0 (l) (29 +2)2y” —~y=0 HINT: Letz+2=¢. 

H=2, yl) =y"( 
=1 y'(0) = y"(0) 

(« a constant) 

1) 
0 

0
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tt (q) aby" + 2ey! — 2y = 0 
(1) c2y!” + vy" ~ y! = 0 
(s) ey! +4 6xzy"” “+ Tey’ + y= 0 

(t) atyl" + bah yy" + 307 y"" _ Bay! - Ay —_ 0 

(u) cty!” + Gary!” + 8x%y" ~ 3cy’ + y = 0 

(vy ay" — y= 0; yO) =5, 
y’(1) = y"(1) = y!"(1L) = 0 
2. (a)-(v) For the corresponding problem in Exercise 1, use 

computer software to obtain a general solution, as well as a 

particular solution if initial conditions are given. 

3. Putting (9) into (3), show that the equation 7A” + A’ = 0 

results, as claimed below equation (9). 

4. Solve (10), and derive the general solution A(z) = DIna+ 

C stated below equation (10). 

5. Fill in the steps between (26) and (27). 

6. Prove that the two solutions within (33) [or, equivalently, 

(34)] are necessarily LI. You may assume that aj (a) is contin- 

uous on the x interval of interest. HINT: Recall the fundamen- 

tal theorem of the calculus (given in Section 2.2). 

7. It was stated in the Closure that any given Cauchy—Euler 

equation can be reduced to a constant-coefficient equation by 

the change of variables x = e', In this exercise we ask you to 

try that idea for some specific cases; in the next exercise we ask 

for a general proof of the italicized claim. Let y(a(t)) = Y(¢), 
and let y’ and Y’ denote dy/dz and dY/dt, respectively. 

(a) Show that the change of variables 2 = e' reduces the 

Cauchy—Euler equation x*y” — xy’ — 3y = 0 to the constant- 

coefficient equation Y” ~ 2Y’ — 3Y = 0. Thus, show that 

Y(t) = Aew' + Be**, Since t = Ina, show that y(a) = 
Agw} + Bot, 

(b) Same as (a), for z7y" + vy’ ~ dy = 0. 
(c) Same as (a), for 27y"” + zy’ + 4y = 0. 
(d) Same as (a), for z?y" + 32ry' + y = 0. 
(e) Same as (a), foray” + zy! — 9y = 0. 
(f) Same as (a), for z7y" + y = 0. 
(g) Same as (a), for v*y" + 2ay! — 2y = 0. 
(h) Same as (a), for 4a?y” ~ y = 0. 

8. First, read the introduction to Exercise 7. Consider the gen- 

eral Cauchy~Euler equation 

(a” Dp" 4 eat i pn! tee to, e@D+ Cn) y= 0, 

(8.1) 
where D = d/dx. Let x = e‘, and define y(x(t)) = Y(¢). 

(a) Using chain differentiation, show that 

Dy = DY, 
x’ D*y = D(D—1)¥, 
aD y = D(D —1)(D — 2)Y, 

(8.2) 

Chapter 3. Linear Differential Equations of Second Order and Higher 

where D acting on y(x) means d/dx and D acting on Y(t) 

means d/dt. 
(b) The results (8.2) suggest that the formula 

a* D'y = D(D—1)---(D-k+Y, (8.3) 

holds for all positive integers k. Prove that (8.3) is indeed 

correct. HINT: Use mathematical induction. That is, assume 

that (8.3) holds for any given positive & and, by differentiating 

both sides with respect to x, show that 

okt! petty = D(D—1)---(D—k)Y, (8.4) 

which is the same as (8.3) but with k changed to k + 1. Thus, 

it must be true that (8.3) holds for all positive integers k. 

(c) Finally, replacing each z* D*y in (8.1) by the correspond- 

ing right-hand side of (8.3), state why the resulting differential 

equation on Y (¢) will be of constant-coefficient type. 

9, (Electric potential) The electric potential ® within an an- 

nular region such as a long metal pipe of inner radius r; and 

outer radius re, satisfies the differential equation 

ae de 
rape ir = 0. (ry <r< ra) 

Solve for the potential distribution @(r) subject to these 

boundary conditions: 

(a) ®(r,) = @;, (rg) = Be 

1d (b) = (rs) =0, P(r) =, 

10. (Steady-state temperature distribution) The steady-state 

temperature distribution u within a hollow sphere, of inner 

radius r, and outer radius r2, is governed by the differential 

equation 

du du 
= 0. Tay t+ eS 

dr? dr 

Solve for u(r) subject to these boundary conditions: 

(a)u(r}) = tw, ulre) = Ue 
du 

(b) (7) = 3, “u(rg) = 0 
dr l 

u 
(c) u(r) = U1, a (ra) = 0 

EXERCISES FOR OPTIONAL SECTION 3.6.2 

11. Use the given solution y;(z) of the differential equation to 

find the general solution by the method of reduction of order 

(leaving the second solution in integral form if necessary). 

 



  

(ayy + ay’ -y=0; yi(a) =a 
(b) ay” tay -~y=0; yi(e) =a 
(c) 82y" — ay’ +y=0; yw(z) =a 
(d) (u? ~ Ly" —2y = 0; wile) =a? -1 
(e) 2y" + xy’ —2y=0; y(a) =a" +2 
12. (a)~(e) Obtain a general solution of the corresponding 

differential equation in Exercise 11, using computer software. 

EXERCISES FOR OPTIONAL SECTION 3.6.3 

13. State, clearly and convincingly, logic by which (49a,b) 

follow from (48). 

14. Fill in the steps between (49a,b) and (50a,b). 

15. Provide the steps that are missing between the equation 
(56) and its solution (57). 

16. If a,(2) and ag(a) are constants, then the factorization 
(47) should be simple. Show that the Riccati equations (50a,b) 

on a and 6 do indeed give the same results for a and 6 as can 

be obtained by more elementary means. 

17. In general, the Riccati-type equations (50a,b) are hard. 

However, we should be able to solve them if the given 

nonconstant-coefficient equation y” + a;(z)y’ + ao(x)y = 0 
is a Cauchy—Euler equation because that case is simple. Thus, 

use the method of factoring the operator for these equations: 
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(a) wy” — 2ay’ + 2y = 0 
(b) w?y" + ay’ + 9y = 0 
(c) a?y" + vy! — 9y = 0 
(d) x2y" + Say’ + 4y = 0 

18. From its integral definition, (60), show that erf(—x) = 
~erf(x). 

19. (Integral representations) The notion of an integral rep- 

resentation of a function, as used in (60) to define the error 

function erf(x), might be unfamiliar to you. If so, it might 

help to point out that even the elementary functions can be 

introduced in that manner. For example, one can define the 

logarithm In as 

[ dt 
Ina = —, 

1 & 

from which formula the values of Inz can be derived (by 

numerical integration), and its various properties derived as 

well. 

(x > 0) (19.1) 

(a) To illustrate the latter claim, use (19.1) to derive the well 

known property ln 2? = alnz of the logarithm. 

(b) Likewise, use (19.1) to derive the property In(zy) = 

Ing +Iny. 

  

3.7 Solution of Nonhomogeneous Equation 

Thus far, for differential equations of second-order and higher, we have studied only 
the homogeneous equation L[y] = 0. In this section we turn to the nonhomogeneous 
case 

Ly] = f(x), () 

where L is an mth-order linear differential operator. That is, this time we include a 

nonzero forcing function f(x). 
Before proceeding with solution techniques, let us reiterate that the function 

f (2) (that is, what’s left on the right-hand side when the terms involving y and its 
derivatives are put on the left-side side) is, essentially, a forcing function, and we 

will call it that, in this text, as a reminder of its physical significance. 
For instance, we have already met (Section 1.3) the equation 

dex dx 
meee tC ba at 2 may tea + ke F(t) (2) 

governing the displacement x(t) of a mechanical oscillator. Here, the forcing func- 
tion is the applied force F(t). For the analogous electrical oscillator (Section 2.3),
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Figure 1. Beam on elastic 

foundation. 

governed by the equations 

@i di 1. dE(t) 
apt tat oa (3) 

on the current 7(t), and 

dQ dQ 1 
—~ +R—+—5Q= ht 4 ae ta + Ge = FO ae 

on the charge Q(t) on the capacitor, the forcing functions are the time derivative of 

the applied voltage E(t), and the applied voltage E(t), respectively. 
As one more example, we give (without derivation) the differential equation 

L 

di 

BITG +ky = w(2) (5) 

governing the deflection y(x) of a beam that rests upon an elastic foundation, un- 

der a load distribution w(x) (i.e., load per unit 2 length), as sketched in Fig. 1. 

E, I, and k are known physical constants: E is the Young’s modulus of the beam 

material, J is the inertia of the beam’s cross section, and k is the spring stiffness 

per unit length (force per unit length per unit length) of the foundation. Thus, in 

this case the forcing function is w(z), the applied load distribution. [Derivation of 

(5) involves the so-called Euler beam theory and is part of a first course in solid 

mechanics. ] 

3.7.1. General solution. Remember that the general solution of the homoge- 

neous equation L[y] = 0 is a family of solutions that contains every solution of 

that equation, over the interval of interest. Likewise, by the general solution of the 

nonhomogeneous equation L[y| = f, we mean a family of solutions that contains 

every solution of that equation, over the interval of interest. 

Like virtually all of the concepts and methods developed in this chapter, the 

concepts that follow rest upon the assumed linearity of the differential equation (1), 

in particular, upon the fact that if D is linear then 

Llau(x) + Bv(x)| = aL[u(x)] + BL[v(z)] ) 

for any two functions u,v (n-times differentiable, of course, if D is an nth-order 

operator) and any constants a, 3. Indeed, recall the analogous result for any number 

of functions: 

Llayuy(x) +--+ + apug(2)] = ar Llur(x)] + +++ + o¢L[ur(2)] (7) 

for any functions u,,..., ux, and constants a1,..., QR. 

To begin, we suppose that y;,(x) is a general solution of the homogeneous 

version of (1), L[y] = 0, and that y, (2) is any particular solution of (1): L[yp(x)] = 

f(x). That is, yp(a) is any function which, when put into the left-hand side of (1), 

gives f(x). We will refer to y,(x) and y,(a) as homogeneous and particular 

solutions of (1), respectively. [Some authors write y-(z) in place of yp(a), and call 

it the complementary solution. |
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THEOREM 3.7.1 General Solution of Lily] = f 
If yn(x) and yp(a) are homogeneous and particular solutions of (1), respectively, 

on an interval J, then a general solution of (1), on J, is 

y(x) = ya(2) + yp(2). (8) 
  

Proof: That (8) satisfies (1) follows from the linearity of (1): 

L(yn(x) + yp(x)| = £[yn(x)] + £ [yp(x)) 

=0+ f(x) = fle), 

where the first equality follows from (6), with a = @ = 1, and u,v equal to yp, and 

Yp, tespectively. 
To see that it is a general solution, let y be any solution of (1). Again using the 

linearity of L, we have 

Lily — yp] = Lly| - lly] = f~-f =9, 

so that the most general y ~ y, is a linear combination of a fundamental set of 
solutions of the homogeneous version of (1), namely y,. Hence y = yr + Yp i8 a 

general solution of (1). @ 

Thus, to solve the nonhomogeneous equation (1) we need to augment the ho- 

mogeneous solution y,(x) by adding to it any particular solution yp(2). 
Often, in applications, f(x) is not a single term but a linear combination of 

terms: f(x) = fi(a) + +--+ f(x). In the equation L[y] = 5x2? — 2sin xz + 6, for 
instance, we can identify fy(a) = 5x7, fo = —2sina, and f3(x) = 6. 

  

THEOREM 3.7.2 General Solution of L[y| = fi +--- + Sr 
If yn(z) is a general solution of L[y] = 0 on an interval J, and ypi(x),..-, Ypk(2) 
are particular solutions of Ely] = fi,...,£[y] = f, on J, respectively, then a 

general solution of Diy] = fy +----+ fe on Lis 

ye) = yale) + yprle) +--+ ype): (9) 
  

Proof: That (9) satisfies (1) follows from (7), with all the a’s equal to L: 

Llyn + upp b+ + Upkl = L [yn] + L [yp] +--+ + L [ype 
=O+fitec+ fe 
=fptoot fe, (10) 
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as was to be verified. 

To see that it is a general solution of (1), let y be any solution of (1). Then 

Ly ~ Ypt — +++ ~ pk] = Ely) — Llypi] — + — L Lype] 
=f-fi---- fe =9, 

so the most general y — yp1 — ++: — Ypx is a general solution y;, of the homogeneous 

version of (1). @ 

This result is a superposition principle. It tells us that the response yp to 

a superposition of inputs (the forcing functions fi,..., f,) is the superposition of 

their individual outputs (yp1,..-, Ypk)- 

The upshot is that to solve a nonhomogeneous equation we need to find both 

the homogeneous solution y, and a particular solution yp. Having already devel- 

oped methods for determining y, — at least for certain types of equations - we 

now need to present methods for determining particular solutions yp, and that is the 

subject of Sections 3.7.2 and 3.7.3 that follow. 

3.7.2. Undetermined coefficients. The method of undetermined coefficients is 

a procedure for determining a particular solution to the linear equation 

Ly] = f(x) | 
= filz) +++-+ fel), (11) 

subject to two conditions: 

(i) Besides being linear, L is of constant-coefficient type. 

(ii) Repeated differentiation of each f;(x) term in (11) produces only a finite 

number of LI (linearly independent) terms. 

To explain the latter condition, consider f;(a) = 2xe~*. The sequence con- 

sisting of this term and its successive derivatives is 

Qre~" —+ {2re~*, 2e~* — 2ae™*, —de™™ + 2re", ...}, 

and we can see that this sequence contains only the two LI functions e~* and ze~. 

Thus, f;(2) = 2xe~” satisfies condition (ii). 
As a second example, consider f;(x) = x”. This term generates the sequence 

wu? —+ {x 2x,2,0,0,.--}, 

which contains only the three LI functions x”, x, and 1. Thus, fj(x) = x” satisfies 

condition (ii). 
The term f;(x) = 1/2, however, generates the sequence 

1/ze —+ {1/z, —1/x,2/2°,-6/x",...},
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which contains an infinite number of LI terms (1/2, 1/27, 1/x?,...). Thus, f;(w) = 
1/« does not satisfy condition (ii). 

If the term f;(«) does satisfy condition (ii), then we will call the finite set of 
LI terms generated by it, through repeated differentiation, the family generated by 
f(x). (That terminology is for convenience here and is not standard.) Thus, the 

family generated by 27e~* is comprised of e~* and ve~*, and the family generated 
by 32° is comprised of x, x, and 1. 

Let us now illustrate the method of undetermined coefficients. 

EXAMPLE 1. Consider the differential equation 

yl! —y" = 3x" — sin 2a. (12) 

First, we see that L is linear, with constant coefficients, so condition (i) is satisfied. Next, 

we identify fi (x), fo(x), and their generated sequences as 

file) = 3c? —+ {327,62,6,0,0,...}, (13a) 

fo(e) = —sinde —» {—sin2z2,~2cos2z,4sin 22,...}. (13b) 

Thus, f; and fo do generate the finite families 

fi(z) = 3x? —+ {x?,2,1}, (14a) 

fo(x) = —sin2c —» {sin 2z,cos2zr}, (14b) 

so condition (ii) is satisfied. 

To find a particular solution y,1 corresponding to f1, tentatively seek it as a linear 

combination of the terms in (14a): 

Yp1 (2) = Ac? + Br+C, (15) 

where A, B,C are the so-called undetermined coefficients. Next, we write down the 

homogeneous solution of (12), 

yn(@) = Cy + Cox + Cye* + Cye™®, (16) 

and check each term in yp1 [i.e., in (15)] for duplication with terms in y,. Doing so, we 

find that the Ba and C terms in (15) duplicate (to within constant scale factors) the Cox 

and C’; terms, respectively, in (16). The method then calls for multiplying the entire family, 

involved in the duplication, by the lowest positive integer power of x needed to eliminate 

all such duplication. Thus, we revise (15) as 

Yp1 (@) =a (Az? + Br+C) = Ac? + Ba? + Ce, (17) 

but find that the Ca term in (17) is still “in violation” in that it duplicates the Cya term in 

(16). Thus, try 

Ypi(a) =v? (Ar? + Ba +C) = Axt + Ba? + C2’, (18) 

This time we are done, since all duplication has now been eliminated. 
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Next, we put the final revised form (18) into the equation yl! — y" = 82? [ie., 

L{y| = fi(x)] and obtain 

24A ~ 12An® — 6 Ba —2C = 32”. (19) 

Finally, equating coefficients of like terms gives 

x: ~12A = 3 

a: -~6B = 0 (20) 

1: 24A —-2C = 0, 

so that A = —1/4, B = 0, C = —3. Thus 

re) 
Ypi(z) = “qe 3a. (21) 

Next, we need to find yp corresponding to f2. To do so, we seek it as a linear combi- 

nation of the terms in (14b): 

Yp2(x) = Dsin 2x + Ecos 2a. (22) 

Checking each term in (22) for duplication with terms in y,, we see that there is no such 

duplication. Thus, we accept the form (22), put it into the equation yi —y" = —sin22 

{ie., L[y] = fo(x}}, and obtain 

90D sin 2x + 20F cos 2x = —sin2ze. (23) 

Equating coefficients of like terms gives 20D = —l, and 20E = 0, so that D = —1/20 

and & = Q. Thus, 
1 

Yp2(2) = 30 sin 2x. (24) 

Finally, a general solution of (12) is, according to Theorem 3.7.2, 

y(@) = yale) + Yp(e) = yale) + Ypale) + Ypal), 
namely, 

. Pe 1. 
y(a) = Cy + Coz + Cye* + Cye7* — ic ~ 3x? — 0 sin 20. (25) 

COMMENT 1. We obtained (20) by “equating coefficients of like terms” in (19). That step 

amounted to using the concept of linear independence — namely, noting that 1,z,27 are 

LI (on any given z interval) and then using Theorem 3.2.6, Alternatively, we could have 

rewritten (19) as 

(244 — 2C)1 + (-6B)x + (-12A — 3)a* = 0 (26) 

and used the linear independence of 1, 2, x* to infer that the coefficient of each term must 

be zero, which step once again gives (20). 

COMMENT 2. The key point in the analysis is that the system (20), consisting of three 

linear algebraic equations in the three unknowns A, B, C,, is consistent. Similarly for the 

system 20D = —1, 20H = 0 governing D and E. The guarantee provided by the method
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of undetermined coefficients is that the resulting system of linear algebraic equations on 

the unknown coefficients will indeed be consistent, so that we can successfully solve for 

the undetermined coefficients. What would have happened if we had used the form (15) 

for yp(x) instead of (18) ~ that is, if we had not adhered to the prescribed procedure? We 

would have obtained, in place of (20), the equations 

x: O=3 
xu: 0=0 

1: —~2A = 0, 

which are inconsistent because the “equation” 0 = 3 cannot be satisfied by any choice of 

A, B,C. That is, (15) would not have worked. @ 

Let us summarize. 
  

STEPS IN THE METHOD OF UNDETERMINED COEFFICIENTS: 

1. Verify that condition (1) is satisfied. 

2. Identify the f;(2)’s and verify that each one satisfies condition (ii). 

3. Determine the finite family corresponding to each f; (a) [(14a,b) in Example 

I]. 

4. Seek ypi(x), tentatively, as a linear combination of the terms in the family 

corresponding to f;(2) [(15) in Example 1]. 

5. Obtain the general solution y,(x) of the homogeneous equation [(16) in Ex- 

ample 1]. 

6. If such duplication is found, multiply the entire linear combination of terms 
by the lowest positive integer power of x necessary to remove all such dupli- 
cation between those terms and the terms in y, {(18) in Example 1]. 

7. Substitute the final version of the form assumed for yp; (2) into the left-hand 

side of the equation L[y] = f ,, and equate coefficients of like terms. 

8. Solve the resulting system of linear algebraic equations for the undetermined 
coefficients. That step completes our determination of yp (x). 

9. Repeat steps 4—8 for Yp2,..., Ypk- 

10. Then the general solution of L[y ] = fi t+: + fx is given, according to 
Theorem 3.7.2, by y(x) = ypn(2) + yp(a (x) = yn() + Ypi(@) + +++ + ype (a): 
  

EXAMPLE 2. Asa final example, consider 

y’ —9y = 4+ 5sinh 32, (27)
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which is indeed linear and of constant-coefficient type. Since 

fi(z)=4 —+ {4,0,0,...}, 

fo(x) =5sinh3c¢ —> {5sinh 32, 15cosh3z, 45 sinh 32,...}, 

we see that these terms generate the finite families 

fi(z) =4—- {1}, 

fo(x) = 5sinh32¢ —> {sinh 32, cosh 3z}, 

so We tentatively seek 

Ypi (a) = A. (28) 

Since 

yn(x) = Cye®* + Che7**, (29) 

there is no duplication between the term in (28) and those in (29). Putting (28) into y” — 

9y = 4 gives —9A = 4, s0 A = —4/9, Thus, 

4 
Ypi(c) = “5: (30) 

Next, we tentatively seek 

Yp2(x) = B sinh 3x + C cosh 32. (31) 

At first glance, it appears that there is no duplication between any of the terms in (31) 
and those in (29). However, since the sinh 3z and cosh 3z are linear combinations of e8” 
and e~%*, we do indeed have duplication. Said differently, each of the sinh 3x and cosh 3x 
terms are solutions of the homogeneous equation. Thus, we need to multiply the right-hand 
side of (31) by x and revise yp as 

Yp2(z) = « (B sinh 3x + Ccosh 32). (32) 

Now that Yp2 iS in a satisfactory form we put that form into y” ~ 9y = 5sinh 3q [ice., 
L{y] = fo(x)] and obtain the equation 

(3C + 3C) sinh 3x + (3B + 3B) cosh 3x 

+(9B — 9B)zx sinh 3x + (9C — 9C)x cosh 3x = 5sinh3z. 

Equating coefficients of like terms gives B = 5/6 and C' = 0, so 

a, 
Yp2 (x) = 62 sinh 32. (33) 

It follows then, from Theorem 3.7.2, that a general solution of (27) is 

a, 4 5 
y(a) = Cye®* + Cae7°* — 9 + 62 sinh 3z. (34)
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Naturally, one’s final result can (and should) be checked by direct substitution into the 

original differential equation. 

COMMENT. Suppose that in addition to the differential equation (27), initial conditions 

y(0) = 0, y’(0) = 2 are specified. Imposing these conditions on (34) gives Cy = 5/9,C2 = 
—1/9, and hence the particular solution 

By, 1 _. 4 5 
y(2) = 5° ~ s° "5 + 62 sinh 3c. (35) 

Do not be concerned that we call (35) a particular solution even though each of the two ex- 

ponential terms in (35) is a homogeneous solution because if we put (35) into the left-hand 

side of (27) it does give the right-hand side of (27); thus, it is a particular 

solution of (27). @ 

As a word of caution, suppose the differential equation is 

y” — 3y' + 2y = Qsinha, 

with homogeneous solution Cye” + Coe**. Observe that 2sinha = e* — e7* 
contains an e* term, which corresponds to one of the homogeneous solutions. To 
bring this duplication into the light, we should re-express the differential equation 
as 

y” — 3y + 2y=e™-—e* 

before beginning the method of undetermined coefficients. Then, the particular 
solution due to fi(x) = e® will be ypi(x) = Axe® and the assumed particular 
solution due to fo(a) = e~* will be ypo(z) = Be?*. We find that A = ~1 and 
B = —1/6 so the general solution is 

y(z) = Cye™ + Coe*® — ze® — we. 

Closing this discussion of the method of undetermined coefficients, let us re- 
consider condition (ii), that repeated differentiation of each term in the forcing 

function must produce only a finite number of LI terms. How broad is the class of 
functions that satisfy that condition? If a forcing function f satisfies that condition, 
then it must be true that coefficients aj exist, not all of them zero, such that 

ag f™) + ay fN-) 4... bay f! tan f =0 (36) 

over the x interval under consideration. From our discussion of the solution of such 

constant-coefficient equations we know that solutions f of (36) must be of the form 
Ca™ele+18)® or a linear combination of such terms. Such functions are so com- 

mon in applications that condition (ii) is not as restrictive as it may seem. 

3.7.3. Variation of parameters. Although easy to apply, the method of unde- 
termined coefficients is limited by the two conditions cited above — that L be of 

[41
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constant-coefficient type, and that repeated differentiation of each f(a) forcing 

term produces only a finite number of LI terms. 

The method of variation of parameters, due to Lagrange, is more powerful 

in that it is not subject to those restrictions. As with automobile engines, we can 

expect more power to come at a higher price and, as we shall see, Lagrange’s 

method is indeed the more difficult to apply. 

In fact, we have already presented the method, in Section 2.2, for the general 

linear first-order equation 

y' + p(x)y = q(x), (37) 

and we urge you to review that discussion. The idea was to seek a particular solu- 

tion yp» by varying the parameter A (i.e., the constant of integration) in the homo- 

geneous solution 

yn(w) = Aew JP 4, 
Thus, we sought 

up(w) = A(aje LP, 
put that form into (37) and solved for A(z). 

Likewise, if an nth-order linear differential equation L[y| = f has a homoge- 

neous solution 

ya(t) = Cryi(a) +--+ Cayn(2), (38) 

then according to the method of variation of parameters we seek a particular solu- 

tion in the form 

Yp(x) = Cy(z)yi(a) +++ Ch(x)yn(2); (39) 

that is, we “vary the parameters” (constants of integration) Cy,..., Cy in (38). 

Let us carry out the procedure for the linear second-order equation 

Lily] = y" + pi(a)y' + po(x)y = f (2), (40) 

where the coefficients py(x) and po(x) are assumed to be continuous on the x 

interval of interest, say [. We suppose that 

yn(x) = Crys (x) + Coya(2) (41) 

is a known general solution of the homogeneous equation on J, and seek 

yp(a) = Cr(w)yi(x) + Co(x)y2(e). (42) 

Needing yj, and y,,, to substitute into (40), we differentiate (42): 

uy, = Cry, + Coyy + Ci + Cyr. (43) 

Looking ahead, y,, will include C1, C2, 4 ,C4, CY, C7 terms, so that (40) will be- 

come a nonhomogeneous second-order differential equation in Cy and Cg, which 

can hardly be expected to be simpler than the original equation (40)! However, it
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will be only one equation in the two unknowns C, C2, so we are free to impose 

another condition on C,, Cy to complete, and simplify, the system. 

An especially convenient condition to impose will be 

Cry + Chye = 9, (44) 

for this condition will knock out the CC terms in (43), so that y will contain 

only first-order derivatives of C, and C2. Then (43) reduces to Up = Chy, + Coy}, 

so 

Up = Cry + Coys + Cry + Chys, (45) 
and (40) becomes 

Ci (yl + pry, + payr) + C2 (yg + piys + poye) + Cly + Coys = f. (46) 

The two parenthetic groups vanish by virtue of y; and yg being solutions of the 
homogeneous equation L/y] = 0, so (46) simplifies to Cy, + Chys = f. That 
result, together with (44), gives us the equations 

yiCy + yeCh = 0, Yi, + Y20o (47) 

yi Cy + yyCy = f 

on Cy, C$. The latter will be solvable for C{, CS, uniquely, if the determinant of 
the coefficients does not vanish on J. In fact, we recognize that determinant as the 

Wronskian of y; and yo, 

W yi, yo] (x) 

  

yi()  y2(x) 
yy(e) yy(2) ; @s) 

and the latter is necessarily nonzero on J by Theorem 3.2.3 because y; and yo are 

LI solutions of L[y] = 0. 
Solving (47) by Cramer’s rule gives 

  

    

| 0 yp | yO | 
Cl(a) = f oY — Wile) Cha) = yf _ Wale) 

wi YP W(x) YL Y2 W(a)- 
yi ‘a yi YS   

    

where WV, 'Vo simply denote the determinants in the numerators. Integrating these 

equations and putting the results into (42) gives 

EPP ME) Wel) rel obo c 
Yp(a) = / re) as yi(e) + / Te is yo(x), (49) 
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or, more compactly, 

yp() = [ Oe (Eyal) ge. (50)   

EXAMPLE 3. To solve 

yl! — 4y = 8e**, (S1) 

we note the general solution 

yn() = Ce®® + Cae7** (52) 

of the homogeneous equation, so that we may take yil(2) = e**,yo(x) = e~ 2", Then 

W(x) = yuh —yiye = —4,Wi(x) = —f()yo(2) = -8ee* = —8, and Wa(a) = 
f(x)yi(a) = 8e?*e?* = 2e**, so (49) gives 

Up(2) = ([ 2a) er + ([ —2e'é as) ent 

eit e2t 

= (22 + A)e?* + (-F + a) e7 2 = Qre™* — z + Ae?* + Be~?*, (53) 

where A, B are the arbitrary constants of integration. We can omit the A, B terms in (53) 

because they give terms (Ae?* and Be~2*) that merely duplicate those already present in 

the homogeneous solution y,. That will always be the case: we can omit the constants 

of integration in the two integrals in (49). In the present example we can even drop the 

—e** /2 term in the right side of (53) since it too is a homogeneous solution [and can be 

absorbed in the C,e2" term in (55)]. Thus, we write 

Yp(e) = Qre**, (54) 

Finally, 

y(x) = yn(v) + yp(x) = Cye"* + Coe7** + Qae** (55) 

gives a general solution of (51). @ 

3.7.4. Variation of parameters for higher-order equations. (Optional) For 

higher-order equations the idea is essentially the same. For the third-order equation 

Liy| = y"" + pila)y" + po(a)y! + pale)y = F(z), (56) 

for instance, if 

ya(a) = Cryi(x) + Coye(x) + Cays(x) (97) 

is known, then we seek 

Yp(z) = Cy(a)yr(w) + Ca(a)ya(x) + C'3(a)y3(2). (58) 

Looking ahead, when we put (58) into (56) we will have one equation in the 

three unknown functions Cy, C2, C3, so we can impose two additional conditions



3.7. Solution of Nonhomogeneous Equation 

on C1, Cy, Cs to complete, and simplify, the system. Proceeding, differentiation of 

(58) gives 

p(t) = Cry + Coyg + Cayg + Clyr + Coy + Coys, (59) 

so we set 

Cry + Coy + Cyy3 = 0 (60) 
to suppress higher-order derivatives of Cy, Co, C's. Then (59) reduces to 

Up = Cryy + Coyy + Cay, (61) 

and another differentiation gives 

Up = Cry + Coyy + Cayg + Clu + Coys + Cayp. (62) 

Again, to suppress higher-order derivatives of C), Co, C3, set 

Chyt + Chys + Cyy5 = (63) 

Then (62) reduces to 

Up = Cry + Cayy + Cag, (64) 
sO 

Up = Cry! + Coys! + Coys! + Clyy + Cay + Coys. (65) 
Finally, putting (65), (64), (61), and (58) into (56) gives 

Cy (yi! + pry + pay, + payi) + Co (yh! + piyd + pays + psy2) 

+C1 (3 + piys + pays + pays) + Cly + Chyf + Cayy = f, (66) 

or 

Cry + Chyg + Cyus = f (67) 
since each of the three parenthetic groups in (66) vanishes because yj, ye, y3 are 

homogeneous solutions. 

Equations (60), (63), and (67) are three linear algebraic equations in C}, C5, C4: 

yiCy + yoCg + ypC3 = 0, 

WiCl + oCs + u8C3 = 0, (68) 
yl! (+ WC + yfCh a f. 

That system is uniquely solvable for C{,C%, C4 because the determinant of the 

coefficients is the Wronskian determinant of yz, yo, y3, 
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Yi Y2 U3 

Wlytsye,ysl(@) =) yp ue UR | (69) 
tt 
Yi Yo Us 

which is nonzero on the interval I because y1, ye, y3 are LI on J by the assumption 

that (57) is a general solution of the homogeneous equation Ly] = 0. Solving (68) 

by means of Cramer’s rule gives 

  

  

0 yo ys yr O ys 

0 Ys Ys y, 0 YB 

or lh AE Wie) gy tf | Wa) 
W(x) W(x)’ ° W(x) We) gy 

yi ye 0 

yi yy 0 

cp a tf | Wal) 
3 W(x) Wa)’ 

Finally, integrating these equations and putting the results into (58) gives the 

particular solution 

ipl) = if ie ae yi(z) + if mete ae] yo(z) 
  

    
  

” Walé) ” 3 
+ / is y3(a). 

| W(é) 

EXAMPLE 4. Consider the nonhomogeneous Cauchy—Euler equation 

yl”! + a7y" — Qay' + 2y= = (0<2< oo) (72) 

Observe that we cannot use the method of undetermined coefficients in this case because 

the differential operator is not of constant-coefficient type, and also because the forcing 

function does not generate only a finite number of linearly-independent derivatives. 

To use (71), we need to know yi, yo, y3, and f. It is readily found that the homoge- 

neous solution is 
1 : 

Yala) = Cl— + Con + Cyn”, (73) 
£ 

so we can take y, = L/z, yo = @, y3 = z?, But be careful: f(x) is not 2/a because (72) 

is not yet in the form of (56). That is, (72) must be divided by x so that the coefficient of 

y' becomes 1, as in (56). Doing so, it follows that f(x) = 2/x'. 

sa
ms
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We can now evaluate the determinants needed in (71): 

wet og 2 6 0 x x 9 

W(a) =| -x7? 1 Q2 |= 2 Wilz) = 0 1 Qwi= ai? 

2z7-3 0 2 24x74 0 2 

at 0 x 5 at og 0 4 

Wo(a) =] -27? 0 Qe l= a Wa(a) =| -27? 1 #0 [= oe 

2273 Qa 4 Q , Qa78 0 a4 ‘ 

(74) 
so (71) gives 

1 1 ed 7 2 
= =~ d& } — —=— dé}: az d 2 wtol=([xeee) E+ (J -gxee)e+ (J geet) 
= Ing i (75) 

32 182 

The ~-1/(182) term can be dropped because it is a homogeneous solution, so 

ling 
= lo 76 

Yp(z) 3 x ) ( ) 

as can be verified by direct substitution into (56). @ 

Generalization of the method to the nth-order equation 

J + pi(eyy? +++ + pr-a(a)y! + pn(a)y = f(a) (77) 

is straightforward and the result is 

Yp(«) = if Wey ae yi(z) +e + if we is Yn(2X), (78) 

  

    
  

where the y;’s are n LI homogeneous solutions, W is the Wronskian of y1,.-.; Yns 
and W; is identical to W, but with the jth column replaced by a column of zeros — 

except for the bottom element, which is f. 

Closure. In this section we have discussed the nonhomogeneous equation L[{y] = 

f, where L is an nth-order linear differential operator. 

In Section 3.7.1 we provided the theoretical framework, which was based upon 
the linearity of L. Specifically, Theorem 3.7.1 showed that the general solution 
of Lily] = f can be formed as the sum of a homogeneous solution yp(), and a 
particular solution yp,(x); yn(x) is a general solution of L[y] = 0, so it contains the 
n constants of integration, and y,(z) is any particular solution of the full equation 

Lly| = f. Further, we showed that if f is broken down as f = fi +::: + fr, 
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then yp is the sum of particular solutions Ypt, - 

respectively. 

.-) Ypk Corresponding to fi,-.-, tks 

Having studied homogeneous equations earlier, we considered yp, as known 

and focused our attention, in Sections 3.7.2 and 3.7.3, on methods for finding par- 

ticular solutions yp: undetermined coefficients and variation of parameters, Of 

these, the former is the easier to implement, but it is limited to cases where L is 

of constant-coefficient type and where each f;(x) has only a finite number of LI 

derivatives. The latter is harder to apply since it requires integrations, but is more 

powerful since it works even if L has nonconstant coefficients, and for any func- 

tions f(x). 

  

EXERCISES 3.7 
  

1. Show whether or not the given forcing function satisfies 

condition (ii), below equation (11). If so, give a finite family 

of LI functions generated by it. 
(a) x? cos x (b) cos sinh 2x 
(c) nz (d) c?7Inz 

(e) sina /x (f) ee 

(g) e'* (h) (w@ — 1)/(z + 2) 
(i) tan 2 (j) e® cos 3a 

(k) e8e7* sinha (1) cos x cos 2x 
(m) sin z sin 2a sin 3x (n) e*/(z +1) 
2. Obtain a general solution using the method of undetermined 

coefficients. 

(a) y! — 3y = re** + 6 
(b) yi +y=a' + 2x 
(c) y’ + 2y = 3e" + 4sing 

(d) y' — 38y = we** +4 
(ey ty=5-e™* 
(Ny -y = ae 
(g)y" —y! = 5sin 2x 
(h) y” +y' = dee” + 3sing 
(i) y” + y = 3sin 22 ~5 + 22° 

Gy! +y' -%wy=a-e* 
(ky +y = 6cosz +2 
(1) y+ 2y! = 2? + 4e** 
(m) y” ~ 2y' + y = we" 
(n) y"” — 4y = 5(cosh 22 ~ x) 
(0) y" _ y! = Qre% 

(:p) y!" — y' = 25cos 22 

(q) yl!" — y" = 6a + 2coshz 

(r) yl" + y"” — 2y = 3x? - 1 

(s) yy" — y = (a + cosa) 
3. (a)—(s) Use computer software to solve the corresponding 

problem in Exercise 2. 

4. Obtain a general solution using the method of variation of 

parameters. 

(a) y! “be 2y _ de2t 

(b)y —-y=aze? +1 

(c)ay!-y=a? 
(d)zy’+y=1/e (> 0) 
(e)a8y +a2°2y=1 («> 0) 
hy" —y =8e 
(g) y" —y = 8e" 

(h) y"” — 2y! + y = 62? 
G) y"” — 2y! + y = 2e* 
Qy" +y = 4sing 
(k) y” + 4y! + 4y = 2072" 

(1) 6y" — 5y! + y = @? 
(m) 3y" + 2°y' —day=1 (# > 0) 
(n) 2?y" — vy!’ — 38y=4a (x <0) 
(0) y+ y" -y -y=2 

(p) yl! _ by” + Lly’ _ 6y — eit 

5. (a)—(p) Use computer software to solve the corresponding 

problem in Exercise 4. 

6. In the method of variation of parameters we used indefinite 

integrals [in (49) and (78)|. However, we could use definite 

integrals in those formulas, instead, if we choose. Specifically, 

show that, in place. of (49), 

    

is also correct, for any choice of the constants a1, ag (although 

normally one would choose a; and az to be the same). 

c
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o
n
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7. We chose (44) as “an especially convenient” condition to say, is not as simple inasmuch as 6 is not as simple as 0, but 

impose on Cy and C2. The condition would it work? If so, use it in place of (44) and derive the final 

result for y,, in place of (49). [f not, explain why it would not 

Cry + Coys = 6, work. 

  

3.8 Application to Harmonic Oscillator: Forced Oscilla- 

tion 

The free oscillation of the harmonic oscillator (Fig. 1) was studied in Section 3.5. 

Now that we know how to find particular solutions, we can return to the harmonic 

  

      

: : : . x(t) 
oscillator and consider the case of forced oscillations, governed by the second- >| 

order, linear, constant-coefficient, nonhomogeneous equation ¢ ft) 

"| > 
ma" 4+ cr’ + kr = f(t). CL) rr eRe, 

In particular, we consider the important case where the forcing function is har- Figure 1. Mechanical oscillator. 
monic, 

f(t) = Fo cos Qt. (2) 

3.8.1. Undamped case. To begin, consider the undamped case (c = 0), 

ma" + ka = Fy cos Mt. (3) 

The homogeneous solution of (3) is 

t,(t) = Acoswt + Bsinwt, (4) 

where w = \/k/m is the natural frequency (i.e., the frequency of the free oscil- 
lation), and the forcing function Fo cos Qt generates the family {cos Q¢, sin Nt}. 
Thus, to find a particular solution of (3) by the method of undetermined coeffi- 

cients, seek 

zp(t) = Ccos Nt + Dsin Nt. (5) 

Two cases present themselves. In the generic case, the driving frequency Q is 
different from the natural frequency w, so the terms in (5) do not duplicate any of 
those in (4) and we can accept (5) without modification. In the exceptional, or “‘sin- 

gular,” case where Q is equal to w, the terms in (5) repeat those in (4), so we need 

to modify (5) by multiplying the right side of (5) by ¢. For reasons that will become 
clear below, these cases are known as nonresonance and resonance, respectively. 

Nonresonant oscillation. Putting (5) into the left side of (3) gives
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(w? ~ Q*) C' cos Qt + (w? ~ Q?) Dsin Qt = “ cos Qt. (6) 

Since 0 4 w by assumption, it follows from (6), by equating the coefficients of 

cos Mt and sin Mt on the left and right sides, that C = (Fo/m)/ (w? — 0°) and 

D = 0. Thus Fal 
o/m 

Lp(t) = we Oe cos Qt, (7) 

so a general solution of (3) ts 

w(t) = p(t) + p(t) 
Fo/m 

= Acoswt+ Bsinwt + mom Qt. (8) 

In a sense we are done, and if we wish to impose any prescribed initial condi- 

tions x(0) and 2’(0), then we could use those conditions to evaluate the constants A 

and B in (8). Then, for any desired numerical values of m, k, Fo, and 2 we could 

plot a(t) versus ¢ and see what the solution looks like. However, in science and en- 

gineering one is interested not only in obtaining answers, but also in understanding 

phenomena, so the question is: How can we extract, from (8), an understanding of 

the phenomenon? To answer that question, let us first rewrite (8) in the equivalent 

form Fy/ 

. o/m 
a(t) = Esin(wt +) + ste 

since then we can see it more clearly as a superposition of two harmonic solutions, 

of different amplitude, frequency, and phase. 

The homogeneous solution E sin (wt + #) in (9), the “free vibration,” was al- 

ready discussed in Section 3.5. [Alternative to E sin (wt + #), we could use the 

form E cos (wt + @), whichever one prefers; it doesn’t matter. | Thus, consider the 

particular solution, or “forced response,” given by (7) and the last term in (9). It 

is natural to regard m and k (and hence w) as fixed, and Fy and Q as controllable 

quantities or parameters. That the response (7) is merely proportional to Fo is no 

surprise, for it follows from the linearity of the differential operator in (3). We also 

see, from (7), that the response is at the same frequency as the forcing function, 

Q. More interesting is the variation of the amplitude (Fo/m)/ (w? — 2?) with Q, 

which is sketched in Fig. 2. The change in sign, as (2 increases through w, is awk- 

ward since it prevents us from interpreting the plotted quantity as a pure magnitude. 

Thus, let us re-express (7) in the equivalent form 

cos Qt (9) 

  

Figure 2. Magnitude of response Fo/m 

(undamped case). 
p(t) = lw2 — 02 | cos (Qt + ), (10) 

where the phase angle ® is 0 for Q < w and 7 for Q > w [since cos (Qt +7) =
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— cos Qt gives the desired sign change for Q > w]. The resulting amplitude- and 
phase-response curves are shown in Fig. 3. From Fig. 3a, observe that as the driv- 
ing frequency approaches the natural frequency the amplitude tends to infinity! [Of 

course, we must remember that right at 2 = w our particular solution is invalid 
since (6) is then (0) cos Qt + (0) sin Qt = (Fo/m) cos Nt, which cannot be satis- 
fied.] Further, as 2 —+ oo the amplitude tends to zero. Finally, we see from Fig. 3b 

that the response is in-phase (@ = Q) with the forcing function for Q < w, but 
for all Q > w it is 180° out-of-phase. This discontinuous jump is striking since 
only an infinitesimal change in 2 (from just below w to just above it) produces a 

discontinuous change in the response. 
Also of considerable interest phenomenologically is the possibility of what is 

known as beats, but we will postpone that dicussion until we have had a look at the 

special case of resonance. 

Resonant oscillation. For the special case where 22 = w (that is, where we force 
the system precisely at its natural frequency), the terms in (5) duplicate those in (4) 
so, according to the method of undetermined coefficients, we need to revise Zp as 

(il) 

Since the duplication has thereby been removed, we accept (11). Putting that form 

tp(t) =t(Ccoswt + Dsinwt). 

  

into (3), we find that C = 0 and D = Fy/(2mw), so 

Fo 
Lp(t) Ft nwt, (12) 

which is shown in Fig. 4. _ In this special case the response is not a harmonic 
oscillation but a harmonic function times t, which factor causes the magnitude to 
tend to infinity as t — oo. This result is known as resonance. Of course, the 

magnitude does not grow unboundedly in a real application since the mathematical 
model of the system (the governing differential equation) will become inaccurate 

for sufficiently large amplitudes, parts will break, and so on. 
Resonance is sometimes welcome and sometimes unwelcome. That is, some- 

times we wish to amplify a given input, and can do so by “tuning” the system to 
be at or near resonance, as when we tune a radio circuit to a desired broadcast fre- 

quency. And other times we wish to suppress inputs, as a well designed automobile 
suspension suppresses, rather than amplifies, the inputs from a bumpy road. 

Beats. Isn’t it striking that the response a(t) is the sum of two harmonics [given 

by (5)] for all Q A w, yet it is of the different form (12) for the single case Q = w? 
One might wonder whether the resonant case is really of any importance at all since 

one can never get 2 to exactly equal w. It is therefore of interest to look at the so- 
lution x(t) as Q approaches w. To do so, let us use the simple initial conditions 
z(0) = 0 and 2’(0) = 0, for definiteness, in which case we can evaluate A and B 

in (8), and obtain 

Fo/m 

we — 02 
a(t) = - (13) (coswt — cos Qt), 
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Figure 4. Resonant oscillation.
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B+A B-A 
    

    

or, recalling the trigonometric identity cos A ~ cos. B = 2sin —; sin 5 

(a) Q=0.20 Fy | .) —Q 

x(t) = opal sin (“4 )e sin (? 5 )e (14) 

Now, suppose that Q is close to (but not equal to) the natural frequency w. 

Then the frequency of the second sinusoid in (14) is very small compared to that 

of the first, so the sin (45%) t factor amounts, essentially, to a slow “amplitude 

i! modulation” of the relatively high frequency sin (242)¢ factor. This phenomenon 

is known as beats, and is seen in Fig. 5, where we have plotted the solution (14) for 

four representative cases: in Fig. Sa Q is not close to w, and there is no discernible 

beat phenomenon, but as 22 is increased the beat phenomenon becomes well estab- 

lished, as seen in Fig. 5b, Sc, and 5d. [We have shown the “envelope” sin (252) t 

as dotted. ] 

We can now see that the resonance phenomenon at 2 = w is not an isolated 

behavior but is a limiting case as Q — w. That is, resonance (Fig. 4) is actually a 

limit of the sequence shown in Fig. 5, as 2 + w. Rather than depend only on these 

suggestive graphical results, we can proceed analytically as well. Specifically, we 

can take the limit of the response (13) as 2 — w and, with the help of ? Hépital’s 

rule, we do obtain (12)! 

With our foregoing discussion of the undamped forced harmonic oscillator in 

mind, we cannot overstate that we are by no means dealing only with the solving 

of equations but with the phenomena thereby being described. To understand phe- 

nomena, we normally need to do several things: we do need to solve the equations 

that model the phenomena (analytically or, if that is too hard, numerically), but 

we also need to study, interpret, and understand the results. Such study normally 

includes the generation of suitably chosen graphical displays (such as our Fig. 2, 

3, and 4), the isolation of special cases [such as our initial consideration of the case 

where there is no damping; c = 0 in (1)], and perhaps the examination of various 

— limiting cases (such as the limit Q — w in the present example). Emphasis in this 

book is on the mathematics, with the detailed study of the relevant physics left for 

applications courses such as Fluid Mechanics, Electromagnetic Field Theory, and 

so on, but we will occasionally try to show not only the connections between the 

mathematics and the physics but also the process whereby we determine those con- 

nections. 

  

  

  
(6) Q=0.7@ 

  

  
(c) Q=0.9@ 

  

(d) Q=0.980 

sin0.0lf      

  
3.8.2. Damped case. We now reconsider the harmonically driven oscillator, this 

Figure 5. Beats, and approach time with a cv’ damping term included (c > 0): 

to resonance, 

ma" + ea! + ke = Fo cos Ot. (15) 
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Recall from Section 3.5 that the homogeneous solution is 

  

C 

e Im" soos _ (<<) t+ Bsin fu? — (Sy 

C 

tr(t)= 4 ¢ 2m (A+ Bt) 
c 

oom! Acosh 4/ () +w? t+ Bsinh / ()" + w? | 
2m 2m 

(16) 
for the underdamped (c < Ce,), critically damped (ec = Cer), and overdamped 

(c > Cop) cases, respectively, and where w = \/k/m and Cer = 2V mk. 

This time, when we write 

Ep(t) = CcosNt + Dsin Nt, (17) 

according to the method of undetermined coefficients, there is no duplication be- 

tween terms in (17) and (16), even if Q = w, because of the exp (—ct/2m) factors 

in (16), so we can accept (17) without modification. Putting (17) into (15) and 

equating coefficients of the cos Mt terms on both sides of the equation, and simi- 

larly for the coefficients of the sin Mt terms, enables us to solve for C and D. The 

result (Exercise 3a) is that 

(Fo/m) (w? — 02) 
(w? — 02)? + (eQ/m)? 

FoeQ/m? 

(w? — 02)? + (cA/m)? 

cos Qt nC 

sin Qt, (18) 

or (Exercise 3b), equivalently, 

Ep(t) = Ecos (Qt + 9), (19a) 

where the amplitude / and phase ® are 

p= om (19b) 
(w? — 22)? + (eQ/m)? 

® = tan! eQ/m (19¢) 
Q2 — w?? 

with the tan~! understood to lie between 0 and x. 

As for the undamped case, we have great interest in the amplitude- and frequency- figure 6. Amplitude response 

response curves, the graphs of the amplitude £, and the phase @ with respect to the 

driving frequency 2. The former is given in Fig. 6 for various values of the damp- 

ing coefficient c, and the latter is left for the exercises. 

  

curves.



154 Chapter 3. Linear Differential Equations of Second Order and Higher 

Figure 7. A representative 

response x(t) (solid); approach to 

the steady-state oscillation a, (¢) 

(dotted). 

  

  

From Fig. 6 we see that true resonance is possible only in the case of no damp- 

ing (c = 0), which case is an idealization since in reality there is inevitably some 

damping present. Analytically, we see the same thing: (19a) shows that the ampli- 

tude can become infinite only if ¢ = 0, and that occurs only for Q = w. However, 

for c > 0 there is still a peaking of the amplitude, even if that peak is now finite, at 

a driving frequency 2 which diminishes from w as c increases, and which is 0 for 

all ¢ > Cop. Further, the peak magnitude (located by the dotted curve) diminishes 

from co to Fo/k as c is increased from 0 to ¢er, and remains Fo/k for all c > Cer. 

What is the significance of the Fp /k value? For 9, = 0 the differential equation 

becomes ma” + cx! + ka = Fo, and the method of undetermined coefficients gives 

tp(t) = constant = Fo/k, which is merely the static deflection of the mass under 

the steady force Fo. 

Even if true resonance is possible only for the undamped case (c = 9), the term 

resonance is often used to refer to the dramatic peaking of the amplitude response 

curves if c is not too large. 
The general solution, of course, is the sum 

x(t) = a,(t) + z(t) 

= x,(t) + Ecos (Qt+ ®). (20) 

where £ and ® are given by (19b,c) and 2;,(¢) is given by the suitable right-iatid 

side of (16), according to whether the system is underdamped, critically damped, 

or overdamped. If we impose initial conditions (0) and a‘(0) on (20), then we can 

solve for the integration constants A and B within x; (t). 

Notice carefully that the x;,(t) part of the solution inevitably tends to zero as 

t —+ oo because of the exp (—ct/2m) factor, no matter how small c is, as long as 

c > 0. Thus, we call z),(t) in (20) the transient part of the solution and we call 

p(t) the steady-state part since x(t) + Ecos (Qt + ®) as t + oo. The transient 

part depends upon the initial conditions, whereas the steady-state part does not. A 

representative underdamped case is shown in Fig. 7, where we see the approach to 

the steady-state oscillation z(t). 

Closure. In this section we considered the forced vibration of a harmonic oscillator 

— that is, a system governed by the differential equation ma” + ca’ + ka = f(t), 

for the case of the harmonic excitation f(t) = Fo cosQt. Thus, besides a ho- 

mogeneous solution we needed to find a particular solution, and that was done by 

the method of undetermined coefficients. The particular solution is especially im- 

portant physically since even an infinitesimal amount of damping will cause the 

homogeneous solution to tend to zero as £ — oo, 50 that the particular solution 

becomes the steady-state response. To understand the physical significance of that 

response we attached importance to the amplitude- and phase-response curves and 

discussed the phenomena of resonance and beats. Our discussion in this section 

has been limited in that we have considered only the case of harmonic excitation, 

whereas in applications f(t) surely need not be harmonic. However, that case 

is important enough to deserve this special section. When we study the Laplace 

transform method in Chapter 5, we will be able to return to problems such as 

ors
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ma" + ca! +ka = f(t) and, using the convenient Laplace transform methodology, 

obtain solutions for virtually any forcing function f(t). 

  

EXERCISES 3.8 
  

1. Applying the initial conditions «(0) = 0 and z'(0) = 0 to 

(8), derive (13). Show that the same result can be obtained if 

we start with the form (9) instead of (8). 

2. Derive (12) from (11). 

3. (a) Derive (18). (b) Derive (19a,b,c). 

4, The amplitude- and phase-response curves shown in Fig. 3 

correspond to the equation mx” + ka = Fo cos Qt. Obtain the 

equations of the analogous response curves for the equation 

maz" +ka = Fo sin Qt, and give labeled sketches of the two 

curves. 

5. Figure 6 shows the amplitude-response curves (E versus Q) 

corresponding to (19b), for various values of c. 

(a) What happens to the graph as c + 00? Is E(() continuous 

on0 <2 < co forc = oo? Explain. 

(b) From (19c), obtain the phase-response curves (® versus 

Q), either by a careful freehand sketch or using a computer, 

for various values of c, being sure to include the important 

case c = 0. What happens to the graph as c + 00? 

6. In Fig. 7 we show the approach of a representative response 

curve (solid) to the steady-state oscillation (dotted), for an un- 

derdamped system. 

(a) Do the same (with a computer plot) for a critically damped 

case. The values of m,c, k, Fo, ,x(0), (0) are up to you, 

but the idea is to demonstrate graphically the approach to x, (t) 

clearly, as we have in Fig. 7. 

(b) Same as (a), for an overdamped system, where c = Acer, 

say. 

7, Show that taking the limit of the response (13) as 2 — w, 

with the help of ’Hépital’s rule, does give (12), as claimed 

two paragraphs below (14). 

8. Observe from Fig. 6 that the amplitude & tends to zero as 

Q — oo. Explain (physically, mathematically, or both) why 

that result makes sense. 

9, (a) What choice of initial conditions z(0) and 2’(0) will re- 

duce the solution (20) to just the particular solution, x(t) = 

Ecos (Qt + &)? 
(b) Using a sketch of a representative Lp(t) such as the dot- 

ted curve in Fig. 7, show the graphical significance of those 

special values of 2(0) and 2’ (0). 

10. Imagine the experimental means that would be required 

to apply a force Fo cos Mt to.a mass. It doesn’t sound so hard 

if the mass is stationary, but imagine trying to apply such a 

force to a moving mass! In many physical applications, such 

as earthquake-induced vibration, the driving force is applied 

indirectly, by “shaking” the wall, rather than being applied 

directly to the mass. Specifically, for the system shown in 

the figure, use Newton’s second law to show that if the wall is 

6(t) x 

  

      

4 
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displaced laterally according to d(t) = 4p cos Qt, then the 

equation of motion of the mass 7m is ma" + ka = Fo cos Qt, 

where Fy = kdo. Here, x and 6 are measured relative to fixed 

points in space. NOTE: Observe that such an experiment is 

more readily performed since it is easier to apply a harmonic 

displacement 6(t) than a harmonic force; for instance, one 

could use a slider-crank mechanism (which converts circular 

motion to harmonic linear motion). Note further that a dis- 

placement input is precisely what an automobile suspension is 

subjected to when we drive over a bumpy road. 

11. For the mechanical oscillator governed by the differ- 

ential equation ma” + cz’ + ka = F(t), obtain com- 

puter plots of the amplitude- and phase-response curves (EB 

versus © and ® versus 9), for the case where F(t) = 

25 sin Mt, for these six values of the damping coefficient c: 

0, 0.25c¢7, 0.5Cer, Cer) 2Cers 4cop, where 

(aym=l1,k=1 

(b)m=2,k=5 

(c)m = 2,k = 10 

(d)m=4,k = 2 

(e)m=4,k = 10 

12. (Complex function method) Let L be a linear constant- 

coefficient differential operator, and consider the equation 

Lia] = Fo cos Q6, (12.1)
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According to the method of undetermined coefficients, we 

can find a particular solution «,(t) by seeking a,(t) = 
Acos Qt + Bsin Qt (or, in exceptional cases, ¢ to an inte- 

ger power times that). A slightly simpler line of approach that 

is sometimes used is as follows. Consider, in place of (12.1), 

Li{w] = Foe, (12.2) 

Equation (12.2) is simpler than (12.1) in that to find a par- 

ticular solution we need only one term, w,(t) = Ae. (If 
z = a-+ ib is any complex number, it is standard to call 

Rez = aandImz = 3 the real part and the imaginary part 

of 2, respectively.) Because, according to Euler’s formula, 

ei — cos Nt + isin Nt, it follows that Re e*@* = cos Nt and 
Ime’ = sin Qt. Since the forcing function in (12.1) is the 

real part of the forcing function in (12.2), it seems plausible 

that z,(t) should be the real part of w,(t). Thus, we have 
the following method: to find a particular solution to (12.1) 

consider instead the simpler equation (12.2). Solve for w,(t) 
by seeking w(t) = Ae“, and then recover the desired x, (t) 
from x,(t) = Rew,(t). 

(a) Prove that the method described above works. HINT: 

The key is the linearity of ZL, so that if w = u + iv, then 

L[w] = Llu + iv] = Llu] + iL[v). 
(b)—(k) Use the method to obtain a particular solution to the 

given equation: 

(b) ma” + ca’ + kx = Fo cos Qt 
(c) me" + cx’! + ke = Fosin Ot 
(d) 2’ + 3x = 5cos 2t 

(e) 2’ —~ x =A4sin3t 

(fc — x’ +2 = cos 2t 
(g) a2" +52’ +a = 3sin4t 
(h) 2” — 22' +2 = 6cos 5t 
Qe" +e" +a'+a = 3sint 

Ga” +a +x =3cost 
(k) 2!" + 2a" + 4a = 9sin 6t 

13. (Electrical circuit) Recall from Section 2.3 that the equa- 

tions governing the current i(t) in the circuit shown, and the 

charge Q(t) on the capacitor are 

  

a*y di 1, dk(t) peg pO 4, EO 13.1 
viet at a ae (13.1) 

and 

2 dQ 1 pee , p@ 1 ee nw), (13.2) 
dt? dt | C 

respectively, where L, R, C, £,i, and Q are measured in hen- 

rys, ohms, farads, volts, amperes, and coulombs, respectively. 

(a) Let L = 2, R = 4, and C = 0.05. Solve for Q(t) subject to 

the initial conditions Q(0) = Q’(0) = 0, where E(t) = 100. 
Identify the steady-state solution. Give a computer plot of the 

solution for Q(t) over a sufficiently long time period to clearly 

show the approach of Q to its steady state. (Naturally, all plots 

should be suitably labeled.) 

(b) Same as (a), but for C = 0.08. 

(c) Same as (a), but for C = 0.2. 

(d) Same as (a), but for E(t) = 10e~*. 
(e) Same as (a), but for E(t) = 10(1 — e~*). 
(f) Same as (a), but for E(t) = 50 (1+ e7°*), 

  

3.9 Systems of Linear Differential Equations 

Thus far we have considered the case where there is a single dependent variable 
such as the current i(t) in a circuit, where t is the time. However, many problems 
involve two or more dependent variables. In the combustion of fossil fuels, for 
instance, there are many interacting chemical species (e.g., OH, CH4, H, CO, H20, 
and so on) whose generation and demise, as a function of time, are governed by 
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a large set of differential equations. A realistic model could easily contain 100 

differential equations on 100 unknowns. 

If there are two or more unknowns, then we are involved not with a single 

differential equation but with a system of such equations. For instance, according 

to the well known Lotka—Volterra model of predator-prey population dynamics, the 

populations z(t) and y(¢) of predator and prey are governed by the system of two 

equations 

v= -ax+ Bry, 
(1) 

y = yy — bey, 

where c, 3,7, 6 are empirical constants and ¢ is the time. This particular system 

happens to be nonlinear because of the zy products; we will return to it in Chapter 

7 when we study nonlinear systems. The present chapter is devoted exclusively to 

linear differential equations. 

By definition, a linear first-order system of m equations in the n unknowns 

xi(t),...,2n(t) is of the form 

ai(t)a, +--+ + ain(t)et, + bu(t)ti +--+ + bin(t)en = filt) 
(2) 

Ani (t) 2 po Ann(t) a, + bai (t)x1 tee ban(t)on = fr(t), 

where the forcing functions f;(t) and the coefficients aj,(t) and bj, (t) are pre- 

scribed, and where it is convenient to use a double-subscript notation: aj,(t) de- 

notes the coefficient of cj,(t) in the jth equation, and b;,(t) denotes the coefficient 

of x,(t) in the jth equation. We call (2) a first-order system because the highest 

derivatives are of first order. If the highest derivatives were of second order, we 

would call it a second-order system, and so on. A linear second-order system of n 

equations in the n unknowns 21(t),...,@n(¢) would be of the same form as (2), 

but with each left-hand side being a linear combination of the second., first-, and 

zeroth-order derivatives of the unkowns. 

The system (2) is a generalization of the linear first-order equation y tp(x)y = 

q(x) in the one unknown y(a) studied in Chapter 2. There, and in most of Chapters 

13, we favored x as the generic independent variable and y as the generic dependent 

variable, but in this section the independent variable in most of our applications 

happens to be the time t, so we will use t as the independent variable. 

As in the case of a single differential equation, by a solution of a system of dif- 

ferential equations (be they linear or not), in the unknowns «;(¢),... ,fn(t) over 

some t interval J, we mean a set of functions 7 ,(t),...,@n(t) that reduce those 

equations to identities over J. 

3.9.1. Examples. let us begin by giving a few examples of how such systems 

arise in applications. 

EXAMPLE 1. RL Circuit. Consider the circuit shown in Fig. 1, comprised of three 

  

= R Ry 

  
+ ~ 

Figure 1. Circuit of Example |.
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(a) 
p q 
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Figure 2. Current designations. 

loops. We wish to obtain the differential equations governing the various currents in the 

circuit. There are two ways to proceed that are different but equivalent, and which corre- 

spond to the current labeling shown in Fig. 2a and 2b (in which we have omitted the circuit 

elements, for simplicity). First consider the former. If the current approaching the junction 

p from the “west” is designated as i, and the current leaving to the east is 22, then it follows 

from Kirchoff’s current law (namely, that the algebraic sum of the currents approaching or 

leaving any point of a circuit is zero) that the current to the south must be 7; ~ 22. Similarly, 

if we designate the current leaving the junction q to the east as 73, then the current leaving 

to the south must be iz — ij. With the current approaching r from the north and east being 

ing — iz and ig, it follows that the current leaving to the west must be ig. Similarly, the 

current leaving s to the west must be 21. 

Next, apply Kirchoff’s voltage law (namely, that the algebraic sum of the voltage 

drops around each loop of the circuit must be zero) to each loop, recalling from Section 2.3 

that the voltage drops across jiductors, resistors, and capacitors (of which there are none in 

this particular circuit) are Le, , Ri, and — G 5 f iat respectively. For the left-hand loop that 

. diy 
step gives Lit + Ry(i, — ig) — Bi (t) = 0, where the last term (corresponding to the 

applied voltage E,) is counted as negative because it amounts to a voltage rise (according 

to the polarity denoted by the + signs in Fig. |) rather than a drop. Thus, we have for the 

left, middle, and right loops, 

Lyi, + Ry (41 — ig) = Ext), 

Loi, + Ro (a 2—%3)+ Ry (ig - 11) = En(t), (3) 

Legis + Rig + Ro (tg — t2) = Es(t), 

respectively, or, 

Dyiy + Ryty _ Rylg = FE, (t), 

Lait — Ryiy + (Rpt Ro) to — Roig = Eo(t), (4) 

Legis _ Reta + (Ro + Rs) 13 = E3(t), 

where E(t), £2(t), £3(t) are prescribed. It must be remembered that the currents do not 
need to flow in the directions assumed by the arrows: after all, they are the unknowns. If 

any of them turn out to be negative (at any given instant ¢), that merely means that they are 

flowing in the direction opposite to that tentatively assumed in Fig. 2a. 

Alternatively, one can use the idea of “loop currents,” as denoted in Fig. 2b. In that 

case the south-flowing currents in 42; and Re are the net currents 7, — ig and ig — is, 

respectively, just as in Fig. 2a. Either way, the result is the linear first-order system (4). 

It is important to see that the system (4) is coupled. That is, the individual equa- 

tions contain more than one unknown so that we cannot separate them and solve 
the first for i; (for instance), the second for 72, and the third for 23. Put differently, 

the currents 71, i2,i3 are interrelated. It is only natural for systems of differential 

equations to be coupled since the coupling is the mathematical expression of the 
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relatedness of the dependent variables. On the other hand, if we write differential 

equations governing the current i(t) in a circuit and the price of tea in China, p(t), 

we would hardly expect those equations to be coupled and, indeed, it would hardly 

make sense to group them as part of the same system. 

EXAMPLE 2. LC Circuit. For the circuit shown in Fig. 3, the same reasoning as above 

gives the integro-differential equations 

Lf. d,. , 

Cy | uy dt + Le (44 — ig) — E(t), 

= fi + coli 4) =0 ” = 19 Gb +r Le (tg a 0 = Cy) di 

on the currents 7,(£) and ia(t) or, differentiating to eliminate the integral signs, 

rte ct 1 , i 
ivy _ Lis + c," = EB (t), 

nk (6) 

Whereas (4) was a first-order system, (6) is of second order. @ 

EXAMPLE 3. Mass-Spring System. This time consider a mechanical system, shown in 

Fig. 4 and comprised of masses and springs. The masses rest on a frictionless table and 

are subjected to applied forces £\(t), F)(t), respectively. When the displacements x; and 

zr» are zero, the springs are neither stretched nor compressed, and we seek the equations of 

motion of the system, that is, the differential equations governing x1 (t) and x(t). 

The relevant physics is Newton's second law of motion, and Hooke’s law for each 

of the three springs, as were discussed in Section 1.3. To proceed, it is useful to make 

a concrete assumption on 2, and 22. Specifically, suppose that at the instant t we have 

21 > £2 > 0, as assumed in Fig. 5 (which figure, in the study of mechanics, is called a 

free-body diagram). Then the left spring is stretched by x, so it exerts a force to the left, 

on mz ,, equal (according to Hooke’s law) to Ay2,. The middle spring is compressed by 

Ly — £2 so it exerts a force kyo(a1, — v2) to the left on my, and to the right on me, and the 

right spring is compressed by ag and exerts a force kaw to the left on mg, as shown in the 

figure, With the help of the information given in Fig. 5, Newton’s second law for each of 

the two masses gives 

mya = kya, — hig (a1 — 2) + F(t), 7) 

many = —kovg + hy (ty — &2) + £4 (t) 

as the desired equations of motion — or, rearranging terms, 

myx] + (kr + Aig) vi — Aiete = Fi (t), (8) 

> 

): 

moe ~ kyoey + (hy + kya) eg = F(t). 

  

  
Figure 3. LC circuit. 

  

          

Figure 4. Mass-spring system.
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<——| my 
Ay xy   

pF 

|} >     
kin (4g — 41) 

Figure 6. Revised free-body 

diagram for 771. 

  [a a 
    

            

}—__> F, |__» Fi, 
<——_, m, My 

ky x <——— Ty —— 
kyo (x, —Xy) kyo (xy X92) kX, 

Figure 5. Free-body diagram of the masses. 

COMMENT. Our assumption that 2; > x2 > 0 was only for definiteness, the resulting 

equations (8) are insensitive to whatever such assumption is made. For instance, suppose 

that we assume, instead, that v2 > x, > 0. Then the middle spring is stretched by x2 ~ 21, 

so the free-body diagram of m, changes to that shown in Fig. 6, and Newton’s law for my, 

gives mya, = —kyry + kyo (te ~ v1) + F(t), which is seen to be equivalent to the first 

of equations (7). Similarly for m2. @ 

3.9.2, Existence and uniqueness. The fundamental theorem regarding existence 

and uniqueness is as follows.* 

  

THEOREM 3.9.1 Existence and Uniqueness for Linear First-Order Systems 
Let the functions a11(¢), ai2(t),..., @nn(t) and fi(t),..., f(t) be continuous on 
a closed interval J. And let numbers 6;,..., b, be given such that 

x1 (a) = by, r2(a) = bo, sey Ln(a) = bn, (9) 

where a is a given point in J, Then the system 

vy = ayy(t)xy + aya(t)zg +--+ + din(t)en + filt), 

(10) 

xl, = Ani (t)xy + ang(t)te +--+ + ann(t)en + fr(t), 

  

“There is a subtle point that is worth noting, namely, that (10) is not quite of the same form as the 

general first-order linear system (2) in that its left-hand sides are simply x{,..., 2}, rather than linear 

combinations of those terms. (What follows presumes that you have already studied the sections on 

matrices, rank, and Gauss—Jordan reduction.) The idea is that (2) can be reduced to the form (10) by 

elementary row operations, as in the Gauss~Jordan reduction of linear algebraic equations — unless 

the rank of the {a,,(¢)} matrix is less than n. In that case, such operations would yield at least one 
equation, at the bottom of the system, which has no derivatives in it. If not all of the coefficients of 

the undifferentiated x; terms in that equation are zero, then one could use that equation to solve for 

one of the z,’s in terms of the others and use that result to reduce the system by one unknown and one 

equation; if all of the coefficients of the undifferentiated «x; terms in that equation are zero, then that 

equation would either be 0 = 0, which could be discarded, or zero equal to some nonzero prescribed 

function of ¢, which would cause the system to have no solution. To avoid these singular cases, it is 

conventional to use the form (10), rather than (2), in the existence and uniqueness theorem.
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subject to the initial conditions (9), has a unique solution on the entire interval J. 
  

Observe that we have added the word “entire” for emphasis, for recall from 

Section 2.4 that the Existence and Uniqueness Theorem 2.4.1 for the nonlinear 

initial-value problem y’(2) = f(a, y) with initial condition y(a@) = bis a local one; 
it guarantees the existence of a unique solution over some interval |“ — al < h, 

but it does not tell us how big h can be. In contrast, Theorem 3.9.1 tells us that 

the solution exists and is unique over the entire interval I over which the specified 

conditions are met. 

  

EXAMPLE 4. Example 1, Revisited. Suppose that we add initial conditions, say 11(0) = 

by, %2(0) = be, %i3(0) = 6 to the system (4) governing the RL circuit of Example 1. If the 

E,(t)'s are continuous on 0 < t < T and the L,;’s are nonzero [so we can divide through by 

them in reducing (4) to the form of (10)] then, according to Theorem 3.9.1, the initial-value 

problem has a solution on 0 <¢ < T, and itis unique. & 

It would appear that Theorem 3.9.1 does not apply to the system (8) of Exam- 

ple 3 because the latter is of second order rather than first. However, and this is 

important, higher-order systems can be reduced to first-order ones by introducing 

artificial, or auxiliary, dependent variables. 

EXAMPLE 5. Reduce the second-order system (8) to a first-order system. The idea 

ig to introduce artificial dependent variables u and v according to x, = u and ay = v 

because then the second-order derivatives x// and x become first-order derivatives u’ and 

v', respectively. Thus, (8) can be re-expressed, equivalently, as the first-order system 

v(t) =u, 

ky + ke k 1 
u’(t) = a a + oP ny + — F(t), 

My My TM (11) 

x(t) =v, 
k k k 1 u'(t) = B12 a+ R12 > + —Fa(t) 

mo m4 mg 

To see that this system is of the form (10), let “ew,” = x), “ao” = u, “ng” = 2, and 

“tq” = uv. Then a4, = 413 ~ Qyq = 0, 49 = 1, filt) = 0, ag, = —(ky + kig)/ma, 

a2 = dag = 0, A93 = ky2/my, fo(t) = Fi (t)/mi, and so on. All of the a,j (t) coefficients 

are constants and hence continuous for all ¢. Let the forcing functions F(t) and Fy(t) be 

continuous on 0 < t < oo. 

Thus, according to Theorem 3.9.1, if we prescribe initial conditions x1(0), u(0), 

r2(0), v(0), then the initial-value problem consisting of (11), together with those initial 

conditions, will have a unique solution for x;(t), u(t), v2 (t), v(t). Equivalently, the initial- 

value problem consisting of (8), together with prescribed initial values x1 (0), (0), 72(0), 

x,(0), will have a unique solution for z(t), v2(t).
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Consider one more example on auxiliary variables. 

EXAMPLE 6. Consider the third-order equation 

a!” + Qta" — 2’ + (sint)x = cost, (12) 

which is a system, a system of n equations in n unknowns, where n = 1. To reduce it to a 

system of first-order equations, introduce auxiliary variables wu, v according to v’ = u and 

ec" =u! =v. Then 

il Uy 

(13) li v, 

q! 

u! 

uv’ = —(sint)x + u — 2tv + cost 

is the desired equivalent first-order system, where the last of the three equations follows 

from the first two together with (12). @ 

3.9.3. Solution by elimination. We now give a method of solution of systems of 

linear differential equations for the special case of constant coefficients, a method 

of elimination that is well suited to systems that are small enough for us to carry 

out the steps by hand. 

We introduce the method with an example after first recalling (from Section 

3.3) the idea of a linear differential operator, 

  
dq? qr-} 

L = ag(t) an + a(t) a +++++an(t) 

= ag(t)D” + a,(t)D" 7 +++ + an(t), 

d.. 72 
where D denotes dk’ D? denotes Ge and so on. By L{ax] we mean the func- 

tion ay + at? +.+-++a,z. We say that L is of order n (if ao is not 
dt” dtr} 

identically zero) and that it “acts” on x, or “operates” on x. Further, by Ly Lo[z] 

we mean L, [Lo[x]]; that is, first the operator immediately to the left of x acts 

on a, then the operator to the left of that acts on the result. Two operators, say 

L1 and Lo, are said to be equal if Ly[z] = L2[x] for all functions x(t) (that 

are sufficiently differentiable for Ly and L» to act on them). Finally, in gen- 

eral, differential operators do not commute: [yL, #4 Lolly. For instance, if 

Ly = Dand Lz = tD, then Ly Lo{r] = D(tDxr) = D(ta') = ta” + x’, whereas 

LoLy{a] = tD( Dz) = tDa' = ta’. However, they do commute if their aj coeffi- 

cients are constants. For instance, 

(2D ~1)(D +3)x = (2D — 1)(a' + 3x) = 22” + 6a! — 2! — 3x, 

and 

(D +3)(2D ~ la = (D+3)(2a' — x) = 2a" — 2! + 6a’ — 3a
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are identical for all functions x(t), so (2D ~ 1)(D + 3) = (D + 3)(2D — 1). 

EXAMPLE 7. To solve the system 

g’ —a—y = 3t, (14a) 

g' +y' — 5a -2y =5, (14b) 

it is convenient to begin by re-expressing it as 

(D ~—1l)a-y = 3t, (15a) 

(D—5)x + (D—2)y =5, (15b) 

or 

Ly [a] + Loly| = 3t, (16a) 

Ls|z] + Laly] = 5, (16b) 

where L) = D—1,L2 = —1, and soon. To solve by the method of elimination, let us 

operate on (16a) with Lg and on (16b) with Ly, giving 

E3Ly[z] + D3 Lely] = L3[3t], (17a) 

LyLs[z] + Ly Laly| = Ey(5), (17b) 

where we have used the linearity of Lg in writing Ls [Ly [z] + Lely] as L3Li [x] + L3Loly] 
in obtaining (17a) and, similarly, the linearity of LZ, in obtaining (17b). Subtracting one 

equation from the other, and cancelling the z terms because L3L, = LL, enables us to 

eliminate x and to obtain the equation 

(L1Lq ~ LsL2) [y] = Li[5] — Ls[3¢] (18) 

on y alone. At this point we can return to the non-operator form, with IyLy — Lgl, = 

(D —1)(D — 2) — (D — 5)(-1) = D? — 2D — 3 and L,([5] — L3[3t] = (D — 1)(5) - 

(D — 5)(3t) = 15t ~ 8. Thus, 

y" — dy! — 38y = 15t — 8, (19) 

which admits the general solution 

y(t) = Ae* + Be — 5t +6. (20) 

To find x(t), we can proceed in the same manner. This time, operate on (16a) with D4 

and on (16b) with La: 

L4aLy [2] + LaLaly] = L4{3t] (21a) 

Lg Ls({r] + LoLaly] = Lo[5], (21b) 

and subtraction gives 

(La Ly _ LoL) [a] = L4[3e] _ L[5}, (22)
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r
o
m
s
 

or 
xv” — Ia’ — 3a = 8 — 6t, (23) 

with general solution 
a(t) = Ce! + Eew! + 2t— 4. (24) 

(We avoid using D as an integration constant because D = d/dt here.) 

It might appear that A, B,C, E are all arbitrary, but don’t forget that x and y are 

related through (14), so these constants might be related as well. In fact, putting (20) and 

(24) into (14a) gives, after cancellation of terms, 

(20 — A)e*! —-(2E + B)e' =0, (25) 

and the linear independence of e*! and e~* requires that A = 2C' and B = —2£. Putting 

(20) and (24) into (14b) gives this same result. 

Thus, the general solution of (14) is 

a(t) = Ce®! + Ee~' + 2t — 4, (26a) 

y(t) = 2Ce* — 2Ee' ~ 5t +6. (26b) 

COMMENT 1. With hindsight, it would have been easier to eliminate y first and solve for 

x since we could have put that z [namely, as given by (26a)] into (14a) and solved that 

equation for y. That step would have produced (26b) directly. 

COMMENT 2. Notice that (14) is not of the “standard” form (10) because (14b) has both 

z’ and y’ init. While we need it to be in that form to apply Theorem 3.9.1, we do not need 

the system to be of that form to apply the method of elimination. # 

A review of the steps in the elimination process reveals that the operators 

[4,...,L4 might just as well have been constants, by the way we have manipu- 

lated them. In fact, a useful way to organize the procedure is to use Cramer’s rule 

(Section 10.6). For instance, if we have two differential equations 

Ly [a] + Lely] = fl), (27a) 

Lala] + Laly) = fo(t), (27b) 

we can, heuristically, use Cramer’s rule to write 

  

fi Le | 

1e fo fa | _ Lali) = Lal fe] (28a) 
L, Le [y Ly — Lobs © 

Ls Lg 

| Ly fy | 

Ls fo | Lil fel - Lal fil (28b) 
  

Ly Ly | Lyla — Lobs ©
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Of course, the division by an operator on the right-hand sides of (28a,b) is not 

defined, so we need to put the £;L4 ~ LoLs back up on the left-hand side, where 

it came from. That step gives 

(Ly L4 —- LoL3) [a] = Lal fil -— Lo| fel (29a) 

(L1L4 ~ LoLs) [y) = La[fe] — Lali), (29b) 

which equations correspond to (22) and (18), respectively, in Example 7. Again, 

this approach is heuristic, but it does give the correct result and is readily applied 

— and extended to systems of three equations in three unknowns, four in four un- 

knowns, and so on. 
What might possibly go wrong with our foregoing solution of (27)? In the 

application of Cramer’s rule to linear algebraic equations, the case where the de- 

terminant in the denominator vanishes is singular, and either there are no solutions 

(the system is “inconsistent”) or there is an infinite number of them (the system is 

“redundant”). Likewise, the system (27) is singular if LyL4 — LoL is zero and 

is either inconsistent (with no solution) or redundant (with infinitely many linearly 

independent solutions). For instance, the system 

De +2Dy = 1, (30a) 

2Dz+4Dy = 3 (30b) 

has L1L4 — LoL3 = 4D? — 4D? = 0 and has no solution since the left-hand sides 

are in the ratio [:2, whereas the right-hand sides are in the ratio 1:3. However, if 

we change the 3 to a 2, then the new system still has LyL4 — LoL3 = 0 but is 

now consistent. Indeed, then the second equation is merely twice the first and can 

be discarded, leaving the single equation Dz + 2Dy = 1 in the two unknowns 

a(t) and y(t). We can choose one of these arbitrarily and use Dr + 2Dy = 1 

to solve for the other, so there are infinitely many linearly independent solutions. 

Understand that the singular nature of (30), and the modified system, is intrinsic to 

those systems and is not a fault of the method of elimination. 

In the generic case, however, Li L4 ~ LoL; % 0 and we can solve (29a) and 

(29b) for a(t) and y(t), respectively. It can be shown* that the number of indepen- 

dent arbitrary integration constants is the same as the degree of the determinantal 

polynomial DL; £4—L2L3. In Example 7, for instance, D114 —Lol3 = D?-2D-—3 

is of second degree, so we could have known in advance that there would be two 

independent arbitrary constants. 

EXAMPLE 8. Mass-Spring System in Fig. 4. Let us study the two-mass system shown 

in Fig. 4, and let m , = my = ky = kig = ko = Land F(t) = F2(t) = 0, for definiteness. 

Then equations (8) become 

  

*See pages 144-150 in the classic treatise by E. L. Ince, Ordinary Differential Equations (New 

York: Dover, 1956).
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(D? +2) a1 — 22 = 0, (31a) ' 

x1 + (D? +2) a2 = 0. (31b) . 

With Ly = Lg = D* +2 and Ly = Ls = —1, and f(t) = fo(t) = 0, (29a,b) become } 

(D* + 4D? +3) 21 = 0, (32a) he 

(D* + 4D? + 3) x2 = 0, (32b) ) 

so (Exercise 2) 
} 

a,(t) = Acost + Bsint + Ccos V3t + EsinvV3t, (33a) 

ao(t) = F cost + Gsint + Hcos V3t + Isin V3t. (33b) ’ 

To determine any relationships among the constants A, B,..., /, we put (33) into (31a) [or 

(32b), the result would be the same] and find that 

(A — F)cost + (B —G)sint — (C + H) cos V3t ~ (E+ 1)sinV3t = 0, 

from which we learn that F = A, G = B, H = ~C,and JI = —E, so the general solution 

of (31) is 

xi(t) = Acost+ Bsint + Ccos V3t+ Esin V3t, (4a) 

zo(t) = Acost + Bsint — Ccos V3t — Esin V3¢. (34) 

The determinantal polynomial was of fourth degree and, as asserted above, there are four 

independent arbitrary integration constants. There are important things to say about the 

result expressed in (34): 

COMMENT 1. It will be more illuminating to re-express (34) in the form 

ai(t) = Gsin(t + ¢) + Hsin (v3t+), (35a) 

a(t) = @sin(t +d) ~ Hsin (V3t+¥), (35b) 

where the four constants G, H, ¢, w are determined from the initial conditions 21(0), x4(0), 
x(0), and 74(0). While neither x(t) nor x2(t) is a pure sinusoid, each is a superposition 
of two pure sinusoids, the frequencies of which are characteristics of the system (i.e., inde- 

pendent of the initial conditions). Those frequencies, w = 1 rad/sec and w = V3 rad/sec, 

are the natural frequencies of the system. If the initial conditions are such that H = 0, 

then the motion is of the form 

ai(t)=Gsin(t+¢), o(t) = Gsin(t + @); (36) 

that is, the two masses swing in unison at the lower frequency w = 1. Such a motion 

is called a low mode motion because it is at the lower of the two natural frequencies. If 

instead the initial conditions are such that G = 0, then 

a(t) = Hsin(V3t+y), 22(t)= ~Hsin(V3t +); (37)
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the masses swing in opposition, at the higher frequency w = /3 rad/sec, so the latter is 

called a high mode motion. For instance, the initial conditions 24(0) = #2(0) = 1 and 
x’, (0) = 7(0) = 0 give (Exercise 7) the purely low mode motion 

zi(t) = sin (t + 1/2) = cost, 

ag(t) = sin (6 + 4/2) 
(38) 

cos ¢, 

and the conditions 21(0) = 1, x2(0) = —1, and x (0) = 24(0) = 0 give the purely high 
mode motion 

a (t) = sin(V3t+ 7/2) =cos V3t, 

ag(t) = —sin(/3t+ 1/2) = —cos V3t. 

If, instead, z,(0) = 1 and x2(0) = w{(0) = 24(0) = 0, say, then both G and H will be 
nonzero and the motion will be a linear combination of the low and high modes. 

(39) 

COMMENT 2. Why is the frequency corresponding to the masses swinging in opposition 

higher than that corresponding to the masses swinging in unison? Remember from the 

single-mass case studied in Section 3.5 that the natural frequency in that case is /k/m,; 

that is, the stiffer the system (the larger the value of k), the higher the frequency. For the 

two-mass system, observe that in the low mode the middle spring is completely inactive, 

whereas in the high mode it is being stretched and compressed. Thus, there is more stiffness 

encountered in the high mode, so the high mode frequency is higher. 

COMMENT 3. Just as the free vibration of a single mass is governed by one differen- 

tial equation, mz” + ka = 0, and has a single mode of vibration with natural frequency 

w = ./k/m, a two-mass system is governed by two differential equations and its general 

vibration is a linear combination of two modes (unison and opposition in this example), 

each with its own natural frequency. Similarly, the free vibration of an n-mass system will 

be governed by n differential equations, and its general vibration will be a linear combina- 

tion of n distinct modes, each with its own pattern and natural frequency. In the limit, we 

can think of a continuous system, such as a beam, as an infinite-mass system, an infinite 

number of tiny masses connected together. In that limiting case, in place of an infinite 

number of ordinary differential equations we obtain a partial differential equation on the 

deflection y(x, t), solution of which yields the general solution as a linear combination of 

an infinite number of discrete modes of vibration. In applications it is important to know 
the natural frequencies of a given system because if it is driven by a harmonic forcing func- 

tion, then it will have a large, perhaps catastrophic, response if the driving frequency is 

close to one of the natural frequencies, 

COMMENT 4. Finally, we note that molecules and atoms can be modeled as mass-spring 

systems, and the spectrum of the natural frequencies are of great importance in determining 

their allowable energy levels. @ 

We will have more to say about the foregoing example later, when we study 

matrix theory and the eigenvalue problem. 
Observe that once a system of linear constant coefficient equations is converted 

by the process of elimination to a set of uncoupled equations such as (32a,b), the
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homogeneous solutions of those equations can be sought in the usual exponential 

form. In fact, one can do that even at the outset, without first going through the 

process of elimination. For instance, to solve (31a,b) one can start out by seeking 

a solution in the form a(t) = €,e"! and z(t) = €,e". Putting those forms into 

(31a,b) gives what is known as an eigenvalue problem on the unknown constants 

£1,€2 and r. That discussion is best reserved for the chapters on matrix theory and 

linear algebra, as an important application of the eigenvalue problem, so we will 

not pursue it in the present section. 

Closure. Systems of ordinary differential equations arise in the modeling of physi- 

cal systems that involve more than one dependent variable. For instance, in model- 

ing an ecological system such as the fish populations in a given lake, the dependent 

variables might be the populations of each fish species, as a function of the indepen- 

dent variable t. Surely these populations are interrelated (for instance, one species 

might be the primary food supply for another species), so the governing differential 

equations will be coupled. It is precisely the coupling that produces the interest in 

this section because if they are not coupled then we can solve them, individually, 

by the methods developed in preceding sections. 

Our first step was to give the basic existence and uniqueness theorem. That 

theorem guaranteed both existence and uniqueness, under rather mild conditions 

of continuity, over an interval that is known in advance. The theorem applied to 

first-order systems, but we showed that systems of higher order can be converted to 

first-order systems by suitable introduction of auxiliary dependent variables. 

Then we outlined a method of elimination for systems with constant coeffi- 

cients. Elimination is similar to the steps in the solution of linear algebraic equa- 

tions by Gauss elimination, where the coefficients of the unknowns are operators 

rather than numbers. The correct result can even be obtained by using Cramer’s 

rule, provided that the determinantal operator in the denominator does not vanish, 

and provided that we move that operator back “upstairs” — as we did in converting 

(28) to (29). If the operator does vanish, then the problem is singular and there will 

be no solution or infinitely many linearly independent solutions. 

In subsequent chapters on matrix theory we shall return to systems of lin- 

ear differential equations with constant coefficients and develop additional solution 

techniques that are based upon the so-called eigenvalue problem. 

Computer software. Often, one can solve systems of differential equations using 

computer-algebra systems. For instance, to find the general solution of the system 

(D + l)a + 2y = 9, 

3x +(D+2)y =0 

using Maple, enter 

oe) woht t) + a(t) +2* y(t) =0, 3* a(t) + diff(y(Z), t) 

+2 « y(t) = O}, {x(t), y(t)});



3.9. Systems of Linear Differential Equations 

and return. The result is the general solution 

{ y(t) = ~C2 exp (t) + 3/2 Cl exp (—4¢), 

z(t) = ~_C2 exp (t) +. Cl exp (—4t) } 

If we wish to include initial conditions x(0) = 3, y(0) = 2, use instead the com- 
mand 

dsolve({diff(x(t), t) + a(t) + 2* y(t) = 0, 3 « x(t) + diff(y(t), t) +2 * y(t) = 9, 

x(0) = 3, y(0) = 2}, {e(t), y()}); 

The result is the particular solution 

{y(t) = —exp (t) + 3exp(—de), a(t) = exp (t) + 2exp (—48)} 
Alternatively, one can first define the two equations and then call them in the 

dsolve command. That is, enter 

deq! := diff(x(t),t)+ x(t) +2* y(t) =0: 

deq2 := 3 « x(t) + diff(y(¢),t) +2 * y(t) =0: 

The colon at the end of each line indicates that it is a definition, not a command. 

Commands are followed by semicolons. Now, enter the dsolve command: 

dsolve({deq1l, deq2, 2(0) = 3, y(0) = 2}, {a(t), y(t) }); 

and return. The result is 

{y(t) = — exp (t) + 3exp (—4t), x(t) = exp (t) + 2exp (—4t)} 
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1. Derive the solution (20) of (19). x2 
‘ rr 43 

k 

oe Ww 

2. Derive the solutions (33a,b) of (32a,b). ol k m | k my PEO 

i Wt FW 
a 

LEIS ELLIS ELIE ILLES LEED POT EE, 

3. Derive the system of differential equations governing the 

displacements a,(t), using the assumption that 2; > xg > 
v3 > 0. Repeat the derivation assuming instead that 73 > 

2q > x; > O and again, assuming that v7; > 73 > x > 0, 4.(a),(b).(c) Derive the system of differential equations gov- 

and show that the resulting equations are the same, indepen- erning the currents i,(£), but you need not solve them. State 

dent of these different assumptions. any physical laws that you use.
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(b) (a) 

  

  

  

        
(c) 

+ 

Gu) ee Be) 
i 4 hy 

  

if Q 

    

5. Obtain the general solution by the method of elimination 

either step-by-step or using the Cramer’s rule shortcut. 

(a) (D-1)r+Dy=0 
(D+1)a+(2D+2)y=0 

(D -1)r+2Dy =0 
(D+ l)x+4Dy =0 

(ce) De +(D~l)y=5 
(D+ l)a+(D+l)y=0 

(d) vo +y=ytt 
xv —3y' = -2r +2 

(e) «’ =sint—y 
y =-9r+4 

(f) 2’ =x ~ 8y 
yo =r-n-y—3t 

(g) 2 =20+6y-t+7 

yl = Qe — 2y 

Qa +y +aty=P-1 

ety t+art+y=0 

(i) a +y+a-y=e! 

vw + 2y +22 -2y-1-¢t 

(j) a — 3x + y = 4sin 2¢ 
32 +y'-y=6 

’ 

(b) 

(h) 

(k) vw” =x — dy 

yl = 20 y 
Q) a” =a — 2y 

y" = 2a — 4y 

(m) vc” —~x+2y=0 

—2a+y"+4dy=1-0 

Chapter 3. Linear Differential Equations of Second Order and Higher 

(n) 2” ~ a+ 3y =0 

yl tarysd 
(0) 2! +a+y = 24 

y!! + 38a ~y = —-8 
(p) gl! + yl" =a 

‘ 32" —~y" =y+6 

(q) (2D? + 3)e+(2D+1)y = 4e34 —7 
Daz+(D—2)y = 2 

6. (a)~—(q) Find the general solution of the corresponding 

problem in Exercise 5 using computer software. Separately, 

make up any set of initial conditions, and use the computer to 

find the particular solution corresponding to those initial con- 

ditions. 

7. (Mass-spring system of Examples 3 and 8) (a) Derive the 

particular solutions (38) and (39) from the general solution 

(35) by applying the given sets of initial conditions. 

(b) Evaluate G, H,¢,w for the initial conditions 7\(0) = 

1,a2(0} = 2} (0) = 24(0) = 0, and show that both modes 
are present in the solution. Obtain a computer plot of 2 (¢) 

and xo(t), over 0 < t < 20 (so as to show several cycles). 

(c) Same as (b), for 2 (0) = 1,2,(0) = x2(0) = #4(0) = 0. 
(d) Same as (b), for 21(0) = z2(0) = 0,24 (0) = 2,25(0) = 
3. 

(e) Same as (b), for 2, (0) = x2(0) = 0,2} (0) = 2, 

x5 (0) = -1. 

8. (Chemical kinetics) Two substances, with concentrations 

x(t) and y(t), react to form a third substance, with concentra- 
tion 2(¢). The reaction is governed by the system 2’ + ax = 
0,2’ = Gyandx +y+2 =, where a, 3,7 are known pos- 

itive constants. Solve for x(t), y(t), z(t), subject to the initial 
conditions z(0) = z’(0) = 0 for these cases: 

(ala #6 
(b) @ = G HINT: Apply l’Hépital’s rule to your answer to 

part (a). 

9. (Motion of a charged mass) Consider a particle of mass rm, 

carrying an electrical charge g, and moving ina uniform mag- 

netic field of strength 8. The field is in the positive z direction. 

The equations of motion of the particle are 

ma" = qBy', 

my" = ~qBa', 
me” = 0, 

(9.1) 

where a(t), y(t), (4) are the x, y, 2 displacements as a func- 
tion of the time ¢. 

(a} Find the general solution of (9.1) for x(¢), y(¢), z(t). How 
many independent arbitrary constants of integration are there?



seagate ncn cance 

(b) Show that by a suitable choice of initial conditions the mo- (a) ae -aty=t 

tion can be a circle in the x,y plane, of any desired radius & gl! yo -atya=t? 

and centered at any desired point xo, yo. Propose such a set of (b) ( 

initial conditions. ( 

(c) Besides a circular motion in a constant z plane, are any (c) (D+1)2- Dy =et 

other types of motion possible? Explain. ( 

10. Show that the given system is singular (i.¢., either incon- — (q) ( 

sistent or redundant). If it has no solutions show that; if it has 

solutions find them. 

D+1)e+Dy=e' 

Chapter 3 Review 

D? —1)z +(D? — D)y = 3t 
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Chapter 3 Review 

A differential equation is far more tractable, insofar as analytical solution is con- 

cerned, if it is linear than if it is nonlinear. We could see a hint of that even in 

Chapter 2, where we were able to derive the general solution of the general first- 

order linear equation y’ + p(x)y = q(x) but had success with nonlinear equations 

only in special cases. In fact, for linear equations of any order (first, second, or 

higher) a number of important results follow. 

The most important is that for an nth-order linear differential equation D[y] = 

f(x), with constant coefficients or not, a general solution is expressible as the sum 

of a general solution y;,(z) to the homogeneous equation L[y] = 0, and any partic- 

ular solution yp(z) to the full equation Diy] = f: 

y(@) = yn(x) + Yp(2). 

In turn, y,(z) is expressible as an arbitrary linear combination of any n LI 

(linearly independent) solutions of Z{y] = 0: 

yn(x) = Cry (x) oe Cnyn(2). 

Thus, linear independence is introduced early, in Section 3.2, and theorems are 

provided for testing a given set of functions to see if they are LI or not. We then 

show how to find the solutions y,(x),...,Yn(x) for the following two extremely 

important cases: for constant-coefficient equations and for CauchyEuler equations. 

For constant-coefficient equations the idea is to seek y;,(2) in the exponen- 

tial form e**. Putting that form into L[y] = 0 gives an nth-degree polynomial 

equation on A, called the characteristic equation. Each nonrepeated root A; con- 

tributes a solution e*/”, and each repeated root A, of order k contributes & solutions 
enit reri® , . ok bee, 

For Cauchy—Euler equations the form e** does not work. Rather, the idea is 
to seek y;,(a) in the power form a, Each nonrepeated root A; contributes a solution 

a7, and each repeated root A; of order k contributes k solutions 

oN, (Inz)av,..., (Ine)*ar,
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Two different methods are put forward for finding particular solutions, the 
method of undetermined coefficients and Lagrange’s method of variation of param- 
eters. Undetermined coefficients is easier to apply but is subject to the conditions 

that 

(i) besides being linear, L must be of constant-coefficient type, and 

(ii) repeated differentiation of each term in f must produce only a finite number 

of LI terms. 

Variation of parameters, on the other hand, merely requires L to be linear. Accord- 
ing to the method, we vary the parameters (i.e., the constants of integration in yp) 
Cy,...,Cn, and seek yp(x) = Cy(a)yi (x) + +--+ Cr(2)yn(x). Putting that form 
into the given differential equation gives one condition on the C;j(«)’s. That condi- 
tion is augmented by n — 1 additional conditions that are designed to preclude the 
presence of derivatives of the C;(a)’s that are of order higher than first. 

In Section 3.8 we study the harmonic oscillator, both damped and undamped, 
both free and driven. Of special interest are the concepts of natural frequency for 
the undamped case, critical damping, amplitude- and frequency-response curves, 
resonance, and beats. This application is of great importance in engineering and 

science and should be understood thoroughly. 
Finally, Section 3.9 is devoted to systems of linear differential equations. We 

give an existence/uniqueness theorem and show how to solve systems by elimina- 

tion.



  

Chapter 4 

Power Series Solutions 

PREREQUISITES: This chapter presumes a familiarity with the complex plane and 
the algebra of complex numbers, material which is covered in Section 21.2. 

4.1 Introduction 

In Chapter 2 we presented a number of methods for obtaining analytical closed 
form solutions of first-order differential equations, some of which methods could 
be applied even to nonlinear equations. In Chapter 3 we studied equations of second 
order and higher, and found them to be more difficult. Restricting our discussion to 
linear equations, even then we were successful in developing solutions only for the 
(important) cases of equations with constant coefficients and Cauchy-Euler equa- 
tions. We also found that we can solve nonconstant-coefficient equations if we can 
factor the differential operator, but such factorization can be accomplished only in 

exceptional cases. 
In Chapter 4 we continue to restrict our discussion to linear equations, but we 

now study nonconstant-coefficient equations. That case is so much more difficult 
than the constant-coefficient case that we do two things: we consider only second- 
order equations, and we give up on the prospect of finding solutions in closed form 

and seek solutions in the form of infinite series. 
To illustrate the idea that is developed in the subsequent sections, consider the 

simple example 

dy = =0. 1 dnt Y 0 (1) 

To solve by the series method, we seek a solution in the form of a power series 

expansion about any desired point « = xo, y(x) = S779 dn (x — xo)”, where the 
Gn, coefficients are to be determined so that the assumed form satisfies the given 
differential equation (1), if possible. If we choose xp = 0 for simplicity, then 

oO 

y(z) = S" Ant” = ag + aye + age” itt, (2a) 

0 
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and 

dy _d 2 c 2 
dn = in (ag + ayn + age +: :) = a4 + 2a9n + 3agu” + ---. (2b) 

Putting (2a,b) into (1) gives 

(ay + 2a9x” + 3a3z° +>: -) +. (ao +ayo+ ana? 4+: -) = 0, (3) 

or, rearranging terms, 

(a, +49) + (Qay + a1) @ + (303 + a2) "2° +---=0. (4) 

If we realize that the right side of (4) is really 0 + Ox + Ox? +---, then, by equating 

coefficients of like powers of x on both sides of (4), we obtain aj + a) = O, 

2a. + a, = 0, 3ag + a2 = 0, and so on. Thus, 

ay = —a0, 

a2 —ay,/2 = —(—ag)/2 = ag/2, (5) 

ag = —a2/3 = —(a0/2)/3 = —a0/6, 

lI 

and so on, where ag remains arbitrary. Thus, we have 

1 1 
ule) = 09 (1-24 50 = Fah +), 

(6) 

as the general solution to (1). Here, ag is the constant of integration; we could 

rename it C’, for example, if we wish. Thus, we have the solution — not in closed 

form but as a power series. In this simple example we are able to “sum the series” 

into closed form, that is, to identify it as the Taylor series of e~*, so that our general 

solution is really y(x) = Ce~*. However, for nonconstant-coefficient differential 

equations we are generally not so fortunate, and must leave the solution in series 

form. 

As simple as the above steps appear, there are several questions that need to be 

addressed before we can have confidence in the result given by (6): 

(i) In (2b) we differentiated an infinite series term by term. That is, we inter- 

changed the order of the differentiation and the summation and wrote 

d hn d h 
in Ss" Ann" = S| ic (Gnu"). (7) 

That step looks reasonable, but observe that it amounts to an interchange in 

the order of two operations, the summation and the differentiation, and it is 

possible that reversing their order might give different results. For instance, 

do we get the same results if we put toothpaste on our toothbrush and then 

brush, or if we brush and then put toothpaste on the brush?



  

(ii) Re-expressing (3) in the form of (4) is based on a supposition that we can 
add series term by term: 

S° An + S| Br = S° (An + Bn) . (8) 

Again, that step looks reasonable, but is it necessarily correct? 

(iii) Finally, inferring (5) from (4) is based on a supposition that if 

So Anat” = S~ Bya” (9) 

for all z in some interval of interest, then it must be true that A, = B, for 

each n. Though reasonable, does it really follow that for the sums to be the 

same the corresponding individual terms need to be the same? 

Thus, there are some technical questions that we need to address, and we do 
that in the next section. Our approach, in deriving (6), was heuristic, not rigorous, 
since we did not attend to the issues mentioned above. We can sidestep the sev- 
eral questions of rigor that arose in deriving the series (6) if, instead, we verify, a 
posteriori, that (6) does satisfy the given differential equation (1). However, that 

procedure begs exactly the same questions: termwise differentiation of the series, 
termwise addition of series, and equating the coefficients of like powers of x on 

both sides of the equation. 
Here is a brief outline of this chapter: 

4.2 Power Series Solutions. In Section 4.2, we review infinite series, power 

series, and Taylor series, then we show how to find solutions to the equation y” + 
p(x)y’ + q(x)y = 0 in the form of a power series about a chosen point 2x9 if p(x) 
and q(x) are sufficiently well-behaved at xo. 

4.3 The Method of Frobenius. If p(w) and q(x) are not sufficiently well- 
behaved at xo, then the singular behavior of p and/or q gets passed on in some 
form to the solutions of the differential equation; hence those solutions cannot be 
found in power series form. Yet, if p(x) and q(x) are not too singular at zg, then so- 
lutions can still be found, but in a more general form, a so-called Frobenius series. 

Section 4.3 puts forward the theoretical base for such solutions and the procedure 

whereby to obtain them. 
4.4 Legendre Functions, This section focuses on a specific important example, 

the Legendre equation (1 — «*)y" ~ 2ay' + Ay = 0, where J is a constant. 
4.5 Singular Integrals; Gamma Function. Singular integrals are defined and 

their convergence is discussed. An important singular integral, the gamma function, 

is introduced and studied. 
4.6 Bessel Functions. Besides the Legendre equation, we need to study the 

extremely important Bessel equation, x°y"” + ay! + (a? — v*)y = 0, where v is a 
constant, but preparatory to that study we first need to introduce singular integrals 
and the gamma function, which will be needed again in Chapter 5 in any case. 

4.1. Introduction 175
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4.2 Power Series Solutions 

4.2.1. Review of power series. Whereas a finite sum, 

N 

So ay = a1 + ag + + ay, (1) 

k=l 

is well-defined thanks to the commutative and associative laws of addition, an infi- 

nite sum, or infinite series, 

Co 

Say = a1 ag tagte, (2) 

k=l 

is not. For example, is the series S79 (-1)81 =1~1+1-—1+4--- equal to 

(L-l1)+ (1-1) +--- = 0+4+0+.--- = 07 Is it (by grouping differently) 

1-(1-1)—-(1-1)---- =1-0-—0-—.--- = 1? In fact, besides grouping 

the numbers in different ways we could rearrange their order as well. The point, 

then, is that (2) is not self-explanatory, it needs to be defined; we need to decide, or 

be told, how to do the calculation. To give the traditional definition of (2), we first 

define the sequence of partial sums of the series (2) as 

Ss, = a1, 82 = a1 + Ga, 83 =a, +d2 + 43, (3) 

and so on: 
Th 

Sn = > ak, (4) 
k=1 

where a, is called the kth term of the series. If the limit of the sequence sy, exists, 

as mn. —> oo, and equals some number s, then we say that the series (2) is convergent, 

and that it converges to s; otherwise it is divergent. That is, an infinite series is 

defined as the limit ( if that limit exists) of its sequence of partial sums: 

oO nr 

So ay = lim So ag = lim 5 = 5. (5) 
Th-F CO TL CO 

k=1 k=1 

That definition, known as ordinary convergence, is not the only one possible. For 

instance, another definition, due to Cesaro, is discussed in the exercises. However, 

ordinary convergence is the traditional definition and is the one that is understood 

unless specifically stated otherwise. 

Recall from the calculus that by limp—joo $n = 8, in (5), we mean that to each 

number € > 0, no matter how small, there exists an integer VV such that |s ~S8n| <€ 

for alln > N. (Logically, the words “no matter how small” are unnecessary, but 

we include them for emphasis.) In general, the smaller the chosen e, the larger the 

N that is needed, so that N is a function of e. 

The significance of the limit concept cannot be overstated, for in mathematics 

it is often as limits of “old things” that we introduce “new things.” For instance, 

se
on
eg
et



  

& bo
 

the derivative is introduced as the limit of a difference quotient, the Riemann inte- 
gral is introduced as the limit of a sequence of Riemann sums, infinite series are 
introduced as limits of sequences of partial sums, and so on. 

To illustrate the definition of convergence given above, consider two simple 

examples. The series 1+ 1+ 1+ --- diverges because s, = n fails to approach 
a limit as n —+ co. However, for a series to diverge its partial sums need not grow 
unboundedly, For instance, the series 1—1-+-1—1+---, mentioned above, diverges 
because its sequence of partial sums (namely, 1,0,1,0,1,...) fails to approach a 
limit. Of course, determining whether a series is convergent or divergent is usually 
much harder than for these examples. Ideally, one would like a theorem that gives 
necessary and sufficient conditions for convergence. Here is such a theorem. 

  

THEOREM 4.2.1 Cauchy Convergence Theorem 
An infinite series is convergent if and only if its sequence of partial sums s,, is a 

Cauchy sequence — that is, if to each e > 0 (no matter how small) there corresponds 

an integer N(e¢) such that |s,, ~ s,| < € for all m and n greater than NV. 
  

Unfortunately, this theorem is difficult to apply, so one develops (in the calcu- 
lus) an array of theorems (i.e., tests for convergence/divergence), each of which is 
more specialized (and hence less powerful) than the Cauchy convergence theorem, 
but easier to apply. For instance, if in Theorem 4.2.1 we set m = n — 1, then the 
stated condition becomes: to each « > 0 (no matter how small) there corresponds 

an integer Ne) such that [sy — sp| = |an| < ¢€ for alln > N. The latter is 
equivalent to saying that a, —> 0 asm —> oo. Thus, we have the specialized, but 
readily applied, theorem that for the series )~°° ay to converge, it is necessary (but 
not sufficient) that a, —* 0 as n 4 co. From this theorem it follows immediately 
that the series 1+ 1+1+---and1—1+1—1+---, cited above, both diverge 

because in each case the terms do not tend to zero. 
Let us now focus on the specific needs of this chapter, power series — that is, 

series of the form 

mh 

S° An(@~ to)” = ag + ay(x — wo) + ao(x — ao)” fees, (6) 

0 

where the a,,’s are numbers called the coefficients of the series, x is a variable, 

and xg is a fixed point called the center of the series. We say that the expansion is 
“about the point x.” In a later chapter we study complex series, but in this chapter 
we restrict all variables and constants to be real, Notice that the quantity (2 ~ v9)” 
on the left side of (6) is the indeterminate form 0° when n = 0 and x = 29; that 

form must be interpreted as 1 if the leading term of the series is to be ag, as desired. 

The terms in (6) are now functions of z rather than numbers, so that the series 

may converge at some points on the x axis and diverge at others. At the very least 

(6) converges at x = 2x9 since then it reduces to the single term ap. 

Power Series Solutions L77
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diverge | _ converge __ diverge 
  

| | 
  

Xo R Xo Xo + R 

R oo R i 

Figure 1. Interval of 

convergence of power Series. 

  

THEOREM 4.2.2 Interval of Convergence of Power Series 

The power series (6) converges at « = ao. If it converges at other points as well, 

then those points necessarily comprise an interval |x — xo| < centered at xo and, 

possibly, one or both endpoints of that interval (Fig. 1), where & can be determined 

from either of the formulas 

1 1 
R= —-—_ or, R=—== (7a,b) 

fm | oat! lim %/|an| 
n-co 

n-+co | On 

    

if the limits in the denominators exist and are nonzero. If the limits in (7a,b) are 

zero, then (6) converges for all x (i.e., for every finite x, no matter how large), and 

we say that “R = oo.” If the limits fail to exist by virtue of being infinite, then 

R = 0 and (6) converges only at zo. 
  

We call |z — xo| < R the interval of convergence, and FR the radius of 

convergence. If a power series converges to a function f on some interval, we say 

that it represents f on that interval, and we call f its sum function. 

EXAMPLE 1. Consider 377° n! 2”, so a, =n! and zg = 0. Then (7a) is easier to apply 
! 

than (7b), and gives R = 1/ lim (piv 
Th-F OO Th! 

converges only atx = 29 = 0. © 

= 1/ lim (n+ 1) = 1/oo = 0, so the series 
noo 

EXAMPLE 2. Consider 375°(-1)" [(w +5)/2]". Then an = (—1)"/2", 9 = —5, 

(pen =1/ ii b 1/ i = 2, so the series 
Qn+l (-1)" ~ / lim 9 ~ 9 ~ 

converges in |z +5| < 2 and diverges in |x + 5] > 2. For |x + 5| = 2 (@ = —7, —3) the 

theorem gives no information. However, we see that for z = —7 and —3 the terms do not 

tend to zero as nm -> 00, so the series diverges for 2 = —7 and —3. a 

and (7a) gives R= 1/ lim 
TL OO 

  

EXAMPLE 3. Consider S> a Then a, = (rn +1)7", 2 = 1, and (7b) gives 
N 7 

4 

R=1/ lim V(n+1)7™ = 1/ lim 
TL-+ OO moo TL 

x; that is, the interval of convergence is |x —1| < oo. @ 

  = 1/0 = co, so the series converges for all 

EXAMPLE 4. Consider the series 

jo
 

(a — 3)?" (8) 

OH
 n 

5 52 
1 a 8 ye 

0
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This series is not of the form (6) because the powers of «—3 proceed in steps of 2. However, 
oO 4 

; . 1 ; 
if we set XY = (a — 3)?, then we have the standard form > aX", with a, = 1/5" and 

5 0 
Ont 5” 1 . . . 
ait = 5 Thus, £ == 5, and the series converges in |X| < 5 (ie., 

Qn, 

|x — 3| < V5), and diverges in |X| > 5 (ie., |e — 3] > V5). O 

== lim 
TL--> OO 

lim n00 5rri       

  

Recall from our introductory example, in Section 4.1, that several questions 
arose regarding the manipulation of power series. The following theorem answers 
those questions and, therefore, will be needed when we apply the power series 
method of solution. 

  

THEOREM 4.2.3 Manipulation of Power Series 
(a) Termwise differentiation (or integration) permissible. A power series may be 

differentiated (or integrated) termwise (i.e., term by term) within its interval of 
convergence I. The series that results has the same interval of convergence I and 
represents the derivative (or integral) of the sum function of the original series. 
(b) Termwise addition (or subtraction or multiplication) permissible. Two power 
series (about the same point x9) may be added (or subtracted or multiplied) termwise 
within their common interval of convergence J. The series that results has the same 
interval of convergence J and represents the sum (or difference or product) of their 
two sum functions. 

(c) If two power series are equal, then their corresponding coefficients must be 
equal, That is, for 

oO 

Ss? An (x — x)" = S- bn (a — x)” (9) 

0 0 

to hold in some common interval of convergence, it must be true that a, = b, for 

each n, In particular, if 

S- An(x ~ 29)" = 0 (10) 
0 

in some interval, then each a,, must be zero. 
  

li 

xO 

Part (a) means that if f(x) Ss" an(x ~ xo)” within J, then 
0 

o
u
 

/ d = nm - " m = n— f(a)= deg 2 tml ~ 20) = 3 gg lanl — 20) |= d,Min{ ss — #0) 1 

dl) 
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and 

  

0 

= Sra, 29) lane (12) 
5 

within I, where a, b are any two points within [. 

Part (b) means that if f(a) = 79° an(x — xo)" and g(x) = 79° bn(w — wo)” 

on J, then 
co 

f(x) £ g(x) =) (an £ bn)(e ~ 20)"; (13) 
0 

and, with z = x — xo for brevity, 

(Ee) 
= (agp + ayz+---) (bo + b1z+---) 

= ag (bo + bz + bg27 +--+) +042 (bo + O12 + bo27 +--+) 

+a22" (bo + bz + bez? + +++) see 

= agbo + (agbi + abo) z + 
oO 

=S- (aobn + aybn_i tes + Gndo) 2” (14) 
7 

within J. The series on the right-hand side of (14) is known as the Cauchy product 

of the two series. Of course, if the two convergence intervals have different radii, 

then the common interval means the smaller of the two. 

In summary, we see that convergent power series can be manipulated in essen- 

tially the same way as if they were finite-degree polynomials. 

The last items to address, before coming to the power series method of solution 

of differential equations, are Taylor series and analyticity. Recall from the calculus 

that the Taylor series of a given function f(a) about a chosen point xo, which we 

denote here as TS f|,,., is defined as the infinite series 
; : 

f(a 0) 

oe € 
(n)( (x 

- oe . n! 0 ~ £9)", (15) 

    TS fla, = f(vo) + (aw — x9)? +---
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where 0! = 1. The purpose of Taylor series is to represent the given function, so the 
fundamental question is: does it? Does the Taylor series really converge to f(x) on 

some « interval, in which case we can write, in place of (15), 

oO f(n) 

fla) =e — an) (16) a 
For that to be the case we need three conditions to be met: 

(i) First, we need f to have a Taylor series (15) about that point. Namely, f must 
be infinitely differentiable at xo so that all of the coefficients f((ag)/n! in 
(15) exist. 

(ii) Second, we need the resulting series in (15) to converge in some interval 
|z ~ x9| < R, for R > 0. 

(iii) Third, we need the sum of the Taylor series to equal f in the interval, so 

that the Taylor series represents f over that interval — which is, after all, our 
objective. 

The third condition might seem strange, for how could the Taylor series of 
f(z) converge, but to something other than f(x)? Such cases can indeed be put 
forward, but they are somewhat pathological and not likely to be encountered in 
applications. 

If a function is represented in some nonzero interval |a — zo| < RF by its 
Taylor series [i.e., TS f|,,, exists, and converges to f(x) there], then f is said to be 
analytic at vo. If a function is not analytic at xo, then it is singular there. 

Most functions encountered in applications are analytic for all x, or for all x 
with the exception of one or more points called singular points of f. (Of course, 
the points are not singular, the function is.) For instance, polynomial functions, 
sin z, cos x, e*, and e~* are analytic for all z. On the other hand, f(x) = 1/(a—1) 
is analytic for all z except « = 1, where f and all of its derivatives are undefined, 
fail to exist. The function f(z) = tana = sin x/cosz is analytic for all x except 
z=nnr/2(n = £1,+3,...), where it is undefined because cos xz vanishes in the 
denominator. 

The function f(a) = «*/3 is analytic for all x except « = 0, for even though 
f(0) and f’(0) exist, the subsequent derivatives f’(0), f’”(0),... do not (Fig. 2). 
In fact, f(z) = «® is singular at ¢ = 0 for any noninteger value of a. 

Observe that there is a subtle difficulty here. We know how to test a given 
Taylor series for convergence since a Taylor series is a power series, and Theorem 
4.2.2 on power series convergence even gives formulas for determining the radius 
of convergence R. But how can we determine if the sum function (i.e., the function 

to which the series converges) is the same as the original function f? We won’t be 
able to answer this question until we study complex variable theory, in later chap- 
ters. However, we repeat that the cases where the Taylor series of f converges, but 

not to f, are exceptional and will not occur in the present chapter, so it will suffice 

  

  

      
Figure 2. f(x) = c*/° and its first 

two derivatives.
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to understand analyticity at zg to correspond to the convergence of the Taylor se- 

ries in some nonzero interval about 2p. In fact, it is also exceptional for f to have 

a Taylor series about a point (i.e., be infinitely differentiable at that point) and to 

have that Taylor series fail to converge in some nonzero interval about x. Thus, as 

a rule of thumb that will suffice until we study complex variable theory, we will test 

a function for analyticity at a given point simply by seeing if it is infinitely differen- 

tiable at that point. 

4.2.2. Power series solution of differential equations. We can now state the 

following basic theorem. 

  

THEOREM 4.2.4 Power series solution 
If p and q are analytic at vg, then every solution of 

y” + p(x)y' + q(ax)y = 0 (17) 

is too, and can therefore be found in the form 

Coo 

y(2) = So an(x — 20)”. (18) 
0 

Further, the radius of convergence of every solution (18) is at least as large as the 

smaller of the radii of convergence of TS p|,, and TS azo: 
  

Although we will not prove this theorem, we shall explain why one can expect 

it to be true. Since p and q are analytic at the chosen point zo, they admit convergent 

Taylor series about xo, so that we can write (17) as 

y" + [p(wo) + p’(wo)(x — v0) +--+] y! + [a(@o) + a'(wo)(x — to) ++] y = 0. 
(19) 

Locally, near zo, we can approximate (19) as 

y” + p(xo)y’ + a(to)y = 9, 

all solutions of which are either exponential or x times an exponential, and are 

therefore analytic and representable in the form (18), as claimed. 

In many applications, p(a) and q(x) are rational functions, that is, one poly- 

nomial in x divided by another. Let F(x) = N(x)/D(«) be any rational function, 

where the numerator and denominator polynomials are N(a) and D(a), respec- 

tively, and where any common factors have been canceled. It will be shown, when 

we study complex variable theory, that F(x) is singular only at those points in the 

complex plane where D = 0, at the zeros of D, so that a Taylor expansion of £° 

about a point zo on the x axis will have a radius of convergence which, we know 

in advance, will be equal to the distance from a on the x axis to the nearest zero



  

4.2. 

of D in the complex plane. For instance, if F(a) = (2 + 3x)/[(4 + 2)(9 + x°)], 
then D has zeros at 4 and +37. Thus, if we expand F’ about = 2, say, then the 

radius of convergence will be the distance from 2 to the nearest zero, which is +32 

(or, equally, —32), namely, 13 (Fig. 3). If, instead, we expand about x = —6, say, 
then the radius of convergence will be 2, the distance from —6 to the zero of D at 

—4, 

EXAMPLE 5. Solve 

y" +y =0 (20) 

by the power series method. Of course, this equation is elementary. We know the solution 

and do not need the power series method to find it. Let us use it nevertheless, as a first 

example, to illustrate the method. 

We can choose the point of expansion xg in (18) as any point at which both p(z) and 

q(x) in (17) are analytic. In the present example, p(x) = 0 and q(x) = 1 are analytic for 
all 2, so we can choose the point of expansion zp to be whatever we like. Let xy = 0, for 

simplicity. Then Theorem 4.2.4 assures us that all solutions can be found in the form 

oO 

y(z) = S° Anz", 
0 

and their series will have infinite radii of convergence. Within that (infinite) interval of 

convergence we have, from Theorem 4.2.3(a), 

(21a) 

ya) = So nana”), (21) 
1 

y' (2) = Sinn —l)anz”"~?, (21c) 
2 

so (20) becomes 

S- n(n — Lane"? + S- Anz” = 0. (22) 

m2 n=0 

We would like to combine the two sums, but to do that we need the exponents of z to be the 

same, whereas they are n — 2 and n. To have the same exponents, let us set —2 = 7m in the 

first sum, just as one might make a change of variables in an integral. In the integral, one 

would then need to change the integration limits, if necessary, consistent with the change 

of variables; here, we need to do likewise with the summation limits. With n — 2 = m, 

nm = co corresponds tom = co, and n = 2 corresponds tom = 0, so (22) becomes 

S- (m + 2)(m + L)am+o2™ + S- anx” = 0. (23) 
m=0 n=0 

Next, and we shall explain this step in a moment, let m = 7 in the first sum in (23): 

oo 

So(n + 2)(1 + Dansen” + Ss" ann” =O 

n==Q 

(24) 
n=0 
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or, with the help of Theorem 4.2.3(b), 

oO 

> [(n + 2)(2 + lanie + Gn] a” = 0. (25) 

n=O 

Finally, it follows from Theorem 4.2.3(c) that each coefficient in (25) must be zero: 

(n+ 2)(n + Lange + an = 0. (n = 0,1,2,...) (26) 

Before using (26), let us explain our setting m = 7 In tn (23) since that step might seem 

to contradict the preceding change of variables n - 2 = m. The point to appreciate is 

that m in the first sum in (23) is a dummy index just as t is a dummy variable in fo t? dt. 

(We shall use the word index for a discrete variable; m takes on only integer values, not a 

continuous range of values.) Just as fo edt = fo redr = fy a*dz = +--+ = %, the sums 

in (23) are insensitive to whether the dummy index is m orn: 

S- (m + 2)(m + l)amyoe™ = 2aq + Gage + Lage? +e, 

m=0 

and 
oO 

Sin +2)(n + lanzer”™ = 2a + 6agz + 1Qagu" ++: 

n=0 

are identical, even though the summation indices are different. 

Equation (26) is known as a recursion (or recurrence) formula on the unknown 

coefficients since it gives us the nth coefficient in terms of preceding ones. Specifically, 

  

  

  

  

  

nag ny =0,1,2,... 27) 
On42 (n+ 2)(n+1)" (n ) ( 

so that 

n=O: a I a = : Qe 0, 
2)(1) 

n=l: a3 at, 

3)(2) : 1 (28) 
no: 4 = 2 = aaa UO = n “ae IAG" ae 
n=3: i ag = a1, 3 

(5)(4) 5! 

and so on, where aq and a; remain arbitrary and are, in effect, the integration constants. 

Putting these results into (21a) gives 

1 1 1 
5 ~ ue + port i+ pare” +: 

-ali-2 | wtee te igta-. = do ~ He +e! + ay tae + aye 

y(x) = agyr(x) + @1ya(2), 

y(@) = ag + aye — ayn" 

(29) 

or 
(30)
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where y; (2) and y2(x) are the series within the first and second pairs of parentheses, re- 
spectively. From their series, we recognize y; (a) as cos x and y2(z) as sin x but, in general, 
we can’( expect to identify the power series in terms of elementary functions because nor- 

maily we reserve the power series method for nonelementary equations (except for peda- 

gogical examples such as this). Thus, let us continue to call the series “y;(2)” and “‘y9(x).” 
We don’t need to check the series for convergence because Theorem 4.2.4 guarantees 

that they will converge for all «. We should, however, check to see if y1, yg are LI (linearly 

independent), so that (30) is a general solution of (20). To do so, it suffices to evaluate the 

Wronskian W[y1, ye|(x) at a single point, say x = 0: 

0 yo(0 1 0 

Whurswel(a) =| KO 20) | =1, G1) 
yi(0) y2(0) 0 1 

which is nonzero. It follows from that result and Theorem 3.2.3 that yi, ye are LI on the 

entire x axis, so (30) is indeed a general solution of (20) for all xz. Actually, since there are 

only two functions it would have been easier to apply Theorem 3.2.4: y1, ya are LI because 

neither one is a constant multiple of the other. 

COMMENT 1. To evaluate y; (2) or yo{x) at a given x, we need to add enough terms of the 
series to achieve the desired accuracy. For small values of « (i.e., for a’s that are close to the 

point of expansion xo, which in this case is 0) just a few terms may suffice. For example, 

the first four terms of y:(z) give y,(0.5) = 0.877582, whereas the exact value is 0.877583 
(to six decimal places). As x increases, more and more terms are needed for comparable 

accuracy. The situation is depicted graphically in Fig. 4, where we plot the partial sums 

$3 and sg, along with the sum function y,(z) (i.e., cosz). Observe that the larger n is, the 

broader is the z interval over which the n-term approximation s,, stays close to the sum 

function. However, whereas y;(<) is oscillatory and remains between ~1 and +1, sn(a) 

is a polynomial, and therefore it eventually tends to +coo or —oo as & increases (— oo if n 

is even and -++oo if n is odd). Observe that if we do need to add a great many terms, then 

it is useful to have an expression for the general term in the series. In this example it is not 

hard to establish that 

  
2° , gen _ 90 n gent 

y(t) = dV (Oni yo(x) = dV neil (32) 

COMMENT 2. Besides obtaining the values of the solutions y,(2) and yo(a), one is 
usually interested in determining some of their properties. Some properties can be obtained 

directly from the series. For instance, in this case we can see that yi(—«) = yi{#) and 
yo(—x) = ~ye(x) (so that the graphs of y, and yo are symmetric and antisymmetric, 

respectively, about 2 = Q), and that y (2) = ~ye(x) and y}(x) = y,(x). The differential 

equation is also a source of information. 

COMMENT 3. We posed (20) without initial conditions. Suppose that we wish to impose 

the initial conditions y(0) = 4 and y’(0) = —1. Then, from (30), 

y(0) = 4 = agyi(O0) + arye(0), 

aoy, (0) + arys(0). 
(33) 

a
 S i | Lu \ 

  

     yy (x) = cosx 

      
Figure 4. Partial sums of yi(z), 

compared with yi (x).
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From the series representations of y, and yg in (30), we see that yi(0O) = 1, ye{0) = 9, 

y{ (0) = 0, and y},(0) = 1, so we can solve (33) for ao and a1: ao = 4 and a, = —1, hence 

the desired particular solution is y(a) = 4yi(a) ~ y2(#), on -co < av < co. Of 

We can now see more clearly how to select the point of expansion 2g, besides 

selecting it to be a point at which p and g in (17) are analytic. We have emphasized 

that the series solutions are especially convenient when the calculation point a is 

close to zg, for then only a few terms of the series may suffice for the desired 

accuracy. Thus, if our interest is limited to the interval 6 < x < 10, say, t then it 

would make sense to seek series solutions about a point somewhere in that interval, 

such as a midpoint or endpoint, rather than about some distant point such as x = == (), 

In the event that initial conditions are supplied at some point «;, then it is 

especially helpful to let xq be 2; because when we apply the initial conditions we 

will need to know the values of y;(2;), yo(ai), yj (ai), and yy(az), as we did in 

(33). If xo is other than 2;, then each of these evaluations requires the summing of 

an infinite series, whereas if it is chosen as x; then these evaluations are trivial (as 

in Comment 3, above). 

EXAMPLE 6. Solve the initial-value problem 

(2 —1)y" +y' + 2(x — ly = 0, y(4)=5, y'(4)=0 (34) 

on the interval 4 < x < oo. To get (34) into the standard form y” + p(x)y! + q(xz)y = 0, 

we divide by x — 1 (which is permissible since z ~ 1 4 0 on the interval of interest): 

it y 2y = 0, (35)       

so p(x) = 1/(a@~ 1) and q(x) = 2. These are “vant forall x except x = 1, where p(r) is 

undefined. In particular, they are analytic at the initial point « = 4, so let us choose ty = 4 

and seek 

=) an(a — 4)”. (36) 
0 

To proceed we can use either form (34) or (35). Since we are expanding each term in the 

differential equation about z = 4, we need to expand x — | and 2(x@ ~— 1) if we use (34), or 

the 1/(x — 1) factor if we use (35). The former is easier since 

w-ls=34+ (a ~~ 4) (37) 

is merely a two-term Taylor series, whereas (Exercise 6) 

-j> Gre as 
is an infinite series. Thus, let us use (34). Putting (36) and its derivatives and (37) into (34) 

gives 

  

moO oo 

[3 + (x — 4) }Se ni (n — l)an(a — 4)"7 - +S nan( (x — 4)"7} 

2 1
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+2[3 + (a ~4)] S$" an(x — 4)” =0 (39) 
0 

or, absorbing the 3 + (a ~ 4) terms into the series that they multiply and setting z = « ~ 4 

for compactness, , 

OO oo 

S- 38n(n — L)ayz™ 7? + Son(n ~ Lanz" 

2 2 
oO oO oO 

+ S- Nay, Z t+ S° 6Gn2" + ‘> Janet! = 0. (40) 
1 6 0 

To adjust all z exponents to n, let — 2 = m in the first sum, 2 — 1 = min the second 

and third, and n + 1 = m™ in the last: 

oO oO 

S- 3(m + 2)(m + Damszoz™ + So(m + L)mamyi2™ 
0 1 

+ (m+ Vamyiz™ + S- 6anz" + > 2am—12™ = 0. (41) 
0 0 1 

Next, we change all of the m indices to n. Then we have z” in each sum, but we 

cannot yet combine the five sums because the lower summation limits are not all the same; 

three are 0 and two are 1. We can handle that problem as follows. The lower limit in the 

second sum can simply be changed from 1 to 0 because the zeroth term is zero anyhow 

(due to the m factor). And the lower limit in the last sum can be changed to 0 if we simply 

agree that the a_;, that occurs in the zeroth term, be zero by definition. Then (41) becomes 

» 3(n + 2)(n + Lanza2” + Si(n + 1l)nanyi2” 

8 0 
oO x oO 

+0 (n + Langiz” +S Ganz” +S > 2an—12” = 0 (42) 
0 0 0 

or 
oo 

S| [3(n + 2)(m + Lange + (m+ 1)Pangi + 6an + 2an—] 2" = 0, (43) 
0 

witha, = 0. 

Setting the square-bracketed coefficients to zero for each n [Theorem 4.2.3(c)] then 

gives the recursion formula 

3(n + 2)(n + Lanse + (m2 +1) ann. + ban + 2Gn—1 = 0 

or 
n+l 2 2 
Sy neo Ty an 
3(n+2) ") (n+2)(n+1)" 3(n+2)(n+1) 
  

Any] (44) On+2 = 7
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forn = 0,1,2,.... Thus, 

1 1 1 
n=O: dg = Gai — ao ~ FA-1 = ~ Ga ~ Alo 

2 1 1 
m=l: a3 = “9% _ 3M _ 0 

2 1 1 1 8 1 
= “5 (-ga _ to) — 3% _ 9% = ~ 574 + 9 (45) 

n= 2 a4 = ala, _ la fa 
4 6 18 

1 8 1 1 1 
= “| ( 7 + 50 _ 6 (-5a cs) 73% 

5 
= 708" + 36% 

and so on, where a9 and a; remain arbitrary. Putting these expressions for the a,’s back 

into (36) then gives 

y(z) = ag +ai(a — 4) + (-ga ~ co) (a ~ 4)? + (-Fa + a) (x — 4)° 

5 5 —— — —~dAjt4y... + (em + a0) (x ) + 

= ag ft (w= 4)? + tea Peay | 

+a [ie ~4)— Ha 4)? — Flea + leat | 

= agy1(z) + ayy2(Z), (46) 

where y1(x), y2(x) are the functions represented by the bracketed series. To test y1, y2 for 

linear independence it is simplest to use Theorem 3.2.4: y1, y2 are LI because neither one 

is a constant multiple of the other. Thus, y(x) = aoyi(x) + a1y2(z) is a general solution 

of (a — Ly” +y! + 2(@ — ly = 0. 
Imposing the initial conditions is easy because the expansions are about the initial 

point z = 4: 

y(4) = 5 = aoyi (4) + ary2(4) = ao(1) + a1 (0), (47) 

y'(4) = 0 = ay, (4) + a1y9(4) = ao(0) + ar(1), 

SO @g = 5 and a; = 0, and 

y(a) = 5yi(x) = 5 | 1 —(a — 4)? + “(a —4)3 + > ( —4)i 4... (48) 
9 36 

is the desired particular solution, 

COMMENT. Recall that Theorem 4.2.4 guaranteed that the power series solution would 

have a radius of convergence R at least as large as 3 - namely, the distance from the center 

of the expansion (xp = 4) to the singularity in 1/(~ — 1) at ¢ = 1. For comparison, let us
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determine R from our results. In this example it is difficult to obtain a general expression 

for dy. (Indeed, we didn’t attempt to; we were content to develop the first several terms 

of the series, knowing that we could obtain as many more as we wish, from the recursion 

formula.) Can we obtain /¢ without an explicit expression for a,? Yes, we can use the 

recursion formula (44), which tells us that a,4.2 ~ ~$On41 as nm —> oo or, equivalently, 

Anti ~ —F4n. Then, from (7a), 

limty oo | ~~ 

  

1 1 1 
i 

‘ can a pe 

LiMn soo | + 3 3 
tt 

  

  

Thus, if we were hoping to obtain the solution over the entire interval 4 << « < oo we 

are disappointed to find that the power series converges only over | < « < 7, and hence 

only over the 4 < x < 7 part of the problem domain. Does this result mean that the 

solution is singular at z = 7 and can’t be continued beyond, or that it doesn’t exist beyond 

z = 7? No, the convergence is simply being limited by the singularity at ¢ = 1, which lies 

outside of the problem domain 4 < x < oo. For further discussion of this point, see 

Exercise 12. 8 

Closure. In Section 4.2.1 we reviewed the basic concepts of series and power series 
and, in Theorem 4.2.3, we listed the properties of power series that are needed to 
solve differential equations. In Section 4.2.2 we provided a basis for the power 
series solution method of Theorem 4.2.4 and then showed, by two examples, how 
to implement it. 

It is best to use summation notation, as we did in Examples 5 and 6, because 

it is more concise and leads to the recursion relation. (But that notation is not 
essential to the method; for example, we did not use it in our introductory example 
in Section 4.1.) The recursion relation is important because it permits the calulation 
of as many coefficients of the series as we desire, and because it can be used in 

determining the radius of convergence of the resulting series solutions. 
The method may be outlined as follows: 

(1) Write the differential equation in the standard form y+ p(x)y’ + q(x)y = 0 
to identify p(w) and g(x) and their singularities (if any). 

(2) Choose an expansion point vg at which p and g are analytic. If initial condi- 
tions are given at some point, it is suggested that that point be used as xo. 

(3) The least possible radius of convergence can be predicted as the distance (in 

the complex plane) from x to the nearest singular point of p and g. 

(4) Seeking y(x) in the form of a power series about xo, put that form into the 
differential equation, and also expand all coefficients of y”, y’, y about xo as 
well. 

(5) By changing dummy indices of summation and lower summation limits, as 

necessary, obtain a form where each summation has the same exponent on 
x — 9 and the same summation limits.
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(6) Combine the sums into a single sum. 

(7) Set the coefficient of (~ — xo)", within that sum, to zero; that step gives the 

recursion formula. 

(8) From the recursion formula, obtain as many of the coefficients as desired and 

hence the solution form y(a) = Ayi(x) + By2(«), where A, B are arbitrary 

constants and y;(2), ya(x) are power series. If possible, obtain expressions 

for the general term in each of those series. 

(9) Verify that y,, yo are LE 

Computer software. One can use computer software to generate Taylor series and 

also to obtain power series solutions to differential equations. Using Maple, for 

instance, the relevant commands are taylor and dsolve. 

For example, to obtain the Taylor series of 1/(a — x) about z = 0, up to terms 

of third order, where a is a constant, enter 

taylor(1/(a — x), « = 0, 4); 

‘and return. The result is 

at mtt ae + ae + O(2") 

where the O(2*) denotes that there are more terms, of order 4 and higher. 

To obtain a power series solution to y” + y = 0 about the point 2 = Q, enter 

dsolve(diff(y(x), 2,2) + y(x) = 0, y(x), type = series); 

and return. The result is 

y(x) = y(0) + D(y)(0)x — gyO)x - gP(y) Ox + ql" 

1 5 6 +759 PW O# + O(2”) 

where D(y)(0) means y/(0). The default is to expand about x = 0 and to go as far 

as the fifth-order term. If we want an expansion about « = 4, say, and through the 

seventh-order term, enter 
Order := 8; 

to set the order then return and enter 

dsolve({diff(y(a), 2,2) + y(x) =0, y(4) = 4, D(y)(4) = 4}, 

y(x), type = series);



  

and return. 
which the expansion is desired. The result is 

1 | 
y(x) =a+b(a ~ 4) — yale — 4)? — on — 4)8 
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Here, the initial conditions merely serve to establish the point about 

1 
4 —4 f 5g ie 4 

  

1 - 1 to — 4) » A\6 _ »_ 4/8 

Tg le — 4" = gag ale ~ 4) aaa (e 4)" +O ((x—4)’) 

EXERCISES 4.2 
  

1. Use (7a) or (7b) to determine the radius of convergence 

of the given power series. 

(b) S(- 1) 1000 pr 

1000 

(d) S° nel” 
ol 

(f) Soin —1)8(a — 5)” 
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(g) —-( c+ 7)" (h) d (Inn)"** (@ — 2)" 
=n 

. Oo ~1)” avin n yen 
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3 L “ 
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2. Determine the radius of convergence R of the Taylor series 

expansion of the given rational function, about the specified 

point zg, using the ideas given in the paragraph preceding Ex- 

ample 5. Also, prepare a sketch analogous to those in Fig. 3. 

  

  

(a) Pel to = 0 

(b) 39 9 Ly = 2 

a3 ~2n+1 
(c) etc arene ly = 9 

ai 
+ 

d = —26 (d) Peo’ ro 

{a +1)? 
e = 4 

(e) x? + 3a 4+ 2 “0 
- ce -3a+1 . 

(f) Peet T Cy = 3 

+o oe) eT = 

(8) ve —~ a? + 4a — 4’ to = 2 

2 e 
1. Et ~ Ba 42 
¢h) - oye » t=O 

xz-1 

3. Work out the Taylor series of the given function, about the 

given point Zo, and use (7a) or (7b) to determine its radius of 

convergence, 

(aje", 29 =1 (b)e™*, wtp =-2 

(c)sinzg, w%=T7 (d)sinz, 29 = 7/2 

(e)cosz, to = 7/2 (f)cosz, wo=7 

(g) cose, @g =5 (hy Ine, wt =1 

(i) x, wt =3 @) 27° ~4; 29 =0 

(k) cos (x _ 2), w= 2 ad To zi0’ tg = 0 

2 
(m) noe ro = 0 (n) sin(32*°), tp = 0 

4, Use computer software to obtain the first 12 nonzero terms 

in the Taylor series expansion of the given function f, about 

the given point vo, and obtain a computer plot of f and the 

partial sums s3(x), g(a), 89(x), and si2(x) over the given 
interval J. 

  

  

(a) f(z) = en? zg=0, I: 0<a<4 
(b) f(a) =sinz, wo =0, J: O<a2<10 
(c) f(z7)=Ine, ao=l, 2: 0<an<2 

(d) f(w@)=1/—-2), x =0, I: -l<a<l 

(e) f(x) =1/z, woe 2, FT: O<ar<4 

" f(z) =1/4+27), eo =0, I: -l<ae<l 
(g) f(a) = 4/(44+24+27), wo =0, LF: -13 <2 < 0.36 

5, (Geometric series) (a) Show that 

1 9 nt x” 
es el tote te +e - (5.1) 

1-2 t-—-2x       
is an identity for all # 1 and any positive integer n, by 

multiplying through by | — « (which is nonzero since x # 1) 

and simplifying. 

(b) The identity (5.1) can be used to study the Taylor series



192 Chapter 4. Power Series Solutions 

vet ary oO Lk known as the geometric series )7)" 9 Z 
(5.1), its partial sum s,,(a) is 

since, according to 

n-l n 

Ye 
Show, from 52, that the sequence s,(w) converges, as 

n —> oo, for |z| < 1, and diverges for |x| > 1. 
(c) Determine, by any means, the convergence or divergence 

of the geometric series for the points at the ends of the in- 

terval of convergence, « = +1. NOTE: The formula (5.2) 

is quite striking because it reduces s,,(a) to the closed form 

(1 — x")/(1 — 2), direct examination of which gives not only 
the interval of convergence but also the sum function 1/(1—2). 
It is rare that one can reduce s,(z) to closed form. 

  (c #1) (5.2) 

6. (a) Derive the Taylor series of 1/(@ — 1) about 2 = 4 
using the Taylor series formula (16), and show that your result 

agrees with (38). 

(b) Show that the same result is obtained (more readily) by 

writing 

  

  

1 1 i 1 61 

t—-1 34(@—4) 3142 tet (6.1) 

and using the geometric series formula 

Mist (ied 6.2 
1-t 4 1 <1) (6.2) 

    
  

from Exercise 5, with t = —(x ~ 4)/3. Further, deduce the 
x interval of convergence of the result from the convergence 

condition |é] < 1 in (6.2). 

7. For each of the following differential equations do the fol- 

lowing: Identify p(2) and q(x) and, from them, determine the 
least possible guaranteed radius of convergence of power se- 

ries solutions about the specified point x9; seeking a power 

series solution form, about that point, obtain the recursion for- 

mula and the first four nonvanishing terms in the power series 

for yi(x) and yo(x); verify that y1, ye are LL 

(a)y" +2y'+y=0, xr =0 

(b)y” + 2y'=0, xr =0 
(c)y" + 2y'=0, to =3 
(day +y'+y=0, to = -5 
(e) ay” — 2y' +ay=0, ww =1 

(Harty -y=0, to =2 
(gay + (8 +2)y + ry = 0, 
(hy ty + tte tae jy = 0, 

Pe 

tp = —3 

cg = 0 

(i) vo a jy =0, 2 =0 
Gy! =x 0, 2 =0 

ee 

(k) y” + ay! + y =0, wz =0 

Oy ay +a°y=0, 2 =0 
(m)y" +(a-1)*y=0, t= 2 

8. (a)~(m) Use computer software to obtain the general so- 

lution, in power series form, for the corresponding problem 

given in Exercise 7, about the given expansion point. 

9, (Airy equation) For the Airy equation, 

y’ ~ ay = 0, (-co < x < 00) (9.1) 

derive the power series solution 

y(x) = aoyi(x) + ary2(x) 
yt 

= 1 
Cas (@n — 1)(3n) (9.2) 

oint 

ale+ doz 4.--(3n)(3n +1) 

and verify that it is a general solution. NOTE: These series are 

not summable in closed form in terms of elementary functions 

thus, certain linear combinations of y; and ye are adopted as a 

usable pair of LI solutions. In particular, it turns out to be con- 

venient (for reasons that are not obvious) to use the Airy func- 

tions Ai(x) and Bi(zx), which satisfy these initial conditions: 

Ai(0) = 0.35502, Ai’(0) = —0.25881 and Bi(0) = 0.61493, 

Bi’ (0) = 0.44829. 

10. Use computer software to obtain power series solutions of 

the following initial-value problems, each defined on 0 < 2 < 

oo, through terms of eighth order, and obtain a computer plot 

of s2(x), s4(x), sg(x), and sg(z). 

(ayy +4y’+y=0, y(0)=1, y/(0)=0 

(b) yy" +a*y=0, y(0)=2, y/(0) =0 
(c)y"-2y'+y=0, y(0)=0, y'(0)=1 
(d)(L+ajy’+y=0, y(0)=2, (0) =0 
(e)(B+a)y"+y+y=0, yO) =0, y'(0) = 1 
(H(L-ar iy" +y=0, y(0)=1, y/(0)=1 
U1. From tne given recursion formula alone, determine the 

radius of convergence of the corresponding power series solu- 

tions. 

(a) (2 + 3)(m + 2)anze - ) (n+ 1)? angi + Nan = 0 

(b) (n +1 lja Qn+2 + 5NAn+1 + On — 

? 
) 

Qn—-1 = 0 

(c) (n + 1 An4+2 1 (2n? + Da@n+i _ dan =: 0 

(d) (n+ Danze - 3(n + 2)a, = 0 

(e) Mange + 4N@n4yi + 38an = 0 

(f) nant — 3(n + 2)°an41 + 3an—1 = 0 

12. In the Comment at the end of Example 6 we wondered 

what the divergence of the series solution over 7 << @ < 00



  

implied about the nature of the solution over that part of the 

domain. To gain insight, we propose studying a simple prob- 

lem with similar features. Specifically, consider the problem 

(2 — ly +y =0, y{4) = 5 (12.1) 

on the interval 4 << 2 < oo. 

(a) Solve (12.1) analytically, and show that the solution is 

  (12.2) 

over 4 < « < oo. Sketch the graph of (12.2), showing it 

as a solid curve over the domain 4 < x < oo, and dotted over 

-o<a<4. 

(b) Solve (12.1), instead, by seeking y(x) = 379° an(a — 4)”. 
(c) Show that the solution obtained in (b) is, in fact, the Taylor 

expansion of (12.2) about 2 = 4 and that it converges only in 

jz ~— 4| < 3 so that it represents the solution (12.2) only over 
the 4 < x2 < 7 part of the domain, even though the solution 

(12.2) exists and is perfectly well-behaved over 7 < x < oo. 

13. Rework Example 5 without using the > summation nota- 

tion. That is, just write out the series, as we did in the intro- 

ductory example of Section 4.1. Keep powers of x up to and 

including fifth order, x°, and show that your result agrees (up 

to terms of fifth order) with that given in (29). 

14. Rework Example 6 without using the 5> summation no- 

tation. That is, just write out the series as we did in the intro- 
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ductory example of Section 4.1. Keep powers of « — 4 up to 

and including fourth order (@ — 4)*, and show that your result 

agrees (up to terms of fourth order) with that given in (46). 

15. (Cesdro summability) Although (5) gives the usual defi- 

nition of infinite series, it is not the only possible one nor the 

only one used. For example, according to Cesaro summabil- 

ity, which is especially useful in the theory of Fourier series, 

one defines 

= sy so te + $n 
Sian = lim ; (15.1) 

ri N00 N 

that is, the limit of the arithmetic means of the partial sums. It 

can be shown that if a series converges to s according to “or- 

dinary convergence” [equation (5)], then it will also converge 

to the same value in the Cesaro sense. Yet, there are series that 

diverge in the ordinary sense but that converge in the Cesaro 

sense. Show that for the geometric series (see Exercise 5), 

1 x l—2N -Hate (5) Si + so +++ +3N _ 

N 1-2 
  

for all 2 # 1, and use that result to show that the Cesaro 

definition gives divergence for all |z| > 1 and for x = 1, and 

convergence for |z| < 1, as does ordinary convergence, but 

that for z = —1 it gives convergence to 1/2, whereas accord- 

ing to ordinary convergence the series diverges for x = —1. 

  

4.3. The Method of Frobenius 

4.3.1. Singular points. In this section we continue to consider series solutions of 

the equation 

y+ p(a)y! + a(a)y = 0. (1) 

From Section 4.2, we know that we can find two LI solutions as power series 

expansions about any point xo at which both p and q are analytic. We call such 

a point 29 an ordinary point of the equation (1). Typically, p and q are analytic 

everywhere on the x axis except perhaps at one or more singular points, so that all 

points of the a axis, except perhaps a few, are ordinary points. In that case one 

can readily select such an ag and develop two LI power series solutions about that 

point. 

Nevertheless, in the present section we examine singular points more closely, 

and show that one can often obtain modified series solutions about singular points.
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Why should we want to develop a method of finding series solutions about a sin- 

gular point when we can stay away from the singular point and expand about an 

ordinary point? There are at least two reasons, which are explained later in this 

section. 

Proceeding, we begin by classifying singular points as follows: 

  

DEFINITION 4.3.1 Regular and Irregular Singular Points of (1) 

Let xo be a singular point of p and/or g. We classify it as a regular or irregular 

singular point of equation (1) as follows: 29 is 

(a) a regular singular point of (1) if (« — %o)p(x) and (a — xo)7q(x) are analytic 

at Zo, 

(b) an irregular singular point of (1) if it is not a regular singular point. 

  

EXAMPLE 1. Consider x(a — 1)2y” — 3y! + 5y = 0 or, dividing by 2(x — 1)? to put 

the equation in the standard form y” + p(z)y’ + q(x)y = 9, 

uf 3 i 5 

“ae * ea?” “ 
Thus, p(x) = —3/[x(@ — 1)?] and q(x) = 5/(2(a — 1)7]. These are analytic for all x 

except for z = 0 and x = 1, so every z is an ordinary point except for those points. Let us 

classify those two singular points: 

il ro = 0: (a — xo) p(2) ee 

ay (3a,b,c.d) 

0" (eae) + 
To classify the singular point at « = 0, consider (3a) and (3b). Since the right-hand sides 

of Ga) and (3b) are analytic* at 0, we classify c = Oasa regular singular point of (2). (The 

fact that those right-hand sides are singular elsewhere, at c = 1, is irrelevant.) To classify 

the singular point at « = 1, we turn to (3c) and (3d). Whereas the right-hand side of (3d) 

is analytic at c = 1, the right-hand side of (3c) is not, so we classify the singular point at 

x = Lasan irregular singular point of (2). @ 

il (x — o)"q(2) 

i ro = 1: (x — xo)p(2) 

ll (a — )*q(a) 

EXAMPLE 2. Consider the case 

  

*Recail the rule of thumb given in the last sentence of Section 4.2.1, that we will classify a function 

as analytic at a given point if it is infinitely differentiable at that point.
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Then p(x) = 0 and q(x) = ./@, and these are analytic (infinitely differentiable) for all 
xc > O, but not at z = 0 because g(x) is not even once differentiable there, let alone 

infinitely differentiable. To classify the singular point at z = 0, observe that (a—a9)p(x) = 

(x)(0) = Ois analytic ata = 0, but (x — z)*q(a) = x? fx = v°/? is not; it is twice 
differentiable there (those derivatives being zero), but all higher derivatives are undefined 

at x = 0. Thus, x = 0 is an irregular singular point of (4). (See Exercise 2.) @ 

4.3.2. Method of Frobenius. To develop the method of Frobenius, we require 
that the singular point about which we expand be a regular singular point. Before 
stating theorems and working examples, let us motivate the idea behind the method. 

We consider the equation 

y" + plx)y' + a(x)y = 0 (5) 

to have a regular singular point at the origin (and perhaps other singular points as 
well). There is no loss of generality in assuming it to be at the origin since, if it is 
at = x9 % 0, we can always make a change of variable € = x — xo to move it to 
the origin in terms of the new variable € (Exercise 3). Until stated otherwise, let us 

assume that the interval of interest is x > 0. 
We begin by multiplying equation (5) by x? and rearranging terms as 

xy" + x[xp(x)| y' + [2?q(x)] y = 0. (6) 

Since z = 0 is a regular singular point, it follows that xp and xq can be expanded 

about the origin in convergent Taylor series, so we can write 

wy" +2 (po+pie+:-)y + (gotart+--)y=0. (7) 

Locally, in the neighborhood of x = 0, we can approximate (7) as 

iN xy" + pory’ + qgoy = 0, (8) 

which is a Cauchy-Euler equation. As such, (8) has at least one solution in the form 

zx", for some constant r. Returning to (7), it is reasonable to expect that equation, 
likewise, to have at least one solution that behaves like x” (for the same value of r) 
in the neighborhood of z = 0. More completely, we expect it to have at least one 

solution of the form 

y(x) = 2" (ap Faye + agu® +--+), (9) 

where the power series factor is needed to account for the deviation of y(z), away 

from x = 0, from its asymptotic behavior y(a) ~ apxz” as x — 0. That is, in place 

of the power series expansion 

y(2) = Sana” (10) 
0



196 Chapter 4. Power Series Solutions 

that is guaranteed to work when a = 0 is an ordinary point of (5), it appears that 

we should seek y(x) in the more general form 

OO oO 

y(v) =a" S; Gna” = S> ayer (11) 

0) 0 

  

      
if = O is a regular singular point. Is (11) really different from (10)? Yes, be- 

cause whereas (10) necessarily represents an analytic function, (11) represents a 

nonanalytic function because of the x” factor (unless r is a nonnegative. integer). 

Let us try the solution form (11) in an example. 

EXAMPLE 3. The equation 

6x2 y" + Tay! ~ (1 +27)y = 0, (0< 2 <0) (12) 

has a regular singular point at z = 0 because whereas p(x) = Tx / (Gx? ) = 7/(6x) and 

g(x) = ~(1+ 2”)/(6a”) are singular at z = 0, ap(x) = 7/6 and x 2q(2) = -(1+27)/6 

are analytic there. Let us seek y(zx) in the form (11). Putting that form into (12) gives 

a 

oO 

6x" So(n +r\(n+r—- Lana"? + 7x Sv(n tranetth-! 

° 
0 

—(1+27) Sano? =0 (13) 
0 

or 

po 

S-6( n+r)(n+r—1)ane"*? + s7 (n+r)anv"*" 
0 0 

xO oO 

~ ) anu? — S- anc ttt? = 0. (14) 

0 0 

Letting n +r +2 = m-+r in the last sum, (14) becomes 

S* [6(n+r)(n+r—1)+7(n+r) = lane” — > Ain gut" = 0. (15) 

0 2 

Changing the lower limit in the last sum to 0, with the understanding that a2 = a_, = 0, 

and changing the m’s to n’s, we can finally combine the sums as 

DO 

S-f[6(n +r)? tn tr— lan ~ ana} = 0, (16) 
0 

where we have also simplified the square bracket in (15) to 6(n +r)? +n+r—1. From 

(16), we infer the recursion formula 

[6(n +r)? +n+r— 1] an ~ an—-2 = 0 (17)
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foreachn = 0,1,2,.... 

In particular, m = 0 gives 

(6r? +r 1) ag ~ a2 == 0 (18) 

or, since do = Q, 

(6r? +r 1) ag = 0. (19) 

Observe carefully that we may assume, with no loss of generality, that ag 4 0 for, if ag = 0 

in (9) and a, ¥ 0, then we can factor an x out of the series and absorb it into the 2”. Rather, 

let us assume, in writing (9) that all such factors have already been absorbed into the x’, 

and that ag is the first nonvanishing coefficient. 

Proceeding, with ag # 0, it follows from (19) that 

6r? +r—-1=0 (20) 

sor = ~—1/2 and 1/3. We expect each of the choices, r = —1/2 andr = 1/3, to lead 
to a Frobenius-type solution (11), and the two solutions thus obtained to be LI. Let us see. 

First, set r = ~1/2. The corresponding recursion formula (17) is then 

1 
7 n—2 (2 1) 

6(n—-4)°+n-8 
ayn = 

forn = 1,2,..., since the n = 0 case has already been carried out: 

n=l1: a, = a, = 0, 

, 1 
mos 2: ag = 7a 

1 
n=3: a3 = goa = 0, 

1 1 (22) 

nad: 4= a= : 76? ~ eda” 
1 

m=: a5 = 7953 0, 

6 1 1 
n=6: ag = —— ag = Op, 

© 186°" ~~ (186)(76)(14) °° 

and so on. From these results we have the solution 

1. 1 1 ’ 4 — 1/2 pe api pb y(x) = age L4 mee + eet tee te ula) = ao ia” * (eyaay* * Gise7ey—a4)* 
= agyi (2), (23) 

where ao remains arbitrary. 

Next, set r = 1/3. The corresponding recursion formula (17) is then 

1 
Qn = 5 ln—2) (24) 

6(n+4)°+n—-2 

197
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and proceeding as we did for r = —1/2, we obtain the solution (Exercise 4) 

. 1 1 1 ; 
ale) —a4 1/3 1 gp? - at ee oe. 

y(e) = aoa + sae + crejaay* + da CIHad)” * 
= aoya(2), 25) 

where ag remains arbitrary. [Of course, the ao’s in (23) and (25) have nothing to do with 

each other; they are independent arbitrary constants.] According to Theorem 3.2.4, the 

solutions y; and yg are LI because neither is a scalar multiple of the other, so a general 

solution to (12) is y(z) = Cyy1(a) + Coyo(x), where y; and yo are given in (23) and (25). 

What are the regions of convergence of the series in (23) and (25)? Though we don’t 

have the general terms for those series, we can use their recursion formulas, (21) and (24), 

respectively, to study their convergence. Consider the series’ in (23) first. Its recursion 

formula ts (21) or, equivalently, 

1 ty (26) 
6(nt+2—4)? +n4+2-8 " 

Qn+2 = 

We need to realize that the aj,42 on the left side is really the next coefficient after a, 

the “ay,+1” in Theorem 4.2.2, since every other term in the series is missing (because 

Qa, = a3 = ay = ++: = QO). Thus, (26) gives 

1 
= lim ———,—_~ = 0, (27) lim a 
me §(n+ 3) 4n+4 

ce oF 

Qn+1 

N+ 0O an 

  

and it follows from Theorem 4.2.2 that R = oo; the series converges for all x. Of course, 

the z~!/? factor in (23) "blows up” at « = 0, so (23) is valid in 0 < 2 < 00, which is the 

full interval specified in (12). 

Similarly, we can show that the series in (24) converges for all x, so (25) is valid over 

the full interval 0 < 2 < co. 

With Example 3 completed, we can come back to the important question that 

we posed near the beginning of Section 4.3.1: “Why should we want to develop a 

method of finding series solutions about a singular point when we can stay away 

from the singular point and expand about an ordinary point?”. Observe that our 

Frobenius-type solution y(z) = Cry1 (2) + Coye(x), with yi(x) and y2(x) given 

by (23) and (25), was valid on the full interval 0 < x < oo. Furthermore, it even 

showed us the singular behavior «i the origin explicitly: 
  

_ 1. 1 

y(z) = Cir Ve (1 + we +: ‘) + Coxl/3 (1 + a” +o ) 

tL 
Jt 

as « — 0. In contrast, if we had avoided the singular point « = 0 and pursued 

power series expansions about an ordinary point, say « = 2, then the resulting 

~ Ch (28)
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solution would have been valid only in Q < # < 4, and it would not have explicitly 
displayed the 1/./x singular behavior at « = 0. 

Let us review the ideas presented above, and get ready to state the main theo- 

rem. If « = 0 is a regular singular point of the equation y” + p(ax)y’ + q(x) = 0, 
which we rewrite as 

ay” + « [ep(a)| y! + [x*q(x)| y = 0, (29) 

then xp(x) and x*q(a) admit Taylor series representations xp(a) = po + pie +--- 
and a°q(x) =o + qe +---. Locally then, near « = 0, (29) can be approximated 

as 2,0 ! 
zy + poty + qoy = 9, (30) 

which is a Cauchy-Euler equation. Cauchy-Euler equations, we recall, always ad- 
mit at least one solution in the form x”, and this fact led us to seek solutions y(z) 
to (29) that behave like y(x) ~ 2” as x > 0, or 

CO OO 

(a) =a" S- ant" = S- ane” t", (31) 
Q 0 

where the oO Gnx" factor is to account for the deviation of y from the local be- 

havior y(a) ~ x” away from x = 0. Putting (31) into 

xy" +a (po tpiet+-:-)y' +(gotur+--)y=0 (32) 

gives 

oO OO 

Si(n+ r)(n+r—1)anz"*” + (pp + pre +:: Si n+r)ay,c” 

0 0 
oO 

+(do+ att) Scan" = 0, (33) 
0 

and equating coefficients of the various powers of x to zero gives 

z’: [r(r ~1) + por + qo] ao = 0, (34a) 

ath: ((r+ lr + po(r +1) + qo] aa + (pir + qi)ao = 0, (34b) 

vt. (r+ 2)(r +1) + polr +2) + qo| a2 + (etc)ay 

+(etc)ag = 0, (34c) 

ats [(r + 3)(r +2) + po(r +3) + qo] a3 + (etc)ag + (etc)ay 

+(etc)ap = 0, (34d) 

Ped? and so on, where we've used “‘etc’s” for brevity since we’re most interested, here, 
in showing the form of the equations. Assuming, without loss of generality, that 
ag # 0, (34a) gives 

  

  r? + (po ~ 1)r +o = 0, (35)    



200 Chapter 4. Power Series Solutions 

which quadratic equation for r is called the indicial equation, in Example 3 the 

indicial equation was equation (20). Let the roots be ry, and rg. Setting r = ry 

in. (34b,c,d,...) gives a system of linear algebraic equations to find a1,@g,... in 

terms of ag, with ag remaining arbitrary. Next, we set r = rg in (34b,c,d,...) and 

again try to solve for a1, a2,... in terms of ag. If all goes well, those steps should 

produce two LI solutions of the differential equation y” + p(a)y' + q(x) = 0. 

The process is straightforward and was carried out successfully in Example 3. 

Can anything go wrong? Yes. One potential difficulty is that the indicial equation 

might have repeated roots (ry = 12), in which case the procedure gives only one 

solution. To seek guidance as to how to find a second LI solution, realize that 

the same situation occurred for the simplified problem, the Cauchy-Euler equation 

(30): if, seeking y(x) = 2” in (30), we obtain a repeated root for r, then a second 

solution can be found (by the method of reduction of order) to be of the form 2" 

times Inv. Similarly, for y” + p(z)y’ + q(x) = 0, as we shall see in the theorem 

below [specifically, (41b)]. 

The other possible difficulty, which is more subtle, occurs if the roots differ by 

a nonzero integer. For observe that if we denote the bracketed coefficient of ag in 

(34a) as F(r), then the coefficient of a; in (34b) is F(r + 1), that of ag in (34c) 

is F(r + 2), and so on. To illustrate, suppose that r, = r2 + 1, so that the roots 

differ by 1. Then not only will F(r) vanish in (34a) when we are using r = Ta, 

but so will F(r + 1) in (34b) [though not F(r + 2) in (4c), nor F(r + 3) in 

(34d), etc.], in which case (34b) becomes 0a, + (pira2 + qi)ao = 0. He pira + a 

happens not to be zero then the equation (34b) cannot be satisfied, and there is no 

set of a,,’s that satisfy the system (34). Thus, for the algebraically smaller root re 

(e.g., —6 is algebraically smaller than 2), no solution is found. But if pyre + qm 

does equal zero, then (34b) becomes 0a, = 0 and a; (in addition to ag) remains 

arbitrary. Then (34c,d,. ..) give a2, a3, ... as linear combinations of ag and a1, and 

one obtains a general solution 

y(x) = agz"? (a power series) + a,x"? (a different power series) 

= agy1(x) + ary2(2), (36) 

where ao, @1 are arbitrary and yz, y2 are LI. 

If, however, ro gives no solution, then we can turn to r1. For r, the difficulty 

cited in the preceding paragraph does not occur, and the method produces a single 

solution “yo(w).” 
If, instead, ry = ro + 2, say, then the same sort of difficulty shows up, but not 

until (34c). Similarly, if 7, = rg +3,71 = 72 +4, and so on. 

The upshot is that if 71, r2 differ by a nonzero integer, then the algebraically 

smaller root 79 leads either to no solution or to a general solution. In either case, 

the larger root r; leads to one solution. 
The theorem is as follows.
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THEOREM 4.3.1 Regular Singular Point; Frobenius Solution 

Let x = 0 be a regular singular point of the differential equation 

J" + play’ +q(a)y=0, («> 0) eo?) 
with xp(z) = po + pie +--+: and x*¢(a) = qo + me +--+ having radii of 
convergence /2;, 2 respectively. Let r), rg be the roots of the indicial equation 

r+ (po ~ Ur + qo = 0, (38) 
where r; > rg if the roots are real. (Otherwise they are complex conjugates.) 
Seeking y(x) in the form 

oo 

y(a) = 0" STane™ = SP ane", (ao #0) (39) 
0 0 

with r = ry, inevitably leads to a solution 

co 

yi(x) = 2") Ss" Anz”, (ag # 0) (40) 
0 

where a1, @,... are known multiples of ag, which remains arbitrary. For definite- 

ness, we choose ag = 1 in (40). The form of the second LI solution, y2(x), depends 
on ry and ro as follows: 

(i) 71 and ro distinct and not differing by an integer. (Complex conjugate roots 
belong to this case.) Then with r = ro, (39) yields 

yo(e) = 2"? S* byw”, (bo #0) (41a) 
0 

where the b,,’s are generated by the same recursion relation as the a,,’s, but with 

r = rg instead of r = 11; by, b2,... are known multiples of bo, which is arbitrary. 
For definiteness, we choose bg = 1 in (41a). 

(ii) Repeated roots, ry = r2 =r. Then y2(a) can be found in the form 

Co 

yo(x) = yy(v) ne +a" S- Cp”. (41b) 
i 

(ill) 71 — re equal to an integer. Then the smaller root rg leads to both solutions, 
yi(x) and yo(x), or to neither. In either case, the larger root r; gives the single 

solution (40). In the latter case, y2(x) can be found in the form 

oO 

yo(x) = Ky (x) Ina + 2" S> dyx”, (4 1c) 
0 
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where the constant « may turn out to be zero, in which case there is no logarithmic 

term in (41c). 

The radius of convergence of each of the series in (40) and (41) is at least as 

large as the smaller of Ay, Ra. 

If (37) is on x < O rather than x > 0, then the foregoing is valid, provided that 

each x", 2", 2”? and Inz is changed to |a|", |x|"!, |a|"? and In |x|, respectively. 
  

Outline of Proof of (ii): Our discussion preceding this theorem contained an outline 

of the proof of case (i), and also some discussion of case (iii). Here, let us focus on 

case (ii) and, again, outline the main ideas behind a proof. We consider the case of 

repeated roots, where ry = rg = r. Since yi(x), given by (40), is a solution, then 

so is y(x) = Ay;(x), where A is arbitrary. To find y2(z), let us use reduction of 

order; that is, seek y2(x) = A(x)yi(z), where y1(x) is known and A(x) is to be 

found. Putting that form into (37) gives 

Aly, + Al (2y) + pyr) + A(t + py + ay) = 0. (42) 

Since yj satisfies (37), the last term in (42) is zero, so (42) becomes 

Aly, + Al (2y, + py) = 0. (43) 

Replacing A" by dA’/dz, multiplying through by dx, and dividing by y; and A’ 

gives 
dA’ 49 dyt 
— dx = 0. 44 7A wh + pdx (44) 

Integrating, 

In |A’] + 21n|y1| + | p(x) dx = constant, say InC, for © > 0, 

SO 
, 

Al ar} 

in Al = [ voae. 

and 

' e f p(x) dx en [ (22 +pi poet de 

yy (2) [a" (1 -+ayet+:: I 

—polne (—pie--) 

-C~ 
(45) 

v2? (1+ 2ayr+--:) 

where we write In x rather than In || since z > 0 here, by assumption. 

Since exp (~ f p(a) dx) > 0, we see from the first equality in (45) that A’(a) 

is either everywhere positive or everywhere negative on the interval. Thus, we can 

drop the absolute value signs around A‘(x) if we now allow C’ to be positive or
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negative. Further, e~?° In@ gine PO. y~PO and e(-Pit—) /(1 + 2a,0 +--+) is 
analytic at ¢ = 0 and can be expressed in Taylor series form as 1+«4,2+ Koa” wpe, 

sO i 

, * = ; “ ete ek A(x) =C sar Fpe (L+ «ayo +--:). (46) 

For r to be a double root of the indicial equation (38), it is necessary that 2r + pp = 
1, in which case integration of (46) gives 

A(z) = C(Inag+kyx+---). (47) 

Finally, setting C' = 1 with no loss of generality, we have the form 

yo() = A(a)yi(a) = (ne + Kya +++) y1(x) 
=yi(z)Ina+(Kiez+---)e”(14+ayr+---) 

CO 

= yi(v) Ine +2" S- ena”, (48) 
1 

as given in (41b). @ 

In short, the Frobenius method is guaranteed to provide two LI solutions to 
(37) if x = 0 is a regular singular point of that equation. If z = 0 is an irregular 
singular point, the theorem does not apply. That case is harder, and we have no 
analogous theory to guide us. 

EXAMPLE 4. Case (ii). Solve the equation 

12, fF vy" —(e@+2")y +y=0; (0 <2 <0) (49) 

that is, find two LI solutions. The only singular point of (49) is @ = 0, and it is a regular 

singular point. Seeking 

y(z) = S- Anz"t", (ay % 0) (50) 
0 

substitution of that form into (49) gives 

oO 20 

Si(n +r)(n+r—l)ayx"t? — Si(n +r)ana™t? 

0 0 
oO oO 

~ Soin + rane trtt + > ayz”*" = 0, 1D 

0 0 

Set n+ 1 = m in the third sum, change the lower limit from n = 0 tom = 1, extend that 

limit back to 0 by defining a_,; = 0, change the m’s back to n’s, and combine the four 

sums, Those steps give 

y {[(m+r)(n+r—-1)-(n+r) +a, -(n+r— lan y}a"*” =0 
0 
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and hence the recursion formula 

[(ntr)(n+r—1)-(n+r)+lan-(ntr— Dan. = 0, (52) 

forn = 0,1,2,.... Forn = 0, (52) becomes (r* — 2r + Lao ~ (r — L)ja_y = 0. Since 

a—, = Oand ag ¥ 0, the latter gives the indicial equation 

pr? ~Ir+1=0, (53) 

with repeated roots r = 1,1. Thus, this example illustrates case (ii). Putting r = 1 into 

(52), we obtain the recursion formula 

1 
An = 7 Aan—1 (54) 

n 

. 1 1 1 1 
forn = 1,2,.... Thus, a; = @o, ag = 5% = 300» a3 = 37 = 3100 and we can see that 

Qn = ~7ag, SO 
n! 

a. a 

y(x) = 2 (a0 + oO + Oy? +--+) 

  

i 2! 
grt 

= ag S> nl = aoyi(2). (55) 

0 

In this case we can identify the series as ce”, but we are not always this fortunate, so let us 

keep working with the series form in this example. 

Theorem 4.3.1 tells us that yz can be found in the form (41b), where r = 1 and the 

Cn’$ are to be determined. Putting that form into (49) gives 

wy — (x +2°)yh + yo = [22 yf — (w+ 2° yi, + yi] ne + 2ey, — (2+ 2) 
oO oO 

+ S- n(n + Lene”?! + > cnartt 
1 1 

oO 

_ Si(n + Lena”?! ~ So(n + Lena"t? = 0, (56) 

1 L 

where yi(z) = Sig a" *!/n!. The square-bracketed terms in (56) cancel to zero because 

yj is a solution of (49). If we move 2ay', — (2 + x)yi to the right-hand side, and write out 

the various series, then (56) becomes 

. . . 1 
: to 

cya? + dco? + Gegat +--+ — 2a? — Seon! -- = —y? —g3 ~ =e”? —---, (57) 

and equating coefficients of like powers of x, on the left- and right-hand sides, gives 

ne: c= al, 

xe: 4eg — 2c, = —1, (58) 

xi: 9c3 — 3c. = —4,
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and so on. Thus, cy = —1, cg = —4, cy = —jg,... and 

yo(x) = yi(e) na + Scrat! 
1 

1. Ll, 3 11, 
= (e+e beat Eat b.) Ing — 2? -qe ee (59) 

If, instead, we retain the summation notation, then in place of (57) we obtain, after 

manipulation and simplification, 

oO oO 

‘ 1 
2 n+l n+1 NC — Nen—1} £ = -__——T (60) x on 

{where co = 0 because there is no cp term in (41b)] and hence the recursion formula 

nzc ne = | 
" me (n— 1)! 

or, more conveniently, 
1 1 

Ch = —Cn-1 — ——: (co = 0) (61) 
nn} 

Solving (61) gives 

cq = -l, 

1 1 3 o=-s (1+5) 4 (62) 
L/, 42 ll 

CQ 7 ee — Te ee 

3 3 | 3 36" 

and so on. These results agree with those obtained from (58), but the gain, here, is that (61) 

can give us as many c,,’s as we wish. In fact, by carrying (62) further we can see that 

1 1 1 maa (145442) (63) 
nl 2 n 

foranyn = 1,2,.... [The price that we paid for that gain was that we needed to manipulate 

the series by shifting some of the summation indices and summation limits in order to 

obtain (60).] 

COMMENT 1. In this example we were able to sum the series in (55) and obtain y; (x) in 

the closed form 

yi(z) = xe”. (64) 

In such a case it is more convenient to seek yz by actually carrying out the reduction-of- 

order process that lay behind the general form (41b). Thus, seek yo(a) = A(x)yi (x). The 
steps were already carried out in the preceding outline of the proof of Theorem 4.3.1, so 

we can immediately use (45). With C = 1, 

ew J pl) da en f(-2-1)dz elh & ot ev 

(2) = 5 _ ~ =o = ; (65) 
yi (a) x? et piett x 
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so 

  
hyd 1 a 12 

Ate) = [ w= [(t-145-G4-)e 

tt ot ny OO 1 CO 

stac+ [C0 —— de = Ina + Na (66) 
I 

  

and 
oO 

yo(x) = A(x)yi(x) = [ive + So(-1)" v | re", (67) 
1 

  
nnl 

which expression is found, upon expanding the e*, to agree with (59), 

COMMENT 2. As a matter of fact, we can leave the integral in (66) intact because it is 

a tabulated function. Specifically, the integral of e~*/z, though nonelementary, comes up 

often enough for it to have been defined, in the literature, as a special function: 

  

100 ot 

Ey(x) = | — dt| («> 0) (68) 
      

is known as the exponential integral. Among its various properties is the expansion 

oO n 

E\(e) = -y -Ina— yi, (x > 0) (69) 
| 

where y = 0.5772157 is Euler’s constant. Using the F(x) function, we can express 

yo(x) = A(x)yi (x) = ([ — at) ret 

~ ([- “ dt — [ — at) ae® = [E\(a) — Fy(z)] ze”, (70) 
t 

for any a > 0. The £;(a)xe® term is merely (a) times yi(2), so it can be dropped with 

no loss. Further, the factor —1 in front of the £,(«)xe® can likewise be dropped. Thus, 

in this example we were able to obtain both solutions in closed form, yi(z) = ze® and 

yo(x) = Ey(x)re*. 

COMMENT 3. Observe that the Taylor series 

~x- x" 2 ofl 
rp(z) = « (=) =a-l-2, reg(a) =x a} = 1 (71) 

both terminate, hence they surely converge with Ry = co and Ry = 00, respectively. Thus, 

Theorem 4.3.1 guarantees that oO a,x" in (40) and Se Cpa” in (41b) will likewise have 

infinite radii of convergence. Of course the Inz in (41b) tends to —co asx > 0, but 

nevertheless our solutions y; and ye are indeed valid on the full interval 0 <a < oo. G 

EXAMPLE 5. Case (iii). Solve the equation 

zy” +y = 0; (0< a <0) (72) 

a
o
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that is, find two LI solutions. The only singular point of (72) is x = 0, and itis a regular 

singular point. Seeking 

y(z) = Ss; aya", (ao # 0) 
0 

(72) becomes 

Sin +r)\(n +r agar trt + S- Gp t” = 0. (73) 
0 0 

Set n — | = min the first sum, in which case the lower summation limit becomes ~1, 

then change the m’s back to n’s. In the second sum change the lower limit to —1, with the 

understanding that a_., = 0. Then (73) becomes 

OO 

Ss; [(rm+r+1)(n+r)angi + anja"t” =0, 

n=] 

so we have the recursion formula 

(n+r+4+i)(n4+rjang, + an = 0, (a... =0, a9 #0) (74) 

forn = —1,0,1,2,.... Setting mn = —1, and using a_, = O and ag # 0, gives the indicial 

equation 

rr —1) =0, (75) 

with roots 7, = Landry = 0. These differ by an integer, so that the problem is of case 

(iii) type. Let us try the smaller root first. That root will, according to Theorem 4.3.1, lead 

to both solutions or to neither. With r = ry = 0, (74) becomes (n + 1)nan+, + an = 0. 

Having already used n = —1, to obtain (74), we next set n = 0. That step gives 0+a9 = 0, 

so that ag = 0, which contradicts the assumption that ag 4 0. Thus, r = rg = 0 yields no 

solutions. Thus, we will use the larger root, r = rj, = 1, to obtain one solution, and then 

(41c) to obtain the other. 

With r = r, = 1, (74) gives 

1 
(n+2)(n+ 1°” (76) OnpL = 

Working out the first several a,,’s from (76), we find that 

(—1)" 

wns (n+ 1)(n!)? “0 

Ne) 

.\ = (—1)" ao tt dL 4 , 
y(z) = d Gein?” = agyi (2), 

where 
“ (—1)" 44 

, rv) = ! gtd TI 

ni() D (n+ 1) (nl)? Y m7) 
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Remember, throughout, that 0! = 1 and (—1)° = 1] 
To find ye, we use (4c) and seek 

yo(x) = Kya (#) Ina + y dna. (78) 

Putting (78) into (72) gives 

oo 

Kary Ine + 2Koyy — KYL + ‘> n(n — dna” 

0 

oO 

tKaey: Ina + d d,v”t! =0. (79) 

Cancelling the In x terms [because y; satisfies (72)], re- expressing the last sum in (79) as 

So dna") = SP dm-1t™ = sro dn—12", where d_, = 0, and putting (77) in for 

the y, terms, (79) becomes 

oO 

> [n(n — Ld, + dni] 2” = KY — QKay) 

0 

_ “ (-1)"(2n+1) naa 
=—e DL (nt iin? 

2 (-1)P-1(2n -1 
=. eee (80) 

1 

where, to obtain the last equality, we letn + 1 = m and then set 7m = n. Equating 

coefficients of like powers of x gives the recursion formula 

. (—1)"~4(2n — 1) 
n(n — Lda + dai = — 81 
n(n — Ldn + dnt nln — DIP (81) 

forn = 1,2,.... [We can begin with n = 1 because equating the constant terms on both 

sides of (81) merely gives 0 = 0.] Letting n = 1,2,... gives 

n=l: dg = —K, 

3 1 
mad: dg = ~K ~— ~dh, 

4 . 2 : (82) 

1 me ‘ YQ se oA — d 5 n= 3 dg 36° DO 

35 1 
mod: ge oooh oh, 
" a= Te" Tad" 

and so on, where d, remains arbitrary. Thus, the series in (78) is 

fore) . 3 5 7 4 35 5 ) 

Lew) -l 4+ rem pee + =P es 
er an ( rae 7 36" 7 T7e8" 

; 1 L. Lo, i 
+-dy (« _ set —xr _ vite. , . (83) 

  

  

—
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The series multiplying d,, on the right side of (83), is identical to y,(x), given by (77), so 

we can set dy = 0 without loss. With dy = 0, we see that the entire right side of (78) is 

scaled by «, which has remained arbitrary, so there is no loss in setting « = 1. 

Thus, y2(x) is given by (78), wherein (2) is given by (77) and the d,,’s by (81), with 
d; taken to be zeroandk = 1. @ 

EXAMPLE 6. Case (iii). Solve 

da*y” +4ay' -—y =0 (84) 

by the method of Frobenius. This has been a long and arduous section so we will only 

outline the solution to (84). Seeking a Frobenius expansion y(a) = anx"t about the 

regular singular point x = 0, we obtain the indicial equation 4r? — 1 = 0, sor = +1/2, 
which corresponds to case (iii) of Theorem 4.3.1. We find that the larger root ry = 1/2 

leads to the one-term solution y(z) = agx!/? (ie, a, = a2 = -:: = 0), and that the 
smaller root r = —1/2 leads to y(x) = aga !/? + aya!/? (i.e, ag = ay = ++: = 0), 
which is the general solution. We did not, in (84), specify the a interval of interest. Suppose 

that it is 2 < 0. Then a general solution of (84) is y(x) = ag|a|7!/? + ay|a|!/2, and that 
solution is valid on the entire interval x < 0. 

In fact, (84) is an elementary equation, a Cauchy-Euler equation, so we could have 

solved it more easily. But we wanted to show that it can nonetheless be solved by the 

Frobenius method, and that that method does indeed give the correct one-term solutions. @ 

One final point: what if the indicial equation gives complex roots r = a +i? 
This issue came up in Section 3.6.1 as well, for the Cauchy-Euler equation. Our 
treatment here is virtually the same as in Section 3.6.1 and is left for Exercise 10. 

Closure. The Frobenius theory, embodied in Theorem 3.4.1, enables us to find 

a general solution to any second-order linear ordinary differential equaton with a 
regular singular point at « = 0, in the form of generalized power series expan- 
sions about that point, possibly with In a included. There are exactly three possible 

cases: if the roots of the indicial equation (38) are 71, r2, where r1 > ro if they are 
real, then if the roots are distinct and not differing by an integer (which includes the 
case where the roots are complex) then LI solutions are given by (40) and (41a); if 
the roots are repeated then LI solutions are given by (40) and (41b); and if ry — re 
is an integer then LI solutions are given by (40) and (41c). Theorem 3.4.1 is by 
no means of theoretical interest alone, since applications, especially the solution by 
separation of variables of the classical partial differential equations of mathemati- 
cal physics and engineering (such as the diffusion, Laplace, and wave equations), 
often lead to nonconstant-coefficient second-order linear differential equations with 
regular singular points, such as the well known Legendre and Bessel equations. We 
devote Sections 4.4 and 4.6 to those two important cases. 

Computer software. It is fortunate that computer-algebra systems can even gener- 
ate Frobenius-type solutions, fortunate because the hand calculations can be quite 
tedious, as our examples have shown. Thus, we urge you to study the theory in this 
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section on the one hand and to learn how to use such software as well. To illustrate, 

let us use the Maple dsolve command (discussed at the end of Section 4.2) to obtain 

a Frobenius-type solution of the differential equation xy” +y = 0 about the regular 

singular point 2 = 0; this was our Example 6. Enter 

dsolve(« * diff(y(«), x, ©) + y(a) = 0, y(z), type = series); 

and return. The resulting output 

1 1 
y(e) = Cla (: 5 +2" 

1 1 ] 
+C2 fn (x) (-« 4 ig? — 23 + —2 

+ (1 Fe + 5g" 3° vt 

1 3 1 4 1 5 6 
~ a + 2" ~ i" + O(n 

12 ia” + 5880" ~ 36400" * (@") 
1, 

2880. 
101; 6 

sea00" 1 OP )] 

los 6 
5° ~ 79" * yaa” ~ 3880" +(e") 

4 36° ~ 1728" 

is found to agree with the general solution that we generated in Example 5. 

  

EXERCISES 4.3 
  

1. For each equation, identify all singular points (if any), and 

classify each as regular or irregular. For each regular singular 

point use Theorem 4.3.1 to determine the minimum possible 

radii of convergence of the series that will result in (40) and 

(41) (but you need not work out those series). 

(a) yy" — vy’ +ry = 0 
(b) ay” — (cosa)y’ + Sy = 0 

(c) (2? — 3)y"-y=0 
(d) x(a? + 3)y" + y = 0 
(e) (a + 1)?y" — 4y! + (a + Ty =0 
(f) y” + (Ina)y’ + 2y =0 

(g) (aw — 1(a@+3)?y"+y' +y = 0 
(h) cy” + (sina)y’ — (cosz)y = 0 
(i) e(at + 2)y”"+y=0 

()) (et = Ly" + ay! - c*y = 0 
(k) (at _. 1)3y" 4 (x? _ 1)?y/ -—yo 0 

() (at — 1)8y" — 3(@ + 1)?y' + a(e@ + 1)y = 90 
(m) (xy’)' — 5y = 0 

(n) [a®(a — Dy" + 2y = 0 

(0) 2a? y" — xy’! + Ty = 0 
(p) zy” + 4y' = 0 

(q) xy" — 3y = 0 
(r) Qa*y" + fmy = 0 

2. Sometimes one can change an irregular singular point to a 

regular singular point, by suitable change of variables, so that 

the Frobenius theory can be applied. The purpose of this ex- 

ercise is to present such a case. We noted, in Example 3, that 

y + fey = 0(x > 0) has an irregular singular point at 

x = 0, because of the \/z. 

(a) Show that if we change the independent variable from 

x to t, say, according to /“ = ¢, then the equation on 

y((t)) = Y(t) is 

y(t) ~ 2Y"(b) +4PY(H = 0. (b>0) 1) 

(b) Show that (2.1) has a regular singular point at ¢ = 0 

(which point corresponds to z = 0). 

(c) Obtain a general solution of (2.1) by the Frobenius method. 

(If possible, give the general term of any series obtained.) 

Putting ¢ = \/z in that result, obtain the corresponding gen- 

eral solution of y + /zy = 0. Is that general solution for 

y(x) of Frobenius form? Explain. 

(d) Use computer software to find a general solution. 

3. In each case, there is a regular singular point at the left 

end of the stated x interval: call that point 2. Merely intro- 

duce a change of independent variable, from zx to ¢, according 

to «# — #q = t, and obtain the new differential equation on 

y(a(t)) = Y(t). You need not solve that equation.



(a) (x — Ly” + y' -y = 0, (lL<2< ov) 
(b) (a? ~ ty” +y = 0, (1 <a <0) 
(c) (t+ 3)y" ~ 2(@ + 3)y' ~ dy = 0, (+3 < @ < 0) 
(d) (a — 5)?y"” + 2(a@ — 5)y’ — y = 0, 

4, Derive the series solution (25). 

(5 <a < co) 

5. Make up a differential equation that will have as the roots 
of its indicial equation 

(a4 (b) 3,3 (c) 1/2,2 (d) —1/2,1/2 
(e) 2+ 31 (f)-1,-1 — (g)-2/3,5 (hy) -1 +i 
(i) (1 £ 24)/3 Gj) 5/4,8/3 

6. In each case verify that c = 0 is a regular singular point, 

and use the method of Frobenius to obtain a general solution 

y(z) = Ayi(x) + Byo(c) of the given differential equation, 
on the interval O < x < oo. That is, determine y;(x) and 
ya(x). On what interval can you be certain that your solution 
is valid? HINT: See Theorem 4.3.1. 

(a) 2ay" + y' + e8y = 0 
(b) ry” +y' — xy = 0 
(c)ay” +y' + a8y = 0 
(dry +y'+2y = 0 
(e) a*y"” + xy’ —y =0 
(f) a? y"” — wey! —2y =0 
(g) v*y" + cy’ — (1+ 22)y =0 
(h) 2?y” + ey! ~y=0 

(i) cy" +2y' + (1+ 2)y =0 
(j) sry" +y'+y=0 
(k)x(l +ax)y" +y = 0 
a2(2+a)y”-y=0 

(m) z?y"” — (24+ 32)y =0 
(n) bay” +y' 4+ 8x7y = 0 
(o) ry" +e"y =0 

(p) 2zy" + e*y’ +y =0 
(q) 16x7y”" + 8ry’ — 3y =0 
(r) 16x7y i" + Bey —~(3+4+2)y=0 
(s) yl + ay’ + (sinz)y = 0 
(t) 5(zy)" — 9y' + cy = 0 

(u) (zy’)’-y =0 
(v) (xy')! — 2y'-y =0 
7. (a)—(x) Use computer software to obtain a general solution 

of the corresponding differential equation in Exercise 6. 

8. Use the method of Frobenius to obtain a general solution 

to the equation xy” + cy’ = Oona > 0, where c is a real 
constant. You may need to treat different cases, depending 
upon c. 
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9. (a) The equation 

(a? — x)y" + (4a -2)y'+2y=0, (O<a<1) (9.1) 

has been “rigged” to have, as solutions, 1/a and 1/(1 — 2). 
Solve (9.1) by the method of Frobenius, and show that you do 

indeed obtain those two solutions. 

(b) You may have wondered how we made up the equation 

(9.1) so as to have the two desired solutions. Here, we ask 

you to make up a linear homogenous second-order differential 

equation that has two prescribed LI solutions F(z) and G(z). 

10. (Complex roots) Since p(x) and q(x) are real-valued func- 
tions, v9 and qo are real. Thus, if the indicial equation (38) has 

complex roots they will be complex conjugates, r = a+i@, so 

case (i) of Theorem 3.4.1 applies, and the method of Frobenius 

will give a general solution of the form 

Ay: (2) + Byo(2) 
= Age © ane” + Bart—8 SO bye”. 

y(z) = (10.1) 

(a) Show that the 6,,’s will be the complex conjugates of the 

An's: bn = Gn. 

(b) Recalling, from Section 3.6.1, that 

ce*? — x [cos (GInz) isin (Blnz)], (10.2) 

show that (10.1) [with },, replaced by @,, according to the 

result found in part (a) above] can be re-expressed in terms of 

real functions as 

y(x) = Cx® {cos (G6 Inz) 375° ene” 

—sin(8Inz) Tp dnc™] 

+Dzx® (cos(GInz) 7p daz” 

+sin(8ln2) 75° ene"), 

(10.3) 

where c,d, are the real and imaginary parts of a,, respec- 

tively: Qn = Cn +idy. 

(c) Find a general solution of the form (10.3) for the equation 

2,0 vy" +a(l+ex)y ty =0. 

That is, determine a, @ and c,,d, in (10.3), through n = 3, 

say. 

(d) The same as (c), for 27y" + xy’ + (1 -a2)y = 0. 
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4.4 Legendre Functions 

4.4.1. Legendre polynomials. The differential equation 

  

    
(1-2) y” — Qay' + Ay = 0, (1) 
  

where \ is a constant, is known as Legendre’s equation, after the French mathe- 

matician Adrien-Marie Legendre (1752-1833). The « interval of interest is ~1 < 

z < 1, and (1) has regular singular points at each endpoint, « = +1. In this section 

we study aspects of the Legendre equation and its solutions that will be needed in 

applications in later chapters. There, we will be interested in power series solutions 

about the ordinary point « = 0, 

y(2) =) > ana*. (2) 
k=0 

Putting (2) into (1) leads to the recursion formula (Exercise 1) 

k(k-+1)—A 
(ka b(ke 2 

(k = 0,1,2,---) 
(3) 

Ak42 = 

Setting & = 0,1,2,..., in turn, shows that aq and a are arbitrary, and that subse- 

quent a;,’s can be expressed, alternately, in terms of ag and ay: 

a > _?2=A __(6=A)A 
2 ag, 43 = 6 Aaj, aq = 4 

2 
  aq, 

and so on, and we have the general solution 

  

_ Ny (6-A)r 4 (20 -—A)(6—A)A 5 _ 
y(x) = ag h —38 - ay 750 £ 

as 2 —_ Xr 3 (12 —_ A)(2 — A) 5 

+1 [: + 6 x 120 a+ 

= agyi() + ary2(2) (4) 

of (1). To determine the radii of convergence of the two series in (4) we can use 

the recursion formula (3) and Theorem 4.2.2, provided that we realize that the a,4. 

on the left side of (3) is really the next coefficient after ag, the “ap41” in Theorem 

4.2.2 since every other term in each series is missing. Thus, (3) gives 

k(k +1) —A 
(k-+ 1)(k-+ 2) 

“apa” 

Ck 

-1, . (5) lim 
k-¥00 

  

  

  

  

= lim | 
k-00 

and it follows from Theorem 4.2.2 that R = 1, so each series converges in —1 < 

e<l. ,



In physical applications of the Legendre equation, such as finding the steady- 

state temperature distribution within a sphere subjected to a known temperature 
distribution on its surface, one needs solutions that are bounded on —1 < a2 <1. 

{F (x) being bounded on an interval J means that there exists a finite constant AZ 
such that |F'(x)| < M for all x in I. If F(x) is not bounded then it is unbounded. ] 
However, for arbitrary values of the parameter \ the functions y,(a) and yo(x) 
given in (4) grow unboundedly as « —> -+1, as illustrated in Fig. 1 for \ = 1. If 
you studied Section 4.3, then you could investigate why that is so by developing a 
Frobenius-type solution about the right endpoint x = 1, which is a regular singular 
point of (1). Doing so, you would find a In(1 — x) term, within the solutions, 

which is infinite at 2 = 1. Similarly, a Frobenius solution about 2 = —1 would 
reveal a ln (1 + x) term, which is infinite at 7 = —1. Evidently, yy (a) and yo(x), 
above, contain linear combinations of In (1 —~ «) and In(1+ 2) [of course, one 
cannot see them explicitly in (4) because (4) is an expansion about x = 0, not 

x = 1orz = ~1] so they grow unboundedly as « + +1. 
Nonetheless, for certain specific values of one series or the other, in (4), will 

terminate and thereby be bounded on the interval since it is then a finite degree 

polynomial! Specifically, if A happens to be such that 

A=n(n +1) (6) 

for any integer n = 0,1,2,..., then we can see from (3) that one of the two series 

terminates atk = n: if \ = n(n + 1), where n is even, then the even-powered 
series terminates at & = n (because a,49 = Gnsq = ++: = 0). For example, if 
n= 2and \ = 2(2+1) = 6, then the 6 — ) factor in every term after the second, in 
the even-powered series, causes all those terms to vanish, so the series terminates 

as 1~ 32”. Similarly, if \ = n(n+1), where n is odd, then the odd-powered series 
terminates at k = n. The first five such A’s, and their corresponding polynomial 
solutions of (1), are shown in the second and third columns of Table 1. These 

Table 1. The first five Legendre polynomials. 
  

  

  

  

  

            

n | \=n(n+1) | Polynomial Solution | Legendre Polynomial P,,(z) 

0 0 1 Po(a) =1 

1 2 L Pi(z) =a 

2 6 1 — 3a? Po(x) = $(32* — 1) 

3 12 c— 3x3 P3(x) = $(5a° ~ 32) 

4 20 1— 100° + B24 | Py(x) = $(35a% — 3027 + 3) 
  

polynomial solutions can, of course, be scaled by any desired numerical factor. 

Scaling them to equal unity at ¢ = 1, by convention, they become the so-called 
Legendre polynomials. Thus, the Legendre polynomial P,,(a) is a polynomial 
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Figure 1. yi (x) and yo(x) in (4), 

forA = 1.
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solution of the Legendte equation 

(1 —a)y” — 2xy' + n(n + Ly =9, (7) 

scaled so that P,(1) = 1. In fact, it can be shown that they are given explicitly by 

the formula Lod og 
= jm gan UD") (8) 

which result is known as Rodrigues’s formula. 

    Py, (ax) 

4.4.2. Orthogonality of the P,,’s. For reasons that will not be evident until we 

study vector spaces (Section 9.6), the integral formula 

  

[’,Pi(@)Px(e)de =0, (9 #4) (9) 
      

is known as the orthogonality relation. By virtue of (9), we say that P,;(x) and 

P,(z) are orthogonal to each other — provided that they are different Legendre 

polynomials (i.e., 7 4 k). 

Proof of (9) is not difficult. Noting that the (1 — a*)y” — 2xy' terms in (7) can 

5 
i 

be combined as [(1 — a*)y']’, we begin by considering 1 \(1—2?)P!) Py dz y 1 j 

and integrating by parts until all the derivatives have been transferred from P; to 

Py: 

1 1 

| [1 — 22) PA)’ Phd = (1— a?) PIP,|" -| (1 — 2?) PIP, dx 
-1 -1 

1 
= 0-(1-2”) PLP;|*, +/ P; [(1 — «?) Pi] de. (10) 

1 

The next to last term is zero because of the 1 — x? factor, just as the boundary term 

following the first equal sign is zero. Since P; and Py are solutions of the Legendre 

equation 

[(1 — @)y') + n(n + ly = 0 (1) 

for n = j and k, respectively, we can use (11) to re-express (10) as 

“1 1 

—j(j + y | P; Py da = —k(k + yf P; Py dx (12) 
~—1 —1 

or : 

(ee +1) J+) | Pi(e)Pilw) de =0. 13) 

Since j 4 k, it follows from (13) that f, P; Py, dx = 0, as was to be proved. 

We will see later that (9) is but a special case of the more general orthogonality 

relation found in the Sturm-Liouville theory, which theory will be essential to us 

when we solve partial differential equations.



  

4.4.3. Generating function and properties. Besides (9), another important prop- 

erty of Legendre polynomials is expressed by the formula 

  

  x   
(1 — 2ar + Pye = S- P,(a)r™. (jz| <1, |r| < 1) (14) 

0   
  

That is, if we regard the left side of (14) as a function of r and expand it in a 
Taylor series about r = 0, then the coefficient of r™ turns out to be P,(x). Thus, 

9\—1/2. gp Lo, , . 
(1 - 2er +r?) (2 +. called the generating function for the P,,’s (Exercise 4). 

Equation (14) is the source of considerable additional information about the 

P,’s. For instance, by changing x to —a in (14) it can be seen that 

P,,(—«) = (-1)"P, (2). (15) 

Now, if f(—a) = f(x), then the graph of f is symmetric about x = 0 and we say 
that f is an even function of x. If, instead, f(—r) = —f(x), then the graph of f 
is antisymmetric about « == 0 and we say that f is an odd function of x. Noting 
that the (—1)” is +1 if n is an even integer and —1 if n is an odd integer, then we 
see from (15) that P,(a) is an even function of z if n is an even integer, and an odd 
function of «x if m is an odd integer, as is seen to be true for the P,,’s that are shown 

in Fig. 2. 
Also, by taking 0/0r of (14) one can show (Exercise 6) that 

nPp(x) = (2n — 1)ePp-i(x) — (n ~— 1) Ph_2(2), (n = 2,3,...) (16) 

which is a recursion relation giving P,, in terms of P,_, and P,~2. Or by taking 

O/0x of (14) instead, one can show (Exercise 7) that 

Pl(x) — 2¢P)_y(x) + Pi_»(x) = Py_1(2). (n = 2,3,...) (17) 

Finally, squaring both sides of (14) and integrating on « from —1 to +1, and 

using the orthogonality relation (9), one can show that 

  

  

oh 9 

P,(a)/? da = n=0,1,2,... 18 [trode = SA, (n= 01,2... (18) 
    
  

which result is a companion to (9); it covers the case where j = k (= n, say). We 

will need (9) and (18) in later chapters. 

Closure. Our principal application of Legendre’s equation and Legendre poly- 
nomials, in this text, is in connection with the solution of the Laplace equation in 
spherical coordinates. There, we need to know how to expand a given function in 
terms of the Legendre polynomials Po(x), P(x), Po(a),..., and the theory behind 
such expansions is covered in Section 17.6 on the Sturm-Liouville theory. 

To help put that idea into perspective, recall from a first course in physics or 
mechanics or calculus that one can expand any given vector in 3-space in terms of 

hm 1 4.4, Legendre Functions 

  
Figure 2. Graphs of the first five 

Legendre polynomials. 

  

L
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orthogonal (perpendicular) vectors “Th k.”. That fact is of great importance and 

was probably used extensively in those courses. Remarkably, we will be able to 

generalize the idea of vectors so as to regard functions as vectors. It will turn out 

that the set of Legendre polynomials Po, Pi,... constitute an infinite orthogonal 

set of vectors such that virtually any given function defined on —1 < @ < 1 can 

be expanded in terms of them, just as any given “arrow vector” in 3-space can be 

expanded in terms of i, j, k. In the present section we have not gotten that far, but 

the results obtained here will be used later, when we finish the story. 

For a more extensive treatment of Legendre functions, Bessel functions, and 

the various other important special functions of mathematical physics, see, for in- 

stance, D. E. Johnson and J. R. Johnson, Mathematical Methods in Engineering 

and Physics (Englewood Cliffs, NJ: Prentice Hall, 1982). Even short of a care- 

ful study of the other special functions — such as those associated with the names 

Bessel, Hermite, Laguerre, Chebyshev, and Mathieu — we recommend browsing 

through a book like Johnson and Johnson so as to at least become aware of these 

functions and the circumstances under which they arise. 

Computer software. In Maple, P,(x) is denoted as P(n,x). To obtain P;(x), 

say, enter 
with(orthopoly): 

and return, then 

429.7 _ 69345 4 & and return. The result is sar SEs 

  

EXERCISES 4.4 
  

J. Putting (2) into (1), derive the recursion formula (3). 

2. Obtain (4) using computer software. 

3. Use Rodrigues’s formula, (8), to reproduce the first five 

Legendre polynomials, cited in Table |. 

4, Expanding the left-hand side of (14) in a Taylor series in 

r, about r = 0, through r, say, verify that the coefficients of 

ro....,7° are indeed Po(x),..., P3(x), respectively, 

5. We stated that by changing 2 to —x in (14) it can be seen 

that P,(—2) = (—1)"P,,(x). Show those steps and explain 
your reasoning. 

6. (a) We stated that by taking 0/Or of (14) one obtains (16). 

Show those steps and explain your reasoning. 
(b) Verify (16) form = 2. 

(c) Verify (16) for n = 3. 

7. (a) We stated that by taking 0/Ox of (14) one obtains (17). 

Show those steps and explain your reasoning. 

(b) Verify (17) forn = 2. 

(c) Verify (17) for n = 3. 

8. (a) Derive (18) as follows. Squaring (14) and integrating 

from —1 to 1, obtain 

I dz 1 «© co 

bake — ym Pr xr ph Pp x) dz. 

oS [o> (=) do (2) de 
m=O m=Q 

(8.1) 

Integrating the left side, and using the orthogonality relation 

(9) to simplify the right side, obtain 

, , 7 °° ‘1 ; 

- In (; ~ “) = S- {If [P,(a)]” ac} ren (8.2) 
n=O 

  

Finally, expanding the left-hand side in a Taylor series in r, 

show that (18) follows. 

(b) Verify (18), by working out the integral, for the cases 

n= 0,1, and 2. 

o
o
t



  

9, (Integral representation of P,,) It can be shown that 

P,(x) = + to (x + Vz? ~ 1 cos t)" dt, 
x (9.1) 

(n= 0,1,2,...) 

which is called Laplace’s integral form for P,,(x). Here, 
we ask you to verify (9.1) for the cases n = 0,1, and 2, by 

working out the integral for those cases. 

10. We sought power series expansions of (1) about the ordi- 

nary point 2 = 0 and, for the case where \ = n{m-+1), we ob- 

tained a bounded solution (namely, the Legendre polynomial 

P,,(z)] and an unbounded solution. Instead, seek a Frobenius- 

type solution about the regular singular points z = 1 and 

xz = —1, for the case where 

(fajn=0 (A=0) 
(b)n=1 (A=1) 
(c)n=2 (A= 2) 

11. (Legendre functions of second kind) For the Legendre 

equation (7) on the interval -1 < x < 1, we obtained the 

bounded solution y(z) = P(x). In this exercise we seek a 
second LI solution, denoted as Q,,(z) and called the Legen- 
dre function of the second kind. Then the general solution 

of (7) can be expressed as 

y(v) = AP, (2) + BQ, (2). (11.1) 

(a) For the special case n = 0, solve (7) and show that a 

second LI solution is In[(1 + 7)/(1 — 2)]. Scaling this solu- 
tion by 1/2, we define 

/t4er 
Qo(z) = sin (=),   2 

l-—sz (11.2) 

Sketch the graph of Qo(2) on -1 < « < 1, and notice 

that |Qo(z)| > co asa > +1. 
(b) More generally, consider any nonnegative integer n. With 

only P,,(z) in hand, seek a second solution (by reduction of 
order) in the form y(x) = A(x)P,,(x), and show that Q,(2) 
is given by 

e dt 
Qn(x) = ChPr(x | eet Dy Pr (2). 

) ’ (1 ¢) [Pa(e)]” “ 

(11.3) 
(c) Evaluating the integral in (11.3), show that the first two 

Q's are 

1 Ll+a 
Qo(a) = 300 In (+5) + Do, a {.4a) 
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x L+a 
Q (2) = Cy 5 In (+=) _ i + Dye. (11.4b) 

By convention, choose Co = 1, Dp = 0, Cy = Land D; = 0, 

  

  

so that 

1 l+2 
Qo(x) = zm (+22), (11.5a) 

Or(e) =" in(2t®)-1 (11.5b) (2) = 5 as, . 5b 

(d) The recursion formula (16) holds for the @,,’s as well 

as the P,,’s. Thus, with Qo and Q, in hand we can use (16) to 

obtain Qs, Qs, and so on. Do that: show that 

3a? ~ 1 l+e 3 
Q2(z) = ri In € +) 9h 

and obtain Q3(z) as well. 

(11.6)     

12. (Electric field induced by two charges) Given a positive 

charge Q and a negative charge —Q, a distance 2a apart, let us 

introduce a coordinate system as in the figure below. Since the 

charges lie on the z axis, it follows that the electric field that 

they induce will be symmetric about the z axis. 

  

(a) Specifically, the electric potential (i.c., the voltage) ® in- 

duced by acharge q is ® = (1/47eo)(q/r), where the physical 
constant €9 is the permittivity of free space and r is the dis- 

tance from the charge to the field point. Thus the potential 

induced at the field point P shown in the figure is 

v= 2 (2-2). 
Amég \ Pe p— 
  (12.1)
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Show that (12.1) gives 

¥(p,4) = ( ! 
Are a* + p? — 2apcos 
  

t 

a? + p* + 2apcos ;] 

1 2 ~ " 
2@ Ss) (£) P,(cos@) (p> a) 

= (£)" P,(cos¢). (p< a) 

(12.2) 

(b) With the point P fixed, imagine letting @ become arbitrar- 

ily small. Show, from (12.2), that we obtain 

  

  

1 cos @ 
b(p, >) ~ Ine? p? 

    (12.3) 

asa —> 0. Thus, ®(p,¢) - 0 as a — 0, as makes sense, 

because the positive and negative charges cancel each other 

as they are moved together. However, observe that if, as a 

is decreased, Q is increased such that the product Qa is held 

constant, then (12.3) becomes 

pf cos@ 
    &(p, 0) ~ (12.4) 
dren p? 

where pp = 2Qa is called the dipole moment, and the charge 

configuration is said to constitute an electric dipole. If, for in- 

stance, a molecule is comprised of equal and opposite charges, 

+Q and —Q, displaced by a very small distance 2a, then, even 

though a is not tending to zero and Q to infinity, the field 

induced by that molecule is approximately equal to that of an 

idealized dipole of strength 2 = 2@a, at points sufficiently far 

away (i.e., for p/a >> 1). 
(c) As a different limit of interest, imagine the point P as 

fixed, and this time let a become arbitrarily large. Show, from 

(12.2), that we obtain 

1 2Q 1 2Q 
—z pcos @ = Zz 

~ — + 

Atreg @ Arey a? 
    b(p, ?) (12.5) 

as a > oo. Notice that if, as @ is increased, Q is increased 

such that Q/a? is held constant, then the electric field intensity 

E (which, we recall from a course in physics, is the negative 

of the derivative of the potential) is a constant: 

d& i Q 

dz 4re€g 2a?’ 

that is, we have a uniform field. Thus, a uniform electric field 

can be thought of as resulting from moving apart two charges, 

+Q and —Q, and at the same time increasing their strength Q 

such that Q/a? is held constant as a —+ oo. Similarly, in fluid 

mechanics, a uniform fluid velocity field can be thought of as 

resulting from moving a fluid “source” of strength +@ anda 

fluid “sink” of strength —Q apart in such a way that Q/a? is 

held constant as @ —> 00, where 2a is their separation distance, 

as sketched schematically in the figure. 

- (12.6)   

rs 

ee 

@ III _ ® 
a rd 

+ Q a I ~ Q 

  

4.5 Singular Integrals; Gamma Function 

This section amounts to a diversion from the main stream of this chapter because 

when we come to Bessel functions in the next section we need to know about the 

gamma function, and to study the gamma function we need to know about singular 

integrals. Furthermore, both of these topics are needed in Chapter 5 on the Laplace 

transform. So let us take time out to introduce them here. 

4.5.1. Singular integrals. An integral is said to be singular (or improper) if 

one or both integration limits are infinite and/or if the integrand is unbounded on 

the interval; otherwise, it is regular (or proper).
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For example, if 

i= {e° ve ** dx, Ig = fe en da/ Je, a 

[3 = Pr dz/(x — 1), Ig = f° Jaze dz, 

then J; is singular due to the infinite limit, /2 is singular because the integrand tends 
to co as « > 0, Jz is singular because the integrand is unbounded (tends to —co as 
x — 1 from the left, and tends to +00 as 2 — 1 from the right), and /4 is regular. 

Most of our interest will be in integrals that are singular by virtue of an infi- 

nite upper limit (illustrated by J,) and/or a singularity in the integrand at the left 

endpoint (illustrated by Jo), so we limit this brief discussion to those cases. Other 
cases are considered in the exercises. 

Consider the first type, f° f(z) dx. Analogous to our definition 

  

fore) N 

Sean = ica So an (2) 
n=O n=0 

of an infinite series, we define 

Tee) xX 

I -/ f(z) dz = lim | f(a) dz. (3) 
a K-00 Jig       

If the limit exists, we say that [ is convergent; if not, it is divergent. 
Recall, from our review of infinite series in Section 4.2, that the necessary 

and sufficient condition for the convergence of an infinite series is given by the 
Cauchy convergence theorem, but that theorem is difficult to apply. Thus, in the 
calculus, we studied a wide variety of specialized but more easily applied methods 
and theorems. For instance, one proves, in the calculus, that the p-series, 

OO 

1 
np’ (4) 

1 

converges if p > 1 and diverges if p < 1, the case p = 1 giving the well known (and 
divergent) harmonic series 5°)° 4, That is, the terms need to die out fast enough, 
as n increases, for the series to converge. As p is increased, they die out faster and 
faster, and the borderline case is p = 1, with convergence requiring p > 1. 

Then one establishes one or more comparison tests. For instance: If Sy = 
oO Gp and So = yo b, are series of finite positive terms, and a, ~ Kb, asn > 

co for some finite constant A’, then S, and So both converge or both diverge. (The 

lower limits are inconsequential insofar as convergence/divergence is concerned 

and have been taken to be O merely for definiteness.) 
For instance, to determine the convergence or divergence of the series S = 

oO ‘ © ‘ € oe) 

2n+3 21+3 2 ; 
) T= we observe that “PTE Yay as -> oo. Now, ) —z is convergent 

nme +5 nm + 5 n n 
1
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p increasing 

p=0 

  

       

    
0 1 a 

x 

Figure 1. The effect, on 1/x?, 

of varying p. 

because it is a p-series with p = 3 > 1, and by the comparison test stated above it 

follows that S is convergent too. 

Our development for determining the convergence/divergence of singular in- 

tegrals is analogous to the development described above for infinite series. Analo- 

gous to the p-series, we study the horizontal p-integral, 

t= fo ae (a > 0) . (5) 
a 

where p is a constant. (The name “horizontal p-integral” is not standard, and is 

explained below.) The latter integral is simple enough so that we can determine its 

convergence/divergence by direct evaluation. Then we can use that result, in con- 

junction with comparison tests, to determine the convergence/divergence of more 

complicated integrals. Proceeding, 

oo 4 xX 1 t-pi* 1 
r= | pdt = lim Lao~{ limx—soo Tp Ba (p#1)   

X00 fg 2 lim. x soo In a|* . (p = 1) 

(6) 
Now, limx 4. ln X is infinite and hence does. not exist, and similarly for 

limy soo X17? if p < 1, whereas the latter does exist if p > 1. Thus, 

  

THEOREM 4.5.1 Horizontal p-Integral 

The horizontal p-integral, (5), converges if p > 1 and diverges if p < 1. 
  

That result is easy to remember since the p-series, likewise, converges ifp>1 

and diverges if p < 1. Graphically, the idea is that p needs to be positive enough 

(namely, p > 1) so that the infinitely long sliver of area (shaded in Fig. 1) is 

squeezed thin enough to have a finite area. 
We state the following comparison tests without proof. 

  

THEOREM 4.5.2 Comparison Tests 

Let Jy = f° f(x) dx and Ig = f° g(x) dx, where f(x) and g(x) are positive 
(and bounded) ona < @ < co. 

(a) If there exist constants A and X such that f(x) < Ag(x) for alle > X, 

then the convergence of Jy implies the convergence of I;, and the divergence of J 

implies the divergerice of Ig. 

(b) If f(a) ~ Cg(x) as x -> 00, for some finite constant C, then I, and Ip both 

converge or both diverge. 
  

Of course, A must be finite. Actually, (b) is implied by (a), but we have 

included it explicitly since it is a simpler statement and is easier to use. Note
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that C’ cannot be zero because the notation f(a) ~ 0 makes no sense. That is, 
f(z) ~ g(x) as @ — ap means that f(x)/g(a) + las a — xo, and f(x)/0 
cannot possibly tend to 1. 

"OO De 4 f 2a +3 
EXAMPLE 1. Consider J = 2a +3 dx. Since sore —~ asx —> oo, and 

g «t+5 w+5 2 
fe” dx /x® is a convergent p-integral (p = 4 > 1), it follows from Theorem 4.5.2(b) that J 

is convergent. 

COMMENT. If, instead, the integrand were (22 + 3)/(x* +5), then the integral would be 
divergent because (2c +3)/(a? +5) ~ 2/a,and [5° dx/a is a divergent p-integral (p = 1). 
It would be incorrect to argue that the integral converges because (22 + 3)/(2? + 5) + 0 
as @ —> oo. Tending to zero is not enough; the integrand must tend to zero fast enough. & 

Since the integrand of the integral in question might not be positive, as was 

assumed in Theorem 4.5.2, the following theorem is useful. 

  

THEOREM 4.5.3 Absolute Convergence 
Co oO 

a | f(x)| dx converges, then so does | f(a) dx, and we say that the latter 
a a 

converges absolutely. 
  

  

  

EXAMPLE 2. Consider J = | aa dz, the integrand of which is not everywhere 
2 xa 

positive. We have 
sing |. L 1 (1) 

Sop SE OO. 
32+ 1|73a2+1 302 “* 

  

Now, fe dz/x? is a convergent p-integral (p = 2 > 1). Thus, by the asymptotic relation 

in (7) and Theorem 4.5.2(b), {> dx/(3x* + 1) converges. Next, by the inequality in (7) 

and Theorem 4.5.2(a), [5° |sin/(3x? + 1)| dz converges. Finally, by Theorem 4.5.3, I 
converges. H 

EXAMPLE 3. Consider J = f>° 2'°e~°!"dz. It might appear that this integral 

  

diverges because of the dramatic growth of the z!9, in spite of the e~®!* decay. Let us 

see. Writing 

100 oy 
700 p-0.0le ut _ 00 

~~ o0.0le 7 | Ole)? ele 14 (0.01a) + CON 4, 
100 200 x 102!)10 

Key = (102) 0, (8) (0.01) 102 x? 
102!
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_> p increasing 

p increasing 
i 

  

    

  

  

Figure 2. The effect, on 1/x?, 

of varying p. 

we see, by comparison with the p-integral, with p = 2, that { converges. @ 

EXAMPLE 4. Observe that 

/ rOO Lys E00 i 1 + 

I =| de =f d(n 2) = lim In (In x) | = 00, (9) 
3 elne a=3 Ing X=+00 ' 
    

so I is divergent. This example illustrates just how weakly Ina —> co as x —+ oo, for the 

integral of 1/a is borderline divergent (p = 1), and the In x in the denominator does not 

even provide enough help, as « —+ oo, to produce borderline convergence! 4 

So much for the case where the upper limit is co. The other case that we 
consider is that in which the integrand “blows up” (i.e., tends to +co or —oo) at 

a finite endpoint, say the left endpoint « = a. If the integrand f(z) blows up as 

x —> a, then in the same spirit as (3) we define 
  

b b 

I -| f(z) dz = lim f(x) dz, (10) 
€70 Ja+te       

where e€ — 0 through positive values. 
We first consider the so-called vertical p-integral 

b 1 r= | sade.  (b>0) (iy) 
g a? 

According to (10), 

b b ; 1 gl-p|? 1 1 lim, =— © p#i 

0 £ e0 Je xP lime+o na|°. (p = 1) 

Now, lim,_49 Ine is infinite (—oco) and hence does not exist and, similarly for 

lim,_49 €!7? if p > 1, whereas the latter limit does exist if p < 1. Thus, 

  

THEOREM 4.5.4 Vertical p-Integral 
The vertical p-integral, (11), converges if p < 1 and diverges if p > 1. 
  

Recall that as p is increased, the horizontal sliver of area (shaded in Fig. 1) 

is squeezed thinner and thinner. For p > 1 it is thin enough to have finite area. 
However, the effect near z = 0 is the opposite: increasing p causes the singularity 

at x = 0 to become stronger, and the vertical column of area (shaded in Fig. 2) 

to become thicker. Thus, to squeeze the vertical column thin enough for it to have 
finite area, we need to make p small enough; namely, we need p < lL. 

The motivation behind the terms “horizontal” and “vertical” p-integrals should 

now be apparent; the former involves the horizontal sliver shown (shaded) in Fig. 1,
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and the vertical p-integral involves the vertical sliver shown (shaded) in Fig. 2. 
Next, we add the following comparison test: 

  

THEOREM 4.5.5 Comparison Test 

Let J = fy f(x) dx, where 0 <b < oo. If f(x) ~ K/x? as x -+ 0 for some 
constants /¢ and p, and f(x) is continuous on 0 < 2 < 6, then I converges ifp < 1 
and diverges ifp > 1. 

  

EXAMPLE 5. Test the integral fe (sin 2a/x*/2) de for convergence/divergence. Ev- 
idently, the integrand blows up as z —> 0 and needs to be examined there more closely. 
Recalling the Taylor series sin2a = (2x) — (2x)3/3! + (2x)5/5! —---, we see that 
sin2z ~ 2x2 as x -+ 0 [as can be verified, if you wish, by applying |’H6pital’s rule to 
show that sin (22)/22 > 1 asa -+ 0], so 

sin 22 22 2 

3/2 3/2 [2 
  (13) 

Thus, according to Theorem 4.5.5, with p = 1/2, the integral is convergent. 

Example 5 concludes our introduction to singular integrals, and we are now 
prepared to study the gamma function. 

4.5.2, Gamma function. The integral 

  

  
(2) = | teen at (2 > 0) (14) 

+0     

is nonelementary; that is, it cannot be evaluated in closed form in terms of the so- 
called elementary functions. Since it arises frequently, it has been given a name, 
the gamma function, and has been studied extensively. 

Observe that the integral is singular for two reasons: first, the upper limit is co 
and, second, the integrand blows up as t > 0 if the exponent z — 1 is negative. To 
determine its convergence or divergence, we can separate the two singularities by 
breaking the integral into the sum of an integral from ¢ = 0 to t = 7, say, for any 
7 > Q, plus another from 7 to co.” In the first, we have f@~!e~! w er! = 1/t-* 
  

“That is, if f(t) is unbounded as ¢ — 0, then the integral 

no T T 
[ f(t)dt = : jim / f(t)dit = : jim / leyat+ | reat| 

T+ oo T + oo 

ll 

oT oT oT VOD 

= ny / f(t) dt + sie | f(t)dt = pleats | f(t)dt 
e-40 

exists if and only if each of the last two integrals exist, 

223
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as t > 0, and by Theorem 4.5.5 we see that we have convergence ifl-« <1(e., 

a > 0), and divergence if « < 0. In the part from 0 to oo, we have convergence no 

matter how large a is, due to the e~'. Thus, the integral in (14) is convergent only 

if ¢ > 0; hence the parenthetic stipulation in (14). 

An important property of the gamma function can be derived from the defini- 

tion (14) by integration by parts. With “u’= t®~! and “du’= e7'dt, 

I(x) = te tent + (a —-1) [ toe! dt. (15) 
0 

The integral in (15) converges [and is [(# — 1)] only ifa > 1 (rather than « > 0, 

because the exponent on ¢ is now x — 2), in which case the boundary term vanishes. 

Thus, (15) becomes 

  

[P@) =(@=1P@-1).  («@>)) (16) 
  

  

The latter is a recursion formula because it gives P at one point in terms of [ at 

another point. In fact, if we compute P(x), by numerical integration, over a unit 

interval such as 0 < x < 1, then (16) enables us to compute F(x) for all c > 1. 

For example, 

1(3.2) = 2.21 (2.2) = (2.2)(1.2)P (1.2) = (2.2)(1.2)(0.2)P(0.2), 17) 

and one can find I'(0.2) in a table. (Actually, tabulations are normally given over 

the interval 1 < x < 2 because accurate integration is difficult if x is close to 

0. In fact, tables are no longer essential since the gamma function is available 

within most computer libraries.) Note, in particular, that if n is a positive integer, 

then 

P(n+ 1) =n (n) = n(n — 10 (n - 1) 

  

= n(n — 1)(n — 2)---(1)PC), (18) 

and since oo 

rd) = | e'dt=1, (19) 
0 

(18) becomes 

Tin+1) =n. (20) 
      

Thus, the gamma function can be evaluated analytically at positive integer values 

of its argument. Another x at which the integration can be carried out is ¢ = 1/2, 

and the result is 
1 

r (5) = Sn. (21) 

Derivation of (21) is interesting and is left for the exercises. 

Recall that (14) defines ['(x) only for a > 0; fora < 0 the integral diverges 

and (14) is meaningless. What is a reasonable way to extend the definition of P(x)
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to negative x? Recall that if we know ['(a), then we can compute (a + 1) from 
the recursion formula [(a@ + 1) = «DP (2x). Instead of using this formula to step to 
the right [for instance, recall that knowing P'(0.2) we were able, in (17), to compute 
1'(3.2)], we can turn it around and use it to step to the left. Thus, let us define 

Ta 1 ro) = et) fore co. (22) 
x 

For example, 

T(-1. T(—0.€ T(0.4 
T(—2.6) = ( 6) = I(=0.6) = 1(0.4) (23)   

2.6  (—2.6)(-1.6)  (—2.6)(—1.6)(—0.6)’ 

where ['(0.4) is known because its argument is positive. The resulting graph of 

T'(z) is shown in Fig. 3. 
In summary then, (a) is defined for all 2 4 0,—1,—2,... by the integral 

(14) together with the leftward-stepping recursion formula (16). The singularity of 
T(z) at x = 0 propagates to x = —1, ~—2,... by virtue of that formula. Especially 
notable is the fact that '(a) = (a — 1)! at z = 1,2,3,..., and for this reason P'(2) 
is often referred to as the generalized factorial function. 

A great many integrals are not themselves gamma function integrals but can be 
evaluated by making suitable changes of variables so as to reduce them to gamma 

function integrals. 

EXAMPLE 6. Evaluate J = for t2/3e-V" dt, Setting Vt = u, we obtain 

[= [ (2)? e“2udu= 2 | 
Q JQ 

rOO - 1 
we" du = 20 (2) , (24) 

where F'(10/3) can be obtained from tables or a computer. & 

4.5.3. Order of magnitude. [n some of the foregoing examples it was important to 
assess the relative magnitudes of two given functions. In Example 3, for instance, 
the x! srows as « — 00 while the e~°-!!” decays. Which one “wins,” and by 

what margin determines whether the integral converges or diverges. 
Of particular interest are the relative growth and decay of the exponential, alge- 

braic, and logarithmic functions as « —+ oo and x — 0, and we state the following 
elementary results as a theorem, both for emphasis and for reference. 

  

THEOREM 4.5.6 Relative Growth and Decay 
For any choice of positive real numbers a and @, 

pie Be +0 aro, (25a) 

(Ina)/x° +0 asx—+oo, (25b) 

xIne +0 asxz 30. (25c) 
  

  

  

  

P(
x)
 

          
Figure 3. Gamma function, P(x).
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Proof of (25a) can proceed as a generalization of (8) or by using l’ H6pital’s rule, 

and (25b,c) can be proved by l’H6pital’s rule. To prove (25c), for example, observe 

that c* Ina —+ (0)(—oo), which result is indeterminate. To use I’ H6pital’s rule we 

need to have 0/0 or co/oo. Thus, express ¢* Ina as (In x)/x~*, which tends to 

—oo/oo as + 0. Then |’H6pital’s rule gives 

, vol re 

lim Ine = lim = lim (-=) =0.   
z70 oe 270 —an7 eo! x0 a 

We say that x exhibits algebraic growth as «© — oo, and we see from (25a) 

that algebraic growth x® is no match for exponential decay e~ 8" no matter how 

large a is and no matter how small { is! Of course, it follows from (25a) that 

a %e8® 5 99 as x — 00: algebraic decay is no match for exponential growth. 

Just as exponential growth is extremely strong, logarithmic growth is extremely 

weak for (25b) shows that 2* dominates In x as © — oo, no matter how small a is. 

Similarly as «© + 0: 27 ® — oo and Inw — —oo (recall that Ing is zero atx = 1, 

increases without bound as x —> oo, and decreases without bound as x — 0; sketch 

it), and (25c), rewritten as (Inz)/x~* — 0, shows that e~° —> oo faster than 

Ina — ~—oo, no matter how small a is. 

Crudely then, we can think of In « as being of the order of x to an infinitesimal 

positive power as x — oo, and of the order of x to an infinitesimal negative power 

as z — 0. In contrast, one can think, crudely, of e* as being of the order of x to an 

arbitrarily large positive power as x —> 00, and e~® as being of the order of x to an 

arbitrarily large négative power as © —> co. 

When considering the relative strength of functions as x tends to some value 

xo, constant scale factors are of no consequence no matter how large or small they 

may be. For instance, (87 Ina) /x°°! + 0 as «© — oo just as (In a) /x°-! does. 

Thus, in place of the asymptotic notation f(a) ~ g(a) as © — xo, which means 

that f(x) /g(z) 3 las x + xo, we will sometimes use the “big oh” notation 

  

| f(z) = O(g(x)) asx —- Xo (26a) 
  

  

to mean that* 
f(z) ~ Cg(a) asx xo, (26b) 

for some finite nonzero constant C’. For instance, whereas 

. 14+ 73 ~1/2 J1i+ V3 1/2 

f(z) = ————= 2 +673lna ~ ———=_ 4 
r(1 + V5) T(1+ v5) 

as « —> 0, it is simpler to write f(a) = O(a '/?) as z —> 0. That is, the scale 

factor CC = V1l+ J/3/T(U + V5) can be omitted insofar as the order of magnitude 

(27) 

  

* Actually, the notation (26a) means that f(2)/g(z) is bounded as « — xo. Though our usage is 

more restricted, it is consistent with the definition just given, for if (26b) holds, then surely f(x)/g(a) 

is bounded as 2 —> wo. Though more restricted, our definition (26b) of (26a) is sufficient for our 

purposes and is easier to understand and use. 
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of f is concerned. In words, we say that f is big oh of a'/?2 as x — 0. Of course, 

tg can be any point in (26); often, but not always, xo is 0 or oo. 
As one more illustration of the big oh notation, observe from the Taylor series 

. zg? a! 
sing=27-— + 

6 ' 120 5040 
    foe (28) 

that each of the following is true: 

sing = O(2), (29a) 

sing = e+ O(2*) ; (29b) 

ond 
sing =a — = + O(2°) ; (29c) 

and so on, as z ~+ 0. For instance, |’H6pital’s rule shows that (sinw)/x —> 1 as 
x —0,sosing ~ x; hence (26b) holds, with C = 1, so (29a) is correct. Similarly, 
l H6pital’s rule shows that (sin z — x)/x* + —1/6, so sina — x ~ —x*/6; hence 
sing — 2 = O(a) or sing = x + O(zx?) so (29b) is correct. 

The big oh notation is especially useful in working with series. For instance, 
(29b) states that if we retain only the leading term of the Taylor series (28), then 

the error thereby incurred is of order O(a). Put differently, the portion omitted, 
z x a! to ed 3 —% + isp — goa +7 is simply O(z”). 

Closure. In Section 4.5.1, we define singular integrals as integrals in which some- 
thing is infinite: one or both integration limits and/or the integrand. We make such 
integrals meaningful by defining them as limits of regular integrals. Just as the 
convergence and divergence of infinite series is a long story, so is the convergence 
and divergence of singular integrals, but our aim here is to consider only types that 
will arise in this text. Though the convergence of singular integrals of the type 
fo” f(x) dx and of infinite series S*7° an bear a strong resemblance (e.g., the p- 
series and horizontal p-integral both converge for p > 1 and diverge for p < 1), one 
should by no means expect all results about infinite series to merely carry over. For 

instance, for series convergence it is necessary (but not sufficient) that a, — 0 as 

n ~—> oo, but it is not necessary for the convergence of for f(x) dx that f(z) - 0 

as x — oo. For instance, we state without proof that fo sin (a”) dx converges, 

even though sin (2*) does not tend to zero as x > 00. 
In Section 4.5.2, we introduce a specific and useful singular integral, the gamma 

function, and obtain its recursion formula and some of its values. The exercises in- 

dicate. some. of.its. many. applications. 
In the final section, 4.5.3, our aim is to clarify the relative orders of magnitude 

of exponential, algebraic, and logarithmic functions. It is important for you to be 
familiar with the results listed in Theorem 4.5.6, just as you are familiar with the 
relative weights of cannonballs and feathers. We also introduce a simple big oh 
notation which is especially useful in Chapter 6 on the numerical integration of 

differential equations. 

227
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Computer software. Many integrals can be evaluated by symbolic computer soft- 

ware. With Maple, for instance, the relevant command is int. To evaluate the 

integral J in Example 6, for instance, enter 

int(t*(2/3) * exp(—t 

and return. The result is 

H(1/2)), ¢ = O..infinity); 

u2_xy3 
81 F(2/3) 
  

which looks different from the result obtained in Example 6 but is actually equiva- 

lent to that result (Exercise 12). To evaluate the latter, enter 

and return. The result is 5.5 

evalf(’’); 

56316963. 

  

EXERCISES 4.5 
  

1. Ifa > Oand @ > 0 show that, no matter how large a is and 

no matter how small £ is, 

(a) ae?” 4 0 

(b) 27% e8* — 00 

as © -> CO 

as Z-+ CO 

2. If w > 0, show that no matter how small a is, 

(a) (Ina) /x* + 0 

(b) 2% /Ina > 0 
as & + 90 

as x -+ 0 

3. Show whether the given integral converges or diverges. As 

usual, be sure to explain your reasoning. 

oe) 
dx 

9 wl+2 

"9 oS der 

0 a +2 
a da 

o wt+2 

e? dx 

zt + 100 
‘de 

(e) | “3 
0, ¢ 

  (a) 

  

dx 
(f) = 

0 ve ; 
(2) "0° sin? a dx 
g. Sa 
= fy Valx — 1) 

© cosz dz 

mf ve 1) 
2 ® de 

w | i 

. fi dr 

O/| a5 9 wv cosa 

4, Show whether the given integral converges or diverges. 

(a) [ me dx 

ciently large: a, by showing that (In z)/a/4 + 0 as @ -+ 00. 

* Inedx 
(b) 

Jo V2 
1/€ and use the hint given in part (a). 

  HINT: Let € = x2 — 1. 

  

HINT: Show that nz < 2'/4 for all suffi-   

HINT: Make the change of variables x =   

oO 

5. For what p’s, if any, does [ da/x? converge? Explain. 
0 

6. Enter the indicated change of variables in the given singular 

integral, and state whether the resulting integral is singular or 

not.



  
°° COS & “ xr 4 

(d) » EE 

7. fot whan range of a’s (such as 0 < a < 2,a > 4, no a’s, 

etc.) does the given integral converge? Explain. 

4 
    

  

aa x? da 
qd 'b 

@) I ce + 3 ( ) 0, at + 1 
att “ vy) 

(c) (d) x® sina dx 
Jo 
Sa dx 5f/ —= of'e- da o | veg 

8. Evaluate, using a suitable recursion formula and the known 

value [(1/2) = ./7. Repeat the evaluation using computer 
software. 

(a) (3.5) (b) P(—3.5) ()T(6.5) (a) F(—0..5) 

9. Derive (21), that [(1/2) = 7. HINT: Show that 

T(1/2) = 2 | en du, 
4Q 

[P(i/2)}° =1f "au | en? du 
0 0 

0 Jo 

Regarding the latter as a double integral in a Cartesian u,v 

plane, change from u,v to polar coordinates r,@. The result- 

ing double integral should be easier to evaluate. 

so that 

10. Show by suitable change of variables that 

eh ede = 
0 

nl 
x” (In x)" dx = (~—1)" rn! 

(b) Dyk 
Jo (m+ 1)r*t 

(m,n nonnegative integers) 

(c) | ve * dx = vn 
Jo 4 

  PC/p) (p > 0) 
p 

oO 

re7V* dz = (d) =: 12 
J} 

_ Qo 7 1 _ 2 oy 1 (e) 5 (x - 1)*e di = 5 E or (5) +1 (3) 
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11. Evaluate as many of the integrals in Exercise 10 as possi- 

ble using computer software. 

12. In Example 6 we obtained the value 2F(10/3). Using 
Maple, instead, show that the result is (112/81) V3/P'(2/8). 
Then, use any formulas given in this section or in these exer- 

cises to show that the two results are equivalent. 

143. Deduce, from the formula given in Exercise [O(a), that 

I'(z)} ~ 1/2 as x tends to zero through positive values. 

14, (Beta function) Derive the result 

  

P(p)(q) 
T(pt+q)’ 

for p > 0, q > 0; B(p,q) is known as the beta function. 

HINT: Putting « = u? in 

1 
B(p,q) = f a1 —a2)t dr = (14.1) 

JO       

(yp) = | a? te*dz, (14.2) 
0 

show that 

T(@I(p) =4/ wet da | v2tle-" dy, (14.3) 
0 0 

Regarding the latter as a double integral in a Cartesian u,v 

plane, change from w, v to polar coordinates r, @. Making one 

more change of variables in each integral, the r integral gives 

l'(p + q) and the @ integral gives B(p, q). 

15. Derive, from (14.1) above, the alternative forms: 

co ppt 

= dt 

(p > 0, q > 0) 
HINT: Set @ = ¢/(1 +t) in (14.1). 

(a) (15.1) 

wf2 

(b) B(p,q) = 2 f cos?! @ sin??~! 6 dé (15.2) 
0 

(p > 0, q>0) 

16. Using any results from the preceding two exercises, show 

that 

w/2 1 Lj 

(a) | cos? @ sin? 6 dé = 5B (23 ; a+ 5 ) (t6.1) 
J0 : 

    

(p>-l, ¢>-1)
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vm /2 om {2 

(b) | tan? Od@ = cot? 6dé 
0 0 

1 t+p 1l-—p w = -Bp(——£,-—£)=- 
2 2 2 2cos E 

(16.2) 

for —1 <p < 1. HINT: You may use (17.1), below. 

«dx 1 ati cbh-~a-—1 
—— ee = HB a . (c) [ (i+aye 6 bb (16.3) 

_ ar (pt) r (5g) 
Ob Tc) 

fora > —1,5>0,be-a>1. 

17. It can be shown, from the residue theorem of the complex 

integral calculus, that 

    
oo gen 

[ ipa = Snax (0<a<1) (17.1) 

Using this result, (15.1), and (14.1), show that 

la)P(l-a) = (0<a<1) (17.2)   
~ sina’ 

18. (Period of oscillation of pendulum) Conservation of energy 

dictates that the angular displacement 6(t) of a pendulum, of 
length / and mass m, satisfies the differential equation 

1 2 
5m (19) +mg(l —Icos@) = mg (l —Icos@). (18.1) 

(a) From (18.1), show that 

dt, (18.2) 
Ly do _ f" 

29 Jo Vcos@—cos8) Jo 

where T' is the period and 09 is the maximum swing. We 

expect T to depend on 69, so we denote it as T(@9). For the 

case 09 = 71/2, show that 

Qni T(1/4) 

g V(3/4) 

NOTE: You may use results from the preceding exercises. 

(b) At first glance, it appears from (18.2) that T(@) > Oas 

85 — 0. Is that assessment correct? Explain. 

    T(m/2) = 

19. Let F(x) = 4/(1 +27) = 4— 472 + 4rt — ---, 

2432 7e —x4+1 22 —-3ing 
= E = 1 >) — ; 

G(t) = 7 T(x) aw (2)= yy 

J(x) = 2e7* + 3a, and K(x) = sin3a. Verify the truth of 

e 

(a) F(x) =O(1) asz 0 
(b) F(z) =4+O0(2?) asx 0 
(c) F(x) =4—427+O(a*) asx 0 
(d) G(x) =O(1) asx oo 
(e) H(z) =O(«) asz—0 
(f) H(z) =O(a) asr4+ow 
(g) H(z) =O(1) asx 0 
(h) I(z) =O (a7!) asa — oo 
(i) [(z) =O(Inz) asx 0 
() J(z)=O(@) ast4o 
(k) J(z) =O(1) asx0 
() K(z)=O(1) asx 0 

  

4.6 Bessel Functions 

The differential equation 
  

  
2,01 ay” + ay! + (2? —v*)y = 9, (1) 

  
  

where v is a nonnegative real number, is known as Bessel’s equation of order 

v. The equation was studied by Friedrich Wilhelm Bessel (1784— 1846), direc- 

tor of the astronomical observatory at Konigsberg, in connection with his work on 

planetary motion. Outside of planetary motion, the equation appears prominently 

in a wide range of applications such as steady and unsteady diffusion in cylin- 

drical regions, and one-dimensional wave propagation and diffusion in variable



  

cross-section media, and it is one of the most important differential equations in 

mathematical physics. Dividing through by the leading coefficient x”, we see from 
. 9) ‘ ty . . . 

p(x) = 1/e and g(a) = (2? _ uv?) /x* that there is one singular point, 7 = 0, and 

that it is a regular singular point because wp(a) = 1 and v7q(x) = x? ~ v? are 

analytic at x = 0. 

4.6.1. v ~ integer. Consider the case where the parameter v is not an integer. 
Seeking a Frobenius solution about the regular singular point x = 0, 

y(2) = So apu®t, (ay £0) (2) 
k=0 

gives (Exercise 1) 

Ss" { [(k +r) — v*| ap + an—2 } akt? = 0, (3) 

k=0 

where ag # 0 and a_2 = a_, = 0. Equating to zero the coefficient of each power 

of a in (3) gives 

k=0: (r?—v*)ao = 0, (4a) 

k=l: [(r +1)?- v?| a, = 0, (4b) 

kh > 2 [(r + k)? _ vy? Ok + Op—2 = 0. (4c) 

Since ag # 0, (4a) gives the indicial equation r* — v* = 0, with the distinct roots 
r= ctv. First, let r = +v. Then (4b) gives a, = 0 and (4c) gives the recursion 

relation 

  

1 
Lj, = oop k > 2 5 
th k(k + av) ok 2 (k 2 2) (9) 

From (5), together with the fact that a, = 0, it follows thata, = ag = a5 =--- = 0 

and that k 

(—1)" 
Ook Dak Fl (V+tk)\vtk—-1)--(vu+ n° (6) 

If v were an integer, then the ever-growing product (v + k)(v +k —1)---(v+1) 
could be simplified into closed form as v!/(1 + &)!. But since v is not an integer, 
we seek to accomplish such simplification by means of the generalized factorial 
function, the gamma function, which is studied in Section 4.5. Specifically, if 

we recall the gamma function recursion formula [(2) = (« ~ 1)P(« — 1), then 
Pwetktl)=vt+khPvtk)=(v+kh)(v+-k-DPwt+k-l=---= 
(v+k)(v+k—-1)-+-(v+1)T(v +1), which gives (v+hk)(v+k—1)---(v+1) = 
Pv +k + 1)/P(v +1). With this replacement, (6) becomes 

—DA Ey 4 J lop = (—1)"T(v + 1) 
ee I 7 

° 2hkIT(y +k + yp oe 
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Figure 1. Jy/o(x) and J_4/2(2). 

so we have the solution 

y(ax >) = ap2”T( Vv +1) Tw RT a es 5 Qn 
(8) 

Dropping the ag2”T'(v + 1) scale factor, we call the resulting solution the Bessel 

function of the first kind, of order v: 
  

    
  

] (—1i)* Qk (0) 
x ao ee fe 

(a) = (5 y are ery (3 ) 

To obtain a second linearly independent solution, we turn to the other indicial 

root, r = —v. There is no need to retrace all of our steps; all we need to do is to 

change v to —v everywhere on the right side of (9). Denoting the result as J_, (2x), 

the Bessel function of the first kind, of order —v, we have 

=) Sea] 
Both series, (9) and (10), converge for all x, as follows from Theorem 4.3.1 with 

R, = Rp = © or from Theorem 4.2.2 and the recursion formula (5). The leading 

terms of the series in (9) and (10) are constants times x” and a~”, respectively, so 

neither of the solutions J,,() and J_,(z) is a scalar multiple of the other. Thus, 

they are LI, and we conclude that 

  

      

  

y(x) = AJ, (x) + BJ_L(2) (LI) 

is a general solution of (1). 

Writing (9) and (10), 

1 1 2 
J(x) = 2” ~ weedy 12 

(s) =a ee +1)2h  T(vt+ QQ” F2" + | (12) 

1 1 
J-(2)=27" _ “gt, 

(2)=2 a ye Fanaa | 

Since the power series within the square brackets tend to 1/['(v+1)2” and 1/P(1— 

v)2-", respectively, as « —> 0, we see that J,(x) ~ [1/P(v + 1)2”Ja” and. 

J_y(z) ~ [1/1 — v)2-’Ja-¥ as x — 0. It is simpler and more concise to 

use the big oh notation introduced in Section 4.5.3, and say that J, (x) = O(2”) 

and J_,(x) = O(a~") as x + 0. Thus, the J, (x)’s tend to zero and the J_,(x)’s 

tend to infinity as « — 0. As representative, we have plotted Jy /2(a) and J_4/2(2) 

in Fig. 1. In fact, for the half-integer values v = +1/2, +£3/2,-+5/2,... the se- 

ries in (9) and (10) can be shown to represent elementary functions. For instance 

(Exercise 5), 

2 2 
Ji jx) = Vo sing, J_4jo(2) = \/ COs. (14a,b) 

(13)  



  

4.6.2. v = integer. If v is a positive integer n, then (v +k +1) =T(n+k+1) = 
(n+ k)! in (9), so we have from (9) the solution 

2 k Qh-bn 
  

    
  

of (1). For instance, 

xv xv eo 

Yolo) = 1 oa + garane ~ a5ane oe 
wv xo 2 x! 

Ji(a) = 37 Bat Borg aera (16b) 

We need to be careful with (10) because if v = n, then the (kh —n+1) in (10) 
is, we recall from Section 4.5.2, undefined when its argument is zero or a negative 

integer ~ namely, for k = 0,1,...,n — 1. One could say that P(k — n + 1) is 
infinite for those k’s, so 1/['(k ~ n + 1) equals zero fork = 0,1,...,n—1, and it 
equals 1/(k ~ n)! fork =n,n+1,..., in which case (10) becomes 

J-n(a = ear ki(k —n) (3) . (7) 

[The resulting equation (17) is correct, but our reasoning was not rigorous since 
T'(k — n+ 1) is undefined atk =0,1,...,n— 1, rather than “oo.” A rigorous line 
of approach is suggested in Exercise 10.] Replacing the dummy summation index 

k by m according tok —-n =m, 

yymrn L ) 2m-+n 
oO 

Jen( G 
nl =D Geena (m+n)!m! \2 

If (~1)” is factored out, the series that remains is the same as that given in (15), so 

that 
Jin(u) = (-1)"Jn(z). (18) 

The result is that J,(a) and J_,(x) are linearly dependent, since (18) tells us 
that one is a scalar multiple of the other. Thus, whereas J,,(x) and J_,(a) are LI 
and give the general solution (11) if v is not an integer, we have only one linearly 
independent solution thus far for the case where v = n, namely, yi(a) = Jn(x) 
given by (15). To obtain a second LI solution yo(a ) w we rely on Theorem 4.3.1. 

Let us begin with n = 0. Then we have the case of repeated indicial roots, 
r == --n = +0, which corresponds to case (ii) of that theorem. Accordingly, we 

seek yo(x) in the form 

xO 

yo(a) = Jo(x) Ina + S- cpa’. (19) 
1 
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Doing so, we can evaluate the c,’s, and we obtain 

p\ 2 1 Ll auy4 
yo(x) = Jo(a) Ina + (5) ~ (1 + 5) (a2 (5) ey (20) 

which is called Yo(a), the Neumann function of order zero. Thus, Theorem 4.3.1 

leads us to the two LI solutions y;(a) = Jo(a) and yo(%) = Yo(x), so we can use 

them to form a general solution of (1). However, following Weber, it proves to be 

convenient and standard to use, in place of Yo(x), a linear combination of Jo(x) 

and Yo(a), namely, 

yal) = = [¥o(x) + (7 ~In2)Jo(e)] = Yolo) en 

where 

2 a x? L\ x4 Yo(«) = = (ing +7) Jole) + 53 — (1 + 5) (aI? 

4 (ie 1 + 1 x (22) 

2 3/ 26(3!)2 

is Weber’s Bessel function of the second kind, of order zero; 7 = 0.5772157 is 

known as Euler’s constant and is sometimes written as C, and Yo(x) is sometimes 
  

  

written as No(a). The graphs of Jo(x) and Yo(x) are shown in Fig. 2. Important 

features are that Jo(x) and Yo(x) look a bit like damped cosine and sine functions, 

except that Yo(w) tends to —co as  — 0. Specifically, we see from (16a) and (22) 

that 
2 

Jo(z) ~ 1, Yo(a) ~ = Ina (23a,b) 

  

  

x 

2 T 2, WT 

Figure 2. Jo and Yo. Jg(z) ~ 4] — cos (x — “), Yo(az) ~ 4/ a sin (« — *) (24a,b) 

as  — oo. Indeed, we can see from (24) why the Weber Bessel function Yo is a 

nicer companion for Jp than the Neumann Bessel function Yo, for 

  as x — 0, and it can be shown (Exercise 6) that 

  Yo(a) ~ : (= —yt+ In) sina ~ (= +y inz) cosir| (24c) 
Vine \2 2 

as « —} oo; surely (24b) makes a nicer companion for (24a) than does (24c). 

[t might appear, from Fig. 2 and (24), that the zeros of Jo and Yo [1.e., the roots 

of Jo(x) = 0 and Yo(a) = 0] are equally spaced, but they are not, they approach an 

equal spacing only as a —+ oo. For instance, the first several zeros of Jo are 2.405, 

5.520, 8.654, 11.792, 14.931. Their differences are 3.115, 3.134, 3.138, 3.139, and 

these are seen to rapidly approach a constant [namely, 7, the spacing between the 

zeros of cos (a ~ 7/4) in (22a)]. The zeros of the various Bessel functions turn out 

to be important, and they are tabulated to many significant figures. 

 



  

For n = 1,2,... the indicial roots r = -kn differ by an integer, which cor- 

responds to case (iii) of Theorem 4.3.1. Using that theorem, and the ideas given 

above for Yp we obtain Weber’s Bessel function of the second kind, of order n, 

a 

(0) = Oand ok) =14+5+5+--4+5 

  

@) 2S aka! (n— 

2 
k=0 (25) 

? 

  

    
  

which formula holds forn = 0,1,2,...; 
fork > 1. 

4.6.3. General solution of Bessel equation. Thus, we have two different gen- 
eral solution forms for (1), depending on whether v is an integer or not: y(a) 
AJ, (z) + BJ_,(x) if v is not an integer, and y(r) = AJp(x) + BY, (x) if 
y=n=0,1,2,.... It turns out that if we define 

  

(cosvm) Jy (a) — 
Y(t) = 

sin v7 

J_,(x) 
(26) 

      

for noninteger v, then the limit of Y,(x) as v + n(n = 0,1,2,...) gives the same 
result as (25). Furthermore, J,(a) and Y_(x) are LI (Exercise 1) so the upshot is 
that we can express the general solution of (1) as 

  

l(a) = AJ,(x) + BY, (x) (27) 
    

for all values of v, with Y,, defined by (25) and (26) for integer and noninteger 
values of v, respectively. The graphs of several J,,’s and Y,,’s are shown in Fig. 3. 

For reference, we cite the following asymptotic behavior: 

  
1 

~ ant ; (n = 0,1,2,...) (28a) 

“Ine, (n = 0) 
28b) 2"(n~ 1)! I ( 

=1,2,... 
ert? (n ) 

as x — 0, and 

2 
~ yf — (et —- Wn), (n = 0,1,2,...) (29a) 

rz 

2 
~ 4/— sin (a2 — wy) (n = 0,1,2,...) (29b) 

TH 

as Z — oo, where Wy = (2n+1)7/4. Observe the sort of conservation expressed in 

(28a,b): as n increases, the Y;,’s develop stronger singularities (In x, x lig?) 
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(8) 

  

  

      

Figure 3. 

  

Jn’s and Y;,’s.
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while the J,,’s develop stronger zeros (1, x, a,...). (We say that x ° has a stronger 

zero at the origin than x*, for example, because e/a —> Oas x -> 0.) Finally, we 

call attention to the interlacing of the zeros of J, and Y,,. All of these features can 

be seen in Fig. 3. 
In summary, our key result i is the general solution (27) with J, given by (9), 

Y, by (25) for integer v and by (26) for noninteger v, and with J_, in (26) given 

by (10). 

4.6.4. Hankel functions. (Optional) Recall that the harmonic oscillator equa- 
tion y” + y = 0 has two preferred bases: cos x, sinz and e’”, e~**. Usually, the 
former is used because those functions are real valued, but sometimes the com- 
plex exponentials are more convenient. The connection between them is given by 

Euler’s formulas: 

e* =cosx+i sing, 

e *=cosx—i sina. 

Analogous to the complex basis e**, e~** for the equation y” + y = 0, a complex- 

valued basis is defined for the Bessel equation (1): 

HY (a) = J,(x)+iY,(2) (30a) 
v 

H')(2) = J.(x) —i¥,(2). (30b) 

These are called the Hankel functions of the first and second kind, respectively, of 

order v. Thus, alternatively to (27), we have the general solution 

  

    y(a) = AHS) (x) + BHY) (2) G1) 
  

of (1). 

As a result of (29a,b), the Hankel functions HY) (x), HE) (2x) have the pure 
complex exponential behavior 

  

2 ow, 
HY (x) ~- — elleve), (32a) 

(2) 2 i(e—dn) He) ~4/e (32b) 
wea 

as © > 00. 
The Hankel functions are particularly useful in the study of wave propagation. 

4.6.5. Modified Bessel equation. Besides the Bessel equation of order v, one also 
encounters the modified Bessel equation of order v, 27y"+:y ‘4 (= e -v)y= 

0, where the only difference is the minus sign in front of the second x” term. Let 
us limit our attention, for brevity, to the case where v is an integer n, so we have 

vy" + cy! + (-2? —n?)y =0. (33)



The change of variables t = ia (or «© = ~7t) converts (33) to the Bessel 

equation . 

CY" +tY' + (t? —n°)Y =0, (34) 

where y(x) = y(—it) = Y(t) and the primes on Y denote d/dt. Since a general 
solution to (34) is Y(t) = AJ,(t) + BY;,,(t) we have, immediately, the general 
solution 

y(a) = AJ, (ix) + BY, (iz) (35) 

of (33). From (15), 

oo k ig 2k-+-n. on hen 

=) mer toa (¥) ~ = aera (5) (36) 

so we can absorb the 2” into A and be left with the real-valued solution 

  

In(w) =i" Jn (ix) = => EE = (gy, (37) 
      

known as the modified Bessel function of the first kind, and order n. In place 
of Y,,(ia) it is standard to introduce, as a second real-valued solution, the modified 
Bessel function of the second kind, and order n, 

K,(x) = oH [Un(iv) +i ¥n(iz)]. (38) 

For instance, 

2 at 6 
Ina) =1+—5+ . +4 — ewes (39a)     

  
1 i4i a 1 14243 x® oe (39b) 

2) 24(2!)2 2° 3/ 26(31)? 

and the graphs of these functions are plotted in Fig. 4. 
As a general solution of (33) we have 

  

ly(v) = Aln(«) + BK,(2). | (40) 
  

Whereas the Bessel functions are oscillatory, the modified Bessel functions are not. 
To put the various Bessel functions in perspective, observe that the relation- 

ship between the J, Y solutions of the Bessel equation and the I, K solutions of 
the modified Bessel equation is similar to that between the solutions cos z, sin & 
of the harmonic oscillator equation y” + y = 0 and the cosh, sinh solutions 
of the “modified harmonic oscillator” equation y” — y = 0. For instance, just as 
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Figure 4. Jo and Ko. 

 



238 Chapter 4. Power Series Solutions 

cos (i) = cosh (x) and sin (a) = 7 sinh (x), [,(x) and K(x) are linear combi- 

nations of J,(ix) and Y;, (42). 

Finally, the asymptotic behavior of I, and K,, is as follows: 

  

Lo soyn 

nit) ~ To = ve 41 Ine) (FG). = 01,2.) (41a) 
—Ina (n = 0) 

Kn wpe n—l 9\n . 41b 

“ { al ay (n= 1,2,...) (1) 

as © — 0, and 

1 os 
In(@) ~ e*, (n = 0,1,2,...) (42a) 

Ky (a) ~ Vago (n = 0,1,2,...) (42b) 

as 7 — oo. As n increases, the J,,’s develop stronger zeros at © = 0(1,2, xy... 

while the K,,’s develop stronger singularities there (In z, aot an*,...). 

4.6.6. Equations reducible to Bessel equations. The results discussed in Sections 

4.6.1—-4.6.5 are all the more important because there are many equations which, al- 

though they are not Bessel equations or modified Bessel equations, can be reduced 

to Bessel or modified Bessel equations by changes of variables and then solved in 

closed form in terms of Bessel or modified Bessel functions. 

EXAMPLE 1. Solve 
cy +y tK ay =0. (43) 

Equation (43) is not quite a Bessel equation of order zero because of the «”. Let us try to 

absorb the «? by a change of variable. Specifically, scale x as t = ax, where a is to be 

. d d dt d d? d? 
determined. Then de = (3) (=) = On sO i = Q? ip and (43) becomes, after   

division by a, 
2 

ty" +! + Sty =0, (44) 
a 

where y(x) = y(t/a) = Y(t). Thus, we can absorb the « in (44) by choosing a = 4. 

Then (44) is a Bessel equation of order zero with general solution Y(t) = AJo(t)+ BYo(t) 

so 
y(x) = AJo(t) + BYo(t) = AJo(Kx) + BYo(Kx) (45) 

is a general solution of (43), @ 

More generally, the equation 
  

d dy 
— | oo — cy = 0, A6 - (: sh) + bay (46) 

     



  

where a,b,c are real numbers, can be transformed to a Bessel equation by trans- 

forming both independent and dependent variables. Because of the powers of w in 

(46), it seems promising to change variables from x, y(x) to t, u(t) according to 
the forms t = Av®, u = ey, and to try to find A, B,C so that the new equation, 
on u(t), is a Bessel equation. It turns out that that plan works and one finds that 
under the change of variables 

t=avbal/« and usa ley (47) 

equation (46) becomes the Bessel equation of order v, 

» du du : 
P— +t— + (# —v)u=0 ‘AR ip + it + ( v)u , (48) 

if we choose 
2 l-a 

Q= —_ and y= (49) 
c-a+2 c—-at+2 

[The latter is meaningless if c~a@+2 = 0, but in that case (46) is merely a Cauchy- 
Euler equation.] Thus, if Z, denotes any Bessel function solution of (48), then 

putting (47) into u(t) = Z, and solving for y gives the solution 

  

y(a) = 2"/°Z, (av/bi2"*) (50) 
      

of (46). If b > 0, then Z,, denotes J, and Y,, and if b < 0, then Z, denotes J, 
and A‘, (though we gave formulas for J, and Ki, only for the case where v is an 

integer). 

EXAMPLE 2. Solve the equation 

y +3 fry = 0. (0 <a < oo) (51) 

Comparing (51) with (46), we see thata = 0,b = 3, andc = 1/2,soa = 2/(1/2—0+2) = 

4/5 andv = 1/(1/2 — 0+ 2) = 2/5. Thus, (50) gives 

‘ 4 P . y(a) = a? Zo 75 (Ev5e") (52) 
5 

and 
4 et, . | & fe 

y(a) = fz [Ay (Sv5e""") + BYs/s5 € i) (53) 
5 A5 

is a general solution of (51). # 

EXAMPLE 3. Solve 

ry” + 3y' +y = 0, (0 <2 <co) (54) 
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or 
3 l 

f+ oy + oy a0 (55) 

Writing out (46) as w*y” + axe ty! + baty = 0 or 

yl + Sy! + boomy = 0, (56) 
x 

and comparing (56) and (55) term by term givesa = 3,0= 1, andc-a=-—l,soc=2. 

Hence, a = 2/(2—3+42)=2andy =(1—3)/(2-3+ 2) = —2, so (50) becomes 

y(a) = al Zs» (2vi0'/?) =a lZy (2V/z) (57) 

and ! 

ye) = = [Adz (2/2) + BY2 (2V2)| (58) 

is a general solution of (54). @ 

NOTE: In the second equality of (57) we changed the Z_2 to Z, More generally, if 

the v that we compute in (49) turns out to be negative we can always change the Z, 

in (50) to Zi) for if v is a negative integer —n, then the Z,, in (50) gives J_» and 

Y_,,; but (18) told us that J_,, is identical to J,,, to within a constant scale factor, 

and it can likewise be shown that Y_, is identical to Yn, to within a constant scale 

factor [namely, Y_,(x) = (—1)"¥n(z)]. And if v is negative but not an integer, 

then the Z, in (50) gives J, and J_,, and that is equivalent to Z_y giving J_, and 

Jy. 

EXAMPLE 4. Solve 

(xy’)’ — 5a*y = 0. (59) 

We see from (46) thata = 1,0 = —5,¢=3,s0a= 1/2, v = O and 

1 ‘ 
y(x) = x° Zo (Gy | - 5} 2”) ; 

y(z) = Alo (2) + BKo (4) (60) 

is a general solution of (59). 

so 

Closure. In this section we studied the Bessel equation 

ay + ay! + (x? on v*) y = 0 (61) 

and the modified Bessel equation 

ay" + ay! + (-2° - v”) y = 0. (62)



  

For heuristic purposes, it is useful to keep in mind the similarity between the Bessel 
equation and the harmonic oscillator equation 

y" +y=0, (63) 

and between the modified Bessel equation and the “modified harmonic oscillator” 
equation 

fi 

y" ~y =0. (64) 

For large xv, the left side of (61) becomes 

vn, ty , uv NW 
yrry +l )yey +y (65) 

x x 

so we expect qualitative similarity between the solutions of (61) and those of (63). 
In fact, the solutions J,(z) and Y,(a) of (61) do tend to harmonic functions as 
x —+ 00, like the cosine and sine solutions of (63), and the y’/a term in (65) causes 
some damping of those harmonic functions, by a factor of 1//z. Thus, the general 
solution 

y(z) = AJL (x) + BY, (zx) (66) 

of (61) is similar, qualitatively, to that of (63). Further, just as one can use pure 
complex exponential solutions of (63) according to the Euler definitions, one can 
introduce the Hankel functions in essentially the same way, and write the general 
solution of (61), alternatively, as 

y(e) = AHS) (a) + BH) (2). (67) 

Likewise, tor the modified Bessel equation (62), the left side of which becomes 

nt, uv " 
yo+o-y t(l-azh)ysy ty (68) 

x x 

for large x, we find nonoscillatory solutions analogous to the hyperbolic cosine and 
sine solutions of (64). 

So much for large x. As 2 — 0, the Y, solutions of (61) are unbounded as are 

the A, solutions of (62). 

Computer software. As a general rule of thumb, if we can derive a solution to a 
given differential equation by hand, we can probably obtain it using computer soft- 
ware. For instance, if, using Maple, we attempt to solve the nonconstant-coefficient 

differential equation (54) by the command 

dsolve(x  diff(y(x), 2, x) + 3 * diff(y(a),v) + y(x) = 0, y(2)); 

we do obtain the same general solution as was obtained here in Example 3. 

4.6. Bessel Functions 241



242 Chapter 4. Power Series Solutions 

  

EXERCISES 4.6 
  

1. Putting the solution form (2) into the Bessel equation (1), 

derive the recursion relation (3). 

2. Solve (1) for the case where v = 1/2, by the method of 

Frobenius. Show that your two LI solutions can be expressed 

in closed form as given in (14a,b). 

3. Show that with Yo(z) defined by (21), the asymptotic be- 

havior given in (24b) follows from (24a) and (24c). 

4. (Recursion formulas) Tt can be shown that 

d uv . —_ in [x” Z,(z)] = 

a’ Z,(), (2=J,Y,1,H, H)) 
~a”Z,1{z), (4=K) 

(4.1) 

d 
is [x ~"Z,(x)| = 

{ —2~"Z,41(2), (Z = J, Y, K, HY, H) 

t’Zyqi(t), (4=2) 

(4.2) 

where the “Z = ---” means that the formula holds with Z 

equal to each of the itemized functions. In particular, the for- 

mula 

-Z(e), (2=J,Y,K,H,H) 
dz eM) = Yale), (Z=D) 

(4.3) 

corresponding to (4.2) for the case v = 0, is useful in evaluat- 

ing certain Bessel function integrals by integration by parts. 

(a) Verify (4.1) and (4.2) for the case where Z is J (ie., Jus 

J_, and J,,) using the series given in the text for those func- 

tions. 

(b) From the formulas given above, show that 

Qu ; 

yar) = Sule) = Byale), (Z= LYE, Hw) 

(4.4) 

and 

aU 
Iy4i(2) = ~ hz) 7 Ly) 1(2), (4.5) 

2 . 
Ky4a(2) = —K,(2) + Ky-r(2). (4.6) 

(c) Use computer software to differentiate 1° J3(z), x? Yo(2), 

I(x), 07? Ko(e), Jo(@), Yo(x), Lo(x), and Ko(x), and 

show that the results are in accord with the formulas (4.1) — 

(4.3). 

5. (Half-integer formulas) (a) Putting v = 1/2 in (9) and (10), 

show that they give 

2 
Jijo(2) = 4/ = sin x (5.1) 

2 
J_12(2) = 4/ a COS (5.2) 

(b) Derive, from (4.4), the recursion formula 

and 

2n-1 
  

Jngi/2(£) = Jn—1/2(@) ~ In—aja(e). G3) 

(c) It follows from (5.1)-(G.3) that all J,41/2'8 are express- 

ible in closed form in terms of sin z, cos z, and powers of x. 

Derive those expressions for J3/2(x) and J_3/2{2). 

6. (a) (Normal form) By making the change of variables 

ylx) = o(a)v(a), from y tov, in y” + p(a)y’ + a(a)y = 0, 
show that the first derivative term can be eliminated by choos- 

ing o such that 20’ + po = 0. Show that the result is the 

normal form (i.e., canonical or simplest form) 

it , f 

yl + (eee) v= 0, (6.1) 

oC 

where 

a(x) = ent f° p(t) dt (6.2) 

(b) (Large-x behavior of Bessel functions) For the Bessel 

equation (1), show that o(a) = 1//z and that (6.1) is 

wi (Beene 
wc 

NOTE: If we write 1 — (v? — 1/4)/2® = 1 for large 

x, then (6.3) becomes v” + vu & 0, so we expect that 

v(x)  Acos(x + ¢) or, equivalently, Asin (x + @) , where 

s
a
o
s
i
n



  

A and ¢ are arbitrary constants. Thus, 

y(z) = o(a)u(a) & 4 cos(«#-+@) or Je A sin (2 + 9), 

(6.4) 

which forms are the same as those given by (24a) and (24b). 

Thus, we expect every solution of (1) to behave according to 
(6.4) as z — oo, Evaluating the constants A and ¢ corre- 

sponding to a particular solution, such as Jo(a) or Yo(a), is 
complicated and will not be discussed here. 

7, Recall from Example | that Jn(K©) satisfies the differential 

equation z7y" + vy! + (K2x* — n?)y = 0 or, equivalently, 

2 

ev +(ee- Ey =o. (n=0,1,2,...) (7.1) 

Let the x interval be 0 < x < c, and suppose that « is chosen 

so that J,(Kc) = 0; Le., Ke is any of the zeros of J, (x) = 0. 
The purpose of this exercise is to derive the formula 

  

2 

 nss(re)l?,] (7.2) 
  
[ [Jn (we)]? 2 dx = 

0     

which will be be needed when we show how to use the Sturm- 

Liouville theory to expand functions on 0: < x < cin terms of 

Bessel functions. In turn, that concept will be needed later in 

our study of partial differential equations. To derive (7.2), we 
suggest the following steps. 

(a) Multiplying (7.1) by 2ay’ and integrating on x from 0 to ¢, 
obtain 

c=c 

(zy')? | + 2 | («°2? —n?) ydy = 0. (7.3) 
z=0 

(b) Show that with y = J,(«a), the (ry’)? term is zero 
atx = 0 forn = 0,1,2,..., and that atc = c it is 

76" [Jn41(Ke)|?. HINT: It follows from (4.2) that J/ (x) = 
~—Inzi(@) + BIn(z). 

(c) Thus, show that (7.3) reduces to 

r=Cc 

CK [In+i(Ke)]” + an? | vy dy ~ n?y i = 0. 
c=0 os 

_ (7.4) 
(d) Show that the yl term is zero for any n = 

0,1,2,..., integrate the remaining integral by parts and show 

that the resulting boundary term is zero, and thus obtain the 
desired result (7.2). 

8. (Generating function for Jp.) Just as there is a “generating 
function” for the Legendre polynomials [see (9) in Section 
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4.4], there is one for the Bessel functions. Specifically, it can 

be shown that 

a(*-7) —{ft— = co 

e* t} = Jn (aye, 
ns0o 

  

(8.1) 

      
and the left-hand side is called the generating function for 

the J,,’s. 

(a) We do not ask you to derive (8.1) but only to verify the 

n = (term. That is, expanding e®*/? and e~*/** in Maclaurin 
series (one in ascending powers of ¢ and one in powers of 1/t) 

and multiplying these series together, show that the coefficient 

of t9 is Jo(z). 

(b) Equation (8.1) is useful for deriving various properties of 

the J,,’s. For example, taking 0/Qzx of both sides, show that 

d 1... 
Gantt) = 5 [Jn1(2) — Jngi(z)}). (n= 1,2,...) (8.2) 

(c} Similarly, taking 0/O¢ of both sides, show that 

x 
In41(Z) = 2(n +1) [Jn (x) + In42{2)] . (8.3) 

(d) Using computer software, differentiate Jo(x) and J,(z) 

and show that the results agree with (8.2). 

9. Untegral representation of Jy) Besides the generating func- 

tion (preceding exercise), another source of information about 

the J,,’s is the integral representation 

  

(9.1) 

    
Jn(z) = - | cos (nd — x sin 6)dé. 
  

Verify (9.1) for the case n = O by using the Taylor series 

of cost, where t = n@ — x sin @ and integrating term by term. 

HINT: You may use any of the formulas given in the exercises 

to Section 4.5. 

10. To derive (17) from (10), we argued that 1/[(k-n+1) = 
0 fork = 0,1,...,m — 1, on the grounds that for those k’s 

['(k — n + 1) is infinite. However, while it is true that the 
gamma function becomes infinite as its argument approaches 

0, -1, -2,..., itis not rigorous to say that it is infinite at those 

points; it is simply undefined there. Here, we ask you to verify 

that the k = 0,1,...,7— 1 terms are zero so that the cor- 

rect lower limit in (17) is, indeed, & = n. For defintteness, let 

v= 3andr = —v = —3. (You should then be able to gener- 

alize the result for the case of any positive integer 1, but we do 

not ask you to do that; v = 3 will suffice.) HINT: Rather than 

work from (17), go back to the formulas (4a,b,c).
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11. It was stated, below (26), that J, and Y,, are LI. Prove that 

claim. HINT: Use (25) for v = n and (26) for v 4 n. 

12. Each differential equation is given on 0 < x < oo. Use 

(50) to obtain a general solution. Gamma functions that appear 

need not be evaluated. 

(a) y" + 4a?y = 0 
(c) cy” ~ 2y’ + acy = 0 

(e)y" + Vey =0 
(g) cy” + 3y! - zy = 0 
(i) dry” + 2y’ + ry = 0 
(kK) ay” +y' - 9x7y = 0 

(b) ay" — 2y/ ~ «?y =0 
(d) 4y/" + Sey = 0 

(f) y" — vy =0 
(h) day” + y = 0 

(j) zy" + 3y' — day = 0 
Dy’ +2y =0 

13. (a)—(1) Solve the corresponding problems in Exercise 12, 

this time using computer software. 

14. (a) Use (50) to find a general solution of 

zy! +3y+9ry=0. (0< a <x) 

(b) Find a particular solution satisfying the boundary condi- 

tions y(0) = 6, y/(0) = 0. 
(c) Show that there is no particular solution satisfying the ini- 

tial conditions y(0) = 6, y/(0) = 2. Does that result contra- 

dict the result stated in Theorem 3.3.1? Explain. 

15. Use (50) to solve y” +4y = 0, and show that your solution 

agrees with the known elementary solution. You may use any 

results given in these exercises. 

16. (Lateral vibration of hanging rope) Consider a flexible 

rope or chain that hangs from the ceiling under the sole ac- 

tion of gravity (see the accompanying sketch). If we pull 

Me 7 

  

|
 

  

the rope to one side and let go, it will oscillate from side to 

side in a complicated pattern which amounts to a superposition 

of many different modes, each having a specific shape Y (x) 

and temporal frequency w. It can be shown (from Newton’s 

second law of motion) that each shape Y (x) is governed by 

the differential equation 

log(l — a)Y'| + p’Y =0, (0<e<) (16.1) 

where p is the mass per unit length and g is the acceleration of 

gravity. 

(a) Derive the general solution 

Y{(a) = Ado (Sv _ *) + BY5 Gaz ~ =) (16.2) 

Vi vi 
of (16.1). HINT: It may help to first make the change of 

variables | — 2 = €. NOTE: Observe from (16.2) that the dis- 

placement Y will be unbounded at the free end x = / because 

of the logarithmic singularity in Yo when its argument is zero 

(namely, when x = 1). Mathematically, that singularity can be 

traced to the vanishing of the coefficient pg(l — x) in (16.1) 

at « = 1, which vanishing introduces a regular singular point 

of (16.1) at = | and results in the logarithmic singularity 

in the solution (16.2). Physically, observe that the coefficient 

pg(l — x) in (16.1) represents the tension in the rope. The 

greater the tension the smaller the displacement (as anyone 

who has strung a clothesline knows). Hence the vanishing of 

the tension pg(l — x) at the free end leads to the mathematical 

possibility of unbounded displacements there. In posing suit- 

able boundary conditions, it is appropriate to preclude such 

unbounded displacements there by prescribing the boundary 

condition that Y (1) be bounded; that is, a “boundedness con- 

dition.” Imposing that condition implies that B = 0, so that 

QW) 
the solution (16.2) reduces to ¥(xr) = AJ (= i- *). (x) 0o\% 

(b) As a second boundary condition, set Y(0) = 0. That 

condition does not lead to the evaluation of A (which remains 

arbitrary); rather, it permits us to find the allowable temporal 

frequencies w. If the first three zeros of Jo(a) are c = 2.408, 

5.520, and 8.654, evaluate the first three frequencies w (in 

terms of g and [) and the corresponding mode shapes ¥ (2x) (to 

within the arbitrary scale factor A). Sketch those mode shapes 

by hand overO <a <i. 

(c) Use computer software to obtain the zeros quoted above 

(2.405, 5.520, 8.654), and to obtain computer plots of the 

three mode shapes. (Set A = 1, say.) 
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Chapter 4 Review 

In this chapter we present methods for the solution of second-order homogeneous 

differential equations with nonconstant coefficients. 
The most important general results are Theorems 4.2.4 and 4.3.1, which guar- 

antée specific forms of series solutions about ordinary and regular singular points, 
respectively. About an ordinary point one can find two LI power series solutions 
and hence the general solution. About a regular singular point, say @ = 0, one can 
find two LI solutions, by the method of Frobenius, in terms of power series and 

power series modified by the multiplicative factors |a|" and/or In |a|, where r is 

found by solving a quadratic equation known as the indicial equation. The combi- 
nation of these forms is dictated by whether the roots r are repeated or distinct and, 
if distinct, whether they differ by an integer or not. Note that the |a|" and In |x 
factors introduce singularities in the solutions (unless r is a nonnegative integer). 

Besides these general results, we meet these special functions: 

  

  

—t oO 

Exponential integral (Section 4.3): Fy(2) = / — dt, («>0) 
x 

oO 

Gamma function (Section 4.5): (zc) = / t® edt, (x >0) 
0 

and study these important differential equations and find solutions for them: 

Legendre equation (Section 4.4): (1 — x”)y — 2zy’ + Ay =0 

Solutions that are bounded on —1 < x < 1 exist only if A = n(n +1) forn = 

Q,1,2,..., and these are the Legendre polynomials P,,(z): 

Po(a)=1, Pi(e)=2, Po(x) = (3a? ~1),.... 

Bessel equation (Section 4.6): x7y" + wy! + (x* —v*)y =0 

AJ, (x) + BY, (2) 

CHS (x) + DH! (zx) 

where /,,, Y, are Bessel functions of the first and second kind, respectively, of order 

General solution: y(t) = 

1 2 . ; . . . . 
v, and Ht ) H ) are the Hankel functions of the first and second kind, respectively, 

of order v, 

Modified Bessel equation (Section 4.6): zy” + xy! + (-2? — v7) y =0 
For brevity, we consider only the case where v = n is an integer. 

General solution: y(e) = Al,(x) + BR), (2), 

where [,,, {, are modified Bessel functions of the first and second kinds, respec- 
tively, of order n.



246 Chapter 4. Power Series Solutions 

  

NOTE: We suggest that to place the many Bessel function results in perspective 

it is helpful to see the Bessel equation x7y” + xy! + (a? — v?)y = 0 and the modi- 

fied Bessel equation 224" + vy! + (—2? —v*)y = 0 as analogous to the harmonic 

oscillator equation y’ + y = 0 and the “modified harmonic oscillator equation” 

y" —y = 0. For instance, the oscillatory J,(x) and Y,,(x) solutions of the Bessel 

equation are analogous to the oscillatory cos x and sin x solutions of y” + y = 0, 

and the complex Hankel function solutions H ) (a) and H, ) (x) are analogous to | 

the complex e* and e~* solutions. Similarly, the nonoscillatory J, v(x) and K,(2) 

solutions of the modified Bessel equation are analogous to the nonoscillatory e* 

and e~* solutions of the equation y” — y = 0. 

  
Equations reducible to Bessel equations (Section 4.6): The equation 

d { ,dy 
— — ba°y = 0 de € 1) + xy , 

where a, b,c are real numbers, has solutions 

vo) = 292, (av Ba"), 
where 

_ 2 _ l-—a 
, y=. 

ec-at+2 c-at+2 

Zi denotes Ji) and Yi if b > 0, and qi and Ky ifb<0.



  

Chapter 5 

Laplace Transform 

5.1 Introduction 

The Laplace transform is an example of an integral transform, namely, a relation 
of the form 

b 
F(s) = | K(t,s) f(t) dt, (1) 

which transforms a given function f(t) into another function F(s); A(t, s) is 
called the kernel of the transform, and F(s) is known as the transform of f(t). 
Thus, whereas a function sends one number into another [for example, the function 

f(x) = x” sends the point = 3 on an z axis into the point f = 9 onan f axis], 
(1) sends one function into another, namely, it sends f(t) into F(s). Probably 
the most well known integral transform is the Laplace transform, where a = 0, 

b= oo, and A(t, s) = e~** In that case (1) takes the form 

  

  
F(s) = i * £(t) ent dt. (2) 

    

The parameter s can be complex, but we limit it to real values in this chapter. 
Besides the notation F'(s) used in (2), the Laplace transform of f(t) is also denoted 
as L{ f(t)} or as f(s), and in a given application we will use whichever of these 
three notations seems best. 

The basic idea behind any transform is that the given problem can be solved 
more readily in the “transform domain.” To illustrate, consider the use of the natural 

logarithm in numerical calculation. While the addition of two numbers is arithmeti- 

cally simple, their multiplication can be quite laborious; for example, try working 

out 2.761359 x 8.247504 by hand. Thus, given two positive numbers u and v, sup- 

pose we wish to compute their product y = uv. Taking the logarithm of both sides 
gives Iny = Inuv. But Inwe = Inu + Inv, so we have Iny = Inu + Inv. Thus, 

whereas the original problem was one of multiplication, the problem in the “trans- 
form domain” is merely one of addition. The idea, then, is to look up In u and In v 
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in a table and to add these two values. With the sum in hand, we again enter the ta- 

ble, this time using it in the reverse direction to find the antilog, y. (Of course, with 

pocket calculators and computers available logarithm tables are no longer needed, 

as they were fifty years ago, but the transform nature of the logarithm remains the 

same, whether we use tables or not.) 

Similarly, the logarithm reduces exponentiation to multiplication since if y = 

u®, then ny = In(u”) = v Inu, and it reduces division to subraction. 

Analogously, given a linear ordinary differential equation with constant coef- 

ficients, we see that if we take a Laplace transform of all terms in the equation then 

we obtain a linear algebraic equation on the transform (s) of the unknown func- 

tion x(t). That equation can be solved for X(s) by simple algebra and the solution 

a(t) obtained from a Laplace transform table. The method is especially attractive 

for nonhomogeneous differential equations with forcing functions which are step 

functions or impulse functions; we study those cases in Section 5.5. 

Observe that we have departed from our earlier usage of x as the independent 

variable. Here we use t and consider the interval 0 < t < oo because in most 

(though not all) applications of the Laplace transform the independent variable is 

the time t, with O < t < cx. 

A brief outline of this chapter follows: 

5.2 Calculation of the Transform. In this section we study the existence of the 

transform, and its calculation. 

5.3 Properties of the Transform. Three properties of the Laplace transform are 

discussed: linearity of the transform and its inverse, the transform of derivatives, 

and the convolution theorem. These are crucial in the application of the method to 

the solution of ordinary differential equations, homogeneous or not. 

5.4 Application to the Solution of Differential Equations. Here, we demon- 

strate the principal application of the Laplace transform, namely, to the solution of 

linear ordinary differential equations. 

5.5 Discontinuous Forcing Functions; Heaviside Step Function. Discontinu- 

ous forcing functions are common in engineering and science. In this section we 

introduce the Heaviside step function and demonstrate its use. 

5.6 Impulsive Forcing Function; Dirac Impulse Function. Likewise common 

are impulsive forcing functions such as the force imparted to a mass by a hammer 

blow. In this section we introduce the Dirac delta function to model such impulsive 

actions. 

5.7 Additional Properties. There are numerous useful properties of the trans- 

form beyond the three discussed in Section 5.3. A number of these are given here, 

as a sequence of theorems. 

5.2 Calculation of the Transform 

The first question to address is whether the transform F(s) of a given function f(t) 

exists — that is, whether the integral
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F(s) = [- {[(the~* dt (1) 
0 

converges. Before giving an existence theorem, we define two terms. 
First, we say that f(t) is of exponential order as t — oo if there exist real 

constants A’, c, and T’ such that 

[f(t)| < Ke (2) 

for allt > 7’. That is, the set of functions of exponential order is the set of func- 

tions that do not grow faster than exponentially, which includes most functions of 
engineering interest. 

EXAMPLE 1. Is f(t) = sint of exponential order? Yes: |sin¢| < 1 for all ¢, so (2) 
holds with A = 1,c = 0, and T = 0. Of course, these values are not uniquely chosen for 

(2) holds also with K = 7, c = 12, and T = 100, for instance. @ 

EXAMPLE 2. Is f(t) = ¢° of exponential order? |’ H6pital’s rule gives 

_ _ 2t 2 
lim —- = lim =~ = lim ~—— =0 
taco et too cet — tt 00 cc? ett 

  

if c > 0. Choose c = 1, say. Then, from the definition of limit, there must be a T such that 

t? /e < 0.06, say, for allt > T. Thus, |f(t)| = t? < 0.06e° for all t > T, hence f(t) is 
of exponential order. @ 

On the other hand, the function f(¢) = e*” is not of exponential order because Pp 

J 
lim —> = lim ef 7% = CO, (3) 
t-¥00 ef = E300 

no matter how large c is. 
We say that f(t) is piecewise continuous on a < t < b if there exist a finite 

number of points t1, t2,..., ty such that f(t) is continuous on each open subinter- 

vala<t<ty,ty <t<te,...,ty <t < b, and has a finite limit as ¢ approaches 

each endpoint from the interior of that subinterval. For instance, the function f(t) 
shown in Fig. | is piecewise continuous on the interval 0 < ¢ < 4. The values of 

f at the endpoints a, ¢,,t9,...,6 are not relevant to whether or not f is piecewise 

continuous; hence we have not even indicated those values in Fig. 1. For instance, 

the limit of f as ¢ tends to 2 from the left exists and is 5, and the limit of f as t 
tends to 2 from the right exists and is 10, so the value of f at t = 2 does not matter. 
Thus, piecewise continuity allows for the presence of jump discontinuities. 

We can now provide a theorem that gives sufficient conditions on f(¢) for the 
existence of its Laplace transform F'(s). 

  

Figure i. Piecewise continuity.
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THEOREM 5.2.1 Existence of the Laplace Transform 

Let f(t) satisfy these conditions: (i) f(t) is piecewise continuous on O<t<A, 

for every A > 0, and (ii) f(t) is of exponential order as t —3 00, so that there exist 

real constants Av, c, and T’ such that | f(t)| < Ke for all tee. Then the Laplace 

transform of f(t), namely, F(s) given by (1) exists for all s > c. 
  

Proof. We need to show only that the singular integral in (1) is convergent. Break- 

ing it up as 

oO T °° 

/ fie” a= | f(tjhe* a+ | f(t)e* dt, (4) 
0 9 Pp 

the first integral on the right exists since the integrand is piecewise continuous on 

the finite interval 0 < t < T. In the second integral, | f(t)e7™"| = [f(t)le"” < 

Ke7S-Ot. Now, [7° Ke~ (of dt is convergent for s > c, so [po f(t) eW* dt is 

absolutely convergent — hence, by Theorem 4.5.3, convergent. @ 

  

Being thus assured by Theorem 5.2.1 that the transform F(s) exists for a large 

and useful class of functions, we proceed to illustrate the evaluation of F(s) for 

several elementary functions, say f(t) = 1, e“’, sinat, where ais a real number, 

and 1/,/t. 

EXAMPLE 3. If f(t) = 1, then the conditions of Theorem 5.2.1 are met for any ¢ 2 9, 

so according to Theorem 5.2.1, /(s) should exist for all s > 0. Let us see. 

B 

=, (5) 
0 

  
soe est 

F(s)= | edt = lim 
Jo ; 

  

where the limit does indeed exist for all s > 0. Such restriction on s will cause no difficulty 

in applications. @ 

EXAMPLE 4. If f(t) = e%‘, the conditions of Theorem 5.2.1 are met for any ¢ 2 aso 

according to the theorem, /'(s) should exist for all s > a. In fact, 

B : 

= (6) y 
8S- a 

ev (s7@e 
  

2G 

F(s)= een! dt = lim 
( ) [ Boo —(s _ a) 

  

QO 

where the limit does indeed exist foralls > a. & 

EXAMPLE 5. If f(t) = sinat, then the conditions of Theorem 5.2.1 are met for any 

c > Oso F(s) should exist for all s > 0. In fact, integrating by parts twice gives 

AO 

F(s) -| sin ate ** dt 
0 

o
n
s
e
t
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2 7B 
a. ‘ fg St oy 
a sinate” ** dt 
8? Jo 

    
; ; ev st a en st 

= lim sin at + — cos at 
—$s 8 B-+00 

  

2 a a 
= (0-0) + (0- -4,) - Sr, (7) —§ 8 

where the limit exists if s > 0. The latter can be solved for F(s), and gives 

a 
F(s) = ——— 8 (s) Pye (s > 0) (8) 

as the transform of' sin at. 

COMMENT. An alternative approach, which requires a knowledge of the algebra of com- 

plex numbers (Section 21.2), is as follows: 

"OO 100 

/ sinate** a= | (Im e'**) en 8t dt 

0 0 

—(s—ia)t oO 

= im e tt Ge = Im | lim ———~ 
0 Boo ~(s — ia) 0 

  
1 1 } 

=Im — = Im = + a , (9) 
s—ia s—-tas+ia s*+a? 

as before, where the fourth equality follows because 

Jeno ~ jen? | ein} | = e788 _, 0 (10) 

as B —> oo, if s > 0. In (10) we have used the fact that |e’*?|=|cosaB + i sinaBl= 
. + ny 4 

Vcos?aB4sin‘aB =1. O 

EXAMPLE 6. If f(t) = 1/4, then 

FO) = | rede | jiert=4/ TP etd, (11) 
0 0 T 5 Vs 0 

where we have used the substitution st = 7. Having studied the gamma function in Section 

4.5, we see that the final integral is [(1/2) = ./m so 

Tv 
F(s)=4f— (s)= 7 ; (12) 

for s > 0 (Exercise 4). Observe that f(t) = 1/4 does not satisfy the conditions of 
Theorem 5.2.1 because it is not piecewise continuous on 0 < t < 00 since it does not 

havea limit as ¢ + 0. Nonetheless, the singularity at £ = 0 is not strong enough to cause 

divergence of the integral in (11), and hence the transform exists. Thus, remember that all 

we need is convergence of the integral in (1); the conditions in Theorem 5.2.1 are sufficient, 

not necessary. @ 

From these examples we could begin to construct a Laplace transform table, 
with f(£) in one column and its transform F(s) in another. Such a table is sup- 
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plied in Appendix C. More extensive ones. are available,* and one can also obtain 

transforms and their inverses directly using computer software. 

Tables can be used in either direction. For example, just as the transform of ett 

is 1/(s — a), it is also true that the unique function whose transform is 1 /(s —a) is 

e*, Operationally, we say that 

    
1 

Lf{e™} = and L7* {. - -} =e", (13) 

where L is the Laplace transform operator defined by 

sa 

  

L{f()} = | ” P(t) en * dt, (14) 
      

and L~! is the inverse Laplace transform operator. [t turns out that L~' is, like 

LE, an integral operator, namely 
  

~1 i rFice st 
DF (s)} == F(s) e* ds, (15) 

201 J y—ioc       
where ¥ is a sufficiently positive real number. The latter is an integration in a 

complex s plane, and to carry out such integrations one needs to study the complex 

integral calculus. If, for instance, we would put 1/(s—@) into the integrand in (15), 

for F(s) and carry out the integration, we would obtain e* We will return to (15) 

near the end of this text, when we study the complex integral calculus, but we will 

not use it in our present discussion; instead, we will rely on tables (and computer 

software) to obtain inverses. In fact, there are entire books on the Laplace transform 

that do not even contain the inversion formula (15). Our purpose in presenting it 

here is to show that the inverse operator is, like L, an integral operator, and to close 

the operational “loop:” L{f(t)} = F(s), and then L~'{F(s)} = f(¢). 

What can we say about the existence and uniqueness of the inverse transform? 

Although we do not need to go into them here, there are conditions that F'(s) must 

satisfy if the inversion integral, in (15), is to exist, to converge. Thus, if one writes 

a function F(s) at random, it may not have an inverse; there may be no function 

f(t) whose transform is that particular f(s). For instance, there is no function 

f(t) whose transform is 5? because its inversion integral is divergent. But suppose 

that we can, indeed, find an inverse for a given F'(s). Is that inverse necessarily 

unique; might there be more than one function f(t) having the same transform? 

Strictly speaking, the answer is always yes. For instance, not only does the function 

f(t) = 1 have the transform F(s) = 1/s (as found in Example 3), but so does the 

function 

1, O<t<3, 3<t<w 

g(t) = 
rc 
500, t=3 

  

“See, for example, A. Erdélyi (ed.), Tables of Integral Transforms, Vol. | (New York: McGraw- 

Hill, 1954).
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have the transform G(s) = 1 because the integrands in [y° g(t)e7*' dt and 
for f(t) e~* dt differ only at the single point ¢ = 3. Since there is no area under a 

single point (of finite height), G(s) and F'(s) are identical: G(s) = F(s) = 1/s. 
Clearly, one can construct an infinite number of functions, each having 1/s 

as its transform, but in a practical sense these functions differ only superficially. 
In fact, it is known from Lerch’s theorem” that the inverse transform is unique 

to within an additive null function, a function N(t) such that {y N(t) dt = 0 for 
every T’ > 0, so we can be content that the inverse transform is essentially unique. 

Closure. Theorem 5.2.1 guarantees the existénce of the Laplace transform of a 
given function f(t), subject to the (sufficient but not necessary) conditions that f 
be piecewise continuous on 0 < t < oo and of exponential order as t + co. We 
proceed to demonstrate the evaluation of the transforms of several simple functions, 

and discuss the building up of a transform table. Regarding the use of such a table, 
one needs to know whether the inverse transforrn found in the table is necessarily 
unique, and we use Lerch’s theorem to show that for practical purposes we can, 

indeed, regard inverses as unique. 

Computer software. On Maple, the laplace and invlaplace commands give trans- 
forms and inverses, respectively, provided that we enter readlib(laplace) first. To 

illustrate, the commands aa 

readlib(laplace) : 

laplace (1 + t*(—1/2) = a(t), t, s); 

give the transform of 1 + ¢7!/? as 

1 

8 

Jr 
+ (16) 

and the command 

invlaplace (a/(s°2 + a°2), s, t); (17) 

gives the inverse transform of a/(s* + a) as sin at. 

  

  

EXERCISES 5.2 

1. Show whether or not the given function is of exponential (g) cos ¢* (hy ¢10° (i) 1/(t + 2) 
order, If it is, determine a suitable set of values for A, c, and (j) cosht* (k) 6t + e' cost (L) £1000 

T in (2). - 

(a) 5e# (b) ~10e7** (c) sinh 2t 2. If f(t) is of exponential order, does it follow that df/dé is 
© . 3 7 2 

(d) cosh 3¢ (e) sinh t? (f) e** sin t too? HINT: Consider f(t) = sine’. 
  

“See, for example, D. V. Widder, The Laplace Transform (Princeton, NJ: Princeton University 

Press, 1941).
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3. If f(t) and g(£) are each of exponential order, does it follow 
that f (g(t)) is too? HINT: Consider the case where f(t) = e 
and g(t) = ¢*. 

4. In Example 6 we state that the result (12) holds if s > 0. 

Show why that condition is needed. 

5. Does L{t~3/?} exist? Explain. 

6. Does L{t~?/3} exist? Explain. 

7. Derive L{cos at} two ways: using integration by parts and 
using the fact that cos at = Ree’**. (See Example 5.) 

8. Derive L{e* sin bt} two ways: using integration by parts 
and using sin bf = Im e%, 

9. Derive L{e“’ cos bt} two ways: using integration by parts 
and using cos bt = Re e’”*. 

10. Derive by integration the Laplace transform for each of the 

following entries in Appendix C: 

(a) entry 5 (b) entry 6 (c) entry 7 (d) entry 8 

11. Derive entry | 1 in Appendix C two ways: 

a . 1 °° . 
(a) by writing the transform as af te (tae qe — 

uso 
1 

21 Jo 
you prefer, by writing the transform as the single integral 

nOO 

Im | te @-' dt and using integration by parts; 
0 

te~“*'# dt and using integration by parts or, if 

(b) by differentiating both sides of the known transform 

100 a 
| sinate~*! dt = ~——5 

0 s+ a‘ 

(which we derived in Example 5) with respect to s, assuming 

the validity of the interchange 

df. ~st me dy. —st — sinate” *' dt = — (sin ate ) dt 
ds 0 0 1 3 ds 

in the order of integration and differentiation. 

12. Use the idea in Exercise | 1(b) to derive 

(a) entry (12) from entry (4) 

(c) entry (13) from entry (5) 

(e) entry (15) from entry (2) 

13. Show that L{e**} = 1/(s — a) holds even ifa = 
Rea + iIma is complex, provided that s > Rea. 

(b) entry (7) from entry (1) 

(d) entry (14) from entry (6) 

14: Use computer software to verify the given entry in Ap- 

pendix C in both directions. That is, show that the transform 

of f(t) is F(s), and also show that the inverse of F'(s) is f(t). 

(a) 1-3 (b) 4-7 (c) 8-10 (d) 11-13 
(ce) 14-16 (ff) 17-19 (g) 20-22 

  

5.3 Properties of the Transform 

  

When we studied the integral calculus we might have evaluated a few simple inte- 

grals directly from the definition of the Riemann integral, but for the most part we 

learned how to evaluate integrals using a number of properties. For instance, we 

used linearity (whereby f [au(x) + Bv(ax)| dx = a f° u(a) dx+ ft u(x) dx for 

any constants a, (, and any functions u, v, if the two integrals on the right exist), 

integration by parts, and the fundamental theorem of the calculus (which enabled us 

to generate a long list of integrals from an already known long list of derivatives). 

Our plan for the Laplace transform is not much different; we work out a handful 

of transforms by direct integration, and then rely on a variety of properties of the 

transform and its inverse to extend that list substantially. There are many such prop- 

erties, but in this section we present only the handful that will be essential when we 

apply the Laplace transform method to the solution of differential equations, in the 

next section. Additional properties are discussed in the final section of this chapter.
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We begin with the linearity property of the transform and its inverse. 

  

THEOREM 5.3.1 Linearity of the Transform 
If u(t) and v(t) are any two functions such that the transforms L{u(t)} and E{u(t)} 
both exist, then 

  

| Lf{au(t) + Bo(t)} = aL{u(t)} + BL{o(t)} (1) 
  

  

for any constants a, /. 
  

Proof: We have 

Ar 

B00 

»B B 

= lim «| u(t)e7“ dt + B i v(t)e7* a| 
B-y00 0 J0 

B B 

=a lim [ u(t)e “dt + 8 Jim / v(t) e~* dt 
0 0 

B 

= lim [ [au(t) + Bv(t)} e~* dt 

B-400 Boo 

oo “00 

=a | u(eede +3 | u(t) ew" dt 
JO 0 

=aL{u(t)} + BL{ru(t)}, (2) 

where the third equality follows from the linearity property of Riemann integration, 
and the fourth equality amounts to the result, from the calculus, that 
lim {a f(B) + 89(B)) = alim f(B) + Glimg(B) as B -> Bo, if the latter two 
limits exist. @ 

EXAMPLE 1. To evaluate the transform of 6 —5e"', for example, we need merely know 

the transforms of the simpler functions 1 and e** for L{6 — 5e“#} = 6L{1} — 5L{e™}. 
Now, L{1} = 1/s for s > 0, and L{e™!} = 1/(s — 4) for s > 480 

1 1 83 — 24 
L{6 —5e"} = 6- ~5 sp 

(6 = be} = 65 = 5 s(s— 4) 
  

fors > 4. 8 

  

THEOREM 5.3.2. Linearity of the Inverse Transform 
yor any U(s :) ny V(s) such that the inverse transforms L7'{U(s)} = u(t) and 

L"{V(s)} = v(t) exist, 
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L{aU(s) + BV(s)} = aL '{U(s)} + BL7'{V(s)} (3) 

    

for any constants a, J. 
  

Proof: Equation (3) follows either upon taking L~! of both sides of (1) or from the 

linearity property of the integral in the inversion formula [equation (15) in Section 

5.2]. @ 

EXAMPLE 2. Asked to evaluate the inverse of F(s) = 3/(s? + 3s — 10), we turn 

to Appendix C but do not find this Fs) in the column of transforms. However, we can 

simplify F(s) by using partial fractions. Accordingly, we express 

3 _ A B 
@43s-10 s#5 5-2 

(A+ B)s+(-24+5B) 

s? +38 — 10 , 

  

(4) 

To make the latter an identity we equate the coefficients of s' and s° in the numerators 

of the left- and right-hand sides: s! gives 0 = 4+ B, and s° gives 3 = —2A+5B so 

A = 3/7 and B = —3/7. Then 

~ 3 —3/7 3/7 L 1 — ~1 

{ory ig} L {2,2} 

3 4f 1 3..,f 1 
=e _ —-f . 

7h faes}+q {5} 

5, 32 —<e ot an =e" 

7 i 

  

(5) il 

+ 

where the second equality follows from Theorem 5.3.2, and the last equality follows from 

entry 2 in Appendix C. 

COMMENT. Actually, we could have used entry 9 in Appendix C, which says that 

6 _\ Loh = ¢ ———__ 5 = e™ sin bt," 6 (aaarae ° 
for if we equate (s — a)? +b? = s* —2as +a? +b? to s* + 3s — 10 we see that a = —3/2 

and 6 = +7i/2. Choose b = +7i/2, say (6 = —7i/2 will give the same result). Then 

of fe 
se +3s—-10f 7/2 (s + 3/2)? + (7i/2)? 

6 —3t/2 os . 6 _ see eilTit/2) _ @~ HTit/2) 

se ee NL it/2) = oe 3/2 EE 
-€ sin (7it/2) = 5 

(-e-** ae e*) , (7) 

s
e
i
d
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where the first equality is true by linearity and the second follows from (6). This result is 

the same as the one found above by partial fractions. This example illustrates the fact that 

we can often invert a given transform in more than one way. 9 

If we are going to apply the Laplace transform method to differential equations, 

we need to know how to take transforms of derivatives. 

  

THEOREM 5.3.3 Transform of the Derivative 
Let f(t) be continuous and f’(t) be piecewise continuous on 0 < t < to for every 

finite to, and let f(t) be of exponential order as ¢ + co so that there are constants 
K,c,T such that |f(t)| < We® for allé > T. Then L{ f’(t)} exists for all s > ce, 
and   

    L{f'(t)} = s L{f(t)} — f (0). (8) 
  

  

Proof: Since L{ f’(t)} = limp-soo Ie f(t) e7*' dt, consider the integral 

0B ‘E] B 

= | f(the-* dt = f(t) ettdtt et | fe “dt, (©) 
0 tn 0 

where t),...,tn are the points, in 0 < ¢ < B, at which f’ is discontinuous. Inte- 

grating by parts gives 

—_ f vost | van : —st B 

  

tn 

B by 

+8 fe" dt+- +5] f(the dt. (10) 
JO tn 

By virtue of the continuity of f, the boundary terms at ¢1,...,¢, cancel in pairs so 

that, after recombining the integrals in (10), we have 

-B 

I= f(B)e*? — f(0) +f f(t) en" dt. (11) 
0 

Since f is of exponential order as t — oo it follows that f(B)e7°? — 0 as 
B - x. Thus, 

B 

LLP (t)} = lim [ria e°8 — f(0) +5 | f(t) eat 

=0— f(0) + sL{f(t)}, (12) 

as was to be proved. @



258 Chapter 5. Laplace Transform 

  

  

Figure 1. Region of integration. 

The foregoing result can be used to obtain the transforms of higher derivatives 

as well. For example, if f’(t) satisfies the conditions imposed on f in Theorem 

5.2.3, then replacement of f by f’ in (8) gives 

L{f"} = s L{f"} — f(0) = 5 [s L{f} — FO)] ~ FO). 

If, besides f’, f also satisfies the conditions of Theorem 5.3.3, so that the L{f} 

term on the right side exists, then 

L{f"} = 8° Lf} ~ 8 f(0) ~ #0). (13) 

Similarly, , : Lif} = g° L{f} — 3” f (0) — 8 f’(0) 7 f"(0), (14) 

iff”, f’, and f satisfy the conditions of Theorem 5.3.3, and so on for the transforms 

of higher-order derivatives. 

The last of the major properties of the Laplace tansform that we discuss in this 

section is the Laplace convolution theorem. 

  

THEOREM 5.3.4 Laplace Convolution Theorem 

If L{ f(t)} = F(s) and L{g(t)} = G(s) both exist for s > c, then 

  

    
£-*{F(s)G(s)} = [Hater ar (1s) 

JQ 
  

or, equivalently, 

  

{| “Hy gt nar} = F(s)G) 16) 
    
  

fors > ec. 
  

Proof: Since (15) and (16) are equivalent statements, it suffices to prove just one, 

say (16). By definition, 

L {| f(r) g(t—7) ar = [ {[ F(r)g(t—7) ar edt. (17) 

Regarding the latter as an iterated integral over a 45° wedge ina r,t plane as shown 

in Fig. |, let us invert the order of integration in (17). Recalling from the calculus 

the equivalent notations 

vd b dpb sd 7) 

| {| Fovu)dek ay = | [ seuaedy = | ay | f(a,y) dx C8)
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for iterated integrals (where a, 6, c, d are constants, say), inverting the order of 

integration in (17) gives 

. "a Io) ae—7) ar} = I [ f(r) g(t— 7) edt dr 

= seyar Poteet 

= [ * P(r) dr [ * a(n) eH” dy 

-[- f(r) ear | atu) ody. (19) 

The last product is simply F'(s) times G(s), so the theorem is proved. @ 

The integral on the right side of (15) is called the Laplace convolution of f 

and g and is denoted as f * g. It too is a function of t: 

  

  
rea = Aoalt- rar (20) 

    

CAUTION: Be sure to see that the inverse of the product, L~! {F(s)G(s)}, is not 
simply the algebraic product of the inverses, f(t)g(t); rather, it is (according to 
Theorem 5.3.4) their convolution, (f * g)(t). 

EXAMPLE 3. In Example 2 we inverted F(s) = 3/(s* + 3s — 10) in two different 
ways. Let us now obtain the inverse by still another method, the convolution theorem: 

3 Loo 1 1 
Lo} ¢ ——. 6 = 3L7! =3L7} Lot \avEec (c3} 3h {sa} * S45 

(e* _ e~**) (21) 

        

which is the same result as obtained in Example 2. @ 

Observe that in equation (15) it surely doesn’t matter if we write F'(s)G(s) or 
G(s) Fs) because ordinary multiplication is commutative. Yet it is not clear that 

the results are the same, fs f(r) g(t — 7) dr in one case and fs g(t) f(t — 7) dr 
in the other. Nonetheless, these results are indeed the same, proof of which claim 

is left as an exercise. In fact, although the convolution is not an ordinary product it 

does share several of the properties of ordinary multiplication: 

feg=ag*f, (commutative) (22a)
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fe(g*eh)=(f xg) *h, (associative) (22b) 

fe(gth)=feg+ fh, (distributive) (22c) 

fxO=0. . (22d) 

Closure. The properties studied in this section ~ linearity, the transform of a 

derivative, and the convolution theorem, should be thoroughly understood. All 

are used in the next section, where we use the Laplace transform method to solve 

differential equations. The convolution property, in particular, should be studied 

  

carefully. | 

The convolution theorem is useful in both directions. If we have a transform C 

H(s) that is difficult to invert, it may be possible to factor H as F(s)G(s), where L 

F and G are more easily inverted. If so, then h(t) is given, according to (15), as ' 

the convolution of f(t) arid g(t). Furthermore, we may need to find the transform | 

of an integral that is in convolution form. If so, then the transform is given easily 

by (16), 
Finally, we mention that convolution integrals arise in hereditary systems, Sys- 

tems whose behavior at time t depends not only on the state of the system at that 

instant but also on its past history. Examples occur in the study of viscoelasticity 

and population dynamics. 

  

EXERCISES 5.3 
  

1. Find the inverse of the given transform two different ways: (a) equation (22a) 

using partial fractions and using the convolution theorem. Cite (c) equation (22c) 

any entries used from Appendix C. 

(a) 3/ [s(s + 8)| (b) 1/(38? + 5s — 2) 

(c) 1/(s? ~ a*) (d) 5/ [(s + 1)(8s + 2)] 
(e) 1/(s? +8) (f) 2/(28? — s —1) 

2.(a)—(f) Find the inverse of the corresponding transform in 7. To illustrate the result stated in Exercise 6, find the inverse 

(b) equation (22b) 

(d) equation (22d) 

6. Prove that L{f *g*h} = F(s)G(s)H(s) or, equivalently, 

that L~!{F(s)G(s)H(s)} = f*g*h. NOTE: Does f*g*h 

mean (f *g)* hor f *(g*h)? According to the associative 

property (22b) it doesn’t matter: they are equal. 

nice sng CC ar softwar. cape 1 1ii 
Exercise | using computer software. of 1/s3 as L~! {5 -p-! {e553 = 1*1+*1, and show 

; . ; : 8 88s 
. Use entry 9 in endix aluate the rse of ec : . : : . | 

3. Use entry 9 in Appendix C to evaluate the inverse of ach. that the result agrees with that given directly in Appendix C. : 

If necessary, use entry 10 as well. NOTE: See the Comment in 1 

ay 2 8 8 og : 
Example 2. 8. Factoring ———s35 = py aT It follows from 

© (s2ta*)? s*4+a* s* +a’ 

(a) L/(s° + 88) 
(c) 1/(s? — 8) 
(e) s/(s* — 28 + 2) 

(g) (s + 1)/(s* = 8) 
4, Use (8) together with mathematical induction to ver- 

ify the general formula L{f(™} = s™L{f} ~ s"~* f(0) 
gh4 FQ) 

fired, flr), . 

(b) 1/(s? — 38 +3) 
(d) 1/{s? — 5 — 2) 
(f) (s + 1)/(s* +48 +6) 
(h) (2s — 1)/(s* — 68 +5) 

., f’, and f satisfy the conditions of The- 

orem 5.3.3. 

5. Prove 

f-D(0), which is valid if 

  

the convolution theorem and entries 3 and 4 of Appendix C 

that . 
Py 8 ee _sin at 

L ae 9 = COS at + ; 
(s? + a7)? a 

Evaluate this convolution and show that the result agrees with 

that given directly by entry 11. 

  

9. Verify (8) and (13) directly, for each given f(t), by work- 

ing out the left- and right-hand sides and showing that they 

are equal. You may use the table in Appendix C to evaluate 

LE FU (t)}, LLP (ES, and LE F(t} 
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4) pil aodt ys po RP 
(a) . (b)e a, : 46 (c) ‘a2 t . 11. We emphasized that L~'{F'(s)G(s)} equals the convolu- 

(d) sinh 4 (e) cosh 3é + 5t (f) dev" — cos 2t tion of f and g; in general, it does not merely equal the prod- 

10. Evaluate the transform of each: uct f(t)g(t). Show that LL {F(s)G(s)} 4 f(t)g(t) for each 

hg . vt given pair of functions. 
(a) f, e6~7 sin 27 dr (b) f, cos 3(t — 7) dr 

(f—neetdr Wd feeoshatt—r)dr DFM =F alt =e) (= sint, g(t) = 4 
SULT omg, (c) f(t)=t, gt)=t (d) f(t) = cost, g(t) =t+6 

(e) fi dr (f) fy 7°? sinh 4(¢ — 7) dr iat 
  

5.4 Application to the Solution of Differential 

Equations 

Our object, in this section, is to explain the use of the Laplace transform in solving 
linear constant-coefficient differential equations on the interval 0 < t < oo, with 

initial conditions at ¢ = 0. 

EXAMPLE 1. We’ve already studied the important case of the harmonic oscillator — 
both free and forced. both damped and undamped. Consider the undamped mechanical 

oscillator shown in Fig. |, with a forcing function that is a constant: f(t) = Fp. Recall 
. Lon . X(t 

that the displacement x(¢) then satisfies the equation ( ) 
“ k , 

me" +ka = f(t) = Fo. (ly) & mn | ; Mt) 

Further, we assume the initial conditions ¢(0) and x’(0) are known. 2 PEPPPII IF   
To apply the Laplace transform, we transform equation (1). That is, we multiply each 

term in (1) by the Laplace kernel e~*’ and integrate on t from 0 to oo. Operationally, we 

use £ to denote that step: 

Figure 1. Mechanical oscillator. 

L{ma" + ka} = L{ Fo}. (2) 

By the linearity of 2 (Theorem 5.3.1), we can rewrite (2) as 

mL{a"(t)} + kL{a(t)} = Fy L{1}. (3) 

Recalling from Theorem 5.3.2 that L{a’(t)} = s°X(s) — sx(0) — 2’(0), noting that 
Lf{e(t}} = X(s), and obtaining L{1} = 1/s from Appendix C, (3) becomes 

m.[s”.X(s) ~ sa(0) ~ 2'(0)] + kX (s) = Fo ~. (4) 

The point to appreciate is that whereas in the t domain we had the linear differential 

equation (1) on x(t), in the transform domain. or s domain, we now have the linear alge- 

braic equation (4) on X(s). The solution now amounts to solving (4) by simple algebra for 

X(s). Doing so gives 

_ sx(0) + 2"(0) iy 
A(s) = - — + r yO? 5 (s) s+ uw? ms (8? + w?) ©) 
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Figure 2. Release from rest. 

where w = \/k/m is the natural frequency. 

With the solving for X(s) completed, we now invert (5) to obtain (¢): 

v(t) = {eo +e) | \ 
s? + w? ms (s 

_ or {2 af 1 \ fpf 
= 2(0)L {= 2 w sb +e'@L {ota}+ Be {ray} 

where the second equality follows from the linearity of the £7} operator (Theorem 5.3.2). 

Appendix C gives 

1 sin wt 
pot {3 -—} = coswt and Lo {3 | = (7) 

but the third inverse in (6) is not found in the table. We could evaluate it with the help of 

partial fractions, but it is easier to use the convolution theorem: 

1 1 1 1 1 
-1J_ tN yp te et ba pot 

ron} Gee} Ub be] 
. t . _ _ 

_ 1, Sinwt -fa(Rs 1) ar = 1 cose (8) 

0 W Ww w? 

  

  

      

  

  

so (6), (7), and (8) give the desired particular solution as 

i 

x(t) = x(0) coswt + zo) sinwt + = (1 — coswt) . (9) 

For instance, if 2(0) = «'(0) = 0, then 2(t) = (Fo/k)(1 — coswt) as depicted in Fig. 2. 

Does it seem correct that the constant force Fp should cause an oscillation? Yes, for imag- 

ine rotating the apparatus 90° so that the mass hangs down. Then we can think of Fo as 

the downward gravitational force on m. In static equilibrium, the mass will hang down an 

amount c = F/k. If we release it from x = 0, it will fall and then oscillate about the 

equilibrium position c = Fy/k, as shown in Fig. 2. 

metal 1. Recall that f * g = g * f, so we can write the convolution integral either 

as fi FC g(t — 7) dr or as fs 9 r) f(t — 7) dr; that is, we can let the argument of f be 

Tv and the or men of g be t — T, or vice versa, whichever we choose. In (8) we chose the 

+ argument for 1 and the t ~ 7 argument for (sinwt)/w. (Of course, if we change all the 

t’s in 1 to r’s we still have 1 because there are no t’s in 1.) Alternatively, we could have 

expressed the inverse in (8) as 

sin wt le [ (=) (1)dr = L- coswT 

0 Ww Ww w? 
    

as obtained in (8). 

COMMENT 2. Observe that (9) is the particular solution satisfying the initial conditions 

z = x(0) and a’ = x'(0) att = 0. If those quantities are not prescribed, we can replace 

them by arbitrary constants, and then (9) amounts to the general solution of ma” + ka =
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fy. Thus, the method gives either a particular solution or a general solution, whichever is 

desired. 

COMMENT 3. If, instead of the specific forcing function f(t) = Fp we allow f(£) to be 
an unspecified function, then we have, in place of (5), 

sx(0) + 2'(0) F(s) 
  

  

X(8) = 5p tt ao 10 
(s) s?+w r m(s? + w*) (10) 

and, in place of (9), 

a'(0 1 P(s 
a(t) = 2(0) coswt + (0) sinwt + —L~! {fel (s) 5 \. (1) 

w m S* +b We 

Using the convolution theorem to write 

otf Peart {other tran, an g2 + Ww? sg? + w2 
  

  

w 

gives 

z(0). 1 ff, , 
a(t) = x(0) coswt + sinwt + —- | sinwr f(t—7)dr (13) 

w mu Jo 

as the solution. 2 

With Example | completed, there are several observations that can be made 
about the method. First, consider the general second-order equation 

cv” +axr' +ba = f(t), (14) 

where a, b are constants, although the following discussion applies to higher-order 
equations as well. If we solve (14) by the methods of Chapter 3, then we need both 

homogeneous and particular solutions. To find the homogeneous solution we need 
to factor the characteristic polynomial \? + a\ +6 or, equivalently, to find the 
roots of the characteristic equation A? + a\ + b = 0. Solving (14) by the Laplace 

transform instead, we obtain, and need to invert, 

(s + a)x(0) + x’(0) F(s) 

s* +as +b st+as+b 
  X(s) = (15) 

Whether we invert these terms by partial fractions or by some other method, their 
inversion depends, essentially, on our being able to factor the s” +as-+b denomina- 
tor. That polynomial is none other than the characteristic polynomial corresponding 
to (14). Thus, whether we solve (14) by seeking exponential solutions for the ho- 
mogeneous equation and then seeking a particular solution, or by using the Laplace 
transform, we need to face up to the same task, finding the roots of the characteristic 
equation, 

Second, observe that if we invert the F'(s)/(s” + as + 6) term in (15) by the 
convolution theorem, then we convolve the inverse of F(s), namely, f(t), with 
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the inverse of 1/(s? + as +). Therefore, if we use the convolution theorem, then 

there is no need to evaluate the transform F(s) of f(t) when transforming the given 

differential equation. 

Third, observe how the initial conditions become “built in,” when we take the 

transform of the differential equation. Thus, there is no need to apply them at the 

end. 

Fourth, recall that Laplace transforms come with restrictions on s. For in- 

stance, L{1} = 1/s for s > 0. However, such restrictions in no way impede the 

solution steps in using the Laplace transform method, and once we invert X(s) to 

obtain x(t) they are no longer relevant. 
Fifth, we need to realize that when we apply the Laplace transform method to 

a differential equation, we take the transform of the unknown and one or more of its 

derivatives, but since we don’t yet know the solution we don’t yet know whether or 

not these functions are transformable. The procedure, then, is to assume that they 

are transformable in order to proceed, and to verify that they are once the solution 

is in hand. 

Finally, and most important, understand that the power of the Laplace trans- 

form, in solving linear constant-coefficient differential equations, is in its ability 

to convert such an equation to a linear algebraic equation on X (s), which abil- 

ity flows from the fact that the transform of f’(t) is merely a multiple of F’ (s) 

plus a constant (and therefore similarly for f”, f",...). Indeed, the transform 

L{f(t)} = for f(t) e7** dt was designed so as to have this property. That is, the 

“kernel” e~*’ was designed so as to imbue the transform with that property. 

EXAMPLE 2. Solve the initial-value problem 

y™ -y=0; — y(0) = 1, (0) = y"(0) = y'"(0) = 9 (16) 

for y(). That the independent and dependent variables are x,y, rather than «r,t, is im- 

material to the application of the Laplace transform; the transform of y(x) is now Y(s) = 

fo y(x) e~** da. Taking the transform of (16) gives 

[s*¥(s) — s°y(0) — s?y/(0) — sy"(0) — y"(0)} — ¥(s) = 0. (17) 

Putting the initial conditions into (17), and solving for Y(s), gives 

3 
¥(s)= > (18)   

To invert the latter, we can use partial fractions: 

si UA 1 B C D 
si-~1l s+ p-1 sti’ si 

(s —1)(s? +I A+ (s+ 1)(s? +1)B + (8 — i)(s? = IC +(s +i)(s* — ID - (9 oy (19) 
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Equating coefficients of like powers of s in the numerators gives the linear equations 

3: 1=A+B4+C+D, 

so: O=~A+B-iC+i1D, 

s: O=A+B-—C-D, 

L: Q0=-A+B+iC —-iDd, 

solution of which (for instance by Gauss elimination) gives A = B = C = D = 1/4, 

Thus, 

(x) ~x 4 | oe + 1 =e “b 1 te we) — tent a tet  tenie y Le 
4 4 4 4 4° 

1 
=5 (cosh @ + cos z) (20) 

is the desired particular solution. # 

EXAMPLE 3. Solve the first-order initial-value problem 

x’ + px = q(t); z(0) = to (21) 

for x(t), where p is a constant and q(t) is any prescribed forcing function. Application of 

the Laplace transform gives 

TO Q(s)     

  

X(s) = 22 
(s) S+p S$+p 22) 

and hence the particular solution 

E 

a(t) = rge7* + | e PET) ofr) dr 
JO 

t 

=e [i +f q(r) e?” ar| . (23) 
0 

COMMENT. Alternatively, let us begin by integrating the differential equation on ¢, from 

0 tot: 
t t t 

a(t)| +p | a(r)dr = | q(r) dr (24) 
Q JO JO 

or, since x(0) = 29, 

ot t 

a(t) +p | u(r) dr = tp + q(r) dr. (25) 
JO Jo 

Of course, (25) is not the solution of the differential equation because the unknown 2(¢) is 

under the integral sign. Thus, (25) is an example of an integral equation. Although we will 

not study integral equations systematically in this text, it will be useful to at least introduce 

them. Observe, first, that (25) is equivalent to both the differential equation and the initial 

condition, for they led to (25); conversely, the derivative of (25) gives back ve +px = q(t)
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(if g(t) is continuous], and putting ¢ = 0 in (25) gives back a(Q) = eo. That is, unlike the 

differential equation, the integral equation version has the initial condition “built in.” 

Further, we can solve (25) by the Laplace transform conveniently because each inte- 

gral is of convolution type: the first is 1 * a(t), and the second is | * g(t). Thus, taking 

a Laplace transform of (25), and noting that [ {1 * a(¢)} = LUYL{a(t)} = (l/s) X(s) 

and L {1 * q(t)} = (1/s)Q(s), gives 

X(s) +p=X(s) = 2 + QU), (26) 

which, once again, gives (22) and hence the solution (23). @ 

Closure. In this section we describe the application of the Laplace transform to the 

solution of linear differential equations with constant coefficients, homogeneous 

or nonhomogeneous. In a sense, the method is of comparable difficulty to the 

solution methods studied in Chapter 3 in that one still needs to be able to factor the 

characteristic polynomial, which can be difficult if the equation is of high order. 

However, the Laplace transform method has a number of advantages. First, the 

method reduces a linear differential equation to a linear algebraic equation. Second, 

the hardest part, namely the inversion of the transform of the unknown, can often 

be accomplished with the help of tables or computer software, as well as with 

several additional theorems that are given in the final section of this chapter. Third, 

any initial conditions that are given become built in, in the process of taking the 

transform of the differential equation, so they do not need to be applied separately, 

at the end, as they were in Chapter 3. 

We also saw, in the final example, that the Laplace transfurm is convenient to 

use in solving integral equations (equations in which the unknown function appears 

under an integral sign), provided that the integrals therein are Laplace convolution 

integrals; additional discussion of this idea is left for the exercises. In fact, it might 

be noted that the Laplace transform itself, F(s) = [5° f(t) e7* dt, is really an 

integral equation for f(t) if F(s) is known. Although that integral equation was 

studied by Laplace, it was Simeon-Denis Poisson (1781 — 1840) who discovered 

the solution f(t) = 54; eS F(s) e*' ds, namely, the Laplace inversion formula. 

Poisson was one of the great nineteenth century analysts and a professor at the 

Ecole Polytechnique. 

Also left for the exercises is discussion of the application of the method to a 

limited class of nonconstant differential equations. 

  

EXERCISES 5.4 
  

1. Use the Laplace transform to find the general solution, or (c) 2’ — 6a = ev's  #(0) =4 

the particular solution if initial conditions are given. (dy) a" = 6¢; (0) = 2, z(0)=-1 

(a) v’ + 2a = At? 

(b) 3a! + a = Ge”; x(0) = 0 

(e) a’ +52’ = 10 

(f)a"~a =14+t+eP 

 



  

34, 

(g) 2" — 30! +2 =0; 2(0) = 3, 2'(0)=1 
(h) a” — 4a’! ~5e=2+e7; 2(0) = 2'(0 
(e"’ —av' ~ 12a = ¢; 
G2’ +62’ +9e=1;  2(0) 

(kK) a" — Qe’ +2 = 2: 2 
(a! — 2a/ + 3x = 5; ) 
(im) ltt — al! + Qe! = t?; (0) = 1, 2'(0) = 2"(0) = 0 
(nye! +a" — 2a’ =1+e's  2(0) =2'(0) = 2"(0) = 0 
(oa +520" =t*;  2(0) =2'(0) =0, 2”(0) = 1 
(p) w+ 82" + 3a’ +a = e* 
(qe —-e" -2'+2=0, 20) =2, 27 (0) =x 
(ry 2") = Qsint 
(s) a) +. 3a!" = 0; 

x'(0) = 2'"(0) = 3 
(tho) + 80" + 16a = 4 

a(O) = 2'(0) = 0, 

(uc) —~r=1; x(0) =2/(0) = 2(0) = 0, 
x'"(0) = 4 

Wa) —2¢=4 2(0)=2'(0)=2"(0) =1 
x"(0) = 0 

(w) a) ~ 162 = -32;  x(0) = 0, 2/(0) = 2, 
o'(0) = 2’"(0) =0 

2. (a) Show that for a constant-coefficient linear homogeneous 

differential equation of order nm, the Laplace transform X(s) 

of the solution x(t) is necessarily of the form 

X(s) = P(s)/Q(s), (2.1) 

where Q(s) and P(s) are polynomials in s, with Q of de- 
gree n and P of degree less than n. 

(b) Show that if Q(s) = 0 has n distinct roots ry, ... 

x) = 5 PA 
Ore) 

rn, then 

  (2.2) 

3. Our purpose, in this exercise, is to follow up on Example 

3 in showing a connection between differential equations and 

integral equations, and in considering the solution of certain 

integral equations by the Laplace transform method. 

(a) Convert the initial-value problem 

ma" +ke = f(t), 

z(0) =a, 2(0) = 24 

O<t< (0 <t < 00) GB.) 

to an integral equation, as follows. Integrate the differential 

equation from 0 to ¢ twice. Using the initial conditions, show 
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that those steps give 

mx(t) — map — mxgt +k f, f z(r) dr dt! 

=f. fy f(r) drat’. 
(3.2) 

Show that, by interchanging the order of integration, the dou- 

ble integrals can be reduced to single integrals, so that the in- 

tegral equation (3.2) can be simplified to the form 

ma(t) - mao ~ mapt+k fault —71)a(r) dr 

= {ie ~~ 7) f(r) dr. 

(3.3) 

(b) Taking a Laplace transform of (3.3), obtain 

7 Loy! 
(0) +.2'(0) ( _ fej) 8a F(s) 

X(s) = 8? +? m(s? + w?)? 
  

which is the same as equation (10). 

4, Convert the initial-value problem 

mao" + ca’ +kae = f(t) (0<t<oo) 

z(0) = 20, w'(0) = 2 

to an integral equation, analogous to (3.3) in Exercise 3. Then, 

solve that integral equation for z(t) by using the Laplace trans- 
form. 

5. (Variable-coefficient equation) Consider the problem 

te’ +a’ +ta =0 

x(0) = 1, 2'(0) =0, 

O<t 
(0st < 00) (5.1) 

where our special interest lies in seeing whether or not we can 

solve (5.1) by the Laplace transform method even though the 

differential equation has nonconstant coefficients. 

(a) Take the Laplace transform of the differential equation. 

Note that the transforms of tx’(t) and t x(t), 

OO 

tae dt, re@"(e)} = | 
0 

L{eate)} = [ 
co 

0 

tre “dt, 

present a difficulty in that we cannot express them in terms of 

X(s) the way we can express L{a'(t)} = sX(s) — x(0) and 
L{a'(t)} = s°X(s) — sa(0) — 2'(0). Nevertheless, these 
terms can be handled as follows. Observe that
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Lita" (t)} = | tae dt = -| o£ (a"e~*") dt 
0 0 ds 

oO 

= ft ae! dt 
ds Jo 
d 

= 7 [s?.X(s) ~ sx(0) — x'(0)| 

d 

(5.2) 

if we assume that the unknown 2(t) is sufficiently well be- 

haved for the third equality (where we have interchanged the 

order of two limit processes, the s differentiation and the ¢ 

integration) to be justified. Handling the L{t a(t)} term in the 
same way, show that application of the Laplace transform to 

(5.1) leads to the equation 

aX 
(s*+1)—+s8X =0 (5.3) 

ds 

on X(s). Note that whereas the Laplace transform method 
reduces constant-coefficient differential equations to linear al- 

gebraic equations on X(s), here the nonconstant coefficients 

result in the equation on X(s) being itself a linear differential 

equation! However, it is a simple one. Solving (5.3), show 

that 

C 

Vs? +1 

(b) From Appendix C, we find the inverse as z(t) = C'Jo(t), 
where Jo is the Bessel function of the first kind, of or- 

der zero. Appying the initial condition once again gives 

a(0) = 1 = CJo(0) = C, so C = 1, and the desired so- 

lution of (5.1) is z(t) = Jo(t). Here, however, we ask you 
to proceed as though you don’t know about Bessel functions. 

Specifically, re-express (5.4) as 

X(s) = (5.4) 

C C ( 11 
X (8) = a= = [1 - Sat], OS 

‘s) sfl+(1/s?) 8 2 3? ) (5.9) 

where the last equality amounts to the Taylor expansion of 

Ji +r in the quantity r, about r = 0, where r = 1/s*. Carry 

that expansion further; invert the resulting series term by term 

(assuming that that step is valid), and thus show that 

Setting x(0) = 1 gives C = 1, and the result is that we have 

obtained the solution in power series form. Of course, that 

power series is the Taylor series of the Bessel function Jo(t). 

NOTE: Observe that rather than pulling an s out of the square 

root in (5.5), and then expanding 1/\/1 + (1/s?) in powers of 

1/s?, we could have expanded (5.4) directly in powers of s as 

X(s) = C(1— $s? +--+). However, positive powers of s are 

not invertible, so this form is of no use. [We will see, in Theo- 

rem 5.7.6, that to be invertible a transform must tend to zero as 

$ —> 00. Positive powers of s do not satisfy this condition, but 

negative powers do.] Also, observe that the degree to which 

nonconstant-coefficient differential equations are harder than 

constant-coefficient ones can be glimpsed from the fact that 

coefficients proportional to t cause the equation on X(s) to be 

a first-order differential equation; coefficients proportional to 

t? will cause the equation on X(s) to be a second-order differ- 

ential equation, and so on. 

6. It is found that the integral equation 

oO 

C(T) -/ 00744? /T* 4(1,) dv (6.1) 
0 

is an approximate relation between the frequency spectrum 

p(v) and the specific heat C(T') of a crystal, where T’ is the 

temperature. Solve for p(v) if 

(a) C(T) =T (b) C(T) = TeV? 

HINT: By a suitable change of variables, the integral can be 

made to be a Laplace transform. 

7, We have seen that two crucial properties of the Laplace 

transform are its linearity and the property that L{f’(t)} = 

sf(s) — f(0); that is, the transform of the derivative is of the 

simple form L{f'(t)} = af(s) + 6. With these properties in 

mind, consider the general integral transform 

d 

F(s)= / K(t,s)f(t) det (7.1) 

[equation (1) in Section 5.1] from a “design” point of view: 

how to choose the limits c, d and the kernel JX (#, s) to achieve 

these properties. Since 0 < t < oo, itis reasonable to choose 

c= Oandd = oo. Further, (7.1) automatically satisfies the lin- 

earity property L{au(t)+Gv(t)} = aL{u(t)}+5L{u(t)} be- 

cause the right side of (7.1) is an integral and integrals satisfy 

the property of linearity. Thus, we simply ask you for a logical 

derivation of the choice K(t,s) = e7*! so that L{f’(t)} is of 

the form af(s) + 6. 
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5.5 Discontinuous Forcing Functions; Heaviside Step 

Function 

Although we show in Section 5.2 that a given function has a Laplace transform if 
it is piecewise continuous on 0 < t < A for every A and of exponential order as 
¢ — oo, we have thus far avoided functions with discontinuities. In applications, 
however, systems are often subjected to discontinuous forcing functions. For in- 
stance, a circuit might be subjected to an applied voltage that is held constant at 12 
volts for a minute and then shut off (i.e., reduced to zero for all subsequent time). 

In this section we study systems with forcing functions that are discontinuous, al- 
though we still assume that they are piecewise continuous on 0 < t < A for every 
A and of exponential order as ¢ —+ 00, so that they are Laplace transformable. 

We begin by defining the Heaviside step function* or unit step function 

(Fig. 1a), 
  

0, t<0 
H(t) = (1) 

1, t>0       

which is a basic building block for our discussion. The value of H(t) att = 0 (ie., 
at the jump discontinuity) is generally inconsequential in applications. We have 
chosen H(0) = 1 somewhat arbitrarily, and do not show the value of H(t) at t = 0 
in Fig. La to suggest that it is unimportant in this discussion. 

Since H(t) is a unit step at ¢ = 0, H(t — a) is a unit step shifted to t = a, as 
shown in Fig. 1b. In fact, the step function is useful in building up more compli- 
cated cases. We begin with the rectangular pulse shown in Fig. 2. Denoting that 
function as P(t; a,b), we have 

P(t,a,b) = H(t-—a) — H(t —5). (2) 

More generally, observe that any piecewise continuous function 

fi(t), O<t<ty 

‘9(t), t<t<t f(t) = PO) ists 2 (3) 

Frit), tn <<t<oo 

defined on 0 < t < oo (which is the interval of interest in Laplace transform 
applications) can be given by the single expression 

f(t) = fit) P(t; Q, ty) shee fr—1(t) P(t; tn—1, tn) -+ Fin {t) Ait _ tn). (4) 
  

“Oliver Heaviside (1850-1925), initially a telegraph and telephone engineer, is best known for 
his contributions to vector field theory and to the development of a systematic Laplace transform 
methodology for the solution of differential equations. Note the spelling: Heaviside, not Heavyside. 

A(t) 

  

(a) 

H(t-a) 

      
(b) 

Figure 1. Unit step function.
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Figure 3. f(t) of Example |. 

  

| a t 

Figure 4. The ramp function 

of Example 2. 

InO <t < ty, for instance, each P function in (4) is zero except for the first, which 

equals unity in that interval; also, H(t —tn) is zero there, so (4) gives f (t) = fi(t). 

Similarly, int) <t <tg,..., andtpy <t< ty. nth <t< oO, each P function 

is zero and the H(t — tn) is unity, so (4) gives f(t) = fr(t) there. 

P(t,a,b) H(t—a) H(t-b) 

  

          
~V
 ~Y
 

~ >
 

a b a 

Figure 2. Rectangular pulse. 

Note that (3) does not define f(t) at the endpoints 0, t1,..-,¢n. The Laplace 

transform of f will be the same no matter what those values are (assuming that they 

are finite) since the transform is an integral, an integral represents area, and there is 

no area under a finite number of points. Thus, those values will be inconsequential, 

hence we don’t even specify them in (3). 

EXAMPLE 1. The function 

24+, a<t<2 

ft)= 4 6, 2<t<3 (3) 

2/(2t — 5) 3<t< oo 

shown in Fig. 3, can be expressed, according to (4), as 

f(t) = (2 £22) (H(t) — H(t — 2)) + 6 (A(t - 2) — A(t 3) + aot H(t—3). ©) 

Actually, since the interval is 0 < t < oo we cannot distinguish between H(é) and unity, 

so we could replace the H(t) in the first term by |. @ 

EXAMPLE 2. Ramp function. The function 

. 0, O<t<a 
o=| (7) 

t~a a<t<oco 

shown in Fig. 4 is called a ramp function and, according to (4), it can be expressed as 

f(t) =(t-aA(t—a). O 

Before considering applications, observe that 

as 
€ 

L{H(e-a)}= | me ayeae = | ee! dt = 7 

0 a 
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so the Laplace transform of H(t — a) is 

  

  

    
  

  

    
  

  

    
  

L {H(t ~a)} = — (8) 
8 

Also important to us is the result 

L{H(t —a)f(t — a)} =e“ F(s) (9a) 

or, equivalently, 

L~ {e"*F(s)} = H(t —a)f(t—a) (9b) 

for any (Laplace-transformable) function f(t). Proof is as follows: 

OO 

L{H(t—a)f(t—a)}= H(t —a) f(t-—a)e7* dt 
0 

“ f(t-—a) eh f(r s(t4+a) Gp 

- el f(r) eS" dr =e F(s), (10) 

where the third equality follows the change of variables t — a = 7. In words, 
H(t —a)f(t — a) is the function f(t) delayed by a time interval a, as illustrated in 
Fig. 5 for the function f(t) = sint. 

EXAMPLE 3. LC Circuit. We saw in Section 2.3 that the differential equation governing 
the charge Q(t) on the capacitor in the circuit shown (Fig. 6) is LQ” + RQ’ + (1/C)Q = 
E(t). Let R = 0 and let E(¢) be the rectangular pulse shown in Fig. 2, of magnitude Ev, 
and with a = 2 and 6 = 5, for definiteness. Thus, E(t) = Eg [H(t ~ 2) — H(t —5)}. If 
Q(0) = Qo and Q’(0) = 0, then we have the initial-value problem 

LQ" + aQ= Ey (H(t — 2) — H(t—5)], (11a) 

Q(0) = Qo, Q’(0) =0 (L1b) 

on Q(t). [Since the current i(é) is dQ/dt, Q’(0) = 0 means that i(0) = 0 so we can 
think of a switch being open until time t = 0, and closed at that instant.] We wish to solve 
(11) for Q(t). Be careful: we will need to distinguish the inductance L from the Laplace 
transform DZ by thé context. 

Taking a Laplace transform of (11a), and using (1 1b) and (8), gives 

    
- oT 1 — ns p28 96 

L (s°Q(s) ~ sQo) + =Q(s) = Ep (‘ _ ) (12) 
8 

so . 

+ — — (e7* _ e7°8) (13) 
  

  

A(
t-

a)
 
si

n(
t-

a)
 

>
 

  

    I 

a 
  

t 

Figure 5. Delay significance of 

A(t —a)f(t — a). 

  

Figure 6. REC circuit.
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O(
t}
 

  

    
  

Figure 7. Q(¢) given by (15). 
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where w = 1/VLC. [Generally, we use the notation L{f(t)} = F(s), but in Q(¢) the Q 

is already capitalized, so we use L{Q(t)} = Q(s) instead.] To invert (13), we begin with 

po _! _p- i aLode 1 . 1, nwt 

3(s? + w?) 8 8? + w? w 

-[ sInWT 1 — coswt (14) 

0 

    

  
Ww w? 

Then, using (14) and (9b) and L~! {s/ (s? + w?)} = coswt from Appendix C, we have 

Q(t) = Qocoswt + BoC {H(t — 2) (1 - coswlt — 2)| 

—H(t —5)[1 — cosw(t — 5)]}, (15) 

which is shown in Fig. 7 for the representative case where Qo -~EKo=h=CH1. 

COMMENT |. Most striking is the way the use of the Heaviside notation and the Laplace 

transform have enabled us to solve for Q(t) on the entire t domain (0 < t < oo). In 

contrast, if we rely on the methods of Chapter 3 we need to break (11) into three separate 

problems: 

O<t<2: LQ" +(1/C)Q=0, Q(0)=Qo, Q"(0) = 0 

2<t<5: LQ" +(1/C)Q = Eo, Q(2)=?, Q'(2) =? (16a,b,c) 

5<t<oo: LQ" +(1/C)Q=0, Q(5)=?, Q"(5) =? 

First, we solve (16a) for Q(t) on 0 < ¢ < 2. The final values from that solution, Q(2) 

and @‘(2), then serve as the initial conditions for the next problem, (16b). Then we solve 

for Q(t) on 2 < t < 5 and use the final values from that solution, Q(5) and @Q’(5), as the 

initial conditions for the next problem, (16c). Clearly, this approach is more tedious than 

the Laplace transform approach that led to (15). 

COMMENT 2. A fundamental question comes to mind: Does the discontinuous nature of 

the input E(t) result in the output Q(t) being discontinuous as well? We can see from the 

graph in Fig. 7 that the answer is no.- The continuity of (2(t) may be surprising from the 

solution form (15), because of the presence of the two Heaviside functions in (15). How- 

ever, the jump discontinuity implied by the H(t — 2) is eliminated by its 1 ~ cosw(t — 2) 

factor since the latter vanishes at ¢ = 2. Similarly, the jump discontinuity that is im- 

plied by the A[(£ — 5) is eliminated by its 1 — cosw(t — 5) factor since the latter vanishes 

att= 5, fi 

To better understand how a discontinuous input can produce a continuous out- 

put, consider the following simplified situation, the equation 

Q'(t) = H(t -a) (17) 

with discontinuous right-hand side. Integrating (17) gives 

Q(t) = (t-a)H(t-a)+A, (18) 
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because the derivative of the right-hand side is indeed H(t — a), as can be seen 
from Fig. 4. Integrating again, we obtain 

. t— 
Q(t) = ( vo H(t—a) + At+ B (19) 

and these results are shown in Fig. 8 (for the case where A = B = 0, say). 

The idea is that a differential equation is solved by a process which, essentially, 
involves integration, and integration is a smoothing process! For observe that 
whereas ()"(t) = H(t — a) is discontinuous at t = a, Q’(t) = (t — a) H(t — a) is 
continuous but with a “kink,” and Q(t) = (t — a)*?H(t — a)/2 is continuous and 
smooth (differentiable) as well. 

EXAMPLE 4. RC Circuit. In Example 3 we took 2 = 0 in the circuit shown in Fig. 6, 
and considered the resulting LC’ circuit. Here, let us take Z = O instead, and consider the 

resulting RC circuit, governed by the first-order equation RQ’ +(1/C)Q = E(t). Further, 
let Q(0) = O and let E(t) = 50f0n0 < t < 2and E(t) = 40 on 2 < t < 06 (sketch 
it), According to (4) then, £(t) = 50t(1 - A(¢ — 2)| + 40H (t — 2). Let R= C =1, for 
simplicity. Then the initial-value problem on Q(£) is 

      

  

Q’ + Q = 50t + (40 — 50t) H(t — 2), (20a) 

Q(0) = 0. (20b) 

Laplace transforming (20a), 

=~ = 50 sQ(s) + Q(s) = > + L{(40 ~ 50t) H(t — 2)}, (21) 

where 

L{(40 — 50t) H(t — 2)} = L {[-60 — 50(t — 2)] H(t — 2)} 

= —60L {H(t — 2)} — 50L {(t — 2). A(t — 2)} 
ens e728 28 

= —60° 50e7?*L{t} = —60—— ~ 50 se (22) 

Putting (22) into (21) and solving for a) gives 

50 60 : 50 96 ¢ = _ —25 5728 93 

els) s(s+1) s(s+ Do s*(s + Do 29) 

which we now need to invert. Taking one term at a time, 

1 t 

Loh) = Lt , «Lo! . ~S = lee 7h = [ e 'dr=1—e', (24a) 
s(s +1) s s+] to 

Ll | 1 

8?(s + 1) g2 s+ 

at 

=| (t¢-r)eTdr=t-1L+e™, (24b) 
0 
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of integration.
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Lo \yeen oe} = (1 - et) H(t —2), from (9b), (24a) (24c) 

Lo lean oe} = G ~2)-1+ 9) H(t —2), from (9b), (24b) (24d) 

so 

Q(t) = 50(t -1+e7*) ~ 60 ( - et) H(t ~ 2) 

—50 [(t 2) = 1 en") HE ~2) 

= 50(t—1+e') + (90 — 50+ 10e*~") H(t ~ 2) 

is the desired particular solution of (20). H 

Computer software. The Maple name for H(t) is Heaviside(t). 

Closure. We introduce the Heaviside step function H(t) and show, in equation 

(4), how to use it in representing piecewise-continuous functions. A key result in- 

volving the Heaviside function is given by (9). Finally, we show how convenient the 

Heaviside notation is, together with the Laplace transform, in solving differential 

equations with piecewise continuous forcing functions. 

  

EXERCISES 5.5 
  

1. Use (4) to give a single expression for f(t), and give ala- (i) H(t — 3)[H(t- 2)— H(t — 1)| 

beled sketch of its graph, as well. From that expression, eval- 

uate the transform F°(s) of f(t). 
3. Evaluate in terms of Heaviside functions. You may use 

these results for the definite and indefinite integrals of the 

(a) f(t) =ton0<t< 2, 4—ton2<t<4,andQont>4 Heaviside function: 

  

      

  

(b) f(t) =e7tonO <t<1,00nt>1 
(c) f(t) =2on0<t<5,-30n5<t<7,lont>7 t 0 t<0 

(d) f(t) =t? —ton0<t<1,-6ont>1 [ umar=| t t>0 = tH(t). (3.1) 

(e) f(t) =2-ton0 <t <2,2¢-6o0n2 <t<5,tont>5 0 oo 

(f) f(t) = ton 0 <t < 10, 34? — 2t0n 10 < t < 20, 5t0n and 
t > 20 

(g) f(t) = sint on0 <t < 57,0 ont > 57 t 

(h) f(t) =coston0<t<m,—-lont>7 
[ alryar = eto +- constant. (3.2) 

2. Draw a labeled sketch of the graph of each function. 

(a) H(t — Vet! 
(b) H(t — 21) cos (t — 2m) 

(c) (1+ t)H(t — 2) 
(d) (2 +8) (H(t — 2) ~ H(t — 3)] 
(e) t(H(t — 1) — H(t - 2) + H(t — 3)] 
(f) 2? (2H (t — 1) — H(t ~ 3) — A(t — 4)] 
(g) [A(t — 1/2) - H(t ~— 7)| sint 

      

(a) fo, (H() ~ 2 ar 
(b) fs rt H(t — 2) dr 

(c) f. (L — H(r -5)] dr 
@) fi, {H(t -a)-H(r—b)) dr (b> a) 

(e) [P° [H (7 — 2) — H(r ~ 8)] dr 

(h) 1 + A(t-1) + A(t-2) + H(t-3) + H(t -4) (f) fi’ H(r = 1) dr 

m
e
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(g) fy Hr = bdr (d)Oon0<t<5,100n5<t<7,0ont>7 
(h) ¢* H(t — 1) (e) 0 fort 4 5, 100 fort = 5 
(i) sint * [H(t ~ 1) — H(t ~ 2)] (h}l-e ond <t <6,0ont>6 
(j) e~! * H(t — 5) (g)Qon0<t<l,lonl <t< 2,20n2 <t < 3,1 on 

(k) Ll H(t — 1) 3<t<4,0ont>4 

4.(a)-(k) Evaluate the integral in the corresponding part 

of Exercise 3 using computer software such as the Maple int 

(hyton0 <t<1,2—-tonil<t<2,0ont>2 

fjemFonO<t< let’ ont>1 
qG) 200n0<t<1,100nl <t< 2,0 0nt> 2 

command. 

5. Solve x’ ~ a = f(t), where x(0) = 0, by the methods of 6.(a)~(j) Same as Exercise 5, but using computer software 
this section, where f(t) is: such as the Maple dsolve command. 
(a) H(t — 1) 
(b) e~ H(t — 3) 7.(a) ~ (j) Same as Exercise 5, but foro” —~ 2 = f(t), 

(c)ton0<t<2,20nt > 2 x(0) = 2/(0) = 0. 

  

5.6 Impulsive Forcing Functions; 

Dirac Impulse Function (Optional) 

Besides forcing functions that are discontinuous, we are interested in ones that are 
impulsive — that is, sharply focused in time. For instance, consider the forced 
mechanical oscillator governed by the differential equation 

ma" +ca' +ka = f(t), (1) 

where f(t) is the force applied to the mass. If the force is due to a hammer blow, for 
instance, initiated at time t = 0, then we expect f(t) to be somewhat as sketched 
in Fig. la. However, we do not know the functional form of f(t) corresponding to 
such an event as a hammer blow, so the problem that we pose is how to proceed 
with the solution of (1) without knowing f. Of course we can solve (1) in terms of 

f, but eventually we need to know f to find the response x(t). 
In working with impulsive forces one normally tries to avoid dealing with the 

detailed shape of f and tries to limit one’s concern to a global quantity known as 

the impulse J of f, the area under its graph. The idea is that if € really is small, then 
the response x(t), while sensitive to J, should be rather insensitive to the detailed 
shape of f. That is, if we vary the shape of f but keep its area the same, then we 
expect little change in the response x(t). This idea suggests that we replace the 
unknown f by a simple rectangular pulse having the correct impulse as shown in 
Fig. lb: f(t) = I/e for0 <t < e, and 0 fort > €. With f thus simplified we can 
proceed to solve for the response x(t). But even so, the solution still depends upon 

€, and the latter is probably not known, just as the actual shape of f is not known. 
Thus, we adopt one more idealization: we suppose that since € is very small, we 
might as well take the limit of the solution as € — 0, to eliminate e. 

(a) 

  

        

(b) 

Figure 1. Impulsive force at 

t= 0.
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Figure 2. Letting « + 0 in (2). 

Let us denote such a rectangular pulse having a unit impulse (J = 1) as 

D(t; €): 
L/e O<t<e 

D(t;6) = , ~ 2 wa={ ge ose Q) 
where we use D (after the physicist P A. M. Dirac, who developed the idea of 

impulsive forces in 1929). As ¢ -+ 0, D becomes taller and narrower as shown in 

Fig. 2, in such a way as to maintain its unit area. Of course, the limit 

oO, t=0 
i tee) = 3 

does not exist, because oo is not an acceptable value, but Dirac showed that it is 

nevertheless useful to think of that limiting case as representing an idealized point 

unit impulse focused at t = 0. 
To explain, we first prove that 

lim [ g(r) D(r;6) dr = g(0) (4) 
30 

for any function g that is continuous at the origin. To begin our proof, write 

oO . 1 
lim g(t) D(t;€) dt = im | g(r) — dr. (5) 

«70 0 E 0 0 

Suppose that g is continuous on 0 < 7 < 6 for some positive b, We can assume 

that € < b because we are letting « + 0. Thus, g is continuous on the integration 

interval 0 < + < ©, so the mean value theorem of the integral calculus tells us 

that there is a point 7, in [0,¢] (i.e., the closed interval 0 < 7 <_e€) such that 

fo 9(7) dr = g(ni)e. Thus, (5) gives 

Cc 

im [ g(r) D(r; 6) dr = lim Lon) = lim g(71) = g(0), (6) 
30 Jo 0 € €-40 

where the last equality holds since 7; is in the interval [0, ¢], and € is going to zero. 

Finally, since b is arbitrarily small, we only need the continuity of g at T = 0. This 

completes our proof of (4). 

For brevity, it is customary to dispense with calling attention to the ¢ limit and 

to express (4) as 

[ aysrjer = 900) (7) 

where 6(7) is known as the Dirac delta function, or unit impulse function. We 

can think of 5(r) as being zero everywhere except at the origin and infinite at the 

origin, in such a way as to have unit area, but it must be noted that that definition 

is not satisfactory within the framework of ordinary function theory. To create a 

legitimate place for the delta function, one needs to extend the concept of function. 

c
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That was done by L. Schwartz, and the result is known as the theory of distributions, 
but that theory is well beyond our present scope. 

Let us illustrate the application of the delta function with an example. 

EXAMPLE 1. Consider (1), with m = k = 1 and c = 0; let f(t) correspond to a 
hammer blow as sketched in Fig. La, and let 2(0) = 2'(0) = 0, so that before the blow the 
mass is at rest. The solution of the problem 

a" +a= f(t), (0) =2'(0) =0 (8) 
is found, for instance, by using the Laplace transform, to be 

a(t) = [ sin (t — r) f(r) dr. (9) 

As outlined above, the idea is to replace f(7) by a rectangular pulse [D(7; €) having the 

same area I as f(7) and then to take the limit as € + 0: 

at € T 

x(t) = in, | sin (t ~ tT) [D(r;e) dr = lim [ sin (t - 7) ~dr 
Q a e-+0 e—+0 € 

cos (t — €} — cost = lim (CSE 9 = cost 
e+ 0 € 

= I/sint, (10) 

where the last equality follows from |’ Hépital’s rule. 

Alternatively and more simply, let f(r) = [6(r) in (9), where the scale factor I is 
needed since the delta function is a unit impulse whereas we want the impulse to be J. 

Then property (7) of the delta function gives 

t 
a(t) = | sin (f — 7) [6(7) dr = [sin (t — 7) = [sint, (11) 

0 T=0 

as obtained previously in (10). You may be concerned that we have applied (7) even though 

the upper integration limits in (7) and (9) are not the same. However, in (5) we see that the 

oo was immediately changed to ¢, and then we let € tend to zero. Thus, (7) holds for any 

positive upper limit; we used oo just for definiteness, H 

Let us review the idea. Since, generally, we know neither the exact shape nor 
the duration of an impulsive forcing function f, we do two things to solve for the 
response. We replace f by an equivalent rectangular pulse (i.e., having the same 
impulse, or area, as f), solve for x(t), and then we let the width of the pulse, «, 

tend to zero. Equivalently and more simply, we take f to be a Dirac delta function 
and evaluate the resulting integral using the fundamental property (7) of the delta 
function, The latter procedure is more efficient because one no longer needs to take 
the limit of the integral as « — 0; the limit was already carried out, once and for 

all, in our derivation of (4). 

Since d(t) is focused at t = 0, it follows that d(¢ — a) is focused at ¢ = a, and 
(7) generalizes to 

i g(T) 6(7 — a) dr = g(a). (12)
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Here we continue to use the 0, oo limits, but it should be understood that the result 

is g(a) for any limits A, B (with B > A) such that the point of action of the 

delta function is contained within the interval of integration. If the point ¢ = a 

falls outside the interval, then the integral is zero. Thus, for reference, we give the 

following more complete result:* 
  

g(r) 6(7 — a) dr = (13) 
[ gia), Ax<a<B 

A 0, a<A or a2>B.       

EXAMPLE 2. RC Circuit. Recall from Section 5.5 that the charge Q(t) on the capacitor 

of the RC circuit is governed by the differential equation RQ’ +(1/C)Q = E(t). Let B(¢) 

be an impulsive voltage, with impulse J acting at ¢ = T,, and let Q(0) = Qo. We wish to 

solve for Q(t). Expressing E(t) = [6(t — T), the initial-value problem is 

Q+nQ=15(t-T),  Q(0) = Qo, (14) 

where & = 1/(RC). Taking the Laplace transform of (14) gives sQ — Qo + KQ = 

IL {6(t — T)} so 

    Q= Qo +] l L{6(t -T)}, (15) 
S+kK S+K 

and 

Q(t) = Qoe*™* + Ie * H(t - T) 
at 

= Qoe™™ + | et“ §(¢ — T) dr 
0 

oy nt 0, t<T 
— Qoe + { Te7ht-T) t>T 

= Qe + IH(t—-T)e*—™, (16) 

where the third equality follows from (13). 4 

Observe that we do not need to know the transform of the delta function in 

Example 2; we merely call its transform L {5(t — T)}, and inversion by the con- 

volution theorem gives us back the 5(¢ — T’) that we started with. Nonetheless, for 

reference, let us work out its Laplace transform. According to (12), 

t=a 
L{d(t ~a)} = [ d(t-a)e "dt =e"™ =e, (17) 

0 
  

“Following (12), we state that the result is g(a) if the delta function acts within the integration 

interval. How then do we interpret the integral when a is at an endpoint (A or B)? We've met 

that case in equation (7). Since the D(r;¢) sequence (Fig. 2) is defined on (0, €], the delta function 

acts essentially to the right of 7 = 0, hence within the interval of integration, and the result of the 

integration is g(0). To be consistent, let us suppose that the D sequence is always to the right of the 

point r = a. Then the integral in (13) will be g(a) if A <a < BandOQifa < Aora B. 

s
a
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In particular, L {d(t)} = 1. 
Since this section is about the Laplace transform, the independent variable has 

been the time ¢, so the delta function has represented actions that are focused in 
time. But the argument of the delta function need not be time. For instance, if 
w(x) is the load distribution on a beam (Fig. 3a), in pounds per unit length, then 
6(a — a) represents a point unit load (i.e., one pound) at x = a (Fig. 3b). 

Let us close this discussion with a comment on the delta function idealization 

from a modeling point of view. Consider a metal plate, extending over ~co < 4 < 
oo and 0 < y < ov, loaded by pressing a metal coin against it, at the origin, with a 
force P (Fig. 4a). If one is to determine (from the theory of elasticity) the stress 
distribution within the plate, one needs to know the load distribution w(x) along 
the edge of the plate (namely, the x axis). Because the coin will flatten slightly, 
at the point of contact, the load w(x) will be distributed over a short interval, say 
from « = —e to « = e. However, the function w(x) is not known a priori and its 
determination is part of the problem. Whether one needs to determine the exact 
w(x) distribution or if it suffices to represent it simply as an idealized point force 
of magnitude P, w(2) = Pd(x), depends upon whether one is interested in the 
“near field” or the “far field”” By the near field we mean that part of the plate 
within several € lengths of the point of the load application — for instance, within 
the dashed semicircle shown in Fig. 4b. The far field is the region beyond. If we 

are concerned only with the far field, then it should suffice to use 

w(x) = Pd(2x), (18) 

but if concerned with the near field then the approximation (18) will lead to large 
errors. A ball bearing manufacturer, for instance, is primarily interested with the 
near field induced by a loaded ball bearing due to concern regarding wear and sur- 
face damage. Within the theory of elasticity, the insensitivity of the far field to the 
detailed shape of w() [given that the area under the w(x) graph is held fixed] is 

an example of Saint Venant’'s principle. 

Computer software. The Maple name for 6(t) is Dirac(t). 

Closure. We introduce the delta function out of a need to deal effectively with 
impulsive forcing functions, functions that are highly focused in time or space. Of- 
ten we know neither the precise form of such a function nor the precise interval of 
application. If that interval is short enough one can model the force as an ideal- 
ized point force, represented mathematically as a delta function 6(t). One is not so 
much interested in the numerical values of 6(¢) [indeed, one says that 6(0) = co] 
as in the effect of integration upon a delta function, and that effect is expressed by 

(13), which we regard as the most important formula in this section. 

  

Ox-a) 

a x 

(b) 

Figure 3. Load distribution on 

a beam. 

  

  

  

(b) 

Figure 4. Delta function 

idealization.
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EXERCISES 5.6 
  

1. Solve for #(t), on 0 <t < cw. 

(a) a" —~a=d(t-2);  «(0) = 2'(0) = 0 
(b)a” ~ 4a = 65(t~1); (0) = 0, x'(0) 

] ai
 

Sh
 

(c) ai ~ Bul fe = 2 + OF — 5); x(0) = 
(dja +a’ =1+d(t- 2); a(0) = 0, a0) =3 
(e) a! + 2! +a2=100(f-5); 2«(0) = 2'(0) =0 
(f) 2a” ~ v' = d(t- 1) -d(t- 2); a(0) = 2’(0) = 0 
(g) a!” — 3a! + 2x = 1004(t ~ 3); z(0) = 4, 2/(0) =0 

(h) a!” = 26(- 5); 2(0) = 2'(0) = 2”(0) = 0 
(i) cl” +32" 4+22' = d(t-—5);  2(0) = 2'(0) = 2(0) = 0 
G) al" — da" = 36(t- 1); x(0) = 2'(0) = w"(0) = 0, 
e“(0)=1 
(k) al!” ~ 5a" + 4a = 66(t- 2); x(0) = 2/(0) = v"(0) = 
x!"(0) =0 

(al —2 = d(t-1);  2(0) = 2'(0) = 2"(0) = 2'"(0). = 0 

2. Show that the delta function has these properties, where 

« is a nonzero real constant, and the function f(t) is contin- 
uous at the origin. NOTE: Recall that the delta function is 

defined by its integral behavior. Thus, by an equation such as 

6(—t) == 6(¢) we mean that 

i g(t) 5(—t) dt = i g(t) 5(t) dt (2.1) 
OO 00 

for every function g(#) that is continuous at the origin. The 

right side of (2.1) is g(0), so to show that 6(—t) = 6(¢), in part 
(a), you need to verify that the left side of (2.1) is g(Q) too. 

(a) 5(—t) = d(t) (2.2) 

(b) 5(Kt) = a 5(t) (x £0) (2.3) 

wo pone =f 1% OAD 
0, f(0) =0 

For instance, (3¢ + 2)d(t) = 2d(t), (sint)d(t) = 0, 
(3t + 2)6(t — 1) 

Formally, the first 

5d(t — 1), and (t? + t — 2)d(t— 1) = 0. 
part of (2.4) makes sense as follows: d(t) 

is nonzero only at ¢ = 0, so there is no difference between 

F()4(t) and f(0)5(t). 
  

  

af 

(d) | 5(r)dr = H(t) (2.5) 
    

3. The result (2.5), above, reveals the close relation between 

the delta and Heaviside functions. Alternatively, we can write 

that relation as 

H'(t) = d(t). (3.1) 

The latter follows from (2.5) only in a formal sense, but is 

quite useful, along with (2.2)-(2.5). For instance, suppose 

we wish to verify that z(t) = H(t —1)sin (¢ — 1) satisfies the 

initial-value problem a” +a = 6(t-1); (0) = x'(0) = 0. 

Differentiating x(t) gives 

a(t) = H'(t — 1)sin(t — 1) + A(t — 1) cos (t— 1) 

d(t ~ 1)sin (t - 1) + H(t — 1) cos(t ~ 1) 

= 0+A(t—1)cos(t—1), 

i 

(3.2) 

v(t) = H'(t—1)cos(t~-1)- H(t 1)sin(t— 1) 

= 6(t—1)cos(t-1)— H(t—1)sin(¢—1) 

= 6(t—1)-—A(t—1)sin(t—1) 
(3.3) 

so x” +x does give 6(t—1). In the second equality in (3.2) we 

used (3.1), and in the third we used (2.4): 6(¢ — 1) sin (¢ — 1) 

= 6(t — 1)sin0 = 0. In the second equality in (3.3) we used 

(3.1), and in the third we used (2.4): 6(f — 1)cos(t-1) = 

6(t — 1)cos0 = 6(t — 1). Further, we see that «(0) = 0 and, 

from (3.2), that 2’(0) = 0. Here is the problem: In the same 

manner as above, verify the following solutions that are given 

in the Answers to the Selected Exercises. 

(a) exercise I(a) 

(b) exercise |(d)} 

(c) exercise I(g 
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5.7 Additional Properties 

In Section 5.3 we establish the linearity of the transform and its inverse, the trans- 
form of the derivative f’(t), and the Laplace convolution theorem, results that we 
deem essential in applying the Laplace transform to the solution of differential 
equations. In this final section of Chapter 5 we present several additional useful 
properties of the Laplace transform, 

  

THEOREM 5. i 1 s-Shift 
If L{f(t)} = F(s) exists for s > so, then for any real constant a, 

Liew“ f(t)} = F(s +a) (1) 

for s+ a > sg or, equivalently, 

Lo'{F(s+a)} =e" f(t). (2) 

  

Proof: 

L{e ot F(t) (t)} = [ en F(t Je sty 

= / f(the"StOldt = F(s+a). a (3) 
J 

EXAMPLE 1. Determine L {#8e°!}. From Appendix C, L {t8} = 6/s4 so it follows 
from Theorem 5.7.1 that 

8 ‘ 

EXAMPLE 2. We can invert (25 + 1)/(s? + 2s +4) by partial fractions, but it is simpler 
to note that 

Lo 25+] pol 25+] _ pol s+1)-1) 

“ lst pastas” (+P +3 a = (st? 43J 

-t sin V3 3¢ 
V3 ? 

where in the last step we use entries 3 and 4 in Appendix C and Theorem 5.7.1. @ 

  = 2e~* cos V3t ~ €
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THEOREM §.7.2 t-Shift 

If L{ f(t)} = F(s) exists for s > so, then for any constant a > 0 

L{H(t—a)f(t-a)}= e F(s) (6) 

for s > sg or, equivalently, 

Lo! {e~** F(s)} = H(t —_ a) f(t _ a). (7) 
  

Equations (6) and (7) are already given in Section 5.5, where we studied the 

Heaviside step function, but we repeat them here because the t-shift results seem a 

natural companion for the s-shift results given in Theorem 5.7.1. 

  

THEOREM 5.7.3 Multiplication by 1/s 
If L {f(t)} = F(s) exists for s > sg, then 

Lf f(r) ar} =f (8) 

for s > max {0, so} or, equivalently, 

ot 
Lt a, = i f(r) dr. (9) 

8 J0 

Proof: This theorem is but a special case of the convolution theorem. Specifically, 

fs f(r) dr = 1» f so, according to that theorem, 

  

  

t \. ; ol , 

£{ [rejark=roer=LOyEin= FPO), Co) 
as asserted. @ 

EXAMPLE 3. To evaluate L~! {1/[s(s? + 1)]}, for example, we identify F(s) as 

1/(s? +1). Since f(t) = L~! {1/(s? + 1)} = sine, 

t 

{oa b= f sint dt = 1—cost. (11) 
s(s 0 

Alternatively, we could have used partial fractions. u 

Next, we obtain two useful theorems by differentiating and integrating the def- 

inition 

F(s) = [- f(then dt (12) 

> 
en
ne
ma
ra
rm
an
re
re
s en
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with respect to s. First, we state without proof that if the integral in (12) converges 
for s > 8g, then 

dF(s) df ge OO ra ty is as J, f(tle a= | 5, fe | dt 

== [eget at= 1 {e f(0}, (13) 
0 

  

for s > 8g, and 

[ F(s) ds = [ i f(the“ dtds = I f(t) (fe is) de (14) 

for b > a > 8g. The key step in (13) is the second equality, where we have inverted 

the order of the integration with respect to ¢ and the differentiation with respect to 
s. In (14), the key is again the second equality, where we have inverted the order of 

integration with respect to ¢ and the integration with respect to s. 
In particular, if @ = s and b = oo, then (14) becomes 

[- F(s') as'= | f(t) (| as) dt 

=[ ew a=1{ Oh (15) 
t 

forall s > sq. 

For reference, we state the results (13) and (15) as theorems. 

  

THEOREM 5.7.4 Differentiation with Respect to s 
If L {f(t)} = F(s) exists for s > sp, then 

  

  

  

dF(s Lt sj} = -2) (16) 
ds 

for s > sg or, equivalently, 

_1 { dF(s) 
L = —t f(t). 17 {oh = ee a7 

EXAMPLE 4. From the known transform 

. a 
LE {sinat} = Ppa’ (s > 0) (18) 

we may use (16) to infer the additional results 

L{tsinat) = - 2 2 2 28 (s > 0) (19) 
dss* +a? (32 + a2)?
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pita ay  @  2as BF a 
ae {t sin at} = ds (s? + a2)2 = 24 aes (s > 0) (20) 

and soon. 

  

THEOREM 58.7.5 Integration with Respect to 8 

If there is a real number so such that LD {f(t)} = F(s) exists for s > so, and 

limy_49 f(t) /t exists, then 

£{ Hoh [ reshas (21) 

for s > 89 or, equivalently, 

Lt _ F(s')as'} = to (22) 

  

EXAMPLE §. To evaluate 

  

      

    

ot f{in Fh, (23) 
s—b 

where a and 0 are real numbers, note that 

d 1 g-a 1 1 
— In = > 
ds s—b S-a s-b 

i) / 1 
8-4 8, -a 8 1 ) 

_ = a d 24 n— no [ies 4 8 (24) 

for any s,. Letting s; — co and recalling that In 1 = 0, (24) gives 

s—a °e 1 1 
= — ds’. 25 

nm [ (— =) ° (25) 

Thus, identify F(s) in (21) as -1/(s — a) + 1/(s — 6) (which does exist for s > 

max{a, 6} = sq). Then 

    

    
1 ] 1 

f(t) — To {- i + \ = elt _ ett. (26) 

s-a s-b 

Furthermore, 
P(t bt — eat 

lim ft) = lim of b-a (27) 
t90 «oft t—+0 t 

does exist, the last equality following from I’ Hépital’s rule, so (22) gives the desired inverse 

as 
oe _bt pat 

podmee fl .2 =" g (28) 
g—b t 
 



5.7. Additional Properties 

  

THEOREM 5.7.6 Large s Behavior of F(s) 

Let f(t) be piecewise continuous on 0 < ¢t < to for each finite to and of exponential 
order as t > co. Then 

(i) F(s) + 0 as s + oo, 
(ii) sF'(s) is bounded as s > oo. 
  

Proof: Since f(t) is of exponential order as ¢t -+ oo, there exist real constants 
and c, with Kk > 0 such that |f(t)| < Ke“ for all t > to for some sufficiently 
large to. And since f(t) is piecewise continuous on 0 < ft < to, there must be a 
finite constant AZ such that |f(t)| < Mf on 0 <t < to. Then 

rela | [noe 

  

< [fle ae 

= [iti estas [rol estat 

  

0 

oto foe) 

< i Me~*dt+ / Ke -t dt 
0 to 

_ posto ~(s—e)t |°° 

—-mizt—yKne | MM, * (29) 
8 —(s—c) . Ss 8-C 

0   
for all s > c. It follows from this result that F(s) > 0 as s > oo, and that sf’(s) 
is bounded as s + oo. gf 

For instance, for each of the entries 1-7 in Appendix C we do have F(s) 
— 0 and sF(s) bounded as s — oo. For entry 8 we do too, unless —1 <p < 0, in 
which case F'(s) + 0 but sf'(s) is not bounded. However, in this case f(t) = t? 
is not piecewise continuous since f(t) > co as t > 0 if p is negative. 

  

THEOREM 5.7.7 Initial-Value Theorem 
Let f be continuous and f’ be piecewise continuotis on 0 < t < tg for each finite 

to, and let f and f’ be of exponential order as t -+ oo. Then 

lim [s F(s)] = f(0). (30) 
§—00 
  

Proof: With the stated assumptions on f and f", it follows from Theorem 5.3.3 that 

L{f'(t)} = sL{f(t)} = £0). (31) 
Since f" satisfies the conditions of Theorem 5.5.7, it follows that L { f’(t)} + 0 as 
5 — oo, Thus, letting s —> co in (31) gives the result stated in (30). @ 
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Gg 
  

Al 

Ll 
Figure 1. Periodic function f. 

78 11 12 t 

Normally, we invert F(s) and obtain f(t). However, if it is only f(0) that we 

desire, not f(t), we do not need to invert F'(s); all we need to do, according to (30), 

is to determine the limit of sF'(s) as s + oo. 
As our final item, we show how to transform a periodic function, which is 

important in applications. First, we define what is meant by a periodic function. If 

there exists a positive constant 7’ such that 

f(t+T) = f(t) (32) 

for all t > 0, then we say that f is periodic, with period T. 

EXAMPLE 6. The function sin¢ is periodic with period 27 since sin(t+ 2m) = 

sin tcos 2a -+ sin 27 cost = sint, forall t. @ 

EXAMPLE 7. The function f shown in Fig. | is, by inspection, seen to be periodic with 

period T’ = 4, for if we “stamp out” the segment ABC repeatedly, then we generate the 

graph of f. & 

Notice that if f is periodic with period 7, then it is also periodic with period 

2T, 3T, 4T, and so on. For instance, it follows from (32) that 

f(t+ 27) = f(t +T)+T) = ft+T) = f® 

so that if f is periodic with period T then it is also periodic with period 27. If there 

is a smallest period, it is called the fundamental period. Thus, sin? in Example 

6 is periodic with period 27, 47, 67,..., so its fundamental period is 27; f(t) in 

Example 7 is periodic with period 4,8,12,..., so its fundamental period is 4. In 

contrast, f(t) = 3 (i.e., a constant) is periodic with period T for every T > 0. 

Thus, there is no smallest period, and hence this f does not have a fundamental 

period. 

To evaluate the Laplace transform of a periodic function f(t), with period 7’ 

(which is normally taken to be the fundamental period of f, if f has a fundamental 

period), it seems like a good start to break up the integral on t as 

2T 
f 

oo “TL 

Ero} = | f(the* a= | f(t)ec™ dt + (the dt +--+. (33) 
T 

Next, let 7 = ¢ in the first integral on the right side of (33), 7 =¢-TL in the second, 

7 = t — 2T in the third, and so on. Thus, 

P T 

Lif} = i f(rjeW™ dr + [ f(r +T) eT (THT) qr 

r 

* i flr £2T) Ee 8TPD dp eee, (34) 
J0
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but f(r +1) = f(r), f(r + 27) = f(r), and so on, so (34) becomes 

L{f(t)}}= (1+ ee +e PP 4...) | frye" dr. (35) 
0 

Unfortunately, this expression is an infinite series. However, observe that 

L+ eos? 4 eo 2st fee dt (e~*) 4 (er)? eee (36) 

is a geometric series | + z+ 2? +--+, with z = e7*!, and the latter is known to 

have the sum 1/(1 ~ z) if |z| < 1. Since |z| = |e] = e~*" < Lif's > 0, we 

can sum the parenthetic series in (35) as 1/(1 ~ e7**), 
Finally, if we ask that f be piecewise continuous on 0 < ¢ < 7, to ensure the 

existence of the integral in (35), then we can state the result as follows. 

    

  

THEOREM 5.7.8 Transform of Periodic Function 
If f is periodic with period T on 0 < t < co and piecewise continuous on one 
period, then 

1 TL 

L{f(t)}} = [a e-s? i f(t)e~* dt (37) 

for s > 0. 
  

The point, of course, is that (37) requires integration only over one period, 
rather than over 0 < ¢ < oo, and gives the transform in closed form rather than as 
an infinite series. 

EXAMPLE 8. If f is the sawtooth wave shown in Fig. 2, then T = 2, and 

  

3 

T 02 4 ¢ —25 1— (1+ 2s)e 
/ f(the* dt = | 2te “dt = yi tO tase (38) 

0 0 8 

. | ] 1 2/1 -(14 2s)er*8 2 4 es 
L{f(t)} = . — = 3-7 39 (FC) 1—e7?s 3? s* gs 1—e7?s @) 

for s > 0. 

A more interesting question is the reverse: What is the inverse of 

2 gos 
F(s) = yo A an (40) 

os 1l-en*s 

where we pretend no advance knowledge of the sawtooth wave in Fig. 2, or even the 

knowledge that f(t) is periodic? The key is to proceed in reverse — that is, to expand 
. ww Ies\ es . . . we 
the 1/(1 — e7?*) in a geometric series in powers of e~**. Thus 

2 4. : Fls) = a eres 1 2g #8 pw ts pol, 
(s) aT (lL+e"* +e a) 

2 ty os —ds , ,~6s aoa (eo te’ +e 4), (41) 
seg 
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Figure 2. Sawtooth wave. 
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Figure 3. Partial sums of (42). 

Assuming that the series can be inverted termwise, 

f(t) = 2t—4(H(t -2)+ H(t-4)+ A(t - 6) +-- 1. (42) 

The first few partial sums, 

    

    

12 ; fi(t) = 2t, 

fo(t) = 2t —4H(t —2), 

; fo(t) = 2t — 4H(t — 2) — 4H(t 4) 

4 are sketched in Fig. 3, and it is easy to infer that (42) gives the periodic sawtooth wave 

shown in Fig. 2. 

0 2 4 6 t COMMENT. Observe that the presence of 1 —e~** in the denominator of a transform does 

not suffice to imply that the inverse is periodic. For example, the inverse of 4e77*/[s(1 — 

e~°5)], in (40), is the nonperiodic “staircase” shown in Fig. 4. It is only when this staircase 

is subtracted from 2¢ that a periodic function results. 9 

Figure 4. The staircase 

a[H(t - 2) + H(t ~4) +--+). 

This completes our discussion of the Laplace transform. Just as we used it, in 

this chapter, to solve linear ordinary differential equation initial-value problems, in 

later chapters we will use it to solve linear partial differential equation initial-value 

problems. 

  
Closure. It would be difficult to pick out the one or two most important results 

in this section, since there are eight theorems, all of comparable importance. Most 

of these theorems are included as entries within Appendix C. 

  

    EXERCISES 5.7 

1. Invert each of the following by any method. Cite any (a) —. =, (b) —= I = (c) a 

items from Appendix C and any theorems that you use. If (s? + a’)? (s? ~ ae)? (s — 2) 

it is applicable, verify the initial-value theorem, namely, that (d) s* (e) 1 (f) 3 — / 

sF(s) + {(0) ass — 00; if it is not, then state why itis not. ~ (s+ 1)8  /s+l (s—a)s/? 

 



    

  

  

  

(8) (h) (s +4)6 (i) (s+ 1)? 
ae eum a? 

(j) In (1 “+ = (k) Gray (1) in (1 _ = 

evs 4738 e728 

(my) sitet] (n) s?+28—4 (0) s*(s2 — 25 — 2) 

on(54) (q) —~-_~ L 
Pees) OM 0p) 
s) — tank a a 

(9 goes (0 s?2(1—e7) (w) (s +1) — e745) 
8 8 1 

(v) 52a (w) (2472 (x) se) 

2 (a)—(x) Invert the transform given in the corresponding part 

of Exercise [, using computer software. 

3. (a) In the simple case where f(t) = sin t, show that (37) 

does indeed give 

1 

st+4+1 
  Eisint} = 

(b) In the case where f(t) = cost, show that (37) does indeed 
give 

8 

set] 

4, (Scale changes) Show that if £{f(t)} = F(s), then 

2 (5) =t(5) 
5. Determine the Laplace transform of the function f(t) that 

is periodic and defined on one period as follows. 

L{cost} = 

(a) L{ f(at)} (b) L7'{F(as)} = 
a 

1 <t<2 
(a)sint, O<t<a (b) , Usts< 

0, 2<t<3 
(c)sn2t, O<St<a7 (djew', O<t<2 

t, O<t<1 t O<t<1 (e) HS ESS eo sts 
0, 1<t<2 t-2, 1<t<2 

2, O<t<l 

(g)¢ 4, 1<t<2 

1, 2<t<3 

6. (a) Solve x’ + 2 = f(t) by the Laplace transform, where 

z(Q) = xp and f(t) is the square wave shown, and show that 
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the solution ts 

a(t) = age + [L-e7 "| A(t — 0) 

—[1—e 9] A(t = 1) (6.1) 

+[1—e"@)| H(t-2)—-. 

  

      
0 I 2 3 #4 

HINT: It would be wasteful to determine F(s) because the 
solution can be expressed as a convolution integral involving 

f(t) directly. In that integral, express f(£) as an infinite series 
of Heaviside functions. 

(b) Sketch and label the graph of x(t) over 0 < t < 3, say, 
for the case where v9 = 0. Is x(t) periodic? If not, is there a 
value of zg such that x(t) is periodic? Explain. 

7. Solve z +2 = f(t) by the Laplace transform, where 
x(0) = 2 and f(t) is the periodic function shown. HINT: 
Read Exercise 6. 

r 

3 1 

  

  

  

  

  

(a) 
rf 

2 a 

24 6 8 3 
(b) AE 

8. Solve a” +a = f(t) by the Laplace transform, where 
x(0) = ao, 2'(0) = x, and f(t) is the square wave shown in 

Exercise 6. Evaluate 2(5) if zo = wy = 1. 
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Chapter 5 Review 

The Laplace transform has a variety of uses, but its chief application is in the solu- 

tion of linear ordinary and partial differential differential equations. In this chapter 

our focus is on its use in solving linear ordinary differential equations with constant 

coefficients. The power of the method is that it reduces such a differential equa- 

tion, homogeneous or not, to a linear algebraic one. The hardest part, the inversion, 

is often accomplished with the help of tables, a considerable number of theorems, 

and computer software. Also, any initial conditions that are given become built in, 

in the process of transforming the differential equation, so they do not need to be 

applied at the end. 
Chief properties given in Section 5.3 are: 

Linearity of the transform and its inverse 

L {au(t) + Bolt)} =aLb{ult)}+ bb {oo}, 

L~ {aU (s) + 8V(s)} = aL} {U(s)} + BL {V(s)}, 
Transform of derivatives 

L{f'} = sF(s)— (0), L{f"} = s°F(s) — sf) — FO), 
Convolution Theorem 

LA(f * g)(t)} = F(s)G(s) 

L7' {F(s)G(s)} = (f *g9)(t), 

where 
' 

(fx g)(t) = [ f(r) g(t —7) dr 

is the Laplace convolution of f and g. 

In Sections 5.5 and 5.6 we introduce the step and impulse functions H(t — a) 

and é(t — a), defined by 

0, t<a 

1 ta 
(ta) = { 

+ 

and 

[oo saya 
= ‘ g(a), A<a<B 

JA 0, a<A or a2>B, 

to model piecewise-defined and impulsive forcing functions. 

Finally, in Section 5.7 we derive additional properties: 

s-shift 
Li{e“ f(t)} = F(s +4)



  

L7{F(s+a)} =e“ f(t). 

t-shift 
L{H(t ~ a) f(t — a)} =e“ F(s) 

or 
L~ fe~*F(s)\ = H(t —a)f(t—a). 

Multiplication by 1/s 

t 
L {| f(r) ar = Fs) 

0 § 

ot {20} = [ soar. 

Differentiation with respect to s 

or 

dF (s) 

ds 

Lot (es = —t f(t). 

Integration with respect to s 

L 2} = [ Fesias! 

Lo} _ F(s'yas'} = KO 

Large s behavior of F'(s) 

L{tf(t)} = —   
Or 

or 

F(s) 30 as s+ 00, 

sF(s) boundedas s > oo. 

Transform of periodic function of period T 

T 

L{f()}= cet | f(t)e7 "dt. 

NOTE: The preceding list is intended as an overview so, for brevity, the various 
conditions under which these results hold have been omitted. 
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Chapter 6 

Quantitative Methods: 

Numerical Solution of 
Differential Equations 

6.1 Introduction 

Following the introduction in Chapter 1, Chapters 2~5 cover both the underlying 
theory of differential equations and analytical solution techniques as well. That 
is, the objective thus far has been to find an analytical solution — in closed form if 
possible or as an infinite series if necessary. Unfortunately, a great many differential 
equations encountered in applications, and most nonlinear equations in particular, 

are simply too difficult for us to find analytical solutions. 
Thus, in Chapters 6 and 7 our approach is fundamentally different, and comple- 

ments the analytical approach adopted in Chapters 2-5: in Chapter 6 we develop 
quantitative methods, and in Chapter 7 our view is essentially qualitative. More 
specifically, in this chapter we “discretize” the problem and seek, instead of an an- 
alytical solution, the numerical values of the dependent varizble at a discrete set of 

values of the independent variable so that the result is a table or graph, with those 

values determined approximately (but accurately), rather than exactly. 
Perhaps the greatest drawback to numerical simulation is that whereas an an- 

alytical solution explicitly displays the dependence of the dependent variable(s) 
on the various physical parameters (such as spring stiffnesses, driving frequencies, 
electrical resistances, inductances, and so on), one can carry out a numerical solu- 
tion only for a specific set of values of the system parameters. Thus, parametric 
studies (i.e., studies of the qualitative and quantitative effects of the various param- 
eters upon the solution) can be tedious and unwieldy, and it is useful to reduce the 
number of parameters as much as possible (by nondimensionalization, as discussed 

in Section 2.4.4) before embarking upon a numerical study. 
The numerical solution of differential equations covers considerable territory 

so the present chapter is hardly complete. Rather, we aim at introducing the funda- 
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mental ideas, concepts, and potential difficulties, as well as specific methods that 
are accurate and readily implemented. We do mention computer software that car- 
ries out these computations automatically, but our present aim ts to provide enough 
information so that you will be able to select a specific method and program it. In 
contrast, in Chapter 7, where we look more at qualitative issues, we rely heavily 
upon available software. 

6.2 Euler’s Method 

{n this section and the two that follow, we study the numerical solution of the first- 
order initial-value problem 

y= f(z,y); y(a)=b (1) 

on y(x). 
To motivate the first and simplest of these methods, Euler’s method, consider 

the problem 
y =yt2e—-a7, yO)=1 (0<e<aw) (2) 

with the exact solution (Exercise [) 

y(x) = 2? +e". (3) 

Of course, in practice one wouldn’t solve (2) numerically because we can solve it 
analytically and obtain the solution (3), but we will use (2) as an illustration. 

In Fig. | we display the direction field defined by f(x,y) = y + 2a — x7, as 
well as the exact solution (3). In graphical terms, Euler’s method amounts to using 

the direction field as a road map in developing an approximate solution to (2). 
Beginning at the initial point P, namely (0,1), we move in the direction dictated 
by the lineal element at that point. As seen from the figure, the farther we move 
along that line, the more we expect our path to deviate from the exact solution. 
Thus, the idea is not to move very far. Stopping at « = 0.5, say, for the sake of 

illustration, we revise our direction according to the slope of the lineal element at 
that point @. Moving in that new direction until « = 1, we revise our direction at 
R, and so on, moving in x increments of 0.5. We call the x increment the step size 
and denote it as A. In Fig. |, fis 0.5. 

Let us denote the y values at Q, R,... as yi, yo,-.... They are computed as 

ui = yot f(r, yoh, yo = yi t f(e1, yi)h,..., where (xo, yo) is the initial point 
P. Expressed as a numerical algorithm, the Euler method is therefore as follows: 

  

[Yat = Yn + f(tn.Undh, (n= 0,1,2,...) | (4) 
  

where f is the function on the right side of the given differential equation (1), 

Xo = a, yo = 5, his the chosen step size, and zy, = vq + nh. 
Euler’s method is also known as the tangent-line method because the first 

straight-line segment of the approximate solution is tangent to the exact solution 
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Figure 1. Direction field 

motivation of Euler’s method, 

for the initial-value problem (2). 
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y(x) at P, and each subsequent segment emanating from (2n, Yn) is tangent to the 

solution curve through that point. 

Apparently, the greater the step size the less accurate the results, in general. 

For instance, the first point Q deviates more and more from the exact solution as 

the step size is increased — that is, as the segment PQ is extended. Conversely, 

we expect the approximate solution to approach the exact solution curve as his re- 

duced. This expectation is supported by the results shown in Table 1 for the initial- 

Table 1. Comparison of numerical solution of (2) 

using Euler’s method, with the exact solution. 

  

x |h=05|k=01 | h=0.02 | y(x) 

0.5 | 1.5000 | 1.7995 1.8778 | 1.8987 

1.0 | 2.6250 | 3.4344 3.6578 | 3.7183 

1.5 | 4.4375 | 6.1095 6.5975 | 6.7317 

  

  

                
value problem (2), obtained by Euler’s method with step sizes of h = 0.5, 0.1, and 

0.02; we have included the exact solution y(«), given by (3), for comparison. With 

h = 0.5, for instance, 

yi = yo + (yo + 2x0 — 2) h= 1+ (1+0-—0) (0.5) =1.5, 

yo =yi t+ (yi + 21 — v7) hh = 1.54 (1.5 4+ 1— 0.25) (0.5) = 2.625, 

ys = yo + (ye + 2a — v3) h = 2.625 + (2.625 + 2 — 1) (0.5) = 4.4375. 

With h = 0.1, the values tabulated at 2 = 0.5,1.0,1.5 are y5, y1o, yis, with the 

intermediate computed y values omitted for brevity. 

Scanning each row of the tabulation, we can see that the approximate solution 

appears to be converging to the exact solution as h — 0 (though we cannot be 

certain from such results no matter how small we make /), and that the convergence 

is not very rapid, for even with h = 0.02 the computed value at z = 1.5 is in error 

by 2%. 
As strictly computational as this sounds, two important theoretical questions 

present themselves: Does the method converge to the exact solution as h > O and, 

if so, how fast? By a method being convergent we mean that for any fixed x value 

in the x interval of interest the sequence of y values, obtained using smaller and 

smaller step size h, tends to the exact solution y(x) as h — 0. 

Let us see whether the Euler method is convergent. Observe that there are two 

sources of error in the numerical solution. One is the tangent-line approximation 

upon which the method is based, and the other is the accumulation of numerical 

roundoff errors within the computing machine since a machine can carry only a fi- 

nite number of significant figures, after which it rounds off (or chops off, depending 

upon the machine). In discussing convergence, one ignores the presence of such 

roundoff error and considers it separately. Thus, in this discussion we imagine our 

computer to be perfect, carrying an infinite number of significant figures.



  

Local truncation error. Although we are interested in the accumulation of er- 
ror after a great many steps have been carried out, to reach any given x, it seems 

best to begin by investigating the error incurred in a single step, from x,—1 to Gp 
(or from v, to 44, it doesn’t matter). We need to distinguish between the exact 

and approximate solutions so let us denote the exact solution at a, as y(w,) and the 

approximate numerical solution at 2, as yn. These are given by the Taylor series 

ulcer) = Yen) +f (na) a — nan) + AD (ey — ya) bo 
= y(@n-1) + y'(t@n-1)h + Elen) ,2 bee G) 

and the Euler algorithm 

Yn = Yn-1 + f (@n-1,Yn-1) A, (6) 

respectively. [t is important to understand that the Euler method (6) amounts to 
retaining only the first two terms of the Taylor series in (5). Thus, it replaces the 
actual function by its tangent-line approximation. 

We suppose that y(ap— 1) and yp, are identical, and we ask how large the 
error €, = y(n) — Yn is after making that single step, from x,_1 to Zj. We can 
get an expression for e,, by subtracting (6) from (5), but the right side will be an 
infinite series. Thus, it is more convenient to use, in place of the (infinite) Taylor 
series (5), the (finite) Taylor’s formula with remainder, 

it 

y (€) ,« 
y(an) = y(@n—-1) + y'(@r—i)h + VS) a, (7) 

where € is some point in the interval [v,-1,2,]. Now, subtracting (6) from (7), 

and noting that y/(2p-1) = f [tn-1,y(@n-1)] = f(@n—1, yn—1) because of our 
supposition that y(@p~1) = Yn—1, gives 

it 1 en = YD p2, (8) 
2 

The latter expression for e, is awkward to apply since we don’t know €, except 
that tr, < € < w,.* However, (8) is of more interest in that it shows how the 

single-step error e,, varies with h. Specifically, since tn, < € < wp. +h, we 
i . . y (en—! 

see that as h —+ 0 we have € —+ rn—1, So (8) gives en ~ y(@n—1) 52 = Ch? as 

h -+ 0, where C is a constant. Accordingly, we say that e,, is of order h? and write 

  

  
Cn = O(h*) (9) 

    
  

“It also appears that we do not know the y” function, but it follows from (2) that y” = y’ +2 —- 
20 = (y+ 2a -a7?)+2-22 =y+2—2°. 
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Figure 2. The global truncation 

error. 

as h —> 0. [The big oh notation is defined in Section 4.5, and (9) simply means that 

e, ~ Ch? as h + 0 for some nonzero constant Ci] 

Since the error e,, is due to truncation of the Taylor series it is called the trunca- 

tion error~more specifically, the local truncation error because itis the truncation 

error incurred in a single step. 

Accumulated truncation error and convergence. Of ultimate interest, however, 

is the truncation error that has accumulated over all of the preceding steps since 

that error is the difference between the exact solution and the computed solution 

at any given x@,. We denote itas By, = y(n) — Yn and call it the accumulated 

truncation error. If it seems strange that we have defined both the local and ac- 

cumulated truncation errors as y(@n) — Yn, it must be remembered that the former 

is that which results from a single step (from %,—1 tO &) whereas the latter is that 

which results from the entire sequence of steps (from xo to Zn). 

We can estimate E,, at a fixed x location (at least insofar as its order of 

magnitude) as the local truncation error en times the number of steps n. Since 

€n = O(h*), this idea gives 

E, = O(h2)-n= a(n) = O(8) = O(h) en = O(h), 10) 

where the last step follows from the fact that the selected location x, is held fixed 

as h > 0. Since the big oh notation is insensitive to scale factors, the x, factor can 

be absorbed by the O(h) so 
  

    
E, = O(h), (11) 
  

which result tells us how fast the numerical solution converges to the exact solution 

(at any fixed x location) as h > 0. Namely, E, ~ Ch for some nonzero constant 

C. To illustrate, consider the results shown in Table 1, and consider « = 1.5, say, 

in particular. According to E, ~ Ch, if we reduce h by a factor of five, from 0.1 

to 0.02, then likewise we should reduce the error by a factor of five. We find that 

(6.7317 — 6.1095) /(6.7317 — 6.5875) = 4.6, which is indeed close to five. We 

can’t expect it to be exactly five for two reasons: First, (11) holds only as h + 0, 

whereas we have used fh. = 0.1 and 0.02. Second, we obtained the values in Table 

| using a computer, and a computer introduces an additional error, due to roundoff, 

which has not been accounted for in our derivation of (11). Probably it is negligible 

in this example. 

While (11) can indeed be proved rigorously, be aware that our reasoning in 

(10) was only heuristic. To understand the shortcoming of our logic, consider the 

diagram in Fig. 2, where we show. only two steps, for simplicity. 

Our reasoning, in writing BE, = O(h?) +n in (10), is that the accumulated 

truncation error E,, is (at least insofar as order of magnitude) the sum of the n 

single-step errors. However, that is not quite true. We see from Fig. 2 that £9 is 

e9 +3, not the sum of the single-step errors €2 + €1, and @ is not identical to ey. The 

difference between (@ and ey is the result of the slightly different slopes of D1 and 

D2 acting over the short distance h, and that difference can be shown to be a higher- 

order effect that does not invalidate the final result that £,, = O(h), provided that 

 



  

f is well enough behaved (for example, if f, fe, and fy are all continuous on the 

x,y region of interest). 
In summary, (11) shows that the Euler method (4) is convergent because the 

accumulated truncation error tends to zero as h - 0. More generally if, for a given 
method, FE, = O(h?) as h -+ 0, then the method is convergent if p > 0, and we 

say that it is of order p. Thus, the Euler method is a first-order method. 
Although convergent and easy to implement, Euler’s method is usually too 

inaccurate for serious computation because it is only a first-order method. That is, 
since the accumulated truncation error is proportional to / to the first power, we 
need to make A extremely small if the error is to be extremely small. Why can’t we 
do that? Why can’t we merely let h = 107%, say? There are two important reasons. 
One is that with h = 107°, it would take 10° steps to generate the Euler solution 
over a unit x interval. That number of steps might simply be impractically large in 

terms of computation time and expense. 
Second, besides the truncation error that we have discussed there is also ma- 

chine roundoff error, and that error can be expected to grow with the number of 
calculations. Thus, as we diminish the step size A and increase the number of steps, 
to reduce the truncation error, we inflict a roundoff error penalty that diminishes 
the intended increase in accuracy. In fact, we can anticipate the existence of an 
optimal h value so that to decrease h below that value is counterproductive. Said 
differently, a given level of accuracy may prove unobtainable because of the growth 
in the roundoff error as h is reduced. Further discussion of this point is contained 

in the exercises. 
Finally, there is an important practical question not yet addressed: How do we 

know how small to choose h.? We will have more to say about this later, but for now 
let us give a simple procedure, namely, reducing / until the results settle down to 
the desired accuracy. For instance, suppose we solve (2) by Euler’s method using 

Ah = 0.5, as a first crack. Pick any fixed point x in the interval of interest, such as 
x = 1.5. The computed solution there is 4.4375. Now reduce A, say to 0.01, and 

run the program again. The result this time, at z = 1.5, is 6.1095. Since those 

results differ considerably, reduce / again, say to 0.02, and run the program again. 
Simpy repeat that procedure until the solution at zc = 1.5 settles down to the desired 

number of significant figures. Accept the results of the final run, and discard the 
others. (Of course, one will not have an exact solution to compare with as we did 

in Table 1.) 

The foregoing idea is merely a rule of thumb, and is the same idea that we use 

in computing an infinite series: keep adding more and more terms until successive 

partial sums agree with the desired number of significant figures. 

Closure. The Euler method is embodied in (4). It is easy to implement, either us- 

ing a hand-held calculator or programming it to be run on a computer. The method 
is convergent but only of first order and hence is not very accurate. Thus, it is 
important to develop more accurate methods, and we do that in the next section. 

We also use our discussion of the Euler method to introduce the concept of 

the local and accumulated truncation errors e, and E,, respectively, which are 

6.2. Euler’s Method 297



298 Chapter 6. Quantitative Methods: Numerical Solution of Differential Equations 

due to the approximate discretization of the problem and which have nothing to 

do with additional errors that enter due to machine roundoff. The former is the 

error incurred in a single step, and the latter is the accumulated error over the entire 

caclulation. Finally, we define the method to be convergent if the accumulated 

truncation error EF, tends to zero at any given fixed point x, as the step size h tends 

to zero, and of order p if E, = O(h?) as h —+ 0. The Euler method is convergent 

and of order one. 

  

EXERCISES 6.2 
  

1. Derive the particular solution (3) of the initial-value prob- 

lem (2). 

2. Use the Euler method to compute, by hand, y1, ye, and ys 

for the specified initial-value problem using h = 0.2. 

y(0) = 1 
y(0) = 0 

y(0) =0 

(a) y! = -Y; 
(b) y= 2ry; 
(c) y! = 3a*y*; 
(d) yy =1+2ey?; y(1) = -2 
(e)y! = 2ee"¥;  y(1) = -1 
(hy =a?—y?; y(3)=5 
(g)y! = vsiny; y(0) =0 

(hy =tan(e@+y); yO) =2 
ijy =5e-2/y, yO)=4 

Qy=VJVery yO)=3 
3. Program and run Euler’s method for the initial-value prob- 

lem y’ = f(x,y), with y(0) = 1 and h = 0.1, through yio. 

Print y1,-.-;Y10 and the exact solution y(#1),-.-,y(210) as 

well. (Six significant figures will suffice.) Evaluate Ey,9. Use 

the f(x, y) specified below. 

(a) 22 (b) ~6y" (c)a+y 

(d) ysina (e) (y? + 1)/2 (f) dze79 

(g) 1+ gt+y (h) -y tana (i) e@ FY 

4, (a)—(h) Program and run Euler’s method for the inittal- 

value problem y’ = f(x,y) (with f given in the correspond- 

ing part of Exercise 3), and print out the result at 2 = 0.5. 

Use h = 0.1, then 0.05, then 0.01, then 0.005, then 0.001, and 

compute the accumulated truncation error at z =.0.5 for each 

case. Is the rate of decrease of the accumulated truncation er- 

ror, as / decreases, consistent with the fact that Euler’s method 

is a first-order method? Explain. 

5. Thus far we have taken the step / to be positive, and there- 

fore developed a solution to the right of the initial point. Is 

Euler’s method valid if we use a negative step, h < 0, and 

hence develop a solution to the left? Explain. 

6. We have seen that by discretizing the problem, we can 

approximate the solution y(x) of a differential equation 

y’ = f(x,y) by a discrete variable y, by solving 

Ynt1 = Yat f(tn, Ynjh (6.1) 

sequentially, form = 0,1,2,.... Besides being a numerical 

algorithm for the calculation of the y's. (6.1) is an example 

of a difference equation governing the sequence of Yn’s, just 

as y’ = f(a,y) is a differential equation governing y(z). If 

f is simple enough it may be possible to solve (6.1) for yn 

analytically, and that idea is the focus of this exercise. Specif- 

ically, consider y’ = Ay, where A is a given constant. Then 

(6.1) becomes 

Yngr = (1+ Ah)yn: (6.2) 

(a) Derive the solution 

Yn = C(1+ Ah)” (6.3) 

of (6.2), where C’ is the initial value yo, if one is specified. 

(b) Show that as h — 0 (6.3) does converge to the solution 

Ce4® of the original equation y! = Ay. HINT: Begin by 

expressing (1 + 4h)” as el™(U+Al0" | NOTE: Thus, for the 

simple differential equation y’ = Ay we have been able to 

prove the convergence of the Euler method by actually solving 

(6.2) for yn, in closed form, then taking the limit of that result 

ash —- 0. 

(c) Use computer software to obtain the solution (6.3) of the 

difference equation (6.2). On Maple, for instance, use the 

rsolve command. 

7. In this section we have taken the step size h to be a constant 

from one step to the next. Is there any reason why we could 

not vary fh from one step to the next? Explain. 

 



  

6.3. Improvements: Midpoint Rule and Runge~Kutta — 299 

6.3. Improvements: Midpoint Rule and Runge-Kutta 

Our objective in this section is to develop more accurate methods than the first- 
order Euler method — namely, higher-order methods. In particular, we are aiming at 
the widely used fourth-order Runge-Kutta method, which is an excellent general- 
purpose differential equation solver. To bridge the gap between these two methods, 
we begin with some general discussion about how to develop higher-order methods. 

6.3.1. Midpoint rule. To derive more accurate differential equation solvers, Taylor 
series (better yet, Taylor’s formula with remainder) offers a useful line of approach. 

To illustrate, consider the Taylor’s formula with remainder, 

yl" 

u(x) = yla) + y'(ay(e—a) + Se a, () 
where € is some point in [a,z]. If we let 7 = tpiy,@ = Yn, andz-a = 
Ln+1 — Tn = A, then (1) becomes 

y"(&) 9 

y(Sn41) = y(@n) ty “anh + 2 51 -—"h*, (2) 

Since y’ = f(x,y), we can replace the y’(x,) in (2) by f(zn,y(an)). Also, the 

last term in (2) can be expressed more simply as O(h”) so we have 

y(tn+1) = y(tn) + f(2n,y(an))h + O(h?). (3) 

If we neglect the O(h2) term and call attention to the approximation thereby in- 
curred by replacing the exact values y(an+1) and y(a,) by the approximate values 
Yn+-1 and yn, respectively, then we have the Euler method 

Yn+1 = Yn + f(n, Yn)h. (4) 

Since the term that we dropped in passing from (3) to (4) was O(h?), the local 
truncation error is O(h”), and the accumulated truncation error is O(h). 

One way to obtain a higher-order method is to retain more terms in the Taylor’s 

formula. For instance, begin with 

My. 

y(fn+1) = y(@n) +y ‘(a en )h + * wen) tn) he + Djs (5) 

in place of (2) or, since y" = f(a, y(x)) = fot fyy! = fe + ful. 

Hemer) Hn) + f(en, y(@ n))h 

5 “fy (Zn, y(a mn)) + fy(@n y(@n)) f (en, y(2n))| he + O(h®). (6)
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If we truncate (6) by dropping the O(h*) term, and change y(@n41) and y(&p) to 

Yn+1 and Yn, respectively, then we have the method 

1 . 
Ynt1 = Yn + f(@n; Yn yh F 3 [fu(tn, Yn) + fyltn, Yn) F(2n5 Yn) h? (7) 

with a local truncation error that is O(h) and an accumulated truncation error that 

is O(h?); that is, we now have a second-order method. 

Why do we say that (7) is a second-order method? Following the same heuris- 

tic reasoning as in Section 6.2, the accumulated truncation error FE, is of the order 

of the local truncation error times the number of steps so 

En = O(h?) n= O(n3) = O(n) vn 
A 

= O(h?) «tn = O(h*), 

as claimed. In fact, as a simple rule of thumb it can be said that if the local trunca- 

tion error is O(h?), with p > 1, then the accumulated truncation error is O(hP-+), 

and one has a (p — 1)th-order method. 
Although the second-order convergence of (7) is an improvement over the first- 

order convergence of Euler’s method, the attractiveness of (7) is diminished by an 

approximately threefold increase in the computing time per step since it requires 

three function evaluations (f, fc, fy) per step whereas Euler’s method requires only 

one (f'). It’s true that to carry out one step of Euler’s method we need to evaluate 

f, multiply that by h, and add the result to yp, but we can neglect the multiplication 

by A and addition of y, on the grounds that a typical f(x,y) involves many more 

arithmetic steps than that. Thus, as a rule of thumb, one compares the computation 

time per step of two methods by comparing only the number of function evaluations 

per step. 

Not satisfied with (7) because it requires three function evaluations, let us re- 

turn to Taylor’s formula (5). If we replace A by —h, that amounts to making a 

backward step so the term on the left will be y(@n—1) instead of y(n4i). Making 

those changes, and also copying (5), for comparison, we have 

y" (an) he 7 y!"(¢) pe 
y(@n—1) = y(n) = Y'(@r)h + =F 6 (8a) 

ff + Hf, . 

y(an4i) = (tn) + y! (tn)h + Wn) p2 + eM ys, (8b)   
respectively, where ¢ is some point in [*,—1, 27] and 7) is some point in [@n, &n41). 

Now we can eliminate the bothersome x terms by subtracting (8a) from (8b). 

Doing so gives 

it _ lt . 

y(@n41) ~ y(@n—1) = 2y'(an)h + Wi t¥ Oya 

or 

y(n41) = y(@n—1) + 2f (fn, y(£n)) h+0O (h®) .
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Finally, if we drop the O (n?) term and change y(an41), y(tn—1), y(@n) (© Ynti, 

Yn—Ls Yn» tespectively, we have 

  

Un+l = Yn—-1 + f(tn, Yn) (2h), (9) 

which method is known as the midpoint rule. Like (7), the midpoint rule is a 

second-order method but, unlike (7), it requires only one function evaluation per 

step. It is an example of a multi-step method because it uses information from 

more than one of the preceding points — namely, from two: the nth and (n — 1)th. 

Thus, it is a two-step method whereas Euler’s method and the Taylor series method 

given by (7) are single-step methods. 

A disadvantage of the midpoint rule (and other multi-step methods) is that it 

is not self-starting. That is, the first step gives y, in terms of 29, yo, Y—1, but y—1 

is not defined. Thus, (9) applies only for n > 1, and to get the method started 

we need to compute y; by a different method. For instance, we could use Euler’s 

method to obtain y; and then switch over to the midpoint rule (9). Of course, if we 

| do that we should do it not in a single Euler step but in many so as not to degrade 

| the subsequent second-order accuracy. 

    
  

    

EXAMPLE 1. Consider the same “test problem” as in Section 6.2, 

y=ytte-27; y(0)=1, (0<4<oo) (10) 

with the exact solution y(z) = 2? + e*. Let us use the midpoint rule with h = 0.1. To get 

| it started, carry out ten steps of Euler’s method with h = 0.01. The result of those steps is 

the approximate solution 1.11358 at = 0.1, which we now take as yj. Then proceeding 

with the midpoint rule we obtain from (9) 

y2 = yo +2 (yi t+ 2a1 —xi)h 

= 14 2(1.11358 + 0.2 — 0.01) (0.1) = 1.26072 

Ys = yi + 2 (ye + 242 —- v3) h 

= 1.11358 + 2 (1.26072 + 0.4 — 0.04) (0.1) = 1.48772, 

and so on. The results are shown in Table | and contrasted with the less accurate Euler 

results using the same step size, h = 0.1. @ 

Before leaving the midpoint rule, it is interesting to interpret the improvement 

in accuracy, from Euler to midpoint, graphically. If we solve 

yY(@ngi) © yltn) + y(an)h (Euler) (11) 

and 

y(@n+1) s y(fn—-1) + 2y'(an)h (midpoint) (12) 

for y'(an), we have 

(Euler) (13) 
h y(n) x
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yXy-1 ) YX, ) YO 41 ) 

  

t . . 
Xn-i Xn Xn+l x 

Lp oh 

Figure 1. Graphical interpretation 

of midpoint rule versus Euler. 

Table 1. Comparison of Euler, midpoint rule, and exact 

solutions of the initial-value problem (10), with h = 0.1. 

  

x Euler | Midpoint | Exact 
  

0.10 | 1.10000 | 1.11358 | 1.11517 

0.20 | 1.22900 | 1.26072 | 1.26140 

0.30 | 1.38790 | 1.43772 | 1.43986 

0.40 | 1.57769 | 1.65026 | 1.65182 

0.50 | 1.79946 | 1.89577 | 1.89872 

  

  

  

              
and 

y(@n41) — y(n-1) 
2h , 

which are difference quotient approximations of the derivative y' (tn). In Fig: 1, 

we can interpret (14) and (13) as approximating y’(n) by the slopes of the chords 

AC and BC, respectively, while the exact y'(z,) is the slope of the tangent line 

TL at v,. We can see from the figure that AC’ gives a more accurate approximation 

than BC. 

y' (an) & (midpoint) (14) 

6.3.2. Second-order Runge-Kutta. The Runge-Kutta methods are developed 

somewhat differently. Observe that the low-order Euler method Ynti = Yn + 

f(n;Yn)h amounts to an extrapolation away from the initial point (ap, Yn) us- 

ing the slope f(an, Yn) at that point. Expecting an average slope to give greater 

accuracy, one might try the algorithm 

1 

Ynt1 = Yn + 3 (f(tn, Yn) + f(tn41, Yn-+1)] h, (15) 

which uses an average of the slopes at the initial and final points. Unfortunately, 

the formula (15) does not give yn+1 explicitly since yn4+1 appears not only on the 

left-hand side but also in the argument of f(2n+1, Yn+1). Intuition tells us that we 

should still do well if we replace that yn41 by an estimated value, say, the Euler 

estimate Yn41 = Yn + f(2n,yn)h. Then the revised version of (15) is 

1 . . 

Ynt1 = Yn + 2 {f(tn, Yn) + f [Cn+is Un f(@n, Yyn)h] } h, (16) 

Thus, guided initially by intuition we can put the idea on a rigorous basis by 

considering a method of the form 

Yn+1 = Yn + {af (&n, Yn) + bf [in + ah, Yn Bf (tn, Yn hl} A (17) 

and choosing the adjustable parameters a,b, a, 9 so as to make the order of the 

method (17) as high as possible; a, 3 determine the second slope location, and a, b 
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determine the “weights” of the two slopes. That is, we seek a, b, av, @ so that the 

left- and right-hand sides of 

y(Ln41) x y(tn) + {af [fn, ylen)| 

+f [tn + ah, y(en) + BS (an, y(en)] Al} h (18) 

agree to as high a degree in fh as possible. Thus, expand the left-hand side (LHS) 
and right-hand side (RHS) of (18) in Taylor series in h: 

alan 

LHS = y(an) + y'(an)h + Wen) y2 ee 

. L_, Sone 
=u tht 5 (fet Lyf) +o (19) 

where y means y(z,,) and the arguments of f, fr, fy are tn, Yy(@p). Similarly (Ex- 

ercise 9), 

RHS = y+ (a+b) fh+(afe + Bf fy) bh? +>. (20) 

Matching the / terms requires that 

a+b=1. (21a) 

Matching the h? terms, for any function f requires that 

RO
] 

Ke
 

ab = and (b= —. (21b) 

RO
 

Re
e 

The outcome then is that any method (17), with a, 6, a, 9 chosen so as to satisfy 

(21), has a local truncation error that is O(h?) and is therefore a second-order 
method [subject to mild conditions on f such as the continuity of f and its first- 
and second-order partial derivatives so that we can justify the steps in deriving (19) 
and (20)]. These are the Runge—Kutta methods of second order.' 

For instance, witha = 6 = 1/2 anda = 3 = 1 we have 

Ls, . 
Yntl = Un t+ 9 {f(®n, Un) + f [Cr41, Un + fen, Yn )h]} h, (22) 

which is usually expressed in the computationally convenient form 

  

Un+i = Un + 5 (hy + hi) ; 

ky = hf (tn, Yn), ko = hf (@n41, Un + ki). 

(23) 

      

  

‘The Runge-Kutta method was originated by Carl D. Runge (1856-1927), a German physicist and 

mathematician, and extended by the German aerodynamicist and mathematician M. Wilhelm Kutta 

(1867-1944), Kutta is well known for the Kutta~Joukowski formula for the lift on an airfoil, and for 

the “Kutta condition” of classical airfoil theory. 
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To understand this result, note that Euler’s method would give Yns1 = Yn + 

f (tn; Yn) h. Tf we denote that Euler estimate as ykuler then (22) can be expressed 

  

n+l? 

as sal 
a; fan , buler 

f (Zn, Yn) +f (tr4t; Yn+l ) } 

Yn-+l = Yn + L. 
2 

That is, we take a tentative step using Euler’s method, then we average the slopes at 

the initial point 2, Y, and at the Euler estimate of the final point tn+1, yeuler and 

then make another Euler step, this time using the improved (average) slope. For 

this reason (23) is also known as the improved Euler method. 

A different choice, a = 0,6 = 1,a = @ = 1/2, gives what is known as the 

modified Euler method. 

EXAMPLE 2. Let us proceed through the first two steps of the improved Euler method 

(23) for the same test problem as was used in Example |, 

y =yt+2e—x"; y(0) = 1, (0< zx <0) (24) 

with A = 0.1: a more detailed illustration is given in Section 6.3.3 below. Here, f(z, y) = 

y+ Qe - x, 

n=O: 

ky = hf (vo, yo) = 0-1 [1 +0 ~ (0)?} = 0.1, 

ko = hf (a1,yo + ky) = 0.1 [C1 + 0.1) + 2(0.1) - (0.1)?] = 0.129, 

yi = yo td (ky + ke) = 140.5 (0.1 + 0.129) = 1.1145; 

n=l: 

ky = Af (a1, ys) = 0.1 [1.1145 + 2(0.1) — (0.1)?] = 0.18045, 

ko = Af (2, yi + ki) 

= 0.1 [(1.1145 + 0.13045) + 2(0.2) — (0.2)?] = 0.160495, 

yo = yi +4 (ki + ko) = 1.1145 + 0.5 (0.13045 + 0.160495) = 1.2600, 

compared with the values y(z,) = y(0.1) = 1.1152 and y(x2) = y(0.2) = 1.2614 

obtained from the known exact solution y(z) = 27 +e". nw
 

6.3.3. Fourth-order Runge—Kutta. Using this idea of a weighted average of 

slopes at various points in the z, y plane, with the weights and locations determined 

so as to maximize the order of the method. one can derive higher-order Runge— 

Kutta methods as well, although the derivations are quite tedious. One of the most 

s
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commonly used is the fourth-order Runge-Kutta method: 

  

Ynel = Un + & (ha + 2ke + 2kg + ka) 

ky = hf (2n, Yn), ko = hf (tn + 2 un +f ky) ’ (25) 

kg = hf (tn + $,un + dhe), ka = AS (@n41, Yn + hs),     
  

which we give without derivation. Here the effective slope used is a yaa av- 
erage of the slopes at the four points (2, Yn), (an + A/2, yn + k1/2), (tn + h/2, 

Yn + ko/2) and (2n41, Yn + kg) in the x, y plane, an average because the sum of 

the coefficients v6 2/6, 2/6, 1/6 that multiply the &’s is 1. Similarly, the sum of 
the coefficients 1/2, 1/2 in the second-order version (23) is 1 as well. 

EXAMPLE 3. As a summarizing illustration, we solve another “test problem,” 

y=n-y y(0)=1 (26) 

by each of the methods considered, using a step size of h = 0.05 and single precision 

arithmetic (on the computer used that amounts to carrying eight significant figures; double 

precision would carry 16). The results are given in Table 2, together with the exact solution 

y(x) = e~* for comparison; 0.529E + 2, for instance, means 0.529 x 107. The value of yy 

for the midpoint rule was obtained by Euler’s method with a reduced step size of 0.0025. 

To illustrate the fourth-order Runge-Kutta calculation, let us proceed through the first 

step: 

n=O0: 

ky = Af (v0, yo) = —hyo = —0.05(1) = —0.05, 

ko = hf (x0 + yo + hy) =-h (yo + ual ) 

= —0.05(1 — 0. 0.025) = —0.04875, 

ky = hf (wo + yo + 4hke) = —h (yo + 52) 
= ~0.05(1 — "0.024 375 8) = —0.04878125, 

ka = hf (21, yo + hg) = —h (yo + ks) 

—0.05(1 — 0.04878125) = -0.047560938, i] 

Yr = Yo + é (ky + 2khy + 2h + hia) = 0.95122943, 

which final result does agree with the corresponding entry in Table 2. Actually, there is a 

discrepancy of 2 in the last digit, but an error of that size is not unreasonable i in view of the 

fact that the machine used carried only eight significant figures. 

Most striking ts the excellent accuracy of the fourth-order Runge~Kutta method, with 

six significant figure accuracy over the entire calculation, 

COMMENT. We see that the midpoint rule and the second-order Runge-Kutta method 

yield comparable results initially, but the midpoint rule eventually develops an error that



306 Chapter 6. Quantitative Methods: Numerical Solution of Differential Equations 

Table 2. Comparison of the Euler, midpoint rule, second-order Runge — Kutta, 

fourth-order Runge-Kutta, and exact solutions of the initial-value problem (26), 

with A = 0.05.   
  

  

            

2nd-order 4th-order 

x Euler Midpoint Runge—Kutta | Runge-Kutta | Exact = e* 

0.00 | 1.00000000 E+1 1,.00000000 E-+1 | 1.00000000 E+1 } 1.00000000 E+-1 1.00000000 E-+-1 

0.05 | 0.94999999 E+-1 0.95116991 B+1 | 095125002 E+1 | 0.95122945 E+1 095122945 E+1 

0.10 | 0.90249997 E+1 (0.90488303 E+1 | 0.90487659 E+1 | 0.90483743 E+1 0.90483743 E+1 

0.15 | 0.85737497 E+1 0.86068159 E+1 | 0.86076385 E+1 ] 0.86070800 E+1 0.86070800 E+1 

0.20 | 081450623 E+1 081881487 E+1 | 0.81880164 E41 | 0.81873077 E+1 0.81873077 E+1 

0.25 | 0.77378094 E+1 0.77880013 E+1 | 0.77888507 E+1 | 0.77880079 E+1 0.77880079 E+1 

0.30 | 0.73509192 E+1 0.74093485 E+1 | 0.74091440 E+1 | 0.74081820 E+1 0.7408 1820 E-+1 

2.00 | 0.12851217 E+0 0.13573508 B+0 } 0.13545239 E+0 } 0.13533530 E+0 0.13533528 E+0 

2.05 | 0.12208656 E+0 012853225 E+0 | 0.12884909 E+0 | 0,12873492 B+0 0.12873492 E+0 

2.10 | 0.11598223 E+-0 0.12288185 E+0 | 0.12256770 E+0 | 0.12245644 E+0 | 0. 12245644 E+0 

2.15 | 0.11018312 E+0 0.11624406 E+0 | 0.11659253 E+0 | 0.11648417 E+0 0.11648415 E+0 

2.20 | 0.10467397 E+-0 0.11125745 E+0 | 0.11090864 E-+0 | 0.11080316 E+0 | 0.1 1080315 E+0 

2.25 | 0.99440269 E—-1 010511832 E+0 | 0.10550185 E+0 | 0.10539923 E+0 0.10539922 E+0 

2.30 | 0.94468258 E-1L 0.10074562 E-+0 | 0.10035863 E+0 ; 0.10025885 E+0 0.10025885 E+0 

5.00 | 0.59205294 E—2 0.12618494 E-1 | 0.67525362 E-2 | 0.67379479 E—2 0.67379437 E-2 

5.05 | 0.56245029 E-2 0.25511871 E~3 | 064233500 E-2 | 0.64093345 E—2 0.64093322 E-2 

5.10 | 0.53432779 E-2 0,12592983 E-1 | 0.61102118B-2 | 0.60967477 E-2 0.60967444 E—2 

5.15 | 0.50761141 E—2 | -0.10041796 E~2 | 0.58123390 E—2 0.57994057 E-2 | 0.57994043 E—2 

5.20 | 0.48223082 E—2 0.12693400 E-1 | 0.55289874 E~2 | 0.55165654 E—2 0.55165626 E—2 

5.25 | 0.45811930 E—2 | -0.22735195 E-2 | 052594491 E-2 | 0.52475 194 E—-2 ] 0.52475161 E-2 

5.30 | 0.43521333 E-2 0.12920752 E-1 | 0.50030509 E-2 | 0.49915947 E~2 0.49915928 E-2 

9.70 | 0.47684727 E—-4 0,64383668 E-+0 | 0.61541170 B—4 | 0.61283507 E~4 0.61283448 E—4 

9.75 | 0.45300490 E~4 | -0,67670959 E+0 | 0.58541038 E-d 0.58294674 E—4 | 0.58294663 E~4 

9.80 | 0.43035467 E~4 0.71150762 E+0 | 0.55687164 E—4 | 055451608 E—4 0.5545 1590 E~4 

9.85 | 0.40883693 E—4 | -0.74786037 E+0 | 052972413 E-4 0.52747200 E—4 | 0,.52747171 E-4 

9.90 | 0.38839509 E~4 0.78629363 E+0 | 0.50390008 E-4 | 0.5017469t E-4 0.50174654 E~4 

9.95 | 0.36897534 E—4 | -0,82648975 E+0 | 0,.47933496 E-4 0.47727641 E~4 | 0.47727597 E-4 

10.00 | 0.35052657 E-4 086894262 E+0 | 0.45596738 E~4 | 0.45399935 E—4 0.45399931 E~4 
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oscillates in sign, from step to step, and grows in magnitude. The reason for this strange 

(and incorrect) behavior will be studied in Section 6.5. @ 

Of course, in real applications we do not have the exact solution to compare 

with the numerical results. In that case, how do we know whether or not our results 

are sufficiently accurate? A useful rule of thumb, mentioned in Section 6.2, is 

to redo the entire calculation, each time with a smaller step size, until the results 
“settle down” to the desired number of significant digits. 

Thus far we have taken / to be a constant, for simplicity, but there is no reason 

why it cannot be varied from one step to the next. In fact, there may be a compelling 
reason to do so. For instance, consider the equation y’ + y = tanh 20x on —10 < 
x < 10. The function tanh 20x is almost a constant, except near the origin, where 
it varies dramatically approximately from —1 to +1. Thus, we need a very fine step 
size A near the origin for good accuracy, but to use that /’ over the entire x interval 

would be wasteful in terms of computer time and expense. 
One can come up with a rational scheme for varying the step size to maintain 

a consistent level of accuracy, but such refinements are already available within ex- 
isting software. For example, the default numerical differential equation solver in 
Maple is a “fourth-fifth order Runge—Kutta—Fehlberg method” denoted as RKF45 
in the literature. According to RKF45, a tentative step is made, first using a fourth- 

order Runge-Kutta method, and then again using a fifth-order Runge-Kutta method. 
If the two results agree to a prespecified number of significant digits, then the fifth- 
order result is accepted. If they agree to more than that number of significant digits, 
then / is increased and the next step is made. If they agree to less than that number 
of significant digits, then A is decreased and the step is repeated. 

6.3.4. Empirical estimate of the order. (Optional) The relative accuracies achieved 
by the different methods, as seen from the results in Table 2, strikingly reveal the 

importance of the order of the method. Thus, it is important to know how to verify 

the order of whatever method we use, if only as a partial check on the programming. 
Recall that by a method being of order p we mean that at any chosen z the 

error behaves as Ch? for some constant C: 

Yexact ~ Yeomp ™ Ch? (27) 

as h —> 0. Suppose we wish to check the order of a given method. Select a test 
problem such as the one in Example 3, and use the method to compute y at any x 

. Lop , ; 1 2 
point such as 2 = 1, for two different h’s say hy and hy. Letting yoornp and yorrnp 

denote the y’s computed at « = 1 using step sizes of hy and hg, respectively, we 

have 

Gh) D 
Yexact ~ Yeomp ~ Chi, 

4 ped me 
Yexact — Ycomp ~ Chi. 

Dividing one equation by the other, to cancel the unknown C, and solving for p,



308 Chapter 6. Quantitative Methods: Numerical Solution of Differential Equations 

¥ parabolic fit 

  

Mn-2 Xn My Natl * 

Figure 2. Adams—Bashforth 

interpolation of f for the case 

m = 2. 

gives © 
1 

Yexact ~ Yeomp 
In ro a 

Yexact~ Ycomp | 

pe ln [i | ee) 
hoa 

To illustrate, let us run the test problem (26) with Euler’s method, with Ay = 

O.1 and hy = 0.05. The results at a = 1 are 

hy = 0.1, Yoonp = 0.348678440100, 
ho = 0.05, — yorap = 0.358485922409, 

and since Yexact(1) = 0.367879441171, (28) gives p = 1.03, which is respectably 

close to 1. We should be able to obtain a more accurate estimate of p by using 

smaller h’s since (27) holds only as h — 0. In fact, using hy = 0.05 and ho = 0.02 

gives p = 1.01. Using those same step sizes, we also obtain p + 2.08, 2.02, and 

4.03 for the midpoint rule, second-order Runge-Kutta, and fourth-order Runge-— 

Kutta methods, respectively. 

Why not use even smaller h’s to determine p more accurately? Two difficulties 

arise. One is that as the h’s are decreased the computed solutions become more and 

more accurate, and the yexact — Ysomp and Yexact — Yeomp differences in (28) are 

known to fewer and fewer significant figures, due to cancelation. This is especially 

true for a high-order method. The other difficulty is that (27) applies to the trunca- 

tion error alone so, implicit in our use of (27) is the assumption that roundoff errors 

are negligible. [f we make h too small, that assumption may become invalid. For 

both of these reasons it is important to use extended precision for such calculations, 

as we have for the preceding calculations. 

6.3.5. Multi-step and predictor-corrector methods. (Optional) We've already 

called attention to the multi-step nature of the midpoint rule. Our purpose in 

this optional section is to give a brief overview of a class of multi-step meth- 

ods known as Adams—Bashforth methods, obtained by integrating y’ = f(x,y) 

from Bp tO Ont: 
Url 1 CE +h 

| y dx = | f (a, y(2)) dx (29) 
Ln Ly 

or 
ope L 

yan41) = ylen) + / f(a, y(e)) de. (30) 
J fn 

To evaluate the integral, we fit f (x, y(a)) with a polynomial of degree m, which is 

readily integrated. The polynomial interpolates (i.e., takes on the same values as) 

f (2, y(@)) at the m + 1 points @_—m,--.,€n—-1, Un as illustrated in Fig. 2 for the 

case m = 2. As the simplest case, let m = 0. Then the zeroth degree polynomial 

approximation of f (a, y(v)) on [an,tn4i) is f (x. y(x)) © fn, where fn denotes 

f (ni Yn), and (30) gives the familiar Euler method yr4i = Ya + fin’ Omitting
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the steps in this overview we state that with m = 3 one obtains the fourth-order 

Adams—Bashforth method 

. . . . h 
Unt1 = Un + (55 fn ™ 59 fn—1 + 37 fn—2 ™ 9 fn—3) 54 (3 la) 

with a local truncation error of 

251 4, 5 
(nap = Fog VUE) (3Lb) 

for some € in [t,—~3,U,].We can see that (31a) is not self-starting; it applies only 

forn = 3,4,..., so the first three steps (for n = 0,1, 2) need to be carried out by 
some other method. 

Suppose that instead of interpolating f at ap,—om,...,2n—-1,2n We interpo- 

late at Gye m+i;..-s2n;en41. With m = 3, again, one obtains the fourth-order 

Adams—Moulton method 

_ . . h 
Yn+1 = Yn + (9fr4t +19fn -5fn-1 + fn—2) oy (32a) 

24 

with a local truncation error of 

19, 5 
(en) am = ~ 799 yO (OR, (32b) 

where the €’s in (31b) and (326) are different, in general. 

Although both methods are fourth order, the Adams—Moulton method is more 
accurate because the constant factor in (€,,) 4,7 is roughly thirteen times smaller 

than the constant in (en) 4. This increase in accuracy occurs because the points 
Un—m+els--+;En,Un41 are more centered on the interval of integration (from x, to 

n41) than the points @,—m,--.,2@n—1,£n. On the other hand, the term fp4. = 
f(@n+1; Yn+1) in (32a) is awkward because the argument y,41 is not yet known! 

[If f is linear in y, then (32a) can be solved for yni1 by simple algebra, and the 
awkwardness disappears.] Thus, the method (32a) is said to be of closed type, 

whereas (31a) and all of our preceding methods have been of open type. 

To handle this difficulty, it is standard practice to solve closed formulas by 

iteration. Using superscripts to indicate the iterate, (32a) becomes 

h 

240 

(kL) : A iat . , 
Yn-1 = Yn + [9s (enn, yes) + 19 fn _ Dfn-1 + In| (33) 

- . (0), . . an To start the iteration, we compute yo. from a predictor formula, with subse- 
quent corrections made by the corrector formula (33). It is recommended that 
the predictor and corrector formulas be of the same order (certainly, the correc- 

tor should never be of lower order than the predictor) with the corrector applied 

only once. Thus, the Adams—Bashforth and Adams—~Moulton methods constitute a 
natural predictor-corrector pair with “AB” as the predictor and “AM” as the cor- 
rector, Why might we choose the fourth-order AB-AM predictor-corrector over
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the Runge-Kutta method of the same order or vice versa? On the negative side, 

AB-—AM is not self-starting, it requires the storage of fn—3, fn—2, and Fn—1, and is 

more tedious to program. On the other hand, it involves only two function evalua- 

tions per step (namely, f, and fp41) if the corrector is applied only once, whereas 

Runge-Kutta involves four. Thus, if f(x,y) is reasonably complicated then we can 

expect AB—AM to be almost twice as fast. In large-scale computing, the savings 

can be significant. 

Closure. Motivated to seek higher-order methods than the first-order Euler method, 

we use a Taylor series approach to obtain the second-order midpoint rule. Though 

more accurate, a disadvantage of the midpoint rule is that it is not self-starting. Pur- 

suing a different approach, we look at the possibility of using a weighted average of 

slopes at various points in the x, y plane, with the weights and locations determined 

so as to maximize the order of the method. We thereby derive the second-order 

Runge-Kutta method and present, without derivation, the fourth-order Runge-Kutta 

method. The latter is widely used because it is accurate and self-starting. 

Because of the importance of the order of a given method, we suggest that the 

order be checked empirically using a test problem with a known exact solution. 

The resulting approximate expression for the order is given by (28). 

In the final section we return to the idea of multistep methods and present a 

brief overview of the Adams—Bashforth methods, derived most naturally from an 

approximate integral approach. Though not self-starting, the fourth-order Adams- 

Bashforth method (31a) is faster than the Runge-Kutta method of the same order 

because it requires only one function evaluation per step (namely, fn; the fais 

fn—2, and fn—3 terms are stored from previous steps). A further refinement con- 

sists of predictor-corrector variations of the Adams~Bashforth methods. However, 

we stress that such refinements become worthwhile only if the scope of the compu- 

tational effort becomes large enough to justify the additional inconvenience caused 

by such features as the absence of self-starting and predictor-corrector iteration. 

Otherwise, one might as well stick to a simple and accurate method such as fourth- 

order Runge—Kutta. 

Computer software. Computer-software systems such as Maple include numer- 

ical differential equation solvers. In Maple one can use the dsolve command to- 

gether with a numeric option. The default numerical solution method is the RKF45 

method mentioned above. Note that with the numeric option of dsolve one does 

not specify a step size A since that choice is controlled within the program and, 

in general, is varied from step to step to maintain a certain level of accuracy. To 

specify the absolute error tolerance one can use an additional option called abserr, 

which is formatted as abserr = Float(1,2-digits) and which means | times 10 to the 

one- or two-digit exponent. For instance, to solve 

y=-y y(0)=1 
for y(x) with an absolute error tolerance of 1 x 107°, and to print the results at 

wc = 2,10, enter 

with(DEtools)}:
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and return. Then enter 

dsolve({diff(y(a), 2) = —y(x), y(0) = 1}, y(2), 
value = array((2,10]), abserr = Float(1, —5)); 

and return. The printed result is 

(x, y(w)| 
2. .1353337989380555 

10. .00004501989255717160 

For comparison, the exact solution is (2) exp (—2) 
y(10) = exp (—10) = 0.0000453999, respectively. 
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type = numeric, 

== 0.1353352832 and 

  

EXERCISES 6.3 
  

1. Evaluate y; and yg by hand, by the second-order and fourth- 

order Runge-Kutta methods, with A = 0.02. Obtain the exact 

values y(a,) and y(c2) as well. 

(a) y’ = 3000¢y~*; (0) = 2 
(b)y! = 40ze"; (0) =3 
(c)yi=aty; y(-l)=5 

(dy =~-ytana; y(1)=—-8 

(e)y’ = (y+ 1)/4; y(0) = 0 
(y= —-2ysing; y(2)=5 

2. (a)-(f) Program the second- and fourth-order Runge-Kutta 

methods and use them to solve the initial-value problem given 

in the corresponding part of Exercise | but with the initial con- 

dition y(0) = 1. Use A = 0.05. Print out all computed values 

of y, up to x = 0.5, as well as the exact solution. 

3. Using the test problem (10), do an empirical evaluation of 

the order of the given method. Use (28), with h = 0.1 and 

0.05, say. Do the evaluation at two different locations, such as 

x= Landa = 2. (The order should not depend upon a so 

your results at the two points should be almost identical.) 

(a) Euler’s method 

(b) Second-order Runge-Kutta method 
(c) Fourth-order Runge-Kutta method 

4. (Liquid level) Liquid is pumped into a tank of horizon- 

tal cross-sectional area A (m?) at a rate Q (liters/sec), and is 

drained by a valve at its base as sketched in the figure. 

  

    Dy 
According to Bernoulli’s principle, the efflux velocity u(t) is 

  

approximately \/2gz(t), where g is the acceleration of grav- 

ity. Thus, a mass balance gives 

Aa'(t) = Q(t) - Bu(t) (4.1) 

where B is the cross-sectional area of the efflux pipe. For 

definiteness, suppose that A = 1 and By/2g = 0.01 so 

a’ = Q(t) - 0.01Vz. (4.2) 

We wish to know the depth x(t) at the end of 10 minutes 

(t = 600 sec), 20 minutes, ... , up to one hour. Program the 

computer solution of (4.2) by the second-order Runge-Kutta 

method for the following cases, and use it to solve. for those 

x values: 2(600), (1200),...,2(3600). (Using the rule of 

thumb given below Example 3, reduce A until those results 

settle down to four significant digits.) 

(a) Q(t) = 0.02; 2(0) =0 
(b) Q(t) = 0.02; 2(0) = 2 
(c) Q(t) = 0.02; «(0)=4 
(d) Q(t) = 0.02; x(0) = 6
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(e) Q(t) = 0. 02 (1 — c* ooat) x(0) = 0 

(f) QC a ~ 0.02 (1 — en: O04t) x(0) —8 

() Q(t) = 0.028; (0) =0 
(b) Q(t) = 0.02(1 + sin0.1¢); (0) = 0 
NOTE: Surely, we will need fA. to be small compared to the 

period 200m of Q(t) in part (h). 

5. (a)—(h) (Liquid level) Same as Exercise 4, but use fourth- 

order Runge-Kutta instead of second order. 

6. (a)—(h) (Liquid level) Same as Exercise 4, but use com- 

puter software to do the numerical solution of the differential 
equation. In Maple, for instance, the dsolve command uses the 

fourth-fifth order RKF45 method. 

7. (Liquid level) (a) For the case where Q(¢) is a constant, 

derive the general solution of (4.2) in Exercise 4 as 

Q-0.01/c — Qin (Q ~ 0.01Vz) = 0.00005t + C, (7.1) 

where C' is the constant of integration. 

(b) Evaluate Cin (7.1) if @ = 0.02 and 2(0) = 0. Then, solve 

(7.1) for a(t) at t = 600, 1200,...,3600. NOTE: Unfortu- 

nately, (7.1) is in implicit rather than explicit form, but you 

can use computer software to solve. In Maple, for instance, 

the relevant command is fsolve. 

8. Suppose that we have a convergent method, with B, ~ Ch? 

as h - Q. Someone offers to improve the method by either 

halving C or by doubling p. Which would you choose? Ex- 

plain. 

9, Expand the right-hand side of (18) in a Taylor series in A 

and show that the result is as given in (20). HINT: To expand 

the f(a, +ah,y + @fh) term you need to use chain differ- 

entiation. 

10. (a) Program the fourth-order Runge-Kutta method (25) and 

use it to run the test problem (10) and to compute y at z = 1 

using h = 0.05 and then h = 0.02. From those values and 

the known exact solution, empirically verify that the method is 

fourth order. 
(b) To see what harm a programming error can cause, change 

the x, + h/2 in the formula for ke to z,,, repeat the two eval- 

uations of yata = L using A = 0.05 and A = 0.02, and em- 

pirically determine the order of the method. Is it still a fourth- 

order method? 

(c) Instead of introducing the programming error suggested in 

part ( (6), suppose we change the coefficient of ko in Yna, = 

Un be b (hey + 2kg + 2k3 + ky) from 2 to 3. Do you think the 

method will still be convergent? Explain. 

UL. (Rectangular, trapezoidal, and Simpson's rule) Consider 

the special case where f in y’ = f is a function of x only. 
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Integrating y’ = f(x) from x, to a,41, we have 

Eb 

yan) = y(n) + | f(a) da (11.1) 

If we fit f(a), over [t,,2n 1], with a zeroth-degree poly- 

nomial (i.e., a constant) that interpolates f at x, then we have 

f(a) = f(e,), and (11.1) gives y(tn4i) © y(n) + f(@n)h 

and hence the Euler method yn. = Yn + Han)h. 

(a) Show that if we fit f(z), over (tn, @n41], with a first-degree 

polynomial (a straight line) that interpolates f ata, and @n41, 

then f(a) & f(an) +[f(en4i) — f(en)| (w ~ tn) /h. Putting 

that approximation into (11.1), derive the approximation 

1 = ylan) +5 
and show that (for the special case where f is a function 

of x only) (11.2) is identical to the second-order Runge-Kutta 

method (23). 

(b) Show that if we fit f(x), over [en,@n41], with a second- 

degree polynomial (a parabola) that interpolates f at ty, 

In + ne. and n+. = tn +h, and put that approximation 

into (11.1), then one obtains 

[f(an) + f(aner)] hy (11.2) y(tn41) 

y(@ngi) = 

1 c 

6 [f(tn) + Af (tn + h/2) + f(®n+1)] A, 

(11.3) 

and show that (for the case where f is a function of x only) 

(11.3) is identical to the fourth-order Runge —- Kutta method 

(25). NOTE: These three results amount to the well-known 

rectangular, trapezoidal, and Simpson’s rules of numerical 

integration for a single interval of size h. If we sum over all of 

the intervals, they take the forms 

[ f(x) dz = 

[Fla) + fla +h) + 
(f(a) + 2fa +h) + 

fo $2f(b = h) + F(By] 4 
Af(a th) + 2f(a + 2h) + 

feeb af(b— h) + £(0)] 43 

y(@n) + 

+ f(b) A, 

2f(a+ 2h 

[f(a) + + 4f(a + 3h) 

(11.4) 

respectively. In passing from (11.3) to the last line 

of (11.4) we have replaced h/2 by fh everywhere in
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(11.3), so that the revised (11.3) reads Yae1 = Ya + 
(f(t) + Af (@n41) + f(@n+2)| h/3, where z, = a+nh. Por 

the rectangular and trapezoidal rules the number of subdivi- 

sions, (b - a)/h, can be even or odd, but for Simpson’s rule 

it must be even. The order of the error for these integration 

methods is O(h), O(h?), and O(h*), respectively. 

12. (a) Using m = 1, derive from (30) the Adams—Bashforth 

method 

_ ‘ . t 

Yn+1 = Un + (83fn _ fn~1) 5 (12.1) 
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(b) Determine the order of the method (12.1) empirically by 

using it to solve the test problem (10), at « = 1, with two 

different step sizes, and then using (28). 

13. This exercise is to take you through the fourth-order AB— 

AM predictor-corrector scheme. 

(a) For the problem y’ = 2xy?,y(0) = 1, compute y1, yo, Ys 

from the exact solution, with A = 0.1, and use those as starting 

values to determine y,, by hand, by means of the fourth-order 

AB—AM predictor-corrector scheme given by (31a) and (33). 

Apply the corrector three times. 

(b) Continuing in the same way, determine ys. 

  

6.4 Application to Systems and Boundary- Value Problems 

The methods developed in the preceding sections are for an initial-value problem 
with a single first-order differential equation, but what if we have a system of dif- 
ferential equations, a higher-order equation, or a boundary-value problem? In this 
section we extend the Euler and fourth-order Runge—Kutta methods to these cases. 

6.4.1. Systems and higher-order equations. Consider the system of initial-value 

problems 
ul(v) = f(x,u,v); 

v(x) = g(a, u,v); 

u(a) = tp 

u(a) = vo 

(la) 

(1b) 

on u(x) and v(x). To extend Euler’s method to such a system, we merely apply it 

to each of the problems (1a) and (Ib) as follows: 

Until = Un + f (2A, Un, Vndh, 

a rn a gltn, Uns Un )h 
(2) 

forn = 0,1,2,.... Equations (2) are coupled (since each involves both u and v), 

as were equations (1), but that coupling causes no complication because it occurs 
in the right-hand sides of the equations, and the values u,, Vp, are already known 

from the preceding step. 

EXAMPLE 1. Consider the system 

U = Uv; u(O) = 0 

v(0) = 1. 
a 

vos uu";
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The latter looks fairly simple, but it is not. [t is nonlinear because of the uu" term. Turning 

to numerical solution using the Euler method (2), let h = 0.1, say, and let us go through 

the first couple of steps. First, ug = 0 and vp = 1 from the initial conditions. Then, 

n=: 

uy = Uo + (to + Up)h = 0+ (0+ 1)(0.1) = 0.1, 

vy = v9 tugugh = 1+ (0)(1)°(0.1) = L. 

mel: 

ug = uy t+ (ay + uy)h = 0.1+ (0.14 1)(0.1) = 0.21, 

vg = vy + uvjzh =1+ (0.1)(1)?(0.1) = 1.01, 

and soon. @ 

Similarly, if the system contains more than two equations. 

Next, we show how to adapt the fourth-order Runge-Kutta method to the 

system (1). Recall that for the single equation 

y=fle,y)s ya) = Yo (4) 

the algorithm is 

Yntl = Yn + Z (Ay + 2h “Fh 2k3 + ka) ’ 

ky Af (@nsYn)s ko = hf (an + ne Un + $k1) ’ (5) 

kg = hf (tn + a Yn + ke) , ka =hf (Ln413 Yn ks) . 

For the system (1) it becomes 

1 
Une == Un + 6 (ky + 2ko + 2h3 + ka), 

1 
Until = Up + 6 (dy + 2lo + 213 + I4) ) 

ky = hf (an, Un; Vn); 

l= hg(tn, Un) Un), 

. h 1 1 ; 
ko = hf (« + 5 lb + ght Un + st) : (6) 

h 1 1 
lo = hg (« + 97 Un ht Un + sts) ’ 

1 
kg = hf (« + =, Un + 5 he, Un + sts) ,
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h 1 1 
lg = hg ( + 5? Un + ah Un +r sls) , 

ka = hf (Wn41; Un + kg, Un + lz) ; 

l4=hg (Lr41, Un + kg, Un + ls) ) 

and similarly for systems containing more than two equations. 

EXAMPLE 2. Let us illustrate (6) using the same system as in Example 1, 

0 

L, 

wi=aty; u(0) 

vo = uu, u(0) 
{| 

(7) 

With A = 0.1, say, (6) gives 

n=O: 

Ay = A(x + vo) = (0.1)(0 + 1) = 0.1, 

l, = huovg = (0.1)(0)(1)? = 0, 

ko =h (+o + 5) + (0 + 3) = (0.1) (0 + 0.05) + (1 + 0)] = 0.105, 

k L\? l=h (« + 3) (1 + 3) = (0.1) (0 + 0.05) (1 +0)” = 0.005, 

} lo 
kg = h (0 + 5) + (v0 + 3) 

= (0.1) [(0 + 0.05) + (1 + 0.0025)] = 0.10525, 
ke lo 2 

ls =h (« + =) (1 + 2) 

= (0.1) (0 + 0.0525) (1 + 0.0025)" = 0.005276, 
ka = hla, + (v9 + l)| 

= (0.1) {0.1 + (1 + 0.005276)} = 0.110528, 
ly = A (uo + ks) (vo + la)? 

= (0.1) (0 + 0.10525) (1 + 0.005276) = 0.010636, 

1 
Uy == Up + 6 (ky + Qko + 2k + ka) 

1 
=O+ 6 (O.1 + 0.21 + 0.2105 + 0.110528) = 0.105171, 

1, 
Uy = Uo + 5 (1, + 2ly + 2ly + ly) 

1. 
= 1+ 6 (0 + 0.01 + 0.010552 + 0.010636) = 1.005198. 

3 

315
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mal: 

ky = 0.110520, ly = 0.010627, 

kg = 0.116051, lo = 0.016382, 

kg = 0.116339, ly = 0.016760, 

ka = 0.122196, lg = 0.023134, 

tg = 0.221420, vg = 1.021872, 

and so on for n = 2,3,.... We suggest that you fill in the details for the calculation of the 

ky,..., V2 values shown above forn = 1. 

Of course, the idea is to carry out such calculations on a computer, not by 

hand. The calculations shown in Examples | and 2 are merely intended to clarify 

the methods. 

What about higher-order equations? The key is to re-express an nth-order 

equation as an equivalent system of n first-order equations. 

EXAMPLE 3. The problem 

y" — ay" +y' — 2y = sina; y(1) = 2, y'(1) = 9, yA)=-3 (8) 

can be converted to an equivalent system of three first-order equations as follows. Define 

y’ = wand y” = v (hence u’ = v). Then (8) can be re-expressed in the form 

y =U y(1) = 2 
ul =v; u(1) = 0 (9a,b,c) 
vo =sing +2y3—-u+cv; v(l) = —3. 

Of the three differential equations in (9), the first two merely serve to introduce the auxiliary 

dependent variables u and v, and since v’ is y’” the third one is a restated version of the 

given equation y’”" — zy" + y' — 2y? = sin x. Equation (9a) is the y equation, so the initial 

condition is on y(1), namely, y(1) == 2, as given in (8). Equation (9b) is the u equation, 

so the initial condition is on u(1), and we have u(1) = y/(1) = 0, from (8). Similarly, for 

equation (9c). 

The system (9) can now be solved by the Euler or fourth-order Runge-Kutta methods 

or any other such algorithm. To illustrate, let us carry out the first two steps using Euler's 

method, taking 2 = 0.2, say. 

m=: 

Yi. = Yo + uoh = 2+ (0)(0.2) = 2, 

Uy = Ug + Uph = 0+ (—3)(0.2) = —0.6, 

V1 = Up + (sin zo + 2y3 — Ug + Lovo) h 

= 3+ {sin + 2(2)® — 0+ (1)(—3)] (0.2) = -0.231706. 
n=l 

yo = yi + tyh = 2+ (—0.6)(0.2) = 1.88,
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ug = uy + vph = —0.6 + (—0.231706)(0.2) = —0.646341, 

Vg = Uy + (sin typ + 2y) — uy + v1U1) h 

= —0.231706 + [sin 0.2 + 2(2)* ~ (—0.6) + (0.2)(—0.231706)] (0.2) 

= 3.118760, 

and so on forn = 2,3,.... 

COMMENT. Observe that at each step we compute y, u, and v, yet we are not really 

interested in the auxiliary variables u and v. Perhaps we could just compute y,, yo,... and 

not the u,v values? No; equations (9) are coupled so we need to bring all three variables 

along together. Of course, we don’t need to print or plot u and v, but we do need to compute 

them. @ 

EXAMPLE 4. Examples | and 2 involve a system of first-order equations, and Example 
3 involve a single higher-order equation. As a final example, consider a combination of the 

two such as the initial-value problem 

u! —~3cuv=sing; u(0)=4, w(0)=—-l ; u(0) (0) (10) 

7, vu" +2u-u=5a;  v(0) u'(0) = 0. Hl 

The idea is exactly the same as before. We need to recast (10) as a system of first-order 

initial value problems. We can do so by introducing auxiliary dependent variables w and z 

according tou’ = wand vu! = s. Then (10) becomes 

ul = wy u(O0) = 4 

w= sing +3auv; w(0) = —-1 
(il) 

vl 5; v(0) = 7 

c= 5e-Qutu; 2(0) =0 

which system can now be solved by Euler’s method or any other such numerical differential 

equation solver. 

6.4.2. Linear boundary-value problems. Our discussion is based mostly upon 

the following example. 

EXAMPLE 5. Consider the third-order boundary-value problem 

ay 

ym a’ys nas y(0) =0, y'(0) = 0, y(2) = 4. (12) 

To solve numerically, we begin by recasting (12) as the first-order system, 

ul = uy u(O) = 0 (13a,b,c)
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However, we cannot-apply the numerical integration techniques that we have discussed 

because the problem (13c) does not have an initial condition so we cannot get the solution 

started. Whereas (13c) is missing an initial condition on v, (13a) has an extra condition ~ 

the right end condition y(2) = 4, but that condition is of no help in developing a numerical 

integration scheme that develops a solution beginning at x = 0. 

Nevertheless, the linearity of (12) saves the day and permits us to work with an initial- 

value version instead. Specifically, suppose that we solve (numerically) the four initial- 

value problems 

L{¥i] = ¥,(0) =1, ¥{(0)=0, ¥/(0) =0, 
Ly] = ¥2(0) = 0, Yj(0) = 1, Y¥o'(0) = 9, (14) 

L[¥s] = ¥3(0) = 0, Yy(0) = 0, ¥5'(0) = 1, 

L{¥5] = ¥p(0) = 0, Y;,(0) = 0, ¥;'(0) = 0, 

where L = d3/dx? — x? is the differential operator in (12). The nine initial conditions 

in the first three of these problems were chosen so as to have a nonzero determinant so 

that Y;, Y2, Y3 comprise a fundamental set of solutions (i.e., a linearly independent set of 

solutions) of the homogeneous equation L[Y] = 0. The three initial conditions on the 

particular solution Y, were chosen as zero for simplicity; any values will do since any 

particular solution will do. Suppose we imagine that the four initial-value problems in (14) 

have now been solved by the methods discussed above. Then 4, Y2, Y3, Yp are known 

functions of x over the interval of interest [0,2], and we have the general solution 

y(z) = CrY¥i(2) + C2¥o(x) + C3¥3(2) + Y,(2) (15) 

of L[y] = —x*. Finally, we evaluate the integration constants Cy, C2, C's by imposing the 

boundary conditions given in (12): 

y(0)=0=C, +0+0+0, 

y (0) =0=0+C,+0+0, (16) 

y(2) =4= CrY1(2) + Cy ¥2(2) + C3¥3(2) + Y,(2). 

Solving (16) gives Cy = Cy = O and Cy = [4 — Y,(2)]/¥3(2), so we have the desired 

solution of (12) as 
4— ¥,(2) 

y(x) = 
¥3(2) 

In fact, since C, = Cy = 0 the functions ¥j(z) and Y2(z), have dropped out so we 

don’t need to calculate them. All we need are ¥3(x) and Y,(), and these are found by the 

numerical integration. of the initial-value problems 

Y3(a) + Y,(2). (17) 

Yy = U3, — Y3(0) = 0, 

Us = Vs,  Us(0) = 0, (18) 

V5 i fon
 x = S ! me
 

e
A
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and 

¥) = Up, ¥p(0) = 0, 
U7 = Vp, U,y(0) = 0, (19) 

Vi =2Y,-at, V,(0) = 0, 

respectively, 

COMMENT. Remember that whereas initial-value problems have unique solutions (if the 

functions involved are sufficiently well behaved), boundary-value problems can have no 

solution, a unique solution, or even an infinite number of solutions. How do these possi- 

bilities work out in this example? The clue is that (17) fails if ¥3(2) turns out to be zero. 
The situation is seen more clearly from (16), where all of the possibilities come into view. 

Specifically, if ¥3(2) 4 0, then we can solve uniquely for C3, and we have a unique solu- 

tion, given by (17). If ¥3(2) does vanish, then there are two possiblities as seen from (16): 

if Y,(2) # 4, then there is no solution, and if Y,(2) = 4 then there are an infinite number 

of solutions of (12), namely, 

y(x) = C3Y3(z) + Y,(2), (20) 

where C’; remains arbitrary. @ 

We see that boundary-value problems are more difficult than initial-value prob- 
lems. From Example 5 we see that a nonhomogeneous mth-order linear boundary- 
value problem generally involves the solution of n + 1 initial-value problems, al- 
though in Example 5 (in which n = 3) we were lucky and did not need to solve for 
two of the four unknowns, Y) and ¥5. 

Nonlinear boundary-value problems are more difficult still, because we cannot 
use the idea of finding a fundamental set of solutions plus a particular solution and 
thus forming a general solution, as we did in Example 5, and which idea is based 
upon linearity. One viable line of approach comes under the heading of shooting 
methods. For instance, to solve the nonlinear boundary-value problem 

y+siny = 3a; (0) = 0, y(5) =2 eh 
we can solve the initial-value problem 

y =u, y(0) = 0 =u, y(0) 
ul = 3x2 —siny, u(0) = uo 

iteratively. That is, we can guess at the initial condition uo [which is the initial 

slope y’(0)] and solve (22) for y(x) and u(x). Next, we compare the computed 
value of y(5) with the boundary condition y(5) = 2 (which we have not yet used). 
If the computed value is too high, then we return to (22), reduce the value of wo, 

and solve again. Comparing the new computed value of y(5) with the prescribed 
value y(5) = 2, we again revise our value of ug. If these revisions are done in
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a rational way, one can imagine obtaining a convergent scheme. Such a scheme 

is called a shooting method because of the obvious analogy with the shooting of 

a projectile, with the intention of having the projectile strike the ground at some 

distant prescribed point. 

Thus, we can see the increase in difficulty as we move away from linear initial- 

value problems. For a linear boundary-value problem of order n we need to solve 

not one problem but n + 1 of them. For a nonlinear boundary-value problem we 

need to solve an infinite sequence of them, in principle; in practice, we need to 

carry out only enough iterations to produce the desired accuracy. 

Closure. In Section 6.4.1 we extend the Euler and fourth-order Runge—Kutta so- 

lution methods to cover systems of equations and higher-order equations. [n that 

discussion it is more convenient to use n-dimensional vector notation because of 

its compactness, but that notation is not be introduced until Chapters 9 and 10. 

Nonetheless, let us indicate the result, if only for the Euler method, for future ref- 

erence. The idea is that we can express the system 

y(x) = fi (a, yi(2),---yn(t)) 3 yn (@) = Yio, 
(23) 

yj, (x) = fn (x, yi(2), tee Yn(x)) ; Yn (a) = Ynds 

in the vector form 

y'(x) =f(z,y(x)); ya) =o, (24) 

where the boldface letters denote ‘n-dimensional column vectors:” 

yi(z) yj (x) fi(z,y(x)) 

y(a)= : |, y(«)= : |, f(z, y(2))= 

Yn (©) yh (x) fr(v, y(z)) 
(25) 

and where f;(a, y(«)) is simply a shorthand notation for f;(x, yi(x), ---,Yn(@)). 

Then the Euler algorithm corresponding to (24) is 

Yn+1 = Yn +f (fn, Yn) h. (26) 

In Section 6.4.2 we turn to boundary-value problems, but only linear ones. 

Given an nth-order linear boundary-value problem L{y] = f(2) on an interval 

(a, 6] plus m boundary conditions the idea is to solve the problems 

L[¥i]=0; Yila)=1, Vila) =-- = ¥f"" (a) =O, 

1 — 2) (n—1) (27) 
la) Sr = yi"")a) = 0, Ye" (a) = 1, 

L[Yl =f; Ypa) = = ¥A" (a) =0 

L(¥n)=0; Ya(a)=¥; 
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for ¥i(v),..., ¥n(e), ¥Yp(e) and to form the general solution as 

y(x) = CyYi(ax) +++ + Cn Yn (@) + Yp(x). (28) 

Finally, application of the original boundary conditions to (28) yields n linear al- 

gebraic equations for Cy,..., Cn, which equations will have a unique solution, no 

solution, or an infinity of solutions. 

Computer software. No new software is needed for the methods described in this 

section. For instance, we can use the Maple command dsolve, with the numeric 

option, to solve the problem 

and to print the results at 2 = 1, 2, and 3. First, enter 

with(DEtools): 

and return. Then enter 

dsolve({diff(u(a), a2) = 

u(0) = 0, v(0) = Lh, 
value = array ([1, 2.3] 

=u +(x), diff(u(x),2) = —5 * u(x) * v(2), 

fu(x),u(x)}, type = numeric, 

))s 

and return. The printed result is 

(x, u(x), v(z)| 
1. 1.032499017614234 .07285274036469075 

2. 2.544584704578166 .00001413488345836790 

3. 5.044585755162072 —.3131443346304622 x 107% 

The only differences between the command above and the one given at the end 
of Section 6.3 is that here we have entered two differential equations, two initial 
conditions, and two dependent variables, and we have omitted the abserr option. 

Observe that to solve a differential equation, or system of differential equa- 

tions, numerically, we must first express the equations as a system of first-order 
equations, as illustrated in Example 4. However, to use the Maple dsolve command 

we can leave the original higher-order equations intact.
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EXERCISES 6.4 
  

1. In Example 2 we gave Ay, l,, ka, lo, k3,l3, Ka, ly forn = 1, 

and the resulting values of wg and v2, but did not show the 

calculations. Provide those calculations, as we did for the step 

n= 0, 

2. As we did in Example 1, work out y1, 21, by hand. Use three 

methods: Euler, second-order Runge-Kutta, and fourth-order 

Runge~ Kutta, and take 4 = 0.2. These problems are rigged 

so as to have simple closed-form solutions, some of which are 

given in brackets. Compare your results with the exact solu- 

tion. 

(a) y=z yO)=1 
z= -y; 2{0) =0 

(b) yi = 42; yQ)=5 
Zany; 2(2)=0 

(c) y= —2"/y, y(0)=1 [y(a) = e>*] 
ge-y, <(0)=0 [s(z)=e*] 

(d) y! =2e2*/y; y(l)=1 [y(c) = 2°] 
gay/z*; 2zQ)=1 [e(z)=cx 

(e) y =(et+y)z-1, yl =1 [y(z) =<] 
za—yz?; 2(l)=1 [2(2) = 1/2] 

3. (a)—(e) First, read Exercise 2. Use computer software to 

solve the initial-value problem given in the corresponding part 

of Exercise 2, for y(x) and z(@) at = 3,5, and 10, and com- 

pare those results with the exact solution at those points. 

4. (a) Just as (2) and (6) give the Euler and fourth-order Runge- 

Kutta algorithms for the second-order system (1), write down 

the analogous Euler, second-order Runge-Kutta, and fourth- 

order Runge-Kutta algorithms for the third-order system 

a(t) = f(t,c,y,2), 

y(t) = g(t,2,y,2), yla) = yo 

2'(t) = f(t, 2,452), 2(a) =. 2. 

Use the Euler and second-order Runge— Kutta algorithms to 

work out 21,41, 21 and a, ye, 22, by hand, for the case where 

fig, h are y — 1,2,¢ +a + 3(2 — y + 1), respectively, with 
the initial conditions (0) = —3, y(0) = 0, <(0) = 2 using 

A= 0.3, 

(b) Same as (a), but with 2(0) = y(0) = 2(0) = 0. 
(c) Same as (a), but with 2(0) = 1,y(0) = 0 

(a) = x 

(4.1) 

co
 

(d) Same as (a), but with (0) = y(0) = 0, 2(0) = 10. 

5. We re-expressed (8) and (10) as the equivalent systems of 

first-order initial-value problems (9) and (11), respectively. Do 

the same for the problem given. You need go no further. 

(a) ma" + cx! + ka = f(t); 2(0)= x0, 2(0) = 25 

(b) Li’ + Ri’ +(1/C)i= E'(t); i(0)=to, 1'(0) = tp 

(c)y" —ayy’=sine; yj=5, y)=-1 
(dy +y' —4y = 32; y(0)=2, y'(0)=1 
(e) y! —2siny’ = 3a; y(-2)=7, y'(-2)=4 

y"(—2) =0 
(Hy +2y=cos2e; yl)=3, y()=2, y"C)=0 
(g) a” +2a —3y=10cos3t; x(0)=2, 2(0)=—1 

y—at+5y=0; (0) 
(h) y+ ay's = f(x); 

y'"(3) = 6 
ze" +y-—z= g(x); 2(3)=0,2'(3) =8 

Gi) ve” —32z=sint; x)=a’(1)=0, 2 ()=3 

y +2e+y-5z2=0; y(l)=6 
2 —day=e*,  z(1)=2 

jy" =yz; y(0)=1, yO) =y"(0) =9 
2" = -ay +2; 2(0) = 5,2’(0)=1 

6. Use computer software to solve the given system numeri- 

cally, and print out the solution for y(x) and z(x) atx = 1,2. 

(a) y(0) = 2, y'(0) = -1 yl! —2e2’ = 5a; 

(b) yf +38rz=27; y(0)=1 
ype +20; 2(0)=2(0)=2, 2”(0)=-1 

(c) ys=2tta;, yQ)=1 yer =3 2Q)=-1, 20)=0 
(d) yae" =x, yO)=-l 

z(Ij=l, 2) = 271) =0 

7. Complete the solution of Example 5 by using computer soft- 

ware to solve (18) for ¥3(x) and (19) for ¥,(x), atx = 2,4, 6, 

and then using (17) to determine y(z) at those points. 

8. Use the method explained in Example 5 to reduce the given 

linear boundary-value problem to a system of linear initial- 

value problems. Then complete the solution and solve for the 

specified quantity, either using computer software or by pro- 

gramming any of the numerical solution methods that we have 

studied. Obtain accuracy to five significant figures, and in- 

dicate why you believe that you have achieved that accuracy.
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If you believe that there is no solution or that it exists but is (c) y” ~ [In(a@ + l)] y’ — y = 2sin 3a + 1; 
nonunique, then give your reasoning. HINT: You can specify y(0) = 3, y(2) =—L. 

homogeneous initial conditions for the Y,, problem, as we did Determine y(a) at x = 0.5, 1.0, 1.5. 
in Example 5, but be aware that you do not have to use homo- (dyy"+y—-ey=23; y(0)=1, y(5)=2. 

geneous conditions, and that you may be able to reduce your Pyetermine y(a) at x = 1,2,3,4. 
labor by a more optimal choice of those conditions. (ec) yy" + ay = 20%; y(l)=y/(1)=0, y"(2)=-3 

(a) y" ~ 2ay' +y=3sine; y(0)=1, yQ)=3. Determine y2). 

Determine y(1) (Dy tay ty =a; vl) =2, yl) =0-4, y'5) =3 
(b) y+ (cosz)y=0; y(0)=1, y(10) = Determine y(x) at x = 4, 5. 
Determine y(2). 
  

-6.5 Stability and Difference Equations 

6.5.1. Introduction. In progressing from the simple Euler method to the more so- 
phisticated higher-order methods our aim was improvement in accuracy. However, 
there are cases where the results obtained not only fail to be sufficiently accurate 
but are grossly incorrect, as illustrated in the two examples to follow. The second 
one introduces the idea of stability, and in Section 6.5.2 we concentrate on that 

topic. 

EXAMPLE 1. The initial-value problem 

(1) 

has the exact solution y(z) = exp (—42). If we solve it by the fourth-order Runge-Kutta 
method for the step sizes h = 0.1, 0.05, and 0.01, we obtain in Table | the results shown, at 

Table 1. Runge—Kutta solution of (1). 

  

  

  

  

  

x h=0.1 h = 0.05 h=0.01 Exact 

0.179006 E-1 0.182893 E-1 0.183153 E-1 | 0.183156E-1 

4 | —0.167842 E+0 | —0.106538 E-1 | —0.146405 E—3 | 0.112535 E-6 

—0.500286 E+3 | ~0.317586 E+2 | —0.436763 E+0 | 0.126642 E—-13 

12 | —0.149120 E+7 | —0.946704 E+5 | —0.130197 E+4 | 0.142516 E-20             
  

the representative points x = 1,4,8, and 12. Since the Runge—Kutta method is convergent, 

the results should converge to the exact solution at any given x as / tends to zero, but that 

convergence is hard to see in the tabulated results except for z = 1. In fact, it is doubtful 
that we could ever come close to the exact values at = 8 or 12 since we might need 

to make A so small that roundoff errors might come to dominate before the accumulated 

truncation error is suffictently reduced.
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Figure 1. Solution curves for the 

—da equation y’ — 2y = —Ge 

  

vx 

Figure 2. [lustration of numerical 

instability associated with the 

midpoint rule, for the initial-value 

problem (2), 

More central to the purpose of this example is to see that with /2 fixed the results di- 

verge dramatically from the exact solution as x increases so as to become grossly incorrect. 

We cannot blame this strange and unexpected result on complications due to nonlinearity 

because (1) is linear. 

To understand the source of the difficulty, note that the general solution of the differ- 

ential equation is y(z) = exp (—4a) + C'exp (22), where C’ is an arbitrary constant. The 
initial condition implies that C = 0, leaving the particular solution y(a) = exp (—4:). In 
Fig. | we show several solution curves for values of C' close to and equal to zero, and we 

can see the rapid divergence of neighboring curves from the solution y(z) = exp (—4z). 

Thus, the explanation of the difficulties found in the tabulated numerical results is that even 

a very small numerical error shifts us from the exact solution curve to a neighboring curve, 

which then diverges from the true solution. @ 

EXAMPLE 2. In Example 3 of Section 6.3 we solved the equation y’ = —y, with 
initial condition y(0) = 1, by several methods — from the simple Euler method to the more 

accurate and sophisticated fourth-order Runge-Kutta method, and we gave the results in 

Table 2. Since the midpoint rule and the second-order Runge-Kutta methods are both of 

second order we expected their accuracy to be comparable. Indeed they were initially, but 

the midpoint rule eventually developed an error that oscillated in sign from step to step and 

grew in magnitude (see Table 2 in Section 6.3). Let us solve the similar problem 

y=—-2y; y(0)=1 (2) 

by the midpoint rule, with h = 0.05. Since the midpoint rule is not self-starting, we use ten 

Euler steps from 2 = 0 to w = 0,05 before switching over to the midpoint rule. We have 

plotted the results in Fig. 2, along with the exact solution, y{z) = exp (—2z). Once again, 

we see that the midpoint rule results follow the exact solution initially, but they develop an 

error that oscillates in sign and grows such that the results are soon hopelessly incorrect. 

This numerical difficulty is different from the one found above in Example |, for rather 

than being due to an extreme sensitivity to initial conditions, it is associated with machine 

roundoff error and is an example of numerical instability. 

6.5.2. Stability. Let us analyze the phenomenon of numerical instability that we 
encountered in Example 2. Recall that we denote the exact solution of a given 
initial-value problem as y(a,,) and the numerical solution as y,,. Actually, the latter 
is not quite the same as the computer printout because of the inevitable presence 
of machine roundoff errors. Thus, let us distinguish further between the numerical 
solution y, that would be generated on a perfect computer, and the solution y}, that 
is generated On a real machine and which includes the effects of numerical roundoff 

— that is, the truncation of numbers after a certain number of significant figures. 

It is useful to decompose the total error, at any nth step, as 

  

Total error = y(Ln) _ Un = (y(2n) ™ Yn) + [Yn ~ Und (3) 

= [accum. truncation error] +[{accum. roundoff error].     
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We ask two things of a method: first, that the accumulated truncation error tend to 

zero at any fixed wx as the step size / tends to zero and, second, that the accumulated 

roundoff error remain small compared to the exact solution. The first is the issue 
of convergence, discussed earlier in this chapter, and the second is the issue of 
stability, our present concern. 

We have already noted that the midpoint rule can produce the strange behavior 
shown in Fig. 2, so let us study the application of that method to the standard “test 
problem,” 

y = Ay; y(0)=1, (4) 

where it is useful to include the constant A as a parameter. The midpoint rule 
generates y, according to the algorithm 

Yntt = Yn—t + 2hf (@n, Yn) 
= Yn—1 + 2AYn} yo = 1 (5) 

forn = 0,1,2,.... 

To determine whether a solution algorithm, in this case (5), is stable, it is 

customary to “inject” a roundoff error at any step in the solution, say atn = 0, 
and to see how much the perturbed solution differs from the exact solution as n 
increases, assuming that no further roundoff errors occur. Thus, in place of (5), 

consider the perturbed problem 

Untt = Un-1 + 2AhyR; yo = 1 —-«, (6) 

say, where ¢ is the (positive or negative) roundoff error in the initial condition. 

Defining the error e, = Yn — yf and subtracting (6) from (5), gives 

Cnet = Cn—| + 2Ahen, (7) 

with the initial condition eg = €, as governing the evolution of e,. We call (7) a 

difference equation. Just as certain differential equations can be solved by seeking 
solutions in the form y(z) = e**, the appropriate form for the difference equation 
(7) is 

En = p", (8) 

where p is to be determined. Putting this expression into (7) gives 

ptt —2Ahp" — p’! = 0 (9) 

or 

(p? — 2Ahp — 1) 0. (10) em 
Since 1/p” is not zero, it follows from (10) that we must have pr ~2Ahp—-1=0, 

so we have the two roots 

p= Ah+J/1+ A*h? and p= Ah /1+ Arh’. (LI)
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By considerations analogous to those for differential equations, we have 

en = C4 (Ah 4/14 Aan)” + Cs (4h —VJi4+ ape)” (12) 

as the general solution of (7). 
If we let h - 0, then 

(An tf 1+ Aa)" ~ (Ah + 1)" — erin (1+Ah) ~ erAh _ etn | (13) 

where we have used the identity a = e!"¢, the Taylor expansion In(1 +2) = 

az ~ a? /2+4+++~ x, and the fact that , = nh. Similarly, 

(An — i APB)" ~ (An 1)" 
— (-1)"(1 _ Ah)” — (—1)"er in G—-Ah) 

~ (—1)"e7" 4h _ (-1)"e"4™, (14) 

so (12) becomes 

en = Cye**" + Cy(—1)"e7 4 (15) 

as h — 0. Since there are two arbitrary constants, C, and C9, two initial conditions 

are appropriate, whereas we have attached only the single condition e9 = € in (7). 

With no great loss of generality let us specify as a second initial condition e; = 0. 

Imposing these conditions on (15), we have 

ep=e= C1 4+ Co, 
ey =O0= Cet! _ Coe #1, 

Finally, solving for Cy and C2 and inserting these values into (15), gives 

€ 
e, 

_ A(fn—21) —1)" Alena) ; 16 

""" 2cosh Ax, f + (—1"e (16) 

To infer from (16) whether the method is stable or not, we consider the cases 

A> Oand A < 0 separately. If A > 0, then the second term in (16) decays to zero, 

and even though the first term grows exponentially, it remains small compared to 

the exact solution y(xp) = exp(Az,) as n increases because ¢€ is very small (for 

example, on the order of 107!°). We conclude, formally, that if A > 0 then the 

midpoint rule is stable. 

On the other hand, if A < 0, then the second term starts out quite small, due 

to the € factor, but grows exponentially with x, and oscillates due to the (-1)", 

whereas the exact solution is exp (—a). This is precisely the sort of behavior that 

was observed in Example 2 (where A was —2), and we conclude that if A <0, 

then the midpoint rule is unstable. 

Since the stability of the midpoint rule depends upon the sign of A in the test 

equation y’ = Ay (stability for A > 0 and instability for A < 0), we say that the 

ce
nc

e 
e
n
n
a
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midpoint rule is only weakly stable. [f, instead, a method is stable independent of 

the sign of A, then we classify it as strongly stable. 
Having found that the midpoint rule when applied to the equation y/ = Ay is 

stable for A > 0 and unstable for A < 0, what about the stability of the midpoint 

rule when it is applied to an equation y’ = f(x,y) that is more complicated? 

Observing that A is the partial derivative of Ay (ie., the right-hand side of y’ = Ay) 

with respect to y, we expect, as a rule of thumb, the midpoint rule to be stable if 

Of /Oy > O and unstable if Of /Oy < 0 over the x,y domain of interest. For 

instance, if y/ = e*¥ ona > 0, then we can expect the midpoint rule to be stable 
because O(e"Y)/Oy = xe®Y > Done > O, but ify’ = e~*Y ona > O, then 
we can expect the midpoint rule to be unstable on « > 0 because O(e~*¥)/Oy = 

-re"Y <Qona > 0. 
Besides arriving at the above-stated conclusions as to the stability of the mid- 

point rule for the test equation y’ = Ay, we can now understand the origin of the 
instability, for notice that the difference equations yn41 — 2AhYn — Yn—1 = 0 and 

Ent — 2Ahen — en—1 = 0, governing yn and e,, are identical. Thus, analogous to 

(15) we must have 
Un = Byet® 4 Bo(—1)"e7 4%" (17) 

for arbitrary constants B,, Bo, as h tends to zero. The first of these terms coin- 

cides with the exact solution of the original equation y’ = Ay, and the second 
term (which gives rise to the instability if A < Q) is an extraneous solution that 
enters because we have replaced the original first-order differential equation by a 
second-order difference equation (second-order because the difference between the 
subscripts n + 1 and n— 1 is 2). Single-step methods (e.g., Euler and Runge-Kutta) 

are strongly stable (i.e., independent of the sign of A) because the resulting differ- 
ence equation is only first order so there are no extraneous solutions. Thus, we can 
finally see why, in Example 3 of Section 6.3, the midpoint rule proved unstable but 

the other methods were stable. 
Understand that these stability claims are based upon analyses in which we let 

h tend to zero, whereas in practice h is, of course, finite. To illustrate what can 

happen as /: is varied, let us solve 

y’ = —1000(y — x") +327; y(0) =0 (18) 

by Euler’s method. The exact solution is simply y(x) = a? so that ata = 1, 
for instance, we have y(1) = 1. By comparison, the values computed by Euler’s 

method are as given in Table 2. 
Even from this limited data we can see that we do have the stability claimed 

above for the single-step Euler method, but only when h is made sufficiently small. 

To understand this behavior, consider the relevant test equation y’ = —1000y, 
namely, y' = Ay, where A = O[—1000(y — a?) + 327]/Oy = -1000. Then 
Euler’s method for that test equation is Ya4i = Yn ~ 1000hyn. Similarly, yyy = 
y;, — 1000hy%. Subtracting these two equations, we find that the roundoff error 

€n = Yn — yy Satisfies the simple difference equation 

Cnty = (1 — 1000h)en. (19)
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Table 2. Finite-/ stability. 
  

h Computed y(1) 

0.2500 | 2.3737566x 10° 

0.1000 | 8.7725049 x 10!" 

0.0100 | Exponential overflow 

0.0010 | 0.99999726 

0.0001 | 0.99999970 

  

  

  

  

          
Letting n = 0,1,2,... in (19) reveals that the solution of (19) is 

Cn = (1 ~ 1000h)"eo, (20) 

where eg is the initial roundoff error. If we take the limit as h — 0, then 

en = (1 ~ 1000h)"e9 = eget in (2=1000h) ee 000MM ey e7 100% (94) 

which is small compared to the exact solution yn, = e~'°0°*" because of the eg fac- 

tor, so the method is stable. This result is in agreement with the numerical results 

given in Table 2: as h —+ 0 the scheme is stable. However, in a real calculation his, 

of course, finite and it appears, from the tabulation that there is some critical value, 

say hep, such that the guaranteed stability is realized only if hi < Ney. To see this, 

let us retain (20) rather than let h + 0. It is seen from (20) that if |1 — L000] < 1, 

then e, > 0 as n — oo, and if |1 — 1000h| > 1, thene, + coasn > oO, 

Thus, for stability we need |1 — 1000h| < 1 or —1 < 1 — 1000h < 1. The right- 

hand inequality imposes no restriction on h because it is true for all h’s (provided 

that h is positive, as is normally the case), and the left-hand inequality is true only 

forh < 0.002. Hence h,., = 0.002 in this example, and this result is consistent 

with the tabulated results, which show instability for the h’s greater than that value, 

and stability for the A’s smaller than that value. Thus, when we say that the Euler 

method is strongly stable, what we should really say is that it is strongly stable for 

sufficiently small h. Likewise for the Runge-Kutta and other single-step methods. 

6.5.3. Difference equations. (Optional) Difference equations are important in 

their own right, and the purpose of this Section 6.5.3 is not only to clarify some of 

ihe steps in Section 6.5.2, but also to take this opportunity to present some basics 

regarding the theory and solution of such equations. 

To begin, we define a difference equation of order NV as a relation involving 

Yny Untir+++)Yn+tn- As we have seen, one way in which difference equations arise 

is in the numerical solution of differential equations. For instance, if we discretize 

the differential equation y/ = —y and solve by Euler’s method or the midpoint 

rule, then in place of the differential equation we have the first- and second-order 

difference equations Yn41 = Yn — hyn = (1 — h)yn and Yaoi = Yn—-1 7 2hyn, OF 

Ynt1 — (1 — h)yn = 9 (22) 

rt
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and 

Yn+i + 2hYn — Yn—1 = 9, (23) 
respectively. In case it is not clear that (23) is of second order, we could Jet n — 1 = 

mand obtain Yn-o + 2hYm+1 — Ym = 0 instead, which equation is more clearly 

of second order. That is, the order is always the difference between the largest and 

smatlest subscripted indices. 
Analogous to differential equation terminology, we say that (22) and (23) are 

linear because they are of the form 

ao(N)Ynen ty (2) Un+N—1 shite + an (Nh) Yn = f(n), (24) 

homogeneous because /(r) is zero in each case, and of constant-coefficient type 
because their a;’s are constants rather than functions of n. By a solution of (24) is 

meant any sequence y,, that reduces (24) to a numerical identity for each n under 

consideration, such as n = 0,1,2,.... 

The theory of difference equations is analogous to that of differential equa- 
tions. For instance, just as one seeks solutions to a linear homogeneous differential 
equation with constant coefficients in the form y(x) = e**, one seeks solutions to 

a linear homogeneous difference equation with constant coefficients in the form 

Un = p" (25) 

as we did in Section 6.5.2. [In case these forms don’t seem analogous, observe 
that e+” = (e4)* is a constant to the power z, just as p” is a constant to the power 
n.| Putting (25) into such an Nth-order difference equation gives an Nth-degree 
polynomial equation on p, the characteristic equation corresponding to the given 

difference equation, and if the NV roots (p1,..., 9x) are distinct, then 

Un = Cipt +--+ + Cup’, (26) 

where the C’;’s are arbitrary constants, can be shown to be a general solution of 

the difference equation in the sense that every solution is of the form (26) for some 
specific choice of the Cj’s. For an Nth-order linear differential equation, N initial 
conditions (y and its first NW’ — 1 derivatives at the initial point) are appropriate for 
narrowing a general solution down to a particular solution. Likewise for a linear 
difference equation NV initial conditions are appropriate ~ namely, the first N values 

YO, Yis- +++ YN=1- 

EXAMPLE 3. Solve the difference equation 

Yn-1 7 4Yn = 0. (27) 

Since (27) is linear, homogeneous and of constant-coefficient type, seek solutions in the 

form (25). Putting that form into (27) gives 

pret _ 4p” — (p _ 4)p” = (28) 

329
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so that if p 4 0 then p ~— 4 = 0, p = 4, and the general solution of (27) is 

Un = C(4y”, (29) 

For example, if an initial condition yo = 3 ts specified, then yo = 3 = C(4)° = C gives 

C = 3 and hence the particular solution y,, = 3(4)”. 

Actually, (29) is simple enough to solve more directly since (form = 0,1,...) it gives 

yi = Ayo, yo = 4y1 = 4? yo. y3 = 4y2 = 4 yo, and so on, so one can see that yn = yo(4)” 

or, if yo is not specified, y, = C(4)”, which is the same as (29). @ 

EXAMPLE 4. Solve the difference equation 

Yn+2 — Yn+1 7 6Yn = 0. (30) 

Seeking solutions in the form (25) gives the characteristic equation p? —p— 6 = 0 with 

roots —2 and 3 so the general solution of (30) is 

Yn = Cr(—2)" + C2(3)". (31) 

If initial conditions are prescribed, say yo = 4 and y, = —13, then 

yo=4=C, + Cr, 
Y= —13 = ~2C) + 3C > 

give C, = 5 and Cy = —1. 

If the characteristic polynomial has a pair of complex conjugate roots, say 
py = a +78 and po = a — ifs, then the solution can still be expressed in real 

form, for if we express p; and p2 in polar form (as is explained in Section 22.2 on 

complex numbers) as 

0 pyr e? and p2=r el? (32) 

where r = \/a? + 62 and @ = tan! (8/a), then 

Cip't + Cop = Cyrmel™® + Corte in® 

sp? (cr ein 4 Ce”) 

=r" (Cy (cosné + i sinné) + C2 (cos nd — i sinné)| 

=r" (Cycosné + Cysinné), (33) 

where Cy = C', + C2 and Cy = i(Cy — C9) are arbitrary constants. 

EXAMPLE 5. Solve the difference equation 

YUn+2 + 4AYUp, = 0. (34) 

  

 



  

6.5. Stability and Difference Equations 331 

The characteristic roots are £21 so (32) becomes p, = 2e'”/? and pz = Qe7't/? and (33) 

gives the general solution 

Yn = 2” (4 cos > + Bsin =) ) (35) 

where A, B are arbitrary constants. @ 

As we have seen, one way in which difference equations arise is in the numer- 
ical solution of differential equations, wherein the continuous process (described 
by the differential equation) is approximated by a discrete one (described by the 
difference equation). However, they also arise directly in modeling discrete pro- 
cesses. To illustrate, let p,, be the principal in a savings account at the end of the 
nth year. We say that the process is discrete in that p is a function of the integer 
variable n rather than a continuous time variable t. If the account earns an annual 
interest of J percent, then the growth of principal from year to year is governed by 

the difference equation 
I 

Pn+1 = (1 + iii Pn) (36) 

which is of the same form as (22). 

In fact, discrete processes governed by nonlinear difference equations are part 
of the modern theory of dynamical systems, in which theory the phenomenon of 
chaos plays a prominent role. Let us close with a brief mention of one such dis- 
crete process that is familiar to those who study dynamical systems and chaos. 
Let tn, Yn be a point in a Cartesian x,y plane, and let its polar coordinates be r 

and @,. Consider a simple process, or mapping, which sends that point into a 
point 2n+1,Yn41 at the same radius but at an incremented angle 6, + a. Then, 

recalling the identity cos(A + B) = cos Acos B — sin Asin B, we can express 
In¢1 = 7008 (6, + @) = rcosé, cosa—rsin Gy, sin @ = Lp COS A— Yy Sin ~ and, 

recalling the identity sin(A+ B) = sin Acos B + sin Bcos A, we can express 
Yn41 = rsin(@, +a) = rsind, cosa + rcos6, sina = Yn cosa + Lz sina. 

Thus, the process is described by the system of linear difference equations 

Inti = (cosa)x, — (sina)yn, (37) 
YneL = (sina)rn + (cos a)yn. 

Surely, if one plots such a sequence of points it will fall on the circle of radius r 
centered at the origin. Suppose that we now modify the process by including two 

. 9 ‘ 
quadratic x< terms, so that we have the nonlinear system 

Tri = (cosa)ey ~ (sina) (Yr — v2), (38) 
Un+i = (sina)rn + (cosa) (un _ ve) 

This system, studied initially by M. Hendon, turns out to be remarkably complex and 
interesting by virtue of the nonlinearity. For a discussion of the main results, we
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highly recommend the little book Mathematics and the Unexpected, by Ivar Eke- 

land (Chicago: University of Chicago Press, 1988). 

Closure. This section is primarily about the concept of stability in the numerical 
solution of differential equations. A scheme is stable if the roundoff error remains 
small compared to the exact solution. Normally, one establishes the stability. or 
instability of a method with respect to the simple test equation y’ = Ay. Assuming 
that roundoff enters in the initial condition and that the computer is perfect there- 
after, one can derive a difference equation governing the roundoff error en, and 

solve it analytically to see if e,, remains small. Doing so, we show that the mid- 
point rule is only weakly stable: stable if A > 0 and unstable if A < 0. Asa rule of 
thumb, we suggest that for a given differential equation y’ = f(x,y) we can expect 
the midpoint rule to be stable if Of /Oy > 0 and unstable if Of /Oy < 0 over the 

x,y region of interest. 
To explain the source of the instability in the midpoint rule, we observe that 

the exact solution (17) of the midpoint rule difference equation corresponding to the 
test equation y’ = Ay contains two terms, one that corresponds to the exact solution 
of y’ = Ay and the other extraneous. The latter enters because the midpoint rule 
difference equation is of second order, whereas the differential equation is only of 
first order, and it is that extraneous term that leads to the instability. Single-step 
methods such as the Euler and Runge-Kutta methods, however, are strongly stable, 

provided that / is sufficiently small. 
Observe that the only multi-step method that. we examine is the midpoint rule; 

we neither show nor claim that all multi-step methods exhibit such instability. For 
instance, it is left for the exercises to show that the multi-step fourth-order Adams— 
Moulton method is strongly stable (for sufficiently small 4). Thus, the idea is that 
the extraneous terms in the solution, that arise because the difference equation is of 
a higher order than the differential equation, can, but need not, cause trouble. 

We close the section with a brief study of difference equations, independent of 
any connection with differential equations and stability since they are important in 
their own right in the modeling of discrete systems. We stress how analogous are 
the theories governing differential and difference equations that are linear, homo- 

geneous, and with constant coefficients. 

Computer software. Just as many differential equations can be solved analytically 
by camputer-algebra systems, so can many difference equations. Using Maple, for 

instance, the relevant command is rsolve. For instance, to solve the difference 

equation Yn+2 — Ynti — 6Yn = 0 (from Example 4), enter 

rsolve(y(n + 2) ~ y(n +1) —6 * y(n) = 0, y(n)); 

and return. The result is 

3 1. n 2 1. n (Zucoy— Zuc2)) (=2)" = (—Fut0) ~ 5) 
the correct solution for any initial values y(O) and y(1). Of course, we could re- 
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express the latter as 
Cy (—2)" + C2(3)” 

if we wish. If we had initial conditions yo = 4 and yy = —7, say, then we would 

have entered 

rsolve({y(n + 2) — y(n +1) —6 * y(n) =0, y(0) = 4, y(1) = -7}, 

y(n)); 

and would have obtained 
19 Th L yr 

Bo 8)" + Z(3) 

as the desired particular solution. 

EXERCISES 6.5 

1. If the given initial-value problem were to be solved by the 5. In (13) we showed that (Ah +V1+ Aah)" etn 

fourth-order Runge-Kutta method (and we are not asking you 

to do that), do you think accurate results could be obtained? 

Explain. The z domain is 0 < « < ow. 

(ay =2y—82+4; y(0) =0 
(b) yo’ =y—2e7*; y(0) = 1 
(c)y=y+5e7**; y(0) = -1 
(dy =1+3(y—-<x); y(0) =0 

2. It is natural to wonder how well we would fare trying to 

solve (1) using computer software. Using the Maple dsolve 

command with the abserr option, see if you can obtain accu- 

rate results at the points 2 = 1, 4,8, 12 listed in Table |. 

3. One can see if a computed solution exhibits instability, as 

did the solution abtained by the midpoint rule and plotted in 

Fig. 2, when we have the exact solution to compare it with, In 

practice, of course, we don’t have the exact solution to com- 

pare with; if we did, then we would not be solving numerically 

in the first place. Thus, when a computed solution exhibits an 

oscillatory behavior how do we know that it is incorrect; per- 

haps the exact solution has exactly that oscillatory behavior? 

One way to find out is to rerun the solution with / halved. 

If the oscillatory-behavior is part of the exact solution, then 

the new results will oscillate every two steps rather than every 

step. Using this idea, run the case shown in Fig. 2 twice, for 

h = 0.05 and Ah = 0.025, and comment on whether the results 

indicate a true instability or not. 

4. We derived the solution (12) of the difference equation (7) 

in the text. Verify, by direct substitution, that (12) does satisfy 

(7) for any choice of the arbitrary constants Cy and Co. 

as h — 0, yet it would appear that (AR + V1 + Azh?)" ~ 

(V1) "le 1, Explain the apparent contradiction. 

6. The purpose of this exercise is to explore the validity of 

the rule of thumb that we gave regarding the solution of the 

equation y’ = f(x,y) by the midpoint rule’ — namely, that 
the method should be stable if Of /Oy > 0 and unstable if 
Of /Oy < 0 over the region of interest. Specifically, in each 

case apply the rule of thumb and draw what conclusions you 

can about the stability of the midpoint rule solution of the 

given problem. Then, program and run the midpoint rule with 

h = 0.05, say, over the given x interval. Discuss the numeri- 

cal results and whether the rule of thumb was correct. (Since 

the midpoint rule is not self-starting, use ten Euler steps from 

x = 0toz = 0.05 to get the method started.) 

(a) y' =et¥ y(0)=1,0<¢<4 

(b) y! = ery, y0)=10<2<4 
(c) yi = (4—2)y; y(0) = 1,0<e < 10 
(Dy = (e— Dy; y(Q)=10<"1<5 

(e)y =(e@+y)/A+2); yO)=2,0<a<4 

7. We stated in the text that the results in Table 2 are consistent 

with a critical 2 value of 0.002 because the calculations change 

from unstable to stable as ft decreases from 0.01 to 0.001. Pro- 

gram and carry out the Euler calculation of the solution to the 

initial-value problem (18) using h = 0.0021 and 0.0019, out 

to around x = 1, and see if these / values continue to bracket 

the change from unstable to stable. (You may try to bracket 

hep even more tightly if you wish.) 

8. (Stability of second-order Runge-Kutta methods) In Sec-
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tion 6.3 we derived the general second-order Runge — Kutta 

method, which includes these as special cases: the improved 

Euler method, 

ha. . . 
_ {f(Gn, Yn) + f [nti Yn + Af(@n, Yn} } : Yn+1 = Un + 9 

(8.1) 

and the modified Euler method, 

Yntl = Yn +b hf|rn + +n + * Fanta] (8.2) 

(a) For the test equation y’ = Ay, show that the improved 

Euler method is strongly stable for sufficiently small h (Le., as 

h — 0). For the case where A < 0, show that that stability is 

achieved only if A < Ae, = 2/[Al. 
(b) For the test equation y’ = Ay, show that the modified 
Euler method is strongly stable for sufficiently small h (Le., as 

h — 0). For the case where A < 0, show that that stability is 

achieved only if h < he, = 2/|Al. 

9. (Strong stability of the multi-step Adams—Bashforth method) 

Recall, from Section 6.3, the fourth-order Adams—Bashforth 

method 

A 
Yneh = Un 04 (55fn — 59fn—~1+ 37 fr—2 - Ofn—sz); 

(9.1) 

where fn = f(@n,Yn). This exercise is to show that the 

“AB” method is strongly stable for sufficiently small / (i.e., as 
h — 0) even though it is a multi-step method. 

(a) Consider the test equation y’ = Ay, where the constant 

A can be positive or negative; that is, let f(z,y) = Ay be 

a solution of the fourth-order difference equation (9.1) in the 

form yn = p”, show that p must satisfy the fourth-degree 

characteristic equation 

p' — (1+ 55a) p? + 59ap” — 37ap+9a=0, (9.2) 

where a = Ah/24. 
(b) Notice that as A tends to zero so does a, and (9.2) reduces 

to p* ~— p® = 0, with the roots = 0,0, 0, 1. Thus, if we denote 
the roots of (9.2) as py... 4, then we see that the first three 

of these tend to zero and the last to unity as h —> 0, and the 

general solution for y, behaves as 

Yn = Crp + Cop} + Cap} + Capit ~ Cyl” (9.3) 

as h -+ 0. Since p” tends to zero, unity, or infinity, depending 

upon whether p is smaller than, equal to, or greater than unity, 

we need to examine the 1” term in (9.3) more closely. Specif- 

ically, seeking p4 in the power series form pg = 1+aa+--:, 

put that form into (9.2). Equating coefficients of a on both 

sides of that equation through first-order terms, show that 

a = 24, Thus, in place of (9.3) we have the more informative 

statement 

Yn ~ Call + 24a)" = Cy(1+ Ah)" ~ Cye*** 9.4) 

as n — oo. Show why the final step in (9.4) is true. Since 

the right-hand side of (9.4) is identical to the exact solution 

y(z) of the given differential equation, whether A is positive 
or negative, we conclude that the AB method is strongly stable 

for sufficiently small h. 

10. (Strong stability of the multi-step Adams-Moulton method) 

Recall, from Section 6.3, the fourth-order Adams— Moulton 

method, 

h , 
Yn4+1 = Un + 54 (9fn+i + 19fn _ Sfn-1 + fn—2) . (10.1) 

Proceeding along the same lines as outlined in Exercise 9, 
show that the AM method is stongly stable for sufficiently 

small A. 

11. Derive the general solution of the given difference equa- 

tion. If initial conditions are specified, then find the corre- 

sponding particular solution. In each casen = 0,1,2,.... 

(a) Un+i 7 Ayn = 0; Yo = 5 

(b) Yne2 -—Yn =9; youl, w=s 

yo= 9, y= 2 
yo = 3, yr = 1 
Yo =5, y= 7 

yo= 3, Yi = 5, Yo= 

(c) Yn+2 + Un+tL a 6Yn = 0; 

(d) Yn+2 — AUn+a + 3YUn = 0; 

(e) Yn+2+ BYn+1 + 2Yn = 0; 

(f) Yn+3 — Yn+2 7 An 4 +4 Yn = 0; 

9 

(2) Yn+4 — 5Yn42 + 4Yn = 0 

(h) Yn+4 7 6Yn+2 + 8YUn =0 

12. (a)—(h) Use computer software to obtain the general so- 

lution of the corresponding problem in Exercise 11, and the 

particular solution as well, if initial conditions are given. 

13. (Repeated roots) Recall from the theory of linear homo- 

geneous differential equations with constant coefficients that 

if, when we seek y(x) = e**, is a root of multiplicity & of 
the characteristic equation, then it gives rise to the solutions 

y(a) = (Cy + Coa + +++ + Cya®!) e, where Ci,...,Ck 
are arbitrary constants. An analogous result holds for dif- 

ference equations. Specifically, verify that the characteristic 

equation of Yio — 2byna1, + 6’yn = 0 has the root b with 
multiplicity 2, and that y, = (Cy + Con)b”.
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14. Show that if yl? and yl?) are solutions of the second- mogeneous difference equation. (First, read Exercise 14.) 

order linear homogencous difference equation ag(M)ynzo + 

ay(n)Yn-1 + d2(2)yn = 0, and Y;, is any particular solution 
of the nonhomogeneous equation ao ()Ynge + @1(@) Unt + 

(a) Yn+1 3Y, = 

(b) Ynay ~ 2Yn = 3sinn 

(C) Yntt — Un = 2+ cosn 
: ‘ 1 2 . . 7-4 Yn / 

a2 (2) Yn = fy, then yp, = Ciyh ) + Coys ) + ¥,, is a solution (QD Ynse ~ Yn ea + 6Yn = In2 — Bn —1 

of the nonhomogeneous equation. (©) Yna2 FUndi ~ 2y — 2 

(1) Un+e — 4Yn = 6n? — 1 

(g) YUn+2-7 Un = e” 

(A) Ynpa TYn+za + 124, =n +6 

15. (Nonhomogeneous difference equations) For the given 

equation, first find the general solution of the homogeneous 
equation. Then adapt the method of undetermined coefficients 
from the theory of differential equations and find a particular 16. (a)—(h) Use computer software to obtain the general 
solution. Finally, give the general solution of the given nonho- solution of the corresponding problem in Exercise 15. 

  

Chapter 6 Review 

To solve a differential equation y’ = f(x,y) numerically, one begins by dis- 
cretizing the problem and working with the discrete variables v,, yp, in place of 
the continuous variables x, y(x). The solution is accomplished using a numerical 
algorithm that gives y,41 in terms of y,, in the case of a single-step method, or in 

terms of y, and one or more of the preceding values yp—1, yn—2,--. In the case of 

a multi-step method. If the algorithm gives y,,41 explicitly, then it is said to be of 
open type; if not it is of closed type. All methods considered in this chapter are of 
open type, except for the Adams—Moulton method (Section 6.3.5). 

Decomposing the error as 

Total error = y(an) — yh, = [y(@n) — Ynl + [yn — ual 

where y(,,) is the exact solution of the differential equation, y, is the exact solu- 

tion of the numerical algorithm (i.e., carried out on a perfect machine, having no 
roundoff error), and y? is the actual solution of the algorithm (carried out on a real 

machine), we call y(v,) — yy the accumulated truncation error and y,, — y;, the 

accumulated roundoff error. [f the former is of order O(A?) at a fixed x point 
as h —+ 0, then the method is said to be of order p. If p > 0, then the accumu- 
lated truncation error tends to zero and the method is described as convergent. The 

greater p is, the more accurate the method is for a given step size h. Besides requir- 
ing of a method that it be convergent, we also require that it be stable; that is, we 
require that the accumulated roundoff error (which is inevitable in a real machine) 

remain small compared to the exact solution of the differential equation. 
We begin with the Euler method yni. = Yn + f(@n; Yn)h. which is simple 

but not very accurate because it is only a first-order method. Desiring greater ac- 

curacy, we introduce the second-order midpoint rule and second- and fourth-order 
Runge~—Kutta methods, the latter providing us with an accurate general-purpose 

differential equation solver.
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One’s interest in higher-order methods is not just a matter of accuracy because, 

in principle, one could rely exclusively on the simple and easily programmed Euler 

method, and make fh smail enough to achieve any desired accuracy. There are two 

problems with that idea, First, as A is decreased the number of steps increases and 

one can expect the numerical roundoff error to grow, so that it may not be possible 

to achieve the desired accuracy. Second, there is the question of economy. For 

instance, while the fourth-order Runge-Kutta method (for example) is about four 

times as slow as the Euler method (because it requires four function evaluations per 

step compared to one for the Euler method), the gain in accuracy that it affords is 

so great that we can use a step size much more than four times that needed by the 

Euler method for the same accuracy, thereby resulting in greater economy, 

Naturally, higher-order methods are more complex and hence more tedious to 

program. Thus, we strongly urge (in Section 6.3.4) the empirical estimation of the 

order, if only as a check on the programming and implementation of the method. 

In Section 6.4 we showed that the methods developed for the single equation 

y’ = f(x,y) can be used to solve systems of equations and higher-order equations 

as well. There we also study boundary-value problems, and find them to be signif 

icantly more difficult than initial-value problems. However, we show how to use 

the principle of superposition to convert a boundary-value problem to one or more 

problems of initial-value type, provided that the problem ts linear. 

Finally, in Section 6.5 we look at “what can go wrong,” mostly insofar as 

numerical instability due to the growth of roundoff error, and an analytical approach 

is put forward for predicting whether a given method is stable. Actually, stability 

depends not only on the solution algorithm but also on the differential equation, and 

our analyses are for the simple test equation y’ = Ay rather than for the general 

case y’ = f(x,y). We find that whereas the differential equation y = Ay is of 

first order, the difference equation expressed by the algorithm is of higher order if 

the method is of multi-step type. Thus, it has among its solutions the exact solution 

(as h, -+ 0) and one or more extraneous solutions as well. It is those extraneous 

solutions that can cause instability. For instance, the midpoint rule is found to be 

stable if A > 0 and unstable if A < 0; we classify it as weakly stable because its 

stability depends upon the sign of A. However, the fourth-order Adams—Bashforth 

and Adams~Moulton methods are stable, even though they are multistep methods 

because the extraneous solutions do not grow. Single-step methods such as Euler 

and those of Runge—Kutta type do not give rise to extraneous solutions and are 

stable. 

Finally, we stress that even if a method is stable ash — 0, A, needs to be 

reduced below some critical value for that stability to be manifested. 
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Chapter 7 

Qualitative Methods: 

Phase Plane and Nonlinear 

Differential Equations 

7.1 Introduction 

This is the final chapter on ordinary differential equations, although we do return 
to. the subject in Chapter [[, where we reconsider systems of linear differential 
equations using matrix methods. 

Interest in nonlinear differential equations is virtually as old as the subject of 
differential equations itself, which dates back to Newton, but little progress was 
made until the late 1880’s when the great mathematician and astronomer Henri 
Poincaré (1854-1912) took up a systematic study of the subject in connection 
with celestial mechanics. Realizing that nonlinear equations are rarely solvable 
analytically, and not yet having the benefit of computers to generate solutions nu- 
merically, he sidestepped the search for solutions altogether and instead sought to 
answer fundamental questions about the qualitative and topological nature of solu- 
tions of nonlinear differential equations without actually finding them. 

The entire chapter reflects either his methods, such as the use of the so-called 

“phase plane” and focusing attention upon the “singular points” of the equation, 
or the spirit of his approach. In addition, however, we can now rely heavily upon 

computer simulation. Thus, our approach in this chapter is a blend of a qualitative, 
topological, and geometric approach, with quantitative results obtained readily with 

computer software, 

Though Poincaré’s work was motivated primarily by problems of celestial me- 
chanics, the subject began to attract broader attention during and following World 

War II, especially in connection with nonlinear control theory. In the postwar years, 

interest was stimulated further by the publication in English of N. Minorsky’s Non- 
linear Mechanics (Ann Arbor, MI: J. W. Edwards) in 1947. With that and other 

books, such as A. Andronov and C. Chaikin’s Theory of Oscillations (Princeton: 

337
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Figure 1. Simple harmonic 

mechanical oscillator. 
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Princeton University Press, 1949) and J. J. Stoker’s Nonlinear Vibrations (New 

York: Interscience, 1950) available as texts, the subject appeared in university 

curricula by the end of the 1950’s. With that base, and the availability of digital 

computers by then, the subject of nonlinear dynamics, generally known now as dy- 

namical systems, has blossomed into one of the most active research areas, with 

applications well beyond celestial mechanics and engineering — to biological sys- 

tems, the social sciences, economics, and chemistry. The shift from the orderly 

determinism of Newton to the often nondeterministic chaotic world of Mitchell 

Feigenbaum, E. N. Lorenz, Benoit Mandelbrot, and Stephen Smale has been pro- 

found. For a wonderful historical discussion of these changes we suggest the little 

book Mathematics and the Unexpected by Ivar Ekeland (Chicago: University of 

Chicago Press, 1988). 

7.2 The Phase Plane 

To introduce the phase plane, consider the system 

mz" +ka = 0 (1) 

governing the free oscillation of the simple harmonic mechanical oscillator shown 

in Fig. 1. Of course we can readily solve (1) and obtain the general solution 

a(t) = Cy coswt + Cysinwt, where w = ,/k/m is the natural frequency — or, 

equivalently, 
x(t) = Asin (wt + ¢), (2) 

where A and ¢ are the amplitude and phase angle, respectively. To present this 

result graphically, one can plot x versus ¢ and obtain any number of sine waves of 

different amplitude and phase, but let us proceed differently. 

We begin by re-expressing (1), equivalently, as the system of first-order equa- 

tions 

di 
a (3a) 
dy k wy A, 3b 
dt me (36) 

as is discussed in Section 3.9. The auxiliary variable y, defined by (3a), happens to 

have an important physical significance, it is the velocity, but having such signifi- 

cance: is not necessary. Next, we deviate from the ideas presented in Section 3.9 

and divide (3b) by (3a), obtaining 

d kx 
nae or my dy + kadx = 0, (4) 

dx my 

integration of which gives 

1 5, 1, . 
sy + she =C, (5)



  

Since y = da/dt, (5) is a first-order differential equation. We could solve for y 
(i.c., dz/dt), separate variables, integrate again, and eventually arrive at (2) once 
again. Instead, let us take (5) as our end result and plot the one-parameter family 
of ellipses that it defines (Fig. 2), the parameter being. the integration constant.C’. 
In this example C’ happens to the total energy (kinetic energy of the mass plus 
potential energy of the spring); C' = 0 gives the ‘“‘point ellipse” 2 = y = 0 and the 
greater the value of C’, the larger the ellipse. 

It is customary to speak of the a, y plane as the phase plane. Each integral 
curve represents a possible motion of the mass, and each point on a given curve 
represents an instantaneous state of the mass (the horizontal coordinate being the 
displacement and the vertical coordinate being the velocity). Observe that the time 

t enters only as a parameter, through the parametric representation z = x(t), y = 
y(t). So we can visualize the representative point z(t), y(t) as moving along a 
given curve as suggested by the arrows in Fig. 2. The direction of the arrows is 
implied by the fact that y = dx/dt, so that y > 0 implies that x(t) is increasing 
and y < 0 implies that x(t) is decreasing. One generally calls the integral curves 
phase trajectories, or simply trajectories, to suggest the idea of movement of the 
representative point. A display of a number of such trajectories in the phase plane 

is called a phase portrait of the original differential equation, in this case (1). Of 
course, there is a trajectory through each point of the phase plane, so if we showed 

all possible trajectories we would simply have a black picture; the idea is to plot 
enough trajectories to establish the key features of the phase portrait. 

What are the advantages of presenting results in the form of a phase portrait, 
rather than as traditional plots of x(t) versus t? One advantage of the phase portrait 
is that it requires only a “first integral” of the original second-order equation such 
as equation (5) in this example, and sometimes we can obtain the first integral even 
when the original differential equation is nonlinear. For instance, let us complicate 
(1) by supposing that the spring force is not given by the linear function F, = ka, 
but by the nonlinear function F, = az + bx*, and suppose that a > 0 and b > 0 so 
that the spring is a “hard” spring: it grows stiffer as x increases (Fig. 3), as does a 
typical rubber band. If we take a = b = m, say, for definiteness and for simplicity, 
then in place of (1) we have the nonlinear equation 

ei +te4+e°=0. (6) 

Proceeding as before, we re-express (6) as the system 

/ 

  

v= Y, (7a) 

y =—7— 2, (7b) 

Division gives 

dy zea : 
oo or ydy + (a +a°)dx = 0, (8) 
dx y 

which yields the first integral 

lo lo Ly. 
—y +e +e = C. 9 5Y + at + at C (9) 

On
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Figure 2. Phase portrait of (1). 

  

Figure 3. Hard spring. 
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Figure 4. Phase portrait of (6) 

(hard spring). 

  

Figure 5. Solutions x(t) 

corresponding to the trajectory T. 

  

[In principle, if we plot these curves for various values of C we can obtain the phase 
portrait shown in Fig. 4.. More conveniently, we generated the figure by using the 
Maple phaseportrait command discussed at the end of this section. A comparable 
phase portrait plotting capability is provided in numerous other computer software 

systems: 
To repeat, one advantage of the phase portrait presentation is that it requires 

only a first integral. In the present case (6) was nonlinear due to the x? term, yet its 

first integral (9) was readily obtained. 
A second attractive feature of the phase portrait is its compactness. For in- 

stance, observe that the single phase trajectory T’ in Fig. 2 corresponds to an entire 
family of oscillations of amplitude A, several of which are shown in Fig. 5. since 
any point on I’ can be designated as the initial point (¢ = 0): if the initial point 
onT is (A,0), then we get the curve #1 in Fig. 5; if the initial point on I is a bit 
counterclockwise of (A, 0) then we get the curve #2; and so on. Passing from the 
x,t plane to the x,y plane, the infinite family of curves shown in Fig. 5 collapse 
onto the single trajectory [in Fig. 2. Put differently, whereas the solution (2) of 
equation (1) is a two-parameter family of curves in 2,t space (the parameters be- 
ing A and ¢), (5) is only a one-parameter family of curves in the x, y plane (the 

parameter being C’), That compactness can be traced to the division of (3b) by (3a) 

or (7b) by (7a) for that step essentially eliminates the time ¢. 

To learn about nonlinear systems, it is useful to contrast the phase portraits of 
the linear oscillator governed by (1) and the nonlinear oscillator governed by (6), 
and given in Figs. 2 and 4, respectively. The phase portrait in Fig. 2 is extremely 
simple in the sense that all the trajectories are geometrically similar, differing only 
in scale. That is, if a trajectory is given by « = X(t), y = Y(t), then = &X(t), 
y = «KY (t) is also a trajectory for every possible scale factor «, be it positive, 
negative, or zero. That result holds not only for the system (3) but for any constant- 

coefficient linear homogeneous system 

x = ax + by, 
f 

10 
y = cx + dy. (10) 

In contrast, consider the phase portrait of the nonlinear equation x” + ax + 

Gx = 0 shown in Fig. 4. In that case the trajectories are not mere scalings of each 
other; there is distortion of shape from one to another, and that distortion is due 
entirely to the nonlinearity of the differential equation. The innermost trajectories 
approach ellipses [becavs «s smaller and smaller motions are considered the x 

becomes more and more negligible compared to the other terms in (9)], and the 
outer ones become more and more distorted as the effect of the «? term grows in 

(9). 
Thus, whereas the phase portrait of the linear equation (1) amounts to a single 

kind of trajectory, repeated endlessly through scalings, that of the nonlinear equa- 
tion (6) is made up of an infinity of different kinds of trajectories. That richness is 
a hallmark of nonlinear equations, as we shall see in the next example and in the 

sections that follow. 
Before turning to the next example, let us complement the phase portrait in 

Fig. 4 with representative plots of x(t) versus t. We choose the two sets of initial



  

conditions: «(0) = 0.5, 2’(0) = 0 and 2(0) = 1, 2’(0) = 0. The results are 
shown in Fig. 6, together with the corresponding solutions of the linear equation 
cv! +a = 0 (shown as dotted) for reference. Besides the expected distortion we 

also observe that the frequency of the oscillation is amplitude dependent for the 
nonlinear case: the frequency increases as the amplitude increases. In contrast, for 

the linear equation (1) the frequency w = \/k/m = | is a constant, independent 

of the amplitude. 
Above, we mentioned the richness of the sets of solutions to nonlinear differ- 

ential equations. A much more striking example of that richness is obtained if we 
reconsider the nonlinear oscillator, this time with a “soft” spring — that is, with 

F, = ax — bx* (a > O and b > 0) as sketched in Fig. 7. Again setting a = 6 =m 

we have, in place of (6), 

a ta-e=0. dL) 

In place of (9) we have 
1. 1 1 
5u + 5 ~ ral = C, (12) 

and in place of the phase portrait shown in Fig. 4 we obtain the strikingly differ- 
ent one shown in Fig. 8. We continue to study this example in Section 7.3, but 
even now we can make numerous interesting observations. First, whereas all of 
the motions revealed in the phase plane for the hard spring (Fig. 4) are qualita- 
tively similar oscillatory motions — give or take some distortion from one to another 
we see in Fig. 8 a number of qualitatively different types of motion, and these are 
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Figure 8. Phase portrait of (11) (soft spring). 
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Figure 6. Effects of nonlinearity 

on x(t). 

  

Figure 7. Soft spring. 
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separated by the trajectories ABH EF and GBDET which, together, are called a 

separatrix. 
Before examining these different types of motion let us distinguish between 

the physical velocity dx/dt = x’ = y of the mass and the phase velocity 

d : 7 = = sl =x? + y? (13) 

of the representative point P = (x(t), y(t)) in the phase plane as it moves along 
a trajectory, where s is arc length along that trajectory. Observe from (13) that 

s' = 0, and the representative point P is stationary if and only if both 2’ = 0 and 
y’ = (at that point. If 2’ = 0 and y’ = 0 at a point Po = (a0, yo), then we call 
Py an equilibrium point, or fixed point, because then x(t) = xo and y(t) = yo 
remain constant; if we start at that point we remain at that point for all ¢ > 0. 

Let us identify the equilibrium points (if any) for the present soft-spring exam- 

ple. Solving 

z=y=—0, (14a) 

y =—-2+25 =0 (14b) 

gives y = 0 and x = 0, +1, so there are three equilibrium points: 

(-1,0), (0,0), (1,0), (15) 

which correspond to B, the origin, and E in Fig. 8. Physically, 2 = 0 and +1 are 
the three x values for which the spring force F’, is zero (Fig. 7). 

Consider the motions inside the BDF. HB “football.” First, each closed loop 
trajectory [ inside BDEHB corresponds to a periodic solution x(t) (likewise for 
each closed loop trajectory in Figs. 2 and 4), and is therefore called a closed orbit. 
{Recall from Section 5.7 that 2 = x(t) is periodic with period T if c(t +7) = a(t) 
for all t > 0.] Actually, how can we be sure that each T° represents a periodic 
motion? Well, the representative point does trace out the given trajectory I’ over 
and over; it cannot stop because there are no equilibrium points on I’. Further, the 
phase speed s’ at any point (x, y) on T is the same, from one traversal to the next, 

because 

gl = Je? + yl — y? +4 (x _ v3)? (16) 

is a function only of x and y, not ¢. Thus, as P traverses T, over and over, each time 

in the same manner, the projection x(t) of P onto the 2 axis generates a periodic 

function x(¢). 
Next, consider part of the separatrix itself. To obtain the equation of the sepa- 

ratrix we use (12) and require the curve to go through the point E (or, equivalently, 

B) — namely, x = 1 and y = 0. That step gives C = 1/4, so ABH EF and 

GBDET are given by 

(17) 

  

m
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respectively. Beginning at D, say, the representative point P moves rightward on 
DE and approaches the equilibrium point &. Does it reach & in finite time and 
then remain there, or does it approach / asymptotically as ¢ + co? To answer that 
question we use (16). Let the tangent line to the curve DEJ, at E, be y = m(a—1). 
[We could determine the slope m by differentiating (17), but the value of m will not 

be important.] Then, since ds = \/1 + (dy/dx)2dx ~ V1 +m? dx as P > E, 

we can replace s’ in (16) by V1 + m? dx/dt, and y by m(x — 1), so (16) becomes 

  

V1l+m? = ~ /m2(« — 1)? + a2 (a + 1)2(a@ — 1) a 

~ Vm? +4(x—1), (18) 

where the negative square root has been chosen since dz/dt > 0 as P ~ Hon 
DE, whereas x — 1 < 0 on DE, and where the last step in (18) is left for the 

exercises. The upshot is that 

  

az 
—~yl-s 19 EY Wa) (19) 

as P - E, for some finite positive constant -y. Thus, 

d 
vw dt (20) 

l-¢« 

so 
~In(1-—.2) ~ yt+ constant, (21) 

and we can now see that t — oo as P — E (ie, as @ — 1). Thus, P does not 

reach & in finite time but only asymptotically as t —» oo. Similarly, if we begin at 
point H and go backward in time, then we reach F only as t > —oo. 

Let us return now to the region inside of the football and consider any closed 
orbit P. As the size of I shrinks to zero, T’ tends to the elliptical (actually circular 

because of our choice a = m) shape y” + x” = constant, and the period of the mo- 

tion tends to 27 [since the solution of the linearized problem is a(t) = Asin (t+ ¢) 
]. At the other extreme, as [’ gets larger it approaches the pointed shape BDE HB. 
Bearing in mind that it takes infinite time to reach & along an approach from J, it 
seems evident that the period of the [ motion must tend to infinity as [ approaches 
BDEHB, we will ask you to explore this point in the exercises. From a physical 
point of view, the idea is that not only is the “flow” zero at E (where 2! = y' = 0), 

it is very slow in the neighborhood of F. If T is any closed trajectory that is just 
barely inside of BDEHB, then part of T’ falls within that stagnant neighborhood 
of £ (similarly at B). The representative point P moves very slowly there, hence 
the period is very large. We reiterate that although each closed loop inside the 
football corresponds to a periodic motion, the closed loop BDEHB does not. In 
fact, although BDF and FEHB meet at B and E they are distinct trajectories. On 
BODE, t varies from —oo at B to +00 at EB; likewise, on FEHB t varies from —oo 
at & to +00 at B. Thus, if we begin on BDE we can never get to HH B, and vice 

versa. 
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Finaily, it should be evident that every trajectory that is not within the football 
corresponds to a nonperiodic motion. Thus, BDE and EH B form a transition 
from nonperiodic to periodic motions. 

Thus far we have studied. the. three. differential equations. (1),. (6), and. (11). 
In each case we have changed the single second-order differential equation to a 
system of two first-order equations by setting a’ = y and then studied them in the 
v,y phase plane. More generally, we consider in this chapter systems of the form 

x = P(x, y), (22a) 

y' = Q(a,y). (22b) 

That is, P(x, y) need not equal y, and the system need not be a restatement of a 
single second-order equation. Rather, it might arise directly in the form (22). 

For instance, suppose that two species of fish coexist in a lake, say bluegills and 
bass. The bluegills, with population x, feed on vegetation which is available in un- 
limited quantity, and the bass, with population y, feed exclusively on the bluegills. 
If the two species were separated, their populations could be assumed to be gov- 
erned approximately by the rate equations 

z= an, y = —By, (23) 

where the populations a(t) and y(t) are considered to be large enough so that they 
can be approximated as continuous rather than discrete (integer valued) variables, 
and a, 9 are (presumably positive) constants that reflect net birth/death rates. The 
species are not separated, however, so we expect the effective a to decrease as y 
increases and the effective 9 to decrease as x increases. An approximate revised 
model might then be expressed as 

v=(a—yy)z, (24a) 

y' = —(8 — dx)y, (24) 
which system is indeed of the form (22). This ecological problem is well known as 
Volterra’s problem, and we shall return to it later. 

The system (22) is said to be autonomous because there is no explicit depen- 
dence on the independent variable (the time ¢ here but which could have some other 
physical or nonphysical significance), Surely not all systems are autonomous, but 
that class covers a great many cases of important interest, and that is the class that 
is considered in phase plane analysis and in this chapter. Because (22a,b) are au- 
tonomous, any explicit reference to ¢ (namely, the ¢ derivatives) can be suppressed 
by dividing one equation by the other and obtaining 

dy _ Ply) (25) dx Q(x, y)’ 

where we now change our point of view and regard y as a function of x in the 
z,y phase plane, rather than x and y as functions of ¢. If the system (22) were not



  

autonomous; that is, if it were of the form a’ = P(a,y,t) andy’ = Q(x, y,t), one 

could still make it autonomous by re-expressing it, equivalently, as 

hog 
v= P(x,y,2), 

4q / ee ys + 

y= Q(x, YU, Z), 

wf! =I, 

but then the trajectories exist in the three-dimensional w, y, z space, and that case 
is more complicated. [n this chapter we continue to consider the autonomous case 

(22) and the two-dimensional x, y phase plane. 

Closure. As explained immediately above, our program in this section is to show 

the advantages of recasting an autonomous system (22) (which could, but need not, 
arise from a single second- order equation by letting x’ be an auxiliary dependent 
variable y) in the form (25) and then study the solutions of that equation in the two- 

dimensional x, y phase plane. One advantage is that (25) can sometimes be solved 
analytically even if (22a,b) are nonlinear. Indeed, our primary interest in Chapter 
7 is in the nonlinear case. We find that the phase portrait provides a remarkable 
overview of the system dynamics, and the hard- and soft-spring oscillator exam- 
ples begin to reveal some of the phenomenological richness of nonlinear systems. 
We do not suggest the use of the phase plane as a substitute for obtaining and plot- 
ting solutions of (22) in the more usual way, 2 versus t and y versus ¢. Rather, 
we suggest that to understand a complex nonlinear system one needs to combine 

several approaches, and for autonomous systems the phase plane is one of the most 
valuable. Finally, we ask you to observe how the phase plane discussion is more 
qualitative and topological than lines of approach developed in the preceding chap- 
ters. For instance, regarding Fig. 8 we distinguish the qualitatively different types 
of motion such as the periodic orbits within BDE HB, the transitional motions on 

the separatrix itself, and the nonperiodic motions as well. 
We distinguish between the physical velocity x’(t) of the mass, in the preced- 

ing examples, and the phase velocity s’(¢), which is the velocity of the represen- 
tative point x(t), y(t) in the phase plane. It is useful, conceptually, to think of the 

z’(t), y’(t) velocity field as the velocity field of a “flow” such as a fluid flow in the 
phase plane. 

Finally, we mention that in the hard- and soft-spring oscillators, (6) and (8), 

we meet special cases of the extremely important Duffing equation, to which we 

return in a later section. 

Computer software. Here is how we generate the phase portrait shown. in Fig. 8 

using the Maple phaseportrait command. First, enter 

with(DEtools): 

and return, to gain access to the phaseportrait command. Note the colon, whereas 

Maple commands are followed by semicolons. Next, enter 

phaseportrait({y, —z + 273], [t,a,y], t= —20..20, {[0,0,0.1], (0,0, 0.3), 

7.2. The Phase Plane 345



346 Chapter 7.. Qualitative Methods: Phase Plane and Nonlinear Differential Equations 

(0, 0, 0.6], [0, 0,0.70710781}, (0,0, —0.70710781, [0, 0, 0.9], (0,0, —0.9], 
(0, 0, 1.25], [0, 0, —1.25], [0, 1.5, 0.8838834761], [0, 1.5, —0.883883476 1], 

(0, 1.4, 0], [0, 1.8, 0], (0, —1.5, 0.8838834761), (0, —1.5, —0.8838834761], 

(0, ~1.4, 0], [0,-1.8,0]}, stepsize = 0.05, y= —1.8..1.8, v= —2..2, 

scene = |x, y]); 

and return. In [y,-a + 2°83] the items are the right-hand sides of the first and 

second differential equations, respectively; [t,x,y] are the independent variable 
and dependent variables; t = —20..20 is the range of integration of the differential 
equations; within { } are the initial ¢,2,y points chosen in order to generate the 
trajectories shown in Fig. 8. After those points the remaining items are optional: 
stepsize== 0.05 sets the stepsize h in the Runge—-Kutta-Fehlberg integration because 
the default value would be (final ¢ — initial t)/20 = (20 + 20)/20 = 2, which 
would give too coarse a plot (as found by experience); y = —1.8..1.8,0 = —2..2 

gives a limit to the x, y region, with the ¢ integrations terminated once a trajectory 
leaves that region; scene = [x,y] specifies the plot to be a two-dimensional plot 
in the x, y plane, the default being to give a three-dimensional plot in ¢, x, y space. 
There are additional options that we have not used, one especially useful option for 
phase plane work being the arrow option, which gives a lineal element grid. The 
elements can be barbed or not. To include thin barbed arrows, type a comma and 
then arrows=THIN after the last option. Thus, we would have ... scene = [x,y], 
arrows =THIN):. In place of THIN type SLIM, or THICK for thicker arrows. For 
unbarbed lineal elements, use LINE in place of these. The order of the options is 

immaterial. 
Observe that the separatrix must be generated separately as BDE, EHB, AB, 

GB, EF, and IE. To generate BDE, for instance, we determine the coordinates 

of D. The equation of the entire separatrix is given by (12), where C’ is determined 
by using the x,y pair 1,0 (namely, the point £, which is a known point on the 
separatrix). Thus, putting « = 1 and y = 0 into the left side of (12) gives C = 1/4. 

Next, put 2 = 0 and solve for y, obtaining y = 1/V2 = 0.770710781 at D. Then, 

with D as the initial point we need t to go from —co to +00 to generate BDE. 
By trial, we find that ~20 to +20 suffices for this segment and all others; similarly, 

we generate EF by using a point on EF at x = 1.5, and determine y at that point 

from the separatrix equation. That calculation gives y = 0.8838834761. 
Notice that to generate Fig. 8 with phaseportrait we need to already know 

something about the phaseportrait — the equation of the separatrix, (12), so that 
we can choose suitable initial points on AB, GB, BDE, EHB, EF, and JE. 

Suppose that we desire only the lineal element field, over 0 < a < 4 and 

O<y <4, say. We can get it from phaseportrait as follows: 

phaseportrait([y, —z +273], [é,a,y], t=0..1, {[0,0,0)}, «7 =0.4, y= 0.4, 

scene = [2,y}, arrows = THIN, grid = [20, 20)); 

because the trajectory through [0,0,0] gives simply the single point « = y = 0 in 
the «,y phase plane. We have included the one initial point [0, 0, 0] because the 
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program calls for at least one. If the default grid is too coarse or too fine we can 

define it through the grid option, where grid = [20, 20] calls for a 20 by 20 grid. 

Besides generating the z, y phase plane, phaseportrait can also generate plots 

of « or y versus ¢ using the scene option. For instance, 

phaseportrait([y, —« + 273], [t,2,y], €=0..5, {[0,0.2, 0], [0, 0.8, 1.3]}, 

stepsize = 0.05, scene = [t, 2]); 

gives two plots of x(t) versus ¢ over 0 < t < 5, one with initial conditions x(Q) = 

0.2 and y(0) = « 
y(0) = v'(0) = 1.3. 

€ 

‘(0) = 0, and the other with initial conditions x(0) = 0.8 and 

  

EXERCISES 7.2 
  

1. We’ stated, below (5) that if we solve (5) for y (Le., dx /dt), 

separate variables, and integrate, we obtain the general solu- 

tion x(t) = Asin (wt + @) of (1). Here we ask you to do that, 
to carry out those steps. 

2. Supply the steps missing between the first and second lines 

of (18). 

3. We found in Fig. 6 that for the hard-spring oscillator the fre- 

quency increases with the amplitude. Explain, in simple terms, 

why that result makes sense. 

4, Determine the equation of the phase trajectories for the 

given system, and sketch several representative trajectories. 

Use arrows to indicate the direction of movement along those 

trajectories. 

(a) a’ = Us yl = 2 (b)a’=ay, yl = 2? 

(cal =y’, yl = -ay 
5. Determine the equation of the phase trajectories and sketch 

enough representative trajectories to show the essential fea- 

tures of the phase portrait. Use arrows to indicate the direction 

of movement along those trajectories. 

@ray yey aay, yey 
(jal=y, y=u (djal’=y, yi =9e 
(ja’=au, y=e (Heiser, y = —4x 

6. (Period, for soft-spring oscillator) In the paragraph be- 

low (21), we suggest that the period 7’ of the periodic mo- 

tions inside of BDE HB (Fig. 8) tends to 27 in the limit as 

the amplitude A of the motion tends to zero, and to co as 

A -> 1. Here we ask you to explore that claim with cal- 

culations. Specifically, use phaseportrait (or other software) 
to solve 2’ + 2 — 2° = 0 subject to the initial conditions 
(0) = A, 2’(0) = 0, for A = 0.05, 0.3, 0.6, 0.9, 0.95, 0.99. 

From your results, obtain the period T for each case and plot 

T versus A for those values of A (and additional ones if you 

wish). Does the claim made in the first sentence appear to be 

correct? 

7. We stated, in our discussion of Fig. 8, that all trajectories 

outside of the “football” region correspond to nonperiodic mo- 

tions. Explain why that is true. 

8. (Graphical determination of phase velocity) (a) For the 

system (22), consider the special case where P(a,y) = ys 

as occurred in (3) and (7), for instance. From the accompa- 

nying sketch, show that in that case the phase velocity s’ can be 

  

  

interpreted graphically as 

8 = 4, (8.1) 

where a is the perpendicular distance from £ to the z axis. 

(b) Consider a rectangular phase trajectory ABC'DA, where 

the corner points have the x,y coordinates A = (~1, 1), 

B = (3,1), C = (8,-1), D = (~1,~-1). Using (8.1), plot 

the graph of x(t) versus ¢, from ¢ = 0 through ¢ = 20, if the 

representative point & is at A att = 0.
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(c) Consider a phase trajectory ABC consisting of straight- 

line segments from A = (—1,0) to B = (0,1) to C = (1,0) 
with & at Batt = 0. Using (8.1), sketch the graph of «(¢) 
versus t over oo < t < oo. Also, give x(t) analytically over 
-oo <t<OandO0<t<oo. 

(d) Consider a straight-line phase trajectory from A = (0,5) 
to B = (10, -5). Using (8.1), sketch the graph of x(t) versus 
toverO <t<oo,if Hisat Aatt = 0. 

(e) Same as (d), but with # at Batt = 0. 

9, (a) Reduce the equation x” + 22° = 0 to a system of equa- 

tions by setting z’ = y. Find the equation of the phase trajec- 

tories and sketch several of them by hand. Show that for larger 
and larger motions the trajectories are flatter and flatter over 

-lL<a<l. 

(b) Use the Maple phaseportrait command (or other software) 

to generate the phase portrait and, on the same plot, the lineal 

element field, using barbed arrows to show the flow direction. 

You will need to make decisions, with some experimentation, 
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as to the ¢-interval, the step size, the initial points, and so on, 

so as to obtain good results. 

10. Reduce the equation x” + x? = 0 to a system of equations 

by setting 2’: =°y»’ Find the equation of the trajectories and 

carefully sketch seven or eight of them, so as to show clearly 

the key features of the phase portrait. Pay special attention to 

the one through the origin, and give its equation, 

UL. (Volterra problem) Consider the Volterra problem (24), 

with a = 8 = y = 6 = 1. Determine any fixed points. 

Use phaseportrait (or other software) to obtain the lineal ele- 

ment field, with barbed arrows, over the region 0 < a < 4 

and Q < y < 4, say. (Of course, « and y need to be positive 

because they are populations.). On that plot, sketch a number 

of representative trajectories. You should find a circulatory 

motion about the point (1,1). Can you tell, from the lineal el- 

ement field, whether the trajectories circulate in closed orbits 

or whether they spiral in (or away from) that point? 

  

  

7.3 Singular Points and Stability 

7.3.1. Existence and uniqueness. Before we go any further, we need to return 
to the question of the existence and uniqueness of solutions. Theorem 2.4.1 gives 

conditions on f for the equation y’ = f(x,y) to admit a unique solution through 
a given initial point y(a) = b. Theorem 3.9.1 does likewise for a system of such 
equations, but covered only linear equations. In the present chapter, however, our 
principal interest is in systems of nonlinear equations so we give the following 

result, which is essentially a generalization of Theorem 2.4.1 to a system of equa- 
tions. 

  

THEOREM 7.3.1 Existence and Uniqueness 
Let f(x,y,t) and g(x, y,t) and each of the partial derivatives fe, fy, ga, Gy exist 
and be continuous in some neighborhood of the point (xo, yo, to) in Cartesian x, y,t 

space. Then the initial-value problem 

dx 

M = Fleyt); ello) = ls 

WY nas alte) = i" 
Fe Ihe); y(to) = Yo 

has a solution z(t), y(t) on some open ¢ interval containing ¢ = to and that
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solution is unique. 
  

More general and more powerful theorems could be given but this one will 

suffice for our purposes in this chapter. For such theorems and proofs we refer 

you to texts on differential equations such as G, Birkhoff and G.-C. Rota, Ordinary 

Differential Equations, 2nd ed. (New York: John Wiley, 1969). 

For instance, consider the soft-spring oscillator equation 2” + « — x? = 0 or, 

equivalently, the system 

v= y, (2a) 

yo=—ot+ a? (2b) 

that we studied in Section 7.2. In this case f(x, y,t) = y, g(a, y,t) = —@ + x, 

fo =O, fy = 1, ge = -1 + 32°, gy = 0 are continuous for all values of x, y, and 

t, so Theorem 7.3.1 assures us that no matter what initial condition is chosen there 

is a unique solution through it. The extent of the ¢ interval over which that solution 

exists is not predicted by the theorem, which is a “local” theorem like Theorem 

2.4.1. But it is understood that that interval is not merely the point fo itself, for how 

could dx/dt and dy/dt make sense if x(t) and y(t) were defined only at a single 
point? Linear differential equations are simpler, and for them we have “global” 

theorems such as Theorem 3.9.1. 
If f and g satisfy the conditions of Theorem 7.3.1 at (xo, yo, to) inz, y, t space, 

then there does exist a solution curve, or trajectory, through that point, and there is 

only one such trajectory. Geometrically, it follows that trajectories in x, y,t space 
cannot touch or cross each other at a point of existence and uniqueness. How- 

ever, what about the possibility of crossings of trajectories in the 2, y phase plane? 

Be careful, because whereas the theorem precludes crossings in three-dimensional 

z,y,t space, the phase plane shows only the projection of the three-dimensional 

trajectories onto the two-dimensional x, y plane. For instance, choose any point Po 

ona closed orbit inside the “football” in Fig. 8 of Section 7.2. As the representative 

point P goes round and round on that orbit it passes through Fo an infinite number 

of times, yet that situation does not violate the theorem because if that trajectory 

is viewed in three-dimensional x,y, space, we see that it is actually helical, and 

there are no self-crossings. The only points of serious concern in Fig. 8 are (1, 0) 
and (—1,0). But here too there is no violation of the theorem because there is only 

the unique trajectory x(t) = 1 and y(t) = 0 through any initial point (1, 0, to) 

— namely, a straight-line trajectory which is perpendicular to the x,y plane and 

which extends from —oo to +oo in the ¢ direction. The trajectories DE and LE, in 

the x,y, ¢ space, approach that line asymptotically as ¢ > oo, and the trajectories 

FE and HE approach it asymptotically (both in «, y, t space and in the x, y phase 

plane) as t  —oo, but they never reach it. Similarly for (—1, 0, to). 

Recall, from Section 7.2, that we proceeded to divide (2b) by (2a), obtaining 

dy ~u¥+ ue 
3 

dx y ©) 
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Thus, apart from the question of existence and uniqueness for the system (2) in 
x,y, t space, there is the separate question as to the existence and uniqueness of the 
solution of the single equation (3) through a given initial point in the z, y plane, to 
which question we now turn. Here, f(x,y) = (~a +23)/y and fy = (uv — 23)/y? 
are continuous everywhere except on the line y = 0, that is, on the z-axis. However, 
since we are not aiming at finding y() but at finding the phase trajectories, then it 
doesn’t matter if, at any givén location, we regard y as a function of a or vice versa. 
Thus, if we re-express (3) as dx/dy = y/(~a+2°), then we find that the right side 
and its partial derivative with respect to the dependent variable 2 are continuous 
everywhere except at x = 0,1, and —1. Thus, the only points in the phase plane at 
which there can possibly be breakdowns of existence and uniqueness of a trajectory 
passing through that point are the intersections of the horizontal line y = O and the 
vertical lines z = 0,1, and —1, namely, the points (—1,0), (0,0), and (1,0), and 
we call these “singular points” of (3). At each of these points dy/dx and da /dy are 
of the form 0/0, so there is no unique slope defined through that point. Indeed we 
do find breakdowns of uniqueness at the points (—1,0) and (1,0) in Fig. 8 because 
at each point we find two crossing trajectories. (Remember that we are in x, y space 
now, not x, y,t space, and that time does not enter explicitly.) And at (0,0) we find 
a failure of existence because there is no solution that passes through that point. 

The upshot is that even though the system (2) has a unique solution in z, y,¢ 
space, through any point (—1,0,to), (0,0,t0), or (1,0, to), the equation (3) does 
not have a unique solution through any of the points (—1, 0), (0,0), and (1,0). We 
therefore say that these three points are singular points of (3), which concept we 

now formalize. 

7.3.2. Singular points. Thus, in considering the general case 

dy _ f(x,y) 
dx g(x,y) 

y 

obtained from x’ = da/dt = f(x,y) andy’ = dy/dt = g(a, y) by division, we say 
that any point as, ys at which both f(x,y) and g(x, y) vanish is a singular point 
(or critical point) of (4). Recall that from a dynamical point of view a singular 
point is an equilibrium point, or fixed point, because if we start at such a point then 

we remain there for all ¢ because x’ = y’ = 0 there. 
Singular points are of great importance in phase plane analysis. They need not 

v, then every point on 

the y axis (i.e., the line 2 = 0) is a singular point. To study a singular point of a 
nonlinear system, we focus attention on its immediate neighborhood by expanding 

f(x,y) and g(x, y) in Taylor series about that point and linearizing, that is, cutting 

them off after the first-order terms. For instance, to study the singular point of (2) 

be isolated. For example, if f(z,y) = x and g(z,y) = 

at (1,0), write 

! 
t=, 

. 6 6 
y=-ete® =042e-N+5(e- += 

as 
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Close to (1, 0) we neglect the higher-order terms and consider the linearized version 

w= y, (6a) 
y’ = 2(a — 1) (6b) 

or, moving our coordinate system to (1,0) for convenience by setting X = x —1 

and Y = y, 

X'=/Y, (7a) 

Y' = 2X, (7b) 

Dividing these gives dY/dX = 2X/Y, with the solution Y? = 2X2 +C;C =0 

gives Y = +V2X; and for C 4 0 we have Y = £\/(2X* + C). These curves 
are shown in Fig. |. The pairs crossing the X axis correspond to increasingly 
negative values of C’, and those crossing the Y axis correspond to increasingly 

positive values of C’. 
Similarly, to study the singular point (0,0) observe that the right-hand sides of 

(2a) and (2b) are already Taylor series expansions about «© = 0 and y = 0. Thus, 

keeping terms only up to first order gives the linearized version 

w= y, (8a) 
y =—-2, (8b) 

with dy/dx« = —a/y giving the family of circles y? + «7 = C and hence the 

trajectories shown in Fig. 2 
Treating the vine point (—1,0) in the same manner, we find the same be- 

havior there as at (1,0). If we show the three results together, in Fig. 3, it is striking 
how those three localized phenomena appear to set up the global flow in the whole 
plane. That is, if we fill in what’s missing, by hand, we obtain — at least in a 
qualitative or topological sense — the same picture as in Fig. 8 of Section 7.2." 

From this example we can see some things and raise some questions. We see 
that by virtue of our Taylor expansions of I(x, y) and g(x,y) about the singular 
point (zs, ys) and their linearization, we are always going to end up with linearized 

equations of the form 

X’=aX + bY, (9a) 

Y'=cX +dY (9b) 

to study, where X = a2 —~—a, and Y = y — y, are Cartesian coordinate axes located 
at the singular point. Thus, we might as well study the general system (9) once 

and for all. Evidently, for different combinations of a,b, c, d there can be different 

types of singular points, for from Fig. 3 it seems clear that the ones at (1,0) and 

(—1,0) are different from the one at (0,0). How many different types are there? 
  

“It may appear inconsistent that the trajectories near the origin in Fig. 3 look elliptical, whereas 

they are circles in Fig. 2. That distortion. from circles to ellipses, is merely the result of stretching 

the x axis relative to y axis for display purposes. 

ay 

  

| 
| 
| 
| pw 

Figure 1. The flow near th 

singular point (1,0). 

  

Figure 2. The flow near the 

singular point (0,0). 

  

  

Figure 3. Global flow determined, 

qualitatively, by the singular points.
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(a) 5 

  

(b) 

  

Figure 4. Stability and asymptotic 

stability. 

What are they? 

7.3.3. The elementary singularities and their stability. We wish to solve (9), 
examine the results, and classify them into types. If we equate the right-hand sides 
of (9) to zero, we have the unique solution X = Y = 0 only if the determinant 

ad — be is nonzero. If that determinant vanishes, then the solution X = Y = 0 

is nonunique, and there is either an entire line of solutions through the origin or 
the entire plane of solutions. For instance, if @ = 6 = 0 and c and d are not both 
zero, then every point on the line cX + dY = 0 is a singular point of (9), and 
ifa = b = c = d = 0, then every point in the plane is a singular point of (9). 

Wishing to study the generic case, where the origin is an isolated singular point, 

we will require of a, b,c, d thatad ~ be 4 0. 
If we solve (9), for instance by elimination, we find that the solution is of the 

form 
X(t) = Cer Sa Caer?" Y(t) = Cer! + Cer? (10a,b) 

where C, Co, C3, Cy are not independent, and where 1, Ag are the roots 

y= tds View te (11) 

of the characteristic equation 

\* — (a + d)\ 4+ (ad — be) = 0. (12) 

Since ad — bc # 0, zero is not among the roots. There are exactly four possibilities: 

(1) purely imaginary roots (CENTER), 
(2) complex conjugate roots (FOCUS), 
(3) real roots of the same sign (NODE), 

(4) real roots of opposite sign (SADDLE). 

These cases lead to four different types of singularity: center, focus, node, and 
saddle, as we note within parentheses, and we will discuss these in turn. In doing 

so, it is important to examine each in terms of its stability, which concept we define 

before continuing. 
A singular point S = (x5, ys) of the autonomous system (4) is said to be stable 

if motions (i.e., trajectories) that start out sufficiently close to S remain close to 
5S. To make that intuitively stated definition mathematically precise, let d(P,, P2) 

denote the distance* between any two points P; = (21, y1) and P2 = (x2, ye). 
Further, we continue to let P(t) = (x(t), y(t)) denote the representative point in 
the phase plane corresponding to (4). Then, a singular point S is stable if, given 
any € > 0 (i.e., as small as we wish) there is ad > 0 such that d(P(t),.S) < ¢ for 
allt > Oif d(P(0),.S') < 6. (See Fig. 4a.) If S is not stable, then it is unstable. 
  

“In the Euclidean sense, the distance d(P;, P2) is defined as \/(e1 ~ v2)? + (yi — y2)*, but one 

can define distance in other ways. Here, we understand it in the Euclidean sense.



  

7.3. Singular Points and Stability — 353 

Further, we say that S' is not only stable but asymptotically stable if motions 

that start out sufficiently close to S not only stay close to S but actually approach 

S ast — oo. That is, if there is ad > O such that d(P(t),S) + Oast + co 

whenever d(P(0), S) < 6, then S' is asymptotically stable. (See Fig. 4b.) 

Now let us return to the four cases listed. The most inciteful way to study 

these cases is by seeking solutions in exponential form and dealing with the “eigen- 

value problem” that results. However, the eigenvalue problem is not discussed until 

Chapter | 1, so in the present section we rely on an approach that should suffice but 

which is in some ways less satisfactory. In Section 11.5 we return to this problem 

and deal with it as an eigenvalue problem. [f you are already sufficiently familiar 

with linear algebra, we suggest that you study that section immediately following 

this one. 
It is convenient to use the physical example of the mechanical oscillator, with 

the governing equation ma” + pa’ + ka = 0, or 

w= y, (13a) 
A 

yan a Py (13b) 
m m 

as a unifying example because by suitable choice of m,p, k we can obtain each of 

the four cases, and because this application has already been discussed in Section 

3.5. [Here we use p instead of c for the damping coefficient to avoid confusion with 

the cin (9b).] 

Purely imaginary roots. (CENTER) Let p = 0 so there is no damping. Then 

a= 0,6 =1.¢ = —k/m, d = 0; (11) gives the purely imaginary roots 

N= ti /k/m and dy/dz = —(k/m)a/y gives the family of ellipses 

1. 1. 
5m + a he =C (14) 

sketched in Fig. Sa. The singular point at (0,0) is called a center because it is 

surrounded by closed orbits corresponding to periodic motions. For instance, with 

Ay = tiw (where w = \/k/m is the natural frequency) and Ag == ~iw, (10a) gives 

a(t) = Cy exp (iwt) + Cy exp (twt) or, equivalently, 

a(t) = Asin (wt + @). (15) 

(Here, X = wand Y = y because the singular point is at z = y = 0.) In Fig. 5a the 

principal axes of the elliptical orbits coincide with the 2, y coordinate axes. More 

generally, they need not. For instance, for the system 

8 4 
w= vB, + ay (16a) 

Lu y=-ye- wey (16b) 

(a) y 

  

  
Figure 5. A center at (0, 0).
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(a) 
y 

  

(b) 

   ¥ 

26.57. 
  

Figure 6. A stable focus at (0,0). 

(11) again gives purely imaginary roots, \ = +i/,/3 so the solutions are harmonic 

oscillations with frequency 1/,/3, but the principal axes of the elliptical orbits are 
at an angle of sin~! (1/3) = 19.47° with respect to the z,y axes as shown in 
Fig. Sb (see Exercise 5). [The system (16) is, of course, not a special case of (13), 

itis a separate example. | 
We see that a center is stable but not asymptotically stable. 

Complex conjugate roots. (FOCUS) This time let p be positive in (13), but small 

enough so that p < /4km. According to the terminology introduced in Section 

3.8, we say that the damping is subcritical because per = V4km. Then a = 0, 

b=1,c=—k/m,d = —p/m; (11) gives the complex conjugate roots 

2 is . 2 ya Pg (2) -F_ Pai /4-(2)’, 
2m 2m m 2m m 2m, 

and (10a) gives the solution 

9m [ke > \2 k 2 
a(t) = e7P/?™ | A cos | 4/— — (=) t+ Bsin —- (=) 

m 2m m 2m 

Ls | 2 

= Ce Pt/2m in = _ (2) t+), (17) 
m 2m 

where C' and @ are arbitrary constants. As we discussed in Section 3.8, this solution 
differs from the undamped version (15) in two ways. First, the frequency of the si- 

nusoid is diminished from the natural frequency w = \/k/m to W/k/m — (p/2m)?, 
and the exp (—pt/2m) factor modulates the amplitude, reducing it to zero as t + 
oo. In terms of the phase portrait, one obtains a family of spirals such as the one 
shown in Fig. 6a. If we imagine the representative point P moving along that 
curve, we see that the projection onto the x axis is indeed a damped oscillation. We 
call the singularity at the origin a focus because trajectories “focus” to the origin as 

t —+ oo; the term spiral is also used. 

In Fig. 6a the principal axes of the orbits, which would be elliptical if not for 
the damping, coincide with the x, y coordinate axes. More generally, they need not. 

For instance, for the system 

  

1 7 / C= ~u+ =Y (18a) 3 ee 

1 4 f Ym 1 (18b) ¥ 3 9! 

we obtain similar results but with the principal axes rotated clockwise by an angle 

of sin~! (1/5) = 26.57° as shown in Fig. 6b. 
In each case (Fig. 6a and 6b) we see that the focus is stable and, indeed, asymp- 

totically stable as well. However, one can have foci that wind outward instead of 

  

| 

| 
{ 

|
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inward, and these will be unstable. For instance, if we return to the solution (17) of 
the damped oscillator system (13), but this time imagine p to be negative (without 
concerning ourselves with how that might be arranged physically), and smaller in 

magnitude than V4km as before, then in place of the clockwise inward flow shown 
in Fig. 5a, we obtain the counterclockwise outward flow shown in Fig. 7, and we 
classify the singularity at the origin as an unstable focus. Note that a stable singu- 
lar point can, additionally, be asymptotically stable or not, but an unstable singular 

point is simply unstable. 

Real roots of the same sign. (NODE) We’ve seen that without damping the me- 

chanical oscillator (13) gives pure oscillations, elliptical orbits, and a center. With 
light damping (i.e., 0 < p < pe,) it gives damped oscillations and a stable focus. 
If we now increase p so as to exceed pe,, then the oscillations disappear altogether, 

and we have the solution form 

a(t) = Crem + Coer?! (19a) 

with 

nfo VEV-E --B-VET-E 
Because of the way we have numbered the \’s, we have Ag < Ay < 0. Since w=y 

in this application we have from (19a), 

y(t) = AyCye™! + NoCoer!, (19b) 

We can see from (19) that 

a(t)~ Cre, y(t) ~ Ce! (20) 

and 

yr Aye (21) 

as t + oo, provided that the initial conditions do not give C; = 0. If they do give 

C; = 0, then 
a(t) =Cye*, y(t) = AgCoe**! (22) 

and 

y = Agw (23) 

as t + Oo. 
The resulting phase portrait is shown in Fig. 8a. We call the singularity at 

(0,0) a node — more specifically, an improper node (“improper” is explained be- 
low). In accord with the preceding discussion, observe from Fig. 8a that in the 
exceptional case in which the initial point lies on the line of slope Az the represen- 

tative point approaches the origin along that line. In all other cases, the approach is 
asymptotic to the line of slope Ay. If we let p tend to pe,, then the two lines coalesce 

  

Figure 7. An unstable focus at(0, 8). 

  

(b) 

  

Figure 8. A stable improper 

node at (0,0): distinct roots and 

repeated roots, respectively.
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  hy 

Figure 9. An unstable improper 

node at (0, 0): distinct roots. 

— 

(b) 

  

  
Figure 10. Stable and unstable 

proper nodes at (0,0). 

  

Figure 11. A saddle at (0, 0). 

    

and we obtain the portrait shown in Fig. 8b, which is, likewise, an improper node 
(Exercise 6). 

{f p is negative and greater in magnitude than p,,, then we see from the ex- 
pressions given above for the \’s, that Ay > Ag >. 0, and the phase portrait is 
as shown in Fig. 9. The nodes shown in Fig. 8a,b are both stable, asymptotically 
stable, and the one shown in Fig. 9 (which is analogous to the one in Fig. 8a) is 
unstable. 

Our mechanical oscillator example is but one example leading to a node. We 
could make up additional ones by writing down equations 2! = ax + by and y! = 
cx + dy if we choose the coefficients a, b, c,d so that the two \’s are of the same 
sign, but the results will be one of the types shown in Fig. 8 and 9. There is, 
however, another type of node, which we illustrate by the problem 

a’ = an, (24a) 

y = ay. (24b) 

That is, 6 = c = Oand a = d. Then Ay = Ag = a, and we have the solution 

a(t) = Ae™, (25a) 

y(t) = Be, (25b) 

where A, B are arbitrary. In this case y/x is not only asymptotic to a constant as 
t -+ oo, it is equal to a constant for all t. Thus, the phase portrait is as shown in 
Fig. 10a ifa < 0, and as in Fig. 10b if a > 0. The former is an asymptotically 
stable node, and the latter is an unstable node. But this time we call them proper 
nodes (or stars) because every trajectory is a straight line through the singular point 
(0,0), not just one or two of them. 

Real roots of opposite sign. (SADDLE) Consider, once again, the undamped 

mass/spring system governed by the equation mx” + ka = 0, or 

a = y, (26a) 

yaw. (26b) 
77 

This time, imagine /: to be negative (without concern about how that case could 
: , : 9 : 9 

occur physically) and set ~k/m = h*. Then (26) gives dy/dx = h*x/y so 

y 
y= heave +C or (27) 

  

which trajectories are shown in Fig. 11 for various values of C’. In particular, 
C = 0 gives the two straight lines through the singular point, namely, y = tha, 
with the flow approaching the origin on one (y = —ha) and moving away from 
it on the other (y = +Aa). Such a singular point is called a saddle and is always 

unstable. The two straight-line trajectories through the saddle, along which the flow 
is attracted and repelled, are called the stable and unstable manifolds, respectively.
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Of course, (26) is not the only example of a linear system a’ = ax + by and 
y! = ca + dy with a saddle. Any such system with real roots of opposite sign will 

have such a singularity. For instance, 

w= a+ 2y, (28a) 

y = 8x —5y (28b) 

has the roots \ = 3 and \ = —7. Thus, it has a saddle, and we know that two 

straight-line solutions can be found through the origin. To find them, try y = Ka. 
Putting y = «a into (28) gives x! = (1+ 2«)e and x’ = (8 — 5x)a:/n so it follows 
from these that we need 1 + 24 = (8 — 5&)/«, which equation gives the slopes 

k- Lands = —4. (If we would obtain & = oo, we would understand that, from 

y = Kx, to correspond to the x axis.) With « == 1 the equation a’ = (1+2n)a = 3x 
gives x(t) proportional to exp (3¢) [likewise for y(t) because y = Kx], and with 
K = ~4 it gives x(t) proportional to exp (—7¢). Thus, the line trajectory y = x 
is the unstable manifold (since z and y grow exponentially on it), and the line 
trajectory y = —4a is the stable manifold (since w and y die out exponentially on 

it). 
The same procedure, which we have just outlined and which should be clearly 

understood, can be used for a node as well, to find any straight-line trajectories 

through the node. 

7.3.4. Nonelementary singularities. In this final subsection we turn from the 
elementary singularities to nonelementary ones, with two purposes in mind. First, 
one doesn’t completely understand elementary singularities until one distinguishes 
elementary singularities from nonelementary ones and, second, nonelementary sin- 

gularities do arise in applications. 
Recall that 

X’=aXN +bY. Yo=cX +dy (29a,b) 

has an elementary singularity at (0,0) if ad — bc # 0. Consider two examples. 

EXAMPLE I. The system 

v=y, yory (30a,b) 

has the phase trajectories y = « + C and the phase portrait shown in Fig. 12. Since 

ad — be = (0)(1) — (1)(0) = 0, the singularity of (30) at (0,0) is nonelementary. It is 
nonisolated and, in fact. y = 0 is an entire line of singular points. @ 

EXAMPLE 2. Consider the singularity of the system 

vay, yo =l-cose Gta.b) 

. . . . . . Ll 4 lo, 
at (0,0). Expanding the right side of (31b) gives 1 — cosa = au - it +--+ 80 

the linearized version of (31) is a’ = Ow + ly and y’ = Ox + Oy. Thus, ad — bc = 
(0)(0) — (1)(0) = 0 again and the singularity of (31) at the origin is nonelementary. The 

  

357 

  

Figure 12. Nonelementary 

singularity of (30) at (0, 0).
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Figure 13. Nonelementary 

singularity of (31) at (0, 0). 

  

  

difficulty this time is not that the singular point is not isolated; it is. The problem is that it 

is of highér order for when we linearize the expansion of 1 — cos @ we simply have Ox + Oy. 

In not retaining at least the first nonvanishing term (namely, a? /2) we have “thrown out the 

baby with the bathwater.’ To capture the local behavior of (31) near the origin, we need to 

retain that leading term and consider the system 

av=y, yo = =a. (32a,b) 

Dividing (32b) by (32a) and integrating gives y = 4/ — + C, several of which trajectories   

are shown in Fig. 13. We see that the singularity is, indeed, isolated, but that the phase 

portrait is not of one of the elementary types. H 

Closure. In this section we establish a foundation for our use of the phase plane in 
studying nonlinear systems. We begin with the issue of existence and uniqueness 
of solutions, first in x, y, ¢ space (Theorem 7.3.1), and then in the w, y phase plane. 
The latter leads us to introduce the concept of a singular point in the phase plane 
as a point at which both 2’ = P(z,y) = O andy’ = Q(z,y) = 0. To study a 
singular point S = (x5, ys) one focuses on the immediate neighborhood of S, in 
which neighborhood we work with the locally linearized equations X’ = aX + bY 
and Y’ = cX + dY, where X = x — 2, and Y = y — ys, so X,Y is a Cartesian 
system with its origin at S. Studying that linearized system, we categorize the 
possible “flows” into four qualitatively distinct types ~ the center, focus, node, and 
saddle ~ and illustrate each through the mass/spring system ma” + px’ + kx = 0, 
with suitable choices of m,p,k, and other examples as well. These are the so- 
called elementary singularities that result when ad — bc # 0. In the next section 
we apply these results to several nonlinear systems, where we will see the role of 
such singular points in establishing the key features of the overall flow in the phase 
plane. 

  

EXERCISES 7.3 
  

1. Find all singular points of the given system. Are they iso- 3. Derive the solution (10) of (9) by the method of elimination, 

lated? 

(a) 

fd
 

a 

y! 

(c) x’ 
yf! 

(e) a’ 

(g) x 

il 
I 

I 

0 

20 Y 

vty 

ony 
ety? 

c+y 

zy —-4 

xz 2y 

(b) 

(d) 

(f) 

(h) 

and find C3 and Cy in terms of Cy and Cy. 

a! = dx — dy 4. Suppose that we reverse the e's and 6’s in our definition of 

yo=r-y stability, so that the definition becomes: A singular point S is 

x’ = siny stable if, given any ¢ > 0 (i.e, as small as we wish), there is a 

yo =aut+y 6 > Qsuch that d(P(t), S) < 6 forallt > Oif d(P(0),S) <e. 
vo =1l—e Would that definition work? That is, would it satisfy the idea 

y =1l—-2*—-xsiny of motions that start out sufficiently close to S remaining close 
wv’ = cos(x — y) to 5? Explain. 

yo = xy-1 
5. In this exercise we wish to elaborate on our claim below 

2. Is it possible for (4) to have no singular points? Explain. (16) that the principal axes of the elliptical orbits are at an an- 

ie



  

gle of 19.47° with respect to the a, y axes as shown in Fig, Sb. 

(a) If x,y and %, 7 coordinate systems are at an angle a, 

as shown here, show that the x, y and %, 7 coordinates of any 

  

given point are related according to 

v= Tcosa —Ysina, (5. 1a) 

(5.1b) y = Fsina + ycosa 

(b) Putting (5.1) into (16), insist upon the result being of the 

form 

w= Py, y= —7°2" (5.2) 

for some constants 3 and ¥ so as to yield elliptical orbits with 

%, 9 as principal axes, and show that you obtain a = 19.47°. 

If you obtain another @ as well, explain its significance. 

6. We claimed that if p = pe,, then the two straight-line 

trajectories in Fig. 8a coalesce. as shown in Fig. 8b. Here, 

we ask you to verify that claim. Begin by recalling that if 

Ay = Ag = A, then the general solution of (13) is 

a(t) = (Cy + Cot)e™, y(t) = a" (t) = ete. 

7. What does Fig. 8a look like in the limit as p + 00? Sketch 

it. 

8. Given the presence of the saddles (i.e., saddle-type singu- 

larities) at (—1,0) and (1,0) and the center at (0,0), can you 

come up with any global flow patterns that are qualitatively 

different from the one sketched in Fig. 3? Explain. (Assume 

that these three are the only singularities.) 
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9. (Saddles and nodes) Classify the singularity at the origin, 

find the equations of any straight-line trajectories through the 

origin, and sketch the phase portrait, including flow direction 

arrows. 

(a) c= ety (b) w= y 
y =4at+y yl = ~a@ ~ dy 

(c) a = a+ 2y (d) a! = —9 + 3y 

y = a Qy yo =ar-y 

(e) we = 3a+y (ft) go = —-3r+y 

yo=-aoty yo =-e-y 
(h) 2’ = a+ dy 

y’ = Ba -+y 

Gj) a = —-3a+y 
‘= a—-3y 

(g) ow = 26 -+y 

you u+ ly 

(i) aw =at+y 

yo saat ey y 

10. Prove that a linear system 2’ = av + by, y! = cx + dy can 

have one, two, or an infinite number of straight-line trajecto- 

ries through the origin, but never a finite number greater than 

two. 

11. Classify the singularity at the origin as a center, focus, 

node, or saddle. [f it is a focus, node, or saddle, then classify 

it, further, as stable or unstable. 

(a) a = a-—dy (b) 2’ = 2x+3y 

yoeatry yo =2-y 
(c) vw =at+y (d) a =a+3y 

yo =u — dy yom-r-y 
(e) x2 = —2e — 3y (f) a = -ae+y 

y! = bu + 2y yo = ~e— 2y 

(g) a = 2e—-y (h) a’ = -24-y 

~ yl = -a+3y yo = —« - By 

12. (a)-(h) Use computer software to obtain the phase por- 

trait for the corresponding system in Exercise 11. Be sure to 

include any key trajectories — namely, any straight-line trajec- 

tories through the origin. From the phase portrait, classify the 

singularity as a center, focus, node, or saddle, state whether it 

is stable, asymptotically stable, or unstable, and use arrows to 

show the flow direction. 

  

7.4 Applications 

In Sections 7.2 and 7.3 we established the phase plane concept, the idea of singu- 
larities, the center, focus, node, and saddle singularities of linear systems, and their
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stability or instability. With those fundamentals in hand, we can undertake some 

interesting applications: 

7.4.1. Singularities of nonlinear systems. We are interested in the autonomous 

system 

v' = P(x,y), 

y = Q(x,y). 

The x, y points at which both P(z, y) = 0 and Q(a, y) = 0 are the singular points 
of (1). Suppose we have determined those singular points, if any. We have em- 
phasized the importance of determining the local flow near each such point. To do 
that, it should suffice to expand P and Q in Taylor series about the given singular 
point, say S = (2, ys), and to retain terms only up to the first order. Thus, in- 
stead of studying the complete equations (1) near S, we intend to simplify them by 

linearizing them about S. 
Though familiar with the Taylor series of a function of one variable, from the 

calculus, you may not be familiar with Taylor series for functions of two or more 
variables. The Taylor series expansion of a given function of two variables, f(z, y), 

about any point (a, b), is 

Fay) = 10,8) + 5 [ela,b)(x~ a) + fy(a,d)(y =) 
+z [feo (a, b)(a — a)? + 2fey(a, b)(a — a)(y — b) + Fyy(a, b)(y - b)?| 

+ terms of third order and higher, 

where (x — a)'"(y — b)” is said to be of order m +n. One way to derive (2) is to 
expand f(x,y) in one variable at a time. Thus, holding y fixed for the moment, and 
expanding in x about x = a, we know from the Taylor series formula for a function 

of a single variable that 

f(v,y) = fla,y) + fela,y)(e - a) + a feelay y)(e — a)? foes, 

The coefficients are functions of y alone, and each can now be expanded in y about 

y = bs: 

f(a, y) = f(a, b) as fy(a, b)(y 7 b) + stove b)(y _ by? tote, 

fea, y) = fo (a, b) + foy(a, b)(y ” b) oF stem (as b)(y _ b)? spe, 

and so on. Putting these into (3) and arranging terms in ascending order produces 

(2), 
If we approximate f near (a,b) by cutting off the Taylor series (2) after the 

first-order terms, we have 

f(a, y) © fla,b) + fe(a, b)(@ — a) + fy(a, 6)(y = ©).



  

That step is called linearization because the result is linear in « and y. Geometri- 
cally, (5) amounts to approximating the f surface, plotted above the x, y plane, by 

; ; . L, 
its tangent plane at (a,b) justas f(z) = f(a) + f’(a)(w—a) + gf (ale ~a)?+ 

.& f(a) + f’(a)(a — a) amounts to approximating the graph of f versus « by 
its tangent line at « = a in the case of a function of a single variable. 

Returning to (1), the idea is to expand P and @ about the singular point of 

interest, (as, ys), and linearize. Using (5) to do that, we obtain 

P(x,y) © P(@s, Ys) + Po(@s,Ys)(@ ~ es) + Py(%s,ys)\(y~Ys)s (6a) 
Q(x, y) ~ Xs, Ys) + Qe(as, Ys )(x 7 Ls) + Qy(@s, Ys )(Y —~ Ys) (6b) 

But P(zs, ys) and Q(as, ys) are zero because (2s, ys) is a singular point, so we 
have the approximate (linearized) equations 

  

v= Py(@s,Ys)(@ — Us) + Py(xs, ys )(y — Ys), 

y! = Qaelws,Ys)(@ — vs) + Qy (Xs, Ys)(y — Ys). 

2) 

    
  

Finally, it is convenient, though not essential, to move the origin to S’ by letting 
X =a-—2x, and Y = y — yz, and calling P,(xs,ys) = a, Qz(@s,ys) = 6 

P,(xs, ys) = b, and Qy(xs, ys) = d, for brevity, in which case (7) becomes 

X'=aX + bY, (8a) 

Y'=cX +dy, (8b) 

which system is studied in Section 7.3. There, we classify the singularity at 4 = 
Y = 0 as acenter, focus, node, or saddle, depending upon the roots of the charac- 

teristic equation 
dM — (a+ d)\ + (ad ~ be) = 9, (9) 

namely, 

(a+d)+ (a — d)? + 4be 
5 . 

Knowing the numerical values of a, b, c,d, for the singular point in question, 
we can find the \ roots and determine whether the singular point is a center, focus, 

node, or saddle. 
Understand that we are trying to ascertain the local behavior of the flow corre- 

sponding to the original nonlinear system (1) near the singular point S by studying 
the simpler linearized version of (1) at S', namely, (8). That program begs this ques- 
tion: Is the nature of the singularity of the nonlinear system (1), at S, truly captured 
by its linearized version (8)? To answer that question it is helpful to present the 
singularity classification, developed in Section 7.3, in a graphical form ~ as we 
have in Fig. 1. It is more convenient to deal with the two quantities p = a +d and 

\   (10) 
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q = ad — be (which are the axes in Fig. |) than with the four quantities a, b,c, d 

since a -- d and ad — bc determine the roots of (10) and hence the singularity type. 

In terms of p and q, (10) simplifies to \ = (p - \/p* — 4q) /2. 
In the figure there are five regions separated by the p axis, the parabola p? = 

4g, and the positive q axis. [Of these boundaries, the p axis can be discounted 
since the case g = 0 is ruled out of consideration in Section. 7.3: because. then 
there is a line of singular points through the origin rather than the origin being 
an isolated singular point. That is, our (p,q) point will not fall on the boundary 
between saddles and improper nodes — namely, the p axis.] 

The Hartman~Grobman theorem tells us that if a@,b,c,d are such that the 

point (p,q) is within one of those regions, then the singularity types of the nonlin- 
ear system and its linearized version are identical. For instance, tf the linearized 
system has a saddle, then so does the nonlinear system. Essentially, we can think 

of retaining the higher-order terms (which we drop in linearizing the nonlinear 
differential equations) as equivalent to infinitesimally perturbing the values of the 
coefficients a,b, c,d in the linearized equations and hence the values of p and q. If 
the point (p,q) is within one of the five regions, then the perturbed point will be 
within the same region, so the singularity type will be the same for the nonlinear 

system as for the linearized one. 
However, we can imagine that for a borderline case, where (p,q) is on the 

parabola p* = 4g or on the positive g axis, such a perturbation can push the point 
into one of the neighboring regions, thus changing the type. In fact, that is the way 
it turns out. For instance, if (p, q) is on the positive g axis (as occurs in the example 
to follow), then the nonlinear system could have an unstable focus or a center or a 

stable focus. 

EXAMPLE 1. Oscillator with Cubic Damping. The equation x” + ex’? +2 = 0 models 
a harmonic oscillator with cubic damping — that is, with a damping term proportional to the 

velocity cubed. The equivalent system 

v= y, 
. (11) 

y = -2—- ey 

has one singular point, a center at 2 = y = 0. The linearized version is 

NX'= Y=O0N+4+1Y, 
(12) 

yl = -X =-1NX +0Y 

soa = d= 0, b = 1; andce = = hence p = Oandq = 1. Thus, (p, g) = (0,1) so 

(from Fig. 1) the linearized system (12) has a center (no surprise, since the solutions of 

the linearized equation «2’’ + x = 0 are simple harmonic motions). However, it turns out 

(Exercise |) that the nonlinear system (11) has a stable focus. Hf 

To summarize, in general the linearized system faithfully captures the singu- 
larity type of the original nonlinear system. For the borderline cases, where (p, q) 

o
o
 

|



  

. ) . . vos + ot 

is on the p* = 4g parabola or on the positive g axis, however, we have these possi- 

bilities: 

LINEARIZED NONLINEAR 

stable focus, 

stable proper node <> or stable proper node, 

or stable improper node 

unstable focus, 

center <=> or center, 

or stable focus 

unstable improper node, 

unstable proper node = or unstable proper node, 

or unstable focus 

7.4.2. Applications. Consider some physical applications. 

EXAMPLE 2. Pendulum. Recall from an introductory physics course that for a rigid 
body undergoing pure rotation about a pivot axis the inertia about the pivot O times the 

angular acceleration is equal to the applied torque. For the pendulum shown in Fig. 2, the 

inertia about O is ml?, the angle from the vertical is a(t), the angular acceleration is x’(t), 
and the downward gravitational force mg gives a torque of —mgil sin z. If the air resistance 

is proportional to the velocity Iz’, say ela’, then it gives an additional torque —cl*z’, so the 

equation of motion is ml?2” = —mglsinaz — cl?2' or 

cl! + ral + Fine =0, (43) 

where r = c/m. The ra’ term is a damping term. For definiteness, let g/l = 1 and consider 
the undamped case, where r = 0. 

For small motions we can approximate sin x by the first term of its Taylor series, 

sin x & x, so that we have the simple harmonic oscillator equation 2” + « = 0 or 

v=y (14a) 

y! =a: (14b) 

(14) has a center at x = y = 0, and its by now familiar phase portrait is shown in Fig. 3. 

To study larger motions, suppose that we approximate sin x by the first nwo terms of its 

Taylor series instead: sin « = a2 —«°/6. Then we have the nonlinear, but still approximate, 

equation of motion 

a +2 — 225 =0. (15) 
6 

The latter is of the same form as the equation governing the rectilinear motion of a mass 

restrained by a ‘soft spring,” which is studied in Section 7.2. The system 

Gy, (16a) 
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Figure 2. Pendulum. 

Ne
t > 

Figure 3. Phase portrait for the 

linearized system x” + 2 = 0.
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aN 
Figure 4. Phase portrait for the 

improved model (15). 

yo = e+ i y3 (16b) 
6 

has a center at (0,0) and saddles at (+V6,0) in the (x,y) phase plane, as discussed in 

Section 7.2, and its phase portrait is shown here in Fig. 4. 

Finally, if we retain the entire Taylor series of sin ¢ (Le., if we keep sin x intact), then 

we have the full nonlinear system (13), with r = 0, or 

v= y, (17a) 

y = ~sina, (17b) 

with singular points at (2, y) = (n7,0) forn = 0, +1, +£2,.... To classify these singular- 
ities, let us linearize equations (17) about the singular point (n7,0) using (7). Doing so, 

knowing that sinna = OQ and cos nm = (—1)", and setting X = «~—naand Y = y-0 = y, 
the linearized version of (17) is 

X'=Y =0X+1Y (18a) 
Y= (-1)"*1X = (-1)"* 4X + 0Y. (18b) 

In the notation of equation (8), @ = d= 0,b =1,ande = (—1)"*! sop=a+d=0 
and gq = ad — bc = (-1)". Thus, these singular points are on the q axis in the p,q 

plane. For even integers n they are on the positive g axis and correspond to centers; for 

odd integers n they are on the negative g axis and correspond to saddles. In turn, the latter 

correspond to saddles of the nonlinear system (17), but the former could be centers or foci 

of (17); as-is discussed in Section 7.4. |The computer-generated: phase portrait in Fig. 5 

reveals that they are centers; we have centers at 7 = 0,227, +47,..., and saddles at 

x= to,t37,..., on the x axis. 

  

  

Figure 5. Phase portrait of the full nonlinear system 2” + sin = 0. 

To understand the phase portrait, suppose (for definiteness) that the pendulum is hang- 

ing straight down (2 = 0) initially, and that we impart an initial angular velocity y(0), so 

that the initial point is A,B,C, or D in Fig. 5. If we start at A, then we follow a closed



  

orbit that is very close to elliptical, and the motion is very close to simple harmonic motion 

at frequency w == lL. If we start at B, the orbit is not so elliptical, there is an increase in 

the period, and the motion deviates somewhat from simple harmonic. If we start at C’, then 

we approach the saddle at x = m as £ —¥ oo; that is, the pendulum approaches the inverted 

position as ¢ - oo. If we impart more energy by starting at D, then — even though it slows 

down as it approaches the inverted position — it has enough energy to pass through that 

position and to keep going round and round indefinitely. Though the trajectory in the phase 

plane is not closed, the motion is nonetheless physically periodic since the positions « and 

x + 2n7n (for any integer n) are physically identical. 

How can we gain access to-one of the other closed orbits such as £7? That’s easy: we 

“crank” the pendulum through two rotations by hand so that while hanging straight down 

it is now at x = 4a. Then we impart an initial angular velocity y(0) = 9. 

What is the equation of the trajectories? Dividing (17b) by (17a) and integrating, gives 

xy ~ cosa = constant = C. (19) 

Do we really need (19)? After all, we turned the phase portrait generation over to the com- 

puter. Yes, to help us choose initial conditions that will enable us to generate the separatrix 

(the trajectories through the saddles) on the computer. With « = 7 and y = O, we find 

that C' = 1, so the equation of the separatrix is y? = 2(1 + cos x). Be careful, because the 

initial point = O and y = 2 will not generate the entire separatrix, but only the segment 

through that point, from z = —m to x = 7. To generate the next segment we could use an 

initial point 7 = 27 and y = 2, and so on. 

  

  

  

Figure 6. Phase portrait for the subcritically damped pendulum. 

COMMENT I. Recall that Fig. 3-5 correspond to taking sing = 2, sing + « — 2° /6 and 

retaining sin x without approximation, respectively, in (13). Thus, and not surprisingly, as 

we retain more terms in the Taylor series approximation of sin z about « = 0 we capture 

the flow more accurately and completely. 

COMMENT 2. What happens if we include some damping? It turns out that the singu- 
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"| 

  

  

  
Figure 7. Continuous deformation 

of the portrait near (7,0). Solid 

lines correspond to the nonlinear 

system, dashed to the linearized 

version. 

larities are at (na, 0), as before. Ifr < rer, where 7. = 2, then the singularities are still 

saddles if n is odd, but if n is even we now have stable foci rather than centers as seen in 

Fig. 6 (for r = 0.5). One calls the lightly shaded region (not including the boundaries AB 

and C'D) the basin of attraction for the stable focus at (277, 0), the basin of attraction of an 

attracting singular point S' being the set of all initial points Py such that the representative 

point P(t) tends to S as t -+ 00 if P(0) = Po. Similarly, each of the other stable foci has 

its own basin of attraction. 

COMMENT 3. We have spoken, in this section, of a nonlinear system having the same type 

of singularity (or not), at a particular singular point S, as the system linearized about S. Let 

us use the present example to clarify that idea. By their singularities being of the same type, 

we mean that their phase portraits are topologically equivalent in the neighborhood of S. 

Intuitively, that means that one can be obtained from the other by a continuous deformation, 

with the direction of the arrows preserved. The situation is illustrated in Fig. 7, where we 

show both the nonlinear (solid) and linearized (dashed) portraits in the neighborhood of the 

saddle at (7,0). [In more mathematical terms, suppose that our system 2’ = P(x,y) and 

y’ = Q(x, y) has a singular point at the origin and that 

P(z,y) = ax + by + higher-order terms = aX + bY, (20a) 

Q(x,y) = ca + dy + higher-order terms = cX + dY (20b) 

| 

define X and Y as continuous functions of x and y, and vice versa. Such a relationship 

between x, y and X, Y is called a homeomorphism and is what we mean by a continuous 

deformation. | 

COMMENT 4. It turns out that the nonlinear pendulum equation is also prominent in 

connection with a superconducting device known as a Josephson junction. For discussion 

of the Josephson junction within the context of nonlinear dynamics, we recommend the 

book Nonlinear Dynamics and Chaos (Reading, MA: Addison-Wesley, 1994) by Steven 

H. Strogatz. # 

In the preceding example we were unable to classify the singularities at (n7, 0) 

with certainty, for n even and r = 0, as is discussed in the paragraph below (18). 

We relied on the computer-generated phase portrait, which show them to be centers, 

not foci. More satisfactorily, we could have used the fact that 2” + sing = Oisa 

“conservative system,” which idea we now explain. 

In general, suppose that the application of Newton’s second law gives 

ma" = F(x); (21) 

that is, where the force F happens to be an explicit function only of x, not of x! or 

t. Defining V(x) by F(x) = —V'(x), (21) becomes ma” + V'(x) = 0. Let us 

multiply the latter by dx and integrate on x. Since, from the calculus, 

dx! dx! dx da! adr = —-dv = ———dt = xv! dt = vd’, 22 
v da wet = aE at Ua vi dx (22) 

we obtain max'dax’ + V'(x)dx = 0, integration of which gives 

1 
aie + V(x) = constant. (23)



  

V (ze) is called the potential energy associated with the force F(x). For a linear 
spring, for instance, the force is F(a) = —ka, and its potential is V(a) = ka?/2. 
The upshot is that (23) tells us that the total energy (kinetic plus potential) is con- 
served, it remains constant over time, so we say that any system of the form (21) is 
conservative. The pendulum equation 

meg" = ~mgl sin x (24) 

is of that form, and multiplying by dx and integrating on «x gives 

| 12 
gil )° — mgl cos x = constant, (25) 

where m/(lz’)*/2 is the kinetic energy and —mgl cos is the potential energy as- 

sociated with the gravitational force (with the pivot point chosen as the reference 
- level). 

For any conservative system (21), the total energy is E(x, 2’) = ma’*/2 + 
V(x). If we plot E(x, x’) above the x, x’ phase plane, then the x, x’ locations of 
maxima and minima of F are found from 

OE OE ) 
De = V'(x) =0 and Dal =mxr = 0, (26) 

and these are precisely the singular points of the system 

  

a! = y, 
y = F(x)/m = -V"(x)/m 

corresponding to (21). To illustrate, the point S beneath the minimum of F (Fig. 8) 
is a singular point. Furthermore, since F is constant on each trajectory, the phase 
trajectories are the projections of the closed curves of intersection of the E surface 
and the various horizontal planes, as sketched. Evidently (and we do not claim that 
this intuitive discussion constitutes a rigorous proof), a trajectory TP’ very close to 
S must be a closed orbit. The only way F could fail to correspond to a periodic 
motion is if there is a singular point on T, for the flow would stop there. But if S 
is an isolated singular point, and Tis small enough, then there can be no singular 
points on I, and we can conclude that S' must be a center. By that reasoning, we 
could have known that the singularities at (n7,0) (for n even) must be centers, not 
foci. More generally, we state that conservative systems do not have foci among 
their singularities. 

EXAMPLE 3. Volterra’s Predator-Prev Model. The Volterra model (also known as 
the Lotka— Volterra model) of the ecological problem of two coexisting species, one the 
predator and the other its prey, is introduced in Section 7.2. Recall that if #(¢), y(¢) are the 
populations of prey and predator. respectively. then the governing equations are of the form 

v= pl — ye, (27a) 

y =-v(1—x2)y, (27b) 
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Figure 8. Occurrence of a center 

for a conservative system.
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Figure 9. Phase portrait for 

Volterra problem (27). 

where j, 1 are positive empirical constants. Setting the right-hand sides of (27) equal to 

zero reveals that there are two singular points: (0,0) and (1, 1). 

Linearizing (27) about (0,0) gives 

gl = pn, yomovy (28) 

soa = pt,b=c=0,d = —v. Hence, \ = pz and —v, which are of opposite sign, so the 

singularity at the origin is a saddle. Clearly, the straight-line trajectories through (0, 0) are 

simply the x and y axes since w = 0, y = Ae~"’' and = Bet, y = 0 satisfy (28) and 

give trajectories that pass through the origin. 

To linearize about (1, 1) we use (7) and obtain the approximations 

a = —p(y- 1), yo =v(«~- 1) (29) 

or, with VY =a-landY =y-l, 

X' =—py =0X — py, (30) 
Yi svX =vX 4+0Y. (30b) 

Thus, @=d=0,b=-p,c=vsori= #2i Jp. Hence, the linearized version (30) has 

a center, and (27) has either a center or a focus. 

The phase portrait in Fig. 9 shows the singularity at (1, 1) to be a center, with every 

trajectory being a periodic orbit, except for the two coordinate axes. (Of course, we show 

only the first quadrant because x and y are populations and hence nonnegative.) The direc- 

tion of the arrows follows from (27), which reveals that 2’ > 0 for y < 1, and x’ <0 for 

y>ilory’ <Ofor’ <landy’ > 0foraz > 1). 

COMMENT. Although the Volterra model is a useful starting point in the modeling process 

and is useful pedagogically, it is not regarded as sufficiently realistic for practical ecological 

applications. Hf 

7.4.3. Bifurcations. As we have stressed, our approach in this chapter is largely 

qualitative. Of special importance, then, is the concept of bifurcations. That is, 

systems generally include one or more physical parameters (such as ju and v in 

Example 3). As those parameters are varied continuously, one expects the system 

behavior to change continuously as well. For instance, if we vary 4 in Example 

3, then the eccentricity of the orbits close to the center at (1,1) changes, and the 

overall flow field deforms, but — qualitatively — nothing dramatic happens. In other 

cases, there may exist certain critical values of one or more of the parameters such 

that the overall system behavior changes abruptly and dramatically as a parameter 

passes through such a critical value. We speak of such a result as a bifurcation. 

Let us illustrate the idea with an example. 

EXAMPLE 4. Saddle-Node Bifurcation. The nonlinear system 

  

v= ret y, (3la) 

y= x oy Gib) 

L+a?



  

arises in molecular biology, where «(t) and y(t) are proportional to protein and messenger 

RNA concentrations, and mis a positive empirical constant, or parameter, associated with 

the “death rate” of protein in the absence of the messenger RNA [for if y = 0, then Gla) 

gives exponential decay of x, with rate constant r]. 

The singular points of (31) correspond to intersection points of y = ra andy = 

aw /(1 +27), as shown (solid curves) in Fig. 10. Equating these gives 2 = y = 0 and also 

the two distinct roots 

Le Vitae Living | 
Cy Sy Ub POR So (32) 

2r 2 

provided that r < 1/2, Thus, the critical slope of y = rv isr = 1/2. [fr < 1/2 we 

obtain the two intersections Sy = (w1,y4) and S_ = (w_,y_) ifr = 1/2 (dashed line 
in Fig. 10) these coalesce at (1,0.5), and ifr > 1/2 they disappear and we have only the 

singular point at the origin. 

Let us study the three singular points, for r < 1/2. First (0,0): we can see from (31) 
by inspection or Taylor series expansion, that the linearized equations are 

e=an-rety, y=ny (33) 
soa=—r,b= 1,c = 0, and d = —1. Thus, (10) gives \ = —r and ~1. Since both are 

negative, the singular point (0, 0) is a stable node. 
In similar fashion (which calculations we leave to Exercise 6), we find that the singu- 

larity at S_ is a saddle. and that the singularity at Sy is an unstable improper node. As r 

is increased, S_ and at S,. approach each other along the curve y = z7/(1 +a”). When 

r = 1/2 they merge and form a singularity of some other type, and when r is increased 

beyond 1/2 the singularity disappears altogether, leaving only the node at the origin. The 

bifurcation that occurs at r = 1/2 is an example of a “saddle-node bifurcation.” From 

the way the singular points S, and S_ approach each other along the unstable manifold 

of the saddle, like “beads on a string” as Strogatz puts it, we see that the bifurcation pro- 

cess is essentially a one-dimensional event embedded within a higher-dimensional space 

(two-dimensional in this case). # 

The saddle-node bifurcation illustrated above is but one type of bifurcation. 
A few others are discussed in the exercises and in the next section. For a more 
complete discussion of bifurcation theory, we recommend the book by Strogatz, 
referenced in Example 2. 

Closure. In this section we got into the details of the phase plane analysis of 
autonomous nonlinear systems. Whether or not we generate the phase portrait by 
computer, it is essential to begin an analysis by finding any singular points and, 
by linearization, to determine the key features of the focal flow near each singular 

point. That information is needed even if we turn to the computer to generate the 

phase portrait, as we discuss below, under “Computer software.” 

We also explored the correspondence between the type of a singularity of the 
nonlinear system and that of the linearized system and found that the type remains 
the same, except for the borderline cases corresponding to p, g points on the positive 
q axis or on the parabola p* = 4qin Fig. 1. Those cases could “go either way.” That 
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Figure 10. Determining the 

singular points of (31).
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is, the higher-order terms in the nonlinear system can be thought of as perturbing 

the a,b,c, d coefficients in the linearized equations and hence p,q as well. The 

perturbed p,q point could remain on the boundary curve (positive g axis or the 

parabola p* = 4g), or it could be pushed slightly into either of the adjoining regions, 

thus changing the singularity type. 

The other item of special importance is the notion of bifurcations, whereby 

dramatic and qualitative changes in the system behavior can result from a given 

parameter crossing a critical value known as a bifurcation point. 

Computer software. Consider, for instance, the computer generation of the tra- p 3 ’ p & 

jectories through the singular point (7,0) in Fig. 6. The idea is to express the 

governing equation 2” + 0.52’ + sina = 0 (we took r = 0.5 in Fig. 6) as the 

system 
f ; 

gC =1 Ys (34) 

y = —sing —0.5y 

and to linearize (34) about (7, 0) as 

w= y, (35) 
y’ = —(cos7)(a — 7) — 0.5y 

or witha ~—7 =X andy-OZY, 

X'=0 1Y, X+1Y, (36) 

Y' = 1X —0.5Y. 

Next, seek straight-line solutions as Y = «.X, so (36) becomes 

X'’=O0X + KX, + KA, (37) 

KX! = LX — 0.54X, 

comparison of which gives 0-+ «& = (1 —0.5«)/« and hence « = —1.2807764 and 

0.7807764. Thus, if we make very small steps along the line Y = —1.2807764X, 

away from (7,0), we can obtain initial points that are very close to being on the 

trajectories from A to (7,0) and from B to (7,0). For example, with X = —0.02 

we obtain Y = 0.02561553. Similarly, X = +0.02 gives « = 3.1615927 and 

y = —0.02561553. 

With these two initial points we can use the Maple phaseportrait command to 

obtain the desired trajectories from A to (7,0) and from B to (7,0), as follows. 

Remembering to first enter with(DEtools):, the phaseportrait command would be 

as follows: 

phaseportrait([y, -.5 * y —sin(x)], [t,2,y], ¢ = —10..10, 

{{0, 3.1215927, 02561553}, (0, 3.1615927, —.02561553]}, stepsize = .05, 
x= —4.5..17, y = —6..6, scene = [x,y]);
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The ¢ range, from —10 to +10, is found to be sufficient to give the desired trajec- 
tories all the way to the borders y = —6 and y = +6, and the a and y ranges are 

simply chosen as the same ones used in Fig. 6. 

  

EXERCISES 7.4 
  

1. (a) In Example | we stated that the equation wv +-ea +a = 

0 (e > 0) has a stable focus at the origin of the phase plane. 

Verify that claim by generating (with computer software) its 
phase portrait. 

(b) Should the cubic damping result in the oscillation dying 

out more or less rapidly than for the case of linear damping, 

x" + ex' + & = 0, for the same values of €? Explain. 
(c) Classify the singularity at (0,0) for the case where ¢ < 0, 

and support your claim. 

2, Determine all singular points, if any, and classify each in- 
sofar as possible. 

@a'=y, y'=1-<c* 
(b)2’=1-y*, y=l-z 

(c)a’=y, y= (1—2”)/(1+2°) 
(d)z’=a2-y, y' =sin(x©+y) 
(e)a'=(l-—a*)y, y! =~ —-2y 

(Hel =(1-2*)y, yl! =-a + 2y 
(g)a=-2a-y, yi =ate? 

(hc! = —-22--y, yy =sine 

Gai =ye?-1, yo =y-a-1 
(alsa? —y, yl =%Ww-y 
(kja’=a*-y?, yo=ar+y-2 
Qe=y, y =—3sine 

(m) a’ =2+2y, yi’ =-a—siny 

(nha =(@°4+1)y, yo =a?-4 

3. (a)—(n) Use computer software such as the Maple phase- 

portrait command, to generate the phase portrait of the corre- 
sponding system in Exercise 2. 

4. Is the given system conservative? Explain. 

(a) a” — Qa’ + sing = 0 

(c)a” +27 =O 
(boa +27 +27 =0 
(dje’ +a’ +ar=0 

5. Use computer software such as the Maple phaseportrait 
command, to obtain the phase portrait of equation (13), over 

~2 <2 < 14and ~3 < y < 3, showing enough trajectories 
to clearly portray the flow. Take g/! = 1, and 

(abr = 0, 

(b) r to be any positive value that you wish but small enough 
for the damping to be subcritical. For instance, the singularity 

at (0,0) should be a stable focus. 
(c) r to be any value that you wish but large enough for the 

damping to be supercritical. For instance, the singularity at 

(0,0) should be a stable node. 

6. (Example 4 continuation.) In parts (a) and (b) below, let 

r = 0.3 in (31). 

(a) Show that S_. is a saddle, and find the equations of the two 

straight-line trajectories through it. Show that Sx is a stable 

improper node, and find two straight-line trajectories through 

it. Find two straight-line trajectories through the stable node 

at (0,0). Use these results to sketch the phase portrait of (31). 

(b) For the critical case, r = 1/2, show that the singularity at 

Sy. is nonelementary. 
(c) For the representative supercritical case r = 1, identify and 

classify any singularities, and use computer software to gener- 

ate the phaseportrait of (31) in the rectangle 0 < x < 1.6, 

O<y< 15. 
7. (Dynamic formulation of a buckling problem) Consider the 

buckling of the mechanical system shown in the figure, and 

  

  

consisting of two massless rigid rods of length | pinned to a 

mass 77. and a lateral spring of stiffness &. That is, when the 

spring is neither stretched nor compressed x = 0 and the rods
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are aligned vertically. As we increase the downward load P 

nothing happens until we reach a critical value P,,, at which 

value 2 increases (to one side or the other, we can’t predict 

which) and the system collapses. 

(a) Application of Newton’s second law of motion gives 

nw 2Pa |, a2] 71? oe 
ma =| (5) tke=0 (71) 

as governing the displacement a(t). With a’ = y, show that 

the singularity at the origin in the 2, y phase plane changes 

its type as P is sufficiently increased. Discuss that change of 

type, show how it corresponds to the onset of buckling, and 

use it to show that the critical buckling load is Pa, = <= kl/2. 

(b) Explain what the results of part (a) have to do with bifur- 

cation theory. 
(c) Use Newton’s law to derive (7.1). 

8. (Motion of current-carrying wire) A mutual force of attrac- 

tion is exerted between parallel current-carrying wires. The 

infinite wire shown in the figure has current J, and the wire 

  

  

of length / and mass m (with leads that are perpendicular to 

the paper) has current 7 in the same direction as f. Accord- 

ing to the Biot-Savart law, the mutual force of attraction is 

21i1/(separation) = == 27il/(a—x), where x = 0 is the position 

at which the spring force is zero, so the equation of motion of 

the restrained wire is 

  ma’ +k (« _— ) =(0, where r=——. (8.1) 
ana k 

Thinking of m, k, a, and / as fixed, and the currents f and 7 as 

variable, let us study the behavior of the system in terms of the 

parameter 7. For definiteness, letm = 4 = @ = i. 

(a) With «’ = y, identify any singularities in the x,y phase 

plane and their types, and show that they depend upon whether 

r is less than, equal to, or greater than 1/4. Suppose that 

r < 1/4. Find the equation of the phase trajectories and of 

the separatrix. Do a labeled sketch of the phase portrait. 

(b) Let r = 0.1, say, and obtain a computer plot of the phase 

portrait. 

(c) Next, consider the transitional case, where r = 1/4. Show 

that that case corresponds to the merging of the two singular- 

ities, and the forming of a single singularity of higher order 

(.e., a nonelementary singularity). Do a labeled sketch of the 

phase portrait for that case. 

(d) Let r = 1/4, and obtain a computer plot of the phase por- 

trait. 

(e) Next, consider the case where r > 1/4, and sketch the 

phase portrait. 

(f) Let r = 0.5, say, and obtain a computer plot of the phase 

portrait, 

(g) Discuss this problem from the point of view of bifurcations, 

insofar as the parameter 7 is concerned. 

  

7.5 Limit Cycles, van der Pol Equation, 

and the Nerve Impulse 

7.5.1. Limit cycles and the van der Pol equation. The van der Pol equation. 

  

  
—e(l—a*)a’ +x =0, (e > 0) (1) 

  
  

was studied by Balth van der Pol (1889-— 1959), first in connection with current os- 

cillations in a certain vacuum tube circuit and then in connection with the modeling 
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of the beating of the heart.* Usually, in applications the parameter ¢ is positive. 
To study (1) in the phase plane we first re-express it as the system 

/ 
Gey, (2a) 

y =—a+e(1— a") , (2b) 

which has one singular point: (0,0). Linearizing (2) about (0,0) gives 

v= y, (3a) 
y = —-a + ey, (3b) 

which has an unstable focus if ¢ < 2 and an unstable node if ¢ > 2. That result ts 

not surprising since (3) is equivalent to x” — ex’ + x = O [equation (1) with the 

nonlinear ex*z’ term dropped], and the latter corresponds to a damped harmonic 
oscillator with negative damping. Near the origin in the x,y phase plane the flow 
is accurately described by (3) and is shown in Fig. la. As the motion increases, 
the neglected nonlinear term ex?’ ceases to be negligible, and we wonder how the 
trajectory shown in Fig. la continues to develop as ¢ increases. Since the ‘damping 

coefficient” ¢ = ~e(1—:”), in (1), is negative throughout the vertical strip |x| < 1, 
we expect the spiral to continue to grow, with distortion as the ex*a’ term becomes 
more prominent. Eventually, the spiral will break out of the |a| < 1 strip (Fig. Ib). 
As the representative point (x(t), y(¢)) spends more and more time outside that 
strip, where c = —e(1 — 2”) > 0, the effect of the positive damping in |x| > 1 
increases. relative to the effect of the negative damping in |! < 1, so itis natural to 
wonder if the trajectory might approach some limiting closed orbit as ¢ — 00 over 
which the effects of the positive and negative damping are exactly in balance. 

We can use the following theorem, due to N. Levinson and O. K. Smith. 

  

THEOREM 7.5.1 Existence of Limit Cycle 
Let f(a) be even [f(—x) = f(ax)] and continuous for all x. Let g(a) be odd 
[g(—x) = —g(x)] with g(a) > 0 for all x > 0, and g/(a) be continuous for all 2. 

With . / 
f(é) dé = F(x) and i g(€) dé = G(x), (4) 

Jo JO 

suppose that (i) G(av) -+ co as x — oo and (ii) there is an xq > O such that 
F(x) < 0 for0 <a < x9, F(x) > 0 for x > xg, and F(a) is monotonically 
increasing for a > ig with F(x) - 90 as x —- oo. Then the generalized Liénard 
equation 

uv’ + f(a)e’ + g(a) = 0 (5) 

has a single periodic solution, the trajectory of which is a closed curve encircling 
the origin in the 2,2’ phase plane. AII other trajectories (except the trajectory 

  

“B. van der Pol, On “Relaxation Oscillations,” Philosophical Magazine. Vol. 2, 1926. pp. 978— 

992, and B. van der Pol and J. van der Mark, The Heartbeat As a Relaxation Oscillation, and An 

Electrical Model of the Heart, Philosophical Magazine, Vol.6. 1928, pp. 763-775. 

(a) 

c>Q we 6s c>d 

(6)    

  

(xy) 

Figure 1. The unstable focus at(0, 0).
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y 

Figure 2. The van der Pol limit 

cycle, for ¢ = 0.2, 1, and 5. 

      

consisting of the single point at the origin) spiral toward the closed trajectory as 

t+ co. 
  

Applying this theorem to the van der Pol equation (1), f(a) = -e1—- xz?) 

is an even function of « and F(a) = —e(x — 2°/3), which is less than zero for 

O<a< V3, greater than zero for Zz > 3, and which increases monotonely to 

infinity as « —+ oo. Further, g(x) = « is odd, and positive for x > 0, g(x) = 1, 

and G(a) = «7/2 — oo as x -+ oo, Since the conditions of the theorem are met 

(for all e > 0), we conclude from the theorem that the van der Pol equation does 

admit a closed trajectory, a periodic solution, for every positive value of e. 

Computer results (using the Maple phaseportrait command) bear out this claim. 

The phase portraits are shown in Fig. 2 for the representative cases € = 0.2, 1, and 

5, and x(t) is plotted versus ¢ in Fig. 3 for the trajectories labeled C’. The closed 

trajectories labeled T, predicted by the theorem, are examples of limit cycles — 

namely, isolated closed orbits. By T° being isolated we mean that neighboring tra- 

jectories through points arbitrarily close to P are not closed orbits. If we start on 

T we remain on I, but if we start on a neighboring trajectory, then we approach I 

as t + oo (unless we start at the origin, which is an equilibrium point). Thus, we 

classify the van der Pol limit cycle as stable (or attracting). Clearly, that particular 

trajectory is of the greatest importance because every other trajectory (except the 

point trajectory « = y = 0) winds onto it as t + oo. 

As one might suspect from Fig. 2 and as can be proved, the van der Pol limit 

cycle approaches a circle of radius 2 as « —> 0 through positive values. When € 

becomes zero the singularity at the origin changes from a focus to a center, and 

while the circle of radius 2 persists as a trajectory it is joined by the whole family 

of circular orbits centered at the origin. If ¢ is diminished further and becomes 

negative, the origin becomes a stable focus and all closed orbits disappear and give 

way to inward-winding spirals. Thus, ¢ = 0 is a bifurcation value of e. 

Observe the interesting extremes: as « > 0, the steady-state oscillation (i.e., 

corresponding to the limit cycle) becomes a purely harmonic motion with ampli- 

tude 2. But as € becomes large, the limit cycle distorts considerably and the steady- 

state oscillation x(t) becomes “herky jerky.” (In the exercises, we show that as 

€ — co it even becomes discontinuous!) Such motions were dubbed as relaxation 

oscillations by van der Pol, and these are found all around us. Just a few, men- 

tioned in the paper by van der Pol and van der Mark, are the singing of wires ina 

cross wind, the scratching noise of a knife on a plate, the squeaking of a door, the 

intermittent discharge of a capacitor through a neon tube, the periodic reoccurrence 

of epidemics and economic crises, the sleeping of flowers, menstruation, and the 

beating of the heart. Such oscillations are characterized by a slow buildup followed 

by a rapid discharge, then a slow buildup, and so on. Thus, there are two time 

scales present, a “slow time” associated with the slow buildup, and a “fast time” 

associated with the rapid discharge. In biological oscillators such as the heart, the 

period of oscillation provides a biological “clock.” 

Understand clearly that the limit cycle phenomenon is possible only in nonlin- 

ear systems for consider the case of small ¢, say, where we have a limit cycle that is 

Sn
or
t 

R
E



  

7.5, Limit Cycles, van der Pol Equation, and the Nerve Impulse 

approximately a circle of radius 2. If the system were linear, then the existence of 
that orbit would imply that the entire family of concentric circles would necessarily 

be trajectories as well, but they are not. 
Besides the van der Pol example; other examples of differential equations ex- 

hibiting limit cycles are given in the exercises. In other cases a limit cycle can 
be unstable (repelling) in that other trajectories wind away from it, or semistable 
in exceptional cases, in that other trajectories wind toward it from the interior and 

away: from it on the exterior, or vice versa. 

7.5.2. Application to the nerve impulse and visual perception. The brain con- 

tains about 1022 (a million million) neurons, with around 104 to 101° interconnec- 
tions. Within this complex network, information is encoded and transmitted in the 
form of electrical impulses. The basic building block is the individual neuron, or 
nerve cell, and the functioning of a single neuron as an input/output device is of 
deep importance and interest. Our purposes in discussing the neuron here are in 
connection with relaxation oscillations, and especially with the key role of nonlin- 

earity in the design and functioning of our central nervous system. 
A typical neuron is comprised of a cell body that contains the nucleus and that 

emanates many dendrites and a single axon. The axon splits near its end into a 
number of teminals as shown schematically in Fig. 4. Dendrites are on the order 
of a millimeter long, and axons can be as short as that or as long as a meter. At the 
end of each terminal is a synapse, which is separated from a dendrite of an adjacent 
cell by a tiny synaptic. gap.. Electrical impulses, each of which is.called an action 
potential, are generated near the cell body and travel down the axon. When an 
action potential arrives at a synapse, chemical signals in the form of neurotrans- 
mitter molecules are released into the synaptic gap and diffuse across that gap to 
a neighboring dendrite. These electrical signals to that neighboring neuron can be 
positive (excitatory) or negative (inhibitory). Each cell receives a great many such 

cues from other neurons.. If the net excitation to a cell falls below some critical 
threshold value, then the cell will not fire — that is, it will not generate action po- 
tentials: If the net excitation is a bit above that threshold, then the cell will fire — 

not just once, but repeatedly and at a certain frequency. 
Let us consider briefly the generation of the nerve impulse. The nerve cell 

is surrounded by and also contains salt water. The salt molecules include sodium 
chloride (NaCl) and potassium chloride (KCI), and many of these molecules are 

ionized so that Nat, K*, and Cl™ ions are abundant both inside and outside the 

axon. Of these, Na? and Kt are the key players insofar as the nerve impulse is 
concerned. Rather than being impermeable, the axon membrane has many tubular 
protein pores of two kinds: channels that can open or close and let either Na* or 
K* ions through in a passive manner, like valves, and pumps that (using energy 

from the metabolism of glucose and oxygen) actively eject Na* ions (i.e., from 
inside the axon to outside) and bring in K* ions. Through the action of these 
active and passive pores, and the physical mechanisms of diffusion and the repul- 
sion/attraction of like/unlike charges, a differential in charge, and hence potential 
(voltage), is established across the axon membrane which, in the resting state, 1s 70 
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Output 
Amplitude 

  
Input 

Amplitude 

Figure 5. Input/output relation 

for a neuron. 

millivolts; positive outside. 

If the net excitation arriving from other cells sufficiently reduces that voltage, 

at the cell body end of the axon, then a sequence of opening and closing of pores 

is established, which results ina flow of Na* and K* ions and hence a voltage 

“blip,” the action potential, proceeding down the axon. That wave is not like the 

flow of electrons in a copper wire, but rather like a water. wave that results. not 

from horizontal motion of the water, but from a differential up and down motion 

of water particles. This complicated process was pieced together by Alan Hodgkin 

and Andrew Huxley, in 1952, and is clearly discussed in the book by David H. 

Hubel.* Various electrical circuit analogs have been proposed, to model the nerve 

impluse, by Hodgkin and Huxley and others. They are all somewhat empirical 

and of the “fill and flush” type — that is, where a charge builds up and is then 

discharged through an electrical circuit, and they are described in the little book by 

F. C. Hoppensteadt.! 

Of interest to us here is that the firing is repetitive (on the order of 100 im- 

pulses per second), and consists of a relaxation oscillation governed by the van der 

Pol equation (as discussed in Hoppensteadt). Further, it is known that as the excita- 

tion voltage is increased above the threshold, the magnitude of the action potential 

remains unchanged, but the firing frequency increases. If we plot the output (action 

potential) amplitude versus the input (excitation voltage) amplitude, the graph is as 

shown in Fig. 5. Since the graph of output amplitude versus input amplitude is not 

a straight line through the origin, the process must be nonlinear, which fact is also 

known through the governing equation being a van der Pol equation (or other such 

equation, depending upon the model adopted); indeed, any process where the out- 

put amplitude is zero until a critical threshold is reached is necessarily nonlinear. 

Since the individual neuron is a nonlinear device, surely the same is true for the 

entire central nervous system, and the natural and important question that asserts 

itself is “Why?”. What is the functional purpose of that nonlinearity? 

Let us attempt an answer. We have seen that nonlinear systems are more com- 

plex than linear ones. Since our nervous system is responsible for carrying out 

complex tasks, it seems reasonable that the system chosen should be nonlinear. We 

can be more specific if we look at a single type of task, say visual perception, which 

is so complex that it occupies around a third of the million million neurons in the 

brain. 
Perhaps the most striking revelation in studying visual perception is in discov- 

ering that one’s visual perception is not a simple replica of the image that falls upon 

the retina but is an interpretation of that information, effected by visual processing 

that begins in the retina and continues up into the visual cortex of the brain. For 

instance, hold your two hands up, in front of your face, with one twice as far from 

your eyes as the other (about 8 and 16 inches). You should find that they look about 

the same size. Yet, if we replace your eyes with a camera, and take a picture, we 

see in the photo that one hand looks around twice as large as the other. Usually, we 

blame the camera for the “distortion,” but the camera simply shows you the same 

  

*Eye, Brain, and Vision (New York: W. H. Freeman and Company, 1988). 
oo 

y 

An Introduction to the Mathematics of Neurons (Cambridge: Cambridge University Press, 1986). 
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information that is picked up by your retinas, the distortion is introduced by the 
brain as it interprets and reconstructs the data before presenting it to you as visual 

consciousness. 
The latter is but one example of a principle of visual perception known as size 

constancy. The idea is that whereas the actual size of a physical object is invariant, 
the size of its retinal image varies dramatically as it is moved nearer or further from 
us. Sizé constancy is the processing, between the retina and visual consciousness, 

that compensates for such variation so as to stabilize our visual world. Thus, for 
instance, our hands look about the same size even when the retinal image of one 
is twice as large as that of the other. The functional advantage of that stabilization 
is to relieve our conscious mind of having to figure everything out; our brain does 
much of the figuring out and presents us with its findings so that our conscious 

attention can be directed to more pressing and singular matters. 
Surely, size constancy requires a nonlinear perceptual system for if we take 

the retinal image size as the input amplitude and the perceived size as the output 
amplitude, then a linear system would show us the two hands just as a camera 
does. (Remember that for a linear system if we double the input we double the 

corresponding output if we triple the input we triple the output, and so on.) 
In visual perception there are other constancy mechanisms as well, such as 

brightness constancy and hue constancy. To illustrate brightness constancy, con- 
sider the following simple experiment reported by Hubel in his book, cited above. 
We know from experience that a newspaper appears pretty much the same, whether 
we look at it in sunlight or in a dimly lit room: black print on white paper. Taking 
a newspaper and a light meter, Hubel found that the white paper reflected 20 times 
as much light outdoors as indoors, yet it looked about the same outdoors and in- 
doors. If the perceptual system were linear, the white paper should have /ooked 20 
times as bright outdoors compared to indoors. Even more striking, he found that 
the black letters actually reflected twice as much light outdoors as the white paper 
did indoors yet, whether indoors or outdoors, the black letters always looked black 

and white paper always looked white. 
The point, then, is that these constancy mechanisms stabilize our perceived 

world and relieve our conscious mind from having to deal with newspapers that 
look 20 times brighter outdoors than indoors, hands that “grow” and “shrink” as 
they are moved to and fro, and so on, so that our conscious attention can be reserved 

for more singular matters such as not getting hit by a bus. These mechanisms are 
possible only by virtue of the nonlinearity of the central nervous system, which can 

be traced, in turn, to the highly nonlinear behavior of the basic building block of 

that system, the individual neuron. 
You have no doubt heard about “the whole being greater than the sum of its 

parts.” That idea expresses the essence of the Gestalt school of psychology which, 
by around 1920, supplanted the previously dominant molecular school of psychol- 
ogy, which had held that the whole és equal to the sum of the parts. To illustrate the 

Gestalt view, notice that the black dots in Fig. 6a are seen as a group of dots, not as 
a number of individual dots, and that the arrangement in Fig. 6b is seen as a triangle 
with sections removed, rather than as three bent lines. In fact. Max Wertheimer’s 

  

LZ A 
Figure 6. The whole is greater 

than the sum of its parts.
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fundamental experiment, which launched the Gestalt concept in 1912, is as follows. 
If parallel lines of equal length are displayed on a screen successively, it is found 
that if the time interval and distance between them are sufficiently small, then they 
are perceived not as two separate lines but as a single line that moves laterally. 
(Today we recognize that idea as the basis of motion pictures!) 

In mathematical terms, the molecular idea is reminiscent of the result for a 
linear differential equation Lu]. = fi; + fo +---+ fa that the response u to the 
combined input is simply the sum of the responses 1, u2,..., Ug to the individ- 
ual inputs f1, fo,...,f%.. We suggest here that, in effect, the contribution of the 
Gestaltists was to recognize the highly nonlinear nature of the perceptual system, 
even if they did not think of it or express it in those terms. We say more about the 
far-reaching effects of that nonlinearity upon human behavior in the next section. 

Closure. The principal idea of this section is that of limit cycles, which occur 
only for nonlinear systems. The classic example of an equation with a limit cycle 
solution is the van der Pol equation, which we discuss, but that is by no means the 

only equation that exhibits a limit cycle. That limit cycle solution is said to be a 
self-excited oscillation because even the slightest disturbance from the equilibrium 
point at the origin results in an oscillation that grows and inevitably approaches the 
limit cycle as t — oo. The case of large ¢€ is especially important in biological 
applications, and the corresponding limit cycle solution is a relaxation oscillation 
characterized by alternate ¢-intervals of slow and rapid change. Since the existence 
of.a limit.cycle is of great importance, there are numerous theorems available that 
help one to detect whether or not a limit cycle is present, but we include only the 
theorem of Levinson and Smith since it is helpful in our discussion of the van der 

Pol equation. 
Finally, we discuss the action potential occuring during the firing of a neuron, 

as a biological illustration of a relaxation oscillation, and we use that example to 
point out the nonlinear nature of the neuron and central nervous system, and the 

profound implications of that nonlinearity. 

  

EXERCISES 7.5 
  

L. (a) Obtain computer results analogous to those presented in 

Fig. 2 and 3 for the case where ¢ = 0.1. What value do you 

think the period approaches as € —> 0? Explain. 

(b) Obtain computer results analogous to those presented in 

Fig. 2 and 3, fore = 10. NOTE: Be sure to make your ¢- 

integration step size small enough ~ namely, small compared 

to the time intervals of rapid change of x(t). 

2. Use Theorem 7.5.1 to show that the following equations 
admit limit cycles. 

(aja — (1-2? )a’ +2? =0 
(b) x + a? (52° _ 3)a" +e=0 

3. Identify and classify any singularities of the given equation 

in the 2,y phase plane, where vz’ = y. Argue as convincingly 

as you can for or against the existence of any limit cycles, their 

shape, and their stability or instability. You should be able to 

tell a great deal from the equation itself, even in advance of 

any computer simulation. 

(a) a" + (a? + 2% — la’ +a =0 

(b)a” + (1-2? -a")r’ +r =0 

4. (Hopf bifurcation) (a) Show that the nonlinear system 

v=exrty—a(e+y’), (4. La) 

ee
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y= ew bey —y(a? +y") (4. 1b) 
can be simplified to 

r= r(e—r*), (4.2a) 

= ~1 (4.2b) 

by the change of variables « = rcos@, y = rsin@ from 

the Cartesian x, y variables to the polar 7, @ variables. HINT: 

Putting « = rcosé, y = rsin@ into (4.1) gives differential 

equations each of which contains both 7’ and 6’ on the left- 

hand side. Suitable linear combinations of those equations 

give (4.2a,b), respectively. We suggest that you use the short- 

hand cos@ = c and sin @ = s for brevity. 

(b) From (4.2) show that the origin in the x, y plane is a stable 

focus if e < 0 and an unstable focus if « > 0, and show that 

working from (4.1), instead, one obtains the same classifica- 

tion. 

(c) Show from (4.2) that r(t) = \/e is a trajectory (if ¢ > 0) 

and, in fact, a stable limit cycle. NOTE: Observe that zero is a 

bifurcation value of €. As € increases, a limit cycle is born as € 

passes through the value zero, and its radius increases with e. 

This is known as a Hopf bifurcation. 

(d) Modify (4.1) so that it gives an wastable limit cycle at 

r = ve, instead. 

5. The box in the circuit shown in the figure represents an 

“active element” such as a semiconductor or vacuum tube, the 

voltage drop across which is a known function f (7) of the cur- 

rent 7. Thus, Kirchhoff’s voltage law gives pa + f@)t+ 
d 

1 Fia=o C 2dt = . 

  

    
ct 

(a) If f is of the form f(i} = ai® — bi, show that one obtains 

  

  

; 2 . L. 
Li" + (3ai" — 6) + =i = 0. (5.1) 

(b) Show that by a suitable scaling of both the independent and 

dependent variables one can obtain from (5.1) the van der Pol 

equation 

"61 -P)l' +l =0, (5.2) 
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where primes denote differentiation with respect to the new 

time variable 7, where { = ar andi = GI. Thatis, find a, f, 

and ¢ in terms of L, C,a, and 0. 

6. (Rayleigh's equation and van der Pol relaxation oscilla- 

tion) (a) Show that if we set « = z’ in the van der Pol equa- 

tion a” ~ e(1 —a*)z’ +x = 0 and integrate once, we obtain 
2! — e(z! — 2!9/3) + 2 = C, where C’ is a constant. Setting 
z= u+C, to absorb the C, obtain Rayleigh’s equation 

(6.1) 

on u(t). The latter was studied by Lord Rayleigh (John 

William Strutt, 1842-1919) in connection with the vibration 

of a clarinet reed. 
(b) Letting u’ = v, reduce (6.1) to a system of two equations. 

Show that the only singular point of that system is (0,0), and 

classify its type. 
(c) Choosing initial values for u and v, use computer software 

to obtain phase portraits and plots of w(t) versus ¢, much as 
we have in Fig. 2 and 3, fore = 0.2, 1, and 5. For each of 

those e’s, estimate the amplitude and period of the limit cycle 

solution. 
(d) To study the relaxation oscillation (€ — oo) of the van der 

Pol equation it is more convenient to work with the Rayleigh 

equation (6.1), as we shall see. With u’ = v, let us scale the u 

variable according to u = ew. Show that the resulting system 

is 
ew! =v, (6.2a) 

ys 

wlee € _ =) ew (6.2b) 
3 

so 

dv _ av v'/3) = (6.3) 
dw U 

As € -> 00 we see from (6.3) that du/dw — oo at all points 

in the v,w phase plane except on the curve v — v8 13 — w. 

So for any initial point, say P, explain why the solution is as 

shown in the figure. For instance, why is the direction down- 

ward from P, and why does the trajectory jump from S to T 

and from U to R? The loop RSTU R is traversed repeatedly 

and is the limit cycle. Finally, use the figure to sketch u(t) and 
hence the limit cycle solution x(t) of the van der Pol equation 
(for € —} co). The result should be similar to the € = 5 part of 

Fig. 3. (HINT: Recall the expression “s’ = a” for the phase 

velocity in Exercise 8 of Section 7.2.) Finally, explain why it 

is convenient to work with the Rayleigh equation in order to 

find the relaxation oscillation of the van der Pol equation.
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P 

  

w 

  

  
7. In connection with Fig. tb we suggested that over the limit 

cycle the energy gain, while the representative point is in the 

strip |z| < 1, exactly balances the energy loss while the point 

is outside of that strip. Let us explore that idea. 

(a) Multiplying (1) through by dx and integrating over one cy- 

cle, show that 

where i and jf simply denote the initial point and final point, 

respectively. Explain, further, why (7.1) reduces to 

“f 
| (1—2°)a' dx = 0, (7.2) 

which expresses the balance stated above — namely, that the 

net work done over one cycle by the «(1 — x*)a’ term in (1) is 
zero. 
(b) For the case of small « (0 < ¢ < 1), seek the limit cy- 
cle solution in the form x(t) + acost. Putting the latter into 
(7.2), show that one obtains a = 2 as the radius of the circular 

limit cycle, as claimed in the text. NOTE: Put differently, (7.1) 

is equivalent to 

f f 
E =e (1 — x*)a’ dz, (7.3) 

  

t 

1 1 
where # = 5f + xo That is, the change in the total en- 

ergy & over one cycle is equal to the net work done by the 

  

1 
z' dz + =~ x? _ x! _ fa ~ x*) 

force e(1 — 27)a’. For a periodic motion £ i is zero which, 

f once again, gives (7.2). 

50 |,=0 71) 

  

7.6 The Duffing Equation: Jumps and Chaos 

7.6.1. Duffing equation and the jump phenomenon. Besides the van der Pol 

equation, also of great importance is the Duffing equation: 

  

    
ma’ +re’ taxr+ Bx? = Focos Ot, (1) 
  

studied by G. Duffing around 1918. Whereas primary interest in the van der Pol 
equation is in the unforced equation and its self-excited limit cycle oscillation, most 
of the interest in the Duffing equation involves the various steady-state oscillations 
that can arise in response to a harmonic forcing function such as Fo cos Qt. 

Physically, (1) arises in modeling the motion of a damped, forced, mechanical 

oscillator of mass 7 having a nonlinear spring. That is, the spring force is not ka 
but aw+ 2%. We assume that a > 0 but that 9 can be positive (for a “hard spring”) 

or negative (for a “‘soft spring”). 
The linear version of (1), where = 0, is discussed in Section 3.8, and an im- 

portant result there consisted of the amplitude response curves — namely, the graphs 

of the amplitude of the steady-state vibration versus the driving frequency 2 for
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various values of /. For the linear case we obtained two linearly independent 

homogeneous solutions and a particular solution and used linearity and superposi- 

tion to form from them the general solution, which contained all possible solutions. 

Understand that because equation (1) is nonlinear, that approach is not applicable. 
Consider first the undamped case (r = 0), and let m = 1 for simplicity, so (1) 

becomes 
a” +au + Be® = Fo cos Nt. (2) 

Further, suppose that (9 is small. Since (1) is nonlinear, we expect it to have a wealth 

of different sorts of solutions. Of these, particular interest attaches to the so-called 

harmonic response 

u(t) + Acos Qt (for 7 small) (3) 

at the same frequency as the driving force. As shown in the exercises, pursuing an 
approximate solution of the form (3) yields the amplitude-frequency relation 

2 3,42 Fo Qf =at gba 7. (4) 

which gives the response curves shown ini Fig. 1. For the linear case, where 6 = 0, 
(4) reduces to. A = Fo/(a —7), which result agrees with the amplitude-frequency 
relation found in Section 3.8. For § > 0 the curves bend to the right (shown), and 

for 8 < 0 they bend to the left (not shown). Thus, the effect of the nonlinear 

Bx? term in (2) is to cause the response curves to bend to one side or the other. 

Recall from Section 3.8 that for the linear system (@ = 0), the amplitude |A| is 
infinite when the system is driven at its natural frequency \/a@. [More precisely, we 
saw that the solution form 2(t) = AcosQ¢t simply does not work for the system 
ve" + ax = FocosMt if Q = Va, but that the method of undetermined coeffi- 

cients gives z(t) = aq! sin Qt, which growing oscillation is known as resonance. ] 

However, because of the bending of the response curves, resonance cannot occur 

in the nonlinear case. That is, we see from Fig. | that if @ 0 then at each driving 

frequency 2 the response amplitude | A] is finite. 
What is the effect of including damping, of letting r be positive in (1) rather 

than zero? In that case we need to allow for a phase shift (as in Section 3.8), 

and seek x(t) & Acos(Qt + ®) in place of (3). The result would be a modified 
amplitude- frequency relation, in place of (4), and a “capping off” of the response 

curves as shown in Fig. 2a. 
If Q = 4, for instance, then the response is at P; in Fig. 2b. Suppose we 

can vary the driving frequency 2 continuously by turning a control knob, like the 
volume knob on a radio. If we increase 2. slowly (remember that ( is regarded as a 
constant in this analysis, so we need to increase it very slowly), then the represen- 

tative point moves to the right along the response curve. But what happens when it 
reaches P:, where the response curve has a vertical tangent? Numerical simulation 
reveals that the point jumps down to P3, where it can then continue moving right- 

ward on the response curve if 2 is increased further. That is, there is a transient 

p=0 B>o 

lA| 

  

  

Figure 1. Amplitude response 

curves; undamped. 

   

    

   

Fo increasing 

  

| P, ~~! 

| 
Qy Q 

Figure 2. Amplitude response 

curves; damped.
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period during which the oscillation changes from the large amplitude at P» to the 
small amplitude at P;. Suppose that once the oscillation has settled down to the 
new amplitude we increase 2 further and stop at P,. If we now decrease Q the rep- 
resentative point does not jump up from P3 to P2. Rather, it continues to the point 
of vertical tangency at Ps, then jumps up to Pg and continues, say to P,. Thus, 
we meet the jump phenomenon associated with the Duffing equation, whereby a 
continuous variation of a system parameter (() can lead to a discontinuous change 
in the output, namely, the jumps in amplitude from P2 to P3 and from Ps to Pg. 

Observe that the middle branch of the response curve, between Ps and Ps, is 

inaccessible! That is, if we vary Q so that the representative point moves from P; 

to Py and back again, it never moves along the middle branch. 

What if we start the system at an 2 between the vertical dashed lines? Which 
of the three possible amplitudes will result? It can be shown that the solutions to 
(1) corresponding to points on the middle branch (Ps P2) are unstable in essentially 
the same way that a hilltop is an unstable equilibrium point for a marble, while 
solutions corresponding to points on the upper and lower branches are stable in 
essentially the same way that the bottom of a valley is a stable equilibrium point 
for the marble. Thus, solutions corresponding to points on the middle branch will 
not be observed — either in the physical system or in its mathematical simulation. If 
we start the system at an {2 between the vertical dashed lines, and keep 2 fixed, the 
steady-state oscillation achieved will correspond to a point on the lower branch or 
on the upper branch, Given the initial conditions, it is possible to predict which of 
the two branches will “attract” the motion, but that story is well beyond our present 
scope.” 

Both the limit cycle phenomenon exhibited by the van der Pol equation and the 
jump phenomenon exhibited by the Duffing equation are possible only for nonlinear 
equations; neither phenomenon could occur for a linear differential equation. 

The jump from P2 to P3 in Fig. 2b is reminiscent of a Stock Market crash, 
such as occurred in 1929, yet there is no analog, in Stock Market behavior, of the 
upward jump from Ps to Ps. However, observe that in Fig. 2b there is only one 
control parameter, 2. If there were two (or more), say 92 and W, then instead of the 

curve in Fig. 2b we would have an |AJ surface above an 2, W plane. In that case 
it might be possible, by suitable variation of Q and W in the Q, © “control plane,” 
to climb the mountain in a continuous manner, jump off the cliff at P2, climb the 
mountain again, and so on, so that only downward jumps were obtained. 

Finally, recall from Section 7.5 that the central nervous system is highly non- 
linear. Thus, we might well be on the lookout for Duffing-like jumps in human (or 
animal) behavior due to continuous variation of one or more control parameters. 

Such jumps are indeed observed! For instance, if one bullies a dog into a corner it 
will retreat, but at some point it may “turn” on its tormentor, with its behavior jump- 
ing, instantaneously, from retreating to attacking. Similarly with human behavior. 
Two more illustrations: First, observe that our psychological moods likewise tend 
to change rather abruptly — compared to how long they last. Second, note that 
  

*See Section 7.2 of D. W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations, 2nd 

ed. (Oxford: Oxford University Press, 1987).
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someone with an eating disorder might fast for a period of time, then jump almost 
instantaneously to binging, and vice versa. For a readable account of the modeling 
of such systems as these, see E. C. Zeeman’s Catastrophe Theory (Reading, MA: 
Addison-Wesley, 1977). 

7.6.2. Chaos. Consider the physical system shown in Fig. 3, a box containing a 
slender vertical steel reed cantilevered from the “ceiling” and two magnets attached 
to the “floor”; a is the horizontal deflection of the end of the reed. In equilibrium, 
the reed is Stationary, with its tip at one magnet or the other. However, if we vibrate 

the box periodically in the horizontal direction, we can (if the magnets are not too 
strong) shake the reed loose from its equilibrium position and set it into motion. 
This experiment was carried out by F. Moon and P. Holmes,” to study chaos. They 
modeled the system by the Duffing equation 

a! +a! ~a +2? = Focos Mt, ©) 

where r is a (positive) damping coefficient and Fo and Q are the forcing function 
strength and frequency, respectively. The ~2: + 2° terms approximate the force 
induced on the reed by the two competing magnets. It is zero at ¢ = 0,1, which 
are therefore equilibrium points. To classify the equilibrium points, consider the 
unforced equation wv” + ra’ — x + 2° = 0 or, equivalently, 

w= y, (6a) 
y= Ty te we, (6b) 

We leave it for the exercises for you to show that the origin (x, y) = (0,0) is an 
unstable equilibrium point, namely a saddle, and that (-£1, 0) are stable equilibrium 

points (stable foci if r < \/8 and stable nodes if r > /8). For the undriven system 
(Fo = 0), imagine displacing the reed tip to x = 0.5, say, and releasing it from rest. 
Then it will undergo a damped motion about x = 1. If instead we release it from 

x = —0.5, say, it will undergo a damped motion about « = —1. 
What will happen if we force the system (Fp > 0)? We can imagine the 

reed undergoing a steady-state oscillation about 2 = +1 or « = —1, depending 
upon the initial conditions. To encourage physical insight, it is useful to consider 
the potential energy V(a) associated with the magnetic force F(x) = x — 2°, 
Recalling from Section 7.4.2 that F(z) = —V'(x), we have 

re gt 
Vie)= -7- Ee. 7 (2) =-S 45 (7) 

Thus, in place of a reed/magnet system we can conceptualize the system more 
intuitively as a mass in a double well as sketched in Fig. 4. That is, its gravitational 
potential energy is V(v) = mgy = mg(—a#*/2+.a:'/4) which, except for the scale 
factor mg, is the same as V (2) for the reed/magnet system, given in (7). 
  

“BC. Moon and P. J. Holmes, A Magnetoelastic Strange Attractor, Journal of Sound and Vibra- 

tion, Vol, 65, pp. 275~296. 
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Figure 3. The “Moon beam” 

system of Moon and Holmes. 

  

Figure 4. Double weil.
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If the mass sits at the bottom of a well, then if we vibrate the system horizon- 
tally we expect the mass to oscillate within that well. If we vibrate so energetically 
that the mass jumps from one well to the other, then the situation becomes more 
complicated. 

Rather than carry out the physical experiment, let us simulate it numerically 
by using computer software to solve (5). Let us fix r = 0.3 and Q = 1.2, and use 
the initial conditions «(0) = 1 and x'(0) = 0.2, say, so that if Fp is not too large 
we expect an oscillation near a = 1 (i.e., in the right-hand well).* Our plan is to 
use successively larger Fo’s and see what happens. The results are quite striking 
(like those obtained by Moon and Spencer). They are presented in Fig. 5, both in 
the a, y phase plane and as x(t) versus t. 

In Fig. 5a we set Fy = 0.2 and find that after a brief transient period there 
results a steady-state oscillation near 2 = 1, as anticipated. That oscillation is of 
the same period as the forcing function (namely, 27/Q) = 27/1.2 = 5.236) so 
it is called a period-1 oscillation, or harmonic oscillation. Period-1 oscillations 
persist up to around Fy = 0.27, but for Fp > 0.27 different solution types arise. 

For fo = 0.28 the solution is still periodic, but it takes two loops (in the 

x,y plane) to complete one period and the period is now doubled, namely, 47/2. 
Thus, it is called a period-2 oscillation, or a subharmonic oscillation of order 
1/2. In Fig. Sb—5f we omit the transient and display only the steady-state periodic 
solution so as not to obscure that display. Observe, in Fig. Sb, the point where the 
trajectory crosses itself. That crossing does not violate the existence and uniqueness 
theorem given in Section 7.3.1 because equation (5) is nonautonomous and the 

phase plane figure shows the projection of the non-self-intersecting curve in three- 
dimensional a, y,t space onto the z, y plane. 

If we increase Fo further, to 0.29, the forcing is sufficiently strong so that 
during the transient phase the mass (reed) is driven out of the right-hand potential 
well and ends up in a period-4 oscillation about the left-hand well. To observe 
this result we need to be patient and run the calculation to a sufficiently large time, 

namely, beyond ¢ = 400. This period doubling continues as Fp increases from 
0.29 up to around 0.30. For Fy > 0.30 a period-5 oscillation results that now 
encompasses both stable equilibrium points (Fig. 5d). 

The regime 0.37 < Fo < 0.65 is found to be rather chaotic, with essentially 
random motions, as seen in Fig. 5e for the case Fy = 0.5. 

Reviewing these results, observe that as we increased Fp the period of the 

motion increased until, when Fy was increased above 0.37, periodicity was lost 

altogether and the motion became chaotic. (We can think of that motion as periodic 

but with infinite period.) It would be natural to expect that a further increase of Fo 
would lead to even greater chaos (if one were to quantify degree of chaos), yet we 
find that if Fo is increased to 0.65 we once again obtain a periodic solution, namely, 
the period-2 solution shown in Fig. 5f, and if Fo is increased further to 0.73 then 

we obtain a period-| solution (not shown). 

In summary, we see that the forced Duffing equation admits a great variety 
  

“These parameter values are the same as those chosen in Section 12.6 of D. W. Jordan and P. 

Smith (ibid). We refer you to that source for a more detailed discussion than we offer here.
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of periodic solutions and chaotic ones as well, and that these different regimes 
correspond to different intervals on an Fo axis. (We chose to hold r and Q fixed 

and to vary only Fy, but we could have varied r and/or 2 as well.) It is possible to 
predict analytically how the solution type varies with Fo, r, and Q, but that analysis 

is beyond the scope of this introductory discussion.* 
Having classified the response in Fig. Se as chaotic, it behooves us to clarify 

what we mean by that. A reasonable working definition of chaos is behavior in a 
deterministic system, over time, which is aperiodic and which is sensitive to initial 

conditions. 
By asystem being deterministic we mean that the governing differential equa- 

tion(s) and initial conditions imply the existence of a unique solution over subse- 
quent time. Whether we are able to find that solution analytically, or whether we 
need to use computer simulation. is immaterial. For instance, for given values of 
r, Fo, Q, the system consisting ci equation (5), together with initial conditions x(0) 
and x’(0), is deterministic. The choice r = 0.3, Fp = 0.37, Q = 1.2, 2(0) = 1, 
and «'(0) = 0.2, say, implies the unique response shown in Fig. 5d. If we rerun 
the numerical solution or solve the problem analytically (if we could), we obtain 
the same solution as shown in the figure. Likewise even for the chaotic response 

shown in Fig. 5e. 
By the response being aperiodic we simply mean that it does not approach a 

periodic solution or a constant. 
To illustrate what is meant by sensitivity to initial conditions, let us rerun the 

case corresponding to Fig. Se, but with the initial conditions changed from x(0) = 
Land z'(0) = 0.2 tox(0) = 1 and 2’(0) = 0.2000000001. Observe that the results 
(Fig. 6) bear virtually no resemblance to those in Fig. 5e. This circumstance is of 

great significance because if the initial conditions are known to only six significant 

figures, say, then the task of predicting the response is hopeless! 
  

  

Figure 6. Sensitivity to initial Another well known example of chaos is provided by the Lorenz equations 

conditions. 1 
x’ = piy- 2), 

y= (q-2)@-y, (8) 
z= acy-Tre, 

where p,g,7r are constants. This system was studied by the mathematical meteo- 

rologist E. Lorenz in 1963 in connection with the Bénard problem, whereby one 

seeks the effect of heating a horizontal fluid layer from below.! That problem is of 
fundamental interest in meteorology because the earth, having been heated by the 
sun during the day, radiates heat upward into the atmosphere in the evening, thus 
destabilizing the atmospheric layer above it. Lorenz’s contribution was in discover- 
ing the chaotic nature of the solution for certain ranges of the physical parameters 

p,q,7r, thereby suggesting the impossibility of meaningful long-range weather pre- 

diction. Some discussion of (8) is left for the exercises. 
  

*See Section 12.6 in Jordan and Smith (ibid). 

"E. Lorenz, Deterministic Nonperiodic Flows, Journal of Atmospheric Sciences, Vol. 20, pp. 

130—141, 1963,
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Perhaps the classic problem of chaos is that of turbulence, in fluid mechanics, 

be it in connection with the chaotic eddies and mixing behind a truck on a highway 

or the turbulent breakup of a rising filament of smoke. 
To appreciate the revolution in physics that has resulted from recent work on 

chaos, one needs to understand the euphoria that greeted the birth of Newtonian 
mechanics and the calculus, according to which both the past and the future are 
contained in the system of differential equations and initial conditions at the present 
instant. In the words of Ivar Ekeland,* “Past and future are seen as equivalent, since 
both can be read from the present. Mathematics travels back in time as easily as 
a wanderer walks up a frozen river.” As Ekeland points out, that statement is not 
quite true for, as we now know and as was understood by Poincaré even a century 
ago, deterministic nonlinear systems can turn out to be chaotic, in which case they 

are useless for long-term prediction. 

Closure. The common thread in this section is the Duffing equation (1). For 
a > 0 we study (1) in connection with the reed/magnet system of Moon and 
Holmes, shown in Fig. 3. Numerical solution of the governing equation (5), for 
a sequence of increasing Fp values, leads to a variety of solution types: a harmonic 
response, various subharmonic responses, and even chaotic responses. The ap- 
proach to chaos, as we increase Fo, is typical in that the onset of chaos is preceded 

by a sequence of period doublings. 
We define chaos as behavior in a deterministic system (which must be nonlin- 

ear if it is to exhibit chaos) over time, which is aperiodic and so sensitive to initial 

conditions that accurate long-range predictions of the solution are not possible. 

Computer software. To generate the responses shown in Fig. 5 and 6 we use 
the Maple phaseportrait command. However, it is worth mentioning how we obtain 
the graphs in Fig. | and 2, because (4) does not give A explicitly but only implicitly 
as a function of 9. For instance, suppose we wish to plot the graphs of y versus 
x, over 0 <2 <3and0 < y < 4, for the functions y(x) given implicitly by the 
equations y — y°? = a and 4y — y° = a. First, enter 

with(plots): 

and return, to access the subsequent plotting command. Then use the implicitplot 

command. Enter 

implicitplot({y — y°3 = az, 4*y-y38=c}, c=0..8, y =0..4, 

numpoints = 1000); 

and return. Here, numpoints indicates the number of points to be used. To plot the 
single function y — y? = x, use y — y°3 = @ in place of implicitplot({y — y°3 = 

vt, 4dey—y3 =z}. 

  

“Mathematics and the Unexpected (Chicago: Chicago University Press, 1988).
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EXERCISES 7.6 
  

\. (Derivation of the Duffing amplitude-frequency relation) 

We state in the text that if one seeks an approximate harmonic 

solution x(t) + Acos ME to 

a” +a0 + Bx? = Fy cos Mt, (1.1) 

then one obtains the ampitude-frequency relation 

: Fy 
P= a+ Tea? — 2 1.2 ¢ A (1.2) 

discovered by Duffing. A modern derivation of (1.2) would 

probably use a so-called singular perturbation method of 

strained variables, but here we will pursue a simpler iterative 

approach which is essentially that of Duffing; namely, we re- 

place (1.1) by the iterative scheme 

gl = 
Epp FS TALy — Bx + Fo cos Qt, (1.3) 

choose the initial iterate as a(t) = A cos Qt, and then use (1.3) 

to find the successive iterates 7 (t), v2(t),.... Itis surely not 
obvious. whether. that procedure will. work,.so. it. makes. sense 

to try it out first for the simple Jinear case where @ = 0, for 

which we know the exact solution. 

(a) In that case (G3 = 0), show that if we seek a harmonic solu- 

tion x(t) = Acos Mt of the Duffing equation (1.1) with @ = 0, 
we obtain A = Fy/(a — 7), and hence the exact solution 

        

Fy 

a(t) = a5 (1.4) 

(b) Next, use (1.3) to generate 2, (¢), a(t), ... 
show that 

, for G = 0, and 

aA — FF 
—— cos Ot, 

  A f+ (S)te4 (Ge) |} cose. 
(1.5) 

That is. put a(t) = Acos Nt into the right side of (1.3) and 

integrate twice to obtain 21. Then put that x, into the right 

side of (1.3) and integrate twice to obtain xg, and so on. By 

the time you reach v3, the general result shown in (1,5) should 

be apparent. 

(c) Recalling that the geometric series 1 + @ + a? + 2° + 
convetges to 1/(1—2) if|a] < Land diverges otherwise, show 
that the a, (¢) sequence given by (1.5) does indeed converge to 
the exact solution (1.4) as mv —> 00, provided that ja/o" <1. 
(d) In fact; show that if we equate the coefficients of cos N¢ in 

VA — EK 
xo(t) = Acos Qt and a) (t) = Man 20 

OQ? 
obtain A = Fy/(a—?), which agrees with the exact solution 
(1.4)! 
(e) In view of the striking success in part (d), we are encour- 

aged to expect good results even for the nonlinear case where 

G #0. Thus, put xg(t) = Acos{Mt into the right side of 
(1.3) and integrate twice to obtain mt ). Then, as: in (d), 

equate the coefficients of cos M in 21 (t) and x(t), and show 
that the result is Duffing’s relation (1.2). HINT: The identity 

cos® @ = (3cos@ + cos 39)/4 should be helpful. 

      

cos Qt, we happen to 

2. (Computer problem regarding: the Duffing jump  phe- 

nomenon) For the undamped case the amplitude-frequency re- 

lation is given by (4). For the “ampet case it is given by 

P= [(@~ 9°). Ay saa" EGA) (2.1) 

Throughout parts (a)—(g) let fy = 2.a@ = 1, 8 = 0.4, and 

r = 0.3, for definiteness. 

(a) Use (2.1) to generate a computer plot of | A] versus 2 as we 

did in Fig, 2b. NOTE: Actually, there is no need to distinguish 

between A and |A] since, unlike (4), (2.1) contains only even 
powers of A. 
(b) For 2 = 1 solve (2.1) for _A. CHINT: Using Maple, for in- 

stance, use the fsolve command.) Next, use computer software 

such as the Maple phaseportrait command to solve 

ge! + ra! +ax + Bx? = Fo cos Qt, (2.2) 

and plot x(t) versus é over a sufficiently long time interval 

to obtain the steady-state response. Compare the amplitude 

of the resulting steady-state response with the value of A ob- 

tained from (2.1). 
(c) Same as (b) but for an Q point specified by your instructor, 

to the left of the first point of vertical tangency (Q = 1.71). 

(d) Same as (b), but for an 9 point specified by your in- 

structor. to the right of the second point of vertical tangency 

(Q ee 2.05). 
(ce) Now consider an 9 between the two points of vertical tan- 

gency, say, 2 = 1.8. Solve (2.1) for the three A values. Next, 
use computer software to solve (2.2) over a sufficiently long 

|



  

time interval to obtain the steady-state response. Depending 

upon the initial conditions that you impose, you should obtain 

the smallest or largest of the three A values, but never the mid- 

dié one. Keeping 2’(0) == 0, determine the approximate value 
of «(0) below which you obtain the smail-amplitude response 

and above which you obtain the large-amplitude response. 

(f) Same as (e) but for an 2 point specified by your instructor. 

(g) Continuing to use the r, a, 2, & values given above, now 

let (2 be slowly varying according to Q = 1.9 — 0.0005¢, 

and solve (2.2) over 0 < € < 800 with the initial conditions 

x(0) = x'(0) = 0. Plot the resulting x(t) versus ¢ and discuss 
your results in terms of the ideas discussed in this section. 

3. (a) Refer to (4) and Fig. |. What is the asymptotic form of 

the graph of | A] versus 2 as |A| > 00? 
(b) In Fig. | we show several amplitude response curves for 

8 = O and @ > O and for several values of Fy. Obtain the 

analogous curves for the case where 7 < 0, either by a careful 

hand sketch or by computer plotting. 

4, Determine the location and type of any singular points 

of (6). 

5. (a)-(f) Obtain x, y and z,t plots for the cases depicted in 

Fig. 5. Your results should be the same as those in Fig. 5. 

6. We stated that “period doubling continues as Fy increases 

from 0.29 up to around 0.30.” Find, by numerical experimen- 

tation, an Pp that gives a period-8 oscillation (and, if possible, 

period-16) and obtain computer plots analogous to those in 

Fig. 5. 

7. We stated that “if fy is increased further to 0.73, then we 
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obtain a period-! solution.” Obtain computer plots for that 

case, analogous to those in Fig. 5. 

8. We found an extreme sensitivity to initial conditions for the 

chaotic regime. Specifically, the plot in Fig. 6 bears little re- 

semblance to the corresponding one in Fig. Se, even though 

the initial conditions differed by only 107!°. Show that that 
sensitivity is not found for the non-chaotic responses — namely, 

for the periodic responses. Specifically, rerun the cases re- 

ported in Fig. Sd and 5f, but with 2’(0) = 0.2 changed to 

0.20001, say. Do your results appear to reproduce those in 

Fig. 5? 

9, The equation 

ec" +0.38¢' + sing = Focost (9.1) 

is similar to the one occurring in the Moon/Holmes experi- 

ment. 

(a) Describe a physical problem that would have a governing 

equation of motion of that form. (We have assigned numerical 

values to all of the physical parameters except to Fo, which we 

leave for the purpose of numerical experimentation.) 

(b) We leave. this problem a bit more open ended than the 

foregoing ones, and simply ask you to carry out an analyti- 

cal and experimental study of (9.1). For instance, you might 

investigate the singular points of the homogeneous version of 

(9.1), and also run computer solutions for a range of Fy values, 

somewhat as done for equation (5). 

  

Chapter 7 Review 

In Sections 7.2—7.5 we study the autonomous system 

x = P(x,y), y' = Q(x, y) (1) 

mostly in the x,y phase plane. We focus considerable attention on the singular 
points of (1), the points (if any) where P(x, y) = 0 and Q(a, y) = 0. Linearizing 
equations (1) about each singular point, we obtain a simpler system of the form 

X'=aX +bY 

VYio=cX + dy, 

where XY = v—a5,Y = y—Yys, and (25, ys) is the singular point. Considering only 
elementary singular points (that is, for which ab — ed 7% 0), we classify them as
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centers, foci, nodes, and saddles. The Hartman—Grobman theorem assumes that the 

linearized system faithfully captures the nature of the local flow (except possibly 
for the borderline cases of proper nodes and centers, as explained in Section 7.4.1). 

In Section 7.4 we study applications and introduced the idea of a bifurcation, 
whereby the behavior of the system changes qualitatively as a system parameter 
passes through a critical value. We illustrate the concept with an example of a 

saddle-node bifurcation from molecular biology. 
Tn Section 7.5 we study the van der Pol equation 

a” —~e(1—«*)a’+2=0, (e > 0) 

which introduce us to the concept of limit cycles and relaxation oscillations. 

Finally, we study the forced Duffing equation 

ma" +ra' +az + Br = FocosMt 

in two contexts. First, we consider it as modeling a mechanical oscillator, with 
nonlinear spring force aa + Ba%, where a > 0. Of the various possible solutions 
that can be obtained from different initial conditions, we study only the harmonic 
response — that is, the steady-state periodic response at the same frequency as 
the driving frequency 2. The key feature that was revealed was the bending of 
the amplitude response curves and the resulting jump phenomenon, whereby the 
response amplitude jumps as (2 is increases or decreases slowly through a critical 

value. 
We also consider it as modeling the “double well” reed/magnet system of 

Moon and Holmes. By numerical simulation, we find that if Fo is not too large, 
then the oscillation is confined to one of the two wells. As Fo is increased, there 

results a sequence of period doublings, giving so-called subharmonic responses, 
until Fo becomes large enough to drive the response out of that well. Beyond a 
critical Fo value, we then obtain a chaotic response involving both wells.



  

Chapter 8 

Systems of Linear Algebraic 
Equations; Gauss Elimination 

8.1 Introduction 

There are many applications in science and engineering where application of the 
relevant physical law(s) immediately produces a set of linear algebraic equations. 
For instance, the application of Kirchoff’s laws toa DC electrical circuit containing 
any number of resistors, batteries, and current loops immediately produces such a 

set of equations on the unknown currents. In other cases, the problem is stated in 
some other form such as one or more ordinary or partial differential equations, but 
the solution method eventually leads us to a system of linear algebraic equations. 

For instance, to find a particular solution to the differential equation 

yf _ y" = 3x" + 5sinz (1) 

by the method of undetermined coefficients (Section 3.7.2), we seek it in the form 

Yp(@) = Ac’ + Ba? + Cx? + Dsinz + Ecosz. (2) 

Putting (2) into (1) and equating coefficients of like terms on both sides of the equa- 
tion gives five linear algebraic equations on the unknown coefficients A, B,..., E. 

Or, solving the so-called Laplace partial differential equation 

Ou Ou 

on the rectangle 0 < « < 1,0 < y < 1 by the method of finite differences (which 

is studied in Section 20.5), using a mesh size Az = Ay = 0.05, gives 19? = 361 

linear algebraic equations on the unknown values of u at the 361 nodal points of 
the mesh. Our point here is not to get ahead of ourselves by plunging into partial 
differential equations, but to say that the solution of practical problems of interest 
in science and engineering often leads us to systems of linear algebraic equations. 

391
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Such systems often involve a great many unknowns. Thus, the question of existence 

(Does a solution exist?), which often sounds “too theoretical” to the practicing 
engineer, takes on great practical importance because a considerable computational 
effort is at stake. 

The subject of linear algebra and matrices encompasses a great deal more than 
the theory and solution of systems of linear algebraic equations, but the latter is 
indeed a central topic and is foundational to others. Thus, we begin this sequence 

of five chapters (8-12) on linear algebra with an introduction to the theory of 
systems of linear algebraic equations, and their solution by the method of Gauss 
elimination. Results obtained here are used, and built upon, in Chapters 9-12. 

Chapters 9 and 10 take us from vectors in 3-space to vectors in n-space and 
generalized vector space, to matrices and determinants. Linear systems of alge- 
braic equations are considered again, in the second half of Chapter 10, in terms 
of rank, inverse matrix, LU decomposition, Cramer’s rule, and linear transforma- 
tion. Chapter 11 introduces the eigenvalue problem, diagonalization, and quadratic 
forms; areas of application include systems of ordinary differential equations, vi- 
bration theory, chemical kinetics, and buckling. Chapter 12 is optional and brief 
and provides an extension of results in Chapters 9-11 to complex spaces. 

8.2 Preliminary Ideas and Geometrical Approach 

The problem of finding solutions of equations of the form 

f(z) =0 (1) 

occupies a place of both practical and historical importance. Equation (1) is said to 
be algebraic, or polynomial, if f(a) is expressible in the form a,2” +an—y0"7} + 
‘+++ 12+ ag, where a, 4 0 for definiteness [i.e., if f(x) is a polynomial of finite 
degree mJ, and it is said to be transcendental otherwise. 

EXAMPLE 1. The equations 6z — 5 = 0 and 324 — x3 + 2x +1 = O are algebraic, 
whereas x? + 2singz = 0 and e* — 3 = 0 are transcendental since sin x and e® cannot be 

expressed as polynomials of finite degree. @ 

Besides the algebraic versus transcendental distinction, we classify (1) as lin- 

ear if f(x) is a first-degree polynomial, 

aye + ag = 0, (2) 

and nonlinear otherwise. Thus, the first equation in Example | is linear, and the 
other three are nonlinear. 

While (1) is one equation in one unknown, we often encounter problems in- 

volving more than one equation and/or more than one unknown — that is, a system
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of equations consisting of m equations in 7 unknowns, where m > Land n > 1, 

filey,...,¢n) 
= 0, 

fo(ai,..-,%n) - 0, 3) 

Fin(@1,-..,2n) = 0 

such as 
vy ~ sin (av, + Tre) = 0, (4) 
v3 +09 — 5a, +6 = 0. 

In (4) it happens that 7m = 7 (namely, m = mn = 2) so that there are as many 
equations as unknowns. In general, however, mm may be less than, equal to, or 
greater than n so we allow for m # n in this discussion even though m = 7n is the 
most important case. 

In this chapter we consider only the case where (3) is linear, of the form 

  

yey + Aya@g +t + Aineyn = C1, (eq. 1) 

9,0, + do9%o + +++ + Gon@y = C2, (eq.2) 
(5) 

Amil, + Amat ++ + Amntn = Cm, (eq.m)     
  

and we restrict m and nm to be finite, and the a;;’s and ¢;’s to be real numbers. If 

all the cj’s are zero then (5) is homogeneous; if they are not all zero then (5) is 

nonhomogeneous. 
The subscript notation adopted in (5) is not essential but is helpful in hold- 

ing the nomenclature to a minimum, in rendering inherent patterns more visible, 
and in permitting a natural transition to matrix notation. The first subscript in a;j 
indicates the equation, and the second indicates the x; variable that it multiplies. 
For instance, a9; appears in the second equation and multiplies the x1 variable. To 
avoid ambiguity we should write a2 rather than a2; so that one does not mistak- 

enly read the subscripts as twenty-one, but we will omit commas except when such 

ambiguity is not easily resolved from the context. 
We say that a sequence of numbers 3), 52,..., 8p is a solution of (5) if and 

only if each of the 7m equations is satisfied numerically when we substitute s; for 
£1, 89 for vg, and so on. If there exist one or more solutions to (5), we say that the 

system is consistent; if there is precisely one solution, that solution is unique; and 
if there is more than one, the solution is nonunique. If, on the other hand, there 
are no solutions to (5), the system is said to be inconsistent. The collection of all 

solutions to (5) is called its solution set so, by “solving (5)” we mean finding its 

solution set. 

Let us begin with the simple case, where m = n = 1: 

Gyyey = Cy. (6)
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(a) 

‘2A ul 

L2 

P 

xy 

(B) 

  

(c) 

x9 A Li, £2 

i 

TF = 

Figure 1. Existence and 

uniqueness for the system (7). 

[In the generic case, a4, % O and (6) admits the unique solution @, = cy/a4,, but 

if ay, = 0 there are two possibilities: if c, 4 0 then there are no values of x, such 

that Ox, = cy, and (6) is inconsistent, but if c¢, = 0 then (6) becomes 0x, = 0, and 

xr, = ais a solution for any value of a; that is, the solution is nonunique. 

Far from being too simple to be of interest, the case where m = n = 1 estab- 
lishes a pattern that will hold in general, for any values of m and n. Specifically, 
the system (5) will admit a unique solution, no solution, or an infinity of solutions. 

For instance, it will never admit 4 solutions, 12 solutions, or 137 solutions. 

Next, consider the case where m = mn = 2: 

ay{L1 + ayou2 = C1, (eq. 1) (Ja) 

Gg 1 + dente = Co. (eq.2) (7b) 

If ay, and aj2 are not both zero, then (eq.1) defines a straight line, say [1, in a 

Cartesian 21,22 plane; that is the solution set of (eq.1) is the set of all points on 
that line. Similarly, if @2,; and a@g2 are not both zero then the solution set of (eq.2) 

is the set of all points on a straight line £2. There exist exactly three possibilities, 
and these are illustrated in Fig. 1. First, the lines may intersect at a point, say P, in 
which case (7) admits the unique solution given by the coordinate pair 71, x2 of the 

point P (Fig. la). That is, any solution pair x1, x2 of (7) needs to be in the solution 

set of (eq.1) and in the solution set of (eq.2) hence at an intersection of £1 and £2. 
This is the generic case, and it occurs (Exercise 2) as long as 

a41422 — ayaae, # 0; (8) 

(8) is the analog of the aj, 4 0 condition for the m = n = 1 case discussed above. 
Second. the lines may be parallel and nonintersecting (Fig. 1b), in which case 

there is no solution. Then (7) is inconsistent, the solution set is empty. 

Third, the lines may coincide (Fig. Ic), in which case the coordinate pair of 
each point on the line is a solution. Then (7) is consistent and there are an infinite 

number of solutions. 

EXAMPLE 2. 

224 — Ug = D, w+ 329 = 1, ey + 32x = 1, 

ay +322 = —l, t+ 3rq = 0, 22, + 6a = 2, 

illustrate these three cases, respectively. # 

Below (7) we said “If ay, and ay, are not both zero... 2” What if they are both 

zero? Then if cy # Q there is no solution of (7a), and hence there is no solution 

to the system (7). But if cy = 0, then (7a) reduces to 0 = 0 and can be discarded, 

leaving just (7b). If ag, and a2 are not both zero, then (7b) gives a line of solutions, 

but if they are both zero then everything hinges on cg. If c2 4 0 there is no solution 
and (7) ts inconsistent, but if cg = 0, so both (7a) and (7b) are simply 0 = 0, then 

both 21 and wg are arbitrary, and every point in the plane is a solution.
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Next, consider the case where m = 1 = 3: 

Qi Ly, + Ayely + A433 = Ch, (eq. 1) (9a) 

Ag Ly + Gg2QQ + G23X3 = Co, (eq.2) (9b) 

agi ©, + 43202 + 43303 = C3. (eq.3) (9c) 

Continuing the geometric approach exemplified by Fig. |, observe that if a11, a12, a13 

are not all zero then (eq.1) defines a plane, say Pl, in Cartesian x 1,9, 23 space, 
and similarly for (eq.2) and (eq.3). In the generic case, P1 and P2 intersect along 
a line L, and £ pierces P3 at a point P. Then the x, #2, x3 coordinates of P give 

the unique solution of (9). 

In the nongeneric case we can have no solution or an infinity of solutions tn 
the following ways. There will be no solution if Z is parallel to P3 and hence fails 
to pierce it, or if any two of the planes are parallel and not coincident. There will 

be an infinity of solutions if Z lies in P3 (Le., a line of solutions), if two planes are 

coincident and intersect the third (again, a line of solutions), or if all three planes 

are coincident (this time an entire plane of solutions). 
The case where all of the a;; coefficients are zero in one or more of equations 

(9) is left for the exercises. 
An abstract extension of such geometrical reasoning can be continued even if 

m =n > 4. For instance, one speaks of a4121 + @jo@2 + 04303 + G44 = C1 

as defining a Ayperplane in an abstract four-dimensional space. In fact, perhaps we 
should mention that even the familiar x,, 22 plane and 21, 22,73 space discussed 

here could be abstract as well. For instance, if x, and x» are unknown currents in 

two loops of an electrical circuit, then what physical meaning is there to an 71, 22 
plane? None, but we can introduce it, create it, to assist our reasoning. 

Closure. Most of this section is devoted to a geometrical discussion of the sys- 
tem (5) of linear algebraic equations. A great advantage of geometrical reasoning 
is that it brings our visual system into play. It is estimated that at least a third of 
the neurons in our brain are devoted to vision, hence our visual sense is extremely 
sophisticated. No wonder we say “Now I see what you mean; now [I get the pic- 
ture.” The more geometry, pictures, visual images to aid our thinking, the better! 
We have not yet aimed at theorems, and have been content to lay the groundwork 
for the ideas of existence and uniqueness of solutions. In considering the cases 
wherem =n =1,m =n = 2,andm =n = 3, we have not meant to imply 
that we need to have m = 1; all possibilities are considered in the next section. To 
proceed further, we need to consider the process of finding solutions, and that we 

do, in Section 8.3, by the method of Gauss elimination.
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EXERCISES 8.2 
  

1. True or false? If false, give a counterexample. 3. Derive the condition (8) as the necessary and sufficient con- 

. Lo. ar ition for to admit a unique solution. 
(a) An algebraic equation is necessarily linear. dition (7) to admit a unique solution 

(b) An algebraic equation is necessarily nonlinear. 3. (a) Discuss all possibilities of the existence and unique- 

(c) A transcendental equation is necessarily linear. ness of solutions of (9) from a geometrical point of view, in 

(d) A transcendental equation is necessarily nonlinear. 

(e) A linear equation is necessarily algebraic. 

(f) A nonlinear equation is necessarily algebraic. 

(g) A linear equation is necessarily transcendental. 

(h) A nonlinear equation is necessarily transcendental. 

the event that a4, = Gi2 = ay3 = O, but ae, ag2, 423 and 

431, 032, 433 are not all zero. 

(b) Same as (a), but with ag, = agg = Gag = O as well. 

(c) Same as (a), but with ag] = @92 = @93 = @31 = G32 = 

a33 <= Q as well. 

  

  

8.3 Solution by Gauss Elimination 

8.3.1. Motivation. In this section we continue to consider the system of m linear 

algebraic equations 

  A410, + @y2%2 +--+ + GinTn = C1; 

agp + agghg + th A2nEn = C2; 
(1) 

Gyn 21 + Om2€2 ++ + Omntn = Cms 

in the n unknowns «x1,...,2n, and develop the solution technique known as Gauss 

elimination. To motivate the ideas, we begin with an example. 

EXAMPLE 1. Determine the solution set of the system 

ty +a - %3 = 1, 

32, + 9 + 3 = 9, (2) 

Ly — ty + 423 = 8. 

Keep the first equation intact, and add ~3 times the first equation to the second (as a 

replacement for the second equation), and add —1 times the first equation to the third (as a 

replacement for the third equation). These steps yield the new “indented” system | 

ry+ t2- £3 = 1, 

—2rq + 403 = 6, (3) 

—229 + 523 = 7. 

Next, keep the first two of these intact, and add —1 times the second equation to the third, 

and obtain 
By + ta - «3 = 1, 

229 + 4x45 6, (4) 

v3 = 1. 

iI
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Finally, multiplying the second of these by —1/2 to normalize the leading coefficient (to 

unity), gives 
ty tat, ~ vg = 1, (eq) 

ty — 23 = ~3, (eq.2) (5) 

vgs ol. (eq.3) 

It is helpful to think of the original system (2) as a tangle of string that we wish to unravel. 

The first step is to find a loose end and that is, in effect, what the foregoing process of 

successive indentations has done for us. Specifically, (eq.3) in (5) is the “loose end,” and 

with that in hand we may unravel (5) just as we would unravel a tangle: putting #3 = 1 

into (eq.2) gives v2 = ~1, and then putting v3; = Land z2 = — 1 into (eq. ht) gives x = 3. 

Thus, we obtain the unique solution 

  

tg=l, w~.=-l, 1 =3, (6) 

  

COMMENT |. From a mathematica! point of view, the system (2) was a “tangle” because 

the equations were coupled; that is, each equation contained more than one unknown. 

Actually, the final system (5) is coupled too, since (eq. 1) contains all three unknowns and 

(eq.2) contains two of them. However, the coupling in (5) is not as debilitating because 

(5) is in what we call triangular form. Thus, we were able to solve (eq.3) for v3, put that 

value into (eq.2) and solve for x2, and then put these values into (eq.1) and solve for x1, 

which steps are known as back substitution. 

COMMENT 2. However, the process begs this question: Is it obvious that the systems 

(2)—(5) all have the same solution sets so that when we solve (5) we are actually solving 

(2)? That is, is it not conceivable that in applying the arithmetic steps that carried us from 

(2) to (5) we might, inadvertently, have altered the solution set? For example, z—1 = 4 has 

the unique solution z = 5, but if we innocently square both sides, the resulting equation 

(x — 1)? = 16 admits the nvo solutions « = 5 andz = 3. Bi 

The question just raised applies to linear systems in general. It is answered 

in Theorem 8.3.1 that follows, but first we define two terms: “equivalent systems” 

and “elementary equation operations.” 

Two linear systems in m unknowns, x, through @p, are said to be equivalent if 

their solution sets are identical. 

The following operations on linear systems are known as elementary equation 

operations: 

1. Addition of a multiple of one equation to another 
Symbolically: (eq.j) > (eq.j) + a (eq.k) 

2. Multiplication of an equation by a nonzero constant 

Symbolically: (eq.j) —> & (eq.j) 

3. Interchange of two equations 
Symbolically: (eq.j) <> (eq.k) 

Then we can state the following result.
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THEOREM 8.3.1 Equivalent Systems 

If one linear system is obtained from another by a finite number of elementary 
equation operations, then the two systems are equivalent. 
  

Outline of Proof. The truth of this claim for elementary equation operations of 
types 2 and 3 should be evident, so we confine our remarks to operations of type 
[. It suffices to look at the effect of one such operation. Thus, suppose that a given 
linear system A is altered by replacing its jth equation by its jth plus a times its 
kth, its other equations being kept intact. Let us call the new system A’. Surely, 
every solution of A will also be a solution A’ since we have merely added equal 
quantities to equal quantities. That is, if A’ results from A by the application of an 
elementary equation operation of type I, then every solution of A is also a solution 
of A’. Further, we can convert A’ back to A by an elementary equation operation of 
type I, namely, by replacing the jth equation of A’ by the jth equation of A’ plus 
~a times the kth equation of A’. Consequently, it follows from the italicized result 
(two sentences back) that every solution of A’ is also a solution of A. Then A and 

A’ are equivalent, as claimed. m 

In Example 1, we saw that each step is an elementary equation operation: 
Three elementary equation operations of type | took us from (2) to (4), and one of 
type 2 took us from (4) to (5); finally, the back substitution amounted to several op- 
erations of type 1. Thus, according to Theorem 8.3.1, equivalence was maintained 
throughout so we can be sure that (6) is the solution set of the original system (2) 
(as can be verified by direct substitution). 

The system in Example | admitted a unique solution. To see how the method 
of successive elimination works out when there is no solution, or a nonunique so- 

lution, let us work two more examples. 

EXAMPLE 2. Inconsistent System. Consider the system 

204 + 329 _ 223 = 4, 

ty —~ 242 + #3 = 3, (7) 
72x, -— 3 = 2. 

Keep the first equation intact, add 4 times the first equation to the second (eq.2 ~> eq.2 

~ 7 eq.1), and add ~% times the first to the third (eq.3 + eq.3 —f eq. 1): 

20, + 3ae- 224 = 4, 

— fro +2e3= 1, (8) 

_ Share + 6x3 = —12. 

Keep the first two equations intact, and add —3 times the second equation to the third (eq.3
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—> eg.3 —3 eq.2): 
201 -b 309 a 223 == 4, 

a fag + 24, = I, (9) 

QO = —15. 

Any solution #1, £2,23 of (9) must satisfy each of the three equations, but there are no 

values of 21,29, 23 that can satisfy 0 = —15. Thus, (9) is inconsistent (has no solution), 

and therefore (7) is as well. 

  

COMMENT. The source of the inconsistency is the fact that whereas the left-hand side of 

the third equation is 2 times the left-hand side of the first equation plus 3 times the left-hand 

side of the second, the right-hand sides do not bear that relationship: 2(4)+3(3) = 17 # 2. 
~ [While that built-in contradiction is not obvious from (7), it eventually comes to light in the 

third equation in (9).] If we modify the system (7) by changing the final 2 in (7) to 17, then 

~ the final ~12 in (8) becomes a 3, and the final ~15 in (9) becomes a zero: 

  

20, + 3x22 — 2x3 = 4, 

— faq + 2x3 = 1, (10) 
0=0 

or, multiplying the first by $ and the second by —2, 

30, —- tax 
Cy + 302 a2 _ 2, (1 1a,b) 

2 —- 73 = By 

where we have discarded the identity 0 = 0, Thus, by. changing the cj’s so as to be 

“compatible,” the system now admits an infinity of solutions rather than none. Specifically, 

we can let 3 (or ve, it doesn’t matter which) in (1 1b) be any value, say a, where a is 
2 arbitrary. Then (11b) gives 2 = —2 + 3a, and putting these into (11a), «1 = i+ da. 

Thus, we have the infinity of solutions 

2 . 4 17 4 1 (12) 
v3 = & gS rppr ra, YS = 

, 7 7 7 7 

for any a. Evidently, two of the three planes intersect, giving a line that lies in the third 

plane, and equations (12) are parametric equations of that line! @ 

EXAMPLE 3. = Nonunique Solution. Consider the system of four equations in six 
unknowns (m = 4,n = 6) 

229 + eg + Avy + 305 + Lg = 2, 

Uy —- Lot w + 2r—6 = 0, (13) 

y+ wo + 2Qag + day + 5 + 2a— = 3, 

ay — 3x ~ Ary ~ 275 + ve = 0. 

Wanting the top equation to begin with z, and subsequent equations to indent at the left,
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let us first move the top equation to the bottom (eq.1 © eq.4): 

Ly ~ 3x ~ 4a, —- 2%5 + Xe = 0, 

Rpm fa + wy + 2x6 = 0, 

xy + fo + 2x3 + deg + Ly + 2rg = 3, 

Qro + 23 + day + 305 + Ue = 2. 

(14) 

Add —1 times the first equation to the second (eq.2 + eq.2 —1 eq.1) and third (eq.3 > 

eq.3 —1 eq. 1) equations: 

Ly — 3x2 — 40, ~ 2a, + ag = 0, 

Qa9 + @3 + 404 + 2t5 + ve = 0, (15) 

Arg + 203 + 8x4 + 305 + vg = 3, 

20 + 23 + 44 + 3a5 + Ug = 2. 

Add —2 times the second to the third (eq.3 —+ eq.3 —2 eq.2) and —1 times the second to 

the fourth (eq.4 > eq.4 —1 eq.2): 

ry — 3x — 4x4 —- 225 + rg = 0, 

229 U3 7 404 225 tg = YU, 209 + €3 + 4r4 + 205 + "6 0, (16) 
—2f5 —- Ve = 3, 

v5 = 2. 

Add the third to the fourth (eq.4 — eq.4 + eq.3): 

ry — 3x9 —4da,~- 225+ we = 0, 
Qa + wg-+ 4aq +. 205. +... 06. =.0, 

(17) 
25 7 tg = 3, 

—@g = 5 

Finally, multiply the second, third, and fourth by T —1, and —1, respectively, to normalize 

the leading coefficients (eq.2 —> $ eq.2, eq.3 4 —Leq.3, eq.4 + —1Leq.4): 

ry — 3x9 ~4dtg-245, + we = 0, 
, 1 te + $23 + 204 + U5 + 526 = 0, (18) 

ty + fe = —3, " 

ig = 5, 

The last two equations give ag = —5 and zs = 2, and these values can be substituted back 

into the second equation. In that equation we can let 24 be arbitrary, say a1, and we can 

also let x3 be arbitrary, say a2. Then that equation gives x2 and, again by back substitution, 

the first equation gives x,. The result is the infinity of solutions 

Cg = —5, U5, = 2 U4 = 1, 23 = 2, 

i 1 21, 3 (19) 
bg ~~ 2a, - =o Up ae 2a 2 9 I 2 2 1 9 1 9 23 

where ay and a are arbitrary. fi 

If a solution set contains p independent arbitrary parameters (a1,... Ap), We 

call it (in this text) a p-parameter family of solutions. Thus, (12) and (19) are 
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one- and two-parameter families of solutions, respectively. Each choice of values 

for Q1,-.., @» yields a particular solution. [n (19), for instance, the choice ay = 1 

and a2 = 0 yields the particular solution x1 = i to = —3, vg = 0, at, = I, 

wy = 2, and vg = —5. 

8.3.2. Gauss elimination. The method of Gauss elimination,” illustrated in Ex- (a) eo 8 © 6 e = 

amples 1-3, can be applied to any linear system (1), whether or not the system is © 8 © 8 =o 

consistent, and whether or not the solution is unique. Though hard to tell from the 2 8 8 = 8 

foregoing hard calculations, the method is efficient and is commonly available in 

computer systems. 
Observe that the end result of the Gauss elimination process enables us to () 

determine, merely from the pattern of the final equations, whether or not a solution ee 8 # 8 = 8 

exists and is unique. For instance, we can see from the pattern of (5) that there e 8 © 2 = 8 

is a unique solution, from the bottom equation in (9) that there no solution, and O = ¢ 

from the extra double indentation in (18) that there is a two-parameter family of 

solutions. 

As representative of the case where m <n, let m = 3 andn = 5. There (c) 

are four possible final patterns, and these are shown schematically in Fig. 1. For ee 8 eee 

instance, the third equation in Fig. la could be 73 — 624 + 2a5 = 0 or 3 + 204 + O = * 

Ors = 4, and the given third equation in Fig. 1b could be 0 = 6 or O = O. It may 0 = 

seem foolish to include the case shown in Fig. Id because there are no zj’s (all 

of the a;; coefficients being zero), but it is possible so we have included it. From 

these patterns we draw these conclusions: (a) there exists a two-parameter family (d) 

of solutions: (b) there is no solution (the system is inconsistent) if the right-hand 0 = 

member of the third equation is nonzero, and a three-parameter family of solutions 5 — 

if the latter is zero: (c) there is no solution if either of the right-hand members of 

the second and third equations is nonzero, and a four-parameter family of solutions Figure 1. The final pattern; 

if each of them is zero; (d) there is no solution if any of the right-hand members is =m =3,n = 5. 

nonzero, and a five-parameter family of solutions if each of them is zero. 

It may appear that Fig. | does not cover all possible cases. For instance, what 

about the case shown in Fig. 2? That case can be converted to the case shown in 

Fig. la simply by renaming the unknowns: let x3 become 2x2 and let 25 become es 2 e 8 * = 8 

£3. Specifically, let vy —> ©1, 73 4 VQ, Ty > 13, V4 > La, and ©2 > &s. oe 8 = 8 

The case where rm > 7 can be studied in a similar manner, and we can draw . = 

the following general conclusions. Figure 2. Was this case not 

covered? 

  

THEOREM 8.3.2. Existence / Uniqueness for Linear Systems 

If m <n, the system (1) can be consistent or inconsistent. If it is consistent 

it cannot have a unique solution; it will have a p-parameter family of solutions, 

where n - 7m <p <n. If m > n, (1) can be consistent or inconsistent. If it is 

  

*The method is attributed to Karl Friedrich Gauss (1777-1855), who is generally regarded as the 

foremost mathematician of the nineteenth century and often referred to as the “prince of mathemati- 

cians.”
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consistent it can have a unique solution or a p-parameter family of solutions, where 
Ll<p<n. 
  

The next theorem follows immediately from Theorem 8.3.2, but we state it 
separately for emphasis. 

  

THEOREM 8.3.3 Existence /Uniqueness for Linear Systems 

Every system (1) necessarily admits no solution, a unique solution, or an infinity of 

solutions. 
  

Observe that a system (1) is inconsistent only if, in its Gauss-eliminated form, 
one or more of the equations is of the form zero equal to a nonzero number. But 
that can never happen if every c; in (1) is zero, that is, if (1) is homogeneous. 

  

THEOREM 8.3.4 Existence / Uniqueness for Homogeneous Systems 
Every homogeneous linear system of m equations in n unknowns is consistent. 
Either it admits the unique trivial solution or else it admits an infinity of nontrivial 
solutions in addition to the trivial solution. If m < n, then there is an infinity of 
nontrivial solutions in addition to the trivial solution. 
  

In summary, not only did the method of Gauss elimination provide us with an 
efficient and systematic solution procedure, it also led us to important results re- 
garding the existence and uniqueness of solutions. 

8.3.3. Matrix notation. In applying Gauss elimination, we quickly discover that 
writing the variables 71,..., 2, over and over is inefficient, and even tends to up- 

Stage the more central role of the ajj;’s and c,’s. It is therefore preferable to omit 
the x;’s altogether and to work directly with the rectangular array 

G1 G12 c+ Ain C1 

G21 a992 st GhOn C2 

; (20) 

aml Gdm2 ‘'* Amn Cm 

known as the augmented matrix of the system (1), that is, the coefficient matrix 

Gy AQ An 

G21 422 ++: Gon 

(21) 

ami Am2 °'* Amn
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augmented by the column of ¢;’s. By matrix we simply mean a rectangular ar- 
ray of numbers, called elements; it is customary to enclose the elements between 
parentheses to emphasize that the entire matrix is regarded as a single entity. A 

horizontal line of elements is called a row, and’a vertical line is called a column. 
Counting rows from the top, and columns from the left, 

Cy 

C2 
ag, @92 ++) Gan C2 and 4 

  

    

Cm 

say, are the second row and (n +1)th column, respectively, of the augmented matrix 
(20). 

In terms of the abbreviated matrix notation, the calculation in Example 1 would 

© look like this. 

  

Original system: 

1 1 -l1 1 

3 1 1 9 

1 —-1 4 8 

Add —3 times first row to second row, and add —1 times first row to third row: 

1 1-1 1 

0 —-2 4 6 

0 —2 5.7 

Add —1 times second row to third row, and multiply second row by —$: 

11-1 1 

01 -2 -3 ]. (22) 
00 1 41 

Thus, corresponding to the so-called elementary equation operations on mem- 
bers of a system of linear equations there are elementary row operations on the 
augmented matrix, as follows: 

1. Addition of a multiple of one row to another: 
Symbolically: (jth row) > (jth row) + a(kth row) 

2. Multiplication of a row by a nonzero constant: 
Symbolically: (jth row) > a(jth row) 

3. Interchange of two rows: 

Symbolically: (jth row) © (kth row)



404 Chapter 8. Systems of Linear Algebraic Equations; Gauss Elimination 

And we say that two matrices are row equivalent if one can be obtained from the 
other by finitely many elementary row operations. 

8.3.4. Gauss— Jordan reduction. With the Gauss elimination completed, the re- 

maining steps consist of back substitution. In fact, those steps are elementary row 
operations as well. The difference is that whereas in the Gauss elimination we 

proceed from the top down, in the back substitution we proceed from the bottom 
up. 

EXAMPLE 4, To illustrate, let us return to Example { and pick up at the end of the 
Gauss elimination, with (5), and complete the back substitution steps using elementary row 

operations. In matrix format, we begin with 

1 i -l 1 

0 1 -2 ~3 ]. (23) 

0 0 1 1 

Keeping the bottom row intact, add 2 times that row to the second, and add 1 times that 

row to the first: 
1 1 0 2 

0 10 -1 4. (24) 
0 0 1 l 

Now keeping the bottom two rows intact, add —1 times the second row to the first: 

1 0 90 3 

0 10 -1 4, (25) 

0 0 1 1 

which is the solution: 2, = 3, 2 = —1,©3 = 1 as obtained in Example |. @ 

The entire process, of Gauss elimination plus back substitution, is known as 
Gauss—Jordan reduction, after Gauss and Wilhelm Jordan (1842-1899), The final 

result is an augmented matrix in reduced row-echelon form. That is: 

1. In each row not made up entirely of zeros, the first nonzero element is a 1, a 
so-called leading 1. 

2. In any two consecutive rows not made up entirely of zeros, the leading | in 
the lower row is to the right of the leading | in the upper row. 

3. Ifacolumn contains a leading |, every other element in that column is a zero. 

4. All rows made up entirely of zeros are grouped together at the bottom of the 
matrix.
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For instance, (25) is in reduced row-echelon form, as is the final matrix in the next 

example. 

EXAMPLE 5. Let us return to Example 3 and finish the Gauss—Jordan reduction, 
beginning with (18): 

      

  

1-3 0 -4 -2 1 0 fio 221 8 0 
0 1% 2 1 3 0 , {ot 4 1 3 0 4 

0 0 0 1 1-3 00011 -3 
0 0 0 0 1 -5 }0 0000 1 -5 

10220 4 8 [1 0 2200 2 
1 1 1 0 4 20 -% 38 , [9 #200 § 

00 0 0 1 - 000010 2 
00000 1 -5 fo 0 00 01 -5 

The last augmented matrix is in reduced row-echelon form. The four leading 1’s are dis- 

played in bold type, and we see that, as a result of the back substitution steps, only 0’s are 

to be found above each leading |. The final augmented matrix once again gives the solution 

(19). @ 

8.3.5. Pivoting. Recall that the first step in the Gauss elimination of the system 

Qty + ayQwg +s + Ginkn = C1, 

Gg1Uy + 49982 +e + Anty = C2, 
(26) 

Am1ly + Omet2 +t + Amntn = Cm, 

is to subtract @g1/a11 times the first equation from the second, a31/a41 times the 

first equation from the third, and so on, while keeping the first equation intact. The 
first equation is called the pivot equation (or, the first row is the pivot row if one 
is using the matrix format), and a, is called the pivot. That step produces an 

indented system of the form 

Qyyey + Ayako +e + Ant = CL; 
i. Loon el Ag LQ +t + Ao Uy = Co, 

(27) 

an Lae Pa el Gynt. + + Ginn tn == Cp: 

Next, we keep the first #vo equations intact and use the second equation as the new 

pivot equation to indent the third through mth equations, and so on. 
Naturally, we need each pivot to be nonzero. For instance, we need ay; #4 0 

for a91/a11, @31/a11,... to be defined. If a pivot is zero, interchange that equation
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with any one below it, such as the next equation or last equation (as we did in Ex- 
ample 3), until a nonzero pivot is available. Such interchange of equations is called 
partial pivoting. If a pivot is zero we have no choice but to use partial partial piv- 
oting, but in practice even a nonzero pivot should be rejected if it is “very small,” 
since the smaller it is the more susceptible is the calculation to the adverse effect 
of machine roundoff error (see Exercise 13). To be as safe as possible, one can 
choose the pivot equation as the one with the largest leading coefficient (relative to 
the other coefficients in the equation), 

Closure. Beginning with a system of coupled linear algebraic equations, one can 
use a sequence of elementary operations to minimize the coupling between the 
equations while leaving the solution set intact. Besides putting forward the impor- 
tant method of Gauss elimination, which is used heavily in the following chapters, 
we used that method to establish several important theoretical results regarding the 
existence and uniqueness of solutions. 

The Gauss elimination and Gauss—Jordan reduction discussions lead naturally 
to a convenient, and equivalent, formulation in matrix notation. We will return to 
the concept of matrices in Chapter 10, and develop it in detail. 

Computer software. Chapters 8—12 cover the domain known as linear algebra. 
A great many calculations in linear algebra can be carried out using computer al- 
gebra systems. In Maple, for instance, a great many commands (“functions”) are 
contained within the linalg package. A listing of these commands can be obtained 
by entering ?linalg. That list includes the linsolve command, which can be used to 
solve a system of m linear algebraic equations in n unknowns. To access linsolve 
(or any other command within the linalg package), first enter with(linalg). Then, 
linsolve(A,b) solves (1) for 21,...,2n, where A is the coefficient matrix and 6 is 
the column of c;’s. For instance, the system 

Ly — «x2 4+ 223 -— 3x4 = 4, 
28 

xy +229 ~ £3 4+ 324 = 1 (28) 

admits the two-parameter family of solutions 

T4= 4, ©3=Q2, 9 = -1—-2aj+ao, 2 =3+ayz— a9, (29) 

where a4, a2 are arbitrary. To solve (28) using Maple, enter 

with(linalg): 

then return and enter 

linsolve(array([[1, -1, 2, —3], [1,2,-1,3]]), array((4, 1})); 

and return. The output is 

[—-ti + tg +3, t) —2_t,-—1, ~t1, —ty] 
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where the entries are v,,...,@4 and where —t, and —¢) are arbitrary constants. 

With t) = ae and tg = ay, this result is the same as (29). If you prefer, you 

could use the sequence 

with(linalg): 

A:= array(([1, —1, 2, 3], [1,2, -1, 3]]): 

b := array((4, 1]): 

linsolve(A, 6); 

instead. If the system is inconsistent, then either the output will be NULL, or there 

will be no output. 

  

EXERCISES 8.3 
  

1. Derive the solution set for each of the following systems (k) 1 + £4 =l 

using Gauss elimination and augmented matrix format. Docu- ay + 2aq -— 23 — 2e4 = 5 

ment each step (e.g., 2nd row 3nd row + 5 times Ist row), ty — to + 2%3 + Ly = 0 

and classify the result (e.g., unique solution, the system is in- Qa, + to + @3 —- ty = 4 

consistent, 3-parameter family of solutions, etc.). (l) ay + t4 = 2 

4tq - @3 + 4 = 0 

(a) 2x — 3y = 1 ty — 2+ 2ag3 +24 =4 

Set y= 2 (m) 2+ 2yt3z2=5 

(b) 22 + y= 0 
Qa + 3y +42 =8 

3a — 2y = 0 
gu + dy +02 = C 

(c) w+ 2y=4 ; cry =2 

(d) «-ytz=l 
for c = 10, and again, for c =11 

2 —y- 2 =8 (n) Qn + y+ z= 10 

30+ yo z= 6 
27, ~ fo — @3 — 5xq = 6 (e) 22, LQ 3 904 6 a —2y ~ 42 = —10 

Om, py — ote = Oy ce 
(ff) 20 y vg v3 324 0 (0) 204 4 89 =] 

Ly ~ to + 4x, =: 2 
. o. 

y+ 282 + 23 = 1 

(g) 2 + 2y + 32 = 4 tq + 2a3 + v4 = 1 

Se + Oy + Tz= 8 
rg + 244 = 1 

Qr + lOy + llz = 12 5. ; _ 

h) tok ty ~2ae= 3 (p) 2a; + 22 = 0 

( ) 71 + r2 “03 ~ 
vy + 229 “+ v3 = —1 

v1 30, ~ os = : 
tg + 203 = —4 

. .. a fas — (q) 2a, + 22 + a4 + 2x5 = 0 

() _ 7— hg y ty 2 - @3 = 0 

Sti ob 2ta = 4 ay + 2&2 +23 — 3t4q + 2e5 = 0 

, + 10t2 = —12 Q71 + Qe — £3 + a5 = 0 

Sn tes S Exercise 1 but using Gauss ~Jord 
4 

a)—(q) Same as Exercis but using Gauss — an re- 
Gj) ay —- tg + 2ay+ v4 = -1 2. (a) (q) me AS xercise but using iuss —Jordan re 

~ | duction instead of Gauss elimination. 
Qey + tot Ee - tyes 4 

vy + 289 - Gy —- ag = 48 3. (a)—(q) Same as Exercise | but using computer software 

Ly + 23 = | such as the Maple linsolve command.
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4. Can 20 linear algebraic equations in {4 unknowns have a 

unique solution? Be inconsistent? Have a two-parameter fam- 

ily of solutions? Have a 14-parameter family of solutions? 

Have a |6-parameter family of solutions? Explain. 

5. Let 

Qy2, + Ag@e + 3a = 0, 

by xy + boa'9 + b3a3 = 0 

represent any two planes through the origin in a Cartesian 

1, € 2,4 space. For the case where the planes intersect along 

a line, show whether or not that line necessarily passes through 

the origin. 

6. If possible, adapt the methods of this section to solve the 

following nonlinear systems. [f it is not possible, say so. 

(a) rh + 2a ~ 24 3 == 29 
apt wh + 2% = 19 

Ba? + das = 67 

(b) z+ 3y= 13 

sing + 2y= 5 

(c) sing + siny =1 

sing — siny + 4cosz = 1. 2 

a
 sing + siny + 2cosz = 1.6 

where ~7/2 <a <1/2,-1r/2<y<n/2and0<2<2 

7. For what values of the parameter A do the following homo- 

geneous (do you agree that they are homogeneous?) systems 

admit nontrivial solutions? Find the nontrivial solutions corre- 
sponding to each such A. 

(a) 2a + yo Av (b) 22 —- y= Xx 

c+ ly = Ay —v + 2y = Ay 

(c) w — 2y= Az (d) sa Ag 
dx ~ 8y = Ay zc Ay 

+ytes Xz 

(fe) c+y+ c= Ar (f) 224+ yr 2c=rkez 

yroeo= Ay w+ 2Qy + c= Ay 

22 = Nz E+ y+ Qe = Az 

8. Evaluate these excerpts from examination papers. 

(a) “Given the system 

ZT, — 249 = 0, 

224 _ das = Q, 

add —2 times the first equation to the second and add — 4 times 

the second equation to the first. By these Gauss elimination 

steps we obtain the equivalent system 0 = 0 and 0 = 0, and 

hence the two-parameter family of solutions 2, = ay (arbi- 

trary), £2 =  (arbitrary).” 
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(b) “Given the system 

ay + ay — 4g = 0, 

22,4 ~ fo + vg = 0, 

since both left-hand sides equal zero, they must equal each 

other. Hence we have the equation 

Ly +g — 40g = Bey - Te + 83, 

which equation is equivalent to the original system.” 

9, Make up an example of an inconsistent linear algebraic sys- 

tem of equations, with 

(jm=2,n=4 (b) m = 1, 

10. (Physical example of nonexistence and nonuniqueness; 

DC circuit) Kirchoff’s current and voltage laws were given in 

Section 2.3.1. If we apply those laws to the DC circuit shown, 

m= 4 

by 5 - 

  

  

we obtain the equations 

lym ig- tg = (junction a) 

iy —ig—i3 = 0, (junction c) 

Roig — Rgig = 0, (loop abeda) (10.1) 

Ryi, + Roig = E, (loop abcea) 

(I Ryty + gis = E, oop adcea) 

where 7, 7,23 are the three currents (measured as positive in 

the direction assumed in the figure). 21, Ro, Ay are the resis- 

tances of the three resistors, and & is the voltage rise (from e 

to a) induced by the battery or other source. [Evidenily, we did 

not need to apply the current law to both junctions since the re- 

sulting equations are identical. Similarly, it may be that not all 

of the loop equations are needed. But rather than try to decide 

which of equations (10.1) to keep and which to discard, let us 

merely keep them all.] We now state the problem: Obtain the 

solution set of equations (10.1) by Gauss elimination. If there 

is no solution, or if there is a nonunique solution, explain that 

result in physical terms. Take 

(b) Ri = Rg BR, Rg =2R (R01) 

()R, BR, Ro =Rhyg =2R (RO)



  

   (d) Rp = R, Ry =4R, Ry = GR (RAO) 

(e:) Rg = R, Ry = Rg = 0 

(f) Ry BR, Ry = Ry = 0 (R #0) 

(g) Ry = Reo = Res =0 

11. (Physical example of nonexistence and nonuniqueness; 

statically indeterminate structures) (a) Consider the static 
equilibrium of the system shown, consisting of two weightless 

(a) 

  

cables connected at P, at which point a vertical load * is ap- 

plied. Requiring an equilibrium of vertical force components, 

and horizontal force components too, derive two linear alge- 

braic equations on the unknown tensions T, and TJ. Are there 

any combinations of angles 6, and #2 (where 0 < 0, < 5 

and 0 < @) < 3) such that there is either no solution or a 

nonunique solution? Explain. 

(b) This time let there be three cables at angles of 45°, 60°, 

and 30° as shown. Again, requiring an equilibrium of vertical 

and 

    

horizontal forces at P, derive two linear algebraic equations on 

the unknown tensions 7, 72,73. Show that the equations are 

consistent so there is a nonunique solution. NOTE: We say that 

such a structure is statically indeterminate because the forces 

in it cannot be determined from the laws of statics alone. What 

information needs to be added if we are to complete the eval- 
uation of 7, 72, 73? What is needed is information about the 

relative stiffness of the cables. We pursue this to a conclusion 

in (c), below. 

(c) [Completion of part (b)| Before the load I’ is applied, lo- 

cate an x, y Cartesian coordinate system at P. Let P be | foot 

below the “ceiling” so the coordinates of A, B,C are (-1,1), 
(1/3, 1), and (./3, 1), respectively. Now apply the load £’, 
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The point P will move to a point (a, y), and we assume that the 

cables are stiff enough so that x and y are very small: |x| < 1 

and |y| < 1. Let the cables obey Hooke’s law: Ty, = kyéy, 

Tz = kydo, and T; = kgd3, where 4; is the increase in length 

of the jth cable due to the tension T;. Since P moves to (x,y), 

it follows that 

    

6. = ~(@ +1) Pw
o? - v2 

2+ 2{a — y) _ 

= Vall t(e—y
? - v2 

. 1 
. 1 

= va[1+ He -w)| ~v8= Flew, 

I 
a 

(11.1) 

Explain each step in (11.1), and show, similarly, that 

1 V3 
dg Y—5E- 11.2 2 5° 9 Y (11.2) 

V3 1 

Thus, 

Ty = kd & ae —y), 

k 
To = kada ~ ac + V3y), Cd 1.4) 

T; = kgd3 © —=(Vv3a +y). 

Putting (11.4) into the two equilibrium equations obtained in 

(b) then gives two equations in the unknown displacements 

z,y. Show that that system can be solved uniquely for and 

y, and thus complete the solution for T,, To, T3. 

12. (Roundoff error difficulty due to small pivots) To illustrate 

how small pivots can accentuate the effects of roundoff error, 

consider the system 

0.0052; + 1.47z2 = 

0.97521 + 2.3229 

1.49, 
6.22 (12.1) i 

with exact solution a, = 4 and x2 = 1. Suppose that our 

computer carries three significant figures and then rounds off. 

Using the first equation as our pivot equation, Gauss elimina- 

tion gives 

0.005 5 0.005 

0 

i 1.47 

0.975 2c — 285 

1.49 

— 284
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so tg = 284/285 = 0.996 and 2, = [1.49 — 
(1.47)(0.996)]/0.005 = (1.49 ~ 1.46)/0.005 = 6. Show that 
if we use partial pivoting and then use the first equation of the 
system 

0.975x, + 2.32a = 6.22, 5 
0.0052, + 14Try = 1.49 (12.2) 

as our pivot equation, we obtain the result a, = 4.00 and 

x2 = 1.00 (which happens to be exactly correct). 

13. (/ll-conditioned systems) Practically speaking, our numeri- 
cal calculations are normally carried out on computers, be they 
hand-held calculators or large digital computers. Such ma- 
chines carry only a finite number of significant figures and thus 
introduce roundoff error into most calculations. One might ex- 
pect (or hope) that such slight deviations will lead to answers 
that are only slightly in error. For example, the solution of 

off version 

Ct ye, 
z-~1O0ly = 0 

is very much the same, namely « = 1.005, y = 0.995. In 
sharp contrast, the solutions of 

w+ y = 2, 

z+ 10l4dy = 0 (13.2) 

and the rounded-off version 

r+ y = 2, 

z+ 10ly = 0, 

vs 144.9, y © —142.9 and « = 202, y = —200, respec- 

tively; (13.2) is an example of a so-called ill-conditioned sys- 

  

tem (ill-conditioned in the sense that small changes in the co- 

(13.1) efficients lead to large changes in the solution). Here, we ask | 

the following: Explain why (13.2) is much more sensitive to i 

roundoff than (13.1) by exploring the two cases graphically, 

that is, in the x, y plane. 

r+ y = 2, 
z~- 101l4y = 0 

is x & 1.007, y & 0.993, whereas the solution of the rounded- 

  

Chapter 8 Review 

This chapter deals with systems of linear algebraic equations, m equations in n 
unknowns, insofar as the existence and uniqueness of solutions and solution tech- 
nique. We find that there are three possibilities: a unique solution, no solution, and 
an infinity of solutions. If one or more solutions exist then the system is said to be 
consistent, if there are no solutions then it is inconsistent. 

The key, in assessing existence/uniqueness as well as in finding solutions, is 
provided by elementary operations because they enable us to manipulate the system 
So as to reduce the coupling to a minimum, while at the same time keeping the 
solution set intact. 

The method of Gauss elimination is introduced, as a systematic solution pro- 
cedure based upon the three elementary operations, and it is shown that the subse- 
quent back substitution steps amount to elementary operations as well. The entire 
process, Gauss elimination followed by the back substitution, is known as Gauss— 
Jordan reduction. Realize that the latter is a solution method, or algorithm, not a 
formula for the solution. Explicit solution formulas are developed, but not until 
Chapter 10. 

We find that the process of Gauss elimination and Gauss—Jordan reduction 
are expressed most conveniently in matrix notation, although that notation is not 
essential to the method. In subsequent chapters the matrix approach is developed
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more fully. 

The most important results of this chapter are contained in Theorems 8.3.13. 

Finally, we also stress the value of geometrical and visual reasoning, and suggest 

that you keep that idea in mind as we proceed.



Chapter 9 

Vector Space 

9.1 Introduction 

Normally, one meets vectors for the first time within some physical context ~ in 
studying mechanics, electric and magnetic fields, and so on. There, the vectors exist 
within two- or three-dimensional space and correspond to force, velocity, position, 
magnetic field, and so on. They have both magnitude and direction: they can be 
scaled by multiplicative factors, added according to the parallelogram law; dot 
and cross product operations are defined between vectors; the angle between two 
vectors is defined; vectors can be expanded as linear combinations of base vectors; 

and so on, 

Alternatively, there exists a highly formalized axiomatic approach to vectors 
known as linear vector space or abstract vector space. Although this generalized 
vector concept is essentially an outgrowth of the more primitive system of “arrow 
vectors” in 2-space and 3-space, described above, it extends well beyond that sys- 

tem in scope and applicability. 

For pedagogical reasons, we break the transition from 2-space and 3-space to 
abstract vector space into two steps: in Sections 9.4 and 9.5 we introduce a gen- 
eralization to “n-space,” and in Section 9.6 we complete the extension to general 
vector space, including function spaces where the vectors are functions! However, 
we do not return to function spaces until Chapter 17, in connection with Fourier 
series and the Sturm—Liouville theory; in Chapters 9-12 our chief interest is in 
n-space. 

9.2 Vectors; Geometrical Representation 

Some quantities that we encounter may be completely defined by a single real 
number, or magnitude; the mass or kinetic energy of a given particle. and the 
temperature or salinity at some point in the ocean, are examples. Others are not 
defined solely by a magnitude but rather by a magnitude and a direction, exam- 
ples being force, velocity, momentum, and acceleration. Such quantities are called 

412
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vectors. 
The defining features of a vector being magnitude and direction suggests the 

geometric representation of a vector as a directed line segment, or “arrow,” where 

the length of the arrow is scaled according to the magnitude of the vector. For 

example, if the wind is blowing at 8 meters/sec from the northeast, that defines a 

wind-velocity vector v, where we adopt boldface type to signify that the quantity 

is a vector: alternative notations include the use of an overhead arrow as in W. 

Choosing, according to convenience, a scale of 5 meters/sec per centimeter, say, 

the geometric representation of v is as shown in Fig. 1. Denoting the magnitude, 

or norm, of any vector v as ||v||, we have ||v|| = 8 for the v vector in Fig. I. 

Observe that the /ocation of a vector is not specified, only its magnitude and 

direction. Thus, the two unlabeled arrows in Fig. | are equally valid alternative 

representations of v. That is not to say that the physical effect of the vector will 

be entirely independent of its position. For example, it should be apparent that the 

motion of the body B induced by a force F (Fig. 2) will certainly depend on the 

point of application of F* as will the stress field induced in B. Nevertheless, the 

two vectors-in Fig. 2 are still regarded as equal, as are the three in Fig. |. 

Like numbers, vectors do not become useful until we introduce rules for their 

manipulation, that is, a vector algebra. Having elected the arrow representation of 

vectors, the vector algebra that we now introduce will, likewise, be geometric, 

First, we say that two vectors are equal if and only if their lengths are identical 

and if their directions are identical as well. 

Next, we define a process of addition between any two vectors u and v. The 

first step is to move v (if necessary), parallel to itself, so that its tail coincides with 

the head of u. Then the sum, or resultant, u -+ v is defined as the arrow from the 

tail of u to the head of v, as in Fig. 3a. Reversing the order, v + u is as shown in 

Fig. 3b. Equivalently, we may place u and v tail to tail, as in Fig. 3c. Comparing 

Fig. 3c with Fig. 3a and b, we see that the diagonal of the parallelogram (Fig. 3c), 

is both u + v and v + u. Thus, 

u+vovt+u, (1) 

so addition is commutative. One may show (Exercise 3) that it is associative as 

well, 

(u+v)+w=u+(v+w). (2) 

Next, we define any vector of zero length to be a zero vector, denoted as 0. 

Its length being zero, its direction is immaterial; any direction may be assigned if 

desired. From the definition of addition above, it follows that 

ut+O=0+u=u (3) 

for each vector u. 

Corresponding to u we define a negative inverse “—u” such that if u is any 

nonzero vector, then —u is determined uniquely, as shown in Fig. 4a; that is, it is 

  

“Students of mechanics know that the point of application of F affects the rotational part of the 

motion but not the translational part. 

N 

| / 

ef 

Scale: 8 m/sec/cm 

Figure 1. Geometric 

representation of v. 

Figure 2. Position of a vector. 

(a) 

uty 
v 

u 

(b) u 

v 
Vu 

(c) ut+v,vtu     

Figure 3. Vector addition.
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(a) of the same length as u but is directed in the opposite direction (again, u and —u 

have the same length, the length of —u.is not negative). For the zero vector we 
have —0 = 0. We denote u + (—v) as u — v (“u minus v”) but emphasize that it 
is really the addition of u and —v, as in Fig. 4b. 

Finally, we introduce another operation, called scalar multiplication, between 
any vector u and any scalar (i.e., a real number) a: If a 4 O and u # 0, then au is 
a vector whose length is |a| times the length of u and whose direction is the same 

(b) as that of u if @ > 0, and the opposite if @ < 0; if ~@ = 0 and/or u= 0, then 

au = 0. This definition is illustrated in Fig. 5. It follows from this definition that 
scalar multiplication has the following algebraic properties: 

  

a(fu) = (af)u, (4a) 
(a+ P)u=au+t fu, (4b) 

a{u+v)=autav, (4c) 

lu=u, 4d 
Figure 4. —u and vector ‘ (Ad) 

subtraction, where q, @ are any scalars and u, v are any vectors. 

Observe that the parallelogram rule of vector addition is a definition so it does 
not need to be proved. Nevertheless, definitions are not necessarily fruitful so it 
is worthwhile to reflect for a moment on why the parallelogram rule has proved 

u important and useful. Basically, if we say that “the sum of u and v is w,” and 

= u thereby pass from the two vectors u, v to the single vector w, it seems fair to expect 

some sort of equivalence to exist between the action of w and-the joint action of u 
J and v. For example, if F, and F2 are two forces acting on a body B, as shown in 

Fig. 6, itis known from fundamental principles of mechanics that their combined 
-<u effect will be the same as that due to the single force F, so it seems reasonable and 

natural to say that F is the sum of F; and F2. This concept goes back at least as 
far as Aristotle (384—322 B.C.). Thus, while the algebra of vectors is developed 

here as an essentially mathematical matter, it is important to appreciate the role of 
physics and physical motivation. 

In closing this section, let us remark that our foregoing discussion should not 
be construed to imply that objects of physical interest are necessarily vectors (as 
are force and velocity) or scalars [as are temperature, mass, and speed (i.e., the 

magnitude of the velocity vector)|. For example, in the study of mechanics one 

finds that more than a magnitude and a direction are needed to fully define the state 
of stress at a point; in fact, a “second-order tensor” is needed — a quantity that is 
more exotic than a vector in much the same way that a vector is more exotic than a 
scalar.* 

  

Figure 6. Physical motivation for 

parallelogram addition. 

  

“For an introduction to tensors, we recommend to the interested reader the 68-page book Tensor 

Analysis by H. D. Block (Columbus, OH: Charles E. Merrill, 1962).



  

9.2. Vectors; Geometrical Representation 415 

  

EXERCISES 9.2 
  

4, Trace the vectors A, B, C, shown where A is twice as the lengths of the other two sides. 

long as B. Then determine each of the following by graphical (b) Repeat part (a), with “ |Aj| = 1” changed to |[Al| = 4. 
  

means, 

@A+B+C (b}B-A 

(c) A-~C+3B (d) 2(B — A) +60 
(e) A + (4B — C) (f) A + 2B — 2C 

  

6. Use the definitions and properties given in the reading to 

show that A + B = C implies that A = C — B. 

  

. ar _ 7, (a) Show that if A + B = 0 and A and B are not parallel, 
2. In each case, C can be expressed as a linear combination of (@s wt atit A + “ ° P 

. . then each of A and B must be 0. 

A and B, that is, as © = aA + GB. Trace the three vectors (b) Vectors are often of help in deriving geometrical relation 
and by graphical means determine a@ and @. “* P BE ° 

ships. For example, to show that the diagonals of a parallel- 

(a) (b) ogram bisect each other one may proceed as follows. From 

B C Cc the accompanying figure A + B = C, A ~ aD = £C, and 

A =B+D. Eliminating A and B, we obtain (26 —1)C = 

(1 — 2e)D, and since C and D are not parallel, it must be true 

B [per part (a)] that 26-1 =1-2a=-0ie,a= f= 5), 

which completes the proof. We now state the problem: Use 

A this sort of procedure to show that a line from one vertex of a 

A parallelogram to the midpoint of a nonadjacent side trisects a 

diagonal. 

  

A C nant cnn 

8. If (see the accompanying figure) the vector A + @B is 

placed with its tail at point P, show the line generated by its 

head as a varies between —oo and +00. 

3. Show that the associative property (2) follows from the 

graphical definition of vector addition. 

4. Derive the following from the definitions of vector addition 

and scalar multiplication: A 

(a) property (4a) (b) property (4b) 

(c) property (4c) (d) property (4d) 

S. ca) If JA = 1, |B = 2, and 

IC} = 5. can A + B+ C = 0? p 

B 

HINT: Use the law of cosines 8° = gq? +r? — 2gr cos @ (see 

the accompanying figure) or the Euclidean proposition that the 9. If (see the accompanying figure) ({AB|| / |AC]| = a, show 

length of any one side of a triangle cannot exceed the sum of that OB = aOC + (1 — a)jOA.
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O 

10. One may express linear displacement as a vector: If a par- 

ticle moves from point A to point B, the displacement vector 

is the directcd line segment, say u, from A to B. For exam- 

ple, observe that a displacement u from A to B, followed by a 

displacement v from B to C, is equivalent to a single displace- 

ment w from Ato C: u-+v = w [part (a) in the accompanying 

figure]. Reversing the order, displacements v and then u also 

(a) (B) 

B 
A u A 

carry us from A to C’: v++-u = w [part (b) in the figure]. Thus, 

u+v =v +tuso that the commutativity axiom (1).is indeed 

satisfied. How about angular displacements? Suppose that we 

express the angular displacement of a rigid body about an axis 

as @, where the magnitude of @ is equal to the angle of rota- 

tion, and the orientation of @ is along the axis of rotation, in 

the direction specified by the “right-hand rule.” That is, if we 

curl the fingers of our right hand about the axis of rotation, in 

the direction of rotation, then the direction @ along the axis of 

rotation is.the direction in which our thumb points. The prob- 

lem is to show that @, defined in this way, is not a proper vector 

quantity. HINT: Considering the unit cube shown below, say, 

show (by keeping track of the coordinates of the corner A) that 

the orientation that results from a rotation of #/2 about the x 

axis, followed by a rotation of 7/2 about the y axis, is not the 

same as that which results when the order of the rotations is re- 

versed, NOTE: If you have encountered angular velocity vec- 

tors (usually denoted as w or £2), in mechanics, it may seem 

strange to you that finite rotations (assigned a vector direction 

by the right-hand rule) are not true vectors. The idea is that 

angular velocity involves infinitesimal rotations, and infinites- 

imal rotations (assigned a vector direction by the right-hand 

rule) are true vectors. This subtle point is discussed in many 

sources (e.g., Robert R. Long, Engineering Science Mechan- 

ics, Englewood Cliffs, NJ: Prentice Hall, 1963, pp. 31-36). 

“ 

  

  

      

      

va A 

  

9.3 Introduction of Angle and Dot Product 

  

Figure 1. The angle @ between 

uand v. 

Continuing our discussion, we define here the angle between two vectors and a “dot 

product” operation between two vectors. The angle @ between two nonzero vectors 
u and v will be understood to mean the ordinary angle between the two vectors 
when they are arranged tail to tail as in Fig. 1. (We will not attempt to define @ if 
one or both of the vectors is 0.) Of course, this definition of @ is ambiguous in that 
there are Mvo such angles, an interior angle (< 7) and an exterior angle (> 7); for 

definiteness, we choose @ to be the interior angle, 

O<¢ lA
 (1) 7, 

as in Fig. |. Unless explicitly stated otherwise, angular measure will be under- 
stood to be in radians.
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Next, we define the so-called dot product, u-v, between two vectors u and v 

  

  

    
  

        

as 
_ f |lull|lvifcos@ if u,v 40, ; 

evs { 0 if u=0O or v=9O; (2a,b) 

|| w||, [vi], and cos 8 are scalars so u- v is a scalar, too.* 

By way of geometrical interpretation, observe (Fig. 2a) that ||ul| cos @ is the 
length of the orthogonal projection of u on the line of action of v so that u-v = 

ilu] [v|| cos@ = (||v{]) (|[ul| cos @) is the length of v times the length of the or- 

thogonal projection of u on the line of action of v.! Actually, that statement holds 

if0 <6 < n/2:if m/2 < @ <n, the cosine is negative, and u-v = |ull || vj] cosé 

is the negative of the length of v times the length of the orthogonal projection of u 

on the line of action of v. 

  

EXAMPLE 1. Work Done by a Force. In mechanics the work W done when a body 

undergoes a linear displacement from an initial point A to a final point B, under the action 

of a constant force F (Fig. 3), is defined as the length of the orthogonal projection of F on 

the line of displacement, positive if F is “assisting” the motion (i.e., if 0 < @ < 7/2, as in 

Fig. 3a) and negative if F is “opposing” the motion (ie., if 7/2 < @ < 7, as in Fig. 3b), 

times the displacement. By the displacement we mean the length of the vector AB with 

head at B and tail at A. But that product is precisely the dot product of F with AB, 

W.=F-AB..-1 (3) 

An important special case of the dot product occurs when 6 = 7/2. Then u 

and v are perpendicular, and 

wT 
u-v = |u| ||v|| cos 5 79: (4) 

Also of importance is the case where u = v. Then, according to (2), 

wus { Ijul] Juljcosd = |ful]? if u 40, 5) 
0 if u=O 

so that we have 
  

  jul = vu-u (6) 

"You may wonder why (2b) is needed since if u = 0, say, then |[ul] = 0 and |[u] |/v|| cos @ is 

apparently zero anyway. But the point is that if u and/or v are Q, then @ is undefined; hence cos @ 

(and even zero times cos @) is undefined, too. 

Alternatively, we could decompose u-v = |Jul| ||vi|cos@ = ({[ull) ({}vl] cos @); that is, as the 

length of u times the length of the orthogonal projection of v on the line of action of u. 

  
  

  

(a) 

  

=-l|ullcos 

Figure 2. Projection of u on v. 

(a) 

(b) 

    

Figure 3. Work done by F.
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whether u ¥ 0 or not. The relationship (6) between the dot product and the norm 

will be useful in subsequent sections. 

  

EXERCISES 9.3 
  

1. Evaluate u-v in each case. In (a) |u|] = 5, in (b) [fui] = 3, 
and in (c) |[ul| = 6. 

  

(a) (b) 

a em 
u v=2u 

(c) (d) 

<ferrmorenmmmnonnanin eaten 
u v=-u 

  

2. (Properties of the dot product) Prove each of the following 

properties of the dot product, where a, 9 are any scalars, and 
u, Vv, W are any vectors. 

(a)u:v=v-u (commutativity) 

(b) u-u>0 forallu<0 
(nonnegativeness) 

=0 forallu=0oO 

(c) (au + Bv)-w = a(u-w) + B(v-w) (linearity) 

HINT: In proving part (c), you may wish to show, first, that 

part (c) is equivalent to the two conditions (u + v)-w = 
u-w+v-wand (au): v = a(u-v). 

3. Using the properties given in Exercise 2, show that 

(u+v)-(w+x)=uUu-w+tu-xtv-ewt+v-x. (3.1) 

4. Consider the unit cube shown, where P is the midpoint 

of the right-hand face. Evaluate each of the following us- 

ing the definition (2), and (3.1) in Exercise 3. HINT: To 

evaluate AC - OP, for instance, write AC-OP = (AD + 

DC)-(OD + DP) and then use (3.1). 

a 

  

  

      
      

Cc 

B P 
oO @ 

y 

A D 

x 

(a3O0C-AB (b)BA-OP (c)AC-OP (d)OC.CP 

(ec) OC-OP ()BC-OP (g)AO-OP (h)CP-DP 

@BP-DB ()PB.-CO (k)AP-PB (1)AO-PA 

5. Referring to the figure in Exercise 4, use the dot product 

to compute the following angles. (See the hint in Exercise 4.) 

You may use (2), (6), and (3.1). 

(a} APO (b) APB (c) APC (d) APD 

(e) ABP (fy ACP (g) BPO (h) BPC 

(i) BPD (j) BOP (k) CPO (1) DPO 

6. If u and v are nonzero, show that w = ||v||u + |lul] v 
bisects the angle between u and v. (You may use any of the 

properties given in Exercise 2.) 

  

9.4 n-Space 

Here we move away from our dependence on the arrow representation of vectors, 
in 2-space and 3-space, by introducing an alternative representation in terms of 2- 
tuples and 3-tuples. This step will lead us to a more general notion of vectors in 
“n-space.” 
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The idea is simple and is based on the familiar representation of points in (4) 

Cartesian 1-, 2-, and 3-space as |-, 2-, and 3-tuples of real numbers. Por example, y 
the 2-tuple (a1, a2) denotes the point P indicated in Fig. la, where a1, ae are the 
z,y coordinates, respectively. But it can also serve to denote the vector OP in 

Fig. 1b or, indeed, any equivalent vector QR. 

Thus the vector is now represented as the 2-tuple (a1, a2) rather than as an dy | onan nee (dhs ay) 

arrow, and while pictures may still be drawn, as in Fig. Ib, they are no longer es- 

sential and can be discarded if we wish — at least once the algebra of 2-tuples is 
established (in the next paragraph). The set of all such real 2-tuple vectors will be rr 
called 2-space and will be denoted by the symbol IR; that is, (b) 

R? = {(a1, a2) | a1, ag real numbers}. (1) 2 R 

. . ‘a 
Vectors u = (uy, U2) and v = (v1, v2) in R? are defined to be equal if uy = v4 a > 

and ug = vo; their sum is defined as* 
ay fe P 

ut+v = (uy + v1, U2 + v2) (2) a 

. ; . : O a Xx 
as can be seen from Fig. 2; the scalar multiple au is defined, for any scalar a, as 

  
Figure 1. 2-tuple representation. 

  

      
  

        

  

au = (au, aug); (3) 

the zero vector is 

0 = (0,0); (4) 

and the negative of u is aep aaa 

—u = (~u1,—ua). (5) 2 FY. 

Similarly, for IR°: y uy 
¥ 

R® = {(a1, a2, a3) | a1, a2, a3 real numbers}. (6) My vy 
pe Hy + Vy 

u+v = (ui + uy, us + ve, ug + v3), (7) 
Figure 2. Establishing (2). 

and so on.! 

It may not be evident that we have gained much since the arrow and n-tuple 
representations are essentially equivalent. But, in fact, the n-tuple format begins nN 

to “open doors.” For example, the instantaneous state of the electrical circuit (con- —O- 

sisting of a battery and two resistors) shown in Fig. 3 may be defined by the two 

currents i; and ig or, equivalently, by the single 2-tuple vector (#1, 72). Thus, even 1 4 

though “magnitudes,” “directions,” and “arrow vectors” may not leap to mind in de- ANA 

scribing the system shown in Fig. 3, a vector representation is quite natural within 

the n-tuple framework, and that puts us in a position, in dealing with that electrical rz 

system, to make use of whatever vector theorems and techniques are available, as 2 

developed in subsequent sections and chapters. wr     
  

“We use the = equal sign to mean equal to by definition. 
t Figure 3. Electrical system. 
'The space R! of 1-tuples will not be of interest here. 8 cearrear syste
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‘O- 

    Ln 

Figure 4. Another electrical 

circuit. 

Indeed, why stop at 3-tuples? One may introduce the set of all ordered real 
n-tuple vectors, even if n is greater than 3. We call this n-space, and denote it as 

IR”, that is, 

IR" = {(ay,...,@n) | @1,..., Gm real numbers }. (8) 

Consider two vectors, u = (uw ,...,Un) and v = (v1,..., Un), in IR”. The scalars 
Uy,..., Un and v1y,..., VU, are called the components of u and v. As you may well 

expect, based on our foregoing discussion of IR* and IR, u and v are said to be 

equal tf uy = V1,..., Un == Un, and we define 

utv =(up+vy,...,Un + Un); (addition) (9a) 

au = (auy,...,QUn), (scalar multiplication) (9b) 

0 =(0,...,0), (zero vector) (9c) 

—u =(-1)u, (negative inverse) (9d) 

u-—v =u+(-v) (9e) 

From these definitions we may deduce the following properties: 

utvevt+u, (commutativity) (10a) 

(ut+v)+w=u+(v4w), (associativity) (10b) 

u+O0=u, (10c) 

u+(—u) =0, (10d) 

a(Bu) = (aB)u, (associativity) (10e) 

(a+ @)u=au- Pu, (distributivity) (10f) 

a(u+v)=au+av, (distributivity) (10g) 

lu=u, (10h) 

Ou = OQ, (101) 

(—l)u=—u, (10)) 

a0 = 0. (10k) 

To illustrate how such n-tuples might arise, observe that the state of the elec- 
trical system shown in Fig. 4, may be defined at any instant by the four currents 
21, 12,73,74, and that these may be regarded as the components of a single vector 

i= (i1, 72, 73,44) in R’. 
Of course, the notation of (w1,..., u,) as a point or arrow inan “n-dimensional 

space” can be realized graphically only ifn < 3; ifn > 3, the interpretation is valid 
only in an abstract, or schematic, sense. However, our inability to carry out tradi- 

tional Cartesian graphical constructions for n > 3 will be no hindrance. Indeed, 
part of the idea here is to move away from a dependence on graphical constructions. 

Having extended the vector concept to IR", you may well wonder if further ex- 
tension is possible. Such extension is not only possible, it constitutes an important 

step in modern mathematics; more about this in Section 9.6. 
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EXERCISES 9.4 
  

L ift = (5,0,1,2), u = (@,-1,3,4), v = (4,-5,1), equals by equals.) 

w = (—1, —2,5, 6), evaluate each of the following (as a single 

vector); if the operation is undefined (i.e., has not been defined 

here), state that. At each step cite the equation number of the 

definition or property being used. 

(a) 3x -- 2(u — 5v) = w 

(b) 3x = 40 + (1,0,0,0) 
(c)u-dx = 0 

(a) 2t + 7u (b) 3t — 5u (d) u-+v ~ 2x = w 

(c) dfu + 5(w ~ 2u)] (d) dtu -+ w 4. if t = (21,3) u = (1,2,-4) v = (0,1,1), 

(e) -w+t (f) 2t/u w = (—2,1,—1), solve each of the following for the scalars 

(g) t+ 2u+ dw (h) t — 2u — 4v Q1,Q2, a4. If no such scalars exist, state that. 

(i) u(3t + w) Gj) u? + 2t 
(a) at + Q2u+ asv = 0 

isin und ‘ny oe Ou (b) ayt + agv + agw = 0 
_ . a (c) ayt + agu+ agw = (1,3, 2) 

2 Let u = (1,3,0,-2), v = (2,0,-5,0), and wW =) ait-basv + ayw = (2.0.1) 
(4,3, 2,—1). (e)ayu+agv = 0 
(a) If 8u — x = A(v + 2x), solve for x (Le. find its compo-  (P)ayu + agv = a@3w — (2, 0,0) 
nents). 

(b) fx +u+v+w = 0, solve for x. 5. (a) If u and v are given 4-tuples and 0 = (0,0,0,0), does 

the vector equation a,u+ca2v = O necessarily have nontrivial 
3. Let u, v. and w be as given in Exercise 2. Citing the defini- , . : . . . 

solutions for the scalars ay and a2? Explain. (If the answer 1s 
tion or property used, at each step, solve each of the following : . 

for x. NOTE: Besides the definitions and properties stated in “no,” a counterexample will suffice.) 

this section, it should be clear thatifx = y,thenx+z=y+z  (b) Repeat part (a), but where u, v are 3-tuples and Q = 

for any z, and ax = ay for any a (adding and multiplying (0,0, 0). 

(c) Repeat part (a), but where u, v are 2-tuples and O = (0,0). 

  

9.5 Dot Product, Norm, and Angle for n-Space 

9.5.1. Dot product, norm, and angle. We wish to define the norm of an n-tuple 

vector, and the dot product and angle between two n-tuple vectors, just as we did 
for “arrow vectors.” These definitions should be expressed in terms of the compo- 
nents of the n-tuples since the graphical and geometrical arguments used for arrow 
vectors will not be possible here for n > 3. Thus, if u = (w1,....Un), we wish 

to define the norm or “length” of u, denoted as ull, in terms of the components 
Uy,..+, Un Of us and given another vector v = (vj,...,Un), we wish to define the 

angle @ between u and v, and the dot product u-v, in terms of uy,....U, and 

Upeecss Un 
Furthermore, we would like these definitions to reduce to the definitions given 

in Sections 9.2 and 9.3 in the event that nm = 2 or 3. 
Let us begin with the dot product. Our plan is to return to the arrow vector 

formula 

u-v = |lull ||v|j cos 6, (1)
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vy uy 

Figure 1. u- v in terms of 

components. 

to re-express it in terms of vector components for IR? and IR°, and then to generalize 
those forms to IR”. 

[fw and v are vectors in IR? as shown in Fig. l, formula (1) may be expressed 
in terms of the components of u and v as follows: 

wv = [lull [lv] cosd 
= [lull Il vl] cos (6 — @) 
= |[ul| ||v]| (cos 8 cos a + sin @ sina) 

(Ijul| cos «) ({|vl| (cos 3) + ([jul] sin a) (||) (sin 8) 
= ULV] + U2QU2. (2) 

I 

We state, without derivation, that the analogous result for R° is 

UV = UjVy + Ugve + UgUs. (3) 

Generalizing (2) and (3) to R”, it is eminently reasonable to define the (scalar- 
valued) dot product of two n-tuple vectors u = (uj,..., Un) and v = (U1,.--,Un) 
as 
  

nm 

UV S Uyvy + Uave +++ + UnUn = ) UjU;. (4) 

j=l       

Observe that we have not proved (4); it is a definition. 
Defining the dot product is the key, for now ||u|| and 6 follow readily. Specifi- 

cally, we define 
  

(5) 

    

  

  

in accordance with equation (6) in Section 9.3, and 

a = cos" ( wy ). (6) 
(lull liv 

  

      
from (1), where the inverse cosine is understood to be in the interval (0, ].* Notice 
the generalized Pythagorean-theorem nature of (5). 

Other dot products and norms are sometimes defined for m-space, but we 
choose to use (4) and (5), which are known as the Euclidean dot product and 
Euclidian norm, respectively. To signify that the Euclidean dot product and norm 
have been adopted, we henceforth refer to the space as Euclidean n-space, rather 
  

“By the “interval [a, b] on a real x axis,” we mean the points a < a < 6. Such an interval is said 
to be closed since it includes the two endpoints. To denote the open interval a < 2 < b, we write 
(a, 6). Similarly, [a, b) means a < x < 6, and (a, b] means a < x < b. Implicit in the closed-interval 
notation [a, 6] is the finiteness of a and b.
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than just n-space. We will still denote it by the symbol IR” (although some authors 

prefer the notation I”). 

EXAMPLE 1. Let u = (1,0) and v = (2, ~2). Then 

wv = (1)(2) + (0-2) =2, 
[ful] = V1)? + (0)* = 1, 

lIvll = V2)? + (2)? = 2v2, 
2 wT 

@ = cos”! (==) = — {or 45°), 
2/2 4 

as is readily verified if we sketch u and v as arrow vectors in a Cartesian plane. 

EXAMPLE 2. Let u = (2, ~2,4,—-1) and v = (5,9, —1,0). Then, 

  

  

u-v = (2)(5) + (—2)(9) + (4)(-1) + (-1)(0) = - 12, (7) 

Ilul| = (2)? + (—2)? + (4)? + (-1)? =5, (8) 

iIvl| = V(5)? +)? + (-1)? + (0)? = V'107, (9) 

(=P). cos~* (—0.232) = 103.4° 0 = cos (==) = cos”! (—0.232) = 1.805 (or 103.4°). (10) 

In this case, n (= 4) is greater than 3 so (7) through (10) are not to be understood in 

any physical or graphical sense, but merely in terms of the definitions (4) to (6). 

COMMENT. The dot product of u = (2, -2,4) and v = (5,9, ~1,0), on the other hand, is 

not defined since here u and v are members of different spaces, iR? and R4, respectively. It 

is not legitimate to augment u to the form (2, ~2, 4,0) on the grounds that “surely adding 

a zero can't hurt.” @ 

There is one catch that you may have noticed: (6) serves to define a (real) @ 

only if the argument of the inverse cosine is less than or equal to unity in magnitude. 

That this is indeed true is not so obvious. Nevertheless, that 

} u-v 
-1l< <1 or lu-vi < jjull [lv]| (11) 

) ull iv 
; does necessarily hold will be proved in a moment. Whereas double braces denote 

vector norm, the single braces in (11) denote the absolute value of the scalar uv. 

9.5.2. Properties of the dot product. The dot product defined by (4) possesses the 

following important properties: 

Commutative: uUiVv = Ved, (12a) 

Nonnegative: u-u>O forall u #0 

= 0 for u= 0, (12b) 

Linear: (au + Bv)-w = a(u-w)+ flv: w), (12c)
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for any scalars a, @ and any vectors u,v, w. The linearity condition (12c) is equiv- 

alent to the two conditions (a+v)-w = (u-w)+(v-w) and (au)-v = a(u-v). 
Verification of these claims is left for the exercises. 

EXAMPLE 3. Expand the dot product (6t ~ 2u)-(v + 4w). Using (12), we obtain 

(6t — 2u)-(v +4w) = 6[t-(v + 4w)] — 2[u- (v + 4w)] by (12c) 
= 6[(v + 4w) ) +t] ~ 2|(v + 4w) - ul] by (12a) 
= 6(v-t) + 24(w-t) — 2(v-u) ~ 8(w-u) by (12c) 

in much the same way that we obtain (a — b){c + d) = ae + ad ~ be — bd in scalar 

arithmetic. 

As a consequence of (12) we are in a position to prove the promised inequality 
(11), namely, the Schwarz inequality* 

  ju-v| < [lull [ivi (13) 

To derive this result, we start with the inequality 

(u+av)-(u+av) > 0, (14) 

which is guaranteed by (12b), for any scalar a and any vectors u and v. Expanding 

the left-hand side and noting that u-u = |/ull’ and v-v = |/v||?, (14) becomes! 

Ilul|? + 2ou-v +a? |lviP? > 0. (15) 

Regarding u and v as fixed and a as variable, the left-hand side is then a quadratic 

function of a. If we choose a so as to minimize the left-hand side, then (15) will 

be as close to an equality as possible and hence as informative as possible. Thus, 

setting d(left-hand side)/da = 0, we obtain 

u-v 
Qu-v +2al|vi/? =0 or Qa 

IIv ll 

Putting this optimal value of @ back into (15) gives us 

2 2 ‘ uv uv yy? — 2 MT 5 9 vi vi 
lull? Ivf? — 2(a-v)? + (u-w)? > 0, 

ul? ivr = Gav)’, 
  

“After Hermann Amandus Schwarz (1843-1921). The names Cauchy and Bunyakovsky are also 

associated with this well-known inequality. 

‘Does a term such as au- v in (15) mean (cu)-v. or a(u-+v)? It does not matter, by virtue of 

(12c) (with 6 = 0 and w changed to v), (au). v = a(u-v), so the parentheses are not needed.
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and taking square roots of both sides yields the Schwarz inequality (13).* 

Thus, it was not merely a matter of luck that the arguments of the inverse 

cosines were smaller than unity in magnitude in Examples | and 2, it was guaran- 

teed in advance by the Schwarz inequality (13). 

9.5.3. Properties of the norm. Since the norm is related to the dot product ac- 

cording to 
Jul] = /u-u, (16) 

the properties (12) of the dot product should imply certain corresponding properties 
of the norm. These properties are as follows: 

Scaling: oul] = jal |fall, (17a) 

Nonnegative: |||] > 0 for allu 40 (17b) 

= 0 foru = 0, 

Triangle Inequality: Jutvil < |jul] + |v]. (17c) 

Equation (17a) simply says that au is |a| times as long as u, and for arrow rep- 

resentations of 2-tuples or 3-tuples the triangle inequality (17c) amounts to the 

Euclidean proposition that the length of any one side of a triangle cannot exceed 

the sum of the lengths of the other two sides (Fig. 2). Less obvious, however, is 

the fact that (17c) holds for n-tuples for n’s > 3. 

Let us prove only (17a) and (17c) since (17b) follows readily from (16) and 

(12b). First, (17a): 

laul| = \/(au)- (au) by (16) 

= ,/au-(au) by (12c) with @ = 0 and w = au 

= Jo(ou)-u by (12a) 
= Vo*u-u by (12c) with G = Oandw=u 

  

Turning to ({7c}, we find that 

jut vii? =(u+v)-(u+v) by (16) 

u-u+v-u+u-vive-v 

= |full? + 2u-v + |lv|? 

< fJull? + 2}u-v) + |v? 

I] 

  

2 Hee 
< |ful[” + 2 tal} ivi} + fiv]| by (13) 

= (ull + ivy 
“That the choice a = —u-v/ wil? minimizes the left-hand side of (15) follows from the fact 

that d* (left-hand side) /da? = 2!/v|[? > 0. 

uty 

u 

Figure 2. Triangle inequality.
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so that 

Ju + vil < [ul] + |v, 
as claimed. A key step was the use of the Schwarz inequality (13), but we also used 
the simple inequality u-v < |u-v|, which holds since u--v is a (positive, zero, or 
negative) real number; that is, if u-v is negative, then the < holds, and if u-v is 
zero or positive, then the = holds. 

  

EXAMPLE 4. Let us verify the triangle inequality fora specific example, say the vectors 
u = (2,1,3,—-1) and v = (0,4, 2,1). Then u + v = (2,5,5,0) so (17c) becomes 

Vb4<V154 V21 

or 7.348 < 3.873 + 4.583, which is indeed true. # 

9.5.4. Orthogonality. [f u and v are nonzero vectors such that u-v = 0, then 

6 =cos7! Ga) = cos! “ana = cos! (0) = > (18) 
[lull liv lull lvl 

and we say that u and v are perpendicular. [Here we have used the nonzeroness 
of u and v in the third equality in (18); if u and/or v were 0, we would have had 
cos~* (0/ |jull |[v|]) = cos! (0/0), which is not defined. ] 

But to equate the condition u-v = 0 to perpendicularity (9 = 7/2) would not 
be correct since u- v will also be zero in the event that u and/or v are QO, in which 
case @ is not defined. Let us therefore make a distinction between perpendicularity 
and “orthogonality.” We will say that u and v are orthogonal if 

u-v=0. (19) 

Only if u and v are both nonzero does their orthogonality imply their perpen- 
dicularity (i.c., @ = 7/2). With this definition, we see that the zero vector 0 is 

orthogonal to every vector including itself (Exercise 14). 
Finally, we say that a set of vectors, say {u;,..., ug}, is an orthogonal set if 

every vector in the set is orthogonal to every other one: 

Ui: uj =O if2 # j. (20) 

EXAMPLE 5. uy, = (2,3,-1,0), uw = (1, 2,8,3), ug = (9, ~6, 0,1) is an orthogonal 
set because Uy Uy = Uy Uy = Ue Uy = 0.0 

EXAMPLE 6. u, = (1,3), u2 = (0,0) is an orthogonal set because u,- ug = 0.
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9.5.5. Normalization. Any nonzero vector u can be scaled to have unit length by 

multiplying it by 1/ ||u|] so we say that the vector 

. 1 
u= le" (21) 

[Ju 

has been “normalized.” That &@ has unit length is readily verified: 

  

pall = | pel =[payfital by a7 

= jiu by a7) 
=1. 

A vector of unit length is called a unit vector. We will often use the caret notation 

a for unit vectors. 

EXAMPLE 7. Normalize u = (1,—1,0, 2). Since |juj| = /u-u = V6, we have 

a= ia’ Falls 11042) = ( 
1 1 

0 2 a eve va) 

A set of vectors is said to be orthonormal if it is orthogonal and if each vector 
is normalized (i.e., is a unit vector). We will use that term so frequently that it 
will be useful to abbreviate it as ON, but be aware that that abbreviation is not 

standard. Thus, {u1,..., ug} is ON if and only if u;-uj; = 0 whenever 7 4 j (for 

orthogonality), and u,;-u,; = 1 for each 7 (so |/u,|| = 1, so the set is normalized). 

The symbol 

l, i=j a= , 22 Or { 0, i4+j (22) 

will be useful, and is known as the Kronecker delta, after Leopold Kronecker 

(1823-1891). Thus, {uy,..., ug} is ON if and only if 

(23) 

  

fora =1,2,...,hand7 =1,2,...,k. 

EXAMPLE 8. Let 

1 1 1 1 
uy = (1,0,0,0), ug = (0,—=,0,—=], ug = (0,—=,0,--=]. = (600.0), a= (WO) w= (0. F—0-F5)
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Then {ty,, tg, ug} is ON because 

Uo-ug = 0. O 
  hay |] = |juel] = fugi] = Land u,-ug = uzp-uy = 

Closure. In this section we introduce a dot product u-v, a norm |/u||, and an angle 
@ between two vectors for n-space. Their introduction is not a matter of derivation 
but, rather, a matter of definition. The definitions are designed as extensions of 
the definitions for the familiar “arrow” vectors of 2- and 3-space, somewhat as the 
upper floors of a home are built upon the foundation rather than being placed on 
an adjacent lot. Those extensions become apparent once we express the dot prod- 
uct, norm, and angle for arrow vectors in n-tuple notation. The key is the definition 

  

  

UsV = UpVy + U2QU2 Ft Ht Un Un, 

because then the arrow vector formula ||u|| = \/u-u gives us a norm, and the 
arrow vector formula 6 = cos™! (u-v/ |lull |/v||) gives us an angle 6 between u 
and v. 

From these definitions we then derive the properties (12a,b,c) of the dot prod- 
uct and (17a,b,c) of the norm. In 2- and 3-space the triangle inequality amounts 
to the familiar Euclidean proposition that the length of any one side of a triangle 
cannot exceed the sum of the lengths of the other two sides, but in m-space, for 
n > 3, it amounts to an abstract generalization of that notion and does not have 
such a realizable physical or geometrical interpretation. 

  

EXERCISES 9.5 
  

1. Given the following vectors u and v, determine |/u 
        ’ vi) (1,3,-2), G = (2,0,4), H = (5,4,3), 2 = (-3,-1,0), 

and @ (in radians and degrees). If u and v are orthogonal, state J = (0,0,0). Determine, by vector methods, all interior an- 

that. gles and their sum, in degrees, for each of the following poly- 

(a)u = (4,3), v=(2,-1 gons. 

fo) u = 30 Ny - arr ee (a) ABCA (b) ABCDA — (©) ABCDEA 
(d) w= (2,2,2), v= (—4,-5,—6) (d) BCDB (c) BCDEB () FGHF 
(e) u = (2,5), v = (10, —4) (g) PGIF (h) GHIG (i) FGJF 

(f) uu = (1,2,3,4), v = (4,3, 2,1) () GHIG (k) HIJH (1) FIJF 

(g) u = (3,2,0,-1,1), v = (—5,0,0,2, 4) 
4. (a)-(g) Normalize each pair of u, v vectors in Exercise |; 

2. State whether or not each of the following expressions is that is, obtain Wand v. 

  

defined. 5. If vectors A, B. C, represented as arrows, form a trian- 
(a) |Jul| a (b) u-(v-w) gle such that A = B + C, derive the law of cosines C? = 
(c) |[(a-v)v]| (d) (u+v)-w A*+ B?~—2AB cos a, where a is the interior angle between A 
(e) (u+v)-(u~v) (fu + 6(v-w) and B, and where A, B,C are the lengths of A, B, C, respec- 
(gz) cos7+ (2u + v) (h) u/ iu]? tively, by starting with the identity C.-C = (A-~—B)-(A—B). 

(i) (Tu) - (2v) () [Ju + 3u?| 6. (Orthogonalization) In each of following, find scalars 
3. Let us denote, as points in 2- and 3-space, A = (2,0), a, @,+y and vectors u;, Ug, Uy such that uy = u, Ug = u+av, 

B= (3,-1),C = (5,0), D = (4,2), B = (2,2), F = uy = u+ Gv + yw is a nonzero orthogonal set, that is.



  

» Ug # Uy Ug = 0, uy, - uy = 0, and us: ug = 0, where uy, U2 

0. If this is not possible, state that. 

(a) u = (1,3,0), v = (2,3,0), w = (2,1, —-3) 
(b) u= (0.0.1), v = (1,2,3), w= (3,—2, -5) 
(c)u = (1,0,0), v = (2,1,0), w= (3, 2, —1) 
(d) w= (1,2,0,1), v= (1,0,1,1), w= (2,-1,1,1) 
(e)u = (1,0,0,0), v = (1,1,0,0), w= (1,1,1,0) 

(f)u=(1,-1,1,-1), v =(1,2,0,1), w = (0,2, 1,0) 
(g)u = (1,2), v = (0,2), w= (1,~-1) 

(hy u = (3,0), v = (1,1), w = (-1,2) 

7. iu = (1,3, —-4, 2) and v = (2,0,0,3), evaluate the fol- 

lowing 

(a) |Ju — vi) b) |[3u — 2v|| + I|-v!| 

(|| (a) {hull + [Iv 
{|u| 

    

   
8. Derive the following identities. 

(a) Ju + vi? + Ju viPP = 2 full? + 2 vil? 
(b) ||u + vil? —|ju- vl? = 4u-v 
(c) Verify parts (a) and (b) for the case u = (2,0,1,1) and 

v = (1, -3,0, 2). 

9. Find all nonzero vectors (if any) orthogonal to the following 

vectors. 

(a) (3, 0, ~l) 

(b) (2,1, 1) and (1, 2,3) 

(c) (1, 1,0, -1) 

(d) (1, 14, ) and (2, 1,0, 5) 

(e) (6, -1, 2,2), (1, 4,3, 0), and (4, —9, —4, 2) 

(f) (6, ~1, 2,2), (1, 4,3, 0), and (4, —5, —4, 2) 

(g) (1, -2, 0), (2 ,3, 1), and (7,0, 2) 

(h) (2,1, -1), (1, 1, 1), and (3, 2, 1) 

10. (Orthogonal separation) It is sometimes desired to sepa- 

rate a given nonzero-vector u into the sum of two orthogonal 

vectors, one parallel to and one perpendicular to some other 

nonzero vector v, as sketched in part (a) of the accompanying 

figure. That is, u = uy + Us, where u, is of the form av, and 

U2: u, = 0. We call uy, the orthogonal projection of u on v, 

and we call uy the component of u orthogonal to v. 

(a) (b) 
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(a) Show that u, and ue can be found, in terms of u and v, as 

uj =(u-v)v where ¥ = v/|Ivil, 
Ug = U— Uy. (10.1) 

[s (10.1) valid only for 2- and 3-space, or does it hold, without 

modification, for n-space as well? Explain. 

(b) Use (10.1) to carry out the separation for the cases where 

u = (1,3) and v = (2,4), and where u = (1,3) and 

v = (~1,—2). Interpret your results graphically for each of 

these cases. 

(c) Use (10.1) to carry out the separation for u = (2,3, 1) and 

v = (0, 2,3). 
(d) Repeat part (c), foru = (1,2, -1), v = (3, -1,1). 

(e) Repeat part (c), for u = (3,0,5,6), v = (1, —2,0,4). 

(f) Repeat part (c), for u = (2,1,0,0,3),v = (0,0, 1, -2, 1). 

11. (a) Prove the associative property (au): v = a(u-v). 

(b) Prove the distributive property (u+v)-w =u-w+v-w. 

(c) Prove that the linearity property (12c) is equivalent to the 

two properties given in parts (a) and (6). 

12. (Direction cosines) The direction cosines of a vector u = 

(uy, U2, Ug) in 3-space are defined as /; = cosa, ly = cos 8, 

lz = cosy, where a, 8,7 are the angles between u and the 

positive coordinate axes, as shown. 

  

(a) Obtain general expressions for (1, /2, /3 in terms of the com- 

ponents t1, U2, Us. 

(b) Evaluate ty, ls, i for u = (2,—- 

(c) Evaluate (1, lo, lg for u = (2, 4, 
(4, 

=i. 

ds
 
t
e
t
r
 5). 

). 
(d) Evaluate (, : ly, 13 for u = (4,0, -3). 

(e) Show that (7 + B + 13 

13. Ifu-v = Oand v-w = 0, does that imply thatu- w = 0? 

Prove or disprove. HINT: If a claim is true, it needs to be 

proved in general, that is, for all possible cases. But if it is 

false, it can be disproved merely by putting forward a single 

counterexample.
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14. Determine whether or not each set of vectors is orthogo- 

nal. (a) (1,3), (—6,2), (0, 0 

(b) (2,38, 0), (- ~3, 2,1), (1, L, 1), (1, ~3, 1) 

(c) (1,0,0,0), (0, 1,0, 0), (0,0, 1,0), (0,0, 0,1) 
(d) (1, bl hd; (1,-1,1,-1), (0,1,0,—1), (2,0, —2,0) 
(e) (2, 1), (1, 1,3, 0), ( ,71,0 —l), (2,1,1,1) 

15. Determine a unit vector along the line of intersection of 

the following two planes in R°. NOTE: Do not use “cross 

products” since this topic has not yet been discussed here. 

(a) vy + 2%9 - 73 = 8 

Lp 2 +43 = 0 

(b) xv, + £2 = 0 
fy — to + 2a3 = 0 

(c) vy — © — 543 = 0 

to + 4r3 = 6 

(d) 22, +23 = 1 

vy + 4a =] 

(e) ay ~ Sag + eg = 4 

201 ~~ Uo — 3 3 

(f) wy + @o + 12x53 = 0 

ay + 2n9 + Lag = 5 

(g) £1 - %,—- wg = 2 
Uy — tg — 20g = 5 

16. (Schwarz inequality) To make (15) as close to an equality 

as possible, and hence as informative as possible, we mini- 

mized the left-hand side by setting d(left-hand side )/da = 0. 

That step gave a = —u-v/||v| * and putting that result back 

into (15) gave the Schwarz inequality. That proof is valid for 

IR” for any n (> 1). For the special case of IR’, show that the 

optimal a is ~u-v/ \|_v{|? by using a graphical approach; that 

is, using a suitable sketch. HINT: Given u and v, make u+av 

as short as possible. 

  

  

9.6 Generalized Vector Space 

9.6.1. Vector space. In Section 9.5 we generalize our vector concept from the fa- 

miliar arrow vectors of 2- and 3-space to n-tuple vectors in abstract m-space, and it 

is n-space that is used in the remainder of this chapter and in Chapters 10-12. Yet, 

it is interesting to wonder if further generalization is possible. The answer 1s yes, 

and we will complete that story in this section. Far from being just a mathemati- 

cal curiosity, the results will be essential in later chapters, when we study Fourier 

series, Sturm—Liouville theory, and partial differential equations. 

The idea is as follows. In preceding sections we introduced the vectors and 

arithmetic rules for their manipulation, and then derived the various properties, 

suchasu+v—=vt+u, u+0=u, a(fu) = (a@)u, and so on. In generalizing, 

the essential idea is to reverse the cart and the horse. Specifically, we elevate the 

derived properties to axioms, or requirements, and regard the vectors as “objects,” 

the nature of which is not restricted in advance. They may be chosen to be n-tuples 

or whatever; all that we ask is that a plus (+) operation, a zero vector, a negative 

inverse, and scalar multiplication be defined such that all of the vector space axioms 

are satisfied. Thus: 

  

DEFINITION 9.6.1 Vector Space 
We call a (nonempty) set S of “objects,” which are denoted by boldface type and 

referred to as vectors, a vector space if the following requirements are met: 

s 
e
e
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(i) An operation, which will be called vector addition and denoted as +, is de- 

fined between any two vectors in S in such a way that if u and v are in 5, 

then u -+- v is too (i.e., S is closed under addition). Furthermore, 

u+ve=vt+u, (commutative) (1) 

(u+v)+w=ut+(v+w). (associative) (2) 

(ii) S contains a unique zero vector O such that 

u+O=u (3) 

foreach uin S. 

(iii) For each u in S there is a unique vector “~u” in S, called the negative 

inverse of u, such that 
u+(-u) = 0. (4) 

We denote u + (—v) as u — v for brevity, but emphasize that it is actually 

the + operation between u and —v.   
(iv) Another operation, called scalar multiplication, is defined such that if u is 

any vector in S and q is any scalar,* then the scalar multiple au is in S, too 

(i.e., S is closed under scalar multiplication). Further, we require that 

  

a(Bu) = (aB)u, (associative) (5) 

(a+ (f)u=au+t Bu, (distributive) (6) 

a(u+v)=aut+ av, (distributive) (7) 

lu=u, (8) 

if the vectors u, v are in S, and a, 9 are scalars. 

  

Observe that if we write u-+v -+w, it is not clear whether we mean (u+v)+Ww 

(i.e., first add u and v, and then add the result to w) or u + (v + w). However, the 

associative property (2) guarantees that it does not matter, so the parentheses can 

be omitted without ambiguity. Similarly, aGu is unambiguous by virtue of (5). 

EXAMPLE 1. R”-Space. Surely, the n-space IR", defined earlier, does constitute a 

vector space; after all, the axioms listed in Definition 9.6.1 come from the properties of IR" 

listed in Section 9.4. Thus, there is no need to check to see if those axioms are satisfied. 

Instead, and for heuristic purposes, let us modify our addition operation from 

utv = (uw, +uy,..-y tin Un) (9) 

  

“We continue to restrict all scalars to be (finite) real numbers. Hence, we call the vector space a 

real vector space.
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to 

u-+v = (uy + 2u4,.. 2, ttn + 20,2), (10) 

and see if (10) works; that is, let us see if the vector space axioms listed under (i) in 

Definition 9.6.1 are still satisfied tf we use (10) as our addition operation instead of (9). 

According to (10), 

vt us (uy + 2t,..., Un + Un) (11) 

so a comparison of (10) and (11) shows that the commutativity axiom (1) is satisfied only 

ifuz + Quy = vy + 2u;z (j = 1,...,n), hence only if v; = uj, hence only if v = u. Since 
(1) does not hold for any chosen vectors u and v, but only for vectors u and v that are 

equal, we conclude that if u + v is defined by (10), then we do nor have a vector space. Of 

course, it is possible that (10) violates other axioms besides (1), but one failure is sufficient 

to show that the set is not a legitimate vector space. 

COMMENT. Observe that we have not shown that u + v must be defined as in (9); con- 

ceivably, 

utv=s (ui tui,...,u2 +n) (12) 

or 

utv = (uy —Uy,.-.,Un — Un) (13) 

might work; that is, might satisfy the requirements listed under (1). Thus, understand that 

the plus signs on the left- and right-hand sides of (9) are not the same. The ones on the 

right denote the usual addition of real numbers (e.g., 2 + 5 = 7), whereas the one on the 

left is more exotic; it denotes a certain operation between vectors u and v, which is being 

defined by (9), or (10), or (12), or (13). To emphasize that point we could use a different 

notation such as u * v, in place of u + v, as some authors do. However, having made that 

point let us continue to use u+v. 8 

IR" is but one example of a vector space. Many other useful spaces can be 
introduced by using objects other than n-tuples as the vectors. For example, the 
vectors may be functions, matrices, or whatever, provided that vector addition, a 

zero vector, a negative inverse, and scalar multiplication are defined such that all of 

the vector space axioms are satisfied. For nowhere in Definition 9.6.1 is the nature 
of the vectors specified or in any way restricted. 

EXAMPLE 2. A Function Space. This time, let the vectors be functions. Specifically, 
let u = u(x) be any continuous function defined on 0 < x < 1, say. For the addition 

operation let 

u+v = u(x) + v(2); (14a) 

that is, let u + v be the function whose values are the ordinary sum u(x) -- v(x). For scalar 

multiplication let 

au = au(z); (14b) 

for the zero vector choose the zero function 

0 = 0; ({4c) 
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and for the negative of u define 

~u = —u(x); (14d) 

that is, the function whose values are —u(<). 

With these definitions, we can verify that all of the vector space requirements are 

satisi.ed, so that the set S of such vectors is a bona fide vector space. For instance, if 

u = u(av) and v = v(x) are continuous on 0 < @ < 1, then so istu-+v = u(x) + u(x) so 
S is closed under addition. Further, v + u = v(x) + u(a) = u(x) + v(z) = u+v," so 
addition satisfies the commutative property (1), and so on. 

This S is but one example of a function space, a space in which the vectors are 

functions. Hf 

The following theorem is useful, and its proof illustrates the axiomatic ap- 
proach. 

  

THEOREM 9.6.1 Properties of Scalar Multiplication 
If u is any vector in a vector space S and qa is any scalar, then 

Ou = 0, (15a) 

(~lju=—u, (15b) 
a0 = 0. (15c) 
  

Proof: These results follow from our definition of vector space. To prove (15a), 

one line of approach is as follows: 

Ou+u= 0u4+ lu by (8) 

=(0+1)u by (6) 
= lu 

=u by (8). 

Then 
Qu+u+(—u) = u+(—u) 

JOu+0= 0 by (4), 

Ou = 0 by (3). 

The remaining two, (15b) and (15c), are left for the exercises. @ 

9.6.2. Inclusion of inner product and/or norm. Observe that there is no mention 
of a dot product or a norm either in Definition 9.6.1 or in Examples | or 2. Indeed, 
a vector space S need not fave a dot product (also called an inner product) or a 

norm defined for it. [f it does have an inner product it is called an inner product 
  

“The second equality holds because v(z) + u(x) is the ordinary sum of two real numbers; e.g., 

44 3=344.
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space, if it has a norm it is called a normed vector space; and if it has both it is 

called a normed inner product space. 
If we do choose to introduce an inner product for S, how is it to be defined? 

Do you remember the idea of reversing the cart and the horse? That is how we do 
it. Equations (12a,b,c) in Section 9.5.2 were shown to be properties of the inner 
product u-v = uyvy +--+ + UnUn. We now take those properties and elevate 

them to axioms, or requirements, that are to be satisfied by any inner product of 
any vector space. 

Similarly, we take the properties (17a,b,c) of the norm, in Section 9.5.3, and 
elevate them to axioms, or requirements, that are to be satisfied by any norm of any 

vector space. 
Let us tabulate them here: 

  

REQUIREMENTS OF INNER PRODUCT 

  

  

Commutative: u-v = Vv-u, (16a) 

Nonnegative: u-u>Q0 forall u 4 0, 

= for u = 0, (16b) 

Linear: (au+ Bv)-w = a(u-w)+f(v-w), — (16c) 

and 

REQUIREMENTS OF NORM 

Scaling: jaul] = [al lull, (17a) 

Nonnegative: luj| >O  forallu 4 0, 

= for u = 0, (17b) 

Triangle Inequality: Ja + vi] < lu] + [lv]. (17c) 
  

Let us illustrate. 

EXAMPLE 3. IR"-Space. If we wish to add an inner product to the vector space IR”, we 
can use the choice 

wh 

UV = Uuydy be EF Untdn = ) UjU;- (18a) 
gel
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We know that (18a) satisfies the requirements (16) because the latter were deduced, in 

Section 9.5.2, as properties that follow from (18a). A variation of (18a) that still satisfies 

(16) is (Exercise 6) 

Th 

UsV = Wud, bee + Wptlndn = ) WjUjV;, (18b) 

j=l 

where the w,’s are fixed positive constants known as “weights” because they attach more 

or less weight to the different components of u and v. For instance, consider IR? and let 

wy, = 5 and wa = 3. Then if u = (2,—-4) and v = (1,6) we have u-v = 5(2)(1) + 
3(—4)(6) = —62. 

Note that for (18b) to be a legitimate inner product we must have w; > 0 for each 7. 

For suppose, still in R®, that wy = 3 and w2 = —2. Then, for u = (1,5), say, we have 
u-u = 3(1)(1) — 2(5)(5) = —47 < 0, in violation of (16b). Or, suppose that w, = 3 and 
wa = 0. Then, for u = (0,4), say, we have u-u = 3(0)(0) + 0(4)(4) = 0 even though 
u # 0, again in violation of (16b). 

Now, suppose that we wish to add a norm. If for any vector space S we already have 

an inner product, then a legitimate norm can always be obtained from that inner product 

as |jul| = /u-u, and that choice is called the natural norm. Thus, the natural norms 
corresponding to (18a) and (18b) are 

(19a,b)    
respectively. 

However, we do not fave to choose the natural norm. For instance, we could use (18a) 

as our inner product, and choose 

TL 

ful] furl + + fet = SO fey (20) 
j=l 

as our norm (Exercise 8). The latter is used by Struble in his book on differential equa- 

tions,* probably because it is algebraically simpler than the Euclidean norm (19a) or the 

modified Euclidean norm (19b). Furthermore, he defines no inner product whatsoever. 

Struble calls (20) the taxicab norm since a taxicab driver judges the distance from the cor- 

ner of Sth Avenue and 34th Street to the corner of 2nd Avenue and 49th Street as 18 blocks, 

not 234 blocks. Bf 

EXAMPLE 4. 9 The Function Space of Example 2.. How might we choose an inner 
product for the function space S defined in Example 2? To motivate our choice, let us 

imagine approximating any given function (i.e., vector) u(x) in S in a piecewise-constant 

manner as depicted in Fig. 1. That is, divide the interval (Q < x < 1) into n equal 

parts and define the approximating piecewise-constant function, over each subinterval as 
  

“R.A. Struble, Nonlinear Differential Equations (New York: McGraw-Hill, 1962).
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the value of u(wz) at the left endpoint of that subinterval. If we represent the piecewise- 

constant function as the n-tuple (t1,...,t,), then we have, in a heuristic sense, 

ula) se (u1,..., Un). (21) 

Similarly, for any other function v(a) in S, 

u(x) & (U1,...,Un). (22) 

        
  

  

Figure 1. Staircase approximation of u(x), 

The m-tuple vectors on the right-hand sides of (21) and (22) are members of IR”. For that 

space, let us adopt the inner product 

rn 

(ty. e+, Un) (Uyy... Un) = S| ujujAx, (23) 

jy=l 

that is, (18b) with all of the w, weights the same, namely, the subinterval width Az. If we 

let n — ov, the “staircase approximations” approach u(2) and v(x), and the sum in (23) 

tends to the integral f u(x)u(ax) de. 

This heuristic reasoning suggests the inner product 
  

(ule), u(z)) = [ u(xcju(a) da. (24a) 
      

We can denote it as u- v and call it the dot product, or we can denote it as < u(x), v(x) > 

and call it the inner product. For function spaces, the latter notation is somewhat standard, 

and is our choice in this text. 

COMMENT 1. By no means do we claim our staircase idea to be a rigorous derivation of 

(24a). In fact, it is neither rigorous nor a derivation: it is Heuristic motivation for the defi- 

nition (24a). We leave it for the exercises to verify that (24a) does satisfy the requirements 

(16). 

COMMENT 2. Just as (18b) is a legitimate generalization of (18a), (fw; > Oforl <j < 

nm), we expect that 
  

(ule), o(2)) = [ ocopoayete) da (24b) 
      

n
a
t
e
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is left for the exercises, The inner product (24b) is prominent when we study Fourier series 

and the Sturm—Liouville theory in Chapter 17. 

is a legitimate generalization of (24a) [if wiv) > 0 for 0 < « < 1), proof of which claim 

COMMENT 3. Naturally, if we wish to define a norm as well, we could use a natural norm 

based on (24a) or (245), for instance 

    

  

vd 

| u?(a)w(x) de (25) 
( JO 

  

based on (24b), 

COMMENT 4. Notice carefully that the concept of the dimension of a vector space has not 

yet been introduced, although it is in Section 9.10. There, we define dimension and find 

that R” is n-dimensional (which claim is probably not a great shock). Since the staircase 

approximation (21) becomes exact only as n —> oo, it appears that our function space S is 

infinite dimensional! 

COMMENT 5. A bit of notation: the set of functions that are defined and continuous 

n [0,1] (i.e, 0 < @ < 1) is usually denoted as C0, 1]. If not only are the functions 

continuous but also all derivatives through order k, then the set is denoted as C*[0, 1]. @ 

Closure. Using m-space as a ladder, we complete our generalization of vector 
space by taking the properties of R” (such as u-+ v = v + wu) and turning them 
into the axioms, or requirements, to be met by any vector space.. Thus, attention 
shifted from the objects. the vectors, to those requirements. There is no restriction 
on the nature of the vectors, which can be arrows, n-tuples, matrices, functions, 

or oranges. Por us, the most important vector spaces are IR” and various function 
spaces; IR” is used in the remainder of this chapter and Chapters 10-12, and function 
spaces are used in Chapter 17 when we study Fourier series and Sturm-Liouville 

theory. 
To illustrate the power of the axiomatic approach, recall the Schwarz inequality 

ju-v| < jul] ||v||, proved in Section 9.5.2 for R”. That result holds for any normed 
inner product space with natural norm jul] = \/u- u for it followed from properties 
of IR", which properties are subsequently elevated to axioms for general vector 
space. Thus, it represents many properties rolled into one. For example, in R”, 

with the dot product (18a) it says 

    

(26) 

  

in the function space of Examples 2 and 4: with the inner product (24b) and norm 

(25) it says 

| 4 aT 
< V1 u?(c)w(x) dx | u*(z)w(a) dx, (27) 

0 JO 

  

‘L 
| ul2ju(a)yw(a) dx 
JO   

  

and so on.
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EXERCISES 9.6 
  

1. Recall that IR” is the vector space (“real” vector space since 

all scalars are to be real numbers) in which the vectors are n- 

tuples u = (t1,...,U,), with the definitions 

uty = (u1,...,Un) + (1,-.-,Un) 

= (ty + U1,.-.,Un + Un), (1.1) 

0 = (0,...,0), (1.2) 

—uU = (—u1,...,—Un), (1.3) 

au = (auyz,...,@Un). (1.4) 

If we make the following modifications, do we still have a vec- 

tor space? Hf not, specify all requirements within Definition 
9.6.1 that fail to be met. 

(a) only vectors of the form u = (u,u,...,u) admitted, where 
-c<Uu< cw 

(b) only vectors of the form u = (u, 2u, 38u,..., mu) admitted, 
where —co <u < 00 

(c) only the vector (0,...,0) admitted (this is an example of 

a zero vector space, a vector space containing only the zero 
vector) 

(d)u+v = (uy — v1,...,Un — Un), in place of (1.1) 

(e)u+v = (0,...,0) forall u’s and v’s, in place of (1.1) 
(f) ou = (a?uy1,...,a°u,), in place of (1.4) 

2.. We noted in Example | that the definition (10) of vector 

addition violates axiom (1). Does it violate any others as well? 
Explain. 

3. Prove (15b), that (—l)u = —u. 

4, Prove (15c), that a0 = 0. 

5. Prove that if au = 0 then a = 0 and/or u = O. 

6. Show that the inner product (18b) does satisfy the require- 

ments (16). 

7. We stated in Example 3 that if for any vector space S we 

already have an inner product, then a legitimate norm can al- 

ways be obtained from that inner product as |Jul} = ./a-u, 
which choice is called the natural norm. Prove that claim, 

8. Show that the “taxicab norm” (20) is a legitimate norm — 

that is, that it satisfies the requirements (17). 

9, (a) Does the choice ||ul] = max |u,|, for R”, satisfy the 
i<jen' 7 

requirements (17)? Explain. 

(b) How about |jul] = min |u,|, for R™? 
i<j<n * 

10. Let S be the set of real-valued polynomial functions, of de- 

gree n, definedona <a <6. Ifu=ag+ aya+---+anz" 

and v = bo + bya +--+ + 6,2" are any two such functions, 

and q@ is any (real) scalar, define the sum u + v and the scalar 

multiple au as 

(a+ v)(x) = (a9 + 69) + (ay + by )o Hee + (Gn + bn a”, 

(au)(2) = aay + aye +++ + Qan2”, 

respectively. Further, let O be the function 0 + Oz +-+-+02, 

and let —u be the function —ag — aja +--+ — @pa". Show 

that S is a vector space. 

11. Show that the inner product (24b) does satisfy the require- 

meénts (16). 

12. (Schwarz inequality) We derive the Schwarz inequality 

[uv] < [lull [lv (12.1) 

for R” space in Section 9.5.2. The latter holds not only for R® 

but for any normed inner product space with the natural norm 

jul] = /ua-u. In this exercise we simply ask you to verify 
(12.1) by working out the left- and right-hand sides for these 

specific cases: 

(a)u = (3,1,—1,0) and v = (1,2,5, —4) in R*, with the 

inner product (18a) 

(b) u = (1,2,4,-3) and v = (0,4,1,1) in R*, with 
UV = UU + Stave + 38u3v3 + 2usv4 

(c)u = (1,1,1,1,1) and v = (2,2,2,2,2) in R°, with 
Uv = Uv, + Qugve + 3ugug + 4uavga + Susus 

(d)u = 2+ 2 and v = 32° in the function space of Ex- 
ample 4, with the inner product u:-v = (u(x), v(z)) = 

fo u(x)u(x) dr 

(e) Same as (d), but with (u(x), v(x)) = fy u(x)u(x)(2 + 
5x) dz 

13. (Solution space) (a) Consider a set of ™m linear homoge- 

neous algebraic equations in the n unknowns 71,...,p, and 

denote each solution of the system as an m-tuple vector x = 

(a1,...,@,) in R”. Show that the set of all such vectors, with 

the usual definitions [u + v = (wy +01,...,Un + Un), QU = 

(QU1,...,QUn), —U = (—u41,...,—-tUn), O = (0,...,0)], is 

a vector space. That space is called the solution space of the 

system. 
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(b) If the system is nonhomogeneous, is the set of solutions mogeneous differential equation (with the same definitions of 

still a vector space? Explain. u-+v, ou, —u, and 0 as in Example 2) constitute a vector 
space, the so-called solution space of that differential equa- 

14. (Solution space) Show that the solutions of a linear ho- tion. 

  

9.7 Span and Subspace 

Here, we begin a sequence of closely related ideas: span, linear dependence, basis, 
expansion, and dimension. The concepts, definitions, and theorems hold for any 
vector space, but our illustrative examples are restricted to the n-space IR”, this 

being the case of most interest in Chapters 9-12. 
We begin with the idea of the “span” of a set of vectors. 

  

DEFINITION 9.7.1 Span 
If uy,..., Ug are vectors in a vector space S, then the set of all linear combinations 

of these vectors, that is, all vectors of the form 

u=ayuy +--:+apug, (1) 

where a1,...,@, are scalars is called the span of uj,,..., uy and is denoted as 

span {uy,..., Ug}. 
  

The set {,,..., ug} is called the generating set of span {u,,..., ug}. 
Let us illustrate with some vector sets in R? and IR° so we can support the 

discussion with diagrams. 

EXAMPLE 1. Determine the span of the single vector 

  

uz, = (4, 2) (2) 

in R?, Then span {u,} is the set of all vectors that are scalar multiples of u,. Hence, 

span {u,} is the set of all vectors on the line L in Fig. 1, such as u = 2u, = (8,4), ; 
v= ~4u, = (—2,~1), and 0 = Ou, = (0,0). We say that u; generates the line L. B Figure 1. Span {u1}. 

EXAMPLE 2. Determine the span of the two vectors 

uy = (4,2), uy = (-8, —4). (3)



440 Chapter 9. Vector Space 

Span {u,, ug} is, once again, the line J in Fig. L (i-e., the set of all vectors on 1), for 

both u, and ug lie along L, so any linear combination of them, a, U1 + a2Ue, does too. 

Similarly, span {(4, 2), (—8, —4), (18,9), (0,0)} is the line L. @ 

Observe that the line Z, in Examples | and 2, is only a subset of the vector 
space IR?. Observe that that subset of IR? is itself a vector space, a so-called “sub- 
space” of IR®. For if u and v are any two vectors on L, then u + v is on £, too, so 
the set is closed under addition; similarly, if u is on £, so is au, for any scalar a, so 
the set is closed under scalar multiplication; L does contain the zero vector [since 
we can set all the a’s in (1) equal to zero]; and for each u on ZL there is a (unique) 

vector —u on ZL such that u + (~u) = 0. 

  

DEFINITION 9.7.2 Subspace 
If a subset 7 of a vector space S is itself a vector space (with the same definitions 
as S for vector addition u+v, scalar multiplication au, zero vector 0, and negative 

vector —u), then 7 is a subspace of S. 
  

Usually, a subspace of S is only a part of S, as the line L is only a part of R?, 
but since a subset of a set can be all of that set, a subspace of S can be all of S. For 

instance, IR? is a subspace of R?. 

  

THEOREM 9.7.1 Span as Subspace 
If uj,...,Ug are vectors in a vector space S, then span {ui,..., ux} is itself a 

vector space, a subspace of S. 
  

For instance, the line L in Fig. | is a subspace of R?. Proof of Theorem 9.7.1 

is left for the exercises. 

EXAMPLE 3. Is the span of 

u;, = (5,1), ues = (1,3) (4) 

all of IR? or only a part of IR?? To determine the extent of span {u;,, uy}, let v = (v1, v2) 

be.any given vector in R?, and try to express 

V = O,U, + Qguy. (5) 

That ts, 

(vy, v2) = a1 (5,1) + ae(1,3) 

= (501,01) + (a2, 309). 

= (Ba, + a2, 1 + 3a). (6) 

 



  

Equating components, we obtain the linear equations 

5a, + 2 = U1, (1) 

ay + 3aQ = v2 

in @1, &2. Applying Gauss elimination, (7) becomes 

1, _ L, 
Oy + 702 = U1, (8) 

= hy — Lb, Og = Tq V2 iq U1: 

It is clear from the Gauss-reduced form (8) that the system is consistent (solvable for 

1,0) for every vector Vv in IR*. Hence, we may conclude that span {u1, ty} is all of 

IR?; we say that {u,, ug} spans R*. (Here we use “span” as a verb; in Definition 9.7.1 it is 

introduced as a noun.) 

Thus, every v in R? can be expressed as a linear combination of vector u, and ug. As 

representative, let v = (6,4) sou, = 6 and vg = —4, Then (8) gives ag = ~ 3 and 

ay = a, so that (5) becomes 

em te
 

{
E
G
 

(9) 

2 thatv = OA + OB, where (with the 

. Thus, v = 1.6u, — 1.9ue, in agreement 

Uo. 

To see this in graphical terms, observe from Fig. 

aid of ascale) OA  1.6u,; and OB = —1.9ue 

with (9). 

COMMENT. Suppose that we add uy = (2,2) to the set. It should be evident that 

span {uy, U2, ug} is all of IR? again, since {u,, ua} spanned IR? even “without any help” 

from uy. But in case this is not clear, let us go through steps analogous to steps (5) to (8): 

2,2 ayo 

(10) Vo= Gy Uy + O22 + O33 

80 (v1, U2) = (5a, + ag + 203, a1 + 3a + 2a). Thus, 

Say, + a + 2a% 

a, + 8a9 + 2a% 

or 

ay + £02 + 203 = U1, 
(11) 

fd 
a ao + $03 = va id UL. 

Like (8), (1 1) is consistent for every v in R® so {uy,, ug, uy} spans IR?, as claimed. Whereas 

(8) had a unique solution so that the representation (5) was unique, (11) happens to have an 

infinity of solutions so that the representation (10) is not unique. & 

EXAMPLE 4. Asa final example, consider the span of 

u, = (1,2,2), uy = (—1,0, 2) (12) 

in R°. Setting 
(13) V == Uy + Goud, 

9.7, Span and Subspace 441 

  

Figure 2. Representation of v.
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Axis | 

Figure 3. u; and up. 

we have 

Apo Ag = Uy, 

204 = U9, 

201 + 2a9 = vs, 

or, after Gauss elimination, 

Qy~ Ag = Vy, 

Og = $2 ~ U1, (14) 

QO = Ug 209 ++ 204. 

Now, span {11,, ut} is the set of all possible vectors v given by (13), Le., all vectors v for 

which the system (14) is consistent, i.e., all vectors v = (v1, v2, vs) such that 

Qu, — 2ug + u3 = 0 (15) 

[so that the last of equations (14) is 0 = O rather than a contradiction]. 

In geometrical terms, on the other hand, span {1,2} should be the subset of RS 

consisting of the plane that passes through u, and ug (u;, and uz are shown in Fig. 3), 

How does that fact correlate with (15)? As a matter of fact, (15) is the equation of a plane 

in 3-space, and that plane does pass through the origin, through the tip of uj [i.e., the point 

(1, 2, 2)], and through the tip of uy [the point (—1, 0, 2)]. Hence, it is the plane through 1, 

and Ug so the analytical approach, namely, steps (13) to (15) and our geometrical interpre- 

tation are in agreement, 

We conclude that span {u, uz} is not all of R°: it is only the subspace of IR? consist- 

ing of the plane (i.e., all vectors in the plane) containing the given vectors uw, and up. 

COMMENT. Since span {u, ug} is a plane. would it be correct to say that span {uy, us} 

is R°? No, that would be incorrect; IR? is made up of nvo-tuples, while the vectors in the 

above-mentioned plane are three-tuples. Thus, R? space is not relevant in this problem. 

All that can be said here is that span {u1, ug} is the subspace of R® consisting of the plane 

containing the vectors u, and up, that is, the plane defined by (15). # 

Closure. In leading up to the concept of bases and expansions, the two key ideas are 
span and linear independence. In this section we introduce the idea of span; in the 
next section we introduce linear dependence and linear independence. Although 
the concept of span holds for any vector space, such as IR®°, we suggest that you 
focus on the foregoing examples in two- and three-spaces, so that you can use the 
two- and three-dimensional drawings to promote understanding. 
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EXERCISES 9.7 
  

1. Show whether the vectors 

(a) (1,0,...,0), (0,1,0,...,0),..., (0,...,0,1) span IR™ 

(b) (0, 0,0, 1), (0,0,1,1), (0,1, 1, 1), (1,1, 1, 1) span ik* 
(6) (1, 2,0,4), (258 1, 1), (0, 1,0,1), (0,0,0,0), (1, 1,2,8) 
span R* 
(d) (1,3, 2,2), (5,7, 1,0), (=1, —2, —4, 3) span IR* 
(e) (1,0, 1), (2,1, -1), C1, 2, 5) span R° 
(f) (1,1, 2), (0,0, 0), (2,1, 0), (-1,0,3) span RY 
e (2,0,3), (=1, 2, 4), (- 5, 2, -2) span BR! 

h) (1, 3,0), (2, -1, 1), (1, 1,4) span R° 
a (—1, 2, 4), (—5,2, ~2), (2,0,3), (1,2,3) span RY 
(j) (0,0, 0), (2,1, 4). (-1, 3.5) span RS 
(k) (2,1,3), (1, —1, 2) span ‘pS 

(1) (2, 1, -1), (1,3, 1). (5,5, -1), (0,5, 3) span R? 
(m) (—4, 1,0), (2,2, 2), (1, 2 _3) span RS 
(n) (—3, 1,0), (1,1, 1), (—1,7,5) span R? 
(0) (1, 2), (2,1) span R? 
(p) (1,2), (2,1), (4,5) span RR? 
(q) (1, 2), (2, 1), (2,3), (2, —4) span R? 

2. (a) Sketch any two vectors that span the space of all vectors 

in the plane of the paper. 

(b) Sketch any three such vectors. 

(c) Sketch any four such vectors. 

3. Are the following vector sets subspaces of R*? (See accom- 

panying figure.) Explain. 

(a) the straight line Z that extends from the origin to infinity 

(b) the wedge-shaped region (including its boundary lines) that 

extends to infinity in both directions 

(c) the upper half plane x2 > 0 

  

4. (Solution space) First, review Exercise 13a in Section 9.6. 

That solution space is a subspace of IR”. To illustrate, con- 

sider the simple system a + 3¢2 = 0; that is, m = 1,n = 2, 

Qi, = 1, and ay = 3. The solution is 22 = a (arbitrary), 

x, = —3a, or x = (#1, 22) = a(—3, 1) so the solution space 

is the span of the vector (—3, 1), that is, span {(—3, 1) }. In this 
manner, determine the solution space for each of the following 

examples. 

(a) vy) — to +43 = Oin R? 

(b) a, + vo +23 —-a@4 = Oin Rt 

(c) #, — to +43 = 0 

ry + to + eg = 0 in R3 

(d) 2, + 349 — 23 + @4 = 0 

Ly + 2x3 + 24 = 0 in Rt 

(e) 21 —- fo + U3 —- 204 = 0 

+ 24 + 2e5 = 0 in R® Uy — Le 

(f) ay + 2g - 23 +244 = 0 

Ly + 22 —ry = 0 

XQ + &3 = 0 inR* 

(g) vy + 2 + 2x3 — 224 = 0 

Ly + vo + 243 +25, =0 

224 +453 = 0 in R® 

5. Find any two vectors in R° that span the plane 

(b) 27, + to — 623 = 0 

(d) x, + 4a +23 = 0 

(f) 32, — 22 —%3 =0 

(a) vy > 209 + 4rg = 0 

(c) @1 + 543 = 0 
(e) fo + 2x5 = 0 

6. Show whether the given sets are identical. 

(a) span {(2 —1), (3, 1,0)} and span {(2, -1,—1), (5,5, 2). 

Explain. 

(b) pan {t1,2.3),( —1, 1)} and span {(1, 2, 3), (3, 1, 5)} 
(c) span {(4, 1, 0), (1, 1, 1)} and span {(1, 1,1), (2, -1, —2)} 
(d) span {(1, 2, —1), (~3, 0, 0)} and span {(1, 0, 0), (1,3, 0)} 

(e) span {(1,0, 1,2), (—1, 1, 1,0)} and 
span {(0, 1, 2 ; 1 

(f) span {(1,0,1,2), (1, 1,1, 1), (1, 2,3, 4)} and 
span {(2,0, ~1,0), (0, -1, 2, 3), (4, 3, 2, 1)} 
(g) span {(1,0, 1,1), (2,1, 1,0), (1, 2, 2, 1)} and 
span {(2, —1 0,0), (1, ~2,0, 1), (3,5, 4, 1)} 
(h) span {(1, 2, 3,0), ( , 1, 0,2), (2, 3,0, 1)} and 

span {(1,0, ~3, ~1), (1,1, 3,3), (1,2, 1,1)} ’ 

7. Find any two ON (orthonormal) vectors in 

(a) span {(1, oN 1)} 
(b) span {(1, 1), (2, ~1,3)} 
(c) span {(1, -1,0), (1,2,3)}
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(2) span {1 oh (0 

(e) span {(1, 1,0, 1), (0, 
1, 

0, 

2 

2,- 
y 

1)} 
(f) span {(~2, 3,1, 1), (0,2, -1,1)} 

8. Prove Theorem 9.7.1. 

  

9.8 Linear Dependence 

The definition of the linear dependence or independence of a set of vectors is essen- 
tially identical to Definition 3.2.1 for a set of functions, with the word “functions” 
changed to “‘vectors:” 

  

DEFINITION 9.8.1 Linear Dependence and Linear Independence 
A set of vectors {u,,..., ug} is said to be linearly dependent if at least one of 
them can be expressed as a linear combination of the others. If none can be so 
expressed, then the set is linearly independent. 
  

Thus, we urge you to review Section 3.2 in conjunction with your study of this 
section. As in Chapter 3, we frequently use the abbreviations LD and LI to stand 
for linearly dependent and linearly independent, respectively. 

EXAMPLE 1. Let u; = (1,0), ug = (1,1), and uy = (5,4). These are LD since, 
by inspection, we can express U3 as a linear combination of u; and ug: u3 = uy + 4g. 
(Alternatively, we could express ug = }uj — +uy, or uy = —dug + ug). O 

EXAMPLE 2. Let u; = (1,0) and wu = (1,1). These are LI since u; cannot be 
expressed as a “linear combination of the others,” namely, as a scalar multiple of ug, nor 
can Uy be expressed as a scalar multiple of u,. @ 

EXAMPLE 3. Let u, = (2,—1), ue = (0,0), and uy = (0,1). These are LD since we 
can express Up = Ouy + Oug. (The fact that we cannot express uy, asa linear combination 
of ug and ug, nor ug as a linear combination of uy and uy does not alter our conclusion, 
for recall the words “at least one” in the definition.) @ 

It is implicit in Definition 9.8.1 that uy,...,u, are all members of the same 
vector space; in Examples | to 3 that space was R*. Thus, it would make no sense 
to ask whether uy = (2,5) and ug = (4, 3,0, 1) are linearly dependent or not since 
u, is a member of R? while ug is a member of R4. 

The preceding examples are simple enough to be worked by inspection. In 
more complicated cases, the following theorem provides a systematic approach for



  

determining whether a given vector set is linearly dependent or linearly indepen- 

dent. 

  

THEOREM 9.8.1 Test for Linear Dependence / Independence 
A finite set of vectors {uy,..., ug} is LD if and only if there exist scalars aj, not 

all zero, such that 
Oyu, +--+ + apuy = O; (1) 

if (1) holds only if all the a;"s are zero, then the set is LIL. 
  

Proof is essentially the same as for Theorem 3.2.1. 

EXAMPLE 4. Consider the 4-tuples 

uw, = (2,0,1,-3), us =(0,1,1,1), uy = (2,2,3,0). (2) 

To see if these vectors are LI or LD, appeal directly to (1): 

«1 (2,0, 1, -3) + a2(0,1,1,1) + a9(2, 2,3,0) = (0,0, 0,0), (3) 

or (2a, + 203, @2 + 203, ay ag +303, —3a1 + a2) = (0,0, 0, 0). Thus, 

204 + 203 = 0, 

ag + 2a3 = 0 “ y 4 

ay + a2 + 38a3 = 0, (4) 

—3ay, + ae = 0. 

Applying Gauss elimination yields 

2a, + 2az = 0, 
904 = 

OQ + 203 ~ 0, (5) 

a3 = 0, 
0 = 0. 

This system admits only the trivial solution, @, = a2 = a3 = 0 so Wy, Ug, Ug are LI, a 

EXAMPLE 5. Consider the 3-tuples 

u, = (1,0,1), ue =(1,1,1), ug=(1,1,2), u=(1,2,1). (6) 

Working from (1), as in Example 4, we have 

Q, +a9+ agt ay = 0, 

ag + 3 + 204 = 0, (7) 

Q, + Qo + 2a3 + aq = 0, 

Linear Dependence 445
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or, after Gauss elimination, 

Ay + Ag + Ag + ag = 0, 

ay + ay + 2a4 = 0, (8) 

ag = (). 

This time, there exist nontrivial solutions for the aj’s so the vectors U4, Ug, Ug are LD, 
[Specifically, (8) gives a3 = 0, @4 = a, @g = ~2a, a, = a where a is arbitrary. With 
a = I, say, (1) becomes uy — 2ug + Oug + ug = 0.) 9 

We conclude this section with four modest theorems, the first three being es- 

sentially the same as Theorems 3.2.4—3.2.6 for functions. 

  

THEOREM 9.8.2 Linear Dependence / Independence of Two Vectors 
A set of two vectors {11,, ug} is LD if and only if one is expressible as a scalar 
multiple of the other. 
  

  

THEOREM 9.8.3 Linear Dependence of Sets Containing the Zero Vector 
A set containing the zero vector is LD. 
  

  

THEOREM 9.8.4 Equating Coefficients 
Let {uy,..., u,} be LI. Then, for 

@yUy +++: + apug = Oyu, +--+ + bpuy 

to hold, it is necessary and sufficient that a; = b; foreach j = 1,...,k. That ts, the 
coefficients of corresponding vectors on the left- and right-hand sides must match. 
  

  

THEOREM 9.8.5 Orthogonal Sets 
Every finite orthogonal set of (nonzero) vectors is LI. 
  

Proof of Theorem 9.8.5: Dot uy into both sides of 

yu, + aQUg +-+-+a,u, = 0, (9) 

In other words, 

uy: (ayuy + agua +--+ + apug) = uy -O, 
QyUy Uy + guy: Ug +--+ + apy: u, = 0, (10) 

ay |fur ||? +O+---+0=0.



  

Now u, # 0 implies that |}uy|) 4 0 so it follows from (10) that a, = 0. Similarly, 

dotting uy into (9) gives a2 = 0, and so on. Since ay = ag = +++ = Ag = Q, the 

u,’s must be LI, as claimed. @ 

EXAMPLE 6. The set {(2,1),(1,5)} in IR* is LI because neither vector can be ex- 

pressed as a scalar multiple of the other. # 

EXAMPLE 7. Let 

uy = (4, —l, 1,2), Us (3,0, 2,5), Ug = (0,0,0,0) 

in IR. The set is LD, according to Theorem 9.8.3 because it contains the zero vector ug = 

0. That is, u3 can be expressed as a linear combination of uy and ug: Uy = Ou, + Oug. 

If the preceding sentence is not clear, rewrite the equation as Ou; + Oug ~ lug = 0 and 

observe that the a, coefficients (0, 0, and —1) are not all zero. @ 

Closure. The foregoing discussion of the linear dependence / independence of 

vectors is essentially the same as the discussion of the linear dependence / indepen- 

dence of functions in Section 3.2, except that the Wronskian determinant test did 

not carry over. 
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EXERCISES 9.8 
  

1. (a) Can a set be neither LD nor LI? Explain. (j) (1,1, 0,0), (1, -1, 0, 0), (0,0, -2, 2), (0,0, 1 1) 

(b) Can a set be both LD and LI? Explain. (k) (1, —3, 0, 2, 1), (-2, 6, 0, 4, ~?) 

2. Show that the following sets are LD by expressing one of (D Gf hh oe 0,0) (1,9, ~7,2) 

the vectors asa a combination of the others. eee es 3 9, 4) 

wt 1), tos) (3, 4)} (0) (7, 1,0), (1, 1,4), (2, 3,5) 
b) {Q, Du (3, -1)} (p) (1,2, —1), (1,0, 1), (3, -2, 5) 

©) eos i eH ). (3, 3)} (q) (3,1, 0,0), (1, 2, 4, 1), (2, 1,6, 5) 
(d) (C1, 3,2, 1), (5,5.5)} (r) (2,4, 0, 1), (1,0, 1, 2), (1, -3, 1,2), (1,1, -1 - 1) 
etLo. Oy 0 1,0), (3, 3,0), (2, 7, 9)} 
3. Determine whether the following setis LE or LD. Ifit is LD, 

then give a linear relation among the vectors. 

(a) (1,3), (2,0), (~1,3), (7,3) 
(b) (1,3). (2,0), (4, 2), (-1,5) 
(c) (2, 3,0), (1, =2,3) 
(d) (2,3,0), (1, ~2, 4), (11,0), (1,1, 1) 
(e) (0,0, 2), (0,0.3), (2, =1,5), (1, 2,4), (7,9, 1), (2,0, -4) 
(f) (2.3.0.0), 1, 5,0, 2), (3, 1,2, 2) 
(g) (1,3, 2,0), (4, 1, —2, —2), (0, 20.3). (4,7, 1,2) 
(h) (2,0, 1, 1,0). (1, 2,0,3, 1), (4, -4,3, 9, —2) 
(i) (1,3,0), (0, 1, ~1), (0, 0,0) 

4. Show, by graphical means, that the vector sets shown below, 

and lying in the plane of the paper, are LD. (The emphasis here 

is on the method and ideas, not on graphical precision.) 

(a) (b) 
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uy 

(e) 

3 

uy 

(d) 5. [f uy and ug are LI, uy, and us are LI and uy and us are LI, 

does it follow that (11, u2, ug} is LI? Prove or disprove. 

6. Prove or disprove: 
Uy 

(a) v is in span {uy,..., ug} if {v,1y,..., uy} is LD. 

ua (b) v is notin span{uy,...,ug} if {v,ur,..., Ug} is LL 

(c) vis notin span {uy,..., ug} if and only if {v,u,..., ug} 

is LI. 
3 

7. (a) Prove Theorem 9.8.2. 

(b) Prove Theorem 9.8.3. 

(c) Prove Theorem 9.8.4, 

us 

  

9.9 Bases, Expansions, Dimension 

9.9.1. Bases and expansions. In the calculus we learn that a given function f(x) 
can be “expanded” as a linear combination of powers of x (namely 1, x, x, ...), 

f(@) = a9 + aya + age? +---, (1) 

We call ag, a1, @2,... the “expansion coefficients,” and these can be computed from 

f(x) as aj = f(0)/7!. Such representation of a given function is important, and 
examples such as e* = l+a+ He" + qe" +-.-andsing = 2— qu? “ au? a 

are familiar to us. 

Likewise useful, in Chapters 9—12, are the expansion of a given vector u in 
terms of a set of “base vectors” e],...,€h: 

U= ayer +++ + apex. (2) 

How do we come up with such sets of base vectors and, once we know the e;’s 
and the given u, how do we compute the expansion coefficients a;? The story is 
simpler than for the power series of functions because whereas (1) is an infinite 

series and one needs to deal with the sophisticated issue of convergence, our vector 
expansions in Chapters 9-12 entail only a finite number of terms. 

Beginning simply, consider the vector space IR*, the set of all vectors in the 
plane of the paper. In particular, consider the vectors e; and e2 shown in Fig. La. It 
should be evident (Theorem 9.8.2) that e; and eg are LI and that they span the space 

so that any given vector, such as u in Fig. |b and v in Fig. 1c, can be expressed as 
a linear combination of them, 
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For the vector u, for example, u = OA + OB; with the aid of a scale, OA = 

j.6e, and OB = 2e9, so that 

u = 1.6e; + 2e9. (3) 

Similarly (Fig. Ic), 

v = 2e; — 2.5e9, (4) 

and so on, for any given vector in the plane. Of course, the zero vector is simply 

O = Oe; + Oeo. 

The formulas (3) and (4) are examples of the expansion of a given vector [u in 

(3), v in (4)] in terms of a set of base vectors [the set {e1, e2} J. 

  

DEFINITION 9.9.1 Basis 
A finite set of vectors {e1,...,e,} in a vector space S is a basis for S if each 
vector u in S can be expressed (i.e., “expanded”’) uniquely in the form 

k 

u= aye; +--+ ape, = Qje;. (5) 

j=l 

  

By the expansion (5) being unique, we mean that the a; expansion coefficients 

are uniquely determined. 

  

THEOREM 9.9.1 Test for Basis 
A finite set {e,,...,e,} in a vector space S is a basis for S if and only if it spans 

S and is LL 
  

Proof: First, it follows from the definition of the verb span that every vector u in 
S can be expanded as in (5) if and only if the set {e;,...,e,} spans S. Turning to 
the question of the uniqueness of the expansion, suppose that both expansions 

U= aye, +++ + OKeR, (6) 

u= Sey +--+ + Greg (7) 

hold for any given vector u in S. Subtracting (7) from (6) gives 

(a1 ~ fier t+ + (aK — Bp )ex = 0. (8) 
Now, each of the coefficients (a@1—(4,),... , (a% — G,) in (8) must be zero, in which 
case ay = B1,,...,a% = Bp and expansions (6) and (7) are identical if and only if 

(a) 

€9 

(b) 

  

  

Figure 1. Vector expansion in R?.
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(8) 

  

    
Figure 2. Two bases for R?. 

the set {e,,...,e,} is LI. Hence, the expansion (5) is unique if and only if the set 
is LI, and this completes the proof. @ 

The key idea revealed in the foregoing proof is that a basis needs to contain 
enough vectors but net too many: enough so that the set spans the space and can 
therefore be used to expand any given vector in the space, but not too many, in 
order that such expansions will be unique. 

EXAMPLE 1. Consider the vectors 

ey= (—2, 1), €g = (2,4). (9) 

As may be verified, the set (9) is LI and spans R* and is therefore a basis for R?. 
Using that set to expand the vector u = (6, 2), say, we express 

u= ae; + d2e2, (10) 

or (6,2) = (—2a1, a1) + (2a2, dag). Hence, 

~2a, + 2a9 = 6, 

a, + 4ag = 2. (1D 

Solving (11), a; = —2 and a2 = 1 so the expansion (10) is 

u = —2e; + eg, (12) 

as displayed in Fig. 2a. 

It is to be emphasized that the basis (9) shown in Fig. 2a is by no means the only basis 

for R?; there are slews of them. For example, it is readily verified that another is 

e, = (4,-1), e) =(-1,5), (13) 
and in this case the expansion of u = (6, 2) is found to be 

32 14 
u= 79°! + 9° (14) 

as depicted in Fig. 2b. 

COMMENT. The difference between the expansions (12) and (13) is nor at odds with the 

notion of uniqueness since the two expansions are with respect to different bases. In other 

words, (12) is the unique expansion of u in terms of the e,, eg basis, and (14) is the unique 

expansion of u in terms of the e}, e4 basis. 

9.9.2. Dimension. If we always worked in 2-space or 3-space, the concept of di- 
mension would hardly need elaboration; for example, 3-space is three-dimensional, 
a plane within it is two-dimensional, and a line within it is one-dimensional. How- 

ever, having generalized our vector concept beyond 3-space, we need to clarify the 
idea of dimension. 

  

DEFINITION 9.9.2. Dimension 

If the greatest number of LI vectors that can be found in a vector space S is k, 

 



  

9.9. Bases, Expansions, Dimension 451 

where 1 < & < co, then S is k-dimensional, and we write 

dim S = k. 

If S is the zero vector space (i.e., if it contains only the zero vector), we define 

dim S = 0. If an arbitrarily large number of LI vectors can be found in S, we say 

that S is infinite-dimensional.* 
  

To determine the dimension of a given vector space, it may be more convenient 

to use the following theorem than to work directly from Definition 9.9.2. 

  

THEOREM 9.9.2 Test for Dimension 

If a vector space S admits a basis consisting of k vectors, then S is k-dimensional. 
  

Proof: Let {e1,...,e%} be a basis for S. Because these vectors form a basis, they 

must be LI. Hence, we have at least k LI vectors in S, and it remains to show that 

no more than k LI vectors can be found in S. Suppose that vectors e{,...,@,,4 in 
S are LI. Each of these can be expanded in terms of the given base vectors, as 

! 
@y = ay1€1 +--+ + a1keR, 

(15) 
/ 

Cpa, = Ob411e1 H+ + Okt1kek, 

say. Putting these expressions into the equation 

oo aye, + ages +--+ + appie, = 0 (16) 

and grouping terms gives 

(ayayy Foss + eg 1Gkgi) er ti + (ordi, Fo + Ob +10k+1,b) Ok = O. 

But the set {e;,..., eg} is LI since it is a basis, so each coefficient in the preceding 

equation must be zero: 

ayyQy +e + O44 1Ob41 = 9, 

(17) 

/ Aypay +++ + Agy1 pony = 0. 

These are & linear homogeneous equations in the & + 1 unknowns a through 

Qp41, and such a system necessarily admits nontrivial solutions (Theorem 8.3.4). 

Thus, the a@’s in (17) are not all necessarily zero so the vectors e}, a Ona could 

  

“Infinite-dimensional function spaces will be studied in Chapter 17.
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not have been LI after all. Hence, it is not possible to find more than & LI vectors 
in S, and this completes the proof. @ 

The spaces of chief concern in Chapters 9~12 are the n-tuple spaces R” and subspaces thereof. For IR” we can say the following. 

  

THEOREM 9.9.3 Dimension of IR” 
The dimension of IR” is n: dim R”™ = n. 

  

Proof The vectors 

(18) 

constitute a basis for R” because any vector u = (uy,... ,Un) in R” can be ex- 
panded uniquely as u = ue, +--+ Un€n. Since this basis contains n vectors, it 
follows from Theorem 9,9.2 that R” is n-dimensional. @ 

Indeed, we might well have questioned the reasonableness of our definition 
of dimension if IR” had turned out to be other than n-dimensional! The ON basis 
(18) is called the standard basis for IR” (and is the n-space generalization of the 
“ i,j, k” ON basis that might be known to you from other courses). 

Finally, what about the dimension of a subspace, for example, the subspace of 
R® that is spanned by two given vectors? 

  

THEOREM 9.9.4 Dimension of Span {uy,..., Up} 
The dimension of span {u,,...,u,}, where the u,’s are not all zero, denoted as 
dim [span {uy,..., ux }), is equal to the greatest number of LI vectors within the 
generating set {uy,..., ug}. 

  

Proof: Denote the generating set {u,,... ,ug} as U. Let the greatest number of 
LI vectors in U be N, where 1 < N < k. It may be assumed, without loss of 
generality, that the members of U have been numbered so that uy,..., ua are LI. 
Then each of the remaining members of U, namely Uy41,..., Uz, can be expressed 
as a linear combination of uy,...,Uy. Surely, then, each vector in span U can 
similarly be expressed as a linear combination of u;,,..., ua. Now {Uy,..., uy } 
is LI and spans span U. According to Theorem 9.9.3, then, the dimension of span 
U is N: that is, it is the same as the greatest number of LI vectors in U, as was to 
be proved. @



  

9.9. Bases, 

EXAMPLE 2. Let 

uy = (38,-1,2,1), ue =(1,1,0,-1), us = (4,0, 2,0). 

These vectors are, of course, members of R*. But since u,, Ug, uy are only three vectors, 

dim [span {u,, Ua, us }] is at most three. In fact, it is nor three since we see that ug = 

uy + Ue. But wu, and uy, say, are LI since neither is a scalar multiple of the other. Thus, 

there are only two LI vectors within the generating set so dim [span {u,, U2, Ug }] = 2. 8 

In Example 2 we determined that the greatest number of LI vectors in the gen- 

Expansions, Dimension 

erating set was 2 by inspection. What if we wish to determine dim [span {uy,..., ug} 

where the u,j’s are members of IRS, and k = 6, say? For such a lanee problem we 
cannot expect “inspection” to work. Yet, what are we to do, test the u,’s for lin- 
ear independence one at a time, two at a time, three at a time, and so on, until we 
determine the greatest number of LI vectors in {uy,..., ug}? That would be quite 
tedious. No, we will see later, in Chapter 10, that the best way to determine the 
greatest number of LI vectors in a given set is to determine the “rank” of a cer- 
tain matrix, and that can be done by the extremely efficient method of elementary 
row operations. Meanwhile, in the present section, we “get by” by keeping the 
examples and exercises simple enough so that we can rely on inspection. 

Let us return, now, to our discussion of bases and expansions. 

9.9.3. Orthogonal bases. If, as in Example |, there are many bases for a given 
space. then how do we decide which one to select? We will find that in most ap- 
plications the most convenient basis to use is dictated by the context, so let us not 
worry about that now. This point is addressed in Chapter [1 as well as in the chap- 

ters on PDEs. 
However, we do wish to show, here, that orthogonal bases are to be preferred 

whenever possible. For observe from Example | that to expand u (that is, to com- 
pute the aj expansion coefficients) we needed to solve the system (11) of two 
equations in two unknowns. Similarly, if we seek to expand a given vector in R®, 
then there will be eight base vectors (because R® is eight-dimensional) and eight 
a; expansion coefficients, and these will be found by solving a system [analogous 
to (11)] of eight equations in the eight unknown a,’s. Thus, the expansion process 

can be quite laborious. 
On the other hand, suppose that {e;,....e,} is an orthogonal basis for S; that 

is, itis not only a basis but also happens to be an orthogonal set: 

ej ej =QO if i £ f. (19) 

Suppose that we wish to expand a given vector u in S in terms of that basis: that is, 
we wish to determine the coefficients a@,..... a, in the expansion 

U = yey - Qeee + + pep. (20) 

To accomplish this. dot (20) with e,,e@2,.... e,. in turn. Doing so, and using 
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(19), we obtain the linear system 

u-e; = (e1-e1)o1 + 0ag +00 + Ong, 

u-e) = Oa, “+ (e9 eg) a2 + Oa3 “poe + OAK, 
(21) 

ue, = Oay +--+ 4+ 00K-1 + (en ke) Qk; 

where all of the quantities u-e1,...,U'€k, C1 @1,--- , On &h are computable since 

u,e1,...,@% are known. The crucial point is that even though (21) is still k equa- 

tions in the k unknown a,’s, the system is uncoupled (i.e., the only unknown in the 

first equation is a1, the only one in the second is a2, and so on) and readily gives 

u-e, u:e2Q ue; 

QQ = pees) Oh = , (22) 
e€2:e9 er: ek 

  

  

  

a> ) 
e,°e1   

provided, of course, that none of the denominators vanish. But these quantities 

: 9 : . . . 

cannot vanish because e;-e; = ile; ||", which is zero if and only if ej = 0, and 

this cannot be because if any e; were 0, then the set fey,..., ex} would be LD 

(Theorem 9.8.3), and hence not a basis. 

Thus, if the {e1,.-- , ©, } basis is orthogonal, the expansion of any given u is i 

simply 
eg 

k 

u:e) uU:ek u-e; 

_ a = 5 i. 23 

" (SS) ere (*) a (SS) “4 eo) 
j=l 

  

  

  

  

  
  

If, besides being orthogonal, the e;’s are normalized (||e;|| = 1) so that they con- 

stitute an ON (orthonormal) basis, then (23) simplifies slightly to 

    

(u- ej) ej, (24) 

1 

k 

u = (u- 61) @1 +--+: + (Wek) ek = 

J 
  
  

where we recall that carets denote unit vectors. 

EXAMPLE 3. Expand u = (4,3, —3, 6) in terms of the orthogonal base vectors e, = 

(1,0,2,0), e2 = (0,1,0,0), e3 = (~2,0,1,5),e4 = (—2,0,1,—1) of 4. This basis is 

orthogonal but not ON so we use (23) rather than (24). Computing u-e, = —2,e,;-°e, = 

5, and so on, (23) gives 

19 17 2 
=—Tt 3e5 + —e3 — ea. 25 

u ger e2 + 35% 6° (25) 
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Alternatively, we could have inferred, from u = aye, - +--+ + aed, the four equations 

Oy ~_ 203 — 204 == 4, 

ao = 3 
6 > (26) 
204 + ag +t aq = —3, 

5a3 — qq = 6 

on the four unknown a's, and solved these by Gauss elimination, but it is much easier to 

“cash in’ on the orthogonality of the basis and to use (23). If we choose to work with an ON 

basis, we can scale the e;'s as @; = -(1,0, 2,0), @ = (0,1,0,0), 63 = ee (—2, 0, 1,5), j B 

  

é4 = -.(—2,0,1,—1). Then (24) gives 
V6 

u 2 1, + 3@2 4 19 é lt 6 (27) =o 5 @2 + == 63 ~ —= eg, 2 V5 1 ar 30 3 J/6 4 

which result is equivalent to (25). @ 

Given a nonorthogonal basis there are three possibilities. First, one can use it 
and face up to the tedious expansion process. Second, one can “trade the nonorthog- 
onal basis in” for an orthogonal basis using the Gram-Schmidt orthogonalization 
procedure, which procedure is introduced briefly in the exercises and discussed in 
detail in the next section. Third, one can retain the nonorthogonal basis but stream- 
line the expansion process by computing and utilizing a set of dual, or reciprocal, 
vectors corresponding to the given basis, as described in the exercises.   
Closure. This section is about the expansion of vectors, in a given vector space S, 

in terms of a set of base vectors. A set of vectors {e;,...,e,} in S is a basis for S 
if each vector u in S can be expanded as a wrique linear combination of the e;’s. 

We showed (Theorem 9.9.1) that {e,..., e,} is indeed a basis for S if and only if 

it spans S (so each u can be expanded) and is LI (so the expansion is unique). The 

number of vectors in any basis for S is called the dimension of S. For instance, R” 

admits the standard basis (18), comprised of n vectors, so IR” is n-dimensional. 

And the greatest number of LI vectors in a set {uy,..., ug} is the dimension of 

their span. 
We found that the expansion process (i.e., the determination of the expansion 

coefficients) can be quite laborious if there are many base vectors, but is extremely 

simple if the basis is orthogonal, or ON, in which case the expansions are given by 

(23) or (24), respectively. You should remember those two formulas and be able to 

derive them as well.
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EXERCISES 9.9 

  

1. Show whether the following is a basis. 

(a) (1,0), (1,1), (1,2) for R* 
(b) (3, 2), (-L, 5) for R? 
(c) (1,1) for R? 
(d) (2,0, 1), (5, ~1, 2), (1, -1,0) for R® 
(e) (5, ~1, 2), (2,0, 1), 1, —1, 1) for R& 

(f) (2,1, 0, 6), (7, 1, —2, 3), (4, 3, 2, 1) for R4 
(g) (4,3, ~2, 1), (5,0, 0,0), (2, 1, -3,0), (1, 2,4,5) for R¢ 
(h) (4,2, 0,0), (1, 2,3, 0), (5, ~2, 3,1), (0, —6,0, 1) for R# 

(i) (1, 0,0, 0), (1,1, 0,0), (4, 11,0), (1,1, 1,1) for R4 
G) (3, 0,0, 1), (2,0,0, 1), (1,3, 5, 6), (4, 2, 1,3) for R4 
(k) (1,3, -1, 2), (1, 2, 4,8), (2,5, 3,5), (3, 7, 7,8) for R4 

(I) (2,3,5,0), (1, -1, 2, 3), (4, 1, 2, 3), (5,4, 1, 0), (1,2, 4,6) 
for R4 

(m) fh 0,0,0), (0, 1,0, 0), (0,0, 1,0), (0,0, 0, 1), (0,0, 0, 0) 
for R4 
(n) (1,0, 0,0), (0, 1,0, 0), (0,0, 1,0), (0, 0, 0, 0) for R* 
(0) (1,1, 2), (4, ~2, ~1) for span {(2, —4, —5),q, oh -1)} 
(p) (1, 1, 2), (4, — —2, —1) for span {(3, —), ~6), (1, )} 
(q) (1, 1,1), (1, —1, 2) for span {(2, 4,1), (1,7, — 3) 
(r) (1, 2,3), (1, 0,4) for span {(3, 2,0), (1,1, -1)} 

2. Expand each vector u in terms of the orthogonal basis 
{e1,€2,e3} of R°, where ey = (2,1,3), e9 = (1, -2,0), 
e3 = (6, 3, —5). 

(a) u = (9, —2, 4) (b) u = (1,0, 0) 
(c) u = (0,1,5) (d) u = (3, 1,1) 
(e) u = (0, 5,0) (f) u = (1, 2,3) 

3. (a)-(f) Expand each of the u vectors in Exercise 2 in terms 
of the ON basis {€;, 69,3} of R°, where @,,é2,@3 are nor- 
malized versions of e;, e2, 4 given in Exercise 2. 

4. Expand each vector u in terms of the orthogonal ba- 
sis {@1,..., ea) of R*, where e, = (2,0,—1,-5), e9 = 
(2,0, ~1,1),e3 = (0, 1,0,0), ey = (1,0,2,0). 
(a) u = (1,0,0, a (b) u = (0, 6,0, 0) 
(c)u = (2,5,1,— (d) u = (4,3, —2,0) 
ue 2.05). (f) w = (2, ~7,4,1) 

(g) u = (0,0,0,9) (h) u = (2,3, -2,1) 
(i) u = (0,0, 5,0) Gu = (1,1,1,1) 

5. Verify that the {e;,...,e4} vectors given in Example 3 are 
a basis for R*. Also, solve (26) by Gauss elimination and ver- 
ify that the a;’s thus obtained agree with those given in (25). 

If {e,,...,e,} is an orthogonal set in a vector space S, is 
it a basis 

  

(a) for S? (b) for span {e;,...,e,}? 

7. (Zero vector space) Show that a zero vector space (i.¢., a 
vector space consisting of the zero vector alone) has no basis. 

8. Let u; = (1,0,0), uy = (0,1,0), ug = (0,0,1), wy = 
(1,1,0), us = (0,1,1), ug = (1,1,1), and uy = @ 
Evaluate each of the following. 

(a) dim [span {uj }] 

(b) dim [span {u1, ue }] 

(c) dim [span {uy1, ug, U3 }] 

(d) dim [span {uy, us, ug, U4 }) 

(e) dim [span {uz, u2, U4 }] 
(f) dim [span {uy, ug, us }] 

(g) dim [span {us, ug, uz | 

(h) dim [span {uy, us, ug, U7 }] 

9. Let u; = (1,0,0,0), uz = (1,1,0,0), us = (1,1,1,0), 
ua = (1,1,1,1), us = (0,0,0,1), ug = (3, 3. 3, 3). Evaluate 
each of the following. 

(a) dim [span {uj, us, us }] 

(b) dim [span {uy, ug, ug} 
(c) dim [span {ug, ug, ug} 
(d) dim [span {us }] 

(e) dim [span {ug, ug} 
(f) dim (span {ug, ug, Us, Ug }] 
(g) dim [span {ug, ug }] 
(h) dim [span {uy, us, Ug, Us, ug }] 

10. (a)-(f) Determine the dimension of the solution space in 
Exercise 4 of Section 9.7. 

UL. (Gram—Schmidt orthogonalization process) Given k LI 
vectors V1,..., Vx, it is possible to obtain from them k ON 
vectors, say @1,...,@,, in span{vy,.. /V«} by the Gram— 
Schmidt process, after Jérgen P Gram (1850-1916) and 
Erhardt Schmidt (1876-1959), by taking e; equal to vj, taking 
€2 equal to a suitable linear combination of V1, ¥2, taking eg 
equal to a suitable linear combination of V1, V2, V3, and so on, 
and then normalizing the results. The resulting ON set is as 

 



      

follows: 

a - 
oe iva 
ay V2 ~ (V2 er)er ; 

lve — (ve @1)é1]| 

(Lt.1) 

got 

Vim Sov; €;)e; 

é; = through j = &. 

vi = Do (yp GE 
i=] 

    

We now state the problem: Verify that each é,; defined by 

(11.1) is a linear combination of vy,...,vj, and that the 6;’s 

are ON. {In verifying that ||é, |] = 1, be. sure to show that each 
denominator in (11.1) is nonzero.| 

12. In each case use the Gram-—Schmidt formula (11.1) in 

Exercise |] to obtain an ON set from the given LI set. 

(a) (4,0), (2, 1) 
(b) (1, =2), (3, 4) 

(c) (1,0, 0), (1, 1,0), 4,1) 
(d) (1, 1,0), (2,-1, 1), 4,0, 3) 

{e) (1,1, 1), (2,0, -1) 

(f) (1,1, 1), (1,0, 1), (1, 1,0) 
(g) (1,2,.1), (1.1, 2), (-1,3, 1) 
(h) (2,0, 1), (1. 1.1), (=2.0,3) 

1 (i) (2, ,1,0), (1,5, 1.2) 
~1,1,2,1), (2,3, -1,1,4) 

13. (The dual or reciprocal vectors) For definiteness, consider 

our vector space S to be R". 

(a) If {6,,...,@,} is an ON basis for IR”, and u ts in R”, then 

by dotting é,, into both sides of the equation u = jel je; 
we find that a; = u- €; so that the expansion of u in terms of 

the given basis is 

rh 

us So(u- @;)e@;. 

Jat 

(13.1) 
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If, instead, we have a basis {e,,...,@,} which is not ON, 

then, as noted in the text, the expansion process is not so sim- 

ple. However, suppose that we can find a set {ef,...,e7} 

such that 

—_ lot=j e,-e; = { 0, i#i4. (13.2) 

Then show that dotting ef into ul = jel je; gives 

a; = u-e; so that 

us S(u-e§)e;. (13.3) 
jel 

The set {ef,...,e%} is called the dual, or reciprocal, set 
corresponding to the original set {e,,...,@n}. (We will see 

in the last exercise in Section 10. ot that the dual set exists, is 

unique, and is itself a basis for IR", the so-called dual or re- 

ciprocal basis.) 

(b) Given the basis ey = (1,0), e2 = (1,1) for R?, use equa- 

tion (13.2) to determine the dual vectors ej,e3. Then use 

equation (13.3) to expand u = (3,1). Sketch e;, 2, e7, e3,u 

to scale, and verify the expansion graphically, that is, by means 

of the parallelogram rule of vector addition. 

(c) Repeat part (b), for ey = (2,1),e2 = (0,2), u = ( ), 
(d) Repeat part (b), fore, = (~1,1),e2 = (2,1), u = (0,4), 

e) Given the basis e, = (1,0,0),e2 = (1,1,0),e3 = 

(1,1,1) for R°, use equation (13.2) to determine the dual 

vectors ef, e3,e5. Then use equation (13.3) to expand each 

of the vectors u = (4,-1.5). v = (0,0,2), w = (5, -2, 3). 
Be sure to see that the dual vectors get computed once and for 

all, for a given basis {e1,... ,€n}; once we have got them, 

expansions of the form (13.3) are simple. 

(f) Repeat part (e) fore, = (2,0,1),e2 = (1,1,0),e3 = 
(1, -1,3), and u = (6,1,0), v = (1, 2,4), w = (0,3, 0). 
(g) Show that if the {e,,...,@n } basis does happen to be ON, 

then the dual vectors coalesce with the ej’s, i.c., ef = e, for 

j=l,2,...,n. 
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9.10 Best Approximation 

Let S be a normed inner product vector space (i.e., a vector space with both a 
norm and an inner, or dot, product defined), and let the norm be the “natural norm” 
jul] = au. We know that if fe,,...,e.} is a basis for S, then any vector 
u in S can be (uniquely) expanded in the form u = ea cje;. Tf the basis is 
orthogonal, then the expansion process is easy, with the c;'s computed, from the 
given vector u and the base vectors ej, as cj = (u- e;)/(e;-e;). And if the basis 

   . - oy NE a is not only orthogonal but ON, then u = j=l cj@j, where cj = u- ey. 
However, what if we do not have a “full deck?” That is, what if {€1,..., en } 

is ON, but falls short of being a basis for S (i.e., N < dim 8)? fu happens to fall 
within span {@;,...,@,}, which subspace of S we denote as T, then it can still be 
expanded in terms of €),..., @,,, but if itis not in 7, then it cannot be so expanded. 

In the latter case the question arises, what is the best approximation of u in 
terms of €),...,@,? In this section we answer that question in general, and il- 
lustrate the results for the case where S is IR™. Later in this book, when we study 
Fourier series and partial differential equations, our interest will be in function 
spaces instead. 

9.10.1. Best approximation and orthogonal projection. The best approxima- 
tion problem, which we address is this: given a vector u in S, and an ON set 
{é1,-..,@y} in S, what is the best approximation 

N 

Uy cy ey chee CNEN = cjej? (1) 

j=l 

That is, how do we compute the c; coefficients so as to render the error vector 
N . “ore E=u-— re cje@; as small as possible? In other words, how do we choose the 

  
€j’S SO as to minimize the norm of the error vector ||E||? If |E)) is a minimum, then 
so is |[E||”, so let us minimize EI? (to avoid square roots), where 

N N 

JEP =B-E= fu So ce; u— Se; 

j=l j=l 
N NV 

=uu~2) ej (ure) + Soe, (2) 
jel j=l 

and where the step 

N N 

5 Cj ej 5 Cpe; 
| | 

= (cre) +--+ + even) - (cre, +--+ + even) 

N 

1 

fo
o 
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follows from the orthonormality of the é;’s. 

  Defining u-é; = a; and noting that u-u = |u| * we may express (2) as 

~ N N - 

WEI? = 0-250 age; + Ilall?, 
j=l j=l 

or, completing the square, as 

N N 
2 2 2 2 

WEI? = So (ej ~ 03)? + Ila? — $0 a5. (4) 
j=l jal 

Observe that u and the ON set {€1,...,@,} are given so that ||u|| and the a;’s 
in (4) are fixed computable quantities: |Juj| = /u-u anda; = u-é; for j = 
1,2,...,N. Thus, in seeking to minimize the right-hand side of (4), the only con- 
trol we exercise is in our choice of the c;’s. The right-hand side of (4) is greater than 

or equal to zero,” and so is the ei (ej — aj)” term containing the c;’s. Thus, 
the best that we can do is to set c; = a; (j = 1,2,...,N). With that choice, our 
best approximation (1) becomes 

  
N 

uw S” (u-é;) 6). (5) 
j=l       

Let us summarize these results. 

  

THEOREM 9.10.1 Best Approximation 
Let u be any vector in a normed inner product vector space S with natural norm 
(|ju|] = \/a-u), and let {é,,...,@,} be an ON set in S. Then the best approxi- 
mation (1) is obtained when the c;’s are given by cj = u- 6;, as indicated in (5). 
  

EXAMPLE 1. Let S be R?, N = 1,4, = 75 (12, 5), and u = (1,1), as shown in 

Fig. |. Find the best approximation u = c,é,, that is, the best approximation of u in 

span {é;} (which is the line L). Theorem 9.10.1 gives cy = u-@, = 17/13, and hence the 
best approximation 

ae 6) unr —é,, 
13 

  

which is the vector OA in Fig. 1. 
Axis | 

COMMENT. Observe from the figure that the best approximation OA is the orthogo- 
, . . Ce ops ° Figure 1. Best approximation of 

nal projection of u onto span{e,}, which orthogonality is verified by the calculation 6 PP 
uin span {é,},   

“This fact may not be obvious due to the minus sign in front of the last summation. But remember 

that the right-hand side of (4) is equal to |||’, and surely ||E||’ > 0.
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Axis | ae thé, 

Figure 2. Best approximation of 

u in span {61, &9 }. 

AB-@ = (u~ OA)-é = (u~ @1)-@, = a ~ +. = 0. That result makes per- fect sense since if c,é is to be the best approximation to u, then the distance from the tip of u to the tip of ¢,@, (which is some point on L) should be as small as possible. That shortest distance is the perpendicular distance from the tip of u to the line L. 

EXAMPLE 2. Let S be R®, let N = 2 with @; = (1,0,0) and é, = (0, 1,0), and let u = (a,b,c), as shown in Fig. 2. Computing the coefficients in (5) as u-@, = a and u-é9 = 8, (5) becomes 

URS ae, + be. 
(7) The latter is an equality if ¢ = 0. That is, (7) is an equality if u happens to lie in span {é), é2}, but if c # 0 then the best approximation aé, + bés to u is the orthogo- nal projection of u onto span {61,62}. 

In Examples | and 2, § was R? and R3 , respectively, so we were able to draw useful pictures. In each case we discovered that the best approximation of u on the subspace 7 of S spanned by €1,...,@y was the orthogonal projection of u onto T. Is that result true in all cases? That is, is the error vector E necessarily orthogonal to 7? Since the error vector is 

N 

E=u-—S-(u-é)é;, (8) 
j=l 

we have 

N 
E-é,= |u-S°(u-e) 6] -é& 

j=l 

=u-e& — (u-€)(1) =0 (9) 
for each k = 1,2,.., , N, where the second equality follows from the fact that e;-€, = Oif j Ak and] ify =k, 

Since E is orthogonal to every one of the é,’s, it is therefore orthogonal to every vector in 7. In that sense we Say that the right-hand side of (5) is the orthog- onal projection of u onto 7, and denote it as projz u: 

N 

projp us S° (u-é,) &. (10) 
jel 

The idea that the best approximation of u in 7 is the orthogonal projection of u onto T lends a welcome geometrical interpretation to the problem of best approximation. In fact, let us rephrase Theorem 9.10.1 in terms of orthogonal projection. 

    THEOREM 9.10.1’ Best Approximation by Orthogonal Projection Let u be any vector in a normed inner product vector space S with natural norm 

  
 



9.10. Best Approximation 

(jjul]| = /u-u), and let {é;,...,@,} be an ON set in S. Denote the subspace 
span {@;,...,@v} of S as 7. Then the best approximation of u in T (i.e., of the 

form c1@1 ++ +++ en éy) is given by the orthogonal projection of u onto 7, namely, 

by proj7 u. 
  

9.10.2. Kronecker delta. When working with ON sets it is convenient to use the 

Krgnecker delta symbol 6;,, defined as 

- _f l, geek 
on = | 0, i +k (11) 

and named after Leopold Kronecker (1823-1891), who contributed to algebra and 
the theory of equations. The subscripted j and & are usually positive integers. 

Clearly, 6;;, is symmetric in its indices j and k: 

Ojk = Obj. (12) 

To illustrate the use of the Kronecker delta, suppose that {@,,...,@,} is an 

ON basis for some space S, and that we wish to expand a given u in S as 

us S > cyéy. (13) 

To determine the c;’s, dot é, into both sides, where / is any integer such that 
1<k< N, and use the fact that €; -@, = dj4 (because the e; ‘s are ON): 

N N 

a-ée = | So cy@j | ee = D0 ey (6; &e) 
j=l ie} 

N 

= S- CjOjk = Ck. 
© j=l 

Thus, cy = uy foreach & = 1,2,...,N so (13) becomes 

N 

us 5 (u- és) &. (15) 
jel 

Closure. Principal interest, in this brief section, is in the best approximation of 
a given vector u in a normed inner product vector space S in terms of an ON set 
{é,,....@y} which falls short of being a basis for S inasmuch as N < dim S. OF 

course, if N = dim S so the set is a basis, then we have the equality (15), but if 

N < dim, then the best approximation of u is given by (5), best in the vector 
sense: that is, the norm of the error vector [i.e., the norm of the difference between 
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the left- and right-hand sides of (15)] is minimized. From a geometric point of 
view, (15) says that the best approximation of w is the orthogonal projection of u 
onto the span of @,.. ,@y, which concept is explained in Examples | and 2, and 
which should be understood. In those examples we use the usual inner product 
for R” (namely, u-v = uUyvy +: ‘+ UnUn) and the corresponding natural norm 
(the Euclidean norm), but it should be understood that the results of this section 
(Theorems 9.10.1 and 9.10.1') hold for any choice of the norm and inner product, 
provided that we use the “natural norm” = f/u-u.         

  

EXERCISES 9.10 
  

1. We concluded from (4) that the best choice for the c;'S 18 

cj = a; = u- é;. Show that this same result is obtained from 
(2) by setting d || ||? /Oc; = 0, and verify that the extremum 
thus obtained is a minimum. 

2. Let S be R®, and let N = 3 with @é; = 35 (1,0, 2, 0,0), 
é = (2,0, —1,0,1), @3 = (0,0,0,1,0). Find the best 
approximation to the given u vector within span {€1, éo, é3}, 
and the norm of the error vector. 

(a) (3, —2,0,0,5) (b) (0,0, 0, 2, 1) (c) (3,0, 1,4, 1) 

(d) (1, 1,0, 1,1) (2) (0 2,0 , 0, 0) (f) (1,0, -3, 3, 1) 

(g)(0,7,0,3,0) (hy (1,2,3,4,5) (i) (5, 4, 3, 2,1) 

3. Let S be R‘, and let 

61 = Je(1,1,0,-1), @& = (i, -1, -1,0), 
e3 = og(1,0,1, 1), e4 = oq (0,1, -1, 1). 

Find the best approximation to u = (4, —2,1,6) 
within span {é,}, span {€1, €2}, span {@),@2,é@3}, and 
span {€1, 62, 3, €4}, and in each case compute the norm of 
the error vector, ||E]|. 

4. Same as Exercise 3, but for the given u vector. 

(a) (4, 1,0, ~1) (b) (3, -1, 1, 2) (c) (0, 0, 2, 5) 
(d) (1, 2, 4, 4) (e) (0,5,3,-1) (fF) (2,0, =1, -1) 
5. (Bessel inequalitv) Beginning with (4), derive the Bessel 
inequality 

  

N ce 

S>(u-8;)’ < full’. (5.1) 
j=       

Notice that if u happens to be in span {é;,...,é,}, or if 
dim S = N, then (5.1) becomes an equality. In two and three 
dimensions that equality is actually the Pythagorean theorem, 
and in more than three dimensions it amounts to an abstract 
extension of that theorem. 

6. (A different inner product) In Examples | and 2 we use the 
“usual” inner product for R", u-v = uyup +--+ UnUn, but 
that is not the only acceptable one. In Example 3 of Section 
9.6 we see that another acceptable inner product is 

UV = wy, Hee + Wattnvn, (6.1) 

where the w,’s are fixed positive constants, or “weights.” 
(a) Rework Example | using the modified inner product 
UV = 2 U1 + Ueve and its corresponding natural norm 

jul] = \/2uy + us. Show that the resulting best approxima- 
tion (12, 5), which is not the same as the best approxima- 
tion 45 (12, 5) given by (6). HINT: You will need to rescale 
€; So as to be a unit vector according to the new norm. 
(b) Whereas the error vector AB (Fig. 1) is orthogonal and 
perpendicular to span {@,}, show that in this exercise the er- 
ror vector is indeed orthogonal to span {é,}, as promised in 
the text, but nor perpendicular to it. To explain this “paradox,” 
show that for the modified inner product the orthogonality of 
two nonzero vectors does not imply their perpendicularity. 

7. Verify the last step in (14), that ee CjOjk = Ch. 

8. Verify the following, where (7, j,k, /) run from 1 to N. 

(a) S- diy = 1 (b) S° 5i;5jk = Sik 

j=l 7 

(c) S° - O55 57h Ont = Ou 

J ok 

  

  

  

|



  

Chapter 9 Review 463 

Chapter 9 Review 

We begin with the two- and three-dimensional “arrow vector” concept that is prob- 
ably already familiar to you from an introductory course in physics, where the vec- 
tors denoted forces, velocities, and so on. For such vectors, vector addition u + v, 

scalar multiplication (au), a zero vector (0), a negative inverse [—~u = (—1)ul, a 
norm ({Jul]), a dot product 

  

uv = [ul |iv]|cosé, (1) 

and the angle @ = cos! Gaia) between u and v are all defined. 
Ifa) || 

From there, we generalize to abstract n-space, where u = (ty,...,Un), by 

defining vector addition, and so on, in such a way that they agree with the corre- 
sponding arrow vector definitions when n = 2 and n = 3. For instance, 

  

m1 

u:v= SS uj, (2) 

j=l 

  

jul] = /u-u= (3) 

and u-v 
6= cos”! Imo (4) 

ull iv] 
From these definitions, we derived various properties such as 

u+tv=vet+u, (commutative) (5) 

(u+v)+w=ut+(v+w), (associative) (6) 

and so on, along with the following properties of the dot product and norm. 

Dot Product 

Commutative: uv = v-u, (7a) 

Nonnegative: u-u > 0 forall u 40 

= () for u= 0, (7b) 

Linear: (ou+ Sv)-w = a(u-w)4+f(v-w), (7c) 

Norm 

Scaling: Joull = jal jul), (8a) 

Nonnegative: ul) > 0 for all u 4 O 

= 0 for u = 0, (8b) 

Triangular Inequality: Ju-+evil < |lul) + ivi. (8c)
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To complete the extension to generalized vector space, we reverse the cart and 
the horse by elevating these various properties to the level of axioms, or requuire- 
ments. That is, we let the fundamental objects, the vectors, be whatever we choose 
them to be, and then define addition and scalar multiplication operations, a zero 
vector, a negative inverse, a dot or “inner” product (if we wish), and a norm (if we 
wish), so that those axioms are satisfied. Our chief interest, in introducing general- 
ized vector space, is in function spaces, but we will not work with function spaces 
until Chapter 17, when we study Fourier series and the Sturm—Liouville theory. 

Next, we introduce the concept of span and linear dependence, primarily so 
that we can develop the idea of the expansion of a given vector in a vector space S 
in terms of a set of base vectors for S. We define a set of vectors f{e1,...,e,} to 
be a basis for S if each vector u in S can be expressed (“expanded”) uniquely in 
the form u = aye, +--+ + apex, and prove that a set {e1,...,e,} is a basis for S 
if and only if it spans S and is LI (linearly independent). In particular, orthogonal 
bases are especially convenient because of the ease with which one can compute 
the expansion coefficients aj. The result is 

1:e Uu:e; w= (38 berber t (SEE) oy (9) 
€,:e; Cr: ep 

if the basis is orthogonal, and 

u = (u-e@;) @; +--+ 4 (ug) & (10) 

if it is ON (orthonormal); (9) and (10) should be understood and remembered. 
Finally, we study the question of the best approximation of a given vector u in 

a vector space S in terms of an ON set {€),...,@y} which falls short of being a 
basis for S. We show that the best approximation (i.e., the one that minimizes the 
norm of the error vector) is 

us (u-é@;) 6; (11) 

N 

== J 

which, in geometrical language, is the orthogonal projection of u onto the span of 
€1,...,6y. 

 



  

Chapter 10 

Matrices and Linear Equations 

10.1 Introduction 

We have already met matrices in Section 8.3.3, but they were introduced there 
only as a notational convenience for the implementation of Gauss elimination and 
Gauss—Jordan reduction. In the present chapter we focus on matrix theory itself, 
which theory will enable us to obtain additional important results regarding the 

solution of systems of linear algebraic equations. 
One way to view matrix theory is to think in terms of a parallel with function 

theory. In our mathematical training, we first study numbers — the points on a real 

number axis. Then we study functions, which are mappings, or transformations, 
from one real axis to another. For instance, f(a) = x? maps the point a = 3, say, 
on an x axis to the point f = 9 onan f axis. Just as functions act upon numbers, 
we shall see that matrices act upon vectors and are mappings from one vector space 
to another. Having studied vectors, in Chapter 9, we can now turn our attention to 

matrices. 
Historically, matrix theory did not become a part of undergraduate engineer- 

ing science curricula until around 1960, when digital computers became widely 

available in academia. 

10.2. Matrices and Matrix Algebra 

A matrix is a rectangular array of quantities that are called the elements of the ma- 
trix. Normally, the elements will be real numbers, although they may occasionally 
be other objects such as differential operators or even matrices. Some.of these cases 
will be met as we go along; for the present, however, let us consider the elements 
to be real numbers. The complex case is studied in Chapter 12. 
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Specifically, any matrix A may be expressed as 

a1 12 ct Qn, xk 

2, G92 "7+ Gan 

A= : : : , () 
: : : : 

Qmil Am "°° GQmn 

where the brackets (or, in some texts, parentheses) are used to emphasize that the 
entire array is to be regarded as a single entity. A horizontal line of elements is 
called a row, and a vertical line is called a column. Counting rows from the top 
and columns from the left, then 

21 @92 *:: Gon, and ays 

423 

Am3; 

say, are the second row and third column, respectively. Thus, we call the first 
subscript on a;; the row index, and the second subscript the column index. 

We usually use boldface capital letters to denote matrices and lightface lower- 
case letters to denote their elements. The matrix A in (1) is seen to have m rows 
and m columns and is therefore said to be m x n (read “m by n”); we shall refer to 
this as the form of A. In some applications ™m and/or n may be infinite, but here we 
shall consider only matrices of finite size: 1 <m < 00, 1 < n < oo. Furthermore. 
m and n may, but need not, be equal. If A is small we may wish to dispense with 
the subscript notation for the elements. For example, if m = n = 2, we may prefer 

a=|é a to a=| m2 | (2) 
aj, aa2 

but if A is large this becomes inconvenient. The double-subscript notation em- 
ployed in (1) is especially convenient for digital computer calculations. 

In view of the subscript notation in (1), one also writes 

A = {aij} (3) 

for short, where aj; is called the ij element andi = 1,...,m andj = 1,...,n. 
Some authors write a;,; in place of aj; to avoid ambiguity — for example, to prevent 
us from reading a1 as a-sub-twenty-one, but we will omit the commas, except 
when such ambiguity is not easily resolved from the context. 
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EXAMPLE 1. The matrices 

3-1 8 -6 0 
A=|/0 2], B=|1 38 27], and C=[8,-7,0,4,3] 

7 5 2 9 4 

are 3 x 2,3 x 3, and 1 x 5, respectively. If we denote B = {6,;}, then by, = 8, big = —6, 
b32 == 9, and so on. © happens to be a single row and it seems best to separate the elements 

by commas, but the commas are not essential. H 

Two matrices are said to be equal if they are of the same form and if their 
corresponding elements are equal. For instance, none of the matrices above are 

equal, but if D = (8, —7,0, 4, 3] then, D = C. 
One may be tempted to identify C, above, as a 5-tuple vector rather than as a 

1 x 5 matrix. That would be a bit premature since vectors are not merely objects; 
they have rules for vector addition and scalar multiplication defined, whereas our 
matrices are, thus far, just mathematical “objects.” In fact, our next step is to define 
some arithmetic operations for matrices so that they may be manipulated in useful 
ways. For vectors we defined two arithmetic operations, vector addition and scalar 
multiplication; for matrices we define three: matrix addition, scalar multiplication, 

and the multiplication of matrices. 

Matrix addition. [f A = {a;;} and B = {b,;} are any two matrices of the same 
form, say m x n, then their sum A + B is defined as 

  

A+B = {aj + bij} (4) 
      

and is itself an m x n matrix. If A and B are of the same form, they are said to 
be conformable for addition, if they are not of the same form, then A + B is nor 

defined. 

EXAMPLE 2. If 

2 0 -6 ~l1 2 0 _ 4 2 
A=| 1 5 J, B=| 5 oh and c=| 4 0 |: (5) 4 15 6 3 

then, 

1 2 -6 AsB=| 44 : |: ©) 

but A + C and B + C are not defined since A and B are 2 x 3 while Cis 2x 2. @ 

Scalar multiplication. If A = {aj;} is any m x nm matrix and c is any scalar, 

their product is defined as 
  

cA = {cai;}, (7) 
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and is itself anim x m matrix; we do not distinguish between cA and Ac. Further- 
more, we denote 

-A = (-1)A. (8) 

In place of A + (—B), we simply write A — B, and call it the difference of A and 
B, or A minus B. 

EXAMPLE 3. If A and C are the matrices in Example |, then 

  

9 3 be 
3A=] 0 6 and =~ C =[~8,7,0,-4,—-3]. H bey 

21 15 

  

We shall list the important properties of matrix addition and scalar multiplica- 
tion in a moment, but first let us define the so-called zero matrix 0 to be any m xn 
matrix all the elements of which are zero. For example, 

0 | 

oo of 79 and 0} =0, 
0 0 0 

the first being 2 x 3, the second being 3 x 1. 

  

THEOREM 10.2.1 Properties of Matrix Addition and Scalar Multiplication 
If A, B, and C are m x n matrices, 0 is an m x n zero matrix, and a, G are any 
scalars, then 

A+B =B+4A, (commutativity) (9a) 

(A+B)+C =A+(B+C), (associativity) (9b) 
A+0 =A, (9c) 

A+(—A) =0, (9d) 
a(BA) = (aB)A, (associativity) (9e) 

(a+ BJA =aA4+ A, (distributivity) (9f) 

afA +B) =aA+aB, (distributivity) (9g) 

1A =A, (9h) 

OA =0, (91) 

a0 =0. (93) 
  

The proof follows from the foregoing definitions and is left for the exercises.
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Observe that there are no surprises in (9); the usual rules of arithmetic are seen 

to apply. For the special case where A consists of a single row (or column), we see 

that the definitions of addition and scalar multiplication above are identical to those 

introduced in Section 9.4 for n-tuple vectors. Thus, we may properly refer to the 

matrices 
1) 

A= ([di1,...,@in}| and A= (10) 

Gn} 

as n-dimensional row and column vectors, respectively. 

Matrix multiplication. Judging from the rather natural way in which matrix ad- 

dition and scalar multiplication are defined, by (4) and (7), one might well expect 

the multiplication of two matrices A = {a;;} and B = {8;;} to be defined only 

if A and B are of the same form, with the definition AB = {ajzbi;}. In fact, this 

is nor the case. Instead, the standard definition of matrix multiplication is the one 

suggested by Cayley.* Called the Cayley product, it is as follows: if A = {aij} 

is any m x nm matrix and B = {bj} is any n x p matrix (so that the number of 

columns of A is equal to the number of rows of B), then the product AB is defined 

as   
Th 

AB= {So ainhyjy pe; (LSi<m, 1<j<p) (11) 
koe l     
  

that is. if we denote AB = C = {cj;}, then 
rh 

Cy = S- QiRDEj. (12) 

k= 

If the number of columns of A is equal to the number of rows of B, then A and B 

are said to be conformable for multiplication, if not, the product AB is not defined. 

NOTE: The relative forms of A, B, and their product C are important and, as stated 

above, are as follows: 

A times B = C. 

mxn nx p mx p (13) 
* A 

‘ equal “ 

EXAMPLE 4. Suppose that 

2 0 —-5 - 
13. 2 5 I 

A= | and B= ~2 3 

tie 1 0 
02 7 

  

“Arthur Cavley (1821-1895) produced around 200 papers in a [5-year period during which he was 

engaged in the practice of law. In 1863, he accepted a professorship of mathematics at Cambridge,
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he 

Then A is 4 x 3 and B is 3 x 2. Since the number of columns of A (namely, 3) is the » 
same as the number of rows of B, the product AB is defined and, according to (13), will " 
be 4 x 2. According to the definition (12), & 

QO —5 5 2 ye 

{ 3 2 5 |i 1 10 Le 
AB = — ~2 43 = =C, me ZT) i ay | 

\O7 bes 
0 2 7 3 6 e 

4x3 3.x 2 4x 2 

To compute c39, for example, (12) gives 

3 

32 = ¥ aap dyn = (4) + (D3) + (-1)(0) = 7, 
k=l ' 

3rd row 2nd column 

of A of B 

as indicated by the arrows in (14). One more: 

3 

crn =) areas = (2)(5) + (0)(—2) + (—5)(1) = 5. 
k=1 

We move across the rows of the first matrix and down the columns of the second. 

COMMENT. Observe that c32 is the dot product of the third row of A, considered as a 
3-tuple vector, with the second column of B. More generally, if AB = C = {ej}, then 
cjj is the dot product of the ith row of A with the jth column of B. Thus, the number of 
elements in the rows of A (namely, the number of columns in A) must equal the number 
of elements in the columns of B (namely, the number of rows of B). # 

EXAMPLE 5. Two more examples: 

4x3 3x1 4x1 

5 0 -1 3 (5)(3) + (0)(2) + (-1)(5) 10 
2 3 4 9 _ (2)(3) + (3)(2) + (4)(5) _ 32 
1 0 6 5 (1)(3) + (0)(2) + (6){5) ~~ 33 |’ 

090 1 , (0)(3) + (0)(2) + (1)(5) 5 
and 

2x2 2x2 2x 2 
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It is extremely important to see that matrix multiplication is not, in general, 

conunutative; that is, 
AB #BA, (15) 

except in exceptional cases. For suppose that A = m x nand B =n x p(Le., Ais 

mxnand B is nxp) so that AB is at least defined. However, BA = (nxp)(mxn) 

is not even defined, let alone equal to AB, unless p = m. Assuming that that ts the 

case, 
BA =(nxm)(m xn) =n x n, (16a) 

whereas 
AB = (mx n)(n x m) =m xm. (16b) 

Comparing (16a) with (16b), we see that we must also have m = n if AB and BA 

are to be of the same form and hence possibly equal. Thus, a necessary condition 

for AB to equal BA (i.e., for A and B to commute under multiplication) is that 

A and B both be n x n. 

EXAMPLE 6. If 

2 3 —2 3 2 3 a=(p a) B= 5 2). eft ol. 
we find that A and B commute (AB = BA), but A and C do not (AC # CA), nor do 

BandC. & 

Thus. the condition that A and B must both be n xn, for A and B to commute, 

is necessary but not sufficient. In view of the importance of which factor is first 

. and which is second in a matrix product AB, we sometimes say that B is pre- 

‘ multiplied by A, and A is post-multiplied by B so as to leave no doubt as to 

which factor is first and which is second. 

The lack of commutativity, in general, is a major setback so we must wonder 

why Cayley’s definition has been adopted rather than the simpler one that comes 

to mind, AB = {a;;b;;}, which would surely yield commutativity since BA = 

{bij ai; } = {aijbij} = AB (the second equality following from the commutativity 

of the multiplication of ordinary numbers). A sufficiently compelling reason to use 

Cayley’s definition involves the application of matrix notation to systems of linear 

algebraic equations for it turns out that, with Cayley’s definition of multiplication, 

the system of m linear algebraic equations 

yy, + ayete +t Onin = C1, 

Ggyey + Geg@g bot bh Canty, = C2, 
(17) 

Gmiey + Omaty +o F bnntn = Cm 

in the n unknowns w1,....2, is equivalent to the single compact matrix equation 

AX=C, (18)
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where 

Qiy G2 7 Ain oy Cl 

ama, QQ tt On ©9 C2 
A= / } / , k= . », and c= . . (19) 

Amt Gm2 ‘7' Gmn Ln, _ &n 

A is called the coefficient matrix, and x is the unknown; that is, its components are 

the unknowns x1,...,@,. To verify the claimed equivalence, work out the product 

Ax , and set the result equal to c. That step gives 

  

Gyre, beet bt Ain@y, Cy / 

age, tt bt Ant 69) 
3 

= . . (20) 2 

Ami Ly bees + Amntn Cm 
" 

mx mx i I 

These two m x 1 matrices (or m-dimensional column vectors) will be equal if and bes, 

only if each of their corresponding m elements (or components) are equal. Thus, 
(18) is equivalent to the m scalar equations (17), so (17) and (18) are equivalent, 

as claimed. This important result is of course a consequence of (11) and provides 
strong support for adopting that definition of matrix multiplication. 

Any n x n matrix A = {aj;;} is said to be square, and of order n,* and the 
elements a4, @22,...,@nn are said to lie on the main diagonal of A — that is, the 

diagonal from the upper left corner to the lower right corner. Notice that to be able 
to multiply any matrix A with itself, A needs to be square. For suppose that A is 
m x nj then we have 

A A 

mx n mxn 

and we need n (the number of columns in the first matrix) to equal m (the number 
of rows in the second) for the multiplication to be defined. If A is square and p is 
any positive integer, we define 

AA--A= AP, (21) ; 
Nee ae! 

p factors 

The familiar laws of exponents, 

APAL = APTT (AP)! = AP (22) 

follow for any positive integers p and q. 
  

“Thus, we distinguish between form and order: the form of anm x n matrix ism x n, the order 

of an X nm matrix is 7.
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if, in particular, the only nonzero elements of a square matrix lie on the main 

diagonal, A is said to be a diagonal matrix. For example, 

- 7 0 0 

A= | ; 2 | and B= {0 —2 0 

° 0 0 0 

are diagonal, and any diagonal matrix of order n can be denoted as 

djy OO --- 0 

0 dae 
= . ; , (23) 

0) i dnn 

where not all of the djj°s are zero,” and all of the off-diagonal elements are zero; 

that is, djj = Oif i # 7. Itis left for the exercises to show that 

diy Qos Q 

0 dbo 
p= | 4, (24) 

for any positive integer p. 
If, furthermore, d], = doy = --- = dyn = 1, then D is called the identity 

matrix I. Thus, 
10: 0 
01 / 

T= |. «| = toi}, (25) 

0 ed 

where 0;; is the Kronecker delta symbol defined in Section 9.10.2, namely, 

1 ift=y fe 8 
Od : QO if i Az. (26) 

It is sometimes convenient to include a subscript m to indicate the order of I. For 

example, 
. 1 0 0 

1 
In = ‘ , | and Ig= {| 0 1 0 

0 0 1 

  

“If all of the diagonal elements were zero as well. then a// the elements would be zero, and it 

would be more reasonable to describe D as a zero matrix, 0.



474 Chapter 10. Matrices and Linear Equations 

The key property of the identity matrix is that if A is any square matrix of the same 
order as I, then 

TA=AI= A, (27) 

proof of which is left for the exercises. In other words, I is the matrix analog of 
the number 1 in scalar arithmetic! From the first equality in (27), we see that one 
case in which commutativity does hold is when one of the matrices is the identity 
matrix I. 

Finally, it is convenient to extend our definition of AP [recall (2 1)] to the case 
where p = 0. If A is any n x nm matrix, we define 

A° =I, (28) 

where Tis an n x n identity matrix. 
Perhaps we should take a moment to mention that whereas the identity matrix 

Tis necessarily square, the zero matrix O is simply m x n, not necessarily square. 
It is readily verified that 

OA=0 and AO=0O (29) 

for any matrix A. In the first of these equations, suppose that the O on the left is 
m x nand that A is n x p. Then the O on the right is m x p; that is, it is not 
necessarily of the same form as the one on the left. 

In view of the general failure of commutativity, as stated in (15), we may well 
wonder if any other familiar arithmetic rules fail to hold for the multiplication of 
matrices. The answer is yes; the following rules for real numbers (a,b,c) do not 
carry over to matrices: 

ab = ba (commutativity). 

Ifab = acand a # 0, then b = c (cancellation rule). 
If ab = 0, then a = 0 and/or b = 0. 

Ifa? = 1, thena = +1 or —1. B
Y
 
>
 

To add emphasis, we state these difficulties as a theorem. 

  

THEOREM 10.2.2 “Exceptional” Properties of Matrix Multiplication 

GQ) AB # BA in general. 

(ii) Evenif A 40, AB = AC does not imply that B = C, 
(1) AB = 0 does not imply that A = 0 and/or B = 0. 
(iv) A® = I does not imply that A = +I or —I. 
  

The first of these has already been discussed, and the others are discussed in the 
exercises. Theorem 10.2.2 notwithstanding, several important properties do carry 
over from the multiplication of real numbers to the multiplication of matrices:
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THEOREM 10.2.3 “Ordinary” Properties of Matrix Multiplication 

If a, 6 are scalars, and the matrices A, B, C are suitably conformable, then 

(aA)B = A(aB) = a(AB), (associativity) (30a) 

A(BC) = (AB)C, (associativity) (30b) 

(A+ B)C =AC+BC, (distributivity) (30c) 

C(A +B) =CA+ CB, (distributivity) (30d) 

A(aB +8C) =aAB+ GAC. (linearity) (30e) 
  

Proof is left for the exercises. 

Partitioning. Let us close this section with a discussion of the partitioning of 

matrices. The idea is that any matrix A (which is larger that 1 x 1) may be parti- 

tioned into a number of smaller matrices called blocks by vertical lines that extend 

from bottom to top, and horizontal lines that extend from left to right. 

EXAMPLE 7. Partitioning. 

  

  

2 0 -3 2 0] -3 
5 5 7 5 9 7 Ai Ai 

Azl* = = ~ = | Ao, Ago i, (31) 1 3. 0 1 3! 0 AL A. 
04 6 0 4) 6 Shae   

where the blocks are 

2 0 -3 < 
Au=| 5 >|: Aw=| 7 |; Aa = [1,3] Ago = [0), 

and so on. Clearly, the partition is not unique. In the present example we could also have 

set 
2 0 —-3 2/0} —3 

5 2 7 5 | 2 7 
A= 13 ol =11/3 9 |= [Aii, Ara, Ausl, (32) 

O 4 6 O | 4 6 

say. Hi 

While the matrices used here as illustrations are kept small for convenience, 

those encountered in modern applications may be quite large, for example 600 x 

800. Even with modern computers such large matrices create special computational 

problems, and it is often advantageous to work instead with a number of smaller 

matrices through the use of partitioning. Such advantages might well prove illusory, 

however, were it not for the fact that the usual matrix arithmetic can be carried out 

with partitioned matrices.
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Specifically, tf A and B are partitioned as 

Ai Ai <-> Ain Bu Bir --- Big 

A=; i: and B=]: : Sf, 
Ami Am2 ott Amn Bot Bp oe Bog 

(33) 
then 

aAdi aA nee aAin 

aA = : ; (34) 

aAm, @Am2 +: Amn 

ifm = pand mn = q and each Aj; block is of the same form as the corresponding 
B,,; block, then 

Aut+Biy Aiw+Big «+ Ain+ Bin 

A+B= : : : > (35) 
Ami + Bni Am2 + Bm2 ue Amn + Bunn 

and if n = p and we denote AB = C, then 

Ci = S° AirBrj, (36) 
k=l   

provided that the number of columns in each Aj, is the same as the number of rows 

in the corresponding B;,;, so that the products in (36) are defined. 

Verification of these three claims, (34) to (36), is left for the exercises. 

EXAMPLE 8. If 

    

A= ~f an a | a 
ane 0 1] 8 

B=|2 —4]|-1 =| 5. Be | (38) 

then 
AnuBu+Aw2Be: AnBi2+ AmB | 

AB= Ao Bi, + Ag2Bo, An Big + AooBro 

Working out the the elements, 

2 4)f0 1 Ll. 
AnBu + ABu =| Ils alt[o [os
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0 1 . 
Ao Bi + Av2Ba = [5,4] 2 —4 | + [6][5, 8] 

= (8, —11] + [30, 48} = [38, 37], 

and 

sO 

(39) 

  

which is the same result as obtained by the multiplication of the unpartitioned matrices A 

and B. 

COMMENT |. By no means do we claim that partitioning made the preceding calculation 

easier; our aim was simply to illustrate the idea of partitioning. 

COMMENT 2. The partition 

Be _ | Bu Biz | (40) 

  

in place of (38), would also be conformable with (37) for the multiplication AB and would 

lead to the same result, (39). On the other hand, neither of the partitions 

or (41)    
would be conformable with (37) for the product AB. For example, the term A;,By, would 

not be defined then since Aj; has two columns whereas the By,’s in (41) have only one 

row. & 

Let us close by giving two results, for reference, that will be used later on. 

Both use partitioning to work out the product of two matrices, A and B. First, if 

we partition B into columns cy,..., Cn, then 

AB=Alc,.... Cy) = [Acy,..., Ach). (42)
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Second, if we also partition A into rows ry,...,Tm, then 

ty PyeCy crs Py ey 

AB=| : | [e1,...,€n) = ; : , (43) 

Im Tm'C1 c++ Pm Cn 

That is, the 7, 7 element of AB is r; dotted with c;. 

Closure. We define matrices and three arithmetic operations or matrices: addi- 
tion, multiplication by a scalar, and multiplication. Subtraction is accounted for by 
addition and multiplication by a scalar: A ~ B = A + (~—1)B. But no division 
operation is defined for matrices. 

It is emphasized that multiplication is not commutative (.e., AB #4 BA in 
general). This “failure” and several others are listed in Theorem 10.2.2. It is sug- 
gested that these shortcomings of the Cayley definition of matrix multiplication are 
more than offset by the fact that it permits us to express a system of mm linear alge- 
braic equations in the mn unknowns 21,..., 2p in compact matrix form as Ax = c. 

Computer software. As mentioned in Section 8.3, the Maple system contains 
many linear algebra commands within the linalg package, among which evalm is 
especially useful. For instance, to evaluate (AB)?P? ~ 5Q, where 

12 1-1 11 1-1 s=[pa) B=fo a} P=[i i} e=[2 3]; 
first enter 

with(linalg): 

and return. Then enter 

A := array ([[1, 2], [3, 0]]): (44) 

and return. (If you wish the A matrix to be printed, type a semicolon in place of 
the final colon.) Similarly, for 

B := array ({[/1, —1], (0, 2)]): (45) 

P := array (([1,1],/1,1))): (46) 

Q := array ([/1, —1], (2,3): (47) 

Then enter 

evalm ((A & * B)°2 &*« P°3 ~ 5 * Q); 

and return. The printed output is the result 

ti 21 

38 33 
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Note that matrix multiplication of A and B is denoted as A&* B (not A * B), 
exponentiation to a positive integer power is denoted with *, and multiplication of 
a matrix by a scalar is denoted by «. If we want ((AB)?P? — 5Q)4, we can use a 

P ii 24 
quotation mark to carry the matrix 38 33 | forward. Thus, enter 

evalmC’*4), 

and return. The result is 

2389489 2592744 

4691632 5105697 

Alternative to the array format indicated above, we can use a matrix format. 

For instance, 
A :== matrix (2, 2, [1,2,3,0]): 

is equivalent to the array format shown above, where the “2, 2” denotes that A is a 

2x 2 matrix. 

  

EXERCISES 10.2 
  

1. Given the matrices 4. Suppose that A ism x n,xism x 1. and cis a scalar. Can 

0 ; we re-express AX = cx as (A — c)x = 0? Explain. 
: - 5 

A=]2 -5 |, B= > | - 1¢ . . 
1 10 0 2 5. If A and B are square matrices of the same order, are the 

following correct? Explain. 
4 - 

x 3 | , y=l-l,2), 

work out whichever of the products AB, BA, Ax, xA, Bx, 

xB, yB. A, B®. x’. xy, and yx are defined. 

2. Let A be 6 x 4, Bbed x 4, C be 4 x 38, Dand Ebe 3 x 1. 

Determine which of the following are defined, and for those 6. (a) If p is a positive integer, does A need to be square for 

(a) (A +1 B)? = A?4+2AB+ B 
min B)(A — B) = A? - 

c) (AB)? = A2B? 
d(A B)? - A%B3 

that are, give the form of the resulting matrix. A? to be defined? Explain. 

‘@ Ale (b) B!° (b) Let A be m x n and B be p x q. What restrictions, if any, 

c) ABC (d) ABCD need must be satisfied by m,n. p,q if (AB)® is to exist (Le., 

io ACBD ()CD+E be defined)? 

(g) C(2D — E) (h) AB + AC 
( BC +CB (j) 3BA —5CD 7. Expand each of the following [e.g., the “expanded” version 

3, Evaluate the products . of (A + B)C would be AC + BC], assuming that all of the 

10 0 1 9 3 matrices are suitably conformable. Justify each step by citing 

9 2 0 4 5 6 and the relevant equation number in Theorem 10.2.1 or 10.2.3, 

0 0 3 7 8 9 

1 2: 1 0 0 

15 6 0 2 0 (a) (2A + B)(A + 2B) (b) (A + B)C(D + E) 
7 8 9 0 0 3 (c) (A+B)? (d) (A — 31)(2A +4)
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8. Given A = | i |B =| 6 ii fe=(e i | 

0 | 7 
andD= | 0 0 8 |, evaluate each of the following. 

0 0 0 
(a) A100 (b) B10 
(c) C100 (d) D100 

(e) (ABC)* (f) (CBA)? 

(2) B'C* and (BC)! (h) CBS and (CB)? 

9. Any diagonal matrix whose diagonal elements are ail equal 

is called a scalar matrix. If 

k 0 0 
0 & 

S= 

0 ek 

ism xn, and A is any 2 x nm matrix, show that 

AS =SA=kA. 

What can be said if, instead, A ism x n (m #4 n)? 

wy 

10. If for any given vector x = , the product Ax is 

U4 

the column vector given below, find A. 

La +3 — La 
1) ~ 3a4 (b) ° 

(a [2 mt 7 ry + 5x3 

Uy + Le 20, —- U3 — La 

(c) | vo + 03 (d) 24, +29 

r3 + lq Lo+ v4 

zy + 3x4 
C4 

Vy — U4 
v3 - 

{e) | (f) | wg + avy 
wy 

va 
x : 

\ v3 —~ 224 

11. Make up a specific pair of matrices, A and B, both 

nonzero, such that AB = 0, where 

(a) Ais 2 x 2and Bis 2 x 

(Dy ANS » x 2 and Bis 2 x 

(c 
( 

E
n
 

bo
 

) Ais 1 x 2and Bis 2 x 

ty A ied 3and Big3 x2 

12. Given the partitioned matrices A and B, below, carry out 

the products A? and AB for those cases in which the parti- 

lioning is suitable. i.e., conformable. If the partitioning is not 

suitable, explain why it ts not. 

Nw
 

    

    

  

2 QO} -1 

(jgA=] tl —tl 0 |, 

5 2) 4 
2 Oj}; —-1 

(b)A=] 1 -1) 0 

5 2 4 

2 0 1 

()JAz=f}| i] —-l OO}, 

5 2 4 

13. Show that c,x 1 + cg9X9 + +++ + pX» can be expressed in 

the form 
Cy 

[x1, Xe, te Xn 

Cn 

14. (a) If two unpartitioned matrices are not conformable for 

addition, can they be rendered conformable by suitable parti- 
tioning? Explain. 

(b) Same as part (a), but for multiplication, 

15. If there is some positive integer p such that A? = O, then 

A is said to be nilpotent (mnemonic: ‘potentially nil’). A 

square matrix A = {a,;} such that aj; = 0 for alli > j is 
said to be an upper triangular matrix; ifa;; = 0 foralli < j, 

then A is a lower triangular matrix. A matrix is said to be a 

triangular if it is either upper triangular or lower triangular. 

(a) Every upper triangular matrix with null main diagonal (so 

that aj; = 0 for alli > 7) is nilpotent. Verify this result for 

second-, third-, and fourth-order matrices. 

(b) In fact, show that every upper triangular matrix (of finite 

order) with null main diagonal is nilpotent. HINT: Use parti- 
tioning and induction. 

(c) Is every lower diagonal matrix with null main diagonal 
nilpotent? Explain. 

(d) If AP = 0, show that (I+ A+A?+-..+4 
(I-A)T+A+A°4---4 AP) =D. 

16. If A* =I, then A is called involutory. 

to 10.2.3 and (27), that A is 

AP-!)([-A) = 

(a) Show, using Theorems 10.2.1 

involutory if and only if 

(I-A)(I+ A) =0. 

(b} Give an example of an involutory matrix other than I and 

—I. Thus, observe that A? = I does nor imply that A = +1. 

(c) Determine the most general 2 x 2 matrix that is involutory. 

17. (a) Prove (9a) to (9c), 

(b) Prove (9d) to (9f). 

(c) Prove (9g) to (91). 

18. In Theorem 10.2.2, prove 

   



  

(a) (i) (b) Gi) (d) (iv) 

19. (a) Verify (24). 

(b) Verify (27). 
(c) Verify (0a) and (30b). 

(d) Verify (30c) and (30d). 

(e) Show that (30e) follows from (30a)—(30d). 

(c) Gii) 

20. Show that the most general matrix that commutes with 

1 2 r~G 20/0 . 
l ~ | is aa A 23/3 , where a and f are arbitrary. 
3044 B a 

21. Given A. find the most general matrix B= such that 

AB = 0. 

1 2 ar) wae[22] wa-[2 3] 
0 0 2 3 

@A=| 5 5 (d)A = 5 | 

22. Explore and discuss the advantages and disadvantages of 

defining ci; = a;;b;; in place of the Cayley product (13). 

23. (Transition probability matrix) Selling their valuables, 

professors A and B raise $2 apiece, and proceed to match 

coins at $1 per match. There arise five possible states: 

5 1 So S 3 Ss 4 Ss 

O04 138° 22 31 40 

for example. A has $1 and B has $3. 

Ci is bankrupt in state S), B in state S5), 

In state So, 

player is bankrupted ( 

the game is over. Let D,, ’ be the n- step transition probability, 

ie., the probability of changing from state S; to state Sj inn 

matches. For n = 1 we see that 

1 0 0 0 0 
£0 $ 0 0 

yfyf W 0 yd Psp p=} 0 5 0 3 0 
0 0 $4 0 % 
0 0 0 0 1 

If either 
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For example, beginning in Sz, say, one match will necessar- 

ily move us to Sy or Sg, with 50% probability in each case; 
GQ) 4) ol thus pyy = pyz = 5. Precisely $1 will change hands so 

that py) = = po = ps = 0. Further, once in S) (or 

Ss) we remain there (according to the rules), so pi = 1, 

pi) = = pl) = = pp = = pie = Q. Show, by any convincing 

arguments or discussion, that 

3 @ 
= Sool py ’ pe ys <5 pl , etc, 

ke k= 

or, in matrix notation, P@) = [P{)]?, PO) = (PM), etc. 
Use this result to determine P® and P‘). What is the proba- 
bility that A is bankrupt after (at most) three matches if A starts 

with $2? $32 $1? NOTE: P“) is an example of a Markov 

matrix. We meet Markov matrices again in Chapter 11. 

24, Let 

2 -1 
A=/3 0 B= Soa ce | 

1 4 so" 

9 1 -1 Loe 

C=|2 0 7], F= } : | . 
0 4 6 

NOTE: The letters D, FE, 7,O,S, and W are “protected.” in 

Maple, for other purposes. The problem: use computer soft- 

ware to evaluate 

(a) 6AB — 9C (b) (AB)? +5C? 
(c) 6AFB ~— 2C° (d) 4BAF 
(e) (BCAF)! 
(g) (CAB)? 

(f) 2CA 4+ 87.3A 

(h) 0.73BA + L.6F6 

  

10.3. The Transpose Matrix 

We continue the development of Section 10.2 by introducing the * transpose” of a 

matrix. Given any m xn matrix A = {aij}, we define the transpose of A, denoted
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as AT and read as “A-transpose,” as 

G11 Ga, cts Omi 

T . a2 G22 "** ame 

Av Stais=] oo... | (1) 

Gin Gan °7*  Gmn 

that is, the m x m matrix is obtained by interchanging the rows and columns of A: 

the first row of A becomes the first column of A‘, the second row of A becomes 

the second column of A‘, and so on. Or, the first column of A becomes the first 

row of AT, and so on. That is, if we denote the i,j elements of A and At as ij 
4 TO paenecti and a5, respectively, then 

i 

ary = Gj. (2) 

Be clear that A? is not A to the T'th power; it is the transpose of A. 

EXAMPLE 1. If 

  

2 0 1 2 

A=j]-1 3 5|, B=; 6], and C=[1,-8,9], 

4 6 7 7 

then 

2 -l 4 . 1 

At=|10 3 6 Bt =(2,6,7], and Chb=j|} -8}. 8 
1 5° 7 9 

THEOREM 10.3.1 Properties of the Transpose 

(A*) Ts A, (3a) 

(A+B)'=A'T+BI, (3b) 

(aA)? =aAt, (3c) 

(AB) =BtA™, (3d) 

where it is assumed in (3b) that A and B are conformable for addition, and in (3d) 

that they are conformable for multiplication. 
  

Proof: Proof of (3a)—(3c) is left for the exercises. To prove (3d), let AB = C = 

{cej;}. By the definition of matrix multiplication, 

Ciy = Ss” Lik Dh js (4) 

k= 

 



  

10.3. 

Thus, 

= Cy = > ajp Oki = > beidjk = = st teh (5) 

k=l 

Having returned, at the end of (5), to the pattern ()ij = S>()ia( aj as in (4), we 
can conclude from (5) that 

c'=B'AT or (AB)'=B'A?, 

as was to be proved. Understand that the third equality in (5) is not equivalent to 
the matrix statement AB = BA which, we recail from Section 10.2, is generally 

untrue. It is simply the scalar statement that ajpbp; = bpiajpx, Which is true because 
Q the multiplication of scalars is commutative [e.g., (2)(3) = (3)(2) = 6]. # 

The striking feature of (3d) is the reversal in the order: (AB) on the left, 

BT AT on the right. Notice how (3d) checks “dimensionally”: 

[(m x n)(n x p)}* = (nx p)*(m x nj 

(m x p)' =(p x n)(n x m) (6) 

(p x m) = (p x m). 

Naturally, (6) does not prove (3d), but it provides a useful check, just as we check 
the physical units (such as force, mass, length, and time) of an equation to be sure 

that they are consistent. 

  

. 6 
EXAMPLE 2. If A fo2 5 and B QO | , say, then 01 3 4 

AB=| 4 2 >? 5 -| 7% AB 29, -3 

and 

in agreement with (3d). 4 

Furthermore, it follows from (3d) that 

(ABC)? =C™BTAT, (ABCD)’ = D'CTBTA', (7) 

and so on (Exercise 2). 

The Transpose Matrix 483
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Using lowercase boldface letters for matrices that happen to be column vectors 
from now on, let 

vy Y. 

x= : and y= : 

Ln Yn 

Then the standard dot product 

  

rh 

KY = VY +b Layee b Lnyn = S° UUY i 

  

jel 

can be expressed compactly, in matrix language, as* 

xX-y =x'y (8)       

or, equivalently, as y’x, although not as xy" or yx", which expressions represent 
nx nm matrices! 

EXAMPLE 3. Ifx = 3 | andy = ° [soy then 

2 

or 

x y=y'x=(5 2I : | =15+4+2=17 

whereas . 

yt =| 7 |=] 72 » | Ay. 
and 

Finally, two more definitions: if 

Ab=A (9) 
we say that A is symmetric. and if 

Al=~—A, (10) 
  

*There is a small difficulty here: x -y is to be scalar, whereas xy is al x 1 matrix. Thus, what 

we really intend, by xy in (8). is not the L x 1 matrix, but rather the scalar element inside it. That 

could be noted by writing x+y = (xT y)1; instead, but it will be simpler to leave (8) intact. with the 

understanding that the right-hand side is a scalar.
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we say that it is skew-symmetric (or antisymmetric). Por either of these properties 
to apply A must be square, since otherwise A™ and A would be of different form. 
And for A to be skew-symmetric all of its diagonal elements must be zero, since 
(10) implies that aj; = ~—a,;, or if we sett = J, ay = —ajj; thus 2a; = 0, so 

aj; = O for each 2%. 
It would be reasonable to imagine that the likelihood of encountering purely 

symmetric or skew-symmetric matrices in applications would be slim. On the con- 
trary, we shall see that symmetric matrices arise frequently, and that their symmetry 
is often a consequence of fundamental physical principles, rather than chance. 

Closure. The key points in this section are the defining of the transpose of any 
matrix, and the results (AB)’ = BTA? and x-y = x'y (or y'x). Note that 
the transpose notation is sometimes used to save space. For instance, it takes less 

. oP 7 
vertical space on the page to write x? = [7,2] than x = 2 |: 

Computer software. The relevant Maple function, to take the transpose of a matrix 
A, is the command transpose, within the linalg package. For instance, to obtain 

1 2 3 
. | enter 

4 5 5 | 
the transpose of A = 

with(linalg): 

to access the transpose(A) command. Enter 

A v= array([[1, 2.3], (4.5, 6])); 

and return, then enter 

transpose(A); 

and return. The output is 
1 4 

205 

3.6 

  

EXERCISES 10.3 
  

1. (a) If x = [3,-3]7 andy = [1, 2)", work out xy and not sufficient) condition for equality to hold is that both A and 
xy! _ / B be square and of the same order. Perhaps a sufficient condi- 

(b) Lf X= A, ~d, 0] Y and y = (1,2, 3] work out x Cy and tion is that A and B both be of the same order and symmetric. 

xy!, Prove or disprove this hypothesis. 
fx = [0,4,—-2,1)8 ¢ = [ —2)" work qT va a PoP ach a: . (co) x (0,4, -2.1)¢ and y = (3.0, 1. —2]". work out x" y 4. Verify (ABC)" = CTBTAT directly, for 

and xy’. 
m9 

2. Show that (7) follows from (3d). ° ° | @mA=]o0 1).B=/ 2 |.c=[3,1,2,9 
3. Recall that in general AB #4 BA, and that a necessary (but 1 3 (
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I 2 0 0 (b) A = - A jB=| 

B 

4 -1 5 

5 1 ie 3 >| 
~2 | 4 

= 6 4 c=] | 

1 0 2 
wa=| 4 1 i |: 

(c) A = [5, 3, 0, 

0 1 

5. Prove the properties (3a), (3b), and (3c). 

6. Even if a (square) matrix is neither symmetric nor skew- 
symmetric it can be decomposed as the sum of a symmetric 
matrix and a skew-symmetric matrix. Specifically, writing 

A= }(A+A7) + 4(A-— AT) 
A + Aa, (6) i 

show that Aj is symmetric and Ay is skew-symmetric. NOTE: 
Equation (6.1) is but one such decomposition. For instance, we 
saw in Chapter 9 that a vector v in 3-space can be decomposed 
into the sum of two vectors, one lying in a given plane (the 
“projection of v” onto that plane) and the other perpendicular 
to that plane; when we study vector fields we will see that any 
vector field can be decomposed as the sum of two fields, one 
irrotational and the other solenoidal; when we study Fourier 
series we will see that any function f(z) can be decomposed 
as the sum of two functions, one even and the other odd: and 
so on. Thus, such decompositions are not uncommon in math- 
ematics. 

7. Decompose the given matrix as the sum of two matrices, 
one symmetric and one skew symmetric, as explained in Exer- 
cise 6. 

3 2 1 2 
| | =| wy | “| 

1 0 8 —2 o> 0] [4 0 | 
9 8 7 I 0 1 

(fe) | 6 5 4 ()} 2 -1 0 

3.2 é4 3 0 6 

8. (Quadratic forms) The quadratic function ax? + by? + CLY 
is said to be a quadratic form in x and y, ax? + by* + cz? + 
dry + exz + fyz is a quadratic form in x,y, z, and so on. 
Every quadratic form in the n variables x1,..., 2%, can be ex- 
pressed, in matrix notation, as x Ax, where A is a symmetric 
nm Xn matrix. For each given quadratic form, determine the A 
matrix. NOTE: Quadratic forms will be important to us in 
Chapter I 1. 

(a) 6x7 + rs —~ 8x 22 in £1,229 

(b) ry ~ 3x3 + 62122 

(c) dx? + xe _ xa + 8x, 0q + 3x, 23 — 22923 

(d) vi _ 4a? + 24123 — 10rex3 

(e) 3x3 + rh ~~ 62123 N21, £2,253 

(fat tak +03 +223 + e104 + 29x35 

inv}, 29 

IN Ly, 29,23 
in X1, 02,23 

in U1, 29,23, 24 

9. Show that if A is an m xn matrix, then AAT is symmetric. 
HINT: There is often an inclination to work out a problem like 
this using “brute force,” i.e., by actually writing out the A and 
A™ matrices, multiplying them, and examining the resulting 
matrix to see if it is symmetric. Whenever possible, we ad- 
vise against such an approach. In this problem, for example, 
we wish to show that C’ = C, where C is short for AAT; 
i.€., we wish to show that (AAT)T = AAT, and this can be 
done (in one or two short lines) using the properties stated in 
Theorem 10.3.1. 

10. Prove that the product AB need not be symmetric, even if 
A and B are both symmetric and of the same order. 

11. Let 

4 1] 2 1 —-4 2 

A=| 4 5 : |: B=| 1 if 

Use computer software, such as Maple, to evaluate 

(a) ABT (b) BAT 
(c) (AB*)® (d) (BAT)? _ 

(e) (BTA)§ () 2A7 —~ 7.3B"7 

  

10.4 Determinants 

In this section we introduce a scalar quantity associated with every square matrix, 
the so-called “determinant” of the matrix. We denote the determinant of ann x n 

   



  

matrix A = {ajj} as 

yy GQ 0 Ain 

G21 a2 +7" G2n 
dettA =| | |, (1) 

G@n{ Un2 ‘'' Gnn 

that is, with straight line braces instead of square brackets. Determinants are promi- 
nent in Chapter 3 in connection with the linear dependence or independence of sets 
of functions. especially with sets of solutions of linear homogeneous differential 
equations. More generally, they play a key role in the theory of systems of linear 

algebraic equations, as discussed in Section 10.5. 
The determinant of ann x nm matrix A = {aj;;} is defined by the cofactor 

expansion 
  

rm 

detA = S| ajpAjk, (2) 

1       

where the summation is carried out on j for any fixed value of k (1 <k <n) or 
on k for any fixed value of j (1 <j <n). Aj, is called the cofactor of the ajx 

element and is defined as 

Ajk = (-1)** Mix, (3) 
where Myr, is called the minor of ajx, namely, the determinant of the (n — 1) x 

(n — 1) matrix that survives when the row and column containing aj, (the jth row 

and the Ath column) are struck out. 

For example, if 
4 7 —2 

Az=/]0 3 21, 

15 6 

then 

. 3.2 | , {0 2 _ [4 7 
Afi, = 5 6) Mia =| | 6 |? and Mex = || 5 

    

  

Thus, if A is m x m, then the right-hand side of (2) is a linear combination of 

n determinants, each of which is (rn — 1) x (nm — 1). Each of these, in turn, may be 

expressed as a linear combination of (n — 2) x (nm — 2) determinants, and so on, 

until we have a (perhaps large) number of 1 x 1 determinants. Thus, the definition 

(2) is logically incomplete until we define a 1 x 1 determinant, which we do as 

follows: 
det | O11 | = | Qt |= Qi. (4) 

That is, the determinant of a 1 x 1 matrix [ 41 | is simply ay, itself. CAUTION: 

In the present context, the braces around aj1, in the middle member of (4), denote 

determinant, not absolute value. For instance, det{—6] = |—6) = —6. 
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Using (2) and (4), let us work out the determinant of any 2 x 2 matrix. Recalling 
that we can sum on 7 with k fixed, or vice versa, let us sum on kt with j = 1, say. 

Then 

ai, 12 

det = = tip Arg 
“ a1 22 | D G1kALk 

= ay An + aA = an(-1) Mir + a1a(-1) Mig 
= aj1(+1) fa29| + ay2(—1) Jat] 

== 141492 ~ 412091, 
(5) 

2 
G11 42 

aa, 499 

    

which result is probably familiar to you from earlier studies. Observe that the 
(—1)9+4 in (3) is simply +1 if 7 + / is even, and —1 if j + k is odd 

EXAMPLE 1. Let 
0 2 -1 

A= |4 3 a (6) 

2 0 —4 

Using (2) with 7 = 1, say, 

3 

detA = S° aipArk = 411 Ar + a12A12 + A13A13 
k=l 

= ayy (+1) Mis + ayo(~—1)Mi2 + ai3(+1l) Mis 

= ay My ~ a12My2 + aig Ms 
i 

  

  

i335 4 5 | 14 8 

=D) 9 {| 2 pity 2 5 | 
= 0 — (2)(=16 = 10) + (-1)(0 — 6) = 58. 7) 

This particular choice (7 = 1, summing on k) is said to be cofactor expansion about the 

first row since (7) is the sum of the first-row elements a11,@12,@13, multiplied by their 

cofactors. 

According to (2), we can expand about any row or column. Let us illustrate that the 

same answer is indeed obtained if we expand about other rows or columns. 

Expansion about second row [i.e., set 7 = 2 in (2), and sum on ki}: 

detA = Ss? Gop Aon = 091 Ao, + ag9Aa9q + a93A3 

k=l 

= doi(— 1) B1o4 + a2o{+1)Moe + a23(— 1) Adto3 

2 —-1 | 3)| 0 -1 | 0 2 
=-(0)| j wana | 4 {7/9 2 | 

~8) + (3)(2) — (5)(—4) = 58, 

    

| | 
_~
 

Se
 

again. 

   



  

Expansion about third column (k = 3, sum on J): 

3 
detA = S° ays Aja = Qi3Aig + G23 deg + A33 Ags 

j=l 
= aig(+1) Mig + (93 (— L)Mog + ag3(--1) Adg3 

. 0 2] 0 2 
=(-1)| 2 0 2 0 + (4 43 | 
= (~1)(-6) ~ (5)(-4) + (-4)(-8) = 58, 

    

once more. E 

Since we may expand about any row or column, it is convenient in hand cal- 

culations to choose the row or column with the most zeros in it since those terms in 

the expansion then drop out, 
Notice carefully that for large n the cofactor expansion process is exceedingly 

laborious. Even if m = 10, say, which is still quite modest, (2) gives a linear com- 
bination of ten 9 x 9 determinants. In turn, each of these ten is evaluated as a linear 
combination of nine 8 x 8 determinants, and, so on! Let us see just how serious 
this predicament is. For estimating purposes, let us count each multiplication, ad- 
dition, and subtraction as one “calculation.” It can be shown (Exercise 18a) that the 

number of calculations N(m) required in the evaluation (by cofactor expansion) of 

an 7m x mn determinant is 
N(n) ~ en! (8) 

as mn —+ oo, where e & 2.718 is the base of the natural logarithm, and n! is n 
factorial. If each calculation takes approximately one microsecond, then some time 
estimates are as follows. (Before reading on, we urge you to guess how long such 
a computer would take to evaluate a 25 x 25 determinant.) 

  

  

n Computing Time 

5 0.0003 sec 

10 10 sec 

15 4x 10° sec = 40 days 

2 7x 10! sec = 210,000 years 

25 4x 10! sec = 10!” years 
  

{tis interesting that faster computers offer no hope. For instance, even a com- 
puter that is a million times as fast would still take around 10° years to evaluate a 
25 x 25 determinant. And scientific calculations can easily involve determinants 

that are 250 x 250. 
It is tempting to conclude that “determinants are worthless,” but let us see if 

we can come up with a more efficient algorithm than the cofactor expansion. A 
logical starting point is to first determine the various properties of determinants so 

that we can use them to design a better algorithm. 
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First, we need to introduce the idea of a “triangular” matrix. A square matrix 
A = {a,j} is upper triangular if a;; = 0 for all 7 < 7 and lower triangular if 
aij = O forall 7 > 7. That is, 

Qi. a2 ++: Gn ay OQ -- Q 

0 age a2, a2 
and . . . (9) 

0 nt Gan On ts Gnn 

are upper triangular and lower triangular, respectively. If a matrix is upper triangu- 
lar or lower triangular it ts said to be triangular. 

Here are the properties that we will need. 

PROPERTIES OF DETERMINANTS 

D1. If any row (or column) of A is modified by adding a times the corresponding 
elements of another row (or column) to it, yielding a new matrix B, then 

detB = detA. 
Symbolically: vj; + rj + arg 

D2. If any two rows (or columns) of A are interchanged, yielding a new matrix 
B, then detB = —detA. 
Symbolically: vj ++ Tp 

D3. If A is triangular, then detA is simply the product of the diagonal elements, 

detA = @11002--- Ann. 

  
Of these, D3 is easily proved. For consider the general upper triangular matrix 

in (9), Doing a cofactor expansion about the first column gives aj, times an (n — 

1)x(m—1) minor determinant, which is again upper triangular. Expanding the latter 
about its first column gives agg times an (n —2) x (n— 2) minor determinant, which 
is again upper triangular. Repeating the process leads to detA = a 1@92°°* Gnn. 

Similarly for the general lower triangular matrix in (9), except that in that case we 
expand about the first row, repeatedly, rather than the first column. 

Let us illustrate the use of the properties D{—D3 instead of the cofactor expan- 

sion. 

EXAMPLE 2. Consider the A matrix of Example | again. 

0 2 1 P 0 —4 | 
dettA =| 4 3 5 }=-| 4 3 5 | 

2 0 -4 (0 2 -1 | 
2 0 —-4 20 4 | 99 

=~|/0 3 13)/=~-/0 3 18 | = ~(2)(3) (-3) = 58 
0 2 -1 0 0 —22 | 3 

as obtained in Example 1. In the second equality we interchanged the first and third rows 

(rt, “ Ye), thereby changing the sign of the determinant (D2) so we compensated by



  

putting the minus sign out in front. In the third equality we modified the second row 

by adding —2 times the first row to it (re — rag — 2r,), which step left the determinant 

unchanged (D1). {n the fourth equality we modified the third row by adding ~ 4 = times the 

second row to it (v3 > r3 — 219), which step left the determinant unchanged (D1. Since 

those steps produced a triangular matrix, we could then use D3. 

The point, then, is to use some combination of D1 and D2 steps to reduce the 

determinant to triangular form, in which case it is evaluated easily by D3. Of course 

the method is quite similar to Gauss elimination, described in Section 8.3. For in- 

stance, compare D1 and D2 with the first and third elementary equation operations 

listed in Section 8.3. For reference purposes, we will call the method illustrated in 

Example 2 the method of triangularization. 

It is hard to tell, from the 3 x 3 calculation in Example 2, whether the method 

is more efficient than the cofactor expansion. However, in Exercise 18b it is shown 

that using triangularization the number of calculations N(n) is 

In 
  N(n) ~ (10) 

as 2 —> oo. Again assuming one microsecond per calculation, (10) gives a comput- 

ing time of around 0.005 second for n = 20 and 0.01 second for n = 25, compared 

with 210,000 years and 10!” years, respective ly! (Comparing (8) and (10), we can 

see how much faster n! grows than n°.] 

The upshot is that except for small hand calculations we should avoid the co- 

factor expansion, and should use triangularization instead. 

Although properties D1 ~D3 suffice for the efficient calculation of deter- 

minants, other properties are sometimes useful as well, and are listed below. 

ADDITIONAL PROPERTIES OF DETERMINANTS 

D4. If all the elements of any row or column are zero, then detA = 0. 

DS. If any two rows or columns are proportional to each other, then detA = 0. 

D6. If any row (column) is a linear combination of other rows (columns), then 

detA = 0. 

D7. [f all the elements of any row or column are scaled by a, yielding a new 

matrix B, then detB = adetA. 

D8. det(a@A) = a deta. 

D9. Lf any one row (or column) a of A is separated as a = b + ¢, then 

detA|, = detA}, + detAl,, 

where Aj, denotes the A matrix with a intact, Ajj, denotes the A matrix 
with b in place of a, and similarly for A|,. For example, 

      

6+2 -B+1 544 6 -3 5 2 14 
3 0 2 |=]/3 0 2]/+4+)3 02 
1 6 7 1-6 7) |1 -6 7] 

10.4. Determinants AQ]
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D10. The determinant of A and its transpose are equal, 

det(A") = detA. 

D11. In general, 

det(A + B) 4 detA + detB. 

D12. The determinant of a product equals the product of their determinants, 
  

det(AB) = (detA)(detB). | (11) 

These properties are not independent of each other. For example, D5 follows 
from D1 and D4, and D4 follows from D6. Keep in mind that det() is not linear. 
That is, if a, @ are scalars and A, B are n x n matrices, then 

  
  

  

| det(aA + 8B) 4 adetA + SdetB, | (12) | 
  

in general. Por instance, if 3 = 0 is det(wA) = adetA? No, according to D7 it 
is a"detA. Or, witha = 6 = 1, is det(A + B) = detA + detB? Not in general, 
according to DI!. This result may come as a surprise since we are studying “‘linear 
algebra.” Also surprising is the truth of D12, if we contrast the complexity of the | 
matrix multiplication AB on the left with the simplicity of the outcome, expressed 
on the right-hand side. This result was proved by Cauchy in 1815.* 

Closure. Every n x n matrix A has a value associated with it called its deter- 
minant and denoted as detA. Though detA is defined, traditionally, by the cofactor 
expansion (2), we find that that formula is useless, computationally, unless m is 
quite small. Thus, we study various properties of the determinant and put forward 
a computational algorithm called triangularization, based upon properties D1—D3, | 
that is incredibly efficient compared to the cofactor expansion. 

Computer software. Using Maple, one can evaluate determinants using the det(A) | 
command. For instance, to evaluate the determinant of the matrix A given by (6), 
enter 

with(linalg): 

to access the det(A) command. Then enter 

det({[0, 2, —1], [4, 3, 5], [2,0, —4]]); 

and return. The output is 58. Alternatively, the sequence 

withdinalg): 

A := array(([0, 2, —1], [4, 3, 5], (2,0, —4]]) : 
det(A); | 

  

“Augustin—Louis Cauchy (1789-1857) is among the great mathematicians. Unlike his contem- 
porary, Gauss who published little of his work, Cauchy published more than 700 papers. Among the 
subjects on which he worked were determinants, ordinary and partial differential equations, complex 
variable theory, and the wave theory of light.



  

gives the same result. 
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EXERCISES 10.4 
  

1. In (5) we evaluated the determinant of a general 2 x 2 ma- 

trix using a cofactor expansion about the first row, Evaluate 

it again, using a cofactor expansion about the second row in- 

stead, then about the first column, and then about the second 

column, showing that the answer ts the same in each case. 

2. Evaluate each, using a cofactor expansion about the first 

and last rows, and also about the last column. 

  

  

L 2 3 2 -3 0 

(a)| 3 2 1 (b) 1 4 2 

i111 —6 1 5 

-4 1 0 3.3 12 

(c) 3.2 0 (dj; 0 6 ~1 

15 7) 4 0 0 

-5 2 1 0 o 4 

, 3 | 40 3 0 (e)| 2 3 7 Ol 5 4 74 
3.4 ~=5 i. 

00 -2 6] 

201 #0 0 1 20) 
0 3 1 =1 3 -b 1 4) 

@)o 45 0 5 6 -7 1] 
1 2 3 6 | | 0 2 1 0 

a 0 0 0] a bc 0 
.; 0 6b e€ 0 . de f Q 

Oo de 0 Ml og nh i 0 
0 0 0 fF 0 0 Ok 

3. (a)—(j) Same as Exercise 2, but expanding about the second 
row, and about the first column. 

4. (a)-(h) Same as Exercise 2, but using the method of trian- 

gularization. 

5. (a)—(h) Same as Exercise 2, but using computer software. 

6. Evaluate, by any means other than computer software. 

showing your steps or logic. You may use any of the prop- 
erties DI-D12. 

  

12 38 4] 1 2 3 44) 
2 3 4 5 . 5 6 FT 8 

Mis 4 5 6 OO) 9 10 WL 
0 1 -3 5 | 13 l4 15 0 

  

0 0 a a be 

(co); 0 b ¢ (dj)i d e 0 

doe f f a 0 

7, A mnemonic device often put forward for evaluating 2 x 2 

and 3 x 3 determinants is as shown below. 

  

     

+b + — —_ — 

7 L ve a NN L a L a . a 

2 a ig MR Lai 
I A 2 N. << ; 
we Ay, HG HS PS ag 

L431 tag a ook 
# oN 437 . 31 M32 3 a 

In other words, the determinants are the sums of the indicated 

products, with each product carrying the indicated sign. For 
example, in the 2 x 2 case this device gives 

ay2 

22 

Qiy 
= +(@11422) — (@21412), 

Q1     

which does agree with (5). We now state the problem: write 

out the mnemonic result for the 3 x 3 case, and verify (by co- 

factor expansion) that it is correct. CAUTION: This device 

does not hold, in general, form x n determinants ifn > 4. 

8. Letann x n matrix A = {a;;} be diagonal. Show that 

detA = a11@29-°* Gnn.- (8.1) 

9. (a) Suppose that ann x n matrix A can be partitioned into 
the block-diagonal form 

oO... 0 

0 7 
where Ay,..., Adm are all square, although not necessarily all 

of the same order. Show that 

detA = (detA,;)(detAs)--+-(detA,,). (9.1) 

This result may be regarded as a generalization of (8.1), above, 
wherein Ay,..., Aj were all 1 x 1’s. 

(b) Does (9.1) still hold if the elements above the m blocks are
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nonzero? Explain. 

(c) Does (9.1) still hold if the elements below the m. blocks are 

nonzero? Explain. 

(d) To which determinants, in Exercise 2, can (9.1) be applied? 

In each of those cases use (9.1) to evaluate detA. 

10. Deduce, from property D12, that if Ay,..., 

matrices, then 

A, aren x n 

et(A,A2--» Ax) = (detA;)(detA)---(detA,). (10.1) 

11. (a) Derive the property D7. HINT: Write out the co- 

factor expansion about the row or column in question. 

(b) Then, show that D8 follows from D7. 

12. Prove property D6, using any of the other listed properties. 

13. Prove property D9. HINT: Write out the cofactor expan- 

sion about the row (or column) a. 

14. (Routh—Hurwitz criterion) First, review Section 3.4.5, on 

stability. According to the Routh— Hurwitz criterion, nec- 
essary and sufficient conditions for the stability of the system 

governed by equation (65) in Section 3.4.5 (ie., for all the 

roots of its characteristic equation to have negative real parts) 
are thata; > 0 foreachj = 1,..., 

each j = 1,...,n, where 

ay 1 0 0 0 se 

ag a2 ay 1 O «-. Q 

a as a4 a3 ag ay nee OQ A; = 

Q2j- G@2j-2 27-3 Gaj-4 nt Ag 

Zeros are entered for any a,’s that are called for where k > n. 
For example, ifn = 3, then 

    

a 1 ay 1 0 
1 

Ai=a;,, Ag= , Azs=1 a, a2 ay } 
a3 ag 

0 0 a3 

expanding Ay about the third row yields the simplification 

Ag = agAo. Here is the problem: Use the Routh—Hurwitz 

criterion to determine whether or not the systems associated 

with the following characteristic equations are stable. 

(a) M+ 649 +5\2 +44 4+1=0 
(b) M+ 23 + 7\2 +44 4+8=0 
(c) 4+ 23 45) 4+ 81412 =0 
(d) A+ AP + 4A 48 =0 
(fe) P+ M+ M+ M+A4+1=0 
(fy X8 + \ +M+4+\+\48=0 

(g) M2 + 2A4 + 39 + 4? + 5A +6 = 0 

m, and that A; > 0 for 

15. It can be shown that the equations 

agx* + aye + ag = 0, (ag # 0) 

bot? + bya + by = 0 (bo # 0) 

have a common root if and only if 

ao a, ad O 

0 a a a 0. 

bo by by 0 

0 bo b 1 by 

[Similar results for two algebraic equations of degrees m and 

nm, Say, were put forward by James Joseph Sylvester (1814—- 

1897).] Use this result to determine whether or not the follow- 
ing equation pairs have any common roots. 

(a) 327 + 22-5 =0 (b) 327 + 22 ~5=0 
3a? + 32 —-2=0 e+ x+1=0 

16. (a) Suppose that the elements a;,; of ann x m matrix A are 

differentiable functions of some parameter ¢. Regarding detA 

as a function of the n” variables @41, @19,... , Ann, show that 

  —(detA) = Aj, (16.1) 
Oa;; 

where A,,; is the cofactor of a;;. Then use (16.1) and chain 

differentiation to show that 

Gp (det) =Sye Ais Oe, 
ti j=l 

  (16.2) 

a formula first given by Carl Gustav Jacob Jacobi (1804 - 

1851) in 1841. By the 5° >> notation we mean 

Te Tm mn Tm 

) ) Ci = ) ) Cij 

t=] j=l] wel \j=l 

For example, if nm = 2, then 

2 2 2 2 2 

5 > C= ) Cij =i ci + G2) 
i=l j=] i=l \j=l iz] 

= C11 + Cai + Cig + C22. 

Observe that (16.2) is equivalent to the statement 

    

  

day, dain 

1 dt dt 

detA. Q2y Gon 

dt | )= . 

Gri Gan 
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ayy Cin 

+ , + Gy—1,1 fn —1yn 

day, L dann, 

dt dt 

(16.3) 
d 

(b) Thus, evaluate =; (det) if 
a 

tt 2 
A=|]0 3 1 ; 

4 O sint 

and check your resuit by working out detA and taking its ¢ 

derivative. 

17. (Vandermonde determinant) First, review Theorem 3.4.1 

and its proof. The determinant in (43), 

) Loe. 4 
Apt 

. J (17.1) 

/ Ato not 
is known as a Vandermonde determinant. [t can be shown 

that it equals (—1)""~1)/? TT, where I denotes the product of 

all factors Ay ~ Ap with 9 < & (<n). For example. ifn = 3 

then IT = (Ay, — Ae}(Ay — Ag)(A2 — Ag). The key property of 

any n x rm Vandermonde determinant, which can be seen from 

this result, is that it is nonzero if and only if all of the A,j’s are 

495 

distinct. The problem that we pose is for you to verify that 

the determinant is equal to (—1)""~)/* TI, as claimed above, 

simply by working out the determinant, for the cases where 

n= 2 and 3. 

18. (a) Derive (8). HINT: Show that N(m) = nN(n — 1) + 
2n~1forn > 2. Letus use the subscript notation V(n) = Py, 

which is generally used for functions of a discrete integer vari- 

able. Thus, 

P,-nPy_, = 2n—- 1, (n > 2) (18.1) 

with the initial condition P, = 3 (two multiplications and 

one subtraction). Seeking P,, in the form n!Q,,, show that Q, 

satisfies the difference equation 

2n—1 

n! 
Qn 7 Qn~1 = 

  (18.2) 

with initial condition Qg = 3/2, which admits the solution 

(18.3) 

[You need merely verify (18.3).] Finally, show from (18.3) 

thatQ, ~ easn—-> x. 

(b) Derive (10). HINT: n(n — 1) + (n — I(m — 2) + --- 4 

(2)(1) = n(n? ~ 1)/3. 

  

10.5 Rank; Application to Linear Dependence and 

to Existence and Uniqueness for Ax=c 

With determinants defined, we can now introduce one more concept, the “rank” of 
a matrix, which concept will enable us to obtain important results regarding linear 
dependence, and also regarding the existence and uniqueness of solutions of the 
linear equation Ax = c. 

10.5.1. Rank. First, we say that any matrix obtained from a given m x n 
matrix A by deleting at most m — 1 rows and at most n — 1 columns from A



496 Chapter 10. Matrices and Linear Equations 

is a submatrix of A. For instance, the 2 «x 3 matrix 

ai, G12 443 A= 
a2, 22 423 | 

has 21 submatrices: one 2 x 3 (A itself), three 2 x 2’s, two 1 x 3’s, three 2 x 1’s, 

six | x 2’s, and six | x 1’s. For instance, 

ayy A122 413 ait 12 Qi, G13 A413 ; 
5 ; . ; , [aay ? ays ; 

a2, agg 423 €21 22 @21 023 23 

and [a3] are all submatrices of A. 

Then the rank of a matrix is defined as follows. 

    DEFINITION 10.5.1 Rank 

A matrix A, not necessarily square, is of rank r, or r(A), if it contains at least one 

r xr submatrix with nonzero determinant but no square submatrix larger than r x r 

with nonzero determinant. A matrix is of rank 0 if it is a zero matrix. e 
  

EXAMPLE 1. Let 
2 -i1 1 0 

A= /| 0 3.3 =6 (1) 

1 4 5 9 

Certainly, r is at most 3 in this case since the largest possible square submatrix of A is 

3 x 3. (More generally, if A is m x n, then r is at most equal to the smaller of m and 

1.) However, upon calculation, we find that all four of the 3 x 3 submatrices have zero 

determinant so that r is at most 2. In fact, there are a number of 2 x 2 submatrices with 

nonzero determinant such as 
2-1]. 

Lo 3 | = 5 #9: 

  

but even if there were only one such submatrix that would still be all we need to conclude 

that r(A) = 2. @ 

EXAMPLE 2. The ranks of 

5 5-2 5 -—2 0 3.0 1 =0 

A=/6,, B=) 6 3}, C=] 6 3.0}, D=]0 0 1 0 

0 0 1 0 1 0 9 0 3 DO 

are 1, 2,2, and 2, respectively. In D, for example, every 3 x 3 submatrix contains a column 

of zeros and hence has a vanishing determinant, but the 2 x 2 submatrix 0 1 has a
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nonvanishing determinant, so r(D) = 2. § 

We may regard the rows of an m x n matrix A = {aj;} as n-dimensional 

vectors, which we call the row vectors of A and which we denote as r1,...,0m. 
Similarly, the columns are m-dimensional vectors, which we call the column vec- 

tors of A and which we denote as c;,...,C,,. Further, we define the vector spaces 

span {r1,...,0%m} and span {c,,...,¢,} as the row and column spaces of A, re- 
spectively. From the definition of dimension, the dimensions of the row and column 

spaces are equal to the number of LI row vectors and the number of LI column vec- 

tors, respectively. 

It will be important to be able to calculate the rank of a given matrix efficiently. 
With that purpose in mind, we recall the elementary row operations defined in 

Section 8.3: 

1. Addition of a multiple of one row to another 
Symbolically: vj rj + arg 

2. Multiplication of a row by a nonzero constant 

Symbolically: vj -* ar; 

3. Interchange of two rows 

Symbolically: vj > Vp 

Furthermore, we defined (in Section 8.3) two matrices to be row equivalent if one 

can be obtained from the other by finitely many elementary row operations. The 
following theorem provides an efficient means of calculating the rank of a matrix. 

  

THEOREM 10.5.1 Elementary Row Operations and Rank 
Row equivalent matrices have the same rank. That is, elementary row operations 

do not alter the rank of a matrix. 
  

Proof: If matrices A and B are row equivalent, then B can be obtained from A 
by a finite number of elementary row operations. It follows that each row vector 
of B must be a linear combination of the row vectors of A so the row space of B 
must be a subspace of the row space of A. Similarly, the row space of A must be 
a subspace of the row space of B. Thus, the row space of A is identical to the row 
space of B, and hence the dimension of the row space of A (which is the rank of 

B) must equal the dimension of the row space of B (which is the rank of B). @ 

EXAMPLE 3. Let 
2 1 - 4 

2 4 ~—2 5 
= 2 

A 3 1 3 yo @) 

nw
 

oO 

Lt -3 —2
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Using elementary row operations, 

> 1-3 4 2 1-3 4 2 1 3 4 
03 1 4 03 1 1 03 14 

A>}5 3 1 317%loo0 0 2/1/7]00 0 af? ® 
00 0 6 00 0 6 00 00 

where the operations were as follows: in the first step rg — rg + (~L)r, and ry > 

rq + (—1)ry; in the second step rg — rg + (~1)rg; and in the final step rg + rq + 3rg. a? 

Clearly, the rank of the final matrix is 3 because (deleting the fourth row and third column) 

  

2 1 4 - 

0 3 1) =12 0. Ce 
0 0 2 ls 

Thus, by Theorem 10.5.1, 7(A) = 3. 8 

The idea, then, is to reduce a given matrix A to row echelon form by means of 

elementary row operations.* It can be seen that, in that form, the nonzero rows are 

LL. In Example 3, for instance, several conclusions follow from (3): r(A) = 3, the 

number of LI vectors among the rows of A is 3; the dimension of the row space of 

A is 3 and a basis for that row space is given by the vectors [2, 1, -3, 4], (0,3, 1, 1], 

and [0, 0, 0, 2]. 
There is a connection between the rank of a matrix and the linear dependence 

of a set of vectors, studied in Chapter 9: 

  

THEOREM 10.5.2 Rank and Linear Dependence 
For any matrix A, the number of LI row vectors is equal to the number of LI column 

vectors and these, in turn, equal the rank of A.! 
  

Thus, if we wish to determine how many vectors in a given vector set {uy,..., ug } 

are LI we can form a matrix A with uj,,..., ug as the rows (or columns) and then 

use elementary row operations to determine the rank of A. 

EXAMPLE 4. How many LI vectors are contained in {1,, Ug, ug, Uy}, where 

2 1 —3 4 

2 4 —2 5 > 
uy = 0 ; Ug = 3 ; Us = l : uq= 3 : 

, 2 —3 —2 

  

“TF we scale the first three rows in the final matrix in (3) by 4. 4, and i respectively, so as to 

begin the nonzero rows with leading ones, then we would say that the resulting matrix is in reduced 

row echelon form. 

' For proof of the first part of this theorem, see Theorem 3.5.5 in Steven J. Leon’s Linear Algebra. 

3rd ed. (New York: Macmillan, 1990).
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If we construct a matrix having these vectors as columns, then we have the A matrix (2), 

Using elementary row operations, we saw, in Example 3, that r(A) = 3. Hence, there are 
three LI vectors in {uj, ug, Ug, tty} or, put differently, dim[span {uy,, Ue, Ug, Ua }] = 3. 

COMMENT. The ordering of the columns is immaterial. For instance, we could make 

u, the third column, uy the first, ug the fourth, and uy the second because rank depends 

upon the zeroness or nonzeroness of determinants whereas the interchanging of columns 

(or rows) merely changes the sign of a determinant. @ 

EXAMPLE 5. Application to Stoichiometry. To model the combustion of gasoline in 

an automobile engine, one can begin by writing down a list of well over 100 simultaneous 

chemical reactions involving the various hydrocarbons, oxygen, nitrogen, and so on. In 

turn, these reactions can be modeled by ODE’s governing the amount of each chemical 

species as a function of time, and one can solve the resulting system of ODE’s by methods 

such as those discussed in Chapter 6. It is easy to appreciate that solving around 100 

coupled ODE’s is a difficult undertaking. Thus, itis important to reduce the list of reactions 

insofar as possible, and we can do this by eliminating ones that are redundant. For instance, 

ifA+B—> Cand A+C - D, then a third statement, 2A +B+C -» C+D, is redundant 

in that it is implied by the first two. 

To illustrate the reduction process, consider the burning of a mixture of CO, Hy, and 

CHy ina furnace. producing CO, COs, and H2,0.* Writing all possible reactions that we 

can think of gives the list 

. 1 
CO + 502 + COo, (4a) 

1 
H» - 502 => H2O, (4b) 

CHy + 20, + CO + 2H20, (4c) 

CH, + 202 + CO2 + 2H20, (4d) 

where (4c) and (4d) represent the partial and complete combustion of CH4y, respectively. 

How many of these reactions are independent? [t is convenient to re-express them symbol- 

ically in the equation format 

CO + $02 ~ COz = 0, 

Hp + 402 ~ H2O = 0, 

CHy + $02 — CO = 2H20 = 0, 

CHy + 202 ~ COg ~ 2H20 = 0, 

where the elements of the coefficient matrix 
  

“This example is discussed by Ben Noble in his book Applications of Undergraduate Mathematics 

in Engineering (New York: Macmillan, 1967). In turn, he notes that the problem was contributed by 

John Mahoney, Department of Chemical Engineering, West Virginia University, Morgantown, WV.
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GO Og CO, He H2,0 CHy 

1 2 -1 0 0 0 
04 0 1 -1 0 

A= 2 (6) -1 $ 06060 -2 1 
0 2 -1 0 -2 1 

are known as stoichiometric coefficients. To determine a minimum set of independent 
reactions we reduce A by elementary row operations and obtain 

  

CO Ox» CO. He H2,O CHy 

14 -1 0 0 0 
0 1 0 2 -2 0 

; (7) 0 0 -1 -4 21 
00 0 0 00 

the rank of which is three. Thus, there are three independent reactions such as the list 

CO + 402 = COs = 0, 
Qos + 2H, _ 2H2O = 0, (8) 

—CO» — 4H» + 2H.0 + CH, = 0, 

implied by (7). That is, CO + 509 — COxz, and soon. @ 

10.5.2. Application of rank to the system Ax = c. In Chapter 8 we use the 
method of Gauss elimination both to solve systems of linear algebraic equations 
and to study the questions of the existence and uniqueness of solutions. Having 
developed vector and matrix concepts now, we can return to the important problem 
Ax = c and bring these additional concepts to bear. In doing so, it is convenient 
to have a representative example to refer to. 

EXAMPLE 6. Consider the system Ax = ¢ given by 

Lym fo + vg + 3X4 + 226 = 4, 

vy + 323 + 344 — v5 + 6a5 = 3, (9) 
20, —- Lo + 2a3 + ay — 3 + Tre = 9, 

zy + 523 + Say —- 5 + Trg = 1. 

Carrying out Gauss elimination by applying elementary row operations to the augmented 
matrix 

1 -1 1 38 0 2 4 

1 0 3 3 -1 6 8 

Aree ly po 1 1 7 9 (10) 
1 0 5 8&8 -1 7 1
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gives the row echelon result 

1 -i 13 0 2 1 

0 12 0 -l 4 -1 

0 025 01 -2 (i) 
0 0 0 0 0 0 9Q 

and hence the three-parameter family of solutions 

ag = O41, is = O02, Lq = O3, i io tay —- Say, 6 l 2 1 3 3 . 3 \ 5 Og (12) 

Uy = 1 — 8a, + ao + 53, Ty, = 6—- 51 + Og -F 53, 

where the parameters a1, @2, @y are arbitrary. 

Itis illuminating to express (12) in vector form as 

6 — fay +a) + 305 6 “3 1 3 

1- 3ay + 9+ Dag I —3 1 5 

~1—ta, - sa. ~-1 -4 0 -2 
x= ge aes = + ay 2 + ae + Q3 . 

a3 0 0 1 

Qy 0 0 1 0 

ay 0 1 0) 0 

= Xo + QR, + AQk2 + 3X3. (13) 

Observe that x» is a particular solution of Ax = ¢ (ie., Axo = €), and X1,X2,Xg are 

homogeneous solutions (1.e., Ax, = 0, Ax = 0, Ax, = 0), by the following reasoning. 

Since (13) is a solution of Ax = c for any aj’s, we can set a, = G2 = a3 = 0 and 

conclude that Ax = c. Next. put (13) into Ax = c: 

A (Xo + Q,X, + 9X2 + 3X3} = C, (14) 

hence, Axo + a, AX, + Q9Ax» + ajAxy = c or, since Axg = c, 

oy AX, + agAxKe + a3Ax3 = 0. (15) 

The choice a, = 1,a2 = a3 = Oreveals that Ax; = 0; a2 = 1,a; = a3 = 0 reveals that 

Ax» = O:and ay, = l,ay = a» = 0 reveals that Axy = 0, as claimed. 

Observe further that x,,X2, x3 are LI, for the rank of 

“3 bog 
-3 1 5 

dt —2 
x1, X2,Xy| = 2 0 2 (16) 

eee 0 0 1 , 

0 1 0
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is 3, as is readily seen from the bottom three rows. # 

Generalizing the results of Example 6, suppose that a system 

Ax =, (17) 

where A ism x n, has a p-parameter family of solutions 

X= Xo + Oy Xy +--+ + ApXp. (18) 

Then Xo is necessarily a particular solution, and x;,...,X,) are necessarily LI ho- 
mogeneous solutions. We call span {x1,...,Xp} the solution space of the homo- 
geneous equation Ax = 0, or the null space of A. The dimension of that null 
space is called the nullity of A. 

It is helpful to see that if {cy,...,¢,} denote the columns of A, then Ax = c 

can be expressed as 

UyCy + UQCQ +++ + Uyly = C, (19) 

from which we can see that (17) is consistent if and only if c happens to be in 
the column space of A [namely, span {c,,...,¢»}]. Or, in terms of rank, (17) is 

consistent if and only if the rank of the augmented matrix Alc equals the rank of 
the coefficient matrix A: r(Ajc) = r(A). 

In Example 6, for instance, we see from (11) that r(Alc) = 3 and (by covering 
up the last column, which is c) that r(A.) = 3 as well. Thus, r(A|c) = r(A) and, 
sure enough, (9) is consistent, solutions being given by (12). However, if we modify 
(9) by changing the underlined I to a 2, say, then the underlined 0 in (11) becomes 

a1. In that case r(Ajc) = 4 and r(A) = 3 are unequal and there is no solution 
because the bottom row of (11) would then be equivalent to 0x, +---+ 02g = 1, 

which cannot be satisfied by any combination of x,’s. 
Finally, what can be said about p in (18)? In Example 6, we see from (11) that 

p = 3 for there are three arbitrary x; values (as seen from the third row), and that 

that value arises as the difference between the number of unknowns n = 6 and the 
rank r = 3. 

Let us summarize, for any system Ax = c. 

  

  

THEOREM 10.5.3 Existence and Uniqueness for Ax = ¢ 
Consider the linear system 

AX =C, (20) 

where A ism x n. There is 

1. no solution if and only if r(Ale) 4 r(A), 

2. a unique solution if and only if r(Aje) = r{A) = n, 

3. an (nm — r)-parameter family of solutions if and only if r(Ale) = r(A) =r 
is less than n. 
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The essential ideas required to prove these three results were developed above, 

so the proofs are left for the exercises. 
Naturally, the homogeneous system 

Ax=0 (21) 

is but a special case of (20), hence, it is already covered by Theorem 10.5.3. How- 

ever, it is such an important case that it deserves special attention. In (21), the 

augmented matrix r(A|c) is the A matrix augmented by a column of zeros so it is 
surely true that r(Alc) = r(A) and, according to Theorem 10.5.3, it must be true 
that (21) is consistent. That result is no great surprise since (21) always admits the 
trivial solution x = 0. Hence, the significant question about (21) is not whether 
or not it is consistent, but whether x == 0 is the only solution. That is, does (21) 
admit nontrivial solutions as well? That question is answered by parts | and 2 of 

Theorem 10.5.3 so we can state the following more specialized results. 

  

  

THEOREM 10.5.4 Homogeneous Case Where A ism xn 

If A ism x n, then 
Ax =0 (22) 

1. is consistent, 

2. admits the trivial solution x = O, 

3. admits the unique solution x = 0 if and only if, r(A)=n, 

4, admits an (n — r)-parameter family of nontrivial solutions, in addition to the 

trivial solution, if and only if r(A) =r <n. 
  

  

THEOREM 10.5.5 Homogeneous Case Where A isn x 1 

If A isn x n, then 
Ax=0 (23) 

admits nontrivial solutions, besides the trivial solution x = 0, if and only ifdetA = 

0. 
  

As a final example, consider an interesting application of these concepts to 

“dimensional analysis.” 

EXAMPLE 7. Dimensional Analysis. Consider a rectangular flat plate (.e., a flat rect- 

angular wing, or “airfoil”) in steady motion through otherwise-undisturbed air as shown in 

Fig. 1; V is the flight speed, @ is the incidence or angle of attack of the airfoil, A is the 

chord length, and 8 is the span (the dimension normal to the paper). Equivalently, it is 

experimentally more convenient to keep the airfoil fixed (in a wind tunnel) and to blow air 

Figure 1. Flat plate airfoil.
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past it, ata speed V. Imagine that our object is to conduct an experimental determination of 

the lift force € generated on the airfoil, that is, to experimentally determine the functional 

dependence of € on the various relevant quantities. What quantities are relevant? Surely 

A, B,@,V are important, as well as the air density p (for instance we expect a much greater bey 

lift in water than in air, and no lift at all in a vacuum). A reasonable list of the relevant vari- ~ 

ables is given in Table 1. Other variables come to mind, such as the ambient temperature, 

po 
gm

a 
e
e
 

S
e
 

  

Table 1. Relevant variables. 
  

  

  

Variable Symbol Fundamental Units 

Chord A L he 

Span B L ki 

Incidence 6 M°L°T® ye 

Flight velocity Vv LT"! 

Velocity of sound in air Vo LT~! 

Air density p ML~? 

Absolute viscosity Lb ML-+T"} 

Lift MLT~* 
  

but if we expect £ to be only weakly dependent on them we can leave them out. 

Major difficulties are now apparent. If € depends upon the seven variables listed in 

Table |, and we measure @ for five different values of each variable, then we need to con- 

duct 5" = 78,125 experimental runs, and then present the results (using graphs, tables, or 

whatever) in a user-friendly way. Furthermore, whereas some variables are easily varied 

(such as A, B,@,V) others are not (such as g, j1). The principal object of the following 

“dimensional analysis” is to reduce the number of variables as much as possible. 

To begin, we express each variable in terms of the fundamental units A¢ (mass), £ 

(length), and 7 (time), in the right-hand column. We do not need to include F' (force) as a 

fundamental unit because, according to Newton's second law, F = MLT~*, dimension- 

ally speaking. Also, observe that @ is dimensionless.* 

Next, we seek all possible dimensionless products of the form 

A® B°OSV EVE pf ute. (24) 

That is, we seek the exponents a,..., /2 such that 

(L)* (L) (MOLT) * (EE) 8 (LTO S (ate) f (ME )8 (MELT?) " 
= M°L°T®. (25) 

Equating exponents of L, 7, M7 on both sides, we see that a,..., 4 must satisfy the homo- 
  

“Recall that angle is defined by the formula s = r6, where s is the arc length of a circular arc 

of radius r, subtended by an angle 6, measured in radians. Thus, @ = s/r = length/length = 

dimensionless.



  

10.5. Rank; Application to Linear Dependence and to Existence and Uniqueness for Ax=c 505 

geneous linear system 

atb+ d+e-3f—-g+ h=0, 

~d—e -g- 2%h=0, (26) 

f+rgot+ h=O. 

    

Solving (26) by Gauss elimination gives the five-parameter family of solutions 

a 2 i 0 0 1 

b 0 0 0 0 1 

c 0 0 0 1 0 

d ~2 ~1 —1 0 0 
e = Q1 0 + 92 0 + O38 l + Qa 0 + O5 0 , (27) 

f -1 ~1 0 0 0 

g 0 1 0 0 0 

h 1 0 0 0 0 

where @ ,...,Q% are arbitrary constants. With a; = land ag = -:- = as = 0, 

say, (27) gives @ = —2,b = c = OQ, etc., and hence the nondimensional parameter 

A~?B99* Vy ~2V0 9-129, namely, the nondimensional lift £/(pV*.A”).* Similarly, set- 
ting @ 2 = 1 and the other a,;’s = 0 gives the nondimensional parameter pAV/j, well 

known in fluid mechanics as the Reynolds number and denoted as Re; setting a3 = —1 and 

the other a;’s = 0 gives the Mach number V/Vo, denoted as M; setting a4 = 1 and the 

other a,;’s = 0 gives the incidence @ (which was nondimensional to begin with); and setting 

as = 1 and the other a;’s = 0 gives B/A, known as the aspect ratio, denoted typically as 

AR. 
The upshot is that rather than seek a functional relationship on the eight variables listed 

in the table, we can seek a relationship on the five nondimensional variables 

[€/(pV? A”), Re, M,@, AR]. Or, singling out the nondimensional lift, we can express 

€ 
W777 Re, ) 8, AR 28 
pV? Ae F(Re,M ) (28) 

and determine f experimentally by measuring ¢/(pV*.A*) for various combinations of 

Re, M, 6, and A? values. 

COMMENT |. A trained fluid mechanicist could probably simplify the problem even 

further. For example, it is known (from the governing equations of fluid mechanics) that 

the effect of the Mach number M will be negligible if MM? < 1. Thus, if we have flight 

speeds V less than 300 miles per hour in mind, then M can, to a good approximation, be 

dropped from (28).? 

COMMENT 2. We mentioned, above, the practical difficulty in carrying out the experiment 

for a range of values of the fluid density. For instance, we could use air and water, but 
  

*A fluid mechanicist would probably change this to £/(oV? AB) (corresponding toa, = 1, a2 = 

3 = ag = 0,a5 = —1), orto e/(ApV? AB) because spV" has physical significance as the 

stagnation pressure, and AB is the area of the airfoil. 
"At ground level, the speed of sound is 762 mph, so if V == 300 mph then M = (300/762)? = 

0.155 is indeed small compared to I.
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their densities are widely different and we would need both wind tunnel and water tunnel 
facilities. In the right-hand side of (28), however, p shows up only within the Reynolds 
number Re = pAV/y, which can be varied readily by varying the wind speed V. 

COMMENT 3. Of course, (27) gives an infinite number of nondimensional parameters, 
However, there are only five independent ones, such as the ones named above. For instance, 
we could choose a3 = ag = 1 anda, = ay = ay = 0, but the resulting nondimensional 
parameter, Vo B/(V A), is merely the aspect ratio divided by the Mach number. # 

Closure. The rank r(A) is defined as the size of the largest nonvanishing deter- 
minant within A. Because the rank of a matrix is unaffected by elementary row 
Operations, we can determine the rank of a given matrix efficiently by reducing it 
to row echelon form, in which form the rank can be seen by inspection. Principal 
applications of the concept of rank include the calculation of the number of LI vec- 
tors (7-tuple vectors, that is) within a given set, and the theory of the existence and 
uniqueness of solutions of systems of linear algebraic equations. 

Computer software. Using Maple, we can evaluate the rank of a given matrix 
using the rank(A) command. For instance, to evaluate r(A) where the rows of A 
are (1, 2,3, 4], (2,4, 6, 8], and [1, 1,1, 1], respectively, enter 

with(linalg): 

to access the rank(A) command. Then enter 

rank(array({[1,2,3,4,], [2,4,6,8], [1,1,1, 1); 

and return. The output is 2. Alternatively, the sequence 

Ass array(([1,2,3,4,], [2,4,6,8], (1, 1,1, i]}): 

rank(A); 

gives the same result. 

  

EXERCISES 10.5 

  

1. Determine the rank, nullity, number of LI rows, and number 5 0 0 1 3 
of LI columns for the given matrix. (g) | 3 0 4 (h) | 2. 6 

2 0 0 3.9 
(a) [0, 0, 2, 0] (b) [1, 2, 3] 6 5 2 Q 1 0 

. a. 7 4 8 0 a); 0 2 3 0 G}| oO 1 ©} | 5 | @) 5 6 0| 000 6 10 
1 2 3 3.2 4 

(e) | 4 5 6 (f)} —-1 1 4 
7 8 9 1 4 9 

~
y
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10 2 04 -1 1 
2 1 1 ie | 

WM) 9 1 3 OO}, 5 4 0 
12 4 26 9 -1 

. 1 2 34 
5 8 ‘ 5 -l 05 

(m) ~ : (yn) | 6 =1 2 8 
92 1.0 

ir ae 7-1 07 
‘ 8 -L -3 5 

2. (a)—(n) Use computer software to determine the rank of the 

matrix given in the corresponding part of Exercise |. 

3, (a)—(n) Consider the problem Ax = c, where A is the 

m X n matrix given in the corresponding part of Exercise |. 

In each case let ¢ be the m-dimensional vector [1,1,..., 1)”. 
Use Theorem [0.5.3, and suitable rank calculations, to deter- 

mine whether or not the system is consistent. If consistent, de- 

termine whether it admits a unique solution or a p-parameter 

family of solutions. If the latter, determine p. Do not solve the 

system; merely use the concept of rank and Theorem 10.5.3. 

4, If two matrices of the same form have the same rank, need 

they be row equivalent? Prove or disprove. 

§, Show, by carrying out suitable row operations, that the fol- 

lowing pairs of matrices are row equivalent. 

  

1 3 -3 0 4 2 0 8 

(a) 21 04 | and 3.4 -3 4 | 
f 2 1 0 2 1.0 

2 2 3 0 1 3 

Ola aga} *™ 1003 
| 4 4 6 0 0 0 

[5 2 9 2 
(c); O ~—3 and -§6 —3 

| 1 4 9 4 

6. Show that the following pairs of matrices are not row equiy- 

alent. 

P12 1 2 
(a) 3 4 | and | > 4 | 

0. 2 0 3-1 5 

{b) | 0 0 4 and L 5-5 

6 0 0 2 2 0 

7. Exercises 5 and 6 are simple enough to be solvable by in- 

spection. More generally, inspection may not suffice. Put for- 

ward a systematic procedure for determining whether or not 

two given matrices are row equivalent, and apply that proce- 

dure to the given matrices. 
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1 2 3 -1 lo -1 24 
2 4 =I 3°05 1 

M)y 5 6 3} @™ |e 29 4 3 
4-9 6 3 13 4 

¢ 3.0 55 

2 and 6 0 5 

) 2 0 

(b} 0 l 

—1 0 

-l 5 

7 5 

8. Determine whether the following set of vectors is LI or LD 

by computing the rank of a suitable matrix and invoking the 

relevant theorem. 

(a) (2, 0, 1, ~I), (0, 3, 0, * 

a
 

[4, 3,2, 1] 

(b) (4, 1,2], (2,2, 1], (2,-1, 1], ls 7,2], (0,1, 0] 
(c) 1,3, 2,4, 5], [2,3,1,5 i" (4, 5,3, 1,2] 

(d) (2, 1, 4], [4, 2,5 2], [0 ; 1,2) a ®, 0) 

(e) {1, -2,0, 1], [0,1,1,2], [1,0,2,5], (2,—-7, -3, —4] 

9, Prove that r(A™) = r(A) for every m x n matrix using 
any results given in this section. 

10. The property det(AB) = (detA)(detB), of determinants, 
where A and B are both n x n, might seem to imply that 

r(AB) = r(A)r(A). Is the latter true? Prove or disprove. 

1. Isr(A +B) 
12. Prove that if A ism x nand B isn x p, thenr(AB) < n. 
HINT: Partition B into rows, and write 

= 7(A) + 7(B) true? Prove or disprove. 

ait Qin ri 

AB= 

Qml1 Qin Tn 

Qq1Fy chose de Ginln 

Gmily +t + Omnln 

13. (a) Below (18), we stated that x;,...,X, are necessarily 

LI. Prove that claim, HINT: Pattern your proof after the dis- 

cussion in Example 6. 
(b) Show that x cannot be in the span of X1,..., Xp. 

14. Although we made a case for the truth of Theorem 10.5.3, 

we did not provide a detailed proof. 

(a) Prove part 1. (b) Prove part 2. (c) Prove part 3. 

15. This exercise refers to Example 6 and the discussion fol- 

lowing that example. For definiteness, let A be 3 x 3. 

(a) Suppose that Ax = c admits a one-parameter family of 

solutions
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(15.1) xX = Xo Sa Oy Xy. 

Explain, with the help of a labeled sketch, the geometrical 
significance of x9, x, and x9 + a, x1. 

(b) Suppose that Ax = c¢ admits a two-parameter family of 
solutions 

X= Xo + ayXy + agX2. (15.2) 

Explain, with the help of a labeled sketch, the geometrical 
significance of xg and x9 + Q1X1 + aXe. 

16. (Stoichiometry) Determine how many of the following re- 

actions are independent, and give such a set of independent 
reactions. 

(a) Ha + Ox > 20H, 

Ho + 502 = H20, 

H+OH = H2+0, 

H, = 2H, 

Oo = 20 

(b) Hy. +Clo = 2HCI, 

Cl+H, = HCl +H, 

Hy = 2H, 

Cle z= 2Cl 

(c) O2 + CH > CH;00, 

CH, + CH300 -+ CH; + CH3O0OH, 
CH3;00H — CO + 2H» + O, 
CHy + O - CHs + OH, 

CH, + O2 — CH3;00H 

17. (Dimensional analysis) In studying the drag force on a 
sphere thoving beneath a water surface, the tabulated variables 
are deemed relevant. Proceeding along the same lines as in Ex- 
ample 7, obtain the following relevant dimensionless parame- 
ters: the dimensionless drag force D/(pV? R?), the Reynolds 
number Re = pRV/j, the Froude number V7/(Rg), and the 
two length ratios \/ Rand d/R. 
  

  

Fundamental 

Variable Symbol Units 

Radius of sphere R L 

Depth below water surface d LD 

Velocity of sphere V LT! 

Water density p ML-3 

Absolute viscosity Lb ML-'T"-} 

Gravity g LT-? 

Wavelength of free surface waves nN L 

Drag force D MLT~? 
  

  

10.6 Inverse Matrix, Cramer’s Rule, Factorization 

There exist important methods for solving a linear system Ax = c besides Gauss 
elimination. In this section we study three: the inverse matrix method, Cramer’s 
rule, and LU factorization. 

10.6.1. Inverse matrix. Having introduced matrix notation so that a system of 
linear algebraic equations can be expressed compactly as 

Ax=c, (1) 

the form of (1) itself suggests other solution strategies. For how would we solve 
the simple scalar equation 3x = 12? We could divide both sides by 3 and obtain 
a 2 = 4. However, if we try to carry that idea over to the matrix case (1), we 

. Cc we Los 
obtain x = —, and need to know how to divide one matrix into another. However, 

matrix division has not been (and will not be) defined. Alternatively, we can solve



  

10.6. Inverse Matrix, Cramer’s Rule, Factorization 509 

3a == 12 by multiplying both sides by §s for that step gives $32 = 412, or la = 4, 

and hence «: = 4. That idea does carry over to (1) because matrix multiplication is 

defined. 
The idea, then, is to seek a matrix “A~!» having the property that AtTA=I 

for then 
A'Ax=Avte (2) 

becomes 
Ix = Avte, (3) 

and since Ix == x, we have the solution 

_ awl x= Awe (4) 

of (1). Note that A~! does not mean 1/A or I/A; it is simply the name of the 

matrix having the property 
ATA=I, (5) 

if one exists. We call it the inverse of A, or “A-inverse” for brevity. 

Consider an exploratory example. 

EXAMPLE 1. Let Ax = c be the system 

we By 229 =1 —1 —2 r 1 

a+ @=1 oF 1 1 [a |= 1}. (6) 

We find, for example by trial and error, that 

1 2 0 “ro =2 1 0 
oT 1 1 j= — | =I, (7) 

1 1 2 | 0 i 0 1 

ee . 1 2 0 
so that the pre-multiplication of (6) by the matrix i 12 yields 

1 
1 ojfa)] fi 2.0 _[3 

E ee li a3 ; -(i}. (8) 

and hence the (tentative) solution z, = 3,a2 = 4. Yet the latter does not satisfy (6), so the 

method is in some way incorrect. [In fact, Gauss elimination reveals that (6) is inconsistent, 

has no solution.| & 

In other words, we must proceed with caution. The idea is that the pre- 

multiplication of Ax = ¢ by a matrix A7! having the property that ATA=I 

does not necessarily lead to an equivalent system.
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However, we now show that if A is square, say n x m, and a matrix A~! can 
be found such that A~+A = I, then the pre-multiplication of Ax = ¢ by Av} 
does lead to an equivalent system, namely, the unique solution x = A7!c, 

First, assuming that A ism x 7, observe from 

AYA = I (9) 
mxXp mXn 

  

that p (the number of columns in A~+) must equal n for A~! to be conformable Ce 
for multiplication with A, and that m (the number of rows in A~!) must equal n 
for the product A~!A to be square. Thus, AW! is necessarily square too, of order 
n. 

Second, it follows from (9) that a 

det(A~'A) = detI = 1 

or, Since the determinant of a product equals the product of the determinants (prop- 
erty D12 in Section [0.4), 

(detA~*)(detA) = 1. (10) 

Equation (10) cannot possibly be satisfied if detA = 0. Hence, if a matrix A7! 
satisfying (9) is to exist, it is necessary that detA # 0. 

Assuming that that is the case, that detA # 0, let us seek to determine A~!. 
Our starting point is the cofactor expansion from Section 10.4, 

detA = S- ajnAghs (11) 

where Aj, is the cofactor of the ajp element, and the sum is either on j (for any 
fixed value of k) or on k (for any fixed value of 7). Let us take the sum to be on je 
Observe that 

detA ifi=k, 
So aye Age = ' 0 if i k (12) 

j 

since if 7 = k, then (11) applies, and if ¢ 4 &, then the left-hand side of (12) is 
again a cofactor expansion, this time an expansion about the ith column — but with 
the 2th column replaced by the kth column; thus, it is a determinant containing two 
identical columns and according to property D5 in Section 10.4, it must therefore 
be zero. Rearranging (12) by dividing through by detA (which is permissible since 
we have assumed that detA # 0) and-using the Kronecker delta notation,;* 

Ay 
S° (ez ) aujk = Sik: (13) 

j 

  

  

“Defined in Section 9.10.2, d;, is simply Life = A and O if 2 4k. Thus, a matrix {din} is an 
identity matrix I.
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This scalar statement (which holds for 1 <7 < nand1 < 7 < mn) is equivalent, 

according to the definition of matrix multiplication, to the matrix equation 

AAI, (14) 

where the desired inverse matrix A~! ist 

A; = {aij} = ak}. (15)   

Or, written out, 

  

Ay Ag ot: Ant 

-__} Ai2 Ag +++ Ang 16) 

detA ‘ ‘ 

Ain Aon oT Ann 

CAUTION: The Aj; in (15) is not a misprint; the 4,14 indices simply turn out to 

be in the reverse order of those in a;;. For instance, the 1,2 element of AT! i 

Ag, /detA, not Ajy/detA, where Ag; is the cofactor of the 2, 1 element in A, not 

the 2,1 element of A (which ts aay). 

The matrix in (16) is called the adjoint of A and is denoted as adjA so 

  
  

  
1 

AW = Sq MA. (17) 

To form the adjoint of a given square matrix A we replace each element by its 

cofactor, and take the transpose of the resulting matrix. 

The upshot, then, is that if detA # 0, then A7 ! exists and is given by (17). In 

that case we say that A is invertible. If detA = 0, then Aé 1 does not exist, and 

we say that A is singular. 

      

EXAMPLE 2. Determine the inverse of 

  

3.2 —1 

A=/0 1 4 i, (18) 

1 5 +2 

if it exists. It does exist because detA = —57 4 0 and is given by (17). Since adjA is the 

transpose of the cofactor matrix, we have 

fi 4) jo 4 0 1}q- 
E -2 | 1 -2 1 5 

1: 2 —1 30-1 3.2 

rn | 1-2 | -| 15 | 
2-1) | 3 -1 | 32 
1 4 | 0 4 | 0 1 

  

Recall that if BC = D, then dij = Ee ikke or, what is equivalent, dik = Dy big Cire 

‘It is tempting to let the 7,7 element of A”! be denoted as a;;', but this quantity could be 

misunderstood to be 1/aij. Thus, let us use a,j. 
ae
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~22 4-1 -22 -1 9 
=| -l -5 -138 | = 4 -5 +12 (19) 

9 ~12 3 -1 +13 3 

$0 

1 | 722-1 9 
“la ——adjA = ~-< 4  -§ 12]. (20) 

detA 57 -1 -13 3   
It is readily verified from (20) and (18) that AT'A =I. @ 

Besides having Av! satisfy A7~!'A = I, as stated in (14), it is crucial, as we 

shall see, to have AA~! = Tas well. To show that AA~! does equal I, write 

Agr 1 ~L . Le apne = i fp Aah AA = » casi} »» Qik | detA. » a, 3 (21) 
    

where the first equality follows from the definition of matrix multiplication, and the 
second follows from (15). Now, 

detA, t=] 
) op Ach = , 2 - aipA jk { 0, ixj ( 2) 

because if 7 = 7 then (11) applies, and if 7 # 7 then the left-hand side of (22) is 
again a cofactor expansion, this time an expansion about the jth row — but with the 
jth row replaced by the ith row. Thus, it is a determinant containing two identical 
rows and, according to property D5, it must therefore be zero. Hence (21) becomes 

AAT! = {6} =I, (23) 

ATA=AA EL (24) 

In view of the first equality in (24), we see that A~! and A necessarily commute. 

To understand the significance of (24), let us review the solution of Ax = c 

by the inverse matrix method. The steps (2) and (3) gave x = A~!c, provided that 
A~!A =I. To verify that x = A~'c does indeed satisfy Ax = c, let us put A7!e 
into that equation in place of x: 

as claimed. Thus, 

A(Avtc) =c (25) 

or, by the associative property of matrix multiplication, 

(AA7!) c=Cc, (26)
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which is indeed true because AA™! = L* 
Let us pull these results together. 

  

THEOREM 10.6.1 /nverse Matrix 

Let A ben x n. If detA # 0, then there exists a unique matrix Av} alson x n, 

called the inverse of A, such that 

ATA=AA7T EL (27) 

A is then said to be invertible, and its inverse is given by (17). If detA = 0, then a 

matrix AW! satisfying (27) does not exist, and A is said to be singular.* 
  

Proof: In the discussion preceding the theorem we proved all but the uniqueness of 
A7!. To prove uniqueness, let B and C both be inverses of A. Then BA = I and 
CA =I. Subtracting, BA ~ CA = 0 or (B — C)A = 0. And post-multiplying 
this last equation by A@! (which exists by assumption), we have (B— C)AA71 = 
0A~! or (B—C)I = 0. Thus, B~ C = 0,andhence B=C. a 

Finally, we return to the application of A7~! in the solution of Ax = c. 

  

THEOREM 10.6.2 Solution of Ax = c 
If Aisn x nand detA 4 0, then Ax = c admits the unique solution x = Avte. 
  

Proof: That x = A7'‘e satisfies Ax = e was shown just above Theorem 10.6.1. 

That the solution is unique follows from Theorem 10.5.3 because detA # 0 implies 

thatr(Ajc) =r(A) =n. @ 

There are several useful properties of inverse matrices. 

  

“Now we can understand that the failure in Example | occurred because 

-1  =2 -3 -4 <4 
i] 

Lod | ' 1 2 | = 2 3 2 | 41 
0 1 “ 1 it 2 

“There exist interesting generalizations of the notion of the inverse matrix for matrices that are 

not strictly invertible (perhaps not even square). Such are the Moore—Penrose generalized inverse 

and the preudoinverse. See. for example, Gilbert Strang, Linear Algebra and Its Applications (New 

York: Academic Press, 1976), Chap. 3.
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PROPERTIES OF INVERSES 

Ti. If A and B are of the same order, and invertible, then AB is too, and 

  

  

  

      

  

(28) 

12. If A is invertible, then 

(A‘) 1 (a7!) T (29) 

and ' 

det (A~") = Tak" (30) 

13. If A is invertible, then (A~') 7? = A and (A™)” = A™” for any (positive, 
negative, or zero) integers m and n. 

I4. If A is invertible, then AB = AC implies that B = C, BA = CA implies 
that B = C, AB = 0 implies that B = 0, and BA = 0 implies that B = 0. 

Of these, let us prove (28) and (29) and leave the remaining proofs as exercises. 
First (28): Since A and B are invertible, by assumption, detA 4 0 and detB # 0. 
Thus, det(AB) = (detA)(detB) #4 0 so AB is invertible too. Let us denote 
(AB)~! as C. Then ABC = I, A7™!ABC = A7'I, BC = A', BBC = 
B-'A—!, hence, C = B~'A7!\ as claimed. As a mnemonic device, note the 
resemblence of (28) to the transpose formula (AB)! = BT AT, 

To prove (29), begin with (AA7!) TT =1. But (AA~?) T (A7') TAT 
Hence, (A7!) Te (At) ot 

10.6.2. Application to a mass-spring system. To illustrate a number of these 
ideas with a physical application, consider the arrangement of masses and springs 
shown in Fig. 1. The three masses are in static equilibrium under the action of 

X93 

    

  

  

              

  

Figure 1. Mass-spring system, 

prescribed applied forces f;, fo, fg, and the k’s denote the stiffnesses of the vari- 
ous springs. For instance, ky, denotes the stiffness of the spring connecting mass 
number | and mass number 2. Mass-spring systems are discussed in Section |.3.



  

10.6. Inverse Matrix, Cramer’s Rule, Factorization = 515 

and in Example 3 of Section 3.9.1, which discussions should be reviewed if the 

following is not clear. 
The free-body diagrams (i.e., the force diagrams) of the three masses are shown 

in Fig. 2, where it has been assumed, simply for definiteness, that x, > wg > @3 > 

  

  

0. 

fi 
; }—»> 3 

ky (| — 43) fo kis(y —X3) — PI] . 

m3 noe 

my — Kax3           

  

  
/ 

kim) © ky (2-43) 

Figure 2. Free-body diagrams. 

From that assumption it follows that each spring is in compression except for the 

left-hand spring of stiffness ky. 
From Fig. 2 and Newton’s second law, we obtain the equations of motion 

myx) = fy — kya — ki2(@1 — v2) — hig(#1 — 2&3), 

many = fo t+ kig(a1 — v2) — ke3(x2 — x3), (31) 

mgxy = [3 + kig(ai — ©3) + ke3(x2o — @3) — kgxe, 

where primes denote differentiation with respect to the time ¢. Since the system 
is in static equilibrium by assumption, xf = vc} = x3 = 0, and (31) becomes, in 

matrix form, 

(ky + hig + ky3) —ky2 —k13 oT fi 

~kig (ki2 + keg) —kog ta) =] fo 
—kyg —ko3 (ki3 + kag + k3) r3 fs 

(32) 
or 

Kx =f, (33) 

where we will call K the stiffness matrix. We see that (33) is a matrix generalization 

of the simple Hooke’s law f = ka for a single spring. 

Is there a unique solution x = K~!f? Experience and physical intuition prob- 

ably tells us there is. Mathematically, everything hinges upon detK. If detk # 0, 

there is a unique solution for x, and if detK = 0, then there is either no solution or 

an infinity of solutions. With five parameters within K (namely, ky, k12, ki3, kes, ks) 
it is hard to imagine that we cannot have detkk = 0 for some choice(s) of those pa- 

rameters. Let us see. Working out the determinant of K., we find that 

det. = ky (kygk13 + kigkog + kigks + kogkis + kosks) 
+ks (kioke3 + kigkis) . (34)
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Since each sign is positive, and the k:’s are positive, we see that detK 4 0 so there 
is indeed a unique solution for x, namely, x = K-'¢, 

However, suppose we degrade the system by removing one or more springs. 
We can see from (34) that even if we set any one k value equal to zero (i.e., remove 
that spring), detk is still positive. If we are willing to remove two springs, then we 
can obtain detK = 0 in either of two ways, by setting ky = ka = 0 or by setting 
kya = ko3 = 0. Let us consider the former, and leave the latter for the exercises. 

With ky = kg = 0, K is singular (noninvertible) and (33) admits either no 
solution or an infinity of them. Which is it, and how is the result to be understood 
physically? Setting A = kg = 0, (32) reduces to 

(Ay + hy3) hyo —ky3 vy fi 

~hig (Rig + hog) kag 2 |= | fo (35) 
—ky3 ~—ko3 (kig + ko3) L3 fs 

and, in augmented matrix form, Gauss elimination gives 

      

1 kes 1 hs fs 
hig k13 Ki3 

, , keg. hog keg hrag fs fo 
0 L+ -j}--—= ae ; (36) 

r kyo * 13 kyo ky kg yp 

0 0 0 fit fe + fs 

which result reveals two possibilities. 

(i) If fy + fot fs ¥ 0, then there is no solution. That mathematical result makes 
perfect sense physically, because with the end springs removed {1+ fo+ fs is 
the net lateral force on the three-mass system, and if that net force is nonzero, 
then the system cannot be in static equilibrium, as was assumed when we set 
ay = 2) = 25 = 0in (31)! 

(ii) If fy + fo-+ fy = 0, then we see from (36) that there is an infinity of solutions, 
of the form 

UZ=Q, Lo=atete, wy =at+etc,, 

where a is an arbitrary constant and the two etc.’s involve the f’s and k’s. 
That is, the solution is nonunique because of the arbitrary translation «. 
Again, that result makes sense physically because with ky = k3 = 0 there 
are no end springs to restrain the three-mass system laterally. 

Let us make one more important point. Observe from (32) that the K matrix is 
symmetric. Yet the system (Fig. |) is not physically symmetric; that is, in general, 
ky & kg and ky 4 hog. Thus, the mathematical symmetry is somewhat unexpected 
and mysterious. In fact, we state without proof that for any number of masses 
interconnected with springs the resulting K matrix will be symmetric. 

There is a striking consequence of the symmetry of K, which we now explain. 
Property [2 gives (K~!)? = (KT)-! = K~! since KT = K. Let us denote 

  

sa
nn
se
as
et
i
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K = {ay}, say, and let us compare the displacement vy of m3 due to a unit load 

fi = Lon m, (with fo = fs = 0) with the displacement 2, of 7m, due to a unit 

load fy = 1 on ms (with fy = fo = 0). In the first case, 

vy Qi, Aya 13 t 

wo | = | Ge, O92 M3 0 

U3 Oa, 399 39 0 

gives 23 = ay and, in the second case, 

Ly Qi, G12 O43 0 

wo = Oo, oo Cag 0 

U3 ea, 89 (a9 1 

gives ©, = @ 3. But these are the same (a3; = @13) because K is symmetric. In 

this manner we find that 

displacement x; of mass mj _ displacement 2, of mass 774 (37) 

due to unit load on mass 771, due to unit load on mass ™, 

The latter “reciprocity” result can be generalized so as to apply to any linear elastic 
system and is known as Maxwell reciprocity.” 

There is an electrical analog of the mechanical system shown in Fig. 1, a cir- 
cuit containing resistors and voltage sources (such as batteries), and discussion of 

that case ts left for the exercises. 

10.6.3. Cramer’s rule. We have seen that if A is m x n and detA # 0, then 

Ax = c has the unique solution 

x=Arvte, (38) 

To focus on the individual components of x, rather than the entire x vector, let us 

write out (38): 

vy Qi Gin st) Ain a Dy CIS) 

= : ; : : | = : (39) 

Ln Ont On2 1° Onn Cn, ar OAngey 

Equating the ith component on the left with the 7th component on the right, we 

have the scalar statement 

Lj ) OC; (40) 

j 

“By a linear elastic system is meant one obeying Hooke’s law. For a statement and proof of 

Maxwell's reciprocity theorem see, for instance. Den Hartog’s Advanced Strength of Materials (New 

York: McGraw-Hill, 1952). 
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for any desired 7 (1 <a <n), Or, recalling (17), 

Doi Ajicj : 

«= (aie) A deta (4) r 

Now, if the numerator on the right-hand side were ti Ajj@ji, instead, it would be 

recognizable as the determinant of A, namely, the cofactor expansion about the ith 
column. But the a,;;’s are replaced, in (41), by the cj’s, so the numerator of (41) 

amounts to a determinant but not the determinant of A; rather, it is the determinant 
of the A matrix with its zth column replaced by the column of c;’s (or the ¢ vector, 
if you like). 

The result, known as Cramer’s rule, after Gabriel Cramer (1704~—1752), is as 

follows. 

  

  

THEOREM 10.6.3 Cramer’s Rule 

If Ax = c where A is invertible, then each component x; of x may be computed as 
the ratio of two determinants; the denominator is detA, and the numerator is also 
the determinant of the A matrix but with the ith column replaced by c. 
  

EXAMPLE 3. Let us solve the system 

13° 0 5 

23 1] )a f=] 1 (42) 
0 1 1 2 

for x, and xq, say, using Cramer’s rule. In this case detA = 8 4 0 so the method is, first 

of all, applicable. Thus, 

5 3 +0 Ll 5 0 

13 «421 —2 1 1 

—2 11 1 0 -2 1 ie 

a= Ro) g RS aye (43) 
—~2 3 +1 ~-2 3 42 

011 011] 

where we have printed the “replacement columns” as boldface, for emphasis. 8 

Cramer’s rule, like the inverse matrix solution (38) from which it Comes, has 

the advantage of being an explicit formula, rather than a method. It is also useful in 
that it permits us to focus on any single component of x without having to compute 
the entire x vector. 

10.6.4. Evaluation of A~! by elementary row operations. Equation (16) gives 
A7! in terms of detA and n? cofactors, each of which is +1 times an (n — 1) x



  

10.6. Inverse Matrix, Cramer’s Rule, Factorization 

(n ~ 1) minor determinant. Each of these determinants can be evaluated by the 

cofactor expansion definition or, especially if n is large, by a faster method — such 

as triangularization. Alternatively, we can bypass (16) altogether, and determine 

A7! efficiently as follows. 

Whether we are seeking A7! in order to solve a system Ax = c, or whether 

we are simply seeking the inverse of a given matrix A, observe that if we solve a 

system Ax = c of n equations in n unknowns, or equivalently Ax = Ic, by Gauss- 

Jordan reduction, the result is the form x = A7'c, or equivalently Ix = Av'c. 

Symbolically, then, the sequence of elementary row operations effects the following 

transformation: 
Ax = Ic 

4 (44) 

Ix = Ante. 

That is, at the same time that the row operations are transforming A to I they are 

also transforming Ito A~!. Thus, we can skip x and c altogether, put A and I “side 

by side” as an augmented matrix A|I, and carry out elementary row operations on 

A|I so as to reduce A. on the left, to I. When that has been accomplished, the 

matrix on the right will be A~!. 

  

  

EXAMPLE 4. To illustrate, let us find the inverse of 

  

1 3.0 
A=z=l—-2 3 14]. (45) 

Qi. 

Then 

fF 13 0/1 0 0 1 3 O]1 0 0 
AIT=/]-2 3 1/0 10{/>5{]0 9 1/2 1 0 

Loo 1 10 0 1 a1 i13;0 0 1 

fr 1 3 0 1 0 0 1 3.0 1 Oo 0 

+ 9 1 2 1o};5/09 1 2 1 0 
8 2 L 1 9 

[9 0 F)-F -—g 1 0 0 l[-g ~s 8 

r 1 3 0 1 oO 0 3 0; 1 0 9 
£ 9 9 1 1 i 

> 9 0; F 3 E47 1 0} Gg § 78 
L i 9 l L 9 

[0 O lj~g -gs 8 0 O limg ~g 8 

r 3 3 10 0; 4 -2  § 
- 1 

AL 

+] O 10) 4 § =| (46) 
1 L 9 10 0 1}-4 -§  &§ 

SO 

1 3 3 
4 8 8 

—l l t L d Avls= fof =4 a (47) 

a1 Li g 
f 8 8 
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Can this method fail to work? Yes indeed, it had better fail if detA = 0, for 
then A is not invertible. The way that circumstance would show up is that the el- 
ementary row operations would produce one or more rows of zeros on the left so 
that A cannot be converted to I. 

10.6.5. LU-factorization.. This final subsection is not really about the inverse 
matrix or about the inverse matrix method of solving Ax = c. Rather, it is about 

an alternative method of solution that is based upon the factorization of ann x n 
matrix A as a lower triangular matrix L times an upper triangular matrix U: 

lia 0 0 U1Lt 12 U3 

A=LU = } lo, log 0 0 us ug |, (48) 

Is, Iga 133 0 0 uss 

where we have taken 7 = 3 simply for compactness. If we carry out the multiplica- 
tion on the right and equate the nine elements of LU to the corresponding elements 
of A we obtain nine equations in the 12 unknown [;;’s and wj;’s. Since we have 
more unknowns than equations, there is some flexibility in implementing the idea. 
Hence there are various versions of LU-factorization. 

According to Doolittle’s method we can set each 1j; = 1 in L (ie., the di- 
agonal elements) and solve uniquely for the remaining J;;’s and the w;;’s. With L 
and U determined, we then solve Ax = LUx = c by setting Ux = y so that 
L(Ux) = c breaks into the two problems 

Ly =c, (49a) 

Ux=y, (49b) 

each of which is simple because L and U are triangular. We solve (49a) for y, put 
that y into (49b), and then solve (49b) for x. Let us illustrate the procedure. 

EXAMPLE 5. To solve 

2 —3 3 Ly —2 

6 —8 7 tw |= | -3 (50) 

—2 6 —1l x3 3 

by the Doolittle LU-factorization method, we first need to determine L and U by equating 

  

2 —3 3 1 0 0 UlL i192 13 

6 —-8 7 = doy 1 0 0 Uu2e 193 

—2 6 —1 ls 1 ls 2 1 0 0 U33 

Uy U42 U13 

= | lotr — laruig + ge lo, U13 + Was . G1) 

gti Ugitye + lggtiag  lypurg + Ig2t¥a3 + Ugg 

Matching @11, @12, @13, @a1,-..,@32, 33 to the corresponding terms on the right gives a 

sequence of equations for w11, 12, 613, l21, Wea, Ua3, [31, lg2, and w33 (i.e., the underlined 

  

|
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entries) in Curn: 

ur = 2, 

U2 = —3, 

upg = 3, 

toy = 6/ ters = 6/2 = 3, 

ugg = —8 — lgyury = ~8 — (3)(—3) = 1, (52) 
ug = 7 ~ louis = 7 ~ (3)(3) = 2, 

fg, = —2/uy, = -2/2 = -1, 

loo = (6 — lyr ure)/uey = [6 — (-1)(-3)//L = 3, 
ugy = —1 — byyug — lggteg = ~ 1 ~ (—1)(3) — (3)(—2) = 8. 

-_
—~
 

Then (49a) becomes 

10 0 yi a) 
3 1 0 yo | =| -3 1, 

-1 31 ys 3 

which gives y = [-2,3, —8]". Finally, (49a) becomes 

2 —3 3 Ly —2 

0 1 2 Yq |=] -3 1], 

0 0 8 C3 3 

which gives the final solution x = [2,1,—-1]". # 

The beauty of the method is that the (;;’s and u;;’s are found not by solving 
simultaneous coupled equations but by solving a sequence of linear equations in 
only one unknown [as illustrated in (52)]. With L and U thus determined, the so- 

lution of (49a) and (49b) is likewise simple since L and U are triangular. In fact, 

the method is around twice as fast as Gauss—Jordan elimination. 

Closure. The inverse of a matrix A, denoted as A~!, exists if and only if A is 
square (n x n) and detA # 0. If it exists it is given uniquely as 

  
1 

Atl = adjA, (53) 
detA | 

where the matrix adjA is the adjoint of A (the transpose of the cofactor matrix), 

and is such that 
ATA=AATN =I. (54) 

The case where A is not invertible (Le., is singular) is the exceptional case; in 

the generic case a given nm X n matrix is invertible. Besides (54), several useful 
properties of inverses are given as [1-14 in Section [0.6.1. 

If A is invertible, then Ax = c admits the unique solution 

  =Ate= adjA.) c, 55 
* © deta Je, >)
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which result gives us Cramer’s rule, whereby each component of x is expressed as the ratio of n x n determinants. 
Notice that the equation aa = c has a unique solution if and only if a #0, For Ax = c, where A is n x n, that condition generalizes not to A 4 0 but to 

detA # 0. 
In contrast with Gauss—Jordan reduction and LU-factorization, which are so- 

lution methods, (55) and Cramer’s rule are explicit formulas for the solution (when 
a unique solution does exist). 

Finally, we urge you to be careful with the sequencing of matrices because of 
the general absence of commutativity under multiplication. For instance, Ax =c 
implies x = A~'e (if A is invertible), NOT x = cA~!. Indeed, the product cA~! 
is not even defined (unless n = 1) since cisn x Land Aw! isn xn. 

Computer software. Using Maple, the relevant command is inverse(A), within 
the linalg package. For instance, to invert 

|. | 
with(linalg): 

I 2 

3.4 

enter 

and return. Then the steps 

A := array (([1, 2), [3,4]]): 

and 

inverse(A); 

[ 
give the result 

r
e
o
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  EXERCISES 10.6 

  

1. Use (17) to evaluate the inverse matrix. If the matrix is not I 2 L 0 1 0 invertible, state that. 
(D} 2 1 3 (g)} 2.0 5 

0 3 +1 0 0 3 a b 
(a) cd | where ad ~ bc 4 0 1 i141 0 0 2 

(4); O fod G@) | 0 =~1 @ 
0 0 1 L 0 0 5 4 

3 7 
(b) 5 4 io) 01 | 3 1 ~2 7 1 8 32 1 0 @fi 2 4 (kK) } 2-1 1 

-3 3 0 1 4 (d) 

N
o
b
 

| 

b
e



  

1 0 2 30-5 

()} 0 3 0 (m) | 12 1 
4 0 5 3 C4 L 

2 0° 0 0 y 2.3.0.0 

0 1 3 ~0 1 1 0 0 

™)9 06 1.0 Ol g o 1 0 
00 4 1 L 0 0 4 1 

7 1 3 #0 ; 

) 2 -1 1 0 (q) cos? —sind 

(P 0 1 4 0 q | sin @ cos @ 

0 0.0 41 

cos@ —sin@d 0 . cos? 0 —sind 

(c) | sind cos@ 0 (s) 0 1 0 

0 0 1 | sin@ 0 cos @   
2. (c)~(o) Evaluate the inverse of the matrix given in the 

corresponding part of Exercise | using elementary row opera- 

tions, as we did in Example 4. 

3. (c)-(o) Evaluate the inverse of the matrix given in the 

corresponding part of Exercise | using computer software. 

4. (Block-diagonal matrices) If ann x m matrix A can be 

partitioned as 

A, O 0 
O As 

A= . {k <n) 

0 oe AR 

it is said to be block diagonal. All of the A; submatrices need 

to be square. although not necessarily of equal order, with their 

main diagonals coinciding with the main diagonal of A. For 

instance, 

  

      

2 11 0 0 010 
1 9 12] 0 0 00 A, 0 0 
0 0/-1 0 3/0 

A= =| 0 A» O 
0 0] 2 5.1/0 0 0 A. 
0 0} 3 1 010 3 

0 0, 0 0 014 
(4.1) 

is block diagonal. Such matrices exhibit essentially the same 

simple features as diagonal matrices. 

(a) Show that A is invertible if and only if Aq,...,A, are. 

HINT: Recall equation (9.1) in Exercise 9, Section 10.4. 
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(b) Assuming that A,,..., Ax are invertible, verify that 

Ay! 0 =. 0 
0 As! 

Atle |. . 

0 Lee A; 

(c) Use the latter result to evaluate Aw! where A is given in 

(4.1). 

5. Solve for x, and x2 by Cramer’s rule. 

(a) a1 + 4v. = 0 
30, —- to = 6 

(b) av, + bag = ¢ 

dx, + exo = f 

(c) 2 ~2ag+ tg = 4 

Qa, + 8a + 23 = -7 

4a4 + va + 223 = 0 

(d) vy, + 29 + 323 = 9 

zy + 409 = 6 

Ty _ 5x3 = 2 

(e) 24, + 22 =1 

Hy + 2r2 + 43 = 0 

2 + 223 + fy = 0 

v3 + 2a4 = 0 

(f) xy + LTo+ ©R = 1 

a, + 2rq + 3a3 = 0 

fy - La + 4n3 = 0 

6. (a) Given a certain 3 x 3 matrix A, we find its inverse to be 

1 2 0 

Att=|0 1 0 
3.0 0 

Can that result be correct? Explain. 

(b) Same as (a), for 

1 it 

Avl=|2 2 2 
3.0 +0 

7. 1f AW! is the given matrix, find A. 

3-1 1 2 w(2 2] of 2] 
121 2 1 1 

(c) | 0 3 1 (d)| 4 1 1 

1 1 0 6 2 1
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8. Suppose that Ax = c is a linear system of order 3, and that 
to the c vectors 

L 0 0 

c= {1 01], 1], 0 

0 0 1 

2 1 3 
x= | 5], Li, o |, 

—1 2 4 

respectively. Then what is the solution x corresponding to 

c = (4,3, -1]7? Is it unique? Explain. 

9. Suppose that Gauss elimination gives the solution of a lin- 

ear system Ax = C aSX = XQ + Q1X;4 + 2X2, where A is 

6 x 6 and a; and cz are arbitrary. Is A invertible? Explain. 

10. (Nilpotent matrices) If there is some positive integer p such 

that AP = Q, then A said to be nilpotent (i.c., potentially nil). 

(a) Show that a nilpotent matrix is necessarily singular. 

(b) If A is nilpotent, with AP = O, show that 

(I-A)"'=14+A+4A?H+-..4 AP71, (10.1) 

11. First, read Exercise 10. Use (10.1) to find the inverse 

of the given matrix. HINT: You will need to identify A. 

1 23 10 0 
(a) | 0 1 8 (b)| -3 1 0 

f0 01 27 1 

ri 5 1.0 100 0 
0127 . | -4 10 0 

Oly 9 1 3 M) 6 3 10 
0001 2161 

12. First, read Exercise 10. Use (10.1) to find the inverse of 

the given matrix 

f2 8 10 

(a) | 0 3 12 

0 0 4 

HINT:   
2 8 10 ]- 2 

0 3 12 = 

0 0 4 4 0 0 Q
e
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3 0 0 2 0 0 

(b) 4 —2 0 (ce); 4 2 0 

10 QO 2 1 6 2 

13. Ul-conditioned systems) Consider the system 

+ Lb | , 
Log 3 Ly 1 
141i . _ _ s § ¢ tq | = | 2 or Ax=c. (13.1) 

doi £3 2 
3 4 5 

Here A is a third-order Hilbert matrix, named after David 

Hilbert (1862-1943), 

(a) Evaluate A~', by any analytical means that you wish, and 

show that x = Aw'c = [~3, -12, 30]". 

(b) To simulate the effects of roundoff error, consider in place 

of (13.1) the rounded off system 

1 0.5 0.33 xy i 

0.5 0.383 0.25 tq | = | 2 (13.2) 

0.33 0.25 0.2 £3 2 

Solving (13.2) by any means you wish (computer soft- 

ware being the easiest), show that the solution of (13.2) is 

x %& [11.1, —84.1, 96.8]". NOTE: In this example we see that 
only a slight error in A leads to a disproportionately large er- 

ror in the solution. Hence, (13.1) is said to be ill-conditioned. 

(Ill-conditioned systems are also mentioned in Exercise 13, 

Section 8.3.) In applications it is important to know if a given 

system is ill-conditioned so that steps can be taken to obtain 

a sufficiently accurate solution. According to one criterion in 

the literature, ann x m matrix A may be considered as ill- 
conditioned if 

d 
__|detAl <1. (13.3) 
   

  

       

tard j=l 

Th 

2 
Maj 

For the Hilbert matrix in (13.1), the left-hand side of (13.3) is 

0.00033, which is indeed much smaller than unity. 

(c) In place of (13.2), use the more accurate rounded off sys- 
tem 

1 0:5 0.333 Ly 1 

0.5 0.333 0.25 t | = | 2 (13.4) 

0.333 0.25 0.2 v3 2 

and see how much closer the solution of (13.4) comes 

to the exact solution x = [-3,—12,30]" of (13.1. 

  

  

  
 



  

14. Prove property [3. 

15, Prove property [4. 

16. In Section 10.6.2 we stated that if we are willing to re- 

move two springs then we can have detK = 0 either by setting 

ky = ky = 0 or by setting Ay2 = kag = 0. We discuss the for- 

mer choice, k; = kj = 0, both mathematically and physically 

as well. Do the same for the latter choice, ky: = keg = 0. 

17. (A de circuit) Application of Kirchhoff’s laws to the cir- 

cuit shown in Exercise 10 of Section 8.3 produced the five 

equations (10.1) on the currents i, 72,73. Of these equations, 

the second is the same as the first, and the fifth is the fourth 

minus the third. Thus, deleting those two redundant equations 

leaves the system 

i ~ ig- ig =O 
Roig — Rig = 0 (17.1) 

Ryly + Rais = EB. 

(a) Show that the determinant of the coefficient matrix in 

(17.1) is necessarily nonzero, so that the system Ri = e given 

by (17.1) necessarily admits the unique solution i = Re. 

NOTE: Ry, > 0, Re > 0, and Rg > 0. 
(b) Solve for i by the inverse matrix method. Also, solve for 

i1,12,23 by Cramer’s rule and verify that the results are the 

same. 
(c) Suppose, instead, that we allow one or more of the resis- 

tances to be zero so that #,; > 0, Ro > 0,3 > 0. Show 

that if any two, or all three, of the resistances are zero, then 

the determinant does vanish so that equations (17.1) admit 

either no solution or an infinity of solutions. For each of these 

four “singular” cases determine whether there is no solution or 

an infinity of solutions by applying Gauss elimination. State 

the physical significance of each of these results insofar as 

possible. 

18. (Circuit analog) The electrical circuit analog of the mass- 

spring system shown in Fig. | is shown below. 

(a) Applying Kirchhoff’s voltage law, show that 

(Ry + Rie + Ris) —Rig Rig h 

~Rig (Rye + Ras} — Rag Ig 
—Ry3 — Rag (yg + Reg + Rs) I3 

Ey 

s | fo |, 
3 
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(18.1) 
which is the analog of (32) under the correspondence 

Rig > hig, Lj 05, By > fy. 
(b) Discuss the existence and uniqueness of solutions of (18.1) 
in the same way that we did that for the mass-spring system 

in Section 10.6.2, including a reciprocity result analogous to 

(37). 

  

  
  

    
  

19, Solve by the Doolittle LU-factorization method. 

[ 2 3 Ly _ —4 

Mls ola y=bs0) 
[ 2 -i Uy _ 7 wf |[%]=[ a3] 
.2 5 1 Ly 0 

(c)}| 2 8 O LQ =| -7 

| 8 2 2 v3 10 

| 1 3 —1 vy 0 

(d) |} 2 2 0 zo | = 6 

| 3 1 1 £3 12   
20. (Dual or reciprocal set) In Exercise 13 of Section 9.9 we 

introduced the concept of a set of dual or reciprocal vectors 

{et,...,e*} corresponding to a basis {e1,...,@n} that is not 
necessarily orthogonal, or ON. Having learned more about the 

solution of systems of linear algebraic equations in Sections 

10.5 and 10.6, we can now return to that exercise and prove 

the claim made in part (a). Specifically, prove the dual set ex- 

ists, is unique, and is itself a basis for IR”. 
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10.7 Change of Basis (Optional) 

In a given problem one selects what appears to be the most convenient basis, but at 
some stage of the analysis it may be desirable to switch to some other basis. For 
example, in studying the aerodynamics of a propeller it is generally most conve- 
nient to carry out the analysis (of the propeller-induced pressure field, for example) 
with respect to a propeller-fixed basis, one that rotates with the propeller, although 
eventually we may wish to relate quantities back to a stationary (nonrotating) ba- 
sis. How do the coordinates (i.e., the components) of a given vector change as we 
change the basis? It is that question which we address in this section. 

Let B = {e1,...,e,} be a given basis for the vector space V under consider- 

ation so that any given vector x in V can be expanded as 

X= Ue, +++ + Lyn. (1) 

If we switch to some other basis B’ = {e/,...,e/, }, then we may, similarly, expand 
the same vector x as 

vot loo 
X= Tey tes + Ly, Ey. (2) 

How are the wi coordinates related to the x; coordinates? Since B’ is a basis, 

we may expand each of the e;’s in terms of B’: 

i i 

ey = qe; +-+> + dnie,, 

en = dine| ee Gnn@p- 

Putting (3) into (1) gives 

X= Uy (que) che dnie@n) +t + Ly (qine} oe + dnneh) 

= (wigi1 chee En Qin) e} tee (©1dnt see EnQnn) e|, (4) 

and a comparison of (2) and (4) gives the desired relations 

! oo , . 
Ly = q12y +++: + Gintn, 

  

      

(5) 

Ly = Gn €1 +o + Gann 

or, in matrix notation, 

[x] pr = Q [x] 5 , (6) 

where 

G11 din 

Q= ; (7) 

n
n
 

E
S



  

and 

[x] p = ; » [X}_ = : (8) 

Ly x 

We call [x) , the coordinate vector of the vector x with respect to the ordered basis 
B, and similarly for [x] ,,, and we call Q the coordinate transformation matrix 

from B to B’, 
Thus far, our results apply whether the bases are orthogonal or not. In the 

remainder of this section we assume that both bases, B and B', are ON. Thus, let 

us rewrite (3) as 

ep = qe) te + ant en, 

(9) 

en = Tne chock Gnn€ ns 

where the carets denote unit vectors, as usual. If we dot e4 into both sides of the 

first equation in (9), and remember that B’ is ON, we obtain qi; = @) - é1. Dotting 
@) gives qo, = @5-@),.... dotting @!, gives dn, = €), 1, and similarly for the 
second through nth equation in (9). The result is the formula 

  

Gig = Sj, (10) 
      

which tells us haw to compute the transformation matrix Q. 
There are two properties of the Q matrix to address before turning to an exam- 

ple. To obtain the first of these, observe that 

  

      

Gi occ nl g | q ' q 
Ll | G12 In 

T qi2 °'*  dn2 a 

| 

nt | Gn2 nn 
Gin -'' ne 

ep, s+ Cp ep 

= = J CLL) 

ep . Cy ua en ‘ Cp 

so that 

Qt=aqt. (12) 

It was useful to partition the Q! and Q matrices in (11) because we can see from 
(9) that the columns of Q (and hence the rows of Q*) are actually the e;,...,€n 

vectors (in n-tuple form). Thus, from the way matrix multiplication is defined, we 
can see that the elements of the product matrix are dot products. Specifically, the 

2,7 element of QTQ is e;-@;, which is the Kronecker delta 0;;. Hence, QTE 

equals the identity matrix I, so Qt must be the inverse of Q, as stated in (12). 
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That result makes it easy for us to reverse equation (6) — that is, to solve for 
fel itn parme af Oe thay yo -Ly — CYT [1 har «te 5 [x] g in terms of [x] ,, for then [x], = Qu" [x] py, = Q® [x] gv. In other words, we 
do not need to face up to the evaluation of Q7! since Q~! is merely Q™. 

Any matrix with the useful property (12) is known as an orthogonal matrix 
because it follows from (12) that the column vectors in Q are orthonormal. 

As the second property of Q, observe that it also follows from (12) that 

(13)    
that is, either +1 or —1 since Q™Q = L implies that det(Q'Q) = detI = 1. But 
det(Q™Q) = (detQ™)(detQ) = (detQ)(detQ) = (detQ)°. Hence, detQ must be 
+lor—l1. 

EXAMPLE 1. — Rotation in the Plane. Consider the vector space R?, with the ON 

  

bases B = {€1,@2} and B’ = {€),é,} shown in Fig. |. B’ is obtained from B by r 
a counterclockwise rotation through an angle @ (or clockwise if @ is negative). From the 

figure, 

qi = @,-@; = (1)(1) cos = cos 9, 
apo , tr . 

diz = 6), = (1)(1) cos (5 - 6) = sind, 
‘ (14) ayn ara wt . 

qa, = @5-€, = (1)(1) cos (< + @) = — sing, 
Figure 1. Rotation in the plane. . 2 

gag = 5) = (1)(1) cos? = cos @ 

so that the coordinate transformation matrix is 

cos@ sin @ 
= . . 15 

Q —sin@ cosé (15) 

Hence, 

vy _ cos 6 sin 8 wf (16) 

Ly ~—sin@ cosé vy 

Or, the other way around, 

; a ' : Troy 
ry] cos@ sind ry cos@ sin€ xy 

zo. | | —sin@ cosé ry | | ~sin@ cosé xp 

vy, | | cos@ —sind xt 

re | 7 sind —_cos@ | us | (7) 

sO 

t 

COMMENT |. It is easy enough to check (16) and (17) for one or two special cases. For 

example, if @ = 0 then the two bases coincide so we should have x) = v, and @ = 2, 

and that is what (16) and (17) give. Also, if @ = 7/2, say, we should have xv, = we and 

Lh = —x, and, again, that is what (16) and (17) give. 

  

Figure 2. Rotation plus reflection. 
COMMENT 2. Two ON bases in a plane are not necessarily related through a rotation. 

In this example, for instance, if we reverse the direction of @4, then {@), 65} is still ON



  

(Fig. 2), but is not obtainable from {@),é@2} by means of a rotation alone, Rather, we 

need a rotation and a reflection, a counterclockwise rotation through an angle 0, and then 

a reflection about AA (or, first a reflection about the @, axis and then a counterclockwise 

rotation through an angle @). In this case 

= cos@, 

cos (G a 0) = sind, 
2 

om
 

we
 | qi = ey" 

II qin = @,-€ 
ahon vr . 

G21 = @5-@) = COS (¢ _ 0) = sind, 

= cos(m — 0) = —cosé Om bo
 gag = eh: 

so that Q is the orthogonal matrix 

Q= cos # sin @ . (18) 
sin@ —cosd 

Recall from (13) that detQ is either +1 or —1. For the case where B and B’ are 

related through a pure rotation [Q given by (15)] detQ = +1, and for the case where they 

are related through a reflection and a rotation [Q given by (18)] detQ = —1. I 

Closure. In this brief section we study the relationship between the components, 
or coordinates, of any given vector x expanded in terms of two different bases B 
and B’. We find the linear relationship (6), where the qij elements of the coordinate 

transformation matrix Q are the expansion coefficients of e; in terms of ej,...,e4,, 
as indicated by (3). 

If B and B’ are ON, then the gij 8 are computed, simply, from (10), and Q 

admits the properties that Q' = Qu! and that detQ is +1 or —1. Any matrix Q 
having the property Q? = Qu! has ON column vectors and is called an orthogonal 
matrix. 
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EXERCISES 10.7 
  

1. Given that ey = e} + 2e, and eg = e| — ej, find the onal? 

coordinate transformation matrix Q. Is Q orthogonal? If (b) If [x] 5 = {8, —6)", find [x] yr 

[x], = [5,-1]7, find [x],,,. If [x] ,, = [2,3]", find [x] ,. (c) If [x] _, = (1, 3]", find [x] ,. 

2. Given that e; = e; + eh ~ ef, eg = e, ~ ey + e4, and 4 
€3 = —e| +e + eh, find the coordinate transformation ma- ~~ 
trix Q. Is Q orthogonal? If [x], = [4,1,—-2]", find [x],,,. If (0,0, 1,0)", é4 = [0,0,0, 17, and é) = 

[x] 5, = (1, 0, Qi, find [x] - 

Let é; = [1,0,0,0]", é» &3 iI 

1 on 
(1,1,0,0]",é5 = 

: - “op . 1 + / Tae i _ wt og I _ _oT 
3. Let é) = f1,0]*, é, = (0, yt, and @) = ed : (0,0, 1,0)", €3 walt 1,0, 1)", €4 gli 1,0,—2)°. 

6, = La, ~2yF, (a) Find the coordinate transformation matrix Q. Is Q orthog- 

V5 onal? 

(a) Find the coordinate transformation matrix Q. Is Q orthog- (b) If [x], = [1, 1, 2,5], find [xX] pr
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(c) If [x] 5, = [1,1,2, 5)", find fx] ,. B B 

5. Show whether or not these matrices are orthogonal. 
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an angle 6. Does Q~' correspond to the reverse of this, a 

clockwise rotation @ ? Prove or disprove. 

7. (Rotation and reflection) (a) Show that every orthogonal 

fl 1 L 0 0 coordinate transformation matrix of order 2 is of one of the 

ee (b)) 9 0 =I following two types: 
Lo 1 0 _ 

- 0 2 0 0 cos@ sind cos @ sin @ 

| | I 0 0 l 0 =| ~ sind ne |: Qa =| sin 0 ae | 
(c)| 1 1 0 (d) 00 0 <1 

| 1 0 0 100 0 1.e., aS given by the pure rotation (15) or by the rotation plus 

~ reflection (18). 

1 0 0 0 (b) Show that these two cases can be distinguished by the sign 
L 1 1 y g 

0 0 a V2 V3 V6 of the determinant, specifically, that detQ = +1 if Q corre- 

(e) v2 V2 (fy) 4 Lk Lk sponds to pure rotation, and that detQ = —1 if Q corresponds 

0 1 0 0 v2 vs ve to rotation plus reflection. 

00 -k + 0 V3 v6 8. (a) Prove that if Q is orthogonal, then so is Q®. 
b v2 v2 (b) Prove that if Q is orthogonal, then so is Q7!. 

6. For the case of rotation in a plane, the transformation Q cor- § sing 1” 

responded to a counterclockwise rotation of the basis through 9, Evaluate sind oe 
= —sin@ cos 

  

Figure 1. Function f asa 

transformation. 

f 

  

Figure 2. The graph of f. 

10.8 Vector Transformation (Optional) 

Recall that a real-valued function f of a real variable x is a rule that assigns a 
uniquely determined value f(x) to each specified value « as illustrated in Fig. 1. 
Thus, f is a transformation, or mapping, from points on an a axis to points on 
an f axis, and we view x as the “input” and f(x) as the “output.” [A more fa- 
miliar graphical display of f, called the graph of f, can be obtained if, following 
Descartes (1596-1650), we arrange the x and f axes at right angles to each other 
and plot the set of points x, f(a) as illustrated in Fig. 2.] 

In this section we reconsider vectors and matrices from this transformation 
point of view. Specifically, we consider vector-valued functions F of a vector vari- 
able x, That is, the “input” is now a vector x from some vector space V, and 
the function F assigns a uniquely determined “output” vector F(x) in some vector 
space W’. We call F a transformation, or mapping, from V into W, and denote it 

as 
F:VoW. 

We call V the domain of F and W the range of definition of F. W may, but need 
not, be identical to V. If it iy identical, then F : V -—+ V is called an operator 

on V. 
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EXAMPLE 1. To illustrate, consider the transformation F : IR* —+ IR* defined by 

i 229 + £4 

F(x) = Ly + £3 . (1) 

wy + 2r9q + 203-24 

Here V is IR*, W is IR°, and the input vector x and the output vector F(x) are 

z 
' Uy — 200 + Eq 

x= inR*, and F(x) = Ly +23 in R?, (2) 

ws ay + 2n9 + 243 - v4 
LA 

For example, if x = [2,3,6,—1], then F(x) = [-5,8,21]7. This transformation is not 
an operator since W = IR’, whereas V = R*. Bf 

We say that the vector F(x) in W is the image of the vector x in V under the 
transformation F, and that x is the inverse image of F(x). 

Since V and W are vector spaces, each must contain a zero vector. We will 
denote these zero vectors as Oy and Ov, respectively. Finally, we define the image 

of V in W as the range F of F, and we define the inverse image of Oy in V as the 

nullspace or kernel J’ of F. That is, the kernel A is the part of V that maps to the 

zero vector Ow in W. 

EXAMPLE 2. Let us find the range and kernel of the transformation F given in Example 
1. First, the range. The range of F is the set of all vectors ¢ in W for which the equation 

F(x) = c is consistent, that is, has at least one solution x in V. In the present case 

F(x) = cis 
j ayo 229 + Lyq Ch 

Ly + 2&3 = | C2 (3) 
Hy + 209 + 2x3 - Ly C3 

or, in scalar form, 

Ly — 229 +24 = C1, 

Ly + 23 C2, (4) 

Uy + 204 + 223 —~ U4 = Cg. 

i 

Applying elementary operations to (4), we obtain the equivalent system 

ty — 229 + lq = Cy, 

209 +23 —- 4 = C2 —- Cy, (5Sa,b,c) 

O = cy — 2€9 + Cy. 

This system is consistent if and only if c lies in the plane (through the origin) defined by 

cy — 2c + cy = 0. That plane is a two-dimensional subspace of R® and is the range R of 

F.
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Turning to the kernel A’ of F, that is, the inverse image of [0,0,0]" in IR*, we need 
merely set c, = cy = c3 = 0 in (5) and solve for x. That solution gives 

0 —2 

X= Q, ; + ag - = OX, + Aga, 

2 0 

where a1, Q2 are arbitrary constants. Then AU = span{x,,x2} and dimK = 2. These 
results are summarized, schematically, in Fig. 3. 

Kernel: K = span(x,,x} Range of definition: 

dim K =2 W=IR? 
dim W =3 

    
   

Domain: V=R? 

dimV =4 

Range: R is the plane (5c) 

dim R=2 

Figure 3. The transformation F. 

Just as linearity, or the absence of it, was crucial in the theory of ordinary 
differential equations, it is likewise crucial here. We distinguish transformations as 
linear or nonlinear as follows. 

  

DEFINITION 10.8.1 Linear Transformation 
We say that F: V — W is a linear transformation if 

F (au + $v) = aF(u) + GF(v) (6) 

for every choice of vectors u,v in V, and scalars a, 3; otherwise, F is said to be 
nonlinear, 
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EXAMPLE 3. To illustrate, consider the transformation F : R° —> R*, where 

| By om Arg + vy . 

B(x) = | Lg + 5x3 (7) 

Let us see if F is linear. 

ay | (ath + Bur) - 2(atte + Sve) + (aug + Bus) 

F(au + Gv) = (au, + Bug) + 5(aug + Buy) 

_ uy — 2g + Ug cal ust 209 + U3 

=e to + Sts +p vg + 5v3 | 

=aF(u) + @F(v) (8) 

for every choice of u,v,a,@, so F is indeed linear. Notice that the key step in (8), the 

second equality, follows from the definitions of the addition and scalar multiplication of 

matrices. H 

EXAMPLE 4. Consider F : IR? - R?, where 

Fix) = | “1 |. (9) 
Ly + 229 

Then 

F(au+ Jv) 

_ (au, + 8)? 
~ 1 (uy + Bu.) + 2(aug + Bre) 

_— ur : vy (a? — a)u? + (3? ~ B)u? + 2aBuryy 
=e uy + Que | +8 Uy + 2v9 | + 0 

= ao F(u) +9 F(v) + deviation, (10) 

where the “deviation,” 

(a? — a)u} + (3° — Buz + 2aBuryr 0 dh) F(au + dv) —aF(u) —-SF(v) = 

is obviously not zero for all choices of a, 3, u,v. For instance, ifa = 6 =u, =v = 1, 

then (for any uy and v2) the deviation vector is [2,0]". Thus, (6) does not hold for all 

choices of a, 3,u,v.so F is nonlinear. d 

If F is linear, then besides (6) we have 

F (au + 3v + yw) = F(au+ (Sv + yw)) 

a F(u) + F(3v + yw) = a F(u) + PF(v) + 7 F(w) ll 

or, More generally ys 

  

  
F (ayUy +e) $O_,Uy,) = ALF (uy) +++) + anF (un). (12) 
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Observe that (7) can be expressed in matrix notation as 

1-217)" 
Px) =| 4 ‘ 5 | ty |. (13) 

1 
£3 

That is, the action of F on x is equivalent to multiplication by A, where A is the 

2 x 3 matrix in (13), 

F(x) = Ax. (14) 

Note that we do not say that “the transformation F is the matrix A.” Rather, we 
say that F is the transformation multiplication by A. For that reason we call F 

a matrix transformation. The point that we wish to make here is that the linear 

transformation given in Example 3 happens to be a matrix transformation. We now 

show that that correspondence is no accident. 

  

THEOREM 10.8.1 Matrix Transformation 
A transformation F : R” — IR™ is linear if and only if it is a matrix transformation. 
  

Proof: First, we show that if F is a matrix transformation [i.e., if there is an m x n 

matrix A such that F(x) = Ax for each x in R"], then F is linear. That is easy 
since F (au + $v) = A(au+ Gv) = aAu+ BAv = aF(u) + GF(v) for all 
u,v in R” and for all scalars a, 3. To prove the converse, let {ij,...,in} and 
{j1,---,Jm} be bases for R” and R™, respectively. We may express 

m m 

x= S > wyiy and y= S- uede: 

k=l jel 

Then 
nr Tr 

F(x) =F [| So a,i; | = 5) ajFG)) 
j=l jel 

by (12). Since F(i;) is in R™, it can be expressed in the form 

™m 

F(is) =) nid 
k=l 

so 

mh mm m rr 

F(x) =) 2; S- Akjlk = Ss" S- Anjt; | Ir- (15) 
gel kez] k=1 \g=l 

But we also have 

F(x) =y =) vada, (16) 
k=l 

 



  

10.8. 

and it follows from (15) and (16), and the linear independence of the j,’s, that 

rn 

Uk = S° Ap Lj 

j=l 

or y = Ax, where A = {a,j} is m x n, as was to be proved. @ 

We now introduce some additional terminology. First, recall that F is under- 
stood to be single valued. That is, to each vector x in the domain V of F there 
corresponds a unique image F(x) in the range R of F. If, in addition to each 
vector in R there corresponds a unique inverse image in V, then F is said to be 
one-to-one. Notice that we do not say “to each vector in W there corresponds a 
unique inverse image in V” since & may not be all of W, in which case those vec- 
tors which are in W but not in # have no inverse image at all. If & does turn out 
to be all of W, then F is said to be onto; that is, F maps V “onto” W rather than 
“into” W. Finally, if F is both one-to-one and onto, it is said to be invertible for 
then every vector in W/ has a unique image in V. This inverse transformation, from 
W onto V, is called the inverse of F and is denoted as F~!. 

EXAMPLE 5. Consider the matrix transformation F in Example 2. There, F(x) = Ax, 
with 

1 -2 0 1 

A=j/]1 0 1 OO}. (17) 

1 2 2 -1 

From (5c) we see that 2 is only the two-dimensional subspace of W (= R°) consisting of 

the plane ¢3 — 2c) + ¢, = Oso that F is not onto, That result is illustrated schematically in 

Fig. 3, where # is shown to be only a part of W. Furthermore, if c is in R [ie., if (Sc) is 

satisfied], then (5) yields a nonunique solution for x, so F is not one-to-one. Summarizing, 

F is neither one-to-one nor onto and is therefore not invertible. # 

EXAMPLE 6. Consider the matrix transformation F : R? — IR? associated with the 

matrix 
1 —2 

A= |1 1}. (18) 

2 —l 

Applying elementary operations to the system Ax = c, namely, to 

1 —2 1 Cy 

14 | |= oo |, (19) 
2 -1 - C3 

we obtain the equivalent system 

Uy —- 289 = ch, 

b8Q = C2 —- C1, (20a,b,c) 

Q = ¢3 — C2 - «1, 

Vector Transformation 535
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from which it is seen that F is nor onto (why not?), although it is one-to-one (why?). Thus 
F is not invertible. # 

EXAMPLE 7. Consider the matrix transformation F : IR® -+ IR? associated with the 

matrix 
1 1 2 

A= 2 0 -3 | ‘ C1) 

Applying elementary operations to the system Ax = c, namely, to 

, 4 ey 
11 2 Cy fx 22 

| 20 -3 | “2 C9 | (22) 

we obtain the equivalent system 

Uy + Lo + 223 = C1, 23a 
202 + Tz = 2c, — co, (23a,b) 

from which it is seen that F is onto (why?), although nor one-to-one (why not?). Thus, F 

is not invertible. @ 

EXAMPLE 8. Consider the matrix transformation F : R? — IR? associated with the 

matrix 
2 -l1 i 

A= | 0 3 1). (24) 

1 1 0 

Applying elementary operations to the system Ax = c, we obtain 

2k, ~ Lg + Ly = 1, 
329 + 13 = C2, (25a,b,c) 

_ 223 = 2C3 — C9 — Ch, 

from which it is seen that F is both onto (so that F is an operator) and one-to-one, and 

is therefore invertible; completion of the Gauss—Jordan reduction of (25) reveals that the 

inverse operator F~? is the matrix operator associated with the matrix 

Lod 2 
6 6 3 
1 1 
Fe UG |e (26) 

L i 
> 9 —! 

which, of course, is the inverse of the A matrix, A7!. @ 

Closure. Recall that we develop n-space in Chapter 9, and then generalize the 
vector space concept in Section 9.6. The role of the present section is analogous in 
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that here we have generalize the concept of matrix, developed earlier in this chapter. 

to that of transformations on vector spaces. 

Besides establishing the concept, together with the standard mathematical ter- 

minology, the key result is given in Theorem 10.8.1, that a transformation F 

IR” -> IR™ is linear if and only if it is a matrix transformation. 

EXERCISES 10.8 

1. In general, the effect of a transformation on the input vec- operator if I(x) == x foreach x in V. 

‘varies from one in ector to another. For example, let ae 
tor varies from one input vector to anoth or example (a) Suppose that F: V -+ V is linear and that {vi,...,vn} 
F: RB? > R? be a matrix transformation F(x) = Ax, where 

3.2 

A= 0 1 
on a nonzero vector x amounts to the resulting rotation in the 

plane, and the dilation (i.e., || Ax] / |}</]). For the transforma- 
tion F given above, show that these effects are as follows for 

the given input vectors, and notice that the effect of F varies 

from one x to another. 

I In 2-space the “effect” of a transformation 

      

    

  

Input Effect of F 

rotation = 0 radians 
(a) X= _ 

0 dilation = 3 

0 rotation = 1.1 radians 
(b) x= _ - 

1 dilation = 5 

i rotation == 0 radians 
(ct) c= , 

-1 dilation = 1 

2. Determine whether F is linear or nonlinear by determining 

whether or not the deviation F(a u+ 3v) — eF(u) — GF(u) 
is necessarily zero. 

  

  

/ p25 R ; _ [ oat 
(a) F:R? > Re, F(x) Laan | 

Loy 2 [Bary (FR? RY F(x)=] 1, 
1 £9 

()F: B83 R*, F(x) = ue 
vy 

(QF: BR? = RB! F(x) =[ 3x | 

(fe) F:R? = RR’, F(x) = ve | Ary 

5 — . typed ()F:R? > R?2, F(x) = nd 

3. (Identity operator) We say that 1: V — V is an identity 

is a basis for V. Show that if F(v,) = vi,--., F(vn) = va, 

then F = [. 
(b) Determine the matrix A corresponding to the identity op- 

erator I: R” — IR”, i.e., such that I(x) = Ax. 

4. (Zero transformation) We say that ® : V — W is a zero 

transformation if ®(x) = 0 for all x’s in V. 

(a) Suppose that F : ¥ — W is linear and that {v1,...,Vn} 

is a basis for V. Show that if F(v,;) = 0,...,F(vn) = 0, 
then F = ®. 
(b) Determine the matrix A corresponding to the zero trans- 

formation ® : R" + R™, i.e., such that B(x) = Ax. 

5. In each case F': R" + IR™ is the matrix transformation 

corresponding to the given m x n matrix A. Determine dimf, 

dim’, and dimV. Is F onto? One-to-one? Invertible? Ex- 

plain. Put forward any basis for A” and any basis for F (if, 

indeed. they have bases; see Exercise 7 in Section 9.9), 

2 1 41 
2 

w|t ii (b)} 1 11 
4 3 38 

;2 1 1 4 1 
fc); 1 1 oi (d)| 3. 2 

| 1 1 2 QO -1 

yi 2 3 0 0 6 0 

(e)| 0 4 °5 (ff) | 0 -—2 0 0 

| 0 0 6 1 00 90 

F2 -1 1 1 4 
0 0 38 2 1 

(J) 4 4 4 (Ml 5 4 
| 1 2 3 0 3   

6. Make up any example of a matrix transformation F : R” 

iR™ that is one-to-one but not onto, one that is onto but not one- 

to-one, one that is neither one-to-one nor onto, and one that is 

both one-to-one and onto. [f such an example is impossible, 

explain why that is so.
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(abn = 2,m = 2 

(c)n=2,m=3 

(b) n= 3,m = 2 

(d)n = 3,m=3 

7. (Projection operators) Let F : R° — RY be the transforma- 

tion 

F(x) = (x-v)V, (7.1) 

where V = (vy, va, va]? is a prescribed unit vector. In ge- 

ometric terms, F(x) is the vector orthogonal projection of x 

onto the line of action of ¥, as illustrated below. Hence, F 

in (7.1) is known as a projection operator. We now state the 

problem: Show that F is linear, so that one can express F(x) 

as Ax. Then determine the nine elements of the A matrix. 

(They will depend on v1, v2, v3.) 

   
a a 

F(x) =(x-v)y 

8. (More about projection operators) Let F : IR? — R° be the 

transformation 

(8.1) 

where V1, ¥2 are prescribed ON vectors. Then F(x) is the 

vector orthogonal projection of x onto the plane spanned by 

{¥1, Vo}. 

(a) Given that ¥, = [1,0,0]" and v2 = [0,1,0)", work out 
F(x) for x = [2,3,4]", and draw an informative, labeled pic- 
ture, analogous to the one shown in Exercise 7. 

(b) Show that F is linear so that one can express F(x) as Ax. 

Then determine the nine elements of the A matrix, in terms of 

the components 011, Ui2, Vig Of Vy and v1, U22, vag Of Vo. 

9, Show that F(au + Bv) = aF(u) + SF(v), in Defini- 
tion 10.8.1, is equivalent to the two conditions F(u + v) = 

F(u) + F(v) and F(eu) = eF(u). 

10. (Reflection about a line) Let F : IR? — R? reflect any 

given vector x about the line L, as shown in the accompany- 

ing figure. 

  

(a) Show that F(x) = x + 2[(x- L)L — x]. 
(b) Show that F is linear and determine the matrix A such that 

F(x) = Ax. 
(c) Work out A? and show that A® = I (Exercise 3). Why 
should it have been obvious, without working out A®, that 

A?=1? 

11. (Linear combination and composition) If F and G are 

transformations from V into W’, then we define the linear 

combination of F and G, (aF + 8G): V —- W, by 

(aF + 6G)(x) = aF(x) + SG(x) Cit.) 

for all x in V. Given transformations F : U - V and 

G:V -> W, we define the composition of F and G, 

(GF): U — W, by 

(GF)(x) = G(F(x)) (11.2) 

forall x in U. 

(a) Let F : mR’ > R?2 and G : R? + R? be matrix transfor- 

mations with matrices 

2 0 
and B= 

respectively. Evaluate (GF)(x) for x = [8, 1, —2,6|?. Find 
a single matrix corresponding to the composite transformation 

GF. 
(b) Let F : V - V be a linear operator, and define the com- 

posite transformation F? : V + V by F?(x) = F(F(x)). 
Show that F? is linear, too. 

Nw
 

cn
 

or
t 

So 2
 

bw 

12. Show that the translation operator F(x) = x + c, where 

c is a constant vector, is nonlinear. 

13. (Applications to computer graphics) It is basic, in com- 

puter graphics, to be able to move points about, in 3-space, 

by combinations of translations and rotations. Translation is 

easily accomplished by the operator 

F(X) = X + AX, (13.1) 

where X = [x,y, z]' is the position vector to the point and 

AX = [Az, Ay, Az} is the translation. However, whereas 

it is convenient, in the computer software, to express all trans- 

lations and rotations as matrix transformations, the operator 

F : R® —s B® is not linear (Exercise 12), and hence not 

expressible as a matrix transformation. To circumvent this dif- 

ficulty we define X = [z,y, 2, 1)". instead, where the fourth 

     



  

component, unity, is included for convenience. Then we can 

express 

F(X) = TX 
10 0 Ag x a+ Ag 

_| 0 1 0 Ay y y + Ay 
~ | OQ 0 Ll Az ze | | e+tAz |? 

0 0 0 1 1 1 

(13.2) 

which, if we pay attention to only the first three components, 

effects the translation by means of multiplication by T, where 

Tis the 4 x 4 matrix in (13.2). 

(a) Show that 

ec; ~s: 0 0 x 

po-rx-|5 GU )/e) ass 
0 0 0 1 1 

effects a rotation about the z axis through an angle @,, taken 

according to the right-hand rule. where c,, 8, are shorthand 

for cos @,, sin @,, respectively. HINT: Letting « = rcos@, 

y = rsin @, show that 

NOTE: Similarly, rotations about the @ axis through an angle 

6,, and about the y axis through an angle @,, are effected by 

Cy O sy, 0 x 

QO 1 0 0 y 
F(X) =R,X = (13.4) 

( y sy 0 cy 9 z 

0 0 0 1 1 

and 
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1 0 0. 0 £ 
F(X) =R,X = 0 Ce. 8, J y (13.5) 

« 0 Sy Cz O z |? , 

0 0 O 1 1 

respectively, where Cx, Se, Cy, Sy denote cos @,, sin Oz, cos Oy, 

sin Oy, respectively. 

(b) Show that a rotation about the z axis, followed by a transla- 

tion, is effected by the composite transformation (see Exercise 

11) 

Cc; ~s, 0 Ax x 

ot | 8 c, O Ay y 

R(X) = TR. X = 0 QO 1 Ag z 

0 0 0 | 1 

Does the order of the operations matter? That is, is TR, = 

R,T? 
(c) Compute F(X) = TR,R,R.X for X = [1,1,0,1)", 
O, = —m/4, Oy = 7/2,0, = 7, Ax = 2, Ay = 1, Az = —3. 

Verify the result by drawing the coordinate axes, identifying 

the initial point X, and then carrying out each rotation and 

translation graphically in a neat sketch. 
(d) Let the point and eraser of a pencil be located, initially, by 

Xp = [0,1,1, 1) and X, = (0,1,0, 1)", respectively. Locate 
the point and the eraser following the composite transforma- 

tion 
F(X) = TR.R,R.X, 

where 6, = 0.2, 6, = 0.3, 0; = —0.6, Ac = 1, Ay = 3, 

Az = 1. Ina neat sketch, show the pencil in its initial and 

final configurations, and verify that its length has remained the 

same. 

(e) Repeat part (d), with @, = —T, 

Ag = Ay = Az=1. 

(f) Repeat part (d), with @, = —7/2, 0y = @. = n/2, 

Av = Ay =1, Az = 0. 

  

Chapter 10 Review 

The following review is limited to a number of isolated results and formulas that 

should be both understood and memorized.
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Matrix multiplication: 

AB #4 BA (in general) 

‘Transpose: oo. 
(AB) =B'At 

Determinants: 

det(aA + 6B) #4 adetA + 8 detB (in general) 

det(AB) = (detA)(detB) 

Rank: 

r(A) = number of LI columns in A 

= number of LI rows in A 

Systems of linear algebraic equations, Ax = c (where A ism x 7): 

Inconsistent: 

No solution if r(Alc) 4 r(A) 

Consistent: 

Unique solutionif r(Ale) =r(A) =n 

(n — r)-parameter family of solutions if r(Ale) =r(A) =r<n 

The case where m = n: 

- Unique solution (x= A7'c) ifandonly if detA #0 fie, r(A) =n] 

Inverse matrix, A7!: 

Exists, and is unique, if and only if detA # 0. 

ATA=AA7 =I 
(AB)! =B lA”? 
(Av~t)t — (At)-? 

Orthogonal matrices: 

A matrix Q is orthogonal if it is square and its columns are ON. 

 



  

Chapter 11 

The Eigenvalue Problem 

11.1 Introduction 

In this chapter we study the problem 

0 
where A is a given n Xm matrix, x is an unknown 7 x i vector, and \ is an unknown 

scalar. If we re-express (1) as Ax = \Ix (where Tis ann x n identity matrix), 

then subtraction of \Ix from both sides gives the equivalent equation” 

(A — AI)x = 0, (2) 

which is a homogeneous system of n equations in the n unknown 2;’s, where the 

coefficient matrix A — AI contains the parameter A. 

To be sure that (1) and (2) are clear, let us write them out in scalar form, for 

n = 3, for example. Then (1) is the system 

ay12y + GyQQq + 44323 = AL4, 

a9121 + a929 + Go3t3 = Axe, 

agyey + a3o@Q + a33u3 = Avs. 

Subtracting the terms on the right from those on the left gives 

(aut _ A\)@1 + ay20o + a43t3 = 0, 

agyey + (a99 — A)wo + ao3a3 = 0, 

agyey + a39t9 + (a33 — A)v3 = 0, 

which, in.matrix form, is equation (2). 
  

*Of course we don’t need to insert the I. We could re-express (1), correctly, as Ax — Ax = 0. 

but it would not follow from the latter that (A — A)x = 0 because subtraction of a scalar (A) from a 

matrix (A) is not defined. Hence the need to insert I. 

S41
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From Chapter 10, we know that (2) is consistent because it necessarily admits 
the “trivial” solution x = 0. However, our interest in (2) shall be in the search for 

nontrivial solutions, and we anticipate that whether or not nontrivial solutions exist 

will depend upon the value of A. Thus, the problem of interest is as follows: given 
the n x m matrix A, find the value(s) of A (if any) such that (2) admits nontrivial 

solutions, and find those nontrivial solutions. The latter is called the eigenvalue 

problem and is the focus of this chapter. The \’s that lead to nontrivial solutions 
for x are called the eigenvalues (or characteristic values), and the corresponding 
nontrivial solutions for x are called the eigenvectors (or characteristic vectors). 

The eigenvalue problem (1) [or, equivalently, (2)] occurs in a wide variety 
of applications such as vibration theory, chemical kinetics, stability of equilibria, 
buckling of structures, convergence of iterative techniques, and systems of coupled 
ordinary differential equations. To place the eigenvalue problem (1) in perspective, 
recall that in Chapter 8 and 10 we studied the problem 

    

Ax=c (3) 

of m linear algebraic equations in n unknowns (i.e., A was m x 7). In general, 
c # O, in which case (3) was said to be nonhomogeneous. The eigenvalue problem 
is by no means unrelated to (3); it amounts to a special case, where c = 0 (ie., it 

is homogeneous), where m == n, and where the coefficient matrix “A” = A — AI 

contains the parameter \. Thus, to solve the eigenvalue problem we will be able to 
use results already established in Chapter 10. 

11.2 Solution Procedure and Applications 

11.2.1. Solution and applications. The eigenvalue problem 

(A — \I)x = 0 (1) 

has the unique trivial solution x = 0 if det(A ~ AI) ¥ 0, and nontrivial solutions 
(in addition to the trivial solution) if and only if 

det(A — \I) = 0. (2) 

The latter is not a vector or matrix equation; it is an algebraic equation in A, known 
as the characteristic equation corresponding to the matrix A, and its left-hand side 
is an nth degree polynomial known as the characteristic polynomial. According 
to the fundamental theorem of algebra, such an equation has precisely n roots in 
the complex plane. Since one or more of these roots can be repeated, we can 
say that there is at least one eigenvalue A, and at most n distinct eigenvalues A, 
corresponding to any given n x mn matrix A. 

As in Chapter 10, we continue to consider only real matrices. However, even 
if A is real (so that the coefficients of the characteristic polynomial are too), the 
characteristic equation can still have complex roots. That case will not be very
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important to us. Thus, we avoid it entirely in Chapter I1, and consider it briefly in 

Chapter 12. 
This is not the first time we have run into the need to solve polynomial equa- 

tions. In Section 3.4 we sought solutions to linear, homogeneous, constant-coefficient 

differential equations by seeking y(a) = e*_ Putting that solution form into the 

nth order differential equation gave an nth degree polynomial equation on 4. In 

fact, even the terminology was the same: the equation was called the characteris- 

tic equation of the differential equation, and the nth degree polynomial was called 

the characteristic polynomial. If n = 2 we can solve the characteristic equation 

by the quadratic formula. For larger n’s we can, if necessary, use computer soft- 

ware such as the Maple fsolve command discussed in Section 3.4. Thus, let us 

consider (2) to have been solved for the eigenvalues, for the moment, and let us 

designate them as Aj,...,A, (1 < k <n). 

Next, set \ = A, in (1). Since det(A — AyI) = 0, it is guaranteed that (A — 

\y1)x = 0 will have nontrivial solutions. We can find those solutions by Gauss 

elimination, and we designate them as e;, where the letter e is for eigenvector. The 

e, solution space is called the eigenspace corresponding to the eigenvalue ;.* 

Next, we set \ = \o,...,Ag and repeat the process until the k eigenspaces have 

been found. 

EXAMPLE 1. Determine all eigenvalues and eigenspaces of 

  

2 2 1 

A=/1 3 1 (3) 

1 2 2 

The characteristic equation ts 

2-A 2 1 | 
det(A-AI)=) 1 8-A Lo je -7'M + 11\-5 

; ol 2 2—A 

=(A—5)(A- 1)? =0 (4) 

so the eigenvalues of A are \y = 5 and Az = 1 (or vice versa since the order is immaterial), 

with \y = 1 called a repeated eigenvalue — specifically, an eigenvalue of muttiplicity 2 

because it is a double root of the characteristic equation (4). 

Next, find the eigenspaces. 

A, = 5: Then (A — A,JI)x = 0 becomes 

2-5 2 1 Uy —3 2 1 wy, 0 

L 3-5 1 v9 = {  =2 L wo = 0 ; (5) 

I 2 2-5 U3 Ll 2 -3 x3 Q 

  

“Note that the cigenspace corresponding to an eigenvalue Aj is not quite the same as the set 

of eigenvectors corresponding to Aj, it is that set pfus the trivial solution (which is NOT itself an 

eigenvector). The reason we define the eigenspace corresponding to Aj as the entire solution space 

of (A ~\,1)x = 0 (Le., including the zero solution) is so that the eigenspace will be a vector space, 

for recall that a vector space must contain a zero vector.
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Gauss elimination of which gives 

~3 2 1 Ly 0 

0 1 -1 to | = | 0 (6) 

The solution is v3 = a (arbitrary), 22 = a, v7, = a so, using e in place of x, 

a 1 

e=ilalfl=a; ly. (7) 

a 

Thus, the eigenspace corresponding to Ay = 5 is span {[1, 1, yt, the latter being a 

one-dimensional subspace of R°, namely, the line through the origin given by (7). 

Ag = 1: Then (A — A2I)x = 0 becomes 

2-1 2 1 Ly 1 2 1 ry 0 

1 3-1 1 tv |=|]l2it za | =} 0], (8) 

1 2 2-1 x3 12 1 Ly 0 

Gauss elimination of which gives 

12 1 Uy 0 

0 0 0 fo | =} 0 (9) 

0 0 0 C3 0 

The solution is v3 = @ (arbitrary), v2 = + (arbitrary), 2, = —G— 2ys0 

-G- 24 -l 2 

ex + =f 0 +4 1 . (10) 

3 1 0 

Thus, the eigenspace corresponding to Ag = 1 is span {(—1,0, 1]", [-2,1, 0]? }. the latter 
being a two-dimensional subspace of R*, namely, the plane through the origin, spanned by 

[—1,0, 1] and [—2,1,0]*. In fact, the equation of that plane is seen, in (9), as x + 2a + 

rg = 0. 

COMMENT |. We can determine eigenvectors only up to arbitrary scale factors [such as 

the a in (7)] because, if a vector e satisfies Ae = Ae, then so does any scalar multiple of e. 

Along these lines. observe that it would be correct to write e = 3[1,0, -1]? +y[—2, 1,0)", 
say, since the scale factor of ~1 in the first vector can be absorbed by the arbitrary J. 

COMMENT 2. In the language of Section 10.5, the rank of the A — A, I coefficient matrix 

in(6)is2son—r=3—2 = |, and (6) admits a one-parameter family of solutions. That 

is, the nullity of A — Ay Tis | and the e, eigenspace is one-dimensional. Similarly, the rank 

of A — Ag in (9) is l, son —r = 3 — 1 = 2, and (9) admits a two-parameter family of 

solutions. That is, the nullity of A — AsI is 2, and the eg eigenspace is two-dimensional. 

However, there is no reason to believe that the multiplicity of an eigenvalue necessarily 
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equals the dimension of the corresponding eigenspace, even though it happens to be (rue in 

this example. # 

EXAMPLE 2. The matrix 
i 0 1 

A=|1 1 0 (dt) 

0 0 | 

has the characteristic equation 

,1-A 0 1 | 
det(A — AT) = 1 i-A OO J=(L-AP=0 (12) 

0 Q 1— 

with roots \ = 1,1, 1. That is, 4, = 1 is a root of multiplicity three. To find the eigenspace, 

write out (A — A, I)x = 0 as 

1-1 0 1 ry] 0 0 1 vy 0 

1 1-1 0 zo |=} 1 0 0 vw |=] 0). (13) 

() 0 1-1 U3 0 0 0 U3 0 

The solution is c3 = 0. 2, = 0. v2 = a@ (arbitrary) so 

0) 0 

e=j}jajfl=aill. (14) 

0 0 

Thus, in this case an eigenvalue of multiplicity three gave rise to an eigenspace of dimen- 

sion one, @ 

With the “mechanics” of the eigenvalue problem explained in the first two 

examples, let us devote the next examples to applications. 

EXAMPLE 3. — Solution of Differential Equations, How can we solve the coupled 

differential equations 
wos ar+4y, 

yurty 
(15) 

on a(t) and y(t)? We could use the method of elimination (Section 3.9) to uncouple them, 

or solve by the Laplace transform method (Chapter 5), Here. we pursue a different ap- 

proach, that will lead to an eigenvalue problem. 

Since (15) is linear, constant-coefficient, and homogeneous, we can find exponential 

solutions. Thus, seek x, y in the form 

a(t)=qe™, y(t) = qe". (16) 

where q,, gg, 7 are constants that are to be determined. Putting (16) into (15) gives
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r rqe™ = qe" + dae", 
(17) rqge"' = qe" ao que", 

or, cancelling the e”’ ’s (because they are nonzero) and expressing the result in matrix form, 
gives 

14 Or | =p UN | 
1 1 q q2 

Aq=rq, (18) 

or 

which is an eigenvalue problem with A = r. 

We are not interested in the trivial solution q = 0 because it gives the trivial particular 
solution z(t) = y(t) = 0, of (15), whereas we seek the general solution. 

Proceeding as above, we obtain these eigenvalues and eigenspaces: 

m=ae=al it]; wanbe =a] EI. (19) 

Denoting x(t) = [x(t), y(t)]", each “eigenpair” gives a solution of (15) as 

x(t) =a | ; e and x(t) = ~ | ef. (20) 

By the linearity of (15), we can superimpose these solutions and thereby obtain the general 
solution 

_ 2 3t L —2 ~t xiao] te +a] ac (21) 

or, in scalar form, 

z(t) = 2ae*! — 26e7*, 
: 2 

y(t) = ae*! + Bert, (22) 

Of course, @ and @ are the integration constants (usually denoted as A, B or Ci, Co in the 
ODE chapters). 

COMMENT I. Since we use q; and q2 in (16), it would be natural to wonder why we don’t 
also allow for different exponents, and seek x(t) = q, exp (rt) and y(t) = qo exp (ret). 
The reason is that unless r, = rg we obtain only the trivial solution qi = qo = 0 (Exercise 
1). 

COMMENT 2. The method illustrated in this example can be used for any system of 
coupled, linear, constant-coefficient homogeneous differential equations. However, it will 
fail to produce a general solution if A has a repeated eigenvalue of multiplicity & if the 
dimension of the corresponding eigenspace is less than k. @ 

EXAMPLE 4. Markov Process. Suppose that there is a population exchange between 
Delaware, Maryland, and Pennsylvania such that, each year, 20% of Delaware’s residents 
move to Maryland and 8% move to Pennsylvania; 12% of Maryland’s residents move to 
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Delaware and 10% to Pennsylvania; 10% of Pennsylvania’s residents move to Delaware 

and 3% move to Maryland. For simplicity, let us ignore gains in population due to births 

and losses due to deaths — or, equivalently, suppose that these effects are nonzero, but 

equal and opposite, so as to cancel. Further, let us suppose that the three states are a closed   

      

system; that is, they exchange populations only among themselves. a PA, Zn YW 

If we denote the populations at the end of the mth year, in DE, MD, and PA as ot Ls 

Ln; Uns Zn» Fespectively, then (see Fig. 1) yn 0.08%, 
0.03z, O.1z, 

    

  

Eno = En — (0.2 + 0.08)tn + O12y, + O1zn, pq n < 

Une = Yn + 0.2tn — (0.12 + 0.1) Yn + 0.032, (23) | MD. yn DE, x, 

lng = 2n + 0.08%_ + 0.1yn — (0.1 + 0.08) Zp, 0.1295 
  v             

Figure 1. Population exchange 
which are coupled difference equations. Difference equations were studied in Section 6.5.3 

within the context of differential equations. Here, however, let us consider (23) as a matrix 
model. 

equation, 
Eni 0.72 Q.12 0.1 Ln 

Moi | = | 02 0.78 0.03 Yn (24) 
ln. 0.08 0.1 0.87 zn 

or, 

Poti = AP, (25) 

where Pn = [nj Yn, Zn]? is the “population vector.” 

The first problem that we pose is to find the population p,, as a function of n, n being 

essentially a discrete time variable, given some initial population po. That’s easy, because 

(25) gives p, = Apo, p2 = Ap; = A(Apo) = A®po, ps = AP, = A(A*po) = 
A®po, and so on, so 

Pn = A"Ppo. (26) 

We wonder whether A™pg keeps changing as n increases, or whether it settles down 

and approaches an equilibrium (or steady-state) vector, say P. If there is such an equi- 

librium vector then, by definition of equilibrium, prz1 = Pn = P, so (25) becomes 

P = AP. Surely, P = O satisfies 

AP =P, (27) 

but the interesting question is whether or not there exist nontrivial P’s. In fact, (27) is an 

eigenvalue problem with \ = 1, so we can say that nontrivial equilibrium vectors exist if 

and only if 1 is an eigenvalue of A. As explained at the end of this section, we can use 

Maple to obtain the following eigenvalues and eigenspaces of A: 

—0.56 —0.09 

AV=l,e, =a] —0.62 | ; do = 0.77, eg = | —0.70 |; 
—0.82 0.79 

—0,62 (28) 
Az = 0.60, e3 = 7 0.70 

—(0.07 

(Actually, Maple gave the A,;’s and e;’s to nine and ten significant figures, respectively, but 

we have rounded off for brevity.)
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Sure enough, A == 1 is among the eigenvalues of A so there is an equilibrium popula- 

tion vector P given by the corresponding eigenvector 

0.56 

P=a| 0.62 |, (29) 

0.82 

where we have absorbed a factor of —1 into the scale factor a, to avoid the appearance 

of negative populations. [f desired, we can compute a by conserving the total population: 

0.56a + 0.620 + 0.82a = x9 + yo + 20, 80 a = (#9 + Yo + 20)/2.0." 

Finally, it is important to determine whether or not the equilibrium is stable for it will 

be observed only if it is stable, just as marbles are found in valleys but not on hilltops. To 

address the question of stability, let us use the set of LI eigenvectors fe1,e2, es}, with any 

nonzero values of a, G, and ¥, as a basis for IR°, and expand the initial vector po in terms 

of that basis as 

Po = C1€1 + Cgeg + C3€3. (30) 

Then (25) gives 

pi = APy = c, Ae; + co Ae + cy Aes 

= ¢, Ape; + CgAne@ + cyAges, 

P2 = Ap, = cyAy Ae + Ca Ao Ae» + C3A3Ae4 

5 yo 
= cy Aje1 + coAge2 + 3 A5e3, 

Dn = AD, 1 = C1Afer + coAge2 + cgASe3 

= C1; + €9(0.77)"e9 + c3(0.60)"e3 

~ Cyey (31) 

as rm. —+ oo, provided that c; 4 0. In fact, cy cannot be zero because if it were zero then 

(31) would give p, -> 0 as n -> co and, since the total population is conserved, that 

could happen only in the uninteresting case where py = 0. Thus, we see from (31) that p,, 

inevitably tends to a multiple of e;, namely, to the equilibrium vector P. 

The upshot is that the population history is given by (26), and that p,, inevitably tends 

to a unique steady state which is some scalar multiple of e;, the multiple being fixed by the 

conservation of the total population. 

COMMENT. This example incorporates a number of linear algebra concepts: matrix mul- 

tiplication in expressing (23) compactly as (25) and in deriving the solution (26) for pp: 

the eigenvalue problem in regard to the possibility of a steady-state solution P: and bases 
and expansions in assessing the stability of that steady state. in (30)-(31). Consider how 

effective are these linear algebra concepts and methods in providing a systematic approach 

to solving this problem, especially in determining the stability of the steady state. The same 
  

"Recall that we built into (24) the assumption that any births and deaths cancel, in number, as 

revealed by adding the three scalar equations in (24), for that step gives Gye. Yndi + ne. = 

Crore Un + fy. 
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approach applies whether the system includes only three states, as in the present example, 

or 30 states. 

The matrix A in Example 4 is an example of a “Markov” matrix. Ann x n 

matrix A = { ci; } is called a Markov (or stochastic) matrix if aj; > 0 for each 

i,j, and if the elements of each column sum to unity, or if the elements of each 

row sum to unity. [In the case of the A given in (24) its columns sum to unity.] It 

was no coincidence that \ = 1 was an eigenvalue, in Example 4 since \ = 1 is an 

eigenvalue of every Markov matrix. 

To prove that claim, suppose that A is a Markov matrix. The value \ = 1 will 

be among the eigenvalues of A if and only if Ax = x has nontrivial solutions for 

x or, equivalently, if the rows or columns of A — Tare linearly dependent. Since 

A is a Markov matrix, either the elements of each of its columns sum to unity or 

the elements of each of its rows sum to unity. It follows that either the elements of 

each of the columns of A — I sum to zero (in which case the rows of A — [ are 

linearly dependent) or the elements of each of the rows of A — I sum to zero (in 

which case the columns of A — I are linearly dependent), or both. Thus, A ~— Tis 

singular and our claim is proved. 

11.2.2. Application to elementary singularities in the phase plane. If you stud- 

ied Chapter 7, you will recall the fundamental role of the elementary singularities 

in the x, y phase plane. where x(t) and y(t) satisfy the linear ODE’s 

v= ant hy 
vue (32) 

yo = ce + dy. 

For instance, the system (15) is of that form, so let us reconsider the result, given 

by (21) and (22). in terms of the x.y phase plane. [f 9 = 0, then a(t) = 2ae%! 

and y(t) = ae, so the phase trajectory is the line y = 2/2, and ifa@ = 0 then 

a(t) = —2Ge~' and y(t) = 3e~', so the phase trajectory is the line y = —2/2. 

These are shown in Fig. 2. The directions of the arrows follow from the fact that 

e*! increases with t and e~! decreases (since the \’s are of opposite sign), and they 

imply that (15) has a sadd/e at the origin. 

More generally, observe that we can classify the singularity directly from the 

' | matrix in (32). Let a.b,c,d be real. Then the eigen- 

values are either real or they are complex conjugates. In general, then, we can write 

\ = a iG, and these \’s contribute solutions of the form ele=t9t We have these 

possibilities: 

. . a 
eigenvalues of the 

¢ 

A’s real and of the same sign: 

A's <Q = stable node 

\’s > 0 = unstable node 

\’s real and of opposite sign => saddle 

¥ 

|    
Figure 2. Significance of the 

eigenvectors. 

549
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\’s complex(A = a + 7/9) : 

a <Q => stable focus 

a= 0 = center 

a> 0 = unstable focus 

In the case of an improper node or saddle, the eigenvectors give the stable and/or 
unstable manifolds, as mentioned above for the system (15), for which case the 

stable and unstable manifolds are shown in Fig. 2. 
  

Closure. [t is important to remember that the eigenvalue problem Ax = Ax is 
homogeneous [since it is equivalent to (A — AI)x = 0] and that the whole point is 
to find nontrivial solutions. If, for a given eigenvalue \, you solve (A — AI)x = 0 
by Gauss elimination and obtain e = 0, then your calculations are incorrect: either 
your eigenvalue is incorrect and/or the Gauss elimination is incorrect. 

Observe that our solution strategy uncouples the calculation of the eigenval- 
ues and the eigenvectors: first we solve the characteristic polynomial equation 
det(A — AI) = 0 for the A’s, and then for each \ we solve (A — AI)x = 0, 
by Gauss elimination, for the corresponding eigenvectors. 

Computer software. In Maple, the relevant commands are eigenvals and eigen- 
vects, both of which are in the linalg package. The command eigenvals gives just 
the eigenvalues, and eigenvects gives the eigenvalues, their multiplicity, and a basis 
for each eigenspace. For instance, let A be the matrix in Example 1. First, enter 

with(linaig): 

and return. Then type 

A :s= matrix (3, 3,[2,2,1,1,3,1,1, 2, 2]): 

because A is 3 x 3 and its rows are 2, 2,1, and 1,3,1, and 1, 2, 2, in turn. Then 

elgenvals(A); 

gives the eigenvalues as 
5,1,1 

and 

eigenvects(A); 

gives both the eigenvalues and the eigenvectors as 

(5,1, {[1,1,1)}), (1, 2, {[-2, 1,0], [-1,0, 1]}] 

In place of the eigenvals command, one can use fsolve to obtain the roots of the 
characteristic equation, but that is less convenient since to obtain the characteristic 
equation one needs to expand the n x n determinant of A — AI.
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A := matrix (3,3, {2, 2,1, 1,3, 1,1, 2,2]): 

then 
evalm(A°20); 

and then 

eigenvals(’’); 

The quotation mark saves us the trouble of entering the matrix A?° that was calcu- 

lated in the preceding step. 

  

EXERCISES 11.2 
  

1. (Example 3) (a) Derive the eigenvalues and eigenspaces 

given in (19). 
(b) Show that if we assume the forms x(t) = q; exp (rit) and 
y(t) = q.exp (ret), then we obtain only the trivial solution 
unless 7, = re, as claimed in COMMENT 1. 

2. (Example 4) To determine the stability of the equilibrium 

solution P, we expanded po in terms of the basis consisting of 

the eigenvectors of A. Explain why that choice is particularly 

convenient. HINT: If necessary, you could try using a different 

basis, such as {[1,0, 0}", (0, 1,0)", (0,0, 1)7}, instead. 

3. Find the eigenvalues and eigenspaces, as well as a basis for 

each eigenspace. 

  

(Oo oO 1 -3 
wo | | 6 | 

(41 3 -~3 2 
() sa «| 6 i 

ro 0 0 0.0 0 
(ec) | 0 0 0 (f)| 0 38 0 

| 0 0 0 0 0 0 

2 0 0 2 1 6 
(g) | 0 —5. 0 (bh). | 0 —5 38 

10 0 4 0 Oo4 

2 0 0 4 4 4 

@ | 0 1 1 g)| 4 4 4 
014 4 4 4 

102 001 
(k)} 1 0 2 a} oo 1 

1 0 2 1 iii 

101 0 03 
(my) | QO 2 0 (n) | 0 0 ol 

404 1-13 7 
101 020 

(o.)| 1 10 (p) | 0 3.0 
001 0 4 0 
20 0 0 liid 

10-0 01 2222 
M}) 9001 }) 3 3 3 3 

0111 4444 

4, (a)—(r) Use computer software to find the eigenvalues and 

eigenspaces for the matrix in the corresponding part of Exer- 

cise 3. 

5. Is the following an eigenvector of the matrix A? Explain. 

1 8 5 68 
2 16 10 6 

A= 5 -1l4 -1l -3 
~1 -8§ -5 -3 

(a) (1,2,-1,3]7 — (b) (1,2, -4,-1)" (©) (1,2, 1,7 
(d) [1, 4 aT (e) {1,0,1,-1]* (f) [1, 1,0, -3]? 

(g) (1,2,-1,-4]? (hy (2,1, 0, 1] (i) (2, 1,1, -5]7 

6. The given matrix has \ = 2 among its eigenvalues. Find 
the eigenspace corresponding to that eigenvalue. 

322 4 3121 
93 42 1 2 

@M} 1 4 2 9 OO} 9 2 5 3 
2 43 °5 135 6
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3 1 1 st 3.0 st 1 

1 3 1 ot 1 3 0 1 

O}i 134 OP 4 3 = 
Loi ot o3 1 2 % 3 

7. It is known that the n x n tridiagonal matrix 

b c« 0 0 0 

a b ec OQ : 

0 a be 

A= 

a ob ¢ 

0 0 a 

has eigenvalues 

UT 

n+l 
  Aj = 64 2)/ae cos (7.1) 

for 7 = 1,2,...,n. (A is called tridiagonal because all 

elements are zero except for those on the main diagonal and 

the two adjacent diagonals.) 

(a) Verify (7.1) by calculating the eigenvalues for n = 1 and 

n= 2. 
(b) Verify (7.1) by using computer software to determine the 

eigenvalues forn = 1 and 2 and 3. 

(c) Verify (7.1) by using computer software to determine the 

eigenvalues forn = 4 anda =1,b=2,c=1. 

(d) Same as (c), forn = danda = 2,b=3,c= —1. 

(e} Same as (c), forn = S5anda=1,b=5,c=3. 

8. Is it possible for a matrix to have no eigenvalues? Explain. 

9. We saw in Example | that a given eigenvalue can have more 

than one LI eigenvector. Can a given eigenvector correspond 

to more than one eigenvalue? Explain. 

10. Let x and Ax be as shown. Is x an eigenvector of A? If 

so, estimate the corresponding eigenvalue; if not, explain why 

not. 

(a) (b) 

Ax 

  

(c) (d) 

11. Show that the eigenvalues of KA, for any scalar k, are 

k times those of A. Are the corresponding eigenspaces the 

same? Explain. 

12. Show that the eigenvalues of AT are the same as those of 

A. Is the eigenspace corresponding to an eigenvalue \ of A 
the same as the etgenspace corresponding to the same eigen- 

value \ of A’? Prove or disprove. 

13. If A, e are an eigenvalue and corresponding eigenvector of 

a matrix A, show that \ = (e Ae)/(e'e). HINT: Recall that 
the dot product of two column vectors u and v is u-v = uly. 

14. Show that if A is triangular, its eigenvalues are simply the 

diagonal elements of A. 

15. Show that if A is an eigenvalue of A, with a corresponding 

eigenvector e, then A” is an eigenvalue of A”, with the same 

eigenvector e, for any integer n. (Of course, if 7 is negative, 

A needs to be nonsingular if A” is to exist in the first place.) 

HINT: Pre-multiply Ae = \e by A, A®,.... 

16. Use the results stated in the preceding two exercises to 

determine the eigenvalues and eigenspaces of A?° for each of 

the following A matrices. Check your results by working out 

A? and its eigenvalues and eigenvectors. 

1 0 0 3.0 1 

(a); 1 2 0 (b) | 0 0 86 

1 1 3 0 0 0 

1 0 1 1 2 

(c) | 0 0 0 (d)}| O -1l 2 

0 0 -2 0 2 

17. For the given A matrix, use computer software to deter- 

mine its etgenvalues and eigenspaces. Then, use computer 

software to obtain A® and to determine its eigenvalues and 

eigenspaces. Then, verify the result stated in Exercise [5, for 

this case. 

2 2 0 a 

(a) | 0 2 O (b) | 2 2 2 

2 0 2 3°3~=3 

18. (Similar matrices) (a) Suppose that Ax = y, where A is 

square. Setting x = Qx and y = Qy, where Q is invertible, 

show that 

AX=Y, (18.1) 

where 

A=Q7!AQ. 

 



  

Given any invertible matrix Q, matrices A and A related 

by (18.2) are said to be similar. 

(b) Show that if A and A are similar, then they have the same 

characteristic polynomials and hence the same eigenvalues. 

19. (The characteristic polynomial) Let us write the character- 

istic equation det(A ~~ AT) = 0 in the standard form 

ayy A 12 Qin | 

G21 dag — A Gon 

det(A — AT) = 

Gry Gn2 Gnn ~ A 

= (—1)"{A" — GANT! + Bo" 

meee (+1)"6,) = 0. 

(19.1) 

If we denote the m roots (which need not be real) as 

Ay, Ag,...,An, Numbering repeated roots separately, we may 

factor 

Mn By An7t ee (-1)"3, 

_ {A _ Ay }(A _ Ag) ute (A _ An): 

(19.2) 

Multiplying out the right-hand side of (19.2) and equating co- 

efficients of like powers of A, on both sides of the equation, 

yields the relations 

O, = Ap tA Hee + An, 

Gy = AyAg + AtAg +++ + An-1Ans 

Dy = A AgA3 hoor An—2An—1Am (19.3) 

On os Ay Ag nae An: 

For example, if = 4, then G2 = AyAg+A,Ag+ArAgt+A2A3+ 
AgAq + Ag Aq and DBs, = \ 1 Ag v3 + AyAag Ad + AyAgAa + AoAgAg. 

Alternatively, one may expand the determinant in (19.1) di- 

rectly, and identify the coefficients of the various powers of A 

in terms of certain subdeterminants of A, and hence determine 

the J;’s in terms of these subdeterminants. The result, we state 

without proof, is that Gy (for 7 = 1,...,7) is the sum of all 

the jth-order principal minors of A. (By a “principal minor” 

we mean the determinant of a submatrix of A, whose main 

diagonal lies along that of A.) Thus, 

UI By = diy + Gog + + Gan = trA, 

: (19.4) 

By, = detA, 
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where the sum ay, + G92 + +°- 

of A and is denoted here as trA. 

++ my, is called the trace 

(a) Verify equations (19.4) form = 

AI). 
(b) Verify equations (19.4) form = 

AI); i.e., verify that 

2 by expanding det(A — 

3 by expanding det(A — 

Dy = a4, + dog + aya, 

      

  

  

3 | diy G12 My, 13 Q22 G23 
p2= , 1 1 

: | 94 G22 Q31 433 432 433 

ay, 442 «413 

33 = | G2, G22 dag 

G31 432 433 

(c) Finally, comparing equations (19.3) with equations (19.4), 

show that 

Mi + Ag sb ob An = trA, 

(19.5) 

Ay Ag te An = detA, 

and hence that A is singular if and only if at least one of 

its eigenvalues is zero. 

20. Show that if two n x n matrices A and B have the 

same eigenvalues A,,..., An and the same n LI eigenvectors 

@1,...,@p, then it must be true that A = B. 

21. Can ann x n matrix have more than n LI eigenvectors? 

Explain. 

22. (Markov matrices) Recall the definition of a Markov ma- 

trix, and the fact every Markov matrix contains \ = | among 

its eigenvalues. You may use the result stated in Exercise 11, 

if you need it. 

(a) Find the eigenvalues of 

0 0.5 0.5 

A= |05 05 0 

0 1 0 

(b) Find one eigenvalue of 

8 10 12 

Az; 9 10 11 

10 10 «10 

(c) Find one eigenvalue of 

3 1 2 

Azj;2 2 1
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(d) Determine the eigenvalues and a basis for each eigenspace 

for the 20 x 20 matrix A having unity for each of its 400 ele- 

ments, 

(e) Determine the eigenvalues and a basis for each eigenspace 

for the 30 x 30 matrix A having 2 for each of its 900 elements. 

23. In each case, use the same method as in Example 3 to find 

the general solution of the given system of coupled differen- 

tial equations, if possible. [f your solution falls short of being 

a general solution, explain why that happened. Primes denote 

d/de. 

(a) =u + 2y (b) a =aty 
y = 3x + by yo=uaty 

(c) vw = 2aet+y (d) ve! =at+y 

yl = 9a + 2y ysety 
(e—) g=det+y () ei = ynz 

yo = -Sa +z yo= ~Sa+4dy +2 

git en-y-e gerne z 
(g) a = Qe-y (h) 2’ = -©+y 

yo=yre ys ~a +2 
goa-aot+y ol! = ye —Qz 

24. (Cayley—Hamilton theorem) The Cayley-Hamilton the- 

orem states that if the characteristic equation of any square 

matrix A is \® + ayAPtt eee bane iA + On = 0, then 

A® +a Arte tan A+a,I = O:ie., A satisfies its 

characteristic equation. 

(a) Prove this theorem for the general 2 x 2 case. A = 

a Oo 

c d |- 

(b) fA = | ; , , show that A? — 4A + 31 = 0 so that 

, 1 2 L 

Atatyetaey]) 3 3 
3 3 tL 2 

3 3 

25. (Generalized eigenvalue problem) If B ¥ I, then Ax = 

\Bx is called a generalized eigenvalue problem. [t should 

be easy to see that in this case the characteristic equation is 

det(A — \B) = 0, and that the eigenvectors then follow as the 
nontrivial solutions of (A - AB)x = 0. Find the eigenvalues 

and eigenspaces in each case, 

. 5 1 rn 8 —4 Ly 

(@ | 105 | | xr | ~ A -4 8 | rq 

ey | LO ry 

otal ti[2 | 
a 2 —1l oy _ 1 0 Ly 

eff a][2 Jato 2] [2] 
Ly 211 Ly 

(d) C9 =: \ 1 2 1 xa 

13 1 1 2 U3 

26. In seeking the eigenvalues and eigenvectors of a given ma- 

trix A, is it permissible first to simplify A by means of some 

elementary row operations? (That is, are the eigenvalues and 

eigenvectors of A invariant with respect to elementary row op- 

erations?) Explain. 

27. In each case, given the values of a, b, c,d in (32), use the 

eigenvalues to classify the singularity as an unstable node, sta- 

ble node, saddle. stable focus, center, or unstable focus. If 

applicable, use the eigenvectors to give a labeled sketch of any 

stable and/or unstable manifolds. 

(jga=lb=te=3.d=-1 

(bba=—lb=-3.c=ld=1 

(ja=4belec=ld=4 

(jaz -3,b=1,c=1,d=—-3 

(hax=z3,b=l1le=—-ld=3 

(f)a=—-2,6=-2,c=2,d=—-2 

(a= lb=2,c=3,d=4 

(hha=5,b=lc=-8,d=1 

  

11.3. Symmetric Matrices 

In applications, symmetric matrices arise surprisingly often, and their symmetry 

leads to important results regarding their eigenvalues and eigenvectors. Thus, it is 

important to treat this case separately. 

11.3.1. Eigenvalue problem Ax = \x. We have the following three important 
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results. We shall prove the third, but defer proofs for the first two to the exercises. 

  

THEOREM 11.3.1 Real Eigenvalues 
If A is symmetric (A? = A), then all of its eigenvalues are real. 

  

  

THEOREM 11.3.2 Dimension of Eigenspace 

If an eigenvalue \ of a symmetric matrix A is of multiplicity k, then the eigenspace 

corresponding to is of dimension k. 
  

  

THEOREM 11.3.3 Orthogonality of Eigenvectors 

If A is symmetric, then eigenvectors corresponding to distinct eigenvalues are or- 

thogonal. 
  

Proof: Let e; and e, be eigenvectors corresponding to distinct eigenvalues \j and 

Ag, respectively. Thus, 

Ae; = Aje; and Ae, = Axeq. (1a,b) 

Next, recall that the dot product of n-dimensional column vectors x and y is x-y = 

xy, and that (AB) = BTA? for any matrices A and B that are conformable 
for multiplication. Then, if we dot e, into each side of (1a) and dot each side of 

(1b) into e; [i.e., we “pre-dot” (La) with ex and “post-dot” (1b) with e;], we obtain 

e,: (Ae;) = eg: (Ajej) | (Aex)-e; = (Agen): ej 

ej Ae; = \jet e; (Ae,)te; = ApeL e; (2) 

ej} Ate; = \nep ej. 

But AT = A by assumption so if we subtract the bottom equations on the left and 

right of the vertical divider, we obtain 

T 
Q= (Aj _ Ap )eK ej. (3) 

Finally, 4; ~ Ay, # 0 since Aj and A; were assumed to be distinct so it follows from 

(3) that eFe; = 0. Thus, e, -e; = 0, as claimed. a kw) kN 

As usual, be careful not to read converses into theorems. For instance, Theo- 

rem 11.3.1 says that if A is symmetric, then its eigenvalues are real. [t does not say 
that the eigenvalues of A are real if and only if A is symmetric. For instance, in
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each of the four examples of Section [1.2 the A’s are real, yet none of the matrices 

is symmetric. 

EXAMPLE 1. For the symmetric matrix 

211 

A=il 214, (4) 
L 1 2 

we find (Exercise 1) the eigenvalues and eigenspaces 

1 ~—1 —1 

Mp=4,e,=a] 1], Ag=z1l, e = O};+y 1 |, (5) 

1 1 0 

where Aj = 1 is of multiplicity two [L.e., the characteristic polynomial can be factored as 

—(\—4)(\—1)?]. Since A is symmetric, the theorems apply. In accordance with Theorem 

11.3.1, the \’s are real; in accordance with Theorem 11.3.2, A; is of multiplicity | and its 

eigenspace is one-dimensional (namely, span{{1, 1, 1]*}), and A2 is of multiplicity 2 and its 
eigenspace is two-dimensional (namely, span{[—1, 0, 1]", [—1, 1, 0]"}); and in accordance 
with Theorem 11.3.3, ey -e2 = 0 for all choices of a, G,. The eigenspace eg is the 

plane through the origin (in 3-space) that is spanned by [—1, 0, 1]? and [~1, 1, 0]", and the 
eigenspace e; is the line through the origin that is spanned by [1, 1, 1]? and is normal to 

the plane. 
The vectors [~1,0, 1]? and {[-1, 1, 0]7 in eg are LI and a basis for e2, but happen not 

to be orthogonal. Their lack of orthogonality does not violate Theorem 11.3.3 since they 

come from the same A, not from distinct A's. Nonetheless, we can “trade those vectors in” 

for two within e» that are orthogonal (in a nonunique way, in fact, for there is an infinite 

number of pairs of orthogonal vectors within that plane). For instance, we can choose 

eg = [-1,0,1]" (6) 

[i.e., by setting @ = 1 and y = 0 in (5)] and seek 

es = A[-1,0, 1]" + y[-1,1,0]" (7) 

such that 

e2°e3 = (—1)(~8 — y) + (0)(y) + (L)(B) = 28 +7 = 0. (8) 

Choosing @ = 1, say, then y = ~2, and (7) gives 

es = [1,—2,1]", (9) 

and the vectors given by (6) and (9) constitute an orthogonal basis for the eigenspace cor- 

responding to the eigenvalue 1. 

And since (with @ = 1, say) 

e, = {1,1,1]" (10) 

    

ue 
£ 
bee 
i



11.3. Symmetric Matrices 557 

is orthogonal to each of those vectors, it follows that the eigenvectors given by (6), (9), and 

(10) constitute an orthogonal basis for 3-space. That is, among the eigenvectors of the 3 x 3 

symmetric A given by (4) we can find an orthogonal basis for 3-space. 

COMMENT |. The A matrix in (4) happens to be symmetric about the other diagonal 

as well as about the main diagonal. That symmetry is irrelevant; by symmetry we always 

mean that A? = A, which is symmetry about the main diagonal (from upper left to bottom 

right).      

  

COMMENT 2. You might be thinking “Of course the eigenvalues are real, for the A matrix 

is real.” No, A being real implies only that the coefficients are real in its characteristic 

equation, and a polynomial equation with real coefficients can have complex roots. For 

1 

-1l 1 

d? — 2\ + 2 = 0 and the complex eigenvalues \ = 1 +. 

instance, the real but nonsymmetric matrix A = has the characteristic equation 

COMMENT 3. The procedure that we used to obtain the orthogonal set {e2,e3} from 

the LI set {{~1,0,1]",[-1,1,0]7} is essentially the Gram-—Schmidt orthogonalization 

procedure explained in Exercise |! of Section 9.9. @ 

Generalization of the ideas contained in Example | yields the following theo- 
rem. 

  

THEOREM 11.3.4 Orthogonal Basis 
If ann x n matrix A is symmetric, then its eigenvectors provide an orthogonal 
basis for n-space. 

  

  

Proof: lf all of A’s n eigenvalues are distinct then, according to Theorem 11.3.3, 
the n eigenspaces are orthogonal (each being a one-dimensional line in n-space) 
and therefore provide n orthogonal vectors, which necessarily constitute a basis 
for n-space. What if the eigenvalues are not distinct? Suppose that all are distinct 
except for one, say 4, which is of multiplicity &. Then the n — & eigenvectors cor- 

responding to the other eigenvalues are orthogonal to each other and also to all vec- 
tors in the eigenspace corresponding to \. Further, \’s eigenspace is k-dimensional 
(Theorem 11.3.2) and hence contains & orthogonal vectors. Altogether, then we 
have (n — k) + k = n orthogonal eigenvectors and hence an orthogonal basis for 
n-space. A similar argument applies if there is more than one repeated eigenvalue. 
B : 

    

masses subjected to forces f(t) and f(t) and restrained laterally by springs and supported 

vertically by a frictionless table as shown in Fig. |. The equations of motion, already 

derived in Example 3 of Section 3.9.1, are 

  

EXAMPLE 2. — Free Vibration of a Two-Mass System. Consider the system of two — - k Pf Th 
| 1 pee 

          

a
t
e
 

  

  

mya + (ky + kig)a1 — kere = filt), Figure 1. Two-mass system. 

Moe _ kyr + (ky + kyo) we = folt). (11)
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Let my, = ma = ky = ky = ke = 1, say, for definiteness, and consider the free vibration, 
where f(t) = fo(t) = 0. Then (11) becomes 

vy +20, ~ at, = 0 
vy — ty + 2x = 0. 

(12) 

  

/ 
The system (12) is solved in Example 8 in Section 3.9.3, by the method of elimination, and E 

we urge you to review that solution and to compare it with the following matrix eigenvalue be 

problem approach. [We could also solve (12) by the Laplace transform method. ] P 

Let us follow the same line of approach that was put forward in Example 2 of Section 

11.2. Namely, seek 
a(t) = qe, i 
ao(t) = qe. (13) 

Actually, on physical grounds we expect the solution to be a vibration (i.e., the \’s will turn 

out to be purely imaginary) so it seems more sensible to seek 

x1(t) = q, sin (wt + @), 

to(t) = qosin (wt + ), (14) 

where the g;’s are amplitudes, w is the frequency, and ¢ is the phase angle.* Putting (14) 

into (12) and canceling the sin (wt + @) factors gives 

—w'g + 2q1 — 2 = 0, 

—w* qa — gi + 2g =0 

2-1 ai} 2) H 

= ER ]=[ 4]. (19) 

which is a matrix eigenvalue problem 

or, equivalently, 

Aq = Aq, (16) 

with \ = w? as the eigenvalue. Solving for the eigenvalues and eigenspaces as explained 

in Section [1.2 we obtain 

mete =al 5]: =se=a) i |. (17) 

Each “eigenpair” gives us a solution of the form (14). The first gives w = VA, = 1, 

andt 
t L . 

x= |) [=a 5 sinter on) (18) 

where a and 4 are arbitrary. The second gives w = V/A2 = V3, and 

x= mn =5| - | sin (V3 e+ da), (19) 
  

“Along the lines of COMMENT | in Example 2 of Section 11.2, if we do not use the same w’s 

and the same @’s in (14), then we will obtain only the trivial solution x, (¢) = z2(t) = 0. 

'The other root, w = —1, would yield no additional information.
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where § and @g are arbitrary, and there is no reason why ge should be the same as @y. 

One can verify that (18) satisfies (12) for any @ and any #1 and that (19) also satisfies 

(12) for any § and any @9. Since (12) is linear and homogeneous, it follows that the linear 

combination 

an =a : | sin (t +) +8 7 | sin (V3t + do) (20) 

is also a solution; indeed, it is a general solution of (12). Or, returning to scalar form, we 

have 

ri(t) = asin (t +1) + Gsin(V/3t+ oy), 

vo(t) = asin (t + @1) — Bsin(V3t + d2) 

Here a, 3, 61, @2 are the constants of integration [just as A, B are the constants of integra- 

tion in the general solution z(t) = Ae®!’ + Be~*! of x — 9x = Oj], and are determined 
from the initial conditions 1 (0), r2(0), x} (0), #5(0). 

(1) 

COMMENT |. Note the central and organizing role of the eigenvalue problem. Each 

eigenpair defines a vibrational “mode,” the eigenvalue gives the vibrational frequency (w = 

VX) and the eigenvector gives the mode shape or configuration. The frequencies are called 

the eigenfrequencies, or natural frequencies (natural in that they correspond to the free, 

unforced vibration). The two terms on the right-hand side of (20) are called the orthogonal 

modes of vibration, orthogonal because [1, 1]"- [1,1]? = 0, that orthogonality being a 

consequence of the symmetry of A. The first term is called the low mode because it occurs 

at the lower of the two natural frequencies, and the second term is called the high mode 

because if is at the higher of those two frequencies. 

COMMENT 2. Depending upon the initial conditions, we can excite either one of those 

modes or both of them. For instance, the conditions 74(0) = x2(0) = 0 and x} (0) = 
v3(0) = 1 give G = 0,a = 1,46; = 0 (» is irrelevant because G = 0) and hence the low 

mode motion 
z,(t}) = sint, 

xo(t) = sint, 

the conditions v4 (0) = 24(0) = O and 2,(0) = 1, 29(0) = -lgivea =0,8 =1,¢0 = 
n/2( is irrelevant because a = 0) and hence the high mode motion 

a(t) = sin(/3t+ =) = = cos V3t, 

t) = ~sin(/3t+ =) =—cos V3t, 

(22) 

(23) 
Lo 

and the conditions 7, (0) = 1,22(0) = 2 (0) = 24(0) = 0 give a motion containing both 
modes, 

l T 1 1 
vy(t) = 5 sin (t + T) + 5 sin( (V3t +5) = 5 cost + 5 cos V3t, 

fl - l 1 (24) 
™ 

ro(t) = 5sin(t +5) 5) 5 sin (VBE+ +9) = 3 cost os 5 £08 V3 t. 

559
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(a) Low mode (6) High mode (c) Mixed modes 
    

  

    

    

  

              

Figure 2. Low mode (22), high mode (23), mixed modes (24), 

These three motions are contrasted in Fig. 2. Observe that each of the individual 

modes is simple and “clean,” but the mixed mode motion is not. In the low mode the 

masses vibrate in unison and at the low frequency w = 1, and in the high mode their 

motions are opposite and at the high frequency w = V3. 

To be sure it is clear how to apply the initial conditions, let us derive (24). We have 
the four equations 

vi(0) = 1 = asind, + Bsin ds, 

x,(0) = 0 = asin gd, — Jsin ds, 
*2(0) a sine oe ee . 

(25) vi (0) = 0 = acosd; + V3G cos do, 
r(0) = 0 = acos ¢, ~— V36 cos do 

in a, B,@1,2. They happen not to be linear algebraic equations [i.e., of the form ()a + 

()8 + ()d: + ()b2 = (), where the parentheses contain constants], but they are readily 
solved. Por instance, adding the first two and last two gives 

pe
 

asin gd, = 5° acos é; = 0, (26) 

and these give @; = 2/2 anda = 1/2.* Similarly, subtracting the second from the first 

and the fourth from the third results in dg = 7/2 and 6 = 1/2. 

COMMENT 3. In this example there were two masses and two “degrees of freedom,” x(t) 

and x(t). Consequently, A was 2 x 2 and the motion of each mass was found to consist 

of a linear combination of two eigenmodes. More generally, if there are n masses and 

n degrees of freedom v,(t),...,,(¢), then the motion of each mass consists of a linear 
  

“These values are not uniquely determined. For instance @, = 37/2 anda = ~1/2 satisfy (26) 

too. However, such differences do not lead to different solutions a4 (t) and a(t). 
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combination of n eigenmodes of ann x m matrix. Hi 

11.3.2. Nonhomogeneous problem Ax = Ax +c. (Optional) In Chapters 8 
and 10 we studied the general nonhomogeneous equation Ax = c, and in this 
chapter we have studied the eigenvalue problem, which is the homogeneous equa- 

tion Ax = Ax. Next, we wish to show that eigenvalue problem concepts can be 
used to solve nonhomogeneous equations. 

Specitically, consider the nonhomogeneous equation 

Ax = Ax+c, (27) 

where the scalar A is a parameter.* We ask of A that it be n x n, and that its 
eigenvectors provide a basis (not necessarily orthogonal) for R". That will surely 
be the case if A is symmetric since then its eigenvectors provide an orthogonal 
basis for R”. 

Of course, since A is considered as known we could subtract Ax from Ax and 

absorb A into the A matrix. However, if A is a design parameter and we wish to see 
the explicit effect of A on the solution, then it is best to leave the Ax term intact. 

The idea is that to solve (27) we first take a “time-out” and solve the eigenvalue 

problem for A (Le., Ax = Ax); that is, solve for the eigenvalues and eigenvectors 

of A. which we denote as Ay,...,A,, (not necessarily distinct) and e1,..., en. 

Next, expand botti x and-c, in (27), in terms of the {e,,...,@,} basis: 

n n 

— S° aje; and c= S| Cjej. (28a,b) 

j=l j=l 

The c;’s are known i.e. they can be computed) since we know c and the e; base 
vectors so the a;’s are our unknowns. To evaluate them, put (28) into (27): 

mh Th rh 

A Ss” ajej = A S> ajej + Ss" Cjej. (29) 

1 1 1 

But 
nr rh nh 

A S- aje; = Ss" aj;Ae; = S ajAje;, (30) 

L 1 Il 

so that (29) can be re-expressed as 

mn 

So _ Ajaje; = S- cje;. (31) 

1 | 

Finally, since the e;’s are LI (for they are a basis) it follows from (31) that 

(Aj — Ajay = cj. (FG =1,...,n) (32) 

At this point we need to be careful to distinguish these cases: 
  

“By a parameter we mean a constant, the value of which we are free to specify. In the equation 
n - 7s Lo. ny 

vo+9n2 = Fsin Nt. for instance. F and Q are parameters. 

561



  

562 Chapter 11. The Eigenvalue Problem 

(i) Suppose that none of the Aj’s equals A. Then we can divide both sides of - 
(32) by Aj — A and obtain aj = e;/(Aj ~ A), and the unique solution 

nm 

_ Cj 
1 

of (27). 

(ii) Next, suppose that A = Ay, where A, is an eigenvalue of multiplicity 1. Then 
(32) becomes (0)a; = cy for 7 = 1, and two possibilities exist: if cy 4 0, 
then there exists no a, satisfying (0)a, = cy, and there is no solution of (27); 
but if cy = Q, then a; is arbitrary, and (27) admits a nonunique solution, the 

one-parameter family of solutions 

  

nm 

x = aye, + d. yon (ay arbitrary) (34) 

(iii) Similarly if A = A; is an eigenvalue of multiplicity p: if cy,...,cp are not 
all zero, then there is no solution of (27); and if cy = --- = cp = 0, then 

there is a nonunique solution, the p-parameter family of solutions 
n Ce 

X = aye; +--+ + ape + S° yA (a1,...,@p arbitrary) (35) 

pti 

It is illuminating to compare (35) with the solution (18) in Section 10.5, to 
the problem Ax = c (i.e., A = 0 in that case). There, x9 is a particular solu- 
tion (i.e., Axg = c), and xj,...,x, were homogeneous solutions (ie., AX, = 

+++ == Ax, = 0). In (35), the Dipti term corresponds to Xo, and e;,..., En are 

homogeneous solutions [i.e., solutions of (27) with ¢ remoewcdl* 

EXAMPLE 3. Forced Vibration of the Two-Mass System. To illustrate, consider the 

mechanical system of Example 2 again, but this time with the forcing functions f,(t) = 

Fy sin Qt and fo(t) = Fy sin Nt. Then in place of (12) we have 

xy + 224 —~ tg = Fy sin Qt, 

Ly — 2, +249 = Fy sin MN. (36) 

We already found the general solution of the homogeneous equations (12), so in this exam- 

ple let us seek only a particular solution (the total solution then being the sum of the two). 

Let us seek a particular solution in the form! 

ri(t) = q sin Nt, 

to(t) = go sin QE. (37) 

  

“Of course there is no reason why the e;,...,e@, need to equal x1,...,Xp, but it iy true that 

span{e;,...,ep,} and span{x1,...,Xp} are identical. 

'The form (37) is inspired by the method of undetermined coefficients. Actually, we might try 

a(t) = gq, sin Qt +r; cos Qt and we(t) = ge sin Qt + r2 cos Nt, but we can anticipate that the 

cos Q¢ terms will not be needed (i.e., we will find that ry = rz = 0) because there are no | or Lo 

terms on the left-hand side of (36). 
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Putting (37) into (36), canceling the sin Q¢ factors, and expressing the equations in matrix 

form, we have 

2 ~1 a i}oo2|/ a}, | 4 | >|[%|=2 P™ 4] a (38) 

or 

Aq=Aq+te, (39) 

where 
_ 2 —1 —_ O2 _ Fy a=[ 2-1], asm, c= [8] 

Recall from (17) that the eigenvalues and eigenvectors of A are (witha = 6 = 1, 

say) 

w=te=| i]: de=ser=| i]. (40) 

Suppose that A 4 Ay and A # Ag; that is, the driving frequency 2 does not equal either of 

the natural frequencies 1 and /3. Then we have the unique solution (33), where “x” is q, 

= (c-e1)/(e1-e1) = (Fy, + Fy)/2, cg = (c-eg)/(e2-e2) = (Fi — Fy)/2, A1 = 1, 
Ag = 3, and A = 0°,* Thus, 

PL + Po 1 FF, — Fy 1 

= saan | 1 seca | -1 | 
1 (2-07) Fy + Fy 

(1-92) (3 — 02) | ee) Fe 
(41) 

so the desired particular solution (37), of (36), is 

(2-C)M+F , 
= 2 Qe 42 xy(t) (7-92) (3 95) sin Qt, (42a) 

Fo +2-07)F 

In Section 3.8 we studied the forced vibration of a single mass, and stressed the impor- 

tance to an engineer of the amplitude- and phase-response curves. Here too, let us plot the 

amplitude-response curves (Fig. 3) for the representative case where F, = 1 and Fy = 0. 

The amplitudes Ay(Q) and Ao({Q) are, from (42a) and (42b), 

(2-0?) _ 1 | 
G-)3-%%) and Ag(Q) aw ~ |= GW) » (43) 

  

    

and we observe that these tend to infinity as 2 tends to either of the natural frequencies, 1 

and J/3. 

What if Q equals 1 or /3? Then our derivation of (43) does not hold since it is based 

on the assumption that A #4 A, and A # Ag. If we do have A = Aq (i.e., 2 = 1) say, 
  

“If the formula c; = (c-e,;)/(e;-e;) is unfamiliar to you, we urge you to review Section 9.9, 
especially equation (23) therein. 

  

2/34 

  

13-1     A, (Q) \s So 

10 2 V3 Q 

  

Figure 3. Amplitude-response 

curves, equation (43),
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then [according to case (ii) above} there is no solution if ¢, 4 0 and there is an infinity of 

solutions if ce, = 0. Since 

[Fi, Ft (ey 
Qa, (44) 

ee} 

the idea is that there will be no solution unless the forcing vector [/*,, FI? does not excite 

that particular eigenmode — namely, unless [/*,, |" is orthogonal to e;! Similarly, if 

A = Xo (ie, 2 = V3). 
What do we mean when we say there is no solution if A = Ay and e, # 0 (or A = Ag 

and cy % 0)? We do not mean that there exists no particular solution of (36) but only that 

there is no solution of the assumed form (37). A modified version of (37) is needed, but we 

will not pursue that point. 

The method presented here for solving (27) is known as the eigenvector ex- 

pansion method. What is the advantage in using the eigenvectors of A as our basis; 

why not use any basis for R"? The idea is that the vector Ae; in the middle of (30) 

is simply Aje; if ej is an eigenvector of A, whereas it would be a linear combina- 

tion of all the base vectors if some other basis were used. In that case we would end 

up with a coupled system of linear algebraic equations for the a;’s, rather than the 

uncoupled (and hence readily solved) system (32). This same comment applies to 

Example 4 in Section 11.2 where, to study the stability of the equilibrium popula- 

tion, we expanded the initial population vector po in terms of the eigenvectors of A. 

Closure. Symmetric matrices arise frequently in applications, and their symme- 

try leads to several important results regarding their eigenvalues and eigenvectors: 

their eigenvalues are real, eigenvectors corresponding to distinct eigenvalues are or- 

thogonal, and the eigenvectors of an n x mn symmetric matrix provide an orthogonal 

basis for RK”. 

We discussed an important application to multimass mechanical systems, and 

found that the free oscillation can be represented as the superposition of orthogonal 

modes, with the eigenvalues giving the modal frequencies and the eigenvectors 

giving the modal configurations. 

The special importance of symmetric matrices is further revealed in the re- 

maining sections of this chapter. 

In the second half of this section we return to the nonhomogeneous equation 

Ax = c, actually to the form Ax = Ax +c where, A is a parameter, and develop 

a line of approach known as the eigenvector expansion method. The idea behind 

that method is to compute first the eigenvalues and eigenvectors of A. Assuming 

that we can obtain a basis of R” from the eigenvectors of A (as is always possible 

for symmetric A’s which, indeed, provide us with orthogonal bases), we use that 

basis, which is the most convenient or “natural” basis to expand x and c. Finally, 

equating coefficients of the various base vectors on both sides of the equation gives 

uncoupled linear algebraic equations on the unknown coefficients in the expansion 

of x. 
The eigenvector expansion method is applicable to other cases as well, such as 

ordinary and partial differential equations. We will meet it again when we come to 

 



  

partial differential equations. 
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EXERCISES 11.3 
  

1. From the eigenvectors of the given n x m matrix obtain an 

  

orthogonal basis for IR”, 

fi ol 2 1 
Mii 4 | 5 

ro 1 0 02 0 
(c)| 1 0 0 (d)} 2 0 O 

| 0 0 0 0 0 -2 

fr 4 2 2 7 4 —4 

(e) | 2 2 (f) 4 1 
| 2 2 4 -4 8 1 

ro 0 0 4 03 3 0 
0 0 4 0 3.0 3 «0 

@ lo 4 0 0 M)s 3 9 0 
| 4 0 0 0 0 0 0 -3 

6 0 0 0 100 1 
0 2 2 2  |0 0 0 0 

MO) 9 9 9 9 lo 9 09 0 
0 2 2 2 100 1 

2. Determine whether or not the eigenvectors of the given 

nonsymmetric 2 x 2 matrix provide an orthogonal basis for 

R?, 
fo 0 1 9 70 0 

af yt | wee ©] oa 

3. (Proof of Theorem 11.3.1) (a) Prove Theorem 11.3.1 for 

the simple case where A is merely 2 x 2. Le.. of the form 

ba) 
(b) We will now supply the “skeleton” of a general proof 
of Theorem 11.3.1 and ask you to answer questions about 

the steps. Overhead bars will denote complex conjugates: if 

go=u+iy, then F = «2 ~ ty. Proof: 

Ae = \e. (3.1) 

so 

AG = XN. (3.2) 

Dot both sides of (3.1) into €, and dot e into both 

(3.2): 

sides of 

(Ae) =(Ae)-E and e-(AB) =e-(X8). G3) 
Thus, 

e'Ate@=\e'@ and e AG= delS, (3.4) 

so 

(A\—Aje"@ =0, (3.5) 

and hence 

Ve) (3.6) 
so A is real. Questions: How does (3.2) follow from (3.1)? 

(3.4) from (3.3)? (3.5) from (3.4)? (3.6) from (3.5) ? 

4, (Proof of Theorem 11.3.2) Prove Theorem 11.3.2 for the 

simple case where 7m = 2. 

5. (Post-dotting versus pre-dotting) Observe that the top left 

equation in (2) was obtained by dotting e, into both sides of 

(1a): ie.. we “pre-dotted” (1a) with e,. However, the top right 

equation in (2) was obtained by dotting both sides of (1b) into 

e;; Le., we “post-dotted” e; into (1b). Now, post-dotting or 

pre-dotting doesn’t matter, in the sense that the dot product is 

commutative: X-y = y:x. Nevertheless, one may be more 

convenient than the other. Specifically, show that if we write 

the top left equation in (2) as (Ae,;)- ex = (Aje;) ex, instead 

of e, -(Ae;) = ex - (A;e;), then it is more difficult to obtain 

(3) and hence the desired result. 

6. Use any theorem(s) from Chapter 3 to show that the so- 

lution to (12), with the initial conditions 7(0), @2(0), 7} (0), 
and 75(0) specified, is unique. 

7. Beginning with (21), complete the solution for the follow- 

ing initial conditions: 

(a) x, (0) = 2,a9(0) = 3,25 (0) = x4 (0) = 0 

(b) v1(0) = 1yr9(0) = 24 (0) = 0,25(0) = ~3 
(c) a (0) = v2(0) = 2) (0) = 0,04 (0) = 5 
(d) x1 (0) = —2,a2(0) = 2} (0) =0,25(0) = 3 

8. Consider the three-mass system shown.
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x4 

WV 

OPI E EEE PO OEE PEE POE PEPE EE EEE EE PDEA LEER EEE 

(a) Derive the equations of motion for the free vibration, tak- 

ing all masses and spring stiffnesses to be 1, say. 
(b) Following the same lines as in Example 2, find the orthogo- 

nal modes (ie., the eigenvectors) and their corresponding nat- 

ural frequencies, proceeding either by hand or by using com- 

puter software. 
(c) Give any set of initial conditions that will excite the low 

frequency mode only; the middle mode only; the high mode 

only. 
(d) Find the solution 21 (¢), z2(t), v3(¢) corresponding to the 
initial condition 2,(0) = 1,22(0) = 23(0) = x{(0) = 

x'(0) = #4(0) = 0. 
9. Consider a mass-spring system like the one shown in Exer- 

cise 8, but with five masses and six springs. If all the masses 

and spring stiffnesses are 1, say, then the equations of motion 

are these, in matrix form: 

xy 2-1 0 0 90 Ly 0 
xy ~l 2 -1 Q 0 Ba Q 
ey p+] QO 1 2 =-1 0 ry |=) 0 
xy 0 O -lL 2 -1 La 0 
vy | 0 0 O -L 24] as 0 

(9.1) 

or x” + Ax = 0. Observe that the A matrix is tridiagonal 
(i.e., all elements are zero except for the main diagonal and the 

two neighboring diagonals). Physically, this result correponds 

to nearest-neighbor coupling whereby each mass feels only 

its immediate neighbors. Nearest-neighbor coupling occurs in 

other systems as well. For instance, in modeling single-lane 

traffic flow, each driver accelerates or decelerates according 

to the motion of the cars immediately ahead and immediately 

behind, so the resulting coupled differential equations exhibit 

nearest-neighbor coupling. The problem that we pose is for 

you to use computer software to determine the natural frequen- 

cies and corresponding mode shapes (eigenvectors). 

10. (Beats) Suppose in Example 2 that m, = m2 = Ayg = 1, 

ky = ko = 20 so that the coupling of m, and ma is weak since 

kyo is much smaller than ky and &y. (In the limit, if ky2 were 

zero, there would be no coupling at all, and the motions of my 

and my would be entirely independent.) Supposing further 

that 2,(Q) = 1,22(0) = x) (0) = x),(0) = 0, proceed as in 
Example 2 and show that, for the free vibration, 
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(10.1) 

re(t) = $ (cos Jf 20 t ~ cos V22t) . 

Next, use the trigonometric identities 

cos A + cos B = 2cos 4¢2 cos 454, 
. . (10.2) 

cos A ~cosB = —2sin 4¢4 sin gh 
* i 

to show that 

xyi(t) & cos 4.58t cos 0.114, 
(10.3) 

vo(t) = sin 4.58¢sin 0.112. 

Use (10.3) to sketch x,(t) and x(t) versus ¢ in separate 
graphs, one below the other, labeling key values. Observe the 

slow transfer of energy back and forth between my, and mg. 

In vibration theory this phenomenon is known as beats. 

11. (Rayleigh’s quotient) Let A be a symmetric n x nm matrix. 

Dotting any eigenvector e of A into both sides of Ae = Ae 

and solving for A, gives 

et Ae 

ele 

e-Ae 

e-e 
    A= (11.1) 

More generally, if x is any vector, not necessarily an eigen- 

vector of A, then the number 

  

x' Ax 
R(x) = (11.2) 

    xTx   

is known as Rayleigh’s quotient, after Lord Rayleigh (John 

William Strutt, 1842-1919). Imagine putting randomly chosen 

x vectors, one after another, into Rayleigh’s quotient. If x 

happens to coincide with an eigenvector, then, according to 

(11.1), (x) gives the corresponding eigenvalue. In any case, 

  

    

. ; 
x* Ax 

R = = <|Aql, 11.3 IRO)| = |G} < 1A (113) 
where the eigenvalues are ordered so that |A,| > |Ae] > --- > 

lA, |. That is, |A(x)| provides a lower bound on the magni- 
tude of the largest eigenvalue of A, where x is any vector [1.e., 
any nonzero vector, since R(O) = 0/0 is undefined]. Upper 
and lower bounds on eigenvalues are sometimes important, 

and Rayleigh’s quotient is used again in Exercise 12. 

(a) Prove the inequality in (11.3). HINT: Since A is symmet- 
ric, ithas n orthogonal eigenvectors e),...,@,, corresponding 

to the eigenvalues A,,...,A,. Expand x in terms of the or- 

thogonal basis {e),...,@n}:



  

x= So aje;. (11.4) 
jel 

(b) Verify (11.3) for the matrix 

2 0 0 

A=|]0 -1 -2 (11.5) 

Q -2 —1l 

by taking x = [1,0,0]", (0, 1,0)", [0,0, 1)", [1,2,3]" and 
[3, -1, 4]", say, verifying that |R(x)| < |Ai| in each case. 
(c) Evaluate R(x) for x = [0.4,0.3,0.3]7, [0.6,0.2,0.2]", 
(0.8,0.1,0.1]7, (0.96, 0.02,0.02]7, [1,0,0]", and for x = 
(0,1, 1.4]*, [0,1,1.1]", [0, 1,1)", and discuss your results in 
the light of (11.1) and (11.3). 

12. (The power method) There exists a simple iterative pro- 

cedure for calculating eigenvalues and eigenvectors, which 

is known as the power method. To begin, one selects 

any nonzero vector x") and then computes x) = Ax(, 
x(2) = Ax) and so on. That is, 

xt) = Ax) (k= 0,1,2,...). (12.1) 

Before analyzing the situation, let us apply (12.1) and see 

what happens. Let 

A= (12.2) 

r
o
b
e
 
o
e
 

ee
 

o
c
 

Ke 

for example. Choosing x‘) = 
application of (12.1) gives 

[1,0,0]7, say, successive 

(8) x) x (2) xX) x4) xX (5) 

1 11 1 1 3 5 ll 21 

1 0 0 0 1 1 3 5 ll {, 

1 0 0 0 1 1 3 5 11 

(12.3) 

and so on. Now, observe, from the very nature of the eigen- 

value problem Ax = Ax, that if x) were an eigenvector of 

A, then Ax'°? would be some scalar multiple of x). But 
Axl = x) and x™) is seen from (12.3) not to be a scalar 

multiple of x), Hence, x!) is not an eigenvector of A. Sim- 

ilarly, x“) is not an eigenvector because x!) is nota multiple 

of x“), and so on. Nevertheless, we see that with each succes- 

sive step x'**) draws closer and closer to being a multiple 

of x") so that the sequence x“*) is evidently approaching an 

eigenvector of A. In fact. x‘) is very close to being a multiple 

of x so that there is an eigenvector 
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21 
ex | Il 

il 

What is the corresponding A, As 21/1172 A = 11/5? An 

average of the two? We state without proof that one does well 

to use the Rayleigh quotient from Exercise {1: 

(12.4) 

xOT ARO 
x (4) Ty(A) ~ 

xA)TXO) B41 L904 
x4)TX@ 47. 

How do (12.4) and (12.5) compare with exact values? The 

eigenvalues and eigenvectors of A are 

MN 
Am (12.5) 

2 1 

Ay=2,e,=] 1], Agz—-l,e2=] -1 |, 

1 —1 

0 

A3 2 0, e3 = 1 

—1 

(12.6) 

so the iteration (12,3) is evidently converging to e. [It is strik- 

ing that whereas (12.4) is accurate to only around one part in 

20, (12.5) is accurate to around one part in 200. This enhance- 

ment of accuracy, using Rayleigh’s quotient to determine A, 

is not a coincidence and can be explained theoretically. See, 

for instance, Stephen H. Crandall, Engineering Analysis (New 

York: McGraw—Hill, 1956), Chap. 2.] 

To see what is going on, suppose that A is a symmetric 

matrix of order n (although symmetry is more than we need; 

it would suffice for A to have n LI eigenvectors) and let its 

eigenvalues be ordered so that |Ai| > |Ae| > +++ > |An| asin 
(12.6). Since A is symmetric, its eigenvectors e;,...,@, are 

on orthogonal basis for n-space. Hence, our initial vector x 
must be expressible as 

nm 

(0) e, x = aje;. 

j=l 
Of course, we cannot compute the a;’s since we do not know 
the e;’s yet, but that is no problem; it is the form of (12.7) that 

is important here. [t follows from (12.1) and (12.7) that 

(12.7) 

Te 

(k) Ke. i aj; ey 
i 

k k 

= A Gye, + Qe Aa g++ +n An en] - 

ye “VAL " Ai
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ee) 
If A, is, in fact, dominant, ee Ayf > |Agh > -- > [Anl, 
then (Ag/A1)*,..., (An/A1)* all tend to zero as k > 00, So 
that x) ~ Maye, as k + 00 provided that ay 4 0, 

provided that x") does not happen to be orthogonal to on 
Eigenvectors can be scaled arbitrarily so the \¥a, factor is of 

little interest; the point is that x") converges to e1, the eigen- 
vector corresponding to the dominant eigenvalue. That is pre- 

cisely what was found in the preceding illustration, wherein 

the dominant eigenvalue is Ay = 2. NOTE: Once again we see 

that the most convenient basis to use Is the basis provided by 

the A matrix itself, 

(a) Show that (12.8) follows from (12.1) and (12.7). 

(b) Determine the dominant eigenvalue and corresponding 
eigenvector by the power method for 

  

0 0 1 

A=|0 0 1 

1 oil 

Also, evaluate the eigenvalues and eigenvectors exactly, either 

by hand or by using computer software. NOTE: Observe that 

even though your iteration converges, you cannot be certain 

that the eigenvalue obtained is the dominant one, A,, since 

your chosen x°) may (without your knowing it) be orthogonal 

to e;, as mentioned in the sentence following (12.8). Hence, 

we recommend that you carry out the iteration three times, 

once with uO = [1,0, oO)". once with x?) = [0,1,0]", and 
once with x! = (0,0, 1)" since there is no way that all three 

of these x)’s can be orthogonal to e;. (Do you see why this 

is so?) Go as far as x) in each case, and use the Rayleigh 

quotient to estimate A, as we did in (12.5). 

13, The same as Exercise 12(b), for the given matrix 

2 1 -1 2 141 
(a) 14 8 (b)} 1 2 1 

| -1 3 4 1 12 

fio. 101 
(c)} O 1 0 (d)} 0 3 0 

| 1 0 4 1 0 1 

rf oO 1 =I 4 | 3 
(e) 13 4 mM} i 0 = 

| ~l 4° 3 30 4] 

F211 2 100 1 

(a) 0 1 1 °0 (hn) 0 0 0 0 
7) 9 1 1°0 Vlog 0 0.0 

2 11 2 100 1   
14. For the A matrix given in part (b) of Exercise 13, work out 

A*. Apply the power method (Exercise 13) both to A and A‘, 

beginning with x = [0, 1,0]", say. Go as far as x") and use 

the Rayleigh quotient to estimate A. Explain why the iteration 

converges more rapidly for A‘ than for A, and show how to 

recover the eigenvalue and eigenvector of A from those of A‘. 
(See Exercise 15 of Section 11.2.) 

15. Consider the problem Ax = Ax +c, where A,A,c are 

given below (along with the eigenvalues of A, for your conve- 

nience). Solve for x by the eigenfunction expansion method; 

if no solution exists, state that. You may use any of equations 
(33)—(35) without deriving them. 

(a) A given in Exercise [3(a) (A = 7,3,0), A = 2,c = 

[1,2, 3]? 
(b) A given in Exercise 13(a) (A = 7,3,0), A = 3,¢ = 

(2,2, 0]7 
(c) A given in Exercise 13(a) (A = 7,3,0), A = 3,¢ = 

[1,1,3)7 
(d) A given in Exercise 13(¢) (A = 4,2,0,0), A = 1, 

ce = [3,-1,1,0]* 
(e} A given in Exercise 4,2,0,0) A = 4, 

ce = [1,2,0,3}" 
[3(g) (A = 

(f) A given in Exercise [3(g) (A = 4,2,0,0), A = 4, 
c = [2,0,1,-2]7 
(g) A given in Exercise 13(g) (A = 4,2,0,0), A = 0, 
ce = [1,3,3,1]" 

(h) A given in Exercise 13(g) (A = 

ce = [1,2,3,4]7 
(1) A given in Exercise 13(g) (A = 4,2,0,0),A = O0,c = 

(1, 3,3, 2]¢ 

4,2,0,0), A = 0, 

16. To solve the nonhomogeneous equation (27), we first 

solve for the eigenvalues A; and eigenvectors e; of A, then 

we use those eigenvectors as a basis to expand x ‘and c. Why 

do we go to the extra trouble of solving for the eigenval- 

ues and eigenvectors of A when it is easy to make up bases 

[such as (1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)] with- 

out trouble? That is, explain what advantage there is in using 

the eigenvectors of A as our basis. 

17. (Generalized eigenvalue problem) With f(t) = 

0, e1(t) = q sin (wt + ), and xvo(t) = qo sin (wt + 6), 

  

  

Cit) 
becomes the eigenvalue problem 

Ay + hyo Aye 

My my qi 2) 41 
= W {7.1 

hig ho + Rye q2 | q2 ( ) 

meg Me 

or Aq = Aq. where \ = w. In Example 2 we took 

my, = mz = 1 so A is symmetric and the eigenmodes are 

orthogonal. In general, however, 7m, 4 mg and A is not 
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symmetric. Nonetheless, observe that we can reexpress (16.1) Here is the problem: 

as (a) Let K and M be symmetric fas is the case in (17.2), al- 

ky + ky ky» Hn | 22 my,  O dt though there is no need for M to be diagonal as well]. Show 

—khy2 kta + hye qo “ 0 me ga that if e; and e, are eigenvectors corresponding to distinct 
eigenvalues A; and Ax, respectively, then e,; and e; satisfy the 

2 
(17.2) generalized orthogonality relation 

  

Or 

Kq = \Mq, (17.3) ej (Mex) = 0 (17.4) 
That is, e; is orthogonal to e, “relative to M.” oo) =? asain. Equati ‘c oatled a generalize : ‘ where A = w” again, Equation (17.3) is called a generalized (b) Verify the truth of (17.4) for the case 

| t qa | 

eigenvalue problem, “generalized” because of the presence 

of M. (The generalized eigenvalue problem is introduced in lol a1 3 

Exercise 20 of Section [1.2.) The eigenvalues are determined = A 
“ . ; 1 oi 0 

by det(K — AM) = 0, and then the corresponding eigenvec- 

tors follow as the nontrivial solutions of (K — AM)q = 0. 

hm 
Oo

 

g2 

  

11.4 Diagonalization 

We have seen that diagonal matrices are particularly straightforward. For instance, 
the solution of Ax = c, where A is n x n, is generally tedious if nm is large but 
is simple if A is diagonal, for then the scalar equations are not coupled. Similarly, 
raising A to the mth power is generally tedious if m is large but is simple if A is 
diagonal. Likewise, the solution of a system of differential equations 

x'(t) = Ax(t) (1) 

is generally tedious but is simple if A is diagonal, for then the scalar equations are 

uncoupled. 
To introduce the idea of diagonalization, let us focus on the application of 

diagonalization to the solution of the system of differential equations given by (1), 
where we assume that A. is constant (i.e., its elements do not vary with ¢). We have 
already studied several methods for the solution of (1): the method of elimination 
(Section 3.9}, which is essentially Gauss elimination but where coefficients are 

differential operators; the Laplace transform method (Section 5.4), which would 
reduce (1) to n linear algebraic equations in #;(s),...,@n(s); and seeking x(t) = 
qe and obtaining an eigenvalue problem (Sections {1.2 and 11.3). 

We begin the solution of (1) by diagonalization by making a linear change of 

variables from x1,....2n tO @1,..., En: 

x = OX, (2)
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where Q is a constant matrix. Written out, 

vy qi oc * Gin vy 

= ; : Dod (3) 

Ln dni cc dnn Ly 

Putting (2) into (1) [and observing that (Qk)! = Qx’ because the matrix Q is 
constant] gives 

x = AQX. (4) 
Since the choice of Q is ours, we can ask Q to be invertible. Then, multiplying (4) 
by Qu! gives Q7'Qx! = Q-'AQx or 

x = Q'AQS. (5) 

Given the A matrix, the idea is to try to find a Q matrix so that 

  

    Q'AQ=D (6) 

is diagonal because then the differential equations within (5) will be uncoupled. If 
there does exist such a Q we say that A is diagonalizable and that Q diagonalizes 
A. 

Two questions present themselves: given A, does there exist such a Q and, 
if so, how do we find it? (There is also a question of uniqueness, but we are not 
especially interested in whether or not Q is unique; we'll be happy to find any Q 
that diagonalizes A.) 

  

  

THEOREM 11.4.1 Diagonalization 
Let A ben x n. 

1. A is diagonalizable if and only if it has n LI eigenvectors. 

2. If A has nm LI eigenvectors e1,...,e, and we make these the columns of 
Q, so that Q = [e;,...,e,], then Q7-'AQ = Dis diagonal and the jth 
diagonal element of D is the jth eigenvalue of A. 
  

Proof: First, by Q = [e1,...,@n] we mean that Q is partitioned into columns, the 
columns being e;,...,€n. 

Let us prove that if A is diagonalizable, then it has n LI eigenvectors. If A is 
diagonalizable, then there is an invertible matrix Q such that 

dj Q +» 0 

Q'AQ=D=] - eo (7)



pen 

Pre-multiplying both sides of (7) by Q gives AQ = QD: 

dy O --. Q 

AQ- Gioc'' Wn 0 ds 

ni *** Inn 0 - 1, 

digi +++ dndin 

= = [diqi,...,dndnl, (8) 

didnt «+: dadnun 

where the vector q; simply denotes the 7th column of Q. Alternatively, 

AQ = Alqi,q2,---,dnl = (Aq), Aqg,-.., Ady] (9) 

and, comparing (8) and (9), we see that 

Aq, =dqi, «--, Aqn = dn Gn- (10) 

Does (10) imply that the q,’s are eigenvectors of A? Only if we can be sure that 
they are nonzero. Since we have assumed A to be diagonalizable, Q must be 
invertible. Hence. none of its columns q; can be 0. Thus, the dj’s and q;’s are the 

eigenvalues \; and eigenvectors e; of A. Furthermore, the rank of Q must be n 
since Q is to be invertible, so (Theorem 10.5.2) its columns must be LI. 

Thus far we have proved half of item |, that if A is diagonalizable, then it has n 

LI eigenvectors. In doing so we have also proved item 2. It remains to prove the rest 
of 1, that if A has n LI eigenvectors, then it is diagonalizable. To do so, let us take 
Q to be made up of columns which are the eigenvectors of A, soQ = [e1,.--,@nl- 

Then 

Avett t+) Anni 

AQ = (Aey,..., Aen] = [Are1,-..,Anenl = 

M€in «'' An€nn 

My Oe 0 

Cit ttt End _ 0 Ag = QD. (LL 
ein nn : . 

0) wee An 

Finally, Q is invertible since its columns are LI, so pre-multiplying (11) by Qu! 

gives Q7'AQ = D. Hence A is diagonalizable, and the proof is complete. @ 

Since the columns of Q are LI eigenvectors of A, Q is called a modal matrix 

of A, 

{1.4. Diagonalization 57]
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Theorem 11.4.1 relates the diagonalizability of A to the eigenvectors of A. 
With the help of Theorem 11.4.2, we will be able to relate the diagonalizabil- 

ity of A to the eigenvalues of A as well. When that is done we will turn to 
applications. 

  

THEOREM 11.4.2 Distinct Eigenvalues, LI Eigenvectors 
If ann x nm matrix A has distinct eigenvalues A;,..., An, then the corresponding 

elgenvectors e€1,...,@, are LI. 
  

Proof: We need to show that 

Cpe, + cg@g + +++ + Cnen = O (12) 

holds only if ¢, = co = ++: = Cy, = O. Multiplying (12) by A and noting that 
Ae; = Aje;, we have 

ey Ape + CoAg@o + + Cn Ann = 0. (13) 

Repeating the process gives 

9 . © 

cy \Fe4 + CoA5e@2 ae of Cn rAZen = 0, 

: (14) 

eA ey + co\S tes wee oe Cp rn ten =0. 

Expressed in matrix form, 

1 ee 1 Cy ey 0 

At tte An coe9 0 

. = Loe (15) 

Mivh oe. Apel Cr€n 0 

The determinant of the coefficient matrix is a Vandermonde determinant, which 

(see Exercise 17 in Section 10.4) is nonzero if the \;’s are distinct. Since \j’s 

are indeed distinct by assumption, (15) admits the unique trivial solution cpey = 

O0,cpeg = 0,...,¢nen = O, and since the e,;’s are nonzero (because they are 

eigenvectors) it follows that cy = co = +--+: = c, = 0,soe;,...,e, are Ll. a 

From Theorems [1.4.1 and 11.4.2 we can draw the following conclusion. 

  

THEOREM 11.4.3 Diagonalizability 
Ifann x nm matrix has nm distinct eigenvalues, then it is diagonalizable. 
  

 



  

As usual, be careful not to redd converses into theorems when they are not stated. 

Specifically, Theorem 11.4.3 does not say that ann x m matrix Is diagonalizable if 

and only if ithas n distinct eigenvalues. 

Consider an application. 

EXAMPLE 1. A Problem in Chemical Kinetics, We consider, here, a special class 

of chemical reactions known as first-order reactions. These reactions are governed by 

systems of linear, coupled, first-order ordinary differential equations. Specifically, suppose 

that X),...,X, are the chemical names of nm reacting species (elements or molecules), 

that xy (t) denotes the concentration of Xj (in suitable units) as a function of the time ¢, 

and that the rate constant for the conversion of X; to AX; is the positive constant kji. Pora 

two-component reaction, for example, denoted schematically in Fig. 1, this means that 

Ly =z hye, + kyo%a, (16a) 

Bo = katy ~ kyo. (16b) 

The first term on the right-hand side of (16a) accounts for the loss of X, due to the Xy 

X» reaction; it is proportional to the concentration of X;, namely a1, and the constant of 

proportionality is the relevant rate constant ko. The second term on the right-hand side of 

(16a) accounts for the rate of gain of X, due to the reverse reaction NX» —> Xz. A similar 

accounting holds for the terms in (1 6b). 

The difficulty in solving (16), and similar systems for n-component reactions where 

n > 2, is due to the coupling. Equations (16) are coupled due to the kygte term in (16a) 

and the fe, 2, term in (16b). 

Let us solve (16) by diagonalization, if that is possible. In matrix form (16) is 

x’ = Ax, where A= her Raa) | (17) ko ki 

The eigenvalues and eigenvectors of A are readily found to be 

kip 

Aeay 
Ay = 0, ea |; No = —(ki2 + Kan), o:= 5) 4 I. (18) 

The A,’s are distinct, because ky > Oand kg; > 0, so Theorem | 1.4.3 ouarantees that A 

is diagonalizable. Alternatively, observe that the e,'s are necessarily LI because for them 

to be LD we would need ke; = —k12, which is impossible since ky2 > O and ka, > 0. 

Their linear independence implies that A is diagonalizable, by Theorem 11.4.1. 

Thus, if we set x = QX, where (with a = @ = |, say) 

: Aya 1 . 

Q = [e1,e2] = ; 1 : (19) 
Ay —1 

then the preceding analysis assures us that 

= Q7'AQK = DX = | i Y | X. (20) 

1.4. Diagonalization 

Figure 1. Two-component 

reaction. 
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Thus, we have the uncoupled system (which, of course, is our objective) 

Ey = Aye, L 141 (21) 

Ey = Agh, 

the general solution of which is 

T= Cye! = Ch, 
~ , othe. (22) 
Ng = Coe*2t = Cyem (Ratha) 

Finally, putting these expressions into x = QX gives 

vy _ kyo 1 Cy 

v2 | ~ ko, 1 Coe (Riatkai ji (23) 

ay(t) = Cikig + Cge~ (het han de, 

vo(t) = Cyke, - Coe Raat her ye, 

or 

(24) 

COMMENT |. Here we have emphasized the mathematics rather than the chemistry and 

have assumed the rate constants to be known. A problem of importance to the chemist is 

the determination of those constants. Such determination normally involves a blend of the 

foregoing theory with suitable experiments. 

COMMENT 2. The numbering of the eigenvalues and eigenvectors is immaterial. For 

instance, we could just as well take Ay = —(ky2 + ko,) and A» = 0. The final result, (24), 

would be the same. @ 

Theorem 11.4.3 revealed that diagonalizability is the typical case, the generic 
case, because an nth degree algebraic equation (namely, the characteristic equation 
of A) typically has distinct roots. Furthermore, every symmetric matrix is diago- 
nalizable: 

  

THEOREM 11.4.4 Symmetric Matrices 
Every symmetric matrix is diagonalizable. 
  

Proof: Theorem 11.4.1 states that A is diagonalizable if and only if it has n LI 
eigenvectors, and Theorem 11.3.4 assures us that every m x m symmetric matrix 
has n orthogonal (and hence LI) eigenvectors. @ 

Suppose that for a symmetric matrix A we use the normalized eigenvectors of 
A to form its modal matrix Q so that 

Q = [é1,...,€n). (25)
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Then, observe that 

  

ef éfé, --- éPé, 
QFQ= | : | fa,.--,é:) = 

6) e7€1 enen 
@1 + ey 1 Gy i 0 

= =Jio, i jsl (26) 

Gn G1 On En 0 1 

so that 
gq =aQ’. (27) 

      

Be sure to understand each step in (26). Q starts out as ann x nm matrix, but when 

we partition it into columns, as [é;,..., @p], itis then a 1 x n matrix with elements 

€,...,@,. To form Q™, we make the jth column of Q, namely é;, the jth row of 

Q", and to put it into row format we need to write it as é; rather than é;. Thus, 

working with the partitioned Q and Q?™ matrices, the product to the right of the 
first equal sign in (26) is ann x 1 matrix times a 1 x n matrix, which product gives 

the n x m matrix to the right of the second equal sign. 
Understand also that (27) has nothing to do with the é;’s being eigenvectors. 

The steps in (26) rely only on the fact that the columns of Q are ON. Any square 
matrix, the columns of which are ON, satisfies (27) and is called an orthogonal 

matrix.* Of course, the property (27) is very nice because if we ever need the 

inverse of Q it is simply QT. 
Getting back to diagonalization, note that if A is symmetric then, Q7'AQ = 

D is diagonal whether or not the columns of the modal matrix Q are normalized. 
However, let us agree (at least within this text) to always normalize them, if A is 

symmetric, so as to have access to the property (27) if we need it. 
Let us close with one more application. 

EXAMPLE 2. — A Free-Vibration Problem. Consider a mass m constrained by two 
mechanical springs, of stiffnesses ky and ky, as sketched in Fig. 2. Imagine Fig. 2 as a 

view looking down on the apparatus, which lies in a horizontal plane on a frictionless table. 

In the configuration shown, the springs are neither stretched nor compressed, and 7m is at 

rest in static equilibrium. However, if some initial displacement and/or velocity is imparted 

tom, some motion, no doubt vibrational, will result, and it is that motion that we wish to 

determine. 

The first step in the formulation is to introduce a coordinate system. A reasonable 

choice is the Cartesian system shown in Fig. 2, with its origin at the equilibrium position 4 J 

of the mass m (which we regard as a “point mass”). “ANY 

If m is al some point x,y other than the origin, then one or both springs will be 

stretched or compressed and will exert forces F,; and F2 on m (Fig.2). The magnitude 

    
Figure 2. Mass-spring system; 

view from above. 
  

“Recall our encounter with orthogonal matrices in the optional Section 10.7.
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of F, is 

|F1|| = &y times the stretch in spring # | 

=h {Vie CDF + -0P 
=k { (e@+lpty — uy. (28) 

     

If we multiply this magnitude by a unit vector directed from (a, y) toward (—1, 0), we will 

have F,. The vector from (x, y) to (~1,0) is (~1 ~ x)i+ (0 — y)j, where i, j are unit base 
vectors in the x,y directions, respectively. Normalizing that vector gives the desired unit 

  

vector 
~ lL + P= (l+a)i+yj (29) 

(+a)? +y? 

“A (-1,~1) so 
« . (c+1)?+y%-1 aye 3 

Figure 3. The forces on m. Br = (Pil/ Pi = (v+1P+y? G + Ui ui “) 

In like manner, we find that 

- Ve +1)? + (y+ 1)? : : 
Fy = |/Fol[ F2 = no _ ee 2) [lenis osu (31) 

(e+1)*°+(y+1)" 

According to Newton’s second law, 

me" =F, and my" = F,, (32) 

where F, is the sum of the x components of F, and Fs, and fF, is the sum of the y 

components of Fy and F2. Thus, the governing equations of motion are 

  

    

  

    

[ /@+iPty-1 ma” = —k, |W EVES VAT ay 
| (et)? + 

[ fre 72 t+lP?+y+lp- V3 ky | VEY ly + v2 (x +1), (33a) 
(©+1)? +(y+1) 

[" 412 ay 
my” — —ky (x + ) + y 1 

| Viet) +y? 

[ (eri 1? - V2 
fy | We ED? + ve ave (y +1). (33b) 

(2 +1)? + (y+ 1)?   

  

The latter, coupled, nonlinear differential equations are, clearly, quite intractable an- 

alytically. Two possibilities present themselves. First, if we assign numerical values to 

m, ky, ke, #(0), y(0), 27(0), y’(0), then we can generate z(t) and y(t) by one of the numer- 
ical methods studied in Chapter 6 (such as fourth-order Runge-Kutta integration) or using 

computer software (such as the Maple dsolve command). 

Ae



  

Second, we can limit our attention to small motions, motions that remain close to the 

equilibrium position at the origin: ja] < 1 and ly| << 1, In that case we can simplify (33) 

in essentially the same way that we can simplify the nonlinear differential equation 
  

gl i sing = 0 (34) 

governing the motion of a pendulum (Fig. 4): for small motions, near the equilibrium 

point 2 = 0, 

sin Siem me tbe (Taylor series) 

a 

for |z| < 1 so (34) can be approximated by the simple linear equation 

re = 0. (35) 

We will follow the same steps for (33), but instead of the Taylor series in one variable 

(about x = Q), 

el + 

  FO) 
x 

2! 

we will need the Taylor series in two variables (about « = y = 0):* 

f(x,y) = f(0,0) + fr(0,0)a + fy (0, 0)y 

+ [Fen (0, 0)x? + 2fey(0,0)ry + fyy(0,0)y7] +> (37) 

f(a) = f(0) + f’(O)x + foe (36) 3 

because the right-hand sides of (33a.b) are functions of x and y. First, let f(z,y) in 37) 

be the right-hand side of (33a). Then (37) gives 

Df rs — aL kh kg yo ke 4 ib 
f(x,y) =0 1 AYO 5 x4 _- Yr. 

he Ag 
_ (i + =) u- = y. (38) 

Next, let f(x,y) in (37) be the right-hand side of (33b). Then (37) gives 

d 

k 

  

: 2 2 
fey)=0- ye- yyte 

ko . ko 

Bayt Ty (39) 

With these approximations (linearizations) of the right-hand sides of (33a,b), we have the 

linearized equations 

hy he 
mae"! = — (i + =| xu au (40a) 

" hea hig 
myo = em (40b) 

  

“Taylor series in more than one variable is discussed in Chapter |3. 
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m 

Figure 4. Pendulum, equations 

(34) and (35).
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or 

x" + Ax =0, (41) 

where 

2hy +ko ko 

x(t) 2m = 2m 
x= , Az . 42 

| y(t) | ko ko (42) 

2m 2m 
Let us solve (41) by diagonalization, Observe that A is symmetric (even though there 

is no “physical” symmetry to be seen in Fig. 2). For definiteness, let us set 

m= 1, ky = 3, ky = 4. (43) 

Then the eigenvalues and normalized eigenvectors of A are 

1 1 | mah a= >|: \y=6, & =— rr (44) v5 | 2 v5 
With 

Q=lene)=| VV? 2/v8 ay = |e ,€ = } 1,€2 ~2//5 1/5 

set x = QX in (41). Thus, 

Qx” + AQX =0 (46) 
and hence 

x" + Q7'AQX =0 (47) 
or 

x” + Dk = 0, (48) 
where 

| Ar O } 71 0 m-[o xn ]-[o 6) 
In scalar form, (48) gives the uzcoupled equations 

wv +E = 0, i by = 0 (50) 
with general solution [expressed in the A sin (wt + @) form]: 

£ = Ajsin(t +1), (51) 
y == Ag sin (/6¢t + 62), 

where the amplitudes A,, Az and phase angles @1, @2 are the four constants of integration, 
To return to the original z, y variables, write 

x - Qk = 1/V/5 2/V5 [=] 
y ~2/V5 1/V5 y 

1 
—s= sin (t + 1) 

= Ay vo + Ag 4° 

v5 V5 
== A, @; sin (t + oy) + Aoéo sin (V6t + 2) (52) 

sin (V6t + 62) 

S|
 

sin (V6t + d2)   sin (t + @1)  



or, in scalar form, 

a(t) = Cy sin (t + ¢1) + 2Cysin (V6 t+ 2), 
53 

= —2Cy sin (f+ d1) + Co sin (/6 t+ 2), 03) =
 oe =
 | 

where C’; is A,/V5 and C’y is Ao/V5, for brevity. 

COMMENT I. It is seen from (52) that the general solution is a linear combination of 

two orthogonal modes, as in Example 2 of Section 11.3, The low mode is a vibration 

along the é, direction, at a frequency that is the square root of Ay, and the high mode is a 

vibration along the é direction, at a frequency that is the square root of Ag, as summarized 

in Fig. 5. In this example the orthogonality of the modes is geometric since the low- and 

high-mode motions are 90° apart; in Example 2 of Section 11.3, the orthogonality is more 

mathematical (e, - eg being zero) than geometric. 

COMMENT 2. Why are the directions of the low and high modes, shown in Fig. 5, phys- 

ically reasonable? Recall that the natural frequency of the classical harmonic mechanical 

oscillator, governed by the equation ma” + ka = 0, is \/k/m, which increases as the 

stiffness & increases. It should be clear intuitively that the e2 axis is the line of maximum 

stiffness (of the two-spring system) and the e; axis is the line of minimum stiffness, at least 

roughly speaking. Strikingly, the mathematics reveals that these directions are necessarily 

90° apart. 

COMMENT 3. Why do we show the positive % and 7 coordinate axes as being in the 6, 

and @2 directions, respectively, in Fig. 5? Because if we set @ = 1 and y = Oin 

5}-[ 8 Ya] 
we get [x,y]? = (1/5, -2/V5]" = é; , and if we set & = 0 and 7 = 1 we get [z,y]? = 
(2/V5,1/W5|* = é@o. In fact, if you studied the optional Section 10.7, you will appreciate 
that the effect of the change of variables x = QX, where Q is an orthogonal matrix with its 

determinant equal to +1, as here, is a pure rotation of axes. Thus, we have the vivid visual 

image of the elements of the coupling matrix varying as we rotate the Cartesian coordinate 

system (somewhat like looking into a kaleidoscope), until the off-diagonal terms become 

zero and the equations uncouple. 

COMMENT 4. In principle, it would have been best to choose the @, y coordinate system 

in the first place, but its orientation was not known. Thus, we chose any z,y system, to 

get started, and then used the method of diagonalization to find the optimal x,y coordinate 

system, 9 

Closure. From a mathematical viewpoint, this section is about finding ann x n 
matrix Q, given ann x m matrix A, such that Q7!AQ = D is diagonal. We find 
that in the generic case A is diagonalizable: it is diagonalizable if and only if it 
has n LI eigenvectors, and it is diagonalizable if it has n distinct eigenvalues or is 
symmetric. Q can be made up of columns which are the eigenvectors of A, and 

the diagonal elements of D are the corresponding eigenvalues. In the event that A 

11.4. Diagonalization 579 

y 

Low mode: [6 cad / see 

tread / sec. 

High mode: 

  

Figure 5. The orthogonal modes.
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is symmetric, we suggest always normalizing the eigenvectors that are the columns 
of Q, so that Q will admit the useful property Qu! = Q?: that is, so that Q will 
be an orthogonal matrix. 

From an applications standpoint, we look only at the use of digonalization in 
uncoupling systems of coupled differential equations, but additional applications 
are to be found in the exercises and in the next two sections. 

It turns out that even if an nm x m matrix A cannot be diagonalized, it can be 
triangularized. That is, a generalized modal matrix P can be found for A so that 

(54) 

is triangular. Called the Jordan normal form, or simply the Jordan form, for A, 
J is upper triangular, with zeros above its main diagonal — except for 1’s imme- 
diately above one or more diagonal elements. This case is discussed briefly in the 
eXercises. 

  

EXERCISES 11.4 
  

1. Diagonalize each of the given A matrices. That is, deter- 

mine matrices Q and D such that Q7'AQ = D is diagonal. 

Also, work out Q™! and verify that Q7'! AQ is diagonal and 

that its diagonal elements are the eigenvalues of A. If A is not 
diagonalizable, state that and give the reason, 

  

f2 3 2 4] 
™1o 9 } = | 

. 00 1 
(c) 0 (d)} 0 0 1 

L 141d 
ro. d 2 0 0 

fey) | 0 0 1 “10 11 
Lo 0 0 0 11 
fF 2 1 -1 Qo 1 0 

| 1 4 3 thy} 1 0.0 
| -1 3° 4 00 0 

400.0 l.l.d 
10 1 1.0 fio. ad 

Mo 1 1 9 MO) a. 4 
00 0 2 l1iti.d 

2. Use the method of diagonalization to obtain the general 

solution of the given system of differential equations. where 
primes denote d/dt. 

(b) aw =a + dy 
, yo =r 

  

(c) a” = 2a + dy (d) 2’ +2r+y=0 

yl sey y+e+2y+2=0 

ei +y4+22=0 

(e) a = dety+3e (f) a = -y+x 
youur-s yl! = ae ~ By — de 
oss Ba -y+de "sa dy — 32 

3. Can a singular matrix be diagonalized? Explain. 

4, We see from Fig. 5 that the line of action of the high mode 

falls between the two springs. Show that that situation holds 

for all possible combinations of stiffnesses &y and ko, 

5. Determine (as in Example 2) the natural frequencies and 

mode shapes for each of the systems shown below. You need 

carry only three or four significant figures. Each spring is of 
unit length. 

(a) / (b) 

    
mek =k =l, ky =10



  

6. Show why the second equality in (9) is true. 

7. (Application to exponentiation) Diagonalization can be 

helpful in raising a square matrix to a large power. Specifi- 

cally, show that if A is diagonalizable so that QU TAQ =D, 

then 

A” = QD"Q, (1.1) 

the advantage being that D”™ is simply 

Apo MeO 

DD" = DoS = (7.2) 

Ore An 0 Am 

8. Use (7.1), above, to evaluate A!!°, where 

O 2 2 2 2 

(gA=) 2 0 2 (b)Az=] 1 3 1 

2 2 0 1 2 2 

9. (Application to principal inertias and principal axes) Two 

vectors of importance in studying the dynamics of a rigid body 

B are the moment of momentum H, and the angular velocity 

w, of B. These are related according to H, = Zw. where TZ is 

the inertia marrix, Written out. we have 

(Hp) z Lax ~ty yoo Loe wer 

(Hy), = — Lyx Ly aLy: wy » (9.1) 

(Hp): alee ~Ley ls we 

where P is the origin of a Cartesian 2, y, 2 coordinate sys- 

tem (see the figure), and 

= | vy dm 
JB 

Lyy = fe ) dm, fee = Leg = | vedm 
JB 

ls. = [oo ly: = [ey = | ye din. 
! ! 5 

42° \dm, 

> O
F 

) dm, 

oS
 

(9.2) 
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Levey lyys fe, are known as the moments of inertia of B about 

the x,y, 2 axes, respectively, and Leys Lees Lyx are known as 

the products of inertia of B; dmv in (9.2) is “d(mass).” Now, 

the relation (9.1) and hence the subsequent dynamic analy- 

sis (which will be of no concern here) will be simplest if Z 

is diagonal, i.e., if all of the products of inertia are zero. In 

general, it is too difficult to see, by inspection, how to ori- 

ent the coordinate axes to achieve this result. Instead, we go 

ahead and choose some x.y, 2 reference frame, compute the 

nine inertia components, and then rotate to a new Cartesian 

x,y, 2 frame so as to diagonalize J. That is, if x = Qx, 

where x = [2,y, 2]? andX = [%,y, Z]7, then H, = QH, and 
w = Qw so that H, = Zw becomes 

QH,=TQe and H,= (9.3) 

where Q°-!'7Q = Z is diagonal. That such diagonaliza- 

tion is possible follows from the fact that Z is symmetric since 

Ley = Lyas tos = fen, and Ty, = Izy. Laz, Lag, and [zz are 

called the principal inertias of ‘& (with respect to coordinates 

with origin at P), and the 7,7, = axes are called the principal 

axes. We now state the problem: compute the principal iner- 

tias and determine the principal axes for each of the following 

bodies; sketch the principal axes. In each case 6 can be as- 

sumed, for simplicity, to be infinitely thin, with mass density 

go mass units per unit area. 

(Q7'ZQ) & 
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(a) (b) 
¥ 

I = 

3X 

(¢) ¥ (d) y 

| 2 

B B 

Loox 
2 i 2 x 

(e) (fy y 
y 

2 

Bo 

2 4 xX 1 ye 

10. (Jordan form) Recall that ann x nm matrix A is diago- 

nalizable if and only if it has n LI eigenvectors. Thus, not 

all matrices can be diagonalized. However, our experience in 

Chapters 8—11 has shown that triangular matrices are “almost 

as nice” as diagonal ones, and it turns out that even if A cannot 

be diagonalized, it can be triangularized. 
More specifically, if A is diagonalizable and its modal 

matrix is Q = [ei,...,e@n], where e;’s are the LI eigenvec- 
tors of A, then Q~'AQ = D is diagonal, with dj; equal 
to the jth eigenvalue of A. But suppose A is not diagonal- 

izable. Though it does not have n LI eigenvectors, it has n 

LI generalized eigenvectors e;,...,@, (defined below) and 

if its generalized modal matrix is P = [e;,...,@n], then 

P~!AP = J, where J is the Jordan form for A; J will 
be upper triangular, with the eigenvalues of A on its diag- 

onal and zeros everywhere else except perhaps immediately 

above repeated eigenvalues. For details, we refer you to M. 

Greenberg, Advanced Engineering Mathematics, |st ed. (En- 

glewood Cliffs, NJ: Prentice Hall, 1988). Here, we will merely 

go through an example with you and, at the end, ask you to 

supply various steps. 

Consider, as a representative case, 

  

2-1 2 0 
0 3 -1 0 ‘ 

A= O 1 1 0 (10.1) 
0 1 ~3 5 

Calculation reveals these eigenvalues and eigenvectors: 

Ay = Ag = Ag = 2, = [1,0,0,0)" = 1 2 3 e= | | e1, (10.2) ke 

Me = 5, e = [0,0,0, 1] = ey. 

In this case the eigenvalue of multiplicity three, A = 2, con- 

tributes only one LI eigenvector, instead of three, so we end up he 

with only two LI eigenvectors, e; and e4, instead of the four 

that are needed for diagonalization. Thus, A is not diagonal- 

izable. But we can find “generalized eigenvectors” eg and es, 

associated with \ = 2, such that e;, e2,@3,e4 are LI. Noting 

that e; satisfies 

(A — AiDe; = 0, (10.3) 

we introduce @2, €3 $0 as to satisfy 

(A — Ai Deg = e1, (10.4) 

(A — Ai Te3 = eo. (10.5) 

With A, and e; given in (10.2), solution of (10.4) and (10.5) 

by Gauss elimination gives 

ey = [a, 1,1, 2/3)", (10.6) 

e3 = (8,a+2,a+1,20/345/9]", (10.7) 

where a, @ are arbitrary. Take a = 7 = 0, say. Then, with the 

generalized modal matrix 

1 0 0 0 

0 1 2 0 
P= [e1, eg, €3, 4] = 0 1 1 0 1 (10.8) 

0 2/3 5/9 1 

we obtain 

618 2 1 0 0 

1 _ 0 Ar, 1 0 | 0 2 1 07 _ 

PYaP=| 5 9 \, 0 |= l0 020) 7% 
0 0 O Ag 0 0 0 5 

(10.9) 

(a) Derive the eigenvalues and eigenvectors given in (10.2). 

(b) Use Gauss elimination to derive (10.6) from (10.4), and 

(10.7) from (10.5).
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(c) Use (10.3), (10.4), (10.5), and (A — AqTjeq = 0 to show (A ~— Denui = ep, 

that e,, 2, @3, e4 are LI, as claimed above (10.3). HINT: Sup- (A — Menus = erga, 

pose that . (10.11) 

aye, + age + A3@3 + A4e4 = O. (10.10) (A — Dex = ex-1 

are the generalized eigenvectors corresponding to A. 

Then multiply each term in (10.10) by A — if. Then mul- (d) Consider the system of differential equations 
tiply each term in the resulting equation by A ~ AyI. Again 

multiply each term in the resulting equation by A — Aq. Ay (10.12) 

Explain why the resulting set of four equations implies that , ‘ 

ay = 2 = a3 = ag = 0. NOTE: More generally, let A 

be an eigenvalue of the given matrix A, of multiplicity K, 

and let the eigenspace corresponding to \ be of dimension k, 

where & < A’. Within that eigenspace there can be found k LI 

eigenvectors of A, say e; through e,. Vectors ex41 through %! = P-LAPX = IX, (10.13) 

ex satisfying 

where the prime denotes d/dt and A is given by (10.1). Under 

the change of variables x = PX, reduce (10.12) to the Jordan 

form 

where J is given in (10.9). Solve the triangular system (10.13) 

for X(t), and thus obtain the general solution x(t) = Px(t) of 

(10.12). 

  

11.5 Application to First-Order Systems with Constant 

Coefficients (Optional) 

In Section 11.4 we studied diagonalization, and showed how to use that method to 

uncouple and solve systems of differential equations. In this section we continue 

that discussion, but this time our emphasis is on the theory of differential equations 

rather than on diagonalization. 

Consider the initial-value problem 

x == QyyCy be + Aintn + filt); t1(0) = Cy 

(1) 

wh = Ani ly + +++ + Ann&tn + fn{t); tn(0) = Cn 

where the aj;j’s are constants. Or, in matrix form, 

Unlike Section 11.4, here we allow for forcing functions fi(t),..., f(t). 

To solve the first-order system (2) by diagonalization, we suppose that A has 

n Ll eigenvectors, a modal matrix Q, and eigenvalues \y,..., An that are not nec- 

essarily distinct. Setting 

x(t) = Qx(t), (3)
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(2) becomes 

Qk = AQK+£(t);  QX(0) = ¢ (4) - 
or, equivalently, " 

KX = QTAQK+Q'E(t); ¥(0) = Qv'e, (5) . 

where Q~! necessarily exists because the columns of Q are LI. We know that 

Vn) 

qtag=p=/9 *% |, (6) 
0 On 

and if we denote Q~!£(t) as f(t) and Q~!c as €, for brevity, then 

Or
? x =DX+fF(t); X(0)= (7) 

or, returning to scalar form, 

ry = \yF1 + filt); £1(0) = cy 

(8) 

Ty =AnEn+ fat); — En(O) = cn. 

Each of these equations is first-order linear, like equation (2) in Section 2.2, and its 
solution is given by (24) in Section 2.2.2 [with « > t,y — &j,p(%) — —Aj, and 
so on]: 

t ~ 

#(t) = cet! + [ ell) Fr )dr, 
0 

(9) 
at _ 

Ln(t) = Gen! + i ent) Fr )dr. 
0 

If we define 
ert 0 a 0 

QO ez! 
eDt = . 

(10) 

0 
pont 

then we can express (9) as 

of _ 

x(t) = ete + / cD E(r) dr. (LL) 

0
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Finally, since X = Qu! x, € = Q~'e, and f=Q-'r, 

  

ot 

x(t) = Qe?’ Que + QeP!—M Qu ET )dr (12) 
JQ     
  

is the unique solution of (1). Note the order: eP'e not GeP*, in (11). 

EXAMPLE 1. Use (12) to solve the system 

a =a +4y ae — 3; #(0) = 2 (13) 

yo = aby ~~ +2t-3; y(0) = 3. 

Then 
1 4 : —4t? — 3 2 

a=| i tf Wo=| aos |. c=| 5]. i) 

The eigenvalues and eigenvectors of A are found to be 

2 yl —2 
Ay = 3, Qe, = a 4 ; Ag= —l, e, =P 4 : (15) 

1 1 

Since these e;’s are LI, A is diagonalizable so (12) applies. With 

L 1 
oe) 0 | 2 2 1 i 3 

4 2 

(12) gives 

29 ~2]f & 0 - 4 3 
xi) = | | oT | —ioa 3 

i 3 

f
e
 

b
o
l
e
 

—47* — 3 

aan Jar 

Apst p78 3 de3t — Zen! 

-|% ve Is 8 | a7) 

op 7 

Nw 

50 . 

r(t) = 34+ =e - 50 

. (18) 
>. oO 7 

y(t) = t? + ic + ic. 

is the desired solution. Hf 

EXAMPLE 2. Can (12) be used for the system 

! t i © 
vo+ be (19a) 

y - yl +50’ ~a-6y=t? (19b) 

+2¢—-y=e
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Yes, if we can reduce (19) to a first-order system. How to do that is described in Section 

3.9 (see Example 5, therein, and the paragraph preceding that example). Specifically, set 

ze’ = wand y’ = vu. Then (19) can be re-expressed as 

vl =U, (by definition) 

uo = -Bu-2e+y+e', — [from (19a) 
. [From (19) (20) 

yo =v, (by definition) 

yv=vu-butaot+t6y+t — [from (19b)] 

or, in matrix form, as 

v 0) L 0 0 t 0 

u! —~2 -3 1 0 u ef 
= - 2 

y 0 001 y | | 0 (21) 
uy! t ~5 6 1 v t 

The latter is a first-order system, to which (12) could be applied. @ 

In deriving (12) an interesting quantity arose, the exponential matrix function 

eB where B = {b;;} is ann x n diagonal matrix: 

  

eet 0 ae 0 

Q ede 
eRB= . .|  (B diagonal) (22) 

0 Lee ebnn     
  

More generally, let B be any n * m matrix, not necessarily diagonal. Following the 

familiar Taylor series formula, 

ey 1 L 5 
eo = + yet a see, 

it seems reasonable to define 

  

1 1_. B 2 Belt [Bt SB t.. (23) 
  

Fine, but observe that the right-hand side of (23) is an infinite series of matrices, 
which we have not yet defined. Mimicing the usual definition of convergence for 
series of scalars, we define an infinite series of matrices Dojet Aj as the limit of 

the sequence of partial sums Sy, where Sy = ee A, . That ts, 

CO 

S- A; = lim Sy. (24) 
- N—-o00 
gel 

 



  

{1.5. Application to First-Order Systems with Constant Coefficients 

The infinite series is said to converge if the limit on the right exists and to diverge tf 
that limit does not exist. Finally, observe that limp joo Sy is the limit ofa sequence 

of matrices, which we have not yet defined so we are not done. 

Let Cy, Cg,... be asequence of mx n matrices, with (cj), as the 7, 7 element 

of C,,. We say that the sequence converges to a matrix C = {cj;} if 

mesa ts)n = 
for each i, 7, and we denote such convergence by writing either limpooo Cp = C 

or OC, 3~ Casn + ow. If the sequence does not converge, then it is said to 

diverge. 

  

EXAMPLE 3. 
3 _, 

2+ 7 e" 2 OQ r 

1 40,7 1 0 | (25) 
n+ 2 

but 

7—-8n 2+e 4" 2 i) 

1 and . 1 (26) 
3 — sin —— 

n n+ 2 

diverge because limy.o6(7 — 3n) and lim, sin do not exist. # 

With (23), let us return to (12) and consider the combination Qe?'Qz!: 

Qe'Q'=Q (x +Dt+ 3D +e: ) Qi 

=1+QDQ7't+ sana? foe 

=14QDQ#+ FQDQ*QDQ P+, (27) 

and recalling that QDQ~! = A, this series gives 

  

L .9,2 QeP'Q™! =T+Al+ FA He = eM, (28) 

Similarly, QeP('-7)Q-! = e4@-7) so (12) can be expressed in the equivalent 

form 
ot 

x(t) = eAle + | eA E(r) dr. (29) 
JO       

How are we to evaluate the exponentials in (29)? We could use the series 
formula (23), but it is more efficient to reverse (28) and to use eAt = QeP'Q-! 

and eA(-7) = QeP!—-7)Q-! because eP* is given simply by (10), and similarly 

587
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for eP('-7) | That is, computationally, we continue to rely on (12) rather than (29), 

Nonetheless, (29) is of considerable interest because it shows how the solution 

t 
a(t) = eMe+ / MED) F(r)dr (30) 

0 

of the single initial-value problem 

a(t)= Av+ f(t); x(0)=c (31) 

can be generalized to the solution (29) of (2) using the exponential matrix function.* 

Closure. There were two objectives in this section. One was to derive the ma- 
trix solution (12) of the initial-value problem (2), and the other was to introduce 

the exponential matrix function e® for any n x n matrix B. In fact, one can intro- 
duce other functions of square matrices as well: sines, cosines, fractional powers, 

and so on. For discussion of such functions we refer you to Wylie and Barrett.! 

Computer software. Using Maple, the exponential matrix function can be eval- 
uated by means of the exponential command within the linalg package. For in- 
stance, to evaluate eA! where 

1 4 
A= , 

1 1 

with(linalg): 

enter 

and return, then 

B := matrix (2,2, [¢,4*¢,t,t]): 

and return. Then, 

exponential(B); 

and return gives the output 

el) 4 bel8) (84) _ o(-0) 

R
y
e
 

b
o
l
e
 

e(3t) — gel) gel) + gel) 

Actually, when you enter the B matrix you may prefer to end with a semicolon 
rather than a colon because then the B matrix will be printed, and you can inspect 
it to see if its elements were entered correctly. 

  

“Of course, it is more natural to write the first term on the right-hand side of (30) as ce“, but we 

have written it as e’!'c to emphasize the correspondence between (29) and (30). 

'C. R. Wylie and L. C. Barrett. Advanced Engineering Mathematics. 5th ed. (New York: 

McGraw-Hill, 1982).
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EXERCISES 11.5 
  

1. Solve, using (12). Ef (12) does not apply, explain why it nalizable you can use the formula 
does not. NOTE: You may need to first re-express the problem 
in the standard form (1). e* = QePQru! (3.1) 

a) ph me op Lape MO) 
i _ : ; a eat. nO) _ ; fie, equation (28) with ¢ = i. Whether or not A is diag- 
ve y 1 onalizable, you can use the series definition 

(b) a = 2a+4y+1;, «(0) =0 

vat y(0) = 0 A =Tt SAP ay... (3.2) 
(c) v= 2a-y-3t+1; zc(0)=1 1! QI ‘ “ 

yl = x + Qy +3; y(0) = 0 Generally, (3.2) is unwieldy because one needs to sum an 
(d) ei =ax+2y-—t-1,; z(0) = 0 infinite series of matrices. However, if A happens to be nilpo- 

y = 4a + 8y—4t—- 8; y(0) = 3 tent then the series reduces to a finite number of terms, 
(e) a =sint—y; 2x(0)=0 9 9 9 

y= —9r+4, y(O)=1 @| 5 | w [5 | 
(f) ec =a —- 8y; x(0) =0 0 4 1 

y =-x-y-3t®, y(0)=0 | 9 0 | wy >| 
(g) a -38r2+y=4e; x(0)=1 

yi +3e—-y=6;  y(0)=-1 | + 5 | | 0 | 
(h) 2-2 -y = 3b; x(0) =5 

+y—5r-2y=5; y(0)=3 0 0 1 2 1 0 
@ av” 4+32'+2x=e'; 2(0) =2'(0) =0 (2)) 0 0 1 (ry; bo 2 
Gj) v +2a'+a0=0; 2x(0) = 2, 2'(0) =9 Prod g 12 
(k) wv = 4a, +22 +323; 2(0) =1 22 1 1 0 -1 

Ly = 21 ~ r3 + 6; va(0) = 0 (i) | i131 Gili 2 1 | 
Ls = 3x2, —-2o+ da: x3(0) = 0 12 2 2 2 3 

() ce =o+yt+2z--1; x{0) = 0 0 1 2 3 0 0 0 0 
y =x+tyts; y(0) = 0 (k) 0 0 4 6 (1) 40 0 0 
J=antytz 2(0) =0 000 6 13.0.0 

2. (a)—(l) Same as Exercise |, but drop the initial conditions 00 0 0 i210 

and find the general solution instead. 4, (a)-(1) Evaluate e* using computer software, where A is 
3. Evaluate e* for the given A matrix. HINT: If A is diago- given in the corresponding part of Exercise 3. 

  

11.6 Quadratic Forms (Optional) 

A function of the form 

f(x1, rq) = ayn; +- ag905 + Zaye, xo (1) 

is called a quadratic form in the variables x; and x9. Similarly, 

2 2 2 . f(a, XQ, x3) = ALY + 9085 + 09303 + 2049012 + 20132423 + 2aogweag (2)
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is a quadratic form in 21, v2, 73, and so on for any number of variables @1,..., 2p. 

The a;;’s are constants (where aj; is the coefficient of the product x;2,;), and the 

2’s are included for our subsequent convenience. 

It turns out that a quadratic form f(a@1,.--,€n) can be expressed concisely, in 

matrix notation, as 
  

f(x,...,2n) = x Ax, (3) 
      

where x = [21,...,2n]}', and A = {a;;} is ann x n matrix. For instance, suppose 

that 7, = 2 and 

f(a, v2) = Qa — a3 + bayxe. (4) 

Writing out the right-hand side of (3) gives 

xtAx= [1,22] aii, 412 | ty | = (21, 29] ayy + ayQ%e | 

ag, 292 x2 ag, L1 + a99h9 
2 ‘ = ayUy + anQ03 + (ayq + ag1)U1 29. (5) 

Comparing (4) and (5), we see that ay, = 2,a09 = —1, and ay2 + a1 = 6. Since 

the sum aj42 + a4 is prescribed, but not aig and a9, individually, we are free to ask 

aj and ag, to be equal, so that aj2 = ag, = 3. Then the right-hand side of (5) 

becomes ayn? + ange + 2a10%1 £9, as written in (1). The benefit in asking ay2 

to equal a, is that then the A matrix in (3) is symmetric, and symmetric matrices 

have advantages over nonsymmetric matrices, as we have seen in Sections [1.3 and 

11.4. Similarly forn = 3,4,.... 

Thus, if we ask the A matrix in (3) to be symmetric, for convenience, then (3) 

gives (1) for n = 2, (2) for n = 3, and so on. 

EXAMPLE 1. Let 

12 
2 

e244 R ; F(vi,...,@4) = &9 + 5x3 + Oryxg — Lory + 10Xgx4. 

Then aoQ9 = 1, a33 = 5, 2013 = 6s0 a43 = 3, 2423 = —1 so ao3 == —t 2a34 = 10 so 

a34 = 5, and all the other a,;’s are zero. Thus 

0 oO 3 0 

0 y -t 
A= 2 0 i 

3-4 5 5 

0 oO 5 0 

A quadratic form is said to be canonical if all mixed terms (such as 2129, ©1 £3, 

and x 2:3) are absent, that is, if aj; = Ofori # 7. Thus, 

; 2 2 2 
F(t, - 0.3 Un) = Ae] + ag285 +++ + Gnn®), (6) 

se
rg
e



  

is canonical, and its associated matrix 

ayy O cs: 0 

0 age 
Ax 

0 vt Onn 

is diagonal. For instance, (4) is not canonical, but f(a1,¢2) = bay _ 7x3 and 

f(21, 2,03) = 6x3 + vs are. 
There is interest in being able to reduce a given quadratic form to canonical 

form (i.e., to its simplest form) through a linear change of variables 

x = Qx (7) 

from x1,...,2p tO £1,...,£p. Putting (7) into (3) gives 

f = (QR)" A(Qk) = x" (QTAQ) X. (8) 

Thus, given A, we wish to determine a Q matrix such that Q? AQ is diagonal, for 
then (8) will be canonical in the new variables %1,...,Z%,. Theorem 11.4.1 tells 

us that Q7! AQ will be a diagonal matrix, with its diagonal elements being the 
eigenvalues of A, if A has n LI eigenvectors and if these eigenvectors are used 
as the columns of Q.* However, (8) contains QT AQ, not Q-'AQ. But since 
A is symmetric it has n orthogonal (and hence LI) eigenvectors, and if these are 
normalized and used as the columns of Q then QT = Qu!, and 

: 7 0 Ag 
QTAQ= QUAQ=) . . . | =o, (9) 

0 oe Ma 

where the A,’s are the eigenvalues of A, so (8) is the desired canonical form of f, 

f= MBE + Fn. (10) 

EXAMPLE 2. Reduce 

f (v1, 9) = 3x] + 3x5 + 2xy 22 (11) 

to canonical form. First, identify A: 

3.44 / 
A=|} 3 |: (12) 

  

“We do not claim that Q niust be a modal matrix of A for Q? AQ to be diagonal. 

11.6. Quadratic Forms 591
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Next, determine the eigenvalues and normalized eigenvectors of A. These are found to be 

~ if, 5 « . | 1 
Ay = 4, asa] i | Ag = 2, a==[_)). (13) 

(Whether we call A; = 4 and Ag = 2, or vice versa, will not matter.) According to (10), 

the desired canonical form of f is then 

f = ME? + Ne? = 4eT + 28). (14) 

It looks like we are done, so why do we need to know @1,@9? To know the connection 

between x1, @2 and Z1, Yq. Specifically, 

X= Qk = fey, é0]X, 

fa J-[ie te [LE 
i 1 

Ly = ely + LQ 

yee (15) 
= BB U9. 

Or, if we wish to have it the other way around, we can use x= Qx= Q'x. | 

or 

so that 

i 

Let us summarize: 

  

THEOREM 11.6.1 Canonical Form 

A quadratic form f(21,...,%n) = x! Ax can be reduced to the canonical form 

57 + +--+ \,22 by introducing the change of variables x = Qx, where the A;’s 

are the eigenvalues of A and the columns of Q are the corresponding normalized 

eigenvectors of A. The reverse transformation is given by x = Q'x. 
  

A quadratic form x! Ax is classified as positive definite (i.c., “definitely pos- 

itive”) if xT Ax > 0 for all x 4 0, and as negative definite if x'Ax < 0 for 

all x #4 0. Likewise, A is classified as positive (negative) definite if the quadratic 

form x! Ax is positive (negative) definite. 

  

THEOREM 11.6.2 Definiteness 

Let A be symmetric. Then A and its quadratic form x! Ax are positive (negative) 

definite if every eigenvalue of A is positive (negative). 
  

 



  

m2 Proof: It is simplest to work with the canonical form x! Ax = Ap ea eee ARES, 

Since the latter is a sum of squares, it is evident that if Ay,..., Ap, are all positive 

(negative), then x Ax is positive (negative) for all x 4 0. [t remains to show 
that x + O if and only if x # 0. Since x = QX and X = Qulx = Q™x (ie, 

, and x = Q implies that 

  

%=Q™O0=0. = 

For instance, f and A in Example 2 are positive definite because \y = 4 > 0 

and Ay = 2 > 0. 

EXAMPLE 3. [f 

f(t1,82,03) = Qu? + das + 4x5 + 244 L9 — 24123 + bxexrs, (16) 

then 
2 1 +1 

A= 1 4 3 and A, = 7, Ag = 3, Ag = 0. (17) 

-1l 3 4 

It might appear that f is positive definite but it is not, because Ag is not positive. Being 

zero is not good enough, for remember that being positive definite means that x Ax > 0 

for all x # 0 or, equivalently, x'(Q*AQ)X > 0 forall x 4 0. Yet. 

f = TE} + 385 + 085 (18) 

is zero if 

Ly 0 

X= | F |=] 0], (19) 
% 8 

for instance. @ 

Let us conclude this section with a physical application. 

EXAMPLE 4. Buckling Load. Three rigid rods, each of length £, are pinned at their 
ends, with the end A constrained to move in a frictionless vertical slot, as shown in Fig. I. 

The three lateral springs, each of stiffness &, are unstretched and uncompressed when the 

system is undeflected (i.e., when x = y = 0), and the middle spring is attached at the 

middle of the middle rod. We find that as the load P is slowly increased the deflection 

remains zero (w@ = y = 2 = 0) so thatz = y = « = O constitutes an equilibrium state 

of the system. Eventually, however, when P reaches a critical value, say P.,., the system 

“buckles,” that is, collapses. The problem posed here is to determine P,, in terms of the 

given quantities. It will be convenient to work with the potential energy V of the system, 

and to use the physical principle that the system will arrange itself so as to minimize its 

potential V. 

Recall, from elementary physics, that the potential energy stored in a spring of stiff- 

ness &, deflected by an amount 2, is 442”. Further, note that we may associate a potential 

{1.6. Quadratic Forms 
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with the load P by regarding it as being due to a weight P sitting on the slider. Then the 

gravitational potential of the weight is —Pz, if we define the potential to be zero when 

z= (. Thus, 

  

  

1 1 1. fet+y \? - 2 a 4 ab TT 

= —ke? + =ky? + <k — Pz. V 5 he 5 y tS ( 5 ) z (20) 

But z, y, z are not independent variables. For instance, we can express z in terms of x and 

y through the geometry. Specifically, if we introduce the angles a, 6,7, shown in Fig. |, 

then 
bes 

z+Lcosa + Lcos@+ Leosy = 3L. (21) 

For the onset of the buckling z, y, z are all infinitesimal (arbitrarily small), so 

i v\2 
cosa = V1—sin?a = 1-(4) 

L 
Ly: 2 1 r\ 4 

=]- 5 (+) -3 (+) ~—:++ (Taylor series) 

1-5 (2) ase so (22 AG as x . ) 

Similarly for cos @ and cosy so (21) becomes 

2+£[1~3 (2) | refi} (224) | +ifi-5 (4) | ~3L (23) 

or, upon simplification, 

  

ve? —ayty? 
oe 24 z 7, (24) 

so that 5k P 5k =6P k P 
w fe oe 2 Ow OF 2 ef (2 

V(z,y) (5 r)e +(5 rT)! (P+ )eu (25) 

The right-hand side of (25) is a quadratic form 

_ (5k P\ 4 5k P\ y Kk P\ 
fe.w) = (S-F)a +(F-F)y (E45) (26) 

with the associated matrix 

bh Pk, P 
8 EL 8 2b 

A= (27) 
k P 5k PP 
— + — eee 

8 2b 8 L 

The crucial point is whether or not f is positive definite for if f(x,y) is positive definite, 

then V(x, y) has a minimum at z = y = 0 and the undeflected equilibrium configuration 

xz = y = Ois stable. Otherwise, the equilibrium configuration will be unstable and the 

system will buckle.



  

To assess the positive definiteness of f, we need merely evaluate the eigenvalues of 
A. These are found to be 

a Bk (LP (BP 08 
OO A837 RL)? Oe 9 \2 7 RE (28) 

from which we see that f is positive definite (i.e., both A;’s are positive) if and only if 

P/(KL) < f. Thus, the critical load, the “buckling load,” is P.. = kL/8. 

COMMENT 1. If P/(&L) < §, then both \,'s are positive in the canonical version \y2? -+ 
A2y” of V so the graph of V has a “valley” at the origin (@ = Y = 0 or, equivalently 

c= y= 0). If P/(kL) > $, then both Aj’s are negative so the graph of V has a “hill” 
at the origin. And if 4 < P/(kL) < 3, then A; < Oand A» > 0 so the graph of V has a 

“saddle” at the origin (e., like an equestrian saddle it has a valley in one direction and a 

hill in the other). In the case of the valley V has a minimum at the origin so the equilibrium 
solution z = y = 0 is stable and buckling does not occur. In the other two cases (hill and 

saddle) V does not have a minimum at the origin, so the equilibrium solution « = y = 0 

is unstable and buckling occurs. The borderline between these two cases gives the critical 
buckling load. 

COMMENT 2. Physically, the idea is that as the system begins to deflect, the springs gain 

potential energy while the weight P loses potential energy. For instability (buckling) we 

need the loss to exceed the gain. Since the loss is proportional to P, one anticipates the 

existence of a critical value P,, such that if P = P.,, the loss just balances the gain, and if 
P > P.,, then the loss exceeds the gain. @ 

Closure. The chief result of this section is given in Theorem 11.6.1, that a quadratic 
form can be reduced to canonical form by a normalized modal matrix. In addition, 

Theorem 11.6.2 tells us that a quadratic form x! Ax is positive definite if every 
eigenvalue of A is positive, and negative definite if every eigenvalue is negative. 

Positive and negative definiteness is central when we discuss the maxima and min- 
ima of functions of several variables in Chapter 13. 
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EXERCISES 11.6 
  

1. For each of the following quadratic forms in n variables (i) 22123  (n = 3) 
determine the associated symmetric A matrix, (j) @2 + 2 H2 + 2143 + vers (n = 3) 

(a) Qa} +da%+ayre (n= 2) (k) 6xy¢3 (n= 3) 

(ob) a} + 2r,a3+4+2rer3 (7 1 = 3) (1) 22102 + 22123 + 2agx3 — 4x? (n = 4) 

(C) ay + 25 + tia (n= 2) 2. (a)-(l) Reduce each quadratic form in Exercise | to the 
(d) xt _ dai +3212 (n= 3) canonical form (10) by means of a normalized modal matrix 
(e)a?+at4+ 2,24 (n= 4) transformation Q, Further, classify the quadratic form and the 
(0) 4ayr4 +4eor3 (n= 4) associated symmetric A matrix as positive definite or negative 

(g) 82,02 (n= 2) definite, where applicable 

(h) 4ayxy ~ 203 (n = 3) 3. We state, without proof, that a necessary and sufficient con-
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dition for a quadratic form ff = x? Ax, and its associated (a) 32? + 2y” — 2xy = 6 

symmetric matrix A, to be positive definite is that (b) he =l 

(c) 4y’ + day = | 
ai ayy Gy, G2 G13 (d) x w ry - Loxy =4 

ay, > 0, aon a > 0, 2, deg den | > 0, (e) a? Sy +2cy =: 4 (This case will be found to correspond 

eee G31 432 433 | to a limiting case. Explain what we mean by that.) 

    

., detA > 0. 

Apply this condition to each of the following A matrices, and 

compare your conclusion with that drawn from direct exami- 

nation of the eigenvalues. 

4 1 1 ol 

@| | ‘| | | ‘| 

_ 011 ()} 5 2 (d)f} 1 0 1 
1 1 = 0 

6 0 0 0 0 tL 

(e) | 0 2 O mm; 2 0 

0 0 3 1 0 0 

0 0 1 +0 
—2 12 

60 0 1 O 
(g) 1 -—2 2 (h) : 

9 > 4 1 1 1 0 

00 0 9 

4. Reduce the following quadratic equations to the canonical 

form az” + by? = ¢, and hence decide whether they corre- 

spond to ellipses or hyperbolas. Sketch their graphs, showing 

both the x, y and &, y axes, as wells as the intercepts on the %, y 

axes. HINT: Recall that (#/A)? + (7/B)* = 1 is the equa- 
tion of an ellipse with intercepts at +A on the & axis and +B 

on the 2 JY axis (or a circle of radius A if A = B), Further, 

(z/A)* — (y/B)? = 1 is the equation of a ey? with in- 
tercepts at +A on the & axis, and (y/B)? ~ (Z/A)? = Lis the 
equation of a hyperbola with intercepts at 4B on the y axis. 

5. (Completing squares) The successful Q matrix, in OD), is not 

necessarily a modal matrix of A. Given f = Ly +03 2 ay ae 

for example, suppose that we proceed, instead, by: ‘completing 

squares.” 

fa pe Loopy op | = 0, + 5 + ©) Le 

_. L 2 2 4.2 = (a] +12 + $x3) Fp 5@5 (5.1) 
9 —_ fm Lin \2 4 Bd = (a, + $82) + 423, 

so the transformation 

Tp = ep +ha, T= xg (5.2) 

reduces f to the canonical form f = #7 + $23 

(a) Show that the matrix Q corresponding to (5.2) 1s nota 

modal matrix. 

(b) Reduce f = a7 +23 + 4e9 + 
form by completing Us. 

(c) Repeat part (b), for f = x7 

(d) Repeat part (b), for f = 

(e) Repeat part (b), for f = 

(f) Does the method of 

2u v2? Explain. 

20129 — e123 to canonical 

+4 Ly ey 

i vt ote 2 Ly, L3 7 

2 
xy : 22423. 

completing squares work for f = 

+ t203. 

+r LQes.    
  

6. Rework Example 4 for the case where the middle spring 

is removed. Show that the buckling load is then P., = ékL. 

Note that this result is the same as in Example 4, where the 

middle spring is included. Explain, in physical terms, why 

this ts so. 

  

Chapter 11 Review 

The matrix eigenvalue problem is the search for nontrivial solutions of Ax = AX 

or, equivalently, 
(A —ADx =0 (L) 

that is, solutions other than the trivial solution x = 0. The eigenvalues are found 

 



  

by setting 
det(A ~ AI) = 0, (2) 

which condition guarantees the existence of nontrivial solutions of (1). Known as 
the characteristic equation of A, (2) is an mth-degree polynomial equation, which 
always has at least one and at most n distinct roots. Por each eigenvalue A; thus 
found, the solution of (A ~ A;I)x = 0 by Gauss elimination gives the correspond- 
ing eigenvectors e@;. 

Rather than being rare, the case of symmetric matrices is common in applica- 
tions (as noted, for instance, in Example 2 of Section 11.3, Example | in Section 

11.4, and in all of Section 11.6). [Fan nm x nm matrix A is symmetric, then all 

of its eigenvalues are real, eigenvectors corresponding to distinct eigenvalues are 
orthogonal, and its eigenvectors provide an orthogonal basis for n-space. 

A pattern emerges insofar as choice of basis. Namely, when a basis is needed, 
to expand vectors, the most convenient basis to use is probably the basis pro- 
vided by the eigenvectors of the A matrix to be found within the given problem, 
For instance, we do that to study the stability of the equilibrium solution of the 
Markov process (Example 4, Section 11.2), to solve the nonhomogeneous equation 
Ax = Ax +c (Section | 1.3.2), and to prove the convergence of the power method 
(Exercise 12, Section 11.3). The reason that eigenvector bases are convenient is 

that 1f we multiply a vector equation by A, then we need to evaluate the vectors 
Ae,. If the e;'s are eigenvectors of A, then Ae; is simply the single term A;e,; if 
not, it is a linear combination of the n base vectors, e1,..., Gn. 

In Section 11.4 we study the diagonalization of ann x nm matrix A. There, 
Theorem | 1.4.1 is the most significant result because it gives a necessary and sulfi- 
cient condition for A to be diagonalizable (namely, that it have m LI eigenvectors), 
and it tells us how to choose Q so that 

Q'AQ=D (3) 

is diagonal. Namely, if we use the (n LI) eigenvectors of A as the columns of 
Q, then D = {dj;} is diagonal. with dj; = Aj. Further, Theorem 11.4.3 gives a 
sufficient condition for diagonalizability, that A have n distinct eigenvalues. Since 
the generic case is for the characteristic equation to have distinct roots, the generic 
case is for a given mn x m matrix to be diagonalizable. [f A is symmetric, then it 
is diagonalizable whether or nor it has n distinct eigenvalues because every n x n 
symmetric matrix has mn orthogonal (and hence LD eigenvectors. For symmetric 

matrices we urge you to use the normalized eigenvectors of A to form its modal 
matrix Q because then Q admits the useful property that 

Qt=Q', (4) 

that ts, the inverse of Q is simply its transpose. 
Even if A is not diagonalizable. it can be reduced to Jordan normal form. That 

is, a generalized modal matrix P can be found so that 

P''AP=J (5) 
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is triangular, J is upper triangular with zeros above its main diagonal except for 

\’s immediately above one or more diagonal elements. That case is left for the 

exercises. 

Whereas in Section 11.4 we concentrate on the concept of diagonalization, and 

show how to use diagonalization to uncouple systems of differential equations, in 

Section 11.5 we shift our focus to differential equation theory itself, using matrix 

theory and diagonalization as tools, and solve the general system of 7 first-order 

nonhomogeneous linear differential equations with constant coefficients. 

In the final section, 11.6, we show that a quadratic form can be expressed 

in matrix terminology as x‘ Ax, where A is symmetric, and can be reduced to 

canonical form \ya? +--+: + A\n&2, by the change of variables x = Qx, where 

Q is a normalized modal matrix of A. That is, Q = [€1,...,@,], where 6; is a 

normalized eigenvector corresponding to the eigenvalue Aj. 

Applications of the eigenvalue problem are extensive. Examples studied in 

this chapter are drawn from the areas of oscillation theory, systems of coupled 

differential equations, and population dynamics, with other applications covered in 

the exercises. In Chapter 13 we use the theory of quadratic forms to help us classify 

the extrema of functions of several variables. 

  

be 
\ 

be



  

Chapter 12 

Extension to Complex Case 

(Optional) 

PREREQUISITE: Familiarity with the algebra of complex numbers, covered in 
Section 21.2. 

12.1 Introduction 

In Chapters 8-11 all scalars are understood to be real: the coefficients in systems 
of linear equations, the components of vectors, the elements of matrices, and so on. 

In some applications, however, perhaps more so in physics and chemistry than in 
engineering, complex numbers enter. For example, you may have met the Auler 
angles @, @, » used to specify the orientation of a mgid body such as a gyroscope. 
Alternatively, it is sometimes advantageous to employ so-called Cayley—Klein pa- 
rameters, and in doing so one meets the Pauli spin matrices 

0 ol QO  -2 1 0 w[fiho [she apo 
of which ay is seen to have complex elements. 

The purpose of this chapter is to indicate the changes that need to be made 
in extending our vector and matrix systems so as to include complex numbers. 
Although this could have been done from the start, it was felt that the gain in sim- 

plicity, in the preceding chapters, offsets the need for this special chapter, which 

we make quite brief, 

12.2 Complex n-Space 

All scalars in the vector space IR” defined in Section 9.4 (namely, the scalars that 

multiplied vectors and the scalar components of the vectors themselves) are real. 

599
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If we allow these scalars to be complex, then in place of IR" we have the complex 
n-space denoted here as C”: 

C" = {(a1,...,@n) | @1,...,@,_ complex numbers }, (1) 

The definitions u-- v = (uy + v1,...,Un + Un), AU = (au,..., QUn), 0 = 
(0,...,0), and —-u = (—uy,..., —un) are the same as for R”, except that now the 
scalars are complex numbers. From these definitions the same properties follow as 
for IR" (a+ v = v + u, etc.) as in (10) in Section 9.4. 

However, the Euclidean dot product u-v = uyuy -# ++) + UnUn, Which we 
adopted for real vector space, is unacceptable be because the resulting norm |/u|| = 
Yuu = furpe fur +-++-+ u2 fails to display the key properties expected of a norm, 
in particular: the nonnegativeness condition 

Jul] > 0 forall u 40, 

=O foru=0. (2) 

For example, if u = [2, 27, 0,0], then |Jul] = \/(2)? + (27)? + (0)? + (0)? = 0 
even though u # 0; and if u = (0, 27,0, 0], then jul] = “O—4+0-+0 = 21 is 
not even real so it cannot satisfy the condition |u|] > 0.* 

To avoid this problem with the norm, we adopt the modified dot product 

  

UV uy + Ugde + + Unt, = ) UjU; (3) 

    
  

where the overhead bar denotes complex conjugate for then 

  

ull = Vou 
  

  

  
Sous Shor (4) 

  

does satisfy the nonnegativeness condition (2). [Recall that if z = a+ ib, then 
2% = (a+ ib)(a— ib) =a? +b? = [27] 

EXAMPLE 1. [fu = [2,3 — 52,0, 47], then 

[lull = V/(2)(2) + (3 = 54) (3 + 52) + (0)(0) + (4) (— 48) 

= V4+34+ 16 = V54, 

  

  

*Recail from Section 22.2 (which is the prerequisite for this chapter) that inequalities such as 
2 > Oand = < 0 are not meaningful if z is complex: see the paragraph below equation (12) in that 
section,



  

which is real and positive. # 

Properties of the dot product. Observe that 

  
VOU = vy + + Un Uin 

= vty hoch Un tin 

= Uys sete Onlin 

== Oyu tb + Up Un, 

== UpUy b+ + Untn 

=u:v. 

Thus, in place of the commutativity condition u-v = v-u, satisfied in the real 
case, we have the so-called conjugate commutativity u-v = V-i in the complex 

case. In fact, the properties 

Conjugate Commutative: u-v = Vu, (5a) 

Nonnegative: u-u> 0 for all u 4 0, 

=0 for u = 0, (Sb) 

Linear: (au+ fv)-w = a(u-w)+f(v-w), (5c) 

of the complex dot product are the same as in the real case [(12) in Section 9.5.2] 

except for the complex conjugate bar in (Sa). 

EXAMPLE 2. [fu = [1 + 2i,—4) and v = [7,3 — i), then u-v = (1 + 22)(—i) + 
(—4)(3 + i) = -10 — 57, and v-u = (i)(1 — 2i) + (3 — i)(—4) = —10 4+ 54, which does 
equal 17 V, in accordance with (5a). @ 

The Schwarz inequality, 

ju-v| < lull ivi, (6) 

is found to hold (Exercise 7), as in the real case, except that here |u- v/ is the mod- 
ulus of a complex number rather than the absolute value of a real number, 

Properties of the norm. The norm (4) admits the properties 

Scaling: oul} = Jal ljul), (7a) 

Nonnegative: |u|] > O for all u 4 0, 

= for u = 0, (7b) 

Triangle Inequality: Ju+vi|l < [jal] + [vi]. (7c) 
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These properties are identical to those for the real case [(17) in Section 9.5.3] but 
here |a| is the modulus of a complex number rather than the absolute value of a 
real number. Also, the proofs are slightly different due to the presence of complex 

numbers. To illustrate, consider (7c): 

Ju + vi? = (at v)- (a+ v) 
=u-u+ueve+v-iutvev 

= |lul]? +u-v +ia¥ + jv]? 

= |jull? + 2Re(u-v) + |v’, 

I+ vil? < |full? + 2|Re(u-v)} + |v’, 

Ju + vl? < jal]? + 2fa-v) + [lvl 
Ju + vl? < fall? + 2 [full ivi] + vi? 

= (|[ull + IIvll)? 

so that 

Ju + vi] < full + Iv. 

Proofs of (7a) and (7b) are left for the exercises. 

Thus far, then, the only substantial change (beyond the fact that the scalars are 
now complex) is the change in the dot product from u-v = uyvy +-++ + UnVn 

tou: Vv = uv; +-+: + Upty. Furthermore, whereas we defined the angle @ 

between u and v as 6 = cos~! (u-v/ |julj ||v/|) in the real case, this definition is 
awkward in the complex case since u- v (and hence the argument of the arccosine) 
is complex. Instead of trying to patch things up, we simply choose not to define @ 
for the complex case, although we do retain a notion of perpendicularity; that is, 
we still say that u and v are orthogonal ifu-v = 0. 

Finally, 

  

THEOREM 12.2.1 Dimension of C” 

The dimension of C” is n. 
  

You may have expected the dimension to be 2n, on the grounds that each of 
the n vector components has both real and imaginary parts. However, observe that 

the ON set 

>
 

1 = (1,0,..., 0], 
(0,1,0,...,0], om b 

| (8) 

é, = (0,...,0,1] 

is a basis for C”, just as it is for IR" since the set is LI and spans the space. That 
it spans C” follows from the fact that every vector u = (uy,....Un) in C” can be 

|
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expanded as U = upey te 4 - Un@,. And since the basis (8) contains n vectors, it 

follows from the definition of dimension in Section 9.9.2 that C” is 7-dimensional. 

  

EXERCISES 12.2 
  

1. Normalize each of the following vectors and use it to expand each vector in terms of the bases given in 

‘ [1,4 (b) [L+i,1~ 7] Exercise 3. 
c) [1, Ss —2 , 0] (d) (2, 1 — 32,0, 5] (a) (2 + At, —3i, 2] (b) [0, 0, U 

e) [2 + Sida dal (1) {i, 0, 0, 4] (c) (1,1, 1] (4) [i, 24, 34] 
est U2, ill | This vector (in which z, ye z are Cartesian co-  (e) /0,7, 0] (f) [1 — i, 0,0] 

«inate, cis the speed of light, and ¢ is the time) arises in the 

special theory of relativity. In that application, the space C4 is 5- Show that 
known as world space, or Minkowski space. (ax) -y = a(x-y), (5.1) 

2. Show whether the following vector sets are bases for C°. whereas 

(a) (i,2,1-+ i], [0, 1,2 +d], [4,1,—i) x (ay) = a(x-y). (5.2) 
(b) (1, 0, 2), (3,2, ~2], (0,0, 4] ; 6. The property (5a) was proved in the text. Prove (5b) and 
(c) [4,1 ~ 22,0], [3 + 7,2, —22], [~2 — 27,1 — 42, 4i] (Sc). 

(d) [1,0,0), (0, 1,0], (0,0, 7] . . 
(e) li, 1,2], 3, 1—i, —i], [3 +2%,3-i,4-7, [3—t, -i, -2-3] 7. Prove the Schwarz inequality (6). 

3. Show that the sete; = [i,1,0], e2 = [2,2i,1, es = 8. Prove the properties (7a) and (7b). 

5 —dliss sonal baci C3 ; 2 ae ; ; 
[1,7, ~4] is an orthogonal basis for C 9, Vectors in R!, R*, and R° can be displayed, graphically, as 

4, Show that (23) in Section 9.9 (with & = n) is valid for C". arrow vectors. Is the same true for C!, C®, C?? Explain. 

  

12.3, Complex Matrices 

All of Chapter 10 (on matrices, determinants. and linear equations) holds even if the 

scalars are allowed to be complex. To illustrate, consider a representative example. 

EXAMPLE 1. Given 
9 “4 , 

A=l 5 ty. (1) 
0 1 

compute A7!. We proceed as usual, although the numbers are now complex 

detA = (2)(i) ~ (0)(1 +7) = 2i (40, so AW! exists) 

Minors: Ad;, = 7 Cofactors: Ay, = 2 

Mig = 0 Ay = 0 

Moy = 1+t Agp = ~l-i
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so 

LJ a -1-i Lo sbi 
-l1o 4 _ 5 5 

A= 2% 0 2 | - |e (2) 

as is verified by showing that AT'A =I. @ 

However, in Chapter 11, on the eigenvalue problem, dot products begin to 
appear so the impact of the change in the dot product (from x-y = xyyy +--+ + 
LnYn tOX-y = 1B, +-+- + @n¥j,) begins to be felt. Expressed in matrix form, 

the dot product is now   

x-y=xly or yx. (3) 
      

We begin with two definitions. Given an m x n matrix A = {aij}, we define 
the complex conjugate of A as 

A= {aij} (4) 

and the Hermitian conjugate of A as 

  

A*‘= {aji}, 1.e., At‘= Al. (5)       

If A = A then A is real, and if A* = A then A is Hermitian.’ If A is not square 
then it cannot be Hermitian. 

EXAMPLE 2. If 

2 3 

then 
2~i O 345i 2-1 7 2 

A= 7 1 —4i and A* = 0 Lo =i 
2 4 3 3452 —4i 3 

Since A* 4 A, Ais not Hermitian. d 

EXAMPLE 3. If 
3 1 4+4i 

a=| soy, 0}? 
  

"Charles Hermite (1822-1901), a professor at the Sorbornne and at the Ecole Polytechnique, 

contributed to the theory of elliptic functions and is also well known for his introduction of the 

Hermite polynomials.



  

then 

1+ 4i 0 1 4a 0 

Since A* = A, A is Hermitian. @ 

k= 3 1 4t and A‘ = 3 L + di . 

Some properties of the complex conjugate and Hermitian conjugate matrices 

are as follows: 

  
A, (6a) 

A+B=A+B, (6b) 

AB = AB, (6c) 

(A*)*=A, (6d) 

(A+ B)* =A*+B', (6e) 

(AB)* = B*A*. (6f) 

These properties are readily verified. Ih addition, the key property of the Hermitian 

conjugate matrix A* is that 

(Ax) -y =x: (Aty) (7) 

holds for all vectors x and y; specifically, if A ism x n, x is any n x 1 vector and 

y is any m x 1 vector. To prove (7), observe that 

(Ax)-y = (Ax)"y = xTATy =xTAly =xTAXy =x-(Aty). (8) 

Hermitian matrices. Recall from Chapters 10 and [1 that matrices arising in 

applications are often symmetric (AT = A) and that such matrices exhibit several 

useful properties concerning the eigenvalue problem (Theorems | 1.3.1— 11.3.4). 

Likewise, when complex matrices arise in applications they are often Hermitian 

(A* = A‘ =: A), and such matrices exhibit analogous useful properties, given by 

Theorems {2.3.1—12.3.4 below. 

EXAMPLE 4. Lorentz Transformation. In the special theory of relativity one considers 

the vector [z, y, z, ict}, where x, y, 2 are Cartesian coordinates, c is the speed of light, and ¢ 

is the time. If the corresponding vector, referred to an 2’, y’, 2’ system which is translating 

in the z direction with constant speed v, is denoted as [2’, y’, 2, ict’], it turns out that these 

vectors are related according to 

1 0 0 0 

x! ff) 0 0 i 

Yo la}o l _ 18 yoy (9) 

So   
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where 8 = u/e(< 1). This is the important Lorentz transformation, and it is seen that the 
transformation matrix is Hermitian. 

  

THEOREM 12.3.1 Real Eigenvalues 

If A is Hermitian (At =: A), then all of its eigenvalues are real. 
  

Proof: Let us both pre-dot and post-dot both sides of Ax = Ax with x: 

Pre-dot: x-(Ax) =x: (\x) 

= \(x-x) [according to (3)] (10a) 

Post-dot: (Ax)+x = (Ax)-x 

= A\(x-x) [according to (3)]. (10b) 

But the left-hand sides are equal, by virtue of property (7) together with the as- 
sumption that A is Hermitian. Thus, subtracting (10b) from (10a) gives 

(\ — A)(x-x) =0. (11) 

Now, x-x = IIx||° # O since x is an eigenvector, so it follows from (11) that 

A~A=0,orA\ =A. Thus, \is real. @ 

  

THEOREM 12.3.2 Dimension of Eigenspace 

If an eigenvalue A of an Hermitian matrix A is of multiplicity &, then the eigenspace 
corresponding to A is of dimension k. 
  

  

THEOREM 12.3.3 Orthogonality of Eigenvectors 

If A is Hermitian, then eigenvectors corresponding to distinct eigenvalues are or- 
thogonal. 
  

Proof: Let e; and e, be eigenvectors corresponding to distinct eigenvalues \; and 
Ag, respectively. That is, 

Ae; =Aje; and Aep = Apex. (12a,b) 

Pre-dotting both sides of (12a) with e,, and post-dotting both sides of (12b) with 
e;, and using the fact that A= A, we have 

e, (Ae;) = eh (Ajej) | (Aeg)-e; = (Agen) - ej 

= A; = \p (ep @;). (13) 

| 
a
 

oO
 

= Oo
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the equation on the right side of (13) becomes e, -(Ae;) = Ax(eg + ej). Subtract- 

ing that equation from the one on the left side of (13) gives 

0 = (Aj — Ae)(ex-€,), (14) 
Finally, Aj ~ A, # O since Aj and Ax are distinct, by assumption, so it follows from 
(14) that e, -e; = 0, as was to be shown. 

  

THEOREM 12.3.4 Orthogonal Basis 
Ifann xn matrix A is Hermitian, then its eigenvectors provide an orthogonal basis 

for n-space. 
  

Proof of Theorem 12.3.4 follows the same lines as the proof of Theorem 

11.3.4. 

EXAMPLE 5. Find the eigenvalues and eigenvectors of 

3 2 
a=| S, | 

Setting det(A — AI) = 0 gives the characteristic equation 

(3 — A)\(—A) — (21)(—27) = WP - 3A -4 = (A+ L(A -4) = 0. 

Hence, 

Azz~l and A=4. 

Observe that A is Hermitian and, sure enough, in accordance with Theorem 12.3.1, the A’s 

are real. 

To find the eigenvectors, solve (A — AI)x = 0. 

yy ; 4 2 ry | | 0 ; da, + ire = 0 
Neve ct LS 1 E | =(01 Of Dia, + tg = 0. 

Solving, v2 = 2ix, so the eigenspace corresponding to A; Is 

a -al2 
p= Oy og |e 

Similarly, we find that the eigenspace corresponding to Az is 

94 

ey =3| 1 | ‘ 

Since A is Hermitian and \, and A» are distinct, the eigenvectors should be orthogonal 

(Theorem 12.3.3). Let us see: witha = 3 = Ll. say, e1-e29 = (1)(22) + (27)) = 

~2i + 22 = 0 so they are, indeed, orthogonal. @
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Hermitian forms, diagonalization, and unitary matrices. The analog of the 

quadratic form f(a1,...,@%,) = xtAx, where A is symmetric and x = 

(a1,...,0n)*, is the Hermitian form 

p gla 
[=x Ax, (15) 

where A is Hermitian. For example, if m = 2, then (15) becomes 

¢ oo at, 412 ] vy 

f= [%,%1] — a _ 
a12 99 9 

= ALLL, + 99090] + Ayoh Le + Ayer ke. (16) 

The right-hand side of (16) is seen to be real since aj; and aq are diagonal elements 

  

of an Hermitian matrix and hence are real, 2,1, = [xy ? and Loto = lara)” are real, 

and the fourth term is the conjugate of the third term. In fact, f is real for a// values 
n>: 

Fa Ax =x Ax —(Axx = 8 A x a Axel f=x Ax=x'Ax=(Ax)'’x=X°A x=X'Ax= f. (17) 

(See Exercise 9.) 

To reduce f to canonical form, set x = UX in (15). Then 

f = (OXTAUE = % (U*AU)E (18) 

so U is to be chosen so that 

UrAU =D (19) 

is diagonal. Recalling our discussion of the real case (Section [1.4), it is not sur- 
prising that a suitable U matrix is a normalized modal matrix of A (Exercise 10). 
With that choice, the diagonal elements of D are the eigenvalues of A, and f re- 
duces to the canonical form 

  

f =AyE12 + AgTa®o +--+ + AnEnFn 
= Ay |%1|° + Ag ||? +--- + An |[Enl?. (20)       Ly 

In the real case the normalized modal matrix was denoted as Q, and it turned 
out that Q was orthogonal; that is. Q' = Q~!. Analogously, we find (Exercise 
11), in the present case, that 

  

wu =U! o |u*=u7! 
    (21) y   

and such a matrix is said to be unitary. 

  

THEOREM 12.3.5 Eigenvalues of Unitary Matrix 
[f \ is an eigenvalue of a unitary matrix, then |A) = 1. 
 



  

Proof: Let U be unitary, with an eigenvalue \ and corresponding eigenvector e: 

Ue = \e (e # 0). (22) 

Seeking to employ (21), take the conjugate transpose of both sides: 

(Ue)" = (Ae)' or @'UT! = Xe! (23) 

And post-multiplying the left with Ue and the right with Ae [which are equal by 
(22) and nonzero], (23) gives 

  

  

  

  

é'U-'Ue = \e'Ae or Ge = Are. (24) 

But ée = |jel/” 4 0 so (24) implies that |\P? = l,or A] = 1, as claimed. a 

EXAMPLE 6. Reduce 

f = buy, + 21 L2 _ 2101 Eo (25) 

to a canonical form. Comparing (25) with (16). we see that a1, = 3, a9 = 0, and aig = 2%, 

so that 

This is the same A as in Example 5 so 

/ [a Lg =| 3 | 
e, = — a : AQ == hy Co = + . 

\ V5 | 2 V5 Ll 

Thus. the desired canonical form 1s 

At = —l, 

f=d |e # Agee)? = -1F PP +4 Fl’, 

where x2,,@2 and £1, £2 are related according to 

or 

Or, if we prefer it the other way around, 

oe z 1 —2i 
X= UT'x=U*x or Pi |- Ll a   

Lo 

Computer software. Using Maple, for instance, no new commands are needed; 
just type J's for i's. For instance, to find the eigenvalues and eigenvectors of 

3. 2 

—2i 0 |? 
A= 

12.3. Complex Matrices 609
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type 

and return. Then enter 

A 

and the command 

The result, 

with(linalg): 

r= matrix(2, 2, (3,2 * 1, -2 *[,0]) : 

eigenvects(A); 

41 {PGI 114-56 
is the same as found, by hand, in Example 5. The 1|’s following the eigenvalues 4 
and —1 indicate the multiplicity of those eigenvalues. 

  

EXERCISES 12.3 
  

1. Invert each of the following matrices. If the matrix is not 

invertible (i.e., if it is singular), state that. 

2 i l+i 31 
@ | | i" w) | 1 | 

a 1 3 i 
©}, ] | 0 1+i 1 

“ 0 oOo 2 

0 i 0 4 0 -i 
(e)| ~i 0 24+%] HM] O 4 0 

0 2-2% 0 io 4 
2. (a)-(f) Same as Exercise 1, but using computer software. 

3. (a)-(f) Determine the eigenvalues and eigenvectors of each 

of the matrices in Exercise |, and show that the results are in 

accord with the relevant theorems in this section. 

4. (a)-(f) Same as Exercise 3, but using computer software. 

5. Determine the eigenvalues and eigenvectors in each case. 

2 2 1 
wlio w| _f 3 

1 2 4 — of}2] lt 
6. Give necessary and sufficient conditions on a,b,c, d such 

bo
 

oo
n 

, ti . . ; 
that A = : i will have complex eigenvalues, i.e., such 

thatim A # 0. 

7. Reduce the following to the canonical form (20), and give 

the matrix transformations from x to X, and from X to x. 

(a) f = 20,7, + Bre%e + (14+ 1)Fix2 + (1 — t)ar®, 
(b) f = 22,24 + 5xtote _ 210122 + 2121 Eo 

(c) f = t¥ rq — ivy Ho + 2(1 + 1)Eox, + 2(1 _ i)r2¥3 

(d) f = 40,2, + 4ro% + 4r3%3 + 1223 aa LE {23 

8. Given each of the following A matrices, evaluate 410°, 

2 1ai —2i 
ms), 3 | ws 5 | 

[0 -i ,[ 3 2-3 
| | 2 | | ot, a 

9. Justify the second through fifth equalities in (17), citing 

relevant equation numbers or theorems. 

BS 
on

o 

10. Verify that if U is a normalized modal matrix of A, then 

f does reduce to the canonical form (20), as claimed. 

11. Verify that a normalized modal matrix U satisfies (21). 

12. Is the Lorentz transformation matrix, in (9), unitary? Or- 

thogonal? 

13. If x (Ax) = x- (Bx) for all x, where A and B are Her- 
mitian, does it follow that A = B? Explain. 

14. (Necessary condition for existence of solutions of Ax = C) 

Prove that a necessary condition for the existence of solution(s) 

to Ax = c (where Aism xn, xisnm x 1,andcism x 1) 

is that ¢ be orthogonal to every solution z of the associated 

homogeneous equation A*z = OQ. HINT: Dot both sides of 

Ax = c with z, and then use (7). 
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15. Use the result stated in Exercise 14 to determine necessary 1 29 | 4 Cy 

conditions, if any, on the components of c, for the given sys- (e) | 2 1 10 2} |, 
: 1 ; . : ~ = CQ 

tem to be consistent. Compare your result with those obtained . £3 

by direct application of Gauss elimination to the given system. La 

  

f2 i £4 C1 2 1 1 Cy 
ais | = . 1 

| 9 | | [| i 1 w-3 ] ] C2 
- (f) 12 —4 t | = 

b 2 1 mH} | yoo x3 “3 
() | 4 1 zy | | eg ~i od —5 C4 

2 I © 7 16. (Decomposition) Given any m x n matrix A, Hermitian 

(c) 4 2 Lo | = | 2 or not, show that A can be splitas A = B+iC, where B 

ptod * C3 and C are each Hermitian. Show that B = (A* + A)/2 and 

_ / v1 C = i(A* — A)/2. 
L 3.92 41 - Cy 

(d) 2 ~ l 0 v4 = | C2 17. (a) [f A is Hermitian, is 7A Hermitian? Explain. 

[3 2 3 1 ty cy (b) If A is Hermitian, is A? Hermitian? Explain. 

  

Chapter 12 Review 

This chapter is so compact that it hardly warrants review. But, let us stress three 

points, 
First, the key difference between R” and C” is in the dot product, which is 

x-y = x'y for R” and 
  

    x-y=x'y (1) 

for C", the complex conjugate being introduced so that the dot product x-y and 
the norm ||x|| = \/x-x satisfy the properties listed in equations (12) and (17), 
respectively, in Section 9.5. (If you studied the optional Section 9.6 you will recall 
that these properties were elevated to requirements, or axioms, for any normed 

inner product space.) 
Second, just as real matrices are found, in Section 11.3, to admit special use- 

ful properties (e.g., the eigenvalues are real, eigenvectors corresponding to distinct 
eigenvalues are orthogonal, and the eigenvectors provide an orthogonal basis for 
the n-space) if they are symmetric (A? = A), we find in this chapter that complex 

matrices admit the same properties if they are Hermitian (A* = A, where A* is 

A’). 
Finally, we call your attention to the result 

  

(Ax)-y = x-(A*y), (2) 

given as equation (7) in Section 12.3. For real matrices the latter becomes 

(Ax)-y = x- (Ay) (3)
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if A is symmetric, and for complex matrices (3) holds if A is Hermitian; (3) is the 

key relation used in proving that eigenvectors corresponding to distinct eigenval- 

ues are orthogonal, which result, in turn, is needed in proving that the eigenvectors 

provide an orthogonal basis for the n-space. We will meet a function-space version 

of (3) known as Lagrange’s identity, in Chapter 17, when we study the Sturm— 

Liouville theory. Expansions in terms of bases consisting of orthogonal eigenvec- 

tors (or “eigenfunctions” in the function space case) will be of great importance to 

us, and therefore the underlying relation (3) is of great importance as well.



  

Chapter 13 

Differential Calculus of Functions 

of Several Variables 

13.1 Introduction 

In Chapters 8-12 on Linear Algebra most of our interest was in m-space. In 
Chapters 13-16 on Multivariable Calculus and Field Theory we return to physical 

two- and three-dimensional space. The heart of this group of chapters is Chapter 

16, on scalar and vector field theory. The three preceding chapters prepare the way 

by covering a number of topics from the subject area generally known as “advanced 
calculus.” 

In Chapter 13 we consider (real valued) functions of more than one (real) vari- 

able, and lay some of the groundwork for our subsequent development of field 

theory and partial differential equations. Much of the development parallels that 

in the calculus of functions of a single Variable: derivatives, chain differentiation, 

Taylor's formula, the mean value theorem, and maxima and minima. 

Chapter [4 is not a continuation of the development begun in Chapter 13; it 

covers the fundamentals of vectors and their manipulation: the dot and cross prod- 

uct, base vectors. differentiation of vectors, Cartesian and non-Cartesian coordi- 

nate systems, and the representation of curves in space. Chapter 15 returns to the 

calculus of functions of several variables, begun in Chapter 13, with introductory 

material on double and triple integrals, and on surfaces and volumes. Finally, in 

Chapter 16 we consider both scalar and vector fields; we introduce the divergence, 

gradient, and curl, and consider several integral theorems and a number of physical 

applications from the subjects of heat conduction, fluid flow, and electrostatics. 

Discussion of non-Cartesian coordinates (polar, cylindrical, and spherical) is 

confined to OPTIONAL sections so that it can be omitted in a shorter course. 

613
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13.2 Preliminaries 

13.2.1. Functions. We will be considering real-valued functions of n real variables, 

  

  

say f(v1,-.-,%n). The function is a mapping, or transformation, from a point 

x = (1,...,€n) onan f axis, IR, as illustrated in Fig. la for n = 1. To obtain 

(a) (c) 

— f 

aa - Ns 
x x f(x) f 

(x) 
(b) ! 

012 x 01 4 f 

Figure 1. The function f. 

a graphical display of the mapping one can draw arrows from a number of x points 

to their image points on the f axis as we have done in Fig. 1b for the function 

f(x) = 2”. However, Descartes had a better idea: place the x and f axes at right 

angles to each other and plot all points (x, f(«x)) for the desired x interval. That 

procedure gives the familiar graph of /, as in Fig. Ic. 

Similarly, if n = 2 we can obtain the graph of f as a surface in three-dimensional 

Cartesian x1, 2, f space. Of course, if n > 3 the idea fails because we would need 

four or more dimensions in which to present the graph. 

In Chapters 13-16, n will usually be 2 or 3, but there is no need for any such 

limitation in the présent discussion. 

13.2.2. Point set theory definitions. The physical nature of the independent vari- 

ables x1,..., 2p, is irrelevant here; they may be pressures, distances, or whatever. 

As noted above, we will regard z1,...,2n as the coordinates of a point in an n- 

dimensional space and will denote that point as x = (a1,...,%n). Further, we 

define the distance d(x, x’) between x = (x1,...,@m) and x’ = (z,...,@},) as 
  

  

    
d(x,x')= vi — a)? + (a2 — wh)? +--+ (tn — 2h)”. (1) 
  

If n = 1, then x and x’ are two points 2, and x, on an & axis, and (1) becomes 

/ f 
d(x,x) = |v; — wv}. (2a) 

For n = 2 

  

d(x,x') = (2b) 

  

| 

| 
|



  

and form = 3 

  

d(x, x’) = vier — a)? + (ag ~ wh)? + (we — v5). (2c) 

These formulas are familiar to us: (2b) and (2c) are the Pythagorean formulas for 

the distance between points in two- and three-dimensional Euclidean space, and 

for n > 3 the definition (1) amounts to an n-dimensional generalization of these 

Pythagorean formulas." 
Next, we define a neighborhood N(x’; r) of a point x’ as the set of all points 

x closer to x’ than r, namely, such that 

d(x,x') <r. (r > 0) (3) 

In one dimension (3) becomes |2’ ~ z| < r, which corresponds to the interval 

shown in Fig. 2a (not including the endpoints x’ +r and a’ —r), in two dimensions 
N is the circular disk shown in Fig. 2b (not including the points on its edge), in 

three dimensions N is a sphere (not including the points on its surface), and if 

n > 3 we speak of N as an n-dimensional hypersphere. 

Next, we say that a point set S is connected if each pair of points in S can be 

joined by an unbroken line consisting of a finite number of straight segments, each 

contained entirely within S.t 

EXAMPLE 1. Each of the point sets S, and S, in the two-dimensional plane, shown in 
Fig. 3, is connected. The points x1, Xg, for example, may be joined as shown. In contrast, 

AOS 
Figure 3. Connectedness. 

  

“Recall from Section 9.5 that (1) is the Euclidean norm of the vector from x to x’ in m-space. It 

is not the only definition of distance possible Gust as the Euclidean norm is not the only viable norm 

in n-space), but it is the one most commonly adopted. For instance, d(x, x) slay—ail+e + 

|x, ~ «',| is also acceptable and is sometimes preferred because it is algebraically simpler. 

‘A straight line may be defined in n-dimensional space, even if m > 3, by parametric equations 

2, =a, + bt, 22 = Go + bet,...,0n = On + byt, where a1,..., a, and b),...,6, are constants, 

and where ¢ is the parameter. 
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(4) 

N(x'sr) 

x=? x Xr x 

(b) 

y wo 
fay) s 
i Z ! 

| N(x'5r) 

Figure 2. One- and two- 

dimensional neighborhoods.
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2 
xX 

Figure 4. Interior point 

x4, boundary point x2. 

y 

  

  

Figure 5. Open and 

closed regions. 

the set S3 is not connected since not all pairs of points in Sy can be joined by linear 

segments lying entirely within S3. The points x1, x9, for example, cannot be so joined. 8 

A point x is said to be a boundary point of a point set S if every neighborhood 

N(x;r) (.e., no matter how small we take 7 to be) contains points in S as well as 

points not in S. Thus, a boundary point is just what it sounds like. To illustrate, 

the point x; in the two-dimensional point set S shown in Fig. 4 is nor a boundary 

point since the disk N(x,;r) contains no points outside S if we choose 1 to be 

smaller than ¢. The point x», on the other hand, és a boundary point since N(xa31) 

evidently contains points in S and points not in S, no matter how small we take 

r to be. (Recall, from the definition of neighborhood, that r > 0, so r cannot be 

zero.) 

A point x of a set S is said to be an interior point of S if there exists some 

neighborhood of x lying entirely within S. For instance, the point x; in Fig. 4 is 

an interior point of S because the disk NV(P;1r) lies entirely within S for any r < €. 

Finally, we call a connected set S an open region or domain if it contains 

none of its boundary points, and a closed region if it contains all of its boundary 

points. 

EXAMPLE 2. Let S| be the set of points (x, y), in Cartesian 2-space, such that xt 

y? < 1 as shown in Fig. 5. We write S,; = {(x,y)|"? + y° < 1}. Evidently, S, is 

connected. Its boundary points are the points on the unit circle xe? +y" = 1. None of these 

points belongs to S; (as conveyed in the figure by the use of dashed lines), so S; is an open 

domain. We call this domain the open unit disk. Every point in S, is an interior point. 

Next, let Sy = {(a,y)| 2? + y? < 1} as shown in Fig. 5. This time all the boundary 

points (those on the circle x? + y? = 1) are contained in S:, as emphasized by the solid 

boundary line in the figure. so Sg is a closed region, the closed unit disk. All points (2, y) 

such that 2? + y? < 1 are interior points of Sp. H 

Of course, if S contains some but not all of its boundary points, then it is nei- 

ther an open region nor a closed region. However, the regions that we shall work 

with will generally be either open or closed. Further, the terms “open” and “closed” 

are not mutually exclusive. For example, the connected set S = {a|-oco << a< 

oo}, namely, the entire real axis, has no boundary points. Thus it is at once open 

(since it contains none of its boundary points) and closed (since it contains all of its 

boundary points). 

13.2.3. Limits and continuity. To define limits and continuity for functions of 

n variables, let us first review these concepts, from the calculus, for a function of a 

single variable. 

We say that f(a) has a limit L as x tends to ev’, and write 

lim f(a) = L or 
wa! 

fle) ~Lb ar x, (4) 

  

 



  

if to each € > 0 (i.e, no matter how small) there corresponds a 6(¢,#") > 0 such 
that |f(a) ~ L| < € whenever 0 < |x ~ a") < 6. That is, f(a) can be made 
arbitrarily close to L by making x sufficiently close to a’. 

EXAMPLE 3. Consider f(x) = 1/x over 0.1 <x <1. At the a’ shown in Fig. 6, the 
limit exists and is equal to the L shown, namely, 1/«’. To prove that claim we need to put 

forward a suitable function é(e, x’). Draw an arbitrarily small ¢ band about L and, where it 

intersects the graph (at A and B), drop verticals to the @ axis. Observing that a < 6, we can 

choose 6 = a. Then |x — 2’| < d is the centered interval denoted by the small parentheses. 

Surely, if ¢ is closer to a’ than 6 (i.e.,0 < |e ~ a"| < 6), then f(a) will be closer to ZL than 
€, as desired. To determine the functional form of 6, write f(a’ — 6) — f(2’) = e. That is, 
i/(v’ — 6) — 1/2’ = «. Solving for 4, 

  

a! 

5(e€, 2") = x! 7 er pL (5) 

Of course any smaller (nonzero) value, such as }[’ — 2'/(ex’ + 1)], will do just as well. 

COMMENT. Practically speaking, we don’t really need to put forward a d(é, 2’) to con- 
vince ourselves that the limit of f(a), as 2 — 2’, is £ (in Fig. 6). Our purpose, in doing so 

here, has been to clarify the meaning of the ¢, 6 definition of limit, given above. 

Note carefully that because of the “0 <” inQ < ja ~ a’) < 6, in our definition 

of lim... f(x), f(z’) need not equal L. For instance, if 
  

x <ao< v2 rar={ ty O<x<3 butrsF (6) 

12, w=2 

then (Fig. 7) limy-2 f(x) = 4, not 12. [Similarly, the limit of f(z) is O as x — 0, 
lasx 3 1,6.25as2 —- 2.5, and9 as 4 — 3.]* 

If, in addition to having lim, 4," f(a) = L we also have f(a") = L, hence 

lim f(x) = f(z’), (7) 
wou! : 

then we say that f(x) is continuous at a’. In ¢,é language, f(x) is continuous at 
x! if to each € > 0 (i.e., no matter how small) there corresponds a 6(€, x’) > 0 such 
that | f(a) — f(a')| < « whenever |x — x'| < 6. If f(x) is not continuous, then it is 
discontinuous. 

For instance, the function f(x). = 1/a is continuous on any x interval not 
containing the origin, such as 1 < @ < 0,0 <a < 5,0r —co < x < 0. The 
functions e® and sin x are continuous on —oo < x < oo, and the function defined 
  

"Ind < [a — 2’| < 6, within the italicized definition of limit, it is understood that x also needs to 

be within the interval of definition of the function. Thus, we say that f(z) > 6.25 as @ — 2.5 isa 

two-sided limit, since « can approach 2.5 from the right or from the left, but f(a) + 9asz—+ 3 isa 

one-sided limit, ov a left-hand limit, since x can approach 3 only from the left. Similarly, f(a) > 0 

as @ > 0 is a one-sided or right-hand limit. 
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f A 

A 

pot 
ae i B 

E 

ba ee 

a> ee 
1 \ — 

a _ 

Q.1 ' | x 
x 

Figure 6. lim f(x) for 

f(x) = 1/z. 

I2b---+r re 2 

  

  

Figure 7. The function 

defined by (6).
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a 
by (6) and shown in Fig. 7 is continuous on 0 < x < 3, except at a = 2. The 
Heaviside step function, defined by 

1, «>0 

(2) ={ 0, «<0 8) 

with H(0) = 5s say, is continuous on any interval not containing the origin. At the 

origin it is discontinuous because (7) does not hold there: f(a’) = f(0) = $s but 
the left-hand side of (7) does not exist because f(x) > 1 as x - 0 from the right, 
whereas f(a) —+ 0 as « ~+ O from the left. For lim, ,,. f(x) to exist, the limit 
from the left (the left-hand limit) and the limit from the right (the right-hand limit) 
must exist and equal each other. In the present example both of those limits exist, 
but they do not equal each other. 

Similarly for the functions of several variables. We say that f(x) is continuous 
at x’ if 

lim) f(x) = f(x’), (9) 
xx 

where x = (21,...,2n),x’ = (v},...,2/,), and where we use f(x) for brevity to 
denote f(a1,...,2p), and similarly for f(x’). In e, 6 language, f(x) is continuous 
at x’ if to each € > 0 (i.e., no matter how small) there corresponds a d(e, x’) such 
that | f(x) — f(x’)| < € whenever d(x, x’) < 6, where d(x, x’) was defined by (1). 
If it is not continuous, then it is discontinuous. 

For instance, f(21,09) = ve + 3sin (2122) is continuous for all values (i.e., 
for all finite values) of x; and wg, and g(a1, 22,23) = 1/(af + v3 + x3) is con- 
tinuous everywhere except at rj = xg = v3 = 0. Generally, the functions that 
arise in applications are either continuous everywhere, or almost everywhere. Of 
the example functions f and g, for instance, f is continuous everywhere and g is 
continuous everywhere except at the origin. 

Closure. To study limits and continuity one first needs to establish basic concepts 
of point set theory. For instance, if we wish limy., f(x) = L to mean that f(x) 
can be made arbitrarily close to LZ by making x sufficiently close to x’, then we 
need to make the concept of closeness precise by defining the distance between x 
and x’. We adopt the n-dimensional version 

  

d(x,x') = V(e ~ av)? +--+ + (ty — 2)? 

of the familiar two- and three-dimensional Euclidean distance. Other terms de- 
fined here, that will come up in these chapters, include neighborhood, connected, 
boundary point, interior point, open region (or domain), and closed region. 
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EXERCISES 13.2 
  

1 Determine the distance d(P, P’) in each case. 

(a) P = (3,1,0), P’ = (-1,2,2) 
(b) P = (1,-1,5,0), P’ = (0,4,3, 2) 
° ir = (1, ~4), P= (6, 5) 

= (0,4, 3,0), P’ = (0,0,0,5) 
= a) P| -2) 

P p- (8,0, ee P’ = (0,2, -6,7) 

2. 1s P = (3.2,3.7) in N(Po;7r) if Po = (3,4) andr = 0.4? 

3.1s P = (4.3, Pi in N(Po;r) if Po = (4.2, 1) andr = 0.2? 

4.1s P = (2,5,7) in N(Po;1r) if Po = (3, 4,5) andr = 3? 

5. sP = ‘hoo 1.96, —0.95, 0.03) in N(Po;r) if Py = 
(1,2, -1,0) and r = 0.01? 
6. In each case identify the boundary points and indicate 

whether or not the set is connected, an open region, a closed 

region, or neither, 

(a) {2|O<a<1} (b) {2} ~-3 <a <5} 

(c) {c|0 <2 < co} (d) {aj 0 <2 < co} 
(e) {x|0 < sina < 1} (f) {z| sinz = 0} 
g) {(x1,22)] 2 <a, <3l<ag< 5} 

(h) {(24,22)| ~ 00 <2, < 00,0 < ro < 1} 

(i) {(21, “Lo \o< ry < 8,2 = 0} 

G) {(x1, v2)[L< ey v2 < 4} 
(k) {(a1,@2)|0 <a} +23 <1} 
() {{21,22)| —~2<0 44% < 2} 

(m) { (x1, £2, 23)| L<apt+ay <2.22 = O} 

(n) {(21, 22,03, 04)|3 Sep + ap+azptury <x} 
(0) {(@1, 2,23, 24))0 <a, <1,0< ag <1,0<2a3 <1, 

O<a4 <1} 

7. For the stated limit, put forward a suitable d(¢), as we did 

in Example 3. NOTE: In Example 3, 2’ was any point in 

0.1 < x < 1, so é depended not only on « but also on 2’. 

In this exercise x’ is a specific point, so d will depend only on 
é, 

(b) lim, +5 3¢ = 15 

(d) lim, 9 sing = sin 2 

(f) lim, 9 e@7* = 1 

(a) limy—+2 xz =z 4 

(c) lim,., sing = sin 1 

(e) lime—.o ev == 1] 

8. (a) Does lim,_,9 sin (1/z) exist? If so, give its value; if not, 

explain why not. HINT: To sketch the graph of sin (1/z) itis 

useful to re-express it as sin [(1/”)2’] since then we have the 
more familiar form sinwa, where in this case the frequency 

w = 1/x* is a function of x. Alternatively, setting t = 1/2 

observe that lim,.,9 sin (1/a) = limy_,., sint. 
(b) Show that lim,_,9 2? sin (1/x) = 0, by putting forward a 

suitable d(e). 

9, (a) Prove that 

  

[A+ B| < JA] + |B]. (9.1) 

(b) Show that it follows from (9.1) that 

[Ay tort An — [441 + An]. (9.2)        

(c) Prove that lim, f(a) = A is equivalent to the statement 

lim [f(@) — A] = 0. (9.3) 
ta 

(d) Prove that 

Tim [f(z) + 9{x)] = iim fle) + jim g(x), (9.4) 

provided that each of the limits on the right exists. HINT: 

Let limz-s¢ f(z) = A and limz44g9(2) = B. Then, for 

any € > 0 there is a 4, such that |f(a) — A] < © whenever 
0 < |x —a| < 6), and a dy such that |g(2) — B| < © whenever 
0 < |x - al < dg. Then, express |[f(z) + g(x)] — (A + B)| 
as |[ f(z) ~ A] + (g(a) — B]] and use (9.1), 
(e) Prove that 

im [Cf(a)]=C jim f(x), (9.5) 

provided that lim, f(a) exists. 

(f) Show that it follows from (9.4) and (9.5) that the limit is 

linear: 

lim [a f(v) + Bg(x)] = a Tim f(z) +6 lim g(x) (9.6) 
EOL 

for arbitrary constants a, G, provided that each of the lim- 

its on the right exists. 

(g) Prove that 

lim [f(x)g(x)] = [lim f(2)][lim g(x), (9.7) 

provided that each of the limits on the right exists. HINT: 

Let limysa f(a) = A and lim, ,g(c) = B. Then, for 

any € > 0 there is a 6) such that |f(2) ~ A] < ¢ whenever 
QO < |e ~a| < 6), and there is a dy such that |g(z) — Bl <
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whenever 0 < |# — aj < 6g. Let € be less than unity. Then, 

it(a)l = [A + [PF (@) — All < [Al +6 < [A] + 1 80 

Lf(a)g(«) - AB| = |f(w)g(«) ~ Bf(e) + Bf (x) ~ AB| 
< |f(a)IIg(2) ~ Bl + [BI (2) ~ 4) 
< (|A] + Le + |Ble. 

(9.8) 

Provide the remaining steps in the proof. 

10. We state in Exercise 9 that (9.4) holds, “provided that each 

of the limits on the right exists.” Give a counterexample, where 

(9.4) fails to hold because the limit on the left exists, yet those 

on the right do not. That is, give f(x), g(x), and a. 

11. We stated that (9.5) in Exercise 9 holds, “provided that 
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limza {(x) exists.” Give a counterexample, where (9.5) fails 

to hold because the limit on the left exists, yet the one on the 

right does not. That is, give f(x), C, and a, 

12. Identify any points or point sets (for instance, the plane 

x+y —2z = 5), if any, where f is discontinuous. 

w+ 

a(x® +2 — 2)? 
= tang 

z,y) = tan(a + y) 

y) =e" /(y +3) 
x,y) = («+ y)/(a? + 9) 

(i Fleus2) = 0/(y2) 
(g) fle, y,2) = 5/(2? ty? +2 = 1) 

zy! 

  

13.3 Partial Derivatives 

To review partial differentiation, it should suffice to consider a function f of two 

variables, say x and y. Suppose f(z, y) is defined throughout some neighborhood 

of a‘point x9 = (xo, yo). Let us hold y fixed at yo, so that f(xy) = f(x, yo) 

is then a function of x alone. If the x-derivative of this function exists at Zo, it 

is called the partial derivative of f with respect to z, at (xo, yo), and is usually 

denoted either as Of /Ox or as f,. Thus, 

fe 

at (xo, yo). Similarly, 

oF _ 

0 
j, = 21 = 

~ Oy ~ Ay30 

  

f(xo + Az, yo) — f (xo, yo) 

~ Ox ~ Az-30 Az (1a) 

f (xo, yo + Ay) — f (0, Yo) (ib) 
  

Ay 

at (to, yo). For example, if f(x,y) = xy, then fr = Qey> and fy = 3x7y? at 
t P Y y y 

any given point (x,y). 

In geometrical terms, (1a) is the slope of the tangent line A, and (1b) is the 

slope of the tangent line B in Fig. 1. For the case shown in the figure, f, > 0 and 

fy < Oat xo, that is, at (xo, yo). ( 

If the partial derivatives f, and fy exist not only at Xo, but throughout some 

neighborhood of xo, then they are functions of x and y which may, in turn, admit 

further derivatives, namely, the second-order partial derivatives



    

(Xp + AX, YQ) (XQ. ¥9 + AY) 

Figure 1. f, and fy at xo. 

(3) FE a (3) OF os 
Ba. | oO” —~ Hs ZLs aD. BH UT Yes 

  

Ox \ Ox Ox? Ox Oy]  Oxdy (2) 

a (of a? f a (of fr, 

a (ae) = Bras!» ay (By) Be 
Similarly, f may admit third-order partial derivatives, such as 

a (ei) _ or _, 
Ox \ Oy? J Axdy2 

and so on. 
Note the order of the subscripts. For example, fy. means (fy). Thus, 

O (Of 00 [da 
tye = Pye = Or (55) foyy = ((fe)y)y = ay (5 (3) 

and so on. Does the order really matter? That is, for a “mixed” derivative such as 

fry is it true that fry = fy always? Consider two examples. 

EXAMPLE 1. Let f(x,y) = xsin(ry*). Then 

fr = sin (xy) + ay? cos (xy’), 

fey = 2xy cos (ay*) + 2ry cos (xy") — 227y’ sin (ay”), 

fy = 2a°y cos (xy’), 

fue = 4xy cos (ry?) — 2a7y? sin (xy”), 

So that fay = fyz, in this case, for all values of z andy. 4 
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EXAMPLE 2. Let 

y(a* ~y") 
: a f(x,y) 4 (0,0 

flay) = oe bye if (x,y) # (0,0) 

0 if (2, y) = (0,0). 

[The separate specification (3b) is needed because at the origin (3a) gives 0/0, which is 

not defined; (3b) was not obtained from (3a) by letting x and y tend to zero, it was stated 

as the author’s choice, as part of the definition of f(x, y).] If we stay away from the origin, 

and work only with (3a), we would find, as in Example 1, that fz, = fye at each point 

(x,y) in the plane. We will demonstrate that f.y = fye does not hold, however, at the 

origin (0,0). 
First, take 0/Ox of f. That step gives 

Ga,b) 

y(at + 407y? —y") 
. A if (az, 0,0 
f(x,y) = (x? + y*)? I (a y) # ( ) (4a,b) 

0 if (x,y) = (0,0). 

Obtaining (4a) from (3a) was straightforward, but where did we get (4b)? We obtained 

(4b) directly from (1a), as follows: 

f,(0,0) = lim F(Ax, 0) ~ F(0,0) 

  

Ax—-+0 Ag 

= lim = lm 0=0, 
Aco Ag Az—30 

where f(Az, 0) = 0 followed from (3a) and f(0,0) = 0 from (3b). Continuing, 

fey(0,0) = lim fe(0, Ay) — fir(0,0) 
wy\¥y = 

Ay-0 Ay 

—Ay —0 
= lim aay 7" from (4a) and (4b) (5) 

ne PANT 

=o. 

Similarly, we find that 

a(t ~ dary? — y") 

  

7 if (x, 0,0 
fyle,y) = (a? 4- y?)? if (ey) F (0,0) (6a,b) 

0 if (v,y) = (0,0) 

and 

, lay fy(Ax, 0) ~ fy(0,0) 
fy2(0-0) = fim 

= aim Ay from (6a) and (6b) (7) 

= |. 

Comparing (5) and (7), we see that fry(0,0) # fyx(0,0) in this example. # 

In general, then, the order of differentiation does matter. The following the- 
orem gives conditions which guarantee that the mixed partial derivatives fi, and 

 



  

fyx of a given function f(x, y) are equal. 

  

THEOREM 13.3.1 Equality of Mixed Partials 
If fe: fy, fey, and fye are continuous in some neighborhood of (xo, yo), then fye = 

fey at (xo, yo). 
  

Evidently, the function f(z, y) in Example 2 must not have met all of the con- 

ditions of Theorem 13.3.1; see Exercise 6. 

Closure. Theorems analogous to Theorem 13.3.1 can be obtained for mixed partial 
derivatives of higher order as well, but we will not go into the details here because 
the vast majority of functions that are met in applications are sufficiently well be- 
haved to ensure that the order of differentiation is immaterial. In that case, why 

discuss the matter at all? To bring this important theoretical question to light and, 
at the very least, to answer it for the important case of mixed partial derivatives of 

second order. 
Further, Theorem 13.3.1 is representative of numerous theorems that deal with 

whether or not it is permissible to interchange the order of two /imit operations. For 

instance, Is 

[/ f(x,y) dady = // f(x,y) dydz? (8) 
‘3 5 

So aig = 0D ay? (9) 

tl j=L j=lit=l1 

Is , » 
i ae Of, i. ao 
a [ f(a, t)dx = |. 8t (x,t) dx? (10) 

That is, does it matter if we integrate first on x and then on y or vice versa? Or if 
we sum first on 7 and then on 7 or vice versa? Or if we first integrate with respect 
to v and then differentiate the result with respect to ¢ or vice versa? Each of these 
operations is indeed a limit operation: integration involves the limit of a sequence 
of Riemann sums, an infinite sum involves the limit of a sequence of partial sums, 

and differentiation involves the limit of a difference quotient. 
The general idea is that the interchange can be performed with impunity if 

the quantity involved [ f(x, y) in (8), ai; in (9), f(z, t) in (10)] is sufficiently well 
behaved. For instance, (10) holds if f(x, t) and Of (x, t)/Ot are continuous over the 
  

“For proof, see J. E. Marsden and A. J, Tromba, Vector Calculus (San Francisco: W. H. Freeman, 

1976), pg. 120, They ask a bit more in their theorem, namely, that f,2 and fy, be continuous too. 

But they do not use those conditions in their proof, which therefore holds for our theorem as well. 
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region of interest in the z,t plane. The relevant theorems can be found in textbooks 

on advanced calculus.* 

  

EXERCISES 13.3 
  

1. Evaluate fi, fy. fey» Sye> fea, and fyy. Are there any 

points (x,y) at which fay # fyx? Explain. 

(a) f = xy? (b) f = ysin (3x7y) 

(c) f = 1/(2? +y? +1) dfsat+y 

@fa(e+yy? (H f= (ray) 
2. Verify that feay = feye = Syee everywhere in the x,y 

plane. 

(a) f = vty? (b) f = cos (x7y) 

(c) f = exp(2? + y’) (d) f = sin (x — y?) 

3. Recall that PDE is shorthand for partial differential equa- 

tion. Show that 

(a) f = In(a + y’) satisfies the PDE fra + fyy = 0, except 

at (0,0) 
(b) f = In[(x — 20)? + (y — yo)’] satisfies the PDE fox + 

fyy = 0, except at (Xo, Yo) . 

(c) f =r sinné satisfies the PDEr?f,. +1 fr + foo = 0 for 

n = 0,£1,42,... everywhere, except at r = 0 for the case 

where 7 is negative 

(d) f =r cos né satisfies the PDE r fre tert, + foo = 0 for 

n = 0,£1,+2,... everywhere, except at r = 0 for the case 

where 7 is negative 

(e) f = 1/[(w — 20)? + (y — yo)? + (z — 20)*] satisfies the 

PDE fee + Fyy + fez == Q, except at (20, Yo, zo) 

(f) f = sinxx exp (—x7t) satisfies the PDE fre = fe for all 

(x,t), where « is any constant 

(g) f = cosKa exp (—K°t) satisfies the PDE fxs = fy for all 

(v,t), where « is any constant 
(h) f = sin (x — ct) satisfies the PDE C fam = Fre for all 

(x,t), where ¢ is any constant 

4, Determine the allowable values, if any, of the constant a 

such that f = (v7 + +--+ 22) is a solution of the PDE 

Foray shoe fanan = 0 (4.1) 

[everywhere in (x1,+++,@n) space, except possibly at the 

origin]. 

5. Let f(a, y) = x for y = O and 0 for y # 0. Evaluate each 

of the following; if they do not exist, state that. 

(a) f2(0, 0) (b) fx (0, 2) (c) f(2, 0) 
(d) fa(3, 4) (e) fy (6, 0) (f) fy(0, 2) 

(g) fy(0, 0) (h) fy« (0,9) (i) fry (0, 0) 

G) fey (3,0) (k) fyxx(3, 0) (1) fexy(3, 0) 

6. In Example 2 we found that fry(0,0) 4 fyx(0,0). Evi- 

dently, the function f(z, y) defined by (3) does not meet all 

the requirements stated in Theorem 13.3.1. 

(a) Specifically, show that f,, is discontinuous at (0,0). 

HINT: Evaluate f(z, y) for (7, y) # (0,0). Setting y = ax 

in that result, show that 

1+9a? —9at-a® 
(L+ a?) 

on each ray y = az so that the limit of fey(@,y) as we 

approach the origin depends on the direction of approach. 

Thus, conclude that lim(.,y)-+(0,0) fey(#,y) = fey(0,0) can- 

not hold. 

(b) Proceeding as in part (a), show that Fux 2, y) is discontin- 

uous at (0, 0). 
(c) Show that f,(z, y) given by (4) is continuous at (0,0). 

(d) Show thatf,(z, y) given by (6) is continuous at (0, 0). 

fay(t,y) = (6.1) 

7. Uf fe(a, y) and fy(x, y) exist at (xo, yo), does that result im- 

ply that f is continuous at (xo, yo)? Explain. HINT: Consider 

the function 

1, v=Oory=0 

x #O0andy £0. 

  

  

*See, for instance, T, M. Apostol, Mathematical Analysis (Reading, MA: Addison-Wesley, 1957).
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13.4 Composite Functions and Chain Differentiation 

Let f(x) be differentiable over some interval X = {a|a <a < b}. Ifa = a(t) is, 
mn turn, a differentiable function of the variable ¢ over some interval T= - ft a < 

< @}, such that the value a(¢) is in X whenever ¢ is in TJ’, then we speak of 
ila) = f(2(t)) = F(t) as a composite function of t. As noted in a first course in 
calculus, we can compute df'/d¢t by the chain rule, 

dF df dx 
ve 

I 

dt da dt (1) 

EXAMPLE 1. If f(a) = sinz and x = ft? (over —90 < t < 0, say), then 

dF _ af dx F(t) =sin() = (and Ge = ae = (cosx)(2t) = 2tcos(t*). 

Just as the chain rule is indispensible in the calculus of functions of a single vari- 
able, its extension to functions of several variables is indispensible here. For the 

case f (x(t), y(t)), we have the following basic theorem. 

  

THEOREM 13.4.1 Chain Rule 
Let f(z.y), fr(e,y) and fy(a,y) be continuous at each point of an open region 
R in the x,y plane. And let « = x(t), y = y(t) be differentiable functions of 
é over some open interval T’ on the ¢ axis, such that the point (x(t), y(t)) is in 
R whenever ¢ is in T. Then the composite function f(x(t), y(t)) = F(t) is a 
differentiable function of ¢ for all ¢ in 7, and 

  

iF Ofda , OF dy 
dt  Oudt Oy dt’       

  

Proof: Let ¢ be in T, and let At be small enough so that t + At is in T as well. 
Define 

Ax = 2(t + At) ~ x(t) and Ay = y(t + At) — y(t). (3) 

Then 

AF = F(t + At) ~ F(t) 
= f(a(t + At), y(t + At)) — f(a(), y(t) 
=F 4 An, y+ Ay) — von 

= [Fer + A) ~ Fl )) + [f(e + Aw, y + Ay) ~ fla,y + Ay)) 

(4)               
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» O=(x,y+ Ay) 
R=(x+Ax,y) 

    
Figure 1. Following 

constant-coordinate lines. 

where P, Q, R are the points shown in Fig. !.* That is, instead of moving from P 

to R, we break the trip into two parts, from P to Q and then from @ to A, in order 
to follow constant-coordinate lines. 

Next, we apply the mean value theorem of the differential calculus,’ to each of 

the terms fle and fg in (4): 

_ Of AF =~ Fay Ay + of Ax, (S) 
pi Ox Q! 

    

where (/ is some point between Q and R, and P’ is some point between P and Q, 

as shown in Fig. |. (This step is justified since it was assumed that f is continuous 

and that f, and fy exist within 7 .) 
Finally, divide (5) by At and let At > 0. As At -+ 0, we see from (3) that 

Ax > Oand Ay > 0; hence Q! > P and P’ + P. Thus 

    

im of = jim { Of] At, Of) Ay 
At-+0 At ~ At-+0 Ox Q At Oy pt At 

becomes IF af d af\ d 

—{ vm UL \ a im CL \ 
dt (aim, 3.) di * (im, 3 dt (6) 

And if the partials f, and fy are continuous, as assumed, then the limit of fz as 

Q’ > P is equal to f, at P, and similarly for fy. Thus, (6) yields 

dF dz dy 
aq weeds + f@wae 

as was to be shown. @ 

Notice that the assumed continuity of the partials fz, fy is finally called upon 

in the last step of the proof. Our need for continuity of the partials, at the point 

in question, is quite reasonable since (2) is essentially an interpolation formula, 

wherein the change in F’ is computed as a linear combination of the rates of change 

in the perpendicular z and y directions, for interpolation is viable only if the quan- 

tities involved are continuous. 

EXAMPLE 2. Let r(z,y) = x7y — e*¥, where 

x = 3t’, y = sint. (1<t<A) 
  

“We use the symbol ( )|p to denote ( ) evaluated at P, and ( 2 to denote 

( )le-—( )|p. Incidentally, observe that in the fourth line of (4) we have added and subtracted 

the quantity f(a, y + Ay). This simple idea, the adding and subtracting of a quantity, is often useful. 

'The mean value theorem: If f(«) is continuous overa < a < b, and f’(x) exists over a < 

x < b, then there is at least one point x1 between a and b such that f(b) — f(a) = f’{ai)(b — a). 

tRecall from the calculus that lim(A + B) = lim A+ lim B and lim(AB) = (lim A)(lim B) if 

lim A and lim B both exist. Thus lim(AB + CD) = lim(AB) + lim(CD) = (lim A)(lim B) + 

(lim C’)(lim D) if the four limits on the right-hand side exist. 
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Then 7 = r(x(t), y(¢)) = R(t), and 

dR _ or dx . Or dy 

dt Qu dt dy dt 

= (2ry)(6t) + (a? — 2c") (cost) 

= 36t° sint + (9t4 — 2e?"*) cost 

forl<t<4. @ 

EXAMPLE 3. Let f(u,v) = uv”, where 

u=3o-Yy, vay. 

Then f(u,v) = f(u(e,y),u(e,y)) = F(z, y). To compute OF'/Az, say, use the chain rule 

(2): 

OF _ af du , of 
dx Oude Ov Ox 

= (v?)(3) + (2uv)(22ry) 
= 3a%y? + 4a°y?(3a — y) 

= l5arty? — dey. (7) 

COMMENT 1. The chain rule (2) applies even though u and v are functions of more than 

one variable (x and y) because y is held fixed when we compute OF /Oz so that u(x, y) and 
u(x, y) are, for the moment, considered as functions of zx alone. 

COMMENT 2. Is it clear which variables are held fixed when doing the various partial 

derivatives? There are two sets of variables, {x,y} and {u,v}; 0/Ox means the derivative 
with respect to x with all other variables in the x set (namely, y) fixed, 0/Ou means the 

derivative with respect to u with all other variables in the u set (namely, v) fixed, and so 

on. @ 

Extension to more than two variables should be evident. Namely, if 
fiai(t),...,2n(t)] = F(t), then the chain rule (2) becomes 

  

    
dF Of dey | Of deo | Of din Cee SE Le een 8 
dt Ox, dt  Qxo dt Ox, dt’ (8)       

subject to conditions analogous to those stated in Theorem 13.4.1. 
Before closing this section we need to discuss the notation that we have been 

using. If f is a function of x and, in turn, x is a function of ¢, then we distinguish 
f(x) from f(x(t)) by denoting the latter as F(t). That is, it is necessary to intro- 
duce a new function name (F’, say) because the f and F' functions are different (in 
general). To illustrate, let f(7) = sina and « = ¢? (as in Example 1), so then 
F(t) = sin (t?). With « = 3, for instance, f(3) = sin3 whereas F'(3) = sin 9, 
and these values are not the same. 

627
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However, beware that in the engineering and science literature this notational 

distinction is usually not observed. For instance, if f(a) = sing and e = t, 

then the writer will probably follow with f(t) = sin (t*).* As explained above, 

the latter is incorrect and can cause problems. To illustrate, suppose f is a func- 

tion of x,y, u,v, and that u,v are, in turn, functions of « and y. Then we should 

distinguish the function f(x,y,u,v) of 2,y,u,v from the function F(at,y) = 

f(a, y, ula, y), v(@,y)) of a and y. The chain rule gives 

OP _ af , af ou , af Dv 
dx Ox) Oude OV Ox’ 

and similarly for OF /Q@y. Notice that if we had not introduced a separate func- 

tion name, F, then the left side of (9) would be Of /Ox and we might cancel the 

two Of /Ox terms. That step would be incorrect since the one on the left is the 

partial derivative of f(x,y, u(z, y), u(&, y)) with respect to all of the underlined x 

dependence (with y fixed), whereas the one on the right is the partial derivative of 

f(x,y, u,v) with respect to only the first of the four arguments (the underlined <x). 

  

(9) 

Closure. The key point is the chain rule (2) and its extension to n variables, given 

by (8). We stress that the chain rule is, essentially, an interpolation formula and, as 

such, it requires continuity of the partial derivatives [Of /Ox and Of /Oy in (2), and 

Of /Ox1, ... , Of /Oxy in (8)). 

  

EXERCISES 13.4 
  

1. Let f(x,y) = sin (at + 3y), where x = 5t and y = P+, @e=P-1, y=sin3t 

and denote f(z(t), y(t)) = F(t). Evaluate dF'/dt using the (b)x=vVt+1, cost 

chain rule, (ja=t, y=l/(t? +1) 
; (d)a=lInt, y=t (t>0) 

dF _ Of de Of dy (1.1) (e)x=sint, y=cost 

dt — Ow dt — Oy dt “(a= 3t-1, y= 2t+5 

NOTE: Actually, (1.1) is not the end of the “chain differ- 3 Le g(u,v) = Vue — v and denote g(u(s),v(s)) = G(s). 

entiation story,” for in computing Of /Ox we setc! + 3y =, Byaluate dG'/ds in each case, using the chain rule. Next, eval- 

so that, again applying chain differentiation, uate dG/ds directly; i.e., put u(s) and v(s) into glu, v), to 

of d.. Ou obtain G(s), and then compute dG/ds. Show that your two 

On = a iB wa, = etc., answers are the same. 

and similarly for Of /Oy. (a)u=sins, v=cos6s (b)u=4s?, v=e% 

2. Let f(x,y) = e™, and denote f(a(t),y(t)) = F(t). Eval- (chu=s+l, v= s (d)u = sinds, v=4 

uate dF’/dt in each case, using the chain rule. (fe)u= 3s, v=s'+2 (f)u=sins, v=cos?s 

  

* Similarly, engineering and science writers typically write f(x) dx rather than introducing a 

new letter for the dummy variable of integration and writing Io f(€) dé. Though use of the former is 

not likely to lead to an incorrect result, it is important to keep in mind that the a’sin f(x) dz are not 

the same as the x in the upper limit. The upper limit a is a fixed endpoint, whereas the in f(x) dx 

is a dummy variable that varies over the interval of integration.



  

4. ifr = fet (t) + y(t) + 2?(t) = RZ) is the distance of 

a particle from the origin of a Cartesian x, y, 2 coordinate sys- 

tem and ¢ is the time, use the chain rule to determine the radial 

speed dR/dt in each case, att = 2. 

(ajva=t, yesint, c=4 

(b)a=2t, y=, 2z=Ph+l 
(c)a = cos2t, y=, 2=sin2e 

(dja=e’, y= dt, zs=e 
(e)u=cost, yo=sint, 2 =6t 

(he=3, yel+2t, s=P 

5, (a) Let the Cartesian coordinates of a fish be x, y, 2. [f the 

fish swims so thatz = 6t, y=t+2, 2=e7!, where tis 

the time, and the temperature distribution in the water is given 

by 
1 a 

o+ TT €”, 
we + yt bse 

determine the time rate of change of temperature experienced 

by the fish when ¢ = 0. 

(b) Repeat part (a), with 

T(a,y,2) = 

60e7(1 + 0.1sint 
T(x,y,2,t) = Bert + Obs) 

ce ty? +2 

6. (Euler's theorem) [(x,,...,2n) is said to be homogeneous 

of degree fk: if 

f(Ati..--. ADy) = M f(x. Lees En): (6.1) 

(a) In each case, show whether the function is homogeneous 

and, if it is, indicate its degree: f = x? + 3ry, g = 

In(a? +y"), ho = (x? ~ vy)/(2a + y), and p = wet /?Y, 
(Assume that 2” + y? 4 Oing, that 22 + y 4 Oin A, and that 

y €O0inp.) 
(b) If f(uy,..., Um) is ahamogeneous function of uy,..., Um 

of degree p, and u, (1 1,....2n),---; Um (T1,---. 8) are ho- 

mogeneous functions of z,,...,2, of degree g. show whether 
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f is necessarily a homogeneous function of 71,...,@n. If so, 

of what degree? 

(c) Show that if f(x,y, z) is homogeneous of degree k, and 

has partial derivatives Of /Ox, Of /Oy, Of /Az, then these 
partial derivatives are homogeneous of degree & — 1. 

(d) (Euler’s theorem on homogeneous functions) Prove 

Euler’s theorem, that if f(2,...,@,) is homogeneous of 

degree & and has continuous first-order partial derivatives, 

then 

of + be typo + Lo- ee 
Ox, Ox OL 

HINT: Differentiate equation (6.1) with respect to A, then 

set A= 1. 

Of Of 
  = kf. (6.2) 

7. Verify Euler’s theorem [(6.2) in Exercise 6] for these cases. 

(a) f(w,y) = vat + 2y*sin(3x/y), y #0 
(b) F(a,y) = (08 = 2a*y + 5y°)/(a? +y"), 22 +y? £0 
8. Show that u = f(x+ct) + g(x — ct) satisfies the partial dif- 
ferential equation Cttan — Yee = 0 (the wave equation), where 

c is aconstant and f and g are arbitrary twice-differentiable 

functions. 

9, The differential equation ry” + y’ + cy = 0, known 
as Bessel’s equation of order zero, has the general solution 

y = AJo(x) + BYo(x), where Jo is the Bessel function of the 
first kind and order zero, and Yo is the Bessel function of the 

second kind and order zero. 

(a) Solve vy” + y’ +k? vy = 0 in terms of Bessel functions. 
HINT: Set x = at [and y(x) = u(t)], and choose a so that the 
differential equation on u(¢) is the Bessel equation. 
(b) Solve xy” + y’ + k°y = 0 in terms of Bessel functions. 
HINT: Set 2 = at® [and y(a) = y(at®) = u(t)], and choose 
a, 3 so that the new differential equation is the Bessel equa- 

tion. 

  

13.5 Taylor’s Formula and Mean Value Theorem 

Just as the Taylor series of a function of a single real variable is indispensible in 
applied mathematics, so is the Taylor series of a function of several real variables, 
We expect that you have already studied the former in the calculus but not the latter.
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In Section 13.5.1 we review Taylor’s formula, Taylor series, and the mean 

value theorem, and in Section 13.5.2 we extend those results to functions of several 

real variables. 

  

13.5.1. Taylor’s formula and Taylor series for f(a). To develop Taylor’s for- 

mula about an initial point a, we begin with the identity 

[ fee = se) -1@) () 
where in this discussion it will prove more convenient to forego using different be 

letters for the dummy variables of integration. Solving (1) for f(x), 

F(a) = Hla) + [Fey ae. 2) 
Just as (2) holds for f(x), it holds if we replace f(z) by f(x): 

Ho) = fos [sede 3) 
[We obtained (3) by changing f to f’ in (2), not by differentiating (2).] Putting this 

expression for f’(z) into the integral in (2) gives 

o)= s+ [ro [rea] a 

= f(a) + f'(a)(z — a) +/ [ {["(x) de da. (4) 

Next, replacing f’ in (3) by f” gives 

f'"(z) aye fmm f(a) da (5) 

and putting that expression into the integral in (4) gives 

f(x) = f(a) + f"(a\(w — a) eff " (o) + [ £"@) ae dds 

= fla) + faye —a) + (ea)? 
ff [ meacaes (6) 

Repeating this process (assuming that f is sufficiently differentiable*) gives 

f(x) = fla) + f(a)(a ~ a) + Lo), ~a)? (Ta) 
fed : a a 

Taye ~ a)" + Rn(x), 

“For instance, sin x is infinitely differentiable (i.e., it admits derivatives of all orders) whereas 

x w(x :) (where Hf is the Heaviside function) is only twice differentiable (on any interval containing 

z= 0). 
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where the remainder term is 

Rnr(2) = / as f f(x) (Ca (7b) 

and (da)" denotes dx --- dz, n times; (7a) is known as Taylor’s formula, with the 

remainder term given in integral form by (7b). 
To obtain an alternative form for Ry, suppose that f(")(2) has a minimum 

value m and a maximum value M on [a, 2].* Surely, then, 

[ow fo mcaeyr s ral) s [fae cay (8) 

or, upon carrying out the integrations, 

M 
(a —a)" < Rya(z) < ai ft —a)”. (9) 

If we assume that f(™ (xr) is continuous on [a, x], then (it can be shown that) it must 
take on all values, from its minimum m™ to its maximum MM, over the interval. It 

therefore follows from (9) that we must be able to express 

fO™(E) 
ni 
  Ry(z) = (e—a)” (10) 

for some suitable point € in [a, x]; (10) gives the Lagrange form of R,, which is 
oiten more convenient than the integral form (7b). 

If we put (10) into (7a) it appears that the resulting right-hand side is an (n — 
1)th-degree polynomial representation of f(x). Something seems amiss because 
we know that functions such as f(a) = e”, sing, and the Bessel function Jo(z) 
cannot be expressed as finite-degree polynomials. The catch is that €, in (10), is 
not merely a constant, it is a function of the endpoint z. For instance, since € 
is somewhere in [a,z], then it follows that if we let « approach a, then € must 
approach a too; thus, € depends upon «. That is, (10) really means 

R(x) = LE) te) (a — a)”, (11) 

and (in general) we do not know (x), except that it is somewhere in [a, x]. Thus, 
if we put (10) into (7a) then the resulting right-hand side is not really a polynomial. 

Nonetheless, Taylor’s formula with Lagrange remainder is valuable because 
we can write, from (7a), 

(n-1)(q 
fo) © fla) + Male —a) 4 4 Oe — ayn moi , (12) 
  

“Recall that [a, 3] denotes the closed interval a < x < (3. Actually, x can be to the right or left 

of the point a, so when we write [a, 2] we will mean [a, x] if z > a, and [z, a] if <a. 
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where the error in the approximation is P,,(a), and we can use the form (10) to 
“bound” that error. Thus, the point is that Taylor’s formula (7a) is about approxi- 
mation, the approximation of a given function f(«) by a finite-degree polynomial, 
with 2, (x) enabling us to obtain a bound on the error thereby incurred. 

EXAMPLE 1. Use (7a) to approximate the function f(®) = e~* over 0.7 < a < 1.3, 
by a third-degree polynomial, and obtain a bound on the error, We obtain, from (7a), 

  

  

et = eul— (a —1l)+ (a ~1)j°- > (w@ ~ 1)? + Ry(z) (13) 

of ~1 ~1 at f 
e* se! ~S-(e- D+ 5-1 - “le —1)%, (14) / 

where the error incurred in (14) is 

Ra(a) = CF tg ~ i)! (15) 
4] 

for some € in the interval [0.7,1.3]. Even without knowing € we can bound R4(z) as 

  
—O.7 f 

|Ra(e)| < — (0.3)! = 0.000168 (16) . 

because the greatest value of e~§ on (0.7, 1.3] occurs if € = 0.7, and the greatest value of ( 
(x —1)* occurs if x = 0.7 or 1.3 and is (0.3)*. ( 

Thus, if we confine x to the interval 0.7 < x < 1.3, then the error incurred by 

  

the approximation (14) is at most +0.000168. In fact, calculation reveals that the ac- 
tual absolute magnitude of the error is 0.000132 at c = 0.7, 0 atx = 1 and 0.000117 
atz = 1.3. 0 

( 

Suppose we let n — oo in (12). The infinite series that results is called the 
Taylor series of f, about the point a, and we denote that series as TS fla: 

( | eta) | 
TS Fle = S- ae _ a)’, (17) 

ja0     

where (a — a)° = 1 even if x = a, and 0! = 1 so that the first term of the series ( 
is inevitably f(a), as in (12). For the Taylor series of f to exist, about « = a, we 
need f to be infinitely differentiable at x = a so that the coefficients fD(a)/j! 
exist (for 7 = 0,1,2,...). 

However, for TS fq to be useful we need two things: we need the series to 
converge on some x interval, and we need the sum function (i.e.. the function to 
which the series converges) to equal /(x) on some a interval 7. Then we say that 
TS fia represents f on J.
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Why do we need to explicitly ask that the sum function equal f(x)? Is it 

possible for TS fi, to converge, on some interval containing « = a, and yet not 

converge to f(z)? Let us see. 

EXAMPLE 2. Consider the Taylor series of 

. ele £0 
r= , 18 fea {ge 2) (18) 

about x = 0.* (See Fig. 1.) It can be shown (Exercise 7) that f’(0) = f"(0) =--- = 050 
that 

TS flo = 0+ O02 +00" +-5, (19) 

Surely the latter series converges for all a, but its sum function is identically zero, not the 

function f(a) defined in (18). Of course the sum function and f(z) do agree at the point 

of expansion, « = 0, as will always be true, but that is not good enough, and we conclude 

that the Taylor series of f, about « = 0, does not represent f on any interval J even though 

it converges for all z! 

COMMENT. The failure of TS fg, as a representation of f, would be reasonable if f were 

badly behaved at x = 0, the point of expansion, but f appears (from Fig. 1) to be well 

behaved there. To expose the source of the difficulty, we need to examine the behavior of 

  

aad oo . =F 
0, 2=0 

in the complex = = a + zy plane. As we approach the origin along the real axis (on which 

z=v+i0 = 2) 

lim f(z) = lime !/" =0 
530 I ) e-Q 

(as can also be seen from Fig. 1), but suppose we approach the origin along the imaginary 

axis (on which z = 9 + cy = iy). In that case 

lim f(z) = lim e7 4G" = lim et /¥" = 90, 
z—+0 . yo yo 0 

so f(z) is indeed badly behaved at the origin, although that difficulty cannot be observed 

by looking only along the real axis. The moral of the story is that to fully understand the 

theory of Taylor series for functions f(z) of a real variable x one must study the theory 

of Taylor series for functions {(<) of a complex variable z. We will do that, but not until 

Chapter 24. 4 

Meanwhile, we can say the following. [f TS f], is to represent f, then 

2 p(j) a N I (¢ 

f(e)=TS fia = S, ! sa (x -a)) = lim S- Lita) ve ) (a — a)’ (20) 
“ N-00 4 j! 
jad * j=O * 

  
2 if/ee € ~1L/0 “Why do we need to define f(0) = 0 separately? Does not e7 =e = Oat 

«= 0? Nove !/° is simply undefined because 1/0 is undefined. Of course we could define f(Q) to 

be any value we wish but, in making up this example, we chose 0 so that the resulting function would 

be continuous at. 2 = 0. 

  

Figure 1. Graph of f. 
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or, equivalently, 

Nas f(a) . 
l x) ~S°—(x@- a) | = 0. 2 slim, | F(@) 2G (x — a) (21) 

But, from (7a), we see that (21) is the same as imy-soo Ry4i(2) = 0 or, equiva- 

lently, 

  

lim Ry(ax) = 0. (22) 
N- 00 

The condition (22), on some interval I, is both necessary and sufficient for the 

Taylor series of f to represent f on I. Not only was the condition (22) not satisfied 

in Example 2, but (7a) became 

f(c)=0+0+---+0+ Rrlz), 

  

so that R,,(«) did not tend to zero as n —> 00, it was actually equal to f(x) for each oA 

n. 
Let us summarize. If we expand a given function f(z) in a Taylor series about 

some point x = a in the hope that that series will represent f over some a interval, 

then it does not suffice to test the series for convergence, because it is possible for 

the series to converge but for R,,(z) not to tend to zero as n —> oc. For if the series 

converges, but not to f(x), then it does not provide the desired representation of f, 

as occurred in Example 2. Rather, to show that the Taylor series of a given function \ 

f represents f, we need to show that R,(x) + 0 over some x interval. 

EXAMPLE 3. Consider the Taylor series of f(z) = e~* about x = 0, 

TS eT" |, =1 . 1 pe L ps 23) e "lb = not ye ae see, (23) 

Does that series represent e~* over some z interval so that we can write 

x 1, 13 
oo _ ope Jp? a 2 

€ l-ot+ ae The + } (24) 

The ratio test (Section 4.2) shows that (23) converges for all x but, as emphasized above, 

that convergence does not suffice to establish the equality in (24). Everything hinges on the 

remainder term 

  
e(7n) —~Lyrer§ 

Ryle) = f (8) -@)* = (“ree (25) 
n nl 

Since € is some point in [0,2] if « > 0, and in [w, 0) ifx < 0, the e~ in (25) is at most 

ell, so 
21 | 1 ( 

[Ra(x)| < oy lel”. (26) : 

Since |a|"/n! + 0 as n -> 00, for each fixed value of w (no matter how large), it follows 

that R,,(2) > 0 for every (finite) value of a and, hence, that the equality holds in (24) for 

all x, for -co < x < oo. (See Exercise 8.)
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Further, let us explore the convergence of the right-hand side of (24) to e~™* in graph- 

ical terms. The partial sums of the series are sy(x) = 1, so(w) = 1—a, s3(a) = 
1 — a + 27/2, and so on, and the first few are shown in Fig. 2. The first partial sum s, (2) 

matches the value of e~” at z = 0 (i.e., the point of expansion); s9(a) matches both the 

value of e~* and its slope at x = 0; s3(a) matches the value of e~*, its slope, and its sec- 

ond derivative at « = 0; and so on. It’s true that for each fixed n the discrepancy between 

Sn(x) and e~* becomes infinite as 2 — oo, but that fact is irrelevant insofar as convergence 

is concerned because by the convergence of s,(z) to e~” we mean that s,(z) tends toe~*, 

at a fixed value of x, as n > oo. 
Just as a rodeo rider endeavors to stay on the horse, we can imagine the polynomials 

  

    s(x), s2(x), ... endeavoring to “stay on the function:” sg(a) does a better job than SA x 
. . \ ‘, 

si(z), 83(x) does a better job than s2(2), and so on, but eventually , as a increases, they NON 
all “bite the dust.” ‘ % S4(X) 

82)", 
The preceding example notwithstanding, it is generally not practical to deter- 

mine whether or not the Taylor series of a given function f converges to f(x) by 
determining whether or not R,(a) — 0 as n — oo. The reason is that in most 
examples R,(a) becomes unwieldy as n increases. Not so in Example 3 because 

f™(€) is simply equal to (—1)"e~§ if f(a) is e~*, but in general fe), and 
hence R,,(x), is too unwieldy to bound. 

However, functions such as the one in Example 2, whose Taylor series con- 
verge, but not to the given function, are rarely encountered in applications. Practi- 
cally speaking, then, one can merely test the Taylor series of a given function f (2), 
about a given point z = a, for convergence, using Theorem 4.2.2, and assuming 
(i.e., hoping) that if it converges in |a — a) < R (with the radius of convergence R 
determined according to the theorem) then it converges to f(z) in that interval and 
represents f(x) in that interval. This approach is flawed, as discussed above, but 
should suffice until Taylor series are clarified completely in Chapter 24. 

One final application: 

Figure 2. Convergence of the 
Z 

sequence of partial sums to e7*. 

EXAMPLE 4. Consider the representation of f(x) = 1/(1 + x”) by its Taylor series 
about « = 0. To generate the Taylor series of f about ¢ = 0 we can use the Taylor series 

formula (17), but it is easier to recall the geometric series 

1 
a pa ltttO ten, (27) 

which holds for |é| < 1 (see Exercises 5 and 6 in Section 4.2). That is, identifying ¢ as 

—~—«*, we have, from (27), 

  

  

1 1 9 a5 243 
EB) yey SS 1 (ee) tee) (ery te 

I@) L+at 1 —(-2?) (0°) + (sa + (oe + x 

=l-a?tat-a+.. (28) Figure 3. Graph of 

o 9 : . . . rp) =z L/(1 a? : 

for | ~ 27) < 1, that is, for jz] < 1. From the graph of f (Fig. 3), we wonder why (28) fz) /Q+2°) 

converges only in |x} < 1 since f(x) = 1/(1 + x”) is evidently very well behaved for all
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~t 

Figure 4. Disk of 

convergence of (29). 

    

x. As in the case of Example 2, to understand this apparent paradox we need to consider 

not f(a) = 1/(1 + 2”) along the x axis, but f(z) = 1/(1 + 2°) in the complex z plane. 
Specifically, and we don’t expect this comment to be completely clear until you study 

Chapter 24, f(z) = 1/(1 + 2”) is singular (becomes infinite) at z = +é and at 2 = —i. 
Complex Taylor series converge in disks, and the Taylor series 

f(z)=l-2tet- 2h +e. (29) 

converges in the unit disk (Fig. 4), its radius being limited by the singularities of f(z) at 

+i. The intersection of the disk |z| < 1 with the real axis gives the interval of convergence 

jx} < 1 of (28), 
Thus, the interval of convergence on the z axis, of the Taylor series of a function f(x), 

may be limited by singularities of f(z) off of the real axis in the complex z plane. @ 

  

There is one last point before we extend these ideas to functions of more than 
one variable. Namely, for the special case where n = 1 and where the remainder 

term R,(x) is expressed in the Lagrange form (10), Taylor’s formula (7a) gives 
f(x) = f(a) + f'(€)(« — a), which result is known as the mean value theorem. 
Let us state that theorem explicitly, for reference. 

  

THEOREM 13.5.1 Mean Value Theorem for f(x) 
Let f be continuous on the closed interval [a,2]* and differentiable on the open 
interval (a, a). Then there exists a number € in (a, x) such that 

  

    f(x) = f(a) + f'(é)(@ — a). (30) 
  

  

13.5.2. Extension to functions of more than one variable. You may recall that 
we have already encountered Taylor series of functions of more than one variable 
in Example 2 in Section 11.4. We suggest that you review that example either now 

or when you have completed the present section. 
The basic idea behind the Taylor series TS f|, of a function f(a) is extrapola- 

tion: knowing “all about” f(z) at z = a [i.e., knowing f(a), f/(a), f’(a@),...], can 
we extrapolate that knowledge and predict what f(x) will be at some other point x? 
Consider the extrapolation problem in nvo variables. That is, let f(a, y) be defined 
in an open region 7 in the x, y plane, and suppose that all the values of f, fe, fy, 
fea Frys fyys +... up to nth order are known at a point (a, b) in. Can we, from 

these data, extrapolate from (a, b) and determine the value of f at some other point 

(a, y) in R? 
Often, in mathematics, new ideas are introduced as limits or extensions of 

old ones. Accordingly, let us try to reduce the stated problem to one involving 
a single independent variable, since that case is already in hand. Thus, draw a 
  

* As noted earlier, we mean {a, a] if @ > a, and [wa] ife <a. 
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straight line from the initial point (a,6) to any desired final point (co, yo), as in 
Fig. 5, and regard (x, y) as a variable point along that line. The straight line may 

be parametrized as 

g=a+ (xo — a)t, (3 La) 

y= b+ (yo — B)t, (31b) 

where ¢ is the parameter; for ¢ = 0 the point (x, y) coincides with (a, 6), and for 

t = 1 it coincides with (xo, yo). Then, and this is the point, 

f(a,y) = f (a+ (eo ~ a)t, b+ (yo — bt) = F(t) (32) 

is a function of the single variable t, for 0 <t <1, so if F is sufficiently differen- 

tiable we can write Taylor’s formula, 

F'(Q) . Fin-l) 0 
( ay Pe'(0) F(t) = F(0) + F()t+ x may tt + R(t), (33a)   

with Lagrange remainder 

POY) aga 
n! , 

Ra(t) = (33b) 

where 7 is some point in0 <7 < 1. Here we have expanded about t = 0 because 
t = O corresponds to z = a, y = b, which is the point in the x, y plane about which 

we are expanding. 
We need to evaluate the coefficients F'(0), F’(0),..., in (33). By chain dif- 

ferentiation, 

d O dx O dy O 0 
= a = (9 — A) E- —b)— =D 34 
dt Oz dt + Oy dt (x0 “55 + (Wo By (34) 

so 

d 
F'(0) = ae le=o = Df (x. y)labs (35a) 

id ay F"(0) =<“ F(t)|o = D? Fle. W)las (35b) 
dt dt 

and so on. Putting these expressions into (33) and setting ¢ = 1, since F(1) = 

f (0, yo), gives 

. re L nels 4 
F(to, yo) = Fla,b) + FP Flas + + moi? flab + Rn(t) (36a) 

with 1 

Rr(t) = —D" flen (36b) 
Th. 

  

x 

Figure 5. Points of interest.
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Xqyo G =D 

Ete) 

a,b(@@=0) 

Figure 6. The point (£, 7). 

where €,7) are given by the right-hand side of (31) when t = 7 (Fig. 6). Equation 

(36) is Taylor’s formula in two variables, with Lagrange remainder. It holds if 

f(x,y) has continuous partial derivatives (since we used chain differentiation to 

derive it), through nth order in , and if the straight line from (a, 6) to (xo, yo) lies 

entirely within R. 

Remember that the D’s in (36) are defined by (34), so 

0 O 

Df = ((xo - aa, + (yo — agit = (to — a) fe + (yo — 5) fy, 

D*f = (DF) = (lev — 2 + (yo ~ 0) 5-lCe0~ fe + (v0 ~ DF 

= (xo _ a)” fox + 2(xo — a) (yo 7 b) fry + (yo a b)? fyys (37) 

and so on. With Df, D?f, ... in hand, we can write out (36) for any desired n. 

With n = 1, for example, we obtain, with the help of (37), 

f (xo, yo) = f(a,0) + Dflen 
= f(a, 5) + fe(€, 7) (xo ~ a) + fy(E.7) (yo ™ b). (38) 

Notice that x,y were “transition variables” that carried us along the straight line 

from (a,b) to (xo, yo). In the final result, such as (38), x and y no longer appear. 

only the initial point (a, b) and the final point (zo, yo) appear. Since we no longer 

need to distinguish between a, y and xo, yo, we can, for notational simplicity, drop 

the subscripted zeros and re-express (38) as 

  

(Feu) = Fab) + fel& Mle — @) + ful DW — 4) | (39) 
  

The latter is the two-variable version of the mean value theorem, which we state, 

for reference. 

  

THEOREM 13.5.2 Mean Value Theorem for f(x,y) 

Let f(x,y) and its first-order partial derivatives be continuous in an open region 

R, and let (a,b) and (x,y) be points in R such that the straight line joining these 

points lies entirely within %. Then there exists a point (€,77) on that line, between 

the endpoints, such that 

f(,y) = Fla,b) + fe(E m)(@ — a) + fy(& My — 8). (40) 
  

Further, we define the Taylor series of f(x,y) about (a, }) as 

Lo. 1 no, 

TS flab = f(a, 6) + 7 PLlae aa sD” flaw chee
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or, with the help of (37) (with aq changed to « and yo changed to y), 

  

TS flap = F(a,b) + = [fala 6)(e ~ a) + fy(a,6)(y ~8) 
+ 5iUes(a,b)(e ~ a)? + 2fay(a,b)(x—a)(y—6) | 4D 

+ fyy(a, &)(y — b)?| oe,       

We say that (a — a)™(y — b)" is of order m + n, so the dots in (41) denote terms 
of third order and higher. 

EXAMPLE 5. Derive the Taylor series of f(z, y} = e*¥ about the point (1, 2), up to 
and including second-order terms. Then f, = ye®¥, fy = ve®, fox = y’e™, fay = 
(1+ cy)e*¥, and fyy = x*e*Y, so (41) gives 

TS e7#|, 9 =e? + 2e7(a — 1) + e*(y — 2) 
2 

4 2e%(x — 1)? + 3e2(a — 1)(y — 2) + Su 2)? f.. 

up to terms of second order. & 

Extension of these ideas to functions of more than two variables should be 
straightforward and is left to the exercises. 

Before closing this section, let us introduce some notation that will prove use- 
ful in what follows. Specifically, if all of the partial derivatives of f, through nth 
order, are continuous in a region FR, then f is said to be of class C” in R.* For 
example, f(x,y) is of class C! in R if f, and fy are continuous in , and it is of 
class C* in Rif fe, tus fea fry, and fyy are continuous in ®. Generally, one omits 
the words “of class” and simply says that f is C! in R, C? in R, and so on. 

Closure. We begin this section by reviewing and extending the theory of Tay- 
lor’s formula, Taylor series, and the mean value theorem for functions f of a single 
variable x. Taylor's formula has the advantage that it is the sum of a finite number 
of terms so convergence of infinite series is not an issue. However, the remainder 
term, be it in integral form or in Lagrange form, is not known explicitly; for in- 
stance, the € in (10) is not known. Nevertheless, we can drop the remainder term 

and approximate f(a) by the polynomial 

fM(a) gy 
f(x) ~ f(a) + f(a)(« - a) ae eb! 

  
"It can be shown that the continuity of the first-order partial derivatives of f imply the continuity 

of f. Thus, it would be equivalent to say that if f and all of the partial derivatives of f, through nth 

order, are continuous in 72, then f is C™ in R.
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and use the remainder term R,,(x) to bound the error. Taylor series, on the other 

hand, is an infinite series, so we need to be concerned with whether or not it con- 

verges and, if it does, we need to know the « interval over which the convergence 

is achieved. Further, we emphasized that establishing the convergence of TS tla 

is not the end of the story because it is possible for TS fl, to converge on an in- 

terval I, but not to represent f on I. Rather, for TS f|, to represent f on J it is 

necessary and sufficient that R;(a) + 0 on I as n -+ oo. Since it is generally 

difficult to show that R,(2) + 0 on some interval we are in an awkward position. 

However, when we study Chapter 24 on complex variable theory we will learn how 

to establish the interval over which TS |, represents f(x), simply by inspection of 

the function f(z) (where z = « + dy). Until then, we suggested merely checking 

TS fla for convergence and not worrying about R,,, on the grounds that in practical 

applications one rarely encounters functions for which TS f|, converges without 

Rp tending to zero aS n -+ 00. 

Computer software. For functions of a single variable, see the computer section 

at the end of Section 4.2. For multivariable Taylor expansions the Maple command 

is mtaylor. For instance, to expand e2t¥ about c = 1, y = 4, through terms of 

second order, enter 

Then, 

readlib(mtaylor): 

mtaylor(exp(2 *z*y), [w= l,y = 4], 3); 

and obtain the result 

e8 + 8e8(2 — 1) + 2e8(y— 4) + 32e°(2 — 1)? + 18e8(a — 1)(y— 4) + 2e°(y — 4)? 

  

EXERCISES 13.5 
  

1. Expand the given function about the indicated point a, 

through third-order terms. NOTE: (x ~— a)” is of mth order. 

faje7"*, a=O0 (b)e7**, a=5 

(c)ev?*, a=—-3 (ding, a=2 

fe) 1/(1+e7), a=1 (f)i/l+e7), a=-l 

(g)sinv, a=2 (h)cos2e, GQ=T 

(Qa(a@~-1)?, a=1 Gj) (24 -1)+5, a=0 

2. Obtain the first four nonvanishing terms in the Taylor series 

of the given function about x = 0. 

(a) 1/(1 — 2°) (b) 1/(2 + 27°) 
(c) sin 278 (d) cos x79 

3. Using computer software, generate the Taylor series of the 

given function, about the indicated point a, through fourth- 

order terms, and obtain plots of the first five partial sums 

{s,(a) through s5(zx)], as well as the given function, over the 

indicated interval. 

(aje™, a=O0, [2,2] 

(b)cosz, a=0, [-8,8] 
(c)I/(4+x), a=0, [-3,3] 
(d)i/e, a=5, [1,9] 

(e)ere™*, a=2, [4,8] 

(f) (22 -1)?, a=0, [4,4 

(l+e+a?+a°, a=1, [3,5] 

(hye, ast, [4,2] 

4, (a) Expanding sin a about x = 0, use (7a) and (10) to show 

that 

cos€ 3 

3h 
  sing =x + Rg(x); R3(x) = - 

 



  

where € is some number between 0 and w. Supposing that the 

interval of interest is 0 < 2 < 0.5, show that a bound on the 

error in the approximation sinc = a is 

[sine — 2] < 0.021 over 0< @ < 0.5. 

(b) Similarly, show that 

. ( as ) 
sine - (xe — 

3! 

(c) Similarly, show that 

< 0.000261 over 
    

  

§. Expanding sin x about w = 2, use (7a) and (10) to show that 

sin 2 

2 a 

  sin w = sin 2 + (cos 2)(z — 2) — ( ) (wc ~ 2)? + Rs(x), 

where J?3(z) = ~—(cos€)(a — 2)*/3! and € is some number 

between 2 and x. Supposing that the interval of interest is 

1.5 <2 < 2.5, show that 

sin 2 (0-27 
4 

< 0.0167   

    
sina — sin 2+ (cos 2)(a — 2) — 

over 1.5 <a < 2.5, 

6. In the sentence following (9), we speak of assuming the 

continuity of the derivative ff!) (x). That comment begs a 

question as to how a derivative can fail to be continuous. For 

instance, suppose f(z) is the “ramp function” «H (x), where 

HT is the Heaviside step function. Then f’(v) = A(x) has 
a jump discontinuity at z = 0. However, at that point the 

original function f(z) = «AH (x) has a “kink” and is not dif- 

ferentiable. Thus, it is hard to imagine how a derivative f’() 

can exist at a point x, yet fail to be continuous there. Nonethe- 

less, the function 

1 oo. 

x-sin-, wv #0 
g(2) = x 7 (6.1) 

0, z=0 

shows that such behavior is possible because g’(a) exists 

at 2 = Q but is not continuous there. The problem that we 

pose is for you to verify that g/(a) exists at « = O but is not 
continuous there. HINT: Evaluate g’(0), and g(a) for « 4 0, 

and show that lim... g’(x) does not equal g’(0). 

7. In Example 2. we stated that f’(0) = f"(0) = --- = 0. 

Verify that 

sin — (: ~ I + =)| < 0.000011 over 0< a <0.5. 
Os oe | 

13.5. Taylor’s Formula and Mean Value Theorem 641 

(a) f'(0) = 0 (b) f"(0) =0 (c) f'"(0) = 0 

HINT: It will be necessary fo fall back on the limit-of-the- 

difference-quotient definition of derivative, 

  

  

8. Below (26), we stated that |a/"/n! + 0 as n — oo. Prove 

that claim. HINT: Use Stirling’s formula, 

fn ~ V2rnne”" 

  

as om oO. | (8.1) 
  

9, (Tangent plane) Let a surface S be defined by an equation 

f(z,y,2) = 0 and let (a,b,c) be a point on S. The tangent 

plane to 5, at (a,b,c), is obtained by replacing f(x,y, 2) 

in f(v,y,2) Q by its linear approximation f(a, b,c) 

+fe(a, b,c)(x ~ a) +fy(a, b, c)y ~ b) +fz(a, bey(z ~ ¢) 

[i.e., by the first three terms of its Taylor series about (a, 6, c)]. 

Obtain the tangent plane at (1,3, —2): 

(a) x’ yz = —6 (b) cyz = -6 
(c) 327 + y? + 27 = 16 (d) sin(z@ -y—2z) =0 
(e)sin(2? + y° +z) =sin8 (f)ct+y? +24 = 26 

10. The essential idea, in our derivation of the two-variable 

Taylor series (41), was the reduction to a Taylor series in one 

variable by introducing a parametrized line, given by (31), 

from the initial point (a,b) to the final point (vo, yo). Actu- 
ally, any parametrized curve between those two points should 

give the same final result (41); we chose the straight line (31) 

as the simplest. In place of (31), use the parametrization 

w=at (ao — at, y= b+ (yo — bt, (10.1) 

which is a parabola, and show that you obtain the same fi- 

nal result (41). 

ll. (Expanding in one variable at a time) An easy way to 

derive Taylor series in more than one variable is to expand in 

one variable at a time. Use this method to expand the given 

function about the given point, through third-order terms. 

(aye?yt = y, (1,2) (b) e™¥, (1,2) 
(c) sin (3zy), (1,—1) (d) i/(@*+y"), (2,1 
(e) 1/(a@? — y?), G1) (fi /(1+a7y*), (1 

12. (a)—(f) Use computer software to obtain the Taylor 

series in the corresponding part of exercise 11. 
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Figure 1. The ellipse 

zg? +4y? —4=0. 

oh = 

13.6 Implicit Functions and Jacobians 

13.6.1. Implicit function theorem. An equation 

f(t,y) = 0 () 

is said to constitute a relation on x and y. In (1), x and y have the same status; they 

are independent variables. Depending on the context, it may be desirable to change 
our point of view and regard (1) as implicitly defining y as a function of x (or vice 

versa). In that case we re-express (1) as 

f(w,y(2)) = 9, (2) 

because x is now the independent variable and y is the dependent variable. 

EXAMPLE 1. Consider the relation 

a’? +4y?—4=0, (3) 

satisfied by the points on the ellipse shown in Fig. |. That (3) is an implicit definition of a 

function y(z) is clear because we can solve (3) for y, by algebra, as 

y=t 1- (2), (4) 

If we are interested in the interval 0 < x < 1, for instance, then we see that there are 

actually two continuous functions y(2), the positive square root corresponding to the upper 

branch AB in Fig. 1, and the negative square root corresponding to the lower branch CD. 

If, instead, we are interested in the interval 3 < x < 8, say, then there is no (real valued) 

function y(a) implied by (3). & 

In Example | we were able to solve (3) for y(a) by simple algebra. In other 
cases we are not as fortunate. For instance, 2ry + siny = 3 is a transcendental 
equation* and cannot be solved explicitly for y. Thus, there is the following im- 
portant question. Given an 2, y pair (xo, yo) satisfying the relation (1), does there 
exist an implicit function y(z) [i-e., a function y(x) implicitly defined by (1)] and, 
if so, is it unique? Sufficient conditions for that to be true are given by the implicit 

function theorem, which we state without proof. 

  

THEOREM 13.6.1 Implicit Function Theorem 
Let f(z, y) = 0 be satisfied by a pair of real numbers xo, yo so that f(x9, yo) = 0, 
and suppose that f(a, y) is C! in some neighborhood of (ro, yo) with 

  DF 

5 (to) #0. (5) 
      

  

“In Section 8.2 we define an equation as algebraic if it is a finite-degree polynomial equation and 

transcendental otherwise. 
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Then f(z, y) = 0 uniquely implies a function y(a) in some neighborhood N of ao 
such that y(ao) = yo, where y(x) is differentiable in V.* 
  

Observe that the implicit function theorem is a local one. That is, it assures us 

that there exists a unique differentiable function y(x) in some neighborhood of zo, 
but it does not tell us how large that neighborhood is. 

EXAMPLE 2. Consider again the relation (3) in Example L, 

f(x,y) = 2? + 4y? -4=0. (6) 

Noticing that the latter is satisfied by 2 = 1 and y = —V3/2, say, let (ao, yo) be 

(1,-V3/2). Clearly, f.(z,y) = 2a and f,(x,y) = 8y are continuous in some neigh- 
borhood of (1, —~/3/2), because they are continuous everywhere in the z, y plane. Thus, 

f is C! in some neighborhood of (1, -/3/2). Further, f,(1, -V3/2) = —4V3 # 0, so 
Theorem 13.6.1 tells us that there is, indeed, a unique differentiable function y(z} through 

the point (1, ~/3/2). The graph of that function is the lower half of the ellipse (Fig. 2), 

over -2 <2 < 2. 

COMMENT. If we select (29, yo) to be at one of the two ends, say (2,0), then the theorem 
would provide no information since f,(2,0) = (8)(0) = 0 so that condition (5) is not 
satisfied. Hf 

Whereas Example 2 served to illustrate the implicit function theorem, it did 
not reveal the power of that theorem because it was such a simple case. 

EXAMPLE 3. Consider the relation 

(y — 2x)e¥ — v+1=0. (7) 

We see by inspection that (7) is satisfied by z = | and y = 2 so let us take (wo, yo) = (1, 2). 
Does there exist a function y(x), implied by (7), through that point? The derivatives 

fe=—2eY-2e and fy =(y—-2r4 le" 

are continuous everywhere in the w, y plane and 

fy(1,2) =e? £0 

so, according to Theorem 13.6.1, there does exist such an implicit function y(x). Hf 

How to obtain that function y(z) is another matter. Equation (7) is a transcen- 
dental equation in y and cannot be solved for y in closed form. Giving up on the 
  

* f(x,y) being C’ means that the first-order partial derivatives f, and f, are continuous; see 

Section 13.5, below Example 5. Also, note that the neighborhood N of xo is an open inferval on the 

© axis, whereas the neighborhood of (xo, yo) is an open disk in the x, y plane. 

= 

cts 
(x9, ¥0) 

=(1,-V3/2) 
Figure 2. Implicit function 

y(x) through (1, -V3/2). 
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hope of obtaining a closed form solution, perhaps we can at least develop the Taylor 

series of y(x) about xo (i.e., an “open” form solution). 

Turning from Example 3 to the general case 

f(x, y(@)) = 9, (8) 

suppose that we know an wo and a yo such that f (xo, yo) = 0, and let us seek the 

Taylor series of y about xo, 

yl) = ylwo) + yl (ao) = 0) + © ito) (a — ao)? Foe (9)   

The first coefficient, y(xzo) = yo, is already known, but we need to evaluate y'(29), 

y (ao), and so on. Applying the chain rule to (8) gives 

i Loy 
—F(ey(@)) = fa + fyy = 0 (10) 
ae 

° fo, y()) f xz a, ¥ eo 

y(@) = - Fa Fylesyle)) 
[It is interesting that (10) is a linear algebraic equation for 4 y! even if (8) is a tran- 

scendental equation in y.] Continuing, differentiate (11) to find y”: 

yl" _ _ few + foyy’ _ felon as fyyy' ) 

(1h) 

  

  

= (12) 
fy fe 

Using (11) for y’, and assuming that Fey = fyx. 12) can be expressed as 

2 ‘a f ‘et _ f? vy pe ‘ee yl" —_ J yd y d ely taf (13) 

y 

Similarly for y!”, and so on. It remains merely to evaluate the expressions for y/’, 

yl", ... at (Zo, yo). 
Now we can appreciate the significance of the condition (5) in Theorem 13.6. | 

for it is evident that increasingly higher powers of fy build up in the denominators 

of y', y”, ... so that if fy(%o, Yo) = = 0, then these derivatives fail to exist and, 

consequently, the Taylor series (9) fails to exist. 

EXAMPLE 4. Let us return to Example 3 and obtain the Taylor series of y(x) about 

ro = L. Rather than merely evaluating the right-hand sides of (11) and (13), if might be 

more instructive to carry out steps (10)-(13) for the given equation 

(y ~ 2e)e! —a? +1=0. (14) 

First, differentiating (14) with respect to a gives 

(y’ — Ne" + (y — 2aje"y’ — 2x = 0 

 



  

13.6, 

so , / 
2-+2xre"$ 

i Y=. (15 
yo-2e+l 

Next, differentiation of (15) gives 

(2 ~ 2ey')ev¥ 2+ Qve7")(—1) (y' - 2) yi = eeu yent (2 Bre N(=DUyl = 2) 16 
  

yo 2a+1 (y — 2a +1)? 

and so on. Evaluating (15) and (16) at (1,2) gives (1,2) = 2+ 2e7? and y'"(1,2) = 

—6e7* ~ 8e~4 so 

y() = 2+ (24+ 27 *)(e = 1) + 

= 24 2.271(a ~ 1) —- 

is the desired Taylor series. 4 

Before extending these ideas to the case of two or more independent variables 

and two or more dependent variables, let us observe that inverse functions are but 

a special case of implicit functions. 

EXAMPLE 5. Given the function 

y=sine (17) 

on -sc < 2 < %. is there an inverse function 2(y) through the point w = O.y = 0? 

Yes, known as sin7!y, its graph is as shown in Fig. 3b and is obtained from Fig. 3a simply 

by reversing the horizontal and vertical axes. The x interval is limited to — af < 

m/2 because if it were made broader then multivaluedness would result (Fig. 3c), w vhoreas 

functions are required to be single valued. 

Seeking an inverse function 2(y) is equivalent to re-expressing (17) as 

f(z,y) =y sing = 0 (18) 

and seeking an implicit function z(y). Since the roles of w and y are reversed here. 
compared to their roles in this section prior to this example, let us re-express (18) as 

flyz) = y~-sing = 0. Since f, = ~cosa and f, = 1 are continuous everywhere 
in the a, y plane and f, = —cosz = —1 A Oat (vy, yo) = (0,0). Theorem 13.6.1 assures 

us that there does exist a unique differentiable implicit function x(y) (namely, the inverse 

function sin~!y) in some neighborhood of yp (namely, -l < y <1). 

13.6.2. Extension to multivariable case. Next, consider hvo relations, 

f(a 
gle. y, Us 

lI rn Y, u,v) 
; C 

v) = 0, (19) 

  

function @ = sin 
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(a) 

| 

i 

i t x 

i 
[ 

| 

(Bb) 
Xv 

m/l2 

—t - f Xv 

4 7/2 

(ce) xX 

~Al2 

Figure 3. The inverse 

“ty.
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on z,Y,U, v. Supposing that we know a point (x, yo, uo, vo) in four-dimensional 

r,Y, u,v space such that f(x, yo, wo, Vo) = O and g(xo, Yo, Uo, Vo) = 0, we won- 
der if (19) implicitly defines functions u(x, y), v(z, y) throughout some neighbor- 
hood of xo, yo. To explore that possibility, let us re-express (19) as 

f(a, Ys u(x, Y), u(x, y)) = 0, 
20 g(a, y,u(x,y),v(e,y)) = 0 °) 

and seek Taylor series of u and v, 

u(x, y) = u(2o, Yo) + Ue (%o, yo)(% ~ Zo) + Uy(o, Yo)(Y — Yo) +o, (21) 
v(x, y) = v(x0, yo) + Val%o, yo) (@ — to) + vy(%o, yo)(Y — Yo) + °°, 

about x9, yo. We already know u(ao, yo) = uo and v(xo, yo) = vo, but we need 

  
  

    

        

  

  
  

  

  
  

to compute wz (20, Yo), Uy(Lo, yo), -.-, and vz (Xo, Yo), Vy(Lo, yo), -.- . To find uz 
and vz, apply the chain rule to (20): 

0 . 
apt (e yy; u(x, Y), (a, y)) = fr + fulle + fouvz = 0, 

L 
(22) 

O 
HIE yr Ue Y), v(2,Y)) = de + Gute + Gude = 0 

or 
futlr + fouls = ~fe, (23) 

Juliz + Que = —Ge- 

Solving (23) by Cramer’s rule (Section 10.6.3 or Appendix B) gives 

| — fr fo fe fo 

Ug = ~—Ge Yu _ Gx Gv (24a) 

fu fu tu fe 
Gu gu Ju Ju 

fu ~ fr tu Sx 

ye eT (24b) 
fu te fu fu 
Ju Qu Gu Gu 

Similarly, to find u, and v, take 0/Oy of (20) and obtain 

| —fy fo ty fo 

—Gy Qu Gy Gu 
Uy = - =— —— ; (25a) 

Y fu fe Fu fo 

Gu Gu Ju Jv 

fu —fy fu fy 

Gu Gy Gui Gy 
Vy = + =- Sean, (25b) 

"| fu fe fu fo 
Ju Gu Gu Gu     

  

~s
e
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These results.are analogous to those obtained above for the Taylor series ex- 

pansion of a function y(a) that is implicitly defined by f(x, y(x)) = 0. There, 
we saw from (11) — (13) that the coefficients y'(x9), y“(ao), ... in (9) exist if 
fy(o, yo) # O, and fail to exist if fy(xo, yo) = 0. From (24) and (25) we see, anal- 
ogously, that the derivatives uy, Vz, Uy, Vy needed in the Taylor series expansions 
(21) exist if the determinant 

fu fo 
26 

gu Ju ( ) 

    

does not vanish (i.e., equal zero) at a, yo, uo, Vo, and that they fail to exist if the 

determinant does vanish at that point. Similarly, we would find that the same de- 
terminant condition applies for the existence of the higher-order partial derivatives 

needed in (21). 

Thus, just as the condition 

  

of #0 (27) 

dy £0 ,Y0 

is crucial [recall (5)] if 

f(x,y) =0 (28) 

is to imply the existence of an implicit function y(x), the condition 

  

fu fo 40 (29) 

Ju Gu 
T9,Y0,U0,v0 

is crucial if 

f(2,y, 4, v) =0, (30a) 

g(x,y, u,v) =0 (30b) 

are to imply the existence of implicit functions u(x, y) and v(z,y). If we realize 
‘that the Of /Oy in (27) is actually a “one-by-one determinant,’ then we can see how 
the condition (27) generalizes to the nonvanishing of a two-by-two determinant 
when there are two dependent variables and two independent variables and, sim- 

ilarly, to the nonvanishing of an n-by-n determinant when there are n dependent 
variables and n independent variables. Thus, the generalized version of Theorem 

13.6.1 is as follows. 

  

THEOREM 13.6.2 Jmplicit Function Theorem, Multivariable Case 

Let the system of n equations 

fi(@1, 06-5 %ny Ut, ++, Un) = 9 

G31) 

Fr(@1,.6.5 En, U1, +-- Un) =0



648 

Figure 4. Polar coordinates. 
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be satisfied by the real numbers 21,,...,@ng)UWig,---)Unp, and suppose that the 

functions f(21,...,@p,U1,.--,Un) through f,(ay,...,@pn,Up,..., Um) are C! in 
some neighborhood of (a4,,..., @ng; Wigs +++ Ung), with 

  

  

    

oh Oh oh 
Ou, Ou. ~  Oun 

: £0. (32) 
Ofn fn Ofn 
Ou, dug ~— OUn,     Ligrea€ng Wig Ung 
  

Then (31) uniquely implies functions uj (@1,...,2n),---,Un(@1,-.-,2n) in some 
neighborhood N of (x1),---,%ng) such that ui(@ig,..-,2ng) = Uigs--- 
4 . on _—; se . 7 1 . 4 1; Un(®igs--++€ng) = Ung, where u1(21,..-,Ln),.--;Un(@1,--.,2n) are Cl in N, 

) 

  

Although we motivated Theorem 13.6.2, above, we did not prove it.* 

EXAMPLE 6. Consider the familiar change of variables from the Cartesian x, y coor- 
dinates to the polar coordinates r, 6 (Fig. 4), 

x=rcosé, (33a) 

y=rsing (33b) 

or, equivalently, 

filt.y,r,0) =x —-rcosd =0, 

fo(z,y,r,@) =y—rsing = 0. (G4) 

Do these relations define implicit functions r(a, y) and 6(z, y) throughout some neighbor- 
hood of any given point P (Fig. 4)? Put differently, if (33) gives x and y as functions of r 

and 6, do those relations implicitly define inverse functions r(z,y) and @(x, y)? 
To answer that queston using Theorem 13.6.2 let us identify x, y,r,@ as 21,22, Uy, Uo, 

respectively. (Whether we identify z as x, and y a8 a, or vice versa, will not matter: 

similarly for r, @ and wy, wg.) All first-order partial derivatives of f, and f2 are continuous 

everywhere so f; and fy are C’! everywhere. Further, 

  

Oh af. 
Or 06 |_| —cosé rsin@d | | 

O fe Of “| sind —reos@ |! (35) 

Or 06 

is nonzero everywhere except at the origin (r = Q). From Theorem 13.6.2 it follows that 

inverse functions r(z,y) and @(@,y) do exist (and are unique and of class C') in some 

neighborhood of any given point P (Fig. 4) except if P is at the origin, in which case the 
  

“See, for instance, 1. S. Sokolnikoff, Advanced Calculus (New York: McGraw-Hill, 1939), Chap- 

ter 12, or W. Maak, Modern Calculus (New York: Holt, Rinehart and Winston, 1963), Chapter 9.
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theorem gives no information. This singular result is not surprising since there is a problem 
at the origin; as we can see from the figure, 0 is nor defined there. # 

13.6.3. Jacobians. The determinant in (32) is known as the Jacobian of fis---a tn 

Of, tae fn) or with respect to wj,...,tU,», and is denoted either by the notation - ( 
Vuy,. 2.5 Un 

as J(uy,..., Un)! 

  

  
  

Oh oh ah 
Ou, Oug ~~ Aun a . 

; ; = nen or J(uy,..., Un) (36) Din Of, ar, Uy... ,Un 

Ou, Oug ~" Oupy 

and is a function of uy,..., Up. 

Jacobian determinants arise not only in the Implicit Function Theorem but 
also in the evaluation of the various partial derivatives of implicit functions. For 
instance, consider the functions u(x, y) and v(z, y) defined implicitly by (20). The 
steps (22)—(25), which we urge you to review, give these results for the partial 
derivatives of u and v with respect to x and y: 

 — ole) 1 wz 2) 
Oh) OR a) 7) 
Ou, v) Ou, v) 

Of, 9) Of.9) 
_ Ou, e) =e O(u, y) . 

Oa) OR 9) me) 
O(u, v) O(u, v) 

EXAMPLE 7. Consider, once again, the change of variables from x, y to r, 6, given by 
(33). We will refer to z,., ro, Up and yg as the “forward” partial derivatives, since x and y 
are given explicitly by (33) as functions of r and 9. The forward derivatives follow readily 
from (33) as 

ry = cos d, te = —rsin dg, Yr = sin @, Yo = reosé, (39) 

but to evaluate the reverse derivatives is harder; we can carry out the steps (22)-(25) or we 
can simply use the final results, reproduced (in terms of Jacobians) in (37) and (38). To use 
(37) and (38), let u be r and let v be 6. Then 

fl2,y,r,@) =x —-rcosé = 0, 

gz y,r,0) =y-rsnd=0 (40) 
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so (37) gives 

| fe fo | | 1 rsin@ | 

Ge 90 0 —rcosé 
qT = C é, 4la 

Ve fr fe ~cosé resin @ eos (Ha) 

dr Go —sin@ —rcosé 

| fy fo | | Q  rsind | 

dy 9 | 1 -—rcosé . 
ae Ly sind, 41b 

"y fr, fo ~ cos é r sin @ om Gt) 

Gr ga —sind -—rcosé 

and (38) gives 

| fr fe | —cosd 1 | 
Ox —sind 0 si 

p,- Lor ge tL asine OF sat (42a) 
| fr fo r r 

gr 96 

| fr fy | —cos# 0 | 
eG —siné 1 g 

g,=—--e et oS a. (42b) 
| fr fo r , 

Gr ge   
Of course these results can be expressed in terms of x,y if we wish. For instance, 0, = 

rcos6/r? = «/(a? + y’). 

COMMENT. In this case we could have solved (33) explicitly for r(x,y) and 6(2, y), for 

squaring and adding those equations gives r and dividing one by the other gives @: 

ra Very, gata ls, (43) 

from which we can compute the “forward” derivatives rx, Ty, 9x, and @,,. However, we can- 

not always solve for the inverse functions analytically. Hence, we have used this example 

to illustrate the use of the Jacobians in solving for the reverse derivatives. @ 

Why all the fuss? Could we not have solved for the reverse derivatives by find- 

ing the forward derivatives (which is simple) and “turning them upside down”? For 

instance, knowing that Ox/Or = cos 9, could we not say that Or /Ox = 5a /0F =   

ty? Evidently not, since (41a) gave Or [Ox = cos @, not i/ cos @.* 

To understand this important point, observe that if « = x(u) has an inverse 

function u = u(x), then du/dx does equal (dx/du)~! or, equivalently, 

du dx 
—-— =1, 44 
dx du (44) 

  

“The fact that, besides not being numerical inverses of each other, r, and x, are actually equal to 

each other is just a coincidence. 
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For instance, if « = u® then de/du = 2u and du/dx =d(/a)/dx= 1/(2/2)= 
1/(2u) = (dxv/du)~'. However, if 

e=a(u,v) and y=y(u,v) (45a) 

have inverse functions 

u=u(z,y) and v=v(x,y), (45b) 

then (in general) 

dude ,, dudy ,, vax ,, dv dy 
Ox Ou "Oy Ou "Ox Ov "Oy Ov 

Rather, what follows from (45) is the Jacobian generalization of (44), 

O(u,v) A(x, 4 

rather than (46). Similarly, if 2,,...,2%, are functions of u1,...,tn,, and vice 

versa, then 

  Al. (46) 

  

O(ur,...,Un) O(a1,..., Ln) 

O(a1,...,%n) O(ui,...,Un) 

Summarizing, while it is not true (in general) that the individual partial deriva- 

e Ou O23 

© Fn, 7 \ Buy 
the Jacobians are numerical inverses of each other: 

-1 
Oluy,...,Un) (Ga a <u!) 

O(a1,...,2n) O(ty,.. +, Un) 

Rather than prove the general case (48), let it suffice to prove (47), where 

nm = 2. We begin by writing out 

Ou, v) Aa, y) 
O(a, y) Ou, v) 

  = 1. (48) 

      

~1 
tives are numerical inverses of each other [ ) ], it és true that 

  (49) 

Un Uy Ly Ly 

Yu Yo 

= (UgVy — UyVs)(LuYs — LoYu) 

= UgylyYu — UyVeluYr 

  

      Vy Uy 

  

Ug VylyYu $b UyVelyYu- (50) 

Next, use the chain derivative results* 

Ov Ov Ox Ov Oy 
au =OQ= On Ou + ay Du SO Ugly = ~VyYu, 

Ou Ou Ox Ou Oy 
=O= Zo SO) Ugly = —UyYu 

Be dz Ov? Dy Ov 
  

“In case it is not clear why Ou/Ou = 0, for instance, think of {z, y} and {u, v} as two “families” 
of variables. By 0/Ou we mean differentiation with respect to uw, holding all other members of the u 

family (namely, v) fixed. Because v is regarded as fixed, Gu/Ou = 0.
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y A 

T = 100 

Figure 5. Heat conduction 

problem. 

    

to replace the underlined products in (50). Then the right-hand side of (50) becomes 

RHS = UglyluYy b+ UyYuly Yu 

“b UyYurlly Yo + UyVelyYu 

= YyVy (Ugly + UyYu) + Yully(VyYo + Vet) 

= Yuy lu bP Yully Vv 

Oy 
= YyVy + Yully = ay 

= | (51) } 

as claimed. Naturally, we assumed that all the first-order partial derivatives are 

continuous so that the chain rule could be used. 

13.6.4. Application to change of variables. [t sometimes happens that it is con- 
venient to change from one set of independent variables to another, and that step 

involves the concepts discussed above. 
To illustrate, suppose that we wish to determine the temperature distribution 

T(x, y) in a semicircular plate, with the temperature maintained at 100° along the 
circular edge and at 0° along the straight edge, as depicted in Fig. 5. It turns out, as 
we will find in Chapter 16, that T(x, y) must satisfy the Laplace equation, namely, 

the partial differential equation 

PT  &T 59 
Ox? © Oy? — 02) 

in the semicircular region R, together with the boundary conditions that T7 = 100 

on the circular edge, and T’ = 0 on the straight edge. 
It is much better to re-express the problem in terms of the polar coordinates 

r,@, because then the boundary conditions will be on constant-coordinate curves: 

T = 1000nr = ¢, T = 00on@ = ~r/2, and T = Ooné = w/2. Thus, 
let us re-express (52) in terms of r and @. First, consider the T,, term. Since 

Tx = (0/0x)(0/Ox)T, we need to express the differential operator 0/Oz in terms 
of r and @. By chain differentiation, 

O) OC) Or 
ar Or 

_ OC ) 08 

~ ar dx 00 Ox’ (53) 

The reverse derivatives rz, 42, 7y,, are given in (41) and (42) so (53) becomes 

a 
Ox 

8 0 
— 4 
r 00° (04) 

2 
Op 

where we use the convenient shorthand c <= cos @ and s = sin @. Thus, 

; OO 8 ~@ 0 89 
Tee= (2 -* 55) (5-25 )r 
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OQ sO 8 

(. orp a) ( r ) 

= os ,) ~ 0. (<1) - £5 (es) + = (<2) 
2 

cs Cs 8 SC 5 
= OT + Ty ~ Tor + Tr ~ Tro + Ta + Too. (55) 

Similarly, 
QO O) Or OA) a6 0 CO AO) FO Or POF eo (56) 
Oy Or Oy O68 Oy Or re 

and (Exercise 13) 

Cs cs os cs cs ce 
Tyy = 8° Trp ~ To + —Thy + —T, + —Try — Te + Toa. (57) 7) r r r re re 

Finally, adding (55) and (57) and recalling that c? + s? = 1 gives 

OT 10T 1 &T 
= 0 (58) 

Ore" + Or r r2 662 

as the Laplace equation in polar coordinates. 

For notational simplicity we used the same letter, T, for the temperature, in- 

dependent of whether it was regarded as a function of x, y or as a function of r, 6. 
Strictly speaking, of course, we should have used different letters [as discussed be- 
low equation (8) in Section 13.4]: T(z,y) = T (2x(r,@), y(r,@)) = U(r, @), for 
instance. 

Closure. We begin this section by considering a relation f(a2,y) = 0 on x and 
y, to determine whether it implies a function y(a) over some neighborhood of 
rg, through a point (29, yo) that satisfies the relation. Typically, we cannot solve 

f(x,y) = 0 for y by algebra, so we give up on the idea of a closed form expression 
of y(x) and seek y(x) in the form of a Taylor series about wo. We find that all 
goes well if fy(vo, yo) does not vanish. With that motivational introduction com- 
pleted, we then state the Implicit Function Theorem 13.6.1, which includes the key 
stipulation that 

fy (xo, yo) # 0. (59) 

Generalizing from one relation on two variables to two relations on four vari- 
ables, 

‘(v,y, u,v) = 0, 

g(@,y, u,v) = 0, 

we find that the condition (59) generalizes [from the one-by-one determinant on the 

left-hand side of (59)] to the determinant condition 

tu te | | 

Gu Gu 
# 0, 

    

TOYO UO U0 

653
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that is, the nonvanishing of the Jacobian determinant of f and g with respect to u 

and v at (a9, yo, Uo, vo). Similarly for n relations on 2n variables, which case is 

covered in Theorem 13.6.2. 

The Jacobians themselves are of great importance. We see that the “reverse 

derivatives,” such as w,, where u and v are ¢ jefined implicitly as functions of x and y 

by « = x(u,v) andy = y(u, v), are expressible as ratios of Jacobian determinants. 

Further, we see that the result 

        

dy dz da _ (dy 7 

dx dy dy \da , 

Ox du\7+ ; 

for functions y(a) and x(y), generalizes not to > au de but to the Jacobian 

statements 

4 . —1 alep) ue), 4, Aue) _ (AW) gy 
Ou, v) A(x, y) A(a,y) (u,v) 

A(x,y,2) A(u,v,w) O(u, v, w) - (Sena \" 
— =1 or = | ——— , (62) 

A(u,v,w) (x,y, 2) O(a,y,2)  \A(u,v,w) 

and so on. In fact, in Chapter 15 we will meet Jacobians again, in deriving expres- 

sions for area and volume elements for surface and volume integrals. 

  

EXERCISES 13.6 
  

1. 9 and a Given f(x,y) 
f(xo,yo) = 0, see if the conditions of Theorem 13.6.1 are 

met. [f so, develop the implicit function y(«) in a Taylor series 

about xo, through second-order terms, as we did in Example 

4 

(a) 2? +y-24y=0; (1) 
(b) 2? +4y?-4=0; (0,1) 

(c)a?+4y?-4=0; (0,-1) 
(d) a(cosry +1) +a3y +8 = 0; 
(e) 2(cos ry + 1) + (2? + 8)y = 0; 
(ha-~y-siny=0; (0,0 

(g)c-y+siny =0; (0,0) 
th) (y-Der- a? +1=0; (1 

2. In each case, find y/(a) and y’"(z 

(@cy-y = 1 
(jytyty= 
(e) ry + siny = 32° (fy 

3. Solve for y|z (i.e., holding z fixed) and z|y. 

(b) ce¥ + y = 3 

(d) eye = 1 

point (zo, yo) such that (a) ry + sin (x +2z)— 2? =5 

(b) ce¥ -—y —z*sinz =0 

(che*+e¥ +e% =3 
(d) cy? — Qa8z4+y?2? = 1 

4. Apply Theorem 13.6.2 to see if implicit functions u(x Y) 

and v(z, y) exist in some neighborhood of (zo, yo), given the 

values (29, Yo, to, vo) Satisfying the two relations. 

(—2, 1) (ajc -ucosv=0, y-usinu =0; (0, 0,0, 0) 

(b) e - ucosu = 0, y-usinv=0; (0,2, 2,7/2) 

(c)asinu+ y° ~y? =O, 

) (x +0)? —sin(uy) =0; (1,1,0,-1) 

(d) zcosu byte =0, e-ytsin(u2v) =0; (1, 1,7,9) 

:). (e) ycosu+a —y=0, v®+sin(e-y)=0; (1,1,7,0) 

(f) ceY ~2u? +047 = 0, siny—w?sinu = 0, (1,0,2,0) 

5. Evaluate u,,. 

cosy = x ay 
wb y rue 

y- ue” =6 

Nw
 

(Qe ybur ee 

(b) x -— ue 2 cosuv = 0, 

 



  

vu-y+yui=l 
2 y- u* cosu = | 

(c) ve” — wy Fu = 0, 

(d) a ~u* sin = 0, 

6. Evaluate the indicated Jacobian(s). 

9, 2 2 9 Af, 9) — Bain? yy) = ap2 yds : (a) f(u,v) = 8uv*, glu, v) = u? — v?; (zu, 0) 

(b) f(u,v,w) = uw, g(u,v,w) = 2v-w, 

UU. Of, g,h) 
h(u,v,w) =e; Du, v,w) 

My t 

(c) F(p,q) =p? +2, G(p,q) = psing; 

  

  

  

AFG) AGF) GF) 

Ap,q)’  Ap,q)’? Ala, p) 

@P(2y=y', Oey) =2—-y"; 

P,Q) AP, Q) 
A(z,y)’ Ay, x) 

(e) F(zyy,z) =c+y+2, Gla,y, z)=a? +y? +27, 

A(a,y,z) = ci +y2 +2; ( 

    

Ox, y, z) 

7. Show that 

(ay Aig) _ _ Oh 9) (bp) AA@ _ 9. f) 
A(z, y) Oy, x) x,y) Ay, x) 

8. Verify (44), given the relation 

(a) ce*¥ ~73u —5 =0 

(b) cu? — uew* — u® = 0 

(dJetut¢eitw—-9I=0 
(d) ee —sin{a+u)-1=0 

9. Verify (48) for these cases, by working out the eight partial 

derivatives, multiplying the determinants, and showing that the 

result is unity. 

(gazr=utv, yeur-v 

(bco=utv, yo=u'—v 
(c)e=u+te’, yuuer 

(d)veY-~ut+e?=2, 2+yr4+wevr=l 
(Qat+ytutvel, rtytuv4uv2=4 

10. (Chain rule) Recall from the calculus that if u = u(x(s)), 
then 

dee de = ce (10.1) 
dx ds ds 

which result is an example of the chain rule: equation (44) is 

a special case of (10.1), where s is wu. If wu and v are functions 

of x and y, and x and y, in turn, are functions of r and s, then 

(10.1) generalizes to 
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(u,v) Aa,y) — Au, v) 

Ox,y) r,s) — Ar, 8)" (10.2) 

Similarly, 

Au,v,w) Ax,y,z) — Ou, v,w) 103 

Aax,y,z) Ar,s,t) ~~ A(r,s,t)’ (10.3)       

and so on. Prove (10.2). HINT: Proceed essentially as we 

did in (50)-(51). 

11. Verify (10.2), above, for these cases. 

(ajx=ucosv, y=usinv, andu=rt+s, v=r?+s? 

(b)e=utv, y=u-v, andu=r?4+2s, v=rcoss 
()o=u, y=uty, and w=rcoss, v=rsins 

(djc=u?+4u, y=u-v, and u=r—s, v=r?+4s 

12. One speaks of a relation 

f(p,T,v) =0 (12.1) 

on the pressure p, the absolute temperature 7’, and the spe- 
cific volume v of a gas as an equation of state. 

(a) If we think of (12.1) as implicitly defining u(p, 7), show 
that 

Ov fe ang OM It ig 
Op fo Or fo’ 

(b) Is it true, in this case, that 

oT \~* 
= (=) ? (12.3) av _(a\" 4 au 

ap” \ av ne’ OF Ou 

Explain. 

(c) One well known equation of state is the van der Waals 
equation 

fy £0. (12.2) 

(p + 5) (v —b) = RT, (12.4) 
vu 

where a,b, R are constants. For this case, compute Up and 

up, using (12.2) and, again, using (12.3). Show that the results 

agree. 

13. Derive (57), just as we derived (55). 

14. In Section 13.6.4 we show how to transform the Laplace 

equation (52) under the change of variables z = rcos6é, y = 
rsin@. Do likewise, for the given change of variables. 

(ajae=2u+v, y=Qu-v 

(b)ce=2Qut+v, y=3utu 

(c)a=e’, you-v?
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(demu +v?, yeutu 

(e)c=urcosv, y= usin 
(he=w+tv, y=un-v 

15. In general, if we transform the Laplace equation (52) ac- 

cording to a change of variables 

x= x(u,v), y = y(u,v), 

Tua Toy = O- (15.1) 

However, show that if the transformation ts such that 

Ug = Uy, Uy = —Ue, and un + us #0, 

then the Laplace equation is preserved; i.e., the result és (15.1). 

NOTE: This result is at the heart of the method of conformal 

the equation gets changed; i.e., it is nor of the form mapping, to which we devote a later chapter. 

  

  

Figure 1. Maxima and 

minima. 

13.7 Maxima and Minima 

PREREQUISITE: Section 11.6 on quadratic forms is a prerequisite for Section 

13.7.2. 

13.7.1. Single variable case. Although our interest in this section is in functions 

of more than one variable, let us begin by reviewing from the calculus the theory 

of maxima and minima of functions of a single real variable. 

We say that a function f has an absolute maximum at xo if f(w) < f(xo) for 

all 2 in the domain of definition of f, and an absolute minimum at zo if f(x) 2 

f (vo) for all x in the domain. Further, it has a local maximum at a point xo in 

its domain if f(a) < f(ao) for all z in some neighborhood of xo, and a local 

minimum at zo if f(7) > f (zo for all x in some neighborhood of zo.* We use the 

term extremum to mean either a maximum or a minimum. For instance, a local 

extremum is either a local maximum or a local minimum. 

To illustrate, consider the function /, the graph of which is shown in Fig. I. 

We can see that f has extrema at A, B,C’, D, and F (but not at £): a local minimum 

at A, a local maximum at B, a local minimum at C, alocal and absolute maximum 

at D, and a local and absolute minimum at £’. In this section we will study extrema 

such as B and C, at which the derivative of f exists and ts zero. 

  

THEOREM 13.7.1 Vanishing Derivative, for Local Extremum 

For a function f of a single real variable x to have a local extremum at a point V 

in its domain of definition, where f is differentiable at X, it is necessary that 

f'(X) = 0. (1) 
  

Proof: Suppose f has a local maximum at X. Then f(x) < f(X) for all x's within 

some neighborhood N of X. Since f is differentiable at X, 

  

“The term relative is sometimes used in place of local, 
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fle) — fix 
lim Le) = F(X) (2) 
tI X au X 

exists, independent of the manner in which x approaches X. Since « + X, we can 
assume that a is within V,so f(a) < f(X). Ifa — X from the right, then 

im FOL) 
oN + w—- X 

= ["(X) <0 (3) 

because f(a) ~ f(X) <Oanda— X > 0, and if 2 — X from the left, then 

lm 2S) 7X) 
r3>X— uo X 

= /'(X)>0 (4) 

X) <OQand « —.X < 0. Comparison of (3) and (4) reveals that because f(x) ~ 
O. A sities irgument applies if f has a local minimum at X. a f(X)= 

That the condition (1) is not also sufficient is evident from Fig. 1, for f/(r) = 
Oat E, yet f has neither a local maximum at F nor a local minimum, it has a 
horizontal inflection point there. If the derivative f'(a) is found to vanish at a 
point X but we do not have the graph of f to examine, how can we. determine 
whether f has a local maximum, local minimum, or horizontal inflection point 

there? 

  

THEOREM 13.7.2 Maximum, Minimum, Horizontal Inflection Point 
Suppose that 

[(X) = F(X) = = fON(X) = 0, 
but f(X) 4 0, and that f!™(x) is continuous in some neighborhood of X, 

where n > 2. If n is even, then f has a local maximum at X if fO(X) < Qanda 

local minimum at_X if f/)(X) > 0. If n is odd, then f has a horizontal inflection 
point at _X. 
  

Proof: Since by assumption f')(a) is continuous in some neighborhood of X, 
there must exist a neighborhood N(.X) throughout which f')(x) has the same 

sign as f/(X).* By Taylor's formula with Lagrange remainder, we can express 

PO xy, 
rn! 

Na) = f(X)FO4 FOF 
  

“If F(x) is continuous at X. then, according to the definition of continuity, to each number € > 0 

there corresponds a number 6 > 0 such that |F(x2) — FCX)| < ¢ whenever Ja ~ X| < 6. Thus. if 

we choose € to be smaller than | (X)], then there exists a 6 > 0 such that F(a) has the same sign 

as F(X’) for all x in the neighborhood ja — X| < 6. 

657
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where € is some point between X and a. If we require that x be in N(X), then € 

must be in V(X) as well. Thus, knowing that f{() has the same sign as fo (X) 

and that 

fre) 
rn! 
  f(a) - f(A) = (e— 4)", (5) 

then we can see from (5) that: 

(1) if nis even and f™(X) > 0, then f(x) ~ f(X) > Oin N(X), so f has a 

local minimum at X; 

(2) if nis even and f'™(X) <0, then f(x) — f(X) < 0in N(X), so f has a 

local maximum at_X; 

(3) and if n is odd, then [independent of the sign of f')(X)] f(z) — f(X) is 
positive to one side of X and negative to the other, so f has a horizontal 

inflection point at X, 

which step completes the proof. @ 

NOTE: It is sometimes stated that if f’(X) = 0, then f has a local maximum, local 

minimum, or a horizontal inflection point at X if f’(X) is negative, positive, or 

zero, respectively. No, if f”(X) = 0 then no conclusion can be drawn, according 

to Theorem 13.7.2, until we determine the first nonvanishing derivative, f'™ (X). 

EXAMPLE 1. Let f(x) =(2/z — x — 1)* over 0 <x < oo. Then 

s(e)=2(-1) (nye ~e~1)=-a(1- va) (6) 

which vanishes at « = 1. Differentiating further, at 2 = 1, 

f'(Q) = 0, f") — 0, f(A) = Q, fr") =, 

Thus, n = 4, which is even, and f””"(1) > 0, so f has a minimum at z = 1. § 

EXAMPLE 2. Let f(x) = (x — 1)? Ina over 0 < a < oo. Again f’(1) = f"(1) = 9, 

but f’"(1) = 6. This time n is odd so f has a horizontal inflection point atz = 1. & 

13.7.2. Multivariable case. Let us extend these ideas to functions 

f(v1,..-,2n) of n independent real variables, 71,...,£n. We continue to be inter- 

ested in local extrema at interior points of the domain of f, and we adopt the vector 

notation x as shorthand for the point (21,...,Z,,) in the n-dimensional space, and 

f(x) as shorthand for f(#1,...,n). We say that f has a local maximum at a 

point X of its domain if f(x) < f(X) for all points x in some neighborhood of X, 

  

  

“
e
i
 

oag
org

cor
”



  

13.7. Maxima and Minima 

and a local minimum at X if f(x) > /(X) for all points x in some neighborhood 
of X. 

  

THEOREM 13.7.3 Vanishing Partial Derivatives for Local Extremum 

For a function f of n real variables x1,..., 2, to have a local extremum at a point 

X = (X1,...,X,) in its domain of definition, where f is C! in some neighbor- 
hood of X, it is necessary that 

    

  

Of Of of 
of 9 =0,..., = 0 7 
Oxy " Ax» Oxy ce 

at X. 

Proof: Let x, = x1(7),...,2n = Xn(7) be parametric equations of any curve 
through x = X inn-space, withx = X att = 0, say. Further, let F(r) = f(x(r)). 
Since f has been assumed to be C?, we can use the chain rule to express 

dF Of dx, _ Of dz 

dr Ax, dr On, dr - 
    

Since f(x) has an extremum at X, F'(r) has an extremum at 7 = 0 so, according 
to Theorem 13.7.1, it is necessary that 

Of dz 
x 

OLy, (X) dt 
    

dF Of day (9) = 2x) 
dt (0 Ox, dt 

(0) + ee- + (0) =0. (8) 

Since (8) must hold for every path x = x(r) through X, it follows from (8) that 

of Of 
= (X) = 0,... 
Da | ) Oxy, 

. . dry)... a 
arbitrary we can choose it so that Gy (0) is nonzero and the other derivatives, 

  (X) = 0, as was to be shown. That is, since x(7) is 

    

dr 
dx lx ; ; . 0 

<2 (0), ..., a (0), are zero, in which case we learn from (8) that OF 6x) = 0. 
dt dt Oxy” 

Similarly, we can let “2 (0) be nonzero and the other derivatives be zero, and learn 

. 0 
from (8) that OF cx) = 0,andsoon. gw 

Ox 

Before continuing, there is a point of rigor to address. Namely, why do we 
bother introducing the space curve x = x(7) in the preceding proof? Why not use 
the simpler looking differential form of the chain rule 

ar) Of 
df = OF x) der, shoves (X)dryz, = 0 (9) 

Ox Oty 
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Figure 2. Saddle at (0, 0). 

in place of the derivative form (8)? We could argue that since x1,..., Up are inde- 

pendent variables, the increments da, ... ,dx,, are independent as well. Thus, 

  

letting dx, be nonzero and day = ++: = dt, = 0, we learn from (9) that 

Of . . ; 
és (X) = 0, and so on, as before. The problem with that approach is that the 

Ly 
differential version (9) treats df, dr,,... , d@p as though they are finite numbers, 

whereas they are not. Nonetheless, in Section 13.7.3 we will use (9) for simplicity, 

with the understanding that we can always change to the (impeccable) derivative 

form if we wish to. 

Let us continue. Any point X at which (7) holds is called a critical point of f. 

As emphasized below Theorem 13.7.1 for the case of functions of a single variable, 

the condition (7) [like the condition (1) in Theorem [3.7.1] is necessary but not 

sufficient for the existence of an extremum of f at X. For instance, if 

f(e1,a2) = 2} — v3, (10) 

then Of /Oa, = 2x, = O all along the line w, = 0 (Le., the v2 axis) in the 1, x2 

plane, and Of /Org = ~—2x2 = 0 all along the line ry = 0, so both are zero at 

the intersection of those lines, namely, at the origin, X = (0,0). However, along 

the x, axis f(a@1,0) = vy has a “valley,” a minimum, whereas along the x2 axis 

f(0,v2) = —x3 has a “mountain,” a maximum, so the flat spot on the f surface at 

(0,0) is neither a local maximum nor a local minimum. Rather, we call ita “saddle” 

because it resembles an equestrian saddle, a valley one way and a mountain the 

other (Fig. 2). : 

Extending this idea to higher dimensions, we say that f(x) has a saddle at a 

point X in n-dimensional space if f is C' in some neighborhood of X, ifOf/0x, = 

-.. =: Of /Ov, = 0 at X, and if f(x) — f(X) takes on both positive and negative™ 

values in every neighborhood (no matter how small) of X. Of course, ifn = 1 the 

saddle is actually a horizontal inflection point, and if n > 3 we cannot display the 

graph of f as we have done in Fig. 2 since we would need four or more dimensions. 

Given a function f(21,..., 2), Suppose that, using (7), we determine a criti- 

cal point X of f. How can we determine whether f has a local maximum, a local 

minimum, or a saddle there? Let us explain the essential idea briefly and heuristi- 

cally. 

For a function of a single variable, f(x), with f’(X) = 0, we used Taylor’s 

formula to write 1 

f(x) = MX) +5 (Ole - XP (1 
a 

for some € between X and x so 

; py Loony - 
f(a) ~ MX) ~ 5 P(X = XY (12) 

asa — X. If f’”(X) <0 then the right-hand side of (12) represents a “mountain” 

and f has a local maximum at X; if f”(X) > 0 then the right side represents a 

“valley” and f has a local minimum; if f”(X) = 0 no information is obtained and 
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we need to include more terms in Taylor’s formula, namely, the first nonvanishing 

term beyond the initial f() term. 
For functions of more than one variable the idea is the same. Consider two 

variables, for simplicity. Given f(a ,,%2), with Of /Oa, = Of /Oxg = Oat X = 
(X1, X2), use Taylor’s formula to write 

f(1,22) — f(M, X92) ~ 5 [ fea, (X)(a1 _ X,) + fons (X) (a2 _ X»)° 

+ 2f era (X)(a1 — X1) (a2 — Xo)]- (13) 

Observe that the right side of (13) is a quadratic form in vw, — X4 and vy —- X9 soit 

can be reduced to canonical form as was explained in Section 11.6. Thus, (13) can 

be re-expressed as 

f(a1,a2) — f(X1, Xo) ~ BT + Ao, (14) 

where A, and Ag are the eigenvalues of the matrix 

1 feyx, (X) feeyay(X) aut . (15) 
2 | feyeo(X) frye (X) 

and where X = [%1,%|" and x = [w, — Xy,xq — Xo] are related through the 
modal matrix transformation x = Qx. Since (14) expresses f (#1, 2) — f(X1, X2) 
as a sum of squares [just as (12) expresses f(x) — f(X) as a square] it reveals 
whether f has a local maximum, local minimum, or saddle at X: if both Ay and 

Ap are negative then f has a local maximum there; if both are positive then f has a 
local minimum: and if one is positive and one is negative then f has a saddle. 

In fact, we have the following theorem. 

yr 

  

THEOREM 13.7.4 Maximum, Minimum, Saddle 

For a function f of n variables 71,...,2n, let 

0 Of O 
Of = 0, OF 9 bey OF 
Ory * Oxo OLn 

at a point X in f’s domain of definition, let f be C* in some neighborhood of X, 

and define the 7 * m matrix 

feeya,(&) feyao(X) ue Freya, (%) 

Foor, (X) fava (X) ut frown (X) 

  0 (16) 

A= (17) 

Fona, (X) Pepa (&) ut Fon, (X) 

Let detA be nonzero. If A is positive definite then f has a local minimum at X, 
if it is negative definite then f has a local maximum at X, and if it has at least 
one positive eigenvalue and at least one negative eigenvalue then f has a saddle 

at X. 
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Proof: Before beginning the proof let us make several remarks. First, the 1/2 
present in (15) has been omitted in (17) because the theorem concerns itself only 
with the sign of the eigenvalues, not with their magnitude. Also, observe that 
Freja (X) = fexe;(X%) because f has been assumed to be C® in some neighbor- 
hood of %; thus, A is symmetric. Finally, why do we ask detA to be nonzero? If 
detA = 0, then \ = 0 is among the eigenvalues of A, which borderline case we 

wish to avoid. For recall from Theorem 13.7.2 (for the single-variable case) that if 

f'(X) = Oand f"(X) = 0 then we need to keep going until we come to the first 
nonvanishing derivative at X before we can tell if f has a maximum, minimum, 
or saddle at X. For the more difficult multivariable case we prefer to avoid such 
additional complications. In any case, detA # 0 is the generic case, so we are not 
giving up very much. 

To prove the theorem we begin with Taylor’s formula 

. 1 nm Tr 

F(x) ~ F(®) = 5 DDS feve (6)(ei — Xi) (ay -— X53) (18) 
i=l j=l 

with the first-order terms omitted by virtue of (16), where x = (2,...,2n), X= 
(X1,...,Xn), and € = (&,...,&,) is some point on the line connecting x and 
X.* Since f is C? in some neighborhood of X, there is some neighborhood N(X) 

throughout which the fz,2,;(€) coefficients in (18) have the same sign as fx;«,(X). 
Thus, in place of the right side of (18) we can use the quadratic form 

N WN 

SY Feces (XC — Xi)(ej = Xj) (19) 
i=l j=l 

to determine if f(x) — f(%X) is less than or equal to zero, greater than or equal 
to zero, or of mixed sign in N(X) and, from the theory of quadratic forms, these 
circumstances correspond to A being negative definite, positive definite, or having 
eigenvalues of mixed sign, respectively. @ 

EXAMPLE 3. Identify and classify any local extrema and saddles of the function 

f(x,y) = In aly — 1) + 1). (20) 

(Here, x; is x and 9 is y.) Setting 

  

. 2(y ~ 1) . 2x 
(2,y) = = = 0 and Sf, (2, y) = —————— = 0 21 
Io(ey) 2e(y~-1)+1 Ju(ey) 22(y— 1) +1 G1 

gives the single critical point a = 0, y = 1. Next, 

4(y — 1)° 
few (L,Y) a [Qa(y _ 1) +4 1]?? 

*That is, €) = ey # (NX) — wi)t,... En = tn + (Xn — tn)7 for some 7 in 0 <7 < 1. These 

are parametric equations of a straight line from x to X in n-space. 
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2 

fyyl@¥) = “ vy eS aly — 1) + TE? 
2 

[2e(y — 1) +1)?’ 

(22) 

fey (2, y) = 

so we see from (20)-(22) that f, fr, fy, fea, fyy, and fry are continuous everywhere in the 

x,y plane except along the curve 2z(y ~ 1) + 1 = 0 (shown as C in Fig. 3), along which 
they are undefined. Thus, f is C® in any neighborhood, about (0,1), of radius R or less 

(Fig. 3). Next, 

Fux(O,1)  fey(0, 1) | 0 2 
A=|% ay | (23) 

Ley (0, 1) fay (9, 1) 2 0 

with eigenvalues A = +2,—2. The latter are of mixed sign so, according to Theorem 

13.7.4, f has a saddle at (0,1). 

COMMENT 1. We did not bother verifying that detA + 0 because that condition merely 

served to disallow zero as an eigenvalue and, indeed, we found that \ = +2. 

COMMENT 2. Even without reducing the quadratic form 

f(x,y) ~ F(0, 1) ~ x [fox(0, 1)x? + Fyy(0, 1)(y ™ 1)? + 2 fry (0, L)a(y ~ 1)] , (24) 

oY, 

2(f(w.y) — f(0, 1)] ~ (02? + O(y — 1)? + 4a(y —1)] =4e(y-1), 25) 
to canonical form, we can see from (25) that f(z,y) — f(0,1) is of mixed sign in every 
neighborhood of (0,1) as indicated in Fig. 4. ff 

EXAMPLE 4. Consider 

F(x,y,2) = sin (2? + y? +27) 4 ey + a2 + yz. (26) 

Working out f,, fy, and f,, itis easily found that (0,0,0) is a critical point of f (although 

not the only one; see Exercise 9). Working out the second-order partial derivatives as well, 

we find that f is indeed C® in a neighborhood of (0,0,0); in fact, it is C? everywhere. 
Further, fax = fyy = fez = 2and foy = fez = fyz = 1 at (0,0,0) so 

R
o
e
 2 1 

A=|1 1|, (27) 
1 2 ee
 

the eigenvalues of which are A = 1,1,4. Since all of the \’s are positive, f has a local 

minimum at the critical point (0,0,0). 

EXAMPLE 5. Consider 

f(x,y) = ey ~ ay’. (28) 

  

Figure 3. Neighborhood 

of (0,1). 
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Figure 4. Mixed sign of 

22(y — 1) near (0,1).
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Figure 5. Sign of 

f(z,y) = wy — ay’. 

” 
120 

92 

Q I x 

Figure 6. Three charges. 

Then (Exercise 4) there is only one critical point, at (0,0), and fox = fuy = fey = 9 there, 

$0 
0 0 

a=] 5 |: (29) 

Since detA = 0 (and A = 0,0), Theorem 13.7.4 does not apply, (0,0) is said to be a higher- 

order critical point. 

Of course, higher-order critical points occur for functions of a single variable as well, 

as in Example 1, where we had f’(1) = f’”"(1) = 0 and we had to look to f"""(1) for clar- 

ification. But whereas Theorem 13.7.2 covered such higher-order critical points, Theorem 

13.7.4 does not. 

In the present example inspection happens to suffice, for if we factor fas vy(a- 

y)(a + y) we can see that f is alternately positive and negative in 45° wedges as shown in 

Fig. 5. Hence, the critical point of f at (0,0) is a saddle. 4 

An important physical application of these ideas involves equilibrium states 

and their stability, because many force fields (such as gravitational force fields) 

have associated with them a potential energy V (2, y, z), such that OV/Ox, OV/Oy, 

AV /dz are the x,y, z force components, respectively, at any field point (2, y,2). 

Thus, the critical points of V are the equilibrium points of the force field, points 

at which the force is zero. If V has a local minimum at such a point, then the 

equilibrium at that point is classified as stable; if V has a local maximum or saddle 

there, then the equilibrium at that point is unstable. 

For example, itis known from Coulomb’s law of electrostatics that the electric 

potential V(x, y, 2) at any field point x,y,z, induced by a charge of strength @ 

coulombs (where Q can be positive or negative) at xo, yo, 20 1S proportional to Q 

and inversely proportional to the distance between x,y, z and 2, Yo, 20. Letting 

the constant of proportionality be /, then 

Q 

VJ (# ~ x0)? + (y = yo) + (2 = 20)? 
and the force components induced at any point x. y, z in the coordinate directions, 

per unit charge at x, y, 2, are given by F, = OV/Ox, Fy = OV/Oy, F. = OV /Oz, 

respectively. 

  V(a,y,z) =k ; (30)   

EXAMPLE 6. Equilibrium Points of Charge Distribution. Let three charges, 

each of strength Q coulombs, be placed in the x,y plane at the points (1,0), (0,0), and 

(0,1), respectively (Fig. 6). Find any equilibrium points and determine their stability. 

Superimposing the potentials induced by the individual charges gives 

. l 1 1 

V(x, y) = kQ so + a ==}. (G1) 
JVre+y? fSa~- Pty Ve? +(y~ 1) 

Using computer algebra we can evaluate OV/Ox and OV/Oy and solve the equations 

av av 
(ey) = 0, ——-(P,y) = 32 ay y) = 0, ay y) =0 (32) 
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for v, y; the Maple commands are given at the end of this section, The result is 

X = 0.0475, Y = 0.5130. (33) 

Next, evaluating 0°V/Ox*, 0°V/Axdy, G°V/Oy? at that point gives, for the A matrix in & / Y y f & 

(17), 
| Vael( XY) Vey(X,¥) | — | —14.875 —1.448 

As Ly XY) Vyy(¥,¥) | | 1448 31.014 ]’ (34) 

with eigenvalues 

A= ~14.42, 31.06. (35) 

Since the \’s are of mixed sign the equilibrium point (33) is unstable. Physically, that 

means that if a charge is placed at that point, then even the slightest displacement will 

catlse it to move away. 

COMMENT. Does it not seem peculiar that the equilibrium point (33) is not on the axis of 

symmetry, the line y = x? This point is discussed at the end of the section when we give 

the Maple commands used in this example. & 

13.7.3. Constrained extrema and Lagrange multipliers. In Section 13.7.2 we 
studied the problem of finding one or more points, if any, that extremize a given 
function f: 

f(t1,...,@n) = extremum, (36) 

where, by an extremum we mean a local maximum or a local minimum. Now, 

however, we consider the problem of extremizing a given function subject to one 
or more constraints. 

To illustrate, suppose we wish to find the point on the plane 2x — y+ 4z = 
3 that is closest to the origin. Since the distance from the origin to (x,y,z) is 

x2 + y* + 2% subject to the 
  

x? + y* + 2%, we wish to minimize the function 
constraint that w,y,z are related according to 2x — y+4z = 3. Surely, if we 

minimize the distance we will also be minimizing the square of the distance, «* + 
y” + 27, so let us state the problem in the more convenient form 

    

f(t,y,2) = v? + y? +27 = minimum, (37a) 

subject to the constraint 

g(@,y,2) = 2a -y+2= 3. (37b) 

There is only one function being extremized, but there could be more than one 
constraint: 

f(ti,..-, Un) = extremum, (38a) 

subject to the constraints 

Qi(@q,.-.,Un) = 1, 

(38b) 

Ge(@1,.--5 En) = Ch.
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In this discussion let n = 3, for definiteness, and let & = 1; other cases will be 

found in the exercises, and the choice n = 3 and & = 1 should suffice in explaining 
the main ideas. Thus, we consider the problem 

f(x,y, 2) = extremum, (39a) 

g(@,y,z) =>, (39b) 

where we are using the simpler notation «, y, z in place of x1, 72,23. We assume, 

throughout this Section 13.7.3 that f and g are C* in some neighborhood of the 

point under consideration, at which f has an extremum, 

To begin, we write 

Of Of Of 
df = 5g ee + By wid + 5 (X)dz = 0 (40) 

at X. [That is, let us use the more convenient differential form of the chain rule, 

as in (9), rather than the derivative form, as in (8).] However, and this is a key 

point, we cannot use the arbitrariness of the dz, dy, dz increments to infer that 

Of /Ox = Of /Oy = Of /Oz = 0 at X, because those increments are not arbitrary. 

Rather, x,y,z are related through the constraint equation (39b) so the dz, dy, dz 

increments are related as weil. 

One way out of this difficulty is to solve (39b) for z as a function of x and y, 

which will be possible if g.(X) #4 0. Then, if (39b) gives us z = Z(x,y), we can 

put that result into (39a) and write 

f(x,y, Z(2, y)) = F(a, y) = extremum. (41) 

Although it is true that x, y, z are not independent variables (for they are related 

through the constraint equation), z and y, by themselves, are independent.* Thus, 

OF 
dF = OF aw + OF ty = 0 (42) 

Ox Oy 

does imply that 

OF 
= =0 43% 

OF 
= 43b By 0, (43b) 

because da and dy in (42) are arbitrary independent increments. The idea, then, is 

to solve (43a,b) for x and y; then, z = Z(a, y) gives z. 

EXAMPLE 7. Let us use this method to solve the problem stated in (37), above. Solving 

(37b) for z gives z = 3— 2x + y so 

flay, Z(e,y)) =e? +y? + (3-2w+y) = Flay). (44) 
  

“That is, we can assign values to z and y independently. Then, z is not arbitrary but follows from 

the constraint equation (39b). 
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Then, ) 9 F 
Co = Qn — 4(3 ~ 2a + y) = 0, 
Oz , 
OF (45) 
——~ = Qy + 2(3 — 22+ y) = 0 
oy 

sox = Land y = —1/2. Finally, 2 = 3-22 +y = 3-—2- 1/2 = 1/2. To verity 

that X = (1, — 5 5) does give a minimum [as specified in (37a)], and not a maximum or a 

saddle, we can apply Theorem 13.7.4 to f(x, y). We find that 

_ F, x £ °y y _ 10 —4 

A= Peey Py | ~ —4 4 | 

has eigenvalues \ = 2 and [2. Since both are positive, X = (1,-4, 4) does give a 2 

minimum, as desired. @ 

The essential idea behind the method described above is to use the constraint 

equations to eliminate variables so that those remaining are independent. Let us 

call that procedure the method of elimination, to distinguish it from the method of 

Lagrange multipliers due the the great French mathematician Joseph Louis 

Lagrange (1736-1813). Like Euler, Lagrange also worked on the applications 

of mathematics to mechanics. 
To explain Lagrange’s method, consider once again the representative problem 

(39). Besides df vanishing at an extremum, so does dg (indeed, dg = 0 everywhere 

because g is a constant). Thus, 

df = frdu + fydy + f.dz = 0, (46a) 

dg = grdx + gydy + gzdz = 0, (46b) 

from which it follows that 

df — \dg = (fr — Agr)dx + (fy ~ Agy)dy + (fz ~ Agz)dz = 0, (47) 

where \ is a yet to be determined parameter, the so-called Lagrange multiplier. 

Remember that x. y, z are not independent variables because they are related through 

(39b). Thus, we cannot argue that the dx, dy, dz increments in (47) are arbitrary 

and hence that each of the coefficients fi, — Aga, fy — Agy, fz ~ Agz must vanish at 

the extremum X. However. we can reach that same conclusion by a different logic. 

For suppose that g- # Oat X. Then. by choosing A to be f./g- (which number 

exists because g, # 0 at X), (47) reduces to 

(fe — Aga )du + (fy ~ Agy)dy = 0. (48) 

[When we write \ = /-/g-, we do not fear that we are setting a constant equal to 

a function of az, y, 2, for (46) and (47) hold at X. so fr, ga, fy, »-- , really mean 

fe(X), ge(X), fy(X). ... +: that is. they are numbers, not functions.] Now, since 

a and y, by themselves, are independent variables, we can argue that dx and dy
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in (48) are arbitrary independent increments so that the coefficients f, — Ag, and 
fy ~ Agy Must vanish at X. 

Consequently, we have the four equations 

fe ~ Age =9, fy ~Agy = 0, fe — Age = 0 (49a) 

and 

gee (49b) 
on the four unknowns x,y,z, and A. In effect, the Lagrange multiplier method 
amounts to forming a new function, 

(50) 

  

(or f + Ag; it doesn’t matter), and extremizing f* subject to no constraints so that 
fc = fy = f2 = 9. , which equations are identical to (49a). Observe that even 
though we already used the constraint equation g = c in obtaining (46b), we still 
need to append g = c to equations (49) because ° ost information when we took 
the differential of g = c, in (46b), in that the constant c thereby dropped out. 

EXAMPLE 7. Let us solve the problem stated in (37) once again. this time using the 
Lagrange multiplier method. With 

fis f-Agax?+y +2? -AQe~y +2), 

we have 

fe = 2u-2\=0, 

y = 2y+A=0, (Sta 

fr =2s-A=0 

and 

g=2n-yt+2=3. (51b) 

Solving (51) gives x = 1, y= —1/2, 2 = 1/2, and \ = 1. Thus, X = (1,~4, 4) as 
found in Example 7 by the method of elimination. 

COMMENT. In this problem we have no special interest in the ultimate value of A; A is 

simply an auxiliary variable. However, in physical applications \ often turns out to have 

physical significance. For instance, in studying the dynamics of the motion of a bead along 

a curved frictionless wire \ might turn out to be the normal force between the bead and the 
wire. @ 

EXAMPLE 8. Suppose that we wish to construct a tin can in the shape of a rectangular 
prism, Let the base dimensions be « by y and let the height be z. such that the volume cy: 

is a prescribed value V. The base is to be twice as thick as the other five sides so its cost 

per unit area is 2a, where a is the cost per unit area of the other sides. Seeking to minimize 

the material cost gives the problem: 

Material cost: f(a.y,2) = a(8ay + 2vz + 2y2) = minimum, (52a)
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subject to the constraint 

Volume: g(a,y,z) = vyz = V. (52b) 

Defining f* = f — Ag, set 

ft = See — Agu = a(dy + 22) ~Ayz = 0, 

fy = fy ~ Ady = a(32 + 22) — Anz = 0, (53) 

fe = f.— Ag, = a(2x + 2y) — Acy = 0. 

Solving the four equations (52b) and (53) gives «= y = (2V/3)/8, 2 = 3(2V/3)'/". a 

Closure. In this section we review the theory of maxima and minima for functions 

of a single variable before turning to the unconstrained and constrained extrem- 
ization of functions of more than one variable, considering only local extrema at 
interior points of the domain of the function f being extremized. If f(x,,...,@n) 

is C' in some neighborhood of the point of extremum, XX, then the extremum con- 
dition df = 0 implies that we must have 

Of | _ Of | 

dr, Oty 0 (04) 
  

at X, Points at which (54) holds are called critical points of /. However, f need not 
have an extremum (local maximum or local minimum) at a critical point: it could 

have a saddle there. Assuming a bit more of f (namely, that it be C? rather than 
C* in some neighborhood of X) and looking to the second-order terms in Taylor’s 
formula, we show in Theorem [3.7.4 that everything hinges on the eigenvalues 
of the matrix A = { frie; (X)} associated with f: if all of A’s eigenvalues are 
negative then f has a local maximum at X. if all are positive then f has a local 
minimum there, and if they are mixed in sign then f has a saddle there. 

For the extremization of f in the presence of one or more constraints of the 
form g = c, the extremum condition df = 0 still holds but no longer implies 
(54). We study two methods of solving such problems, the method of elimination 
and the method of Lagrange multipliers. Working with three independent variables 
(x,y, 2) for definiteness, we find that both methods work if g.(X%X) # 0 [or, failing 
that, if either gy(X) 4 0 or g-(X) # 0]. 

In closing, let us mention an important type of extremization problem that does 
not fit the categories covered tn this section. Namely, we seek x1,....2, So that 

fry... ty) = bpayp be + bye, = extremum. (SSa) 

subject to the constraints 

Cae wees ly) = A@yp tee Oat = C1, 

Ge(2 1. ln) = Aly be + Abn = Ch, 

669
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where all the x,’s are required to be nonnegative. Or the constraints might be 

inequalities such as 

ayy te + Ain®n S C1; (56) 

but this case is equivalent to the one stated above since we can introduce an addi- 

tional variable z,4, and rewrite (56) as 

ayy to + Ginn + ony. = C1 

with the proviso that 241 1s nonnegative too; tn+1 is called a slack variable. 

Such problems are of great interest in the field known as operations research, 

often abbreviated as OR. Solutions are obtained not by setting various partial dertva- 

tives equal to zero but by special techniques such as the simplex method, which 

fall under the general heading of linear programming. This topic is beyond our 

present scope." 

Computer software. Let us go through the Maple commands used in Example 

6. First, define the function V by entering 

Vis (0°2-+y°2)° (1/2) + ((@— 12+ y°2)(— 1/2) + (w2+ (y= 1)2)"(-1/2)) : 

We can obtain OV/dz by a diff(V, x) command, but since we will subsequently 

wish to call that quantity, let us both evaluate it and give it the name Ver at the same 

time. Similarly for OV/Oy. Thus, enter 

Va := diff(V, x) : 

and 
Vy c= diff(V, y) : 

(Whereas we've been using colons you may prefer semicolons so that the results 

will be printed.) To find the solution of (32), use the fsolve command, and define 

the solution(s) as X,Y at the same time: 

XY := fsolve({Va =0,Vy = 0}, {a,y}, {e = 0.1, y= 0..1}); 

where we have used the optional {a = 0..1,y = 0..1} to narrow the solution search 

because it can be seen by inspection (Exercise 11) that the equilibrium point(s), if 

any, must lie in that unit square. The output is 

XY := {y = 5129880394, ¢ = 04746059840 } 

Next, 

Vea : = diff(V, x, x); 

Vey: = diff(V, x, y); 

Vyy : = diff(V, y,y)s 

*See. for instance, G. B. Dantzig. Linear Programming and Extensions. 2nd ed. (Princeton, NJ: 

Princeton University Press. 1963) or R. Fletcher, Practical Methods of Optimization, 2nd ed. (New 

York: Wiley, 1988). 
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give 0°V/dx7, 0°V/dxdy, 0°V/dy*. To evaluate these second-order derivatives 
at X,Y and define them as the elements of the A matrix, enter 

all tox eval(subs XY, Vax)); 

ai2 : = eval(subs( XY, Vcy)); 
a22 : = eval(subs( XY, Vyy)); 

which gives 

all : = —14.37506987 

al2 : = —1.448243172 

a22 : = 31.01365215 

respectively. Then enter 
with(linalg): 

to access the linear algebra package. Finally, 

A := matrix(2, 2, (a11, @12, a12, a22)); 

and 
eigenvals(”); 

give the eigenvalues 
—14.42123281, 31.05981510 

as stated in the example. 
Note the use of the ‘‘subs” in the eval commands. In case that usage is not 

clear, let us give another example: to evaluate 327 at x = 5 use the command 
eval(subs(5,3 * 2*)). Note also the strange outcome, that the equilibrium point 
is not on the line of symmetry y = zx even though both the potential V(z, y) 
is a symmetric function of 2 and y or, said differently, even though the physical 
arrangement of charges is symmetric about that line. (You might want to think 
about that paradox before reading on.) However, we must realize that the fsolve 
command does not necessarily give all solutions; in fact, if we do not use the 
option to narrow the search to the unit square then the command gives no solu- 
tions at all. If there is symmetry about the line y = «x then there must be at least 
one more solution within the unit square, at the point 2 = 0.5129880394,y = 
0.04746059840. To test that idea we can change the {x = 0..1, y = 0..1} option 
to {x = 0.5..0.52, y = 0.045..0.050}, say. That change does indeed produce the 
suspected solution, so there are nvo equilibrium points and they are arranged sym- 

metrically about the line y = zx.
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EXERCISES 13.7 
  

1. The given function has a critical point at x = 1. Classify it 

as a local maximum, local minimum, or horizontal inflection 

point, 

(a) (w@ — 1)? Ina 
(c) a(x — 2)(x — 1)? 
(e) sin [5(a — uy) (f) exp [8(a ~ 1)” | 
(g) (1 — x) sin [(2? — 1)"] (h) exp [~(Inz)" 

2. Find all critical points of the function and classify them as 

local maxima, local minima, or horizontal inflection points. 

(a)exp(~a°), -00 <2 < 00 
(b) 1/(a* ~4a +5), -co <a <0 
(c)exp(12% — 29), -o0 <a < 00 

(b) 3(a — 14 +5 
(d) (@ + Iw ~ 3)(1 = 2) 

‘] 

(d)—3(Ina)?, O<a2< oo 

(e)(Ina)?, O< a2 <co 
(fYexp(—sing), -lL<a<5 

(g)@°e7*, = -c0 < 2B < 00 
(h)4fa-27, 0<ar<w 

3. Show that if f(z) and g(a) have local maxima at z =X, 
then the product f(2)g(a) has a critical point there, which can 
be a local maximum, a local minimum, or a horizontal inflec- 

tion point. 

4, Show that the only critical point of f(a, y) = x°y — ry? is 

(0,0) as claimed in Example 5. 

5, Find, and classify, all local maxima, local minima, and sad- 

dies for the given function of 

possible. 

(a) 227 +ay+y?+7Ty4+8 (bla? +ay+y? + by 
(c) ze? +4ay+y2?+624+8 (d)-62ry+ xz 

(e) 2(22 — y) (f) exp [-(2? + y? + 1) 

(g)In(e? +cy+y? +4) (h) exp (a? — y?) 
(i) 2zy — sin.xy G)ai —~a2y+2° 

(k) In (1 + 2? + y*) (jak ~ay+a°y-2 

(m) i/(ry + y? +y +1) (n} 2ary + a® 

6. Same as Exercise 5. 

(a) f(v,y,2) = a? + 8xy 4 2? 
) fla.y,2) = = exp (22° + a2 — 527) 

f(a,y,z) =a ty? +8 bay bast ys 
ae uy z) = In (x? ty" +2741) 

fw, 2, y,2) = exp (w? — we ~ ye +2 *) 
i” Flw, nye = 7—A(w? + 2° + y? + 2°) + dwa + 2we 

1+ a? + 5y? + 2(2 - 1)? 
1) has a local minimum at (0,0,1)? 

7. Is it true that f(z,y,z2) = 

+ 2sin [ax(2 —- 

xc and y. Use Theorem 13.7.4 if 

8. Let f(a,y,2) = (L+a? +y")® +asin (wy) + 62°(1 = 2). 
For what values of a, if any, will f have a local minimum at 

(0,0,0)? 

9. In Example 4 we considered the critical point at (0,0,0). 

Show that f has infinitely many other critical points as well. 

Find them and show that they comprise an infinite set of circles 

in 3-space. HINT: You will need to find nontrivial solutions of 

the equations 

2ce+y+2e2 = 0, 

e+2cy+2 = QO, 

e+y+2ez = 0, 

where c = cos (x? + y? + 2°). 

10. For the case of a function of only two variables, f(a, y), 

one can find the eigenvalues of the A matrix in (17) by the 

quadratic formula and examine their signs. Doing so, one can 

use Theorem 13.7.4 to obtain the following more specialized 

and frequently stated theorem, which we ask you to prove. 

  

THEOREM 13.7.5 Maximum. Minimum, Saddle 

Let 

fr{a,b) =O and f,(a,b) = 0, (10.1) 

where (a,b) is an interior point in the domain of definition 

of f, and let f be C? in some neighborhood of (a, 6). Define 

fey(a, 6) 

Fula, b) 

0, then f has a local mini- 

| f 

few (a, b) 

Del ren 

(i) Tf fer(a,b) > O and D > 

mum at (a, b). 
Gd If fee(a,b) < Oand D > 0, then f has a local maximum 

at (a, 6). 
(iii) If D < 0, then f has a saddle at (a, 6). 

(10.2) i 

  

11. (More about Example 6) (a) In Example 6 we state that it 

can be seen by inspection that the equilibrium point(s), if any, 

must lie within the unit square 0 < 2 < 1,0 < y < 1. Explain 

why that must be so. 
(b) To understand the result obtained in Example 6. draw a



  

neat approximate sketch of the forces acting on a charge (of the 

same sign as Q, say) at the equilibrium point.w = 0.047, y = 

0.513, showing how the forces do indeed balance at that point. 

Also, explain, in physical terms, why the equilibrium is unsta- 

ble. 
(c} Repeat the calculation of Example 6, again using computer 

software, with the charge at the origin removed. 

(d) Repeat the calculation of Example 6, again using com- 

puter software, with another charge @ added at the point 

c=ly=l. 
(e} Repeat the calculation of Example 6, again using computer 

software, but for a charge configuration supplied by your in- 

structor. 

12. (Linear least-squares fit) Suppose that the values f(z) 

= fi, f(we) = fo,.... flan) = fx are known; e.g., they 

may be experimental datum points. And suppose that we wish 

to find the best linear fit f(z) = av + b = F(x) to these data, 
best in the sense that the total squared error # is minimized: 

N 

E(a,b) = F(a;) — f° = minimum. (12.1) 
, J di 

jel 
It may be assumed that 2,,..., 2 are distinct points. 

(a) Derive the results 

  a= NY aif; ~ (2 fi) zy) (12 2) 

NSO vy ~(Yoa)? , ~ 

b= ( re) fi - Qe Ql afi) (12.3) 
  

NSC x ~(SxjyP 

where 5_ denotes ear 

(b) Verify that (12.2) and (12.3) give a local minimum of 

E(a,b) and also that the denominators in (12.2) and (12.3) 

cannot vanish. HINT: The Schwarz inequality |u-v) < 

ral] ivi], where u = (t1,...,UN). Vv = (vy,....Ux) should 
be useful if u and v are suitable chosen. Also, you may use 

Theorem 13.7.5 in Exercise 10 if you wish. 
(c) Show that the local minimum of £(a,6) is. in fact, an 

absolute minimum, 

  

13. (a) Find the point on the line x + 2y = 2 that is closest 

to the origin, by the method of elimination and also by La- 

grange’s method. Prove that your result is indeed a minimum. 

(b) Repeat part (a) for the curve x = y* — 2. 

14. (Optimum soup can) (a) Suppose that we wish to design 

a cylindrical soup can, out of sheet metal having a cost of a 

cents per unit area, with a prescribed volume \’, so as to min- 
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imize the material cost. Letting w be the radius and y be the 

height, we have the optimization problem 

Cost: f(a,y) = e(2ra? + 2rey) = min (14.1) 

subject to the constraint 

Volume: ra?y = V. (14.2) 

Solve for « and y by the method of elimination and also 

by the Lagrange method, and show that « = (V/2m)!/°, 

y = 2(V/2m)/%. Verify that this solution does give a mini- 
mum. 
(b) Notice from the solution to part (a) that the resulting soup 

can has a height that is equal to its diameter, whereas actual 

soup cans are a bit taller than that. Perhaps the manufacturer 

would not only minimize the cost, for a given volume, but 

would also like a height-to-diameter ratio that makes the can 

look as large as possible. Suppose the proportions that make 

the can look as large as possible are defined by y = ka, where 

& is an empirically determined constant. Then the optimization 

problem (14.1) and (14.2) can be restated as 

ala(2ra” + Inay)) + (1 — a)(y — kx)? 
2 WEY 

if min, 

VY, 

(14.3a,b) 

where we prescribe a such that 0 < a <.1. Por example, if 

we care only about minimizing the cost we set a = 1, if we 

care only about making the volume look as large as possible 

we set a = 0, if we care equally about these considerations we 

set a = 0.5, and so on. [You need not solve (14.3).] Why was 

it important to square the y — Aw term in (14.3a)? Why did we 

not need to square the square-bracketed material cost term in 

(14.3a)? 

15. (a) Show that the application of the Lagrange method to 

the problem 

ll 

f= ay + as = extremum, (15.1) 

g= att + 2925 + 2aj;ot (ro = ¢ (15.2) 

produces the eigenvalue problem 

ayy a4 Ly 1] x 
, | = 7 . (15.3) 
yg age £2 A | £2 

NOTE: Observe the correspondence between a given eigen- 

value problem (15.3) and the finding of maximum and mini-
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mum distances from the origin of an x1, £2 plane to quadric 

curves a1, 2} + dgo72 + 2a,9a,22 = constant. As discussed in 
Section 11.6, 4107 + AyQ23 + 20122124 is the quadratic form 

associated with the A matrix in (15.3). 

(b) Sketch a representative quadric curve (15.2) in an 21, x9 

plane and indicate on that sketch the graphical significance of 
the eigenvectors of A. Explain. 

(c) Find the points on the curve 

x + 2a3 +2429 = 1 

that are closest to the origin, and those that are farthest from 

the origin. Sketch the curve in the x1, 2 place, and show the 

eigenvectors of A and the points that you found, that are clos- 

est and farthest from the origin. 

(d) Same as (c), for? +23 +2, = 1, 

(e) Same as (c), for 2? + 23 ~ 4x, + 2xq = 2. 

16. Find the point (z, y), on the given line, that is closest to 
the point (1, ~2). 

(a) 2a +y=4 (b)a+y=-5 

(c)a2 —3y=2 (d)z+2y=3 

17. Find the point (z, y, z), on the given plane, that is closest 
to the point (2,0, —1). 

(ayje+yte=4 
(c)2a-y+rz2=3 

(b)a-~y+2z2=4 

(d)22+y+z=0 

18. Find the point on the curve y = 2°/? that is closest to the 
point({,O). 

19. Find the points at which f = 2+ z is maximized and mini- 

mized, respectively, subject to the constraint 2? + y? +2? = 1. 
Interpret the situation geometrically. 

20. The constrained extremum problem 

z= maximum, 

Z+y+tz2=—1, 

2 
9 

cy 
occurs in seeking to maximize the yield in an ammonia reac- 

tor as discussed in B. Noble, Applications of Undergraduate 

Mathematics in Engineering (New York: Macmillan, 1967), 

p. 75. Show that the desired maximum of z is (17 +4/13)/9. 

21. (More than one constraint) (a) Extend the Lagrange 

method to cover cases that include more than one constraint. 

——~ 
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Specifically, explain how to solve the problem 

f(x,y, 2) = extremum, 

by that method, and explain the logic behind each step. HINT: 

You should end up extremizing f* = f ~ Agi — Aege, where 
A; and A» are Lagrange multipliers. 

(b) Apply that method to the problem 

faa ty? +2? = extremum, 

gia? + dy? +42" = 4, 

gg=ut+yt+2z=0. 

(c) Apply that method to the problem 

f=ao+2z = extremum, 

naety +=, 
ga=y-2=0. 

(d) Apply that method to the problem 

f=ao+y+2 = extremum, 

nav+y reat, 
go=u+ty=0. 

22. (Fermat's principle) (a) Let there be a light source at 

a given point A (shown in the first figure) in a medium in 

which the speed of light is v;. Of the rays emitted from A, 

we are interested in the one that arrives at a given point Bina 

second medium in which the speed of light is vg, the interface 

  

  

between the two media being the plane P. Fermat’s funda- 

mental principle of optics* states that of all possible paths 
  

“A lawyer by profession, Pierre de Fermat (1601-1665) was a mathematician only by avocation. 

Like most mathematicians of his time, Fermat studied problems of physics as well, and his princi-
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(such as those shown as dashed lines), the one actually fol- Using the same ideas as above, derive the law of reflection 

lowed (shown as the solid line) is the one which is such that 

the travel time T from A to B is a minimum. Thus, show that ay, (22.4) 

b 
T(a,B) = a ae —~ =: minimum, (22.1) 

vp cosa = va cos B 

where + is the angle of reflection.   

subject to the constraint that Incident | 

Reflected 
g(a, 8) = atana + btan @ = constant, (22.2) 

where a is the angle of incidence and @ is the angle of re- 

fraction. 

(b) Solving (22.1) and (22.2), derive the law of refraction 

  
OPO OL EE LG 

Transmitted 
(refracted) 

sina Vy 
- =o, (22.3) 

sin G v9 

(c) Besides the incident and transmitted (refracted) rays, there NOTE: We have tacitly assumed that the paths within each 
will also be a reflected ray, as shown in the second figure. medium are straight. The truth of this assumption can itself be 

deduced from Fermat’s principle of least time. 

  

  

  

13.8 Leibniz Rule 

Recall, from the calculus, the fundamental theorem of the integral calculus: if f 
is a continuous function on the closed interval [a, b], then 

t 
=| f(a) dx = f(t) (1) 

fora <t < 6. We will see, in this section and in Chapter 16, that it is also useful 

to be able to differentiate integrals of the form 

b(t) 
r(t)= | Flw,t)de, (2) 

a(t) 

. : : rt op : . : : + 
which is more general than the integral J. f(a) dx in (1) inasmuch as it allows for 
an arbitrary t dependence in both integration limits as well as in the integrand itself. 
  
ple of least time was fundamental in the development of the science of optics. But Fermat is best 

remembered for his pioneering work in number theory. Of particular interest has been “Fermat’s last 

theorem” (which, along with most of his other results, he wrote into the margin of his copy of the 

book Arithmetica by the great Alexandrian mathematician Diophantus), namely, that form > 2 no 

integer solutions x, y, 2 exist for the equation «”-+y” = 2”, He noted that he had “discovered a truly 

marvelous proof of this, which however the margin is not large enough to contain.” Besides these 

marginal notes, and some results contained in letters to friends Fermat published but little. Thus it 

was, in 1665, that he perished.



676 Chapter 13. Differential Calculus of Functions of Several Variables 

To differentiate [(¢) it is convenient to put the sources of t dependence in a 
and 6 in evidence by expressing I(t) as 

I(t) = F(a(t), b(t), 0). 3) 
That is, J is a function of the lower limit @ (which, in turn, is a function of t), 
and of the upper limit b (which, in turn, is a function of £). The third argument in 
F indicates that even if a and 6 are fixed, I is still a function of ¢ through the t 
dependence in the integrand f(a, ¢). The form of (3) suggests chain differentiation, 
which step gives 

  

OF OE 
I(t) = Ba a(t N+ S orf f(x, t) de, (4) 

where a,b are regarded as constants in the last term in (4), the 0/Ot being with 
respect to the ¢ dependence in the integrand. To evaluate OF'/Oa and OF /0b apply 
(1): 

    a = 2 [senar=-2 f° f(x, t) dx = —f(a,t) (5) 

and 5 
F Oo f°, 5 =a | Me dae = 0,0). (6) 

Finally, it is reasonable to expect that 

ff f(a, t) dx -[ & Flt) den (7) 

that is, that we can interchange the order of the differentiation and the integration. 
in which case we have the result 
  

d b(t) b(t) 0 

— f(a,t)dz = | —f(w.t} dx ; 
dt Jat) (et) Jace) Ot (21) (8) 

+ Ot) F(O(E), 2) — a(t) F(a(t), t), 

which formula is known as the Leibniz rule. 
Under what conditions is the Leibniz rule valid?" According to the fundamen- 

tal theorem (1), (5) is valid if f(b, ¢) is a continuous function of b, that is, if f is 
a continuous function of its first argument. For the chain differentiation (4) to be 
valid, we ask that Of /Oa and Of /0b be continuous. Finally, it can be shown that 
(7) holds if f and Of /Ot are continuous functions of xv and ¢. Putting these results 
together, we state the following theorem.! 

  
  

  

“The issue is whether the limit interchange is possible, for the integrals are limits of Riemann 
sums and the derivatives are limits of difference quotients. Limit interchange came up in the closure 
part of Section 13.3, which we urge you to review. For the validity of the interchange in (7) (which 
is called differentiation under the integral sign) to be guaranteed, we need f to be sufficiently well 
behaved. 

‘While the discussion preceding the theorem outlines the main ideas, it is not a complete proof 
of the theorem. For a detailed proof, see Theorem 9-38 on p.220 of T. M. Apostol’s Mathematical 
Analysis (Reading, MA: Addison-Wesley, 1957).



  

  

THEOREM 13.8.1 Leibniz Rule 

Let a(t) and 6(t) be differentiable for ¢) p< 

constants such that A < a(t) < B and ae b(t) < 
and f;(a,¢) are continuous on the rectang eA<u< Bit < 

te 

to, and let A and B be finite 

< Bont, <t < te. Uf f(x, ¢) 
t “< t to, then the 

a
 

  

Leibniz rule (8) holds for each font, < ¢ : 9. 

EXAMPLE 1. Given 2 

it) = | cos (ta) day, (9) 
Jat 

evaluate [’(t) by means of the Leibniz rule, if that rule applies. In this case a(t) = —t and 

b(t) = t° are both differentiable on every interval ty <t < fg, no matter how large, and 

f(a,t) = cos (tx?) and fi(x,t) = —2” sin (ta) are continuous on every rectangle in the 

z,t plane, so (8) applies and gives , | g 

nt 
Mths = [ a? sin (tx7) dx + (2t) cos [e(t?)?) — (—1) cos [t(—0)7) 

“E 

ll 

af~ 

_ i ? sin (ta?) dx + 2tcos (t°) + cos (8) (10) 
vot 

at each point in the z.¢ plane. § 

Thus far we have not explained the purpose of the Leibniz rule—how it is useful 

to us. The two examples to follow illustrate its use, and additional applications are 

included among the exercises. 

EXAMPLE 2. To solve the forced harmonic oscillator initial-value problem 

mal + ha = f(t): x(0) = 0, 2'(0) =0 (11) 

one can proceed by finding homogeneous and particular solutions by the methods explained 

in Chapter 3 (with the particular solution found by the method of variation of parameters) 

or by using the Laplace transform method explained in Chapter 5. Doing so, suppose we 

obtain the result 

el) = — sinw(t — 7) f(r) dr, (12) 
mo Jy 

where w = \/k/m is the natural frequency of the oscillator. To check that result we can 

use the Leibniz rule, according to which 

7 lo 
x(t) = a weosw(t — 7) f(r) dr + —~(1)(sin 0) f(t) — 0 

mu fo mw 
1 ad 

—_ cosw(t — 7) f(r) dr, (13) 
m fo 

l] 
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and 

ot 

(= —S | sinw(t ~ 1) £(r) dr + ~(1)(c080) f(t) ~0 
‘ 1 

~~ 3 sinw(t~ 1) f(r) dr-+ — f(t). (14) 

= f(t). Further, it follows from Putting (12) and (14) into (11) does give the identity f(t) 

‘(0) = O are safisfied as well. @ (12) and (13) that the initial conditions z(0) = 0 and x 

EXAMPLE 3. Sometimes we can use the Leibniz rule to evaluate integrals. For exam- 
ple, suppose we wish to evaluate 

I ~ | e-® de. (15) 
0 

If we recall the known result* 

/ e® dr = vr (16) 
0 2 

then we can evaluate J by considering instead the integral 

J(a) = [ en dar, (17) 
0 

for if we set ax? = y? (or \/ax = y) in (16), then 

~~ 2 a 2 
Ha) = | ew YK VR 3/2 (18) 

0 va 2 
Differentiating (17) and the right-hand side of (18) with respect to a gives 

oo 
2 1 : 

/ ~a7e~* dr = _iy™ -3/2 (19) 0 2 2 

and, finally, setting a = 1 in (19) gives the result 

I =/ re da = V (20) 
0 

COMMENT 1. Observe that there was no parameter in the original integral (15), To 
evaluate J we considered a slightly different integral J, with a suitably inserted parameter. 

COMMENT 2. Actually, Theorem 13.8.1 does not suffice for the purposes of this example 
because of the infinite upper integration limit. That is, there does not exist the finite B that 
is called for in the theorem. This situation is more complicated because 

woo cc Ap gn ax® yy 4 ( lim i eran ts) (21) 
da 0 da C00 Jog 

“The result stated in (16) is well known and is the subject of Exercise 9 of Section 4.5. 
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Thus, besides the integral from 0 to C’ being the limit of a sequence of Riemann sums, 

and the derivative with respect to a being the limit of a difference quotient, we have the 

additional limit of C tending to co. The upshot is that if one or both limits in (8) are infinite 
(+00 or --00), then we need to impose conditions that are slightly more stringent than those 

in Theorem 13.8.1. Relevant theorems are to be found in books on advanced calculus, such 

as F. B. Hildebrand’s Advanced Calculus for Applications, 2nd ed. (Englewood Cliffs, NJ: 

Prentice Hall, 1976), Sec. 7.9. We assert that (8) does hold in this example and in the 

exercises to follow. # 

Closure. In summary, it is often useful to be able to differentiate a given integral 
with respect to a parameter without having to first carry out the integration. The 
formula for doing so is the Leibniz rule (8), and sufficient conditions for the validity 

of (8) are given in Theorem 13.8.1. Besides single integrals one is also interested 
in differentiating mudtiple integrals with respect to a parameter but, in the interest 
of brevity, we do not consider that case here. 

  

EXERCISES 13.8 
  

1. Apply the Leibniz rule: 3. Show, by repeated differentiation of the formula 

  

d 2° / co 

(a) “| sin (tx?) dx [ en da — i 
dt Jo 0 a 

d t 

ws | z' sinzdzr that f° oe * dx =n! forn = 0,1,2,.... 

d [2 4 4. Evaluate [-° zte~® dz, using any of the formulas found in 
(c) a dx Example 3. 

ma 3 5. (a) To evaluate 

(d) — </ e* dx 
da 2a? I= [ (Ina)? d 

‘ = Dy 
de ax 9 9 0 1 + xs (e) a | In(u“ + 2°) du 

da? J, differentiate the formula 
d f' 

f)— ] vdzrf/(x?+y? og oF fs c/(x® + y”) [ ap = a (5.1) 
yo 9 l+x 3sin (447) 

2 a 

(¢) ee cos (v? + a”) du a suitable number of times. Thus, show that [ = 
1a I5q 107° /(81./3). (b) Use (5.1) to evaluate the integral 

2. Derive the Taylor series of the given function f(x) about © Ina 

x = 0, up to and including terms of second order, using the T= [ —s da. 

Leibniz rule to obtain f’(z) and f(z). o ite 

(a) [7 e Bat (b) ree’ "al 41 HINT: Recall that d(v*)/da = x Ina. 
a pk + 

y 6. Show that 
2sing 9 1+2x e —xt? 

(c) fy In + 1) dt (d) fo edt (a) y(z) = £ f(x ~ t) f(t) dé satisfies the initial-value 

(e) fi" sin (at?) dt (f) [°2"* cos (wt?) dt problem y"(x) = f(x); y(a) = y’(a) = y"(a) =



diffusion equation, where a” is a constant known as the diffu- 

sivity of the medium, and where f is a prescribed continuous 

function 
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y" (a Lo 0 

(b) y(x) = (A/x) fP(w = tf (t /) dt satisfies the initial-value 
problem (« vy)" = f(x); y(a) = y'(a) = 0 

fo @ cosh (x — t) dt satisfies the intial-value 

y(0) = y'(0) = 1 
inadz by differentiating the known for- 

(c) y(a) = eF + 
problem y" — y = 2a; 

7. Evaluate [> xe 

mula 
al y 

1 
r wide=—. (a>-—l) 
JO a+ 

[ ys 1 

Jo ing 

HINT: Considering 

8. Show that 

dx =: In 4.   

  (a > 0) 

show that I'(a) = 1/(a + 1) with the “initial condition” 
I(0) = 0. Solve for [(a) and seta = 3. 

9. The conditions in Theorem 13.8.1 are sufficient, but not 

necessary. To illustrate this point, show that Leibniz differen- 

tiation of the integral 

Jo Va 

does give the correct result even though the 

f(a,t) = e¥*/,/Z is not continuous at x = 0. 

10. Consider a one-dimensional fluid flow, say flow in a chan- 

nel of cross-sectional area A, with velocity u(z,t) m/sec and 

mass density o(z,¢) grams/m?; x is measured positive down- 

stream and ¢ is the time. Consider a “control volume” a(t) < 

x < b(t) that drifts with the fluid; i.e., da/dt = u(a(t),t) and 
db/dt = v(b(t),t). Then show that the principle of conserva- 
tion of mass (i.e., that the amount of mass within the control 

volume remains constant) can be expressed as 

(t)= (t > 0)      

integrand 

d me 

ak ub JA dz 

b(t) a 

= A wot fe ee EU — ), r es + F-(vo)] dz =0 

11. Show that 

PF ta? t) 

(a) (x, €) =f 105 ae 

(-co <u < 0, t > 9) satisfies the PDE (partial differen- 

tial equation) O°? tee <= Uz, known as the (one- dimensional) 

dé CLL.) 

-bket 

G(a) do 

(11.2) 

(—co <a“ <co,t > QO) satisfies the PDE CY nm = Yet, Known 

as the (one-dimensional) wave equation, as well as the initial 

conditions y(x,0) = F(x) and y:(z,0) = G(x), where F(x) 
is differentiable and G() is continuous 

, vl P(e 

mpi (E-2P+y? 
(-co < x < oo, y > O) satisfies the PDE tax + Uyy = 9, 

known as the (two-dimensional) Laplace equation, where f 

is a prescribed continuous function. 

F(a — ct) + F(x + et 1 f* () ye.) = “Ee 
amet 

dé (11.3) 

12. (Double and triple integrals) The Leibniz rule (8) can be 

extended to multiple integrals. For our purposes it will suffice 

to limit that extension to the case of double and triple integrals 

over regions that are independent of the parameter. In the one- 

dimensional version (8), if a(t) and 6(¢) are constants then we 
have 

ef f(a,t)de = | 2 so.) de (12.1) 

ie., the derivative of the integral equals the integral of the 

derivative. In two and three dimensions the analogs of (12.1) 

are 

|| f(a,y,t)dA = Ifa a a.y,t)dA (12.2) 

and 

ad fff ra 
_ Lap ef _ Yen yt) dV. 

=] / F(a,y,z,t)dV [// At ee Y ,t) dl 

R 
k 

(12.3) 

Sufficient conditions for the validity of (12.2) and (12.3) are 

that f and Of /Ot are continuous on the slosed region R over 

the ¢ interval of interest. 

(a) Use (12 

(x,y) -[ foi In | ~ ey + 
0 £0 

(12.4) 

satisfies the PDE tye -- ty, = 0, known as the (two- 

dimensional) Laplace equation, at all points (x,y) outside 

.2) to show that 

(y—n)°] £(E.n) dé dy 
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the squareO <a <1, 0 <y <1, where f is any prescribed satisfies the (three-dimensional) Laplace equation u,. + 

    

function that is continuous on that square. Uyy + Uz, = (at all points (x,y,z) outside the cube 0 < 

(b) Use (12.3) to show that xe <10<y< 1,0 < z < 1, where f is any prescribed 

=f [fl F(E,n, ©) dé dy dc function that is continuous on that cube. 

u(x, Ye z) 
= 

0 JO f(a - ©)? Ee (yn)? +(e —o)° 

  

Chapter 13 Review 

For the most part, Sections 13.1—13.5.1 are devoted to a review of the necessary 
preliminaries from the calculus, including point set theory, limits and continuity, 
composite functions and chain differentiation, Taylor’s formula, and Taylor series. 

In Section [3.5.2 we extend Taylor’s formula and Taylor series to functions of 
more than one variable, such as f(x,y), by parametrizing a line from the initial 
point (a, b) to the final point (29, yo) by 

r=at(xg-ajt, y=b+(yo— dj, (O0<t<1) 

because then f(z, y) = f(x(t), y(t)) reduces to a function F(t) of the single vari- 
able ¢. The single-variable Taylor expansion of F(t) about t = 0 leads us to the 
desired Taylor expansion of f(a, y) about (a,b). An alternative and readily imple- 
mented approach is given in Exercise [1 of that section, namely, simply expanding 
in one variable at a time. 

In Section {3.6 we consider relations such as f(a. y) = 0 on w and y, and the 
relations f(x, y,u.v) = 0 and g(a, y,u,v) = Oon x.y, u, and v, and inquire as to 
whether such relations imply the existence of implicit functions y(x), and u(x, y) 
and u(x, y), respectively. The chief result is the Implicit Function Theorem 13.6.2, 
which emphasizes the importance of the nonvanishing of the Jacobian determinant 

Wh, tee 1 dn) 

O(uy,.... Up) 
at the point in question, if the relations 

P(t... slr Uy. Un) = 02 

frley prs Ln, Ul, wee Un) = Q 

are to imply the existence of inverse functions wy (@y.....2n),.0.s Un(@1,-.., Up). 

We also find that the result 
dy dx 

da dy 

for functions y(v) and «(y), generalizes to 
o 

Oa. y) y) Owe) 1 On.y.2) Owe, w) 

Au, v) Ola, y) "  Oue.w) Olr.y.2)
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and so on, and that the chain rule 

dudx du 

dc ds ds 

for the function u(x(s)) generalizes to 

u,v) x,y)  Au,v) 

x ) A(r,s)’ 

O(u,v,w) O(2,y,z) Ou, v,w) 

O(a,y,z) A(r,s,t) O(r, 8, t) ° 

      

je»
) 

o
n
 

R .S
 

e
e
 

je
) 

o
o
 

3 n 

and so on. 
In Section 13.7 we review the theory of maxima and minima for functions of 

a single variable before turning to the unconstrained and constrained extremization 
of functions of more than one variable, considering only local extrema at interior 
points of the domain of the function being extremized. If f(11,...,2n) is Clin 
some neighborhood of the point of extremum, X, then the extremum condition 

df = 0 implies that we must have 

of OF 
br,  Otn 

at X, which is called a critical point of f. To determine if f has a maximum, 
minimum, or saddle at X, we use Taylor’s formula about X, through second-order 
terms because the first-order terms vanish by virtue of (7). The second-order terms 
constitute a quadratic form and everything hinges on the eigenvalues of the matrix 
A = {fe;2;(X)} of that quadratic form: if all of A’s eigenvalues are negative then 
f has a local maximum at X, if all are positive then f has a local minimum there, 

and if they are mixed in sign then /f has a saddle there. 
For the extremization of f(21,...,2n) in the presence of one or more con- 

straints of the form g(xz1,..-,2n) = constant, the extremum condition df = 0 still 

holds, but no longer implies (7). We present two methods of solving such problems, 

elimination and the method of Lagrange multipliers. 
Finally, in Section 13.8 we derive the Leibniz rule 

dq ett) b(t) 9 | , 

fgg TOE [GED de + HDI.) — OFAC, 

for the differentiation of an integral that depends on a parameter ¢t, which rule 
amounts to a generalization of the familiar fundamental theorem of the integral 

calculus, 
d t 

=| f(a) de = f(t),



  

Chapter 14 

Vectors in 3-Space 

14.1 Introduction 

Vectors have already been studied in some detail in Chapter 9. However, except 
for Sections 9.!—9.3 that discussion focus mostly on n-tuple vectors in n-space. 
Here, however, we return to “arrow vectors” in physical 3-space and introduce a 
number of additional concepts, including the cross product of two vectors, combi- 

nations of dot and cross products, the differentiation of vector functions, and polar, 

cylindrical, and spherical coordinate systems. 
Though each is of importance in its own right, Chapters 13-15 can be thought of 

as preparing the way for the especially important Chapter [6 on Scalar and Vector 
Field Theory. 

14.2. Dot and Cross Product 

It will be assumed here that you have studied Sections 9.1—9.3. By way of a brief 
review, recall that in Section 9.2 we introduced the notion of a vector in terms of 

a directed magnitude; we defined the magnitude or norm ||ul| of a vector u, the 
addition of vectors u + v, the scalar multiplication ou, the negative inverse —u, 
and the zero vector 0. And in Section 9.3 we defined the dot product u-v between 
any two vectors u and v as 

  

(1) 
_ f llulliiviicos® if u,v 40, 

wy ‘4 ifu= O0orv = 0,       
where @ is the interior angle (0 < @ < 7) between uand v (Fig. 1). Ifu=v #0, 

then @ = 0, and (1) gives u-u = |u| * which result holds even if u = v = 0. 
Solving for |/ul], we obtain the relationship 

full = f/u-u, (2) 
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Figure 1. The angle @ in (1).
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noted in Section 9.3, between the norm and the dot product. The dot product, 

defined by (1), admits the following properties: 

u-v=Vveu (commutativity) (3a) 

(au)-v =a(u-v) (associtivity) (3b) 

(u+v)-w=u-w+v-w (distributivity) (3c) 

for any vectors u,v, w and scalar a." Of these properties, (3b) and (3c) are equiv- 

alent to the single statement that 

(au + Bv)-w = a(u-w)+ B(v-w) (linearity) (4) 

for any vectors u,v, w and any scalars a, 8B, and the property (4) is known as 

linearity. 

These properties permit us to manipulate dot products as if by ordinary scalar 

algebra. For example, just as 

(2a + b)(4a — 3b) = 8a” — 2ab — 3b’, 

where a, } are scalars, it is equally true that 

(2u+v)-(4u— 3v) = 8u-u-2u-v—3v-v 

= 8 |/ul/? —2u-v — 3 vil 

since 

(Qu + v)-(4u — 3v) = 2u- (4u — 3v) + v- (4u — 3v) by (4) 

= 2(4u — 3v)-u+ (4u—3v)-v by (3a) 

= 2(4u-u—3v-u+4du-v—3v-v by (4) 

= 8u-u—6u-v+4u-v—-3v-v by Ga) 

= 8|[ul? — 2u-v ~ 3 {ivi 

Before leaving the dot product, observe from (1) that if u and v are nonzero, 

and @ = 7/2, then u and v are perpendicular to each other, and u-v = Q. The 

converse, however, is not true for if u- v = 0, then either u and v are perpendicular, 

or at least one of u and v is zero. Thus, we introduce a separate term, orthogonal: 

u and v are orthogonal if u-v = 0. Perpendicularity implies orthogonality, but 

only if u and v are both nonzero does orthogonality imply perpendicularity. 

Further, we say that a set of vectors {v1,.-. vx} is an orthogonal set if every 

vector in the set is orthogonal to every other vector in the set: 

virvy =O if tA). (5) 

If, in addition, each v; is scaled or normalized so as to have unit length, then 

fa iss 
view =f 0, iF j (6) 

“In Part [1 (Chapters 13-16), all scalars are real numbers. 
  

 



  

14.2. 

since Vj-Vj = Iv; il? = 1, and we say that {v,,...,v,} is an orthonormal 

set, namely, both orthogonal and normalized. Such sets are used extensively in 

subsequent sections. 

Besides the dot product, we now introduce another kind of product between 

two vectors, the cross product of u and v, denoted as u x v, and defined as! 

_ f Jjul] liv] sinée ifu,v 40, 60, and 6 #7, uxv={ ifu=0, v=0, 6=0, or 6=7, (7) 

  

    

    
  

where @ is again the interior angle between u and v, and é is a unit vector normal 

to the plane of u and vy, directed such that the vectors u, v, é form a right-handed 

system. That is, curling the other four fingers of our right hand from u (the first 

vector in u x v) into v (the second vector in u x v), our thumb points in the é 

direction (Fig. 2). 

Observe, first, that while the dot product u-v is a scalar, the cross product 

u x vis a vector, For that reason, u- v is also called the scalar product of u and 

v, and u x v is also called the veetor product of u and v. (Some authors use the 

notation “uv” in place of our u-v, and “u A v” in place of our u x v.) 

EXAMPLE 1. Let u, v be as shown in Fig. 3: Jul) = 5, |/v|| = 4, and @ = 60°. 

Then u x v = (5)(4)(sin 60° )@ = (10V3)é as sketched in the figure; v x u is of the same 

magnitude as u x v but points in the opposite direction. & 

  

In contrast with the commutativity property of the dot product, namely u-v = 

v-u, we have u x v = —(v x wu) for the cross product since 

uxv = ul ||vi)sin é e, vxu= jul jv) sin é eo, 

where, according to the right-hand rule, ég = —e,. The property ux v = ~(v xu) 

is known as anticommutativity and is illustrated in Fig. 3. While commutativity 

fails to hold, associative and distributive properties do hold: 

ux v =—(v Xu) (anticommutativity) (8a) 

(au) x v =a(u x v) (associativity) (8b) 

(u+v)xw =(ux w)+(v x w) (distributivity) (8c) 

Of these properties, (8b) and (8c) are equivalent to the single statement 

(au + 8v) x w= a(u x w) + 5(v x w) (linearity) (9) 

  

tYou may wonder why we need to spell out, in (7), that u x v = 0 if @ = Ooré@ = a since, 

after all, (7) already seems to say that u x v = lull ||vijsin@é@ = 0€ = 0 (since sin0 = 0 and 

sina = 0). The catch is that @ is undefined if 6 = 0 or @ = mw since then the u,v vectors fail to 

define a unique plane. 
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u 

Figure 2. Cross product. 

  

Figure 3. ux vandv x u.
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(a) 

  

     

'[y|sin 8 o 
OL, / 

(b) 

  

Figure 4. Area significance 

of |Ju x v|f. 

  

Figure 5. Moment of F about P. 

(a) 

P 

F 
eee EF Q, 

L Q 

(b) 

P 

PQ, 
_     > Q 

ag Q2Q1 

Figure 6. Location of Q. 

for any vectors u, v, w and scalars a, J, and the property (9) is known as linearity. 

Proof of (8b) and (8c) is left for the exercises. 

Besides these properties there is a geometrical significance to be noted. Specif- 
ically, the magnitude of u x v is equal to the area of the u,v parallelogram as 
shown in Fig. 4 (in which u and v lie in the plane of the paper). For the area 
(shaded) is the altitude ||v||sin@ times the base |/ul| as labeled in Fig. 4a, or, 
equivalently, the altitude |lu|| sin @ times the base ||v|| as labeled in Fig. 4b. Let us 
state this result as an equation, for reference: 

  

    

  

ju x vi| == area of u, v parallelogram. | (10) 
    

Recall from Example | in Section 9.3 that a simple physical example of the dot 
product involves the work W done when a body undergoes a linear displacement 
from an initial point A to a final point B under the action of a constant force F. 
Specifically, if we denote the displacement vector as AB, then Wo = F- AB. 
Likewise there is, again from the subject of mechanics, a simple physical example 
of the cross product, namely, the moment of a force. 

EXAMPLE 2. Moment of a Force. in mechanics, one defines the moment M of a force 
F, about a point P, as the product ||F|| d, where d is the perpendicular distance from P to 
the line of action L of F, as shown in Fig. 5. Besides the scalar quantity AY, we can make 

the moment into a vector by using the right-hand rule. Specifically, one defines the vector 

moment M of F. about P, as 

M=RxF. (11) 

where R. = PQ is a vector from FP to the tail of Ff (Fig. 5) for then 

M = |[Rlj|[Filsindé = [Fl (/Rijsind) é = |[F\| dé = ave, 
where @ is a unit vector perpendicular to the plane of R and F and in the direction dictated 

by the right-hand rule. For instance, if R. and F in Fig. 5 are in the plane of the paper, then 

é is directed perpendicular to the paper and toward the reader. 

Notice that M is independent of the position of the point Q on the line of action L. 

For suppose that Q, and Q» are any two points on L (Fig. 6). Then 

PQ, x F-PQ, x F=(PQ,—-PQ,)xF by (8), 
= Q2Q, x F by Fig. 6 

= 0 

since the angle between QoQ, and F is either 0 or 7. Thus. PQ; x F = PQ, x F, as 

claimed. & 

Closure. Whereas a dot product can be defined for any vector space, the cross 
product is specific to 3-space. In this section we recalled the dot product (1), from 
Section 9.3, and introduce the cross product (7). Both operations are linear, but 
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whereas the dot product is commutative (u-v = v-u), the cross product is anti- 
commutative (ux v= —Vv xX U1). 

  

EXERCISES 14.2 
  

1. [fu x v = 2u, what can one conclude about u? About v? 

Explain. 

2. fu x v = Oandu-v = 0, must u = O and/or v = 0? 

Explain. 

3. Use the dot product to derive the law of cosines, 

=a’ +b" — 2abcos 8, 

where c, a, b, 2 are shown in the figure. HINT: Regard the sides 

of the triangle as vectors, oriented such that c = a — b, and 

note thatc-c = (a—b)-(a— b). 

b a 

o 

4, Use the cross product to derive the law of sines, 

a b 
    
sine sin’ 

where a,b, @, 3 are as shown in part (a) of the accompanying 

figure. HINT: Regard the sides of the triangle as vectors, as 

in part (b), and cross a suitable vector into both sides of the 

equation b—-c=a. 

  

(a) {b) 

5. Derive the Lagrange identity 

Ju x vif? = full? fv? ~ (av)? (5.1) 

6. Why did we bother to include the parentheses in the right- 

hand side of (8c) but not in the analogous equation (3c)? 

7. Wu-v = Oandu x v = wis {u, v, w} necessarily an 

orthogonal set? Explain. 

8. Is u x (v x w) necessarily equal to (u x v) x w? Prove or 
disprove. 

9. Prove the associative law (8b). [Proof of the distributive law 
(8c) is left for the exercises in Section 14.3.] 

10. (a) Prove that 

(oy + OgUg +--+ + QnUn) v= 

ay (ay v) + ae(ttg-v) +--+ + @n(uy- Vv), 

namely, that (4) holds even ifn > 2. 

(b) Prove that 

(Q,Uy, + QgU2 +++ + Q@y,Un) XV = 

ay (uy XV) + aeg(ug XV) Fan (Un X V), 

namely, that (9) holds even ifn > 2. 

11. (Linear dependence) Prove that vectors u, v are linearly 

dependent if and only if u x v = 0. 

12. Prove that if u and v are nonzero vectors, and u x v = 0 

then u = ov for some nonzero constant a. 

? 

  

14.3. Cartesian Coordinates 

In Sections 9.2 and 14.2 we introduce vectors in 3-space and define the norm of a 
vector, the multiplication of a vector by a scalar, addition and subtraction of vec-
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(a) 

(b) 

u 

  
Figure 1. Cartesian z, y system. 
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tors, and the dot and cross products of two vectors. These definitions are intrinsic 

inasmuch as they contain no reference whatsoever to any coordinate system. 

In applications, however, our computations are often carried out more conve- 

niently if we introduce a reference coordinate system and a corresponding set of 

base vectors. Since the operations listed above are defined intrinsically, it follows 

that the answers obtained will be the same whether we choose one coordinate sys- 

tem and set of base vectors or another. Thus, the choice is a matter of preference 

and convenience. 

Although there are many coordinate systems from which to choose, we limit 

our attention here to those that we regard as the most important: Cartesian, cylin- 

drical, and spherical, In the present section we consider the Cartesian case. 

Beginning with 2-space, for simplicity, we adopt the rectangular Cartesian x, y 

coordinate system shown in Fig. 1, together with the reference vectors id, where i 

is a unit vector in the positive « direction, andj is a unit vector in the positive y di- 

rection. We have placed i andj with their tails at the origin, but one can place them 

wherever one wishes, as long as their magnitudes and directions are preserved. 

Observe that {ii} constitutes an orthonormal set since 

i-f=—j-j=(1)()cos0?=1 90 and —si-j = (1)(1)cos90° = 0. (1) 

Now, consider the vector u in Fig. la; whether u is being used as a position 

vector to locate the point P, namely the point (3, 2) in the x, y plane or to designate 

a certain force vector * or a velocity vector or whatever, is not important here. We 

can express u as a linear combination of i and j as follows: 

u= OQ + QP =3i+ 2j. 

The end result, u = 31+ 23, is independent of the fact that the u vector happens to 

spring from the origin; if we move its tail to (—2, 1), say, as in Fig. 1b, then 

u=LM+MN =3i4 3j, 

which result is the same as above. 

More generally, let u be a vector from the origin to any point (a, b) [or, equiv- 

alently, from (29, yo) to (wo + @, yo + b)]. By the same reasoning as above, we can 

express u in terms of ij as 

u=ai+ bj. (2) 

Is (2) unique? For example, breaking OP (in Fig. la) into OQP gave u = Bi + Qj: 

but if we had broken it into ORSTP, instead, might we have obtained a different 

result, such as u = Ait 23? No. To prove that the expression (2) of a given vectoru. 

as a linear combination of i and j, is indeed unique, suppose that u also admits an 

expansion 

u=aitbj. (3) 
  

“For example. if we choose a scale of 1 newton per unit length, then u, in Fig. la, would represent 

a force of 13 newtons, in the direction OP. 
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Subtracting equals from equals, namely, (3) from (2) yields 

(a~aji+(b—b')j =0. (4) 

Dotting both sides of (4) with i, then with i. and using (1), we find that a ~ a! = 

and b — b' = 0 so that a = a’ and b = b'. Consequently, (3) is necessarily identical 

to (2) so (2) is unique, as claimed. 

Similarly for 3-space: Suppose that we adopt a Cartesian x, y, z coordinate 

system, with reference vectors i, j, k (Fig. 2), where 
> 

  

i-i=j-j=k-k=1, (Sa) 

i-j=i-k=j-k=0. (Sb) Figure 2. Cartesian 

: , sa), coordinates and i,j,k. 
It follows from (5) that {i j; i} is an orthonormal set. Furthermore 

ix j = ||i|| jl] sing0° k =k. (6) 

Working out all of the various cross products in this manner, we find that 

a aarras (7a) 

ixj=k, jxk=i, kxisj (7b) 

jxi=—k, “Exide i, ixk=—j. (7c) ———> (+) 

ijkijkijk-- Equations (7b) and (7c) can be remembered easily if one keeps in mind the mnemonic 
(-) device shown in Fig. 3. Note carefully, however, that the signs in (7b), (7c), and 

Fig, 3, are correct only if our 2, y, < coordinate system is right-handed. If we were Figure 3.. Mnemonic 

to choose a left-handed system, the signs in (7b), (7c), and Fig. 3 would be re- device for (7b) and (7c). 

versed; for example, we would have i x j= = —k, and j xk = -i. As long as 
we are consistent it does not matter whether we choose a right-handed system or 
a left-handed one. But to minimize confusion, we shall a/ways adopt right-handed 

systems, as is standard mathematical practice. 

Analogous to the expression (2) for 2-space, any given vector u in 3-space, say 
from (0,0, 0) to (a, b,c) [or, equivalently, from (2, yo, 20) to (vo + @, yo +, 20 + 

c)], can be expressed as a unique linear combination of i,j, k, namely, 

  

u= ait bj+ck (8) 

as illustrated in Fig. 2. Here a, b,c are called the x, y, z components of u, respec- 

tively. Instead of the letters a, b,c, it is more common to use the letters a1, U2, U3 

for the components of u so that 

us ui + aj + ugk. (9) 

Since each vector in 3-space can be expressed, or expanded, as a unique lin- 

ear combination of i,j,k, we say that the set fii, i} is a basis for 3-space, an
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orthonormal basis, in fact. (Bases and expansions are covered in more detail in 
Section 9.9, but that section is not a prerequisite for the present one.) 

The form (9) is especially convenient for calculations. For example, if 

u= uit uj + ugk and v=uit val + ugk, (10) 

then 

u+ v= (uy + vp)i+ + (ug + v2)j + + (ug + v3)k, (11a) 

u-—v= (uy vy)i+ + (ug v)j + + (u3 — v3)k, (11b) 

ou = (auy)i + (au2)j + + (aunk (11c) 

uve (ui + uj + ugk) . (vi + voj + ugk) 

= uyvii j + uyvai j see op ugk -j + ugv3k -k 

= UzV1, + Uove + UZU3, (11d) 

uxv= (upi + uo] + ugk) x (vi + vo} + u3k) 

= uyvzi x i + uyvai x j seep ugvok x j + ugugk x k 

= (ugus — ugv2)i — (uyv3 — ugv1)j + (uyv2 — ugv1 )k. (ile) 

The right-hand side of (1 le) happens to be expressible as a third-order determinant 

so that 
  

uxv=/uz, wo ws |, (12) 

    
  

this form being easier to remember than (1 le). 

EXAMPLE 1. Given 

u=i-2k, v=3i4+j+k, w=j-k, 

compute (u-- 2v) x wand u- w. 

(u + 2v) x w= [(1+6)i+ (0+ 2)j + (—2 + 2)k] x G-k) 

-. , . |i ik a 
=(7i+2j)xG-k)=|7 2 0|=-2+7j+7k 

0 1 -14] 

and u-w = (1)(0) + (0)(1) + (—2)(-1) = 2. H 

Closure. In this section we introduce the (always right-handed) Cartesian coordi- 

nate system x,y, z, and its corresponding orthonormal base vectors ij, k. Non- 

Cartesian systems are the subject of Section 14.6. 
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EXERCISES 14.3 
  

1 Letu = 26-j-3k,v = i+j—k,w = 31+ 2k, 
x = 8i—j—-11k. 

(a) Compute 2u — v, u-v,v-u, ux v,v x wand lu x vi}. 

(b) Compute (u+3w) xv, (a + 3w) and |u- wi. 
(c) Compute (u-2w)v, x x (—2u) + 3v, (u-+ w) x v and 

|Ix|l- 
(d) Compute u + 2v — w + 3x, (2u + w)-(v — x) and 
w x (v —x). 
(ec) Compute (8v + w — x)-v, (w — x) x (2v) and 
lu x (v x whl. 
(f) With u,v, x tail to tail, show that the three vectors lie in a 

plane. Do this two ways: first, by taking suitable cross and dot 

products and, second, by showing that one of the vectors can 

be expressed as a linear combination of the others. 

(g) With u, v, w tail to tail, show —- by taking suitable cross 

and dot products — that the three vectors do not lie in the same 
plane. 

(h) Find a vector perpendicular to u and v. Verify your an- 

swer. 

(i) Find a vector perpendicular to u and w. Verify your an- 
swer. 

(j) Find a vector perpendicular to v and w. Verify your an- 
swer. 

(k) With u, v, w tail to tail, find the area of the triangle formed 

by their heads, and find a vector perpendicular to that triangle.. 

(1) Repeat part (k) for u,v, x. 

(m) Repeat part (k) for u, w, x. 

(n) With u, v, w, x tail to tail, show whether or not their heads 

lie ina common plane. 

             

2. Consider three forces: F, = 2i+k with its tail at (2,1,-1), 

Fy = i—j+k with its tail at (0,0, 0), and Fy = i+ 4j with 
its tail at (1, 1,1). 

(a) Find the total moment M about (0, 0,0). 
(b) Find the total moment M about (1, 1, \ 

(c) Find the total moment M about (8, 6, —10). 
(d) Find the total moment M about (3, 2, 1). 
(e) Determine, if possible, an additional force Fy with its tail 

at (2, —1,—1), such that the total moment M about (1,1, 1) is 

zero, If it is not possible, explain that circumstance in geomet- 

rical terms. 

(f) Same as part (e) with (2, -1, ~1) changed to (3, 6, —1). 
(g) Same as part (e) with (2, —1, —1) changed to (~1, ~4, 3). 

3. Use a suitable cross product to determine whether or not the 
following points lie on a straight line. 

(a) (2,3, 1), (1, 1,4), (2,2, 1) 
(b) (1, 3, 0), (2, —i, 1), (3, 5, 2) 

(¢) (1,0, 2), (—4, 3,0), (—9,6, —2) 

(d) (1,0, 2), (—4,3,0), (12, -6, 6) 
(e) (1,0, 2), (-4, 3,0), (—3,3, 2) 

( (1,0, 1), (2,-1.4), (5,7, -3) 
4. Use a suitable property of the cross product to find the area 

of the triangles with the following vertices. 

(a) (14,3), (2,0, —1), (0, 0,5) 

(c) (0,0,2), (0,4,0), (3, 1,1) 
(d) (8,7,4 ), (2, —5, )), (1, 6,8) 

(e) (1,1, 1), (1,1, 2), (3, 2, 1) 

(f) (5,4, 1), (3,2,3), (—4,0,6) 
g) (2,~-1,1), (0,2, 3), (9, 6, 1) 

(h) (14, 1, -6), (2,2, 1), (0,4,9) 
5. (a) Determine a unit normal vector to the plane x+2y— 2 = 

5 by finding three distinct (noncollinear) points A, B,C in the 
plane, crossing AB with AC, and normalizing. 

(b) Repeat part (a) for the plane 22 + y-— z= 0. 

(c) Repeat part (a) for the plane « — 3y + 4z = —2. 

(d) Repeat part (a) for the plane z + 3y + 2 = 4. 

. Repeat part (a) for the plane aw + by + cz = d. 

6. (Equation of a line) (a) Let Ro be a given point in 3-space 

(i.e., the point at the head of the position vector Ro issuing 

from the origin). And let v be a given (nonzero) vector (see 

the figure). Show that the locus of points R. which constitute 

a straight line L through Ro, parallel to v, is determined by 
either of the equations 

(R—Ro) x v = 0, or (6.1) 

R=Roj+vt (—co < t < oo). (6.2) 

  

(b) Using (6.2), show that the straight line through (2,5, —1), 

parallel to the vector 4i — k, may be defined by the parametric 
equations 

w= 2+ 4t, y= 5, g=2-l-t
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for -co < t < oo, 
(c) Determine parametric equations for the straight line 

through (1,0, 5) which is w parallel to the vector ~31+-Jj+ 2k. 

7. (Equation of a plane) Let Ro be a position vector from the 

origin to a given plane, and let Ro be normal to the plane so 

that ||Ro|| is the shortest distance from the origin to the plane. 

IiffR= city] + zk is the position vector to any point (c, y, 2) 

in the plane, and f is a unit normal vector to the plane, then 

surely (R. — Ro)- fh = 0 or, since Ro- fH = |/Roll, 

  

R- fh = ||Roll. (7.1) 

Equation (7.1) is the general equation of a plane in vector 

form and is interesting because each quantity has a clear geo- 

metrical significance: R. = vi+ yj +e2kisa position vector 

to any point (2, y,z) in the plane, n is a unit vector to the 

plane (and is unique to within a factor of £1), and ||Roo/| ts the 
shortest distance from the origin to the plane. 

(a) Find the shortest distance from the origin to the plane, and 

a unit vector normal to the plane, for the plane defined by the 

equation 22 + y ~ 32 = 4. 

(b) Repeat (a) fore ~ y ~ z= 5, 

(c) Repeat (a) for 3% + y — 2 = 0. 

(d) Repeat (a) for x + 2y + 32 = 8. 

(e) Repeat (a) for 3y — 2 = 5. 

(f) Repeat (a) for aw + by + ez = d. 

g) Repeat (a) for a(w — 29) + bly — yo) + e(e ~ 20) = 0. 

8. The vectors u = (1,1,2) and v = (3,2, —1) determine 

a plane (by their span). Find a nonzero vector in that plane 

that is perpendicular to w = (2,4,3). As usual, explain your 

reasoning. 

9. Same as Exercise 8, for 

(a)u = (4,-1,1), v = (11,2), w = (3,0,5) 

(b) u = (1,2,3), v = (3, 2,1), w = (1, 2,4) 

(c) u = (1,2,3), v = (1,0, 2), w = (3,0,5) 
(d) u = (1,0,1), v = (0,1, 1), w = (0,0, 1) 

  

14.4 Multiple Products 

We have discussed the dot and cross products of two vectors, u-v and u x v, 

respectively. Products of more than two vectors are also encountered and are the 

subject of this section. 
What products of three vectors u,v, w are possible? Writing down such com- 

binations, consider 

u-(v-w), 
u x (v-w) , u‘(vxw), ux(vx w). (1) 

Now, v-w is a scalar so the first two members of (1) amount to a vector dotted 

with a scalar and a vector crossed with a scalar, respectively. Such quantities are 
not defined so the first two items in (1) can be discarded. [t remains to consider 

u-(v x w), (2) 

called the scalar triple product because the result is a scalar, and 

u x (v x Ww), 

called the vector triple product because the result is a vector. 

14.4.1. Scalar triple product. First, the scalar triple product u- (v x w).* For no- 
tational simplicity, we can drop the parentheses and write u- v x w since u-v xX W 
  

“The triple product u-(v x w) is sometimes denoted as “(uvw).” That notation is not used in 

this book.



  

can mean only (au: v) x wor u-(v x w), and of these two the former is not defined 
and is not a viable candidate. 

To observe an important fact about u-v x w, let us sketch the “u,v, w par- 

allelepiped” shown in Fig. | (for the case where u,v,w do not lie in the same 
plane). Now, v x w is the magnitude (norm) of v « w times the unit vector é 

shown in Fig. |. Thus, 

u:v x w=u- |v x wilé = |v x wil (u-e). (4) 

But |v x wi] is, according to (10) in Section 14.2, the area of the v,w parallel- 
ogram, that is, the base area of the u,v,w parallelepiped. And u-é is equal to 
the altitude (the dashed line). Hence it follows from (4) that u-v x w is the vol- 

ume of the u,v, w parallelepiped. However, if u were directed such that u- @ were 
negative, then u-v x w would be the negative of the volume. In any case, if we 
introduce absolute values, then 

  

| ju-v <x wi = volume of u, v, w parallelepiped. (5) 
    

Finally, if we recall from Section 14.3 that 

ijk 
Vx WwW) Vy vo v9 |, 

Wy Wa W3 

where v = vl + voj + ugk and w = wii + wej + wsk, it should not be hard to 

see that u-v x w can be expressed neatly as 

  

ty uo 13 

u-v x =) Up vo vg), (6) 

    wy, Wo we 
  

Now, interchanging two rows of a determinant changes the sign of the determinant. 
If, in (6), we interchange the first row with the second. and then the third with 
the first, the new determinant can be identified [according to the pattern in (6)] as 
w-u x v. Since there were two stgn changes, we see thatu-v x W= W-u x Vv. 
or 

UV xX W=uUuxXV-w, (7) 

that is, interchanging the dot and the cross leaves the scalar triple product un- 
changed. 

14.4.2. Vector triple product. Next, consider the vector triple product ux (v x w). 
Here we do need to retain the parentheses since u x v x w could mean either 
(ux v) x worux (v x w). Both of these quantities are indeed defined, and they 

are not necessarily equal to each other; for example, ix (i x i) =ixk= —j, 

whereas (i x i) xj=Oxj=0. 
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Figure 1. The u,v,w 

parallelepiped.
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Thus, let us state, for reference, that in general 

  

(ux v) x w Aux (vx w). (8) 

Recall that v x w is perpendicular to the v, w plane so it must be some multiple 

of é (Fig. 2). Similarly, u x (v x w) is perpendicular to both u and v x w, hence, 

to both u and é. Being perpendicular to @, it must lie in the v, w plane so it must 

be expressible in the form av + Bw. To determine a and (3, let us introduce a 

convenient reference coordinate system and set of base vectors. Specifically, let the 

point O in Fig. 2 be the origin of a Cartesian coordinate system with the usual base 

vectors i,j, k. And let the system be oriented so that iis aligned with v, and k 

coincides with the @ shown in Fig. 2. Then j must lie in the v, w plane so we can 

Figure 2. Derivation of (9). express 

v= vy, w = wilt waj, u = uit uj t ugk. 

Hence v x w = vy wok, and 

ux (Vv xX Ww) = (uri + u2j + ugk) x (vpwok) 

= —Uzvi Wj + ugvi wai 

= (uyw, + ugwe)uri — uri (wii + waj) 

= (uywi + ugw2)Vv — UjU Ww. 

But upwy + ugw. = u- wand ujvy = u:v so we have the useful formula 

  

ju x (v x w) = (u-w)v — (u-y)w. (9) 
  

  

Closure. We could consider quadruple products such as ux (v x (w x x)) and (ux 

v):(w x x), quintuple products, and so on, but the triple products discussed here 

will suffice for our purposes. In the subsequent sections, the scalar triple product 

will occur more than the vector triple product so keep in mind the geometrical 

property (5), the computational formula (6), and the property (7). 

  

EXERCISES 14.4 
  

Lifu= i-j, v= 2i +j + 3k, w =j — k, evaluate 

(a)u-v Xx wandu xX v-w 

(b) u x (v x w) and (u x v) x w 

2.1 A= i+j —-k,B=3)-kC = {+ 2k, evaluate 

@A-BxCandAxB-C 

(b) A x (B x C) and(A x B) x C 

3, Verify the identity (9) by working out the left- and right- 

hand sides separately, for each case. 

(jQusiiv=ej,w=k 

(bbusiiv=iiw=j 

()uej—-kv=i+3),w=i+2k 

(d) u = 8i+ 6j, v = i — 4k, w = 2) 

4. Find the volume of the parallelepiped having the following 

vectors as adjacent edges. 

(a)i— 2), 3j,i+k (b)ij,itjtk 

  

P 
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(c)i+ 2i, 3i, j¢+k (d) 3), oi j,i i+ 5k 
@)iiitj,i¢j+k (Hi+,iit+j+k 

5. Show that (u x v) x w = (w-u)v — (w--v)u. You may 
use (9), 

“ 6. Show that ux (v x w)+w x (uxv)+v x (w xu) = 0. 

7. If A, B, C, are distinct vectors issuing from a common 

point, show that the vector (A x B) + (B x C)+(C x A) is 
perpendicular to the plane containing their heads. 

8 (Orthogonal separation) Let a given (nonzero) vector u be 

separated into the sum of two orthogonal vectors, one parallel 

to a given (nonzero) vector v and the other perpendicular to v 

(L.€., UW = Upar + Uperp). Show that 

Upar = (u-V)v¥, Uperp = V X (ux V), (8.1) 

where V = v/ ||v|l. 

“9. Prove the following identities involving quadruple products. 

HINT: Use (7) and (9). 

(a) (Ax B)-(C x D) = (A-C)(B.D) -(A-D)\(B-C) 

This is Lagrange’s identity, of which equation (5.1) of Exer- 

cise 5 in Section 14.2 is a special case. 

(b) (Ax B)x (Cx D) =(A-Bx D)C~(A-BxC}D 

10. In deriving (9), we introduced the orthonormal basis 

fii, kt. oriented in such a way that v = v,i, w = wit woj, 
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and u = uyi+ uo] + ugk. Although this orientation was con- 

venient (since then v had only one component, and w had only 

two, so that the calculations were rendered as short as possi- 

ble), we claim that it was not essential. Verify this claim by 

rederiving (9) using the expansions u = uri + ual oe ugk, 

Vo vyitvej + usk, w= wit woj+ wk, which, of course, 

hold for any orientation. 

11. (Linear dependence of u, v, w) Prove that vectors u,v, w 

are linearly dependent if and only ifu-v x w = 0. 

12. Do the following sets of four points lie in a plane? HINT: 

You may use the result stated in Exercise 11, without proving 

it, if you wish. 

(a) (1,3, 0), (2,1, 1), (0,0, 4), (5, 0,8) 
(b) (2,1 1), (1,3, 0), (5,0,9), (0,0, 4) 

(c) (4,0,0), (0,1,0), (1,2, —4), (0, 0,1) 
(d) (0,0,0), (2,6, ~1), (1,0, 1), (1, 2,0) 
{e) (1,0, 1), (2, 1,3), (1, ~1,0), (3, ~1,2) 

() (0,0, 2), (0, 1,3), (1,2,3), (2,3, 4) 
13. Give an example of three vectors u, v, w (not the ones 

given in the text) such that (u x v) x w 4 u x (v x w), and 
an example of three vectors u, v, w such that (u x v) xX w = 

u x (v x w). (The latter part of the exercise is simple if we 
let at least one of the three vectors be 0. To make the problem 

more interesting, let us insist that u,v, w all be nonzero.) 

  

14.5 Differentiation of a Vector Function of a Single Vari- 

able 

Suppose a particle moves about in 3-space so that its position vector R(t), from the 
origin to the particle 
v(t) is the derivative v = dR/dt. 
need to differentiate a vector function. 

, is a function of the time ¢. By definition, its velocity vector 
This is but one example of many, where we 

Although we discuss vectors at length in 
Chapter 9 and in the Sections 14.1—14.4, we have not yet introduced the concept 
of the differentiataion of a vector function. In fact, we have not yet introduced the 

concept of a vector function! 
Suppose a vector u(r) is defined for each value of a real variable 7 on some Tr 

interval. Then we say that u is a vector function of 7 on that interval. The physical 

nature of u, and of 7 
position vector of a particle or an electric field 

_ is in no way restricted. For instance, u might represent the 
vector, and its argument 7 might be 

the time, arc length along a curve, or it might be a purely mathematical parameter.
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To define the derivative du/dr, or u/(r), we stay as close as possible to the 

definition of the derivative given in the calculus, and define 

  

du,» u(r + Ar) ~ u(r) 

dr (7) = Jim Ar 
  (1) 

      

If the limit on the right-hand side exists, for a given value of 7, we say that u(r) is 

differentiable at that r, and that u’(r) is its derivative. 
Observe that the right-hand side of (1) is of the general form 

lim F(r). (2) 
T-?TO 

Thus, our definition (1) is meaningful only if we also define the limit of a vector 

sequence, which we do as follows. By 

lim F(r) =L (3) 
THT 

fi.e., F(7) tends to L as 7 tends to 79] we shall mean that 

Jim |F(r) ~ Li = 0, 4) 

where the limit in (4) is the ordinary limit defined in the calculus since the norm 

|F(7) — LI] is a scalar function of 7. Further, we say that F(7) is continuous at 

To if lim;+,, F(7) = F(to). 

  

Figure 1. u(r) given by (5). 

EXAMPLE 1. To illustrate (1), suppose that 

u(r) = A+7°(B- A), (O<7 <1) (5) 

where A and B are given vectors that do not vary with rT. If the tail of wis fixed at P, then 

u(7) varies with 7 as shown in Fig. 1. Then (1) gives 

  

    

tel : . : 
— A+(7+Ar)(B- A) -A-75(B— A) 

u(7) = lim 
Ar-0 Ar 

3r27Ar + 37r(Ar)? + (Ar)s — jim Briar + Sr(Ary + (Ar! g — A) 
u’(0.5) Ar-+0 ; AT 

= Jim, [37° + 37Ar + (Ar)*] (B- A) = 37°(B— A). (6) 

tT=0.5 To illustrate, we have shown u‘(7) at 7 = 0.5 in Fig. 2. @ 
tT=0 

Figure 2, u’(r) att = 0.5. Just as we have rules such as (wv)' = u’v + uv" for the differentiation of scalar 

functions. we have a number of such rules, which we now list, for the differentiation 

of vector functions: 
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(fu) = f'ut fu, where f = f(r) (7a) 

(au + Gv)’ = au’ + Bv', a, 8 constants (7b) 

(uev/=ul-v+u-v’, (7c) 

(uxv)/=u'xv+uxv, (7d) 

(uv xw)=u-vxw+uv xw+u-vxw, (Te) 

lux (vx w)l =ul x (vxw)+ux(w xw)+ux(vxw), (76) 

“crr)) = My), (chain rule) (7g) 
dr df 

provided, of course. that the needed derivatives do exist. 
As representative, let us prove (7c). Using the definition (1), we find that 

(u-v) = lim u(r + Ar)-v(r + Ar) — u(r): v(7) 

Ar-0 Ar 

— lim u(r + Ar): {v(7) + [v(r + Ar) ~ v(r)]} — u(r) - v(7) 

Ar-0 Ar 
— lim fu(r + Ar) ~ u(r)]-v(r) + u(r + Ar): [v(7 + Ar) — vi7)] 

Ar—0 AT 

= gin, JAE SIO cr) + im alr + Ar) were 
=ul(r)-v(r) + ult): v‘(7). (8) 

Proofs of the other formulas are left for the exercises. 
To illustrate the use of these rules. let us differentiate the u(7) given by (5) 

again, but instead of using the cumbersome difference quotient definition (1) let us 

use the relevant formulas in (7): 

  

    

  

1. 4 
u(r) = IA +7°(B—A)] 

“dr 
cl 1. 

=A + “1 (B — A)] per (7b) witha = G=1 tr 
dr dt 

d 4 »o a 
u(t+At) 

=0+-—-(r°’)(B—A)+7°--(B— A) per (7a) 

ur dr 
u/(t) 

=37r°(B-A)+ 
=377(B— A), (9) 

. . v bY 

as found in Example [. c " 
The definition (1) admits a graphical interpretation. Suppose that the tail of 

the u(r) vector is “bound” at a fixed point P, and that the head of the vector traces 
a space curve C as 7 varies continuously over some interval 7) S T S 72, for 

example. as sketched in Fig. 3. The difference u(r + Ar) ~ u(r), in (1) 1s 
the vector MN. The endpoint AJ is fixed, for a given value of 7, and the other 

endpoint NV moves along C and tends to Af as Ar - 0. The limiting direction of 

Figure 3. Graphical 

interpretation of u(7).
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Figure 4. The motion (10). 

ja(r+Ar)—u(r)]/Ar as Ar — 0, that is, the direction of u’(r) defines a straight 
line called the tangent line to C at 7 [provided that u(r) is indeed differentiable 
there, and that u’(r) # 0, for the zero vector would not imply any particular direc- 
tion], and u’(r) is called a tangent vector. In Example 1, for instance, C is simply 
a straight line, and u’(7r) was indeed found to be tangent to that line. 

EXAMPLE 2. Suppose that a particle is located, with respect to a plane Cartesian 
coordinate system, by the position vector 

R(t) = e(t)i + y(t)j = i+ C3, (10) 

where ¢ is the time. Then R’(¢) = v(t) is called the velocity of the particle, and R(t) = 
v'(t) = a(t) is called its acceleration: 

v(t) = R(t) = “(ti + t°j) 

1; dy; 
= 5 (ti) +5 (03) — per(7b) witha = 3 = 1 

ds do». 
= g(t + at per (7a) 

=i+ 24, (11) 

and, similarly, . 

a(t) = v’(t) = 2j. (12) 
In this case the acceleration happens to be a constant vector. The vectors R, v, and a are 

shown in Fig. 4 at the instant ¢ = 1, at which R(1) = i+ j, v(1) = i+ 2j, and a(1) = 2). 
Since z = tand y = 2”, it follows that y = 2? on C. When t = 1 we have x = 1, and the 
slope of C is dy/dx = 2x = 2, which is identical to the slope of v(1) = i + 2j, so v(1) is 
indeed tangent to C, as stated above this example. Of course, v(¢) is tangent to C for every 
time t; we chose t = 1 just to illustrate. @ 

Closure. We introduce the idea of a vector function, u(r), and define its derivative 
u’(r) as the limit of the difference quotient given in (1). Because this definition 
echoes the definition of the derivative of a scalar function, familiar from the differ- 

ential calculus, there are no surprises among the rules listed in (7). Thus, you should 

feel quite comfortable with the result that if R(¢) = ti+ ¢7j, then R(t) = i+ 2¢j, 
given in (11), for instance. 

  

EXERCISES 14.5 
  

1. For each of the following u(r) vectors, determine u’, uw", (b) 61 — e7j 
and |j1u'||. 

(a) A-+7°B (A,B constant vectors) 

(c) 771 — 4j + 300s 2rk 

(d) cos Ti+ sin Tj + sintk
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(e) e~* (cos Qri + sin 27j) (b) Show that (7f) follows from (7d). 

( e" (cos 2ri + sin 2rj) f 6. Derive (7g). HINT: Express u(f(r)) = ui(f(r))i + 

(g) cogdri~ Aj = snr ua(F(7))5 + ws E(k. 
(h) 8ri — j + 27%k 

2. (a) Letting u = 727i — Tj — 8rk, v = 2cosTi— rk, and 
w = sin rj, verify (7c) by working out the left- and right-hand 

7. (a) Obtain an expression for (u-v)” analogous to the ex- 
pression for (uv)! given by (7c). 
(b) Obtain an expression for (u xv)" analogous to the expres- 

  

sides. sion for (u x v)’ given by (7d). 
(b) Repeat part (a), for (7d). 
(c) Repeat part (a), for (7e). 8. (a) Derive the formula 

(d) Repeat part (a), for (7/). , 
, - 5 5 uu 

3. (a) Letting u = 387i + 7*k, v = i - 47j, and w = [pall = lal (8.1) 

577i + j — rk, verify (7c) by working out the left- and right- ; ; 
hand sides. (b) Show, from (8.1), that if |ju(r)|| = constant #4 0, then 
(b) Repeat part (a), for (7d). u’(T) is necessarily either perpendicular to u(r), or 0. 

(c) Repeat part (a), for (7e). 9, In (8), we give an intrinsic proof of (7c), that is, one 
(d) Repeat part (a), for (7f). (8) ° “ P (7c) 

that does not rely on any coordinate system. Alternatively, 

4, Use the definition (1) to prove (7c) by introducing Cartesian coordinates so that u(r) = 
(a) prove (7a) ur(r)i + ug(r)j + ugs(r)k and v(r) = v1(r)i + v2(7)j + 
(b) prove (7d) u3(7)k, differentiating u(r) -v(7), and then identifying the 
5. (a) Show that (7e) follows from (7c) and (7d). resultas u’-v fu-v’. 

  

14.6 Non-Cartesian Coordinates (Optional) 

In preceding sections we worked either with no reference coordinate system at all, 
or with a Cartesian system. Often, it is convenient to work with a coordinate system 
other than Cartesian, a “non-Cartesian” system. Our purpose in the present section 
is to introduce three important non-Cartesian systems: plane polar, cylindrical, and 
spherical. We choose to do this within the context of a physical application, the 
kinematics of a point (or particle). Specifically, we will develop expressions for 
the position vector R, the velocity vector v, and the acceleration a of a point as it 
moves about in space, in terms of these three coordinate systems. 

For reference, let us first note the corresponding results in a Cartesian system 

xr,y,2, with base vectors i,j, k. If 

R(t) = 2(t)i+ y(t)j + 2()k (1) 

denotes the position vector from the origin of a (stationary) Cartesian coordinate 
system to the point (x(t), y(t), 2(t)), where ¢ is the time, then the velocity v and 

acceleration a of the point are 

v(t) = R(t) =a (Hit y'(Oj + 2k, (2) 
a(t) =v/(t) = R(t) = 2" (t)hi+ y(t) + 2" (Hk, (3)
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respectively, where primes denote differentiation with respect to the time ¢. 

14.6.1. Plane polar coordinates. The coordinates r,@ and their respective unit 
base vectors @,,@g are shown in Fig. L; r,@ are related to the reference x, y coor- : 
dinates according to 

z=rcosé, 

  

. (4a) 
y= rsing, 

or, solving (4a) for r and @, 

r= fer+y?, 
iY (4b)   

O| Y é = tan™ - 

Figure 1. Plane polar where @ is undefined at the origin. It will be understood that 6 is measured in 
radians unless we specify that it is measured in degrees. 

In general, both r and @ may be positive, negative, or zero, but in this book we 
choose always to have r > 0 so that r is the distance from the origin O to the point 
in question, say P. In addition, if we limit @ according to 0 < @ < 27, each point 
in the x, y plane (except for the origin) corresponds to a unique value of @.* 

The base vectors é,, @g at any point P (other than the origin) are in the positive 

coordinates. 

r,@ directions, respectively. Observe that while ij are constant vectors,' @,, @g are 
not! Specifically, é, and ég vary with 6, although not with r. For example, if we 
imagine sliding @,,é@g to a new r location, say r + Ar, with @ held fixed, we see 
that both vectors remain unchanged because both their magnitude (unity) and their 
direction remain unchanged, even though their location is different. But if we vary 
@, with r fixed, é, and ég both rotate. The upshot is that 

6. =6,(0),  & = 9(8). (5) 

To obtain expressions for the velocity v and acceleration a of a point P moving 
in the z, y plane, we begin with the position vector from O to P (Fig. 1), namely, 

Rare 5 
Before proceeding, two points should be made in connection with (6). First, it is 
tempting to write “R = ré, +0ég,” in place of (6), in an effort to follow the pattern 
  

“Unfortunately, the relation @ = tan7! y/a, given in (4b), does not completely suffice to deter- 

mine the unique value of @ at a given point without taking into account the signs of x and y. For 

example, if v = y = 1, then surely @ = 7/4, whereas 6 = tan~! 1 gives both (the correct value) 

@ = a/4 and the (incorrect value) @ = 52/4. Such ambiguity can always be resolved by the orig- 

inal relations « = rcos@é, y = rsin@. For example, for the case « = y = 1 mentioned above, 
op . {a 4 an : 

@ = 7/4 satisfies the relations 1 = V2 cos@,1 = V2 sin @, whereas @ = 57/4 does not and is to 

be discarded, 

*We should qualify that statement: Cartesian base vectors i,j, k do not vary with the space co- 

ordinates x,y,z. They may, however. vary with time if the coordinate system itself is rotating with 

respect to the observer.
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in the Cartesian formula Ro = wi-+ yj. However, the quoted expression ts incorrect; 

the correct version is given by (6), since (from Fig. 1) the magnitude of R is r and 
its direction is é,. Second, is it not strange that 6 does not appear in (6)? The 
answer is that 6 does appear in (6) since, according to (5), @, is a function of @; that 
is, (6) is really R = re,(@). 

Now, if the point P moves about according to r = r(t), @ = 6(¢), then 

R= r(t)e,(0)), (7) 

so its velocity is [recall (7a) in Section 14.5] 

v(t) = R= ré, + ré,, (8) 

where we choose to use overhead dots, rather than the more usual primes, to denote 
differentiation with respect to the time ¢. Since é, = é,(@(t)), we can use chain 
differentiation to express 

d . de, d@ de, 

qe) = ae ae Oe 
  é, = (9) 

Fine, but what is dé,/d@? Since we are working with the base vectors e, and eg, 

we wish to expand all vectors in terms of these base vectors. Thus, we wish to 
expand dé,./dé@ in the form ( )é, + ( )ég. To accomplish that, let us fall back on the 

definition of the derivative. 

dé, him é,.(6 + A@) — e,(6) 
= iT nn 

dé Ab30 AG 
  (10) 

The vector difference in the numerator is readily evaluated if we slide the two vec- 
tors back to O (Fig. 2). so that they are tail-to-tail. Then é,(@ + A@) — €,.(@) is the 
little vector from a to 6: its length is 1@ and its direction, in the limit as AG — 0, 

is 6g.” Thus, 

  

dé, i (1A@)ég (LD 
eee iv —eeenmnmnmnnnmnannmnnn — 

a 

so (9) becomes e, = bq, and hence (8) becomes 

v(t) = re, + rep. (12) 
      

The expressions 7,r@ for the r,@ velocity components, respectively, may well be 
familiar to you from a course in introductory physics. 

Continuing, we differentiate once more to obtain the acceleration, 

a(t) = v(t) = Fé, + Pe, + POE, + bbq + rb ep. (13) 
  

“As A@ -+ 0, the length of the vector from a to 6, say ab, approaches the arc length of the 

circular are through those points and centered at O. Thus, it follows from the formula s = 7@ for the 

arc length s of a circular are of radius r and angle @, that jJab|]| ~ LA@ as Ad + 0. 

é,(0+ AO} 

  

  

oO} x 

Figure 2. Calculation of dé,./dé.
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(a) 

@9(O+ AG)    

n
e
 

e
r
e
 

c
e
 

  

(b) 

  

    

€9(+A@)® 

A 

Figure 3. Calculation of dée/dé. 

We have already seen that é, = beg, but we still need to evaluate the @g in (13). 

We have 
s dias, deg db deg 
eg = dt 9 [A(t)] — dé dt — dé ? (14) 

where la 54(9 + AB sa(8 
dép iy, é9(0 + AG) — eo( ) (15) 

de Ad-30 AO 

To evaluate the difference @g(@ + A@) — é9(8), where these two vectors are shown 

in Fig. 3a, we pick them up and place them tail to tail (without altering their orien- 

tation), as shown in Fig. 3b. Their difference is the little vector from c to d, namely, 

(1 A@)(—e,) so that 

dég _ (1A6)(-é,) . 
—-7 1 we O,, 16 
do Abo «AO ° (16) 

Then (14) becomes &p = —bé,, and (13) gives 

a(t) = Per + r0G9 + 706, + rbéy — 7676, 

Or, 
  

    a(t) = (# — r67)é, + (rb + 276)ép. (17) 
  

Of the four terms constituting a, two with well-known names are the centripetal 

acceleration —r6*é,, and the Coriolis acceleration 27 OG9.” 

Although the formulas (12) and (17) are of great importance, for our purposes 

(especially in Chapter 16 on scalar and vector field theory) the most important 

part of this discussion concerns the differentiation of the base vectors, for in non- 

Cartesian coordinate systems the base vectors generally depend on one or more of 

the coordinates so whenever we differentiate a vector we need to face up to differ- 

entiating the base vectors. In particular, for plane polar coordinates we found that 

the base vectors é, and @g vary with @, but not with r, and that 

  

1e,. . 1é . / 

ver @g and wo —@). (18a,b) 
dé 
  

    
  

The method that we used to derive equations (18a,b) will be called the differ- 

ence quotient method. That method is appealing pedagogically because it relies 

on fundamentals —- the difference quotient definitions (10) and (15) together with 

the graphical representation of the various terms. However, it is heuristic rather 

than rigorous. For instance, expressing cd = (1A@)(—é,), in (16), seemed to be 

correct but was not proved. 
  

“The latter is named after the French engineer G. Coriolis (1792-1843), but it might be mentioned 

that the expressions a, = 7 — ré? and ag = r@ + 276 were derived by Euler in his book Theoria 

Motus Corporum Solidorum seu Rigidorum, published in 1765. 
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Thus, we now present a different line of approach which is rigorous, and which 

we will call the transform method. The idea is to express é, and €g (temporarily) 

in terms of the alternative Cartesian basis i, j, the point being that i and j are 
constant vectors and hence readily differentiated. Specifically, 

é, = cos éi + sin 03, (19a) 

ég = —sin Ji + cos 63. (19b) 

[The fact that é, and @g depend only on @, as stated in (5), is seen to follow from 

the absence of any r dependence in the right-hand sides of (19).] Taking d/d@, we 
have 

dé, oat 3 
oor sin 6i + cos 6j, (20a) 
dé 
lé * 5 
wee cos @i — sin 6]. (20b) 
dé 

Again, we emphasize that this step was simple because i and j are constant vectors. 
With the differentiation completed, we now return to the polar base vectors by the 
inverse relations 

i = cos 6@, — sin bé,, (21a) 

j = sin dé, + cos Gég. QQ1b) 

That is, putting (21) into (20), 

  = = — sin 6(cos 0é, — sin 0g) + cos @(sin 6é, + cos Gég) 

= (sin? 6 + cos” @)ég = g, 

and 

deg . Loa . . one ~ 
Fp 7708 A(cos #é, — sin 6ég) — sin O(sin #é, + cos Gé¢) 

= —(cos” @ + sin? @)é, = —é,, 

as before. 

In case the source of the relations (19) and (21) was not clear, let us elab- 

orate. Consider (21a), for instance. Since {€,,@g} is an orthonormal basis we 

can, according to the important equation (24) in Section 9.9, expand iasi = 

(i-@, Je, + (1-€g)@g = (1)(1) cos 06, + (1)(1) cos (6 + E)ég = cos 66, — sin 6€g 
(see Fig. 4), Or, we could simply break i into its @, and &% components graphically 
as indicated in Fig. 4. Similarly for (21b), (19a), and (19b). 

We call the latter method the transform method because the “transform equa- 

tions” (19) take us from &€,, ég to i, j. Then the d/d@ operation is readily carried out 

[in equations (20)] because i and j are constant vectors. With the results in hand, 

Figure 4. Expanding i. 

703 
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we then use the “inverse equations” (21) to return to é,, @g. Tf this idea is unclear, 

we suggest that you review Section 5.1. 

14.6.2. Cylindrical coordinates. The eylinerical coordinate system r,@, 2 with 

(a) orthonormal base vectors @,., 6g, @:, shown in Fig. 5, 1s essentially the plane polar 

coordinate system that we have just discussed, with the coordinate z and the cor- 

As 2 is varied, with vr and @ fixed, the point P (in Fig. 5a) moves along a 
vertical line. The @,,é9,@, triad translates (see the dashed arrows in Fig. 5a) but 

does not rotate. Thus, since those vectors do not vary either in magnitude or in 
direction, they do not vary with z. Similarly, as r is varied, with @ and z fixed, P 
slides along the line S'P. The triad translates but does not rotate so é,,@g9,é; do 

not vary with r. Finally, 6, does not vary with @ but é, and ég do, as discussed in 

Section 14.6.1 above. The upshot is that 6, = é,(6), 6g = @9(@), and é, = kisa 
constant vector, and the derivatives dé,./d@ and dég /d@ are as given in (18). 

As we did for plane polar coordinates, let us develop expressions for the po- 
sition vector, velocity, and acceleration. It might be tempting to think that the 

position vector is R = ré, + 6ég + ze., by analogy with R = vit yj + zk. No, 

(b) an expression for R. is obtained from Fig. Sa: R = OQ + QP, where OQ = ré, 

and QP = zé,. Thus, 

A responding base vector 6, added. Observe that the z in r,@,z is the same as the 

je Cartesian z variable. Similarly, @, is identical to k, and we would write e,, 69, k, 

ls except that é,, €g, @, looks better. 
| sy 

. | 

  

  

(22) 

  

which is the same as (6), but with zé, added. Remember, whereas 6, and @g are 

ha functions of @, @, is a constant vector, at every point P, e, has the same magnitude 
eed and the same direction. Thus, if r = r(t), 6 = @(t), and z = 2(t), where t is 

the time, then the velocity v = R and the acceleration a = R are given by the 

formulas 

  

  

  

  
v(t) = R(t) = = re, + rbég + 2e, (23) 

  

  

  rs const, 7 in 

@=const, and 
  

x 

  
a(t) = R(t) = (# — r67)é, + (76 + 2FO)eg + Ze. 

  
(24) 

  

Figure 5. Cylindrical coordinates. ; . . 
That is, we merely append ze, to (12) and ze, to (17). 

EXAMPLE 1. Let a particle move according to 

r = constant, d= wt, z= ut, 

where w and v are constants, and 0 < ¢ < oo. Evidently, the path of motion is helical. 

From (23) and (24), 

bo
 

wn
 

go
 

—
 v(t) = rweg + vez, 

~~
 hm un
 

os
 

=
 a(t) = -rwé,.
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Observe that v(t) is nof constant, even though its components rw and v are constant, be- 

cause ég = @9(@(E}) varies with ¢. [Indeed, if v(t) were constant, then a(t) = v(t) would 

be zero, not —rwe,.| a 

Under what circumstances is one coordinate system to be favored over an- 

other? One important guideline is the shape of the region involved. For instance, 

cylindrical coordinates are most convenient for studying fluid flow in a cylindrical 

pipe, and Cartesian coordinates are most convenient for studying the electric held 

ina rectangular prism. That is, a particular coordinate system is convenient tf the 

region is bounded by constant-coordinate surfaces. Thus, Cartesian coordinates 

are convenient if the region is bounded by constant-, constant-y, and constant- 

z planes, that is, if it is a rectangular prism. How about cylindrical coordinates? 

Constant-r, -@, and -z surfaces are shown in Fig. 5b, where the @ = constant sur- 

face is known as a meridional plane. Thus, some representative regions for which 
cylindrical coordinates are especially convenient are as follows (sketch them). 

Soupcan: O<r<rn, OS @< 27, OS25 4. 

Coaxial cable: ory <r<rea, OS @< 27, OS 204) 

Wedge: O<r<ry, O<O0<6, OS 2< 21. 

14.6.3. Spherical coordinates. Finally, we present the spherical coordinates p, @, 6 
with their respective orthonormal unit base vectors é,,@,,@9 shown in Fig. 6. 

Some authors use the notation r,@, 6, but we prefer to emphasize the difference 

between the spherical coordinate p and the cylindrical coordinate r by using dif- 

ferent letters. What difference? Well. p = \/wx* + y? + 2° is the distance from 

the origin to P, whereas r = \/z? + y? is not (unless z = 0); it is the perpendic- 
ular distance from P to the = axis. The angle 6, however, is the same in the two 

coordinate systems, cylindrical and spherical. 
Observe from Fig. 6b that the p = constant surface through P is the spherical 

surface of radius p centered at the origin, the @ = constant surface is conical, and 

the @ = constant surface is a meridional plane. 
In general, p,, and @ may be positive, negative, or zero, but we choose, in 

this book, always to have p > 0 so that p is the distance from the origin to P. In 
addition, we normally limit é and @ so that0 < @ < wand 0 < @ < 27 since those 

ranges permit us to reach any point in 3-space in a unique manner. 
From Fig. 6a we can see that p, @, @ are related to the reference x, y, 2 coordi- 

nates according to 

x= psingcosé 

y = psingsin€d (26a) 

5 = pcosa, 

(a) 

  

(b) 

  

Figure 6. Spherical coordinates.
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or, solving (26a) for p, @, and 8, 

p= la ty 

¢ = cos7! ee, (26b) 
Juve + y? + 2? 

-~1Y 
6= tan! =, 

£ 

where @ is undefined on the z axis (e., for « = y = 0) and ¢ is undefined at the 

origin. That is, on the positive z axis ¢ is zero and on the negative z axis @ is 7 so 

at the origin @ is discontinuous and undefined. 

EXAMPLE 2. Given the point (z,y,z) = (2,—-1,3), find p, 6, @ (such that p > 0, 

0 << 7, and0 < 0 < 27 as noted above). From (26b), p = \/2?+(-1)? +3? = 

V14, 6 = cos7! (3/14) = 36.70°, and 6 = tan7! (-1/2) = 153.4° and 333.4° (within 
the interval 0 < @ < 360°), To choose between the latter two values, put the computed 

p,,@ values back into (26a) and see if they give the original z,y, z values: p = V14, 

@ = 36.70°, and @ = 333.4° gives (x,y,z) = (2,—1,3) but p = V/14, @ = 36.70°, and 

@ = 153.4° does not. Thus, p = //14, @ = 36.70°, and # = 333.4°. Wf 

As emphasized earlier in this section, it is essential, in working with this 
coordinate system, to know the “space derivatives” of the base vectors, namely, 

3/Op, 0/8, 0/80 of each of the three base vectors. From Fig. 6a we see that 
if we hold @ and @ fixed and vary p, the é@,,éy, 9, triad translates parallel to 
itself as P moves along the radial line. Thus, &p, & 4, ég do not vary with p so 

de, /Ip = 0€g/Op = = 0@9/0p = 0. Next, imagine varying @, with p and @ fixed. 

Then (Fig. 6a) ég moves parallel to itself, and hence does not change, whereas Ep 

and @, both rotate. Finally, if we vary 6, with p and @ fixed, we see that all three 
base vectors rotate. The upshot is that the dependence of the base vectors on the 

coordinates is as follows: 

Gp = Ep(d,8), Gy = 6(¢,8), Eg = a (8). (27) 

Thus, there are five nonzero derivatives to work out. To do so, we could use either of 

the two methods presented above in Section 14.6.1, the difference quotient method 

or the transform method. However, the calculations are harder than for the case of 

plane polar coordinates so we merely state the results: 
  

      

      

  

de de oe p p 5 p te = 0 —— == G4 = SIN @ ea dp , ae @ a0 Yeas 

Oey Oe . Oe . 
Bp = O, Ab = ep, Ae = cos @ eg, (28) 

des = 0 086 = 0 066 = —sinde, — cosvey 
dp a6” ao “ee 
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and defer their derivation to Section 14.6.4, where we use a different, and simpler, 

approach. 
Let us illustrate the use of (28) by deriving spherical-coordinate expressions 

for the velocity and acceleration, expressions analogous to those obtained for plane 
polar and cylindrical coordinates. We begin with the position vector R = OP = 
|OP || é,, that is, 

R = pep. (29) 

Since 6, = €,((t), O(¢)), differentiation with respect to ¢ gives 

  

Op dt 00 dt 

= pe, + p(bey + Osin gd &) 

v=R=pé, + p (ee ep =) 

or 
  

v(t) = pe, + pbéy + pOsin deg. (30) 
      

One more differentiataion (Exercise 7) gives 

  

a(t) = (fp — po? — pé? sin? P)ep + (pd + 266 — pO? sin bcos Peg GL 

+ (p6 sind + 2pdsin d + 299 cos d)eg     
  

for the acceleration. 

14.6.4. Omega method. Here, we will develop an interesting alternative method 
for deriving the space derivatives of base vectors, and use that method to derive 
equations (28). 

Consider a rigid (i.e., nondeformable) body 6 undergoing an arbitrary motion 
through 3-space, and let A be any fixed vector within 6 (Fig. 7). Thatis, A is a 
vector from one material point in 6 to another so || A|| is constant with time because 
B is rigid. That is not to say that A is a constant vector, for a vector is comprised 
of a magnitude and a direction, and the direction of A varies with the time ¢, in 
general, as B tumbles through space. Thus, A = A(t). It might help to think of B 
as a potato, say, and A as a needle pushed into the potato. 

Since || AJ] is constant , 

ALI? = A-A = constant (32) 

as well. Differentiating (32) with respect to ¢ gives [recall (7c) in Section 14.5] 

A-A+A-A=2A-A=0Os0 

A-A=0. (33) 

Equation (33) makes sense because if A were not orthogonal to A, then it would 

Figure 7. Fixed vector in B.
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Figure 8. The angular velocity 2. 

have a nonzero component along A, which component would correspond to a 
nonzero rate of stretching or shrinking of A, in violation of the assumption that 
A is of fixed length. 

It follows from (33) (see Exercise 12) that there exists a vector (2, such that 

A=2,xA. (34) 

Similarly, if B is any other fixed vector in 8 then there exists a vector Qz, such that 

B=) xB. (35) 

Since G is rigid it follows that 

A-B = |/Al]] |B] cosa = constant (36) 

because || A|] and ||B]) are constant, as is the angle a between them. Differentiating 
(36) with respect to ¢ gives 

A-B+A-B=0 (37) 

or, using (34) and (35), 

(Qy x A)-B+A-(Q2. x B) =0, 

Q,xA- B+Ax M%-B=0, [by (7) in Section 14.4] 

SO 

(MQ — 2) x A-B=0. (38) 

Since B is arbitrary, it follows from (38) (Exercise 13) that (Q] ~ Qe) x A =0. 

Finally, since A is arbitrary it follows from the latter (Exercise 14) that Q] —- Qe. = 

0. Thus, Q) = Qe, and we can say that for any fixed vector A, B,C,... in B we 

have A = Q x A, B=Q~x B, C = 92x C, and soon. Or, stated more concisely, 

  

A=Qx A, (39) 
      

where A is any fixed vector in B. 
To understand what ({Q ts, let us write out (39) as 

A = (QI) (JAllsin 3) é = Qre, (40) 

where 3,7, and é are shown in Fig. 8; e@ is tangent to the circle of radius r (shown as 

dashed), But (40) is the familiar result, encountered in physics, that the velocity of 
a point moving in a circle of radius 7 with angular velocity Q is Qr in the tangential 
direction, That is, Q is the instantaneous angular velocity of 6. Using the right- 
hand rule to give it a direction, Q is therefore the angular velocity vector of B; Q 

need not be constant with time but Fig. 8 and equation (39) hold at each instant. 
Before using (39) to derive (28), let us consider the simpler case of cylindri- 

cal coordinates. Imagine the base vectors e,,@g,@; (Fig. 5a) as welded steel rods
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within a body 6 (which could be built up around the rods using modeling clay), and 
imagine that body to be in motion according to r = r(t), @ = O(t), and z = z(t), 
where r(t), A(t), and z(t) are arbitrary. Then what is the angular velocity Q of the 
body? If we vary r only (holding @ and 2 fixed), then the body translates, with no 
angular velocity. Similarly if we vary z (holding r and 6 fixed). But if we vary 6, 

then 6 undergoes an angular velocity A(t) or, using the right-hand rule to make it 

into a vector, (tes. Since angular velocity is a vector, we can get the total angular 

velocity by adding these three contributions: Q = 0+ 0+ 4, so 

Q = be. (41) 

To determine the space derivatives of @,, say, let A be e, (which does have 

fixed length) in (39). Then (39) gives 

de, 
=x é, = 66, x é = Oe. (42) 

dt 
  

On the other hand, we can use chain differentiation to write 

    

    

d . ty ayy Ger dr | 0@, dO OG, dz 

ae) 0) = oe Get oe ae Oe dt 
/ = J&r 4 gP@r , ,08r (43) 

Or oe Oz” 

Next, we equate the right-hand sides of (42) and (43) and use the fact that r(t), A(t), 2(¢) 

(and hence 7, @, 2) are arbitrary: 

Je, Je, — , 0b, 
TO 66 t 20=fr t 6G fo 

POF eg + Or 1" oe 7 Re 
    (44) 

so 
Oe, Oe, de, 
a = 9, “ay = ee, =~ = 0. (45) 
Or OG Oz 

That is, since #*(t), A(t), 2(t) are arbitrary we can set * = 1,4 = 0,2 = 0 in (44), 
and learn that 0é,/Or = 0. Then we can set r = 0,6 == 1,2 = 0, and so on. 
[Of course we didn’t really need to include the 6é,/0r and 0é,/0z terms in (43) 

because we knew, from our discussion in Section [4.6.1 and 14.6.2 that é, is a 

function of @ alone, but we included those terms to show that we don’t need to 

know that information in advance. | 

Similarly, if we use A. =. @g we obtain 0ég/Or = 0, 0@9/00. = —é,, and 

J€g /Oz = 0, and if we use A = @, we obtain 0é,/Or = Ge. /04 = Oe, /Jz = 0. 

Understand that we imagine the representative point P as undergoing a motion 

r(t), O(¢), =(£) simply in order to be able to use this method, which we call the 
omega method because of the prominent role played by 2. 

Turning to spherical coordinates, what is Q in this case? Referring to Fig. 6a, 
we see that varying p (holding @ and @ fixed) results in no angular velocity of the 
base vector triad, only translation; varying @ (holding p and @ fixed) results in an
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angular velocity b(t)@g: and varying @ (holding p and ¢@ fixed) results in an angular 

velocity about the z axis, 6(t)k. Thus, 

Q = be + Ok 

= $89 +6 [(ke-e)ep + (Ke: ep) Oy + (- é9)é0] 

= dep +6 [cos Pep + cos ¢ ++ 0) eg + 069 | 

= dé + 6 (cos dé, — sin Peg) . (46) 

Let us determine the space derivatives of €,, say. Let A = é, in (39). Then, 

on the one hand 

  

dé . . 
= =2x b= [ben + O(cos @éy — sin d@y)| x é, 

= déy + Asin dé,, (47) 

and on the other hand 

d 0e 0@,., O08. 
— (p(t), A(t), A(t)) = —2h Po+ —28, 48 

and comparison of (47) and (48) gives 

Oe 0e . oe . 
ce P=e —’ = sin dég, 
Op do.” a0 

  

in agreement with (28). Then, letting A be ég and €g, in turn, we can obtain the 
remaining space derivatives, which steps we leave for the exercises. 

Observe that (2 is determined by the coordinate system: for plane polar and 

cylindrical coordinates Q = 6k, and for spherical coordinates 2 = dep + 6k. 

There is no need to use the omega method for Cartesian coordinates since ij, k are 

constant vectors so 0i/Ox = Oi/Oy = 0i/Oz = Oj/Ox = --- = 0, but it is worth 
mentioning that for that coordinate system Q = 0, 

Closure. In this section we derive expressions for the velocity and acceleration 
vectors in plane polar, cylindrical, and spherical coordinates, but that discussion 

merely serve as a common application thread and is not, in itself, the focal point. 
The focal point ts the plane polar, cylindrical, and spherical coordinate systems: the 
definition of the coordinates by means of a sketch (e.g., Fig. 5), the relationship be- 
tween those coordinates and the reference Cartesian coordinates (e.g., ¢ = rcos 4, 

y = rsin@, and z = z, the Cartesian coordinate z being identical to the cylindri- 
cal coordinate z), the expression for the position vector (e.g., R = ré, + 2é, in 

cylindrical coordinates), and the space derivatives of the base vectors [e.g., equa- 
tions (28) for spherical coordinates]. In fact. most of our attention is devoted to 

the derivation of the derivatives of the base vectors, and three distinct methods are
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presented: the difference quotient method, the transform method, and the omega 

method. These derivatives will show up extensively in Chapter 16, but you don’t 
need to derive them each time they arise; that has already been done here, and you 
can use the results, listed in (18) for cylindrical coordinates and (28) for spherical 

coordinates. 

  

EXERCISES 14.6 
  

i. Determine 7, @, z corresponding to each given point P = 

(x,y,z). Give @ both in radians (0 < @ < 27) and in degrees 

(0° < @ < 360°). 

(a) (2, 2,3) (b) (2, ~1,0) 

(c) (-3, 2, 1) (d) (0, Q, 5) 

(e) (6, -1,3) ) (- ,~2,6) 

(g) (1,5, 1) (h) (6,0, 4) 

2. Determine p, , @ corresponding to each given point P = 

(z,y,z) such that p > 0,0 <6 < 7,0 < @ < 27. Give ¢ and 

@ both in radians and in degrees. 

(0 °) (b) (0, 3, 0) 
(c) (0,5, 0) (d) (1, 2,3) 
() (6, "3, 0 (f) (0, ~5, 0) 

g) (2,3, 5) (h) (2,3, -5) 
(i) (— 35) (j) (2. -3. 5) 
(k) (~1, -2, 1) (1) (4, -2, -3) 

3. (a) Derive the expressions 

€é, = sin d(coséi + sin @j) + cos ok, 

é, = cos@(cos i + sin Qj) — sin dk, (3.1) 

@€9 = —sindi+cos@j. 

(b) Derive the “reverse” expressions 

i = singcosé, + cos @cosfés — sin beg, 

j = singsinéé, + cos @sin dé, + cos eg, (3.2) 

k = cos @é, — sin @ea, 

either directly or by solving (3.1) for i,j,k. If you choose the 

latter, you may use computer software, 

4. Compute dA/dé in each case. 

(a) A = sin dé, — ré?éyg + ré.p r= Ut’, O = Bt 

(b) A = té,; r= 4, @ = 2t 

()A = ré,; r=6+sint, 6=cost 

(A= p'é,; p=t, @ = 2t, O = 3t 

(QA =éy; p=1l+t, d=, 0 =sin2t 
(NMA =é,+tés; p=1, d=, 0=2, 

5. A particle moves in 3-space according to the given functions 

x(t), y(t), z(t). Determine its velocity v(¢) and acceleration 
a(t) in terms of @,, @g, é,, and ¢, fort > 0. 

(ajco=t?, y=2,2=0 
(b) = 26, y= Bh, zs= 3t 

i = —3t 

z= 6t 

(c)a = t? ~ 6, y=t*, 2 

(d)z = 3cost, y= 3sint 

(e)a=1, y= 4t, 2 =2 

(f)2 =sint, y=cost, z= sint 

6. (a)—(f) Same as Exercise 5, but find v and a in terms of 

@p,6y,@9, and t, fort > 0. You may use any formulas in 

Exercise 3. 

7, Evaluate each of the following by the difference quotient 

method, and show that your result agrees with that given in 

(28). 

(a) 06, /¢ (b) 08/00 
(c) 0€4/Od (d) 08/00 
(e) O€p /00 

8. Derive (31) from (30), with the help of (28). 

9, Beginning at O at time t = 0, a bead moves at a constant 

speed V through a straight hollow tube, which rotates at con- 

stant angular velocity 9 about the z axis so as to sweep out 

a cone of half angle 7/4, as shown, Compute the velocity v 

and the acceleration a of the particle, in terms of s, V, and Q, 

using 

(a) Cartesian coordinates 

(b) cylindrical coordinates 

(c) spherical coordinates
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O Li 

NOTE: Let us orient the x,y,z coordinate frame so that the 

tube lies in the w, z plane at ¢ = 0. 

10. Beginning at the “north pole” (@ = 0), a particle spirals 

down the surface of a sphere of radius p such that the spherical 

coordinates @ and 0 vary as @ = 1), @ = Qet. Find the mag- 

nitude of the velocity and acceleration vectors at the instant 

when the particle crosses the “equator.” 

11. Observe, in (28), that none of the derivatives of €, contain 

an 6, component, that none of the derivatives of ég contain an 
é, component, and that none of the derivatives of @g contain 

an @g component. The same pattern holds in (18). Explain 

why this pattern is more than coincidence. 

12. Given vectors u and v in 3-space, such that u-v = Q, 

where ||ul| 4 0, show that there exists a vector 92 such that 
v= xu. HINT: Write v = 2 x was three scalar equations 

on the components 0), Q2, Qg of Q, and solve. 

13. Show that if u-v = 0 for all vectors v, then it must be 

true that u = 0. 

14. Show that if u x v = 0 for all vectors v, then it must be 

true that u = 0. 

15. Use the omega method to evaluate the three space deriva- 

tives of the spherical coordinate base vector 

(a) &g (b) €¢ 

  

Chapter 14 Review 

In this review let us limit attention to results that we urge you to know without 

needing to look them up. 

Section 14.2 

| x vi] = area of u, v parallelogram 

Section 14.3. [fu = uyi + ur] + ugk and v = vi + voj oe 3k, then 

Section 14.4 

Ux V=) Uy Uo U3 

ju-v x w| = volume of u, v, w parallelepiped 

U:vVxXx wWH=uxVv:'Ww
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Section 14.6 

Polar coordinates: Know Fig. 1. 

Coordinates r, 6 and base vectors 6,.(@), é9(@). 

e= 7 cos@ 

y= rsind 

Position vector is R. = ré,. 

dé, | d@g 

eg 

Cylindrical coordinates: Know Fig. 5a. 

Coordinates r,@, z and base vectors 6,.(0), é9(@), é ze 

x==rcos@ 

y=rsing 

Z=2 

Position vector is R. = ré, + zé,. 

dé, deg 
da" do 
  = —6, 

Spherical coordinates: Know Fig. 6a. 

Coordinates p, 6, 8 and base vectors 6,(4, 9), €5(¢, 9), é9(8). 

v= psindcosd 

y = psingsin@g 

z= pcos@ 

Position vector is R. = pep. 

Space derivatives of the base vectors given by (28); no need to memorize 
these.



Chapter 15 

Curves, Surfaces, and Volumes 

15.1 Introduction 

In applications such as the calculation of moments of inertia, particle dynamics, 

and the gravitational force field induced by a given arrangement of mass, we need 

to know how to represent curves, surfaces, and volumes in 3-space, and how to 

obtain, from those representations, expressions for the differential arc length ds 

along a curve, the area element dA ona surface, and the volume element dV. We 

begin with space curves and integrals along those curves. 

15.2 Curves and Line Integrals 

Curves in space are, of course, of great importance. In mechanics, for example, 

the relationship between the forces acting on a point mass and the trajectory of the 

mass (i.e., the space curve developed by the motion) is of critical interest. 

We met curves, indirectly, in Section 14.5, when we considered the variation 

of a vector function u(r) with 7. For, in general, if the tail of the vector u(r) 

is fixed, then the head of u(r) generates a space curve as the parameter 7 is var- 

ied. Here, we shift our focus from the vector function u(r) to the space curve itself, 

15.2.1. Curves. Let a Cartesian z, y, 2 coordinate system be specified, and let 

c=ult), y=ylt)  2=2(7) (1) 

be continuous functions of a real parameter 7 over a closed interval [a, b), that is, 

over a < 7 <b. The points P(v) = (a(r),y(r),2(7)) fora ST Ss b are 

said to constitute a curve joining the endpoints P(a) and P(b), and we call (1) 

a parametrization of the curve.* If the endpoints coincide the curve is called a 

  

“If each of e(r), y(r), and z(7) is constant, the point set P(r) is a single point and is called a 

point curve. Although we limit ourselves, in this section, to curves in 3-space, the definition given 

here may be extended to curves in n-space. 

714 
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closed curve; if not, it is called an are. If the tail of the position vector 

R= a(r)i+ y(7)j + 2(7)k (2) 

is fixed at the origin, then the head of R(r) generates the curve as 7 varies from a 

to 6. 
As indicated in Section 14.5 (see the discussion associated with Fig. 3 therein), 

the derivative R/(7) (if it exists and is nonzero) is a tangent vector to the curve at 

the point P(r). 

EXAMPLE 1. Suppose that 

us OT + cosT, y= sint, z= 0, (3) 

where @ is a constant. Then R(r) = (Gr + cos r)i + sin7j. Since s = 0, the curve 

lies in a plane (the x, y plane in this case) and is therefore called a plane curve. Choosing 

different values of @ and different 7 intervals, we obtain different curves. Four such cases 

are illustrated in Fig. 1. @ 

We classify a curve C as simple if it does not intersect itself. If C is an arc it 
will be a simple arc if 7, 4 T2 implies that P(7) #4 P(r.) whenever 7, and 7 are 
in [a,b]; if C is a closed curve it will be a simple closed curve if 7, 4 72 implies 
that P(7,) # P(72) whenever 7; and 7» are in [a,b).* For instance, the curves in 
Fig. la. b, d are simple, and the one in Fig. Ic is not. 

Further, we say that C is smooth if it possesses a tangent vector that varies 
continuously along the length of C, and it is piecewise smooth if it is comprised of 
finitely many smooth segments, end to end. For instance, the curves in Fig. la, b, 
c are smooth, and the one in Fig. Id is piecewise smooth. 

In Example | we were given the parametric equations of the curve from which 
we were able to produce its graph. Sometimes we know the curve, but are not given 
parametric equations for it. In the next two examples we illustrate the determination 
of parametric equations for a given curve. 

EXAMPLE 2. Find parametric equations for the curve C that is the intersection of the 
two planes 

e-yt2e=4, 
(4) 

an t+ yn 2= 2. 

C is the solution set of equations (4) so apply Gauss elimination and find that s = 7 

(arbitrary), y = —-2 + aT, and vw = 2— aT. Indeed, these are the desired paramet- 

ric equations of C, where -90 < 7 < oo. Or, in 3-tuple vector form, (e,y,2) = 

  

“fa.b) means a <7 < b. We write /a@, b) rather than [@, 6] because the endpoints P(a) and P(b) 

coincide: P(a) = P(b). 

(a) Simple arc 

B=0, OSTSk 

vA 

  

(6) Simple closed curve 

f=0; OS tS2n 

va 

  

(e) Arc 

BHO, OSts4r 

Va 

(d} Simple arc 

pa-lh -tS7TS2 

  

Figure 1. Several cases 

of the curve (3).
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    (2— ky, —2 4 7,7) = (2,-2,0) + T(-4 =, 1), where (2, —2,0) is from the origin to a 

particular point ea C and (4, 3 L) isa vector along C. @ 

w
o
n
 

EXAMPLE 3. Find parametric equations for the curve C that is the ellipse 

() +G) = ) 2 3) 

in the x,y plane. If we had a circle x? + y? = 1 wecould use x = cost and y = sinr, 

that is, 2 = rcos@ and y = rsin@, where 7 = | and where we use @ as our parameter T. 

Adapting that idea to (5), let £ = cost and # = sinr. Thus, parametric equations for the 

ellipse (5) are 

xz = 2cosT, y = 3sin7t, (6) 

where 0 < 7 < 2a, say. [Whether or not we add z = 0 to (6) depends on whether we are 

considering Cc as a curve in the x, y plane or in x,y, z space.) @   
Observe that the parametrization of a given curve is not unique. In Ex.-.nple 

3, for instance, the alternative parametrizations x = 2sinT, y = 3cosT and c= 

2cosT?, y = 3sin7? work just as well. 

One case worth emphasizing is the parametrization of a straight line from a 

given point P,(21, y1, 21) to another given point P2(x9, ye, z2). We claim that 

  

= 2, +(t2-21)T, 

=y+(y- yt; (0<7<1) (7) 
=2+(22-2)T we 

e
G
 

    
  

always works. Obviously, the right-hand sides of (7) give (21, Yi, 21) when t = 0, 

and (a2, yo, 22) when 7 = 1. Not quite as obvious is the fact that the curve thus 

parametrized is straight. To verify that it is straight, write the position vector from 

the origin to any point on the curve as 

R(t) = [xy + (a2 - avy)r|i + ly + (y2 - yl + [zy + (22 - z)r|k 

Since the tangent vector to the curve, 

R'(r) = (ae — a1)it (yo - mi + (2 - 21)k, 

is a constant vector, it follows that the curve parametrized by (7) is, indeed, a 

straight line.   
15.2.2. Are length. Next, we consider the arc length s(r) of a curve C, from 

some point P(79) on C€ to any other point P(r) on C. We know what we mean.by_ 

the length of a straight line, but what is the length of a curved arc? As is done so 

often in mathematics, we use the limit concept to define this “new” quantity as the
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limit of a sequence of “old” quantities.” Specifically, we approximate the curve by 

a system of linear segments, as in Fig. 2, and sum the lengths of those segments. 

Then we repeat the process using a finer system of linear segments, and so on. If 

the endpoints of any single linear segment (such as AB in Fig. 2) are located with 

respect to the origin of some coordinate system by position vectors R4 and Ra, 

then the length of the segment is 

  

AR AR 

Re — Rall = |AR|| = VAR-AR = \/—- a7 Ar 
Ar Ar 

so in differential form we have 

ds = /R’'(r)-R’(r) dr. (8) 
      

Thus, the limiting process of summation described above evidently leads to the 

Riemann integral 
  

® ir) = | V/R'(t): R(t) dt, (9) 

which we adopt as our definition of the are length of C, from P(7) to P(r), 

provided of course that the integral exists (i.e., is convergent). It can be shown 

that the arc length of a given arc is independent of the location and orientation of 

the reference Cartesian coordinate system and is also independent of the particular 

choice of parametrization x(r), y(r), 2(7). CAUTION: The integral in (9) gives 

the arc length only if r > 79; if 7 < 70, then the integral is negative and gives the 

negative of the arc length between P(r9) and P(r). 

      

EXAMPLE 4. Asa simple illustration, use (9) to compute the arc length of the (semi- 

circular) curve shown in Fig. la. Then 

R(r) = a(r)it y(r)j = cosri+sin ri, 

Ri(r) = ~sinri+cos7j, 

R'(7)-R'(r) = sin? tT + cos’ 7 = 1 

so (9) is simply 

>= | Vldt=an. @ 
Jo 

  

*Recall, for instance, that the derivative is defined (in the calculus) as the limit of a difference 

quotient, the integral is defined as the limit of a sequence of Riemann sums, an infinite series 1s 

ordinarily defined as the limit of a sequence of partial sums, and so on. It is interesting that the limit 

is the fundamental and unifying concept of the calculus, yet it was not clarified until the nineteenth 

century, through the work of Cauchy (1789-1857), Weierstrass (1815-1897), and others, long after 

the birth of the calculus. 

P(T%}) 

P(t) 

AR 

B tn 

Figure 2. Approximation of 

C by linear segments.
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2m 
axl 

Figure 3. Partition of C. 

B=P, 

15.2.3. Line integrals. Consider a given curve C and a function of f(x,y, z) 
defined along C (perhaps off of C as well). Measuring arc length s from one 

endpoint, say A (Fig. 3), divide C into n arcs by specifying points Po (= A), 

P,, Po,..., Pai, Pn (= B) along C. Let the division be chosen arbitrarily, pro- 

vided that the P; points are spaced and numbered so that the arc length from A to 

P; is less than arc length from A to P,, if 7 < k. Denote the arcs as Cy,Co,...,Cn, 

where the endpoints of C; are Pj, and Pj. On each arc C; choose, arbitrarily, some 

point Q, that is anywhere between the endpoints of C;, or at one of the endpoints, 

and form the sum 

n= >) f(Qj)As;, (10) 
jax] 

where As, is the arc length of Cj. The choice of the Pj’s and (;’s defines a 

partition of C, and we call the largest As; the norm of the partition. Actually, 

we introduce not just one partition but a sequence of them such that the norm of 

the nth partition tends to zero as n — oo. If the corresponding sequence of sums 

Ji, J2,... converges to a limit, we call that limit the line integral of f over C, and 

write it as 

fds. (11) 
c 

In this chapter we study integrals over curves, surfaces, and volumes so the terms 

curve integral, surface integral, and volume integral would appear to be natural 

choices. However, (11) is usually called a line integral, rather than a curve integral, 

so we will use that terminology. 

The limit described above, and hence the integral (11), will indeed exist (Le., 

converge) if f is continuous (or even piecewise continuous) along C and if C is 

piecewise smooth and simple. 

From this definition of the line integral it can be shown that the following two 

important properties follow: 

| (af + Bg)ds = a | fds+ i gds (linearity) (12a) 
Cc Cc JC 

and 

i fds= | fds+ fds, (12b) 
Cc JCy JC 

where a, 3 are any scalars, f,g are any two functions (continuous along C), and 

where “C = C; + Cy,” that is, where C is divided into two parts, C, and Cy (just as 

C was divided into n parts in Fig. 3). 

In practice, however, we do not evaluate line integrals by seeking the limit of 

the sequence .J;, Jo,.... Rather, we introduce a coordinate system and proceed as 

follows. If C is parametrized with respect to some parameter 7 by x = (rT), y = 

y(r), 2 = 2(7), fora <7 < 5, then 
  

b 

| Fey2)ds= f flelr)ur) 0) VR RO) dr| 03) 

  

      

  

i 

\
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EXAMPLE 5. Mass of a Helical Wire. Determine the mass 

Mo= | ods (14). 
Je 

of a wire that is in the shape of a curve C and that has a mass density o (mass per unit 

length) that varies along C. In particular, suppose that C is comprised of N turns of a 

circular helix of radius a, defined parametrically by 

u(t) =acost, y(r) =asint, 2(r) = br, (0 IA
 tT <2N7r) (15) 

where 7 is actually the cylindrical-coordinate angle @. Observe that in one turn of the helix 

(i.e., as T increases by 27) z increases by 276, which quantity is known as the pitch of 

the helix. As 6 is diminished the helix becomes more and more compressed, collapsing 

to a circle of radius a in the a, y plane as 6 - 0: conversely, it becomes more and more 

stretched out as 0 is increased. And let the density vary linearly with 7 as o(7) = er for 

some positive constant c. Then 

R(r) = acosri+ asin tj + rk, 

R’(r) = —asinri+ acosrj + bk 

so (13) gives 

2Nqr 

Mo= eT Var +b? dr=e 
ae) 

  

Closure. The key to space curves and curve integrals is in their parametric repre- 
sentation. We have considered space curves C defined parametrically by 

we=ut), y=y(t), 2=2(7). (a<7r<b) 

The parameter 7 might have a geometrical significance (as in Example 5, for in- 
stance, where 7 amounted to the polar angle 6 of an r, 6, 2 cylindrical coordinate 

system), it might represent time, or it might have no particular significance. Like- 
wise, the differential arc length along C can be expressed in terms of 7 as 

ds = \/R'(r)-R’(r) dr, 

where R(r) = x2(r)i + y(7)j + 2(7)k is a position vector from the origin of the 
reference Cartesian coordinate system to any point P(r} on C, Finally, an integral 
fe fds along a curve C can, by parametrization, be reduced to an “ordinary inte- 
gral” of a function of 7 along a segment of a 7 axis, as indicated in (13). 

Computer software. Using Maple, you can obtain the graph of a curve C defined 

parametrically by 

R(r) = a(r)i + y(7)j + 2(T)k (a<7r <b)
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using the spacecurve command. For instance, to plot the helix 

R(r) = 3cos ri + 3sin rj + 20Tk (0 <7 < 25) 

enter 
with(plots): 

and return, to access the spacecurve command. Then enter 

spacecurve({3 * cos (t), 3 * cos (t), 20* ¢], t = 0..25); 

and return. Two problems: first is that the graph is kinky because the default num- 

ber of points used is only 50 and that is not enough for approximately four (25 

divided by 277) turns of the helix and, second, axes are not shown. To increase the 

number of points to 500, say, use the option numpoints = 500, and to show the 

labeled coordinate axes use the option axes = FRAMED or axes = BOXED. Thus, 

use 

spacecurve([3 * cos (t), 3* cos (t), 20 *t], ¢ = 0..25, 

numpoints = 500, axes = BOXED); 

for instance. 

  

EXERCISES 15.2 
  

1. Determine a parametrization for each of the following 

curves: the intersection of 

(a) the planes 2 — 2y+2=4, 22 +y-z2=0 

(b) the planes 4a — 8y + 5z=1, c+y-—2z2=6 

(c) the planes 20 +y+2=3, 2+4z=5 

(d) the planese@ —-y+2=0, 5a-y+2= 

(e) the planes 22-+y—z=1, 2y+2=4 

(f) the plane 2 + y + 2z = 5 and the circular cylinder 

et+y=ad 

g) the plane dz — y + 2 = 3 and the circular cylinder 

eet l 

(h) the plane w — y + 2z = 1 and the elliptic cylinder 

e+ 4y? = 4 
(i) surfaces 2a ~ y ~ 32 = Sand z = a? +y + 1, between 

(0, -2, ~1) and (2, —4, 1) 

(j) surfaces x ~ y? +2 = Oanda —y +22 = 0, between 

(6,2, —2) and (1, 1,0) 
(k) surfaces cv = y+ z? and z = xy, between (0,0,0) and 

(1, -1/Vv2, -1/v3) 
2. Give a parametrization of the straight line connecting 

(a) (5, -1, 2) and (2, 0,6) (b) (1, 2,3) and (3,7, —4) 

(c) (8, 1,7) and (0, 28, 12) (d) (1,0, 0) and (—6, 0, 0) 

3. Let each of the following R(7)’s, for 0 < Tr < 00, define 

a space curve. In each case, find the arc length s as a function 

of the parameter 7, namely, s(r) if 7 = 0 is taken to corre- 

spond to s = 0. NOTE: Naturally, cos Ti, for instance, means 

(cos T)i. 

(Qit+7j+7r7k 
(c) ri — 37j + 5(7 + 4)k) 

(e)i— 7r°j + 3k 

4. (Serret—Frenet formulas) The arc length s along a space 

curve C is itself a convenient parameter for the parametrization 

of C. Letting 7 be s, we have 

(b) cos Ti+ Arj + sin tk 

(d) cosr(i+j) — V2sinrk 

(f) sin Ti + cosTj — cos tk 

R(s) = x(s)i + y(s)j + 2(s)k. (4.1) 

In what follows there are problems and statements. We ask 

you to follow along with the statements and to respond only to 

problems introduced by the italicized word show. 

(a) Since dR. is tangent to C, dR./ds must be a tangent vector 

to.C. Show why the tangent vector 

 



  

et (4.2) 
ds 

is a unit vector. 

(b) Since T(s) is aunit vector, T-T = 1. Differentiating that 

equation with respect to s, show that T-T’ =0. Hence, T’ is 

either perpendicular to T’ or else it is 0 so we can express 

iT. 
o> = KN (« > 0) 

ds 
(4.3) 

where N is a unit normal vector perpendicular to T and & 

is a scalar multiplier, which can be considered as nonnega- 

tive without loss of generality. N(s) is called the principal 

normal and «(s) is called the curvature of C. [f the curve 

happens to be straight (in some neighborhood of the point in 

question), then T'(s) is a constant vector and T’(s) = 0 so 
that, from (4.3), & = QO, as is reasonable since a straight line 

has no curvature. In that case N = (1/«&)T" is undefined. The 

plane containing T and N is called the osculating plane. 

(c) In (b), we stated that « is the curvature, which means the 

numerical inverse of the radius of curvature p, 

1 
a 

Show that it follows from (4.3) that & ts indeed the curva- 

ture. HINT: Use the accompanying figure (where @ is the 

(4.4) A= 

Q . 
T(s + As)    

local center of curvature corresponding to the point P on C) 

and a difference quotient approximation of T’(s). Note from 

(4.4) that if the radius of curvature p is large then the curva- 

ture «& is small, and if g is small then « is large. Finally, we 

introduce a third unit vector B(s), the binormal. according to 
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B=TxN (4.5) 

so that at each point P on C {?,N,B} is a right-handed 

orthonormal set. The spatial orientation of the T, N, B 

triad varies, in general, as the representative point P [at the 

tip of R(s)] moves along the curve C. Thus, in general, 

T(s), N(s), B(s) will all be functions of s. Indeed, the varia- 

tion of T with s has already been given in (4.3). Let us obtain 

analogous expressions for N’(s) and B!(s). 

(d) First B'(s): From (4.5), show that B‘ = Tx N’. It follows 
from the latter that B’ is perpendicular to T (also to N’, but 

that fact will not be used here). But B is a unit vector so, by 

the same logic as given in (b) for T, B’ must be perpendicular 

to B or be 0, Thus, BY is perpendicular to the B, T plane, or 

else it is O so it must be expressible in the form 

- = VN, 

where the scalar multiple v in (4.6) is called the torsion of 

C at P because it is a measure of the rate at which the curve 

twists out of the osculating plane; if the curve is straight we 

define v = 0. NOTE: The torsion is generally denoted as 7, 
not v, in the literature, but we have already used 7 extensively 

as a parameter and prefer to use a different letter for the tor- 

sion. . 
(e) Finally, differentiating No = 

(v > 0) (4.6) 

Bx T (for recall that 

{7, N, B} is a right-handed orthonormal set) show that 

dN 

ds 

Equations (4.3), (4.6), and (4.7), namely, 

= —KT —vB. (4.7) 

  

dT - 
— = «KN, 
ds 

dN = —KT - vB, (4.8a.b,c) 
ds 

(BLN, 
ds       

are known as the Serret-Frenet formulas.* The latter are fun- 

damental to the study of space curves for the following reason. 

If T,N,B are expressed in terms of their scalar components 

then (4.8) is a system of nine linear first-order differential 

“These formulas were obtained by Frederic—Jean Frenet (1816~1900) in his dissertation (1847) 

and, independently, by Joseph Alfred Serret (1819-1885) in 1851.
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equations. If &(s) and v(s) are prescribed continuous func- 

tions, then that system admits a solution for T(s), N(s), B(s) 

that is unique to within the specification of T(0), N(0), B(0). 

With T(s) thus determined, we can determine R(s) and hence 
the space curve C, by integrating (4.2). For details, we refer the 

interested reader to J, J. Stoker, Differential Geometry (New 

York: Wiley~Interscience, 1969) or D. J. Struik, Differential 

Geometry, 2nd ed. (Reading, MA: Addison-Wesley, 1961). 

§, First, read Exercise 4. Given the circular heltx 

R(r) = acosTi+asin7j+ brk (a,b >0, 0< 7 < 0) 

(5.1) 

derive the results 

s(t) = Va? + 6" 7, 

T(r) = ce(—asin ri + acos rj + 6k), 

N(r) = ~cos7ri-— sin Th, 

(5.2) 

= a/(a* + 0°), 

= (a? + *)/a, 

(7) 

(7) 

(7) 

B(r) = c(bsin ri — bcos rj + ak), 

(r) 

(7) 
(r) = ~b/(a? + 67), 

where c = 1/Va?+6?. HINT: Don’t forget to use chain 
- dR dRdr 

differentiation. For example, T = —— = dR a 
ds dr ds 

6. In Exercise 5 we see that for a circular helix the curvature 

k(7) and torsion v(r) are constant along the helix. In this 
exercise let us work in the opposite direction. Specifically, let 

« and v be constants in the Frenet—Serret equations (4.8) and 

show, by deriving it, that tf « and v are not both zero then the 

solution of (4.8) is 

N = Cy sinws + Co cosws, 

K 
T= —Cosinws — "C, cosws +VCs3, (6.1) 

Ww Ww 

* Vv . v 
B= —Cysinws — —C) cosws— KC, 

w Ww 

where w = VK2 +1, and Cy, C2, Cy are the (vector) con- 

stants of integration. Then show that integration of (4.2) gives 

R= C,cosws + Cs sinws + Cgs + Cr. (6.2) 

Finally, verify that (5.1), in Exercise 5, is indeed of the form 

(6.2). 

7. (Velocity and acceleration of a particle) First, read Exercise 

4, Let the velocity of a moving particle be given by a posi- 

tion vector R. = R(t), where ¢ is the time. We wish to obtain 

expressions for the velocity v = dR/dt and the acceleration 

a = dv/dt = d?R/dt? in terms of T,N, B, «, and v. 

dQ) 
(a) With the help of chain differentiation (namely, = 

  

  

dt 
AC) ds 1 a 
ao = a where 7 =u = |/v|l is the speed), derive 

the formulas 

v= vT, 

(7.1a,b) 

II     
du - oat 
t+ AUN, 

  

NOTE: Equation (7.1b) is simple and informative. Since a 

is a linear combination of T and N it lies in the osculating 

plane. The first term on the right is simply the linear ac- 

celeration, the acceleration that would occur if the particle 

moved in a straight line with variable speed u(t). The second 
term is directed toward the instantaneous center of curvature 

(the point Q in the figure in Exercise 4) and its magnitude 

is Kv", or v2/p. This is the familiar centripetal acceleration 

that we meet in physics when studying circular motion. Note 

further that we can now appreciate that the Serret—Frenet for- 

mulas (4.8) play the same role as the formulas for the spatial 

derivatives of the non-Cartesian base vectors (such as 06,/00, 

04/06, and so on) in Section 14.6. For in deriving (7.1b) 

from (7.1a) we needed to evaluate dT /dt. Chain differentia- 

tion gave (dT /ds)(ds/dt), and then the Serret-Frenet formula 

(4.84) gave dT /ds as a linear combination of the base vectors 

T, N and B. 

(b) Actually, the third derivative d?R/dt® is also of interest 

in engineering applications (e.g., in cam design and in the 

analysis of mechanisms) and, quaintly, is called the jerk, j(¢). 

Show, from (7.1b), that 

d? 2 3\ 8 dv. 344 
j= (Sa _ ve) T+ 3xv-N ~Kuv°B. (7.2) 

8. Compute the normal N(x) for the plane curve y = x. 

Sketch the curve over -2 <x < 2, and show N at a number 

of points, say, @ = +£0.01 anda = +1.0. 

9, Let a curve in the x, y plane be defined by y = y(x). Show 

that 

 



  

  

tly" 
pe yl)? 

  (9.1) 
      

provided, of course, that y(«) is twice differentiable. 

10. Prove that P(r) = (u(r), y(r), 2(7)) is a plane curve if 
and only if 

rv! y! 2! 

etal oe! | 0, (10.1) 
lt yf ofl 

where primes denote d/dr. HINT: Recall the general equa- 

tion of a plane, az + by + cz = d, where a,b,c,d are con- 

bo
 

ua
 15.3. Double and Triple Integrals 7 

stants and a, 6, c are not all zero. If P(+7) lies in a plane, then 
a(t) + by(r) + e(r) = a. 

11. Let each of the following R(r)’s, for 0 < r < co, define 
a space curve. Use the results in Exercise 10 to show whether 
or not the curve is a plane curve. 

(a) ri or} + rk 

(b) r7i + 77j — 3rk 

(c) 2i- j+5rk 

(d) 81+ sin rj + cos Tk 

12. (a)—(f) Obtain a computer plot of the curve defined in the 

corresponding part of Exercise 3, over 0 <7 < 5. 

  

15.3 Double and Triple Integrals 

Having studied curve integrals, we can turn to surface and volume integrals. Since 
these are multiple integrals, let us begin with a brief review of double and triple 
integrals. 

15.3.1. Double integrals. Consider the double integral 

r= f | flewaa, 
R 

(1) 

where 7 is a region in the x, y plane. We assume that R is a closed, bounded region 
in the x, y plane,* that its boundary C is a closed piecewise smooth curve, and that 
f(x,y) is defined on R. 

Let us lay down a rectangular grid on R consisting of a finite number of lines 
parallel to the coordinate axes, for example, as shown in Fig. |. The N rectangles 
lying entirely within R (the shaded ones in Fig. 1) constitute a partition of FR, 
and the greatest of the dimensions Az,;, Ay; for 7 = 1,. 
norm of the partition and will be denoted by the symbol |p|. Let (xj, y;) be an 
arbitrarily selected point in the jth partition rectangle for each 7 = 1,2,...,N. 
Then, denoting the area Az; Ay; as AA;, 

N 
So Flap yA; 
j=l 

..,N will be called the 

  

Figure 1. Partition of R. 

is called the Riemann sum corresponding to the chosen partition and (xj, y;) 
points. The idea, in principle at least, is to compute the Riemann sum (2), then 
  

*The term closed region is defined in Section 13.2.2. R being bounded means that it can be 

enclosed within a sufficiently large circle (or sphere in the three-dimensional case).
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Figure 2. Subdivision of 7. 

to introduce a finer partition (Le., one with a smaller norm) and compute the new 

Riemann sum, and so on, such that the norm of the partitions tends to zero. Two 

things happen: the partitioning rectangles become arbitrarily small, and the un- 

shaded area within R (Fig. 1) evidently tends to zero. 

If the sequence of values of the Riemann sum thus generated converges to 

a unique limit, independent of the choice of the partition sequence and (xj, y;) 

points, that limit is, by definition, the double integral (1). That is, 

/ / f(c,y)dA = lim S" faz, yj AA. (3) 
J. [pj 70 

R 

It can be shown that the limit will indeed exist if f is continuous in the closed region 

R, that condition being sufficient, not necessary. If the limit does exist, we say that 

the integral converges, or exists, and that f is integrable on R, Riemann-integrable 

to be more specific since the Riemann definition (3) is not the only definition of the 

double integral. 

Double integrals admit the following properties, each of which corresponds to 

an analogous property for line integrals: 1 

[I laf(v,y) + Sg(x,y)\dA =a / / leyaass | | g(x,y) dA, (4a) 

R R. R 

I] jonaas | | jonas | | f(z. y) dA, (4b) 

where @ is a constant and all integrals are assumed to exist. The property (4a) is 

known as linearity. In (4b) R is divided (by a piecewise smooth curve) into two 

subregions, 7, and Ro, as illustrated in Fig. 2. In addition to (4a) and (4b), we 

call attention to the mean value theorem for double integrals, which states that if 

f(a, y) is continuous throughout the closed region 7, then there exists at least one 

point (2:9, yo) in R such that 

  

| / Pe.y) dA = feo wo) A, (4c) 
R 

A= / / dA (5) 

ta | 

is the area of R. 

Besides serving to define the double integral on the left, (3) is useful from a 

computational standpoint since the Riemann sum (2), for a given partition, will 

provide an accurate approximation to the integral if the partition is sufficiently fine. 

[In practice, however, one normally uses approximations which are more efficient 

and more sophisticated than the simplest approximation provided by (2).] 

  

where
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Of course, we resort to numerical integration only when necessary, only when 

we are tinable to carry out the evaluation analytically. How do we evaluate a dou- 
ble integral analytically? By dealing with it as an iterated integral, that is, by 
integrating on one variable at a time. The procedure is similar to that employed in 
differentiation. For example, in computing ty = by (2 u), first we differentiate 

u with respect to x, holding y fixed, and then we differentiate the resulting function 
Ou/Ox with respect to y. Analogously, if we recall that AA; = Aa; Ay; in (2), 
this fact suggests that we write [f, f(a,y)dA as Jf, f(x,y) da dy, and that we 
contemplate two successive integrations, first on ¢ and then on y. Thus, if R is the 
region shown in Fig. 3a, let us tentatively express 

7 “Yo ‘wa(y) 
// f(x,y) da= | | f(a, y) dex > dy 
R Jy zi(y} 

or, omitting the parentheses for brevitiy, 

a yo pea(y) 
| / f(t,y) dA = | i f(x,y) dx dy. (6) 
R vl x1 (y) 

In words, we integrate across the (bold) horizontal sliver in Fig. 3a, from z1(y) on 
the left to x2(y) on the right, and then we sweep the sliver from bottom (y = y1) 

to top (y = ye). 
Observe, in (6), that the “inner” integral, fe I (#, y) dz, is a function of y, 

say F'(y); the subsequently carried out “outer” integration is of the form ir F(y) dy, 

in which it is to be noted that the limits y, and yo are constants. 
Alternatively, if we integrate first on y and then on z, as in Fig. 3b, we have 

“D9 yo (x) “BQ pya() 

/ / f(z,y) dy > dx or / | f(a,y)dydx. (7) 
. Jay Jy Ly yi(z) zy Yyi(x) 

Are the iterated integrals in (6) and (7) necessarily equal? This question is 
analogous to the one regarding differentiation: for example, are the mixed partial 
derivatives fy, and fy, equal? (We suggest that before continuing you review 

Theorem 13.3.1 and the Closure in Section 13.3, about interchanging the order of 

two limit processes.) 

Returning to the question at hand, we state without proof that if f(a, y) is 

continuous on 7, then all three quantities are equal: the double integral (1), the 
iterated integral (6), and the “inverted” iterated integral (7),” 
  

“See J. E. Marsden and A. J. Tromba, Vector Calculus (San Fransisco: W. H. Freeman, 1976), 

Chap.5, especially Fubini's theorem for rectangular regions on p.224 and the rectangularization idea 

on p.230. Note (above Example 1) that we have stated that all three integrals are equal if f is contin- 

uous on FR. If f is not continuous, it is possible for the iterated integrals in (6) and (7) to be unequal 

(or for one or both to fail to exist), and it is even possible for them to be equal, but not equal to the 

double integral Tee f(e,y) dA. For such an example, see T. M. Apostol. Mathematical Analysis 

(Reading, MA: Addison-Wesley, 1957), Exer. 10-9. 

    

x 

Va 

JT) 

| 

‘yy Oxy 

vy x Xy 

Figure 3. Iterated integrals.



726 Chapter 15. Curves, Surfaces, and Volumes 

  

      
l x 

Figure 4. The region ? in (9). 

  

Figure 5. Region of integration. 

yo peoly) yal: 

| | Henaa- [ [ Flesa)dedy = f° f° f(a, y) dy daz. (8) 
a (y) yi(«) 

EXAMPLE 1. To illustrate the truth of (8), let us evaluate 

r=// ay” dA, (9) 

R 

where F is the triangular region depicted in Fig. 4. First, observe that f(z,y) = ry? is 

indeed continuous on R. If we integrate first on x, then x1(y) = y/2, e2(y) = Lys = 9, 

and yo = 2.80 

02 “ll 02 2,211 

r= | | ay’? dx $ dy -| a dy 
0 y/2 0 = iy/2 

2 2 4 yoo Y¥ 8 32 8 
= —_— -_- d =o sme 1 

[ (5 = | Y= 67 40> 15 (10) 

Alternatively, integrating first on y, as in (7), we have 

al 2x 3 

r= | {| oy dy} de = oy 
0 0 0 30 | 

which does agree with (10), in accordance with (8). a 

  

    

2u 

acm (1h) 

EXAMPLE 2. Evaluate the iterated integral 

4p /U 

L =| / e!/* da dy. (12) 
2 dy/2 

In Example | we were given a picture of R, from which we deduced the integration limits 

ri(y) = y/2, vo(y) = 1, yr = 0, yg = O in (10). In the present example we are given the 

limits. Fine, but it is difficult to get started because exp (y/w) is a formidable function of x 

to integrate. It is more promising to invert the order of integration so we can integrate first 

with respect to y because exp (y/) is a simple function of y. Thus, consider instead 

2p? 
r= | [ e¥!® dy de. (13) 

But what are the new limits of integration? [They are not merely Lo vu u fs ; Le@:, the reverse 

of the limits in (12).] To obtain the limits in (13) we need a picture. bt f the region R. That 

picture can be inferred from the limits in (12) and is the shaded region shown in Fig. 5. To 

integrate first on y and then on x we must break 7? into the subregions because the bottom 

boundaries of 2, and 72 are different, y = 2 for R, and y = xz? for Re. Thus, 

r= | / ey/* ayde + [ / e/* dy dz 

Ra Ra 

 



  

15.3. Double and Triple Integrals = 727 

  ll 

a jeu aD 2a 

* da + | rel/* dx. 
2 2 le?   

Thus, 

l= — + (/2 Lev? ~ / xe-!® de, (14) 
Ji 

The remaining integral in (14) can be evaluated in terms of the tabulated exponential in- 

tegral function, but let us not pursue that point. At the very least we have succeeded, by 

inverting the order of integration, in reducing / from a double integral to a single integral. 

COMMENT. Be sure to see that the functional nature of the integrand was not relevant in 

our search for the new limits needed in (13). Rather, the original limits [in (12)] implied 

the region R (shaded in Fig. 6), and the region ®, in turn, implied the new limits. | 

15.3.2. Triple integrals. Next, consider the triple integral 

I// f(v,y,2) dV. (15) 

R 

We assume that R is a closed, bounded region in 3-space, that f(x, y, z) is defined 
in R. and that the boundary S of R is a piecewise smooth surface. By a smooth 
surface we mean one that has a continuously turning normal,” and by a piecewise 
smooth surface we mean one that consists of at most a finite number of smooth 

surfaces arranged edge to edge. 
To define the triple integral (15), we partition 7 into a cellular structure anal- 

ogous to that shown in Fig. 1. This time, however, the cells are rectangular prisms 
rather than rectangles. Corresponding to this V-cell partition we form the Riemann 

sum 
N 

So fai uy 2)AV), (16) 
gel 

where AV; = Axvj;Ayj;Az; is the volume of the jth cell. Then we define a finer 

partition, compute its Riemann sum, and repeat the procedure over and over (in 

principle; one does not actually carry out this procedure in practice). [f the sequence 

of values of the Riemann sum thus generated converges to a limit that limit is, by 

definition, the triple integral (15). That is, 

‘(e,y,z)dV = li ‘Cay, yy, 2p) AV; (17) I// f(x,y, 2)¢ jim, Do fei ui i AV; 

R 

“For present purposes, one’s intuitive notion of the normal to a surface should suffice; the term is 

defined in Section 13.4. 
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3x4+2¥4+62=6 

Figure 6. The region R. 

if the limit on the right exists, where |p] is the norm of the partition, namely, the 
greatest of the dimensions Aa;, Ay;, Az; for 7 = 1,...,N. It can be shown 
that the limit (17) will indeed exist if f is continuous in the closed region 7, that 

condition being sufficient but not necessary. 
We state, without writing them out, that properties (4a) to (4c) carry over in the 

obvious way to the case of triple integrals. For example, the mean value theorem 
for triple integrals states that if f(w, y, z) is continuous throughout the closed region 
R, then there exists at least one point (xo, yo, 29) in R such that 

  

[| [fevaw- f (20,40, 20) V, (18) 

R 

V= [/ fav (19) 
ise 

is the volume of 7. 

To evaluate a triple integral analytically, we treat it as an iterated integral and 

integrate on one variable at a time. 

I= / / / yeedV, (20) 
R . 

where 7 is the closed region bounded by the planes x = 0, y = 0, 2 = O, and 32 + 2y + 

jz = 6. With dV = dz dy dz, we write 

r= fff ystavayas, (21) 
2 J? J? 

but how do we obtain the integration limits? It is helpful to re-express (21) as 

f= f | [we dx dy > dz (22) 
J? | de J? 

and to attend first to the bracketed iterated integral on x and y. In that iterated integral z is 

held fixed, at some value between z = 0 and z = I because we are not yet integrating on z. 

Thus, the 2, y integration is being carried out on a horizontal slice such as the triangle cde 

(Fig: 6). In turn, within that iterated integral we are integrating on @ first, with y held fixed 

at some point between ¢ and e. In other words, first we integrate on x from @ (x = ()) to b 

(w= 2—- ey — 22), then we sweep the line ab from ed (y = 0) toe (y = 3 — 3z). Finally, 

we sweep the triangle cde from z = 0 to z = 1, Thus, we have 

Lo pB=B2  pl-Fy—2z . 

I -/ i [ yz” dx dy dz 
0 JO 0 

      
where 

EXAMPLE 3. Evaluate 
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Lopbe he rae By 22 

| ya] dy dz 
J ( 

Lo pb-Bs 5 
= | | ye? (2 —=yo 22) dy dz 

Jo Jo 8 
a] + pyssd ade 

-| w2 po yb ye le 

= eOVY y yok dz 
JQ 9 ; 

y= 

" 2 2 
yy I 

~ | 2° [9(1 ~ 2)? ~ 61 2)? ~ 90. ~ 2)?z] dz = 5. (23) 
JO 2 

In case the upper y limit (y = 3 — 32) is not clear, observe that the point e is on the 

plane 3x + 2Qy + 62 = Gate =O. hence y+ 32 = sandy = 3 ~ 3c. 

COMMENT 1. The limits are nor f f ihe The latter would be correct if R were a 
rectangular prism, but it is not. The key to determining the correct limits lies in carrying 

out the sketch (Fig. 6), including the triangle cde and the line ad. 

COMMENT 2. How do we know that x varies from 0 (at a) to 2 — fy — 22 (at 0) and not 

vice versa, and similarly for the y and < limits? The key is that dV = dx dy dz must be 

positive because it is a volume element. We can ensure that each dV is positive by choosing 

the limits as we have. so that each dx. dy, and dz is positive; for instance, if the 2 limits 

had been chosen as 1 to 0, instead of 0 to 1, then each dz would be negative. 

COMMENT 3. As for double integrals, if the integrand is continuous on the region 7, then 

the triple integral is equal to the iterated integral, with the iteration carried out in any order. 

That is, 

oP pf pzq pyle) pealy.2) 

/ / | fdV / | / f dx dy d= 

“pt Jey Jyrle) Jai(y.e) 

nan pale) pyg(e.e) 

| | | fdydedz=--:, (24) 

ey Yaui(z) Jyy(ayez) 

and so on, where the three dots are included because there are actually six possible integra- 

tion sequences: wys. yrz. sey, vey, zyx, and yzx, Integrating in the sequence zyz, for 

instance, we would have 

»2 0 pS LI JO 0 

where the limits are obtained from Fig. 6. Evaluation of the iterated integral in (25) once 

again gives J = 1/20, as in (23). 

il 
i 

ro
le

s 

Ze sl—da—ly 3: gt~ a! 5 

| yo” ds dy dx, (25) 
Jo 

COMMENT 4. Observe the pattern in (24); for instance. consider the final iterated integral. 

in which we integrate first on y. then on a, and then on z. The limits can depend only on 

the variables that have not yet been integrated. Thus, the y limits can, in general, depend 

on x and =, the a limits can depend only on z, and the 2 limits must be constants. Ff 

Closure. This section is included as a brief review of double and triple integrals. 

Of special importance are the properties (4a)—(4c) and the corresponding ones for



730 Chapter 15. Curves, Surfaces, and Volumes 

triple integrals, the distinction between double and triple integrals and their iterated 

integral counterparts, and the determination of integration limits. 

Computer software. Besides single integrals, the Maple int command can be used 

to evaluate multiple integrals. For instance, to evaluate the integral (9), enter 

int(int(a * y°2, v= y/2..1), y = 0.2); 

and return. The result is 8/15, as obtained analytically in Example 1. 

  

EXERCISES 15.3 
  

Exercises 1-9 correspond to Section 15.3.1, and the remainder 

correspond to Section 15.3.2. 

1. Evaluate each of the following iterated integrals. Then in- 

tegrate again, with the order of integration reversed, and show 

that the same result is obtained. 

(a) fo 
(c) fe I ze" *Y dx dy 

(b) fy Jr" 28 y dy dex 

(d) f fo sin (a — y) de dy 

(e) [5 fern“ z+y)'da dy (f) fs pv dx dy 

yy? dex dy 

(g) L, (h) f [x x’ dy dz 

2. Show that fo {ox (r) dr dé can be reduced to the single 

integral fi (0 Ta iO dr (T = HINT: See the 
Comment at the end of Example 2. 

3. Show that 

(a) fy "Jey wel der dy = 3(€? — 1) 

fo 2? dy dx 

constant). 

y 

(b) f° ya we! de dy = 7 Te" 2 ed — fe el8/* de 

— COS 273 

(c) fo J; Fy Sin (a? y) dz dy = ia cos (2") —— Ue dw 

cos (x3) — cos (x?) 
+ fay 2 dx 

(a) fo pee OE ay dx = 1 

4. (Mass and center of gravity) Let o(a,y) be the density of 

a distribution of mass over a region R in the x,y plane [Le., 

o(z, y) is the mass per unit area at (2, y)]. Then the x, y coor- 
dinates of the center of gravity are defined as 

Le = i] | sees 

\d ua | [ vorwnes 

m= [ o(eaaa 
R 

is the total mass. Evaluate x, and y, in each case. In parts (a) 

to (d), a(2, y) is a constant, say oc. 

(4.1) 

Ye = 

where 

(4.2) 

(a) 

(b) 

(c)   
   



  

(d) 

  

 
Y
 

(e) Same F as in part (a), but a(x, y) = 1 ie 

(f) Same 7e as in part (a), but (2, y) = 
(g) Same F as in part (c), but o(a,y) = a 

(h) Same FR as in part (c), but (a, y) = y 

§. (Moments of inertia) Let o(, y) be the density of a distri- 

bution of mass over a region FR in the x, y plane; i.e., a(x, y) is 

the mass per unit area at (2, y). Then the moments of inertia 

f, and f,,, about the x, y axes, respectively, are defined as 

=// y-a(a, y) dA, u=/ | a’o(x,y) dA 

“R R 

(5.1) 

Evaluate J, and J,, in each case. In parts (a) and (b), o(z, y) is 

a constant, say a. 

  

  

    

      

y 

| (g ‘ 1) R | 

7 2 3 t 

¥ 

3 
R 

(b) 7 

1 2 x 

(c) R, o as in Exercise 4(a) 

(d) R, o as in Exercise 4(b) 

(e) R, o as in Exercise 4(c) 

(f) R, o as in Exercise 4(d) 

(g) R, o as in Exercise 4(e) 

(h) R, o as in Exercise 4(f) 

6. The exponential integral function £,(¢) is defined by the 

formula 

880 gT 

Ey(t) = i(t) | - 

  

  (t > 0) (6.1) at, 
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and is tabulated in the literature, just as are sin t,e’, and so 

on. Evaluate the integral [> £,(t) dt, and show that it equals 
1—e~* + cEy(x). (See the index for applications of the 
exponential integral function within this text.) 

7.1 

vy fy O<sys2a, O<a<i 

P(t,y) = { 0, elsewhere, 

show that 

0, u<0 

[. [is (z,y)dedy =< u’, O<u<l 
1, u> i. 

8. Use computer software to evaluate the integral in (14), and 

thus obtain 4 numerical value for J. 

9. (a)~(h) Use computer software to evaluate the iterated 

integral given in the corresponding part of Exercise 1. 

10. Evaluate each of the following iterated integrals. 

(a) i Jo ty dz dy dz 

(b) fo, {ofp 22 sin (yz) da dy dz 

() fo Io” 9 cos(@ + y) ded dy 

(d) LP, fe “fe sins = de dy dz 

(e) Io fe fo ~* et ty dx dy dz 

(f) fs fo fe 8yrerv de dy dz 
I. Evaluate 

1 WE pz y 

r= | | | sin ~ dx dy dz. 
0 30 Jyf/m © 

HINT: The x integration looks quite difficult, so try inverting 

the order of integration to the form 

Lop? p? 1 
f= | | | sin 2 dy dx dz. 

o /? J? © 

seep? 
To determine the integration limits we do nor need to draw 

the full three-dimensional region of integration. Rather, a look 

at the x, y plane (with z regarded as a fixed value, somewhere 

between its limits of 0 and 1) will suffice since it is only the x 
and y integrations that we are interchanging. 

12. Evaluate the following integrals. The idea, in each case, is 

the same as discussed in Exercise 4. 

(a) R: the tetrahedron with vertices at (1,0,0), (0,2,0), 
(0, 0,1), (0, 0,0); o = constant. Evaluate x,.
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(b) R: the tetrahedron with vertices at (1,0, 1), (0,0, 1), 

(0,1, 1), (0,0,0); o = a. Evaluate 2.. 

(c) R: the finite region bounded by z = 4—x? 

z,y plane; o = constant. Evaluate z¢. 

(d) R: the finite region bounded by z = 1 — x? — y’, the x, 

plane, and the x, y plane; o = constant. Evaluate 2. 

(e) Repeat part (d), but with o = z 

— y’, and the 

13. (Moments of inertia) Let o(, y, 2) be the density of a 

distribution of a mass over a region R in x,y,z space [Le., 

a(«,y,2) is the mass per unit volume at (v,y,2)|. Then the 

moments of inertia [,, [,, and J, about the x,y, 2 axes, re- 

spectively, are defined as 

w= [ [fore 
b= [Jerre 
i= [ff +y")o(x,y, 2) dV. 

In each case evaluate J. 

(x,y, 2) dV 

v,y,z)dV 

(a) R, o as given in Exercise 12(a). 

(b) R the rectangular prism 0 < 2 < a, 0 < J <b,0< 

o = constant. Show that I, = cabe(b® + c*)/3. 

(c) R the rectangular prismO0 <x <aO<y< bO<z<6, 

but with the corner 0 < x < a/2,0<y < 6/2,0<2<e/2 

cut out, as shown in the figure; 7 = constant. HINT: You may 

use the result given in part (b). 

<c¢) eR 

  

14. Determine the “?” integration limits. HINT: You can use 

the given limits to infer the region FR. Sketching R, you can 

then determine the new limits. However, that method might 

involve a challenging three-dimensional sketch and would not 

work at all for a quadruple integral, say, because R would then 

be four-dimensional. Thus, we suggest that you use one or 

more two-dimensional pictures. In part (a), for instance, only 

the y and z integrations are being interchanged so it suffices 

to consider the y, z plane. In part (b) you can accomplish the 

desired change in the order of integration by using two suc- 

cessive interchanges, as follows: ryz —-> yxz —> Y2a. The 

first interchange requires a look at the x, y plane only, and the 

second interchange requires a look at the z, 2 plane only. 

 [ [ [ F(a, y,2) de dy dz 

=f [ semaaeaedy 

off [sone \ de dy dz 

-[[ [1 
of f [ few ) de dy dz 

= [ [ Hewsraedyte 

of [ * Fv, y,z) de dy dz 

=f [ neoweravdede 

of [Ps (a, y, 2) da dy dz 

= [ [ [ teonaaededy 

of ff tewadearas 

=[ [ [ so 2) dz dy de 

15. (a)—(f) Use computer software to evaluate the integral in 

the corresponding part of Exercise 10. 

y, 2) dy dz dx 

  

  

t



  

15.4 Surfaces 

Aiming at a consideration of surface integrals in Section 15.5, we begin by dis- 
cussing the parametric representation of surfaces, the tangent plane, and the normal. 

15.4.1. Parametric representation of surfaces. To begin, recall that a space curve 

may be represented parametrically by equations 

w=a(u), y=ylu), == 2(u) (1) 
over some interval of the parameter u. (Previously we used 7 as our parameter; 

here we prefer wu.) Or, in vector form, we express the position vector R(wz), from 
the origin of the reference x. y, z coordinate system to a point on the curve, as 

R(u) = «(wi + y(u)j + 2(u)k. (2) 

Similarly, it is natural to expect a Mvo-parameter family of curves 

c=au,v), y=yluv), 2= (u,v) (3) 

or 

R(u,v) = x(u,v)i+ y(u,v)j + z(u, v)k, (4) 

over some intervals of the real parameters « and v, to define a surface, That is, for 

each fixed v the parametrization (3) [or (4)] defines a curve (in general), Thus, as 

we vary v we produce a family of such curves which, in general, will generate a 

surface. 

EXAMPLE 1. Let 

r= asinvcosu, 

y = asinvsinu, (5) 

£= aCoOsu, 

where 0 <u < 7/2,0 <u < 7/2, and a is a positive constant. Squaring and adding 

these three equations gives 2? + y? + 2° = a®, which represents a spherical surface of 
radius a, centered at the origin. [n fact, a comparison of (5) with (26a) in Section 14.6 

reveals that a,v, wu are actually the spherical coordinates p, @,0, respectively, in disguise. 

Since p = a = constant, the surface is spherical. More precisely, it is one-eighth of a 

spherical surface as shown in Fig. Ib, where it is denoted as S. Thus, in this example the 

parameters u and v happen to bear a geometrical significance; they are the spherical polar 

angles shown in Fig. 1b. 

[f v is fixed and u is varied over the line AB in Fig. la, then (5) generates the curve 

A'B' shown in Fig. Ib. Similarly, if w is fixed and v is varied over CD, then (5) generates 

the curve C’D'. If we think of S as part of the earth's globe, with C’ as the north pole, then 

the v = constant curves are the lines of latitude and the u = constant curves are the lines 

of longitude. 

COMMENT I. It is common to refer to u,v as curvilinear coordinates of the generated 

surface S, In this example the network of lines of latitude (the v = constant curves) and 

ta
 

oe
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(a) 

v 

r/2 E D FE 

A P B 

G 

O Cc m/l2 ul 

(b) 

i = constant 

alc 
y= constant    

  

Figure 1. The surface S 

generated by (5).



734 Chapter 15. Curves, Surfaces, and Volumes 

  

Figure 2. u,v coordinate mesh 

ond. 

longitude (the uw = constant curves) forms a coordinate system on the surface of the sphere 

just as a rectilinear network of « = constant and y = constant lines forms a coordinate 

system on the 7, y plane. We call the w = constant and v = constant curves on S the 

coordinate curves. In particular, along the v = constant curve only u is changing so we 

call the v = constant curves the uw coordinate curves. Similarly, we call the wu = constant 

curves the v coordinate curves. For instance, in Fig. [b A’B’ is a u coordinate curve, with 

wu increasing from 0 at A’ to 7/2 at BY, and C’D’ is av coordinate curve, with v increasing 

from 0 at C’ to 7/2 at D’. In Fig. 2 we show many such u and v coordinate curves so as 

to more clearly see the u,v coordinate “mesh” on the spherical surface. 

COMMENT 2. If the surface S can be expressed in the form z = f(x,y), then we can 

parametrize S by x = u, y = v, and z = f(u,v). In the present case, 

  

Z= (6) 

so an alternative parametrization, to that given by (5), is 

C= U, Yy =v, 2 (7) 

  

In that case the u,v coordinate curves through a given point P on S are as shown in Fig. 3a, 

and the overall coordinate mesh is as shown in Fig. 3b. @ 

15.4.2. Tangent plane and normal. Let a given vector function R(u,v), for 

some u and v intervals, define a surface S. Since v is held constant in the partial 

derivative R.,, it follows that R, (if it exists and is nonzero) is a tangent vector 

to S, along the u coordinate curve (and in the increasing u direction) as shown in 

Fig. 4. Similarly, R., (if it exists and is nonzero) is a tangent vector to S along the 

v coordinate curve (and in the increasing v direction). 

ON. u = constant, 
~ NN, ann . 

ao v coordinate curve 

   
   

  

v = constant, 

u coordinate curve 

Figure 4. Tangent plane and normal. 

From Fig. 4 we see that a normal vector to S, at P, can be obtained from 

R(u, v) as 
n=R, x Ry (8) 

 



  

  

      

or 

i _ Ruy * R, 9) 

Ru x Rell’ 

provided that 

R, x Ry #0 (10) 

at P, that is, provided that R,, and R, are nonzero and noncollinear (i.e., provided 

that R.,, and R, are linearly independent). In Example 1, R,, and R, happen to be 

not only linearly independent but even orthogonal at each point on S, but in general 
the uz and v coordinate curves need not be orthogonal. 

If (10) is satisfied, then R.,, and R, determine a plane, the tangent plane 7 to 

Sat P. Forifu = u(r), v = u(r) are parametric equations of any curve C through 
P,in S, then dR/dr is tangent to C at P. But 

dR = £ R(u(r), v(r)) = Ryu’ + Ryo’ (11) 
dr dt 

is in 7 because it is a linear combination of R, and R,. (For the second equality, 

which is chain differentiation, to hold, let us assume that R., and R, are continuous 

functions of u and v at P and, of course, that u and v are differentiable functions 

of 7 at that point.) 

Given R(u,v), and a point P on S, how can we obtain the equation of the 

tangent plane 7 to S at P? Let R, = tpi + Ypd + zpk and R = vi+ yj + zk be 
position vectors to P, and to any point on 7, respectively (Fig. 5). Then 

(R—R,)-A=0, (12a) 

where n can be computed from (9) and is a known vector, as is Ry. If we denote 

n= ai + bj + ck, say, then (12a) becomes 
  

  
a(x — Up) + bly — Yp) + e(z — Zp) = 0 (12b) 

    

or 

  

ac +by+cz=d, (12c) 

where d = a2, + byp + cZp. Equations (12) are equivalent, each one being the 
equation of the tangent plane at P; (12b) and (12c) may well look familiar from the 

calculus. 
Naturally, the normal n can be determined only to within a factor of <1. For 

instance, if @ = (i + j — 2k)/V/6 is a normal to S at some particular point P, 

then so is 8 = —(i+j — 2k)/V6. The two possible n vectors at P determine a 
line which we call the normal line at P. A unique tangent plane exists at P if and 
only if a unique normal line exists there, and the condition (10) is sufficient, but not 

necessary (see Exercise 10), for the existence of a unique normal line. 

EXAMPLE 2. For the surface S defined parametrically by 

C= Ut VU, 

15.4. Surfaces 735 

(a) 

   a v= constant 
u= constant 

Co le ep ey 

i“ a 

” 

(b) 

  

Figure 3. Using (7), instead. 

  

Figure 5. Obtaining equation 

of tangent plane.
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y= un vu", (13) 
9 © é 

zg=u? +3v', 

find the tangent plane to S at u = 0, v = 1, that is, at the point (w, y, 2) = (1, ~1,3). Since 

R = (u+v)i+ (u— vj + (uw + 3u)k, we have 

R, =itj+22uk=i+j, 

R, =i—2uj+ 1l2u°k =i-2j + 12k 

atu = Oand v = 1 so (9) gives 

4i-4j—k 
= —— (14) 

V¥33 

Thus, (12b) gives 

  
4 1 (a —1)-—= (2-8) =0 (15) 
oe ‘ 

or 
da ~ dy —2=5 (16) 

as the equation of the desired tangent plane. @ 

EXAMPLE 3. The relation 

r+y+eereal (17) 

defines a surface that is somewhat of a sphere compressed at its north and south poles: its in- 

tercepts along the coordinate axes are +1 along each of the w and y axes. and +£0.618 along 

the z axis. Find the equation of the tangent plane at the point (z,y, 2) = (4. rT / A | 

= (0.5, 0.5, 0.605) on S. 
To use (12b), say, we need to know a,b,c; that is, we need to know n. Since n is 

given, by (9), in terms of R(u, v), our first step is to parametrize S in order to find R(z, v). 

  

We can solve (17) (with the help of the quadratic formula) for z. in the form z = f(x,y), 

and then parametrize S by v = u,y =v. 2 = f(u,v), but itis easier to solve (17) for x as 

(18) 

R(wvype flu ve = vt i+ uj +vk (19) 

so, with u = 0.5 and v = 0.605, (19) gives R, = ~i+jand R, = —2.096i + k. Next, 

(9) gives . . 

fh = 0.3961 + 0.396} + 0.829k. (20) 

Hence. a = 0.396. b = 0.396, c = 0.829, v, = 0.5, yp = 0.5. and 2, = 0.605 so (1 2b) 

gives 
0.396 + 0.396y + 0.8292 = 0.898 (1) 

 



  

as the equation of the desired tangent plane. 

COMMENT. Alternatively, if S is given in the form of a relation 

f(x,y, 2) = 0, (22) 

then the Taylor series expansion about (2p, yp, Zp) gives 

I (xp, Yor Zp) “F fo(2p, Yo: Zp)(e ~ Up) + fyl2p, Ups tp)(y ™ Yo) 

+fe(&p, Yps en ){z — Zp) ch 0, (23) 

where the three dots denote the terms of second order and higher. If we linearize by drop- 

ping those higher-order terms. and note that f(x», Yp,Zp) = 0 [because f(a, y,z) = 0 is 

the equation of S, and (zy, Yp, Zp) is on S], then (23) becomes pr Ups #4 

  

| fe(Lp.Yp, Zp) (xe 7 Lp) + fy (ep, Ypy Zp)(y 7 Up) + fel@psYp, Zp)(z _ Zp) = 0, | (24) 
  

which is the same as (12b), but expressed in terms of f(x,y, 2) rather than in terms of 

R(u,v). We leave it as an exercise to show that, with f(v,y,z) = a2? +y?4+ 22+ 24-1, 
(24) agrees with (21). @ 

Closure. A surface S may be represented by the parametric equations « = z(u,v), 
y =y(u,v), 2 = z(u,v) or, equivalently, by the position vector 

Rlu,v) = xu, v)ji+ y(u,v)j + 2(u, v)k. 

Accordingly, S is covered by a mesh of u and v coordinate curves (namely, the v = 
constant and wu = constant curves, respectively), as shown in Figs. 2 and 3b for two 
different parametrizations. From R(u, v) we can obtain the normal to S from (9) 
(except at points on S at which R,, x Ry = 0) and, knowing n, the condition (12a) 

gives us the equation of the tangent plane in the forms (12b) or (12c). Alternatively, 

if in place of R(u,u) we know S through a relation f(x,y, z) = 0, then Taylor- 
expanding f and linearizing gives the equation of the tangent plane in the form 
(24). Naturally, from a comparison of (12) and (24) we can see that the normal 

vector to S can be expressed, in terms of f, as 

~ foi + fud F fk 
nS ee, (25) 

fet fpr 

  

where fr, fy, /; are evaluated at the point (rp, Yp, Zp) on S. 
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EXERCISES 15.4 
  

1. In Fig. | we show the curves on S that are the images of 

the lines AB and CD in the u,v plane, namely, A’B’ and 

C'D', respectively. Sketch, trace, or photocopy the surface 5 

in Fig. 1b and show the curve on S that is the image of the 

following line in the w, uv plane. 

(aj~OE (b) EF 
(e) the line v = u from O to # 

(f) the line vy = 7/2 —u from B toG 

(c) FG (d) OG 

2. Consider the parametrization 

L=u, yeutv, z=, 

over QO <u<4, O<v<4 

(a) Show S ina labeled sketch. 

(b) Show the u = 1,2,3 andv = 1,2,3 coordinate curves on 

S 
(c) Evaluate fi using (9). Are there any points on S at which 

(10) is not satisfied? 

3, Consider the parametrization 

L=U, (3.1) yeu-v, 2=4—-2u+v, 

over the open region shown (shaded) below. 

VA 
| 

4 fo    
(a) Eliminating u and v from (3.1), obtain a nonparametric rep- 

resentation of the surface S [i.e., in the form f(z,y, 2) = 01, 

and show S ina neat, labeled sketch. 

(b) Show the u = 1,2,3 and v = 1,2,3 coordinate curves 

ons. 

(c) Evaluate n using (9). 

4, Consider the parametrization 

c=ucosv, y=usinuv, 2-0, 

over0<u<3, Osu < 27. 

(a) Show S ina labeled sketch. 

(b) Show the u = 1,2 andu = 0,7/4,7/2,30/4,7, 52/4, 

3/2, 7x /4 coordinate curves on dS. 

(c) Evaluate f using (9). Show that (10) ts not satisfied at the 

origin, but that a unit normal fi does, nevertheless, exist there. 

5. Consider the parametrization 

v=aucosv, y=businu, «=0, 

overO<u<l, O<u < 2m. 

(a) Show S in a labeled sketch. 

(b) Show the u = 4 and vu = 1/4, 37/4, 5/4, 77/4 coordi- 

nate curves on S. 
(c) Evaluate f using (9). Show that (10) is nor satisfied at the 

origin, but that a unit normal ni does, nevertheless, exist there. 

6. Consider the parametrization 

g=(l—u)cosy, y= (1-u)sine, (6.1) f= Uy, 

overrO<u<l, O<u< 27, 

(a) Eliminating u and v from (6.1), obtain a nonparametric 

representation of the surface S, and show 6 in a neat, labeled 

sketch. Identify S. (For example, is it a plane? A sphere? ...) 

(b) Show the u = 4, $, 3 and v = 0, 7/4 coordinate curves on 

S. 
(c) Evaluate 1 using (9). Show that there is one point on S at 

which (10) is not satisfied. Does S admit a unique normal line 

at that point? 

(d) Find the equation of the tangent plane 7 atu = k, v= 0. 

Sketch 7 and S. 
(e) Repeat part (d), for u = ; . 

(f) Repeat part (d), foru = 5,0 = 1/4. 

(g) Repeat part (d), foru = $,v = 1/2. 

7, Consider the parametrization 

. y 

v=acosu, y=bsnu, 2=Uv", (7.1) 

overO<u<2n7, O<u<3. 

(a) Sketch S, and verify that it is an elliptic cylinder. 

(b) Show the u = 0,7/4, and v = 2,3 coordinate curves on 

S. 

8. Give two different parametrizations of each surface: 

(a) the x, y plane 

(b) the a, z plane 

 



  

(d) the plane 38a — 2y+2=6 

(e) the hyperboloid x? + y? ~ z* = 1lover0 < 2 < 00 
(f) the elliptic paraboloid x? + y? = z 

(g) the quadratic cone x? ++ y? = 2? 
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1. Find a normal A and the equation of the tangent plane for 

the given surface S and a point P; if a unique normal line and 

tangent plane do not exist at that point then state that. 

(aS: 2=a?+y", P= (2,1,5) 
9, Find any parametrization «¢ = z(u,v), y = ylu,v), (b)S: c=27—-4y*, P= (1,2, -3) 
z = z(u,v) of the given plane such that the u,v coordinate (c)S: cttyi4+24=18, P= (1, -1,2) 
curves are orthogonal. (WS: e=yz, P=(3,-1,-3) 

(a) w+ Qy — 42 = 5 (b) 2a -y+2=9 ()S: ys a? +24, = (1,2,1) 
(c) 20+ y +327 = ~—6 (d) I-yr2= 1 (HS : rv +y? == 16 sin? 4, P= (2,2, 7/4) 

()a-y-5z=0 (ha+y-4z=0 (g)S: g=tuysutv,z=vF+, P:ru=3,u=2 

10. Surely, if condition (10) is satisfied at some point P (hy 5 Pe = ucosy, y= usiny, z= u", Pius .us 
on a surface S, then there exists a unique normal line and a 7/6 . 

unique tangent plane at P. Prove that the condition (10) is S:t=usiny, y=ucosy,z=u, P:u=0,u= 7 
sufficient but not necessary. HINT: Logically, a counterex- Si usvetyy =U Uae wv, Prus2v=1 
ample will suffice. For such an example, consider the point (kK): c=u,y=u*+u,zsu-v, P:u=0,0=1 
x= y = 2 = O0on the surface x = O(ie., the z,y plane), with ()S: «= 4u*,y =u? —v*, 2 = W243, Pius 

the parametrization z = u®, y = v®, z = 0. lus-l 

  

15.5 Surface Integrals 

In Section 15.3.1 we reviewed double integrals [f f dA over regions in the a, y 
plane. Having developed the concept of the parametric representation of general 
curved surfaces in Section 15.4, we are now ready to generalize the concept of 
double integrals by considering double integrals on curved surfaces in 3-space. For 
example, suppose that we have a distribution of electric charges over a surface, and 
we wish to know the total charge or the electric field induced by that distribution. 
Such quantities are expressible as integrals of the sort that we are about to consider. 

15.5.1. Area element dA. Consider a surface S given parametrically by R(u, v) = 

a(u, vjity(u, v)j+2(u, v)k, where R(u, v) is C! (.e., R and its first-order partial 
derivatives R., and R., are continuous) and R, x R, 4 0 on S. These conditions 

ensure that S is “nice.” Specifically, they ensure that a unique normal line exists at 
each point on S and varies continuously on S (i.e., is a continuous function of u 
and v). Such a surface is said to be smooth, j.0. 

To obtain an expression for the area element dA on S, in terms of our u,v 
coordinate system, we begin by taking a differential of the position vector R(1, v) 
from the origin to any point P on S: 

dR. = R,du + Ryd. (1) 

Thus, along the wu = constant and v = constant curves through P we have dR. = 
Ry dv (since u constant, so that du = 0) and dR = R,du, respectively, as
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fj dReR, rea wi 

Hos CORSTARC fi 

y= CONSLIAL 

Figure 1. Area element dA. 

shown in Fig. |. These vectors define a parallelogram (Fig. 1) lying in the tangent 

plane to S at P. The area of this parallelogram is [recall (10) in Section 14.2] 

dA = ||Rudu x Rydv|| = ||Ru x Ry|) dude. (2) 

As du and dv tend to zero this plane area element lies closer and closer to S so 

that it seems reasonable to define the area of the curved surface S by the double 

integral 

A= /| a= | |Ru x Rall dude, (3) 
v Ss R 

where F is the region in the u, v plane that corresponds to the surface S in 3-space. 

Notice that we have not proved (3), it is a definition.” Further, we call 

dA = [Ry x R,|| dudv (4) 

the area element on S. 

To obtain a computational version of (4), cross Ry = Cul + yuj + Zuk with 

Ry, = Lyi + Yj + 2yk. The norm of the resulting vector is the square root of the 

sum of the squares of its components. Carrying out these steps, we obtain 

dA = VEG — F? dudv, (Sa) 

B= ait vat to 
Fo ty@y + Yule + 2utvs (Sb) 

2424 22 G=wi+yot+ 2. 

  

      

  

Notice that we may attach a geometrical significance to F for, by inspection, 

we see that F = R,-R,. Thus, if R(u,v) is such that F is identically zero, then 

that condition implies that R.,, and R, are perpendicular to each other at each point 

on S. In that event, we say that the curvilinear coordinates u and v are orthogonal: 

that is, they form an “orthogonal net” on S. 

EXAMPLE 1. Surface Area of a Sphere. To illustrate the use of (5), let us compute the 

surface area of the spherical surface S defined by 

eoasinucostu, y=asinusimu, c= acose, (6) 

over 0 <u < r/2and0 < v < w/2 (which surface was the subject of Example | in 

Section 15.4). S constitutes one-eighth of a complete spherical surface and is shown in 

Fig. 2. Putting (6) into (5b) gives a & 

Be=asinev, F=0, G=a’. (7) 
  

*For instance. our use of the differential version of the chain rule, in (1), was heuristic, not rigor- 

ous. 
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Thus, 
ya. o.. 

dA = a" |sinv|dudu = a* sinududv (8) 

since sinv > Oover 0 <u < w/2. 80 

a f2 pa f2 Tae 
y . tab 

A=a | | sinvdudu = —. (9) 
Jo 40 2 

Of course, (9) is correct since we know that the surface area of the sphere is Ara’, and S is 

only one-eighth of that. 

COMMENT |. The expression (8) could. in this case, have been obtained directly from 

Fig. 2, without recourse to (5). For dl is the shaded area ABCD so 

dA~ (AB)(AD) =(EF)(AD) = (OF du)(adv) 

= (asinvdu)(adu) = a’ sinvdudv. (10) 

Here 4B, for example. denotes the length of the arc connecting the points Aand B, duis 

the angle FOE, and dv is the angle DOA. But while the connection between (8) and the 

geometry contained in Fig. 2 is interesting and supportive, we should emphasize that the 

“method of pictures” used in (10) may not be feasible in other cases, whereas (5) is simple 

and automatic. Figure 2. The surface S, 

  

COMMENT 2. In this case / = 0 everywhere on S so the u,v coordinate curves must 

be orthogonal. This result is no great surprise since it should be evident that the curves of 

longitude and latitude intersect. at each point on S, at right angles. 

COMMENT 3. A striking feature of this example is the beautiful simplicity of the calcu- 

lation in (9), This simplicity emphasizes that the u, v curvilinear coordinates defined in (6) 

are rather “natural” for the representation of this particular surface. 

There are two special cases of (5) that should be singled out: 

Case 1: z=0. If z = 0, so that S is flat and lies in the x, y plane, then x = x(u,v), 

y = y(u,v), 2 = 0, and (Sb) simplifies to 

B= ae + Ye Fz tyty + Yuyo, G= ve + ye. dy 

It follows from (1 1) that 

9 9 1 pe 22 os yb ey? 
EG — Fe = ayy 28 uYutele + lu 

2 
= (aye Pou)”: (12) 

which is none other than the Jacobian O(a, y)/O(u.v) squared! Thus, for the case 

where x = 0, (5) simplifies to the form 

  

O(u.v) 
du dv, (13) 
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Figure 3. dA in polar 

coordinates. 

the absolute value signs being included to ensure that we have the positive square 

root in (Sa) since area must surely be positive. 

EXAMPLE 2. As an illustration of Case L, note that the parametrization choice 

v= uUCcosy, y = usiny, z= 0 (14) 

amounts to the familiar case of plane polar coordinaies, that is, u is r and v is 6. Then the 

Jacobian is 
cosu  —usinu 

sin u UCOSU | 

Ly Ly 

Yu Yo 
  

      

so (13) gives 
dA = jul dudv 

or, in terms of the more familiar letters r and @, 

dA = rdr dé, (15) 

where we omit the absolute values since the polar variable r is understood (in this book) to 

be nonnegative. 

Again, seeking a geometrical interpretation, note that the length of AB in Fig. 3 is dr, 

while the length of AD is r d@ so that dA ~ (dr)(r d@) = r dr d@, as in (15). 

COMMENT. Since dA = dea dy in Cartesian coordinates and dA = r dr dé in polar co- 

ordinates, it is tempting to write drdy = rdrd@. However, the latter is not correct. 

Heuristically, we can think of it this way. In the United States the smallest monetary unit 

is the penny so we can write d(money) = penny. In the country of Rumanova the smallest 

monetary unit is the yink so we can write d(money) = yink. Any amount of money can be 

formed by a suitable aggregation of pennies or of yinks. But it does not follow that a penny 

equals a yink. d 

Case 2: z = f(x,y). If S is given in the form 

z= f(z,y), (16) 

over some region 7 in the z, y plane, then as noted in Section 15.4 (see Comment 

2 in Example 1), we can parametrize S by 

c= U, y= vy, 2 f(a,y). (17) 

Putting (17) into (5) yields & = 1+ f?,F = fufy. G = 1+ f?, and hence the 

form 
dA=V/1+ f2+ fe? dudv. 

But since x = wand y = v it seems silly to retain the new variables u and v. Thus, 

let us write, instead, 

dA = /1+ fi + fj dvdy. (18) 
  

    
  

    

  

ent OE 8G



    

Correspondingly,   

“R 

is the area of S, where ® is the region in the w, y plane lying directly beneath S. 

      

EXAMPLE 3. Surface Area of a Sphere, Revisited. Let us compute the surface area of 
the surface S shown in Fig. 2 (Example |) again, this time using the parametrization 

(20) by
 

  

C= Uy, y= vu, 

Since z = wand y = v, the coordinate curves on S are simply the projections onto S 

of the = constant and y = constant lines in the 2, y plane. To illustrate, the coordinate 

curves through a given point P on S are sketched in Fig. 4. To visualize the coordinate 

curves more easily, imagine the = constant and y = constant lines in the x,y plane 

(such as AB and CD, respectively) as thin wires, and imagine shining a flashlight upward, 

as shown in the figure. Then the shadow on S of the « = constant lines will be the 

u = constant curves (e.g., A’B), and the shadow on S of the y = constant lines will be the 

v = constant curves (e.g., C’D). Observe that the u,v curves are not orthogonal, in this 

case, since F = f, fy is not zero, nor do they /ovk orthogonal in Fig. 4. 

Returning to our calculation of the surface area of S, we use (19), where R is the 

shaded quarter disk in the x, y plane (Fig. 4). Since fy = (4)(-2a)(a? — a? — y?)71/? 

and fy = (4)(—2y)(a? = x? = y*)~1/?, (19) gives 

oO Vary? a 

A= | | eee tr ly. (21) 
Jo Ja far ar yp? 

Evaluation of the iterated integral in (21) is left for the exercises; the answer, of course, ts 

ma" /2, as before. 

  

15.5.2. Surface integrals. We are ready to study surface integrals, integrals of 
the form - 

/ / [ dA, (22) 
fs 

where the function f is known on the surface S. 

Our definition of the surface integral (22) will be essentially the same as that 

given in Section 15.3.1 for the double integral [{,, f dA on some region R in the 
v,y plane. That is, we partition S into N parts Sj, S2,...,S,,, and define the norm 

of the partition |p] as the “size” of the largest one of these parts. (As a measure of 
the “size” of an element Sj, we can, for example, use the least upper bound of the 
linear distances between all possible pairs of points on Sj.) Next, let (xj, yj, 2;) 
be an arbitrarily selected point on S; for each j = 1,2,...,N. Then, denoting the 
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Figure 4. Visualizing the u,v 

coordinate curves on S,
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(a) 

(b) 
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20   

    

  

  
A tana 

Figure 5. Conical shell. 

ub 

area of S; as AA;, 

a
 fej, yj. 2 JAA; (23) 

j=l 

is called the Riemann sum corresponding to the chosen partition and («;, yj, 2;) 

points. The idea, in principle at least, is to compute the Riemann sum (23), then 

to introduce a finer partition (i.e., one with a smaller norm) and compute the new 

Riemann sum, and so on, such that the norm of the partitions tends to zero. If 

the sequence of values of the Riemann sum thus generated converges to a unique 

limit, independent of the choice of the partition sequence and (xj, yj, z}) points, 
that limit is, by definition, the surface integral [, f dA; that is, 

[/ f(x,y, 2) dA = lim, ) | f(tj un 2)AAs- (24) 
pin 

& 

To evaluate a surface integral we do not use the definition (24) (although we 

could carry out that exercise in sufficiently simple cases). Rather, we convert the 

integral to an iterated integral by parametrizing S in the form R(u,v) and using 

the expression dA = ||[R,, x R,|| dudv = VEG — F? dudv. Thus, 

If jars | | f(x(u,v),y(u,v), 2(u,v)) VEG — Fedudv, (25a) 

where FR is the region in the u,v vas that corresponds to the surface S in 3-space. 

Or if S is given in the form z = z(x,y), then 

| [£8 | J few (w,y))\/1 + 22 + 22 da dy, (25b) 

where F is the “shadow” of S on the x, y plane. 

EXAMPLE 4. Mass of a Conical Shell. Consider a thin shell in the shape of a right cir- 

cular cone S of height h as shown in Fig. 5a. Assuming that the mass density distribution 

o (mass per unit surface area) is known, we wish to compute the total mass, which may be 

expressed as the surface integral 

M= / | a dA, (26) 
s 

First, let us parametrize S. (Before reading on, you should try to make up a suitable 

parametrization, remembering that the parametrization of a given surface is not unique, 

and that the rule of thumb is to construct a parametrization which is as simple and natural 

as possible.) Adopting the parametrization 

L=Uucosy, 

y= usin», (27) 

z= ucota, 

 



  

over the region R shown in Fig. 5b, we compute & = 22 + y2 +22 = 14+ cot?a = 
» 2 oy 9 ‘ . ~ 

1/sin? a, F = tutu + Yue + Zuzv = 0, and G = a2 + y3 + 2) = u’, so that the form 
(25b) gives 

‘ au 1 v2 phtana 

M= o(u,v) ———- dudy = —— o(u,vjudu dv. (28) 
J, sina sina Jo Jo 
R 

For example, if o(u,v) = constant = go, in which case we say that the shell is homoge- 

neous, then 

    

  
sin a 

ao son Atana@ >. 5 
M= | | udu dv = tooh? sina seca. (29) 

o Jo 

COMMENT 1. Where did we get (27)? In cylindrical coordinates the equation of the cone 

is z = rcota. Also, x = rcos@ and y = rsin@. These three equations are a suitable 

parametrization of S, where the parameters are r and @. Finally, we took r to be u and @ to 

be v, to be consistent with our usual u,v notation. If we chose r = v and @ = u, instead, 

the same final result (29) would be obtained. 

COMMENT 2. Alternatively, spherical polars are an attractive choice because the cone 

is a constant @ surface, namely, 6 = a. Thus, x = psingcosé = psinacosé, y = 

psin ésin@ = psinasin#, and z = pcos¢ = pcosa so if we let p be u and @ be v, say, 

then we have the alternative parametrization 

x= usinacosy, 

y= usinasiny, (30) 

z= uUucos a. 

From (30) we obtain E =1,F =O,andG=w? sin” a so (with g = 0 again) 

27 phseca 

M= [ | gousinadudy, G1) 
0 Jo 

which gives the same final result as obtained in (29). 

COMMENT 3. As a partial check of (29), observe that MZ —- 0 as a -> 0, as it should, and 

M + coas a — 7/2, as it should. 

Closure. The key to this section is the definition, by (4), of the area element dA 

of a smooth surface S that is defined parametrically in terms of u and v. In turn, 
(4) springs from Fig. |, which should be understood and remembered. Working 
out ||R,, x Ry || in terms of z(u,v), y(u, v), z(u, v) then produce the computation- 
ally convenient version (5). In addition, we call attention to two important special 
cases. In the first, S is flat and lies in the a, y plane and dA reduces to the absolute 

magnitude of the Jacobian times du dv; in the second, the shape of S is known in 
the form z = f(x,y), and dA then simplifies to the form given in (18). 
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EXERCISES 15.5 
  

1. In each case evaluate the surface area A of the surface S 

using (5). 

(a) Let S be the circular cylinder x” + y* = 1, between z = 0 

and z = 1+. HINT: Use a = cosv, y = sinu, 2 = wu. 

(b) Let S be the circular cylinder x? + y* = 1, between z = 

and z = 1 — y®. HINT: Same hint as in part (a). 

(c) Let S be the guadric cone x? + y? = 2°, between z = 0 

and z = h. Show that A = /2rh®. HINT: Use x = ucosv, 

yreusny z=uU 

2. Let S be the elliptic paraboloid x? +y” = z, between z = 0 

and z = h, 

(a) Using (5), show that A = (4) [(1 + 4h)°/? — 1]. 
(b) Applying Taylor's series to the answer in part (a), show 

that A ~ whas h - 0. Explain why this result looks correct 

[and hence provides us with a partial check on our answer to 

part (a)]. 

3. Let S be the one-sheeted Ayperboloid x? + y? — 27 = 1, 
between z = Oand z =h, 

(a) Show that 

1 5 
A=7 hVi+ 2h + ein |V2h + +374) 

(3.1) 

(b) Applying Taylor’s series to (3.1), show that A ~ 27h as 

h, + 0. Explain why this result looks correct [and hence pro- 

vides us with a partial check on (a)]. 

4, Let S be the hyperboloid z* — x? — y* = 1, between z = 1 
and z= fh. 

Vue + 1, (a) Using (5), with = ucosv, y = usin, 7 = 

show that 

A= [navn -~1l- w In \V2h + V2h? ~ 1| 

. 1 : a 
—1+ Vi In [1+ v3| . 

(4.1) 

HINT: Same hint as in Exercise 3(a). 

(b) To examine the case where S is very “shallow,” set h = 

L + in (4.1), and consider the behavior of A as « —+ 0. Ex- 

plain why the result looks correct [and hence provides us with 

a partial check on (4.1)]. 

(c) In the same spirit as part (b), show that A ~ J2rh® as 

h — oo. Explain why this result looks correct [and therefore 

provides us with another partial check on (4.1)]. 

5, Parametrizing the circular cylinder 2? + y* = a? by 

v= acosu, y = asinv, 2 = u, show that the area element 

is dA = adudv. Interpret this result geometrically, with a | 

labeled sketch. LS 

  

6. Find the area A of the following regions in the x, y plane: 

(a) the region enclosed by r = sin @ (0 < 4 < 7) 

(b) the region enclosed by the limagon r = 2+cos@(0 <0 < 

27) 

(c) the region enclosed by one leaf of the “daisy” r = 2sin 29 

(d) the region (in the second quadrant) between the circle 

r = sind (0 < @ < m) and the cardioid r = 1 + cosé 

(Q0< 6 < 2n). 

7, Consider a portion S of a plane az + by + cz = d witha 

“shadow” on the x,y plane designated as the region R. We 

assume that the plane is not perpendicular to the z, y plane, so 

that c # O and z = (d — az — by)/c. Using (19), show that 
the area of S is 

A = (sec a)(area of R), (7.1) 

where a is the acute angle between the z axis and the nor- 

mal line to S. 

8. Use (19) to show that the surface area of the paraboloid 

z= h(1— 2? — y’), between z = 0 and z = h, is 

“Lf 
where ® is the unit disk z* + y* < 1. To integrate (8.1), 
change to polar coordinates r,@, and show that 

  

1+ 4h? (2? + y?) dz dy, (8.1) 

_ 7 | 
— 6hF 

As a partial check on (8.2), show that the right-hand side 

of (8.2) tends to 7 (namely, the area of the unit disk) as h - 0. 

A (1+ 4h?)8/? — 1). (8.2) 

9. Sketch the surface S defined by z = e(1 ~ 2*)(1 ~ y”) over 
the squareO <x < 1,0 < y < 1, where O < «€ < 1. Show 

that (19) gives the area of S as 

  

Lopl 
Ax | V1 + de? [x2(1 — y?)? + (1 — @?)?y?) da dy. 

0 JQ



  

(9.1) 
Evidently, this integral is difficult to evaluate. © How- 

ever, recalling that « is small, suppose that we set t = 

4e? [x? (1 — y*)*? + (1 ~ w*)°y?] and expand the integrand as 
a Maclaurin series in ¢: 

  

Jl + 4e? [e211 — y2)2 + (1 = 2) 2y?] 

=(1+48)'? 
1 1, 

al+5t-gl +. (\t| < 1) 
8 

= 1427 [ar (L- y?)? + (1 2*)?y?] 

24 far(L—y P+ a2? Py? Pte. 

(9.2) 

Replacing the integrand in (9.1) by the infinite series on the 

right-hand side of (9.2), we succeed in trading in one function 

that is very difficult to integrate for many that are quite sim- 

ple to integrate (since they are of the form ay”). In fact, we 

do not even need many terms, for good accuracy, if € is suffi- 

ciently small, for then ¢ < 1 so that (1 + ¢)'/? & 1+ dt or 

1+5t—-§ dP s say, may suffice. Using (1+¢)!/? ~1+4 xt, show 

that A + 1+: ee 2 NOTE: The preceding discussion does not 

pretend to be any more than heuristic. A rigorous basis for 

integrating the infinite series in a term-by-term manner is pro- 

vided by the following theorem: If |an(x,y)| < MM), over the 
closed region R, where the A/,,"s are constants and se MM, 

is convergent, then 

// Yan(ey)dedy => f | an(x, y) dx dy 

R R 

(9.3) 
(i.e., we may integrate the series term by term). 

10. Evaluate [f{(1 + «)dA, where the surface S is 
Ss 

} 
¥ (a) the plane z = 

(1, 1,2), and (0,1, 
(b) the plane z = 

(0, 1,1) 
(c) the cylinder a? + y? = 

with vertices at (0,0,1), (1,0, 1), 

bo
 
e
e
 io
 

=
 

with vertices at (0,0,0), (1,0, 1), 8 + 

ce
 

|, between z = Oandz= fh 

(d) the cylinder a? + y = 1, betweenz =Qandz=1+2 

.(e) the hemisphere x? + y? + 2° = 9, between « = 0 and 

w= 3 
(f) the sphere x? + y? + 2? =4 

(g) the quadric cone 2° + y* = 2, between z = Oandz=h 
HINT: Use x = ucosv, y = usinv, 2 = wu. 

(h) elliptic paraboloid x7-+ y* = 2, between z = Oandz=h 
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11. (Mass and center of gravity) Let 7 be the mass density of 

a (negligibly thick) distribution of mass over a surface S, That 

is, o is the mass per unit area at each point on S; it may vary 

over S. Then the 2, y, z coordinates of the center of gravity 

are defined as 

Le = 7] | wo dA, 
M 

Ye = ue] [ vss Ct.) 

le = ul zo dA, 

where 

(11.2) m= [| caa 

s 

is the total mass. Evaluate x, in each case. (You need not 

evaluate Ye, Ze.) 

(a) S is the plane surface z = x + 2y with vertices at (0,0, 0). 

(1,0, 1), (0, 1,2); 7 = constant = gp. 

(b) S is the plane surface z = x + y with vertices at (0,0,0), 
(1,0, 1), (0,1,ij;7=14+y. 
(c) S is the plane surface z = 2 — x with vertices at (0,0, 2), 

(0,1, 2), (2,0,0), (2,1,0);;0=4-2. 

(d) S is the plane surface z = 2 — x with vertices at (0,0, 2), 

(0,1,2),(2,0,0;c=1+4a, 
says is the cylindrical surface 2? + y? = 4 between z = 0 and 

zehjo=dte. 

(f) S is the cylindrical surface a+ y" = 4 between z 

= 2+ 20,0 = constant = dp. 

(g) S is the hemispherical surface x? + y? + 2? = 1 between 

x=OQandz = 1:0 =constant = ao. 

(h) S is the spherical surface 2? + y? +22 =9:0 =4+2. 

12, (Moments of inertia) Let o be the mass density of a 

(negligibly thick) distribution of mass over a surface S, as in 

Exercise 11. Then the moments of inertia /,., J, £, about the 

L,Y, © axes, respectively, are defined as 

= Qand 

Ty = J fy “*\odA, 

Ly = l f (a* + 2*)odA, (12.1) 
Ss 

lo= ff (?+y)oda. 
s 

Evaluate J, in each case: 

(a) same as in Exercise | l(a)
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(b) same as in Exercise [1(b) 

(c) same as in Exercise | 1(c) 

(d) S is the spherical surface «7 + y* + 2° = c?; o = constant 
= Jo 

(e) S is the cylindrical surface y? + 27 = 4 between x = 0 and 
x = 3;0 = constant = ag 

(f) S is a flat disk of radius c, lying in the y, z plane, with its 

center at the origin; o = constant = a 
(g) S is a flat disk of radius c, lying in the x, z plane, with its 

center at the origin; o = constant = ao. 

13. In each case S is flat and lies in the z, y plane. Evaluate 

each integral by introducing polar coordinates r, 0. 

(a) ff de dy, Sil<r<2, 0<0<n/4 
Ss 

(b) f f sin(a? +y?)dedy, Sir <2, 0S A< 7/3 

s 
9 2 4)2\2 

(co) ff Mee ae dy, Sil<r<2 
S af 

—7/3<6< 41/3 

(d) ff (@4+y) PF dady, Siisr<2,0<@<7/2 
Ss 

a? (a? + y?)~3/? dx dy, S: triangle with vertices at 

(0,0), (1,0), and (1, 1) 

(ff f e( t¥) drdy, Sir <1, O< O<a 
Ss 

14. To evaluate 

eLoopl-y 
[= | | etl (@42) de dy, (14.1) 

a JO 

make the change of variables 

u= 2, v= a+ 2y. (14.2) 

The resulting integrand will be an easy function of u and a 

hard function of v so integrate on w first. To determine the 

u,v integration limits first infer the region of integration in the 

x,y plane, from (14.1), then use the transformation (14.2) to 

determine the region of integration in the u,u plane. Thus, 

show that 

[=< tf 2/0 q (14.3) =o — ve LU. . 
4 2e fy 

Finally, use computer software to evaluate the v integral in 

(14.3), and thus show that J = 0.76624517. HINT: For nu- 

merical integration using Maple, see ?int{numerical]. 

15. (a) To evaluate 

  
Lo pl 

r= | i sin —— dz dy, (15.1) 
0 Jo ry +1 

make the change of variables u = x, v = zy and, using 

the ideas outlined in Exercise 14, show that J = 0.174971978. 

(b) In part (a), the choice u = ry, v = xy + 1 might have 

seemed more natural. Show why that choice does not work. 

  

15.6 Volumes and Volume Integrals 

  

  

  
Having discussed the generation of curves by one-parameter families of the form 

a= a(u),y = y(u), 2 = 2(u), and the generation of surfaces by two-parameter 

families of the form « = (u,v), y = y(u,v), 2 = 2(u, v), it should be no surprise 

that we now consider the generation of volumes by three-parameter families of the 

   

form 
c= x(u,v,w), y = y(u,v,w), z= z(u,v,w), (1) 

or in terms of the position vector R, 

R(u,v,w) = x(u,v, w)i + wey(u,v, w)j + z(u,v, w)k. (2) 

That is, for each fixed w the parametrization (1) [or (2)] defines a surface (in gen- 

eral), Thus, as we vary w we produce a family of such surfaces which, in general, 

will generate a volume.



  

  

  
  

5.6. Volumes and Volume Integrals 

15.6.1. Volume element dV. We assume that R(u,v,w) is C! in the region 

Y of interest (.e., R, Ry, Ry, and R. are continuous in VY), and that R,, R,, 

Rw» are linearly independent (or, equivalently, that R,-Ry x Ry # 0) at each 

point in V. Mimicing our discussion of surface area in Section 15.5.1, consider the 
u = constant, v = constant, and w = constant surfaces through a given point P 
as sketched in Fig. 1. If the curve PQ is the intersection of the w = constant, 

and wv = constant surfaces through P, then only wu varies along PQ so PQ is the 
u coordinate curve through P. Similarly, PR is the v coordinate curve through P, 
and PS is the w coordinate curve through P. 

Since R,, Ry, Ry are linearly independent, by assumption, the vectors R,, du, 

R, dv, Rw dw determine a parallelepiped of nonzero volume dV. According to (5) 

in Section 14.4, 

dV =|R, du-R, dv x Ry dw| = |R,- Ry x Ry| dudu dw 

Lu Yue Fu 

= Ly Yu zy 

lw Yw 

where the inner vertical rules on the right-hand side of (3) denote determinant, and 

the outer ones denote absolute value. But the determinant in (3) is none other than 

the Jacobian O(2, y, z)/O(u, v, w)* so that 

A(x, y, 2) 
O(u, v, w) 

dudvu dw, (3) 

  

dV = | du dv dw, (4) 
        

and this quantity is hereby defined to be the volume element at P. Then the volume 
V of a given region V in x, y, 2 space may be expressed as 

v= fff] [Pix 
where 7 is the region in u,v,w space corresponding to the region Y in x, y, 2 

space. 

  

LLY, ez 

O(u 7U, w) 
du dv dw, (5) 

  

    
  

EXAMPLE 1. Cylindrical Coordinates. 

u,v, w, respectively, then 

If we let the cylindrical coordinates r, 6, z be 

w= ucosv, yeusinv, 2=w (6) 
  

“Recall that det A’ = det A for any square matrix A. Therefore, the Jacobian J(u,v,w) = 

O(a, y. 2) 
a can be expressed either as 

U,Usw 

Lag vy Cay vu Yu cu 

Yu Yo Uw or as Le Yo fe 

ou au aw Cw ¥ uw 2a 

   
Figure I. Edges of the 

parallelepiped for dV. 

749 
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Figure 2. Cylindrical coordinates. 

is our parametrization. Then 

  

: Ly Ly 2 cosy. ~usinu 0 
O(a, Ys z) tb v ws 

Alay w) =| Yu Yo Yo |=} sinv wucosv 0] =u (7) 
OCU, U, w 4 

am Zu ty Sw 0 0 1 

so (4) gives dV = |u| du dv dw or, returning to the more familiar 7,6, z notation, dV = 

ir| dr dé dz. Since r > 0, we have the result 

    dV =rdrd@dz, (8) 

which result admits the simple geometrical interpretation indicated in Fig. 2. To explain, 

let us write down the position vector {recall (22) in Section 14.6] 

R = ré,(9) + ze. (9) 

Then 

dé, . 
dR = dre, + ro dé + dzé, 

= dré, +r déég + dzé; (10) 

or, in the notation of Fig. 2, 

PT =PQ+PR+PS. a) 

Since @,, @9, @, are orthogonal, it follows that dV = ||PQ}] ||PRI| ||PS|| = (dr)(r d@)(dz), 

as given by (8). @ 

EXAMPLE 2. Spherical Coordinates. If we let the spherical coordinates p, @,@ be 

u,v, w, respectively, then 

e= usinucosw, 

y = usinvsinw, (12) 

z= ucosu, 

so 

Ly Ly Ly aon _| 
— Yu You Uw 

(u,v, w) pe - ot 
| OU £U Hw | 

_| sinucosw ucosucosw —usinusinw | 

sinusinw wucosusinw USINYCOSW | 

cos Uv —usInv 0 | 

=u’ sinu. (13) 
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Thus, (4) gives dV = ju" sin v| dududw = p*|sin@|dpd@dé. As noted in Section 
- 

14.6.3, we normally limit @ and @ so thatO0 < @ < wand 0 <@ < 29. Since 0 < sing < 1 

on < @ < mw we can drop the absolute value signs and write 

  

  

(14) 

Alternatively, 

R= pé,(6, 4) (15) 
so 

. Jey ,, , O&p 
dR. = dpe, + p (Fe do + 50 w) 

= dpe, + pddéyg + psin dé deg, (16) 

where we have used (28) in Section 14.6. And since €,, @g, @g are orthogonal, it follows 

from (16) that dV = (dp)(pd@)(psin 6d) as given by (14). For geometrical interpreta- 
tion see Fig. 3. # 

To tie the present section together with the material in Section 14.6 on cylin- 
drical and spherical coordinates, observe that for those coordinate systems we can 
derive the volume element not only from (4), but also from the product of the three 
orthogonal components of the dR vector. Furthermore, the products of those com- 
ponents taken two at a time give the area elements on the constant-coordinate sur- 
faces. 

Por instance. on a conical ® = constant surface do = 0 so (16) becomes 

dR = dpe, + psinodé@eég, anddA = (dp)\(psinedé) = psinédpdé is the 
relevant area element, namely, the shaded area in Fig. 3. Similarly, on a spherical 
p = constant surface dp = 0 so (16) becomes dR. = pddé,g + psinddé ég. and 

dA = (pdo)(psin 6d@) = p* sin @ dé dé. Of course, these results are the same as 

would be obtained using the dA = VEG — F? du dv formula in Section 15.5. 
Thus, since it contains so much information, the expression for dR. for any 

given orthogonal coordinate system, is extremely important. Let us summarize 
these results, for reference. for cylindrical and spherical coordinates, 

Cylindrical coordinates: 

  

R = re, + <e; 

dR = dre, + rdée,g + dze. 

rd@ dz (constant-r surface) (17) 

dA = dr dz (constant-@ surface) 

rdr dé (constant-z surface) 

dV = rdr dé dz.       

  

' : 
Les 

x psing ‘ psin edé 

Figure 3. Spherical coordinates.
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Me 
° F 

/ 
Pm j “—~e m 

do | 

Figure 4. Gravitational force 

F exerted by M on m. 

% 

  

Figure 5. The cone. 

Spherical coordinates: 

  

R = pe, 

dR = dpé, + pddey + psin d dbeg 

(constant-p surface) 

(constant-@ surface) 

(constant-@ surface) 

p” |sin d| dé dé 

dA — 2 p|sind| dpdé 
pdpd@ 

dV = p*|sin d| dpdddé, 

(18) 

t l     
  

where the absolute value signs are to be enforce that the area and volume elements 

always be positive. 

15.6.2. Volume integrals. With dV in hand, as given by (4), we can deal with 

the volume integral [f{,, f dV of a given function f over a given region V in 
3-space for if x, y, z are parametrized by u, v, w, then 

  

O(a, ys 2) 
——— | du dud 
O(u, v, w) EEO 

| fdV= f(x(u,v,w), y(u,v,w), z(u,v, w)) 
Vv R 

  

    

  

  

(19) 
where FR is the region in w, v, w space corresponding to the region V ing, y, z space. 

We use single integral signs in (19) to denote triple integrals, for compactness, and 

use that notation routinely in Chapter 16. There should be no confusion, in (19), 

because of the V and ®, which are three-dimensional regions, and because the dV 

and du dv dv clearly denote triple integrals. 

EXAMPLE 3. Gravitational Attraction of a Cone. Newton’s law of gravitation states 

that the force of attraction F exerted by any one point mass Af on any other point mass m 

is given by 
Mm = Ga, (20) 
a? 

where (Fig. 4) dis the distance of separation. é is a unit vector directed from m toward M, 

and G (= 6.67 x 1078 em?/g sec”) is the universal gravitational constant; (20) is said to 

be an inverse square law since the force varies as the inverse square of the distance. (By 

M and m being point masses, we mean that their sizes are negligible compared with d.) If 

M is at (x,y, 2) and m is at (To, yo, 29), We Can express @ as 

(tw — to)i+ (y — yo) +(e — 20) k ON 
pn ye Da (s 7) \o. “ 

V(t = x0)? + (y= yo)? + (2 = 20) 

The problem that we pose here is to calculate the force of attraction exerted at the 

origin, per unit mass at the origin (i.e., 7m = 1), by the solid right circular cone of uniform 

mass density o (g/cm?) shown in Fig. 5. Since the cone is not a point mass, we need to 
o 

DB
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find the forces induced by the individual mass elements that constitute the cone and to sum 

them by integration. With AZ changed to o dV and vo = yo = 2 = 0, (20) and (21) give 

F(0,0,0) = of [eras as es 
(v2 + y? + 

Surely, the symmetry about the z axis implies that the x and y components of F will 

turn out to be zero so that (22) can be simplified to 

F(0,0,0) = Gok Iles aE dV. (23) 

In what coordinate system shall we work out the integral? That is, how shall we parametrize 

the conical region? Spherical coordinates seem like a good choice inasmuch as the con- 

ical surface is a constant-@ coordinate surface. However, the top surface, z = Ah, is not 

a constant-coordinate surface. That is, o 4 constant, @ 4 constant, and @ # constant 

on z = A. Using cylindrical coordinates the top surface is a constant-coordinate surface 

(namely, 2 = fh) but the conical surface is not. Thus, the choice seems to be “six of one, 

half a dozen of the other.” Let us work the problem both ways. 

  

(22) 

    

Using cylindrical coordinates: That is, choose u,v,w to be the familiar cylindrical co- 

ordinates r,@, z, respectively. Then dV = r dr d@ dz and x? + y? = r? so (23) becomes 

F all tr, ar dr dO dz 
= J 

o Jo (r? + (r? 4 22)3/2 

suse"(1+tan? a) | 

= InoGk 2 dude (ur? + 2°) 
2y3/2 

=?/ cos? @ 

- wif (-8)/ 
1 = 2noGk [: :(- ney 2) dz, (24) 

F = 2ro0Gh(1 — cos a)k. (25) 

  

so that 

In case the z tan a limit was not clear, note that r/z = tana on the conical surface. 

Using spherical coordinates: This time choose u,v,w to be the spherical coordinates 
k : r 2 otay of ! k ¢ 2 ‘ 9 p, @, 0, respectively. Then dV = p* sin ddpdddd, z = pcos, and x* +y" + 2° = p* so 

(23) becomes 

h/cos@ cosh. 

aGk ef b [ 7 aan p’ sinddpdédé - 
0 

" ~ 
= lnoGk cos @sin } -dd = 2raGh(1 — cosa)k, (26) 

Q cos @ 

F lI 
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which result agrees with (25), 

COMMENT. As a partial check, observe from (26) that F — 0as a — 0, as it should. # 

Closure. With a three-dimensional region generated by a three-parameter family 

z= x(u,v,w), y = y(u,v,w), 2 = z(u,v, w), and the position vector given by 

R=vc=x(u,v, w)i +y(u,v, w)j+e (u,v, w)k, the volume element dV is defined 

as the volume of the parallelipiped with edges Ry, du, 

Fig. 1. Thus, 

dV =|( 

R, dv, BR, dw as shown in 

R,, du): (Ry, dv) x (Rw dw)| 

= |Ry- Ry x Ry| dududw 

Lu Yu fu 

= (| Ly Yu vu 

fw Yw 

O(n, y; 2) 

Ou, v,w) 

dudv dw 

ow 

dudv dw. 

    

That is, dV is the absolute magnitude of the Jacobian of x,y,z with respect to 

u,v, w times du du dw. 

  

EXERCISES 15.6 
  

1. Compute the volume of a sphere of radius & by triple inte- 

gration: 

(a) using cylindrical coordinates 

(b) using spherical coordinates. 

2. Show by triple integration that the volume of the right cir- 

cular cone shown in Fig. 5 is V = (7h3/3) tan? a: 

(a) using cylindrical coordinates 

(b) using spherical coordinates. 

3. Evaluate the gravitational force F given by (23), this time 

letting V be the hemisphere 2° +y? +2? < R?,ford<2< Rk 

(a) using cylindrical coordinates 

(b) using spherical coordinates. 

4, (Mass and center of gravity) First. read Exercise 4 of Sec- 

tion 15.3. There, the mass was a two-dimensional distribution 

over a region in the x, y plane. Here, we consider a distribu- 

tion over a three-dimensional region 7 in x,y, z space. If the 

mass density is o(2,y,2) [i.e.. o(,y, 2) is the mass per unit 

volume at x,y, 2], then the x, y, 2 coordinates of the center of 

gravity are defined as 

1 
le = ul | fe a(x, y,2) dV, 

wl f dV 
M yo(w, y,2) dV, 

1 
a 2 z) dV, 2 BY f foster 

v= |] foeuaw 

is the total mass. In each of the following, take the density a 

to be a constant. 

a
s
 

(4.1) 

3
 

where 

(a) Let R be the solid cone considered in Example 3, 

Compute Z,. 

(b) Let R be one eighth of the sphere x? + yao < RB, 

namely, that part which lies within x > 0, y = 0, 2 2 0. Com- 

pute Le, Yor Ze- 

(c) Let R be that part of the sphere 2? + yy +2? < R? 

 



    

which lies between z = a and 

Compute Z¢. 
(d) Let ® be the spherical sector 0 < 

0<@ < 2a. Compute z,. 

= R (where 0 < a < R). 

apo R0<@s a, 

5. (Moments of inertia) First, read Exercise 13 of Section 15.3. 

In each of the following, take the density o to be a constant. 

Let AZ be the total mass. 

(a) Consider a hollow sphere a? < x? + y* + 27 < b*. Show 
that po 

bs — a 

(b) In the limit a - 6, the hollow sphere in part (a) is called a 

“thin shell.” For a thin shell of radius b, show that the answer 

to part (a) reduces to the form I, = $67. 

(c) Consider a hollow right circular cylinder a? < 2? + y? < 
b?,0 < z <A. Show that J, = (M/12) )(3b? + 3a? + 4h*). 

(d) For the cylinder in part (c), "show that [, = (M/2)(a?+67). 
(e) For the right circular cone shown in Fig. 5, show that 

I, = (38M/10)(h tana)’. 
(f) For the right circular cone shown in Fig. 5, show that 

I, = (83Mh? /20)(tan? a + 4). 

6. In the case of cylindrical coordinates, we set u =r, uv = 6, 

w = z. Show that the result (8) would obtain if, instead, we 

setu = 6,u=r,w = ¢, say. 

  I, = = M 

o
l
 

bo
 

7. (Gravitational force induc ed by hollow sphere) Consider a 

hollow sphere. a? < x? + y? + 2” < 6, of uniform mass 

density o. 

(a) Show that the gravitational force of attraction induced by 
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the hollow sphere, per unit mass at (0, 0, zo), is 

  

F(O, 0, zo) — = o0Gk TG (2 = Ena Da a2" 

[x? + y? + (2 — 20)?}° 

(7.1) 
(b) Carrying out the integration in (7.1), show that 

MG. 
-~—5s-k if [zo] > b 

F(0,0, 20) = x (7.2) 
0 if |zo| <a. 

NOTE: The result (7.2) is remarkable for it says that the force 

induced by the hollow sphere at any point outside the sphere is 

the same as if the entire mass of the sphere were compressed 

into a point mass M at the origin, and that there is no force 
within the cavity. 

(c) Evaluate F(0,0, zo) for the case where a < zp < 6. HINT: 

The result obtained in part (b) should be all that you need. 

8. Using the results obtained in Example 3 

(a) What is the gravitational force induced by an infinite slab 

(-0o < & < 00, -CO < y < co, 0 < z < A) of uniform mass 

density a, per unit mass, at any point on either face of the slab 

z2=Qorz=h)? 

(b) What is the gravitational force induced by an infinite half- 

space (~co < ue < ow, -o < y < w,0 < 2 < w)of 

uniform mass density o, per unit mass, at any point on the face 

z=0? 

  

Chapter 15 Review 

The single most important idea about curves, surfaces, and volumes is their parametriza- 
tion by 

R(r) = a(r)i + y(r)j + z(r)k, 

R(u,v) = x(u, v)i + y(u,v)j + 2(u, v)k, 

z(u,v, w)k, 

We could have used w instead of 

R(u,v, w) = v(u,v, w)i + y(u,v, w)j + 

respectively, where Ris the position vector, 

(la) 

(1b) 

(Ic) 

T in (la), to promote the (uw), (u,v), (u,v, w) pattern in (la)-(1c), but 7 is more 

traditional for curves. As should not be surprising, all quantities of interest, for
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curves, surfaces, and volumes can be expressed in terms of R.. The differential arc 

length, area element, and volume element are 

ds = /R’(r)-R'(r) dr, (2) 

dA = ||Ry x R,|| dudv, (3) 

dV =|R,-R, x R,| dudv dw, (4) 

respectively, and the normal to a surface is, to within a factor of -1, 

— Ry x Ro 

[Ru x Rol 
n (5) 

Computationally, it is important to express these results in terms of the com- 

ponents x, y, z of R. Accordingly, (2)—-(4) become 

ds = \/al2 + yy? + 2! dr, (6) 

dA= VEG — F* dudv, 

2 2 2 
B= ey t+ Yat 2% 

PB e= Lyly + Yun + Zur (7) 

Gaur, tnt zy 

Ty Yu zu 

dV =|) ty Yo % | dududw= 

Tw Ywo fw 

Ae, y, 2) du dv dw. (8) 

    

U,U, Ww) 

We note two special cases of (7), one when the surface is flat and lies in the x, y 

plane (z = 0), and one when the surface is known in the form 2 = f(z,y). 

_o- ,, . [O(@,y) 
z=0: dA = Fe ») 

z= f(x,y): dA= \/1+ f2+ fe dedy. (9b) 

Observe the appearance in (8) and (9a) of the Jacobian determinants. 

  

  

du dv, (9a) 

 



    

Chapter 16 

Scalar and Vector Field Theory 

16.1 Introduction 

A great many phenomena are governed by ordinary differential equations (ODE’s). 
That is, there is only one independent variable, such as a space variable or time, and 
one or more dependent variables. If there are two or more independent variables, 
then the dependent variable is generally called a field, and the governing differential 
equation will be a partial differential equation (PDE), known as a field equation. 
For instance, the concentration c(z, y, z,t) of a pollutant that spreads by diffusion 
in a lake is governed by the PDE 

(Ac Pe Ke dc | 

° (F + 52s sa) ~ OE ©) 

where a" is a constant known as the diffusivity. As another example, let o(x, y, z, t) 
and v(a,y, z,¢) be the mass density and velocity of a certain fluid flow, respec- 
tively. Then the principle of conservation of mass implies that o and v are related 
through the PDE 

“c of (00) + 5,(o%) + © (ov:) = 0, (2) 

where vy, Uy, Uz are the wv. y, 2 components of v, respectively, In this chapter we 

study the calculus of such scalar and vector fields. 
Our plan is as follows. In Sections 16.3-16.6 we introduce the so-called diver- 

gence, gradient, and curl, which are specific differential operators that can act on 
scalar and vector fields. Those results are extended to non-Cartesian coordinates 

(cylindrical and spherical) in Section 16.7, which is optional so it can be omitted in 

a shorter course. 
The “payoff” comes mostly in Sections 16.8—16.10, on the Gauss divergence 

theorem, Stokes’s theorem, and irrotational fields. For instance, in Section 16.8 we 
derive (1) and (2) above, using the divergence theorem. Thus, one of the major 

outcomes of this chapter is the derivation of some of the important field equations 
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Figure 1. Mébius band. 

(a) 

  

  

0.8 

0.6 

  

  
Figure 2. Plots of T(z, y). 

y 

of mathematical physics. After pausing in Chapter [7 to develop the Fourier series 

and Fourier transform, we will then come back to those field equations and learn 

how to solve them — in Chapters 18-20 on PDE’s. We continue to treat the slightly 

more difficult non-Cartesian cases as optional, in Sections 16.8-16.10, by including 

them only in optional subsections. 

16.2 Preliminaries 

16.2.1. Topological considerations. Throughout this chapter we ask that the 

curves, surfaces, and volumes under consideration be sufficiently “decent” for our 

purposes. Specifically, we ask the curves to be piecewise smooth (Section 15.2.1). 

We ask the surfaces to be piecewise smooth too (Section 15.3.2) but, in addition, 

we ask them to be orientable. Since nonorientable surfaces are rarely encountered 

in applications, and since a rigorous definition would be a long story, we will define 

the term only in an intuitive way. Namely, we say that a surface is orientable if 

it is two-sided, that is, if we can paint one side green and the other side blue. The 

classic example of a nonorientable surface is the Mébius band, which can be con- 

structed by taking a rectangular strip of paper, twisting one end through 180°, then 

taping that end to the other (Fig. 1). If an insect starts at any point P on one side 

of the band and follow the arrows, it eventually visits the entire surface, so that the 

Mobius band has only one side. Our objection to such a surface is that we are going 

to “orient” a given surface S by defining a normal vector n at some point on S& and 

then extending the field of normals continuously over the rest of S. But when we 

do that with the Mobius band, say, we end up with wo vectors, fi and —n, at each 

point on S. 

Finally, we ask that the volumes under consideration be regions (Section 13.2.2) 

that are bounded by piecewise smooth orientable surfaces. 

16.2.2. Scalar and vector fields. The objects of interest in this chapter are scalar 

fields and vector fields. By a scalar field we shall mean a scalar valued function, 

say f, defined over a region 7, which is a one-, two-, or three-dimensional con- 

nected subset of 3-space. Besides the space variables, f may depend on the time ¢ 

as well. Normally, f will be real valued. 

EXAMPLE 1. Temperature Field. Let T(a,y) be the temperature at any given point 

(x,y) in a square plate which extends overO <x <10<yS 1, and let 

100 
ean I 

@+iPe tur? 0 T(2,y) = 

In this case the region R is the two-dimensional set0 < 2 < 1,0 < y < 1, and the 

scalar function is T(x, y), given by (1). By way of graphical display, we have used Maple 

to obtain the three-dimensional plot of 7’, above the x, y plane, that is given in Fig. 2a. 

Plotted are a number of level curves of 7’, curves along which T(z, y) is a constant, like 

level roads on a mountain. The projection of those curves down onto the z, y plane give the 

  

I 
| 
by



      

level curves shown in Fig. 2b. We can see from (1) that the level curves of T, in the a, y 

plane, are the concentric circles (« + 1)* + (y+ 1)? = constant, centered at (—1,—-1). @ 

In Example | we encountered level curves. More generally, we say that the 
level set of value c, of a function f(a1,...,@), is the set of points (a 1,...,@n) 
for which f(21,...,0n) = ¢. If nm = 2, the level set is, in general, a level curve, 

and if n = 3 the level set is, in general, a level surface. To see why we say “in 
general,” consider a few examples for the case where n = 2. Let 

f(v,y)=In(a?+y"),  g(a,y) =sin(w+3y), h(a, y) = 6, 
each defined over the whole plane. It is not hard to see that the level sets of f 
are concentric circles centered at the origin. Specifically, for any given value c 
(-0co < c < oo) the level set of f is the circle x? + y? = e°. Turning to g, the 
level set of value 5, say, is not just a single curve, it is the set of straight lines 

z+ 3y = 7/6 + 2n7 (n = 0,+1,2,...), and the level set of value 4, say, is 

empty. Finally, turning to h, the level set of value 2, say, is empty, whereas the 

level set of value 6 is the whole plane! 
Just as a scalar field is a scalar valued function defined over a given region, a 

vector valued function defined over a given region is called a vector field.* 

EXAMPLE 2. Fluid Velocity Field. {magine a steady, uniform flow of fluid (such as air 
or water), at a speed U meters/second, parallel to a wall as shown in Fig. 3. That is, at 

every instant and at every point (x, y) in the region (namely, ~co < x < 00,0 < y < 0), 

the fluid velocity v is equal to Ui, where U is a constant, Then the vector function 

v= Ui, (2) 

in the stated region, constitutes a vector field — a simple one, but a vector field nonetheless. 

Since the flow is steady, every fluid particle that passes through the point P (Fig. 3), 

at one time or another, must follow the same path, namely, the curve C. Fluid mechanicists 

call such curves streamlines. (In general, streamlines do not exist if the flow is unsteady.) 

Thus we speak of the family of horizontal lines in Fig. 3 as the streamline pattern. 

As a more complicated case, let the wall have a semicircular bump of radius a, cen- 

tered at the origin, and let the fluid velocity field be 

r42 

veUit+t ve ((y" (+ PP 
as depicted in Fig. 4. At the top of the bump, for example, where x = 0 andy = a, 

—22)i-20yj], (<a? ty? <0) GB) 

9 

¢ : U oF : 2 
v(0,@) = Uit+ — (a*i- Oj) = 2U1. 

a 

Furthermore, it follows from (3) that v = 0 at (-ka,0), which points are therefore called 

Stagnation points of the flow. 
  

apr “That is, a vector field v on a region R, which is a subset of KR”, is a transformation or mapping 

v:RC R" > R”. In this chapter 7 will be 2 or 3, the general case is considered in J. E. Marsden 

and A, J. Tromba. Vector Calculus (San Francisco: W. H. Freeman, 1976). Similarly, a scalar field f 

on aregion R, which is a subset of R", isa mapping f :R CR" +R’. 
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OP wall 

Figure 3. Steady, uniform 

flow field. 

  

Figure 4. The flow field (3).
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COMMENT. In Section 16.10 we derive the PDE governing the flow field shown in Fig, 4. 

Later, when we study PDE’s, we will solve that PDE and obtain the result stated in (3). In 

fact, we will solve the same problem again, in Section 23.6, using the method of conformal 

mapping. 4 

  

Closure. Scalar and vector fields are scalar and vector valued functions, respec- 

tively, defined on one-, two-, or three-dimensional regions of space. They may 

be constant or nonconstant, and they may or may not vary with the time ¢ as 

well as the space variables. Examples of scalar fields are the temperature fields 

T(a,y,2) = 100(a? + y*? + 527) and T(2,t) = 50(sin a)e~7*, and examples 

of vector fields are the fluid velocity fields v(z,y) = 4nyi — (x + 3y?)j and 

v(z,y,z,t) = 10i+ vyzsintk. 

Computer software. The computer plots in Fig. 2 were obtained using the Maple 

plot3d and contourplot commands, as follows. For Fig. 2a we used 

with(plots): 

plot3d(100/((a + 1)°2 + (y+1)°2), «=0..1, y=0..1, style = contour); 

and for Fig. 2b we used 

with(plots): 

contourplot(100/((@ + 1)°2 + (y+ 1)°2), « =0..1, y = 0.1); 

If we omit the style = contour option in the first, then instead of the plot being com- 

prised of level curves it would, as the default condition, be comprised of constant-x 

and constant-y curves. That is, the display would be the u,v coordinate curves 

under the parametrization « = u and y = v. 

  

EXERCISES 16.2 
  

1. Let T(z, y) be a temperature field in |z| < 10,0 < y < 10. scale) at eight points that are equally spaced around the circle 

Determine, and sketch the T = 0,20,40, 60 level sets. If the r = 1, and at eight points that are equally spaced around the 

level set is empty, state that. circle r = 3. 

(ayT=xrt+y? (b) T = 10(x — y) . : 
(c) T = 10(a + y) (d)T = 2? - y2 3,..Consider the vector fleld v = zci- yjinO <u < ~™, 

(e) T = 2a? (HT =100/(e2+y? +1) PSY <. 
(g) T = a+ 20y (h) T = x7 y? /20 . ; 
(i) T = 60sin (wry /128) (j) T = 53 (a) On a single graph, sketch the v vectors at the 16 points 

(k) T = sin [(2? + y?)/24] (1) T = 20 (m,n), where m and n are integers such thatO <m <3 and 

. . 0 <n < 3. (Here it will help to assign a convenient scale, 

2. The position vector R = wi + yj to any point (x,y) in the as we have done in Fig. 4, so that the arrow representations of 

z,y plane constitutes a vector field. Draw the R vector (to the vectors will not lie on top of each other.)
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(b) Determine the curves along which v has constant magni- called the free stream. 

tude and those along which v has constant direction. Are these 

results in agreement with your sketch of the field in part (a)? 6, Recall the plane polar coordinate base vectors €,(9) and 
69(0) from Section 14.6. Each of these is a vector field be- 

cause there is an é, vector and an 6g vector defined at each 

point in the plane (except the origin). 

4, Given the vector field w(x, y, 2), determine parametric 

equations z = x(7), y = y(t), 2 = 2(r) for the curve(s) 
through the point (2,3,—1) along which w has constant di- 

rection. (a) Sketch the é,(8) field. 
(b) Sketch the ég(@) field. 

  

(a) w = yi- xj + zk 

  

    

(b) w = (y+ 2z)i~aj+ (a+ y)k 7. Use computer software to obtain plots of the four stream- 
()w=rityjtzk lines shown in Fig. 4, taking U = a = 1 and taking their initial 
(d) w= yzi—j — (a+ 2)k points as (~3.5,0.5), (—3.5, 1), (~3.5, 1.5), and (—3.5, 2). 
(ec) w = 71—3j-(y-2) HINT: Equation (3) gives us the ODEs 
(f)w = ri+ yj + zk 

5. (a) For the velocity field defined by (3), determine the speed v(t) = 1+ yo 

|v|| as a function of z, along the wall (namely, y = O for (x? + y?)? (7.1) 
a| > aand x? + y? = a? for |2| < a). y(t) = — 2uy 

(b) Show that as 7 = \/a? + y? -+ co along any ray y = m2, (2? + y?)? 

the velocity v tends to the uniform flow Ui, which flow is for the motion x(t), y(t) of any given fluid particle. 

  

16.3 Divergence 

Fundamental in scalar and vector field theory are certain differential operators, 
known as the divergence, gradient, and curl, that operate on those fields. We will 
introduce the divergence in this section and the gradient and curl in the next two. 

Let v be a vector field defined in a region 7. The physical nature of v is 
immaterial here, but for definiteness let us think of v as a fluid velocity field. Fo- 
cusing our attention on a particular point P = (a, y, z) in the flow, let us introduce 
a control volume around P, as shown in Fig. |, and denote it as 6. For example, 
B might be chosen to be a prism, a sphere, or an arbitrary “potato” shape as in the 
figure. A control volume is only a mathematical region rather than a physical pres- 
ence, and it is normally introduced so that we can keep track of the flux of some 
quantity of interest such as mass, electric charge, or heat. 

For instance, consider the integral” Figure 1. Control volume. 

  

  

r= [aevad (1) 
S       

  
“In Chapter 15 we denote double and triple integrals by ff and fff, respectively. In this section 

we switch to the more compact f notation used in (1) unless, of course, integration limits are to be 

spelled out. Another point of notation is that some authors prefer to combine 4 and dA in (1) as 

ndA = dA: then (1) becomes Is v- dA. which is a bit more compact than (1), but we will not use 

that notation.
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Vnormal = He V    
, : 
Vtangential 

Figure 2. Flux across dA. 

where ni is a unit outward normal vector at each point on S, as illustrated, at a rep- 
resentative point in Fig. 1. The set of all such n vectors on S would look something 
like the quills on a frightened porcupine. What is the physical significance of I? 
ff, at a given point on the surface S of B, we break the fluid velocity v into normal 
and tangential components (Fig. 2), then the flux across dA is due entirely to the 
normal component n- v since the tangential flow is along the surface and therefore 
does not cross it. Then the outflow through the surface element dA is the normal 
velocity component ni - v (meters per second, say) times dA (square meters), that is, 
n-vdA m*/sec. Thus, integrating over the entire surface S, I is the net outflow, in 
m? /sec, say, across S — outflow because we took fi to be the outward unit normal. 
This outflow can be positive, zero, or negative. For example, if heat is extracted 
from the fluid and the fluid contracts, one can imagine a net inflow into the control 
volume so that the outflow will be negative. 

Thus, / is an example of a flux integral. We will call it a volume flux because it 
is volume per unit time. If, besides denoting the vector velocity field as v(z, y, z, t), 
we also denote the scalar density field as a(x, y, z,¢) (mass per unit volume), then 

J=fon-vda (2) 
Ss 

would also be a flux, not a volume flux but a mass flux because the dimensions of 
on-v dA are mass per unit volume times volume per unit time, hence mass per 
unit time. 

Next, let us divide the volume flux integral in (1) by the volume V of B to 
obtain the outflow per unit volume. Finally, we shrink B down to point P and obtain 
the outflow per unit volume at the point P. This result is called the divergence of 
v at P and is defined as 

  

fn-vda 

divv(P) = lim Bb) ©) 
    

  

where B —+ 0 means that B shrinks to the point P in such a way that the maximum 
linear dimension (the “diameter’’) of B tends to zero.* If we assume that v is C! 
and that B has a piecewise smooth orientable surface S, then it can be shown that 
the limit in (3) does indeed exist at each point P in the field. 

Observe that div v(P) is a scalar at each point P since h-v, dA, and V are 
scalars. Thus, div v is itself a scalar field associated with the given vector field v. 

Observe, further, that (3) provides an intrinsic, or invariant. definition of div v. 
That is, it contains no reference to any particular coordinate system so the value of 
  

“Observe that the limit as 8 — Q is not the same as the limit as V -3 0. For instance, if we make 
a coin thinner and thinner, then its volume V tends to zero even though it is not true that B - 0. 

‘Let v = velx.y, 2 ‘i + Uy (@.Y, 2, t)j +.(2,Y,2, t)k, where t is the time. By v being C' in 
R, we mean that vy. vy and v, are all C! in Re ie. 0/Ax, O/Oy, and O/Oz of vx, vy, and vz all exist 
and are continuous in 7. Since all the first-order partial derivatives of v exist and are continuous in 
R, we also say that v is continuously differentiable in R.



    

div v(P) at any given point P is uniquely determined, independent of the choice 

of the reference coordinate system. 
Thus, the definition of div v given by (3) has two advantages: it readily admits 

a clear and simple physical interpretation of div v(P) as the outflow per unit vol- 

ume at P, and it is invariant with respect to coordinate system. However, the limit 

definition (3) is of little use computationally. To obtain a computationally conve- 

nient expression, we need to introduce a reference coordinate system. Introducing 

a Cartesian system, since that is evidently the simplest choice, let us carry out the 

limit indicated in (3). Since the limit in (3) is independent of the shape of B, let us 

choose the simplest shape, namely, one bounded by constant coordinate surfaces. 

Thus, for B let us choose the rectangular prism shown in Fig. 3, with P = (2, y, z) 

at its center. 
Consider first the contribution from the front and back faces, on which the 

outward unit normal is m = +i and nH = —i, respectively. Let us express v = 

ve (x,y; 2, bit vy(z, y, 2, t)j + vz(2, y, z,t)k, where the «, y, z subscripts specify 

the x, y, z components of v rather than partial derivatives,” and where we have not 

included any time dependence in v because it will not play an active role in the 

present discussion. Then 

| n-vdA= i- (vei + vj + vk) dA 
front face front face 

, A 
= | Ug (« + sy :) dy’ dz’ 

front face 2 

Az 
= Ur (9+ Fn.) Ay Az, (4) 

for some point (x7 + Az/2,y1, 21) on the front face, where the last equality in (4) 

follows from the mean value theorem (4c) in Section 15.3. [To distinguish the 

z,y, 2 coordinates of the fixed point P = (x,y,z) from the dummy variables of 

integration, we use 2’, y’, 2’ for the latter.] Similarly, 

| a-vaa= | =i. (vei + vyj + veke) dA 
J back face back face 

Ag 
= —Uz (: Ys 1) Ay &z (5) 

for some point (x — Aw/2,y2, 22) on the back face. Since the volume of G is 
V = Av Ay Az, it follows that 

  

  

lim Jicont face-+back face n-v dA 

B-0 Vv 

_ lim [Ve (x + Ax/2, YY z) — Uz (x ~~ Ax /2, Y, z)| Ay&z 

~ Ag, Ay, &z30 Ag Ay Az 

vy (w + Av/2,y,2) — ve (w@— Aw/2,y,2) _ Ove = tim tele Ae/2y.2)—ve(e—Av/2v.2) _ Be 
Ar-0 Aa Ox 
  

“Thus, partial derivatives will be expressed as O( )/Ox, 0()/Oy, and so on. 
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Figure 3. Cartesian coordinates.
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Similarly, the top and bottom faces contribute Ov, /0z, and the right and left faces 
contribute Ovy/Oy, so that 

  

. Ovz, | Ovy — Ovz 
divv = —— + — 

Ox Oy + Oz 7 
    

      

Analogous expressions are given in Section 16.7, for cylindrical and spherical co- 
ordinates. 

EXAMPLE 1. Evaluate the divergence of the field v = (x?/z)i — 3} + yzk at the 
point P = (2,9,—1). First, let us check to see if v is C' in some region R containing P. 

The partial derivatives of vu, = 27/z, vy = —3 and v, = yz with respect to x,y, and z 

exist and are continuous functions of z, y, z everywhere except on the plane z = 0, where 

Ov, /On = 2x/z and Ov,/Iz = —x*/z? are undefined (“blow up”). But P is not in the 

plane z = 0 so we can say that v is indeed C? in a region R containing P, where F is the 

half-space —00 < @ < 00, ~00 < y < oO, ~00 < = < 0. Then (7) gives 

a (2 a. , a 2a 
divv = 5~ (=) + 5, (3) + a3) = > tu 

so at P we have divv = ~44+9=5. 

COMMENT. For brevity, in subsequent examples we will not verify explicitly that v 
isCl. ¥ 

EXAMPLE 2. If v = y"ztj, where ¢ is the time. then 

, a. 
divv = 2 (0) + a (yPat) + 

a a 
Ox dy (0) = 3y*zt. dz 

That is, ¢ is treated as a constant because only space derivatives are involved. & 

Rewriting (7) as 

é 

divv = (iz +45, + ks.) ‘(Veil + vyj + v2k) (8) 

suggests that we define a vector differential operator 

  

7:0 ;0 220 
=i—+j—+k 

Vv “Bx day 7 Oz? 
  (9) 

      

in which case we can write div v in the operator form 

fdivv —-V-v., (10)
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We will have more to say about the V - v operation in subsequent sections, but 

one point that must be mentioned immediately is that V-v is not a dot product in 
the usual sense. Specifically, it is nor true that V-v equals | times |/v|| times 

the cosine of the angle between V and v because V = i(0/de) + j(8/dy) - 

k(0/0z) is a vector differential operator, not a vector with a length and a direction 
is not defined nor is the “angle between V and v.” Furtheremore, V-v 

is not the same as v - V since 

Veve (i. +] ; 0 +k 0 ) . (vei + vyk + vzk) 

     

         

  

    

Ox Jay Oz 

Ove . Oy | Ov: _ Cee, Wy, OV: ir 
Ou: * Oy J Oz? ) 

whereas 

L888 
v- V = (Uzi + vyk + v-k)- (2 + ia, Oy + k-) 

0..8,.8 
Ox rye 7 Cea 

= Veo (12) 

The symbol V, introduced by Hamilton,* is read as del, sometimes as nabla 
because it looks like an ancient Hebrew instrument of that name. 

Closure. Given any vector field v (that is C! in the region R of interest), the 
scalar valued divergence of v at any point P is defined by (3), and has the physical 
significance of being the outflow per unit volume at P (hence the name “diver- 
gence”). Even if v is not a fluid velocity field (for instance, it might be an electric 
field, a gravitational force field, etc.) we can always think of it as a fluid velocity 
field and of div v as the outflow per unit volume. For computational purposes, we 
rely on the form (7) for Cartesian coordinates or on an analogous form for a cylin- 
drical or spherical coordinate system. Finally, we see in (10) that the divergence 

of v amounts to a V- operation on v, where V is the vector differential operator 
defined in (9): V is our link to the gradient and curl in Sections 16.4 and 16.5. 

  

EXERCISES 16.3 
  

1. Work out div v for the following vector fields, each of (a)v = ai “fe bj + ck (a, b, c constants) 

which is defined over all of 3-space, say. Further, evaluate (b)v = vi + yj + 2k 

divv at P = (3,—1,4), and verify that v is C' in some re-  (¢) y = vi — yt Stk 

gion R. containing P. (¢ is the time.) (d)v = rys(itj- 3k) 

  

“William R. Hamilton (1805-1865) was both a great mathematician and a great physicist. While 

still an undergraduate. he was named Professor of Astronomy at Trinity College and Royal As- 

tronomer of Ireland.
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(e) v = xyi— 2(a? + 2?)k 

(Qv =i+j+ ck 
(g) v= cit 27t?j 

(h) v = sin(2® +y? +2 2y4 

2. Determine the divergence div v of the fluid flow field v 

given by (3) in Section 16.2. 

3. Make up a vector field v(x, y, z) such that 

(a) V-v = 0 everywhere 

(b) Vv > 0 everywhere 

(c) V-v <0 everywhere 

(d) Viv > Oin a? + y? + 27 > 
ety +22 <l 
(ec) Viv > Oin|2z| > land V-v <Oin|2| <i 

land V-v < Oin 

4, This exercise is to promote understanding of the limit 

definition (3). Specifically, we ask you to evaluate div v at 

P = (0,0,0), say, by actually evaluating (f, -v dA)/V and 
taking the limit as B + 0. Take B to be the cube |a| < «, 
ly| < « |z| < e. Show that your result agrees with that ob- 
tained (much more readily) from (7). NOTE: Do not merely 

mimic our steps (4)—(6). Rather, actually compute fm-v dA 

on each of the six faces, add the results, divide by V = 86c°, 

and take the limit as e > 0. 

(a) v = 2i-j+4k 
(b) v = 31+ 4j — 2k 
(c) v = 5ze* i 

(d)v = (2 +1) sin yj 

(e)v = zit 2yj —4e ok 

(v= (a? ~ 4a +y2?)i +] 
5. (Invariance property of divv) Let a C! vector field v be 

represented in terms of some particular Cartesian x,y frame 

as Vv = vp(x,y)i + v,(z, y)j. (We limit ourselves to the two- 
dimensional case merely to reduce the algebra; the story is 

essentially identical for three-dimensional fields.) Then, as 

derived in this section, 

OUz 
divv = —— + 

Ox 

As emphasized in the text, this number will be the same, 

at a given point P = (2, y), independent of the choice of the 

location and orientation of the reference coordinate system. In 

other words, it should be equally true that 

Ove L Ovy 

Ox! Oy! 

for any values of a,b and a (see the accompanying figure). 

Ovy 
By (5.1) 

    (5.2) divv = 

  

ay
 

Here we ask you to show that this is true, namely, that 

Ov, , Wy — Oy Joy 

Ox dy Ox! Oy!” 

HINT: First, show that 

        (5.3) 

= (cosa)uy — (sina)vy, 

a = (etc. )Ug — (ete. uy, 
= (cos a)(z — a) + (sina)(y — 5), 

= (etc.)(x — a) + (ete.}(y — 8). 

(We leave the etceteras for you to determine.) Then use chain 

differentiation to express 0/Oav and 0/Oy as linear combina- 

tions of 0/Oa" and O/dy’. 

  

16.4 Gradient 

We found in Section 16.3 that the divergence of a vector field v can be expressed 

in the form divv = V-v, where V is a vector differential operator which, in 

Cartesian coordinates, is given by 

vaio si io +e I 
Ou Jay )



        

Thus, dotting V into a vector field v produces a scalar field associated with v, 

namely, the divergence of v. With V in hand, we wonder if it might not be prot- 

itable to consider other possible actions of V, specifically, Vu (where u is a scalar 

field) and V x v (where v is a vector field). In fact, these combinations will be 

of great importance. Just as V -v has a name (“the divergence of v,” or div v, for 

short) which suggests its physical significance, we call Vu the gradient of wu, or 

grad u, and we call V x v the curl of v, or curl v. 

The pattern is as follows:* 

Input Output 

divv = Vv: vector field v — — scalar field V-v 

gradu = Vu: scalar field u — vector field Vu 

cullv = Vxv: vector field v -+ vector field V x v 

In this section we consider the gradient. In the next we turn to the curl, 

As stated, we define 

@) 
where wu isa C* scalar field. In Cartesian coordinates, 

>O 3:0 ~ O 
gradu = | im +j— +k Ju 

Ox dy 

  

Oz 

or 
Our Ou- Att» 

grad u = i + oti + oe k. (3) 
Ox Oy Dz     
  

rn? zt, where ¢ is the time, EXAMPLE |. [fu(z.y,2) = vsiny— 2% and v(2,y, 2, t) = 5: 

atk. then Vu = sin yi + COs yj — 322k and Vu = lOxzti + 52t 

Directional derivative. At this point we introduce the so-called directional deriva- 
tive of a scalar field u(x, y, z) because it will help us to understand the gradient, and 

because it is important in its own right. We consider a space curve C, parametrized 
  

‘A fourth combination, Vv. is possible, but is not discussed in this book. For if we write out 

Vv, in Cartesian coordinates, we have (in two dimensions, for brevity) 

3 € ; 0 3 3 ( 
7 riz) (vzi + vy J) = 

x ay 

The objects iii, jedi are neither scalars nor vectors; they are called dyads, and the linear 

combination of dyads (a) is called a second-order tensor. Tensors are important in such applications 

as continuum mechanics, differential geometry, and the theory of relativity but are not discussed 

here. We refer the interested reader to the 68-page book Tensor Analysis by H. D. Block (Columbus, 

Ohio: Charles E. Merrill, 1962). 

2, Avy Go. Ove % (a) dy Ga NS Gy st 
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Figure 1. Computing 

du/ds at P. 

by x = x(s), y = y(s), and z = z(s), where s is the arc length along C from some 
reference point on C, and we wish to compute the rate of change du/ds along C 
By chain differentiation, we have 

d Oudz Oudy  Oudz 
Ge hols) us), 28) = On ds + Sy ds * Oz ds’ (4)   

which formula holds because we have assumed u(x, y, z) to be C*. That is, chain 

differentiation is essentially an interpolation formula, whereby du/ds is computed 
as a linear combination of the rates of change Ou/Ox, Ou/Oy, and Ou/OQz in the 
orthogonal coordinate directions. For such interpolation to be valid, we surely need 
those three partial derivatives to be continuous at the point in question (Theorem 
13.4.1), and that is why we have assumed that u(x, y, z) is C!. In fact, typically, 
the scalar fields that arise in applications are indeed C!, perhaps with breakdowns 
at one or more isolated points. 

Continuing, observe that the right-hand side of (4) is a dot product: 

du Ou; Ou;  Ou- dz; dy; dz- 
— =| —i j k —i+—j+—k}. 
ds (Sei + dy" r Oz ): (Ss + ds? t ds ) ©) 

    

The first vector on the right is Vu, and the second is dR/ds, where R(s) = 

a(s)i + y(s)j + 2(s)k is the position vector from the origin to the point P = 
(x(s), y(s),2(s)) on C. Not only is dR/ds a tangent vector to C at P, it is a unit 
vector because 

t 

by the definition of arc length (Section 15.2.2). If we denote that unit tangent vector 
dR/ds as 8, then (5) becomes 

AR 

A-+-0 As 

          = lim 
Ao As = 1, (6) 

    
  

      

      = 

  

= = Vu-s (7) 

      

If we wish, we can dispense with the curve C altogether. If we want the derivative 
du/ds, at any point P, in any desired direction defined by a unit vector 8, then it 

is given by the gradient of u, at P, dotted into § (Fig. 1). For instance, if $ = i 

then (7) gives du/ds = (ugi + Uyj + uzk)-i = Ou/Ox. Similarly, if § = j then 

du/ds = Ou/Oy, and if § = k then du/ds = Ou/z. More generally, however, (7) 
gives the rate of change of u in ay 8 direction. 

EXAMPLE 2. Compute the directional derivative of the field u(a,y,z) = x? — 3yz in 

the direction of the vector i+ j _ 2k, at the point (2, —1, 4). Using (7), 

du ; 3 “ i+ j — 2k 14 
—~(2,~—1,4) = (22i — 32zj ~ 3yk Sn Ee, 
ds (2-14) v6 v6 

   



  

COMMENT. Remember that the gradient is a vector, but the directional derivative is a 

scalar. @ 

Interpretation of Vu. We were able to interpret the scalar div v(P) simply, as the 
outflow per unit volume at P. We do not have an analogous physical interpretation 

of the vector Wu, but we can use (7) to draw geometrical conclusions as to its 

direction and magnitude. 
Consider any point P in a region throughout which a C! scalar field u is de- 

fined. Suppose that Vu # 0 at P and that there is au = constant surface S 
through P and a tangent plane 7 (Fig. 2); for instance, if w is a temperature field, 
then S is an isothermal surface. If 8, at P, is chosen as any vector in the tangent 
plane 7, then surely du/ds must be zero. Since du/ds = Vu-s = 0 for every 
8 at P in the tangent plane, and both Vu and $ are nonzero, it follows that Vu is 

normal to the tangent plane 7 and hence to the surface S, at P. 

If, letting $ be in the tangent plane, we learn that Vw is normal to S, then to 
seek additional information about Vu it seems logical to let 8 be along the normal 
line at P, say in the direction of increasing wu, for definiteness. Then, writing du/dn 

and n for du/ds and §, respectively, (7) gives 

vu 

= ||Vull (1) cos0 = | Vull, (8) 
so that the magnitude of Wu is the directional derivative of u along the normal line 
to S, in the direction of increasing wu. 

In summary, we can say this about the gradient Vu of a scalar field u(x, y, 2) 
at a point P: its direction is normal to the wu = constant surface through P, in the 
direction of increasing u, and its magnitude is equal to the directional derivative 

du/dn in that direction. 

EXAMPLE 3. Let our scalar field be a two-dimensional temperature field T(z, y), 
defined on the rectangle 0 < x < 2.2,0 <y < 1. Suppose that T is not known analytically, 

but is measured experimentally, and that when the data are organized into level curves 

(isotherms in this case) the resulting graph is as shown in Fig. 3. The problem that we pose 

is to determine VT at P = (1,0.4). Drawing the lines PA and PB, we compute 

or T(A)-T(P) _ 60 ~40 
——(P) sy — et 9a 
ae (P) (PAI O51 ~~ Ow) 

and OT T(B)-T(P)  60—40 or T ~T 30 — AC 
——(P) & eee el 9b ay) (PBI oa ~ 100 (90) 

so that aT aT 

VI(P) = 5-(P)i+ “(P)j ~ 301 + 100}. (10) 
Oy 
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Normal line at P 

  

u = constant 

Figure 2. Geometrical 

interpretation of Vu.
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In (9a) we appealed to the definition 

OT lit T(x + Az,y) - T(2,y) 
~ == jim 
Ou Az-0 Az 

  (1) 

but were unable to pass to the limit as Ax -+ 0 because of the discrete spacing of the level 

curves provided in the plot. Thus, we took the smallest possible Az, namely [PA], and 

“lived” with the approximation (9a). Similarly for (9b). 
n 

  

Q 

  

Figure 3. Level curves of T(z, y). 

In place of the Cartesian formula (10), we can compute VT from the intrinsic formula 

VT = as (12) 
dn 

that is implied by the italicized summary preceding this example. Here, n is the unit normal 

vector to the 7’ = constant curve in the direction of increasing T, and dT/dn is the 

directional derivative of T’ in the direction of H. Drawing the normal to the 7 = 40 curve, 

from P to some other convenient point, say D, we have 

PD __—0.161 +. 0.4 

}PD]| (0.16)? + (0.4)? 
  a= ~ 0.371 + 0.93) (13) 

and 
dT T(C) - T(P) _, 60- 40 
Re RY x Lil 14 
dn IPC] 0.18 us 

  

so (12) gives ; ; ; ; 

VT = (111)(0.371 + 0.93j) = 41i + 103). (15) 

In fact, the temperature field that we have plotted in Fig. 3 is actually Tla,y) = 

100xy. Thus, the exact value of VT at (1, 0.4) is 

OT; OT; 
VT = i+ j= 100yi + 100zj = 40i + 100), (16) 

Ox Oy 

 



  

in view of which our estimates (10) and (15) are seen to be respectable, considering that our 

Az, Ay, and An increments were not very small. More sophisticated difference quotients 

could have been used, to squeeze out more accuracy, but the thrust of this example is to 

illustrate concepts, not to maximize numerical accuracy. 

As a second calculation, using Fig. 3, let us compute VT at Q = (0.8, 1). Let us use 

(12). In this case we cannot use a forward difference quotient for dT’/dn because Q is ata 

boundary point of the region and a forward step would carry us outside the region, where 

there is no data.” Thus, use a backward difference quotient instead. First, draw a normal 

line FQ. Then, 

FQ OA +98) ogi 40.6), (17) 
" TEQI ~ \/(0-4)? + (0.3) 

aT T(Q)-T(F) _ 80-60. 
dn (QF || ~ O47 M8 (18) 

sO . . . . 

VT(0.8, 1) = (118)(0.8i + 0.6j) © 941 + 71) (19) 

compared with the exact value 100i + 80}. 

Finally, let us compute dT /ds at R = (2,0.5), in the direction RH, where H is at 

(1.6, 0.2). We have 

dT. T(G)-T(R) _, 80-100 | 
as * |GRii 0.18 ThA (20) 

compared with the exact value —160. H 

Closure. Having met the vector differential operator V, in Section 16.3, we define 
the gradient of a scalar field u as gradu = Vu. In Cartesian coordinates, 

Our Ou; Oue 
aL gradu = ant + ay! an (21) 

Next, we derived the formula 1 

m= Vus (22) 
ds 

for the directional derivative du/ds in any given $ direction. Besides being of 
importance in its own right, (22) help us to understand the gradient Vu. We learn 
  

“In the difference quotient definition of the derivative, 

f(z) = alim | fet Ae) — te) 
’ (a) 

Ax can tend to zero through positive values, in which case we call the difference quotient in 

(a) a forward difference quotient, or through negative values, In the latter case we can re-express 

(a) as 

f(z) = aim fa) ~ fe — As) 
: (b) 

and call ita backward difference quotient. 
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that Vu at any point P is normal to the u = constant surface through P, in the 
direction of increasing wu, and its magnitude is equal to the directional derivative 
du/dn in that direction. 

  

EXERCISES 16.4 
  

1. Work out gradw for the following scalar fields, each of 

which is defined over all of 3-space. Further, evaluate grad u 

at (9,4, —1). 

(a) u = 6x (b) w= 2? 
(c)u = zsin (2? + y") (d)us x 

(e) u = wyz HQusea+y4 2° 
(g)u=a?+ 2? uneny 
(Qu=eotyte (j)usz-2?-y? 

2. Evaluate the directional derivative du/ds, at the designated 

point P, in the direction of the given vector v. 

(ajusa?+y?+22, P=(2,1,5), vai 

(b)u=wv+yt3z, P= (1,0,3), v = 2i-j+5k 

(c)u = ays, P = (1,-1.2), v= 3i-k 

(d)u=ayz, P= (3,2,1), v =i+j+k 

(e)u= Sely +2), P=(1,2,3), v=i-j+k 
(f)u = 32°, P = (2,6,-1), v= 2j + 5k 

3. For the temperature field T(x, y) given in Fig. 3, evaluate 

the following quantities directly from the figure, with the help 

of suitable difference quotients, and compare your results with 

the exact values obtained from the expression T’ = 1OOxy. 

(a) VT at (0.4, 1) (b) VT at (1,1) 
(c) VT at (1, 0.2) (d) VT at (0.5, 0.2) 

(e) VT at (1.6, 0.5) (f) VT at (1.5, 1) 

(g) dT’ /ds at (0.4, 1) in the direction of =i _ j 

(h) dT’ /ds at (1, 1) in the direction of -i- 2j 

(i) dP’/ds at (1, 0.2) in the direction of i +] 

Gj) dT /ds at (0.5, 0.2) in the direction of ~j 

(k) df/ds at (1.6, 0. 5) in the direction of i i i-j 

(l) dT’/ds at 7 5, 1) in the direction of —i — 2] 

4, Let the electric potential (i.e., the voltage) be given by 

Vix,y,2) = 3a°y ~ az. If a positive charge is placed at 
P = (x,y,2), in what direction will the charge begin to move? 

NOTE: It is known, from electric field theory, that such a 

charge will begin to move in the direction of maximum rate 

of voltage drop. 

(a) P = (2,3,—1) (b) P = (4,0, -1) 
(c) P = (1,2.5) (d) P = (0.0.4) 
(e) P = (0,2, 1) (f) P = (3, -2,0) 

5. (Convective derivative) Let v(x, y, 2,t) = ve(2, y, 2, ti + 

vy(2,y, 2,03 + v.(z,y,2,t)k be a fluid velocity field, and 

consider some scalar property of the flow, such as the temper- 

ature field T(z, y,z,t). If we swim along any desired path 
according tox = x(t), y = y(t), 2 = 2(t), then the timewise 
rate of change of T that we observe is, by chain differentiation, 

d OT OT dz 4 OT dy OT dz 

ai 1 (9, V9, 20) = Be ae ae "Oy dt Oz dt’ 

(5.1) 

(a) If we choose to drift with the fluid, then da/dt = vg, 

dy/dt = u,, and dz/dt = v,;. In this case, show that (a) 

becomes 

ar _ ar 
dt at 

This is often called the convective derivative because it 1s 

the derivative obtained when we drift, or convect, with the 

fluid. The special notation D/Dt. suggested by Sir G. G. 

Stokes (1819~1903), is often used: 

DY 80), 
pe ae NI 

(b) To understand the nature of the contributions of each of 

the two terms on the right-hand side of (5.2) apply (5.2) to 

the three simple cases: T = 2t.v = 0, T = 327,v = Ui: 

T = 2¢+ 32, v = Ui. Include whatever words of explanation 

(and sketches) seem appropriate. 

(c) Does it matter if we rewrite v-V in equation 

Vv? That is, is it true that 

AC) = a) +(divv)( }? 
Dt Ot 

4(v- VT. (5.2) 

  

(5.3) 
      

(5.3) as 

6. Evaluate the rate of change of temperature, dT’ /dt, mea- 

sured by a thermometer that drifts along with the fluid velocity 

v. Evaluate dT /dt atc = 2,y = -l,z = 3,andt = 4. 

HINT: Read Exercise 5.



  

a = 20rti — LOyj 

(b) T = 25at? — 2ayz, v = 201+ wyj ~ tk 

(oc) T = (a+y+2)t, v= w2i— wt} 

(d) T= y? ~2t, v= i+ 2e7tj-k 
7. Define u(a, y) to be | along the curve y = x? except for the 

origin « = y = 0, and define it to be zero at all other points 

in the plane, including the origin. Show that da/ds exists and 

equals 0 at the origin, for a// directions 8, but that u{a,y) ts, 
nevertheless, discontinuous at the origin. NOTE: Recall from 

the calculus that if y’(a) exists at xq, then y(a) is necessar- 

ily continuous at vo. For functions of more than one variable. 

we see, from this example, that the existence of directional 

derivatives in every direction, at a given point, does not suffice 

to imply that the function is continuous at that point. 

8. Some level curves of a scalar field u(a, y) are sketched be- 

low. Trace or photocopy that sketch, and indicate the point(s), 

if any, at which Vu - O, as well as the point(s) at which Ve 

takes on its greatest magnitude. 

(a) (b) 

(c) 

  

9, (Invariance property of Vu) In Section 16.3 we stress the 

invariance of the divergence of v: that is. the value of V-v at 

a given field point is the same, whether we use one Cartesian 

coordinate system or another. The same invariance holds for 

the gradient. Prove that claim ~ in two dimensions, for sim- 

plicity. That is. show that 

Ou, 
=i 
Ox 

Oey Qh, Su (9.1) 
Oy Ox! Oy! 
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where the z,y and cv’, y’ systems differ by an arbitrary dis- 

placement and an arbitrary rotation as shown in the figure. 

YAU y’ 

| 

  

gan with the oo 10. (Limit definition of gradient) recall that we be 

limit definition of the divergence, 

fnevdAa 

div v(P) = iim v (10.1) 

Working out the right-hand side, for the case of Cartesian 

coordinates, gave 

    
i Ou,  Ovy | Ouz 
divv = —— : , 

du * Oy Oz 

and expressing the latter as 

3 O : O ~ O : 7 7 
(iZ +55, + ks] (Uzi tt vyj + vzk) 

=Vev 

  divv = 

led us to the del operator, 

With the V operator in hand, we then used V to introduce the 

gradient, as gradu = Wu. Alternatively, the gradient can be 
introduced intrinsically, by a limit definition analogous to the 

definition (10.1) of the divergence, namely, 

  

f nudA 

oradu(P) = lim 25 10.2 grad u(P) jim, 7 (10.2) 

  
  

Following steps analogous to those in Section 16.3, derive 

from (10.2) the Cartesian coordinate expression of gradu as 

Ou . Ou; . Jue 
erad use =i + —j+- = 
ore Ox Oy Oz 

which, of course, is the same as Vu.
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16.5 Curl 

Having considered the divergence and gradient, divv = V-v and gradu = Vu, 

we now turn to the curl of v, defined here as 

0) 
where v is a C! vector field. Working out the right-hand side of (1) in Cartesian 

coordinates yields 

  

;0 3:0 0 3 3 “ 
curl v = (ix, tig, + is.) x (vei + Uyj + uzk) / 

i jk | 
-|2 22 2) | 

Ox Oy Oz 

Vg Vy Uz 

or* 
  

    _ (Ovz Ovy \ ; Ove Ove\; Ovy Ovex \ = 

curly = (32 - Fe) (- Si (B mI @)       

EXAMPLE 1. If v(z,y,2,t) = ryzi — 2y*tk, then 

curlv = (—4yt — 0)i — (0 — xy)j + (0 — az)k 

= —4yti + vyj —_azk. # 

To interpret curl v physically, let v = Ugi + Vy +v.k be a fluid velocity field. 

Let us examine curl v which, in the study of fluid mechanics, is called the vorticity 

  

“Evidently, if we expand the determinant about the first row, we do obtain the terms on the 

right-hand side of (3). Yet if we expand about the third row, say, we obtain 

> 0 O » > 0 Os > 0 03 / 
Usp (2 - 5%) “Uy (iZ- $6) -+u:z (iZ - x). (a) 

which is not the same, The point to bear in mind is that V is located to the left of v in (1) 

so that 0/Ox, 0/Ay, and 0/Az act on vz, vy, and vz. Thus, the terms in (a) need to be rearranged: 

the first term, vx j 0/0z, should be rearranged as (Ou, /Oz)j, and so on, for each of the other terms. 

If we remember to do that, the correct expression is obtained no matter which row or column is 

expanded about.



    

vector. For simplicity, let v be a plane flow, where v, = 0 and vy, vy do not vary 

with z. Thus, v = vz(2, y)i + vy(x, y)j and (3) reduces to 

curlv = (3 — a) k. (4) 

Consider, heuristically, the motion of the little rectangular element of fluid 

shown in Fig. |. At time fit is in position |. If the element were rigid, its motion 
would consist of a translation plus a rotation. If so, then at time ¢ + At it might 
be in configuration 2, say, due to a translation OO’ plus a rotation Aa, and its 
angular velocity (taken as positive counterclockwise, with the right-hand rule used 

to assign a vector direction) would be w ~ (Aa/At)k. However, a fluid element is 
deformable, not rigid, so it may also suffer a shear deformation as indicated in the 
configuration 3. What, then, is the fluid’s “angular velocity” to mean? It is defined, 
in fluid mechanics, as the average angular velocity of initially perpendicular edges 

such as OA and OB. Then 

  vy(A) = vy) Que 

  

angular velocity of OA = k-+ = as Ar -0, (Sa) 
: Ag Ox 

uz(O) — vz (B) - Ovz » 
angular velocity of OB = ve(O) = ue(B) k-> — a k as Ay — 0, (5b) 

Ay Oy 

so that the 

    
Ovy — Ovz \ > 

=. ——|k, 
Ox Oy ) (6) 

In case (Sa) is not clear, consider Fig. 2. The average of the x velocity com- 
ponents v,(Q) and v,(A) produce the x-wise translation of OA, their difference 
produces the stretching or contracting of OA, and the average of vy(Q) and v,(A) 
produce the y-wise translation of OA. But the angular velocity of OA is due to the 

difference of v(O) and u(A). It is the vertical velocity of A relative to O, namely, 
Vy(A) — vy(O) divided by the radius OA of that motion. Similarly, the angular 
velocity of OB is vz(O) — vzx(B) divided by OB. 

Comparing (4) and (6), we see that curlv = 2w, from which we draw the 

following simple and important physical interpretation of the curl of a vector field: 
curl v(P) is nvice the angular velocity of the fluid at P. 

Although our (heuristic) proof of the italicized claim was for plane flows, it 
is not hard to show that that result holds for nonplanar flows as well. And if our 
vector field is not a fluid velocity field (e.g., it might be an electric field, magnetic 
field, or gravitational force field) we can at least think of it as a velocity field in 
order to have access to the physical interpretation stated above in italics. 

. 1 
average of the two = w = 5 

EXAMPLE 2. Shear Flow. To illustrate. consider the simple flow 

Vo Kyi, (7) 

where « is a positive constant. Shown in Fig. 3.the flow is known as a shear flow and 

is similar to the flow in the boundary laver on an aircraft wing. Considering a typical 

TIS 16.5. Curl 

  

  

      

vA 

| 

| ay ) 

| oO Ax oA 
nen ~ 

Figure 1. Plane motion of 

fluid element, 

vy, (B) 

B Vy ( B) 

+4(0)| v.(A) 

Oy (0) A Vv (A) 

Figure 2. Angular velocities 

of OA and OB.
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Figure 3. Shear flow. 

i?) A 

, - 
a a 

Figure 4. Particles rotating 

like this? 

fluid particle such as P, observe that the top of the particle is translating faster than the 

bottom so the particle undergoes a clockwise angular velocity as it translates to the right. 

Furthermore, it appears that all particles have the same angular velocity (though different 

translational velocities) since, for a given particle size, the velocity differential from top to 

bottom of the particle is the same for each particle. Thus, since curl v is twice the angular 

velocity of the fluid particle, and the latter is evidently a constant and in the —k direction 

(by the right-hand rule), we expect curl v to be a constant and in the —k direction. Let us 

see: 

i j k , 
curlv=| 0/Ox O/Oy 0/02 | = —Kk, (8) 

KY 0 0 

which is a constant and in the —k direction, as expected. H 

It is interesting to observe that, in itself, the streamline pattern tells us nothing 

about the vorticity, curl v. For instance, the three flows v = 3yi, —3yi, and 3i all 

have the same streamline pattern: the set of horizontal lines, as in Fig. 3. But in 

these cases the fluid particles are rotating clockwise, counterclockwise, and not at 

all, respectively. To carry this point a bit further, consider the flow over a semicir- 

cular bump, shown in Fig. 4 of Section 16.2. It seems reasonable to imagine the 

fluid particles moving and rotating as sketched here in Fig. 4. Yet, 

9 
Ua- 

(x? + y?)* 
and, working out curl v, we find that terms cancel so that curlv = 0 everywhere in 

the field. Thus, the particles are not rotating at all even as they move along curved 

streamlines, in the same way that seats on a Ferris wheel remain horizontal even as 

they move in a vertical circle. 

vy=Ui+ (y? —2")i- 2045] 

EXAMPLE 3. Maxwell's Equations. To illustrate the role of the curl in applications, we 

note that the equations 

VxE=0, (9a) 

VxHe=J, (9b) 

are two of the four classical Maxwell’s equations governing steady (i.e., not varying with 

time) electromagnetic fields. E, H, and J are the electric field intensity, magnetic field 

intensity, and the current density, respectively. 

Closure. We define the curl of a vector field v as V x v. In Cartesian coordinates 

the latter can be evaluated by (3), but it is easier to remember the determinant form 

given in (2). To attach a physical significance to V xv, think of v as a fluid velocity 

field (whether it is or not). Then V x v at any given point P is twice the angular 

velocity of the fluid at P. 
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EXERCISES 16.5 
  

1. Work out curl v for the following vector fields. Further, 

evaluate curl v at (3,4, —1). 

(ajv= ai+ bj + ck (a, 6, c constants) 

(b) v = vi+ yj + zk 

(c)v = vi- yj + 2k 
(d) v = ryz(i+j — 3k) 

(e) v = yi — 2(a? + 27)k 

(f)v =i+j+ zk 
(g)v = cit 27] 

(h) v = sin(a+y + 2)j 

(i) v = f(x)i+ g(y)j + A(2)k 
Qv = flyjitg(2)j 
2. (Solid-body rotation) Consider a plane fluid flow that is a 

counterclockwise “solid-body rotation” about the z axis with 

angular velocity w = wk, as sketched in the figure. That is, 

lI 

Vv 
y 

(x, ¥) 

  

SN 4 
|   

the fluid might just as well be frozen solid, and spun about the 

z axis. Introducing polar coordinates r,@, the position vector 
is 

R=vi+ yj = rcos di +r sin Qj. (2.1) 

Since * = 0 and 0 = w (where dots denote time deriva- 

tives), we have for the fluid velocity field 

v=R = r(—Osin di + 6 cos 6j) (2.2) 

= w(—r sin di + rcos@j) = w(—yi+ aj). 

(a) Work out curlv for the v field given by (2.2) and ex- 

plain, in physical terms. why the result makes sense. 

(b) Derive (2.2) differently, by differentiating R. = ré, with 
respect to time. 

3. (Vortex flow) The fluid velocity field 

rs. 
v= p77 ee a ({ = constant) (3.1) 

is purely tangential, t.e., there is no radial (é,) component 

so that the streamlines are concentric circles centered at the 

origin, as sketched in the accompanying figure. Furthermore, 

y 

   . 
x ‘ 

i 

Ww 
= 

Oe 

  

hy Wd) 
a 

nol   
the magnitude of the tangential velocity tends to zero as r —+ 

oo, and to co as r - 0. [Equation (3.1) is said to give the flow 

induced by a vortex of strength [ located at the origin.] The 

problem that we pose is to re-express (3.1) in terms of z, y, ij 

and show that V x v = 0 everywhere in the field (except at the 

origin, where V x v is not defined) so that every fluid particle 

(not at the origin) has no spin. [This result may seem strange 

in view of the fact that the particles are in circular motion! 
Evidently, the particles must maintain their spatial orientation 

(much as the seats on a Ferris wheel do) as they carry out their 

circular motion. | 

4. Unvariance property of curl v) Let a C? vector field v 

be represented in terms of some particular z,y frame as 

v = u,(x,y)i+ vy (a, y)j. (We limit ourselves to the two- 
dimensional case merely to reduce the algebra.) Then, accord- 

ing to (3), 

t o x . 
curly = (Fe _ Wve ) k, 4] 

Or Oy G1) 

Show that this vector is the same even if a different coordinate 

system is used, say, the x’, y’ system shown in the figure. That
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is, show that 6. (Limit definition of curl) First, read Exercise 10 in Section 

. ; . 16.4. Similarly, we can introduce the curl by the limit defini- 

Ody — De k= oy De k’ tion 

Ox Oy Ou! Oy! 

one [,hxvdA 

or, since k’ = k, that curlv(P) = lim," ? (6.1) 
B30 Vv       

    Ov, Ve OVyr Vx! ; a 

te 7 ~— (4.2) and deduce from (6.1) that curlv is indeed Vx v. That 

Ox Oy Ox Oy! . : a . ; a 
is what we ask you to do: using Cartesian coordinates, derive 

for any values of a, b and a. from (6.1) the result 

vurlv = Ov, Ovy i Ou, We \ 3 

mm Vay 82 jn Oe) . 

“Ou, Ove \ > 
(6.2) 

4 (Sy Se) 
( Ox Oy ) > 

which, as claimed above, is the same as V x v. NOTE: 

Let us write the three results together, so the pattern among 

them can be seen: 

  

  

5, Show whether or not V x v is necessarily orthogonal to v. 

HINT: That is, is v- V x v necessarily zero? Write divv = lim Js nev da =V-v, (6.3a) 
B-0 V 

Vy — U: Us 
. 

5 5 5 . fe nuda y 

viVxve=! 2 2 oy gradu = iim a p= u, (6.3b) 

Oz Oy Oz 

Us Vy Uz and 

and see if the determinant is necessarily zero. It is true that two ; foaxvdA 

rows are identical, which seems to imply that the determinant curly = pm ~~ y (6.3c) 

must be zero, but be careful, and recall the footnote associated 

with equation (3). 

  

16.6 Combinations; Laplacian 

We have introduced the div, grad, and curl operators, and found that all three can 

be expressed in terms of V. Specifically, div = V-, grad = V,andcwl = Vx. 

In this section, we consider combinations: one of the operators above acting on 

a combination of fields such as V(au + 8v) and V- (uv), ora combination of the 

operators above acting on a single field, such as V- Vuand V x (Vu). Beginning 

with the former, the action of one such operator on a combination of fields, we note 

the following results: 
If a, @ are scalars, then 

V-(au+ fv) =aV-ut Vey, (1) 
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Viau + Bu) =aVu+ PV», (2) 

V x (au+ Bv)=aV xu+fV xv (3) 

so that div, grad, and curl are /inear operators. Furthermore, 

  

V -(uv) = Vuev+uv-v, (4) 

x (uv) = Vuxv+tuV xv, (5) 

vlan ow. Vxu-u-V xv, (6) 

V x (ax y) = ave va-vV- an V)u—(u- V)v, (7) 

Viu-v) =(u-V)v+(v- V)ut+ux(Vxv)+vx(V xu), (8) 

where (u- V)v in (7) and (8) means 

(u--V)v = (u-V)(vei+ vyj + vek) 

=(u- Vvz)i+ (u- Vuy)j + (u- Vuv-)k 

Ove Ove Ovy . 
= (us 5 De = + Uy By + Uz De se) i i+ (etc.)j + (ete.)k, 

and similarly for (v-V)u 
Derivation of these results is simple, and we will limit our discussion to the 

verification of one representative case, (4): 

  

  

- . @ _¢ ; ; 

V+ (uv) = ( < +4 By +k 5) -(uvpi + uvyj + uvek) 

0 a, a 
= 55 (uve) + Oy (uvy) + 5: (uz) 

_ ou 4H, 4 4 Ovy _ vy Ov: 

~ Ox" Oy 4% Az dx * Oy Oz 

= VuvtuVv-v. 

The form of this result is not surprising and is reminiscent of the (scalar) statement 

(d/dx)(uv) = (du/dx)v+u(dv/dex) from the calculus. That is, V is a differential 
operator, and wv is a product so we get two terms: one in which V acts on w, and 

one in which it acts on v. 
Next, look at the action of a combination of div, grad, and curl operators on 

a single field. One such case that will be of great importance to us is the operator 
V -V, that is, div grad. This operator is called the Laplacian operator,” or just the 
Laplacian, and is denoted by the symbol V?. That is, 

09.0 .d\ (0 ;0 29 2 2G 2 ge) (GS k 

ves ViV= (iz Jy 7 k=) (iz. tig, t x) 
* After Pierre Simon de Laplace (1749—1827). Some authors use the symbol A in place of Vv". 
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Or, 
  

ae 6? @? 

Ve= aut + 7 (9) 
  

  

Read as del square, V? does not mean V times V. Itis a mathematical symbol that 

means V dot V, in the same way that the matrix symbol A7~+ means the inverse 

matrix of A, not 1/A. The Laplacian can act on scalar fields or on vector fields: 

au du Ou 

  

2 aan. 
U = 75 7D DLO? 

10 

Vu 52 * oy? Oe (10) 

Vev= V7 (vei + Vy + vk) 

= iV? uv, + jV vy + kV? vz 
G0,  Oup Ore \; 5 . 

= (a Oy * si) i + (etc.)j + (etc.)k. (11) 

Besides the div grad combination, just mentioned, some others to be noted are 

  

      

diveulv = V-Vxv=0, 
(12,13) 

curl gradu = V x Vu =0, 

curl curlv = curl’v = V x (V xv) = V(V-v) - Vv, (14) 

which hold if v and wu are C?, 

We have drawn attention to (12) and (13), by placing them in a box because 

they will be important to us later, and also because they are striking results, striking 

in the sense that the divergence of the curl of every C? vector field is found to be 

zero, and the curl of the gradient of every C® scalar field is found to be zero. 

As a mnemonic device to remember (12) and (13), think of the letters d, g, and 

c (for divergence, gradient, and curl). The only combinations that come readily 

to mind (for the author, at least) are de (for direct current), and eg (for center of 

gravity). This is, the divergence of a curl is zero, and the curl of a gradient is zero. 

EXAMPLE 1. [fu = ¢2y and v = 22yi — 24j + 2k, then 

Wu = 2y by(10), 

Vy = (Qy FO + I+ (0+ 0 62))+(0+0+40)k — by(11) 

= 2yi — 62), 
VV xv=od0 by(12), 

Vx Vu=0 by(13), 

V x (V xv) = V(2ry) — (2yi-62j) — by(14), 

=(2r+6z)j. Wl 
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Closure. The identities (1)}-(8) and (12}114) are of general utility in vector analysis 

somewhat as the various trigonometric identities are of utility in the calculus, and 

we will use most of them in the remainder of this chapter. The Laplace operator 

V? will be central in our study of partial differential equations in Chapters [8—20. 

  

EXERCISES 16.6 
  

1. Evaluate V7u and V x Wu in each case. 

(gjQu=xz 

(bhu=a*+y? 
(Chu=a?+y?+2? 

(d)u = x7y ~ 6 
(e)u = re¥ 

(f) u = cos (a — 2y) 
(g)u = ryz 

(h) w = sin (xyz) 
@u=ar+by+cz+d (a,b,c, d constants) 

2. Evaluate V-V x v and V x (V x v) in each case. 

(b) v = xe¥i — 2] + 22k 

(d) v = yzi-2?j 

(Ov = f(yjit g(x)j 

3. Are the parentheses needed in (14), i.e., in V x (WV x v)? 
Explain. 

(a)v = ci+yjt zk 

(c)v= ct 

(e)v = 27 yj 

4. V°u = 0 is called Laplace’s equation. Show that the 

following are solutions of Laplace's equation. 

(a)cy +32 (b) a? — y? — 2xrz 
(c) x? — 32y? (d) y? ~ Bay 
(e) In (x? + y?) for x? + y? #0 

I rae aed 24 2 (f) Ptpre fora” +y" +2° £0 

5. If v is any vector, and R = vi+ yj +- zk, show that 
(v- VR = v. 

6. Derive the following equations [as we have done in the text 
for (4)]. 

(a) equation (5) 

(c) equation (7) 

(e) equation (13) 

(b) equation (6) 

(d) equation (12) 

(f) equation (14) 

7. The following scalar equations occur in fluid mechanics, 

solid mechanics, and electromagnetics. Re-express them more 

concisely in terms of vector and vector differential operator 

notation, Here x,y,z subscripts denote the respective com- 

ponents of a given vector, not partial derivatives. To illustrate 

what we are after, consider the equations 

Ou Ou Ou 
Oz wy Oy yo Oz z ( ) 

If we multiply these equations by i,j,k, respectively, and 
add them, we obtain 

Ou; Ou: Ouse 3 : ps . : k= Fite j4 Rk 

da By? Oz w vd ° 

or, in more concise vector notation, Vu = F. 

Oa O a ,, O 
(a) —=-+ ay ee) + By re) + By (ore) = 0 

  

        

  

(b) ot Oru, O° te 1 Oy 
7 =H asta ta 

Ot? M\ Oa2 Oy? Oz? 

ot _) Puy, 1 Puy 1 Puy 
ae Ox? Oy? Oz* 

Jo . 
+(A + ju) Oy + Fy 

oe _ Or ue O° te 4 O*uz 

are \ aa? © ay? "az? 
OO 

+(A + ps) aT F., 
where c, js, A are constants 

OF, Of, OB, 
+ wee ee fe 7 

(©) Oy Oz ‘ Ot 

OF. _ OF, 4 OBy _ 0 

z Ox Ot 
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(d) OH, OMy _ y, 
Oy Oz * 

OH, OH; | J 

Oz dx 

OH, Oy _ I 

Oz Oy ° 

8. The differential operator V* = V?V? is known as the bi- 

harmonic (or bi-Laplacian) operator, and the partial differen- 

tial equation Vu = 0 is known as the biharmonic equation. 

(a) If u = u(az, y), show that 

4 
Vou = Ueaare QUeawyy + Uyyyy 

where the subscripts denote partial derivatives. 

(b) Write out V*u, in Cartesian coordinates, for the three- 

dimensional case u = u(x, y, 2). 

9. (Caution) Familiar properties such as A-B = B.-A, 

Bx A = -A xB, and A-(B x C) = (A x B)-C are, 

in general, not true if one or more of the vectors is the vector 

differential operator V. Specifically, show that 

Viveév-V, Vxve-vxV, and 

V-wxw) 4(V x v)-ew. 

10. Given that 

10 Vxve--— (10.1) 
ec ot 

10 Vxwe=-2, (10.2) 
c Ot 

V-v=0, (10.3) 

Vw =O, (10.4) 

show that v and w satisfy the wave equations 

e O° GY £ O? 

CVV = ar and CVew = oa 

HINT: One of equations (1) to (14) will be useful. Also, note 

0 Ou O Ou 
that — V-u= V+ -—— and — V =Vx —. at a u Vi op an a xu x a 

11. Evaluate V?-v if 

(a) v = x21 + ysin zk 
(b)v = 271+ y2j + 22k 
(c) v = vi — 2yj + 32k 
(d) v = sin (xz)j 

  

16.7. Non-Cartesian Systems; Div, Grad, Curl, 

and Laplacian (Optional) 

Recall the pattern of the last several sections. Our starting point was the definition 

; ; f[on-vdA 
divv = lim ¢ -"——-———_ >. (1) 

B-0 V 

To obtain a more tractable form, we introduced a reference Cartesian coordinate 

system and, accordingly, specified B to be a prism, of dimension Ax by Ay by 

Az, the faces of B being made up of constant-coordinate surfaces: « = constant, 

y = constant, z = constant. Simplification of the right-hand side of (1) then led 

to the form 
Ovy  Ovz 

Oz? 
    (2) 

) . (vpi + Uyd + uk),
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or V-v, where ; 

vail aie phe. 
: Oy Oz 

With V in hand we then introduced the gradient and curl as gradu = Wu and 
curlv = V xv. 

But Cartesian coordinates are not necessarily the most convenient ones in a 
given application. Por example, in studying the temperature field in a spherical do- 
main, one would certainly be better advised to use spherical coordinates. We begin 
by considering the cases of plane polar, cylindrical, and spherical coordinates. Or, 
since the plane polar system is really a special case of the cylindrical system, it 
will suffice to consider cylindrical and spherical coordinates. In the final subsec- 
tion, 16.7.3, we give the extension to any orthogonal curvilinear coordinate system. 

(3) 

16.7.1. Cylindrical coordinates. Our plan is to derive the V operator, for cylin- 
drical coordinates, from its Cartesian expression (3) by expanding 

i= cos 66, — sin 6é¢, 

j = sin dé, + cos Gég, (4) 

k = e., 

recalling the relations « = rcos@, y =rsin@, z = z, and using chain differentia- 

tion. Thus (with c = cos @ and s = sin @, for brevity), 

>O 30 - 0 
V= , + J5y -- ks: 

* . O0r 0 06 O @z 
= (c@, — 89) (Ft etER) 

. . O Or O 00 O Oz 
-+ (s@, + cg) & By + 50 Oy + ae x) 

. QO Or QO 06 O Oz 

+ (Gs) (not mote me) 

  

  

  (5) 

Recalling from (41) and (42) in Section 13.6 that r, = cos@, ry = sind, 0, = 
—siné/r, #, = cos@/r, noting that z, = zy = OQ and z, = 1, and using the 
identity cos” 9 + sin* @ = 1, (5) reduces to 

  

a .10..0 = 6 bey B46, £. 6 V i= Gran #807 ag FO 5: (©)     
  

The V operator is the key. It immediately gives, for the gradient of a scalar 
field vw, 
  

Ou 1 Ou Ou 
yo ee, + — Ay le e., 7 Vu Heer = ayes + aoe (7)   
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and with it we can work out the divergence (V - ), curl (V x ), and Laplacian (Vv? ) 

of a given field. In doing so, it will be crucial to remember that the cylindrical 

coordinate base vectors are not constants. Specifically, recall from Section 14.6 that 

é, and ég are functions of # and é, is a constant, with the only nonzero derivatives 

being 

  
dé, . dég . 

=e and awn = Ep. 8 
8 ™ do (8) 

For example, given the vector field v = U,p@p-+v9@9 + Uz€z, consider its divergence 

O ns) 0 
Veve= e.— +é -—+6 aT . Une, +0 e + v,@, . 9 

( Or BO =) (rer + v6eo ) Se 

Carrying out the dot product on the right-hand side yields nine terms: the first term 

in V dotted with the first term in v, the first with the second, the first with the third, 

the second with the first, and so on. As representative, consider the first term dotted 

with the first, 

(205;) + (ore. (10) 

Notice carefully that the latter is ambiguous because there are two operations to 

carry out, a dot product and a derivative, and we are not told which to do first and 

which to do second. In the case of (10) we get the same result either way, but that is 

not true for all of the terms in (9). We state, without proof, that the correct answer 

in such cases, as could be verified by working the problem in a different way, is 

always obtained if we do the differentation first and then the dot product (or cross 

product if we are computing the curl rather than the divergence). Thus, to work 

out (10) we write 

a 2 (v,6,) = é oye =é OUr a 1 y Jer 
” Op Upp) = Cr or Up@y) = ey or" Up or 

= na 8 Ue, O= (11)   

since 0é,/8r = 0. Observe that in the first equality, in (11), we have slid the 0/O0r 

past the dot. That step gives é, - O(v,é,)/Or, which is unambiguous; it instructs us 

to first work out the derivative O(v,é,)/Or and then the dot product, as explained 

above in italicized type. 

Really, the only terms requiring such special care are the second term dotted 

with the first (because 0é,/0@ % 0) and the second term dotted with the second 

(because 0ég /O08 # 0): 

_ 19d . 1 @ ; 

(< ; =i) - (Up @,) = eo 9 (U,@,) 

Ll OU, _— 06, 

= + | oa er Up oo 67. a0 ey Uy D0 

1 Ov, . Up 
= @g—- | =~ eG, + up Ge | = = 12 

as ( oo "| r (12) 
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and 

—_
 

67, BY) veg = e9-- By (vee 

~
 

-é t “ ed ap tu Jeg 
a Ug ~ da 

1 a _ 1 Oug 
= Co- (ou, eg — Ug e-) = A (13) 

Of the nine terms that result from (9) we have worked out three, in (1 1)—(13). 

Let us work out just one more, say the first term in V dotted with the third in v, 
and then state the final result: 

5 2) ne.) =e, 2 (ud.) =e. (a, 4», 28 
BH, ] Use) = er: zOz) — Ors | BT G2 1 Uz Qo OT Op J | MUSED S Sr Be eRe ar "Oe 

uz 
=, (Fe. +0) =040=0 (14) 

  

  

In fact, five of the nine terms give 0, and the final result is 

Vive   
Ov, 1 1 Ovug Ovz 

Pt Ot ag + Be" (15) 
which is often expressed, more compactly, as 

  

La 1 0 0 
Vivs oa (run) + = pave + 5 Ue. (16) 

      

Proceeding in similar fashion, one obtains 

_ {1 dv, Ove. Ov, Ovuz\ . L (O(rvg) Our \ 

fen (ER 2) a (Be 8) oy F( a oo) 

  

  
    

    

  

(17) 
and 

Wy = Ou 4 1 Ou . 1 d?u | Ou (18) 

us Or? op Or or? O62 Az?2°       

Thus, the gradient and the Laplacian of any scalar field u(r, 6, z) are given by 
(7) and (18), respectively, and the divergence and curl of any vector field v(r, #, z) 
are given by (16) and (17), respectively. 

EXAMPLE 1. Consider the scalar field u = rz° sin 0, and the vector field v = 276, — 

29 + 1ré.. Then (7) and (18) give 

Vu = c*sin dé, + 2° cos dé + 2rzsin 6, (19) 

785
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and 
, 2 ree 

V7u=0+ — sind -~ — r ra 
  _ sind + 2rsind = 2r sind, (20) 

respectively. To use (16) and (17) to work out V7 -vand V xv we need, first, to identify the 

components v,(r, 4, z), va(r, 8, 2), and v(r,0, 2) of v. Since v = 0,6, + veee + U.8, = 

278, ~— 2) + r@., we see thal v, = z*,ug = —2,and vu, =r. Thus, 

1 @ 10 0 2 
Veve-—(r2*)4+-—(-2)4+ —(r) => 31 

vey ay )+ r 50 )+ 33") r (21) 

from (16), and 

e, (22) 

from (17). 

COMMENT. In this case u = rz?sin@ is readily re-expressed in terms of x,y,z since 

rsin@ is y. Thus, u = yz” so 

a2 a 2 . 

By Oe 20404 2y = 2y, 2), — 2 —— 

VU= 52 1 yp tT ae 

which does agree with (20) because y = rsin@. # 

As noted above, we need not derive these operators for the case of plane polar 

coordinates because they merely follow from (7), (16), (17), and (18). That is, if 

u = u(r, @) and v = u,(r,), + va(7, Aes, 

then all < derivatives are zero and v, = 0 too, so those formulas merely reduce to 

Ou 1 Ou 
= —@,+- —é 2 Vu ape! + - pee (23) 

eu 1 du 1 Ou 

  

24-74 a 24 
vou Or2 + r Or * r2 Og?’ (24) 

10 1d 
. = + — (PU, oor U 25 

vey r ap rer) Fe ag.” (29) 

1 (O(rve) Our \ x 
== -_— s 26 

Vixv ~( Or a) @. (26) 

16.7.2. Spherical coordinates. Here we consider scalar fields uw and vector fields 

v= Uplp + Use + ugea, (27)
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where u, Up, Vg, and vg are functions of the spherical coordinates p, 6, @ that were 

introduced in Section14.6, the latter being related to x, y, z according to 

v= psingcosé, 

y = psin dsin dé, 

z= pcos¢. 

(28) 

Derivation of V, V-v, Vu, and so on, follows exactly the same lines as 
indicated above for cylindrical coordinates. For brevity we merely state the main 
results and leave derivations for the exercises. 
  

  
  

    

  

      

  

      

  

  
  

    

  

  

  

  
  

    

0 10 i @ Vi= 6p +€y- = +69 —— 29 “A Op + ee p 0b + ed psing 06 9) 

Ou 1 Ou 1 Ou 
Vu=—6é -——«é —_—— —é 30 

“ Op “p p Ob Se + psing 06 “6 (30) 

1 [0 5 Ou 1 9@ Ou 1 Ou 
V-u= — |— { p? — ) + —— = (sind — ss 31 

“ p> 5 (+ =) sing 0¢ (sin a) + sin? iB Gh) 

1 O ‘) 1 . 5 1 Ovg 
Viva=———(p" ——_ (uns ——, 32 

y p* ap? oe) + psin d pg te sin 6) * psind 06° (32) 

1 0 0 
Vxve ~ (vgsing) — 2 ep 

psind \0¢ Od (33) 

ai 1 Ovp _ O( pve) 6 1 O(pug)  OvUp 6 

p\sind 00 dp ) °?' o\ ap ao)? 

EXAMPLE 2. Given u = p’sin’ dsin? 6 and v = pép, use the given formulas to 
determine Vu and V -v. From (31), 

1 
Vous S. (2p" sin” dsin? 6) + 

p* | Op 
  
sind 0¢ 

9.9, 1 4 
(2p” sin” dcos dsin’ 0) 

1 5. 4 : _ 
+ 2p" sin” o(cos* é — sin? 6)| = 2,   

sin” @ 

where we omit the final steps, for brevity, since they are straightforward. And from (32), 

with up = p, vg = 0, and ug = 0, 

V- 
L 

V= a ZT 

p” Op 
p= 3. 
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. > 5. 29 ss : : : 

COMMENT. We see from (28) that u = p' sin’ sin? 6 is readily expressed in terms 

of Cartesian coordinates as u = y?, and v = pé, is simply the position vector v = 

xi-+ yj + zk. Thus, 

2 P14 4 a 9 
— {4 wl ee f ab ee LD, = mt = 2 V7u 5a (y?) + aya )+ 7a )=04+240 

and a 9 5 , 3 CO 

Vive an) + 5, + 5 =1l+4+1+1=3, 

both of which results agree with the results found above using (31) and (32). Hf 

A word of CAUTION regarding the use of determinants for the representation 

of V x v in non-Cartesian coordinate systems: Recall that it turns out that the cross 

product u x v of two vectors u = Unk + Uyd + uk and v = Vel + Uyj a vk can 

be expressed as the determinant 

UXV=/] Ug Uy Uz |> (34) 

Up Vy Us 

as can be verified by working out (tg + Uyd + uzk) x (vei + Uyd + vk) term 

by term, expanding the determinant in (34), and verifying that the two results are 

identical. 

Similarly for any right-handed set of orthonormal base vectors €1, 62, 63, where 

by right-handed we mean that €) X @g = 63, Gg x Gg = E), and €3 x €) = @5. That 

is, if u = Up, e, + Ugg + ugeg and v = ve; + vo@o + ugé3, then 

€; €2 &3 
uxv=|u ww wuz |, (35) 

Vy v2 U3 

as can be verified by working out (uyé, + u2e2 + ugé3) X (vier + v2eee + u3@3) 

term by term, expanding the determinant in (35), and verifying that the two results 

are identical. For instance, 61, @2,@3 might be the right-handed cylindrical coordi- 

nate base vectors 6,, @9,@-, or the right-handed spherical coordinate base vectors 

Ep, Cg, C9. 

However, if the u vector is not an ordinary vector but is the vector differential 

operator V, then the determinant form for V x v gives INCORRECT results for 

non-Cartesian systems. For example, the cylindrical coordinate formula 

é, eg é, 
Vxve=!| 0/dr (1/r)0/d0 a/dz 

Up ve Vz 
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is INCORRECT, as can be seen by expanding the determinant and comparing the 
result with the correct result given by (17). A generalized determinant formula for 
V x v that is correct will be given below by (43). 

16.7.3. General orthogonal coordinates. Let us give the extension of these re- 
sults to any right-handed orthogonal curvilinear coordinate system with coordinates 
41,92, 93 and corresponding base vectors 61, é2, 63. Let g1, g2, g3 be related to the 
reference Cartesian coordinates according to 

c= x(q, 92,93), 

y= y(q, 92,493), (36) 

2 = 2(q1, 92,93). 

For instance, qi, 2, q3 might be the cylindrical coordinates r, 0, z, respectively. 

The key is to identify the quantities h,, he, hg in 

dR = hydq, 6; + hodgqg 2 + h3dgqg €3, (37) 

(mi) + (ae) + (Ge) Ay = 7 +, +{(=—]}, 

On oq Og 

dx \? dy\* (dz? 
po = yf f : 38) 

" (2) + (an) (Ga) 

_ ax \? Oy 2 

mf (2) + (sn) 

With the f;’s determined from (38), we have 

which are given by 

  

  

  

  

    

  

      “f
e 

a
N
 

2]
 

a 
Q
e
 

N
n
N
_
”
 bo

 

  

  

      

  

1 0 1 a 1 @ 
V =e) 5 + Oo + 3 39 

“| hy Oa ree hy Oqe + &3 hg Oq3" (39) 

1 Ou 1 Ou 1. Ou 
Vu sw ep pe ee pe ee. 40 

u iy On C1 ho Ogo eo + hia Oga e3, (40) 

      

  

    
V4 1 O fhoha Ou 4 O fhihs Ou 4 O fhyhe Ou 

Ta — | - aa | be | — {| —=—— ||, 
hyhghg (Oq, \ hi On Oge \ he Oqe Oq3 \ hg Oq3/ |     

(41) 
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0 
(hyhgve) + =— (hihevs)|,| (42) 

1 0 
Vv ‘Vv el li (hoh3v1) + Aq3 

0 

~ hyhohs | gn Oq2     
  

and   

Aye, ho@e h3e3 

-— | 9 29 
hihehs | dq, Aq. O43 

  

  Vxv (43) 

Ayvyi have haus     
  

where v1, V2, U3 denote the é;, é2, 63 components of v, respectively; that is, v = 

ve] + V9Ao + 383. 

EXAMPLE 3. In cylindrical coordinates, let us identify q1, 2, 93 a8 7, 9, 2, respectively, 

although the order will not matter provided that qi, q2, 93 is a right-handed system. The l 

relations (36) are 

z=rcosé = qi cos q, 

y=rsind = q sings, 

z=z =% 

and putting these into (38) gives hy = 1, ho = qi, hg = 1. With these Aj’s, (39)—(43) 

do give results that are the same as (6), (7), (18), (16), and (17), respectively 

(Exercise 10). d 

Closure. The key, in obtaining the divergence, gradient, curl, and Laplacian oper- 

ators for a non-Cartesian coordinate system is to obtain the V operator. That can 

be done from its Cartesian form, (3), by expressing 2, y, z,i,j,k in terms of the 

desired coordinates and base vectors. With V in hand, the gradient of a scalar field 

u is given immediately as Vu. Knowing the derivatives of the non-Cartesian base 

vectors, we can also work out expressions for V - v, V x v,and V?u. The results, 

for cylindrical and spherical coordinates, are given in this section and framed for 

emphasis. The key point to keep in mind, in deriving formulas for V-vand V xv, 

is that the derivatives within the V act not only upon the scalar components within 

v but also upon the base vectors within v, and the derivatives of the base vectors are 

not all zero for a non-Cartesian system, in general. Similarly, the derivatives within 

the first V, in V2u = V- Vu, act not only upon u but also upon the base vectors 

within the second V. Of course it should be appreciated that once the results (6), 

(7), (16)—(18), and (30)— (33) are in hand we can simply use those formulas 

without dealing with the above-mentioned details.
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EXERCISES 16.7 
  

Cylindrical coordinates: 

1. Evaluate Vu, V2u, W-v, and V x v, using the relevant 

formulas (7), (16), (17), and (18). 

(agjau=r, v=re, + zé, 

(b)u=rsin20, v = coséé, — sin Jeg 

(c)u=r’sin@, v= 27é, 

(us sr, v= ép 

(fe)u=l/r, v=rsindeé, 
(f)u=6, v= 276, + (r?z + cos? dé, 
(g)u=rcos@, v = 68, — 3é ~ 28, 
(hhusr?+ 27, verze, +722" cos beg 

2. Evaluate V -v two different ways, and show that the re- 

sults are in agreement with each other: | first, use (16); sec- 

ond, re-express v in terms of x, y, z, i,j, k and use the formula 

Viv = 0u,/Or + Ovy/Oy + Ov. /dz. 

(a) v = e, (b) v = 9 
(c)v = ré, + zé, (d) v = cos? 0@g 
(e)v =r’ zsin 6é, (f) v = cos dé, — sin 6€¢ 

(g) Vv = reg (h) v = 76, 

(i) v = cos 46, 

3. Carry out steps analogous to those followed in (9}-(16), 

in deriving the formula (16) for V - v, to derive 

(a) the formula (26) for V x v in plane polar coordinates 

(b) the formula (17) for V x v in cylindrical coordinates 

4, Derive the formula (18) for V2u 

(a) by writing V?u = V- Vu and using (7) and (16) 
(b) by beginning with the Cartesian version 

Oru 2 Ou Fu 
V'u= 5a + Bo 

Or Oy? 

introducing the relations 2 = rcos@, y = rsin@, z = z, and 

using chain differentiation. HINT: 0°/0x", for example, is a 

double application of the operator 

00, 0a, a ds 
dr Or Ox 06 Ox Oz Ax 

— cos 8 OQ sin 6 oO 

= COSY OF r Oo 

Similarly, 

oO = sin 0 o + cos 0 a and moe 
Oy Or r 06 Oz 

5. (a) Derive the formula (16) for V -v using the limit defini- 

tion 

div = |j Sat lvv im { V 
B-30 

and choosing & as shown in the accompanying figure, bounded 

by constant-r, constant-@, constant-2 surfaces. HINT: The 

analogous derivation, for Cartesian coordinates, is given in 

Section 16.3. 

pee (6.1) 

    ak 
x Ars 

(b) Derive the formula (9) for Vu using the limit definition 

[,tudA 

B30 Vv , 
gradu = lim (5.2) 

and choosing G as shown in the figure. 

(c) Derive the formula (17) for V x v using the limit definition 

curlv = lim 

and choosing 8 as shown in the figure. 

6. Show that the given u is a solution of the Laplace equation 

V2u = 0. 

(a) u =r” sin nd for any integer n (for r 4 0 if n is negative) 

(b) u = 1" cos né for any integer n (for r 4 0 ifn is negative) 

(c)u=lnur (r #0) 

(d)us meee (rr? + 2? £0) 
re + zt 

7. Besides V?u, we can also have V"v, the Laplacian operat- 

ing on a vector field. Rather than ask you to work out V*v in
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cylindrical coordinates, because it is a bit messy, we ask you 

to derive the plane polar coordinate result 

ry [LO (Orr) 1 (Aue Ov 
ve ; ar "or ) 2 ame ~ a Pr) YS 

(bo (Om) 4 Au, Ar 4 \T 4 

r Or " Or pe 62 30 ve &p 

(7.1) 

    

  

by working out 

a 10 41 @ . . 
(a + ~ Op 4. 2 a) (up(r, OE, + va(r, O)e@e) 

term by term and remembering that 0é,/0r = 0@9/0r = 0, 

06,./00 = &g, and 0é9/00 = —é,. 

8. Use (7.1), above, to evaluate Vv. 

(b) v = cos dé, — sin Gég 

(d) v = rcos @@, — r? sin 36é¢ 
(a) v = 176, 
(c) v = 6g 

9, Write out the biharmonic equation V‘u = 0, where 

vi = V?2V2, in both Cartesian coordinates and cylindrical 

coordinates. 

10. Verify that for the cylindrical coordinates q, = 7, q2 = 

6, q3 = 2, equations (39)—(43) do give the same results as 

(6), (7), (18), (16), and (17) as claimed in Example 3. 

Spherical coordinates: 

11. Evaluate Vu, V?u, V-v, and V x v, using the relevant 

formulas (30)-(33). 

(ahu=p, Vv = p€p 
(b)u=p*, v= Beg 

(c)u=sing, v = peg 

(d)u= p*sind, v = @, + ég + ep 

(e)u= pcos), v = peo 

(f)u = cosd, v = 6g 

12. Using the expression 

ve O i Loa é 1 O 
= 6, — + Oy — > + Oe 

Pap “5 dd” psind 06 

and, as needed, the expressions for the space derivatives of 

Ep, Eg; ég given in Section 14.6.3, derive 

(a) the formula (32) for V-v 

(b) the formula (33) for V x v 

(c) the formula (31) for V7u 

13. Find values of a, if any, such that u = p® is a solution of 

the Laplace equation V*u = 0. 

14. For spherical polars, w,y,2 are related to p, @,@ ac- 

cording to (28). Letting qi,g2,q3 be p,,9, respectively, 

show that (39)-(43) give expressions for V, Vu, V7u, V-v, 

and V x v that agree with (29)—(33). 

15. The vector equation 

(15.1) 

where v is the vector velocity field, p is the scalar pressure 

field, t is the time, and ¢ is the fluid mass density, is known in 

fluid mechanics as the equation of motion (for a fluid having 

no viscosity) since it is the fluid mechanics version of New- 

ton’s second law of motion F = ma for a particle of constant 

mass m. Write the three scalar equations that follow from 

(15.1), in 

(a) Cartesian coordinates x, y, z 

(b) cylindrical coordinates r, 7, 2 

(c) spherical coordinates p, 6, 4 

  

16.8 Divergence Theorem 

16.8.1. Divergence theorem. In Sections 16.1-16.7 we introduce the quantities 

that we will need — div, grad, curl, Laplacian, and so on. In this section we begin to 

use those quantities to obtain important results. In particular, we derive the Gauss 

divergence theorem and use it to derive well known equations in fluid mechanics 

and heat transfer.* 

  

*Generally attributed to Gauss, the divergence theorem was obtained independently by the Rus- 
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THEOREM 16.8.1 Divergence Theorem 
Let V be a closed region in 3-space, the boundary of which is a piecewise smooth 
orientable surface S, and let v be a vector field that is defined and C! in V. 

denotes the outward unit normal on S, then 

[ aivwav = / n-vdA, (1) 
JV JS 

  

    
  

  

Outline of Proof: We begin by proving (1) for the simple case where V is a rectan- 
gular prism ry < eS to,y, Sy < yo, 21 <2 < 29. Write out 

"fOvy, Ov Ov: 
livvdV = “4 —# - | dV, 2 [wiev LS pe 4 | (2) 

Consider the first term on the right: 

’ "2 2 Ouy 
oe 5, (v= [ | ([ a i) dy dz 

yp Man Ox 

22 22 “YQ 

=[ J Ux (wa, y, 2) dy dz — [ [ ve(21,y, 2) dy dz 
YL 

=f | veidydz + / | + -(—i) dy dz. (3) 

      

  

     

srg face wee, face 

Since n = +ionthe « = ve face and n = ~—ion the « = 2, face (Fig. 1), (3) 

amounts to a 
Uy . 

= v- nda. (4) 
JV Ox ‘ 

  

X1,09 faces 

Vy. 22 Y2 

| Ory dV = [ [ fs Oey dt ') dx dz 
Jy Oy Jz Oy 

=etc. = / ve nda (5) 

yisy2 faces 

Similarly, 

  

and 

  / Oe ay = vada. (6) 
Vy ‘ 

  

sian mathematician Michel Ostrogradsky (1801-1861), and was published in the memoirs of the St. 

Petersburg Academy of Sciences in 1831. 
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Figure 1. The prism V.
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(a) 

    

Figure 2. Partition of V. 

Then, adding (4)—(6) gives (1). We need to justify using different orders of integra- 

tion in the three volume integrals; that is, to integrate Ov, /Ox, Ovy/Oy, Ovz _/Oz we 

integrated first with respect to aw, y, z, respectively. Since the theorem assumes v to 

be C!, it follows that the integrand [written out in the right-hand side of (2)] is con- 

tinuous, so the integral has a unique value, independent of the order of integration. 

[See equations (8) and (24), and the associated discussion, in Section 15.3.] 

The preceding proof can be generalized to any closed region V in 3-space, the 

boundary of which is a piecewise smooth orientable surface. A partial generaliza- 

tion is covered in the exercises. Let us use this space instead to outline a different 

approach which has the advantage of flowing directly from the limit definition of 

the divergence, 
fon-vdA . 

di P)\ = lim <= div v(P) lin { v ; (7) 

but understand that our presentation will be heuristic, not rigorous. To begin, let us 

break Y into N subregions, or cells, where N is very large; one might think of V 

as being filled with millions of fish eggs. Let us number them, from | to N, call 

the jth cell B;, with surface §;, volume dV;, and with some point in B,; designated 

as P;. Some such cells are sketched j in Fig. 2a, at an exaggerated scale so we can 

label them. Let us write down (7) for each cell. Dropping the limit, but reminding 

ourselves of it by writing dV in place of V, we have the NV equations 

div v(P,)dV, = | ny: vdA 
1 

: (8) 

div v(Pxy)dVy = ny: Vda. 
SN 

Adding these, the sum of the left-hand sides is fy divv dV, namely, the left-hand 

member of (1). Interpreting the sum of the right-hand sides of (8) is a bit trickier. 

Consider two adjacent cells, say B; and Bg (Fig. 2b), and observe that the con- 

tributions n7-v dA to Is, n;-vdA and hg: vdA to Ise ng -v dA exactly cancel 

because fig = —7. Such cancellation occurs along all of the internal boundaries. 

Only the contributions from the dA elements lying on the outer surface S survive 

because these have no neighbors and hence suffer no such cancellation. Thus, the 

sum of the right-hand sides of (8) is fs n-v dA, namely, the right-hand member of 

(1). @ 

From the preceding heuristic proof we can see that the divergence theorem (1) 

[more precisely, the divergence theorem formula (1) since (1) is a formula, not a 

theorem] is actually a macro version of the micro statement (7). Also important, in 

understanding (1), is its relationship with the fundamental theorem of the integral 

calculus, which we state [for comparison with (1)] in this form: 

c=b “b 

| F'(x) du = F(x) . (9) 
C= 
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if F’(x) is continuous on a < a < 6. That is, if the integrand is a derivative and is 
continuous then the integral can be reduced to an evaluation at the boundary of the 
integration region, namely, the endpoints a and b. Analogously, the volume integral 
in (1) can be reduced to an evaluation at the boundary of the region V (namely, on its 
surface S) if the integrand is a kind of derivative, namely, a divergence. In fact, (1) 

reduces to (9) in the one-dimensional case, where v = v;(, y, z)i + Uy(@,Y, z)j + 

vz(,y,z)k is merely Up(2)i. Thus, the three-dimensional generalization of the 
derivative, F(x) in (9), is the divergence div v in (1). 

To evaluate the integrals in (1), we need expressions for dV and dA. Of these, 
dV is easy since it depends only on the coordinate system being used and we know, 
once and for all, that 

dx dy dz (Cartesian) 

dV = ¢ rdrd@dz (cylindrical) (10) 

p* |sing|dpdéd@. (spherical) 

However, dA is harder inasmuch as it is specific to the particular surface under 
consideration. The general formula for dA was given in Section 15.5 by (4) and 
(5), and special cases were covered by (13) and (18) therein. Since you may not 

have studied Section 15.5, let us try to get by, in this section and the next, relying 
only on equation (18) from Section 15.5, namely, 

dA=\/1+ f2+ Prdedy (1) 

if the surface S is known in the form z = f(x,y). The subscripts in (11) denote 
partial derivatives. Here, dA is the desired area element on S and dz dy is the 
projection, or shadow, of that area onto the x, y plane (Fig. 3). 

In the example to follow, we illustrate the “mechanics” of the calculations in 
(1), and then we turn to physical applications. 

EXAMPLE 1. Verification of (1). Let v = x(y + 1)z°j, and let V be the pentahedron 
shown in Fig. 4, with faces given by the planes x = 0,2 = 2, y = 0, 2 = O, and the 

slanted plane EF'GH. The problem that we pose is merely to evaluate both sides of (1), 

for that case, and to verify that they are equal. Naturally, such verification by no means 

proves the truth of (1), but if the left- and right-hand sides of (1) are unequal, for this single 

example, that result would suffice to disprove (1). 

We will need the equation of the plane EF'GH. We know it is of the form 

ax + by + cz = d, (12) 

and if we force the plane to go through three noncollinear point, such as &, F’, and G, 

that should uniquely determine its equation. Since E = (2,0,1), F = (0,0,1), and 

G = (0,1,0), we obtain, from (12), 2a+¢ = d,c = d,andb = d, Thus,a = 0,6 = d, 

c = dso (12) becomes dy + dz = d, or 

ytro=u l. (13) 

Divergence Theorem — 795 

z= f(x,y)      

    Poi 

x dx dy 

Figure 3. Interpretation of (11). 

  

Figure 4. The pentahedron V.
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We begin with the left-hand side of (1): 

‘f 0 dD 0, 
[wwvav = [ {at yl a(y + U2?) + reo hav 

“fit fp LE earl 

a) enna =f A(1—2)dz= = (14) 

where the limits fi fe correspond to the shaded rectangle ABCD. 
Turning to the surface integral in (1), we consider the five faces separately. Since those 

faces are planes, fi is simply a constant over each one. On the z = 0 face n = —i, and 

fev = —i-a(y+1)z29j =0,so fa-vdA = [0dA = 0 over that face. Similarly, for the 

z = 0 face, since fh: v = (—k)-a(y + 1)z3j = 0 there. On y = 0, dA is dx dz, and 

/ a-vaa = | —j-[e(y+1)2°j]} dA 
y=0 face y=0 face y=0 

Lopd l 
= -| [ ee dedz = 5 (15) 

o Jo “ 

Finally, consider the slanted face. We need expressions for A and dA. One way to 

compute fi is to cross the vector HG (from H to G) into the vector HE (from Hf to £): 

n= HG x HE = —2ix (-j+k) = 2k + 2j. 

Normalizing the latter (i.e., to unit length), 

cn 4+ 2k 

in] V8 OV 

Next, (13) gives z =1—yso f(z,y)isl—y, fe = 0. fy = ~l, and (11) gives 

n= Gj +k). (16) 

sl
: 

7 

dA = \/1+ (0)? + (-1)? de dy = V2dedy. (17) 

| n- vias [ i ite fa(y t+" 7 (2 dx dy) 
ytz=l face a Jo le=l—y 

= [ [ aly +1)(1 — yy dedy = 
o Jo 

Adding the results for the five parts of S, 

Thus, 

c
a
f
 Ww 

favad=04040-543=5, 
JS 2 

which does indeed agree with (14), 
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COMMENT |. Surely v is C’ in the closed region V, as required by the divergence 

theorem since the partial derivatives of v, = 0, vy = «(y+ 1)z*, v. = 0 with respect to 

“L,Y, 2 are continuous functions of z, y, z in VY. 

COMMENT 2. Observe that the formula (17) converts the surface integration on the slanted 

plane to an equivalent integration over its “shadow” (the rectangle PH'GQ) in the x,y 

plane; hence the limits f f° in (18). Also, remember to express any z’s in the integrand 
in terms of x, y according toz = f(a,y)=1l—y. a 

Our cross product method of deriving m, in Example 1, works only if the sur- 
face is planar. A more general method, for deriving normals to surfaces, is as 

follows. Suppose the surface is given by the relation 

G(@,Y,2) = 6, (19) 

where c is a constant. If we imagine g(x,y, z) to be a scalar field defined in 3- 
space, say a temperature field for definiteness, then the particular surface S defined 
by (19) is an isothermal surface, and Vg will be normal to that surface. Thus, if 

we normalize Vg, then we have the unit normal vector 

  

          

  

V9 
n=+——, (20) 

V9 

where the correct sign is to be chosen so that n is outward, not inward. Por instance, 
in Example | the equation of the slanted face is y + z = 1, so g(z,y,2) = yt+2 
and oo 

. Viys+e jtk fat wvwts) i+ (21) 
IV(y + 2)Il V2 

Clearly, the plus sign gives the outward unit normal, as desired, and then (21) agrees 
with (16), which was found by other means. We will call (20) the gradient method 

for obtaining the field of normals to a surface defined by (19). 

Consider two important physical applications. 

EXAMPLE 2. Continuity Equation of Fluid Mechanics. Consider a fluid flow within 
some region R in 3-space; let v(z,y,2,¢) and o(a,y,%,t) be the velocity and density 

(i.e., the mass per unit volume) fields, respectively.” Let V be a stationary control volume 

of arbitrary shape (although we ask that its surface be piecewise smooth and orientable), 

located within R. The mass within V at any time fis AY = ty a dV, so the rate of increase 

of AL is? IM if 9 
caiM C ID 
ee v.y.c.t)dV = — dV. 22 
dt dt. volt yr 20) ¢ I Ot ‘ (22) 

  

“The letter p is usually used for the mass density, but we will reserve p for the p in p, @, @ spherical 

coordinate systems. 

"For the last equality in (22), see equation (12.3) in Exercise 12 of Section 13.8.
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ao 

— 

ao 

Figure 5. Control volume VY. 

Next, observe that the rate at which mass enters V through its boundary S is the flux integral 

(Fig. 5) 

-/ aon-vdA, (23) 
& 

where fi is the unit outward normal to S. [The latter expression differs in sign from (2) in 

Section 16.3 because there we considered outflow, whereas here we consider inflow. We 

could avoid the minus sign by taking n to be the inward normal, but it is tradition, in vector 

field theory, to work with outward normals. | 

Finally, suppose that there is a creation of mass within the field at a rate f(a, y,z,t) 

mass per unit volume per unit time; where f is positive mass is being created, and where f 

is negative mass is being destroyed. Then the net rate of creation of mass within V is 

/ Fle,y,2,t) dV (24) 
y 

mass per unit time. 

Since the rate of increase of mass within V is certainly equal to the rate at which mass 

enters V through S, plus the rate at which mass is created, it follows from (22)—(24) that 

Oa 7 
a—~ dV =~ | on-vdA+ f dv. (25) 

y Ot S v 

To combine these integrals we convert the surface integral to a volume integral using the 

divergence theorem (1), with “‘v” in (1) taken to be ov in (25): 

[cavaas [atovjaa= [ v-ovay (26) 
S S v 

Thus (25) becomes 

| E +V-(ov) - f dV = 0. (27) 
Jy | ot 

We could accept (27) as our final result, but its integral form is inconvenient. To 

achieve the final simplification, observe that the control volume V is arbitrary. If {\,[]dV = 
Q for arbitrary V, within R, and we are willing to assume that the [ ] integrand is continu- 

ous, then it can be concluded that [ ] = 0 throughout R. For suppose that [ | were nonzero, 
say positive, at some point P in R. Then by the assumed continuity of [{ ] there must be 

some neighborhood AV’ of P such that |] > 0 throughout VV. Since V is arbitrary, we can 

take V to be V. Then fy,[]dV = f,-[]dV > 0, which contradicts (27). Thus, [ ] must be 
identically zero through R: 00 /O0t + V- (ov) — f = 0, or 

—-+WV-(av) = f. (28) 
at 

Thus far, (28) involves logic and bookkeeping, no physics, for who can argue with 

the statement that the rate of increase of mass within V equals the rate at which it enters 

through S plus the rate at which it is generated within V? Finally, the physics: if matter can 

be neither created nor destroyed. then the mass generation term, f, must be zero, and (28) 

reduces to the form   

= +V-(ev) =0, (29) 
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which is the well known continuity equation of fluid mechanics and is a statement of 

the physical principle of conservation of mass. It is a partial differential equation, or field 

equation, governing the scalar density field o and the vector velocity field v. If vo = 

Vel + Uy oo vik, then (29) becomes 

  

da O a a 

=< ba alt —(ow, © (eu.) = 0. 
3 

Ot 5g (ree) . 5 (Te) + ay (av2) 
(30) 

The latter is only one equation on the four unknowns o, Vz, Vy, Vz, but (30) is not the 

only relevant field equation. For instance, Newton’s vector second law of motion leads 

to another field equation relating o and v, which is a vector equation or, equivalently, 

three scalar equations. That step would appear to “close” the system since, together with 

(30), it would give four equations on the four unknowns. However, it also introduces 

another unknown field, the pressure field p(x, y, z,#) so we need to add to our system 

of equations an equation of state, relating the pressure, density, and temperature fields. 

Having thus included the temperature field, say T(z, y, z,t), we need to use the law(s) of 

thermodynamics to obtain the field equation(s) needed to close the system. The upshot is 

that the various unknown fields, 0, Ux, Vy, Uz,p, 7, are governed by a system of coupled 

field equations, most of them being PDE’s (partial differential equations). 

COMMENT. It is often possible to simplify this complex state of affairs. For instance, if 

the fluid is water then we might very well be able to neglect its compressibility and, to a 

good approximation, assume that o = constant. In that case Oa /Ot = 0, so (29) becomes 

0+V-(ev) =oV-v = 0 or, equivalently, 

Vev=0. (31) 

Then, even though Newton's vector equation of motion introduces the unknown pressure 

field p, those three equations plus (31) comprise a closed system of four PDE’s governing 

the four unknowns v,, Uy, Uz, and p. We can still solve the relevant field equation for the 

temperature field T if we wish, but the point is that if 7 = constant then that equation 

stands alone, and is uncoupled from the PDE’s governing the velocity and pressure fields. 

How do we know whether o = constant is a sufficiently accurate approximation? 

There is always a relevant nondimensional parameter that tells us whether or not one effect 

is negligible compared to others. The nondimensional parameter that provides a measure 

of the effects of compressibility is the Mach number M, defined as the ratio of the fluid 

velocity to the local speed of sound. If Af < 1 we can, with good accuracy, make the 

simplifying assumption that 0 = constant, that is, that the flow is incompressible. For 

instance, since the speed of sound in water is around 1500 m/s, the Mach number within 

a water wave is, no doubt, tiny compared to unity, so in developing the field equations 

governing water waves one would surely take the water to be incompressible. 4 

EXAMPLE 3.) Unsteady Heat Conduction. Consider the unsteady conduction of heat 

within some region in 3-space. Our derivation of a partial differential equation govern- 

ing the temperature field T(x, y, z, ¢) will closely parallel our derivation of the continuity 

equation in the preceding example. 

First. we choose a fixed arbitrary control volume V within R. Instead of a mass 

balance, this time we carry out a heat balance. That is, we equate the rate at which heat
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Figure 6. Fourier’s law. 

accumulates in V to the rate at which it enters through the surface S of V plus the rate at 

which it is generated within V. 

Since the heat (in calories, say) contained in a mass ™m. at (absolute) temperature T is 

mcT’, where c is the specific heat of the material, the rate of accumulation of heat within V 

is 94 

d yl? dV or | co oF dV. (32) 
dt yp Ot 

As in Example 2, 0 is the mass density (mass per unit volume) of the material and dV is 

an infinitesimal volume element. Thus, o dV in (32) is d(mass). 

To compute the heat flux into V through S we need the Fourier law of heat conduc- 

tion, which states that the heat Aux Q (calories per second, say) through an area element A 

is proportional to A and to the derivative of the temperature field normal to the element A 

(Fig. 6): 

Q=--kA or (33) 
On’ 

where the constant of proportionality, k, is called the thermal conductivity of the given 

material: for instance, & for copper is much larger than k for wood. Why the minus sign? 

If Q really is positive (i.e., in the +n direction), then T(a) > T(b) (since heat flows from 

hot to cold) and OT /On will be negative. 
According to the Fourier law (33), the heat flux into V through an area element dA 

on the surface S of V is k 5 ce dA, where there is no minus sign this time because n is the 

outward unit normal wheres we seek the inward heat flux. Thus, the heat flux into V, 

through S, is 

po OF 1A. (34) 
s O a2 

Further. if heat is being generated within V at the rate f(z, y, =, t) calories per unit volume && YU; ] 

per unit time, then the net rate of generation of heat within V ts 

| F(z.y,2,t) dV. (35) 
v 

And since the rate of increase of heat within V equals the rate of heat entering through S 

plus the rate of generation within, we have 

     [eos = [wordat | f dv. (36) 

y 

To convert the surface integral in (36) to a volume integral using the divergence 

theorem fs hevdV = fy V -vdV, we need to identify the vector field “v” such that 

kOT/An = A-v. From the directional derivative formula (7) in Section 16.4, with $ = n, 

aT/On = VT-n, so kOT/On = kVT-H. Thus “v” = k VT. Then the divergence 

theorem gives [5k (OT/On)dA = fokVT-ndA= I, Vv -(k VT) dV so (36) becomes 

OT 
| co — -V-(kVT)— fl dV =0. (37) 
Jy Ot 

From the arbitrariness of V there follows (as discussed in Example 2) the PDE, or field 

equation, 
OT 

co V-(AVT)-~f=0 (38) 
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governing the temperature field T(a,y,z,t). If the conductivity / is a constant, then 

V(kVT) = kV VL = kV°T, and (38) may be written as 

ee OT Belen 
VET ae (39) 

Ot , 

where F = f(x,y, 2,t)/(co), and a® = k/(co) is called the diffusiviry of the material. The 

— F term renders the PDE (39) nonhomogeneous and serves as a forcing function just as the 

Fo sin Qt term in the ODE ma” + ke = Fo sin OL makes that equation nonhomogeneous 

and serves as a forcing function. If F(2, y, z,t) = 0, one usually writes (39) in the form 

  

  

  
OT V1 soe | 

ot 
(40) 

      

which is called the heat equation governing the unsteady diffusion of heat by conduction, 

in a material having diffusivity a7. If a steady state is achieved, then OT/Ot = 0 and (40) 

reduces to the Laplace equation 

VT =0. (41) 

COMMENT |. In applications, the source term F’ in (39) may be nonzero. For exam- 

ple, there might be taking place within the region a chemical reaction that releases heat 

(exothermic) or absorbs heat (endothermic). Or, a mechanical member (such as a beam) 

subjected to acyclic loading might be heated by mechanical hysteresis losses proportional 

to the local stress level. 

COMMENT 2. The conduction of heat, in a medium, is an example of the physical process 

of diffusion, so (40) is also known as the diffusion equation. Another example is the 

diffusion of material, such as the spreading out by diffusion of a drop of dye place in a pot 

of water, Let c(a, y, 2, ¢) denote the concentration of the material (.e., the mass of material 

per unit volume of medium). Analogous to the Fourier law (33) is Fick’s law, that the 

material mass flux through an area element A is proportional to A and to the derivative 

Oc/On normal to A. Consequently, just like the temperature field 7’, the concentration field 

c satisfies a diffusion equation 
Oc 

ot’ 

where 3? is a mass diffisivity constant. Arguably, the diffusion equation and the Laplace 

equation are two of the three most prominent PDE’s of mathematical physics, the third 

being the wave equation. which we will study in Chapter 20. @ 

CVrc= (42) 

EXAMPLE 4. Green’s Identities. If u and v are scalar fields, then the combination uVv 
is a vector field. Applying the divergence theorem to that field gives 

i Vi -(uVoujydV = | n:(uVu) dA. (43) 
vv JS 

But from equation (4) in Section 16.6, with Vv as “v,” we have V-(uVu) = Vue Vut+ 

uV Vu = Vu- Vu + uV7v, and a: (uVv) = un: Vu = udv/dn, so 
  - TS 
| (Vu Vu+uV*u) dV = | u — dA. (44) 
Jv s On      
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dA = (ds)(1) 

Figure 7. Plane case. 

This formula, known as Green’s first identity,* is important in the study of partial differ- 

ential equations. 

In some cases, evaluation of the Ov/On term in (44) is simple. For example, if V is 

the cube |a| < 1, |y| < 1, |z| < 1, then v/On on the « = +1 face is merely Ov/Oz, and 
on the x = —1 face it is ~Ov/Ox. For more complicated surface shapes we suggest that 

you use the expression 0u/On = Vu- i to calculate 0v/On on S. 
Now, interchanging the letters u and v in (44), it should be equally true that 

[ve Vutuv*u) dV = [es oe aA, 
v 

and subtracting these last two equations yields Green’s second identity 

[(uste —vV*u)dV = [ (us _ oF) dA, (45) 
v 

What conditions on u,v assure the validity of Green’s identities? Recall that the three 

components of v in the divergence theorem (1) were to have continuous first-order partials 

with respect to 2, y, 2 . Since in deriving (44) and (45) we first set “w" = uVvu = Uvei + 

wyd + uv.k, and then “v” = vVu = VUgi + Uy +vuzk, we must ask uve, UVy, Ue, 

Vg, UUy, and viz to have continuous first-order partial derivatives in the closed region 

VY. Equivalently, we ask u and v to be C? in the closed region V. Similarly, S is to be a 

piecewise smooth orientable surface, as in the divergence theorem. # 

  

      

16.8.2. Two-dimensional case. Suppose v is but a fvo-dimensional field, v = 

g(x, y)i + vy (2, y)j, defined over a closed region R in the x,y plane (Fig. 7a). 

To have a three-dimensional region, so we can apply the divergence theorem (1), 

let us build up a volume V with 7 as its base, and of unit thickness in the z direction, 

as in Fig. 7b. In the divergence theorem 

[v-vav= [a-vaa 
JV JS 

-/ avdd+ | aevda+ | n-vdA, (46) 
top J bottom J side 

S is comprised of atop (z = 1) on which n = +k, a bottom (z = 0) on which 

fi = —k, anda side on which 0 is parallel to the x, y plane. Since m- v = 0 on the 

top and bottom, the “top” and “bottom” integrals in (46) are zero. Further, div v 

in (46) does not vary with z, so we can let dV extend from bottom to top; then 

dV = (dA)(1), where dA is the base area of dV (Fig. 7b). Similarly, m-v on the 

side face does not vary with z, so we can let dA in the side integral extend from 
  

* George Green (1793-1841) was a self-taught English mathematical physicist. His work on elec- 

tricity and magnetism helped to place field theory on a firm mathematical foundation, His “Green's 

identities,” “Green's theorem.” and “Green's functions” are important tools in the study of field theory 

and partial differential equations. 
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bottom to top (shaded in Fig. 7b); then dA = (ds)(1), where ds is the arc length 
along C. With these replacements, (46) becomes 

  

  
/ Vivda= | a-vas, (47) 
JR Cc     

which we call the two-dimensional divergence theorem. That is, we simply drop 
back by one dimension: V + R,dV — dA,S — C,anddA — ds, The integral on 
the right-hand side of (47) is a line integral. Line integrals were defined in Section 

15.2.3, 

EXAMPLE 5. Let us illustrate (47) with a simple example. Namely, verify (47) for the 

case where v = «* yi — 3j and ® is the rectangle shown in Fig. 8. Then 

. 2 3 

| vivda= | / 2ey dz dy = 18, 
R 0 JO 

3 2 
[aves= {(-j)-v dz + | i-v 

c 0 y=0 0 
3 2 

+/ icv az | (-i)-v 
0 y=e 0 

3 2 3 2 
-/ sae + | yay — sde+ | Ody = 18, 

0 0 JO 0 

which results are indeed the same. 

COMMENT. In the integral fe (-i) | oth say, how do we know that the limits are 0 to 

2, not 2 to 0? The idea is that the ds in (47) came from “(ds)(1),” namely, the area element 
dA, and since area elements are necessarily positive, we need to choose integration limits 

so that the ds increments are all positive. Hence we let y go from 0 to 2, not from 2 to 0. 

Similarly for the integrals on the edges = 3,y = 0, andy = 2. @ 

and 

oy 
£33 

        

dy 
z=0 

16.8.3. Non-Cartesian coordinates. (Optional) Let us work two examples in- 
volving cylindrical and spherical coordinates. 

EXAMPLE 6. Cylindrical Coordinates. Let v = r*zé,, and let V be the cone shown 
in Fig. 9, The problem that we pose is to verify the divergence theorem, for that case, by 

working out the left- and right-hand sides of (1) and verifying that they are equal, Insofar as 

VY is concerned, cylindrical and spherical coordinates are equaily convenient: in cylindrical 

coordinates the fiat top is a constant-coordinate surface (z = fh) but the conical part is not, 

and in spherical coordinates the conical part is a constant-coordinate surface (@ = a) but 

the flat top is not. However, v is given in cylindrical coordinates, so let us use cylindrical 

coordinates r, @, z. 

  hw 

—
 
>
 r aa 

<< R — 

      

. | 3 x 

n=-j 

Figure 8. The region R. 

  

x 

Figure 9. The cone V.
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Equation (16) in Section 16.7 gives 

10 10 0, » 9 
Viva -—([r(0)) +4 = = (0) + —(r?2) =r? 

v* 7 pe Ol + Fg O) ag" jer, 

and the volume element is dV = r dr dé dz, so 

“ae Te 

[ VivdV = [ [ [ \r dr dO dz = —-h” tan’ a, (48) 
o Jo Jo 10 

where the r limits follow from the fact that the equation of the conical surface is r = 

(tana)z. 
To evaluate the right-hand side of (1) we break the integral into an integral over the flat 

top plus an integral on the conical surface. On the top we have n = @, and dA = rdr dé, 

so* 

, 20 mane 
2 

| n-vdA= [ [ (r*z) 
top 

2m phtana . . 

=h / | re drdé = he tanta. (49) 
0 “ 

To determine 1 on the conical surface we use the gradient method explained in connection 

with equations (19) and (20). That is, since the surface is defined by r = (tan a)z, we have 

  

  
rdr dé 

z= 

  

g(r, 6,2) =r — (tana)z = 0, 

Oo. ot 0 a 

== ~ or = FOr | [Pm (tanae)z 

neava= +(e "ar |" r 80 5) [r — (tan az] 

= +/é, — (tana)e.| 

nll = V1 + tan? a = . 
COs a 

Gy — (ta je. i 

n= 4 On = (tan ayes = (cos aje, ~ (sin aye, (50) 

1/cosa 

where the plus sign was selected since it gives the outward normal. Next, we need the 

area element dA on the conical surface. For that we rely on the general formula (5) in 

Section 15.5, dA = VEG — F? duduv. To use that formula we need parametric equations 

x= arluv),y = y(u,v), 2 = (u,v) for the surface, which can be obtained by beginning 

with the equations z = rcos 0. y =rsin@, z = = relating 2, y,< tor,0,2, and adding the 

fact that the cone is given by z = (cotajr: 

z=rcos? = ucosy, 

y=rsin?g = usin, (51) 

z= (cota)r = (cot a)u: 

That is, let r and 6 be uw and v, respectively. 

Baw) + yy + 2 = cos” u + sin” uv + cot” a = sec"a, 

Fe=ly8y + Yao + Lute = (cosv)(—usinv) + (sinu)}(ucosv) = 0, 

Ge=r,+y, +2) =u sin’ v+u'cos*u=t 

  

“If you don't see why dA = r dr d@, see (17) in Section 15.6.



    

dA = JEG ~ F2 dudv = (cosec a) udu du. (52) 

Thus, remembering that r = u and z == (cot a) u on the cone, 

| hevdA= / [(cos a)é, ~— (sin a)é.] - (r? z@.)(cosec a)ju du du 
cone cone 

5 
= -| r’zududv 

cone 

2nr  phtanae 

h [ (cot a)u" du du 
0 0 

= an nn tan’ a. (53) 
5 

Adding (49) and (53) we obtain 

| 

, W oe 
a-vdA = —h’ tana 

[ 10 

which does agree with (48). 

COMMENT |. Though it is clear by inspection that m = @, on the flat top, observe that 

the gradient method could have been used instead, for the equation of that surface is z = h, 

so g(r, 9,2) = 2 and 

Vg 
Vall 

COMMENT 2. To check results. we urge you to consider special cases. For instance, to 

check the result mn = (cosa)é, — (sina)é,, derived in (50), observe that for the special 

cases a = Oanda = 7/2 we have n = €, andn = —é,, respectively, which results are 

obviously correct. 

n=t = +e, +€,. 

COMMENT 3. To see that v is C+ in V, as called for by the divergence theorem, express 

6. = (x? + y")z k. and observe that the partial derivatives of v, = 0, vy = 0, and 

+ y’)z with respect to x, y, z are continuous functions of z, y, z in V. t 

  

EXAMPLE 7. Gauss's Law. Anelectrical charge g (which could be positive or negative) 

at the origin gives rise to an electric field E that is expressed most conveniently in terms of 

spherical coordinates as 

-/ te, (54) 
dre p? * 

where € is a physical constant known as the electric permittivity of the medium. That 

field is radially directed and spherically symmetric. with a magnitude that tends to zero as 

p —> co and to infinity as p - 0 (since it is proportional to 1/p?), as hinted at in Fig. 10. 

A fundamental result in electrostatics, known as Gauss’s law, states that if S is a smooth 

closed surface within the medium, then 

, 0 if S does not enclose the charge 

| n-EdA= q . (55) 
JS - if S does enclose the charge. 

€ 
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“SNE 
7 

Ac ~. 

Figure 10. Charge-induced 

E field.
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Our purpose, in this example, is to prove Gauss’s law. 

First, suppose that S does not enclose the charge at the origin. Then the divergence 

theorem gives 

[ana | v Edy = [ ody =o. (56) 
& v v 

where V is the volume enclosed by S, because [according to (32) in Section 16.7, with 
Mag pP? v” = EB, “vu,” = q/(4mep*), and “vg” = “ve” = 0] 

1 O07 4q VB=5 5, (qa) t9+0=0 (57) 

  

However, we cannot claim that (56) holds if S encloses the origin because the E field fails 

to satisfy the conditions of the divergence theorem. Specifically, E is undefined at the 

origin because the 1/p” is 1/0 there. Similarly for the first-order partial derivatives of the 

x,y, z components of 

  

  

q l _ 4 1 vi+yj+ zk 

dre p? ? dre w2 + y? +2? /g? py? $22’ 

with respect to x, y, z, so Eis not C? in V, as required by the divergence theorem. 

To overcome this difficulty let us cut the singular point out, so we can stay away from 

it. That is, let us apply the divergence theorem not to V, but to V’, say, which is the same 

as V but with a sphere of radius po cut out at the origin (Fig. 11). Then the surface of y' 

consists of the two parts S and So; note that the outward (i.e., out of VY’) unit normal f on 

So is —@,. Now, the E field is C' within V’ (because the origin has been cut out), so the 

divergence theorem gives 

vinav= [awads [ n-EdA (58) 
v s So 

  

or, since V-E = 0 within V’, 

[a-naa=- | n-EdA 
Ss So 

--| _a.t 1, 
~ Js, ° 4ie p? p 

q q 2 q 
= = dA =? 4 ey ~y 

Are pe [ Arepi, "Po 

Figure 11. The region V’. 

  

  

as was to be shown. @ 

Closure. The divergence theorem, Theorem 1[6.8.1, tells us that an integral over a 

volume V can be reduced to an integration over the boundary of V, its surface S, 

provided that its integrand is a divergence (and provided that the surface S and the 

vector field v are sufficiently “decent”). We note that (1) is actually a generalization 

of the familiar result, from the integral calculus, that the integral fp F(a) dx can
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be reduced to an evaluation at the boundary of the x interval, its endpoints x = a 

and « = 6, provided that f(x) is a derivative, for then 

‘b em 

| F'(x) dx = F(x) ; ; (59) 

Whereas (59) reduces the calculation from one dimension (the line segment on 
the x axis) to none (the two endpoints), the divergence theorem (1) reduces the 
calculation from three dimensions (the region /) to two (its surface S). Of course 
we don't have to use (1) in that direction. In Example 2 and 3, for example, we 

used it to convert surface integrals to volume integrals. 
Our examples are of two types. One type involves the verification of (1) for a 

particular case, that is, for a particular field v and region Y, the purpose being to 
foster understanding of the (1) through having to face up to obtaining expressions 
for V-v, dV, n, and dA, and having to evaluate the two integrals. The other type 
involves the derivation of important results in fluid mechanics, heat conduction, 
and electrostatics. We will follow that same pattern in the next section as well. 

In Examples 2 and 3 we derive two of the most important partial differential 
equations of mathematical physics, the heat equation and the Laplace equation. In 
Chapters 18~20 we return to these PDE’s and learn how to solve them. Thus, 

Chapters 13-16 lay much of the groundwork for our study of PDE’s in Chapters 

18-20. 

  

EXERCISES 16.8 
  

1. In each case, verify the divergence theorem by working out (1) Vv = wy sin zi, VY: same as in part (h) 

ty V-vdv and fs n-v dA and showing that the results are (j) v = (3ue* ~ 2yz Mh V: same as in part (h) 

equal. (k)v = 6i+ Qn) + 2° 2yzk, VY: the pentahedron with vertices 

. at (0,0,0), (1, 0,0), (0, 2,0), (1, 2,0), (0,0, 5), (0, 2, 5) 

(a)v = 2i-j+4k. VY: the rectangular prism 0 <2 <1, ()v = 2°k, V: the tetrahedron bounded by the planes « = 0, 

  

Osys30c252 y= 0,2 = 0,20 y+ 22=2 
(b)v= vi + 2yj, V: the cube [x] < 1, ly) <1. jz) <1 (m)v = 222i, V: same as in part (1) 

(c) v = yi- 2) +ak. V: the rectangular prism [2] < 2, (n)v = a*si— 22(x? + 1)j+ zk, V: same as in part (1) 

Qsysl0<e<l (0) v = 22k, V: the tetrahedron bounded by the planes 
(d)v = j+erck, Vi thecubeO <a <10<y<l r=0y=02=1le=a4+y 

: <z2<l 
(e) v= 3x y2j, V2 the rectangular prism 0 < a < 4, 2. Let S be a piecewise smooth orientable closed surface en- 

O<y< 1, 0 ‘eed closing a region of volume V:-Show that 

(f) v= x?i— 22j, V: the rectangular prism || < 2.|y| <2, (a) fj dA = 0 HINT: Show that [, A-adA = 0 for every 
  
zi < 3, with the cubical cavily Q<a< 1, 0 < y < i, constant vector a. 

O<c2<1_ (b) fof (ci) dA = V 

2 v= rue v: the pentahedron with vertices at (0,0, 0), (c) [5a (ai +yj)dA =2V 

(1,0,0), (0,2,0), (0,0, 1), (10,1), 12,0) (d) [5 tt (wi + yj + ck) dA = 3V 
(h) v = y?ck, V: the pentahedron with vertices at (0,0, 0), . 
(2,0,0), (0,0, 3). (2,0, 3), (0, 4,3), (2.4, 3) 3. Verify Green’s first identity (44) in each case.
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(a)u = 2a," = = , ¥V: the rectangular prism 0 < av < 2, 

O<y <3, 0 <a 

(b)u = l,v = 2 Dy yo +27, V: the cube 0 < 2 <I, 

O<sysLOsezsl 
(c)us lv =a*+y?4+27, V: the pentahedron with vertices 

at (0,0, 0), (1,0,0), (0, 1,0), (0,0, 1), (1,9, 1), (1, 1,0) 

4. Verify the two-dimensional divergence theorem (47) in each 

case. 

(a)v = vi + Yh R.: the rectangleO<a<aO<y<b 

(b)v = vyi, R.: the rectangleO <a <2,0<y<l 

(c) v = zy"i, ‘R: the triangle with vertices at (0,0), (2,0), 

(2,1) 
(d) v = xyj, FR: the triangle with vertices at (0,0), (2,0), 

(0,1) 
5, In each case evaluate [ = fo fo fo f dx dy dz directly. 

Then determine a vector field v such that V-v = f, convert 

I to a surface integral by using the divergence theorem, and 

evaluate the surface integral. 

(a) f = 2° yz (b) f = az? — 2y 

(c) f=4 (d)fsat+yrz 
6. Derive the following results from results in this section. 

@ [ viuav = [ OM A 
5 On 

) 
ww | [ivall? +uV? u] jav = [usta 

n 

CAUTION: Most authors write (Wu)? for Vu- Vu, in place 

of our | Vull’. 

7. Just as (47) is the two-dimensional version of (1), work out 

the two-dimensional versions of Green’s 

(a) first identity 

8. (Alternative proof of divergence thearem) An alternative ap- 

proach to the proof of the divergence theorem (1) is to express 

the volume integral as an iterated integral, and to carry out 

one integration. To illustrate the procedure, consider the sim- 

pler nvo-dimensional case (47), and suppose that R is convex 

in the a direction, i.e., each crosshatched sliver running from 

xi (y) to tr(y) (see sketch) lies entirely within R. Now 

v vy dA _ [ Or + Oey dx dy 

JR Ox Oy ° 

Ov; 
= i -[F aa - dee dy + a Y de dy. 

The first term becomes 

RO By 
ix d: 

w= [ [ (y) ae wee 

(b) second identity 

    

           

H 
=
 Ug(ds cosa) — | Uz (ds cos f) 

left vright 

v,(i- A) ds -| U_(—i- fi) ds 
“right left 

(vi) ‘nds + | (uzi) ‘tids 
ight left 

lI 
lI 

a
o
 
=
 

r 

(vei) tds. I 

  

We now state the problem: assuming that FR is convex in the y 

direction as well, show that 

1 du, A : . 

[ Te dx dy = [oi -nds, (8.2) 

and hence infer (47) from (8.1) and (8.2). NOTE: Extension to 

nonconvex regions is not difficult but will not be considered. 

  

    
  

9. Besides the divergence theorem, fs n-vdA = 

tv V - + dV, one may derive the “companion” results 

| nudaA = | VudV (9.1) 
JS Jv 

and 

       



  

  

[ axcas a | V x vdv. (9.2) 
JS Jy 

(a) Derive (9.1). HINT: Write 

| nudA= 
JS . 

= if (aij dA +j [civ dA 
Ss Js 

+k | (a-k)udA 
JS 

    
  

[ [(a-i)i+ (A-j)j+ (@-k)kjudA 

= i/ A (ui) dA +i/ n- (uj) dA 
s . & 

+k | - (uk) dA, 
Ss 

apply the divergence theorem to each integral, and combine 
the results into one integral. 

(b) Derive (9.2). HINT: Essentially the same hint as in part (a). 

Write 

. . i j k 

[axvaas | a-i a-j a-k |dA 
JS Soy, Uy Vs 

=i | h-(v.j- uyk) dA + etc., 
Js 

apply the divergence theorem to each integral, and so on. 

(c) Deduce, from equation (9.1), that f; dA = 0 for ey- 
ery S. Verify this result, by direct integration, for the case 

where S is the surface of the rectangular prism 0 < x < a, 

O<y<b,0 <2 < cc. NOTE: Just as the global statement 

{58-vdA = f\, V-v dV corresponds to the local statement 

_ fgh-vdA 
V-v = lim 

YO Vv 

(V = the volume enclosed by S), (9.1) and (9.2)correspond to 
the local statements 

Vu-= lim JsnudA (9.3) 
p30 Vv 

and 

_ feax vd, 
Vxv= in “=——— (9.4) 

v0 Vv 

respectively. 

10. (Continuity equation) Let S; be a completely permeable 

plane surface within a steady fluid flow field. Let the velocity 
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field be v(a,y,z), and let the mass density field be a(x,y, 2). 
Then the set of streamlines that pass through the set points on 
the edge of S; form a “streamtube,” as sketched in the accom- 
panying figure. Let Sy be another plane cross section of the 
streamtube an arbitrary distance downstream of S;, and let the 
areas of S|, Sz be A,, Ae, respectively. Recalling the conti- 
nuity equation (29), namely V- (ov) = 0 (since the field is 
steady, so that Oo /Ot = 0), integrate this equation over a con- 
trol volume V which is bounded by S;, Sz, and the streamtube 
surface Sy between S, and Sg, apply the divergence theorem, 
and thus show that 

/ n-(ov)dA+ | n-(ov)dA = 0. (10.1) 
Si So 

  

If o and v are constant over S, and Sy, and S,, Sy are normal 

to the flow, show that (10.1) reduces to the simpler form 

aA\V, = oo AoVs, (10.2) 

often given in fluid mechanics texts. where jv] = Vi on 
S, and |/v|| = Vo on Sg, 

11. (Archimedes’s principle) Consider a solid body immersed 

in a fluid of uniform mass density o. Archimedes’s principle 

states that the net pressure force on the body is upward (i.c., 

it is a buoyant force) and equal to the weight of the fluid dis- 

placed by the body. Derive Archimedes’s principle using the 

methods of this section. HINT: If we measure z upwards from 

the surface of the fluid, then the static pressure distribution in 

the fluid is p(x, y,2) = —ogz. Write the net force F on the 

submerged body as an integral over its surface S, and then 

transform that to a volume integral using (9.1) in Exercise 9, 

12. Verify the divergence theorem. 

(a) v = 3r7é, — rég + 26., V: the cylinder r < 4, 
O<@< 270K 2 <5 

(b) v = 2é,, V: the cylinder r < 2,0 < 6 < 27, 

—3<2<6 
(c)v =rz"@g, V: the half-cylinderr < 4, 7/2 <@ < 37/2,
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0O<z2<3 ~O<¢6< 20 

(d) v = 27@, + 6@,, V: the hollow cylinder 2 <r < 3, (h)v = p*singsinféy, V: the region 2 < p < 3, 

0<@ < 2, Lore <5 O0<@<7/2,0<60< 9/2 

2é 6 x<t 1 ‘ Qs Ban 
(e)v = .. é., V: the coner < 22,050 <27,0S253 (i) v = ~@, + pres _ po sin” @@g, V: the hollow sphere 
(f)v =p eo, Y: the sphere p < a 

2 ps5 (g) v = p'@p, V: the hemisphere p < a,0 < @ < 1/2, 

  

  

Figure 1. Work. 

16.9 Stokes’s Therem 

Following Newton’s death in 1727 the mathematical scene in the British Isles was 

relatively quiet for almost 100 years. There then appeared a number of exceptional 

mathematical physicists, beginning with George Green (1793-1841) and William R. 

Hamilton (1805-1865), and followed by the “Cambridge school,” which included 

Sir G. Gabriel Stokes (1819-1903), Lord Kelvin (Sir William Thomson, 1824— 

1907), James Clerk Maxwell (1831-1879), and Lord Rayleigh (John William Strutt, 

1842-1919), 

In this section we examine two important and closely related theorems, one 

due to Stokes and one due to Green. Both of these theorems involve line integrals 

so we begin by reviewing and extending our study of line integrals, which began in 

Section 15.2. 

16.9.1. Line integrals. We met the line integral te f ds and showed how to evalu- 

ate it by parametrizing the curve C according tow = e(T), y= y(T), 2 = 2(T ) for 

a<7 <0. Specifically, 

b 

| fds = | Holt), y(n), 2(7)) (Rt) Bn) dr, (1) 
Cc a 

where R(r) = x(r)i+ y(r)j + 2(r)k. That is, by parametrizing we reduce the 

line integral Ie f ds onacurve C to an “ordinary” integral of the form iM F(t) dr 

on a segment of a7 axis. Actually, in engineering science applications it is more 

common to meet line integrals in a different form, namely, in the form 

| v- dR, (2) 
JC 

where v is a given vector field defined in some region containing C, and R is the 

position vector from some reference point, or origin, to points on the curve C. For 

example, if a particle is subjected to a force F as it moves along a curve C, then the 

work dW done by F, as the particle moves an infinitesimal distance along C, say 

from A to B (Fig. 1) ts 

dW =F-AB=F-dR. (3) 

 



    

Evidently, then, the net work done in traversing the entire curve C is 

W = i F-dR. (4) 
JC 

For instance, F(x, y,2) might be a gravitational force field induced by point or 
distributed systems of mass. Since the curve C, in Fig. 1, is actually traversed by 

the particle, we sometimes call it a path instead of a curve. 

That the two forms [/ c J ds and Ic v- dR are equivalent can be seen by ex- 

pressing . mR . 

[van = |v. as= [pas (5) 
Je Je ds Je 

where f is v-dR/ds.* However, there is one difference to keep in mind. In 
Ie vy -dR the curve C is said to be oriented; that is, we have a specific direction 

of traversal in mind, and we denote it graphically by an arrowhead, as we did in 
Fig. 1. In that illustration, observe that the work done in moving from A to B, 
dW =F. AB, is the negative of the work done if instead we moved from B to A, 

dW = F-BA, because BA = —AB. Thus, if we denote an oriented curve as C, 

and the same curve but oppositely oriented as “—C,” then 

| vedR=~ [ var. (6) 
-—C Cc 

In contrast, the curve C in the form Te f ds is not oriented because ds is arc length, 

which is always positive. That claim is consistent with (1) because we see in (1) that 

ds = \/R'(7)-R’(7) dr, where the positive square root is understood, and where 
each dr is positive because b > a. Thus, in te f ds the curve C is not oriented, and 

in fo v-dR itis. 
Just as we evaluate [., f ds by parametrizing C as in (1), we evaluate [, v-dR 

in the same manner. We begin by parametrizing C by 

Tia->b, (7) .
 i 

ce
 

o
s
 

+
 

a
e
 

& 

where we write 7: a — rather thana < 7 < 6 because the value « (at the initial 

point on C) can be less than or greater than the value b (at the terminal point on C) 
because of the orientation of C. Then, 

i v-dR= i (vpi + yd + uk) - (dei + dyj + dzk) 
JC JC 

= i Ue(x,Yy, 2) du + vy (x, y, 2) dy + u.(a, y, z) dz 
c 

  

*We can regard the position vector Ras a function of the arc length s along C by parametrizing C 

by = a(s),y = y(s), 2 = 2(s) since then R(x(s), y(s), 2(s)) is a function of s. 

16.9. Stokes’s Therem sil
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° dix dt 

= f° [veteran E+ ogetry aloe) F 

+0,(2(7), y(t), 2(T)) = dr. (8) 

EXAMPLE 1. Evaluate te v- dR, where v = vz2i—3j + 2yk, and where C is the bent 

line from A = (2,1,3) to B = (1,2,1) to D = (3,4,5), shown schematically in Fig. 2. 

First, break C into the two parts C, and C2, and write 

[v= vedR+ | v- dR, 
Cc JC Ca 

-| 2" de ~3dy + 2yde + | vz’ dx — 3dy + 2ydz, (9) 
Cy Co 

  

_-» Which step is permissible for Je v- dR, just as it is for te f ds {recall equations (12) in 

Section 15.2]. Next, use (7) in Section 15.2 to parametrize C, and Co: 

Xx Cy: esa2+(l-2)r = 2-7, alr) = —l 

=14+(2-1)r=1+r7, yi(7) = 1 (10a) 

=34+(1—-3)r = 3-27, 2'(r) = -2 

<
 

Figure 2. The curve C. 

Ry 

and 
Co: e=1+(3-l1)r = 1427, al(r) =2 

= 24+ (4—2)r = 2+ 2r, y(7) =2 (10b) 

=14+(5-l)r=1+4r, v(7)=4 

.<
 

vy
 

as 7 goes from 0 to I (i.e, 7: 0 - 1). Finally, expressing da, dy, dz in (9) as x'(r)dr, 

y' (7) dr, 2’(r) dr, respectively, and using (10), we have 

. al 

[vu [(2 ~ r)(3 ~27)°(-1) ~ 3(1) + 21 + 7)(—2)] dr 
Cc 0 

a 
+/ [(1 + 2r)(1 + 4r)?(2) — 3(2) + 2(2 + 27) (4)] dr 

0 
97 202 307 

_ = _ & Ll 
6 3 6 (1) 

Recall from Section 15.2 that a curve is said to be closed if its endpoints coin- 

cide. If C is closed, then we usually write 

pvedR (12) 

JC 

in place of {, v-dR. One might think that we will always obtain fav dR = 0 

because the endpoints of C coincide, just as it is true that [” f(a) da = 0 for an 

  

 



  

integration on the x axis, but that is not necessarily the case. For instance, suppose 

we close the contour C in Example | by adding a straight line segment from D to 
299 ©   

  

A (Fig. 2). Call that segment Cy. We find (Exercise 1) that Je, v- dR = —== so 

‘ 97 202 259 | 
pv-dR = v- dR =-—~+-— > , = &, (13) 

Ie ABDA 6 3 6 

which is not zero. Of course, a line integral around a closed path may be zero, but 

it need not. 

Two examples of line integrals around closed contours are as follows. First, 

Ampere's law, 

fp HaR =i, (14) 
Cc 

states that the line integral of the magnetic field intensity H (amperes/meter) around 

a closed curve C equals the current J (amperes) flowing through C. That is, think 

of C as made of a stiff wire, dipped in soap water so that there is a soap film S with 

C as its perimeter. Then J is the current crossing the surface S. Second, in fluid 

mechanics the line integral 

f v-dR=fT (15) 
JC 

defines the circulation T (meters?/second) of the fluid velocity field v around the 

contour C; T is important in aerodynamics because of its prominent role in the 

Kutta~Joukowski formula, 
L=olT, (16) 

for the lift L per unit span of an airfoil (i.e., a wing) due to a fluid flow of velocity U 

and density o. In (16), T is the circulation around any closed clockwise contour that 

encloses the airfoil such as the ellipse shown in Fig. 3. That is, consider a simple 

airfoil consisting of a flat plate at incidence a, normal to the paper, a cross section 

of which is shown in Fig. 3. Rather than the plate moving leftward with flight speed 

U, it is equivalent to consider the plate as stationary in a rightward flow of speed U, 

as in a wind tunnel. If @ = 0 the streamlines are simply horizontal straight lines, 

but as @ is increased the streamlines distort more and more (somewhat as the semi- 

circular bump causes a distortion of the otherwise-horizontal streamlines in Fig. 4 

of Section 16.2). Although the streamline pattern is not shown here, in Fig. 3, it 

could be found by the method of conformal mapping.* In any case, the result of 

such calculation is that the velocities above the plate are larger than those below the 

plate, as sketched at points A and B in the figure. Thus, for dR’s of equal length, 

the v- dR contribution to [ from point A is positive and larger than the negative 

contribution from point B so that a positive circulation [ is established around C 

by virtue of the inclination a of the plate. According to (16), that circulation gives 

rise to a lift force. Even if you haven't studied fluid mechanics or aerodynamics 

you may have studied the Bernoulli equation (relating pressure and velocity) in a 
  

"In fact. that solution is outlined, for the case where a = 90°, in Exercise 6 in Section 23.6, and 

it could be modified for a 4 90°. 
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Figure 3. Lift on an airfoil.
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Figure 4. S,C, and fi in (18). 

physics course. Since Bernoulli’s equation states that high velocity gives low pres- 

sure and low velocity gives high pressure, it follows ~ from the fact that the velocity 

is greater above the plate than below it — that the pressure is lower above the plate 

than below it, and that pressure difference establishes the lift 0. 

16.9.2. Stokes’s theorem. Recall from the Closure in Section 16.8 that the funda- 

mental theorem of the integral calculus, 

wb “b 

/ F'(z)dx= F(x)|  , (17) 
Ja cma, 

gives the integral along a (one-dimensional) line segment as an evaluation at the 

(zero-dimensional) boundary of that line, namely, its endpoints, and that the Gauss 

divergence theorem gives the integral over a (three-dimensional) region as an in- 

tegration over the (two-dimensional) boundary of that region, namely, its surface. 

Filling the gap between those two results, Stokes’s theorem gives the integral over a 

two-dimensional open surface S in terms of a line integral around its one-dimensional 

edge curve C. Here we distinguish a closed surface, which encloses a volume (as 

does the surface S in the divergence theorem), from an open surface, which does 

not. For instance, the surface of a basketball is closed and the surface defined by a 

potato chip is open. 

  

THEOREM 16.9.1 Stokes’s Theorem 

Let v be a C! vector field defined in a region R in 3-space. Let S be an open 

piecewise smooth orientable surface within , and let the edge of S be a piecewise 

smooth simple closed curve C. Then 

  

[wv xvia= v- dR, (18) 
S c     
  

where fi is a unit normal to S, the orientation of C and the direction of n being in 

accordance with the right-hand rule (Fig. 4). 
  

Before discussing the proof of Stokes’s theorem we need to explain our state- 

ment in the theorem about the right-hand rule. First, observe that we refrain from 

calling A the “outward” or “inward” normal to S. If S were a closed surface, such 

as the surface of a sphere or cube, it would make sense to speak of an outward 

(or inward) normal to S since S would “inherit” an orientation from the volume V 

that it enclosed: normal vectors on S directed into V would be called inward, and 

those directed out of Y would be called outward. But in Stokes’s theorem S is not 

a closed surface so the terms “outward” and “inward” do not apply. 

The idea, then, is that nm, in (18), can be either of the two (oppositely directed) 

fields of normals on S. Similarly, C can be oriented in either of two possible di- 

rections. Selecting one of those two orientations for C, arbitrarily, we then choose 

 



  

between the two possible normals so that and C are in accordance with the right- 

hand rule. That is, if we consider a small contour C’, part of which coincides with 

(and is oriented in the same way as) the boundary curve C, then applying the right- 
hand rule to C’ yields a normal nf (Fig. 4). We then continue this normal over the 

rest of S. For example, if the surface S is a flat surface in the x, y plane, then we 

can have n = +k and C counterclockwise, or a = —k and C clockwise. 

Proof: Let us limit our proof of (18) to the case where S is flat, in which case S 
can be assumed to lie in the plane of the paper as in Fig. 5; extension from the 
plane case to the general case will be left for the exercises. 

Recall the two-dimensional divergence theorem given by (47) in Section 16.8.2. 
In the present case the region “7R” in (47) is S, and in place of “v" and “n” it will 

be convenient to use the letters V and N. Thus, 

[|v vaa= [Nvas, (19) 
JSS JC 

Writing out the integrands gives 

  
OV, OV, ; 

Oe ej dA= | (NeVe + NyVy) ds, 20 
[ ( Ov ~ Oy ) ( [ (NiVe + y Vy) ds (20) 

where V = Vui+ Vid and N = N,i+ Nyj (Fig. 5). If we define a new vector 

V = vpi+ vyj = —V,i+ V2j, then (20) becomes 

(Oty Ove | . 
— - dA = Nevy ~ Nyvz) ds 

L a Oy . | ety ~ Nyta) ds 

= | (vei + vj) (—Nyi + N2j) ds 

  

JC 

= | v-Pas, (21) 
JC 

where T = —N,i-+ Nj is the unit counterclockwise tangent vector to C. Observe 

that the integrand on the left is the z component of V x v, namely, k-V x v, and 

that T ds = dR along C. Finally, k is identical to the n in Stokes’s theorem so (21) 

becomes . . 

i n-VxvdAz= | v- dR, 
JS JC 

which was to be proved. 

Here S was flat and v was only a two-dimensional field. A proof for the 
general-case, where S need not be flat and v is three-dimensional, is outlined in the 

eXercises. B 

How can we understand Stokes’s theorem from a physical point of view? For 
definiteness, think of v as a fluid velocity field (which we can do even if it is not). 

16.9. 

  

Stokes’s Therem 

Figure 5. Plane region. 
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Figure 6. Shear flow. 

Figure 7. Example 3. 

Recall, from our discussion of fluid mechanics and the curl, that V x v is twice 

the fluid particle angular velocity and is known as the vorticity and denoted as 

Q. Thus, fsa: V x vdA = fn OQdA is the vorticity flux across S. Purther- 

more, to v- dR is the circulation around C. Thus, in fluid mechanics terminology, 

Stokes’s theorem (18) states that the circulation T of the flow field v, around C, 

equals the vorticity flux through S.* 

EXAMPLE 2. Vorticity Flux. Consider the plane flow field v = «yi, where « is some 

positive constant. The flow, called a shear flow, is shown in Fig. 6. Let & be a generic 

region in the x, y plane, and let the edge curve be clockwise, say, so that n = = —k. Then 

= V xv = —kk is itself a “flow,” a uniform flow, of magnitude «, directed into the 

vaper Thus, the vorticity flux through S is simply « times the area A of S, and that is 

exactly what the left-hand side of (18) gives, 

[avxvaa= [amaa= | -(-wlyad =A. a 
és Ss sé 

EXAMPLE 3. Verification of Stokes's Theorem. Verify Stokes’s theorem for the case 

where v = rej, and where & is the surface z = 4 — y?, cut off by the planes + = 0, z = 0, 

and y = x, with C oriented as shown in Fig. 7; we have broken C into the three parts, 

C1,C2,C3. Let us work out the left-hand side of (18) first. Using the gradient method to 

find m [equation (20) in Section 16.8], and the formula 

dA = 

  

1+ f2+ f?dady (22) 

for dA [equation (11) in Section 16.8, where S is the surface = = f(t,y) =4-— y? in this 

case], we have 

vue! a/ax ajay o/0: = —ri+ zk, 
0 LE 0 

Vie+y") 2yj +k 

IVER Vaya 
n-Vxve : 

dA = V/1- 24 (-2y)?drdy= V1 ‘T+ dy? de dy (23) 

  

so 

lI | n-Vxvda 
Ss 

: | 
ae | Vi + dy? dx dy 

[ [ Tig + L, pend —y? 

[ [ (4-y?)dady = 4, (24) 
JO 0 

* Actually, (18) is not “Stokes’s theorem” it is only the formula within Stokes’s theorem, but for 

brevity it is convenient to refer to it as Stokes’s theorem. 

ll 

  

 



        

where the w,y integration limits correspond to the triangular “shadow” of S down onto 

the x,y plane. Of course, the integration ts actually on S nonethless, it has simply been 

“referred” to the x, y plane by virtue of the relation (22) between dA on S and da dy in the 

x,y plane. 

Turning to the right-hand side of (18), we have 

  

p v-dR= vzj- (dai + dyj + dzk) = i vez dy 
: Jc Jc JC 

= f az dy +f ve dy + ; vz dy. (25) 
JCy Co JC3 

The first integral is zero because z = 0 on Ci, and the second is zero because 7 = Oon Ca. 

To evaluate the Cy integral, we can parametrize C3 as follows. Let = 7, say. Then y = 7 

because y = © on Cy, and z = 4 — r? because z = 4 — y? on C3. Finally, 7 goes from 0 to 

2 because x = 7 and xv goes from 0 to 2 as we move along Cy from the initial point (0, 0, 4) 

to the final point (2, 2,0). Thus, (25) gives 

2 
fv-ar=o+0+ | (4-7?) dr =4, (26) 

c JO 

in agreement with (24), @ 

EXAMPLE 4. Ampére’s Law. As a physical application of Stokes’s theorem, let us 
derive one of the celebrated Maxweil’s equations of electromagnetic field theory. We con- 

sider a region of 3-space in which there 1s a magnetic field with magnetic field intensity H 

(amperes/meter), a charge density field o (coulombs/meter®), and a velocity field v (me- 

ters/second). In general. the scalar field o and the vector fields H and v will vary with 

x,y, 2, and the time ¢, but any dependence on ¢ will not be relevant here. 

We begin with Ampere’s law, 

f H-dR =I, (27) 
Cc 

which states that the line integral of the magnetic field intensity H around any closed curve 

C equals the current / (amperes) passing through any control surface S (i.e., a mathematical 

surface. not a physical surface) having C as its boundary. (Note that when we say “any” 

surface or “any” curve C it is understood that they be suitably decent, namely, that they 

satisfy the conditions on S and C in Stokes’s theorem.) 

Since J is the flux of charge across S we can express it as 

[= [ on-vaa = [ a (ovyaa, (28) 
Js JS 

where n is the unit normal to S in whichever of the two directions is chosen as the direction 

16.9. Stokes’s Therem 

in which / is positive. As a partial check on (28), note that its units, (coulombs/m* \mfsec)(m?), 

do indeed give coulombs/sec. 
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Figure 8, Choosing S. 

  

Figure 9. Stokes’s theorem 

for plane case. 

Using Stokes’s theorem to express 

p H. dR -/ nV x AdA, (29) 
Jc S 

(27)-(29) give 

| n-(VxH—-J)dA=0, (30) 
S 

where it is traditional to combine the product ov as a single field J = ov, known as the 

current density. Finally, since (30) holds for any surface S, it follows that V x H — J must 

be identically zero in the region so 

VxHe=J, Gl) 

which is one of Maxwell’s equations. 

Why does it follow from (30) that V x Ho ~ J = 0? Can’t the integral be zero by 

virtue of cancellation, without the integrand being identically zero? For a specific S, yes, 

but not for all possible choices of S. Por suppose that V x H — J is nonzero at some point 

P, let it be nonzero vector a at P. Then let us choose S to be a circular disk with its center 

at P, and let its normal n be aligned with a (Fig. 8). Of course V x H-J = aonly at P; 

it varies on S. But if it is continuous, which we assume. then it must be possible to choose 

the radius ¢ of S small enough so that (V x H — J). > 0 everywhere on S, in which 

case the integral in (30) is positive rather than zero. This contradiction of (30) shows that 

it must not be possible for V x H — J to be nonzero anywhere in the field. 

COMMENT |. The logic used to infer (31) from (30) is very similar to that used to infer 

(28) from (27) and also (38) from (37) in Section 16.8. We suggest that you review those 

two examples in Section 16.8 

COMMENT 2. Understand that (31) is a field equation, specifically a partial differential 

equation relating the vector fields H and J at each point in the field. [t happens to be a 

vector equation or, equivalently, the three scalar PDE’s 

OH, OH 

  

  

at = J,, 
Oy Oz . 

OH, OH, 

ie Oe ne (G2) 
OH, _ OH, 

Ox dy 

whereas the field equations (28) and (38) in Section 16.8 were single scalar PDE’s. @ 

16.9.3. Green’s theorem. Let us apply Stokes’s theorem to the plane case where 

v= Pla, y)i + O(a, yd. and where S is a flat surface in the x, y plane, and let C 

be counterclockwise (Fig. 9). Then n = +k and Vx v= (%2 _ a) k so we 

have the following result, which is known as Green’s theorem.



  

  

THEOREM 16.9.2, Green's Theorem 
Leta C! vector field v = P(2, y)i + Q(x, y)j be defined in a region R in 2-space. 
Let S be a region within 7, and let the edge of S be a piecewise smooth simple 
closed curve C, oriented counterclockwise. Then 

| 0Q _ oP dA = ; Pdx+Qdy. (33) 
Js \ On Oy Je 

  

      
  

Since Green’s theorem is really but a special case of Stokes’s theorem, let 
us limit our discussion of it to an illustrative example, with additional material 

reserved for the exercises. 

EXAMPLE 5. Verify (33) for the case where P(z,y) = ry®, and Q(2,y) = 2? — y’, 
and where S is as shown in Fig. 10. Then 

"(0Q OP El 
dA = 2a ~ 3 led [(2- =) a ~ 3xy") de dy 

=f (22; y\[ 

Jo z=y/2 

=f Sr Eas ty) a =| su tay jay 

1 La, 3 ° 
= — 5! —— 

ya 50 ~ ay a0! 

Breaking C into C, + Co + C3, we have 

  

dy 

bo
l 

w 

  

4 , 

  

t Pde+Qdy= [ ry? dx + (a? — y?) dy + / ay? dx + (a? — y*) dy 
vc JC, 2 

+ / ay da + (a? — y") dy 
C3 

= i (x? — y”) dy +f ay? dx + (2? — y*) dy (35) 
JC, C3 

since y = OonC,, dy = OonC,, and dz = 0 on Cy. Finally, since x = 1 on Co, and 

y = 22 on C3, (35) gives 

, 2 0 2 5 4 ; 

p Pdr+Qdy = | (= )dy+ | [8x1 + (2? — da*)(2)| de = -—, (36) 
Je Jo v1 bo 

in agreement with (34). 

COMMENT. Why didn’t we parametrize Cy and C3 to evaluate the final integrals in (35)? 

Actually, we did; in Co we used y as the parameter for C2 (.e., we used y == 7 but didn’t 

16.9. Stokes’s Therem 
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Figure 10. The region S.
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Figure (1. S andC for 

Example 6. 

  

  

bother changing the name from y to 7), and we used x as the parameter for Cy. If you 

preter, use 7 explicitly. @f 

16.9.4. Non-Cartesian coordinates. (Optional) Let us illustrate the occurrence of 

non-Cartesian coordinates, in Stokes’s theorem, with two examples. 

EXAMPLE 6. Cylindrical Coordinates. Verify Stokes’s theorem for the case where 

v= —r’ cos dé, + r°@9 + sin dé., (37) 

where S is as shown in Fig. |! (essentially, a quarter of a soup can but with no bottom), 

and where C is oriented as shown tn the figure. 

Let us do the surface integral first. From the cylindrical coordinate expression for 

V x vin Section 16.7, 

Vv xv =coséé, — sindéy + (3r —rsind)e.. (38) 

On the curved part of the surface M = —é, (in accordance with the orientation of C) and 

dA = rd@ dz (for a constant-r surface), and on the flat top nh = —e, and dA = rdrdé 

(for a constant-z surface) so 

fw VxvdA= [fc — 
0 ° 

[ fo -Vxvrdr do} 
0 tems 

nm f2  p2 ; 

= ah i * cos 6 dd dz -| | (3r° — r? sin @) dr dé 
o Jo o 6/0 

=— — dq. (39) 

Turning to the line integral, we obtain 

; v- dR= pir cos 0é@, + 77@9 + rsin dé.) -(dré, +r d@@y + dzé,) 
c , 

= —r’cosO dr +r? dd +rsind dz 
c 

0 0 3 

rsin@ dz + r? + rsin@ dz 
J3 r=2,d=7/2 Jn f2 r=Q,2=0 0 

i       

    

r=2,0=0 

OO 2 ; 

+ / (—r? cos 6) dr + i (—r* cos b) dr) 
Jp O=0.2=3 fy Qeen/2,2=3 

8 10 
=-6-de +045 405-3 = dr, (40) 

in agreement with (39). Following the third equality in (40), the five integrals correspond 

to Cy,...,Cs, respectively. On C,, for instance. dr and dQ are zero because r and @ are 

  

yee



  

constant on Cy so we omitted the ~r cos @ dr +r? dO part of the integrand. @ 

EXAMPLE 7. Spherical Coordinates. Verify Stokes’s theorem for the case where 

a On 

V = p@, — peg, (41) 

where S is as shown in Fig. 12 (a quarter of a cone, of semi-angle 7/6), and where C is 

oriented as shown in the figure. 

From the spherical coordinate expression for V x v in Section (6.7, 

V xv = ~pcot dé, + 3pey. (42) 

Further, n = éy and dA = p|sin ¢|dpdé since S is a constant-@ surface so 

. sm f2 p22 

| n-VxvdA= i | €y-(—pcot dé, + 3pé4) (p| sin | dp dé) 
s JO p=n/6 

  

  

  

0 
3 on f2 2 

== | / p’ dp dO = 2n. (43) 
2 Jo 0 

Next, 

gy ‘dR= f (pp — p*éo) -(dp&p + pdbdey + pl sin @| d0ep) 
Cc c 

= p pdp — p* sin @dé 
Jc 

2 “0 “0 

= aa + —p* sin b) dO + | 0 | 
| pep p=nr/6,0=n/2 [. f 9) p=2,d=7/6 /2 pap d=nr (6.00 

=2+2n7 -2 = 27, (44) 

in agreement with (43), 

COMMENT. If the expressions used for dA and dR are not clear to you, see equation (18) 

in Section 15.6. If S were not a constant-coordinate surface we could not use (18) for 

dA, but we can always fall back on the d4 = VEG — F? dudv formula in Section 15.5. 

Similarly, in this example NW = @, is clear by inspection, but in more difficult cases we can 

always fall back on the gradient method [see equation (20) in section 16.8]. 9 

  

Closure. Having already studied line integrals in the form i f ds, we first discuss 

line integrals that occur in the form {, v- dR and note their equivalance, except for 
the fact that C is not oriented in the former but it is in the latter. The latter form is 
prominent in Stokes’s theorem, 

fay xvdA= pvedR, (45) 
JS JC 

which evaluates the surface integral on S in terms of an integral along its boundary 
curve C. Remember that S in (45) is an open surface, not a closed surface, and 
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Figure 12. S andC for 

Example 7. 
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that f is not the “outward” normal because inward and outward are not meaningful 
for an open surface. Rather, the field of f’s on S are related to the orientation of 

C according to the right-hand rule. Finally, we derive Green’s theorem (33), and 

observe that it is actually just a special case of Stokes’s theorem for the case where 

v = P(x, y)i + Q(a, y)j and where S is a flat surface in the «, y plane. 
Not only are the fundamental theorem of the integral calculus, Stokes’s the- 

orem, and the divergence theorem similar in expressing an integral over an n- 
dimensional region in terms of an evaluation over its (n — 1)-dimensional boundary, 
they can all be generalized to a single statement in n dimensions using an elegant 

theory known as the theory of differential forms.* 

  

EXERCISES 16.9 
  

1. Derive the result f,, v-dR = —#52, claimed in the para- “6° 

graph following Example t. 

2. Verify Stokes’s theorem. S is a plane surface with straight 

edges. The vertices and orientation of C are given. 

(a) v = eyi — (2x — y)k, C : (0,0,0) to (1, 1,0) to (1, 0,0) 
to (0,0, 0) 
(b}) v = cyt - yj + dnyzk, 

(1, 1,0) to (0, 1,0) 
(c) v = y2i— 27j — sin (2?y?z?)k, C : (0,0,0) to (2, 0,0) 
to (1, —1,0) to (0,0, 0) 
(d) v = eYit+ (x +2)j-—k, C : (—1,0,0) to (0,1,0) to 
(0, -1,0) to (—1, 0,0) 
(e) v = x? yzj, C: (0,1,0) to (1, 1,0) to (1,0, 1) to (0,0, 1) 
to (0, 1, 0) 
(f)v = zi+ yj+ck, C:(1,0,0) to (0, 1,0) to (—1,0,0) to 
(0, 1,0) to (1,0, 0) 
(g) v = 2y*zj, C : (0,0, 1) to (0,1, 2) to (1, 2, 0) to (0,0, 1) 

C : (0,1,0) to (1,0,0) to 

(h) v = xyzj, C : (0,—1,0) to (0,0,2) to (1,1,0) to 

(0, ~1,0) 
(i) v = a*zk, C : (1,—1,0) to (1,1,0) to (0,0,1) to 
(1,-1,0) 

3. Verify Stokes’s theorem. 

(a) v = 2°i+ azj. S is a plane surface with edge curve C as 

follows: straight line from (0,0, 1) to (0,1, 1), then a straight 
line from (0,1,1) to (1,1,0), then back to (0,0,1) along a 
curve parametrized by a = 7°, y = T, 2 = 1 — 7, where 
Ti130. . 

(b) v = 27i ~ raj. S is a plane surface with edge curve C 

as follows: straight line from (1, 2,0) to (1, 1,0), then along a 
curve parametrized by @ = T7,y = 7,2 =1- r*, where 

+ : 1 — 0, then along a curve parametrized by x = 7’, 

y = 27,2 =1-—77, wherer: 0 1. 
(c)v = yj — xy? zk. S is the surface of a unit cube with cor- 

ners at (0,0, 0), (1,0,0), (0, 1,0), (0,0, 1), (1,0, 1), (1, 1,0), 
(0,1, 1), (1,1, 1), excluding the face « = 1. Take A = k on 
thez=1face. . 
(d) v = ~yi+ cj + 3k. S is the surface z = 4-2? —7? 
between z = 0 and z = 4, and & = k at the point (0,0, 4) on 
S. 
(e) v = x*yj. S lies in the x,y plane and has edge curve 

C as follows: straight line from (0,0,0) to (0,—1,0), then a 

straight line from (0,—1,0) to (1,1,0), then along y = x* 
back to (0,0, 0). 
(v= xi—azk. S lies in the 2, z plane and has edge curve C 

as follows: z = z from (0,0,0) to (1,0, 1), then x = z? from 
(1, 0, 1) to (0, 0, 0). 

(g) v = yzk. S is the surface z = 1 — x? — y? cut off by the 
planes x = 0, y = 0, and z = 0, and C oriented as shown. 

  

x 

  

“For a readable introduction to differential forms, see Section 7.6 of J. E. Marsden and A. J. 

Tromba, Vector Calculus (San Fransisco: W. H. Freeman, 1976). 

 



  

(h) v = v22i ~ 3vyk. S is the surface x = 1 — 2? for 
-l<a<1,0<y <3, witht = —iat the point (1, 1,0) on 

S. . . 

(i) v = yzit+ cyk. S is the surface x = 2? for0 <a < I, 

0<y <2, withh = —iat the point (0, 1,0) on S. 

4, Remember that S in Stokes’s theorem is an open surface. 

Suppose we let S tend to a closed surface by letting C get 

very small (see the figure), until it shrinks to a point. Since C 

C 

shrinks to a point, #, v-dR — 0 and, by Stokes’s theorem, 

| n:-VxvdA-0 (4.1) 
JS 

as well. Show that the result (4.1) also follows from the 

divergence theorem. 

5. The following claim was put forth in an examination paper: 

“The line integral fe f(a.y) dz + g(x,y) dy, where C is the 

clockwise unit circle. is necessarily zero because on C we can 

express y as a function of x so that [taking (1,0) as the initial 

point of C and also the terminal point of C] 

. - 1 
f f(xy)dz = / fle, y(@)) dx = [ F(x)dzr = 0 

and, similarly, 

a() rf 

fox y) dy = | giety), y)dy = f Gly)dy = 0.” 
Cc JO J0 

Give a critical assessment of that claim. Is it true? False? Ex- 

plain your reasoning. 

6. Given the field F = y°i and the contour shown, the follow- 
ing 
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conflicting calculations were put forward in an exam paper: 

} F-dR= } y” dx 
Jc Jc 

sl 0 
= / [4 — (a ~2)") da + | Ody = = 

} J4 

but 

fr c 

un = | n:-VxEdA 
§ 

4 
[20 dA = 2 | y(y dx) 
Js 0 

2 | ~(v~2)*]dx= —. 

it 
Find, and correct, the error. 

7, (An observation about Stokes's theorem) Notice that the 

value of the line integral in Stokes’s theorem (18) is indepen- 

dent of the shape of the surface S. Thus, the surface integral 

in (18) must. similarly, be independent of the shape S. That 

is, it must be true that fo n- Vx vdd = fon V x vdd 
for any two surfaces S; and S» that share the same edge curve 

C. Provide an alternative argument as to why the two integrals 

(in the preceding sentence) must be equal. HINT: Note that 

S; + Sy is aclosed surface. Apply the divergence theorem to 
the surface integral of mV x v over that closed surface. 

8. (Heuristic proof of Stokes's theorem) Our proof of Stokes’s 

theorem was limited to the case where S is flat. This exercise 
is to indicate how to prove the theorem for a general surface 

& that is not necessarily flat. We use the limit definition of the 

curl, 

iv(P) = 1 [oa xvdA (8.1 
curl v =hn)-_-_- a) 

B-+0 V ’ 

given in Exercise 6 of Section 16.5. Let B be a right cir- 

cular cylinder of a small height h, and let the base of B be 

a plane region of area A, bounded by a simple closed curve 

C’, oriented so that the unit normal & to the base. and C’. are 

in accordance with the right-hand rule as seen in the figure.
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Dotting both sides of (8.1) with », and recalling that 
A-BxC=AxB-C, show that 

1 Vv dR 
b-curlv = lim fe) (8.2) 

A+0 
A f ; “ 

or, in differential form, 

v- dR 
, 

yv-curlvdA ~ / (8.3) 

as A — 0. Now take the surface S in Stokes’s theorem 

and partition it with a large number of such curves as C’, as 

suggested in the figure, and number them as C},C5,.... Write 

  

down (8.3) for each curve (C},C4,...), realizing that & is the 
normal n to S. Add these equations and, noting internal 

cancellation analogous to that which occured in our proof of 

the divergence theorem, show that Stokes’s theorem follows. 

{Note that the S' in (8.1) is the closed surface of the infinites- 

imal body B, whereas the S in the figure above, is the open 
cap-like surface in Stokes’s theorem. | 

9. (Faraday’s law) Faraday’s law (that the emf around a 

closed curve equals the negative of the time rate of change of 

the magnetic flux through the curve) may be expressed as 

a 
¢ * 

pears -2 B-nda 
c dt Js 

= -| OB ada 
Js Ot 

for every (fixed) surface S with closed boundary curve C in the 

field, where Ei is the electric field intensity, B is the magnetic 

(9.1) 

flux density, ¢ is the time, and where the relative orientations 

of C and n are the same as in Stokes’s theorem. Applying 

Stokes’s theorem to the line integral, use the arbitrariness of S 

and C to deduce (heuristically) that the relation 

OB 
E=—-— . Vx ey (9,2) 

holds at all points in the field. Equation (9.2) is one of the 

Maxwell’s equations for time-varying fields; for steady fields 
it reduces to V x E = 0. 

10. (Surfaces with holes) Here we indicate a modest extension 

of Stokes’s theorem to the case where S has one or more holes 

in it. [t should suffice to consider the surface S shown in the 

left-hand figure which, for simplicity, has only one hole in it 

and lies in the plane of the paper. Thus, the boundary C of S is 

not a simple closed curve, as is called for in Stokes’s theorem. 

  

(a) Slit the region as shown in the middle figure, and define 

the contours C,,C2,C3,C,4 enclosing the region S$’. Since S’ 
and C = Cy + Cy + C3 + Cy do satisfy the requirements given 

in Stokes’s theorem, that theorem can now be applied. Letting 

the gap between Cy and Cy tend to zero, show that we obtain 

[avxvei=4 ved +p v- dR, 
S JC, Ca 

in accordance with the right-hand figure. where ni is directed 

out of the paper, toward the reader. NOTE: Since Green's 

theorem ts but a special case of Stokes’s theorem, a result 

analogous to (10.1) follows immediately for Green’s theorem: 

  

(10.1) 

    
  

  

"f0Q OP ‘ 
~—-~——|)ddA= p Pdx+Qd [Ge 5) f, Pae Qty 

+ f Pdx+Q dy. 
Co 

  

    
  

(b) Using pictures and reasoning, derive a formula analogous 
to (10.1) for the case where S has two holes rather than one. 

11. Verify Stokes’s theorem (10.1) above. 

(a) v = yi, S is the region S; shown. and n = k. 

 



  

nN
 

  

  

    

        
(b) v = xyi, S is the region Sy shown, and A = —k. 

y 

  

  bo 

                
(c)v = a y(1+2)i+3 cos (2? 2?)k, and S is the four-sided 
surface shown, open at the top and bottom. 

  

12. (Direct proof of Green's theorem) Green’s theorem (33) 

can also be proved by treating the left-hand side as an iterated 

integral and integrating directly. Suppose that S is convex in 

both and y. By convex in w, for instance, we mean that S 

can be described by the statement 

tur(y) <a <arly) for yea sy syr. (12.1) 

That is, every horizontal line from Cy, to Cr (see figure) lies 

entirely within S, Then 

ery) 2 

[Fa-[" [ oe de dy = + 
YB C v L(y) 

p Q dy. 
JC 

(12.2) 

nw
 

an
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(a) Fill in the missing steps in (12.2). 

(b) Next, show that 

= $ Pdz, 
Cc 

yr («) 
OP A= [- / 

yB(2) 

(12.3) 

where 27,0n,yg(x) and yr(x) are shown below; (12.2) and 

(12.3) then give (33). 

5, ude = 

y = Vr ( x) 

  

¥ = Vp (x) 
i 

  
Xp XR x 

(c) Indicate how you could extend the convex-S result, proved 

above, to cover nonconvex regions such as the one shown be- 

low. 

a 

| 

3 

13. If C is a piecewise smooth simple closed curve in the 

x.y plane, oriented counterclockwise, show that the area A 

enclosed by C is given by the line integral 

| 
| | 

1 
A=- 

2 
p (dy ~ yao). (13.1) 

c 

14, Use (13.1) in Exercise 13 to compute A if C is the bound- 

ary of the
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(a) rectangle with vertices at (0,0), (a, 0), (a, 6), (0, 6) (d) v = wré9 (w = constant), & : the conical surface, shown 
(b) triangle with vertices at (a, 0), (a, 8), (0, 6) below, open at the top, C oriented as shown. 
(c) circle a7 + y? = 9 

ZA 

  

15. Show that > does not t hold _ the case where P = 

—y/(a os by), ¢ = ¢f(a* + y’) , and S is the unit disk 

atty? <1. pain. why this failure does not violate Green's 
theorem: 

16. Verify Stokes’s theorem. 

(a) V = wrég (w = constant), S : the waterglass surface con- 
sisting of the cylinder r = a@ over Q < = < h, with flat base 
z= 0,n = @, on the base. 

(b) v = 3ré,—rz°@9+5r°6,, S : the upside-down waterglass 
surface consisting of the cylinder r = a over 0 < z <h, with (e) Repeat part (d), but with v = Bren — rag. 
flat top z< = h, nm = 6, on the face z = h, (f} Repeat part (d), but with v = p* sin dé. 
(c) v = (50 ~ 2y)i, S : the flat disk r < 1,2 =0,h =. 

  

  

16.10 Irrotational Fields 

16.10.1. Irrotational fields. Let v be a C! vector field in a domain D.* If 

Vavao 7 
at each point in D, then v is said to be irrotational in D. In Section 16.5 we 
saw that V x v can be interpreted physically as twice the fluid particle angular 
velocity at the point in question. Thus, if v is irrotational that means that the 
particles have no angular velocity, or “spin.” For instance, the plane flow over 
a semicircular bump given by equation (3) in Section 16.2, and shown there in 
Fig. 4, was irrotational because V x v = 0. In fact. irrotational flows form an 
important case in applications such as aerodynamics, water wave mechanics, and 
gravitational fields. 

To study irrotational fields we need to define two more terms. First, we say 
that the line integral Je v- dR, between endpoints P and Q, is path independent if 
the value of the integral is the same for every piecewise smooth path C lying within 
D; if it is path independent for every pair of endpoints P and Q in D then we say 
that it is path independent in D. 

Second, we need to add to our topological concept of connectedness. which 
was introduced in Section 13.2.2. A domain D is said to be simply connected if 
every ¢ ae curve in D can be shrunk, by a continuous deformation, to any point 
in D. If it is not simply connected it is multiply connected. For instance, all of 
3-space, the interior of a sphere or cube and the region between two concentric 
  

“Recall from Section 13.2.2 that a domain is an open region. i.e.. a connected set containing none 
of tts boundary points.
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spherical surfaces are simply connected, but the interior of a torus (Le., a doughnut, 
bagel, or wedding band) is not; it is multiply connected. That is, whereas a closed 
curve such as C, (Fig. 1) can be shrunk to any desired point within D, a closed 
curve such as Cy cannot. In two dimensions, all of 2-space and the interior of a 

circle or square are simply connected, but the region between two concentric circles 

is not. 
The focus of this section is the following theorem and its applications. 

  

THEOREM 16.10.1 /rrotational Field 
If v is C! in a simply connected domain D, then the following statements are 
equivalent (.e., if one holds, then the other three do also). 

(a) There exists a C? scalar function ® in D such that v = V® throughout D. 

(b) V x v = O throughout D. 

(c) Ie v-dR = 0 for every piecewise smooth simple closed path C in D. 

(d) {. v- dR is independent of path in D. 
  

Proof: Because of the claimed equivalence one might believe that we need to prove 
that (a) => (b), (a) > (c), (a) = (d), (b) = (a), (b) => (c), (b) = (d), and so on, 

twelve items altogether. No, it suffices to prove any closed logical loop, such as (a) 

=> (b) = (c) => (d) = (a). 

(a) = (b): [Fv = V® = Dyi + DJ + ®.k (with subscripts denoting partial 

derivatives, as can be understood from the context), then V x v = (®2, — d,:)i _ 

(O22 - ®.2)j + (Bye — B,,)k == 0 because it follows from the assumption that @ is 
C? that Oy, = Bry, Peg = Oxz, and Py, = Oy, (Theorem 13.3.1). Or, remember 

from (13) in Section 16.6 that the curl of a gradient is zero. 

(b) = (c): Let C be any piecewise smooth simple closed path within D. Suppose 
that we can introduce a piecewise smooth surface S with C as its boundary. (Note 
that if D were not simply connected, S might have one or more holes in it, and then 
C would be only part of the boundary of S. See Exercise 9 of Section 16.9.) Then, 

by Stokes’s theorem, 

fvar=[avxvda= | a-oda=o, (2) 
Cc JS JS 

as claimed. However, given a piecewise smooth simple closed path C, can we 
necessarily find a piecewise smooth surface S having C as its boundary, as assumed 
above? For the C shown in Fig. 2a, for example, such an S is readily constructed 
as sketched in the figure. But what about more complicated C’s — for example, 
the overhand knot shown in Fig. 2a. In that case the idea is to add cancelling line 
segments. shown as dashed lines in Fig. 3, so that the curve C can be split into 

  

Figure 1. Torus. 

(a) 

827 

  

Figure 2. Is there an S?
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Figure 3. Undoing the knot. 

(a) 

Po = (Xg.¥ascg) 

(b) 

1 at On 

Po - 

Figure 4. You take the high 

road, T'Il take the low. 

two noninterlocking curves C, and Cy which do admit suitable surfaces Sy and S», 
respectively. Then, analogous to (1) we have 

pvdR= | vedR+ ve dR = 
Je Cy Jey 

av xvas | n-VxvdAa 
JS J So 

-| a-odAa+ | n:O0dA=0+0=0. 
JS) 82 

Rigorous proof that we can handle any piecewise smooth simple closed path C, 
however, is beyond our present scope. 

(c) => (d): Let Cy and Co be any two piecewise smooth paths from any point Fo = 

(xo, yo, 20) in D to any point P = (x,y, z) in D (Fig. 4a). Suppose that C; and Cy 

are simple curves and that they intersect each other only at the endpoints Py) and 
P. (The argument needed for the case where additional intersections occur will be 
omitted here.) Then C, + (—Cz2) is a piecewise smooth simple closed path (Fig. 4b) 

and, according to item (c), 

i v- dR =0. (3) 

JC, +(—Cy) 

But 

f v- dR= ¢ vedR+ | v- dR 
JC +(-Co) FC, JC 

= i v- dR — v- dR. (4) 
JCy 

and it follows from (3) and (4) that 

i v- dR= v- dR, (5) 
JC, 

as claimed in (d). 

(d) = (a): Regarding Po = (x0, yo, 20) as fixed and P = (x,y, 2) as a variable 

endpoint, it follows from the path independence [item (d)] that 

to,yo.20) 

(2,y,2) 
f(z,y,2) = | v- dR (6) 

J ( 

is indeed a function of x.y, z. For if different paths to (a, y, z) were to give dif- 
ferent values of the integral, then the integral would not be uniquely determined 
by x,y,z. That is, it would not be a single-valued function of x,y, 2 and, since 

functions are to be single-valued, it would not be a function of x, y, z. 

Consider first the « dependence of the integral. Regarding y and z as fixed, 
take the path from (29, yo, Zo) to (x, y, z) in (6) to be the one shown in Fig. 5. That 

co f
h
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is, the path is fixed, except that the endpoint P = (2, y, z) moves parallel to the « 

axis as wv is varied, with y and z fixed. Then (6) becomes 

(20,452) (2,Y,2) 

fay0= / v- dR + / v- dR 
J ( J ( £0.40 120) LO,Y,<) 

(54,2) 
== constant + | (v, dx + vy dy + vz dz) 

J (x0,4,2) 
oe 

== constant + | vole, y, 2) dx, (7) 

JxG 

where v = vi + vyj + v:k, and where the last step follows from the fact that 

y and = are constant along the path from (vo, y, z) to (w,y, 2). Or, introducing a 

dummy variable of integration to avoid confusion, we have 

ae 

f(a. y, 2) = constant + | ur(&, y, 2) dé, (8) 
Lo 

and since v, is assumed to be continuous it follows from the fundamental theorem 

of the integral calculus that Of/Ox = vz(x,y,2). In the same manner, we may 

show that Of /Oy = vy(a.y, =), and that Of /Oz = vz(x,y, 2). Thus, v = V f and 

f is the scalar function that we've been looking for. m 

With Theorem |6.10.{ in hand, suppose we wish to evaluate a given line inte- 

gral 

[= | v-dR. 2) 
JC 

First. check to see if v is irrotational (i.e., if V x v = 0) in a simply connected 

domain D containing the path C. If it is, and C is a closed path (piecewise smooth 

simple closed path, to be precise), then it follows immediately from item (c) that 

IT = 0. If v is irrotational but C is not closed, then J is not necessarily zero, yet 

Theorem 16.10.1 still provides two alternative simplifications. First, we can use 

(d) to justify changing the path to a simpler one, keeping the endpoints fixed. Or 

we can use (a), which guarantees the existence of a scalar function (i.e., a scalar 

field) b(a, y,z) such that V® = v. For if we can solve the relation Vb = v 

for &, which function is known as the scalar potential or simply the potential. 

corresponding to the vector field v, then 

“Py “Py 
[= | v- dR= Ve-dR 

JP; P; 

‘Pr (Ap. Ab, Ab. . . . 
= ——j+—j+—k).- (dri+dyj+dz 

I, (S i Oy J oe ) («a itdyj +d k) 

EF (Ob ao O® Py Py 
= — dr + — di a de) ib = DP) I, (F da + By dy + De a ) I, db = © ; 

2. 
i 

  

(10) 

oA 

  

+0 +¥0>%6 

   

  

Figure 5. The x dependence 

of f.
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where P; is the initial point and Py is the final point. That is, 

  

  

“Pe Py 

| v-dR=| , (11) - p P; [pe 

      

the line integral is equal to the change in the potential. 
Both of these lines of approach are illustrated in the example to follow. 

EXAMPLE 1. Evaluate the line integral J = [, v- dR, where 

v = 3a y7i + (Qa°y — e*)j + (22 — ye*)k, (12) 

and where C is given parametrically by 

  

  

T sint? ,[r — 1~<) vr _o af 
* ( g)° ~~“ sng V9 

6 21 — at 13 
Y= 543 10” (13) 

1 5 =-— 7-1 z 167 

for 7:0 -—+ 2. We could, of course, put the parametrization (13) into 

[vara | s0ty? ae + (20%y ~ €*) dy + (22 — ye) de. (14) 
c c 

That step would give an “ordinary” integral of the form fe F(r) dr. However, the integrand 

F(r) would, evidently, be quite unwieldy. Thus, it is best to check, first, to see if v is 

irrotational. In fact, we do find that V x v = 0 so we can use either of the methods 

outlined above. Thus, we can discard the unwieldy path (13); all we need to extract from 

(13) are the initial and final points. Setting 7 = 0 and 2 in (13) gives P; = (1, -2,—1) and 

zh Py = (-2,3,1). 

Pp=(-2,3,1) Let us evaluate J first by path simplification. What is a simple path? Surely, a straight 

line from P; to Ps comes to mind. No, the simplest path will be one along which only one 

coordinate varies. Specifically, let us use the path C,,C2,C3 shown in Fig. 6. Then 

r= / vedR+ | ved | v- dR 
Cy Co C3 

-| 3a*y? dx + | (2Qa3y — e*) dy 
Cy Ca 

+f (22 — ye*) dz 
Cy 

    

  ye 2,z2—-1 gma 2,g=~ 1] 

Figure 6. A simple path. 

  gone 2,ys3 

~2 3 nd 
=. / a ax + | (—16y ~e!)dy + f (22 — 3e*) dz 

1 —2 ~1 

= ~—76 — 3e — 2e7!. (15)



  

To appreciate the simplification achieved, observe that in the C, integral we kept only the 

dz part because y and z are constant on C, (hence the dy’s and dz’s are zero). Further, the 

integrand of the dz integral simplifies because any y’s or z’s contained therein are constant 

on C,. Similarly for the Cg and Cy integrals. 

Alternatively, let us evaluate J using the potential ®, the existence of which is assured 

by the fact that V x v = OQ. To find (2, y, z) we use the connection v = V@ between v 
and ®: 

O® 
—— = Ug, = Buy’, (16a) 
Ou 
OD : 
oy = Uy = Qa y — 7, (16b) 

08 ey ade ye? (6c) Dy me = 2% — yer. c 

We need to integrate (16a,b,c) to solve for ®. First, integrate (16a) with respect to 2, 

holding y and z fixed (since y and z were held fixed in the derivative 00/0z) : 

O(x,y,z) = [ sey! Ox = xy? + Aly, 2), (17) 

where the Ox notation is not standard in the literature but may be helpful in reminding us 

that y and = are fixed. We need to allow the integration constant A to depend on y and z; 

observe that 0/Ox of (17) does give us back (16a). 

Next, put (17) into the left-hand side of (16b): 

e OA ‘ . 
Qe y + — = Ia°y — e*. (18) 

Oy 

Cancelling the 22% terms and integrating partially on y gives g ¥ 5 gp y Ys 

Aly, 2) = —- fe Oy = —ye* + B(z), (19) 

where we let the integration constant B depend on z because z was held fixed in the partial 

integration on y. Putting (19) into (17) gives the updated expression for ®, 

(x,y, 2) = xy? — ye® + B(s). (20) 

Finally, putting (20) into the left-hand side of (16c) gives 

0 — ye? + B'(z) = 22 — ye?. (21) 

Cancelling the —ye* terms and integrating on 2 gives 

2 (~\ wy pp mn we 7 
B(z) aa | Qe dz = £ +O, (22) 

where we use dz rather than Oz because it is an ordinary integral on z, and the integration 

constant C’ really is just a constant. Thus, 

B(a,y,2) = ey ye FP HC, (23) 
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Then (11) gives 

. 39 og le B WD) 4 
| v- dR = (wy? — ye* + 2° +0) = —76 —3e-2e™°," (24) 

c (1,-2,-1) 

in agreement with (15). 

COMMENT 1. There will always occur an arbitrary additive constant in ®, justas C’ occurs 

in (23), for an additive constant drops out when we ask V® to equal v. However, when 

is evaluated between the endpoints C’ inevitably cancels out so one can simply set C’ = 0, 

say, when it first appears. 

COMMENT 2. One might wonder how the procedure of integrating V@ = v can fail to 

produce a scalar potential @(x, y, z), whether or not v is irrotational. To understand this 

point, recall the cancellation of the 20 y terms. If those terms did not cancel, then (18) 

would have presented a logical contradiction for 0A/Oy would therefore have depended 

on x, whereas it is a function only of y and s. Similarly, in (21) the cancellation of the 

—ye* terms was essential because otherwise B’(z) would have depended on y. These 

cancellations were not accidents; they occurred because v was irrotational. 

COMMENT 3. An advantage of the potential method over path simplification is that with 
: P . 

®(x,y,z) in hand we can now compute tp! v- dR. between ay two points P; and Py, 

from (11). @ 

EXAMPLE 2. Conservative Force Fields. A force field F defined in a domain D is said 

to be conservative if the work 

W= pr “dR (25) 
JC 

is zero for every piecewise smooth simple closed path C in D. If F is C? throughout D, 

then it follows from Theorem 16.10.1 that F is conservative if and only if it is irrotational. 

If so, there exists a scalar potential ® such that 

F=-V9, (26) 

where the minus sign is customary but not essential, 

To illustrate, consider the uniform gravitational field F = —gk per unit mass, where 

g is the acceleration due to gravity. Surely Vx F = 0 since F is a constant. Then 

F= ~gk = —V@ so that 

O® 0 a’ 0 OP 
BT OY WTS, ar oY: 
Ou Oy Oz 

Integrating gives us 

P= g2+C, (27) 

which is the familiar “gravitational potential energy” from elementary physics. 

Returning to the general case, suppose that F is conservative. and consider the work 

f F- dR over any path from an initial point P; to a final point Pp. With F = mR. from 

se
me

 
N
e



  

Newton’s second law, where m is the mass (assumed constant), we have 

i 
2. a 

i i 

Ps Pro, mo, 
| F-dR= | mR dR = m | R-Rdt 

Jf 
, 

| 1 , l Te 
sm] G H (RR) dt = sin [ dg) 
2 

i] 

Loo. oP 1 2 Py 
=m(R-R)| Ys 5m | RI le . (28) 
2 lp, 

But since F is conservative. we may also express 

  

  
       

    

     

Ps “Py Pp P; 
| F-dR= | -~Ve@-dR = — | ddP=—-P) (29) 

> 2, JP; an 

12 Py Py 

It follows from (28) and (29) that sm ie | =-—| ,or 
iP; P; 

Py 

(5m Jal + ») = 0. (30) 
Pj 

2 

That is. there is no change in 5m | + @: 

L . Ril . 
xm sm ||R | + @ = constant, (31) 

or 

kinetic energy + “potential energy” = constant, (32) 

and (32) explains why such a force field is called conservative because the total energy 

(kinetic plus potential) is conserved. Now we see the motivation for including the minus 
sign in (26), namely, so we end up with plus signs in (30)—(32). @ 

EXAMPLE 3.) [rrotational Fluid Flow. Consider a building with a semicircular cross 

section. A cross wind. say of speed U (Fig. 7), will cause a lift force on the building (i.e 

in the positive y direction) which can be quite large and which must be taken into account 

in the structural design. [f we know the air velocity field v then we can use the Bernoulli 

equation of fluid mechanics (Exercise 12) to compute the pressure field, in particular the 

pressure distribution on the roof. integration of which gives the lift force. Here. we will 

limit our discussion to showing how to set up the field equation governing the velocity 

field v. 

Upstream (.e.. a8 © -+ —90) the flow is simply the undisturbed free stream Ui. Since 

V x Ui = 0, we see that the flow is irrotational upstream. Since V x v is (Section 16.5) 

twice the fluid angular velocity, it follows that the fluid particles initially (i.e.. upstream) 

have no spin: they undergo pure translation. Will they acquire angular velocity as they 

move downstream and pass over the semicircle? Consider the stresses acting on a typical 

fluid particle (Fig. 8), Just as an imbalance of horizontal or vertical normal stresses will, 

accarding to Newton's second law, cause a horizontal or vertical acceleration, respectively, 

an imbalance of shearing stresses results in a nonzero torque and hence an angular accel- 

eration. But shearing stresses are possible only by virtue of the fluid property known as 
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Figure 7. Flow over a building. 

  
shear 

| normal 

      
ee 

Figure 8. The stresses on a 

fluid particle.
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viscosity. We propose that air has sufficiently small viscosity for us, to a good approxima- 

tion, to consider it as inviscid, that 1s, having no viscosity at all. With no viscosity there are 

no shearing stresses, hence no torque, hence no angular acceleration. Thus, having started 

out as irrotational (i.e., upstream) the flow will remain irrotational throughout: not only 

does V x v + Qas x - —co, V x v = O everwhere in the field. Consequently, there 

exists a scalar potential ®, called the velocity porential in this application, such that 

  

v=VO. (33) 

What physics has thus far been left out? We have used Newton's second law and have 

also made an assumption on a relevant material property, the viscosity. Also relevant is 

the physical law of conservation of mass, which (see Example 2 in Section 16.8) can be 

expressed as the “continuity equation” 

de + V-(av) = 0, (34) 
Ot i 

where @ is the fluid mass density field. If, besides assuming the fluid to be inviscid we also 

consider it to be incompressible, then the density o is a constant. In that case (34) reduces 

to0+o0V-v =0,or 

Vev=0. (35) 

Finally, putting (33) into (35) gives 

(36) 
so the field equation governing ® is the famous Laplace equation (36). 

The remainder of this example is optional since it draws upon material contained in 

the optional Section 16.7. 

In what coordinate system should we express (36)? The uniform free stream Uiis ex- 

pressed most readily in terms of Cartesian coordinates, but the semicircular shape suggests 

using polar coordinates. When we return to this problem in a later chapter, and solve it by a 

method of separation of variables, we will see that we need to work in polar coordinates so 

let us make that choice here. We consider the region to be bounded by the radial lines @ = 0 

(EF in Fig. 9) and 6 = w (AB), and the semicircles r = a (BCE) andr = R(AGF). 

Since the portion ABC'E’F is rigid, we assume that the flow is along that part of the bound- 

ary, neither penetrating it nor separating from it; that is, h-v = n-V® = 0b/On = 0, 

where the second equality is simply the directional derivative formula (7) in Section 16.4, ! 

and n is the unit outward normal to D. On BC'E and on EF we have 

a 04 L a4 Ie BCE: a-Vo=~é,- (F é.4- 7a) - 2 9 

  

Figure 9. The domain D. 

Or r 00 “Or , 

Ob 1 06 1 A8 GN) 
EF: ni ve= ep: (To * ey) = AS m0 

so 00/8r = 0 on BCE, and 0@/06 = 0 on EF, Similarly, 06/00 = 0 on AB, 

On the semicircle AG'F the boundary condition is thatv ~ Uias R - oo. That is, 

vo = ep ee 
y 

  
Ox Oo 
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so 00/dx ~ U and &/dy > Oas R -+ 00.* Thus, ® ~ Us, or expressing this result 
in terms of polar coordinates, ® ~ Ur cos @ as r + co. The resulting problem governing 
&(r, 0) is as follows, 

Yo 1 ab 1 1 Oo 

Or? or Or — r* OG? 

O® O® 
99 (9) = Felts) = 0 (a<r<co) 

V26 =   =0 (a<r<o, 0<0<7n) 

(38) 
O® 
=~ (a, 0) = 7 Dp 649) q (0<6< 7) 

®(r, 0) ~ Ur cos é as rf > oO, (0<@<~7) 

and is solved within Chapter 20. 

COMMENT |. More generally, any irrotational incompressible flow is governed by a 
Laplace equation V?® = 0 on the velocity potential ®, and is known as a potential flow.   
COMMENT 2. How can we quantify the accuracy of our two assumptions — that the fluid is 
inviscid and incompressible? One learns, in a course on fluid mechanics, that the accuracy 
of these assumptions rests on the size of two well known nondimensional parameters: the 
effects of viscosity will be negligible if the Reynolds number is much greater than unity, 
and the effects of compressibility will be negligible if the square of the Mach number is 
much less than unity. 

COMMENT 3. It would be natural to wonder if the velocity potential & admits a simple 
physical significance. Such significance can in fact be attached to ® in terms of so-called 
impulsive pressures, discussion of which can be found in the book by Wilson.* @ 

16.10.2. Non-Cartesian coordinates. (Optional) Let us limit our coverage of the 
non-Cartesian case to one example. 

EXAMPLE 4. Cylindrical Coordinates. Evaluate the line integral Jo v dR, where 

v = 3r*zsin 66, +172 cos 0&9 + (r? sin 6 — 327)é, (39) 

and where C is a straight line from P; = (2;, yi, 21) = (2,0, 1) to Pr = (xy, yy, 2p) = 
(1, 1,0). Recalling that in cylindrical coordinates dR = dr é, +1 d@ @g + zé., we have 

[ v- dR = [ 3r°z sin 6 dr + r°z cos 0 dé + (r3 sin @ — 32?) de. (40) c c 

Using the cylindrical coordinate expression for V x v, we find that V x v — 0 so we 
need not evaluate the integral directly; we can use either path simplification or the potential 
method, 
  

“ f(x) ~ g(a) as x — xo means that f(x2)/g(a) + 1 asa — xp. We never write f(z) ~ 0 
as a -+ xo because f(x)/0 cannot tend to |; it is better notation to write f(x) - 0 rather than 
f(x) ~ 0. That is why we wrote @/Oy —> 0 rather than Ob /dy ~ 0. 

*D. H. Wilson, Hydrodynamics (London: Edward Arnold, 1959), Sec. 10. 

Re
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Figure 10. 

  

  

(1,1,0) 

The modified path. 

Since C is already a straight line, isn’t it already simple? No, we can do better for the 

simplest path is made up of one or more segments on which only one coordinate varies, 

Specifically, let us use the path C,,C2,Cg shown in Fig. 10. On C, only r varies (from 2 to 

v2) while 6 and z are fixed (@ = 0 and z = 1); on Cz only @ varies (from O to 7/4) while 

rand z are fixed (r = = 2 and z = 1); and on Cy only z varies (from | to 0) while r and 6 

are fixed (r = /2 and 0 = = 7/4) so 

| v dR= a *esind dr| + | rs cos @ dé 
Cc O=0,z=1 J Co 

  

peVQ,cel 

sind — 32°) dz 
  pa Vl20=r/4 

i ofA 0 ; 

| Odr eof 2V3 cose dd + | (2 — 32°) dz 
1 

1. 

a
 

il (41) 

Alternatively, let us use the potential method. Write out the r,@,z components of 

v= Vo: 

o = 3r7zsin 0, (42a) 

. = =r*zcos8, (42b) 

~ =r sin@ — 32°. (42c) 

Integrating (42a) gives 

O(7, 6,2) = [or sin@ Or = r°szsin@ + A(O, =), (43) 

and putting (43) into (42b) gives 

1 3 OA a, 
- (« zcos@ + aa) =r*zcosé 

so that 0A/00 = 0. Thus A(@, z) does not vary with @ so it can be expressed as a function 

of z only, say B(z). Then (43) becomes ®(r, 0, 2) = r’zsin@ + B(z), and putting this 

expression into (42c) gives r? sin@ + B’(z) = rsin@ — 327. Thus, B’(z) = —32° so 
B(z) = ~2° +C, where C is an arbitrary constant. The result is that 

&(r,0,2) =r zsind — 2° +C (44) 

where we can, without loss, set C = 0, say. Finally, 

[ves 
c 

in agreement with (41). d 

P 3 4 peeve Os /4, 2280 
= (r’ssin dé — 2°) =1, (45) 

Pi ir=2,0=0,2=1 

  

EXAMPLE 5. Role of Simple Connectedness. Our purpose in this final example is 

to indicate the significance of the requirement, in Theorem 16.10.1, that the domain D be 
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simply connected. Consider the vector field 

  
f - ag, (46) py 27r — 

H= 

AN
 

which is the magnetic field intensity induced in 3-space by a current J flowing in a wire 

  

  

        

which extends from z = —oo to z = +00 along the z axis (Fig. |1). Since Hf, = 0, ; C2 | 

Hf, =0,and Hy = [/27r is a function of r only, (17) in Section 16.7 gives o anes \ 

1 a / Vx iAH= — —(rilg)e, ’ 
r Or ("Ho) e- iff 
10a [ L 

=-= e. = -(0)e, = 47 mt 
r Or (=) ee P ( Jee ( ) | ee a 

a y 
so the field is irrotational. Yet. A“ 

a aa . . C 
H-dR= p ~——é -(dré,+rd0éq + dzé,) 

Cy ¢, 2a 

oT f 
-4 —d0 = —2n=T (48) 

Jo, 2% 27 

. . . os . . Figure 11. Current-carrying wire. is nonzero, in apparent contradiction of Theorem 16.10.1. However, observe that C, does 8 1. Current-carrying wire 

not lie within a simply connected domain D throughout which H is C! and V x H = 0. 

That is, H = (1/277) ég is not even defined along the z axis (r = 0), let alone C* there. 
Similarly, the last equality in (47) holds only forr #4 0. Thus. His C! and V x H = 0 

in a region D consisting of all 3-space but with the z axis excluded, that is, the annulus 

0 <r < oo. That domain is not simply connected so the result (48) does not violate the 

theorem. 

Understand. in (48), that be, d@ = 27 because @ increases by 27 as C; is traversed: 

O, = 0;-+27. However, for any curve that does not encircle the > axis. such as Cy (Fig. 11), 

0» = G; so 

gp H-dR= q ! 
Cy Co “ 

  dd = 0). (49) 
mt 

The result (49) follows from Theorem 16.10.1 because there iy a simply connected domain 
D’ (Fig. 11) containing Cy, throughout which H is C! and irrotational. That is, D’ is not 

pierced by the = axis. 

Closure. The focal point of this section is the irrotational field theorem, Theorem 
16.10.1, in which each of the four stated items implies the other three. However, 

in applications the direction of inference is usually as follows: if v is irrotational. 
then there exists a scalar potential ® such that v = V4, the line integral fo v- dR 

around every closed path is zero, and the line integral Je v dR along every open 
path C is path independent and depends only upon the endpoints of C. In particular, 
we show that if C is open, then the integral is simply the change in the potential 
between the endpoints P; and Pr: 

+ Py 

[vum=aol (50) 
C LP;
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Thus, if v is irrotational (and C' in a simply connected domain D) then we can 
compute the line integral Te v- dR along an open path C in D either by simplifying 
the path or by finding the potential function ® and using (50). To find ®, we 
integrate the three scalar components of v = V®. 

An important advantage of working with ®, rather than v, is that it is a single 
scalar function, whereas v is comprised of three scalar functions, namely, its three 

components. That scalar potentials are of great importance is witnessed by the fact 
that many of them are so well known, for instance, the gravitational potential in- 
duced by a distribution of mass, the electric potential (i.e., the voltage) induced by 
a distribution of charge, the entropy in thermodynamics (introduced in the exer- 
cises), and the velocity potential of fluid mechanics. In terms of these potentials 
we have such important results as the statement of conservation of energy (32) 
for conservative force fields and the Laplace equation (36) governing irrotational 

incompressible fluid flow. 

  

EXERCISES 16.10 
  

1. In what domain(s) are v both C! 

(ajv=e i — 3yj + 29k 

(b) v = 2sinai + y9j + ck 

(c) v = e* i- (2/y)j+2 22k 

(d) v = (ai + yj + 2k)/(2" +y + 27) 
(e) v = (~yit 2j)/(x? +”) 
(f) v = x*i — (2j — yk)/(y? + 2°) 
(g)v = zit yj—zk 

9 

and irrotational? (n) v = vzit Uy + L)2}+ (F yt 2u) k 

(o)v= yzi + rej + cyk 

3. Can functions f(z, y,2), g(z,y, 2) be found such that v is 

irrotational? If so, find one such f and g. If not, why not? 

(a) v = vyi— zj + fk 

(b)v = Qryi + vy + fk 

(c)v= fi + 2ry2zj + gk 

(d)v = 271+ fj+gk 

2. Show whether or not v is irrotational: if it is, find its po- 4 Assuming that the conditions of Theorem 16.10.1 are met, 

tential @ such that v = V&. In what domain D is your result ate the following correct? Explain. 
valid? 

(a) v =i — 2j — 8k 
(b) v = ci yj + sin zk 
(c)v = 2i+ y3j+ck , 

(d)v = 2(Qz4+ y)i + J +2°k 

(e) v = yew*i + eT H#lj + 23k 
(fv = 2ye* i+ 2e7 itlj ~ 3k 

(g) v = Qxzi+ 3yj + v°k 
(h) v = 2i + 2°} + (@ + 2yz)k 
(ijv= 22674) + e2%k 

Gj) v= 2ayi + (22674 + 27)j + e2Y 

(k) v = wyi — yk 

(I) v = 61 2j + 2yck 

(m) v = 2ezi+2° 2k 

vi 
zy 

| uz(@p, yp, &) dz 
1 

oP mE yp Ur 

@ | vedR= | veltyired aes [ Vy (vp, y, zi) dy 
P; Xi 

+ 

Py nx yt UT 

(b) v- dR= / valesys.zs)aet | Vy (2, y, 21) dy 
P; FEY YYUi 

+f ve(Zi, yy, z) dz 

Pr Ur 
(c) [- v-dR= [ow (a, yi, 2) dx +/ Uy (aye, y, zp) dy 

vi 

k +f Ve(i, yp, 2) de 

5. Consider [, v- dR. where C is the path z = sint, y = 
cos37, 2 = 27 from rt = Oto 7 = w. Show that v is ir- 

rotational, and use this fact to evaluate the integral two ways: 

 



      

by path simplification and by the potential method. Sketch the 

simplified path. 

(a)v = yi -b uj 

(b) v = 32? cos Qyi ~ 2° sin 2yj 
(c) v = Bal e245 + (da®/2e"4 4 By? )j 
(d) v = 3i + 6y?29/?j 4 - (By? z 28/2 4 2) 

(e) v = (y? — cos z jit (ysin z z+ 2)k 

(f) v = 207i — 2yzj — (y? + 3)k 
6. Repeat Exercise 5, but where C is the path 2 = cos’, 

yor?,2=3rfroomr=O0toT =F, 

(a) v= vit nts zk 
(b) v = 8i-+ (2? — 3y)j + (22y — valk 
(c) v = (x? — 2y9/?) eva +e*k 

(d) v = y22"i + 2ayz2j + 2ry? zk 

7. (Exact ‘yferiato, An expression Pdz + Qdy + Rdz, 

where P, Q, and R are functions of x,y,z defined in some 

domain D, is called a first-order differential form in three vari- 

ables. If there exists a function f such that Pdz + Qdy + 

Rdz = df in D, then the form is said to be an exact dif- 

ferential. Assuming that P,Q, # are C? in D, show that for 

P dx + Qdy + Rdz to be an exact differential it is necessary 

and sufficient that V x (Pi + Qj + Rk) = = Oin D. Further, 

show that f is the scalar potential of Pi+ Qj+ Rk. 

8. (Stream function) Consider the plane flow v = vz(z, y)i + 

vy (er, _y)j of an incompressible fluid. where v is C?. The vol- 

ume flow rate (in meters*/second. say) crossing the curve OP 

from left to right is 

Q= | Vy dy — vy dz = | f- dR, 
c c 

y)j. Since V x f = —vy(r,y)i + vy (2, 

(Ov, /Ox + Av, /Oy)k is zero by virtue of the continuity equa- 
tion [(29) in Section 16.8, with v, = 0 in this case], it follows 

(8.1) 

where f = 

that 

“(e.y) 

Q= | Us dy — Uy dx (8.2) 
(0,0) 

is a (Single-valued) function of z and y, say Wi(a,y), where 

Ow Ow 
a EU, == Ug. 8.3 
Ox ” Oy (63) 

W is called the stream function. 

(a) Show that the U(a,y) = constant curves are the stream- 

lines, as were defined in Example 2 of Section 16.2 
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determine oie y \. NOTE: Like the velocity potential 3 the 

stream function can be determined only to within an arbi- 

trary additive constant. 

(c) Repeat part (b), for v = Qee741 ~ e794. Sketch the stream- 

line through (1,0). 

' 
y 

    
C “Vy dx 

  

ad
 

O 

(MifV xv eQ(2, y)k, show that 

Vu = (2, y). (8.4) 

NOTE: If the flow is incompressible and irrotational (so that 

Q = 0), then there exist both a velocity potential ® satisfying 

V2 = 0, and a streamfunction © satisfying V?U = 0. If the 
flow is incompressible but nor irrotational, ® does not exist — 

yet the stream function does exist and satisfies (8.4). 

(e) If the flow is incompressible and irrotational, so that both 

W and © exist, show that the & = constant curves and the 

6 = constant curves are everywhere orthogonal; i.e., at each 

point P = (a,y) the © = constant curve through P, and 

the ® = constant curve through P intersect at a right angle. 

HINT: Consider VY - Ve, 

9, (Entropy of an ideal gas) Any gas satisfying the equation 

of state pv = RT, where p is the pressure, v is the volume per 

mole, T is the absolute temperature, and R is the universal gas 

constant, is said to be an ideal gas. The first law of thermody- 

namics for one mole of an ideal gas can be expressed as 

dq = pdu +c, dT, (9.1) 

where dg is the heat input and cy, = c,(T) is the specific 

heat at constant volume. Show that the right-hand side of (9.1) 

is not an exact differential (see Exercise 7), but that if we mul- 

tiply through by 1/7, then 

dq _ Cy 
—=-du+—al 
T r T 

is an exact differential, say dg/T = ds, where s(v,T) is 

called the entropy of the (one mole of) gas. [Since ds is an 

exact differential. ¢ is indeed a function of v,T. That is, it 

is uniquely determined. for the given gas, by the point (v,T) 

(9.2)
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in the v, 7’ plane (i.e., by the state), independent of the path 

history. ] 

10. (Solenvidal fields) Let v be a vector field defined in a do- 

main D. If V-v = 0 at each point in D, then v is said to be 

solenoidal in D. We have the following companion to Theo- 

rem 16,10.1: 

  

THEOREM 16.10.2 Solenoidal Field 

If v is C! and solenoidal in a simply connected domain D, 

then there exists a vector field w in D such thatv = V x w. 
  

Prove this theorem, for the case where D 1s the prism 

Ze << ty < y < yg, 21 Kc 2 < HINT: We 

need to show that the equation v = V x« w does admit a 

solution w. To do this, start with the three scalar equations 

» 29. 

    

  

Ow, — wy » Ow, Ow: , 
a =». _ Wwe _, 

Oy Oz ™ Oz Ox y? 

Owy Dwr (10.1) 

Ox Oy ee 

There is enough leeway in (10.1) to set one of the components 

of w, say w,, equal to zero. Then the latter two equations in 

(10.1) become 

and ar Uz) 

which can be integrated to give w, to within an arbitrary ad- 

ditive function A(y, z) and w, to within an arbitrary additive 

function B(y,z). Putting these results into the first equation 

in (10.1), show that it is possible to choase A(y, z) = 0 so that 

(10.2) ~ = —0, 
Oz y 

xo 
y x . 

+ | ve(20,79, 2) On - | vy (Ey, 2) as| k, 
vo v x9 

(10.3) 

where xo, Yo are any constants such that 7, < rq < we» and 

yt S Yo S yo. Show that to the right-hand side of (10.3) we 

can add V f, the gradient of an arbitrary scalar function f that 

is C* in D, NOTE: Observe the pattern that emerges in this 

section: If v is irrotational (V x v = 0), v is expressible as 

the gradient of a scalar potential ® (v = Vo). Analogously, 

if v is solenoidal (V+ v = 0), v is expressible as the curl of a 

vector potential w (v = V x w). The notions of irrotational 

and solenoidal fields are complementary in the sense that every 

C! vector field v, defined in a bounded simply connected do- 

main D, can be split as v = v1 + V2, where vy is irrotational 

in D and vo ts solenoidal in D, a fact that we state without 

proof, 

11. Show that v is solenoidal (see Exercise 10), and deter- 

mine a vector potential w. (As noted in Exercise 10, w is not 

uniquely determined.) 

(ajv= ai + bj +ck (a,b,c constants) 

(b)v = yi + ay 

(c)v = 31-4 vy + dyk 

(d)v = ryi _ yzk 

(e) v = Qyi + 22y2j — 2a? y2k 
(f) v = v3 yi — 2j — 30? y(2 + 1k 

(g) v = asinyi+ (cosy + 22)j + x?yk 

12. (Untegrating equations of motion) In Example 3 we con- 

sidered a single particle. Here we consider a continuum of 

particles. Consider the motion of a fluid, assumed irrotational 

and incompressible, in a domain D, under the action of a uni- 

form gravitational force field —gk (per unit mass). If o is the 

mass density, v is the velocity field, and p is the pressure field, 

then we state, without derivation, that Newton’s second law 

leads to the Euler equation 

dv - 
— =-Vp-ogk, 12.1 oF p—-ogk, ( ) 

or 

Y nv. vy ¥ (2) + gle =0, (12.2) 
Ot o , : 

where the d/dt in (12.1) is the convective derivative defined in 

Exercise 5 of Section 16.4. Use equation (8) in Section 16.6 to 

show that (v-V)v = V(4v"), where v is the speed, ie., the 

norm of the velocity v, and show that it follows from (12.2) 

that 

2, 2 1 
ar tau t= + ge = “constant” = F(t) (12.3) 

2 a 

everywhere in D for arbitrary F(t). Equation (12.3) is one 

form of the well known Bernoulli equation. 

13. Given f{, v- dR, where C is the open path 

rot, 6 = nr /2, 2 c= sin 

for 7 : 1 — 2, evaluate J both by path simplification and by 

the potential method, and justify the use of those methods. 
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(a) V = 2@, + 1re, 14. [n (9), we showed that 

(b) v = zsin@é,. + 2 cos dé, + r sin 6é, 

    

  

  

(c) v = cos 50e, — 5sin 5éeg + 27e, p, , 

= Urz —cos@)é, + 2sin ep + re. wa aa Py 
(d) v (r2 cos O)é, + 2 sin G€g + r*é, | v- dR = Vob.dR=6 

(e) Vv =p ep J Pi Pi P; 

(f) v = sin dé, + cos Mey 

> 2 - 3 cos @ . ; ; 
(g) v = 3p” cos 0€p — p sna! by expressing V® and dR in Cartesian coordinates. Show that 

oes ; Pr up ore 
cos. sind . we obtain the same result, namely Bln, if we use cylindrical 

v= p *o~ psin oe! coordinates or spherical coordinates. 

  

Chapter 16 Review 

We begin by defining the divergence of a vector field v as 

; n: LA im {eee by divv = 
330 

Carrying out that limit in Cartesian coordinates gives 

Ov, | Ovy | Ovz 
— +57 4+ , 
Ou Oy Oz 
      divv = 

which we identify as V-v. where V is the vector differential operator 

0 ai 0 Lk O 

dx? Oy Oz 

With V in hand, we use it to define 

V=i   

gradu = Vu and culv = V xv. 

Thinking of v as a fluid velocity field (even if it is not), we can interpret div v 
and curlv as the outflow per unit volume and twice the fluid angular velocity, 
respectively. With the help of the directional derivative formula, 

du 
  = Vu-s, 
ds 

we learn that Vu at any point P is normal to the uw = constant surface through 
P, in the direction of increasing u, and its magnitude is equal to the directional 
derivative du/dn in that direction. 

Studying combinations (i-e., more than one operator and/or more than one 
field), we develop a number of identities such as 

Ve (uv) = Vu-vtuV-v,
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and meet the Laplace operator 

‘ a o? a 
WaV- Vena tagta 

Ou Oy? Oz 

which is known as the Laplacian. In particular, we find that the divergence of every 

curl is zero (mnemonically, “de’”), and the curl of every gradient is zero (“cg”): 

  

diveulv=V-Vxv=0, 

curl gradu = V x Vu = 0. 

  

In the optional Section 16.7 we derive formulas for the gradient, divergence, 

curl, and Laplacian in cylindrical and spherical coordinates. Three crucial points, 

in that section, are as follows. First, the partial derivatives in the V, within V-v 

say, act not only on the scalar components of v but also on the base vectors in v. a 

Second, in terms such as 

er =o (vgée) 
Or 

we need to do the derivative (of vgég) before the dot or cross product. Third, 

whereas 

uxv= (w1€1 + us@g + u3@3 ) x (vyey + veg + v363 ) 

@, G2 63 

=) Up U2 U3 

Uy Va U3 

holds for any vectors u and v (where €;, 2, €3 are the right-handed orthonormal 

base vectors i,j, k, or @,, @g, 6; or Ep, Gg, €g), it does not hold, for cylindrical or 

spherical coordinates, if u is the V operator. 

In Sections 16.8 and 16.9 we study the Gauss divergence theorem and Stokes’s 

theorem (as well as Green’s theorem and Green’s identities) and observe the pattern 

of being able to express an integral over an n-dimensional integral as an integral 

(or evaluation) over its (n — 1)-dimensional boundary, provided that the integrand 

is a sort of derivative: 

  

b c=b 

1-30: | F'(x) da = F(x) (Fundamental Theorem) 

241: / n-VxvdA= f v- dR (Stokes’s Theorem) ; 

JS JC : 

3-42: | VivdV = n-vdA (Divergence Theorem) 
JV JS 

where the numbers at the left denote the dimensions n and n — 1. [In fact, the Fun- 

damental Theorem is just a one-dimensional version of the Divergence Theorem, 

where v = F(«x)i and where the region V is a rectangular prism e@X-



  

tending from a@ = ato x = 6 in the x-direction, for then i V -vdvV reduces to 
v 

f F(x) dx times the area A of the end faces at 2 = a and x = 6, and / n-vdA 
IS 

reduces to f(b) — F(a) times A; then A cancels from the left- and right-hand 
sides.| These theorems are especially useful in deriving various field equations 
~ such as the continuity equation of fluid mechanics, the diffusion equation, and 
various Maxwell’s equations. 

In the final section, on irrotational fields, the key result is Theorem 16.10.1, 

which (under the conditions stated therein} expressed the equivalance between v 
being irrotational, the existence of a scalar potential ®, the line integral around ev- 

ery closed loop being zero, and the line integral on an open path being independent 
of the path. 
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Chapter 17 

Fourier Series, Fourier Integral, 

Fourier Transform 

17.1 Introduction 

This chapter is about a number of methods associated with the French applied math- 
ematician Joseph Fourier (1768-1830), methods which will be central when we 

turn next to the subject of partial differential equations in Chapters 18-20. In fact, 
series of trigonometric functions, which we now call Fourier series, were already 

being actively studied — by Euler, Lagrange, d’Alembert, Daniel Bernoulli, and 
others — even when Fourier was born. For instance, d’ Alembert had already given 
integral formulas for computing the coefficients in those series, and various specific 
“Fourier series” had been put forward. Yet, there was considerable debate regard- 
ing the class of functions that could be successfully expanded in such series, and 
various sets of sufficient conditions were slow to appear, the first being given by 
Peter Gustav Lejeune—Dirichlet around 1829. Part of the difficulty was that even 
the meaning of the term “function” was not yet clear or agreed upon. But it is also 
true that mathematical issues were deep and elusive. For instance, in 1873, Paul Du 

Bois-Reymond put forward an example of a function that is continuous on (—7, 7), 
yet has a Fourier series that fails to converge at any point in that interval! Thus, the 
subject of Fourier series has been one of the most fertile in the development of 

modern pure and applied mathematics. 
Although Fourier neither invented “Fourier” series nor settled the outstanding 

fundamental questions, he did use them fruitfully, especially for problems regard- 

ing the conduction of heat in solids, governed by the PDE 

evr = oF 
Ot 

that is derived in Section 16,8 and to which we return in Chapter 18. In claiming 
that an “arbitrary” function could be represented by a Fourier series Fourier over- 
stated the case, and his work was faulted for lack of rigor. Yet he had the insight to 
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see the power of these new methods. His work advanced the use of Fourier meth- 
ods and solidified techniques that would be needed to solve problems in field theory 
and that continue to be developed even today. 

To explain what this chapter is about we ask you to recall, first, the importance 
of being able to expand a given vector in terms of a set of orthogonal base vec- 
tors. Likewise, we will find in this chapter that a given (sufficiently well-behaved) 
function can be expanded in terms of a set of “orthogonal functions.” Fourier and 
his contemporaries did not have vector space concepts available to them but, es- 
sentially, they were seeking sets of orthogonal functions to be used as base vectors 
in an infinite-dimensional function space. That task is much more difficult than 
for finite-dimensional spaces. For instance, if we have n orthogonal vectors in an 
n-dimensional space (where 1 is finite), then they provide a basis. However, in an 
infinite-dimensional space an infinite set of orthogonal functions may, but need not, 
be a basis. For suppose we have an infinite set of orthogonal functions that is a ba- 
sis. If we remove one of them, then we have an infinite number of them left, but that 
diminished set will not be a basis. Further, expansions in an infinite-dimensional 
space are infinite series, so subtle matters arise regarding their convergence and 
manipulation. , 

Fourier series are introduced and developed in Section 17.3, though not from 
a vector space point of view. The alternative, and more modern, vector space ap- 
proach is given subsequently in Section 17.6. By then, the nagging question arises: 
Where does the set of orthogonal functions, which comprise the individual terms in 
a Fourier series, “come from’? Are there other such sets? The answer is provided, 
in Sections 17.7 and 17.8, by the Sturm-Liouville theory. There. it is revealed that 
such sets of orthogonal base vectors are generated as the eigenfunctions of second- 
order differential equation eigenvalue problems known as Sturm—Liouville prob- 
lems. Thus, Sections 17.7 and 17.8 are the function space analog of Section [1.3 
on symmetric matrices. wherein we found that the eigenvectors of a real symmetric 
nm x n matrix provide an orthogonal basis for n-space. 

In Section 17.9 we will let the period of the periodic functions under consid- 
eration tend to infinity, and will find that the Fourier series representation gives 
way to a Fourier integral representation. The Fourier integral gives us, by a mere 
rearrangement, the Fourier transform, in Section 17.10, which is very much anal- 
ogous to the Laplace transform that we studied in Chapter 5. In fact, in the final 
section, 17.11, we show how to derive the Laplace transform from the Fourier 
transform. 

For interesting historical (and mathematical) accounts, we suggest the little 
book by R. L. Jeffery [Trigonometric Series (Toronto: University of Toronto Press, 
(1956)] as well as the historical treatise by Morris Kline [Mathematical Thought 
from Ancient to Modern Times (New York: Oxford, 1972)].* 
  

“Other standard sources include H. S. Carslaw, /atroduction to the Theory of Fourier's Series and 
integrals, 3rd ed. (New York: Dover, 1930), and L. Grattan—Guinness, Joseph Fourier, 1768-1830 

(Cambridge, MA: MIT Press, 1972). 

17.1. Introduction 845
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(a) fh 

(8) 

  

Figure L. Even and odd. 

17.2. Even, Odd, and Periodic Functions 

Before taking up our study of Fourier series, in the next section, we need to define 

even, odd, and periodic functions. 

Let f be defined on an « interval, finite or infinite, that is centered at x = 0. 

We say that f is an even function if 

and an odd function if 

  

  

for all x in that interval. That is, the graph of f is symmetric about 2 = 0 if 

f is even, and antisymmetric about «© = 0 if f is odd. Examples are shown in 

Fig. |. For example, 5,27, 324, cos, sin ja|, and e~®” are even, and x, 3x%, 22°, 

sin vz, and x cos are odd. 

There are several useful algebraic properties of even and odd functions, such 

as the following: 

even + even = even, (3a) 

even X even = even, (3b) 

odd + odd = odd, (3c) 

odd x odd = even, (3d) 

even X odd = odd. (3e) 

To prove (3e), for example, let F(x) be even and let G(x) be odd. Then F(—2)G(—z) 

F(x)[(—G(x)] = -F(2)G(2), in accord with (2). 
In addition, two useful integral properties are as follows. If f is even, then 

  

      

  

    
  

A vA 
| f(x) dz = 2 | f(x) da, (f even) (4a) 
J—A JO 

and if f is odd, then 

a AL 

/ f(e) dx = 0, (f odd) (4b) 
J-A 

for if we interpret the integrals in (4a) as areas (positive above the w axis, negative 

below it), then the area fr. f(x) dx is equal to the fo f(x) dx due to the symmetry 

of the graph of f. And in the case of (4b) the areas Lr, f(x) dx and fe f(x) dx 

are negatives of each other, due to the antisymmetry of the graph of /, and hence 

cancel. 
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Alternatively, (4a) and (4b) follow directly from (1) and (2), respectively. For 
example, if f is odd, then 

“A 0 A 
/ f(a)de= / f(a) da + | /(«) de 
J-A J~A J9 

0 A 
= f(=t) (-dt) + | f(e) dx (a = —t) 

JA J0 
A A 

= | f(-t) dt + f(x) dx 
JQ Jo 

“A A 
= | — f(t) dt + f(e) dx (oddness of /) 

JO JO 
A vd 

co | f(x) dx +| f(a) dx (t = x) 
JO 0 

= 0, (5) 

as stated in (4b). 

Note carefully that a given function is not necessarily even or odd; it may be 
both even and odd, or it may be neither. Every function can be uniquely decom- 
posed into the sum of an even function, say fe, and an odd function, say fy, as 
demonstrated by the simple identity 

; fe)+fl-«) , fle) f(-2) 
f(x) = 5 + 5 

= fle) + fle), (6) 

for observe that 

\_ fee) = fC) f(a) = fx) . 
fo(—«) = 5 = 5 = — fo(x) 

and, similarly, that fe(—x) = fe(2). — ay 

| cosh:x 

| oN 
EXAMPLE 1. Surely f(z) = e* is neither even nor odd. since (Fig. 2) it is neither Toa 

symmetric nor antisymmetric about « = 0, Putting f(r) = e* and f(—x) = e7" into (6) ° 

gives 
ot g Te ait _ oe < , 

fela) = and f(a) = —— vin 
“ - Sn Sa a 

as the even and odd parts of e*. respectively. In fact, we recognize these functions as cosh « : 7 Q 2 
Xv 

and sinh w, so it is interesting that we can think of coshw and sinh: as the even and odd 

parts of e”, respectively. ff 

Notice that (6) is reminiscent of other decompositions that occur in mathemat- 

ics, whereby a mathematical object (such as a function, matrix, or vector) is broken 

Figure 2. Even and odd parts 
x 

of e”.
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-4 -1/8 34 78 
| 

LT 

Figure 3. Periodic function f. 

into the sum of two complementary parts. For instance, every square matrix can be 

expressed as the sum of a symmetric matrix and a skew-symmetric matrix (Exercise 

6, Section 10.3), every vector in 3-space can be expressed as the sum of a vector 

along a given line and a vector perpendicular to that line, and every C' vector field 

can be expressed as the sum of an irrotational field and a solenoidal field (Exercise 

10, Section 16.10). 

Next, suppose that for a given function f there exists a positive constant 1’ 

such that 

I(a+T) = f(@) (7) 

for every x in the domain of f. Then we say that f is a periodic function of x, with 

period 7°. Sometimes we say that f is T-periodic. 

EXAMPLE 2. For example, sin x is periodic with period 27 because sin (a + 27) = 

sina cos 27 +sin2rcosz = sing foralla. 4 

In graphical terms, one can think of the graph of a periodic function f as 

generated by stamping it out one period at a time, as with an inked woodblock. 

EXAMPLE 3. The function f shown in Fig. 3 is seen to be periodic with period T = 4, 

for if the segment BC'D, for instance, is “stamped out” indefinitely to the right and left we 

generate the graph of f. There is nothing special about choosing the segment BCD for 

this purpose: ABC, or any other segment of length 4, would do as well. a 

Notice that if f is periodic with period T, it is necessarily periodic with period 

27, 37, 4T,... as well. For example, f(#@+2T) = f(e4+T)+T) = f(xt+T) = 

f(x), so that f is periodic with period 27. Of all these possible periods, if there 

exists a smallest one, that period is called the fundamental period. Thus, sin x (in 

Example 2) is periodic with period 27,47, 67,..., and its fundamental period is 

Qn: f in Example 3 is periodic with period 4,8, 12,..., and its fundamental period 

is 4. 
In contrast, observe that if f(a) = constant, then f is periodic and every T > 0 

is a period. Thus, there exists no smallest period, so f does not have a fundamental 

period. 

Closure. Even, odd, and periodic functions will be basic to our study of Fourier 

series. to follow. The defining properties are (1), (2), and (7), respectively. 
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EXERCISES 17.2 
  

1. (a) Prove (3a). 

(c) Prove (3c). 

(b) Prove (3b). 

(d) Prove (3d). 

2. Provide a proof of (4a) that is analogous to the proof of (4b) 

given in (5). 

3. Prove that 

(a) f is both even and odd if and only if it is identically zero 

(b) if f is even (and integrable), then f(z) = Jo f(t) dt is 

odd 

(c) if f is odd (and integrable), then F(a) = Io f(t) dt is even 

(d) if f is even (and differentiable), then f(r) = df /da is odd 

(e) if f is odd (and differentiable), then f(z) = df/dz is even 

4. Prove the decomposition formula (6). HINT: Start with 

f(v) = fe(w) + fo(x) and change x to —2x, 

5. Determine f,() and f,(x). Is f even? Odd? Neither? 

(a) 2 ~ 5a (b) sin (a + 2) 
(c) v/(2? +2 +3) (d) ven" 
(e) a/(x + 2) (f) x? cos (a°) — 8 
(g)ait+a%tatte+1 (h) In (1 + 2?) 
(i) ew 28in (j) sin (sin x) 

(k) cos (sin z) ()e~*/(a* +1) 

6. If f° is even and G is odd, show that 

(a) 1/F (x) is even (b) L/G(x) is odd 

(c) F(G(a)) is even (d) G(F(r)) is even 

7. Show that if f is odd. then it is necessarily true that 

f(0) = 0. 

8. Let f be even (and not identically zero), and let g be odd 

(and not identically zero). If f and g are defined on a common 

interval, show that f and g are necessarily linearly independent 
on that interval. 

9. Show that if f(r) = 

we can equate even and odd _ parts: 

fo(x) = go(x). 
10. Show that if f is even and g is odd. and f + g = 0 (over a 

common 2 interval), then f(a) = 0 and g(a) = 0. 

g(x) (over a common x interval), 

fe(w) = g(x), and 

11. Determine the fundamental period in each case. Also, 

draw the graphs of f, and fo. 

(a) 

  

  

(b) 

  

  

(d} 

    
-2 1 | 2 3 Xx 

12. Determine whether or not the given function (defined on 

—oo < @ < 90) is periodic. If itis, find its fundamental period 

(if it has one). 

iv (a) at 

(d) sin (wx + @) 

(g) tan x 

(b) e* 

(e) cos 62 

(h) sinhz 

(k) sin? x 

(n) sinh (cos 27) 

(q) sin (87 cos 2) 

(t) cos [2'| 

(c) e7 

(f) sin 22 

(i) cosh az 

(1) sin x cos 22 

(0) sin (sin x) 

(r) sin (sin 427) 

(u) esin ge 

(j) cos? x 
(m) esin 3a 

(p) cos (sin z) 
(s) sin [a] 

13. The following functions are periodic. Determine the fun- 

damental period in each case. (The a,,°s and 6,,’s are nonzero 

constants.) 

(a) @g + ay Coser 

(b) ag + ay cosa + ao cos 2a 

(c)6cosx — 4sin 3x 

(d) cos 5a + sin 5 

(e) ag + a, cos + 6; sine + a2 cos 2a + be sin 2x 

TL Tre 
(gag to, (a, cos + 6, sin =)
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14. Show that if f is periodic with period 7’, then 16. Let f(z) = 1 whenever « is rational, and let f(z) = 0 

. . whenever 2 is irrational. Show that f is periodic with period 

“ ATE T where T is any (positive) rational number. (Thus there exists 

f(t)da= f(a) dx aneriad eo f does 4 fande 5 
0 JA no smallest period, so f does not have a fundamental period.) 

Is it also true that f is periodic with period 1, where T’ is any 

for any finite value of A, (positive) irrational number? Explain. 

15. Show that if f(2) is periodic with period 7, then 17. Show that if f is periodic with period T, then g(f(z)) is, 

(a) so is its derivative f’(x) too. Give two examples. 

(b) so is its integral [> f(¢) dé, if and only if fo f(t) dt =0 

  

17.3. Fourier Series of a Periodic Function 

17.3.1. Fourier series. Recall that if f(x) is infinitely differentiable at a point 

x = a, then it has a Taylor series about that point, 

TS f 

  

2 p(n) 
= Ss" pte) (@) (a -a)". (1) 

a n=0 ni 
w==a. 

For that series to be useful, we need two things. First, we need it to converge on 

some interval F. Second, if it does converge on J, then we need its sum function to 

be the same as the original function f(x).* If that is the case, then we say that the 

represents f on J, and we can write 
c=a 

Taylor series TS f 

  

p(n) (, 
f(e) = Ss” pra (x — a)” (2) 

n! 
n=0 

on J. We know from experience that Taylor series representations are useful in 

many ways. 

Similarly, there are other types of representations that are useful as well. In 

this chapter we are concerned with the representation of periodic functions, not by 

Taylor series but by trigonometric series, that is, by series of the form 

OO 
NTE Tre 

ag + S- (an cos TT + by sin | . (3) 

nse ° 

First, observe that (3) is a periodic function with fundamental period 2€. To see 

this, note that (3) is a linear combination of the functions |, cos (wa/¢), sin (wa /€), 

  

| 

“For instance. we saw in Example 2 of Section 13.5 that it is possible for TS f to converge, 
Poca 

but not to f(x).
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cos (27a/€), sin (27/0), and so on, and that these functions are periodic with the 
following periods: i 

  

  

Ll: arbitrary, (4a) 

COs - and = sin - : 28,46, 60,86,..., (4b) 

On 20 
COs ms and sin : €,26,36@,48@..., (4c) 

one Barr 2 4€ —— 8é 
cos — and = sin — : 33° 2e, Fes (4d) 

and so on. The smailest period shared by all the terms is 2€ [underlined in (4)], so 

the fundamental period of (3) is 2@.* Thus, perhaps the trigonometric series (3) can 
be used to represent periodic functions of period 2¢. (When we say of period 2¢, 
we shall mean of fundamental period 2¢.) 

Specifically, if f(a) is periodic, of period 2, then we define the Fourier series 
of f, say FS f, as 

  

    
  

  

  

~ nea NTE FS f =¢ (an cos “* + bn sin“) , Sa f wt Gp COS 7 + by, sin 7 , (Sa) 

where the coefficients are given by the Euler formulas 

lg == = x) dx, lo = 5 , f(x) dx 

1 fe. NAL 
On = 5 | f(x) cos 7 dx, n=l,2,... (5b,c,d) 

my —f 

1 f° UI: 
by = = f(x) sin mais dx, n=1,2,... 

E foe     
  

and are known as the Fourier coefficients of /. 

For FS f to represent f we need the series to converge, and we need its sum 
function to be the same as the original function f(a). Various theorems are avail- 
able, that give sufficient conditions on f for FS f to represent f. One such theorem, 
that is easily applied and which covers the vast majority of periodic functions that 
arise in applications, is as follows. 

  

THEOREM 17.3.1 Fourier Convergence Theorem 

Let f be 2€periodic, and let f and f’ be piecewise continuous on [~¢, é]. Then 
  

“Actually, the fundamental period of the function (3) may be less than 2@. For example, if all the 

coefficients except for ag are zero, then the fundamental period is 28/3. Thus, we should say that (3) 

is always periodic with period 2@, its fundamental period is at most 2¢, but may be less. 

‘For proof of a slightly stronger version of Theorem 17.3.1, see R. V. Churchill and J. W. Brown, 

Fourier Series and Boundary Value Problems, 3rd ed. (New York: McGraw-Hill. 1978). Sec.41.
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the Fourier series given by (5) converges to f(a) at every point x at which f is 

continuous, and to the mean value [f(a-+) + f(«—)}/2 at every point 2 at which f 

is discontinuous. 
  

Piecewise continuity is defined in Section 5.2. By f (a+) and f(a—) we mean 

the right- and left-hand limits of /, 

f(v+)= lim f(a+h) and f(a-)= him f(z —h), (6) 
b> h~> 

where  — 0 through positive values. [If f(e+) = f(a—-) = f(a), then f is 

continuous at xz, otherwise it is discontinuous there. | 

EXAMPLE 1. Square Wave. Consider the “square wave” f shown in Fig. 1, where 

  
  

f ‘(a) is defined as 2 atc = 0,+7,+27,..., as indicated by the heavy dots. Since the 
? } 3 y y 

4 period referred to in Theorem 17.3.1 and in (5) is 2é, and the period is seen from Fig. | 

| to be 27. it follows that @ = 7. Both f and f’ are piecewise continuous on [~7, 7], So 
| | 

Pp 

*t ' the theorem applies. Let us use (5) to work out the Fourier series of f and examine its 

| convergence to the square wave f using computer plots of the partial sums of the series. 

at 0 aes First, (Sb) gives 

Figure 1. Square wave. 1 f° 1 {” 
a= = t) dx = — (x) dx =p felde= [fe 

Te 1 0 

at | jor Jo 

Actually, ay = 2 could have been seen by inspection because the right-hand side of (5b) is, 

by definition. the average value of f over one period and, from Fig. |, we can see that for 

our square wave that average value ts 2. 

Next, 

1 f* 1 Lf" 
Gn = i | f(x) cos dz = - | f(z) cos na dx 

0 

  

W dor 

1 = 4sinne |” 
= | 0 dz +| 4 cosnz ae] = ae = 0 (8) 

wT \ Jae 0 nr |g 

since sinnaz = 0 and sin0 = 0. Finally, 

1 f° LTE 1 f* 
by = | f(«)sin we de = = | f(x) sin na dz 

l foe € Top og 

1 0 wT 4 

= — / Oda + | 4 sina as] = —-(1—cosnm). (9) 
Wf ox Jo nT 

We can leave (9) as it stands, but it is best to note that cosn7 = (—1)", so that we can 

reduce (9) to 
8 

4 1 —, n=l,s, 
by = — fl (- 1)" = 4 ne (10) 

mn 0, n=2.4, 
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Thus the Fourier series representation of f is 

  

fey =24 2 ts (11) Ma) = 24+ — — sin ne 
T hod 7 , 

1,3... 

where “1, 3,...” tells us to omit the terms corresponding ton = 2,4,.... [f preferred, (11) 

can be expressed, equivalently, as 

oo 

sin (2n ~ le 
(x (12) 
Ie) iw to 2n-1  ? 

with ey denoting the usual summation over n = 1,2,3,.... 

Observe from Fig. | that the defined values of f(a) at the jump discontinuities (2 = 

nm) coincide with the mean values [f (a+) + f(«—)|/2 = 2, so Theorem 17.3.1 assures us 
that (12) is indeed an equality for every value of a. 

Is it not remarkable that a linear combination of sines and cosines, each of which 

is beautifully smooth (infinitely differentiable for all 2, i.e., of class C’°), can sum toa 

function with jump discontinuities? To obtain insight as to how this convergence to f is 

accomplished, it will be illuminating to plot some of the partial sums of the series. Writing 

out (12) as 

  

8 8 
fle) =2+ 2 sine + sinba4 > sinde te, (13) 

wT on om 

we define the partial sums of the series as 

  

sy(v) = 2, 

gg, 
so(v) = 2+— sina, 

T 
8 8 

$3(2) = 2+ —-— sine + sin 3z, 3(2) - tS sin 32 

and so on: that is, ¢,y(x) is the sum of the first V terms. 
We see from Fig. 2 that although the first partial sum s,(2c) is merely a constant it 

“does the best it can” by equalling the average value of f. If we are to provide the needed 

correction to ;(a) we need to pull it up on the right and push it down on the left, as 

I So (x \ " (x) _ Sa (vx) 
a 

  S| (x ) 

  

  

  
Figure 2. The first few partial sums.
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Xx) 

8204) 

  

      

  

n
o
e
 

Figure 3. Gibbs phenomenon. 

  

      

f 

i 
| 
| 

x 0 rt 2 

Figure 4. Modified f. 

indicated by the broad arrows in the figure. A sin x term can accomplish that (a cos « term 

is not appropriate since we need an antisymmetric correction, not a symmetric one) and an 

amplitude a bit greater than 2 seems optimal. That correction is precisely what is provided 

by the second term in the series, so s2(z) begins to take on the desired shape. To correct 

s9(x), in turn, we need to push it up and down according to the six thin arrows. Such cor- 

rection dictates the need for a third sine harmonic, and such a term is indeed forthcoming 

as the third term in the series. By adding more and more terms of the series, the graph 

comes closer and closer to the square wave f. Observe also that the graph of every partial 

sum passes through the mean value 2 at each jump discontinuity, which result is also clear 

from (12) since sin na = O for each n. 

Next, consider the graph of s(x) for larger N, for instance for N = 20 (Pig. 3). As 

zx increases from zero, s(x) rises sharply from the mean value 2, overshoots the value 

4, and settles down close to 4 — until z approaches 7, where the same sort of overshoot is 

followed by a steep descent to the mean value 2 at « = 7. By periodicity, these results 

repeat over each period. 

Strangely, the overshoot does not diminish as N increases. For instance, the peak 

values of s(x), s4(x), and s99(z) are 4.548, 4.376, and 4.360, respectively, and it can be 
shown that the overshoot approaches a limiting value of around 9% of the jump (the jump 

is 4, so 9% of 4 is 0.36) as N > oo. This persistent 9% overshoot occurs not only in this 

example but in the Fourier series representation of any function with a jump discontinuity, 

and is known as the Gibbs phenomenon.* 

In view of this overshoot, one may well wonder how convergence to the square wave is 

attained, for are there not always z locations at which the error is around 9% no matter how 

many terms are summed? The key point is that when we say that lim yo v(x) = f(x) it 

is N that is varying; z is fixed. Picking any x point (Fig. 3), as close to the origin as we like, 

as N is increased the overshoot “spike” eventually moves to the left of z, and subsequent 

values of s,(x) do settle down and converge to f(x). Nonetheless, the Gibbs phenomenon 

is of great practical importance because it implies that the convergence of Fourier series 

may be painfully slow (and expensive) in the vicinity of a jump discontinuity! 

COMMENT |. We have already noted that the Fourier series of the square wave f(x) 

shown in Fig. | converges to f(x) at every point x. Suppose, instead, we define f as shown 

in Fig. 4. That is, the modified f is O ata = 0,2, tdq,...,itis4atz = t7,+87,..., 

and it is 10° (not shown to scale) atz = %,—82,5,-—4,.,.. The Fourier series of the 
modified f, say fmoq, will be identical to the Fourier series of f, because the Fourier 

coefficients are computed, according to (5b,c.d), by integrals, and changing the value of 

the integrands at a number of isolated points does not change the value of those integrals. 

  

  

* Josiah Willard Gibbs (1839-1903) was one of the first important American mathematical physi- 

cists, and is especially well known for his work on vector analysis and thermodynamics, The Gibbs 

phenomenon was noted by Gibbs in 1899 (Nature, Vol. 59, p. 606) and explained in 1906 by Maxime 

Bocher (Annals of Mathematics, Vol. 2, No. 7, p. 81). 

* When studying infinite series in the calculus one learns to classify series as convergent or di- 

vergent, with the implication that convergent series are “good” and divergent series are “bad.” Prac- 

tically speaking, however, a series may converge ~ but so slowly as to be almost worthless. Thus, 

interest exists in developing acceleration techniques that permit us to transform a given slowly con- 

vergent series into a more rapidly convergent one. For a numerical technique to suppress the Gibbs 

phenomenon, see Forman Acton, Numerical Methods That Work (Washington, D.C.: Mathematical 

Assn. of America, 1990). 
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Thus, the Fourier series of finoq will converge to fimoa() for every point « except points 

such as x = 0, 5, and 7, where it will converge to 2, 4, and 2, respectively. Such pointwise 

discrepancies will cause no problem in applications. Thus, from this point forward (except 

in the exercises to this section) we will not bother to show the heavy dots, as we did in 

Figs.! and 4, and will simply show these graphs as in Fig. 5. @ 

Thus far, the concepts of even and odd functions, introduced in Section 17.2, 

have not been used here. Suppose now that f is an even 2€-periodic function. Then 4 — 
the integrands f(v) and f(x) cos (nwa/€) in (Sb) and (Sc) are even functions, and | 

  

the integrand f(a) sin ( ine) in (Sc) is odd, so these Euler formulas simplify to       

  

i 1 5 . 
w= / ft dus a "se pr) da, oe 38 * 

Figure 5. No circles or dots. 
Lr 

On = 7f. fi t) cos uae dz = 7 a f(x) ) cos da, (14) 

  “dz =0. at fn f(z sin — 

Observe that only the constant and cosine terms survive, there being no need for 
sine terms in _— an even function. Similarly, if f is odd, then 

ag = 54 ff fle)\dz = 

  

    

1 n€ LTT 

in = = f(a) cos vas dx = 0, (15) 
( Je 

1 f' nT: 2 /¢ rr 
by = = _fe :) sin ee die = ~ | f(a) sin une dx, 

é é & Jo 

and the constant and cosine terms drop out. 

More generally, / is neither even nor odd. The constant and cosine terms in the 
Fourier series of f(x) represent the even part f(z), and the sine terms represent 

the odd part f(x). That is, 

  
~ NTL NTL f(x) = lao + » yn COS ——— do by sin (16) 

= fe(x) + hal. 

and 

fel(a) = do + y (pn, COS —, (17a) 

  fola “>. by, sin un (17b)
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-10 -6 -4 4 6 tO /s 

Figure 6. f in Example 2. 

  

   Ve 

7. Fourier Series, Fourier Integral, Fourier Transform 

EXAMPLE 2. Let us work out the Fourier series of the periodic function f, the graph 

of which is given in Fig. 6. Its period is 16, so € = 8. We can compute ag by (5b), but we 

can see from the figure (dividing the net area over one period by 16) that the average height 

is ~+ SO (ig == i. Further, we see that f is even, in which case (14) gives b, == 0 and 

ak 

dn = os - —— * de [F() 008 de = Sf se fle 
vd 28 ; ~- 

I (2 — a) cos ne de ve (a ~ 6) cos eee de + | 0 cos “= dx 
0 8 4 8 6 8 

5 sin (nara /8) 

“  nr/8 d
e
p
 

d
e
p
 

ee
 

s
e
l
 

4 
Nee nnn | nee | 

+ —— sin —— 
8 ~ (nr/8)? (cos “8 8 0 

1 nro nnte , are _sin ( sin (nta/8) 
+ —— sin ——- } - 

1 

+] ae (cos = 8 8 nn/S 

16 1 3 
=— ba 20g + cos OE . (18) 

2 4 

3nTr 

nea? 

1 — 2cos un + 1 16 foo) om 2 ‘ 2 cos a TL 

Me) = 34 ” A Th 

  

  

Thus, 

with the equality holding for all 2, without exception. 

COMMENT. In Example | we simplified sin nm and cos nm as 0 and (~1)", respectively, 

but the cos (nw/2) and cos (3na/4) terms in (19) are trickier (depending on n, cos (na /2) 

takes on the values 0, £1, and cos (37/4) takes on the values 0, 1, +y/2/2), so we will 

leave them intact. 

Recall from the calculus that the p-series, 

oO 
1 

ars 
1 

(20) 

converges if p > 1 and diverges if p < 1, the borderline divergent case ofp=1 

corresponding to the harmonic series 

i 
y _, (21) 

n 
| 

Further, you may recall that the alternating harmonic series 

rh 

(22)   

ee 

x 
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is convergent — barely convergent in that it converges extremely slowly,” and is 
only conditionally convergent rather than absolutely convergent. The Fourier se- 
ries (11) is similar to the alternating series (22) and, like (22), converges “by the 

skin of its teeth,’! which result should not be surprising since ({1) amounts to the 

representation of a function having jump discontinuities in terms of a collection of 
infinitely smooth sines. The function f in Example 2 is better behaved in that it is 
continuous and, sure enough, the coefficients in (19) die out faster, proportional to 
1/n*. That pattern persists: as we consider periodic functions that are better and 
better behaved (C°, C', C®,...) we find that their Fourier coefficients die out (as 

” —» co) more and more rapidly. In general, if a periodic function is CY, we can 
expect its Fourier coefficients to tend to zero at least as fast as 1/n%+?.+ As an 
extreme case, observe that the periodic function f(a) = 5 sin 3a, say, is infinitely 
smooth (1.¢., it is of class C'°°), and its Fourier coefficients do tend to zero infinitely 

fast. That is, its Fourier series is simply one term, FS {5 sin 3c} = 5sin 3x. 

17.3.2. Euler’s formulas. We chose to state the Fourier convergence theorem 
and to move quickly into examples to solidify the Fourier series concept. Now let 
us back up and show where Euler’s formulas (5b,c,d) come from. Accepting that a 

(sufficiently well-behaved) 2¢-periodic function f can be represented in the Fourier 
series form 

f(x) = a9 + 2 (a cos = + by, sin =) . (23) 

we focus attention on how to compute the coefficients ag, an, and b,. We will need 

the following elementary integral formulas: 

    

“e MAL NTL 0 men dba LAL 

/ COs a cos > dx = & m=n#0 (24a) 

yn 22 ma=n=0 

ae VEL nee 
/ sin as sin - da = 0 m xn (24b) 
J-é e é € m=n#0 

é mre . NTL . 
i COS — sin TT dx =0 for all m,n. (24c) 
—f C LC 

where rm and n are integers. The three zero results in (24) are due to cancellation 

of positive and negative areas; the two nonzero results, in (24a) and (24b), occur 

when mm = n, in which case the integrands are squared quantities and no such 
cancellation can occur. 
  

"For three-significant-figure accuracy we need to sum around 10° terms: for six-significant-figure 

accuracy we need around 10° terms, and so on. 

The 1/n decay, in (22) and (11), is not enough to induce convergence. Rather, these series 

converge (according to the Dirichlet test) because (—1)" and sin nx have bounded partial sums: that 

is, there exist finite numbers A and B such that | 37%, (—1)"| < A and | Ne sinna| < B for 
all N’s, no matter how large. 

*See, for instance, H. S. Carslaw. Fourier Series (New York: Dover, 1930), pp. 269-271, 
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For definiteness, let us solve (23) for a. To do so, multiply both sides of (23) 
by cos (27a/£) and integrate over one period. That step gives 

  

    

  

n€ Qa . of 9 5 :_ mar arp wo NRE | | nme 20x 
/ f(2) cos da = | ag + (an cos ——- + 6, sin —) cos -——~ da 
Je é ft mnt é é é 

e 2nKx “e WL 21xe 
= (19 cos ——— dia + ay COS ——— COS —— dx 

—£ é Je é e 

Core 26x “e 2TH Qn 
+b, sin —- cos —— dz + ag cos ——— cos —— dx 

Jt f f J 6 t é 

6 One 2n4e STL 2nar 
+69 sin —— cos ——~ dz + ag COS ———~ COS ~~ Ae 

Je e e fe E £ 

=04+0+0+a.f4+040+--- 

sO : 
1 ff, Ine 

a2 =F | f(x) cos ~ da, (26) 
Je : 

where the zeros following the third equal sign follow from (24a,b,c), and the azé 
term follows from (24a) with m = n = 2. [The first zero follows from (24a) with 

m = 0 and n = 2.] More generally, to solve for a, multiply (23) by cos (n7a/@) 
and integrate over one period: to solve for b,, multiply by sin (naa/é) instead, and 
to solve for a9 multiply by 1 instead. These steps, with the help of (24), give the 

Euler formulas (5b,c,d). 

The interchange in the order of summation and integration, in the second step 
in (25) needs justification, but we will postpone discussion of such technical points 

until Section 17.5. 
There is a strong analogy between the calculation of the coefficients c, in the 

expansion 
N 

Voz S- Cen (27) 

n=l 

of a vector v in an N-dimensional vector space. in terms of an orthogonal basis 
{e,,...,ey}. To solve for cg, for instance, we take advantage of the orthogonality 

of the basis vectors, and dot both sides with e2. That step gives 

  

veo = cyey, eo + cpen: eo + CRe9-° Co +--+ + ONeN CD 

=O0+ cme9:e9 +0+---+0 

= Cg€9:€9, 
(28) 

50 

a= (29)
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and similarly for ¢1,¢3,¢4,...,¢y. In fact, in Sections 17.6 and 17.7 we will take 

another look at Fourier series from exactly that point of view. There, we will under- 
stand (23) as the expansion of a vector / in an infinite-dimensional function space in 
terms of the base vectors 1, cos (wa/€), sin (ra/€), cos (27a/),sin (2Qra/),..., 
which are orthogonal by virtue of equations (24); in fact, (24) are often called or- 

thogonality relations. 

17.3.3. Applications. Fourier series are indispensable in our study of PDE’s (par- 
tial differential equations) in the next three chapters. Here, we give two applications 
to physical systems that are governed by ODE’s and subjected to periodic forcing 
functions. Our approach will be formal, by which we mean that although we be- 
lieve the results to be correct, we will not rigorously justify all of the steps involved 

in their derivation. 

EXAMPLE 3. Periodically Driven Oscillator. Consider the driven mechanical oscillator 
shown in Fig. 7 and governed by the differential equation of motion 

ma” +cx +kha = F(t), (30) 

where m,c,& are the mass, damping coefficient (associated with some combination of 

viscous damping due to a film of lubricating oil between the mass and the table, and air 

resistance), and spring stiffness, respectively. Let m = 1 kg, c = 0.04 kg/sec. and & = 15 

kg/sec?, and let /(t} Gin newtons) be as shown in Fig. 8. £ consists of an endless 

sequence of pulses. each having unit area (except the first, which is only a “half pulse”). In 

mechanics, [2 F(t) dt is the impulse delivered by the force F between times f; and t2, so 

F consists of a periodic sequence of unit impulses. of period 27. Thus. € = 7 in (5). Even 

though the starting time ist = 0. so ¢ > 0, we can think of J as the extended function 

shown in Fig. 9, which is even. Thus, if we expand J’ in a Fourier series we have, for its 

coefficients. ag = average value = 1/(27), 6, = 0 because fis even. and. from (14), 

  

  

2 f" 2 f° 1 sin na 
ln = — i F(t) cosnt dt = — | — cosntdt = . (31) 

mw Jo Rig 2a nia 

Thus, (30) becomes 

” 4. O.0de! + 15a Lo y > Sinn ; (32) 
vw’ +0.04e" + 15a = = + cos net. 32 

27 ora 

Recall, from the general theory in Chapter 3. that if 

L(t) = fi to + fn, (33) 

where £ is shorthand for a linear second-order differential operator, then the general solu- 

tion of (33) is of the form 

a(t) = Cytpr(t) + Cotne(t) + Upi(t) +--+ + tpn (t), (34) 

where C',, Cy are arbitrary constants, r,, and vp are linearly independent homogeneous 

solutions. and @py,.... 3 Cpx are particular solutions corresponding to the forcing functions 
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Figure 7. Forced mechanical 

oscillator. 

om 2 ee 

a 2a dx t 

Figure 8. Forcing function F. 

  

  

Figure 9. F is even,
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fi,-.-, fn, respectively. If two initial conditions are prescribed, they enable us to deter- 

mine Cy and Cy. 

In the present example a), and wp, are oscillatory, but with a slow exponential decay 

due to the 0.042’ damping term in (32).* As ¢ > co those terms decay to zero, leaving 

us with the particular solution as the steady-state response. Let us limit our attention to 

finding, and discussing, the steady-state response. 

Our plan is to find a particular solution corresponding to each forcing term on the right 

side of (32), using the method of undetermined coefficients, and then to superimpose those 

solutions, as in (34), Consider 

xv’ + 0.040’ + 152 = cos nt, (35) 

and seek x, in the form Acosnt + Bsin nt. Putting that form into the left-hand side of 

(35) enables us to solve for A and B, and we obtain 

. 1b =—n? / 0.04n . 
tp(t) = egy C08 NE oo es Sin nt. (36) 

(15 — n?)? + 0.0016n" (15 ~ n7)? + 0.0016n- 

Further, we find that a particular solution corresponding to the 1/2m foreing term in (32) is 

xp(t) = 1/307, so the desired steady-state response is, by linearity and superposition, 

  

1 =. sin na 15 —n2 
a(t) = — 

+ - : 

10 Som * 2 nna lis 2 F 0.0016 " 

0.04n 

sony be o.bolen2 BM: 37 
"Tis — 22 + 0.0016n2 | (37) 

Choosing a specific value for a, we can use (37) to compute «(t). However, for purposes of 

understanding it will be useful to express the square-bracketed term in (37), equivalently. 

in the form A, cos (nt + @,). where the amplitude A,, and the phase ©, are 

I 0.04n 
A, = —== and ob, =tan7! (5 |. (38) 

J/(15 ~ n?)? + 0.0016n2 n? — 15 

Let a = 7/8, say. Then, using (38) we can write out (37) as 

v(t) = 0.0106 + 0.0222 cos (t ~ 0.0029) + 0.0261 cos (2t — 0.0073) 

+0.0416 cos (34 — 0.0200) + 0.2001 cos (dt + 3.3002) 

+0.0150 cos (St + 3.1616) + ---. (39) 

Consider the terms on the right-hand side of (39). The first, 0.0106, is the response to 

the 1/27 forcing term in (32), the second is the response to the n = | term in (32), the third 

is the response to the nm = 2 term in (32), and so on. Observe that if we ignore the 0.042" 

damping term in (35) then the natural frequency of the oscillator is 15 and that the cos nt 

forcing function comes close to that natural frequency when nm = 4. Sure enough, the n = 4 

term in (39) has by far the largest amplitude, 0.2001. Observe further that the phase @, is 

rather small for n < 4. That is, the response term is almost in phase with the forcing term 

  

“Tf this sounds unfamiliar we urge you to review Section 3.5. 
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~ because the damping is light. However, for n > 4 the @,’s are approximately m. That is, 

when the frequency of the forcing terms exceeds the approximate natural frequency J15 

the phase increases to around 7, so that the response is around 180° out of phase with the 

forcing function.” 

Plotting the steady-state response «(t), given by (39), in Fig. 10, we can see how the 

response is dominated by the 0.2001 cos (4t + 3.3002) term, as discussed above, Observe 

that it suffices to plot 2() over any 27 interval since it is 27-periodic. 

COMMENT |. Why did we expand F(t) in a Fourier series? That step gave us I(t) as 

a linear combination of elementary functions, the response to each of which was readily 

found, with the total response then built up by superposition. Alternatively, the Laplace 

transform method would also have been convenient. (See Exercise |7 for other ideas.) 

COMMENT 2. We stated that our solution would be formal rather than rigorous, The point 

that we did not justify is as follows. The expression (34) satisfies (33) because 

N 

L{z| = L | Cyta, + Citp2 + y Lon 

1 
N 

= Cy Dian) + Collins) +L Ss) Lpn 

1 
N N 

1 1 

However, in the present case NV = 00, so the step 

L by Lon | = s L [tpn] (41) 

Lt 1 

amounts to an interchange in the order of two limit operations. the derivatives in Z and the 

infinite series. The validity of such interchange will not be covered until Section 17.5. 

COMMENT 3. Two limiting cases are of interest (and are available to us because we left a 

as a parameter). As a ~+ 7, F(t) tends to the constant 1/27. In that case the series in (32) 

vanishes and the steady-state response is simply 2(£) = 1/307. More subtle is the case 

where a -> 0 since then F(t) becomes a sequence of hammer blows, each imparting unit 

impulse. Discussion of this case is left for the exercises. 

COMMENT 4. The electrical analog of the forced mechanical oscillator, governed by (30) 

and shown in Fig. 7, is the equation 

. - 1. 
LQ" + RQ! + CG Q= E(t) (42) 

governing the circuit shown in Fig. Ll, where @(t) is the charge on the capacitor. @ 

  
“See Fig. 2 in Section 3.8. To understand the present example you may need to review both 

Sections 3.5 and 3.8. 

A a . . o. 
:  Jorcing function, F(t) 

response, x(t) 

  

Figure 10. Steady-state response. 

  

Figure L1. Electrical analog.
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EXAMPLE 4. Infinite Beam on Elastic Foundation. Consider an infinitely long beam on 
an elastic foundation, sketched in Fig. 12, The constant & is called the foundation modulus 

(i.e., the spring stiffness per unit z-length) and the square wave w(x) is a prescribed peri- 

odic loading (force per unit length).* Physically, the beam might be a train track, with the 

elastic foundation used to model the track bed. We wish to determine the vertical deflection 

u(x). 

, Wo hewtons / meter 
      

                            
  

  

   
  

        

u(x) I enna 

EEL OL LE EL OE EEE EE LEE EEE EEE EEE EEE 

  

Fa < 

‘ PPO OLE LOL L EP ELE EO EE ELE EEE EL EE EEE EEE ELVES   i“ 

Figure 12. Infinite beam on elastic foundation. 

According to the classical Euler beam theory! the deflection u(x) resulting from a 

load distribution p(x) newtons per meter satisfies the fourth-order differential equation 

Ellul” = p(x), (43) 

where & and I are physical constants of the beam; EI is called the flexural rigidity of the 

beam (and is considered here as a known constant) since wu”, and hence the deflection wu, 

is inversely proportional to ET. Now p(x) is the ner loading and consists of the applied 

periodic loading w(a) downward and the spring force Au(ax) upward. (We neglect the 

weight of the beam, for simplicity.) Thus, p(x) = w(x) — ku(az), and (43) becomes 

El + ku = w(2). (44) 

This problem is similar to the preceding one in that they both involve differential 

equations with periodic forcing functions, but in this case the independent variable is x 

and the interval is -co < @ < co. As in Example 3, we begin by expanding the forcing 

function in a Fourier series, 

IO . 

Wo  2wo sin (na/2) NIX 
wie) = — +— ) a COS (45) 

(«) 2 nm n 2a n= 

Rather than find the response to each forcing term and adding them up, let us use a slightly 

different procedure (which could have been used in Example 3 as well). Namely, anticipat- 

ing that u(a) will be an even periodic function, of the same period as w(x) (Le., 4a), let us 

seek u(x) in the form 

(46)   

OG 

u(x) = a9 + > Gp COS 

TL 

nee 

2a” 

  

*That is, the downward load between any points x; and a2 (> x1) is fee w(x) dx. 

‘See, for example, S. Timoshenko, Strength of Materials, Part { (Princeton, NJ: D. Van Nostrand, 

1955).
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Formally differentiating (46) termwise four times, putting this result and (45) into (44), and 

formally equating coefficients of each cosine harmonic gives 

  

    

w 
kag = Z (47) 

and 
21 nin . k in = 2Wo sin (nn /[2) (48) 

16a4 W n 

* (nm /2) Wo 2Wo sin (na /2 ow, , 
ed peo a nm 1 49 

“on OR? nw nlBI (n't /16a*) + &] (n 21) (4) 

Thus we have the formal solution 

wo Sei — sin (nw /2) NTE 
Lu) :08 —— 50 

ue) ht y n( BInint + 16atk) 8 a (39) 

COMMENT |. It is striking that the terms in the series die out so rapidly, proportional to 

1/n° as n + 00, so that we can expect merely the first couple of terms of (50) to give a 

good approximation to w(x), 

Wo 32woat TX 
— + —___—_——. cos =. 51 
2k r (7 °° GH u(z) = (BI + (atk) °°” 2a 

How are we to understand the input w(2) being discontinuous and the output u(x) being 
quite smooth? Physically, we don’t expect z(z) to be discontinuous or “kinky” just because 

the loading w(a:) is, because a train track is too “stiff” for that. Mathematically, observe that 

in essence (though not procedurally, unless k = 0) we solve (44) for u by four integrations 

of w. Now, what happens when we repeatedly integrate a discontinuous function? Consider 

a Heaviside step function, for simplicity, in place of w. Integrating from —9o, say, to a 

variable point «, gives 

— 0, «<0 
a L — * 

[. (gy dg ‘ zr, r>d 

= cH (x), (52) 

which is a “ramp” function. Integrating eH (x), in turn, gives (w7/2)H(z); integrating 

(x*/2)H (x) gives (2° /6)H(x), and so on, as displayed in Fig. 13. That is, integration 
is a smoothing operation: H(x) is discontinuous, its integral xH (a) is C° (continuous), 

the integral of the latter is C', the integral of the latter is C*, and so on.* From this rough 

argument, we expect the response u(x) to the discontinuous load w(x) to be C®, so its 

Fourier coefficients should tend to zero like 1/m°, and that is precisely what is revealed by 

(50). 

COMMENT 2. Actually, (50) is a particular solution of (44). To obtain the 

we need to add the homogeneous solution 

general solution 

e?* (Asin Bx + B sin Bx) + e °*(Csin Bx + Dsin Bx), (53) 
  

“Conversely. differentiation has the opposite effect. For instance. (2? /6)H (a) is smooth but has 

a singular behavior at the origin, that is brought to light by repeated differentiations. 
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H(x) 

    

x H(x) 

    
“ayy 

  

  

“nxt 6 (3) 

| 
| 

x 

Figure 13. The smoothing effect 

of integration,
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where 6 = @/k/EI/./2. To determine A, B,C, D we need some sort of boundary con- 

  

require u to be bounded as x — too, as would be a reasonable requirement for a loaded 

train track. Then the behavior e?* —+ 00 as « — +00 implies that we need A = B = 0, 

and the behavior e~?* —+ co as % 4 —0o implies that we need C = D = 0. Thus, (53) is 

eliminated entirely, and we are left with (50). 

  

COMMENT 3. Thus, this example is a boundary-value problem in which the homogeneous 

solution drops out by virtue of the boundary conditions. Example 3 is an initial-value ee 
problem in which the homogeneous solution is not zero, but tended to zero as f > oo, a 

leaving the particular solution as the steady-state solution. @ 

17.3.4. Complex exponential form for Fourier series. Using the definitions 

elf 4. e Wid ei _. pid 
cos @ = ———-—— and sin @ = ——-——— 

2 21 

it is possible to re-express the Fourier series formula (5) in terms of complex expo- 

nentials, as follows: 

(54) 

  

      

  

oO 

FS f= S- Cn einna/e (55a) 

n=O 

where 

1 f° 
Cn = 5 / f(ayenirrel" dy. (S5b) 

at Jie       

Although the c,,’s and exponentials in (55a) are complex, the series does have a 

real-valued sum. 

Notice that the usual definition 

20 N 

Ay, = lim Ss" An 
i N-co 

no n=] 

does not apply to (55a) because the lower limit is infinite as well. From our deriva- 
tion of (55), below, we will see that the appropriate meaning of the series in (55a) 

iS 
oO N 

Saya | fl . pope [E 
) Cp OrTelE = lim ) Cy mele (56) 

N-00 
noo n=—N 

Let us proceed: 

~ r ap nee _ nner 
FS f=ago+ ) (an cos a + 6, sin =) 

n=l 

N 
. NEL _ nre 

= lim ) (ln COS ——— + 5, sin —— 
N-o0o é t 

n=O
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N eine /e -f evinne/l einna/l _ ev inme/t 

= lim ) (bp = - by N-aco n 5 + On 9j 

ne=Q 

N / il N i] 

= lim S Gn ~ Wn einwe/e + y an + bOn ev inns /e (57) 

N00 2 ° 2 oo 
nO nD 

Changing n to —n in the second sum, which is permissible because n is merely a 

dummy summation index, 

N +4. —N , 

FS f= lim Ss” (Os) einme/O Ss" (Ss + =") pinne/e 

N-00 2 9 

l| 

n==0 n=O 

N 

= lim S_ Cy melt 
N-00 

nee— N 

CO 

= Ss" Cy clnmele (58) 

T= OO 

For n = 0, 

1 fe. 
co=a=— f(a) dz, (59) 

2f fe , 

forn > 0, 

On — lbp 1 é np Ae toe TLL 

Ch =o ES fi) cos ~— isin —— } dx 
2 Qe e e 

1 _ —inwe/el 7, = 5 fi f(x dx, (60) 

and forn < Q, 

Cy = Gan + thn i [ f(z) [cos (- wo | + isin (- =) dx     

2 26 Jie é é 

1 ff inna /e 
= 5 | f(x) eo ieTell dy. (61) 

20 J _¢ 
All three cases, (59)-(61), agree with (55b), as was to be shown. 

The complex form (55) is sometimes favored, especially for electrical engi- 
neering applications. An advantage of (55) over (5) is that (55) contains only 
the exponentials and one set of coefficients (the c,’s), whereas (5) contains both 

cosines and sines and two sets of coefficients (the a,’s and 6,,’s). 

EXAMPLE 5. Let us return to the square wave “r Example | and work out its complex 
Fourier series. With € = 7, and f displayed in Fig. 

1 oQ) TT / 

Ch = 2 flaje oT bem E fon a — y Odz + Aen ac| 
' af 27 dm 0)
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m= &2,+4,... 
9 eT ine aml , 

-F(SE)Ln} | (on 
e=0 —— Nh = 1, £3, see ’ 

PUTT 

  

For n = 0, the quantity following the third equal sign is indeterminate; it is (1 ~ 1)/0 = 

0/0. In that case, in place of f de~*"* da = 4e~'"* /(—in) we should use [ 4e° dx = 4a, 

which gives Cp = 2. Thus, 

2 4i\ . pe)are YO (“Sem ©) 
n= — oo (nodd) 

and it is not difficult to verify that (63) is equivalent to (11). a 

Closure. The Fourier series of a 2¢-periodic function f, given by (5), converges to 

f(x) at every point x at which f is continuous, if f and f’ are piecewise continuous 

on (-¢, ]. These conditions are sufficient, not necessary, and are met by virtually 

all functions of applied interest. If f is discontinuous at x, then the series converges 

to the mean value [f(@+) + f(w—)|/2. If the latter does not equal the defined 

value of f(a), then a discrepancy exists at that point. However, such pointwise 

discrepancies will be inconsequential in applications. 

Beyond the question of convergence, the speed of convergence depends on 

how well-behaved the function is and is of great practical importance. Surely it 

matters to us whether we need to add 100, 000 terms to achieve a desired accuracy. 

or whether three or four terms will suffice. 

Specifically, if a periodic function is C'’, then we can expect its Fourier co- 

efficients to tend to zero at least as fast as 1/n“*?. In the loaded beam example 

(Example 4), for instance, the solution u(x) is C™. so its Fourier coefficients decay 

like 1/n>, Because of that rapid decay, it suffices to retain only the first two or 

three terms of the series. 

The Fourier coefficients of a given periodic function often contain such quan- 

tities as cos nz, sin nz, cos (n7/2), sin (nw /2), cos (8n7/4), and so on. Of these, 

cosnm = (—1)" and sinnw = 0, but the others are not so readily expressed in 

algebraic form, so we will leave them intact, and we suggest that you do the same 

—in working out the exercises. 

  

EXERCISES 17.3 
  

1. Are these functions piecewise continuous on (0,7)? Ex- 4; 100, «#2 ‘ oy Osage 
; : (1) - ae oe 4g. gone 

plain. 50, «= 2 3-a, 2don<7 

(a) sin? x (b) tana 2. (a) Derive (24a). HINT: cos Acos B = 5 [cos (A+B) + 

(o) si I de 1 cos (A B)| 
c) sin xv (d) cos x (b) Derive (24b). HINT: sinAsin B = 5 [cos (A - B) - 

fe)e7* (f) 1/(e — 1) cos (A + B)] 
(g) l/a (h) fc (c) Derive (24). 

 



  

3. If both left- and right-hand derivatives of f exist at v9 and 

are equal, does that imply that f is differentiable at xo? Ex- 

plain. 

4, Work out the Fourier series of f, given over one period as 

follows. At which values of a, if any, does the series fail to 

converge to f(2)? To what values does it converge at those 

points? 

(a) x on (~7, 7 

(c) |z| on (—27, 27] 
(e) 50 on (0,2), 100 at a = 2 
(f)500n -8 <a < —-2,0on-2 <a<4 

(g) |sin a} (for all x) 
(h) | cos 2| (for all x) 

(@)sinzon0<a2<27,00onnm <a < 27 

(j) 20 + 3sin 4a (for all x) 

(kjtzonO<ex<l,loni<a#<2 

() cos*zon0<a<r HINT: cos? a = (1 + cos 2x) /2 
(m) sin?zonQ0<a<r 

(nbe™* on0 <a <2 

(o) lOOonO<a2<1,500n1<2<2,00n2<2<3 

(b) |z| on (—7, 7] 
(d) 50 on (0, 2) 

5, Work out the Fourier series of the 27-periodic function f 

defined on ~7 < x < was follows, using computer software 

(such as the Maple int command) to evaluate the integrals. 

HINT: For parts (c) and (d) you will need to use  Hépital’s 

rule to simplify the result. 

(a) a (b) 2° (c) cos” x (d) sin? x 

6. Obtain a computer plot of the partial sums of the Fourier 

series (19) of the periodic function shown in Fig. 6, for 

(a)n = 2 (b)n = 5 (c)n = 10 

(d) n = 20 (e)n = 30 (f)n = 50 

7. (a) Use (11) to show that 

i “1 nT 1 1 ot 
— = -~sin-— =l--+-->5 te 7.1 4 » aa) 3°5 77 0) 

(b) If you were to use (7.1) to compute 7, how many terms 

would be needed to obtain accuracy to six significant figures? 

Explain. 

8. Let f be the periodic function shown in the figure, each 
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segment of which is a semicircle of radius a. Show that its 

Fourier series is 

2 ee OO 

f(t) = ~ +" S“[Jo(nm) + Jg(n7)| cos na, 
2 

nel 

(8.1) 

where the J,,’s denote Bessel functions of the first kind. 

HINT: You may use any of these formulas: 

cos (a sin @) = Jo + 2d cos 26 + 254 cos 40 +--+ -, 

( \ = 2J, sin @ + 2J3 sin 30 + 2, sin 56 +---, 

cos (a cos @) = Jo — 29 cos 20 + 2J4 cos 46 —---, 

sin (a cos@) = 2J, cos — 23 cos 38 + 2J5 cos 50 —---, 

sin (a sin @ 

where the J,,’s are shorthand for J,(a). NOTE: Observe that 

Theorem 17.3.1 does not apply in this case since f’ is not 

piecewise continuous on [—7,, 7], but it follows from a stronger 
version of that theorem that the series in (8.1) does converge 

to f(z) for all a. 

9, If the Fourier coefficients of a periodic function f(x) are 

Qn (n = 0,1,2,...) and b, (n = 1,2,...), what are the 

Fourier coefficients A,, B,, say, of the shifted periodic func- 

tion f(z — c)? 

10. We have been interpreting the period 2@, in equations 

(5), to be the fundamental period. However, surely (5) should 

yield the same result if we use twice the fundamental period, 

and so on. The purpose of this exercise is not to prove that 

claim but merely to illustrate its truth through a concrete ex- 

ample. Specifically, use (5) to determine the Fourier series of 

the square wave shown in Fig. 1, using 2€ = 47 (rather than 

27), and show that you obtain exactly the same final result as 

was given in (11). 

11. (Polynomials) It is a useful fact that if p(a) is an even 

polynomial (i.e., containing only even-integer powers of x) on 

(—€, €), then the 6,,’s are zero and 

€ yp) —... ob) +. nant Pp (8) 
2€ e 

—] rh ?) —- — 

(+1) aa saga! ne re 
  

ln = 

(11. 

form > 1; and if p(x) is an odd polynomial on (~£, @), then 
the a,,’s are zero and 

  
2 eo, a, wm (yr ee yl E pir) (py... by = (aay [pt = Sea vO + Se MO 

(11.2) 

forn > 1.
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(a) Derive (11.1) through the p” term, 

(b) Derive (11.2) through the p” term. 

12. Use (11.1) and/or (11.2) in Exercise [1 to obtain the 

Fourier series of the given periodic function. NOTE: (11.1) 

does not hald for n = 0, so you need to compute ao in the 

usual way. 

(a) f(x) = ron (—3 13) 
(b) f(x) = x? on (—3,3) 
(c) f(v) = 6+ dur ~x on (-2,2) 
(d) f(a) = 27(2? — 8) on 7 2) 
(e) f(x) = x(a? — ®), on (~1, 1) 
(f) f(a) = 2+2—-27 0n ie 5) ,3) 
(g) f(a) =a24+2° on (_ iL) 

13. (Relaxation oscillator) There exist a great many peri- 

odic occurrences, called relaxation oscillations, which are 

characterized by a slow buildup and a rapid discharge. Ex- 

amples include epidemics, economic crises, the sound gener- 

ated by the bowing of a violin string, shivering from the cold, 

menstruation, the beating of the heart, 
a capacitor through a neon tube. Here we consider the lat- 

ter (see the following figure). The resistance R. capacitance 

R 

WW 
om 

/ \ C “~ ) Neon tube i 7 = 
Ce 

Cc’, and voltage fy are constants. If Q(¢) is the charge on the 

capacitor. then i(¢) = d@Q/dt is the current in the Bo, R,C 
loop, and Kirchhoff’s law gives 

dt C 

(a) Solve (13.1) subject to the initial condition Q(0) = 0. 
(b) When the voltage @/C' on the capacitor, and hence on the 

neon tube, reaches a certain level, say Bo/2, the neon tube 

fires, and the charge Q on the capacitor drops to zero. The 

firing is so rapid compared to the “buildup time” that we may 

assume it to be instantaneous. From your solution to part (a), 

show that the neon tube fires att = RC In2. 
(c) The cycle then repeats indefinitely. Sketch and label the 

  

Eq O 

      

(13.1) 

graph of the periodic function Q(t), and work out its Fourier 

series, 

14. The voltage £(@) is maintained at 100 volts on the top 

edge of the disk and at 20 volts on the bottom edge. Expand 

E(@) in a Fourier series. HINT: Sketch the graph of £ (6) on 
-00 <9 < ox, 
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and the discharge of 

  

B= 100. 

   E=207 

15. (Rms current) If a steady electric current 7 flows through 

a resistor of resistance R, the power delivered (.e., the rate of E 

doing work) is equal to 77. In many applications i is not a 

constant, but a periodic function of the time ¢. In such cases 

one defines the average power as 

T/2 

average power = — 7f..! (t)R dt, (15.1) 
ra 

where T’ is the fundamental period of i(t). Expressing ¢(¢) 
as a Fourier series, 

anat annt 
t)h= n bp Si », (5.2 i(t) = do + > (« cos ———— F +b, sin —— F ) ( ) 

show that the 

OO 

average power = |a9 + Gs +67) (15.3) 
2 n=l 

and that the steady current that is equivalent to i(£). in that 

it will deliver the same power, is 

fims = (15.4) 

  

tems is known as the reot-mean square (rms) current. 

16. (Complex form) Work out the complex exponential form 

of the Fourier series (55), for the given periodic function, de- 

fined over one period as follows. 

(a) f(v) = 50 on le] <1,andQonl < jel < 2 
(b) f(z) = e*on0 <a <2 
(c) f(a) = ot on—-3 Se <3 

(d) f(z) = 6sin wv (for all x) 

(e) f(a) = 4 — 5 cos 22 (for all x) 
(Ff) f(a) = -1000n -5 < e < O,and 1lO00onO <a <5 
(2) f(z) = 20+ 54 0n-2 <a <2 

17. (Example 3) (a) In Example 3 we expand £'(t) in a Fourier 

series. Could we have used a Taylor series, profitably, instead? 

(b) It is proposed that we solve (30) in a piecewise manner. 

That is, since F(t) is piecewise constant we might do well 

to consider the ¢ intervals 0 < t < aa<t< 27-4, 

Ir —a<t < 2m +a, and so on. Solving ma” + ca’ + ka
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= s on 0 < t < a, subject to initial conditions «(0) = the steady-state response a(t) over one period, and sketch its 

zg and 2/(0) = 2G, say, we can then use the final values graph. 

a(a) and a'(a) from the first interval as the initial condi- 

tions for the next interval, a < t < 2m” — a, on which 

ma" + ca! + kx = 0, and so on. You don’t need to carry 
out this method; rather, we merely ask you to assess whether 

it is a good idea for determining the steady-state response. 

(c) Would the method used in Example 3 work if (30) were 
modified to Solve for the steady-state response x(t), if F(t) is periodic and 

defined (over one period) as follows. Letm =k = 1. 

18. Consider an undamped, driven mechanical oscillator, gov- 

erned by the equation 

ma" +ku = F(t). 

  
ma" + ex! + aa + Bx" = F(t)? 

Explain. (a) F(t) = 1000n0 <t< 2.andQon2<t<4 

(d) If we let a — 0 in Example 3, then (see Fig. 8) F(t) (6) Pt) ~ 30 on s p<% and —30 on 2 < <4 - 

becomes a series of delta functions (unit impulses), at ¢ = (c) F(t) = 5ton0 st < 1,and 10 — 5é on Ist<2 

0, 27,47, .... (Actually, the one at t = 0 will be haifa delta (d) F(t) = 5ton0 <t < l,and5¢~10onl <t<2 

function.) Find the Fourier series representation of the steady- (©) F(t) = 200n0 <¢t < 2,and100n2 <7? < 4, and0 on 

state response. 4<t<6 

(e) Same as part (d), but find a closed form expression of  (f) F(t) = 10ton0<t<3,and0on3<t<4 

  

17.4 Half- and Quarter-Range Expansions   It often happens in applications, especially when we solve partial differential equa- 

tions by the method of separation of variables (Chapters 18-20), that we need to 

expand a given function f in a Fourier series. where f is defined only on a finite in- Fe 

terval such as the function f whose graph is shown in Fig. 1, and which is defined 7 

only on 0 < « < L.* But in that case f is not periodic, so how can we expand it in 

a Fourier series? 

The idea is to extend the domain of definition of f to ~c0 < x < oo and 

to define an “extended function,” say fext, So that fext is periodic, with foxt(w) = 

f(x) on the original interval 0 < 2 < L. There are an infinite number of such 

extensions, two of which are shown in Fig. 2. Each of these is periodic, the first 

with period 2 and the second with period L. Their Fourier series are different, but 

each of them converges to the original function f on the original interval 0 << wv < 

L, 

L “ 

Figure 1. f on finite interval. 

How, then, do we know which extension to use? We shall see that the choice 

will be dictated by the context, so let us not worry about that right now. We will 

always need to choose from among four extensions which are known as half- and 

quarter-range cosine and sine extensions and which are based on symmetry or an- 

tisymmetry about the endpoints 2 = 0 and x = L. These are shown, for the 

representative function f of Fig. 1, in Fig. 3. For instance, in Fig. 3a fext IS SyM- 

metric about 2 = 0 and also about « = L, hence the two S’s below the x axis. 
  

“We use the open interval notation throughout this section since the values of f(x) at the endpoints 

will not affect the Fourier coefficients, as we learned in the foregoing section.
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(a) 

Feext A 

| 
nh, L t 

(b) 

text 

aL L v 

Figure 2. Possible extensions. 

Because of its symmetry about « = 0, fox: is an even function, and its Fourier 

series will contain only cosines, no sines. Further, its period is 2, so LD is half 
the period. Thus, it is customary to designate this case as the “half-range cosine 
extension,” which we denote in this text by the letters HRC. In Fig. 3b, foxy ts an- 

tisymmetric about « = 0 and a = J, the period is 22, and we have the half-range 
sine extension, denoted by HRS. In Fig. 3c fext is symmetric about z = 0 and 

antisymmetric about « = D, the period is 4L (so L is only a quarter of the period), 
and we have the quarter-range cosine extension, denoted by QRS. Similarly for the 
quarter-range sine extension shown in Fig. 3d and denoted by QRS. 

Let us derive the Fourier series for these cases. For the half-range cosine case 
the period is 2L, so @ = L (where we carry over the @ notation from Section 17.3) 

and 
1 “L 

sal, foele)de = 7 fsa) de (1a) 
nq 2 ni 

Qn = ; - "foal :) cos oe de = 2f f(a ) cos dz, (Lb) 

1 | nara 
by = i [i fext (x) sin T_T dx = 0. (Ic) 

The last step in (1a) follows because foxt(x) is symmetric about x == 0. Similarly, 

the symmetry of fext (x) cos (nwa/L) about x = 0 gives (1b), and the antisymme- 
try of fext (a) sin (nwx2/L) about x = 0 gives (1c). Thus, we can write 

fext(@) = ag + s Qn COS — (—co < 4 < co) (2) 

n=] 

with ag and a,, given by (la) and (1b). 

Understand that the extension was only an artifice, to make possible a Fourier 
representation of the original function f on the original intervalO < a2 < LZ. With 
the expansion in hand, we can now limit our attention to the 0 < x < JL interval 
and write 
  

    

f(x) =ag+ 5 - an cos —, (O<a<L) 
, L n=l 2 L (3) 

ap => f(x) dz, Gn = | «A *) cos ne dx. 
JQ     

We call (3) the half-range cosine expansion of 7 Observe that the final formulas 
in (3) contain no artifacts of the extension, only f defined on0 < x < LD. 

By a similar process we obtain the half-range sine expansion 
  

e bn sin —— (O0<a< ZL) 

n=l (4) 

_ nme 
ec )sin —— dz,      
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the quarter-range cosine expansion 

(a) HRC 
a NE f 

Pe) = (ty, COS ——, O<a< Lb ext A L( ) a nr OL” ( ) i xe Lb 

noel,3,.. (5) ; 

Q fh UE 
On = (2) cos —— dx, ~~ — re L Jo I ) oT, Ss Ss x 

and the quarter-range sine expansion 

— Na 
f(a) = a by, sin a (O0<a<L) 7 

n==1,3,. (6) x 

-2/' f(x )sin de, 

Jarivac Jor a (e) QRC 
We have already derived (3). Let us now derive (6) and leave (4) and (5) for ent A 

the exercises. We see from Fig. 3d that the period is 4Z, so € = 2L. Thus 

NEL —— - 
fext(Z) = ao + s (an cog C4 b, sin —— oF ). (7) SoA x 

n=l 

The antisymmetry of fox, about « = 0 implies that a9 = 0 and a, = 0 for each 

n= 1,2,.... Next, (d) QRS 
L L Fext A 

1 f? NTL 2 7 nL | 
by = ext GE) sin dz = —~ faxt (iE) sin —— da 8 rn xl, ext ( ) IT, IT, 0 ext ( ) oT, ( ) _ | 

because both fexe(a) and sin (nwa /2L) are symmetric about x = 0, so their prod- 
uct is symmetric about « = 0.* Now consider the symmetry or antisymmetry about 

x = L. We see from Fig. 3d that fex:(a) is symmetric about that point. Further, 
it is easily verified that sin (nwa/2L) is symmetric about that point if n is odd, 
and antisymmetric about that point if n is even. Thus, the integrand in the second 

integral in (8) is symmetric about 2 = L (which is the midpoint of the integration 
interval) if m is odd, and antisymmetric about that point if m is even. Hence (8) 

gives 

  

  

- 1 2k. oe) sin ee ae 
nee , fext (a) sin op 

0 : nm even 

=e yo oat 9) » pl x 9. 
ZL i fext (a) sin + dx , n odd. 

  
“Understand the difference between symmetric/antisymmetric and even/odd. A graph can be 

symmetric about aay x point. If, in particular, the graph of f is symmetric/antisymmetric about the 

origin, then f is even/odd, respectively. 

    
Figure 3. Half- and quarter-range 

extensions.



872. Chapter !7. Fourier Series, Fourier Integral, Fourier Transform 

Finally, we can drop the subscripted “ext” in the final integral in (9) because the 
interval of integration is 0 < 2 < L, over which interval fox:(a) = f(a). Putting 
these expressions for ag, ap, and by, into (7) gives (6). 

    

  

  

  

  

  

  

  

  

  

            

  

    

F EXAMPLE 1. To illustrate, let us expand the function f, displayed in Fig. 4, in half- 

and quarter-range cosine and sine series. 

: L x HRC: From (3), 

Figure 4. f in Example |. ay = I e Fdr= EL =f, 

L Jo / | (10) 
2 | F ane 2F | nrg e=b f 

dn = H COs dx = —- sin —— = 0, 
L Jo L ne L \e=o 

so the HRC expansion of f is simply ’ 

(a) = F It : (a) HRC f(z =F, dt) 

Fext which results from the extension shown in Fig. 5a. 

HRS: From (4), 

a 2 /° TL ar 
L * n= = lf F sin de = ~~ (cosnm ~ 1), (12) 

(6) HRS 
fost A so the HRS expansion of f is 

2F 1 cosnnr NEL 

_ > (2 7 d n on Le (1) 
Xx 

Tha] 

which results from the extension shown in Fig. 5b. 

QRC: From (5), 

(c) QRC 2 ¢% NTE 4F ong 
fext Qn = al F cos 7 de = — sin 7 (14) 

so the QRC expansion of f is 

* 4F  S sin(n7/2) nme 
4 f(t) = — >» C08 (15) 

(d) QRS which results from the extension shown in Fig. 5c. 
Sex 

os QRS: From (6), 

2 f% | nwa AF ae 4F 
- n= =f I sin dit = ~— (1 — cos >) = a (16)             

because cos 2 = 0 if n is odd, and 7m is indeed odd in (6). Thus, the QRS expansion of f 
Figure 5. Half- and quarter-range jg 

oO 

1. nr 
— sin -—— 

T ~ 7 2b 
noel ,3y... 

extensions of f. 4F 
f(x) (17)  
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which results from the extension shown in Fig. 5d. 

The series (11), (13), (15), and (17) converge to the functions shown in Fig. 5a,b.c,d, 

respectively, but on the interval 0 < a < I they all converge to the function f defined in 

Fig. 4, 

COMMENT. Observe that n runs from | to infinity continuously in the half-range formulas 

(3) and (4), but only through the odd values 1,3,... in the quarter-range formulas (5) and 

(6), In the present example, the sum in the HRS expansion (13) runs through n = 1,3,... 

because |—~cosnm = 1—(~1)" = 0 foreven n’s, but in general the sums in the hall-range 

expansions run through n = 1,2,3,.... ui 

Closure. Functions defined only on a finite interval, say 0 < « < JL, can be 
periodically extended in an infinite number of ways. Of these, only four possible 
extensions will prove to be of interest, the half- and quarter-range extensions, which 

lead to the half- and quarter-range cosine and sine series (3)-(6). Application of 
these results occur repeatedly in Chapters 18-20 when we solve partial differential 

equations by the method of separation of variables. 

  

EXERCISES 17.4 
  

1. We derived the HRC and ORS formulas, (3) and (6), ree (b) f(z) = 5x2 0on0<a<4 

spectively. In similar fashion, derive the (c) f(a) =sinron0<a<7 

(a) HRS formulas (4) (b) QRC formulas (5) (d) f(a) = sing on0 <a < 7/2 

2. For the given function, prepare labeled sketches of the HRC, (e) f(w7) =l-ron0<a<l 

HRS, QRC, and ORS extensions, and derive the corresponding (f) f(z) =Oon0<a< <a and 500on4 <@<5 
expansions. (g) f(z) =sincon0 <4 <a,andQonm <a <2n 

(h) f(z) =2+aon0<2<3 (a) f(v) = 25on0<a< landQoni<a2<2 

  

17.5 Manipulation of Fourier Series (Optional) 

In Examples 3 and 4 of Section 17.4 we differentiated Fourier series termwise and 
equated coefficients of trigonometric series on the left- and right-hand sides of an 
equation. Our approach is formal (.e., we do not rigorously justify the steps) since 
we did not yet have theorems in place with which to justify those steps. This section 
is intended to provide the necessary theorems.
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we c
e
n
 

Figure 1. Uniform convergence. 

a box 

Fundamental is the concept of uniform convergence.” Consider a series 

oO 

Ss" An (x), (1) 

n=l 

and let s,(a) be its nth partial sum 

Sn (a) = ay(x) +--+ + ay(x). (2) 

We say that (1) converges uniformly to s(x) on an interval a < « < bif to each 
€ > 0 (i.e., no matter how small) there corresponds an N(e), independent of x, 

such that |s,(a) — s(x)| < € for all n > N and for all x in the interval a < a <b 
The situation is illustrated in Fig. 1. Supposing that s(a:) is as shown, choose an 
arbitrarily small « > 0 and draw an ‘“‘e band” about s(2), the band between s(x) —€ 
and s(a) +e. If (1) converges uniformly, then (no matter how small we choose € to 
be) there must be some integer NV such that the graph of s,,(x) lies entirely within 
the e band for all n’s greater than NV. 

EXAMPLE 1. Let (1) be the Fourier series 

8 a i 
=2+- — sinne 3 f(x) + > > sinne (3) 

of the square wave, one period of which is shown in Fig. 2. We know that that series 

converges to the square wave shown in the figure: 0 for —7 < x < 0,2 ata = O (denoted 

by the heavy dot), and 4 for0 < x < 7). Is that convergence uniform? The answer depends 

upon the interval under consideration. Over 1 < x < 2, for instance, the answer is yes, 

which we state without proof; for any € > 0, no matter how small, we can force the graph 

of s,,(z) to fall within the « band by taking n sufficiently large. 

However, over any interval containing a jump discontinuity of f, suchas -1 <2 <1, 

the answer is no because the partial sums are continuous, so the graph of s,(a2) must 

inevitably break out of the e bands (at P and Q) in order to pass through the heavy dot. In 

addition, there are breakouts due to the Gibbs phenomenon, the spike-like overshoots and 

undershoots near the jump discontinuities. @ 

Of course we cannot rely on pictures, we need an analytical test for uniformity 
  

"The concept of uniform convergence is due to Karl Weierstrass (1841) and G. G. Stokes (1847). 

Generally speaking, it is probably true that major theorems attract the most acclaim in mathematics 

but, in truth, the fundamental definitions — such as the definitions of the ffmit of a function, the 

derivative of a function, the uniform convergence of a series, and so on, are of comparable importance. 

It is easy to invent definitions, but not all definitions are fruitful. Consider, for instance, the way all 

of the differential and integral calculus, as well as other branches of analysis, rest upon the shoulders 

of the limit concept. 

‘Contrast this definition with the definition of convergence of (1) at x: (1) converges to s(r) at x 

if to each € > O (i.e., no matter how small) there corresponds an N(e) such that jsn (2) — s(x)| < 

foralln > N. 

 



    

  
v/a x 

I 

Figure 2. Square wave Fourier series. 

of convergence. A useful sufficient condition for uniform convergence is as follows. 

THEOREM 17.5.1 Weierstrass M-Test 

If \o*_, Af, is a convergent series of positive constants and [an(x)| < Ag, on an 
x interval [, then S7°° neal an(wx) is uniformly (and absolutely) convergent on I. 

EXAMPLE 2. The series 
S- cosnsz 

ne 
n=l 

(4) 

converges uniformly on —oo < x < oo, according to the Weierstrass Ad-test, because 

\(cosnax)/n®| < 1/n? on ~co < x < 00, and S7™°_, 1/n? is convergent; specifically, it is 
a convergent p-series.* That is, Aj, is L/n? in this case. @ 

We can now state a useful theorem on the termwise differentiation of an infinite 

series. 

  
THEOREM 17.5.2 Termwise Differentiation of Series 
Let )7°_, dn (a) converge on an a interval J. Then 

  

  

d — dl 
Gz 24 Qn (2) = d in an (x) (5) 

  

  
  *Recall from the calculus that the p-series )°>°_, 1/n? converges if p > 1 and diverges if p < 1. 

If p = 1 it becomes the well known (and divergent) harmonic series. 

Manipulation of Fourier Series 875
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if the series on the right converges uniformly on J.* 
  

That is, we can interchange the order of the two limit operations (the infi- 
nite series is the limit of the sequence of partial sums, and the derivative is the 
limit of a difference quotient) if the a,,(2)’s are well enough behaved, specifically, 
if }° a},(v) converges uniformly on I. That condition is stated as sufficient, not 
necessary. To put (5) into perspective, it might be helpful to recall the analogous 
result for interchanging the order of differentiation and integration: if a and b are 
constants, then 

    
b 

” f(x) dt = | oF (t,a) dt (6) 

if f is sufficiently well behaved, namely, if f and Of /Ox are continuous on the 
relevant rectangle in the «, ¢ plane (see the Leibniz rule, Theorem 13.8.1). 

E a 

EXAMPLE 3. The series 

  
sinner 

LS (7) n 
nal 

can be differentiated termwise on —co < x < oo, Thatis, 

d Cvsinna sd /sinne = cos ne fy see a ne \ ne 3 
dx » n3 » dx ( ne ) | 2 , ( ) 

TL 
nol me] n=l 

    

because the series on the right converges uniformly for all x, as shown in Example 2, # 

Besides the termwise differentiations employed in the representative Examples 
3 and 4 of Section 17.3, we also equated the corresponding coefficients of trigono- 
metric series on the left- and right-hand sides of an equation. Justification of that 
step is provided by the following theorem. 

  

THEOREM 17.5.3 Uniqueness of Trigonometric Series 
If 

NK@ NTL Nee and G cos a no 6, sin a) = = age (An cos n i ) ; 
n=l nh - 

(9) 
where the trigonometric series on the left- and right-hand sides converge to the 

           

  

“For proof of this theorem and additional discussion of this issue, see T. M. Apostol, Mathematical 
Analysis (Reading, MA: Addison—Wesley, 1957), Chap. 13.    
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same sum for all x, then ag = Ag, a, = An, and by, = B, for each n.* 
  

‘ 
Notice the wording “trigonometric series” for the theorem. Recall that a 

trigonometric series is a series of the form given by the left- and right-hand sides 
of (9). Why don’t we say Fourier series instead? Because not every convergent 
trigonometric series is a Fourier series. For example, 

CO 

1 

ina) 
en 

2 In (m+ 
1) SI na 

o 

is a trigonometric series, and it can be shown (by a Dirichlet test) to converge for all 
x, yet it is not a Fourier series.* That is, there does not exist a 27r-periodic function 
f such that 

f(z) cosnadx =0, (n = 0,1,2,...) (lla) 
d—i 

1 
" Fa )sinnadx = ——. (n = 1,2,...) (11b) 

Jon In(n + 1) 

Thus, every Fourier series is a trigonometric series, but not every convergent trigono- 
metric series is a Fourier series. This result is in interesting contrast with the result, 
encountered later in this text (Theorem 24.2.8), that every convergent power series 
is the Taylor series of its sum function. However, if a trigonometric series, with 

period 2@, converges uniformly on (—€, €] (or, equivalently, on —co < x < oo), 
then it is the Fourier series of its sum function.! 

Let us illustrate these results with a practical application that is similar to Ex- 
amples 3 and 4 in Section 17.3. 

EXAMPLE 4. Find a particular solution to the differential equation 

  

  

"4 0.50 = f(t), (0 <t < oo) (12) 

where the forcing function f(¢) is the 2a7-periodic function shown in Fig. 3. The Fourier fh 

ot f is - 
F OS yntd Yl 

2 tm oP oe 3 sin (2n — 1)t, (13) | 

3 and if we seek x(t) in the form + " = tm tl 

x 

)= S| by, sin (2n — L)t (14) 
nel . Figure 3. f(t) in Example 4. 

  

“Proof of this sophisticated theorem can be found in E. C. Titchmarsh, The Theory of Functions, 

2nd ed. (London: Oxford University Press, 1939), pp. 427-432. 

“See LS. Sokolnikoff and R. M. Redheffer, Mathematics of Physics and Modern Engineering, 

2nd ed. (New York: McGraw Hill, 1966), p. 86, Exer.3. 

‘See G. P. Tolstov, Fourier Series (Englewood Cliffs, NJ: Prentice-Hall, 1962), pp. 14-15.
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we find (Exercise |), formally, that 

1S
 ~ 

(—1)" 

FD. Gna pAGn 2? og Sn ~ Ve Is 
1 a (2n _ i? [(2n — 1)? — (), 5] sin ( nn ) 

( ) 

We can make the process rigorous either by justifying each of the steps in the derivation 

of (15a), using Theorems 17.5.1—17.5.3, or we can proceed formally to (15) and then rig- 

orously verify that the latter does satisfy the given differential equation (12). Let us do the 

latter. 

According to Theorem 17.5.2 we can differentiate (15) termwise and obtain 

gF Se (-1)" 
- We Qn — 1)[(2n — 1)? ~ 0.5] cos (2n — 1)é (16) a(t) = 

because the latter series is uniformly convergent on 0 < t < oo. That is, 

(-1)" 
Ne SNE = NM ns 

(Qn — 1D[(Qn — 12 — 0.5] Mn, (17) 
1 

2n— Lt) S$ sa cos { n ) | = (2n _ L[(Qn _ iy _ 0.5] 

and nwt Mn is convergent because Mf, ~ 1/8n° as n -+ co, where 7°, (1/8n") = 

= ty l/r iS L times a convergent p-series, with p = 3.* Likewise, we can differentiate 

(16) termwise and obtain 

xO \n 

          
n—-1)? 05 me sin (2n ~ L)t (18) 

because the latter series is uniformly convergent on 0 < t < oo. Thatis, 

| 
sin (21 — 1)tl < ——+-— > = M,, (19) 

oO 1 Oo 

where en M,, is convergent because M, ~ 1/4n? as Tl > 00. 

Finally, putting (18), (15), and (13) into (12) and adding the two series on the left-hand 

side termwisel i is found to produce an identity, so the verification of (15) is complete. 

COMMENT. Observe that each time we differentiate (15) we weaken the convergence 

because we pull out a 2n — 1 from the sine or cosine. Since f was C® (i.e., continuous), the 

terms in (13) were of order O(L/n® )} and, consequently, the terms in (15) were O(L/n' ), 

as 1. 90. Thus, the terms in z’(t) were O(1/n") and those in v(t) were O(1/n*), the 

n* being sufficient to render the series uniformly convergent so as to justify the termwise 

differentiation of (16). If f(t) had been even better behaved such as C? or C?, then so 

much the better, but if it had been discontinuous such as a square wave, then our efforts at 

justification would have failed because then the terms in the x’(£) series would die out like 

  

“Recall from the calculus that if ST a, is a series of positive constants and an ~ Kbpas nm -> 00, 

for some positive constant A’, then the series SS Gy and s- b, both converge or both diverge. 

Recall from the calculus that if S7 a, and 57 b, are convergent. then Stan + bn = Solan + 

b,), and the latter is convergent as well. 
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O(1/n), which would not be fast enough to ensure uniform convergence by the Weierstrass 
y a i a . a YG a ” 

Ag-test (since the series )7 1 /n is divergent). # 

Actually, the idea of finding solutions to differential equations that are in the 
form of infinite series is not new to us since we have already studied power series 
solutions in Chapter 4. Indeed, the technical issues that arose there are the same: the 
termwise differentiation of a power series, the termwise addition of two series, and 
the fact that if two power series are equal, then their corresponding coefficients must 
be equal. These matters are handled by parts (a), (b), (c). respectively, of Theorem 

4.2.3. There, we saw that power series are very easy to work with, especially 
in that a power series may be differentiated (or integrated) any number of times 
(within its interval of convergence). Of course, that fact is not surprising since a 
convergent power series is the Taylor series of its sum function, and for a function 
to have a Taylor series it must be extremely well-behaved, for instance, infinitely 
differentiable (C). However. in applications like Example 4, above, power series 
are of no help because f(t) is merely continuous; it is not even once differentiable 
because of the kinks in its graph at ¢ = 7/2,37/2,57/2,.... But since f is 
periodic we are able to use Fourier series. 

The fact that the Fourier series (15) of x(t) can be differentiated termwise only 
twice is not surprising since «(t) is not infinitely differentiable. it is only C? (since 
the input f is C° and wx is obtained from f, in effect, by two integrations). 

Though we have not used termwise integration of Fourier series we would be 
remiss if we did not include the following theorem. 

  

THEOREM 17.5.4 Ternnvise Integration of Fourier Series 
[f a Fourier series is integrated termwise between any finite limits, the resulting se- 
ries converges to the integral of the periodic function corresponding to the original 

series, 
  

EXAMPLE 5. Let us integrate the square wave f shown in Fig. 4. say. from (0 to any 

point 2. From Example | of Section 17.3 we have. for the Fourier series of f. 

x 

L 
S° — sinne, (20) 

n 
melo... 

1 
[0
 

Thus, 

_ “ 8 1 
i f(g) dé = | 2+- S° — sinn€| dé 
JO Jf nv n 

l att / 

_ sin n€ d& 
3 do 

  
  

| 

>= aoe 
I L i 

! \ | | 
| | | 

| i i 

| 
I 

-1 a a an an v 

Figure 4. Square wave f.
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[rceaé 
0 | 

| 
| 

An 

| 
| 

  

  

  

Figure 5. Sum of the integrated 

series. 

8 ~ |—cosna aw 2 SO 2 eose (21) 
tT - n? 

vier the second equality follows from Theorem (7.5. 4 é ‘urther, the final right-hand side, 

in (21) must, according to the theorem, converge to Jo f \ dé, the graph of which can be 

inferred by inspection of Fig. 4 and is drawn in Fig. 5. 

COMMENT. The series (21) is not quite a Fourier series because of the 22 term, which 

arises because the average value of f [corresponding to the 2 in (20)] is nonzero. # 

Closure. This section is about technical matters related to the manipulation of 
Fourier series, especially regarding their termwise differentiation. The latter is im- 
portant because functions represented by Fourier series are often not very well be- 
haved; for instance, they may be C!, C®, or even discontinuous. And since differen- 

tiation makes bad behavior even worse,* one is well advised to approach the differ- 
entiation of Fourier series with caution. Theorem [7.5.2 tells us that termwise dif- 
ferentiation is permissible if the resulting series is uniformly convergent, although 
that condition is stated as sufficient, not necessary. In turn, Theorem 17.5.1 gives 
us a simple and well known test for uniformity of convergence, the Weierstrass 

Ad-test. 
Whereas each termwise differentiation of a Fourier series pulls a factor of n out 

of the sine and cosine terms, thus retarding the speed of convergence, termwise in- 
tegration introduces factors of 1/n and therefore enhances the convergence. In fact, 
Theorem 17.5.4 tells us that every Fourier series can be safely integrated termwise. 

  

EXERCISES 17.5 
  

1. Assuming the form (14), derive the solution (15). 3. Determine an x interval on which the series is uniformly 

2. Show that the given series is uniformly convergent on the 

given interval. 
, XO eae : 
(a) Sy ev" sinne on 2 <x 

  

convergent. NOTE: You may need to use one of the standard 

convergence tests, from the calculus. 

(a) Pe (b) S07 n(cos 2) 
by 2 sin 2na epe i+ ze 
(b ——————— on -90 < & <0 i nono IO SO (c) 2 x “(sin )" (d) Soe (Sa)” 

TE xo € xn ae 9 
(c) 325 “Tg on O<a< sco te) aa (f) SOe (a? + 2a — 1)" 

no L g e (x? —~ Bar )8" 
(d) Oe Tye ON -%e < <0 (8) Loy ( ") 4 po 

n3 

3 
28 v er 

e) do; In ( + =~ | on every finite interval 

2. Show that S77" n~* 
forevery 2% > L. 

converges uniformly on ag < @ < 00, 

4, Differentiate the given series termwise, and verify the va- 

lidity of that step if x is in the given interval Gwhich is not 

necessarily the broadest one possible). 

xO sin 270 
(a) D0) 

rm 

  —-M Ct cw 

  

“See Comment | in Example 4. Section 17.3.



  

cg COS NAL 
(b) 4 + , ~oo <u <0 

—-O.2<e <01 

noo Ut oo. 
(d) oy ae -l<ar<l 

(e) De 
5. Derive a particular solution to the forced oscillator equation 

"sinna, —90 <2 < 00 

" 
Lv tui ta= f(t), (0 << <0) (5.1) 

where f(t) is periodic and defined over one period as fol- 

lows, and then rigorously verify that your solution does indeed 
satisfy (5.1). 
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(a) f(t) = sintonO<t<¢ 

(b) f(t) = | cos¢| on 0< st PS a 
(c) f(t) =sintonO<t<9r and Qonw <t < 2Qr 
(d) f(t) = [5 - ed on “0 <t< 
(e) f(t) =Oon0<t< #/2 and costona/2<t < 37/2 

6. Evaluate Lh FT vt) da to three significant figures, and verify 
the validity of the Cte integration, 

4— cos ( (2n — (an = Ue 

(a) Fe a. (Qn=1)2 
=] 

2 eS cos 2n.2 

7 4n? — i 

p
i
p
 

(b) f(x) = 

  

17.6 Vector Space Approach 

An elegant and more modern approach to Fourier series is available within the 
vector space context. Vector space is the subject of Section 9.6, which section you 
may wish to review before continuing. 

Specifically, consider the function space C;,[a, b] of all real-valued piecewise- 
continuous functions defined on [a, ), that is, ona < x < b. First. let us verify that 

Cyla, b] is indeed a vector space. Let f = 

in Cia, 6], and let a be any (real) scalar 
multiple af by 

f+g= f(x) +(e), af = af( 

Ae) and g = g(x) be any two functions* 
. We define the sum f + g and the scalar 

x), (1) 

respectively. Observe that if f and g are piecewise continuous on [a, b] then so is 

J +g, so that C',/a, b} is closed under vector addition. Similarly, if f is piecewise 
continuous on [a, b) then so is af, so that C),[a, b] is closed under scalar multiplica- 
tion. Furthermore, we define the zero vector 0 as the function which is identically 
zero, So that £ + O = f(r) + 

O= 0. 

Q = f(a) = f. And we define the negative inverse of 
f= f(x) as ~f = — f(x), in which case we have f + (—f) = f(x) + [- f(x)| = 

With these definitions of vector addition, scalar multiplication, the zero vector, 
and the negative inverse, we can see that all of the requirements listed in Definition 
9.6.1 are satisfied, so that C’,/a, b| is indeed a vector space. 

Next, we wish to introduce an inner product for C',/a,b) and we choose the 
  

y “PF = f(a)" we mean that the vector f is the function whose values are f(a). Notation be- 
comes tricky here since there are now three quantities to be distinguished: the function f considered 

as a mapping. the values f(a) of that function, and the vector f.



882 Chapter 17. Fourier Series, Fourier Integral, Fourier Transform 

inner product of f and g as! 

ob 

(f,g) =] flx)g(a) dz, (2) 
va 

which is introduced in Example 4 of Section 9.6. Recall that f and g are orthogonal 

if (f, ) = 0, that the norm |/f|| of f is defined as ||f|) = \/ (£, £), and that f is said 

to be normalized (i.c., scaled so as to have unit norm) if ||f |] = 1. 

Finally, recall from our study of best approximation, in Section 9.10, the fol- 

lowing important result: [f f is any vector in a normed inner product vector space 

S with natural norm |/f|| = /(£,f), and {é1,....6y} is an ON (orthonormal) set 

in S, then the best approximation of f within span {@1,...,@,} is given by the 

orthogonal projection of f onto span {éi,...,éy}, namely, by 

N 

f = (f,é:)é, +--+ (f,éy én = Sif, En) En. (3) 
n=l 

To apply these results to Fourier series, let S be C;,[a, 6], with the inner product 

and norm defined above, let a = —f and 6 = &, and consider the vectors 

WL | we kre _ Rare 
e; = 1, €: = cos TT e3 = sin we @o4 == COS TT C9441 = sin —— 

(4) 
in C,[-€,@]. The set {@,,...,@y} is orthogonal by virtue of the inner product 

definition (2) and the integrals (24a,b,c) in Section 17.3. For instance, 

e = 

(e9,e3) = / COs — sin - da = 0. (5) 
J-é " 

Furthermore, 

£ 9 Arex 
(Con+is C2k+1) = / sin? = dx = €, (6) 

Je ( 
  

If we were considering a complex function space (i.e.. where the functions are complex-valued 

and the scalars are complex), then we would use the inner product 

bv 

(f,g) = f(2)G(x) dz 
a 

instead of (2), in accordance with the discussion in Section 12.2, where g(a) is the complex conjugate 

of g(a). For example, if g(a) = 6 + 52. then G(x) = 6 — 57.



  

17.6. 

so that the normalized e,,’s are 

. 1 1 1 
ey, = lel ee, = tener) y= Jae 

. 1 1 1 Tz 
@9 = Jel” = Tene” = A cos 

Con. = = sin ane (7) 

Since the set {@),..., @a441} is ON, it is LI (linearly independent), and since 

k (and hence 2k + 1) is arbitrarily large, it follows that we have an arbitrarily large 
number of LI vectors in C,,|—4, €], so the latter is infinite dimensional. 

Returning to (3), we are approximating a given f = f(z), in Cy[—€, é], in the 
form 

fla) 1 . 1 TE -_ i Tx 4 
L) cy = + Co = COS —— + sin — 

4 1 cos kre Le 1. kro (8) 
Cok —= ——+¢ — sin —— Qk Je ? Qk+1 Vi ? ; 

where 
é 1 1 € 

cy = (f,6)) = t) = dr = —— xz) du r=(hey= f Me) ede= se | ste) 
é i 

1 Tz 1 ate 
co = (f,é9) = ‘(x 008 Fda = | ‘(z) cos — dx 2= (fea) = [ fe) Ze cos Ede = = | F(2) cos 

(9) 
. 1 f° Ang comer = (f,@on41) = = | se ») sin “™ de. 

Equivalently, we can write 

Te _ Fe Ana . kre 
f(a) Sap + a4 we ee -+ a4 COS —— 7 + bp sin 

= dg + y (a cog A +b, sin —) ; (10) 

where 

ag = a sf se f(a i la) 

an = a f(x) cos — dx, (1 1b) 

by = = tf f(«@) sin — dz. (11c) 

Vector Space Approach 883
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Let us review the situation, The right-hand side of (10) is the orthogonal pro- 

jection of f on the (2k + 1)-dimensional subspace of C, |—@, &, which is the span 

of the ON vectors 

1 1 Tx Lo. ore 1 koa Lo. Awe 
ae, COS ee SIN ee COS =, SIN 
J2e Ve C Ve fr Ve e’ Ve e 

With the coefficients in (10) equal to the by-now- familiar Fourier coefficients, as 

given in (11), (10) is the best possible apt proximation to f(x) of the form (8). That 

is, it is the best approximation in the sense of minimizing the norm of the error 

vector 

1 1 TU 1. krae\|) 
f- [ce Tai +o vi cos 7 tt + Comet mE 7) sin 

[ ir (az it i og ey 1 1 mie) 
= x) — c COS —— bets + Copsey —e Sin —— x. 

(13) 

The integral in (13) is known as the squared error. Thus (10) is the best approxi- 

mation in the sense of minimizing the squared error and is called the least-square 

approximation of f(a) with respect to the ON set (4). 

We can well expect the squared error to diminish as we increase /;, but the key 

question is: Does it tend to zero as kk -+ co? It does. 

  (12) 

  

  

THEOREM 17.6.1 Vector Convergence 

If f(a) is piecewise continuous on (—¢, €) and ag, a1, by, a2, bg... . are the Fourier 

coefficients defined by (11), then 

NTT nme 
f(z) =ao+ y (an cos + by sin —— 7 —) (14) 

holds in the sense of vector (least-square) convergence, namely, 

“b k 2 

jo I. flv) - a9 - Ss" (an cos — + by, sin =) dx = 0. (15) 

nol 

  

  

Proof of this sophisticare theorem is well beyond our present scope. 

Note that the meaning of (14) here is different from its meaning in preceding 

sections. Specifically, in preceding sections equation (14) held in the pointwise 

sense, namely, that at a specific single fixed value of x we have 

k — 
lim lag + S| (un cos —— Vn +b, sin —") = f(x) (16) 
h-F00 é ( 

n=l 

  

 



  

  

17.6. 

or, equivalently, 

* NE NX 
jim f(x) ~ a9 - d, (om cos — Co 6, sin ——~ j ) == (), (17) 

    

In contrast, in the present section (14) is understood as a vector equation, which 
holds in the sense that 

  

if k 2 

jim [ f(a) ~ a9 — S- G COs = +b, sin —) du = 0. (18) 

n=l 

  

      

The truth of (17) does not imply the truth of (18), nor does the truth of (18) imply 

the truth of (17); they are logically independent statements (Exercise 4). 

To better appreciate the distinction, observe that the pointwise convergence 
addressed in Theorem [7.3.1 is convergence in a /ocal sense, at a specific point x, 
whereas the vector convergence addressed in Theorem [7.6.1 is convergence in a 
global sense. That is, the squared error integrated over the entire interval tends to 
zero as k > ox. 

We do not wish to imply that one form of convergence is inherently better or 
more correct than the other; they are simply different. 

Closure. In effect, Theorem 17.6.1 tells us that the infinite set of orthogonal 
vectors {1,cos 4*,sin 4°, cos ne, sin =-=,...} comprises an orthogonal basis for 
Chi-f. €), Couldn’t we say that that set is a basis because Cy[—é, € is infinite- 
dimensional and there is an infinite number of vectors in the set? No. For suppose 
we remove one (or more) of the vectors from the set. Then we still have an infinite 

set of orthogonal vectors, but they are not a basis. For instance, if we remove the 

cos (wa/@) vector and take f(x) to be 6 cos (7x/0), say, then (14) would be 

Bos = =O4+0404--, 

which is surely incorrect. 

Vector Space Approach = 885 

  

EXERCISES 17.6 
  

1. Corresponding to the approximation (10), let the error vec- 

tor be 
| e | 

JES = | [f(2)|" da — € 
é ke ee , , vm 

  

k 
20g + ) (az, 

mesa 

  

nex NIL 
= f(t) ~ ap -S- G COS + On sin —). (1.1) (b) Deduce, from (1.2), the Bessel inequality 

(a) Show that 

abe | . (1.2)
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(1.3) 

é 

2ag + S7(a! bn + bn) Ss = e |, [f(a ry da, 

n=       
which holds for each k = 1,2,.... NOTE: Since |[E|| — 0 
as k — oo, according to Theorem 17.6.1, we obtain 

oo ey b fr pee da + (a +08) = 5 f [re ae 
~é 

l= 1 

  

(1.4) 

    
  

which is known as the Parseval equality, and which is an 

infinite-dimensional function space version of the familiar 

Pythagorean theorem. We can draw an interesting and useful 

conclusion from (1.4). The integral on the right converges 

because f has been assumed piecewise continuous on [—¢, €]. 
Thus, the series on the left converges and has nonnegative 

terms. For such a series we know that its nth term must tend 

to zero as n — oo. Hence, it follows that a, — 0 and 6, - 0 

as 1. —> OO. 

2. Use equation (1.2), above, to compute ||E]|, for k = 
1,2,...,8, where the 27-periodic function f is defined on 

~mt <x£ < mas follows. 

iw f(x) = |2| (b) f(t) = 
f(x) = cos? x (d) f(z) = 

io f(z) = {sin z| (f) f(z) = ‘cos 2| 
0, -7<2a<0 

(g) f(z) = 
1, O<a2<7 

0, -7r<a <0 

zz, O<a<a7 

100, -r<a<an/2 

(h) f(a) = 

() f(t) = 50, w/2<a<7 
1p ing, -7T< xr <0 

DLO) = 4 Po cen 
3. Let f and g both be members of C,[—é, £], and f(x) = g(x) 
on [—¢, €] except at a finite number of points, at which f(x) #4 

g(x). Show that f = g in spite of these pointwise differences; 
i.e., show that |if — g ithin the vector space 
framework f and g are indistinguishable 

                 

4. (Vector convergence and pointwise convergence) Below 

Theorem 17.6.1, we emphasized that vector and pointwise 

convergence are independent, neither one implies the other. 

The purpose of this exercise is to illustrate that claim through 

a simple example. Consider, in place of the messy [{ |? inte- 

grand in (18), the sequence F(x) defined in parts (a), (b), and 
(c). 

(a) First, consider the sequence displayed below. 
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-! to2 lox 
kok 

becomes taller and narrower. As k increases, the “mountain” 

Show that 

lim f(a) = 0 (4. 1a) 
k-oo 

n [—€, €), whereas 

  

  

jim "Fa \dz = 140. (4.1b) 

(b) With F;,(x) as shown below, instead, show that 

F(x) A 

-/ _ i l x 
k k 

e 
lim F(a) dz = 0, (4.1c) 
k-oo fe 

whereas 

— 4, f 0, #0 
Jim Fx () = ‘ L 2=0 #0. (4.1d) 

(c) Let F(a :) be the same as in part (b), except that the 

height of the “mountain” is 1/k instead of 1. Show that in 

this case both limits are zero. CONCLUSION: The statements 

limp +60 f, F(a) dx = Oand limy+so0 F(x) = 0 on [—€, Ei 

are independent, the truth of one does not imply the truth of 

the other. 

§. Beginning with the expression 

k “b 

EI? = [, [Fe) —ag- Ss) G cos = 

nal 
9 

+6, sin =) | dx



  

17.7. The Sturm—Liouville Theory 

ca for the square of the norm of the error vector E associ- Q|/E|]° /06, = 0. Show that that step produces the expres- 

ated with the approximation (10), seek the optional choice of — sions for ag, a), bn given in (11). 

A, Gn, by by setting 0 oe /Oa9 = 0,0 EI? [Ody = 0, and 

  

17.7 The Sturm—Liouville Theory 

17.7.1. Sturm—Liouville problem. In Section 17.6 we found that the sines and 
cosines present in Fourier series constitute an orthogonal basis for the relevant 

infinite-dimensional function space. Where do such bases come from? Are there 
others as well? In this section we discover that such bases arise as the eigenfunc- 
tions of Sturm—Liouville eigenvalue problems, just as real symmetric nxn matrices 
provide us with sets of eigenvectors that are orthogonal bases for m-space. Thus, 
Fourier series will be found to be just one (extremely important) example within a 
broader Sturm—Liouville theory.* 

By a Sturm—Liouville problem we mean a linear homogeneous second-order 
differential equation 

  

p(a)y’! + ¢(a)y + Aw(a)y = 0, (a<u <b) (la) 
      

with homogeneous boundary conditions of the form 

  

ay(a) + By'(a) = 0, 

yy(b) + dy'(b) = 0, (1b)       

where a. b are finite, where p. p’, g, w are continuous on [a,b], and where p(2) > 0 

and w(v) > 0 on ja, b]. These conditions, as well as the precise form of (la) and 
(1b), are important, and should be carefully noted. Further, @ and @ are not both 
zero, y and d are not both zero, and a, 6, p(v), gv), wir). a, 3.7, 6 are all real. 

Also critical is that (1) is a boundary-value problem, not an initial-value prob- 
lem, because the conditions (1b) are imposed at both ends of the interval. If, in 

place of (1b), we imposed homogeneous initial conditions y(a) = 0 and y(b) = 
Q, then (1) would admit the trivial solution y(v) = 0. and that solution would 

be unique (Theorem 3.3.1). However. we saw in Section 3.3.2 that boundary- 

value problems can admit no solution, a unique solution, or a nonunique solu- 
tion. Thus. even though the Sturm—Liouville boundary-value problem (1) surely 

Z 

  

“The theory presented in this section was discovered by Charles Sturm (1803-1855) and Joseph 

Liouville (1809~1882), and published in 1836-1837. Sturm, a professor of mechanics at the 

Sorbonne, became involved in this work as an outgrowth of his studies of the partial differential 

equations governing the flow of heat in a bar of nonuniform density. He was joined in this work 

by his friend Liouville. who was a professor of mathematics at the Collége de France and who is 

also well known for his work on complex variable theory and on transcendental numbers. Note the 

spelling Liouville (not Louisville), and the pronunciation 1é-G0' vil (not 1d6'@-vib.
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admits the trivial solution, our interest is in finding nontrivial solutions. Though 

a,b, p(x), g(a), w(x), a, 8,7, 6 are all specified, \ is a free parameter. Any value 

of \ that permits the existence of nontrivial solutions of (1) is called an nn 

of (1), and the corresponding nontrivial solution is called an eigenfunction of (1) 

Thus, (1) is an eigenvalue problem, analogous to the matrix eigenvalue problem 

studied in Chapter 11. 

EXAMPLE 1. Consider the case 

yl’ + Ay = 0, (O<a< L) (2a) 

y(0) =0, y(L) =9. (2b) 

Comparing (2) with (1) we see that p(x) = w(x) = 1, q(a) = 0,a = 0, b=La=y=1, 

and 3 = 6 = 0, all of which satisfy the conditions listed below ( (1). 

To see if (2) admits nontrivial solutions, let us not be intimidated by the fact it is an 

“eigenvalue problem.” After all, (2a) is a simple differential equation. Its general solution 

is evidently* 

y(z) = Acos Vie + BsinV\ 2. (3) 

However, if \ = 0, then (3) reduces to y(z) = A, which is not a general solution of (2a). 

Thus, for the special case \ = 0 we return to (2a), which becomes y” = 0, and determine 

the general solution to be C + Dz, Thus, in place of (3) we write 

a . 

yl) = { AcosVAz+ Bsin Viz, A\#0 (4a.b) 

C+ Dex. A\=0 

Treating the cases \ = 0 and A # 0 separately, consider \ = 0 first. Applying the 

boundary conditions (2b) to y(@) = C+ Dz gives 

y(0) =0=C, (5a) 

y(L) =0=C+DL, (Sb) 

C = D = 0. Thus, the only solution corresponding to \ = 0 is the trivial solution 

cr) =O0,soA= Q is not an eigenvalue (in this example). vl 

  

*Note that we don’t yet know A. If A > 0, then (3) is the general solution of (2), but does (3) hold 

if \ < 0? Shouldn't we have a cosh and sinh in that case? If A <Q, (3) becomes, 

y(wv) = Acos ‘ |Aja2) + Bsin (iV{Al 2) 

= Acosh (\/|A[z) +78 sinh JA 2, 

so we do have an arbitrary linear combination of cosh and sinh. as we should. (We could rename iB 

as Cif we don't like the i.) Thus. there is no need to treat the cases A > 0 and A < 0 separately, 

although some authors prefer to do that. In fact, (3) holds even if \ is complex. but we will find that 

for Sturm—Liouville problems A is always real. 
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Turning to the case \ # 0, the boundary conditions give 

y(0) =0= A, (6a) 
y(L) =0= AcosVAL + Bsin VAL. (6b) 

Since (6a) gives A = 0, (6b) gives B sin V\L = 0, so either B = 0 or sin J/\ L = Qand 

B is arbitrary. We rule out the choice B = 0 since then we would have A = B = 0 and 

hence the trivial solution y{a) = 0. Rather, B is arbitrary and 

sinVAL = 0. (7) 

Solving (7), we have VAL = nx forn = 0,+£1,42,.... Of these values, discard n = 

0 because it gives \ = 0, which case has already been considered. Thus we have the 

eigenfunctions 

y(v) = Bsin (8) 

where /3 is arbitrary and n = +:1,-+2,.... The negative values of n can be discarded 

as well since the positive and negative choices do not lead to distinct (i.e., linearly inde- 

pendent) eigenfunctions. For example, n = +2 gives sin (27z/L), and n = —2 gives 

sin (—2rx/L) = —sin (272/L), and since the scale factor B is arbitrary it can absorb the 
minus sign. Let us set B = 1, say, for definiteness. 

The upshot is that we have the infinite set of eigenvalues and eigenfunctions 

99 

  
nea . nee 

A, Soo and én(v) = sin —— (9) 
" L ( L 

forn = 1,2,..., where we use the symbol @,, to denote the nth eigenfunction (analogous 

to the special symbol e,, that we used in the matrix case). 

COMMENT |. It may be useful to recast the solution of (6) in matrix form because the 

matrix approach is more convenient in algebraically-more-difficult cases. Re-expressing 

(6) as 
l 0 Aj | 0 (10) 

cosVAL snVAL Bil lo}? 

we see that we have a nontrivial solution of (10) fand hence of (2)] if and only if the 

determinant of the coefficient matrix is zero: 

1 0 
| . =sinVAL = 0, (11) 
PcosVAL sinVAL 

which is the same as (7). Next, solve (11) for the \’s, put them back in (10), and solve (10), 

say by Gauss elimination, for the nontrivial solutions for A and B. That step gives A = 0 

and 8 = arbitrary, as above. 

COMMENT 2. We call (1 1) the characteristic equation corresponding to the eigenvalue 

problem (2). In the 2 x m matrix case the characteristic equation is always an nth degree 

algebraic equation; in the Sturm—Liouville case it is always transcendental (an infinite- 

degree algebraic equation), with an infinite number of distinct roots.” 4 

Sturm—Liouville problems such as (2) arise throughout Chapters 18-20, when 
  

“To see that (11) is an infinite-degree algebraic equation, replace sin VX L by its Taylor series.
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    wv 

FOES 

Figure 1. Column buckling. 

we solve partial differential equations by the method of separation of variables — 

for instance in connection with unsteady heat conduction in a rod and the lateral 

motion of a vibrating string. Sometimes, however, they arise directly. For instance, 

a classical problem in structural mechanics is the determination of the buckling 

load of a structure. Consider, as a simple structure, the column shown in Fig. |, 

of length L, pinned at both ends and subjected to a downward load (i.e., force) P. 

As we increase P nothing happens — the column remains straight, until a certain 

value of P is reached, which we call the critical load or buckling load and which we 

denote as P.... Under that load the column bends (and probably collapses). Clearly, 

it is important to be able to predict P.,. To do so, we use Euler beam theory,” 

which tells us that the lateral deflection y(a) is governed by the boundary-value 

problem 

Ely" + Py =0, (0<a<L) (12a) 

y(0) =0, y(L) = 9, (12b) 

where £ and I are physical constants of the column: E is Young’s modulus of 

the material and I is the cross-sectional inertia. We see that (12) is the same as 

(2), with \ = P/EI. Surely, y(x) = 0 satisfies (12), but that solution is of no 

interest because it does not correspond to buckling. From Example | we recall that 

nontrivial solutions occur for \ = P/EI = w*/L?,4n?/L,9n°/L?,.... The 

smallest of these, P/EI = 1?/L?, gives the buckling load 

wEI 
Por = T2 

and the corresponding eigenfunction sin (7a/L) gives (to within an arbitrary scale 

factor) the shape of the corresponding buckling mode, which is somewhat as sketched 

in Fig. |. The analysis gives the inception of buckling and does not give insight 

into the dynamical process of collapse. The formula (13) was published first by 

Euler in 1757, 

Since we will be concerned with orthogonal bases in function space, we will 

need an inner product (f, g) between two functions (i.e. vectors) f and g. It will 

be convenient to use the inner product! 

  (13) 

  

    

‘b 
Gg | f(x) gv) w(e) da, (14) 

  

where the weight function w(a) is the w(z) in the Sturm—Liouville equation (1a). 

[If (f.g) = 0.then f and g are orthogonal. 
  

“See S. Timoshenko, Strength of Materials, Part | (Princeton, NJ: D. Van Nostrand, 1955). 

tte f and g are complex-valued functions such as e'", then (14) fails to meet the condi- 

tions required of any dot or inner product [(16) in Section 9.6] and should be modified as 

f. f(x) Ga) wl) dx. We will face up to that detail in the optional Section 17.7.2 but. otherwise. 

will continue to use (14) because it will turn out that complex-valued functions need not arise, Also, 

note that whether we write (f, g) or (f, g) doesn’t matter, as long as we understand that f and g are 

here being considered as vectors. 
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We have the following major theorem regarding the eigenvalues and eigen- 
functions of the Sturm—Liouville eigenvalue problem (1), with the restrictions on 

p(x), q(x), w(x), a, b, a, 8,7, 6 stated earlier. 

  

  

THEOREM 17.7.1 Sturm—Liouville Theorem 
Let A, and ¢,(a) denote any eigenvalue and corresponding eigenfunction of the 
Sturm—Liouville eigenvalue problem (1), respectively. 

(a) The eigenvalues are real. 

(b) The eigenvalues are simple. That is, to each eigenvalue there corresponds 
only one linearly independent eigenfunction. Further, there are an infinite 
number of eigenvalues, and they can be ordered so that Ay < Ag < A3 <--- 

where A, > co aS 1 > 00. 

(c) Eigenfunctions corresponding to distinct eigenvalues are orthogonal. That is, 
if \; A Ag, then (6;, dg) = 0. 

(d) Let f and f’ be piecewise continuous ona < a < b. Ifan = (f, Gn) /(bn, bn), 
then the series Dn Andn(x) converges to f(x) if f is continuous at x, and 
to the mean value [f(«+) + f(a—) \/2 if f is discontinuous at x, for each 
point x in the open interval a << x < 6. 
  

This theorem is analogous to the several individual theorems given in Section 
11.3 for n x m real symmetric matrix eigenvalue problems. Parts of it are proved in 
the optional Section 17.7.2. 

Part (d) says that 
  

OO 

= nde) (f, dn) y Ont) (15) 
(on, @n)       

holds at each point x ina <«@ < 6 at which f is continuous. [f, at a discontinuity, 
f(x) does not happen to equal the mean value[f(a+)+ f(«—)|/2, then the equality 
in (15) does not hold at that point. To remind us of the possibility of such point- 
wise discrepancies, some authors write an “ae” above the equal sign, to mean equal 
“almost everywhere,” but we will simply write the eigenfunction expansion of f as 
we have in (15), without such reminders. Observe that (d) is a pointwise conver- 

gence statement. Various other statements are available regarding both pointwise 
and vector convergence, but (d) will suffice for most practical purposes and for our 

purposes in this text. 

EXAMPLE 2. Consider the results of Example { in the light of Theorem 17.7. Since 
An =n? w/b, the eigenvalues are real, there are an infinite number of them, and A,, > 00 

as rm. —> oo. Further, each eigenvalue is simple because the single eigenfunction
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sig), 

  

  

L x 

Figure 2. Convergence of (18). 

én(a) = sin (nwa/L) corresponds to each eigenvalue \,,. Finally, with the weight function 

w(x) = 1 we have 

(dm On) = | sin gin “7 de = 0 (16) 
0 L L 

form  n, by virtue of the Euler formula (24b) in Section 17.3. Each of these results is in 

accord with Theorem 17.7.1. 

To illustrate the eigenfunction expansion (15), let f(a) == 7. Then 

(fon) = [ x sin — dz = (aye, (174) 

(Ons On) = [so OE dy = (7) 

so we have oe a 

-1)" NTE 
fle) =e= By sin (18) 

COMMENT |. Carefully observe that part (d) of the theorem does NOT require f to 

satisfy the homogeneous Sturm—Liouville boundary conditions, which are y(0) = 0 and 

y(L) = 0 in the present example. In fact, f(Z) is L, not 0. Nonetheless, we do obtain the 

convergence that is guaranteed by the theorem, over 0 < a < L (actually, overO <a < L 

in this example), as hinted at in Fig. 2, where we compare f(a) = x with the fifth and 

tenth partial sums, s5(x) and syo(z). 

COMMENT 2. Observe also that, corresponding to the present Sturm~Liouville problem, 

the eigenfunction expansion (15), namely, 

= NUL 
‘(n) = oy sin ——, 192 f(z) a sin T (19a) 

where L 
2 x m=z fe fo) sin der, (19b) 

is actually the half-range sine expansion of f, studied in Section 17.4. Other choices 

of the boundary conditions, in place of y(0) = 0 and y(L) = 0, will result in eigen- 

functions that produce the half-range cosine and quarter-range sine and cosine expansions 

(Exercise 2). 

There is a small flaw in our procedure. To solve the characteristic equation (7), 

we recalled that sin = 0 has roots atc = nz on the real axis. Might there be 

complex roots as well? It’s true that we know in advance that A is real, but if it is 

real and negative then the argument of the sine is purely imaginary. Thus, we need 

to search for roots of sin z = 0 (where z = x + iy) not only along the real axis but 

along the imaginary axis as well. Doing so, observe that sinéy = isinhy = 0 is 

equivalent to sinh y = 0, which admits only the root y = 0. Thus, we did not miss 
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any roots, and all is well. The following theorem could have saved us this extra 

trouble. 

  

THEOREM 17.7.2 Nonnegative Eigenvalues 
If g(x) < 0 on [a,b] and [p(a)bn(x)¢/,(2)|| < 0 for the eigenfunction ¢,(x), 
then not only is A, real, A, > 0. 
  

Applying Theorem 17.7.2 to the problem in Example |, observe that q(z) <0 

on (0, L] because q(x) = 0. Further, p(x) = 1 and the @p(.r)’s satisfy the boundary 
conditions (2b), so 

iplo)balw)eh(x)l] = on(E)6%(L) ~ on(0)e(0) 
= (0)¢1,(L) — (0)¢),(0) = 0. (20) 

Hence, not only are the ,,’s real, they are also nonnegative. 

EXAMPLE 3. Find the eigenvalues and eigenfunctions for the Sturm—Liouville problem 

y’ +Ay = 0, (Q<a2<1) (21a) 

y(0) — 2y/(0) = 0, y(1) = 9. (21b) 

We speak of the boundary condition at z = 0 as being of mixed type because both y and 

y' are present: that is, both a and @ are nonzero in (1b). Such boundary conditions do arise 

in applications such as unsteady heat conduction, as we shall see in Chapter 18. 

As in Example |, solution of (21a) gives 

y(a) = { AcosVAc+ BsinVic, \40 (22a.b) 
C+ Dz, A= 0. 

Imposing the boundary conditions (21b) on the C+ Dz solution gives C —- 2D = 0 

and C+ D = 0,soC = D = 0. Hence, \ = 0 is not an eigenvalue. For the A 4 0 case, 

the boundary conditions give 

Losvi anya La ]-[o]} (23) 
To obtain nontrivial solutions (1.e., where A and J are not both zero), set the determinant 

equal to zero, which step gives the characteristic equation sin JX +2Vi cos VA = 0 or, 

more conveniently, 

tanV\ = ~2VX. (24) 

Applying Theorem 17.7.2, with g(x) = O and p(w) = 1, 

il 
= On(} 841) ~ bn(0)65 (0) 

= (0) —2[¢/,(0)}? [from (21b)] 

<0, (25) 

(Pen On) 
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so the A,,’s are nonnegative. Hence, it suffices to look for solutions of (24) along a real VX 

axis. Plotting the left- and right-hand sides of (24) in Fig. 3, we can see the roots V/A, fall as 

       
ae   

Figure 3. Roots of (24). 

indicated, (The intersection at the origin can be discarded because we already determined 

that \ = 0 is not an eigenvalue.) We can find any number of roots using computer software 

such as Maple and obtain, for the first few, 

VAq = 1.83660, VAg = 4.81584, VWAg = 7.91705,..., (26) 

or 

Ay = 3.38731, Ag = 23.1923, Ax = 62.6797,..., (27) 

and so on. The graphs in Fig. 3, or even a freehand sketch of them, reveal that VAn ~ 

(2n — 1)r/2asn —- ov. 
With the eigenvalues determined. we return to (23) to find the nontrivial solutions for 

A and B and hence for y(z). With » satisfying (24), the second row of the coefficient 

matrix is a multiple of the first, so of the two scalar equations implied by (23) the second 

can be discarded, leaving the one equation 

A-2/\,B=0 (28) 

on the two unknowns A and 8B. Thus, A = 2/A,, 8, where B remains arbitrary, so 

y(z) = Acos ~An a+ Bsin fAn x 

= BV An cos V/An wv + sin VAn 2) (29) 

and hence the eigenfunctions are 

On(x) = 2 J An cos fAn ot sin V/A @, (30) 

where the A,,’s are given by (27). 

COMMENT. Actually, if we extended the graphs in Fig. 3 over -co < V/\ < 0 we would 

find the additional roots —/A; and ~—./Ag and so on. These can be discarded just as we 

discarded the n = —1,~2,... cases in Example | because they contribute nothing new.
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For instance, the right-hand side of (30) is an odd function of /A;, so changing V/A, to 

--f/\, merely scales @,(c) by a factor of —1. 

EXAMPLE 4. Asa final example, consider the problem 

y — 2y' + Ay = 0, (O0<2 <7) (la) 

y(O) = 0, ybr) = 0. (31b) 

{t appears that (31) may not be a Sturm—Liouville problem at all since the written-out 

version of (fa) is 

py” + py’ + qy + Awy = 0. (32) 

That is. the coefficient of y' needs to be the derivative of the coefficient of y”. Yet, ~2 in 

(31a) is not the derivative of 1. However, let us multiply (31a) by a yet-to-be-determined 

function o(a), giving 
oy — oy’ + Aoy = 0 (33) 

such that the coefficient —2o of y’ is the derivative of the coefficient o of y" 

go’ = —2o. (34) 

Solving. o(a) = Ce7™* and we can take C’ = | without loss, Putting that o into (33) does 

give the standard Sturm—Liouville form, 

(e 7" y')' + Aen Pty = 0. (35) 

Since the factor ¢ = e72" in (33) is everywhere nonzero, the solution of (31a) and (35) are 

identical. so the two equations are equivalent. 

That step was important for two reasons. First, it establishes the problem as being of 

Sturm—Liouville type so that we can make use of Theorems 17.7.1 and 17.7.2. Second. il 

enables us to identify p(x) and w(a): p(a) = w(a) = e~*", so we see that p(x) > 0 and 

w(x) > 0 on the closed interval 0 < © < m, as required by the theory. And of course we 

will need to know the weight function w(«) in the inner product if we are to carry out any 

eigenfunction expansions. 

To find the eigenvalues and eigenfunctions, seek an exponential solution form y(v) = 

e’®, Putting that form into (31a), we find that r = 1 + V1 — A, so the general solution of 

(Aha) is 

y(x) = (Ae "4 BewvI~A *) . (36) 

unless .\ = 1. in which case the two solutions in (36) coalesce into one. Thus, we need to 

distinguish the two cases \ 4 t and \ = 1, and write the general solution as 

e*(Csinh (V1 — Ax) + Deosh (V1 ~Aax)), AFI 

yr) = (37a.b) 
ete + Fx), Az1 

where the sinh. cosh combination will be a bit more convenient than the positive and neg- 

ative exponentials in (36) because the y(O) = 0 boundary condition will give D = 0 and 

will thereby knock out one of the two terms.
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eigenvalue of (31). Applying them to (37a) gives D = 0 and the characteristic equation 

sinh (1 — Am) = 0, (38) 

with C remaining arbitrary. For \ < 1, (38) has no roots. For A > 1, write" 

sinh (V1 — Aw) = sinh (iVA ~— Lr) = isin( VA 17) = 0, (39) 

so VA—~ ia =n forn = 1,2,.... Thus, the eigenvalues are 

An = len’. (n= 1,2,...) (40) 

Further, 

y(x) = Ce* sinh (V1 — Xx) = Ce” sinh (i JV\ — 12) 

= iCe® sin(V\ — la) = iCe* sinne, (41) 

so the eigenfunctions are 

dn(x) = e* sin ne. (42) 

Finally, the eigenfunction expansion of a given function f(x) on0 <2 < mis 

f(x) = S° anOn(£), (0 auc i) (43a) 

m= bh 
nit 

, ‘(n)(e" sinna)e~* dx 
(f.@n) J, Fort ) 

an = = FT 
On, @ es er 

(Ons On) / (e" sinnx)"e 22 dep 
0 

  

TE 

f(c)e* sinna dx 5 pm 

se 40 = f(xje" sin nz dz. (43b) 
+2 fe "JO | sin* na da 

0 

COMMENT. We did not use Theorem 17.7.2 in this example because it addresses the 

distinction \ > 0. A < 0, whereas here we were concerned with the cases A > 1,A <1. 

In Examples 1 ~ 4 it turned out that the separately-considered \’s [A = 0 in 

(4), \ = 0 in (22), and \ = 1 in (37)] turned out not to be eigenvalues. Do not dis- 

card such values out of hand because they might, in other examples. turn out to be 

eigenvalues. For instance, you will find that if the boundary conditions in Example 

  

*Here we use the definitions of sinh ( ) and sin ( ): 

. : eC ~~ € : S toe 
sinh it = ———- = i = init. 

2 22 
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| are changed to y/(Q) = 0 and y/(Z) = 0, then A = 0 is indeed an eigenvalue, 
with the eigenfunction @(a) = 1. 

17.7.2. Lagrange identity and proofs. (Optional) We will derive a Lagrange 
identity, and use it to prove parts of Theorem 17.7.1. Proof of Theorem {7.7.2 is 
left for the exercises. We assume elementary knowledge of the Cartesian represen- 

tation of complex numbers z = x + iy and the complex conjugate = = x — iy, as 
covered in Section 21.2. 

When we introduced the inner product (14), we noted that if we are to admit 
complex-valued functions then we should modify the inner product as 

f,9) = [16 f(®) G(x) w(2) de. (44) 

That is, we continue to ask p(x), g(x), w(a), a, 8,7, 6 to be real, but it is not at all 
obvious that assumption implies that the eigenvalues and eigenfunctions must be 
real. For instance, the real matrix 

[4] 
has the complex eigenvalues \ = 1 + i and complex eigenvectors as well. 

To begin, observe that the properties 
  

(fig) = (9, Sf), (45a) 
(if, 9) = ue fs 9g), (45b) 

(f; 9) =7 FAH 9); (45c) 

follow immediately from (44), where jz is any scalar. Since (f,g) 4 (g, f) in 
general, according to (45a), it is sometimes useful to specify that / comes first and 
g comes second in (f,g). In what follows we say that (/,g) is g pre-dotted with 
f or f post-dotted with g, which terminology is not standard. 

Let us express (1a) in operator form as 

Ly] = Ay, (46) 

where L is the differential operator 

1 | a d 
L=—-— p—|+al, (47) w | da v da 

and let wand v be any functions having continuous second derivatives on [a, 6] and 
satisfying the homogeneous boundary conditions (1b). Then 

  

      

bo 
, L., 

(Llu), vu) = | ~— [(pu’)! + qultw dx 
w 

“bh 

=- | [(pu’)’ + quit da, (48) 

897
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and integrating the (pu’)/S term by parts twice, so as to undo the derivatives on u, 

gives 

b ‘b 
(L[ul,v) = [p(ua’ — u'd)|]| — | [(po")' + qijuda. (49) 

  

a 

Remembering that p(x), g(a), and w(x) are real, we can re-express the last term in 

(49) as 

ob b - t 
/ [(pv’)! + gojudx = | —[(pv')' + qijuw dx 

a Ww a 

0 es 1 

~ | —[(pe')' + qu] ww de 
q W 

rb — 

= | u Liv] w dx 

= —(u, L[v}). (50) 

Further, the boundary term in (49) is zero because u and v satisfy the homogeneous 
boundary conditions (1b). For instance, suppose a = y = land 6 = 6 = Oin 
(1b), so u(a) = 0, u(b) = 0, v(a) = 0, and v(b) = 0. It follows from the latter two 
that G(a) = 0 and 0(b) = 0, so 

b 
[p(ut’ — u'd)]} = (0-0) — (0-0) = 0; (51) 

a 

similarly for any @ and { (not both zero) and any + and 6 (not both zero), verifica- 

tion of which claim is left for the exercises. Thus, (49) becomes 

  

(Llu), v) = (u, Llu), (52) 
  

which formula is known as the Lagrange identity. 

Proof of Theorem 17.7.1, part (a): Let A be an eigenvalue of (1) and @ a corre- 

sponding eigenfunction, so 
Lid] = Ad. (53) 

Post-dotting (53) with and pre-dotting (53) with @ gives 

(Lid),) = (Ad, &) = A(d, 6) (54a) 

from (45b), and _ 

(b, Lib}) = (6, Ad) = A(o, 6) (54b) 

from (45c), respectively. Subtracting (54) from (54a) gives, by virtue of the La- 

grange identity, 

0 = (A-A)(o, 6) = (A~ A) jal’. (55)
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The factor |||" is nonzero because @ is an eigenfunction, so it follows from (55) 

that \— A = 0. Thus, A = Aso A is real, as was to be proved. a 

Proof of Theorem 17.7.1, part (b): Let @; and , be eigenfunctions correspond- 

ing to distinct eigenvalues A; and A,, respectively. Thus, 

L[b;| = Ayo; and Llp] = Aner. (56a,b) 

If we dot @, into each side of (56a) and dot each side of (56b) into @; [i.e., we 

pre-dot (56a) with @, and post-dot (56b) with @;], we obtain 

(On, Libj]) = (bes Aj63) 

and 

(Llép), 03) = (Ande, &) 
= Ak (bps 05); (58) 

respectively. The left-hand sides are equal by virtue of the Lagrange identity, and 
A; = Aj because the \’s are real, so subtraction of (57) from (58) gives 

Finally, \j — Ax 3 0 by assumption, so it follows that (6,,¢;) = 0, as was to be 

proved. 

Before closing this section let us explain the significance of the Lagrange iden- 
tity (52). The operator L is the differential operator 

1 l d 
L=— - p—|+q (60a) 

w | dx dx 

on the domain P of functions, u say, that are defined and have continuous second 

derivatives on [a, b) and that satisfy the homogeneous boundary conditions* 

4 | By! = au(a) + Bu'(a) ~ , (60b) 
yu(b) + du'(b) 

  

“Note that the definition of the domain D is part of the definition of L, just as the domain of 

definition is part of the definition of a function. For instance, the function whose values are sin x on 

0 <x < wis different from the function whose values are sing on ~7 <a < 23. Thus, the oper- 

ator is the differential operator (60a) plus the domain of definition. In this discussion, although not 

elsewhere in this text, we distinguish between the differential operator (namely, the “action” (60a)] 

and operator [namely, the action (60a) plus the domain of definition D]. By the way, why do we ask 

functions u(x) in D to have continuous second derivatives? They need to be twice differentiable so 

that L([u] exists because L is a second-order differential operator. Further, we wish to ensure that the 
inner product integral (L[u],v) exists, and we can do that by asking the integrand to be continuous 

on (a, |. In fact. L[u] will be continuous if u has a continuous second derivative.
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More generally, the equation 
  

  
(Llul,v) = (u, E*{v}) (61) 

    

is used to define the Hermitian conjugate (or adjoint) D* of the operator L, rela- 

tive to whatever inner product is chosen. Let us illustrate. 

  

EXAMPLE 5. Find the Hermitian conjugate of the operator consisting of the differential 

operator 
_ a? d 

~ dx? dx 

on the domain D of real-valued functions defined and having continuous second derivatives 

on [0, 7} and satisfying the homogeneous initial conditions 

(62a) 

u(0) = 0, u'(0) = 0, (62b) 

subject to the inner product definition 

(u,v) = | u(z)u(x) dz, (62c) 
0 

say. Begin with the left-hand side of (61), 

(L[uj,v) = [ (uw +ul +ujudz. (63) 
0 

Integrating the u’’v term by parts twice, the w’v term once, leaving the uv term intact, and 

using (62b), gives 

  

(L[uj,v) = (u’v — wv! + uv) : + | u(u"” —u' + uv) dz 
0 

= [u'(r) + u(m)ju(r) — [u(a)]u'(r) + (Cu, £*[v)), (64) 

where, from the v’’ — v! + v in the integral, we can infer that 

. @& d 
= —-— +1, (65a) 

dx? dx 

To obtain the boundary conditions associated with L* we see, by comparing (64) with (61), 

that we need the boundary terms in (64) to drop out. Whereas u(Q) = 0 and u’(0) = 0, the 

bracketed quantities u’ (7) + u(sr) and u(7) are not prescribed, so we must have both 

u(m) = 0, v'(r) = 0. (65b) 

Thus, the Hermitian conjugate operator is the differential operator (65a) on the domain D* 

of real-valued functions defined and having continuous second derivatives on [0,7] and 

satisfying the conditions (65b). @ 

If the operator and its Hermitian conjugate (or adjoint) are identical, then we 
say that it is Hermitian (or self-adjoint). Thus, the operator in Example 5 is not
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Hermitian because the £* in (65a) differs from the £ in (62a) (by the minus sign in 
front of the d/dx) and also because the boundary conditions (65b) on functions in 
P—* are different from the boundary conditions (62b) on functions in D. Either of 

these differences would be sufficient to conclude that the operator is not Hermitian. 

  

EXAMPLE 6. Matrix Case. Find the Hermitian conjugate of a real n x m matrix 
ye operator A, defined on the vector space IR”, with the dot product x.y = xy, where x 

and y are n-dimensional column vectors, A* is defined by requiring that 

(Ax)-y =x-(A‘y) (66) 

for all x's in the domain ‘PD of A and for all y's in the domain D* of A*. Since A isn x n 

and x ism x 1, the Ax in (66) is x 1. For the dot product on the left to be defined we 

need y to be 2 x 1 as well. On the right, x isn x 1, so we need A*y to ben x 1. Since y 

isn x 1, A* needs to be n x nm. Thus, like A, A* is ann x m matrix operator defined on 

R", To determine A*, begin with the left-hand side of (66), 

(Ax)-y = (Ax)"y = x'ATy =x-(A'y), (67) 

so the Hermitian conjugate A* of A is 

A* = AT. (68) 

Thus, A is Hermitian if and only if AT = A, that is, if A is symmetric. Just as the 

eigenvalue problem for the Hermitian Sturm-Liouville problem is of great importance, so 

is the eigenvalue problem for real symmetric (hence Hermitian) matrices and, indeed, that 

case is singled out for study in Section 11.3. @ 

Closure. The Sturm-Liouville eigenvalue problem is the differential equation ana- 
log of the matrix eigenvalue problem Ax = Ax, where A is real and symmetric 
(hence Hermitian). In both cases the eigenvalues are real and the eigenvectors pro- 
vide an orthogonal basis for the relevant vector space. The expansion formula (15) 
is the analog of formula (23) in Section 9.9. 

Although the Sturm-Liouville and matrix eigenvalue problems are closely re- 
lated Gf A is Hermitian), the Sturm-Liouville case is much more subtle because 

the vector space is infinite-dimensional and expansions are, in general, infinite se- 
ries, For instance, in a five-dimensional space five orthogonal vectors necessarily 
constitute a basis, but in an infinite-dimensional space an infinite number of orthog- 
onal vectors need not constitute a basis. Thus, part (d) of Theorem [7.7.1 is a deep 
result, and we put it forward without proof. 

[f we were to generalize the real symmetric matrix and Sturm-Liouville eigen- 
value problems further. we would study Hermitian operators, with matrix, ordinary 
differential, partial differential, and integral operators merely occurring as special 
cases. Such study is beyond our present scope and falls within the domain of math- 
ematics known as functional analysis. Rather than being exceptional, the operators 
encountered in applications are often Hermitian.
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Computer software. To find the roots of (24) using Maple we can use the fsolve 

command, but it is best to include the option of specifying the interval in which to 

search. From Fig. 3, it is evident that the first JX root falls in the interval [7 /2, 3). 

Thus, there is a \ root in [2.46, 9], so enter 

fsolve(tan (sqrt(x)) + 2* sqrt(z) = 0, x, 2.46..9); 

and return. The result is the first root, A = 3.3731. For the second root enter 

fsolve(tan (sqrt(a)) + 2 * sqrt(z) = 0, 2, 22..36); 

and so on. 

  

EXERCISES 17.7 
  

1. Identify p(x), q(x), w(x), a, 8,7, 6, solve for the eigenval- 

ues and eigenfunctions, and work out the eigenfunction expan- 

sion of the given function f. If the characteristic equation is 

too difficult to solve analytically, state that and proceed with 

the rest of the problem as though the A,,’s were known. 

(a) y+ Ay =0, 
y(0)=0, y(L)=0, f(x) = 100 

(b) y” + Ay =0, 
y/(0)=0, y(L)=0, f(z)=1 

(c) y"” + Ay =09, 
f , 1, 0 <4 L 2 

y'(0) = 0, y (L) =0, fla)= 4g Liter ef 

(d) y+ Ay =0, 

y/(0)=0, y(L)+y'(L)=9, f(x) = 50 
(e) y’ + Ay =0, 

y(0)+y/(0)=0, y(r)=0, f(x) = 10 
() y+ Ay =0, 

, 0, -l<2x<0 
y'(-1) =0, y’'() = 9, fle) = { 50. O<car<l 

y+ Ay = 0, 
y(0) = 2y'(0) = 0, y'(2) = 0, f(z) = 100 

2. We pointed out that the Sturm-Liouville problem in Exam- 

ple | generated the half-range sine expansion studied in Sec- 

tion 17.4. Modify the boundary conditions in that example so 
as to generate, instead, the 

(a) half-range cosine expansion 

(b) quarter-range sine expansion 

(c) quarter-range cosine expansion 

3. (Obtaining Sturm—Liouville form) We observed, in Exam- 

ple 4, that the equation 

A(z)y"” + B(a)y’ + C(a)y + AD(x)y = 0 3.1) 

is in the standard Sturm-Liouville form (1a) only if B(x) = 

A'(x). Show that if A(z) # 0 on [a,b] and (B — A’)/A is 

continuous on [a, 6], then we can recast (3.1) in the form (La) 

by multiplying (3.1) by 

a(x) = ed (B-AQ/A] dx (3.2) 

4. Use the results of Exercise 3 to recast each of the follow- 

ing differential equations in the Sturm—Liouville form (1a). 

Identify p(x), g(x), and w(x). 

(a) cy" + 5y' + Ary =0 
(b) y+ 2y! + ay + Ar*y = 0 
(c)y" ty’ + Ay = 0 

(d) yy" — y! + Avy = 0 
(e) 2?y" + xy! + An*y = 0 
(fy + (cot ry! + Ay = 0 

5. Use computer software to find Ay,... 

seven significant figures. 

,Ag from (24), to 

6. Consider the eigenvalue problem 

y" + Ay = 0, (0<2a<1) 

2y(0) — y(1) + 4y'(1) = 9, y(0) + 2y'(1) = 0. 

Explain why the latter problem is not of Sturm-Liouville type. 

Using computer software, determine any two eigenvalues. 

 



  

HINT: You should obtain the characteristic equation 

Although the latter equation has no roots on a real VX 

axis, we need to search in the complex plane. With 

zZo= £ + iy write sinz = 22, use the identity sine = 

sin(e +iy) = sinacoshy + icosasinhy and obtain the 

equations sing coshy = 2x, cosasinhy = 2y on « and y. 

Then, use computer software to find any two solution pairs for 
x and y, and hence for A. 

7. Show that for 

y” + Ay = 0, (0<a<1) 
y(0) — y(1) = 0, ( “ 

every A (real or complex) is an eigenvalue! Is the latter a 

Sturm—Liouville system? Explain. 

8. Consider the eigenvalue problem 

xy" + xy’ + Ay = 0, (l<a<a) 

yQ)=0, — y(a) =0. 

(a) Show that the eigenvalues and eigenfunctions are 

—_ . Ine 
Op (xv) = sin | nt —— 

' Ina 

forn = 1,2,.... 

(b}) Show that the eigenfunction expansion of a given function 

f is of the form 

= Ina 
f(z) = » c, sin G — - ). 

oc ; Ine \ dz 
| f(a) sin | nt —— | — 

A Ina J x 

ne if at ne) dz 
sin® | naw —— | — 

Ji lna/ zx 

29 
now 

(Ina)?’ 
  

An = 

where 

HINT: You will need to get the differential equation into 

Sturm~Liouville form, as discussed in Exercise 3, before you 

can identify the weight function w(x) for the inner product. 

9, Expand the function 

e
s
 

I
N
I
A
 

I
A
A
 

4 
ON
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in terms of the eigenfunctions of the given eigenvalue prob- 

lem. Use computer software, such as the Maple int command, 

to evaluate the expansion coefficient a, as a function of n. 

fay" +Ay=0,  y'(0) = 0, y'(7) = 0 
(by y" + Ay=0,  y'(0) = 0, y(r) = 0 
(cy +Ay=0,  y(0) = 0, (7) = 0 

10. Prove that the Sturm—Liouville eigenvalues are simple, as 

stated in part (b) of Theorem 17.7.1. HINT: Suppose that 1 

and @2 are two eigenfunctions corresponding to an eigenvalue 

A of (1), and suppose @ # 0 in (1b). Then the Wronskian 

W (a) of @ and é, evaluated at ¢ = a, is 

W(a) = 

    

(10.1) 

On the other hand, if @ does equal zero in (1b) then (1b) 

becomes y'(0) = 0, so 

(10.2) 

once again. Show that it follows from these results and 

Liouville’s formula that W’(a2) = 0 on [a,b], and cite an ap- 

propriate theorem which then implies that @; and go must be 

linearly dependent on [a, 6]. 

Mi. (Real eigenfunctions) Show that if @(x) is an eigenfunc- 

tion of a Sturm-Liouville problem, then @(z) is either a real- 

valued function or else it ts a complex constant times a real- 

valued function. HINT: Show that if @(a) is an eigenfunc- 

tion corresponding to an eigenvalue ., then so is (a). Then 

use part (b) of Theorem 17.7.1 (namely, that the eigenval- 

ues are simple) to show that d(x) = co(x), where c is a 

constant, Expressing the latter equation in the (polar) form 

A(r)e!B™ = Ce? A(a)e7'8™, show that B(x) is, at most, 
a constant. 

12. Prove Theorem 17.7.2. HINT: You may assume that the 

eigenfunctions are real (proof of which is outlined in Exercise 

10}. Multiply each term in (py’)' + gy + Awy = 0 by %, and 

integrate over the [a,b] interval. Thus, show that 

5 6 4 ob 5 

+/ ply'| ax ~ | aly da, 
a va Ja   Miyl? = -(py’d) 

(12.1) 
and examine the signs of the individual terms.
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13. (Column buckling with lateral restraint) Consider the 
buckling of the column of length LZ and stiffness &J shown in 

the figure. It is fixed into the floor such that y(0) = y/(Q) = 0, 
and it is restrained laterally, at the free end, by a spring of 

stiffness k. Then it turns out that the lateral deflection y(a) is 

governed by the eigenvalue problem 

yl" + dy" = 0, (0<2<L) 

y(O) = y/(0) = y"(L) = 0, (13.1) 

yl" (L) = ~Ay"(Z) + ry(L), 
where \ = P/ET ands = k/EL. 

(a) Show that the characteristic equation is 

(A* —~KL)AcosAL + «sin AL = 0, (13.2) 

where A = VA, and that the corresponding eigenfunctions 

(buckling modes) are (to within an arbitrary scale factor) 

y =sinAgc —tanALcosAx — Ag + tan AL. (13.3) 

(b) Solve (13.2) for the critical buckling load, P.,, for the 

case where & = 0. 

(c) Is (13.1) a Sturm~Liouville problem? Explain. 

a
a
y
 

w
a
a
 

  

14. (Buckling of linearly tapered column) Consider a column 

of circular cross section, the radius of which varies linearly 

with x. It extends overa < x < 6, as shown in the figure, 

a
 

  

xeb~ 

is pinned at both ends, and is loaded axially by a force P. 

Then the cross-sectional moment of inertia / is not a constant; 

it is given by I(x) = Ip(x/b)*, where the constant Jy is the 
value of I(x) at x = 6, so the eigenvalue problem governing 

buckling is found to be 

aty"” + Ay = 0, 

y(a) = 0, 

where \ = b*P/EIp. 

(a) Verify that (for the case \ 4 O)the general solution of the 

differential equation can be expressed as 

) A 
S) + Bcos 3) 
x x 

(b) Applying the boundary conditions. show that the eigen- 

values and eigenfunctions are 

(a<a <b) 
(14.1) 

y(b) = 0, 

y(x@) = x | Asin (14.2) 

  
nab \* 

An = - ; 14.3¢ 
( L ) y 

b a 
) (v) = xsin|nam— (1 - — 4.3b én (x) = xsin [rn Z (1 *)| (14.3b) 

for n = 1,2,..., and that the buckling load is Po, = 

nr? EIoa* /b? L°, where Lb = 6 ~ a. 

15. (Buckling of nonlinearly tapered column) Although not 

wishing to give undue prominence to the subject of the buck- 

ling of columns, we include this final exercise on buckling, 

which we believe is interesting and challenging. If. in the 

problem of Exercise 14, the column radius is proportional to 

Jz rather than to x, then I(x) = [o(a/b)*. and we have 

uy" + Ay = 0, (a <a <b) 
(15.1) 

y(a) = 0, y(b) = 0, 

 



  

(7.8. 

where \ = 67 P/E'Ig. Show that the buckling load is 

, Ely fi me Pap See pe 5.2 
° b? { 4 [In (b/a)i? J (D2) 

16. We show in (51) that the boundary term in (49) is zero 

for the special simple case where a = y = Land G = 6 = 0. 

Prove that the boundary term is zero for avy a and @ (not both 

zero) and for any y and 6 (not both zero). 

17. Find the Hermitian conjugate (1.e., the adjoint) of the given 

operator and state whether the given operator is Hermitian 

(self-adjoint). If it is not, state why it ts not. In each case, 

the interval is OQ < «@ < 1, and the inner product is 

a 
(f.g) = f(e)g(e) de. 

Jo 

(ayl= oo u(Q) = 0 
dx 

(b) L = < u(1) = 0 

Periodic and Singular Sturm—Liouville Problems 

(h) Lb = 

(b= 

Ql= 

905 

  

P 

a u(Q) = u/(0) = 0 
da? 

d? hyo 1. 

a , , 
Tp +3, w(0)=w'(1) =0 

a d 
a tae u(Q) = u(1) = 0 

[3 [2 / 

<. s+2—, ul0) =u (0) =w (1) =0 
dx’ da 

d? 1 ! t ie 1, u(O0)+u'(0) =u'(1) =0 
dx? 

& ' ty et 
im " (0) = w(1) + 5u'(1) = 0 
av 

a? , 1 
aa’ u(O) — w(1) = u’(O) — u’(1) = 0 
dx? 

  

17.8 Periodic and Singular Sturm—Liouville Problems 

The Sturm—Liouville problem studied in Section 17.7 consists of the linear homo- 

geneous second-order differential equation 

t + a(vjy + Aw(x)y = 0, ip(a)y')’ 

with homogeneous boundary conditions of the form e 

aya) + By'(a) = 0, 

vy(b) + oy'(b) = 0. 

(a <a <b) (la) 

(Lb) 

where a. b are finite, where p, p’.q, w are continuous on (a, b], and where p(x) > 0 

and w(a) > Qon (a,b). The latter is generally known as a regular Sturm—Liouville 
problem. and many powerful results followed, as given in Theorems 17.7.1 and 
17.7.2. We say that the boundary conditions (1b) are separated since one condition 
applies at 2 = a and the other atv = 0. 

If any of the conditions cited above are not met, then the results obtained in 
Theorems 17.7.1 and 17.7.2 may not hold. Among the nonregular versions of the 
Sturm—Liouville problem, two are especially prominent and are the subject of this 
section: the Sturm—Liouville problem with periodic boundary conditions. and the 
singular Sturm—Liouville problem. In these cases the conditions cited above are 
met, except as noted below.
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Periodic boundary conditions. In this case we have, in place of the separated 

boundary conditions (1b), the nonseparated conditions 

  

(2) 

      
which are known as periodic boundary conditions, for reasons that will become 

clear when we work an example. 

Singular case. In this case p(2) [and possibly w()] vanishes at one or both end- 

points, so that p(w) > 0 and w(a) > 0 holds on the open interval (a,b) rather 

than on the closed interval [a, b]. Further, the boundary conditions are modified as 

follows. 

p(a) =0 [and p(b) # 0]: Then the boundary conditions are 

  

y bounded at a, 

yy(b) + dy/(b) = 0.       
p(b) =0 [and p(a) 4 0]: Then the boundary conditions are 

  

ay(a) + By'(a) = 0, 

    y bounded at b. 
  

p(a) = p(b) =9: Then the boundary conditions are 

  

y bounded at a, 

y bounded at b. 
(3) 

      

By y being bounded at a, for example, we mean that lim,—,, y(a) exists (and 

is therefore finite). 

For these cases we have the following results, 

  

THEOREM 17.8.1. Periodic and Singular Cases 

Let A, and @,(x) denote any eigenvalue and corresponding eigenfunction of a 

Sturm—Liouville problem with periodic boundary conditions. given by (2), or a 

singular Sturm—Liouville problem (as defined above). 

(a) The eigenvalues are real. 
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(b) If giz) < 0 on [a,b] and (p(x) dy (x) ef, (2)][?, 
én{x), then not only is A, real, it is also nonnegative: A, > 0 

  
> < 0 for the eigenfunction 

(c) Eigenfunctions corresponding to distinct eigenvalues are orthogonal. That is, 

if Aj # Ag, then (j, Op) = 0. 
  

As for the regular case, positive statements can be made about the complete- 
ness of the sets of orthogonal eigenfunctions generated by these problems, in the 
sense of their being bases for the eigenfunction expansion representation of suffi- 
ciently well behaved functions on the interval a <a < b. 

EXAMPLE 1. Periodic Boundary Conditions. Consider the Sturm—Liouville problem 

y" + Ay = 0, (-L<a< DL) (6a) 

y(-L) =y(L), y'(-L) = y'(L). (6b) 

We begin with the general solution 

y(a) = { AcosVAr+BsinVAz, \€0 (Ta.b) 

C+ De, A= 0. 

For \ = 0 the boundary conditions (6b) give C- DL = C+ DLandD=D,soD=0 

and C’ is arbitrary. Thus, y(a) = C, so A = 0 is an eigenvalue and has the eigenfunction 

@(x) = 1. For \ 4 0 the boundary conditions (6b) give 

(sin VA L)B =0 (8a) 

(sin VAL)A =0. (8b) 

Thus, either A = B = 0, which result we reject because it gives only the trivial solution 

y(x) = 0, or else 

sin VAL = 0 (9) 

and A, B are arbitrary. Since g(a) = 0, and 

L 

[p(x)On(x)o}, (2)] I = on(L)o,,(L) ~ on(—-L)@,(—L) 

bn(L)01,(L) ~ bn(L)6%,(L) = 0, | 

it follows from part (b) of Theorem 17.8.1 that A,, > 0. Thus, Vin (9) is real and (9) has 

the roots WA L = ni, so the eigenvalues and eigenfunctions are 

Ay = 0. oo(x) = 1 (10a) 

IP 
An = ({y.. @n(xv) = cos 

forn=1,2,.... 

Remember that there is nothing inappropriate about an eigenvalue being zero. It is 

the eigenfunction that is to be nontrivial. and Ag = 0 does give the nontrivial solution 

ola) = 1. 

NL ine 
a“ and sin (10b)  
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Figure 1. Graph of f. 

fa 

| 
CL 4 7 
aL -2n -L | ogo 

Figure 2. 2L-periodic f. 

Observe that the eigenvalues A,,A9,... are nonsimple since each one has two lin- 

early independent eigenfunctions. This result could not have occurred in a regular Sturm— 

Liouville problem, which must have simple eigenvalues [part (b) of Theorem [7.7.1], and 

is due to the periodic boundary conditions. 

Noting that the weight function is w(a) = 1, the eigenfunction expansion of a given 

function f on (—L, L) takes the form 

S90 q 7 > + 

f(x) = do + 2 (an cos = + b» sin =) ; (11a) 

L 

Uf) f(z) lda Lope 

tg = A Ee (x) dx, Lib ao (1, 1) Tr , a |, (x) dx (1 1b) 

1° da 
~L 

  

On = TUL i 

= if f(x cos Sd, (1Ic) 

  

  

L arr nme fsin nm [, f(x) sin a dx 

by = hee. wre. — -L eT 

(sin > — Eo > | sin? de 
—i ad 

1 [i . _ ATL 
= f(x) sin —— dx. (11d) 

Loft £ 

The result (11) is seen to be the same as the classical Fourier series of a 2L-periodic 

function, which we studied in Section 17.3. Thus the expansion (11a) of the function f 

shown in Fig. |, for example, will be the same as the classical Fourier series of the 2L- 

periodic function shown in Fig. 2, which result explains why we call (2) “periodic boundary 
conditions.” 

COMMENT. As usual. the function f being expanded (e.g., f in Fig. 1) does not it- 

self need to satisfy the boundary conditions imposed on the eigenfunctions [(6b) in this 
case |. 

EXAMPLE 2. A Bessel Equation. Consider the singular Sturm—Liouville problem 

(cy) + Ary = 0, (O<a< L) (12a) 

y(0) bounded, y(L) = 0. (12b) 

Since (12a) is already in the standard Sturm-—Liouville form (py’)’ + gy + Awy = 0, we 

can see that p(x) = x, q(x) = 0, and w(x) = x. And since p(x) and w(x) vanish at the 
left endpoint x = 0, the problem (12) is singular: hence the boundary condition adopted at 

x = 0 is simply a boundedness condition.  



  

| 
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‘To solve (12a), we notice that (12a) would be a Bessel equation of order zero if the 

A were not present. Let us try to convert (12a) to a Bessel equation by a simple scaling, 

wv = at, where a is to be determined. Under that change of variables (12a) becomes 

(tT’)' + a? MT = 0, (13) 

where T(t) = y(x(4)) = y(at), and where the primes denote d/dt. Thus, we can remove 
the \ by choosing a = 1/V4A (tentatively assuming that \ 4 0), sot = VA. Then (13) 

becomes (¢7")' +241 = 0, with the general solution T(t) = AJo(t) + BYo(t). Or, reverting 
tox and y, 

y(n) = AJo(V\2) of BYo(VX2). (14) 

However, for \ = 0 the latter fails to provide the general solution of (12a) because 

Yo(0) = ~oo is undefined. But if \ = 0 then (12a) becomes (xy’)’ = 0 which can be 
integrated to give y(x) = C + Dina. Thus, let us write the general solution of (12a) as 

yla) = { AJo(Vi x) + BYo(VX a), AAO (15a.b) 
C+ Dina, A= 0. 

For A = 0, the boundedness condition requires that D = 0, and then y(Z) = 0 gives 

C = 0,so y(x) = 0. Therefore, \ = 0 is not an eigenvalue. For \ 4 0, the boundedness 

condition requires that B = 0 (because Yo > ~oo as its argument tends to zero), so 

y(a) = AJo(VA2). (16) 

Then, the other boundary condition gives 

y(L) =0 = AJo(VAL). (17) 

if A = 0, then (16) becomes the trivial solution, so let us satisfy (17) by asking that 

Jo( VAL) = 0 (18) 

instead. Now, g(x) = 0, and 

- , L L 
[p6r)on(e)o (eV) = [wbn(e)o, (2). (19) 

is zero because @,{£) = O and the w factor is zero at z = 0,* so Theorem 17.8.1 tells 
us that not only is A real. it is also nonnegative. Thus, the argument of Jo in (18) is real, 

and it suffices to look for roots of (18) on the real axis. [f we denote the zeros of Jo(x) as 

U = 2,,29,... (Fig. 3), then (18) gives V\ L = 2,80 the eigenvalues and eigenfunctions 

of (12) are 

  
ln \? x 

An = ( ) and @,(2) = J (2. =) 20 j 1 Pn(2) 0 (en 5 (20) 
La 

  

“We can conclude that 2@,,@), vanishes at 2 = 0, provided that @, and ¢/, are finite there. We 

know that @, is finite there because that is our boundary condition, at « = 0, in (12b). Thus, we 

need to also ask that @/, be finite there. But by the time we reach (19) we already have the form (16) 

for the eigenfunctions, even if we don’t yet know the A’s, and the derivative of the right-hand side of 

(16) is bounded at 2 = 0: indeed, it is even zero. 

Jg(X) 

  

  

Figure 3. The zeros z, of Jo.
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forn = 1,2,.... The zeros z,, are tabulated, and the first several are as follows: 

2, = 2.405, 29 = 5.520, 23 = 8.654, m= 11.792, 25 = 14.9381, .... (21) 

Further, the eigenfunction expansion of a given function f,on0 <2 < LE, is given by 

oO 

f(a) = So ando (20 =) (22) 
n=l 

where, recalling that the weight function in the inner product isw(v) =<, 

wh a 

(f(z), Jo (en -)) 0 f(x) Jo (20 =) xdx 

ln = e Ee = TE me ae . 

(Jo (En =) Jo (=n =)) [ [Yo (0 sy edz 

The integral in the denominator of (23) is evaluated in Exercise 7 of Section 4.6, so the 

final expression for ay is 

  (23) 

2 rh . wv 

Teak fy Lo (2 Z) ee a 
where Jp and J, are Bessel functions of the first kind, of orders 0 and |, respectively. @ 

ay = 

EXAMPLE 3. A Legendre Equation. The Sturm—Liouville problem 

(1 —a*)y” — 2ay! + Ay = 0 (-l<«x<l) (25a) 

y(—1) bounded. y(1) bounded (25b) 

is also singular because p(z) = 1 — x” vanishes at both endpoints. Hence, we apply 

the boundedness boundary conditions. In fact, (25a) is the Legendre equation, which is 

the subject of Section 4.4. There, we found that solutions of (25a) that are bounded on 

~1 <a < Lare possible only if \ = n(n +1), forn = 0,1, 2,..., and those nontrivial 

solutions are the Legendre polynomials P,,(). Thus, the eigenvalues and eigenfunctions 

of (25) are 

Ay = n(n + 1), n(x) = P, (2). (26) 

forn = 0,1,2,.... 

The eigenfunction expansion of a given function f,on-l Sas 1, is given by 

20 

flv) = So anPa(2), (27) 
n=O 

where, since the weight function is w(a) = 1. 

: . J (a) Pr (x) dx 
_ (f(x), Pr(x)) _ ff . (28) 

ay = 

" Pr x Pa x ‘ 9 Cal) Fol I pact 
v= 

  

 



  

17.8. Pertodic and Singular Sturm—Liouville Problems 

The integral in the denominator of (28) was found [(18) in Section 4.4] to be 2/(2n 4 1), 

so 
In+-l fl. . 

ay = f(a) Pr(ax) de. (29) 
2 fy 

For instance, let f be the “ramp” f(x) = 2Hf(x), where H is the Heaviside function, Then 

(29) becomes 

  

In+l ft 
an = mre i cP, (2) da, (30) 

2 Q / 

Se) 

lft 1 
ag = = | edn = =, 

2 Jo 4 
3 [ ; | 

ay = F zwdz=-, 

#J0 2 

and so on. Thus. 

l 1 . 5 3 Lk 
(\ — 2 Pil > = ve) + — Pol(r) — vy) + ——Pilr)—---. 

Ma) = {Pola + sPi(e) + oe Pale) = 35 Pale) + see Pole) 31) 

For comparison. we have plotted both f(a) and the partial sum s,,() of the first n nonva- 

nishing terms on the right-hand side of (31), form = 2 andn = 5, in Fig. 4. @ 

Because of their close relationship with Fourier series. we call (22) and (31) 

Fourier—Bessel and Fourier-Legendre series, respectively. Such expansions will 
be needed in Chapters 18-20, 

Closure. We have studied the Sturm—Liouville problem with periodic boundary 
conditions [specifically, the nonseparated conditions (2)], and the singular Sturm— 
Liouville problem [where p(a) > 0 and w(x) > O hold ona < x < b rather than 
ona < «2 < b, and where a boundedness boundary condition is imposed at an 

endpoint at which p(x) vanishes] because those cases are not covered by the theo- 
rems given in Section 17.7, and because they are important cases. Essentially, the 
upshot is that “all is well”: we still obtain real eigenvalues and sets of orthogonal 
eigenfunctions that can be used to expand functions over the (a, b) interval. 

Observe that for the interval 0 < a < 1, say, each of the Sturm—Liouville 

problems 
yl + Ay = 0, y(0) = 0, y(\) = 0 

and 

L~a)y” — 2ey' + Ay = 0, y (0) = 0, y(1) = bounded Y 

generates an orthogonal basis of eigenfunctions, and that one could write down 
an unlimited number of other Sturm—Liouville problems that generate orthogonal 
bases over the same interval. If we wish to expand a given function on that interval. 

X   

911 

§(X) 

x 

f(x) 

Figure 4. Convergence of (31) to 

f(a).



912 Chapter 17. Fourier Series, Fourier Integral, Fourier Transtorm 

then how do we know which basis to use? As we shall see in Chapters [8~20, that 

decision will be based on the mathematical context. 

  

EXERCISES 17.8 
  

1. We derived the solution (14) of (12a) by introducing a 

change of variables 2 = t/V2. Derive it using the method 

explained in Section 4.6.6, instead. 

2. Find the eigenvalues and eigenfunctions, and work out the 

eigenfunction expansion of the given f. NOTE: As usual. 

H (a) denotes the Heaviside step function. Use computer soft- 

ware, if you wish, to evaluate any needed integrals. 

(a) y" + Ay = 0, y(0) = y(4), y/(0) = y'(4), f(z) = 
H(a ~ 2) 
(by + Ay=90, y(—1) = y(5), y'(-1) = y'(5), f(z) = 
r+2 

(c) ay’ + ey + Ay = 0, yO) = yf), YG) = 
y'(2), f(a) =6 
(d) (1 = y(0) = 0. xe\y" — ey’ + Ay = O, 
y(1) bounded, f(z) = 4; evaluate only the first three non- 
vanishing terms in the expansion of f 
(e) (1 — a@)y” — 2ay' + Ay = 0 y'(0) = 0, 
y(1) bounded, f(x) = x; evaluate only the first three non- 

vanishing terms in the expansion of f 
(f) (1 = a? )y” — 2ay' + Ay = 0, y{—1) bounded. y'(0) = 

0, f(x) = 5x? 
(2) (4 = x?)y” — Qay' + Ay = 0, 
y(2) bounded, f(z) = 5 — 2x 

3. Expand f(x) = H(z), on -1 < x < 1, in terms of the 

eigenfunctions of the Sturm—Liouville problem 

y(—2) bounded, 

(1 — x? )y” — 2ay' + Ay = 90, 

where y(—1) and y(1) are bounded. Plot both f(z) and the 

sum of the first four nonvanishing terms of that expansion. 

4. Expand f(z) = 1-2on0Q < x < 1, in terms of the 

eigenfunctions of the Sturm—Liouville problem 

4 oy, - 

(l= av)y" — Qay' + Ay = 0, 

where y’(0) = 0 and y(1) is bounded. Plot both f(7) and the 
sum of the first three nonvanishing terms of that expansion. 

5. Determine the eigenvalues (or at least the characteristic 

equation for them), eigenfunctions, and weight function of the 

Sturm—Liouville problem 

5 ; 
avy" tay! + (Aa? — 9)y = 0, 

where y(Q) is bounded and y(£) = 0. 

6. (Chebyshev polynomials) Consider the eigenvalue problem 

  

(1 ~a?)y" — vy’ + Ay = 0, (-l<x<1)| (1 
  

  

where y(—1), y/(—1). y(1), and y'(1) are to be bounded; 

(6.1) is the Chebyshey equation, after the Russian mathe- 

matician Pafnuti Chebyshev (1821-1894), often transliterated 

as Tchebichef. 

(a) Show that under the change of variables = cos@ the 

equation (6.1) becomes 

OQ" +A = 0, (0<0<~7) (6.2) 

where O(0) = y(a(@)) = 
lution, in terms of @, is 

y(cos@). Thus, the general so- 

sia | AcosVA0+ Bsin VAI, AAO 
810) = | Oy yao, 

(b) Surely, the solutions cos V\6. sin YAO. 1, and @ in (6.3) 

are bounded at @ = O(a = lyand@ = 7 (a = —1). However, 

show (by chain differentiation) that y/(x) is bounded at x = 

ti only if B = D = Q and J/\ =n = 1,2,.... Thus, the 

eigenfunctions of (6.1) are, in terms of @, cos n@(n = 1,2,...) 

and | or, equivalently, cos n@ for n = 0,1, 2,.... In terms of 

the original x variable, the eigenvalues and eigenfunctions of 

(6.1) are 

  

T,(x) =cos(neos7! a), (n= 0,1,2,...) 
"y 

An = Tt, 
    

(6.4) 

the T in honor of Chebyshev. 

(c) Though not obvious, it turns out that T,,(@) is an nth- 

degree polynomial in e. Show that the first several are as 

follows: 

 



  

To(e) = 1, 

T(z) = 2, 

To(a) = Qe? - 1 
7 . (6.5) 
T3(a) = dx? ~ 32, 

Ty(a) = 8x4 c+, 

Ts(z) = 162° — 200% + 5a. 

HINT: Use the trigonometric identities 

cos 20 = 2cos7 6 — 1, 

cos 34 = 4cos’ 6 ~ 3cos@, 

cos 40 = 8 cos’ @ ~ 8cos"O + 1 

cos 50 = 16 cos? @ — 20 cos’ 8 + 5 cos 8, 

and so on. 
(d) Get (6.1) into the standard Sturm—Liouville form by mul- 

tiplying through by a suitably chosen function o(2) (that 

is, nonzero on ~1 < x < 1), and thus show that the weight 

function is 

1 

Ji- a? 

(e) Theorem 17.8.1 guarantees that, with respect to the weight 

function (6.6), (Lala ‘),T,(2)) = 0 form 4 n. Nonetheless, 
prove that result directly, by evaluating the integral 

a] 1 

(Tin, Th, = [3 Din Ti ee ID \ ) -1 (x °) (x ‘) Jl — x2 

Further, show by direct integration that form = n we have 

wa) = (6.6) 

T, m=n=O0 ah 5 1 

(Th -) = | T(x) ee dx = 

1 Vi-2 m=nZF0. 

mi
ps
 

(6.7) 
(f) Thus, the eigenfunction expansion of a given function f, 
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defined on ~l < 2 < 1, is 

  

      

  

f(v)= So anTrla), (“1 <2 <1) (6.8) 
n=O 

where 

1 ft f(z) 
. _ foc: UY, =0 

a, = (f, Dn) _ W [, Vil-x " 

"(Pay Tn) 2 [ Fl2)T (2) 
= A de, n= 1,2, 
rJ4. Vil- x? 

(6.9) 

Use (6.9) to evaluate the @,,‘s for the case where f(a) = H(z). 
(g) Plot H(a) and (by computer) the partial sum of the series 
obtained in part (f), through n = 5. 

(h) Derive the values 

Tr(-1) =(-1)", (6.10) 

and the recursion formula 

Troi(a) = 22T, (x) — Tr-1(z). (6.11) 

G) Use (6.11). and the 7,’s given in (6.5), to derive T(x) 

and T;(x), 
(j) It can be shown that 

-S Ty (2 rt", 

n=O 

1 = xt 

1—2et +02 (-T<#<1) (6.12) 

so the left-hand member of (6.12) is called a generating 

function of the 7),’s. By working cut the Taylor series of 

the left-hand side, verify (6.12) through n = 2. 

  

17.9 Fourier Integral 

ao If a function f defined on ~co < @ < oo is periodic (and sufficiently well- 
behaved), then it can be represented by a Fourier series. We have begun to see, 

and will continue to see in Chapters 18-20, that Fourier series representation is of 
great importance. Sometimes we work with functions, defined on —90 < x < 00, 

pa 

that are not periodic, such as f(v) = e7* , the graph of which is given in Fig. 1.
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Figure 1. Graph of f(a) =e 
oe 

Evidently, we cannot expand such functions in Fourier series if they are not pe- 

riodic. Yet, we can think of f as periodic but with an infinite period. 

Thus, to extend the Fourier series concept to nonperiodic functions we will 

now consider the limiting case of the classical Fourier series * 

oO ay , . 

f(z) = Ss) (a COs + by sin —) (ja) 

n=O 

where ’ : 

1 f 1 f° LL 
0 = 55 , f(a) dz, dy = Z. y f(«) cos — dz, 

bp = a f(a) sin da, 

as € —> oo. We cannot simply set € = oo in (1), as that would yield nonsense. 

Rather one needs to carry out a careful limit process, as £ tends to oo. 

First, note that the n7/é’s in (1a) are the frequencies — spatial or temporal, 

depending on whether x is a space variable or time. The set of all of the frequencies, 

n Qn 3n 

FED 

is called the frequency spectrum. To see what happens to the frequency spectrum 

as f increases, consider the cases where @ = 7, 27, and 107. The corresponding 

frequency spectra are as follows: 

Gow: nr/é = 0,1,2,3,4,... 

C= 20: no /€ = 0,0.5, 1.0, 1.5, 2.0,... 

€= 107: no /€ = 0,0.1,0.2,0.3,0.4,... 

Observe that as @ increases the discrete spectrum becomes more and more dense, 

and approaches a continuous spectrum (from 0 to oo) as & + oo. Therefore, we can 

expect that as & + oo the summation in (la), on the discrete variable n, will give 

way to an integration on a continuous variable, say w. In fact, if f is sufficiently 

well-behaved (e.g., see Theorem 17.9.1 below) one can show that 

  

    
f(z) = flaw) coswe + b(w) sinwa] dw, (2a) 

J0 
  

  

* Although we usuaily split out the ag term, here we include it in the sum, merely to increase the 

resemblance between (1a) and (2a), below, 

 



  

  

where* 

1 fe 
a(w) = = f(x) coswa da, 

wv OO 

1 60 (2b) 

b(w) = — | f(x) sinwa dx. 
® vm OO       

The right-hand side of (2a) is called the Fourier integral of {, which we denote as 
FI f, and (2a) is called the Fourier integral representation of f. 

  

THEOREM 17.9.1 Fourier Integral Theorem 
Let f be defined on —co < x < oo, let f and f’ be piecewise or ay da on 
every finite interval [—, ¢] (i.e. for ¢ arbitrarily large), and let [°° |f(x)| dz be 
convergent. ‘Then the Fourier integral of f converges to f(x) at every point x at 
which f is continuous, and to the mean value [f(x+) + (f(a—)|/2 at every point 
x at which f is discontinuous. 
  

Proof: Rigorous proof of this theorem is well beyond our present scope, and the 
following is put forward only as a heuristic derivation. If we change the dummy 
integration variable to € in (1b), to distinguish it from the fixed point « in (1a), 
insert (1b) into (1a), and use the identity cos Acos B+sin Asin B = cos (A — B) 
for greater compactness, then the right-hand side of (1a), namely, FS f, becomes 

( 

r= [ 16 a+ 54 > fs FE €) cos (¢ x) dé, (3) 
n=l 

Denote the two terms on the right-hand side as J and J, respectively. For J we have 

ni=|3 [i reyes 
“Normally, a singular integral of the form f" F(x) dz is understood to mean 

al B 

[. F(x) dx = oe, ae I. F(x) dx, 

where A and B tend to infinity independently. However, the integrals in (2b) are to be understood in 

the more forgiving sense, 
650 vA 

F(a)de = lim F(x)dz. 
Jono Ao —A 

To see that the latter is ‘more forgiving” than the former, observe that if F(a) = x, for instance, then 
with the former interpretation the integral is divergent but with the latter interpretation it converges 
to zero. 

sf l@la so () 
—oOO 
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as € —» oo because f°. |f(E)| dé is finite, by assumption, and 1/(2€) + 0 as 

€ — co. Thus, [ > Oas € + oo. In J, let r/f = Aw, Then 

L< e 
| 

J= - s | _ 1) cosnAw(€ — vag Aw 

+ i l Lf f(E) cosw(E — x) a dw (5) 

t Jo (Joo 

as & —} oo. To understand the last step, observe that the sum in (5) is a Riemann 

sum, and as Aw -> 0 (i.e, as € 4 00, because Aw = m/f) it yields a Riemann 

integral. That is, we partition the interval 0 < w < oo into equal parts, of dimension 

Aw = m/é, and call wy, = 1/0, wo = 2n/l, wz = 37/E, and so on, and use the 

general Riemann integral formula 

ox oO 

FA ; / = 1 (Wy, = ‘ tw. im | F(nAw) Aw aim | af (wy )Aw [ F(w) dw (6) 

pF) n=l 
pF (Mr)     

(See Fig. 2.) Finally, expressing cosw(€ — w) = cosw€ coswx + sinw€sinwa, 

we have 

: | 
| 

QO @ Wr @3 ow 

FS f=l4+d 

30+ | |; / f(€) cosw€ as cos wxdw 
JO fF — OO 

4 [ + [- f(€) sinw€ ie sin wardue Jo - oO 

Figure 2. Riemann sum. 

= [a(w) coswax + b(w) sinwa} dw (7) 
JO 

as £ —+ oo. That is, as € —+ oo the Fourier series tends to the Fourier integral. We 

reiterate that our approach has been heuristic, not rigorous. @ 

EXAMPLE I. Rectangular Pulse. Let f be the rectangular pulse shown in Fig. 3. This 

f does satisfy the conditions of the theorem. According to (2b), 

  

  

      

p if, 1 f' 2 sinw 
/ a(w) = — f(x) coswrdr = — coswax dr = — (8a) 

WR fas T fu T WwW 

oe 
hd and 
ley 

1 WOO ; 

"| 1 . bw) = = | f(x) sinwa dx = 0 (8b) 
Wf 00 

Figure 3. Rectangular pulse. because the integrand f(a) sin wa is an odd function (recall that even x odd = odd). Thus, 

the Fourier integral representation of f is, from (2) and (8), 

9 VOC si 

f(2)= -| ae coswa dw. (9) 
( wT Jo iw 

 



  

Just as it was illuminating to plot the partial sums s,,(a) of Fourier series, it should be 

illuminating to see how the partial integral 

  
9 pei 

fol) = - | on cos war dw (10) 

converges to f(z) as Q —> oo. Though the latter integral is not elementary, it can be 

evaluated in terms of the sine integral function 

Sila) = [ a dt, (11) 
c ) 

  

      

either analytically (Exercise |) or using computer software. Using Maple, for instance, the 

command 

int((2/Pi) « (1/y) * sin (y) *cos(y* a), y = 0..2); 

(where z is used in place of 2) gives 

. 1 . . 
fa(z) = ~ {S[Q@ + VD] — SifQ(e — 1)]}, (12) 

which we’ve plotted in Fig. 4 for Q = 4,16, and 128. Evidently fo(z) does converge 

to the pulse f(z), but the convergence is slow near the jump discontinuities; the limiting 

case as  -4 oo is left for Exercise 3. As in the case of Fourier series, the Fourier integral 

exhibits the Gibbs phenomenon at such discontinuities. 

  

fa) 
Q=16 

/ 
a \ pe B=128 

Ufo 

Q=4 

- es r nN <x 
a SY PO = ie 

-| l   
Figure 4. Convergence of fo(x) to f(x) as 2 - co. 

It is also interesting to plot the Fourier coefficient a(w), given by (8a), since a{w) tells 
us the harmonic content of f, that is, the amplitude or “amount” of each coswx harmonic 

present (Fig. 5). i 

EXAMPLE 2. Infinite Beam on Elastic Foundation. As a physical application of the 
Fourier integral let us consider the same problem as contained in Example 4 of Section 

17.3 (which we urge you to review), but instead of the periodic loading suppose we have 

the nonperiodic rectangular pulse loading shown here in Fig. 6, Recall that the beam’s 

17.9. Fourier Integral 917 

  

  
a 2K 3H 4k 

o 

Figure 5. Harmonic content, a(w).
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Wo newtons/ meter 
  

        
  
  

  

    

beam 
f Y_¥_¥ 

<a <m << a ao au Ss x 
a a > -l I> 2 > wocaeedice: 

k > SS SSS < $ < ae pase 

SS SS SoS Seba ee) SoS SS 
> > > ~ > > > > S > “SS SS S S 

FIP EEO OO EP EE EEL EEE PELE I PEEP EOE EPLEPEA EEE ELEEEEEEEE EEL ELL ALLELE LE ELLE LEE LEE 

u“ 

Figure 6. Infinite beam on elastic foundation. 

deflection u(x) is governed by the differential equation 

Ellul” + ku = w(s), (13) 

where /, I, k are physical constants, and 

wo, |] <1 
w(z) = 14 =f eS (14) 

is the rectangular pulse applied load distribution. Proceeding essentially as in Example 4 

of Section 17.3, we first express w(x) in Fourier integral form. Since w(«) is merely f(z) 

in Example |, scaled by wo, we conclude from (9) that 

_ 2wo f* sinw 
w(t) = - a coswe du. (15) 

0 
  

Next, we seek z(:c) in the Fourier integral form 

u(z) = | a(w) coswx dw, (16) 
0 

where a(w) remains to be determined. We have omitted the b(w) sin wa since u(z) will 

evidently be a symmetric (even) function of 2; that is, if we did include that term we would 

find that b(w) = 0. 
Formally differentiating (16) under the integral sign four times, and putting that result 

and (15) and (16) into (13) gives 

Qwy f° sinw 20 
[ (EIw? + k)a(w) coswa dw = —— 

0 rT fo wl 
  coswx dw. (17) 

Then, formally equating the coefficients of each cosine harmonic gives 

(Blu! + k)a(w) = 20 SB (18) 
WT Ww 

  

or 
2wo sinw 1 ye _— 19 

aw) = (Ble £8)’ om) 
so that (16) becomes 

2wq (sinw coswx 
nip) = - ly, 20 
u(x) rofiy w (Blwt+k) “e a)
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This integral can be evaluated analytically using complex variable techniques (the residue 
theorem), but for our present purposes it will suffice to let (20) stand as itis. 

Closure. We obtain the Fourier integral representation of nonperiodic functions 
defined on ~00 < x < oo by taking the limit of the Fourier series formula as the 
period tends to infinity. We limit discussion to two examples because we plan to 
use the Fourier integral only as a stepping stone to the Fourier transform, The latter 
is more highly developed as a methodology, like the Laplace transform, and is the 
subject of the next section. 

  

EXERCISES 17.9 
  

1. Use (11) to derive (12) from (10). 

2. Derive the Fourier integral representations of the following 

functions. At which points, if any, does the Fourier integral fail 

to converge to f(a)? To what value does the integral converge 
at those points? 

  

100, 0<24<2 
@ Ae) = { 0, e<0,2>2 

va vz, O<a<L 

(b) P(e) = ‘ O, 2 < Oe > hb 

ogy  f & fap £ 
i= {a ST 

. —“, -5 <4 <0 

(@) Me) = ‘ 0, r<—5, e>0 

J jai, -l<e<2 
wie ={ I a<-le>2 

10, 0<2<3 
(f) f(x) = 5, 6529 

0, @<0, 3<2n<6,4r>9 

of e“, x>0 

wio= {6 x <0 
: e u> 0 

wy fe) ={ r< 

(i) f(z) =e" 

3. (a) Show that Si(z) is an odd function of z. 
(b) Using the known integral 

. ° sin t 
Siloo) = | a dt = f 

o ¢ 2 

and recalling (11), show that 

1, faf<1 
im fo(e)=¢ 1/2, jal=1 
oes 0, |al>1 

so that the Fourier integral (9) does converge to the rectangular 

pulse and (in accordance with Theorem [7.9.1) to the average 

values at the two jump discontinuities. 

4. Comparing (2) with the classical Fourier series (1), it might 

appear that a(0) is analogous to the ag term in the Fourier se- 

ries and represents the average value of f. Is it true that @(0) 

is the average value of f where, by the average value of f we 
an [tay i ra +) do? Explat mean lim 4soo sy f° 4 f(v) de? Explain. 

  

17.10 Fourier Transform 

Our purpose in this section is to recast the Fourier integral representation of a func- 
tion f as a pair of formulas, the first giving the so-called Fourier transform of f, and 

the second giving the inverse of that transform. Once the transform and its inverse
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are derived, in Section {7.10.1, discussion will closely parallel our cliscussion, in 

Chapter 5, of the Laplace transform. 

17.10.1. Transition from Fourier integral to Fourier transform. Our starting 

point is the Fourier integral formula 

f(z) = | [a(w) coswe + b(w) sin wa] dw, (la) 
0 

where 
1 f[*, 

a(w) = — | f(x) coswe dz, 
® J —oo 

b(w) = ~ | f(x) sinwe da. 
nr w= OO 

Just as one can express a Fourier series in complex exponential form (Section 

17.3.4), one can express the Fourier integral (1) in complex exponential form. To 

obtain that form put (1b) into (la). [First we change the dummy integration vari- 

able 2 in (1b) to €, say, to avoid confusing that variable with the w’s occurring in 

(1a), which denote the fixed point at which f(x) is being computed.] Thus, 

f(x)= -f- if f(€)[cosw& coswa + sinw€ sin wx ras} dw 

--[° [- f(€) cosw(€ — x) dé dw, (2) 

since cos (A — B) = cos Acos B + sin Asin B. To introduce complex exponen- 

tials, re-express (2) as 

E-2)} a lw(E—-x) 

f(oj= i [K OO dé dw 

= of flejet(E-®) dé dw + — =| [. f(EjeTWE®) dé du. 
0 0 

To combine the two terms on the right-hand side, let us change the dummy integra- 

tion variable from w to —w in the first. Thus, 

(1b) 

. . 1 Fm OOD 2 OO : _ iw _ 

f(x) = x __ fe eal “) d€ (—dw) 

1 i 80 l f(Eje7 WE) dé diw 

Qn JQ J co ‘ 

1 “0 _ 

= 3 / / f(g d& dw + — an - fe [ia Jew we ®) dé dw. 

4 Joo J 06 

ray= se ff see" dea 

=a LU rosa] 

so 

3
 

—
 

ne)
 

= 
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The latter can be split apart as 

f(t) =a / c(w)e® du (4a) 

and oo 

c(w) = b / fe. dé, (4b) 

if the constants a, b are such that ab = 1/27. We can make (4) resemble (1) more 

closely by choosing a = Land b = 1/27, but we will choose a = 1/27 and 6b = 1.” 
There is no longer a need to distinguish w and €, because the 2’s are confined to 
(4a) and the &’s to (4b). Thus, to minimize nomenclature and to mimic the form of 

(1), we write 

  f(a)= a I. c(w)e'* dw, (Sa) 

c(w) = [ f(ajew?® dx. (Sb) 

Rather than thinking of (Sa) as the Fourier integral of f and (5b) as giving (give 
or take the factor of 1/27) the Fourier coefficients c(w), we can think of (Sa.b) as 
a transform pair: (5b) defines the Fourier transform c(w) of the given function 
f(a). and (Sa) is called the inversion formula because putting c(w) in and inte- 

grating gives us back f(a). It is standard to use the notation fw). in place of c(w), 
for the transform, so we rewrite (5) in final form as 
  

      

  

  

F{f(x)} = f(w) = [ f(ajev* da, (6a) 

and , | 

F-'{f(w)} = f(z) = = / f(wye'* dew. (6b) 
      

Thus, the Fourier transform and inversion formulas are not mysterious; together, 
they simply amount to the Fourier integral representation, expressed in complex 
exponential form, and conditions imposed on f are the same as in Theorem 17.9.1. 

Let us illustrate the calculation of the transform f(w) of f(x). 

  

    
  

    

f 

EXAMPLE 1. Rectangular Pulse. Consider the rectangular pulse f(a) = H(a +1) — + 
Hla — 1), where H denotes the Heaviside function, The graph of f is given in Fig. 1. | 

: ‘ = : : oop: ¥ 
Using (6a), the Fourier transform of f is "| 1 : 

~ no . vd . 

f(w) = / [H(x +1) - H(x— LjeT* dx = / eW" da Figure 1. Rectangular pulse. 
JOG J] 

enw |! Sin w 

tw | oy iw 

  

  

“Some authors. perhaps out of a greater sense of fair play, choose a = b = 1/V 2m.
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Figure 3. Modulus of =. 

COMMENT. We could illustrate the inversion formula as well, by putting f(w) = 

(2sinw)/w into the integrand of (6b), integrating, and showing that the result is the rect- 

angular pulse f that we started with. In fact, that integral can be evaluated by using the 

residue theorem of the complex integral calculus, but we won’t study that theorem until 

Chapter 24, 4 

EXAMPLE 2. Evaluate the Fourier transform of 

f(a) = H(aje™™, (a > 0) (8) 

the graph of which is given in Fig. 2. From (6a), 

fw) = [ H(a)e" ee" dx = [ eet) ey 

  

  

20 0 

~(abiw)a [Po 
—_ € = 1 _ 1 lim ev lati) 

a+tiw jy G+tiw atiw «+20 

1 
=. (9) 

a+iw 

To explain the last step in (9), recall that the magnitude (or modulus) [z| of a complex 

number z = x + iy (Fig. 3) is |z| = a? + y®, and that the modulus of a product is the 
product of the moduli (j2122| = |21) |22)). Then   

  

  

| - 4 . . 
Loo (abi ja SE oo LUE LE EWE le (a-biw ja} ete wt! = le “rile ‘we 

=e lcoswa —isinwe| 
seem * . . 'y 

=e" \V/cos* wn + sin” wr 

=e t 5 (10) 

ast oo. A 

As with the Laplace transform, it is convenient to use tables for both the trans- 
form and its inverse, insofar as possible. The table provided here, in Appendix 
D, is brief, but will suffice for present purposes. Much more extensive tables are 
available,* as well as powerful computer software: the relevant commands, using 

Maple, are given at the end of this section. 

17.10.2. Properties and applications. The Fourier transform admits a number 
of useful properties, our discussion of which will closely parallel our analogous 
discussion for the Laplace transform, given in Chapter 5. We will assume, with- 
out reiteration, that the functions being transformed satisfy the conditions given in 

Theorem 17.9.1. 
  

*See. for example. A. Erdélyi (ed.). Tables of Integral transforms, Vols. | and 2 (New York: 

McGraw-Hill. 1954), Volume | contains Fourier, Laplace. and Mellin transforms, and Volume 2 

contains Hankel and various other transforms. 
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Linearity of the transform and its inverse. For any scalars a and 3, and any 
functions f and g, 

  

  

  

      

|Flaf + 39} = aF{f}+6F{g} | (1) 

and 

FOMaf +69} =akF'{f}+ pF}. (12) 

Of course, F7 He Phi is f and F~!{g} is g. Proofs of (11) and (12) follow the same 
lines as the proofs of Theorems 5.3.1 and 5.3.2, respectively. 

Transform of nth derivative. If f(x), f/(z),...,f@7)(«) all tend to zero as 
v > oo, and fe, |f'P) (v)| dx converges for each 7 = 0,1,...,n, then 

  

      

Proof: Let us prove (13) by induction. First, observe that (13) holds for n = 0, by 
definition. To complete the proof by induction we need to establish that if it holds 
forn = & then it also holds form = k + 1. To do so, integrate by parts: 

F{f' (k D(a) y= [. fEPYE (xe —lwe dz 

  
= Pe (je | * + iw fF LY (vjer’* da 

— fe (aje | OO 

mm XO 

_ f) (aje | “~ 

  

+ (iw)**+ fiw), (14) 
  

the Me) equality following from the rR that (13) holes | form = k. Now, 
f(a] = [fM(ajiles@*| = [f(x], and since f(a) + Oas a 3 
-too, by assumption, the boundary term in (14) drops out. Thus F{f' (A+ Vig )b= 

(iw)**! f(w) so (13) does hold form = & + 1, which result completes our proof by 
induction. @ 

Fourier convolution. We denote the Fourier convolution of functions f and g as 
f * g. It too is a function of x, defined as 

  

j= f- fle (€) d&, (15) 

      
Then the Fourier convolution theorem states that 

  

    F{f«g}= fw)glw), (16) 
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or, equivalently, that 
  

FU'¢( fg} = fg. (17) 

Proof: \t suffices to prove (16) or (17), because of their equivalence. Let us prove 

(16). We have 

| [ Se ~ €)g(€) uch ewe 
dy 

    
  

i F{p +a} 

il ([* soem’ i) ([ sioner) 
= gw) f(w), (18) 

as was to be shown. In the second equality we reversed the order of integration,” 

and the third equality follows from the change of variables x -¢ = 1. @ 

It is easy to show that the Fourier convolution is commutative, 

feg=gr*l, (19) 

proof of which is left for the exercises. That is, it doesn’t matter whether we take 

the argument of f to be a — € and the argument of g to be €, in (15), or visa versa. 

Translation formulas, x-shift and w-shift. [t is also easy to derive the shift (or 

translation) formulas 
  

    
F{f(a-a)} =e fw) (20) 
  

and 
  

FM f(w —a)} =e f(x), (21) 

proofs of which are left for the exercises. 

    
  

Each of the properties (11), (12). (13). (16), (17), (20), and (21) corresponds 

to an analogous property of the Laplace transform. Properties (11) ) and (12) are 

identical to the corresponding properties of the Laplace transform. The derivative 

property (13) is similar to the property 

  

LE pO (EDF = 8" F(s) = EF) — s" PFO) = = FO), 22) 
"Sufficient conditions for the validity of this reversal are that f and g both be absolutely inte- 

grable, i.e., that f [|f(e)| da and fe. \g(e)| da both converge. But these conditions have already 

been assumed. For “detailed discussion, see T. M. Apostol. Mathematical Analysis (Reading, MA: 

Addison-Wesley, 1957), p.491. 
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but does not include any boundary values analogous to the initial conditions 
f(0),..., f@"-)(0) in (22), because the boundaries are at a = -oo, and it is 
assumed that f(x), f’(a),..., f(x) all tend to zero as « —+ boo. The con- 
volution properties (16) and (17) are identical to the corresponding ones for the 
Laplace transform, but keep in mind that the Fourier and Laplace convolutions are 
not quite the same; in contrast with the Fourier convolution (15), the Laplace con- 

volution was defined as 

(f *g)( n= f ne-no (7) dr. (23) 

That is, the integration limits are different. 

In the examples to follow, we illustrate the use of these various properties and 

the table in Appendix D. 

EXAMPLE 3. Given 
f(a) = 4e7!l — be Sle F21 (24) 

evaluate its transform f(w). First, the linearity property (11) gives 

F{4e7!*! — 5e~3!# +21) = ar fe ll} — pF {eS tty, (25) 

Next, entry 4 in Appendix D gives 

  

  

  

t 2 

Fle) = — 26 te = aa (26) 

and entry 11 (with @ = 3 and b = 6) gives 

P{e erly — a mee 

oe eibw/3 (F —|a| ) | 

3 te } ww /3 

= 1 iw 2 

3 w? + I ww /3 

-— 1 iw 2 (27) =3e : . 2 

From (25)—(27), it follows that 

. 9 9 eiew 

a = 4 —~5(- | —————   
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EXAMPLE 4. Given 
f(x) _ xe * (28) 

evaluate f(w). First, 

Fle*™} —_ F{eW@2y"y 

1 2 
a) (F{e* 1) — (entry [1,a = 2,b = 0) 

1 274 
=5 Jre’ | op (entry 5) 

= va ew 16 
(29) 

  

Next, entry fo (with n = 1) gives 

; a (ews) _iv fw) =i Go \ 3 - wenw (16g 
WJ 

EXAMPLE 5. Given f(w) = e77/¥!, evaluate f(x). With a = 2, entry | gives 

: 1 po {* —2|w} =— ; 30 

2 © } ze+4 (G0) 
  

Then it follows from the linearity property (12), with a = 7/2 and @ = 0, that (30) can be 

re-expressed as 

  

T pl paiel | _ ft 
a {2 pte A? Gh 

$0 > 1 
Fr { “tet =_ = : . 32 

© a (32) 

is the desired inverse function f(z). @ 

EXAMPLE 6. Evaluate 
1 

PON eon 33 
{z + dw + a} (°°) 

First, completing the square, write w? + dw = (w? + dw +4) ~—4 = (w + 2)* — 4, so (33) 
becomes 

1 
Poly 4, 34) 

{ (w+ 2)? + 5} 

Now, entry 4 (with a = 3) and linearity give 

1 1. p-b doo yo 3a) 35 B {3 9 \ ae . (35) 

Finally, from entry 12, with a = 1 and b = 2, and (35), we have 

1 - 1 _. 1 — tee * 2 3]e| 36 apap oe Ge) a
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as the desired result. 

COMMENT. Alternatively, we could have used partial fractions, as follows. Solving w? + 

  

    

  

4w + 13 = 0 gives w == --2 + 3i. Thus, 

Lo 1 
w+ de +13 9 (w+ 2—32)(w +2 + 3i) 

il 1 1 1 
~ 6Giwt2—-3i b6iw+243i 
oi 1 1 1 
~ 6 iw + (342i) 6 iw + (-3+ 21) 

i i 1 1 
== +5 . 37 6 iw +(3+2i) | 6 ~iw + (3 — 2%) GP) 
  

Observe that the first term after the third equal sign can be inverted by entry 2, because 

Re (3 + 2i) = 3 > 0,* but the second cannot, because Re(—3 + 27) = —3 < 0. Thus, 
in the final step we rearranged that term so that it can be inverted by entry 3, because 

Re (3 — 22) = 3 > 0. Finally, using the linearity property (12), together with entries 2 and 

3 gives 

. ! sere, _ 
Fo} Sera =—Al(ex p~(S+2i)e lH ae (3-2i@ 

(arurn} g ie +5 (—x)e 

Ll sowtery «tte 
= —e~ "TH (ajew** + H(-x)e**) 

6 

1 ige 3h 
=-e€ BE ey 

(38) 

6 1 

as obtained in (36). @ 

EXAMPLE 7. Evaluate 

  
1 

pole 39 

The latter can be evaluated directly from entry 4 (together with the linearity property), 

as en 12, However. for pedagogical purposes let us use this example to illustrate the 

convolution property. First. factor 1/(w? + 1) as 

A ! = ! (40) 
we +l (wtilw-) (= iw)(l +iw)’ 
  

the final form in (40) being more convenient than the intermediate form because each Factor 

can be inverted, using entries 3 and 2, respectively: 

  
1 Fo} { \ = H(—x)e", (41a) 1— iw J 

in| ao = Fy ayaa L { ike f H(xje™, (41b)   

  

“If 2 = x + iy is acomplex number, then « and y are called the real and imaginary parts of =. 

and are denoted as Re < and Im z, respectively.
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x>0: 

ACE) 4 - H(E~x) 

x § 

x<Q: 

A(G~x) ~ - HE) 

x § 

Figure 4. H(¢é — x) and H(€). 

  
  

                      
    

  

Figure 5. Beam on elastic 

foundation. 
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Then the Fourier convolution formula (17) gives 

| 
Fo! 

iz +1 \ 
  [H(—a)e"] *[H(x)e~"] i 

= | H(—a + €E)e* § A(o)e7§ dé 
OO 

10 
7 owe 

| e “8dé, «> 0 
vL 

OO 

- OF - 

e* | e dé, 2<0 
Jo 

5° r>d 

~ 1 
-e 2c <0 5¢ L 

1 = piel, 42 
56 (42) 

To understand the third equality in (42), it is useful to plot H(€ — x) and H(€), both for 

x > O and for x < 0, as we have in Fig. 4. Namely, we see from Fig. 4 that their product 

A(é ~x)H(€) is H(€ — x) ife > 0, and A(E) ife < 0. 

COMMENT. Alternatively, we could have applied partial fractions to the right-hand side 

of (40) and proceeded as in the comment in Example 6. a 

EXAMPLE 8. Jnfinite Beam on Elastic Foundation, Revisited. {In Example 2 in Section 

17.9 we investigated the deflection u(x) of an infinitely long beam resting on an elastic 

foundation and subjected to a load w(z) newtons per meter (Fig. 5), governed by the 

differential equation 

Elu”” + ku = w(2), (43) 

where &,I, and k are physical constants. There we used the Fourier integral method, 

whereby w(a) was expanded in a Fourier integral. and u(c) was sought in the form of a 

Fourier integral. Here, we use the Fourier transform instead. 

Taking the Fourier transform of (43) (i.e.. multiplying each term by e~’® dr and 

integrating from x = —oo tow = +00), we have 

F{EIu™ + ku} = F{wh. (44) 

It follows that 

EIF{u" +k Pfu} = F{w} (45) 

by the linearity property (11), and 

El (iw) t+ ki = w (46) 

OO 

by (13), assuming that u,u’, wu’, u’” all tend to zero as x + oo and that f |u\D) (x)| dx 

converges for 7 = 0,1, 2,3,4. Now solving (46) for u, 

w a= —o 47) 
O° Ela! hk mw 
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To invert (47), let us write the right-hand side in the more suggestive product form 

. l . 

The inverse of the product is not the product of the two inverses, but ts the Fourier convo- 

lution of the two inverses, 

(48) 

    

  
  

I ale) —<— fowl ge FET Lae, ‘A u(a) = £ lan z :} & PO Lah. (49) 

From entry 8 in Appendix D, and the linearity of F~', we obtain 

] a wT ao 1 > — ala) a: ar a F ba =;} FR sin (a|a| + i ); (50) 

where a = [k/(4E1)]1/4, and of course F~! {ti} = w(z), so (49) gives 

a LP pale gin (alan ~ €) 4 DY ¢ u(x) = € sin (ala — €| + —)w(é)d (51) 

as the desired solution. 

COMMENT |. It is always important to check our results. An excellent partial check of a 

result is provided by any special case for which the exact solution is known. In the present 

example, such a special case is provided by the case where w(az) = constant = W, for 

then surely the solution u(x) will be a constant too. Specifically, with w(z) = W, and ua 

constant, (43) gives u(x) = W/k. If we set w(€) = W in (51), and integrate. do we obtain 

the same result? Yes, but we leave that calculation for the exercises. 

In fact, observe that the correctness of (51) for the case where w(2) is a constant is 

a surprise since some of the assumptions that were built into our solution are violated in 

that case. For instance, the transform w of w(x) = W does not even exist, because the 

transform integral does not converge. That is, 

VOD A 

wo | Wer'* dv = W lim | eT #* da 
J 20 Aco A 

aW . 
=-—— lim sinwA, 

W A—oo 
(52) 

which limit does not exist. Without elaborating, we state that (51) ends up being correct, 

for this case, even though (44) is not (since F{w} = w does not exist), thanks to the 

interchange in the order of integration that underlies the convolution property.” In any 

case, the moral is that it is often best to proceed formally to a solution. If we can verify 

that the solution thus obtained does satisfy all of the specified requirements (such as a 

differential equation and boundary conditions), then there is no need to worry about any 

lack of rigor in the intermediate steps. 

COMMENT 2. Uf w is a delta function, w(2) = d(x), then u(z) is the response to a unit 
load at 2 = 0 (Fig. 6).¢ Remember that 
  

*See our proof of the convolution formula, following (17). 

TA unit load because f™ w(x) da = f(a) da = 1. J-50 ! J 20 
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1k 

ut 

Figure 6. Response to a point unit 

load ata = 0.
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w(§)dé 

YE 
  

du 

Figure 7. Incremental deflection 

du, due to load w(€) dé. 

[- F(a) 5(a) de = f(0) (53) 
OO 

if f is continuous, by the definition of the delta function. Thus, if w(a) = dx) in (51) then 

we obtain the response 

_ & 

V2k 

which is plotted in Fig. 6 for the representative case where a = 1. 

u(x) e7 “! sin (ala] + *), (54) 

COMMENT 3, Let us re-express (51) in the compact form 

yoo 

u(x) = | K(x ~ €)w(€) dé. (55) 
OO 

That is, the output function u is given by the action of an integral operator on the input 

function w, the operator being multiplication by A’ followed by integration from —9o to 

oo. We have written K(a — €) rather than K(,) to show that depends only on the 

difference between x and €. We call K the kernel of the integral operator." Since Kisa 

function of the difference x — €, we call it a difference kernel. The physical significance 

of K is revealed by the fact that if the loading w() in (SI) is a point unit load 5(€) at the 

origin, then the resulting deflection u(x) is, according to (53), 

u(x) = / K(a@ — €)6(€) d€ = K(2). (56) 

That is, A(x) is the response function (54), the graph of which is shown in Fig. 6 (for 

a = 1), so K(x — €) in (55) is the deflection due to a point unit load at €. If the load 

between € and € + dé is w(€) dé rather than unity (Fig. 7), then the contribution du to the 

deflection u, due to that bit of loading, is K(a — €) scaled by w(€) dé, 

du = K(x ~ €)w(€) dé. (57) 

Adding all of these du’s gives the integral in (55). Thus, we can now understand (55) 

as a superposition principle, whereby u(x) is the sum, or superposition, of the individual 

contributions du due to each point load w(€) dé. That superposition result is a consequence 

of the linearity of (43). @ 

Additional physical ODE (ordinary differential equation) applications, to the 

deflection of a loaded string and to the steady-state concentration distribution ina 

stream subjected to an input of pollutant are given in the exercises. We urge you to 

at least read through those exercises even if you do not work them. 

Closure. We have seen that the Fourier transform and the corresponding inver- 

sion formula are actually just a restatement of the Fourier integral representation 

of a nonperiodic function defined on ~oo < x < 00, We have also seen that the 

  

“To further illustrate the idea of the kernel of an integral operator. we note that the kernel of the 

Laplace transform operator is eo, - ~ 
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Fourier transform methodology is analogous, and in some aspects identical, to the 
Laplace transform methodology studied in Chapter 5. Given that similarity, the im- 
portant question arises, as to which of the two transform methods to use in a given 
ODE application. The general guideline is as follows: 

e The Laplace transform is tailored to initial-value problems on a semi- 
infinite interval 0 < t < oo. 

e The Fourier transform is tailored to boundary-value problems on an infi- 
nite interval —co < 4 < oo. 

The independent variables are usually ¢ (time) and x (linear dimension), but not 

always. Further, there does exist a “bilateral” Laplace transform defined on an 
infinite interval, the Laplace transform can sometimes be used for boundary-value 
problems on finite intervals, and the Fourier transform can (and will, in Section 

17.11) be adapted to boundary-value problems on a semi-infinite interval 0 << 2 < 
oo. But the guideline given above provides the general rule of thumb for selecting 
one transform or the other. ; 

In closing, we note that to compute the Fourier transform f(w) of f(x) requires 
an integration of f over (~oo, oo). One can evaluate the integral numerically by 
sampling the integrand at discrete x points and obtain what is known as the dis- 
crete Fourier transform. Further, there exist algorithms known collectively as 
the fast Fourier transform (i.e., the FFT) that provide a more efficient method of 
calculating the sum in the discrete Fourier transform. For an introduction to these 
methods we refer the interested reader to Peter V. O’Neil’s Advanced Engineering 
Mathematics, 3rd ed. (Belmont. CA: Wadsworth, 1991), 

Computer software. To obtain the Fourier transform of e74!*l, say, using Maple, 
enter 

readlib(fourier): 

to access the Fourier transform and inverse transform commands. Then enter 

fourier(exp (—5 * abs(z)), x, w); 

and return. The result is ' 

25 + we 

which agrees with entry 4 in Appendix D. To invert the latter, enter 

10 

invfourier(10/(25 + w*2), w, x); 

and return, The result is 

e~*” Heaviside(v) + e°” Heaviside(—:) 

which does reduce to e7 I", 

931
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EXERCISES 17.10 
  

1. Using (6a), derive the result 

1 F{H (2 {H(a)Je a hio aE } a   

if Rea > 0. (This case was worked in Example 2, but there 

a was considered to be real. Here, allow for a to be complex, 

with Rea > 0.) 

2. Using (6a), derive the result 

  F{H(~-aje**} = 
t b= a— iw 

ifRea > 0. 

3. Using (6a), derive the result 

20 PF _ralayy 
{eT} = ae 

ifa > 0, 

4. Given f(w), use (6b) to evaluate the inverse, f(x). 

(a > 0) 
” a) —~ H(w—a) 

) (Aw) — Hw ~ 1) 
d) HA(w ). 2" (Rea > 0) 

[H(w +1) — Hw — 1))|e| 
) dw _ a} 

5, Derive the following entry in Appendix D, by showing that 

the transform of the function given inthe f column is the result 

given in the f column, 

alu 
€ 

Hs (a > 0) 

(a) Entry 10 (b) Entry [1 

(c) Entry 12 (d) Entry 13 

(e) Entry {4 (fF) Entry 15 

(g) Entry 17, by formally differentiating both sides of 

a sufficient number of times, with respect to w 

(h) Entry 19, using integration by parts 

6. Evaluate the following using Appendix D. You may need to 

use more than one entry. Cite, by number, any entries that you 

use. 

(a) fF {dare lel} (b) PF ve** } 

  
cos 3a sin 20 

0) FF - d) & <«< ————— 
(©) x sh (d) a 

2 
o\ Ti Pe fel OG shel a po 8le+2]) (e) F Se el pe! \ (HF {e +e f 

4 sin ¢ 1 . : , 
(g) Fo} eee (h) Fo! fe~Ale-sih 

Ww || 
  

9 aot 
WF to} 

(k) F-! fe7!#l cosw} 

om Pf 

jr fewee) 
(ro {wen 8" } 

(n) Fo ies 1 \ 

(a)-(n) Use computer software to obtain (if possible) the 

transform or inverse transform called for in the corresponding 

part of Exercise 6. 

  1 

w? +iw +2 

8. We claimed, in Comment | in Example 8, that if w(x) = W 

then the integral on the right-hand side of (51) is W/k. Verify 

that claim by evaluating the integral. HINT: Break the integral 

into (wo parts, orie from —oo to x and the other from x to o0, 

then make a suitable change of variables in each. 

9. (Preservation of evenness and oddness) 

(a) Show that f(r) is an even function of a if and only if f(w) 

is an even function of w 

(b) Show that f(a) is an 1 odd function of x if and only if f(w ) 

is an odd function of w 

10. (Extension of transform tables) It follows from the results 

in Exercise 9 that the transform of the even and odd parts of 

f(x) are the even and odd parts of f(w), respectively. This 
result can be used to obtain more information from a given 

transform table. For example. consider entry 2 in Appendix 

D. Breaking f and f into even and odd parts. show that 

P fennel = : (10.1) 
w+ at 

and 

2lw , F { (sen ren aie a-5 (10.2) 
iw? + ¢ 

where 

 



  

+1, «>0 
send = : 10.3 
& { ~l, «<0, ( 

which is read as “sign of a.” Of these two results, observe 

that (10.1) is identical to entry 4, and that (10.2) is not con- 

tained in Appendix D. 

Ll. (Extension of transform tables) Another idea that enables 
us to extend a given Fourier transform table is that of reci- 

procity, namely, the reciprocity relations 

  

F{f(x)} = 2rf(-w) C1) 

and 

FON f(-w)} = fe) (11.2) 

(a) Derive the relations (11.1) and (11.2). 

(b) To illustrate, use (11.1) and entry 4, in Appendix D, to 
show that 

20 , i 
PF pe ae == 2re 7” ; (a > 0) 

t+ ae 

or, equivalently, 

lL wT / 
Fi p= el, (a > 0) eee a 

(In this case the result does not extend our table since it already 

appears as Entry |.) 

(c) Use (11.1) and entry 9 to show that 

  

  

F {= =I =7(H(w+a)~ H(w— a). (a > 0) 
x 

(d) Use (1 1.1) and entry 3 to show that 

7. I aw Bf { - \ = 27H (wie . (Rea > 0) 
a-~ ix 

12. (Deflection of loaded string) Related to the problem of a 

beam on an elastic foundation is the analogous problem for a 

flexible string. imagine a string (of negligible mass per unit 

length) stretched along the x axis. over —co < a < co, bya 

tension T newtons, and let wa) be an applied load distribution 

(newtons/meter), as sketched in the figure. If the displacement 

u(a) of the string is resisted by a distributed spring of stiff- 

ness & (newtons per meter per meter), and the slope w’(2) is 

sufficiently small over ~o0 <u < oo, then u(x) is accurately 

governed by the differential equation Tu!’ — hu = —w, or, 
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9 

u" — aru = ~ f(x), (-co << @ < co) (12.1) 

where a” = k/T and f(x) = w(a)/T’. (Here we consider the 
static deflection. In Chapter 20 we will derive the governing 

differential equation for the not-necessarily-static case.) As- 

sume that w(2) is sufficiently localized for u(a) to satisfy the 
boundary conditions 

uO and ui 30 (12.2) 

as @ —> coo, as well. 

wer) 

SS 

ee 

            

  

  
(a) Solving (12.1) and (12.2) using a Fourier transform, derive 

the solution 

1 9 OO 

u(x) = "35 | 
OO 

ele Sl FE) dé, (12.3) 

(b) Evaluate u(a) from (12.3) for the case where f(a) is a 
point unit load at the origin, f(x) = d(x), and sketch the 
graph of wu. 

(c) Verify, by formally using the Leibniz rule, that (12.3) sat- 

isfies the differential equation (12.1). 

13. (Pollution in river) Suppose that a manufacturing plant 

discharges a certain pollutant into an initially clear river at 

the rate @ grams/second. We wish to determine the result- 

ing steady-state distribution of pollutant in the river, ie., its 
concentration c (grams/meter*). Measure x along the river, 

positive downstream, with origin at the plant site, as shown in 

the figure. The river flows with velocity U (meters/second), 

and has a cross-sectional area A. both of which, for simplicity, 

we assume to be constant. Also for simplicity, suppose that 

ce is a function of x only; ie., it is a constant over each cross 

section of the stream. This is evidently a poor approximation 

near the plant, where we expect appreciable across-stream and 

vertical variations in c, but it should suffice if we are con- 

cerned mostly with the concentration variation far upstream 

and downstream (for le greater than several river widths, say). 

Then it can be shown that c(:c) is governed by the differential 
equation
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ke’ — Ue — fo =~ s(n), (13.1) 

where & (meters?/second) is a diffusion constant, (7 (grams 

per second per gram) is a chemical decay constant, and d(x) is 

a delta function. [Physically, (13.1) expresses a mass balance 

between the input Qé(a)/A, the transport of pollutant by dif- 

fusion, kel’, the transport of pollutant by convection with the 

moving stream, Uc’, and by disappearance through chemical 

decay, Gc.| 

  

(a) Applying the Fourier transform to (13.1), show that 

Chapter 17. Fourier Series, Fourier Integral, Fourier Transtorm 

Q 1 
(av) =: Poi) 13.2 
(x) ‘9 kw* + 1Uw va} 2) 

(b) Expanding 1/(kw? + iUw + (3) in partial fractions, and 

then using Appendix D, show that (13.2) gives 

epee 2-®, 

ce + e 

Q 
C. a, 

ASU + 4kB 

om =z (+ U? + 4k -U). 

z<0 
2>0 (13.3) c(x2) = 

where 

ii 

(c) Sketch the graph of c(z) and state the qualitative effect of 

increasing (. 

  

17.11 Fourier Cosine and Sine Transforms, and Passage 

from Fourier Integral to Laplace Transform 

(Optional) 

(a) 

(6) Fext 

(c) 

and Ic, respectively.   
Figure 1. Even and odd extensions 

of f. Foxt(w) = / 
OO 

I 17.11.1. Cosine and sine transforms. Recall from Section 17.4 that if a problem 

is defined on a finite interval, say 0 < x < L, then the concepts of periodicity and 

Fourier series are not directly applicable. However, by fictitiously extending both 

the domain and the functions involved to the infinite interval -co < © < ©, SO 

that the extended functions are periodic, we are able to use Fourier series represen- 

tations of those functions. Depending upon the symmetries and/or antisymmetries 

about x = O and z = L, we obtain half- or quarter-range cosine or sine expansions. 

Similarly, we sometimes encounter problems defined on a semi-infinite inter- 

val, say 0 < x < oo. Fictitiously extending both the domain and the functions 

involved, to the infinite interval oo < x < oo, we will be able to use Fourier 

integral representations of those functions. Specifically, given a function f defined 

on 0 < x < co (such as the one shown in Fig. la), we shall be interested in two 

particular extensions, one that is even and one that is odd, as indicated in Figs.1b 

Denoting the extended functions as fext, consider first the even extension (Fig. 

1b). Then the Fourier transform of fext 1s 

fexe(aje ® dx 
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OO wo 

= / fext(@)(coswa — isinwa) dx = 2 | Foxe () cos wax dx, (la) 
J 00 JO 

where the last equality holds because fyx¢(a) coswa is an even function of x and 
fext(#) sin wa is odd, and the inversion formula gives 

, l 
Fexi (x) = In 

L . 
. . 

= oe / foxt (a) (cos wa + isin wa) dw 
27 fo 

2 fe 
= OL foxt(w) cos wa dw, (1b) 

27 Jo 

0 

/ Foxt(w)e* dw 
OO 

0 

where the last equality holds because fext(w) is an even function of w [as can be 

seen from (1a)] and sinwz is an odd function of w, so that the term fox, (w) sin wx 

in the integrand is odd. Putting (1a) into (1b) gives the single statement 

Fext(v) = [ {= : “fost (€) coswe acl coswidw. (-co<a<oo) (2) 
0 Ja 

Since (2) holds on ~co < x < ov, it also holds on the original interval 0 < x < oo. 

For 0 < x < co we can drop the subscripted “ext” on the left-hand side, because on 
that interval fox¢(a) = f(x). Further, we can drop the “ext” on the right-hand side 
because the € integral is on 0 < & < 00, not —oo < x < oo. Then (2) becomes 

f(z) = 2 [ tf f(E) cos w ach coswia du, (O<ax<co) (3) 
T JO 0 > 

which can be re-expressed, equivalently, as the Fourier cosine transform 
  

‘o{f(a)} = fo(w) = i f(x) coswa dz (4a) 
      

and its inverse 
  

      

  

3 2 ff. Fa! {fotw)} = Me) == [ folw) coswa du (4b) 
JO 

on0< ea < x, 

Similarly, an odd extension of f gives the Fourier sine transform 

. oO 

Fs{f(x)} = fs(w) = f(x) sinwa dx (Sa) 
JO     

  

and its inverse 
  

Fe'{ fs(w)} = f(r) = 2 / fs(w)sinwe dw, (5b) 
wT 
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on0 < x < oo (Exercise 1). Sufficient conditions on f, for (4) and (5) to hold, 

are that f and f’ be piecewise continuous on 0 <= & < 00, and that fo” | f(a)| da 

converge (i.e., that f be absolutely integrable on 0 < & < 00), 

Next, we could derive the various properties of the cosine and sine transforms, 

that are analogous to those derived for the Fourier transform. However, for brevity 

let it suffice to state that both the cosine and sine transforms, and their inverses, are 

linear, and that the transforms of the derivative f’ are 

  

Fo{f'(x)} = wfs(w) ~ £00), 
Fs{f'(a)} = —wfo(w), 

if we assume additionally that f(a) ~ 0 as v© — oo, Let us derive (6a) and 

leave (6b) for the exercises. Integrating by parts, 

(6a,b) 

    

Fe{f'(a)} = [ f'(z) coswa dx 
J 

= |f(x) cos wall” + w [ f(a) sinwe dx 

=0— (0) +wfs(w). (7) 

The transforms of higher-order derivatives can be obtained by repeated use of (6). 

For instance, replacing the function f by the function f’ in (6) gives 

Foff"(e)} = wFs{f"(@)} ~ £0) wl—-wfe(w)}] — (0) (8a) 

and 

Ff fl(a)} = —wFoff'(e)} = -wlwfs(w) -— £0), (8b) 

SO 

  

Moa Ym 32 Falk 
Fol f(e)} = wv? few) ~ £(), 

2 Pp ‘ 

Fe{f"(a)} = ~w? fs(w) + wf), 

if f and f’ tend to zero as @ — ©o. Similarly for higher-order derivatives. Por 

convolution properties, see Exercise 10 and Appendix E. 

Short Fourier cosine and sine transform tables are given in Appendix E. 

(9a,b) 

  

EXAMPLE 1. Consider the boundary-value problem 

ul ~ Gu = 50e7?*, (Q< a <x) (10a) 

u(0) = uo, too) bounded. (10b) 

To solve (10) using an integral transform we need to choose among the Laplace, Fourier 

cosine, and Fourier sine transforms, all of these being candidates because they are semi- 

infinite transforms; that is, they apply when the domain is semi-infinite (0 <a < coin



    

[7.1]. Fourter Cosine and Sine Transforms, and Passage from Fourier Integral to Laplace Transform 

this case). The Laplace transform will be inconvenient at best, because it is tailored to 

initial value problems whereas (10) is of boundary-value type. In choosing between the 

Fourier cosine and sine transforms, the key is in (9). Taking a cosine transform of (10a) 

we will, according to (9a), need to know w’(0), yet the latter is not prescribed; taking a 

sine transform of (10a) we will, according to (9a), need to know u(0), and the latter is 

prescribed. 

Thus, take the Fourier sine transform of (10a), using the linearity of the transform, 

property (9b), and entry 1S in Appendix E: 

  

  

Fs {uw —9u} = Fs {50e**}, (11a) 

Fs {u"} -9Fs {u} = 50Fs {e7**} , (1 1b) 
Qs Ww 

~wWts + wug ~ 9tg = 50 IIc WmUs + wug tus 9 wed (Llc) 

Solving this linear algebraic equation for tig gives 

tw Ww 
ug = uo ~ 50— . (12 se) = Wo 9 7 Fae Fo) wm) 

By partial fractions, 

1 1 ol 1 1 
5 2 = 2T ee ) (13) (w2 + 4)(W2 +9) S5Swrt+d 5w24+9 

so a) w 
tis(w) = (2t0 + 10) a5 _ OST (14) 

Then. using the linearity of the inverse transform and entry 1S. gives 

yo peasy ww a) 

_(, iy perk Ww _ainp~l w | = tw +1085 {2a} ors! fe) 
= (ug + 10)e7?* ~ 10e7?*, (15) 

COMMENT I. Note that we used property (9b) tentatively since (9b) presupposes that 

both w(a) + O and u'(x) + 0 ase —- oo. Now that w(x) is in hand, in (15), we can check, 
and we see that these conditions are met. Or, more directly, we can simply verify that (15) 

does satisfy (10a) and (10b). 

COMMENT 2. If u’(0) were prescribed. in (10b), in place of u(0), then we would use the 
Fourier cosine transform instead. # 

17.11.2. Passage from Fourier integral to Laplace transform. We have seen that 
the Fourier transform is merely a restatement of the Fourier integral, the Fourier in- 
tegral is a limiting case of the Fourier series of a periodic function (as the period 
tends to infinity), and the Fourier series is as an eigenfunction expansion corre- 

sponding to a periodic Sturm—Liouville problem. On the other hand. the Laplace 
transform and its inversion formula were given in Chapter 5 without derivation and 

937
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Y + Lee 

5 plane 

4 

Y 

Y~ie0 
Figure 2. Line of integration in s 

plane. 

may seem unrelated to these Fourier methods. In this final subsection we will show 
that the Laplace transform and its inverse can be derived from the Fourier integral! 

We begin with the Fourier integral in the complex exponential form given by 
equation (3) in Section 17.10, 

OO OO 

F(t) = = | {/ F(rje 7 ar} e'* dus, (-co <t<oco) (16) 
=O vm OO 

where we use ¢ in place of x because we will end up with the Laplace transform, in 
which the independent variable is traditionally taken to be t (because in applications 
it usually corresponds to the time). Further, it will be convenient to use F in place 
of f. In (16), let 

_ f ev" f(t), t>0 
P(t) = { 0, t< 0, 7) 

where ¥y is a real constant which is sufficiently positive so that e~7“clobbers” f(t) 
as t — oo. Specifically, suppose that f is of exponential order (defined in section 
5.2) as t — oo. Then a sufficiently positive + can indeed be found such that 
e~ f(t) dies out exponentially fast as t + 00. Of course, whereas e77% helps as 
t — +-oo, it hurts as £ + —oo. Thus, we simply “shut off F” fort < 0 by defining 
it to be zero for t < 0, in (17). The resulting F easily satisfies the condition 
L | F(t)| dt < oo contained in the Fourier integral theorem. 

Putting (17) into (16) gives 

> 1 7 m8 . - se 
A(t)e"" f(t) = x ‘| eT F(rje #7 ir} el" du (18) 

oi, 20 JQ 

where H is the Heaviside function. Thus, 

1 fe MO ; 
A(t) f(t) = 5 {[ e (Itte)T Fp) ar} el FH) dey (19) 

J —oo 0 

which form suggests changing variables from w to s according to 

s=ytiw. (20) 

Thus, 

| Lo prtieg ¢ poo | MOO = 55 ff eatrvar hema, Qn) 
0 2m Jy ioc 

where Lino denotes an integration along a vertical line in a complex s plane (Fig. 
2). If we define the Laplace transform of f as 

  

Ls} = Fla) =f Flt\e*at (22)      
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where we have changed the dummy integration variable from r to t, then (21) gives 
the inversion formula as 

  

  
—~LrF : 1 mrt io° St 7, IMF(s)} = HH) = 55 [Tse as. (23) 

yrtco       

Normally we are interested only in 0 < t < oo, so we can replace H(t) by | in 
(23). However, for completeness we observe that while the integral in (23) gives 
f(t) for t > 0, it gives 0 for t < 0, which result is, after all, in accordance with our 
definition F(t) = 0 fort < 0, in (17). 

Closure. In this section we have combined two topics, each being too brief to 
justify a full section. First we introduced the Fourier cosine and sine transforms, 
for problems defined on the semi-infinite interval 0 < 2 < oo, which results are 
analogous to the half-range cosine and sine Fourier series. The Laplace trans- 
form is also a semi-infinite transform, but it is tailored to initial-value problems 
whereas the Fourier cosine and sine transforms are tailored to boundary-value prob- 
lems, because L{ f‘")(t)} involves values of f, f’,..., {7 at t = 0, whereas 
Fo{f™(x)} and Fs{f')(x)} involve values both at z = 0 and at z = oo. 
Whether to use a cosine transform or a sine transform, in solving a differential 
equation boundary-value problem, depends (as we saw in Example 1) on the type 
of boundary conditions prescribed at zc = 0. 

Finally, we used the complex exponential form of the Fourier integral to derive 
the Laplace transform and its inversion formula. Normally, in using the Laplace 
transform, we have the t domain of interest is £ > 0. However, we noted that if one 

were to obtain an inverse Laplace transform by evaluating the inversion integral in 
(23), fort < Q, then one would inevitably find that the inverse function is identically 
zero fort < 0. 

  

EXERCISES 17.11 
  

1. Derive the formulas (Sa) and (5b) for the Fourier sine trans- (a) Fo {e~**} (b) Fs {e7%* } 
form and its inverse, respectively. (c) Fofxe**} (d) Fs{ve~**} 

2. Derive (6b), that F's {f’(a)} = ~wfo(w). (e) Fo{x*e~** } (f) Fs{a*e~" } 

3. Derive these results: ; 
(a) Fol f"(a)} = w' fe(w) 4+ w? f!(0) = f""(0) Noe Be caret in using rables or software, to be clear 

“oy pm _ Le) BF 0) + wf"(0) if on tne auth ors definition of the trans orm. or Ins ance, In 
(b) Fsff'"(x)} = w' fs(w) wf contrast with our definitions (4) and (5) of the Fourier cosine » rif a, PIT f aN ¢ pI AN, 2 gary acm . . : f(x), f(x), f(a), and f’"(z) all tend to zero as « > oo. and sine transforms, some authors use the more symmetric 
4. Given the rectangular pulse f(z) = 50[/1 — H(# — 4)], versions 

evaluate fo(w) and fs{w). 5 po 

5. Use computer software, such as the int command on Maple, Fe{f(x)} = \/- | f(a) coswa dz (5.1) 
to evaluate each, where a > 0. Show that your result agrees T Jo 

with the corresponding result obtained from Appendix E.
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- 2°. 
Fa folw) = /2 fo(w) cos wa dw (5.2) 

0 

and 

Fs{f(x)} = 2 l f(z) sinwa dx (5.3) 

fo 'f fg(w)} = /2 [ fs(w) sinwx dw. (5.4) 

6. In Example | we avoided the Laplace transform because 

(10) is of boundary-value type, not of initial-value type. Show 

that the Laplace transform can be used nevertheless, and does 

give the solution (15), though not as conveniently. HINT: 

When you take the transform of u’ you will be faced with a 

u’(O) term, which is not prescribed in (10b). Thus, call that 

quantity C’, say, and evaluate it by imposing on your solution 
the condition that u(oo) be bounded, at the end. 

7. We used a sine transform to solve Example |. Try to solve 

(10) using a cosine transform instead, and explain why that 
method does not work. 

8. Modify (10) by changing u(0) = up to u’(O) = up, and 

solve by a cosine or sine transform. 

9. Solve, using a cosine or sine transform. 

(a) ul” —9u = 50e78", (0 < x < 00) 

u(Q) = 0, u(co) bounded 

(b) ul” ~9u= 50e78*, (0 < & < 00) 

u'(0) = 0, w{oo) bounded 

10. (Convolution Theorem) As for the Fourier and Laplace 

transforms there are convolution theorems for the Fourier co- 

sine and sine transforms, and these are given in Appendix E. 

(a) Prove the Fourier cosine transform convolution theorem 

(entry 7C), either by showing that the transform of the given 

integral is fo(w)gs(w) or by showing that the inverse of 
fo(w)gs(w) is the given integral. 
(b) Prove the Fourier sine transform convolution theorem (en- 

try 7S). 

(c) Verify entry 7C for the case where f(z) = e7* and 
g(x) = e738. 

(d) Verify entry 7S for the case where f(z) = e7* and 

g(x) = e**. 

  

Chapter 17 Review 

We began with the Fourier series representation 

f(t) =ag+ (hy, COS ue + by sin ae ~-O <2 < oO (1) 
d 

n=l 
é €- 

of any 2¢-periodic function f defined on —co < x < oo, which representation is 
valid subject to very mild conditions on f. For instance, f can even have jump 
discontinuities, whereas to represent f by a Taylor series f needs to be infinitely 
differentiable over the interval under consideration (and even that condition does 

not quite suffice). In applications, periodic functions arise in a number of ways. For 
instance an offshore structure is probably subjected to wave forces that are periodic 
in time, and the temperature distribution around the edge of a circular disk is a 
27-periodic function of the polar angle @. 

If, instead, the x domain is finite, say 0 < x < EL, then Fourier series can still 
be employed — by fictitiously extending the domain to ~oo < x < ov, and extend- 
ing the definition of f onto that domain so that fext is periodic. Such extensions can 

be accomplished in an infinite number of ways, but the four that will be needed, in 
applications, correspond to extensions that are symmetric or antisymmetric about



  

the ends w = Q and « = JL, and these are the half- and quarter-range cosine and 
sine expansions, which we denote by HRC, HRS, QRC, and QRS, respectively: 

  

  

HRC: f() =ao+ Yom cos = (O<a< LD) (2) 

— - nex 
HRS: f(z) = don sin - Z (O0<a< L) (3) 

Lh = nex 
QRC: fle) = 2 in COS SF (O<a< LZ) (4) 

QRS: f(z) = = bp sin a (O0<a< L) (5) 

(For brevity, we do not repeat, here, the formulas for the a,’s and b,s given in the 

text.) We emphasized that the choice, as to which of these four expansions to use, 

will be dictated by the context. 
From a vector space viewpoint, (1)-(5) amount to expansions of f in terms 

of an infinite set of orthogonal base vectors. In (1), for instance, the base vectors 

are 1, cos (7x/@),sin (7x/0), cos (27/0), sin (Qrx/é),.... Such sets of orthogo- 
nal base vectors arise as the eigenfunctions of Sturm—Liouville problems, namely, 
eigenvalue problems of the type 

(py) +ay+Awy =0, (aca <b) (6) 
with homogeneous boundary conditions at x = a and w = b, with the inner product 

rb 

(u,v) = | u(x)o(e)w(a) dx (7) 
vad 

with weight function w. For instance, the base vectors in (1) are the eigenfunctions 

of the Sturm—Liouville problem 

y+ Ays 0, (-0<2< 8) (8) 
y(—2) — y(6) = 0, y(-8) -y"(2) = 0. 

and the base vectors in (2)-(5) are the eigenfunctions of the Sturm—Liouville prob- 

lems 

y” +Ay = 9, (0<«<L) 

HRC: y/(0)=0, y(L) =0, 

HRS: y(0)=0, y(L)=0 (9) 

QRC: y/(0)=0, y(L) =0, 

QRS: y(0)=0, y/(L) = 9, 

Chapter 17 Review 94
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respectively. The four cases in (9) are examples of regular Sturm—Liouville sys- 
tems, while the Sturm—Liouville problem in (8) is of periodic type. Singular Sturm— 
Liouville problems were discussed in Section 17.8, prominent examples involving 
the Bessel and Legendre equations. 

We showed that if we let € > oo in (1), then the frequency spectrum {n7/€} 
becomes a continuous spectrum from 0 to co and we obtain, in place of the Fourier 
series (1), the Fourier integral 

f(a) = [ (alu) coswe + b(w) sin wa] dw. (—co < t < co) (10) 
J0 

Expressing (10) in complex exponential form, we obtained the equation pair 

f(w) = [- flaje"™* da, (Lla) 

f(z) = i i f(w)el® dw, (11b) 
27 J 60 

which are equivalent to (10) and which are the Fourier transform and. its inverse, 

respectively. Finally, we obtained the Fourier cosine and sine transforms from (11), 
for problems defined on the semi-infinite interval 0 < © < oo, these being anal- 
ogous to the half-range cosine and sine representations of functions defined on 
O<a<L. 

 



    

Chapter 18 

Diffusion Equation 

18.1 Introduction 

Chapters 18—20 are about partial differential equations (PDE’s). Two of the most 

important PDE’s of mathematical physics have already been encountered in Chap- 

ter 16. In Example 3 in Section 16.8, we derived the equation 

OT I~? 
eVET = om OL (1) 

governing the unsteady diffusion of heat by conduction, where a? is a physical 

constant known as the diffusivity of the material, and T(x, y, 2, t) is the temperature 

field. The latter is known as the heat equation but is also called the diffusion 

equation because it governs diffusion process in general. For instance. whereas (1) 

governs the diffusion of hear, the equation 

DV?c= ve (2) 
ot 

governs the unsteady diffusion of material (such as a particular chemical pollutant 

within a body of water or of an anti-cancer drug within an organ such as the liver). 

where D. like a2, is a concentration of the material (i.e., the mass of material per 

unit volume of medium); (2) is of the same form as (1). 

If a steady state is achieved, then OT /Ot = 0 and (1) reduces to the Laplace 

equation 
WT =0. (3) 

In Section 16.10 we found that the Laplace equation also governs the velocity po- 

tential &(x, y, =) for irrotational incompressible flows; other applications of the 

Laplace equation are discussed in Chapter 20. 

Arguably, equations (1) and (3) are two of the three most prominent PDE’s of 

mathematical physics. the third being the wave equation of the form 

oe? au 7 
oVru= 5p (4) 

943



044 Chapter 18. Diffusion Equation 

where c? is a constant. 
The diffusion, wave, and Laplace equations are the subjects of Chapters 18, 

19, and 20, respectively. They could be presented in any order, but we have chosen 
this sequence for pedagogical reasons that will be explained as we proceed. 

Our approach in these three chapters is substantially different from our ap- 
proach in the early chapters on ODE’s (ordinary differential equations). For ODE’s 
we proceeded systematically, beginning with first-order equations and then mov- 
ing on to equations of second order and higher and developing the general theory — 
which covered existence, uniqueness, and methods of solution. Though our empha- 
sis was on linear equations, we considered nonlinear equations as weil. For PDE’s, 
however, our scope is more limited as we focus almost entirely on the diffusion, 
wave, and Laplace equations and emphasize solution technique. These three are 
by no means the only PDE’s encountered in applications. but they are extremely 
important, and the solution methods that we develop can be applied to various other 
(linear) PDE’s as well. 

18.2 Preliminary Concepts 

18.2.1. Definitions. Recall (from Section 1.2) that a differential equation is a 
partial differential equation if it contains partial derivatives of the dependent vari- 
able with respect to two or more independent variables. For most applications the 
independent variables are one or more space variables (Cartesian or non-Cartesian), 
and possibly the time ¢, but the dependent variables encountered are much more var- 
ied and include temperature, concentration, deflection of a string or membrane or 
beam, velocity potential, and electric potential, to name just a few. As for ODE’s, 
there may be more than one dependent variable, and we may have a system of 
PDE’s in two or more unknowns. Here, however, we consider only the case of one 
equation in one unknown. 

Also as for ODE’s, we define the order of a PDE as the order of the highest 
derivative therein, and we say that a function is a solution of a PDE, over a particu- 
lar domain of the independent variables, if its substitution into the equation reduces 
that equation to an identity everywhere within that domain. For instance, the PDE 

Ure — Sty + U = vy? (y — 15) (1) 

(where subscripts denote partial derivatives) is of second order and admits the so- 
lutions 

ui(a,y) = Gert FY + xy? and ug(a,y) = EF FPY 4 gy? 

over the entire x, y plane (and other solutions as well). For instance. putting uw, into 
(1) gives 

Qty era Doky , 92 , ate 3 2 24e"" TY — 5(6e72 FY 4 B2y ) + 6eR FY 4 vy? = ry” (y — 15), 

which is indeed an identity for all values of x and Y.
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It is standard and convenient to use the differential operator notation L/ | for 
PDE’s, as we do for ODE’s. Accordingly, (1) may be written more compactly as 

Llu) = f, (2) 

where 5 . 

Lx oO _ 5. +1 (3) 
Ox? Oy 

is the second-order partial differential operator, and f(x,y) = xy" (y ~ 15). Just 

as the definition of a function is not complete until we specify the domain on which 
it acts {e.g., the function sin w defined on 0 < a < wis not the same as the function 

sin x defined on —~oo < x < 5], likewise the definition of a differential operator is 
not complete until we specify the domain of functions on which it acts. We do not 
“figure out” what the domain is; we specify it. For L given by (3), for instance, we 
might specify its domain as the set of functions u(x, y) that are defined on the first 
quadrant (Q << x < 00,0 < y < oo) and that are twice differentiable in x and once 
in y. 

We say that a differential operator, be it an ordinary differential operator or a 
partial differential operator, is linear if 
  

| Llou + Ov] = aLlul + BLi[v (4)     

for any functions u and v in the domain of J and for any constants @ and (3; other- 
wise it is nonlinear. 

EXAMPLE 1. The operator £ given by (3) is linear because 

i   Llau + dv} ( a ~ 5 + i) (au + 3v) 
TY Ow? 

= (Une — Uy + u) + G(Vex — Suy + v) 

aLlul] + GL[v}. a 

EXAMPLE 2. The operator defined by 

lI 

Llu] = tee + Wty 

is nonlinear because the difference 

Llau + Bv) —aLlul ~ 3L[v) 

= (QUee + Bex) + (au + Bv)(atty + Buy) — O(ttrx + Uy) ~ Bee + Uy) 

= (a? ~a)uuy + (8? = B)uvy + aG(uvy + uyv) 

is not identically zero. For instance. if u(v,y) = y, u(x, y) = 0. a = 2, and 3 = 6, then 
the right-hand side is 3y, not zero. # 

If an operator L is linear, then it follows immediately from (4) that 

Liayuy feos + pup) = oy Lluy] +--+ + ap Dug] (5) 

2 he Preliminary Concepts 945



  

946 Chapter 18. Diffusion Equation 

for any functions u;,,..., us in the domain of L and for any constants ay,..., Qh, 
for any finite k. 

Consider a linear differential equation 

Llu) = f, (6) 
where f is a prescribed function of the independent variables. If f = 0 then (6) 
is homogeneous, and if f 4 0 then (6) is nonhomogeneous with f as a forcing 
function. Any solution of the full equation L[u] = f is called a particular solu- 
tion of (6). The power of the linearity property (5) is that it enables us to build 
a more robust solution from a collection of individual solutions by superposition. 
For suppose that wi,..., Uz are solutions of the homogeneous version L[u] = 0 of 
(6), and that Up iS a particular solution of (6). Then 

us Cu +--+ + Crug + up (7) 

is a solution of (6) for any constants C),..., Cy, since 

LiCyuy +--+ + Cyug + up| = CyLluy] +--+ + Cy Lug) + Lup] 

= C1(0) +--+ C,(0) + f 
=f. (8) 

We say that (7) is robust in the sense that it contains k arbitrary constants, which 
are available to help wu to satisfy the various boundary conditions that may be pre- 
scribed. 

However, there is a major difference in the application of the foregoing idea 
to ODE’s and PDE’s. If (6) is a linear Ath-order ODE and wy,..., up are linearly 
independent solutions of the homogeneous equation L/u] = 0, then (7) is a general 
solution of (6). For the PDE’s that we study in these chapters we will be able to 
find even an infinite number of solutions u,,ue,..., yet 

U = Up + S- Chu; (9) 
j=l 

may fall short of being a general solution of (6). That is, (6) may admit solutions 
that cannot be expressed in the form (9) for any choice of the C's. Though it 
would be nice to obtain general solutions of our PDE’s (and indeed we will for the 
wave equation in Chapter 19) our objective is more limited than that. Specifically, 
we will be content to be able to obtain solutions satisfying specific boundary con- 
ditions, and it will turn out that the infinite series solutions that we develop will 
indeed be robust enough for that, even if they fall short of being general solutions. 

18.2.2. Second-order linear equations and their classification. We are espe- 
cially, though not exclusively, interested in linear second-order PDE’s of the form* 

Auer + 2Bttry + Cuyy + Dug + Euy + Fu = f, (10) 
  

"We assume that A, B,C are not all zero for then (10) would not be of second order, Further, we 

assume that if A = B = O then D #0. forif A= B = D = 0 then only y derivatives appear and 

(10) would more reasonably be regarded as an ODE rather than as a PDE. Similarly, we assume that 

if B= C = Othen £ A 0.
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where A,..., £, f are prescribed functions of x and y and where the 2 is included 
for subsequent convenience. Often A,..., fF are constants, but not always. The 
independent variables « and y will be Cartesian space variables, or else « will be 
a Cartesian space variable and y will be the time ~ in which case we will use ¢ in 
place of the generic y. 

We classify (10) as one of three types, depending on the sign of the discrimi- 
nant B? — AC: (10) is 

  

parabolic if B* — AC = 0, 

hyperbolic if B? — AC > 0, (1h) 

elliptic if BP-AC <0       

in the region under consideration. This terminology is by analogy with the gen- 
eral equation of a conic section, az* + 2bay + cy* + du + ey + f = 0, which 
gives a parabola, a hyperbola, or an ellipse, according to the sign of the discrimi- 
nant b” — ac. Just as parabolas, hyperbolas, and ellipses are governed by distinct 
geometrical theories, so are parabolic, hyperbolic, and elliptic PDE’s governed by 
distinct theories. Prototype examples of these three types are as follows: 

1. The diffusion equation 

O Upe == Ut (a* = constant) (12) 

is parabolic (with y — t) since B* — AC = 0? — (a7)(0) = 0. 

2. The wave equation 

C Ung = Un (c? = constant) (13) 

is hyperbolic (with y — t) since B? — AC = 0? — (c?)(—1l) =? > 0. 

3. The Laplace equation 

Uge + Uyy = 0 (14) 

is elliptic since B? ~ AC = 0? — (1)(1) = -1 <0. 

Thus, keep in mind in Chapters [8-20 that the diffusion, wave, and Laplace equa- 
tions are not only of importance in their own right, but that they are also represen- 
tative of the three equation types — parabolic, hyperbolic, and elliptic, respectively. 
For instance, the PDE 

O° Une = te + Vue + Hu (15) 

governs the diffusion of heat in a one-dimensional rod, but differs from the basic 

diffusion equation (12) by virtue of the Vu, term (which is due to the rod being in 
motion with constant speed) and the Hu term (which is due to heat loss from the 

lateral surface of the rod to the environment). However, (15) is still parabolic, like 

(12), since B* ~ AC = 0—(a”)(0) = 0, so its solution should in fundamental ways 
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be similar to the solution of (12) that is discussed in this chapter. Such variations 

from the basic diffusion, wave, or Laplace equation, are considered in a number of 

the end-of-section exercises. 

EXAMPLE 3. Since A,...,F, f in (10) may be functions of x and y, the discriminant 

B? — AC may be a function of x and y. Thus, besides the possibility B? — AC is zero, 

positive. or negative everywhere in the «, y plane, it is also possible that it is zero, positive, 

or negative in different parts of the z,y plane. To illustrate, consider the Tricomi equation 

Una + LUyy = 9, (16) 

which arises in the study of the two-dimensional steady transonic flow past a body such as 

a wing. (Transonic means that flight speed is close to the speed of sound.) Then 

B?— AC =0—(1)(a) = -2 

so the Tricomi equation is elliptic in the right half plane « > 0 and hyperbolic in the left 

half plane z < 0. Thus the Tricomi equation is a change-of-type equation, with solutions 

that are qualitatively different in the two half planes. For ODE’s, an analogous behavior ts 

exhibited by the Airy equation 
y + ay = 0, (17) 

which has oscillatory solutions for x > 0 and nonoscillatory solutions for < 0. 

The moral of this example is that a given example of equation (10) might be of one 

type in one region and of another type in another region. Such cases are more difficult and 

are not studied here. # 

18.2.3. Diffusion equation and modeling. In Example 3 of Section 16.8 we de- 

rive the heat equation a2V*u = uw, by considering a heat balance for an arbitrary 

control volume and using the divergence theorem. (There we used T’ for the tem- 

perature field, but here we use u, since we would like to have the letter T’ available 

for another purpose.) In slight contrast with the arbitrary control volume approach, 

engineering textbooks usually consider infinitesimal elements in such derivations. 

Let us present such a derivation for a one-dimensional rod and, at the same time. in- 

clude the additional effects of translation of the rod and heat loss to the environment 

from its lateral surface. 

Specifically, consider a uniform rod of cross-sectional area A, circumference 

s, mass density o (mass per unit volume), thermal conductivity &, and specific 

heat c, and suppose it is in uniform motion with speed v in the positive x di- 

rection. Consider an element of the rod between a and x + Av. where the x 

axis is fixed in space and the rod is moving relative to it. Assume, merely for 

definiteness and with no loss of generality, that the derivative u, iS positive at 

x and at « + Ac. Then, according to the Fourier law of heat conduction (Ex- 

ample 3, Section 16.8), heat enters the element through its right-hand face at the 

rate hKAuy|e+Azx and leaves through its left-hand face at the rate kAuwle (Fig. 1). 
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hsAx(u~ u,,) 

KAU, x <—— —— KAuy X+AY > ’ 

x x+ Ax 

  

      

Figure 1. Heat balance for infinitesimal element. 

Additionally, suppose there is a heat loss to the environment from the exposed 
lateral surface of the element, that is proportional to the surface area sAa and the 
temperature difference u — tog, Where ts. is the temperature of the environment 

(which we assume to be constant). If the constant of proportionality is some known 
heat transfer coefficient h, then by Newton's law of cooling the rate of heat loss 

is hsAa(u — uso) (Fig. 1). Finally, there is a transport of heat, in at x and out at 

az + Az, because the rod is translating. Recall that the heat contained in a mass 77 
at (absolute) temperature uw is mcu. In time At the mass m entering at the left and 

leaving at the right is the dimension vAt times the area A times the density o or, on 
a per unit time basis, vAo. Thus, the heat in at the left, per unit time, is vAgcu/,, 

and the heat out at the right, per unit time, is vAoculz+Az (not shown in Fig. 1). 
Then the net heat influx into the element, per unit time, is 

k$Aty (18) —kAuy — vAocu ~ hsAa(u — Uso) + vAocu 
etAc we   

    

  x z+Au 

The latter must equal the rate of change of the heat mcu contained in the element. 
where m = AAza, so 

kA (u. 
O 

etAc |) ~ Ot (AAwacu). 

  

  
) —hsAx(u—ts)-vAoe (u 

  

~~ Us 
r+Ax x 

(19) 
Dividing through by AAwzoc and letting Aw — 0 gives the desired field equation 

k hs 
— Ugg — —— (U Ug) ~ Ue = Ut (20) 
co Aco 

or, more concisely, 
2 i 

aru, = Ut uu, + Au, (21) 

where «* = k:/(co) is the thermal diffusivity of the material, v is the translational 
speed, H = hs/(Aco) is proportional to the heat transfer coefficient h, and u! = 
U — Us is the temperature at any point in the rod relative to the ambient temper- 
ature Us." [f we remember that uw’ is the relative temperature we can, for notational 

  

“Some common values of a? (cm?/sec) are: silver, 1.70; copper, 1.14; aluminum, 0.86; cast iron, 

0.16; brick, 0.0052; glass, 0.0034; and water, 0.0014. 
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—y furnace 

  
Figure 2. Extrusion. 

  

~ Oo 

x=0 xebh 

Figure 3. Conduction through 

a wall, 

convenience, drop the primes in (21). Of course, (21) is the same as (15), mentioned 

above. 

The derivation given above is only heuristic and is typical of the elemental 

approach to deriving various field equations, as it is found in engineering science 

textbooks. But it is not hard to render the derivation rigorous. First, the AAcocu 

on the right-hand side of (19) should really have been an integral over the element, 

but 

set Ag 9 

a | Aocul€,t) dé = a Aocu(a + pAx,t)Ar ~ AAgaocu,(x,t) (22) 
Ot fy Ot 

as Ar —+ 0, so we obtain the same result as before. The equality in (22) follows 

from the mean value theorem of the integral calculus, for which we merely need 

u(€,t) to be a continuous function of «, where pz is some value between 0 and 1. 

Similarly, the hs Ax(u — uso) term in (19) should actually be an integral over the 

lateral surface, but once again we can use the mean value theorem and obtain the 

same result as before. 

The Vu, term in (15) is called a convection term, and the Hu term is called 

a Newton cooling term; of course, it will be a heating term rather than a cooling 

term if the environment is hotter than the rod. As a physical application where both 

terms would be important, consider a hot continuous metal rod being drawn from 

a furnace and entering an extrusion die at some distance from the furnace (Fig. 2). 

In designing the facility it is important to predict the temperature of the rod when 

it reaches the die, as a function of the various design parameters, so that the metal 

is still sufficiently hot to be extruded. 

Let us set V = 0 and H = 0 and limit our subsequent attention to the basic 

one-dimensional diffusion equation (12). As a typical application of (12), consider 

the heat conduction through the outer wall of a house (Fig. 3), and let z,y, z be 

normal, horizontal, and vertical axes, respectively, with « > L corresponding to 

the interior of the house and « < 0 corresponding to the exterior. Actually, we 

should be working with the three-dimensional diffusion equation 

a" (tre + Uyy + Use) = Ut (23) 

However, on a cold (or hot) day we expect u to vary very little with y and z com- 

pared to its variation with a (over0 < x < L). Thus, as a reasonable approxi- 

mation we can neglect the wy, and uz, terms, in which case (23) simplifies to the 

one-dimensional equation 
O° Ure = Ut (24) 

or, in operator form, 

2 

Diu} = («ss — x) fu) = Ure ~ te = 0. (25) Jn 5 

To complete the problem formulation it is useful to observe that the domain 

of interest is the semi-infinite strip 0 < « < Land0 < t < oo in the z,¢ plane,
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as shown in Fig. 4. Clearly, (25) admits an infinite number of solutions such as 
4x, Sa ~ 30, sinxexp(—a°t), 2 + 20 — cos3xexp(—9a*t), and so on, Our 
expectation, if only intuitive at this stage, is that if we append to (25) a suitable 
set of boundary conditions, then the resulting problem will have a unique solution, 
To motivate such a set of conditions, observe that (25) is a second-order equation 

with respect to 27, so we expect two x boundary conditions to be appropriate, one 
atv = O and one at « = L. If we call the outside temperature u,, and call the 

inside temperature w2, which is the temperature setting on our thermostat, then the 

boundary conditions on a are 

u(O,t) = tt, (O0<t < co) (26a) 

u(L,t) = ue. (0<t < co) (26b) 

Further, (25) is a first-order equation with respect to t, so we expect one ¢ boundary 
condition to be appropriate, at ¢ = O (.e., an initial condition). [If we prescribe 
some initial temperature distribution 

u(x,0) = f(x), (O<a<L) (27) 

then the full problem statement consists of (25)—(27) and is summarized in Fig. 5. 
We solve that problem for u(x, ¢) in Section 18.3, and also establish its uniqueness. 

Thus, in formulating the problem the idea is to impose boundary and initial 
conditions that are sufficient to reduce the solution set to a unique solution, but not 
excessive so that there is no solution. For instance, if we impose not only the con- 
ditions shown in Fig. 5 but also the condition u,(0,¢) = 0, then that problem will 
have no solution. Whereas existence and uniqueness questions were prominent in 
our study of ODE’s, here we are not so concerned about the existence question, 
because we will generally be able to fird a solution. The nagging question that re- 
mains, then, is uniqueness. Thus, representative uniqueness theorems are presented 

in these chapters. 
Besides thinking of our problem (25)—(27) as governing heat conduction in 

a wall, we can think of it as governing heat conduction in a rod that is thermally 
insulated everywhere on its lateral surface — but not at its two ends, which are 
subjected to temperatures wu, and we for all O < t < oo (Fig. 6).* 

Before closing, let us consider the possible boundary conditions at z = 0 and 
x = DL more fully. We distinguish three types. Conditions (26a,b) are examples 
of boundary conditions of the first kind, or Dirichlet boundary conditions, be- 

cause they are of the form 
u prescribed (28) 

on the boundary. In (26a,b) w is prescribed to be a constant, but Dirichlet boundary 
conditions need not be constant. For instance, if the time of interest is short com- 
pared to a day, then it may well suffice to take w(0,¢) = uy to be a constant, but if 
  

“In fact. even for the wall shown in Fig. 3, any “pencil” of material, parallel to the @ axis and 

extending from « = Oto a = L, is essentially an insulated rod, insulated by virtue of the lack of 

temperature variation with y and <. 
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the time of interest is on the order of a day or longer, then we really need to take 

u(0,t) = u(t) to be a function of time. 

A boundary condition of the second kind, or Neumann boundary condi- 

tion, is a derivative boundary condition of the form 

Un prescribed, (29) 

where u,, denotes the derivative Ou/On of uw normal to the boundary under con- 

sideration. In the present example up is ~uz on the x = 0 boundary and +u, on 

the « = L boundary. Physically, (29) amounts to prescribing the heat flux rather 

than the temperature. For instance, the heat flux Q(t) crossing the left end of the 

rod shown in Fig. 6, counted positive if it flows from left to right ts, according to 

Fourier’s law of heat conduction, 

Q(t) = —kAu,(0, t). (30) 

Thus, if we specify the normal derivative u,(0,¢) we are, in effect, specifying the 

heat flux Q(t). We see from (30) that a homogeneous Neumann boundary condition 

up(0,t) = 0 G1) 

for up(L,t) = 0] amounts to a stipulation that that end is thermally insulated, for 

then Q(t) = 0. 
Finally, a boundary condition of the third kind. or Robin boundary con- 

dition, occurs when a linear combination of u and up, is prescribed. To illustrate, 

within the context of the present example. consider the heat flux crossing the end 

x = L, say. According to the Fourier law of conduction the flux crossing z = L 

from the left is ~k Aug (L,t), and according to Newton’s law of cooling the flux 

crossing « = L into the environment is hA{u(L.t) ~ us|. Since these must be 

equal we have the boundary condition 

—kAug(L,t) = hAlu(L,t) — ue] (32) 

or ) 

ux (L,t) + ; u(L,t) = -< ue, (33) 

which is a boundary condition of Robin type, also called a “mixed” boundary condi- 

tion. [t is useful to nondimensionalize terms in this equation. Nondimensionalizing 

u with respect to the reference temperature uy and x with respect to the reference 

length L, the nondimensional quantities are 

  

= a/b and T= u/ug. (34) 

kk Ar ‘ 

Then (32) becomes — eo ts =hAus lz _ i| or 
L <=l t=] 

a [z__, - 1 (35) 
g=1 g=1 
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where the dimensionless parameter 

pi = (36) i=— 36 
k 

is known in heat transfer as the Biot number. If Bi >> 1, then (35) implies that 

U ~ | = O or, returning to dimensional terms, 
#1 

u(L,t) = ue, (37) 

which was the boundary condition naively adopted in (26b), However, if the values 

of h, £, and & give Bi < 1, then (35) implies that t; ez O or, in dimensional 
1 

terms, 
Ue(L,t) = 0. (38) 

If Bi is neither very large nor very small, then we should leave the mixed boundary 
condition (33) intact. 

With the foregoing remarks completed we will simply specify boundary con- 
ditions such as (37), (38), or (33) without further discussion as we now turn our 

attention to the solution of such problems. 

Closure. Keep in mind, as we embark on our study of PDE’s in Chapters 18-20, 
that we are focusing on the extremely important class of PDE’s of the form 

Attrr + 2Bupy + Cuyy + Duy + Euy + Fu f, (39) 

where A....,F. f are prescribed functions of x and y. Within that class we dis- 
tinguish three types. Specifically, we say that (39) is parabolic if B? — AC’ = 0, 
hyperbolic if BX ~ AC’ > 0. and elliptic if B?’ — AC < 0. Representative of 
these types are the diffusion, wave, and Laplace equations, respectively, and we 

will devote one chapter to each of these types. 
Since (39) is of second order, appropriate boundary conditions will involve wu 

and possibly first-order derivatives of u. Specifically, if uw, up, or a linear combina- 
tion of uw and u,, are prescribed, then we say that the boundary condition is of the 

first kind (Dirichlet type), second kind (Neumann type), or third kind (Robin type), 
respectively. Of these, Robin boundary conditions are the most difficult. 
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EXERCISES 18.2 
  

1. Show that (5) follows from (4). HINT: Use mathematical (b) Korteweg-de Vries (KdV) equation, 

induction. Up + QUUs + BUyee = 0 

2. Show whether the equation is linear or nonlinear: ha, and 

6 are constants. HINT: See Examples | and 2. ; it 
(€) Usa + Uyy = e@ 

(a) Helmholtz equation, V?u + &*u = 0 (f) t tee = Uy 

(c) biharmonic equation, Vlu = Were t+ 2texyy tUyyyy = 9 

(d) Tricomi equation. tip, + tuyy = 0
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(2) Une + Say — TU = e* 

(h) uy + Ul, = 6 

(h) try — Uyy + evu= f(x,y) 

4. In deriving the diffusion equation (21), we assumed that 

3. Classify the following PDE’s, defined over ~co < @ < 00 the cross-sectional shape of the rod does not vary with a, Re- 

and —co < y < 00, as elliptic, parabolic, or hyperbolic. If consider our derivation for the basic case where there is no 
the equation is of mixed type, identify the relevant regions and 

give the classification within each region. 

2 7 

(a) Uaa Way 7 DP Uby =z et¥ 

(b) Ugg ~ Uay + YUyy + duy = 1 

(C) Uny + Ua ~~ 4thy = Bu 

(d) Cle y (sin” y+ L)ttyy = au 

(e) Uae + Uny as Uyy oh Ue Uy +u=1 A(x) 

(f) tea + (COS @)thyy = Qry 

(g) Ua Pb Ua Uy = vu 

Newton cooling (i.e., the lateral surface is insulated, h = 0) 

and no translation of the rod (v = 0), but allow for the cross- 

sectional area A to vary with x. Show that the revised diffusion 

equation is 

  [A(t) tale = Ue. (4.1) 

  

  

0 
7 

w= f(x) 

Figure 1. The problem (1). 

18.3. Separation of Variables 

18.3.1. The method of separation of variables. We explain the method of sepa- 
ration of variables by a sequence of examples. 

EXAMPLE 1. Consider the diffusion problem 

Llu] = a7 up, — ue = 0. (O<r2<h, 0O<t<x) (la) 

u(O,t) =u, ulL.t) = ue, (0 <t < oo) (1b) 

u(a.0) = f(z). (Q<a< L) (1c) 

that is derived in Section 18.2 and that governs the temperature field u(a, £) in a rod with 

insulated lateral surface (or in a wall or slab of thickness LZ); see Fig. 1. 

According to the method of separation of variables we begin by seeking solutions of 

(1a) in the product form 

u(x,t) = X(x)T(t). (2) 

  

Putting (2) into (1a) gives 

ot NX"T = XT", (3) 

where primes denote ordinary differentiation. To separate the variables. divide both sides 

of (3) by XT and obtain 

xX” 1 7 
Soap. (4) 

xX ae 7 

Actually, we divided by e* as well. but whether we have | /a° on the right-hand side of (4) 

or a” on the left-hand side will not affect the final result. Observe that (4) is of the form 

  

F(a) = G(0). (5)



18.3. Separation of Variables 

Since x and t are independent variables, G(t) does not vary with «. But F(x) = G(t), so 

F(a) does not vary with « either. Hence F(a) is a constant. From (5), G(t) is a constant 

also, the same constant.* Thus, 

¥ = 2 == constant = Ke (6) 

say, where we have written «° for convenience because we will soon need to take the 

square root of that quantity. Motivation for including the minus sign in (6) is given in the 

end-of-example comments. 

The beauty of the separation procedure is that in place of the partial differential equa- 

tion Q* Us, = Uz, We now have two ordinary differential equations, 
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xX" 5 1 qT! 5 

— = and — oy ERK, 
X aT 

or, 

X"+4°X =0, (Ja) 

T+ ea°T =0. (7b) 

The separation constant « remains to be determined. Solving (7a,b) gives 

X = Acosxa + Bsinag, (8a) 

T= Cente et, (8b) 

However, observe that (8a) is the general solution of (7a) only in the event that « # 0, for 

if « = 0 then the sine term drops out. Since we do not yet know the value(s) of K, we 

must allow for the possibility that the value « = 0 will be needed. Setting « = 0 in (7a) 

gives X” = 0, with the general solution X = D + Ex, so we replace (8a) by the two-tier 

statement 
¥ Acoska + Bsinkz, K #0 (9 

. D+ Ex, A= 0. ) 

Apparently, we don’t need to revise (8b) the way we revised (8a) because (8b) is a general 

solution of (7b) whether « is zero or not. However, having already comitted ourselves in 

(9) to the separate treatment of these two cases, we replace (8b) by the two-tier statement ! 

Penk et . 0 

T=)" ne (10) 
G, a= 0. 

Thus far we have discussed the product solutions 

w= XT =(D+E2)G (11) 
  

* Analternative approach that you might prefer is to take 8/Ax of (5), which step gives F’(x) = 0, 

so F(x) = constant. From (5), G() must also be constant, the same constant. [Or, O/ Ot of (5) gives 

G'(t) = 0. so G(t) = constant, and so on.} However, this approach is a bit weaker because it 

requires an assumption that X"/.X is differentiable, an assumption that is not needed. 

1 F exp (—K7a#) can be expressed as F exp (~t/7), where 7 = 1/(«7 a7) is a time constant, 

namely, the time it takes the exponential to decay by 63% (from | to e7!).
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corresponding to «& = 0, and 

ny 4 

u= NXT =(Acosxa + Bsinnx)Fe* (12) 

for any « #0. Since D, E,G, A, B, F are arbitrary constants, we can combine DG as H 

and EG as I and simplify (11) as 

u=A+Ie 

for & = 0, and we can combine AF as J and BF as K and simplify (12) as 

us (Jcosaa + Ksinarje™ °! 

for & 4 0. Since (la) is linear, the sum of these solutions must also be a solution, so we 

can write , a 

u=H+Ie+(Jcoskz + Ksinnaje" * 4, (13) 

where the constants Hf, I, J, K, and « are arbitrary. But it is understood that « 3 0 in (13) 

because the H +/x part of (13) already accounts for the « = O case. By the linearity of (1a) 

we can superimpose any number of such terms for different values of k. With & = 1,2, 

and /5, for instance, we can write 

u(a,t) = (A + Iv) + (J, cose + Ky sin vjew®! 
. a dn? = oo. be 

+( Jo cos 2a + Ky sin 2a)e7"* ' + (J cos Va + Ky sin V5a)e™* *. (14) 

The latter expression satisfies (1a) because each term does, and because (fa) is linear. [We 

urge you to verify that (14) satisfies (fa), by direct substitution.} But since we do not yet 

know what & values to choose, let us continue with the more compact form (£3). 

We are ready to apply the boundary conditions (1b) and the initial condition (Ic). 

Beginning with the left end condition, (13) gives 

u(0,t) =u, = A+Je" et (0 <t< co) 

or, in a more suggestive form, 

(H ~w)(1) + Slew" &') = 0. (0<t<o) (15) 

Since the functions | and exp (—«"a@#) are linearly independent on the ¢ interval,” it fol- 

lows from (15) that we need H ~ u, = 0 (so H = u,) and J = 0. Updating (13) to 

incorporate these results we have, thus far, 

ul(v,t) =u +le+Ksinare * e' (16) 

Applying the right end condition next, (16) gives 

ul(L,t) =u =u t¢lb+Ksinkbe™ 

or 
(IL +u, — w)(l)+ KsinnLe® ©! =0. (17) 

  
“Recall that nwo functions are linearly dependent if and only if one is a scalar multiple of the other, 

and neither | nor exp (—&"@"t) is a scalar multiple of the other,
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Again invoking the linear independence of | and exp (~K7a°t), it follows from (17) that 

[lL + uy —- ug = 0 (18a) 

and 

Ksinal = 0. (18b) 

Equation (18a) gives J = (tu, — u,)/D, but (18b) presents a choice: either K = 0 or 

sin«L = 0 (or both). Here, and at analogous points in examples to follow, the rule is to 

make that choice so as to maintain as robust a solution as possible [because we still have 

the initial condition u(2,0) = f(z) to satisfy, and we will need all the help we can get]. If 

we choose KC = 0, then we lose the sin kz exp (~«*a"t) term in (16) and are left with 

z 
u(x,t) =u, + (te — ui), (19) 

‘L 

which is capable of satisfying the initial condition only in the unlikely event that f(x) 

happens to be u, + (ug — uy)(2/L). However, if we choose 

sina l = 0, (20) 

then A’ need not be zero, we retain the sin 42 exp (—K7 at) term in (16), and (20) serves 

to identify the allowable values of &, namely, 

ne 
Kos oe (21) 

L 

forn=O,2t1,22,.... * Of these values we discard n = 0 because it gives 4 = 0, whereas 

it was understood that the «&’s in (16) were to be nonzero. Further. n = —1,—2,... can be 

discarded since the K sin (nwa/L) exp[—(nma/L)*t] combination in (16) is insensitive 
to the sign of n — to within a factor of £1, which factor can be absorbed by A’ anyhow.! 

Using superposition as in (14) but for the values & = n7w/L (n = 1.2,...), (16) gives 

INO 

C2 ~ NAY tage fb? 
u(x,t) = ur + (ua ~ta)e + ) Kn sin — e (namea/h ye (22) 

n=l 

Before completing the solution let us review where we stand. The right-hand side 

of (22) satisfies the boundary conditions (1b) because sin (nmwa/L) = Oat x = 0 and at 

x = L,foreachn = 1,2,.... Further, it appears to satisfy the PDE L[uj = 0 because it is 

a linear combination of product solutions 

wv . RL tei L\2t — OFe yy py? 
uy tug —u)=, sin eT OEE gin e Craf byt 1 2 Urs 

4 Lf 

    

each of which satisfies Liu] = 0. That is, if L[@i(a,t)] = 0,..., Lid. (a, t)] =.0, then 
Llay@r(x,t) + +++ + apdg(e, t)] = 0 too because 

Llave, +--+ + onde] = OrL[Oi) +--+ + an Lids) (23) 
  

“Surely, sins = Q has the roots « = na on the real axis. In fact, even if we broaden the search 

and look in the complex = plane. we find only the roots n7 on the real axis. 

‘Put differently, observe that only &” appears in (7a) and (7b). Since positive and negative values 

of « are therefore indistinguishable in the ODE’s, their general solutions for a given positive K, say 

kK == Ko. must be the same as their general solutions for K = ~Ko.
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by virtue of the linearity of L. However, & in (23) is finite, whereas & in (22) is infinite, so 

the step 
O° oO 

- . - 

L > On dn | = ) Onl ida] (24) 

noel nook 

amounts to an interchange in the order of two limit operations, the derivative in Z and the 

infinite series, and that step needs to be rigorously justified. This point of rigor comes up 

in Chapter 17 when we use Fourier series solution forms to satisfy ODE’s (e.g., Comment 

2 of Example 3 in Section 17.3), and is addressed in the optional Section 17.5. We address 

it here too, in the optional subsection 18.3.2. Generally, however, in Chapters 18-20, we 

omit rigorous justification and are satisfied with formal solutions. 

Finally, we impose the initial condition (Ic) on (22): 

oO 

u(x,0) = fl) = uy + (we - w)> + ‘S- ic, sin — (O<a<L) (25) 
n=l 

Two questions arise: given f(r), is it possible to find coefficients £,, so as to satisfy (25) 

on0 < 2x < Land, if itis possible, then how do we determine the K’,,’s? First, put all the 

known terms on the left-hand side: 

x ne 
f(x) — uy, — (ue - uy = > iy, sin Ts (O<a< Lb) (26) 

n=l 

and let us denote f(x) ~ uw, — (u2 - u,)(2/L) as F(z), for brevity. Observing that 

  

Co 

. UTE . 
F(z) = S> i, sin LT (O<a<L) (27) 

n=l 

is of the form of a half-range sine expansion of /’, we can conclude that if F’ is sufficiently 

well-behaved,* then (27) is indeed possible, and [according to (4) in Section 17.4] the A,,"s 

are computed as 

a ie ine 
Ay = z | F(a) sin =< dx. (28) 

Thus, our formal solution consists of (22), with the A,,’s computed from (28). 

To illustrate, consider a 10 em-long copper rod held in boiling water until its temper- 

ature is 100° C throughout. At time ¢ = 0 it is removed and its ends are quenched with ice 

for allt > 0. (We can either neglect heat loss from its lateral surface or specify that that 

surface be insulated.) Then a? = 1.14cm?/sec (for copper), L = 10cm, uy = ue = 0, 

and F(x) = 100° C, so (28) gives 

  
  

400 
2 ie NTL ) n odd 

Ky == | 100 sin dy = ¢ nT (29) 
10 Jy 10 . 

0, neven 

  

“Let Fexe(x) be the extended version of F(x) that is 2£-periodic and symmetric about « = 0 

anda = LD. if Fext(z) and Fi,(x) are piecewise continuous on (—L, L], then (27) converges in the 

sense of Theorem 17.3.1. 

“
e
S
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and (22) becomes 

400 AL. nme osteo 
u(x,t) = gin a ORS 

30 
uf ) 7 2 n Sin 10 € ( ) 

We fave summed the series in (30) at a number of z’s and at several representative limes 

and have plotted the results in Fig. 2. 

Since this is our first example there are numerous points to clarify, and we address 

them in the following comments. 

  t=Q— 

t=(0.2 sec 

r=|sec : 

  

   

    

  

10 x 

Figure 2. u(x,t) for the case where a? = 1.14, 0 = 10, uy = uo = 0, and f(x) = 100. 

COMMENT |. Notice the physical significance of the terms in (22). As t — oo the 

exponential terms tend to zero, leaving the steady-state solution 

x , 
lim u(a.t) = Us(a) = ty + (ug - ur), (31) 
tox " L 

which is a linear variation from u, atc = 0 to ws atx = L (Fig. 3). Thus, the summation 

term in (22) represents the transient part of the solution, that links the initial distribution 

u(a,0) = f(x) to the steady-state distribution u.(x). For the specific case represented in 

Fig. 2, the steady-state solution is simply u.(z) = 0 because u, = U2 = 0. 

COMMENT 2. Notice further that within the transient part of (22) each term dies out 

exponentially faster (as ¢ + oo) than the preceding term because of the n? in the exponent. 

To illustrate the significance of that point let us write out (30) at the representative times 

t = 0.2, 1, and 12 seconds: 

  

  

Tx Ore . One 
u(wz, 0.2) = 124.5 sin — + 34.7 sin a + 14.5sin a eee, 

(v1) = 113.8sin 4 15.4sin 4 15sin ore u(x, 1) = 113.8sin — + 15.4sin —— + 1.6 sur wey 
ms en 10 10 10 : 

one \ One 
6x 107M sin = + ee, + sin 10   ule, 12) = 33.0sin = + 0.0002 sin 

which results are among those shown in Fig. 2. Computationally speaking, then, (30) [more g 

generally. (22)] is an excellent result for “large” times because if? is large enough then only 

one or two of the terms in the series are needed for engineering accuracy. Conversely, tor 

“small” times a great many terms in the series may be needed. For instance, att = 0 the 

Separation of Variables 

Figure 3. Steady-state. 
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terms in (30) die out only like 1/n because the exponential factor is unity at ¢ = 0. 

COMMENT 3. Why did we write —&” in (16), rather than +47? That is, how did we 

anticipate that the separation constant would be negative? The rule of thumb is to choose 

either sign and then examine the resulting ODE’s for clues. Specifically, the minus sign 

chosen in (6) causes plus signs in (7a) and (7b), both of which look good: the plus sign in 

(7a) looks good because it results in sine and cosine solutions, which will be needed for 

the eventual Fourier series expansion of f(a) ~ us (cc), and the plus sign in (7b) looks good 

because it results in exponential decay rather than physically unreasonable exponential 

growth. (See Exercise 2.) 

COMMENT 4. It is essential to apply the boundary conditions before the initial condition. 

To see why, let us try imposing the initial condition first, instead. Then, (13) gives 

u(z,0) = f(e)= H+le+ Jcosxa + K singe, 

which cannot be satisfied unless f(x) happens to be a linear combination of 1, z, cos Kz, 

and sina, for some «. Applying the boundary conditions first enabled us to obtain the 

solution form (22), which form was powerful enough to handle any given initial condition 

u(z,0) = f(a). This sequencing — boundary conditions first and initial condition second 

~ will be appropriate all through Chapters [8 and 19. 

COMMENT 5. As emphasized in Section 18.2.1, we did not find a general solution of 

the diffusion equation and then apply the boundary and initial conditions. Rather, we used 

the method of separation of variables to develop a solution that was sufficiently robust to 

handle the boundary conditions and initial condition, 

COMMENT 6. It is interesting that the assumed product form u{w,¢) = X(a)T(¢) seems 

a bad choice because it maintains the same shape, V(x), for all time and is merely scaled in 

magnitude by the time-varying factor T(t). Rather. we would expect the shape of u(z. t) 

to change with time — as in Fig. 2, for instance, where u(x,t) is initially a constant but 

approaches a sinusoidal shape as heat diffuses out of the rod at both ends due to the end 

conditions u(0,t) = u(L,t) = 0. However, understand that the superposition of product 

solutions is not itself a product solution; that is, the final solution (22) is not a function of 

x times a function of ft. 

COMMENT 7. Still retaining the boundary conditions u(0,¢) = u(Z,t) = 0, what would 
happen if we changed the initial condition from u(z, 0) = 100 to 

100, Q<x<eo and rg r< lt 
u(a,0) = ; (32) 

5x108, «= 29 

that is. if we changed the initial temperature at a single point x9 to 5,000, 000°? Nothing: 

the solution would still be given by (30), because a change in the integrand of (28) at a 

single point, from one finite value to another, cannot change the value of the integral. 

COMMENT 8. The solution of (1) is not necessarily an infinite series. For instance, 

suppose that u; = tw, = 0 and 

Te 
u(a,O) = f(a) = 40 sin TE (33)
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Then, application of the initial condition (33) to (22) gives 

    
a2 = nia . We - . LTT 

40 sin = ) Ky, sin — 
L L Le 

- 
- . We - oo. TL 

= Kysin -- + Kosin--—~+---, 
L L 

which is satisfied, as can be seen by inspection, by setting Ay = 40 and all the other Jc,,’s 

equal to zero. Thus, we obtain the one-term solution 

  u(x,t) = 40 sin BE ew (maf hye, (34) 
L 

We can display (34) in two dimensions by plotting wu versus x at representative times, as 

we have done in Fig. 4a [and as we did earlier in Fig. 2 for the case where f(a) was 100], 

or in three dimensions by plotting the « surface above the x,¢ plane, as we have done in 

Fig. 4b. Similarly, if 

  

  

272 One 
u(e,0) = f(x) = 30sin = — 25 sin — (35) 

then 
ane, 2FU (ana/L)*t OTL graf L Pt 

u(z,t) = 30sin a e — 25sin Z eo : (36) 

and soon. @ 

In dwelling on so many details, in Example 1, we have shown no mercy. How- 
ever, Example | provides the basic model for the application of the method of 
separation of variables, as it is used here in Chapters 18-20, so careful study of that 

example is well worth the effort. 

EXAMPLE 2. Different Boundary Conditions. This time suppose that the left end of 
the rod is insulated, and the right end is held at a constant temperature [00 for all t > 0, so 

the problem is as follows: 

Liu) = ote, ~ Ue = 0, (Q<a< Ll, 0<t<x) (37a) 

up(0,t)=0, u(L.t)=100, (0<t<o) (37b) 
u(x, 0) = f(x), (O<x<L) (37¢) 

and suppose f is the piecewise constant function 

f(x) = (38) 
60, O<a< L/2 

0, L/2<a<L 

shown in Fig. 5. 

Up until (13) the story is unchanged, so let us begin with 

u(a,t) = A+ la + (Jcosxa+ sin Kejene ee (39) 
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Figure 4. Graph of (34). 

Figure 5. f(z).
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Applying the left-hand boundary condition, 

a(x, t) = 1+ (KS sine + KE cos Kajewn rt 
80 

Us(0,t)=O-7 + Kew eh & *t 
(40) which gives [ = Ko = 0. Updating (39) accordingly, 

u(t,t) = H+ Joos mer ene t 
(41) 

Next, the right-hand boundary condition gives 

u(L,t) =100= H+ Jeos KL ene at (42) 
so Hf = 100 and JcoskL = 0. We cannot afford to satisfy the latter by setting J = 0 because if J = Q then we lose the cosxLen* et term in (41), and the latter reduces 
tou(a,t) = H = 100, which cannot Satisfy the initial condition. Rather, we satisfy JcoskL = 0 by setting 

cosKL = 0 
(43) and letting J remain arbitrary. Thus, aL = 7/2, 34/2,5r/2,... sO 

nT . n= oP (m = 1,3,...) 
(44) 

and we have 

NEL u(x,t) = 100 + Jn cos SE ~(nma/2b)* t 45) f= 100 So Ineo 
Finally, the initial condition is 

u(x, 0) = f(x) = 100 + S Jn cos 
n=l,3,. 

or 

f(x) ~ 100 = S In cos (0<e<L) (46) m=1,3,. 

Comparing the form of the right-hand side of (46) with the half- and quarter-range cosine and sine expansion formulas, we see that (46) amounts to a quarter-range cosine expansion of f(x) — 100, so 
Ny 

  

Q fh ure 
In = Zz / [f(a) - 100] cos > dr 

9 L/2 nate LL nee =F | / (40) cog 7 : da + / ppl 7100) cos a | 
80 - 

= — (3 sin + ~ 5sin =) . (47) nT 2
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The solution is given by (45) and (47). 

To plot the results, let the material be glass (se a? = 0.0034 cm/sec), and let L = 

10cm. In Fig. 6 we plot w versus « at representative times. 

100 [00 
et = 20000 

  

t = 5000 

60 A ee 1000 

L/2 L x 

Figure 6. Graph of (45) for a? = 0.0034 and L = 10. 

  

      

COMMENT |. Notice that each graph of wu is flat at 2 = 0, in accord with the bound- 

ary condition u,(0,t) = 0, and that the steady-state solution u,(2) = 100 is approached 

as t -+ oo. That the initial temperature u(x, 0) = f(x) also satisfies the boundary condi- 

tion u,(0,¢) = 0 is only by coincidence and is not required since we require the boundary 

conditions to hold only for 0 < t < co, not for0 < t < oo. 

COMMENT 2. You might be tempted to break (46) into two parts, 

  

ad NAL L 
~d0 = 2s Jn C08 = (0 <n< 5) (48a) 

and 

=< Nee L 
~100 = Jn COS , —<; L 48b 2a cos OE (F<e< ) (48b) 

and to use the quarter-range cosine expansion formulas to solve for the J;,’s in each case. 

That procedure would be INCORRECT for two reasons. First, it will give J,,’s that have 

different values in the intervals 0 < 2 < L/2 and £/2 < x < L, in which case they 

will be functions of 2, not constants — as they were supposed to be. Second, we can- 

not use the quarter-range cosine formulas to solve (48a) and (48b) for the J,,’s because 

pets... Jn C08 (nwe/2L) is a quarter-range cosine expansion on 0 < x < L, not on 

O<a<L/2oronL/2<a0<L. G 

In Example |, u(0,¢) and u(Z,t) are prescribed constants and we end up ex- 
panding f(z) —us(z) in a half-range sine series. In Example 2, u,(0, ¢) and u(Z, t) 
are prescribed constants and we use a quarter-range cosine series. You will find that 
if instead u(0, t) and u,(Z, t) are prescribed constants, then a quarter-range sine se- 
ries will be appropriate. If u,(0,t) and u,(Z,t) are prescribed constants that are 
equal, then a half-range cosine series will be appropriate, but if they are unequal 

then the solution is more difficult (Exercise 19). 
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18.3.2. Verification of solution. (Optional) As stated, we can claim only to have 
found formal solutions of the diffusion problems in Examples | and 2. To illustrate 
the verification process let us verify that the formal solution (22) of the problem 

(1), with the K,,’s given by (28), does satisfy the requirements in (1). 
First let us show that (22) satisfies the PDE a? ug, = u;. If we differentiate 

(22) termwise we obtain 

    

  

    

oO 

ug Uy nw. MHL fp py 
Ug == > 4. ) —- K,, cos ——~ e7 re/#) a (49a) 

LE L L 
noel 

lynm\2 0. nme py . 
lage “oo Ss" (+) Ay sin r € (nra/L) te (49b) 

ree ~ 

nay 2 NHL we == SFE) Kn sin SE vlna, (49¢) 
n=l 

so we see that a7 Uz, does equal uw, provided that we can rigorously justify the 

termwise differentiations that produced (49a,b,c). Theorem 17.5.2 tells us that 
those steps are permissible if the resulting series [on the right-hand sides of (49a,b,c)] 

converge uniformly on the problem domain 0 < 2 < L,0 << oo, and Theorem 

17.5.1 gives us the Weierstrass Af-test as a test for uniform convergence. To apply 
the latter to the series in (49a), note that 

nt _. NX 
— K,, cos Z ev (nma/L)*t < Onen res £)*to = Al, (50)   

for all ¢ > t9 andO < x < LE because |cos(nma/L)) < land A, —- 0 as 
mn —+ oo.” so that the Ay,’s must be bounded: thus there must exist a finite positive 
constant Q such that |7wA,/L) < @ for all n’s. It follows easily from the ratio test 

that $7, AZ, converges, so the series in (49a) does indeed converge uniformly in 

O<a< L,ty <t < oo, for arbitrarily small to. Similarly for the series in (49b) 

and (49c), the only difference being that those series contain a factor of n* rather 
than 7n: but the ratio test shows that Sy n° exp {—(nma/L)*to] converges, just 

as SO*_, nexp/[—(nma/L)*to] does. 
Turning to the boundary conditions (1b) and the initial condition (1c), it might 

appear that the satisfaction of these conditions does not even need verification. Por 

instance, is not se 

u(0,t) =u +04+S 054 
n=l 

obviously true? The point to emphasize is that in posing PDE problems we require 
satisfaction of the PDE in the open region, in this case O < a2 < LO <t < om. 

We do that so that we can allow for not-so-well-behaved boundary and initial data. 
For if aug, == us were to be satisfied in the region) < 2 < 2,0 <t< o, 

then we would need u(z,0) = f(a) to be twice differentiable, and u(0,t) = g(t) 
  

“See the last sentence of Exercise |. Section 17.6.
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and u(L,t) = A(t), say, to be once differentiable, whereas we want to allow for 

boundary and initial data that are not even continuous, let alone c lifferentiable. In 

Example 2, for instance, f(a) is discontinuous. The way we link the solution 

u(a,t) in the open domain to the boundary and initial conditions is through limits. 

That is, by (1b) we mean 

lim u(v,t)=u, and lim u(w,t) = ua, (0<t <o) (51) 
t-0-- ta be 

and by (ic) we mean 

lim u(x,t) = f(z). (O<a<L) (52) 
t0+ 

To verify that (22) satisfies (51) we can use the following theorem. 

  

ee as (a 18. 3.1 Continuity of Sum Function 

If $0, @n(x) converges uniformly to s(x) on some « interval J and the a,(x)’s 

are raha on J, then s(a) is continuous on J, 
  

That is, if the convergence is uniform, then the continuity of the partial sums is 

passed on to the sum function s(x). 
Applying that result, observe first that the series in (22) converges uniformly 

on 0 < a < L for each t such that 0 < tp) < t < oo because there is a finite 

constant ? such that 

  
Po nash )2t! [An sin en (nma/L)? ‘| < Pew (nra/L)* to = My 

there, and $>~_, Af; is convergent. Thus the right-hand side of *(22) is a continuous 

function of 2 on 0 < x < L, so its values ate = Oand atc = L, namely uy and 

us, respectively, are the same as their limiting values as w — 0+ andas x 4 L-, 

respectively. 

Verification of the initial condition (52) can be accomplished with the help of 

a theorem of Abel. For that, and a generally more detailed discussion, we refer you 

to Churchill and Brown.” 

Finally, there is the question of uniqueness: is (22) the only solution of (1)? A 

formal proof of uniqueness is outlined in Exercise 25; for detailed discussion we 

refer you, again, to Churchill and Brown. 

18.3.3. Use of Sturm—Liouville theory. (Optional) [n subsection 18.3.1 we found 

that the final step of the separation-of-variables: solution involves the expansion of 

a given function. For the diffusion equation OP Up, = Up with Dirichlet or Neu- 

mann boundary conditions that expansion was a half- or quarter-range cosine or 

  

"R. V. Churchill and J. W. Brown. Fourier Series and Boundary Value Problems, 3rd ed. (New 

York: McGraw Hill, 1978. p. 129).
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sine series, So we were guided by our knowledge of such series. More generally, 
the necessary expansion is an eigenfunction expansion in terms of the orthogonal 
eigenfunctions of a Sturm-Liouville problem that is “built in.” Thus, a more power- 
ful approach is to appeal to the Sturm-Liouville theory, which includes the half- and 
quarter-range expansions as special cases. Let us illustrate with three examples. 

EXAMPLE 3. Example I Reconsidered. The Sturm—Liouville theory becomes relevant 
only when we reach the point of needing to carry out the expansion of a given function. 

Thus, in reconsidering Example | in the light of the Sturm—Liouville theory we can begin 

with equation (26). Our claim is that the sin (na/L) functions in (26) are the orthogonal 
eigenfunctions of a Sturm-Liouville problem governing X (x), namely, the equation (7a) 

together with the homogeneous boundary conditions X(0) = 0 and X(L) = 0: 

X"+46°7X=0, (0<2<L) (53a) 
X(0)=0, X(L)=0, (53b) 

which problem is indeed of the Sturm—Liouville form 

(py')' + qy+Awy=0, (a<a<b) (54a) 

ay(a) + By'(a) =0, yy(b) + dy'(b) = 0, (54b) 

where y(x) is X(z), p(z) = w(x) = 1. ¢(v) =0,\=n6*2,a=0,b=L,a=y7=1,and 
8 = 6 = 0. Considering the boundary conditions u(0,¢) = wu; and u(L,¢t) = ue, where did 

we get (0) = O and X(L) = 0, in (53b)? Recall that the wy + (ug —uy)2/L terms in (22) 
make up the steady-state solution u,(z). The burden of satisfying the nonhomogeneous 

boundary conditions, u(0,#) = uy and u(L, t) = ua, is carried by the steady-state solution 
us(x), so the transient part, )°°°_, A, sin “£2 exp [~(na/L)*t], must be zero at x = 0 
and « = L. Thus, the X(a) = sin (nmax/L) eigenfunctions, contained therein, actually 

satisfy the homogeneous conditions (53b), as is easily verified by evaluating sin (n7a/L) 

ate =Qandz= L, 

According to the Sturm—Liouville theory, then, (27) can indeed be satisfied, and the 

expansion coefficients are given by 

  

“L 
_ ure a RAE 

(F(x), sin >? | F(x) sin —— dx 
ro _ Jo 

Kn = REE, TE 
(sin ——, sin -—-- | . 2 NTL 

Q 

  

L L ) sin® ——- dx 

2 b TLL 
= i | F(x)sin = da, (55) 

which result is the same as (28). [Recall that the weight function, in the two integrals, in 

this case is w(x) = 1.] @ 

Thus, the idea is that satisfaction of the initial condition u(a,0) = f(x) re- 
quires the expansion of F(a) = f(x) — us(a). The latter will inevitably be an 
eigenfunction expansion in terms of the eigenfunctions @,,() (namely, sin (nwax/L)
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in Example 3] of a Sturm-Liouville problem on X (x). The Sturm—Liouville theory 
assures us that the desired expansion is possible, and it tells us how to compute the 

expansion coefficients — namely, as (F(x), én)/(dn, én), Where the inner product 

has weight function w(). 
In Example 3 we were able to use either the half-range sine expansion concept 

or the Sturm—Liouville theory. In the next example the expansion will not be of 
half- or quarter-range type, so we will have to use the Sturm—Liouville theory. 

EXAMPLE 4. This time consider the problem 

Llu] = tre — Ue = 0, (QO<a<1, 0<t<o) (56a) 

u(O,t}) — 2u,(0,t) = 5, u(1,t) = 35, (QO<t< ow) (56b) 

u(z,0) = f(x), (O<2<1) (56c) 

where we have set a? = 1 and L = 1 for simplicity. Observe that w(0,t) — 2u,(0,t) = 5 
is a Robin boundary condition, a boundary condition of the third kind. 

Separating variables as usual, let us begin with equation (13): 

u(x,t) = H+ Jax +(Jcosee + K sin Kejew™ t, (57) 

Applying the left end condition gives 

u(0,t) — 2u,(0,t) =5 =H + Je" '—~AL+KKe**) 

=(H-2)+(J—-2eK)e™*, (0 <t <0) 

so 

t 
a
 H-20=5, (58a) 

J-2xK =0. (58b) 

And the right end condition gives 

u(l,t)=35=H+14+(Joosk+Ksinnje™',  (0<t <0) 

so 

A+]=35, (59a) 

Joost + K sink = 0. (59b) 

Equations (58a) and (59a) give H = 25 and J = 10. Equations (58b) and (59b) give the 

unique trivial solution J = K = 0, unless we choose « so that the determinant of the 

coefficient matrix vanishes: 
1 =2k | 

| cosk sink | 
= (). (60) 

We cannot accept the trivial solution J = K = 0 because it reduces (57) to u(z,t) = 

25 + 10a, which does satisfy the PDE and boundary conditions but which cannot satisfy
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u= 100 
/ 

Figure 7. Conduction in a disk. 

the determinant condition (60), or 

tank = —2aK, (61) 

and designate the positive roots of (61) as K,,K2,.... Next, we need to Jind the corre- 
sponding nontrivial solutions of (58b) and (59b) for J and A. With (61) satisfied, (58b) 
and (59b) are redundant, so we can drop (59b) and use (58b) to obtain J = 24K. 

With these results, and superposition, (57) gives 

oe] 

u(a,t) = 25 + L0a + S* Kaga(aye®, (62) 
nol 

where 

On(@) = 2k COS Kye + sink, 2. (63) 

Finally, the initial condition requires that 
i 25 + 10x + S- Kyén(2), 

need 

u(x,0) = f(x) 

Or, 

F(z) = S- Kyon(2), (O<a2<1) (64) 
n=] 

where F(x) = f(x) ~ (25 + 10x), 25 + 10x being the steady-state solution us(x). The 
@n's in (64) are the eigenfunctions generated by the Sturm—Liouville problem 

X"4467X =0, (O<2 <1) (65a) 

X(0) —2X"(0)=0, N(1)=0, (65b) 

with weight function w(x) = 1, so 

1 
F(t) (Qkp COS Kyw + sink, x) dz 

PB Dn [ - K,= (Fy On) _ +o (66) 
i Ons On . . 

(Pn, n) [ (2kp COSK,L + sink, 2x)? dr 
Jo 

  

In fact, this Sturm-Liouville problem, including the determination of the «,,°s, is the subject 
of Example 3 in Section 17.7. @ 

EXAMPLE 5. Unsteady Conduction in a Disk. Consider the unsteady conduction 
of heat in a circular disk such as a coin of radius ec. the flat faces of which are insulated 
(Fig. 7). Then the temperature field u(r, t) in the disk is governed by the problem 

oe : 1 1 
oF Vu = a (ue +-up +> 7 == Uy. (O<r<e, 0<t <oo) 

po (67) 
u(e,t) = 100, u(r, 0) = f(r).
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That is, the disk is initially at a prescribed temperature f(7), and then we hold the outer 

edge (with boiling water, for example) at w = 100° for all t > 0. Because the domain ts 

circular, and the initial and boundary temperature are independent of @, it appears that the 

resulting temperature field w will be independent of @ as weil, and will be a function only 

of r and t. Hence, we can strike out the wee term, and the PDE reduces to 

: 1 
CO? (Upp + = Up) = Ue (68) , 

To solve by separation of variables, seek u in the product form 

u(r, t) = R(r)T(t). (69) 

Putting (69) into the PDE and dividing by RT (and a”) gives 

1 
RU + ~R LT! 

> == constant = ~K”, (70) 

and hence the ODE’s 

1 4 
RU+ Rtn R=0, (71a) 

r 

T +K°0°T =0. (71b) 

Equation (71a) is the subject of Example | in Section 4,6, and its general solution is 

R(r) = AJo(ar) + BYo(xr), (72) 

where Jy, ¥o are the Bessel functions of first and second kind. respectively, of order zero 

(Fig. 8). Are there any values of & for which (71) fails to provide a general solution? Yes, 

for K = 0 because ¥o(0) = ~9o does not exist. But for & = 0 (71a) can be expressed as 

(rR’)' = 0, which can be integrated to give R(r) = C + DInr. Thus, we distinguish the 

cases A # OQ and « = 0, and write 

Ado(ar) + BYo(ar), «#0 
Rr) = . (73) 

C+ DInr, K=O 

Ben ket. - 0 

Tth=% ee (74) 
Py K = 0. 

Thus far, we have 

u(r, t) = (C+ Dinr)F + [AJo(er) + BYo(nr)|Be"* * 

=G+Hlnr +[PJol(wr) + QYo(Kryjen™ ©, (75) 

where we have combined CF as G, Df’ as H, and so on. 

In the preceding examples, X (x) is governed by a second-order ODE and there are 

two x boundary conditions (at 2 = O and at x = L). In the present example, likewise. R(r) 

is governed by a second-order ODE, but we find only one r boundary condition in (67), 

  
Figure 8. Jo(x) and Yo(z). 
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1.0- 

0.54 

Jo(x) 

0.0+ 

  

“0.54       1 T 
0.0 $.0 10.0 15.0 

Figure 9. The zeros z,, of Jo(x). 

u = 100 atr = c. As a second r boundary condition it seems appropriate to require that 

be bounded at r = 0. 

As in preceding examples, we save the initial condition for last and begin by applying 

the boundary conditions. Of the two boundary conditions (wu bounded atr = O and u = 100 

at r = c), we recommend applying any boundedness condition first because it gives an 

immediate simplification. Specifically, for u(0,¢) to be bounded we need H = Q = Oin 

(74) because both Inr and Yo(«r) are unbounded at r = 0. Then (74) simplifies to 

u(r, t) = G+ PJo(nrjew® ©. (76) 

u(e,t) = 100 = G+ PJo(nejevh 8 ' 

or, , 

(G —100)(1) + PJo(neje7* ©! = 0. (0<t<o) (77) 

Since | and exp (~x«?a7t) are linearly independent on the ¢ interval, it follows from (77) 

that G ~ 100 = O and PJo(Kc) = 0. The former gives G = 100 and the latter gives 

P = 0 or Jo(kc) = 0. We reject the choice P = 0 because we cannot afford to lose the 

PJo(Kr) exp (—K7a7t) term in (76), and adopt the choice 

Jo(Kc) = 0 (78) 

with positive roots K,c = 2, forn = 1,2,..., where the z,,°s are the (known) zeros of Jy 

(Fig. 9). With these choices, and the help of superposition, we have 

u(r,t) = 100+ S~ Pr do (zn ~) en tena eyt, (79) 
ce 

nse 

(The P,,’s are arbitrary constants, not Legendre polynomials.) 

Finally, the inittal condition requires that 

u(r, 0) = f(r) = 100 + S Prado (= 7) , 
nol 

or 5 

F(r) = f(r) - 100 = S> Py Jo (n “) _ (0<re<e) (80) 
n=l ~ 

The expansion functions Jo(2,1r/c) are the eigenfunctions of the singular Sturm—Liouville 

problem 

(rR) +KrR = 0, (Q<r<e) 

R(O) bounded, R(c) = 0, 
(81) 

which problem is the subject of Example 2 in Section 17.8. Observe that we multiplied 

(71a) through by 7 in order to obtain the standard form given in (81). That step is important 

because it is only when the equation is in the standard form that we can identify from it 

 



  

18.3. 

the weight function — that will be needed in our inner product. From (81) we see that the 

weight function is w(7) = r, so we can write 

r 
F(r)Jo (zn) r dr 

c ” (Jo(znr/c), Jo(enr/c)) | [Jo (2.*)| ° rdr 
0 ¢ 

2 e r 
= TT Fir) de (2) ‘dr, 82 

[Si (en) |? [ (r)4o ey (82) 

For explanation of the last step, see Example 2 of Section 17.8. 

COMMENT I. As a concrete example, let f(r) = 0. Then (Exercise 31) 

200 “e r 200 Py =a | do (en) dr = -——, 83 
cA (en)/? [ ° ( 3) me tnd (Zn) ( ) 

Pa (F(r), Jo(ent/c)) 
_ [ 

  

so 
2° 

u(r, £) = 100 ~ 200 
n= 

1 Ce ee (84) 
1 on 1(Zn) ¢c 

For instance, the temperature history at the center of the disk is 

u(0,t) = 100 — 200 en enaley't (85) 
n=l 

2nd (Zn) 

which is plotted in Fig. 10 for the case where the material is glass (a? = 0.0034 cm?/sec 

and ¢ = 10cm). 

COMMENT 2, Observe that the point r = 0 is the left endpoint of the r intervalO <r < c, 

but, physically, it corresponds to an interior point of the disk, the center of the disk. Thus, 

the PDE must be satisfied there. In particular, if u,(0,¢) is to exist, then it must be zero. 
That is, the uw surface (i.e., the graph of u above the r, 8 plane) must be flat at r = 0 because 

otherwise the u surface will be conical there and u,(0, 2) will not exist. Thus, in place of 

the condition that 2(0) be bounded we could have used the condition 

R'(0) =0, (86) 

and the latter would have produced the same results. 

COMMENT 3. Recall that we argued that u does not vary with @ in this example. Hence, 
we dropped the ugg term in the PDE and solved the reduced equation a? (Upp + +u,) = Ut. 

If you still have doubts about that step, observe that (79) does satisfy the boundary con- 
ditions, the initial condition [if the P,,’s are computed using (81)], and the fall equa- 

tion a? V2u = uy including the uge term because 07/06? of the right-hand side of (79) 
is zero. © 

Closure. This section covers almost all aspects of the method of separation of 
variables, which method is used in each of Chapters 18-20. The starting point is to 
assume a procedure form for the solution, for instance u(a,t) = X(a)T() if the 
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u(O,t) 

    

  

  

Figure 

t (hrs) 

10. Temperature history at 

center: a? = 0.0034, c = 10.



972 Chapter 18. Diffusion Equation 

w- US Ho 

  

  

w= f(x) 

Figure U1. Moving boundary 

problem. 

independent variables are x and ¢. For the diffusion equation, that step enable us 

to separate the variables and obtain ODE’s on X(x) and T(t). That simplification, 

from a PDE to two ODE’s, is the point of the method. 

The essential ingredients, for the success of the method in a given application, 

are that the equation needs to be separable, the boundary and initial conditions need 

to be given on constant coordinate curves, and the PDE needs to be linear—so that a 

sufficiently robust solution can be built up by the superposition of various product 
. . ‘ 3 . 9 

solutions. Only two PDE’s are studied in the foregoing examples, Q° Use = Ut 
2 ] wie . 

and Q° (ther + tun) = u,, and these three conditions are met: the equations are 

separable, conditions are on constant coordinate curves (w@ = 0,2 = D,t =O,r = 

c, and r = 0), and the equations are linear. 

In contrast, an example of a PDE that is nor separable is the two-dimensional 

biharmonic equation in Cartesian coordinates, 

Viu = Ugera + 2Useyy + Uyyyy = 0 (87) 

because u(x, y) = X(x)¥ (y) gives 
xu xX’ yr yu g 

x ey yty ee)     

which cannot be rearranged in the separated form F(a) = G(y) because of the 

(X"/X)(¥"/¥) term. 
And as an example where the boundary conditions are not given on constant 

coordinate curves consider the problem shown in Fig. | 1. There, the temperature 

uy is so high that the left end of the rod melts and drips away, so that the boundary 

condition wu = uy, is applied not on the line 2 = 0 but on some curve © = a(t). The 

latter is an example of a moving boundary problem. Generally, such problems 

defy analytical solution, and we resort to numerical solution techniques — such 

as the finite difference method that is presented in Section 18.6. An interesting 

application of the problem shown in Fig. [1 is in the design of a space vehicle that 

reenters the earth’s atmosphere at hypersonic velocity. To protect the craft from the 

heat thereby generated (remember that meteorites often burn up before reaching the 

earth’s surface) one can design the nose cone to be long enough so that part of it 

melts away during reentry. A simple one-dimensional model of the heat conduction 

in the nose cone would be somewhat like the problem shown in Fig. [1. 

In this chapter and the next, the sign of the separation constant is always nega- 

tive, but in Chapter 20, on the Laplace equation, it is negative or positive, depending 

on the specific application. 

In subsection 18.3.2 we discuss the rigorous verification of a solution. Nor- 

mally, our solutions will be only formal, in the sense that such verification will not 

be carried out. 
Finally, in subsection 18.3.3 we show how to use the Sturm—Liouville theory 

to handle the expansion process that is needed to satisfy the initial condition. Using 

that theory we are not limited to half- and quarter-range cosine and sine expansions, 

as we were in subsection 18.3.1. In fact, the half- and quarter-range cases are but 

special cases of the Sturm—Liouville theory. Remember: Liouville, not Louisville. 
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Computer software. We can use the Maple sum command to obtain the infinite 
series solutions that we generate by separation of variables. As a first illustration, 
consider the series 

oO . 

(—1)rt4 1 to 4 ve 
wae oe J eK, 8&9 

d n 2 8 a7 : (89) 

which has the sum In 2 because it is the Taylor series of In (1 + «) about x = 1. To 
sum the series, enter 

sum ((~1)*(n + 1)/n,n = 1.infinity ); (90) 

and return. The result is In 2. Remarkably, the software not only gives the nu- 
merical value, it gives that value in the closed form In 2 rather than the open form 
0.693147... . 

Next, consider the solution (30) given in Example |, namely 3 

  

400 <1. nme 25n2 
u(a,t) = —— Ss" ~ sin = e WO teense (91) 

To ilustrate, let us use the sum command to sum this series at z = 1 andt = 0.2. 
First, change the dummy summation index from n to 2n — 1 so that the new index 
n runs continuously from 1 to infinity: 

400 = ] — (2n-—lyre . 25(2n—1)2 
u(e,t) = —+ S| aT sin —T9 e OTL25 (an 1) t (92) 

[f, to compute w(1,0.2), we enter 

sum (400/(Pi * (2*n — 1)) * sin ((2 * n ~ 1) * Pi/10) 
*exp (—0.1125 * (2% nm —1)°2 * 0.2),n = 1..infinity); (93) 

the computer is unable to obtain the result in closed form and merely prints the 
series itself, in a form similar to the right-hand side of (92). Thus, we rerun the 
command (93) with “infinity” changed to a finite number such as 20. The result, 
86.13830281. does not change if we increase the upper summation limit from 20 to 
30, say. Thus, it is reasonable to assume that the answer u(1,0.2) = 86.13830281 
is correct to that many significant figures. Of course, in a practical sense it would 
be foolish to insist on 10 significant figure accuracy in a problem like this if a? = 
0.0034 and the other data are known only to two or three significant figures. 

If we run the sum command from n = 1 ton = 20, say, and the result is 
merely a printout of the 20 terms rather than their numerical sum, we can use the 
evalf(") command to evaluate their sum. 

Separation of Variables 973
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EXERCISES 18.3 
  

1. Verify by direct substitution that (14) does indeed satisfy 

the diffusion equation (1a), 

2. (On the sign of separation constant) Writing the separation 

constant as —s* in (6), rather than as «”, worked out well, and 

we also give arguments in Comment 3 as to why the separation 

constant should be negative. In this exercise we explore that 

point further. 

(a) Show that if we use «” in (6), instead of —«?, then we 

eventually arrive at the same solution as before, given by 

(22), although it will be a bit more challenging because com- 

plex quantities will arise. HINT: Recall the identity sinzz = 

isinh a (or, sinhig = isin). You may use the fact that the 

only roots of the equation sin z = 0, in the complex plane, are 

the points z = nz on the real axis. 

(b) Show that if we use —A? in (6), as we did, then the rele- 

vant Sturm—Liouville problem is given by (53). Show that it 

follows from Theorem 17.7.2 that «” must be nonnegative. 

3. In Comment 6 at the end of Example | we note that although 

we began by seeking u(x, ¢) in product form, the final solution 
(22) is not itself of that form. Give conditions on wu 1, tw, and 

f(a) in (1) such that the final solution will be of product form 
(so that its graph does not change its shape, with time, though 

its magnitude may change with time). 

4. (Separation) Seeking a solution u(a,t) = X(2)T(t) for 
the given PDE, carry out steps analogous to equations (3)-(6), 

and derive ODE’s analogous to (7a,b). Take the separation 

constant to be —«", as we do in (6). Obtain general solutions 

of those ODE’s (distinguishing any special « values, as neces- 

sary) and use superposition to obtain a solution analogous to 

the solution (13) of (La). [f the PDE cannot be separated, state 

that. 

(Q) Ure = Uy + 3u 
(b) tay + 2u, = ue HINT: In this case you should find 

that the value of « that needs to be distinguished [as we distin- 

guished the case x = 0 in (9) and (10)] is « = 1, notwt = 0. 

(C) Une + 2Uee = Ue 

(d) Ure 2Uat = Ute 

5. Can we use superposition to conclude from (9) and (10) that 

X = Acosxe + Bsinge + D+ Ex, 

T= Fe Cle g, 

and 

u(z,t) = (Acosax + Bsinka + D+ Exr)(Fe Ko * Lay? 

Explain. 

6. (Continuation of Examples | and 2) In each case solve (1), 

with the boundary conditions (1b) changed as indicated, and 

for the specified f(a). Use a half- or quarter-range cosine or 

sine expansion, as appropriate. Evaluate the expansion coef- 

ficients explicitly, rather than leaving them in integral form. 

Also, identify the steady-state solution u,(2). 

(a) u(O,t) = 20, u,(a,t) = 3, (ie. L =m), f(z) = 

(b) u(O,t) = 10, w,(2,t) = —5, f(r) = 10 
(c) u(0,¢) = 0, we (2,¢) = 0, f(a) = 50sin (rr/2) 
(d) u(0, t) ; = 0, u,(2,t) = 0, 
f(z) = 5si naa) 12 sin it wa /4) 
(e) u(O,f) = 25, ws(4,t) = 0, f(x) = 25 

(f) u(0,t) = OS, u,(2,t) = 0, f(z) = 0 ford <a <1, 
f(c) =25forl<a2<2 5 

(g) ue (0,t) = uz(7,t) = 0, f(z) = 300 

(h) uz(0,t) = uz(3a,t) = 0, f(z) = 0 forO < a < 2x, 

f(a) = 60 for 27 <a < sr 
(i) uz(0,t) = u.(10, t) = ie) = 
(j) ue(0,t) = uz (5,t) = s f(a) = 
(k) u(0,t) = 0, u(5, t)= 
f(x) = sin rr — 37sin wre /5) + 6sin (Ona) 
(1) u(0,t) = 0, u(10,t) = 100, f(x) = 
(m) uz(0,¢) = 2, u(6,t) = 12, f(a) = 0 

(n) us(0,t) = 0, u(6,¢) = 0, f(z) = sing 

+52 

_ 7. Use (45) and (47) to compute u(0,t), and plot it versus ft. 

At the least, take ¢ = 1,000, 2,000, 5,000, 10,000, 15,000, 

20,000 and 30,000. Recall that a* = 0.0034 and L = 10. 

8. We stated in Comment 8 that it can be seen by inspection 

that A, = 40 and that all the other A,,’s are zero. Alterna- 

tively, obtain that same resulting by working out the integral 

K 2 [ (40 . a) . Te 1 
n= > 40 sin —~ } sin —— dz. 

0 L L 
  

L, 

9. The temperature distribution w(x, ¢) ina 2-m long brass rod 

is governed by the problem 

O° Une = Udy (O<x2<2, 0<t<oo) 

u(O,t) = u(2,t) = 90, (t > 0) 

50a, (0 
u(z,0) = 

100-52, (l<a< 2) 

<a<l)



  

a? = 2.9 x 107° m*/sec. 

(a) Determine the solution for u(a, t). 
(b) Compute the temperature at the midpoint of the rod at the 

end of | hour. 
(c) Compute the time it will take for the temperature at that 

point to diminish to 5° C. 
(d) Compute the time it will take for the temperature at that 

point to diminish to 1°C. 

where 

10. (Steady-state solution) Uf the solution u(a,t) tends to a 
steady-state solution u,(a°) as t + oo, then we can determine 

us(x) from u(x,t) as 

lim u(a,t). (10.1) 
us() ~ f-+ 00 

However, if we are interested only in u,(x) then it is wasteful 

to first solve for u(x,t). To solve for ws(x) directly, merely 
set u,; == 0 in the PDE, which step reduces the PDE to an ODE 

on us(z). Solve that ODE subject to the boundary conditions 

(which, we assume here, do not vary with t). In Example I, 

for instance, us(2) is governed by the problem 

a*ull = 0, (O<a< L) 

ug(O0) = uy, ts (L) = we, 

which boundary-value problem is readily solved, its solution 

being u,(z) = uw, + (ug — u,)e/ZL, as obtained in Example | 
by letting t + oo in u(r, f). Use this method to find u,(z) in 

each case: uy, U2,Q1, Qe, V, A are constants, and the initial 

condition is u(z,0) = f(z). 

u(O,f) = ty, we(L,t) = 

(b) OP try = Ue, Ue (Ot) = Qi, u(L,t) =u 
(c) O° tee = te, UelO,f) = Qy, Ue(L,t) = Qe HINT: 
Show that u,(z) does not exist if Qe ¢ Q1, and explain 

2 
(@) O* Use = Us, 

wo
 

iw
 

why that result makes sense in physical terms. Show that tf 

Qo = Q, = Q, however, then u,(z) does exist but contains 

an undetermined constant, say C. To determine C, integrate 

the PDE on x, from 0 to L: 

aL Ls 

a | Une UU = | uy AD, (10.2) 
0 Jo 

and show that 

L 
d 
— u(x, t)da = 0, (10.3) 
dt 

so that we have the conservation principle 

L 
/ u(a,t) dx = constant. (10.4) 

0 
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Use (10.4) to solve for C, 

Us(2). 

(d) a? tex 

(€) 0° tUex 

(1) a" tere = Ue + Hu, 

(g) 07 Une = Up + Hu, 

thus completing the solution for 

=e + Hu, u(0,t) = ui, u(L,t) = ug 

= Upt Hu, ue (0,t) = Qi, u(L,t) = ug 

u(0,t) = ui, Ue(L,t) = Qe 

ux (0,0) = Q1, Ua(L,t) = Qe 

(b) 7 ttre — Vy = us, u(0,0) = ur, u(L,t) = ue 

ue(0,t) = Qi, u(L,t) = ug 

(j) 07 Ure —VUe = us, u(O,t)+5u,(0,¢) = 3, u(L,t) = 10 

(k) 07 rg — Vue = uy, Uz (0,t) = 0, 

u(L,t) + 2u,(L,t) = —5 

I. (Existence of steady state) For the problem 

‘ 2 
(i) OO Ug on Vue = Ut, 

Ore = Ur + F(z), (O<a<L,0<t<oco) 

Ua: (0, £) = Qi, Ua (L t) = Qo, u(x, 0) = f(z), 

show that a steady state does not exist unless a certain con- 

dition is satisfied by Q1,Qo, and F(a). Assuming that that 

condition is satisfied, solve for us(x). 

12. (Sready-state extrusion) In Section 18.2 we derive equa- 

tion (20) governing the temperature distribution u(a,¢) in a 
heated rod being drawn through an extrusion die, as sketched 

there in Fig. 2. Actually, (20) holds both inside the furnace 

(~ < 0) and outside the furnace (2 > Q), but with different h’s 

and tix,’s. Leth = hy and hg, and let Uso = uy and Ua inside 

and outside the furnace, respectively. Assuming steady-state 

operation so that u = u,(2), propose a suitable set of bound- 

ary conditions and solve for u,(Z), the rod temperature at the 

die. HINT: It will be a helpful approximation to consider the 

rod to extend from —oo to +00. Over —oo < x < 0 use hy 

and w, in the ODE, and over 0 < © < 00 use hq and ug. Solve 

over x < Oandz > O separately, and apply suitable bound- 

ary conditions at z = —oo and x = +00, as well as suitable 

“matching conditions” at 2 = 0. 

13. (Diffusion of one gas into another) Consider a cylindrical 

compressed-gas container of length L, divided in half by a baf- 

fle (see sketch). To the left of the baffle is a gas of species A, 

  

      

and to the right of it is a different gas of species B. Suppose 

they are at the same pressure, so that when the baffle is re- 

moved at time t = 0 the two gases proceed to mix by diffusion
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alone. Considering species A, say, its concentration ¢4(«, ¢) 

moles/cm® is governed by the problem 

    

Ore Ocy 
or = ae (0<e<L,0<t<oo) (13.1) 

Oc Oc 
5 (Ot) = Fo(Lst) = 0, (0<t<oo) (13.2) 

fan _ Co O<a< L/2 
calin0) = { 0, L<e<L (13.3) 

where D is the diffusion coefficient and D and cp are con- 

stants. 

(a) Solve for c4(z,t). From c4(a,#) determine the steady- 

state solution 

Cas(x) = lim ca(z,t). (13.4) 
t-+00 

Draw a neat sketch of what you expect the graph of c4(2,t) 

versus «x to look like, att = 0, ¢ = oo and at a couple of 

intermediate times. Label any key values and features of those 

graphs. 
(b) Integrating equation (13.1) with respect to z, from 0 to L, 

show that 

L 
| ca(av,t) dx = constant, (13.5) 
JO 

which says that the total amount of A is conserved. This re- 

sult makes sense physically since the container is sealed [note 

(13.2)] and the gas is being neither created nor destroyed. (The 

point here is that it may be possible to learn something about 

the solution, from the PDE and boundary and initial condi- 

tions, without actually obtaining the full solution.) 

(c) Solve for c.4s(x) directly, i.e., by solving 

Delg(a) = 0; clyg(0) = c'y,(L) = 0 
and using equation (13.5). Your result should, of course, be 

the same as in part (a). 

14. (Conduction in metal ring) Consider the conduction of 

heat in a circular metal ring, the surface of which is insulated. 

Actually, whether the shape is a circle or an ellipse or what- 

ever 1s irrelevant insofar as the heat conduction is concerned, 

If we measure x along the ring, from some starting point, and 

denote the length of the ring as L, then the temperature u(x, t) 

is defined on ~co < & < oo and is an L-periodic function of 

x. 

(a) Solve the heat equation @?u,z. = up (-~ <2 < 00, O< 

t < 00) subject to the initial condition u(w,0) = f(a), where 

f(a) is E-periodic on -90 < 2 < oo. Letting ¢ — oo in 
your solution, show that the steady-state solution is a constant 

temperature that is the average value of f. HINT: Since w is 

L-periodic in az, it must be expressible in the Fourier series 

form 

    
a QNTEL Q2NWTL ula, t) = ag(t) + a leat) COS — + 6, (4) sin ; 

(14.1) 

where ag,@,,6, vary with time. Putting (14.1) into the 

PDE and matching the coefficients of 1, cos (Q2naa/L), and 
sin (2nma/L) on the left- and right-hand sides, derive simple 

ODE’s governing ao(t), @n(t), bn (t). Solve these ODE’s and 

then apply the initial condition u(z,0) = f(a). Give integral 

formulas for the evaluation of any constants. (Exercise 29 

re-examines this problem using the Sturm—Liouville theory.) 

(b) Integrating Use = Ut from QO to L, derive the conserva- 

tion principle 

LL 
/ u(x,t) dx = constant. (14.2) 0 ; 

(c) Derive the steady-state solution us(a) again, this time 

by solving 

Ss 
aul (x) = 0, (O<2 

us(0) = us(L), uh (0) = ul (L), 

and using (14.3). Your result should be the same as found in 

part (a). 

15. (Presence of a constant source term) Consider the problem 

OP tee = Ue — &, (O<a2< bh, 0<t< oo) 

u(0,t) = 0, u(£L,t) = 50, (0<t< ow) 

u(x, 0) = f(x), (O<x2< Lb) 

(15.1,2,3) 

where the source term F is assumed to be a constant. Solve for 

u(x,t). Expansion coefficients may be left in integral form, 

HINT: This is the first problem in which the PDE is nonhomo- 

geneous, namely, Llu] = a*Ue, — ue = —F. Observe that 

if we seek u(av,¢) = X(x)T(E) as in the text examples, and 

attempt to carry out the separation process, we obtain 

X"v LT F 
— == r ~ : . (15.4) 

mat at Tt 

Because of the last term in (15.4), which contains both x



  

and ¢ dependence, we are unable to complete the separation 

process successfully. That is, we are unable to get all of the 

x dependence on one side of the equation and all of the ¢ de- 

pendence on the other side. Thus, we suggest seeking wu tn the 

form 

u(a,t) = us(x) + X(2)T(t) (15.5) 

instead, where u,(x) is the steady-state solution. In steady 

state, u, > Oand u(a,t) > us(2), so (15.1) and (15.2) give 

oul (a) = —F; us(0) = 0, us(L) = 50. (15.6) 

Putting (15.5) into (15.1), show that the wu, term cancels the 

troublesome F’ term, so that this time the separation can be 

successfully completed to yield the familiar result 

xX" 1 7’ 

xX ~ a? T 

Then solve (15.6) for w, and (15.7) for X and 7, and im- 

pose the conditions (15.2) and (15.3) on u(z,t) = us(a) + 
X(x)T(t). Regarding the form of (15.5), observe that, in 
physical terms, us is the steady-state solution and AT is 

a transient quantity needed to match the initial condition 

u(z,0) = f(a) with the steady-state solution us(a). In math- 
ematical terms, u, is a particular solution (Le., 

the full equation OO Une 

the associated homogeneous equation O° thay ~ Up = 0. 

(15.7) 
2 

= constant = —A”. 

16. Repeat Exercise 15 with (15.2) and 

lows. 

(15.3) changed as fol- 

(a) u(0,t) = u( Lt) = u(x,0) = 

(b) u,(0,¢) = = u(L, t)= u(v,0) = 

(c) ul, th=u,(L, a u(a,0) = 0 
(d) u(0,t) = 0,u,(L,t) = —20, u(a,0) = 0 

17. (Presence a nonconstant source term) In Exercise 15 we 

include a source term F that is a constant, although the so- 

lution method outlined therein would have worked even if F 

were a nonconstant function of z. In this exercise we consider 

the problem 

Oe, = uy — F(x, t), (O<a<L,0<t <0) 

u(O,t) = u(L,t) = 0, (O< <t< oo) 

u(a, 0} = 0, (QO<r<L) 

(17.4) 

where the source term £ is allowed to be a function of @ and ¢. 

To solve, we can use essentially the same eigenvector expan- 

sion method that we use in Section | 1.3.2 to solve the nonho- 

a solution of 

— up = ~F) and XT is a solution of 
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mogeneous matrix problem Ax=Ax + ¢. [In this case the ma- 

trix operator A is analogous to the partial differential operator 

a? 0" /dx" — 8/dt, ¢ is analogous to —F (x,t), and A = 0.] 
There, we expand x and ¢ in terms of the basis provided by 

the eigenvectors of A. In the present case that step amounts to 

expanding u(x,t) and F(2,t) in terms of the sin #7" eigen- 
functions provided by the relevant Sturm-Liouville problem. 

Thus, the problem that we pose is as follows. 

(a) Solve for u(x, t) by seeking 

mo 

        

  

u(x,t) = S| Gn (t) i are (17.2) 

n=l 

and expanding 

F(z,t)= 3 F(t) sin os (17.3) 

n=l L 

where the 

Q ph nT 
f(t) = Z [ F(a, t) sin - dx (17.4) 

coefficients are considered as known (i.e., 

tions of t. Thus, show that 

=e é 

= | [ A ) n 
— 0 

(b) Work out the solution (17.5) for the case where F(x,t) = 

et, 
(c) Modify the solution procedure described in part (a) if the 

left end condition is changed from u(0,t) = 0 to u,(0,¢t) = 0. 

computable) func- 

Te fo + 2 _ . 7 

(rycltte/EY C9 de] sin an u(x,t) 

(17.5) 

18. (Superposition) Show that the solution to the problem 

(O<a< ZL, pis el 

0) = f(x) 

(18.1) 

One = Ur + g(a, 0), 

u(O,t) = p(t), u(L,th=¢(t), ula, 

are solutions of the four sroblens 

On Uee = te + g(a, t), 

uy (O,f) = wy (L.t) = wi (ae, 0) = 0, 

» 

U2 = Uae, 

uo(0,t) = p(t), 

2 
ONUB8re = USE:
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u3 (0, t) = 0, u3(L, 6) =r g(t), ug(2, 0) = 0, 

2 
ON Udan = Udty 

ug(0,t) = ua(L,t)=0, ua(e,0) = f(x), 

each on the domainO0 <a <b, O<t< om. 

19. (Nonhomogeneous Neumann conditions) Solve the con- 

duction problem 

OP Une = Ut, (O<a<bL, O0<t< oo) 

ux(O,t)= -1, ue(L,t)=0, u(e,0) = 0 

for u(x,t). HINT: You should find that the standard 
separation-of-variables procedure has difficulty coping with 

the boundary conditions if u,(0,t) 4 wa(L,¢), as is true in 

this case. To proceed successfully, we suggest that you change 

from u(x,t) to v(a,t} according to 

(2 ~ L)? 
u(a,t) = aE + ofa, t). 

Then, show that v can be split by superposition into u = 

v1, + ve, where 

Uline = Uity (Q<a<bL, 0<t<o) 

z- LL) 
vir (0,0) = Uy2(L, t) = 0, v(x, 0) = ae 

and 

9 a? 
Vee = V2 ~ (O<xr<Ll, 0<t<oo) 

Von(O,t) = vae(L,t) = ve(v,0) = 0. 

The solution for vg can be found easily as a function of ¢ alone. 

Solve for v9. (But you need not solve for v1.) 

20. (Variable end conditions) Thus far, our Dirichlet-type 

boundary conditions have been of constant type, e.g., u(0,t) = 

50. Here, we consider nonconstant conditions. Consider the 

problem 

tbe = Ut, 

u(0, t) = p(t), 

(O<a<L, 0<t< co) 

u(L,t) = q(t), ulx,0) = f(z), 

(20.1) 

where p(t), q(t), and f(x) are prescribed. Changing depen- 

dent variables from u(a,¢) to u(a,t) according to 

(20.2) u(e,t) = u(x,t) + (1 _ 7) p(t) + = alt), 

show that the problem governing v is precisely of the type 

treated in Exercise 17. NOTE: Observe how an “input” can 

be moved from the boundary conditions to the PDE. In the 

present case, the PDE on wu was homogeneous and the bound- 

ary conditions were nonhomogeneous; following the change 

of variables (20.2), you should find that the PDE on v is non- 

homogeneous and the boundary conditions are homogeneous. 

21, (Newton cooling) Consider the conduction of heat in a 

rod, the lateral surface of which is not insulated. If heat is con- 

vected from the rod to the environment, the PDE governing 

the temperature u(r, t) is 

Ung = Ue + Alu — tc), (21.1) 

where the constants i and uo, are the convective heat trans- 

fer coefficient and the ambient temperature, respectively. Our 

interest in (21.1) lies in the Newton cooling term h(u — tse). 

Although it is not essential, one normally begins by elimi- 

nating the us. term by setting v(a,t) = u(a,t) — Uso and 
considering, instead, O7 Van = Ue + hv. 

(a) Solve the Newton cooling problem 

a Vee = Ue + hv, (0<2<L, 0<t< oo) 

v(0,t) = v(L,t) = 50 v(w,0) = s(x) 
by separation of variables, leaving expansion coefficients in 

integral form. HINT: Seeking u(x,t) = us(z) + X(z)T(t), 
where v.(a) is the steady-state temperature distribution, show 

that 

(21.2) 

Xx" 1 0’ +hT 5 
a = =) <a = constant = —A™. (21.3) 

(b) Solve (21.2) by omitting the v,(a) term and seeking 

u(a,t) = X(x)T(t). That is, show that the inclusion of 

the v,(a) term in the solution form is not essential. 

22. Show that the change of variables 

w(a,t) = e"[u(a,t) — us] 

reduces (21.1), above, to the simpler and more familiar form 

2 
Oo Wre = Wt. 

23. (Flow of electricity in a cable) The voltage v(x, t) (volts) 

and the current J(x,t) (amperes) in a long underground insu- 

lated cable are governed by the PDE’s 

Ura = LC vet + (rC + Lg)v + rgu, 

Lex LC let + (rC + Lali + rgf, qu



  

where £,C \r,g are positive constants: £ is the induc- 

tance (henries/kilometer), C is the capacitance to ground 

(farads/kilometer), 7 is the resistance (ohms/kilometer), and 

g is the leakance to ground (mhos/kilometer), These PDE’s 

are called the telephone equations and are seen to be of wave 

(hyperbolic) type. Often, as in telegraph transmission, D and 

g can be neglected, in which case (23.1) and (23.2) reduce to 

the telegraph equations 

Ura = rCur, 

lex = reli, 

which are of diffusion type. [n the present example we suppose 

only that L = 0. Considering only the voltage v, we then have 

Ure = TCU, + rgu. (23.3) 

(Comparing (23.3) with the PDE in Exercise 21(a), we see 

that the two phenomena are analogous, with the lateral heat 

loss to the environment corresponding to the voltage loss due 

to leakage to the ground.] Suppose that the line is of length L, 

the voltage at z = 0 is maintained (for a “long time’) at 12 

volts, the voltage at x = L is maintained (for a “long time’) at 

6 volts, and then, beginning at ¢ = 0, the left end is grounded. 

Thus, 

v(0,t) = 0, 

u(L,t) = 6. 

(0 <t < oo) 
(23.4,5) 

(0<t < oo) 

The initial condition v(,0) is not given but can be deduced 

from (23.3) together with the information that the ends have 

been maintained at [2 and 6 volts, respectively, for a long 

time. 

(a) Determine v(x, 0). 
(b) Determine the steady-state solution v(x). 

(c) Solve for v(a,t) by separation of variables. Fourier ex- 

pansion coefficients may be left in integral form. HINT: As 

in Exercise 21, it will be most convenient to seek u(z,t) = 
us(v7) + X(x) T(t). 

24. (Conduction in a sphere) Consider the radial conduction 

of heat within a solid sphere. If the temperature u is a function 

only of the spherical polar coordinate p and the time ¢, then 

a? Vu = uw, becomes 

2 27, = a Upp + ~ Up | = Ut. 
p 

(a) Setting u(p,t) = v(p,t)/p, show that v needs to sat- 
isfy the more familiar PDE 

(24.1) 
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(24.2) 2 Ung = UE. 

(b) Use the idea contained in part (a) to solve the problem 

, 2 
a? | Upp + pe = Ut, (O<p<a,0<t<oo) 

u(a,t) = 0, 

u(p,0) = fp), 

(0 <t <0) 

(0<p<a) 

where u(0,¢) is bounded. Expansion coefficients may be left 

in integral form. (Exercise 28 reexamines this problem, using 

the Sturm—Liouville theory.) 

EXERCISES FOR THE OPTIONAL SECTIONS 18.3.2, 

18.3.3 
  

25. (Uniqueness) (a) Consider the problem 

Ure = Ut + f(a, t), 

u(0,t) = p(t), u(L,t) = a(t), 

(O<a2<L,0<t<T) 

u(z,0) = r(x), 

(25.1,2) 
where T is arbitrarily large. To establish the uniqueness of the 

solution, suppose that w4(2,t) and w2(z, t) are two solutions, 
and define 

w(z,t) = u,(2,t) — ue(2, ft). (25.3) 

Show that w satisfies the “homogenized” problem 

(0<a<L,0<t<T) 

w(L,t)=0, w(r,0) =0. 

2 
Wr, = Wt, 

w(0,t) = 0, 

Proceeding formally, show that 

a 
di |, 

Integrating the last integral by parts and then integrating both 

sides of the equation on t from 0 to ¢, show that 

Lb L ph 
wedr-2 | ww, dx = 2? [ WW dx. (25,4) 

JO 0 

ob bopb 
| w"(a,t) dx = -« | | wi(a,r)dedr. (25.5) 
Jo a Jo 

Explain why it follows from (25.5) that w(a,t) = 0 through- 

outO < « < L,0 < t < YT. Thus, it must be true that 

uy(x,t) = ue(z,t) for any solutions u; and we, so that the 

solution to (25.1) and (25.2) must be unique. 

(b) Repeat part (a), but change u(L,t) = g(t) in equation 
(25.2) to uz(L,t) = q(t).
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(c) Establish the uniqueness of the solution to the problem 

OP Ueg = Ue + f(a, t), (O<a< bh, 0<t<T) 

u(0,t) = p(t), u(L,t) + Bu,(L,t) = q(t), 

u(v,0) = r(x), 

where T' is arbitrarily large and @ > 0, following essentially 

the same lines in part (a). 

26. With Ad, defined by (50), use the ratio test to show that 

ae MM, converges, as we claimed. 

27. (a)—(n) The problems in Exercise 6 are to be solved us- 

ing half- or quarter-range expansions. Solve the correspond- 

ing problem in Exercise 6 again, this time using the Sturm— 

Liouville theory. 

28. (Conduction in a sphere) In Exercise 24(b) we suggest us- 

ing the change of variables u(p,t) = u(p,t)/p to reduce the 
PDE to the form C7 Upp == vu, that is studied in this section. 

Here we ask you to solve the problem in Exercise 24(b) di- 

rectly by seeking u(p,¢) = R(p)T(t) and using separation of 

variables. HINT: The ODE governing R{p) can be solved in 

terms of Bessel functions using the formulas given in Section 

4.6.6, and these results can be simplified using the formulas 

, 2 2 
Ji jo(z) = \/— sing, J_y/2(@) = \/ — cose. 

wx Tx 

You will need to distinguish the cases & 4 O and x = 0. 

29, (Conduction in a metal ring) Here we reconsider the prob- 

lem of Exercise 14(a). There we consider the x domain to be 

—90 < a < oo, so u(x,t} and f(a} were L-periodic in z 
and could be expanded in Fourier series. Alternatively, think 

of the domain as finite: 0 < « < L. That step creates the 

boundaries z = 0 and 2 = L, so we need boundary conditions 

there. Although we don’t know u or u, there. we do know 

that, physically, the ends z = 0 and « = L are abutting, so 

both the temperature u and the heat flux (proportional to u,) 

must be continuous there. Thus, we can pose the problem (on 

the finite intervalO < x < L)as 

2 
OM Ure = Ut, 

u(0,t) = u(ZL, t), 

(O<a<L,0<t< oo) 

uz(O,t) = ue(L,t), ulz,0) = f(x). 

Solve that problem by separation of variables, leaving expan- 

sion coefficients in integral form. HINT: The Sturm—Liouville 

problem that arises on X (a) will have periodic boundary con- 

ditions. 

30. (a) Solve the problem 

lbag ~ 2Ue = Ut, (0 <a<l,0<t< oo} 

u(O, 6) = u(L,t) = 50, u(x,0) = 0 

(30.1) 

by separation of variables. HINT: Seeking u(#,t) = 

X(x)T(t), obtain 

X= 2X7 + KX = 0, 1 4i2T 0 (30.2,3) 

With X(«) = e**, obtain.\ = 1+ V1 — K*, so 

Vier) << pt 1 flow yer in) X(u) =e (c 1€ + Coe »  30,4,5) 

T(t) = Crew = 

However, expecting oscillatory functions (for the eventual 

expansion that will be needed), anticipate that the &’s will be 

greater than unity and write \ = 1 4 iv«? — | instead, so 

X(xv) =e" (Cs cos Vx? — Le + Cysin V Ke — Le). 

(30.6) 

Distinguish the case & = 1 because if & = 1 then (30.6) re- 

duces to X(x) = Cye", which falls short of being a general 

solution of (30.2). We don’t need to also distinguish the case 

k = 0 because if & = 0 then (30.4) and (30.5) do give the gen- 

eral solutions of (30.2) and (30.3), respectively. However, the 

case & = Ois of special importance because it gives the steady- 

state part of the solution [since it reduces T'(£) to a constant]. 

Thus, use the “three-tier” solutions 

e* (Acoswr+Bsinwr), &#0,1 
X(z)= ¢ e*(C + Da), K= 1 

E+ Fe**, R= 0 

Ger! £01 

T(it)=4 He’, w= 
f, K= 0 

where w = VK? — 1, for brevity, and form w(x, t) as the sum 

of their respective products, 

(b) Same as part (a), but with u(0,t) = 0 and u(L,t) = 50. 

Leave expansion coefficients in integral form. 

31. (a) Show that 

i aJo(a) dx = 2nJi (en) (31.1) 
JO 

where =, is any root of Jo(z) = 0. HINT: Integrate the 

t
e
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Bessel equation (adj)! + eJy = 0 from 0 to z, and use the (b) Then, use (31.1) to verify the last step in (83). 

relation Jj(2) = ~J, (x) [from Exercise 4, Section 4.6]. 

  

18.4 Fourier and Laplace Transforms (Optional) 

In Section [8.3 the 2 domain is always finite, namely, 0 < «2 < FL. Semi-infinite 

(0 < 2% < oo) and infinite (~co < x < oo) domains are also important, and it is 

these cases that we now address. We organize our discussion around two examples. 

EXAMPLE 1. Heat Conduction in an Infinite Rod. Let us begin with the problem 

Up TE Uy (-co< a < co, 0O<t < ow) (la) 

u(x,0) = f(x), (—0o < £ < 00) (1b) 

summarized in Fig. {. 

If we regard the infinite rod as the limiting case of a finite rod. on ~L <a < L, 

as L — oo, and recall that boundary conditions are needed for the finite rod. we might 

well anticipate that some form of boundary conditions will be needed for the infinite rod 

atx = coo. But since a suitable form for those boundary conditions may not yet be 

apparent. let us defer that issue for the moment, in the hope that the solution process itself 

may provide a clue. 

In selecting a solution technique, remember that if we use the method of separation 

of variables then we need. in the final step, to expand the f(r) in (1b) in a Fourier-type 

series. [If the w domain is finite, then that series will be a half- or quarter-range cosine 

or sine series, or a generalized Fourier series containing the orthogonal eigenfunctions of 

a relevant Sturm—Liouville problem. If the 2 domain is infinite. then we can still use 

separation of variables, provided that f(z) is periodic with finite period, in which case we 

can expand f(x) ina classical Fourier series of cosines and sines. 

However, in this example we have an infinite « domain and are interested in f’s that 

are not periodic, such as e7'*! (Fig. 2a) and the rectangular pulse shown in Fig. 2b. Such 

f?s can be represented not by Fourier series but by Fourier integrals, which fact suggests 

seeking a solution for u in Fourier integral form or, equivalently and more conveniently, 

using a Fourier transform. 

Thus, let us Fourier transform (ta) with respect to 2: 

Flo tae} = F fu}, 2a) 

>. mS uy PE Lap Le Le eT he ply 2 an FL ttae } I. me da, (2b) 

oo. uae d f° jon 
a*(iw)"t = — ula, te" dx (2c) 

, dt J sg 

= he (2d) 
dt’ 

2 
a Uyy =U; 

  

/ 

u(x,0)= f(x) 

Figure 1. Infinite rod problem. 

(a) 

  

  

(b) 

  

        

Figure 2. Nonperiodic f’s.
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so dé 

a +a?w ti = 0, (3) dt 

with solution 7 

i= Aewo?'. (4) 

In passing from (2a) to (2b) we used the linearity of F’{ } on the left, and the definition of 
the Fourier transform on the right. Next, we used 

F {ten} = (iw) F{u} = (iw) ) 
on the left, and the Leibniz differentiation formula 

d fo hom oO oa 
a _. u(az, tye"? da = [. a eee dy (6) 

on the right. For (5) to hold, we need 

u->O and u, 0 as ¢ > too, (7) 

so let us adopt (7) as our boundary conditions. For the output u (and uz) to tend to zero 

as x —> -boo, we expect that we will need to restrict the input f to die out sufficiently 

fast, asc — +too, as well. However, as suggested in Section 18.3 let us proceed formally 

to a solution without getting bogged down with such technical points. If we like, we can 

then rigorously verify that that solution does satisfy the PDE and any boundary and initial 

conditions (if indeed it does). 

Notice carefully that by Fourier transforming (1a) with respect to z we convert the 

partial differential equation (la) on u(a,t) to the ordinary differential equation (3) on 

i(w,t), in which w appears as a parameter — that is, as a constant. 

To evaluate the integration constant A in (4) we impose the initial condition (1b), but 

first we must take the Fourier transform of (1b): ti(w,0) = f(w). Thus, 

a} = fw) =(deow? 4), oS A, (8) 

so A = f(w),* and (4) becomes 

tlw, t) = flwyevr (9) 

Finally, using entry 6 of Appendix D and the Fourier convolution property (entry 21), it 

follows from (9) that 
1 2 2 

u(x,t) = f(r) * ——== ce * /(hort) (10) (a0) = [(0) * 57s 

or 
L n° op 2 2 

u(x,t) = ——~== f(Ejen Br (ALO ae, (11) 
2aV Ft J Hoo 

  

“You may be concerned that A was to be a constant, yet f(w) is a function of w, The point to 

keep in mind is that (3) is a differential equation in t, and w is regarded there as a constant.
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COMMENT 1. As a general principle it is important to check one’s result for any special 

cases for which the solution is known. The simplest case that comes to mind is the case 

where 

f(z) = constant = F, (12) 

for in that case it is obvious that the solution to (1) is simply u(a,t) = £. In fact, if we 

set f(€) = Fin (11) and evaluate the integral we do obtain u(z,t) = F (Exercise 1). Itis 
striking that (11) gives the correct result for the case where f(a) = F because in that case 

f (w) does not even exist, and the solution u(a,t) = F violates the assumption that u —> 0 
as uv -> -koo.* 

COMMENT 2. As a more interesting special case, let 

Fy x>0 
(a) = = FH(z), 13 f(z) 0, 20 (x) (13) 

where F is a constant and H(z) is the Heaviside function. In this case, putting (13) into 

(11) gives (Exercise 2) 

F x 
u(z,t) = ~ j}1+erf | ——= ||, 14 m= 5 [pve (Sa) ” 

erf(z) = = [ e® dé (15) 

is a tabulated function known as the error function. That is, the integral in (15) cannot 

be evaluated in terms of the so-called elementary functions, so it is given its own name, 

the “error function,” and its properties, tabulated values, and computational formulas for it 

‘ can be found in the literature.? The factor 2/\/7 is included to “normalize” erf (x) so that 

erf (oo) = 1 because 

where   

      

(16) 

  

  
  

“The greater-than-expected validity of (11) can be traced to the inversion of the order of integra- 

tion that is inherent in the Fourier convolution step. 

'The trend in computing has been away from tabulations and toward approximate expressions, 

not only for erf (a) but for the various special functions: Bessel functions, the gamma function, and 

so on. For instance, the formula 

“Ee fen\ wo 2 3) -x? erf (a) + 1 — (aip+ agp" +agp")e™* , 

where 

1 

1+ 0.470474" 

developed by C. Hastings, Jr., is uniformly accurate, over 0 < x < 00, to +0.000025. The latter for- 

mula is an example of a common form of approximation known as rational function approximation 

because the function exp (z*)[1 — erf ()] is being approximated by a rational function of x, namely, 

the ratio of two polynomials (as can be seen by combining the terms in ayp + agp* -+ asp® over a 

common denominator). For approximations such as this, see M. Abramowitz and I. Stegun (eds.), 

National Bureau of Standards Applied Math Series, 1964, or Y. L. Luke, Mathematical Functions 

and Their Approximation (New York: Academic Press, 1975). 

p= ay = 0.3480242, ag = —0.0958798, ag = 0.7478556,
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erf(x) | 

  

  

Figure 3. The error function. 

AK(&-—x31) 

     increasing ¢ 
£130 

  

Figure 5. The delta-sequence 

behavior of A as t -+ 0, and 

as ¢ increases. 
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derivation of which result is outlined in Exercise 9 of Section 4.5. The graph of erf (z) 

is shown in Fig. 3. for 2 > 0; for < 0 we rely on the fact that the error function is 

an odd function (Exercise 4), so that erf(—x) = ~erf (x). Besides the integral from 0 to 

x, in (15), we also encounter the integral from x to oo so frequently that we also define a 

complementary error function, 

oO 

erfe (av) = e8 dé= erf (oo) — erf (x) 
2 

Vr © 

1 — erf (2). (17) 

The solution (14) is plotted in Fig. 4 at representative times. Observe carefully how 

the initially discontinuous temperature distribution smooths out as ¢ increases. This result 

illustrates the fact that, in physical terms, diffusion is a smoothing process. 

  

  
  

u(x,t) 

t increasing 1=0 incre ising 

F ‘ - 

\ 
| 

F/2 Y 
{=o 

0 x 

Figure 4. The solution (14). 

COMMENT 3. It is instructive to write (11) in the form 

u(,t) = / MOK(E — ast) dé, (18a) 

en (e~6)?/ (dae) 
207 Tt 

is called the kernel. That is, it comprises everything in the integrand other than the input 

f(€). The kernel A’(€ ~ x;t) happens to be a normal (or Gaussian) probability distri- 

bution centered at € = x, which result correctly suggests that diffusion is an essentially 

statistical phenomenon. The area between the graph of A and the € axis is unity for all ¢ 

(Exercise 3), and that graph becomes more and more focused as t -+ 0 (Fig. 5). If you 

studied Section 5.6 you will see that A’ appears to approach a delta function at x, d(€ — x), 

as t —> 0 because it has unit area for each ¢, and it becomes focused at x as t -> 0. In fact, 

K(€-2;t) = (18b) 

  

*Here, € is the active variable since it is the variable of integration; and ¢ are regarded as fixed in 

(18a). If we write A(€; 2, t) rather than K(€, 2, ¢), we are emphasizing that € is the active variable 

and that x and ¢ are, at least for the moment, fixed. Even so, we have written A(€ — x; 1) instead 

because only the difference € ~ x occurs in (18b). We say that K(€ ~ w;¢) is a difference kernel. 

The present example is similar to Example 8 of Section 17.10, which we urge you fo review when 

you have finished reading this example. 
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that observation is confirmed by the initial condition, which is 

»OO 

him u(x,t) = im, f [(E)K(E ~ at) dé = f(x). (19) 
t+ t—} 

That is, the initial condition (19) is satisfied by virtue of the fact that IC(€ — 2; #) tends toa 

delta function 6(€ — 2) ast > 0. 

COMMENT 4. Since the kernel A’ is evidently important, we would do well to try to 

understand its physical significance. To do so, let the input itself be a delta function at 

some point £q, 

F(a) = d(x — x9). (20) 

In a crude way, this case can be conceptualized as corresponding to the application of a 

welding torch to the rod at vq fora brief instant. Then (18a) gives 

u(z,t) = [ O(E — ag) A (E ~ 2; t) dé 
OO 

= K(ag —2;t) = K(x — xo;t). (21) 

The second equality in (21) follows from the fundamental property 

[86 = oia(e)a¢ = ofa) (22) 
— OO 

of the delta function, and the third equality in (21) follows from the fact that A’ is an even 

function of a» — x [because it contains (ap — x)". The upshot is that the kernel K(x — 

xo; t) is itself a solution of the heat conduction equation (1a), corresponding to an initial 

temperature distribution d(a—~ap). Thus, A(€—«; t), the graph of which ts shown in Fig. 5, 

is the temperature distribution in the rod that results from an initial temperature distribution 

that is a delta function at 2. Once again, we see the smoothing nature of the diffusion 

process, for beginning with the spike-like temperature profile 6(€ — a) the temperature 

distribution u(z,¢) smooths out more and more as t increases (Fig. 5). Finally, we can 

now understand the superposition nature of (18a), for if (a — €;t) is the temperature 

response to an initial temperature that is a delta function (hence having unit area) at x, then 

the response du(z,¢) to the rectangular-pulse initial temperature shown in Fig. 6, having 

area f(€) d€, is K(x — €;t) scaled by f(€) d€, 

du(x,t) = K(w~ GOL) dé] = KE - 2: t)Lf(€) a8). (23) 
Adding such results for all of the rectangular pulses that comprise f gives the integral (18a). 

COMMENT 5. As a final observation about the physics, observe that the solution (18) 

indicates the spreading of information, by diffusion, with an infinite velocity, Por instance, 

in Fig. 4 we see that some of the heat that was initially confined to the interval 0 < 2 < co 

diffuses to the interval -co < x < O over any arbitrarily small time ¢. This spreading can 

occur only if the speed of propagation is infinite. Inasmuch as itis agreed that energy cannot 

propagate faster than the speed of light, this result evidently reveals a flaw in our diffusion 

985 

  

  

Figure 6. Breaking f into 

rectangular pulses.
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fA 

u(O,t) 

= 8. 

u(x,0)=0 : 

Figure 7. Semi-infinite rod 

problem. 

  

equation a7 uy... = Us, one that is discussed in the literature,* and which is inconsequential 

in practical applications of the theory. 

COMMENT 6. We were able to use a Fourier transform on z to solve (1) because the latter 

was a boundary value problem on ~co < @ < oo. Alternatively, we could have used a 

Laplace transform on t because (1) was an initial value problem on 0 < ft < oo. The latter 

approach proves to be less attractive because we obtain a nonhomogeneous ODE on ti(x, 8) 

rather than the homogeneous ODE (3) on @(w, t). (See Exercise 5.) @ 

In Example | we illustrate the use of the Fourier transform for a problem on the 
conduction of heat in an infinite rod (—c0 < & < oo). In Example 2 we illustrate 
the use of the Laplace transform for a semi-infinite rod (0 < x < oo) problem. 

EXAMPLE 2. Heat Conduction in a Semi-Infinite Rod. This time, we consider the 

problem 

OP Ue = Ut, (O<a<0o, 0<t< ov) (24a) 

u(x, 0) = 0, (0 <2 < 00) (24b) 

u(0,t) = g(t), (0 <t < oo) (24c) 

as summarized in Fig. 7. The rod is initially at 0° throughout. we subject the left end 

(x = 0) to a prescribed temperature g(t), and we seek the temperature distribution u(<, ¢) 

that develops. We will also need a boundary condition at the right end (v7 = 00), which we 

take to be u(co, t}) = 0 for all ¢; that is, 

lim u(z,t) = 0. (0<t < co) (24d) 
LF DO 

In this case a Fourier transform is inappropriate because the domain is 0 < @ < co 

rather than —oo < x < oo, so let us try a Laplace transform on ¢.* Thus, Laplace transform 

(24a) with respect to ¢: 
Lf{arucr} = Lfur}. (25) 

Now, 

Ll tee} = a" L{iter} (linearity of L) 

~ Py yy —s ~ woe a + 

= a" | an en dt (definition of transform) 
0 x 

lI   
ae — | u(a, t)e7*! dt (Leibniz rule) 

Jo 

  

= 0" ting (U.S), (26) 
  

“See, for example, P.M. Morse and H. Feshbach, Methods of Theoretical Physics, Part | (New 

York: McGraw-Hill, 1953), pp. 865-869. 

* Alternatively, we could use a semi-infinite Fourier transform, namely, a Fourier cosine or sine 

transform. These are studied in the optional Section 17.11,
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and 

L{uy,} = sti(x, 3) — ule, 0) 

= su(z,s), (27) 

. Dae — 

so (25) becomes “tig, = SU, oF 

Ure ~ op lS 0, (28) ¢ 

¢ 

2 

which is a second-order ODE with respect to x, t having been eliminated by the Laplace 

transform process. Solving (27), 

W(x, s) = Aeve*/% + Ben Vo0l, (29) 

We have already used (24a) and (24b). To solve for A and B we use the boundary 

conditions (24c) and (24d), but first we need to express those conditions in terms of s 

rather than ¢. For the condition at xc = co observe that 

DOO EI OO 
lim @(2,s) = lim | u(x, te” dt 

J¢ 
OO ) 

100 

= i lim u(«, te dt = i 0 dt = 0; (30) 
JQ ao 

0 

that is, u(z,t) - OQ as x -+ co implies that 

u(z,s) 30 as TCO 
G1) 

as well. [Note that the second equality in (30) was carried out only formally inasmuch as 

we did not rigorously justify the interchange in the order of the two limit processes: the 

limit 2 —+ oo and the limit process that lies behind the Riemann integral.]| Applying (31) 

to (29) gives A = 0, so 

U(2,s) = Be~Ve*/*, (32) 

To express (24c) in terms of s, take its Laplace transform: 

i u(O,t)e7*! dt = | g(t)e** dt, 
Jo Jo 

or 
u(0,s) = G(s), (33) 

and imposing the latter upon (32) gives 

u(0,s) = 9(s) = Be®, (34) 

so B = G(s) and 

u(a,s) = Gls)e V8! (35) 

To invert, use entry 21 of Appendix C [with a = «/(2a)] and the convolution property 

(entry 28): 

=a? /(4a7et) LE 
u(x,t) = g(t) * “Qan/r 3/2 

v ot ert /(deFr) 
=——= | g(t -7) —— a. (36 Basa | a my 73/2 ,
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100   

u(x,t) A increasing f 
a > 

—t=()   
Figure 8. u(x,t) given by (40). 

  

or equivalently, 
t ja" /[da® (t-1)] 

ae 
  u(e,t) = - . | yg 1 37 ae |, dr (37) 

if we prefer. 

COMMENT |. The application of (31) to the solution (29) was easy: the positive exponen- 

tial grows with « and the negative exponential dies out, so A = 0 and B remained arbitrary. 

What if we had used the solution form 

V8" 4 Dinh 2 (38) 
a Oe 

ti(x, 8) = C cosh     

instead of (29), for both terms on the right-hand side tend to infinity as z —+ oo? Let us 

see: 

U(x, 8) = S (evieve en sia) po (eveeve en e/a) 

  
—_D =. 

— CHA evita + C 5 en Ve e/a (39) 

To eliminate the positive exponential, set D = —C. Then (39) becomes U(z,s) = 

C exp —(./sz/a), which is equivalent to (32). The point is that either form will work, 

(29) or (38), but (29) is more convenient insofar as the application of the condition (31). 

COMMENT 2. We did not specify the function g(t). Observe that if g(t) were specified, 

it would have been foolish to work out its transform g(s) because when we apply the 

convolution theorem to (35) we invert 9(s) and get back the given function g(t). Thus, it is 

best to merely call the transform g(s), as we did. 

COMMENT 3. Observe from (37) that u(x,t) depends upon the boundary data g(t) only 

overO0 <7 <t,notover0 < 7 < oo. This result is entirely reasonable since how could the 

temperature distribution u(z, ¢) today depend upon the boundary values g(t) to be imposed 

tomorrow? 

COMMENT 4. Finally, let us use (37) to determine u(x, ¢) for a specific case, say g(t) = 

100°. With g(t) a constant, it is easier to use (36) than (37), and the latter gives (Exercise 

13) 

fo,t) — 2002, fe 
ule, t)=——— | —— 

2a/7t Jo 73/2 

wv 

= 100erfc . (40) 
( 2avt ) 

which is plotted in Fig. 8 at representative times. 

  

Closure. In Section 18.3 we learn how to solve the diffusion equation by separation 

of variables, but the « domain is always finite and the boundary conditions do 

not vary with ¢ (although certain more complicated cases are outlined in the end- 

of-section exercises). The Fourier and Laplace transforms enable us to deal with 
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semi-infinite (0 < a < oo) and infinite (—-co < x < oo) domains, as well as 

nonconstant boundary conditions. 

Application of the Laplace and Fourier transform to the diffusion equation 

Othe, == Up proceeds very much along the same lines as for ordinary differential 

equations, but instead of producing an algebraic equation it produces an ordinary 

differential equation. Speci fically, Laplace transforming on ¢ produces the ODE 

O° tigg — 8 = —ul(x,0) on T(x 
* . 5 

00) produces the ODE ty + awit = 0 on ti(w, t). 

  

8): and Fourier transforming on a (if —co <a < 

  

EXERCISES 18.4 
  

NOTE: Exercises |~10 relate to Example 1: the remainder to 

Example 2 

1. Show that for the case where f(x) = constant = F, 

11) gives u(x,t) = Ff, HINT: Make the change of variables 

(t - §)° /(4e7t) = je? in the integral, and use the known inte- 

gral [~~ “o Oxp (—€7) dé = Vr. 

2. (a) Show that for the case where f(z) = FA(a), in (13), 

(11) gives (14) as the solution. 

(b) Verify, directly, that (14) satisfies the PDE (1a) and the ini- 

tial condition (1b). 

3. Prove the claim, made in Comment 3 of Example 1. that 

fr A (€ — a: t) dé = 1 forall t. where #V is given by (18b). 

HINT: Use the change of variables suggested in Exercise lL. 

4, Show that erf (7). defined by (15), is an odd function, as is 

claimed in Comment 2 of Example |. 

5. We used the Fourier transform to solve (1). Use the Laplace 

transform instead, and obtain the ODE 

§ 

Wee —u= ~~ (x ). 
ae ae 

6. Verify, by direct substitution, that the kernel A’ given by 

[8b) satisfies the diffusion equation (1a), as was claimed in 

Example 1 

7, Use (18) to show that if the initial temperature f(x) is 

(a) a periodic function of x, with period 7, then so is the solu- 

tion u(a,t). 

(b) an odd function of x, then so is the solution u(a, t). 

(c) an even function of wx. then so is the solution u(x, ¢). 

8. Unclusion of a source term) In Example 3 of Section 16.8 

we find that if there is a heat source distribution £(r, ¢) within 

the medium. then in place of the homogeneous field equation 

Llu] = OP Ure ~ u, = 0 we have the nonhomogeneous equa- 

tion Liu} = ¢ he — Up se ~ F(a. t); F acts as a source where 

F > Qandasasink where F’ < 0. 

   

(a) Then the problem 

Une — Ue = —F(2,t), 

u(z,0) = f(x), 

(-wo <r<o, 0<t< oo) 

(oo < 4 < co) 

(8.1) 

together with suitable boundary conditions at x = too, has 

two inputs. the initial temperature f(z) and the source distri- 

bution F(a, t). By linearity, the response u(x, ¢) should be the 

sum of the responses to these individual inputs. Specifically, 

show that if v(z. t) and w(x, t) are solutions to the problems 

CP Une — Ue = OL (me < <a<o, 0<t<co) 

u(x, 0) = f(x) 

(8.2) 

and 

Wee — Wy = F(a, t), (~xo <a <a, 0<t< ow) 

w(v,0) = 0, (—oo <x < 00) 

(8.3) 

respectively. then u(i,t) = v(a,t) + w(a,t). Since the v 

problem is already solved in Example |, the remainder of this 

exercise is devoted to the w problem. 

(b) Consider the case where /° = F'(t) is a function of ¢ alone, 

Choosing between the Fourier and Laplace transforms, solve 

for w. (The answer should be in the form of an integral.) Ex- 

plain why you selected the transform that you did, and not the 

other. 

(c) Now consider the case where FP = F(a) is a function of x 

alone. Using a Fourter transform. show that
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_ ar wt 

w(a,t)= F(x) «Fo! sa} 
art? 

(8.4) 

(d) The inverse needed in (8.4) is not found in our brief ta- 
ble (Appendix D). Nonetheless, show that 

1 yO t po l—e 

52) 2 
ae (8.5) 

L ft 2 243 x x oz yf —e7F / (det) ow erfe | —— 

a EZ 2a2 2aVvt)’ 

so 

/ 1 f° t 2 2 
wlt.t) = — Flv —©\|af eer 8 ((Ae't) waQ=—f Fe-9 || 

(8.6) 

oe (a) —z- erfe | —-~~= } | dé. 
2a 2aVvt é 

HINT: Letting g = (1 — e~*”"*)/(q2w?), show that = 
= ge, 80 that g = {exp [~x?/(4a7t)]}/(QaV7t), 

with g],.) = 0. Thus, 

2,2 etre t 

st gnu? (da? 7) 

g(z,t) = | ———==— dr. 
0 ( 

Then, use change of variables and integration by parts. 

9. (Small-t solution for finite rod) In Section 18.3 we obtain, 
by separation of variables, the solution 

OO 

400 1 nTa 2 
u{v,t) = —— — sin oe (nra/L) t 

0 eT (9.1) 

to the problem of heat conduction in a rod of length © ini- 
tially at a uniform temperature u(x, 0) = 100°, with both ends 
held subsequently at 0°. It was pointed out that (9.1) con- 
verges rapidly if ¢ is large and slowly if t is small. Our object 
in this exercise is to show how to use the results obtained in 
this section to obtain a complementary result: a series solu- 
tion that converges rapidly for small t (and slowly for large t). 
First, observe that our use of the haif-range sine series to solve 
the stated finite-rod problem, on 0 < x2 < L, is equivalent to 
solving the periodically extended infinite-rod problem 

2 
A" Ure = Ut, 

u(z,0) = fext (2), 

(-co <a < mw, 0<t <0) 

Fext 

  100 — 

  

            — —100 
    

where fox, is the square wave shown here. In effect, the 
separation-of-variables solution amounts to expanding fox, in 
a Fourier sine series, finding the response due to each sine 
term, and then adding them, Alternatively, suppose that we 
expand foxt(2) as foxe(w) = f(z) + fo(c) +--+, where the 
f;’s are as shown. That is, 

fext(e) = {-100 + 200[H (x) ~ H(a ~ L)]} 
+200{H(x + 2L) — H(x +L) 
+H (a ~2L) - W(x — 3L)} 

+200{H (x +4L) — H(2 +3L) 

+H(a—4L)- H(x@-5L)}+---, 

(9.2) 

  

  

    

    

            

fi 

100 

L, x 

100 

fy 

200} 

~2L -L | 2h BL x 

(a) Recalling the solution (14), for the case where f(z) is 
given by (13), show that the responses to fi, fo,-.. are 

uy(z,t) 

x a-f (9.3) 
= 100 Jerf ~erf -I1 

[. (sez) " (Sar) | 
  

 



and 
oe 

. 

a+-2(j-UL 
2 +(2)—3)L 

u,(z,t) = 100 fen) _ on ( SAC) 

QavV/t 2aVt 

(9.4) 

for j > 2. 

(b) Explain, in simple physical terms, why the series solution 

u(a,t) = (2, t) + uo(a,t)+-°- (9.5) 

should converge rapidly for small ¢. 

(c) To illustrate, compute u(z,t) ate = 1,t = 0.1, with 

o2 = 1.14 and L = 10, using equation (9.1), and again, 

using equation (9.5). Two-significant-figure accuracy will suf- 

fice. NOTICE: To calculate the error functions, use either the 

Hastings formula that we gave ina footnote, or use computer 

software such as the evalf Maple command. 

(d) In (b} we stated that (9.5) should converge rapidly for 

small t. What do we really mean by small t? ¢ < 1 sec? 

t < [L/(4a)]?? Propose some such inequality that can be 

used as a guarantee that (9.5) will indeed be rapidly conver- 

gent. 

(e) Obtain a computer plot of the solution at t = 0.1, 0.5, and 

1, using the approximation u(x,t) © u(x,t), where uy is 

given in (9.3). Take o? = 1.14 and L = 10, as in part (c). 

10. (Translating rod) We saw in Section 18.2 that if the rod 

is translating rightward with constant speed v, then the PDE 

becomes G2 tp, = Up + Vue, where V = v/cand c is the spe- 

cific heat of the material. Use the Fourier transform to solve 

the problem. 

(-co <a <co, 0<t< oo) 

(-co < a < 00) 
Une = Ut + Vu, 

u(x, 0) = f(2), 

where u — Qand u, > Oasz ~> too. Of course, your result 

should reduce to (18) for the case where V = 0. 

U1. Rework Example 2 with the initial condition changed to 

u(x,0) = constant = to, and show that 

u(x,t) = Up + (ui — & erfc | = } . 
( ) 0 (tty 0) (==7) 

12. (Oscillatory temperature at the left end) If an oscillatory 

temperature is maintained at the left end of a semi-infinite rod, 

then we expect the solution u(x,t) to approach a steady-state 

oscillation. Specifically, we have 
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Oe Uae = Ut (O<a<o, O<t< 00) 

u(0,t) = uo coswt, (0 <t <0) (12.1) 

u-+0 as «> o. (0<t< oo) 

Derive the steady-state oscillatory solution 

u(x,t) = uoe"® cos (wt — rx), (12.2) 

where r = a@,/w/2. HINT: The simplest approach is to 

consider, instead, the problem 

Una = Ut (0<a<co, 0<t< oo) 

v(0,t) = uoe™, (0<t< oo) (12.3) 

v 30 as tO, (0<t <0) 

which can then be solved by seeking v in the form 

u(x,t) = X(a)e'. (12.4) 

Then wu is found as the real part of v: 

u(z,t) = Rev(z,t). (12.5) 

Such a complex function method of solution, for differen- 

tial equations with oscillatory forcing terms, is the subject of 

Exercise 12 in Section 3.8. Alternatively, we could anticipate 

the phase shift caused by the w, term in the PDE and seek u, 

directly, in the form 

u(a,t) = A(x) coswt + B(x) sin wt, 

but the complex function method is more attractive since it 

permits us to work with a single quantity et rather than with 

a cosine and sine. Observe that there is no initial condition 

u(a, 0) included in (12.1) because we are concerned here only 

with the steady-state solution. NOTE: Besides the heat con- 

duction application considered here, the problem (12.1) also 

arises (with the ¢’s changed to y’s) in fluid mechanics regard- 

ing the viscous flow, in the upper half plane y > 0, that is 

caused by harmonic oscillation of an infinite flat plate at y = 0. 

There, the problem is known as Stokes’s second problem and 

was studied also by Lord Rayleigh. 

13. (a) Show that the integral in (40) does give u(a,t) = 

100 erfe («/(2aV2)). 
(b) Use computer software to evaluate the latter at 2 = 

0,2,4,6,...,20, with f = 10 and a = 1.14. 

14. (Heat flux at left end) The problem 
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Wee = Ut, (O<a<co, 0<t<o) 

u(a,0) = 0, 

uz (0, t) = ~Q, 

(0 <a" <0) (4.1) 

(0 <t < oo) 

with uw —> 0 as a - oo, differs from (24) in that the boundary 
condition at z = 0 is of Neumann type rather than of Dirichlet 
type. Physically, u,(0,t) = —Q (where Q is a prescribed 
constant) corresponds to the maintaining of a constant heat 
flux into the rod at 2 = O, for all f > 0 (i.e., into the rod if 
@ > 0, out of the rod if Q < 0). 

(a) Using the Laplace transform, derive the result 

aQ 0 ewe" |e? r) 

Vi Jo vr 
u(e,t) = dr. (14.2) 

In particular, use (14.2) to solve for the temperature at the 
left end, u(0,¢), and sketch its graph. 
(b) Show that the integral in (14.2) can be evaluated, and that 
we obtain 

t ae a . x 
u(a,t) = Q anf (MeO) _ o erfe (sa) . 

(14.3) 
15. We claimed, in a footnote, that Hastings’s approximate 
formula for erf (a:) is uniformly accurate, over 0 < x < 00, to 
+0.000025. Check that claim for « = 0.5, 1, and 2 by using 
that formula to compute erf (x), and comparing those results 
with results obtained either from computer software (such as 
the Maple evaif command) or from tables. 

  

  

18.5 The Method of Images (Optional) 

The method of images is a method of fictitiously extending the problem domain rh 

u(O,t) 

=0 

  

the diffusion problem on 
/ 

u(x,0) = f(x) 
9 

“Ug = Ut, 

Figure 1. The problem (1). 

~ 
S
o
e
 

SO as to satisfy homogeneous boundary conditions by means of symmetries or an- 
tisymmetries. In this section we not only illustrate the method for the diffusion 
equation, we also establish a class of PDE’s for which the method works. 

18.5.1. Iustration of the method. To illustrate the method of images, consider 

(O<u<oo, 0O<t< cx) (1a) 

u(x,0) = f(x), (0 <2 < ox) (1b) 
u(0,t) = 0 (0<t < oo) (Ic) 

where wu — 0 and uw, —+ 0 as x -+ oo as depicted in Fig. 1. 
The idea behind the image method is to extend the problem domain to z = 

—oo as shown in Fig. 2. 
tox = —oo. Calling the extended function fox, we need foxt(x) = f(x) forz > 0, 
but for 2 < 0 we can define fext(v) in any way we choose. Let us choose Foxe (x) 
to be the odd extension of f(x). For instance, if f(a) is as shown in Fig. 3a, then 
fext(x) is as shown in Fig. 3b. With u(a,0) = fext(a) being an odd function of « 
(L.e., antisymmetric about « = 0), we expect u(x, ¢) to remain an odd function of « 
for all ¢ > 0, * and if w(a,¢) is an odd function of x for all ¢ > 0 then u(O0,t) = 0 
for all £ > 0. That is, by building antisymmetry about x = 0 into the extended 

2 Oy =U, 

  

/ 
/ 

u(x,0) = fax OX) 

Figure 2, Extended problem. 

In doing so, we also need to extend the initial condition 

  

“If u(x,t} is an odd function of a, then u(—2,t) = —u(z,t), so u(0,t) = —u(0,t). Hence, 
2u(0,t) = 0, so uO, t) = 0.
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problem we are able to automatically satisfy the u(0,¢) = 0 boundary condition in 

(1c). 

Thus, the solution of the extended problem (Fig. 2) is also the solution of the (a) 

original problem (Fig. 1). In fact, the extended problem was already solved in f 
Example | of Section 18.4, so the desired solution of (1) is given by 

u(x,t) = / foxt(E)E(E — w;t) d€, (2a) ~ — 
JOO (b) ; 

Fext 

where 
eo (E-#)?/(4a*t) 

K(E-— xt) = ee (2b) 
2aV/irt he 

Vv 

Since we use (2) to compute w only over the actual domain, 0 < w < oo, it is oo 

preferable (though not necessary) to re-express (2) so as to eliminate all reference   
to the fictitious extension, which extension is referred to as the image system. To 

do so, write Figure 3. Odd extension. 

+0 200 

u(x,t) = Foxe (G) AN (E — vt) dE + Fext (E)AC(E — xv; t) dé 
J 00 JQ 

0 OO 

=] foxt(—H)A(-p — ust) (—dp) + Fexe (JA (E — est) dé 
Joo 0 

0 ; oo 

--| foal Re + ait)dn + | fext(S)A(E — 23 t) dg, (3) 
Joo 0 

where we set € = —y in the first integral and used the oddness of fext [Le.. 

foxt( pt) = —fext(se)] and the evenness of KC [i.e., A(—p—2;t) = A (+e; t)]in 
the fifth integral. Finally, set 2 = € and note that fex:(€) = f(€) over 0 < € < ow, 

and obtain 

u(x,t) = [- (EK (E — e;t) — K(€ +2; t)) dé 

  _ (e-#)? _ (é¢e)* 

[ r(e) @ dot —@e dat le (4) 

= IAG Cg 
JO 2eV/rt 

which. as we desired. contains no reference to the image system. 
Recall that we said that we “expect” u(a,£) to remain an odd function of x for 

all ¢ > 0 and to thereby satisfy the condition (Ic), that u(O,¢) = 0 for all t > 0. 
With (4) in hand, we can now verify that claim since (4) gives 

re OO 

u(O,t) = | F(€)(0) dé = 0. (5) 
Jo 

EXAMPLE 1. For instance, let f(r) = 100 in (4), Then (4) gives (Exercise 1) 

  n(v,t) = 100er ( e ). (6) 
20 S
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We've plotted (6), at representative times, in Fig. 4, along with the fictitious extension 

(shown as dashed). Observe how the antisymmetry of w, with respect to «, ensures the 

satisfaction of the boundary condition u(0,¢) = 0 forallé > 0. @ 

  

u 

t=0 
100 : 

f{=oo 
f 

wows f 
ee To<e7 [ sz 090 x 

eee eo a 

aoc “4 
eer Ue a “7 

Ten eee Sow meee —{[00 

t=0   
Figure 4. Solution for f(z) = 100. 

Suppose that instead of the homogeneous Dirichlet condition (1c) we have the 

homogeneous Neumann condition 

uz(0,t) = 0. (O<t< co) (7) 

In physical terms, instead of applying ice to the left end of the rod we insulate it 
so there is no heat flux across the face x = 0. In that case we extend f(x) so as 
to be an even function, symmetric about x = 0. Then, we expect u(x,t) to be a 
symmetric function of x for all t > 0 so that, by virtue of that symmetry, we will 

have u,,(0,¢) = 0 for allt > 0 (Exercise 2). 

18.5.2. Mathematical basis for the method. The key point. in applying the 

method of images is that if 

Liu) = Ouse — Up = 0 (-—co <<a < oo, 0<t< oo) (8a) 

and 

u(x,0) = f(x), (—co < x < ov) (8b) 

together with suitable boundary conditions at z = -too, then f(x) being odd im- 

plies that the solution u(z, ¢) is an odd function of « for all ¢ > 0, and f(x) being 
even implies that u(x,t) is an even function of x for all ¢ > 0. Let us explain the 
mathematical basis for that claim, not just for the diffusion equation but for other 

PDE’s as weil. 
We will draw upon the following elementary results, proof of which are left 

for the exercises. 

1. Any function F(a) can be split into even and odd parts, F(x) and F(x), 

respectively, as 

F(x) = Pt Pe) | Fe) Fe) (9)   
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2. The algebra of even and odd functions is as follows: 

even X even = even, 

even x odd = odd, (10) 

odd x odd = even. 

3. If Ey(a) and F9(a) are even, and O,(x) and Oo() are odd, then 

Ey(w) + Ox(w) = Bo(x) + Oo(e) (11) 
implies that 

Ey, (x) = Eo(x) and Oy(x) = Oo(x). (12) 

4. If F(z) is even, then F’(0) = 0. 

5. If F(x) is odd, then F'(0) = 0. 

6. If F(x) is even, then F(x), F(x), F’"(x),... are even and F’(2), 
F'"(x),... are odd. 

7. If F(x) is odd, then F(x), F’(x),F""(x),... are odd and F(z), 
F'"(z),... are even. 

The foregoing results hold even if F depends on other variables as well, such as t. 
For instance, if F(a, ¢) is an even function of z, then F(a, t), Fra(@,t), Freee (2, t), 

. are even functions of x, and F,.(z,t), Fera(x,t),... are odd functions of a. 

To proceed, it will be useful to consider the problem 

Liu] = of ter — Vux — Ue = Q(z, t), (|x| < co, t > 0) (13a) 

u(z,0) = f(x), (jz| < co) (13b) 

which is more general than (1) by virtue of including the Vu, term (associated 

with translation of the rod at a constant speed) and the Q term (associated with the 

presence of a distributed heat source or sink along the rod). Of course, (13) reduces 

to (L) if we set V = 0 and Q(z, t) = 0. 
To track the development of the even and odd parts of u, let us break wu into the 

sum of its even and odd parts, say E and O, respectively: 

u(x,t) = E(x,t) + O(a, t). (14) 

Putting (14) into (13a), and also splitting Q(a,¢) and f(x) into their even and odd 
parts, gives 

O° Exe + 0° One — V Ey — VOn — Ey ~ O; = Qe + Qo , 
So re Nee Neer Nm eel Nee Ne Ne 

€ oO oO € € Q € oO 

(15)
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where e or o shown below each term indicates whether that term is even or odd, 

respectively. For instance, the a7O,, term is odd according to item 7 above, and the 
—VE, term is odd according to item 6. Partial differentiation with respect to t does 
not alter evenness or oddness (Exercise 7), so FE; is even and O, is odd. Next, from 

item 3 it follows from (15) that a? Byg—-VO,—Et = Qe, and a? Ogg -V Ey—-O; = 
Qo. Similarly, it follows from (13b) that B(v,0) = fe(v) and O(x, 0) = f(x), so 
(13) can be split into the two problems 

O° Eye — Ey = Qe + VOz, (-co <a < oo, O0<t< oo) (16a) 

E(x,0) = fe(x), (—co < a < oo) (16b) 

and 

a Ong ~ OO, = QotVEs, (-co << <oo, O<t <x) (17a) 

O(x,0) = fo(x). (-co <r < co) (17b) 

Suppose, first, that V = 0. Then (16) and (17) are uncoupled: (16) contains only 

E(x, t) and (17) contains only O(:x, t). If both inputs f and @ are even, then f, = 0 
and Q, = 0, the problem (17) on O is homogeneous, and O(x,t) = 0. Thus, if the 
inputs are even, then the solution u(a,t) is even. If. on the other hand, f and Q are 
odd, then fe = O and Q, = 0, the problem on F is homogeneous, and E(x, t) = 0. 
Thus, if the inputs are odd, then the solution u(x,t) is odd. The two italicized 

results enable us to use the method of images, as we did in Section 18.5.1. 
However. if V + 0 then (16) and (17) are coupled by virtue of the VO, and 

VE. terms. For instance. even if f and @ are even. so fg = Qand Q, = 0. (17) 

is still nonhomogeneous due to the VW E,, which acts as a source term and causes 

the development of a nonzero O(,t). Thus, we cannot use the method of images 
if V # Q. which result makes sense physically since translation of the rod (to the 
right if Vo > OQ and to the left if V < Q) will surely destroy any symmetry or 
antisymmetry in the solution about x = 0. 

The upshot is that sometimes we can use the method of images and sometimes 
we cannot, depending on the operator £. What we need for the method of images to 
work is for £ to be both /inear and even. We say that an operator LF is even if L/u) 
is even whenever w is even and odd whenever u is odd: that is, an even operator 

preserves evenness and oddness. 

Let us limit our attention to the linear operator 

    
oF O° a QO O 

b=A~ z+ B—54+C —~ +t D+ H— 4+ F. (18) 
Ox? Ot OxOt — Ov Ot 

where A,...,£ are functions of « and ¢. From the discussion above, we can see 

that Z will be an even operator if A, B, E, F are even functions of x and if C’, D 
are odd functions of wv. In that case, let us re-express LE as 

  
2 ye “y2 ‘ = 

a a " 10,2482 
Out? a2 "1 Axdt "On? Ot 
  + Ey. (19) 

      

am
an
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This case is typical rather than exceptional. 

EXAMPLE 2. For instance, consider the classical one-dimensional wave equation 

Clee = Uy, (studied in Chapter 19). In this case 

  
, a 

Lac —>- =, 20 
Ox? = at? (20) 

which is even because A = c? and B = ~1 areeven, C = D = Oare odd, and EF = F = 0 

are even. (Remember that the zero function is both even and odd; it is even because its odd 

part is zero, and it is odd because its even part is zero.) # 

  

THEOREM 18.5.1 Applicability of the Method of Images 
Let L be of the form (19) and therefore an even operator. Suppose that the problem 

Lu = Q(«.t), (-co<u<mw, 0<t< ox) (21a) 

u(x.0) = f(x), (—oo < © < ow) (21b) 

where u > Oand u, —+ Oas 2 —+ too, admits a unique solution u(x. t). If f and 
Q are even functions of a then so is u, and if f and Q are odd functions of x then 

sO 1S U. 
  

Proof: Let u(w.t) = E(#,.t) + O(x.t). where E is even and O is odd. Then, 
Liu) = LIE + O| = L[E| + L/O] because L is linear. Further, L[E) is even and 
LO) is odd because L is even. Thus, (21) splits into the problems 

LiE| = Qe(u.t), (-oo <u <oo, O<t <x) (22a) 

E(x,0) = fe(x), (—oo <a < co) (22b) 

and 

L[O] = Qo(a.t). (-w <ar<cw, 0O<t< x) (23a) 

O(x,0) = fol), (—00 <4 < co) (23b) 

where E, £,,O, and O, tend to zero as « -+ oo. If f and @ are even, then 

fo = Oand Q, = 0, and (23) gives the unique solution O(a, t) = 0, so u(x,t) 

is even. [If f and Q are odd. then f, = 0 and O, = 0 and (22) gives the unique 

solution (x,t) = 0. so u(w,t) is odd. & 

Closure. The method of images involves the fictitious extension of the problem 

domain such that homogeneous boundary conditions, which fall within the interior 

of the extended domain, are automatically satisfied by virtue of the symmetry or
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antisymmetry of the various inputs. For the method to work, we need the symmetry 

(or antisymmetry) of the inputs to imply the symmetry (or antisymmetry) of the 

output wu. Such symmetry (or antisymmetry) will, indeed, be passed on to u if the 

operator L is linear and even where, by L being even, we mean that if uw is even 

then L[u] is even and if u is odd then L{u] is odd. The linear operator L in (18) ts 

even if it is of the form (19), where E;(a,t),..., &4(,t) are even functions of x 

  

and O, (x,t), Oo(a,t) are odd functions of 2. 

  

EXERCISES 18.5 
  

1. Show that if f(a) = 100, then (4) gives the result stated in 

(6). 

2. (a) Suppose that in place of the homogeneous Dirchlet con- 

dition (1c) we have the homogeneous Neumann condition (7). 

This time use an even extension of f and, carrying out steps 

analogous to those in (3), derive the result 

(€- 2)" (€4+2)° 
~ da2zt | te ~ dett 

u(z, t) -[- FE gi et te a (2.1) 

(b) Verify that (2.1) does satisfy (7). 

(c) Use (2.1) to determine u(x, ¢) for the case where f(x) = 
100. 

3. Prove that (11) does imply (12) 

4, Prove item 4, that if F(a) is even then F’(0) = 0. 

5. Prove item 6, that if F(x) is even, then F(a), F(x), 
Fl"'(z),... are even and F"(x), F(x), ... are odd. 

6. Prove item 7, that if F(x) is odd, then F(a), F(a), 

F''(z),... are odd and F' (x), F'’(x),... are even. 

7. (a) Prove that if F’(x,t) is an even function of z, then so ts 

Fi(z, t). 

(b) Prove that if F(2,¢) is an odd function of x, then so is 

Fi(z, t). 

8. State whether or not Z is of the linear and even form (19), 

and briefly state your reasoning. 

(a) Llu] = uae — te ~ 8u 
(b) Llu} = tee + e77 Uy 

(c) Llu] = tre + Wee + Uae + Uy + Ue tu 

(d) Llu] = tee — ut u? 

(e) Llu] = ure + (sine)ue ~ Ue 

(f) Llu] = vee + (cos r)u, — Guy 

(g) Llu] = Ure — Ute + 2U 

(h) Llu] = tre + ee ~ Ue + 5 

(i) Llu] = ure — wee — (Scos 5xr)uy 

(j) Llu] = use — (sin t)u 
(k) Llu] = tre + ttug ~ Ut 

(1) L[u |= (7 ux)a — Ut 

(m) Liu] = (28us)e — tee + U 

  

18.6 Numerical Solution 

18.6.1. The finite-difference method. We have seen that a wide variety of diffu- 

sion problems can be solved analytically using separation of variables or an integral 

transform. In more complicated cases one often gives up the hope of obtaining ana- 

lytical solutions and turns, instead, to a numerical solution technique. For instance, 

the problem 

Une = Uty (O<x<L, 0<t<o) (1a) 

u(0,t) = p(t), (0<t< oo) (1b)
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u(L,t) = q(t), (O<t<c) (1c) 

u(x,0) = f(x) (0<a<L) (1d) 

is readily solved by separation of variables if p(t) and q(t) are constants, but is so 
much more difficult if they are not constants (see Exercise 20, Section 18.3) that 
we might very well turn to numerical solution instead, 

In this section we introduce one of the most important techniques for the nu- 
merical solution of PDE’s, the finite-difference method. To explain that method, 
let us use the representative problem (1). 

Our first step is to discretize the problem so that we seek u(x,t) not over the 
entire x, ¢ domain but only at discrete grid points or nodal points, with coordinates 
z;,t, in the x,t plane. That is, we divide L into N equal parts, of length Ac = 

L/N, and define «; = jAz, for 7 = 0,1,...,N. Further, we choose a time 
increment At and define t, = kAt, for & = 0,1,2,.... The resulting set of grid 
points, known as the computational grid, is shown in Fig. 1. At the open circle 
points w is known, from the initial or boundary conditions, and we wish to solve 

for u at the solid circle points. 

t 
| 

  
    

    

            

30¢ —~o———-9 

| Al 
21 nanan) 
1 ¢ a 

j=0 1 2 3 N-1 N x 

mi AX a 

Figure 1. The computational grid. 

Next, we seek a finite-difference approximation of the PDE (1a) that will relate 
u at the various grid points. For the wu, term in (1a) we use the difference quotient 

approximation 

(x,t) = Ji u(a,t+ At)—u(z,t) u(x,t + At) — u(z,t) 2) 
us(xz,t) = lim x . 
mn Sto At At 

That is, we do not take the limit as At + 0; we choose a small A¢ and accept the 

error that results, We can treat the w,,, term in the same manner if we deal with one 

derivative at a time. Accordingly, write 

Us(v + Ax, t) — ur(2,t) 
Usa = (te Ja ~ UA (3) 

and then approximate each of the derivatives in the numerator in the same way. 
Thus, 

  

u(a + Ag,t) —u(a,t) u(x,t) — ula — Az, t) 

Ag _ Aw 4 An (4) Urr (x,t) ©
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Figure 2. Schematic of (8). 

@ 50 

  

5 5 10 15 35 

Figure 3. Example |. 

or 
ula + Ag, t) — 2u(a,t) + u(e — Aa,t) 

Uae (@,t) & (Ax)? . (5) 

Putting (2) and (5) into (la), with @ = vj, 2+ Ag = tj41,0-Au = vj-1,t = th, 

and t + At = tpi1, gives 

  

  

a2 u(xj4i,th) — 2u(ay, ty) + u(ej-1, te) ~ ulay, thsi) — u(aj, te) 6) 

(Ax)? At 

or 
Uji — 20 jp + Uji Uj 41 ~ Ujk (7) 

(Ax)? ~ At 

as our finite-difference approximation of the PDE (la). Although not essential, 

we distinguish u(x;,t,) and Uj, as follows: u(azj,t,) is the exact solution of the 

PDE (1a) at xj, tp, whereas Uj, is the exact solution of the difference equation (7) 

at zj,t. Since the two are not (in general) identical, because of the difference 

quotient approximations (2) and (5), it is useful to denote them by different letters, 

as we have. 

If we solve (7) for Uj, 441 we obtain! 

  

  

    
  

Oj rar = rUj-ip + lm 2r)Uj a + Ups as (8) 

where At 
5 

r=a‘—,. 9 

r= (Ray ”) 
Equation (8) enables us to compute U at a given grid point as a linear combination 

of U’s at the preceding time as indicated by the arrows in Fig. 2. Thus, it provides 

us with a “marching scheme” with which we can march out a solution, one line at 

a time, subject to the initial and boundary conditions 

Uj0 = f(jAc) = fj, G= 1,2,...,N—1) (10a) 

Uo ks = p(kAt) = Dk, (k = 1,2,.. ) (LOb) 

Unk = q(kAt) = dk. (k =1,2,.. ) (10c) 

That is, beginning at the initial time & = 0 we can use (8), together with (10), to 

compute the U’s all along the line & = 1, then along the line ky = 2, and so on. 

EXAMPLE 1. In (1), leta? = 1, L = 1, p(t) = 10+ 1008, g(t) = 50, and f(x) = 20x. 

For purposes of illustration, let it suffice to take N = 4 (so Ar = 0.25) and At = 0.01. 

Then the grid and the initial and boundary values are as shown in Fig. 3. Where did 

  

“We use a forward difference quotient (forward and backward difference quotients are defined in 

Section 16.4) in (3) and then backward difference quotients in the numerator of the right-hand side 

of (4) so that the result (5) is a centered formula; i-e., centered about x. These choices are discussed 

further in Exercise 1. 

tThe finite-difference scheme (8) is generally attributed to E. Schmidt (1924) and L. Binder 

(1911).
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we get the value u(0,0) = 5 in the figure? The data is discontinuous at that point because 

the fact that diffusion is a smoothing process, it seems reasonable to use the average value 
on 

(0 + 10)/2 = 5 there. Similarly, we use the average value u(1,0) = (20 + 50)/2 = 35 at 

the other corner. From (9), 7 = (1)(0.01)/(0.25)" = 0.16, so (8) becomes 

Oj pg = O16U;— 1,4 + 0.6805 4 + 0.1605 41,4. (11) 

Sweeping across the first time line, (11) gives 

Uy = 0.160 9.9 + 0.68019 + 0.16029 

= 0.16(5) + 0.68(5) + 0.16(10) = 5.8, 

Uo = 0.16U'1.6 + 0.68U2.6 + 0.16U5 9 (12) 

= 0.16(5) + 0.68(10) + 0.16(15) = 10, 

Us 4 = 0.1602 6 + 0.68U3 6 + 0.16040 

= 0.16(10) + 0.68(15) + 0.16(35) = 17.4. 

Moving up to the second time line, (11) gives 

Uy. = 0.16(11) + 0.68(5.8) + 0.16(10) = 7.3, 
Uso = 0.16(5.8) + 0.68(10) + 0.16(17.4) = 10.5, (13) 

Uy.2 = 0.16(10) + 0.68(17.4) + 0.16(50) = 21.4, 

and so on. 

COMMENT. Since the difference approximations (2) and (5) become exact only as At — 0 

and Ax — 0. respectively, it is clear that we need At and Ax to be sufficiently small if 

we are to expect accurate results. Are At = 0.01 and Aw = 0.25 sufficiently small? 

Remember that smallness (or largeness) is always relative to some reference. Although 

there is no ready-made reference time with which to compare At, observe from the PDE 

(1a) that a? /L? has the dimensions of 1/time. Thus, we can use T’ = L? /a? as a reference 

time. And as a reference length we can simply use L. Consequently, for our results to be 

accurate we need both 

At At and (14) 
T  L*/a? ‘ L 

  

or, since a = £ = | in this example, 

At <1 and Ag € 1. (15) 

Although At =.0.01 is much smaller than unity, Av = 0.25 is not, so we can expect our 

results to provide only a rough approximation of the exact solution. However, realize that 

(14) is only a rule of thumb. Typically, one runs the calculation, then reduces A¢ and Ag 

and runs it again, until a sufficient degree of convergence is achieved. 4 

Example | illustrates the numerical implementation of (8). In Example 2 let 

us test the method by choosing Ax and At that easily satisfy (15) and comparing 

Numerical Solution 1001
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the numerical results with a known exact solution. 

EXAMPLE 2. Test Case. Let us apply (8) to the case where a® = 1, L = 1, p(t) = 

q(t) = 0, and f(x) = 100 because this case can be solved exactly by separation of variables 

{since p(t) and q(t) are constants]. Specifically, we have the exact solution 

400 << 1 2 
u(x,t) = —sinnar ent 16 Ce m (16) 

rt 
meii3y... 

  

with which to compare our numerical solution. With (15) in mind, let us choose Ax = 0.02 

(.e., N = 50) and At = 0.00018, in which case r = 0.00018/(0.02)? = 0.45. 

  

  
  

Ud 

k=0 
100 | 

20 | 
100 

' 

300 | 

| 
(Symmetry) 

i 

0 l | ~_ 
0.0 0.5 x 

Figure 4. Application of (8), for the case p(t) = q(t) = 0, f(x) = 100, 

L=l,a = 1, Aur = 0.02, At = 0.00018 (r = 0.45). 

In this case our computational grid is quite fine so there are too many calculations to 

do by hand. However, it is easy to program the calculation (11) with a “do loop” on A and 

with the initial and boundary conditions 

Ujo = 100, (j = 1,2,...,49) (17a) 

Vor = 9, (k = 1,2,...) (17b) 

Uso. =. (& = 1,2,...) (7c) 

For the corner points (where the data are discontinuous) use average values as in Example 

1: Up.9 = 50, Uso.9 = 50. The numerical results are shown as dots in Fig. 4, and the solid 

curves correspond to the exact solution given by (16). We have plotted the results only for 

k = 20,100, and 300 and only over 0 < 2 < 0.5 because the solution is symmetric about 

the midpoint « = 0.5. Although the exact and numerical results are not identical. they can 

hardly be distinguished in Fig. 4. @ 

The results of the test case in Example 2 are encouraging. In fact, if we change 

the boundary temperatures p(t) and q(t) from constants to time-varying functions, 

then the analytical separation of variables solution is made much more difficult, 
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yet the numerical finite-difference solution based upon equation (8) is unchanged, 
except for the data on the right-hand sides of (17b) and (17c). 
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- Figure 5. Example 2, with At increased to 0.00022. 

However, we must qualify our endorsement of the finite difference scheme 
given by equation (8). For suppose we change At even slightly, from 0.00018 
to 0.00022. We see from Fig. 5 that the results quickly degenerate: after only 
20 time steps a deviation from the exact solution is apparent, and by the time k 
= 40 the results are worthless. The error is oscillatory, both spatially ( with period 
2Az) and temporally (with period 2At, although that fact is not observable in the 
figure because the plots are not for consecutive & values). Even if we do not rely 
on the exact solution for comparison (indeed, in real applications we do not know 
the exact solution) it seems clear that the oscillations are some sort of numerical 

instability rather than a faithful representation of a physical reality because it would 
surely be unlikely that the spatial and temporal periodicity of such a physical event 
would exactly equal 2Az and 2A¢t, respectively. To test this assertion we can halve 
Az, say, and rerun the calculation. Sure enough, an oscillation will result once 
again, this time with spatial period 2Az’, where Ax’ = Az/2 is the new spacing. 
Furthermore, we know that diffusion is a smoothing process, whereas the numerical 

results in Fig. 5 reveal quite the opposite tendency. Thus, even if we do not have 
the exact solution for comparison, it is clear that the oscillations imply some sort 
of numerical instability. 

Short of a detailed analysis, let us briefly explain the breakdown observed in 
Fig. 5. Recall that we have used different letters to distinguish the exact solution 
u(x,t) from the approximate solution Uj, generated by the finite-difference equa- 
tion (8). We call the difference u(xj, th) — Uj. % the accumulated truncation error 

at the j, & grid point, namely, the error incurred by replacing uw, and wey in (La) by 
the finite-difference approximations (2) and (5), respectively. Besides the accumu- 

lated truncation error there is an additional error called the accumulated roundoff 
error, incurred because the computer rounds off numbers after a finite number of 

significant figures. Thus, if we further distinguish U;, as the values computed by 
a “perfect computer” (one that keeps an infinite number of significant figures), and
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UF's as the actual printout of the real computer, then we can express the total error 
as 

total error = u(xj, tk) ~ UF, 

[u(xy, th) 7 Uj 6] + (Uj — OF i) 

= [accumulated truncation error] 

i 

+[accumulated roundoff error]. (18) 

Regarding the accumulated truncation error, two closely related questions come to 
mind. 

{. With Ax and At fixed, what is the behavior of the accumulated truncation 

error as kk > oo? 

2. At the fixed points in the x2, ¢ domain, does the accumulated truncation error 
tend to zero as the mesh is continually refined? 

Let us rephrase the second question, which is crucial: At any chosen fixed point 
in the w,¢ domain, is it possible to reduce the accumulated truncation error to be 
smaller in magnitude than any prescribed number by sufficiently refining the grid, 
that is, by sufficiently reducing Aw and At? If so, we say that the finite-difference 
scheme is convergent. 

Since the roundoff error enters randomly, we simply ask that the accumulated 
roundoff error remain small —for instance, that it remain bounded as k — oo. If so, 
we say that the scheme is stable. (Be aware that these definitions are not entirely 

standard from one text to another. At least, our terminology here is consistent with 
the terminology used in our analogous discussion for ODE’s in Section 6.5.2.) 

Analysis reveals that the finite-difference method (8) is both convergent and 
stable if Aw and At satisfy the criterion 

  

gy At 
r= ao 

(Ax)? 

LA
 

b
o
l
e
 

(19) 
      

and is both divergent and unstable if r > 5. [Sure enough, the excellent results dis- 

played in Fig. 4 correspond to r = (1)(0.00018) /(0.02)* = 0.45, which satisfies 
(19), whereas those displayed in Fig. 5 correspond to r = (1)(0.00022)/(0.02)* = 
0.55, which does not.] The analysis behind (19) is beyond our present scope,! but 
we do outline the stability part of the analysis in the exercises and urge you to study 

the latter because it is a typical and powerful application of the matrix eigenvalue 
problem to the analysis of finite-difference methods. 

The restriction (19) may be quite severe, for if Az is chosen small for the sake 
of accuracy, then the maximum At allowed by (19) may be so small that it neces- 
sitates a great many time steps and, consequently, considerable computer time. In 
  

"See, for instance, G. D. Smith. Numerical Solution of Partial Differential Equations (New York: 

Oxford University Press, 1965) or R. D. Richtmyer and K. W. Morton, Difference Methods for Initial- 

Value Problems, 2nd ed. (New York: Interscience. 1967).



  

18.6. Numerical Solution 

the optional remainder of this section we show how to modify the method so as to 
relieve us of the restriction (19). 

18.6.2. Implicit methods: Crank—Nicolson, with iterative solution. (Optional) 
Equation (8) is by no means the on/y possible finite-difference method for the dif- 

fusion equation (1a). For example, the a-wise differencing in (4) is at the initial 
time ¢, whereas some weighted average over the time interval (¢ to ¢ + At) should 

be more accurate, namely, 

u(a + Aa,t) — 2u(a,t) + ula — Az, t) 

(Az? 
u(@ + Aw, t + At) ~ 2u(a,t + At) + u(a — Aa, t + At) 

(Ax 

  

Une (2, t) eS (1 —_ 6) 

+6   (20) 

where the number @ is specified so that 0 < @ < 1. Then, in place of (7) we have 

  

9 Uj 44 — Uj, 4 Ujarg Uj ker — 20; ea t+ Ujties rae L~— Q J : je” J ? a Jj 1 Ji : J 1 

eens) (Ax? * (Acy? 
_ Uj pei ~ Upp 21) 

At 

which reduces to (7) if @ = 0. It turns out that the parameter @ gives us the desired 
control. Specifically, it can be shown that if @ > i then (21) is convergent and 

stable for all r > 0; that is, if we use any @ greater than or equal to [/2, then the 
condition (19) can be discarded. The borderline case @ = 5 gives the well-known 
Crank—Nicolson scheme " 

  

Uji eet + 21 + Uj ee = PUGH ee (22) 
= 1Uj-ik +21 = r)Uj a + Uj +k     
  

for j =1,2,...,N—landk =0,1,2,..., where r = a? At/(Az)?, as before. 
Given the initial and boundary values, we can use (22) to compute the first line 

of unknowns U,1,Uo1,....Un—11, then the second line of unknowns 

Uj 2,U22,...,Un—1,2, and so on, just as we did using (8). However, (22) presents 

a difficulty which we illustrate by writing it out for the first line of unknowns, with 
r= land N = 5, say, for definiteness. 

Jul: Uo, +4014 — U2. = Uo + U20, 

j=2: -U, 1, 4+ 4Uo, —- U3, = Ui + U3 0, J Ll 2,1 ; . (23) 

gud: —Us 4 + 4034 _ U4y = U2 9 + Uso, 

e
d
 i i —U3 4, +404, — U51 = Us0 + U5 00. 

1005
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The two underlined terms are known boundary values, so let us move them to the 

right with the other known terms. Then (23) becomes 

AU, — an = Uo + U0 + U2,0, 

—Uy1 + 40a, —- Usy = Ui9 + U30, 

~ Ug, + 4U3, — Uar = U20+ Ua, 

— U3, + 4041 = U3.9 + U5,.0 + U3 1. 

(24) 

The difficulty, which we can see clearly in (24), is that the equations (24) are cou- 
pled. Thus, we need to solve the matrix equation (24) for the first line of unknowns 

U4, Uo1,U3,1,U41, then increment k by | in (22) and solve for a similar matrix 

equation for the second line of unknowns U9, U2 2,U3.2, V4.2, and so on. In con- ° 

; trast, the scheme (8) gives uncoupled equations for Uy 444, Ua,441,--.,UN-1,b41- 

J-LkeL fk Jrhkal Thus, we call (22) an implicit scheme, whereas (8) is an explicit scheme. Graph- 

nik Lk js Le with the pattern shown in Fig. 2 for the scheme (8). 

ically, the Crank—Nicolson scheme (22) corresponds to the computational pattern 
shown in Fig. 6, which reveals the nearest-neighbor coupling and is in contrast 

Expressing (22) in matrix form and recalling the initial and boundary condi- 

. tions given by (10) gives 
Figure 6. Implicit scheme. 

2QL+r) 0 =r 7 0 | Ui pti 

—? 2(1+r) -r : Uo b+1 

—T 2(1 we r) —T Un —2,k41 

0 a _p 2(1+r) UNn—1,k+1 

rDk-i trp + 2(1—r)U LE + 12,4 

rUL + 2(1 _ r)U9 4 + rUs 

rUy 3.4 + 2(1 — r)Un—2,4 + TUN-1 

rUn—24 +21 — r)UN-1k HTM + TO 

The system (25) is of the matrix form 

AUR41 = C, 

(25) 

(26) 

where A is tridiagonal (due to the nearest-neighbor coupling) and symmetric. A 
and c are known and Ux, is the unknown. The idea is to set & = QO and solve (25) 
for the entire line of unknowns U, 1, Uo1,...,UN-—ij, then set k = 1 and solve 

for the line Uj 2, Ug2,...,UnN—1,2, and so on.
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Notice carefully that the situation is not as bad as it may appear to be because 
A is strongly diagonal. That ts, the off-diagonal terms (~—r’s and 0’s) are small 
compared to the diagonal terms [2(1 + 1)’s], so (25) is almost uncoupled. Thus, we 

say that (25) is only weakly coupled. To take advantage of this circumstance, let us 
split A into its diagonal part plus the deviation from that, 

2(1 +r) 0 = 0 

2(1 +1) 

9) 0 2(1+r) 

0 -r O 0 

—-r Q -—Fr 

+ 

—r QO =r 

0 0 -r 0 

=2(1+r)I+A’, (27) 

where I is an (N — 1) x (N — 1) identity matrix and A’ is the “deviation” matrix. 
Then (26) becomes 

21 +r)l+ AU. =e (28) 

. 1 1 
$c — ~~ AU pa. 29 
2(1+r) i+r) 8 7) 

Since A’ is small compared to 2(1+-r)I, in (28), we could neglect it altogether and 
obtain, from (29), 

Urq = 

  

  

1 
Ung = = 30 k+l +r) c (30) 

Better yet, we could accept (30) as an initial approximation 

1 uO) =~ 31 kt 30 p47) © CD 
and obtain an improved result as 

(1) 1 1 1 7(0) = oe . 32 
A+1 2(1 +1) 2(1 +r) k+1 (32) 

In fact, repeating this procedure, we have the iterative algorithm 

prt ic —~ au” (33) 
k+l 2(1 "7 r) k+1 4? 
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where ue is the (n + 1)st iterate of Up iy. With fk fixed, we carry out (33) 

forn = 0,1,2,... [where ul) , is given by (31)], until suitable convergence is 

. ‘ . : . : . n+l 
attained. For example, we might continue the iteration until each element of ut ) 

and the corresponding element of ue differ in magnitude by less than 107°. 

The scheme given by (33) and (31) is called Jacobi iteration, and it ts shown 

in the exercises that Jacobi iteration converges to the exact solution of AU;41 = c¢ 

for all finite values of r. In fact, we can improve upon (33) slightly, by using the 

(n + 1)st components as soon as they become available. To elaborate, let us write 

out the Jacobi scheme (33): 

(n+1) L . f (n) / (n) 

Ole = 2(1 +1) le = Oy UT pay mo ay UY ea 

(n+1) 1 t (n} ! (n)} 

Uo ns = 2a +r) le2 — 02,09 pay ~ 42,209 aa 

! (n) 
me ee aby UN sea] 

(34) 

(n+1) 1 , ! n) 
Un vee ~ (1 + r) lew ~ ay—11 Uy py 

/ n) ! (nr) 
TS ay—1n—2U yo nyt 7 ayy 1UK a waa . 

(n+1) 6. a. ation | ve nee t . 
ie 1 from the first equation in (34), let us use that value in 

place of the less-up-to-date value Ue that appears in the right-hand side of the 

ati ‘wattardy let ie us already ¢ antec TTL) plat) 
second equation. Similarly, let us use the already computed values Ul eet , Us pai 

Having computed U 

in place of Ul" : Usa in the right-hand side of the third equation, and so on. 

This idea produces the Gauss—Seidel scheme 

  

(n+l) 1 (n+1) (n) UL = ian oo LU.) ~ MU (35) 
      

where L and M are the lower and upper parts, respectively, of A’. That is, Al = 

L + M, where 

0 0 0 -r 0 0 

—-r QO QO 1 

L= QO -r O and M = ) 

—p 

0 Q -—r 0 0 0 
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Like the Jacobi method, the Gauss—Seidel method converges for all finite 7, and 

approximately twice as fast. 
Finally, there is another simple improvement that will further increase the 

speed of convergence. Re-expressing (35) as 

(n+l) x(n) 
Uea = Ura + ¢ LUM) — (M+ 2+ yquy) } =I 2(1 +71) 

_ r7{n) (n) 

= Uns + AUIS GB) 

we insert a numerical “control parameter” w: 

(n+1)  -7(m) (n) 

Ung = Ung + wAUQY). (38) 

. . : : : nm). tc 
The idea is general and can be applied to any iterative scheme: AU is a “cor- 
rection term,” and adjusting the size of the correction, by means of w, might speed 
the convergence. Often, one chooses w based on numerical experimentation, but in 
the present case it can be shown analytically that the optimum w is given by 

2 r Te 
Wop, = EEE, where b= COs =. (39) 

t/t pe? Ll+r N 

We see from (39) that wop; lies somewhere between | and 2. Since wop, > 1, 

the modified Gauss—Seidel scheme (38) is known as successive overrelaxation, or 

SOR for brevity. 

  

EXAMPLE 3. To illustrate the Jacobi, Gauss-Seidel, and SOR methods, consider the 
problem where u(0,t) = u(L,t) = 0 and u(av,0) = 100, and choose NV = 4d andr = 1. 
Then the Crank—Nicolson scheme (22) gives these simultaneous equations for the unknown 

values Uy .1, Uo, (3,1 in the first “time-line”: 

404 1 _ Ua = 150, 

Uy +4091 — Usa = 200, (40) 

—Ug 1 +403) = 60. 

The latter is readily solved, and we obtain 

~ 55.54, Ug, = 72.14, Us, = 33.04, (41) 

but let us use (40) to illustrate the three methods of iterative solution. 

Jacobi: 

ne Loin ; Une) (Ua + 150), 

n+l) 1 (TL ee (ry « Ut) 2 (On + US") + 200), (42) 

n+l) 1 TL . Us" = (U2) + 60),
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so 

Ut) = (0 + 150) = 37.5, 

us) = (0 +0 +200) = 50, (43) 

US) = (0+ 60) = 15, 

UL) = (50 + 150) = 50, 

us) = 535 +15 +200) = 63.13, (44) 

Us) = “(60 +60) = 27.5, 

and so on. 

Gauss-~Seidel : 

Ut) = (Us) + 150), 

n+ 1 n+ (7 

UY = UY + Us) + 200), (45) 
n+1) 1 n+l : 

Us = 7 (Ua 4 60), 

so 

1 yo _ 7 (0 + 150) = 37.5, 

yO 
US) = 5(0 + 0 + 200) = 50, “o) 

1 
US) = 7 (0 + 60) = 15, 

1 Uzi = (50 + 150) = 50, 
1 Uyil = 7 (50 + 15 + 200) = 66.25, (47) 
1 

Uyny = 7(66.25 + 60) = 31.56, 

and so on. 

SOR: First, we need to compute Wopt 2 fb = 5 cos t= V 2/4. wope = 2/(L+ V1 - p*) 

== 1.03. As in (43) and (46), 

uO 37.5, US) =50, uso) = 15. (48) on
s 

  

Next, make a “tentative” Gauss-Seidel step using (45) (with n = 0) and the values given 

by (48): 

UM) = 50 so AU, = 50-375 = 12.5,
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a1 

Us) =31.56 so AUS) = 31.56 ~ 15 = 16.56, 

US) = 66.25 so AULo) = 66.25 — 50 = 16.25, (49) 
) 

Now make the SOR step: 

UL) = US) + wAUL?) = 37.5 + 1.03(12.5) = 50.38, 

Us!) = US) + wAUL) = 50 + 1.03(16.25) = 66.74, (50) 

Us) = US) + AUS? = 15 + 1.03(16.56) = 32.06, 

Carrying out one more iteration (Exercise 16) and comparing the successive us") 

values, which should be representative, gives the results presented in Table |. # 

) 

  

  

  

  

  

  

Table 1. Successive Us values. 

Jacobi | Gauss-Seidel | SOR 

n=O 50 50 50 

m=l) 63.13 66.25 66.74 

n=2 | 69.38 71.41 71.70 

Exact | 72.14 72.14 72.14             

Closure. The finite-difference method developed quickly beginning around 1950 
when digital computers became widely available, and is one of the most important 
methods for solving partial differential equations. In this text we discuss it in the 
present section for the diffusion equation and in Section 20.5 for the Laplace equa- 
tion. The basic idea is to discretize the problem so that instead of seeking u(x, t) 
over the given x, ¢ domain we seek u only at a finite set of grid points. The PDE is 

discretized by replacing the various partial derivations by approximate difference 
quotients so, in place of the PDE, we end up with linear algebraic equations on the 
unknown U;;, values at the grid points. There are many possible finite-difference 

schemes for a given PDE, depending upon the forms chosen for the difference quo- 
tients. The simplest one for our diffusion equation is given by (8) and is called an 
explicit scheme because it gives Uj 741 explicitly in terms of known values. How- 

ever, this scheme is invalid if r = a?At/(Ax)* exceeds [/2, so that if we choose 
Az small, for accuracy, then we may need At to be so small that a prohibitively 

large number of time steps may be required. In the optional second part of this 
section we turn to implicit schemes to eliminate the r < 1/2 restriction. The price 
that we pay for this improvement is that at each time step we need to solve an 
(N — 1) x (N — 1) matrix equation for the N — 1 values of U along that line. 
Fortunately, the matrix is strongly diagonal, so that efficient iterative methods can 

be used for the solution.
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EXERCISES 18.6 
  

1. We use a forward difference quotient in (3) and then back- 

ward difference quotients in the numerator of the right-hand 

side of (4). 

(a) Show that if we use forward difference quotients in (3) and 

(4), then we obtain the scheme 

Uj ker = A+ rly — rj + 1542.4 (1.1) 

in place of (8). 

(b) Show that if we use backward difference quotients in (3) 

and (4), then we obtain the scheme 

ies = (1 + r)Uy i _ 2rUj—1k + rUy_ap. (1.2) 

(c) Discuss any advantages or disadvantages that occur to 

you for the schemes ({.1) and (1.2) in comparison with (8). 

2. Continue the hand calculation begun in Example |. Specif- 

ically, determine Us, Uos, U3 3, and U, vty Uo 4, U3 4. 

3. Consider the problem a7uze = Uy (O<a<10,0<t< 

oo) with ne boundary and initial conditions u(0,t) = 100, 

(0, t) = OQ, and u(z,0) = 0. With Ax = 2.5, At = 2. and 
? = 1, use 8 to compute the first three “lines” of U; 4,"s: the 

nine values VU, , through Uy 5. 

4. Show that if the PDE (1a) is modified to include a Newton 

cooling term fu and a heat source distribution term /(x, t), 
as 

Ure = t+ Hu-~ F(x,t), (O<a<b, 0<t<oo) 

(4.1) 
then in place of (8) we obtain 

Oj ear = TUj 1 + (1 2r ~ HAC)U, g APU jr + Ej At, 

(4.2) 
where f) , denotes F(x,,¢,) and A is a constant. 

= 1.£L = 1, u(0,t) = 0,u(a2,0) = 
QO, and F(a,t) = 10. With At = 0.02 

5. In Exercise 4, let a? 
0,u(1,t) =0.H = 
and Aw = 0.25 

U;4°s, Le., the nine values V/, through Us 5. 

6. Repeat Exercise 5, with these changes: u(0,t) = 100, 
F(a,t) = l0sin qe. 

7, Repeat Exercise 5, with these changes: u(x,0) = 100, 
Ho=4, F(a, t) = 0. 

. use (4.2) to compute the first three “lines” of 

8. To see the smoothing nature of the diffusion process in a 

simple numerical example, consider the problem 

(—co <r < oo, O<t < oo) 

u(z,0) = 1l00AH (2), 

2 
Olan = Us, 

where f(x) is the Heaviside function, and the diffusivity is 

== 0.2. Use (8), with At = 0.5 and Au = = 1, to compute 

the Uj, values for the first three lines: i.e., through & = 3. 
Plot Uj, versus j, fork = 0,1, 2,3. 

9. (a) To see the effect of the condition (19) in a simple calcu- 

lation, use (8) for the problem 

(~o0 <a <co, 0<t < ow) 

u(az,0) = 100A (x), 

where H(a) is the Heaviside function. With At = 0.2 and 

Ac = 1, compute the Uj, values for the first five lines: iLe., 

through & = 5. Keeping Ax = 1, repeat the calculation with 

At = 0.4, 0.6, and 0.8. 

(b) Plot your results and discuss them. 

(c) For the four different cases (At = 0.2,0.4, 0.6, 0.8), plot 

your final temperature distribution (i.e., at & = 5) and also the 

exact solution (which can be found in Section 18.4). 

10. In (1) let £ = 12, p(t) = 100, g(t) = 0. and f(z) = 0, and 
suppose the rod is comprised of two different materials, with 

= 18 over0 < 2 < Ganda? = 0.2 over6 <2 < 12. 

With At = 0.5 and Ax = 2, use (8) to compute the Uj, 

values for the first four lines; i.e., through & = 4. Note that (8) 

holds over x < 6 and over z > 6 but not at the junction = 6. 

There, use the fact that the heat flux crossing x = 6 from the 

left must equal the heat flux crossing 2 = 6 toward the right 

or, from the Fourier law of heat conduction, 

Ura = Ut, 
(9.1) 

  
Ou ._ Oui 

Kb ae =-Krp = : (10.1) 
| =i & | z=6+ 

where Ky, = 25 is the thermal conductivity of the material 

to the left of « = 6 and Ky, = 3 is the thermal conductivity 

of the material to the right of x = 6. You will need to express 

(10.1) in finite-difference form. 

11. The problem 

(O<a<1, O<t< co) 

u(0,¢) = u(1,t) = 0, u(a,0) = 100 sin ra 

Uauw = Us, 
(11.1)



  

admits the exact one-term solution u(z, ¢) = 

100(sin ra) exp (~7m"#). 

(a) Use (8), with Aé = 0.02 and Ax = 0.25 to compute the 

first three lines of Uj.°s (Le. through A = 3) and compare 

your results with the exact values. 

(b) Use (8) to evaluate u(0.5, 0.06), with At and Aa sulfi- 

ciently small so that your value of u(0.5,0.06) ts correct to 

four significant figures. (Use a computer.) 

(c) Use (8) to evaluate (by computer) the U;,’s through k = 

45, with At = 0.0010 and Aw = 0.05. Plot both your com- 
puted solution and the exact solution at ¢ = 0.045 (ie. at 

ko = 45). 

(d) Use (8) to evaluate (by computer) the U;,.°s through & = 

30, and At = 0.0015 and Aw = 0.05. Plot both your com- 

puted solution and the exact solution at ¢ = 0.045 (.e., at 

ki = 30). 

(e) Use (8) to evaluate (by computer) the U/y.,°s through k = 

15, with At = 0.0030 and Av = 0.05. Plot both your com- 

puted solution and the exact solution at ¢ = 0.045 (Le., at 

A == 15). Interpret your results in the light of your results to 

parts (c) and (d) if, indeed, you worked those parts. 

12. (Use of Taylor series) To derive the finite-difference ap- 

proximation (5) we used the classical difference quotient defi- 

nition of the derivative. Derive (5) using Taylor series instead. 

HINT: Expand u(a + Aw. t) about wx: 

1 2 
u(wtAnr.t} = ule, t)+ue (x. t)Ar+s tee (ae, t}(A@) te... 

Similarly, expand u(r ~ Aw,t) about x. Add those two for- 

mulas, cut off the series on the right-hand side after the first 

couple of terms (as an approximation), and solve for wpa (wv, t). 

13. (Deriving the stability criterion (19)) We stated that the 

finite-difference scheme (8) is both convergent and stable if 

r < 4. and is both divergent and unstable if r > 4. Here, 

we outline a proof of the stability part of that claim and ask 

you to write out the steps and to supply any missing steps or 

reasoning. To begin, show that (8) can be expressed in matrix 

form as 

(rea. Un-veet] = 

1 —- ?r r 0 nae 0 Uva 

! L-?r 3 Us 4, 

ro ot=2) r Un—2. 
UN 1k 

[8.6. Numerical Solution {013 

+(rUon,O..-OrU yp], (13.1) 

where we use the transpose notation to save vertical space. 

More compactly, express (13.1) as 

Unset = AU; + Ch. (13.2) 

In stability analyses tt is commonly assumed that roundoff 

errors occur only along the first line (A = Q), say, and then to 

see whether the errors remain bounded as & increases. Thus, 

in place of the exact values Ug, eg. the initial roundoff errors 

result in the actual values Uj, cj. The machine proceeds to 

compute values UT, US,... according to 

Up. = AUL + eR, (13.3) 

rather than exact values U,, Us,... 

that the roundoff error e, = U,— 

according to (13.2). Show 

;, propagates according to 

€n41 = Aen + bg, (13.4) 

where by = Ch - (fh = [reo.n,0,.--,0,rena] From 

(13.4) show that 

_ ke h-1 = 
e, = AXen + AX ' bo. (13.5) 

Show that the (V — 1) x (NV — 1) matrix A must have V ~ 1 

orthogonal eigenvectors, say By,...,®By_—1, so that eg and 

bp can be expressed in the form 

ep = a, P, +--+ $aN_ PN), 0 121 N-1PN-1 (13.6.7) 

bo = 9,8, +--+ + Bn-1Pn_1. 

Putting these into (13.5), show that 

en = (aE + GAP) @) + -- k ( LAY Lay ) 1 (13.8) 

: kel \¢ 
+(ayiAK_y rv Jy Ny) Pn-1, 

where Aj..... Axy—y are the eigenvalues of A. Explain why it 

follows from (13.8) that for stability it is necessary and sulh- 

cient that 

  

MES ly... Awa) <1. (13.9) 

Since A is a function of r its A’s are too. Hence, the most 

restrictive of the conditions (13.9) should give (19), Show that 

(13.9) does. indeed. give r < 4 or, more precisely,
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l 
roe (13.10) 
a  {N-1 

| — COS wT 

For large N the right-hand side is approximately $s e.g., for 

N = 50 (13.10) gives r < 0.50049. HINT: The A matrix is 

tridiagonal, of the type shown in Exercise 7 of Section [1.2 

with “a? = 7, “b? = 1—2r,and“c” = r. Thus, its eigenvalues 

are, according to equation (7.1) of that exercise, 

An = 1 — 2r + 2r-cos (13.11) 
N 

form = 1,2,...,N — 1. Further, note that each inequal- 

ity |Aj| < 1 in (13.9) amounts to the statement ~1 < Aj < 1, 
hence the nvo inequalities -1 < A; and A; < 1. Of the 2N—2 
inequalities in (13.9), you should find that the most restrictive 

condition on r is given by (13.10). 

14. (Stability of implicit scheme) The stability of the implicit 

scheme (21) for all r (if 6 > 5) is a striking result. 

of that result would follow the same lines as the proof that 

is outlined in Exercise 13 for the explicit scheme. However, 

for pedagogical purposes it might be better to consider the 

simpler case of an ordinary differential equation. Specifically, 
consider the simple test equation 

Up = ~ As, (14.1) 

where A is a prescribed positive constant, with the implicit 
finite-difference approximation 

Og at _ Uk _ 

At - 

Following the same lines as in Exercise 13, show that the 

roundoff error e;, = U, — Uf propagates according to 

—(1— O)AU, — OAU R42. (14.2) 

Chay = Ken, (14.3) 

where 

~~ 1-AQ—a@jAt 

i+ AOAt as) 
Thus, show that the scheme is stable if and only if 

A(1 ~ 20)At < 2. (14.5) 

NOTE: Suppose that @ = 0 so the scheme (14.2) is ex- 

plicit. Then (14.5) tells us that for stability we must choose 

At < 2/A, In some problems, such as occur in the study of 

Proof 

chemical kinetics, A can be extremely large, so that At < 2/A 

forces us to use extremely small time steps. However, observe 

that if we use the implicit scheme (14.2) with @ > 2 then 

(14.5) is satisfied with no restriction on At. 

15. Use the Crank—Nicolson scheme (22) to solve the prob- 

lem (11.1) in Exercise | 1 through the first three lines of U; x's 

(ie., through k = 3), with At = 0.1 and Ac = 0.25, using 

computer software (such as the Maple linsolve command) to 

solve the matrix equation obtained at each time step. Compare 
your results at ¢ = 0.3 with the exact solution. 

16. In Example 3 we used the Jacobi, Gauss-Seidel, and SOR 

methods to work out the iterates U; 0, us). us? and ue), 

us, us). Continuing the calculation, work out ul, us, 

uy, NOTE: For us?) “; your three values should agree with the 
values 69.38, 71.41, 71.70 given in Table 1. 

17. In (28) letr = 2 ande = [1,1,1,1]*. (Thus, N = 5.) 

(a) Solve for U,,41 using Jacobi iteration, terminating the it- 

erations when ue - Ue < 0.0001, say, for each 7 

(jy = 1,2,3,4). Record the number of iterations needed to 

achieve that accuracy. 

(b) Same as part (a) but using Gauss—Seidel iteration instead. 

(c) Same as part (a) but using the SOR method. Use w = 

0.9, 1.0, 1.1, and 1.2, and compare the optimum w with that 

predicted by (39), 

18. (Convergence of Jacobi iteration) It is stated below (33) 

that the Jacobi iteration (33) converges to the solution of (26) 

for all finite values of 7. Prove that claim. HINT: Denote 

the eigenvalues and eigenvectors of A’ as Ay,...,AN—1 and 

@,,...,®y_;. Expanding c as 

N-1 

C= ) cB, (18.1) 

1 

(31) and (33) give 

(0) 
Ua = 

N-1 1 

=f » cy ®;, (o= = aie} 

N-1 

ue a9 To BDO 

= 6 ya ~ BX, )ej; ®;, 

N-1 

1 
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Nay 3) S°—— &, 2 | d Tomy &,; (18.2) 
and so on. Use (13.11) in Exercise 13 to show that |BA;| <1 ym 

for each 7, for allr < oo. Thus, show that kL 

as 7m — oo, and verify that (18.2) satisfies (26). 

  

Chapter 18 Review 

The central problem of this chapter is the one-dimensional diffusion equation 

2, =< | Oo Uge = Ut (1) 

on a finite xv interval, with constant Dirichlet (uw given) or Neumann (u, given) 

boundary conditions. The problem can be solved by the method of separation of 
variables, the key point of which is the reduction of the PDE to two ODE’s gov- 

erning the factors X (x) and T(¢). We emphasize that the boundary conditions are 
to be applied before the initial condition and we show how to use Fourier series to 
satisfy the initial condition. Our approach is only formal, but the issue of rigorous 
justification is addressed in the brief optional Section 18.3.2. 

In other cases Fourier series (i.e., the half- and quarter-range formulas and the 
full Fourier series of a periodic function) may not suffice — for instance, if we have 
Robin boundary conditions (a linear combination of u and uz given) or if we have 
axisymmetric heat conduction in a circular disk or cylinder, governed by the PDE 

9 1 
QS | Upp + Up | = Up. (2) r 

These cases can be handled using the more powerful Sturm—Liouville theory, as 
discussed in the optional Section 18.3.3, and the series expansion required for sat- 
isfaction of the initial condition is in terms of the eigenfunctions of the relevant 
Sturm—Liouville problem. 

Additional generalizations of (1) are contained in the exercises for Section 

18.3, such as the inclusion of one or more of the terms V wz (due to axial convection 

of the medium), Hu (a Newton cooling term due to lateral heat loss), and F(z, t) 

(due to a distributed source within the medium) in the equation 

A Uge = te + Vue + Hu — F(2,t). (3) 

The Fourier and Laplace transforms enable us to handle problems for which the 
basic separation of variable method fails or is awkward — for instance, problems 
on a semi-infinite (0 < x < oo) or infinite (—co < x < co) x domain, or with 

nonconstant boundary conditions or a distributed source term. These cases are 
discussed in Section 18.4. 

The optional Section 18.5 explains a useful method known as the method of 
images, which is based on the idea of satisfying homogeneous boundary conditions
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by fictitiously extending the problem so as to build in symmetry or antisymmetry 
about the boundary in question. The method is used again in Chapters 19 and 20, 

but the idea is simple enough so that Section 18.5 is not a prerequisite for those 

chapters. 
The final section, 18.6, explains the numerical solution of the diffusion equa- 

tion by the method of finite differences and gives a glimpse of the power of numer- 
ical simulation. We find that the simple explicit method is limited by the condition 

that 
At 1 

oe << 

(Ax)? ~ 2 

for convergence and stability. To remove the condition (4) we can use an implicit 
method instead, such as the Crank-—Nicolson method, but the price that we pay 
is that to generate each time line of Uj, values we need to solve an (N ~ 1) x 
(N — 1) matrix equation, where N is the number of divisions of Z (i.e., Av = 

L/N). Fortunately, the matrix is strongly diagonal, so the equation can be solved 
efficiently by iteration. The mathematics of the finite-difference method is linear 
algebra since one is replacing a linear PDE by a large system of linear algebraic 
equations. Questions of convergence, stability, and efficiency are best dealt with 
using linear algebra methods such as are covered here in Chapters 8-12. 

Important general features of the diffusion equation are as follows: 

2 
r= a (4) 

1. The diffusion equation is an initial-value problem in t, as is especially clear 
in Section 18.6 where we see from the “marching” scheme 

Uj gy = rUjiig + (1 2r)Uj + Uji (5) 

that the solution along the line t = (&+1)At is implied by the solution along 

the preceding line t = kAt. 

rm
 Diffusion is a smoothing process, as seen from our various solution plots and 

also from the finite-difference formula (5), since U;j,41 is thereby given as a 

weighted average of the preceding values Uj_1,4, Uj, and Uj4i,4, “average” 
because the coefficients 7,1 — 2r,r in (5) sum to unity. 

Recall from Section 18.2 that the linear PDE 

Ate + 2Buey + Cuyy + Duy + Euy + Fu= f (6) 

is parabolic if B* — AC = 0, and that the diffusion equation (1) is a simple or 

canonical form of the general second-order parabolic PDE (with the y’s changed to 
t’s). Thus, understand (1) to be representative of that entire class of PDE’s.



  

Chapter 19 

Wave Equation 

19.1 Introduction 

The wave equation   

Vu = Ue (1) 
      

governs a wide variety a wave phenomena such as electromagnetic waves, water 

waves, supersonic flow, pulsatile blood flow, acoustics, elastic waves in solids, and 

vibrating strings and membranes. In this introductory section we derive the wave 

equations governing the vibrating string and vibrating membrane and outline, in 

the exercises, several other such cases leading to wave equations. 
By a vibrating string we mean a taut string, such as a guitar string, undergo- 

ing a planar vibratory motion. The problem of the vibrating string 1s of historical 

importance since it was studied extensively by the great mathematicians Leonhard 
Euler (1707-1783), Jean Le Rond d’Alembert (17171783), Daniel Bernoulli (1700- 

1782), and JosephLouis Lagrange (1736-1813). That work gave birth to the subject 

of partial differential equations. For example, it was in his study of the vibrating 
string that d’Alembert developed the method of separation of variables used in 

Chapter 18 and which is now a standard tool in the solution of PDE’s. Likewise, he 

found it necessary to represent the initial shape of the string by what is now known 

as a Fourier series. Whether such representation is possible, for any given initial 
shape of the string, was the subject of heated debate, a debate that continued well 
into the nineteenth century. The theory of Fourier series that emerged is the subject 

of Chapter |7. 
Beginning our derivation, consider a flexible string stretched under tension 7 

newtons between fixed endpoints at z = 0 and 2 = ZL ona horizontal a2 axis 

(Fig. 1). Let the mass per unit length of the string be o, a constant, and suppose 

that the string supports a distributed load f(a, ¢) newtons per unit x length, counted 
as positive if it acts downward. Considering the plane vertical motion of the string 

(in the x. y plane), the desired unknown is the displacement y(.x, t). 

1017
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    > 

yx, t) 

Figure 1. Loaded vibrating string. 

We assume that 

1. the slope Oy/Ox is uniformly small over the length of the string (i.e., |Oy/Oz| < 

1); 

2. acting on each cross section of the string is the tangentially oriented tension 
force 7, but no shear force or bending moment as is explained in Example 2 
of Section 1.3. 

The relevant physical principle is Newton’s second law of motion, which we 
apply to the vertical motion of an element of the string between x and x + Az 
(Fig. 2): 

Tsin@(x + Aw,t) ~7sin@(a,t) ~ f(x + aAz,t)Av 
2 

=: as oH (2 + BAz,t), (2) 

where As is the arc length. That is, the sum of the vertical forces [on the left-hand 

side of (2)] equals the mass oAs times the vertical acceleration of the mass center 

at x + GAx (for some @ such that0 < 3 < 1). We have assumed that f is a 
continuous function of x (although that condition could be relaxed) so that there 
is a point x + aAz (for some a between 0 and 1) at which f takes on its average 
value over the (x, a + Az) interval. 

According to Assumption |, @ is small so we have these approximations from 
the Taylor series of sin @ and tan @: 

OP... ee (3) 

and 

Fan @ 6 1 3 2 5 ms 
tan@ =@+ ai? +758 fee cy @, (4)



    

  

& x+ Ax x 

Figure 2. String element. 

Hence, for small 9 we have sing = tan4@, the truth of which can also be seen 

graphically in Fig. 3. But tan @ is the slope Oy/Qz. It also follows from assumption 

1 that cos@ = 1 — H 627 +---e1,soAs= Ax/cos@ = Az. Thus, we can elim- 

inate the temporary variables @ and s in favor of y and x and re-express (2) as 

Ve + Az,t)— OY en 4) a? 
7 Gx Ox -~f(«+aAz,t)=o oy 

Ag ot? 

Finally, letting Aw —+ 0 in (5) gives the desired PDE 

  (c+ GAz,t). (5) 

ay ary 
7 —s(a,t) - f(e,t) =o —S(a,t (6) <4 (0,t) = fat) =o 53 (a.t) 6 

governing y(z, t). If f is simply the gravitational force on the string (i.e., the weight 

force per unit length of the string), then f(a,t) = og = constant, where g is the 

acceleration due to gravity, and (6) becomes 

    
ay ay 

ToS =o + og. 7 
Ox? Ot? g ) 

if the gravitational term is negligible, as is surely the case for a guitar string,” then 

(7) reduces to 
Ory ay 

= (3) aay = Ome ” Ox? at 

or, setting ¢ = \/7/o and using the more compact subscript notation for partial 

derivatives,   

  CYrn = Vits (9)     
  

* A guitar sounds the same if it is played horizontally [so the og term is present In (7)] or vertically 

[ so the og term is nor present in (7)]. Applying dimensional reasoning to (7), we find that the og 

term can be neglected if og << 7/L. 
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Figure 3. sin@ ~ 6 = tan@ 

for small @.
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Figure 4. Radius of curvature R. 

  

Figure 5. Nonuniformly stretched 

membrane. 

which is the classical one-dimensional wave equation governing y(c, t). 

{t is always important to tie together the mathematics and the physics. Ac- 
cordingly, how are we to understand the terms in (8)? Essentially, (8) is of the form 

force = mass x acceleration.* The ry,, term is the net vertical force on the element 

due to the tension 7. To understand its form, recall from the calculus that the local 

radius of curvature R and curvature « for a plane curve y(x) (Fig. 4) are given by 

1 yl" 

In our case |y’| < 1, so (10) becomes & ~ y””. Thus, within our assumption of 
small deflection and small slope the ryz, term in (8) is the product of the tension 

and the curvature. That result makes sense physically because it is through the 
curvature that the two tension forces in Fig. 2 are misaligned and therefore have a 
nonzero vertical resultant. 

We close this section with an introduction to the two-dimensional wave equa- 
tion. Specifically, consider the two-dimensional version of a vibrating string, a vi- 
brating membrane such as a drumhead. We assume that the membrane is stretched 
uniformly under a tension 7 per unit length. That is, at each point of the membrane 
the tension per unit length along any straight line through that point, independent of 
the orientation of the line, is 7. If, for example, we stretch a rectangular membrane 
horizontally (Fig. 5) and then clamp the four edges, then the membrane would not 
be stretched uniformly, for the tension per unit length along any vertical line would 
be 7 whereas along any horizontal line it would be zero. 

Denoting the displacement of the membrane out of the x, y plane as w(z, y, t), 
we proceed essentially as before. Thus, we assume that the slopes Ow/Qzx and 

Ow/Oy are uniformly small over the domain (i.e., |Ow/Ox) < Land |Ow/dy| « 
1), and that the membrane is perfectly flexible, so that only the tangential tensile 
force 7 acts. Then, applying Newton’s second law to a membrane element lying 
between x and x + Ag and between y and y + Ay (Fig. 6), gives 

  

  

— TAysind TAysin@ 
z+Ar 

  

c 3 

— fAvAy =cAA ow (1) +7 Ax sin d 7 
y Ot? ’ 

—TAxsin @ 
ytdy     

where o is the mass per unit area of the membrane, AA is the surface area of the 
element under consideration, and f(x, y,¢) is a distributed load counted as positive 
if it acts downward. By virtue of the stated assumptions, sing = @ = tan@ = 
Ow/Oxz, sing = @ = tang = Ow/dy, and AA = AxAy, so (11) becomes 

1 

WrlerAg 7 Wel» WylytaAy ~ Wy|, r char x 4 Yu y ¥ 

Ar Ay 
  ~— f = owe, (12) 

  

“More precisely, (8) is on a per unit a-length basis: the vertical force per unit 2 length is equal to 

the mass per unit x length times the vertical acceleration. 
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and letting Av -+ 0 and Ay - 0 gives the PDE 

T (Wee + Wyy) — f(e,y,t) = owe. (13) 

If f = 0 and if we define c = \/7/o, then (13) becomes the classical nvo- 

dimensional wave equation 

  

    
C (Wee + Wyy) = Wt 

(14) 

  

governing w(x, y,t). 

  

Figure 6. Membrane element. 

In the next two sections we solve the vibrating string and vibrating membrane 

equations by separation of variables, 

Closure. [n this section we derive the one- and two-dimensional wave equations (9) 

and (14) governing vibrating strings and vibrating membranes, respectively, subject 

to the assumptions that the string or membrane is flexible and that the slopes are 

small. Several additional problems governed by wave equations are given in the 

€Xercises. 

  

EXERCISES 19.1 
  

L. (Hanging chain) Let a flexible chain hang from the ceiling. 

Measure x downward from the ceiling and let y(w,¢) be its g|(L — e)yrle = Yes (1.1) 

lateral displacement. Modifying our derivation of (9) as ap- 

propriate. show that the PDE governing y(2, t) is where g is the acceleration due to gravity and L is the length
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of the chain. 

2. (Longitudinal waves in a rod) Consider a uniform metal bar, 

of cross-sectional area A and mass per unit length o, with a 

stress distribution s(x, ¢) and a resulting longitudinal displace- 

ment u(z,t). Applying Newton’s second law to an element of 

the rod between x and « + Aa, shown in the figure, show that 

  
Os Ou 

Ax = 7 OL. (2.1) 

Suppose that the material admits a linear stress-strain rela- 

tionship s = Me, where the constant of proportionality E is 

Young’s modulus, and the strain € is defined as the “stretch per 

. - ule + Av,t)—a(2,t) _ 
unit length,” so that ¢ = wes ee Dae) From these 

x 
relations, show that s and u both satisfy one-dimensional wave 
equations 

2 2 
C"Une = Ut and C’ Sax = Stet, (2.2) 

where c = /EA/c. 

u(x,t) \ u(x+ Ax,t) 

          

— 

xv 

5(x+ Ax,t) 

x xX+An 

3. (Electromagnetic waves) (a) Electromagnetic fields in 

free space (i.e., in a vacuum) are governed by the famous 
Maxwell’s equations: 

Vx H= € oe 
Ot 

VxE= on 
= Lo at’ 

(3.1,2,3,4) 

V-H= 0, 

where E and H are the electric and magnetic field intensi- 

ties, respectively, and where € and jig are the permittivity and 

permeability of free space, respectively. Show that it follows 

from (3.1)-(.4) that E and H (which are functions of 2, Y,z 

and the time 7) satisfy the wave equations 

CWH=Hy and CVE = Ey, (3.5) 

where c = 1/,/eojto. HINT: Recall the identity V x (V x 

v) = V(V-v) — V?v trom Section 16.6. 

(b) Write the x,y,z components of the vector wave equa- 
tions (3.5). 

4. (Current and magnetic field) Suppose that the “string” is ac- 

tually a flexible wire of mass per unit length o, under tension 

T, carrying a current J in the presence of a uniform magnetic 

field of magnetic flux density B = Byi + Boj ++ Bak. Since a 

charge @ moving with velocity U in such a field experiences 

aforce F = (QU x B, we may need to revise the vibrating 

string equation to include lateral magnetic forcing terms. 

(a) Show that within the usual vibrating string approximations, 

the magnetic force exerted on an element of the wire is 

AF x qAAz [vi + (Uys + ue)j + (Uze + zi)k| x B, 

(4.1) 
where the constants g,A,U are the charge per unit volume 

within the wire, cross-sectional area of the wire, and velocity 

of the charges within the wire, respectively. HINT: The 2, y, z 

velocity components of an element of charge within the wire 
are 

dz de _ iy 
ly dt dx 

ge = Yr @ + yt = Uys + Yes 
Zz dx 

—(ax(t),t) = zy — +z, = Uzy 4+ 2%. 
ae ) dt ‘ + 2 

(b) Working out the cross product in (4.1) and noting that gAU 

is the current /, show that the equations of (the not necessarily 

planar) motion of the wire are 

TYxx ~ 1B3 + (Le, + qAx)Bi = oye, (4.2) 

T2ee + 1Bo — (Lyn + qAy.) Bi = o218, 

where a,y,z are right-handed Cartesian coordinates. No- 

tice that these equations are coupled due to the zz, 2, yz, and 

ye terms. Naturally, in a particular application one or more of 

the additional magnetic-field terms might be negligible. 

3. (Water waves) Consider plane water waves in water of depth 

h(a) as shown in the figure. If the wavelength is much greater 

  

¥ 

_ — an 
A(x) 
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than A (as is true for ocean tides and certain waves in shallow acceleration due to gravity. If we restrict our attention to small 

water), the governing equations are found to be amplitude motions — so that the “second-order” term wu, can 

be neglected relative to the “first-order” terms uz and gn, and 

Up + UUe = 9a; 7) can be neglected relative to # ~ then show that 7 satisfies the (5.1,2) . ee 1 
(u(n + h)l, = Ne equation g(t )e = Te or, if h(a) is a constant, 

where u is the x velocity [which is approximately constant 

with respect to y so u = u(z,t)|, 7(a,t) is the free-surface 
elevation relative to the undisturbed water level, and g is the 

C Nee = Tet (5.3) 

where c = VJ/gh. 

  

19.2 Separation of Variables; Vibrating String 

19.2.1. Solution by separation of variables. In Section 19.1 we derive the wave 

equation governing the motion of a vibrating string. In the present section we 

complete the formulation by appending boundary and initial conditions and then 

show how to solve for y(x, t) by the method of separation of variables. 

Specifically, let us consider a finite string extending over 0 < x < L, tied at its 

ends, and having initial displacement y(x,0) = f(a) and initial velocity y,(x,0) = th 

g(x), where f' and g are prescribed. Thus, the complete problem statement is 

C"Yan = Vits (O<a<L, 0<t<o) (la) 

y(0,t) = 0, y(L,t) =0, (0<t< oo) (1b) 

ylx,0) = fle), yel,0) = ale) (0< 2 <L) (Icy ¥=0 y=0 
and is summarized in Fig. 1. 

Notice carefully that for the diffusion equation Up, <= Ut (Chapter 18) we     
prescribe only u initially, whereas for the wave equation we prescribe both y and ye Fa) * 

y, initially. Intuitively, it certainly seems reasonable that to predict y(z,t) we will ° ( ; 
vr = BAN 

need to know how the string is set in motion, namely, both the initial displacement 

y(a, 0) and the initial velocity y;(2,0). From a mathematical point of view we are Figure 1. Problem (1) in the 2, ¢ 

guided by the fact that the wave equation (la) is a second-order equation with re- 

spect to t (whereas the diffusion equation ts of first order), so we expect to need two 

initial conditions. Verification that the problem statement (1) wniquely determines 

y(x, t) is left for the exercises. Here, we limit our attention to finding the solution. 

Using separation of variables, seek 

y(x,t) = X(a«)T(t). (2) 

Putting (2) into (1a) and separating the variables gives 

plane. 

xX" 1 vw 

x et °)
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Since the left-hand side of (3) is a function of x alone and the right-hand side is a 
function of ¢ alone, it follows from (3) (as discussed in Section {8.3) that both sides 

are constants, say —K?, 80 

XxX’ L qe . 

yr = 5 a = constant = —K?. (4) 
ie 

Thus, 

X" +4 4K°X =0, (Sa) 

T" +6°°T =0, (Sb) 

and 

A+ Ba, ye 0 ye + 52 . Ki (6) 

Deoska+Fsinax, «#0 

A+ It, =: O 
rai "7 " (7) 

JcosKet+ Ksin«ct, & #0. 

Our motivation for writing the minus sign in (4) is that the resulting ODE (Sb) ad- 
mits cos «ct and sin «ct solutions, which look correct since we anticipate a vibra- 
tory motion; if we write «? in (4) instead of —«?, then we obtain T” ~ «2c*T = 0, 
instead of (Sb), with nonvibratory exponential solutions.* 

Thus, we have found product solutions of the form (A + Ba)(H + It) and 
(Dcoskr+E sin kx)(J cos kct+ A sin «ct) and, relying on the linearity of L[y) = 
C Yee — Yit = 0. we can use superposition and write 

y(z,t) =(A+ Bx)(H + It) 

+(Dcosea + Esin«x)(J cos «ct + NW sin Kct). (8) 

As in Chapter 18, we apply the boundary conditions before the initial conditions. 

Accordingly, 

y(0,t) =0 = A(A + It)+ D(J cosxct + W sin «ct). (9) 

Since the right-hand side of (9) is a linear combination of the linearly independent 
functions 1, ¢,cos «ct, sin «ct, it follows from (9) that we must have either A = 0 

or H =] =0,and either D =Oor/ = K = 0. Wechoose A = 0and D = 0s0 

as to be left with as robust a solution as possible, namely, 

y(v,t) = Be(H + [t) + Esinka(J cos «ect + Iv sin Ket) (10) 

or, combining BH as P, Blas Q, BJ as R, and EK as S, for brevity, 

y(v,t) = a(P + Qt) +sinkex(Rcos «ct + S sin xct). (11) 
  

+ . . . . . ee Do. . 2 . 

“As discussed in Exercise 2 of Section 18.3, we can survive writing «~ instead of —«*, but the 

choice is less convenient because « will then end up being purely imaginary rather than real. 
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In case it is not clear how the choice A = D = 0 gives “as robust a solution 

as possible,” let us return to (9) and focus on the D(J cos Ket + A sin eet) term. If 

we choose J == KC = 0, then we lose the entire (D cos «a + E sin wx)(J cos ket + 

K sin xct) term in (8), whereas if we choose D = 0 as, indeed, we did, then we 

are left with E sin wa(J cosact + K sin «ct). Similarly, if we infer from (9) that 

H = I = 0, then we lose the entire (A + Ba)(H + Jt) term in (8), whereas if we 

infer that A = 0, then we are left with Ba(H + It). 
Next, 

y(L,t) = 0 = L(P + Qt) +sinkL(Rcos Ket + S‘sin Ket) (12) 

so we need 
LP=0 and LQ=0 (13) 

as well as 
RsinkL=-0O and Ssinkl =0. (14) 

Since L 4 0, (13) gives P = Q = 0. And if we are to avoid having R = 5 = 0, 

we must choose 

    

sink = 0. (15) 

Thus, & = n7/L forn = 1,2,.... Putting these results into (11) and using 

superposition gives 

= NAL namct mmct 
y(x,t) = Ss" sin > G cos F + S), sin Z ) . (16) 

(If any steps in deriving (16) are unclear, we urge you to review Example | in 

Section 18.3] 

Our expectation is that the R’s and S’s can now be determined from the initial 

conditions (1c). Imposing those conditions gives 

  

oO 

y(x,0) = f(x) = J> Rnsin — (0<x<L) (17a) 
n=l 

and 

y(v,0) = g(t) = 2. Sn sin — (O<2z 

We can identify each of (17a,b) as a half-range sine series so 

2 fe. nm 
Ry = 7 [ f(x) sin — dx 

and L 
nC 2 [* . a 
= Sno Z [ g(x) sin —— dx 

  

Figure 2. Plucked string.
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n=l 

Figure 3. The first three modes. 

  

or ; 
2 [* _ aL 

Sn = g(x) sin 
NIAC , 0 

    daz. (18b) 

Hence, the solution of (1) is given by (16) with the R,,’s and S',’s computed ac- 

cording to (18a) and (18b). 

To illustrate, let f(a) be as shown in Fig. 2 and let g(z) = 0. That is, we pull 
the string up at its midpoint and then release it from rest. Then (18a,b) give 

8 fF n . 

Ry = Bio, sin nn and 5S, = 0, (19) 
nen 2 

sO 

    
=*2 nm. nTx na«ct 

y 4 sin —— sin cos ——. 
on L L 

n= 

y(x, t) (20) 

The right-hand side of (20) is a superposition of distinct modes of vibration 
sin (nwxz/L) cos (nmct/L), each of which is a standing wave of spatial frequency 
ni /L and temporal frequency nac/L. The first three mode shapes are depicted in 
Fig. 3. The points z = 0 and « = JL (heavy dots in Fig. 3) are called nodal points 
of the first mode because y = O there for all t; 2 = 0, [/2, and L are nodal points 

of the second mode, and so on. Further, we say that the modes are orthogonal 
inasmuch as their shapes satisfy the orthogonality relation 

L 
Marr NTL 

sin ——— —dxr=0 21 [ sin T sin T dx (21) 

for any pair of integers m and n with m # n [equation (24b), Section 17.3]. 
It is interesting to see what (20) can tell us about the musical quality of a violin 

string plucked in the manner shown in Fig. 2. Suppose, for definiteness, that we 
tune the string so that its fundamental frequency mc/L corresponds to the lowest A 
on a piano, say Ag. Since Ag’s frequency is 27.5 cycles/sec, we accomplish that 
tuning by adjusting the tension 7 so that 

_m [trad _ (275 a (=e) (22) 

LY o sec sec cycle 

T = (55L)"o. (23) 

      

m1
 8 

Or 

Then the first several terms in (20) correspond to the combination of notes shown 

in Table 1, where A, is an A one octave higher than Ap , and so on, and ce isc 
sharp in the third octave above the lowest. Observe that the overtones (with nonzero 

amplitude), Eo, CF ., do not occur at octaves above Ag. Thus, the sound is 

not a pristine Ap with ¢ octave overtones but it is, nonetheless, fairly “clean” because 

of the relatively small amplitudes of the E>, Cr, ... contributions. The mix of fre- 
quencies and amplitudes is different for different instruments and an Ag played on 
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Table 1. The first five notes in (20). 

  

Frequency Relative 

n < Amplitude 

nm  (cycles/sec) a sin > Musical Note 

| 27.5 I Ao 

2 55.0 0 Ay 

3 82.5 5 ~ Ey 

4 110.0 0 Ag 

5 187.5 2 ae OF 

a violin sounds different from an Ag played on a tuba.” 

19.2.2. Traveling wave interpretation. We have seen that if y(x,0) = f(z) is 

prescribed and y;(x, 0) = 0, then y(2, t) is given by 

  
net 

y(a,t) = So Basin “= cos “E, (0<a<L, 0<t<co) (24) 

where the R,’s are computed from the initial condition 

y(a,0) = f(x) = Y> Rasin = (0<2<L) (25) 
noel 

as L 

2 
Ry = Z | fw) sin dx. (26) 

If we wish to plot y(a, t) at various times, we can sum the series (24) at a number 

of different x’s and t’s. However, we can do much better as we will now show. 

First, use the trigonometric identity 

l 
sin Acos B = 5 [sin (A — B) + sin(A + B)| (27) 

to re-express (24) as 

y(x,t) = s S° Rn [sin (0 — ct) + sin Fle + ct)| 

n=l 
  

* Actually, the sound of a violin is due very little to the air being set in motion by the vibrating 

string. Rather,the string drives the sounding board; through its connection at the bridge, and it is the 

vibrating sounding board that sets the adjacent air in motion and creates an audible sound. Thus, a 

serious investigation of violin mechanics would lead immediately to a much more difficult analysis 

of the vibrating sounding board.
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Figure 4. f and fost(x). 
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+ OO co 

L | ne nt 
= 5 Ss" Ry sin Tle — ct) + Ss" R, sin a e+et)|. (28) 

hd 

n=l n=] 

Finally, comparing (28) with (25) we see that the two series in (28) can be summed 
into closed form in terms of f as 

y(u,t) = alle — ct) + f(a + ct)). (29) 

There is a difficulty associated with (29): for a given « in the interval (0, 0) anda 
given ¢ in the ¢ interval (0,00), one or both of the arguments « — ct and x + ct in 

(29) may lie outside the domain of definition of f,0 <x < ZL, in which event (29) 
is meaningless. However, recall from our study of half- range sine series (Section 
17.4) that the half-range sine expansion of f(z) on 0 < a < JZ, given by (25), 
is also the Fourier series expansion of the extended function fex¢ (az) that is 2D- 

periodic and antisymmetric about « = 0 and x = L. For example, if f(a) is the 
function shown in Fig. 4a, then fex¢() is the function shown in Fig. 4b. Thus, the 
right-hand side of (28) actually sums to 

  

1 
y(a,t) = 5 ext (# — ct) + fext(a + ct)] (30) 

      

for ay values of the arguments « — ct and x + ct. 
To illustrate the use of (30), let £ = 10 andc = 12, let f be as shown in Fig. 2 

with fo = 1, and let us compute y at x = 2 andt = 3. Using (30) and the fact that 
fext is periodic with period 2L = 20 and odd, we have 

yQ, 3) = 5 [fest (2 ~ 36) + fext (2 + 36) 

= 4[ fexe(—34) + fext(38)] 
= §[fexe(—14) + fext(18)] (periodicity of fext) 

= 5 ( fext (6) + fext(—2)] (periodicity of foxt) 

= $(f(6) — f(2) (fext is odd, and foxe(x) = f(x) 

on0Q <a < 10] 

= $(3 _ 2) (definition of F in Fig. 2) 

1 

Besides using (30) to compute y at any specific 2 and t, we can use it to ob- 
tain the graph of y(a,¢) over the entire interval 0 < 2 < ZL, at any given t, by 
observing that the graph of fex¢( — ct) plotted as a function of a is simply the 

graph of fext() translated to the right through a distance ct. Similarly, the graph 
of fexe(u + ct) is the graph of fext (a) translated to the left through a distance ct. 

Thus, if f is as shown in Fig. 2, then fexe (a) is as shown in Fig. Sa, fexe(e— ct) and 

Fext (uv + ct) are as shown in Fig. Sb, and y(w.t) = 4[ foxt(a — ct) + fext(u + ct)] 
is (by addition of the two graphs in Fig. 5b and scaling by 179) as shown in Fig. 5c.
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(a) 
foxt 

a ™~ 

N a“ Ss oo 
~ va ™ “a 
~e ead 

(b) 

| ; - Foxy x met) 

i po 

~ a“ } SN - x 
So ao ct] x ~ a“ 

“oN ma faxt(« tet) — Se NO 

(c) 

y(x, ¢) 

" : 
Figure 5. Graphical use of (30). 

Carrying out this graphical procedure at a number of different times over one 

complete cycle yields the solution sequence shown in Fig. 6. Consider the results 

shown in Fig. 6 in terms of the physics. At t = 0 the string segments AB and BC 

are straight, so each string element is in static equilibrium — except at B, which 

point is driven downward (Fig. 7). The plateau DFE (Fig. 6) moves downward at 

constant velocity (i.e., with no acceleration) since there is no net vertical force on 

the elements between D and E. (Remember that we have neglected the effects of 

gravity.) 

We can now explain why CYare = Ye is called the “wave” equation for we 

see from (24) that y(z,t) can be expressed as a superposition of standing waves 

of shape sin (n7a/L) and temporal frequency nae/L rad/sec. The sum of these 

waves is also a standing wave, of temporal frequency mc/L. Alternatively, (28) 

expresses y(a,t) as a superposition of traveling waves traveling to the right and 

left with speed c. Thus, the parameter c in the wave equation Cre = Yit iS NOW 

seen to be the wave speed — that is, the speed of propagation of the traveling waves. 

Recalling that c = \/7/a, it does seem reasonable physically that the wave speed 

should increase with the tension 7 and decrease with the lineal mass density a. To 

reiterate, (28) expresses y as a superposition of sinusoidal traveling waves criss- 

crossing leftward and rightward with speed c. Over the physical interval (0, L) 

these waves sum to a standing wave with nodes at x = O anda = L. 

19.2.3. Using Sturm -—Liouville theory. (Optional) If we rely on the Sturm — 

Liouville theory, then we understand (17a) and (17b) as eigenfunction expansions 

of f and g in terms of the orthogonal eigenfunctions sin (naa/L) of the relevant 
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t=0 A a Cc 
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F G 
Lk rn 
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iL 
le 

L zh . ~~ a 
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7L 

6¢ a ae 

41 ana ~ _ 

3c 

3L 

2c 

5 a 

UW ee 
Oe 

26 a 

Figure 6. Solution sequence 

over one cycle. 

    

Figure 7. Downward force at B.
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Sturm—Liouville problem, namely, 

X" 4+ 67X =0, (0<2<L) (31a) 

X(0)=0, X(L)=0. (31b) 

Then the weight function in the inner product is 1, and 

L a). MTL 
(F(x), sin —) / F(x) sin a dx 

(sin sin a) - [ 9 NTL 

0 
L sin” —— dz 

L marr 
== | F(x) sin ——~ de (32) 

0 L 

as in (18a), and similarly for S,,. 

Closure. Like the problem of heat conduction in a finite rod (Section 18.3), the vi- 
brating finite string problem (1) is defined on a semi-infinite strip in the 2, t plane, 
with boundary conditions at x = 0 and x = L. However, the PDE is of second 
order with respect to ¢, so two initial conditions are appropriate rather than one. 
Solution by separation of variables proceeds in essentially the same manner as in 
Section 18.3 and, as for the heat equation, it is necessary to apply the boundary 
conditions before the initial conditions. The solution (24) is in the form of a super- 
position of orthogonal modes, each one being a standing wave. Alternatively, the 
trigonometric identity (27) enables us to re-express the solution in the form (28), 
namely, as a superposition of left- and right-running traveling waves with wave 
speed c. More simply, (30) gives the solution as the sum of two traveling waves, 
one left-running and one right-running. 

From Fig. 6 we see that the initially “kinky” deflection y(z, t) does not smooth 
out as ¢ increases, the way an initially kinky or discontinuous temperature distri- 
bution u(x,t) does, and this is a major difference between the wave and diffusion 
processes. Rather, kinks and discontinuities in the initial conditions propagate into 
the x, t domain. 

  

EXERCISES 19.2 
  

1. Let L = 10,¢ = 12, and fo = 1 in (20). Use (20) to (j) y(3, 40) (k) y(1, 2) (l) yC1, 10) 
compute y at the specified values of x and ¢, to two significant 2. Solve (1) for y(a, ¢) for the case where f(x) = 0 and 
figures. Then use (30) to compute y and show that your two (a) g(x) = 50sin (3ar/L) 

results agree. (b) g(x) = 3sin (wa/L) —5sin (4rx/L) 
(c) g(x) = sin (2r2/L) + sin (8r2/L) + 4sin (8r2/L) () u(5,1) () (5,2) (©) (5,3) (2) = sin Cre /h) ¥ sin Gra/h) + 4sin Gra/2) (a) y(5, 4) (e) y(5, 6) (f) y(5, 10) 3. Using the solution technique illustrated in Fig. 5, obtain the 

(g) y(5, 20) (h) y(3, 1) (i) y(3, 10) graphs shown in Fig. 6, for the given values of t, and label any 

key values.



  

Lb LL iL 

25 5L Lb 
di=-— e)ti=s- t= (d) Rc (e) Gc (ft c 

7 4 L 30 
t=-- hbt=-- info -— (g) Gc (h) - (it 5% 

5L 11L L 
@ti=s- (kK)t=— = (yt=2= 

oc 2c c 

4. Construct neat labeled sketches of the graph of y(., t) ver- 

sus t for the oscillation depicted in Fig. 6, for «# = L/2 and 

also fora = L/4. 

5, If, instead of the string being tied at c = L such that 

y(L, t) = 0, the string is looped around a vertical frictionless 

wire (as shown in the figure), then in place of y(L,t) = 0 the 

boundary condition becomes 

ya (L,t) = 0. (5.1) 

  

(a) Explain why (5.1) is true. 

(b) Solve (1a) for y(z, t) by separation of variables, with these 

boundary and initial conditions: 

y(0, t) = 0, Ya (L,t) = 0, 

y(x,0) = f(x), yelw,0) = 0, 

leaving expansion coefficients in integral form. 

(c) Solve (la) for y(az, t) by separation of variables, with these 

boundary and initial conditions: 

0, Ye(L,t) = 0, 

0, y(v,0) = V, 
Ya (0, t) = 

y(x,0) = 

where V is a constant. 

(d) Solve (1a) for y(a, t) by separation of variables, with these 

boundary and initial conditions. 

Ya (0,t) = 0, y(L,t) = 9, 

y(x,0) = 0, ye(x,0) = g(2), 

leaving expansion coefficients in integral form. 

6. Unclusion of damping) Unless the string vibrates in a vac- 

uum, there will be some damping due to the movement of the 
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string through the fluid (be it air, water, or whatever). If the 

damping force is proportional to the velocity y,, the modified 

equation of motion becomes 

CYow = Yee + Yt, (6.1) 

where a is a known constant. For definiteness, suppose that 

0 < a < 2nc/L. Solve (6.1) by separation of variables, 

subject to the conditions. 

y(0,t) = 0, y(L,t) = 9, 
y(z, 0) = f(z), ye(@, 0) = 0, 

leaving expansion coefficients in integral form. Summarize, in 

words, the effect(s) of the damping term ay. 

7. Unclusion of lateral spring) If, as shown in the figure, 

y 

  

oe 

a lateral distributed spring is included, then the modified equa- 

tion of motion for the vibrating string is Tyza — ky = OYyit. 

where & is the spring stiffness per unit length (newtons per 

meter per meter) or 

T k 

(“ ~ ° ~ ;) o o 

Solve (7.1) by separation of variables, subject to the condi- 

tions 

C7 Yee ~~ by = Yue- (7.1) 

y(0, t) = 0, y(Z, t) =0, 

y(x, 0) = f(z), yr(z, 0) = 0, 

leaving expansion coefficients in integral form. Summarize, in 

words, the effect(s) of the spring term by in (7.1). 

8. (Constant forcing function) We saw in Section 19.1 that if 

the effects of gravity are included, then the governing PDE is 

C'Yan = Yi tg. (8.1) 

That is, the PDE £Lly) = C7 Yon — Yet — g is nonhomogeneous. 

Solve (8.1) subject to the conditions 

y(0, t) = 0, y(L,¢) =0, 

y(x,0) = f(x), ye(v,0) = 9,
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leaving expansion coefficients in integral form. HINT: The 

form y(z,t) = X(«)T(t) gives 

xX’ 1 Tt g 

So oe eo. (8.2) 
xX CT txt 

Because of the last term in (8.2), which contains both z and t 

dependence, we are unable to successfully complete the sep- 

aration process (i.c., we are unable to get all of the 2 depen- 

dence on one side of the equation and all of the ¢ dependence 

on the other). Thus, we suggest seeking y in the form 

y(a,t) = yp(a) + X(2)T(t) (8.3) 

instead. Putting (8.3) into (8.1), obtain 

cys +O X"T = XT" + g. (8.4) 

Thus, we can remove the unwelcome g term by setting 

cy! = g. Then we can complete the separation of variable 

in (8.4) as usual. Mathematically, yp(x) is a particular solu- 

tion of the nonhomogeneous equation (8.1) since it satisfies 

the full equation (7.1), and AT is a solution of the associated 

homogeneous equation c*yzz = Yee. But in physical terms 

you will find that it is simply the “static sag” of the string due 

to gravity, satisfying the problem 

cyh(2) = 9, Yp(0) = 9, yp(L) = 0. (8.5) 

9. (Nonconstant forcing function) In Exercise 8 we included 

a forcing term that was a constant. The suggested solution 

technique would have worked even if the forcing term were a 

nonconstant function of z. But in this exercise we allow for t 

dependence as well. Thus, consider the problem 

CY ae = Yt + F(z,t), 

y(0,t)=0, y(L,t) =0, 

To solve, we can use essentially the same eigenvector ex- 

pansion method that is used in Section 11.3.2 to solve the 

nonhomogeneous matrix problem Ax = Ax + c, and again 

in Exercise 17 of Section 18.3 to solve the nonhomogeneous 

diffusion equation a7? ug. = u; — F(a, t). 

(9.1) 

(a) Accordingly, solve (9.1) by seeking 

y(z, t) = S| An(t) sin ——— 

n=l 

NTL 
9.2 7 (9.2) 

and expanding 

  
nr 

F(a,t) = F(t) si - 9.3 (2,t) 2. (1) sin (9.3) 

and 

. ~ onre 
f(z) = dn sin a 

where the coefficients 

9 rh AL . Falt) =F [ F(@, t) sin de (9.4) 

and 

9 WL 

fn = i | f(x) sin = dz (9.5) 

are considered as known [i.e., computable from F(a,t) and 

f(x)]. With w, = nic/L, show that 

y(z,t) = 

ATL 
fore) 1 t 

S- lh COSW,t + — / Fi (7) sinw,(r — t) dr} sin ——, 
ome Wr Jo L 

(9.6) 

(b) With the help of the Leibniz rule formally verify that (9.6) 

satisfies (9.1). 

(c) Work out the solution (9.6) for the case where F(2,t) = 

Fo sin Qt and f(z) = 0, assuming that the driving frequency 

does not equal any of the natural frequencies w,,. 

(d) Same as (c), but where 2 equals one of the natural frequen- 

cies, Say wy. 

10. (Variable end conditions) Thus far our boundary condi- 

tions have been constant in time. Here, we consider noncon- 

stant conditions. Consider the problem 

CYen = Yets 

y(0,t) = p(t), y(L,t) = a(t), 

y(z, 0) _ f(z), ye(@, 0) = 0. 

Changing dependent variables from y(z,t) to z(2,t) accord- 
ing to 

(10.1) 

y(a,t) = 2(@,t) + (1 _ =) p(t) + < q(t), (10.2) 
L L 

show that the problem governing 2(x,t) is of the type treated 

in Exercise 9. NOTE: Notice how an “input” can be moved 

~ from the boundary conditions to a forcing term in the PDE. 

In the present case the PDE on y was homogeneous and the 

boundary conditions were nonhomogeneous. Following the



  

change of variables you should find that the PDE on z is non- 

homogeneous and the boundary conditions are homogencous. 

11. The voltage u(x,t) in an underground cable is governed 

by a PDE of the form 

Veg = Avy + Bu + Cv, (11.4) 

where A,B,C are constants. [t is proposed that if uv, is 

a solution of vez = Avy + Bu; and ve is a solution of 

Ver = Aye + Cu, then v = vy + ve is, by superposition, 

a solution of (10.1). Give a critical evaluation of that proposal. 

12. (Longitudinal waves in a rod) First, read Exercise 2 of 

Section 19.1. Consider a rod of length L, cross-sectional area 

A, Young’s modulus £, and mass per unit length o, Atz = 0 

the rod is attached to a rigid wall and at « = J the rod is 

free. Prior to time t = 0 we pull on the free end with a force 

Fp, so the rod is in static equilibrium, with a uniform stress 

89 = Fy/A. Att = 0 we remove the force. 

(a) Show that the problem governing the displacement is 

C Une = Utts 

u(0,t)=0, us(L,t) = 9, 

u(z, 0) = = x, wu(v,0) = 0. 

(b) Solve (12.1) for u(z, t). 

(c) Determine the stress at the wall, s(0, ¢). 

13. (Uniqueness) In this section and in the preceding exercises 

we have developed solution techniques for wave problems, 

most of which are of the form 

CY ae = Yee + F(a, t), 

y(0,t) = p(t), y(£,0) = (4), 
y(x,0) = f(x), yela,0) = g(x). 

Show that the solution to (13.1) is unique. HINT: As usual 

in uniqueness proofs, let and y; (a, ¢) and yo(a, t) be two solu- 

tions and consider the difference w(a,t) = yi(x,t) — yo(a, t). 

Show that w satisfies the homogeneous version of (13.1), 

(13.1) 

CWee = Wits 

w(O,t)= 0, w(L,t) =0, 

w(x,0)=0, wi(e.0) = 0. 

(13.2) 

Considering the integral 
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oh 
I) = | (we + c*w?) dx, (13.3) 

Jo 

show, with the help of Leibniz differentiation and (13.2), that 

dI/dt = 0. Thus, show that /(t) = 0 for all t > 0 and hence 
that w(z,t) = 0 forallO <a < Land 0 < t < oo. Since 
w(a,t) = yr(a,t) — yo(x,t) = 0, y, and yp are necessarily 

identical, so there exists at most one solution to (13.1). 

14. (Vibrating beam) It is known from mechanics that the free 

vibration of a uniform beam is governed by the fourth-order 

PDE* 

Yeann 1 < Yte = 0, (14.1) 
EI 

where y(z, f) is the deflection, o is the mass per unit length, 

FE is Young’s modulus of the material, and J is the moment of 

inertia of the cross section about its neutral axis. 

(a) If the beam is “cantilevered” (see figure), then the bound- 

ary conditions are 

y(0, t) = 0, Ye (0, t) =0, 

Yor(L,t) = 0, 

and if the beam is initially deflected and at rest, then 

(no bending moment at free end) (14.2) 

(no shear force at free end) 

y(x,0) = f(x), ye(w,0) = 0. (14,3) 

VOX) 

fe 
AL x=L x 

Seeking y(x,t) = X(x)T(t), derive the solution form 

xO 

y(z,t) = S- A, Xp (2) cos wWrb, (14.4) 

n=l 

where the mode shapes are given by 

X, (x) = sin“ — sinh —— 
(@) L L 

COS Zn + Cosh Zp, yk lnk 
a cos —-- — cosh —— } , 

sin Z, — sinh zy, L L 

(14.5) 

where the frequencies are 

"See for example, William T. Thomson, Theory of Vibration with Applications, 2nd ed. (Engle- 

wood Cliffs, NJ: Prentice Hall, 1981)
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ay 
and where the z,,’s are the solutions of the transcendental 

equation cos z cosh z + 1 = 0. NOTE: The initial condition 

oo 

— => A nXn(e 

n=l 

can then be used to evaluate the A,,’s, but we do not ask you 

to go that far. Indeed, the eigenvalue problem on (2), which 

yields the eigenfunctions X,,(2), is not of Sturm — Liouville 

type, so we do not find (in this text) the theoretical founda- 

tion needed to guide us through the evaluation of the A,,’s in 

(14.7). Let it suffice to observe that (14.4) gives y(a, t) as the 

superposition of infinitely many modes, having shape X,,(«) 
and frequency Ww». 

(b) If, instead of being cantilevered the beam is pinned at both 

ends, then the boundary conditions are 

(14.6) 

y(x,0) (14.7) 

y(0,t) = 0, y(L,t) = 0, 

Yer(0,¢) = 0, Yor L, t) = 0, 

in place of (14.2). Find the solution form analogous to the 

one cited in part (a), corresponding to the boundary conditions 

(14.8). 

(14.8) 

15. (Lumped-parameter model) It is sometimes useful to 

model a continuous system, such as the string in our vibrating 

string problem, approximately, by a discrete system. To illus- 

trate, let us divide the string into four equal parts and focus 

the mass a L/4 of each segment at the center of that segment. 

(Such a system is called a lumped-parameter system.) Thus, 

we have four “beads” of mass oL/4 connected by massless 

string under tension T. 

~ 

m
p
h
 Lad

 
m ~ - 

(a) Applying Newton’s second law of motion to the first bead, 

show that 

ol jw (oe — iy & — 
4 L/4 L/8)? 

where dots denote time derivatives. Doing the same for the 

remaining three masses, show that the resulting ODE’s can be 

expressed in matrix form as 

(15.1) 

+ Ay =0, (15.2) 

where y = [yi(t),..., ya(t)]* and 

3-1 0 07 
Aaa De: (15.3) 

0 0 —1l 3 

(b) More generally, with N beads one obtains (15.2), where é 

y= [yi(t )y-- yn (t yr and 

3-1 0) 0 0 

—1 2 —l 0 0 

A= () 2 0 -b 2-1 0 
L Co So : 

0 -~l1 2 -1 

0 0 -1 8 

(15.4) 

(You need not derive this result.) Seeking a solution in the 

form 

yi(t) = m sin (wt + @) 

(15.5) 

yn(t) = nn sin (wt + ) 

or y(t) = 7sin (wt + ), show that 

By = An, (15.6) 

where B is the matrix in (15.4), without the (N/L)?(r/c) 

factor, and \ = (o/T)(L/N)?w* 
(c) If, for a chosen value of VV, one solves the eigenvalue 

problem (15.6), then one obtains approximations of the first NV 

orthogonal mode shapes and eigenfrequencies of the continu- 

ous string: the eigenvectors 7,,...,,y give the approximate 

mode shapes and the eigenvalues Ay,...,Aw give the approx- 

imate eigenfrequencies w, = (N/L)\/t/oVM1,.--,.WN = 
(N/L)\/t/oVXn. Here is the problem: Use computer soft- 
ware to solve (15.6) for the case where N = 4. Compare 

the computed eigenfrequencies with the exact values w, = 

me/L = (r/L)\./t/o,..., wy = Nare/L = (Nr/L)J/7/o. 
and compare the m computed mode shapes with the exact 

shapes sin (wa2/L),...,sin(4ra/L). 
(d) Same as (c), with N = 10. 
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19.3. Separation of Variables; Vibrating Membrane 

ot eed Pe . os : 9) 2 + . 

In Section 19.1 we derive not only the equation c“yex = Yr governing the vibrating 

string but also the equation 

  

    
2 C*(Wag + Wyy) = Wet (la) 
  

governing the vibrating membrane; w(x, y,¢) is the membrane deflection normal 

to the x,y plane, and C= T /o where 7 is the (uniform) tension per unit length 

and o is the (uniform) mass per unit area. Let us consider the domain to be the 

rectangle 0 < a < aand0 < y < b (Fig. 1), and let us solve (1) subject to the 

boundary conditions 

w(0,y,t) = wla,y,t) = w(x, 0,t) = w(2,6,t) =0 (1b) 

and the initial conditions 

w(a,y,0) = f(x,y), wila,y,0) =9, (1c) 

where w(x, y,0) = f(a, y) is the initial deflection and w;(x,y,0) is the initial 

velocity. That is, the membrane is initially at rest. 

The reason that we isolate this problem in a separate section is that it is our 

first problem with more than two independent variables — namely , y, and ¢t. Our 

approach here is intended to serve as a model for such cases. 

To solve by separation of variables, seek 

  

[wen = XY WTO).| 2) 
  

Putting (2) into (La) gives 

(X"YT + XY"T) = XYT" 

or, dividing by cP? XYT, 
xX" yu 1 qi 

— +55 FERNS: 3 
XY @T (3) 

The left-hand side is a function of x and y, and the right-hand side is a function of 

t. Since x,y, are independent variables, it follows in the usual way that each side 

must be a constant. Thus, 

= constant = —K*, (4) 

with the minus sign included so that the 7 equation 

Tl +KCT =0 (5) 

  

92 
cViw= wy 

    
  

a x 

Figure 1. Rectangular membrane.
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gives oscillatory solutions (cos «ct and sin «ct), since we anticipate a vibratory 
motion. Next, we separate the « and y dependence in (4) by writing 

x” yu 

So 
x Y 

The left-hand side is a function of x alone and the right-hand side is a function of 
y alone so it follows, as usual, that 

x" i" 

  yucyo «” = constant = —a”. (6) 

Hence, 

X" + a?X =0, (7) 
Y¥" + (Kk? ~a®)Y =0. (8) 

From (5), (7), and (8), we obtain 

X = Acosar+ Bsinaz, (9a) 

Y =Dcos VK? — a? y+ Esin VK? — a? y, (9b) 

T =F cos«ct + Gsin «ct. (9c) 

The right-hand side of (9c) is the general solution of (5) only if « # 0, for if 
& = Q then the sine term drops out. Consistent with the strategy that we have used 
until now, we should write, in place of (9c), 

T= Feoosact+Gsin«ct, «40 (10) 

A + ft, k= 0. 

Similarly for (9a) for the case @ = O and for (9b) for the case « = cv. However, in 

this problem we anticipate that the J in (10) will be found to be zero when we apply 
the boundary and initial conditions because it gives a linear variation in t, whereas 
we expect an oscillatory motion. Similarly, we do not expect to need the linear 
terms in z and y (corresponding to the special cases a = 0 and & = a) because 
w = 0 on the boundary. Thus, let us proceed with the solution forms (9a,b,c) rather 

than carry extra terms, terms that we know will drop out later. 

Next, we put (9a,b,c) into (2) and apply the boundary and initial conditions. 
However, it is more efficient to observe from the boundary condition 

w(0,y,t) =O0= X(0)Y (y)T(t) (11) 

that X(0) = 0, and to observe from the other boundary conditions in (1b) that 
X(a) = 0, Y(0) = 0, and Y(b) = 0.* Applying the boundary condition X(0) = 0 
  

“Alternatively, (11) is satisfied by Y(y) = 0 or T(t) = 0, but we cannot tolerate these choices 

because they give w(x, y,¢) = 0, which will not satisfy the initial condition w(x, y,0) = f(x, y)- 

That is, as usual, we make such choices so as to maintain as robust a solution as possible.
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to (9a) gives A = 0, so X(v) = Bsinax. Then, X(a) = 0 = Bsinaa. We 
cannot afford the choice B = 0 for then X(a) = 0 and w(x,y,z) = 0, so we 
require that sin aa = 0. Hence, 

mr 

  

a= (12) 
a 

for any integer m = 1,2,.... Similarly, Y(0) = 0 gives D = 0 and Y(b) = 0 
gives Jae — a2 = ni/b for any integer n = 1,2,..., or because of (12), 

[m2 on? 4! n (13) 
QO= 5 . oo 

. =r a" pe 

Further, the initial condition 

we, y,0) = 0 = X(x)¥(y)T"(0) (14) 

gives T’(Q) = 0, and application of this condition to (9c) gives G = 0. 

Putting these results into (9a,b,c) and then putting the latter into (2) gives the 

product solution 

  

  

  

    

      

  

  

    

w(t,y,t) = BEF sin = sin = cos Tec (15) 

forany nm = 1,2,...,n = 1.2,..., where BEF = H, say, is arbitrary. Or, with 

the help of superposition, 

x ~ r 4 

w(x, y, t) = du Ann sin sin =< COS Wm l, (16a) 

where 

wWmn = Te (16b) 

Finally, the initial condition w(2, y,0) = f(x,y) requires that 

~ ~ MAL NeY 

"(cr Any sin sin —— 17 - y) = mn 7 n ; (17) 

    

on the rectangular domain. The latter series is an example of a double series; more 

specifically, it is a double Fourier series.” Suppose that f(x,y) can, indeed, be 
  

“Recall that for “single series” we say that in ny en CONVerges to s if to each € > 0 (no matter 

how small) there corresponds an integer No(e) such that 
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(a) 

(b) 

Figure 2. 1,1 and 2,1 mode 

shapes. 

Chapter 19. Wave Equation 

represented by such a series. Then we can compute the H,,, coefficients formally 

as follows. 

Re-express (17) as 

80 | 

f(2,y) = = & Ayan, sin — sin uy | 

nel \mexl b 

oo 

o> Rr 

For fixed « (a < x < 6) the latter is a half-range sine expansion of f(z, y) on 

0O<y<,s0 

_ nmry 
——, 18 ) sin j (18) 

b 

Ryla wo x,y) sin — Lady. (19) 

myn= tl 
  In turn, 

  Ry(x -> Hin Sin (20) 

is a half-range sine expansion of R, (x2) on 0 < x < a,so 

        

  

  

2 £% _ mre 
Amn = _ | R,(x) sin dz. (21) 

x a 0 a 

Putting (19) into (21) gives the formula 
¥ 

mn = 2,1 
b   

  
Hinn = aan f(z ,y) sin ue sin un ney de dy (22) 

ab 0 a hb)     
  

for the evaluation of the Fourier coefficients H,,,, in (17). Thus, the solution of 
(1) is given by (16) with the coefficients calculated according to (22). With these 

results in hand let us comment on their derivation and physical interpretation.     

  

  aq. COMMENT I. Our choice of the minus sign in (4) was dictated by our understand- 
ing that the motion is, indeed, a vibration; the minus sign in (4) led to a plus sign 
  

whenever NV > No. Other definitions are used occasionally; this one is called ordinary convergence 

and we say that $7", @a converges to s in the sense of ordinary convergence. If to each e > 

0 there does not exist such an then the series is said to diverge. Analogously, the double series 

eet Dont @mn is Said to converge to s, in the sense of Pringsheim convergence, if to each € > 0 

(no matter how small) there correspond integers AYo(e) and No(e) such that 

No oM 
» > lo. 

_ Clrrn | ne 

nol tool | 

whenever Af > My and N > No; otherwise the series is said to diverge. For further discussion, 

we refer the interested reader to P. W. Berg and J. L. McGregor, Elementary Partial Differential 

Equations, prelim. ed. (San Francisco: Holden—Day, 1964), Sec. 10.3. 
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in (5) and the oscillatory solutions cos «ct and sin Kct. But what motivated us to 
choose the minus in front of the a? in (6)? Once again, we need to look ahead. 
Specifically, the eventual Fourier series expansion of f(a, y) dictates the need for 

cosine and sine solutions of (7) and (8). The +a? in (7), which results from the 

—a? in (6), does give cos aa and sin aw solutions. Further, observe that we wrote 

the Y equation (8) in the form Y” + («* — a?)Y = 0 rather than in the equally 
correct form Y” — (a? — «*)Y = 0 in order to force the cosine and sine solutions 

given in (9b) (see Exercise 1). 

COMMENT 2. What do the individual modes look like? The shape of the m,n 
mode is given by sin (ma/a) sin (nay/b), which is modulated periodically in 
time by the coswy,t factor. For m,n = 1,1 and 2,1, for instance, the mode 

shapes are as indicated schematically in Fig. 2. In the case of the 2, | mode w = 0 
all along the line 2 = a@/2 because the sin (272/a) factor is zero on that line. We 
call that line, or any curve within the domain and along which w = 0 for all time, 
a nodal line, and show it as solid in Fig. 2a. If we simply show the nodal lines and 
indicate the positive and negative deflections by +’s and —’s, then the first several 
mode patterns are as shown in Fig. 3. Of course, the +’s and —’s alternate in time 
due to the cos Wyn factor. 

COMMENT 3. Concerning the temporal frequencies, observe that whereas for the 
vibrating string the frequencies wy, = nac/L are integer multiples of a fundamental 

frequency mc/L, the frequencies 

  

  

rad 
Wmn = TC = (23) 

sec 

of the vibrating membrane are not. To illustrate, let @ = 6 and let us examine 
the musical notes corresponding to the various modes. For comparison with the 
analogous results for a violin string (Table |, Section 19.2)), let us tune our “square 

drum” so that its fundamental frequency is 27.5 cycles/sec, corresponding to Ag, 

the lowest A ona piano. That is, adjust the tension 7 so that 

rad (; oe) —c cycles      12 

    

  

  

a ce tt 

Wey = | We <> oo == 27.5, 
a2 sec 27 rad V2a sec 

where c = \/7/o. Then the frequencies are 

rad 
WwW, = 

TTL sec 

_ 5 CYCIES me - n° cycles 

sec 2 sec 

  

and these are listed in ascending order in Fig. 4, along with the corresponding 

musical note. From the tabulation in Fig. 4 we can see why square drums are 

not prized as musical instruments for, beginning with Ay, virtually every note is 

  

  

2,1 
  

    
  

  

  

ra
 

i)
 

  

  

    
3.1 
  

      

  

  

  

  

  

  

      

nN
 

ted
 

  

  

  

    
  

  

            

Figure 3. The first nine modes.
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mn inn Note 

Ul 21.5 | Ao 

12,21 43.5 | =F, 

22 55.0 A 

13,31 61.5 | =B, 

23,32 7.1 | =C3 

1441 80.2 | =E, 

33 82.5 | =E, 

24,42 87.0 | =F, 

34,43 972 | =G, 

15,51 99.2 | =G, 

25,52 | 104.7 | =G¥ 

44 110.0 Ay 

35,53 | 113.4 | =A3 

16,61 118.3 | =A3 

26,62 | 123.0 | =B, 

45,54 | 124.5 | =B, 

36.63 | 130.4 | =C, 

17,71,55| 137.5 | =cy 

46,64 | 140.2 | =Cf 

Figure 4. Square drum, octave 

overtones underlined. 

  

  

  

  

  

    

1.2 

+ 

5.3 

+ -lH-+ 

=|] —-) +i 

4[—|4 p+             
Figure 5. Modes in (30). 

present. This profusion of notes is due to the dense values of J/m? +n®. The 

result would be somewhat like playing the piano with our forearms rather than with 

our fingers. Circular drums are better and are discussed in the exercises. 

COMMENT 4. Alternative to the product form (6) we can seek w in the product 

form   

  

| w(x, y,th= W(e,y) T(t). | (24) 

Putting (4) into (1a) and separating gives 

(Wee + Wyy) T= Wo", (25a) 

Wore + Woy 1 T" 9 
we ee SK, 25b 

Ww © “ (299) 

and the separated equations 

  

  
Woo + Wyy + 6° W = 0 (26) 

  
  

on W, and T” + «°c?T = 00n T, as before. Then we can seek 

W(2,y) = X(x)¥(y) (27) 

in (26). The resulting ODE’s on X, Y, T are the same as before, but we mention this 

option for two reasons. First, some people prefer this method, and it is often used 

in textbooks. Second, (26) is a well known PDE, the Helmholtz equation, named 

after Hermann von Helmholtz (1821-1894) and studied by him in connection with 

acoustics. 

EXAMPLE I. Let the initial deflection be 

ary Onx 3n 
w(a,y,0) = f(x,y) = 0.2sin T* sin 77 0.1 sin sin > (28) 

a. 
  

We could put this f into (22) and integrate, to determine the Hinn’s, but it is much simpler 

to “match” terms in (17): 

  
_ we. 2m _ omc , 3m 

0.2 sin —— sin ve 0.1 sin —— sin ony 
a a b 

 , FE, HY _ re, Qry _ 2e , TY ,. 
= Hy, sin —— sin — + Hy2sin — sin any + Hy, sin —— sin mY tees, (29) 

a b a b a b 

Thus, Wyo = 0.2. Hs3 = —O0.1, and all other H,,,,’s are zero. Then, w)2 and ws are 

obtained from (16b), so the solution is 

ry 
_ me , Qry L 4 

w(x,y,t) = 0.2sin — sin —— cos | wey] —y + 7a 
a b a’ be 

_ . Sra . 3 25 9 , 
—0Q.1 sin —— sin te eos rey) —y top |. (30) 

a b ¢ be 
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[In this example only two modes are present, and these have nodal lines as indicated in 

Fig. 5. What, if any, are the nodal lines of the solution w(a, y, ¢), lines along which w = 0 

for all £? Since the wo | cosine functions in (30) are linearly independent, w = 0 for all 

t requires that both sin ** sin ae and sin °** sin one be zero. But the curves on which 

these products are zero are disjoint (Fig. 5), ‘so the solution wa, y,t) has no nodal lines. 

In other cases w(z, y,t) can, indeed, have nodal lines and these lines are not necessarily 

straight, as discussed in the exercises. # 

   

EXAMPLE 2. Using the mks system of units (meters, kilograms, seconds, and newtons), 

leta=1m.b=0.5m,7 = 8at/m, o = 0.02 kg/m”, and let the initial displacement be 

w(x, y,0) = f(x,y) = 0.02(a ~ x*)(y — 2y?) meters. 31) 

Then c = \/t/o = 20 and, from (22), 

0.5 

Hn = 8 | | 0.02(a ~ x*)(y — 2y?) sin mmx sin 2nay dx dy 
0 

ad 0.5 

= 0.16 / (e ~ x?) sin mara av | (y — 2y") sin nary dy 
0 : 0 

0.64 

= 378 (32) Mere Te 

ifm and n are odd, and zero if 7m and/or n is even. Hence, the solution ts 

IO _ 0. 64 o / 
we. y, é) S- a ay Sin mrx sin 2ZnTy Cos 207 Vm? + 4n? | t 

ms ns 
nolo... m=1.3.. 

  

(33) 
COMMENT. Observe that the terms diminish rapidly with m and n due to the 1/(m?n*) 

factor. so that even the first term alone gives a reasonable approximation of the solution. 

That result is a consequence of the fact that the (w@ — 2°)(y — 2y7) product in (31) is 

approximated well by a scalar multiple of the first mode sin wz sin 27ry (Fig. 6). a 

Closure. To solve the wave equation in three independent variables (xv, y, t) by sep- 

aration of variables we seek w(x, y, t) in the form X(2)¥(y)7(#). The separation 
process is successful, and we obtain ODE’s on X,Y, and T’, and two separation 

constants rather than one. The chief complication is that the solution is a double 

series rather a single series, with the coefficients given by a double integral rather 

than a single integral. 

Computer software. Nodal lines are not always identified as readily as those in 
Fig. 3 but can be obtained using computer software. For instance, if@ = mw, b = 27 

c= l,and 

w(e,y,t) = (2sin3esiny ~ sinwsin 3y) cos (V 10%), (34) 

then the nodal lines, if any, are given implicitly by the relation 

Isin 3esiny — sinsindy = 0. (35) 

  

    
8(y-2y") 

  
0.5 » 

Figure 6. Similarity between the 

factors in (31) and the factors in the 

first mode. 

  

      
x cia 

Figure 7. Nodal lines for (34).
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Using Maple, enter 
with (plots): 

to access the plotting commands. Then use the implicitplot command as follows: 

implicitplot (2 * sin (3 * a) * sin (y) ~ sin (a) * sin (3 * y) = 0, 

eo ..Pi 

The result is shown in Fig. 7. The * 

y=2 « Pi, grid = [100, 200}); 

grid = [100, 200]” part is an option that we have 

used to set the plotting grid at 100 divisions of the x interval and 200 divisions of 

the y interval since w the de fault grid, (25, 25), is too coarse in this case. 

  

EXERCISES 19.3 
  

1. Obtain the solution to the initial-value problem (1) for the 

given f(x,y), a, and 6, and give the relations that define the 

nodal lines of w, if any. Let c = 1 in each case. 

(a) f(z, y) = 8sin 2zsin2y, a=7,b = 27 ) 
(b) f(z,y) = ~Ssinesindy, a= 2r,b=7 
S ite Vy) =singasiny ~ sinvsindy, a=b=n 

f(z,y) = sin3esiny —singsindy, a= 7,0 = 27 

‘o flax .y) = 1.05sin 3esiny — sinasin3y, a=7,b = 27 

( f(z sy) = lOsin3asiny —sinzsin3y, a=7,b = 2r 

(g) f(z. y) = Ssinzsin7y+sin5esind5y, a=b=n 

(h) f(a. y) = 8sin 2rsin7y+sindrsinSy, a=b=7 

(i) f(x,y) = Gsinwaxsin7ry + sindrrsiniry, a= 1lb= 
3 

() Fe, 
2. Obtain the solution to the initial-value problem (1) for the 

case where f(x,y} = 20sin 3vz sin dry ~ 8sin 572 sin l2ry 

and a = 6 = ¢ = 1. and determine the period of the motion. 

y) = sinresindry — sin3azsiniry, a=1,b=2 

3. Evaluate the following claim and reasoning and indicate 

whether it is correct or incorrect. Claim: Whereas the solu- 

tion to the vibrating string problem [given by (16) in Section 

19.2] is periodic in time (for any choice of the f,,'s and 5,,°s), 
the solution to the vibrating membrane problem (1) [given by 

(16a) in this section] is nor, in general, a periodic function of 

t. Reasoning: It will suffice to consider two terms in (16a) so 

that w(x, y) is of the form Acosuyyt + Bcosw»»t for some 

choice of the integers k,!,m,n and the constants A and B. 

(Of course, A and B contain x and y dependence, but we can 

must be integers AY and N such that wyT = (AD (27) and 

wmnl = (N)(27). Division gives wy/winn = A1/N. That 

iS. Wat /wnn Must be a rational number. However, we see from 

(16b) that wy/winn is, except for certain choices of hk, l,m, 

and 7, irrational. 

4. (Nonzero initial velocity) We used w;(a,y,0) = 0 in Cle) 

merely for brevity. 

(a) With 

w(a,y,0)= 0. wi(z,y,0) = g(a, y) 

in place of (1c), rederive the solution and obtain results analo- 

gous to (16) and (22). 

(b) With 

wla.y,0) = flay), wela,y,0) = g(x,y) 

in place of (Ic), re-derive the solution and obtain results anal- 

ogous to (16) and (22). 

5. (Circular drum) Wf the membrane is stretched over the cir- 

cular disk 7 < a, then it is best to use the polar coordinates 

r,@ rather than the Cartesian coordinates x,y. Then the wave 

equation co Vew = we on w(r, 4, t) becomes 

of ol 1 
COL Wpp bom Wp + mp Woe | = Wee 

r re 

Let us consider only axisymmetric motions (i.e., we consider 

w to be independent of @). Then the wee term in (5.1) is zero, 

and (5.1) reduces to 

-) = Wt (5.2) 
5 i] 

Col Wpp Fm w , 

t) = R(r) T(t). obtain 

rR! 

(5.1) 

on w(r, ¢). 

(a) Seeking w(r, 

+R +67rR=0, 

T! +K°c°T =0 

 



  

and hence the solution form 

w(r,t) = (A+ Blur)(D + Et) 

+[(Fdo(«r) + GYo(er)|(H cos xct + [sin xct). 

(5.3) 

(b) If w(a,t) = 0 and w(r,t) is to be bounded on r < a (in 
particular at r = Q), show that we obtain 

-S Jp (2 =) ( (Hy CoS Wyt + Ly sinwyt), (5.4) 

russ] 

where the z,’s (2 = 1,2,...) are the (known) zeros of Jo 

[ie., Jo(2n) = Of and wy, = 2nc/a. 

(c) Let the initial conditions be 

w(r,0) = f(r), welr, 0) = g(r). 

Imposing these conditions on (5.4), show that 

(5.5) 

2 “e r 
SIT aa Jo (an - | rdr, led Jy Mr) o( ~)r ’ 

2 e r 
Ly = oe q J en rdr. 

wn? (Ji (Sn)/? [ gr) 0 ( =) ' 

(5.6a,b) 

HINT: This problem is similar to Example 5 in Section 18.3. 

(d) Show that if we seek w(r,@,t) = R(r)O(@)T(E) in the 
full equation (5.1), then we obtain the ODE’s 

Hy = 

PR 4rR + (Kr? —a’)R=0, 

6” +070 =0, 

T’ +n°CT =0, 
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where « and @ are separation constants. 

6. (Two-dimensional diffusion) In Chapter 18 we study one- 

dimensional diffusion phenomena such as the unsteady con- 

duction of heat in a rod. Using the methods discussed in 

this section we can now return to Chapter 18 and solve two- 

dimensional problems as well. Specifically, consider the tem- 

perature field u(x, y,¢) in a rectangular plate (0 < x < a, 
0<y < 6), governed by the problem 

C7 (Une + Uyy)} = Ut, 

w(0,y) = ula, y) = u(x, 0) = u(z,b) = 0, 

ula, Ys 0) = F(a, y).- 

(6.1a,b,c) 

(a) Derive the solution 

  
(2, yt => s Amn sin e sil 2 oY e Rinne t 

n=lLm=l 

(6.2) 

where 

,(m rn 
Kon = 7" (= be ) (6.3) 

and 

4 f° fe m. 
Amn = — ‘(r, y) sin m= aff tem 

(b) Verify, formally, that (6.2)-(6.4) does satisfy (6.1). 

(c) Evaluate the Aj,,'s for the case where f(z, y) = 100. 

  m sin nny dx dy. (6.4) 
a b 

  

19.4 Vibrating String; d’Alembert’s Solution 

19.4.1. d’Alembert’s solution. For the wave equation 

2 
C Uae = Ute (1) 

there exists a striking solution form that is due to Jean Le Rond d’Alembert (1717— 

1783). D’Alembert’s method is based on a change of independent variables, from 
x and ¢ to € and 7, say, according to the simple relations
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(2a,b) 

  

  

To re-express (1) in terms of € and 1, the needed “building blocks” are the 

3/Ax and O/Ot operators. According to the chain rule (Sections 13.4, 13.6.4), 

0 0 0E 0 On O O 

  

wee eee 3 
Ox OF Ot ° On Ox OF On @) 

and 9 ) ae 5 9 9 a 
O O OF O On } ) 

co SE eo aro Ee Co Cm y 4 i Oe Ot Dy Ot BE AH’ “) 
so (1) becomes 

9 0? 0, oN, cea’ 02), 
c — —+-— y= | -em te —Cr tem jt 

de an) \dE” On)? dé | On ae an)” 

or 

oe ON ye tun = (-4 2) Hue ta) — + — | (ye ty) = (-mt el lu ty aa On YE Yn 0 On YE Yn 

or 

Yee + Yen 7 Une + Un = Yee m Yen 7 Une + Ym (5) 

Assuming that y is well enough behaved so that ye, = Yne.” (5) simplifies to 4yey = 

QO, or 
Yen = 0. (6) 

The point, then, is that when expressed in terms of € and 77 the wave equation 

(1) simplifies dramatically to the form (6), and we say that (6) is the canonical, or 

simplest, form of (1). It is simple because it can be solved directly by integration. 

First, integrating (6) with respect to 7) gives 

we = [08n =0+ Al) = AW), (7) 

where the “constant of integration” A is allowed to be an arbitrary function of € 

since € was held fixed during the integration on 7. Next. integration of (7) with 

respect to € gives y = f A(€) O€ plus an arbitrary function of 7, say G(n). Since 

Ais arbitrary we might as well simply write F(€) in place of [ A(€) 0€. Thus, 

y= P(E) + GQ) (8) 

or, returning to the original variables, 

  

| yl, t) = F(a — ct) + G(v + ct), | (9) 
  

  

“See Theorem 13.3.1.
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where F and G are arbitrary functions [although they do need to be twice differen- 

tiable if (9) is to satisfy (1)]. For example, each of the three functions 

Bet, sin (a — ct) + 5sin [3(a + ct)|, 5 
Sater (10) 

100 — 5(x — ct)8 — Sete ten” 

is of the form (9) and it is readily verified that each one satisfies (1). To verify (9), 

in general, we can use the chain rule: 

O(a — ct) O(n + ct) 
yp = F"(a — ct) “+ + G"(a + ct) Yt (x ~ ct) 5; + G(x + ct) Ai 

= —eF'(x — ct) + cG"(x + ct) 

O(a — ct O(a + et 
Ya = —CF" (x — ct) Ola = ct) = ct) + eG" (x + ct) Mee ct) 

=F" (2 — ct) + CG" (2 + ct). (11a) 

Similarly, we obtain 

Yer = F(a ~ ct) + GC" (a + ct), (1 1b) 

so we see from (11) that (1) is satisfied. Remember that primes are standard nota- 

tion for the derivative of a function of a single variable with respect to that variable; 

for functions of more than one variable we use the partial derivative notation. Thus, 

by F’(a — et), for example. we mean the ordinary derivative dP(emet) of F with 
y Pp / d(a—ct) 

respect to its single argument « — ct. To illustrate, if 

F(a — ct) = 3s8in(a — ct)’, 

then 
F'(a — ct) = 6(a — ct) cos (x — ct)”, 

We say that (9) is the general solution of the wave equation (1). There is no 
analog of (9) in Chapter 18; nowhere in Chapter 18 did we find the general solution 
of the diffusion equation. Even the infinite series solutions that we found by sep- 
aration of variables, which contained an infinite number of arbitrary constants, are 
not general solutions; they are simply comprehensive enough so as to be capable of 

satisfying the initial condition. 
It is interesting to compare the form of (9) with the form y(v) = Cryi(x) + 

Coyo(x) of the general solution to a linear homogeneous second-order ordinary 

differential equation; in place of an arbitrary constant C) times y,(«) we have an 

arbitrary function of « — ct, and in place of an arbitrary constant C2 times yo(a) we 

have an arbitrary function of x + ct. 
To illustrate the use of (9), consider the infinite string problem 

CYew = Vits (-wo <a<ow, 0<t<o) (12a) 

y(v,0) = f(x), ye(a,0) = g(2). (—oo < a < ow) (12b) 

L045
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Figure 1. Interpretation of (17). 

Since we already have in (9) the general solution of (12a), we can bypass (12a) and 
immediately impose the initial conditions (12b) tn order to determine the functions 

F and G in (9). Doing so gives 

y(av,0) = f(x) = F(a) + G(x), (13a) 

y(a, 0) = g(a) = —cF" (x) + eG" (x) (13b) 

as two equations on F and G. Integrating (13b) from any fixed point, say Q, to x 

gives 

  

  

[ g(€é) dé = —cF (ax) + cF (0) + cG(x) — eG(0), (14) 
0 

and solving (13a) and (14) for F(a) and G(x) gives 

ow EP rey ge FOO) = EO) 
F(x) = 5 x | g(&) d& + yo (15a) 

ry = OM bP ge ge — FOO G(r) = 5 + =| g(&) dé 5 ; (15b) 

Since F(x) is given by the right-hand side of (15a) F(x — ct) is likewise given 
by the right-hand side of (15a), but with each of the two a’s changed to x — ct. 
Similarly, G(a + ct) is obtained by changing each of the x’s in (15b) to x + ct. 

Doing so, we obtain 

y(x,t) = F(a — ct) + Ga + ct) 

  

xz —ct 1 pene F(0) — G(0 = fe a gteyde + FO= 20) 
"(y 4 petet F _—C 

+e | (gag ~ = GO) (16) 

or 

‘ cm CE meth CE 1 wet 

y(e,t) = Mera fer) += [. gl) dé. (17) 
      

Let us interpret (17) in the «r,t plane. Since 2, ¢ is the specific point at which y 
is being evaluated, let us use dummy variables £,7 for the axes (Fig. 1). In words, 
(17) tells us that y at P is the average of the f values at A and B plus 1/2c times 
the integral of g from A to B. Thus, the value of y at P depends on initial data 
only on the interval AB. Similarly, the value of y at 29, to depends on initial data 
only on the interval CD, and so on. Thus, we call the triangular region ABP the 
domain of influence of the interval AB: initial data on 48 determine the solution 

within the triangle ABP. 
This result for the wave equation is in contrast with the result that the solution 

u(az,t) of the diffusion equation depends on the initial data u(z,0) = f(z) all 
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along the axis, as can be seen from (11) in Section 18.4 where the integration is 

from € = —oo to € = +00, 

EXAMPLE IL. The Case Where y,(x,0) = 0. To illustrate (17), suppose we release the 

string from rest in the configuration y(, 0) = f(z), where f is the triangular pulse shown 

shown in Fig. 2. Then g(r) = 0 and (17) gives 

fla — ct) + f(a +ct) 
nn 

Att = 0, (18) becomes y(z,0) = f(x)/2 + f(x)/2, so we may regard the initial pulse 

f(z) as the sum of two “half-pulses.” f(a)/2 and f(x)/2. For t > 0 the f(x ~ ct)/2 term 

in (18) amounts to one of the half-pulses translated to the right through a distance ct, and 

the f(a-+ct)/2 term amounts to the other half-pulse translated to the left through a distance 

ct, as depicted in Fig. 3. Evidently, the speed of these right- and left-running waves is c. 

Thus, the c = \/7/o that appears in (1) is the wave speed. 

vA 

yla,t) = (18) 

— — t 

  

f 0 
Y 

  

  

  ~— ct ct 

Figure 3. Right- and left-running waves. 

Besides plotting y versus z as we have in Fig. 3, it is illuminating to display these 

results in the a’, t plane as we have in Fig. 4. Naturally. plotting y(z, ¢) above the x. ¢ plane 

calls for three-dimensional graphics. but it is simpler to merely “lay the solution curves 

down” in the plane of the paper as we have in the figure. Since the f(x — ct)/2 term is 

constant along z — et = constant lines, the values of f(a — ct)/2 propagate along these 

lines without change. Similarly, the values of f(a + ct)/2 propagate along x + ct = 

constant lines. 
x + ct = const. x ~ ct = const. 

  

  

      

f(x}/2 half-pulses 

Figure 4. x, ¢ plane display of (18). 

These special families of curves. the lines x — cl = constant and x + cl = constant, 

are known as characteristics. and it is along the characteristics that information (1e., val- 

1047 

  

Figure 2. [nitial shape of 

string: y(x, 0) f(x).
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ues) propagates. In Fig. 4 we have drawn only four characteristics, those that define the 

“channels” T and [] in which the half-pulses propagate, but there are actually an infinite 

number of characteristics, all of the curves € = x ~ ct = constant and all of the curves 

€& = 2 + ct = constant as suggested more fully in Fig. 5. 

  

  

  

  

Figure 5. The two families of characteristics. 

The upshot is that the initial f pulse breaks into two half-pulses that travel outward, without 

change in shape, in the channels I and II that are bounded by characteristics. Outside of 

these channels y(xv,t) = 0. @ 

EXAMPLE 2. The Case Where y(x,0) = 0. (This example can be omitted if you 

have not read the optional Section 5.6 on the Dirac delta function.) In Example | we took 

g(x) = O and f(x) to be a simple triangular pulse in order to gain understanding of the 

[f(a ~ et) + f(x + ct)]/2 term in (17). Now, to study the integral term let the initial 
displacement be y(xv,0) = f(x) = 0 and let the initial velocity be 

ye(x,0) = g(x) = d(x — xo), (19) 

a delta function at some point 2. These initial conditions are similar to those to which 

a piano wire is subjected, for the initial displacement is zero but a localized velocity is 

imparted at time t = 0 when the string is struck by a narrow hammer. 

f 

X+cr= const.= Xp X-—ct= const.= xy 

    
    

lO 
I 

¥ 

L/2¢ . 
i ‘ 9 x 

c ++ : + c Figure 7. x,t plane display of (20). 

NXg 7 ct xy Xg tect x . ao . a 
With f(z) = 0 and g(x) = 6(a ~ x), (17) gives 

Figure 6. Response to 

hammer blow . sehet 
. , y(z,t) =O+ a d(€ ~ xo) dé. (20) 

aC Jr—ct
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From the definition of the delta function [see (13) in Section 5.6], the integral is | if a — 

ct < xo < wv + ct or, equivalently, if ag - ch < «& < aq + ct. Hence, the solution 

(20) is the rectangular pulse shown in Fig. 6; in the x, ¢ plane the solution is as shown in 

Fig. 7. a 

19.4.2. Use of images. (NOTE: The optional Section 18.5 on the method of images 
is not a prerequisite for this section.) Remember that the solution form (17) ts for 
infinite strings, on —co < a < oo. If we have a semi-infinite or finite string, then 
we have boundary conditions to deal with besides the two initial conditions. To 

illustrate, consider the following semi-infinite string problem: 

Cyne = Ytts (O0<a2<co, O<t< oo) (21a) 

y(0,t) = 0, (0<t< oo) (21b) 

y(v,0) = f(x), yl, 0) = 0, (0 <a <0) (21c) 

where / is the triangular pulse shown in Fig. 4. Observe that the solution shown 
in Fig. 4 does indeed satisfy (21) but only up until time 7’, at which time the left- 
running wave in channel [ reaches the end point « = 0 and upsets the boundary 

condition (21b). 

We can overcome this difficulty by an artifice known as the method of images. 
Namely, consider an infinite string (—oo < x < 00) with the initial conditions 

y(x,0) = fexe(x), ye(v,0) = 0, (—co < & < ow) (22) 

where fox: (x) is identical to f(w) on 0 < x < oo and is an antisymmetric extension 

of f(a) for -c0 < x < 0 as shown in Fig. 8. The solution of the extended problem 

is 
t 

ut 

  
Figure 8, image system.
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x= 0 

Figure 9. Cancellation at « = 0. 

— 
5 

Figure 10. f(z) in (24). 

Foxe ' 

US fo | 

| 
-L 

Zm™. ZL 
~fo © 

Figure 11. fexe(z), antisymmetric 

about xc = Oanda = L. 

y(x, 0) = ext (a a et) + fext (x - + ct) 

2 
and the latter is comprised of two positive half-pulses in channels [ and If plus 
the two negative half-pulses in channels [ff and IV. The point is that over the time 
interval T, < t < Ty the waves in channels [ and [V pass over each other, so that 

the negative wave in channel [V cancels the positive wave in channel I along the t 
axis. Att = 7», for instance, the situation is as shown in Fig. 9, where the sum 
of the two waves is indicated by the solid line. That part of the diagram that is in 
the second quadrant (—co < x < 0,0 < t < oo) is called the image system and 

is fictitious, serving only to automatically satisfy the boundary condition (21b) by 
virtue of the antisymmetry about 2 = 0. It can now be ignored, or even discarded, 
since the wave system in the first quadrant fully satisfies conditions (21a,b,c) and 

is the desired solution. 
Since the image system is, after all, fictitious, to apprehend the physical event 

we look only at the first quadrant. We see that the initial pulse breaks into two 

half-pulses. One travels rightward indefinitely, while the left-running wave is both 
reflected (into channel IV) and inverted when it encounters the left end of the 

string, which is tied at @ = Q. 
Having studied the infinite string and semi-infinite string, in that order, we can 

finally return to the finite string problem 

  (23) 

Yee = ye, (0<e<L, 0<t<oo) (24a) 

y(0,t) = 0, y(L,t) = 9, (O<t< - o6) (24b) 
y(v.0) = f(x), ye(v,0) = 0 (O<a<L) (24c) 

that is solved by separation of variables in Section 19.2, and solve it by 
d’Alembert’s method — with help from the method of images. Let f(x) be our 
usual generic triangular pulse (Fig. 10). Using the method of images, we consider 

instead the infinite string problem with initial conditions 

y(w,0) = fexe(e), ye(w, 0) = 0, (-—co <u < co) (25) 

where fexe (x) is identical to f(a) on 0 < x < L and is defined on w < 0 and on 

x > Lsoas to be antisymmetric about both x = Oand x = L. Thus, fext(x) is the 

2E-periodic function shown in Fig. 11. Since the extended initial conditions (25) 

are antisymmetric about 2 = 0 and x = JL, the solution y(c, t) will be too. Hence, 

y will be zero all along the x = 0 and a = L lines in the w,¢ plane. That is, the 

image system is designed so as to satisfy the boundary conditions (24b). 
With fext(w) as defined in Fig. 11. the d’Alembert solution (17) gives the 

closed form solution 

Fost (ee — ct) + Fext (x + ct) 

2 
  y (x,t) = 

To relate (26) to the separation of variables solution obtained in Section 19.2, ex- 

pand the periodic function fex;(7) in a Fourier series as 

re / 
Fext (x =S by, Sin - (27) 

n= 1 

(26) 
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where ' 
2 "| . nre 2 NRE 

by = Z |, Foxt (a) sin - da = Z |, a :) sin - dar 

since fext(a) = f(a) on 0 < « < L. Then (26) becomes 

OO 

  

i 
y(a,t) a [sin “E(u ~ ct) + sin F(x + et) 

Test 

SI 6 NAL niact (28) 
= bh, SiN ——— COs . 2 . n 7, OS hE J 

rs 

which is identical to the result that we obtained by separation of variables. 

19.4.3. Solution by integral transforms. (Optional) Following d’ Alembert, we 
derived the solution (17) of the infinite string problem (12) by using the general 
solution y(az,t) = F(a — ct) + G(x + ct). Alternatively, we could solve (12) by 
Laplace transforming with respect to the ¢ variable or by Fourier transforming with 

respect to the w variable. 
Let us try the Laplace transform. Transforming (12a) gives 

CU, , = 8°G — sy(,0) — ye(x, 0) 

s°y — sf(x) ~ g(x) 

or 

h
s
 

1 
Yar ~ “9 = ~~ 9 [s f(x) )+ gt: (x). (29) 

C 

The homogeneous solution of (29) is simple but obtaining a particular solution 
(e.g., by the method of variation of parameters) is messy, so let us see whether the 

Fourier transform is more convenient. Fourier transforming (12a) gives 

C(iw)*y 2 = Ui 

or .. 

jue + weg = 0, (30) 

which is simpler than (29) because it is homogeneous, so let us continue. From 

(30), 
y= Acoswet + Bsinwet. (31) 

To solve for A and B we impose Fourier transformed versions of (12b): 

{051
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so A= f(w) and B = g(w)/we and 

+ ,sinwet 
y = fw) coswet + g(w) . (33) 

we 
  

To invert the two terms on the right, use entries 15, 9, and 21 of Appendix D and 

obtain 

Bot { fw) cos wet} = fer) ' fee a (34a) 

Fol faucet g(x) * sl + ct) — H(x — ct) 

- Lp ™ gle ~ QUE + et) — HUE ~ cb) dg 
1 ect 

=5,f sle-9ae @-e=m 
eect 

= =f. gu) du, (34b) 

where the third equality in (34b) follows from the fact that H(a + ct) — H(2 — ct) 
is zero for 2 < ~ct, unity for —ct <a < ct, and zero for x > ct. Thus, 

Mp ue “(> Let robot 

y(z,t) = [(v= ef) + fle et) + x | * 5 5a g(pe) dye, 
weet 

which result is the same as (17). 

Closure. Following d’Alembert, we change the independent variables from x,t 

to €, according to the relations € = « ~— ct and 7 = x + ct. That change reduces 

the wave equation ¢ “Yan = Yee to its canonical (i.e., simplest) form ye, = 0, which 

can be solved by integration to give the general solution of the wave equation 

y(a,t) = F(a — ct) + G(x + ct), 

where F' and G are arbitrary twice differentiable functions (Exercise 15). To il- 

lustrate the use of this general solution we solve an infinite string problem with 

presented initial displacement f(a) and velocity g(x) and obtain the solution (17). 

The €,7 variables are the most “natural” indepen variables and the € = 

constant and 7 = constant lines constitute two families of lines (Fig. 5) called char- 

acteristics. Rather than kinks and discontinuities in the initial conditions smoothing 

out, as occurs in the process of diffusion, they propagate into the solution domain 

along characteristics. hn whereas information spreads to the left and right at an 

infinite speed for the diffusion equation, it spreads with a finite wave speed c for 

the wave equation. 

Remember that, while extremely important in their own right, the diffusion 

(Q7*Upe = uy) and wave (CY ne = mt) equations also serve to represent the parabolic 
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and hyperbolic types of PDE’s, respectively, and the main features of these two 
equations are shared by other PDE’s of their type. Thus, every hyperbolic PDE has 

its own families of characteristics, which may be curved rather than straight and 

along which information propagates. 
In Section 19.4.2 we use the infinite string solution (17) together with the 

method of images to solve semi-infinite and finite string problems. [f you studied 
Section 18.5 you will understand that the method of images works, here, because 
the L = ¢0°/Ox" — 07/Ot* operator is linear and even, but it is not necessary 
to understand why the method works in these cases inasmuch as we can see that it 

does lead to satisfaction of the homogeneous boundary conditions. 
Finally, in Section 19.4.3 we rederive the solution (17), this time using a 

Fourier transform on zx. 

  

EXERCISES 19.4 
  

1. Verify that (17) does satisfy (12a) and (12b). 

2. Show that, like the wave equation, the given PDE is hyper- 

bolic and find its general solution by introducing the suggested 

change of variables. 

lI r-y, y= 3u-y 

=r-y, 7=b5r+y 

=dr-y, n=2r-y 

=2+y, y= ory 

sry, YS Ury 

(A) Ure + dtay + dtyy = O: 

(b) tre — deny ~ DUyy = O: 

(C) Use + Gtyy + 8Uyy = 0: 

(d) try + ley — Styy = 0: 

(€) tlyg + 2tUery — Styy = 0: T
a
r
n
 

I
 
L
A
N
 

lI 

3. Show that, like the wave equation, the given PDE 1s hy- 

perbolic and find its general solution by introducing a suitable 

change of variables of the form € = ax + by, 7 = ex + dy. 

(A) Ura + Stay + Louyy = 0 

(b) tra ~ QUey — JUyy = O 

(C) Ure ~ LOUry + GUyy = 0 

(d) tex + 2Uery — Styy = 0 

4. Find the general solution of the first-order PDE uz + cuz = 

0, where c is a constant, by introducing the change of variables 

€ = 2 - ct, = ¢, and then use that general solution to solve 

the problem. 

Ue + CUy = 0, 

u(x, 0) = f(r). 

(-co<c aco, O<t<o) 

5. In Figs. 3 and 4 we show y(a,t) at times ¢ which were 

large enough so that the two half-pulses had completely sep- 

arated (i.e., they do not overlap). In this exercise we examine 

the case in which they do overlap. Letting 

0, #2<l 

20-2, L<car<l 

4~22, 1Lli<a<2 

0, x > 2, 

ft) = 

g(x) = 0, and c = 20. give labeled graphs of y(x,t) at 
t = 0.005 and at ¢ = 0.02. 

6. With ¢ = LOO, sketch the solution to (12) at ¢ = 0.02 and 

t = 0,04 using an z,¢ plane display similar to those in Figs. 4 

and 7, and labeling all key values. As usual, EH is the Heaviside 

function. 

(a) f(x) = H(a@+1)- H(a - 1), g(v) = 0 
(b) f(z) = A(x), g(r) =0 
(c) f(v) = 0, g(x) = W(x +1) - H(x~1) 
(d) f(z) = 0, g(t) = A(x) 

7. (a) Obtain the general solution for the nonhomogeneous 

wave equation C7 Yay = Yee ~ where AV is a constant. 

(b) Use the general solution obtained in part (a) to solve the 

problem 

C Ure = yu — K, (-r <a <oo, O<t <oo) 

y(v,0) = p(x), ye(w,0) = gv). 

8. Use the general solution (9) to solve the problem 

C Yon = Vets (O<u<m~, 0<t<oo) 

yfe,0) = y(x.0) = 0, (Q<e< 0) 

y(0,t) = A(t), (0<t < co)
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where A(t) is prescribed. [We can imagine taking the left end 

of the string between two fingers and, beginning at ¢ = Q, “jig- 

eling” it according to y(0,t) = A(t).| 

9, Same as Exercise 8, but solve by using the Laplace trans- 

form rather than (9). HINT: You may assume the truth of the 

statement 

lim. 
LOO 

/ lim y(a,t)e7* dt = | Odt = 0. 
Jo TO 0 

10. If spherical symmetry is present so that u depends only 

on pand ¢ (where p, @,@ are the spherical polar coordinates), 

then the wave equation c? V*u = ue becomes 

lim 9(2,s) = 
OD 

100 
/ y(a, the * dt 
Jo 

{| 

7 9~ 2 Ou a So les)=S5. (10.1) 
p? Op Op at? 

Show that (10.1) may be re-expressed as 

5 Oo? (2 

2 a9 (pu) = ae (pu) (10.2) 

and thus derive the general solution 

I / u(p,t) = ple ~ct)+G(p + ct)) (10.3) 

of (10.1), where # and G are arbitrary twice-differentiable 

functions. NOTE: Observe from the 1/ factor in (10.3) that 

in the case of spherical waves the wave amplitude tends to 

Zero as Pp —> &. 

11. Show whether traveling wave solutions of the form 

F(x — at) are possible for the diffusion problem 

OP Une = Ut, (-co< a<co, 0O<t< oo) 

u(x, 0) = f(r), (-90 < 2 < co) 

where u(a,€) is bounded, for all t, as @ + choo. 

12. Unfinite string with density discontinuity) Consider a string 

stretched over —oo <a < oo under a tension 7, where the 

density a(x) has a step discontinuity atv = O:i.e., 7 = a for 

x < Qando = a» fora > 0. Suppose a rightward-running 

wave y(z,t) = F(x ~ ec ¢), such as a triangular pulse, is ini- 

tiated in the 2 < 0 part of the string, where c) = V/t/o1 

is the wave speed fora < O and cg = \/t/o2 is the wave 

speed for z > 0. What happens when this wave encounters 

the density discontinuity (see the accompanying figure)? That 

is. determine the solution y(x,t). HINT: Use the general so- 

lution y(a,t) = G(e — cyt) + H(a@ + cit) for @ < Q, and 

y(a,t) = F(a ~egt)+ J (a+ et) for > 0. The solution will 

be nonzero only within certain channels, in which you need 

to determine the functions G, H,/, and J. You will need to 

match the two solutions (i.e., for 2 < 0 and fore > 0) along 

the line z = 0 in the x, ¢ plane. 

ey yA 

| 
i 

be 

  

Oo > Xx 

13. Use (17) to show that if y(a,0) = f(x) and y,(z,0) = 

g(x) are even functions of x, then y(x,t) remains an even 

function for all £ > 0, and that if f(@) and g() are odd func- 
tions of z, then y(x, £} remains an odd function for all ¢ > 0. 

14. We solve (21) by the method of images, where f(z) is the 

triangular pulse shown in Fig. 4. Repeat that solution, with 

(21b) changed to y,(0,¢) = 0, and obtain an z,¢ plane dia- 

gram analogous to that in Fig. 8. Is there a reflection and an 

inversion as in Fig. 8? Explain. 

15. (Breakdowns at kinks) We have emphasized that kinks 

and discontinuities in the initial conditions y(z,0) = f(x) 
and y;(z,0) = g(x) propagate into the solution domain as 
in Fig. 4, for instance, where the kinks in f propagate along 

both right- and left-running characteristics. However, it must 

be confessed that at each point along those characteristics the 

PDE c?yca = Yee iS not satisfied because both yee and yr: 

fail to exist. (That yz, does not exist there should be evident 

from Fig. 4. Do you see why ye fails to exist there as well?) 

Explain why results such as those displayed in Fig. 4 are ac- 

ceptable nonetheless. 

16. (Finite-difference method) In Section 18.6 we discretize 

the problem by means of the computational grid shown there in 

Fig. 1, and use difference quotient approximations of up. and 

uw, to obtain the computational formula Uy 441 = rUj_ik + 

(l= 2r)Uj 4 + rU 41.4, where U;,;, denotes the exact solution 

of the difference equation, 

(a) Proceeding in the same manner, derive the scheme 

r Qy- ‘ 2 Bye r 
Yi jes = T Ying +20-7 Vig +) Yiqeay -~Yigjet (16.1) 

for the wave equation problem 

C7 Yee = Vit, 

y(0,t) = p(t), y(L,t) = q(t), 

y(v,0) = f(r), yee, 0) = g(x) 

(16.2,3.4) 
on0Q<a<L.0<t < oo, where r = cAt/Ac,
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(b) Letting c = 10, L = t, Aw = 0.25, At = 0.02, when the points (i,j) = (1,~1),(2, -1), and (3, —1) do not 
p(t) = q(t) = f(a) = 0, and g(z) = sinawe, use (16.1) lie on the computational grid? Use a finite-difference version 
to evaluate the Yj,;’s along the first two time lines, Le., at of the initial condition y,(a, 0) = g(x). 

(ij) = (1,1), (2,1), (8,1), G, 2), (2,2), (3,2). Compare (¢) Same as (b) but with p(t) = 206. 
your results with the exact solution. HINT: For points on the (d) Same as (b) but with g(t) = 1000(1 — cost) 

first ime (16.1) gives (e) Same as (b) but with f(2) = 10sin wa and g(x) = 0. 
Na=r’yoo $20 -r7)¥i0 +r? Yao ~ Yi, (f) It can be shown that for the stability and convergence of the 

Yo. =r? ¥i 90 £2(1 = 7 )¥o9 9° V3.9 — Yoon, scheme (16.1) we need r < 1. You need not derive this result; 

we merely ask you to interpret it graphically in terms of the 7 247 Of 2 vr Qo a 
Ya. =r Yoo +20. —77)¥a0 + 7° ¥i.0 — ¥3,-1, . ae 

concept of the domain of influence. 
but how are we to deal with the ¥),_-1, Yo,-4 and Y3 _, terms 
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The wave and diffusion equations are similar in several ways: 

1. For both the one-dimensional wave and diffusion equations the solution do- 
main is, typically, a semi-infinite strip (0 <2 < L,0 < t < ox), the quarter 

plane 0 < x < 00,0 <t < oo, orthe half plane -co <a <mw,0<t< om, 

to
 For both equations we can use the method of separation of variables, a Laplace 

transform on the ¢t variable, or a Fourier transform on the «x variable if the x 

domain is ~oo <u < x. 

3. When solving by separation of variables, the boundary conditions are to be 
applied before the initial conditions. 

But the wave and diffusion equations also differ in some ways: 

|. A single initial condition u(#,0) = f(x) is appropriate for the diffusion 
equation @7u,, = uz, whereas the two initial conditions y(w,0) = f(a) and 

: 7 : 9 
ye(v, 0) = g(v) are appropriate for the wave equation C7 Yea = Yu. 

rm Only for the wave equation do we find a general solution, namely, 

y(t) = F(a ~ ct) + G(x + et), (1) 

where & and G are arbitrary (twice differentiable) functions. The graphs of 

F(a — ct) and G(v + ct), plotted versus x. translate rightward and leftward. 

respectively, with speed c. Of course, F and G need not be single terms. For 

example, in the solution 

i< nit i ne, 
y(t) = 5 S dy, Sin (e et) + 5 S- (py SiN =e +et) (2) 

n=! noel
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of the problem 

  

C’ Yeu = Utts (-co <a<co, 0<t < oo) Ga) 

y(v,0) = f(x), yx) = 0, (-oo <u < co) (3b) 

where 1 
2 f NTL 

noo (xv) sin ——— da, a. i | f(e) sin ze 

each of the functions 

li n 
F(a — ct) = 5 2. Gy sin Fle ~ ct), (4a) 

ns 

l— nmr ¢ 

G(x + ct) = 5 2 dn Sin zl + ct) (4b) 

is a superposition of individual traveling waves. In this case the trigono- 

metric identities sin(A + B) = sin Acos B + sin B cos A reduce (2) to the 

form 
oO 

QL nmct 
y(z,t) = Ss" Gy, Sin Fz OS (5) 

n=l 

  

which is a superposition of standing waves. Thus, the wave equation in- 

evitably gives traveling waves, by virtue of (1), and in some cases these trav- 

eling waves sum to standing waves. The variables € = «x —ctand7 = «+ et 

give two families of characteristics in the w,t plane, the € = constant and 

1 = constant lines, along which information propagates as can be seen from 

(1) because F(x —ct) is constant along x —ct = constant lines and G(x +ct) 

is constant along x + ct = constant lines. 

Whereas diffusion is a smoothing process, we see in Chapter 19 that kinks 

and discontinuities in the initial conditions propagate into the x,¢ solution 

domain indefinitely, along characteristics. 

The svo-dimensional wave equation 

9 

C (Wee + Wyy) = We, (6) 

such as governs the displacement w(a, y,£) of a vibrating drumhead, can be solved 

by separation of variables by seeking 

w(x,y,t) = We, y)T(t) (7) 

and obtaining 

Woe + Wyy tee W = 0, ~ (8a) 
TT’ + K-oT =0, (8b) 
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where (8a) is the two-dimensional Helmholtz equation. In turn, (8a) can be sepa- 

rated by seeking W(x, y) = X(x)Y (y), or we could seek w(x, y, t) = X(e)VY(y)T(t) 
right from the start. The result is a double series, and each initial condition [w(«, y,0) = 

f(a,y), wile,y,0) = glx,y)]| leads to a double Fourier series expansion. The 

same method can be applied to the two-dimensional diffusion equation a? (tre 

Uyy) = ur, the chief difference being that for the wave equation the T equation (8b) 
gives the oscillatory solutions cos «ct and sin «ct, whereas for the diffusion equa- 

tion the T’ equation T’ + K*a°T = 0 gives the exponential decay exp (—K7 at), 
Finally, note that in this chapter on the wave equation there is no section on 

numerical solution analogous to Section 18.6 on the numerical solution of the diffu- 
sion equation by the method of finite differences. The finite-difference method can 
indeed be applied to the wave equation, but if the initial conditions y(z,0) = f(a) 
and y:(a,0) = g(x) are not smooth functions, then inaccuracies result from the 
discontinuities that propagate into the solution domain. In that case it is better to 
use the method of characteristics, which uses the more natural characteristic vari- 

ables € and 7 in place of «x and ¢. Essentially, the calculation is carried out along 

the characteristics.” 

  

“For an introduction to the method of characteristics see G. D. Smith, Numerical Solution of 

Partial Differential Equations (New York: Oxford University Press. 1965) or, for a more complete 

discussion, see E. Zauderer. Partial Differential Equations of Applied Mathematics (New York: Wi- 

ley, 1983).



Chapter 20 

Laplace Equation 

20.1 Introduction 

We have already encountered the Laplace equation 

V-u=0 (1) 

in Chapter 16, as well as its nonhomogeneous version, the Poisson equation 

  

V-u =f, (2) 
      

where f is a “source” function that is prescribed over the region in question. Recall. 

for example, the unsteady diffusion equation 

oF Vu = uy — F(x, y, 2,t) (3) 

governing the temperature field u(z, y, z,¢), in which F(z, y, z,t) is a heat source 
distribution. If F does not vary with ¢ and if there exists a steady-state solution 
u(x, y, z), then the latter satisfies the Poisson equation V?u = —F (a, y, z)/a?. If 
there is no heat source distribution [i.e., if F(a, y,z) = O], then the steady-state 
temperature distribution w(a, y, z) satisfies the Laplace equation (1). 

As a second example observe that the electric potential (i.e., the voltage) field 

®(x, y, z) is governed by the Poisson equation 

; Ll, 
V7 =o Q(z, Us z), 

) € 

where q(x, y, z) is the charge density distribution (which serves as a “source” for 

the electric potential) and € is a physical constant known as the permittivity of 
the medium. [f g(a, y,2) = O in the region, then ® satisfies the Laplace equa- 
tion V7 = 0. Since the presence of an electric field is solely attributable to 
the presence of charges, how can there be anything other than the trivial solution 
(x,y,z) = 0 in the event that g(x,y, z) = 0? The answer is that there may be 

charges outside of the region under consideration or on its boundary. 

1058 

 



  

20.2. Separation of Variables; Cartesian Coordinates — 1059 

4 
Finally, recall from Example 3 of Section 16.10 that the velocity potential 

(x,y, 2) for any irrotational incompressible fluid flow is governed by the Laplace 
equation 

V° = 0, 

where © is related to the velocity field v(a, y, z) by the formula v = V®. 
Emphasis in this chapter is on the Laplace equation, with the Poisson equa- 

tion considered only within the exercises. Like Chapters 18 and 19, Chapter 20 
is organized according to the various methods of solution. In Sections 20.2 and 
20.3 we study the solution of the Laplace equation by separation of variables — us- 
ing Cartesian coordinates in Section 20.2 and non-Cartesian coordinates in Section 
20.3. Solution of certain problems by the Fourier transform is covered in Section 
20.4, and the numerical finite difference method is the subject of Section 20.5. 

20.2 Separation of Variables; Cartesian Coordinates 

We limit our attention in this chapter to Hvo-dimensional problems, so the domain 
D is some part of the x,y plane. For the method of separation of variables to 
work, PD must be bounded by constant-coordinate curves, so if we use the Cartesian 
coordinates zx, y, then the generic domain is a rectangle, bounded by constant-x and 

constant-y lines. 

EXAMPLE 1. Dirichlet Problem for Rectangle. Consider the boundary-value problem 

  

    
  

  

Vou = Ure $F Uyy =O in D, (1a) 

u(Q,y) =0. (O0<y< bd) (1b) 

ulay)=fy), (O<y <4) (1c) y 
u(z.0) =ulz,6) =0, (O<2 <a) (id) 

u=0 
where D is the rectangle shown in Fig. 1. Since all of the boundary conditions are of b 

Dirichlet type (i.c.. where w is given). we call (1) a Dirichlet problem. 

To solve by separation of variables, seek Vu =0 

u=0 u= f(y) 

u(z,y) = N(x) ¥(y). (2) D 

Putting (2) into (la) and separating the variables gives 
u=O a Xx 

eu yr 5 

r =" = constant = 4”, (3) Figure 1. The Dirichlet 

- problem (1). 

SO 

XU RX =O, (4a) 

yu a KO y=0, (4b)
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and 

f A+ Bz, K=O ; 

X(2) = | Cooshxe + Dsinhka, « £0 (5a) 

rp) E+ Fy, K=O - 

Wy) = : Goosky + Hsinky, #« €0 (Sb) 

Why did we choose the constant in (3) as +4” rather than as ~«7? Because, looking 

ahead to the application of the boundary conditions we anticipate the eventual Fourier series 

expansion of f(y). The choice +7 does indeed lead to the cos xy and sin «y solutions in 

(5b) that will be needed for that Fourier series expansion; —47 would have led to cosh KY 

and sinh ay instead. 

Because the Laplace equation V?u = 0 is linear, we can use superposition and com- 

bine the « = 0 and «x ¥ 0 product solutions as 

u(z,y) = (A+ Ba)(E + Fy) 

+(Ccoshag + Dsinh wx)(Gcos ky + A sin ky). (6) 

Saving the boundary condition at z = a for last, we first apply the boundary conditions on 

the edges y = 0, y = b, and x = 0: 

u(z,0) =0= (A+ Br)E+(Ccoshke + Dsinhkajc, 

so (to retain as robust a solution as possible) set & = 0 (rather than A = 0 and B = 0) and 

G = 0 (rather than C = O and D = 0). Then (6) becomes 

u(z,y) = (f+ Jejy + (P coshar + Qsinh ar) singy, (7) 

where we have combined AF as J. BF as J, CH as P. and DH as Q for brevity. Next. 

u(v,b) = 0 = (I+ Jx)b+(Pcoshaa + Q sinh xz) sin «b (8) 

gives [ = 0, J = 0. and sinxb = 0. Hence, 

Kont/b (n=1,2,...) 

so, with the help of superposition, we can update (7) as 

  

  

20 

u(e,y) = X (Pr cosh — + Q, sinh —) sin —. (9) 

Next. the “western” boundary condition (i.e., at 2 = 0) gives 

x 

u(0,y) =0= x P,, sin a (0<y <b) (10) 

which is satisfied by setting P, = O form = 1,2,.... Thus. (9) becomes 

x 

u(t,y) = S| Q, sinh — sin — (1) 
na |



  

20.2. 

Finally, the eastern boundary condition 

oo 
_, nea. nary 

ula,y) = fly) = Q, sinh —— sin —— O<y<b 12 (a,y) = Fy) a2 sin (OS y <5) (12) 

is seen to be a half-range sine series so 

 nra 2 f?. _ nmry 
Qn sinh ——~ = — f(y)sin —— dy, 

b b fo 6 

or 
2 fT _ nry 

Qn = ae | OS (y)sin a (13) 
bsinh ne to 

b 

The solution to (1) is given by (1!) and (13). 

COMMENT |. We stated that (10) is satisfied by setting P, = O forn = 1,2,.... 

Obviously that is true, but there is a subtle question here: must the P,,’s be zero? That 

is, might the sin (nay/b) terms cancel to zero on 0 < y < 6 without all the P,,’s being 

zero? Surely the sin (n7y/b) terms are linearly independent on 0 < y < 0, and ifa finite 

linear combination of linearly independent functions is zero, then each coefficient must be 

zero. However, the sum in (10) is an infinite series, not a linear combination of a finite 

number of terms. The cleanest way to handle (10) is to see that it is actually a half-range 

sine expansion of the function (0, y) = 0. Thus, 

yn pb 2 _ nry 
Pi=- 0) sin —— dy = 0, 1 ; [0 5 ty = 9, 

as Stated. 

COMMENT 2. To make our results more concrete, consider a specific f(y). For simplicity, 

let f(y) be a constant, say 

  

f(y) = 100. 

Then (13) gives 400 

n= na sinh = 

form = 1,.3.... and Q forn = 2,4,..., 80 (EL) becomes 

wei Mt So LaahelD yy 
One useful way of presenting such two-dimensional results is to plot a number of u = 

constant curves. isothermal curves if we consider (1) in the context of steady-state heat 

conduction. We have done so in Fig. 2. for the case where b = a. The u = 0 isotherm is 

the northern, western, and southern boundary; the uw = 100 isotherm is the eastern edge; 

and all other isotherms spring from the corners (a,0) and (a,a@). As implied by Fig. 2 

all u values within the rectangle are between the minimum and maximum values of wu on 

the boundary, namely, 0 and 100, respectively. This result illustrates the important and 
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0 

Figure 2. Selected isotherms for 

f(y) = 100 and 6 = a.
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10a | 

= 25 

50 

75 

  

  

  

~¢—————— 100 

Mo= QO > 

          
Figure 3. High-aspect-ratio case. 

fundamental maximum principle of potential theory (i.c., the theory associated with the 

Laplace equation), which states that if the Laplace equation V7u = 0 holds on a domain 

D, then the maximum (and minimum) values of uw occur on the boundary of D, not in its 

interior. This result is proved in the next section. 

COMMENT 3. We have also plotted the isotherms corresponding to (14) for the high- 

aspect-ratio case where b = 10a, again with f(y) = 100 (Fig. 3). Observe that over 

2a < y < 8a, say, the problem is essentially one-dimensional, with wu varying with x but 

hardly at all with y. If, accordingly, we neglect the 0?u/Oy? term in the Laplace equation, 

then we have the problem 

    

On a0 ul = 0, ul = 100, (15) 
Ox* w=0 E=a 

with solution 7. 

u(z,y) © 100—, (16) 
a 

the isotherms of which are the lines x = constant in Fig. 3. We see that (16) is an excellent 

approximation to u(z, y) except near the ends, that is, except within one or two widths (the 

width being a) of the ends y = 0 and y = 10a. Indeed, if we are interested in the solution 

only within 2a < y < 8a, say, then the simpler one-dimensional model and its solution (16) 

may well suffice in place of the two-dimensional model and the more cumbersome solution 

(14). Of course, (16) does not satisfy the boundary conditions u(a,0) = 0 and u(z, 10a) = 
0, so there are regions of adjustment near those two ends, where the approximate solution 

(16) needs to be blended with the boundary conditions u(z,0) = O and u(z, 10a) = Oina 
way that satisfies the Laplace equation. 

The results found in this example hold in general; namely, we can expect end effects 

to be significant only within one or two widths of the end. § 

Remember that in Chapters 18 and 19 we always chose the separation constant 
to be —«*, and that we always applied the boundary conditions before the initial 
condition. For the Laplace equation, however, the sign of the separation constant 
and the sequencing of the boundary conditions needs to be decided on a case-by- 

case basis. We offer this rule of thumb as guidance: 
Anticipating the edge along which the eventual Fourier series will take place, 

choose the +«* or —K* so as to obtain oscillatory functions along that edge. Then, 

apply the boundary conditions adjacent to that edge first. 
For instance, in Example | we can anticipate that it is the boundary condition 

u(a,y) = f(y) that will require the Fourier series, so we choose +k" in (3) so as to 
obtain the oscillatory solutions Y(y) = cosy and sin xy in the y variable. Then, 
we apply the boundary conditions on the northern and southern edges, which are 
adjacent to that edge. Similarly in Chapters 18 and 19. There, the Fourier series 
is always along the southern edge in the x,t plane (i.e., along the edge t = 0) 
so we chose —&* in order to obtain cos «Kaz and sin ka: we applied the boundary 
conditions on the adjacent edges « = 0 and « = L first, and on the edge ¢ = 0 last. 

What if the boundary conditions are, in place of those in Fig. 1, u(0,y) = 
ply), ula,y) = f(y), ule, 0) = q(x), and u(x, b) = g(x)? Evidently each edge
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will require a Fourier series expansion, so how can we apply the adjacent boundary 
conditions first if they require Fourier series expansions themselves? This difficulty 

can be resolved by using the concepts of linearity and superposition to break the 
problem into four simpler ones as indicated schematically in Fig. 4. The idea is to 
solve each of the four problems on the right along the lines indicated in Example | 
(using +«” for the first and third problems and —«* for the second and fourth) and 

then obtain u as the sum 

u(a,y) = uy(a,y) + ue(a,y) + ua(a, y) + uaz, y). (17) 

& 0 & 0 0           

P| Veu=0 lf = 0} Vu <0] f + 0] V2u,=0/0 + P| V2u,=0/0 + 0} Veuy =0]0 

                            
q 0 0 0 q 

Figure 4. Use of superposition, 

To see that (17) is true, add the equations V?u, = 0, V2u2 = 0, V?ug = 0, and 

V?u4q = 0, and obtain 

Veuy + Veu2 + V2ug + Vuy = 0. (18) 

But since the operator V® is linear, it follows from (18) that 

V7 (uy +ug+u3+uy) = 0, 

SOU = Ut + U2 + Ug + uy does satisfy the Laplace equation, as required. Turn- 
ing to the boundary conditions, consider the eastern condition. From (17) and the 
conditions imposed on 11, U2, ug, and wa, 

uj(a,y) + us(a,y) + ug(a,y) + ua(a, y) 

= f(y) +04+0+0 

= f(y), 

as required. Similarly for the other boundary conditions. 

u(a, y) 

EXAMPLE 2. Semi-dufinite Strip. Consider the Dirichlet problem 

VU = Ure t Uyy =O in D, (19a) 

u(O,y) = 20, u(5,y) = 50, (0 <y < 90) (19b) 

u(x,0) = f(x), (0<a <5) (19c) 

u(z,y) boundedas y+, (19d) 

where D is the semi-infinite strip 0 <2 < 5,0 < y < 00 (Fig. 5). 

Since physical objects are of finite size, why might we be interested in a semi-infinite 

strip that extends to y = 00? The actual physical object might, for instance, be a slender 

u= 50     
u _ f(x) 5 * 

Figure 5. Semi-infinite strip.
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Figure 6. The actual object. 

“fin” attached to a thick base as shown in Fig. 6. Then the problem ts actually defined on a 

complicated three-dimensional domain. However, suppose that our interest is not in finding 

the temperature field everywhere in the object but only near the end of the fin, within the 

rectangle ABC'E. And suppose that we know the boundary conditions u = 20 along AF, 
u = 50 along BC, and u = f(x) along #C. We could take our domain D to be the 

rectangle ABC'E, but we do not know a boundary condition along A.B. To within a good 

approximation, we render the problem tractable by letting D be the entire semi-infinite strip 

shown in Fig. 5, with the boundedness condition (19d) as our missing boundary condition 

at y = oo. Based on Comment 3 of Example 1, we expect the difference between the actual 

temperature field and the one defined by (19) to be very smail within the region of interest, 

ABCE. 

We anticipate that the eventual Fourier series expansion will be a half- or quarter-range 

expansion on the edge y = 0. Thus, to obtain oscillatory functions of z (namely cos Kx 

and sin 4) rather than of y, write 

vil i 

Ae -= 8 * 20) 
X Y 

in place of (3). Solving the resulting ODE’s on X and Y and superimposing the « = 0 and 

& # 0 solutions gives 

  

ul(z,y) = (A+ Ba)(E + Fy) 

+(Ccoske + Dsingxr)(Ge"! + He"). (21) 

Apply the boundedness condition (19d) first. Since the y and e*¥ terms in (21) grow un- 

boundedly as y > co, we must set & = 0 and G = 0 to eliminate those terms. Then (21) 

becomes 

uz,y) =I+Ja+(Pcosrz + Qsinkeje™, (22) 

where we have combined AF as /, BE as J. CH as P, and DH as Q. Since we anticipate 

the Fourier expansion to be on the y = 0 edge, we save that boundary condition for last. 

Next, 

u(0,y) =20=f+ Pe", (23) 

and matching the coefficients of the (linearly independent) constant and e~"" terms on both 

sides of (23) gives 20 = J and 0 = P. Using these results to update (22) gives 

u(a,y) = 20+ Je+Qsinare*", (24) 

Next, 

u(5,y) = 50 = 20+57 + Qsin5ve “Y, (25) 

so 50 = 204+ 5J and sin 5x4 = 0. Thus, J = Ganda = n7w/5(n = 1,2,...). Putting these 

results into (24) we have, with the help of superposition, 

ne Nex 5 
u(@,y) = 204+ 62 +S 7 Qa sin Se? 26 u(x, y) x 2 dn sin 5 (26) 

Finally, 

= NTL 
z,O0) = flv) = 20 + 67 + Qn» sin —— 27 u(x, 0) = f(x) + 6x ) QQ, sin 5 (27) 

n=l 
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or, moving the (known) 20 + 6a terms to the left-hand side, 

oo 
. ee 

f(v) ~ 20-62 = S> Qn sin ——. (0<a <5) (28) 
5 

ns] 

The latter is a half-range sine expansion of f(x) — 20 ~ 6a, so we can compute the Qn’s 

from 
5 2 f° , 

Qn = 5 | [f(v) — 20 ~ 62] sin = da. (29) 
2 Jo 

Thus, the solution to (19) is given by (26), with the Q,,’s computed according to (29). 

COMMENT |. The « = 0 term (A + Bae)(£ + Fy) in (21) contributes the 20 + 6x 

part of the final solution (26). The graph of that part of the solution is like a ramp, from 

u = 20 along the z = 0 edge to wu = 50 along the a = 5 edge. In the language of 

Chapter 18 we can think of 20 + 6z as the “steady-state” solution, the solution that is 

approached as y —+ oo (analogous to the limit t + oo in Chapter 18), and we can think of 

the series in (26) as the “transient” that blends the “steady-state” 20 + 6z with the “initial 

condition” u(x,0) = f(x). We see from (26) that the transient part, or end effect, dies out 

exponentially with y; with n = 1, the exp (~nmy/5) factor is merely 0.043 at y = 5 and 

0.0019 at y = 10, and with n = 2,3,... itis even smaller. Only if f(a) happens to equal 

20 + 6x does the end effect vanish entirely, for then all the Q,,’s are zero. 

COMMENT 2. In (21) we wrote Ge*” + He~*¥ but could have written Rcosh«y + 

Ssinh «y, say, instead. The choice is immaterial since the two forms are equivalent, but 

the former is more convenient regarding the application of the boundedness condition, for 

it is clear that e*” is a “bad” term (unbounded) and that e~*¥ is a “good” term (bounded) 

so we set G = 0. Working with cosh xy and sinh xy instead would be awkward because 

both are unbounded (Fig. 7). However, 

. Oat R KY —K S ‘ Kl 
Reosh ky + Ssinhxy = > (eS¥ He) + 5 (eX? — e7*¥) 

R+5 iy RS ay 
= — en tier 30 5 env ye (30) 

so we can arrange for the unbounded parts of the cosh cy and sinh cy to cancel by choosing 

S = —R, in which case (30) reduces to Re~*”. Thus, we arrive at the same place but the 

trip is more arduous. 

COMMENT 3. Since we had three nonzero boundary conditions (Fig. 5), why did we not 

break the problem into three sub-problems along the lines indicated in Fig. 4? We could 

have but did not need to because the boundary conditions along the edges 2 = Qanda = 5 

are merely constants and can therefore be handled by the (A+ Ba)(E + Fx) ramp term 

in the solution. 

COMMENT 4. In these first two examples the Fourier expansions happened to be half- 

range sine series, but that will not always be the case and will depend on the boundary 

conditions. For instance, if we change the Dirichlet boundary condition u(0,y) = 20 to 

a Neumann boundary condition such as u,(0,y) = 3, then in place of the half-range sine 

expansion (28) we would have a quarter-range cosine expansion. H 

  

Figure 7. cosh xy and sinh wy.
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Closure. In this section we study the separation-of-variable solution of the two- 

dimensional Laplace equation Ug,» -- Uyy = 0 on domains bounded by constant- 

x and constant-y lines. Unlike Chapters 18 and 19, where we always take the 

separation constant to be —«* and apply the boundary conditions at 2 = 0 and 

v=: [before the initial condition (s) att = 0, here we need to choose the sign of Ke 

and the sequence of application of the boundary conditions on a case- by- case basis. 

The rule of thumb is to choose the separation constant as +k or ~K” so as to give 

oscillatory solutions (cosines and sines) along the edge where the eventual Fourier 

expansion will take place, and then to be sure to apply the boundary conditions 

adjacent to that edge first. (For example, if the Fourier expansion is on the eastern 

edge, then by the “adjacent” edges we mean the northern and southern ones. ) 

Consider the general Dirichlet problem on u shown in Fig. 4. If all of the func- 

tions p(y), g(a), f(y), and q(a) are nonconstant, then we can break the problem 

into four sub-problems, as shown in the figure, and solve separately for a(t, LY), 

ola, y),ug(v,y), and uq(x, y). For the uy and wy problems, set X"/.X = -y"/Y 

+2, so as to obtain cosine and sine solutions in the y variable, and apply the 

southern and northern boundary conditions before attempting the nonhomogeneous 

boundary condition (eastern in the w; problem, western in the w3 problem). In fact, 

you will find that if the boundary conditions on any two opposite boundaries are 

constants, then it is not necessary to break the problem down as we do in Fig. 4 

(although we can if we wish). For instance, suppose that both p(y) and f(y) are 

constants. Then set X”/X = -Y¥"/Y = —k°* to obtain cosine and sine solutions 

in the x variable, and apply the western and eastern boundary conditions first. 

Similar statements apply if boundary conditions of Neumann or Robin type are 

present on one or more edges, but be careful because if all four edges have Neu- 

mann boundary conditions, then there may be no solution or a nonunique solution 

(Exercises 17 and 18). 

In Example 2 we consider the domain to be an idealized semi-infinite strip and 

adopt a boundedness condition in lieu of the missing boundary condition at y = 90 

The Fourier expansion is necessarily on the finite edge (the edge y = 0 in Example 

2). Given the choice between expressing Y in terms of cosh xy and sinh «y or in 

terms of e“Y and e7*¥, we choose the latter because of convenience in regard to the 

application of the boundedness condition, 

Finally, and very important, is the fact that the Laplace and Poisson equations 

arise in the context of boundary-value problems; that is, a boundary condition is 

supplied on each of the four edges. In contrast, the diffusion and wave problems 

studied in Chapters 18 and 19 are of initial-value type (with respect to the ¢ variable) 

since conditions are given at ¢ = 0 but not at a final time or at f = cw. This 

boundary-value nature will be felt more acutely when we use the finite-difference 

method in Section 20.5 
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EXERCISES 20.2 
  

1. Solve Uae + Uyy = Qin the rectangleO <r <3,0<y<2 

by separation of variables, subject to the given boundary con- 
ditions. AT denotes the Heaviside function. 

(a) u(O,y) = ule,2) = ul(3,y) = 0, ule,0) = 
50 sin (2/3) 
(b) u(O,y) = ule,0) = ul3,y) = 0, u(a,2) = 
10sin (rx/3) ~ 4dsin re 
(c) u(z,0) = u(3,y) = 

4sin 27y — sin 3ry 

(d) u(O, y) = u(e,2) = u(3,y) = 0, ula, 
u 4 

u(@,2) = 0, u(O,y) = S5sinay + 

(e) u(0, a = u(e,2) =u(3,y) = 0, ul(z,0) = 50H (x — 2) 
(f) u(O,y) = ua, 2) = uy, =(3.u) =, u(v,0) = 50H (2 — 2) 
(g) uz(OQ,y) = u(x, 2) = ue(3,y) = 0, u(z,0) = 
50A (a — 2) 
(h) uy(x, 2) = u(8,y) = u(z,0) = 0, u(0,y) = Ay - 1) 

(i) u(0,y) = u(x, 0) = = ust y) =0, u(x,2) = 52 

(u(O.y) = ule, 2) = u(3,y) = 0, ul(v,0) = 5[H(e@—-1)- 
H(ax — 2) 
(k) u(z, 2) = u(3,y) = u(v,0) = 0, u,(0,y) = 5sin Sry 
(I) u(x, 2) =u(3,y) = u(z,0) =0, u,(0,y) = 20 

(m) u(x, 2) = u(3,y) = uy(2,0) =0, we(0,y) = 20 
(n) uy, (v, 2) = u(3,y) = uy(z,0) = 0, us(0,y) = 20 

2. (a) The solution to Exercise I(d) is given in the An- 

swers to Selected Exercises. Using that solution and com- 

puter software. evaluate u(2.5,1), u(2.5,0.5), u(2.5, 0.2). 
and u(2.5.0.1), correct to two decimal places. In each case, 

tell how many terms must be summed to achieve that accuracy. 

Explain why more terms are needed as the point approaches 
the x axis. 

(b) The same as part (a), but using the solution to Exercise 

Ich). 

(c) In Exercise I(e) evaluate u(1,1) to three significant fig- 
ures, 

(d) In Exercise Ie) evaluate u(O,y} at y = 

0.25.0.5,0.75,...,. 1.75, to three significant figures, and plot 

u(OQ, y) versus y, | by hand or by computer. 

3. Solve Ug, + Uy, = O in the square 0 < 2 < 2, 

0 < y < 2 by separation of variables, subject to the given 

boundary conditions. (You should be able to obtain the so- 

lution in closed form.) Then, obtain a computer plot of the 

w= 10,20,30,....,90 isotherms using software such as the 

Maple implicitplot command. NOTE: We urge you to try 

sketching the isotherms even before you solve the problem. 

(a) ul(OQ.y) = ule,2) = ul(2.y) = 0, ufz,0) = 
100 sin (72/2) 

(b) u(O,y) = wul(2,y) = 0, u(a,2) = ul(z,0) = 
100 sin (ma: /2) 

(©) wy) =  ule2) = 0, uy) = 
LOO sin (ary/2), u(a,0) = mw sin (na/2) 
(d) u(O,y) = u(a,2) = 0, ue(2,y) = 0, u(z,0) = 

100 sin (72/4) 
(e) u(0,y) = ula, 2) = 0, u(a, 0) = 
100 sin (wx/2), u(2,y) = 20sin (ry/2) 
(f) u(0,y) = u(2,y) = 0, u(x, 0) = 
100.sin (4/2), u(a, 2) = 20sin (42/2) 
(g) u(O0, y) = u(2,y) = 100sin (ry/2), u(a,0) = ula, 2) = 
100 sin (waz /2) 

4. Solve ure + tyy = O in the rectangle 0 < 2 < a, 

0 < y < b subject to the boundary conditions u(0, y) = p(y), 
u(a, 0) = ua, u(a,y) = f(y), u(x, 0) = uy without breaking 
the problem into sub-problems; p(y) and f(y) are prescribed 
functions and wy and wg are prescribed constants. HINT: Read 

the second paragraph of the closure. 

5. Same as Exercise 4, but with these boundary conditions: 

(a) u(O,y) = uw, u(z,b) = p(x), ufa,y) = ue, u(z,0) = 

f(x) 
(b) ue(O,y) = ply), ulz,b) = wy, ulayy) = 

f(y), u(x, 0) = ue 

(¢) x (0, y) = Ply), u(x, b) = U1, ur(a, y) = 

f(y); u(x, 0) = Ug 

6. Solve ta, + tyy = Oin the rectangleO <2 <a0<y<b 

subject to the boundary conditions u(z,0) = uw, u(a,b) = 
ug, u(0,y) = us, u(a,y) = ua, where ui,...,uq are con- 

stants. Do not break the problem into subproblems; you don’t 

need to. Rather, choose X"/X = —~Y"/Y = +x? and apply 
the southern and northern boundary conditions first. (You may 

leave expansion coefficients in integral form.) Next, solve the 

problem again, this time choosing X"/X = —Y"/Y = —K? 
and applying the western and eastern boundary conditions 

first. Your two solutions will look different but will merely be 

two different representations of the same function. If b = 10a, 

which of the two solution forms would you prefer — for pur- 

poses of calculation? Explain your reasoning. 

Let f(y) = 100 in (Ic), and let b = @. Without solv- 
ing the problem (or using the solution in the text), show that 

u(a/2,a/2) = 25. HINT: Let p(y) = g(z) = f(y) = q(x) = 
100 in Fig. 4. 

8. To promote physical “intuition.” we ask you to draw a neat, 

labeled sketch of representative isotherms for the problem con-
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sisting of the Laplace equation on the square 0 < @ < a, 

0 < y < a with the given boundary conditions. 

(a) uf0,y) = ule,a) = ula,y) = 0, ule,0) = 

100 sin (7ra:/a) 
(b) ulO,y) = uleja) = ugla,y) = 0, ule,0) = 

100 sin (72/2a) 
(c) u(O, y) = u(x, 0) = 0, ula,y) = ulw,a) = 20 
(d) u(O,y) = u(r,0) = ula,y) = 0, ula,a) = 100 for 

Q<a<a/2and0fora/2<a<a 
(e) u(O.y) = u(a,0) = 0, ula,a) = 0, ula,y) = 20 

9, Show that the solution (11) of the problem (1) can be ex- 

pressed in the form of an integration over the boundary data, 

namely, 

ob 

w(x, y) =| K (nx, y) fC) an, (9.1) 
0) 

and give an expression for the kernel K(y;2,y); it will be 

in the form of an infinite series. 

10. Solve tr, + Uyy = O in the semi-infinite strip 0 < x2 < %, 

0 < y < 1 subject to the given boundary conditions plus the 

condition that v is bounded as x — 9%. 

(a) u(O,y) = 0, ufaz,0) = 10, uy(z,1)=0 
(b) u(0,y) = 100, u,(z,0) = u,(z,1) = 0 
(c) uz(O,y) = 5. ula2,0) = u(z,1) =0 

(d) u(O.y) = 0. ule,0) = 50, u(x,t) = 10 

fe) ul(O.y) = lOy, u(x,0) = 20. u(a,1) = 50 

Jl. (a)-(e) Give a labeled sketch of representative isotherms 

for the corresponding problem in Exercise 10. 

12. The problem 

Ung + Uyy 2 0. 

u(z,0) = 0,  ula,b) = 50e~("/ 106) 

on —co < a < co, 0 < y < b admits a simple and accu- 

rate approximate solution, which we ask you to find. HINT: 

exp [~(2/106)*) is a slowly varying function of x, 

13. In Example 2 we apply a boundedness condition on u at 

y = oo. Dropping that condition, put forward two or three 

solutions that are unbounded on the semi-infinite strip. 

14. Consider the Laplace equation ty. -- Uyy = 0 on the par- 

allelogram D shown, bounded by the lines y = 0, y = 1, 

vA 

  

y = 2a,and y = 2x—2, with boundary conditions given on the 

four edges. There is no future in seeking u(z,y) = X(a)¥(y) 

and using separation of variables because the boundary is not 

comprised of constant coordinate curves. Specifically, the left 

and right edges are neither constant-< nor constant-y lines. 

One possibility seems to be a change of variables from z, y to 

&,7 according to 

&E=y- 2, yy (14.1) 

so that the new domain, in the €,7 plane. will be a rectan- 

gle bounded by constant-€ and constant-1 lines. 

(a) Show that new domain in a labeled sketch. 

(b) Show that in terms of € and 7 the Laplace equation be- 

comes 

Suge + 2g + Un = 9 (14.2) 

and that our plan fails because (14.2) is not separable. NOTE: 

Nonetheless, the idea is a good one: we simply need to figure 

out how to design a change of variables € = F(x,y) so as 

to simplify the domain without at the same time complicating 

the PDE. How to do this, for the two-dimensional Laplace 

equation, is the subject of Chapter 22 on conformal mapping. 

15. (Poisson equation) Consider the Poisson problem 

Gar + Uyy = fla, y)s 

u(O,y) = u(a, 6b) = ula, y) = ule,0) = 0 
(15.1) 

on the rectangle 0 < @ < a0 < y < b, where the source 

function f(x, y) is prescribed. 

(a) Solve (15.1) by separation of variables for the case where 

f(x,y) = constant = f, leaving expansion coefficients in in- 

tegral form. HINT: Noticing that fx? /2 is a simple particular 

solution of (15.1a), seek uw in the form 

9 

u(t, y) = = 2 4+U(z,y). (15.2) 

N
a
l
.
 

Show that the “homogeneous solution” U’ satisfies the problem 

Une + Oy = 0, 

U(O.y)=0. Ula,y) = —fa?/2, (I 

U(x.0) = U(a,b) = — fa? /2, 

La to
d a.b.c) 

ne



  

and solve for U by separation of variables. NOTE: fu? /2 

is not the only particular solution that could be used; for in- 

stance, we could use fy?/2, fa?/2 + 37xy — 5y + 6, and so 

on, but fa? /2 (or fy*/2) seems a simple and natural choice. 
(b) Observe that the method proposed in (a) will work not only 

when f(x,y) is a constant, but also when it is a function only 

of x or only of y. Here, we ask you to solve (15.1) for the case 

where f(x,y) is not necessarily of that form. HINT: Use the 

eigenvector expansion method in very much the same man- 
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(16.3) 

where 

Wmn = 

4 “b pa 

D : (16.4) 
mm ab sinh (wmne) [ 0 May) 

Mra nw 
x sin - sin = da dy. 

ner as we did in Exercise 17 of Section 18.3. Essentially, we 

can use either the eigenfunctions sinnwax/a in the 2 variable 

or the eigenfunctions sinnay/a in the y variable to expand 

“everything in sight.” Specifically, expanding 

3O 

. _ nary 
’ = nl& wr 15.4 f(e.y) 2_ Jnlz)sin > (15.4) 

where 

27° : 
fale) == | fla.y)sin = dy, (15.5) 

5 Jo b 

and seeking 

~ _ ary 
ry) = n(z —, 15.6 u(x, y) 2, daz) sin ; (15.6) 

show that the g,,/s are found by solving the problems 

In ~ — Gu = Fn(e): gn (0) = gn(a) =0 (15.7) 

forn = 1.2..... 
(c) Implement the method of part (b) for the case where 

f(x,y) = ry, and solve for u(r. y). 

16. (Three-dimensional case) Consider the three-dimensional 

problem 

Vu = Ue Uyy + Use = 0) 

in the rectangular prism 0 <r ca0<y<bO0<s< 0, 

where u = 0 on each of the six faces except for the face z = ec, 

on which u is a prescribed function f(x,y). 

u(x.y.c) = f(r.y). QO<crdca O<y <b) (16.2) 

(a) Use separation of variables to derive the solution 

7 x 

. mre. nmy, 
u(e.y, 2) = ) ) Ding SID sim > sinbwinn, 

al 0 

  

natm=l 

(b) For the case where c = 6 = a and f(x,y) = 100, use 
(16.3) and (16.4) to evaluate u(a/2.a/2,a/2). 

17. (A necessary condition for existence) Consider the Poisson 

problem 

V7u = f(z.y,2) (17.1) 

in some three-dimensional domain D with surface S. Inte- 

grating (17.1) over D, show that 

O sada = | pay. (17.2) 
s On PD 

NOTE: Thus, the boundary values of Qu/On (whether they 
are specified or not) need to be consistent with the source f 

in the sense of (17.2) if a solution to (17.1) is to exist. For 

instance. suppose a homogeneous Neumann condition is ap- 

pended to (17.1), that Qu/On = 0 everywhere on S. Then, 

(17.2) tells us that for a solution to exist the net source must 

be zero: [, fdV = 0. That result makes sense physically 
because if the integral were positive. say, then the average 

temperature within D would be an increasing function of time. 

whereas (17.1) is based on steady-state conduction. 

18. (Uniqueness) Suppose that u(x, y, z) is C® and satisfies 

the Poisson equation (17.1) throughout a domain D, together 

with a Dirichlet boundary condition u = g(z,y,=) on the 

(piecewise smooth orientable) surface S of D. 

(a) Show that that solution is unique. HINT: Suppose that there 

are two such solutions. say uw, and ua. With w = uj —ua, show 

that V2w = Oin Dand w = O0on S. With “u? = %v" = win 

Green's first identity, show that 

/ (we + wy t+uwi)dV =0, (18.1) 
JD 

and conclude that w, = wy, = w: SO w is at most a con- 

stant. Show that the constant must be zero. so uy = ue in D. 

(b) Repeat (a) with the Dirichlet condition replaced by the 
Neumann condition du/Qn = g. This time. show that the so- 

jution is unique only to within an arbitrary additive constant.
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(c) Repeat (a) with the Dirichlet condition replaced by a 

mixed boundary condition whereby u = g over part of S 

and Gu/On = h over the rest of S. 

19. (Application of Sturm-Liouville theory) (a) Solve the prob- 

on the rectangle 0 < 2 < 4,0 < y < 8 by separation of 

variables, with the help of the Sturm-Liouville theory. Show 

that the values of the separation constant « are the (nonzero) 

roots of the equation 

  

lem 

tan 3K = —5x, (19.2) 
Uge + Uyy = 0, 

u(0, y) = u(x, 0) = u(z,3) + 5uy(z, 3) = 0, 

u(4,y) = 100 
and denote those roots as Ky, (mn = 1,2,...). Use computer 

software to evaluate «, through «5 and use the first five terms 

of your series solution to estimate u(2, 1). 

(19.1a.b,c)  (b) Same as (a), with (19.1c) changed to uz(4, y) = 100. 

  

20.3 Separation of Variables; Non-Cartesian Coordinates 

20.3.1. Plane polar coordinates. Let r,@ be the usual plane polar coordinates 
with x = rcos@ and y = rsin@. If the problem domain is bounded by constant 
r and constant @ curves, then we must use r and @ as our independent variables 

because, for the separation of variable method to work, we need the boundary con- 
ditions to be given on the constant coordinate curves. Since we will need to express 
the Laplace equation in terms of r and @, we recall from (24) in Section 16.7 that 
for plane polar coordinates the Laplacian is 

2 8 190 1 
= Ty Ty l 

Or? r Or r*® OG" (1) 

EXAMPLE 1. Consider the Dirichlet problem 

5 1 1 
VOU = Upp + up + = 00 =0, (a<r<b 0O<A<a) (2a) r : 

u(r, 0) = un, (a<r<b) (2b) 

u(r, @) = ua, (a<r<b) (2c) 

u(a,@) = 0, (O<@<a) (2d) 

u(b,@) = f(A) (0<@<a) (2e) 

shown in Fig. |. Observe that this problem is similar to the basic Cartesian coordinate 

version (Fig. | of Section 20.2), with some “distortion,” so we expect our solution steps to 

be similar as well. 

According to the method of separation of variables, we seek u in the product form 

  

“= iy) 
u(r, @) = R(rjO(e). (3) 

Figure 1. The Dirichlet 
6 mon Putting (3) into (2a) gives 

problem (2). 

L 1 R'O + =R'O+ RO" =O. 
r r
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and if we multiply by r® and divide by RO to separate the variables we obtain ply by y Pp 

r? RY + rR! or 2 
Re = - 6 == constant = A”. (4) 

Here, we choose +” so as to obtain cos #8 and sin «@ solutions for © (rather than cosh «@ 

and sinh «#) since we anticipate that to satisfy the u(b,@) = f(@) boundary condition we 
will need to expand f(@) in a Fourier series. 

Proceeding, the R and © equations are 

2 RM 4 rR _ KOR = 0, 
(5) 

Qe" +420 =0. 
° 

Although (5) has nonconstant coefficients (so the solution form 2 = e*” will not work), it 

is elementary because it is of Cauchy~Euler form. Accordingly, seek R = r* and obtain 

MA =1) +A -— 4° = 0o0r\ = tk. Thus, (5) admits two linearly independent solutions, 

R-=r" and R = r7*, unless & = 0 in which case the two solutions coalesce into the 

one solution #2 = constant. To find the missing solution, for the case « = QO, puta = 0 

into (5) and obtain r°R” + rA’ = 0. The latter can be reduced to the first-order equation 
rdp/dr + p = 0 by the substitution #’ = p and integrated to give p(r) = C,/r. Thus, 

R(r) = [ pdr = C, Inr + Cy, so we have these general solutions for FR and O: 

A+ Blnr, c= R(r) = + nr . A= 0 7) 

Cré+ Dr-®, «#0 

B+ F8@, (= 0 
e(@)=% — . * (8) 

Geosk@+ Hsink@. wn #0 

Then. with the help of superposition. we have 

u(r, 0) = (4+ Binr)\(E + F@) + (Cr® + Dr~")(G cos x? + A sink). (9) 

Saving the boundary condition on r = 6 for last, we first apply the boundary condi- 

tions on the adjacent edges @ = Qand@ =a: 

u(r, O) =u, = (A+ Blurry + (Cr® + Dro" )G, (10) 

so we set Af = u;, B = 0. and G = 0. Updating (9) accordingly, 

u(r, @) = uy + 10+ (Pr® + Qr~") sin w@, (11) 

where we have combined AF as /. CH as P. and DH as Q. Next, 

ulna) = ue = uy + fat (Pr® + Oro") sin ka. (12) 

sou, + fa = us andsinxa = 0. hence J = (ug ~ uy )/aand nk = na/a(n = 1,2....). 

Thus, 

oO 
u(r. @) = up - (ttg -— uy J- + 

a roel 

/ . ~/ wn (Part™/@ 4 Quen!) sin ye (13) 

cm
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Then 

a= ilar _ nw 
u(a,0) = 0 = uy + (ug — ui)— + Ss > (Paat/ + Quan") sin ——. 

oe n=] a 

or, moving the known terms on the right to the left-hand side, 

0 = nm@ 
—uy — (ug - ui)— = S- (Paat"/9 + Qna""/*) sin ——. (14) 

a i a 

The latter is a half-range sine expansion of —u, — (ug — u,)(@/a) so we can compute the g pe l 
coefficients P,ah™/@ + Qna~""/™ as 

2 f* 8 
Patt! 4 Qnanrn!@ = i [=u — (ue —_ uw) sin nig dé. (15) 

0 Qa am 

  

a 

Finally, 

u(b,0) = f(9) = uy + (ug — my) + s (P prr/e 4g ponr/a) sin 27? ? a a nm mh a y 

or 

8 = nr _ _ _ _ = nw /a ~nn fa sores f(@) — uz — (ug we a (Pad + Qnb ) sin a (16) 

so 

P,b8/* 2 Q,brht/e =H [ 7) ~ ty — (ua — we] sin no ge, A) 
a Jo . a a 

We can evaluate the integrals in (15) and (17), once f(@) is specified, so (15) and 

(17) amount to two linear algebraic equations in the unknown P,,’s and Q,,’s. They have a 

unique solution because the determinant of the coefficient matrix is 

grtla qunn/e | ay nna b rum [Oo 

pra/a ponm/a | ~~ (=) ~ (2) x 0 (18) 

since b # a. Thus, the solution to (2) is given by (13), with P,, and Q,, determined from 

(15) and (17). For instance, if uy = uo = O and f(@) = 100, then we obtain (Exercise 1) 

py nila Qy nmin 

400 <A 1 (< 7S 8 
u(r, @) = —— _ G) = G) sin (19) 

n oan _— ay nro a 

Q, (5) 

COMMENT |. The Laplace equation in polar coordinates, (2a), did indeed prove to be 

separable. That is, putting u(r,@) = R(r)O(@) into (2a) we were able to get all of the r 

dependence on one side of the equation and all of the @ dependence on the other [in (4)], and 

hence to infer the ODE’s (5) and (6) on A and ©. In fact. the diffusion, wave, and Laplace 

equations are all separable in Cartesian. polar, cylindrical, and spherical coordinates, for 

     



  

20.3. Separation of Variables; Non-Cartesian Coordinates — 1073 

which we can be grateful because nor all PDE’s are separable, see, for instance, Exercise 

14 in Section 20,2. 

COMMENT 2. Given that the Fourier expansion will take place on the r = 6 edge, there 

is no extra difficulty in admitting wu = constant boundary conditions on the adjacent edges, 

namely, the conditions u = uy on 6 = Oandu = ug on @ = a. The reason is that the 

A(E + F@) part of the solution (9), which comes from « = 0, is able to handle those 

boundary conditions; it gives the uy + (ug — u,)@/a part of the final solution (13). If 

we spoke of the analogous (A + Bx)(E£ + Fy) term in Section 20.2 as being a “ramp” 

function (if B or F is zero), we might call the A(# + £6) term a “fan” function since its 

graph “fans” from the value w; at one value of @ to ug at another value of @ (Fig. 2). 

COMMENT 3. If the boundary condition along either radial edge (9 = 0 or @ = q) is 

nonconstant, so that a Fourier expansion is needed along that edge, then the solution is 

more difficult because the needed expansion turns out not to be a familiar half- or quarter- 

range Fourier series but rather a Sturm—Liouville eigenfunction expansion. The solution 

for that case is outlined in Exercise 13. 

COMMENT 4. The boundary conditions (2b}+(2e) are of Dirichlet type. What if they were 

of Neumann type (Ou/Qn prescribed)? For example, if (2b) were replaced by the Neumann 

condition 

or, 0) = g(r), fa<r<b) (20) 

where g(r) is prescribed, then what is Qu/On in terms of r and @? The key is to use the 

directional derivative formula du/ds = Vu-s in Section 16.4, which gives 

OM Jun (Se , 1m. ) | (=69) = - 22" 
On ar" 7 a0 “6 r 06 

on the @ = 0) edge. so (20) can be expressed in terms of r,@ as —(1/r)Ou/00 = g(r) or 

ae (r.0) = -rg(r). fa<r<b) (21) 

Similarly, a Neumann condition 

Ou ia 8) z= h(@) (0<@<a) (22) 
an 

becomes 
Ou 
—(a,0) = -h(@) (Q0<4@< a) (23) 
Or 

because 3 3 12 5 
U . wu. 1ldu.\ , 2) _ ou 

7, Ven (Sre-+ = eo (—é,) Br 

onr = a. Physically, remember that if wu is a temperature field then Ou/On is proportional 

to the fear flux across that boundary. 4 

EXAMPLE 2. Dirichlet Problem for Circular Disk. Next, consider the Dirichlet prob- 

lem 

5 1 Ll 
Ve = Ure FOU +b yee = 0. (O<r <b) (24a) 

r re 

  

Figure 2. Fan from uj, to ue.
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u(b,0)= f(@) 

  

Figure 3. 

for disk, 

Dirichlet problem 

u(b,0) = f(0) (00 < 0 < ce) (24b) 

shown in Fig. 3. We begin with (9) and write 

u(r, 0) = (A+ Blnr)(E + FO) + (Cr® + Dr~")(Gcos ké + Hsin 68), (25) 

but comparing (24) with (2) we seem to be missing some boundary conditions. After all, 

the PDE is of second order in r and in 6, so we expect to need two r boundary conditions 

and two @ boundary conditions, as were present in (2b)-(2e). For insight, it is useful to 

imagine obtaining the disk in Fig. 3 as the limiting case of the region in Fig. | asa — 0 

and a + 27. Letting a — 0 first, observe that the r == a boundary curve shrinks to a point. 

when that happens we lose that boundary curve and corresponding boundary condition and 

have a pie-shaped region. Next, let a - 27. The moment a becomes 27 we lose the 

two boundary conditions on the edges 6 = 0 and @ = a because those edges disappear as 

boundary edges and become interior to the region. 

To compensate for these losses we do the following. First, we adjoin to (24a,b), in 

lieu of the missing r boundary condition, a boundedness condition atr = 0, namely, 

u(r,@) boundedas r > 0, (26) 

To apply this condition, observe that both the Inr and r~* terms in (25) are unbounded as 

r +0: Inr - —coandr~* > ooasr > 0. Thus, (26) requires us to remove those terms 

by setting B = D = 0, in which case (25) reduces to 

u(r,@) = 1+ J04+r"*(Pcosxé + Qsin wé). (27) 

To remedy the situation regarding the missing @ boundary condition we begin by ob- 

serving a key difference between Example | and the present example: the @ domain in 

Example | was finite (0 < @ < a) whereas here it is infinite (-2. < @ < 00), for we 

see from Fig. 3 that there is nothing to prevent the representative point from encircling the 

origin repeatedly, clockwise or counterclockwise. Thus, if u(r. @)} is to be a single-valued 

function of @ and hence uniquely defined at each point within the disk, then it needs to be 

27-periodic in @: 

u(r,d +27) = ulr, 6). (28) 

This periodicity will compensate for the two missing @ boundary conditions (see also Ex- 

ercise 8) so the full problem is given by (24a), (24b). (26). and (28). 

Let us impose (28) on each term in (27). First, £ is a constant and is therefore 27- 

periodic: hence, retain that term. Next, J@ is not periodic (as can be seen from its linear 

graph), so we must set J = 0 to remove that term. Finally. the cos «@ and sin «@ terms 

are periodic. but we need to determine the allowable «’s so that they are 27-periodic. 

According to the definition of periodicity, we need 

cos K(? + 27) = cos Ké (29) 

for all @ (and similarly for the sine term) or, since cos (4A + B) = cos Acos B~sin Asin B, 

we need 

cos KO cos 27K — sSink@sin 27K = cosKé.
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Equating coefficients of the linearly independent cos «@ and sin 4@ terms gives cos 27K = 1 

and sin 27« = 0, with the roots* 

cos27K=1: «£2 1,2,3,..., (30a) 

an. i, 3. 
sin 27K = 0: Ke ah pt (30b) 

Since both conditions need to hold, we accept only «’s that are in both lists, namely, & = 

1,2,3,.... The same result is obtained when we enforce the 27-periodicity of the sin «@ 

term. 

Thus, with J = 0, «@ = n, and with the help of superposition, (26) gives 

So (P, cosné + Qn sin ng), Gl 

We are ready for the final boundary condition: 

u(b, 9) = f(0) = 1+ 5” b"(P,cosnd + Qn sinnd), (32) 
n=l 

which holds on ~o0o < @ < oo. Notice carefully that whereas (14) and (16) are half-range 

sine expansions on the finite interval 0 < @ < a, (32) is the full Fourier series expansion 

of the 27-periodic function f(@) on —co < @ < oo. Accordingly {see (5) in Section 17.3, 
with @ = 7, 

1 {” 1 w 
= = | f(@) dé, Py = ax | f(@) cos né dé, 

Qn Jax rhe an 

1/7 (33) 
Qn = ap | fe) sinno dé, 

and the solution is given by (31) and (33). 

To illustrate, let the boundary temperature f(@) be 100 on the upper haif of the circle 

and 0 on the lower half, in which case f is actually the 27-periodic square wave shown in 

Fig. 4. Using (33), the result is 

u(r, @) = 50 +o L (< y= sin ne 

1,3,. 

and representative isotherms are shown in Fig. 5 

  (34) 

COMMENT 1. Setting r = 0 in (31), observe that u at the center of the disk equals J, and 

I, according to (33), is the average value of the boundary temperature . For the example 

shown in Fig. 5, for instance, f(@) is 100 on the upper half of the circumference and 0 on 
  

"As usual, we exclude negative « values since they contribute nothing new. 

we change « to ~x in the last term in (25) then that term takes the equivalent form (Cr7™ + 

Dr")(Gcos«@ — Hsinx@). This result is not surprising since the «° in (4) cannot distinguish 

between positive «’s and negative x's. Further, we disallow & = 0 in (30) because the « = 0 case is 

handled separately, in (25). by the (A + Blnr)(£ + F@) term. 

For instance, if 
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f 

100 pr — 

0 x 20 0 

Figure 4. Square wave f. 

13 

u=0 

Figure 5. [sotherms 

corresponding to (34).
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Figure 6. Average value theorem. 

the lower half so the average value is 50. Sure enough, the isotherm u = 50 does pass 

through the origin in Fig. 5. 

COMMENT 2. Let us put (33) into (31). First changing the dummy variable of integration 

to J; say, to avoid confusion with the @’s in (31), the result is 

u(r, @) = i / + S- (5) cosn(? — O)| FCI) dd, (35) 
T Jor 

where we have formally interchanged the order of integration and summation. It is striking 

that the infinite series in (35) can be summed. that is. gotten into closed form. The result 

(Exercise 9) is 

  

ee oe F(a) dd L 4 : = Cl Oo 7 4 J on J_, 2 ~ dbreos(y By +r?“ (36) 
J, P(r, vd — A) F(9) dd; i     
  

(36) is the Poisson integral formula for the circular disk and P(r, ¥ — @) is the corre- 

sponding Poisson kernel. # 

in Comment |, above, we wrote that the temperature u at the center of the disk 
equals the average of the boundary temperatures f(@) around the circumference. 

This result can be generalized as follows. Within an arbitrary domain D, not nec- 

essarily circular (Fig. 6), consider any point P’ and any circular domain D’ that 

is centered at P’ and that lies entirely within D. and suppose that V2u = 0 in 
PD. Then. whatever the temperatures are on the boundary C’ of D’ we can consider 
them as boundary conditions for the sub-problem V?u = 0 in D’, which problem 
vas the subject of Example 2. From the average value result found in Example 2 2 

we know that u at P’ is the average of the u values around C’. Thus, if V2u = 0 in 
a two-dimensional domain D, then the temperature u at any point P' within D is 

equal to the average temperature around any circle centered at P' and tying within 
PD. This result. known as the average value property of the Laplace equation, Is 
said to be a “local” result since it holds for an arbitrarily small circle C’ and is in- 

sensitive to the shape of D. [t holds in one dimension (Exercise 10) and in three 

dimensions as well (as we will see in Example 5). 
The average value property enables us to prove the maximum principle for the 

Laplace equation, which is as follows: Ler u be the steady-state remperature field 

within a two-dimensional domain D, so u satisfies the Laplace equation V*u = 0. 
Théiu cannot attain its maximum value in D (unless w isa constanreverywhere}; 

if must attain its maximum on the boundary of D. For suppose that u does have a 

maximum value Af, say, at a point P within D. Since u at P equals the average 

value of wu around any circle centered at P, u must achieve values less than AL and 

greater than Af at points within D if itis not simply a constant everywhere. But that 

result contradicts our assumption that the maximum value of u is AJ, hence u can- 

not have a maximum value within D. By virtually the same argument we can show 

  

c 
bo 
|. 

| 
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that w cannot attain its minimum value in D, and we obtain the minimum prin- 
ciple, which is identical to the maximum principle (italicized above) with the two 

“maximums” changed to “minimums.” [t follows from these maximum and mini- 
mum principles that the values of w within D necessarily lie between the minimum 
and maximum values of w on the boundary of D. 

These results make sense physically, for suppose that the temperature main- 
tained on the boundary of D lies between 50°C and 70°C and let wu = 2,000°C 

at some point inside D. Surely that “hot spot” will cool down, with time, and the 

surrounding material will heat up. But that is impossible for we have assumed 
steady-state heat conduction: that is. the Laplace equation Vu = 0 is the steady- 
state version of the heat conduction equation a? V?u = up. 

20.3.2. Cylindrical coordinates. (Optional) The steady-state temperature field 
within a cylindrical rod (Fig. 7) is governed by the Laplace equation in cylindrical 
coordinates, 

‘ 1 1 
Vu = Upp + ur + vo oe + Uz, = 0. (37) 

Suppose there is axisymmetry so that u does not vary with 9. Then (37) reduces to 

(38) 
5 

VU = Upp $ Up + use = 0 r 

which case we consider here. Specifically, we consider the problem shown in the 
left-hand member of Fig. 8, and we begin by breaking it into the two problems 

q shown in the figure. We will solve the u; problem as Example 3 and the w2 problem 
as Example 4. 

“w= f(r) w= g(r) 0 Q us f(r) u= g(r)     
u=h(s) w= hls) 0 

Figure 8. Breakdown by superposition. 

SXAMPLE 3. The wu, Problem. To solve (38), seek 

u(r, c) = Rr) Z(z). (39) 

Putting the latter into (38) and separating variables gives 

| 
RU +R AL 

a > = constant = 4° (40) 

and the ODE’s 

L . _ 
RO. -Ro-weR=0, (41) r 

Zeer Z = 0. (42) 

ft
 tl 

ne
 i] th
 

Figure 7. Cylindrical rod. 
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Figure 9. Jo and Ko. 

  

We chose the +” in (40) so as to obtain cosaz and sin«z (rather than cosh «z and 

sinh «z) solutions of the Z equation since we look ahead to a Fourier series expansion 

of h(z). Distinguishing the cases & = 0 and « # 0, the general solutions of (41) and (42) 

are (Exercise 14): 

A+ Binr c= 0 Rad Onn ° (43) 
ClIo(ar) + DKo(ar), «£0 

PF i == 0 gal Btls * (44) 
GoosKkz+ Asingz, «#0 

where Jo, Ko are modified Bessel functions of the first and second kind, respectively, of 

order zero. Thus, 

ui(r,z) = (A+ Blnr\(E + Fz) +[Clo(«r) + DKo(ar)|(Gcos kz + Hsin kz). (45) 

In the z variable we have the two boundary conditions at z = 0 and z = L, butinr 

we have only the boundary condition at r = 6 so in lieu of a second r boundary condition 

we require that u be bounded as r - 0 (Le., all along the z axis). Since nr + —oo we 

set B = 0, and since Ko(kr) ~ —Inr -> co asr — 0 (Fig. 9) we set D = 0, so (45) 

becomes 

u(r, z) = P+ Qz+ Ib(ar)\(Scosxz+T sinkz), (46) 

where we have combined AE as P, AF as Q, CG as S, and CH as T, for brevity. 

Next, we apply the conditions at z = 0, z = £, andr = 6, in turn: 

uz(r,0) =0 = P+ Ip(ar)S, (47) 

so P = Oand S = 0. Updating (46) accordingly, 

ui(r,z) = Qz + TIp(xr) sin xz. (48) 

Next, 

w(r,l)=0= QL4 Tly(ar)sinal, (49) 

soQ = Oand&k = nn/L forn =1,2,.... Updating (48), 

ner nz 
uy(r, 2) = 1 —— | sin —. 50 uz(r, z) Do Pala ( Z ) sin Z (50) 

Finally, 

= nrb\ | nwz 
ur (0d, 2) = A(z) = 2, Talo (“= ) sim TT (0 csc L) (51) 

which is a half-range sine series so 

  

. q b 2 eh TLR 

Trlo ( ) =F [ A(z) sin — dz, 

or . 

2 ° NZ 

 Lo(nrb/L) [ i(2) sin —F~ « 2) 

oe 
2 

e
e
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The desired solution is given by (51) and (52). 

COMMENT. As in Example 2? we applied the boundedness condition first. Indeed, when- 

ever there is a boundedness condition we suggest that you apply it first because it will 

eliminate one or more terms, thereby giving an immediate simplification of the solution 

form. & 

EXAMPLE 4. The ue Problem. To solve for uz (see Fig. 8) we again seek 

ug(r,z) = R(r)Z(z) (53) 

and obtain 1 

RU + -R Zz r L it 

R = 5 = constant = —K" (54) 

and the ODE’s 

. 1 5 
RY +-R +e°R=0, (55) r 

Z" —~nrZ=0, (56) 

where this time we chose —x7, so as to obtain oscillatory solutions of the R equation (rather 

than the /g, Mo pair obtained in Example 3). Specifically (Exercise 15), 

A+ Blnr, K = 0 
R= . (57) 

CJUg(kr) + DYo(xr), «#0 

E+ Fa, c= 0 Z=ai SO " (58) 
Geoshwze+ Msinhacs, «#0 

where Jo, Yo are Bessel functions of the first and second kind, respectively, of order zero. 

Thus, 

uo(r,s) =(A+Binr)(2+ Fe) +[(CJo(ar) + DYo(sr))(G cosh xz + AH sinh az). (59) 

Boundedness as r — 0 requires that B = O and D = 0, since Yo(ar) ~ (2/7) Inr > —9o 

as r — 0 (Fig. 10), so (59) reduces to 

ug(r,z) = P+ Qe + Jo(ar)(S cosh az + PT sinh xz). (60) 

Since we look ahead to expanding f(r) and g(r}, we must apply both r boundary condi- 

tions first, before attempting either of the end conditions at z == 0 and L. Having already 

applied the boundedness condition atr = 0, we next write 

ue(b,z) =O = P+ Qe 4+ Jo(Kb)(S cosh kz + T sinh xz), 

which requires that P = 0, Q = 0, and 

Jo(KO) = Q (61) 

Figure 10. Jo and Yo. 
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[since we cannot afford to set S = T = Oand lose the entire Jo(ar)(S cosh &z+-T sinh kz) 

term in (60)]. Denoting the roots of Jg(a) = Oas 2), 29,... (2's because they give the zeros 

of Jo), we learn from (61) that & = 2,/b(m = 1,2,...). Updating (60) accordingly, 

ug(r, 2) = s Jo (25) [Sn cosh (2n5) + T,, sinh (>) . (62) 

n=l 

Finally, the end conditions give 

wo(r,0) = f(r) = 92 Sado (202), (63) 

and 

ee L L us(r, L) = 9(r) = > [s. cosh (2.5) +T, sinh (==) | Jo (25) (64) 
n=l 

on0 <r < b. How are we to solve (63) and (64) for S,, and T,,? There are two questions 

raised by (63): first, is it possible to expand a given function f(7) on the intervalO <r <6 

in the form of an infinite linear combination of Jo(z,r/b) terms and, second, if so, how do 

we compute the S,, coefficients? Similarly for (64). Both questions are answered by the 

Sturm—Liouville theory, for the problem 

(rR') +K7rR = 0, (O<r<b) (65a) 

R(O) bounded, Rb) = 0 (65b) 

governing & is a Sturm—Liouville problem, where “\" = «7. This problem is studied in 

Example 2 of Section 17.8 so, referring you to that example for the details, we can conclude 

from (63) that 

2 °b r 
Sn = = (rj) Jo (: | r dr, (66) 
"BUD (End)? Jo fr) "b 

and from (64) that 

L . L 2 ag r 
Sp, cosh (2.5) + T,, sinh («n5) = Plawe [ g(r) Jo (n 7) rdr. (67) 

Thus, the solution is obtained by solving (66) and (67) for S, and T,, (once f and g are 

specified), and putting these values into (62). 

COMMENT. Observe how the problem is “‘self-contained”: how to carry out the necessary 

expansions (63) and (64) is fully explained by the Sturm—Liouville problem on A that is 

“built right in.” Likewise in Example 3, although we did not mention it because we merely 

noticed that (51) is a half-range sine expansion. Alternatively, we could have used the 

Sturm—Liouville theory there too. Specifically, the relevant Sturm—Liouville problem there 

is 

ZU 47 Z = 0, (O<2<L) (68a) 

Z(0)=0, Z(L)=0, (68b)
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with the eigenfunctions sin (nw2/L), so (51) gives 

UZ 
1 aah (h(z), sin >) 

Lilo | po) = RE TREY 
) (sin -,sin ——) 

au Lb 
ye Ne 
a A(z) sin dz. oar 

, Jo L 2 h(z) si ANZ | 
Senn EE u(z) sin dz 

ob nme L fy L 
  

which result agrees with (52). Note that the inner product weight function is 7 in (65) and 

| in (68). 

j Likewise in Example 1. We deduced (15) from (14) and (17) from (16) by noticing 

that (14) and (16) were half-range sine expansions of their left-hand sides, over 0 <0 < a. 

Alternatively, we could have used the Sturm—Liouville theory. Since the expansions were 

} in the @ variable, look to the © problem for the Sturm—Liouville problem, namely, 

QO" +670 = 0, (0<A<a) (69a) 

(0) =0, O(a) =9, (69b) 

with eigenfunctions sin (n/a) and weight function |. Where do we get the homoge- 

neous boundary conditions (69b) from, considering that u(r,0) = uw, and u(r,a) = Ue 

are, in general, nonzero? If we retrace the solution steps, beginning with (9), we find that 

the Gcos k# + H sin ké factor in (9), which contributes the sin (nw6/c) ) eigenfunctions, 

satisfies the homogeneous boundary conditions (69b), with the (A+ Blnr)(E + F@) term 

handling the uw, and uy values. And, of course, we can see directly that sin (nw9/c) does 

indeed vanish at@ =Oandat@=a. Gl 

Then the solution to the problem on wu that is shown in the left-hand part of 

Fig. Sis u(r, z) = u(r, 2) + ua(7, 2). 

20.3.3. Spherical coordinates. (Optional) If the domain under consideration is 

bounded by constant p, @, @ surfaces, then we need to work with the Laplace equa- 

tion in spherical coordinates, 

v2 1 fd G sau, 1 @ sin Ou 1 1 Ou 0. (70) 
“Ub Se poo soe oe or TB ey | =U. 

" p* |Op Op sin @ 0@ do sin’ 6 06? 

Let us restrict our attention to cases where w is axisymmetric about the polar axis 

z, that is, where u does not vary with 6. Then the ugg term in (70) is zero and (70) 

reduces to the PDE 

3 2 1 cat @ 
Vru= Upp + ~Up + —FUde Ue = 0 (71) 

p pe pr 

on up, @).
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Figure 11. Dirichlet problem 

for sphere. 

EXAMPLE 5. Dirichlet Problem for Sphere. Consider the Dirichlet problem consisting 
of the PDE (71) in the sphere 0 < p < c, with the boundary condition 

u(c, @) = f(d) (0<@<n) (72) 

and the stipulation that u be bounded in the given domain (Fig. 11). This problem is the 

three-dimensional analog of the Dirichlet problem for a circular disk, which was the subject 

of Example 2. 

To solve, seek 

  

u(p, $) = R(p)®(¢) (73) 
and obtain, from (71), 

2 RM 9 me ‘pi >of @’ 

pk’ + 2ek = Pr cot ¢ = constant = Ky (74) 
R ® 

and the ODE’s 

p'R" + 2pR' —-K°R=0, (75) 

&” + cot PG +47 =0. (76) 

The change of variables 

[Jb = cos @ 

in (76) reduces that equation (Exercise 17) to the Legendre equation 

d?® d® > 
Lp?) = Qu + Ke = 0. 77 ( WY Ge eat (77) 

From our study of the Legendre equation in Section 4.4, we know that to obtain solutions 

of (77) that are bounded on —1 < pp < 1 we need 

Kk? = n(n +1), (n = 0,1,2,...) (78) 

in which case the corresponding bounded solutions are the Legendre polynomials 

© = P,,(u) = P,(cos@). (79) 

In terms of the physical domain, jz = 1 corresponds to @ = 0 so that unboundedness of ® 

at 44 = 1 would mean unboundedness of the solution u all along the z axis from the “north 

pole” to the origin. Similarly, unboundedness of ® at 2 = —1 would mean unboundedness 

of u along the z axis from the origin to the “south pole.” 

Turning to the R equation, with Keo n(n + 1), the general solution of (75), which is 

a Cauchy—Euler equation, is 

B 
prt , 
  R(p) = Ap" + (n= 0,1,2,...) (80) 

Here, the stipulated boundedness of u requires that 6 = 0. Putting (79) and (80) together 

and using superposition we have, thus far, 

ulp,@) =~ Anp" Py(cos @). (81) 
re==Q 

   



  

20.3. Separation of Variables; Non-Cartesian Coordinates 1083 

Finally, the boundary condition (72) requires that 

oO 

ule, ?) = f(@) = S° Ane" P, (cos @). (0 << 1) (82) 

nseQ 

Since (82) involves an expansion in the @ variable, let us examine the boundary-value 

problem on ®, namely,* 

((L = 7) 0’) + 6? = 0, (-lL<p<1) (83a) 

@(—1) and ®(1) finite. (83b) 

Thus, we see that (82) amounts to a Fourier~Legendre expansion of the given function f in 

terms of the orthogonal eigenfunctions P,, (44) or P,(cos @), as was illustrated in Example 

3 of Section 17.8. Accordingly, 

  

ri 

f Pa dys l 

(f, Pri) I Qn+1 / 
Ane” = = 2 fP, dp, (84) 

(Pru), Pn (t)) [ P? dt 2 ~1 

~1 

or 
9 : . 

An = os | f(d)P, (cos 0) sin d dd. (85) 

0 

Hence, the solution is given by (81) and (85). 

COMMENT. Observe that the value of u at the center of the sphere is 

u(0,@) = [from (81)] Ag 

1 1 

>| f du, [from (84)] 
2 Jat 

I 

which is the average value of the boundary temperature f. Thus, the average value property 

of the Laplace equation, discussed above, holds in three dimensions as well as two, and 

similarly for the maximum principle. & 

Closure. We see, in Section 20.3.1, that the Laplace equation in plane polar co- 
ordinates is successfully separated and that although the ODE on A(r) has non- 
constant coefficients it is nevertheless an elementary equation, a Cauchy —Euler 
equation. We derive, as a result of Example 2, the average value property of the 

Laplace equation in two dimensions and the maximum principle as well. In Sec- 
tions 20.3.2 and 20.3.3 we find that the Laplace equation can be separated in cylin- 
drical and spherical coordinates as well, but that not all of the resulting ODE’s 
are elementary; in cylindrical coordinates the R(r) equation gives Bessel func- 
tions, and in spherical coordinates the ®(¢) equation gives Legendre polynomials. 
  

“Strictly speaking, we should use a new name, such as (6) = ®(O()) = (wy), say, but for 
economy of notation we use ® whether the independent variable iS @ OF jt.
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Expansions in Examples 4 and 5 involve the Bessel and Legendre functions, and 
they are carried out by relying on the Sturm—Liouville theory. If the expansion 
is on the r variable, for example, then we bring to light the Sturm—Liouville prob- 
lem on R(7) and use that problem and the Sturm—Liouville theory to guide our ex- 
pansion. 

Until now, our rule of thumb for choosing the sign of the «* separation con- 
stant has been to choose the sign that makes oscillatory functions available for the 
eventual Fourier series expansion. If you are familiar with the Sturm—Liouville 
theory it wou Id be helpful to make that rule more explicit as follows. Choose the 
sign of kK” so that the sign of the last term in the Sturm—Liouville ODE is positive 
because i in the Sturm—Liouville equation 

(py')' + ay + Ary = 0 

the eigenvalues A are generally nonnegative. For instance, in Example 5 we antic- 
ipate (from the boundary conditions) that the expansion will be on the @ vartable, 
so the Sturm—Liouville ODE is (76), not (75). Thus, we choose the +x? in (74), so 

that the last term on the left side of (76) is +k?®, not —K20, 

  

EXERCISES 20.3 
  

1. Show that if wy = ug = O and f(@) = 100, then (13), (15), (kK) in 3 <r < 0,0 < 6 < mw ul(r,0) = ug(r,7) = 0, 

and (17) give the result (19), u(3, 8) = 100 

; oo, dinO<r < 2,0 < 8 < mo ulr,0) = ulr,r) = 0, 
2. Solve for u(r,@) and sketch, based on intuition, the w = u(2,0) = 100 

25,50, 75 isotherms: Vu = 

ayinl< 9 3. Solve for u(r, @) and give a labeled plot (by computer if nec- 

(a) in ae essary) of representative isotherms, as many as it takes to give 

u(y 1) = u(1,@) = _ aclear picture of the temperature field: Vu = Oinr < lw 
(b)inl <r < 2,0 < 6 < mw ug(7,0) = u(2,é) = 0 ee vay) v ~ BOM Re “bounded, u(1,0) = f (8). 
u(r, 7) = u(l,é) = 

0 < 6 < me ulr,0) = u(2,0) = 0, 

(Jink<r< 2,0 <8 < wm ulr,m) = 100, ulr,0) = (a) f(0) = 50 + 20cos8 

ur (1,0) = u(2, 8) = 0 (b) f(0) = 50- 7 50(cos@ + sin @) 
(djinl <r <2,-90 <@ < oo; ull, @) = 0, u(2,9) = 100 (c) f(0) = 20 cos 20 

(yink<r<2,0<0< 7, u(l,@) = uelr,0) = uelr,7) = (dy f(O) = 20sin 20 

0, ul2, 0) = 100 (e) f(@) = 20cos 34 
(f)inO <r < 38,0 <0 < 37/2; u(r, 0) = u(r, 37/2) = 100, (f) f(0) = 20sin 36 
u(3,6) = 0, u bounded (2) f(8) = 20cos 40 

(g)in0 <r < 3,0 < 0 < 37/2; ue(r,0) = u(3,0) = 0, (hy f() = = 20 cos 56 
u(r, 37/2) = 100, u bounded 
(hyinO <r < 3,0 < @ < 3r/2; ulr,0) = u,(3,9) = 0, 4 Consider a thin flat circular plate of radius 6. that is ther- 

u(r, 37/2) = 100, wu bounded mally insulated on its two flat faces. With a hacksaw we make 

G)inQ<r < 3,0 < @ < 34/2: u(r,0) = u(r, 37/2) = 0. a radial cut along @ = 0, say, fromr = b tor = 0. The small 
u(2,0) = 100 0n0 < @ < n/2 and 0 on 7/2 < 6 < 38n/2, gap, due to the cut, may be approximated as a thermal insu- 

u bounded lator, so that Qu/On = 0 on the edges 6 = O and @ = 2m. 
Gin’ <r < 0,0 <8 < w/2; u(r,0) = u(r, 7/2) = 0, If the circumference of the plate is held at the temperature 

u(3,@) = 100, u bounded 50(1+sin @) for a long time, the steady-state temperature field
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u(r, @) is governed by the boundary-value problem ow = ge ow = oo (6.2a,b) 
Ox Oy! Oy Ox , 

Viu= 0, (Q<r<b, 0< 6 < 2m) Use (6.2) and (6.1) to derive the result 
Ou Ou 
an! 0) = ae an) = 0, aty 
ane oe W(x,y) =U (y-—s ). (63) 

u(b, 0) = 50(1 + sin@), uw bounded. we + y? 

Solve for, and plot, the temperature distributions u(r, 0) and 

u(r, 27) along the two edges of the cut. Does the answer de- 

pend in any way on whether the plate is steel or brass or what- 

ever? Explain. 

5, (Plane with circular hole) As a sort of “inverse” of Example 

2, consider the domain to be the whole plane, with a circular 

hole of radius a: 

Vu = 0, 

u(a, #) = f(@), 

Solve for u{r,@), leaving expansion coefficients in integral 

form. What is the value of u at r = oo? 

(a<r<oo) 

u bounded as 7 + oo. 

6. (Plane flow over a circular bump) First, read Example 3 of 

Section 16.10. 

(a) Then. solve (38) in Section 16.10 and derive the solution 

9 

Or, 0) =U (-+<) cos@ + C, (6.1) 

where C’ is an arbitrary constant that can be set equal to zero 

without loss. NOTE: The velocity field v is then available as 

v = V®. Knowing v. one could use the Bernoulli equation 

of fluid mechanics (which is derived in Exercise 12 of Section 

16.10) to determine the pressure field and, in particular, the 

resulting aerodynamic force on the semicircular bump (which 

might, for instance, be the roof of a building). Observe that 

in this problem a boundedness condition on ® would be inap- 

propriate since ® ~ Urcos@ as r — oo. Nevertheless, the 

physical quantity v = V® is bounded: v ~ Uiasr + oo. Fi- 

nally, observe that (6.1) can be expressed as the superposition 

m = ©, + &y, where &; = Urcos@ = Uz is the potential 

of the “free stream,” and @y = U(a?/r)cos@ accounts for 

the disturbance caused by the presence of the bump (indeed, 

05 + Casa > 0). 

(b) By way of graphics, the most interesting display is not a 

display of constant ® curves but a display of representative 

streamlines, as in Fig, 7 of Section 16.10. By streamlines we 

mean the constant W curves. where is the stream function 

introduced in Exercise 8 of Section 16.10. From (8.3) therein, 

W is related to ® according to 

(c) Then (with U = a = 1, say) use computer soft- 

ware such as the Maple implicitplot command to gener- 

ate the streamline pattern that we sketched in Fig. 7 (Sec- 

tion 16.10). Choose the streamlines through the points 

(x,y) = (—4,0.2), (—4, 0.8), (—4, 1.4), and (—4, 2), say. 

7. (Flow past a circular cylinder; nonuniqueness) In Exer- 

cise 6 we consider the flow of a free stream past a semicircular 

bump. Here. we consider the flow of a free stream past a cir- 

cular cylinder. The boundary-value problem is 

> 1 1 
V°b = ©,, + ~®, + =z Poo = 0, 

r r 

(a<r<oo, 0<6 < 27) 

®,(a,@) = 0, 

= VO 
G=0 @=2r 

® ~ Urcos@ 

Ve over a<r<om, 

  

  
as Tro OO. 

(7.1a.b,c.d) 

That is. if we specify that 0 < @ < 27, the radial lines @ = 0 

and @ = 2 (a <r < oo) become part of the boundary (see the 

accompanying sketch), so that boundary conditions are needed 

along these lines. The appropriate boundary condition is that 

physical velocity v be the same at 6 = OQ and @ = 27 (for all 

a<r < oo), which condition is expressed as (7.1c) or 

®,(7,0) = ®,(r, 27), {a<r<o) 

1. l . 
7 Pal, 0) = ~Palr, 27). {(a<r<co) 

(7. 1e,f) 

pm ~Urcos@ as r- 
/ 

_ VO =V@ 
le=0 lowra 

Integrating (7.1e) with respect to r and cancelling r’s in (7.1), 

we obtain
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@(r,0) = O(r, 27) +0, Solr, 0) = Per, 27) (7.1 eh) 

ona <r < co, where [ is an arbitrary constant. 

(a) Solve the resulting boundary-value problem (7.1a,b,g,h,d) 

and show that 

5 
ue p 

&(r,0) =U (« + =| cos @ — —~ @, (7.2) 
r 2m 

which solution differs from (7.1) (with C = 0, say) 

only by the —~[0/2% term. NOTE: In physical terms, the 

U(r + a*r~') cos @ term in (7.2) corresponds to a flow that is 

symmetric about the x axis (as sketched in the figure below), 

and which has stagnation points (i.e., where v = O) at r = a 

and @ = 0,a. The —-[@/27 term contributes the additional 
velocity 

t r 
=V(-—¢6)=--—~é 

y ( Qr ) Dar 

  

which is a clockwise circular vortex flow (see Exercise 3 

of Section 16.5) induced by a fictitious clockwise vertex, of 

strength [, at the origin — “fictitious” because there is no fluid 

inside the circle r = a. The vector superposition of these 

two velocity contributions gives a fow somewhat as we have 

sketched in the next figure, namely, the symmetric flow (the 

preceding figure) plus some clockwise “swirl” that is propor- 

tional to [. 

  

The two flows add on the upper part of the cylinder and sub- 

tract on the lower part, so there are higher velocities on the 

upper surface of the cylinder and lower velocities on the lower 

surface. Since Bernoulli's equation av?/2 + p = constant 

(ao = mass density, p = pressure) tells us that the higher the 

velocity the lower the pressure, and vice versa, it follows that 

a lift force is generated on the cylinder, L = aUT force per 

unit length of the cylinder (.e., per unit z length), 

(b) Show that the two stagnation points (in the preceding 

figure) are located on the cylinder surface by the equation 

sind = —[C/(4rU a); eg. if TP = 0 then @ = m and 27, as in 

the symmetric-flow figure. What happens regarding the exis- 

tence and location of stagnation points if f > 47U/a? Explain. 

(c) From (7.2), v = Vo, and the Bernoulli equation, obtain 

the pressure distribution on the cylinder, integrate it, and thus 

derive the famous Kutta—Joukowski lift formula 

L=oUJT (7.3) 

stated above, 

8. (Alternative approach to Example 2) In Example 2 we ob- 

serve that —co < 9 < oo and impose the periodicity condition 

(28). Alternatively, we can consider that 0 < @ < 2m, in 

which case the lines 6 = 0 and @ = 2m occur as boundary 

edges of the domain. That is, we make an infinitely thin slit in 

the region as shown in the figure below. Since 0 < @ < 2z, 

we discard the 27-periodicity condition, but we now have two 

artificially created boundaries, 6 = QO and @ = 27, along which 

to specify boundary conditions. In particular, we impose the 

two conditions 

(8.1,2) 

  

over 0 <r < b, so that both the temperature and heat flux are 

continuous across the slit. With the problem reformulated in 

this manner, solve for u(r,@) and show that the solution ob- 

tained is the same as in Example 2. NOTE: The boundedness 

condition at r = 0 is still needed. 

9, Derive the result 

5 + S- (-)° cosn(v — 6) 

n=l 

1 be — Pr? 

~ 2b? — 2br cos (0 — @) +r? 

(9.1) 

stated in Comment 2 of Example 2. HINT: Write 
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sry” m in(d—0) Vu = Ure + ty + yu 0 (13.1) dG) cosnt ~ 9) = Re (5 Joe , (9.2) = then + tly + yoo = 
n=l] 

li. ina<r<b,0<6@ <a, with boundary conditions 
and use the geometric series 

oo u(r, 0) = u(a,@) = ulb,@) = 0 sien = (03) (",0) | (2,8) = u(b,8) (13.2,3) 

n=O 1-2! “ u(r, a) = f(r). 

which holds even if z is complex, provided that jz] < 1. 

As usual, Re denotes the real part of the quantity. 

10. Below Example 2 we show that the average value property 

of the Laplace equation holds in two dimensions, and at the 

end of Example 5 we showed that it holds in three dimensions. 

Here, we ask you to show that it holds for the one-dimensional 

Laplace equation d?u/dx? = 0 as well. 

11. Use the maximum and minimum principles to show, for 

the Laplace equation (in two or three dimensions), that if we 

change the boundary values only slightly, then the solution val- 

ues (i.e., within the solution domain) change only slightly too. 

Specifically, show that if V?u, = 0in D with boundary values 

u, = fy, and V?uz = 0 in D with boundary values ug = fo, 

then min(f, — fo) < wy — ug < max (fi — fe). 

12. (Delta function behavior of Poisson kernel) With 6 = 1 

and @ = 1, say, obtain computer plots of the Poisson kernel 

P(r, 3 — 9) versus J, from J = ~—z to ¥ = +7, for these r 
values: r = 0,0.5,0.8, and 0.9. Using Maple, for instance, 

you can use the plot command, which can be accessed by first 

typing the with(plots): command. NOTE: Surely, if the bound- 

ary temperature in (36) is f(Y) = constant = 1, then the so- 

lution will be u(r, @) = constant = 1 as well. It follows that 
[" P(r;0 — 0) dd = 1 for all 0 < r < 0}. Thus, each of 
your plots, for different r values, will have unit area. Further, 

they become increasingly focused at ? = 8 as r ~> 6. Thus, it 

appears that P(r, J — 6) is a delta sequence at @ asr — 6. In 

fact, the boundary condition requires of (36) that 

rob fp 
f(@) = lim i P(r, — A) FO) dv, 

which result confirms our suspicion: as r — 6, the Poisson 

kernel becomes a delta function at 09 = 6, which picks out 

the value f(@) and satisfies the boundary condition. This re- 
sult is: typical of linear PDE’s: ‘The solution due to. Dirichlet 
boundary data f can be expressed as an integration, over the 

boundary, of a kernel times the boundary values. As a bound- 

ary point is approached from within the domain, the kernel 

becomes a delta function and picks out the value of f at that 

boundary point, thereby satisfying the boundary condition, 

13. Consider the Dirichlet problem 

(a) Seeking u(r,@) = R(r)O(@) and anticipating the Fourier 
expansion along the @ = a edge, obtain 

u(r, 0) = (4+ Blnr)(E + Fé) 

+([C cos (Kk Inr) + Dsin («Inr)](G cosh Ké + A sinh 6). 

(b) Applying the boundary conditions (13.2), arrive at 

= > I, sin (Kn In ~) sinh Ky, 

n=l 

b 
Kn = n7/ io (2). 

(c) Applying the boundary condition (13.3), show that 

[foresee 
-= Kin 1 

b2(r)= dr 
a T 

2 1 = | irvtntr) = 
. a r 

In (2) sinh Kya 
a 

(13.6) 

where $,(r) = sinh[k, In(r/a)}. HINT: The ¢,,’s are the 
eigenfunctions of the Sturm — Liouville problem on R(r). 

Identify that problem (i.e., the ODE, the r interval, the bound- 

ary conditions on R, and the weight function). 

EXERCISES FOR THE OPTIONAL SECTIONS 20.3.2, 

20.3.3 

14. Derive the « 4 0 part of the general solution (43) using 

equation (50) in Section 4.6. 

(13.4) 

where 

(13.5) 

dr, 

  

15, Derive the « 3 0 part of the general solution (57) using 

equation (50) in Section 4.6. 

16. Solve by separation of variables, leaving expansion coeffi- 

cients in integral form; u is to be bounded, and 

: 1 
V7 Se Upp Fm Up Use = 0 p



{088 Chapter 20. Laplace Equation 

fayinO <r < bh 0 < 2 < oo, with u(b,z) = 0, 

u(r, 0) = f(r) 
(b) inO <r <b, ~co < z < 00, with u(b,2) = f(z), where 
f (2) is a 2L-periodic square wave defined over one period as 

100 overO0 <2 < LandQover ib < 2 < 2b 

(hind <r <b0<2 < L, with u.(r,0) = u(r, £L) = 0, 
u(b, z) = 50 
(djinO<r<bO0< 2 < L, with u.(r,0) = u(r, £) = 0, 
u(b,z) = 50 
(e)inO <7r< _ Q< 2 < L, with u(r,0) = f(r), 
u(r, L) = ulb,z) = 
(ina <r < ow,0 < 2 < L, with u(r,0) = am, 

u(r, £) = ua, ula, 2) = us 
(g)ina <r < 0,0 < z < o, with u(r,0) = 90, 
u(a,z) = 25sin (32/2) 

17. Show that the change of variables p: = cos @ does, indeed, 

change (76) to the Legendre equation (77). 

18. In Example 5, 

sphere (n/2 <o<am-l< 
(0< @<7/2,0 <p < 1). Evaluating the first several A,,’s, 

show that (81) becomes 

let f(@) be 0 on the bottom half of the 

{ 
oo
 

o u(p.@) = 50 | Pa(cos ob) + (£) P,(cos @) 

t 

<p < 0) and 100 on the top half 

7 pr , i a 
"3 (£) P,(cos @) + 76 (£) Ps (cos @) 

75 7 . 
= (£) P;(cos @) ++: | 

HINT: It is simplest to evaluate the integral If, fF Pa du = 

100 f P,,() dye using computer software. Using Maple, for 

example, first enter with(orthopoly): to access the Legendre 

polynomials. Then, with n = 5 say, enter int(P(5,2),2 = 

0..1); to evaluate f Ps (1) dye 

19. (Variations on Example 5) Solve the Laplace equation (71) 

in spherical coordinates, with symmetry about the z axis, and 

evaluate the expansion coefficients so as to obtain the first five 

(if there are that many) nonvanishing terms of the series solu- 

tions, as we did in Exercise 18: 

(a)inO < p< ec 0 < @ < 7/2, with u(p,m/2) = 0, 

u(e,@) = 100 
(b)inO <p<c¢,0< 6 < w/2, with (the normal derivative) 

un(p, 7/2) = 0, u(c,@) = 100 
(c)ine < p < 0,0 < & < w/2, with u(p, 7/2) = 0. 

u(c,@) = 100 
(dJine < p< w~,0< oO < 

u(p, 7/2) = 100 

7/2, with up(e,@) = 0. 

  

20.4 Fourier Transform (Optional) 

In Section 18.4 we studied the solution of diffusion problems by the Fourier and 

Laplace transforms. Laplace transforming on the t variable is always an option for 
the diffusion equation because 0 < ¢ < oo, and the problem is of initial-value type 

with respect to f. However, it is of boundary-value type with respect to x (Le., 

there is a boundary condition at each end) so, alternatively, we can use a Fourier 

transform on x if the x domain is —oo < a2 < oo or a Fourier cosine or sine 

transform on x if the domainis 0 <2 < ow. 
In contrast, the Laplace equation is of boundary-v value type in both independent 

variables, so the Laplace transform is not helpful. Still, if the domain is infinite in 

one of the independent variables then. we can employ a Fourier transform on that 
variable; if it is semi-infinite then we can employ a Fourier cosine or sine transform. 

EXAMPLE 1. Dirichlet Problem for Half Plane. Consider the half-plane problem 

2 
Vru= Urn ty = 0, ( 

u(x, 0) 

O<y< co} 

<< oo) 

(la) 

(Ib) 

—~oO avd ww, 

II (co f(x)
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depicted in Fig. |, realizing that we may be stipulating additional boundary conditions as 

we proceed. 

Fourier transform (la) with respect to x: 

  

  

   

F {tex + Uyy} = F{O}, (2a) 

F {tee} + P{uyy} = 9, (2b) 

\9 noe Pu yas 
(iw) "te + | eda = 0, (2c) 

—so Oy? 
5 Ce re a ya 

—w"ti + —s / u(t, yje "" dx = 0, (2d) 
dy” Joe 

or Uyy tly = 0 

au 5 
—- ~ wt = 0, 3 

with general solution / % 

fi(w,y) = Ae?) + Be ly, (4) u(x,0)= f(x) 

(Let us defer discussion of the absolute value signs to Comment | below.) Recall from our Figure 1. Problem (1). 

study of the Fourier transform that for F'{t22 } to equal (iw)? we need 

u-—-> 0 and uw. —> 0 as @ - oo, (5) 

so let us suppose that u does satisfy the boundary conditions (5) to the east (x —+ +00) and 

to the west (2 — —oo), Condition (1b) is our southern boundary condition, but we are still 

lacking a second y boundary condition, to the north as y — oo. If we assume that 

u(z,y) > 0 as yo, (6) 

then we formally obtain 

200 

lim t(w,y) = lim | u(x, ye '* dx 
Ym 

yoo so 

on | i uaa) eo we dz 

Joo LY 

= | Oe * dx = 0. 
(7) 

Applying the latter result to (4) reveals that we need A = 0, so 

i(w,y) = Bewley, (8) 

To evaluate B take the transform of (1b), 

  

and impose that condition on (8): 

= fw) =B. (10) 
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Thus, . 

fiwyy) = Fw)e 
If we use entry | in Appendix D, along with the Fourier convolution property (entry 

21), we obtain the final result 

u(x,y) = f(e) «2 ab 
ratty’ 

or 
  

wey = 4 [ 10, u(x, y) = I. (r—€)? +y? i T 

/ ” P(e —ax,y)f@dé: 
OO 

(12) 

ill     
  

(12) is the Poisson integral formula for the half plane, and P(€ — x,y) is the corres- 

ponding Poisson kernel. The analogous formula for the circular disk is given in (36) of 

Section 20.3. 

COMMENT |. Why did we express the solution of (3) as Aell¥ + Be~'“!¥ rather than as 

a(w,y) = Ce’¥ + Dew? (13) 

The forms (4) and (13) are indeed equivalent, but (4) is more convenient for applying the 

northern boundary condition (7) (namely, that @ —> 0 as y — oo). For remember that the 

Fourier inversion formula involves an integral on w from w = —oo tow = +00. Thus, 

we need to allow forw > Oandw < 0 in (13) and conclude, from (7), that C(w) = 0 for 

w > Oand Dw) = 0 forw < 0, which story is more complicated than observing, in (4), 

that e!”!¥ is the “bad” term and e~!”!® is the “good” term so that we need to set A = 0. 

COMMENT 2. Let us focus our attention on the kernel P. Observe that P has unit area, 

for each y > 0, since 

noo , Oo d 

[ Pe-ay)ag= 2 | eae zh (14) 

and that its graph becomes more and more sharply focused (at € = x) as y — 0, as seen in 

Fig. 2. Thus, P( — 2, y) looks like a delta sequence at € = x, as indeed must be true since 

the boundary condition (1b) really means that limy.o u(z,y) = f(2) or, since u(z, y) is 

given by (12), 

tim, [P(E ~ au) F(@) de = Fle), (15) 
yO 

which, by definition, means that P becomes a delta function at z as y — 0. 

COMMENT 3. As a check case, let us use (12) for the case where u(z,0) = f(z) = 

constant = fy, since then the solution should, by inspection, be u(x, y) = fo everywhere. 

In fact, (12) does give that correct result — even though the assumed conditions at infinity 

(u—+ Oas xz — too and as y —- oo) are not satisfied. That is, (12) is even more robust 

than anticipated. 4 
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Figure 2. Poisson kernel P. 

a
r
e
 

Closure. Besides illustrating the use of the Fourier transform in solving the Laplace 
equation on an infinite domain, we also obtain an important specific solution, the 
Poisson integral formula (12) for the half plane. As usual (see Exercise 12 of 
Section 20.3), the solution due to Dirichlet boundary data f can be expressed as 
an integration, over the boundary, of a kernel times the boundary values. As a 
boundary point is approached from within the domain, the kernel becomes a delta 
function and picks out the value of f at that point, thereby satisfying the boundary 
condition. 

  

EXERCISES 20.4 
  

1, (a) Use (12) to evaluate u(z,y) if f(x) = 

(where H is the Heaviside function). 

(b) Draw the isotherms wu = 25, 50, 75. 

(c) Plot u(z, y) versus x at y = 0, 1, 3. 

100.H (x) 

2. (a) Use (12) to evaluate u(z, y) if f(x) = 100/H (a + 1) - 

A(z ~ 1)j. 
(b) Plot u(z, y) versus x at y = 0 and at y = 2. 
(c) Show that u(z,y) ~ 200/(7y) as y + oo. HINT: Note 
that 

  

tan-'a@=a mee a al women hy 5 7 

for |x| < 1, and 

tan7! w 1 +} 1 1 4 
an gs > - t+ ayo ate 

2 a 3a 5x 
1 for |[z| < 1 where, in each case, tan™* denotes the choice 

(of the multivalued tan™? function) lying between —7/2 and 

+n /2, 

3. (a) Show, from (12), that if f(a) is an even function of x 

then so is u(a, y). 
(b) Show, from (12), that if f(a) is an odd function of x then 

so is u(r, y). 

4, Use (12) and the method of images (explained in the op- 

tional Section 18.5) to solve V?u = Use + Uyy = 0 in the first 

quadrant ( > 0,y > 0), with u(z,0) = f(x), with suitable 

conditions at = oo and at y = oo, and with 

(a) u(0, y) = 0 (b) uz(0,y) = 0 

5. Consider the infinite strip problem 

(|z]< co, O<y<a) 

u(t,a) = g(x). 

Qn, y= Vou = Use + Uyy = 9, 

u(z,0) = f(z), 

(a) Show that 

>, , Sinhw(a— y) uly) = Ff Fe)   
. sinhwy 

, wy) : 
sinhwa sinh wa 

but do not try to evaluate that Fourier inverse. 

(b) With f(z) = g(x) = 100A(z), use intuition to sketch the 
isotherms, say u = 10, 25, 50, 75, 90. 

6. In Comment 2 we discuss the delta function behavior of the 

Poisson kernel P as y -> 0. In fact, letting f(z) = 6(2 — x9), 
show that P(2p — 2, y) = P(x~ 2x9, y) is itself the solution or 

“response” due to a boundary temperature that is a delta func- 

tion at wg. NOTE: With this result in mind, we can interpret 

(12) as a superposition principle. For let us break f into nar- 

row vertical rectangles. What is the response du(z, y) due to
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the single shaded rectangular pulse (shown in the figure)? The 

pulse is a delta function at € (as d& -+ 0), so (as noted above) 

its response atv, y is P(E — a, y); actually, the pulse is a delta 

function scaled by f(&) dé 
than unity, so its response ts likewise scaled, 

= P(x ~ Ey) FS) de 

or, since P is an even function of its first argument, 

du(x,y) 

: because its area is f(€) dé rather 

And superimposing these infinitesimal responses (by inte- 

gration) gives (12). Thus, we can understand (12) as a super- 

position principle. 

  

mr 

  

  

  

      

du(z,y) = P(E — x,y) f(&) dé (6.1) 

20.5 Numerical Solution 
¥ 

20.5.1. Rectangular domains. Following the same general lines as in Section 

“ss 18.6, where we develop the finite-difference solution technique for the diffusion 

b equation, here we do the same for the Laplace equation or, more generally and with 

no additional difficulty, for the Poisson equation Vu = f. 

“=p Veusf usr Limiting our attention to the two-dimensional case, we begin with the problem 

Vu = Ure + Uyy = f (2.9), (O<a<a, 0O<y<b) (La) 

“aq ao u(O,y) = ply), u(z,0) = g(r), ulacy) =r(y), ¢ - b) = s(x) (1b) 

Figure 1. The problem (1). depicted in Fig. 1, and generalize to nonrectangular domains in Section 20.5.2. 

Seeking an approximate numerical solution, we discretize the problem by dividing 

a into AL equal parts of dimension At = a/Al. c 
mension Ay = 6/N, and defining nodal points Pj, = (cj 

      

lividing b into NV equal parts of di- 
Ue) = (GAw, kAy) for 

  

  

j =0,1,2,...,Afandk = 0,1,2,...,N. Accordingly, we seek u not everywhere 

Pos o—p Px in the domain but only at the nodal points — more specifically, at the interior nodal 

yoints since w is prescribed at the boundary nodal points by the Dirichlet boundary | | p POIs: p eK y I 5 lente 5 
Poa oe Pg conditions (1b). The grid is shown in Fig. 2 for the choice AJ = N = 3. 

|p Next, we replace the PDE (1a) by a finite-difference approximation that will 

*o gg ’u—y~ lead to a set of linear algebraic equations in the unknown nodal values of u. As in 

| fooay Section 18.6, we adopt the approximations 
Pon bd Sa bP y tt , I PI oo 

Pro Px ! a? 

[ax nn4 Oru ~ ula — Av. y) — 2u(e.y) + ula + Ax. y) (a) 
Jd )2 - 

Figure 2. Finite-difference Ox (Ax) 
- - 92, . ‘ mesh for Wi = N = 3 Oru ula.y — Ay) — 2ul(w.y) + ule. + Ay) (2b) 

Oy? (Ay)? - 

Putting (2a, b) into the PDE, with @ = xj, - Aw = vje4. 0+ Au = vj41 (and 

similarly for y) gives 
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U2 1, Uk) ~ 2uCrj, Ue) + ule pnts YR) 
(Aa)? 

4 we}, Yk—1) ~ 2u(ej, ye) + W(2y, Yer) 

(Ay)? 
  a f(j,Ue). G3) 

Thus, we adopt the algebraic equation 

  

Uj—ik ~ 205 + Uist | Uj ent ~ 205.6 + Uy bo 
(An)? r (Ay)? 
  

    
  

as our finite-difference approximation of (la), where fj 4 is shorthand for f(:cj, yx). 
Asin Section 18.6, we use different letters (owercase and uppercase) to distinguish 
between the exact solution u(, y) of (1) and the approximating solution Uj; , gen- 
erated by the finite-difference equation (4). We call u(aj, yx) ~ Uj, the truncation 
error at P;,, namely, the error incurred by replacing ugy and uyy in (La) by the 

finite-difference approximations (2). Observe that whereas in Section 18.6 we dis- 
tinguish between the /oca/ truncation error (incurred in carrying out a single time 
step) and the accumulated truncation error (incurred in carrying out all the time 
steps up until the time in question) — here we do not — because there are no time 

steps. Thus, there is simply “the truncation error.” 
Suppose that we compute Uj, at a particular point P in the domain, then 

again using a finer mesh, again using a finer mesh, and so on. If. as the mesh 
becomes infinitely fine (i.e.. as Aw and Ay both tend to zero) the computed values 

converge to the exact solution at P, then the finite-difference scheme is convergent. 
Recall that in our study of the diffusion equation (Section 18.6) we pay comparable 
attention to the companion questions of convergence and stability; the difference 
scheme is said to be stable if the accumulated roundoff error remained small. For 
the Poisson and Laplace equations, however, we do not “march out” a solution in 
time. so the issue of stability is not relevant. In fact, roundoff error should be quite 
negligible compared with the truncation error for the methods considered in this 
section. If we choose Ax = Ay = h, say, then (4) becomes 

  

Upp t+ Ujnni + Ujsi a + Uj ear — Wye = hh? fins (3) 
      

which is often expressed, schematically, in the form 

Lf -4 L)Uanh*f. 
1 

If, in addition, f(a, y) = 0, so that (La) reduces to the Laplace equation, then (5) 

gives 

he
 

Uj p= ~ (Uji a + UG Aaa + Uj+uk + Uj esi). (6) 4
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Figure 3. The five points. 

We call these five-point formulas because they involve five grid points, which we 
denote as P, West), S(outh), A (ast), and N(orth), respectively, in Fig. 3. It ts 

striking that (6) is a discrete and approximate version of the average value property 
of the two-dimensional Laplace equation, namely, that u at any given point P in the 
solution domain is the average value of u over any circle centered at P and lying 

entirely within the domain. 

EXAMPLE 1. To illustrate the use of (5), leta = b = Land f(x,y) = ply) = (2) = 
s(x) = 0, and r(y) = 100sin zy so that, by separation of variables, we have the simple 

exact solution 
sinhaa 

u(x, y) = 100 ———— sin wy (7) 
sinh 7 

available for comparison with our computed approximate solution. As the simplest (and 

crudest) case, let Af = N = 2. Then Az = Ay = 0.5 and there is only one internal node, 

(Fig. 4). Writing out (5) for that point (.e., with 7 = & = 1) gives 

Put Uor + Uio + Var + Uig — dU = 0 (8) 

or, recalling the given boundary conditions, 0 + 0 + 100sin (7/2) ~ 4U\, = 0. Solving, 

Uy, = 25 and we have the following comparison. 

    

  

    

Computed: Uy, = 25 (9a) 

inh 2 
Exact: uy = 100M) oF — 199, (9b) 

sinh 7 2 

¥ 

u=0 u=100sin zy 

I 4 1 

Pia | Pos Ps 
i 

u=0 V-u=0 | Piz Px [P32 

> Pu 

                  

Pio i 

u=Q I x M=zNz=2 M=N=4 

h=0.5 h=0,25 

Figure 4. Example I. 

where uj, means the exact solution u(a,y) evaluated at Pix: note that we will generally 

omit the comma between the two subscripted indices, for brevity. [t is not surprising that 

the error is so great because the grid is so coarse; that is, k = 0.5 is not small compared to 

a=zb=1. 

Next, let MW = N = 4 (right-hand member of Fig. 4). Write out (5) for the nine 

internal grid points P,,, Po1,..., P23, P33: 

 



  

20.5, 

  

  

                

Pu O0+0+ Ue 4+ Uig~ 40 = 0, 

Poy C1, + 0+ Ug, + U2, ~ 4021 = 0, 

(10) 

P23 U3 + eg + U33 +0 — 4023 = 0, 
3 Psy Uoy + Ugo + 100sin + 40 —4Uy3 = 0 

or, in matrix form, 

4 1 0 tL tte 0 r Uy 7 i. 0 7 

1 -—4 1 0 1 Uo, 0 

0 1 -4 0 0 1 Us, ~100sin 4 

1 0 QO} —4 1 0 Ue 0 

1 0 1 —4 1 0 1 Ugg | = 0 , 

L 0 1 —4 0 0 Us —100sin 5 

1 0 QO} —4 1 0 Uys Q 

1 0; 1-4 1 | | Us 0 
Say OTT 

0 cae Ll 0 1 —4 L Us J L —100 Sin ay 

(11) 
where matrix elements not shown are zeros and the partitioning lines are to be ignored 

for the moment. Roughly speaking, the first equation in (10) ensures the satisfaction of 

the Laplace equation in the neighborhood of Py1, the second equation in (10) ensures the 

satisfaction of the Laplace equation in the neighborhood of P21, and so on, so that the 

satisfaction of (10) is equivalent to the approximate satisfaction of the Laplace equation in 

the entire domain (as well as the Dirichlet boundary conditions). 

Solving (11) by a computer algebra system (e.g., using the Maple linsolve command 

described at the end of Section 8.3), we obtain these values. 

Computed: Uy, = 5.8, Ue, = 15.1, Uy, = 33.2, (12a) 

Uyo = 8.3, Uso = 21.3, Uso = 46.9, 

Ury = 5.8, Ung = 15.1, Ugy = 33.2 

Exact: uy, = 5.3, ug, = 14.1, uy, = 32.0, (12b) 

uyo = 7.5, ep = 19.9, use = 45.3, 

uyg3 = 6.38, uaa = 14.1, ugg = 32.0. 

These results are seen to be in better agreement than (9a) and (9b) but are still quite crude. 

If this were a realistic application, rather than only an illustration of the method, we might 

choose / to be 0.05 or smaller. 

COMMENT |. Observe from Fig. 5 that both the domain and the boundary conditions 

are symmetric about the mid-line y = 0.5, so it is evident that the solution u(z, y) should, 

Numerical Solution L095 

u= 100sin zy 

  

      

u=Q 

Figure 5. Symmetry.
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likewise, be symmetric about that line.* Thus, our numerical solution, for the case where 

M = N = 4, is wasteful because we know in advance that 

Wig =Uy, Us =U, Uss = Vai, (13) 

so there are really only six unknowns rather than nine. It suffices to apply (S) to the six 

points Pi1, P21, P31, Pia, Pag, Pag, and to use (13). Thus, the reduced system is as follows: 

Py: 0+0+ Uo, + Ui. - 401 = 0, 

Poy: Uy, +0 + Ug, + Uog — 4021 = 0, 

Px: Uo, + 0+ 100sin F + Ugg — 4031 = 0, (14) 

Pra: 0+ Uy, + Uo. + U, — AU 2 = 0, 

Pop: Uyg + Ua, + U3q + Ua, — AU 22 = 0, 

Ps : Uso + U3, + 100 sin 5 + Us, _ AU 39 = 0, 

where the underlined terms are those that result from the symmetry relations (13). 

COMMENT 2. Observe that (11) may be partitioned, according to the thin lines in (11), as 

B I 0 U; C 

IB I ; Uy C» 

=]: ; (15) 

1 B {| Ux cN-2 
O .-- I B Un-1 CNL 

where B is the (NV — 1) x (NV ~ 1) matrix 

—4 1 0 

1 —4 1 

1-4 1 
0 1 —4 

and I is an identity matrix of order N — 1. In (11), for instance, N’ = 4 so B and T are 

3 x 3, Each vector is comprised of the unknown nodal values across the jth row of the 

mesh. Whereas B is tridiagonal, A is not tridiagonal: it is block tridiagonal. # 

The method is powerful because it enables us to obtain solutions even if the 
inputs p(y), g(x), r(y), s(x), and f(a, y) are nonconstant functions, in which case 
  

“It surely seems clear, if only intuitively, that the solution is symmetric about the line y = 0.5 as 

claimed, but to put that claim on solid ground we can put forward arguments similar to those given 

in Section 18.5 on the method of images. We will leave that point for the exercises. 
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analytical solution becomes extremely laborious. However, it is to be appreciated 

that the computer calculation is not trivial if we seek good accuracy because (in the 

absence of helpful symmetries) we need to solve a system of (AL ~ 1) x (N — 1) 

linear algebraic equations. If, for instance, we choose Af = N = 50, for the sake 

of accuracy, then we have a system of 2,401 equations! In such cases one concern 

is how to solve that large system of equations efficiently, to which topic we return 

in Section 20.5.3. First, in Section 20.5.2, we indicate how to extend the method to 

handle domains of essentially arbitrary shape. 

20.5.2. Nonrectangular domains. Thus far we have dealt with cases where the 

boundary curve is rectangular so that grid lines can coincide with the edges of the 

domain as in Fig. 4, that is, where the mesh “fits” the domain. What happens if the 

mesh does not fit, as illustrated in Fig. 6? We cannot apply the finite-difference 

scheme (5) at grid points such as P because the points NV and £ do not fall on the 

boundary curve C’; they fall outside the domain. To handle this case we slide NV and 

E so that they do fall on C, as shown in Fig. 7, and revise the difference quotient 

approximations (2a,b) accordingly. [We need to modify (2a), for instance, because 

it gives Ure at P as a linear combination of the values of uat W, P, and £. If we 

move E, then the weighting of those values will change; we can expect Ug to be 

weighted more heavily than Uyy because EF is closer to P than W. Similarly for 

(2b).] For the geometry shown in Fig. 7 we need to slide N and E, but in other 

cases we may need to slide WV and/or S as well, so let us consider the most general 

case shown in Fig. 8. whereO <a <10<8<1,0<7< land0< 6<1. 

We begin with Taylor expansions about P (namely, the point xj, ys) in the 

eastern and western directions, respectively, 

1 “ 
ula; + ah, ya) = Ulay. Ue) + Ue(@y, Ye Oh + 5 tae (4s yp)(ah)? bee, 

. 1 oy 

ulay — yh. ya) = Ulty. YR) + Ue (2y, YR) (9h) + py ne (ij, Yeoh)? Fe, 

or, using NV, E, S, W, P subscript notation instead, 

1 23! 
Up = Up + Us| paht+ 5 Ure pan? +e, (17a) 

I ' 24,2 , uy = up — Uy | p yh + 5 Ura | p Aamo, (17b) 

Multiplying (17a) by y and (17b) by @ and adding, to cancel the uz terms, gives 

1. oo. 
yup + auy = (y+ a)up + 5 lord + ay) Uaa|p bits (18) 

oP > y : . ‘ 

so that if we neglect terms of order fh” and higher in (18) then we obtain 

2 

aya + yh? yh? [yur + aupy — (y+ a)up! (19a) 
toy tO | b 

tag) p & 

  

  

      

ae 
N 

Ww E 

i P 
A 
t Ss 

ie fp \     
Figure 6. Nonrectangular domaia. 

  

  

  

fp       \ 
Figure 7. Adjusting the mesh 

near C. 

|" 

Bh 

ya ah 
Ww 

Figure 8. Mo 

| E 

oh 

, 
st general case.
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in place of (2a). Similarly, Taylor expansions about / in the northern and southern 

directions give the result 

2 
Uyy| p © Ro(B + s)he? [Suny + Bug — (6 + B)up] (19b) 

in place of (2b). Using (19a,b), our finite-difference approximation to the Poisson 

equation Ugg + Uyy = f(e,y), at P, becomes 

  

2 2 < Uy + es +t Wyo) "56+ H) Polat a)! (20) 
9 ay + 86. 2 

——————— yy — 2 p = fp. Ta UN ae UP       
Naturally, ifa = 9 = 7 = 6 = 1, then (20) reduces to (5). 

EXAMPLE 2. To illustrate the use of (20), let us solve the Poisson problem shown in 

Fig. 9a, using the grid shown in Fig. 9b. Obviously, the grid is quite coarse, but it should 

suffice for the purpose of illustration. In this case the source term is (f(z,y) = 5a — y and 

we have chosen h = 2. Since there are not many grid points it will be more convenient to 

denote the points as a,b,...,r,8 rather than with the double subscript notation. We need 

to write (20) for each of the internal grid points 0, p,q,7r,s. Thus, we need to determine 

a, 3,7, 6 for each of these points. At r, for instance, we compute a from Fg = ah (where 

Fg denotes the length of the line rg). Thus, a = 7g/h = (xg—a,)/h = (5.5—4)/2 = 0.75. 
Next, FG = Gh gives 6 = FG/h = h/h = lerk = yh givesy = (a, ~ te) /h = 
(4 — V4? — 2?) /2 = 0.27, and rj = Oh gives 6 = 1. Similarly at 0, p, and s, so we have 

these values: 
(a) (b) 

re fp 

u=10x b c 

  

  
u= 40       

us 30     

  

  
6 x J i 

] 

u=60 

Figure 9. Example 2.
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0: a@=f$=y7=)=1, 

pi: @=025, G=yvy=d=1, 

q: a=05, Gb=y=d6=1, 

ri @=0.75, G=1, 70.27, d=1, 

8: Q@=P=y=1, 60.27. 

  

Thus, writing (20) at these points gives the equations 

ao: Un + Ug + Uy + Up ~ AUS = 27[5(2) — 6], (21a) 

oy kU, $y $e ~ 2 
Pi Tog" F Mat ogs(poay Fe MO aR 

= 2°(5(4) ~ 6], (21b) 
2 2 1.5 

» LU, +U, + =U, + U, - 2, 7 TB. + OBB) Me + Ue 2g M0 
= 2°(5(4) — 4], (21c) 

2 Uy, + Uy + : U, + U, 2120), ee kU ee 920 
o270n) * > I FER) 9 T8007 

= 2°[5(4) — 2], (21d) 

U 2 ny Ub eU, — 2 
Si Om * Taran! 7 eat pare > “oars 

= 27[5(2) — 4]. (21e) 

With U, = 0, Uy, = 20,U, = Ug = Up = Uy = 40, U; = (60 + 30)/2 = 45. 

U, = U; = 30, and Uy, = U; = 30, and U,, = (30 + 0)/2 = 15 from the boundary 
conditions (where we've used average values at the corners 7 and m, as suggested in Section 

18.6), (21) becomes 

—4U, + Up + Us, = —4, (22a) 

1.6U, - L0U, + U, = —240, (22b) 

U, ~ 60g + U, + 1.338U, = ~42.7, (22c) 

U, — 12U, = -295.5, (22d) 

1.57U, + Uy ~ G.ALU, = —166, (22e) 

with the solution 

Uy, = 13.6, Up = 28.3, Uy, = 21.1, U, = 26.4, Us = 22.2. (23) 

COMMENT. If these values don’t look correct, relative to the given boundary values, don’t 

forget that besides the boundary condition inputs there is also the internal source distribu- 

tion f(a, y) = 52 — y. Mathematically, we call the forcing term f in V°u = fa “source” 

term. However, if we think of this problem in terms of steady-state heat conduction, then 

we need to recall, from (39) in Section 16.8, that the heat source term there has a minus 

sign in front of it. Therefore, the f(v,y) = 5x — y term in our PDE is, in physical terms,
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a heat sink, and it ts the presence of that heat sink distribution that causes the interior tem- 

peratures to be lower than we would expect if we considered only the boundary conditions. 

For instance, if there were no sink distribution (f = 0) then we would expect U, to be 

around 35, rather than the value 28.3 given in (23). @ 

  

20.5.3. Iterative algorithms. (Optional) The resulting systems of linear algebraic i 
equations on the U;,’s are of the form AU = c, where A, typically, is quite 
large. To illustrate, suppose that the domain is square (as in Example |) and that 
j = 0,1,2,...,N and& = 0,1,2,...,N. Then there are (NV — 1)? unknown Uj,’s 

and A is (N — 1)? x (N — 1)°. For instance, in Example 1, V = 4s0 A is 9 x 9. 
If, for greater accuracy, we choose N = 25, say, then A is 576 x 576. Thus, it is 
important to develop efficient methods of solution of the typically large systems of 
linear algebraic equations that arise. 

Recall that a similar difficulty arose tn Section 18.6, where the choice of an 
implicit (rather than explicit) scheme led to coupled (tridiagonal) systems of linear 

- algebraic equations. However, that situation was not nearly as difficult since the 
problem was of initial-value type and we merely needed to solve for one time-line 
of unknowns at a time. Thus, with N = 25, say, the A matrix was only 24 « 24 
rather than 576 x 576! It’s true that we need to solve these 24th-order systems for 
each time step, but (supposing that there are 24 time steps, say) it is much easier to 
solve twenty four 24th-order systems than to solve one 576th-order system.* 

Fortunately, the A matrix is strongly diagonal. so that we can use the same 
iterative techniques that were described in Section 18.6. For instance, suppose 
that the rectangular grid fits the domain so that we can use the scheme (5) rather 
than its generalization (20). Because the —4 coefficient of Uj; dominates the other 
coefficients on the left-hand side of (5) we can, to a first approximation, write 

; . : ; (0). 
dU in h? f ike Solving the latter for the (/;,’s and calling them ui gives 

‘y 

(0) he Uj. = Lin (24) 

Next, we put those values into the thus-far-neglected first four terms on the left- 
hand side of (5), transpose them to the right, and obtain the improved values 

a) _ 1 /,,(0) (0) (0) (0) 2 
Vik =U (uo, + Up PO FU ea oh fix) : +1, 

Repeating this process gives the Jacobi iterative scheme 

  

jth j REL   
(Tie 1 rn TL rt) (rh 2p Ue =F (a tO tO te — fie) | 2S) 

    

  

“Tf the truth behind this claim is not obvious to you, uy changing the numbers: wouldn't you 

rather solve twenty 2nd-order systems than one 40th-order system?  



  

\ 
' 
| 

  

20.5. 

for n = 0,1,2,..., with the “starting values” given by (24). As discussed in 
Section 18.6 for the diffusion version of (25), we can improve on (25) by using the 
latest iterates as soon as they become available and moving systematically across 
the first row (left to right), then the second, and so on. Known as the Gauss—Seidel 
or Liebmann method, it is expressed as 

  

ne 1 yr lle 
*f ule =F (oft ao sult kU, an) ] 26       

The latter converges more rapidly than the Jacobi method and is more readily pro- 
grammed, 

Re-expressing (26) as 

  

(n+1) (mn), 1 (n+1) my m) (n) rrr) 2p ui “tt + 5 (Ua + OED + OND FURL FO — nf) 

4 AUR, (27) 

we can insert a numerical control parameter w as follows, 

n+l nm), n 

Uy) = Ui) +wAUR, (28)       

and choose w so as to speed the convergence. It has been shown that the optimal 
value“ of w is 

1 —sin(a/N) 

cos? (7 /N) 

For large NV. Wop, ~ 2. Since w > 1 amounts to an overcorrection, in (28), the 
method (28) is called successive overrelaxation, or SOR, for brevity. We will 
omit a numerical illustration of these methods because the ideas are the same as for 
the diffusion equation: see Example 3 of Section 18.6. 

One final point. We stated that the A matrix is strongly diagonal, but that 
situation will be obtained only if we write the scalar equations on the Uj,’s in the 
correct sequence, which we clarify by means of the following example. 

(29) Wopt = 

EXAMPLE 3. Applying (5) to the Laplace problem shown in Fig. 10 gives the scalar 
equations 

a dU, + U, = —100, (30a) 

b: Uy - 40, + U, = —50, (30b) 

C: Uy, ~4U, + Ug = —30, (30) 

d: U, ~ 40g = —90 (30d) 
  

Qs = 0. Then (25) gives uu ss "Or. equivalently and more easily programmed, we can take U; 

—(h? /d) ) fix, which is identical to the right-hand side of (24), so the subsequent iterates are the » same 
as before. 

“S. P. Frankel. “Convergence Rates of [erative Treatments of Partial Differential Equations,” 

Mathematical Tables and other Aids to Computation, Vol. 4, 1950, pp. 65-75, 

w= 10 

Numerical Solution 

  

  

Figure 10. Example 3. 
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or, in matrix form, 

-4 1 0 0 U, —100 
1-4 1 0 Us 50 

b | ann B31) 
0 1-4 4 U. —30 
0 0 1-4} uy, —90 

However, if we interchange the scalar equations (30a) and (30c), say, then we obtain, in 
place of (31), the equivalent system 

0 1 —4 l Usa ~—30 

~4 1 0 Ty —50 
Uo | oan (32) 

~4 Ll 0 0 U. — 100 

0 0 1 —4 Ua —90 

Thus, whereas the matrix in (31) is strongly diagonal, the one in (32) is not. 
To obtain the strongly diagonal form, in any given example, proceed as follows. Order 

the elements of the U vector (in AU = c) any way you like, but then be sure to write the 
scalar equations in the same order, as we did in (30) and (31). @ 

Closure. We derive the finite-difference schemes (4) and (if Az = Ay = h) (5), 
and the generalization (20) for curvilinear boundaries. We illustrate their imple- 
mentation in Examples | and 2, respectively, using coarse grids for simplicity. Ef- 
ficient iterative solution techniques, that are needed for fine grids (i.e., for large A 
matrices), are described in the optional Section 20.5.3. Dirichlet boundary condi- 
tions are the simplest and are used throughout, although other boundary conditions 
are considered in the exercises. 
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EXERCISES 20.5 
  

1. Consider the Poisson problems uga +Uyy = f(a, y) labeled 

A, B, C, D in the accompanying figures, each with Dirich- 

let boundary conditions. Write the linear algebraic equations 

governing the unknown nodal values and solve for those val- 

ues, either by hand or by computer. 

(a) Problem A with uy (y) = 10y, we = ug = 20, f(e,y)= 

—20zy. 

(b) Problem A with uw; = ug =0, uz = 50, f(z,y) = 0. 

(c) Problem A with wy = ug =us = 0, f(x,y) = —100. 

(d) Problem B with wy = uw. = ug = ug = 0, f(a.y) = 

No
 

o6o
 

Ge
 

—50. 

(e) Problem B with we = 100, uy = uy = uy = f(x,y) = 0. 

(f) Problem B with wp, = ug = ug = 0, uy = 

200, f(x,y) =a? +y?. 
(g) Problem C with uy = we = ug = ug = 0, Us = 

50, f(t,y) = —20. 
(h) Problem C with uy = uo = ug = Ug = us = 

100, f(x,y) = 30. 

(i) Problem C with uw, = ug = uy = Us = 0, uo(z) = 

10x, f(x,y) = 50(a? — y?). 
G) Problem D with u; = us = f(t,y) = 0, uo = ug 

us = 100. HINT: Note the symmetry about y = 4. 

(k) Problem D with uy = uy = ug = f(v,y) = 0, uw = 

50, ws = —50. HINT: Note the antisymmetry about y = 4, 

so u(z,4) = 0. You may wish to work the problem twice: 

first, using the noted antisymmetry and then again, this time 

not using it (in case you have any doubts). 

(1) Problem D with uw, = ug = uy = 0, Uy = un = 

50, fla,y) = 10(2? + y"). 

{| 

  

  

    

        

A. 

Y 

if 3 

| 

a b c / 

d e iy iy 

& NO, 
i y=xe 

ees 
| x 

  

  

  

        

  

    
  

          

  

    

    

                

B. 
y 

uo 
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a b / 

JL § c l, 

/, d / 

2 oO/ 2 4 x 
us 

C. 

x 

Ho 

6 

uy 

a b c 

ul 
Us é d 3 

Ua 8 x 

dD. 

¥ 

lla 
8 

a b c 

/ 

iq d 
tty uy 

h & é 

us 10 x 

2. Consider the Poisson equation Use + Uyy = f(x,y) on 

the domain between two nested squares, one with corners 

at (1,1),{-1.1), (—1,-1), 1, -1), and the other with cor- 

ners at (0.6, 0.6), (—0.6, 0.6), (—0.6, —0.6), (0.6, -0.6). Let 

Au = Ay = h = 0.2. Given f(x, y) and the boundary con- 

ditions, use (5) to solve for w at each of the 32 nodal points 

using any symmetries or antisymmetries that are present to re-
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duce the number of unknowns. 

(a) f(a, y) = ~100, wu = 0 on inner and outer boundaries 

(b) f(x,y) = 0, u = 0 on inner boundary, u = 100 on outer 

boundary 
(c) f(a, y) = 0, u(0 0.6, W) = u(l,y) = u(e,0.6) = ule, ve = 
50, u(—0.6,y) = u(— hy) = = u(x, -0. 6) = =u(e,-1) = 
(d) f(v,y) = O,ul(-l,y) = u(—0.6, y) = mre = 

WL y) = 0,u(a, —1) = u(v,-0.6) = ~20,u(2,0.6) = 

u(a, 1) = 20 

3. We developed equation (20), based on the pattern in Fig. 8, 

to enable us to handle the domains with irregular boundaries. 

However, we can also use (20) [or, equivalently, (4) with 

Aa # Ay] to increase the nodal point density in regions where 

greater resolution is needed, as indicated in the figure below. 

Solve for Ug,Up,...,U; using any symmetries or antisym- 

metries that are present to reduce the number of unknowns. 

HINT: Ata use h = 0.5, at buse Ah = 1 and so on. 

  

(a) f(@,y) = -10, uy = ++ = ug = 0 
(b) f(ayy) = 0, up = ty = Uy = Us = Up = Ug = 0. 

ug = U7 = 50 

(c) Same as (b), but with w; changed to ~50. 

4, First, read Exercise 3. For the Laplace equation on the do- 

main shown, with the Dirichlet boundary conditions u(0,y) = 

100, u(w,0) = ula, 1) = u(4.y) = 0. u(a,y) will vary 
rapidly only near the left end. Thus, let us bunch the nodal 

points as shown. 

(a) Solve for u at the 21 nodal points using the finite-difference 

method. HINT: Use symmetry to reduce the number of un- 

knowns to 12. 

(b) Compare your computed values at the six nodal points on 

the horizontal centerline y = 0.5 with the exact values. ob- 

tained by separation of variables. 

  

| LS 2.5 4 

5. Show that (20) agrees with (4), as it should, if we set 

ah = yh = Avand Gh = 6h = Ay. 

6. (Empirical estimate of the order of the method) (a) Show 

that the truncation error in (5) is O(h") so the method is of 

second order. 
(b) To test the assertion in part (a), note that if the method is 

of order p that means that 

uly. Ye) ~ Uy a ~ Ch? (6.1) 

as h —> 0. where xj, y, is any fixed field point within the 

domain. u(a,j, yz) is the exact solution there, Uj, is the com- 

puted solution there, and C' is some constant. It suffices 

to use a concrete example. For that purpose. use the point 

x = y= 0.5 in Example t. We found that u(0.5,0.5) = 19.9, 

with 2 = 0.5 we obtained U,., = 25 there, and with h == 0.25 

we obtained U9 = 21.3 there. Writing (6.1) for each of these 

two cases gives two equations in the unknowns C’ and p. Solv- 

ing for p, show that p = 1.87. NOTE: In (6.1) Uj,x denotes the 

value obtained using a perfect computer. one with no roundoff 

error. and that is virtually the case since the roundoff error 

should be extremely small compared to the truncation amon 

(c) In obtaining p = 1.87, in part (b), we treated (6.1) as an 

equation (.e., with an equal sign), whereas it is only true as 

h — 0. Thus. we can expect a better empirical estimate of 

p if we use two successive small values of A such as 1/4 and 

1/6, rather than 1/2 and 1/4. Here, we ask you to compute 

Ui ata = 0.5, y = 0.5 using A = 1/6 (in which case there 

will be 25 equations in 25 unknowns, which can be reduced 

to 15 equations in 15 unknowns by using symmetry) and to 

use the h = 1/4 and h = 1/6 results to obtain a more ac- 

curate estimate of p. NOTE: Remember that when we say h 
is small we mean small relative to the size of the domain. In 

this case the domain is a unit square so the values h = 1/4 

and fh = 1/6 are not especially small. If, instead. the domain 

were of dimension 50 x 50, then these / values would be quite 

small, 

7. (Neumann and Robin boundary conditions) First, recall the 

forward. backward and central difference quotients. 

f(a+h)— f(x) 
fle)s jy (forward) 

  

L 
i 
be



      

(backward) 

(central) 

(7.1,2,3) 

with truncation errors that are O(h), O(h), and O(h?), respec- 
tively. Thus far in this section we have considered boundary 
conditions only of Dirichlet type. To see how to handle a Neu- 

mann condition consider the representative problem shown in 

the figure. 

  

  

  

          

. | 120 on ax 

1 “1 

a b cl d; 

u=0 : 
é 8 i I, 

/ ge 

vu Zo u=O0 i « 

(a) Writing out equation (5) at a, b, e, g gives four equations in 

six unknowns U,, Us, Uc, Ue, Ug, and U;. To apply the Neu- 

mann condition u,(1,y) = 9y at c and 7, use the backward 

difference quotient (7.2), show that the resulting system is 

-4 10 1 £00 Us 0 
1-4 1 0 10 Us 0 
0-1 1 0 00 U. 2 

Ole , (74) 
1 00 -4 10 Ue 0 
0 10 1 -4 1 Us 0 
0 00 O -1 1 Uj 1 

and solve for U,,..., Uj. 

(b) However, whereas the first. second, fourth, and fifth scalar 

equations in (7.4) (namely, those resulting from the applica- 

tion of (5)] have a truncation error that is O(h?) the third 
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and sixth [those resulting from the application of (7.2) to the 

Neumann boundary condition] have a truncation error that is 

O(A). Just as “the chain is as weak as the weakest link,” these 

O(h) errors contaminate the whole system (7.4) and cause an 

overall truncation error that is O(/). To prevent this reduction 

in accuracy we can use the central difference quotient (7.3) in- 

stead of the backward difference quotient (7.2). The idea is to 

extend the domain as indicated by the dashed lines. Applying 

(5) at a, b,c, e, g,7 gives six equations in the eight unknowns. 

To apply the Neumann condition at ¢ and 7 use (7.3), thereby 

obtaining two more equations. The result is eight linear alge- 

braic equations on U,,..., Uj. Obtain that system and solve it 

for Ug,...,U;. NOTE: Of course, in the end you can discard 

the auxiliary values Ug and Uy. 

(c) Solve the problem exactly, by separation of variables, and 

compare your values of U.., say, from parts (a) and (b), with 

the exact values at a,b, e, and g. 

(d) With the Neumann boundary condition u,(1,y) = 9y 

changed to the Robin boundary condition 

ur(1,y) + 8u(1, y) = 9y, 

modify (7.4) accordingly. 

8. (Other elliptic PDE’s) The Laplace and Poisson equations 

are elliptic, and the methods developed in this section are ap- 

plicable to other elliptic PDE’s as well. In each case, first 

verify that the PDE is elliptic. Then derive a finite-difference 

scheme (with Ag = Ay = hh) analogous to (5), using (2a), 

(2b), and central difference quotients (see Exercise 7) for first- 
order derivatives. Then, apply the finite-difference scheme at 

each interior node for the case where the domain isQ <a < 1, 
O< y < 1 with u(z,0) = 0. u(O,y) = 20, u(x, 1) = 50, 
u(l,y) = 10y, and with h = 1/3. (You need not solve the 

resulting system of equations.) 

(a) (1+ 07 )ttes + Uyy = 0 
(Db) tea + 2tbyy - Us = 4 

(C) Ua + Uyy — u = 20x — Sy 

(A) tre + (1 +a? + y? yy + 2uy = 15(2? + y*) 
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Chapter 20 Review 

Recall that the PDE 

Auge + 2Bugy + Cuyy + Due + Buy + Pus f, (1) 

where A,...,F, f may be functions of a and y, is classified as hyperbolic, parabolic, 

or elli iptic a as : follows: 

hyperbolic if B* ~ AC > 0, 

parabolic if B? —~ AC = 0, (2) 

elliptic if B?-~AC <0, 

the classification depending only on the coefficients A,B,C of the second-order 
derivatives. The prototypical equations considered in these chapters are the hyper- 
bolic wave equation C"Uax ~ Ue = O (with ¢ in place of y), the parabolic diffusion 

equation a* bee —~ Up == O, and the elli ptic Laplace equation gz + Uyy = 0. 

Observe from (2) that the parabolic case is on the borderline between the hy- 

perbolic and elliptic cases, so it is not surprising to learn, in these chapters, that 
parabolic equations share some properties with hyperbolic equations and some with 

elliptic equations. For example: 

(1) Both the hyperbolic wave equation and the parabolic diffusion equation are 
of initial-value type (in the t variable), whereas the elliptic Laplace equation 
is of boundary-value type. For instance for a wave or diffusion problem 
defined on 0 < @ < EL and0 < t < o the solution at any z,¢ point 
depends on the initial data (at ¢ = 0) and on the boundary data up to time ¢ 
but not beyond, whereas for a Laplace | problem defined on 0 < a2 < L and 
0 < y < o© the solution at any x, y point depends on the data at y = 0 and 
on the data atz = Oand x2 = L over the entire interval O < y < oo. The 
initial-value/boundary-value distinction is especially important in numerical 
solution by the finite-difference method. For instance, contrast the finite- 

difference solutions of a diffusion problem on0 < 2 < LO<t< T 
with Az = L/N and At = T/A, and a Laplace problem on 0 < & < JL, 
O<y< Y with Ar = L/N and Ay = Y/AL. Because of its initial-value 

type, the diffusion problem admits an explicit solution or, at worst, requires 
the solution of an (NV —1)th-order matrix equation for each time-line of nodal 
values. In contrast, the boundary-value type Laplace problem requires us to 
solve for all the unknown nodal values at once: that is. we need to solve an 

(AL — 1)(N — 1)/th-order matrix equation. 

(2) For the hyperbolic wave equation discontinuities or kinks in initial or bound- 
ary data propagate into the solution domain, whereas for the parabolic diffu- 
sion equation and the elliptic Laplace equation they do not; they are smoothed 
upon “entering” the solution domain. For instance, contrast Fig. 4 in Sec- 

tion 18.4, where the initial condition is a Heaviside step function and where 
the resulting solution is a smooth (even infinitely differentiable) function of 

 



    

x for all t > 0, and Fig. 4 in Section 19.4, where the initial deflection is 

“kinky” and where those kinks propagate into the solution domain. 

We can summarize these comparisons, for mnemonic purposes, in the follow- 

ing tabular form. 

Wave Equation: kinks propagate, initial-value type 

Diffusion Equation: smooth, initial-value type 

Laplace equation: smooth, boundary-value type 

Let us return from this comparison of the wave, diffusion, and Laplace equa- 

tions to the present chapter on the Laplace equation. Included are the solutions 

to particularly well known Dirichlet problems, namely, for the rectangle (Section 

20.2), circular disk (Section 20.3.1), circular cylinder with axisymmetry (Section 

20.3.2), sphere with axisymmetry (Section 20.3.3), and half plane (Section 20.4). 

Prominent theoretical results include the average value property and maximum 

principle. The average value property is that if V7u = 0 in a two-dimensional 

(or three-dimensional) domain D, then wu at any point P’ within D is equal to the 

average value of u around any circle (or on any sphere) centered at P' and lying 

entirely within D. And the maximum (minimum) principle is that w cannot attain 

its maximum (or minimum) value in D (unless u is a constant everywhere); it must 

attain its maximum (or minimum) on the boundary of D. 

Chapter 20 Review L107



Chapter 21 

Functions of a Complex Variable 

21.1 Introduction 

There is much to recommend the study of complex variable theory. In this text 
on applied mathematics, we should state first that the subject is of great impor- 
tance in applications. For example, it may be recalled from our discussion of the 
Laplace transform that the inverse Laplace transformation is given as a contour in- 
tegral in a complex s plane. Not yet having studied complex variable theory, we 
were forced to avoid the inversion formula and to rely, instead, on the use of trans- 

form tables. More generally, the evaluation of a wide class of definite integrals 
(even along the real axis) is facilitated by use of the complex integral calculus. 
Another particularly important application is in the use of conformal mapping to 
solve boundary-value problems in two-dimensional potential theory (i.e.. governed 

by the two-dimensional Laplace equation). 
Also important about complex variable theory is that it serves to “complete” 

our understanding, from the calculus, of real-valued functions of a single real vari- 
able. For example, tn studying Taylor series one finds that the expansion 

| 

: 

1 

pops tat awh ee 

holds only for |a]| < 1. Yet the function 1/(1+ 2°) is infinitely differentiable for all 
x, and offers no clue as to why the interval of convergence should be anything less 
than infinite. [tis only when we consider instead the function 1/(1 + 27), where 
z= -+ zy, that the source of the difficulty comes into view, namely, singularities 

at 2 == -t7. off of the real axis, in the complex < plane. 
Our sequence of topics echoes the usual format of the real variable calculus. 

Beginning in Chapter 21 with a discussion of complex numbers and the complex 
plane, we next introduce the notion of a complex valued funcnon of a (single) com- 

plex variable and then define and discuss a number of elementary functions, such as 
the exponential. trigonometric, and hyperbolic functions. Defining a limit concept 

and continuity, we are able in the final section to define a particularly important 

1108 
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limit, the derivative. Thus, in this chapter, we get as far as the differential calculus 

of functions of a complex variable. 
The complex integral calculus and series expansions are then developed in 

Chapters 23 and 24. In between is Chapter 22 on conformal mapping. That chapter 
is not a prerequisite for Chapters 23 or 24. Thus, in a shorter course one might 

cover only Chapters 21 and 22, or, instead, Chapters 21, 23, and 24. 

    

21.2 Complex Numbers and the Complex Plane 

Historically, complex numbers were created several hundred years ago, within the 

context of the theory of equations. For if one allowed only real numbers, then 
equations such as a? +1 = 0 and 2? + 22+4 = 0 had no solution. Thus, in a step 
that was slow to gain general acceptance, a broader number system was devised 
so that the equations given above, and indeed every polynomial equation, possess 
solutions within that number system,* Eventually named complex numbers by 
Carl Friedrich Gauss (1777-1855), these new numbers were of the form @ + ib 

where a and ) are real and where i satisfies the equation i” = —1. It is important 
to understand that the plus sign in a + ib does not denote addition; rather, @ + ib is 

a single number, not the sum of a and 2b. 
The (real) numbers @. b are called the real part and imaginary part of a + ib, 

respectively: 

  

Re(a + ib) = a, Im(a +ib) =b- (not ib). (1) 

We do not distinguish between a + ib and a + bt, and we generally write a + 70 
as a. and 0 + ib as ib, for brevity. The former complex number is said to be purely 
real and the latter is said to be purely imaginary. Finally, two complex numbers are 
said to be equal if their real and imaginary parts, respectively, are equal: that 1s, 

ay + iby = ay + ibe (2) 

holds if and only if ay = @ and 6, = bo. 

Beyond introducing complex numbers, we will need an algebra for their ma- 
nipulation. The idea will be to stay as close as possible to the rules of ordinary 

arithmetic (.e., governing real numbers). For example, the rules of ordinary arith- 
metic would seem to dictate that 

(ay + ib,) + (ag + ibe) = (ay + ag) + i(b, + be) 

and that 

. + a) 

yay + taybo + ibjas + by be 

= (ay a2 _ bbe) ++ i(ayby +- byae). 

(a, + iby )(ag + ibe) | 

  

*Perhaps the reluctance to accept complex numbers can be better appreciated if we mention that, 

before complex numbers, there had even been reluctance to accept negative numbers. After all. how 

could one have a negative amount of something. (Of course, that was before the invention of the 

credit card.)
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But, be sure to see that these equalities have no logical support since, as noted 
above, a, + ib, is a single complex number, not a; plus 7b,; similarly for aj + 

iba. Rather, we have merely been trying to motivate reasonable definitions for the 
addition and multiplication of complex numbers. Accordingly, we now define 

(a, + iby) + (ag + ibg) = (ay + ag) + i(by + be) (3) 

and 
(ay + iby) (ag + iba) = (aya _ by, bo) + i(ayb9 + bia2). (4) 

For instance, (3 — 27) + (5 +7) = 8 ~—i and (3 — 27)(5+ 1%) = 17 — 7. 
Before proceeding, let us agree to denote complex numbers by a single letter, 

usually z, for brevity. Thus, we write z = a+ ib. With the definitions above, it 
is readily verified that the familiar rules of algebra hold for complex numbers. For 
instance, if we denote any three complex numbers as 2, = a, + iby, 22 = a2 + ibe, 

and z3 = a3 + ibs, then 

Zp + 2 = 29+ 24, 2129 = 29k] (commutative) (5) 

(2, + 22) +23 =21 + (so +23),  (2122)23 = 21(2223) (associative) (6) 

21(2q + 23) = 2129 + 2123 (distributive). (7) 

Further, there are zero and unit complex numbers since, from (3), 

and, from (4), 

(L+i0)z=2z 

for all z. Thus, for brevity, we write 0 + 70 = Oand1+70 = 1. Finally, -z = 
(—1)z, and the subtraction of complex numbers is defined, in terms of the already- 
defined operations of addition and multiplication, by 2) — z2 = 21 + (-z2) = 

zy +(—1)ze. 
It is to be stressed that mathematical notation is important, and that the fore- 

going discussion can be reorganized by introducing complex numbers as ordered 
pairs of real numbers. Thus, in place of z = a+ 7b we could write 

z = (a,b), 

where a and 0 are called the real and imaginary parts, respectively, of the complex 
number z. If z, = (a1, 61) and z9 = (ag, bg) are any two complex numbers, we 
define their sum and product as 

21 + 29 = (a1, b1) + (a9, be) S (a1 + a2, by) + be) (8) 

and 
22 = (a1, 51) (a2, bo) = (ayag — bybe, ayb2 + a2b1), (9) 

respectively. These definitions are equivalent to (3) and (4). Although the form 

z = a+ ib is more convenient, and will be used almost exclusively in the se- 
quel, the ordered-pair approach, created by the great Irish mathematician William 
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R. Hamilton (1805-1865), is important. First, it is based entirely on real numbers 
and completely avoids the mysterious “imaginary” number 7 = /—1. Since the 
forms z = a+ iband z = (a,b) are found to be equivalent, we can thus put to rest 
apprehensions about the quantity 7 and accept it as a computational convenience. 
Second, the ordered-pair format z = (a, b) suggests a graphical representation of z 
as a point in a Cartesian a, b plane. Since Cartesian axes are more usually denoted 

by a and y rather than by a and 8, let us write z = w+ iy = (x, y) and represent z 
as a point in a so-called complex z plane, as shown in Fig. 1." The x axis is called 

the real axis, and the y axis is called the imaginary axis.! 
Observe from Fig. 2 that the addition of complex numbers defined by (3) [or, 

equivalently, by (8)] satisfies the parallelogram law for the addition of vectors so 
that it is often convenient to think of complex numbers as vectors. That is, a z 

vector is the vector from the origin to the point z. 
The distance from the origin to the point z (i.e., the “length of the z vector”) is 

called the modulus of z and, by analogy with the absolute value of a real number, 

is denoted as |z|, or as mod(z). Clearly (Fig. 1), 

jz) = fart+y?. (10) 

For example. [2 — i] = V5. It is easy to verify (Exercise 2) that 

[2122] = [z1| [2]; (11) 

that is, the modulus of a product equals the product of the moduli of the factors. 

Further (Fig. 3), the inequality 

jzy + 29] < lei] + [22] (12) 

follows trom the Euclidean proposition that the length of any one side of a triangle 
is less than or equal to the sum of the lengths of the other two sides. Hence (12) is 
known as the triangle inequality. 

Note carefully that the complex numbers are not ordered as real numbers are. 

For example, whereas ~6 < 2,10 > 7, and so on, analogous statements such as 

2<0.2>3,and4+ 3i > 1 + 27 are not meaningful! Of course, statements such 
as Rez < 6,Imz < 6, |z) > 4, and |1 ~ i, < |3 — i] do make sense because Re =, 
Im z, and |z) are real numbers. 

Besides z == x + 7y, it is useful to define the complex conjugate of 2 as 

Esu~iy. (13) 
  

The complex plane is sometimes called the Argand diagram after the French mathematician Jean 

Robert Argand (1768 — 1822), who was one of the first to propose such representation of complex 

numbers. A bookkeeper by profession. Argand was a self-taught mathematician, 

"One might be concerned that we have labeled the point on the y axis as “y.” Shouldn't it be 

‘Sy? The answer is that either the real or the complex label is correct, depending on whether we are 

regarding the point as a point on the real y axis or as a point in the complex z plane. 

{111 

gextiy=(x,y) 

Figure 1. Complex z plane. 

gp tda = CX, 4X2) tO) ty2) 

\ 

    
px tiny 

: re 

Xa x Xv 

Figure 2. Addition in the z plane. 

  

Figure 3. Triangle inequality.
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Textiy 

  

Figure 4. Complex conjugate. 

Thus, tf zy = 8+ 32 and zg = —4z, then 7; = 8 ~ 3i and Z = 47. It is readily 

shown (Exercise 3) that 

21 + 29 = 21 + 22, (14a) 

2129 = 2129, (14b) 

and that 

jz) = V2, (15) 
  

Graphically, = is simply the reflection of 2 about the real axis (Fig. 4). 
Finally, the complex conjugate is useful in defining the division of two complex 

numbers. Division is defined as the inverse of multiplication. That is, the quotient 
2 = 21/29 is the complex number z = x + zy such that zz = 21. Writing out the 
latter as 

(xq + iy2)(w + ty) =a, + iy, (16) 

expanding the left-hand side, and equating real and imaginary parts on the left- and 
right-hand sides, we obtain 

r{L2 + YLy2 roy1 — Tye ES aga yoru aT (17) ws + y5 ty Ye 

Practically speaking, however, it is simpler to multiply numerator and denominator 
by the complex conjugate of the denominator, 

t _
 by
 

Ee
 

  

(18) 

b2
 

be
 & 

: = 12. toe 
because the denominator z9%2 = |z2|° is now real. Thus, writing out (18), we find 

that 

2 22 (a1 + tyr)(w2 — tye) 
  

  

z9 z9Z9 v3 + ys 

vytea+yye | .Leyi- L1Yye2 
= 2 a +t 252° (19) 

5 “+ Ys v5 T Y5 

which result agrees with (17). 

EXAMPLE 1. 

24i Mi B4+4i (6-44 (843) 2 U1. 
  : ae 2 = Ta = gp + gre 
3-4 3-4¢ 344i 9+ 16 25 25 

which result can be checked by showing that 3 — 4é times 4 + Set gives 2 +7. @ 

Closure. In closing this section, we note that besides the Cartesian notation z = 
x + iy, for complex numbers, there is also a polar notation “z = re’®” that is often



  

convenient. However, because it contains the complex exponential e 
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‘we delay 
our introduction of the polar notation until we discuss the complex exponential 

function, 

  

EXERCISES 21.2 
  

1. Using the definitions (3) and (4), verify 

(a) the commutative properties (5) 

(b) the associative properties (6) 
(c) the distributive property (7) 

2. Verify (11). 

3. Verify (14a), (14b), and (15). 

4, Recall that the definitions of addition and multiplication, (3) 

and (4), were rigged so that the familiar commutative, asso- 

ciative, and distributive rules hold. Thus, one can manipulate 

complex numbers easily and with little fuss. Nevertheless, it 

may be valuable to work an example or two, paying careful at- 

tention to the definitions and properties (3) to (7). In this spirit 

we ask you to solve the following equations for z and then to 

verify, carefully, that the root(s) do indeed satisfy the given 

equation. In each step of the verification, identify the defini- 

tion or property [(3) to (7)] being used. Naturally, 2? means 

(b) 22° +22 +1=0 
(d) 227 +2iz+1=0 

(f) 27 ~ 3iz -2 = 0 

5. Show that 

    

    

    

  

(a) 23) = |:|° 

(by f2"{ = |2]" and [1/z"|= 1/2)" forn=1,2,... 
(c) [2p 2223] = |za) fee) [2s] 
(d) eyfa-++ 2p) = lea} |ze|--- fen} form = 1,2,... 

(e) [2p + 22 + 23] < [ei] + |ee) + les 
(A) ep Fg bees #tnl < fer] + leg] bee + len]       

form = 1,2,... 

6. Show that 

(aims: 

(b) ( 

  

(c) z is real if'and only if: = % II 

(d) 23 = =" 
(e)z% =F" forn=1,2,... 

7. Show that ifs = x + ly. then @ = (2 + 2)/2 and 

y = (2 — 2)/2t. 

8. Show that if 2) = 0, then at least one of the two factors 

must be zero, 

9. Evaluate each of the following. That is. express each in 

standard Cartesian form x + iy. 

  

    

    

  

  

  

: 1 
a) (2 —i)* b (a) (2-2) (b) —5 

L 1L+i 
: d ay OT 

| “V3 a: 
; ; 2+ 32 

) ( () Reo 
2-1 4+ 5 

. 1 3 

(g) Im (1+ i)? (h) (Re i =) 

a+ib 1 
i) I (j) Re 

() Im c+id J) Re 1-i 

10. Evaluate 

l-i (2— i) 
g b) | a= 
OT (Sa   

      

(c) (1 = 24)? +(1 + )?| 

11. Verify the triangle inequality (12) for each of the following 

cases by working out the left- and right-hand sides. 

(a)zy = 243i, - =4d-2 

(b)zp = l+t, 22 = 72 

(c) l= D5 fo > Ag 

(d) zy =34+4i, 22 = 24 
(e) zy = l+i, sg =1-i 
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(a) Open disk lz Zo 

(6) Closed disk 

(c) Open half - plane Rez > 2 
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Figure 1. The regions {= — 

<r,   g- 29) <r, Re z > 2. 
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21.3. Elementary Functions 

21.3.1. Preliminary ideas. Having introduced complex numbers z = a + ty, we 
next introduce functions of a complex variable. Since functions will be defined on 
sets of complex numbers, we need to distinguish various topological features of 

these sets. 
First, we define the distance between any two points 2, = v1 + ty, and zg = 

LQ + ty as 

    (x1 — #2)? + (yi — y2)?. (1) a.
 

—
 

ty
 

fo
 oy 
e
e
 il] 

3
 

me
 | t SS u ui 

Next, we define a neighborhood N(29;1) of a point zo in the z plane as the set of 

points z closer to 29 than 7, that is, all z’s such that 

jz-2zo| <7 (r > 0). (2) 

A set S' is connected if each pair of points in S can be joined by an unbroken line 

consisting of a finite number of straight segments, each contained entirely within 
5. A point P is a boundary point of S if every neighborhood of P (i.e., no matter 
how small) contains points in S' as well as points not in Sanda point P in S is an 
interior point of S if there exists some neighborhood of P lying entirely within S. 
Finally, a connected set S' is a region; S is an open region or domain if it contains 
none of its boundary points, and is a closed region if it contains a// of its boundary 

points. 
To illustrate, |z — 29] < r defines an open region (Fig. la), [2 — zo] <r 

defines a closed region (Fig. [b), and Re z > 2 defines an open region (Fig. Ic). 
Turning to functions, recall from the elementary calculus that a function f of 

areal variable x is a rule that assigns a unique value f(z) to each point x in some 
set on an z-axis, as illustrated in Fig. 2. One also calls f a mapping. Following 
Descartes (1596-1650), a useful graphical display of f (the “graph” of f) can 

be obtained by arranging the 2 and f axes at right angles to each other and plot- 
ting the set of points x, f(x), as illustrated in Fig. 3. Analogously, we define a 
function w of a complex variable z as a rule that assigns a unique value w(z) to 

each point z in some set D in the complex plane.” 
In general, w(z) is complex, so the mapping is as depicted in Fig. 4 from 

the < plane to a w plane. The set D on which w is defined is called the do- 
main of definition’ of w, and the set R of w(z) values is called the range of 
values of w. Strictly speaking, one distinguishes between the function (or map- 
ping) and the values of the function by using the notation w for the former and 
w(z) for the latter. However. we plead guilty of occasionally writing “the function 

  

“Just as the letter f is traditionally, although by no means exclusively, used for functions of a real 

variable, it is traditional to use either w or f for functions of a complex variable. We plan to use both 

extensively, though not exclusively. 

‘The domain of definition of a function is not necessarily an open set and is thus not necessarily 

a domain in the sense defined above. 
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z plane w plane 

   
Figure 4. The mapping w. fo ‘, 

\ 
7 

” ee . . ; x x f(x) f 
w(z)” as a shorthand way of writing “the function w whose values are w(z).” 

Notice carefully that Descartes’s method of graphical display (Fig. 3) is not Figure 2. The mapping f. 

available to us in the complex case because both D and R are two-dimensional so 
that the “graph of w’ would require a plot in four dimensions. Thus, graphs like 
the one shown in Fig. 3 will not be possible for a function of a complex variable. 
Of course, the real and imaginary parts of w(z), say u and v, respectively, must be 

functions of x and y. Thus. we can express 

S
e
 

o
f
 

w(z) =u(z,y) +iv(z,y), (3) 

> 
and although we cannot plot “the graph of w,” we can do three-dimensional plots 
of u and v as functions of x and y, but this form of display is seldom used. 

  

EXAMPLE 1. To illustrate some of these ideas, consider w(z) = 2*, defined on the 
first quadrant of the = plane: 0 < x < 00,0 < y < oo. Then w(z) = (x + iy)? = 
a? — y? + i2ry so that u(a,y) = 2 — y* and u(z,y) = 2zy. Since 0 < & < 00 
andQ < y < x, it follows from the form of u and v that ~oo <u < oo and 0 < 

vy < oo so that the range of w is the entire upper half plane v > 0 as shown in Fig. 5, 

Figure 3. The graph of f. 

  

= plane w plane 

yA vA 
: | ew 

— ~ 

a Opn ara n a 4 
a wz) 

[oo 
2 poe p= 142i 2 R 

Do D | 
Lo ! | cn ~ 

| y -3 u 

Figure 5. Mapping defined in Example |. 

If, for example. z = 1 + 2%. then w(z) = (1 — 4) + 72(1)(2) = —3 + 4i as shown in the 
figure. 

Since we cannot draw a graph of w(z) = z* [as we could for the real function 

w(x) = 2°], and we do not wish to plot the surfaces u(w,y) = a* — y*, v(w,y) = 2xy
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(although this could be done using computer graphics), the question remains: what can be 

done, easily, to provide some form of graphical display of w? We could, of course, select 

a number of points in D and display each, together with its image in A, as we have done 

in Fig. 5 for the single point z = 1 + 2%. However, this seems hardly an attractive idea. 

A more appealing and commonly used device is to display the images of representative 

curves. For instance, the image of the straight line w = 1 (0 < y < 0) is given parametri- 

cally by u = 1— y?, v = 2y or, eliminating the parameter y, by the parabola u = 1 —v?/4 

(0 <u < oo). Similarly, the image of y = 1 (0 < @ < oo) is given parametrically by 

uaa? —1,v = 2x (0 < x < 90) or, equivalently, by the parabola u = (v/2)* — 1. And 
so on. The representative curves «@ = 1,2,3,4, y = 1, 2,3,4, and their images are shown 
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2 
Figure 6. Representative curves and their images, under the mapping w = <”. 

in Fig. 6. This type of display is of importance in Chapter 23, where we study conformal 

mapping. @ 

Next, we introduce the important elementary functions e*, sin z,cos z, sinh z, 

and cosh z. 

21.3.2. Exponential function. Beginning with the exponential function e* [also 
written as exp (z)], it is essential to see, first, that we cannot “figure out” how to 
compute e° = e**"Y: the latter is a new quantity for us and we render it meaningful 
by defining it. As a rule of thumb, it is generally fruitful to define new objects in 

terms of, or as extensions of, old ones. For example. in the present case we could 
recall that for real 2 we have the familiar Taylor series 

y 
3 t wg ; 

er = Peet pb gp to (Jt| < co) (4) 

Thus, it seems reasonable to define 

2 8 
atate (5) 

since (5) reduces to (4) in the event that z is purely real. In fact, this series approach 
was adopted by Karl Weierstrass (1815~—1897) in his development of the complex 

  esil+2+ 
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variable theory. This approach would be awkward here since it would confront 
us with complex infinite series early in our development of the subject. Thus, we 
prefer the more traditional approach, wherein the introduction of series is delayed 
until after we have developed both the differential and integral calculus of functions 

of a complex variable. 
Recalling the real variable formula efit. — ele®? let us tentatively write 

ex ettty a eX eld, (6) 

The latter falls short of defining e* because e’Y is still undefined. At this point we 

do turn to Taylor series, but only to motivate our final definition of e*. For if we 

treat iy as real, then (4) gives 

eV = 1+ (iy) + 

=cosy-+isiny. 

From this result it seems reasonable to define 

  

    
eY =cosy+isiny (7) 
  

and combining (7) with (6) to define 

(8)     e =e“ (cosy+isiny). 

Due to Euler, and known as Euler’s formula, (7) is only a special case of 
(8) (for z = iy), but it is so important in the history of mathematics that we have 
framed it, together with (8). Naturally, the name of the variable in (7) is immaterial. 

Thus, it is equally true that e? — cosé + isin 6, e = cost +isint, and so on. 

Note carefully from (7) that 

  

cos? y + sin? y = 1 (9) 
  
eY | = |cosy +isiny| = 

for all y, and from (8) that 

en 

    

lcosy +isiny| =e" (10) 
  

le*| = le“ (cosy + isiny)| = 

4 
=e, for all =. For example, je") = e? and |ew~**| Finally, observe from 

(8) that e* 0 for all (finite) <’s because e* # 0 for all (finite) x’s, and cos y and 

sin y do not simultaneously vanish for any value of y. Thus, we say that e* “has no 

zeros” in the finite z plane. 
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21.3.3. Trigonometric and hyperbolic functions. Changing y to —y in (7), and 
recalling that the cosine is even and the sine is odd, we obtain the companion for- 

mula 

e Y= cosy —i siny, (11) 

and solving (7) and (11) for cos y, sin y, we obtain 

ed + ew 
  cosy = ————, (12) 
eV — ed 

as 

e* +. € be 

cos 2 =, 
2 2 (14,15) 

el — eT 

sinz = - 
21   

  

The right-hand sides are meaningful by virtue of (8). For example, e’* = el(ttty) — 

e Yt = e-V(cosx+isinz). 
Furthermore, the formulas 

coshw = a (16) 

et — 8 

sinhw = — (17) 

suggest that we define the hyperbolic cosine and hyperbolic sine functions as 

  

e+e" 
coshz = so 

- (18,19) 
. e —e* 

sinhz = 
2     

  

From (14), (15), (18), and (19) follow the cornections 

cos (iz) = cosh z (20a) 

in(iz) =i Suh - z, (20b) 

cosh (i ) = cos, (20c) 

sinh {*s) =dsinz (20d) 

between the trigonometric and hyperbolic functions. 
Out of habit, it is natural to want to know what cos z, sin.z, cosh 2, sinh z “look 

like”? But whereas the real functions cos a, sin vw. cosh az, sinh x admit the familiar



        

21.3. 

  

  

Vigure 7. Graphs of cos z, sin«, cosh a, sinh x, 

graphs shown in Fig. 7, recall that we cannot draw analogous graphs for the com- 
plex functions cos z,sin z,cosh z, and sinh z because we would need four dimen- 
sions to do so. Nevertheless, a limited visual image of these functions is readily 
available by looking only along the real and imaginary axes. Considering sin 2, 
for example, observe that on the real axis, sinz = sinw is the familiar oscilla- 
tory function whose graph is shown in Fig. 7. On the imaginary axis, however, 
sinz = sin (iy) = isinh y is not oscillatory, and it is not even bounded! Inciden- 
tally, it is only by coincidence that sin z happens to be purely real along the real 
axis and purely imaginary along the imaginary axis. For instance, (z + 7) sin z is 
neither purely real nor purely imaginary along either axis. 

Because we have based our definitions of e*, cos z, sin z, cosh z, and sinh z on 

real variable formulas [for example, compare (18) and (19) with (16) and (17)], it 

now turns out that the familiar formulas for real exponential, trigonometric, and 

hyperbolic functions are true for the complex functions as well. Por example, 

sin? = + cos" z= 1, sin(—z) = —sinz, cos(—z)=cosz  (2la) 

hold for any 2, and 

cos (21 + 22) = COS 21 COS zg — sin z1 Sin zy, (21b) 

sin (21 + 22) = sin 21 Cos zo + sin z2 cos z] (21c) 

hold for any 21, 22. 

9 “4 

EXAMPLE 2. As representative, let us prove that sin? z + cos® z = 

wt 2 iz _ prit\? iz 4 poiz\? sin” 2 + cos" 2 = —+ (ce — ew)" + (ce? +e7") 

\ az ‘ i122 22 49 poo az = i (-e? 42-07% +e 42467") 

=, (22) 

as claimed. @ 

Additional identities are listed in the exercises. 
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Finally, besides sin z, cos z, sinh z,cosh z, we define 

    

    

    

    

sin z COS Zz 
tanz = , cobs = ——, (23a) 

COS z sin z 

1 1 
secs = , Ccstz = ——, (23b) 

COS 2 gin 2 

sinh z cosh z 
tanhe = ; cothz = — : (23c) 

cosh z sinh z 

1 1 
sechz = eschz = (23d) 

cosh z’ sinh 2) 

21.3.4. Application of complex numbers to integration and the solution of dif- 
ferential equations. [f f(«) is a complex-valued function of « such as e’”, then 

[se 

where the second equality follows from the linearity of integration. Since [ Ref (2) dx 
and f Imf(c) dx are real, it follows from (24) that 

/ [Ref(x) + iImf(x)] dex 
“r (24) 

= | Ref (x) deri [ Amf(o) de 

  

Re | f(e)de = | Ref (x) dx (25) 

      
and 
  

Im | f(a) da = | Imf (xc) de. (26) 
      

Equations (25) and (26) can be used to simplify the evaluation of certain integrals. 

EXAMPLE 3. To illustrate, let us evaluate the integral 

a 

f= | e “cosax dx. (27) 
J0 

We can evaluate / by applying integration by parts twice. but it is simpler to proceed as 

follows: 

Oxo AOS 

[= | e-“ Ree’ dr = | Re(e™*e'"") dx 
0 0 

= Re [ e FAO dy Thy (25)] 
0 

   



  

21.3, 

The advantage of using (25) is that the integral of e~U~'®)* is simply ~e~ 47 /(1~ia), 

whereas the integral of e~* cos ax is more difficult, requiring two applications of integra- 

tion by parts. 

COMMENT. Be sure to understand the reasoning behind the fifth equality: 

  

  

ev Griaje i i ev Ar taja eo 

(i ia)|,., «2% —(l—ia) —(1— ia) 
lime +00 (e~* et) 1 

—(1 —ia) 1 — ta (29) 

Further, . 
jew" eh | — le~*| elt] oe (e~*)(1) = et 5 0 (30) 

  

as z —> oo. Since the modulus of the complex number e~*e’“* tends to zero, the complex 

number itself must tend to zero. Thus, the first term on the right-hand side of (29) is zero 

and we are left with 1/(1 — ia). 

Another application in which it is useful to introduce complex numbers is the 
determination of particular solutions of linear differential equations with cosinu- 
soidal or sinusoidal forcing functions. For instance, consider the task of finding a 
particular solution x,(t) of the differential equation 

Lia] = F cos wt, (31) 

where L is a linear differential operator with constant coefficients, and F’ and w are 

constants. According to the method of undetermined coefficients, we can obtain 

p(t) in the form C’; cos wt + Co sin wt. However, it is simpler to solve the problem 

Liv] = Fe“? (32) 

for a particular solution v,(t), and to obtain 2, from vp as 

tp(t) = Re vp(t). (33) 

The reason the v problem is simpler is that by the method of undetermined coeffi- 
cients a particular solution vu, (tof (32) can be found in the form 4e™*, which form 

is simpler than the two-term form Cy coswt + C> sin wt needed for equation (31). 
To verify the truth of (33), write (32) as 

L{Rev +ilmv] = Ficoswt + iF sinwt. (34) 

Since L is linear, by assumption, L.Rev + iImv] = LiRev] +iL[Imv]. Putting 
the latter expression into (34) and equating real and imaginary parts on the left- and 

right-hand sides gives 
L[Rev] = F coswt (35a) 

and 
Lilmv) = F sinwt. (35b) 
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Figure 8. RLC circuit. 

Comparing (35a) with (31), the truth of (33) follows. [Of course, if the right-hand 

side of (31) were F’sinwt instead, then in place of (33) we would use «,(t) = 
Im v(t).] 

EXAMPLE 4. If the applied voltage is E(t) = Eo sinw#, then the current i(£) in the 
electrical circuit shown in Fig. 8 is governed by the differential equation 

  

5, 1. d&(t) 
Li! + Ri + i= 

a ra! dt 
= why coswt, (36) 

where L, R,C, Eo,w are constants, and the inductance L is not to be confused with the 

operator L in (31)-(35). According to the complex function method described above, to 

find a particular solution 7,,(t) of (36), consider instead the simpler equation 

. 1 fs 
Lu" + Ro! + aes woe! (37) 

and seek 

up(t) = Ae! (38) 

Putting (38) into (37) gives 

2 . 1 4 jtwt twt 
~Lw* +iRw + — } Ae = whe’. (39) 

5 i lL 
Thus, A = why/ (-2" +7iRu + a). 

w EE Oo C 
ay ns otek 40 

(1 — LCw2) + iRCe ' 0) Up(t) = 

and i,(t) = Re v,(t) gives 

  coswt +isinwt — (1 — LCw?) —iRC 
ip(t) = wByRe ( COS Wt + 7S51N ( Cw?) = 3 “) 

(1 ~ LCw®) FiRCw (1 — LCw) —iRCw 
whol 9 : 

BE pe oes [1 ~~ LCw*) coswt — RCwsinwt|. 4] 
(L— LCw?)? + RACPRw? ( )cosw ‘ | 1) 

COMMENT I. According to the discussion in Section 3.5, we can also express (41) in the 

form BC 

ee Sin (wt + @), (42a) 
ST LOu2 2 + eC 

if we prefer, where the phase angle @ is given by 

LCw — 1 
o = tan7! (“E) . (42b) 

ip(t) 

Rw



  

21.3. 

COMMENT 2. If the inductor and capacitor were removed from the circuit, then the paren- 

theses in (39) would contain only iRw, where Ff is the resistance. With the inductor and 

capacitor present, we can express the terms within those parentheses as 

2° 1 . fy 1 
~Lw* + iRw + a= tw i|R+-tl Le — ne (43) 

so we can think of 
5 . 1 
Z2R+i| lw- (44) 

we 

as a sort of equivalent or generalized resistance. In electrical engineering terminology, Z 

is called the complex impedance of the circuit. 

COMMENT 3. Note that because of the /i’ term in (36) the homogeneous solution of (36) 

will inevitably tend to zero as ¢ > co. Thus, (41) [or (42)] is not only a particular solution 

of (36), it is the steady-state solution. The complex function method is commonly used, 

in engineering, as a convenient method for obtaining the steady-state response. Hl 

Closure. In this section we introduce the notion of a function w of a single com- 
plex variable z in general, and a number of elementary functions in particular. Ad- 
ditional elementary functions are presented in Sections 21.4 and 21.5. It would be 
reasonable to expect that we will subsequently turn to functions of several complex 
variables w(z,,...,2n), a8 one does in studying real variable theory. Yet it is cu- 

rious and interesting that virtually the entire body of complex variable theory deals 
only with functions of a single complex variable. To be sure, functions of several 
complex variables are considered,* but this case is relatively obscure both in theory 

and applications. 

Computer software. Graphs of the sort shown in Fig. 6 can be obtained, using 
Maple, from the conformal command. For instance, to obtain the image curves 

shown in Fig. 6, type 
with(plots): 

and enter, to gain access to the conformal command. Then enter 

conformal(z°2, z= 0.4+4%1,w = ~—20..20 + 26 * I, 

erid = [5,5], numxy = [20, 20); 

The z = 0..4+4 I gives the lower left corner (z = 0) and upper right corner (2 = 

4+ 42) of a rectangular region of interest in the z plane; the w = —20..20 + 26 * I 

indicates the lower left corner (w = —20) and upper right corner (w = 20+ 262) of 

a rectangular region in the w plane within which the image curves are to be plotted; 

grid = [m, 7] indicates that we seek the image of m constant-x lines (the five lines 

x = 0,1,2,3,4 in this case) and n constant-y lines (the five lines y = 0,1, 2,3,4 
  

“See, for example, V. Vladimirov’s Methods of the Theory of Functions of Many Complex Vari- 

ables (Cambridge, MA: MIT Press, 1966), which includes applications to quantum field theory, func- 

tion theory, and the theory of differential equations with constant coefficients. 
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in this case); and numxy = [p,q) indicates the number of points to be used for each 
image curve. If ~20..20 + 26 + I were omitted, the default would be to choose the 
smallest rectangle, in the w plane, that contains the image. If numxy = [20, 20] 
were omitted, the default would be numxy = i 1, 11], which might be too coarse 
to give sufficiently smooth image curves. 

  

EXERCISES 21.3 
  

1. With a labeled sketch, show the point sets defined by the 
following. 

         

       

  

    

(a)jo~ 1p <4 Jlze+ 1 <3 
(c)|2+2—-i, <2 (d}j2+2-i)=2 

(e) |e] <[z~4| z+i1)< fz 
(g) lz — 24] < Je ~ 29 (hy Re(z—-i) > 3 
(i) Jo + 1) = jz} + (Gj) Re(z+i) <2 

(K)2< le+i) <5 ()Im(z—i) >]   

2. Determine the range FR for the given function. Include 
sketches of both the domain D and the range A. and give the 
equations of any curved parts of the boundary of R. 

(avw(s)=2+2+i on O<a<lod<y<l 
(b)w(z)=2ic on O<e<lLo<y<ox 
(c)w(z)=is +3 on O<r<w.0<y<sx 
a) w(z)=s7 on -w<a<0.0<y<%0 
Ju(cpe ct? on l<arc2l<y<3 

if ule) it on O<ar<lLdO<y<l 
(g)w(z)= 3" on O<arcwo.0<y< 

  

More generally, is 

  

3. Show whether or not Je?}| = 
jeo(e}] = wi(fe])? 
4. Show whether or not €* = e* 
w(Z)? 

More generally. is w(z) = 

5. Show that (20a) to (20d) follow from ( 
(19), 

14). (15). (18), and 

6. Show that 

(a) e*!e%2 = ett tea 

(b) (e*)}" e”* for any integer m [More generally, it is true 
that (e°')"? = e***?_ but proof of that fact needs to await our 
introduction of the logarithmic function in Section 21.4. ] 

we
 

i] 

7. Show that 

a)sin(—<2) = —sins 2) = cos 2 
b) cos (24 

( and cos (— 
( ++ £9) = COS 21 COS zg — sin 21 sin zy 
(c) sin (s, 

( 

(21 + 39) = Sin 21 COS zo + sin zy cos zy 
d)cos(z +27) =cosz and sin(z +297) =sine 

(e) cos (av + ty) = cosxcoshy ~ isin a sinh y 

(f) sin (w + iy) = sina cosh y + i cos x sinh y 

8. Show that 

(a) sinh (~z) = —sinhz and cosh(—z) = cosh : 
(b) cosh (“1 + 22) = cosh z, cosh zy + sinh 2 sinh z5 
(c) sinh (2 ) = sinh 2, cosh zy + cosh zy sinh z» 
(d) en mi) = coshz and sinh (z+ 27i) = sinh: 
(e) cosh (x + iy) = coshacos y + isinh asin y 

(f) sinh (x + iy) = sinh x cos y + icoshasiny 

(2) cosh? = 

Lob 29 

+ 2? 

. 2 4 

—sinh* = 1 

9. Evaluate each of the following in standard Cartesian form. 

(a) er" (b) etm 
(c) evra (d) sin (3 + ™ 

(e) cos (—2 + 377) (1) see (1+ i 

(g) ese (1 — 7) (h) tan (-2=) 

(j) sinh (3 + wi) 

(1) tanh (2 + 4x?) 
  
   10. Consider this reasoning: le 

cos? z+sin® 2 = 1 for all - 

je'*| = e? £1, Explain the flaws 

‘| = |cosz+ésinz| = 

    . yet > = —22. say, g 
) in that reasoning. 

  

11. Prove that 

(a) e* = 1 ifand only if s = 2nvi. where nis any integer, 
(b) e*! = e*? if and only ifs, = 29 + 2nri, where n is any 
integer, 

12. Show that the range / of the function e* on the rectan- 
gular domaina < 2 < b,0 < y < w/2 is as shown in 
the accompanying figure. HINT: At first glance it is tempt- 
ing to take a number of points on the boundary of D [such as 
a. (a +6) /2,b.b + (e/A)i, b + (4 /2)i, etc.| and find their im- 
ages in the f plane. That procedure can only give points on 
the boundary of J. not the boundary curve. Thus one should 
find the image of the entire line segment C), then C2, Cs, 
and C’,.
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n
i
a
 

  

      

  

13. Show that the range R of the function sin z on the semi- 

infinite strip —7/2 <4 < #/2,0 < y < oo is shown in the 

accompanying figure. (See the hint in Exercise 11.) 

vA VA 

  

u ue 

9 

14. Use the Maple conformal command, or similar software, 

to obtain the image of the given rectangle under the mapping 

w == 2°, Specifically, map the straight line segments compris- 
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(bh2<a<4,0<y<4 

(MDl<ae<4,-lL<y<0 

16. Evaluate the given integral using the complex method that 

is illustrated in Example 3. 

(a) fy eo * sinwa de 

(b) fo” e~*' coswtdt (Res > 0) 

(c) fo e~* sinwtdt (Res > 0) 

17. Show that the following statements are fucorrect, in gen- 

eral, 

+b bo Lon )p 
(a) [ cosmaxcosna dx = Re GINA fy 

rb, . abo: yer 
(b) f) sinma sinna dx = Im J) COR HIE ay 

18. Find a particular solution «,(¢) of the given differential 

equation, using the complex function method that is illustrated 

in Example 4. 

(a)ma" + cr + kha = Py sinwt 

(b) a’ + 22 = 10sin 3t 

(c) v’ + 3a = 20cos 5t 

(d) a +2’ = 100sin 5¢ 

(e) a” +20’ +a = 10sint 

  

my nf ob Ru oe ane Pf 

ing the border of the rectangle, as well as ten equally spaced (x hn L r at = 20 cos 2t 

constant- and constant-y line segments within its interior. La- {g) On - ou 7 ou ~ 6Osin 3 jr : 
bel the image curves as v@ = etc. or y = etc.. as we have in (hy ee = be = ee = 25. cos bt 

Pig. 6. 19. The same as Exercise 12 of Section 18.4. NOTE: This 

(jO<ae<4,0<y<4 (b)-d<a2<4,0<y<4 exercise illustrates the use of the complex function method in 

(j2<r<d,0<y<5 (dP2<er<4,2<y<4 solving partial differential equations with cosinusoidal or si- 

. . . 4 nusoidal forcing functions. 
15. Same as Exercise 14. but for the mapping w = 2”. forcing function 

21.4 Polar Form, Additional Elementary Functions, va 

and Multi-valuedness 

Having introduced the complex exponential function in the preceding section, we 
can now present the polar representation of complex numbers. This representation x x 

  

See 

will be especially useful when, later in this section, we discuss powers of 2 and the 

logarithmic function. 

21.4.1. Polar form. If r.@ are the usual polar coordinates with r > 

Figure 1. Polar coordinates. 

QO and 

6 measured in radians counterclockwise from the positive x axis, then (Fig. 1)
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x == rcosé and y = rsing, so 

z=a+iy=rcosé +irsin@ = r(cosé + ising). (1) 

Recalling Euler’s formula, ef 

as 

= cos@+isin 0, we see that (1) can be re-expressed 

  

    
z= ree (2) 
  

which is the polar form of the complex number z. Since 

aj= Veer, 
we see that 7 is the modulus of z: 

r=mod(z) = V2? + y?. (3) 

The angle 0, called the argument of z and denoted as arg (z), can be determined 

from the formula 
6 = arg(z) = tan7 = (4) 

for z # 0; for z = 0 the angle @ is undefined, as is evident from Fig. 1. (Subse- 
quently, we will omit the parentheses around z and will write mod z and arg z.) 

Observe from Fig. | that given any point z (# 0) the angle @ can be determined 
only to within an arbitrary integer multiple of 27. As a useful reference, the value 

of @ satisfying of ~7 < @ < 7 will be called the principal argument of z and will 

be written as Arg z. Denoting the value of Arg z as #9, we have 

6=argz = Argz + 2ha = Oy + 2kr (5) 

fork = 0,+41,+2,.... This infinite set of @ values is indeed obtained using (4) 

because tan™! () is multi-valued. However, observe carefully that (4) gives addi- 
tional values as well, which are spurious and must be discarded. Let us illustrate 

with an example. 

EXAMPLE 1. Let z = 1+i,sothate = 1 andy = 1. Then (3) givesr = 2, and (4) 

gives @ = tan™! (1/1) = tan7! (1) which, correctly, gives 7/4 plus any integer multiple 
of 27, However, (4) also gives, incorrectly, 57/4 plus any integer multiple of 27. Where 

do these incorrect values come from? They arise because the tan~! (y/a) in (4) cannot 

distinguish between the given point z = 1+i (a = y = +1) and the pointz = -l1-z 

(2 = y = —1), since both points give @ = tan7! (1). @ 

Observe that whereas the Cartesian form x + iy is especially convenient for 
the addition and subtraction of complex numbers, the polar form is especially con- 

venient for their multiplication and division. Specifically, 

N 129 = (rye) (roe) = ryrge*), (6)
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so that the modulus of the product is the product of the moduli, and the argument of 
the product is the sum of the arguments. Further, for nonzero complex numbers 2, 
and z9, 

~ yp, pty : zy rie TL (6; Oo — 11 — teildi—2) (7) 
zg rge92 rg 

so the modulus of the quotient is the quotient of the moduli, and the argument of 

the quotient is the difference of the arguments. 

21.4.2. Integral powers of z and de Moivre’s formula. [ntroducing the function 
2", where n is any integer (positive, negative, or zero), we find that tts calculation 
is particularly convenient using the polar form of z since 

le (rel®)y" — ptt ind (8) 

Equation (8) leaves the answer in polar form; if we want it re-expressed in the 
Cartesian form a + ib we simply use the Euler formula ee = cosnd + isin nd, 

so that 
  

2" = r"(cosnd +isinné), | 
” 

  

  

which result is well known as de Moivre’s formula. There is a nagging question: 
Since @ is not uniquely determined, at any given point z in the complex plane, we 
wonder if the nonuniqueness of @ carries over to a nonuniqueness in the value of 
2", Let us see. Putting @ = 69 + 2k7 into (8) [or (9)] gives 

in(Og-+2k7 ino ,i2nkr mo pt ein(Oo+ Am) pi? ein pt nk (10) 

Since 2nk is necessarily an even integer, exp (i2nki) = cos (2nk7)+isin (Qnk7) = 
1 +70 = 1 for all integers &. Thus, the nonuniqueness in @ does not carry over to 
the function 2"; 2” has the unique value r” exp (in@). 

EXAMPLE 2. Compute (1 +7)°. First, re-express z = 1 +i in polar form: r = \/2 and 
A = w/4, sO 

« . 3 peyote , 

(+i) = (VBeir/") = 28/2 i014 (1) 
gives the result in polar form. As displayed in Fig. 2, cubing 2 cubes its modulus and triples 

its argument. If desired. we can now return to Cartesian form and express 

an Bn. On 53/2 1 oo ., 
(1+ iy? = 3/? (cos ——~ + 7S1n *) se Dele (- + <5) = 2421, 

a 4 V2 V2 

Of course, the latter result could also have been obtained by the Cartesian calculation 

(+i) = (1+ )0 4A +i) = (1 +1)(2t) = 2% — 2. but it is to be appreciated 
that the Cartesian calculation of =" becomes quite unwieldy if n is large, whereas the polar 

calculation is no more difficult for large m than for small n. @ 

  

A small technical point: in what should be the simplest case, z = 0. 2” is 
not well defined through (8) because @ is not defined at the origin. However, the 

  

  

wl4 

Figure 2. 1+ iand (1+ i)*.
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Figure 3. The three values of 

exp (t2k7/3). 

(a) 

    

   
Figure 4. The three cube roots of 

L+2. 

Cartesian calculation shows that 2” is zero at z = 0, provided that the integer n is 

positive. 

21.4.3. Fractional powers. Next, we consider the function 2" called the nth 

root of z. Proceeding as above, we write 

zl/n _ (rei(eo+2h™ ) Un — pil ei(90/n) ei(2kr/n) (12) 

where k = 0,-£1,+2,.... Now, the exp (72nk7) factor in (10) takes on the unique 

value 1 for any choice of hk. Hence, as noted above, 2” takes on a unique value, 

namely, r!/”" exp (inOo); that is, z” is single-valued. However, the exp (i2k7/n) 
factor in (12) takes on n distinct values for various choices of k so that factor, and 

hence z!/” is n-valued rather than single-valued! 

EXAMPLE 3. To illustrate, consider the calculation of (1 + i)'/3. Then r = V2 and 

Oy = 1/4 so (12) gives 
(1 + ayh/3 = QO cin gik(2n/3), (13) 

For & = 0,1, 2, the last factor, which we will denote as /;,, takes on the values 

Fy = etk(2r/3) — 1627/3 eitn/3 (14) 

which correspond to the points Fp, F',, Fy on the unit circle shown in Fig. 3. As k increases 

beyond 2, the values of F), simply repeat the values Fo, Fy, F2 over and over; for instance, 

Fs and F, fall upon Fo and F, respectively, and F_, falls upon £». 

Putting (14) into (13) gives the three cube roots of 1 +2 as 

(taj _ 1/6 qin /12_ Q 1/6 i9/12, gh/6 pil /12 (15) 

and these are depicted in Fig. 4a and denoted there as f1, fo, f3. Of course, we could 

re-express these in Cartesian form using Euler’s formula if we wish. 
It is worth taking a moment to interpret this result geometrically. Consider the root f1, 

for instance. Squaring f, squares its modulus (from 2!/® to 27/8) and doubles its argument 

(from 69/3 = 7/12 to 27/12), and cubing it cubes its modulus (from 21/6 tq 23/8 = V/2) 

and triples its argument (from 7/12 to 37/12 = 7/4) so that [? ends up at 1 + i as shown 

in Fig. 4b. Similar diagrams can be drawn for fz and fy. @ 

Example 3 reveals the following general pattern. The n nth roots of z (i.e., the 

n distinct values of !/”) fall on a circle of radius | 2| 1/™ centered at the origin, and 

are equally spaced on that circle. Thus, if we can find any one root by inspection 

then the others fall into place on that circle. For instance, to find the three cube 

roots of —8 observe by inspection that one of them is —2. Then Fig. 5 shows 

that the other roots, equally spaced on the circle of radius 2, are 2 exp (im/3) and 

2exp (—i7/3). You might wonder how our discussion of z'/® applies to (—8)!/9 

since —8 is real. No, we must treat it as a point in the complex plane — namely, the 

point 8 exp [i(m + 2k7)| fork = 0,+1,42,....
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[f we cannot find one root by inspection, then we compute r and Ay and use (12) 

with A: == 0, say, to obtain the root pl/n et(Go/n) With that root located, the other 

mn — 1 roots are equally spaced on the circle of radius r'/™ centered at the origin. 

For instance, to compute the two square roots of 1 + 7, observe that r = V3 and 

Oy = 7/4 so one root is 1 +71 = (/2)'/ei7/8, or (21/4 cos z) +4 (2'/4 sin qr). 

The other, being diametrically opposite this one (Fig. 6), is simply the negative of 

it. Similarly, J4 = +2 (of course) and fd = £2. 

Now that we know how to compute 2” and zi/n, zm/n (where the fraction 

m/n is reduced to simplest form, such as 3/2 rather than 6/4) offers nothing new 

since 2/!/" = (2™)} /* is just a combination of the two and is n-valued. 

EXAMPLE 4, — Compute (1 — 2é)7/8. For z = 1 — 2i we have r = V5 and M% = 

—1,107 radians. Since we know that (1 — 2i)"/° is triple-valued, it suffices to work with 

the three arguments 0) = ~1.107, 09 + 27 = 5.176, and 09 + 4m = 11.459. Thus, 

(1 — 2i)7/3 = (viento) (veernrey™ (vBetasen)™™ 

— 6.538e7 2983" 6.53812 077 6.538078 738), 

which are equally spaced on the circle of radius 6.538. Naturally, these could be expressed 

in Cartesian form if we wish. For instance, the first is ~5.544 ~ 3.4657. @ 

21.4.4. The logarithm of z. Next, we introduce the logarithmic function, log z. 

To define this function, express z in polar form and write 

log z = log (re’?) =Inr + log (c”*) 

=Inr+i@lne=Inr+ié 

=Inr+i(69 + 27k), (16) 

fork = 0.4£1,+2,.... Here, and in what follows, we distinguish the notations 

In and log: we use In to denote the ordinary logarithmic function of real variable 

theory (e.g., In2 = 0.693 and Ine = 1), and we use log to denote the logarithmic 

function of acomplex variable, hereby being defined. Be sure to understand that we 

cannot justify the second and third equalities in (16) because they simply mimic the 

real variable theory properties In (cy) = Ina + Iny and In (w’) = ylna. Rather, 

we write (16) heuristically, and then use the result to define 
  

  

jog z=lnr +i(69 + 27k) | (17) 

for k = 0,+1,+2,.... Observe that just as 2" is single-valued and zV/" is n- 

valued, log z is infinite-valued because each choice of / produces a distinct value 

of log z. 

EXAMPLE 5. Compute log (1 +7). With r = V2 and 09 = 7/4, (17) gives 

log (1 +72) = In V2+i (4 + 2k) 

  

Figure 5. The cube roots of —8. 

i 
i 

aA Kgl pial 

  

Figure 6. The square roots of 1 +2.



1130 Chapter 21. Functions of a Complex Variable 

fork =0,+1,—-1,andsoon. @ 

21.4.5. General powers of z. Though we have studied 2” and 2'/" (and 2/" 

as well, where m and n are integers and m/n is reduced to simplest form), what 

about 2°, where c is irrational or complex? Since the polar form is so convenient 

for exponentiation, let us try evaluating 2° as 

ox (rel®)¢ — pee Gotemkye (18) 

Let us not yet worry about the case where c is complex yet; consider c to be 

real and irrational. Then (18) does serve to give the values of 2°, and we can see 

that 2° is, like log z, infinite-valued. To see that it is infinite-valued note that the 

factor F, = e'7*¢ starts out as Fy = 1 and then takes on different values as k 

increases. For 2° to be finite-valued we would need F;, to return to the value 1 for 

some integer k = A’. That will happen if and only if 27 A‘c is an integer multiple of 

Qn, say 27 AJ. But then 27 fc = 27 Af gives c = AL/ IK, whichis rational, whereas 

c was to be irrational. Thus, =° cannot be finite-valued: it must be infinite-valued. 

EXAMPLE 6. Compute (1 + i)V8. With r = V2 and 0) = 7/4, (18) gives the infinite 

set of distinct values . 
(1+ iv3 = (V2) V5 ei tek 3 

fork = O,+£1,42..... For k = 5. for instance, we obtain 1.823¢!4*¥3/" or, in Cartesian 

form, 1.303 — 1.275%. @ 

Finally, consider the case where c is complex: c = a+ ib, where b # 0. In that 
case (18) does not help because we do not know how to evaluate the r° = pared 
factor. Thus, in place of (18) let us mimic the real variable formula x* = ene! 

et! and define 
  

  

E = loge et iin r+i(Og+2rk)] | (19) 

fork = O,41,:2,.... Clearly, <° is infinite-valued in this case as well since the 

factor Fy, = e!™* occurs in (19), just as in (18). 

EXAMPLE 7. For instance. evaluate (i.e., find all possible values of) 1’. Here, r = 1 

and @) = 0, so (19) gives 
Ji ex pllOHi2mk)  Q-2mk 

€ 

fork = 0,+1,+2,.... In case you thought (and not unreasonably) that the modulus of 1 

is unity, note that for & = —20, for instance, 1¢ = e!* which is enormous! &
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21.4.6. Obtaining single-valued functions by branch cuts. We have seen that 
functions may be single-valued (e.g., 2”), multiple-valued (e.g., z/” is n-valued), 
or even infinite-valued (e.g., log z). In some circumstances multi-valuedness is 
perfectly acceptable. For example, in integrating [ da /(a' +1) by partial fractions 

we need to know all possible solutions of the equation x* + 1 = 0, that is, all four 
values of (—1)!/4, in order to factor the « + 1. In other cases multi-valuedness 

is unacceptable. For example, in the Pythagorean formula c = Va? + b* we must 
adopt the positive square root and discard the negative square root if ¢ is to be the 
length of the hypotenuse. 

In fact, when one says that f(z) is a function it is understood that for a given 

input z there is a unique output f(z). Thus, when we call z'/” (for instance) a 
“multi-valued function” we abuse the understanding that functions are to be single- 
valued. Yet, that terminology is standard so we will not deviate from it here. 

In this subsection we introduce a concept of “branch cuts” by means of which 
we can take multi-valued functions and render them single-valued. Consider log z, 

for instance. We can make that function single-valued by specifying the integer k 
in (17). If, for instance, we choose & = 0, then that decision amounts to restricting 

@ (Le., arg z) so that ~2 < @ < 7. Graphically, we can imagine a “slit” or “cut” in 
the z plane, along the negative real axis, from @ = —oo all the way in to the origin, 
as depicted in Fig. 7a. The slit is of zero thickness; in the figure we have separated 
the upper and lower edges only for clarity. It is useful to regard the slit as a physical 
barrier that cannot be crossed. Within the cut plane log z is now single-valued and 
hence a legitimate function. 

The cut shown in Fig. 7a is by no means the only one possible. For instance, 
another suitable cut is shown in Fig. 7b, and restricts 6 to the interval 7 < @ < 37. 
The values of the log = functions defined by Fig. 7a and b are different (at any given 

= point), and we can think of these two different log z functions as members, or 
branches, of a whole family of such log z functions. To illustrate. observe that if we 

denote them as log'®) = and log”) z, respectively, and use z = 7 as representative, 

then log’ i = mi/2, whereas log’) i = 5ai/2. 

Suppose we are asked to compute log) zat z = —2. We need to respond 
as follows. “Do you mean --2 on the top of the cut (point A in Fig. 7b) or on the 

bottom of the-cut (point B)?” For the values at A and B are different: log”) (24) = 

In 2+ 307i, whereas log!” (2g) = In2+77. Understand that even though the points 
z4 and zg look like “neighbors,” they are actually quite far apart since to travel 
from z.4 to zg we need to go around the origin, since the cut is a barrier that cannot 

be crossed. 

The arrangements shown in Fig. 7 are examples of branch cuts. The role of 
a branch cut is to render the function single-valued, To render log z = Inr + i@ 

single-valued we need to make @ single-valued, and we do that by introducing a 
cut from infinity to the origin (as a barrier against complete encirclements of the 
origin, which are the source of the multi-valuedness) and then defining @ at some 
point in the cut plane. For instance, in Fig. 7a we defined @ at an arbitrary point 

on the positive x axis. The branch of log z defined by the cut shown in Fig. 7a is 

known as the principal value of log z. 

(a) 

6=0 / 
~spmepre )e 

(b) 

  
Figure 7. Two possible branch 

cuts for log z.
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Figure 8. A branch cut 

for log (z ~ @) 

ti     

  

            
    

Figure 9. A more exotic branch 

cut. 

How about the function log (2 — a), where a is some point in the plane? The 
idea is to introduce a new variable, say ¢, according to ¢ = 2 — a, and to express 
¢ in terms of polar coordinates p, @ at that location as C = pe®®. (¢ is the “vector” 
from a to z.) Then 

log (z — a) = log¢ = log (pe'®) =Inp+i¢, (20) 

and if we wish to render this function single-valued then we need to introduce a 
branch cut such as the one shown in Fig. 8, from infinity to ¢ = 0 (not z = 0), so 
as to prevent encirclements of ¢ = 0 and the multi-valuedness that would result. 

We say that log (z — a) has a branch point at z = a because it is encirclement 
of that point that causes the multi-valuedness, and log has a branch point at z = 

Similarly for other multi-valued functions, For instance, the branch cuts shown 
in Fig. 7 would likewise be suitable for the functions \/z and z', and the one shown 
in Fig. 8 would be suitable for /z — a and (z — a)!. 

21.4.7. More about branch cuts. (Optional) To deepen our understanding of 
branch cuts, consider two more examples. 

EXAMPLE 8. It would be easy to conclude from Fig. 7 and 8, that a branch cut needs 
to limit @ to a 27 interval. No. To illustrate, consider the more exotic branch cut shown in 

Fig. 9, forthe function f(z) = 22/9. Itextends straight down to 8 —ico, and @ is defined as 

zero at the point shown. Let us evaluate f(<) at z = 2 on the bottom of the cut. Beginning 

at the point where @ is zero, make a legitimate trip (i.e., one that does not cross the cut) to 

the point in question, as sketched in the figure. Keeping track of @ on that trip. we see that 

@ = 47 at the terminal point. Further, r = 2 there so 

f(z) — 22/3 _ (Qe yP?/3 — 92/3 i8a/3- (21) 

Making a similar trip to z = 2 on the rop of the cut, from the initial point where @ = 0, 

gives the (different) value 

f(s) — 22/3 _ (20? 2/8 _ 92/3 itn /3 (22) 

there. (Do you see that 9 = 27 there?) 

The cut shown is perfectly legitimate in that it renders 27/9 single-valued, yet it does 

not restrict @ to a 27 interval. Rather, —7/2 <6 < 4m, the value ~7/2 being approached 

as y ~> —oo al any fixed x greater than 8. — 

EXAMPLE 9. Consider one last example. the function 

fe) = V2 -4. (23) 

If we write f as \/(2 — 2)(z + 2) we see that it contains two functions, 2 — 2 and 

Vz + 2, each requiring its own branch cut. That is, f(<) has two branch points, one at 2 

and one at —2. If we wish to render f single-valued, one possible branch cut is as shown in 

Fig, 10a. To keep the two cuts out of each ather’s way we have brought one in from the right
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and one from the left. Each branch point serves as the origin of a polar coordinate system. 

To illustrate the use of this cut, let us compute f at 2 = —4 on the bottom of the cut (point 

c). Beginning at a, where @, and dy are defined to be 0, let us make the trip abe shown, 

(a) (b) y    
    

  

Figure 10. Branch cuts for fz? — 4. 

keeping track of d, and @y. Proceeding from a to 6, @) increases to 7, but po increases and 

then decreases again, and equals 0 at b. Over the be part of the trip, @; increases a bit. but 

then decreases again so that ¢, = mw atc. Meanwhile, @2 changes from 0 at 6 to —7 atc. 

Thus, designating 2 at ¢ as Z¢, 

. ib ida yj /2 i(dy+¢9)/2 / f(z) = [(pre'®)(pre'®*)] = \/pipz eer re) (24) 

gives 

Flee) = V(6)(2) eh P? = Vide = V12. (25) 

On the top of the cut, at d. however, the dashed path ad gives 

flza) = /(8)(2) FM? = v12e" = -V12. (26) 

As noted earlier. there are an infinite number of branch cuts possible for f. For in- 

stance. we could use the same cuts as in Fig. 10a, but define @, = 4a and @y = ~—267 at 

a. An interesting branch cut is the one shown in Pig. 10b, a finire cut extending from —2 to 

2. This cut does not render @, and @2 single-valued, yet it dees render f single-valued, and 

is therefore an acceptable choice! To illustrate, let us compute f(—2i). If we get to ~22, 

from the initial point (at which $1 and @, are defined to be 0), by the counterclockwise 

path shown. then at —22 we have @, = 5r/dand @. = 7/4, so (24) gives 

  

f(-2i) = PI? /8i. (27) 

Alternatively, if we take the clockwise path to —22, shown in the figure, then @, = —37/4 5 g Dy 

and @) = —1/4 there, so 

f(-2i) = Poa? V8 i 

  

once again. The upshot, general proof of which is left for the exercises, is that the finite cut 

does indeed render f single-valued and is therefore an acceptable branch cut, even though 

it does not render @, and @2 single-valued. The underlying idea is that although the finite 

cut permits encirclements of the branch points, it forces us to encircle both of them. With 

each encirclement of 2. fz ~ 2 undergoes a sign change. But when we encircle 2 we also 

encircle —2. and the Vz + 2 gives another sign change, and the sign changes cancel.
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Finally, there is a question as to which branch cut to choose. In the absence of any 

context, one branch cut is as good as another — it’s your choice. However, in the context of 

a physical application we will see that the branch cut choice is dictated by that context. In 

fact, in Chapter 23 the function (23) arises in the context of a fluid mechanics application 

(flow over a flat plate) and we will see that the appropriate branch cut, in that case, is the 

one shown in Fig. 10b. See Exercise 18. @ 

Closure. The common thread in this section is the polar form of complex numbers, 

and its use, especially insofar as the calculation of powers of 2 and log z. Indeed, 

try to evaluate /1 +7, say, withour first reexpressing | + 7 in polar form. 

We found that z* is single-valued only if the exponent é is an integer. If k is 

a rational number m/n (reduced to simplest form) it is n-valued. Hf A: is irrational, 

then z* is infinite-valued, as makes sense inasmuch as an irrational number can 

be expressed as the limit of a sequence of rational numbers. For instance, 7 = 

3.14159. .. is the limit of the sequence 3, 31/10, 314/100 = 157/50,... and 2° i 

single-valued., 291/19 is ten-valued, = 197/50 is 50-valued, and so on. Finally, hie i 

infinite-valued also if k is complex, with Imk + 0. 

We note that sometimes we are interested i in finding all the values of a multi- 

valued function, and that at other times it is necessary to render the function single- 

valued, as we shall see in subsequent chapters. To do so, we introduce a branch cut 

and define the polar angle at any specific point in the cut plane. Typically, the cut 

extends from the branch point to infinity, and limits the polar angle to a 27 interval. 

In the optional Section 21.4.7, we see that a cut of finite length can sometimes be 

used, and that the polar angle need not be limited to a 27 interval, nor even be 

made single-valued by the cut. What must always be true. however, is that the cut 

emanates from the branch point and renders the function single-valued in the cut 

plane. 

  

EXERCISES 21.4 
  

1. Determine r and the principal argument @ (in radians and (d)2—1 (e)3—2 (fF) 3 + 4i 

in degrees) for each of the following values of 2. (g) 5 — 122 (h) 12 + 52 Gi) 2 — 20 

(c) —6 5. Find all values of <!/? and =!/° for each given z. Express 

(D2 — 12a those values in polar form, and show their location in the < 

Q)0.2+1 plane, as we have done in Fig. 5. 

2. Express Re (re“’) and Im (re) in terms of r and 6. (a)i (b) 1 (c) 2 

3. Consider formulas (6) and (7) for the product and quotient () ~/ (e) 3 ~ 22 (1) ale 

zy29 and 21/22. Show that these quantities are uniquely de- (2) 3 + 4 (hy le (i) ~32 
termined even though arg 2,, and arg 29 are, according to (5), 

multi-valued. 
. 9 . . . . 

4. Obtain 24 and 22°, in both polar and Cartesian form, for 

each given <. 

(a)-1l+i (b) 1 +2 (c) 1 + 27 

6. Obtain, in Cartesian form. all values of logs for each 

given 2. 

(a) -2 (b) 1 (c)t 
(d) —52 (e) 2 — (fF) 3 ~ da 

(g) 13 — 52 (hy 1 + 6i (i) -3 — 21
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7. Recall that, by definition, (wo complex numbers 2, = 
xy + ty, and 22 = wg + tye are equal ifa, = x and yy, = yo. 

Show that it follows from this definition that rye"! = rae”? 
(where r, A Oand re € O) ify = 72 and 6 = O2+ arbitrary 

integer multiple of 27. 

8. Obtain, in polar form, all values of 2°/3, 29/2, and 2” for 
y 

each given 2, 

(a) 27 (b) 3 (c) —4 

(d) ~6% (e)l—ia (fF) 2+ 2 

(g) 1-4: (h) 2 + 2 (1) —2 — 27 

9. (a)—(i) Obtain, in Cartesian form, all values of 2’ and z'~! 

for each z given in Exercise 8. 

10. Let c be any real or complex number other than 0. Then 
for each integer value of &, 

2 e218 C erlin le|#i( Arg c+2hk7)] € (10.1) 

defines a distinct single-valued function of z. Suppose that 

we set & = 0, because then if c is real and equal to e, c? 
reduces to the familiar exponential function e*. Thus let us 

define 

Cs et itn lel+iArg ce) 
(10.2) 

We call it the generalized exponential function because it 

allows for any value of ¢ (4 0) and reduces to the exponential 

function e* for the case where c = e. We now state the prob- 

lem. With c* defined by (10.2), evaluate c* fore = 1+ V3i 
and z= 2 — 51. 

11. Obtain, in Cartesian form, the principal values of log z and 

Vz for each given z. 

(a) —3i (b) 2 (c) —4 
(d)2—i (e) 1+ V3i (f)-1-4 
(g) —5i (h) 4 — 2i (i) —2 + 4é 

12. Now that we have seen how to render log z single-valued, 

we can complete our discussion of the logarithmic function 

by stating that the familiar properties of the real logarithmic 
function do carry over to the complex case. Por example, 

log (2,22) = log 2, + log 22, (12.1) 

log (=) = log 2, — log 22, (12.2) 

and 

(¢ real or complex), (12.3) 

provided that all of the log functions in the equation are de- 

fined by the same branch cut. For example, (12.3) is correct if 

we use the principal value definition of both log functions, pro- 

vided that arg z = @ satisfies ~w < 0 < mw and arg(z*) = cO 
satisfies ~7 < cO <7. 

(a) Derive (12.1). (b) Derive (12.2). (c) Derive (12.3). 

13. Unverse of sine function) We define the inverse of the sine 

function 

w(z) =sin7! z (13.1) 

such that z = sin w. 

(a} Writing the latter as 

ge (e” _ e') (2%, 

show that e” = iz + (1 ~ 2*)*/?, and hence that 

sin! z = —ilog E +V1— 2. (13.2) 

(b) Observe that sin7) = is multi-valued because of the 

(1 — 2?)'/? and also because of the log{]. Specifically, for 
each value of z (4 +1), the (1 — z?)!/* gives two values. 
Then, for each of these values the log gives an infinite set of 

values. To illustrate this point, show that 

Ce 1 wT on. 
sin! ~)=—-+2kr or — + 2k 

2 6 6 

forA = O0,+1,42,.... 

(c) Determine all possible values of sin7? 2. 

(d) Determine all possible values of sin7! (2i). 

14. Unverses of other trigonometric functions) Proceeding as 

in Exercise 13, derive these formulas. 

  

  

(a) cos7! = = -ilog [z+ Vz? =~ 1 

(b) tan~!z = — = log : — - 
2 Las 

| ze 
(c)cot7!z = —4 log 

2 zZ—-1 

15. Unverses of hyperbolic functions) Proceeding as in Exer- 
cise 13, derive these formulas. 

(a) sinh~! = = log [2 + Vfl + 24 

gem | (b) cosh™! s = log [= +
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1 l+<z 
sofa ol ee . (c) tanh” z 5 log 1 

1 zl 
(d) coth” ! z= 5 log r i 

16. In Section 22.6 we will find that the plane irrotational 

incompressible fow of a downward free stream Vo over a fat 

plate that extends from # = —2a tow = +2a (see the figure) 

is given by 

IVoz 

Jze = 4a?’ 

tb 
ya 

DIN 
WA 

U- Ws (16.1) 

VY 

where u(z,y) and u(x,y) are the « and y velocity compo- 

nents, respectively.. The context dictates using a branch cut, 

for fzt ~ da*, extending from —2a to +2a (as in Example 

9) as shown below. One reason for choosing that cut is that 

the mathematical barrier presented by the cut corresponds to 

the physical barrier presented by the plate. Another is that the 

mathematical discontinuities that arise across the cut will cor- 

respond to physically anticipated flow discontinuities across 

the plate. In fact, if we use a cut like the one in Fig. 10a, then 

those discontinuities would occur within the flow field, which 

would be unacceptable. The problem that we pose is for you 

to use (16.1) and the cut shown above to show that the velocity 

components on the top and bottom of the plate are 

  

  

  

u(x, 0+) = = 0, 

u(x,0—-) = = Q, 

y 

pr 

Oo PI js * = $2 =0 
{> | 

wee x 

—2a 2a   
  

21.5 The Differential Calculus and Analyticity 

Continuing to parallel the development of real variable theory, having introduced 
the complex number system and then a number of elementary functions defined 
on that number system. we next define the /imit of a function, continuity, and the 
derivative. In fact, differentiability (more precisely, the closely related concept of 
analyticity) lies at the heart of complex variable theory and will be crucial through- 
out our subsequent study of conformal mapping, the complex integral calculus, and 

series expansions. 
Let zg be an interior point in the domain of definition of f(z). We say that the 

limit of f(2), as 2 approaches zo, is L, 

lim f(z) =L 
zt zQ 

(1) 

(or, equivalently, we write f(z) + Las z —- 29] ifto each € > O (Le., no matter 

how small) there corresponds a 6 > QO such that 

fle) -L] <e (2)
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for all z’s satisfying 0 < \z — zo} < 6. That is (Fig. 1), we can keep the func- 

tion values f(z) arbitrarily close to £ (namely, within the e-disk) by keeping z 
sufficiently close to zg (namely, within 0 < |z — z9| < 6). Observe carefully that 

because of the first inequality in 0 < < 6, the value of f at z = 29 Is not 

  

So &Q 

  

  

y z plane vA f plane     
vw fC) 

  

Figure 1. Limit of f(z) as z > 20. 

at all germane. Specifically, it need not be true that f(z9) = £ for (1) to hold: (1) 

merely states that f(2) approaches L as z approaches zo. However, if in addition to 
having lim._,., f(z) = £ we also have f(zo) = £, then we say that the function 
f(z) is continuous at zo. 

EXAMPLE 1. Show that 

lim(2? + iz) = -2. (3) 
Zt 

To do so. we need to show that to each e > 0 (no matter how small) there corresponds a 

5 > 0 such that |(2* + iz) — (-2)) < ¢ forall 2’s in 0 < Jz —i| < 6. No doubt, the 
smaller we choose e, the smaller 6 will need to be. Thus, 6 = 6(e), and our objective is to 

put forward a suitable 6(€) in order to verify (3). Since 

      

( ~ i)(2+ 21)) = [2 — ij 2 + 22 

zi |(2—- i) +3i| <|z— i] (lz -7 +3), (4) 

  

  

where the last step follows from the triangle inequality, 

if 
  
se hict 2| < € will be satisfied 

ls-i/(lze-i +3) <e. (5) 

Now, solving x(a + 3) = € we obtain the positive solution « = (-3 + f/9 + de) /2 so 

evidently (5) will be satisfied if 

z-il< 
—-3+ /S9 + de 6 
J (6)   

Oo 

In summary, we have shown that given any e > 0 we will have le +12) — (—2)] < € for 

allz’s in 0 < |[s — i} < d(e) if we choose 

- 34 /9F4e 
ie) = (7)



1138 Chapter 21. Functions of a Complex Variable 

  

  

xy =! 2x 

Figure 2. Approach to zo. 

(a) 

(b) 

Figure 3. Approach to zo. 

or smaller. Hence, the truth of (3) is established. In fact, it is also true that the value of 

2? tzatz = iis ~2 so the function 27 + iz is continuous at z = 7. Similarly, one can 

show that it is continuous everywhere in the 2 plane. @ 

We do not wish to dwell on limits and continuity too long, since the focus 
of this section is differentiability. Thus, let us note merely that the functions 2” 
(n = 0,1,2,...), e?, sin z,cos z,sinh z, and cosh z, for example, are continuous 

everywhere in the z plane and the function 1/2, for instance, is continuous for all 
z except z = 0 because lim,.,9 1/z does not exist. We are now in a position to 

define the derivative df /dz, which we usually denote as f’(z). In doing so, we stay 
as close as possible to the real-variable definition. Thus, if 29 is an interior point of 

the domain of definition of f, we define the derivative of f, at zp, as 

f(z + Az) — flo) 
M20) = lim a 8) 

  

    
  

provided, of course, that the limit exists. Equivalently, and sometimes more conve- 

niently, 

f'(zo) = lim (9) 
z-F20 2 — 2 

Remember that in the real-variable case, where 

f(x) = tim LO) = Leo), (10) 
rt9 BX 

the limit value needs to be independent of the way in which x approaches xo. For 
example. for the case shown in Fig. 2, f"(2o) does not exist for zg = 1 because 
the limiting value obtained when x — xo from the left (namely, the slope 1) ts 
different from the limiting value obtained when x —+ xp from the right (namely, 
the slope —1). In fact, z does not need to approach xg from one side or the other. 
For example, the sequence vw, = vp + (—1)"e7" (n = 0,1,2,...) approaches x9 

as 7. —> oo, but not from one side. 

Analogously, in the complex case (9), we insist that the limit exist uniquely, 

independent of the way in which z approaches zo. (Note that we avoid saying 

“independent of the direction of approach” because that wording seems to limit the 
mode of approach to linear as in Fig. 3a, whereas it may be spiral. for example, as 
in Fig. 3b. Even more so, we avoid saying “as z approaches zg from all directions.” 

Let us illustrate the definition (8). 

9 
EXAMPLE 2. If f(z) = <*, then [dropping the subscripted zero in (8)] 

. — (2+Az)y— 2? . =. 
pt eS} C en . : e+ Ac) = 22 {1 

J ( ) jm, Nz dim PA ) 2 ab 

  

“If this point is unclear, it should suffice to imagine Stephen Leacock’s Lord Ronald, who“... 

said nothing; he flung himself from the room, flung himself upon his horse and rode madly off in all 

directions.” 

om
e
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so that f(z) = z° is differentiable for all z, and f’(z) = 22. [The last step, in (11), should 

be clear even if we do not go to the trouble of putting forward a d(¢) relation as we did in 

Example |.| # 

Recalling the real-variable result d(x*)/dz = 2x, and the similarity between 
(9) and (10), it is not surprising that d(z*)/dz turned out to be 2z. Similarly, one 
finds that d(e*)/dz = e*, d(sinz)/dz = cos z, and so on (Exercise 10). Further- 
more, the various familiar rules of differentiation carry over to the complex case. 

For example, we have 

f@+a@/=fe)+7), (12) 
[f(zjol2)! = fale) + fea), (13) 

and the chain rule 

—f(g(z)) = F(g))9'(2), (14) 

where f’(g(z)) denotes df/dg. Furthermore, differentiability implies continuity, 
and |’H6pital’s rule holds, as in the real case (Exercises 7 and 8). 

From the examples cited above, one might wonder how f(z) can fail to be 

differentiable. 

EXAMPLE 3. f(z) = 1/2 is not differentiable at z = 0 because it is not continuous 
there. That is, since differentiability implies continuity, continuity is a necessary condition 

for differentiability, For all 4 0, however, f’(2) exists (i.e.. f is differentiable) and equals 
~1/2:7. o 

EXAMPLE 4. Whereas f(z) = 1/z fails to be differentiable only at a single point, 

i(2)=2 
is not differentiable avwhere. For observe that 

  
f(e+Az)- fle) 2+Az—-% Az Ax—idy 
  (15) 

Az ~ Ag ~ As Aa tidy’ 

For a horizontal approach to z we have Ay = 0, and the limit of the difference quotient 

(15), as Ax — OQ. is +1. For a vertical approach, on the other hand, Az = 0, and the 

limit of the difference quotient ( 15), as Ay > 0, is —1. Since a unique limit (of [f(z + 

Az) — f(z)|/Az.as Az -+ 0) does not exist, it follows that f(2) = 7 is not differentiable 

anywhere in the z plane. d 

Because differentiability turns out to be crucial in the study of functions of a 

complex variable, it will be important to find a test that can be applied to a given 

function f(z) = u(x, y) + vo(w, y) to see if itis differentiable. Toward that end,
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“ 

Figure 4. Horizontal and vertical 

approaches. 
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let us first set Ay = Oin Az = Aw + iAy so that Az = Ax. That is, let zo + Az 

approach zg parallel to the x axis (Fig. 4). Then the limit of the difference quotient 

in (8) becomes 

i fu(ag + Aa, yo) + tv(xo + Ax, yo)| — [u(ao, yo) + tv(xo, yo)! 
im 

/ Ag 

u(tg + Ax, yo) ~ uo, Yo) 
Ag 

  

u(zo + Ax, yo) — v(20, yo) 
Ac 

  
  

Ou. Ov 

~ On Oe (16) 

Alternatively, let us set Aw = Oin Az = Ax + iAy so that Az = iAy. That is, 

let zg + Az approach 2p parallel to the y axis (Fig. 4). This time, the limit of the 

difference quotient in (8) becomes 

(u(ao, yo + Ay) + iv(xo, yo + Ay)] — [u(wo, yo) + tv(o, yo) 
iAy 

lim 
Ay-+0 

— 1du 

~ 4 Oy 

  

Ov Ov, Ou 

dy dy ‘ay uy) 

Since the value of the limit in (8) is to be independent of the path of approach, 

as emphasized above, the results in (16) and (17) must agree if f is to be differen- 

tiable at zo, that is, if f’(zo) is to exist. Thus, equating the right-hand sides of (16) 

and (17) shows that u(w,y) and v(x, y) must satisfy the relations 

  

Ou Ov Ou Ov 
ae, wee 18 
Ox Oy Oy Ox 8)     
  

at the point in question. The latter are known as the Cauchy-Riemann equations.” 

Clearly, satisfaction of these equations is necessary for differentiability, but 

may not be sufficient since they have been obtained by considering only two pos- 

sible paths of approach to the point zg. (In fact, they are nor sufficient, as follows 

from the example in Exercise 9.) We have the following theorem. 

  

“Principal. in the development of complex variable theory were Augustin~Louis Cauchy (1789— 

1857), pronounced ko-she, Georg Friedrich Bernhard Riemann (1826~ 1866). and Karl Weierstrass 

(1815—1897). One of the most prolific mathematicians. Cauchy entered the Ecole Polytechnique 

to study engineering but, because of poor health, was advised by Lagrange and Laplace to study 

mathematics instead. His works span almost all branches of mathematics. Entering Gottingen to 

study theology, Riemann turned to mathematics, studied under Gauss, and became a professor of 

mathematics there in 1859. After studying law for four years at Bonn, Weierstrass likewise turned 

to mathematics. Weierstrass developed complex variable theory based upon the power series repre- 

sentation of functions, which approach failed to attract a significant following. Rather, the traditional 

approach, presented in this text. follows Cauchy, who began by laying a groundwork of complex 

differential and integral calculus. As we shall see, only after that foundation is securely laid will we 

be in a position to develop power series representations of functions. Thus, Weierstrass’s approach 

was somewhat the reverse of that developed by Cauchy.
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THEOREM 21.5.1 Necessary, Sufficient Conditions for Differentiability 
Let f(z) = u(x, y) + iv(x, y) be defined throughout some neighborhood of a point 
2g = Uo + tyo. For f to be differentiable at zp, 

(i) itis necessary that the Cauchy-Riemann equations (18) be satisfied at x0, Yo; 

(ii) itis sufficient that the Cauchy-Riemann equations (18) be satisfied at zo, and 
that wand v be C in some neighborhood of zo. 

If f is differentiable, then /’ is given by any of these four equivalent expressions: 

  

    

af : : . . - 

f= Uy + ivy = Uy ~ iy = Ug — Wy = Vy + Uz. (19) 
  

  

Proof: We have already proved item (i). To prove (ii), let us assume that besides 

the Cauchy —Riemann equations (18) being staisfied at z9 the partial senvanyes 

Ug, Uy, Uy, Uy are Continuous In some neighborhood of zo; in terms of the C” n 

tation introduced at the end of Section 13.5 we say that w and v are C! in some 

neighborhood of zo. Consider an arbitrary approach to the point zg, as indicated 
schematically in Fig. 5 by the curve C’, and let us denote (a9, yo) and (wx, y) as Po 
and P, respectively, for brevity. From (8), 

(29) = tim, [u(P) + iv(P)| ae + to Po) 
  (20) 

where Az is the “vector” from Py to P. Now, since wu and v have been assumed to 

be C! in some neighborhood of Po, we can use the mean value theorem (Section 

13.5) to express 

u(P) = u( Po) + ue(Qi)Ax + uy(Qi)Ay (21a) 

v(P) = v( Po) + ve(Q2)Ax + vy(Q2)Ay, (21b) 

where the points Q;, Q» lie somewhere on the straight line between Py and P, as 
we have illustrated in Fig. 5. Using (21), we may restate (20) as 

  (og) = im Wel QU D2 £ tal ru + foal Qe) Ae + vy(Qa)ds 
veo AsO) Az , 

Finally, using the fact that Q; and Q@2 approach Py as Az -+ 0, let us rewrite the 

last result as 

  

  

al + Uy(Po)Ay + i[ve(Po) An + vy( Po) Ay) 
/ (29 = lim 

+6 

AsO Az 

_ dim fe )(Aw + iAy) ~ iu,(Po)(Ax + iAy) 4 7 

20) Az 

= Uz (Po) — tuy( Po) + im, é, (22) 

  

Figure 5. Arbitrary approach to zo.
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where we have used the Cauchy—Riemann relations to obtain the second equality, 

and where 

4 | An. Ay 
d= |uz(Q1) — ts Po)) + wy (Q1) - uy( Po) 

Ac. Ay 
+i[02(Qe2) — ve( Po) + ilvy(Qe) — vy( Pale (23) | 

From the continuity of the four partial derivatives, it follows that each bracketed 

quantity in (23) tends to zero as Az -+ 0. Furthermore, |Aa| < |Az| and |Ay| < 

|Az| give |Ax/Az) < Land |Ay/Az| < 1. Thus, lima.o 6 = 0, and (22) gives 

the result 

  

f"(20) = Ue (Po) ~ ity(Po) = te(20, yo) ~ itty (Xo, Yo), (24) 

independent of the manner of approach of P to Pp. @ 

Before continuing, observe that the additional conditions in (ii), that ux, Uy, Ur, Vy 

be continuous in some neighborhood of zo, are quite reasonable since the difference 

quotient limits obtained when approaching zp along any straight line, say, can be 

obtained by interpolating the limits obtained by horizontal and vertical approaches, 

and the validity of interpolation depends upon the continuity of the quantities being 

interpolated. 

Let us continue. Suppose that f(z) is differentiable at zo. If, in addition, it is 

differentiable throughout some neighborhood of zo, then we say that it is analytic 

at zo. If itis not analytic at zo, it is singular there, and if f is analytic at each point 

of a region D we say that f is analytic in D. (The terms regular and holomorphic 

are used by some authors, in place of analytic.) 

To see how a function f(z) can be differentiable at a point and yet fail to be 

differentiable in some neighborhood of the point, consider the following example. 

EXAMPLE 5. Consider 
f(z) = [ef = 22. (25) 

we see that u,v, Uz, Uy, Ue, Vy are continuous everywhere so u and v are Ct everywhere. 

Moreover, ty, = U, is satisfied at all points on x = 0 (the y axis) and uy = —vz is satisfied 

at all points on y = 0 (the a axis) so both Cauchy—Riemann equations are satisfied only 

at the origin. Thus, f(<) = \2|° is differentiable only at = = 0 and hence it is analytic 

nowhere. 

Such behavior, however, is hardly typical of the functions that we are apt to 

encounter, most of which are either analytic everywhere or almost everywhere.
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Functions that are analytic everywhere (i.e., at each point z in the 2 plane) are said 

to be entire. 

EXAMPLE 6. Consider 

f(z) =sinz = sinacoshy +icosxsinhy. (26) 

Then 
Uy, = cosa cosh y, Uy = sine sinh y, 

Uy, = ~sinasinhy, Vy = COSL cosh y. 

Clearly, u, v, Ue, Uy, Ue, Vy are continuous everywhere, and Ug, == Uy, and Uy = —U, every- 

where so that, according to Theorem 21.5.1, f(z) = sin z is analytic everywhere; it is an 

entire function. From (24), 

f'(z) = cosa cosh y — isin «sinh y. (27) 

To re-express the latter in terms of z we could substitute « = Z)/2and y = (2-2)/2i 

and simplify. The =°s would cancel and we would obtain i oe = cos z. However, in the 

present case it is simpler to notice, from (27), that 

f'() = cosa cosh y — sina sin (iy) = cos (x + iy) = cos =. (28) 

Practically speaking, we could have depended on the familiar real variable result 

d(sina)/dx = cos to tell us that d(sinz)/dz = cos z, but the point of this example 

was to illustrate Theorem 21.5.1 and the concept of analyticity. # 

Similarly, cos z, e*, sinh z, cosh z, and polynomial functions of z, for example, 

are entire functions. More complica cases can be built from these as composite 

functions. Consider, for example, f(z) = e™ Recalling that 

dd. df dg d d d 
—f(glz))==->: have — oJ sinz }. 
dz (92) dg dz- wea dz! = (5 ) (+ sin :) 

Each derivative on the right-hand side exists because the exponential and sine func- 

tions are entire; thus f(z) = e°'* is entire too, and d(e in 2) Jz = eM? cogs z, 

The function 1/z is analytic for all 2 #4 0. At z = 0 the derivative 

d f1\ 1 

dz\z/ 2 

fails to exist so z = Oisa singular point of f(z) = 1/z. Alternatively, z = 0 is 

necessarily a singular point of 1/z because the latter is not continuous there. 

In some cases _ is expressed more conveniently in terms of the polar variables 

r,@as 

  

f(z) = ulr, 8) + iv(r, (29)
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Figure 6. Domain of definition 

of principal value of log z. 

The Cauchy—Riemann equations are then found (Exercise 12) to be 

  

Ou dv dv hou (30) 
Orr OB’ Orr 0" "     
  

and the derivative of f is 

en i6 

f(2= eu, + Up) = (vo — ig) 

. 1  { 1 
=e («, — “0 =e (Fm + i . Gi) 

r r 

EXAMPLE 7. Consider the principal value of log z, defined by 

logz = Inr +i0, (32) 

where 0 <r < coand ~7 < @ < 7. That is, the domain of definition of log z is the cut 

plane shown in Fig. 6. In this case, 

u(r,?)=Inr, u(r, 0) = 8, 
: (33) 

Up = - ug = OQ, Up = 0, vg = 1 

50 we see that u, uv, u,, Ug, Up, Ve are all continuous in the cut plane. and that the Cauchy— 

Riemann equations (30) are satisfied everywhere in the cut plane (which does not include 

the origin). Thus, log 2 is analytic everywhere in the cut plane. and (31) gives 

d, af |) 1 
—(log z) = en? (- +10) = — =, 

r z dz ree 

which result is no shock in view of the real-variable result (In a)/dz = 1/c. @ 

As the final item in this section, we establish an important and interesting link 

between analytic function theory and partial differential equations — specifically, 
the Laplace equation in two dimensions. If f(z) = u(wv,y) + iv(x. y) is analytic in 

some domain D, then 
Uy = Vy and Uy = ~vy (34) 

in D. Taking 0/Ozx of the first and O/Oy of the second, 

Ure = Vyy and tty = —Vey- (35) 

We will find, in Section 23.5, that if f is analytic in D, then the partial derivatives 
of u and v of all orders exist and are continuous in D. It then follows (Section 13.3) 

that Vyz = Vey SO that (35) gives Ua, + Uyy = Oin D. Similarly, taking O/Oy of the 

first equation in (34) and 0/Ox of the second, leads to ure + Uyy = 0. Functions
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to , : 9 ,. . . + 

that satisfy Laplace’s equation and are C* (ie., u,v and their various first- and 
second-order partial derivatives, with respect to « and y, are continuous functions 
of « and y) are called harmonic functions, so we have the following result. 

  

  

THEOREM 21.5.2 Harmonic Functions 
(f f(z) = u(x, y) + iv(z, y) is analytic in a domain D, then u and v are harmonic 
in D that is, they are C? and they satisfy the Laplace equations 

Vu = Ue + Uyy = 9, (36a) 

V2u = vee + Uyy = 0 (36b) 

in D. 
  

Observe that if f(z) = u(x, y) + iv(a, y) is analytic, then the harmonic func- 
tions u and v are a related pair since they are related through the Cauchy—Riemann 
equations. To call attention to this relationship, we refer to them as conjugate har- 
monic functions. Given one harmonic function, conjugate harmonic functions can 
be inferred from the Cauchy—Riemann equations. 

EXAMPLE 8. It is readily verified that the function 

u(a,y) = 3ay? — x? (37) 

is harmonic in the entire = plane. To find a conjugate harmonic function u(z, y} we rely on 

the relations u, == vy and uy = —v,. Thus, 

Uy = ~ Ory, (38a) 
242 an2 vy = by" — 32%, (38b) 

Integrating (38a) partially, with respect to 2, we obtain 

v(t.y) = / —6ry Ox = —3a7y + Aly), (39) 

where {(y) is arbitrary. Then, by putting (39) into (38b), we obtain 

—3a? + A'(y) = 3y? — 32°, 

whence A(y) = 9° +e for any constant c. Thus, conjugate harmonic functions correspond- 

ing to the given u are & 

vie,y) = yo — Baty +, (40) 

for arbitrary c. Further. one finds that the analytic function 

f(s) =utiv = (Bxy? ~ 2°) + ily’ — 327y +c) (Al)
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3 is actually f(2) = —2° + ic. 

More generally, it can be shown (Exercise 17) that given one harmonic func- 

tion (u or v), a conjugate harmonic function (v or t) can always be determined (to 

within an arbitrary additive constant) so that f = u + iv is analytic. 

Closure. We begin this section by defining and discussing the differentiability of a 
function f(z). However, differentiability at a given point will prove to be much less 
significant than differentiability throughout a given region, so we proceed to intro- 
duce the notion of analyticity. In a sense, the remaining chapters amount to a study 

of the consequences of a 
ing discussion of harmon 

function’s analyticity or lack of analyticity. In our clos- 
ic functions we discover a connection between analytic 

function theory and two-dimensional potential theory — that is, between analytic 
function theory and the two-dimensional Laplace equation. That connection is the 

focus of the next chapter. 

  

EXERCISES 21.5 
  

1. Show that lim,_,, 822 = 3%, by referring to our definition 

of limit and actually putting forth a suitable 6. Specifically, 

show that 6 = ¢/3 at most. Further, show that f(z) = 3iz is 

continuous at z = 1. 

2. (a) Show that lim. _.9 2° = 0 by referring to our definition 

of dimit and actually putting forth a suitable 6. Further, show 

that f(z) = 2° is continuous at 2 = 0. 
(b) Similarly, show that lim,_.-, osx ze, and show that 

f(z) = 2? is continuous for all z. 

3. Prove that if lim..,., f(z) = A and lim..., g(z) = B, 

then 

(a) lim, .,[f(2) + gs a = 2 +B 
(b) lim,-,., fle)g(z) = A 

Fle) _ 
(c) lim,_. =, = A 

* g{z) “2B 
        

&
 

4. If f(@) is continuous for all (real) x. does it follow that f(z) 

is continuous everywhere in the 2 plane? Explain. 

5. Use the difference quotient formula (8) to evaluate f’(2), as 

we did in Example 2. 

(a) f(z) = 2° 

(b) f(z) = 1/2 (@ #0) 
(c) f(2)= 1/2? (2 #0) 
(d) f(z) =1T/(e#l) (¢-1) 

6. Use the difference quotient formula (8) to prove 

(a) equation (12) (b) equation (13) (c) equation (14) 

7. Prove that if f(<) is differentiable at zy, it must be continu- 

ous there. HINT: Write 

f(z) — Fl2o) 
2 20 

fla) = (2 — 20) + feo). 

8. (1 Hopital’s rule) Prove | Hopital’s rule. namely, that if f(<) 

and g(z) are differentiable at sy, with f(2o) = g(zo) = Q and 
g' (co) # 0. then 

lin f(z) _ f'(20) 
im oS . 

ero gz) g'(20) 
9, (Insufficiency of Cauchy —Riemann conditions) We have 

seen that the Cauchy ~Riemann conditions are necessary for 

differentiability. The example 

    (8.1) 

0. ==0 

ve
 

due to S. Pollard (1928), shows that they are not, however, 

sufficient. Verify that statement by showing that the Cauchy— 

Riemann conditions are satisfied at < = O but that f is not 

differentiable at that point. 

10. Given f(z). use (19) to obtain f’(s). Express the answer 

in terms of 2.



    

  

(a) COS 2 (b) e* 

(c) sinh < (d) cosh z 

l . dt 
(e) ~ (z #0) (f) Te (z # —2) 

s+ “ 
(g) (2 #1) 

—~ 1 

11. ‘Given f(z), determine f’(z), where it exists, and state 

where f is analytic and where it 1s not. 

(a) (1 — 223)° (b Ty   

(c) |z| sin < 

L 

SFI 
12. (Cauchy—Riemann equations in polar coordinates) Derive 

the Cauchy—Riemann equations (30) in the manner indicated. 

~ 22 + Biz - 2 

(f)e+isiny 

(a) By carrying out the limit in (8). HINT: First let Az - 0 

along the constant-6 line through 20, and then let Az > 0 

along the constant-r line through zo. Pay careful attention 

to your expression for Az in each of these cases because 

these cases are trickier than the cases of a horizontal approach 

(Az = Av) and a vertical approach (Az = iy), used in (16) 

and (17). 

(b) By making the change of variables « = rcos@,y = rsiné 

in (18). 

13. Determine where these functions are differentiable and 

where they are analytic. by checking for satisfaction of the 

Cauchy-Riemann equations and for continuity of u, v and their 

first-order partial derivatives. 

(a) f(z) = 2100 

(b) f(z) = =. defined by the branch cut shown in Fig. 6 

(c) f(z) = L/ Ven where the ve is defined by the branch cut 

shown in Fig. 6 

14. Prove that: 

(a) f(s) and fl) can both be analytic, in a given region, if 

and only if f(z) is a constant. 

(b) If f(z) is analytic in a region D, and f"(z) = Oin D, then 

f(z) is a constant. 

(c) f cannot be analytic if it depends on =. ae Since f = 

u(x, y)+iv(a,y), where e = (2+2)/2andy = =) /2i, we 

can regard f as a function of z and Z. Show that the 1e Cauchy = 

Riemann conditions imply that af /dz= Q, so that f must be 

a function of < only, if it is to be analytic. For instance, recall 

from Example 5 that 2% is analytic nowhere. 

15. Determine whether or not the given function u is harmonic 

and, if so, in what region. If it is, find the most general con- 

jugate function v and corresponding analytic function f(z). 

Express f in terms of ¢. 
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(a) e” cosy ib) e?* sin Qy 

(c) a — Bay? (d) r? sin 30 
(e) r? cos 20 +4 (fr 
(g) © cos 24 cosh 2y + ysin 2a sinh 2y 

16. (Orthogonality of u = constant and v = constant curves) 

(a) Prove that if f(z) = u + iv is analytic in a region D, then 

the two families of level curves u = constant and v = constant 

are mutually orthogonal at all points in D at which f’(z) 4 0. 

(b) Illustrate the idea contained in part (a) by sketching the u 

and v level curves for the case f(z) = z= x+y. 

(c) Repeat part (b) for the case f(z) = 2? = (@? —y?) + i2ay. 

(d) Repeat part (b) for the case 

flz) 1 x . Y 
2)Se- [Sooo DOT ia: 

ze ty? r+y? 

17. (Existence of conjugate harmonic function) Let u(x, y) be 

a given function that is harmonic in the rectangle 7) < we < 

to, yi <y < yg. Prove that there exists a conjugate harmonic 

function v(x, y) in the rectangle xy < © < tay. <y < yp, 

say D, such that f = u + iv is analytic in D. Show, further, 

that (a, y) is uniquely determined, to within an arbitrary addi- 

tive constant. HINT: Infer from the Cauchy-Riemann equation 

du/Ox = Ov/Oy that 

ay 
u(a,y) = | Ott Oy Oy! + A(z), 

J yo Ox 

and use the second Cauchy-Riemann equation and the fact that 

u is harmonic to obtain 

” Ou 
By yo )da 

where (ro, Yo) is any point in D. Verify, with the help of the 

Leibniz rule (in Section 13.8), that 

Y Ou 9 
, OK (a, y')Oy' — Oy oF a! Yo)dx' 

does indeed satis ty the Cauchy - ~ Riemann equation and is 

harmonic in D. Next, show that (17.1) is equivalent to the line 

integral representation 

v(a,y) = (17.1) 

(ey) Ou Ou ulz,y) = ——— (x! .y')dal + = va) = [|S ala aa! + 5 
royo) 

  (a’,y')dy' 

(17.2) 

over any path in D, and conclude from (17.2) that v is deter- 

mined only to within an arbitrary additive constant. NOTE:
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Similarly, one can show that given a harmonic function D, 

there exists a conjugate harmonic function u that can be deter- 

mined to within an arbitrary additive constant. 

18. Consider the following proposed proof of part (41) in The- 

orem 21.5.1. By chain differentiation 

df Of de — Of dy 
— ee 18.1 
dz Ox dz + Oy dz (18.1) 

if we consider a linear approach to z along a straight line 

with slope dy/dx == « (see figure), then dz = dx +idy = 

dz +inda = (1 + ix)dx so dz/dz = 1/(1 + ix) and 
dy/dz = «/(1 + tx) in (18.1). Thus, 

df 1 . Ki 
i = (Up + iy Tan? (ty + ivy) (18.2) 

"{ 
| Ay= KAXx 

<9 Ax 

ee a 
X 

Putting wy = —v, and vy = Uy, into (18.2), according to 

the Cauchy—Riemann conditions, show that (18.2) reduces to 

df /dz = U, + iv, independent of «. Then give a critical ap- 

praisal of the foregoing proposed pr oof citing any weak points 

that you can find. 

  

Chapter 21 Review 

In this chapter we begin by introducing the complex number system, then we 

define the various elementary functions, and get as far as the differential calculus 

and analyticity. 

In defining the elementary functions it is stressed that one cannot “figure out” 

the values of e* = e®+"Y, for instance; e to a complex power is a new object and its 

values are a matter of definition. The guiding idea is to stay as close to real variable 

theory as possible. For instance, we write e*= = e@tY = eve = e®(L + iy+ 

(iy)? /2+-,=e((1-y? °/ 2) + ) + ily (y —y3/3! +> -)] = e*(cosy + isin y) 

heuristically, and then define e* = e*(cosy + isiny), which definition is due to 

Euler. Observe that on the x axis (y = 0), the e* function defined in this way 

does agree identically with the real function e*, and similarly for each of the other 

elementary functions, 

Some of the elementary functions turn out to be multi-valued, namely z et” (mn, 

and n integers, with m not divisible by 7), log z, 2° (ca real or complex number not 

an integer or rational number), and the inverse trigonometric and inverse hyperbolic 

functions. Besides showing how to determine all of their possible values, we show 

how to specify single-valued branches by branch cuts. A branch cut is designed 

to limit the domain of the function so that the function thereby defined is single- 

valued. Usually, the relevant polar angle(s) will be made single-valued and limited 

to a 27 interval, but neither of these conditions is necessary. 

In the final section we define the derivative of a function f(z), again staying as 

close to real variable theory as possible. Consequently, just as d(sin z)/dx = cos «, 

for instance, so does it turn out that d(sin z)/dz = cos z. The essential idea is that 

s
a



      

the limit of the difference quotient needs to exist, and have the same value, for any 

manner of approach to the point in question. Requiring that the limits of horizontal 

(parallel to the w axis) and vertical (parallel to the y axis) approach agree, gives the 

Cauchy—Riemann equations uz = vy and ty = —U, as necessary conditions for 

differentiability. Requiring also that the four partial derivatives be continuous in 

some neighborhood of the point then give sufficient conditions. 

Besides differentiability at a point, we define a function to be analytic at zo if 

it is differentiable throughout some neighborhood of zg. Typically, the functions 

that we deal with will either be analytic everywhere, or else everywhere except for 

one or more isolated points ~ singular points. Such functions will be found to be 

very “nice” indeed in that they are subject to powerful integral theorems, which is 

the subject of Chapters 23 and 24, 
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dimensional potential problem 

with Dirichlet boundary conditions, 

Chapter 22 

Conformal Mapping 

22.1 Introduction 

In Chapter 21 we note that a function w = f(z) is actually a mapping, from a 

given region in the z plane to a corresponding one in the w plane. However, we 

paid little attention to the geometrical aspects of the mapping and concentrated 

instead on analytical aspects such as the values of the function, differentiability, 

and analyticity. In the present chapter we complement that discussion by turning 

to the geometrical issues. Besides completing our introduction to functions of a 

complex variable by considering functions as mappings, the concept of conformal 

mapping will provide us with a powerful solution technique for problems in two- 

dimensional potential theory. 
In Section 22.2 we lay the groundwork and in Section 22.3 we examine a par- 

ticular important mapping in detail, the bilinear transformation, and explain its use 

in solving certain two-dimensional boundary-value problems. In Section 22.4 we 

give additional mappings and applications, in Section 22.5 we show how to han- 

dle more general boundary conditions, and in Section 22.6 we discuss applications 

specifically to fluid mechanics. 

22.2 The Idea Behind Conformal Mapping 

Suppose that we wish to solve the two-dimensional Laplace equation 

Vu = Wee + Vyy = 9 (1) 

in some domain D of the x,y plane. We ask yw to be C? in D, and to satisfy 

prescribed boundary conditions as well. For example, yw might be the steady-state 

temperature distribution within D due to the maintaining of a certain temperature 

distribution along the boundary of D (Fig. 1). 

The degree of difficulty in solving for y varies considerably with the shape 

of the domain D, and the methods developed in Chapter 19 fail if the shape is not 

1150
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sufficiently simple, such as rectangular or circular. Thus, there is interest in seeking 

a change of variables 

u= u(x, y), v= u(t, y), (2) 

from x,y to u,v, in the hope that the new region (in the u,v plane), say D’, will 

be simpler than D. Our plan, then, is to solve the new (and presumably simpler) 

problem in the u,v plane, and to then “return to the z, y plane” using the relations 

(2). Evidently, we will want a one-to-one correspondence between points in D and 

points in D’ so that we can move back and forth unambiguously. Thus, besides 

asking u(a,y) and v(a,y) to be single valued in D, we also want single-valued 

inverse functions 

  

v= u(u,v), y = y(u,v) (3) 

to exist in D’. According to the implicit function theorem (Section 13.6), we can 

ensure the existence of the desired inverse functions by requiring that wu and vu be 

Clin D and that the Jacobian be nonzero in D: 

O(u, v) Uy UW 
a “ Yo] = Ugly — Uyve FO. (4) 
O(n, y} Vr Vy . 

With these assumptions, we proceed to enter the change of variables into (1). 
Denoting ui(x(u, v). y(u, v)) = Y(u, v), chain differentiation gives 

We = vy Uy + Wy ver 

and 

Vor = (wv uulle 7 w wu Ur) Ue + Wa, Use ( wy nulla 7h Woe Uy )Ux +0 vlex: (5) 

Similarly, 

Wyy = (Vuutly + Vurly) Uy + Vutiyy + (Wrytty + Vovrty)vy + Voryy (6) 

so equation (1) becomes 

(4,2 2) Wea “oD 
(Uy + uy Wau + (Uy Uy + Uy vy) (CU uv + W vu) 

+(v2 + ve vy + (lee + yy) Vu + (Vea + Cyy) Yo = 0. (7) 

Thus, in making the change of variables (2) in order to simplify the domain, 

we inadvertently render the governing PDE much more complicated, for in place 

of the familiar Laplace equation (1) we have the rather unwieldy and complicated 

looking equation (7). For instance, since u and v are functions of xz and y it follows 

that the coefficients in (7) are nonconstant; they are functions of w and y which, 

through the inverse relations (3), are functions of wu and v. 

The result seems fair enough: if we make a change of variables (2) to simplify 

the region D. we can expect to complicate the PDE. However, it is striking that
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if we restrict the change of variables (2) so that u(w,y) and u(z, y) satisfy the 

relations 

Ug = Vy and ty = ~Vy (8) 

in D, and ask u and v to be C% so that ugy = Uye and Vey = Uye in D, then (8) 

GIVES UpUe + Uyly = (Ue)(—tUy) + (ly) (te) = 0, Une + Uyy = Vye — Vey = 0, 

and Vex + Uyy = ~Uye + Ucy = 0 so (7) simplifies dramatically to 

(uZ + ug) (Wun + Yoo) = 0. (9) 

. : : | 9 . . 

Using (8) again, we can write Uz + Uy = Ugly ~ Uy Ve, which Jacobian has already 

been assumed nonzero in D. Then it follows from (9) that 

Vuu + Wow = 0 (10) 

everywhere in D’; that is, the Laplace equation is preserved under the change of 

variables! 
Notice carefully that thus far there has been no mention, or use, of complex 

variable theory. However, the fact that equations (8) are the familiar Cauchy — 
Riemann conditions causes us to raise an eyebrow, and suggests that it might be 
helpful (though not essential) to regard the x,y and u,v planes as complex z and 

w planes, where z = x +iy and w = f(z) = u(x,y) +iv(2, y). (Whether the x, y 

and u,v planes are real planes or complex planes is merely a matter of viewpoint.) 

Then ugly ~ UyVz = ue+ur= PE, so the nonvanishing-Jacobian condition 
(4) can be stated more crisply in terms of complex variable theory as f’(z) 4 0 in 

D, and we have established the following important result. 

  

THEOREM 22.2.1 Preservation of Laplace Equation 

Let w = f(z) = u(a,y) + iv(z, y) be analytic everywhere in a domain D, with 

f'(z) & 0 everywhere in D. Denote the image of D as D’, and let the mapping 

be one-to-one. If u(a, y) is harmonic in D, then w(a(u.v).y(u,v)) = Vu, v) is 

harmonic in D’. 
  

The point, then, is that if we use an analytic function f(z) = u(x, y)+iu(z, y) 

to give the change of variables (2), then the Laplace equation on w(v, y) is guaran- 

teed to carry over to a Laplace equation on Y(u, v). At the same time, there is the 

possibility of selecting the analytic function f(<) so as to simplify the region. 
Let us make two remarks about the theorem. First. recall that D is open be- 

cause it is a domain. Thus, f’(z) # 0 in D means at all interior points of D; 

f(z) need not be nonzero on the boundary of D. Put differently, we ask that the 

Laplace equation V*w = 0 be preserved only on the interior of D because (as 

noted in the chapters on PDE’s) we require the satisfaction of that equation only 

on the interior of D. Second. why do we change notation. from w to VW? Because 

w and © are different functions. For instance. suppose that V(u,v) = u + 2u
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and f(z) = 22. From f(z) = 2? it follows that u = 2? — y? and v = 2xy so 

W(u,v) = u-+ 2u = 

    

wy? +4ey = w(x, y), and surely U(u,v) = u+ 2v and 

wey) = au? ~y? +4xy are different functions; for instance, @(2,3) = 8 whereas 

W(2, 3) = 19. 
We call the function f(z) a conformal map. The relevance of the adjective 

conformal will be clarified by the next theorem. However, before proceeding with 

that let us immediately give an application, to show how the method is used. 

EXAMPLE 1. Application of Theorem 22.2.1, Consider the Dirchlet problem shown 

in Fig, 2: the Laplace equation on v(a,y) together with Dirichlet boundary conditions 
& 

¥ | y 

we f(Zer 
Woy + Wy =O gO ~~ py 50 

y= lO~ Pig t Py =0 

fea re 

D . dD’ 
W=10~     

Figure 2. Steady-state temperature problem. 

that u: = 50 on the circular part of the boundary and ¥ = 10 on the straight part, and that 

u is bounded on D. Physically, w(c, y) might be the steady-state temperature distribution 

in a large plate with a circular cutout near one edge. 

First, observe that the given problem cannot be solved by separation of variables in 

Cartesian coordinates (because the boundary is not comprised of constant-z and constant-y 

curves). nor in plane polar coordinates (because no matter where the origin is located the 

boundary is not comprised of constant-7 and constant-@ curves). Nor do the Laplace and 

Fourier transforms provide any help. 

Turning to Theorem 22.2.1, suppose we know that the mapping f(z) = 1/2 sends 

the given domain D into the simpler strip D' shown in Fig. 2 (Exercise |). Furthermore, 

f(z) = 1/s is analytic for all z # 0, and hence everywhere inside D: f’(2) = —1/z? £0 

everywhere in D, and the mapping is one-to-one since both f(z) = 1/z and the inverse 

function s = 1/f are, obviously, single-valued. Thus, it follows from Theorem 22.2.1 that 

vey = Wau + Dov = 0 (1) 

in D’. Finally. the images of the boundary curves & = 0 and (x — 4 YP + are wu = 0 

and u = 1 so that &(0,v) = 10 and W(1,v) = 50 as indicated in Fig. 2. And since w is to 

be bounded on D, Y must be bounded on D’. 

Observe that whereas the v problem is hard, the “ problem is easy because (see 

Fig. 2) itis evidently one-dimensional. That is, W varies with wu but not v. Then the Laplace 

equation W,,, + Vy,» = 0 reduces to the ordinary differential equation dU /du? = 0, with
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general solution V = Au -+ B. The boundary conditions ¥(0,v) = 10 and W(1,v) = 50 

give A = 40 and B = 10 so 

W(u,v) = 10+ 40u (12) 

in D’. To obtain the solution for y(z,y) in D, we merely substitute u = u(e,y) and 
v = u(z,y) into the right-hand side of (12). (In this case there happen to be no v’s.) We 

get u(az,y) and v(a, y) from the mapping f. Specifically, since f(z) = 1/z = u+ iv, we 

have 

  

. 1 «#-v1y x . Y 
Ubi = - 7 = 5 gta 3 

Tr ity o~ ly ue + y* we + y* 

SO x y 

w=, va-eo. 13 
r+y? r+ y? (13) 

Thus, 

y(e,y) = U(ule,y),v(e,y)) = 10+ 4) we, ,y) = Viu(z,y),v(2,y)) = - iY y Y ry 

COMMENT 1. Notice that whereas the method of separation of variables, used extensively 

in Chapters [8~20, generally gives the solution as an infinite series, (14) is expressed, more 

conveniently, in closed form. 

COMMENT 2. In case it was not clear that UY (2, v) is independent of v, as claimed, observe 

a posteriori that (12) does indeed satisfy the full equation (11) as well as the boundary 

conditions. The only nagging question is whether or not the solution (12) is unique, for 

perhaps there are other solutions, as well, that do vary with v. This is a subtle point, and is 

discussed in Exercise |. 

COMMENT 3. We stated, without explanation, that the boundary conditions carry over. 

from the z plane to the w plane. For example, if 2 = 20 on some boundary curve in 

the z plane, then & = 20 on the image of that curve in the w plane. That result follows 

immediately from the fact that w(x, y) = w(a(u,v),y(u,v)) = Y(u,v). That is, if the 
point (u,v) (or w+ iv in complex notation) is the image of (a, y) (.e., 2 + zy), then W at 

(u,v) is equal to wat(a,y). @ 

Though the title of this chapter is Conformal Mapping, we have not yet intro- 
duced the notion of conformality. Recall that Theorem 22.2.1 requires that f(z) be 
analytic and that f’(z) 4 0 in the given domain. As we shall prove, such mappings 
are “conformal.” That is, they preserve angles both in magnitude and in sense. To 
make this claim precise, consider two oriented smooth curves C) and Cy that in- 
tersect at 29 (Fig. 3). Let Cy and C2 be parametrized by z;(7) = x1 (7) + tyi(7) 
and 29(7) = xo(T) + iye(7), respectively, where v1, 41, ¢2, yg are differentiable 
functions of the real parameter 7, where 21(0) = 29(0) = 29 and where 2;(0) and 
29(0) are both nonzero. (Dots will be used to denote d/d7.) Then the complex 

number 
z — 21 (0 (0) = tim MO 200) _ (0) + an (0) (5) 
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C4 
S20) iy (0) = CI 

we f(Z)—    
Figure 3. Conformality. 

is a tangent “vector” to C’; at zg and similarly for 22(0). Let the angle measured 

counterclockwise from 2,(0) to 22(0) be denoted as a. 
Now, consider a mapping w = f(z) which is a nonconstant analytic function. 

Under this mapping, zo is sent into wo = f(z) and the curves C,, C2 are sent 

into curves Cy, C4 that are parametrized by wi(r) = f(z1(T)), we(r) = f(za(7)), 
respectively. By chain differentiation, 

ti (0) = f'(20)41(0), wa (0) = f"(20)22(0) (16) 

so that if (and only if) f’(zo) 4 0, there exist unique tangent vectors w1(0), w2(0), 
at wo, given by (16) and depicted in Fig. 3. From (16) it follows that 

arg w1(0) = arg f’(20) + arg 21(0), 
arg w2(0) = arg f’(zo) + arg 22(0), ay) 

and subtraction gives 

arg w (0) — arg we(0) = arg 24 (0) — arg 22(0). (18) 

If we denote the angle arg w,(0) — arg wWe(0) as @ (Fig. 3), (18) tells us that 

Bsa, (19) 

and this result is the promised conformality. (See Exercise 8.) Observe that the 

result (19) holds for any two oriented smooth curves C, C2 intersecting at 20. 

Let us pull these results together now by defining conformality and then giving 

conditions that ensure that a mapping is conformal. 
We say that a mapping w = f(2) is conformal at zo if it preserves, both in 

magnitude and in sense, the angle between every pair of oriented smooth curves 

that intersect at 29.
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THEOREM 22.2.2 Conformalitv 

{f f(z) is analytic, then the mapping w = f(z) is conformal, except at points where 

f(z) = 0. 
  

EXAMPLE 2. Illustration of Conformality. To emphasize the local nature of confor- 

mality, consider the mapping w = =*, If the domain of definition D is the first quadrant 

0<2 < 90,0 < y < &., then the range D’ is the upper half plane v > 0 as shown in 

Fig. 4. In this case f is analytic everywhere, and f’(2) = 22 = 0 only at the origin. Thus, 

the mapping w = <° is conformal everywhere in D. If angles are preserved, we may well 

wonder how the quarter plane manages to open out into the upper half plane. Thus, con- 

sider, as representative, the curve ABC and its image A‘B'C". The angle of intersection at 

B, namely 7/2, is indeed preserved. although away from the neighborhood of B the curve 

ABC opens out like the pages of an open book (Fig. 4). Thus, conformality is local, not 

global. At 2 = 0. the only point at which conformality breaks down. the angle n/2 is not 

preserved: it is doubled. 

  

  

At i (een 

D A “ Cc’ 

po 
rc m/2 

ow Mae dD’ 
B C 

be. 0/2 v 

Le. y 
l vx u 

Figure 4. The mapping w = 2 

COMMENT. We do not mean to imply that if conformality breaks down at a point. then 

angles are necessarily doubled there. That result is specific to the present example. i 

Closure. We show first that under mappings w = f(z). where f is analytic and 

f'(z) € 0, the Laplace equation is preserved. This fact is of great importance in 

two-dimensional potential theory for it implies that given a particular problem in 

two-dimensional potential theory, one might be able to effect a simplification in 

the shape of the domain without disturbing the governing Laplace equation. We 

illustrate this line of approach in Example |, and plan to develop it more fully in 

the sections to follow. Furthermore. we show that the above-noted conditions on f 

guarantee conformality of the map. 

Some additional results are included in the exercises, but important questions 

remain. Fora given domain D and a desired image D’, does a one-to-one conformal 

map exist? If so. is it wtique? These questions are answered. for simply connected



    

domains (other than the entire z plane). by the Riemann mapping theorem.” 

in effect, that any simply connected domain existence part of the theorem states, 
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The 

D (not the entire plane) can be mapped one-to-one and conformally onto any other 

simply connected domain D' (not the entire plane). 

  

EXERCISES 22.2 
  

1. (More about Example 1) (a) Show that the image of the do- 

main D shown in Fig. 2. under the mapping w= f(z) = 1/2. 

is the infinite strip D’ shown in the figure, 
(b) Using separation of variables. show that the problem 

Wau + Von = Oin the stipO <u < land~so <u < ™, 

with W(0,v) = 10 and W(1.e) = 50, admits the solution 

Wu, ve) = 10+ 40u+ (le + Beo™™ )sinwu, (1.1) 

where 4, B are arbitrary constants. NOTE: Observe that if we 

fail to also require that v. and hence W. be bounded. then the 

solution is nonunique because A and B are arbitrary in ( 

we do require that Y be bounded. then we need A = 0 because 

e™® 3 oo as v —- oo. and we need B = 0 because e~*" + 20 

asu — —29, so (1.1) reduces to V(u,v) = 10 + 40u as given 

by (12). Although we see from (1.1) that the solution is not 

unique if a boundedness condition is not included, understand 

that we have not proved uniqueness if a boundedness condi- 

tion is included because there might be solutions of V*W = 0 

besides (1.1). that cannot be obtained by the method of sepa- 

ration of variables. 

(c) ff A and B are not both zero in (1.1). then © grows un- 

boundedly as |v] + 20, What is the corresponding behavior 

of win the a. y plane? 
  

2. (Analvticity of inverse mapping) If w = f(2) is a one-to- 

one parks there exists a single-valued inverse function, say 

>= f~'(w). Show that if f is an analytic function of 2, then 

fr (i.e. ihe inverse function. not the numerical inverse 1/ /) 

isan analytic function of uw. and 

df~'(w) L 

dw. df{=)/d= 

or, equivalently. 

ads | 
=, 2.1 

dw/dz 0) dw 

  

11). OF 

HINT: Show that if Az > 0, then Aw -> 0, too. 

the inverse mapping =(w) iS analytic, Loo. as noted in the pre- 

ceding exercise. HINT: There exists a conjugate harmonic 

function corresponding to w(x. y). say CC, y), such that 

F(z) = wa, we
) y) + i¢(e y) ( 

is an analytic function of 2. Thus 

F(sfw)) = (a(n). yl e)) + i¢(e(u. ev). ye, v)) 

= Wlu.v) + iZ (uv). 
t 

(3.2) 

Show why it follows from (3.2) that W(u,v) is harmonic. 

4. (Local magnification) Let w= f(z) be analytic at zg, with 

f'(co) & 0. Denoting lima. |Aw/Az) as the local magni- 

fication, show that the local magnification is equal to | f"(<a)}. 

5. Are the following mappings conformal at > = 0? If not. 

why nov? 

(yer (b) 26° (cjiz +3 

(d)i (e) sin 2 (fy 1f/{2— 

(g) Da 2 (h) 2% ~1L+ 27 

6. (a) In Example 2 we observed that the mapping w = 2 is 

conformal for all = except > = 9 At: = 0 we noted that the 

“corner angle” w/2 a ets ¢ loubled to x. Show that a// angles are 

doubled at = = 0 (i.e.. between every pair of oriented smooth 

curves (hat intersect at = = 0). 

(b) More generally, show that for the mapping w = 2" for any 

integer n = 2.3,4,..., angles are multiplied by mat z = 0. 

(c) Still more generally, suppose that wo = f(s) = 

(z= — zg)"g(z). where g(< y is analytic. g(zo) 4 0. g'(zo) #0. 

ar greater than L. Show that angles 

1 place of (19) we have i3 = na. 
and mis any positive intege 

are multiplied by 72 at 2pi ie. 1n 

“Riemann's celebrated mapping theorem appears near the end of his doctoral dissertation. For 

discussion of this theorem, see E. B. Salf and A. D. Snider, Fundamentals of Complex Analysis 

(Englewood Cliffs. NJ: Prentice Hall. 1976). 
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7. Letw = f(z) = u(z,y) + iv(z, y) be analytic everywhere 
in a domain D, with f’(z) 4 0 everywhere in D. Denote 
the image of Das D’, and let the mapping be one-to-one. If 

wa, y) satisfies the Poisson equation 

Wee ob Wyy = Q(x, w, 

where Q is prescribed, what equation does w(x(w,v), y(u,v)) = 
W(u,v) satisfy in D!? 

8. (A simpler proof of conformality) In case our proof of con- 

formality [equation (19)] is unclear, let us suggest a simplified 

version of that proof, even though it is only heuristic by virtue 

of its use of differentials as computable quantities. Let dz; 

and dz2 be infinitesimal “vectors” springing from zo, and let 

dw, and dws be their respective image vectors springing from 

wo. Writing dw) = f'(zo)dzq and dw; = f'(20)dz1, con- 

clude that arg dw = arg f’(z9) + arg dz, and that arg du = 

arg f’(z9) + arg dz,. Show that (19) follows from these two 
equations. [nclude a labeled sketch in your solution. 

9, Here is a subtle question regarding Theorem 22.2.1. If the 

condition f’(z) #4 0 ensures the existence of single-valued 
inverse functions © = x(u,v) and y = y(u,v), and the 

“forward” mapping f(z) is of course single valued, why do we 

bother including the additional condition that “the mapping be 

one-to-one” in the theorem? 

10. What is equation (7) for the case where z = ucosv and 

y = usiny (Le., u and v are really the polar coordinates r and 

8)? Is the map 

7 a : 1) 
wz) =utiv= Se? +y2 +itan J 

z 

conformal? Explain. 

  

22.3. The Bilinear Transformation 

The transformation w(z) = 1/z that was used in Example | of the preceding sec- 

tion is a special case of the bilinear transformation* 

  

  
for ad ~ be £0, (1) 

  
  

which is also known as the Mébius transformation or linear fractional transfor- 

mation. The constants a,b,c,d are allowed to be complex, and the condition 

ad — be # 0 ensures that w(z) is not merely a constant, or 0/0. 

  

Since leh 
' ad — be 

w (2) = pep 2 
(2) (cz + d)? @) 

exists for all z except z = —d/c (at which point w is undefined as well) and is 
nonzero (since ad — be # 0 by assumption), we see that the bilinear transformation 

is conformal everywhere except at z = —d/c, which point is called the pole of the 
transformation. Although w is undefined at z = —d/c, it will be convenient to 
regard the image of that point as the point at infinity in the w plane, denoted as 
w = oo. To indicate that the w plane has been augmented by the point at infinity, 
we call the result the extended complex plane. [n contrast, the “usual” complex 
plane (i.e., not augmented by the point at infinity) will be called the finite complex 
plane. Observe that if we are to allow the values 2 = oo and w = oo, we need to 

  

“Cleared of fractions, (1) becomes czw + dw — az = 

hence, it is bilinear in z and w. 

b, which is linear in z and linear in w:



  

22.3. The Bilinear Transformation 

decide how to interpret (az + b)/(cz + d), say, for z = oo. We define the latter as 

a/cifc # Oand as co ife = 0. 
Besides being conformal, the bilinear transformation is also one-to-one on the 

extended z and w planes, for (1) gives a unique w for each z, and the inverse 

mapping 

  

pee dw — 6 (3) 

cw a 

obtained by solving (1) for z] gives a unique z for each w. 

We will establish an important property of the bilinear transformation in a mo- 

ment. To do so, we begin with the special case w(z) = 1/z and seek to determine 

the image (i.e., in the w plane) of any circle in the z plane. If the circle is centered 

at (a,b) and has radius ¢, its equation is 

(ca)? +(y-bP =e (4) 

or 
vey? —2Qax — Qby = c? — a? —b*. (5) 

To express the latter in terms of z, and hence w, we use the relations x = (z+ 2Z)/2 

and y = (2 ~ 2)/2i. Then (5) becomes 

2e—Az—AZ=B, (6) 

J + o 2 9 — op fmm . . 

where 4 =a—iband B = c? ~a* ~— b*. But z = 1/w and Z = 1/W so (6) gives 

—~--“=8 (7) 

as governing the image curve. 
Consider separately the cases B # 0 and B = 0. If B # 0, then we can divide 

both sides of (7) by B. Doing so, and multiplying by wi as well, gives 

A I A 
ww + Bu + Be = BR (8) 

Since B is real, the coefficients of w and @ are complex conjugates. Thus, (8) is of 

the same form as (6) so (8) represents a circle in the w plane. 

Next. consider the case where G = 0. Then (7) becomes 

1~Aw- Aw =—0 (9) 

or, with A= a — iband w= u+ i, 

| ~ 2au + 2bu = 0, (10) 

which is the equation of a straight line. 

We see from Fig. | that the geometrical significance of B= 01 is that the circle 

in the z plane passes through the origin, because B is c? — a” — b’. It makes sense 

{159 

  

Figure 1. The case B = 0.
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that the image of a circle through z = 0 is a straight line because the mapping 

w = 1/z sends z = 0 to w = oo, and the only circle that reaches w = 09 is a 

straight line — that is, a circle with infinite radius. 

Similarly, we see that a straight line L in the z plane is mapped to a circle if 

L does not pass through z = 0, and to another straight line if L does pass through 

z= 0. 

The upshot is that w(z) = 1/2 sends circles into circles, with a straight line 

considered as a circle of infinite radius. That result is not at all surprising if the 

original curve is a circle centered at z = O since if |z| = Rthen jw) = jl/z| = 1/R, 

so the image is a circle of radius 1/R centered at w = 0. But it is remarkable that 

all circles are sent into circles, even if they are not centered at 2 = 0! 

Now we turn from the special case w(z) = 1/2 to the general bilinear trans- 

formation (1). [f we call 

  

w= Az, (Lia) 

wat B, (Lib) 

1 
w= (Lic) 

scaling and rotation, translation, and inversion transformations, respectively, then 

(1) amounts to a sequence, or composition, of transformations of these three types. 

For if c # 0, then it is readily verified (by successive substitution) that 

1 
Wy = cz, we = wy, +d, wa=—, 

wo (12) 
be — ad a 

Ww, = — Ww, w= Wao 
Cc Cc 

takes us from z to wy) to we to wy to wy to w by a finite sequence of scaling and 

rotation, translation, and inversion transformations. Similarly if e = 0, for then 

a b 
Wy = 2, We Wy o. 

d d 

We call (11a) a scaling and rotation transformation because each < vector is 

scaled (by the modulus of the complex number A) and rotated (by the argument 

of A). It follows that the image region D’ in the w plane will be a scaled and 

rotated version of the original region D in the z plane as illustrated in Fig. 2a. 

(13) 

VA Ln we (L402 

  

P Q 

I 2 x 

      

  

Figure 2. Scaling and rotation w = Az. A= 1+ 0. 
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where A = | + a and D is taken to be a unit square. 
We call (11b) a translation transformation because each z point, and hence 

any given shape D, gets translated rightward by Re B and upward by [m.B. With 
B = 1+2i, for instance, the mapping w = z+ B = z+ (1+ 27) sends the region D 
in Fig. 2 into a square with corners at 2 + 27, 3+ 22, 3+ 37, and 2 + 31, respectively. 
And we’ve already shown that the inversion (l1c) sends circles into circles. It 
should be clear that (Ila) and (1 1b) do too, and since (1) is a composition of these 

three kinds of transformation (1) sends circles into circles, with straight lines as 

special cases of circles. That result is the most important property of the bilinear 

transformation. 

  

THEOREM 22.3.1 Circles Into Circles 

The bilinear transformation (1) sends every circle or straight line into either a circle 

or a straight line. 
  

EXAMPLE 1. Steady-State Temperature. Find the steady-state temperature distribution 
wa, y) in the cut off disk shown in Fig. 3, subject to the boundary conditions shown there. 

For the problem to be solvable by separation of variables we need the boundary of D 

to be comprised of constant-coordinate curves. Cartesian coordinates don’t work because 

of the circular part of the boundary. Polar coordinates don’t work either for if we locate 

the origin at the center of the circle, then the straight edge is neither an r = constant curve 

nora @ = constant curve. And if we locate the origin as in Fig. 3 then although BC’ and 

AB are constant 0 curves (0 = 0 and @ = 7, respectively), the circular part AFC is not an 

r = constant curve. 

Thus, let us try solving by means of conformal mapping. To do so. we need to find a 

conformal map w(z) that sends the problem shown in Fig. 3 into one that is simpler. There 

could be many such maps, we simply need one. 

Since ABC is straight and A/C is circular, the bilinear transformation warrants con- 

sideration. But how do we “design” that transformation — that is, how do we choose the 

parameters a,b, c,d in (1)? To begin, let us simply try the mapping w = 1/2 and see what 

happens. Since AEC is a circular arc, we know that its image will be too, So, to find 

its image, it suffices to find the image of the three points A, B,C, and to fit a circular arc 

through them as shown in Fig. 4; three points suffice because three noncollinear points 

uniquely determine a circle. [Note that the image of E is 1/(1+ V2)i = ~(/2~—1)i.] The 
segment ABC is also a circular are (of infinite radius), but we need to be careful because 

B is the pole of the transformation and gets sent to infinity. Thus, we need to treat AB and 

BC separately. Consider 4B. Since B goes to infinity, the image of AB is a straight line 

that extends from the image of A (namely, A’) to infinity. To determine that line we need 

one more point so consider 2 = — 1/2: A goes to —Landz = —1/2 goes tow = —2 so 

the image of AB is as shown in Fig. 4, extending from u = —1 to u = —oo on the wu axis. 

Similarly for BC: B goes to infinity, C goes to 1, and (since one more point is needed) 

z = 1/2 goes to w = 2 so the image of BC' is as shown in Fig. 4, extending from u = 1 to 

wu = 00 on the wu axis. 

Do not be concerned that 3B’ shows up in two different places in Fig. 4 we simply call 

B' “the point at infinity.” [t is approached from different directions, according to how B is 

  

  

Figure 3. Steady-state temperature 

problem. 

  

  

Figure 4. The mapped problem. 

using w = 1/z.
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Ve Y= () 

A’ ener —_» 
| ~l Cc 

=O 

Figure 5. The mapped problem 

using w == (z ~ 1)/(2 +1). 

approached in the z plane. 

Our conclusion is that the mapping 1/z is of no help because the problem in Fig. 4 is 

no easier than the one in Fig. 3. Trying again, let us design the bilinear transformation so 

as to put the pole at A or C, say at A. If, for simplicity, we also send C' to w = 0, then we 

have the mapping 

  (2) =2 (14) ws) = . 
z+1 

Then A goes to infinity, B goes tow = —1, C goes tow = 0, and E goes tow = 

LeV2 (1 +i), which has an argument of 7/4. Thus, under the mapping (14) the © problem 

is as shown in Fig. 5. To solve, introduce polar coordinates p,@ with w = pcos, 
not aynracc) 2 — Nae Ly l — (rand yey sanaratl 

u =: psin d. Then, expressing V°W = Oas Up, + ap + ao Yoo = () and using separation 

of variables as in Section 20.3, we obtain 

W(p, 6) = (A+ Binp)(C + Dd) + (Ep* + Fp ")\(Gcosn@ + Hsing). — (15) 

To keep W bounded as p -> co and as p — 0 (and hence y bounded as z + —Landz — 1, 

respectively) set B = E = F = 0 so W is of the form 

U(p, d) =O 4+ Cod. (16) 

The boundary conditions V(p, 7/4) = land U(p, 7) = 0 give Cy and C2 so 

U(p, 6) = - (1 - *) 
3 wT 

To complete the solution we need to express p and @ [actually, just @ because there 

are no p's in (16)] in terms of x and y. Equation (14) gives 

(e-1)+iy (w@+1)—ty | (2? + y? — 1) 4 2Qiy 
  uUtiv= = - : 17 
(a+ 1)+iy (© +1)—ity (e+1yP+y" un 

so 5 
ope + oo 1 a yo ea (18) 
(a+ 1)? + y?* (e+ lj? +y? 

Finally, since @ = tan~! (v/w), the desired solution is 

d(z,y) = - |l- —ta “EL , " 
(x,y) 3 | a an (arta) . ” 

where the tan~! lies between 7/4 and 7. For instance, atx = y = 1 we obtain y(1, 1) = 

0.863 which, from Fig. 3, seems reasonable. 

COMMENT. Having found the boundary of D’, in Fig. 5, to be the bent line A’B’C’ E'A’, 

how did we know that the region D’ was above it rather than below it? To answer that 

question it suffices to check a single point in the interior of D, say 2 = 7. That point is 

mapped by (14), into w = 7, so the region of D’ is above A’B’C'E’ A‘ as shown. @ 

EXAMPLE 2. Solve the potential problem shown in Fig. 6a. Since the boundary of D 
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(a) (b) 

Figure 6. Region with two cutouts. 

is comprised of circles, we consider the bilinear transformation once again. How are we 

to determine the parameters a, b,c,d in (1) so that the region D is sent into something 

simple, such as a region bounded by concentric circles? Since three noncollinear points 

determine a circle, we could seek a, b,c, d so as to map three selected points on each of 

the two circles in the z plane into three selected points on each of two concentric circles 

in the w plane. That procedure would give six equations — actually twelve because in 

each equation we would equate real and imaginary parts on the left- and right-hand sides. 

How many parameters do we have? Hach of a,b, c,d has a real and an imaginary part so 

we have eight parameters. But we can divide both numerator and denominator in (1) by 

one of them, to normalize, so there are really seven “design parameters,” and twelve linear 

algebraic equations for them. In general, such a system is overconstrained and there is no 

solution. However, the number of free parameters can be increased if we use the fact that 

we don’t need to choose three specific points on each of the circles in the z plane; ary three 

points on each of those circles will do. Similarly for the points chosen on the image circles. 

Further, we don’t care what the radii of the image circles are, so we can let them be free 

parameters. 

The upshot is that it is possible to map any two distinct circles in the z plane into two 

concentric circles in the w plane, but design of such a map is tedious and best avoided. 

Thus, it is much more convenient to seek a suitable mapping in a table of mappings. A 

short table is given in Appendix F, and the desired mapping is given by entry 4, 

z-a 
=o 9 w Red? (20) 

where « is defined in terms of the z-axis intercepts of the right-hand circle, 2, — 3 and 

ty = 2. With these values a = (7 + 9/6)/5, and the image is as shown in Fig. 6b. 

To solve the problem on W, introduce polar coordinates p,@ (u = pcosd@,v = 

psin @), so that 
, 1 1 

VW = Upp + =U, t+ SVag = 0. (21) 
p pr 

Because the annulus is axisymmetric and the boundary conditions do not vary with é, we 

can find a solution W(p) that varies only with p. Then the Wy, term in (21) drops out and 

(21) simplifies to the ordinary differential equation 
5 | 

ad. lad 
a+ -——-V =0, (22) 
dp pdp
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coefficients of all @-dependent terms in (15) equal to zero.] Using the boundary conditions 

W(R) = Oand &(1) = 50 to evaluate A and B gives 

Inp 
Up) = 50 (: _ ae) . (23) 

  

Finally, obtaining p in terms of x and y (which step is left for the exercises) gives 

  

w(a,y) = V(p(z,y)) 
. 1 nay tye 

— 20 fi ~sIn ee | (24) 
Ink 2° (aw — 1)? + aey? 

  

ay ay enresentative . : : : . . . 

Figure 7. Representative as the desired solution. Representative equipotentials are plotted in Fig. 7. 
equipotentials, from (24). 

Closure. In this section we study only the bilinear transformation (1), the most 

important property of which is that it sends circles into circles (with straight lines 

as special cases of circles). That property makes the bilinear transformation useful 

for problems in which the domain D is bounded by circles or circular arcs. That is 

not to say that we cannot use a bilinear transformation for other types of regions, but 

it is unlikely that a simplification of the domain can thereby be accomplished. Nor 

is it true that every domain D that is bounded by circular arcs can be handled with 

a bilinear transformation since the seven design parameters might not be enough. 

For instance, a region with three or more circular cutouts is simply more than can 

be handled. 

In any given application, be sure to verify that the mapping function w(z) is 

analytic and that w’(z) 4 0 everywhere within the interior of D. For the mapping 

given by (20), for instance, w(z) is analytic for all z except z = 1/a ~ 0.42, which 

falls within one of the cutouts rather than in D, and w'(z) = (a?—1)/(az—1)? 4 0 

everywhere. 

Finally, we suggest that simplified problems to aim at, in the w plane, are 

ones in which D’ is either an annulus bounded by concentric circles (Fig. 6b) or an 

infinite wedge (Fig. 5) or strip, with constant boundary conditions. 

  

  

EXERCISES 22.3 

1. We stated that (8) represents a circle in the w plane. Give the (a) w(z) = Pz, where P is nonzero and, in general, complex. 

equation of that circle in the form (u — @)? + (v — B)? =. (b) w(z) = 2 + Q, where Q is nonzero and, in general, com- 

and give a, 6,7 in terms of the quantities a@,6,c that appear plex. 

in (4). 3. (a) Derive the expression   
   

2. Following essentially the same steps as we used in equa- 

tions (4)—(8) to show that w(z) = 1/zs sends circles into p(t, y) = In 

circles, show that the following transformation also sends cir- 

cles into circles. that was used in (24), 

    

(a ~ a)? +y? 

(ax — 1)? + a*y*



    

  

  

(b) Use computer software, such as the Maple implicitplot 

command, to obtain the isotherms shown in Fig. 7. 

4. (Composition of two bilinear transformations) Show that 

the composition of two bilinear transformations is also a bi- 

linear transformation. That is, show that if (2) and g(z) are 

bilinear transformations so is f(g(2)). 

5. (Fixed points) A fixed point of a mapping w = fle) isa 

point zo that is mapped into itself. That is. zo is a fixed point of 

w= f(z) if f(zo) = co. Prove that a bilinear transformation 

w= (az + b)/(ez + d) has at most tyvo fixed points, unless it 

is simply the identity transformation w = 2. 

6. (Three points into three points) (a) Prove that any three 

given distinct pois 21,22, 23 in the extended < plane can 

be mapped into any three given distinct points Wy ,W2, Ws, 

respectively, in the extended w plane by a bilinear transfor- 

mation w = f(z) which is given, implicitly, by the relation 

W—- Wy We a WSs Som Sy FQ 7 23 
i ce (6.1) 

WW, We Wy To 2g 22 > 21 

HINT: Show first that the transformation w = f(z) implied 

by (6.1) is indeed bilinear. Then verify that (6.1) guarantees 

that f(z,) = wi, f(22) = we, and flz3) = ws. 

(b) Prove that the bilinear transformation te = f (2) in part (a) 

is unique. HINT: Suppose that w = g(z) is another bilinear 

transformation which maps the three given 2 points into the 

three given w points. With the help of the results stated in 

Exercises 4 and 5. show that the composite transformation 

g7'(f(2)) has three fixed points so it must be the identity 

transformation. 

7. Verify that if @ is a complex number with la| < 1, then 

w = (2 —a)/(1 — a) maps [2] < 1 onto jw) < 1, witha 

being sent to the origin. 

8. (On which side of the boundary curve ts D’?) First, review 

the COMMENT at the end of Example |. Rather than rely on 

a pointwise check, one can determine whether D! is on one 

side of the mapped boundary curve or the other, as follows. 

Let three points on the boundary curve of D be labeled con- 

secutively as A,B,C, and imagine walking along that curve 

from Ato Bto ©. ifthe region is on our left (right), then like- 

wise the region D! is on our left (right) when we walk along 

the corresponding curve in the w plane, from Alto Blia C". 

For instance. when we walk along ABC in Fig. 3 the region 

D is on our left. so when we walk along A’B‘C" in Fig. 5 the 

region D’ must, likewise, be on our left. The problem is this. 

Show that the truth of the italicized claim, above, follows from 

the conformality of the mapping. 

9, (a) Use (6.1) in Exercise 6 to find two distinct bilinear trans- 

formations that map z < 0 onto jw) < 2. and express them in 
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the form w = (az + b)/(cz +d). HINT: Use the idea in Exer- 

cise 8 to be sure that D’ is jw) < 2 rather than |w) > 2. 

(b) The same as (a), but this time map @ < 0 onto |w) > 2. 

(c) The same as (a), but this time mapz+y < Lontou-v > 3. 

(d) The same as (a), but this time map ¢-+y > 4 onto [w] < 1. 

    

10. Determine the image of the given region under the map- 

ping w = (< + 1)/(2 — i). Label the various key points in the 

s and w planes. 

(ay <0 

(c)y >t 
(e) the wedge 0 < argz < 1/4 
(f) the quadrant 0 < args < 7/2 

(g) the annulus 1 < [2] <2 

11. Determine the image of the region Q < 2 < 0, Q<y< 

90 under the given mapping. Label any key points. 

(a)w = 1/(s- 2) 
(c}w = 2/{z— 1) 
(e)w = (2 - 1)/(2 +2) 

12. Putting the pole of the transformation al A, we used (14) 

to solve the problem shown in Fig. 3. Putting the pole at C’ 

instead, use 

(b) w= 1/(2 +2) 
(d)w=2-i/z 

(f)w = (2 — 3)/z 

ws) = - 

and show that your final result agrees with that given by (19). 

13. Use computer software and equation (19) to plot the 

isothermal curves uo = 0,0.2.0.4.0.6,0.8. and 1. Using 

Maple. for instance. this can be done using the implicitplot 

command. 

14. Solve the given Dirichlet problem with the help of a bi- 

linear transformation. Obtain that transformation yoursell, 

or use the table in Appendix F. In each case the PDE is 

Wea = Wee FU yy = 0. 

(a) Let D be the infinite plane. with a cutout defined by 

a? + (y ~ 3)? = 25 for y = Oand bye? + (y+ 3)? = 25 for 

y <0. Let w = 100 on the former, and v: = 0 on the fatter. 

HINT: D can be mapped onto an infinite wedge. 

(b) Let D be the region a < 2 with the disk +a? <1 cut 

out. Letew = 30 0nx = 2andy = 200n2?+y° = 1. HINT. 

The desired mapping can be obtained as a limiting case of the 

one given by item 4 of Appendix F. 

(c) Let D be the disk x? +y? < 9, with the disk (2 — ayray < 

* cut out. Let uv = Lon a ty = Jand wv = 0 on 

(x 3)? +y= s HINT: Locate the pole of the transforma- 

tion at a suitable point on the boundary of D.
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(d) Let D be the “crescent” bounded above by the circle pass- 

ing from —3 to 97 to 3, and below by the circle passing from 

—%$ to 3i to 3. Let % = 1 on the upper arc and ~ = 0 on the 

lower arc. In particular, evaluate 7/(0, 4). Also, explain why D 

cannot be mapped, by a bilinear transformation, onto an infi- 

nite strip or the region between concentric circles. HINT: Map 

D onto an infinite wedge. 

(e) Let D be the disk |z| < 1 with the disk |z ~ 3] < } cut 
out. Let # = 50 on {z| = Land y = 0on |z = $| = ¢. 

  

22.4 Additional Mappings and Applications 

The bilinear transformation, discussed in Section 22.3, is nontypical in the sense 

that it is the only transformation that is one-to-one. That is, w = (az + 6)/(cz +d) 
gives a unique w for each z (except for z = —d/c), and solving for z gives the 

unique value z = (~dw + b)/(ew — a) for each w (except for w = a/c). 
Thus, with any other mapping we will inevitably need to deal with multi- 

valuedness. For brevity, we will consider just two representative examples, with 

other mappings and applications reserved for the exercises. 

EXAMPLE 1. Solve for the potential v(x, y) within the curved strip shown in Fig. I, 

subject to the boundary conditions shown there, together with a condition that w be bounded 

on D. 

ya 

    

y 

  

  A’ : B’   
  

Figure 1. Potential in a curved strip. 

A suitable mapping for the curved strip is not in the short table provided in Appendix 

F,* but is given by 

because we see from 

2 wees? = (a? —y*) +i2zry (1) 

a y’, use 2ry (2) 

that AB and EC map into the straight lines v = 2 and v = 4, over ~c0 <u < oo. Thus, 

the problem on W(u, v) shown in Fig. | is simple: we can seek W as a function of v only so 

  

*For a much more extensive table, see for example H. Kober, Dictionary of Conformal Represen- 

tation (New York: Dover, 1952). 
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V2U = Van + Voy = 0 reduces to a /dv? = (). The general solution is Y= Au + B, 

and the boundary conditions give 

UW = 25(v — 2). (3) 

Finally, recalling from (2) that v = 2ay, we have the desired solution 

W(x, y) = 50(ay ~ 1). (4) 

COMMENT. We mentioned above, that multi-valuedness was inevitable. Indeed, although 

w = 2” is single-valued, the inverse transformation z = \/w is double-valued. That 

statement might be surprising inasmuch as when we returned from the w plane [equation 

(3)] to the z plane [equation (4)| we did not seem to have to make a choice between two 

values. Actually we did, but it might have gone unnoticed. Namely, the region D’ maps 

back into D in the first quadrant but also into a similar curved strip between xy = 1 and 

zy = 2 in the third quadrant. Without fuss, we simply chose the one in the first quadrant. 

We could have introduced a branch cut for the \/w function, but it really wasn’t necessary. 

(See Exercise 1.) @ 

EXAMPLE 2. Electric Potential in Semi-Infinite Strip. We wish to solve for the electric 

potential (i.e., the voltage) w(2, y) within the semi-infinite strip shown in Fig. 2. The 

edges « = Oand x = 1 are “grounded” (a = 0), the edge y = 0 is maintained at 100 volts, 

and we ask uw to be bounded on D. 

It’s true that the boundary of D is comprised of circular arcs (namely, straight lines), 

but the bilinear transformation is of no help (Exercise 2). Turning to Appendix F for help, 

let us try the mapping w = — cos wz (entry 10). Then the mapped problem is as shown in 

Fig. 3. That problem is easier in the sense that it is the Dirichlet problem for the upper 

half plane, which has already been solved using a Fourier transform in Section 20.4. Using 

the solution given in that section, we have 

U(u, v) “[ Wu’ v)du' _ 100u [ du! 

T fing (Wo ule +e? wr fi, (wu +? 

» fim’ dé 100 ~u -l- _ 100v _ dé 8 a l—u —tanc! l-u 5) 

to foyiy E+? W v vu 

where —7/2 < tan7!() < 1/2 for each of the tan7!()’s. [As a check, observe that for 
u = Oandv — 0 equation (1) gives WY —- HO (z + 5) = 100, foru > landuv + 0 

equation (5) gives VU —» 0, and for uw < —1 and v — 0 equation (5) gives Y -+ 0, all of 

which are correct.] 

Next, w = —cosms = —cosn(@ + iy) = — cos ma cosh ry + isin rz sinh wy gives 

  

    

u = —cosmzcoshiy, v = sin we sinh ry, (6) 

and putting these expressions into (5) gives the solution 

0 an’ (se) —tan7! (Seen) a 
sin wx sinh wy sin wx sinh ry 

  
10 

w(zyy) = - 
A 

  

Figure 2. Electric potential 

in semi-infinite strip. 

  

val plane 

p’ 

| V2 wed 

vy | oe 
A’ “LE oN 4 | | Bou 

y=) = 100 Y=Q 

Figure 3. The mapped 

problem: w = — cos wz.
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where we recall that ~7/2 < tan™!() < /2 foreach tan~!(). 

Lf we do not notice that the w plane problem can be solved by the result given in Sec- 

tion 20.4, we can make one more transformation, from the w plane to a ¢ plane (where 

¢ = € + in) using entry 8 of Appendix F. Denoting W(u(€,7),0(€.9)) = (E77), the 

result of this second mapping is indicated in Fig. 4. Finally, the problem in the ¢ plane is 

  

  

    

Branch cut chosen for 

  

  

- wim | 
= log 

w+ 4 - 
VA 7 ¢ plane 

| w plane . . 

| a” = 100 ‘Y= 100 , 

Y uu Puy =0 | w C ! mn 8 

Db” Pee + Poy = 

A’ ! u Cc” . / EY’ A” . BY E 

Y=l Y= 100 w= Y= 0 W=0 . 

Figure 4. One more mapping. 

simple (since W varies with 7 but not €) and gives the solution 

~ 100 
WE.) = —n. (8) 

fi 

Retracing our steps. we need to express 77 in terms of u and v, and then uw and v in 

terms of z and y. First, we express w ~ 1 =r Lett and w+ 1 = reel” (Fig. 4) so that 

ee etn | TL i102) ) 2 Th yg , , 
C= &€+in=log|—e = In — + i(01 — @2). (9) 

ra re 

It follows from (9) that 7 = @, — @ so 

. 100 
W(u,v) = —-(8, — 02). (10) 

T 

It is convenient to use the fact that the angle @, — 0» in Fig. 4 is equivalent to @, — @2 

(Fig. 5) so 

100 100 L~u -l-uw 
(@, -¢.)=— jan! (=) —tan! (==*)| ; 

w re v u 

=i 

(11)   Plu) = 

where —7/2 < tan '() and we see that this result is identical 

to (5), 

COMMENT 1. We didn't say so explicitly, but the branch cut that we used to make C = 

log == wa = log (w — 1) — log (w + 1) single-valued is as shown in Fig. 6. Other choices 

could have been made, but the final solution would have been unaffected. 

COMMENT 2. Observe that we mapped from the z plane to the w plane using w = 

~ cos mz, and then from the w plane to the ¢ plane using ¢ 2 est. The two steps 

() < 7/2 for each tan7 

        



  

22.4, Additional Mappings and Applications 

could have been combined into one as 

. cos mz + 1 

cos mz ~- 1 

but it is much easier to proceed by a sequence of small steps — both in this problem and as 

a general rule. 

COMMENT 3. In this example, the original semi-infinite strip problem could have been 

solved by separation of variables, which method gives (Exercise 3) 

enny, (13) 
  

400 s sin ne 

but surely the conformal mapping result (7) is nicer since it is in closed form, whereas the 

separation of variable result (13) is in the form of an infinite series. We should be able to 

obtain (13) from (7) by expressing 

ery Levty ( 
cosh ry = oe fe ») [2 = (1+ p*)/2p, 

ety — erky 4 5 
sinh ry = jo € -r) /2 = (1 — p*)/2p, 

where p = e~"¥, and doing a Taylor expansion of the right-hand side of (7) in powers of 
p, but we will not pursue that point. @ 

Closure. Important points made in this section are as follows. First, in selecting a 
mapping. for a given application, it is reasonable to rely on conformal mapping ta- 
bles. Second, one often employs not a single mapping but a sequence of mappings. 
as we illustrate in Example 2 and as are illustrated in the exercises of Section 22.6. 
Third, if we use a mapping other than the bilinear transformation, then it will in- 
evitably involve multi-valuedness — that is, it will not be one-to-one. Finally, in 

seeking the image of a circular arc under a bilinear transformation, in Section 22.3, 
it sufficed to map only three points (two, in fact, if we know the image to be a 
straight line) because three noncollinear points uniquely determine the circular im- 
age curve. In general, however, the image of a given curve, under a given mapping, 
is not a circle, and three points by no means suffice. Rather, seek the image of the 
entire curve, not of individual points. For instance, if a given curve C’ in the z plane 
is given parametrically by w = (7) and y = y(r), fora < 7 < b, then the image 

curve is given parametrically by u = u(x(r), y(7)) and v = v(x(r), y(7)), for 
a <7 <b, Asasimple illustration. let us take another look at finding the image of 
the curve ry = 2, in Example | (Fig. 1). If we parametrize that curve by 

eat, y=2/r, (0<7 <x) 

then (2) gives 
‘ 5 . 

ust dlr, v=, (0< 7 < ow) 

which is the horizontal line vw = 4. for -co <u < mw. 

1169
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EXERCISES 22.4 
  

1. Show a branch cut for z = /w that sends the infinite strip 

D! (Fig. 1) back into the curved strip 1 < xy < 2 in the first 

quadrant, rather than in the third quadrant. 

2. Show that the region D in Fig. 2 cannot be mapped into a 

circular annulus or an infinite strip by any bilinear transforma- 

tion. HINT: Note that D has two corners on its boundary. 

3. Derive the separation of variables solution (13) to the prob- 

lem on (2, y) in Example 2. 

4, In each case. solve V?v) = 0 for w(x, y) for the specified 
region D and the specified boundary conditions, together with 

the condition that % be bounded on D. Tf useful, you may use 

the known solution of the Dirichlet problem for the half plane 

[(12) in Section 20.4], as we did in Example 2. 

(a) Let D be the stripO <y <7,-~m <a < oo. Lety = 0 

everywhere on the boundary except on y = 0(-co < a < 0), 

where y? = 20. Also, evaluate (0, 7/2). HINT: Use entry 6 

in Appendix F. 

(b) The same as part (a) but with 0 < y < 5 instead of 

QO < y < a. HINT: Modify the mapping given in entry 6 

slightly, so that D’ is once again the upper half plane. 

(c) Let D be the region 0 < # < 0,0 <y< oo. Letty = 0 

everywhere on the boundary except on vw = 0(2 < y < 00), 

where y = 35. Also, evaluate u'(2,2). HINT: Use entry 5 in 

Appendix F. 

(d) The same as part (c), but with different boundary condi- 

tions. This time, let v = 0 everywhere on the boundary except 

ong =0(0 <y < 2), where wp = 35. 

(e) Let D be the 45° wedge between the positive z axis and 

the line y == x. Let y) = 0 everywhere on the boundary except 

on the x axis from x = 5 to z = oo, where w = 200. Also 

evaluate 1)(5, 1). HINT: Use entry 5 in Appendix F. 
(f) The same as part (e) but with different boundary conditions. 

This time let y == 10 everywhere on the boundary except on 

the w axis from x = 0 to x = 10, where y = 0. 

(g) Let D be the semi-infinite strip0 << 2 < 1,0 <y < m™. 

Let) = Oona = Oandony = 0, and let = 400 ona = 1. 

Also, evaluate 7(0.5,0.1). HINT: Use entry 10 in Appendix 

FE. 

(h) Let D be the semi-infinite strip 0 < 2 < 4,0 < y < om. 

Let = Oon y = 0, and let y = 200 onw = Oanda = 4. 

Also, evaluate w(2, 2), 41(2, 4), #(2, 6), w(2, 8), ¥(2, 10), and 
w(2, 20). HINT: You can use entry 10 in Appendix F, but will 

need to modify it slightly. 

(i) Let D be the semi-infinite strip -2 <r << 2,0<y< wm, 

Let wy = Oonge = —2,andony = 0(-2 < x < 0), and let 

w= 500nag = 2andy = 0(0 < x < 2). Also, evaluate 

wW(0,1) and (0,30). HINT: With a slight modification you 

can use entry 12 in Appendix F. 

(j) Let D be the region in the right half plane, between the lines 

y = +a and the curve x* ~ y? = 4. Letw = 300ny = +a 

and let y) = 20 on 2” ~ y* = 4. Also, evaluate ¥(1,0) and 

w(0.6, ~0.4). HINT: Use the mapping w(z) = 2”. 

  

22.5 More General Boundary Conditions 

Thus far, all of the boundary conditions considered have been constant and of 
Dirichlet type, 7 = constant. In this section we show how to handle noncon- 
stant boundary conditions, Dirichlet conditions (7 given), and Neumann conditions 

(Ow/On given) as well. 

The fate of a Dirichlet boundary condition, under a mapping w(z), is simple. 

Since 
  

|w(e,y) =w(a(u,v),y(u,v)) = W(u,v), | (1) 

we see that if w takes on the value 26, say, ata point P on the boundary of D, then 

 



  

22.5. More General Boundary Conditions 

W takes on that same value at the point P’ (the image of P) on the boundary D’, 

EXAMPLE 1. Nonconstant Dirichlet conditions. Find the boundary conditions in the 
w plane for the problem displayed in Fig. 1. Here, D is the region between the hyperbola 

     

  

  

  

    

  

¥ 4 v 

F | A ce wa 
‘a 

| A’ 6 P B’ 

ne yxy=3 
y=- 25 | D a 

l+y | -w=l0e vy a9 : 
D’ = 

| B 

L 

/ - ¢ ¢ f E y= 30 Cx F E wo? Cu 

Figure 1. Nonconstant Dirichlet conditions. 

ry = 3 and the positive x and y axes, and the w = 2? mapping gives the relations 

u=nr?—y?, v= Qry. (2) 

The w = 30 boundary condition on EC carries over to WV = 30 on its image E’C". To 
determine the image of the Y = 10e7* condition on AB, we need to express 2 (on AB)in 
terms of u (on A’ B’). To do so, put y = 3/2 into (2), obtaining 

u= 2? — S 
re! 

v= 6. (3) 

Multiplying the first of these by x? gives the 2? — uz? — 9 = 0, which is a quadratic 
equation in 2, so that 

   
ut Vu? + 36 

5 , 
9 uk Vu? + 36 
= 

      

(4) 

where, in the last step, we selected the + sign since x is to be real, Thus, the boundary 
condition on A’B’ is 

     u+ Vu? + 36 
W(u,6) = 10exp | —' (—0co < u < ow) (5) 

On EF we have x = 0 so (2) gives u = —y* andv = 0. Thus, y = \/~wu (remember 
that u <0 on F’ EE’) and the boundary condition on F’ 5" is 

+ 25 _ W(u,0) = ——== (—co <u <0) (6) L+ Jeu 

|
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We will not attempt to solve the © problem. Our purpose was simply to illustrate the 

transformation of the nonconstant Dirichlet boundary conditions. # 

Next, we turn to Neumann boundary conditions, namely, where 0y)/On is 

prescribed on the boundary of D, Ouws/On being the directional derivative of w in 

the outward normal direction. How does 0y/On transform under the mapping 

w= f(z)? 
Let z be any point on the boundary C' of D, and let 29 lie within D ona straight 

line L which is normal to C at z (Fig. 2). The image L’ of L will, in general, 

- we fle). 
oa 

  

Figure 2. Transformation of Neumann condition. 

be curved. but conformality guarantees that it be normal to Cat w. Then, with 

Az=2—2z and Aw = w — wo we have 

wh — wv 
= lim ————. (7) 

Ow : 

Az30 9 [As On 

    

Butw), = UI, vi. 
“0 

= Wi... and lima:—+o Aw/Az = f'(2) so 

Ow wh, Uh, (Aw) ow 
am) ose lim mo = 
On|, Azo [Aw |Az, ON ho 

wo (fe), (8) 

where OW /ON denotes the directional derivative of V in the outward normal direc- 

tion. In the final equality in (8) we used the fact that Az -+ 0 implies that Aw — 0 

for if w = f(*) is a differentiable function of z, then it must surely be a continuous 

function of z. We conclude that Neumann boundary conditions transform, under a 

conformal map, according to 

      

  

     
(9)   

OW 1 Ow | 
oh | LON [f’(z)} On? 

where f’(=) 4 0 by the assumed conformality. As an important special case, we 

see from (9) that if OW/On = 0 on C, then OW /ON = 0 on Cc’. To remember (9), 

observe, heuristically, that dN = | f’(2)| dn because | f’()| is the local magnifica 

tion (Exercise 1).



  

22.5, More General Boundary Conditions — 117 

EXAMPLE 2. To illustrate (9), let us use the same problem as displayed in Fig. |, but 
with the boundary conditions changed to Neumann boundary conditions: Ow /On = 10e~* 

on AB, O~/On = 30 0n HC, and OW /On = 25/(1 + y) on FE. 
f’(2)| in (9) is Consider AB, With the help of (4), the 

  

  

      

  

  

  

If'(2)] = [22] = 

_ ue fue + 36 18 

2 ut Vue +36 

= 2 u? + 36. (10) 

Further, the Ow /On = 10e~* needed in (9) is given by the right-hand side of (5), so 

Ow 1 u+ Vue +36 
SN 7 9 yseaae | exp | -] — (11) 

  

on A’B’. Next, consider EC’. There, (2) gives a = Ju, so 

|f'(2)| = |22| = 2a = 2Vu 

so (9) gives 

    
owt (30) = 15 (12) 

ON 2fur Su a 

on £’C". Finally, consider FE. We leave it for Exercise 2 to show that 

Ow 29 
=o (13) 

ON 2 (/-u — u) 

on FF’ EY". 

COMMENT. Simpler than (10) is the following approach: 

  

= [22] = 2|z| = 2V lw] = 2Vu2 + v? 
v=6 

r'(e)   

on A’ B’. @ 

Closure. The transformation of a Dirichlet boundary condition is simple: accord- 
ing to (1), W(u,v) = w(a,y). For instance, if yw = 47 at a point < on the boundary 
C of the regon D, then Y = 47 at the image point w on the boundary C" of the re- 
gion D’. Of course, one does need to determine the correspondence between points 

on C' and points on C’. In Example |, for example, to transform the boundary con- 
dition vw = 10e7* on AB we need to solve for z (on AB) as a function of u (on 

A'B'),
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In contrast, Neumann conditions do not carry over intact. 

Ow /On = 25 ata point z on C,t 
For instance, if 

then OW/ON does not equal 25 at the image point 

w on C”, it equals 25 times the scale factor 1/ | f’(2)| which, in general, is not unity. 
That scale factor is due to the local magnification of dn: dN = | f’(z)| dn, as can 

be seen in the denominators in (9). 

  

EXERCISES 22.5 
  

1. In the sentence preceding Example 2, we stated that | f"(<)| 
is the local amplification. That is, if Az = 2 — zo is any vec- 

tor springing from zg, and Aw = w — wo, where wo is the 

image of 2 9 and w 's the image of z, then the “magnification” 

| f’(2o)| in the limitas Az + 0 (¢ ap- 
proaches to ifw = f(z) is analytic at zo and f’(zo) # 0 (Le. 

if the map is conformal there). Why is that statement true? 

2. Derive the expression (13) for OW /ON on FE”. 

                     

3. In each case you are given the region D, Dirichlet and/or 

Neumann boundary conditions, and the mapping function 

w(z). Determine the image D’ and transformed conditions 

on its boundary. You need not solve for WU. 

(a) Region D: ~c0 <a < cw, 0 <y < 30/2. Boundary con- 

ditions: wy(2,0) = 5, w(@, 37/2) = sinw. Map: w(z) = e*. 
(b) Region D: ~co < 2 < 00, ~7/2 < y < 7/2. Boundary 
conditions: w,(¢,-7/2) = ba. n/2) = Bel, 

Map: w(z) = e*. 

20 cosa, 

(c) Region D: 0 < x < oo, 0 < y < mw. Boundary condi- 

tions: w y(£, 0) =e7*,v2(0,y) = By, w(z,m) = e7**. Map: 

w(z) = e*. 
7/2. Boundary condi- (d) Region Di -reo ce << 0,0<yK< 

2y, wy(e, 7/2) = 5. Map: tions: (2,0) = 5e*, vy, (0,y) = 

w(z) = e. 
(e) Region D: 0 < x < 2,0 < y < m. Boundary conditions: 

dy /On = 10 on all four edges. Map: w(z) = e’. 
(f) Region D: 0 <2 <1,0< y < ow. Boundary conditions: 

w(0,y) = e7¥, OW/On = 10x on y = 0, Oy/On = 0 on 

xv = 1. Map: w(z) = (2 - 1)/2. 
(g) Region D: 0 < @ < 00, -o@ < y < oo. Boundary con- 

ditions: v3(0,y) = 50 on —co < y < 0, ¥(0,y) = 50e7¥ on 

O<y < oo. Map: w(z) = (2 - 1)/(« +1). 
(h) Region D:0<«@ < 1,0 < y < oo. Boundary conditions: 

w(O,y) = at Ov/On = ~2 on y.= 0, ¥(1,y) = 3e7%, 

Map: w(z) = 1/2. 
(1) Peco D:0 <a <1,-co < y < 0. Boundary condi- 

tions: w y) = 25cosy, OW/On = 5ony = Oandona = 1. 

Map: w(z) = 1/<. 
(j) Pecan D0<a< f/ity’.0 < y < co. Boundary 

conditions: w(0,y) = siny, dW/On = lony =0, Wy = 2e7¥ 

ona = /1+y?. Map: w(z) = 2. 
(k) Region D: 0 < «& < 9,0 < y < oo. Boundary con- 

ditions: u(0,y) = 5/(y? +1), w(a,0) = 2 — 5e7*. Map: 

w(z) = 2, 

  

22.6 

Let q(x 
0), then there exists a scalar velocity potential @ such that q = 

if the flow is incompressible (Le., 

Applications to Fluid Mechanics 

,Yy, 2) be a fluid velocity field. If the flow is irrotational (i.e, V x q = 
V@. Further, 

V-q = 0), then V-Vé = V°o = 0, so 

satisfies the Laplace equation. Thus, an irrotational incompressible flow is called a 

potential flow. These points are discussed in Section 16.10. (There, we used v for 

the velocity field; here, it is more convenient to use q.)
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In the present section we consider only two-dimensional potential flows gov- 

erned by 
24 n A 5 

Vb = Pea + Pyy = 0. (1) 

Throughout this section we assume that the boundary condition is q-n = 0 along 

any rigid boundaries, where n is the usual outward normal vector (to the flow 

field). That is, the flow neither separates from the wail nor penetrates it. Thus, 

q:n = Vé-n = 0d6/On = 0, where the second equality amounts to the direc- 

tional derivative formula dé/ds = Vd-s in any 8s direction, from Section 16.4. 

EXAMPLE 1. Flow in a Corner, Determine the potential flow in a corner, sketched 

       
       

in Fig. 1. The function ¢ = 2* maps the first quadrant of the 2 plane, conformally. onto 

4 

SS ~ 
“ 2 

dD’ V-b=0 

n 

“ AP ° 
9 26 i —=0 N 
aon ON 

Figure 1. Corner flow. 

the upper half of the ¢ plane, with the boundary condition 0@/On = 0 carrying over to 

O6/ON = 0. Note that we use a¢ = € + in plane. rather than the usual w = u + tv plane 

because u. vu designate the w. y fluid velocity components. here. and w will be used for the 

so-called complex velocity potential. defined below. 

A simple flow in the ¢ plane. which will give the desired corner flow in the = plane, is 

the uniform stream shown in the figure. for any stream speed Uy. Then 00/0€ = Uy and 

J6/In = 0.30 O(E, 1) = VG. Since 

C=€+in=(etiyy =a? - y+ i2ey, (2) 

we have € = x” ~ y? andy = 2xy so 

O(a. y) = Up€la.y) = Vola® — y°). (3) 

Hence. the desired velocity field is given by 

q = V6 = UWy(ai - uj). (4) 

Reeall. from our study of the gradient in Section 16.4. that at each point in the field 

the vector Vé is normal to the @ = constant curve through that point. [tis also true that 

if wz. y) is the conjugate harmonic function corresponding to é(r,y) so that w(z) = 
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&(e,y) +iw(x, y) is an analytic function of s, then the @ = constant curves are orthogonal 

to the @ = constant curves (as is discussed in Exercise 16 in Section 21.5). Thus, the 

fluid particles move along ¢ = constant curves. These curves are called streamlines, and 

w(x, y) is called the stream function, (For additional discussion of the stream function, see 

the exercises in Section 16.10.) 

Corresponding to @(a, y) = Up(x? — y*), the conjugate harmonic function (x, y) is 

readily found (Exercise |) to be 

wo 

so the streamlines w(a,y) = 2Upxy = constant are the hyperbolas cy = constant as 

shown in Fig. |. @ 

  

y) = 2Uory (5) 

Observe that we solved the potential problem for @(a, y). From @, we obtained 
the velocity field as q = Vo, and we obtained the streamline pattern by finding 
the conjugate harmonic function w(z, y) corresponding to é(.c, y). However, in the 
fluid mechanics literature it is more common to work with the complex velocity 

potential. 

w(z) = O(@,y) + ie(x. y). (6) 

right from the start, rather than ®. Then 

dw Lo. , ; 
i = Og + iy = Oy ~ 1Oy =U Tv. (7) 
dz 

where the first equality holds because w(2) is analytic (see Theorem 22.5.1), and 
the second one holds because 6 and uv: satisfy the Cauchy —-Riemann conditions. 
Thus. we recover the x.y velocity components from w(z) as u = Rew’(2) and 

u = -Imw'(<), respectively. 
Let us denote 

w(2(C)) = W(¢) = &(€. 9) + h(E. 1). (8) 

Then, by the same reasoning as used in (7). 

dV 
—=U—iV. (9) 
dC 

where U(€,7) and V(€, 77) are the €. 7) velocity components, respectively. 

To illustrate the use of the comple x potential w. let us rework Example | using 

w. In the ¢ plane we have 

dv . _— 
= U(E.n) — IVE.) = Un — 0 (10) 

“dC 

so FY = Upc (plus an arbitrary constant, which can be set eq ual to zero without 

loss). Returning to the < plane via the mapping function ¢ = =*. we have 

w= Ups” = Upla® = y?) + i2Uony (11)



  

; 
i i 

i 
j 
i 

22.6. Applications to Fluid Mechanics 

and 
dw 

= 2Uoz = 2Uox + 12U oy, (12) 

so the quantities of interest are f(a, y) = Up(2?—y’), (a, y) = 2Uoxy, ula, y) = 
2Upu, and v(z,y) = ~2Uoy, as found in Example |. Notice, in particular, that 
usu = Oat the corner (v = y = 0), which is therefore a stagnation point. 

We consider just one more example, to further illustrate the use of the complex 

potential and to introduce the important Joukowski transformation. 

  

   

EXAMPLE 2. Flow Over Semicircular Bump. We seek the plane potential flow over 
a semicircular bump of radius a, where the flow tends to a uniform stream q = Upi as 

r —} oo along any @ = constant ray (Fig. 2). The boundary condition is that d@/On = 0 

all along the solid boundary ABC EF’. 

    

  

  

sy 7 

Vb =0 
—>-——_____———————_ 

ee >-—$ 

DD’ 
$+ 

——>~_ 

B’ CE’ 

~ 2a 2a \ S “4 - 
9 6 N 
ON 

Figure 2. Flow over semicircular bump. 

From Appendix F we find that the Joukowski transformation 

2 

C= tt (13) 
      

maps ), conformally, onto the upper half of the ¢ plane (Fig. 2). Besides preserving the ho- 

mogeneous Neumann boundary condition (because it is a conformal map), the Joukowski 

transformation also preserves the boundary condition at infinity, 

dw 
a ula, y) ~ iv(2,y) ~ Uo asz-4 oo, (14) 
dz 

because (13) gives ¢ ~ 2 ass > 90. That is, it follows from 

dw _ dWdc di (15) a) 
dz de dz d¢ 

and (14), that 

—— ~ Uo as€ 3 &. (16) 

{177
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In fact, the flow in the ¢ plane is simply a free stream 

Wo= Uoe, (17) 

not just at infinity but everywhere, Finally, putting (13) into (17) gives the desired complex 

potential 

w= Uy (: + ©) (18) 

Since the boundary of D is made up of constant r and constant @ curves it is convenient to 

  

put « = re’? (rather than z = x + iy) into (18) so 

a” a \ 
w= Uy (; + =| cos # + iy (- ~ =) sin 0. (19) 

r r 

Thus, 

ae 
dr, 0) = Up (: + ~) cos 6, (20a) ' 

a’\ 
U(r, @) = Uo (: ~ ~) sin 8, (20b) , 

and 

dw ae a Oe 
ie =u-iv=Ugll- 5) =U09{1- —z COS 20 | + iUy—= sin 20 (21) 
dz 2 r re 

so the velocity components are 

2 
an . 

u(r. 0) = Uy (1 — — cos 20) . (22a) re 

2 
a, 

u(r, @) = ~Up— sin 20. (22b) pe 

COMMENT |. Observe that (22) does satisfy the boundary condition at infinity: u ~ Up 

and v + Oasr —+ 00. And from (20b) we see that the solid boundary ABC EF (Fig. 2) is 

indeed a streamline, namely us = 0: on BF and AB the siné factor is zero. and on BCE 

the r — a*/r is zero. 

COMMENT 2. The closed form solution (20a) to the problem shown in Fig. 2 could also 

have been obtained by separation of variables. 

COMMENT 3. We pointed out that the Joukowski transformation (13) preserves the flow 

at infinity. from the z plane to the ¢ plane, because (13) gives € ~ zasz —- x. It is 

interesting that we can think of (13) as the simplest (nontrivial) case of the more general 

transformation 

having that property. @ 

Closure. The key idea in this section is the use of the complex velocity potential 
wz) = o(a,y) + iw(a,y), rather than just o(.r, y)+ Once we find w, the x and
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y velocity components, uv and v, are found from dw/dz = dy +i, = Uu tv, 

and the streamlines are found from Imw = y(a,y) == constant. We also meet the 

Joukowski transformation (13), which has the property of preserving the conditions 

at infinity because it simply gives ¢ ~ z as z > oo. We will have more to say about 

that transformation in the exercises. 

  

EXERCISES 22.6 
  

1. Given o(a,y) = Uo(a"? - y*), derive the conjugate har- 
monic function given by (5). 

2. (a) Instead of the 90° corer shown in Fig. 1, consider the 

45° corner shown here. Solve for the corner flow sketched in 

the figure. That is, solve for w(z), (a, y), W(2,y), ula, y), 

and v(2,y). Show whether or not the corner is a stagnation 

point, as it was for the 90° corner flow in Example 1. 

va 
| 
|    

    

(c) The same as part (a) but for any corner angle @ (radians). 

[In (a). for instance, a = 7/4] 

(d) In view of the results in part (a), would you say that the 

corner flow found in Example | is unique? Explain, HINT: 

A flow is possible for which the 45° ray y = @ is a stream- 

line. Another flow is possible for which 30° and 60° rays are 

streamlines. And so on. 

3, Use computer plotting software. such as the Maple implic- 

itplot command, to obtain the z plane flow pattern shown in 

Fig. 2. using four or five representative streamlines, somewhat 

as We have. 

4. In each case find w(z), d(a,y), w(a,y), ule,y), and 

v(t, ). 
(a) Solve for the downward and rightward potential ow be- 

tween the positive x and y axes and the curve cy = 6 in the 

first quadrant. 
(b) Solve for the downward potential flow in the upper half 

plane. between ry = —1, cy = 4, and the z axis. 

5. (Joukowski transformation) Show that the Joukowski trans- 

formation 

ar _— 
E+in=zt— (a > 0) (5.1) 

maps the family of circles xz? +y° = c? onto the confocal 

ellipses 

ca 42 ’ 
Ss (5.2) 

(e+a®/e}?  (e-a?/e)? 

with foci at € = -2a as shown in the figure. In particular. 

  

Nh W > 

a“ 

a m ry 

1 0, = a, = 

ox Soy 
\ qe a Pp é 

show that the circle |=] = a maps onto the line segment 7) = 0, 

if} < 2a. Show, further, that the region jz| > @ maps onto 

the entire ¢ plane minus that line segment, and that the region 

|z| < a does too, so that the inverse transformation is double- 

valued. In fact. show that 

2 

  

    

Ln
 

ad
 

oS
 

, (5.
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which is indeed double-valued because of the square root. 

Finally, show that with ,/¢? — 4a? defined by the branch cut 

shown in the figure (and extending from —2a to +2a), the 

image of the slit ¢ plane is || > a, whereas if we change the 

branch cut by defining #; = O and @) = 27 at P. then the 

image is |z| < a, NOTE: For discussion of the finite branch 

cut, see the optional Section 21.4.7. 

6. (Flow perpendicular to flat plate) (a) Solve for the potential 

flow around a thin flat plate that is perpendicular to a uniform 

stream Vo; thatis, dw/dz = u- iv ~ iV as 2 > oo. (Actu- 

ally, that flow is not unique, but it is if we ask it to be symmet- 

ric about the y axis. which symmetry we assume.) Specifically. 

Vo a 

solve for w(z). HINT: Use the mapping sequence suggested 

in the figure showing the 2’, 2, and 2’” planes. 
(b) Show that on the top of the plate u = Vor/V 4a? — x? and 

= 0, and on the bottom of the plate u = —Vox/ 

andv = 0. 

(c) Show that ur, y) can be expressed in terms of w and y as 

      

Vo 
2 
  

w(e,y) = vin + rz, cos @,)(1T2 -+ Te cos Ay) 

  

_ J (rt — 71, cos§,)(r2 — rg cos Oy) | , 

(6.1) 

where ry = V(x ~ 2a) +ye, ry = Ja + 2a)? + y?, 

r,cos@; = w— 2a, and rgocos@2 = w« + 2a. HINT: 

cos(A+B) = cosAcosB ~ sinAsin JB, cos 4 = 

Yo 

  

Pa 3 =’ plane 
ttc" ~ 4a 

. 2 
| oe 

ea elt? =” plane 

v0 > ~€ i 

2 
2” = rae + < 

= 2” plane 

Vo > ee EG 

~2a 2a   
(d) Use computer plotting software. such as the Maple implic- 

itplot command. to obtain the flow pattern in the = plane. (Take 

a= 1, say.) 
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A conformal map w(s) = f(z) = u(e.y) + iv(x,y) is a change of variables 
from a, y to u,v, that simplifies the given two-dimensional potential problem by 
simplifying the domain, while preserving the governing Laplace partial differential



  

i 
i { 
t 

equation. For w = f(z) to be conformal, we need f(z) to be analytic and [’(z) 4 0 
everywhere on the domain. Besides simplifying the domain while preserving the 
Laplace equation, such maps are conformal in the sense that they preserve angles, 

both in magnitude and sense, which property is often useful. 
A virtue of conformal mapping is that it gives solutions in closed form. A 

disadvantage of the method, however, is that there does not exist a systematic pro- 
cedure that inevitably leads us to a suitable mapping function f(z). Rather, one 
needs to rely on some familiarity with various important maps such as the bilinear 

transformation, Joukowski transformation, some of the elementary functions, and 

so on. Fortunately, there exist extensive tables of conformal maps. 

Thus, our program consists mainly of studying a number of different maps — 
the bilinear map in Section 22.3, and additional maps in Section 22.4. We noted 
that the bilinear map, which has the useful property of sending circles into circles, 
is the only map that is one-to-one so that, in general, one needs to be involved in 
selecting suitable branches of multi-valued functions. 

Considering only the simplest boundary conditions through Section 22.4, con- 
stant boundary conditions of Dirichlet type, we show how to handle nonconstant 
Dirichlet conditions, and Neumann conditions as well, in Section 22.5. 

Finally, in Section 22.6 we look specifically at applications of conformal map- 
ping to problems in fluid mechanics, that case being just slightly different in that 

it is convenient, and traditional, to work with the complex potential @(a,y) + 
iw, y), the z derivative of which gives u — iv, where u and v are the x,y ve- 
locity components, respectively. 
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Chapter 23 

The Complex Integral Calculus 

23.1 Introduction 

In Chapters 21 and 22 we got as far as the differential calculus of functions of 
a complex variable, with special emphasis on the concept of analyticity. After 
applying the analytic function theory to the solution of two-dimensional potential 
problems by conformal mapping, in Chapter 22, we now pick up where we left 
off in Chapter 21 and turn 0 the complex integral calculus. We begin by defining 
the complex integral tof z) dz, and then proceed to derive three major integral 
theorems: the Cauchy theorem, the fundamental theorem of the complex integral 

calculus, and the Cauchy integral formula. 
From the Cauchy integral formula we will derive Taylor series for functions of 

a complex variable, and a generalization of the latter known as Laurent series, in 
Chapter 24. Laurent series will enable us to categorize singularities into different 
types and to thereby understand them better. It also leads us, in the final section of 
Chapter 24, to the important residue theorem of the complex integral calculus. 

It would be natural to expect the evaluation of complex integrals to be more 

difficult than the evaluation of real integrals. Thus, it is surprising to discover that it 
is often very simple, thanks to the extremely powerful integral theorems mentioned 

above. 

23.2 Complex Integration 

23.2.1. Definition and properties. Having studied the Riemann integral { fle)dx 

of areal valued function f on areal w axis, in the calculus, we generalized that con- 

cept to line integrals in two or three dimensions, in Chapter 16. Here. we extend 

the concept once more and introduce the complex integral 

r= fre ) dz (1) 

of a given function f along a given oriented curve C' in the complex z plane: f may 

be analytic or not, and C may be either a closed curve or an arc, but in either case 

1182
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we shall assume that C’ is ptecewise smooth and simple.” The curve C' is called 

the path of integration, or contour, To define the integral (1), we stay as close as 

possible to the definition of line integrals developed in Chapter (6. 

Suppose that C has initial and final points 2 = A and z = B, respectively. 
[f Cis closed, then B = A. Divide C’ into n ares by specifying points zg = A. 
21, 22;---;2n—1,;2n = B along C’. Let the division be chosen arbitrarily, provided 

that the points 2; are spaced and numbered s so a the arc length from A to 2, is 
less than the are length from A to zp, if 7 k; (Fig. 1). Denote the m ares as 
C1, C@y,...,Cy, where the endpoints of oa are zj—; and 2;. On each Cj choose 

some point Q; that is anywhere between the endpoints of Cy or at one of the end- 
points, and form the sum 

In = S- f(Qy) Az, (2) 
Jol 

where Az “i = 2}; ~ zj~1. The choice of the z;’s and Q,’s defines a partition of C, 
and we call the largest |As;| the norm of the partition. We introduce not just one 
partition but a sequence of them such that the norm of the mth partition tends to 
zero as 7. > oo. If the corresponding sequence of sums Jj, J9,... converges to a 
limit, we call that limit the integral te (2) dz. We then say that the integral exists 
— that is, that it is convergent. 

From this definition it can be shown that complex integration is Jinear — that 

| iaf(s) + Jg(z))}dz =a | fle)dze+ 3 | gz) dz (3) 
JC JG JC 

for any scalars a and 3 and for any functions f and g for which the three integrals 

exist, and that if we break C' into two parts, C, and C's (Fig. 2), then 

iS, 

| [le)dz= | f(z)dz+ | fle) de. (4) 
Jc JC 

Finally, if we reverse the orientation of C’ and call the reverse path “—C'.” y 
have 

| Mede=— f fleaz. (6) 
J—-C JC 

EXAMPLE 1. Using the Limit Definition to Evaluate Integrals. To illustrate the limit 

definition of the complex integral. consider the simple case where f(2) = 2. Since we can 

choose each (; point anywhere along its Cj arc, let us choose each at the beginning of its 

arc: Qy at sq. G2 at z;. and so on, Then (2) becomes 

Je = tg(2y — 29) # ci(tg — 2p) Fe Fone e lene — Zye2) + tn i len — tuoi). (0) 
  

“These terms are defined in Section 15.2. 

i Complex Integration 1183 

  

Figure 1. Partition of C. 

  

Figure 2. Breaking up the path.
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where the superscript b simply denotes that the sum corresponds to choosing each z; at the 

beginning of its Cj arc. We can just as well choose each Qj at the end of its Cj interval, 

which choice gives 

ye ~ y y ~, ~ + ~ ~ > y y of 
Je = 21(21 ~ 29) + 2a(22 — 21) Be + Set (en-1 ~ Zn-2) + 2n(En ~ Zn-1). OD 

Adding (6) and (7), most terms cancel, leaving 

Ra Kak 3 
= B? — A, (8) 

Finally, refining the partition over and over so that its norm tends to zero, the left-hand side 

of (8) tends to 2/ so J = (B® ~ A*)/2, or 

t= [ed=% 
C 2 

where A and B are the initial and final points of C, respectively. @ 

B 

; (9) 
A 

  

Why all the fuss? Doesn't [.,2dz = (22/2)|8 follow immediately from the 

fact that d(z?/2)/dz = =? Yes it does, but we have not yet developed the funda- 

mental theorem of the complex integral calculus, on which result that claim would 

be based; all we have, thus far, is the limit definition. 

Of course, the limit definition is too unwieldy to be useful in evaluating more 

complicated integrals so we proceed to develop other lines of approach. In this 

regard it will be illuminating to distinguish two basically different strategies. 

One strategy is to reduce te f(<) dz to one or more real integrals. To do so, 

one merely needs to re-express 

[ f(z)dz= Lo + iv)(dx + idy) 

~ I (udu —vdy) +2 i (udu + udy). (10) 
C uC 

Thus, we can evaluate Je f(z) dz by evaluating the two real line integrals 

i fu(a,y) dx — u(x, y) dy! and | [u(a,y) dx + u(x, y) dy] 
JC Ic 

by methods developed earlier in Chapter 16. Let us illustrate with two examples. 

r=] zrds, an 
JC 

EXAMPLE 2. Evaluate
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4 
where C’ is the parabolic are shown in Fig, 3. Parametrizing C according toy = 7,2 = 

4—7",as 7 goes from +2 to —2, we have 

[= / [(a” — y?)de ~ 2ey dy] +i | [2cy da + (a — y")dy] 
C JC 

9 5 aL dy 2 da: 9 9, dy 
Ly © | oe ~ 22 cae f 4 1 20 — (a- —~— yj) f E Wa | dr “if vy + (ey )a | ar 

== p {[(4 ~ ry _ r*| (~27r) ~ 2(4—- 7? )7} dr 

a 2 

+i i {2(4 ~ 1° )r(=2r) + [(4— 77)? = 7] bdr 
J2 

O+% wi, (12) = to =). 

3 3 

COMMENT. It is natural to wonder whether we could have simplified the evaluation of 

I by deforming C' into a simpler shape such as a straight line from the initial point 22 to 

the final point —2i. This same important question arose in Chapter 16 when we studied 

line integrals, and we found that path deformation (between fixed endpoints) is permissible 

if the given vector field is sufficiently well behaved. In view of the connection between 

To f(s) dz and real line integrals, displayed in (10), we expect that the same is true for 

the complex integral te f(z) dz: the path C can be deformed if f(z) is sufficently well 

behaved. We defer discussion of this matter to Section 23.3. 4 

EXAMPLE 3. Evaluate 

[= } (z ~ a)"dz, (13) 
Jc 

where a is a given complex number, 7 is any integer (positive, negative, or zero), and C is 

acircle of radius R, centered at = = a and oriented counterclockwise (Fig. 4). In this case 

C is closed, Generally, we will use the fe notation when the contour C’ is closed. 

It is convenient to use the polar angle @ to parametrize C’,, by setting 

z—-a= Re, (14) 

That is. the parametric equations of C’ are. from the real and imaginary parts of (14), 2 = 

Rea+ Reos@and y = Ima + Rsin @, as @ increases from OQ to 27. Then 

2m 227 
I= | (Re'®)"( Riel dd) _ LRU! | eilnthe d@ 

JQ ie) 

ori 1 on 
= ft pilnet)e = 0, 

n+l 0 

provided that nm 4 —1 (in which case the latter yields the indeterminate form 0/0). Treating 

nm == —1 separately, 

ar as 
7 . { i hy L . a 

[=iR°? i el dd =i | do = 271. 
JQ JO 

  

  
Figure 3. The path C in (11). 

  

Figure 4. The closed contour 

Cin (13).
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Thus 
, 27t, m= —l ~ 1) de ’ fl a)” dz { 0, nga (15) 

so I = 0 for all n’s except n = ~1, in which case [ = 2ri. Wl 

The other possible strategy is to keep the complex integral intact and to develop 

theorems that will enable us to work with te f(z) dz directly. It will be found that 

this approach is by far the more fruitful and will be pursued exclusively for the 

remainder of this chapter and the next. Looking ahead, we shall obtain Cauchy’s 

theorem, the fundamental theorem of the integral calculus, Cauchy’s integral for- 

mula, and the residue theorem, in that order. These integral theorems will prove 

powerful indeed, and will also yield additional important results regarding function 

theory in general. 
In that development we will often need to be able to “bound” complex inte- 

grals. that is, to obtain bounds on their absolute magnitude (modulus). Thus, in 

the remainder of this section we consider a simple upper bound that will suffice for 

most of our needs. 

23.2.2. Bounds. First, observe from (2) that 

Jnl = |S MQ) Az) < SOI F(Q) Az = IQNiIAzl, 16) 
j=l j=l j=l 

where the inequality and the final equality follow from Exercise 5(f) and 5(d), re- 

spectively, in Section 21.2. If there exists a real constant Af such that |f(z)| < AL 

everywhere on C’, then |f(Q,)| < AZ for each 7, and (16) gives 

[In| < MS  |Azy]. (17) 
j=l 

As n — oo and the norm of the sequence of partitions tends to zero, the sum on 

the right-hand side tends to L, the length of the (presumably rectifiable) curve C. 

Thus, the final result is the bound 

  

< ML, (18) 
  

  

| fle) dz 
JC 

  

    

where | f(z)} < Af on Cand L is the length of C’. Subsequently, we shall refer to 

this result as the the ML bound. 

EXAMPLE 4. Use (18) to bound the integral 

[= | c dz, (19) 
JC 

si
e
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where C’ is the straight line shown in Fig. 5. To obtain M/Z, in (18), write 

  

  

    

e” 

a) 
jerry | e®| Lely 

onl = . . = = . 20 

2? | jz|° ay? ” 
Ne) =   

    

On C, e® is a maximum at Q and x” + y? is a minimum at P so we expect the maximum 
of |f(z)| to lie somewhere between P and Q. To find that point we put y = 1 — $2 into 
e*/(x? + y?), differentiate with respect to z, and set the derivative equal to zero. Those 

steps give c = 4/5. With x = 4/5 and y = 3/5, (20) gives M = e*/5/(48 + 2) = e¥/®. 
And since L = V5, (18) gives 

  

  

[I] < eb? V5 = 4.976. (21) 

COMMENT. In this example we actually found the maximum value of |f(z)| on C, and 0 2 x 

used that as AY. In most applications, however, finding the maximum value of |f(z)}| on C 
is so difficult that we are willing to accept a cruder value of Mf ~ that is, a bound on |f(z)| Figure 5. The contour Cin (19). 
that is greater than the maximum value of |f(z)|. In the present example, for instance, the 
greatest value of the numerator is e” (at Q), and the smallest value of the denominator is 

the distance OP squared, which, by similar triangles, is (2/5)? = 4/5, from which it 
follows that 5 

e2 
be f 5) = 20.65. |< (=) (v5) 0.65 (22) 

The trade-off is that (22) was more easily obtained than (21), but is somewhat cruder; we 

say that the inequality (22) is not as “sharp” as (21).* @ 

One more example: 

EXAMPLE 5. Use (18) to bound the integral 

"sin z r= | ~~ a, 23 [aera ™” 
where C' is the circular contour shown in Fig. 6. In the spirit of the comment in Example 

4, let it suffice to seek an upper bound on the numerator, sin z, and a lower bound on the 

denominator, z(z” + 9). On C we have   

isin z| = sin (a + iy)| 

==: |sing cosh y + icosazsinh y| 
  

  

. 2 2 2 om eth? = sin xcosh* y + cos? xsinh* y 
  

Figure 6. The contour C' in (23). 

iA
 cosh” y + sinh? y 

< Vecosh? 5 + sinh? 5 = Vcosh 10, (24) 
  

“The less sharp, the less informative. For instance, to say that the author owns less than a million 

neckties is less informative than saying that he owns less than seven, which is still less informative 

than saying that he owns exactly five.
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|z| =5, (25) 

[27 +9) = |(z = me + 3i)} = |z — 3i] {2 + 37 

2 (2)(2) (26) 

where the second inequality in (24) follows from the fact that cosh y and sinh y are mono- 

tonically increasing functions of y, 

cosh (4+ 8) = cosh Acosh B + sinh Asinh B (Exercise 8 of Section 2 

the minimum values of |z 

equal 

hs 

isaboundon Jl. @ 

     

and the last equality follows from the identity 

1.3). Further, 

32] and |z + 32] occur at 2 = +57 and —5i, respectively, and 

2. With £ = 27(5) = 107, it follows from (24)—(26) and (18) that 

Ycosh 10 

(5)(4) 

aV¥ cosh LO 
107) = (10n) = Q7) 

Closure. Beginning with the limit definition of the complex integral [ = te f(z) dz, 

we note that (as in the case of real integrals) that definition is not useful for the eval- 

uation of such integrals, except in the simplest cases. As an alternative, we show 

that we can obtain the form J = [.(udax — vudy) +7 J. (vdz + wdy), where the 

two line integrals can be evaluated by whatever methods were developed for line 

integrals in Chapter 16. But we promised more powerful approaches — the fun- 

damental theorem of the complex integral calculus, Cauchy’s theorem, the Cauchy 

integral formula. and the residue theorem, which are develo ped over the remainder 

of this chapter and the next. 
We also show how to obtain a simple upper bound on J. the “ALD bound” 

I) < AIL, which is needed in the subsequent sections. 

  

EXERCISES 23.2 
  

1. Evaluate the following by expressing them in terms of real 

line integrals and then evaluating those integrals. 

(a) fale dz, where C’ is a straight line from z = 0 to 
gel+i 
2 fe . Z dz, where C’ is the same as in part (a) 

c) fa = dz, where C' is a clockwise semicircle from 2 = 2 to 

ge —2, centered at z = 0 

(d) Je dz/z, where C’ consists of three straight-line segments: 

from z= ltoz=1—i,froms = 1—itoz = —1—i,and 

then from z= —-l—itozg=—1 

{e) Te e* dz, where C’ consists of two straight-line segments: 
i g-ettos = 1+i,andthen from z =1l+itoz = 1-22 

) fel (Re z}dz, where C is a clockwise quarter circle from 

31 to z = 3, centered at z = 0 

(Im z)dz, where C’ is a straight line from z = 7 to (2) Je 

p= 2421 

2. Consider [ = f{-, 2 dz. where the initial and final points of 
Care z = Qandz = 1 +i, respectively. Show that the in- 

tegral is path dependent by choosing two different paths and 

obtaining different values for JL. 

3. Use (18) to obtain an upper bound on |/| for each given 

integral [. NOTE: Be aware that the answer is not unique, be- 

cause we seek an inequality rather than an equality, just as both 

of the bounds (21) and (22) were correct in Example 4. Thus, 

it will be important for you to show your steps and reasoning. 

(a) fi. 2° dz, where C' isa straight line from z = (to = 2422 

(b) Je e* dz, where C’ is a straight line from s = —2 to 

z=1+3i 
(c) fo e~* dz, where C' is the same as in part (b)



  

7 fe dz/z, where C' is a circle of radius 4 centered at 2 = 
y. . or) 

©) ne [( 

D fle 2? + 1)dz/(2* ~ 1), where C is a circle of radius 1 
venice atza] 

(g) |. dz/[2(2 +7)], where C is a quarter circle from 2 = i to 
gs= il, vchteted atz = 0 

(h) ere *dz/z, where C’ is a straight line from z = 7 to z = 2 

(i) Te cos zdz/z, where C is the same as in part (h) 

, where Cis a circle of radius 3 centered at 

4, Obtain, by any means, the maximum 

  

  

  

  

sin sf/[e(22 + 9)]). in Example 5, on the contour C shown 

in Fig. 6, correct to two significant figures. 

5. (a) If C is a straight line from 2 = 2 to z = 2+ (7/2), 
show that 

"ds T i 
7 335 -eE=- 

ic +1 2Jfetti 

(b) If C is a straight line from 2 = 27 to z = 3, show that 

“coszs |. 13 
dz| < — cosh2. 

C 2 6 

    

6. In our subsequent work we will sometimes need an upper 

bound on the absolute magnitude of a given integral, and (18) 

will generally suffice. A corresponding /ower bound was not 

developed in this section because it will not be needed. Nev- 

ertheless. suppose that |f(=)} > mon C. It is tempting to 
conjecture. by analogy with (18), that 

value of 

23.3. Cauchy’s Theorem 1189 

  >omi 
JC 

(6.1) 

provides a owe bound on the magnitude of the integral. 

Prove that (6.1) is oer correct. 

7. (A sharper bound than the ME bound) (a) Derive the upper 

  

   

    

      

bound 

| f(z) dz| < | if(2)\| ide], (V1) 
JC CG 

and show that 

(2) dzi < | [f(2)| |dz| < MLZ, (7.2) 
JC     

  

from which it follows that (7.1) is, in general, sharper than 

the AZE bound fi.e., closer to an equality than (18)]. NOTE: 

The price that we pay for this improvement is that (7.1) is 

generally more difficult to apply than (18) because it requires 

the evaluation of the (real) integral te |f(z)| |dz|. For our pur- 

poses, in later sections, (18) will almost always suffice; only in 

one or two cases will the more refined bound (7.1) be needed. 

(b) To better understand these two bounds, apply each of them 

to the integral I = f(a —a)dz. that is, [-.(z° — z)dz where 
C is a straight line from z = Oto z = 2. Compare the two 

results with the exact value of J. Further, show the graphical 

significance of each of the three members of (7.2). by suitable 

labeled sketches. 

  

23.3. Cauchy’s Theorem 

Recall that the contour of integration may be open or closed. Cauchy’s theorem, 
which we now derive, involves closed paths. 
smooth simple closed curve, and express 

p fle)de= f (udu —udy) +7 f (udy + vdz). 
C JC JC 

Specifically, let C’ be a piecewise 

(1) 

Suppose that f(<) is analytic and that f"(s) is continuous in a simply connected 
domain D containing the path C’. 

side of (1) as 

} (udx -—udy) = w- dR, 
Jc Jc 

If we write the first integral on the right-hand 

(2)
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where w == w(x, y)i —u(a, y)4 is a vector field and dR = dvi+ dyj + dzk (where 

the z in dz is the real variable z, not z = « + zy), then 

V x w = (0i-0j+ 00 uN (3) 
Ox Oy 

vanishes everywhere in D by virtue of the Cauchy—Riemann equation Ou /Oy = 

—Ov/Ozx (which holds because f has been assumed analytic in D). Then it follows 

from Theorem 16.10.1 that 

fu dx ~ udy) = 0. (4) 

Similarly, if we write the second integral on the right-hand side of (1) as 

$ (udy +udz)= f w- dR, (5) 
Cc Cc 

where this time w = v(x,y)i + u(a, y)j, then 

3 3 Ou Ov a 

vanishes everywhere in D by virtue of the other Cauchy —- Riemann equation, 

Ou/Ox = Ov/Oy. Then it follows that 

f (udy +udz) = 0. (7) 
C 

Thus, we have shown that if f(z) is analytic and f'(z) is continuous in a simply 

connected domain D, then 

f(z)dz =0 (8) 
C 

for every piecewise smooth simple closed curve C in D. 

This result was published by Cauchy in 1825. Seventy-five years later it was 

shown by Edouard Goursat (1858-1936) that the stated result holds even if one 

does not assume the continuity of f’(z) (Le., of ug, Uy, Ve, Vy)” Indeed, we will 

show (in Section 23.5) that if f is analytic in D (i.e., once differentiable), then f 

possesses derivatives of all orders in D. In particular, since f’ is differentiable in 

D, it follows that f’ must be continuous there. 

Thus, deleting the assumption that f’(z) is continuous, we have the so-called 

“strong version” of Cauchy’s theorem, sometimes called the Cauchy—Goursat the- 

orem in recognition of Goursat’s contribution: 
  

“For proof, see, for example, R. V. Churchill, Complex Variables and Applications, 2nd ed. (New 

York: McGraw Hill, 1960), Chap.5, or Konrad Knopp, Theory of Functions, Part IT (New York: 

Dover, 1945), Chap. 4. 

or
er
ae
en
ee
en
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THEOREM 23.3.1 Cauchy's Theorem 

{f f(z) is analytic ina simply connected domain D, then 

  

p flz)dz =0 (9) 
JC       

for every piecewise smooth simple closed curve Cin D. 
  

EXAMPLE 1. Consider 

I= f dz _ f dz (10) 

~ Je 2 = 5246 Je (2 —2)(2— 3)’ 

where C' is the unit circle. traversed counterclockwise (Fig. 1). The integrand f(z) = 

1/[(s ~ 2)(z — 3)] is analytic everywhere except at z = 2 and z = 3. Thus, it is analytic in 

the simply connected domain D (Fig. |) containing C so J = 0 by Cauchy’s theorem. 

tS have already mentioned the connection between the complex integral 
tof z)dz of an analytic function f and the real line integral te w-dR of an 
oa field w. Referring once more to Theorem 16.10.1, notice the equiv- 
alence between the vanishing of tow -dR for every closed loop C and the path 

independence of integrals |. w dR between fixed endpoints. Thus, we might well 
anticipate such equivalence for complex integrals as well. In fact, we do have the 

following corollary to Theorem 23.3.2: 

  

THEOREM 23.3.2 Path Independence 

If f(z) is analytic in a simply connected domain D, then [.. f(z) dz is independent 
of path in D. That is, given any initial point P in D and any final point Q in D, the 
value of Je /(<) dz is the same for every piecewise smooth path C, lying entirely 
within D, from P to Q. 
  

Partial Proof: Let C and C2 be any two piecewise smooth paths from P to Q. 
Suppose that both C’, and Cy are simple curves and that they intersect each other 
only at the endpoints P and Q (Fig. 2a). (The additional argument needed for the 
case where intersections do occur, possibly an infinite number of them, is omitted 

here.) Then Cy + (~C’s) is a piecewise smooth simple closed curve in D (Fig. 2b) 

so, according to Cauchy’s theorem, 

t f(z) dz =0. (1) 
JC y+(-C9) 

_
 w
k
 

w
k
 

Me
 

Figure 1. C and D for Example |. 

  

(b) 

  

P 

Figure 2. You take the high road, 

Pll take the low.
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(a) 

(b) 

Figure 3. Path deformation for 

closed path. 

But 
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w&
 f f(z) dz 

Jy +(-C2) 

= | fle) dz—- [ f(z) dz, (12) 
JC J Co 

and it follows from (11) and (12) that 

peyde= | fla. 
JC] J Cs 

as claimed. This step completes the proof, except for the omission noted above. @ 

[t is useful to think of path independence in terms of a process of path defor- 

mation. That is, we can imagine deforming Cy, continuously, into Cy (Fig. 2a), 

keeping the endpoints fixed. If f is analytic on C) and Cy and we cross no sin- 

gular points in the process (thus f is analytic on and between C’, and C9), then 

fo, F(z) dz is equal to Ic, f(z) dz. The point, of course, is that we may be able 

to simplify the integral by such deformation in the sense that tes f(z) dz may be 

more easily evaluated than to, f(z) dz. 

In fact, path deformation can be applied to closed paths as well. For example, 

suppose that f is analytic on and between the closed paths Cy, and C> shown in 

Fig. 3a. Let us “slit” the region by introducing a piecewise smooth curve connect- 

ing a point A on Cy with a point B on Cy, (with this curve intersecting C) only 

at A and C» only at B). Denote this curve as C’ when it is oriented from Ato B 

and as ~C’ when it is oriented from B to A as shown in Fig. 3b. (Actually, C" 

and —C’ are coincident, but we have separated them in the figure for clarity.) Since 

C=C, +C! + (—C2) + (—C") is a piecewise smooth simple closed curve and f 

is analytic inside and on C, it follows from Cauchy’s theorem that fo fz) dz =0 

(see Exercise 3). Thus, 

fle)dz= f f(z) dz 
Je JC 4C! +(—Co)(-C") 

=f, Me)de+ I f(z) dz + be f(2)dz+ I. fl2)de 

=f seoyder [soya seyde- [ree 
Jct (. 

= 0, (13) 

so 

f , f(ajdz= h. fle) dz. (14) 

   



    

23. 

That is, deforming Cy into Cy, (14) will hold if f is analytic between 

and Cy. 

and on C; 

EXAMPLE 2. Aa Important Little Integral. Consider 

i (2 — a)" dz, 
Jc 

where Cis any piecewise smooth simple closed curve, oriented counterclockwise, such 

as the curve C' shown in Fig. 4: 7 is any integer (positive, negative, or zero), and a is any 

given complex number lying inside C’. According to the discussion preceding this example, 

we can deform the contour C’ to a circular contour C’, lying wholly within C’, as depicted 

in Fig. 4 since (< — a)” is analytic on and between C’ and C’. The resulting integral, 

ben (2 ~ a)" dz, is evaluated in Example 3 in Section 23.2. Recalling the result of that 

evaluation, we have 

Cc 

5 
That is, the result obtained in Example 3 of Section 23.2 holds even if C’ is not a circle 

centered at a, Although rather specific, formula (16) will be used often enough so it is 

worth remembering. @ 

(15) 

  

n=l 

n#—l. 

Wt, \n de - 2 
a) dz= 0, (16) 

      

EXAMPLE 3. Evaluate 

      

  

dz 
L = Te (17) 

ca 2*(2 - 2)(2 — 4) 

where C' is given in Fig. 5. Expanding the integrand in partial fractions yields 

l= 3 } dz 4 1 f dz =f dz 4 1 dz (18) 

B82 Je 2 8Jo2 Joz-2 32 fe2-4 

Thus 5 1 1 l . 

= -—(2ri) + =(0) — =(2mi) + =(0) = —— 19 oy (2ni) + 5(0) — sQni) + (0) =, (19) 
because the last integral in (18) is zero by Cauchy’s theorem, and the first three are covered 

by the “important little integral” (16). @ 

Closure. Roughly put, Cauchy’s theorem tells us that f.. f(z) dz = 0 if f(z) is 
analytic within a region containing C’, and it follows from that result that if Cy 
and C's are open curves with the same initial point and the same final point, then 
fo, [e)dz = fo, fe) dzif f(<) is analytic within a region containing C, and Cy. 
That is, we can deform Cy into Cs without changing the value of the integral. These 
results, Cauchy’s theorem and its path independence corollary, are fundamental to 
the further development of the complex integral calculus in this chapter and the 

3. 1193 Cauchy’s Theorem 

  

Deformation of C to a Figure 4. 

circle C’. 

  

  se 

oe r
o
k
 

        
Figure 5. The contour C in (17).
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next. The connection between them and the irrotational field theorem (Theorem 

16.10.1) should be understood. 

  

EXERCISES 23.3 
  

1. According to Example 2, 

i — = (0), 
Jo @ 

where C' is a counterclockwise circle of radius A, centered at 

the origin. Yet f(z) = 1/2” is not analytic within C; it is 
singular at z = 0. Explain why this result does not violate 

Cauchy’s theorem. 

Qu
 

ey 
be
 

2. Consider I = te dz/z, where C is the counterclockwise 

unit circle, and the assertion that J = 0, from Cauchy’s the- 

orem, because f(z) = 1/z is analytic in the domain D con- 
taining C. (See the accompanying figure.) Yet we show in 

Example 2 that { = 277. Explain the apparent contradiction. 

v4 
| 

D 

in) 
Cc 

3. Prove that Cauchy’s theorem can be stated a bit more sim- 

ply, as follows: [fC is a piecewise smooth simple closed curve 

and f(z) is analytic inside and on C, then $,, f(z)dz = 0. 
HINT: The idea is to show that if f is analytic inside and on 

C’, then there does exist a domain D (see the figure) containing 

C, such that f is analytic within D. The desired result follows 

immediately from Cauchy’s theorem. If needed, you may draw 

on the fact that C’ is necessarily rectifiable (i.e., of finite length) 

because it is piecewise smooth. Also, recall from the calculus 

that if (x) is continuous on a closed interval a < x < 6, then 

it has an absolute maximum and an absolute minimum on that 

interval. 

4, Let C,, Co, Cy be the following simple closed curves: 

Cy: |z| = 1, counterclockwise 
Cy: |z| = 1, clockwise 
C's: the square with vertices at] ~ 7,147, -~l+7%,-l- ly 

counterclockwise. 

Evaluate each of the following integrals using Cauchy’s theo- 

rem if applicable, or any other method studied in Sections 23.2 

or 23.3. 

(a) fo, Re zdz 

(c) $4 Im zdz 

(b) bc, Im z dz 
: dz @ fo, 3 

() fo, Foy 23) 

(h) fo, e"* dz 

, dz 
(i) fo, sin (cos z) ds @ te, a 

(k) fo, Ede (1) fo, Fdz 

5, Can we use path deformation to obtain 

  

. dz 
(©) fo, 

dz 
(g) $c, 2(z +5) 

$ zdz= = dz, (5.1) 
Cs C1 

where C, and C’; are defined in Exercise 4? Explain. 

6. Evaluate [/., 2°° dz, where C’ is the path 

(jy=ar-2?,fromrz=Otoc=1 
(b)y=au-a2,fromx=O0tor=—-1 
(jn=y-y’,fromy=O0toy=1 

7. Evaluate Te Z dz, where C’ is a straight line from z = 0 to 

z = 1+ 4%, where C is the parabola y = x? from z = 0 to 

ss: 1 +i, and where C is the rectilinear path from z = 0 to 

= ltoz = 1 +i. Are the answers the same? Is there any 

violation of Theorem 23.3.2? Explain. “ 

8. (Path deformation in multiply-connected domain) Show 

that if f(z) is analytic in the shaded region between and on 

the contours C’, C,, C2 (see the accompanying figure), then
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7 f(ejdz= fh fle)dz+ } fod. (8.1) if Ci,...,Cn are nonintersecting counterclockwise closed 
Jc C ICY 9 

' CLC, ..., Cy. 
contours within Cl and f is analytic between and on 

9. Evaluate the following integrals, where in each case C' is 

the circle |z| = 3, counterclockwise. 

dz 

  

Le dz 
a) 0 b) fa (0 ® fo 2(z—1) fe 5 

. 2dz zdz 
You may use the result stated in Exercise 3. NOTE: More (c) fo zk] (d) $c: ge 3242 
generally, af dz mp 2 az 

(¢) ite 23(2? ~ 1) (O fe 2 — | 
p fle\dz = 4 | Fle)dze+i++ + 7 fle) dz 
JC Cy ICH 

  

23.4 Fundamental Theorem of the Complex Integral 

Calculus 

Before obtaining the fundamental theorem of the complex integral calculus, let us, 
for the sake of comparison and motivation, recall the fundamental theorem of the 

a“ 
real integral calculus: let f(a) be continuous on the interval zg < 2 < a 1. Then 

the function 
c 

G(x) = | f(&) dé (tp <2 <a2y) (1) 
J LO 

is differentiable on xp < @ < ax, and is a primitive or indefinite integral of f; that 

is, 
G'(a) = f(x) (2) 

on that closed interval. The primitive of f is unique to within an arbitrary additive 
constant. Finally, if F(a) is any particular primitive of f, then 

[ f(€) dé = F(x) — F(x). (3) 

The foregoing result is found, in the elementary calculus, to be especially valu- 
able for evaluating integrals for which a primitive can be found by inspection. For 

Be . Dae sae + 
example, to evaluate [ x’ dx one notices that x°/3 is a primitive of xz? [because 

Bye 9 * 
d(x’ /3)/da = x*] so 

oa, wt) 58 ur 
i CO ae = 3 = 3 = 3 

2 

Of course, the primitive (?/3) + 4, say, would have produced the same result.
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zt+Az 

a 

Figure 1. 29, z, = + Az, and the 

path. 

Turning to the complex case, let f(z) be analytic in a simply-connected do- 
main D. If zg is a fixed point in D, then dey f(¢) dé is (Theorem 23.3.2) path 
independent and hence defines a single-valued function of z,* which we denote as 
G(z): . 

Gla) = | s(cac. (4) 
(Before continuing, notice that in the complex case we have asked f to be analytic, 
for the integral to define a single-valued function, whereas in the real case it sufficed 
to ask f to be continuous.) 

Next, we show that G"(z) = f(2) in D, analogous to equation (2) for the real 
case. Consider the difference quotient 

G(z + Az) — 

Az 

Soe ~ 

  (6) de - - fCac| ~arl/ 
- [~ rc) dé 

= 

&
 

B
l
e
 

Re 

  

a
 N

 

  

z+As ztA:z 

flydc+ a> fe) = eae 

a
 

& & 

  

z+As 

af = Fede, (5) 
where zo, z, and = + Az are displayed in Fig. 1. By the above-noted path indepen- 
dence, there is no loss in taking the path from = z to z + Az to be straight (al though 
the path from 29 to z may need to be curved in order to remain within D). Using 
the AZZ bound on the last integral in (5), we have 

sztAz 

asf W@-selu|< 5   
  yl iaz= = Mf, (6) 

where AJ = max} f(¢) — f(z)| on the line from = to z+Az. Since f is continuous 
(because it is analytic), A + 0 as Az —+ 0. Thus. letting Az — 0 in (5) gives 

G"(z) = fle), (7) 
as claimed. 

Any function F(=) satisfying F’(z) = f(z) is called an indefinite integral or 
primitive of /. It is easy to show (Exercise |) that any two primitives correspond- 
ing to a given f differ at most by an arbitrary additive constant. Thus. if F(z) is 
any particular primitive of f(z), then 

=f MQde=Fe)+e (8) 
v zg 

R M(: 
  

“This is a key point. Recall that a function is to be single-valued. If f is not analytic in D then 
there is no guarantee (because Theorem 23.3.2 calls for analyticity) that it will be single-valued. See 
Example 2. 
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where C’ is a constant. To evaluate C’, set z = zo. Then 

O= F(29)+C (9) 

gives C' = —F'(z9) so 

/ “ f(O) de = F(z) — F(zo), (10) 

analogous to equation (3) for the real case. 
Pulling these results together, we have: 

  

THEOREM 23.4.1 Fundamental Theorem of the Complex Integral Calculus 
Let f(z) be analytic in a simply-connected domain D, and let zg be any fixed point 
in D. Then 

(i) G(z) = fo f(¢) d¢ is analytic in D and G’(z) = f(z). 
(ii) If F(z) is any primitive of f(z) [i.e., F’(z) = f(z)], then 
  

/ “f(Q) de = F(z) — F(z), Cu) 
      

  

As in the analogous case of real integrals, (11) is especially useful for evaluat- 
ing integrals for which a primitive can be found by inspection. 

EXAMPLE 1. To evaluate fe sin z dz, observe that F(z) = — cos z (plus any constant) 
is a primitive of sin x, Then 

  

3 zex3 
[ sinzdz = —cosz yj 7 C088 + cos 2% = cosh 2 ~ cos 3. (12) 
2i eeret 

— : : Zs) a : fl COMMENT. Notice that the notation 5, suffices. That is, we do not need to specify the 
path to be followed, from 2i to 3, because sin z is analytic in the whole plane, and hence 
line integrals of sin 2 are path independent — they depend only on the endpoints. @ 

EXAMPLE 2. Evaluate 
vm 

dz 
f= | —, (13) 

J1iti = 

With the foregoing comment in mind, we observe, first, that the problem is not clearly 
posed, because the integral is not single-valued. Specifically, the integrand 1/< is analytic 
for all < 4 0, and the whole plane with z = 0 deleted is a multiply connected region (due 
to the hole at z = 0). Thus our path independence theorem (Theorem 23.3.2) does not 
guarantee that J will have the same values for paths such as Cy and C2 in Fig. 2. In fact, 

L+i 

  

Figure 2, Alternative paths.
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"dz * dz , dz . 

— = —— == 271, (14) 
JC, * Co * JCr+(=-Cy) * 

according to the “important little integral” in Section 23.3 so 

"dz * dz 
TFL > (15) 

Cy # JC * 

Sure enough, this multi-valuedness of the integral shows up if we write 

mE de 
~ ix / — = log z 

l4i * 

Ki 3. Brancl for l because log z is multi-valued! To render J single-valued we need to render the log z single- 
“igure 3. Branc for log z. rt 
igure rancn cut Tor log 2 valued, and we do that, as usual, by a branch cut. [f, for instance, we choose to adopt the 

branch cut shown in Fig. 3, then (16) gives 

(16)   

    

. —t r=1,0=—n/2 In2 3 

P= log(rel)| "= (nr +) Vitex) -= _ si (17) 

as the unique value of J. © 

Closure. The purpose of this brief section is to establish the fundamental theorem 
of the complex integral calculus, Theorem 23.4.1. Although analogous to the fa- 
miliar real variable result, we do note that whereas the real variable theorem merely 

asks the integrand f(a) to be continuous, the complex variable theorem asks f(z) 
to be analytic. As a simple illustration of Theorem 23.4.1, we can say that 

G8 * 3 

CdC= >) =z 
[ 3 0 3 

oO for all z, because d(z°/3)/dz = 2? is analytic for all z. 

  

  

EXERCISES 23.4 

1, Prove the assertion, stated below equation (7), that “any (a) fs edz (b) f, eld 

two primitives corresponding to a given f differ at most by an (c) [ores — 322) dz (d) pr cos 32 dz 

arbitrary additive constant.” HINT: Let F,(z) and F(z) be (e) pu ee? de F po esine dz 
primitives of f(z) so that F/(z) = f(z) and Fj(z) = f(z). Jed “e “ wn. eee 
Subtract the latter two equations. (g) to ze* dz (h) Jo sin” 2 dz 

"8 1 peti pg. 
2. Give three different primitives for each of the following () Jai 2 cos 2z dz (i) f, cosh 32 dz 
functions. (k) fi cos® z dz (1) f, Pe dz 

P oe 4, Determine all possible values of (a) z (b) 2° (c) 2 — 2 (d) cos(z ~2) 4 etermine all possible values o 

Ll+1 ne 

3. Use the fundamental theorem to evaluate each of the fol- —_ / _ de 

lowing. pei 2



  

1 

5. At some point in the calculus one is likely to encounter the 
calculation 

  

  

oo da . ESSE f= / soo c= lim tanta = 7 (35,1) 
doo U* + 1 4 aes ges AA 

Surely the integral is uniquely determined, so it is interesting 
that the multi-valued tan™! () enters the picture. However, no 
matter which continuous branch of tan~! () is chosen [e.g., 
—rf2<tan7!() < 9/2, #/2 < tan“! () < 37/2, ete.| 
the unique result, 7, is indeed obtained. For study purposes, 
it may be useful to reexamine this evaluation in the light of 

complex variable theory. Then 

7 dz . 1 ([2=8 
= ~y—7y = lim tan™* = ; (5.2) 

Jot +1 Anse za~A 
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where C’ is a straight line path fram —A to B along the real 

axis. To evaluate the right-hand member of (5.2), show that 

  

  

tanv! z= — log ——, 5.3 
: 8 TPs ©) 

so that 

zB 

2 . 1 L- Zz 
= so c= lim — log - (5.4) 

, dco Qt t+ 2 
zm A 

[or, equivalently, derive (5.4) by applying the method of par- 

tial fractions to the integral]. Finally, evaluate the right-hand 

member of (5.4) by introducing any suitable branch cuts for 

the log (2 — z) and log (i + z) functions, and show that you do 

obtain 7, as in (5.1). 

  

23.5 Cauchy Integral Formula 

Recall that Cauchy’s theorem is based upon analyticity of the integrand. Our pur- 
pose in the present section is to begin our consideration of the more typical case, 
where the integrand is singular at one or more points within the contour. 

Let f(z) be analytic in a simply connected domain D, let C’ be any piece- 
wise smooth simple closed curve in D, oriented counterclockwise, and consider ya 
the integral 

" f) 
JC ef 7G 

  l= dz, 

where a is any fixed point within C (Fig. 1). That is, rather than a vague statement 
such as “Consider be f(2) dz where f(z) is singular somewhere within C.” we 
consider the integrand to have a specific kind of singularity [mamely, a 1/(z — a) 
behavior, which “blows up” as z > a], and we make its presence explicit by writing 

(1) 

  

  

S 

the integrand as f(z)/(2 — a). Other types of singularity will be considered later. 
To evaluate J, we begin by deforming C’ to a circular contour C” of radius 

p, sufficiently small so that C" lies entirely inside* C’, as shown in Fig. |. The 
  

Figure 1. C in (1). D chosen as 

rectangular for simplicity, 
“We often speak of the region inside or outside a given closed curve. Although there is little 

chance of misunderstanding in this regard, we wish to point out that to render the notion of inside and 
outside precise is not at all simple, and there exists a sophisticated result known as the Jordan curve 

theorem which clarifies the matter in a rigorous way. Discussion of this theorem lies well outside 

our present scope and can be found in R. N. Pederson, “The Jordan Curve Theorem for Piecewise 

Smooth Curves,” American Mathematical Monthly, Vol. 76, 1969, pp. 605~610, or in G. N. Watson, 

Complex Integration and Cauchy's Theorem, Cambridge Tracts No. 15, 1914, Chap. 1.
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Cc 

a per 

4 3 x 

Figure 2. The contour C in (5). 

deformation is justified since the integrand f(z)/(z — a) is analytic between and 

on C and C". 
Understand that [ = ¢,. f(z) dz/(z ~ a) is independent of p, provided of 

course that C’ stays within D. Thus, we can let p > 0, which is convenient because 

then f(z) ~ f(a) on C’ and the integral simplifies tol = f¢, f(a) dz/(z — a) = 

f(a) fon dz/(z — a) = f(a)(2nt) since f., dz/(z — a) = 2mt according to our 

“important little integral.” To prove this result rigorously, re-express (1) as 

[= | Le) dz = LE) 4,   

  

Cen Cl 27 a 

f(a) dz + f(z) = fla) 4, 

Clen~ a Cc Za 

The third equality is simply an identity, rigged so that the first integral on the right 

is the anticipated final result and the second integral is a “deviation term.” By 

letting p — 0 in (2), we expect to be able to show that the deviation term is zero. 

Specifically, the AZZ bound gives 

-f@) 
cr z£—-@4 

M 
< — 2np = 20M, (3) 

p 

where Mf = max|f(z)— f(a)| on C’. Since f(z) is continuous (because it ts 

analytic), Af —> 0 as p - 00, letting p — 0 in (2), we obtain J = 2ri f(a), which 

result is known as the Cauchy integral formula.* 

    

  

THEOREM 23.5.1 Cauchy Integral Formula 

Let f(z) be analytic in a simply-connected domain D, let C' be a piecewise smooth 

simple closed curve in D oriented counterclockwise, and let a be any point within 

C' (Fig. 1). Then 
  

f(2) 
JG #7 a 

  dz = 2rif(a). (4) 

    
  

  

Let us illustrate the use of (4) in evaluating integrals. 

EXAMPLE 1. Evaluate 

, e 
l= 0-H, (5) 

h. (2 — 2)(2 +4) 

where C is a counterclockwise circle of radius 3, centered at the origin (Fig. 2). 

  

“Tt would be misleading to say that the deviation term tends to zero as p —> 0, misleading because 

it is not a function of p. Rather, put it this way: we find out that the deviation is zero by letting p — 0.
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The first step is to examine the integrand to see where, if anywhere, it is singular. 
Evidently it has two singular points, one at z = 2 and one at z = —4, Of these, only z = 2 

falls inside C’ so, comparing the feft-hand sides of (4) and (5), we can identify 

f(z) =e /(2+4) and az. 

Thus, (4) gives 

  
o: e* ree 

f= 220i = it. (6) 
z+4/ iio 3 

Of course, if the contour were clockwise, then the answer would be [ = —(me?/3)i. @ 

EXAMPLE 2. Evaluate 

COS 2 
[= é Tay (7) 

co (2+ 2)(2 + i)(z — 22) 

where C’ is as shown in Fig. 3a. 

First, examine the integrand. It is singular at z = ~—2, —i, and 27. Of these three 

singular points, the latter two lie within C’. Let us deform C into the “dumbell’” contour 

Cy + Co + C3 + Cy shown in Fig. 3b, where C2 and C4 are actually coincident (lying on 

the y axis) but are shown as slightly separated just for graphical clarity; such deformation 

is permissible, according to Theorem 23.3.2, because the integrand is analytic between and 

on C' and the dumbell contour. Thus, using shorthand notation, 

i=p=f -folohehakefe  @ o I Oy+Co+Cy+Cy JC, dC Cy 4 Cy dCs 

where the last step follows from the fact that the integrals on C2 and Cy are negatives of 

each other. That is, 

    
I= f ( COS Zz ) dz +f ( COS Z ) dz 

do, \ (e+ 2)(@ = 2) J ze +i cy \(2 + 2)(2 +12) / 2-21 

= Ale) dz +f Ss(2) dz. (9) 
JC, 2 7 G1 JCgz © 7 43 

Now, the Cauchy integral formula (4) can be used to evaluate each of these two integrals. 

In the first, fi (2) = cos z/[(2 + 2)(z — 27)] is analytic within Cy and a, is ~i, and in the 
second, fy(z) = cos z/[(z + 2)(z + 7)] is analytic within Cy and ag is 2i so (4) gives 

oni cos(~i) cos (2) 

(2 = i)(-8t) (2 + 27)(31) 

= = [((5 cosh 2 — 8 cosh 1) ~ (5cosh 2 + 4cosh 1)i]. (10) 

Alternatively, let us return to (5) and use partial fractions to express 

1 — 1 ii 4 (i) 
(2+il(z-2i) Biz +i Biz — 20 
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Figure 3. Divide and conquer.
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Then (5) becomes 

lL of [ cosz dz 1 ff fcosz dz 
[=—-= 4 - —~-+— Pp ss (12) 

BJo\et2/ 241 BiJgo \et2) 2-21 

In each integral in (12), cos z/(z + 2) is analytic within C’ so the Cauchy integral formula 

gives 
Qni (cos z Qni f cosz \| pe : 4 SE (SES . (13) 
Bi \et2/ i, 8 \et 2) | oo) 

which reduces to the same answer as was given in (10). 

        

  

  

COMMENT. In this example there were two singular points within C’, whereas the Cauchy 

integral formula (4) allows only one. However. by deforming C’ into Cy plus Cs we were 

able to express /. in (9), as the sum of two integrals, each with only one singular point. 

Alternatively, that same objective can be met, without deforming C’, by means of the partial 

fraction expansion (11) because each integrand in (12) has only one singular point within 

Cc. 

The Cauchy integral formula enables us to evaluate any integral, the integrand 

of which has a “first-order singularity” at some point a within the contour; it does 

not ne y if the | M7 of second order or higher — that is, if J is of the form 

bey f(z) dz/(z » fof ( z) dz/(z — a)%, and so on. To deal with these cases, 

we begin by coining out that Mo holds for any point a within C’. If we emphasize 

the allowed variability of a by using the letter z in its place, and adopt a dummy 

integration variable ¢ in place of z, then we can re-express (4) as 

; UD ae = 2rif (2). 
." JOG 7% 

If we differentiate (14) with respect to z, and can justify the step 

af fds fa(fO\,_ f fl) 

dz Jo G— 2 a= b dz (=) dg = pe (¢~ 2) a (>) 
    

then we obtain 

p LS) ag = 2nif'(2) (16) 
(C2) 

for the evaluation of an integral with a “second-order singularity” in ils integrand. 

The first step in (15) does indeed need justification because it amounts to an 

interchange in the order of the two limit processes: the integration and the differ- 

entiation. The “ looks all right because z is inside of C’, so that ¢ — 2 is nonzero 

for all C on C. Thus, f(0)/(¢ — <) is an analytic function of 2 for each ¢ on C. 

Nevertheless, let us verify (15) rigorously. Not having a complex variable version 

of the Leibniz rule for differentiating under the integral sign, let us fall back on 

basics and recall that the derivative is the limit of a difference quotient. Let 

(z) , (17) pa  
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Then 

  

  

  

Az—~0 Az 

_ if 1 1 \, 
= dims f (Gpcag ee He 
_ £(Q) de 
= im, f (C—z)(C—2z—-Az) (18) 

If we pass the limit across the integral sign, then the latter does give the same result 

as (15) but, as noted above, we cannot be sure that the order of the limit and the 

integration can be reversed. To proceed, we express 

f(Q) ae _ f(Q 
beecotnscay = fe Cotte (19) 

and seek to show that AJ - 0 as Az — 0. From (19), AJ is the difference 

: — tle TSE cop HOM 

| =: ¢ Coyne ay oy (20) 

To bound AT let us deform C' in (20) to a circle C’ with its center at z and radius 

p small enough so that C” lies entirely inside C. Since we are letting Az — 0, 
we can choose |Az| < p/5, say. Then, from Fig. 4 we can see that \(¢ — z)*| is 

exactly equal to p” for all points ¢ on C’, and that |¢ — (z + Az)| > 4p/5 for all ¢ 
on C’. Moreover, there must exist some finite constant m such that | f(¢)| < mon 
C” since f is analytic on C’. Therefore, the M/Z bound gives 

  

  

m 5 
Wy TT 

p*(4p/5) 

It follows from (21) that if Az — 0 with C’ fixed (and hence with m and p fixed), 

then AJ — 0, which result establishes the truth of (15) and hence (16). Figure 4. Bounding AJ. 

Similarly, we can repeat this process of differentiation as many times as we 
wish, and find that ) 

f(¢ 2Tt at, 

§ oat 6 = IM) Jo (G = 2) 

or, returning to the z, a notation used in (4), 

[AT] < |Az| (21) 

  

  

  
p | ea dz = “™ f(a). (22) 

= 
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(a) 

(b) 

    
Figure 5. The contours in Example 4. 

For reference, let us distinguish (4) and (22) as the Cauchy integral formula 
and the generalized Cauchy integral formula, respectively.* 

EXAMPLE 3. Evaluate ; 

l= f —z dz, (23) 
JC 

z| = 1. Rewrite (23) in the form 
  where C’ is the counterclockwise unit circle 

re 
f= bh 7-5 dz, ‘ }, Eo" 

for comparison with (22), We see that n = 2,a = 0, and f(z) = e* so (22) gives 

Ini f da . 
r= (fe) =m. 2G   

zaQ 

EXAMPLE 4. Evaluate 

‘ z+l1 
[= f dz, (25) 

o 22 — 22-493 
where C’ is the counterclockwise unit circle |: ~ 3| = 2 (Fig. 5a). The integrand has 

singularities at z = 0,2, and 4, of which the latter two fall within C. We could apply 

partial fractions to the 1/[(z — 2)(z — 4)%] part of the integrand, but it is easier to deform 
C' into the two contours shown in Fig. 5b, and to evaluate each of the two integrals using 

(22). Thus, 

  

  

    

. z+1 | Qni dd? z+ | 
== 201 — 

z(z — 4)8 | 2! dz? | z(s - 2) a 

_ _ 3m 23mt at 

8 64 64 

There are two important observations to be made. First, observe that the 

Cauchy integral formula 

; Lf fq) _. ia= f uc (26) 
amt fog 2 

gives f(z) at any interior point z of the region within C’ as an integration over Its 
boundary values on C’. Since the real and imaginary parts of the analytic function 
  

"This result opens up the interesting possibility of defining noninteger-order derivatives of a func- 
: . ap : 4 . : ~ 7p aed + 

tion, for if we interpret m! as (7 + 1) and define the intended branch of (€ ~ 2}""". then the 

right-hand side of (22) is defined for noninteger values of n as well.
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f(s) = ula, y) + iv(x, y) are harmonic, we see that (26) is very close to providing 
the solution to the classical Dirichlet problem, namely, V*u = 0 in the interior of 
C together with a Dirichlet boundary condition on wu (i-e., w given on C). Thus, as 
in Chapter 22, we see once again the close connection between analytic function 
theory and two-dimensional potential theory. We return to this idea in the exercises. 

Second, observe that having assumed only that f(z) is analytic (once differen- 
tiable), one finds with no further assumption that f(z) possesses derivatives of all 
orders: le 

f(a) = Fe tS) ae, (21) 
ami Je (¢ — 2)nt! 

This remarkable result has no analog in real variable theory. For instance, observe 
that f(z) = x* H (x), where H is the Heaviside function, is once differentiable for 
all x (sketch the graphs of f and f’), but {” fails to exist at x = 0 due to the kink 
in the graph of f’ at that point. Similarly, f(a) = 2° H(z) is differentiable twice 

but not three times. Thus, if f(z) is “nice enough” to be once differentiable in 
some region, then it will be very nice indeed, infinitely differentiable! How can we 
understand this difference between real and complex function theory? The answer 
is that differentiability in the complex plane is much more demanding than on the 
real axis because z can tend to zp, in the formula 

  

    

f(z) = lim fe) = 20) (28) 
z—zQ &— 29 

| in any manner, whereas only a horizontal approach is possible in the real variable 
formula Fe) — fro) 

. . UG) — Frag . 
f'(@) = lim ~+~———., (29) 

Lrg i LO 

Because more is demanded. in the complex case. the consequences of differentia- 
bility are more far reaching. 

Closure. The chief results in this section are the Cauchy integral formula (4) and its 

generalized version (22). Whereas Cauchy’s theorem tells us that to fle)dz = 0 
if f is analytic, (22) shows us how to evaluate an integral (around a closed contour 

C’) when its integrand has a singularity of any order within the region enclosed 

by C, 

  
  

EXERCISES 23.5 
  

  
| a. ; ~ wo 

1. Evaluate each integral. where C' is the counterclockwise (c) f dz (d) e L e dz 
circle |z} = 3. Use Cauchy’s integral formula or its extension, = fg 2° — 52 Jo tl 

  

  

    
io p cos wd me ye 

JG * Jo *
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sinh 3z 
(g) q (41P dz 
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“ 2+? 
(h) p Ty dz 

Jo 1 

  

co 

” f zcos (2/2) “ Of (2 + i)(2? £1) 

in 

“) G eet ® co 2(z — 2)(2— 4) 

2. Umportant little integral) In Section 23.3 we show that 

(n = ~1) Oe aae = £m 

where 7 is any integer and a is within the contour C’. Derive 

(2.1) using Cauchy’s theorem, the Cauchy integral formula, 

and the generalized Cauchy integral formula. 

(2.1) 

3. (a) Show from (22) that if C’ is a circle of radius p with 

center at z, f(z) is analytic inside and on C’, and M is the 
maximum value of | f(z)| on C, then 

rr) < uM 
— p” 

(b) (Liouville’s theorem) Use (3.1) to prove Liouville’s theo- 

rem: /f f is entire (i.e., analytic for all finite z} and bounded 

for all z, then f is a constant. 

(c) Since f(z) = sin z is entire and not a constant, it must not 

be bounded (according to Liouville’s theorem). Demonstrate 
that, in fact, it is net bounded. 

(d) (Fundamental theorem of algebra) Use Liouville’s theo- 

rem to prove the fundamental theorem of algebra: if P(z) is 

a polynomial function of z, of degree | or greater. 

  

(3.1) 

P(z) = anz" + Qn" | + +++ +49 (dn # 0) 

then P(z) = 0 has at least one root. HINT: Suppose that 
P(2) is nonzero everywhere. Then f(z) = 1/P(z) is analytic 
everywhere and is bounded, 

4, (Dirichlet problems) As mentioned in the text, just as the 

Cauchy integral formula 

IG) | f= 5 f 
Ini C~2 

expresses an analytic function f(z) = u + iv in terms of 
its boundary values, we would expect there to exist a similar 

integral formula expressing a harmonic function u(a,y) in 

terms of its boundary values. In this exercise we seek such a 

formula for two important cases: the case where the domain 

is a circular disk, and the case where the domain is the upper 
half plane. 

(4.1) 

(a) (Circular disk) Let C be the counterclockwise circle |¢| = 
ft. If we seek the desired expression for uw by equating real 

parts of the left- and right-hand sides of (4.1), we find that the 

right-hand side involves both u and v, whereas the additional 

unknown v is not welcome. The reason that v enters is that 

1/(¢ — z) is not purely real. With ¢ = Re*®, show that we can 
re-express (4.1) as 

. i of 1 1 

19)= aR f(s - eR 
1 20 ¢ :) . 

— ——— dg, aa I, (Gre f(¢) dé 

lI ) HO) ac 

  Hl 

(4.2) 
where the bracketed quantity is real. In particular, show that 

¢ zz 
(-2"@-z- 

and hence that 

R* — r* 

~ 2 
IC -2| 

    (4,3) 

z[ (RP — 1?) u(R, 4) 
2a fg RR? —2Rrcos(¢@—O)+r 

where z = re’? and ¢ = Re'®. This result is also derived 

by separation of variables, in Section 20.3 and is known as the 

Poisson integral formula for the circular disk. 

(b) (Upper half plane) This time let C be the contour shown 

here. Show that (4.1) can be re-expressed as 

u(r, @) = dé, (4.4) 

7] 

  

  

  

u
t
 

  fo=ss (= — (4.5) 
| s, C- 2 ¢ 

=) Hlovac 
z 

for all R > Suppose that, as our boundary condition 

at infinity, Ho + Qasz - co. Letting R -> oo in (4.5), 
show that the semicircle integral tends to zero, leaving us with 

1 ad 1 1 ; 

ant fo, (+ ~ — F(€) d€. 

Finally, equating real parts in (4.6), show that 

f(z) = (4.6)      
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u(a,y) = y / 60) dé (4.7) 
mJ. (G-#) +y 

is the solution to the Dirichlet problem for the upper half plane, 

with the boundary condition u(x, y) > Oasr = fa? + y? > 

oo. This result is also derived by means of the Fourier trans- 

form in Section 20.4 and is the Poisson integral formula for 
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ered here in parts (a) and (b) can also be solved by an elegant 

technique known as the method of Green’s functions.* For 

the reader who subsequently studies that method and comes 

back to this exercise to compare the two approaches, it may be 

helpful for us to note that the mysterious point ¢ = R?/Z that 

shows up in (4.2) and the mysterious point ¢ = Z% that shows 

up in (4.5) are (in the terminology of the method of Green’s 

the upper half plane. NOTE: The Dirichlet problems consid- functions) the image points.   
  

Chapter 23 Review 

We begin Chapter 23 by defining the complex integral te f(<) dz in essentially     . ; a 
the same way that one defines the real integral fa f(x) dx, and note the close re- 
semblance to line integrals in two dimensions. There are only a handful of major 
results, and they are as follows. 

Cauchy’s Theorem. If f(z) is analytic in a simply connected domain D, then 

fe fle) dz =0 

for every piecewise smooth simple closed curve C' in D. 
If instead Cis an open curve, then Cauchy’s theorem gives this corollary: 

Path Independence. If f(z) is analytic in a simply-connected domain D, then 
Te f(<) dz is independent of path in D. That is, given any initial point P in D 

and any final point Q@ in D, the value of Te f (2) dz is the same for every piecewise 
smooth path C’, lying entirely within D, from P to Q. 

Analogous to the fundamental theorem of the real integral calculus, we have: 

Fundamental Theorem of the Complex Integral Calculus. Let f(<) be analytic 
ina simply-connected domain D, and let zp be any fixed point in D, Then 

(i) G(z) = I f(¢) dé is analytic in D and G"(z) = f(z). 

Gi) If F(z) is any primitive of f(<) fi.e., F(z) = f(<)], then 

[. f(C) de = F(z) ~ F(z9). 

  
"See, for example. M. D. Greenberg. Applications of Green's Functions in Science and Engineer- 

ing (Englewood Cliffs. NJ: Prentice Hall. 1971). 
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If the integrand is nor analytic within the closed contour C’, then we have: 

Cauchy Integral Formula. Let f(z) be analytic in a simply-connected domain D, 
let C be a piecewise smooth simple closed counterclockwise curve in D, and let a 

be any fixed point lying within C’. Then 

ey { £@ 
Iaz-a@ 

  dz == 2nif(a). 

In fact, for any n = 0,1,2,... we have the generalized Cauchy integral formula 

Note that we have not claimed that the latter formula covers all possible singu- 
lar integrands, but we do claim that it suffices for most applications, and is of great 

importance. 
Finally, we also develop the so-called A/Z bound: 

< ML, 
  

. fle) dz 
C 

  

if | f(z2)| < M on C and the length of C is L. We continue to use this bound in the 
next chapter, both as a theoretical tool in the derivatives, and in the applications as 

well.
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Chapter 24 

Taylor Series, Laurent Series, 

and the Residue Theorem 

24.1 Introduction 

When we first introduced complex integrals, in Section 23.2, we pointed out that 
we can express any complex integral te f(z) dz in the form 

[ f(2)dz= [ tue. y)da — v(x, y)dy| +2 [we y)dx + u(x, y)dyl. 

Hence, there was the temptation to stop right there and to rely on the theory of real 
line integrals, as is covered in Chapter 15 and 16. However, we promised that it 
would prove more fruitful to keep te f (2) dz intact and to develop a distinct com- 
plex integral calculus. We began that development in Chapter 23 and got as far as 
Cauchy's theorem, the fundamental theorem of the complex integral calculus, and 
the Cauchy integral formula. Those results now enable us to derive the Taylor and 
Laurent series expansions of functions of a complex variable which, in turn, permits 
us to clarify the notion of singularities and, finally, to complete our development of 
the complex integral calculus by deriving the powerful residue theorem. 

24.2 Complex Series and Taylor Series 

24.2.1. Complex series. By a complex series we mean any sum of the form 

oS 

S- Cy = Cy to tea tee, (1) 

n=l 

where the c,,’s are complex numbers. As in the real case, we say that the series 

converges if the limit of the sequence of partial sums, 8, = cy + C2 +--+: + Cn, 

exists as 72 —+ oc. That is, the series converges to s if to each (real) number € > 0, 

1209
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no matter how small, there exists an integer N(e) such that 

n > N; otherwise, it diverges. 

The sum 5° cy, can be expressed in terms of real series, for if ¢, = an + ibn 

where a, and b, are real, then 5° c, converges if and only if S> a, and Sb, do, 

in which case Sc, = So an +1 ‘> by (Exercise 1). However, just as it is best to 

develop a complex integral calculus that does not rely on expressing Je f(z) dz in 
terms of real integrals, likewise it is best to develop a theory of complex series. 

As a start, a necessary and sufficient condition for convergence of any series, 
real or complex, is given by the Cauchy convergence theorem: 

Sy — 8} < € for all 

  

  

THEOREM 24.2.1 Cauchy Convergence Theorem 
An infinite series is convergent if and only if its sequence of partial sums s,, is a 
Cauchy sequence — that is, if to each € > 0 (no matter how small) there corresponds 
an integer NV(e) such that |s,, — s,| < € for all m and n greater than N. 
  

Unfortunately, this theorem is difficult to apply so one develops (in the cal- 
culus) an array of theorems (i.e., tests for convergence/divergence), that are more 
specialized than the Cauchy convergence theorem, but easier to apply. For in- 
stance, if in Theorem 24.2.1 we set 7m = nm — 1, then the stated condition becomes: 

to each € > 0 (no matter how small) there corresponds an integer N(e) such that 
8m — Sn| = len} < € for all n > N, which is equivalent to saying that c, — 0 as 
rn. — oo. Thus, we have the following specialized, but readily applied, result: 

  

THEOREM 24.2.2 A Necessary Condition for Convergence 
For the series een Cn to converge it is necessary, but not sufficient, that c, — 0 

as 2 + OO, 
  

Two more such theorems follow. 

  

THEOREM 24.2.3 Comparison Test 
If the series $~°°_, AJ, converges, where the A/,,’s are positive constants and |en) < 
AL, for each n greater than some integer NV, then the series $7, cn converges too. 
  

Proof: According to the Cauchy criterion, the assumed convergence of Aly 

implies that to each € > 0 there corresponds an No such that MJ, + Afpy, +00 + 
Mp+q < € for all p > No and all q = 0. Then (Exercise 2), 

lA
 

ep + per toes + epeaql S lepl + leper) + + lepeg) 

Mp + Moy+1 shot e Mpg <E (2) lA
 

po
se
 

a
n
n
e
 

+ 
a
 
e
r



  

for all p > No GE No < 

converges too. B 

N, then use N instead) and for all g > 

EXAMPLE 1. Determine the convergence or divergence of the series 

qn 42 43 
a oe PG —_ a 

Do 4 Phot 3 oe 

Since 
qn 

nl 

Deg > n oO lyn forall n = 4, and rg 1/2" = VG) 
frorn the comparison test that (3) is convergent. 4 

_ 
~ Al 

il 

    

iS a convergent geometric series, it 
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= 0, 80 SOP Cn 

(4) 

follows 

Observe that sometimes our series start atm — O and sometimes atn = 1 

or some other integer. These differences are inconsequential insofar as conver- 
gence/divergence are concerned (assuming that each of the initial terms in question 
is finite} though they do of course affect the sum if the series is convergent. 

  

THEOREM 24.2.4 Ratio Test 

If limp soo }Cn+-1/Cn| L, then S7°*° 9 cn converges if L < 1 
n=0 

and diverges if 

EL > 1. No information is obtained if Z = 1 or if the limit does not exist. 

  

Proof: Suppose that L < 
must be true that |¢n44/cn] < 

lenai| <plen|, 

len+2] <plenail < p len], 

len +s] <Plew+al < p* jen, 
  

  

and so on. According to the comparison test, }°°° 
with the series Sr 9p” ley |, W 
og p™. convergent because p < 

n=(0 

1. The case [ > 

EXAMPLE 2. Determine the convergence or divergence of the series 

O (1 +i)" 

aa 

      

m=O 

In this case, 
i 

: Cr+l | . 
lim |—==| = lim = V2 lim -~=0 

nooo] Cy | noo | FU e n-com +i 

    

1. Choose any number p such that L < p < 1. Thenit 
< p for all sufficiently large n’s, say for n > N. Thus, 

9 Cn COnverges by comparison 
which is |cay| times the convergent geometric series 

1 is left for the exercises. @ 

(6) 

t 9) 
fe I]
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so L = O and, according to the ratio test, the series (5) is convergent. — 

EXAMPLE 3. Determine the convergence or divergence of the series 

S eet siyn (7) 

  

n= 2 

Again applying the ratio test, 

. Cr+ . _ | “poaay 
lim | cok = lim [e7 C+)! = ¢ (243) | 

N90 | Cp TF OO | | 

—2 9 ay _9 

= |e? jae? le") =e (8) 

  

so L =e? < 1 and the series (7) is convergent. @ 

More generally, the terms may be functions of z rather than constants: 

S> fale) = fo(2) + file) +--°. (9) 

n=0 

Then the set of all points in the z plane for which the series converges is called the 

region of convergence of the series. 
Since we are leading up to complex Taylor series we shall not consider the 

general case (9). Rather, we suppose that /,,(z) is of the form c,(z —~ a)”, where 

the c,’s and a are, in general, complex numbers. The resulting form, 

  

Oo 

dnl z—-«) )” = ag + ay(2— a) +a9(z-—a)? +e, (10) 

    
  

is called a power series. If, to determine the region of convergence of (10), we 

apply the ratio test, we obtain the following result, proof of which 1s left for the 

exercises. 

  

THEOREM 24.2.5 Power Series Convergence by Ratio Test 

  

If 
. On+ i | 
lin — = [, (11) 
TFG Ay | 

then the power res | (10) converges in the disk |z ~a| < 1/£ and diverges in 
_ a > L/L. =: oo the series converges only at the point 2 = a, and if 

L= J it converges ‘ior all z, that is, in 2 ~ a) < oo, 
 



  

i 

| | 
| 
' 

34.2 

EXAMPLE 4. Geometric Series. For the geometric series 

OO — | 5 
> cha lb et at pees, (12) 

n=O 

Gy, = 1 for each n so (11) gives L = 1. Hence, the geometric series (12) converges in 

  the disk [z| < 1 and diverges in |z| > 1. Theorem 24.2.5 gives no information regarding 

convergence or divergence for points on the circele |z] = 1. However, |2"| = |z|" = 1" = 

1 fails to tend to zero as n — 90 so, by Theorem 24.2.2. the series diverges at all points on 
the circle }z) = 1. @ 

  

  

  

It is tempting to conclude from Theorem 24.2.5 that a power series inevitably 
converges in a circular disk centered at a (that disk being the single point z = a if 
£ = oo and the whole z plane if L = 0). However, notice that the theorem yields 
no information if limp,—+00 |@n41/@n| does not exist (as occurs if, for example, ay, = 

sin), and in that event it is conceivable that a noncircular region of convergence 
may exist. Toward clarifying this point, we first present the following lemma." 

  

LEMMA 24.2.1 Power Series Convergence 

If the power series (10) converges at zp, then it converges everywhere in the open 
disk 2 ~ a] < [29 — al] (Fig. 1). 
  

Proof: Since the series converges for z = 2g, it follows that a,(z9 — a)" + 0 as 

n —> oc, Thus, there must certainly exist a constant AY such that a,(so — a)"| < 
A for all n = 0.1,2 . and from this result we infer that |a,| < K/ [2p — a" 
(1 = 0,1.2....). Then, for any z such that |z ~ al < [zg — al, we have 

~~ fn 

lan(z9 — a)"| << — . (13) 
KN 7 a 

Observing that |(< — a)/(zo — a)| < 1, we see that K|(z — a)/(29 — a))" is the 
nth term of a convergent geometric series (scaled by A’). Thus, it follows from (13) 
and the comparison test that (10) is convergent, as stated. a 

With the help of this lemma we can now show that the region of convergence 
of a power series is necessarily a circular disk. 

  

THEOREM 24.2.6 Power Series Convergence in a Disk 

For the power series (10) there exist three possibilities regarding its region of con- 

vergence: 
  

“Not an end in itself, a lemma is developed to help prove a subsequent theorem. 

24.2, Complex Series and Taylor Series 

YA 

Figure 1. The disk 

jz - a) < [zo — al. 

I tN
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Figure 2. Disk of convergence. 

(i) the series converges only at the point a; 

(ii) the series converges in the whole plane; 

(iii) there exists a constant R > O, called the radius of convergence of (10), such 

that (10) converges in |z ~ a| < Rand diverges in |z ~ a] > R. 
  
  

Proof: To prove that (i) and (ii) are possibilities it suffices to put forward an exam- 
ple of each case. We leave this part for the exercises, and turn to (iil). If G) does 

not apply, there must be a point z; 4 a at which (10) converges, and if (ii) does nor 
apply, there must be a point zg at which (10) diverges. From the lemma it is evident 
that |zo ~ a] > [21 — al. If |zg — a] = |z1 — ai, it follows from the lemma that (10) 
converges everywhere in |z — a| < |z, — al. Furthermore, the lemma also implies 
that (10) diverges everywhere in |z — a] > |z, — a| for if it converged anywhere 

  

in that region it could not diverge at z2 as assumed. Thus, if |zg — a] = |z1 — al, 
then R = |zg — a| = |z1 — a| is the radius of convergence referred to in (iii), and it 
remains to consider the case where |z2 — a| > |z1 — a| as depicted in Fig. 2. Let $ 
be the set of values p such that (10) converges for all |z — a] < p. From the lemma 
it follows that if some value po belongs to S' so do all p’s satisfying 0 < gp < po. 

Thus, S is necessarily an interval (on a p axis), either 0 < p< RorO0<p<R 
for some R such that |z; — a| < R < |z2 —a|. Furthermore, (10) must diverge 
everywhere in |z —a| > F because if it converged anywhere in that region, the 
right endpoint of the S interval would be greater than R. Then R is the radius of 

convergence referred to in (iii), and the proof is complete. @ 

We are now ready to develop the concept of the Taylor series of a function of 

a complex variable. 

24.2.2. Taylor series. In Section 23.5 we found that if a function f(z) is analytic 
at z = a, then it admits derivatives of all orders there. Since f(a), f'(a), f”(a),.-- 
all exist, it is at least formally possible to write down the Taylor series 

2 p(n) 
S~ Le a) (z—a)" (14) 
n=O 

of f(z) about the point a. However, whether or not the Taylor series is useful 
depends upon the answers to these questions: Does the series converge and, if so, 
in what domain? If it does converge in some domain D, does it converge to f(z) 
there; that is, does it represent f in D? Finally, if (14) does represent f in D, might 
there exist other power series representations of f as well? That is, might there 

exist more than one representation of the form 

oO 

f(z) =) an(z ~ a)", 
n=0 

where a, 4 f'")(a)/n!? These questions are answered by the following theorem.
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THEOREM 24.2.7 Taylor Series 

Let f(z) be analytic in a domain D. If @ lies within D and |z ~ al < R is any disk 
centered at a and lying entirely within D, then f(z) admits precisely one power 
series representation in |z — a] < R, its Taylor series (14): 

  

T(z) = Ss" ——= (zg -a)" = f(a) + f'(a)(z-a)+°°:. (15) 

      
  

Proof: Let C' be the circle |z ~ a| = R (Fig. 3), counterclockwise. For any point 
z inside C’ we have, according to the Cauchy integral formula, 

; Lf £6 fle) = ac, (16) 
2mt fo G-z 
    

which formula serves as our starting point. Let us re-express 

    

  

  

I 1 1 7 

C-2 C-a, za ay) 

¢~a 

in the integrand, and then use the formula 

l “ . Th 

pap iter he tee, (18) 

which is simply an algebraic identity for all ¢ 1 [as can be verified by multiplying 
(18) through by 1 — ¢]. Specifically, let (¢ — a)/(¢ — a) be ¢ in (17), and then use 
(18), These steps give 

vy 2 Pf ££ 
r= so | f Mace ap ous 

za n—~1 F(¢) - 

  

where the remainder term is* 

>. Gro" f LQ) a. 
Ry(z) — ti i} (c ~~ a)r(C - Z) dc. (20) 

“At first glance, it may appear that in deriving (19) we have been guilty of interchanging two limit 

processes without justification, namely, expressing the integral of a sum as the sum of the integrals. 

‘ is not an infinite series; it is 

  

  

However. there is no need for concern because 1 + ¢+¢° +--+ +4" 

only a finite sum. 

  

  

Figure 3. The contour C’ in (16).
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Then, recalling the generalized Cauchy integral formula 

f(a) = 5 f eae dG, CN 
we see that (19) becomes 

fO—N(a) 
(n— 1)! 

which is the complex version of Taylor’s formula with remainder. 
Finally, we wish to show that R, - O as mn — oo. We expect that to be 

true since R, comes from the ¢”/(1 — t) term in (18), and ¢” does tend to zero as 
nm — co because |¢] = |(z — a)/(¢ -— a)| = p/R < 1 for all points ¢ on C (Fig. 3). 

Since f(z) is analytic on C it must be bounded on C’. Thus, suppose that 
|f(z)| < mon C. Noting further, from Fig. 3, that |z — a] = p, that |¢ — a] = R, 
and that |¢ — z| > R — p for all ¢ on C, we have 

ion 
boca” 

fle) = f(a) + f(a)(e —a)+---4+ (z= a)! + Rn, (22) 

  

p” 

|Rn(z)| = = 
  

  

  

2m 

p" m 5 

S oT R"(R— p) anh (by the AZ bound) 

_ mR (4)" . 
oy 

R-p\kR 

which expression tends to zero as n — oo forall z in |z —a| < R. Then, by the 
definition of series convergence, letting n — oo in (23) gives the resulting Taylor 

series representation 

  fle) = Fla) + faz a) + Sz a) to (24) 

of f(z) in|z—-al < R. 
We will omit the proof of uniqueness, that (24) is the only representation of 

f (2) of the form 3772.9 an(z — a)". m 
n= 

The upshot is that if f(z) is analytic in |z ~ a] < R, then it can be represented 
in that disk by a convergent power series, namely, its Taylor series about a. It can 

also be shown that the converse is true: 

  

THEOREM 24.2.8 Convergent Power Series 
If a power Series oe in (2—a)” converges in |z — a| < A, then its sum function 

f(z) is analytic there and the power series is the Taylor series of f; that is, dy, = 

fP(a)/nl. 
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EXAMPLE 5. To obtain the Taylor series expansion of f(z) = e* about z = 0, say, we 
could work out the coefficients f(0), f'(0), f"(0)/2!, and so on, but it is easier to note that 
(15) is of exactly the same form as in real variable theory so we need merely change the w’s 

to 2’s in the familiar formula 

. ge ag 
e = il+art+ OF + or chee, (25) 

Observing also that e* is analytic in the whole plane, we see from Theorem 24.2.7 that the 

Taylor series representation 

CoS Let apt gp bo (26) 

    
holds in |z] < oo. As in real variable theory, we call the Taylor expansion of f(z) about 

z = 0 the Maclaurin expansion of f(z). 

If, however, we wish to expand e* about some point other than the origin, say z = 2, 

then the remembered formula (25) is of no help, and we need to work out the f(”)(a)/n! 

coefficients in (15). Doing so. we obtain 

—(z-i)P+--, (27) 

which holds in the whole plane, |z ~ i] < oo. Of course, e’ = cos1+isin1. Bf 

EXAMPLE 6. Geometric Series Revisited. In Example 4 we used Theorem 24.2.5 to 
determine that the geometric series | + z + 2” +--+ converges in |z| < 1 and diverges in 

iz) > 1. (We also showed that it diverges on the circle |z| = 1 because there the general 

term 2" fails to go to zero as n —+ 90.) In fact, the series sums to 1/(1 — 2) in |z) < land 

is the Taylor series of that function: 

1 - 9 os , 

pop tibet te. (lz| < 1) (28) 

It is important to understand that the preceding three theorems enable us to determine 

the region of convergence directly from the function being expanded, without having to test 

the series itself. To illustrate. consider f(z) = 1/(1 — z). Theorem 24.2.6 tells us that the 

region of convergence of the Taylor series of f about z = 0 will be a disk centered at z = 0, 

having zero, finite, or infinite radius. To determine that radius, examine f to see where it is 

analytic and where it is not. In this example f(z) = 1/(1 — 2) is readily seen to be analytic 

everywhere except at z = 1. which is a “singular point” of f. Theorem 24.2.7 tells us that 

Ris at least 1, and Theorem 24.2.8 tells us that R is no greater than that, because the sum 

function f is necessarily analytic in jz] < R whereas f is singular at z = 1. 

In physical terms we can visualize the disk of convergence spreading from the point 

of expansion. like ripples on a pond, until it encounters a singular point, it can spread no 

further. 

COMMENT |. Whereas 1/(1 — 2) is meaningful everywhere except at the point z = 1, 

the series 1 + z + 22 +--+ is meaningful only inside the disk |z| < 1 and is therefore only 

a partial representation of the original function, It is interesting to imagine being handed
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C 

  

  

TH   
Figure 4. Analytic continuation. 

  

Figure 5. Disk of convergence. 

a i/d4x7) 

  

  

Figure 6. Graph of 1/(1 + 27). 

the series 1 + z + 2% +--- and not knowing that the sum function is 1/(1 — z). Applying 

the ratio test to the series, we ascertain that it converges only in |z| < 1. Nevertheless, 

if we wish to compute values of the mysterious function (of which the series is a partial 

representation) outside of |z| < 1, we can (at least in principle) proceed as follows. Denote 

the function, of which 1 + z+ 2* + --- is a partial representation, as f(z}. Then we can 

compute f, f’, f”,... at some point P;, of our choosing, within |z| < 1 (Fig. 4). With 

these values in hand, we can expand f in Taylor series about P,, obtaining 

f'(Pi) 
fz) = FP) + (PO = Pi) + SG = Pipe, (29) 

  

Then, applying the ratio test (or some other convergence test) to this new Taylor series, we 

would find that it converges inside the circle C’,. [Since we are pretending not to know that 

f happens to be 1/(1—z), we do not know about the singular point at z = 1.] Similarly, we 

can use the representation (29) to compute f, f’, f”,... at some other point P, (Fig. 4) and 

thus derive still another Taylor series representation of f, this time valid inside C2, and so 

on. This “stepping-stone” process is an example of analytic continuation.” Incidentally, 

the best we could possibly do in this example, given the series 1-+z2+---, isto obtain f(z) = 

1/(1—2), which is the most complete possible analytic continuation of this particular series. 

COMMENT 2. Consider, instead, the function 

1 
=, 30 

1+ 27 (G0) g(2) 

We can see that g is analytic everywhere except at z = +7. Thus, we know in advance, 

even before generating its Taylor series about z = 0, that the series will converge in |z| <1 

and diverge in |z| > 1 (Fig. 5). To generate the Taylor series we can, of course, use (15). 

However, it is easier to recall the geometric series 

1 5 
—— =1l4ti+t?+--- 3] 
lot +t+t! + G1) 

and to notice that (30) is of that form, with ¢ = —z7. Then, without further ado, (31) gives 

1 2 4 8b 

1+ 22 + (32) 

Since (31) converges in |t] < 1, and ¢ is related to z by ¢ = —27, it follows from jz| = V/{¢| 

that (32) converges in |z| < 1, as we predicted from the fact that g has singularities at 2:7. 

If we restrict z to lie on the real axis, then (32) becomes the real Taylor series 

1 3 ‘4 6 
se leet eee (ja} < 1). (33) 

L-+ 24 

If one encounters (33) in studying the real variable calculus, the limitation |z| < 1 must 

surely seem paradoxical. For why should the series diverge outside jz| < 1 if the func- 

tion 1/(1 + 2°) is so beautifully behaved (e.g., infinitely differentiable) for all x (Fig. 6)? 

  

  
“For discussion of analytic continuation, see for example E. B. Saff and A. D. Snider, Fundamen- 

tals of Complex Analysis (Englewood Cliffs, NJ: Prentice Hall, 1976), or Konrad Knopp, Theory ef 

Functions, Part | (New York: Dover, 1945). 

  

 



  

| 
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However, our study of complex function theory now renders the situation transparent: the 

restriction |x| < 1 in (33) occurs because the function 1/(1 + 2”) has singularities off the 
real axis atz = +iandz=—7. @ 

  

EXAMPLE 7. As a second example in which the results of real variable theory appear 
paradoxical, consider the function 

alfa" - 

fe={ os Bee (34) 

the graph of which is shown in Fig. 7. Besides /(0) = 0, one can show (which is left 

for the exercises) that f’(0) = f”(0) = f’”(0) = --- = 0 so the Taylor series of f about 
xz = Ois simply 0+0+0+---. Surely, the latter converges for al/ x (namely, to zero), 

but it does not represent the given f anywhere except at x = 0, the only point at which 

f(x) is exactly zero, Why this striking failure of the Taylor series? After all, f is infinitely 

differentiable for all 2 and hence seems quite well behaved. 

Again the “paradox”’ is resolved by examining the behavior of 

4) ee" x £0 f={ ou 228 G5) 
in the complex plane. Specifically, observe that if z is on the real axis, but z -4 0, then 

f(z) = eV" - Oas x - 0; but if z > 0 along the imaginary axis, then f(z) = 

en H/(iu)” 2 el/¥” 3 oo as y 3 0. Thus, f(z) is not even continuous at z = 0, let alone 
analytic. Hence, its Taylor series expansion about z = 0 is doomed to converge to f only 

at the expansion point z = 0. @ 

EXAMPLE 8. Undetermined Coefficients. In this final example we emphasize the 

practical matter of how to generate the Taylor series of a given function in a convenient 

manner. To illustrate, consider the expansion of 

e* 

f(z) = (36) 
COS Z 

  

about z = QO. First, observe that f is singular only at the zeros of cos z, namely, at z = 

+ /2,+37/2,.... Of these, the closest to the origin are +7/2, and these will limit the 
radius of convergence of the Maclaurin expansion to R = 1/2 (Fig. 8). 

Naturally, we can work out f(0), f/(0),... and use the Taylor series formula. How- 

ever, the repeated differentiations grow increasingly tedious and we wonder whether we 

might, instead, benefit from the fact that the expansions of e* and cos z are known (i.e., 

remembered or easily derived). Thus, let us proceed as follows. First, express 

  
) 

= Ap Fa,Z + G9z7 +---, (37) 
COs z 

where the a,j’s are to be determined. Multiplying both sides of (37) by cos z and then 

recalling the expansions of e* and cos z, write 

248 
a az 

e2 ed 
$4. = (ay baz tag2* +---) (1-454). (38) L+e+— 

2 6 

  

Figure 7. Graph of f given by (3 
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Figure 8. Disk of convergence.



1220 Chapter 24. Taylor Series, Laurent Series, and the Residue Theorem 

The first series on the right converges in |z} < 7/2, and the second (the cosine series) 

converges in |z] < oo so it is justified (Theorem 24.2.10, below) to multiply them term by 

term, in |z| < 7/2, and to rearrange the result in ascending powers of z. That step gives 

1 5 1 4 
== ig + yo + | a2 5 (0 a 7+ 1 a3 — 5a Bo kee, (39) 

Finally, equating coefficients of like powers of z (Theorem 24.2.9, below), we obtain ag == 
“ 4 P 0 

L, a, = 1,ag = 1, and ay = = so 

  

    

weet 

  

  
28 > 2. 

M— lteter 4 leh... (40) 
COs 3 

injs| < 7/2. @ 

In the preceding example we discovered a need for additional theorems cov- 

ering the manipulation of power series. For instance, we solved for ag, a ,... by 
equating coefficients of like powers of z on the left- and right-hand sides of (39). 

Surely x so 

S- dy(z—- a)" = S° bale — a)” (41) 
n=0 ri=Q) 

holds if a, = bp, for each mn, but is a, necessarily equal to b,,, for each n, for (41) 

to hold? The answer Is yes: 

  

THEOREM 24.2.9 Uniqueness of Power Series 
If Sg Gn(e — a)” and S784 Ua(s — a)" both converge in |2} < A, then (41) 
holds in |z| < Rif and only ifa, = by foreachn = 0,1,2,.... 
  

Proof: Since the sum functions of the two series are identical, say f(z), it follows 

from Theorem 24.2.8 that a, = f'(a)/nt and by = f(a) /n!. Hence, an = bn 
foreachn. @ 

Also, in proceeding from (38) to (39) we multiplied two power series term 
by term and rearranged the resulting terms in ascending powers. The following 

theorem justifies such manipulation. 

  

THEOREM 24.2.10 Termwise Product of Power Series 
If 7° 9 an(z — a)" converges to f(z) in |z—a) < Ry, and S79 bale — a)” Lone 

converges to g(z) in|z — a] < Re, then the termwise product 

oO IO 

S- anle — a)" bale — a)” 

0 n=aQ ness



hm bo
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= agbo + (aob1 + a bo)(z = a) + (agbe + arb, + agbo)(2 = a)? +++: 

= S_(aobn + aybp1 +++ + aybp)(2 — a)” (42) 

n=O 

converges to f(z)g(z) in |z ~ a) < min(R,, Ro). 
  

The resulting series, on the right-hand side of (42), is known as the Cauchy 
product of the two original series. 

EXAMPLE 9. Obtain the Cauchy product of the Maclaurin expansions of 1/(1 — 2) 
and 1/(1 + 22). 

    =(L+e24+2°4---)(1-22 4427 —---) 

= (1)(1) + ((1)(—2) + G)())2 + [()(4) + ()(—2) + QA) (Je + 
=l-2432°4-5, (43) 

which result does agree with the Maclaurin expansion of the product function 1/(1 + z — 

22°), Since the original series converge in |z| < land |z| < 1/2, respectively, their Cauchy 
product converges to 1/(1 + 2—22*)in|z|< 1/2. 

We give three more theorems about the manipulation of power series. Inciden- 

tally. we now know that when we speak of convergent power series we might as 

well call them Taylor series since Theorem 24.2.8 revealed that a convergent power 
series is a Taylor series, the Taylor series of the sum function. 

  

THEOREM 24.2.1] Termwise Linear Combination of Power Series 
If Sy g an(e — a)" converges to f(z) in }z—al < Ry and S7™ 5 ba{z — a)” 
converges to g{z) in |z ~ a) < Rg, then 

x DO oO 

a anle a)" 4350 bi(e— a)" = S (aan + Bbn)(2— a)" (44) 
n==Q n==Q ea) 

converges toa f(z) + 3g(z) in|z- a) < min (Ry, Ro). 
  

Proof: 

N N N 

lim S (aay, + Bb, )(2~ a)" =a lim ) dn(2—a)" + lim ) ba(z— a)" 
N-t00 : , N-00 ‘ N-$00 

ne=Q rh==Q n=Q
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where each of the series on the right-hand side converge. @ 

In particular, the cases ~@ = 1 and ff) = -+1 show that the power series can be 
added and subtracted termwise within the smaller disk of convergence. 

  

THEOREM 24.2.12 Termwise Differentiation and Integration of Power Series 
If oe gy Gn(z ~ a)” converges to f(z) in |z — a] < R, then 

  

(a) the series S77", nan(z — a)"~!, obtained by termwise differentiation, con- 
verges to f’(z) in |z — al < R, and 

an 
b) the series S~°°_ (b) the series $7" 4 Wa 

verges in |z —a| < R. 

  (z — a)"*!, obtained by termwise integration, con- 

  

Proof of (a): Since the given series converges to f(z), it must be the Taylor series 

of f (Theorem 24.2.8); hence, an = f'")(a)/n!. We learned, from our discus- 
sion of the Cauchy integral formula, that if f is analytic in a given region then 
so is f’, f”, f’”, and so on. Thus, f’(z) can be represented by a Taylor series in 
|z-—a| < R: 

/ _ o f(a) . n oo feFD (a) 

Fe)= 2 ea) = Lin Dye 9 

= Yo(n + Lanyi(z - a)" = So nan(z —a)r}, 

n=0 
nal 

as was to be shown. g 

Closure. In Section 24.2.1 we introduce the concept of complex series, and cover 
several tests for the convergence of complex series of constants and complex power 
series. Whereas areal power series )> a,,(«—a)” converges in an interval | — a] < 
Ron the x axis, a complex power series )7 a,(z—a)" converges ina disk |z — a] < 
Rin the z plane. 

In Section 24.2.2 we focus on the Taylor series of a function of a complex 
variable and use the Cauchy integral formula to derive the Taylor series of f(z) 
about z = a and to show that the series converges to f(z), and hence “represents 
f,” in the largest possible disk, centered at a, throughout which f is analytic. Since 
the theory is really an extension of the real variable theory, the expansions of the 
various elementary functions carry over intact, with x’s changed to z’s and intervals 

of convergence changed to disks of convergence. For instance, 

CO 
1 

= 5S 2" in [z| <1, (45) 
l-z 
  

n=Q



  

  

OO Ln 

Cos — in 

n=0 n 

08 hn gant 

sin z dS 1) (on 2 i)! in 

OO yen 

COs Zz = LOY in 
n=0 (2n)! 

O° 2n-+1 

sinhs = S- — in 
oar (2n + 1)! 

CO On 
aaah ya “ 1 cosh z = S> (an)! in 
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|z| < 00, 

    < 00, 

lz] << ~, 

a 
    < OO, 

[z| < oo. 

(46) 

(47) 

(48) 

(49) 

(50) 

With Theorem 24.2.8 the distinction between power series and Taylor series vir- 
tually disappears since a convergent power series is indeed the Taylor series of its 
sum function. 

Examples 6 and 7 reveal that the Taylor series of real variable theory affords 
only a partial view of the whole, and can therefore sometimes appear paradoxical. 
For instance, the Taylor series of 1/(1 + x) about z = 0 converges only in —1 < 
x < 1, even though the function is well behaved at ¢ = +1 and, indeed, is infinitely 
differentiable for all z. The source of the paradox is revealed by considering instead 
the Taylor series of 1/(1 + 2”) about z = 0 in the complex plane; namely, it is the 
presence of singularities at z = -b2, off of the real axis, that limits the disk of 
convergence in the z plane and hence the interval of convergence on the x axis. 

Example 8, on a method of undetermined coefficients, reveals a general need 
for more theorems on the manipulation of power series, and we close this section 
with several such theorems, the gist of which is that convergent power series can be 
added. subtracted, multiplied, differentiated, and integrated termwise within their 
common disk of convergence. 
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EXERCISES 24.2 
  

1. [n the second paragraph of Section 24.2.1 we state that 

So ey converges if and only if Say and Sb, do, where 

Cy = Gy, + 10,. Prove that claim, using the “‘e definition” 

of convergence given in the first paragraph. 

2. Cite the justification for the first inequality in (2). 

3. Prove Theorem 24.2.4 for the case where L > 1, 

4, Use any of Theorems 24.2.1~4 to prove Theorem 24.2.5. 

5. Use any of the theorems of Section 24.2.1 to determine the 

convergence or divergence of the following complex series. 

i 4 (20)" Inn 

(1 + 34)” 
71190 

  

  

(f) S nie G-dn 

n=l 

(h) S (sin n) 

nal ( 
1+ 

oa 

u 
  

a 

Y
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6. Use any of the theorems of Section 24.2.1 to determine, in- 

sofar as possible, the regions of convergence and divergence 

of the following power series. 

(a) oe (b) Son n 

  

n=0 nse 

oo 

(c) So nl(z +5)" (d) Soe": +i)" 
n=O nd 

20 so 

(e) S- eo hg" (f) (nt? [nb)z" 
= n=O 

30 
yin 7 COs 7 yh 

Le - iy) 
n=0 n=O 

20 f CO 

i) SS (@- Gj) So (e™ /ntjz" 
n=l nad 

7. For the function f(x) defined by (34), it is claimed that 

derivatives of all orders exist and are zero at x = Q. Verify that 

claim for the derivatives of first and second order. 

8. Is the following power series the Taylor series of some func- 

tion? If so, in what region does the series represent the func- 

tion; if not, why not? 

  

anol 

(a) s yen ~ ye (b) eS nek 
n=l mo 04 

20 z+ ; an 

sep @i+¢33 
nod oo 

9, What is the radius of convergence of the Taylor series of 

1/(2 

(a) 2 = 0 

— 32 +2) about 

(b) z = 3% =5-i (c)z=1—5i (d)z 

10. What is the radius of convergence of the Taylor series of 

(2? — 32 + 2)/(2? — 22 + 3241) about 

(a)z = 0 (b) z = 107 

41. Obtain the Taylor series of the given function, about z = a, 

and give its radius of convergence R. 

(c)z= 2-52 (d) z= 20 

    

(a) sinz, a=0 (b)sinz, a=2-i1 

(c) cos2z2, a= 34 (d) eC, a= 

1 x8 

{e) = ,a=0 (5 a=0 
Z Zz ve tz? 

(g) sinz®, a=0 (hy) 2 eas —2i 

Top a= 0 Qj) z —~ ey, a = 22 
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12. (Binomial series) (a) Derive the binomial series 

| mim + 1) a 
(—2)" = l+mze+ 31 a 

3! 

_ —(mtn=-1)! | 

- > (m—1)int ~ (lel < 1) 
m=Q 

for any positive integer m. 
(b) Use (12.1) to obtain the Taylor series of 1/(3 — zy? about 

¢ == 7, Identify its disk of convergence. HINT: Write 

1 _ 1 1 

and use (z — i)/(3 — ¢) in place of z in (12.1). 

13. Use (12 

1 1 

Gry 3 

  

.1) in Exercise 12 to obtain the Taylor expansions 

(~-L1)" (nm + L(+ 2)2"%2" 

n=0 

intel <5 in jz) < = 
2 cova 

1 l = y\re 2 " ry \it (b) Grant = 350 So(=1)"(n+1)(n+2) (2) (s-2) 

rm 

in|2-2) <5 

1 La(-4yrtt 1 ee A iy py 

(¢) ge-z-6 0 qn (2+) 
nal) 

inje+1}<1 

n=Q 

ba
 

t 

14, Let \/2 be defined by a principal-value branch cut (..e., 

with the origin and negative x axis deleted and —7 < @ <7). 

Work out the first several terms of the Taylor series, about the 

given point, and give the region of validity of the Taylor series 

representation—that is, the region in which the series converges 

to the given function. 

(b)a= 1 

(e)az -2+4+2 

(cha =i 

(NMa=z2+7 

15. Determine the coefficients of the next two terms in (40) 

(i.e., the z? and z° terms). 

(aba = 1 

(djaz-l—i 

16. Use the method of undetermined coefficients to determine 

the first several terms of the Maclaurin series of the given func- 

tion, and give its region of convergence.



    

  

  

sin 2 1 L 
(a)tanz = oe (b) sec 2 = ——— (g) soo 

cos z COS % = 2—~ Sinz 

(c) cosec 2 = — (d) ite 17. St hat f’'(0) — £"(0) = 
sin z 1+ 22 +322 . Show that f"(0) = f’(0) = 

3 Zz e* 
{€) spy ) derivative.   

2+ 322 + 24 sin 22 
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L 
h) —— 

(h) 3+ COs z 

+++ ce OQ, as claimed in Ex- 

ample 7. HINT: Use the difference quotient definition of the 

  

24.3 Laurent Series 

Consider the function 

fe) = yn (z —1)(z — 20)’ 

which is analytic for all z except at the two (singular) points z = 1 and z = 27. 
we develop a Taylor expansion about z = 0, that expansion will be valid [that is, 
will converge to f(z)] in the disk |z| < 1. Thus, expanding about z = 0, the region 
|z| > 1 is inaccessible to us. However, there exists a more general representation 
known as a Laurent series, which includes the Taylor series as a special case and 
which permits expansions in any annulus throughout which f is analytic. Thus, for 
the f given above, there would be three possible Laurent expansions about z = 0: 
one in 2 < |z| < oo, one in 1 < |z) < 2, and onein |z| < 1 (Fig. la). (The latter 
would simply be the Tavlor series.) In fact, with the Laurent series one is even able 
to expand about a singular point! For the function f given above. for example, we 
can expand about z = lin0 < |z-—1) < J/5 orin /5 < lz—1) < oo (Fig. Ib); 
similarly, we could expand about the other singular point z = 2i. 

The relevant theorem is as follows. 

(1) 

  

  

THEOREM 24.3.1 Laurent Series 

Let D be the closed region between, and including, concentric circles Cj, Co, with 
their centers at = = a. If f(z) is analytic in D, then it admits the Laurent series 

representation 
  

f(z) = Ss" Cn(z — a)” (2) 

TL==— XO       

in D, with the c,,’s given uniquely by 

Cn = oni C G - qajrri d¢, (3) 

where C’ is any piecewise smooth simple closed counterclockwise path in D. 
  

  

  

  

  

(a) 

x 

(b) 
y 

2 

t % 

Figure 1. Laurent series regions 

for f given by (1): (a) expansions 

about = = 0, (b) expansions 

about z = 1.



  

1226 

(a) 

y 

TY 

(b) 

CY 

a® 

va 

| 

Figure 2. Deriving (2). 

Chapter 24. Taylor Series, Laurent Series, and the Residue Theorem 

Partial Proof: The circles Cy and C, are shown in Fig. 2a. Our derivation of (2) 
will be similar to our derivation of the Taylor series formula (15) in Section 24.2, 
which derivation we urge you to review before proceeding. Once again our starting 
point is the Cauchy integral formula, but since the region of interest (the shaded 
annulus in Fig. 2a) is not bounded by a single piecewise smooth simple closed 
curve we cannot yet apply that formula. Thus, we first introduce a slit through the 

annulus, so as to create the piecewise smooth simple curve Cl, + C's + C3 + Cy 
shown in Fig. 2b, where C{ is the circle C, taken counterclockwise, C's is the circle 

C; taken clockwise, and C2, Cy are abutting and oppositely oriented, where C> and 
C4 are shown as slightly separated for clarity. Further, f(z) is analytic inside and 
on that contour so Cauchy’s integral formula applies and gives 

1 f@Q 
270 Pe vevecee C-2 

~i f fO,, 1 f £O) 
=o f, cos af Eu 4) 

where the second equality in (4) holds because the contributions from C2 and C4 
are equal and opposite and hence cancel. 

Considering the C, integral first, express 

f(z)     dG 

  

    

  

        

1 1 1 1 Qfz-a\" 
= a S° - (5) 

C-2 C-a4_4 a G-ata\o-a 

C~a ~ 

where the first step in (5) is arranged so that the resulting series, on the right-hand 

side, converges for all € on Cy because #2 =|z-a|/|¢ —a\ < 1 forall ¢on 

Cy. Thus, 

1 sf fle 1 f f(€) Afz-a\" wa? MG) ae = f MOS (22 8)" a 
ant fo, O- 2 2mt Jo, C-a AAG ma 

oO 4 ar 

1 f 
= S| = j oe ert Mo) 5 ic| (z- a)” 
— ami Jc, (¢ — aj 

DO 

= S- Cy (z _ a)”, (6) 

n=O 

where 
1 ff 1. 

Cy = an ft (c ~ ayntl dC. 

The path C, can be deformed to any piecewise smooth simple closed counterclock- 
wise path C’ lying entirely in D because the integrand is analytic between and on 
C, and C' so let us re-express cy, as 

Cy = mo OT d¢. (7)



  

Next, consider the C's integral in (4). This time, express 

1 1 Ll L a(o-a\" 
= = 8 

C2 za, _ ¢=4 a h(E) (8) 
      

  

am oh    
C~-a 
znd 
  where the series, on the right-hand side converges for all ¢ on C’3 because 

I¢ ~ a] /|z — a| < 1 forall ¢ on C3. Thus, 

dof Mach f HOS (S84 
271 Jes 2 oj \e 7a 
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= S° Cn(z— a)”. (9) 
n=—l 

In the third equality in (9) we shifted the summation index so as to obtain powers 

of z — a, as are present in (6). In the fourth equality we deformed —C% (i.e., the 

contour C’; with its direction reversed so as to be counterclockwise) to the same 

counterclockwise contour C' as in (7). Observe that the c,’s in (9) are defined by 

the same integral expression as those in (7). Thus, putting (6), (7), and (9) into (4) 

does give the series (2), with the c,,’s given by (3). 

Observe that we have not justified the interchanges in the order of the infinite 
summation and the integration, which occurred in the second equality in (6) and in 
the second equality in (9). We could do that in either of two ways. First, instead of 

using infinite series, in (5) and (8), we could have used finite series with remainder 

terms [as we did in equations (18)—(20) in Section 24.2], and then shown, by 

AIL bounds, that the remainder term integrals tend to zero as n — co. We have 

omitted those steps for the sake of brevity. Second, we could have justified the limit 
interchanges by showing that the infinite series in (5) and (8) converge uniformly, 

but—again for brevity—we have not included the discussion of uniform convergence 
that would be needed. @ 

Observe that the sum in (2) ts unlike the power series and Taylor series of 

. Section 24.2 in that it contains both positive and negative powers: n runs from —co 
to +oo. Since such a sum is new, for us, we need to define it, just as we defined 

24.3. Laurent Series 1227
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Laurent 

Figure 3. Two possible expansions 

about < = 0. 

oer Cn as lim ny soc nel Cn in Section 24.2.1. Reviewing the foregoing proof, 
we see that (2) came into being as the sum of two “ordinary” series, 

OO OO OO 

Ss" Cn(Z— a)" = S° Cn(z— a)" + S- Cn(z— a)” (10) 
T= —~ OO r=) n=] 

so it follows that we are to understand the Laurent series in (2) as 
0° M N 

S° Cn(e~a)" = lim S° Cn(z—a)" + lim S- Con(fe-ay", (1) 
N-0o n==—0o n=Q n=l 

where AJ and N tend to infinity independently. te 
Observe further that f(z) has been assumed analytic only in the annulus D, 

Thus, Theorem 24.3.1 allows for singularities inside Ci; and outside Co. 
If, in fact, there are no singular points inside C', then (3) gives 

f(a) 
——— = 9 Cy = ni ’ n 0,1,2,... (12) 

0, n=—1,—2,... 

by the generalized Cauchy integral formula and Cauchy’s theorem, respectively, 
and the Laurent series (2) reduces to the Taylor series 

n! 

HR) (a ; 
f(z) = SoM ee ayn, (13) 

n=0 

as indeed it should. 
However, if f(z) does have singular points inside C (so that one does not 

merely have a Taylor series), then (12) does not hold, and we are “stuck” with the 
integral expression of the c,,’s that is given in (3). Thus, whereas Taylor series co- 
efficients are the easily computed quantities f'™(a)/n!, Laurent series coefficients 
are given by the unwieldy integral expression (3). Do we really need to evaluate 
that integral to obtain the c,’s? No, practically speaking we are always able to 
avoid (3) in developing Laurent series, as illustrated in the examples to follow. 

EXAMPLE I. Obtain all possible expansions of 

  

1 
f(z) = : (14) Me) Z+L 

about z = 0. Since f is singular only at z = ~i. it admits exactly two possible expansions 
about z = 0, a Taylor series in |2| < land a Laurent series in the annulus 1 < lz] < co 
(Fig. 3). The Taylor series is 

Poi ot 1 
+i type Liz 

i 
—i[L + (iz) + (iz)? +--+) 

=-itetizr—.. (lz| < 1) (15) 

is
 S

ci
sp

a 
N
a
s
a
 

nte
nmi

ene
enr

ian
can

s 
can

e



  

where we factored out the i in the denominator simply so that we could use the remembered 
geometric series formula 1/(1—f) = L+t+e2 4... (jt] < 1). Alternatively, we could have 
applied the Taylor series formula f(z) = La) + faye a) +++ to f(z) = 1/(e +i). 

Next, determine the Laurent expansion in 1 < |z| < oo, This time, write   

1 1 
~ tL . (16) 

Since we are expanding about z = 0, the desired Laurent series will proceed in powers of 
2. The first factor in (16). 1/2. is already in powers of 2, so leave it intact. In the second 
factor, set ¢ = i/z and observe that {¢| = jé/z| = 1/|z| < 1 because 
write the Taylor expansion 

  z| > 1, so we can 

i Tris Tee site O@ew (lth) (17) 

in the variable t. With the expansion accomplished, we revert to the = variable by putting 
t= a/c. Thus, 

slate Hen, (1 < |z| <a) (18) 

so (16) becomes 

1 1 l 1 
f(s)=——=(- b~--—- + (19) sa z zo 

Since the first factor is valid in the annulus 0 < [2] < 00 (i.e... the plane with the origin 
removed because 1/2 is undefined at z = 0), and the second is valid in the annulus 1 < 
[2] < 00, the product 

=--4-aee 
(20) 

is valid in the overlap annulus | < |2| < 00 and is the desired Laurent expansion there. 
More generally, Laurent series contain both positive and negative powers: (20) happens to 
contain only negative powers. 

COMMENT |. The expansions (15) and (20) are about the same point, z = 0, yet they are 
different from each other. That difference does not violate uniqueness for they are valid in 
different annuli: (15) is the unique expansion in lz 
inl < fz] <0. 

  

< 1, and (20) is the unique expansion 

  

COMMENT 2. Suppose we wish to expand about a point other than z = 0, say z = 2, . - : og e fr . : : ro ‘ - We can obtain a Taylor series in |2 — 2] < 5. ora Laurent series in V9 < js - 2) < 90 
(Fig. 4). Let us derive the latter. It is convenient, though not essential. to shift the origin 
to the point of expansion by setting £ = 2 — 2: thus, ¢ is the “vector” from 2 to any point 2 
in the annulus (Fig. 4), Then 

24.3. Laurent Series [229 

  

Figure 4. Expanding about = 2.
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    re (21) 

is the desired expansion, valid in V5 < |z| < co. 

COMMENT 3. As noted above, we can even expand about a singular point. In the present 

example, the Laurent expansion about the singular point ~7 is simply 

. 1 
f(2) ==>: (22) 

Zt 

that is. 1/(z +2) is already a Laurent expansion about —? because it proceeds in powers of 

z +d, a one-term expansion, just as 52° is a one-term Taylor expansion about x = 0. u 

Again, we did not use (3) to determine the c, coefficients in the Laurent se- 

ries (20). Rather, the rearrangement accomplished in (17) enabled us to recast the 

problem in terms of a Taylor series expansion in the new variable t. That idea, 

recasting the problem in terms of Taylor series, will be relied on exclusively in our 

derivations of Laurent series. 

EXAMPLE 2. The function 

  

  

  

1 
f@=-= (23) 

sin z 

ve is singular at the zeros of sin 2, namely, at z = 0, ta, +:27,.... Derive the Laurent expan- 

| sion of f about z = 7, in the annulus 0 < |z — 7| < 7. (See Fig. 5. where we have made 

pe the outer radius a bit less than 7, and the inner radius a bit greater than zero, to emphasize 

ok _ that 0 < [z —a| <7.) Witht = 2 — 7, for convenience, * @——\» x 
~1 Ko 3a x 1 l 

: 1 1 oft 
: SW EFCUTy FS cy oy: (24) 

sinz  sin(t+7) sint t sint 

Figure 5. Expansion of 1/ sin z ; . . 5 
To motivate the last equality, observe that sint = t-¢9/3!4--- = (4)(1—@/3!4 ¢4/5! — 

inOdQ<lz—-al <7. . . . sys . 
-.-), The first factor (i.e., t) vanishes at ¢ = 0 and causes 1/ sin ¢ to be singular there; the 

second factor is not zero att = 0, so t/sint = (1~—t?/3!+---)7+ is analytic att = 0. The 

idea, then, is that the 1/¢ on the right-hand side of (24) is singular at t = 0 and is already a 

one-term Laurent series about ¢ = 0. The t/ sin t has been “desingularized” at t = 0, by the 

i in the numerator, but is still singular att = 7a, £27,... (Le., at 2 = 27,0,30,-7,...) 

so it admits a Taylor series in 0 < |t] < a, which Taylor series 

t 
—— = ay + ayt +agt? +--- (25) 
sint 

can be determined, by the method of undetermined coefficients, as 

t 1, 7 4 =]4+-P 4H... 26 
sint "6 360, (29)
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and the 1 + t°/6 + ++ factor converges in 0 < 
  
t 

  

Thus, 

1 1 , , bos 7 
- = fo 14 op 4 pl 4... 

sin % @ ( r 6 360 | ) 

1 1 7 2 mee ly gg) me ele eee, 27 | pan 6) BG >”) @ 
| : is the desired Laurent series. Since the 1/t factor converges in the annulus 0 < |¢| < 00, 

< m, their product converges in the 

  
overlap annulus 0 < jt] < m, thatis,inOQ <jz-al <7. @ 

| EXAMPLE 3. Expand the function 

- 1 
z(2 — 2) 

which is singular at z = 0 and z = 2, about z = i, in the annulus V5 < |z — i} < 50 

(Fig. 6). We could expand each of the factors, 1/z and 1/(z — 2), and multiply their ’ 

expansions term by term, or we could use partial fractions to express 

  

| 

& j Lol SO 
22 : 
  + 

tw
 

p
e
e
 

(29) 

I
O
]
 

y— 2? 

and then add the expansions of ~1/(2z) and 1/[2(z — 2)}. Since addition is easier than 

  

  

  

multiplication, let us do the latter. With ¢ = = — i, we have Figure 6. Expansion in 
V5 < |e = il < 00. 

1 L lol lf, i 

2 isi ty, tite = re l4- ; ‘ 

t 

Lo. 4 . 
=a clam (1 < |t} < o) (30) 

and 

1 kad 
>—-2 £+i-2 ¢ -2 z~2 t+i-—2 t 14 é 

t 

1 —~2 (i-2)? =i {;-?,0°7) 
: t t i 

Loo dg 
| = 77 = Dig 4 (3-4 mo, (V5 < It] < 00) Bb 

so (29) becomes 

l . L 
Mays 5 / r= 2) ys * (V5 <I: -i| < 90) (32) 

z- ij? a 

COMMENT |. Working term by term is useful pedagogically because the approach is so 

concrete, but if possible it is preferable to work with summation notation so as to obtain
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the full expansion rather than just the first few terms. In the present case we have, from 

Q29-GD, 

  (2) Lif ih" Lis i-2\" 
g)= as — +-- — 

J 2¢ t 2¢ t 
n=l n=O 

__ I = 9 ayn s\n 1 33 
= 5 (2 ™ i) ~ (-i) (z jr (33) 

“sel ~ ‘ 

in V5 < |z—i| < oo, where we have changed the lower summation limit to 1 simply 

because (2— i)? —(-i)® =1-1=0. 

COMMENT 2. The expansion of f about z = i in the other annuli, 0 < |z ~ ij) < Land 

1 <|z~—i| < V5, is left for the exercises. 

EXAMPLE 4. Expand 

f(z)=el* (34) 

about 2 = 0. 

Evidently, f is analytic for all z # 0 and singular for z = 0, so the expansion of f 

about z = 0 will be a Laurent expansion valid in the annulus 0 < |z| < oo. To obtain that 

expansion, let 1/z = t and observe that e!/* = e! admits the Taylor expansion 

L : i t3 

pAf/= — pf — Lp a oe —_— tee 5 € =e alttty tat (35) 

  

in |t| < 90. Since |t] < 90 corresponds to |z] > 0. it follows [by setting 6 = 1/z in (35)] 

that the desired Laurent expansion 1s 

1 L 1 11 
w/e ye typ et tet... 

. 

a 2 2 7 3y wr 
(36) 

in the annulus 0 < [z| < oo. @ 

Closure. The focus of this section is that we can expand a function f(z), about 

any point z = a, within any annulus centered at a and throughout which f(<) is 

analytic. In fact, f(2) need not even be analytic at a, but if it is, then the innermost 

such annulus is a disk, and the Laurent series in that disk is simpiy the Taylor series 

of f(z) about a. Besides that theoretical base, provided by Theorem 24.3.1, we 

emphasize the technique involved in actually generating the Laurent series of a 

given function in a particular annulus ~ namely, that the unwieldy integral formula 

(3) can be avoided, and that the coefficients c, can be evaluated by recasting the 

expansion(s) in terms of Taylor series. 
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EXERCISES 24.3 

lL. Derive the right-hand side of (26), up to and including the mk pa 

t® term, by the method of undetermined coefficients. 

2. Expand the function f(z) = 1/[2(2 — 2)}, in Example 3. 1b ew el ew 3h ee J 
about ¢ = 7, in the annulus between the two singular points, | “4 

i - a 

and show that : ee 24 6 4 
bo 

x xe nel I e 6 @ |e o@ 

L< Lon f2+i : LA oe\ mn egyporeb ot . J fle) =-5 DU -i)"(z i) r -s yo — (2—t)" é 

+ & et) ») | 2 3 eee Al t 4 3 uae g 

in that annulus. 

3. In Example 3 we use partial fractions to re-express (28) as 

(29), then we expand each of the two terms in (29) and add 

their series. The result is given in (33). Here, we ask you to 

work with the product form (28) rather than the sum form (29), 

and to show that the same final result is obtained. Specifically, 
show that (28) gives 

l x i moo Qj ™m 

m=pX(4) CH) 
n=O m=0 

—~ a So ¢ jr jmp ten) 

n=U m=O 

(3.1) 
where ft = 2 ~— ¢. The latter is an iterated sum, and we can 

handle it in somewhat the same manner as an iterated integral. 

Since the m + n exponent is “begging” to be a new variable. 
let us change variables from m,n to p, g according to 

Oo
 

th p=m+n, q=m ( 

(or we could use g = mm: it doesn’t matter). Next, show 

that the regions of summation in the 72,7 and p,q planes are 
as shown below, and that 

2S Pp 

So Stara defer, 3.3) 
p=0 La=0 

fle) = 

Finally. write out the first four terms of (33), and of (3.3), 

and verify that they agree. In fact. show (33) and (3.3) are 

identical for a// terms. HINT: Recall the identity (5.1) in Ex- 

ercise 5 of Section 4.2. NOTE: It should be clear from this 

exercise that the partial fraction approach pursued in Example 

3 is simpler than the product approach pursued in this exercise. 

4. Obtain the first three nonvanishing terms of the Laurent ex- 
pansion of each of the following. 

  

  

  

    

Ji, 
(a)- in 1<|s—i) <0 

l 
(b) - 7 l<jisc]) <0 

+3 
(c) in 0 < |[z] < oo 

(d) — in O< fs] < 2h 

3 : oe 3/5 () 7355 in O0<|zp< V2 

(-+—— in i <|el< x 
2 ofti 

it 
(g) =; in 2< [2-2] <x 

(h) =; in 1 <[z+i| < 00 

. Ty 
(1) in 0<|2-Slen 

COS 2 2) 
. . | T | 
(j)tans in 0 < |z4 5 | <9 

5. Determine all possible Taylor and Laurent expansions about 

the given point = = a, and State their regions of validity. 

a! 1 . 
faysin-, a=0 (Bb) -, a= 2 

we 4 5 
. 3 oo ST be 

(c) ev l/s : aa 0 (d) Pep qa +] 

 l+ez . sing 
OST i) (f) we GS 0 

cos 22 . 
(g Qo (hhe7* .a=0
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ay I + ‘ Sha aye ach ane avwnin TAT TAG ‘ a 

(ype /*, @=0 (j) eri a=l Can f be expanded in a Laurent series about s = 0? Explain. 

. — 9. (Bessel functions) In an exercise in Section 4.6 we noted 

| . l | . hat exp [£(2 — £)] is the generating function for the Besse (oO —— ai () =, a=1+i Ul wu xP [5 ( : | is the generating function for the Bessel 

M2 biz +2 2 functions J,(@) inasmuch as 

6. A certain function f(2) is represented by the expansion xe 1 

srt) OS 
Loi 4 ees Ye) Inla)e" (9.1) 
2 + ~3 + “a chee TLE OO 

- (Here, x is not the real part of 2, it is an independent real 

in 1 < |z| < oo. Determine the value of f(z) at 2 = 27 and at variable.) 

2s i/3. - | | a 
eee (a) Considering the analytic nature of the generating function 

7. A certain function f(z) is represented by the expansion on the left-hand side, show that (9.1) is valid in 0 < |z| < 00, 

1 1 1 (b) Use (3), with C taken to be the unit circle, to derive the 

a a integral representation of J,,(@), 

in | sl <i ermine the value of f(z) at z = 2 anda 1 f* in | nn < oo. Determine the value of f(z) at 2 and at In(a) == | cos (no ~ rsin 8) db. (9.2) 

a= Apo. T Jo 

8. Let f(z) = log z be defined by a principal value branch cut. 

  

24.4 Classification of Singularities 

Recall that if f(s) is not analytic at a given point then it is singular there. Now 

that we have studied Laurent series we are in a position to examine the nature of 

singularities and to distinguish and classify them into different types. 

Let f(<) be singular at z = a. If it is analytic in an annulus 0 < |z-a| <p 

  

    

(for some p > 0), then z = ais said to be an isolated singular point of f (Fig. 1), 

otherwise it is a nonisolated singular point. For example, 1/[z(2 + 2)] is singular 

only at = O and z = —2, each of which singular point is isolated. 

Figure 1. Isolated singular point at 

c= a. EXAMPLE 1. The function 

f(2) == (1) 
() sin (1/z) 

yA is singular at z = L/h (hk = £1,42....) because sin (1/2) = 0 at those points, and at 

~ = 0 as well, because sin (1/z) is not even defined there (Fig. 2). Each of the former is 

isolated, but the singular point < = 0 is nor because every annulus 0 < jz) < p inevitably 

KAO HK x——» contains at least one singular point (in fact, an infinite number of them) no matter how 

eae ~ x small we choose p. @ 
x ai nr lt 

Figure 2. The singular points of 

1/sin (1/2). EXAMPLE 2. The function f(=) = logz, made single-valued by a branch cut. is 

singular at = 0, its singularity being a branch point. The latter is nor an isolated singular 

      

|



  

24.4, Classification of Singularities 

point because there is no annulus 0 < |[z| < p throughout which f is analytic. Indeed, f 
is not even defined throughout such an annulus because of the intrusion of the branch cut. 

Similarly for any branch point singularity, such as the one at the origin for the function 

2°/3_ and the one at 47 for the function /z — 47. @ 

EXAMPLE 3. The function f(z) = |z|? = «? + y? is analytic nowhere. Thus, every 
point in the plane is a nonisolated singular point. Hf 

In the remainder of this section we consider only isolated singular points. If 

f(z) has an isolated singularity at z = a, there necessarily exists an annulus 0 < 
|z —a| < p, for some positive number p, in which f admits the Laurent series 

representation 

oO 

f(z) = y, Cn(z — a)" 
n=—-0cO 

$e 5 + +a 4+ ( )+ (2) — ote C. c ifz—a\tee. 
“2 (ya)? yaa OT . 

If the expansion terminates on the left so that it is of the form 

F(z) a . + (3) 2) = CN poe te a . 
N (z—a)N N+1 (z -a)N71 3 

then we categorize the singularity of f at z = a as an Nth-order pole. (A first- 
order pole is sometimes called a simple pole.) If not (i.e., if there are an infinite 

number of negative powers of z ~ a present), then we categorize the singularity as 

an essential singularity. 

EXAMPLE 4. The function f(z) = 1/[z?(1—2z)] admits two possible expansions about 
the singular point z = 0: 

= yt it lteter te. (4) 

inO < |z| < 1, and 

Bi-yj 8 ww ©) 
in 1 < |z] < co. The former seems to indicate that f has a second-order pole at z = 0, and 

the latter seems to indicate that it has an essential singularity there. The key is to remember 

that the classification is based on the Laurent series (2) which is valid in an annulus in 

0 < |z—a| < p, that is, in an annulus with an infinitely tight inner circle! Since (5) is 

valid in 1 < |z| < oo it is irrelevant. gives no information, insofar as the classification 
    

of the singularity at z = 0. Indeed, that fact is perfectly reasonable in that the region of 

validity is at a nonzero distance from the point in question, On the other hand, (4) is valid in 

0 < |z| < 1, hence right up to the point in question, and reveals that f has a second-order 

pole atz = 0. @ 

i bo
 

u
o
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EXAMPLE 5. We saw, in Example 4 of Section 24.3, that 

  

1 ee 1 oi 
a pif fae oS Sp 

fz) =e slr oto pra 
Sa eae (6) 

  

inQ < jz] < oo. Since (6) contains an infinite number of negative powers, f has an 

essential singularity at z = 0. @ 

  

To proceed further it is useful to consider the vanishing of a function at a given a 
point. We say that f(z) has a zero at z = aif f(a) = 0. Suppose, further, that 
f(<) is analytic at @ so that it admits a Taylor series represantation A 

Lad f"(a) A f(z) = f(a) + flay(2— a) + SR a) + (7) , 

in some neighborhood of a. If f(a) = fi(a) = «+ = f&-Y(a) = 0, and 4 

f(a) 4 0, then we say that the zero is of order &. Thus, if f has a kth-order 8 

zero at a then 4 

f( ) £O@) yk 4 feta) yer A 
‘(z2) = ———" (2 — a sooo eo spose 

k! (k +1)! : 

fO%(a) k a 
~ ay G9 ®) . 

Be
 

as z — a, where f(a) # 0. For example, sin z has a first-order zero at z = 0, 

1 — cos z has a second-order zero there, sin? z and sin (z*) have third-order zeros 4 

there, and so on. If f(a) 4 0 so that f does not have a zero at a, it will nevertheless : 

be convenient to say that f has a zeroth-order zero there. 

  

  

THEOREM 24.4.1 Nth-Order Pole : 

If p(z) and q(z) have zeros of order P and Q, respectively, at = = a, then f(z) = 4 

p(z)/q(2) has a pole of order N = Q — P there if Q > P, and is analytic there if P 

Q<P. / 

A 

EXAMPLE 6. Locate and classify all singularities of 4 

— -\(rt : 2 , 

sin” 2 3 

Candidates for singular points are the zeros of the denominator, z = nz (n = 0, +1, ck2,...). j 

Of these, = 0 and z = 7 also happen to be zeros of the numerator so they need to be ° 

considered separately. At z = 0, p(z) = (7 - z)(2t — 327) = 392? +--- hasa second- A 

order zero, and g = sin’ s = 2* +--+ has a second-order zero, so P = Q = 2 and hence ¥ 

(by Theorem 24.4.1) f is analytic there. 

 



  

bo
 

uo
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Atz = 7, p(s) = (3n* — w')(z — 7) +++ has a first order zero. Since 

sinz = sinw + (cosm)(z—- mw) +--+ = -(2-m)+---, (10) 

‘ a » e eps 

it follows that q(z) = sin” 2 = (2—m)*++-- has a second-order zero. Thus, VN = Q~P = 

2—-1= 1so f has a first-order pole at 7. 

Atz =n forn # Qand n ¥ 1, p(z) has a zeroth-order zero so P = 0. And since 

sinz = sinna + (cosnm)(s —nr)+-.+ = (-1)"(2 -nr) + -, (1h) 

we see that q(z) = sin” 2 = (z ~ nm)" +--+ has a second-order zero so N = Q- P= 

2-—Q = 2, and f has a second-order pole at each of those points. @ 

Having distinguished isolated singularities as poles or essential singularities, it 
is of interest to see how f(z) behaves near such points. 

Suppose that f(<) has a pole at z = a, say a second-order pole for definiteness. 
Then 

  

C92 C1 
f(z) = a5 +co +e (2-a)+--- (c_2 #0) (12) 

| (e-a)*  z-a 

holds in 0 < |z— al] < p for some p. Since cg + cy(z — a) +--+ is a convergent 
power series in |z ~ a] < p, its sum, say g(z), is analytic in |z —a| < p, and we 
can express (12) more compactly as 

  

C9 C. . 
f()= ap > + : —~ + 9(2). (13) 

Since g(z) is analytic at = = a itis surely continuous there so 

(2a) f(z) = ¢-2 +¢e-1(2 — a) + g(z)(s — a)? 3 cW5 

as 2 —+ a. Hence, le _ a)? f(2)| = jz-alP|f(z)| 3 |c_9} #% O, and since 

iz — al? > Oas = > a, it follows that | f(z)| + 00 as z + a (Fig. 3). Similarly 
for a pole of any order so we can state the following: 

  

Figure 3. Growth of |f| as z > a. 

  

THEOREM 24.4.2 Behavior Near Pole 

If f(s) has a pole at 2 = a, then |f(2)) + co as z > a. 
  

Thus, one says that f(<) “blows up” as z approaches a@ (from any direction). 
The behavior near an essential singularity is more subtle. To illustrate, consider 

f(s) = exp (—1/27), which has an essential singularity at z = 0, as is evident from 
the Laurent expansion 

1 11 tol 
pr awtawrt (14) 

—{/22 4 e L/z =f 

2 
g
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valid in 0 < [z| < co. Now, if z - 0 along the real axis, then exp (—1/z7) = 

exp (—1/x?) > Oas a -+ 0 from the left or right, but if z > 0 along the imaginary 

axis, then exp (—1/z2) = exp[-1/(iy)”| = exp (1/y*) ~ 00 as y > 0 from 

above or below. 
In fact, Emile Picard (1856-1941) proved the following: 

  

  

THEOREM 24.4.3 Behavior Near Essential Singularity; Picard’s Theorem 

Let f(z) have an essential singularity at z = a. Then f(z) takes on every complex 

number as a value, with at most one exception, and it does so an infinite number of 

times within any given neighborhood of a. 
  

Let us illustrate Picard’s theorem with an example. 

EXAMPLE 7. Recall! from Example 5 that e!/* has an essential singularity at z = 0. 

Now, e!/* does not equal 0 for any z so 0 must be the “exceptional value” referred to in 

the theorem, in this case. Let c be any given complex number other than this exceptional 

value; c # 0. Then e!/* = e gives 1/z = loge = In|e| + i(8o + 2n7), where Gp is the 

principal argument of c. Thus, e'/* takes on the value ¢ at the points 
    

1 
Lp = rr (15) 
"In lel + i(9 + 2n7) 

forn <= 0,+41,#2..... and (because we can choose n as large as we like) an infinite 

number of these points are to be found in every neighborhood |=] < €. no matter how small 

we choose «. 

One final idea. Recall from Section 22.3 that when we wish to include the 

point at infinity in the z plane we speak of the extended z plane. Thus, when we 

say that f(z) = e*, say, is analytic everywhere in the z plane, it is to be understood 

that we are not including the point at infinity. If we do wish to examine e* in the 

extended = plane, we also need to examine it at infinity. To do so, we make the 

change of variables z = 1/t so z = oo corresponds to ¢ = 0, and then examine 

et = e!/t att = 0. In this case e!/! has an essential singularity at ¢ = 0 so we say 

that e* has an essentia, singularity at z = oo. Thus, e* is analytic everywhere in the 

extended = plane except at z = 00, where it has an essential singularity. Similarly, 

1. ‘ 
f(2)= z4+3+4+2-40 (16) 

& 

has a second-order pole at z = 0 and a third-order pole at infinity because 

{i 9 Lt 4 
Pf — ) ot” gB+-- \7 (3) +34 OB (17) 

  

  

 



  

i i 

[ 

j 

  

has a third-order pole at ¢ = 0. 
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Closure. Distinguishing isolated singularities from nonisolated ones, we limit our 

attention to the former. If f(2) has an isolated singular point at z = a, then there is 
necessarily an annulus 0 < |s — a) < p, for some p, within which / admits a Lau- 
rent series representation. If that series has an infinite number of negative powers 
of z — a, then the singularity of f at a is called an essential singularity. [f instead 
there are only a finite number of negative powers, the degree of the most negative 
power being —V, then the singularity is called an Nth-order pole. In making that 
assessment, tt 18 critical to remember that the Laurent series under consideration 

must hold in an infinitely tight annulus. Remember that branch point singulari- 
ties are always nonisolated and therefore fall outside our discussion of poles and 
essential singularities. 

We find that the behavior of f near a pole is quite different from its behavior 

  

near an essential singularity. Specifically, /(2)| + co as z approaches a pole from 
any direction, whereas if f has an essential singularity at a, then the limit of f as 
z= —> a depends upon the direction of approach. 

  

EXERCISES 24.4 
  

1. Prove Theorem 24.4.1. 

2. Determine the location of the zeros (if any) of order | or 
higher, and their order, for each given function. 

(a)z? ~ 2 (b)e*? —1 

(c) zsinz (d) z COs z 

(f) 2+ 6° 

  

hyl- = 

3. Determine all singular points. in the finite z plane. of the 

following functions. If isolated. classify them further as N'th- 

order poles or essential singularities. 

  

  

  

  

a) —— l (b) ~ 
(a) 2 ef = | 

(d) | 
3 “T+1/042) 

1 . 1 
yoo (f) ———— 

sinh < cosh = 

(g) — (h) sin 
= sin’ s z 

(1) cos ~ (j) sinh 

1 od 
(k}) cosh - (1) sin 5 

  

(mm) e'/* a> Gop 
(0) —= (p) tan (2°) 

e 

1 1 
(q) tan —5 (1) 3 

2 e 

1 (t 1 

sin (2 — 2) 1 

4. (a)—(t) Is the function given in the corresponding part of 

Exercise 3 analytic at infinity? If not, classify its singularity 
there, 

5. A function f(<) is represented in a certain annulus by the 

given Laurent series. Classify the singularity (if any) of f at 

    

    

1 | | . 1 L 1 
Woatatat () 527 a2 * as 
2, root (c) Tj +32 Ogee tat 
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a . . . . . va has an infinite number of negative powers of 2. 
6. Give a critical assessment of the following claim: f(z) = "°° Be 

1/e* has an essential singularity at the origin because 

  

24.5 Residue Theorem 

In this final section we derive the powerful residue theorem for the evaluation of 

(a) complex integrals (and real integrals as well) and give numerous applications. 
a 

24.5.1. Residue theorem. Consider the contour integral 

l= flz)d, (1) 
JC 

where f has a finite number of singular points within C’, and each of them is iso- 
lated. We do not permit singularities on the contour C’, and whether or not f has 

singular points outside C’ will not be relevant. 
For definiteness. suppose that f has two isolated singular points within C, 2 

eo and 29, as shown in Fig. la. Using Cauchy’s theorem to deform the contour into 

/ \ Cc), and C’s (Fig. 1b), we have 

(b) 

/ oy [= f f(s)dz= f fle)dz+ fle)d:. (2) 
JC ICY JC / Qa \ Cy To evaluate the latter two integrals, which we denote as /, and J, respectively, 

\ “ expand f in Laurent series 

3 

Figure 1. Deformation of contour. f(2)= MY (s — 21)" inO<|z-2)<pi Ga) 

and 

2 — sel < pe, (3b) 

  

fay= So P(s- x)" ind< 
PLS OO 

and be sure that Cy is small enough to fit entirely within the 0 < [2 ~ 24) < py 

annulus, and that C’y is small enough to fit entirely within the 0 < |z — 22) < pe 

annulus. Then (3a) holds on Cy and (3b) on Ca, so we can re-express (2) as 

[= f S AUCs — 24)" de + p S JE (2 — 29)" dz ( 
; Ch 

Cl pecs TLE OO 

 



  

24.5. Residue Theorem 

-yti 1b ay)" dz + s cl? gb (e- "dz 
Net OO nee—-00 

5 2 
=a 271 cl} + 274 of ) (4) 

where the last step follows our “important little integral” (Example 2 in Section 
24.3). Understand that (3a) and (3b) are two different Laurent series — of the same 

function, f(z), but about 2; and 29, respectively. Hence, their coefficients are in 
+ es 1 (2 . 

general different. and we denote them as cf, ) and ey ) respectively. 

Observe that of the infinite number of terms in the Cy integral, only the mn = 
, . . . ae . > (lL 

—l term survives and contributes to the answer, its contribution being 277 ol. 

() (2) similarly for the Cs integral. Thus, the surviving coeficients in (4), cl, and eo), 

are rey the residues of f(z) at 2, and 22, and we have found in (4) that J = 
ter F( z) dz is equal to 277 times the sum of the residues. 

The foregoing derivation is attractive in its directness, but it does beg justifica- 
tion of the termwise integration of the two Laurent series, expressed by the second 
equality in (4). Though that step can indeed be justified, let us sidestep the issue 
altogether and simply use equation (3) in Theorem 24.3.1. With n = —1, that 
equation gives, immediately, 

 Ple\de nomi) (2) p fle)dz = 2rier, and fl: )dz = Qrick), (5) 
ICY Cy 

in agreement with the result obtained above. 

Surely the same method applies if C contains any finite number of isolated 
singular points so we can state the residue theorem: 

  

THEOREM 24.5.1 Residue Theorem 

Let C bea piecewise smooth simple closed curve oriented counterclockwise, and 
let f(z) be anal tte inside and on C’ except at finitely many isolated points 21,.... Zp 

within C’. I wv ’ denotes the residue of f at z;, then 

  

(6) 

k 

p fle) dz = 227i S- of), 

JC 
& 

      

That is. the integral equals 277 times the sum of the residues of f within C. 
  

Again, by the residue of f at 2; we mean the cl} coefficient in the Laurent 
expansion 

moO 

AD). ~\n f(2)= A(z = 2y) (7) 

I 24)
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of f about z;, in some annulus 0 < |z — 2) < pj. 

EXAMPLE 1. Evaluate 
, _ ol 

[= i z' sin -— dz, (8) 
JC & 

where C' is the circle |z} = 1, counterclockwise. There is only one singular point, the 

essential singular point at z = 0. The relevant Laurent series is 

i 
‘sin — = 2 

& 

    

= (0 < Jz] < 90) (9) 

so the residue is 1/5! = 1/120, and J == 272(1/120) = wi/60. 

COMMENT I. If C were clockwise instead, then we would have [ = ~—77/60. 

COMMENT 2. If the integrand were 2° sin — instead, then in place of (9) we would have 

  Aes, (10) 

It would be incorrect to say “there is no residue” because there is no 1/z term. Rather. the 

coefficient of the 1/z term happens to be 0 so the residue is 0 and J = (277)(0) = 0. @ 

In Example | it was easy to write out the desired Laurent series, and hence to 
pick out the residue (as the coefficient of 1/2). However, the beauty of the residue 
theorem is that we don’t need the entire Laurent series, all we need is one coeffi- 
cient in it, the c_, residue. Thus, let us develop a method for evaluating the residue 

without having to generate the entire Laurent series. 

24.5.2. Calculating residues. To begin, suppose that f(s) has a first-order pole at 

a so that 

  f(z) = e-1 

inO<|z—a) < pforsome p. Then 

+epta(e-a)+-e-: (11) 
an 

2 (2 ~a)f(z)=c-y+co(s —a)+ei(e-a)i+--, (12) 

and letting < — a in both sides gives 

cy = lim|(s ~ a) f(s). (13) 
rd 

Next, suppose that f(*) has an Nth-order pole at 2 = a so 

1 1 
f(2) = “NT + CLN4I (2-a)X=t Foe, (14)



  

t 

| 
} 
I 
| 

24.5. 

Then 

(z— a) f(z) = Cn + Cinyt(2 — a) + Congelz ~ a)? tote. (15) 

Unfortunately, letting 2 —- a gives cj rather than the desired coefficient c.,. 

However, the right side of (15) is the Taylor series of (z — a)‘ f(z) so it follows 
that the coefficient ¢_ 4; of (z~a) is the jth derivative of (z~a)\ f(z) evaluated 
at a and divided by j!. Since c_y4j; becomes c_; when j = N ~ 1, it follows that 

  

  

1 (Nut N opp 
Cup = (v0 lim qyN2t [(z =a) f(z) \ ; (16) 

      

To use (16) we need to know the order N of the pole; if the singularity is an 
essential singularity, then (16) does not apply. 

EXAMPLE 2. Evaluate all residues of 

i 

1) = GaGa (17) 

The denominator has first- and third-order zeros at —4 and 1, respectively, and the numer- 

ator has zeroth-order zeros at those points so f has a first-order pole (NV = 1) at z = —4 

and a third-order pole (:.V = 3) at z = 1. Thus, (16) gives 

i 
@ oO
 

w
n
 a | 

Lo ee 

~ Oats [I OCEDE- 7 

and 

  poly ef oy de 

Re ln { ‘ [i 7 craec|} 

=: (19)   

as the desired residues. @ 

24.5.3. Applications of the residue theorem. Let us consider several applications. 

EXAMPLE 3. Evaluate [1 = be f{e)dz, where f(z) is given by (17) and C is 

counterclockwise. If C encloses both singular points, then the residue theorem gives 

Residue Theorem 1243
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—R av 

Figure 2. The closed contour C in 

(21). 

    fo = 2ni(— ts + tz) = 0; if C encloses only one of them, say the one at s = 1, 

then { = 2i(sje) = 2wi/125; and if C encloses neither of them, then J = 0.   

Actually, most practical applications of the residue theorem are to real inte- 
grals. How can that be? We shall see, in the following examples. 

EXAMPLE 4. Evaluate the real integral 

mS dae 
[= =———. (20) 

I wt eu) 

That (20) is a “real integral” is no problem because we can just as well write 

[= | ie 

cweil 

where C’ is the path from —oo to +00 along the x axis. What is a problem, however, is 

that to apply the residue theorem we need C’ to be a closed path. Thus, we will consider, in 

place of J, the contour integral 
"dz J= i coe (21) 

Ja = . 

where C’ is the closed path shown in Fig. 2, not from —oo to oo but from —# to +R and 

then closed with a semicircle. 

The integrand has first-order poles at z = +d and —i, and is analytic elsewhere. Of 

these, only the pole at +2 is within C. Thus, on the one hand, the residue theorem gives 

  

  

a ooh 

J = 2ni Res f = 2ri lim [(: ~ Caine =F (22) 
= etil(e-t 

(provided that 2 > 1, so that < = 7 is within C). On the other hand, 

  

      

R 
dx dz 

~R et + 1 JCrR z¢ + 1 

where C’p, denotes the semicircular part of C’. Equating these two results gives 

R . 
da dz 

r= / ye | => (24) 
aRU +l Jo, 22 +1 

Now, (24) holds for all R’s (greater than 1) so it must hold as R - oo, Taking that limit, 

(24) becomes* ; 

me dx ; dz 
T= soe be lim ——S. (25) 

Jong U1 Rox Jo, 2 +1 
  

“Recall from Section 4.5 that the singular integral fo f(v)dx is defined as the limit of 
‘B 7 | “4 : : . 

J, f(x) dz as B -+ oo. The case i f(a) dx was not covered there, The latter integral is defined 

as the limit of [~ 4 /(v) da as A and B tend to infinity independently. If that limit does indeed exist, 

then there is no harm in letting A= B and writing I f(v) dz as the limit of fos f(x) dx as 

A > oo, as occurs in our passage from (24) to (25). 

  
 



  

  

To evaluate the last term in (25) we use the AZZ bound. From Fig. 2 we see that as z 

traverses C’p the 2 — 2 “vector” is smallest when z = Rt, so its smallest magnitude is 

2 — 1. Further, the z + 7 “vector” is smallest when z = 2:8 so its smallest magnitude is 

JR? +1. Thus, 

| ol | l . 1 
so : aS — oe 
2+l) le-ijje+i) ~ (R-1VRPe+ 1 

for all < on C'p, so the latter can be used as AY. And since the length of Cg is w/t, we have 

from the AZZ bound, 

(26) 
  

  

which tends to zero as R -+ 90. Thus, (25) becomes 7 = 1 +0,sol = 7. 

COMMENT |. The method employed in this example is fairly general so let us review 

it. Given an integral J from ~oo to oo on a real axis, we considered instead a contour 

integral J on a closed contour in a z plane. On the one hand, we could evaluate J by the 

residue theorem and. on the other hand, J could be expressed as the desired integral plus 

a computable integral: specifically, the upper semicircle contribution was shown to tend to 

zero as £4 90. 

If we were given the semi-infinite integral 

rf dx 

~ fy eel 

instead, we could use the fact that the integrand 1/(x* +1) is an even function to re-express 

las oe 
lf dx 

2 fix, ttl 

COMMENT 2. Observe that. alternatively, we could have closed the contour below, as in 

Fig. 3. In that case 

and then proceed as before. 

  

J =-—2ni Res f (the minus sign because C’ is clockwise) 
casi 

a . 1 ~20i 
= -2ri lim | (2 + i) pee ee,” 

sod (2 +i)(s ~2) 24 

so we obtain (25) once again, where this time Cg is the lower semicircle. In the same 

manner as before, we can show that the Cy integral tends to zero as R — 50 so we obtain 

the same final result. J = 7. @ 

It is true that the integral (20) was simple, and could have been evaluated by a 
trigonometric change of variables. giving J = tan! w2|°) = mw, but our chief pur- 
pose was to develop the contour integration solution method. That method applies 
equally well to any convergent integral of the form 

[= [ PO) (28) 
moo G(r) 

bo
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-R 

45 

  

  

Figure 3. Closing C' below.
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where p(2) and g(x) are finite-degree polynomials. 

EXAMPLE 5. Evaluate 

  
. "cos ae I= i ade: (a> 0) (29) 

First, extend the lower integration limit back to —co by noting that the integrand is an even 

function of z so that _ 
tif COS Git 

l= 5/ —— dz. (30) 

Next, consider the contour integral 

COS Az 

Cc 2 +1 

  J= dz, G1) 

where C’ is shown in Fig. 2. Looking ahead, we will wish to show that the C’g integral 

tends to zero as R —+ co. Does that step appear to bo feasible? Recall that 

etaz + evtae 

2 
COS az = 

If we consider the single point z = Ri on Cg, we see that the e~'** term in cosaz is 

et Ri) — 2% there. This exponential growth (as R — oo) makes it appear highly 
unlikely that the C’g integral tends to zero as R —+ co. Furthermore, if we try closing the 

contour below instead, as in Fig. 3, then at the point z = —Ri on Cp the e**** term in 

cosaz is ("RO — e@ Thus, if the e~!** term does not cause trouble, the e*'¢* term 

does! 

To overcome this difficulty, let us consider a single exponential in place of cos az. 

Specifically, consider 

y= $ Cad: (32) 
Cc & ots 1 

in place of (31), with C as shown in Fig. 2. The integrand f(z) is analytic everywhere 

except at z = -ti, where it has first-order poles, Thus. on the one hand, 

  

MO b 

  

eiali) 

J = 2ni Res f = 2ei—— = re™, (33) 
Ze2t 2t 

and on the other hand, 

“Ro iaw , jaz 

J= / “dy +f ——— dz (34) 
JuRp ee +A a cet 

or, with R + oo, 

“9 cosan +isinar y  glae 
J= ee de t+ lim ee dz. (35) 

z+) R70 I Cp ze 

ee
ns

 
si
e



      

  

  

    

  

Since elt = Jette tty) | = jel ev | =e *Y < 1 on Ca, it follows that 

piae e 1 ec 1 ( 3 6) 
5 Th SS . 7 = Sinennee 5 

zed pee +1) > (R-1IVReE +I 

everywhere on C'p, where the last inequality follows from (26). Furthermore, the length of 

Cr is wR, so the AYE bound gives 

    

[hela } » 
Jen = “(R-UVREST OR? - 

which does tend to zero as £2 —> 90. With this result, comparison of (33) and (35) gives 

  
a = Cos ax ff sin ez / 

we SC = soe de i > dx. (38) 
wo e+] og UA +1 

Finally, equating real parts in (38) gives 

10 
COS AL 
ae de Te (39) 

noo UE +1 

and hence the answer - 
1 ff cosaxr T 

[= 5 > dx = ~e", (40) 
2 fun TA+1 2 

Of course. we can also equate imaginary parts in (38), and that step gives the “bonus” 

result to 
sin ax 
+ de = 0, (41) 

Jinn EX +1 

but (41) is not very interesting since it follows from the fact that the integrand is an odd 

function. @ 

EXAMPLE 6. Evaluate 

To do so, consider the contour integral 

~1/3 

=p ——- ds, (43) 
t (2+ 1)? 

where C’ is to be a suitably chosen contour. Before selecting C' it ts important to notice that 

although the x!/* appearing in (42) is single-valued (e.g.. 81/9 = 2), the 2/4 in (43) is 
multi-valued (e.g.. 81/3 = 2, 2e!?*/3_ 2e4*/3), Having written down the ='/3, we need to 
assume responsibility for defining it. As we will see. a branch cut to the right, as depicted 

in Fig. 4a, will be convenient. 

Next. let us select the contour C’ shown in Fig. 4b, where the outer circle is of radius 

FRoand the inner circle is of radius «. (We plan to let & - o6 and « - 0.) [t consists of 

four parts: PQ. QS, ST, and TP. Denote the counterclockwise circle QS as C'p, and the 

clockwise circle TP as Cy. 

24.5, Residue Theorem {247 

(a) 

  

  

  
Figure 4. Branch cut for z'/*, and 

contour C’.
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0 Observe carefully that on PQ we have » = ze"? so 

EMS ce yl /SQi0/ 1/3 (44a) 

whereas on ST we have z = we?” so 

28 @ gh Bermi/3 (44b) 

And since the integrand f(z) is analytic inside and on C’, except for a second-order pole at 

zy == —1, we have   

    

  

      

  

AR hfs . 21/3 Lo 

2ni Res f(z) = | ge tt + | He be 

BSIOS= fo Gee * fo, GFP . 
€ l/3 p2ni/3 . ~l/3 | . 

a (e+) c, (2+ 1)" | : 

Applying the A{Z bound to the Cp integral, observe that | 

2/3 RES ptO/3 1/3 L/S 

| =| = an Re RS 46) | 
(2+ 1) jz +1 je-(-DPP 7 (R-1)? | 

on C’p and that the length of Cp is 27 so that | 
| 

. 1/3 RY a i 

ee dt a ORS , 47 
I. (e+ 1)? 9) 7 (R-1)? R23 ey 

which tends to zero as R - oo. Similarly. 

, wl/3 1/3 . 
| a dz < — QTE ~ Ire? (48) 

Vo, GFP | > TP 
which tends to zero as € + 0. 

Furthermore, 

1 d | y o/s 1 9): 
Res "(Cz = — lir od BH oo = —(— ~2/3 

| Mes Im [ ry) (2 +1)? 3H) 

1. 2/3 eo 2rif3 
= 1 WL <i . 49 

g(ten) 3 mo 
; . oy 4 wi 

where, in evaluating (—1)~?/5, we have expressed —1 = le™, 

branch cut shown in Fig. 4a. 

Thus, letting R —- oo and ¢ - 0 in (45) gives 

en 2ti/3 wo L/S 0 pl /B2ri/s 
Qri = = pee di tO + ee EO 

[ (x + 1)* / (ao -+ 1)? 

in accordance with the 

    

vO 

  
amiss, [oo all 

= (1-7/3) | - ms de, (50) 
9 (e+1)*



  

or, 

we (PE ern og Ee. (51) 
(e+ 1)" 3 [= e@ri/s 3/3 

COMMENT |. Observe that as A tended to infinity and ¢ tended to zero the contributions 

from PQ, QS, ST, and TP tended either to zero or to a scalar multiple of J, so the final 

equation (50) was one equation in the one unknown J. 

  
10K it So —27i/3 . [ alls Qi e Fes Qa 

Jo 

COMMENT 2. Although it was important to choose the branch cut to the right, the choice 

@ = 0 on the top of the cut was not critical: any integer multiple of 27 would have worked 

justas well. @ 

From Examples 4, 5. and 6 we can see the general pattern involved in using 
the residue theorem to evaluate real integrals. The key is in suitably choosing the 
“J integral,” namely, its integrand and its closed contour. We suggest choosing the 
same integrand as in the [ integrand (with the w’s changed to z’s), and then modify- 
ing it only if we find that it doesn’t work. For instance, in Example 5 we found that 
(cosux)/(2* + 1) did not work since the contribution from the semicircular part 
of the contour C’g did not tend to zero as R — oo, so we modified the integrand, 

slightly, to e@*/(z* + 1). As for the contour C,, the idea is to choose C’ so that one 
segment of it gives the desired J integral, and each other segment is either known 
or is some multiple of J. In Example 6, for instance, PQ gave I, QS went to zero, 
ST gave —e°""/% times I, and TP went to zero as € tended to zero and R tended 
to infinity. 

It should be appreciated that each example given in this section is represen- 
tative of an entire class of applications. Example 4. for instance, is representative 
of the class of integrals of the form J = [°° p(x) dx/q(x). where p and g are 
polynomials. 

Next. consider the class of real integrals of the form 

QT 

[= | F (cos 6, sin 6) dé, (52) 
Jo 

where F is a rational function of each of its two arguments. A rational function is 

the ratio of two finite-degree polynomials so F(a, y) is a rational function of each 
of its two arguments if it is a finite linear combination of terms of the form 2” y” 
divided by another such finite linear combination. For example, 

5 epi 3 , Om Eb ey? 
Fy(e,y) = apap 

is a rational function of both a and y, and 

2 — cos” 6 sin 8 

1+cosé 
  

Fo(cos 6, sin) = 

and 
. sin 44 

F3(cos a, Sin @) = (1 + cosy 

24,5, Residue Theorem 1249
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are rational functions of cos 

trigonometric identity 

sin 40 

Chapter 24. Taylor Series, Laurent Series, and the Residue Theorem 

and sin @, [In the case of Fs, we need to recall the 

= sin @(4sin @ — 8sin® 6). 

Similar identities exist for cos k@ and sin k@ for & = 2,3,4,.... ] 
Integrals of the form shown in (52) arise, for example, in evaluating the coef- 

ficients in Fourier series. To evaluate J, enter the change of variables 

za el’. (53) 

This change of variables converts J from an integral on a real @ axis to a contour 
integral ina complex z plane for, as @ varies from 0 to 27, z undergoes one complete 

  

  

counterclockwise trip around the unit circle (the unit circle because 2 = ce? is of 

the form z = re’ with r = 1). 

From (53), dz = ie? d@ = iz dO so d@ = dz/iz, and 

eF pe z4z7! +1 
cos@ = = = 

2 2 22 
(54) 

ef _ eo ze aol 2 — 1 

sin@ = ; = EE eee 
20 21 212 

so 1 1 ete) zs \ ds 
=f F(a.) =. (55) 

JC 2 2% Le 

Now, we see from (54) that cos @ and sin @ are rational functions of z. In turn, F is 

a rational function of cos 6 and sin 6 so F (and hence the new integrand F’/iz) is a 

rational function of <. Thus, the integrand in (55) is analytic everywhere except at 

EXAMPLE 7. Evaluate 

  

those zeros of the denominator that lie within the contour C’, that is, within the unit 

circle, Let us illustrate. 

nar 
d@ 

| I =| a (56) 
9 2-sind 

With the change of variables z = e!’, we obtain 

a — L dz ‘ dz 
I Xv l=) ——>-——- -— = -2f oe lo, -lLiz Jo 22 diz -1 

C 9 

| 
| 

=—-2 (57) 

Figure 5. Contour and singular points. 

where 2+ 

(Fig. 5), the residue theorem gives 

  

= (2+ V3)iand 2. = (2 — V3)i. Since 2. lies outside C' and 2_ lies inside 

 



  

| 

i 
1 
i 

[=2ni Res f = 21 

2 ( = ) om (58 se 200 | ee ee. - 
Bm By J3 

COMMENT |. Remember that the residue theorem does not apply if there are singular 

points on C for the thearem requires f(z) to be analytic inside and on C’. For example, if 

we generalize (15) to the form 

0200 dd 
[= | _— (59) 

0 a~sin@’ 

lim E ~z.)—— 2 

Be 
z FO woh 

where a 1s real, we find that the residue theorem does not apply if -1 < a@ < 1 because in 

that case the singular points +V1 — a? + ai fall on the contour C. 

“COMMENT 2. Itis also to be noted that if the integral limits in (59) were 0 and 7, say, the 

residue theorem could not have been applied because the corresponding contour C’ in the z 

plane would not have been closed; it would have been only a semicircle. d 

As our final applications, we indicate how the residue theorem can be used 
to evaluate inverse Laplace and Fourier transforms. Recall that we introduced the 
Laplace transform of a function f(t) as 

L{f(t)} = F(s) = [ fen dt, (60) 

and regarded the transform variable s as a real number. For the transform F'(s) to 
exist—that is, for the integral in (60) to converge, we asked f(t) to be of exponential 
order, whereby there exist real constants K,c, and T such that | f(t)| < Ke for 
allt > T, for then we can ensure the existence of the transform F’(s) by asking s 
to exceed c. 

Later, in Section {7.11, we show how to derive both the transform formula 

(60) and also the Laplace inversion formula 

ytico 

L7'{F(s)} = f(t) t | F(s)e* ds. (61) 
+ 2h —ico 

Thus, even though it is permissible, in working with the Laplace transform in Chap- 
ter 5, to consider s as real, the inversion integral is actually along the path shown 
in Fig. 6 in acomplex s plane. Just as we needed s > c in (60) when we regarded 
sas real, we need Res = y > c now that we are considering s to be complex. 

EXAMPLE 8. Inverse Laplace Transform. To illustrate the use of (61), let us determine 

the inverse of the Laplace transform 

(62) 

24.5. Residue Theorem 1251 

¥ tice 

5 plane 

  
y-ie 

Figure 6. The contour in (61).
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    « plane 

  
Figure 7. Laplace inversion contour. 

namely, 
I yb ice 

ry = a ds. (63) 
2m Jy ico (8 

  

As noted above, we need y to be sufficiently positive, that is, we need y > c, but we 

don’t know ¢ yet because we don’t know f(t) yet! We assert, without proof, that y will be 

sufficiently positive if the line of integration (from yy ~ too to y+ too) is placed to the right 

of all singularities of F’(s). In the present example F'(s) is singular only at s = 2, where 

it has a third-order pole, so we choose + > 2. To obtain a closed contour, shall we close 

on the left or on the right? Let us close on the left as shown in Fig. 7, with a semicircle of 

radius / centered at s = +, Thus, consider the contour integral 

i fe 
p ————-~ ds, (64) l=-— 

ani fo (s ~ 2)8 

where C’ is shown in the figure. 

On the one hand, 

J = 2ri Res ——————- = =te™!, (65) 
“2 va " 

and on the other hand, 

1 ey bike eet 1 ‘ est 

J = / ————_, ds + OO ds, (66) 
Qnt Jyin (8 —2)% 2mi Jo, (8 — 2)° 

where C'p is the semicircular part of C’. Equating these results, letting 2 —+ 90 and recall- 

ing (63) gives 

            

lis of . 1, ‘ et . 
~tre = f(t)+—— | ———; ds. 67 gh = HO + TF fim (s-2)° eo?) 

Now, 
et _ jelerene = je""| elM| _ ett < ere (68) 

and 

ls-2)> R-2 (69) 

for all points s on C’g so 
ett ett 

am — 70 
I(s ~ 2)8| 7 (R— 2)8 (79) 

on C'y. Hence the AYE bound gives 

| . est eve rete 

rrnnnnanannn ts < Tey rh Nome 7A f (s—2)) >= (R28 Re my) 

which tends to zero as R - co (with f held constant). Thus, (67) gives 

> 1 2 9¢ 
f(t) = -t’e™, (72) 

2 

 



  

i 
| 
i 
1 

i 
} 

which result agrees with the corresponding entry in Appendix C. 

COMMENT 1. With hindsight, we can now see from (72) that |f(4)]| < Ae® for some 
constant A’ and ¢ sufficiently large, if ¢ is any number greater than 2. Thus, we need y > 2, 
and that is precisely in accord with the italicized assertion below equation (63). 

COMMENT 2. You may recall, from Section 17.11, that the inversion integral in (61) gives 
f(t) for é > 0; fort < 0 it gives zero: 

yh LOO 

L-{F(s)} = — P(s)e"ds = { F(), §>0 (73) 
27 dy ine b< 

Thus far, in this example, we have understood ¢ to be positive, which is of course the 

interval of interest in applications. However, it will be instructive to show that we do indeed 

obtain zero, in this example. for £ < 0 in accordance with (73). Specifically, observe that 

the e* < e7 inequality in (68) holds on C'g only if # > O. Thus, the foregoing analysis 

breaks down for ¢ < 0, and we need to close the contour on the right instead as shown 

in Fig. 8. We leave it for the exercises to show that with this contour used in (64) we do 

obtain L~'{F(s)} = 0. 

COMMENT 3. In summary, the idea is to keep the line from ~~ ico to y + ico to the right 

of all singularities of F'(s) and to close the contour on the left for t > 0 and on the right 

for é < 0. Of course, the case ¢ < 0 need not be carried out because the result will always 
be zero. Hl 

bo
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Figure 8. Inversion contour 

Similarly, to find the inverse of a Fourier transform f(w) we use the Fourier 

inversion formula 

FU fw)} = fle) = = [ Flwyei® dn. 74) 
27 Joc 

EXAMPLE 9. Inverse Fourier Transform. Determine the inverse of the Fourier trans- 

form 

  

  

- 1 
Mw) = (75) 

namely, 

p L ™~ l twat : fle) = of . Sl en" dua, (76) 

To do so, consider the contour integral 

1 
J=— ¢ dw (77) 

27 Je w? +1 

in the complex w plane, where C is the closed contour shown in Fig. 9a for z > 0 and the 

closed contour shown in Fig. 9b for x < 0. (We close the contour above for a’ > Q and 

below for @ < 0 so that in each case the integral on the semicircular part of C will tend to 

zero as R > 90.) 

fort < 0. 

(ay x>0: 

A 
| q@ plane 

-R -i R 

i 

(by x<0: 

A @ plane 

i 
| 

[% 
wok Ro 

Figure 9. Contour C for (77).
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First, consider the case x > Q. On the one hand, 

    
1 pinw 1 eie(t) eve 

J = dri Res (= ——) =2ni =, 78 eat (55 wee :) OR 3 2 (78) a a wet 

and on the other hand, 

1 oR eit l " eit 

a Sy diy + a 
27 Jip wet. 2m Io, we td 

  J= dw, (79) 

where Cp, denotes the semicircular part of C in Fig. 9a. As 2 — oo the first integral in (79) 

tends to f(x) [recall (76)] and the second integral tends to zero, [The bounding process is 

the same as in (36) and (37), with z changed to w and a changed to a, so we will not repeat 

it here.| Thus, letting R - oo in (79) gives 

J = f(r) +0, (80) 

and comparison of (78) and (80) shows that 

  f(z) = ; (x > 0) (81) 

bo
 

Next, consider x < 0, remembering that this time we close the contour below (Fig. 9b). 

On the one hand, 

  J = —27i Res - ; 
2m —2t 2 wah 

1 5ttw 1 ,tx(~i) z 

— | =-27i—* = (82) 
O27 Wwe +- 1 

the first minus sign being necessary because this time C is clockwise, and on the other hand 

1 oR gity inw 
€ 

J=— | S—dw+— 
20 pw +1 am fo, wetit 

  dw, (83) 

where Cp is the semicircular part of C in Fig. 9b. Letting A —> oo once again, (83) gives 

J= f(x) +0, (84) 

and comparison of (82) and (84) shows that 

  

f(x) = —. (2 < 0) (85) 

Finally, (81) and (85) give 
2 |e] 

fe) =" 5 (86) 

for all x, which result agrees with entry 4 of Appendix D for the choice a = 1. H 

Closure. This section underscores the power of analytic function theory by reveal- 
ing that the integral around a closed path is simply 27? times the sum of the residues



  

contained within the path. (Por a precise statement, see Theorem 24.5.1.) And it is 
not difficult to calculate residues, even if the integrand is quite unwieldy. 

Besides closed loop integrals in the complex plane, we find that the residue 
theorem can be used to evaluate a wide variety of integrals on the real axis, and 
inverse Laplace transforms as well. A key step is in setting up the “J integral” — 
that is, in choosing its integrand and the closed contour C’. The integrand is often, 
though not always, the same as the original integrand but with the original real 
integration variable replaced by the complex variable z. As an example of this rule, 
compare (21) with (20). As an example of an exception to the rule, compare (32) 
with (30). If the contour is not closed we need to close it, so we can apply the 
residue theorem. 

A basic question arises. which we have not yet addressed: Is the residue theo- 
rem more powerful than the generalized Cauchy integral formula? If so, how? In 
fact, if f(<) has an Nth-order pole inside a piecewise smooth simple closed coun- 
terclockwise curve C', at z = a, then both the residue theorem and the generalized 
Cauchy integral formula give 

L pN-1 vo 

I= f f(s)ds = 2ni ‘Wo lim {jv (2 - «pay. (87) 

However, it is traditional to rely on the residue theorem, for two reasons. First, 

the residue theorem applies to essential singularities as well as poles, whereas the 
generalized Cauchy integral formula applies only to poles. Second, and admittedly 
more superficial. is that the residue theorem is easily remembered: the integral is 
equal to 277 times the sum of the residues. 

24.5. Residue Theorem iv bo
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EXERCISES 24.5 
  

1. Let C) be a closed rectangular contour, traversed counter- 23, 24, respectively. To work out the residue of 1/(z4 + a’) at 

clockwise, with vertices at ~1 — 7,3 —2,3 +31, -1+4 3%. Let 2, for instance, it will be easier to evaluate 

Cy be a closed triangular contour, traversed clockwise, with 

vertices at ~2. 2, and —2 + 32. Evaluate the given integral by 

  

means of the residue theorem. tim lt: ~ 21) ! | 
. whey aA + at 

dz 
(a) t Soy 

Jo, Sim 2s 

9 by ie rule than to cancel the (< — 21)’s and evaluate 
sods 

~ ~ at step i liately gives () po ——— L/iCey (2, > 23 )(21 — 24)}. That step immediately gives 
Joy sinh 2: caer the residue as 1/(d4e?). 

, dz . f dz 13e Ie 
(e) f ee (f) ; a a 0 b> 9 

i JC, cosh* (72/2) (b) 9 (a? £a®)(a? +0?) (a ) 

2. Evaluate by means of the residue theorem. 20 2 
ne l (c) wad dz 

~ Lc fs . ce + J 
(ve _ HINT: The zeros of z? + a? = 0 are 0 

} tat -ei) (a) ~ dx 
acer ae8P/4A ge®t/4 ond ae'™/4, Denote them as 21, 22, ‘© » (+P
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mee dz 

(Of fe pwerl 

of 
0 

( fo cos 2a / 
@ pee 
= fy (wt +1)" 

(h [ vsine be 

Vy eae 

mf : 

( sin 3a dv 

) eer ® 
3. Evaluate the given integral by means of the residue theo- 

rem, HINT: The contour in the z plane must be a closed loop, 

one time around. Thus, the limits on the polar angle must be 

any 27 interval, such as 0 to 27 or —m to mw. Thus, in (a) for 

instance, USE the evenness of sin” 2 to first rewrite the integral 
TT 

as 4 [" sin? a dz. 
1 

2 ww) | cos” x dx 
0 

wf" sin? a dz 

@ | 
Jar /2 

o |” sin? dx 
Jo 

of cost «dx 
Jo 

© | sint ada 
JO 

ma . wel ae ; 

io | sin® x dx inf cos’ x dr 
~ JO 

of 1+ cos?t t 

(i) / dt 

Jug (+ cost 

w fo dO ) en dé 
Jo 1+sin’@ Jo 24+sin 20 

4, Using the residue theorem, show that 

r cost dt ra. 

Jo 1-2acost +a? 1—a?’ 

5. Use the inversion formula and the residue theorem to eval- 

uate the inverse of each of these Laplace transforms, where 

a>Oandb> 0. 

Chapter 24. Taylor Series, Laurent Series, 

  

~ de 

  

COS 
ce LE 

+ 12a +5 “ 

  

y 

cos’ wd 

(~lL<a< 1) 

  

  

  

1 1 

Se ge 

1 1 (e) I d) - a 
( (s— a) 

1 ew 
@) ee I (g) (snap pe (Nh) 5 

6. Evaluate each by the residue theorem. 

“xO ,a— 1 

       

(a) ———de (0<a<1) 

(b) (c) dx 

. Jo Vela? +1) 

° poy A/S \ 

(d) ay (e) [ — da 
Jo we +l Jg Ur 4 

7. Evaluate 

  
OS a Ji 5 

| e~" cos2ax dr = “S-e" (a > 0) 
Jo “ 

2 . . : 

by integrating e7* around a rectangle with vertices at 0, , 

R + ta and ia, and using the known integral 

[- ~L fr I 

eo“ dy =. 
Qa 2 ; 

8. (fy f(x) dx where f(x) is not even) We saw in the ex- 

amples that if f(a) is even then fo” f(x) de can be evaluated 
~ + . NS 1 4 + . 

by first re-expressing itas 4 f-_ /(x) dz. In this exercise we 
“ oS be OO 

  

show what to do if f(a) is not even. To illustrate, we will 

consider 
me dz 

f = Do, i . 
Jog to +u+l 

(a) Show that considering 

‘ ds 

Joe +etl 

where C’ is the closed contour shown in Fig. 2 is of no help 

because using the residue theorem and letting 22 —+ 90 gives 

one equation in the mve unknown integrals 

=e dx =~ du 
yo and —————. 

Jg we tutl Jo wer uw+rl 

(b) Show that £ can. however. be evaluated by inserting log = 

in the integrand and considering 

  

  

4a and C’ is the 

oo. Thus, show 

where log = is defined by the branch cut in Fig. 

contour shown in Fig. 4b; let ¢ — O and R + 

that [ = 20/(3V3). 

9, Use the idea put forward in Exercise 8(b) to evaluate these 

integrals:



  

  
daz me v 

(a) / et (b) ee 

Jo e844 qo (w* + 2x 4 10)2 

Od, “lL (c) | ede (a) 

Fg  e JO     
HINT: For (d), sett = (1 — x) /x. 

10. aversion of Fourier transforms) Use the inverston for- 

mula and the residue theorem to evaluate the inverse of the 

given transform. 

1 1 
(a) + (b) 

w + iw +2 w* — Biw — 2 

—— (d) = d) ~ : 
Sw? + Bin — 2 (2 — iw)? 

@) oe Slammed 
(1+ iw)? « (1+ iw) 

1 1 
(QS) myo (h) (w? +1) © (w? + 48 

UL. (Cauchy principal value) In Section 4.5 we defined the sin- 
; -t , .. 

gular integral f. fv) da, where f is unbounded as x > a, as 
an . ~ . ab an 

the limit of the sequence of regular integrals Jae f(x) dx as 

€ ~> 0. The case where f is unbounded at an interior point was 

not considered there. In this exercise we consider the integral 

f- f(a) dx, where | f(x)| + oo as x > 8, witha <b <e. In 
the same spirit as the limit definition given above, one defines 

1c rb ey c 

| f(e)da = lim / f(a)dx+ | 
Ja ern? Va Jb+ea epoo 

  

f(a) da 

(11.1) 
where ¢€, and € tend to zero independently. If the limit exists, 

we say that ff. f(x) dx exists, or converges; otherwise, it does 

not exist, or diverges. Now, it is possible that the stated limit 

fails to exist, but does exist if we restrict the ¢’s to tend to zero 

together: that is, if €; = € (= e, say). In that case we write 

Le be ne 

ft f(v) dx = lim | f(x) dx + | F(x) da Ja e0 | fa J b+e 

  

      

(11.2) 
and call f f(x) da the Cauchy principal value of the 

integral. In place of the ¢ notation, some authors use 

PY f f(x) da. 

Ss da 

Ji4 ot 

(a) Show that 

is divergent [i.e.. in the sense of (11.1)], but convergent in the 

Cauchy principal-value sense. Determine its Cauchy principal 

to
 

CA
 

~~
 

24.5. Residue Theorem \ 

value. 

(b) Repeat part (a) for fi da/ [x(a — 2)). 

12. The integral 

POO tay as 

r= | ae de =o (12.1) 
JO we 2 

is well known, and there are several ways of evaluating it. 

Here, we ask you to evaluate it using the residue theorem. 

HINT: Consider 

  
& 

j= Sas, (12.2) 
JC 

where C’ is the contour shown in the accompanying figure. 

  

  

-R | E Rox 

The circular indentation of radius € is needed to avoid hav- 

ing the first-order pole of e'*/z2, at z = 0, lie on the path of 

integration. (The function sin =/= is analytic everywhere but, 

as in Example 5, we consider e'*/2 instead so that the Cp 

integral will tend to zero as R - 90.) Then. show that 

cos x -+- ising 
J=0= f ee 

x 
Pm OD 

° iz . dz 
. € . € 

+ lim dz + lim — dz, 
R20 | Cr * e~3O Cc, = 

  

(12.3) 
where Cp and C, are the semicircular contours of radius R 

and €, respectively. Show that the AYE bound gives 

1 
<—-w7R=7, (12.4) 

. ee 

—— dz < 
I. z AR 

which is simply not sharp enough to show that Jen + 0 

as R —+ oo. Thus, and this is the first time the AZZ bound 

has not sufficed. use the sharper bound given in Exercise 7 of 

   



1258 

Section 24.2 to show that 

. iz nae 
e* 

| = Az | 
Cr * JO 

w : om [2 _ 
— i en Resin d dQ = 2 | eo Kain é dé 

JO J0 
wie 

< 2 | e 2 ROIm ag 
0 

= Cl ~e7®) +0 

e* 

Rdé   

I
A
 

        

(12.5) 

as R — 00, explaining each step. Turning to the C, integral, 

observe that 

e= I 
- +e: (0 < jz| < oo) 

z a 

(12.6) 

Chapter 24. Taylor Series, Laurent Series, and the Residue Theorem 

and show that g(s) is analytic for all 2. Thus, 

_ fe? yl 
lim —~ dz = lim ~ dz + g(z) dz 
€0 JC, z ef) JC, Zz Ce ° 

= ml + in | g(z) dz. 
e+0 , Cy 

(12.7) 

Show that the latter limit is zero so that the limit of 

To. e dz/z,as € — 0, is ~ri. Finally, note that 

f° cosa + isine P-° cosa _ f* sine 
— de —— AE a 

00 x mop Jac & 

(12.8) 

where the latter integral does not need the Cauchy principal- 

value sign because the integral is not singular; that is, whereas 

(cosz)/x ~ 1/xas a - 0, (sinx)/x ~ 1 there. 

    daz, 

  

Chapter 24 Review 

After introducing the concept of complex series in Section 24.2.1, we use the 
Whereas the 

Taylor series of f(x) about 2 = a converges in an interval x ~ al < R (or per- 

haps only at the point z = a), the Taylor series of f(z) about z = a converges in 

a disk |z — al < R (or perhaps only at the point z = a), the radius of which is the 

distance from a to the nearest singularity of f. Theorem 24.2.8 reveal an intimate 

connection between Taylor series and power series: if a power series converges in 

|z —a| < R, then its sum function f(z) is analytic there and, indeed. the power 

series is the Taylor series of f(z). 

Besides the Taylor series representation of f in the disk 2 — a) < R, one can 

develop power series, called Laurent series, that represent f in annu/i of analyticity. 

Laurent series differ from Taylor series in that they necessarily include one or more 

negative powers of z — a, and in that their coefficients are given by the unwieldy 

integral expression c, = (1/2mi) $ f(Qde/(¢ — a)". However. we showed 

that we can bypass that formula and determine the c,,"s using only the methods of 

Taylor series. 
With Laurent series in hand, we are then able to make precise the notion of sin- 

gularities, by categorizing them into different types. Distinguishing, first. isolated 

singularities from nonisolated ones, we limit our attention to the former, which 

are of chief interest to us. Among isolated singularities, we distinguish Nth-order



    

poles and essential singularities, 

Finally, we are able to return to contour integration and use Laurent series to 
derive the powerful and elegant residue theorem which states, essentially, that if 
(2) has only isolated singularities within C’, then bes f(z) dz is simply 2777 times 
the sum of the residues within C’, where the residue of f at a singular point 2j 

is the c_; coefficient in the Laurent series of f about z;, within an annulus 0 < 

|z — z;| < p. Besides its obvious applicability to integrals on closed paths in the z 
plane, the residue theorem can, as we see in the examples and exercises, be applied 
to real integrals and Laplace and Fourier inversions. 
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Appendix A 

Review of Partial Fraction 

Expansions 

Generally, one meets the method of partial fraction expansions in the integral calcu- 
lus, where the method is used to express a difficult integral as a linear combination 
of simpler ones. For example, 

| da IG 1 1 
Dass 5 | de 

J wi + 3x +2 SyET- Qa+3 

1 

2 
1 

2 

  
  

    

| dx ;/ daz 

J e+l 2f +3 

. ol 
Inje+1)—= 5 in |x + 3] + constant. 

In this text we use the method primarily to help us to invert Laplace and Fourier 
transforms such as the Laplace transform F(s) = 1/(s* + 3s + 2). For convenient 
reference, this appendix contains a review of the method. 

Let p(w) and g(x) be finite-degree polynomials in x, of degree P and Q, re- 
spectively. Then 

  fla) = 2S) 
q(x) 

is called a rational function of x. Let P be less than Q. [If P > Q, then we can, 
by the long division of g into p, express f as a polynomial of degree P—Qplusa 
rational function r(r)/q(a), where the degree R of r is less than Q. For instance, 
long division gives 

(Al) 

r+ 6a" —5ar +6 9 vw? —4e+1 
TPT a “+2 bya 
wm ee -aotl a+ae—-24+3 

Whereas the method of partial fractions cannot be applied to the rational function 
on the left (because ps = 5 is not less than @ = 3), it can be applied to the one on 
the right (because P = 2 is less than Q = 3).] 
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Distinct roots. Let q(x) in (Al) have the distinct roots 11,...,2Qg. Then f ad- 

mits the partial fraction expansion 

  

    
p(x a ay ac 

f(z) = plc) = ty gp TL, (A2) 
qv) &- ty &~ Xe «LE   
  

where the aj’s are constants. One way to determine the aj’s is to recombine the 
terms on the right-hand side over a common denominator [namely, q(x)] and re- 

quire its numerator to be identical to p(r). 

EXAMPLE 1. Expand f(x) = (2 — 1)/(a? + 5a + 6) in partial fractions. Since 
ve? +52 +6= (ae + 2)(x +3), we can expand f as 

au 1 ay ay 

f(z) = =—>—x + 
ret+5a+6 et+2 243 
  

To determine a; and ay, write 

t-1 (a, + a2) + (3a) + 2a2) 

+5at+6 ze +52 +6 
  

For the numerators to be identical we need 

ye: —1 = 3a, + 2a9, 
x: L=aytag. 

Solving these equations gives a, = —3 and az = 4 so 

z-il 3 4 
3 (= o + =~, a 
w+ 5a +6 cr+2 «r+ 
  

However, it is simpler to proceed as follows. To calculate a;, multiply (A2) by 

x — £4, then let 2 — x in the result. That step gives 

  lim te — 1) =a, t0+---4+0. 
CFL q(x) 

To find ag multiply by « — xy and let x — xe, and so on. Thus, 

a 
a; = lim |(c ~ .2;)—— (A3) 

J UE; f Ne) 

or, applying |’ Hépital’s rule to the indeterminate part, (a — 2;)/q(x), 

  

  a; = Plt) . (Ad) 
     



    

Appendix A. Review of Partial Fraction Expansions 

In Example 1, 2, = —2 and ao = —3 50 (A4) gives ay = [((w ~ 1)/(2u +5)]|,.~2 
= —3 and ag = [(x — 1)/(2% + 5)]/en—3 = 4 as obtained above. In summary, if 
q(x) has distinct roots, then F(x) = p(@ Val :) can be expanded in partial fractions 
according to (A2) and the a;’s can be ro readily according to (A4). 

Repeated roots. If any root «; of g(a) is of multiplicity & [ie., (~ — aj)* is a 
factor of g(x)], then the jth term on the right-hand side of (A2) must be modified 
to the form 
  

Qt (Ly) J Je + en fee bf \5 

wo Lj (x _— aj)? r an . (A ) 

      

or, equivalently, 

bio ++ bye apo oe bj. pak 

(a ~ v;)ho1 

To solve for aj1,..., @jx in (A5), we can recombine terms over a common denomi- 

nator [namely, g(x)] and equate coefficients of powers of x in the numerator (since 

powers of x are linearly independent functions of x) as we did in Example | 

  

EXAMPLE 2. To expand (4? + 5)/[(a — 2)°(x + 3)] in partial fractions, write 

Aa +5 _ a, b c 

(c@-2)8(a@+3) [a-2° (2-2)? " (x —2)8 “e438 

fa(a — 2)? + b(a ~ 2) +e] (vw +3) + d(x — 2)8 

(x ~ 2)8(@ +3) 

= [(a+ dja" + (-a +b ~ 6d)x? + (-Sa+ b+ 04 l2d)x 

+ (12a ~ 66 + 3c — 8d)]/[(w — 2)*(a + 3)], 

  

where the notation a, 6, c,d will be simpler than using subscripted aj,’s. Thus. 

      

r?: 5 = 12a — 6b +3c— 8d, 

vt: O0=-8a+b+e¢4+12d, 
zw: 4=-a+b-— 6d, 

re: OQOsadtdd, 

with solution @ = 41/125, 6 = 59/25, ¢ = 21/5, d = —41/125 so 

de? +5 dE 5D 2d 411 
(a —2)38(a +3) 125a—-2 °° 25(@—2)2 9 5 (2-2) Phar e3" 

In Example 2 we could have used (A4) to compute d but we could not have 
used it to compute a. b,c because x = 2 is a repeated root. To compute Aja e es Oph 

in (A5), we need a modified version of (A4), namely, 

1 q{ikom) 1 P(t) 
Li = Tey Bm by) 

AG “am (k= m)i dah) i “i a) “ 
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form = 1,...,k. For instance, if we apply (A6) to the calculation of a, b,¢ in 

Example 2 we obtain 

1 dad 9)8 da® +5 
a= Ay, = say | (U2) gy 

Ol dx? (x — 2)3(a + 3) 

AL 

125° 

  

1d y 4a? $5 59 
b= ay = —— |(x -2°———_,- ==, 

PS OOS Tide c ) (a ~ 2)8 (a + 5 - 25 

and > 
1 a3 fee +5 21 

A= (yo se xr - 2)? = 

ce ts 0! cE ) (x — 2)8(a + 5 a) 5 

  

which results agree with those obtained above. 

Partial fraction expansions can also be carried out using computer software. 

For example, the relevant Maple command is convert, and the commands 

convert((a ~ 1)/(#*2 + 5 * x + 6), parfrac, x); 

and 
convert((4 * 7°2 + 5)/((a ~ 2)°3 * (a + 3)), partrac, x); 

give the results that we obtained in Examples | and 2, respectively. 
We leave the derivation of (A6) for you as an exercise.



  

  Appendix B 

Existence and Uniqueness of 

Solutions of Systems of Linear 
Algebraic Equations 

This appendix is intended as a minimal prerequisite for Chapter 3. Alternatively, to 
integrate linear algebra more heavily with the ODE chapters, we suggest following 
Chapter 2 with Sections 8.1-10.6 before beginning Chapter 3. 

Definitions. We call the 7m equations 

q11@y + Oy9T2 + + Any = C1, 
G9,L1 + 49909 +:+++ + O2ntn = C2, 

(BI) 

Amiel + Am2t2 +++ + Amntn = Cm, 

where the aj, coefficients and the c;’s are known, a system of ™ linear algebraic 
equations on the n unknowns z1,...,2,. Any set of numbers 71,..., 2, that ren- 

ders each of the ™m equations a numerical equality is called a solution of the system. 
A system is said to be consistent if it admits at least one solution, and inconsistent 

if it admits none. It is shown in Chapter 8 that if (B1) is consistent, then it admits 

either a unique solution (one solution) or an infinity of them, never three solutions 

or 27 solutions, for instance. 

We call the array of coefficients 

G41 Q12 ut Qin 

ag1 432 +++ Gon 
A= : . / (B2) 

mi GUm2 ‘'° Gmn 

the coefficient matrix, and enclose the aj, elements between brackets simply to 
show that the entire array is being regarded as a single entity. We say that A has 
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m rows and n columns. For instance, the second row consists of the elements 

91, 099,..-+,49n- 

The case where m==n. In applications, the number of equations (7m) is usually, 

but not always, equal to the number of unknowns (7m); in general, m can be less 

than, equal to, or greater than n. Consider first the case where m = n. As the 

simplest case, let m =n = 1 so (Bl) becomes ay,21 = C1, or simply 

an = C, (B3) 

If a 4 0, then (B3) admits a unique solution, namely, 7 = c/a. If a = 0, however, 

then there are two possibilities. as can be seen from (B3): if ¢ # (), then there is no 

solution and (B3) is inconsistent, and if c = 0, then (B3) is consistent and there is 

the infinity of solutions x = a, where a is arbitrary. 

The upshot, for this simple case, is that whether or not the coefficient a is 

zero is crucial: if a # O (the generic case), then there is a unique solution, and 

ifa = 0 (the nongeneric or singular case) then there is either no solution or an 

infinity of them, depending upon the value of c. This idea generalizes to the case 

where m =: 1 > 1 as indicated in (i) and (ii) below. First, we define a so-called 

determinant of the A matrix, and denote it as 

  

Qi1 4120" Ain 

ao, a@92 +17 Gan 

detA = | j (B4) 

| (rl (ln2 17 Gan 

that is, with straight line braces instead of square brackets. The determinant of A 

is a number (which can be positive, negative, or zero), defined as 

  

| 
| LL | = (11, (B5a) 

aq, 42 
= ayag2 — 421412, (B5b) 

a2, 22 

Cy, G12 413 

aq, 422 G93 | = ayy (22433 — 439093) — a1 (a21433 — @31423) (BSc) 

| a3, 432 33 | +443 (021432 — (13122) 

for 2 = 1,2, and 3. respectively. The general definition for any 7 is given in Sec- 
| > 

tion 10.4, but the cases (B5a.b.c) should suffice for Chapter 3. Do not confuse 

determinant with absolute value, especially in (BSa) where we cannot tell, from 

the left-hand side, whether we are signifying the absolute value of aj; or the de- 

terminant of the tiny matrix A= [ay;]|, without being told or from the context. For 

2 5) 
instance, |—6] = —6, 3 i | = 8 ~(—15) = 23, and 
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3-2 5 
0 4 6 | = (3)(32 ~6) — (—2)(0 —6) + (5)(0—4) = 46. 
1 18 

Now, whether or not detA is zero is crucial insofar as the existence and unique- 
ness of solutions of the system (B1): 

(i) If detA 3 0, then (B1) is consistent and has a unique solution. 

(ii) If detA = 0, then (B1) has either no solution (is inconsistent) or an infinity 

of solutions, depending upon the c;’s. 

For instance, consider the three systems 

20, —- tg = 4 2u,— &g = 6 Qn, —~ &o = 8 
+ anc 

ov, + to = Ll, de, — 240 = 3, 4a, —- 2x29 = 10. 

In the first case, detA = 5 # 0 so there is a unique solution (namely, 2, = 3 

and wo = 2); in the second case, detA = 0 and there is no solution (as is not 

surprising since the second left-hand side is twice the first left-hand side whereas 3 
is not twice 5); and in the third case, detA = 0 and there is an infinity of solutions 

[namely v2 = a and ay = (5 + a)/2, where a is arbitrary]. 
In fact. if detA + 0, then we can give a formula for the solution of (B1). 

Namely, for each 7 from 1 to n, 2; Is given as the ratio of two determinants: the 
one in the denominator is detA, and the one in the numerator is the same except 
that its jth column is replaced by the column of c’s on the right-hand side of (B1). 
This result is known as Cramer’s rule. For instance, if 

38, —-Xo+ag = 1 

21, —- 2x9 +23 = 0 (B6) 

4y + 3uo —- tg = —5, 

then Cramer's rule gives 

| — _ po
 

_ 

) 0 -2 1 2 0 1 
,-5 3-1 6 6 4 —-5 —1 LL 

se 
2 —2 1 2-2 1 

a 3! z aS 

and, in similar fashion, vy = 34/5. Notice from Cramer’s rule that since each 2; 

is given as the ratio of two determinants, with the determinant in each denominator 
being the determinant of A, it follows that if detA # 0, then there exists a unique 
solution for each vj. That result is identical to (i) stated above. 

Remember that (1) and (ii), and Cramer’s rule, hold only in the case where 
m =n. ifm €n, then the “determinant of A” is not even defined. More about 
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this in Section 10.4. 

The homogeneous case. [f all of the cj’s in (B1) are zero, then we say that the 

system is homogeneous. It should be evident that homogeneous systems are always 

consistent since they necessarily admit the solution %) = 2 = +++ = Lp = Q, 

which is known as the trivial solution. (When we give it that name, we do not 

mean to imply that it is in some way beneath our dignity; it is a perfectly legitimate 

solution.) Further, if (B/) is a homogeneous system with m <n, then it necessarily 

admits not only the trivial solution, but also an infinity of nontrivial solutions, For 

instance, it can be verified by substitution that the system 

xy + 2ro + 03 = 0 

20, + 89-03 = 0 (B8) 

admits the solution v1 = 23 = @ and x2 = —a for any a (which solutions include 

the trivial solution for the choice a = 0).



  

Appendix C 

Table of Laplace Transforms 

  

f(t) f(s) = f(the~*' dt 

  

| 
i 

| 
| 
i NOTE: s is regarded as real here. 

  

  

  

  

    

| 1 5 (s > 0) 

2 et (s > a) 
Sm h 

a 
3. sinat = {8 >0) 

s? + a? 

4+. cosat Saw (s > 0) 

5. sinhat - e - (8s > jal) 
gs? — a? 

$ 
6. cosh at 5 = (s> |a}) 

3? — a 
-. n! ; 

7. t' (ni = positive integer) F 8 > 0) 
ght 

T(ip+1 
8 tb (p>—l) ( =F (s > 0) 

§Pa 

b 
9. e@ sin bt = s>a e** sin b (so a)l eb ( a) 

S—- a 

10. “cos bt (s-u)p ee (s >a) 

208 
Ll. ¢sinat ee (s > 0) 

(8? + a?) 

va , 
12. teosat a (s > 0} 

(s* + a? )* 

208 , 
13. tsinhat poy (8 > a) 

(s? = a?) 
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f(é) 
  

l4. tcoshat 

5. t'e® (n= positive integer) 

16. the (p> —-1) 

17. Int 

18. H{t-a) (a>0) 

19. d(t-—a) (a> 0) 

  
ewe 

20, oo (a > 0) 
Vi 

ew st 

22. Jo(t) 

  
2 ay 

e ae (s > a) 

n! 

(s—ayntt (s > a) 

Tip+l) 
(s—ayrrt (s > a) 

oa (s > 0) 5 

(y = Euler's constant = 0.577215665) 

ad 

  (3 > 0) 

as 
€ 

Ten %4v8 (5 > 0) 
3 

VT -20vi (3 > 0) 

a 

1 (550) 
vst +1 , 

Linearity of transform and inverse (Theorems 5.3.1, 5.3.2): 

23. au(t) + Bv(t) 

Transform of derivative (Theorem 5.3.3): 

24. f'(t) 

Transform of integral (Theorem 5.7.3): 

27. , F(rj)dr 
JQ 

Laplace convolution theorem (Theorem 5.3.4): 

af 

28. (feg}t)= - flr)g(t-7r)dr 
vO 

ati(s} + GU(s) 

sf(s) — f(0) 

s*f(s) — sf(0) ~ f'(0) 

5" Fs) = 8" F(0) ~ 8" (0) ~ 
—s fl" 2)(0) = fF“ N(0) 

 



  

  

F(t) Fls) = [- Per" de 
  

s-Shift (Theorem 5.7.1): 

29, e7 F(t) f(s+a) 

t-Shift (Theorem 5.7.2): 

30. H(t—a)f(t —a) e* F(s) 

Multiplication by ¢ and 1/¢ (Theorems 5.7.4 and 5.7.5): 

  31. ef(t) 8) 

32. io [ f(s')ds' 

Transform of periodic function (Theorem 5.7.8): 

l T 

von | f(tle * dt 
/0 

33. f(t), of period T 
l—e 
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Appendix D 

Table of Fourier Transforms 

  

F(x) f(w) = [- faye" dz 

  

tw
 

1 

xz? + a® 

A(aje"°* (Rea > 0) 

(a > 0) 

H(—x)e** (Rea > 0) 

ele (a > 0) 

mo 

  

  

V lel 

etl ve sin (4 jal + ) {a > Q) 

H(a +a) — H(x —- a) 

d{z — a) 

flax +6) {a> 0) 

1 t x 
ne ele p (=) (a > 0. breal) 
a a 

f(ax)coser (a > 0, creal) 

flav) sinex (a > 0, cereal) 

flwe+tey+ fle-e) (Cereal) 

TK alw| 
—e 
a 

1 

a+ iw 

1 

Qa~ lw 

2a 

  

  

  
we + ae 

fre 

22 
sar 

e 

lh 

|| 
2a° 

wi + at 

2sinwa   

ev ive 

1 ibw/a p fw 2 gibe! f (<) 
a . h 

flaw + b) 
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f(a) f(w) = [- flaje"*’* da 

16. f(e+e)-~ f(e@—-c) (creal) 2if (w) sinwe 

| 17, wo f(a) (n= 1,2,...) 2 flu) 

Linearity of transform and inverse: 

18. af(«) + Bg(z) af (w) + GG(w) 

Transform of derivative: 

19. f(x) (iw)" f(w) 

Transform of integral: 

2 . 1 . 

20. fte)= [_al6)at, flw) = = aw) 
where f(x) + 0 asa — co 

Fourier convolution theorem: 

21. (fea )(e)= | He ~e)ale)ae fw)a(w)   

 



Appendix E 

Table of Fourier Cosine and Sine 

Transforms 

  

l 

we + ae 
3c. (a > 0}   

Linearity of transform and inverse: 

4C, af(x) + g(x) 

Transform of derivative: 

5c. f(x) 

6c. f(a) 

Convolution theorem: 

7. [Lele ~ s) + fle + alate de 

1276 

folw) = [- f(x) coswa dz 
Jo 

a 
  

2) 00 
Ul er am 

niRe(a+iw)"*! 
  ~ = Re = real part) 

fw? + atyret ( 

wfs(w) — f(0) 

—w" few) — f'(0) 

felw)Ge(w)



rd
 

  

  

  

' 

Appendix E. Table of Fourier Cosine and Sine Transtorms 

f(x) fs(w) = [ fle) sin wa da 
J 

iS. e7** (a > 0) apg 
a i Ch 

| 2S. wte™*®" (a>) Sane (Im = imaginary part) 

3S. <5 < —; (a>) “ew 
we ae 2 

Linearity of transform and inverse: 

4S. af(a) + dg(c) afs(w) + BGslw) 

Transform of derivative: 

| : 58. f'(a) —w fc(w) 

| | 6S. fe) —w? f(w) + wf(0) 

| Convolution theorem: 

18. 5 [Lele ~ £1) ~ Sa + e)lale tg jelwias(w) 
7 

} 
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Table of Conformal Maps 

L we=l/z 
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Rab bday <a <l 

y 

  

  

dD’   
  

  

Ro | lea cy 
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6. w=e* 

  

    
  

  

  

  

    

  

  

  

¥ vA 
| 

F n\E D 

~! 1 

A B Cc Dp’ E’ F’,A’ B’ Cc’ ou 

7. wee y 

E dD 
p 

Cy r/2 

A 
ul 

z-l ry : 
8. w= log = In—+i(6, -@,) 

= ry ~ 

va 

| Y 
Tt dD’ wi C’ B’ 

DT / 

-l-* 0, I Pe 

1B C Dp’ E Bu 

A, = a, = 0 

z-l ry . 
9. w= log = In—+1(0, - @3) 

z+ ry ~ \ 

Va 

Cc a) B’ A’ 

Cc b A’ 

Sn? 

b=cos! a O<b< 

  

Va7 +]



  

[Q. w= — cos #2 

VA 

A | D 

Cc 

B I x 

lhow=sing 

vA 

Al D 

Cc 

B e/2 x 

12. w=sine 

  

Appendix F. Table of Conformal Maps 1281 

VA 

| 
| 

~l I 
a ntininnen enna nnn 

A’ B’ Cc’ Dou 

vt 
A’| 

1 

BY CC D’ ou 

VA 

| 

| 

tare rtreeffnttffmentananasnmnite oe 

A’ BC py BE’ ou 

VA 

—2a | 2a 
it jmreftientet 

A’ BoC py EY ou



Answers to Selected Exercises 

Chapter | 

Section 1.2 

1. (a) First order, y, yes. yg no, yy no (d) First order, y; no, ye yes (g) Third order, y1 yes 5. (a) -3 (d) | 

(g) £1, 4/75 6. (a2) A = 0, B = 2 7. (a) Linear (d) Nonlinear (because of the expy term) (g) Nonlinear 

(because of the yy’” term) 

Section 1.3 

2. When H - 00, with LD fixed, the cable hangs straight down at x = 0/2, and the tension T' there is simply half the 

total weight of the cable, wL/2. [In fact, (16) also gives T(0) = 0 as H -+ 00. Do you see, from the physics, why 

that result is correct as well? ] 

Chapter 2 

Section 2.2 

2. (aly = (34+ C)e*,o =e * (d) d(sin 2x + 2cos2z) + Ce™,a =e" (hy = a3 + Cx’, = x? (for the 

equation y! ~ =y = 27) (m)a = t° + Ct, o = 1/t (for the equation x’ — +x = 4t'). Whereas p(t) = —1/t and 

q(t) = 4t* are continuous on 0 < t < co and ~oo < t < 0, the solution t? + C't holds on —oo < t < 00. 
5. (a) y(x) = 22” -2/ron0<a<co (d)y(x) = 2x7 on -00 < & < CO 
6. (a) y(x) = (23 + 3a? — 20)/(3x2) on ~00 < 2 < Oorond <a < co (dy(x) = (x? + 32? - 1)/(327) on 
~oo <2 <O0oron0 <2 < oo 7. (a) Solution for y(z) given in implicit form by « = e”(8y+C) 8. (a) Direction 

field reveals the straight-line integral curve y = 2x (b) Direction field reveals the straight-line integral curves y = +2 

9, (a) Forn = 0, y= er SP (ce! padre dy + c): forn = ly =Ce~JPr-at 10, (a) y = e'*/(C — e**) 

(d) y = (a -24+ Ce~*/*)*/3 (a) y = —In (a — C,) + Co, where both Cy and C2 are arbitrary constants. Do you 

see that this result is equivalent to the solution y = —In(C, xe + C2), where both Cy and Cy are arbitrary constants? 

12. (a) y = 4e** /(C — e**), which does give y = Y(x) = —4 forthe choice C= 0 (d) y = 2/(Ce* +e~*) 
(g)y = -2(e* + C)/(e™ —~C) 13. (b) a(p) = $3 + a y(p) = a (In this example we can eliminate the 

parameter p between these equations and obtain y(z) = J2C (27 +3 = AVQx +3. where V2C = A. (Py = 1 

gives yi(z) = a+e, Py = 2 gives yo() = 24+e" (i) Po = O gives yy (x) = 0, Py = +2 gives yo(x) = 2a—2sin2, 

Py = 2 gives y3(v) = ~2x + 2sin2 

Section 2.3 
L. (a)t = 4.605L/R 2. (a) ForO0 < t < ty, (1) gives i(t) = tpe 7 h/! + th er O/E Boy dp = a + 

(io — fa) eRUL Fort, <t < 00, (II) gives i(t) = ige PE + + fi elit —-O/L By dr 
f 

t 
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= [ig + SB (rhO/% 1] ew BYE, Steady state: i(t) + Oast > co. 3. (a) IF R°C  L, i(t) = [(EoRC)/(R2C — 

Lyi (en BE — eR): if RPG = L, i(t) = —S2te"V/IPO) 5. 847 years 9. N(t) = aNo/[bNo + (a — 

Nob)e~@] 10. (a) c(t) = er + (co — eye @o"/” (b) For 0 < t < Le(t) = ev oder Ch elo 444 dr + 0) = 

L—e~". Thus, c(1) = 0.9817. Then, fort > 1, c(t) = e7 fr 24 (i elt 269 dr 4. 0.9817) = 1-0.0183e724-)), 
11. e(t) = (mgsina/c*)(et — m + me~e'/™) 13. 0.2299 inches 14. (a) It is simplest to treat a < 0 and x > 0 
separately. For 2 < 0 we have Q(x) = 0 soc’ + (6/U)e = 0 with c(—co) = 0. Applying c(—co) = 0 to the 
general solution c(z) = Be~8*/" gives B = 0 so c(x) = 0 fore < 0. For x > 0 we have Q(x) = constant = Q 
and c! ++ (B/U)e = Q/(AU) with e(0) = 0 [from the solution c(v) = 0 on x < 0]. This problem gives c(z) = 

al —¢@~8/U) Note that c(x) + wa asa -—> oo, (b) As in (a), c(v) = 0 for < Oand c(z) = (4 _ eAa/U) 
Q ina > 0, but only up to x = L, where it gives c(L) = 34(1 — e7?°/") as the initial condition for the problem 

e+ (8/U)e = 0on L < x < oo. Applying that initial condition to the general solution c(x) = Be~8*/U gives 

B= yeh h/U — 1) and hence c(z) = By (eee — e~F8#/U) for x > L. This time c(t) + Oas 2 > 00. 

15. (b) 2.20 hrs 

  

Section 2.4 

1. (a) y = In(z? +1). We do not claim that these solutions hold for all «. For example, this one holds only on 

~1 <x < oo because In(x* +1) + ~coast 4-1. (d)y = tan (x — 0.6266) (g) y = 12e3*/(1 — 4e%*) 

Qy=-V2/3 4. N(t) = aNo/[bNo + (a—- Nobje~®] 6. (a) y = (1 ~— V8a9 + de + 25)/2 
(jy = (1+ V8r9 +4a+13)/2 7. ()y = -Ve*-24+9 (d)y = +Vae° ~ ax and —Vzr? — x, nonunique 

solution 8. (a) No. (b) Yes, degree zero. 10. (a) y = a(3 Ina +C)*/3 (d)y = —a+C/x 11. (b) Implicit 
solution: y” + (6 — 2z)y + 227 — 122 + C = 0. Can solve for y by quadratic formula. 

Section 2.5 

Lay = 38a t+ Cyy = 324+6 (d) l0sin2u +67" = C,10sin2u + e758" = 6 (g)att 22 —drz = C; 
ce + 2" ~drz= 94 |) x sin 2y — xy = C, asin 2y — xy = —(Q.7854 4. (a) Exact if and only if b = A. 

5. (a) a(x) = e*,e*y =C (d) oly) =e’, ve¥ —-y=C (g) o(y) = cosy, (x—y)cos*y=C (jo=1, 
wsinh38u—-ur=C Tao =2y vy? -a7y=C Baba ze tM ev ®t tev = C 
9, (a) x? — Qay — yy? = C 

Chapter 3 

Section 3.2 

1. (a) No, from Definition 3.2.1. 2. (a) For instance, (3a - 5) = 3(@ + 2) — 11(1). (d) For instance, cosh a = 
—I(sinh 2) + I(e™) + O(e"). 3. (a) The Wronskian determinant W[l1,2,...,2"](x) is upper triangular, with 
Ol, 1, 2!,...,n! as its diagonal elements. Thus, by property D3 in Section 10.4, W(x) = (0!)(1!)---(m!) which is 

nonzero. Then, by Theorem 3.2.2 the set is LI (on ~co < x < oo). An alternative approach that avoids determinants 

is as follows. Let n = 2, say. The question is whether a + bx + cx? = 0 can be satisfied by constants a, 0, ¢ other than 

a=b=c-= 0. Repeated differentiation gives b+ 2cx = 0 and then 2c = 0, and these three equations give c = 0, 

b = 0,a = Oso, by Theorem 3.2.1, {1,2, 27} is LI. The argument is easily generalized to {1,2,...,2"}. (d) Surely, 
e°* is not a scalar multiple of e” (nor vice versa). For if e*” = ae* then 2 = 0 givesa = Landa = 1 givesa =e, 

et ert est 

which cannot both be true. Then, by Theorem 3.2.4, the setis LI. 4. (a) W =| e® 2e?* 3e8* | = 2e°* 40) so 
et 4e2® Gest 

LI. Theorem 3.2.4 does not apply. (d) 7 = 0 so, by Theorem 3.2.3, LD. 
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Section 3.3 

1. (a) e® and e?* satisfy the ODE. Further, We, e7*](a) = e°* 4 0, so Cye™ + Cze** is a general solution. 
(d) e~* and e?* satisfy the ODE. Further, Wle~*, e**|(x) = 3e* 4 0, so Cye~* + Coe*” is a general solution. 

2. (a) e?”, cosh 32, sinh 3x are indeed solutions, but they are not LI because cosh 3x = 1(sinh 32) + 1(e7**), for 

instance. Thus, the set is not a basis. (d) Each is a solution, and W[e*, ze*, xe*|(x) == 2Qe3* * 0 so the set is 

LL. Thus, the set is a basis. 3. (a) No; for second-order we need two LI solutions. (b) Yes 4. (a) No: 2°” is 

not a solution. (c) Yeson0 < 2 < co, on ~co < x < 0, andon6 < # < 10, but no on ~co < & < oo 

because z ln |2| is not differentiable ata = 0. 5. (a) No. A general solution of a seventh-order ODE must include 

seven LI solutions, whereas the given expression contains only six. 7. No. Note that if y, and yo are solutions of a 

homogeneous linear ODE, then Cy, + Coy2 is a solution too, for arbitrary constants Cl, C2, but the ODE given here 

  

is not homogeneous. 8. (a) Given y(0) = 4, y'(0) = 3. Then ODE gives y” = —y,y!” = —y', yf) = —y",... 

so y"(0) = ~y(0) = —4, y"(0) = ~y'(0) = —3, y(0) = —y'"(0) = 4, y')(0) = ay") = = 3. Hence. 
y(c) = 4 + 3a — 4a /2! ~ 329/314 da! /4!4+ 32°/5!—--- (d) y(0) = 1, y/(0) = 0. ODE gives y” = —ry,y/" = 
ny — ay! yl?) = —2y! ~ ayy = —3y" — ay", so y"(0) = 0 y(0) = —1,y"(0) = 0,y"(0) = 0. 
Hence, y(x) = 1+ Ox + Ox? + (—1)a9/3! + Ort + Ow? +--+. 9 (a) pi(z) = 2 and po(x) = 3 are continuous 
on —90 < z < oo so it follows from Theorem 3.3.1 that there exists a unique solution for y() on every interval (no 

matter how broad) containing the initial pointe = 0. (e) p,(@) = 0,po(x) = 1, p3(a@) = ~1/2 are continuous on 
the interval ~oo < x < 0 containing the initial point 2 = —1, so there does exist a unique solution on that interval. 

11. (a) Unique solution y(x) = 0. (b) Boundary conditions give C, = 0 and C, = —3. Hence, no solution. 

12. (a) Unique solution y(x) = ~(2/m)xsin a. 

Section 3.4 

3. Trying to avoid the messy Wronskian determinant, fall back on Theorem 3.2.1. Accordingly, the question is 

whether a,e*!* + agwe*™ +++. + aga"~te*!® = 0 can be satisfied by a; "$ not all zero, Since es & () forall x. 

the exponential e*! factors can be cancelled, leaving a, + av +--+ +a,x*~! = 0. Thus, the given set is LI if and 

only if {1,2,...,a*~1} is, and proof of the linear independence of that set is given in the answer to Exercise 3(a) of 

Section 3.2. 4. (a) y(v@) = A+ Be~°*® (d) y(a) = Ae* + Be** is general solution. and initial conditions give 

y(a) = 2Qe%~! — eF")) (g) y{x) = e**(2cosx +sina) (m) y(x) = Ae*™ + e"(B cos xv -+- C'sin x) 

6.(a)y(x4)=2-x (dy(x)=1 (g)y(w) = Aew* + (B+Ca)e® 8. (a) (A — 2)(A — 6) = \® — 8A 4 12, so 
yl — By! + 12y = = 0, y(x) = de® + Be®® (dy! — by" — y' + 30y = 0, y(v) = dew?” + Bed* + Ce 
(g) y(t? ~ 12y0) 4 ae ~ T6y" + 48y' — 64y = 0, y(v) = (A+ Ba + Ca*)e™ + Deosx + Esina 

9, (a) y(z) = Ae™ (Hv) Beil-v2" = el@(C cos V2x + DsinV22) (d)y(x) = (A+ Brje!* 
12. (a) \ = 0.0776, L612 + 4.86197, 1.4612 ~ 4.86197, hence unstable (d) A = +7, —7, -0.5 + 1.93697, —0.5 — 

1.93692: in this case there are no roots to the right of the imaginary axis and the two roots on the imaginary axis are 

nonrepeated, hence stable 

Section 3.5 

(a) B= /6? + = /37, @ = tan~! (6/1) = 1.406, w = 1. so V37 sin (t+ 1.406) (d) V8 sin (3t — 0.785) or 
Visin( 38t~ 7/4) 3.A = 29, B = (crg + 2mxy)/Vdmew? — c* 10. (d) Yes 

     

  

Section 3.6 
lL. (a) y(v) = C/a ona < O0orn > O(or-co <2 < oo if Cos 0) (d) y(a) (2° ~1)/5 (g) y(a) = 

(2/x)sin(Inz) one > 0 (p) y(w) = [4+ Blnfa| + C(In|e|)*ix since A = 1,1,1 7. (b) Y" —4¥ = 0, 

¥(t) = Ae*! + Ben? y(a) = Ax? + Ble? (HY -¥Y'+Y = 0,Y() = Aela Hist + Bela OE) = 

e/?(C cos vB ¢ 4 Dsin v34), y(z) = fa [C cos (%2 In [a|) + Dsin (2 Inj2)long <Oorrg >0 9 (a) a(r) =~ 
(gg nr, ~ Oy Inr2) + (@, — 2) nr /(nry — nrg) 10. (a) u(r) = (ayy — were) /(ry — ra) + [(reri (ue 

w)/(rr—re)|A/r) 1. (a) y(2) = Ac + B (e-" Pao fr ei? dt) or, in terms of the tabulated function erf (x) 

l
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defined by (60), y(a) = Ax + Ble ya? f2 + Jf peer (4 te =). 16. In that case (50a,.b) become a’ = a? + (ay )a + (a) 

and b! = —b? — (a,)b — ha) Because a, and ay are Constants these two equations admit solutions a() = constant 
and b(2) = constant, which constants are roots of the characteristic equation \? + ay\ + a2 = 0. Thus, a, 6 are the 
roots A;, Ag of the characteristic equation, so the factored equation is (D~ A,)(D— ou jy = 0. The latter can be solved 
by setting (D — Ay)y = (az). Then (D — Ay)u = u! ~ Agu = 0 gives u(x) = Ae*?*. Finally, solve (D — Ay)y = u, 
namely, y/ — Avy == Ae*?*. If Ay A Az, then that step gives y = Cee + Coe?®, if Ay = Aa, then that step. gives 
y = (Cy + Coaje™®. 17. (a) ay(x) = —2/a and ao(x) = 2/x? so (50a) gives the equation a’ = a? ~ 2a on 
a(x). By inspection, the latter has a particular solution a(z) = 0. Rather than try to solve (S0b) for b(4 r), we obtain 
b(x) readily from (49a) as b(v) = —a,(x) ~ a(w) = 2/2. Thus, the factored form (47) is D(D — 2)y = 0. Then 
(D- 2)y = = ‘A ory’ — 2y= =x A and (using the general solution of the first-order linear equation) y(2) = —Aa + Ba? 

or Che + Coa*. NOTE: Rather than solve (50a) for a(a) and (50b) for b(a), solve (50a) for a(x) and then (49a) for 
b(a). Or, solve (50b) for b(x) and then (49a) for a(x). In the present example (50a) gives, by inspection, a solution 
a(x) = 0; (50b) gives, by inspection, solutions b(z) = 1/x and b(x) = 2/x. Of these, the pair a(x) = 0 and 
b(a) = 2/x does satisfy (49a); the pair a(x) = 0 and b(x) = 1/x does not. 

Section 3.7 

1. (a) Yes, {a* cosz, x" sin x, xcosz,usinz,cosz,sina,} (b)No, 2? Ing + {x7 Ing, vine, x, 1,l/a,1/e*,...,} 
without end. 2. (a) yn (a) = Ce®*, xe?* > {rer ,¢ eee}. 6 — {1}. Seek y,(x) = Are** + Be* for the rer term 
and y,(a) = C for the 6 term. Obtain A = ~1,B=—-1,C =—2,so0 y(a) = Cye** — eo — @?? — 2. 
(d) ya(a) = Cre®*. re®® — {xe8*, 3}, 4 > {1}. Seek y, (x) = a( Are 1 Ben) for the ve? term and yp(x) = C 
for the 4 term. Obtain y(x) = Cye*” + ga%e** — 2.) (g) y(a) = Cy + Coe* + bcos 2e — sin 2a. 

(k) y(a) = Cy cos + Cysing + 3esina + 2 (0) y(x) = Cy + Coe” + (x? — are 4. (a) y(x) = Che~** + e** 
(d) y(z) = Ch 4+ 82 (g) y(x) = Cye™ + Coe™® + (4a — Qe™ (my y(x) = Cha? + Caf? — 1/(32) 
(0) y(w) = Che" " Gy 4 nale P41 p—ex 

Section 3.8 

5. (a) As ¢ —+ 00 the graph of & becomes discontinuous at Q = 0: B= Fy/katQ = 0, B =O forall Q > 0. 

(b) Fore = 0, is O for Q < wand w for Q > w; fore + 00, @ is 0 at 2 = O and 7/2 for Q > 0. 

8. Of course we can see from (19b) that B —+ 0 as 2 — oo, One way of interpreting this result physically is to let 

Qt = 7 in (15), in which case (15) becomes m0? d?x/dr? + ¢Oda/dr +kxe = Fy cost in which the * ‘effective mass” 

mQ®* tends to oo as 2 ~+ 00 (as does the effective damping cQ). 12. (b) (12.2) is mw” + cw! + kw = Foe’ 

and seeking wp(t) = Ae gives A = Fo/(—ma" + icQ + k) so x,(t) = Re [Foe™ SLC? + tcQ + A)J= 
Fo[(k = mQ? \'cos Qt + eQsin Ot] /[(k — mQ?)? + c.O?] (e) a,(t) = Im fe! /(3i — I = ~§ cos 3¢ ~ § sin 3t 
13. (a) Q(t) = 5 — (5/3)e~ "(3 cos 3t + sin 3t). Steady state: Q(t) > 5. 

Section 3.9 

4. (c) Ri, — 19) = F(t), LOS - ) = E(t), (/C)is = E'(t), of which the first and third happen to be algebraic 

rather than differential equations. (a) a(t) = —2Ae"! — Bem! y(t) = Ae** + 2Be~* (d) x(t) = Ae’? — 
3Be~W? —1 y(t) = Aet/? Bel ott (g) a(t) = —H+ gt+3de"+ Ben" y(t) = ~£4 gt+ Ae" — Bew*! 
(k) a(t) = ~2Ae% — 2Be~"! + C'sinat + Dcosat, y(t) = Ae*’ + Be“ + Csinat + Dcosat (a = V3). 8. Let 
us give only 

(a) 2(f) = y¥ + (Bem — ae") /(a =~ 8) (b) z(t) = ¥(1 =e *! — atten) 10. (a) Given (D — la +y = 
(D? ~ la + D + l)y = t. operate on the first with D + 1 and obtain (D? — l)je + (D+ 1)y = 1+t. Since 

? £1+¢ there is no solution. (b) Operating on the first equation with D +1 gives an equation that is identical to the 
second equation. Thus, we can discard the second equation. In the first equation we can set a(t) = f(t), an arbitrary 
(twice-differentiable) function and solve, by algebra, for y(t). Doing so, we obtain y(t) = t — f’(t) + f(t). 
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Chapter 4 

Section 4.2 

L. (a) a, = 7, lim |anyi/an| = lim|(n+1)/n| = 1lsoR = 1 (d) a, = 0 for all n > 1000, so the “series” 

converges for all z; i.e., it consists of only a finite number of terms so convergence is not an issue. A = oo 

(g) lim |an4i1/a@n| = lim [eet yeok =-0s0 R= oo 2. (a) Denominator has zeros at bi in z plane so R = 1. 

(d) Denominator vanishes at ¢ = —2so R = 24. (g) Factoring gives (w + 2)(x — 1)/[(2? + 4)(2 - 1) = 

(a + 2)/[(a + 24)(a — 2i)]. Distance, in z plane, from 2 to +21 is V8, so R= V8. 3. (a) e™ =e 09 (a — 1)" /ni, 

R= oo (d)sing = 1-4-4)? +4@- Ft --- = Oo (a ~ 2)", R = 0 (g) cost = 

cos5 ~ S88(¢ — 5) — cos 8 (a — 5)* + mS (a — 5)8 + S88 (a - 5)4 — ++, lim|angi/an| = 0, R = co |) 

Qeo —~4 = -4+ 0c + 00? + Bad + Oct +... = -44 22°, R= 0 S. (c) Ate = 1 the geometric series 

isl +1+1+-:+-, which diverges because the nth term does not tend to zero as mn —> oo (see the italics below 

Theorem 4.2.1). Alternatively, 5, =” — co asin — oo, so the series diverges. At z = ~1 the series is 1 - 1+ 

1 —1+--+, which diverges because the nth term does not tend to zero, 7. (a) p(x) = 2, g(a) = 1, R = ow. 

y(z) = 378° anx” gives the recursion formula (n + 2)(n + L)dn42 + 2(m + Lanyi + an = 0 form = 0,1, 2,-0.6. 

Obtain y(z) = ap + are — (82 +a1)a? + (B+ B)e? - (B+ P)et +--+ s0yi(x) = 1- da? + ha —gatt--, 

yo(a) = 2 — 2? + $23 — tat +--+. NOTE: Since the analytical solution is y(z) = (A + Bx)e~* we might expect 

y1 and ya to be e~* and ze~*. Actually, y2 is re~®, but y; is not e~*; itis (1+ a)e~*. That's fine; y. = (1+ z)e"* 

and y2 = xe~* are, indeed, two LI solutions of the ODE, LI because neither is a scalar multiple of the other. 

(d) p(x) = 1/z, q(x) = 1/z, R = 5. Don’t forget to expand the x in the ODE as —5 + (c +5). y(z) = 

S76" an (2 + 5)” gives the recursion formula —5(n + 2)(m + 1)any2 + (n+ 1)%@n41 + @n = 0 forn = 0,1,2,.... 

Obtain y(x) = ao + ar(a +5) + (48 + T4)(e +5)? + (48 + FEbV(@ + 5)° + Coagd + reaH )(e + 5)" +--+ 80 
yr(e) = 14 dhe 5)2+& (+5) + ghby (25) +--+, yo(w) = (@+5)+ 95 (@+5)? + gig (e+5)" + eaG (wH5) 
(g) p(x) = (3+2)/z, q(x) = 1, R = 3. Recursion formula is —3(n + 2)(n+ Langa +7(n + Langa + (n-3)an + 

Qn_1 = Oforn =0,1,2,..., witha_, = 0. Obtain y:(2) = 1-3 (a+3)? +4 (e+3)* 1 (7 4+3)54-++, yo(x) = 
~~ 180 

L fe 1 2\E ~ p \4 . 6 — (n+1 8 rb . 

(x+3)—1(@+3)9 + tg (a+3)4 + sig (e438)? +- - LL (a)ange = Cy ins GET ~ Qn41—=4n so 

lim |an42/@n4i| =1,R = 1 (d) Because of the subscripts n +2 and n, successive terms in yi(x) and yo(a) differ by 

a factor of (2 ~ vo)" rather than (x — wo). Thus, the ratio test requires limp oo |anto(x ~ x9)"*? /[an(a - zo)"}| = 

  

    

  

| Oan+2 
“an 

In the present case Qn42/dn = 3(n + 2)/(n +1) 4-3=L,soR= 1/V3. 

  limn—+oo (x~axo)* < 1 for convergence. If lim jan42/an| = L, then we have convergence in |x—zo| < 1/VL. 

Section 4.3 

1. (a)p = —x? and q(x} = «x are infinitely differentiable and hence analytic (recall our italicized rule of thumb in the 

sentence preceding Section 4.2.2) for all x so there are no singular points; every point is an ordinary point. 

(d) p(x) = 0 and q(x) = 1/[2(a? +3)] are analytic for all & except « = 0, which is a singular point, a regular singular 

point because ep(x) = 0 and 22q(x) = x/(a® + 3) are analytic there. (g) p(w) = q(@) = (@ — 1)7*(e@ + 3)7?, 

Singular points ata = 1,2 = —3. (a — 1)p(x) = (w + 3)7? and (2 — 1)?q(a) = (w — 1)(a + 3)~® are analytic at 

v= 1,sox = lisa regular singular point. (x + 3)p(x) = (a — 1)/(a +8) and (x + 3)?q(z) = 1/(x — 1). The latter 

is analytic at z = 3 but the former is not, so z = ~3 is an irregular singular point, 3. (a)tY" + Y’ —~Y =0 

5. (a) The indicial equation is (38): r* + (po — 1)r + 90 = 0. If r = Land 4 then (r-1)(r~4) = r? —5r+4=0s0 

po—1 = 5and qo = 4; hence po = —4, qo = 4. Hence, xp(x) = po+pir+: +: = —4and zq(x) = gtqtt::: =4, 

say, so p(x) = —4/2, q(x) = 4/x?, and the ODE is y” — (4/x)y! + (4/x*)y = 0 or a7y" — day’ + dy = 0. Or 

we could take zp(z) = —4 + 3a ~ 52° and x?q(x) = 44 27, or ep(x) = —4cosa@ and q(x) = 4e*, and so 

on. (dr? + (po — Lr + qo = 0 and (r + 1/2)(r ~ 1/2) =r? — 1/4 = 0 give po = 1, go = —1/4. Can choose 

ap(v) = land xq(x) = ~1/4, for instance. Thus, x?y” + vy’ — 4y = 0, say. 6. (a) p(x) = 1/(2e) is singular 

  

  

    

: 
aa
 

i
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ala = 0, but ep(a) = 1/2 and x*¢q(x) = w/2 are analytic there (with radii of convergence Ry = Ry = 00), so 

x = 0 is a regular singular point; pp = 1/2 and gg = 0 so indicial equation is r? — ar == Oj r = 0, 1/2; case (i). 

yi(t) = 1 — agat + aegt8 - +++, ye(a) = Ve (1 - gat! + qegge® - +), both valid on 0 <a < 00. 
(d) p(x) = 1/z is singular at a = 0, but ep(a) = 1 and a?¢q(x) = a are analytic there (with Ry = Rg = oo), 

song = Oisa regular singular point; Po = land qo = 0 So indicial equation is 7? = 0; r = 0,0; case (ii). 

yi(@) = 1 sya" + sate: re ~ sxqzgee® + = vr (- 1)tatn /[1? 22. 4?...(2n)*] and “(AIb), with 7 = 0, 
gives yo(a) = yi(a)Ina + (F2% — rat + th 8 ...), both valid on 0 <a < oo. (g x) p(x) = 1/a and 
q(v) = —(1 + 2a)/x* are singular at x = 0, but xp(a .) = Land a*q(v) = —1 ~ 2a are analytic: i nere (with 
Ry, = Ro = 00), son = Disa ee singular point; po = 1 and qq = vi so indicial equation is r* —~ 1 = 0; 

r= —1, li case (iii). yi(w) = a+ $a? + 1,3 +++, yo(a) = dyr(w) na + 4(-2 + 4a — 4229 +---), both valid on 
O<a< oo. 

Section 4.4 

10. (a) It is convenient to first shift the origin to the point of expansion, x = 1, by setting x ~ 1 = t. Then the ODE 

becomes t(2 + t)Y" + 2(1 + t)Y’ — 2Y = 0 on Y(t). The indicial equation is r? = 0 so r = 0,0; case (ii) of 
Theorem 4.3.1. Obtain one solution Y(t) = 1+¢ = x [Le., the bounded solution M ( x)] and the second solution 

Y(t) = (Int)(1 + ¢) + (-—3t- 22 + BE +---). Observe that the In¢ term reveals the singular nature of that 
solution as t -+ 0 [i.e., asa —- 1 since int = = In (4 ~ «)]. Similarly, atx = —1 we obtain one solution @ and a second 
solution with a ln (1 + 2) term, which “blows up” as z > —1. 

Section 4.5 

3. (a) fy” da/(vt +2) = fo dx/(x* +2) + f° dxe/(a* + 2). fo converges because 1/(x + 2) is continuous on 
0 <a < 1, and f,~ converges by Theorem 4.5.2 (b) because 1/(2 +2) ~ 1/24 as @ > co and fP° dz/c' isa 

convergent p-integral (Theorem 4.5.1). Observe that it was necessary to break up the integral, for example as fo + LP. 

because otherwise our /, integral (in Theorem 4.5.2) would be Io” dz/x* and 1/2 is not bounded on 0 < x < &, 

as assumed in the theorem. (d) Break up fo” = fo 4 + fr: fo converges because the integrand is continuous on 

O<a <1, but fr diverges [Theorem 4.5.2 (b)] because x?-*/(a! + 100) ~ 1/x°8 and Le * dx /ax8 is a divergent 

horizontal p-integral (Theorem 4.5.1). Thus, the given integral diverges. (g) The integral is positive on 4 < x < oo 

and a < Teeat ~ Wa Since fe dx /a3/? converges (Theorem 4.5.1 with p = 3/2 > 1), the given integral Ja ln— Vela 

converges as well [Theorem 45 5.2 (b) and (a)]. j) 1/(a* cos) ~ 1/a? as x + 0 so, by Theorem 4.5.5, the integral 

  

diverges. 6. (a) Obtain [ = ere €? dé/(1+2€*), which integral is not singular; the limits are finite and the integrand 

is continuous on 0 < € < 1/2, so J converges. Thus, we may be able to “desingularize” a convergent singular integral 

by a suitable change of variables. This idea is especially important regarding the numerical evaluation of integrals. For 
instance, it would be much easier to evaluate the regular € integral (above) than the original singular integral, because 

of the finite extent of the € integration interval. 7. (a)l <a <co (c) Asx 4 06, e®/(x1 +1) ~ 1/2'~* 0 
we need 1—a > lora < Qias@ + 0, v°/ (x +1) ~ 2° = 1/x7* so we need ~a < 1 ora > —1. Thus, for 

convergence we need ~l Ca<0. (e) f= Sr xu 1y8(e r+ 1)° da so the integrand blows up atx = Lifa < 0. By 

vertical p-integral test, we need @ > —1 for convergence, If this i is not clear, let — 1 = ¢, to move the singularity to 

the origin. Then { = f i@(t + 2)" dé and t°(t + 2)° ~ 2° /t-@ as t > 0, so we need —a < lora > —1. 

8. (a) (16) gives [(3.5) = 2.52(2.5) = (2.5)(1.5)P(1.5) = (2.5)(1.5)(0.5)0(0.5) = (2.5)(1.5)(0. VR = = 3.323, 

which appears to be consistent with Fig. 3. (b) (22) gives ['(—3.5) = iC 2.5) /(—3.5) = P(—1.5)/(—3.5)(—2.5) = 
P(-0.5)/(~3.5)(—2.5)(—1.5) = [(0.5)/(—3.5)(—2.5)(-1. aa 0.5 5) = vni(3. 5) {2 5)(1.5)(0.5) = 0. 270, which 

appears to be consistent with Fig. 3. 10. (a) With w? = ¢, ado ety 1/p) yh = = ats) (c) Let a? = ¢. 

13. HINT: Sketch the graph of exp (—z?), on 0 < @ < oo, as p bo, 19. (a) F(a) ~4 = O(1) asa 9 0 
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(d) Gla) ~ 3/4 = O() asa + co (h) (a) ~ 2a/2? = 2/e = O(L/2) as & > 00 

Section 4.6 
12. (a) Comparing y"” + 4x7y = 0 with y+ (a/x)y! + bae°~*y = 0 gives a = 0,b = 4,¢= 2800 = 1/2,uv = 1/4 

and y(a) = /? 21 ;4($V 40"), y(e) = AJStA i ja(07) + BY@Y14(a?).  (d) Comparing y” + (9/4) ay = 0 with 

y" +(a/x)y’ + bao~*y = 0 gives a = 0,b = 9/4,¢ = 1 soa = 2/3, y = 1/3 and y(x) = wll? Zi 3(4 Jie 3/2) 

y(a) = AVES ja(a9/?) + BYeYi (2°). (ha = 3,6 = le = 3s0a = 1,v = —1 and y(x) = 

vt Zia(\/|— la) = 27! 21 (2), y(x) = Aw h(x) + Be K(x), NOTE: b = —1 < 0 so Z, denotes [ and 

K, not J and Y. (see sentence following (50).] G)a = 3,b6= -4,¢=3s0qa=I1ve= —lLand y{2) = 

0 Z_1(\/)— dx) = #7! Z, (22), y(x) = Aw! (Qe) + Bao'K,(2z). 13. (a) a = 3,6 = 9,c = 3s0a = 1, 

vy = —Land y(z) = Ac! J, (32) + Baa ¥{ (8x). (b) Because 27! —> 00, Ji (3x) > 0, and ¥, (32) + —oo as 

x —+ 0, we need to be careful in applying the initial conditions. Using (16b) we have y() = A (¥ 2a :) +f 
se a 

        

  
2 16 

set B = 0 if we are to satisfy the condition y(0) = 6. Then y(0) = 6 = 34/2 gives A = 4. Further, y'(x) = 

A(—42a + ---) does happen to satisfy the other initial condition y'(0) = 0, so y(z) = 4x7! J (32). (c) We saw 

that the condition y(0) = 6 implied both that B = 0 and that A = 4, giving y(z) = 4x7! J, (3x). The latter gives 

y'(0) = 0 so there is no solution satisfying the initial conditions y(0) = 6, y'(0) = 2. This result does not contradict 

Theorem 3.3.1 because that theorem supposes that p,(z),...,Dn(x) are continuous on the closed interval, whereas in 

this example p;(x) = 3/z is not continuous at the left endpoint z= 0. 

Chapter 5 

Section 5.2 

1. (a) Yes; K = 5 (or greater), c = 4 (or greater), T = 0 (or greater). (d) Yes; | cosh 3t| = et! em vt < et! for 

allt > 0, so wecan take K = 1,c= 3,7 =0. (g) Yes: cos 3] < <1= le” so we can wl KR=zl,c=0.T= 

2 

. a, 4. 4 
(j) No; et /ect =e! ~*! ~ e! -+ co ast — 00, so there do not exist constants JX, c, 7’ such that exp ( ) < Ket fo 

alli > T. 

Section 5.3 

BY, (32) = A (3 — Ber 4 ) + £2Y,(3x). Since both 1/# — 00 and ¥\(3r) + ~co as x — 0, we need to 

  . (a) 3/[s(s + 8)] = $4 — 24, so linearity and entries | and 2 give f(t) = (3/8)(1 —e*), Alternatively, 

is —+ 1 and 1/(s +8) -+ e7* so the convolution theorem (and linearity) give 3/[s(s + 8)] = 3*e 8 = 

3 f e~ 8? dr = (3/8)(1—e7**). (d) 5(e774/8 ~e!) 3. (a) Choose a = —4, b = 4% (or —4) in entry 9 and obtain 

ew gin (dit) /4i = et (et 4) — eH) /((22)(4i)] = (1 — 784) /8. (d) Choose a = 1/2, b = 37/2 in entry 9 and 
2? 

obtain (e*? — e~£)/3. 10. (a) f(t) =f, efT sin 2r dr = e' «sin 2t so L{f(t)} = L{e'}L{sin 2t} = = 
go ee 

(d) f(t) = lxcosht so L{f(t)} = 4 = ok. 1. (a) F(s)G(s) = 4 Ay and L~ Noaoph =e ~t~1 ¢ te’. 

    

    
Seat seed 2 

Section 5.4 

1. (a) a(t) = 2t? -2t+14+ rie “2b (dya(t)=2-t+b (g) x(t) et (l-(1+21t)e*'/9 

(m) x(t) = ft8 + 4? = Gt + 3 A et/[21 cos (2) + V7sin ae s) x a(t) = 2¢—4t+ 5(1-e7*) 

—
 

Lo
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e 
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Section 5.5 

1. (a) f(t) = H(t) — A(t—2)] + (4—t) [A(t —2) — H(t 4)] = tH (t) +(4— 20) (t-2) — (4-8) A (t-4), F(s) = 

Le (en*s 2078) /s? (d) f(t) = (—t)[ A(t) — H(t-1)] -~6H(t~1), F(s) = $4 —227(3+3s+s8? +38")
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3.(a)-t—-10 NOTE: Recall that W(t) = 1 fort > 0. (dd) (t= a(t — a) ~ (t ~ b) H(t — b) 
(g) (5~t)H(5—-t) Gj) foe UT) (7 — 5) dr = Ofort <5 Sand e~! fy e’ dv = 1~e°' fort > 5. Thus, we obtain 
(1-e°> ‘)H(t—5). 5. (a) X(s) = e-*/[s(s—1)], a(t) = (et LH(t—1) (d) f(t) = 10[N(t—5) — H(t—7)}, 
n(t) = 10(e"® —1)H(t—5) —10(e!? ~1)H(L—-7)_ (hy) f(t) = LACE D+ 2-0 (t-))—-A(t-2)], X(s) = 
1/[s°(s~1)]—2e7*/[s*(s—1)] +e? /[s?(s—1)], a(t) = ~t-L+el +2(t-e' "S(t 1) +-(1—-t eb?) H(t 2) 

Section 5.6 

1. (a) X(s) = 0? /(s" | 

e') + H(t 2)(1-e ‘way! ‘lg 
6(r JX gt) 8(wt) dt = [™, g(r /)5( 

(t) = H(t — 2)sinI nt — 2) by entries 30 and 5. (d) a(t) = €+ 201 - 
) a(t) = Seb — de* + LOOH(t — 3)(e'—9) — ef3) 2. (b) Letting wt = 7, 

)dr/x = g(0)/n if x > 0 and fo tr i ) aris = ~g(0)/K ifn < 0. 

            Thus, nay ae = a O)/{x|. Similarly, i g(t) dé = g(0)/lal, : (t)/|K|. () 

[oo HLF (SA) dt = f° fg (0) F(t)]6(4)] dt = g(0)f (0). Also, fer sh a = f(0 ay 6(t) dt = 
Fabel). 20 #50 =i (t), for f(0) A 0. If f(0) = 0, pen (O(F()S(e)] dt =f Oyowinla— 
g(0)f (0) = 0. Also, f°. g(t)[0] dt = 0, so 05(t) = 0. (d) fo Tar =Oift <Oundl ir 0, which is A(t). 

Section 5.7 

L@ Lote 
sF(s) > Oass — oo, and f(0) does equal 0. (d) Taylor expanding s? about s = —1 gives 1 —2(s+1)+(s+1)”, so 
s°/(s+1)? = 1/(s +1)? ~2/(s +1)? +1/(s-+1) and, using entries 1,7, 29. f(t = ett —2e7t+e", sF(s) 3 1 
as s —» oo and f(0) does equal 1. (g) 1/s° + ¢t4/4! = t*/24 by entry 7 and tls ~ H(t— I(t-1 )4/24 by entry 
30. si*(s) + Oas s + co and f(0) does equal 0. (j) F(s) = In(s? + a?)—Ins*,dF/ds = i = — 2cosat—2 

8 

(entries 4 and |) so, by entry 31, —¢f(t) = 2cosat—2, f(t) = 2(1—cosat)/t. sF(s) > sIn(1 +a? 2/52 ) ++ (00)(0) 
In (L+a?/s?) 

l/s 

s}= f(t)so f(t) = 1*4@2! (entry 11) so f(t) = a Lf Tsinat dr = (sin at—at cos at)/(2a3). 2a 

  

as s > 0. For l’Hépital we need 0/0 or co/oo, so write sin (1 + a?/s?) = — 0 as s —- oo by l’Hépital 

, Wy eiesi af s/t : 
and, also by Hépital, f(t) - Oast +0. (m)1/(s?+s+4+1)=1/[(s+4 243 = eosin /At (entries 3, 29), 

2 f3/4 

soe S/(s?+s+1) 3 allt ~ Lew" /? sin 2/3(t — 1) (entry 30). sF(s) + Oas s > coand f (0) does equal 

      
    

    

0. (p) Proceed as in Example 5. 4 In (2) = oe - = so In (SS st) = — f° (27 a 254 | do, “f(t)” = 

L71 |= 33s, + yet} = —2cost+1+e~‘, so entry 32 gives f(t) = “f(t)"/t = (_aecattlte-h/e sF(s) +0 

as s —+ co and I’Hépital does give f(t) + Oast +0. (s) dtanhs = 1 ane —_ ijre = 4(1-e")(1—   

en 88 few ds — e884...) = E(L = 26788 + e748 — Qe 88 4...) > A(t) — 2H(t-2)+2H(t—4)—A(t—6)+---, 
the graph of which is seen to be a square wave f(t) = lon0 <t < 2,~-lon2 <t < 4, and of period 4. As a check, 
we can verify that the right-hand side of oD does give us back + tanh s. sh(s) —+ lass — oo and we do have 

f(t) 4last+0. 5.(a) F(s)= pie ff (sin t)e 8 dt = ae sry = coth (ws/2)/(s? +1) 8 a(t) = 

o cos t+: rq sint+ f(t) *sint = v9 cost+. ry sin t+ fol 2—4H (7 —2)+4H (7-4) -4H (7 —-6)—---]sin(t - r) dr = 
zo cos t + 0 sint + 2t—4H(t—2)[1 ~ cos (t — 2)] +4H(t — 4)[1 — cos (t — 4)] — 4 (t — 6) [1 — cos (t ~ 6)] +. 
With to = Uy = 1. 2(5) = 3.2036. 

Chapter 6 

Section 6.2 

2. (a) y, = 0.8, yo = 0.64, y3 = 0.512 (dd yy, = —0.2, yo = 9.0192, ys = 0.2194 (g)y, = yo = ys = 0. Indeed, 
the solution is yz) = 0. 3. (g) Exact solution is y(a) = 4e* ~ 2? — 2x — 3. Sample results: ys = 2.253091, Yio = 
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4.534344: yes) = y(0.5) = 2.344885, y(io) = y(1) = 4.873127, so By) = 0.338783. 

4, (a) For h = 0.1,0.05,0.01,0. 008 ,0.001 Euler gives the values 1.2, 1.225, 1.245, 1.2475, 1.2495, respectively. 

Since the exact t value j is y(0. 5) = 1.25, the accumulated truncation error is 0.05, 0.025, 0.005, 0.0025, 0.0005, respec- 

tively, These results are consistent with the method being a first-order method, i.e., with the accumulated truncation 

error being proportional to the step size h, because each time we reduce fh the error reduces proportionately. — (d) 

For h = 0.1,0.05, 0.01, 0.005, 0.001 Euler gives the values 1.101786, 1.115792, 1.127303, 1.128761, 1.129932. The 

solution is y(z) = exp (1 ~ cos x), so the exact value is y(0.5) = 1.180226, hence the accumulated truncation error 

is 0.02844, 0.014434, 0.002923, 0.001465, 0.000294, which does indeed diminish proportional to A (approximately). 

Section 6.3 

|. (a) Second-order: yy = 2.15, y2 = 2.486476. Fourth-order: y; = 2.140149, y2 = 2.477369. Exact: y(@) = 

(450027 + 8)'/8, so y(aiy) = y(0.02) = 2.13997. y(w2) = y(0.04) = 2.47712. (d) Second-order: y, = 

~7.749214, yo = —7.495329. Fourth-order: y, = —7.749231, yo = —7.495363. Exact: y(a) = —8cos x/ cos 1, so 

ye) = y(1 02) = —7.749231, y(a2) = y(1.04) = —7.495363. 2, (a) Second-order: yig = 10.68520. Fourth- 

order: yio = 10.44818. Exact: y(z) = (4500x? + 1)!/3, so y(xig) = y(0.5) = 10.40350.  (d) Second-order: 
yio = 0.877527. Fourth-order: yig = 0.877583. Exact: y(a) = cosa, so y(219) = y(0.5) = 0.877583. 

3. (a) @ = 1: Buler gives yip = 3.434368 for h = 0.1 and yoo = 3.570633 for kh = 0.05. Exact y(1) = 3.718282 so 

(28) gives p = 0.943. x = 2: Euler gives yoo = 10.154750 for h = 0.1 and yao = 10.737989 for h = 0.05, Exact 

y(2) = 11.389056 so (28) gives p + 0.923. (b) a = 1: Second-order R-K gives yio = 3.705918 for h = 0.1 and 

yoo = 3.715097 for h = 0.05. Exact y(1) = 3.718282 so (28) gives p © 1.957. x = 2: Second-order R-K gives 

yoo = 11.335919 for h = 0.1 and yap = 11.3753429 for h = 0.05. Exact y(2) = 11.389056 so (28) gives p = 1.954 

4. (a) 2(0) = 0, (600) = 3.314, 2(1200) = 3.852. x(1800) = 3.967, 2(2400) = 3.993, x(3000) = 3.998, 

2(3600) = 4.000 (d) #(0) = 6, 2(600) = 4.487, 2(1200) = 4.111, 2(1800) = 4.025, x(2400) = 4.006, 

x(3000) = 4.001, 2(3600) = 4.000 NOTE: Setting x(t) = 0 in the differential equation gives 0 = 0.02 — 0.01 /a 

so the steady-state solution isa 4 4. 7. (b) C = 0.09824, x(600) = 3.313860967,...,4 r(3600) = 3.999636784 

10. (a) h = 0.05 gives 3.718281474, h = 0.02 gives 3.718281819. exact y(1) = 3.718281828 so (28) gives 

p = 4.008. (b)h = 0.05 gives 3.701259429, h = 0.02 gives 3.711558039 so (28) gives p © 1.01. Evi- 

dently, the error has reduced the method to a first-order method. 13. (a) Exact y(z) = 1/(1 — 2") soy, = 

y(0.1) = 1.01010, ys = y(0.2) = 1.04167. yz; = y(0.3) = 1.09890. Then. A-B predictor (31a) gives ya = 

us + [55(2)(0.3)y§ ~ 59(2)(0.2)y3 + 37(2)(0.1) yz ~ 9(2)(0)yp }(0.1/24) = 1.18970 and taking this as yi. AM 
corrector (33) gives y\) = yg + (9(2)(0.4)y{°”? + 19(2)(0.3)y2 — 5(2 2)(0. 2) + (2)(0.1)y? ](0.1/24) = 1. 09890 + 

2 

(7.2y)? + 11.80033)(0.1/24) = 1.19053, y\”) = 1.09890 + (7.2y\"!? + 11.80083)(0.1/24) = 1.19059, yy 
1.09890 + (7. ay PAL, 80033)}(0.1/24) = 1.19059. (b) Using the four und lerlined values i in (a), the A-B nredictor 

gives ys = ya + (55(2)(0.4) yz - Te )(0.3) yz + 37(2)(0.2)y§ — 9(2)(0.1)y7 1(0.1/24) = 1.33161. which we use as 

yo ) in the A-M corrector formula yi? = ya +[9(2)(0. Bug * £19(2)(0.4)y? — 5(2)(0. 3)y3 + © )(0.2) ys [(0.1/24) = 

1.19059 + (9y{0)? + 18. 35736)(0.1/24) = = 1.33357. y2 = 1.19059 + (9y"® + 18.35736)(0.1/24) = 1.33377. 
ys) = 1.19059 + oy? ° 4. 18.35736)(0.1/24) = 1.33379. 

  

Section 6.4 

2. (a) Exact: y(x,) = 0.9800666, z(2,) = —0.1986693. Euler: y, = 1. 2, = —0.2. Second-order RK: yasi = 

Unt 5 (Ra +h), ont) = 2n am 5 (ly +l), With n = 0, Ay = Af (ens Uns zn) = Az = hg = 0, fy = hg(tnj Ynr =n) = 

hy, = —hyo = —0.2, ko = hf (tae. Yn thi. en th) = co ah )= ~O0.04 lo = hg(tnei, Un $A tn $4) = tn
 

—h{yo thy) = -0.2,s0y, = 1+ $(0 ~ 0.04) = 0.98, 2) = 4(-0.2-0.2 2) =: —0.2. Fourth-order RK: yo = 1, 

zo = OA, = Ol) = -0.2. ky = —-0.02, lp = -0.2.h3 = “ 02. l, = —0.198. ky = ~—0.0396, ly = —0.196, 

so y, = 0.9800667, 2; = ~0.1986667 (d) ae ylty) = Ld, z(ry = = 1.2. Eulers yy, = 14, 2, = 12. 

Second-order RK: Ay = 0.4. l) = 0.2, Ag = 0.49371, ly = 0. we y. = 1.4468, 2) = 1.1972. Fourth-order 

RK: ky = 0.4, 4, = 0.2, kg = 0.4436667, ly = 0.1983471. ky = 0.4350841. ly = 0.2022597, ky = 0.4834599.
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ly = 0.1985687, so y, = 1.4401603, 2, = 1.1999637 5. (a) a! = u, 2(0) = xo; wu’ = [f(t) — ke — cul/m, 
u(0) = ay (d)y! = u,y(0) = 2, u' = 8a+dy—u, u(0) = 1 6 (a)y(1) = 1.0418532996, 2(1) = —1. nO) 
y(2) = 4.4563094187, 2(2) = —0.9372059061 8. (a) L[Yi] = 0, Y1(0) = 1, ¥{(0) = 0; L[¥9] = 0, ¥2(0) = 0, 
¥9(0) = 1; L[Y,] = 3sinz, ¥,(0) = Y;(0) = 0. Then y(x) = Ci Yi (a) + Co¥o(a) + ¥,(a). y(0) = l gives Cy = 1 
and y(2) = 3 gives Cg = [3 — Y\(2) — Y,(2)|/Yo(2). Using Maple dsolve command with abserr = Float (1, ~6) (to 
obtain the desired accuracy) gives Y,(1) = 0.338991, Yo(1) = 1.219163, Y,(1) = 0.626700, Yi (2) = —8.366992, 
Yo(2) = 7.639154, Y,(2) = 14.523026. Thus, Cy = ~0.413139. Hence, y(l) = = 0.46201. 

Section 6.5 

1. (a) No. y(x) = Ce?* + 4x and y(0) = 0 gives C = 0 so y(z) = 4a. In effect, numerical error causes C' to differ 
slightly from 0, in which case the e*” term will cause the solution to diverge dramatically from the exact solution 4a. 

6. (a) Of /Oy = e**¥ > Oon0< a2 <4;stable (b) Of/Oy = ~e™~Y <0on0 <a < 4;unstable 11. (a) General 

solution Y, = A(4"); particular solution y, == 5(4"). @ General solution y, = A+ B(3"); particular solution 

Un = 4-8". 15, (a) Particular solution Yn =-$n- +; general solution y, = ~—sn — < + A(3").  (d) Particular 
solution Y;, = n? ; general solution y, = 1? + A(2”) + B(3"). (g) Particular solution Y,, = e”/(e? — 1); general 
solution yp, = e' nie -1)+A+B(-1)". 

Chapter 7 

Section 7.2 

4, (a) 27 + y*® = C?; concentric circles; flow clockwise. 5. (a) Trajectories are the straight lines y = —z + C; 
rightward flow for y > 0, leftward for y < 0; singular points all along the z axis. (d) 22 — (y/3)? = C®; equilibrium 
point at origin. 

6. Use the Maple command 

phaseportrait ([y, -a + 273], [t, x, y],¢ = 0..20, {[0, .05, 0], (0, .3, 0], {0, .6, 0), [0, .9, O], [0, .95, 0], (0, 99, O}}, 
stepsize = .05, scene = [t, z]); 

The periods are (approximately, from the plot) 6.3, 6.7, 7.5, 10.5, 12, 17, respectively. They do approach 2a as A > 0 
and show signs of tending to infinity as A > 1, 

9. (a)y*? +24 = C. 11. Equilibrium points at (0,0) and (1,1). The axes are trajectories, with the flow downward 

on the y axis and rightward on the x axis. Within the first quadrant the trajectories are closed orbits containing the 

equilibrium point (1,1), although the lineal element field does not really permit us to distinguish between periodic 

orbits and weak spirals, by eye. 

Section 7.3 

1. (a) 0 = O and 22 — y = 0 give the line of singular points y = 22; hence, not isolated. (d) Isolated singular 

points at (—nz, nm) forn = 0,£1,£2,.... (g) Isolated singular points at (2/2, /2) and (—2V/2,-V2). 4. No; 
for a given ¢ the corresponding 6 could be enormous 9. (a) Saddle; y = 2x (unstable manifold), y = —2za (stable 

manifold) (d) Saddle; y = t/V3 (unstable), y = —a//3 (stable) (g) Unstable node; y = x (unstable), y = —r 

(unstable) 11. (a) Unstable focus (d) Center (g) Unstable node 

Section 7.4 

1.(b) If we write 2” + ex? + t= = Qas x” + (ex)ax’ + x2 = 0 we can think of (e2’”) as the (variable) damping 
coefficient. For large motions 2’* is large over much of the motion so the effective damping is greater than for the 

linear case x” + ex’ + @ = 0. But as the motion diminishes x’? becomes small so the effective damping tends 

to zero. This result should be observable from the phaseportrait in part (a). 2.(a) Saddle point at (—1,0), center 

at (1,0) (d) Singular points atz = y = na/2(n = 0,+1,22,...), saddles for m odd and unstable foci for n 
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even. (g) Borderline case: stable focus, stable proper node, or stable improper node at (0,0); a phaseportrait plot 

reveals it to be a stable improper node. (j) Stable focus at (0,0), saddle at (4,8). 4, (a) No, because of the 2’ 

term. (c) Yes 6. (a) [fr == 0.3, (32) gives Sy = (a4, y4) = (3,0.9) and S. = (a_,y—-) = (1/8,0.1). ALS, 

obtain X’ = -0.3X + Y,¥' = 0.06X ~ Y, a stable improper node with straight-line trajectories ¥ = —0.7772.X 

and Y =< 0.0772.X. At S.. obtain X’ = -O0.3NX + Y,¥' = 0.54xN ~ Y, a saddle with straight-line trajectories 

Y = —1.16394.N (stable manifold) and Y = 0.46394N (unstable manifold). At the origin obtain x’ = -0.3a + y, 

y’ = Ox — y, a stable node with straight- line trajectories y = 0 and y = —0.7x, 8. (a) Singular points at 

vy = (Lt /O —4r))/2, y = 0, where 0 <a < ay <1. (24,0) is a saddle and (x, 0) is a center or a focus, but 

we can rule out a focus because the system is conservative. Trajectories given by y? + a" + 2r In |e — 1[= constant= 

C. Of these, the separatrix is y? + @? + 2rin|e — 1] = vi. + 2riIn(l ~ a). At the right, the vertical line x = Lisa 

trajectory, with upward flow direction, [As r — I/4, 74 merge ate = 1/2 and the merging center and saddle produce 

a higher-order singularity with no periodic motions, and for r > 1/4 the singularity disappears altogether. Physically, 

for r > 1/4 the force of attraction is so great as to rule out the possibility of oscillation and the vertical line @ = 1 is 

an symptote for every trajectory. These points are covered in parts (c)~(g).] 

Section 7.5 

2. (a) f(x) = 2? — 1, g(x) = 2°. f is even; g is odd: g(x) > 0 for all x > 0; g(x) = 32° is continuous for all x. 

F(z) = to f(QjdC = 23/3 — x so, with eo = V3, F(x) < 0 forall 0 <x < ao; F(a) > 0 for x > x9; F(z) is 

monotone increasing for 2 > 29; F(x) + oo as 2 - oo. Thus, there exists a single limit cycle enclosing the origin. 

Section 7.6 
4, Saddle at (0,0); stable foci at (1,0) and (~1,0) ifr < /8, stable nodes if r > V8. 

Chapter 8 

Section 8.2 

1. (a) No; e.g., 6227 ~r+3=0 (d) Yes (g)A linear equation cannot be transcendental oc 

Section 8.3 

1. Final results: 

(a)a = 7/17,y = —1/17 (unique solution) 
(d) z= a,y = 6+ 8a,2 = 7 + 2a (nonunique solution: a |— parameter family of solutions) 

(g)z =a,y =3-2a,e = —2 + (nonunique solution: a |~ parameter family of solutions) 

() aq = a,23 = 6,22 = 2+0+/7,2, = 1 — 6 (nonunique solution: a 2-parameter family of solutions) 

4, Yes: yes; yes: yes; no. At most we can have a 14- parameter family of solutions, and that will occur if and only 

if all of the a;;'s and c;’s in (1) are zero. 7. (a) The equations are homogeneous because we can write them as 

(2—Aja+y = 0,a+(2— \)jy = 0. There is only the unique trivial solution x = y = O unless A = Lor A = 3. If 

  

\ = 1 there is the I~ parameter family of solutions y = a, 2 = —a (which contains, but is not limited to the trivial 

solution). If \ = 3 there is the |-parameter family of solutions y = a.@ = a. , 

(d) By inspection, if A = 0 there is the 2—parameter family of solutions c = a, y = 3,2 = 0, and if \ # 0, there is 

the |— parameter family of solutions « = y = a, z = Aa. 8. (a) Slow down: if we add —2 times the first equation 

to the second, as a replacement for the second we obtain x, ~ 2% = 0 and 0 = 0. Now if we add —1/2 times the 

second to the first we still have x, — 2%. = 0 and0 = 0. 10. Don’t physical systems such as this always have unique 

solutions? For any choice of values of R1, Re, Ry the system (10.1) will indeed have a unique solution for 2, lo,t3, 

except for these cases: Case 1. If Ro = Ry = 0 there is anonunique solution: i, = E/Ry and ig and 7 sum to tr, 

but are not uniquely determined (i; = a,i2 = E/R, ~a). Case 2. If A, and either Ry or Ry are zero, then there 

is no solution: the system is inconsistent. If Ry = Ry = 0, for example. then the last equation ts 0 = E, which has no 
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solutions. More physically, if (2) =: Rs = 0, then we have a “short circuit” and the currents will be infinite. That is what the last equation (Oi, + Oto + Oty = £) is trying to tell us for, crudely speaking, zero times something can equal a nonzero number only if that something is infinite. 

Chapter 9 

Section 9.3 
I. (a)~25. 4. (a2)0C-AB=(OA+AD +DC).AB=OA-AB+AD-AB+DC.AB = (1)(1) cos 90° + (1)(1) cos 90° + (1)(1) cos 0° = 1, By expressing OC as OA + AD + DC and using (3.1) we obtain several simple dot products, simple because @ is 0° or 90°. (d)OC-CP =(OA+AD + DC). (CD + 3AO) = —1. NOTE: There is no name for the midpoint of CD so for the vector from that point to P we have used AO. 5. (a) APO = cos~![(PA-PO)/(|/PA|||/POI|)], where PA-PO = (;0A+3CD+DA)(£A0+LCD+DA) = 

etc. = 1: /PA]] = /PA-PA — (40a + 5CD+DA)-(40A+4C0D+4DA) = V6/2,||POl] = etc. = 
V6/2, so APO = cos~!(2/3) = 48.19°, 

Section 9.4 

I. (a) (24. —7, 23,32) (d) Not defined because of the tu product. NOTE: Actually, one can extend our mathematical system to include products of vectors, which are called dyads or second order tensors, but even if we do that we cannot add the dyad dtu to the vector w. 2. (a) x= [-5/9,1,20/9,-2/3] 4. Only the trivial solution exists: Q1 =O: =a; = 0. 

Section 9.5 

I. (a) jul] = 5. vl] = V5. = 63.4° (dj pull = 2/3, Ivf = V77 2. (a) Yes, it is a scalar times a vector, (b) No. it is a vector dotted with a scalar. 3, (a) ABC = cos7!(~1/y 10) = 108.4°, BC'A = cos7! (2/5) = 26.6°, CAB = cos"'(1/V2) = 45°. 4. (ya = 14/5,3/5), v = 22/V5.-1/V3] 6 uy =u = [1,3,0],ug = 

  

u— fv = [-9/11.3/11.0].uy =u— iv + fw = (0,0,-9/4) 7. (a)3V3 9% (ayu- [3,0,—-1] = 3u; — uy = 0, 50 Us = Ate = Fu, = a/Sandu = [a /3, B.a) (a. 8 arbitrary) (d)u = [-l5a ~43,5a — 83,73, 7a] (a, 0 arbitrary) 10. (c) wu, = [0, 18/13.27/13], ug = [2,21/13,~14/13] 12 (byl, = 2/30. ly = -1/V30, ly = 5/V/30 Id. (a) Yes 15, (a) Gauss elimination gives rz = 3a, Say, 2 = 8/34 2a, 4, = 8/3 — a, so x= [8/3 ~ 0.8/3 + 2a, 3a] = (8/3. 8/3, 0) + a@[—1, 2,3] so the desired vector ig + sql-l, 2,3],   

Section 9.6 

I. (a) Yes (fF) No: (6) is not satisfied 

Section 9.7 - 

I. (a) Yes (d)No (g)No_ 3. (a) No: there is no negative inverse —u for each u in the set. Also. the set is not closed under scalar multiplication because au is not in the set ifa <0. 4. (a) span{[—4, 0. 1].[1, f. O}} (d) span{/~1.0,0.1),[~2.1.1,0]} 5. (a) [—4,0, 1], [2.10] 6. (a) Yes (b)No 7. [1.2], (2, —1| 

Section 9.8 

I. (a) No: a set is one or the other. 2. (a) (3.4) = 2]1, 1+ (1,2) 3. (ay Lp: e.g. [7,3] = [1,3] + 32,0) + O[-1, 3] (d) LD: e.g., (2.3.0) = ~$[1,-2.4) + fl, 0) + #(1, 1,1] 
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Section 9.9 

1.(a)No (d)No (g) Yes (0) Yes. 2. (a) [9, -2,4] = 2e, + Hen + Ze3 3. (a) [9,-2.4] = 2714 ey + hee + 

ave, 4, (a) [1,0,0, 0] = 15° + tex +0e3+ te, 8.(a)l (d)3 9 (a3 (d)L 10. (a) 2 12. (a) [1,0], [0,1] 

(d) walls 1,0], va l3 —3, 2], Tat =|— 11,3] 13. (b) ef = [1,1], e} = [0, 1], u = (u-ef)ei + (u-e5 jeg = 2e1 + €2 

(e) et = fl, -1, 0], e} = (0,1, tL es = (0,0, 1], u = 5e, ~ Gey + 5e3, Vv = Ney — 2e2 + 2e3, W = Te, — 5ee + deg 

Section 9.10 

2. u x [64/15,0, -19/30,0, 11/6], [El] = 4.0042 3. In span{é;}.u ~ ~$(1,1,0,—1] with ||Ej] = 7.188; in 

span{é,,é@,},u ~ 4[1,—-9, —5, 4] with |] = 6.236; in span{@1, 69, é3},u ~ [4,~3, 2,5] with ||| = 1.732; in 

span{é,, é9, é3, 4}, u = (4, —2, 1, 6] with | E]] = 0 

Chapter 10 

Section 10.2 

2. (a)undefined (d)6x1 (g)4x1 4.No; A — cis undefined because Aisn x nandcis a scalar. 

5. (a) (A +B)(A+B) = A?+AB+BA+B? = A? + 2AB + B? only if AB = BA, that is, if A and B 

commute; in general AB # BA so the given formula is incorrect. 7. (a) 2A? +4AB+BA+ 2B? 

8. (a) A200 is a2 x 2 matrix with each element equal to 29°. (d) D!°° is a3 x 3 zero matrix. 

10. (a) Dimensionally, (m x n][4 x 1] = 1 x 1son = 4and m = 1. Thus, A isa 1 x 4 matrix, i.e., a single row 

fa11, @12, G13, aya). Multiplying the latter into x = [v1,@2,23,24,]7 gives ay421 + Qig@e + Q13%3 + A14@4 and 

comparing the latter with 2, ~ 3zq shows thataq, = l.dig = 0, aig = 0, ayy = —3,80 A = [1,0,0, -3]. 

3 «0 0 90 0 0 . 
11. (a) For example, AB = [: 4 0 6 5 | = 0 0 = 0 16. (c) ay, = a (arbitrary), aq) = G 

(arbitrary), ay = (1 —- 0°)/3,dag2 = ~aoray, = +1, ayg = ag, = 0, agg = £1 with the signs of a1, and a2 being 

independent of wach other. 

Section 10.3 
, 3 5 

l. (a) xTy = [-3], xy? = | . 6 | 7.A= 3 tS + os "s = symmetric + skew 

symmetric 8. (a) A = | ° 4 

Section 10.4 

        

    

6 1 0 

2.(a)0 (g) 132 Id (a;s>0, Ay=6, A= . : =26>0, Ag= | 4 5 6 | =68>0, 

. ,O 1 4) 

|6 1 0 0 
4 5 6 | . . Loe . 

Ag= 0 14 5°" 68 > 0; stable. As a check, the Maple solution, using fsolve, gives 

0 0 0 | 

As —5.18, —0.34, —0.24 + 0.722, each of which has a negative real part. 

Section 10.5 

1. (a) r = 1, nullity = 3, number of LI rows = 1, number of LI columns = 1 (e) r = 2, nullity = 1, num- 

ber of Lit rows = 2, number of LI columns = 2. (i) r = 3, nullity = 1. number of LI rows = 3, number of 
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Li columns =3 3. (a) r(A) = 1. r(Alc) = 1 so consistent; p-parameter family of solutions with penn T= 
4—-l=3 

(e) r(A) = 2, r(Alc) = 3 so inconsistent (i) r(A) = 3, r(Ajc) = 3 so consistent; p-parameter family of solu- 
tions wih p= n—-r=4—3= 1. 8 (a)r = 2 so (Theorem 10.5.2)LD 16. (a) 452. Ho + Op = 20H, 
Og + 2H2,0 = 40H, H + 30H = 2H,0+0,OH = O+H 

Section 10.6 

O 1/2 —5/6 . . _h noe . ( a b | ( 0 (q) | cos @ sin @ 
0 a 

0 0 13 ~sin @ cos @ 
1. (a 

a} ad — be 
  | 5. (a) v1 = 24/13, 

—eE a 

‘ . | 2 13 

wg == -6/13) (d)ay = 72/11,a = -3/22 T@A= 2/3 8 Il. (a) | 0 l —8 

Section 10.7 
I 2 

1 Q= °| 1-1 

ye one I which is orthogonal. 4. (b) [x] p = [V2, 2.5/V3, ~10/V6)* 5. (a) No 

. Not orthogonal because the column vectors are not ON. [x] g: = | ; | Jixlp = ee | 

| r a) Q 

—sin n@ cos nd 

(e) Yes 9. Qh = cos nf sin né | 

Section 10.8 

2. (a) Nonlinear (d) Linear 3. (b) The nth-order identity matrix] 5. (a) dim R = 2,dim K = 1l.dim V = 3. Fis 

onto, is not one-to-one and is not invertible. A basis for Av is (0,-1.1), and a basis for R is of . 
1 

(d) dim Rh = a ae A = 0. dim ¥Y = 2. F is not onto, is one-to-one, and is not invertible. A basis for R is 

[4,3,0]", [0,5,—4}", and A has no basis. 6. (a) To be one-to-one we need r(A) = 2. Also, to be onto we need 
r(A) = 2. Thus ‘if r(A) = 2 (ie. A is any 2 x 2 matrix with nonzero determinant) then F is one-to-one and 

onto; if r(A}) < 2 (e.g, a 2 x 2 matrix with only one nonzero element) then it is neither. Can’t be one and not the 

we vyUs UL U3 

other. 7. A= | vevy vs vgus 10. (b) A = 

UBVy Ugv9 us 

. . . 2 10 6 —4 
transformation matrix = 4.90 12 ~8 | 13. (c) F(X) = [2,1, ¥2 - 3,1]! 

(d) F(X) = (1.2439, 3.5859, 2.2637, 1], F(X,) = (1.5394, 3.7757, 1.3275, 1)" 

Chapter 11 

Section [1.2 

3. (a) AL = = 0 (multiplicity 2), eigenspace is e; = a[t,0)'+3[0, 1)" where a and 8 are arbitrary or, equivalently, span 

{[1,0]", (0, 1]"}. Basis foreigenspace is {{1,0]",[0,1]7} (i) Ay = 0,e; = af0, —1, 1)" with basis (0, —1, 1)"; Ay = 
2 (multiplicity 2), eg = 3(0,1,1)' + y[1, 0, 0) t with basis {| 1%, (1,0,0]7}. (mn) Ay = O.e; = a[13, 1, a with 

basis {{13, 1,0)" }, Ay = 2. e2 = 3[3, 1,2]? with basis {[3, ay yo Ay = 5. eg = 93, 1, 5] with basis {3.1 ar 
T 

Q,1 

i3, 1, 

5. (a)No (b) Yes. with A = -6. 6. (a)e = al/l,1,—-1, —1] 16. (a) A has Ay = 1, e1 = afl, 1,0]! de = 

2n2—- 1 2Lboly —20 
Lib 202-1 | Li. (a) (GPF\(x) = | cr 

—40
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eg = 8[0,1,—1]"; As = 8, e3 = ¥f0,0, 1)". Hence, A! has \y = 1. Ag == 2!) Ag = 319, with the same cigenspaces 

as A. 22. (a) \ = 1, (-1 + V3)/4, (—1 — V3)/4 23. (a) Ay = 0, e1 = @[2,—1]"s Ap = 7, e2 = AL1,3]" so 

[x,y]? = a[2, -1]%e + B[L,3]Le" or a(t) = 2a + Be", y(t) = ~a + 3Be". (c)Ayp =r? =5,e, =a =a l | 
3 

+e £ vf d eVae | tl ~Vfbt 
gives =Cy 3 € Cs 3 € 

y 

a on 1 rivac | _ (1 L it 1 —it ¢ camernneit x(t) ) 
Ag = rt = -le =f | 3 gives y | = Cy | 3 | ee, Cy | 3 | e~** so, by superposition, y(t) | > 

Cy I eV5t LCy ; | en V8tL Cy | ‘ 4% | { few" ‘or a(t) = Crev®t 4. Coe ~V5t4 Celt + Cyev™: 

y(t) = sCre VEE 4 3Cge ~V8t _ 3Cge!t — 3Cye7 or a(t) = Cs cosh J/dt + Cesinh /5t + C7 cos t + Cgsin ft; 

y(t) = 3C 8 cosh h vt + 3C, sinh V5t ~ 3C7cost ~ 8Cgsiné (e) A, = 0,e; = afl, 4,5)"; Ag = 1, e2 = 

All, -3, 2)"; Ag = 2, eg = yf1,—2,1]" so [e(t), y(t), 2()|> = ofl, —4,5]7 + Bf, -3,2]7e’ + y[1, -2, Pe”! 

or z(t) = a+ Be! + ye", y(t) = —4a — 36e! = Dyer, z(t) = 5a + 2Get + yer! 25. (a) det(A — AB) = 

(5 — 8A)? — (1 +4)? = 080 \ = 1/3,3/2: Ay = 1/3, er = afl, -1]"s Ao = 3/2, 2 = BL, YP 27. (a) A= £2 
saddle (d) A = —2, —4, stable node 

Section 11.3 

1. (a) Ay = 0, & = = afl, uy" Ag = 2, : Of, 1". Orthogonal basis: {(1, ~ 1)" [LU (d) Ay = —2, 

e, = afi, —1,0]* + (0,0, 1]7; Ag = 2.e alle, 0|*. Orthogonal basis: {fh —~1,0}7, {0,0, 1)", [1,1,0]7} 
ye . (0, (g) Orthogonal basis: {[1,0, 0, 1] 

Ao = Leg = B[0, 1)". No. 7. we 
w, = 0.765, ey = afl, V2, 1b: A, = 2, 
e3 = (1, ~—V/2, We. 

ai(t) = asin(0.765t + @,) + Gsin(1.414t + de) + ysin(1.848¢ + ¢3) 
to(t) = V2asin(0.765t + #1) + OP sin(1.414t + 60) — 2 ysin(1.848t + 63) 
a3(t) = asin(0.765¢ + ¢1) — Gsin(1.414¢ + go) + ysin(1.848¢ + 3) 
The natural frequencies are w 1, w2, w3 (above) and their mode shapes are given by their corresponding eigenvectors 

€1, €2, €g. 
(c) Low mode: x (0) = 1. z2(0) = V2, 23(0) = 1.2, (0) = vy(0) = = = 0 

Middle mode: x,(0) = 1, xe(0) = 0, x3(0) = “L (0 j= to(0) = = 2,(0) =0 

High mode: 2;(0) = 1, x9(0) = ~V2, v3(0) = 1, 2} (0) = 7,(0) = #4 (0) =0 
1h Partial answer: lowest natural frequency = 0.518, corresponding mode shape = a(1, V3, 2, V3, 17. 

« (c) [1, 0, oy" is an eigenvector, corresponding to \ = 2, so the values of £2(x) for x = (0.4, 0.3,0.3]*, 

0. 6, 0.2.0.2)", [0.8,0.1, 0.1)", [0.96, 0.02, 0.02]", [1,0,0]", should converge to 2. In fact, they are “0.65, 1.09, 

€9 

1,0], (1,0,0, -1]", [0,1,-1,0}7} 2 (a) Ay = 0, e1 = afl, 3"; 
2,04 = t/2,3 = ~1/2, bo = m/2 8. (b)\ = w?, Ay = 2- [2 = 0.586, 
wo = 1414, e2 = A[1,0,-1]7: Ag = 24+ V2 = 3.414, wg = 1.848, 

1, 

= 5 

I. 85, 1.996, 2. Similarly, [0, 1, yt is an eigenvector corresponding to \ = —3, so the values of R(x), for x = 

(0,1, 1-4)", (0,1, 1.1]7, (0,1, 1)" 3 should converge to —3. In fact, they are —3.08, ~3.04, —3. 13. (a) x) = 

(I, 0,0)7, x = [2,1, “ih x == (6,3, —3]" which is an exact multiple of x‘), namely, 3. Thus, one Cleegpalr 

is\ = 3,e = (Bhaut Repeat with x) = {0,1,0]". Then x{)) = dh 4, 3. x(?) 5, 3 26, 23]7, = 
(9, 176, 167]*, xt) = (27,1214, 1187]® so \ & xX BTAXO /xG)7PXO) = xl il (NP = Bea /se0d6 = 

6.992 and e = a 1214, 1187] v Finally, repeating with x! — [0,0,1]" gives convergence to the same eigenpair 

as that obtained from x = [0,1,0]". Since x) = [1,0,0]* gave convergence to the subdominate eigenvalue 

AX = 3, [1,0,0)* must be orthogonal to the eigenvector corresponding to the dominate eigenvalue. Indeed it is, 

because the exact values are A; = 7, e, = (0,1, yt ‘y Ag = 3, e9 = (2,1, —1]; A3 = 0,e3 = (1, —1,1f", 

54. 270-27 
Id(a)A4= | 27 1214 1187 |, x = (0,1, 0], x = (27,1214, 1187)", 

~27 1187 1214
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x) = [2187, 2883493, 2881307] 9 \ a xP x 21) DE RU = 2400.12. But this is the fourth power of A’s A, so 
\ = (2400.12)'/" = 6.9994, with e = (2187, 2883493, 2881307)". Convergence is more rapid using A‘ because 
its eigenvalues are 7? = 2401, = 81, 07 = 0, so the largest eigenvalue of A‘ is more dominant than the largest 
eigenvalue of A; ie., (7/3)" > 7/3. 15. (a) For A, Ay = 7, e, = (0,1,1)%: Ap = 3, e2 = [2,1,-1)"; 
Ay = 0, e3 = [l,—-1, 1)". Thus, ¢ = [1,2,3]" = cre, + eves + cyeg where (because the e;'s are orthogonal) 
cy = ce, /e,-e, = 5/2, cg = 1/6,¢3 = 2/3. Then aj = e;/(Aj ~ A) gives a, = 1/2, ag = 1/6, a3 = —1/3, hence 
the unique solution x = ae + per — #e3 = = (0,1 ol". (b) This time A = 3 coincides with Ao. cen = 6 # 0. 
Hence, no solution, ) Again A = 3 coincides with A», but this time c-e: = 0. Hence, nonunique solution. 

coe 2c = Oey = “4 soa, = = ef Ay ~ A) = 72, ag = o (arbitrary), ag = c3/(Ag3 — A} = —1/3 and 
x= $e; +ae)- Mey = = Ra-1/3,a+5/6,-a+1/6]". 17. (b) Ay = 0,e1 = [1, -1]": Ag = 5/6, eg = [2,3]°. 
e,: Mes = [1,—1]"- (6,6)" = 0 and eg Me, = 0 too. 

Section 11.4 
wp ; ep 13 2 0 

a “ = 2 O = i i r. AQ = . Qo = ( . 2 I . 8, = = nm : 7 = lL. (a) Ay . e iL, OT: Ag 0, e2 3,2)". Thus, Q | 09 I D = | 0 0 | (d) Ay 0 

= (1,~-1,0)"; A, = -1l,e2 = [1,1,-1]"; Ay = 2,e3 = (1,1: ay". Can use these e;’s as columns of Q but 
since we are asked to compute Q7! it is best to use the normalized e,;'s instead. so that gr! is simply QT (since 

1/v2 1/V¥3B 1/6 0 0 0 
the e;'s are ON). Then Q= | -1/V¥2 1/V3) 1/V6 | and D =] 0 ~-1 0 2. (a) a(t) = Ae*’ + B, 

0 -1/V3 2/V6 0 0 2 
y(t) = Ae** — 

5. (a) The ODE’s are x’ + 42x _ By = = 0 and 7” — vBy + By = 0. uw, = YA, = V0.2303 = 0.4799, 

e, = [21.981]; wv = VAy = V9.770 = 3.126, en = [0.04548,-1]7. 8 (a) Ay = 4, ee) = [1,1, 1)": 
ee =Ay = -2,e= = afl,-1,0)? + 3{1,0,-1]", from which we can form the orthogonal pair eg = [1, -1, 0]? and 

= (1,1.-2])7. Nor malize these so Q- ‘= Q". Then 

Liv3 /v2 1/6 41000 0 0 V3 /Vv38 1/V3 
A O00 1/Vv3 —1//2 1/V6 0 (—2) 1000 0 L/v2 —1//2 0 

/v3 oO ~2/ 46 0 0 (—2)1000 /V6 1/6 ~-2/V6 
(41000 4 91001) (41000 _ 91000) (41000 _ 91000 

_ , (41000 _ 24000) (41000 + 1001) (4.1000 _ 21000) 9. (a) Inp =, Loy = 9o/4, Ly = 9a.I,, = 100, 
3 (41000 _ 21000) (41000 — 21000) (41000 5 kh 21001) : - 

1 -9/4 0 

Le; = lj. = O0sol =a] -9/4 9 O |. Ay = 9.5890, e; = [1,-3.818,0]7: Ay = 0.41lo, eg = 
0 0 10 

[1, 0.262, 0]": Ay = 10e.e3 = (0,0, 1)" so Lug = 9.5890, Lyy = OALLo. Loy = 100 where ;, 69, é3 are unit 
vectors in the 2’, y’, 2‘ coordinate directions. 

Section 11.5 
14 0 _ [0 _ fi 

Lava=| i | [800 | bs re jj tena =2e=[ ff, 

_f-1 _f 2 0 fi =i __f 2 1/2 
Me = te =| 1 |.p= | 5 a=] 1 ime =| 1/2 |" 

ve Up 
lL -l el) 9) 1/2 1/2 0 _ Lose at _ 

ys a+ | | to | | 0 4 | | 1/2 1/2 | | er | a7 slves a) = get — ge" + GUO) = 
pt “4 (i) Letary(t) = a(t), vo(t) = x'(t). Then a(t) = ay(t) = ge'—4te~' +4 [and a'(t) = vo(t) = 2 - \ 2 L il : = se Y € = 2p 

“p88 1 ee 4 1-1 
ze + 5e Pigev*] 3. @=be=|4]e=se=] 7 )e=[ 6 1 |.2 =[4 1 |
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~ |b oO] a. Do-l . 1 1 e 0 Lo-1] e e~e 

D=| | ac = Qe Q™=}o iffo &}lo 1] >to & } 
ef e+1 e-1 

(de® -5[% -1 otf 

Section 11.6 
: +e 1 3/2 0 _ 

Lid A= 1 a (d)A = | 3/2 0 0 2. (a) Qa? 4+ da + ayeg = \EE + A2TS = B4V5 5? + 

oes 0 0 —4 

b 
iov3 Gj “2 where x = QX& and Q = | 24 VB)a (2 — V5) | where a = 1/\/10 +475 and 6 = 1/10 — dy/5 

. . a . ve ; “9 - 1/J21/v2 
Ay > 0, Ag > 0 so positive definite. (g) 38ayrQ = al ~ “ where x = Q*& and Q = Ng va 

Neither positive nor negative definite. 4. 24 a —20y = +5 5 #4 55 SaV5 i? = = 6 is an ellipse with intercepts 

at &4/12/[5 + V5) }on @ axis and + 4/ oe ed ] on ¥ axis. The positive @ and axes are oriented in the x, y plane 

in the directions of the orthogonal eigenvectors ey = [2,1 — V/5|" and ey = [2,1 + V5]". 

(d) 2? +y? — 10ry = 62° — 4y? = 4 is an hyperbola with intercepts at ai on j axis. The positive x and y axes 

are oriented in the x, y plane in the directions of the orthogonal eigenvectors e, = [1, —1]T ande = (1, 1)". 

Chapter 12 

Section 12.2 

l(a) = l= | 2. (a) The set is a basis for C2. 4. (a) uu = ie + Fes _ Stes 5. (ax-y) = 

Sarg =a CN) xy; =a(x-y), x (ay) = Vy ejay; = a yyy = A(x y) 

Section 12.3 

ayant = St] FF] a yay 34 Yer ey = a[1, Y2sinZ — (1+ VYicos Z)i]', \2 = 3 - . (a = G5 12 (a) Ay = 34+ V2e"/",e, =a fl, V2sing 2cos Z)t] .A2 = 

Yder/® eg = 3 [1,~YIsin S +(-14+ Veos4)i] 5. (b) Ap = 2+i,e2 = a : i =2-i,e,=8 | ‘ | 

9 2 L+2 I 7 , ] 

6. (a — d)* + 4bc < 0 raa=| 42, my! Jastersaf th asco =a] 1; | 

V3 —1 1-2 

1 Qa 61000 2i(1 _ 61000) 

8. (b) A1000 == 5} 24(6100 4) 4(g 100) 44 

F = |x|? + 4ja.[?, where x = Ux' = + Peek bx. andx’ = U7!x = U*x = Fa bet ot Js 

| 12. Neither 15. (a) co = ec, (b) None 

Chapter 13 

Section 13.2 

lL. (a) J21 (d) 5V2 2. Yes. because d(P, Po) = 0.36 < 1 6. (a) Connected, neither (f) Not connected, 

closed (k) Connected, open (n) Connected, closed 12. (a) The points 7 = 0,1,-2 (c) The lines a+ y = ni /2 

(n= 1, £3,...)
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Section 13.3 

L. (a) fe = 3a7y?, fy = 5a*y?, fey = fue = Ur? y", foo = Bay”, 

tyy = 20r8y 4oa=1— n/2: forn = 2,a = 0: forn = 3,a = —1/2; etc, 

Section 13.4 
1. F(t) = (4x? cos (xt + 8y)|(5) + [8 cos (at + By) (2) = (2500t° + 6t) cos (625t! 4+ Bt? +3) 2. (a) E(t) = 

(ye*")(2t) + (we*”)(3cos 8t) 3. (a) G'(s) = (sin scos s + 3sin 6s)//sin® s — cos 6s 4. (a) R’(2) = 0.3553 

Section 13.5 

  L(ayTSeo™| = 12a 4207-4054... (da) TS In |= In 2+ 4(a—2)? - le — 2)? + h(a 2) - 
2(altar> +a pal... 9 (a0 = f(a.y,2) = xyz + 6=0- 18(a — 1) +22y- 3) + 3(z = 2) +: 
gives the tangent plane 18a + 2y — 32 = 30. 11. (a) First, expand in 2, say: 2°y? — y = [yt - y} + fy Va 
1) + #[20y"](a -— 1)? + t 3(60y! |(a — 1)" +-+-. Next, expand each square-bracketed coefficient in y: 2°y! — y = 
a+ Buty 2) badly = 2) 4 +8(y—2)3 -- }4 [80+ 160(y ~ 2) + 120(y — 2)? +-- J(@ — 1) + $[820 + 640(y — 
2) + +++ -|(a— 1)? + [96 --}(a ~ 1)" +---. Arrange terms in ascending order: 

vy! —y = 14480(x — » + 3L(y = 2) + 160(0 - yf + 160(x — 1)(y — 2) + 24(y — 2)? + 160(x — 1)8 + 320(x — 
1)°*(y — 2) + 120(2@ — 1)(y — 2)? + 8(y — 2) 4 . NOTE: Clearly, this series converges for all x,y, because it 

contains only a finite number of terms (since all x derivatives of z°y? — y above fifth-order and all y derivatives above 
fourth-order are zero); i.¢., the series terminates. 

Section 13.6 
1. (a) f is C? in the entire plane, but f,(2, 1) = 0 so the conditions are not met. Indeed, the graph of 27+ (y—1)? =1 
is acircle of radius | centered at (0,1), with vertical tangent at (1,1). NOTE: Although the relation does not imply an 

ee function y(z) through (1, 1) it does imply an implicit! function a(y) through that point. 

(d) yx) = 1+ 8(e@42)+ A= 9n" (y 4 2)? 4 tee Baby! =y/(3y? — x). y" = —2xy/(By? — x) 

3. (a) Ye = —[yt+cos (a+2)]/2. 2, = —[y+cos(x+z2)}/[22—cos(x+=2)] 4. (a) Conditions not met because se = 

0) at (0,0, 0,0). NOTE: The conditions are stated to be sufficient, not necessary. In this example the conditions are not 
met so the theorm gives no information. 5. (a) 0/Oy g gives —1+ 2uuy + 2vvy = 0 and 1 + 3u7e" uy + ube” vy =0 

  

‘ 2 + ou, = (yb L208 Ont — Gy? atta) | fu fo |_| v2 Baw $0 ty = (ue + Que7")/(2ut ~ 6urv). 6. (a) Grow =|? Ou , =| M4 2p 
{ } 

12. (b) They are true. Since there are only the three independent vatiables p, Fy ev in (12.1), both 5S and 5! are 

computed with 7’ fixed and are therefore numerical inverses of each other. Or, working them out, aap and a/av of 

= —6§y? ~ 12u?v 

  

(12.1) give fy + fuvp = Oand fy + frp. = 0. Thus, vp = ~fp/ fv and py = —fo/ fy = 1/vp. 
A f(a) G. Q 110 oO. 1 ¢d L 1  f1 a , I 4 1 lL @ La Lo 

14, (a) ) Be = bu oe and By = toa 7 Be 90 Tee + Tyy = (4 + bo) G Tat 3 af) + (faa 7 tao) GTu- 

5l),) = — ePuu + éT ov = =Oord wu AT, = 0 (e) Paw F 4T, + a Tuy = = 0 

Section 13.7 
1. (a) f(x) = 04+0(2 ~1)+) Mw i)? + a(x —1)° +--+ so horizontal inflection point (c) maximum (e) minimum 

2. (a)2 = 0: f(z) = 1 = a? +--+ so horizontal inflection point. (c) a = 2: f(a) = el — Gel® (x — 2)? +--+ 50 
maximum: 
v= ~2: f(x) = e7!8 — Ge (x — 2)? “-sominimum 5, (a) fy = 4c + y = Oand fy = 2+ 2y —7 = 0 gives 
r=ly=-~4 At a. —4), fox = 4, fey = = 1, fuy = 2 s0 

A= ( : , ) with A = —1,7. Mixed signs, hence saddle. (g) fy = (a + y)/(a* + vy + y? +4) = 0 

and fy = (a + 2y)/(a? + ay + y? +4) = Ogiver = y = 0. At (0,0), few = 1/2. fry = 1/4, fuy = 1/2
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so A = ( th U3 ) with A = 1/4, 3/4. Both positive, hence minimum. — 6. (a) Fos fys fz are O at (0,0,0); 

\ = 2,14 V/10 are of mixed sign, hence saddle. (d) fe, fy, fe are 0 at (0,0,0); A =1, 1, 1, hence minimum. 

8. Jal <10 Bae =2/5y=4/5 lo (aye=138/5,y=—-6/6 I@e=sy=lsr=0 

18. 2 = (0/7 — 1)/3.y = [(V7 = 1)/3)°/? 19. max. at (1/V2, 0, 1/V2), min. at (—1/v2, 0, —1//2) 

Section 13.8 

1. (a) [oa av? cos (ta* \dx+2tsin(t?)  (b) fone ® 5 eoe™ dy +(—Let ay" * (da )er(- 20") 2. (a) O+-2+027+- 

  

(d) 1 + 5 _ ia ++. 9, We can evaluate [(¢) by using the change of variables fc = u (@ = u? “), and 

find that [(t) = 2e¥' — 2. Thus, //(t) = eV! /,/t. On the other hand, the Leibniz rule gives I(t) = ev! | ft, 
al . 2 

ch is the same res a) Liebniz eives wu. = el "| (en 8)?2 4078), 
which is the same result. 11. (a) Liebniz gives tg, = yadeer | f(s) = + S557 ee §)" [Cha dae, 

vt a na 2 

ay, mm L . y?/(dart) I(§) (x ~ £) —(a-£)? /(da*t) . 2 - : 
ly Tower (Eje d& + eg TS d€ $0 QO" Uyg, does not equal u,. 

t savas | f(gje~ +/ Davnt 402P S cE | t 

Chapter 14 

Section 14.3 

L(a)2u-v= 31 —~ 33 —~5kuvedvuesd4, 

uxv=4i-j+3kvx«xu=—d4i+¢j—-3k, Jluxvi =Vv26 (hhuxv= 4i — j +3k is perpendicular to u 

and v. Check: u-(u x v) =84+1-9=0.v-(uxv)=4—-1-3=0. (k) Area = J 122/2. a(—8i ~ 7j +3 k) 

foranya#O0 2.(a)M= —~3i- 3] +k (d)M= di — j 3.(a)No (c) Yes (e)No 4. (a) V161 

(d) (9873 5. (a) $2145 -k)/V6 8. x-w = {all, 1,2] + 08, 2, -1}- [2.4.3] = 0 gives 12a + 11b = 0 s0 
b = —12a/11. Leta = 11: then 6 = —12 and x = |—25, ~13, 34] (times an arbitrary nonzero scale factor) 

Section 14.4 

Liduvxw=uxvew=-—6 3. (a) LHS =i x (j xk) =i x i=0:RHS =(i-k)j— (i j)k =0 

4.(a)3 (d) 30 12. (a) No (d) Yes 

Section 14.5 

1. (a)u = 27B, uu” = 2B, ju”) = 2B (dd) Ww = —sinti+ cost} + cos k, u’ = —costi-—sinrj— 

sinrk, |ju|| = /l+sin?7 2. (a) (u = (27? cost + 37°)! = drcost — 27*sin7 + Or, uw! tule v = 

~2r? sin T + 37 + 47 cos T 1 87 (checks) (b) (u uxv) = 27 it (8r? —6cosr +67 sinT)j+ (2cos7 —27sinr)k. 

uxv ful xveri¢(r? + Grsin 7) ~ Qrsinrk +7i S (27? — 6cos T)i+ 2.cos 7 k (checks) 

7. (a) (urv)" = (uvtuv ny = (uv) + (aw) sully ule bul! bu! = uly + Qu! pu" 

Section 14.6 
1. (a) = 20/2, 0 = tan !(2/2) = r/dand 57/4, 2 = 3. Discard 57/4 s0@ = x/drad = 45°. 

(d)r = 0, @ not defined. = = 5 (gor = V26. = = tan” '5/—1) = L768 rad = 101.3° 2. (a) p = 2, 

@=n/2rad = 90°,0 = 0(d) p = V14. 6 = cos”! (S/v1) = = 0.641 rad = 36.70°. 0 = tan! (2/1) = 

1.107 rad = 63.48° 3. (a) Since i, J. k is an ON basis f or 3 space we can write @, = (Gy i } i+(€ Ep: j )j +(€,- k) k 

and similarly for @y and ég. Then @-i = (1)(1) cos(@,,i) = v/p = singcos@. Similarly, 6,-j = y/p = sin @sind 

and €,:k = 2/p = cos@. To obtain os it is simplest to observe that it can be obtained from e, by adding 7/2 toe 

éy = sin(@ + 7/2)(cos Oi + sin@j) +cos(@ + m/2)k. And since the spherical coordinate base vector Gg is the same
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: the cylindrical coordinate base vector @g we have @g = — sin Oi +cos6j j. 

(a) dA /dt = = (3cos 3t + Q7t J + (3sin 3t — 360)@9 + 2t@. (d) dA/dt = 26, + 2t7 64 + 3t? sin 2t g 

. vs 6 +954 “ik = O11 = 2t(cos 9 er ~ sin 6) Go) = 2t(£6,- 4a) = wag (? é, ~ 269), 

azv=2i= ose? é, ~ 269) B(OV = tj+yj+2k = 2ti = WU(sin dcos #@,-+cos @ cos @ ég —sin d @g) = 

2(e Gp + Fey + 69 ) = (Pé,+2@),), a=VvV= i= viv (6, +28) % (lp = s = VI, 

@ = Qt, b = 7/4 So (30) and (31) give v(t) = V é, + 5 -@g, a(t) = —4 VOQFAt&, + Eg) + J2V2&% 

Chapter 15 

Section 15.2 

I. (a) Gauss elimination gives the solution setas a= a, y = (a— 8)/5, zw = (@+4)/5 so we have a parametrization 

u= (7 +4)/5, y = (87 ~ 8)/5, 2 = 7 (-co < Tt < - (arty? = 4 suggests letting a = 2cosT, y = 
2sinr (0 < 7 < 2r). Thenz +y +22 = 5 gives2 = (65-x4-—y)/2 = 3-cost—sintr. 2. (aba = 

5-38r,y= -l4+r,2= 2+47r(0 <r <1) 3. (a) R(t). R(t) = 1447? so s(7) = = fy V14+4t dt = 

sTV 1 +47? + ; In{2r+V1+4r*) 11. (a) Det = 0 so the curve is a plane curve. 

Section 15.3 

I. (a) fy fo y * dedy = 7 f f. ye? dyda = = 1/4 

“ fe fy sin (@ = y) dedy = f, fr sin (x — y) dydx + f Je sin (x — y)dydv = sin2—sinl —1 

4, (a) AY = cab/2, x, = 2a/3, ye = 6/3 ( " ae = do, xv, = 14/15. y. = 11/5 5. (a) Ly = 30/4, Ly = 650/12 
(b) Ly = 460/3, fy = 100/310. (a) ~14 . 1/3 

Section 15.4 
& (aje = uy = vande = uy utu(-oo <u < x-c <u < oo) Me =uyszusc = 

Q—fu+gv (—c <u<o,-c0 <u <oo) IU. (a) (25) gives = £(4i+2j-k)/V21 (da = £(14+3j)+k/V 11 

(gyn=R, xR, =i-j+dk. n= +(i-~j+dk)/VI8 

Section 15.5 

l(a) With & = 1, Ff =0,G = 1, (5) gives d A= = dudv so A= {er . an “dudv =2n7. (c)WithB =2,F = 

0,G =u’, (5) gives dA = V2ududv so A= of V2ududu = V2rh2. 6. (a) r/4 10. (a) With = 1+ y, 

(18) givesdA = JT +04 ldrdy = Vi dedy. Hence, f f (L+ta)V2dardy = 3/V2. (c) 2th 

(e) With « = 3sinucosu, y = 3sinvsinu, 2 = 3cos uv, we obtain [> pea 

(g) ) forh? 

Section 15.6 
3. F(0,0.0) = #RGok 4. (a), = 3h/4 8. (a) F = 2n0Ghk on z = 0, F = —200Ghk ons = h 

Chapter 16 

Section 16.2 

4. (a) w(2,3, -1) = 3i- 2j — k so we want B: = =i = —. Setting « = 7, say, gives the parametric “aon of the — : o 

desired curve as 2 = 7. y =r /2,2 - = 1/2 (—s0 Ber 00) (dja=2,y=7,2 = —-3/7 (0< FT < 00). To 

+3sinucosu)9sinududu = 457. 

bu
l
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understand our choice of the 7 interval, note that zt = —3 gives a hyperbola in the 7, z plane, with one branch in the 

fourth quadrant and one in the second. The one in the fourth quadrant passes through the given point z = ~1, so we 

choose that branch, for which 0 < 7 < &. 

Section 16.3 

1. (a) divv = Oeverywhere (d) divv = yz + az ~ 3ay = 17 at (3, —1, 4) 

Section 16.4 

1. (a) gradu = 6i cverynere (e) gradu = = yzi + azj + tyk = = —dj — 9j + 36k 2. (a) du/ds = = Vu-v= 

(Qci + 2yj + 22k) i= Qe = 4 at (2.1.5) )U/V3 4. (a) VV = (62y ~ 2 2)i + 302] — ak = 387i + 12j — 2k is 

in the direction of maximum rate of increase, so the charge will move in the direction — 37i ~ 12) + Qk. 

6. (a) dT’/dt = 200t + (20xti — 10yj) - (dai + 4yj) = 2,040 at (2, -1,3,4) 

Section 16.5 

1. (a) curl v = O everywhere (d) curlv = x(z — y)i-y(z -2)jt+2(y- vk = —15i+ 16j — kat (3,4, -1) 

Section 16.6 

1.(a) 0,0 (d) 2y*+6a7y, 0 2. (a) 0,0 (d)0, 2] 7d) VxH=J I. (a) V2v = V2(a2")i+ V2(ysin zk = 

Qari — ysin zk 

Section 16.7 

1. (a) Vu = @,, V2u = 1/r, V-v = 3 [which makes sense because v = ré, + 2é, is the position vector to the point 

and is therefore expressible in Cartesian coordinates as zityj+zk, with divergence O(x)/Ox+0(y)/Oy+O(z)/dz = 

3], V x v = 0. NOTE: In using (16) and (1 7) we have vp, = 1, vg = 0, uz = 2. 

(d) Vu = 226, + 32°ré., V2u = Ger + 2°/r. With v, = v, = 0 and ve = 1, (16) and (17) give Vv = Oand 

Vxve=(l/rjé.. 2 (a l/r (d)- “(2sin cos 8)/r 8. (a) 3é, LL. (a) Vu = 6), V?u = 2/p, Viv = 

3,Vxv=0 (d) Vu = 2psindé, + p(cos0/sin d)é€, Veu = = [6 - (1/sin?¢] sind, V-v = (2+ cot d)/p, 

V xv = (cot dé, — €y + ég)/p 

Section 16.8 

1. (a) Each is QO (d) Each is 1/3 (g) Eachis 1/2 4. (a) Each is 2ab 5. (a) Use v = (x3 yz/3)i, for instance 

12. (a) Each is 19207 (g) Each is Qna® 

Section 16.9 

2. (a) Each is 1/3 (e) Each is ~1/6 (i) Each is 1/12 3. (a) Each is -2/15 (e)EachisQ 11. (a) Each is —63 

16. (a) Each is 27a7w 

Section 16.10 

1. (a) All of 3-space  (e) Everywhere except along the z as (@ = a = 0) 2. (a) ® =o st — 82; everywhere 

(f) ® = 2ye" ~ 321 in z<O0 = (k) Irrotational nowhere 3.(a)No 5. (c) ® = 22 5/2 By 4 ,l= — 

6. (a) ® = (a? + y? +.27)/2, P= ?2(n? +9)/2 Ue (a) Viv = 04040 = 0. With ro = y= = 0, say, (10.3) gives 

w= xj + (ay — ba)k, to which we can add the gradient of an arbitrary function f. (d) w = —ryzj, to which we 

can add the gradient of an arbitrary function f. 13. (a)@=rz,l=2 ()O= p°/6, 1 = 62/3 
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(h) ® = sing + cos 6, [= 2(/5 — 5)/5 

Chapter 17 

Section 17.2 

5. (a) fe(a br) = 2, fo(x) = —On (e) fe(x) =" "1 (a? )s fo(x) = 2x/( Oe *) 9. Fela C) + fala ) = ge(# \ + go(2) 

and, changing x to ~2, fe(—x) + fo(—v) = ge(—2) ba Jo(~«) or fe(w%) — fo(x) = ge(x) — go(x). Adding these two 
equations gives 2f.(x2) == 2ge(x), and subtracting gives 2f,() = 2g,(a). Hence fel) = ge(x) and f,(a ) = = Jo(X). 
12. (a) No (g) Yes, (m) Yes, 27/3 (s) No (Sketch its graph) 13. (a) 27) (e) 27 

Section 17.3 

1. (a) Yes, in fact itis continuous (d) No, its Himit does notexistasaz +0 4, (a) FSf = 207° [(—1)"*1/n] sin na 
0 aes to f(x) at all x except at tr, +37, oe Lae » where f(x) is w but the series converges to the average value 

Q (d) FSf = 50 is identical to f(x) for all x (g) FSf = = 2-43) [1/(4n? - 1)] cos 2nx converges to f(a) for 

ul 5. (a) FSf = 77/34 30) [(-1 J" /n?] cosa 12. (a)! = 3, p(3) = 3, 0(3) = 1, p38) = --- =0,0, = 

3 mM ft y\n + ThE 2 768 = ynr ! [(-1)"*!/n] sin “22 (d) FSS Wet = SY [(-1)"*"/n*] cos —— 
7 L 15 

NTL 

2 
  

t 
| 2(3)(—1)"*!/(n7) so FSf = 

qe 
1 

  

16. (a) FSf = O54 “ ~~? 4 sin ZZ on einnn/2 (d) FSf = 6(e!* _ eW!*) /2i = Revie — 3get (a 2-term series) 

; 1 net ; Ww 1 
18. (a) x(t) = 50+ Se oe dja(t)=3->5 ae t (a) a(t) = 5 w Lensldun aldo none) sin—>~ (dq) r(t) = 5 - » Ln) cos nr 

Section 17.4 

2. (a) HRC: f(z) = + 235 pone cos 252 ces f(a) = 23% £1 = cos oa nee 
QRC: f(x) = #2 30%, 4+ sin 4 cos 442 “ORS: Ka = WSN + — cos 24) sin 222 

Section 17.5 

2. (a) jew™ sinna| < e7?" on 2 < & < 5, and 37° e~?” is convergent [by the ratio test or by writing it as the 
: : 2 —O\n a 4 . . . f 

geometric series 37) (e7*)", wi e~?| < 1]. Hence, the given series is uniformly convergent 

1 1 1 
+ Ss Th ~ ipl = (1/z0)”, and 

1l+2"| 14+ 25 Lo 

yy (L/xo)" is a convergent geometric series if zg > 1, Hence, the series converges uniformly on ag < a < oo for 

any tg > 1, by Theorem 17.5.1. (d) On |z| < ap for any vg < 1/5 
+ ¢ 2G | .¢ 3S . 

x, sin 2nx d fsin2nz . cos 2a : . 
(a) 4 SO S — =2 ) ——y--_ according to Theorem 17.5.2 because the latter series 

dg 21 ni dx ni ; j “ n°? 

converges uniformly by Theorem 17.5.1, with AY, = L/ne, (Recall from the calculus that the p-series re 1/n? con- 

                              

on2 <2 < 5 by Theorem 17.5.1. 3. (a2) Onl < ay < t < ox, 
    

  

verges ifp > lrin this casep = 3 > 1.) 5. (a) Expanding f(t), letus calla” +2’ +2 = 2-430" be © 2nt 
« Ane 

equation (A). A particular solution of (A) due to the 2/7 is v, = 2/7, anda particular solution of 2” +-2'+a = cos 2nt 

is v,(t) = [C1 — dn*)* cos 2nt + 2nsin 2nt]/[(1 — 4n*)? + dn] so, by superposition. a particular solution of (A) 

  

  

. - L (1 = 4n*) cos 2nt + 2nsin 2nt ve , 2 Lense -OS et “Pp aT SID all ar daee cate . ani isa,(t) = =~ = - - - we : . The latter does satisfy (A), as can be verified b 
pb " teh Any? | (1 — 4n?)? + An? ) y 

substitution, provided that we can justify the termwise differentiations of the series needed for x’ and x”. Differ- 

a . . . : 1 —2n(1 — 4n*) sin 2nt + 4n? cos Qnt 4— ; 
entiating termwise gives x),(t) = ~isv~ = an(t). Using 

weal dy _ | (1 — 4n?)? + dn? 7 

1303
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Qn + 8n? + 4n? 1 

(4n? —1) [1 —4n?)? + 4n#] Sn 
some constant C' such that jan (t)| < C/n® for all = 1,2, .... Since S77°(C/n?) = C S73" (1/n3) converges, the 
termwise differentiation is justified by Theorem 17.5.1. Similarly for a”, 

Section 17.6 

  sin 2nt| < 1 and |cos2nt| < 1, jan (t)| < as 7. —> 00, so there will exist       

      

    

_ on" 1? 4 ‘ avn yo, . . . . . 
2. (a) |JE|/? = 5 zta XID '— 1}? /n4) so [El] = 0.27, 0.27, 0.11, 0.11, 0.06, 0.06, 0.04, 0.04 for 

k= 1,2,...,8. 

Section 17.7 

L. (a) Ay = ((2n = 1) /2L)”, bn(a) = sin ((2n — 1)wa/2L] forn = 1,2,..., 100 = 8830 sy sin 4-4 re 
5 oo (- jn 

(c) An = (nr/L)*, n(x) = cos(nme/L) forn = 0,1,..., f(z) = $ an Trop coslen ~1)rae/ Ll} 

4. (a) o(x) = x4, (a°y’)' + Aw®y = 0, p(x) = wv, ¢(z) = 0,w(z) = 2 % (a) Ay = 27, n(x) = 

cosnz forn = 0,1,2,..., f(z) = ao + 3 an cosne, ag = (f,1)/(1,1) = fe v'de/m = 32/(51r), an = 

(f,cosnz)/(cos na, cos nx) = (2/7) fe x! cos nx dx = [32/(n°m)|[(2n? —6n? +3) sin n cosn+(4n% —6n) cos?*n— 

2n° + 3n) 17. (a) (L (ul, v= =f. uudxe = uv|i — fo uv’ dx so L* {vl = —v' (ie = —d/dz), v(1) = 0, not 
Hermitian (c) L* = d?/dzx*, v(1) = v'(1) = 0, not Hermitian because the boundary condition: associated with L* 
are different from those associated with L (e) L* = d*/dx? + 3, v'(0) = v'(1) = 0, Hermitian 

Section 17.8 
1. (a) Ao = = 0, do(2) = 1; A, = (nr/2)", dn(x) = cos(nrx/2) and sin(nra/2) forn = 1,2,..., H(x - 

  Q)o= 5 _ 2 13. _ + sin 432 "RE (ce) \g = 0, do(t) = 1; An = (2n7/ In 2)", bn(x) = cos (Qnx #2) forn = 

1,2,...: expansions of the form f(t) = ag t+ Lb Gy COS (Qnmies +), so if f(z) = 6 then ag = 6 anda, = 
Q form > 1 by inspection. Perhaps that result is not obvious because the weight function is w(a) = 1/z, but 

ay = (f(a), 1)/U,1) = fP(6)\(Ya-t dx/ {?(1) 2x71 dx = 6 and the two integrals in the evaluation of a, look 
difficult but are readily evaluated using the incctution u = 2nr(In nine (e) See Section 4.4. A, = n(n + 
1), én(2) = Pala) form = 0,2,4,...: expansions of the form f(x = Lowa... dnln (x). If f(«) = x, then 

ag = (t,1)/(1,1) = 1/2, a2 = (x, Pe(x))/(P2(x), Po(2)) = /8. hu = (x, Py(x))/(Pa(x), Pa(x)) = —3/16 
4, From Section 4.4 we see that @,(@) = Po, (a) forn = 0,1,2,...,sol—a2 = a Qn Pan(x) where a, = 

(l— a, »Pan(a))/(Pan(a ¢), Pe»(v)). From (18) in Section 4.4, fy P3(a)dx = 1/(2n + 1) so (Pon(x), Pan(x)) = 

f P? (a) dx = 1/(4n +1) anda, = (4n+1) fa —2)Pap,(a)da: ag = 1/2, a, = —5/8, ag = 9/48, ... 

Section 17.9 

2. (a) f(x) = (100/7) f>~ [sin 2w coswe + (1 ~ cos 2w) sinwa] dw/w for all x except = Oand x = 2: f(0) = 
f(2) = 100 but the Fourier integral of f converges to the average value 50. As a check, application of the Maple 

int command gives these values for the Fourier integral, integrating from 0 to 5000: 20051(5000)/m at 2 = 1 and 

~100[57(10, 000) — Si(20,000)|/m7 atz = 4. Fol oe . 1 command with evalf(’) evaluates these quanti- 

ties as 99.96 and —0.0043, respectively. (d) f(a) /m d fot cos Sw + 5wsinSw — 1) coswe + (Sw cos bw — 

sin 5w) sin wa] dw/w? for alle except = ~5: H-5) = “4 but the Fourier integral of f converges to 2.5. 

Section 17.10 
4. (a) f(t) = a/[r(a? + 27)] (b) f(z) = sinar/(mx) 6 (a) F {dete Sh = Ai? ci F fe~ Sl) (entry 17) 

= 4 (x4 3) (entry 4) = 48 are _ tap (c) Withee = 3,@ = 1, f(x) = I/(e 7 4. 2) in entry 13, 
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and f = (2/2) exp(—V2lwl), we have rt “ 3) flw + 3 = pale ~V2iw—3] 4 ee V2lwd Ny 

(e) f fchey ~ set} = $F \etiys} - BF {eb} (entry 18) = 37 wl Qe Wwl/V2 5 (entries |, 4) = 

    Sp eclwl/v2 _ 10 (g) Ft { saa ~ tat ope! (asia) — pot (an amine (H (a+ 1) — 

            H(« - 1)| Jaa ries 9,7) (i) Pot {ata} = HP! (estas \ (entry 18) = ~#H(—ax)er/? (entry 3) 
2m Ee were “ 

(ky Fo! ferl#l cosw} = sk! {2(re7!#!) cosw} (entry 18) = st lishet + cabea| (entries 15, 1) 

      — _ oy if. _ [- f \ = ni ee in)" (Sephs} =F" ( (ty ~ at) } = PE (nts ha) } =P (ate + oh} 
(entry 18) = $[H(aje~* + A(-x) e**] (entries 2. 3) 

Section 17.11 

9, (a) Because u(0) is given, use the sine transform. Obtain is = SO petaye ro and consider entry 2S witha = 3. 

7 ¢ - yD 2 . - 5 34 25 3 ) 25 3p Since Im(3 + iw)? = 6w, write ts = —F orfge = — 25 mG so u(t) = — re?" 

Chapter 18 

Section 18.2 

2. (a) L = V2+k? is linear because Llau+3v] = (V?+k7)(au+3v) = a(V? +h? )ut B(V2+k7)u = aLlul+GL[v| 
(e) The operator defined by L[u) = ure + uyy — e” is nonlinear because Liau + Bu] — alu] - Liv] = (au + 

BU) ne + (Qu+ Be) yy elaurGuy _ oer + Uyy — 4) ~ G(Vee + yy ~ e°) = ae" + Ge” — ee" % Qin general. 

For example, ifa = 2, 9 = 0, u(a.y) = x, u(x, y) = y. then the latter is 2e7 — e?" which is not identically zero (on 

any x.y domain of interest). 3. (a) A= 1 B= 1/2, C =0so0 B* — AC = 1/4 > 0. so hyperbolic (everywhere in 

t.y plane). Note that D, &, Fl and f are irrelevant insofar as this classification.  (d) Be -AC=0+ a(sin” y+), 

so hyperbolic in the half plane x > Q, elliptic in the half plane x < 0, parabolic on the line v = 0. 

Section 18.3 

  

4. (ay XT = NT’ + 3BNT, = T, +3 = —A?, NY" 4n°X = Oand T’ 4+ (Kk? +3)T = O80 X = 

Acosxa + Bsinxw and T= =¢ Cexpi-n ~3)t fork #4 0. and X = D+ Ex and T = Fe~* fork = 0. 

Thus. u(z,t) = (D+ Ex \Fe~ 4 (eos Ka + Bsingx)C exp (—4* — 3 = = (G+ Haje~*! + (Lcosne + 

Jsinna)exp(-x7 — 3)t, say (c) ¢ — +2 Ar = L which cannot be separated because of the mixed term 

NUTU/XT 6. (a) ule, t) = 20+ 30 + 30%. Ansin oe e e/2)°t is the solution, where (with the help of a 

  

quarter-range sine expansion) 4, = (2/7) fo ( —20 | —~ 3x ) sin +dr = = [ 4048" cos 438 4G = sin ae). s(t) = 

20432. (d)u(a.t) =o, Ansin 2" e tere (A! where the . 4,,’s are found from the initial condition u(x, 0) = 

5sin (we/4) ~ 12sin (Srx/4) = SOS, An sin 28" (on 0 < a < 2), The quarter-range sine formula gives A, = 

2 ~lja/2 (n+) 7/2] ‘ sin [(7—-5) 9/2] sin {(n+5) 4/2] 49 San ne _ f sin in Lyx /2] sin [tr ha / oOo” i _ | Plas {, (5sin 38 — 12 sin *3*) sin 4" dv = 10 \inziye eT 2d) Se sep as 

found using the Maple int command or tables. Observe that each sine term is zero because n (= 1,3,...) isodd.so Ay 

appears to be zero for each n = 1,3,.... However. for n = 1 the n ~ 1 denominator vanishes and for n = 5 then ~5 

denominator vanishes so the latter expression is indeterminate form = Land nm = 5 (of the form 0/0). For those caes 

lHépital’s rule gives 4, = 10 {4} = 5and Ag = —244 {i} = -12. with A, = 0 forn n= 3.7,9,11,13,.... Thus, 

the series solution reduces to the two-term result u(a, ¢) = 5sin £8 e7(te/9"t — 12 sin BB eral: 1)°¢ Observe that 

this result is obtained more readily, from the initial condition, « arely by matching terms: 5 = Ay, —12 = As, 

and 0 = A, for all other m’s (3,7.9.11....). us(a) = 0 (g) ula,t) = A+ SOP Br cos na ew "ey"t and 
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u(av,0) = 300 = + SOP B, cos na gives (half-range cosine formulas) A = (1/7) to 3800dce = 300, B, = 

(2/1) f° 300 cos na: “lee ss (600sin nw) /(nw) = 0 for each mn. Thus, the solution is simply w(c,t) = 300. With a 
little experience, one could anticipate this result by inspection because the ends of the rod are insulated (uw, = Oat each 

end) and the initial temperature distribution is uniform, so why should the temperature change? Or, mathematically, 

observe that u(c, y) = 300 does satisfy the PDE, the boundary conditions, and the initial condition. 

7. Consider, for example, t = 1000. Running the Maple sum command for the sum on the right-hand side of (45), with 

n= 1..20, gives ~43.28600284. Running it again, with n = 1..30, gives the same result so it is reasonable to assume 

that the result is correct to that many decimal places. However, understand that this reasoning is only heuristic. (In fact, 

itis interesting to runitfornm = 1.2, 2 = 1.4, n = 1..6, and soon. We find that the sum settles down to 10 significant 

figures at = 1..8; Le., the series converges rapidly for this choice of « and t.) Finally, the command evalf(100 + ") 

gives the value 56.71399716 for z(0, 1000), which appears to agree with the value obtained (crudely) from Fig. 6. 

10. (a) us(v) = uy, + Qow (d)us(2) = (tty — uy cosh BL) ne fa + u, cosh Ga, where 0 = - VA Jo (h) us(a) = 

A$ BeV#®!™ A= (ug - upeW /") (1 ~ eV b/a*y B= (uy — tu) /(1-e” Lie") 14, (a) ag(t) = Ao, an(t) 

Ane Oneel ae = Bye Onte/L)t” where u(x,0) = f(x) = Ap + SOP (A, cos “4™ + B,, sin 2822) 

  

“Lp 
gives Ag = + L pe f de, An = = fy f(a) cos #2£ dz, By = = Jy f(x) sin 3 2nti dr 16, (a) u(a,t) = 

s(t) + ur A, sin te en (nre/L)t where u(x) = i u(L ~ x)/(2a*) and A, = -F pe ts(x) sin “F* dx 

7. (b) u( Ly t) $hs.... away Pci mney EPS ; Sin ma G i evimnas Lit) 

30. (a) u(x,t) = 50 + e* rae A,sin 3 ev linn/L)Y+Ut Then u(x,0) = 0 = 50+ Sr... Ane* sin 9. The 

eigenfunctions of the Sturm—Liouville problem X” —2N'+4°X =0on0 <a < L with (0) = 0 and X(L) = = Oare 
nme o a catiefy — 50) — oO A pt ety me 4 t — f REE EZ at NEE FLTC e* sin “*. so we satisfy ~50 = S073 Ane* sin 4F* by setting A, = (—50, e* sin 47*)/(e* sin 47", e* sin 4F*). 

ri 

  

To obtain the weight function for the inner product write 0X" —20X'+47?o0X = 0, require that —2o = o’ and obtain 
~ 2a a(z) = e~**, which is also the weight function. Thus, A, = [o (—50)e sin 27 e~?* da/ fy (e* sin nes)? e?* dx 

= —18 [eo sin 4F2 dx. NOTE We wrote X(0) = 0 and X(L) = 0 rather than X(0) = 50 and X(L) = 50, 
because the us(xz) = 50 term in the solution satisfies the honhomoueneous boundary conditions. so that the transient 

part of the solution satisfies a homogeneous. or “homogenized.” version of those boundary conditions, which point was 

discussed in Example 3. Remember, a Sturm—Liouville problem is an eigenvalue problem so its boundary conditions 

must be homogeneous. 

Section 18.4 

8. (b) We can use either transform but the Laplace transform is a bit simpler because the transformed equation 

O° Way — 8 = —F(s } has only a constant forcing function [i.e F(s ) does not vary with the active variable x] whereas 

if we use the Fourier transform then the transformed equation —arw"t — wy, = ~F(t) has a nonconstant forcing 

function. Then w(x, s) = Ae Vst/a 4 Ben vse/a 4 F(s \/s. we rye as in (29)-(31), we require that w(z, 5) + 0 

asa -+ too so A = B= Oand w(a,t) = L'{F(s)/s} = {,F 7) dr (which, as we could have anticipated from 
the beginning, varies with ¢ but not witha). 15. Ate = 0.5 Hi tne formula vives erf (0.5) = 0.5204876, whereas & 

tables give erf (0.5) = 0.5204999. The difference, 0.0000123, is indeed within tne claimed accuracy. 

Section 18.5 

8. (a) Yes (d) No, due to the u2 (g) Yes (j) Yes. (m) No; L = #°0?/Oa? + 3x°0/0x ~ 07 /Ot? + 1 and x? is not 
even, nor is 327 odd 

  

Section 18.6 

5. Here are a few: Uy, = 0.2, Vo, = 0.2, and Uyy = 0.44896 7. Here are a few: U,, = 76, Vo, = 92, and 

Us; = 38.0096, where we have used the average values Ugg = 50 and V9 = 50 at the corners. 
10. In the left half r = rp, = 0.225; in the right half r = rp = 0.025. Thus, in the left half (7 = 1,2) use
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Uj pay = 0.225Uj—-1,4 + 0.5505, + 0.22505 41,4 and in the right half (7 = 4, 5) use Uj par = 0.025Uj—1,4 + 
0. OSU y + 0.025U;41,4. For the interface atx = 6 use Fe — Usp) Ar = = Kaan ~ Uss) \/Ax or Usk = 

(Ky Uap + Kava) /(Ke + Kp) = = 0. 803Uy, + + 0. 107U 4. Thus, Ui, = 11.25, Us, = = > Uy, = = 2 Uy = = Us1 = 0; 

Uy. = 28.69, Usg = 2.53, Uso = 0.893(2.53) + 0.107(0) = 2.26, Vag = = Usp = 0; 1 Ug = == 38.85, Ugg = 8.36, 
then Uy; = 0.06, then U33 = 0.893(8.36) + 0.107(0.06) = 7.47, Meas ° = 0; Uyg = 45.75, Uoq = 15.02, then 

Ugg = 0.24, then Usq == 0.893(15.02) +0.107(0.24) = 13.44, U54 = 0.00 11. (a) With exact values in parentheses, 

Uy, = Us, = 57.46 (58.04), at = sory 25 (82.09), Ujg = Uso = 46.69 (47.65), Ugg = 66.02 (67.38), Ug = 

Chapter 19 

Section 19.2 

1. (a) y(5,1) = —3/5  (d) y(5,4) = 8h (g) y(5,20) = 1 2 (a) y(x,t) = 4 sin 3 sin 7. NOTE: 
The initial condition y;(a,0) = 50sin 38 = 37° 4F£S,, sin “# gives, by the half-range - sine formulas, “75S, = 

             

z 2 fe 50sin 3* sin “f= dx, which equals 50 forn = 1 and O forn > 2. However, it is much simpler to satisly the 

initial condition (stated above) merely by matching coefficients of the sin (nma/ZL) terms on the left- and right-hand 

sas 
. (b) ule, ‘) = no sin 222 (A, cos et + B, sin St). Then, y(x,0) = f(x) gives       

  A, = )sin 45° dx “and yz(v,0) = 0 gives B, = 0, both by quarter-range sine series. 6. y(z,t) = 
t 0 5 ¥q § Yr, 

e HS s cue ue (A, 08 wat + B,sinw,t), where w, = \/(nre/L)? —(a/2)*. Then, y(z,0) = f(x) gives 
3 pk os , : ; 

An = 2 v) sin 22 dx and y,(x,0) gives the B,’s in terms of the A,,’s as B, = =*-A,. The ay, term in 
n ZL Jo L ¥ s Ban Yy 

(6.1) causes these changes in the solution, all of which make sense physically: first, the e~*/2 factor in the solution 

causes the motion to damp out as £ > oo: second, @ > 0 causes a reduction in the frequencies, from Ww, = nre/ L 

    
  

tO wy = /(nmc/L)? ~ (a/2)? (.e., the damped system is more “sluggish! *); third, a > 0 causes a phase shift, for if 

a = Othen B, = 0, and as a increases B, increases. 8. y(a,t) = s4a(x@ — L) + OP An sin 2F8 cos “4, and 

y(z,0) = f(x) gives 4, = 2 fe [f(2) — s4a(x— L)) sin 9 dz. Note that even if y(a,0) = f(a) = 0 the solution 

is nonzero. 
12. (b) u(a,t) = See 2ST, ty sin 48 sin 3 cos 8 (c) s(0,t) = Be(0,t) = Eu,(0,t) 

Rae nmct net = tse SL gin a eS... ~ sin “7 cos Ay“ 

Section 19.3 

1. (a) w(x, y, t) is given by (16a), where the H,,,,,’s are found from (17): 8sin 2rsin2y = ---+Ho4 sin ant sin AEs 

- so, matching coefficients [which is much simpler than using (22)], we see that all the Al,,,,°8 are zero except for 

Ho,4, which is 8. Thus, w(x, y,t) = 8sin 2z sin 2y cos 2/2t. Nodal lines: © = tr yun /2, 7, 3m /2 

    

  

  (d) Matching coefficients in sin 3x sin y ~ sina sin 3y = --- + H39 sin one sin =! + Hy sin +58 sin ae “bes gives 

Hy. = 1, Hig = —1 and all other A,,,,"s are zero. Thus, w(a,y,t) = (sin 3x6 siny — sine sin 3y) cos “AD t. Nodal 

curve(s) are defined by the relation sin3zsiny — sinvsin3y = 0. 2. w(a,y,t) = 20sin 3revsin 4iry cos dat — 

8 sin Sra sin 127y cos 13zt. If the period is T, then for any integers p and q we have 547T = 2pm and 137T = 2qr, 

so T = 2p/S and T = 2q/13. To find the finidamental period we seek the smallest p and q such that 2p/5 = 2q¢/13 or 

p/q = 5/13. They are p = 5 and q = 13, so the fundamental period is T = 2. 3. You better believe it. 

Section 19.4 

2. (a) The change of variables reduces the PDE to the canonical form ue, = 0, with general solution u(E,n) = 

F(€) + G(y) or ula,y) = Fla —y) + + Ga — y), where F and G are arbitrary twice-differentiable functions. 

Comparing the PDE with (10) in Section 18.2 gives A = 1, B = 2, C = 3,80 B* — AC = 4-3 > 0 and the PDE is 
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hyperbolic. 3. ay he PDE becomes (a? +-8ab-+ 126?) uee + (2ac+ Bad+8be- 2: Abd) wen +(c7+8ed+12d*)uyy = 0. g 

Setting a? + 8ab + 126° = 0 gives a/b = —2 or —6, and setting c? + 8cd + 12d? = 0 gives c/d = ~2 or —6 (the 
same as a/b by voineiddence) Seta = —2,b=1,c=-—6,d=1, say. Then ue, = O and u(€,7) = F(€) + Gn) so 
u(x, y) = F(-2a+y)+G(~6x+y). Comparing the PDE with (10) in Section 18.2 gives BY — AC = 16-12 > 0s0 
the PDE is hyperbolic. 7. (a) It is easy to construct particular solutions — such as ~K x* /(2c”) and Kt? /2. Choosing 

the former, we can write the general solution as y(a,t) = ~Ka?/(2c*) + F(a — ct) + G(x + ct). (b) Imposing the 
initial conditions, we can solve for / and G but it is simpler to set y(x,t) = ~Ka*/(2c?) + v(az,t). Then v satisfies 
the problem c?vg¢ = Vir; U(@, 0) = p(x) + Ka? /(2c”), ve(z, 0) = q(e) and we can use the d'Alembert solution (17) 

to solve for v(a,t). The result is y(z,t) = —Ka?/(2c?) + 4[P(a — ct) + P(x + ct)) + fern q(x’) dz', where 
P(v) = pla) + Ka? /(2c*). 8 yla,t) = H(t — *)h(t — c) NOTE: y(2,t}) = F(a — et) + Gla + ct) gives 
y(z,0) = 0 = F(x@) + G(x) and y: (2, 0) = Q= CF" (a r) + eG" (xr). Solving these gives #°(a) = constant = A, say, 
and G(x) = —A, so y(x,t) = A - A = 0. The key step is to realize that the two boundary condition equations hold 

only fora > 0,s0F (a) = 9 (we can let J 1 = Q without loss) and G(x) = 0 hold only for 2 > 0. Thus, F(a — ct) = 0 

fora > ct (the wedge 0 < 0 < 7/4 in the first quadrant of the x,¢ plane) and G(x + ct) = 0 forx > —et (the 

wedge 0 < 0 < 37/4), so y(z,t) = Oin0 < 6 < w/4 and y(a,y) = F(a — ct) in w/4 < 0 < w/2. Then the 

boundary condition y(0,t) = A(t) = F(—et) gives F(arg) = h (2), where “arg” denotes the argument of F’, so 

e
e
 

y(a,t) = F(w@—ecth=h (=) holds in the wedge 7/4 <0 < 7/2, 

16. (b) (Yio — ¥i,-1)/At = g(iAx) gives ¥,-1 = Yio ~ g(tAx)At. Hence. ¥1,-, = 0 - (sin ) (0.02) 

—0.0141, Yo,1 = 0 ~ (sin §) (0.02) = ~0.02, Yo, = 0 ~ (sin $F) (0.02) = =0.0141, Then Yiz = 0.64¥io 
0.72Y10 + 0.64¥o9 — Yi-1 = 0.0141, Yo = 0.64Y10 + 0.72Yo9 + 0.64¥59 — Yo,-1 = 0.02, Ys, = 0.64¥o9 

0.723 30 0.64Y. dQ 7 ¥3 0, = 0.0141. Similarly, Yj2 = -0.64¥o1 + 0.72Y41 a 0.64¥5, _ Yio = 0.0230, Yoo 

0.64Y1, + 0.72¥o; + 0.645, — Yoo = 0.0324, and Yao = 0.64; + 0.72Ya1 + 0.64¥41 — ¥3q = 0.023 

Chapter 20 

Section 20.2 
1. (a) ule, y) = 50 sin (72/3) [cosh (ry/3) — coth (27/3) sinh (wy/3)]. NOTE: Our results can sometimes be sim- 
plified using identities such as sinh (A + B) = sinh Acosh B tcosh - 4sinh Band cosh (A +B) = cosh Acosh B+ 

b[(2 3] 
sinh A sinh B. Using the former, we can express our solution, alternatively, as u(x, y) = 50 sin 4 Ser ; 

Hl 
Ih

 
o+

 

    

    

    

    

(d) u(z,y) = SOP An sin 4 (sinh 4S — tanh 245 cosh “F"), where (by half-range sine formulas) u(,0) = 

ST ~ fn tanh Ann sin aa gives -A, tanh =4* ADE oon 5 af. u(z, 0) sin 4 AES dx or 

A, =~} coth ann [26 , sin 222 dr = 2 co oth ant T(—1)" — cos 2a 
(h) ule, ) = ye 3. \, (sinh 222 ne. tanh Hae cosh ) sin a where (by quarter-range sine formulas) A, = 

aa cos “F coth a W u(t, y= (sinh 3 um tanh 97 cosh on xc)sinday 2. (a) u(2.5,1) = 6.07 (4 terms), 

u(2.5,0.5) = 17.48 (10 terms), u(2.5, 0. 2) = 33.87 (27 terms), u(2.5, 0.1) = 41.60 (51 terms). “Why are more terms 

needed as y ~> 0? When y = O then u(x,0) = 50H (x — 2) is ‘ligcontinuous so its Fourier series will converge 

very slowly indeed. As y increases from 0 the solution u(a, y) becomes a more gradually varying function of x, so 

the series becomes more rapidly convergent. We urge you to use the series to evaluate u(2.5,0), Le., right on the 

boundary. How many terms are needed to achieve two-decimal-place accuracy? 4. u(z,y) = U1 + (ug ~ uy) e+ 
f . . 5 a pb : . 

Soy (An sinh “= + B, cosh 4f) sin “=, where B,, is given by By = F fo [p(y) wr — (ug — ui) #] sin 4 dy and 
9 phe p 

ute + B, cosh 4% = § fo (f(y) — ur — (ug — ur) #] sin 4* dy. Of course, to ‘complete 

the evaluation we need to specify rly) and f(y 1). 6. Using +x, in the first part of the solution, your solution should 

be identical to the solution, given above, to Exercise 4 but with p(y) changed to uy and f(y) changed to ua. 

10. (a) u(x, y) = 10-8 it 3... @ SID Bie ™@/2 13, u(x, y) = 204+60+ 50) sin “F2(A, erty/3.4 B, en nry/§), 

where A, +B, = 2 ur 90 - 6. sin “22 dz. The latter is one equation in the two unknowns A, and By, so we 

then 4, is given ‘by A, sinh 222 

5
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can choose A,, arbitrarily and use the equation to solve for B,. Andit A, #0 then the A,,e""¥/5 term is unbounded 

    

on the semi-infinite strip. 15. (a) u(a, y) is given by (15.2), where U(x, 1 y) = ~fat yoP sin “£4, cosh ae 
ney _ £ _ nore _. Lrcosh (umb/a) , By, sinh “**); A, = - fo ( av ~ x")sin “=£ dx and By, = “Shh Guwb]a Ay 

19. (a) ula, y) = (At Bay(c 4 Dy) HB cosh wa + F’ sinh Ka')(G cosh ay + H sinh «y), so-u(a,0) = 0 gives Cl = G = 0sou(r,y) = (P+Qr)y+(Reosh xv+S sinh wax) sin ny. ha wa, 3)+5uy(x,3) = OgivesP =Q=0 and 

  

sin 34+54cos3a = 0 with Rand S remaining arbitrary. Thus, u(2, =ye (Ry, cosh Ant +S, sinh Ry, 2) sin Rnd) 
where «,,’s are the roots of tank = ~5x. Finally, u(0, y) = 0 gives me = Qand u(d,y) = 100 gives 5, sinh 46 in = (100. sin Fy y) a! 400 lt cos Bain 

" / Binney sine egy 5° Sy = Sinh day Gagcsingn, NOTE: The Sturm—Liouville problem is Y” + «&?Y = 0on (0,3) with 
Y(O) = 0 and (3) + 5Y'(3) = 0, so the inner er product weight | unction is 1.| The Maple fsolve command gives 

= 0.6266, h2 = 1.6119, Ky = 2.0432. hy = 3.6833. Ks 4.7265 so the first five terms of the series solution 
are w(2, 1) = 18.6150 + 1.4048 + 0.0650 — 0.0056 — 0. 0012 4 +r se 20,078. [Drawing ne domain and boundary 
conditions, this value seems reasonable. If. on the other hand, we obtained u(2, 1) = 83 or 2.7, say, we would surely 
understand the calculation to be erroneous. | 

Section 20.3 
2. (a) u(r, 0) = 1000/m + SO (Aar” + Bar") sinnd, where A, = 200272HED"" ag B, = 2 GD*=2" rhe 27h On nm 27k gn (©) u(r.) = LOO8/m + 2 SY Largan kr) sin nO (e) u(r, 0) = 10022 
(g) u(r,8) = 100 — 109 Ss So 2/3 oo , s ne NOTE: Applying the condition u(3,@) = 0 last gives 
-100= 37, A,8! 3 cos 4S ue . Re- “expressing the cos (n0/3) ) as cos aa we can identify “2L” = 37,s0"L” = 39/2 
in the quarter-range cosine formulas. 3. (a) u(r, 0) = 50+ 20rcos@ 4. Boundedness and the conditions at? = 0 
and @ = 27 give u(r,@) = A+ S B,b"!? cos #2 20 Finally, u(v,@) = 50+ 50sing = A+ 3° B,b"/? cos "2 a 

+ _ ,. 100 Ct n/2 nd gives (by the half-range cosine formulas) A and B,. The result is u(r,@) = 50 + Mi 3... Foy (f) cos 4. 
No, the solution does not depend on the material. The ‘unsteady diffusion equation ae 72) uo== u, does contain 
the diffusivity a* of the material but in steady state u, == O and the a* cancels out. 16. (a) u(r,z) = (A + 
Binr)\(E + Fz) + (CJo(nr) + DYo(ar)|(Ge** + Hee "*). Boundedness gives u(r, 2) = P+ Qdo(Kr)e~**, and 

sin (nn/?) ( 

u(b, 2) = 0 gives P = = 0 and Jo(nb) = = Oork = 2n/b = Ky (n = 1.2,...), where 2, is the nth positive root of 
? Jo(x) = 0. Finally, u(r.c) = SOF Qi Jo(knrje7*** where Qn = me f. F@)Jo(ear)rdr. (b) ulr,z) = 

(4+ Blor\(2+F 2) +(Clo(ar + DKo(ar)|(G cos rz + H sin x2). Boundedness as r 3 0 gives B = D = Oand 
boundedness as z + -koo gives F = 0, sou(r,z) = P+ Io(ar)(Q coske+Rsin az). We can superimpose any num- 
ber of product solutions for different «’s so let us anticipate the ye series ae of u(b, z) and write u(r, z) = 
P+SP 1p (425) (Qn, cos ate + R, sin “E). Then u(b,z) = P+ SOY], Oe) (Qn cos A + Ry sin 282) 
gives (From “ formulas for the Fourier series of a periodic function. with neriod 2L) P,Qn, and R,. The result 

  

  

is u(r,c) = 504 , yee. * ARES sin AE. 19. (a) ul(p.@) = So Anp”"Pr(cos 6), ulp, q/2) =0= 
yy Lao" Pain) so we need A, P,,(0) = 0 for each n = 0,1,2,.... But me = ; form = 1,3,...s0 we learn that 
Ag, Ao, Ay,... are zero while Ay. Ay,... remain arbitrary. Thus far. then, u(p, ¢ =v", A np" P, (cos @). Fi- 

\ ang Aon (100. P, (42) . 100? ( .. bans 7 nally, u(c,@) = 100 = ry Ane" Pa(s) so Aye” = Pet pes = far wran = 100(2n + 1) fo Pr(pe) dps. 
Evaluating these integrals gives Ay = 300/(2c), 4s = —700/(8e3), As = 1100/(16c°). Ay = —1500[5/(128e" 
le = 190 O17 /(256e7)],..., so u(p, ft) = 150 (2 2) Pi (ps) — ie (£)" P3(pe) + + 22 (2) Ps(p) - ae (4) Po(pt) + 
53 25 (2) oti) ~ 7+. Asa partial check let us compute uw on the z axis (so é = 0. je = Lat p = c/2. Since 

1) = 1. we have u(e/2,y = 1) = 75 — 10.94 + 2.15 ~ 0.46 + 0.10 —--- & 65.85 which looks reason- 
tte since ihe point is roughly midway between the flat bottom (on which u = 0) and the pen top (on which 
u = 100), and the surface area of the hemisphere is twice that of the flat bottom. (b) u(p, @) => Anp" Py(cos @). 
On o = w/2 the unit outward normal is h = €g SOU, = Vuen = Vu- eg = 1 Bu Thus, 0 = Oon 
o = 7/2 gives ug = 0 there, so ug(p,7/2) = 0 = Mo Ane’ *Pi( (cos #)(~ sin 5) = ~ do AnPi(0)p". Since 
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P'(0) = 0 for even n’s and P/(0) ¢ 0 for odd n’s, it follows that Ay = Ag = --- = 0 with Ap, Ag, Aa,.-. 
remaining arbitrary, so u(p,@) = 33) Ano” 'P,(cos@). Finally, u(c,d) = 100 = 2, Ane P(t) gives 

Ay = 100224 l f P,, (yt) djs. Integration gives Ag = 100, Ag = Aq = +--+ = 0 so the solution is simply the leading 

term, u(p,@) = 100, which does indeed satisfy the PDE and boundary conditions. 

Section 20.4 

1. (a) ulv,y) = (L00y/m) for dé/[(E - 2)? + y?] = 50 ~ “8 tant (-2) where tan~!() is to be taken as 

the “principal value,’ which is an odd he of its argument and which varies continuously from —7/2 at () = 

~oo, through 0 at () = 0, to +7/2 at () = +00. Check: [fc > 0 and y - 0 through positive values then 

u —> 50 — te ay i (— oo) = 50 ho = = 100, and if x < 0 and y - O through positive values then u -+ 
50 — (100/7) t tan” + (co) = 0, in agreement with the boundary conditions. NOTE: This problem is solved most easily 

using separation of variables i in polar coordinates (the region being 0 <r < 00,0 < @ < 7) for in the solution form 

ulr, 8) = (A+ Blnr)(C + D0)+ (Er® + Fr-")(Gcos k@ + H sin k@) boundedness as r + 0 and as r —> 00 gives 
B=E=F =0sou= P+Q6. Then u(r, 0) = 100 = P and u(r, 7) =0 = P + 7Q give u(r, 0) = 100(1 ~ 4). 

If we write the latter as u(r,@) = 100(1 ~ + tan~! #) it doesn’t look the same as our earlier solution but it must be 

remembered that tan~! in the first solution i is the branch of tan! lying between ~7/2 and 7/2, whereas tan~+ in 

the second solution is the branch lying between 0 and 7 (because 0 < ¢ < 7). 

Section 20.5 

l(@a=G=y7=6 = 1 exceptatc, where a = Y12 — 3 and 6 = 3/4; at e, where a = J/8 — 2; and at g, where 

6 = 3/4, Results: ug = 14.77, up = 18.24, ue = 19.76, ug = 13.12, ue = 17.97, up = 14.58  (d) Partial results: 

Ua = 37.02, u, = 65.83, ue = 64.89 (g) Partial results: ug = 48.26, u, = 57.45, ue = 45.71. NOTE: At a we 

use the average value Uy = (0+ 50)/2 = 25. Similarly, at e we use Us = 25. 2. (b) The solution is symmetric 

about the lines z = 0, y = 0, y = x, and y = —x, so the unknowns reduce to u(0, 0.8), w(0.2,0.8), u(0.4, 0.8). 
u(0.6, 0.8), and u(0.8, 0.8), which values are found to be 50.30, 50.60, 52.08, 57.74, and 78.87, respectively. NOTE: 

From a sketch of the region, the grid, and the boundary conditions, these results look correct: 3. (b) Ata, h = 0.5, 

az 682-7262 hatbh=alaea=z=lgpg=zy=d=05ateh=la=y=1,8 = 3 = 0.5; and so 

on. tg = 6.051, u. = 0.511, u, = 0.060, ug = 0.016, ue = 0.004, ug = 0.001, un = te, Ui = Ua, Up = Ud, 

Uk = Ue, Up = Ug. Observe that the boundary condition input u = 50 at the ends are “felt,” to any appreciable degree, 

only within a couple of end-widths of those ends; u, is already only 0.511, and uy, uc,..., Ug are even smaller. This 

numerical result further illustrates the idea stated in Comment 3 of Example | (Section 20.2). 4, (a) Partial results: 

Denoting the centerline points (0.25, 0.5), (0.5, 0.5),..., (2.5, 0.5) as a,6, c,d, e, f, respectively, the values obtained 

there are 53.13, 26.17, 12.40, 5.48, 1.11,0.08.  (b) By comparison, the exact values at those points are 54.47, 26.10, 

12.03, 5.50, 1.14, 0.05. 6. (a) The Taylor expansions of u(x, y) about xj, yx, first with a step fA to the right and then 

with a step A to the left, are 

1 : 1 : 1 4 
U(@ pat, Ur) = _ ula Fy Un) + Uy (Ly, Yeh + i 5 Usa (; Lj) yah? + 6 Unwa (Ly; yh + py lewwe (Lj yn )hs heey 

1 : 1 : 1 
ul@j—15 Yk) = u(2y, YR) — tty (ey, Y Ue )h + 5 tee (2 Uys YR )R? _ gtaen(2 ty yn )h? + + yg tena (5 Uk )re my 

Addition gives tee(@;, ye) = fultysi, Ye) —2u(2y, ve) tuley—1, yx)|/h? plus terms of order A? and higher. Similarly 

for Uyy (&j .¥s). When we drop those higher-order terms. in deriving (5), we incur a truncation error that is of order 

O(h”). (c) hy = 1/4 gives Ucenter = 21.339, h = 1/6 gives Ucenter = 20.570, and the exact solution 18 Ucenter = 

19.927. Then 19.927 ~ 21.839 = C'(1/4)? and 19.927 — 20.570 = C (1/6)?, which give p = 1.94.
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Chapter 21 

Section 21.2 
KX (a2—-1i ()-AR- Tei Iba)     = |6 + 2i[ = 40 = 6.32, lay] + [eo] = W138 + V17 = 7.73     By + £9 

Section 21.3 

BM2@<u<c3Bl<vd2 ue ~Level- we —2<2u<0 %(a)—e? (d)sin3cosh a +icos3sinh xr 

(g) 2cosh tsinl aon 2cos lsinh 1 

    

  

cosh 2— 2 “cosh 2—cos 2 

16. (a) fo eo sinwa dx = Im f° ee)" de = Ime’ [iw — 825° = Im [1/(1 — iw)] = w/(1 + w*) 

ayo fp) mm Poet! _ Foe’! (kh—-mw")—iwe mn (k—mw?) sin wi—we cos wt 
18. (a) vp v(t ) = Im (omy poe = Im (kh—- ee Jiwe (k-mw*)-iwe = Fo (Aim) but ce - 

(d) a(t) = — $3 (5 sin St + cos 5E) 

Section 21.4 

lL. fa)r = 38,09 = -a/2 rad (Nr = 2V37, & = —1.406 rad 4. (a) (-1 +2)! = 32e87/? (polar) = 
—32i (Cartesian); (-1 +i) = ee (polar) = —1024 (Cartesian) 5. (a) i!/? = eft/4 etir/4, 1/5 
ei /1O ete/2 eid*/10 elSR/O elTR/IO 6, (a) log (—2) = In2+(2k+1)ri (k= 0,41, 42,...) 8. (a) (21)? = 
Vqer/s V4e™ YAebri/s. (2738/2 = ficwile V8etri/4. (2i)* == et n2 oi i(l+4h) ar" /2 (kh =0,+£1,42,...) 

9, (a) (2i)' = ta/B42k moos (In 2) + isin (In2)}; (Qé)!-! = elt? +"/2+ 2k cog (2 4 2kw — In 2) 

+7 sin (2 4 + 2k — In 2) (A= O,+1,+2,...) 11. (a) log (—32) = In3 - is, J-3t= 

“
a
l
:
 

Section 21.5 

10. (a) f!(z) = ~sing LL. (d) f{(c) = -(Q224 3i)/(=" 4 + 3iz ~ 2)? forall z A —i, —2i so f(z) is analytic for all 
2A -i,-2i 15. (a) Harmonic for all 2: u(z,y) = e" siny +: f(c) = e* + constant 

Chapter 22 

Section 22.2 

5. (a) e* analytic at < = 0 and oe = e* # 0 there, so yes. conformal at z = 0 (d) iz” analytic at z = 0 but 

d (jz?) = Qiz = 0 there. so no, not conformal at z = 0) dz 

Section 22.3 

9. (a) Let 2) = i, co = 0. t3 = —t and wy = 2i,w. = 2,w3 = ~22. Then (6.1) gives w = oars Note that 

this mapping must send the half plane « < 0 (rather than x > 0) into the interior jw] < 2 because as we walk 

along the boundary curve x = 0 from z, to 22 to zy the region is on our right, so when we walk from wy, to wg to 

ws the image region will again be our right. To obtain a second such mapping we could change 21 to 52, say, and 

keep 29, 2y, Wy. W2,w, unchanged. (b) See the answer to part ( > 2 we can keep 

the z,’s unchanged and reverse the sequence of wy’s! wy = —2i,wg = 2.uy = 2. IO (ays = 0+ w = i, 

=lsw-=l+ic = «© — w = 1 so the image is the interior of the circle through those three w points. To 

see that it is the interior and not the exterior we can use the idea presented in Exercise 8 or we can simply check one 

point: ¢.g.. 2 = 7 is outside of D, so its image w = oo must be outside of DD’. (e) The image is the interior of a 

“crescent” with vertices at w = Land w = 7. One arc of the crescent passes through w = 1 + i and the other passes 

through w = 247. U1. (a) The image D’ is bounded by a straight line from 0 + ico down to i, then a semicircle 

from i to (1 + 2)/2 to 0, then a straight line from 0 to 0 — ico and is the region to the right of that boundary. (d) D’ 

is the 90° sector with vertex at w = 2, with one edge running from 2 to 2 — ?oo and the other edge running from 2 
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to -oo. 14. (a) The mapping w = (2 ~ 4)/(2 + 4) sends z = —d4 tow = co and z = 4tow = 0. The image D’ 
is the wedge with vertex at w = 0 with one edge from w = 0 to infinity through w = (3 + 4/6 and with the other 

edge from w = 0 to infinity through w = (3 ~ 4i}/5. Then V = Ad+ BL & = Oon gd = ~a and © = 100 on 

o = +o (where a = tan7! 4) gives VW = 50(1+ ®). Butd = ne (v/u) = tan! [8y/(a? + y? — 16)] because 
" ¢ vn 9 9 e 4 ran} (8y/ (2? +y? -16 

u = (a? + y? ~ 16)/[(@ +4)? + y?) and v = 8y/[(x + 4)? + y71, so Wa, (2, y) = 50 (1 + fee Be), 

where tan~!’s are between —7/2 and m/2. Let us check as follows Ata = Oand y = 10 we have (0,10) = 

50(1 + 57) == 91.0, which seems reasonable. Further, as we approach infinity along any ray y = ma, w -> 50, 

which is also correct. (b) In entry 4, let vg = 2 and let 2) > +00. Thena ~ (22, + 2x, V3)/a, 4 24+ V3 

and Ro ~ (221 _ ayV3)/ay 32-73. ) = A+ Bln p and the boundary conditions give Y = 20 + 1oiee 

  

Inf 

or 20 + 5 nee We can find u(x, y) and v(az,y) and then put p? = way) + u?(x,y) but it is simpler to write 
1 2 2 © 

2 2 | sa | (e-ajtiy {Cea} -biyl* cx htm ay\ ox (2-1) _ 

p’ = jeu? ~~ JF ag~1 = | ese ~~ Haa—L)+-iayl?? 0 w(x, y) = 20+ int Ti In (av—1)*4 - where = 2 v3 

  

    
and a = 2+ 7/3. As acheck, let us compute w (15 5,0) = 25.49, which looks good. [Do you see > why (1.5, 0) should 

be just be slightly greater than 25?] (c) w= aa will map PD into the strip -l <u <0. 

Section 22.4 

4, (a) D’ is the upper half plane and & = 0 on the entire u axis except on 0 <u < 1, where VW = 20, Then (u,v) = 
2 2 _— —~lu- - 2 . , ots . 

= fo 7 Ca (itis = 20 (tan 1 “ — tan 1 ual), Butw = w+iv = e* = e"(cosy + isiny) sou = e* cosy, 

v= e*siny, and u(z,y) = au jtan7! (cot y) — tan7? ( enyeh) where the tan7!’s are between 7/2 and e* siny 

+a /2. As acheck, observe that on the midline of the strip v(a, 7/2) = 2 “tan ~!Q—tan7!(-e"*)) = = tan7!e7* 

does tend to 10 as x —+ —9oo (as it should) and to 0 as 2 — +00 (as it should). (c) (12) in Section 20.4 gives W(u,u) = 

2 — 28 tan~! (#44) so w(a,y) = B — Stan} (S54**) where —7/2 < tan7!() < m/2. w(2,2) = 12.33 
Quy 

  

    (which looks ao (g) (u,v) = 200 + 8 tan7! (+) so w(2,y) = 200 — 8 tann! (sence) 

where ~7/2 <tan7'() < m/2. Note that 1 ve 5, ) —> 200 as y > oo, as it should. Also. w(0.5, 0.1) = 39.4, 

(j) Wa, y) = 30 — B(a? = y2)/2: v1, 0) = 27.5, (0.6, -0.4) = 29.5 

Section 22.5 

3. (a) D’ is the wedge 0 < @ < 3n/2 S). the first three quadrants of the w plane): Y(0,v) = sin [In (—v)!; 

Wau, 0) = repro lnl2, 0) = (i/et \(—5) = —5/u. Since D’ is better suited to the polar coordinates p, @, let us 

restate the mapped boundary conditions in terms of p, @: U(p, 37/2) = sin (In p) along @ = 37/2, and Vy4(p,0) = 5 

along @ = 0. To obtain the former, recall the directional derivative formula Vy = éy- VW. On @ = 0, én 

is ~@€y soUy = —-e€,- VY = ~5¥(p,0) and setting this equal to —5/p gives Vy(p,0) = 5.  (d) D' is the 

quarter of the unit disk 0 < p < 1,0 < @ < w/2, On @ = 0, VU = 5e* = 5u;onp = 1, Vy = 2y = 

2cos*!u; on @ = 7/2, Vy = 5/e* = 5/v. Or, in terms of polar variables p,¢, U(p,0) = 5p, V,(1,6) = 2¢, 
Wa(p,7/2) = 5. (2) D’ is the unit disk p < 1. The negative y axis maps to the lower semicircle so, in terms 

of the polar coordinates p,¢, V(1,6) = 50 on w < @ < 2x. The positive y axis maps to the upper semicircle 

so, since y = 2u/[(1 ~ uw)? + uv?) = v/(1 — u) = sind/(1 — cosé), W(1,¢) = 50exp[—sind/(1 — cos@)] on 
0<@< m7. (j) D’ is bounded below by v = 0 (—co < u < 1) and on the right by u = 1 (0 <u < 9%). The 
mapped boundary conditions are: W(u,0) = sin\/—u on —20 < u < 0; W,(u, a = —l/(2f/u)on0<u< lh 

WL, v) = 2exp [— -J/ViFv-1 1/V2] since v = 2\/1 + y2 y gives y = V V1 + v2 — 1/V2 by squaring and using 
the quadratic formula. 

Section 22.6 

2. (a) The mapping ¢ = 2 gives the flow Ws = UC? in the € plane and, hence, w = U(2")? = Uz" in the z plane. 

u(z,y) = 4Ua(2* — 3y), ula, y) = dU y(y? — 32"), 6(2,y) = Ulla? = y°)? = de?) we, y) = AU ya? — y?). 
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u(0,0) = v{0, we 0 so the corner is a stagnation point. (b) The mapping ¢ = 2°/* gives the horizontal flow 
dW/de = U, WW = UC, wa U4, dw/dz = = u— iv gives u(r, 6) = pin COS S, v7, 0) = =F =a sin §. Rather 
than the origin being a Stagnation point, w —> co and vu —+ co as r + 0. (More generally, inside corners are stagnation 

points; outside corners are singular points.) 4. (a) Itis the flow given in Example 1, for any Up > 0. 

Chapter 23 

Section 23.2 
I. (a) $(1 +2) (d) mi 3. (a) Maxim is V8, and L = V5, so || < (v8) vee 128/10 

(b) \e°| = [eth er lel = =e" < eonC.and L = 3V2. so [I < 3y2¢ | == e7™® < e* on C, and 

L = 3/2. so |I| < 3V2e? (d) max [1/2] = 1/ min |z| = 1/(4 — J3), and L = 87, so me - 8 /(4 ~ V5) 

Section 23.3 
4. (a) f, adz = faxd(el’) =ifwel’ dd =i pen 

: ICL JQ 

+3 lie outside of Cs (g) ~2ni/5 
: . lz Tas ~1 la _ opal Ll di _ OD fey oes = Sy Ge + I Bt oe +S oe = 

we -eyt Jlty : 

  

              

     

cos O(cos @ + isin@)d0 = ri (d) 0 by Cauchy’s theorem since 

  

     Loe 1 
6. (a) Since 27° is analytic everywhere we can deform the contour to a straight line. Thus, fo eds = f, veda = 

  1/21 Wal=%4- $2 = wi-Wwi=0 AIl=-f +26, SS = —-20i + W(Qni) = Iwi 

Section 23.4 

2. (a) 2 27/246, 2°/24+3-Ti 3. (a) f zdz= = p= -5 (dd) fP cos 32 dz = 2832/0 = —sindt — _} sinh3 
(g) (e? _ 1/2 4 4. (2n + $)qi 

Section 23.5 
1. (a)2ni (d)—daisin1 (2) ri(sin3 — 3cos3) (7) 0 

Chapter 24 

Section 24.2 

           5. (a) Ratio test: D = i/Vv5 < lsoconvergent (d)¢c, —- 1 asn —- oo so (Theorem 24.2.2) divergent 

for all 7, so ¢, does not tend to 0 as n -+ oo; hence, divergent (Theorem 24.2.2) 6. (a) |z} < 1 (da) |z +7} < Le 

                          (g)iz) <1 8. (aj Tt z—1} < 1 so (Theorem 24.2.8) it is the Taylor series of the sum function, 

and it represents the sum function, in that disk. (d) Yes, itis the Taylor series of 14- 2° (about z = 0) and it represents 

9, (a) 1 (b) J10 10. (a) Va — V6, namely, the distance from the origin to the closer of     the function in jz 

the two roots of 22 — 22 +32 +1 = 0 LL (a) sins = = - con -+ Aa? — R= co (b)sinzg = 

sina + (cosa)t — S34 — Ssees + sina pA +.:-+,R = oo, where t = <~a,sina = = sin( —i) = sin2cosi — 

sinicos2 <= sin2coshl — isinhicos2,cosa = cos2cosh1 + isin2sinh1 (d) Let z® = wi. ef = ev = 

ltwe+t aw? + ii we foe =e Le r8 4 Hel? + qe +e R=oo (a) f = ghf2 f= gol? fl = 
L.-3/2) ue Hf2 gg wl /2 ce +d (z— l= aol 3/2¢ 5 —1) + stay b°/? (2 — 1) foes 

/e fits + —l)-qanle-1 y+ gay (2 - 1)? - | (infs ~ 1] < 1), where, according to the branch cut, 

the 11/2 factor is a (eee 1. -1)- gph ls ~— 1)? + papi 9/2(z — 1)8 a3 

1 ) p.  4\2 : . ‘ ti |) if. = afi Met) ghee eget lie +qhy    
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    + gan ( ~ 1s - | infz—@]<1 16. (a)tanz = 2+ $284 Bz? + Phe? +. in[2| < 1/2 

(d)L— 2 — 22 4529 — 724 — 2° + 2326 — --- in fz] < Va (g) b+ he + bo? + bed - dex" ~ £325 — 

  

To determine the region of convergence, we seek the root of 2 — sin z = 0 that i is Closest to the origin. We could write 

2~sin (a + ty) = 0, put in sin (a + iy) = sinzcosiy + sinzycosz = sinzcoshy + isinhycos 2, equate real and 
imaginary parts to 0 and solve the resulting two equations for « and y. But it is simpler to write (e’* ~ e~**) /(2i) = 2 
ort ~ 1/t = 4% where t = e'*. Then t? — dit —1 = O gives t = (24 V/3)i, so iz = log [(2 + V3)i] = In (2 £ V3) + 
i(% + 2nr) forn = 0,+1,42,.... Hence, z = % + 2nx~iln (2+ V3) = % + 2nm + 1.317%. The closest of these 

(1/2)? + (L317)? = 2.05.     to the origin corresponds to n = 0 and gives the radius of convergence as - 

Section 24.3 

  

       

4a) p= Lo oat () ey = po atiget ” z= uo ae 5. (a)sin? = Lig" (ae eet 
inQ< |2| <oo (b) Taylor series in |z + 2| <2: t= -4 507° CP ; - Laurent series in 2 <|z+2|<oo: += 
Vo ae 6f()=a(1+t+a4+-0)= a otoe (21) = -£ +4. 

Section 24.4 

2. (a) First-order zeros at z = 0, z = 1 (d) First-order zero at z = 0, second-order zeros at z = (2n + 1)F for 

n= 0,1 + 2,... 3. (a) Second-order pole at z = 0 (d) First-order pole at z = ~2  (g) Second-order pole e at 

= 0, third-order poles at z = nm forn = £1,+2,... (j) Clearly analytic 1 for all z * 0. For z = 0 expand sinh in 
a Taylor series in ¢, sinht = t+ t° + Ht? +--+ for [t] < 00, sosinht = +454 bay. in |1/z] < oo, 
namely, in the annulus 0 < [z| < co. Essential singulatity atz = 0. 4. (a) No, essential singularity there 

(d) Yes (g) No, essential singularity there. (j) Yes 5. (a) First-order pole. The key is to realize that the series does 

not converge in 0 < |z| < R for some R, butin 1 < |z| < oo. Thus, we cannot use the series to classify the singularity 
(if any) at z = 0. Rather, proceed as in Exercise 6 of Section 24.3. 

Section 24.5 

1. (a)Q (d)12mi (e) wi 2. (a) rV2/(4a9) (d) r/4 (g) 37 /(4e7) 3. (a) e/2 (d) e/4 (g) 5r/16 (ij) e/V2 
6. (a) m/sin(wa) (c)8m/(4V2) (d)0 9% (a) 20/(3V3) 
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equation, 265 

representation of Bessel 

function, 243 

representation of Legendre 

polynomial, 217 

representations (general), [33 

transform, 247 

integrating factor method, 22, 23, 

66 
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modeling the ODE. 10 

solution by Laplace transform, 
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ordinary differential equation, 2 
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Cauchy—Euler, 118 

change-of-type equation, 948 
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first order, [8 

general solution, 83, 86, 134 

homogeneous, 7, 61, 117, 134 

limit cycle, 374 

linear, 7 

linear first-order, 19 

nonhomogeneous, 7 

order, 4 

reducible to Bessel, 238 

Riccati, 33, 129 

separable. 46 

solution, 4 

ordinary point, 193 

orientable surface, 758 
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orthogonal, 426, 684, 882 
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separation, 695 
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p-series, 219, 856, 875 

parabolic PDE, 947
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differential equation (PDE), 3 

fraction expansion, 49, 56, 
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complex function method, 156 
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of ODE, 134 

of PDE, 1032 

partition, 718, 723 
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Pauli spin matrix, 599 
PDE, 3 
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pendulum: 

governing ODE, 3 

grandfather clock, 115 

in phase plane, 363 
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period-& oscillation, 384 
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plane, 339 
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Smale, S., 338 

small-é solution for finite rod, 990 

Smith, G. D., 1057 

Smith, O. K., 373 

Smith, P., 382, 384 

smooth, 739 

curve, 715 

surface, 727 

Snider, A. D., [218 

Sokolnikoff, I. S., 648. 877 

solenoidal field, 840 

solution: 

curve, 21 

of linear algebraic 

equations, 393 

of ODE. 4 

of PDE, 944 

set, 393 

space, 438, 502 

span, 439 

spherical coordinates, 705, 752, 

786, 821, 1081 

spiral (focus), 354 

square matrix, 472 

stability and convergence, 324, 

1004 

stability of singular point, 352 

stability of solution, 105 

stability of numerical ODE 

solution, 324 

strong stability, 327 

Index [323 

weak stability, 327 

stability of numerical PDE 

solution, 1004 

standard basis, 452 

standing wave, 1026, 1029 

star (proper node), 356 

steady-state solution, 37, 154, 

959, 1123 

Stegun, 1, 983 

stiffness matrix, 515 

Stirling’s formula, 641 

stochastic (Markov) matrix, 549 

stoichiometry, 499 

Stoker, J. J., 338, 722 

Stokes’s theorem, 814 

Stokes, G. G., 810, 874 

stream function, 839, 1176 

streamline, 759, 1176 

Strogatz, S. H., 366 

strongly stable method, 327 

Struble, R. A., 435 

Struik, D. J., 722 

Sturm, C., 887 

Sturm—Liouville problem, 887, 

965, 1029, 1070, 1080 

subharmonic oscillation, 384 

submatrix, 496 

subspace, 439 

successive overrelaxation (SOR), 

1009, 1101 

superposition of solutions, 85, 

136, 946 
surface, 733 

area element, 739 

closed, 814 

normal to 734, 797 
open, 814 

orientable, 758 

tangent plane to, 735 

surface integral, 739, 743 

suspension bridge cable, [4 

symmetric matrix, 554 

system of ODE’s, 157 

existence and uniqueness, 160 

numerical solution, 313 

solution by elimination, 162



  

1324 Index 

T 

tangent: 

line, 361, 698 

plane, 361,715, 721, 735, 737 

vector, 698, 715, 720 

tangent-line method, 293 

Taylor series, 180, 632, 638, [215 

Taylor’s formula, 631, 638 

telegraph equations, 979 

telephone equations. 979 

terminal velocity, 44 

termwise: 

differentiation, 875. {222 

integration, 879, 1222 

manipulation of power series, 

179 

Thomson, W. T., 1033. . 

time constant, 955 

Timoshenko, S., 862 

Titchmarsh, E. C.. 877 

Tolstoy, G. P.. 877 

transcendental equation, 392. 642 

transform: 
integral. 247 

Fourier, 921 Laplace. 247 

transformation, 530. 614 

invertible. 535 

linear. 532 
matrix, 534 

one-to-one, 535 

onto, 535 

transient solution, 37, 154 

transpose matrix. 481 

trapezoidal rule. 3 12 

traveling wave, 1027 

triangle inequality. 425, 601, 1111 

triangular matrix, 480 

triangularization, 49 | 

Tricomi equation, 948 

tridiagonal matrix, 552. 566, 1006 

trigonometric complex functions, 

1118 

trigonometric series, 850 

triple integral, 727 

Tromba, A. J., 725, 759, 822 

truncation error, 296, 1093 

two-dimensional unsteady 

diffusion, 1043 

U 

unbounded, 213 

undetermined coefficients, | 35, 

1219 

uniform convergence. 874 

uniqueness for: 

diffusion equation, 979 

Poisson equation, 1069 

wave equation, 1033 

unit impulse function, 276 

unit step function, 269 

unitary matrix. 608 

universal gravitational constant, 53 

upper triangular matrix, 490 

Vv 

van der Mark, J.. 373 

van der Pol. B.. 372. 373 

yan der Pol equation. 372 

van der Waals equation. 655 

Vandermonde determinant. A95 

variation of parameters. 27. 141 

vector, 413 

convergence. 884 

field, 759 

function, 695 

limit 696 

product. 685 

space dimension. 450 

space, 430. 

transformation, 530 

triple product. 693 

velocity. 699. 701, 722 

Verhulst. P. F.. 42 

Verhulst population model, 55 

vertical p-integral, 222 

vibrating: 

beam, 1033 

drumhead, 1042 

mass, 2, 10, [10, 115, 149, 

261, 362, 575 

masses, 159, 165, 557, 562 

membrane, 1035 

string, 1017, 1023 

visual perception, 375 

Viadimiroy, V., 1123 

Volterra’s predator-prey model, 367 

volume, 748 
element, 749 

integral, 752 

vorticity, 774 

Ww 

water waves, [022 

Watson, G. N.. 1199 

wave equation, 1020. 1035 

wave speed, 1029 

waves in arod, 1022 

weakly stable method. 327 

Weierstrass, K.. 874. | {40 

Weierstrass Af-test. 875 

Wertheimer. M.. 377 

Widder. D. V.. 253 

Wronski. J. M. H.. 78 

Wronskian. 78 

Wylie, C.R.. 588 

Yeshua Hamashiach., XIX 

Z 

Zauderer, E., | 

zero of f(z), 1236 

zero vector space. 438


