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Preface

Strongly interacting many-body systems behave often like a system of weakly inter-
acting collective excitations. When this happens, it is theoretically advantageous
to replace the original action involving the fundamental fields (electrons, nucleons,
3He, “He atoms, quarks etc.) by another action in which only certain collective ex-
citations appear as independent quantum fields. Mathematically, such replacements
can be performed in many different ways without changing the physical content of
the initial theory. Experimental understanding of the important processes involved
can help theorists to identify the dominant collective excitations. If they possess
only weak residual interactions, these can be treated perturbatively. The associated
collective field theory greatly simplifies the approximate description of the physical
system.

It is the purpose of this book to discuss some basic techniques for deriving such
collective field theories. They are based on Feynman’s functional integral formula-
tion of quantum field theory. In this formulation, the transformation to collective
fields amounts to mere changes of integration variables in functional integrals.

Systems of charged particles may show excitations of a type whose quanta are
called plasmons. For their description, a real field depending on one space and one
time variable is most convenient. If the particles form bound states, a complex field
depending on two spacetime coordinates renders the most economic description.
Such fields are bilocal, and are referred to as pair fields. If the attractive potential
is of short range, the bilocal field simplifies to a local field. This has led to the field
theory of superconductivity by Ginzburg and Landau. A bilocal theory of this type
has been used in elementary-particle physics to explain the observable properties of
strongly interacting mesons.

The change of integration variables in path integrals will be shown to correspond
to an exact resummation of the perturbation series, thereby accounting for phenom-
ena which cannot be described perturbatively in terms of fundamental particles.
The path formulation has the great advantage of translating all quantum effects
among the fundamental particles completely into the field language of collective ex-
citations. All fluctuation corrections may be computed using only propagators and
interaction vertices of the collective fields.

The method becomes unreliable if several collective effects compete with each
other. An example is a gas of electrons and protons at low density where the attrac-
tive forces can produce hydrogen atoms. They are absent in a description involving
a plasmon field. A mixture of plasmon and pair effects is needed to describe these.
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Another example is superfluid *He, where pairing forces are necessary to produce
the superfluid phase transition. Here plasma-like magnetic excitations called para-
magnons provide strong corrections. In particular, they are necessary to obtain
the pairing in the first place. If we want to tackle such mixed phenomena, another
technique must be used called variational perturbation theory.

In Chapter 1, I explain the mathematical method of changing from one field
description to another by going over to collective fields representing the dominant
collective excitations. In Chapters 2 and 3, I illustrate this method by discussing
simple systems such as an electron gas or a superconductor. At the end of Chapter
3, I had good help from my collaborator S.-S. Xue, with whom I wrote the basic
strong-coupling paper (arxiv:cond-mat/1708.04023), that is cited as Ref. [89] on
page 143. In Chapter 4, I apply the technique to superfluid *He. In Chapter 5, I
use the field theoretic methods to study physically observable phenomena in liquid
crystals. In Chapter 6, finally, I illustrate the working of the theory by treating
some simple solvable models.

I want to thank my wife Dr. Annemarie Kleinert for her great patience with
me while writing this book. Although her field of interest is French Literature and
History (her homepage https://a.klnrt.de), and thus completely different from mine,
her careful reading detected many errors. Without her permanent reminding me of
the still missing explanations of certain questions I could never have completed this
work. My son Michael, who just received his PhD in experimental physics, deserves
the credit of asking many relevant questions and making me improve my sometimes
too formal manuscript.

Berlin, December, 2017
H. Kleinert



Contents

1 Functional Integral Techniques 1
1.1 Nonrelativistic Fields . . . . . . ... ... ... ... .. ...... 2
1.1.1  Quantization of Free Fields . . . . . ... ... ... .... 2

1.1.2  Fluctuating Free Fields . . . .. .. ... ... ... .... 4

1.1.3  Interactions . . . . . . . . . ... ... 8

1.1.4  Normal Products . . . . . ... ... .. ... ... ..... 10

1.1.5  Functional Formulation . . . .. ... ... .. ... .... 14

1.1.6  Equivalence of Functional and Operator Methods . . . . . . 15

1.1.7  Grand-Canonical Ensembles at Zero Temperature . . . . . . 16

1.2 Relativistic Fields . . . . . . . . ... ... . ... .. 22
1.2.1 Lorentz and Poincaré Invariance . . . . . ... ... .. .. 22

1.2.2  Relativistic Free Scalar Fields . . . . . .. ... .. .. ... 27

1.2.3  Electromagnetic Fields . . . . . .. .. ... ... ... ... 31

1.2.4  Relativistic Free Fermi Fields . . . . . . . ... .. ... .. 34

1.2.5  Perturbation Theory of Relativistic Fields . . . . . .. ... 37

Notes and References . . . . . . . . . . . . ... L 39
2 Plasma Oscillations 41
2.1 General Formalism . . . . .. ... ... ... ... ... ...... 41
2.2 Physical Consequences . . . . .. .. ... ... ... ... 45
2.2.1  Zero Temperature . . . . . .. . .. ... ... 46

2.2.2  Short-Range Potential . . . . . . ... ... ... ... ... 47
Appendix 2A Fluctuations around the Plasmon . . . . . . .. .. ... .. 48
Notes and References . . . . . . . . . . .. ... L 49
3 Superconductors 50
3.1  General Formulation . . . . . . ... ... ... ... ... ...... 52
3.2 Local Interaction and Ginzburg-Landau Equations . . . . . . . . .. 59
3.2.1  Inclusion of Electromagnetic Fields into the Pair Field Theory 69

3.3  Far below the Critical Temperature . . . . . . ... .. ... .. .. 72
331 TheGap . .. .. . . e 73

3.3.2  The Free Pair Field . . .. ... ... ... ... ..... 7

3.4 From BCS to Strong-Coupling Superconductivity . . . . . . . . . .. 91
3.5 Strong-Coupling Calculation of the Pair Field . . . . . . . ... ... 92

1X



3.6 From BCS Superconductivity near 7T, to the onset of pseudogap

behavior . . . . . ... 100
3.7 Phase Fluctuations in Two Dimensions and Kosterlitz-Thouless
Transition . . . . . . . .. 105
3.8  Phase Fluctuations in Three Dimensions . . . . . . ... ... ... 111
3.9  Collective Classical Fields . . . . . . . ... .. ... ... ... ... 112
3.9.1  Superconducting Electrons . . . . .. ... ... ... ... 115
3.10 Strong-Coupling Limit of Pair Formation . . . .. .. .. ... ... 117
3.11 Composite Bosons . . . . . . . .. ... 122
3.12 Composite Fermions . . . . . . .. .. .. ... L. 127
3.13 Conclusion and Remarks . . . . . .. .. ... ... ... .. ..., 129
Appendix 3A Auxiliary Strong-Coupling Calculations . . . . . . . .. . .. 131
Appendix 3B Propagator of the Bilocal Pair Field . . . . . ... ... ... 133
Appendix 3C Fluctuations Around the Composite Field . . . .. ... .. 135
Notes and References . . . . . . . . . .. ..o 138
Superfluid *He 145
4.1  Interatomic Potential . . . . . . . . .. ... ... ... ... ... 145
4.2  Phase Diagram . . . . . . . .. ..o 147
4.3  Preparation of Functional Integral . . . . . .. ... ... ... ... 149
4.3.1  Action of the System . . . . . . . ... ... L. 149
4.3.2  Dipole Interaction . . . . . .. ... .. ... ... .. ... 149
4.3.3 Euclidean Action . . . . . . ... ... ... ... ... .. 150
4.3.4  From Particles to Quasiparticles . . . . ... ... ... .. 151
4.3.5  Approximate Quasiparticle Action . . . . . . ... ... .. 152
4.3.6  Effective Interaction . . . . .. .. ... ... ... ..... 155
4.3.7  Pairing Interaction . . . . . ... ..o oL 158
4.4  Transformation from Fundamental to Collective Fields . . . . . . .. 159
4.5  General Properties of a Collective Action . . . . . .. .. ... ... 164
4.6 Comparison with O(3)-Symmetric Linear o-Model . . . . . . . . .. 169
4.7  Hydrodynamic Properties Close to T, . . . . . . ... .. ... ... 170
4.8  Bending the Superfluid 3He-A . . . . . . ... ... ... ... ... 178
4.8.1 Monopoles . . . . . ... 179
4.8.2  Line Singularities . . . . . . . .. ... 182
4.8.3 Solitons . . . . ... 184
4.84  Localized Lumps . . . . . . ... . ... ... ... ... . 187
4.8.5  Use of Topology in the A-Phase . . . . . ... .. ... ... 188
4.8.6  Topology in the B-Phase . . . . . . . ... .. ... .. ... 190
4.9  Hydrodynamic Properties at All Temperatures T'< 7T, . . . . . . .. 193
4.9.1  Derivation of Gap Equation . . . . . .. .. ... ... ... 194
4.9.2  Ground State Properties . . . . . .. ... L. 199
4.9.3 Bending Energies . . . . . .. ... oo 208
4.9.4  Fermi-Liquid Corrections . . . . . ... ... . ... .... 218

4.10 Large Currents and Magnetic Fields in the Ginzburg-Landau Regime 227



xi

4.10.1 B-Phase . . . . . . . ... 228
4.10.2 A-Phase . . . . . . .. ... 239
4.10.3 Critical Current in Other Phases for T'~ T, . . . . . . . .. 240
411 Is3He-A a Superfluid? . . . . . . ... ... 248
4.11.1 Magnetic Field and Transition between A- and B-Phases . . 272
4.12 Large Currents at Any Temperature T'< T, . . . . . .. . ... ... 274
4.12.1 Energy at Nonzero Velocities . . . . . . .. ... ... ... 274
4.12.2 Gap Equations . . . . . ... oo 275
4.12.3 Superfluid Densities and Currents . . . . . . . . ... .. .. 283
4.12.4 Critical Currents . . . . . . . .. . ... 285
4.12.5 Ground State Energy at Large Velocities . . . . . . . . . .. 289
4.12.6 Fermi Liquid Corrections . . . . . .. ... ... ... ... 289
4.13 Collective Modes in the Presence of Current at all Temperatures
T <T, . . . e 292
4.13.1 Quadratic Fluctuations . . . . ... ... ... ... .... 292
4.13.2 Time-Dependent Fluctuations at Infinite Wavelength . . . . 295
4.13.3 Normal Modes . . . . . ... .. .. ... ... ... .. 298
4.13.4 Simple Limiting Results at Zero Gap Deformation . . . . . 301
4.13.5 Static Stability . . . . .. ... 303
4.14 Fluctuation Coefficients . . . . . . . . . . .. .. ... ... ..., 304
4.15 Stability of Superflow in the B-Phase under Small Fluctuations for
T ~T, . e 307
Appendix 4A Hydrodynamic Coefficients for T'~7T.. . . . . . . . ... .. 312
Appendix 4B Hydrodynamic Coefficients for Al T <7, .. ... ... .. 315
Appendix 4C Generalized Ginzburg-Landau Energy . . . . . . . . .. . .. 319
Notes and References . . . . . . . . . . .. ... L. 319
Liquid Crystals 323
5.1  Maier-Saupe Model and Generalizations . . . . . .. ... ... ... 324
5.1.1  General Properties . . . . . ... .. ... ... ... ... . 324
5.1.2  Landau Expansion . . . . ... ... .. ... ........ 326
5.1.3  Tensor Form of Landau-de Gennes Expansion . . . . . . .. 327
5.2  Landau-de Gennes Description of Nematic Phase . . . . . . . . . .. 328
5.3 Bending Energy . . . . . . . ... 336
5.4 Light Scattering . . . . . . . . . . . ... 338
5.5 Interfacial Tension between Nematic and Isotropic Phases . . . . . . 347
5.6  Cholesteric Liquid Crystals . . . . . . . . ... ... ... ... ... 351
5.6.1  Small Fluctuations above 77 . . . . . . . . . ... ... ... 354
5.6.2  Some Experimental Facts . . . . .. .. ... ... ... .. 395
5.6.3  Mean-Field Description of Cholesteric Phase . . . . . . . .. 357
5.7 Other Phases . . . . . . . . . . . . . .. . 362
Appendix 5A Biaxial Maier-Saupe Model . . . . . . . . . ... .. ... .. 365

Notes and References . . . . . . . . . . . .. 368



xii

6 Exactly Solvable Field-Theoretic Models 371
6.1  Pet Model in Zero Plus One Time Dimensions . . . .. .. ... .. 371
6.1.1  The Generalized BCS Model in a Degenerate Shell . . . . . 379

6.1.2  The Hilbert Space of the Generalized BCS Model . . . . . . 390

6.2  Thirring Model in 1+1 Dimensions . . . . . .. . . .. .. ... ... 393
6.3  Supersymmetry in Nuclear Physics . . . . . ... ... .. ... ... 397
Notes and References . . . . . . . . . .. .. oL 397

Index 399



List of Figures

1.1

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9
3.10

3.11

3.12

3.13

3.14

3.15

4.1

4.2

4.3

4.4

Contour C'in the complex z-plane . . . . . . . . .. ... ... ... 19
The pure current piece of the collective action . . . . ... ... .. 43
The non-polynomial self-interaction terms of plasmons . . . . . .. 44
Free plasmon propagator . . . . . . .. . .. ... ... 44
Time evolution of critical temperatures of superconductivity . . . . . o1
Fundamental particles entering any diagram . . . . .. ... .. .. o4
Free pair field following the Bethe-Salpeter equation . . . . . . . .. 56
Free pair propagator . . . . . . ... ..o 58
Self-interaction terms of the non-polynomial pair Lagrangian . . . . 59
Free part of pair field A Lagrangian . . . . . .. .. ... ... ... 62
Energy gap of a superconductor as a function of temperature . . . . 76
Temperature behavior of the superfluid density p,/p (Yoshida func-

tion) and the gap function ps/p . . . . . ... 87

Temperature behavior of the inverse square coherence length £~ 2(T) 88
Gap function A and chemical potential u at zero temperature as

functions of the crossover parameter fo . . . . . . . ... ... 96
Temperature dependence of the gap function in three (a) and two
(b) dimensions . . . . . ... 97
Dependence of T* on the crossover parameter in three (a) and two
(b) dimensions . . . . . ... 98
Dependence of the pair-formation temperature T on the chemical
potential . . . . . ... 109
Qualitative phase diagram of the BCS-BEC crossover as a function
of temperature T'/er and coupling 1/kpa . . . . . . . . . .. . ... 118
Qualitative phase diagram in the unitarity limit . . . . . ... . .. 126
Interatomic potential between *He atoms as a function of the dis-
tance r ... oL L e 145
Imaginary part of the susceptibility caused by repeated exchange of
spin fluctuations . . . . . .. ... 146
Phase diagram of 3He plotted against temperature, pressure, and
magnetic field . . .. ..o 148
Three fundamental planar textures, splay, bend, and twist of the
director field in liquid crystals . . . . . . . ... .. ... ... 172

x1il



Xiv

4.5
4.6

4.7
4.8
4.9
4.10

4.11
4.12

4.13

4.14

4.15

4.16
4.17

4.18

4.19

4.20
4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29
4.30

Sphere with one, two, or no handles and their Euler characteristics
Local tangential coordinate system n, t,i for an arbitrary curve on
the surface of a sphere . . . . . . . . ... oL
The 1j|d-field lines in a spherical container . . . . . . .. .. .. ...
Two possible parametrizations of a sphere . . . . . . . .. ... ...
Spectra of Goldstone bosons versus gauge bosons . . . . . . ... ..
Cylindrical container with the 1|| d-field lines spreading outwards
when moving upwards . . . . . . ...
Field vectors in a composite soliton . . . . . . ... ... ... ...
Nuclear magnetic resonance frequencies of a superfluid *He-A sample
in an external magnetic field . . . . .. ..o
Vectors of orbital and spin orientation in the A-phase of superfluid
SHe . . o o
Parameter space of He-B containing the parameter space of the
rotation group . . . ... Lo Lo
Possible path followed by the order parameter in a planar texture
(soliton) when going from z = —cotoz=+0c0 . . . . . ... . ...
Another possible class of solitons . . . . . ... ... .. .. ....
Fundamental hydrodynamic quantities of superfluid 3He-B and -A,
shown as a function of temperature . . . . . .. .. ... ... ...
Condensation energies of A- and B-phases as functions of the tem-
perature . . . . ..o L oL oL oL
The temperature behavior of the condensation entropies in B- and
A-phases . . . . ...
Specific heat of A- and B-phases as a function of temperature . . . .
Temperature behavior of the reduced superfluid densities in the B-
and in the A-phase of superfluid “He . . . . . . . . . ... ... ...
Superfluid stiffness functions K;, K;, K, of the A-phase as functions
of the temperature . . . . . . . . .. ... ...
Superfluid densities of B- and A-phase after applying Fermi liquid
corrections . . . . . ...
Coefficients ¢ = ¢! and their Fermi liquid corrected values in the
A-phase as a function of temperature . . . .. . ... ... .. ...
Coefficient K, for splay deformations of the fields, and its Fermi
liquid corrected values in the A-phase as a function of temperature .
Remaining hydrodynamic parameters for twist and bend deforma-
tions of superfluid *He-A . . . . . . . ... ...
Hydrodynamic parameters of superfluid *He-B together with their
Fermi liquid corrected values, as functions of the temperature

Shape of potential determining stability of superflow . . . . . . ..
Superflow ina torus . . . . . . . ... ...
In the presence of a superflow in *He-A, the l-vector is attracted to
the direction of flow . . . . . . . .. ...

176



4.31

4.32
4.33

4.34

4.35
4.36
4.37
4.38
4.39

4.40
4.41
4.42
4.43

5.1
5.2
9.3
5.4

2.5

5.6
5.7
2.8
2.9
5.10
5.11
5.12
5.13

5.14

5.15

0.16

5.17
5.18

Doubly connected parameter space of the rotation group correspond-
ing to integer and half-integer spin representations . . . . . . . . ..
Helical texture in the presence of a supercurrent . . . . . .. .. ..
Three different regions of equilibrium configurations of the texture
at H =0 (schematically) . . . ... ... ... ... .. ... ... .
Pitch values for stationary helical solutions as a function of the angle
of inclination By . . . . . . . . ...
Regions of stable helical texture, II- and II4+ . . . . . ... ... ..
Regions of stable helical texture (shaded areas) . . ... ... ...
Shrinking of the regions of stability when dipole locking is relaxed
As a stable helix forms in the presence of superflow in 3He-A

Angle of inclination as a function of the magnetic field at different
temperatures . . .. .. Lo L oL
Sound attenuation parametrized in terms of three constants . . . . .
Velocity dependence of the gap in the A- and B-phases . . . . . ..
Current as a function of velocity . . . . . .. .. .. ... ...
Collective frequencies of B-phase in the presence of superflow of
velocity v . . . Lo

Molecular structure of PAA . . . . . . . . ...
Graphical solution of the gap equation . . . . . . . . ... ... ...
Phase diagram of general Landau expansion in the (a3, as)-plane
Biaxial regime in the phase diagram of general Landau expansion of
free energy in the (ag,az)-plane . . . . . . . ...
Jump of the order parameter ¢ from zero to a nonzero value ¢~ in
a first-order phase transition at T'=1T7 . . . . . ... ... .. ...
Different configurations of textures in liquid crystals . . . . . . . ..
Experimental setup of the light-scattering experiment . . . . . . ..
Inverse light intensities as a function of temperature . . . . . . . ..
Behavior of coherence length as a function of temperature . . . . . .
Relevant vectors of the director fluctuation . . . . . . ... ... ..
Contour plots of constant reduced free energy foxe . . . . . . . . ..
Momentum dependence of the gradient coefficients . . . . . . . . ..
Momenta and polarization vectors of a body-centered cubic phase
of a cholesteric liquid crystal . . . . . .. ... ... ... ..
Regimes in the plane of «, 7, where the phases, cholesteric, hexatic,
or becarelowest . . . . ...
Momenta and polarization vectors for an icosahedral phase of a
cholesteric liquid crystal . . . . . . . ... .. .. ... ...
Density profile with five-fold symmetry . . . . . ... ... ... ..
Density profile with seven-fold symmetry . . . . ... ... ... ..
Blue phases in a cholesteric liquid crystal . . . . ... ... ... ..

XV



Xvi

6.1  Level scheme of the BCS model in a single degenerate shell of mul-
tiplicity Q=8 . . . . . .

List of Tables

4.1 A factor of roughly 1000 separates the characteristic length scales of
superconductors and *He . . . . . . .. ...

4.2 Pressure dependence of Landau parameters F,, F,, and FJ of *He
together with the molar volume v and the effective mass ratio m*/m

4.3 Parameters of the critical currents in all theoretically known phases



Reality is nothing more
than a collective hunch.

JANE WAGNER (1935-)

1

Functional Integral Techniques

An important goal of many-body physics is the study of collective phenomena in
systems of many bosons or fermions. The interactions are typically caused by two-
body forces. In their field-theoretic description, such forces emerge in a perturbation
theory from the exchange of virtual particles, such as photons or phonons. More
complicated forces can also be generated by the exchange of virtual particles carried
by higher tensor fields. So far, all forces in nature between particles can be reduced
to such exchange processes. Depending on the detailed properties of forces and
thermodynamic parameters such as density, pressure, and temperature, bosons or
fermions may exhibit different collective behaviors. In an electron gas, for example,
one may observe density fluctuations or pair condensation. The first type is found
if the exchanged particles couple strongly to other particles or holes. Examples
are plasma oscillations in a degenerate electron gas. The second type of behavior
is found if the forces favor the formation of bound states between pairs of parti-
cles. This is usually observed below a certain critical temperature T,.. Examples are
excitons in a semiconductor or Cooper pairs in a superconductor.

For systems showing plasma type of excitations, real fields depending on space
and time are most convenient to describe the physical phenomena. To describe
pair condensation, complex fields render the most economic description of such
phenomena. They contain the two spatial arguments of the constituents and their
common time coordinates. Such fields will be called bilocal. In relativistic systems,
also the time coordinates of the constituents may be different. If the potential
has a sufficiently short range, the bilocal field degenerates into a local field. The
most important example for the latter case is the collective pair-field theory of
superconducting electrons which is known as the Ginzburg-Landau theory.

A bilocal field theory is useful in elementary particle physics where it allows to
study the transition from inobservable quark fields to observable meson fields (see
[1] or Chapter 26 in the textbook [2]). The new basic field quanta of the converted
theory are no longer the fundamental particles but the set of all quark-antiquark
meson bound states which are obtained by solving a Bethe-Salpeter bound-state
equation in the so-called ladder approximation. They are called bare mesons. Such a
formulation can also be given to quantum electrodynamics of electrons and positrons,
where the bare mesons are positronium atoms [1].



2 1 Functional Integral Techniques

1.1 Nonrelativistic Fields

Let us begin with the description of functional methods that can be used for the
study of many-body physics of relativistic particles. We shall follow the historic
development.

1.1.1 Quantization of Free Fields

Consider free nonrelativistic particles, whose energy ¢ depends on the momentum
p by some function £(p). In free space, this has the form e(p) = p?/2m. For
a particle moving in a periodic solid, the momentum dependence is usually more
complicated. However, for many purposes it can be approximated by the same
quadratic behavior, provided that we exchange the mass m by an effective mass
parameter m* # m called the effective mass. The action of a free nonrelativistic
field describing an ensemble of these particles reads

A = / Padt b (x, 1) [ihd, — e(—ihV )] (x, ). (1.1)
By extremizing this, we find the equation of motion
A, , .
A B —(— = 1.2
5,¢* (X, t) [Zhat 6( ih'Vv )] ?/J(X> t) Oa ( )

which coincides with the Schrodinger equation for a single free particle.

In the Lagrange formalism of classical mechanics, each dynamical variable pos-
sesses a canonically conjugate variable called momentum variable. For the action
(1.14), this is the field momentum

A
h————— = (x,1). 1.3
oten) VY )
According to the rules of quantum mechanics, the fields and their conjugate mo-
menta are turned into operators ¥ (x,t) and 7(x,t), which satisfy the equal-time
commutation rules:

7(x, 1)

[(x, 1), (x)] = 0,
[ﬁ(x> t)’ ﬁ:(xl)] = 0,
[7(x,t), p(x)] = —ihd®(x —x').

Inserting (1.3), these become commutation rules of independent creation and annihi-
lation operators al (t) = ¥7(x,t) and ay(t) = ¥(x,t) of harmonic oscillators situated
at each space point x:



1.1 Nonrelativistic Fields 3

For each oscillator, there exists a ground state |0), defined by the condition

U(x,1)[0) = 0. The excited states are obtained by multiplying [0)x with ny cre-
ation operators ¢f(x,t). They are denoted by (a’)™|0)x= [¢!(x,?)]™ |0)x, Where
ny are integer quantum numbers ny, = 0,1,2,3,.... These are interpreted as the
numbers of particles at point x.

Thus, by quantizing the field and converting it to a field operator, the single-
particle Schrodinger theory changes into a theory of arbitrarily many identical oscil-
lators at all space point x. The ground state of the system is the direct product of
the ground states of all these oscillators: |0) =[], |0)x. The resulting many-particle
Hilbert space is called the Fock space, and the procedure of field quantization is
called second quantization. The usual quantization is ensured by the correspon-
dence rule p — —iAV in the single-particle Schrodinger equation (1.14) and the
action (1.1).

The free quantum field zﬂ(x, t) can be expanded into a Fourier series

R 6sz—ze(p)t

Y(x,1) :ZT

where V' is the volume of the system and p are the discrete momenta in it. The
operators ap and their hermitian conjugates aL are annihilation and creation oper-
ators of single particles in momentum space. From (1.7)—(1.9), we find that these
satisfy the oscillator commutation rules

ap, (1.10)

[&p(t)v&r"(t)] = 0, (1'11)
lal(t),al, ()] = o, (1.12)
lap(t),al,(8)] = 69 (x—x)). (1.13)

An important quantity of free fields is the free Green function Gg(x,t;x’;t'),
which satisfies the inhomogeneous version of the field equation (1.14):

[ih0, — e(—ihV)] Go(x, ;X ') = i0®) (x — x/, t — 1). (1.14)

This can be solved by the spectral representation, that has, for translationally in-
variant systems at hand, a Fourier decomposition:

Go(x, t: X', t') / / But)-p—x)] L s
E —€(p) +1in ( )

The solution of Eq. (1.14) is not unique, since there are various ways to carry the
contour of the energy integration past the pole at E = €(p). Different ways produce
Green functions with different boundary properties. The differences are solutions
of the homogeneous field equation. In integral (1.15) we have chosen a contour of
integration which passes above the pole, where the denominator in (1.15) diverges.
This is indicated by adding a term —in to the energy e(p), where 7 is a positive
infinitesimal number, a procedure called the in-prescription. With that choice, the
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Green function (1.15) coincides with the vacuum expectation value of the time-
ordered product of field operators (1.10):

Go(x, t; X', 1) = (0T (x, )t (X', 1)]0). (1.16)

The time-ordering operator T is defined to change the position of the operators
behind it in such a way that fields with later time arguments stand to the left
of those with earlier time arguments. The expectation value on the right-hand
side is also called the free propagator of the quantum field ¢)(x, ¢). By inserting the
expansion (1.10) into (1.16) it is easy to verify that the evaluation of the expectation
value (1.16) gives exactly the expression (1.15).

1.1.2 Fluctuating Free Fields

There exists an equivalent approach to second quantization where the thermody-
namic partition of the above system is expressed as a functional integral over all
possible fluctuating fields [4, 5]. For free fields, we define a partition function

Zo= N [ Dy (x D (x, ) exp {idoly”, ]} (L.17)

where N is some constant which will play no role in all subsequent discussions. From
here on we shall work with natural units in which A = 1.

The functional formulation was found by Richard Feynman. He observed that
the amplitudes of diffraction phenomena of light are obtained by summing over
the individual amplitudes for all paths which the light could possibly have taken.
Each path is associated with a pure phase depending only on the action of the light
particle along the path. For fields, this principle leads to Formula (1.17) for the
partition function.

The functional integral may conveniently be defined by grating the spacetime
into a finer and finer cubic lattice of spacing ¢ with corners at (z;,, Yi,, Zis, tiy) =
(i1,142,13,14) 0. The fields are characterized by their values at the nearest lattice
point:

4
iviigia = U (Tivs Yins Zig» tia) Vo . (1.18)

The measure in the functional integral in (1.17) is then defined by the product of
all integrals over the cubus around each lattice point:

Al dib i
/m x,Dv(x 1) = [[ // w\/2_m\2_m (1.19)

11194314
l//l
‘1'2"3%

The double integral over complex variables [ [ di*dy symbolizes the real integrals

LR o
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This naive definition of path integration is straightforward for Bose fields. If
we want to use the functional technique to describe also the statistical properties
of fermions, some modifications are necessary. Then the fields must be taken to be
anticommuting c-numbers. In mathematics, such objects form a Grassmann algebra.
If £, & are any two real elements in this algebra, they satisfy the anticommutation
relation

{&¢r=8+¢=0. (1.21)
A trivial consequence of this condition is that the square of each Grassmann element
vanishes, ie., € = 0. If £ = & + i& is a complex Grassmann variable, then

£2 = —£¢ = —2i€,&, is nonzero, but (£*6)? = (££)2 =0

All results to be derived later will make use of only one simple class of inte-
grals over Grassmann variables. For boson fields, they are generalizations of the
elementary Gaussian (or Fresnel) formula for A > 0 [6]:

vz (gee) =4
exp (=€AE) = ATV 1.22
| 7o e (5848 (1:22)
The first generalization concerns the dimension. For a D-dimensional real space of
vectors € = (&1,&s, .. .,&p), and a diagonal matrix A with diagonal elements Ay, the
integral (1.22) becomes

~ dPg o dg i ~1/2
ngAg/zzl—[ l k ]ex (_ _
= exp (=) &A= |]TAs| - (1.23)
/ %0 3/ i g L)oo V2T 29 k

Next we generalize the exponent to the matrix form (i/2) 3o ; &g Awé&, where Ay is
an arbitrary symmetric positive matrix. An orthogonal transformation of the &.’s
can be used to bring Ay to a diagonal form. The orthogonality ensures that the
measure of integration remains invariant. Thus an equation like (1.23) is still valid
with the right-hand side becoming the product of eigenvalues of the matrix Ay;.
This can be written as a determinant, so that we obtain the formula

o P f T A¢ /2 e B Iy
/ \/ﬁ citT AL/ H l \/ﬁ] exp ( Z&:Akl&) =[det A]” "~ (1.24)

Even more generally, we allow & to be a complex variable, and A to be a hermitian
and positive matrix. Then the result (1.24) follows separately for the real and for
the imaginary part, yielding

oo JDetgDe
/_OO %ezgugm H [ \/C%C\Z/g;?] exp ( kaAklfz) = [det A" (1.25)

For the study of fermion systems, the integrals are performed over anticommuting
real or complex variables £ or £*¢. In this case, the right-hand sides of Eqs. (1.24)
and (1.25) are replaced by their inverses [det A2, [det A]".



6 1 Functional Integral Techniques

Let us prove this for complex variables. After bringing the matrix Ay to a
diagonal form via a unitary transformation, the integral reads

A€, dEm N g _ A€, dEm .
/H [\/ﬁ\/ﬁ] exp <Z;§nAn§n) = l;[/mexp (i€5 Amém) . (1.26)

Expanding the exponentials into a power series leaves only the first two terms, since
(&:6m)> = 0. Thus the integral becomes

d§;, d&m o
H/ T e (L A (1.27)

Each of these integrals can be performed trivially by defining two basic integrals
over the Grassmann variables, from which all the others follow using the linearity
of integrals. For real Grassmann variables, these rules are

“®__y € e (1.28)

\/2mi ’ \/27r

The integrals over higher powers vanish trivially due to the anticommutation prop-
erty (1.21):

d£
x/ﬁ

The two rules (1.28) and (1.29) determine the integrals over any function F(§) of
a real Grassmann variable £&. They ensure that such a function is determined by
only two parameters: the zeroth- and the first-order Taylor coefficients. Indeed,

due to the property €2 = 0, the Taylor series can only possess the first two terms
F(§) = Fy + F'¢, where Fy = F(0) and

=0, n>L (1.29)

F' = dF(€)/de. (1.30)
But according to (1.28), the integral yields also F”:

dg
V2ri

Remarkably, this property makes the linear operation of integration over Grassmann
variables in (1.28) identical to the linear operation of differentiation. As a conse-
quence, a linear change of Grassmann integration variables multiplies the integral by
the inverse of the Jacobian. For example, going from a real ¢ to another Grassmann
variable £’ = a&, the integrals over £’ have again the properties (1.28):

F(e)=F'. (1.31)

dg’ dg’

== 0, \/ng =1. (1.32)
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In order to be compatible with (1.28), the measure must change as follows:

¢’ 1 d§
Vo =al V2=
This is in contrast to ordinary integrals where the factor on the right-hand side
would be a.
From the real rules (1.28), we derive the integrals involving complex Grassmann
variables:
A e de [ de
Vom0 2mi /2w " V2miy2mi
The integration rules (1.28) imply that the right-hand side of (1.27) becomes the
product of eigenvalues A,,:

(1.33)

()" =0, n>1. (1.34)

[[ 4. = det A, (1.35)

which is exactly the inverse of the bosonic result (1.25), thus proving the statement
after Eq. (1.25).

For real Fermi fields, the proof is slightly more involved, since now the hermitian
matrix Ay, can no longer be diagonalized by a unitary transformation, so that the
invariance of the measure of integration [],,(d¢,,/v/2mi) is no longer automatically
guaranteed. However, the integral can be done after all by observing that Ay may
always be assumed to be antisymmetric. If there is any symmetric part, it cancels
in the quadratic form >";; & Ag& due to the anticommutativity of the Grassmann
variables. Now, an antisymmetric hermitian matrix can always be written as A =
—iApR, where A is real and antisymmetric. Such a matrix is standard in symplectic
spaces. It can be brought to a canonical form C which is zero everywhere except

for 2 x 2 matrices,
0 1
2
C—ZO‘—<_1 O)’ (1.36)

along the diagonal. Here o2 is the second Pauli matrix. Then A can be written as
A= —iT"CT (1.37)

where the hermitian matrix —iC contains only o?-matrices along the diagonal. This
matrix has a unit determinant so that det7 = det'/?(A). Thus, under a linear
transformation of Grassmann variables £, = T, the measure of integration changes
according to

[T dé = (det T) [] ;. (1.38)
k k

as a direct consequence of the integration rule (1.33). With the help of the rules
(1.28) and (1.29), the Grassmann version of the functional integral (1.24) can now
be evaluated as follows:

11 [ dé’”] exp (iszAM&)
T Tl

m
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— (det T) I l \O/Z%] exp (— %jf;@%fi)

m

N dfén dgén 1 / /
— (det A)2T] [ \/ﬁ] Tﬁ:@ (1+ &i18s) = (det A)2. (1.39)
Thus the right-hand side is the inverse of the bosonic result (1.24), as announced
after Eq. (1.25).

In order to apply these formulas to fields ¥ (x,t) defined on a continuous space-
time, both formulas have to be written for the lattice field (1.18) in such a way that
the limit of infinitely fine lattice spacing 6 — 0 can be performed without problem.
For this we recall the useful matrix identity

[det A]F! = expli(diTr log A)], (1.40)

n

where log A may be expanded in the standard fashion as

log A—log [L+ (A—1)] = =3 [~(A— D] = (1.41)

n=1 n

This formula reduces the calculation of the determinant to a series of matrix multi-
plications. In each of these, the limit 6 — 0 can easily be taken. One simply replaces
all sums over lattice indices by integrals over d3zdt, for instance

trA*> =Y ApAy, — TrA*= /d%dtd%’dt’A(x, tx AKX x,t). (1.42)
Kl

With this in mind, the field versions of (1.24) and (1.25) amount to the following
functional formulas for boson and fermion fields:

/Dgo(x, t) exp [%/dgaﬁdtd%'dt'@(x, t)A(x,t;x',t')gp(x',t’)}

o i (frene{ )] "

/Dw*(x, t)D(x,t) exp {i/dgxdtd?’x’dt’w*(x, t)A(x, t; x’,t')w(x’,t’)]
= exp [i(£iTr log A)] . (1.44)
Here ¢, are arbitrary real and complex fields, with the upper sign holding for
bosons, the lower for fermions. The same result is of course true if ¢ and ¢ have
several components (describing, for example, spin) and A is a matrix in the corre-
sponding space.

1.1.3 Interactions

Consider now a many-particle system described by an action of the form (in natural
units with 7 = 1):

A=A+ A = / Prdt* (x, 1) [i0, — e(—i% )] (x, ) (1.45)

- %/d?’xdtd%’dt’w*(x',t')w*(x, OV (x, 6%, t)(x, t)(x, t).
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The fundamental field ¥ (z) may describe bosons or fermions. The interaction po-
tential is usually translationally invariant in space and time:

Vix, t;x,t)=V(x—x,t —t). (1.46)
In nonrelativistic many-body systems, the potential is often instantaneous in time:
Vi(x, t;x,t')=6(t —t")V(x—x). (1.47)

This property simplifies many calculations. It is in general fulfilled only approxi-
mately.

For instance, the attraction between electrons in a low-temperature supercon-
ductor is caused by phonon exchange which contains retardation effects due to the
finite speed of sound.

The complete information on the physical properties of the system resides in its
Green functions. In the field operator language, one uses the so-called Heisenberg
picture, where the Green functions are given by the expectation values of the time-
ordered products of the field operators

G (X1>tl7 ey X, tn;xn’a tn’a ceey X7, tll) (148)
= <0\T (ﬁH(Xh th) - '&H(Xm tn)ﬁq(xnu ) - - 'ﬂ{(xl', tl’)) 0),

where @H(x, t) are the Heisenberg operators of the interacting field. The time-
ordering operator T changes the position of the operators behind it in such a way
that fields with later time arguments stand to the left of those with earlier time
arguments. To achieve this order, a number of field transmutations are necessary. If
F denotes the number of transmutations of Fermi fields, the final product receives
a sign factor (—1)%.

It is convenient to view all Green functions (1.48) as derivatives of the generating
functional

2l n) = (OfF exp {i [ d*a [ (x O, 8) + (5, 00 (. 0]} [0), - (1.49)
namely

G (thla vy Xpy tn;xn’7tn/7 ceey X7, tl’) (150)
5" Z[n*, )
I (xq,t1) - - 0N (X, L) ON(Xpry tr ) -+ - O (X177, Tt )

= (i

n=n"=0

Physically, the generating functional describes the amplitude that the vacuum re-
mains a vacuum in spite of the presence of external perturbations.

The calculation of this Green functional is usually performed in the interaction
picture which can be summarized by the operator formulation for Z[n*, n):

Z[n*,n] = N(O|T exp {Z’Ainth,&] +’i/d3:1:dt WT(X, tHn(x,t) + h.c.}} |0). (1.51)
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In the interaction picture, the field operators Q/A)(X, t) move according to the free-field
equation of motion (1.14). The time-ordered product of two of these field operators
coincide with the free-field propagator calculated before in (1.16).

The normalization constant N is determined by the condition [which is trivially
true for (1.49)]:

Z10,0] = 1. (1.52)

The calculation may now proceed perturbatively. One expands the exponential
exp{iAi} in (1.51) in a power series and obtains

* = 1 *
2" =N —Zln",m, (1.53)
n=0 """
where the contribution of order n is given by

Zo" 1] 5N<0|T{ (1A [, 4]) " exp (z [t [1x, (e, 1) + h.c.D } 10). (1.54)

This expression is further expanded in powers of n* and 1. The resulting vacuum
expectation values of time-ordered products of field operators can be expanded in
products of Green functions of the free field operators. The rules for doing this is
provided by Wick’s theorem [5, 6, 7). This theorem states that any time ordered
product of free field operators v (x,t) and its hermitian conjugate 1f(x,t) can be
expanded into a sum of normal products with all possible contractions taken via
Feynman propagators.

1.1.4 Normal Products

Given an arbitrary set of n free field operators ¢(x1) - - - ¢, (x,), each of them con-
sists of a creation and an annihilation part:

oi(xi) = ¢5(x;) + oF (). (1.55)

Some ¢; may be commuting Bose fields, some anticommuting Fermi fields. The
normally ordered product or normal product of n of these field operators will be
denoted by N(¢y(z)¢(x2)---d(x,)). In the present context, a function symbol is
more convenient than the earlier double-dot notation. The normal product is a
function of a product of field operators which has the following two properties:

i) Linearity: The normal product is a linear function of all its n arguments, i.e.,
it satisfies

N ((agy + Bé)) dads - - dn) = aN(¢1¢2¢3 - - ) + BN (¢ dacbs - - - dp). (1.56)

If every ¢; is replaced by ¢§ 4 ¢¢, it can be expanded into a linear combination
of terms which are all pure products of creation and annihilation operators.
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ii) Normal Ordering: The normal product reorders all products arising from
a complete linear expansion of all fields according to i) in such a way that
all annihilators stand to the right of all creators. If the operators ¢; describe
fermions, the definition requires a factor —1 to be inserted for every transmu-
tation of the order of two operators.

For example, let ¢1, ¢, p3 be scalar fields, then with two field operators normal
ordering produces:

N(gi05) = @5 = ¢505.

N(ges) = o5es,

N(gio5) = o561,

N(¢105) = of05 = o361, (1.57)

and with three field operators:
N(gig5e5) = ¢5505 = d50765,
N(oig305) = @156 = 950165,
N(919305) = ¢50501 = ¢50501. (1.58)

If the operators ¢; are fermions, the effect is

N(g5e5) = 0565 = —0565,
N(gies) = &8,
N(oio5) = —o50t,
N(@103) = @165 = —oi0, (1.59)

and

N(¢ig505) = #id505 = —056id5,
N(g50505) = —d5d505 = 950705,
N(of0565) = #0501 = —050501. (1.60)

The normal product is uniquely defined. The remaining order of creation or anni-
hilation parts among themselves is irrelevant, since these commute or anticommute
with each other by virtue of the canonical free-field commutation rules. In the fol-
lowing, the fields ¢ may be Bose or Fermi fields and the sign of the Fermi case is
recorded underneath the Bose sign.

The advantage of defining normal products is their important property that
they have no vacuum expectation values. There is always an annihilator on the
right-hand side or a creator on the left-hand side which produce 0 when matched
between vacuum states. The method of calculating all n-point functions consists
in expanding all time ordered products of n field operators completely into normal
products. Then only the terms with no operators survive between vacuum states.
This is the desired value of the n-point function.
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Let us see how this works for the simplest case of a time-ordered product of two
identical field operators

T(¢(x1)(x2)) = O(2) — 28)p(w1)d(ws) £ O (5 — 27)p(ws)p(1). (1.61)

The basic expansion formula is

T((x1)d(x2)) = N(d(x1)d(22)) + (0T (d(21)d(2))[0). (1.62)

For brevity, we shall denote the propagator of two fields as follows:

01T (6(z1)6(2))|0) = B(a1)d(w2) = Gla1 — w2). (1.63)

The hook which connects the two fields on the top are referred to as a contraction
of the fields.

We shall prove the basic expansion formula (1.62) by considering it separately
for the creation and annihilation parts ¢¢ and ¢®. This will be sufficient since the
time ordered product is linear in each field just as the normal product. Now, in
both cases 20 Z 23 we have

retre) - {L o0 |
¢ (21)9°(22)

= orlenerta) + 0 L S0 Lo e

which is true since ¢°(z1)¢°(z2) commute or anticommute with each other, and
annihilate the vacuum state |0). The same equation holds for ¢*(z1)¢*(x2). The
only nontrivial cases are those with a time-ordered product of ¢¢(xq)¢%(zs) and

¢%(x1)¢°(x2). The first becomes for z9 Z x9:
Moot = { G0

= ¢%(21)0"(z2) + (0] {:I: zz((i’;))izgig } |0). (1.65)

For 29 > 29, this equation is obviously true. For z? < 9, the normal ordering

produces an additional term

£(¢" (22)9%(21) F ¢°(21)9"(22)) = £[9*(22), (1) - (1.66)

As the commutator or anticommutator of free fields is a c-number, they may equally
well be evaluated between vacuum states, so that we may replace (1.66) by

(0] [¢"(2), ¢°(x1)]5 10). (1.67)

Moreover, since ¢* annihilates the vacuum, this reduces to

+(0[¢"(22), ¢°(1)]0). (1.68)
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The oppositely ordered operators ¢%(x1)¢¢(z2) can be processed by complete anal-
ogy.

We shall now generalize this basic result to an arbitrary number of field operators.
In order to abbreviate the expressions let us define the concept of a contraction inside
a normal product

N (asl G Gibign b 160541 - -m)

= Uﬁ%g’ N (¢ i1digr - Qi 1Pjp1 D) - (1.69)

Here n = 1 for bosons and n = (—1)?~"! for fermions, each minus-sign counting
the number of fermion transmutations which is necessary to reach the final order.
A normal product with several contractions is defined by the successive execution
of each of them. If only one field is left inside the normal ordering symbol, it is
automatically normally ordered so that

N(¢) = ¢. (1.70)

Similarly, if all fields inside a normal product are contracted, the result is no longer an
operator and the symbol N may be dropped using linearity and the trivial property

N(1)=1. (1.71)

The fully contracted normal product is the relevant one in determining the n-particle

propagator. With these preliminaries we are now ready to prove Wick’s theorem for

the expansion of a time-ordered product in terms of normally ordered products.!
The formula for an arbitrary functional of free fields 1, ¢* is

TF[*, 4] = oJ dedidadr csw(i,t)GO(X’“X/’H)WN(FW*, ). (1.72)
Applying this to
(OITFl*, 4)]0) = (0T exp |i [ dedt(wn -+ %) 10) (173)
one finds:
Zoln*,m] = exp {—/dxdtdx’dt’ n*(x, t)GO(X,t;XI,tI)n(X/,t/)]
X <0|N(exp [i/dmdt(w*n + 77*1/))] )|0> (1.74)

Each term can be pictured graphically by so-called Feynman diagrams. They have
the physical interpretation as a virtual process.

The perturbation expansion of (1.51) may be used to define an interacting the-
ory. In praxis, however, it can only be carried up to a certain finite order in n.

1G.C. Wick, Phys. Rev. 80, 268 (1950); F. Dyson, Phys. Rev. 82, 428 (1951).
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As such it is unable to describe many important physical phenomena. Examples
are bound states living in the vacuum, or collective excitations of many-body sys-
tems. These require the summation of infinite subsets of Feynman diagrams to all
orders. In many situations it is well known which subsets have to be taken if we
want to account approximately for a specific effect. What is not clear is how such
approximations can be improved in a systematic manner. The point is that, as soon
as a selective summation of Feynman diagrams is performed, the original coupling
constant has lost its meaning as an organizer of the expansion and there is need for
a new systematics of diagrams. Such a systematic approach will be presented in
what follows.

As soon as bound states or other collective excitations are formed, it is suggestive
to construct a quantum field theory for these and continue working with the new
fields rather than the original fundamental fields ¥ (x,¢). The goal would then to
rewrite the expression (1.51) for Z[n*, n] in terms of new fields whose unperturbed
propagator has the free energy spectrum of the bound states or of the other collective
excitations. It would also display their mutual interactions. In the operator form
(1.51), such changes of fields are not so easy to achieve.

The ideal theoretical framework for describing the generating functional Z[n*, ]
of a physical system in terms of the new quantum fields is offered by the above-
introduced functional integral techniques [4, 5, 6]. In these, changes of fields amount
to changes of integration variables, as we shall see in the sequel.

1.1.5 Functional Formulation

In the functional integral approach, the generating functional (1.49) is given by

Zn*,n| :N/ Dy*(x,t)Dip(x,t) exp {iA[w*, 1/)]+Z/ dxdt [V (x,t)n(x,t) + C.C.]} )
(1.75)

Note that in contrast to the expression (1.49), the field ¥ (x,t) is now a complex-
valued field, not an operator. All quantum effects are accounted for by the fluc-
tuations in the functional integral. This does not only include the classical field
configurations, but all possible field configurations, also those which are classically
forbidden, i.e., all those which do not run through the valley of extremal actions in
the exponent.

In order to evaluate functional integrals of the type (1.75) involving source terms,
we must extend the Gaussian formulas (1.24), (1.25) and (1.43), (1.44) to include
linear terms. This complicates the integrals only slightly. We simply eliminate the
linear terms by a quadratic completion. If this is done in (1.24) and (1.25), we
obtain for both bosons and fermions (dropping product and summation symbols):

I \/f_m oxp (5646 + ij€)

o ¢
:/_oom

exp [% (5 + jA’1> A (5 + A*lj) - %jAlj} , (1.76)
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de=d
ﬁ expli€* AE + i€ +i€")
dede

= | e i (&4 AT)A(e+ A7) —im A7) (L)

The shift in the integral & — & + A€ gives no change due to the infinite range of
integration. Hence

/_ - \/%exp (%gAg v z'jf) - { 2.11/2 } ATV o (—%jA—lj) ,
o dgrdg
—oo \/2miN/2mi

A corresponding operation on the functional formulas (1.43) and (1.44) leads to the
so-called Hubbard-Stratonovich transformations:

exp (i€ AE +ij"E +i€7j) = AT exp(—ij* A7), (1.78)

/D()O(X, t)e% fd3zdtd3:c/dt’ [<p(x,t)A(x,t;x’,t’)go(x’,t’)+2j(x,t)gp(x,t)63 (x—x’,t)&(t—t’)]

; ) 1 ] 2 2 ; -1 ! 41 (!
z(i—Trlog{ ; }A)—— d3xdtd3x’dt’ j(x,t)A™ Y(x,t;x )i (x ')
e ? ’ o] . (1.79)

or
/Dw*()g t)Dw(X, t)eifd3a:dtd3a:’dt/ {1/;*(x,t)A(x,t;x/,t/)'gl)(x,t’)—i-['r]*(x,t)'gl)(x)63(x—x’)&(t—t’)—i—c.c.]}

: : i 3 3./ * -1 o~/ !4l
_ ez(izTrlogA) zfd xdtd? ' din* (x,6) A~ 1 (x,t;x" ¢ )n(x/,t ) (180)

These integration formulas will be needed repeatedly in the remainder of this text.
They have been applied frequently in many-body theory, ever since the work of
Hubbard and Stratonovic [10], and for this reason they have been named in many
publications after these authors. They are the basis for the treatment of any inter-
acting quantum field theory in terms of collective quantum fields.

Although this transformation is mathematically exact, it may be of little use in
applications in which various collective effects compete with each other. This can be
understood only after treating a few important phenomena using this tranformation.
A way out of the difficulties will be shown in Section 3.9. The improved treatment
will allow us to study competing mechanisms in terms of collective classical fields.

1.1.6 Equivalence of Functional and Operator Methods

As an exercise we shall apply (1.79) and (1.80) and demonstrate the equivalence
betweeen the operator expression (1.51) for the generating functional Z[n*, n] with
Feynman’s functional integral formula (1.75).

First we note that the interaction can be taken outside the integral or the vacuum
expectation value in either formula as

16 16
Z * - ] in R Z *7 y ]_1
(7", m] = exp {ZA ¢ LM ZM*H oln*, ] (1.81)
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where Zy[n*,n| is the generating functional for the free fields. Thus Eq. (1.75)
contains only A of (1.45) in the exponent, i.e.

Ao, 4] = / drdt* (x, ) [i0 — e(—i% )] (x, ). (1.82)

The functional integral in Zy[n*,n] is of the type (1.80), where A(x,t¢;x’,t') is the
functional matrix

Ax, ;% 1) = [i0; — e(—=iV)] 6@ (x — x)o(t — t). (1.83)

The inverse of this functional matrix yields the so-called propagator of the free
particle:

Go(x,t;x, 1) = iA  (x, t; %', 1), (1.84)

It can be calculated explicitly in the spectral representation which, for translationally
invariant operators, is a Fourier representation:

3 .
Go(x,t;x',t') = /d—E ' eIBC=)—pee—x)____ (1.85)
B 27 J (2m)* E —e(p) +in

Inserting this into (1.80), we see that
Zo[n*,n]=N exp {z (iiTr log z'Ggl) —/ dPrdtd®s'dt’ n*(x, t)Go(x', t')n(x', t')|. (1.86)
We now fix the normalization constant N to satisfy the condition (1.52):
N =exp[i (£iTrlogiGy)], (1.87)
and arrive at
Zo[n*,n] = exp [—/d?’xdtd?’x'dt' ' (x,t)Go(x,t;x', t)n(x',t)| . (1.88)

This coincides exactly with what would have been obtained from the operator ex-
pression (1.51) for Zy[n*, n] (i.e., without A;y).

1.1.7 Grand-Canonical Ensembles at Zero Temperature

All these results are easily generalized from vacuum expectation values to thermo-
dynamic averages at fixed temperatures T" and chemical potential p. The change at
T = 0 is trivial: The single particle energies in the action (1.45) have to be replaced
by

§(—iV) = e(—iV) — 4, (1.89)
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and new boundary conditions have to be imposed upon all Green functions via an
appropriate ie prescription in Go(x, t;x’,t') of (1.85) [see [5, 8]]:

dEd?’Pe_iE(t—t’)Jrip(x—X’) ! .
(27)* E —¢&(p) +insgné(p)

As a consequence of the chemical potential, fermions with £ < 0 inside the Fermi
sea propagate backwards in time. Bosons, on the other hand, have in general £ > 0
and, hence, always propagate forward in time.

In order to simplify the notation we shall often use the four-vectors p = (p°, p)
and write the measure of integration in (1.90) as

/% - / (;};4. (1.91)

Note that in a solid, the momentum integration is really restricted to a Brillouin
zone. If the solid has a finite volume V', the integral over spacial momenta becomes
a sum over momentum vectors,

[ty

and the Green function (1.90) reads

T=0Go(x, X, ') = / (1.90)

AE 1 &~ ipla—a') ‘
2 V 455 P° —&(p) +insgné(p)

=G (x, ;%\ 1) = (1.93)

The resulting formulas for 7=°Z[n* n] can be brought to a conventional form by
performing a Wick rotation in the complex energy plane in all energy integrals
(1.90), implied by formulas (1.51) and (1.74). For this, one sets £ = p® = iw and

replaces
/OOd—E—>i/OOd—w. (1.94)

—o0 2T —o0 2T

Then the Green function (1.90) becomes

3
_ [ &P rypipeey L
27 (2m)3 iw—&(p)

Note that with formulas (1.88) and (1.81), the generating functional 7=°Z[n* 7] is
the grand-canonical partition function in the presence of sources [8].

Finally, we have to introduce arbitrary temperatures 7. According to the stan-
dard rules of quantum field theory (for an elementary introduction see Chapter 2 in
Ref. [5]), we must continue all times to imaginary values ¢ = i1, restrict the imag-
inary time interval to the inverse temperature? 8 = 1/T, and impose periodic or

T=0Go(x, X, 1) = (1.95)

2Throughout this chapter we use natural units so that kg = 1,/ = 1.
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antiperiodic boundary conditions upon the fields ¥ (x, —i7) of bosons and fermions,
respectively [5, 8]:
W(x, —it) = £(x, —i(t + 1/T)). (1.96)

When there is no danger of confusion, we shall usually drop the factor —i in front
of the imaginary times in all field arguments, for brevity. The same thing will be
done in the Green functions.

By virtue of (1.81) and (1.88), also the Green functions satisfy these boundary
conditions, implying that

"Gy (x,7 +1/T5%,7') = + Go(x, —iT; X', —it"). (1.97)

This property is enforced automatically by replacing the energy integrations
J20, dw/2m in (1.95) by a summation over the discrete Matsubara frequencies [in
analogy to the momentum sum (1.92), the temporal “volume” being 8 = 1/T7:

/Oo - TZ (1.98)

which are even or odd multiples of #1T°

2n bosons
Wn = { 2n+1 }WT for { fermions } (1.99)

The prefactor T of the sum over the discrete Matsubara frequencies accounts for the
density of these frequencies yielding the correct T"— 0-limit.

Thus, for the imaginary-time Green function of a free nonrelativistic field at finite
temperature (the so-called free thermal Green function), we obtain the following
expression:

7uun T—1")+ip(x—x’) : 1
W — €(p)

(1.100)

TGQ(X 7,x,7)

Incorporating the Wick rotation in the sum notation we may write
Ty =—iT) =—iT)_, (1.101)
po Wn P4

where py = —ipy = w. If both temperature and volume are finite, the Green function
is written as

1
Go(x, 7, %, 7) = — —ZZ@*WT ) ol (1.102)

At equal space points and equal imaginary times, the sum can easily be evaluated.
One must, however, specify the order in which 7 — 7/. Let 1 denote an infinitesimal
positive number and consider the case 7/ = 7 + 1, i.e., the Green function

1
iwn - g(p) .

T d3p )
Go(x,7,x,7+n)=—T Z/ (QW):))ewnn
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FIGURE 1.1 Contour C' in the complex z-plane for evaluating the Matsubara sum (1.104).

The sum is now found by changing it into a contour integral

TZ@“”"”; = i/dzii. (1.103)
S iw, — &(p) 2miJo e T Flz—¢

The upper sign holds for bosons, the lower for fermions. The contour of integration
C encircles the imaginary 2 axis in the positive sense, thereby enclosing all integer
or half-integer valued poles of the integrand at the Matsubara frequencies z = iw,,
(see Fig. 1.1). The factor e”* ensures that the contour in the left half-plane does not
contribute.

By deforming the contour C' into C” and by contracting C” to zero we pick up
the pole at z = £ and find

1 B 1 B 1 -
i) eEwrEl Tewrgr P

(1.104)

TN elnn
g; Wy,
The function on the right is known as the Bose or Fermi distribution function.
By subtracting from (1.104) the sum with & replaced by —¢&, we obtain the

important sum formula

1 1 11 8(p)
T%; I E0) - %) coth T (1.105)

In the opposite limit 7/ = 7 — 7, the phase factor in the sum would be e=%m",
and the Matsubara sum would be converted into a contour integral

1 kgT / e 1
C

—kgT»_ e™mt =+
B wzm:@ e T £ 12— ¢

i —E()  2m (109
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yielding 1 & ng(p).
In the operator language, these limits correspond to the expectation values

"G (xx, 7+ ) = (O (ar(x, 70 (e, 7+ 1)) [0)=£ (0], (x, )b (, 7)]0).
T

"G (e, i — ) = (O (a7l (7 — ) ) 10)01 s (. 7y (x, 7)]0)

~

= 1+ (0]} (x, 7)o (x,7 F 1)|0).

The function n(£(p)) is the thermal expectation value of the number operator

N = b (x, 7)o (x, 7). (1.107)
It is useful to employ a four-vector notation also in 7" # 0 -ensembles. The
four-vector

pe = (p1,p) = (w,p) (1.108)

is called the Fuclidean four-momentum. Correspondingly, we define the Fuclidean
spacetime coordinate

g = (—7,%X). (1.109)
The exponential in (1.100) can be written as
PETE = —WT + PX. (1.110)

Collecting integral and sum in a single four-summation symbol, we shall write (1.100)
as

T 1

Go(zp — ') = ——Zexp —ipg( E—x%)]m (1.111)

It is quite straightforward to derive the general T" # 0 Green function from a
path integral formulation analogous to (1.75). For this we consider classical fields
Y (x,7) with the periodicity or anti-periodicity

Y(x,7)=xY (x, 7+ 1/T). (1.112)

They can be Fourier-decomposed as

ZZ —anT+ZpX wn7p Ze sz:BE pE (1113)

wn P

with a sum over even or odd Matsubara frequencies w,. If now a free action is

defined as

. ) 1/2T 3 .
Aoler ) = =i [ dr [ e (x,7) [0, — € (9] 0.7,
(1.114)
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Eq. (1.80) renders [4, 10]

T ol ] = TR ARS [ drdr! [ Padaln A e e ) g gy
with
Al i 1) = [0: 4+ € (=i9)] 60 (x = x)o(7 — 7). (1.116)

Henceforth A=t is equal to the propagator (1.100). The Matsubara frequencies arise
from the finite 7 interval of Euclidean space together with the periodic boundary
condition (1.112).

Again, interactions are taken care of by multiplying 7Zy[n*n] with the factor
(1.81). In terms of the fields ¥ (x, 7), the exponent has the form

1/27
A = 2 //1/2T
x / Brdz' v (x, T (K, T YK, TV (x, TV (x, —im; X, —ir'). (1.117)
In the case of a potential of type (1.47), which becomes instantaneous in 7:
V(x,—it;x',—it') = V(x — x') id(1 — 7). (1.118)

Then A;,; can be written in terms of the interaction Hamiltonian as

1/2T
Ay = i / dr i (7). (1.119)

—1/2T

Thus the grand canonical partition function in the presence of external sources may
be calculated from the path integral [10]:

1/2T
TZ[H n| = /Dw x, 7)DY(x,T)e AR [ ety XTT](XTHCC], (1.120)

where the grand-canonical action is

i A Y] = — /1/2 dT/d3x1/) (%,7) [0 + £(—iV)] ¥(x, 7) (1.121)

1/2T
2/ drdr’ d3xd3x’w*(x, )* (X, T (x, T ) (x, TV (%, —iT; X, —iT').

1/27
The Green functions are obtained from the functional derivatives

G (X17T17 oy Xy Ty Xy Tty - v 7X1’77—1’) (1122)

_ (_Z->n+n’ 5n+n/Z[77*7 TI]
577* (X17 Tl) e 577*(Xn7 Tn)én(xn’a Tn/) o 57](}(1’7 Tn/)

n=n"=0
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The right-hand side consists of the functional integrals
N/Dw* (X7 t>Dd}(X7 t) dAJ(Xh Tl) o 7\;(}{1’” Tn)lﬁ*(xnﬁ Tn’) M 7ﬁ*(}cl’, 7—1’)67”4[1#*711}](1123)

In the sequel, we shall always assume the normalization factor to be chosen in such
a way that Z]0, 0] is normalized to unity. Then the functional integrals (1.123) are
obviously the correlation functions of the fields, commonly written in the form

(V(x1,71) + (X, o)™ (X, Tr) =+ D" (X0, T00)). (1.124)
In contrast to Section 1.2, the bra and ket symbols denote now a thermal average
of the classical fields.

The functional integral expression (1.120) for the generating functional offers the
advantageous flexibility with respect to changes in the field variables.

Summarizing we have seen that the functional (1.120) defines the most general
type of theory involving two-body forces. It contains all information on the physical
system in the vacuum as well as in thermodynamic ensembles. The vacuum theory
is obtained by setting 7" = 0, ¢ = 0, and continuing the result back from 7' to
physical times. Conversely, the functional (1.75) in the vacuum can be generalized to
ensembles in the straightforward manner by first continuing the times ¢ to imaginary
values —i7 via a Wick rotation in all energy integrals and then going to periodic
functions in 7.

There is a complete correspondence between the real-time generating functional
(1.75) and the thermodynamic imaginary-time expression (1.120). For this reason
it is sufficient to exhibit all techniques only in one version for which we shall choose
(1.75). Note, however, that due to the singular nature of the propagators (1.85) in
real energy-momentum, the thermodynamic formulation specifies the way how to
avoid singularities.

1.2 Relativistic Fields

We shall also study collective phenomena in relativistic fermion systems. For this
we shall need fields describing relativistic particles of spin zero, 1/2, and 1. Their
properties will now be briefly reviewed.

1.2.1 Lorentz and Poincaré Invariance

For relativistic particles, the relation between the physical laws in two coordinate
frames which move with a constant velocity with respect to each other are different
from the nonrelativistic case. Suppose a frame moves with velocity v into the —z-
direction of another fixed frame. Then in the moving frame, the z-momentum of
the particle will be increased. The particle appears boosted in the z-direction with
respect to the original observer. The momenta in z- and y-directions are unaffected.
Now, the total four momentum still satisfies the energy momentum relation

E(p) = \/p* + M2. (1.125)
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Introducing the four-vector notation
P =" p) with p0=(p)/c, (1.126)
we see that the four-vector satisfies the mass shell condition
p” - p?= M2 (1.127)

For the particle moving in the z-direction, the combination p°° — p*” remains invari-
ant. This implies that there must be a hyperbolic transformation mixing p° and p?,
which may be parametrized by a hyperbolic angle ¢ called rapidity:

p® = cosh(p®+sinh(p®
p?® = sinh(p® 4+ cosh (p®. (1.128)

This is called a pure Lorentz transformation. We may write it in a 4 X 4 matrix form
as

cosh¢ 0 0 sinh¢ \"
0 10 0
mo__ [ Z— no v
sinh( 0 O cosh( / ,

The subscript 3 of Bs indicates that the particle is boosted into the z-direction. A
similar matrix can be written down for x and y-directions. In an arbitrary direction
p, the matrix elements are

cosh ¢ | p?sinh ¢
Bs(C)=| " — :
p'sinh ¢ | 6 4 p'p (cosh ( — 1)
By combining rotations and boosts one obtains a 6-parameter manifold of matrices
A = Bp(C)Ry(), (1.131)

called proper Lorentz transformations. For all these

(1.130)

P —p?=p” - p? = M3 (1.132)

is an invariant. These matrices form a group, the proper Lorentz group. We can
easily see that the Lorentz group allows reaching every momentum p* on the mass
shell by applying an appropriate group element to some fized reference momentum
pl. For example, if the particle has a mass M we may choose for ph the so-called
rest momentum

Py = (M,0,0,0), (1.133)

and apply the boost in the p direction

A = By(C), (1.134)
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with the rapidity given by

. p|

, sinh({ = e (1.135)
But we may also choose A(p) = Bp(¢)Rs(p) where Ry is an arbitrary rotation,
since any of these leaves the rest momentum p% invariant. In fact, the rotations
form the largest subgroup of the group of all proper Lorentz transformations, which
leaves the rest momentum pf, invariant. It is referred to as the little group or Wigner
group of a massive particle. It has an important physical significance since it serves
to specify the intrinsic rotational degrees of freedom of the particle. If the particle
is at rest it carries no orbital angular momentum. If its quantum mechanical state
remains completely invariant under any member Rg of the little group, the particle
must also have zero intrinsic angular momentum or zero spin. Besides this trivial
representation, the little group being a rotation group can have representations of
any angular momentum s = %, 1, %, ... . In these cases, the state at rest has 2s + 1
components which are mixed with each other upon rotations.

The situation is quite different in the case of massless particles. They move with
the speed of light and p* cannot be brought by a Lorentz transformation from the
light cone to a rest frame. There is, however, another standard reference momentum
from which one can generate all other momenta on the light cone. It is given by

cosh( =

SRS

Pr=(1,0,0,1)p, (1.136)

and it remains invariant under a different little group, which is again a three-
parameter subgroup of the Lorentz group. This will be discussed later.

It is useful to write the invariant expression (1.132) as a square of a four vector
p* formed with the metric

Guv = 1 s (1137)

namely
P> = gup'p”. (1.138)
In general, we define a scalar product between any two vectors as
pr' = gt = p°p° — pp'. (1.139)

A space with this scalar product is called Minkowski space. . It is useful to introduce
the covariant components of any vector v* as

Uy = G’ (1.140)
Then the scalar product can also be written as

pp’ = pup™. (1.141)
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With this notation the mass shell condition for a particle before and after a Lorentz
transformation reads simply
= p? = M22 (1.142)

Note that, apart from the minus signs in the metric (1.137), the mass shell con-
dition p? = p°> — p* — p?*> — p3* = M2c2, left invariant by the Lorentz group, is
completely analogous to the spherical condition p42 + p12 + ]022 + ]032 = M?c? which
is left invariant by the rotation group in a four-dimensional euclidean space. Both
groups are parametrized by six parameters which are associated with linear trans-
formations in the six planes 12,23, 31; 10, 20, 30 or 12,23, 31; 14, 24, 34, respectively.
In the case of the four-dimensional euclidean space these are all rotations which
form the group of special orthogonal matrices called O(4). The letter S indicates
the property special. A group is called special if all its transformation matrices have
a unit determinant. In the case of the proper Lorentz group one uses by analogy
the notation SO(1,3). The numbers indicate the fact that in the metric (1.137), one
diagonal element is equal to +1 and three are equal to —1.

The fact that all group elements are special follows from a direct calculation of
the determinant of (1.130), (1.131).

How do we have to describe the quantum mechanics of a free relativistic particle
in Minkowski space? The energy and momenta p°, p must be related to the time
and space derivatives of particle waves in the usual way

" e 0 0
= - =ih— =ih—
b ¢ "ot — "Moo
- 0
= —ih—. 1.143
p ihes (1.143)
They satisfy the canonical commutation rules
. p"] = 0,
[zt 2"] = 0,
", x"] = —ihg". (1.144)

We expect that associated with the pure momentum state p there will be some wave
function

fol(x) = 10" =pa)/h = oipz/h (1.145)

At this point we do not yet know the proper scalar product necessary to extract
physical information from such wave functions.

We have stated previously that permissible energy momentum states of a free
particle can be realized by considering one and the same particle in different coor-
dinate frames connected by the transformation A(p). Suppose that we change the
coordinates of the same space time point as follows:

r— 1’ = Az (1.146)
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Under this transformation the scalar product of any two vectors remains invariant:
2y = xy. (1.147)
This holds also for scalar products between momentum and coordinate vectors
p'r’ = px. (1.148)
For the transformation matrix A, it implies that
(Ap)(Ax) = px. (1.149)

If the scalar products are written out explicitly in terms of the metric g, this
amounts to
GNP (" = grepa”, (1.150)

for all p, x. The Lorentz matrices A satisfy therefore the identity
GuNAN s = G, (1.151)

or, written without indices,
ATgA = g. (1.152)

If the metric is Euclidean, this would be the definition of orthogonal matrices. In
fact, in the notation of scalar products in which the metric is suppressed as in
(1.153), there is no difference between the manipulation of orthogonal and Lorentz
matrices. In both cases one has

(Ap)(Az) = pA~'Az = pa. (1.153)
When changing the coordinates, the same particle wave in space behaves like

fyla) = e

= e~ — () = £ (). (1.154)

This shows that, in the new coordinates, the same particle appears with different
momentum components
P = Ap. (1.155)

Consider a wave 1 (z) which is an arbitrary superposition of different momentum
states. After a coordinate transformation it will still have the same value at the
same space time point. Thus ¢/(2'), as seen in the new frame, must be equal to
() in the old frame

(@) = (@), (1.156)
At this place one defines the substantial change under the Lorentz transformation

A as the change at the same values of the coordinates x (which corresponds to a
transformed point in space)

() —— Y (2) = (A ), (1.157)
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We have marked by a subscript the transformation under which /() arises. Clearly,
this transformation property is valid only if the particle does not possess any intrinsic
orientational degree of freedom, i.e., no spin. A field with this property is called a
scalar field or, for historical reasons, a Klein-Gordon field.

If a particle has spin degrees of freedom, the situation is quite different. Then
the wave function has several components to account for the spin orientations. The
transformation law must be such that the spin orientation in space remains un-
changed at the same space point. This implies that the field components which
specify the orientation with respect to the different coordinate axes will have to
be transformed by certain matrices. It is well-known how this is done in the case
of electromagnetic and gravitational fields, whose vector and tensor transformation
properties follow standard rules. In the next sections these will be recalled. After-
wards it will be easy to generalize everything to the case of arbitrary spin.

Before coming to this, however, let us conclude this section by mentioning that
there are other space transformations which leave the scalar products p,z* invariant
but which are not contained in the group SO(1,3): Most importantly there is the
space inversion, also called mirror reflection or parity transformation:

1

» , (1.158)

—1

which reverses the direction of the spatial vectors, x — —x. There is further the
time inversion

(1.159)

which changes the sign of 2°. If P and T are incorporated into the special Lorentz
group SO(1,3), one deals with the full Lorentz group.

Note that the determinants of both (1.158) and (1.159) are negative, so that
the full Lorentz group no longer deserves the letter .S in its name. It is then called
0(1,3).

1.2.2 Relativistic Free Scalar Fields

From all this it is obvious how the non-relativistic free field action

2

A= / dtdaa)* (x, 1) l@'hat - hQiiMl Y(x, 1) (1.160)

must be modified to describe relativistic n-particle states. In order to accommodate
the kinematic features, discussed in the last section, we require the action to be
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invariant under Lorentz transformations. Depending on the possible internal spin
degrees of freedom there are different ways of making the action relativistic. These
will now be discussed separately.

Scalar Fields

If the field 1 (x,t) carries no spin degree of freedom which varies under space ro-
tations, the spatial derivative Oy always has to appear squared in the action to
guarantee rotational invariance. With the Lorentz symmetry between 0y and 0y we
are led to a classical action

A= / dz°L = / A’ dPa (x, 1) [10"0, + ca] (x, 1), (1.161)

where ¢, ¢ are two arbitrary real constants. It is now easy to see that this action is
indeed Lorentz invariant: Under the transformation (1.146), the four-volume element
does not change

d2’d*r = d'r — d*a’ = d*z. (1.162)
If we therefore take the action in the new frame
A= /d4:17/¢*/(x/) [018’“@2 + 02} Y ('), (1.163)
we can use (1.161) and (1.156) to rewrite
A= / d'z0" (z) [0, + ca] ¥(x). (1.164)
But since
d,=NMN"0,, 0" =A"0" (1.165)

with A, = gng”"A*,, we see that
o* = 9% (1.166)
and the transformed action becomes
A= /dxod?’xw* (x,t) [¢10"0,, + ca] Y(x, 1), (1.167)

which is the same as (1.161).
It is useful to introduce the integrand of the action as the so-called Lagrangian

density
L(x,1) =" (x,1) [c1(0” = 0x%) + 2] ¥(x, 1). (1.168)

Then the invariance of the action under Lorentz transformation is a direct conse-
quence of the Lagrangian density being a scalar field, satisfying the transformation
law (1.156),

L'(2') = L(x), (1.169)
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as implied by (1.163), (1.164), and (1.166).
The free-field equations of motion are derived from (1.161) as follows. We write

A:/m%:/@#/ﬁmmxwh@ﬁ—&%+4¢@ﬁ, (1.170)

and vary this independently with respect to the fields ¢ (x) and *(z). The inde-
pendence of these variables is expressed by the functional differentiation rules

oY (z) o os@y. oY (z) @y
sula) 6 (x ), o) §W (2 — ),
p(r)  _ oy*(z) _
S*(z) 0 5i(2) = 0. (1.171)
Applying these rules to (1.170) we obtain directly
0A 4,0 5(4) ()0 2
50(2) /d 20 (2" — x) (107 4 c2)(x)
= (a10° + c2)Y(x) = 0. (1.172)
Similarly,
5"4 _ LSNE YW 2 1
o = J TV @ed + e —a)

= @) e O to), (1.173)

where the arrow on top of the last derivative indicates that it acts on the field to the
left. The second equation is just the complex conjugate of the previous one. Then
the functional derivative with respect to ¢)*(z) is simple. In terms of the Lagrangian
density, the extremality condition can be expanded in terms of partial derivatives
with respect to increasing partial derivatives of all fields in L,

SA  OL(x) OL(z)

5 OL(x) _0L(x)
o)~ v g T ge.a,0@)

with the same equation for ¢*(x). This follows directly from the defining relations
in (1.171). The field equation for ¢ (z) is particularly simple:

T (1.174)

SA  OL(x)
oy*(x) Oy (x)’

For 1*(z), on the other hand, all derivatives written out in (1.174) have to be
evaluated.

Both field equations (1.172) and (1.173) are solved by the quantum mechanical
plane wave (1.145),

(1.175)

fyla) = e, (1.176)
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if the momentum satisfies the condition
—cp'py +c2 = 0. (1.177)
This has precisely the form of the mass shell relation (1.142) if we choose
coh? ey = M?c2, (1.178)
It is customary to normalize ¢; to
¢, = —h?. (1.179)

The sign is necessary to have stable field fluctuations. The size can be brought
to this value by a multiplicative renormalization of the field. Then the mass shell
condition fixes the free field action to the standard form

A= / da’ ey (x, t) [-h20"9, — M) w(x,1). (1.180)

The appearance of the constants i and ¢ in all future formulas can be avoided
if we agree to work with natural units ly, mg, to, Fy different from the ordinary cgs
units. They are chosen to give h and ¢ the value 1. Expressed in terms of the
conventional length, time, mass, and energy, these new natural units are given by

h h h
lh = — = — tg = —— 1.181
© T Me EO T M& (1.181)
my = M, FEy=Mc. (1.182)
If, for example, the particle is a proton with mass m,,, these units are
l, = 2.103138 x 10 "em (1.183)
= Compton wavelength of proton,

to = lp/c="T7.0153141 x 10~ **sec (1.184)

= time taken by light running along Compton wavelength,
my = m,= 16726141 x 10~*'g, (1.185)
Ey = 938.2592 MeV. (1.186)

For any other mass, they can easily be rescaled.
With these natural units we can drop ¢ and & in all formulas and write the action
simply as

A= / d'zL(z) = / AU (2) (=% — M2)(). (1.187)

Actually, since we are dealing with relativistic particles there is no fundamental
reason to assume ¥ (z) to be a complex field. In the non-relativistic theory this was
necessary in order to construct a term linear in the time derivative

/ dte i, (1.188)
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For a real field ¢ (z) this would have been a pure surface term that does not influence
the dynamics of the system. For second-order time derivatives as in (1.187) this is
no longer necessary.

Thus we shall also study the real scalar field with an action

A= [ L) = % [ o)~ — M)oz). (1.189)

In this case, a prefactor % is the normalization convention for the field. We have
also here used the letter ¢(x) to denote the real field, as is commonly done.

1.2.3 Electromagnetic Fields

Electromagnetic fields move with light velocity and have no mass term.? The fields
have two polarization degrees of freedom (right and left polarized) and are described
by the usual electromagnetic action. Historically, this was the very first example of
a relativistic classical field theory. Thus it could also have served as a guideline for
the previous construction of the action of the scalar field ¢(x).

The action may be given in terms of a real auxiliary four-vector potential A, (x)
from which the physical electric and magnetic fields can be derived as follows

) - _(80Ai _ 81A0) — _atAi —_ aiAO’ (1190)
, 1 , : 1 ;
H = —Eeijk(@ZAk —0F A" = §€ijk(ajAk — OpA). (1.191)

Here €51, is the completely antisymmetric Levi-Civita tensor with €93 = 1. It is
useful to introduce the so-called four-curl of the vector potential

E,=90,A, -0,A,. (1.192)
Its six components are directly the field strengths
E'=-F%=Fy,, H' =-F%"=-Fy; ijk=cyclic. (1.193)

For this reason F},, is also called the field tensor. The electromagnetic action reads
1 1
A= / d'rL(z) = / d'us (H? — B?) = — / d'eF,,2. (1.194)

The four-curl F),, satisfies the so-called Bianchi identity for any smooth A, [which
satisfies the Schwartz integrability condition (050, — 0,0\)A, = 0]:

9, Fr =0, (1.195)

3The best upper limit for the mass of the electromagnetic field M. deduced under terrestrial
conditions, from the shape of the earth’s magnetic field, is M, < 4 -10° 48g corresponding to a
Compton wavelength A, = 1/M,c > 10*%m (= larger than the diameter of the sun). Astrophysical
considerations (“whisps” in the crab nebula) give A, > 10'%cm. If metagalactic magnetic fields
are discovered, the Compton wavelength would be larger than 1024 — 10%°cm, quite close to the
ultimate limit set by the horizon of the universe = cx age of the universe ~ 10?%cm. See G.V.
Chibisov, Sov. Phys. Usp. 19, 624 (1976).
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where )
Fr = e spy (1.196)

is the so called dual field tensor, with e**** being the four-dimensional Levi-Civita
tensor with €0123 — 1.
The equations of motion which extremize the action are

5A OL(z)

SAR(z) = —aum =0, F"(x) = 0. (1.197)

Separating the equations (1.196) and (1.197) into space and time components they
are seen to coincide with Maxwell’s equation in empty space

OF"=0: V-E=0, VxB-9E=0, (1.198)
O, F" =0: V-B=0, VxE+9B=0. (1.199)

The field tensor is invariant under local gauge transformations
A, (z) — Au(x) + 0,A(x), (1.200)

where A(z) is any smooth field which satisfies the integrability condition (9,0, —
0,0,)A = 0. In terms of the vector field A*, the action reads explicitly

A= /d%ﬁ(x) = —%/d4x[8“A”(as)8uA,,(x) — 0"A,(z)0" A, ()]
_ % [ A, 2)(g 3 — 0 A (). (1.201)

The latter form is very similar to the scalar action (1.160). The first piece is the
same as (1.161) for each of the spatial components A', A%, A3. The time component
A®, however, appears with an opposite sign. A field with this property is called a
ghost field. When trying to quantize such a field, the associated particle states turn
out to have a negative norm. In order for the theory to be physically consistent it
will be necessary to make sure that such states can never appear in any scattering
process. The second piece in the action 0¥ A, 0" A, is novel with respect to the scalar
case. It exists here as an additional Lorentz invariant since A, is a vector field under
Lorentz transformation.

In order to see the Lorentz transformation properties, let us remember that in
electrodynamics the Lorentz forces on a moving particle carrying a charge and a
classical magnetic pole are obtained from the field transformation

EH/:EH , EL/ZW(EL-FV x B), (1.202)
BH/:BH s BJ_/:’)/(BJ_—VXE), (1.203)

with v being the velocity of the particle and v = /1 — v2/c%. Here E and B are
the fields in the laboratory, whereas E’ and B’ are the corresponding fields in the
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frame of the moving particle. They exert electric and magnetic forces eE' + ¢gB’.
The subscripts || and L denote the components parallel and orthogonal to v.

From this experimental fact we can derive the transformation law of the vector
field A, under Lorentz transformations. The frame in which the moving particle is
at rest is related to the laboratory frame by

' = Be(Q)x, (1.204)

where Bg(() is a boost in the v-direction with the rapidity

cosh( =v, sinh¢=~2, tanh(= 2. (1.205)
c c
The transformation law (1.202) is equivalent to
A(a!) = By(C) 4" (x). (1.206)

An analogous transformation law holds for rotations so that we can write, in general,
At (2) =AM, AY (). (1.207)

This transformation law differs from that of a scalar field (1.156) in the way en-
visaged above for particles with non-zero intrinsic angular momentum. The field
has several components. It points in the same spatial direction before and after the
coordination change. This is ensured by its components changing in the same way
as the coordination of the point x,. Notice that as a consequence, O*A,(z) is a
scalar field in the sense defined in (1.156). Indeed

IHA () = (A*, 0" )N A (z) = 0 A (). (1.208)

For this reason the second term in the action (1.218) is Lorentz invariant, just as
the mass term in (1.189). The invariance of the first term is shown similarly

A/y(x/)a@A;(x/) — AVAAV(I‘)aIQAVHAH(Z‘/)
= AY(2)0"? A, (x) = AV (2)0* A, (). (1.209)

Hence the action (1.218) does not change under Lorentz transformations, as it
should.

Just as the scalar action, also the electromagnetic action (1.194) is invariant
under a Lorentz group extended by translations (the so-called Poincaré group):

An(z') = AM(z) (1.210)

where
't = A' L2t + at (1.211)

Similarly, we have under parity

AT A () =A@, (1.212)
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and under time reversal,
T ~
A —— Al (z)= A" (x7) (1.213)

where the tilde inverts the spacial components
Ar = (A° —AY). (1.214)
In principle, there would have been the possibility of a parity transformation
A L A () = g AN (), (1.215)

with np = 41, and in the case np = —1 the field A* would have been called an azial
vector field. The electromagnetic gauge field A*, however, is definitely a vector field.
This follows from the vector nature of the electric and the axial vector nature of
the magnetic field, which are observed in the laboratory. Similarly, the phase under
time reversal of A*, which in principle could have been

A A () = A () (1.216)

with np = £1, is given by (1.213). This is due to time reversal, under which all
currents change their direction. This reverses the direction of the B-field but has
no influence on the E-field.

It is also possible to perform the operation of charge conjugation by exchanging
the sign of all charges without changing their direction of flow. Then E and B
change directions. Hence

Ay A () = — AR (). (1.217)

In general, the vector field could have been transformed as

A =S A () = e AP (2) (1.218)

with ne = +1. The phase factor no = —1 expresses the experimental fact that the
electromagnetic field is odd under charge conjugation.

1.2.4 Relativistic Free Fermi Fields

For Fermi fields, the situation is technically more involved. Experimentally, fermions
always have an even number of spin degrees of freedom. In order to describe these we
give the field ¥ a spin index « running through (2s+1) components. Under rotations,
these spin components are mixed with each other as observed experimentally in
the Stern-Gerlach experiment. Lorentz transformations lead to certain well defined
mixtures of different spin components.

The question arises whether we can construct a Lorentz invariant action involving
(2s + 1) spinor field components. To see the basic construction principle we use the
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known transformation law (1.207) for the 4-vector field A* as a guide. For an
arbitrary spinor field we postulate the transformation law

B(@) et (2') = DoP(A)s(a), (1.219)

with an appropriate (2s+ 1) x (2s + 1) spinor transformation matrix D,?(A) which
we have to construct. This can be done by purely mathematical arguments. The
construction is the subject of the so-called group representation theory. First of all,
we perform two successive Lorentz transformations,

[E” =Ax = Ag[E, = AQAlflf. (1220)

Since the Lorentz transformations A, Ay are elements of a group, the product A =
AsAq is again a Lorentz transformation. Under the individual factors Ay and Aq,
the field transforms as

U(z) —— U'() = D(A)U (), (1.221)
W (x) —2s W) = D(A) W (), (1.222)

so that under A = AyAq,
W(z) =0 (") = D(As)D(A) ¥ (). (1.223)

But for A itself, the transformation matrix is D(A) and
\If”(l'”) = D(AgAl)\I/(ZL') (1224)

Comparison of this with (1.223) shows that the matrices D(A) which mix the spinor
field components under the Lorentz group must follow a group multiplication law
which has to be compatible with that of the group itself. The mapping

A —— D(A) (1.225)

is a homomorphism and the D(A)’s form a matriz representation of the group.
Notice that the transformation law (1.207) for A, follows the same rule, with

D(A) = A (1.226)

being the defining 4 x 4 representation of the Lorentz group.

The group laws for A and D(A) are sufficiently stringent to allow only a countable
set of fundamental® finite dimensional transformation laws D(A). They are char-
acterized by two quantum numbers, s; and sy, with either one taking the possible

half-integer or integer values 0, %, 1, %, cee

4Mathematically, “fundamental” means that the representation is irreducible. Any arbitrary
representation is equivalent to a direct sum of irreducible ones.
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A representation D®1*2)(A) will turn out to harbor particles of spin |s; — s
to s; + so. Hence, particles with a single fixed spin s can only follow the D(*0)(A)
or D®*)(A) transformation laws. For spin 1/2, the relativistic free-field which is
invariant under parity has four components and is called the Dirac field. It is
described by the action

A= / daL(z) = / de(z) ("8, — M) y(x), (1.227)

where M is the mass of the spin-1/2 -particles described by 1 (z). The quantities
~#* are the Dirac matrices. , defined by defined by

0 ot
T
At = < e )7 (1.228)

where o* is a four-vector formed from the 2 x 2-dimensional Pauli matrices as follows:

ot = (1,0"), (1.229)
and
' = (1,—0"). (1.230)
The symbol ¢ (z) is short for
= TA0. (1.231)

As a historical note we mention that Dirac did not find his equation by invoking
group-theoretic arguments. Instead, he was searching for an alternative solution to
the relativistic time-independent Schrodinger equation of an electron

(%) = Jp? + M2p(x) = B(x). (1.232)

He observed that a square root linear in the momentum operator exists if the equa-
tion is considered as a matrix equation acting on several components of ¥ (x,t).
These would indeed be necessary to represent the spin degrees of freedom of the
electron. So he made the ansatz

FIM/)(X) = (—iqup; + BM)Y(x) = E(x), (1.233)

with unknown matrices «;, 3. Being the square root of H , the operator Hp has
to fulfill the equation H? = p* + M?. This implies that the matrices satisfy the
algebraic relations:

{Oéi, Oéj} == 6ij7 {Oéi, 6} == 07 62 =1. (1234)

By multiplying Eq. (1.235) with 8 and going over to a time-dependent equation by
replacing E by 70,0, he obtained the Dirac equation

(i7"p, — M)w(x) =0, (1.235)
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with the matrices

V=8, =P (1.236)
These satisfy the anticommutation rules
{7} = 29", (1.237)

which are indeed solved by the Dirac matrices (1.228).
It has become customary to abbreviate the contraction of v* with any vector v*
by

¥ =, (1.238)
and write the Dirac equation as
(¥ — M)p(x) =0, (1.239)
or
(1 — M)y(z) = 0. (1.240)

1.2.5 Perturbation Theory of Relativistic Fields

If interactions are present, the Lagrangian consists of a sum

L (@D» QZ]) @) = [’0 + ['int- (1241)

As in the case of nonrelativistic fields, all time ordered Green’s functions can be
obtained from the derivatives with respect to the external sources of the generating
functional

Z 1,7, 5] = const x (0|Te' S 2 (Cmtmitintio) gy (1.242)

The fields in the exponent follow free equations of motion and |0) is the free-field
vacuum. The constant is conventionally chosen to make Z[0,0,0] =1, i. e.

-1

const = |(0|Te’ | lm(vd:20)|0y| . (1.243)

This normalization may always be enforced at the very end of any calculation such
that Z[n, 7, j]| is only interesting as far as its functional dependence is concerned,
modulo the irrelevant constant in front.

It is then straightforward to show that Z [n, 7, j] can alternatively be computed
via the Feynman path integral formula

Z[n,7, 5] = const x / DYDYDget | lbo(bbe)tbimtnmorintic] (1 944)

Here the fields are no more operators but classical functions (with the mental reser-
vation that classical Fermi fields are anticommuting objects). Notice that contrary
to the operator formula (1.242) the full action appears in the exponent.
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For simplicity, we demonstrate the equivalence only for one real scalar field p(z).
The extension to other fields is immediate [1, 3]. First note that it is sufficient to
give the proof for the free field case, i. e.,

Zolj] = (0|Te' ] dit@e@))
— const x / Dipet [ aalbo@) (-Fomi®)ot@)ti@ot)] (1.245)

Indeed, if it holds there, a simple multiplication on both sides of (1.245) by the
differential operator

ot Al (5755 (1.246)

would extend it to the interacting functionals (1.242) or (1.244). Equation (1.245)
follows directly from Wick’s theorem according to which any time ordered product
of a free field can be expanded into a sum of normal products with all possible time
ordered contractions. This statement can be summarized in an operator form valid
for any functional F' [p] of a free field p(z):

TFlg) = et | * %@ P56 N(Flg), (1.247)

where D(z — y) is the free-field propagator

D(x—vy) = : or—y) = / d'q e—iq(:c—y); (1.248)
—0, — u? +ie (2m)4 q> — p? +ie '
Applying this to (1.247) gives
ZO _ 6% fdmdy%(z)D(z—y)%(y)<0|N(eifdzj(3:)¢>(z))|0>
=2 J dwdui@Da=)itw) (| N (et [ di@e)|0)
— o5 [ dedyi(@)D(—y)i(y) (1.249)

The last part of the equation follows from the vanishing of all normal products of
¢(x) between vacuum states.

Exactly the same result is obtained by performing the functional integral in
(1.245) and using the functional integral formula (1.79). The matrix A is equal to
A(z,y) = (=0, — p?) 6(z — y), and its inverse yields the propagator D(z — y):

1

ANz y) = dz —y)=—iD(z —vy) (1.250)

thus reproducing once more (1.249).
For the generating functional of a free Dirac field theory

Zoln,i] = (0|TetJm+imds|g)
= const X /Dl/)DzEeifdx[ﬁo(%bﬂ;)Jrﬁer&n]7 (1.251)
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with the free-field Lagrangian

Lo(x) = () (iv"0, — M) ¥(z), (1.252)
we obtain, similarly,
Zoli ] = 6% fdxdy%Go(x—y)%m<0|N(ez‘fdx(ﬁ12;+zzn)>|0>
= 5[ dedyi@)Gola—n(w) (0| N (et S demb+im)y|g)
o3 J dwdyii(x)Go(z—y)n(y) (1.253)
Now,
A(z,y) = (in"0, — M) 0(z — y), (1.254)

and its inverse yields the fermion propagator Go(x — y):

1

At =
(z.9) iyh0, — M + ie

Iz —y) = —iGo(z —y). (1.255)

Note that it is Wick’s expansion which supplies the free part of the Lagrangian
when going from the operator form (1.247) to the functional version (1.244).
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Our observation of nature must be diligent,
our reflection profound, and our experiments ezxact.
DENIS DIDEROT (1713-1784)

2

Plasma Oscillations

In this chapter we develop a collective quantum field theory for a gas of many
electrons which interact only via long-range Coulomb forces. The Coulomb forces
give rise to collective modes called plasmons.

2.1 General Formalism

The simplest application of the functional method transforms the grand-canonicel
partition function (1.120) from the defining formulation in terms of a fundamental
field to a re-formulation in terms of a collective quantum field. The new formulation
describes the phenomeana directly by means of its fundamental excitations called
plasmons. For this, we make use of the Hubbard-Stratonovich transformation in
the form (1.79) and observe that a two-body interaction (1.45) in the generating
functional can be created by a fluctuating auxiliary field ¢(x) as follows:

exp [ =3 [ dude'y ()0 (& @)@V (2,2) 21)
= const x /Dcp {% / dxdx’ [gp(x)V_l(x, 2 )o(x') —2p(x)* (x))(x)d(x — x')} } :
To abbreviate the notation, we have used a four-vector notation with
r=(x,t), dv=dzdt, §(x)=86(x)(t).

The symbol V~!(z,2") denotes the functional inverse of the matrix V(z,z’), which
is the solution of the equation

/dx’V’l(x,x’)V(x’,x”) =0z —2"). (2.2)
The constant prefactor in (2.1) is [det V]fl/ ?. Absorbing this in the always omit-

ted normalization factor N of the functional integral, the grand-canonical partition
function 2 = Z becomes

20l = [ DU DeDpexp |id+i [ du (o (0)o(@) + v @n()|, (23)

41
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where the new action is
A 9] = [ doda' {0 (@) 10, — €(=iV) = p(a)] oo — () (2.4)

1 _
+ eV (w2 )p@) .
Note that the effect of using formula (1.79) in the generating functional amounts to
the addition of the complete square involving the field ¢ in the exponent:

1 « _ %

5 [dede'[p(@)— [ayV @) )|V @ 2) [ola') - [y Vo0 oty |
(2.5)

followed by a functional integration over ¢(z). The addition of (2.5) to the action

(2.12) can be generated from a source term

_Alzi/z)ux)e—%fmmmkuﬂufHJunw@—fmn«aww«ww@n‘ (2.6)

The generating functional Z remains unchanged by the two successive manipulations
as follows from the observation that the integral D¢ produces the irrelevant constant
[det V]*/2, which is precisely cancelled by the functional over I(z). This procedure
of going from (1.45) to (2.4) is probably simpler mnemonically than formula (1.79).

The physical significance of the new field ¢(z) is easy to understand: ¢(z) is
directly related to the particle density. At the classical level this is seen immediately
by extremizing the action (2.4) with respect to variations d¢(x), which yield:

0A
dp(x)

Quantum mechanically, there are fluctuations around the field configuration ¢(z)
that is determined by Eq. (2.7). These make the field ¢(z) different from the com-
posite operator O(z) = [dyV (z,y)Y*(y)¥(y). But due to the Gaussian nature of
the functional integral over (x), the fluctuations are rather trivial. Thus we can
easily see that the propagators of the two fields p(z) and O(zx) differ only by the
direct interaction, i.e.,

(T(p(x)e()) = V(e —a') + (T(O()O(x))) -

Note that if a potential V' (z,y) is dominantly caused by a single fundamental-
particle exchange, the field ¢(z) coincides with the field of this particle: If, for
example, V(x,y) represents the Coulomb interaction

= ol@) = [ dyV (@) v @)o ) = 0. (27)

62

V(z,z")

ot —1t), (2.8)

~he=x]
then Eq. (2.7) amounts to

4mre?

@(Xa t) == v 2 ¢*(X7 t)w(xv t)' (29)
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This reveals that the auxiliary field ¢(x,t) is the electric potential of the system.
If the particles ¥ (x) have spin indices, the potential will, in this example, be spin
conserving at every vertex, and Eq. (2.7) must be read as spin-contracted:

aié) = ¢(@) = Of) = () - / d'yV (z, y) 0™ (y)¢aly) = 0. (2.10)

This restriction is just for convenience and can easily be lifted later. Nothing in
our procedure depends on this particular form of V(z,y) and O. In fact, V' could
arise from the exchange of one or many different fundamental particles and their
multiparticle configurations (for example, 7, 77, 0, ¢, etc. in nuclei [1]) so that the
spin dependence is the rule rather than the exception.

The important point is now that the auxiliary field ¢(z) can be made the only
field of the theory by integrating out ©¥*, v in Eq. (2.3), using formula (1.80). Thus
one obtains

ZIn*,n] = Qn*,n] = Ne*t, (2.11)
where the new action is

Alg] = j:Trlog ZG /dxdx Gy(z, 2")n(x'), (2.12)

with G (z,2’) being the Green function of the fundamental particles in an external
classical field ¢(x):

10, — x(—iV) — ¢(2)] Gy(z,2") = id(z — 2'). (2.13)

The field p(x) is called a plasmon field. The new plasmon action can easily be
interpreted graphically. For this, one expands G,(x, ') in powers of ¢:

Gy(z,2") = Go(x — 2') — i/dleo(:c —x)p(zy —2') + ... (2.14)

Hence the couplings to the external currents n*, 7 in (2.12) amount to radiating one,
two, etc. ¢ fields from every external line of fundamental particles (see Fig. 2.1). An
expansion of the expression Tr log(iG;l) in powers of ¢ gives

+iTrlog(iG,") = =iTrlog(iGy') +iTrlog(l + iGop)

= +iTrlog(iGy') FiTr Z —iGop)" (2.15)

3|'—‘

i
E=C(p) § v
—_—— - —4——— - +
FIGURE 2.1 This diagram displays the piece of the collective action (2.12). The original

fundamental particle (fat line) can enter and leave the diagrams only via external currents.
It emits an arbitrary number of plasmonson its way (wiggly lines).
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The nth term corresponds to a loop of the original fundamental particle emitting
ne lines (see Fig. 2.2).

FIGURE 2.2 The non-polynomial self-interaction terms of plasmons arising from the Trlog
in (2.12) are equal to the single loop diagrams emitting n plasmons.

Let us now use the action (2.12) to construct a quantum field theory of plasmons.
For this we may include the quadratic term

j:iTr(Gogp)Z% (2.16)

into the free part of ¢ in (2.12) and treat the remainder perturbatively. The free
propagator of the plasmon becomes

{0|Tp(x)p(2")]|0} = (25 + 1)Go(2', ). (2.17)

This corresponds to an inclusion of all ring graphs into the V-propagator (see Fig.
2.3).

F1GURE 2.3 Free plasmon propagator containing an infinite sequence of single loop cor-
rections (“bubblewise summation”)

It is worth pointing out that the propagator in momentum space GP!(k) contains
actually two important physical informations. From the derivation at fixed temper-
ature it appears in the transformed action (2.12) as a function of discrete Euclidean
frequencies v, = 2wnT only. In this way it serves for the time-independent descrip-
tion of the system at fixed T. However, the calculation of the correlation function
(2.17) makes use of the Fourier representation in the entire complex energy plane. A
suitable analytic continuation of this Fourier representation can be used to calculate
also the time-dependent collective phenomena for real times [2].

With the propagator (2.17) and the interactions given by (2.15), the original the-
ory of fundamental fields 1*, 1) has been transformed into a theory of ¢-fields whose
bare propagator accounts for the original potential which has absorbed ringwise an
infinite sequence of fundamental loops.
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This transformation is exact. Nothing in our procedure depends on the statistics
of the fundamental particles nor on the shape of the potential. Such properties
are important when it comes to solving the theory perturbatively. Only under
appropriate physical circumstances will the field ¢ represent important collective
excitations with weak residual interactions. Then the new formulation is of great
use in understanding the dynamics of the system. As an illustration consider a dilute
fermion gas of very low temperature. Then the function £(—iV ) is €(—iV ) — p with
e(—iV) = —-V?/2m.

2.2 Physical Consequences
Let the potential be translationally invariant and instantaneous:

Viz,2') =6t —tV(x—x). (2.18)
Then the plasmon propagator (2.17) reads in momentum space

1

G k)=V(k 2.19
where the single electron loop symbolizes the analytic expression®
T 1 1
k)=2— : 2.20
(v, k) V;iw p?/2m+p i(w+v)— (p+k)2/2m+ u (2:20)

The frequencies w and v are odd and even multiples of 7T, respectively. In order
to calculate the sum we introduce a convergence-enforcing factor ", and rewrite

(2.20) as [3]

1
k) _2/ &P+ —&(p) v

xTzww[ 1 1

(wo+v) —E(P+k)  iw, — &(p)

(2.21)

Using the summation formula (1.104), this becomes

B n(p + k) — n(p)
(v, k) 2/ R e Lt (2.22)

or, after some rearrangement,

1 1
”k_‘Q/ l (b+K)—p)— v e(p—K) —(p) v

- (2.23)

IThe factor 2 stems from the trace over the electron spin.
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Let us study this function for real physical frequencies w = iv where we rewrite it
as

d? 1 1
w1 =2 [ Gn(e) L<p+k>—e<p> S e e s ) L
which can be brought to the form
G KA 1
redo=2 | 2" P = Kjm - in)? = (22 (2.25)

For |w| > prk/m + k*/2m, the integrand is real and we can expand

Ko od® 2p -k k\?
m(w, k) =2 / pn(p) 1+ 2P +3<p—>

mw? J (2m)3 mw mw

L (pk 3+80(p-k)4+m2w2k4
mw 16m2w

+ ] (2.26)

2.2.1 Zero Temperature

For zero temperature, the chemical potential i is equal to the Fermi energy ep =
p%/2m, and all states below the Fermi momentum pr are occupied so that the
occupation number is given by a Heaviside function n(p) = ©(p — pr). Then the
integral in (2.26) can be performed trivially as

N (13]7 p3
~—p= 2/_ = £ 2.2
=" )T o(P) 52 (2.27)

and we obtain the expansion

k2 n 3 (prk\> 1 (pek)* 1 K
kl=—— |1+ - | — — | — — 4+ ... 2.28
m(w, k) me[ +5<mw +5 mw +16m2w2+ (2.28)
Inserting this into (2.19) we find, for long wavelengths, the Green function
V(K) n -
GP'rk)~V(k) |l — —=>—+...| . 2.29
g v 1= T, (220
Thus the original propagator is modified by a factor
4me? n
k)y=1- — 4+ ... 2.30
cwl)=1-"22 (2:30)
The dielectric constant vanishes at the frequency
Are?
W= wy = | (2.31)

m



2.2 Physical Consequences 47

which is the famous plasma frequency of the electron gas. At this frequency, the
plasma propagator (2.19) has a pole on the real-w axis, implying the existence of an
undamped excitation of the system.

For an electron gas, we insert the Coulomb interaction (2.9) and obtain

4re? 4me? -
1 ~
GP (1, k) ~ = ll —an +.. ] . (2.32)
Thus the original Coulomb propagator is modified by a factor
4re?
k)=1- e 2.33
k) =1-"nt (23

which is simply the dielectric constant.
The zero temperature limit can also be calculated exactly starting from the
expression (2.26), written in the form

1
p-k+k2/2m—w

m(w, k) = —2/(;53@(]) — pp)[ + (w — —w)]. (2.34)

Performing the integral yields

2
mpp 1 ) ko mw 5 k* + 2mw — 2kpp
k) = — 1- Y 1
m(w, k) 272 { 2kpr {pF (2 + k ) +pF] ©8 k% + 2mw + 2kpp
+ (w— —w). (2.35)

The lowest terms of a Taylor expansion in powers of k agree with (2.28).

2.2.2 Short-Range Potential

Let us also find the real poles of G,(v, k) for a short-range potential where the
singularity at k = 0 is absent. Then a rotationally invariant [V (k)]™" has the long-
wavelength expansion

V&) =[V(O)] " +ak®+..., (2.36)

as long as [V (0)]™" is finite and positive, i.e., for a well behaved overall repulsive
potential satisfying V(0) = [ d®zV (x) > 0. Then the Green function (2.19) becomes

1+§<pik> +... } (2.37)

m 5 \ mw
(2.38)

Gp(w, k) = w? {w2 [V(0)] " 4 aw’k?® — [

There is a pole at w = fcok, where

Co — V(O)

n
m



48 2 Plasma Oscillations

is the velocity of zero sound.

In the neighborhood of the positive-energy pole, the propagator has the form

IS

pl ~
GP ko, k) 2 V(0) X = oo

(2.39)

More details can be studied in the textbook [4].

Appendix 2A Fluctuations around the Plasmon Field

Here we derive the quantum mechanical fluctuations around the classical equation
of motion [recall (2.7)]

= [y Viw,y) ' W)u). (2A.1)

They are quite simple to calculate. Let us compare the Green function of ¢(x) with
that of the composite operators on the right-hand side of Eq. (2A.1). The Green
functions of ¢ are generated by adding external currents [ dzp(x)I(z) to the final
action (2.12) respectively, and by forming functional derivatives §/dI. The Green
functions of the composite operators, on the other hand, are obtained by adding

[ ([ dgV ()it w)ot) ) K (@)

to the original actions (2.4) and by forming functional derivatives /0 K. It is obvious
that the sources K (x) can be included in the final action (2.12) by simply replacing:

o) = ¢'(2) = plo) - [ K@)V (@),

If one now shifts the functional integrations to these new translated variables and
drops the irrelevant superscript “prime”, the actions can be rewritten as

Alp] = +iTr log(in1 +l/dxdx’<p :U)V’l(x,x’)ap(x’)+i/ drvda'n'(z)G ,(x, 2" )n(z)
—i—/d:vcp — —/dxdx'[ )V (x, 2" (). (2A.2)

In this form, the action display clearly the fact that derivatives of the partition
function with respect to the source I(z) coincide exactly with the the right-hand
side of (2.1). Thus the propagators of the plasmon field ¢(z) and of the composite
operator [ dyV (x,y)w (y)y(y) are related by

1 ¥z A

p(x)p(x) = —W:V (flf x') — m

=V iaya!) + O ( [ gV ol o) [ v y)u@)uw))io),

where T is the time-ordering operator.

(2A.3)
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What we wish, we readily believe,
and what we ourselves think, we imagine others think also.

Jurius CAESAR (100 B.C.-44 B.C.)

3

Superconductors

Superconductors are made from materials which do not pose any resistance to the
flow of electricity. The phenomenon was first observed in 1911 by the Dutch physicist
Heike Kamerlingh Onnes at Leiden University. When he cooled mercury down to
the temperature of liquid helium, which appears at about 4 degree Kelvin (1 degree
Kelvin —273.15°C), its resistance suddenly disappeared. For this discovery, Onnes
won the Nobel Prize in physics in 1913.

Superconductors have an important property, which distinguishes them from or-
dinary conductors of extremely low resistance: They are perfect diamagnets. This
implies that they do not tolerate, in their inside, any magnetic fields. This is the
so-called Meissner-Ochsenfeld effect discovered in 1933. This effect causes supercon-
ductive materials to hover over a sufficiently strong magnetic field. They are lifted
as soon as they are cooled below the critical temperature (levitation). A perfect
conductor would only hover above the magnet if brought in from the outside due to
induction, generating a current with a magnetic moment opposite to the external
field.

For the purpose of energy conservation, it is a challenge to find superconductive
materials which can transport high currents without loss at room temperature. Since
1941, the record was held for a long time by niobium-nitride, which becomes super-
conductive at 16 K, surpassed in 1953 by vanadium-silicon with a critical tempera-
ture of 17.5 K. In 1962, a first commercial superconducting wire was manufactured
from an alloy of niobium and titanium. First applications were made in 1987 in
the Fermilab high-energy particle-accelerator Tevatron where the necessary strong
magnetic fields were produced by supercurrents in copper-clad niobium-titanium.
The magnets had been developed in 1960 at the Rutherford Appleton Laboratory
in the UK.

The first satisfactory theory of superconductivity was developed in 1957 by J.
Bardeen, L.N. Cooper, and J.R. Schrieffer [1], now called BCS theory, which won
them the Nobel prize in 1972. The theory made essential use of a fermionic version
of a canonical transformation that had been invented ten years earlier for bosons
by N.N. Bogoliubov, to expain the phenomenon of superfluidity in a dilute gas of
bosons [2]. The BCS theory explains the early forms of superconductivity observed
for elements and simple alloys at temperatures close to absolute zero.

50
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New advances were made in the 1980 when the first organic superconductor was
synthesized by the Danish researcher Klaus Bechgaard of the University of Copen-
hagen and his group [3]. The new material turned out to become superconductive
at a transition temperature of about 1.2 K. The possibility that this could happen
had been pointed out in 1964 by Bill Little at Stanford University [4].

A more recent major breakthrough was made in 1986 by Alex Miiller and Georg
Bednorz at the IBM Research Laboratory in Riischlikon, Switzerland [5]. They
synthesized brittle ceramic compound that became superconducting at the record
temperature of 30 K. What made this discovery so remarkable was that ceramics
are normally insulators, and do not conduct electricity at all. So, researchers had
not considered them as possible high-temperature superconductor candidates. The
compound that Miiller and Bednorz synthesized of a mixture of Lanthanum, Barium,
Copper, and Oxygen behaved in a not-as-yet-understood way. Their discovery won
them the Nobel Prize in 1987. It was later found that tiny amounts of this material
were actually superconducting at 58 K. Since then there has been a great deal
of activity trying to find ceramics of many combinations with higher and higher
critical temperatures. In 1987 superconductivity was reached in a material called
YBCO (Yttrium Barium Copper Oxide) at 92 K, a temperature which can simply
be reached by cooling the material with liquid nitrogen.

The present world record was reached in 2015 at 7. = 203 K in a sulfur hydride
system. Under extreme pressure of 300000 atmospheres, this critical temperature
can be raised by 25 to 30 more degrees (see Fig. 3.1). For more details see [6, 7, 8].
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HgBaCaCuO @30 GPa : HpS @155 GPa:
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= : : : 3 StFFeAs 3 lig. Np
= T Cs3Ce0 : T
I : : : @ 1.4 GPa MgB, :
5 : : : v No)
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FIGURE 3.1 Time evolution of critical temperatures at which superconductivity sets in (in
units of Kelvin). The right-hand margins indicate the liquid by which the temperatures
can be reached. From Ref. [6].
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3.1 General Formulation

The theoretical description of low-temperature superconductivity is based on a col-
lective field complementary to the plasmon field. The complementary field is a pair
field which describes the dominant low-energy collective systems such as the su-
perconductors to be discussed in this Chapter. The pair field is in general bilocal
and will be denoted by A(xt;x't'), with two space and two time arguments. It
is introduced into the generating functional by performing a Hubbard-Stratonovich
transformation of the type (1.80), according to which one rewrites the exponential
of the interaction term in (2.1) in the partition function (1.75) as [9, 10]:

exp [—%/dxdx'w*(:E)@D*(x')w(x’)w(x)V(x x )] = const ></ DA(z, 2" DA*(z, ")

xexpl%/dxdx/{|A(x,x/)|2v(x1 e A (z, 2 (2)(2")— ()" (") Az, 2’ H
(3.1

In contrast to the similar-looking plasmon expression (2.1), the inverse 1/V (z,2’) in
(3.1) is understood as a numeric division for each x,y, not as a functional inversion.
Hence the grand-canonical potential becomes

Z[ /DQ/J*'DQ/JDA*DA ezA[w* P, A* A]-Hfdm z)n(z)+-c. c) (32)

with the action

A[*, 1, A%, A / dzdz’ { 2)[i8; — €(—iV )] 6(x — ) ()

LA @) — S0 @ (@A) + A, >|ﬁ} (33

where &, = ¢, — 4 is the grand-canonical single particle energy (recall Subsec-
tion 1.1.7). This new action arises from the original one in (1.75) by adding to it
the complete square

1
V(z,z')’

[ deda’ |AGr,2) — V() )

which removes the fourth-order interaction term and gives, upon functional integra-
tion over [DA*DA, merely an irrelevant constant factor to the generating func-
tional.

At the classical level, the field A(z,z’) is nothing but a convenient abbreviation
for the composite field V' (z, 2")y(z)y(2"). This follows from the equation of motion
obtained by extremizing the new action with respect to A*(z, 2’). This yields

5'/4 1 / / /
OA*(x, z") - 2V (x, 2") Az, ') = Ve, ) (@) (@)

0. (3.4)
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Quantum mechanically, there are Gaussian fluctuations around this solution which
are discussed in Appendix 3C.

Expression (3.3) is quadratic in the fundamental fields ¢)(x) and can be rewritten
in a matrix form as

ST (@A) ()

_1 10y — &(—iV)] 6(z — ') —A(z, ) :
= 3/'@ ( ~ A*(x, ) = [i0, + £(%)] 0(z — o) ) (@), (35)

where f(z) denotes the fundamental field doublets f(z) = ( zgg) ) and fT = f*T.
The field f*(z) is not independent of f(z). Indeed, there is an identity

fTAf:fT<(1) é)Af. (3.6)

Therefore, the real-field formula (1.79) must be used to evaluate the functional
integral for the generating functional

Zln* ) = /DA*DA AN A1 [ do [ da'jT(2)Ga (m,m’)j(g;/)7 (37)

where j(z) collects the external source n(x) and its complex conjugate, j(z) =

< 77(:2 ) Then the collective action reads

A", A] = 4 Trlog 1G5z, /)] + % [ dwda| Az, ) (3.8)

V(z,2')

The 2 x 2 matrix G denotes the propagator iA~! which satisfies the functional
equation

w110y — £(—iV)] §(x—2") —A(z,2") WO is(o
] dr ( = Az 2" F[i0,+ £V 6 (z—z) | Gl T) =10 =a").
(3.9)
. . G Ga . . . .
Writing G as a matrix atoa | the mean-field equations associated with this
A

action are precisely the equations used by Gorkov to study the behavior of type II
superconductors.!  With Z[n*, 5] being the full partition function of the system,
the fluctuations of the collective field A(x,z’) can now be incorporated, at least in
principle, thereby yielding corrections to these equations.

Let us set the sources in the generating functional Z[n*,n] equal to zero and
investigate the behavior of the collective quantum field A. In particular, we want to

LAs an example see p. 444 in Ref. [11].
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develop Feynman rules for a perturbative treatment of the fluctuations of A(x,z’).
As a first step we expand the Green function Ga in powers of A as

, 0 A 0 A 0 A

with

(3.11)

l

Ty Y

We shall see later that this expansion is applicable only close to the critical tempera-
ture T.. Inserting this expansion into (3.7), the source term can be interpreted graph-
ically by the absorption and emission of lines A(k) and A*(k), respectively, from
virtual zig-zag configurations of the underlying particles ¢ (k), ¥ *(k) (see Fig. 3.2).

i
AT, d) w—Ep \
'L’ + - + . .
V' —w—Eqr g \
i A(v,q)

i
U two—
v tw—8q_g/4p

FIGURE 3.2 Fundamental particles (fat lines) entering any diagram only via the external
currents in the last term of (3.7), absorbing n pairs from the right (the past) and emitting
the same number from the left (the future).

The functional submatrices in Gy have the Fourier representation

T 7 (0
Go(z,7') = = e~ilp tfpx), 3.12
ol ) 4 g =& ( )
~ T 7 (0
Golz,2!) = +=S — 1 ~ilP-px) 3.13
ol ) 4 zp: —p’—&p ( )

where we have used the notation &, for the Fourier components £(p) of £(—iV ).
The first matrix coincides with the operator Green function

Go(z — ') = (0T (x)y' (2)]0). (3.14)

The second one corresponds to

Golw— ) = (0T @)p()I0) = £OIT (96 (2)) 0)
= +Go(2' — 1) = £[Go(z, 2)]", (3.15)
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where T' denotes the transposition in the functional sense (i.e., z and 2’ are in-
terchanged). After a Wick rotation of the energy integration contour, the Fourier
components of the Green functions at fixed energy read

Go(x —x,w) = — Z , eip(x_x,) (3.16)

Go(x —x,w) = F Z — 5 ePEX) — TG (X —x, —w).  (3.17)

The Trlog term in Eq. (3.8) can be interpreted graphically just as easily by expand-
ing as in (3.134):

i ey ety _ 0 AN ,]"1
:|:§Trlog (zGA)—:taTrlog(zGo )$§Tr [_ZG()(A* 0 )A] ~ (3.18)

The first term only changes the irrelevant normalization N of Z. To the remaining
sum only even powers can contribute so that we can rewrite

&) ! )|
A[AT,A] = 4[2;::1 o TrKiat_g(_N)(s)A(me)A]
1 / |2 1
#y [t g

1
V(z,z')

= > A, AT Al + %/dxdx'|A(x,x')|2 (3.19)
n=1

This form of the action allows an immediate quantization of the collective field A.
The graphical rules are slightly more involved technically than in the plasmon case
since the pair field is bilocal. Consider at first the free collective fields which can be
obtained from the quadratic part of the action:

ASJAT,A] = —%Trl(Wé)A(Wé) A*]. (3.20)

Variation with respect to A displays the equations of motion

Az, 2) = iV (z, ") KW&) A (W(sﬂ | (3.21)

This equation coincides exactly with the Bethe-Salpeter equation [18], in ladder
approximation, for two-body bound-state vertex functions, usually denoted in mo-
mentum space by

C(p,p /dxdx expli(pz + p'2")|A(z, ). (3.22)

Thus the free excitations of the field A(x,2") consist of bound pairs of the original
fundamental particles. The field A(x,z’) will consequently be called pair field. If
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we introduce total and relative momenta ¢ and P = (p — p')/2, then (3.21) can be
written as®

MNPl = i [ 22— P) :
! )’ 10/2+ Py — Eqarpr + insené
1

qo/2 — Py — &qo—p +insgné

<« T(P'lq) (3.23)

Graphically this formula can be represented shown in Fig. 3.3. The vertex I'(P|q)

4
5 +P
r(P|q)
q =
q
77F

FIGURE 3.3 Free pair field following the Bethe-Salpeter equation as pictured in this dia-
gram.

produces a Bethe-Salpeter wave function:
N : .
qo/2 + Py — §q24p +insgn§
i

X .
q0/2 + Py — £q/2+p +insgné

®(Plg) =

T(Plqg). (3.24)

It satisfies
dP’
(2m)*

thus coinciding, up to a normalization, with the Fourier transform of the two-body
state wave functions

U(x, X 1) = (O[T (V(x, ) (X, 1) [ B(q))- (3.26)

Go(a/2+ P)Go(a/2 = P)(Plg) = —i [ S V(P,P)®(Ply),  (3.25)

If the potential is instantaneous, then (3.21) shows A(z,z’) to be factorizable ac-
cording to

Az, 2") = 6(t — t")A(x, x5 1), (3.27)

so that I'(P|q) becomes independent of F.

ZHere ¢ is short for the four-vector ¢ = (¢°,q) with go = E.
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Consider now the system at 7' = 0 in the vacuum. Then 4 = 0 and &, = ¢, > 0.
One can perform the P, integral in (3.23) with the result
d>P' 1

V(P —-P —I'(P’|q). 3.28
(271')4 ( )q0 — Eq/2+P" — €q/2—P’ + ( |q) ( )

r(Pl) = |

Now the equal-time Bethe-Salpeter wave function

d*Pdqyd? , x + x/
P(x,x'5t) = N/ﬁ%qexp [—z <q0t—q- 5 —P.(x—x')ﬂ
X = : (3.29)
qo — E€q/2+P — Eq/2-P T 1UN)

satisfies
10, — €(—iv) — 6(—iV’):| w<X7 X/; t) = V(X - X)w<xa X/; t)? (330)

which is simply the Schrodinger equation of the two-body system. Thus, in the
instantaneous case, the free collective excitations in A(x,z’) are the bound states
derived from the Schrodinger equation.

In a thermal ensemble, the continuous integrals over the energies P in (3.23) are
restricted to sums over the Matsubara frequencies. First, we write the Schrédinger
equation as

dSP/ /! / /
O(Plg) = = [ GV (P = PP a)T(Pa) (3:31)
with
[(Plg) = =iy Go(a/2+ P)Go (P —q/2)
= -1y ! ! (3.32)

7 Q0/2+ Po—Eqpapt+insgné qo/2 — Po—Eqpa-p+insgné

After a Wick rotation and setting ¢ = iv, the replacement of the energy integration
by a Matsubara sum leads to

1 1
l(P‘Q) = _Twznz(wn+y/2)—€q/2+13 i(wn—y/Q)—{—fq/pr

:TZ- 1

o W — Eqj21P — Eq/2-P

1 1
X |- —
L(wn +v/2)— §q/2+P i(wn —v/2) + §q/2-P
+ {nq/%p + /n/q/Q—P:|

w — fq/2+P - gq/Q—P.

(3.33)
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Here we have used the frequency sum [see (1.104)]

1 1
T =
%}iwn—gp :Fefp/T:Fl

= Fnp, (3.34)

with n, being the occupation numbers of the state of energy &,. In Chapter 1
we have used the generic notation n(p) for the occupation numbers of fermions
and bosons. In this Chapter we shall save some space by placing the momentum
argument into a subscript.

The expression in brackets is antisymmetric under the exchange & — —¢&, since
under this substitution ng) — F1 — npy. In fact, one can write it in the form
—N(P,q) with

N(P|q) = 1 :l: (nq/2+p -+ nq/g_p)
1 §q/2+P §a/2-P
- h:Fl a/ h:Fl q ]
5 (tan 0T + tan o7 | (3.35)
so that
N(P|q
I(Plg) = (Pla) (3.36)

v — §qj2+P — E(q/2-P

Defining again a Schrodinger type wave function as in (3.29), the bound-state
problem can be brought to the form (3.28) but with a momentum dependent po-
tential V(P —P’) x N(P’|q). We are now ready to construct the propagator of the
pair field A(x,2’) for T' = 0. This is most simply done by considering Eq. (3.23)
with a potential AV (P, P’) rather than V', and asking for all eigenvalues A, at fized
q. Let T',(P|q) be a complete set of vertex functions for this ¢. Then one can write
the propagator as

APIA (P) = - 3o U0
" " A=1

where a hook denotes, as usual, the Wick contraction of the fields. Obviously the
vertex functions have to be normalized in a specific way, as discussed in Appendix 3B.

An expansion of (3.37) in powers of [A\/A,(q)]™ exhibits the propagator of A as
a ladder sum of exchanges as shown in Fig. 3.4 (see also Appendix 3B).

@2m)*™W (g —q'), (3.37)

FIGURE 3.4 Free pair propagator, amounting to a sum of all ladders of fundamental
potential exchanges. This is revealed explicitly by the expansion of (3.37) in powers of

A/ An(q)]-

For an instantaneous interaction, either side is independent of Fpy, Pj. Then
the propagator can be shown to coincide directly with the scattering matrix T of
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the Schrodinger equation (3.30) and the associated integral equation in momentum
space (3.28) [see Eq. (3B.13)].

-
AN =T =4V 44V V. (3.38)

E—-H

Consider now the higher interactions A,,,n > 3 of Eq. (3.19). They correspond to
zig-zag loops shown in Fig. 3.5. These have to be calculated with every possible
I(P|q), T, (P|q) entering or leaving, respectively.

e e el

e e ()

FiGURE 3.5 Self-interaction terms of the non-polynomial pair Lagrangian amounting to
the calculation of all single zig-zag loop diagrams absorbing and emitting n pair fields.

Due to the P dependence at every vertex, the loop integrals become very in-
volved. A slight simplification arises for an instantaneous potential where at least
the frequency sums can be performed immediately. Only in the special case of a
completely local action the full P-dependence disappears and the integrals can be
calculated at least approximately. This will be done in the following section.

3.2 Local Interaction and Ginzburg-Landau Equations

Let us study the case of a completely local potential in detail. For the electrons in
a crystal, such a local potential is only an approximation which, however, happens
to be quite reliable. In a crystal, the interaction between the electrons is mediated
by phonon exchange. An electron moving through the lattice attracts the positive
ions in its neighborhood and thus creates a cloud of positive charge around its path.
This cloud, in turn, attracts other electrons and this is the origin of pair formation.
The size of the cloud is of the order of the lattice spacing, i.e., a few A. Although
this can hardly be called local, it is effectively so, as far as the formation of bound
states is concerned. The reason is that the strength of the interaction is quite small.
This leads to a rather wide bound-state wave function. Its radius will be seen to
extend over many lattice spacings. Thus, as far as the bound-states are concerned,
the potential may just as well be considered as local. This is what justifies the
theoretical treatment to be developed in the sequel.

We assume the fundamental action to be a sum

A=Ay + A, (3.39)
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with a free-particle term
Ay = [ dadtvy(x,)[i0, — §(=i% s (x,b), (3.40)
and a d-function interaction

A = 5 37 [ Pt o, )05 o, 055 (¢, 0 . ), (3.41)
a.p

with g > 0, for an attractive potential. Following the general arguments leading to
formula (3.1), we rewrite the exponential of this interaction as?

exp {%g z% / d*x dt % (x, t)5(x, 1)Ys (%, t)a(x, t)} =const X[ DA(x,t)DA*(x,t)

X exp |:—% /d3$dtz (M - ¢BAana - w;Aaﬁ¢;>:| ) (342)
afs g

where the new auxiliary field is a (25 + 1) x (2s + 1) non-hermitian matrix which
satisfies the equation of constraint:

Aap(x,t) = giba(x, t)Ys(x,1). (3.43)
Observe the hermiticity property
Anp(x,1)" = A%, (x,1). (3.44)

The free part of the action is now written in a 2 x 2 matrix form analogous to that
in (3.5):

A = / P dt P’ dt f*(2) A(x, X, 1) f(2), (3.45)
where f7(z) denotes here the doubled fundamental field
F1(2) = (¢alz), ¥5(@)) (3.46)
and A(x,t;x’,t') is the functional matrix
o [ 10— E(=iV)]6(x — 2)oap —Aap(x)d(x —2')
Al X, 1) = ( AL (2)0(x — o) (10, + £(9)] 6(z — )05 )
(3.47)

Then the action (3.19) becomes

n

ALS, ) =51 3 85 g, l(m(s) (A4) <m5> (A 5)] ,
(3.48)

3Note that the hermitian adjoint A;}i(x) comprises transposition of the spin indices, i.e.,
AL (x) = [A ()]
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where trg;, indicates the trace over the spin indices, and Tr refers to the trace in the
functional matrix space. The different terms on the right-hand side will be denoted
by A,[A*, Al

Consider fermions of spin 1/2 close to a critical region, i.e., for T' ~ T,.. There
only long-range properties of the system dominate. As far as such questions are
concerned, the expansion

S LA A (3.49)

may be truncated after the fourth term without much loss of information. The
dimensions of the neglected terms are so high that they become irrelevant at long
distances. The free part of the action As[A*, A] is given by

AT A] = HiTrtra, KW&) (AS) (%i(ma) (A*a)]

1 . 1
—itrspin/dxA (x)A(x)g (3.50)

The spin traces can be performed by noting that due to Fermi statistics, the square
of the field at a point vanishes, ¢} (z) = 0, ¥?(x) = 0, so that there is really only
one independent pair field:

A(x) = Ap(z) = gy (@)r(x) = —Agy(2). (3.51)
Thus A, becomes:

A[ATA] = —z/dacdac Go(z, 2")Go(2, 2) A*( - —/dac|A . (3.52)

Let us expand the pair field into its Fourier components

d3k

A(7,%) TZ/ —itrr k) A (1, k), (3.53)
with the bosonic Matsubara frequencies
Vp = 2n7T. (3.54)
Using the short notation
d3l<;
Ty / fn k) =T f(k), (3.55)
k

the quadratic action A3[A*A] can be written in momentum space as

As[A" A = % S° A (k) L(k)A(k), (3.56)
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where
T Z 1 1 1
V P PO+ RO — & tinsgnép e p® + §p —insgné, g

T
= 5 ;z(puﬂ) - 5. (3.57)

This is pictured by a Feynman diagram in Fig. 3.6.
%+ k2 p+k

Kk kO k 1
g

-p%-p

FIGURE 3.6 Free part of the A-Lagrangian containing the direct term plus the one loop
diagram. As a consequence, the free A-propagator sums up an infinite sequence of such
loops.

The expression [(p|k) appeared in the general discussion in Eq. (3.31), where it
was brought to the form (3.33). In the present case of Fermi statistics this leads to

11 $ptk § 1
L(v — — |tanh>2= 4 tanh 22| ——. 3.58
2 zp: p+k+§p [ 2T 2T g ( )
At k=0, one has
1 1 1 1
o) = 1yl hip__
> &p g
00 1
~ NO) [T Lan S L (3.59)

0§2Tg

When going from the first to the second line we have used the equality in a large
volume for rotationally symmetric integrands

_Z /27rh 27rh /dp/dpp B _5 ds. (3.60)

In a further approximation of a weak attraction between the electrons caused by
phonons, we include only momenta near the surface of the Fermi sphere in momen-
tum space which cover the neighborhood of |p| &~ pg. There we can approximate
the sum over states by the integrals

é - 4” / dpd§ ~ N(0) [ de, (3.61)
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where

mpp 3. p
NO) = — = —-— 3.62
( ) 27T2FL3 4h3 p% ( )
is the density of states on the Fermi surface at zero temperature. Here p is the mass
density which is related to the particle density N/V by

N
=m—. 3.63
p=my; (3.63)
In (3.62), we have expressed the Fermi momentum of free spin-1/2 particles in terms

of p by
pr = (37?2)1/3 p3h ~ g x 107 g cm /sec. (3.64)

It is only slightly pressure dependent. The associated Fermi temperature defined by
Tr = (1/kp)p%/2m corresponds in most materials to around 10 000 times the Fermi
momentum of free spin-1/2 particles.

The E-integral in (3.59) is logarithmically divergent. This is a consequence of
the local approximation to the attractive interaction between the electrons assumed
in Eq. (3.41). As explained earlier, the attraction between electrons is caused by
phonon exchange. Phonons, however, have frequencies which are at most of the order
of the Debye frequency wp. This may be used as a cutoff to all energy integrals of the
type [ d¢, which will be restricted to the interval £ € (—wp,wp). The associated
Debye temperature Tp = hwp/kp is of the order of 1000 K and thus quite large
compared to the characteristic temperature 7, where superconductivity sets in, the
so-called critical temperature.

The Debye temperature Tp, although being much larger than 7T, is an order of
magnitude smaller than T%. As a consequence, the attraction between electrons is
active only between states within a thin layer in the neighborhood of the surface of
the Fermi sphere. Using the cutoff energy hwp in Eq. (3.59) yields (from now on in
natural units with A = kg = 1)

wr d€ ¢ 1 wp 27 1
L ~ / —tanh — — = = 1 <__)__7 ]
(0) N(0) ) € anh o p N(0) log T - g (3.65)
where ~ is Euler’s constant
v=-T"(1)/T(1) = 0.577, (3.66)

implying that ¥ /7 ~ 1.13.
The integral in (3.65) is evaluated as follows: First there is an integration by
parts, yielding

wr dg £ £ 77 1 e £ 1
— tanh = = log = tanh —— ——/ d=log = ———. .
/o ¢ anh o og anh 7 5/ og < (3.67)
0 cosh® —
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Since wp /7T > 1, the first term is equal to log(wp/2T"), with exponentially small
corrections which can be ignored. In the second integral, we have taken the upper
limit of integration to infinity since it converges. We may use the integral formula*

00 xﬂ_l 4 P
/ U = Gy (L 27 T = 1), (3.68)

set =149, expand the formula to order §, and insert the special values

1
(1) =—v, ¢'(0)= —3 log(27) log(4e” /), (3.69)
to find from the linear terms in 9:
o0 log x
de—2" — — _2log(2¢" /7). 3.70
/0 xcosh2(x/2) og(2¢"/m) (3.70)
Hence we obtain
wr dg & wp 267)
— tanh —=— =1 — . 71
/0 ¢ Mo Og(Tﬂ (3.71)
The value L(0) of Eq. (3.65) vanishes at a critical temperature determined by
267
T. = iwpe_l//\/(o)g. (3.72)
s
Using this, we can rewrite Eq. (3.65) as
T T
L(0) = N(0) log =% =~ N (0) (1 _ T) . (3.73)

The constant L(0) obviously plays the role of the chemical potential of the pair field.
Its vanishing at T' = T, implies that, at this temperature, the field propagates over a
long range (with a power law) in the system. Critical phenomena are observed [19].
For T' < T,, the chemical potential becomes positive indicating the appearance of a
Bose condensate. If v # 0 and k = 0, one can write (3.52) in the subtracted form

L(v,0) — L(0,0) = — Z [%p — 251}))] tanh 25—; (3.74)
N eode 1€
~ wN(0 )/wl 5 2™ o (3.75)

Since the subtracted integral converges fast it can be performed over the entire
¢-axis with the small error of relative order T'/wp < 1. For v < 0, the contour
may be closed above, picking up poles exactly at the Matsubara frequencies £ =
i(2n + 1)7T = iw,. Hence

1

Wy, — V/2wn

L(v,0) — L(0,0) ~ vN (0)xT Z (3.76)

4See, for instance, 1.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 3.527.3.
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The sum can be expressed in terms of Digamma functions: For |v| < T, one expands

1 v 1 v? 1
— -t ——+ ... 3.77
wnz>0 wfl+2w2+4wﬁ+ ’ (8:77)
and applies the formula
1 1
> = ol - 27MC(R), (3.78)

C(z)=>_n"" (3.79)
n=1
Some of its values are
2
(2) = % ¢(3) = 1.202057,
v
C4) = 90’ ¢(5) = 1.036928, (3.80)
implying the Matsubara sums
1 1 3n? 1
= = - Y7 _ = 3.81
wnz;o w2 w2124 6 812’ (3:81)
1 1 7
— = —((3 3.82
X = s (352)
1 1 1574 1
i o - 3.83
w,go wi miT41690  96T* (3.83)
(3.84)

Using the power series for the Digamma function
(1 —a) = —y = Y Ryt (3.85)
k=2

the sum is
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For v > 0, the integration contour is closed in the lower half-plane, and the same
result is obtained with v replaced by —v. Thus one finds

L(r,0) — L(0,0) = N(0) [¢ <%) _ (% n %)]

17
o — RE— — 2 —
~ —N(0) {8T| = (3)+...]. (3.87)
The k-dependence at v = 0 is obtained by expanding directly
T 1 1 1
L(0,k) = — , , — —
(019 vzzw—5<p+k>—m—£<p> ;
pk  k2\" 1
=T - (i) 3.88
S5 i (o a) S O

1
.
The sum over p may be split into radial and angular integrals [compare (3.62)]:
3 .
%Zp:/(;%g%/\f(o)/d&/i—i, (3.89)
where the second integral runs over all unit vectors p as follows:
dp /7r d¢ [+ dcosf
47 w2rJa 2

Here 6 and ¢ are the spherical angles of the momenta p.

The momentum integrals in (3.88) receive only contributions from a thin shell
around the Fermi sphere, where |p| &~ pr, and there are only small corrections of
the order O(Tp/Tr) ~ 1073, Introducing now the Fermi velocity vy = pp/m, for
convenience, and performing the ¢-integrals in the form

(3.90)

1 1 m
d. = (—1 " 3.91
/ 6(2&)—5)”“ —iw — & (—isgnw) 2 |w|nt1’ (3.91)
we find
= T dp k? 1
L(0,k) ~ 2 - "7/ k+—| ——. .92
01 = 2WORe Sy g s [ R bk ) -1
For k = 0, we recover the logarithmically divergent sum
1
L(0,0) = N(0) S |%| - (3.93)

This is just another representation of the energy integral (3.65). It can therefore be
made finite by the same cutoff and subtraction procedure as before.
The higher powers can be summed via formula (3.78) with the result

L(0,k)=L(0, k) +2N(O)Re§: (=0)" (1—2"FD)¢(n + 1)/ Zi (va1<+ k—2>

— ongnn 2m

= 1(0,0) + N(0) Re | % [@z) (%) —y (%—@ <vak+ 2k—2> M%)] . (3.94)
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Comparing this with Eq. (3.87), we see that the full k- and v-dependence is obtained
by adding |v|/47T to the arguments of the second Digamma function. This can also
be checked by a direct calculation. In the long-wavelength limit in which kvp /T < 1,

one has also )
k*/2 k kvp kvp
/ m v < U

T ST ST (3.95)
and one may truncate the sum after the quadratic term as follows:
L(0,k) )+ ZAM Yk, (3.96)
where
1 7 dp . .
A(0) = —2N(0) =75 8C(3) 1 D (3.97)
The angular integration yields
dp . .
4—ppkpl 5kla (398)
so the lowest terms in the expansion of L(v, k) are, for kvp < T and v < T,
17 919
L, k) ~ L(0,0) — N'(0) [ Y]+ g C(B)udk } . (3.99)

The second term in (3.97) may also be conveniently calculated in z-space. For large
x> 1/pr, the Green function behaves like

exp lz’pﬂx\ sgnw — u|X|] : (3.100)

m

so that the second spatial derivatives of A(x) contribute to the expansion (3.52) a
term

/da: B/ &a'T Z Go(x — %', w,)Go(x — X/, —wn)(a:—x’)i(x—x’)j] A (z)ViV;A().

(3.101)
The expression in parentheses becomes
1 m \’ |wn|
— [ d:T — —2— 2
2/ - %; (27\z|> exp( vp |Z|> %
1 7¢(3) v

- —(%T/dg = 0;; 0 , 3.102
247 Zsinh27r|z|T/vF 748 <)7T2T2 ( )

which makes (3.101) agree with (3.96).
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In many formulas to come it is useful to introduce the characteristic length
parameter

€ = 7¢(3) v
0=V 48 =T,

(3.103)

In proper physical units, the right-hand side carries a factor i/kg. Inserting ((3) ~
1.202057 from (3.81), this becomes

€0 ~ 0.4187 x ”; . (3.104)
T,

Using Tr = pu = p%/2m, the right-hand side of (3.103) can also be written as

7¢(3) 2T ppyt Tr
— J55) ~ 0.25 x ~Lp-t, 3.105
o 8l X Pr (3.105)

In most superconductors, T, is of the order of one degree Kelvin, about 1/1000 of
the Fermi temperature 7. The length parameter & is of the order of 1000 A.

The low-frequency and long-wavelength result (3.99) corresponds, in the collec-
tive action (3.56), to a term®

A[A* Al % —iNOT S A (k) {(1 _ Z) _ee

v<LT k TC

8_T|”|} A(v, k). (3.106)

This implies that for T < T, the field A has a correlation function

1 1 1

s T -1
A 0 ) D ) == (270 (0 = 1) b [—8—T|un| 4 <1_i) - §§k2] .
(3.107)

The spectrum of collective excitations can be extracted from this expression by
continuing the energy back to real values from the upper half of the complex plane:

8 8T
ko = —i—(T — T,) — i—&2k>. (3.108)
e

i

T
These excitations are purely dissipative.

If the system is close enough to the critical temperature, all interaction terms
except A4[A*; A] become irrelevant because of their high dimensions. And in 4,
only the momentum-independent contributions are of interest, again because they
have the lowest dimension.

5Note that only the Matsubara frequency vy = 0 satisfies the condition v < T. The neigh-
borhood of vy = 0 with the linear behavior |v| becomes visible only after analytic continuation of
(3.107) to the retarded Green function which amounts to replacing |v,| — —iko.
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Its calculation is standard, applying the procedure in Eq. (3.101) to the higher
terms in the expansion (3.49):

o ot 5| A
AJATA] = T Trgpin Kz‘@ - g(—iV)A(S) (zat +§(N)5> 2 5]
:_%/dzldzzdmdeo(leQ)éo(;ggggg)Go(zvgu)éo(:E4:E1)A*(:El)A(:Ez)A*(:Es)A(M)

1
~ —§/dm |A(x)|4/d3x2d3x3d3x4
X TZ[GO(X — X, wn)Go(X?, — Xy, —wn)Go(Xs — Xy, wn)Go(X — X4, —wn)]

_ B 4
- 2/dx|A(x)| . (3.109)
The coefficient § is computed as follows:
1 1 T 1
B=T> ————=~NOTY [d——5=N0)=T> —:
wWnPp (w?z + 6}2))2 Wn / ((JJ% + 62)2 2 Wn, |0Jn|3
7¢(3) £ p & -3 P
— - 2 —9 2 10 A1
N(0>8(7TTC)2 6./\/'(0)0% 9m2 o 0 o2 (3.110)

In proper physical units, the right-hand side carries a factor 1 /h2. The time-
independent part of this action at the classical level has been derived long time
ago by Gorkov on the basis of Green function techniques [11, 12]. His technical
manipulations are exactly the same as presented here. The difference lies only in
the theoretical foundation [15, 16, 17, 19] and the ensuing prescriptions on how to
improve the approximations. Our action of (3.8) is the ezact translation of the fun-
damental theory into pair fields. These fields can be turned into quantum fields in
the standard fashion, by going from functional formalism to the operator language.
The result is a perturbation theory of A-fields with (3.107) as a free propagator
and A,,n > 2 treated as perturbations. The higher terms Ag, As, ... are very weak
residual interactions as far as long distance questions are concerned. In fact, for the
calculation of the critical indices, A, and A4 contain the whole relevant information
about the system.

3.2.1 Inclusion of Electromagnetic Fields into
the Pair Field Theory

The original action A in (3.3) can be made invariant under general spacetime-
dependent gauge transformations

(x,T) — exp[—iA(x, t)])(x,1). (3.111)
Such transformations can be absorbed into an electromagnetic vector potential

A= (p,A) (3.112)
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by letting it transform via the addition of a pure derivative
1
o = p—=0A, A — A+ VA (3.113)
e e

Then the action with the well-known minimal replacement

Alp*, ]

(3.114)

0104+ 20,—Vi——iVi+ £ A;

is invariant under (3.111) and (3.113). Adding to this the action of the electromag-
netic field itself in the Coulomb gauge, VA = 0, we arrive at the complete action
of the superconductor:

1 2 Lo 2
iat—>i6t+égo,—vi—>—ivi+§,4¢+ g / dx (_‘Pv Y+ EA + AV A) .
(3.115)

Asc = AW}*? d}]

Since the final pair action (3.8) describes the same system as the initial action (1.45),
it certainly has to possess the same invariance after inclusion of electromagnetism.
From the constraint equation (3.4) we see

A(z,2") — exp {—i[A(z) + A(2)]} Az, 2). (3.116)
For the local pair field appearing in (3.42) this gives
A(x) — exp [—2iA(x)] A(z). (3.117)

Near the critial temperature, we approximate the electron pair action in (6.75) by
a sum of the quadratic action A, in Eq. (3.106) and a fourth-order term A4, of
Eq. (3.109). The first is made gauge invariant by the minimal substitution

i0, = i0, + 20, — iV — —iVi + 25 A,
C
ko — ko + 26, ki — ki + 25 A, (3.118)
C

This leads to the full time-dependent Lagrangian close to the critical point:

L - Né;)”A*(x)(—at+2¢e¢)A(x)+N(o> (1— %) A'A

_N(0)E2 (vi - 2@'%42-) A*(z) (vi 4 2@'§Ai) Az)

2 1 1,
—3/\/(0)5—2|A(x)|4 + — (—gov o+ SA?+ AVQA) : (3.119)
Vh 8T c

The discussion of this Lagrangian is standard. At the classical level there are, above
T,., doubly charged pair states that possess a chemical potential

T 3 p 1 T
air = L(0) = O(l-=)=z——=5(1—== 0; T>T.,. 3.120
o = LO) =NO) (1= ) = 5 E s (1= ) <00 ToT ()
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In proper physical units, the right-hand side carries a factor 1/,
Below T, the chemical potential becomes positive causing an instability which
settles, due to the stabilizing fourth-order term, at a nonzero field value (the “gap”)

fpair [ 8 T\
B(T) = [ _,/7«3)7@(1—7) . (3.121)

Inserting ((3) ~ 1.202057, this is approximately

T 1/2
Ao(T) =~ 3.063 x T. <1 - T) . (3.122)

The new vacuum obviously breaks gauge invariance spontaneously: the field A will
now fluctuate in size with a chemical potential

T
Lopair = —2N(0) (1 — T) <0;T<T.,. (3.123)

C

For static spatially constant pair fields, the energy density in the Landau expansion
up to |Al* is given by the minimum of

B
f :Mpair|A|2+§|A|4- (3124)

The minimum lies at the gap (3.154) where it has the value

2 2
min Hpair 2 :upair P ( T) h 1
= AF=-7r=-"=(1-% )5 % 3.125
/ 5 1A 28 m? T.) 22 " 4 (3.125)
Its negative value is the so-called condensation energy density f. = — f™n.

Due to the gradient terms in (3.119), spatial changes of the absolute size of the
field A can take place over a length scale

coefficient of |V A2 TN /2
&(T) = AL = &o <1 - —> ; (3.126)
|:U’pair| Tc

called the temperature-dependent coherence length [11, 12]. The azimuthal fluctu-
ations experience a different fate in the absence of electromagnetism; they have a
vanishing chemical potential due to the invariance of £ under phase rotations. As
an electromagnetic field is turned on, the new center of oscillations (3.121) is seen
in (3.119) to generate a mass term 1/8mwu% A? for the photon. The vector potential
acquires a mass

4 2
p? = 87 coefficient of A% in |V A|* —term = SWCL;N(O)&%A%. (3.127)
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This mass limits the penetration of the magnetic fields into a superconductor. The
penetration depth is defined as [11, 12]:

_ / 3 c TN\ /2
ANT) = 'uAl B 0) devp (1 B T)
~1/2
- ,/‘%,/ (11— Z . (3.128)
VpQ T

Here we have introduced the fine-structure constant

a=—~—. (3.129)

_AT) | 973 c T. _ ¢ T
K(T) = Gy = 146(3)‘/vFozT_F S AL [ (3.130)

is the Ginzburg-Landau parameter that decides whether it is energetically preferable
for the superconductor to have flux lines invading it or not. For x > 1/v/2 they do
invade, and the superconductor is said to be of type II, for k < 1/4/2 they don’t,
and the superconductor is of type I.

The ratio

3.3 Far below the Critical Temperature

We have seen in the last section that for 7" smaller than 7, the chemical potential of
the pair field becomes positive, causing oscillations around a new minimum which
is the gap value Aj given by (3.121). That formula was based on the expansion
(3.134) of the pair action and can be valid only as long as A < Ty, ie., T = T..
If T drops far below T, one must account for Ay non-perturbatively by inserting
it as an open parameter into Ga of the collective action (3.8) and by extremizing
A[A* A]. If the extremum lies at Ag(z, 2'), we insert

Az, ") = Ao(x — o) + A'(z, 2") (3.131)

into the collective action (3.8)

1
Vi(z,a')’
(3.132)

' 1
A[A™ Al = i%Tr log [iGZéJrA,(x,x')} + 5/d$d$’|Ao + AN (z,2"))?

and expand everything in powers of A’(x,z). The Green function of the pair field
is expanded around

—&(=iV)]o —A

— A Filo, — £(1V)]6 ) (2, ') (3.133)

GAO(Z‘?:E,) =1 < [Zat
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as follows:
) 0o A 0o A 0 A
GA:GAO_ZGA0<A/* 0 )GAO_GA0<A/* 0 )GAO (Al* 0 )GA0+~-~ .
(3.134)

This replaces the expansion (3.134).

3.3.1 The Gap

In the underlying theory of fields 1*, ¢, the matrix G, collects the bare one-particle
Green functions:

T /
V@)l (@) ol @)y ()
The off-diagonal (also called anomalous) Green functions are nonvanishing. This

signalizes that for 7" < T, a condensate is present in the vacuum. The presence of
Ay causes a linear dependence of the action (3.132) on A'(z,2'):

AJA” A = +Tr [GAO ( o )]

1 1
+5 /dxdx' lAS(as — A (z,2) V) + c.c.] : (3.136)
The gap function may now be determined optimally by minimizing the action with
respect to A’ at A" = 0 which amounts to the elimination of A;[A™, A’]. Taking
the functional derivative of (3.136) gives the gap,equation

Ao(z —2') = £V (z — 2') troxe lGAO(I, x’)%} , (3.137)
e . 0 0. . : :
where 77 /2 is the matrix L o) the 2 x 2 dimensional matrix space of (3.9).
If the potential is instantaneous, the gap has a factor §(t — t'), i.e.,
Ao(z —2')=0(t —t') x Ap(x — '), (3.138)

and the Fourier transform of the spatial part satisfies
T

Ao(p) = iV

> V(p—p')traxs [GAO (w, p')=

f 2
w,p

] . (3.139)

Inverting (3.133) renders the propagator:
Ga,(1,7) =

1 <:F liw+ &) Ao(p

T .
Ty oe e - Gram R e U )l - 5<p>1> ’
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so that the gap equation (3.139) takes the explicit form

T Ao(p')
A = —— Vip—p . 3.141
Performing the frequency sum yields
1 Ao(p/) EL
Ao(p) = —— -p tanh 7' =2 142

where

Ep = /& F |A(p)]*. (3.143)

For the case of the superconductor with an attractive local potential

Viz —2')=—g6®(x —x)o(t —t) (3.144)
this becomes
T Ay 1 1 E
Ny =g — = |g— —tanh =2 | A,. 3.145
0 gv§w2+5g+|Aol2 [gvzpzzEp o 2T] 0 (3.145)

There is a nonzero gap if

1
—» ——tanh — = —. (3.146)

Let T = T, denote the critical temperature at which the gap vanishes. At that
temperature, the gap vanishes and E, = &, so that Eq. (3.145) determines the
same T, as the previous Eq. (3.72) which were derived for T' ~ T, in a different
fashion. The result (3.145) holds for any temperature.

The full temperature dependence of the gap cannot be obtained in closed form
from (3.146). For T' ~ T, one may expand directly (3.145) in powers of Ay:

— Ay + ... 3.147
Vis|e*+& " [wz +§2}2 | )

The first sum on the right-hand side yields the same integral as in (3.65), and we
obtain

T Ogr272 T

= 1+ N(0) [(1 - %) - A(%;S;)Q + .. ] : (3.148)

1 = gN(0) [log w—D2$ — A2 76(3) + ]
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From this we find

8 T
AYT) =~ WWQTE (1 - 7) : (3.149)

in agreement with (3.121). For very small temperatures, on the other hand,
Eq. (3.145) can be written as

(0)/0” \/m [1—26Xp Jer a2y - }
— GN(0) [logQA—O —QKO(AO/T)} o (3.150)

For small 7', the function 2K, (A/7T) vanishes exponentially fast like

AO 1 Ao/T
2K, ( T ) AO\/QWTA 0€ (3.151)

At T = 0 we find the gap
Ao(0) = 2wpe” YoV O, (3.152)
Using Eq. (3.72), this is related to the critical temperature T, by
Ao(0) = e T, = 1.76 x T.. (3.153)

This value is approached by the the temperature-dependent gap Ag(7") exponentially
fast for " — 0, since from (3.150)

ANo(T)  Ao(T) 1 A
lo ~ 1~ — 21T Ag(0)e= 20O/ T 3.154
®20(0) T Do(0) A0(0) o0 10

For arbitrary 7', the calculation of (3.268) is conveniently done via the expansion
into Matsubara frequencies

1 E 1 1 1 1
Lo 2 =L - =Ty
oF M oT T 2E %}(z’meE iwn—E) %}w%+£2+A3

(3.155)

This can be integrated over £ and we find

T 1 1
log o = 27T EELS——— (3.156)
TC wnZ;O(\/UJ%‘FA(% wn)

Here it is convenient to introduce the auxiliary dimensionless quantity

Ao

0= —
7T’

(3.157)
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FIGURE 3.7 Energy gap of a superconductor as a function of temperature. The points
are from ultrasonic attenuation data at two different frequencies measured by Morse and
Bohm [20].

and a reduced version of the Matsubara frequencies:
T, = (2n+1)/6. (3.158)
Then the gap equation (3.156) takes the form

T 2 & 1 1
log — = = —_—— . (3.159)
T, 671220(\/$%+1 x”)
The temperature dependence of Ag is plotted in Fig. 3.7. The behavior in the vicin-

ity of the critical temperature T, can be extracted from Eq. (3.159) by expanding
the sum under the assumption of small § and large x,,. The leading term gives

T o2& 1 L& 1 LT
logTCN 5722@;_ 57;)(271—1—1)2_ (58<(3) (3.160)

so that . T
Py — 1——> 161
0 7{(3) ( T. (3 6 )

and

as before in (3.122).
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3.3.2 The Free Pair Field
The quadratic part of the action (3.132) in the pair fields A’ reads

£ A 2 0 A/ 0 A/
AQ[A ,A] = thTI' lGAO ( A/* O ) GAO ( A/* 0

1

1
- dd/A AP
by [ w1 P

(3.163)
with an equation of motion

Az, 2’ { 0 A 0 A\TF
< A’*((x [L’,)) ) - :ng(xﬂxl)tr%@ lGAo ( A* 0 )GAO ( A* 0 ) 7‘| (I,%l),
(3.164)

rather than (3.21). Inserting the momentum space representation (3.140) of Ga,,
this renders the two equations

A'(Plg) = —% Z V(P = P [ln(P'|lg)A'(P'q) + ha(P'|q) A" (P'|q)], (3.165)
A"(Plg) = —% Z V(P = P [ln(P'|lg) A" (P'lq) + Lz (P'|q) A'(P'|q)], (3.166)

where (with Py = iw)

w? — /4 + £a/2+P Sq/2-P
[(w+v/2)° + B2 p] [(w—v/2)" + B2, ]
N A}(q/2 +P) |

(@ +v/2° + B2 0] [(w=v/2)° + B2, _p]

Thus for T' < T, the simple bound-state problem (3.31) takes quite a different form
due to the presence of the off-diagonal terms in the propagator (3.140).

Note that the parenthesis on the right-hand side of Eqgs. (3.165) and (3.166)
contain precisely the Bethe-Salpeter wave function of the bound state (compare
(3.24), (3.26) in the gapless case)

W(Plg) = i%trgxg [GAO (% +P) < A,*(qu) A’(éjlq) ) Ga, (P - g) %1

— 1 (Pl)2(Plg)lia(P'|q) A (Plg). (3.169)

l1(Plq) , (3.167)

La(Plg)

(3.168)

Not much is known on the general properties of the solutions of equations (3.166).
Even for the simple case of a §* (z —1’) function potential, only the long wavelength
spectrum has been studied. There is, however, one important solution which always
occurs for T' < T, due to symmetry considerations: The original action (1.45) is
symmetric under phase transformations

W — e Y, (3.170)
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guaranteeing the conservation of the particle number. If the pair fields oscillate
around a nonzero value Ag(x — z’), this symmetry is spontaneously broken (since
the complex c-number does not take part in such a phase transformation). As a con-
sequence, there must now be an excitation of the system related to the infinitesimal
symmetry transformation. This is known as the Goldstone theorem. If the whole
system is transformed at once, we are dealing with momentum q = 0. The symme-
try ensures that this state has also a vanishing energy gy = 0. Indeed, suppose the
gap equation would has a non-trivial solution Ay(P) = 0. Then we can easily see
that a solution of the bound-state equations (3.165) and (3.166) at ¢ = 0 would be

A'(Plq = 0) = iAo (P). (3.171)
Take
w? + €3
11(Plg=0) = ————= 172
11( |q 0) UJ2+E1237 (3 7 )

and insert (3.171) into (3.166). The associated gap is

Ao(P) = %Zv(p_ p/){ . [oﬂ + &L F |A0(P’)|2]}

(w,2+E123/)
T Ao(P')
= ——Y V(P-P)———=%- 3.173
P o179

i.e., the bound-state equation at ¢ = 0 reduces to the gap equation. Moreover, due
to (3.169), the expression

1

Yo(Plg=0) =

is the Bethe-Salpeter wave function of the bound state with ¢ = 0. If the potential
is instantaneous, it is possible to calculate the equal-time amplitude 1o(x —x',7) =
Y (x, 7;x'7). Doing the sum over w in (3.173) we find

d3P . !
dolx=xm) = [ eI vn(Pla=0)

3
= / EP_ipxst) g 71 2 D0(P) (3.175)

(27)3 2T 2Fp

Note that the time-dependence of this amplitude happens to be trivial since the
bound state has no energy. The ¢ = 0 -bound state described by the wave function
o(x — %', 7) = o(x — %', 0) is called a Cooper pair.

In configuration space, (3.173) amounts to a Schrodinger type of equation:

“2B( e yto(x) = V(x)$(x). (3.176)
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This may be interpreted as the ¢ = 0 -bound state of two quasi-particles whose
energies are

Ep = /€2(P) F | Ag(P) |2, (3.177)

Note that Eq. (3.176) is non-linear since A¢(P) in Ep is a functional of ¢y(z). In
order to establish contact with the standard discussion of pairing effects via canonical
transformations (see Ref. [11]), a few comments may be useful. Let us restrict
the discussion to instantaneous potentials. From equation (3.140) one sees that
the propagator G can be diagonalized by means of an w-independent Bogoliubov
transformation

_ [ uw T
By ( o uy ) , (3.178)
where
1 3 1 3 Ao(p)
2|14 22 2oz |1-2X vt = . 3.179
R8T B TR LR T)
Since
Jupl® F |vp|* = 1, (3.180)
one finds
* T
B;l _ [ up ivE _ angTag for bosops . (3.181)
Up  Up B, for fermions

Thus By, is a unitary spin rotation in the Fermi case, and a non-unitary element of
the non-compact group SU(1,1) [21]. After the transformation, the propagator is
diagonal:

GdAo(Wap) = BpGAo(va)B;r)
B ( (iw— Ep)~!

it B ) . (3.182)

The poles in the complex w-plane may be interpreted as quasi-particles of energy

Ep =& F 12o(P) (3.183)

In fact, we can introduce new creation and annihilation operators

< fﬁig ) =D ( a?ig ) ' (3.184)
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Their propagators would be

ap(r)ab(7)  ap(r)Bp(r)

Gi,(r—7.p) =
? l—| 1
BLo(mak(r) BLo(r)i-p(r)
= Ty e™GY (w,p). (3.185)
At equal “times”, where 7 = 7 4 ¢, the frequency sums may be performed with the
result b,f
+n 0
d — P
where n2! are the usual Bose and Fermi occupation factors for the quasi-particle

energy (3.177): 1
b,f __
np = m. (3187)

The corresponding frequency sum for the original propagator becomes

T Gay(w,p) =T B,'GR,(w,p)B, " (3.188)
E E
_ [ Elveltanh PopEnst wpvptanh ™o (3.189)
* EP 2 F1 Ep b,f . '
uvptanh ilﬁ +|up|*tanh o7 ™

The off-diagonal elements of G, describe, according to Eq. (3.135), the anomalous
vacuum expectation values

i) = [Py s 2

(2m)3 2T

&*p i Do(P) E
= ipx tanh ¥' =2
/ @2mF" 2B, T or

According to Eq. (3.175), this coincides with the Schrodinger type of wave function
of the bound state (¢ (x,7)(x,7)|B(q)) at ¢ = 0.

After this general discussion let us now return to the superconductor. The qua-
dratic part (3.163) of the action (3.132) in the pair fields A’ reads, with the local
interaction [generalizing (3.50) to T' < T,],

% AT i 0 A’ 0 A 1 ’
Aol ,AJ=—§Tr[GAO< 0. )GAO( 0. )]—5 [ dal & @) (3.190)

This action can be written in momentum space in a form that generalizes (3.56):

17T

AA" A = o5 k [A*(k)Lyy (k) A (k) + A'(—k) Lo (k) A' (= k)

+ A (k) Lip (k) A (—k) + A (—k) Loy (B)A'(K)] . (3.191)
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The Lagrangian matrix elements L;;(k) are obtained by inserting the Fermi form of
the propagator (3.140) into (3.190) [compare (3.166), (3.168)]. Setting v = iky one
has:

17T 1 1
Ao A A = 2
S, - A
i(w+y) +6 Ag 0 Ak
(TR e ) (s )
N EICE R Ao ( 0 w@@)
A ifw=4%) =g J\A"(K) 0
_EZA/*( K (3.192)

This is equal to

e v [
{2 T 4 o o] WA + A8 )
I (A" (BA () + DA -] - LT A . (3199
From this, we read off the coefficients in (3.191):
La) = Lnk) = S (k)

d3p w2 — 12446 1
2P p — 2 (3.194
/ 2y % [(wn +2) 4 B2 [ (wn— %)+ E%] g O

and

L12(/€) = [L21 Z—lez p]k

= —/WMOPTZ

wn [(wn + %)2 + E%

(3.195)

(wn—%)"+ EE} '

Here &4 = §pi% and £y = Epi%, so that with v = p/m we get

2
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& _ (ptk/2)*  p* 1 k? 1
= P52 P vkt st vkt 1
{5_ 2m om LYk gy MeEvRE . (3197)

with € and F = (/€2 + |Ag|2. The integral over d*p can be split into a size and a
directional integral, according to (3.89), and we can approximate v = rp/m =~ vgp.
We now rearrange the terms in the sum in such a way that we obtain combinations
of single sums of the type

1
Ty ———— 3.198
which lead to the Fermi distribution function

1

Twznz'wn—E

1
GE/T +1

= ni, (3.199)

with the property

nh=1-nl,. (3.200)

In contrast to (1.104) and (3.34), we label here the occupation numbers with the
energies as subscripts. If we introduce the notation wy = w £ /2, the first term in
the sum (3.195) for Lis(k) can be decomposed as follows:

1
(W2 + E?) (w2 + E2)

B 1 1 1 1 1
4B E_\iw, +E, iwy —E.) \iw_+E_  iw_—E_

B 1 1 1 1
 4E,E_ | E.+E_—iv \iw, —E, iw_—FE_

1 1 1
+E++E_+i1/ (iw++E+ _iw_—i-E_)

1 1 1
E —E_+iw (iw++E+ a iw_+E_>
+ = ( L1 )} (3.201)
E,—-F —w\wy —FE;, w_—E_

We now use the summation formula (1.104) and the fact that the frequency shifts v
in wy do not appear in the final result. They amount to a mere discrete translation
in the infinite sum (3.199). Collecting the different terms we find

d3p |
(2m)3' 0

E++E7 f f E+—E, f f
% {<E+ +E,)2 + 2 (1 _nE+ _nEf) T (E+ — E7)2+I/2 (nE+ _nE*> )

21

Lyo(k) = [Lay(K)]" = _/ 2FE_FE,

(3.202)
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In Eq. (3.194) for Ly, (k), we decompose

(W +E2) (W2 +E2) 2
— (B2 +E2 +17 —26,¢)

wi-via+6e. 1 1 1
{wawa T
1
(wl+ F%) (w2 + E?)

}. (3.203)

When summing the first two terms, we use the formula

1 1 1 E
RS SV S N
T g~ apM-r—me) = gptanhgp (3:204)

In the last term, the right-hand factor is easily evaluated as before: Replacing the
factor E2 + E% 4+ 12, once by (E_ + E;)?>+v*—2E_E, and once by (E_ — E;)*+
v? +2E_E., we obtain immediately

d3p E+E_ + 54_5_ E+ + E_
Lu(k)=L :/ Lol ot
n(k)=La (27r)3{ 2E,E_ (B, +E_)2+1? (1=nk, —nk )

ELE- — &8 E,—-E_ f 7 1
B — — =, (3.205
2E+E_ (E+ _E—)2+V2 (nE+ nE_) p ( )

Let us study in more detail the static case and consider only the long-wavelength
limit of small k. Hence, we shall take v = 0 and study only the lowest orders in k.
At k = 0 we find from (3.202)

Lia(0) = =N (0)|8of* [ de {é (1-20d) + %ME} | (3.206)

Inserting F = /&2 + A3, this can be rewritten as

L1a(0) = 5 N (0)6(2). (3.207)

Here we have introduced the so-called Yoshida function

B(Ag) = A2 /OOO d¢ {% (1—2nf) + %nf’E} . (3.208)

Now we observe that

¢ NN 1., (1 1
O [ ~>nt) = = S P 3.209
¢ (A%EnE BT \az T gm) e (3:209)
so that we can bring (3.208) to the form

o0 12
H(Ao) = |A0|2/0 d¢ {E + A—%nf’E — 20 (AgEnQ } : (3.210)
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The surface term vanishes, and the first integral in Eq. (3.210) can be done to arrive
at the more convenient expression

%0 1 o 1
Ao) =1 2/ dent’ =1 — [ de— 3.211
o(Bo) =142 ) din’y o7 Jo ® cosi(B/2T) (3:211)
We now turn to Eq. (3.205) which reads at v =0, k = 0:
L11(0) = /\/(0)5/0 dg{ o (1-2nf) - 2ﬁ — (3.212)

Here we observe that due to the gap equation (3.141), Lq;(k) can also be expressed
in terms of the Yoshida function ¢(Ag) as

Ln(0) =~ N (0)6(20). (3.213)

For T' = 0, this function approaches zero exponentially fast. The full temperature
behavior is best calculated by using the Matsubara sum (3.204) to write

0
?B0) = QTZ/OZS +E2 = 2T 50 /d5w3+§2+A3

Wn n

= 2A2TZ =2Tr »  —. (3.214)

&’ﬂ n\fw2 + A wn>0 w2 + A}

6(80) = 5 i S (3.215)

For T'— T, and small § we have

(D) = 267 ZO ﬁ = 252T ~ 2 (1 — —) : (3.216)

In the limit 7" — 0, the sum turns into an integral. Using the formula

S h—1 1
/0 gy = 3By = #2) (3.217)

with B(x,y) = I['(z)['(y)/T'(z + y), we see that

P(Do) = 1. (3.218)

T=0

Note that we can also write L11(0) as

(3.219)
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with
ps = pd(Do)- (3.220)

The function py is the superfluid mass density. To justify this, let us calculate the
bending energies of the collective field A(z). For this, we expand L;i(e,k) and
Lis(g,k) at v = 0 into powers of the momentum k up to k?. Let us denote the
zero-frequency parts of Liq(k) and Lio(k) by Li1(k) and Lq;(k), respectively, with
the explicit form

T OJ2 + §+§_ 1
L1 (k) = = - -, 3.221
T A2
Lipk) = —— 0 : 3.222
12(k) vg;p(w?wi) (w? + E2) (3:222)
Inserting the expansions
2 1 2

GE = & (v

E-2i- 2 1 2
P = E*+&vk+ 3 (vk)"+ ..., (3.223)

we have

/ p . WP+ AF+ €% - §(vK)” 1y
(2m)3 2 2)2 1 g W—E+A7 o
T (w4 B2 1+ §(vK) | 9

(W2+E2)2
d3p 1 1
750 N
(2%)3{ ( ;uﬂ + B2 g)

+TY E = +1E2)2 - (;"22:;8)31 (vk)2} o (3.224)

Lll(k) — ng(k) ~

Due to the gap equation, the first parentheses vanish so that we are left with

L)~ L ~ 10) [ 2 ()

47 \'m

o0 1 1 w? + A}
< [Z (PIEr A0 Py A3)3] )

Similarly, we obtain

df) 00 A2
Laa(k) =~ =N(0) / An /;oo d { (w? + 520+ A3)”
N - e}
+(vk) lQ (w2 + €24 A%)S (w24 &2+ A(Q))4 - 620
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Using the integrals

00 1 1 3 5 m
/ dg 234 — (‘a 2 —) — (3.227)
e v ©) e

we find

N(0) (vk)? fdp

Lii(k) — Lia(k) =~ LA ECb(Ao)» (3.228)
) ~ M)+ MO 2 [ ®gia), (3.220)

where ¢(Ag) is again the Yoshida function (3.215), while ¢(Ay) is a further gap
function:

O(Ao) = 2857T ! i (3.230)

5
wn>0 1/w% + A% n=0 x% + 1

S2I )

For T' ~ T,, this behaves like

1 131¢(5)
Ag) =~ 25* = 3.231
P(Bo) Z ‘(2n + 1) 16 (3:231)
and thus, by (3.161), the temperature behavior is
_ TN ?
B(Ag) ~ 21.8144 x (1 - T) . (3.232)

In the limit 7" — 0, on the other hand, the sum turns into an integral whose value

is, by formula (3.217),
2
AN

o(A]) =3 (3.233)
Altogether, we find for the energy density the gradient terms
1
fexna(2) = — [0 0L Vi (2)V;A(2) /A + Re plf ViA* (2)V; A (2) /AF] . (3.234)

Here we have dropped the primes on the field gradients, since the additional constant
Ag does not matter. The first coefficient is given by

dp
ol =22 2 [ b [ 6(Ao) ——¢<Ao> (3.235)
the second by
3p dp . . 1-
Py =% | 1 plp]2¢(Ao), (3.236)
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where we have expressed N(0) in terms of the mass density of electrons p via the
relation (3.62). Performing the angular integral gives

1 1-
o = 5p |03 - 56(20)| b, (3.287)
12 L -
Pij = _Zp¢(AO)5ij' (3.238)
Decomposing the collective field A(z) into size |A(z)| and phase ¢(x),
A(z) = |A(z)]e*®), (3.239)
the energy density reads
1
femna(z) = 75 {(0" = p*)(V)* + (0" + p*)(VIA@)])?/AF} . (3.240)
Introducing, in addition, the notation

pe = po(2) (3.241)

and adding to the energy density the earlier k = 0 result, we find the total quadratic
fluctuation energy density

feraa(2) = ps(V ©)* + (ps = 5s) (V|A(2)])*/AG + 6ps(V[A(@)])) fvi. (3.242)
The behavior of ps; and p; for all ' < T is shown in Fig. 3.8.

ps/p
pPs/p

T/T. 1
FIGURE 3.8 Temperature behavior of the superfluid density ps/p (Yoshida function) and
the gap function pg/p.

The phase fluctuations are of infinite range, the size fluctuations have a finite
range characterized by the temperature-dependent coherence length

;o
£(T) =, %”[) Ps. (3.243)
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For T close to T, the second ratio tends towards unity, while A? goes to zero accord-
ing to Eq. (3.121). Thus we recover the previous result (3.105) for the coherence
length:

T
€)= (1-7), (3.244)
with
7C(3) Vrp VF
o= \Tys o, 704X (3.245)
For T'— 0, £(T) tends exponentially fast against
e’ vp UV
= ——=~0591 x — =~ 141 . .24
§(0) = 5~ ~ 0501 x 79 % & (3.246)

The behavior of £2/£%(T) is displayed in Fig. 3.9.

0.5 1

& /84(T)

T/T. 1
FIGURE 3.9 Temperature behavior of the inverse square coherence length £ ~2(T).

At low temperatures we can ignore the size fluctuations of the collective field
parameter A(x). This is called the hydrodynamic limit or London limit. Thus we
approximate

A(z) &~ Nge®™, (3.247)
In this limit, the bending energy is simply
1 2
Joraa() = 5,0 ()] (3.248)

By studying the behavior of this expression under Galilei transformations we identify
the superfluid velocity of the condensate

E— . 24
Vi QmV(b (3.249)
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In terms of this, the energy density takes the form

1

fgrad(x) = 5,03"3' (3250)

This shows that ps is the superfluid density of the condensate.

For temperatures close to zero, the sum over Matsubara frequencies TZ may

also be performed as an integral [ dw/2m, and the result is [recall (3.221), (3.222)]

T 1 1~ E.E +&6 B +E_ 1

L pum L = — _—— = — —_—
u(k) = Ln(k) = Zw,p k) =2 =y Xp: 2E,E_  (BEf+E_)2+12 g
(3.251)

T 1 1 E.+E_
L -y =3 = —|AP=Y s . (3.252
12(k) 21(k) V%pllz(plk) | Ao vV S 2E.FE_ (B, +E )24 12 (3.252)

We now express 1/g in terms of the gap equation (3.268) at 7' = 0,
1 1
oy 3.253
2 2E(p) (5259

g b

so that the last term in Ly (k) provides us with a subtraction of the sum.
The energies of fundamental excitations are obtained by diagonalizing the action
Ay [A™] A'], and by searching for zero eigenvalues of the matrix L(k) via

L1 (k) Lyo (k) — L1,(K) = 0. (3.254)
Since Ly1(k) = Laa(k), this amounts to the two equations
Lu(k) = Lis(k), (3.255)
and
Lui(k) = —Lua(k). (3.256)

These equations can be solved for small k. Expanding them to fourth order in v
and k [22], and using once more the gap equation (3.253) at 7" = 0, one finds

M?*vp V2 v2k? vZrPk? v vEk?
Li(k) = — i i - - 3.257
nlh) = -7 < T 352" 9a7 " 30al ~20a qo0ad Toc) (320
M?*vp v vik?  virk? v vikd
Lip(k) = — - - ). (3258
12() Am? < 6A2  18AZ | 45A1 ' 30A1 T 10Ad (3:258)

We have ignored terms such as k*/M2A? compared to vik*/A? since the Fermi
energy is much larger than the gap in a superconductor, i.e., Mv%/2 < A. With
these expansions, the Eq. (3.255) has the solution with small ky = —iv:

ko = clk|(1 —9K?), c=—, 7=

(3.259)
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The Eq. (3.256) can be solved directly for small k and ky = —iv. Using (3.252) and
(3.253) one can write —L;(k) — Lya(k) = 0 as®

PE[ SR
For small k, this leads to the energies [22]
(n) vk 2
ko' = 200 + Ay (2—A0> Zn (3.261)
with z, being the solutions of the integral equation
/_11 dz /_O:o dyﬁxj% —0. (3.262)
Setting ef = (m + 1) / (m — 1) this is equivalent to
sinht +¢ =0, (3.263)
which has infinitely many solutions ¢, starting with
t1 = 2.251 +14.212, (3.264)
and tending asymptotically to
t, ~ loglm(4n — 1)] + i (27m - g) . (3.265)
The excitation energies are
K = 20, — Vi gz (3.266)

4Ay" sinh?t,/2

Of these, only the first one at k\" &~ 2Aq + (.24 — .30i)v2 /4A2K? lies on the second
sheet and may have observable consequences, while the others are hiding under
lower and lower sheets of the two-particle branch cut from 24, to co. The cut is
logarithmic due to the dimensionality of the surface of the Fermi sea at T" = 0.
The basic strength of the Hubbard-Stratonovich transformation is that the two
ways of eliminating the four-particle interaction via formula (3.1) and (2.4) yield
both a complete description of the system, once in terms of a bilocal pair field
A(z,2"), and once in terms of the local scalar field ¢(x). In practice, however,
this is an important weakness. In either description the effects of the other can
be recovered by summing an infinity of diagrams formed with the other collective

6For T # 0, each result appears with a factor % (tanh % + tanh %), to which we must add

once more the entire expression with E’ replaced by —F’.
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quantum field. Such an infinite set of diagrams can unfortunately never be calculated
and summed. The only way out of this dilemma is to go to classical collective fields
Az, z") and @(x).

The way how to do this has been shown for simple systems in the textbook
[23], and for large-order effects in general quantum field theory in the textbook
[24]. Here we shall present the method for the example of the superconducting local
four-particle interaction (3.41).

3.4 From BCS to Strong-Coupling Superconductivity

The above calculations were valid only for weak coupling since they were based on
the assumption that, in momentum space, only a small layer of electrons in the
neighborhood of the Fermi sphere is subject to the phonon-induced attraction. This
was implied by the approximation (3.61) which was used to simplify the evaluation of
the gap function in (3.59). This approximation explained the phenomena observed
in all old-fashioned superconductors known until 1986 (recall Fig. 3.1).

As described in the beginning of this chapter, this was the year that supercon-
ductivity was discovered in a completely new class of material by Johannes Georg
Bednorz and Karl Alexander Miiller [5]. A first attempt to explain this phenomenon
was to free the BCS-theory from the weak-coupling assumption, by allowing the
phonon attraction to extend beyond the thin shell around the Fermi surface in mo-
mentum space. For strong coupling ¢, the attraction can lead to the formation of
tightly bound bosons rather than loosely bound Cooper pairs. These can undergo
Bose-Einstein condensation, and all calculations have to be reconsidered. Initially,
this was done in Refs. [25, 47]. More recently the same mechanism has come un-
der renewed investigation with the hope that it might explain experimental data of
high-T, superconductivity in underdoped cuprate samples [26, 53]. These materials
show an anomalous behavior in the normal phase well above the superconductive
transition 7. In particular, they exhibit an anomalous temperature dependence in
resistivity, specific heat, spin susceptibility, and similar properties. Angle Resolved
Photoemission Spectroscopy (ARPES) indicates the existence of a pseudogap in the
single-particle excitation spectrum [30, 56]. This manifests itself in a significant
suppression of low-frequency spectral weight. This suppression is in contrast to the
complete suppression in the presence of an ordinary gap.

Thus we study what happens if we increase the coupling strength g. We shall
be able to explain a few of the features of high-T, superconductors, although many
of them will remain unexplained. In particular one cannot explain the fact that
the physical system undergoes merely a crossover from the pseudogap-regime to the
normal phase, rather than performing a proper phase transition of the model.

In an exactly solvable field theoretic model, a strong attraction leads to two
phase transitions: first a second order one in which tightly bound bosonic bound
states are formed, and a second one of the Berezinskii-Kosterlitz-Thouless type [31],
in which these undergo a Bose-Einstein condensation [34]. This has been discussed
in Chapter 23 of the textbook Ref. [35].
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There is a possible connection between the presence of a pseudogap and the
existence of an anomalous normal state above T, in underdoped cuprates, as was
pointed out experimentally in [36, 37]. ARPES experiments have shown that the
superconducting gap below T, in both underdoped and optimally doped materials
have the same magnitude and wave vector dependence as a pseudogap well above
T.. Further experimental facts display the pseudogap behavior above T.:

1. Experiments on YBCO [38, 39] observe a significant suppression of in-plane
conductivity o(w) at frequencies below 500 cm™t. They begin at temper-
atures much above T.. The temperature T, where the suppression starts,
increases with decreasing doping. This is confirmed by recent experiments
[37, 40] on underdoped samples which show clearly the increase of resistivity

for decreasing temperature if 7' drops below a certain value.

2. Specific heat experiments [41] also clearly display a pseudogap behavior much
above T,.

3. Nuclear Magnetic Resonance (NMR) and some neutron scattering observations
[42, 43] show that, below a temperature 7™ which lies much higher than T,
magnetic response starts decreasing. Within the model to be studied the con-
nection of pseudogap and loss of magnetic response was studied theoretically
in [44].

4. Experiments reviewed in Ref. [26] on optical conductivity [45, 46] and on
tunneling exhibit the opening of a pseudogap in underdoped and optimally
doped cuprates.

The model to be presented here was investigated in various ways in a number of
papers [47, 48]. We shall describe now the superconductive phase at small but finite
temperature and the pseudogaped normal phase where mean-field methods should
also be reliable [44, 50]. Indeed, the paramagnetic susceptibility was studied in the
anomalous phase in Ref. [44], and the experiments exhibit the pseudogap behavior.

Some years ago, analytic results were obtained within the same model for the
entire crossover region at 7' = 0 in a three-dimensional system [51]. For the two-
dimensional system, similar results were obtained earlier at 7" = 0 in [52].

In this chapter we shall begin by reproducing the results of Refs. [51, 52] for A(0).
Then we extend the results to find the temperature behavior of gap and pseudogap
as well as of thermodynamic functions.

3.5 Strong-Coupling Calculation of the Pair Field

We work with the same action as before in (3.39), but make two important changes
with respect to the earlier weak-coupling calculations. First, the gap equation (3.268)
is evaluated without the approximation of Eq. (3.65), which led to the simple results
(3.147) and (3.150). Second, the chemical potential is no longer close to its zero-
temperature limit £z, but has a pronounced temperature behavior. To find it, we
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have to evaluate an extra equation obtained from the derivative of the Euclidean
action with respect to the chemical potential. This yields the equation for the
particle densiy:

N 1 3 E
= ==Y _—Z<1— =P tanh p) (3.267)
Vv 5 Py E 2T

1o P

Taking the gap equation (3.146) and converting the momentum sum into an integral
over ¢ and an integral over the directions p, as in (3.60), we arrive at the three-
dimensional gap equation

VR ETR

S —Z—tanh— . / 5 ey b (3.268)

where the constant is kg = m3/2/v/2n2.
Instead of the coupling constant one can parametrize the attractive d-function
attraction by the renormalized coupling constant

L_1 1y (3.269)
g VS e ’

gr

and express the renormalized coupling constant in terms of the exprimentally mea-
surable s-wave scattering length a:

1 m 1

The factor denominator 47 instead of 27 accounts for the fact that two equal masses
have a reduced mass m/2, and the negative sign is there since an attractive positive g
refers to a negative s-wave phase shift. The explanation of all this is in the textbook
[35] in Chapter 9 Eqgs. (9.264)—(9.266).

Thus we can write the gap equation (3.268) also as:

m1 1 1 1 E, 1
L Y (e S 3.271
mh’a  gn Vzp: <2Ep ar er> (3.271)

In two-dimensions, the density of states is constant, and the gap equation be-

comes
e’} 1 /62 +A2
— = Ka / d& tanh ,
q —u 2\/ 52 —+ AQ 2T
with a constant ko = m/27. The particle number density in Eq. (3.267) can be
integrated with the result

m 5 /u2+A2
P=g- {\/,LL + A? 4+ 2T log ll—l—exp( —r , (3.273)

the right-hand side being a function p(u, T, A).

(3.272)
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The d-function potential produces a divergence similar to that in (3.65), which
requires regularization. Since the momentum sum is running over the entire momen-
tum space rather than merely over the vicinity of the Fermi sphere, the divergence
is the same as in the calculation of the scattering amplitude for the d-function po-
tential. It can therefore be removed by a subtraction, based on going from ¢ to the
renormalized coupling gr via Eq. (3.269).

For the temperature of pair dissociation we obtain the estimate:

Tissoc =~ €B/1Og(€B/€F)3/2- (3.274)

This shows that, at strong couplings, T* is indeed related to pair formation [50]
which lies above the temperature of phase coherence [26, 47].

The gap in the spectrum of single-particle excitations has a special feature at
the point where the chemical potential changes its sign [25, 57, 58]. The sign change
occurs at the minimum of the Bogoliubov quasiparticle energy Fy where this energy
defines the gap energy in the quasiparticle spectrum:

Eyap = min[€2 + A%V, (3.275)

Thus, for a positive chemical potential, the gap energy is given directly by the gap
function A, whereas for a negative chemical potential, it is larger:

A for >0,

Egap = { (M2+A2)1/2 for 1< 0. (3276)

In three dimensions at 7' = 0, equations (3.267) and (3.268) were solved analytically
in the entire crossover region in [51] to obtain A and p as functions of the reduced
chemical potential

i = p/A. (3.277)

This will be referred to as crossover parameter. The results for A and p are:

A _ ! (3.278)
€F [y (f1) + L2(@)]P3 '

p A fi
£ = == _ ; 3.279
€F MC‘F [y (1) 4 To(f2)]?/3 ( )

where /i is related to the s-wave scattering length by
1 4 ply(p) — I ([
L _ 2 AL L) (3.280)
kra m [al () + L()]

Here we have introduced the functions

L(z) = /de[(xQ — )2+ 1]3/2
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1

_ 1 2 1/4E 2 -
( ‘|’Z) (71—/ 7y) 42%(1+22)1/4

F(r/2,2),  (3.281)

1 oo 1
I = —/ d
2(2) 2 Jo z[($2_z)2+1]1/2

1

= —F(7/2 3.282
where

»_ W1 so A = LiT 3.983
TEMA Y S Ay A= (VTS (3.283)

and E(m/2,x) and F(7r/2,x) are the standard elliptic integrals.
The calculations for D = 2 are similar. They were obtained in Ref. [52] and need
not be presented here. The results are

A 2
2 - 3.284
EF ﬂ + 1+ ﬂ2 ( )
from (3.278), and
A 2/
Ao B2 K (3.285)

EF N K;_ﬂ+\/1+ﬂ2’

from (3.278). The first equation relates the gap A to u by

&2 -2

which shows that the gap disappears at the critical value i1 = p, = v/2ep. Combining
this with Eq. (3.273), we find that at p,., the particle number density has the critical
value

m

If the number density exceeds this critical value, the gap disappears, and the su-
perconductor becomes a normal metal. In Fig. 3.10, we plot the three- and two-
dimensional quantities A and p as a function of the ratio i = u/0.

Let us also calculate the pair binding energy ¢p from the bound-state equation

1 1 1 m [ 1

=N - d i 3.288
g V¥k2/m+53 2 J-p Z22+6B/A+2ﬂ ( )

After performing the elementary integrals, we find
o1+ - (3.289)
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FiGURE 3.10 Gap function A and chemical potential p at zero temperature as functions
of the crossover parameter i in D = 3 (left-hand plot) and D = 2 (right-hand plot).

By combining (3.289) with (3.284) we find the dependence of the ratio ¢y/ep on the
crossover parameter ji:

ep _ V1447 — i
er VIFRE+Q

These relations can easily be extended to non-zero temperature. In the ensuing
analysis of the gap or pseudogap function at fixed coupling strength we no longer
consider the carrier density as fixed, but rather assume the system to be in contact
with a reservoir of a fixed chemical potential yu = u(1/kpas). This will be most
convenient for deriving simple analytic results for the finite-temperature behavior
of the system.”

The idea of the present discussion is to produce, at strong couplings and zero
temperature, a large mean-field gap Ae?’™®) with a rather rigid phase factor v(x) = 7.
As the temperature is raised, the phase fluctuations increase, depending on the
stiffness. At a certain temperature to be identified with T, the stiffness becomes so
small that the phase fluctuations become decoherent. The gap is still there, but the
fluctuations are so violent that order is destroyed. This is the pseudogap regime.
As the temperature is raised further, it reaches some value T* where the mean-field
gap is completely destroyed.

Let us now turn to the region near zero temperature, where we can derive exact
results for the gap. From (3.278) we extract the asymptotic behavior in the three-
dimensional case for i > 1. In this region one can assume density of states to be
roughly constant, since the integrand of (3.268) is peaked in the narrow region near
¢ = 0. The small-T" behavior is

A(T)= A0)-A0)/ 5 /A:?O) o AO)/T

"In Ref. [44], the temperature dependence of the chemical potential was calculated numerically
within a ”fixed carrier density model”, where it turned out to be very weak in comparison with
the strong dependence on the coupling strength.

(3.290)

T/A(0)

1+ erf (l@] 1/2)] . (3.291)
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where erf(z) is the error function. Since the density of states is nearly constant in
this limit, the same equation holds in two-dimensions — apart from a modified gap
A(0) given by (3.284).

In the weak-coupling limit, & = p/A(0) tends to infinity, and the expression
above approaches exponentially fast the well-known BCS-result:

A(T) = A(0) — [27A(0)T) 2 2O/T (3.292)

For strong couplings with i < —1, where the three-dimensional momentum integrals
are no longer peaked on a thin shell around the Fermi surface, the gap is given by

3/2
A(T) = A(0) - %H (@) e VIETIAO)/T, (3.293)

Near T' = 0, the gap A(T') tends exponentially fast to A(0).

1F
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0.2 0.4 0.6 0.8 1 b) v 0.2 0.4 0.6 0.8 1
T/T* T/T*
FIGURE 3.11 Temperature dependence of the gap function in three (a) and two (b) di-
mensions. The solid line corresponds to the crossover parameter i = 10 (which lies in the
BCS regime), crosses represent ji = 0 (i.e., the intermediate regime), and lines with boxes
and circles represent i = —2 and i = —5, respectively, and the dashed line represents
i = —10 (i.e., the strong-coupling regime).
In two dimensions, the behavior is similar:

A(0)

A(T) = A(0) - =2, (\/,:L2 1 A(O)/T) , (3.204)

where E) is the exponential integral Fy(z) = [2°e™*/t dt. For very strong couplings,
this becomes:

A(T) = A(0) — Aéo) ;O) ﬂ21+ 16_\/ LA/ (3.295)

For a plot of the temperature dependence of the gaps and the associated transition
temperatures 7™, see Figs. 3.11 and Figs. 3.12.
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FIGURE 3.12 Dependence of T* on the crossover parameter in three (a) and two (b)
dimensions.

Let us also calculate the grand-canonical free energy Fg near 7' = 0 which we
shall denote by 2 = Fy, as often done in thermodynamics

/ 2+A2
ZCoshgki

: 2 4 A2
Q:Z{Aitanhgki—QTlog 7

2,/€2 + A2 2T

Here and in the following formulas, A(0) will be abbreviated as A. In three dimen-
sions, Eq. (3.296) turns into the integral

0 o0 A? VEE A2 VEI+ A?
V:m/_u dﬁ\/§+ul2mtanh 5T —2T log <ZCOShT>+§],

+§k}. (3.296)

(3.297)

In two dimensions, the integral is

/mdfl A? VET A VET A

tanh
an 5T

2v/E&% + A? 2T
The two expressions are regularized by subtracting their normal-state values €2, =
QA =0).

For weak couplings, the thermodynamic potential (3.297) has the temperature
dependence

— = Kg

—2T'1 2 cosh
v og( cos

>+§]. (3.298)

Q, Q-Q, A% 1 1
— = = K3V |—— + Splul — S/ + A% (3.299)
V V 4 2 2

In the BCS-limit (ft — oo) this reduces to the well-known result

Q,

T = /A2, (3.300)

In two dimensions, we find a result valid for any coupling strength:

Q, A? 1 1
e l—j + §/~L|N| —ohy p* + Aﬂ ) (3.301)
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with the same BCS-limit as in (3.300):

&

= —rpA?)2. (3.302)

In both three- and two-dimensional cases, the low-temperature corrections to the
BCS-limit are 7172/3.
In the opposite limit of strong couplings, we find in three dimensions
Q

_ T 5/2(72\-3
v 64K3A (7). (3.303)

The gap A(0) has, by Eq. (3.278), the strong-coupling limit

A(0) = ep[16/37)*2 Al (3.304)

frr—
yielding the large-fi behavior
Q 5/27T <16>15/4 ~1—2/3
— o~ — — [ — . 3.305
>~ om0 (2) A (3.305)

In two dimensions, we substitute the gap function A of Eq. (3.284) into the ther-
modynamic potential (3.301) and obtain, for strong couplings where p < 0, the
result

_y (3.306)
=0 .

Let us now turn to the entropy. In three dimensions near 7" = 0 it is given in
the weak-coupling limit 4 = u/A — oo by

S 8T A
7= 53\/@1/%@*&”, (3.307)

and in two dimensions by

(3.308)

In the strong-coupling limit where i = u/A < —1, the results are in three dimen-
sions

S VT 12 A [z~ T
= i~ T P2AL p2e PAT (3.309)
and in two dimensions:
S X
= = 2k A/ iR PAIT (3.310)

Vv
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From the entropy, we easily derive the heat capacity at a constant volume c¢y. In
three dimensions and near 7' = 0, it becomes near T' = 0:

2A
cy = K3V 27TA4\/E —A/T (3.311)

T3/2e

and in two dimensions:
cy = mggT—WA?g?e—ﬂA/T. (3.312)
The strong-coupling behavior is in three dimensions
ey = @?T—V%?ﬂ?e—\/@”’, (3.313)
and in two dimensions

A? -
cy = 2&2Tﬂ26_\/‘?A/T. (3.314)

3.6 From BCS Superconductivity Near T,
to the Onset of Pseudogap Behavior

We now turn to the region near 7™, for which we derive the asymptotic behavior
of the ratios A(T)/T* and A(T)/A(0), as well as other thermodynamic quantities.
In doing so, we shall consider A(T')/T as a small parameter of the problem. In our
calculations near T it is convenient to use the reduced chemical potential i = pu/27T*
rather than i = p/A as a crossover parameter (which also tends to oo in the weak-,
and to —oo in the strong-coupling limit). In three dimensions, we find for weak
couplings

1 1 il /2N /. 2 i
Sl tanh 2 (2) (142 arctan 2
4 [/1/2 (/2?2 " 2] +<7r) ( e anw)

In the limit i — oo this tends to the BCS-result

A(T) T
T =3 /11— R (3.316)

In the opposite limit of strong couplings, both 7% and A(0) approach infinity. The
ratio A(T")/T near T* goes to zero exponentially as a function of the crossover
parameter fi:

) T anh ¥
[AQ(TT)] - <1 T*) <1+t h2) , (3.315)

C T
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In two-dimensions the same near-7* formula (3.315) is applicable. In the weak-
coupling limit, it reproduces once more the BCS-result (3.316). In the strong-
coupling limit, we find once more that the ratio A(7")/T tends to zero exponentially
and behaves now on the crossover parameter f like

-1 -

S B-@T @B aw

2T
Let us calculate the dependence of T on the crossover parameter /i in the strong-
coupling limit. In three dimensions, we obtain from Eq. (3.268) the relation

T* 1 2/3 B
e <§) e~23, (3.319)

This is solved for T* (up to a logarithm) by

. 2
T z—gulog Y(—p/er) (3.320)

As a function of the crossover parameter [, we obtain
T 1 /16\** _,
—~ - (= /31 ( 16 > 3.321
—=5(5) Nl (V16/li (3321)
In two dimensions we find from (3.272)

™ 1

— = ¢ 3.322
i L ( )
and thus
T* ~ —plog™t (—p/er). (3.323)
As a function of [, this implies
T*
— =2j*log ™" (2v2]fi]) . (3.324)

EF

Let us also derive the dependence of the ratio A(0)/T* on the crossover parameter
in the strong-coupling region, which in three dimensions reads

A(O)_ 4 —ﬂ)1/46ﬁ/2

T* _ﬁ(

: (3.325)

and in two dimensions

( ) = 22 (—i)? 2. (3.326)
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In the weak-coupling regime, the results are in both three and two dimensions

INOBEE: A20)] x 1\ x 1
— 2 11= = —[1- ~—11 . .32
T* ev [1 442 ev 412 ev * 812 (3:327)

In the weak-coupling regime of three- and two dimensional systems, the temperature
T* is the following function of ji:

T e (1 3
_2€_<7_ ) (3.328)

(S5 s

Using this, we can also calculate the asymptotic behavior of the ratio A(T")/A(0)
near T*. In three dimensions, the strong-coupling limit is

S0 -E (8- 5) o

and in two dimensions:

EER N

At weak couplings, both the three- and two-dimensional gap functions behave like

T i
A(T)r _ Aq? (1 — F) {1 + tanh 5} | |
[A(O) - i L]L/Q B (ﬂ/lz)Q tanh g] + <%)2 (1 + %arctan %) (3330

In order to calculate the thermodynamic potential near 7™, we expand the general
expression (3.296) in powers of A(7T")/A(0) and, keeping only terms of the lowest
order, we get

0, (T*=T)A2 [ dPp ., ¢
— ~ - / cosh
v 4T (2m)P 27"
A dPp 1 (1 ¢ 1 ¢
= = h™? > — ~ tanh 332
8 J empe <2T* cosh "o — gty ). (3352)

where D is the space dimension. Recall again that we consider here the temperature
behavior of the system at a fixed chemical potential u(T,1/kpas) ~ p(0,1/kray),
and regularize Q) by subtracting €2,, = (A = 0). Then we obtain in three dimensions
at weak-couplings near 7™ the thermodynamic potential:

Q, — _((T* = T)A? i
= — g\ iVT {T [1 + tanh 5} + (3.333)

* %4(2;*)2 H (ﬂ}2 B (/1/12)2 tanh g) * (%)2 (1 * % arctan %)1 }
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In the BCS-limit, this reduces to the well-known formula:

Q, T 1 A?

0 = gV A (1 S ——> . (3.334)
(& T c

In the strong-coupling limit we have

Q7 *—3/2<_E)_3/2 (_1) oNT i
v = m3{64A(2T) 5 + (1 e A 2\/Te . (3.335)

Using the asymptotic estimates derived above for the strong-coupling limit, and the
fact that in this limit

% ~ —log (—ﬁ) ~ —const x log(|fl), (3.336)
we find near T the difference between the thermodynamic potential of the gapless
and pseudogaped normal states:

Q, TN\?, . .
T = —const <1 — T—) || =372 (3.337)

In two dimensions near T' = T, the thermodynamic potential of the gas of bound
pairs is given by the formula

Q, (T* — T)A? ji

S i (7 ) () (14 Fmam )]

which holds in the crossover region, where it can be approximated by

Q, ) T 1 A?

In the strong-coupling limit it reads

O e (o o | B

Using the earlier-derived asymptotic behavior, plus the limiting equation (3.336)
which also holds in two dimensions, we derive the fi-behavior of the thermodynamic
potential

2

T
~ —const X (1 - ﬁ) log | fi]. (3.341)

&
Vv

The entropy behaves in three dimensions in the weak-coupling regime near 7™ like

S, S-8, ~ __ A? i
e —kgy/aVT T [1+tanh <§)] (3.342)
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with the BCS-limit
S A?

The strong-coupling limit in three dimensions yields

S, JT A

_ = _1‘13—

% 9 _T*e .

Inserting in the above asymptotic formulas the quantities A, 1, and 7™, we find

(3.344)

Ss TN, . _
v = —const X <1 — F) |1 =573 (3.345)
In two dimensions, the entropy is given in the entire crossover region by
Ss A? [l
— = —Ko—— |1 +tanh = | . 3.346
Vv /{22T*{+an 2] (3.346)
In the BCS-limit, the behavior is
Ss A?
55— 34
V Ko T* 3 (3 3 7)
and in the strong-coupling limit:
Ss A%
= R el. (3.348)

Using corresponding asymptotic formulas for A, p and 7™ in two dimensions, this
depends on /i as

Ss Ty .
v = —const X <1 — F) . (3.349)

Let us now derive the specific heat. From the derivative with respect to the
temperature we find, in three dimensions and at weak-couplings near 7™:

-2
== =9T av T*
v KS\/; LRI #tanhg + <E>2 (1 + 2 arctan E)
41n/2  ()/2)? 2 s s T
which has the well-known BCS-limit

C, .
o ki iVTn T, (3.351)

. (3.350)

In the strong-coupling limit, the result is

Os oN3/2
= K316v/2T5/2 (-%) e, (3.352)
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Inserting earlier- derived asymptotic formulas we see that C tends to zero in the
strong-coupling limit as

Cs -
v~ const x |1 2. (3.353)

In two dimensions, the result for the entire crossover region is

2
il
1+ tanh 2
(+an2>

Cs
— =2T" . .354
% 1T 1 il /2\2 2 i (3:354)
] () (1 2w
41p/2  ()2)? 2 7r T 7r
In the BCS-limit, this becomes
% ~ kT, (3.355)

and in the strong-coupling limit

Os ~ 1 4 -
= dkia iV T (Z - P) 2 (3.356)

As a function of i, the result is
Cs .
v~ const x 172 (3.357)

From the above calculation near T we see that both quantities Sy and C, tend
rapidly to zero with growing coupling strength in the pseudogaped regime (like a
power of the crossover parameter fi or with an exponential dependence on f).

Note that, in the strong-coupling regime, the modified gap function
V2 + A2=y/[2+ 1A of Eq. (3.276) enters the expressions for thermodynamic
quantities below 7™ in the same way as the ordinary gap A in the BCS-limits
(3.309), (3.310), (3.313), and (3.314).

3.7 Phase Fluctuations in Two Dimensions and
Kosterlitz-Thouless Transition

In the previous sections we have calculated the properties of the theory in the mean-
field approximation. One of the results is the bending energy of the complex gap
function A(x) = |A(x)]e?™). Most important are the stiffness fluctuations of the
phase angle 0(x). These determine the superfluid density ps. As the temperature
increases, the stiffness decreases just like in an ordinary solid. In two dimensions,
the defects in the phase angle field are observable as vortices and antivortices. These
attract each other with logarithmic potentials, thus behaving like a two-dimensional
gas of electric charges. When the softening of the stiffness proceeds, one reaches a
temperature TgxT, where the vortex pairs separate. This so-called pair unbinding
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transition was discovered by Berezinskii and developed further by Kosterlitz and
Thouless, and named after them [54]. At the transition, the stiffness collapses in the
same way as in the melting process of a crystal, where the elastic constants collapse.
We shall now present a calculation of the stiffness, first in the two-dimensional
system. There the phase fluctuations are quite violent so that the Mermin-Wagner-
Hohenberg-Coleman theorem [55] forbids the existence of a strict long-range order.
It rather leads to a power behavior of correlation functions for all temperatures
below TBKT-

The crossover of the Kosterlitz-Thouless transition from weak to strong coupling
was first considered in the 1990s by [48, 49]. It was also studied by means of an
XY-model, whose stiffness of phase fluctuations was derived from a fixed nonvanish-
ing modulus of the order parameter A [44]. Writing the spacetime-dependent order
parameter as A(x)e?@ | the partition function may be expressed as a functional
integral

Z(u,T) = /ADA Dh e 45, (3.358)
The exponent contains a Euclidean collective action A% = —iA[A*, Al:
1 (B
A == / dr / dx A2(z) — Tr log (G5) ™" + Tr log (G5, )" (3.359)
g Jo

This can be extracted from (3.8) by a Wick rotation of the time ¢ to imaginary
values —i7. The right-hand side contains the inverse Euclidean Green functions of
the fermions in the collective pair field. These can be read off the Wick-rotated
version of Eq. (3.47), which reads for fermions

ey-1 _ [ [F0r = &(=iV)]6(z—2") Az, ")
S ( A*(,2") 0, + €G] o(w—a") ) - (3300
This may also be written in a matrix notation as
2
(G = —10, + 73 <2V—M + u) + 1 A(7, %), (3.361)

where [ = To, T1, T3 are Pauli matrices.

We want to study the action as a functional of the phase fluctuations of A(z). For
this we can in principle proceed as in Eq. (3.132). In the present context, however,
we shall be interested mainly in the bending energy of the phase fluctuations. Then
it is more convenient to absorb the phase factor of A = €@ A, into the external
fermions before integrating them out in the functional integral. Then the inverse

Green function has the matrix form
2

\ Y
(G =(GY) -2 =10+ (W + u) + 11l — 3, (3.362)

where

i0.0 (V 9)21 i lz’VQH iVo(r,x)V

Y =1n Yo = — . .
73 3+7'0 0 7'3[ 9 + SM AM + oM ‘| (3363)
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By expanding the collective action (3.359) in powers of X, we derive the gradient
expansion

e :Azpot+A2grad’ (3.364)

where
> 1
AREH =T Y (G, 2)" (3.365)
n=1 n

From now on we shall neglect the subscript of Ay as being superfluous because we
work only at the extremal value of A, and study only phase modulations. The first
term in the expansion (3.365) is

. 8 - ¢ (i
Al = [Car [ e S [ aPkulGaGion 10m)

n=—oo

0,0  (V0)>
3.366
[2 . ] (3.366)
with .
_z'wnI + 3¢k — 1A
wh + &+ AT

After summing over the Matsubara frequencies and integrating over k, we obtain

G, (iwn, k) = (3.367)

0,0 V)2
o, (v07]

B
e(l) _ D
A _/0 dT/d 2 p(p, T, A) l - (3.368)

&m

with p(p, T, A) given by (3.267).
For the second expansion term we obtain two contributions. The first is

: 2
Ax 5 ), dr | d”z K(u, T, A) 5+ Ak (3.369)
where K (u,T,A) is the integral
M 7 Vi + A
T'A)=— |14 ——=—=tanh———|. .
K(uT,A) = o ( + ey tanh (3.370)

The second term is

B 1 Kk’
ARD = / dr / L —— / Pk (VO (3.371)
s 0 32m2 M> cosh®[/€2 + A2/2T]
Combining (3.368), (3.369), and (3.371), we obtain

A = %/06 dT/dDZE p(p, T, A)id,0
+ (1, T, A, TV 0) + K (1, T, A, T))(0:0)?] - (3.372)
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where J(u, T, A) is the stiffness coefficient

T [ x+p/2T
T, T, A) = ——p(u, T, A ——/ d . 3.373
(w ) 4Mp(,u ) am J—pjor Icosh2\/a:2+A2/4T2 ( )

At the temperature T where the modulus of A vanishes, also the stiffness disap-
pears. The gradient energy corresponds to an XY-model with a Hamiltonian [54, 33]:

J 2
H= §/dx[V A(x)]2. (3.374)

The only difference with reprect to the standard XY-model lies in the dependence
of the stiffness constant J on the temperature. Here this is determined from the
solutions of gap- and number-equations (3.268) and (3.267). Clearly, in this model
the Berezinskii-Kosterlitz-Thouless transition always takes place below T*. In the
XY-model with vortices of a high fugacity, the temperature of the phase transition
is determined by a simple formula [33, 59]:

™

Toxr = 5. (3.375)

The transition point is found from the divergence of the average square distance
of the vortex-antivortex pair. The two attract each other by a Coulomb potential
v(r) = 2w Jlog(r/ry), and the average square distance is

1

m. (3-376)

(%) o /°° Px 12— 2mI/T)1og(r/ro) o
ro

This diverges indeed at the temperature (3.375). In our case, Tpkr is determined
self-consistently from the equation

T
Tkt = EJ(IUaTBKTaA(,UaTBKT))' (3.377)

Using Eqs. (3.373) and (3.375), we can easily see that Tgkr tends to zero when
the pair attraction vanishes. In general, the behavior of Tgkt for strong and weak
couplings is found by the following considerations. We observe that the particle num-
ber n does not vary appreciably if the temperature lies in the interval 0 < T" < T,
so that weak-coupling estimates for Tkt derived within the model under the as-
sumption of a temperature-independent chemical potential practically coincide with
those derived from a fixed fermion density. Further it is immediately realized that
in the weak-coupling limit, A(TgkT, 1t)/TskT is a small parameter. At zero cou-
pling, the stiffness J(u, Tk, A(w, Tekr)) vanishes identically, so that an estimate
of J at weak couplings requires calculating a lowest-order correction to the second
term of Eq. (3.373) which is a term proportional to A(Tgkr, it)/Tekr. Thus the
weak-coupling approximation expression to the stiffness reads:

L TC3) AT

T~ Jom = e

(3.378)
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Inserting here the BCS value (3.316), and equating J with the critical stiffness
(3.375), we obtain the weak-coupling equation for Tgkr:

EF TEKT>
Tprkr ~ — (1 — .
e = (11— 28T, (3.879)

where e = (7/M)p is the Fermi energy of free fermions in two dimensions.
It is useful to introduce the reduced dimensionless temperatures Txr = Txr/cp

and T* = T* /er, which are both small in the weak-coupling limit. Then we rewrite
Eq. (3.379) as

- 1 1

T (3.380)
For small 7%, we may expand

Trr ~T* —AT*2. (3.381)

This equation shows explicitly how TgxT merges with T™* for decreasing coupling
strength.
For weak coupling, Tgkr behaves like

§
Toxcr ~ %A(O). (3.382)

The merging of the two temperatures in the weak-coupling regime is displayed in
Fig. 3.13.

0T0 20 30 4050 60 7 0O TETTTE TR 0 T2 14 16 18 2
1/ A(0) 1/ A(0)
FI1GURE 3.13 Dependence of the pair-formation temperature 7™ on the chemical potential.
Dashed lines represent the pair condensation temperature T.. The left figure is for D = 2
dimensions, where T, = TpkT, the right for D = 3.

Consider now the opposite limit of strong couplings. There we see, using Egs.
(3.377), (3.267), (3.268), and (3.373) for Tk, p(T, i), and A(T, p), that Tk tends
to a constant value. We further observe that in the strong-coupling limit, A(Tgkr)
is always situated close to the zero-temperature value of A(Tgkr, 1) = A(T = 0, ).
Taking this into account, we derive an estimate for the second term in (3.373), thus
obtaining the strong-coupling equation for Tgkr:

T >+ A*(Tpkr,
Tokr ~ — {ﬁ _ ZBKT ovp {— Ve (Tocr M)} } . (3.383)
T

8| M TskT
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With the approximation A(TgkT, ) = A(T = 0, 1), we find that the first term in the
exponent tends, in the strong-coupling limit, to a constant A?(Tgkr, p)/2uTsrT —
—4. The first term in brackets tends to —oco. Hence Eq. (3.383) has the limiting
form

2
Tyxr ~ ~ 2 {1 — Zexp {—“ . 4} } . (3.384)
m

Thus for increasing coupling strength, the phase-decoherence temperature Tgkr
tends rapidly towards a constant:

Toxr ~ L. (3.385)

S

T
8

In this limit we know, from Eq. (3.267), that the difference in the carrier density
at zero temperature, p(T = 0), becomes equal to p(T = Tkr), so that our limiting
result coincides with that obtained in the “fixed carrier density model”:

er(ng) s
T, = = — 3.386
BKT 3 8m60’ ( )

where we have inserted ep(n) = (7/m)p for the Fermi energy of free fermions at the
carrier density po = p(T = 0).

From the above asymptotic formulas for weak- and strong-coupling limits we
observe that the temperature of the Berezinskii-Kosterlitz-Thouless transition is a
monotonous function of coupling strength and carrier density. The crossover takes
place in a narrow region where p/A(0) € (—1,1). It is also observed in the behavior
of the three-dimensional condensation temperature T, of a gas of tightly bound,
almost freely moving, composite bosons. In Refs. [47, 50] which include only qua-
dratic fluctuations around the mean field (corresponding to ladder diagrams), 7T
was shown to tend to a constant free Bose gas value T, = [p/2¢(3/2)]*/*x /M, with
no dependence on the internal structure of the boson.

Here we find a similar result in two dimensions, where Tk tends to a constant,
depending only on the mass 2M and the density p/2 of the pairs. No dependence
on the coupling strength remains. The only difference with respect to the three-
dimensional case is that here the transition temperature T, = Tk is linear in the
carrier density n, while growing like p?/3 in three dimensions. Our limiting result
(3.386) agrees with Refs. [48] and [44]. There exists a corresponding equation for
the temperature 7™ in the strong-coupling limit €y > ep:

« €o 1

~ 3.387
2 10g60/€p ( )
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3.8 Phase Fluctuations in Three Dimensions

In this section we discuss, in a completely analogous way, the fluctuations in three
dimensions. For small temperatures, where A(T') is close to A(0), we obtain from
(3.373):

V2M 1 e (& + )2

1
J T,A)=— TA)— ——= 3.388
(T 4) 4mp(u, A) 1672 T J- " cosh?(VEZ + A2/2T)’ ( )
governing the phase fluctuations via an effective XY-model
J. .
H= %/ddx[v 0(x)]2. (3.389)

The temperature of the phase transition in this model can reasonably be estimated
using mean-field methods for the lattice 3D XY-model [33]:

THE ~ 3.Jspa. (3.390)

Then the lattice spacing of the theory [33] is a = 1 /n;/ °where n, denotes the
number of vortex-antivortex pairs.

In the weak-coupling limit, the stiffness coefficient becomes, approximating 7.
by T,

7 ph A2
487T4C< )MT*Q'
This is precisely the coefficient of the gradient term in the Ginzburg-Landau ex-
pansion. In the weak-coupling limit, the two temperatures merge according to the
formula

T.=T" —aT*?, (3.392)

which contains a larger power of T* in the second term, as well as a smaller prefactor
a = (2r%)*3/2 ~ 3.65. Formula (3.392) is compared with the two-dimensional
expression in (3.381). The merging behavior of the two T™*-curves is displayed in
Fig. 3.13.

In the strong-coupling limit of the theory, there exist tightly bound composite
bosons, and the phase stiffness tends asymptotically to

J = P 34”27TmT3/26—\/u2+A2/T (3.393)
For small T' this goes rapidly to

An estimate for the critical temperature, obtained via the mean-field treatment of
the 3D XY-model on the lattice, reads in this limit:

3 p\/3 1 1 3/2, 3/2 —+/u2+A2/T,
Tc = % [(5) — m27/6ﬂg/2TC me . (3395)
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This quickly tends from below to the value:

T3DXY _ 3,02/3 o 3

¢ T Bm - F(6n2)2h

~ 0.2¢. (3.396)

The result is very close to the temperature of the condensation of bosons of mass
2M and density p/2, which was obtained after including the effect of Gaussian
fluctuations on the mean-field equation for the particle number [47, 50] (as discussed
above), yielding

TBosons — [5/2¢(3/2)]**1/m = 0.218¢p. (3.397)

Let us remark that the separation of T and 7T, has an analogy in ferroelectrics
and magnets. These also contain two separate characteristic temperatures, for ex-
ample in the latter case — the Stoner- and the Curie-temperature. It also can be
studied more precisely in a simple field theoretic model in 2+ dimensions with an
O(n) symmetry for large n. In such a model, the existence of two small parameters
e and 1/n has permitted us to prove the existence of two transitions, and to exhibit
clearly their different physical origins [34].

3.9 Collective Classical Fields

The introduction of a fluctuating pair field A,z via the Hubbard-Stratonovich trans-
formations (1.79) and (1.80), together with the identity (3.42), is an exact procedure.
It allows to re-express the interaction in the partitian function in the form (3.42)
which contains the fundamental field only quadratically. However, since our calcula-
tions of the physical properties will eventually be merely approximate, the exactness
of the transformation is not a virtue, but turns out to be a handicap. A better ap-
proximation is more useful than an exact expression in the wrong environment.
We have seen in Chapter 2 that there exists another possibility of eliminating the
fourth-order interaction term with the help of a completely different real density field
. That procedure led also to an exact reformulation of the theory in terms of a fluc-
tuating collective quantum field. The question as to which of the two formulations
is better depends on the phenomena which one wants to study. The phenomena
emerging in one formulation from a low-order approximation may require, in the
other formulation, the summation of infinitely many diagrams. Usually, this is a
hard task, so we need a procedure where the collective effects in each possible chan-
nel emerge from a low-order calculation. The way out is found by giving up the
attempt of rewriting the functional integral of the theory in terms of a fluctuat-
ing collective quantum field. Instead, we must resort to a non-fluctuating collective
classical field. Such a theory was developed in the context of quantum mechanics
under the name of Variational Perturbation Theory (VPT) [23]. This theory has
been shown to produce exponentially fast converging results which contain the ef-
fects of all possible collective phenomena. They are based on the introduction and
subsequent optimization of a variety of collective classical fields. The theory has
been extended to QFT in the textbook [24].
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Following the classical collective field approach we modify the classical action
in a trivial way, rather than applying the functional integral identity (3.42) in the
partition function (3.1). Initially, the classical action consists of a sum

A= Ao+ Au, (3.398)
with a free term
Ao = / & dt bl (x, )[i0h — E(—iV )thal(x, ), (3.399)
and an interaction term
A = 53 e x, 0050 (0, (1), (3.400)

To this we add and subtract a dummy term which has the form of a simple spacetime-
dependent mass term:

1 )
Ay =3 / & di fH(x, )M (x, 1) f(x, 1). (3.401)
It contains in a mass matrix
_ [ Zap Aap
Mg = ( A s, ) : (3.402)

which depends an as yet undetermined off-diagonal trial field A,s(z) and a diagonal
field ¥,5(z). Explicitly, the mass term (3.401) reads

1
Apm = — / dxdt |+9;Yapts + 3 (£ Tasts + Y%t + ¢;Aa5¢;)} . (3.403)

After adding and subtracting A, we reorganize the action (3.398): We change the
free part A to AJ*™ = Ay + Ap, and the interaction to the new subtracted inter-
action ALY = Ay — Apn. In terms of the four-components fields f(z) introduced

in Eq. (3.46), the new free action may be written in a 4 x 4-matrix form analogous
to (3.47):

Ay = [t () AL F () (3.404)

where A3 is the same functional matrix as before in (3.78), except that it contains,
in addition to the pair field A,g, the density field 3,5 in the form

oy _ ([0 = £(=iV)] das — Tas () —Aas(x) -
A2h _< — A%s() T [0 + £(V)] dap T Ea6($)> d(x—a'), (3.405)

with ¥, and A,z being matrices in spin space.
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An important difference with respect to the earlier treatment is that ¥,z and
A,p are now nonfluctuating classical fields. They will be determined at the end of

the calculation by an optimization process. The new interaction ALY = Ay — A
reads explicitly

A = 55 [t v (x, 005 (%, s, )b, 1
,p

+ / drdt {i«pgzawﬁ + % (VsA5ata + ¢;Aaﬁ¢;)] . (3.406)

We now calculate the partition function of the action A = Aj™ + AN in
perturbation theory. To zeroth order, the quadratic terms produce the collective
action

Ao[A,X] = i%Tr log [iG 3y (x,2")] (3.407)

where the 4 x 4-matrix Ga 5 denotes the propagator which satisfies the functional
equation

[i0; — £E(—iV )] dup — Lap(x) —Ags() N
< — ALs() T [i0, + £(1V)] bap F zag(x)>GA~E($» a')=id(z—a’).(3.408)

To first order in perturbation theory we calculate the expectation value of the
interaction (3.42) using Wick’s theorem. First we have

<¢Zz (X7 t)Q/}E (X7 t)wﬂ (X7 t)% (Xu t)> - <1/); (X7 t)¢a (Xv t)) <1/)E (Xv t)% (Xv t))
+ <1/); (X7 t)¢ﬁ (Xv t)) <1/)Z’ (Xv t)% (Xv t))
+ <¢:¢ (X’ t)QpZ’ (X> t)) <w5 (X> t)wa (X> t)) (3409)

We now introduce the expectation values®

G250, t) = (WL DU5( D), G001 = (Us(x, a(x, 1)), (3410)
G2y 0) = (WL s (x ), G0, 0) = (W3(x Dtbalx, ). (3411)

Then we can rewrite the interaction as
(Anme) = (1/29) / Prdt (SaaSss £ SasSsa + AjuB s

— (1/29) | Padt (£250580s + AgaAh, + A% 2Ag, 3.412
8o Ba=Ba ap=p

(Aie) = (9/2) [ d*edt (GE.GF + GZyGa + CH1GA,

~ (1/2) / Padt (£2G,50s + G AL, + G2 Ag0). (3.413)

8As in Eq. (3.44), the hermitian adjoint AZ,(x) comprises transposition in the spin indices, i.e.,
Af () = [Ap ()]
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The total action is then
AA, Y] = AA, X + (g/2) / Prdt (GZ,G3, + GE,GE, + GAGA,
~(1/2) / Padt (2G5, s + GE AL, + G2 As). (3.414)

Now we observe that

5
SAL

5
0 s

1
Ao[A, X] = §G§6, Ao[A, Y] = G (3.415)

This shows that the first-order collective action
A, [A, 2] = Ao[A, 2] + <Amt> (3416)

is automatically extremal in the variational parameters ¥,5 and A,g, and that their
extremal values are

Eaﬁ = gG§ﬁ7 Aaﬁ = ch%,B (3417)

Moreover, if we insert the extremal solutions (3.417) into the first-order collective
action 4, [A, X, it becomes

{ cN— g SNA* A
A A Y] = j:§Tr log {ZGA}Z(QJ, x/)} —3 / dPrdt (—GL,Ghs + GRsGhy + GﬁaGﬁa),
(3.418)
or
' 2
.Al [A, 2] = :i:%Tl" log [ZGZ}Z(.%, .Z'/)} — ;/dSLL’dt (—ZWZM + Zagzga + AzaA,Ba)'
(3.419)

3.9.1 Superconducting Electrons

We now focus attention upon electrons of spin 1/2 where the interaction (3.420) is
simply®

Ay = g [ dadt i (007 6, 1y (x, )0 (x, ), (3.420)
and the Wick contractions (3.409) are

W}k (X’ t)@bj (X’ ?5)%(39 t)wT (X’ t)> = <w>Tk (X> t)wT (X’ t)> <% (Xa t)¢$(x> t))
* <7vZ)1>t (X7 t)qu)J, (Xu t)> <¢i (Xu t)¢T(X7 t))
+

*

9Note that g > 0 is the attractive case.
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In the absence of a magnetic field we expect that

Gﬁ(x, t)
G (x,t)

GA(x,1), Gy (x,t) = G (x,1), (3.422)
G™(x,t) = G} (x, 1), Gr(x,t) = GL(x,t) =0. (3.423)

Then the interaction (3.413) becomes
1 - _
(Aun) = 5(22 +]AP) — (2GFE + G2 A + GAAY). (3.424)

Now the action at the extremum (3.419) reads

AA, ] = Ao[A, 5] — é (52 + |A]D). (3.425)

If the interactions are strong and the attraction is not confined to a narrow layer
around the Fermi sphere, the present quantum field theory needs subtractions of
the same type as encountered before. We must add a mass counterterm to the
interaction (3.4006)

Adiv = —gG(XV% / dgxdt (dja'@ba + ?/JZ?/JZ) ’ (3426)

with a divergent integral G4V. Then all equations become finite if we replace the
inverse coupling constant g by the renormalized one gg.

Note that if we assume that ¥ vanishes identically, the extremum of the one-
loop action A;[A,X] gives the same result as the one obtained from the mean-
field collective quantum field action (3.8), which reads for the present d-function
attraction

AL[A, 0] = Ag[A, 0] — §|A|2. (3.427)

On the other hand, if we extremize the action (3.425) at A = 0, we find the extremum
from the expression

A1[0,%] = Ap[0, 3] — éz? (3.428)

The essential difference between the collective quantum field theory and the col-
lective classical field theory is only manifest at higher orders. In the collective
quantum field theory based on the Hubbard-Stratonovich transformation where a
functional integral remains over the fluctuating pair field A,g(x), there are higher-
order diagrams to be calculated with the help of the propagators of the collective
field. These are extremely complicated quantities, and this makes all higher dia-
grams formed with them practically impossible to integrate. Moreover, and most
importantly, they contain infinities which cannot be removed by counter terms.
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There exists so far no technique that would allow a renormalization of the field
theory based on the fluctuating collective field A,z(x).

In contrast to that, the higher-order diagrams in the present theory can all be
calculated with ordinary free-particle propagators G® and G* of Egs. (3.410) and
(3.411), using the interaction (3.420). Even that can become tedious for higher
orders in g. But all encountered infinities can be compensated by divergent counter
terms. These have all the same form as the terms which are already present in the
original action (3.398). They are either diagonal or off-diagonal mass terms which
are quadratic in the original fields, or their gradients, or they are interaction terms.

Moreover, there is a simple rule to find the higher terms of the theory [33].
One calculates the diagrams with only the four-particle interaction, and collects
the contributions to order ¢" in a term A4,[A,Y]. Then one replaces A,[A, 3| by
AuA — egA, > — g% and re-expands all results up to the order g", forming an
expression N e" A,[A, X]. Finally one sets € equal to 1/¢.1% If the result of these
operations up to order N is denoted by N A,[A, X], we arrive at the final action
by an expression like (3.425):

N

D EPHNSED Az—é@uw) (3.429)

Note that this action must be merely extremized, as any action in a classical treat-
ment. There are no more quantum fluctuations in the classical collective fields A, X.
At the extremum, the action (3.429) is directly the grand-canonical potential.

3.10 Strong-Coupling Limit of Pair Formation

Our goal is to understand the phenomena arising in a Fermi liquid at low tempera-
ture in an external magnetic field. In order to set up a theory at strong couplings,
we shall work in a four-dimensional “world crystal” discussed in the textbook [83].
The forth dimension represents the inverse temperature of the system. We shall
treat the electrons and holes with the help of relativistic fields. After the calculation
we can go back to the non-relativistic limit. In that limit, the Klein-Gordon wave

C2
function reduces to the Schrodinger field multiplied with a phase factor e %, just as
in Schrodinger’s original derivation of his time-displacement operator Hg = k2 /2m:

- kx 7-\/k2+'n2c2ct 2t kx . t
(IR TR it K it — i il (3.430)

The attraction between any two particles can be tuned as a function of an exter-
nal magnetic field. Ultimately it can be made so strong that the coupling constant
reaches the unitary limit of infinite s-wave scattering length by means of a so-called
Feshbach resonance. This phenomenon is discussed in detail in Subsection 9.2.8 of
the textbook [35] and more recently in the review [84]. At that point, the Cooper

10The alert reader will recognize here the so-called square-root trick of Chapter 5 in the textbook
Ref. [23].
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pairs which form in the weak-coupling limit at low temperature and make the system
a BCS superconductor, become so strongly bound that they behave like elementary
bosonic particles. These form a Bose-Einstein condensate (BEC). At low temper-
ature, the condensate behaves like a superconductor in which vortices can form
behaving like bosonic quasi-particles. We study what happens with this condensate
in the neighborhood of the unitarity limit.

By setting up strong-coupling equations for the fermions moving in a Bose-
Einstein condensate we find that in 24 dimensions they couple to the gas of boson
pairs encircling them, thus forming new fermionic quasi-particles. These can bind,
in their own right, to bosonic pairs which condense at low enough temperature
and form a new type of condensate. That condensation happens at a much higher
temperature than the first condensation process, so that it may be at the origin of
high-T,. superconductivity.

The problem of understanding the behavior of a Fermi gas as a function of
temperature has been investigated with reasonable success in a review paper by
Randeria and Taylor [27], which is discussed in great detail in [28]. The results are
summarized in Figure 3 of their paper which we reprint in Fig. 3.14. The abcissa
shows the inverse of the s-wave scattering length which is infinite at 1/kra = 0.
Near the origin, the figure has a weak-coupling regime where pairs form, and the
Fermi liquid is dominated by the physics of these Cooper pairs. The right-hand part
of the figure is denoted as “Normal Bose Liquid”.

Unpaired
fermions
0.4 8
Normal
Bose
= : liquid
Li Pseudpgap
&~ / i
0.2 : Superfluid
Normal T
Fermi Y J
liquid et .o,
oy 7.
_____ SEE
---- . i ! * - ®
92 -1 0 1 2
«~ BCS 1/kpa BEC —

FiGURE 3.14 Qualitative phase diagram of the BCS-BEC crossover as a function of tem-
perature T'/ep and coupling 1/kpa, where kp is the Fermi momentum and a the scat-
tering length. The picture shows schematically the evolution from the BCS limit with
large Cooper pairs to the BEC limit with tightly bound molecules. Unitarity (1/kra = 0)
corresponds to strongly interacting pairs with size comparable to k}_,l. The pair-formation
crossover scale T* diverges away from the transition temperature 7., below which a con-
densate exists and the system is superfluid, as the attraction increases. Reproduced from
Figure 3 of Randeria and Taylor in Ref. [27].
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In Ref. [85] it has been argued that their Randeria-Taylor-results should be im-
proved as follows. The region to the right of the vertical dashed line is still dominated
by strongly interacting fermions. In addressing the many-body problem at finite
temperature we can incorporate the relevant s-wave scattering physics via a “zero-
range” contact potential in the Hamiltonian for spinor wave functions, ¢, = ¢ (z)
for 0 = —1 and ¢, = ¢4(z) for o = +1, and start with

o = [ ar [ax[po - gulepl@nn @], G4

where © = (x,7), and § = 1/T is the inverse temperature. The kinetic energy of
fermions with mass m and chemical potential y is collected in

Ho = 3" 0L (2)[0r — V2/2m — plio(2). (3.432)

It will eventually be necessary to include, in addition to the two-body interaction,
also three-body interactions [61, 62].

Let an attractive interaction be parametrized by a positive coupling constant
g(A), where A = 75! represents the inverse range of the four-fermion interaction
(3.431). The distance ¢, is usually much smaller than the lattice spacing ¢ of the
mean separation between two atoms (£, < ). The bare coupling constant deter-
mines the gap size by the gap equation (3.268) or its renormalized version (3.271):

1 1 1 By 1 1 ( 1 By
g(A) \% 2Ek 2717 Jr \% K|<A 2Ek 2T €k

1
== —— tanh — — == —— tanh — — —), (3.433)

where Ejy denotes the quasipaticle energy, and the symbol 3, j<a contains the
phase-space integral plus the sum over the Matsubara frequencies w, = 27 T'n for
n = 0,£1,+2 ---. Let us go to the regime of large enough temperature where
we the system is in the nomal phase and the gap vanishes. Then we are dealing
with free fermions which will participate in the strong-coupling expansion, and the
unrenormalized coupling constant fulfills the equation

1 1 1 €k
— == — tanh —. 3.434
gA) V 1<|Z<A 2ex 2T ( )

If we now allow for scattering between the fermions with an s-wave scattering length
a, that satisfies the equation [compare with Eq. (3.271)]:

m 1 1 1 €x
— =+ = — tanh —. (3.435)
dma g(A) VvV 1<|Z<:A 2¢x 2T
In d = 3 dimension, this can be written as
4 k
a P Sy(T) — 1, (3.436)

mg(A) ~ 47k
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where

242
€Ep T t
Ss( / dt tanh [T e ] (3.437)

is the reduced temperature-dependent phase-space sum in (3.433). Although we
shall work eventally with a continuum model, we may adopt a “world-crystal” lattice
language and define an effective lattice spacing ¢ by setting the Fermi wave number
equal to

32 1/3
o o O g) . (3.438)
The so-called half-filling electron density is simply n ~ 1/ ~ k3./(37?). More-
over, we have introduced the dimensionless length parameter b = (okp/2 =

271(372)1/30y /¢ < 1 as the relative width of the electron density around the surface
of their Fermi sphere (its “thickness”). The definition of b ensures the normalization
S3(0) = 1. For low temperatures and small a, Eq. (3.433) reduces properly to its
well-known BCS expressions [72, 74]. In the opposite limit of strong-coupling where
1/kpa = 0, we arrive at the so-called unitary fermion gas.

In the weak-coupling region, one is confronted with spontaneous symmetry break-
ing and Cooper-pair formation in the Bardeen-Cooper-Schrieffer (BCS) model of
superconductivity. There the standard collective quantum field treatment is to in-
troduce C(z) = ¥, (2)Y(x) = A(z)e™@ and to express Eq. (3.431) in terms of
quadratic fermion fields. After integrating out the fermion fields one obtains the
collective quantum field action [72, 74]:

A[A", A]= %/05 dr [ dx {—%Trln (iG3)) + %} , (3.439)

where G 1! is the inverse operator of quadratic fermion fields, which is a functional of
A(x) and its spacetime derivatives. After performing a regularization of the coupling
strength via the experimental s-wave scattering length a in (3.433), we adopt the
approximation of a uniform static saddle point C(x) ~ (C(0)) = A that satisfies the
saddle-point condition §.4/6A = 0, as well as the fermion number N = —§A/JA.
Then the renormalized gap and number equations are obtained from (3.268) and
(3.267) [72, 74, 75]:

%:% ] [L_%] _Vzk:[l_—t h(%)] (3.440)

Here Ey = (/& + A? with & = e — p. In the weak-coupling limit where 1/kra —
—oo and the temperature is a small 7'/p < 1, the chemical potential is close to the
Fermi energy p ~ ep = h*k%/2m = h*(37%n)?/3 /2m and one obtains the BCS results
[75]: There the critical temperature is T, = 1.lep exp(—n/2kr|al), and the energy
gap is Ag = A(T = T,) = 1.761,. The Cooper-pair size &y, is much larger than
the lattice spacing &y ~ kz' exp(m/2kp|a|) > kp'. This implies that the Cooper
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pair C(z) = ¢ (x)y+(x) is a loosely bound pair of spin-up electron and spin-down
electron. In the domain of the infrared-stable fixed point, the Cooper-pair size &pair
sets the physical scale for scaling laws. The critical temperature T, is scaled by the
gap value Ag as A(T)/Ag = 1.74 (1 = T/T,)'/2.

As the four-fermion attractive coupling g or 1/kra increases, it is expected that
the Cooper pairs become tightly bound states of bosons. They form a superfluid
Bose liquid, provided the temperature 7" is less than the crossover temperature 7™
of Cooper-pair formation (7" < T*). Otherwise, the Cooper pairs dissociate into two
fermions and form a normal Fermi liquid of unpaired fermions (7" > T*). It was
qualitatively shown that the crossover temperature 7™ of Cooper-pair formations
diverges away from the transition temperature 7T, as the four-fermion attraction
increases. They approach each other in the weak-coupling 1/kpa — —oo regime of
BCS [74].

The crossover from the weak-coupling BCS pairing to strong-coupling BEC of
tightly-bound pairs, as a function of the attractive interaction (3.431), has long
been of interest to theoretical physicists. For that it is important to study the
pair-formation crossover temperature 7, and the transition temperature 7,, as well
as the phase diagram of T'/ep versus 1/kpa, in particular the infrared (IR) scaling
domain 1/kpa — —oo for the BCS-limit and the ultra-violate (UV) scaling domain
1/kra — 0% in the unitarity limit.

Inspired by strong-coupling quantum field theories [76, 77], we calculate the
two-point Green functions of the composite boson and fermion fields. We use a
strong-coupling expansion to diagonalize the Hamiltonian into a bilinear form of the
composite fields. This produces composite-particle spectra in the strong-coupling
phase. We find that the Fermi liquid of composite fermions coexists with the Bose
liquid of composite bosons in the pseudogap region (T, < T < T*) as well as in the
BEC region (T' < T.). The lattice representation of the Hamiltonian (3.431), for
one-electron per cubic lattice site (half filling), reads

BH=BY" ()l (i) = V2/2me® — e (i) — 9B 3 ((YL ()] (D) (1) (). (3.441)
io="1,1 i
Here each fermion field is defined at a lattice site “i” as (i) = ¥+(z) or ¢ (i) =
¥, (x), the parameter d is the spatial dimension, and the index i runs over all lattice
sites. The fermion field 9, has a length dimension [(~%?], and the four-fermion
coupling ¢ has a dimension [¢?~!]. The Laplace operator V? is defined in d spacetime
dimensions as

V() = 3 [Woli ) + i = 0)] = 206(i) = 2| 3 cos(kl) — 1]¢ (k)
1 1
~ K200, (k). (3.442)

The vectors ¢ for | = 1,...,d indicate the orientated lattice space vectors to the
nearest neighbors, and v, (k) are the Fourier components of v, (i) in momentum-
space. In the last line we assume that k%¢> < 1. The chemical potential u controls
the density of free fermions with a dispersion ¢, = k*/2m.
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Following the framework of chiral gauge field theories [77], we calculate the ex-
pansion in the strong-coupling limit. Here we relabel 3¢ — 3 and 2mf? — 2m,
so the lattice spacing ¢ is effectively set equal to unity; this rescales 1, (i) —
(Bg)Y*, (i) and ¥i(i) — (Bg)Y*pl(i). The Hamiltonian (3.441) can there-
fore be written as SH = >, [hHo(i) + Hine(7)], where the hopping parameter is
h=3/(8g)"/?, and

i) = X M= T OV i), (3413
Hali) = — 0N ). (3.44)
The partition function is given by
zZ = 1L, / diy (1)t (i) exp(—BH), (3.445)
(o) = 7ML [ dug(i)agl()(- ) exp(—BH). (3.446)

Fermion fields ¢+ and 1, are one-component Grassman variables, ¥, (i)Y, (j) =

—%'(j)%(i) and
/d¢0(i)w0/ (]) = 50,0/51']'7 /d¢l(2)¢l/ (]) = 5070/51']', (3447)

and all others vanish.

In the strong-coupling limit h — 0 for ¢ — oo and finite T', the kinetic terms
(3.443) are neglected, and the partition function (3.445) becomes the one-site inte-
gral at the spatial point “2”

II; /u /n exp (Y1) (1) (D)r (1)) = —TL /wm(z’)fwi) = (1Y, (3.448)

where N is the total number of lattice sites, [;; = f[dwi(i)dzm(i)] and [;; =

S/ [dwl(i)dm(z’)]. The strong-coupling expansion can now be performed in powers
of the hopping parameter h, so that it is a hopping expansion.

3.11 Composite Bosons

In the strong-coupling phase, we first consider a composite bosonic pair field C(z) =
Y (z)Pr(z). We want to study its two-point function

G(x) = (W (0)¢1((0), ¥} (2)y(2)) = (€(0),C(x)). (3.449)

Here the fermion fields are not re-scaled by (3¢)/4, and x stands for the point at

the nearest lattice site labeled by “2”. The leading strong-coupling approximation
to (3.449) is

B 5@ (x)

G(x) By

(3.450)
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The first correction is obtained by using the one-site partition function Z(i) and the
integral

1 . N N g
i) = 5o [, [ ir@uie 0o,

= B2 (i 0) Y by (5. 0) m WY (i Oy (i5.0),  (3.451)
2 o 2

where the non-trivial result needs Qﬂ(z) and ¢I(Z) fields in the hopping expansion
of el and 5 V(i3 0) = > {wa(i +0) + 1, (i — é)} . When integrating over
fields 14 (i) at the site “4” in the expansion of (3.449), the first corrected (3.449)
reads:

d

G(JJ) — M + i (ﬁ
Bg By \2m

Here 6 (z) is a spatial é-function and G™(z + /) is the Green function (3.449)
without integration over the fields 1, at the neighbor site x. Note that the nontrivial
contributions come only from kinetic hopping terms oc (h/2m)* = (1/89)(3/2m)>.
The chemical potential term g (1)1, (i) in the Hamiltonian H, (3.443) does not
contribute to the hopping.

Replacing G™ (z4/) by G(z+() converts Eq. (3.452) into a recursion relation for
G(z), which actually takes into account all high-hopping corrections in the strong-
coupling expansion. Going to momentum space we obtain

) Y+ O+ -] (3452)

G(q) = %g%—%(%) G(q)%cos(qé). (3.453)

This equation is solved by

(2m/Be)?

G = > ;
@ 40-2 %, sin?(ql/2) + M3

(3.454)

where we have returned to the original lattice spacing ¢ by replacing back 5 — B3
and 2m — 2mf?. This implies that in the strong-coupling effective Hamiltonian,
the two-fermion field C = 194 possesses a massive composite boson mode, i.e., a
bosonic bound state with a propagator

(¢%/2Mp) + Mp/2  ¢*+ M3’

9G(q) = (¢l < 1). (3.455)

This has a pole at the mass Mp with a residue gR%:

Mg = [g(2m)*(¢/B) = 2d] 7> >0, Ry = (2m/Bl)” (3.456)
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The condition M3 = 0 determines a critical curve that satisfies in d = 3 dimensions

13
g2m2l

(3.457)

The strong-coupling effective Hamiltonian of the composite boson field C associated
with the propagator (3.455) can be written as

BHE = 52 () Z5'C(i)| = V2/2Mpl* — pp|C(i), (3.458)

where up = —Mp/2 is the chemical potential and Zp = gR%/2Mp the wave-
function renormalization constant. As long as Zp is finite, we renormalize the ele-
mentary fermion field and the composite boson field as

Y — (gR%)V%), and C — (2Mp)'%C. (3.459)

Now the composite boson field C behaves like a quasi particle in Eq. (3.458). Con-
trary to a loosely-packed bound state of two electrons in a Cooper pair formed at
a small s-wave scattering length (kra)™! < 0 in the weak-coupling region, this is a
tightly-packed bound pair, i.e., the proper bound state of a Feshbach resonance for
(kpa)~' > 0 in the strong-coupling region.

At weak coupling, the bound states are composed of two constituent fermions
Y (k1) and (k) around the Fermi surface, ky = ko = kp and ky — k) = ¢ <
kr. The form factor or wave-function renormalization Zp oc ¢T? (3.455) relates
to the bound-state size &hoson. As gT? — 0, Zp decreases and C(z) decribes a
loosely-bound Cooper pair. The vanishing wave function renormalization constant
indicates the fact that the bosonic bound state pole dissolves into two fermionic
constituent cuts [78]. At this dissociation scale, i.e., at the crossover temperature
T™, the phase transition takes place which leads to a normal Fermi liquid of unpaired
fermions. Limited by the validity of strong-coupling expansion, we have not been
able to quantitatively obtain the dissociation scale T™ as it results from the inverse
scattering length 1/a. At the unitary point 1/kpa = 0, we can estimate the crossover
temperature as T* ~ eg/log(ep/er)*? [74, 27], and the binding energy ep from

(3.290) as
VIFZ—
BN AT (3.460)
e VI+HEP—p
Inserting here the crossover parameter (i = ug/Mp = —1/2, obtained from taking

Mp as the mass gap at the unitary point 1/kpa=0, we find eg/ep = 5.24 and
T*/er = 4.86.

Note that the mass term M3CCT(x) changes its sign from M3 > 0 to M3 < 0
and the pole Mp in (3.455) becomes imaginary, implying the second-order phase
transition from the symmetric phase to the condensed phase [77]. The vanishing
boson mass M3 = 0 gives rise to the critical curve (3.457), which can also be
written as

T, T"(Tc)l 4mh®b 1] (3.461)

83( ) akF

€r €r
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where T" = T*(T, = T*) is the temperature at the unitarity point 1/kra = 0. The
prefactor is a solution of the following equation:

TH(TC) 2\—1 383(TC)
e — (3p%)7 13 : 3.462
P ) (3.462)
Indeed, by inserting Egs. (3.436) and (3.438) into Eq. (3.461), we obtain
2 _m 4ma 3 _m | kra (T) 3
ep 4mag(AN)2m2lep  4ma|4Anh3b 5 2m2lep
3kpSs(T, Ah’b 1
r 3(3 ) |y d=hb 1 (3.463)
2m(4m)2h°b lep S3(Te) kra

Going here the unitary point 1/kra = 0 and returning to physical dimension, we
verify (3.462).

We now calculate the phase diagram numerically for the Fermi layer thickness
parameters b = 0.02, 0.03 corresponding to the ratios ¢5/¢ = 0.013, 0.02. We find
T /ep ~ 0.31, 0.2 and plot the result of (3.461) in Fig. 3.15. In contrast to the prac-
tically horizontal phase boundary estimated by Randeria and Taylor in their Fig. 3
of Ref. [27] (reprinted in Fig. 3.14), we obtain a decreasing critical temperature 7,
as a function of 1/kra > 0. At an “infinite” coupling strength we find T, = 0 where
1/kpa — Ss(0)/47h*b = 1/47h*b. The limit T, — 0 at g. — oo is taken while
keeping the product 7T.g. constant, so that the hopping parameter h oc 1/(Tg)'/?
is a small number. This means that the composite pairs are very massive at this
“infinite” coupling point, and their kinetic energies are negligible. Here we have a
quantum phase transition. Viewing the four-fermion interaction as an attractive po-
tential, this “infinite”-coupling point indicates the most tightly bound state located
at the lowest energy level of the potential, with a scattering length a that is of the
order of —2mfly. If the attraction comes from a d-function, the length parameters
a and b vanish, while 1/kra — o0, recovering the nearly horizontal critical line
presented in Fig. 3.14. Note that Eq. (3.461) is inapplicable in the weak-coupling
regime of BCS where 1/krpa < 0. It holds only in the strong-coupling regime with
1/kpa > 0. There we find a superfluid phase with tightly bound composite bosons
which have undergone a Bose-Einstein condensation (BEC). This means that the
pair field C(z) = |A(2)|e?® has developed a nonzero vacuum expectation value in
the same way as it happened in the BCS weak-coupling regime.

Analogously, we consider the composite field of an electron and a hole, i.e., the
plasmon field P(x) = 1@(@1/4(36) The same calculations are applied for the two-
point Green function Gp(z) = (P(0), P'(x)). In the lowest nontrivial order of a
strong-coupling expansion, we obtain the same result as in (3.455) and (3.456), indi-
cating a tightly bound state of a plasmon field. Its Hamiltonian has the same form as
in Eq. (3.458), only that C(i) has been replaced by P (7). This is not a surprise since
the pair field C(z) and the plasmon P(x) field appear in the same way in the strongly
interacting Hamiltonian (3.441). However, the pair field C(x) is a charged field
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FIGURE 3.15 Qualitative phase diagram in the unitarity limit. Solving Eq. (3.438),
the transition temperature T./ep is plotted as a function of 1/krpa > 0 for the selected

parameters b = 0.02,0.03. The “infinite”-coupling points are shown to lie at one of the
corresponding zeros (1/kra)r.—o = 4.0,2.7. These are points of quantum phase transition.
Above the critical line is a normal liquid consisting of massive composite bosons and
fermions. Below the critical line lies a superfluid phase with a new type of BEC, that
involves composite massive fermions.

whereas the plasmon field P(x) is neutral, so that they can be different up to a rel-
ative phase 6(z). We select the relative phase such that (|P(z)|) = (|C(z)|) = A(z).

In the weak-coupling regime 1/kra — —oo we go into the super-fluid phase
of BCS, where the ground state is parametrized by the minimum of the vacuum
expectation value. Here the Cooper field C(x) has the expectation value (C(x)) =
A # 0, rather than forming a condensate of the plasmon field P(z). This makes
the difference between the charged Cooper pair and the neutral plasmon pair of an
electron and a hole, which does not contribute to low-temperature superconductivity
in the BCS-limit.

In the strong-coupling limit, we also consider the two-point Green function of

the Cooper field C(z) with a plasmon field P(z):

Gum(x) = (P(0),CM(x)) = (¥](0)4(0)ef (2)4] (). (3.464)

From it we shall see their correlations and mixing. The same calculations up to the
lowest nontrivial order of the strong-coupling expansion lead to

1 /8Y) . )
G = — | — G O+ G —0). 3.465
) = 55 () ZlontrdvGu-0]. @)
Going to Fourier space, this is solved to be identically vanishing, as one field is
charged while the other is neutral.
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3.12 Composite Fermions

To exhibit the presence of composite fermions in the strong-coupling effective Hamil-
tonian H of Eqgs. (3.443) and (3.444), we use the Cooper field C(z) = ¢ (z)¢4(x)
and calculate the two-point Green functions:

Sei(x) = (4(0), ¥i(x)), (3.466)
Su () = (14(0), CT () (2)) = (4(0), [] ()] ()] ¢y (), (3.467)
Stz (@) = (@](0)C(0), vl(x)) = (] (0) [, (0)eb(0)), i (2)), (3.468)
S () = (] (0)C(0), CT () () = (1] (0)[1b, (0)4 (0)], [d ()b} (2)]ab (). (3.469)

Here the fermion fields are not re-scaled by (8g)'/*. Using the following fermionic
integrals:

() = / / e H )i () h3Zwm;é>m<z‘;é>w1<z';é),<3-470>

Wyl = ()1, (i )] (i) e~ o)~ Hine () hzsz x;0), (3.471)

()L (0)y (d)] (d) e Po@—Him ) — (3.472)

rl]) = o

we obtain, by analogy with (3.449)—(3.452), for the composite-fermion Green func-
tions (3.466)—(3.469) the recursion relations

SLL(QJ) = ﬂig (%) Z[SML(.I +é) + SML(x — E)], (3473)
l
() (o R R
SML($) — J B; ) + Big (%) Z[SLL(I + E) + SLL<I‘ — f)], (3474)
l
Sum(z) = Big (%) S [Shi(@+8) + Skl = D). (3.475)

2

Transforming these three two-point functions to momentum space Sx(p) =
S, e P*Sy(z) where X stands for the symbol-pairs LL, ML, MM, respectively,
we obtain the recursion relations

Spn(p) = ﬁig (%) 23" cos(pl)| S (). (3.476)
y4

Sun(p) = ﬁlg ;g < b ) [QZcos pl)|S11(p), (3.477)

Sy (p) ﬁlg ( b ) [QZCOS pl) }S L(p). (3.478)
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They are solved by

Sunlp) = 1/59) | (3.479)

1~ (1/89)2(8/2m)*[2 5; cos(pl)]

From this Sp.(p) is found via (3.476) and Sy u(p) via (3.478). By analogy with
Eqgs. (3.454) and (3.455) for the composite boson, we find

S(p) = Rg'Spr(p) +2R5"Sur(p) + R’ Sum(p)
2

= = ,
40-2y;sin?(pl/2) + M2 p*+ Mg

(pl<1),  (3.480)

where Rp and M3 = M} are given by (3.456) in the lowest order calculation.
We have returned to the original lattice spacing ¢ by re-substituting 3 — 53 and
2m — 2ml*. Equation (3.480) represents a composite fermion consisting of the
elementary fermion ¢4 and the three-fermion state C (x)wi(:r),

Uy (x) = Ry " (x) + Rp*°C(x)] (x) = g4 (x) + g*/C(a)0f (x).  (3.481)

The three-fermion state C (:E)@DI(:E) is made of a hole @DI(:E) that is “dressed” by a
cloud of Cooper pairs. The associated two-point Green function satisfies

(01(0), Wh(z)) = (04(0), 9 (2)) + (4 (0), CF(2)ehy ()
+ {C(0)¥[(0), vI(x)) + (C(0)w](0),CT(x)¥, (x)), (3.482)

and its momentum transform is given by Eq. (3.480). A similar result holds for the
spin-down composite fermion field ¥, (z) = R;lmzm(x) + R;’/QC(QJ)@DH.%).

Defining the quantity ¢S(p) as the propagator of the composite fermion
SFermion(P), the composite fermion can be described by the strong-coupling effec-
tive Hamiltonian:

BHE = B Y ()Zp' W) — V2 /2Mpl® — pp| W, (i) (3.483)
t,o="{

Its chemical potential is up = —Mp/2 and its wave function renormalization con-
stant is Zp = g/Mp. Following the renormalization (3.459) of elementary fermion
fields, we renormalize the composite fermion field Wy | = (Zp)~1/2W, |, which be-
haves like a quasi-particle in Eq. (3.483), analogously to the composite boson (3.458).
The negatively charged (e) three-fermion state is a combination of a twice negatively
charged (2e) Cooper field C(x) = ¢ (z)y4 of two electrons with a once positively
charged hole in ¢ (x). Similarly, positively charged (—e) composite fermion fields
\Iﬂ (x) or \Ili(x) are composed of two-hole states CW)hﬁi combined with a single hole

state wi or QbI Suppose that two constituent electrons v, (k) and 14(k2) of the
Cooper pair field are combined with a constituent hole v (k3) lying close to the
Fermi surface k1 =~ ko ~ k3 =~ kp, then the Cooper bound state ¢ = ky — k1 < kp
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and the three-fermion bound state p = ky — ko + k3 = k3 =~ kp lie also around the
Fermi surface. As a result, the composite fermion bound states Wy | live around the
Fermi surface as well.

Due to the Cooper field C(x) and the plasmon field P(x) appearing in an equiva-
lent way in the interacting Hamiltonian (3.441), the same results (3.480)—(3.483) are
obtained for the case of a plasmon field P(z) = @bl(l")?%(fﬂ) combined with another
electron or hole. The associated composite fermion field is given by

VP (z) = Rp'*01(2) + R *Pla)y(2) = g/ r(x) + g Pla)iy (), (3.484)
whose two-point Green function reads:

(WF(0), 95T (@)) = (4(0).9}(x)) + (4(0), P (x))
+ (PY(0), $](2)) + (Pyy(0), PTY[(2)).  (3.485)

For the spin-down field we find similarly WP(z) = R5"*0,(2) + R P(a)y(2).
The composite fermions can be represented in the strong-coupling effective Hamil-
tonian of Eq. (3.483) with W, (i) — U?(i), following the renormalization (3.459) of
elementary fermion fields, and a renormalization \IJ%7 = (Z r) Y Z\Iff’ ;- The charged
three-fermion states Py, | or PTw% | are composed of one electron or one hole com-
bined with a neutral plasmon field P(z) = wi(x)zm(x) or Pi(z) = 1/)$(x)1/)¢(x) of
an electron and a hole. The composite fermion fields \I/? (x) are composed of a
three-fermion state Py that consists of a plasmon in combination with a further
elementary fermion 4 or ;.

The same thing is true for its charge-conjugate state. Suppose that a constituent
electron (k) and a hole 1/)1(]62) are combined with another constituent electron
Y1 (ks), and suppose that all momenta lie around the Fermi surface k; =~ ko =~ k3 =~
kr. Let the plasmon have the momentum ¢ = ks — k1 < kg, and the composite
fermion bound state have momenta p = ki — ko + k3 =~ k3 =~ kp near the Fermi
surface. We can consider a three-fermion state C (@1/)1(@ in Eq. (3.481). It can be
written as

C(x)](z) = ¥y () (2)0] (x) = =] ()b (2)Yy () = —P(z)y(z).  (3.486)

This implies that the three-fermion state C (x)@/)l(x) is the same as the three-fermion
state P(x); (x) up to a definite phase factor ™. As a result, the composite fermion
field U, (z) in (3.481) is the same as the composite fermion W7 (z) in (3.484), up to
a definite phase factor.

3.13 Conclusion and Remarks

In the weak-coupling limit, as the running energy scale becomes smaller correspond-
ing to an increase of the lattice spacing ¢, the limit 1/kra — —oo produces an
IR-stable fixed point. Its scaling domain is described by an effective Hamiltonian of
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BCS physics. The temperature region T' ~ T, is characterized by the energy scale
Ag = A(T.). In elementary particle physics, this is analogous to the IR-stable fixed
point and scaling domain of an effective Lagrangian of the Standard Model (SM).
The physics at this electroweak scale is recapitulated in Ref. [86, 71].

As the running energy scale becomes larger, which happens when the lattice spac-
ing ¢ becomes smaller, the coupling g becomes stronger and 1/kra becomes finite,
crossing over to the region where the Cooper pairs are getting tightly bound. Their
size becomes smaller and smaller and the width of the Feshbach resonance becomes
sharper and sharper. At negative 1/krpa — 0, the fermion system approaches the
unitarity limit, where the Feshbach resonance turns into a tightly bound composite
boson which behaves like an elementary scalar particle.

In Ref. [87], it is shown that at zero temperature and for d > 2, the unitarity
limit of negative 1/kpa — 0~ and positive 1/krpa — 0" represents an UV-stable
fixed point of large coupling. The couplings ¢ > gyv and g < gyy approach guv, as
the running energy scale becomes larger (which happens when the lattice spacing ¢
becomes smaller). In the scaling domain of this UV-stable fixed point in the unitar-
ity limit 1/kpa — 0%, where T* > T — T., an effective Hamiltonian of composite
bosons and fermions is realized with characteristic scales Mg (7). These consider-
ations apply to the dimension d = 2 + € > 0 case. In elementary particle physics,
this is analogous to the fixed point in the UV-regime with its scaling domain, where
an effective Lagrangian of composite particles is realized with the characteristic
scale probably in TeV range. The effective Lagrangian preservers SM chiral gauge
symmetries and composite particles are made of SM elementary fermions [89].

We have shown here that the effective Hamiltonians (3.458) and (3.483) exist
for composite bosons and fermions if 1/kra > 0 at different values of temperature
T. In the first regime T € (T*,T.), one finds a mixed liquid of composite bosons
and fermions with the pseudogap Mp (7). It is expected to dissolve to a normal
unpaired Fermi gas at the crossover temperature 7. These composite quasi particles
are either charged or neutral. They behave like superfluids up to a relatively high
crossover temperature 7*. In a second regime T < T, the superfluid phase of
composite bosons undergoes BEC and one finds in the ground state the coexistence of
BEC and semi-degenerate fermions ¥4 (z) and ¥ (z). The latter couple to the BEC
background to form massive quasi-particles of fermion type, moreover they form
tightly bound states W4 W or ‘I@\If 1, which are new bosonic quasi-particles producing
a new condensate of the Bose-Einstein type. In both cases, whenever the Coulomb
repulsion between electrons can be compensated by “phonons” in an analogous
way to either composite bosons via a Feshbach resonance, or new bosonic quasi-
particles via a composite-fermion pair state, this would result in superconductivity
and superfluity at high temperature T, < O(er). The scale of that is the result
of a large coherent mass gap Mp p(T'), being much larger than the BCS gap. The
coherent supercurrents consist of composite fermions and bosons. These features,
which we have discussed for 1/kpa > 0, are expected to be also true in 1/kra <
0, only with a much smaller scale Mpp(T). Due to the presence of composite
fermions in addition to composite bosons, we expect a further suppression of the low-
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energy spectral weight for single-particle excitations and for the material following a
harder equation of state. Its observable consequences include a further T-dependent
suppression of heat capacity and gap-like dispersion in the density-of-states and spin
susceptibility. Moreover, we discuss the quantum critical point and speculate upon
the phase of complex quasi-particles involved. It is known that the limit 1/kpa < 0
produces an IR-stable fixed point, and its scaling domain is described by an effective
Hamiltonian of BCS physics with the gap scale Ag = A(T,) in T ~ T, S T*. This is
analogous to the IR-stable fixed point and scaling domain of an effective Lagrangian
of the Standard Model (SM), which contains up to the electroweak scale all relevant
fields of elementary particle physics [71, 86].

The unitarity limit 1/kra — 0F representing a scale invariant point [88] was
formulated in a renormalization group framework [87], implying an UV-stable fixed
point of large coupling. The couplings g > gyv and g < gyv approach gyy, as the
running energy scale becomes larger. In the scaling domain of this UV-stabe fixed
point 1/kpa — 0% and T — T, an effective Hamiltonian of composite bosons and
fermions is realized with a characteristic scale

T—Te[" (2)"” ;

T (3r2)1/d kp, TZT!, (3.487)
where v = 1 is the critical exponent derived from the S-function which determines
the scaling laws. Equation (3.487) shows that the relevant cutoff are the Fermi
momentum kr and the physical correlation length £ Mg}F. The last characterizes
the size of composite particles via their form factor Zp p oc Mz’ (3.458) and (3.483).
This domain should be better explored experimentally. The analogy was discussed
in elementary particle physics with anticipations of the UV-scaling domain at TeV
scales and an effective Lagrangian of composite particles made by SM elementary
fermions including those of Majorana type [89].

MB,F(T) =

Appendix 3A Auxiliary Strong-Coupling Calculations

Here we present the following one-site functional integrals over fermion fields that
are useful for obtaining the recursion relations of two-point Green functions of com-
posite boson and fermion fields. The integral of one field ¢4 (i) at the point “/” is

defined as,
< — / / —h'Ho( )—BHint (i ) (3A.1)

where [ = f[dipi(z)dwi(z)] and fn = f[dwT(z)dwT(i)]. To have a non-vanishing

integral [, it needs a 1Z)T(x)—ﬁeld in the expansion of e*m{g(x),

M/ /wT Dl (i) m®,

= _—ZwT i; 0) / g0 (3A.2)

ave

() =
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where Y23 4135 0) = %2 [ (5, ) + $i(i, —0)] and

M) = L 3A.3
Jo 0 Aoe® - -

using Eq. (3. . e integral [., needs to have 1) an 1) fields in expansion
ing Eq. (3.448). The integral [, needs to have (i) and ¥[(¢) fields i i

of e~hH5(),

ave ave ave

(@) = ZwT DMUCEISLLLS ) [ el
7

Wyl 0w (i O] (33 0), (3A.4)
i

Q

where the three fields wi, Y, and ¢I are approximately at the same point ¢ 4 ? for
the lowest non-trivial contribution.

The integral of two fields (i) (i) at “2” is defined as
(D), (1)) = —/ / Up(0)py (i)e PO FHm D), (3A.5)

To have a non-trivial result, it needs 1@(2) and 1/@( i) fields in the expansion of
¢~ hHo (i),

(@) = 1Y (i)Y i) m 02 3 [ Dy (12D, (3A.6)
l 1

‘

The integral of three fields at the site “i” is defined as

RE OO0 R

(Wl ()] )

- m 0 [ [ er@ui@u il @e 0o

ave

= hzww;é), (3A.7)
¢
where a 1(7) field comes from the expansion of e~ hHG (@),
The integral of the four fermion fields at site “” reads:

()WL), (0] (i) Mo~ Him = 1. (3A.8)

(r ()0l (@), (D)) (1) = le
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Appendix 3B Propagator of the Bilocal Pair Field
Consider the Bethe-Salpeter equation (3.23) with a potential AV instead of V'
I = —iAVGoGol'. (3B.1)

Take this as an eigenvalue problem in )\ at fixed energy-momentum q = (¢°, q)=
(E,q) of the bound states. Let I',(P|q) be all solutions, with eigenvalues A, (q).
Then the convenient normalization of I',, is:

= éﬁf L(Pla)Go (34 P) Go (L= P)Tw(Pla) = b (3B2)

If all solutions are known, there is a corresponding completeness relation (the sum
may comprise an integral over a continuous part of the spectrum)

i3 G ( + P) Gy <— _ P> T, (Plg)TH(P'lq) = (27)'@(P — P').  (3B.3)

This completeness relation makes the object given in (3.37) the correct propagator
of A. In order to see this, write the free A action Ay[ATA] as

1 1
= — T _—
Az = A ( S+ iGo x GO) A, (3B.4)

where we have used \V instead of V. The propagator of A would have to satisfy

1
<W +iGo G0> N (3B.5)

Performing this calculation on (3.29), one has indeed for I';, and A,, by virtue of
(3B.1), the equation

1 I, FT
(WJMGOXGO) { DTG )}
F F +ZG(]><GOF FT
— AV
= @/\Z N = ()

~Aad) g
_ )\— . 1
Z)\; N /\n(q) ( ZGO X GOFnFn)

= (—z’ZGO X Gornr;> =i (3B.6)

Note that the expansion of the propagator in powers of \, namely

AN — zzk: (zn: ( A:(q)> ran) , (3B.7)
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corresponds to the graphical sum over one, two, three, etc. exchanges of the potential
AV. For n = 1 this is immediately obvious due to (3B.1):

. A
' ; An(Q)

For n = 2 one can rewrite, using the orthogonality relation,

Y
VDY S @V G x Gol', Il = iAV. (3B.8)

A A
. - T — T , -I-l _ '
zan < An(q)> Faln=> 7 TnhGo X Golw I 3=s =AVGo x GoAV, (3B.9)

nn’

which displays the exchange of two AV terms with particles propagating in between.
The same procedure applies at any order in A. Thus the propagator has the expan-
sion

1
AAT = i\V —iAV Gy x GoiAV + .. .. (3B.10)
If the potential is instantaneous, the intermediate [ dP,/2m can be performed re-
placing
i

Gox Go = TR Pl

(3B.11)

where

Eo(Plq) :f(%—i—P) +¢& (% —P)

is the free particle energy which may be considered as the eigenvalue of an operator
Hy. In this case the expansion (3B.10) reads

AN = ()\V + AV AV + > P Tt (3B.12)
B E — H, ) T E—Hy—\V' ‘
We see it related to the resolvent of the complete Hamiltonian as
1
AN =i A\V(RAV + 1), (3B.13)
where
1 bn)
= = n B.14
1 E—Hy—\V ;E—En7 3 )

with 1, being the Schrodinger amplitudes in standard normalization. We can now
easily determine the normalization factor N in the connection between I',, and the
Schrodinger amplitude 1),,. In the instantaneous case, Eq. (3B.2) gives

d3P 1
/(Qﬂ)grl(PM)E — HOan(PIq) = Opyy - (3B.15)
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Inserting 1 from (3.29) renders the orthogonality relation

1 [ d3P
57 | (g A = Ho)u (Pla) = b (3B.16)
But since
(B — Ho)y = AV, (3B.17)

the orthogonality relation reads also

L[ Pl AV, (Plg) =5 (3B.1)
N2 )yt AT (IO = B |
For wave functions 1, in standard normalization, the integral expresses the differ-
ential

dE

A—.

dA
For a typical calculation of a resolvent, the reader is referred to Schwinger’s treat-
ment of the Coulomb problem [60]. His result may directly be used for a propagator
of electron hole pairs bound to excitons.

Appendix 3C Fluctuations Around the Composite Field

Here we show that the quantum mechanical fluctuations around the classical equa-
tions of motion

Az, y) = V(z —y)(x)Y(y) (3C.1)

are quite simple to calculate. This will be compared with the collective plasmon
field in equation

p(z) = / dyV (z, )0 () (y). (3C.2)

For this let us compare the Green functions of A(z,y) [or ¢(z)] or with those of
the composite operators on the right-hand side of Egs. (3C.1) or (3C.2). The Green
functions of A [or ¢] are generated by adding to the original actions (3.3) [or (2.4)],
respectivly, the external currents 1/2 [ dedy(A(y, x)I1(z,y)+c.c.) [or [ dx o(z)I(z)]
to the final actions (3.8) [or (2.12)], respectively, and by forming functional deriva-
tives 0/0K [or 0/dI]. The Green functions of the composite operators ¥ (z)y(y) [or
YT (x) ()], on the other hand, are obtained by adding to the original actions (3.3)
[or (2.4)] the source terms

%/dz/dy V(z —y)y(x)e(y) K (z,y) + c.c. (3C.3)
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[z ([ ayv @ ppiwm) 1) ), (304

and by forming functional derivatives 0/0K [or §/dI]. To do this most simply we
observe that the source K can be included in the final actions by replacing in (3.8)

A(z,y) — A'(z,y) = Az, y) — K(2,y), (3C.5)

[or in (2.12)

o(z) = /dm 1)V (7). (3C.6)

If one now shifts the functional integrations to the new translated variables and
drops the irrelevant superscript “prime”, the combined action can be rewritten as

* _ 1 c1—1 l / |2 1
A[A* A = :l:QTr log (ZGA ) +3 /d:z:d:z: |A(x, 2" V)
+ z/dxdx'jT(x)GA(x z')j(a") ! (3C.7)
2 ’ V(z,z')

+ %/dmdm' {A(y,x)KT(x, y) + h.c.} + %/dwdaﬂK(m, )2V (z, 2,
[or
Alp] = £iTr log(iG ") +1/dxdx’<,0 x)V’l(x,x’)go(x’)+i/ drvdz'n'(z)G ,(z, 2" )n(z)
—i—/dxcp /dxdx[ x)V(x, 2" )I(x') ]. (3C.8)
In this form the actions display clearly the fact that derivatives with respect to
the sources K or I coincide exactly, except for all possible insertions of the direct

interaction V. For example, the propagators of the plasmon field ¢(z) and of the
composite operator [ dyV (z,y)yT(y)y(y) are related by

-, , §s@z o , 5@z
p(z)p(z') = TSI ) Vi (x,2) — m (3C.9)
=V i(a,a) + O ([ gV )0 @) ([ dyviay @) @)ee)) ),

where T is the time-ordering operator. Similarly, one finds for the pair fields:

+ (1T (V' 2)e(2)(2)) (V' )e (w)vf(y)]0). (3C.10)
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Note that the latter relation is manifestly displayed in the representation (3B.10) of
the propagator A. Since

AA = VGOV,
one has from (3C.10)
OV () (T V)]0) = V GOV, (3C.11)

which is certainly true, since G is the full four-point Green function. In the equal-
time situation in the presence of an instantaneous potential, G is replaced by the
resolvent R.
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Men freely believe what they desire.
Jurius CAEsAR (100 B.C.—44 B.C.)

4
Superfluid *He

The explanation of the phenomenon of superconductivity by Bardeen, Cooper, and
Schrieffer in 1957 [1], and a little later by Bogoliubov and his school [2], prompted
a search for similar phenomena in other Fermi systems, such as fermionic nuclei [3]
and, in particular, liquid *He [4]. While nuclear forces did, in principle, allow a
direct application of the BCS formalism [5], it was soon realized [6] that in *He the
strong repulsive core of the interatomic potential would not permit the formation
of s-wave Cooper pairs as in superconductors. Thus, if anything similar to Cooper
pairing should occur, it had to be in a nonzero angular momentum.

4.1 Interatomic Potential

If we take a look at the shape of the potential shown in Fig. 4.1, we see that the
hard core starts at a radius of about r &~ 2.5A. At r ~ 3 A there is a minimum of
roughly —10 K. Beyond this, the potential approaches zero with the van der Waals
behavior »=¢. It is obvious that the hard core prevents the formation of s-wave
bound states since the wave function must vanish at zero relative distance. There

is, however, the possibility of bound states in nonzero angular momentum states. Let

20° K1 vir)
10° K-
average spacing in liquid
0° K —+—+1 ’//,,_ -
1 2 V 5 A)
-10° K !

FIGURE 4.1 Interatomic potential between *He atoms as a function of the distance r.
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us estimate its probable magnitude. As in superconductors, only the fermions close
to the surface of the Fermi sphere in momentum space are capable of substantial
interactions. They move with a momentum p ~ pr ~ 8 x 1071 g cm/sec. For
angular momenta [ = 0, h, 2h, 3h, the impact parameter, i.e., the distance at which
the particles pass one another, is of the order of [ /pp =~ 0, 1.25A, 2.5 A, 3.75 A, cee
With the repulsive core rising at r < 2.5 A, it was estimated that the lowest partial
wave having a chance of showing a bound state would be the d-wave. In fact, the
first quantitative analyses indeed suggested that d-wave pairs do form a superfluid
condensate, and a first extension of the entire BCS formalism was undertaken for
this case [8].

The situation is, however, more complicated than in superconductors. There are
strong many-body effects which have been neglected in these first considerations.
The strong-coupling effects lead to a screening of the fundamental interatomic poten-
tial, so that the partial wave estimates had to be modified. Moreover, the hard core
together with the Pauli exclusion principle generate strong spin-spin correlations.
As a consequence, there is a pronounced resonance in the dynamic susceptibility (see
Fig. 4.2), which is usually referred to as a paramagnon excitation. The exchange

Im I'(q,w) ‘}

Im x(q,w)

WPar ((l)

FIGURE 4.2 Imaginary part of the susceptibility caused by repeated exchange of spin
fluctuations, as a function of energy w. There is a pronounced peak whose sharpness
increases with decreasing q. Thus, for small q, there are long-lived excitations in the
system which are called paramagnons. The straight line shows the imaginary part of the
susceptibility for a free Fermi system.

of these particle-like states between two atoms gives rise to an additional attraction
between parallel spins, and this enhances the bound states of odd angular momenta.

It would clearly be desirable to calculate these effects quantitatively from first
principles, i.e., from an n-body Hamiltonian of *He-atoms with the fundamental
interaction V'(r) shown in Fig. 4.1. However, the strength of this interaction makes
the calculation an extremely hard task. Therefore we decide to take the evidence
from experiment showing that Cooper pairs form at a lower angular momentum
than expected, namely at [ = 1. Apparently, the screening effects weaken somewhat
the hard core, and the paramagnons provide sufficient additional attraction between
parallel spins to cause binding in the p-wave with its rather small impact parameter.
By statistics, an [ = 1 -state must be symmetric in the spin wave function, so that
its total spin is necessarily S =1 (spin triplet) [9, 10, 11].
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Given the difficulties in calculating which orbital wave is the leading one in
binding the Cooper pairs, also the estimates for the transition temperature 7, were
initially quite inaccurate. Early estimates started as high as T, ~ 0.1 K. They were
lowered successively when a phase transition was not yet seen.

Experimentally, the transition was discovered in 1972 [7] at 2.7 mK, when cooling
liquid *He down along the melting curve. A second transition was found at 2.1 mK.
Since then, the superfluid phases of 3He have attracted increasing experimental and
theoretical attention. On the one hand, these pose the practical challenge of achiev-
ing and maintaining ultra-low temperatures. On the other hand, the observed phe-
nomena show macroscopic system in anisotropic quantum statea passessing rather
interesting collection excitations. Many surprising properties have been found and
are probably waiting for their discovery. They form a beautiful field of applica-
tions with many theoretical methods still being developed for different branches of
physics.

At the microscopic level, they are based on converting the fundamental action
involving ®He atoms to an alternative, equivalent form in which collective excita-
tions can be studied most directly. This was done by generalizing the treatment of
superconductors to superfluid *He.

4.2 Phase Diagram

The reason why measurements were first performed along the melting curve lies
in the simplicity of the cooling technique and of the temperature control via the
so-called Pomeranchuk effect. It is useful to keep in mind how temperatures in the
milli-Kelvin range can be reached and maintained: First, the system is pre-cooled
to roughly 77K by working inside a Dewar container filled with liquid nitrogen.
Embedded in this is another container filled with liquid *He which maintains, at
atmospheric pressure, a temperature of 4 K. Enclosed in this lies a dilution refrig-
erator. This exploits the fact that liquid *He, when brought into contact with *He,
forms a well-defined interface. Across it, diffusion takes place in the same way as in
the evaporation process across a water surface. This lowers the temperature. The
process can be made cyclic just like in an ordinary evaporation refrigerator. Tem-
peratures of a few mK were easily reached. In the beginning, the dilution cooling
was used only down to around 100 mK. From there on, the Pomeranchuk effect was
exploited. This is based on the observation that according to the Clausius-Clapeyron
equation,

dpP o Sliquid - Ssolid

A7 _ Dliquid 7 Dsolid 4.1
aTr ‘/liquid - ‘/;olid ( )

the temperature is lowered by increasing the pressure, since the entropy of the liquid
becomes smaller than that of the solid in spite of its larger volume. Thus, in order
to cool the system, one just has to compress it.

If one wants to measure the phase diagram away from the melting curve, adia-
batic demagnetization may be used in addition to the Pomeranchuk effect. The best
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magnetic materials for this purpose are either CMN (cereous magnesium nitrate) or
copper. In the first material, the magnetic moments of the electrons are demagne-
tized, in the second, the demagnetization is done on the nuclei. There for copper,
temperatures of a few mK can be maintained for several days.

With such techniques, the phase diagram has been measured for very low pres-
sures (see Fig. 4.3). The two phases originally discovered along the melting curve are

bar)

by 27 20t 8 7ERO-FIELD PLANE

-

~

¢
?
>
3 !
]
]
]
/
Ly’
7
s
”
I/"_A
ol
¥ 1
Press

,’l

&
N,

.
.
.,
.,
‘.
.,
.
0
.
‘e
.
.
.

1 2
Temperature (mk)

FIGURE 4.3 Phase diagram of *He plotted against temperature, pressure, and magnetic
field H. At H = 0 there are two phases, A and B. For increasing magnetic fields, a
widening phase A; develops. At pressures above the melting plane, the liquid solidifies.

called A and B. For large magnetic fields, there is another phase, called A, which
forms between the A-phase and the normal liquid. In order to improve visibility in
Fig. 4.3, we have exaggerated the corresponding temperature interval.

Many properties of these three phases have meanwhile been investigated exper-
imentally, and they are all in best agreement with the theoretical description via
p-wave spin triplet Cooper pairs.

While it was hard to predict the precise value of the transition temperature,
the finally observed value T, = 2.7 mK is in perfect scale with respect to that of
low-temperature superconductors (see Table 4.1).

TABLE 4.1 A factor of roughly 1000 separates the characteristic length scales of super-
conductors and 3He.

Tr mass T,
Superconductor || 1000 K 1 Maectron | 2.7 K
3He 1 K | 1000 melectron | 2.7 mK
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4.3 Preparation of Functional Integral

4.3.1 Action of the System

It will be convenient to consider the system as a grand canonical ensemble in which
the particle number can fluctuate while its average remains fixed (recall Subsec-
tion 1.1.7). Then, instead of the Hamiltonian H, the time evolution is driven by the
grand-canonical energy Hg; = H — uN where H is the Hamiltonian, and N counts
the particle number:

N= / " (x, (%, 1) (4.2)

The Lagrangian multiplyer u is the chemical potential, as usual. Then the total field
action reads for free fields

Ao = / &'z " (2)ihd (x / dt (Hy — uN), (4.3)

where Hj is the free Hamiltonian, so that
v2
Hy-uN = [dzyl(a < W —u) (), (4.4)
The interaction contains the pairing term

1 4, g4 % * (0 / /
A= = 5 [ d'ad's v (@0 @)V (o 2pbla ) (@), (45)

As in the previous Chapter 3, we shall use a four-vector notation for spacetime.
The italic symbol x indicates space and time with the four components z* = (2°, x).
We shall also write d'r = dtd*x = dtdx'dz?dz*dx3. The potential V(x, ') may be
approximated by an instantaneous and time-independent function of the distance
between x and x':

V(') =0t —t)V(x —x). (4.6)
The dominant part of V' (x" — x) consists in the van der Waals molecular potential
thet was displayed in Fig. 4.1.
4.3.2 Dipole Interaction

In contrast to electrons in a superconductor, the 3He-atoms are electrically neutral,
so that there are no Coulomb forces at atomic distances. There is, however, a weak
nuclear magnetic moment y & 2.04 x 10? (gauss sec) ™! causing an additional small
spin-spin dipole interaction

Haq=7* /d?’x/d:gx vap(|x — x|) ¥ (X', t)ﬁw(x’, t)*(x,t) Ew(x, t), (4.7)

with the dipole potential

1
v (X' —x|) = —0,0, o= Oap — 3
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Due to its smallness, this interaction is negligible in the normal Fermi liquid. In the
highly sensitive superfluid phase, however, it has interesting consequences, causing
a variety of domain structures. There the Hamiltonian (4.4) with the dipole interac-
tion Hyq is sufficient to explain quantitatively most of the properties of the normal
and superfluid 3He. As stated in the beginning of this chapter, the condensate of
Cooper pairs is a very sensitive system. We shall see that many of its interesting
phenomena are a direct manifestation of the very small dipole coupling (even though
this is merely a hyperfine interaction).

4.3.3 Euclidean Action

As shown in the previous Chapter 3, the thermodynamic action governing the sta-
tistical mechanics of the fluid is obtained by analytic continuation to imaginary time
T

—iA = AT = /Ohﬁ drd®z * (2)ho () + /Ohﬁ dr (H — uN + Hgq) , (4.9)

with ¢(z) in this Euclidean expression standing for ¢)(x, 7), and § = 1/kgT as usual.
In the partition function, the path integral extends over all fields ¥ (z) = ¥ (x,7)
which are antiperiodic under the replacement 7 — 7 + hf3:

W(x,7) == (x, 7+ hb). (4.10)

Faced with the action (4.9) it appears, at first sight, quite hopeless to attempt
any perturbative treatment. First of all, the potential V' (r) has a strongly repulsive
core. Moreover, from the experimental density we can estimate the average distance
between the atoms in the liquid to be about 3.5 A, where the potential is still of
considerable strength. The salvation from this difficulty is provided by Landau’s
observation that many features of this strongly interacting Fermi liquid will obey
the same laws as in a free Fermi system:

1. The specific heat behaves like Cy ~ T'.
2. The susceptibility behaves like x ~ const.

3. The compressibility behaves, for small 7" but in the normal liquid, like k ~
const.

In fact, all free Fermi liquid laws for these quantities are valid, provided we replace
the atomic mass msy, by an effective mass meg which is a few times larger than the
true mass msy.. The factor ranges from 3 to 6, depending on whether one works
close to zero or close to the melting pressure (~ 35 bar). Apart from that, there
is a simple multiplicative renormalization by a factor which can be attributed to
molecular field effects, similar to what happens in Weiss’ theory of ferromagnetism.

Landau’s interpretation of this phenomenon is the following: By restricting
one’s attention to low-energy and momentum properties of a system, the strong-
interaction problems simplify considerably. The rapid fluctuations cause an almost
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instantaneous re-adjustment of the particle distribution. For this reason, if slow and
long-wavelength disturbances are applied to the system, several 3He atoms that are
in their mutual range of interaction will respond simultaneously as a cluster, called
quasiparticle, with an effective mass larger than the atomic mass. The residual in-
teraction between these quasiparticles is very smooth and weak since any potential
hole, which could appear as a result of a small displacement in the liquid, is im-
mediately filled up and screened away by a rapid redistribution of the atoms. It
is this screening effect, mentioned in the introduction, which makes quantitative
calculations managable at least at the level of quasiparticles. Apparently, the fast
fluctuations generate a new effective action of approximately the same form as (4.3),
except that ¢ (z) has to be read as a quasiparticle field, m as the effective mass meg
which is a few times larger than the true mass msgqe.

The potential V(z — 2’) in (4.5) is the residual effective potential between the
quasiparticles. The energy range of integrations in the Fourier decomposition of the
fields is, however, limited to some cutoff frequency weuor beyond which the effective
action becomes invalid. Using the path integral formulation of the partition function
we shall quite easily be able to rewrite the fundamental expression A in terms of
quasiparticle fields, at least in principle.

4.3.4 From Particles to Quasiparticles

It was argued that fluctuations cause a significant screening of the potential. The
screened lumps of particles move almost freely but with a larger effective mass. In
order to formulate this situation we first need a precise distinction between fast and
slow fluctuations. For this we expand the field in a Fourier series

1 . )
D(x, 1) = e Y pienthilkx (4.11)
(tb - ta)v l«;yk

where V' is the spatial volume of the system and w,, are the Matsubara frequencies
21 (n+1/2)

ty—te
which enforce the anti-periodic boundary condition (4.10). Apparently, there are

natural energy and momentum scales ws and kg, so that a separation of the field
into slow and long-wavelength and fast and short-wavelength makes sense:

(4.12)

Wn

(x,t) = Ys(x,t) + Yn(x, 1) (4.13)
1 —iw ikx —iw ikx
=—— | Y et %0 (wn, K) + > ettt %) (wn, K)

(tb — ta)V |wn|<ws Jwn|>ws
[k|<ks |k|>ks

This can be used to simplify the path integral. The two terms are referred to as
soft and hard components of the field ¥ (x,t). When written in energy momentum
space, the functional integral measure may be separated accordingly:

| pvpu = [ DD [ DinDy;
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_ o Wk g A A k) gy

|| <ws, k| <ks 2mi |w|>ws, [k|>ks 2mi

If we now perform the path integral over the hard components we remain with a
partition function

Z:/D%D@&M@%L (4.15)

where A%, 1] is a functional of only the soft components. The point of Landau’s
argument is now that due to the high quality of the free Fermi gas laws there seems
to exist an optimal choice for w, and k, so that the action looks like the action of the
initial *He particles, except that the new fields 1,(x,t) have a larger effective mass
m* and that the interactions are much weaker than in the original fundamental form
(4.3).

Certainly, the actual calculation of the path integral over the fast components
is extremely difficult due to the strength of the interactions. We shall therefore
accept Landau’s argument on phenomenological grounds and see its justification in
the successful derivation of the physical properties of the liquid.

At first sight, the precise choice of wy and ks seems to be a rather ad hoc matter
and one might fear that all results derived from the partition function (4.14) depend
strongly on which values are taken. It is gratifying to note, however, that this is
not really true. Only the prediction as to the size of the transition temperature 7.
varies strongly with ws, ks. But in all final results ws, ks can be eliminated in favor
of the observable temperature T.. In this way, any arbitrariness is removed. This is
completely analogous to the independence of all physical amplitudes on the cutoff
in renormalizable field theory.

For the phenomena of superfluidity, the optimal choice of wy, ks will be so that
w, is about ten times larger than the transition temperature 7, while ks, comprises
approximately ten atomic distances (i.e., ks ~ 27/ 10A). In this way quasiparticle
fields are well enough localized in space and time to describe excitations with fre-
quencies between zero and one MHz, corresponding roughly to 1 kg7, in *He, and
wavelengths of up to about 100 A.

4.3.5 Approximate Quasiparticle Action

We are thus confronted with a simplified problem of calculating the partition func-
tion over soft field components 1,. For brevity, the subscripts will be dropped. The
soft field quanta are precisely what Landau introduced as quasiparticles. Since we
are not able to calculate A, explicitly, we have to deduce its structure from exper-
imental facts. As argued above, the action must account for the free-particle-like
behavior of the specific heat and of the susceptibility with a characteristic transition
temperature 7, modified by a simple renormalization factor.
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TABLE 4.2 Pressure dependence of Landau parameters Fj, Fj,, and FOS of 3He, together
with the molar volume v and the effective mass ratio m*/m. The values of v, m*/m and
Fy are from Greywall [12], whereas Fy, Fy are from Wheatley [13], except for corrections
using more recent values of m*/m. The values at P = 34.39 bar are from Wheatley [13].

P(bar) | wv(ecm?®) m*/m F, F, Ey
0 36.84 280 539 930 -0.695
3 33.95 3.16 649 1599 -0.723
6 32.03 348 745 2249 -—-0.733
9 3071 377 832 29.00 —0.742
12 29.71 4.03 9.09 3542 —0.747
15 28.89 428 985 41.73 —-0.753
18 28.18 4.53 10.60 48.46 —0.757
21 2755  4.778 11.34 55.20 —0.755
24 27.01  5.02 12.07 62.16 —0.756
27 26.56  5.26 12.79 69.43 —-0.755
30 26.17  5.50 13.50 77.02 —0.754
33 25.75 574 1421 8479 —0.755

34.39 25,50  5.85 14.56 88.47 —0.753

Let us briefly take a look at the experimental situation: For a free Fermi gas
with ¢ spin states in a volume V', the total density of states per unit energy at the
Fermi surface for the two spin-1/2 states is 2N/ (0), and

mpp 3 .p

is the density of states at the surface of the Fermi sea [recall Eq. (3.62)], where
p = MN/V is the particle density. As before in Eq. (3.64), the quantity

N 1/3
pF = (37r2)1/3 (V) h= g x 1072°g cm/sec (4.17)

is the Fermi momentum of free spin-1/2 particles. The associated Fermi velocity
vF = pr/m varies from 5.5 - 10® cm/sec at zero pressure to about 3 - 10% cm/sec at
melting pressure (see Table 4.2 above).
From this it is easy to calculate the three quantities specific heat, magnetic
susceptibility, and compressibility:!
mpr

oy = NZPELoT 418
|4 3h3 B ( )

!The standard derivation is omitted at this point since it will appear anyhow later. Note that
we keep the physical constants i and kp explicit in these formulas.
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rl
2%7

XN = (4.19)

Ky = (4.20)

v’ m

4 7
m pr
P2 w2
The parameter v = 2u/h is the gyromagnetic ratio of the 3He nucleus, and p is the
nuclear magnetic moment.

Experimentally one finds the linear behavior of ¢, below 20 mK to be enhanced
by a factor 6 to 14 for pressures ranging from atmospheric to 35 bar (melting pres-
sure). This enhancement may be attributed to a change in the effective mass from
m to a larger value m*. The effective mass is defined so that the energy of quasipar-
ticles starts for small momentum as p?/2m* + O(p?). Let X(w, p) be the self-energy
of the fermions after all interactions are taken into account. Then the fermion Green
may be written as [generalizing (1.95)]

dw d Y% w(t—t’)+ip(x—x’) 1

G(x,t;x',t') = o (27r) m

(4.21)

where

§(w,p) =£(p) + X(w, p). (4.22)

Expanding this in powers of w and p?, the chemical potential is shifted from u to
the renormalized value p+33(0, 0), and the effective mass is found from the equation

m T 2m0E (. p) /0P| ey L+ 2mOS@ D)0 e
It is customary to introduce the parameter F; so that this equation reads
m* F
=1+ —. 4.24
=1+ (4.24)

The precise values of F; can be seen in Table 4.2.

The spin susceptibility is found to be independent of temperature below 40 mK.
If one inserts the effective mass m* into the free-fermion formula (4.19) one finds
a value about four times too small. This is attributed to molecular field effects. If
the atomic magnetic moments are partially oriented, the magnetic field seen by an
individual atom consists of the external field plus that of the other moments in the
liquid. The enhancement factor is usually denoted as

1 1
1+ FS ~ 1+ Zo/4

(4.25)

with F = Z,/4 being roughly —3 up to the melting pressure of ~ 35 bar (see Table
4.2).
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The compressibility 7, finally, is determined my measuring the velocity of sound.
Inserting m* into Eq. (4.20), we obtain it from

1 F 1/2
vV PET V3 3

where

Pr

= 4.27
v = (4.27)
is the Fermi velocity for the effective mass m*, which ranges from 5 to 3 x 10® cm/sec
(see Table 4.2). Experimentally, formula (4.26) turns out to fail by a factor 3 to 10,
a failure which is again attributed to molecular field effects upon the density field
p. Thereby the sound velocity is multiplied by a correction factor 1/(1 + F})), and
becomes "
VF F 1 ) :|
c=-—2l(1+2)a+E)| 498
(3R (1.25)
with Fj ranging from 10 to 100 (Table 4.2). Thus the compressibiliy kr = 1/c¢%p is

modified by a factor 1/(1 + Fp).

4.3.6 Effective Interaction

What an action can we set up to explain these low-frequency and small-momentum
features of liquid *He observed in a wide range above the superfluid transition tem-
perature? It appears simple to include the effective mass. All we have to do is
choose a free-particle Hamiltonian

2

Hy = / Bt (x) (zat 4

2m*

>¢(x), (4.29)

where we have used natural units with i = 1, kg = 1. This naive approximation
would indeed lead to the specific heat (4.18) with the mass m replaced by m*,
provided the number of quasiparticles is taken to be equal to the true particle
number, so that also the Fermi momentum pg. Recall that according to Eq. (4.17),
this depends simply on the particle density N/V .

If one would set the system into motion by displacing all particle velocities

vV=— (4.30)
by a certain amount Av, the total momentum P of the system would change by
AP = Av Nm” (4.31)

rather than by the bare expression

AP = Av Nm. (4.32)



156 4 Superfluid 3 He

This can only be corrected by introducing an additional interaction which, however,
must not modify the previous calculation of the specific heat. Such interactions are
well known in molecular field theories. We simply add to the free Hamiltonian a
current interaction

1 F Nt ot
Hewre—curr = _*_l/dew (x)—V ¢($)¢ (x)_v ’QD([L'), (433)
2p* 3 2 2
> — —

where V = V — V is the right-minus-left derivative, the constant £ denotes the

coupling strength, and
m*N
* = 4.34
= (4.34)

is the mass density of quasi-particles. Then the kinematic properties of single quasi-
particle states are automatically correct. Indeed, such a state has an energy

2
P F 1)
E = 14+ — 4.35
2m* ( i 3/ ( )
so that the velocity is
OE p F,
- — 14 L 4.36
M op m* ( + 3 ) ’ (4.36)
and the total momentum changes, upon a change Av in the velocity, by
AvNm*
AP = —— 4.37
1+ F,/3 (4:37)

as it should, due to Eq. (4.32), if we use the relation (4.24).

The renormalization factors for susceptibility and compressibility have to be
inferred in a similar manner.

It is nontrivial to see that the interaction (4.33) really leaves the specific heat
in the form (4.18), only that m is replaced by m*. When going from one Galilean
frame of reference to another one that moves with velocity v, the energy changes by

AH, = — / dew*(:z:)%w(:l:) Av. (4.38)

When turning on a magnetic field, the energy changes by

a

Ay = [ @ov (@) %0 (@) yHa, (4.39)

due to the interaction with the spin magnetic moments.
Finally, if a chemical potential is introduced by contact with a particle reservoir,
the energy is modified by

AH, = — / B (2)(@) p. (4.40)
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Thus, the current density

.1 e
j= 51/1 Vi, (4.41)
the spin density
s =y, (4.42)
and the particle density
n = *y, (4.43)

all appear on the same footing.
We have seen that the quadratic current density coupling brings changes in the
kinetic energy to the correct form

1 F,
(1 + ) pdp = Ldp. (4.44)
3 m
Thus we expect quadratie spin density and particle density couplings
1F
Ha = 500 [ @ro @@y @), (4.45)
1 FS c
Ha = 5o [ dre @50 (@) 50), (4.46)

to produce corresponding correction factors for changes in the magnetic and chemical
energy density

xHdH — x(1+F,) HdH, (4.47)
kupdpy — K (1 + FOS> pdp.
These are needed to obtain agreement with experiment.

The above simple couplings are just the leading terms in the more complete
multipole expansion

Ho = 553 / () st ()" (2) it ()

+

ll
The parameters F; can depend also on the momentum transfer, i.e., the momen-
tum of the composite field which is given by —i! times the spherical derivative of the
angular momentum [ with z-component m, to be denoted by ©*0;,,%. Such a depen-
dence characterizes the form factor of the quasiparticles. The spherical derivative
O 18 & short notation for the product of [ spatial derivatives which are combined to
be traceless. In this way one projects out a definite angular momentum, for instance

1
82m X 81@ — §6ij82, (450)

1
O3 o 0;0;0, — 5 ((5ij828k + 2 cyclic permutations) . (4.51)
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We shall choose the proportionality factor to comply with the spherical momentum
definition in terms of spherical harmonics Y}, (k):

47 ~ I
bin =\ gy Vi Rl (4.52)

Since the labels m refer to a spherical basis, we must distinguish k;,, and kj,, =
(=1)™k; _pn. If one wants to form rotationally invariant objects, the labels must be
contracted accordingly, for instance 9}, O = (—1)"0mO) —m.-

It will turn out that many phenomena depend only on the values of F; at zero
momentum transfer. Moreover, only the parameters which appear in Eq. (4.28) are
easily accessible to experimental measurement.

4.3.7 Pairing Interaction

With the couplings introduced so far, the properties of the degenerate Fermi liquid
can be explained within very simple approximations as long as the temperature
is above the critical value T,. As explained in the introduction, the superfluid
properties below T, require the formation of p-wave spin triplet Cooper pairs. This
can only happen due to an additional attractive interaction which must consist of one
screened version of the original potential V. Its accurate shape is unknown. This,
however, turns out to be no handicap. The reason is the following: The attractive
force is extremely weak. Therefore the Cooper pairs are only barely bound, as
manifested by the fact that the critical temperature 7T, is much smaller than the
characteristic temperature unit of the system which is Tr = p%/2m (which is the
Fermi energy of the system of the order of &~ 1 K). This makes the radius of the
bound-state wave functions much larger than 1/pp ~ 1A. Its size will turn out to
be a few hundred A. For this reason, it does not matter what the detailed shape of
V(x' — x) in Eq. (4.6) really is, and it can be chosen to be point-like with a range
of a few A. That has only a single bound state. It must only bind in a p-wave spin
triplet state, we may directly write

o &

Hyr = — 24 [ w*(x)%acT Y @) el S o) (4.53)

A
c:i02:<_(1) é) (4.54)

which ensures that v co,1 transforms in the same way as ¥*c%, i.e., like a vector,
due to the equivalence of the 2 x 2 rotation matrix U to its complex conjugate by

U* =cUc .

The matrix c is
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4.4 Transformation from Fundamental to
Collective Fields

While fundamental fields provide the theoretically most satisfactory way of defining
the action of a theory, they are quite ineconomic as far as the description of low-
energy and long-wavelength phenomena of systems like *He and superconductors is
concerned. The reason is basically the following: Below the transition temperature
T, at which the superfluid phase arises, the binding between the fundamental parti-
cles in Cooper pairs results in an energy gap A of the single particle spectrum. This

becomes
E(p) = /& (p) + A% (4.55)

For 3He, the size of the gap is of the order of mK, while for most superconductors
A lies in the K-regime. As a consequence, the propagator

(OIT (¢ ()" ())]0) (4.56)

has no singularities in the energy plane below £ = A. A description of the rich set of
physical phenomena with energies much smaller than A? such as zero-sound waves,
spin waves etc. is quite complicated when employing the fundamental field ¥ (x).
An infinite set of Feynman graphs is necessary even for a lowest order understanding
of these phenomena. On the other hand, there are Green functions which directly
display excitations of this type in the complex energy plane, for example those of
the composite field operators

(O (" (@) ) (5) b (1)]0), (157
O (4 (@) F0(w)0" (9) 0 ) ) 10) (1.59)

Singularities which appear in such composite Green functions but not in (4.56) are
called collective excitations. One may expect that the most economic description
of the associated physical phenomena can be obtained by first transforming the
full theory to the appropriate composite fields. Such transformations have, in fact,
been studied long time ago in many-body theory at the quasiclassical level. For
superconductors [14] and *He, the result is the so-called Ginzburg-Landau equation
[15]. This equation has been extremely successful in explaining many low-energy
properties of the system. The approximate methods leading to this equation have
been described in general in Chapter 1. They have been applied to plasmons in
Chapter 2 and to superconductors in Chapter 3. Following this method we add here
to the sum of a free action (4.3) and the pair interaction (4.53):

Aint = /dt Hpair (459)

2These will often be called “infrared” phenomena, for brevity.
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a complete square involving an auxiliary collective field Ag;(z):

2

3-%@%%%@ . (4.60)

Auilr) = 2pp

_ 1 4
A.A——3gz/dx

This does not change the theory. Up to this point, Ay (x) is a nondynamical field,
since its time derivative 0;A,;(x) does not appear in the action. Such a field can be
eliminated from the action by solving the Euler-Lagrange equation §.A4/0A,(x) =0
which yields the relation

Aui() = A% (2) = 2L ()%, (a). (4.61)
2pF 2

At the classical level, A,; coincides with the composite field of a pair of *He atoms
in a p-wave spin triplet configuration. Since it serves to describe the collective
phenomena it will, from now on, be called the collective pair field of liquid *He.
Reinserting (4.61) into (4.60) gives A4 = 0 so that, at the classical level, the
addition of AA really leaves the action unchanged.

As before in Chapter 3 for the case of superconductors, this remains true at the
full quantum level. By analogy with that chapter, we consider the partition function
of the theory

Z = / DY DYDA DA el Aot Aim+84) (4.62)

The integral over the auxiliary field DA,; is of the Gaussian type. It peaks for
each spacetime point x when A,; is equal to Aflw (x). Since the integral runs at each
point from —oo to +oo, the finite shift is irrelevant and the integral renders the
same irrelevant constant for each z. The merit of choosing (4.60) for AA lies in its
eliminating the fourth-order term in the action in (4.62), so that the combination

A= Ay + A+ AA (4.63)
-/ d4x{¢*(x) (i, — €(—iV)] (x) + (A;;Z.(x)wmc%w + c.c.> - %A;Aai}

is quadratic in the fields ¢ (z). For this reason, the functional integral [Dy*Di)
can be performed in (4.62), and the result is a quantum field theory formulated
entirely in terms of the pair field A,;. In (4.63) we have gone over to a dimensionless
right-minus-left derivative

v

1 «
—V, 4.64
2pF ( )

for convenience.

We now bring the path integral over Fermi fields to the standard form by rewrit-
ing the action as in Eq. (3.405), with the help of the four-component field which
combines the ¥ (x) and ©*(z) components into a single quadruplet

f= ( Ci* ) . (4.65)
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Then (4.63) can be rewritten as

B 1, 10, — &(—iV) V04 A0 L,
A= /d4x [Ef () < St B+ €09) )f(x) - gAaiAm-] . (4.66)

The derivatives V; are meant to act only on f*(z), f(x) but not on the collective
field Agi(x). Performing now the functional integral [Df*Df with the help of the
fermionic Gaussian functional formula (1.80), written as

/ D Dfeis!™MI — ¢3TrlosM (4.67)

we obtain

7 = / DA D Ay Aeonld™s A, (4.68)

The exponent contains the collective action

. 1 @ £(—iV) iVi04Aui 4 Ak
Acon [A7, A] = 2Tr log ( iVi0 AL 10y + £(iV5) /d vz (7).

(4.69)

The functional integral (4.68) over the fluctuating A,;-field promotes this field from
a collective classical field to a collective quantum field [17].

The Trace log part is treated as in the case of a superconductor [recall (3.9)-
(3.19)]. It is rewritten as

1 10y — {(—iV) 0
2Tr log ( 0 i0, + £(i9) (4.70)
i
i | 90, — €(—iV) ' 0 iV 00 A
2Tr log [1 { ) i V0, A", 0 )

i0y +£(1V)

and the first term can immediately be calculated, yielding the lowest contribution

to @.Acoll [A*, A] /ﬁ
: d? -
Tr log [(10; — £)0as) = 2/(2—733 log {1 +e 5(")/T} =—Fy/T, (4.71)

where Fj is the free energy of a free fermion system.
The second term can be expanded in powers of A,; as follows:

g [26 _ 5(_Z-V)Zvi0az4m‘mlvjaaz4bj] . (4.72)

The lowest terms of this expansion correspond to the loop diagrams shown in
Fig. 3.2. The free part of the collective action is given by the term in (4.72) with
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n = 1, plus the last term in (4.69). By Fourer-decomposing the field in space and
imaginary time

1

Ay(r) = —=S" A, (ke ™ = Agi(wn, k —ilwnT— kx), 4.73
()= o E Aulh) > (4.73)

T k V/Twn

we find the action for static collective fields in which all A,;(w,, k) with w, # 0 are
equal to zero, and only the w,, = 0 component A, (0,k) = A,;(k) is present,

Ao[A*, A] z@ Jar> 430 [(1 - T) 5 — ggg (125 + Qkiki)]AM-(k). (4.74)

Here

7C(3) (Ja

L~ 120A 4.
182 T, 0 (4.75)
is the basic coherence length of the superfluid®, and 7T, is the critical temperature.
Its value is obtained by solving the gap equation [compare (3.65)—(3.71)]

_ A 1 &) 1 oot dE S 1
0 = [ arpaeg oy, S NO) [ Setenhgn -
— N(0)log (22_%;503) _ é, (4.76)

o =

where N(0) is the density of states at the surface of the Fermi sea in Eq. (3.62).
The critical temperature is therefore determined by the equation [compare (3.72)]

)
T = Wentonr 2—e~ /N O, (4.77)
T

Close to T., the right-hand side of Eq. (4.76) is approximately equal to
N(0) (1 —T/T,), and this leads to the first term of Eq. (4.74).

The lowest-order interaction in the collective action is fourth order in the Ay;(x)-
fields. It becomes in the static case for long-wavelengths

A [A*, A / d'z | BLAL Ay AL Ay + B (Al Aw) (4.78)
B3 AL Agj As Ay + BaAL Ay Ay Auj + 65A;iAbiA;jAbj] .

The coefficients f; are found from the loop integral for n = 2 in the same way as in
the case of the superconductor [recall (3.110)]:*

2 2
= o=y = a=—fs = SNy =S LB (47

vp?h?  Bm2ukh?

3The constant is ((3) = Y o, 1/n3 & 1.202. See Eq. (3.82).
4The coefficient 3 is related to the coefficient 3 of the superconductor 8 = 6 N'(0)&2 /vp2h
in Eq. (3.110) by 2 = /15 (assuming that we take account of the different mass parameters).

2
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The full interaction contains infinite powers of the collective field A, (x). If
one restricts the consideration to temperatures close to the critical point (7" ~ T.),
where 14 is very small, the fields A,;(x) undergo large long-range fluctuations. As
far as long-wavelength properties are concerned, higher and higher powers in A,;(x)
become more and more irrelevant, due to the fact that the dimension of A, (x) is
1/length. This type of discussion is standard in the renormalization group treatment
of critical phenomena [18].

In z-space, the free part of the action can be written as

. . Ky o Koo o Kz, .
AO[A ,A] = /d41’ <,UA AaiAai —78,-/1@]-@/1@]- — TaiAajajAai — TGiAaiajAaj> s

(4.80)
with the temperature dependence residing all in
1 T 1 p 1 T
— N [1=-Z2)=2L (1= 4.81
Ha 3N()< Tc> 2m2v%< Tc)’ (4.81)

which is related to the chemical potential in the superconductor calculation by a
factor 1/3. The stiffness constants satisfy
2

K, = %N(O)&f = vih?By = %%f—; K, + K3 = 2K;. (4.82)
The static long-wavelength action consisting of the free part (4.80) and the interac-
tions (4.78) is referred to as the “weak-coupling” Ginzburg-Landau action of *He.
The functional integral (4.68) with this action defines a fluctuating field theory of
the superfluid in the neighborhood of the critical temperature. From this, all univer-
sal critical properties can be calculated with great accuracy. The general procedure
for doing this is amply described in the literature [18].

If fluctuation corrections are calculated, they do not change the general form
of (4.78) and (4.80) for small and smooth fields A,;(x). Only the numerical values
of the coefficients are modified, and will no longer satisfy the relations (4.79) and
(4.82) obtained from the expansion (4.72). This is actually a consequence of the
symmetry properties of the original action (4.56), which is invariant under separate
rotations of spin, orbits, and phase of the fermion fields ¢ — €**1). The collective
action derived from the original action displays the same invariance. In the static
long-wavelength limit with 7" ~ T, this leaves only the form (4.78) plus (4.80).

On the same symmetry grounds it is obvious that the dipole action (4.60) cannot
be included by a mere change of the coefficients: The action contracts spatial with
spin indices and is no longer invariant under separate spin and orbital rotations.
It can be shown [19] that the collective form of the dipole action gives rise to an
additional mass term for the A, field:

2
Ay =go [ d's (Aj;aAbb AL A — ZbAab> . (4.83)

The coupling of spatial and spin degrees results in the most interesting observable
phenomena of the superfluid phase.



164 4 Superfluid 3 He

At the mean-field level, the integrand of the collective action yields the Ginzburg-
Landau free energy to be used in the sequel:

f = fo+ fin + fa
* K * K2 * K3 *
= AN A+ faiAajaiAaj + 5 0405 Ani + 014,01 Ao

+ 8144 A Agi Av + Bo (A(*u‘Aai)Q
03 A5 Aaj Ay Avj + BaAy; AviAy; Aaj + Bs Agi A Agj A

a a

2
g (A;;aAbb AT A — gA;*;bAab) . (4.84)
The terms proportional to K, Ko, K3 constitute the so-called gradient energy

K K K-
fesna = OG0 Ay + O 0 A + =01 AL01 Ay, (4.85)

4.5 (General Properties of a Collective Action

The static action (4.78) with (4.80) describes the *He-liquid in terms of a complex
3 X 3 -matrix, i.e., an 18-component field called the order field. If the dipole in-
teraction is left out, the action is invariant under global SU(2) x SU(2) x U(1) -
transformations:

Aui = Rup(@°)Rij(9%)e %

where (€,)pc = —i€ape are the 3 x 3 matrix generators of the three-dimensional rota-
tion group and the angular vectors ¢°, @ denote the associated rotation parameters.
Remembering the classical equality

Aule) = 2L p(@)iic () (4.87)
Pr 2

we see that the first transformation corresponds to pure spin, the second to pure

orbital rotations to the original field . The last phase is associated with particle

number conservation and is doubled because of the two fields occurring in (4.87).
Accordingly, there are three conserved Noether currents which are obtained by

functional derivatives with respect to infinitesimal z-dependent symmetry transfor-

mations:

First there is the particle current density:

oA
=5

. « & « & « & * & * &
=i { KA Ay + 1 (A9, 40- A0 ) + K (409,40 - 409, 40) |

(4.88)
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This current density j; coincides also with 1/m times the components T% of the
energy momentum tensor. Indeed, under an infinitesimal Galilei transformation

V() — e VXY (2), (4.89)
the collective field changes as follows:
Agi(x) = e 2™ AL (2), (4.90)
so that the energy changes by
JE = m/d?’x j(@) - v. (4.91)

Similarly, we derive, from an infinitesimal spin rotation, the conserved spin current
density:

.spin 5“4
ai = €abe
0008

% <> % <> " > N PN
+ K2 ( ijjch + chvjAbj) + K3 ( bivjACj + chVjAbi)] .

* And * &
[Kl ( b Vide; + chViAbj) (4.92)

The orbital current density can be written as
m i = ey (27T — 2T (4.93)

This is equal to
i =xxj, (4.94)

since angular momentum density is the vector product of x with the momentum
density m j. Both orbital and spin currents have zero divergence:

V-j=0, V-jP=0, (4.95)

if the fields satisfy the Euler-Lagrange equation. The two currents follow from
Noether’s theorem and the invariance under spatially independent symmetry
transformations.®

As a consequence of V - j° = 0, the integral over (4.94), which is the total
angular momentum

L= /d% x X j, (4.96)

is a time-independent quantity.

Since the invariance of the collective action under (4.86) is a direct consequence
of the original fundamental action being invariant under separate phase, spin, and
orbital rotations defined as

w — efi‘pw’ (497)
Vo e MY, (4.98)
v = eV, (4.99)

®See Chapter 3 in the textbook [44] or Chapter 8 in the textbook [45].
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the currents (4.88), (4.92), and (4.94) are simply the collective versions of the fun-
damental Noether currents following from the continuous symmetries under the
transformations (4.97)—(4.99):6

‘ 1 .&
Ji = T¢ Vi,
mi
. =
Jai = 2 w O-aV iwa
mi
i = xxj. (4.100)

Because of the invariance under (4.97)-(4.99) and the fourth-order form of
the collective action, the theory at hand is what is called a 3 + 1 dimensional
SU(2) x SU(2) x U(1) -symmetric linear o-model. It is of the same type as the
O(3)-symmetric Landau model of ferromagnetism.

When confronted with such a model, the discussion usually starts with the sta-
bility analysis of all possible vacuum states. One examines small oscillations of the
field A, around its static ground state configurations. There the action A can be
expressed in terms of the energy as

A= —/th - —/dtd%f (4.101)

A glance at Eq. (4.84) shows that small oscillations of A,; around zero are stable as

long as
0 T
L= A# ( _ T) <0, e, T>T, (4.102)

As the temperature drops below the critical value T,, the quadratic potential be-
comes unstable and the fourth-order term is needed to control the fluctuations.
The field A,; settles at some new minimum away from zero. Unfortunately, no full
mathematical analysis is available on the minima for all possible configurations of
the coefficients 8;. Among the many minima discussed in the literature [21], there
are three which apparently have been found in the laboratory associated with the
phases which were shown in Fig. 4.3. Each of these is non-unique due to a residual
degeneracy and can be parametrized as follows:

A-phase
A = Aad, (09 +i0) . (4.103)
Here d, (1)(1), (1)(2) are arbitrary real unit vectors with d)mj_ ¢(2).
B-phase
A% = ApR,(n,0)e. (4.104)

®Recall Subsec. 3.5.3 in the textbook [44].
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Here R,; is an arbitrary rotation around an axis n by an angle 6 with ¢ being some
phase angles.

A -phase

Agi = Ay, (dV +id®) (6 +io®) . (4.105)

Here d®,d®@; ¢M, $® are unit vectors with dV L d® and ¢V L @, The mag-
nitudes of A are controlled by the free energy. In the three cases, this becomes:

fa = —QMAA2A + (B2 + 1+ Bs) 4Aj147
f5 = =3ualf + (B + B2) 9AL + (B3 + Bu + B5) 3AL,
far, = —4pal% +16 (Bo + Ba) A (4.106)

For p1g < 0, the minima lie at the nonzero values

B4 = \/46245_” \/ \/
o A
Be = \/6512+25345 \/7C \'
Y Y
A ‘/8524_””/7«3)’/1 TC’ (4.107)

where f;;, Bijk, - .. are short for 3; + 3, B; + B; + Bi, ... . The minimal values are
o= _g,U«AA,%x = —% (1 - %) Qh—; X i,
o = oAy = —# <1 - 2) Qh; 5 (4.108)

respectively. Note that in the B-phase, the expression for the gap and for the energy
(4.108) are the same as for the superconductor in Eqgs. (3.154) and (3.125) (apart
from the different mass values).

It is useful to introduce the various relevant S-values in the different phases,

~1
1) B: Bg' = (512 + %5345) = %62‘1
2) i By = (2Bais) = 155"
3) Ay: ﬁXll = (2524)_1 = %551
so that the gap is given by

A= A (4.109)
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and the minimal energy is the negative of the condensation energy

2 T hQ
Ha 5/)(1 ) Xﬂz

48 24m?

1.

288 B

The fluctuations around the new minima can be separated according to massive
and massless ones. The massive ones all occur with a mass of the same order of
magnitude as is found for the oscillations of A at the new minimum. This can be
calculated as follows: Introducing

o= f, = (4.110)

A= A+ A, (4.111)

we find for A’-oscillations A
f=fmn4 0t (4.112)
with a mass term twice the opposite of that in (4.106):

§2f = 4ua A (4.113)

The massive oscillations in directions other than A have the same type of mass
term except that it is accompanied by a numerical factor (determined by a Clebsch-
Gordon coefficient). The massless oscillations arise for small displacements of the
direction vectors d and ¢ and the phase ¢ characterizing the minima. They are
called Goldstone bosons.

Group-theoretically, the following considerations are useful. The action is in-
variant under the global transformations of the group SU(2) x SU(2) x U(1). The
infinitesimal transformations consist of those which change the directions of the
minima and a subgroup leaving them invariant. The first ones coincide with the
long-wavelength limit of Goldstone bosons oscillating around the new minimum.
The mass of these oscillations is zero, since the action is invariant in the limit of
infinite wavelength in which the small displacements become uniform rotations of
d, ¢, . The subgroup of symmetry transformations which leave the directions at
the minima invariant, but they mix the Goldstone modes with each other. These
transformations describe the residual symmetry left for the physics of the Goldstone
modes.

The collective field A,; has 18 parameters while the above A, have only 6, 5,
or 7 parameters in A, B, and A;-phases, respectively. The above parametrizations
of the vacuum, therefore, does not allow to describe all massive oscillations (only
those of the size parameter A are included).

In field theoretic considerations a particular direction di® is usually chosen as a
vacuum of the theory. The freedom of taking an arbitrary direction corresponds to
an infinite degeneracy of the possible vacua. In 3He physics such a uniform choice is
usually not possible since, as we shall see, boundary effects do not permit the ground
state to settle in a uniform direction of the A?, field. The “vacua” are nontrivial. In
addition to boundaries, also external fields”, currents®, and topology may serve to

"For a general discussion and references see Ref. [17].
8Non-trivial helix-like textures in the presence of currents have first been found in Ref. [40].
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stabilize different non-uniform field configurations. The latter fact establishes links
with discussions of topologically interesting vacua in field theory.

As we have stressed repeatedly, we shall analyze the quantum liquid only with
respect to those phenomena which take place at energies much smaller than the
gap energy A. In this limit, all massive oscillations become unimportant (since
their energy lies in the A regime). We can therefore assume A to be pinned down
tightly at one of the degenerate extremal values (4.114) and allow only fluctuations
of the direction of AY,. This approximation, in which only the Goldstone modes
are studied, is called the hydrodynamic or the London limit of the theory. In o-
models of field theory, this corresponds to letting the mass of the o-particle (the
o-oscillations) go to infinity. This limit leaves only the pion as a dynamical field in
what is called a nonlinear o-model. In the following, we shall restrict our discussions
to this hydrodynamic limit.

4.6 Comparison with O(3)-Symmetric Linear o-Model

For comparison, we briefly recall the symmetry-breakdown in the simple O(3)-
symmetric o-model, also known as the classical Heisenberg model of ferromagnetism.
There the free-energy density reads, for constant fields,

2o o Ao o 2\2

For p? < 0, this has the following set of degenerate minima:

2

= A0 with A° = —“7, (4.115)
where d) is an arbitrary unit vector in three-space. The oscillations of m; = Ad;
around 7 consist of massive radial oscillations in A controlled by

4
i
f =t caya - oy (4.116)
and massless oscillations of d; around the direction of d?. If d) points along the
3—axis, these oscillations can be parametrized as

/ 2
d; = (% 1— %) . (4.117)

The energy depends only on A. Rotations leaving d? invariant transform the fluc-
tuationg fields 7} and 7, among each other and correspond to the residual O(2)
symmetry after spontaneous symmetry breakdown of the original O(3). The situ-
ation here is simpler than that for *He since the parametrization m; = Ad; of the
ground state can be used to cover the entire three-dimensional field space.
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4.7 Hydrodynamic Properties Close to T,

In the hydrodynamic limit the only degrees of freedom of the liquid consist in ground
state configurations A%, with slow spatial variations of the directional vectors. In
the A-phase, in which

A?u‘ = AAda¢i
¢ = oM +iol?, (4.118)

where ¢§” and qﬁz@) are orthogonal unit vectors, the magnitude A4 is pinned down
at the potential minimum (4.108) with a value (4.107). The unit vectors d, and
¢§1>, gbl@ vary in space. It is useful to visualize the physical meaning of these direc-
tions. Remembering the relation (4.87) expressing the collective field A,; in terms
of the pair of fundamental fields, the vector d, indicates the direction along which
the spin has the wave function % (14 + 471), along which the third spin component
vanishes.” The plane in which the Cooper pair moves is given by the plane spanned
by the unit vectors &1 and ¢@. It has become customary to introduce a vector

1= ¢ x ¢, (4.119)

which denotes the direction of the intrinsic orbital angular momentum of the Cooper
pairs in the condensate. For the completeness of the description, one has to specify,
in addition, the azimuthal angle o of ¢ in the plane orthogonal to 1. This specifi-
cation can be made unique, for example, by the following choice of parametrization:

¢ = oW +ip?® (4.120)
= e “{(—siny, cosvy,0)+i(—cosBcosy, — cosfsiny,sing3)},
1 = (sinfcosv, sinfsin~y,cosf). (4.121)

Consider now the gradient energy density (4.85) in the hydrodynamic limit.
Inserting the above parametrization of the order field, it becomes

1
ferad = §A,24 { K1|V.9,)* + K2V, [@-Vj@ - ¢3Vj¢j} + Ko3| V04|
+ Ko - Vdo|* + 2K, (Vid,)?} | (4.122)

with the notation K15 = Ky + K3. The last term is a pure divergence and can
be neglected in most discussions. Since the magnitude of all directional vectors
is unity, the mass term in (4.80) and the fourth-order term (4.78) add up to the
minimal values given in (4.108). Since A is tightly pinned down at that minimal
value, any deviation of the energy from this minimum is completely determined by
the derivative terms (4.122) of the Ginzburg-Landau expansion (4.84). These vanish

9To verify this, let d, = (0,0, 1), so that do(co)as = — (Tads + JaTs) , where T4, s are the
spin—% two-spinors with spin up and down, respectively.
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for uniform field configurations and grow with increasing bending of the field lines.
For this reason, the gradient-energy (4.122) is often referred to as bending energy.

The prefactor %Ai can be brought to a physically more transparent form: Using
(4.76) and (4.107), we find in the weak-coupling limit:

1 1 pa 11 1 T 5 v? T
L R S 0—<1——):——F<1——)
2™ = 21, 23V Vvogm ' n) Twg U T
p T) 1
= 1—— ) — 4.12
16m2 ( Tc K1’ ( 3)

where p is the mass density of He particles per unit volume. Now, if a collective
excitation of wave vector k runs through the liquid, its energy density per particle
is of the order (k?/2m) (1 — T'/T,). It grows with decreasing temperature due to the
increasing condensation energy.

Instead of the complex vector ¢, one may express the energy density in a some-
what more intuitive fashion by using the more physical vector 1 of (4.121). To this
end we define a gradient vector called the macroscopic superfluid velocity:

1 i
o Ov.6@ — L ¢iv. 4.124
Vs de) Vid 4md> Vi, ( )

where the vectors c|>(1) and d)(2) are those introduced in Eq. (4.103). Then the gra-
dient part (4.85) of the free energy density takes the form (see Appendix 4A)

1 1
5PsVe = 5ol Vo) +evi - (V x 1) —co(l-vi) [1- (V x 1)

FSEAY A+ (9 x D L E 1 (9 D

f grad

1 1
+§Kf(vida)2 - §K§ (1-Vd,)*, (4.125)
with the coefficients

ps = ALKy + 3Kys)dm?,  pg = A% Ky dm?,

c = A%3K32m, co = po/2m,
K, = K, = A}K,, Ky = A% (K + Kas),
K& = p/4m?, KY = po/4m?>. (4.126)

In the weak-coupling limit (4.84) these expressions simplify to

% = po = 2mcy = 4mc

= (2m)2K, = (2m)*22K, = (2m)2§Kb (4.127)

1
= (2m)2§Kf = (2m2)K2d.
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The material constants K,;, parametrize the stiffness for the various fundamental
deformations of the I-field which are illustrated in Fig. 4.4. They have been defined
in the theory of liquid crystals to be discussed in Chapter 5 as splay, bend and twist
deformations [22] (see Section 5.3 of Chapter 5). It is easily verified that in these
three configurations the terms with K, K, and K; give the dominant contributions.
Indeed, if the spatial changes of the 1 field take place only in the z-direction, one
can write the relevant part in gradient energy (4.125) as

1 1 1
farad sib = EKS (V1?2 + §Kt 1-(V x>+ 51(,, 1x(V x ) (4.128)

1. L. . 1 :
= 5KS sin? 3 Bf + iKt sin? 8 ’yz + §Kb [COS2 B (sin’ 3 fyz + ﬁj)} .
In the twist texture, 1 changes in the zy-plane from the x- to the —x-direction.
Hence [ = 7/2 is a constant, and only ~, contributes to the gradient energy

1
fgradt = 5 tﬁ- (4129)

The other two textures are not that clearly separated: In both, v = 0 is constant,
so that

1 1
Jaraaso = 5 Kosin® B B2 + DK cos” B 2. (4.130)

In the splay case, 1 turns in the zz-plane from z to —z-direction. In the middle
of the texture, i.e., in the place of largest 3, where angle § is w/2, the first term
dominates. In the bend case, 1 turns in the zz-plane from z- to —z-direction. Thus,
for the largest 3, where 8 ~ m, the second term dominates.
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FIGURE 4.4 Three fundamental planar textures: splay (a), bend (b), and twist (c). The
left-hand side of the figure shows field configurations with a singular plane where the fields
reverse direction. Since the superfluid would have to be normal in this plane, it prefers
the right-hand configuration in which the direction changes smoothly through a domain
wall of finite size. The thickness &4 is determined by the competition of the dipole and
bending energy.
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The currents can now be calculated by inserting (4.118) into (4.87) and (4.88).
For the mass current density we find

Ji = Psijvsj + cij (V x l)j ’ (4.131)
with the matrices

Psij = ps5ij—polilj,
Cij = C(Sij—Colilj. (4132)

Note, that this result also follows directly from an infinitesimal Galilean transfor-
mation. If one multiplies A by e*™v*, this leaves 1 invariant while changing the
superfluid velocity (4.123) as follows

Vg — Vs + V. (4.133)

This shows that v, transforms indeed like any velocity (thus justifying its name).
Using this transformation together with (4.91) on (4.125) yields again the current
density (4.131). This current density describes the superflow of Cooper pairs in the
rest frame of the normal liquid. The superfluid density is a tensor with a component
longitudinal to 1, p! = ps — po, and a transverse one, ps; = ps.

We now turn to the “orbital current”. It describes the collective motion of the
atoms within the Cooper pairs. It is similar to the current density V x M which
appears in magnetostatics in the presence of magnetizable matter [23] in the Maxwell
equation

VxB=47(j+V xM). (4.134)

The second current term describes the electronic current density flowing within the
molecular orbits of the matter. In complete analogy to this, there is a local matter
current associated with the rotation of *He atoms inside the Cooper pairs. This
current contributes to the total superflow.

The spin current density can be derived similarly to the matter current density
via the appropriate symmetry transformation which brings A — ¢=2¢¢A and d, —
d, + 0d, with

5db = _290Z€abcdc~ (4135)
Since the spin current density is defined by j2™ = —de/d;p* we find directly, from

the hydrodynamic energy (4.128):
Jai = 2 (K16 — K§1il;) €apedh Vsl (4.136)

In order to keep as much analogy as possible with the superfluid velocity we may

define a superspin velocity

1
sai = a cd Vidca 4.137
! 2m€ bet ( )

in terms of which the current density becomes

jai = 4m (Kf@j, —Kgl,l]) Usaj (4138)
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where, again, there is a longitudinal term proportional to K¢ — K¢ and a transverse
one with a factor K¢.
Under a spin rotation (4.135), the velocity transforms according to

Vsai — _Z@Zeabcvsci + vzgps/m (4139)

The orbital angular momentum current density is obtained from (4.131) by forming
the vector product with z.

The action is still incomplete since, until now, we have left out the dipole force.
Inserting the parametrization (4.118) and (4.120) into (4.83), we find

fa=—2g4A% |(d-1)* — 1] : (4.140)

3

Thus, the dipole force tends to align d and 1 parallel or antiparallel. This can
physically be understood as follows: Let the atoms orbit around each other, say, in
the zy-plane. If the spin points in the z-direction, the two nuclear moments have
equal poles all the time adjacent to each other. In the S, = 0 configuration they
are, on the other hand, aligned so that opposite poles face each other for half the
orbit. This corresponds to d||1.

A comparison of the strength of the dipole energy with the main term (4.119) of
the bending energy is possible if we write

1
fa= —AA2K23€—2(d -1)? + const . (4.141)
d

§a =1/ K23/2ga (4.142)

measures the length scale over which the direction of field lines has to vary apprecia-
bly in fgq of (4.141) in order to give the bending energy a comparable size with the
dipole energy. The microscopic calculation yields & ~ 107® cm (1 — T'/T,) which is
two orders of magnitude larger than the coherence length ~ 1000A (1 — T/T).

The small dipole energy (4.141) in the o-model of 3He plays a very similar role
as the small PCAC-violation in o-models of particle physics. Before fq is turned
on, all Goldstone modes are massless. With (4.141), the oscillations in which the
relative angle between d and 1 vibrates produce a small mass. The experimental
resonance frequency is 24 ~ 50 kHz corresponding, energetically, to the temperature
Ty~ 5 x 1077 K. It is, therefore, much smaller than the gap energy (~ m - K).

While 1 and v-vectors have physically the most transparent meaning, they are
dynamically not independent, since vy; = ﬁqﬁl)viq@ involves derivatives of 1. In
fact, the curl of v, is related to the 1 field as follows

Then, the dipole length

1
V X Vg = Reiﬂg 1. (V]l X Vkl) . (4143)
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For the proof, one forms the derivative of (4.124):

1
(Vxvy), = =—euV; (6MVi®)

2m

1
= 5k (VioVip®) . (4.144)
Since dMV,dM = 0 (due to dM? = 1), V1d1? has only a component along 1 and
&@Y . Thus

Vo Vio® = (1-v;6M) (1- Vi) (4.145)

But 1- de>(1’2) = —¢(1’2)le (due to o1 = 0) so that we can write
1
(V% Va)i = i [(6MV1) (6@ - Vil) — (6MV4l) (6PV;1)] . (4.146)

From this, Eq. (4.142) follows directly since d)(l), cl)(2),l are an orthonormal triplet.
The relation (4.142) will be powerful in relating the flow vortices to the geometric

properties of the container of the liquid. For, if one takes the scalar product of
(4.142) with 1, we find [25]

The right-hand side is the Gaussian curvature of a surface cutting normally through
the 1 field. If there is a closed normal surface anywhere inside the liquid, the integral
over k gives 27 times the Euler invariant characteristic F of a closed surface. This
characteristic is

E=2(1-—m) (4.148)

for a surface equivalent to a sphere with m handles (see Fig.4.5). Performing the
same integral over the left-hand side renders 27 times the number of singular vortex
lines which have to enter the closed surface at some place. Indeed, consider a closed
contour on top of the closed surface (see Fig. 4.6).

Let t be the tangent vector and n = 1 x t be the normal vector of the contour
inside the surface. Since d)(l), ¢(2) lie in the tangent plane they can be spanned as
follows:

d>(1) = cosf n+sinf t,
d® = —sinf n+cosf t. (4.149)

As one proceeds a little way along the surface the tangential component of v is

d
omvs -t = dsdpM x —d?
ds

do d
SRR a0
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FIGURE 4.5 Sphere with one, two, or no handles, and their respective Euler characteristics
E=0,=2,or 2.

FIGURE 4.6 Local tangential coordinate system n, t, i for an arbitrary curve on the surface
of a sphere.

The second term

d
y=t- (l x d—t> (4.151)
S

is called the geodesic curvature since it describes the rate of change of t away from
the t direction (it is zero on the equator of a sphere). If we now convert the integral
over the left-hand side of (4.147) into a contour integral and increase the contour
throughout the surface leaving out all singular points, the result is

Zi: yf ds [% + 7] (4.152)
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with the sum over all enclosed singularities. If the circles are infinitesimal, the
surface can be considered as a plane and the integral over the geodesic curvature
renders

fdsy = 2. (4.153)

The integral over df/ds, on the other hand, depends on the vertex strength N; at
the point ¢ as
2(N; — 1). (4.154)

For, if there is no vortex, the vectors o), ¢ stay fixed in space along the contour.
Thus, the intrinsic coordinate 6 of (4.149) changes by —27. If, on the other hand,
there is a vortex with ¢, ¢® rotating N; times around 1 in the positive sense,
when going around the contour, there will be an additional change of 27 - N;. Thus
the Euler characteristic determines the number of vortex lines passing through any
closed surface normal to the 1-field inside the liquid. This theorem will be useful for
the discussion to follow.
In the B-phase, in which

i — SBAlg; 'cp’ :
A% = ARy (0) € (4.155)

the magnitude of Ap is pinned down at the potential minimum (4.108) with a value
(4.107). Only the angles 6 and ¢ are allowed to vary. Due to (4.80), the gradient
energy becomes

1 1 . .
fgrad = §A2B Kléijékl + §K23 (5il6jk —+ 5zk531)} Vi (Rm; (9)€_w) Vi (Raj (9)€w> .
(4.156)

The derivative factor can be rewritten as
VMOV[(,O + kaaileaj —+ ... s (4157)

with mixed terms VRV vanishing in the contraction with the tensor (4.152), for
symmetry reasons. If we parametrize small oscillations in 6 as

Rui(0) = Ra;(00) Rji(0), (4.158)

the energy becomes

—

1 N
feraa = §AQB {K1 [3(V ©)? +2(Vi0;)°

T
Ko [(v P + (Vi) = 5(V

Using the result of Eq. (4.107) together with (4.123), we have

1 81 8 1 T\ 1
AL = — A= — (1_—)— 4.160
258 T 10274 7 1016m2” T.) K, (4.160)
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which can be used to bring the energy to the form

fgrad - Am2 2ps {5<V @) + 5<v29])
K23 |:2 2 2 q\2 1 A\ 2 1 ~ A:|}
— | = —(V,0,)° — = — = e, (4.161
+ oK, 5(V<p) +5(V19]) 5(V9) 5VZ V0, (4.161)
Here, we have introduced the quantity
T
B =9 (1 - —) 4.162
ps IO Tc ? ( 6 )

which for T" =~ T, is the superfluid density of the rmB-phase. The current density
can be obtained either by inserting (4.158) into (4.88), or by performing ¢ — ¢@+2d0¢
in (4.161):

11
B
Ji = Ps Q—mgg(?’ + Ka3/ K1) Vip. (4.163)

The spin current density may be obtained by inserting (4.158) into (4.92), from
which we find

jai = Raa’(eﬂ)ja’h

~ 1 2 K23) A 1 Ko ~ ~}
o= —— o214+ 28V va, - 2289 4 46,V -00. (4164
J om2” {5< "ok, ) Viba T g, Vabi T 0V (4.164)

4.8 Bending the Superfluid SHe-A

The experimental interest lies in the possibility of preparing many nontrivial field
configurations by gaining control over the directions of 1- and d-vectors. Their
presence can be detected by magnetic and sonic resonances. The principal means
of enforcing certain field directions are the following:

1. External Magnetic Fields
These try to enforce d LH with a strength comparable to the dipole energy if
H =~ 35 Oe. The energy is proportional to (d - H)2. The microscopic reason
for this collective effect is clear. The field H becomes the quantization axis
so that the direction d (that specifies the direction along which the magnetic
quantum number vanishes, S3 = 0) is orthogonal to H.

2. Walls
Since 1 denotes the direction of the orbital angular momentum of the Cooper
pairs, one expects 1 to stand orthogonal to the walls of the container since a
plane of orbital motion parallel to the walls should energetically be favored
over the orthogonal configuration. This expectation is verified by calculations.
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a) b) c)
FIGURE 4.7 The 1||d-field lines in a spherical container. There are necessarily two flux
quanta associated with a singular point either in the form of two vortex lines (a) or of
one with double circulation (b). Since vortex lines store condensation energy, they act
approximately like a rubber band and draw the point to the wall (c), thereby generating
a flower-like texture called a boojum [24, 25].

Apart from this, currents and probably also electric fields act as directional agents
upon 1.

Let us now discuss what is called an open system. It is defined by a liquid in
a container which is large compared to the dipole length &, (i.e., much bigger than
103 ¢cm) and with no magnetic field being present. In order to avoid the pile-up of
dipole energy, d and l-vectors will stay aligned over most of the volume. Only in the
neighborhood with a radius £ around the line-like singularities, where the bending
energies become comparable with a dipole energy, alignment may be destroyed. Such
singularities will be present in any sample prepared carelessly. Moreover, even with
the most delicate cooling into the superfluid phase, the geometry of most containers
will enforce the existence of some singularities. This will now be discussed separately.

4.8.1 Monopoles

If a sphere is cooled smoothly through the transition region, the field lines of 1(x)
will be planted uniformly orthogonal to the walls and develop towards the inside
like the spines of a hedgehog. At some place there has to be a point-like singularity.
Moreover, since the Euler characteristic of the sphere is E' = 2, any closed surface
orthogonal to the l-field inside the liquid has to be passed by two vortex quanta.
Possible field configurations are shown in Fig. 4.7. In the first case, two separate
vortex lines of strength one emerge from the singularity, one running to the north,
the other to the south pole. In the second; case, there is, instead, one single line of
vortex strength two at the north pole. In the third case the singularity has settled
at the boundary forming a flower-like structure, a texture called a boojum [25]. The
last case is apparently favored energetically since there is considerable condensation
energy stored in the vortex line inside of which the liquid is normal. The vortex
line acts like a rubber band (compare the next section on vortex lines) pulling the
singularity to the boundary. The first situation corresponds to the field lines of oW
and ¢& running along the lines of equal longitude or latitude like on a globe, the
I-vector pointing, of course, radially outward. North and south poles are singular.
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FIGURE 4.8 Two possible parametrizations of a sphere, either with two singularities, as
the standard geographic coordinate frame on the globe, or with one singularity, as shown
in the right-hand figure. The geographic parametrization corresponds to liquid *He having
two singular vortex lines, one emerging at the north pole and one at the south pole. The
vectors cl)(l) X d)(2) are tangential to the coordinates. The vector 1 = c])(l) X d)(2) points
radially outwards. The lower parametrization corresponds to one vortex line with double
circulation emerging at the north pole. The south pole is a regular point.

The two other situations correspond to a parametrization of the globe with only one
singularity at the north pole (see Fig. 4.8).

In order to estimate the energies let us parametrize the field lines as'®

l=e,, &= (es+ie,)eX. (4.165)

Then the superfluid velocity is:

1 cot 0
s=—[Vy— 4.166
vom g (v e, ) (4.166)
with a vorticity
1
2m (V xv,) = —e,. (4.167)
r

Integrating this over a spherical closed surface gives 47 = 2 x 27, corresponding
to the passing of two vortex units. Choosing Y = 0 we see v, to be singular at
0 = 0 and 7, so that two vortices of one quantum run from the center upwards or
downwards [see Fig. 4.7a)], respectively. If x is chosen to be x = ¢, the singularity
on the north (south) pole is cancelled with the other one being doubled [see Fig.
4.7(b)]. Inserting these configurations into the energy (4.126) with 2K, ~ Koy = 2K

one has [26]
ps T 2R 5
E=L 4Rlog< : 2) (4.168)

in the first case. Recall that p, ~ 2p (1 —T/T,).
The energy of the second case is obtained by replacing log (2p/¢ — 5/2) by the
larger value 2log (2R/{ —7/4). The volume integration has to be cut off at the

10We neglect, for simplicity, all energy terms involving the d-vector.
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FIGURE 4.9 Spectra of Goldstone bosons versus gauge bosons. Goldstone bosons have
energies going to zero with increasing wavelength due to an underlying symmetry. Gauge
bosons have no energy for any vector case since their fields correspond to local symmetry
transformations under which a gauge theory is invariant.

coherence distance £ = &y//1 — T'/T,. away from the singularity. This is physically
the correct procedure. Closer than &, the liquid cannot support the large bending
energies coming from the directional change of ¢ and ¢ around the v,-vortex line
and it escapes by A leaving the valley of minimal action and returning to the normal
liquid point where A = 0. At that point, d and ¢ in (4.118) lose their meaning and
the singularity is avoided. Since the energy is proportional to A% and A*, it vanishes
in the normal region so that the integration can be cut off there. Remember, though,
that the complete energy consists of the sum of the bending energy e of (4.119) and
the negative condensation energy fu, of (4.92). When comparing this structure to
the monopole-like solutions in gauge theories coupled with Higgs fields [29] there
is an essential difference: The energy increases with the radius of the sphere. The
energy of a monopole, on the other hand, is constant. The reason for this is simple:
In a o-type of model, a field configuration which is radial asymptotically has a
bending energy

N\ 2 oz T2\
(v2) = <—5w Ty T ) ~L (4.169)
T

r 72

Hence, the integral diverges with R. In a gauge field theory, on the contrary, the
vector potential is oriented radially, but the bending energy measures only the gauge
invariant derivative F’ 51, =(V,A, — V,,Au)2. This vanishes asymptotically very fast
and all the energy is concentrated around the origin.

The situation can also be described in the particle language. In the o-model,
the nontrivial vacuum consists of a coherent superposition of static off-shell Gold-
stone bosons with many k-vectors. Their energy increases with k% and even in the
asymptotic region there is a considerable amount of energy. In gauge theory, the
asymptotic region contains only longitudinal gauge particles which, by gauge invari-
ance, correspond to Goldstone bosons with energies that vanish identically for all
k-vectors (see Fig. 4.9).

Therefore, the asymptotic region is free of energy. Since it is the curvature of
the container walls which enforces asymptotic bending energy (or the presence of
Goldstone bosons close to the walls) the growth of energy with the radius of a sphere
cannot be avoided, even if one patches together the field of a monopole with that
of another monopole and forms what may be called a monopolium [26]. In order to
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study the situation, the point singularities sit at (0,0,C) and (0,0, —C'). Then an

ansatz ) ) ) )
re—C

1= cosf e, + sinf ey (4.170)
with )
A= {(7’2 - 02) + 4C?r? sin® 6’} (4.171)
can be used to construct a vector field ¢ so that the superfluid velocity is
1 r?cos?f — C?
s = — - . 4.172
M 2M {VX Arsin eg} (4.172)
The energy becomes
56 ps T Py 2C 9 3’
E=—m— ——C|ln—— -+ — 4.1
247rm2R+2m20ln : <4+32 (4.173)

within a sphere of radius R. Thus, in addition to the energy proportional to R en-
forced by the spherical container, there is a linear binding energy with a logarithmic
correction which stems from the bending energy in the neighborhood of the vortex
line. The vortex line pulls the point singularities together according to an almost
constant force.

Note, that apart from the first term in the energy caused by geometry, there is
an essential difference of this o-model result with what one expects for string like
solutions of pure gauge theories. There, color is supposed to be screened completely
in the vacuum so that the color field does not leave the vortex line. This is the
reason why the force is purely linear! The monopolium state can be stabilized by
placing ions of equal charge at both ends.

4.8.2 Line Singularities

If a cylindrical container is cooled, the l-lines will develop radially inwards. One
therefore expects a singular line along the axis. At this line, the liquid would have
to be in its normal state since the l-vectors are undefined. This amounts to the
accumulation of a large condensation energy, which can be avoided by the I-lines
flaring upwards like in a chimney [26] (see Fig. 4.10). Then the entire liquid can
remain superfluid and contain only bending energies.

Quantitatively, the energy can be minimized by an I-field

1 =e,cosf+e,sin g, (4.174)

with
T

Blp=0)=0, Blp=R)=7. (4.175)

There are many complex vectors ¢ which can be constructed with this 1, for example:

¢ =" [—sinf e, +cosf e, +ie,. (4.176)
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FIGURE 4.10 Cylindrical container with the 1|/ d field lines spreading outwards when
moving upwards. The line singularity on the left stores condensation energy. The curved
configuration on the right contains only bending energy, which is preferable in a large
container. Small containers and magnetic fields, on the other hand, may give preference
to the singular line.

They lead to a superfluid velocity

1

= 3, (m —cos ) e,. (4.177)

Vs

At m = 1, there is no vortex line along the axis. This situation is favored energet-
ically. Inserting v, and 1 into the energy (4.125) and extremizing with respect to
0p(p), one finds the solution for 5(p) from the integral:

P T/2 K, cos® B + K, sin? 3 12
R = XP (/ { )2} ag| . (4.178)

8(p) | Kysin? 5 + 25 (1 —cosf3

The total energy of this configuration is

E~tl145r 2, (4.179)
m

where L is the length of the cylinder. Here, the weak coupling equalities (4.120)
have been used.

Note that from (4.177) there is an azimuthal current flowing in this field config-
uration, which therefore may have a nonvanishing orbital angular momentum. In
order to calculate this, consider the second, convective, part of the current

V x1=(1-V)pe, = —(cos 3)e,. (4.180)

This part also circulates around the axis but with a different radial dependence.
The total angular momentum is then, due to (4.94),

L:/fx@xﬁ. (4.181)
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It is directed along the z-axis with a value

L, = 27r/dzdpf0 [A(l —cos f) — CQ(COS@]

2Mp dp
_ Ps (1 _
= 27r/dzdp {QM(l cosﬂ)—l—ccosﬂ}
2ps 1 2)
~ —|1-——+ = L. 4.182
h 2m< T * 2 (4.182)

For the last equation, we have again inserted the weak-coupling value ¢ = p,/4.
During the phase transition, the angular momentum must manifest itself in a re-
coil imparted upon the container. It would be interesting to detect this effect
experimentally.'*

There is also a way to prepare the singular vortex line. For this, a magnetic field
has to be turned on along the z- axis which drives the d-vectors into the xy-plane.
This enforces a singularity in the d-field lines along the axis causing the liquid to
be normal there. Once the condensation energy is spent, the weak dipole force is
sufficient to pull also the 1-field into the radial direction [30].

4.8.3 Solitons

Let us now turn to planar textures in an open geometry [26, 28]. A direction may
be defined by magnetic field pointing, say, along the z-axis. Then, the d-vectors will
be forced to lie in the xy-plane:

d=sinyYx+cosyy. (4.183)

The bending energy is minimized by a constant v in space. The dipole force pulls
the 1 vector in the same or in the opposite directions. Since this force is very weak,
there will be some regions where 1 is parallel and others where 1 is anti-parallel to d.
The wall separating the different domains is stabilized by the competition between
bending and dipole energy. If the thickness of the domain wall, a, shrinks, the
bending energy density grows like 23 a% X a, while the corresponding dipole term
falls off like 25 5% x a. Conversely, a large domain accumulates an overwhelming
dipole energy. Equilibrium is reached at a ~ £3. If one studies, for simplicity, only
configurations with a pure z-dependence and with 1 in the xy-plane

]l =sinyXx+ cosxy, (4.184)
the most general ®-vector is

® =¥ (—cos Y X +sinyy +i2), (4.185)

1 Also, the boojum in a sphere has an angular momentum which would set the sphere into
rotation when cooling through the transition point.
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and the bending energy becomes, for the weak-coupling values of the parameters,

frena = 2 {207 + 2 + (907} (1.136)

The dipole energy contributes
Py 2
faip = SR sin? (x — 1) . (4.187)

The phase ¢ occurs only in the bending energy and is uniform, in equilibrium. The
remaining dependence on the fields y, 1 can be diagonalized by setting

v=yx — 1, u=yx+4y. (4.188)
Then, the energy takes the sine-Gordon form

1

(1 1
J = Joend + faip = ps —uZ + —vl + —5sin’v (4.189)
20 5 12

This is minimized by a constant v and a soliton in the variable v:
sinvg = cosh™' (2/&q1), tan % = et#/&or, (4.190)
where the width of the soliton is of the order of the dipole length

Esol = \}5 . (4.191)

as expected. The energy per unit area of the domain wall is

E p” /0 gsol ps 1 1
Eo_ s dzcosh™(z/6) = L2500 = Ps = 2 (4192
s am? fd/ zeosh ™ e/ba) = e = R (192

The soliton corresponds to d- and l-vectors twisting in opposite directions inside the
domain wall with 1 moving four times as far as d (see Fig. 4.11).

The presence of such a domain wall can be detected in the laboratory via a
nuclear magnetic resonance experiment (NMR). Suppose a vibrating field is turned
on along the z-axis (in addition to the static orienting field H®**). This is what is
done in a so-called longitudinal resonance experiment. Then the vector 1 associated
with the spin fluctuates around the z-direction (see Ref. 16), so that its azimuthal
angle is

¥ = Yo +9, (4.193)

and consequently

U = Usol T 457
Voot — 6. (4.194)
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FIGURE 4.11 Field vectors in a composite soliton. At z = +o00, 1 and d are parallel, at
z = —oo they are antiparallel. Inside the domain wall of size {4 the vectors change their
direction, 1 four times as much as d.

This gives an additional vibrational energy

I 1 2
5 f = Ps P (1 —= ) 5%]. 4.195
el [Z* ( cosh2<z/ssol>> ] (4.195)

The extrema of this energy correspond to the bound states of the Schrédinger
equation!?

l—vg + ;2 (1 - cosh2(2z /&a))] 5(2) = N(2). (4.196)

This is a standard soluble problem (see the textbook on quantum mechanics by
Landau-Lifshitz, ch. 23). The ground state is

1
x cosh2(z/§sol) ’

s= % [—1 +4/1 +4%5§01 = % {—1 +4/1 +4§} ~ 0.306. (4.198)

Since s < 1 there is only one bound state. This bound state has an energy

(4.197)

with

A= % (V65— 7) % (4.199)

12The time driving term can be shown to go as %62, so that A corresponds to a frequency square.
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FIGURE 4.12 Nuclear magnetic resonance frequencies in a superfluid 3He-A sample in
an external magnetic field, as measured in Ref. [27]. The large peak corresponds to the
main absorption line, the small peak to the right is a satellite frequency line attributed
to the trapping of spin waves in planar domain walls. The lower part of the figure shows
the position of these lines for different external frequencies of the longitudinal magnetic
field. The ratio of the satellite frequency to the main frequency agrees with the theoretical
calculation.

The continuum has a spectrum

A=K+ % (4.200)
d
Experimentally, the vibrating field is homogeneous so that in the continuum only
the k = 0 value is excited. This leads to the main NMR resonance absorption
line. If now a soliton is present, this is the only observed signal. The bound state
trapped by the soliton has the effect of creating a line whose frequency lies by a
factor 1 (\/67 - 7) ~ (0.728)? below the main line. Such a “satellite” frequency has
indeed been observed experimentally (see Fig. 4.12).
Note that the satellite line provides a good test for the weak-coupling values of
the coefficients K 23 in the bending energies. If £ denotes the ratio

k=2K,/(K;+ K3), (4.201)

the frequency should be found at

2K

instead of (0.728)%. The experimental value (0.74)? implies that & is close to 1, in
agreement with the weak-coupling result.

If the parameter s had been a positive number, there would have been more
bound states, one for each n =0,1,2,...,s.

VBk+2)(k +2) — (55 +2)] (4.202)

4.8.4 Localized Lumps

We have argued before that the energies of point- and line-like singularities are
necessarily not localized. In a hedgehog-like field structure, the o-model bending
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energy behaves asymptotically like 1/R?, so that the spherical (or cylindrical) inte-
gral diverges linearly (or logarithmically). The energy can be confined to a small
region only for a field configuration which is asymptotically flat but contains some
knots, say, close to the origin. Topologically, one has to find a nontrivial mapping of
the entire three-dimensional space into the parameter space of the liquid where all
points are mapped into one point, except those in a small neighborhood of the origin.
In the A-phase of 3He there exists, in fact, such a mapping with 1- and d-vectors
aligned [35] (see Fig. 4.13). Indeed, the covering space of the parameter space SO(3)

=V

FIGURE 4.13 Vectors of orbital and spin orientation in the A-phase of superfluid *He.

is SU(2), which is equivalent to S3, the surface of a sphere in four dimensions. Since
the ordinary space corresponds to S3, which is the space S3 with the north pole
removed, one has a nontrivial mapping S; — S5 with a large neighborhood of the
north pole of S® mapped into one point of S5, accounting for asymptotic uniformity.
This corresponds to a diffuse smoke-ring type of configuration which moves through
the liquid with a velocity v = ii/mR, a momentum P = fip,R?/m, and an energy
E ~ h?p,R/m?, respectively. Note that the velocity is inversely proportional to the
radius R of the smoke-ring.

Actually, the topological stability does not prevent this object from having only
a small lifetime. While it moves through the liquid, orbital friction eats up the
energy and decreases the size. Once the object has shrunk to the size of the order
of the dipole length &4, the locking and d and l-vectors will be overcome, and the
parameter space is increased to

R = S? x SO(3)/Z,. (4.203)

Then the topological stability is lost. The knot in field space unwinds and disap-
pears.

4.8.5 Use of Topology in the A-Phase

In the A-phase of 3He, as in gauge theories, topological considerations are helpful
in classifying the different stable field configurations. In the superfluid, topological
stability means that there is no continuous deformation to a lower energy state
within the hydrodynamic limit. Since this limit is an approximation, the stability is
not perfect. The size of the order parameter A which, in the hydrodynamic limit, is
assumed to be pinned down at the value of minimal energy, does in fact fluctuate.
On rare occasions it will arrive at the point A = 0, where the liquid becomes
normal. This process is called nucleation. For example, there is topological stability
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in a superconductor contained in a torus with the phase of the order parameter
changing by ¢™¥ when going once around the circle. There is no continuous way
to relax the ensuing supercurrent in the hydrodynamic limit. But the supercurrent
does decay, albeit it may take years. The reason is that, at some place on the
inner boundary, the size of the order parameter may, by fluctuations, climb up
from the valley of lowest energy into the normal phase with A = 0. There the
phase ¢ loses its meaning and can unwind by one unit of 27. This point may
lie at the inside of the torus and can develop into a thin flux tube. This tube
can carry one unit of electric flux away from the supercurrent. Such a process is
facilitated by putting together two superconductors in a Josephson junction where
the diffusion of such units can be observed in the clearest fashion. Thus topological
stability in the hydrodynamic regime really amounts to metastability with extremely
long life times. For most purposes, such life times can be assumed to be infinite.
Then the topological classification provides us with good quantum numbers of field
configurations.

What is the connection between two field configurations of the same topological
class? They can be deformed into each other by continuous changes only of the
directions of the fields with the magnitude being fixed. If initial and final states
are both dynamically stable, there is an energy barrier to be crossed during such
a deformation. Its energy density is only due to the bending of the field lines and,
therefore, extremely small as compared with the condensation energy which enforces
topological stability.

Consider now the topology in the parameter space of *He [32]. In the A-phase,
the vacuum is determined by the product of the vectors d, and ¢;. The vector
d, covers the surface of the unit sphere in 3 dimensions, S?, the complex vector
& = oW +id® is a three-parameter space equivalent to the space SO(3), i.e., a
sphere of radius r» = 1 with diametrically opposite points at the surface identified.
Every point is determined by the direction of the vector 1 = ¢1 x @ and the
length which characterizes the azimuthal angle of &1 in the plane orthogonal to 1.
Due to the occurance of a product d,¢;, a sign change of d, can be absorbed in ¢;
so that the total parameter space is

R = S? x SO(3)/Zs. (4.204)

Stable singular points exist if the homotopy group m(R) of mappings of the
sphere S? in three dimensions into this parameter space is nontrivial. But it is well-
known [33] that, for the above space m(R) = Z, the group consists of the integer
numbers. Thus each point singularity is characterized by an integer number. There
can be infinitely many different stable classical field configurations of the monopole
type. This purely topological argument is based on the independence of the vectors d
and 1. We know, however, that the dipole force tries to align the d and l-vectors. For
this reason, as soon as the size of the container exceeds the dipole length &4 ~ 1073
cm, d and 1 will stay parallel asymptotically thereby reducing the parameter space
to

R=S0(3) (d | 1. (4.205)
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Then the homotopy group is mo(R) = 0 and there are no monopoles.

Thus monopoles could be created only in very small regions (r << 1073 cm)
of the liquid. Their d and 1 field lines are non-aligned. As a consequence, their
neighborhood contains considerable dipole energy. If the volume of the neighbor-
hood becomes much larger than the dipole length, fluctuations in the liquid cause
nucleation to the normal phase with the monopole vanishing in favor of a d | 1
alignment and no dipole energy. Quantitatively, the transition point to the con-
figuration with d || 1 is determined by the competition of the small dipole energy
density fq ~ (p/m?)(1/£3), stored in a finite volume, with the large condensation
energy density f. ~ (p/m?)(1/£2), stored in the immediate neighborhood vlume &3
of the singularity of size &(~ 1000 A) . The relaxation occurs at

RS 53
TS 4.206
g7 e (4.206)
or
R > {/¢€3 ~ 10 *em. (4.207)

For line singularities we have to consider 7 (R). If d and 1 are independent of each
other, this homotopy group is
m(R) = Zy. (4.208)

Hence there are four types of line singularities which can be labelled by their vortex
strengths s = i%, +1. Examples:

1 )
i§ . @ =t (e, +ie,), d=e,cos % T eysin %, l=e, (4.209)
+1 : P = (e, +1ie,), d=e, l=e,. (4.210)

As the volume increases, R > &4, the dipole force leads again to alignment of d and
1, reducing the parameter space to

m(R) =2, (1] 4). (4.211)

Thus only two types of singular lines survive and one sees from (4.209) that it is the
41 vortex lines which survive.

4.8.6 Topology in the B-Phase

The discussion of the hydrodynamic limit can be extended to the B-phase. Consider
the parametrization (4.104) of the degenerate ground state

Ay = AgR™ (n,0) e (4.212)

with Ap pinned at the point (4.107) of minimal energy density (4.107). The matrix
R may be written explicitly as

R, (n,0) = cos 064 + (1 — cosO) ngn; + sin Oegipng. (4.213)



4.8 Bending the Superfluid 3He-A 191

Inserting this into the collective action (4.78), (4.80) the energy becomes the sum
of bending energies involving gradients of 8, n and ¢.

The parameter space of (4.212) consists of the direct product of a phase (which is
isomorphic to the circle S') and the group space SO(3). As the dipole force is turned
on, the angle € is pined at the value § ~104° and the space SO(3) is narrowed down
to the different directions of n only, covering the surface of a sphere S2. The point-
and line-like singularities are classified by considering the homotopy groups m(R)
and m(R) of the parameter spaces R=S*x SO(3) for small configurations, r < &,
and R = S? x S? for large ones.

In the first case one has

WQ(R) — O, 7T1(R) =7 + ZQ. (4214)

Thus, there are no topologically stable point singularities while there are two types
of vortex lines: One set has its origin in the pure phase €!® of the parametrization
and is characterized by an arbitrary integer N. These vortex lines are of exactly
the same type as those of superfluid *He. In addition, there are singular lines in the
n, 0 parameter space, two of which can annihilate each other (due to Z,). For large
samples where # = 104°, the homotopy groups are

7T2(R,) == Z, 7T1(R,) =7. (4215)

Thus, there are stable point like solutions of arbitrary integer charge, the simplest
being a hedgehog with the n-vector pointing radially. The line singularities are all
due to the phase €¢¥ and therefore again of the same nature as in superfluid bosonic
helium.

The B-phase possesses also interesting planar structures. In order to classify
them one has to map the line z € (—o0,00) into the parameter space SO(3). In
an open geometry any such mapping can be deformed into the identity. Stable
configurations arise if a magnetic field is turned on along the z-direction which
aligns the n vector parallel or anti-parallel. Note, however, that, contrary to the A-
phase, the directional energy of the magnetic field is quite weak: Since the B-phase
corresponds to J = 0 -Cooper pairs, only the small distortion of the wave function
caused by the dipole coupling which leads to a net magnetic energy of the order of

fug(H) ~ g4 (%)2 (n-H)? (4.216)

Thus, the characteristic length over which bending and magnetic energies are com-
parable is much larger than &4, namely

A

Emg(H) ~ 7—H€d' (4.217)

With A ~ 1m°K and vH ~ 0.156 x 10° m°K/gauss, this is, at 100 gauss, of the
order of one mm. At large distances, however, this weak-coupling does result in the
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FIGURE 4.14 Parameter space of 3He-B containing the parameter space of the rotation
group. Thus, points which lie diametrically opposite on the surface are identical. The
dipole energy (hyperfine coupling between the spins) favors a spherical shell within this
sphere. It corresponds to rotations around any axis by 104°. Planar textures (solitons)
have to start and end asymptotically on this shell. The figure shows the four topologically
distinct classes of paths starting and ending on this spherical shell.

n-vector lying parallel or anti-parallel to H. By the same token, also the dipole force
is active and the angle 6 between d and 1 settles at the value 6 ~ 104°.

We can visualize this asymptotic situation by drawing a sphere of radius 7 and
by specifying, within this, the surface of fixed radius forming at a given 6 =~ 104°.
Then, any planar field configuration corresponds to a line starting and ending at
the north or south pole of the # ~ 104° -surface. Thus, the asymptotic space is
Zo. There are eight classes of mappings, four of which are the mirror images of the
others. They are shown in Fig. 4.14.

The first class (+ + 0) is trivial and can be deformed continuously into the
uniform field configuration. The second, (+ — 0), is a @ soliton where 6 starts out
and ends at 6 ~ 104°. The third soliton, (+—1), has the angle 6 run from 104° to 7
and come back from the identical point at the south pole into 104° with n pointing
in the opposite direction. The last class, (+ + 1), is topologically equivalent to the
sum of the previous two and can, in fact decay into them.

In order to imagine the different energies of these field configurations remember
that the dipole force makes the radial shells have constant dipole energy with a
minimal valley at the shell  ~ 104°. The magnetic force, on the other hand, pulls
n into the z-direction, thus creating a potential valley running through the sphere
from north to south. Since the magnetic force is much weaker than the dipole force,
however, this valley is extremely flat. Let us now follow the movement of the field
configuration as z runs from +o0o to —oco. Clearly, the order parameter 6 likes to
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(+-0)

FIGURE 4.15 Possible path followed by the order parameter in a planar texture (soliton)
when going from z = —oo to z = +00. The path tries to stay all the way on the spherical
shell preferred by the dipole energy.

stay close to the north and south poles for the largest possible portion of the z-axis.
The crossing over to the other takes place on a small piece only. The dipole energy
is the strongest effect at hand, the value of 0 stays fixed at 104°. Thus, the curve
representing the field moves as shown in Fig. 4.15.

While crossing to the other side, § moves through the valley 6 ~ 104° and has
to overcome only the magnetic energy. Correspondingly, the soliton (+ — 0) has
the size determined by &, which is quite large. This is in contrast to the soliton
(+ — 1), which always has to cross the dipole barrier and has the much smaller size
&a-

Finally, the last configuration (4 + 1) can lower its energy by deforming the line
as shown in Fig. 4.16. By inspecting this figure it is obvious that such a soliton can
decay into the previous two, one with dipole and one with the much lower magnetic
energy.

(++1)

FIGURE 4.16 Another possible class of solitons has an order parameter which starts at
the north pole (say) of the spherical shell, goes to the surface of the sphere, re-emerges at
the diametrically opposite (identical) point and ends up at the point it started out. Along
the way it tries to stay as much as possible on the spherical shell preferred by the dipole
energy.

4.9 Hydrodynamic Properties at All Temperatures T <T,.

Until now, the discussion has been limited to temperatures in the vicinity of T..
Only then can the expansion of the collective action (4.66) in A,; converge. For
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T < T, the field A,; can no longer be assumed to be small since it fluctuates around
a finite average value AU, whose size increases as the temperature decreases. For
T =~ T, such a behavior is described by formula (4.107). Here we shall extend the

results to all temperatures.

4.9.1 Derivation of Gap Equation

We separate the collective field A,; in the collective action (4.66) into a constant
background field A?;, plus fluctuations A/, around it, by setting

a)’

Ay=A% + A (4.218)

Then the collective action becomes a functional of A/;:

0y — &(—iV) Vo, (A% + A)
co A/- — T lo ai ai
AconlAgi] = =5 Tr g(N To(A% + A%) 00, + £(iV)
1
——/d%Aﬁ;f‘Agi . —/d4x (AL AL + cc) — —/d4 AAL (4.219)
39 39
Here we have introduced the dimensionless derivative
V=% (4.220)
t 2pF " '

The trace log part can be rewritten by analogy with (4.70) as

’ __3 Zat—f(—ZV) Zv O'a / 4 0% A0
AconALl = 2Tr log < V10 A 0, +€ d*r A AL

? . 0 ZviO'aAi”-
_ §Tr10g{1_ZGAO<i@iaaAfj{ 0 )}

1 4 Ox A/ 1 4 ! |12
- g/d o (AGAL +ec) - g/d | AL |2, (4.221)
where B .
10, — £(~iV) iVio, A
0 = ai 4,922
Gao =10 ( V0, A% i0, + €(iV) (4.222)

is the propagator in the presence of the constant A° field.

The first two terms can be dropped since they are an irrelevant constant due to
their lack of depending on the fluctuating field A’. Expanding in powers of A, we
have

Acon[A Z Ayl (4.223)

with a linear term

A [AL] = ; (G’Ao@V UaAm7> — —/d4 A%A +ec (4.224)
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01

where 77 /2 is the same 2 x 2-matrix as o© /2 :< 0 0

) but acting on the two field

components of (4.65). The quadratic term is

. ~ 2
) 0 iVio,AL. 1
A=t lae (O iOaflai )| _ —/d4 AFA . (4.22
A?[ az] 4 I lGA (iViOaAﬁl’g 0 )] 39 L Agi ( 5)

The linear term is eliminated by the requirement that A is stationary under fluctu-
ations in A/,. This condition yields the gap equation:

3 5 _
A = ?gTr <0aiViGAo (x,y)%) (4.226)

T=y—e€

The propagator (4.222) can be calculated most easily for the case of a unitary
matrix

Aap(P) = Di(0a)apAais (4.227)

where p denotes the dimensionless vector p/pr. Then
1
AasAl, = §Tr(AAT)5M. (4.228)

The condition is satisfied if A%, has the form (4.103) in the A-phase or (4.104) in the
B-phase [not, however, for the A;-phase (4.105)]. In A- and B-phases the right-hand

side becomes \
A?sin?0 | _
{ A A2 }p2 = A?%p? (4.229)

where 6 is the angle between 1 and the momentum vector p. In momentum space,
the propagator is

Gao(w,p) = 1 < (iw +&(P))das —ADap(P)

; = _ : 4.230
e s Ay s )42
for the A-phase, with A% sin?# replaced by A% in the B-phase. This matrix can
be diagonalized via a so-called Bogoliubov-transformation. This is a 2x2-matrix in
which the diagonal values display pure propagators of the energy

2 Lia2
A sin6 } (4.231)

E(p) = % £(p)? + { A2

The energies show a gap A2 sin?6 or A%. In the B-phase, the gap is isotropic just
as in a superconductor. In the A-phase, on the other hand, there is an anisotropy
along the l-axis with the gap vanishing for momenta along 1.
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The size of the gap is found by solving the gap equation (4.226). Inserting
(4.230), this takes the form

A% = 3 T TR T —— L
R
i 1 E(P) .0
= 39 Z Z p'p’ tan A (4.232)
— PP o) " Tar T
or
dij S 1 E(p)
— ! t . 4.2
39 zp:p om0 ™ ot (4.233)

The momentum integration can be split into size and direction [recall (3.61)]

/ (;i};g ~ N(0) / % / de, (4.234)

where N(0) is the density of states (3.62) at the surface of the Fermi sea. Since
the integration over d§ is cut off at a value weyor ~ %TF, the momenta stay suffi-
ciently close to the Fermi sphere forcing the dimensionless vectors p = p/pr to be
approximately equal to the unit vectors p = p/|p|. Then (4.233) becomes

dp R dp R </wcutoff E )
iDj = i df — tan — 4.235
arPiPs =N Z/ A"\ g2E Mo (4.285)

We may eliminate the coupling constant g in favor of the critical temperature T, by
using (4.76). This gives

Weutoff ]_ 5 3 1 2 Weutoff 1 m
/ / dz (1 —z / )
—1

dE—t =2 d ¢
—Wcutoff 525 ol 2Tc 4 ) Weutoff 52 vV 52 + A2 an 2T

(4.236)

In order to extract the finite content, one may subtract

Weutoff ]_ é’
d§ — tan —
/"‘;cutoff 526 o 2T

on both sides. Then &-integral converges and we can remove the cutoff which leads
to

log%C = %/_11 dz (1 — 22) /_O:O d¢ [—2@ tan <\/§2 + A2/2T> — 21—§tan i]
(4.237)

From this we may calculate T'/T. as a function of A,p/T. as follows:
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For small T, the integral increases as logT" due to the small-§ behavior of the
second term. The finite term is determined by setting tan(\/é’? + A2/2T> ~ 1

(which is good to fit experimental data, except in the A-phase for z ~ +1) and
integrating the first while partially integrating the second term:

4/ dz(1 {(10 V52+A2+5 lg—tan—>+/ logx}

COShQZB
AT 47
:4/ dz 1—2)(logK—logi)

T

maxe’y/ﬂ—

22

) T
0 RN

2

A
8/ dz(1 = 22) log 75— (4.238)

max

=1
og A
In the B-phase, A = AL, = Ap, and
Ap/T. =me " ~1.76, T ~0. (4.239)

In the A-phase, A = A, sin ©, and the integral becomes

3 1 5
_g/ d:(1 = 2%)log(1 — 2%) = 2 —log2 ~ log L.15, (4.240)
—1
so that
£5/6
AT, = e~ 2.03. (4.241)

For small 7T, this value is approached exponentially fast ~ e~22/T for the B-phase
and with a power law T for the A-phase (due to the vanishing of A4 sin# along the
anisotropy axis 1).

For arbitrary T, the calculation of (4.237) is done (as in the case of supercon-
ductivity in Chapter 3) by using the expansion into Matsubara frequencies

1 B 1 1 1 1
— tan—— = —T - ST (4242
oF 9T T 2E %}(mﬁE iwn—E) §w2+52+A2 (4.242)

This can be integrated over £ to find, for the gap equation (4.237):

1
log — = / dz(1—2")T — . (4.243)
c 4 wn>0 (\/WQ—FAQ wn)

At this place we introduce the auxiliary dimensionless quantity

6= —, (4.244)

and a reduced version of the Matsubara frequencies:

Iy = (20 +1)/6. (4.245)
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FIGURE 4.17 Fundamental hydrodynamic quantities of superfluid >He-B and -A, shown as
a function of temperature. The superscript FL denotes the Fermi liquid corrected values.

Then the gap equation (4.237) takes the form

lOg% _ % E /_11 dz(1— 22)] nf:ﬂ (1/J x2 +{ 1_ L2 } - 1/xn) (4.246)

in the B- and in the A-phase, respectively. In the B-phase, the angular integral of
the parentheses gives a factor 1, so that

T 2 1 1
B: log——==|——--—]. (4.247)
Te 5n§=:0<\/$%+1 f”n)

In the A-phase it leads to

2 & 1 1
A 1og—:§§_:{ {l—x arctan—%—xn}——}. (4.248)

C $n J"n

The curves Ay g/T, are plotted in Fig. 4.17.
The T ~ T, behavior can be extracted from (4.246) by expanding the sum for
large z,,. The leading term is

Ue ) Bm bl S (e ) 500

(4.249)
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so that
S T 1/2 T 1/2
Ag/T. =76 =7 —— (1 - =) =~3. 1— —
p/le=mb=m 7g(3)< Tc) 3063( Tc) ’
10 TN /2
AT =md=m|—— (1— =) | 4.2
a/Te=mi=m 7g(3)< TC) (4:250)

in agreement with the determination (4.107).

4.9.2 Ground State Properties

The superfluid densities do not only characterize the hydrodynamic bending ener-
gies. They also appear in the description of the thermodynamic quantities of the
ground state. Close to the critical temperature 7., these can be extracted directly
from the Ginzburg-Landau free energies (4.108). These limiting results can be used
to cross-check the general properties to be calculated now.

Free Energy

Since the ground state field A?; is constant in space and time the first two terms
in Eq. (4.221) can be calculated explicitly. In energy momentum space the matrix
inside the trace log is diagonal

e —&(p) ﬁanAgi
(et P70 ) (250

in the functional indices €, p. In the 4 x 4 matrix space this can be diagonalized via
a Bogoliubov transformation with the result

(e~ E®)(y ) 0
( 0 (4 BE) () ?)) 4252

where E(p) are the quasi-particle energies (4.231). Thus the first trace log term in
the expression (4.221) can be written as

o)V / 3; j; log (¢ — E(p)) (¢ + E(p)) - (4.253)

The second term contributes simply
1 [ 3A2
35 { 2A§ } (ty — ta) V. (4.254)

After a Wick rotation which replaces A — (E/T, t,—t, — —i/T, [ de =Ty, ,
this corresponds to the free-energy density

=YY log[(iw, — E(p))(iw, + E(p))] + l { Qiz } + const . (4.255)

wn P
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The constant accounts for the unspecified normalization of the functional integra-
tion. It is removed by subtracting the free fermion system with A =0, g = 0 [note
that A? ~ e~ /9NO) — 0 for g — 0 due to (4.77), (4.239), (4.241)]. Since the energy
of the free fermion system is well-known

fo=—2T3 log (1 —®/T), (4.256)
P

it is sufficient to study only

A

Af=f—fo==TY_ log Zlo;n—_ +(E— —E, £~ —§)+${ 272 } (4.257)

Wn,p n é(p)

This energy difference is the condensation energy associated with the transition into
the superfluid phase.

The sum over Matsubara frequency can be performed, by analogy with the treat-
ment of the propagator in Eq. (1.103), using Cauchy’s formula:

E 1 dz E
TS log (1 — — :——_/71 (1——), 4.258
%: og( > omi ] e/ 1% z ( )

Wy,

where the contour C' encircles all poles along the imaginary axis at z = iw,, in the
positive sense but passes the logarithmic cut from z = 0 to E on the left if £ > 0
(see Fig. 1.1). By deforming the contour C' into C” the integral becomes

E  dz E
Since ;

on

a—bf = —nl,(1—nl)/T, (4.260)

this can be calculated as

E ng
—/ dEnd, =T [ " af — Tlog2(1 —nl)). (4.261)
0 1/2 1—f
Therefore the expression (4.257) becomes
Iy Nt LI AL
Af =T [log(1 — nf)nf, —log(1 — nf)nf] + REEE (4.262)
p 3

where ng denotes the free-fermion distribution. Alternatively, we may write

1 A%
AfzzTg{loga—ng))—(E—§)}+§{ 275 }—2T§10g(1—ng).

(4.263)
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The first two terms give the energy of the superfluid ground state, while the last
term is the negative of the energy of the free system.

The explicit calculation can be conveniently done by studying Af of (4.263) at
fixed T" as a function of g. At g =0, Ayp =0 and Af = 0. As g is increased to
its physical value, the gap increases to Asp. Now, since Af is extremal in changes
of A at fixed g and T, all g-dependence comes from the variation of the factor 1/g,

ie.,
AZ }
= ) (4.264)
Lt

We can therefore calculate Af by simply performing the integral

> N AL/
Af = —/l/gd(l/g){ 13 (1/g) } (4.265)

The 1/g-dependence of the gap is obtained directly from (4.227), (4.246) as

OAF
dg

Y 1
~log <26—ﬂ> 5 / dz(1 — 22)A(82, 2), (4.266)
Vs —1

1 J—
gN(0) !

with the angle-dependent function

=)

n=0

A(6%,2) = li {1/¢ x3+{ 1 _122 }— 1/;1:71} : (4.267)

Differentiating this with respect to 62 at fixed T yields

13 !

0 1 13 o )
062 <g./\f(0)> . 264 —1d’z(1 Z)A(%2)
_ 1 BA g2\ 1 PSB/P
= 50" = 55 52{ . } (4.268)

where p? and p4 are the superfluid densities of B- and A-phases, respectively. Using
these we can change variables of integration in (4.265) from ¢’ to ¢ using (4.266),
and write

62 B 512
Af:./\/'(O)WQT?% /0 d6’2{ ¢A(5 ) } (4.269)

264(6"%)

Inserting ¢ from the upper part of equation (4.323), we can perform the integral
with the result:

1 o ,23,2_400[ 1 2 -I
ﬁ/o d5¢(5)_§2[—? _1+2<\/mn+1—xn>J. (4.270)
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We shall denote this angular average by #B. By analogy with the relation o8 =pB/p
[see (4.268)], we shall also write ¢¥ = pP/p, and state the result (4.270) in the form

n=

~B 00
ps _ 4 3 1 [ 2 11

When plotted against temperature, this function starts out like 1 —7'/T, for T' ~ T,
and is equal to unity at T' = 0.
Similarly, we may integrate the lower part of Eq. (4.269). The integral

1 6 ! !
55,4 4o M (5%)

produces a further gap function, that will be encountered later in the discussion of
the superfluid density as the ratio p!/p in Eq. (4.335).
The condensation energy can therefore be written in the simple form

1B
Af =N (O)7T2T2{ 2;; . //5 }52. (4.272)
3Fs

For T — T., both pZ and p! behave like (1 — T/T,)?, so that

1 T\* 8 1

3
6
in agreement with our previous calculation (4.108) in the Ginzburg-Landau regime

for T~ T,.
For T — 0, both p® and p! tend to p, with the approach to that limit like

P 3111 |
§2m2T —>{ s (L (4.274)

Thus the condensation energies become at zero temperature

AﬂToz—{gﬁg}%a» (4.275)

The right-hand part of the equation has been normalized with respect to the specific
heat of the liquid just above the critical temperature

cn(T) = _gww (0)T... (4.276)

The full temperature dependence of Ae is shown in Fig. 4.18.
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T/T.

-0.2 1

FI1GURE 4.18 Condensation energies of A- and B-phases as functions of the temperature.

Entropy

Let us now calculate the entropy. For this it is useful to note that at fixed 7" and
1/g the energy is extremal with respect to small changes in A. It is this condition
which previously lead to the gap equation (4.226). Thus when forming

of

—o7 (4.277)

S =

we do not have to take into account the fact that A? varies with temperature.
Therefore we find

OAf T on’
As=——2=-2% |log(1 —n}) — Bl 4.278
or Ep: & ) nf (1 —nf) OT (4.278)
But the derivative is ;
so that the entropy becomes
As=-2%" [1og (1-nf) - ngﬂ] (4.280)
p i T ,

which can be rewritten in the more familiar form

As=-2)" {(1 — nf)log(1 — ng) + nflog nﬁ , (4.281)
P
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after having inserted the identity

E 1—nj
= log nE.
T nE

(4.282)

For an explicit calculation, we differentiate (4.269) with respect to the temperature
and find

A o oF 1 of 652
As=-ZE = N 2T/ 6{3¢A}+N’()2T2{3¢A}

(4.283)

From Eq. (4.246) we know log(T'/T.) as a function of 6%. Differentiating it leads to
1dT 13 1 1 gy

tat 19 1 — 2 4.284
so that the condensation entropy density is simply
52
AsPA = —N’(O)WQT{ ! } / do™ [1— ¢P4(5™)] . (4.285)
35 ) Jo
If we normalize this again with the help of ¢, (7T.), it can be written as
5(1—ps/p)
AsBA e, (T,) = —{ s(=p8/0) |52 4.286
et (1= /) (1250
For T' — T, this behaves like
31 T 8
As*B e, (T.) ~ —= (1 — —) —. 4.2
e A [P (1.257)

In order to calculate the T — 0 limit we consider the expansion (4.269). For " — 0,
d — oo so that the spacings of z,, = (2n 4 1)/d become infinitely narrow and the
sum converges towards an integral according to the rule!?

3 fGn) = / A f(r) — 5 (//(00) = £1(0))

]_ 2 1 ]- " "
+(5) - m] (o0~ SIO) o (4258)
For p? this implies
/3_3(52) = o ax|- ! +2(\/x2+1—m) —l+
p 5250 0 Va? +1 30°
2
= l-g5t.... (4.289)

BNote that this Euler-MacLaurin expansion misses exponential approaches e~
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T/T. 1

FIGURE 4.19 The temperature behavior of the condensation entropies in B- and A-phases.

Similarly, we can treat the series for p!/p in (4.335):

P 3 [ 1\ 1
1 1
= 1l-5+0 (g) : (4.290)

Note that for T'— 0, the condensation entropy densities are in both phases

AsPA = —ZN(0)7*T. (4.291)

This is cancelled exactly with the normal entropy
2
Sp = §N (0)7>T. (4.292)

Hence the total entropy vanishes at 7" = 0, as it should. The full 7" behavior is
plotted in Fig. 4.19.

It is worth pointing out that the procedure of going from sums to integrals works
only if the integral over the function f(z) has no singularity at = 0. In the " — 0
limit of (4.246), for example, the following more careful limiting procedure becomes
necessary

n=1 n=1 n

N 1 2(N+1)1 1N+11
Shoc Saneo Tz
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1
~ 5{10g2(N+1+7——[log(N+1)—|—7]}
N large 2
0 N dx
= — — + log(2¢€” 4.2
A e | (1.293)

Thus one would obtain

T 3 [ oo 1 ]

log — —— —/ dz(1 — 27 / dx —/ -

T. 1-0 4J-1 0 1 1/5
1—=2

— Z/_lldz(l—z2) :—7—10g5{ﬁ}]
= —log(de”) + { log (605/6/2) } : (4.294)

in agreement with (4.239), (4.240). The above treatment of the logarithmic di-
vergence is equivalent to applying the mnemonic rule that the >>°°,1/x, can be
replaced by the integral

5 / logx —log0). (4.295)

At the lower limit one has to substitute

20e7 /7 2A T,
— _lo e 4.296
E A T (4.296)

log0 — —log(2de”) = —log
where Apcg denotes the isotropic gap of the B-phase at zero temperature
ABCS = 7'('6_71ﬁC ~ 1.764 TC . (4297)

The mnemonic rule can be extracted directly from the relation

/U; Czig 2T - nz — =log (2;(:;) : (4.298)

oL

Specific Heat

By a further differentiation with respect to the temperature we immediately obtain
the specific heat

BA _ T AJBA 2 1 U BA[s2 8_52
APt = T = As /\/'(O)WT{ }(1 ¢ (5)>T8T

2
3

= AsBA1oN (O)WQTl;ﬁA;{;?) { % } 62, (4.299)
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T/T,

FIGURE 4.20 Specific heat of A- and B-phases as a function of temperature. The dashed
line is the contribution of the normal Fermi liquid.

This can be rewritten in terms of the superfluid density function as

APJeT) = = [~5 (L= /0) +30/o? - D] 2 (1300)
A feT) = o[- (L= pb/p) + 20p/pe — 1)] 5 (4:301)

At T =T, there are finite discontinuities
3 8

AcP e, (T,) = 2703 1.43, (4.302)
Act/e,(T.) = %(03) =1.19, (4.303)

which can also be derived directly from Ginzburg-Landau expressions in Egs. (3.20).
For the full specific heat one has to add the normal contribution of the normal Fermi
liquid to both equations (4.296), which is simply equal to 7'/T..

For T'— 0 we use the results (4.289), (4.290) to find

AcPA /e, (T.) = —T/T.. (4.304)

This is exactly the opposite of the specific heat of the normal liquid so that the
curves for the total ¢A%/c,(T.) start out very flat at the origin [exponentially flat
for the B-phase due to the nonzero gap (i.e., a finite activation energy) and power-
like for the A-phase since the gap vanishes along 1]. The full temperature behavior
of the specific heat is shown in Fig. 4.20.

Certainly, all these results need strong-coupling corrections which are presently
only known in the Ginzburg-Landau regime 7" — T..
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4.9.3 Bending Energies

Consider now the free-field part Ay[A;] of the collective action in Eq. (4.225). In
momentum space, with the imaginary zeroth component ky = —iv, it can be written
in the form

Ar = 5 3 (Al B AL (06) + A (R L3 (R) Aoy ()
Al (k)" L5 (k) Apy (=) + AL (—R) LS (k) A (k) } . (4.305)
where
; . ]
L) = 150 = [ o Y {(wn_%;‘;’l EV.%/ 4<+ff)+E] 3
(4.306)
and
L5 (k) = [L5 (k)] (4.307)
1

dp .
- / 3pzpjp1’pJ'A g ’Ab’ avab T Z 2
o)

2 )
(wnt %) + EE]
with the tensor
1
ta’b’ab = itr(O'a/O'b/O'aO'b) = 5a’a56’b -+ 6&’1756’& - 5&’17’6&67 (4308)

and the energies (containing the abbreviation v = p/m):

& _ (ptk/2)’ Pl K 1
{5_} = St = vk oo vk
E.\ € - 1 £ 1 ,A?
{ o } = {52 + A2 x Eizv kE' 8(v k)? Vo +. (4.309)

Here £ and F = /&2 + A? denote the energy values of £, and E,, F_. As usual,
the integral over d3p can be split into size and directional integral, and we can
approximate v &~ vgp, as in (4.76). Compare also with (3.221) and (3.222).

We now rearrange the terms in the sum in such a way that we obtain combina-
tions of single sums of the type

(4.310)

which lead to the Fermi distribution function [recall (3.199)]

T 1
~ "B = BT L

(4.311)
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with the property
np=1-n!p. (4.312)

If we introduce the notation w. = w £ v/2, the decomposition of the different terms
L%®(k) can be done as in Eq. (3.201). After that we use formula (4.311), and the
fact that the frequency shifts v in w4 do not appear at the end, since they amount
to a mere translation in the infinite sum. Collecting the different terms we find

.. .. * dgp tay

ij,ab . ij,ab _ ~ =~ ~ =~ A0 0% a’t’,ab

L12 (k) - |: 21 (k>i| - / (27T)3p2p,]pl’p],Aa’i’Ab'j’2E_E+ (4313)
E,+F_ f f E,—FE_ f f
8 { (Ey + E_)? + 12 (1=, —mb ) + (B, — E_)2 + 12 (nk, =t ) [

In the first expression we decompose

w2 -2+ &€ _1{ 1 N 1
w2 + B3] w2 +E?] 2wl +E? w2+E?
1
—(E2 + E? + 1% —2¢.¢ } 4.314

For summing up the first two terms we use the formula

1 1 1 E
_ ! Iy
In the last term of (4.314), the right-hand factor is treated as before in (3.201).
Replacing its factor E? + E2 + v* once by (E_ + E;)* 4+ v? — 2E_E_ and once by
(E_ — E.)?>+1v?+2FE_FE,, and proceeding as in the derivation of Eq. (3.205), we
obtain
dp _

Llljl(k) - LZ2]2(]€) - /Wpipi

« {E+E +&& By +E (1 ot f )

2B, E_  (Ey+ E_ )2+ 12 E. — NE_ (4.316)

BB —&6 B -B . ;)0
2E.E. (Ey—E_ )?+41? * - g

For the remainder of this chapter we shall specialize on the static case with ky = 0.
We consider only the long-wavelength limit of small k. At k = 0 we find from
(4.316) and (4.313)

’ dp B>+ E 1
L(0) = —}-“/d [t ~ 49 ’]—— 4.31
40 =0) [ Bo, [ ae{ EE fon g+ 2] b o
and .
dp . ., 9(A)

ij,a 1 *
Lis™(0) = =S N(0) A A v, (4.318)

Epipjpipj A2
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where we have introduced the function

_ A2 [/ d§—tan——|—2/ degnE] (4.319)

The first integral in this equation can be done by parts, after which it turns into the
expression (3.214) for the Yoshida function of the superconductor:

1

1 0o
O(8) =1- 5 /0 U T (4.320)

In the A-phase, the gap depends on the direction p of the momentum, so that the
gap A, and with it the function ¢(A), depend on z = p - z.

We now observe that, due to the gap equation (4.235), LY, (k) can also be ex-
pressed in terms of the Yoshida function (3.214) of the superconductor as

g dt
L50) = ~ 5N 0) [ pipsoa) (1321)

For T ~ 0, this function approaches zero exponentially. The full temperature be-
havior is best calculated by using the Matsubara sum expression for ¢(A) that can
be read off from (4.307):

A? 1
HA) = QTZ/df oﬂ + EQ) —2A2TZ ow? / goﬂ + &2 4 A2
= _2A2TZ =2Tm Yy ———. (4.322)

3@.}2 / W2 + A2 = WS

Using again the variables § and x, from (4.244) and (4.245), and the directional
parameter z, we may write

O(A) = % { 1 _122 } i ! s in {i}—phase. (4.323)

n=0 9 N 1
Tn 1— 22

For T' ~ T, where 0 ~ 0, the Yoshida function has the limiting behaviors

H(A) ~ 267 { X _122 } %(3) in{i}—phase. (4.324)

Let us consider the equations (4.317), (4.321) in more detail and rewrite LY, (0)

as follows ]

LY, (0) = TP (4.325)

where

dp . .
Pij = 30/ EPiPﬁ?(A)- (4-326)
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In the B-phase, the angular integral in (4.321) is trivial and yields

2
pi; = §U%m2N(0)¢(A)5ij = pp(A)dij = p o, (4.327)
where ¢P(A) is the upper of the functions (4.323) (the isotropic Yoshida function).
The invariant p? is called the superfluid density of the B-phase. For T' =~ T, we
use the expression (4.322) to see that

T
B~ 9 (1——). 4.328
ps R 2p T ( )

For T' = 0, on the other hand, we better use (4.319) to deduce that ¢ = 1, which
implies that in this limit
pZ =p, T =0. (4.329)

The full T-dependence of the reduced superfluid density p? = p?/p is plotted in
Fig. 4.21.

Ps

Ps

T/T. 1
FIGURE 4.21 Temperature behavior of the reduced superfluid densities in the B- and in

the A-phase of superfluid “He.

The figure contains also the corresponding quantities of the A-phase. They are
found from the integral

dp . .
Py =3p / 1 Pibio(A), (4.330)

after expanding it into covariants as

Pt = ps (05 — Lily) + pllil;, (4.331)
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whose coefficients are the superfluid densities of the A-phase

g—; = /dp2 /1 dzl_z (A)E%gbA(A),
g_; = / Pi(A 2/1 ) (4.332)

The second function is the same ratio that occurred in the lower expression (4.272)
for the free energy.

The spatially averaged ¢ function in the first line will appear repeatedly in the
further description of the A-phase and has therefore been given an extra name
¢?(A). Using the integrals

/ p 2 2 2 N
z = =———+...
22 41— 3 ap(22+1) 23 1d ’
1 1 21 21
/ dz 3:2<——arctan—):——3———5+..., (4.333)
/xg 1 T, T, 3xzs  Hxd
1 211 1 21 6 1
dz ?):xn—i-Qg:"+ —3(1+xi)arctan—:——3———5+...,
~1 22 +1— 22 Tp Tn Oz, 3D
these densities are seen to have the expansions
ps 1 o 2x,, 9 1
% = % 2 l3xn — 241 + (1 — an) arctan .
81 /&1 o9& 1
= —= ——=> —+... 4.334
150 nZ—O a7 7;) xd + ) ’ ( )
I 1> 1
g_; = 3 2 {—an — (322 + 1) arctan —n]
41 /&1 > 1
= —= — ==y —+...]. 4.335
156 (;30 x3 7 nZ::O xD * ) ( )
ForT'~1T,:
10 T
(m—<1——)—>o. 4.336
T\ T (4.336)
The first two sums in each expression can be done with the results:
8 9¢s T
o 52( G52 ) ~ 2(1——) 4.337
P 503 763 Tc + ) ( )
4 6c T
I 2 52< %2y ) ~ (1-—) 1.338
a5 7es T,) " (4.338)
where the coefficients i
2F —1
cr = ——C(k) (4.339)
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are the results of the sums 3% ((2n + 1)7% (c3 ~ 1.0518, ¢5 &~ 1.0045). The higher
terms are omitted on the right-hand sides, although they will be of use later.

For T'= 0, we have again ¢(A) = 1, and from Eqs. (4.332) and (4.333) we find
that

ps=py=p, T=0.

The full temperature behavior of the superfluid densities was shown above in
Fig. 4.21. )
Consider now the function L'4(0). Here it is useful to introduce a tensor

3 dp . . . .
Pijki = —/J/ —DiDDri (D) /A, (4.340)
2 4m
in terms of which L5"(0) can be written as

1
5 Pigkt Agk AV tarvrab, (4.341)

12 ( ) 2va

with the tensor ¢,p4 of Eq. (4.308). In the B-phase, where the gap is isotropic, the
angular integration is trivial and we find from (4.340):

1
pUkl::16(5U5kl+'5ﬂ5hj+'@kdﬂ)03- (4.342)

In the A-phase, this tensor can be expressed in terms of the three covariants

Az‘jkl = 0ij0k + 0i0k; + 0i0ji1,
Bijia = 0ijlil + Oyl + Sulile + Sjulily + Sjlili + Swalily,
Aijkl - liljlkll, (4343)

as follows:
pijkt = AAijr + BBiji + CCijn. (4.344)

Contracting this with 0,05, and 0;;lxl;, we find that the coefficients A and B are
given by the following combinations of p, and pl:

1 1
A=-p,, A+B=—pl (4.345)
8 4
The third covariant leads to another function of the gap parameter v(A) defined by:

3A+6B+C = g»y(A) (4.346)

where y(A) is calculated from the angular integral

= 4p / D s p(A) 24 (4.347)
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Inserting (4.323) and performing the angular integrals, we find the series represen-
tation
1
Z { T, + — — 3(x2 + 1) arctan — | . (4.348)
p — In Tn,
By comparing this series with (4.248) and (4.334), we see that y(A) is not a new
gap function. In fact, by adding and subtracting the series for 4log(T'/T.), we find

T I
Y= _4log - ol (4.349)
p e P

For T'~ T,, ~ starts out like

T
oy <1 _ T) , (4.350)

just as ps/p. As T approaches zero, however, there is a logarithmic divergence which
is due to the zeros in the gap along the 1 direction [see Eq. (4.347)].

Let us now turn to the bending energies. For this, we expand Li1(k) and Lio(k)
to lowest order in the momentum k and find

1 (A
fant = 77 (PuORAL O A /% + Re pl3 0k ALOLAL) in { . }—phase. (4.351)

Here we have dropped in the primes on the fields, since in the presence of derivatives,
the additional constant A%, does not matter. The tensor coefficients are found by
performing similar calculations as in Egs. (3.194) and (3.195) for the superconductor,
except that we must now include directional integrations in momentum space:

3p [dp. . . 1- A2
Pije = / pngpkpz[ $(8) = 56(4) AA;B, (4.352)
12 9 Y A A A A A 1 AAB 0 0
Pijklab = /4 pngpk:plpmpn P(A) A Al Ay ntarbrabs (4.353)

where ¢(A) is the same as in (4.320) and (4.322), whereas ¢(A) denotes another
function of the gap:

_ 1 2 s 1
O(A) = 27TAY S ————— = Z(1 - 2?)? . (4.354)
T + 1

In the superconductor, this function does not appear in the hydrodynamic limit. We
therefore expect a similar cancellation in the B-phase, where the gap is isotropic. In
fact, by assuming that

Ay = Ap € Ryi(0), (4.355)
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we find that the second term in (4.351) becomes

Re pi71ap0se"F Rai(0)01€™ Ry ()

3p rdp. . .1, AL
= _ppipjpkpl_¢(A)A_gpmana’mRb’nta’b’ab (—Okp0ipRa; Ryj + Ok RaiO Ry;)

2 47 2
3 dp . . 1- A2 A
= —7p ﬁpkpléqb(A)A—g (—akQOal%O - pk’plakRaialRaj) . (4356)

And this coincides exactly with the ¢ content in PijmOke™ ¥ Rai01e™¥ Ry

Note that the two terms change sign for different reasons: 0ypd;¢ does, because of
the equality of the phases €*?, and Ok R4;0,Rp; does, because of symmetry properties
of the tensor t,4/4. Thus, for the B-phase, the result is simply

1 *

Jerad = mpijkzakAaialAaj/A%, (4.357)
with p; ;5 being the tensor discussed before in (4.340). This result is exactly the same
as for a superconductor except for two additional direction vectors p;p; inserted into
the spatial average which are contracted with the vector indices of the fields A}, A,;.
Inserting the decomposition (4.342) we find the energy (see Appendix 4B for details)

Py 4

fgaa = 575 |(V )+ 2(0:0;)° — Z(V0)* = 20,0,0,0| . (4.358)

For T' = T., we insert (4.328) and reobtain the previous Ginzburg-Landau result
(4.159), if we use the fact that close to T:

K23 T§TC 2K1 (4359)

The superfluid density p? was shown before in Fig. 4.21.

In the A-phase, matters are considerably more complicated. This is due to the
fact that the gap size varies which prevents the ¢(A) function to cancel. Consider
the field dependent parts of the p'? contribution:

Re Aa’mOAb’nota’b’abakAZialAZj/Ai - (4360)
AARe dody G bntaryyar (OrdaOidsdl 6} + dadhOy b6l 016}

Contracting now the indices ¢’ and ¥, we see that the gradients of d appear
with opposite signs in the form

—Re A4204d, 0 dyrm bl 0] (4.361)
whereas the derivatives 0¢ keep their sign

A%Re ¢, 0405010 (4.362)
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Using Formula (4A.5) of Appendix 4A, the expression (4.360) can be cast in the
form

A% { Okl L (D111 (4.363)
— [(EmpTl,«aklpli — 2mvsk (6mz — lmlz)> X (Enqslsaqlqu — vasl (6nj — lnl3>)]} .

The calculation is simplified considerably by observing that an expression
A%Re &},0,9;®,0. P!, (4.364)

instead of (4.362), would give exactly the same result as that in (4.363), except with
a plus sign in front of the bracket instead of a minus sign. Thus (4.362) can be
written as

2A% (Okln) i (0cly) I — A% Re ©7,0,0;0,,0, 1. (4.365)
Now, the second term together with (4.353) corresponds to an energy

1 3p rdp. . . . A2 [ A2 1

Af@) = “am2 2 ) 4x pzpjpkpl ¢( )AQ <A2 pmAbf)nAlm> akAZialAajA—iﬂ(4‘366)

which again cancels the ¢-part in the p''-term. Hence, this part of the energy f has
again the form (4.357), thus simply doubling it.
Let us now study the contribution of the first term in (4.365) to the energy:

1 3p fdp. .. .. A%
Af = _—4m27/4 pngpkpzpn¢( )A4 (Orlm) Li (Oln) 1. (4.367)
Since p -1 = z, we can introduce the tensor

2 A2
ngkl 9 /4 pzpjpkpl ¢<A) A27 (4368)

so that the additional energy (4.367) can be written as

1 _
Af = _mpijklakliallj' (4.369)

Decomposing p;;r; in the same way as p;ji in (4.346), we find the coefficients

- 1
A = S5
8P
- o 1
A+B = 4@5‘,, (4.370)
where pg, pl are auxiliary quantities defined as
A
0y = — dz(1— A)—
R T O
3 1
o= o / dz2p(A) 24 (4.371)
-1
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Inserting the explicit form (4.354) for ¢(A), we can partially integrate Eq. (4.371)
and find

1 2 & 1
poo= o[ (-2t Y :
- n=0 /a2 +1 — 22
I DAY L S BN S SVAN I (AY
= =3P _1dZ (3 2z +3z ) -2 (4.372)
1 2 & 1
plo= o[ -2y
4 ) 2 +1— 22
3 ! 2 O 4) $(A)
- 2 24) A8 4.
4p/_1dz<z —1—32 -2 (4.373)

The auxiliary quantities are therefore expressible in terms of the superfluid densities
as follows:

o2, 1
Ps = 3ps 3/)87
1
P = —Ps - (4.374)

If we now perform the contractions of the covariants in (4.357) and (4.369), we find
the energy in the form given in (4.125), but now with coefficients (see Appendix 4B
for details):

2me = 4p;, 2com = py,
Am* Ky = ps, 4m* K4 = py = ps — pl, (4.375)
AmPK, = ps/4, 4m°K, = (ps +4pl) /12, 4m*K, = (pl +7)/2.

Their temperature dependence is known for all 7 down to 7' = 0 (see Fig. 4.22).
The twist, bend, and splay bending constants are displayed in Fig. 4.22. There
is no need to plot K¢, K¢ since K{ is equal to p,/4m?, which was plotted in Fig.
4.21. Similarly, the coefficients ¢, ¢y need no extra plot, since they are proportional
to p! of Fig. 4.21. To see what K¢ looks like we introduce, by analogy with pl, the
longitudinal quantity

K=K, - K, (4.376)
which is equal to pl /4m?.
If d is locked to 1, the bending constants K¢, K¢ change K, K3, K, into
Ké = K+ ps = 5ps/4,

K{ = K+ ps= (13ps+4p))/12,
Ky = Ky+ K] =(3pl+7)/2 (4.377)
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T/T. 1
FIGURE 4.22 Superfluid stiffness functions Ky, K, K, of the A-phase, in units of p/4m?,

as functions of the temperature, once without and once with Fermi liquid corrections,
indicated by the superscript FL.

4.9.4 Fermi-Liquid Corrections

In order to compare the above results with experiment at all temperatures below
T,., the pair interaction turns out not to be sufficient. The more T drops below
T, the more other interactions become important. Here we shall discuss the most
relevant of these which is due to a current-current coupling between particle and
spin currents.

In Landau’s theory of the normal Fermi liquid, these interactions are
parametrized with coupling constants F}, F7° as follows:

A = Va*V; Y iV *iVio®
curr—curr — 2/ ’éb ? Wﬁ w + (O>¢ ? anWﬂ 1Vi0 w .

(4.378)

Using the particle and spin currents of Eq. (4.100) and the relation 2N (0)p% = 3p,
this can be written compactly as

1 m? /1 1
curr—curr — d4 - <_F F ) . 4.379
A 2 T p 3 1.71 3 1 jaz ( )
As in the case of the pair interaction, these fourth order expressions in the fun-
damental fields 1*,1 can be eliminated in favor of quadratic ones by introducing
collective fields ¢;, ¢, and by adding, to the action, the complete squares

ey

p 1 S| p 1 2
s [ -
( i - m2 }711 (pz> + gFl (]az + _ng(paz) :| ) (4380)
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by analogy with (4.60). Then the current-current interaction becomes

1

. 4 1 p 1
Acurr—curr = /d4 1% aiPai A R 2 . 4.381

After integrating out the Fermi fields, the first term in (4.69) is changed to —i/2
times Trlog of the matrix

10y — f(_lv) ‘t%vz‘fi + %Vz'.UaSOaz‘ . sz'anflai - ’ (4.382)

ZV,'UGAM 26t + f(—ZV) + %Vi@i -+ %vida@ai

depending on ¢;, Y-

In the hydrodynamic limit, where only quadratic field dependencies are consid-
ered, there is a simple method to find this dependence without going again through
loop calculations. For this we observe that a term in the action

[ d'x Gioi + Guisoas) (4.383)

is equivalent to adding velocity source terms to the energy density, thereby forming
quantity that looks like an enthalpy density, except that the roles of pressure and
volume are played by momenta and velocities, i.e.,

f — fent - f - pi‘/i - pai‘/az' . (4384)

Here p; = myji, pai = MJj. are the momentum densities of particle and spin flow.
We call e — four the flow enthalpy. The minimum of this quantity determines
the equilibrium properties of the system at externally enforced velocities V;, V,; of
particles and spins:

Vi=gi/m, Vi = u/m. (4.385)

Consider now the energy (4.125) in a planar texture which has all l-vectors
parallel. If we want to take into account the effect of the current-current interactions
we must extend this expression. Recall that the earlier calculations were all done in
a frame in which the normal part of the liquid was at rest. When studying nonzero
velocities of the system, as we now do, we must add to the energy density the kinetic
contribution of the normal particle and spin flows

Pn 12 12 p"r‘z 2 2
5 (vm + vnm_) + o (vm +o) ) ) (4.386)
where v+ and v/ are defined by

vi = v—vl

vl = 1(1-v), (4.387)
with similar definitions for the spin velocities. The corresponding currents are

P = Mj = psVs+ PaVa, (4.388)
Pao = Mja = PsVsq + PnVna- (4.389)
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The additional terms (4.386) are necessary to guarantee the correct Galilei trans-
formation properties of the energy density f.

We now study the equilibrium properties of the liquid. First we minimize the flow
enthalpy (4.389). If topology does not enforce a nonzero superflow, both velocities
v, and v, are equal to a single velocity v. Thus, in equilibrium, we may rewrite the
flow enthalpy density also as

I

Jent = (Uzz + Uiz) — PiVi = PaiVai- (4.390)

2
This expression is minimal at

v = Vi, Vai = Vi, (4.391)

where it has the equilibrium value

f ent

Py 2

=5 (Vv2+v2). (4.392)
Let us compare this with the calculation of the flow enthalpy from the trace log
term of the collective action. The enthalpy density is

iat - 5(p) + pz‘/z + piaavai ﬁio-aAim'

fent - IOg ( ﬁio-aA:”.* Zat + f(P) - pz‘/z - pio-a‘/ai

) . (4.393)

The quadratic term in the fluctuating field A/, around the extremum has been
calculated before. It has led to the hydrodynamic-limit result

_Ps (2 12 Ps (12, ) 2
f - 5 (/Usi + USai ) + E (Usi + Usai ) . (4394)
In addition, there are now linear terms
Arf = —ps (Usivi + Uslaivai> = s (Vi + 054 Vai) - (4.395)

We would like to find quadratic terms in V;, V,;. They certainly have the form

_ O (12 12 al 12
Agf = —§ (‘/Z + ‘/ai ) - ? (‘/z + Vai ) . (4396)
In order to determine a and a!, we simply minimize the enthalpy in vy and vy,
which become equal at V;L’” and Vai’”, respectively. At these velocities,
o opsta iy oy pstal s
fem| o = = (V2 +v?) - R (V2 + v}, (4.397)

Comparing this with (4.390), we see that

a = Pp = pP = Ps;
a' = p,=p—py (4.398)
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implying that the coefficients in (4.396) are simply the normal-liquid densities. Thus,
the hydrodynamic limit of the collective energy density is given by

f:&( +vm)+%!( 12+ 0l?) = it = Gaitai

Im 1 Prn\ 19 1 Pﬂl 112
20[(%Ff+p>% +<F1+ 5
+< ! +@)go*2+<1 —l—py1>90-2] (4.399)
%Fls p at FS p at

We now complete the squares in the fields o and ¢!, and obtain

f:%ps(vj_iz‘i‘UJ_ .2>+p!( 124 ) 2)

S ar 2 sai
1 m? 1Fs ) 1F i ) 1ps )
S T EEd T Fspnyjﬂ?’ilui'%%ﬂlf
2 s 1+§ 1, 1+ 1+%F;% 1+%F15%
1o |1 Lps ’
~ 573 + e - et
2m? F1 1+ 1F1L i
2
1 Pn 1S
+< o + ) (%ﬁ- - WJM + (L= (4.400)

The path integrals over the fields ¢;, @, can then be performed, and this makes
the harmonic terms in brackets disappear.

Finally, we allow 1 to vary in space. This produces Fermi liquid corrections to
the stiffness constants K¢, [recall (4.126)], which are plotted in Fig. 4.22.

In the presence of a nontrivial 1 texture, the currents acquire additional terms.
The particle current density j; becomes

I
mjL = PsVs T C(V x 1)L7 2me = %’

Il
mjl = plvl = (W x1)', 2mc = %7 (4.401)

where we have separated V x 1 into transverse and longitudinal parts:

(VxD" = (Vx1)—1[1-(V x1),
(VD' = 11 (Vv x1)], (4.402)

respectively. The squares of the currents are
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m2ji? = iy L p? (VX D2 = (1 (V x 1)?] + ips—p!VL(V x 1)+
i s 4m2 4 2m 2
1 2
_ 2 2 2 s
= plv —(1-v)}+mz[1x(v x 1)]
L pspl
b PP (k) - (VI8 x D), (4.403)
2m 2
1 pl? 2 1 pP?
m?jl? = pP-v) 4+ 5= L (VX D)) = (v (Y x ), (4.404)
4m? 4 2m 2
2
M = P’ = o {eaeds [V~ L1 V)] .Y
m
2
— 4%2 {(Vz’da)z —(1- Vda)2:| : (4.405)
m*ih? = plPuy? = iy li€apedy(1 -V )d]*
ai s Vai 4m2 iCabe c
p’ 2
) (4.406)

Using these, we find the energy density

1 1+1iF 1, 1+:iF, )
f =g o [V - v+ g5 ()
1 1+3F 1 ) o 1 14+1iFs )
+oPs T Trsm (Vid)? — (1-Vd)?)| + =pl——2L-(1-V d,)
2 1+§F15%4m2[ } 2 1+%F1$%

1 s
p_g 1+1§Fa 1
21+§F1p7”2m

1 1+3ip
T (v [1(V X )
1+ 1F e

{ve- (V x) = (1-v) [I- (V x D]}

1 pl®  gF?

1 1 2
+-K (V- 1)+ = | Ky + > [1-(V x1)]
2 2 4m24p21+%F1%
1 1 pl2 lpl )
- | K 2 : 1 x (V x1)]". 4.407
+2( b+4m24p21+%F1'°7” [X( X )] ( )

As discussed in the beginning, the mass parameter m in these expressions is the
effective mass of the screened quasiparticles in the Fermi liquid. As a consequence,

the velocity
T (4.408)
Vs =5 .
is not really the correct parameter of Galilean transformations. To play this role,
the phase change in the original fundamental fields would have to be

P — MOV (4.409)



4.9 Hydrodynamic Properties at All Temperatures T' < T, 223

where my is the true physical mass of the He atoms. If we introduce the corre-
sponding physical velocity

7 g
= —O'V D, 4.410
Vo 2m0 ( )

with a similar expression for the spin velocity vose;, the first term in (4.407) takes
the form

2

1( m0> 1 m0(1+%F1)

psﬁ 1—1—%171"”)l m

[Vos2 —(1- Vs)2] . (4.411)

The other terms in (4.407) change accordingly.
We now add to the energy density the kinetic energy of the normal component

1 1

5P [Von? = (1 von)?| + 5L Vo). (4.412)
By Galilei invariance, the sum of the coefficients has to add up to the total density
po = nmg, where n is the number of particles (= number of quasiparticles) per unit
volume:

1 mo(l+1iF
< m0> 0 ( 3 1) + Pn = Po = NMy. (4413)

Pm ) T+ IR

At T = 0, the normal density p, vanishes, and we obtain

m

o =P = pom—o. (4.414)

Ps

Thus, consistency requires the following relation between the effective mass m and
the atomic mass mg = msye :

1
m = <1 + gFl) mo. (4.415)

This brings the term (4.413) to the form

1 ps 1

2 2
e — Y § IR 4.416
2p0p1+§F1_Ppn [VO ( VO)} (4.416)

The prefactor can be interpreted as the superfluid density with Fermi liquid correc-
tions:

FL _ Ps 1
Pe = pPpo— = 4.417
s 0 1 %Fl Q: ( )

It is now convenient to introduce the dimensionless ratio

pFL
prl =10 (4.418)
Po

At T = 0, this goes to unity just as in the uncorrected case. See Fig. 4.23 for a plot.
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0 ) 05 ' 1 7T/T,

FIGURE 4.23 Superfluid densities of B- and A-phase after applying Fermi liquid correc-
tions, indicated by the superscript FL.

For T ~ T,, however, it receives a strong reduction by a factor

1 mo
_— = 4.419
1+ %Fl m’ ( )

so that m
L] g £eT0 (4.420)

T=0 p m
Thus near T, the number of particles in the normal component is equal to the
true particle density if it is multiplied by the quasiparticle mass m instead of the
atomic mass mg. Specific-heat experiments [13] determine the effective mass ratios
m/mo mentioned in the beginning. Inserted into Eq. (4.419), these ratios yield the
parameters

1
S £ = (201, 3.09,3.93, 4.63, 5.22) (4.421)

at pressures

p=(0,09, 18, 27, 34.36) bar. (4.422)
Similarly, we may go through the Fermi liquid corrections of the spin currents and
obtain

KEL_pS l—i-%FlS 1

KM = = , 4.423
d £o p1+%F15%1+%F1 ( )

I 178
RIFL = K _ p_! 1+35F 1 (4.424)

po P14 Llpseltgh
3 p
while the coefficients ¢ and ¢! satisfy

o = Zmoct  2me 1 (4.425)

Po p 1+3h%
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2moc ¥l 2mcl 1
~IFL — 0 _
¢ = p = PR T (4.426)
0 2 Pn
+ 30 »
These are plotted in Fig. 4.24.
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FIGURE 4.24 Coefficients ¢ = ¢! and their Fermi liquid corrected values in the A-phase,
indicated by the superscript FL, in units of p/m.

The stiffness coefficients of the pure l-parts of the bending energy receive the
Fermi liquid corrections:

4m(2)KSFL B Am?K, 1

K" = : 4.427
Po p 143K (4.427)
- 4m? 4mPK, 1p?  iF 1
Kt = —Ogf_— | — 14 15 31 L ey (4.428)
Po p PP+ iRee 311
KFL — 4mg KFL _ 4m* K, 1/)!2 %Fl 1 (4.429)
b ’ dpr1+ipe 1+ 177 ‘
£o P P + 371, + 341

They are plotted in Figs. 4.25-4.26. In the sequel, it is convenient to define the
momenta
vV = 2mygv. (4.430)

Then the energy density can be written in the following final form
li SIFL

1-v,)2
22ps ( VS)

Po 2"°
bR [(Vida — (1 Vo] + SR (- 9d,)°
+ @& (U x) = (V- D[1-(V x D]}

4m3 L pp, [‘72 i (1 . {,3)2} +
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— AT D)1 (Y x )]

1~ 1~ 1~
+ 5KEL(V 1% + §K5L 1-(V xD]* + §K§L 1x (V x1)]>. (4.431)
In large containers, where 1 and d are locked to each other, the K T L K ('{FL terms

can be absorbed into K f {jb which then take the dipole-locked values

f(sFL|lock = K§L+K§L7 (4432)
K™ = KM+ KM (4.433)
RfVp = K4 K- (4.434)

The temperature dependence of all these quantities is shown in Figs. 4.25 and 4.26
for the experimental Fermi liquid parameters %Fl = 5.22 and %FIS = —.22.

The Fermi liquid corrections in the B-phase can be applied in completely analo-
gous manner. There the energy becomes

2
dmg 1 _prr,

0
with the dimensionless parameters
B
- Ps 1
P = (4.436)
A= 1 ; —: %Ff S 2 pB 11 J (4.437)

0

F1GURE 4.25 Coefficient K for splay deformations of the fields, and its Fermi liquid
corrected values, indicated by the superscript FL, in the A-phase in units of p/4m? as
functions of the temperature.
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e

T/T. 1

FIGURE 4.26 Remaining hydrodynamic parameters for twist and bend deformations of
superfluid >He-A, together with their Fermi liquid corrected values, indicated by the su-
perscript FL, in units of p/4m?, as functions of the temperature.

5§ = - ng ) (4.438)

the first being plotted in Fig. 4.23. The combinations

l:(lBFL = pPA4+9)/5, (4.439)
KB¥L = pBA(1+06)/5, (4.440)

are plotted in Fig. 4.27.
Certainly, all these results need strong-coupling corrections which are presently
only known in the Ginzburg-Landau regime 7" — T..

4.10 Large Currents and Magnetic Fields in the

Ginzburg-Landau Regime

The properties of superflow are most easily calculated close to the critical temper-
ature. In this regime, thermodynamic fluctuations are governed by the Ginzburg-
Landau form of the energy. There the depairing critical currents have been derived
quite some time ago. For the sake of a better understanding of our general results
to follow later, we find it useful to review the well-known results.

Suppose a uniform current is set up in a container along the z direction. Since
the bending energies tend to straighten out textural field lines it may be expected
that, in equilibrium, and in uniform currents, also the textures are uniform. It
will be shown later in a detailed study of local stability in Section 4.13, that this
assumption is indeed justified in the B-phase. In the A-phase, on the other hand,
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we shall see that the textural degrees of freedom play an essential role in the flow
dynamics.

We shall at first neglect this complication and proceed with a discussion of flow
in uniform textures. Correspondingly, the collective field will for now be assumed
to have the simple form

Agi(2) = AV ™) (4.441)

where A?; is a constant matrix. The phase factor ¢***) allows a non-vanishing
matter current, which may be calculated from Eq. (4.88) as

ji = i { G AR oy + K [AG AL = (i )] K [A% Ags — (i 5 )]} 0j0(2).
(4.442)

Because of the smallness of strong-coupling corrections on the coefficients K;(< 3%)
we may assume for K the common value (4.82). The presence of a non-vanishing
gradient of 0;¢ requires a new minimization of the energy. This will in general
modify the normal forms (4.111)—(4.114) of the gap parameters in equilibrium.

4.10.1 B-Phase

For a first crude estimate of the effect of a current we shall assume only the overall
size of the gap parameter (4.112) of the B-phase to be changed by the current.

Neglecting Gap Distortion

If the current runs along the z-axis, we find from (4.103)

K
f= 55 {a2(8z<,0)2 + (aza)ﬂ A% — 3apa*A% + 98pByAL. (4.443)

] 0.8
/
K:1 /a-l
1 = — — — 7
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FIGURE 4.27 Hydrodynamic parameters of superfluid *He-B , together with their Fermi
liquid corrected values, indicated by the superscript FL, in units of p/4m?, as functions
of the temperature.



4.10 Large Currents and Magnetic Fields in the Ginzburg-Landau Regime 229

For the discussions to follow, it is convenient to measure the energy densities in
terms of the condensation energy of the B-phase in the weak-coupling limit. In the
Ginzburg-Landau regime this is

2
B P T )
= = 1——) . 4.444
f fc 4m2£g ( Tc ( )
By using the definition (4.105) and the temperature-dependent coherence length
_ €o
E(T) = ——— (4.445)

J1—T/T,

with & from (4.75), we find the simple form

f
2f.

If one wants to study the system in the presence of a non-vanishing current, one may
eliminate the cyclic variable ¢ in favor of the canonical momentum-like variable

1.0

= a%¢? [(82g0)2 + ((‘La)ﬂ —aa® + % (253) at. (4.446)

— 2
= = a“£0.. 4.447
T a”§0.p (4.447)
This has the virtue of being z-independent, as follows from the equation of motion
for .
The associated Legendre transformed energy
g=L _ojo (4.448)
2fe
can then be used to study the remaining problem in only one variable a(z)
1/6 e
2 2 4
= — —| = - =. 4.44
g=(0.a)" — aa” + 5 <5,6’B> a3 (4.449)

By comparing (4.446) and (4.442) we see that the physical current j3 = J is deter-
mined in terms of the dimensionless quantity j up to a factor two:

of
J = 2 = 10A%4 K0,
aazgp B ¥
h T 3/2 T 3/2
= 2(1- = =il (1-=) . 4.450
) ome,” ( Tc) J °< Tc) (4.450)

Thus the quantity j measures the physical mass current in units of

T 3/2 T 1/2 T
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where v, is the following reference velocity

h

= S (4.452)

Vo
at which the de Broglie wavelength of the quasiparticles equals the coherence length
&o. Consequently, we shall refer to vy as the coherence velocity and to Jy as coherence
current.

By analogy with the definition of & (T") from &y in (4.445), we introduce also
here temperature-dependent quantities that contain the Ginzburg-Landau factor
(1 —T/T.), for instance the temperature-dependent coherence velocity and the cur-
rent

T\ 1/2 T\ 3/2
wo(T) = o <1 _ T) (D) = (1 _ T) , (4.453)
respectively. Using the superfluid velocity
vy = % 0, (4.454)
we can identify the superfluid density p, via the definition
J = psvs, (4.455)
where
ps = a*2p <1 — %) . (4.456)
By writing (4.454) in the form
vs = vo(T)€0, ¢, (4.457)
we see that the quantity
k=00 =j/a® (4.458)

measures the superflow velocity in units of the temperature-dependent coherence
velocity vo(T):

v v T
=2 (1-= . 4.459
") v ( Tc) (4.459)

=

In order to be able to compare the forthcoming results with experiments we may
use the parameters of Wheatley [13], which are listed in Table 4.2, to calculate
1 48 kBTC kBTc

= m = 7.504
2m*&y 7C(3)  pr PR

6.25 cmy/sec p =0, T.=1mK,
{ 15 cmysec } for { p = 34.36bar, T.=2.7TmK. } (4.460)

Vo —
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FIGURE 4.28 Shape of potential determining stability of superflow.

It is now quite simple to study the equilibrium gap configuration for a given
current density j. According to (4.449) the energy looks like the Lagrangian of a
mass point at position ¢ moving as a function of “time” z in a potential which is

-2
J (4.461)

turned upside down:
1/5

2 (2 4 )
aa +2<653>a pox

—V(a)=—
The shape of this potential is displayed in Fig. 4.28. For a small enough current,
there is a constant solution satisfying 0V/da = 0:
a(z) = ag (4.462)
This amounts to a current density
2 4 6 2
Jj° = a [a - <3B3) ao} . (4.463)

Obviously, this solution can exist only as long as j stays below the maximal value
(4.464)

allowed by (4.463). By differentiation we find
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with the maximal j equal to

2 1%
e = ——=7—— = QgKe. 4.465
J 3 \/g gﬂB 0 ( )
This value determines the depairing critical current density
Jo = Jo(T)je. (4.466)
At zero pressure, this becomes numerically
cm TN\3? o3/?
J.=12.5— <1 — —) — 4.467
secp T. gﬂB ( )

With the values of o and fp listed previously we find that the strong-coupling
corrections cause an increase of the critical current by a factor of about 30%.
For completeness, let us insert (4.463) into (4.449), and evaluate the total energy

5
g = —aa®+ %afl —a? (a — ﬁBa2> ,
2, 2 (6 4

It is cumbersome to express this analytically as a function of j since this would
involve solving the cubic equation (4.449). However, if we do not try to express it
in terms of the current density j but, instead, in terms of the parameter k, i.e., the
superfluid velocity in natural units, we have [see (4.447), (4.448), (4.449)]

k? = o — Bpa’, (4.469)

and the current dependence of the energy is written explicitly as:

9= =55 (o= ) (a+3:2). (4.470)

Note that the free energy itself is simply

f 1
TR (a—r?)". (4.471)

Including a Magnetic Field

The critical currents in the B-phase depend sensitively on external magnetic fields.
In order to see this consider the additional field energy

fmg = gleaAai|2a (4472)

where ¢, was calculated microscopically to be

3 p & 2< Zo>2
=202 (14 =) 4.473
9: = 52027 (17 (4.473)
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with v being the magnetic dipole moment of the *He atoms

1
v~ 2.04 x 10—, (4.474)
gauss sec

and Zy = Fy is the Fermi liquid parameter of the spin density coupling.
According to Table 4.2 its value is, at zero pressure, —Zy ~ 2.69. It will be useful
to rewrite fue in a dimensionless form as

fmg
2f.

where H is the unit vector in the direction of the field and h = H/Hy(T) measures
the magnetic field in terms of the following natural units

2ppF /1__ Up /1_2
50’7 T,

1 - — =~ 164K gaussy/1 — — (4.476)

= 12| H,Awi /A5, (4.475)

Hy(T)

For the undistorted gap parameter (4. 441) the additional magnetic energy is simply
fmg

= h’a’. 4.477
2, a.471)
This enters into the expression for the equilibrium current (4.463) in the form
6

§% = ay [oz - (gﬂB) ag — hQ} , (4.478)
so that the current is now maximal at
2 1

ai==—(a—h?), 4.479

with values j., ke:

.21 1 2\ 3/2 1 1
Je=—-—7= a—h ,  Ke=—=z>Va—h2 4.480
3\/3253( > x/§%ﬁB ( )

Thus, at higher magnetic fields, the liquid supports less superflow. For
h = a, (4.481)

the liquid becomes normal. Note that this result is independent of the direction of
H with respect to the texture of the B-phase.

Let us also calculate the changes in the total energies. With (4.447) and (4.458)
we have now

6
kP =a— gﬁBaOQ — R (4.482)
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and
i - ) (a — K2 = h2) (a + 3K + 3h2) ; (4.483)
or

/P 1
7 —@ (o= K?—h?)2. (4.484)

Allowing Gap Distortion

Certainly, the assumption of a purely multiplicative modification of the gap was an
over-simplification. For, if we look at the energy for a general gap parameter

AY = ABaaz‘ew(z), (4.485)

we find from the energy (4.84) (neglecting the gq-terms)

f 1 * * * * *
2f = g(aaia’ai + 2aaza’az)(8Z¢)2+51aaiabjaaiabj + 52 (aaiaai)z

* * * * * *
+Bgaaiaajabiabj + 64aaiabiabjaaj + B5aaiabiaajabj. (4486)

In the absence of magnetic field and current, the energy is invariant under the full
group of independent rotations on spin and orbital indices (apart from a phase
invariance aq; — €%ay; ).

As a field and a current are turned on, two specific directions in these spaces are
singled out. Due to the original invariance, however, the energy at the extremum
cannot depend on which directions are chosen. Therefore we may pick for both,
H and the current J, the z-direction. Given the solution for the order parameter
aq; in this particular case, the general result is obtained by simply performing an
appropriate SO(3)spin X SO(3)orbit rotation relevant for the actual directions of H and
J.

We shall now determine the functional direction in which the deformation of
the gap parameter has to take place. Consider at first a small current density j.
Then the gap parameter can be assumed to be close to the equilibrium value in the
B-phase:

(gi = Algi + a:u' = a00ai + Tai + 1 ia; (4487)
with
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Inserting this into (4.444) we can pick up all terms up to quadratic order and find:

52 1
5 = 5 (ol + 2000) + 200 0+ + 310} 0’
1 «
+—55 {2 (28124 + Bss) R' + 4B12R* + 23345 R°
15 545
—8By 1" + 8B I* — 681 1° — 2 (381 + Bss — Ba) I°}. (4.489)
Here R%35% represent the following quadratic forms
R' = 7“%1 + 7’%2 + 7“3%3,
R® = 2(riiros + raarss + rasrin)
R5’6 = (7“12 + 7"21)2 + (T’Qg + 7”32)2 + (7’31 + 7“13)2 s (4490)

with 5350 being the same expressions in terms of the imaginary parts i,;.

Now, the linear term involves only the real diagonal elements ry1, 799 and rs3.
Thus only these will develop new equilibrium values. Moreover, since r1; and 799
enter symmetrically, their new values are equal. For small currents we are just led
to a new gap parameter

Ay = Ag a e#®), (4.491)
c

We shall now assume that this form of the distortion is also present in stronger
currents, up to its critical value J..

In order to ensure this, we have to examine the stability of this form under small
oscillations for any current. This will be done in Sections 4.13.5 and 4.15, where
local stability of the form (4.491) will indeed be found (up to J.). As a side result,
the analyses will provide us with the energies of all collection excitations in the
presence of superflow.

In order to study the problem with a distorted gap (4.491) let us, at first, neglect
the strong-coupling corrections. Then the energy (4.446) takes the simple form

/ L, 2 2 2 2 2
o7, gé’ {(2@ + 3¢ ) (0.9)" + 2a; + 302}
1 1 3
—3 (2@2 + 02) + B <4a4 +2a*c + 504) + h2c, (4.492)
where we have included the magnetic field. The current density is now
R B ) _ 2a*+ 3¢
i=% (202 + 3¢) £0.0 = — (4.493)
so that the superfluid density becomes
1 T
I— = (9,2 2 _ =
=z (20* +3¢) 2p (1 Tc) . (4.494)
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Note that this is valid only parallel to the flow, which is why we have added a
superscript | to ps. Since a and c are different, an additional small gradient of ¢

orthogonal to the flow would be associated with a different current density

j= é (4@2 + 02) £0.p,

i.e., the transverse superfluid density would rather be

pi—%(4a2+c2)2,0(1—%).

The Legendre transformed energy reads

g = %52 (2@3 + 302) — 1 (2&2 + 02>

3
1 3 55>
— (4 4 9 2.2 e 4> A h2 2'
+ 15<a—|—ac+20 2a2+302+ c
Minimizing this with respect to @ and ¢ we find two equations
2 1 1052
—S 4+ —|12(2¢° + ) +4a*| + ———— =0,
3715 2(20° ) + 40’ (2a% + 3¢2)°
—1+j;K&ﬁ+8)+28]+w——;ﬁ———+h2:0
3 15 (2a2 +302)2
They are solved by
3
2 2
= 14+ =h
ag + S
9 1 2 2\2 1 2 2
Jjoo= %<2+3CO+3]I> §<1—00+6j).

(4.495)

(4.496)

(4.497)

(4.498)

(4.499)

(4.500)

(4.501)

Thus, in the absence of a magnetic field, the gap parameter orthogonal to the flow

is not distorted after all,
whereas the gap parallel to the flow is reduced to

with ¢ satisfying (4.502).
The current has a maximal size for

, 4 R

“T9 713

where j., k. take the values

%:§¢§@—3mfﬂ,f%:%¢§@—3ﬁyﬂ.

(4.502)

(4.503)

(4.504)

(4.505)
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The critical current is smaller than the previously calculated value by a factor of
about 3/4.

The energy can be expressed most simply as a function of k. From (4.493) and
(4.502) we identify

K2 = % (1—c*—6n?). (4.506)

Inserting this into (4.492), which in terms of x reads

f
2fe

= 1 2a% + 3¢%) K2
= ( )

1 1 3
- 5 (2a2 + 02) + 15 <4a4 + 2a?c® + 55‘) + h2c?, (4.507)
we may evaluate only half of the quadratic terms according to the general rule that
in equilibrium, the fourth-order part is half the opposite of the quadratic one. In
this way we easily find

1 2 5 2 2
T LSRG G (4.508)
so that
/ .
_ L
g 27, Jk
N <1 ap2 - 9/8) (4.500)
2 %) |

Let us now see how strong-coupling corrections modify this result. It is straight-
forward to calculate that then the free energy reads

g = é (202 +3¢2) - % (20 + ) + % {BIQ (242 + 02>2 + Bass (20" + c4)]
_mf;:zs(;? + h?c?. (4.510)

The local minimum is given by the extrema in a and c:

2 4 j°
_Z4 2 202 + 2 2 10—2—— =0 4.511
3 + 15 [512 ( a”+c ) + Baasa } (20 + 3¢2)° ; ( )
1 + 2 [512 (26!2 + 02) + /334502} - 15# +h?=0, (4.512)
315 (242 4 3¢2)? ’

so that ¢ and a are now related by

(4812 + 3B345) @° + (2812 — Paas) ¢ =5 (1 + gh2> . (4.513)
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From this we find
2 2557 50345 ( 6 _ 2bh2 + Bass

(2024 3c2)® 3 (B12 + 38345

and obtain the longitudinal gap parameter

2
o — — C
5Pz Baus

3h2> ., (4.514)

A, 1 [ 9 (% ) 2 ( 2612> 2]
=c"=—|la—= K 1+ 3h 4.515
Ap? $Bp 5 \ 38345 Baas ( )
Similarly, we find for the transversal direction
A2 1 l 3512 9 ( 2512> 3 21
=a"=+— ——h 1———=] =K. 4.516
Ap? 85 B3as B35 ) 5 ( )

The current is now maximal at

2 _ 5 50345 <a 4Pz + 38545 3h2>
98B + 1158345 505345 ’

where j., k. become

i, = 1 2v5 / 58345 (a B 4519 4 3P345 3h2> i
‘ %ﬁB 9 V8Bi2+ 115545 50345 ’
1/2
\/7 / 55345 4512 + 3845 Ho12 + 90345 5 5 ' (4.518)
9 8512 + 115345 503345

The free energy density is found by the same method as before

f 1 2 1 5 2 ,\?
e A e I S

This result is rather simple since some of the strong-coupling corrections cancel in
the first quadratic term of (4.508)

(4.517)

K

3
e

The free energy density g, on the other hand, looks more complicated because of
the awkward form of the longitudinal superfluid density

20 + % = (a — K= h2> . (4.520)

; 1 1 4 3 8 11 3
Ps _ 1 (2@2 i 302) - {a APz + 38545 32 _ Biz2 + 118345 _Hg}
2p (1 — TZ) o =0p 50345 50345 5
(4.521)
entering the additional term
2a? + 3c?
9k = —2p? 207 (4.522)

5
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4.10.2 A-Phase

Before discussing the result in the B-phase further, it is useful to compare them
with the A-phase. As before, we shall first assume a uniform texture

Agi = A0 e#3), (4.523)

Later we shall see that this ansatz is stable only for very small currents. Still, it is
instructive to go through the same calculation as in the B-phase.
The kinetic energy has the form

K
f= 552 (|A2i|2 + 2|A23|2) K. (4.524)

If we suppose again that the gap parameter suffers only from a change of size, we
may write

A% = AuAy = Apga Ay, (4.525)

and we assume for Aai the standard form up to sgin and orbital rotation. From
(4.524) we see that the bending energy is minimal if A3 is chosen to vanish implying
that the field 1(x) points in the direction of flow. Then the total energy has the form

K
f= §A232a2(&p)2 — 3aua’A% 4 4B8pBaat A%,

The current has now the form
J = dmrA%a*€0, . (4.526)

In order to compare with the previously derived results for the B-phase it is useful
to measure again all energies in units of 2f. of the B-phase. Then we obtain'*

foo2,, 5 2 4, 26 ,
= Za? (0.p)" — = = Baa’, 4.527
2f, 5 (8:0)" = g00” + 5 =faa (4.527)

for which the dimensionless current density is now
2 2
Jj= ga2§8z<p = ga2ﬁ. (4.528)

Therefore the Legendre transformed energy

572 2 2
g= fo 2jKk = 2= <aa2 — —ﬁAa4) (4.529)
a

1 This result agrees, of course, with energy (4.492) of the distorted B-phase if one inserts ¢ = 0
and takes o = P4, i.e., the weak-coupling limit, since the planar phase and the A-phase are
energetically the same.
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is extremal at

4

, 4
j* = Ba4 (oz — angA) : (4.530)

By comparison with (4.525) we find the gap parameter as a function of the velocity
K as

5 3
a? = — (a - —52) , (4.531)
from which we may calculate
A% = AP’ (4.532)
The current has a maximum at a® = 5a//63 with the critical values

V5 a3/

Je = ?B—A’
ke = éa”? (4.533)
In terms of x the energies take the simple explicit forms:
;oo 1 (a _ §,€2)2
2fc B 5 ’
g = 2?; - 5%1 <a - gmg) K. (4.534)

It is important to realize that all these results are true, irrespective of the presence
of a magnetic field: The d-texture can always lower its energy by orienting itself
orthogonal to H, because of the absence of magnetic energy.

4.10.3 Critical Current in Other Phases for T ~ T,

For completeness let us analyze the energies of the Ginzburg-Landau expansion in
the presence of superflow in all the above possible phases. It could happen that the
presence of superflow induces a transition into a phase with zero current which is
unphysical because of its high energy. In order to eliminate this possibility we shall
carry out an analysis for all known phases found in the analysis of the Ginzburg-
Landau energy by Barton and Moore [21]. For each of these the order parameter
may be written as

Ay = AA,;, (4.535)
where flm- is sometimes normalized to unity

tr (AgiAg) = 1. (4.536)
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The energy is
f=—pA?+ BBAY, (4.537)

where (3 is a combination of various (;’s for the phase under consideration. This is
minimal at

AZ=_F (4.538)
" 2808
with f = —f. and the condensation energy density
2
[/
= 4.539
N (4.539)

Now let there be an equilibrium current flowing through a uniform texture. The
order parameter may be normalized as

A% = AAg e, (4.540)

so that the bending energies are
K
[ = EAQ {(ai¢)2 + 2(83690)2 (Aax)2 + Q(Gyw)Q(Aay)Q + Q(GZ@)Q(AM)Q} - (4.541)

In the presence of the velocity (09;¢)/2m, the energy does not minimize any longer
a gap value (4.538), but it is minimal at a new modified order

A = A()CL, (4542)

so that the energy can be written as

f= —%Agcf [(00)% + 2(0:0)* + 2(0:0)*(Aus)? + 2(0,0)*(Aay)? + 2(0:0)*(Asz)?]

—,LLAO2CL2 + Boﬁa4A04. (4543)

It is again convenient to divide out the condensation energy of the phase in the
absence of a current by substituting

,UAO2 = 2fca
BBt = fe (4.544)
In addition, we have from (4.82)
KA2? 3 1 6
=-N(0 2=_f.. 4.545
9 5 ( )M2 Bof €o 5f ( )
Therefore the energy has the generic reduced form
S 6 5. 2 o2, 4
= —a"°(0p)” — 20" + a”, (4.546)

fe
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with
a=1+2[A,j (4.547)

and j being the direction of the current. The physical current is
6 5,0
J = fc4mga &0 (0p)a

TN 1 1
= P<1—i> &ﬂ?ﬂﬁagda@)

= jJo (4.548)

Here Jy is the same quantity as introduced in (4.451), and j is the dimensionless
reduced current density

= —a : 4.54
j = 559°6(09) (4.519)
At a fixed j, we have to minimize
g _ %09
fe Je
24 5% B2 2, 4
The equilibrium value of a lies at
7*=Ra'(1-a?), (4.551)
where R is the quantity
5 «
R=——. 4.552
o3 (4.552)

Since 8 and « are independent of a, the current is maximal for a* = 2/3, where it
is given by

o 14

=3 9R. (4.553)
Let us now calculate the parameters o and R for each of the different superfluid
phases. The results are displayed in Table 4.3. Since o depends on the direction of
the current with respect to the texture, the energy has to be minimized for each of
the standard forms A,; listed in [21]. In the second column we have therefore marked
the possible directions of the equilibrium current. Clearly, in the presence of strong-
coupling corrections, R is modified by a suitable factor. The last column contains
the condensation energy as compared to that of the B-phase. At the critical current,
the energy —g is lower than — fZ by a factor 3. Thus it might, in principle, happen
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TABLE 4.3 Parameters of the critical currents in all theoretically known phases

- - P
Phases | o | dizection o 3 Bar | Raw | £/ £.2 | g/ 1.2
B 2 Y,z Bra+ 35035 | o 1 1 -3
planar | 1 z B2 + 55345 1 8 % —%
polar | 1 Y, 2 B2 + Psas % 1_52 % _g_g

« % x,y,z 52_‘_%5345 % 2i7 % _;_g
. 2
bipolar | 1 z Bo + 55345 % (%) 8 —%
axial 1 z 5245 1 % % _%
5 1 Y,z Baz4 3| 108 5 —15
5 5 5
Y 1 z B124 2 18 12 )

that one of the higher-lying phases drops underneath a lower one when increasing
the current. It can be checked, however, that such a crossover does not take place.
For this we compare g at the critical currents

2 4 4 f c

g=—4a"+3a" = 3<ch)
for the different phases. Starting out with the B-phase, the energy drops from —1
to —%. In the A-phase it starts out at —% and drops down to —%. This value is
underneath —1 so that there is, in principle, the possibility of a crossover, but we
can check that the energy of the B-phase drops fast enough to avoid a collision.
Similar arguments can be applied to any other pair of phases. In order to study this
behavior in detail one has to plot the energy g as a function of the current density
j. As a function of a, the energy ¢ is most easily determined by solving the cubic
equation (4.551) in a geometric way, writing

s 1 1 2 1 2

@’ =3 + 30859 — 7 sin 3% (4.555)

fB (4.554)

where
cos p = §\/§L (4.556)
2" VR
At 7 =0 and j = j., the angle ¢ and the size a are given by
. ™ 2
7=0, p=5, a"=1,
j=Jo =0, a®= % (4.557)

Consider now the non-inert phases. Then the coefficients o and § contain one
more parameter, for instance an angle 6. In addition to
99

50 =0 (4.558)
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which leads, as before, to
9
=at(1-a%). (4.559)

R

Now we have to minimize g also with respect to 6 :
(4.560)

g =0.

Q>|Q.>
SIS

Therefore we also have
R j°
) (4.561)

j ? 1 2 4 /
where, according to (4.944), the 6-dependence is ruled by the differential equation

_ (2@ _ 1) _ (4.562)

R’
g

7=
From (4.932) we see that f. depends on 6 only via 1/4(#). Hence
(4.563)

P
fe= 5fca

so that (4.561) becomes
(4.564)

where we have abbreviated
!
Pa (4.565)

T= .
fla

By equating (4.564) and (4.559) we find
’ (4.566)

a_
1>
T =3

and the relation between current density and angle # becomes
1 2(0
pol 0 R(0). (4.567)
2[r(0) - 1/2]

This current density is maximal if 6 solves the equation
(4.568)

&/ /8/ C(” ﬁ// B O/ a/ B §é/
(25)(5-5)-265-55)
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If o = 0, this can also be written in the more convenient form

1
98 <o/25' + §a'ﬁ”> _ fa <5”a _ go/ﬁ/> . (4.569)
As an example consider the (-phase with
sinfcos¢ —isinfsin ¢ 0
Ay = ——=| isinfsing sinfcoso 0 ) (4.570)
Vs 0 0 V2 cosh

Actually, this parametrization interpolates between several phases:

0
polar all ¢, =0, A=A 0 ,

1
planar : all ¢, 0 =7, Ay = A 1 ) , (4.571)
0

A

B : ¢=0, sinf =23, A,;=— 1 ,
’ il

and, certainly, the non-inert phase ( itself. The potential energy is
fo = —pA% + A'Bof, (4.572)
where
9 9\

Be = b 4(1 — 28in” ¢ sin 9) + 5y 4

+ P35 [2 sin* @ (1 — sin? 2(;5) + pcos? 9} + B {2 sin @ (1 + sin? 2925) + ¢ cos 309}

= (451 + 25345) sin4 (9 + (451 + 45345) COS4 9 + 462

+ (By — B35 — 2B1) 2sin* @ sin? 2¢ + 83, sin?  cos? 6 cos? . (4.573)

Minimizing this with respect to ¢ gives either

2[1

tan?fcos’ p =T =
¢ Ba — Bizs — b

(4.574)

or the trivial solution
¢ =0,m. (4.575)

In the latter case, A,; interpolates only between the three phases (4.571). In par-
ticular, the previously discussed distorted B-phase is contained in it.
In either case, the function § becomes:

Be = Basin® 0+ (Bizas + AiT) cos” 6 + Ba, (4.576)
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_ 1
B¢ = B+ 55345 (sin4 0 + 2 cos’ 9) : (4.577)

Consider now the bending energy. Inserting (4.571) into (4.80) gives

ﬁmfzgAﬂ@WVu+gﬁ@+4@@%z—%m%ﬂ. (4.578)

The orientation of the current with respect to the texture depends on the equilibrium
value of 4. If

sin®f S 3 (4.579)

the current points in the x, y-plane, or in the z-direction, respectively. In these two
cases the bending energies are

K, o[ 1+sin?0
ﬁmr—gA(@w {3—2m99}' (4.580)
Therefore we identify
[ 1+sin%60 Lo, < 2/3,
a‘<3—%m9>’“n9> 2/3. (4.581)
In the absence of a current the extremal value for 6 is given by
T
tan? = Lot Pists (4.582)
Ba
In the Ginzburg-Landau domain we find
1 3 3
T:—? mﬁezz,gﬁez?. (4.583)

At the value where sin @ = 2/3, both equations are solved at equal §. Setting more
generally sin?# = z, we can easily calculate the critical current. For simplicity we
use only the weak-coupling values of 3; and have

a=1+z o =1, " =0,
3 7 6
=22+ (11— 21:—<2—— 1)
B x—|—4( r)* + &zl
7 6 7
r— Z(op— = "= _.9 4.584
g=1(20-2),  5=4 (4.584)

With these values, our equation (4.569) becomes linear and is solved by

1
= -. 4.585
r= (4.5%5)
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At that point, the parameter 7 = fa’/f’« is equal to

19
== 4.586
=2 (4.586)
implying via Eq. (4.566) the equilibrium value of a
19
2= 4.587
@’ = (4.587)

The corresponding critical current density is then from (4.567):

5
L2 4,
J 5o (4.588)

Note that this current density is smaller than that of the B-phase by a factor
\/5/24 ~ 1/2.

For consistency, we convince ourselves that at critical current the value of z is
smaller than at 7 = 0 so that the direction of the current with respect to the texture,
and therefore the choice of the bending energy with o = 1 + x, remains valid for all
equilibrium currents.

As a cross check of this method let us confirm the critical current of the B-phase
with gap distortion by using the parametrization (4.577) in the weak-coupling limit:

1 3 3
p=0 _ L 2 2] 2.2 9
BP0 = 2[1+x +2(1 x)}_Qx 2w+ 3. (4.589)
Here we start out with the B-phase where
.9 2
r =sin"0 = 3 (4.590)

From our previous calculation we know that ¢ < a, which says that in all currents
the value of 6 stays above the value implied by (4.590). Then we have to use the
bending energy with

r=3-2x. (4.591)

Inserting 3,7, 5,7/, 8”" into (4.569), we find the linear equation

9
r=sin’f=— (4.592)
11

which is indeed larger than (4.590). The associated values of 7, a?, and R are

—%, %, and %, so that the critical current density becomes
20 1
2 4 2
=Ra (1—0a")=—— 4.593
J ( ) 3 81’ ( )

as obtained before.
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4.11 1Is °He-A a Superfluid?

Equipped with the calculations of the last section and the topological arguments
of Sections 4.8.5 and 4.8.6, we are now ready to address an important question:
Does superfluid *He really deserve the prefix “super” in its name (apart from the
similarity in the formalism with that of the superconductor)? In order to answer
this question one usually performs a gedanken experiment of putting the liquid in
a long and wide torus, stirring it up to a uniform rotation along the axis, cooling it
down into the A- or B-phase, and waiting whether the liquid will slow down after a
finite amount of time. Superconductors and the bosonic superfluid *He will preserve
the rotation for a long time. Mathematically. the reason is that the order parameter
describing the condensate is Age® with ¢ varying from zero to 2w N (where N is a
very large number) when going around the torus. The liquid can slow down only
if N decreases stepwise unit by unit. In order to do so the order parameter has to
vanish in a finite volume, for example by the formation of a narrow vortex ring. This
may form from a roton on the axis. With time, the radius increases until it reaches
the surface where it annihilates, thereby reducing N by one unit (see Fig.4.29).

FIGURE 4.29 Superflow in a torus which can relax by vortex rings. Figure shows ther
formation and their growth until they finally meet their death at the surface. In a super-
conductor or superfluid *He, these rings have to contain a core of normal liquid and are
therefore very costly in energy. This assures an extremely long lifetime of superflow. In
3He-A, on the other hand, there can be coreless vortices which could accelerate the decay.

Since such a vortex ring contains a rather large amount of energy (the condensation
energy), the probability of this relaxation process is extremely small. Only at a very
narrow place (e.g., at a Josephson junction of two superconducting wires) can this
process be accelerated so that the relaxation takes place within minutes or seconds.

The maximal size of a current which is stable against this type of decay is reached
when the kinetic energy density of the superfluid reaches the order of magnitude of
the condensation energy density. Then the liquid can use up the kinetic energy,
via fluctuations, to become normal, and the phase e can unwind. Obviously, the
existence of a macroscopic superflow hinges on the possibility of having large flux
numbers conserved topologically along the torus.

In the B-phase, this is indeed the case. According to (4.214) and (4.215), the
homotopy group describing the mapping of the axis of a torus into the parameter
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space of the B-phase contains the group of integer numbers Z which can pile up a
macroscopic superflow. In the A-phase, on the other hand, one has in a large torus
m = Zs [see (4.211)]. Hence, there is only one nontrivial mapping. The associated
flux is of unit strength and therefore necessarily microscopic. Thus it appears as if
the liquid 3He is not really “super” at all in comparison with superconductors and
superfluid “He.

We shall now show that this is, fortunately, not completely true. Although in
a much weaker sense, i.e., with much smaller critical currents and shorter lifetimes,
3He-A does support a stable superflow. Moreover, as the temperature drops below
a certain value, say Ty.p, there are even two separate supercurrents, which both
are topologically conserved [39]. Thus in the weaker sense, *He-A is really a double
superfluid.

In order to understand this, one has to observe that in the bulk it is not really
necessary to have an overwhelming potential barrier of condensation energy guaran-
teeing the stability at a macroscopic time scale. A barrier with a moderately large
energy density, say ps/m?3&7, can also prevent a state from decaying, and the length
scale characterizing the size of the barrier &, can be quite a bit larger than the coher-
ence length &,. This can make a phase metastable, if the volume is sufficiently large.
As argued above, such a decay can only proceed via the nucleation of a vortex tube
of length L and diameter d with the energy (ps/m?¢?)-d*L (for a potential barrier of
the order of the dipole force &g ~ 1000&, this energy corresponds to ~ 107% mK per
Cooper pair). The diameter d will adapt itself to the characteristic length scale of
the potential barrier, i.e., d &~ &. Thus the energy of the vortex tube is (ps/Ms) L.
It is this number that enters the exponent in the Boltzmann factor dominating the

decay rate
1 1 s 1 L
- —exp{— <p _fcurr> 5(?_}7 (4594)
T T

To m2 65

where f..r is the energy density of the current flow, and 7y is the characteristic
time of vortex motion. This parameter varies for the decay mechanism associated
with different barriers, but not by many orders of magnitude. The main effect
of the smaller barrier energy lies in the significant reduction of the critical energy
density which can be accumulated in the current (note that the barrier strength
parameter 1/, can be small enough to be cancelled by the energy density feu. in
the exponential). As a consequence, if we are satisfied with a rather small critical
current, the potential barrier does not need to be completely unsurmountable to
allow the use of topological arguments to classify stable flow configurations.

The important property of He-A is that a current, once established, attracts
the l-vector into its direction via the second term in the energy (4.125):

—po (1-v,)* . (4.595)

It is this term which creates a potential barrier permitting a supercurrent to accumu-
late. In order to simplify the discussion we shall assume the torus to be sufficiently
long and wide to neglect its curvature and boundaries. Thus, the fields in the energy
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(4.125) can be assumed to depend only on the variable z (if we assume the z-axis
to coincide with the axis of the torus). In order to avoid the use of constraints
for respecting the curl condition (4.147) it is convenient to work directly with the
parametrization of 1 and ¢ in terms of Euler angles (4.120), (4.121), so that v, of

Eq. (4.124) becomes

1
vi=——(Va+cosfV7). (4.596)
2m

We shall also express d in terms of directional angles as

d = (sinf cos ¢, sin fsin ¢, cos f) . (4.597)

For pure z-variations of the fields we calculate the derivatives

. x1
V.l = —sinBg.; V x 1= — It — cos B B2
le, x 1
1-(V x1) = —sin?Br;  [Ix (V x D]’ =cos? B (B2 +sin® B72),  (4.598)
(Vidy)> = 6% +sin0¢%; (1-Vd,)” = cos? 8 <9§ + sin® 0 ¢§> :

and find the energy density

2f = A(s)a2 + G(s)72 +2M (s)a.. + B(s) B2+ T(s) (02 + 562) +2 p}z [1-(1-ay],

d
(4.599)
where the coefficients are the following functions of s = sin? 3:
A(s) = py+pos; Py =ps— po,
B(s) = Ky+ (Ks— Ky)s,
G(s) = pl+ (Ky—2co+ po—pl) s+ (K, — Ky + 2co — po) s,
M(s) = [ps+(po—co)s] V1 —s,
T(s) = K!— K4 KPs. (4.600)

Here we have dropped several factors 2m by going to time units ¢y in which 2m =1,
i.e., where

Vrp 1
to = ———= —
2pp  2m
is a unit of time. The energy possesses two mass currents
1 of 1
= —— =——IA M 4.601
1 of 1
Jy = = —— [G(8). + M(s)a, + T(B)s¢,], (4.602)

2mO[(o+ ). /2] om

which are separately conserved:

(9ZJ1 == 82J2 = O
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Note that such a conservation law is certainly not enough to stabilize a superflow
since small dissipative effects neglected in (4.599) will ruin the time independence
and swallow up momentum and energy. To make the following discussion as trans-
parent as possible, let us go to units which are most natural for the problem at
hand: We shall measure all lengths in units of I3 = &4, the energy in units of
fa = p!/(4m?2€3), and the current density as multipoles of Jq = p!/(2mé&4), respec-
tively. Physically, the fq is the energy density which the system would have if all d
and l-vectors were orthogonal, contrary to the dipole alignment force. The second
current component in (4.602 ) is the current which flows if the Bose condensate
moves with “dipole velocity” vq = 1/2mé&q parallel to 1. Now, the energy 2f has
again the form (4.599) except that all coefficients are divided by p! and there is no
p! /€% in front of the dipole coupling. In the Ginzburg-Landau regime, in which the
parameters of the liquid satisfy the identities (4.127), the coefficients simplify to

A(s) =145, B(s)= %(3 _9), G(s)=1- %s,

M(s)=+v1—s, T(s)=1+s. (4.603)
Since we are interested in the system at a fixed current we study the energy

= A+ G2+ 2Mgy.j + B2+ T (02 + 562) +2(1— [1- d)°], (4.604)

where
A, = AT, M, =M/A, G, = G- M?*/A=A(s)/A, (4.605)
and
A(s) = GA—- M?
= é {p!Kb + [P!(Kt — Kb) + (po Sy, — Cg)} 5+ [Po(Kth) + CS} 52}
= 5 (Ao + Ays + Ays?). (4.606)

In the Ginzburg-Landau regime, this becomes simply (see Appendix 4C)

A(s)

In order to gain as much experimental flexibility as possible let us also add a magnetic

field

= 3(3 — ). (4.607)

g—g+g.(d-H?. (4.608)

It is convenient to bring this to a form in which it can be compared most easily with
the dipole energy. Let Hqq be the magnetic field (Hgq ~ 300 ()) at which

9.3 = pl/ 4’3 (4.600)

S
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If we measure H in terms of these units, say via the dimensionless quantity

h = H/Hyq, (4.610)
we have
_ P (q.n) 4,611

which for the energy (4.604) amounts to simply adding
29 — 29 — 2h%s. (4.612)

In order to obtain a first estimate of the stability properties let us assume j and h
to be much smaller than one (i.e., current and field energies are much smaller than
the characteristic dipole values). Then the d || 1 alignment force causes a complete
locking of these two vectors and we may set 7 = 3, ¢ = . Now the energy 2¢g reads

29' = Agj® + Gl + 2Myv.j + B'B7 — 2h7s (4.613)
where Glg, B! have the same form as those in (4.605), but with K, K;, K replaced
by

K! = K,+ K¢,
K! = K, + K¢,
K, = K,+ K- K}, (4.614)

as shown in Appendix 4A. In the Ginzburg-Landau regime, their values are, if we
divide out the factor p!:

1 5
K\ = —42==2
s 2+ 2’
1 5
Kl = Z4+92=2 4.615
3 5
K = Z4+2—-1=2,
b 2+ )

Consider now the problem of stability of the d||1|j||h configuration with s = 0.
Expanding the energy up to the first power in s gives'®

, , K, Po . Ky cotspl
=7+ 2+ pA <p—y2 - 2h2> s+ FW? — 2 e (4.616)

I
S
2

1\ 2
Ps I
. . Ky Po <CO+7) . Ky co+ 5
=2+ 2+ B+ | [ 1 | P 207 s+ s | e - =2 ]
ps p po Ky ps Ky

«

15Here we omit the superscript [, and understand all K's as locked values (4.614).
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Note that the term linear in ~, is a pure surface term and does not influence the
stability. Let us introduce the quantity

po Ky

N2
4)

For small 3, the term proportional to 3% is

K

(4.617)

1 po ~1 h? o2
zbE@—K)—ﬁww. (4.618)

Hence the position at 5 = 0 is stable if and only if
<<t=-(1-K1). (4.619)

In the absence of a magnetic field, stability implies [36]
K > 1.

In the Ginzburg-Landau regime, this is barely satisfied:

10
K &9 (4.620)
For decreasing temperature, however, p, is known to vanish. Hence we expect K
to cross eventually the line K = 1. If one uses the energy parameters (4.126), but
with the Fermi liquid corrections of Subsection 4.9.4 [37], one can argue that this

will happen well within the A-phase at a temperature [3§]
Ty, = T(K = 1) ~ 0.86 T, (4.621)

Thus we can conclude: For T' € (Tyan, Tt.), the presence of a superflow acts self-
stabilizing. It creates its own potential well, which prevents the free motion of d || 1
away from the direction of the current. In the parameter space SO(3) of the d || 1 -
phase, this corresponds to a potential mountain around the equatorial region (see
Fig. 4.30). This mountain is sufficient to prevent the deformation of contours to the
two basic ones (corresponding to integer and half-integer spin representation). For
these deformations, the passage of the equator would have to be unhindered (see
Fig. 4.31).

It is easy to convince oneself that the SOgz-sphere with forbidden equatorial
regions allows an infinity of inequivalent paths: The allowed type within the SO(3)
sphere has its upper face coinciding with the lower one (except for a reflection on the
axis). The parameter space becomes equivalent to a torus and m; = Z. Therefore
there are again large quantum numbers which are conserved topologically in the
weaker sense discussed above. Thus there exists indeed superflow in *He-A.
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FIGURE 4.30 In the presence of a superflow in 3He-A, the l-vector is attracted to the
direction of flow. In the parameter space of 3He-A this force corresponds to forbidding
the equator of the sphere, thereby favoring a conical section. Since diametrally opposite
points are identical, the topology is infinitely connected. The figure shows an example of
a closed curve with two breaks.

(d)
FIGURE 4.31 Doubly connected parameter space of the rotation group corresponding to
integer and half-integer spin representations. Note that the continuous deformation of
arbitrary contours to the two fundamental ones (either a point or a line running from a
point at the surface to the diametrally opposite point) always has to pass via the equator
of the sphere. An alignment force between 1 and the current which forbids the equator of
the sphere therefore changes drastically the topology to being infinitely connected.

Note that in the dipole-locked regime with 5, = 0 both currents (4.602) and
(4.601) coincide and are equal to

jl = Jl/Jd = j2 = JQ/Jd - - (az +’7z) : (4622)
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/\_
[
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FIGURE 4.32 Helical texture in the presence of a supercurrent. The vectors show the
directions of 1 which rotate around the axis of superflow when preceding along the z-axis.
The angle of inclination has a constant value By. The pitch of the helix is constant with
a ratio 1./j ~ (co + pl) /K ~ 2.

Topological conservation in a torus implies that (a, + ~,) is pinned down at 27/L
times an integer number, say /N, when going once around the axis. Hence both
currents are topologically stable at a value

Jj1=7Jj2 =27N/L, (4.623)

where L is the length of the torus.

What happens when the temperature drops below Ti.,7 Then the quadratic
term becomes negative and [ starts moving away from the forward direction. We
can then show that the higher orders in 3 stop this motion at a value fy # 0. In
this case the coefficient of the last term in (4.616) becomes finite so that v, will be
driven to an average value

. 3.
(72) = I & 5 (4.624)

A texture with fixed angle of inclination 3y and 7, = 72 looks like a helix with
constant pitch 7? (see Fig. 4.32).

It is in this helical texture that the two currents (4.601) and (4.602) no longer
coincide and, moreover, become both conserved topologically [39].
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In order to prove the dynamic stability of the helix we first consider all stationary
solutions. Since 2g does not depend on ~, a solution at s = sq is stationary if and
only if'6

29' = Aj% + 2M) .5 + Giys — 2h* = 0. (4.625)

For every sg there are two values of v, at which this happens:

+ M M\%2 A 2 1
"z g g g
L =——4 —= | —=4+2—=—=. 4.626
77, MG;) G, ', 020
Since M and G are simpler expressions than M, and G4, we use
M'A—AM' 1

A2 GL 2v1—s’
G, = G —2MM'[A+M*A /A = (5+ 65+ 95> +45%) /4(1+5)%,  (4.628)

which satisfy
M- GyA, = (M?-GA) /A, (4.629)

to write [see (4.605) and the forthcoming Appendix 4C]

L= (¢ -2mmA+MA) (4.630)

X [~(MA-MA) £ A M2 -G A+ 2G5
— [VI=5(5+6s+95 +4s°)] (4.631)

x |3—s+ V(3= )2 =21 — (14 8)22h2/52)(5 + 65 + 952 + 453) (1 — 5) | .

This equation has two solutions if

M"? —G'A' — A’Gi2h% /5% > 0. (4.632)
Consider at first the case h = 0. After a somewhat tedious calculation one can write
M? —G'A =a(s—st)(s—s7)/4(1 — s), (4.633)
with
st = g (1 + /1 4 da k(1 — K‘l)/ﬁp52) , (4.634)
where
a = [0(2)2,0000 +gcp + 8(K; — Kb)ﬂo} /pY =8 (4.635)

16 As we noted after Eq. (4.616), a linear term in 7. does not influence the field equation of the
system since it is a pure surface term. It is a mere constant after integration over z.
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F1GURE 4.33 Three different regions in which there are equilibrium configurations of the
texture at H = 0 (schematically).

2po 1 1 1 3
= s Ky(K -1 Loner, — 1 -5k
/8 (CO+%p!)p!2 Co b( )+(CO+ 2p5)( t 2p5) 2p5 bl >

(4.636)

and K is the ratio (4.617). In the absence of a magnetic field, s* give the boundaries
of stationary solutions. Due to our incomplete knowledge of the parameters of the
liquid we shall estimate the regions in the following fashion: Since the passage of
K through unity is eventually enforced by the vanishing of py, we shall assume, for
simplicity, that all coefficients have their Ginzburg-Landau value in the list (4.127),
except for pg which we assume to be equal to

9

po=ps(1 =€) = pip K. (4.637)
Then
10 9
K:§(1—6), e:l—EK, (4.638)
and
a=8+¢, [ =3+6, (4.639)
so that

st = [346ex (1- V1T 10¢] /(8 + ). (4.640)

The curves s () are shown in Fig. 4.33.

The regions above the upper and below the lower curve correspond to stationary
solutions. As the lower curve drops underneath the axis (e < 1/10), the solution
becomes meaningless. But this is precisely the region discussed before in which the
£ = 0 solution is stable.
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In the following we shall try to keep the discussion as general as possible but
find it useful to indicate a size and temperature dependence of more complicated
expressions by exhibiting their generalized Ginzburg-Landau form in which only p,
deviates from the values (4.127) via (4.637). This limit will be indicated with a
symbol = and be referred to as L-limit. The Ginzburg-Landau case (4.127) will be
exhibited with an equality sign 5 , as before.

Let us now include the magnetic field. Then the boundaries of stationary solu-
tions are

h2
afs—s) (s —s7) + 8j—2 [Ao + 2A s + <3A2 + %AO s2+ Q%Ags?’] (1—19)

h2
Q2 e n 2 _
G 861445 (5+6s+95%) (1—s) > 0. (4.641)
This equation is no longer quadratic in s and its solution is complicated. It is
gratifying to note that the physically interesting regions can easily be studied with
a good approximation. First observe that at s > 0 there are stationary solutions if
the magnetic field is larger than the value given by

h2
as's™ +8-—LAy = 0. (4.642)
J
This implies [see (4.233)]:
h? as’s™
< = _—— " 4.643
j2 8Kb Ps ( )
But from (4.634) one has
K,
ass™ —4=200 (1 - K1), (4.644)
Ps

so that the value of h. from (4.643) coincides with the critical value determined
previously from the stability of the texture with 5 = 0 (see (4.619). Thus as h
exceeds h., the aligned solution destabilizes in favor of a new extremal solution.
The new equilibrium position can be calculated to lowest order in Ah? = h?h? by
expanding formula (4.641):

h? Ah?
8—=(2A1 — Ag) — (s' + 57 )ar| s + 8—~ > 0, (4.645)
J J
which amounts to
4 Aj?
s<sy = —o S (4.646)
B—43(2A1 = A) J
Using the limiting value
h2
— = (1 — 10¢) /20, (4.647)
J
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we estimate the prefactor to be

4 10

_ 4.648

B—4% (20, — Ag) L 3+ 6e— (1—106)2/10 (4.648)
[ 100/29 e=0, T=T,

- { 100/36 O = 1/10, T = Ty, (4.649)

which is therefore ~ 1/3 for all temperatures between T, and Ty,p.

Within this small-s region we can now solve (4.626) for 7. Since 7y, goes with
the square root of s—s; , sp,, it is sufficient to keep, for small Ah?, only the constants
in the other terms and we find

+ I
7z Co _'_ 2ps ps t
£ « — 5 4.650
; o g eals - D (4.650)
1/4
G+ 50!9' ph |8 a 4Kypo -1 —

If we choose, in addition, also K = 1, we have

0

II
SEPN —+i&\/7\/sh (4.651)

J J
which in the L-limit reads explicitly

V. 3 5 (20 h?
735(1%1[@—2‘(“1’]‘5)' o)

As the magnetic field increases one can solve this equation for the external positions

only numerically. The results are shown in Figs. 4.34 a)—c) for three different values
of e:e =0, e =0.1, e = 0.2. Note that the small-s regions coincide if the magnetic
field lines are labelled by Ah?/j? rather than h?/j2. Let us now find out which of
these positions correspond to stable extrema. The energy density can be written in
the form

2g = Bs? +V (s,7.). (4.653)

The stationary points were determined from

%‘S/ (s0, 7¥) = 0. (4.654)

If we now assume linear oscillations around this value we have

_ 1%
202g = B(Js.)?+ 7 (s, 72)(67z)

o*V LV o*V

+ +
Qasa/yz (807 73 ) + a/yz (807 VZ ) (4655)
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FIGURE 4.34 Pitch values for stationary helical solutions as a function of the angle of
inclination By. The curves are lines of constant ratio between magnetic field and current.
The shaded areas are regions of stability for the helical texture, the left one has [ close
to the direction of flow, the right one has [ transverse to the flow. a) The temperature
lies close to the transition point; b) at the lower temperature T' = T,p, at which the
helix begins forming in a zero magnetic field; c¢) at a temperature below 7' = Tyta,. The
temperature dependence of the hydrodynamic coefficients is simplified assuming that only
po differs from the Ginzburg-Landau values.
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The second term is a pure surface term and can be ignored. The equations of motion
of (4.655) are linear. Therefore the superposition principle holds and we can test
stability separately by using plane waves of an arbitrary wave vector k. With such
an ansatz 26%g becomes

26%g = (V' + Bk?) () + 2V'k(05)/(57) + VE*(57)2. (4.656)

This is positive-definite for all k if

. O
and ) _
V'V -V >0, (4.658)

In terms of the functions defined in (4.605), these conditions read

Gy >0, (4.659)
2 (G2 4+ 2MU ot + ALP) Gy — 4 (Gl + MjyE)” > 0. (4.660)

Using (4.626), the second condition takes the alternative form

. Gy (i —%n)
+ _ ", £2 " "2 9 z z
— (vaz + 2ng72 A ) 2G’92 12

> 0. (4.661)

Now it is easy to see that G, > 0 for all s, and only (4.661) remains to be tested.
Analytically, the small-s region is simple to study. Since

II
22?92 ~ 2’%3, (4.662)
we have to satisfy
I 2 I 1
i O e i
+ [2 (K¢ — Ky) 4 2co + % — 2(00 2305)2] (CO ‘i[‘(béps>2} s
e 6 1+ 34Klf’2p° 1— K-1)(s — 5). (4.663)

For K ~ 1, we can keep only terms linear in K — 1, s, , s. Using the generalized
Ginzburg-Landau values for the parameters gives

1136 1/79\2
=4+ (=) (K-1
5[225+4(10>( )

36,
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FIGURE 4.35 Regions of stable helical texture, II- and II+. In the region of overlap there
are two possible pitch values v, v, for which a helix can be stable.

But on the left-hand side, K — 1 can be neglected since it contributes higher orders
in s. Thus we find that the extremal solutions, which exist for

5 < Sy, (4.665)
are stable if 5
5> gs,:. (4.666)
Using (4.652), this result can also be phrased in the form
0\ 2
V== 72 1
< z(1-K). 4.667
- -

In Fig. 4.35, this statement amounts to the upper third portion underneath the curve
s, to be stable at s ~ 0. In general, the stability can be decided only numerically.
In Figs. 4.34 a—c we have encircled the stable regions with a dashed line. Note that
for fixed h?, the instability sets in as 7y and v, become separated. Looking at the
expression (4.661) the reason is clear: The second derivative V' is positive but not
very large. If the branches separate too much, the positivity cannot be maintained.
We see that as h? increases, the helix is stable only up to s ~ 0.3 —0.45. Beyond this
it collapses. For completeness, we have also indicated the stable regions in Fig. 4.36.
Note that the existence of the dipole force is essential for stability. First of all,
the position s = 0 is never stable if the vectors d and | are not coupled at all. To
see this remember that the constant K of (4.617) would be, in the Ginzburg-Landau

region [compare (4.614)], considerably smaller than unity:
Kypo 2

—s = < L 4.668
EESTINE oo

There is no hope that this situation reverses for smaller temperatures (since py — 0
for small 7"). The magnetic field does not help since it couples only to d. Also the
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FIGURE 4.36 Regions of a stable helical texture (shaded areas). Contrary to Figs. 4.33
and 4.35, the full temperature dependence of the hydrodynamic coefficients is taken into
account, including Fermi liquid corrections. The regions of a stable helical texture are
denoted by II- and II+. In the overlap region, there are two possible pitch values v, v,
for which a helix can be stable.

hope that a position s # 0 may be stable is futile, even though there are stationary
solutions: If we calculate in the Ginzburg-Landau limit

1

! - <——> -0, (4.669)

MIZ_AI /:
¢ 41— 2

this is fulfilled for all physical values s = sin? 3 € (0, 1) with

= 1 1

%:mg_%_szb—si(l—i—s)\/f&— ]. (4.670)
At s = 0, the ratios are 1.577 and 0.4226. For s — 1, the upper branch tends
monotonously to infinity with 1/4/1 — s, the lower goes to zero with /1 — s. Thus
(v = )2 /7% increases rapidly. It is exactly for this reason why there is no hope
of making D > 0 in (4.661). The second term is too large (remembering that the
separation between v and v is also the origin of the instability for small s in the
dipole-locked regime).

Recognizing this fact we are compelled to study the effect of the dipole force
with more sensitivity than implied by the assumption of dipole locking in the above
discussion. Certainly, the results gained there will be valid for h, j < 1, i.e., as
long as the dipole force is strong with respect to the other alignment forces. What
happens if A, j grow to a comparable size? Consider again first the stability of the
forward position where d||1||j||h. For small, 6, 8 the quadratic part in the energy
can be written as

1 , | .
2g = const + ﬁ [pojzﬁz + K, (ﬁf + ﬁ2xz) -2 (Co + %) B%y.j
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+ (K{ = K3) (02 + 3%2) +2 (07 + B* — 20Bw(y — ¢)) — 2h*%] .
(4.671)
Introducing coordinates which are regular at the origin
u=[fcosy, v=/fsiny, u=~0cos¢p, U =~0sinq, (4.672)
so that
v, = (uv, —vu) [N+ 02, ¢, = (v, — va.) [V a2 + 2, (4.673)
the energy becomes

29 = i {poj2 (u2 + 1)2) + K, (Uz + UE) -2 (Co + ;) (uv; —vu.) j

+ (K - k) (5.2 + 02) +2 ((u—a)’+ (v—10)") — 20% (a* + %) }.

Since the corresponding equations of motion are linear, we can again test the stability
of all plane waves

w, u~sinkz; v, v~ coskz, (4.674)

each of which gives

1 : . )
29 = N <p0]2 + Kpk* — 2kj (co + %) + 2p5> <u2 + 122>

+ (K - K§) k2 =2 (2 1) pl] (2 + %)

X e pj2+Kk2—2kj<c —|—p—!>— 4.’ + 2p!
o\ ’ VU 2) (KK R -2n2 ek

X (u2 + U2) [(Kf — Kg) k* —2(h* — 1)p!}

2
20!
x | |u— s ul +(u—v . 4.675
( (Kf—Kgl)k?—Q(h?—l)p!) ( )} (4.675)
Since K¢ — K¢ > 0, the second term is positive definite for all & if:
h? < 1. (4.676)

Thus we remain with deciding the region in the h, p-plane for which

Pl 4p!°

2 ) - (K — K§) k2 = 2(h? - 1)p

A(k‘) = p0j2 + Kbl{Q + 2p“ — ij (Co +

I\ 2 Iy 2
o co+ 5 co+ %
pu— k: —_— _— —_—
poj” + Ky ( K, J) Ky ( X,

2,
1- Pe > 0. (4.677)
(K- K§) k> —2(h> 1) pl
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FI1GURE 4.37 If the assumption of dipole locking is relaxed, the regions of stability shrink
as shown in this figure. The entire region to the left of the line j/h = /20 is stable in
the dipole-locked limit. The finite strength of dipole locking reduces this to region I. It is
reduced to the origin, depending on whether the temperature is 7' =T, or T' = Ti;,,. Here
a a stable helix can begin forming. For completeness, we have given also the region II for a
temperature half-way between T, and Tg,},. Similarly, if dipole locking would be perfect,
the whole region below j/h = /40/7 would be stable, with d || 1 pointing orthogonal to
the magnetic field. The finiteness of the dipole locking force reduces this region to the
solid curve which becomes horizontal for large h.

I
Only the regions with k ~ h?/(K{ — K¢) and k ~ (¢ + 5);j/ K, are dangerous. If
we assume h, 7 < 1, then k£ < 1 is also a dangerous value, and we expand

Iy 2 I

5 co+ 5% co+ 5%
K, | k— - K

poj”+ b( K, ‘7) b( K,

+ 200 (=h* + (K{ - K3) k*/2p))

2

Q

A(k)

Il
. ot _
= poj’ + L (k - j) — oK™t = 2plh? > 0. (4.678)
From this we find
hr lpy .., 1/1
<750 (K1) =3 <E = e) , (4.679)

in agreement with the dipole-locked result (4.619), as it should. Thus the straight
line (4.679) will now be tangential to the stability curve at the origin. For larger
values of h, that curve bends upwards and cuts the z axis at some finite value of j.
In Fig. 4.37 we have plotted the new stability curves for the generalized Ginzburg-
Landau constants with py = pll (1 —€) at e =0, ¢ = 0.05 and ¢ = 0.1. Even at h = 0,
the forward texture is stable only for j < j.. = 1.17, 0.83, 0, respectively. The
reason for the onset of stability at h = 0 is easy to understand: The current tries to
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FIGURE 4.38 As a stable helix forms in the presence of a superflow in 3He-A, the parameter
space reduces even more. In addition to the equator being forbidden by the alignment
force, a narrow cylinder along the axis is outruled as well. The topology of the remainder is
doubly-infinitely connected. Continuous paths can either break at the surface and continue
from the diametrally opposite point or they can wind an arbitrary number of times around
the central one.

curl up the texture in form of a helix (see the second term of (4.678)). The dipole
force drags d behind. But the bending energies of d favor a uniform d texture.
Thus, if the current is too strong, the d || 1 alignment breaks. As soon as d and 1
are decoupled, the texture destabilizes, as was observed before in the general case.

The full analysis of equilibrium positions in the unlocked case is tedious. How-
ever, as long as j,h are small enough, say j < %jmax, h < h., the results of the
dipole locked situation are perfectly applicable.

Let us now turn to a disussion of the physical content of the helix which was
alluded to in the beginning of this chapter. As the helix forms at h > h,., the 5 =0
position turns into a potential mountain which forbids the alignment of d || h with
j || h. In the SO(3) parameter space of the dipole-locked A-phase, this amounts to
removing a narrow cylindrical region running along the axis (shown in Fig. 4.38).
Together with the potential mountain around the equator discussed before, the
parameter space becomes now doubly-infinitely connected:

m=7+1. (4.680)

In addition to paths running from south to north, continuing again at the diamet-
rically opposite point at the south, etc., also those which wind an arbitrary number
of times around the narrow cylinder become topologically inequivalent. Physically,
this corresponds to the fact that in a torus not only

(o +7.) =27N/L, (4.681)

but also the average pitch
(72) =2nM/L, (4.682)
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FIGURE 4.39 Angle of inclination as a function of the magnetic field at different tem-
peratures. The values K = %, 1, g correspond to T = T, T = Tgan, T < Tstap. As
the magnetic field is increased, the helix collapses. Then the magnetic field is so strong
that it tears apart the stabilizing dipole locking between 1 and d. The solid curves show
the behavior if only the temperature dependence of pg is taken into account. The dashed
curves contain the full T-dependence.

are both topological invariants. A consequence of this is that, when increasing the
magnetic field beyond h,, or when decreasing the temperature so that h? < 0, the
pitch value (v,) ~ (co + %p(!) /Kyj = 2 at which the helix begins forming [due to
the last term in (4.616)] will be frozen. Therefore the angle of inclination /3, will be
pinned down topologically, precisely at the value corresponding to s, [see (4.646)].

In Fig. 4.39 we have displayed the curves of constant 7,/(a, + 7.) = 7°2/j for
increasing h?/j% at fixed values of ¢, until the point of collapse. These curves can
be deduced from plots like those in Figs. 4.34 a)—c), by following almost a straight
line to the right starting from ~,/j = % The line is not exactly straight since
this would imply ~,/j = % rather than v,/(a, + 72) = % The relation is, in the
Ginzburg-Landau limit,

k _ ’72/(az +’72)
jooGL 14s—(1+s—vI—s)7/(c;+7.)
3 1
~ s (1 10 sin® B + .. ) ; (4.683)

so that there is very little deviation for small s.

The separate topological conservation of the two currents is intimately related
with the fact that 3He-A contains p-wave Cooper pairs. Remembering our discussion
of Eq. (4.131) there are two current terms of different physical origin. The helix
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stabilizes both currents topologically and provides, in addition, the perfect tool for
measuring their ratio. The pair current

JP = pove — po (1 vy) (4.684)

is a sum of two terms

) 1 1
JPH = —(Ps — po cos” 5) m (a. + cos B7.) e, + pol* cos 5% (a, + cos B7.)
1

1
= Ao, + cos B.) e, + pol*t cos B— (., + cos B7.) , (4.685)
2m 2m

of which the first flows in the z-direction, while the second forms stratified layers of
currents whose direction changes with 1 when proceeding along the helix.
The orbital current

J™ = ¢(V x1) —cl[l-(V x1)]
= ¢cos Bsin® By.e, — (c — ¢ sin2> v.1" + ccos BB.e,,  (4.686)
on the other hand, is the sum of three terms, the last of which points into the

azimuthal direction
e, = (e, x1) /e, x1,

and vanishes in equilibrium where 5, = 0. With g = 5y and «,, 7, frozen topolog-
ically, both currents are determined. In particular, the ratio of their z-components
is

J;)rb

Jpair
z

Yz
(ps — Lo cos? 60) (dz + cos 60’)%).

= 2mcg sin? By cos fo (4.687)

There is a simple way to measure sin® 8;. As is well-known, sound attenuation is
sensitive to the angle between the [-vector and the direction of propagation of the
sound [43]. In fact, if § denotes this angle, the attenuation constant is given by

a = ajcostd+ 2a.sin?5cos’§ + o sin? 6,
= (a1 — 20, +ay)cos* § 4+ 2 (oo ) cos? 6 + ay. (4.688)

If the helix is probed with a transverse signal, the angle § becomes
cos d = sin 3 cos . (4.689)
Therefore one has the averages
(cos? §) = sin? By {cos® ) = % sin? 3, (cos" ) = sin® By{cos’ v) = gsin4 B, (4.690)
so that

3
a=a; + (a.—ay)sin? By + 3 sin? 3. (4.691)
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FIGURE 4.40 Sound attenuation can be parametrized in terms of three constants. Ex-
perimental measurements are shown here and compared with theoretical calculations of
Ref. [43]. The most sensitive test for a helical texture can be performed in the region of
largest difference between «; and aqj.

The experimental values for the coefficients are displayed in Fig. 4.40 (taken from
Ref. [43]). Thus, if one goes into a region of large |a.—« |, and turns on a magnetic
field, o will stay constant for h < h. [from (4.619) and (4.647)]. For h > h, it will
begin to drop linearly in Ah?/5? (if a.cy < 0) with a slope ~ (o, — a ) 3Ah? /52
It appears that this effect has been seen at the University of California in La Jolla
[42].17

Until now we have focussed our discussion on helical textures which may develop
from a previously aligned d || 1 || j || h configuration. A look at Figs. 4.34 a—c shows
that there is another domain of stability for s & 1 (open helices), as h?/j? exceeds
some critical value th /j%. The reason for this is obvious: If & is large enough, a
potential valley is created for the d-vector at 6 ~ 7 /2. Dipole locking stabilizes also
I in this position. In order to calculate the boundary in the dipole-locked regime,
consider the energy for s ~ 1:

h2 1 I s
2g = const +2 .___pops (1—8)j2+2v1—8'0 CO’Yzj
j* 2 P Ps

K
+—72

Ps
2
h? popl (m%) Pi | 2
7% 203 \ ps 2K
17T thank Prof. Kazumi Maki for a discussion of this point, and of the experiment performed by
R.L. Kleinberg at La Jolla [42].

= const +2
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K L — 172
+— [vz +V1s (—p CO) &] . (4.692)
P ps ) I

Thus the 5 ~ 7/2 -position is stable as long as

E>@2:xﬂl <m—w1

j2

P (4.693)

This boundary was shown in Fig. 4.37 for T'~ T, (i.e., € = 0). It is important to
realize that for h > h,,, not only the angle § = 7/2, but also an entire neighborhood
of it is stable. This can easily be shown: Since M, is diverging for s ~ 1 as 1/v/1—s,
the solution of (4.630) becomes simply

o 1 [n* A 2—¢ h? 1—e¢
Yoo B S Y/ e |
j A@[ﬁ 7 | I e R &
v My 1 1—e¢
oo oMl € 4.694
J Gylgn U \/1—86—36 ( )
which can be compared with Fig. 4.34 a)—c).
Now the first stability criterion (4.659) is fulfilled trivially:
K
Gyl,_, == >0. (4.695)

S

pll

The second criterion on the determinant in Eq. (4.661) is, on the other hand, dom-
inated by the singularity in M where

G 2
QM//- + g > z )
997 5613 % 42

(4.696)

Inserting (4.694) we see that only the negative values of «, on the lower branch can
satisfy this under the condition:
2
WA ML

_ > —. (4.697)
2 27 MG,

Inserting the parameters of the liquid, this becomes exactly the same condition
as (4.693), but now it guarantees stability of all positions in the neighborhood of
s &~ 1. Note that, contrary to s = 0, where s = 0 and s # 0 correspond to two
different parameter manifolds, the point s = 1 is in no way special as compared to
its neighborhood.
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If dipole locking is relaxed, the straight boundary (4.693) in the j, h plane will
curve for larger values of j (see Fig. 4.37), and will eventually approach an asymp-
totic line j = jmax. In order to find jmax, consider the terms of the energy quadratic

inBEB—Tr/Q, 0=60—7m/2,~, ¢

h? . I <
92g = const + 2 (,—9— popw?) 2y K52+ 2529,
P

J? 203 s
K, K¢ N
+p—”w§ p—ﬁ (02+62) +2(0-B) +2(v—9)°, (4.698)
1
where now K, K; are the unlocked values (K, = K; = = also K¢ = 2). For a
GL GL 2 GL

plane wave ansatz this becomes
2g = const +Bp2+T0% — 403 + G2 + 2M jkpBy + F¢* — 4v¢, (4.699)
with

~ I
B = Ki—20sp2 9

s

- K

G = —k*+2, (4.700)
ps

- Kd

T = —k+20°+2,
ps

_ d

F = ﬁkQ +2.
Ps

After a few quadratic completions one finds

29 = const + BA? + T6* + G372 + F¢?, (4.701)
with
_ - . K KKd 1 K4
G = G—-4/F ==, Lk 14 - —Fk?
p 2K 2 pl
B = B-M?*/Gj?—4)T (4.702)
K p ps Ps —C ? k2 . 2
= PR - 32+2_< 0) o = )
Ps Ps Ps 2—1||]€2+h2+1
Ps
and new angles
0 = §-3T.
¥ = v—(Mjk/G) 8, (4.703)
¢ = ¢—~/F.
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We now observe that F > 0, T > 0, G >0, and that the quadratic form (4.701)
is positive-definite for all k if

B(k) > 0. (4.704)
For small h?, j2, we can expand in k2, j2, and k2 and recover the dipole-locked result
(4.693). As h increases, the stability curve approaches the line j = jyay determined
by the h = oo version of (4.704) which renders

. 205/ p) 40
jr2nax - ((]05—00)2 C?_J 7 (4705)
Pot TRT

In fact, if the coefficients are close enough to their Ginzburg-Landau values, the
value B(k = 0) is the most dangerous one, yielding the boundary curve,

202 1 h?

)
J° < — )
p! Po —+ —(pSKéO)Q h2 + 1

(4.706)

which starts out as (4.693) and becomes horizontal for h > 1 (see Fig. 4.37).

A final remark concerns the possibility that the stability discussion presented here
becomes invalid due to transverse oscillations which we have neglected. Certainly,
these oscillations must be included to believe the above stability criteria. This
makes the discussion of the energy much more tedious. Until now, only oscillations
with very small transverse momentum have been tested. Fortunately it turns out
that at least for this limit the transverse oscillations have higher energies than the
longitudinal ones, so that the instabilities are always triggered along the z-direction.
Since the discussion of this point is very technical, the reader is referred to Ref. [40].

A similar helical texture exists in an external magnetic field, as was found soon
after the above discovery of the helix in a flowing superfluid [41].

4.11.1 Magnetic Field and Transition between A- and B-Phases

At zero flow we can observe a transition between A- and B-phases at a magnetic
field which satisfies

o 2 5 o
— (a—=h%) + —ht= —. 4.707
05, (1) + g = g, (4.707)
The solution 1is
=& P g , 4708
AB 3 2612 + /8345 [ f(ﬁ)] ( )

where

_ [ 308 ~
f(B) = 5A5345v2513 B3a5- (4.709)
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In the weak-coupling limit, the result is

1
hp = G (4.710)

Recalling the definition of h in Eq. (4.476), this translates into the relation between
the physical magnetic field H, and the temperature between A- and B-phase:

H?> 1 (1_TAB)

Hy> 6 T,

(4.711)

from which we see that the transition temperature is shifted downwards quadrati-
cally with an increasing magnetic field. At the polycritical pressure p,. one has

Ba = B, (4.712)

and

3Bz = 2085, f(B) =1, (4.713)

so that the transition occurs at zero magnetic field, as it should.

Let T95 be the temperature of the transition in the absence of a magnetic field.
We may expand the right-hand side of Eq. (4.708) around this temperature by
setting

1—fB)=r

0
(1 — h) : (4.714)
4y T

Inserting this into (4.708) we find that a magnetic field shifts the transition from
T95 to Thy according to the approximate formula

& B34 f’
3 2B12 + Baus

or in terms of physical magnetic fields:

T, T9,-Th
(785 — Ths) (1— ,_}“,B+ ABT AB). (4.716)

h,243 = (TgB - TQB) ) (4.715)

0
TAB

Hip _a B34 /
Hg 3 2B12 + Bass

Thus we see that far away from the polycritical pressure p,. there is a quadratic
response of T to H. Close to ppe, on the other hand, the response is linear. This
explains why the experimental curve of phase transition shows the most significant
dependence on H in the neighborhood of the polycritical pressure py..

It should be noted that, in the absence of strong-coupling corrections, the order
parameter of the B-phase is distorted continuously into that of the A-phase as H
reaches Hap. There the order parameters a®> = 1+ 2h? ¢ = 1 — 6h? become
a?=2 =0

Thus the transition is of second order. Since it is sometimes believed that strong-
coupling corrections become small for p — 0, this amounts to a decreasing latent

heat.

0
TAB
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4.12 Large Currents at Any Temperature T <17,

4.12.1 Energy at Nonzero Velocities

For general temperatures 1" < T, we shall confine our discussion to the weak-coupling
regime. Fermi liquid correction will be included at a later stage.
Adding the external source

>

v] = —vgb*(x)%V () (4.717)

to the action (4.75) gives rise, in the 2 x 2 matrix M of (4.80), to the additional

entries
vp O
( 0 vp ) . (4.718)

Therefore, the final collective action (4.83) becomes simply

. . And
Av — —ETI' IOg Zat —S(pl)%— vp . AaiaaVi/Q N i/d3$|Am"2- (4719)
2 AGZ*O'QVZ‘/Q Zat + f(p) + Vvp 39

0

For constant field configurations, A, = A,;, this results in the free energy density

at velocity v:

T
b= A 4.720
9= A (4.720)
1
= —T> [log(iw, + vp — E(p)) + (E — E)] + @|Agi|2 + const,
Wn,P
with

E(p) = \/€(p) + A2 + (1 — r222). (4.721)

As usual in such expressions, it is convenient to subtract from this the free energy
of the free Fermi liquid, now with the external source vp. Then

g5 =-T> [log(iw, + vp — £(p)) + (§ = —&)] + const. (4.722)

Wn,P

For v = 0 this quantity was calculated earlier [recall Eq. (4.264)]. For v # 0 we
observe that we may perform a quadratic completion

+ 2
pEmv)” LT (4.723)

Fvp —€(p) = — - 5
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The first term gives the same gy as the v = 0 formula since the integration over p is
merely shifted by mv. As far as the additional kinetic energy mv?/2 is concerned
we may assume it to be very much smaller than p%/2m so that we can expand

. 0 eiwnu e—iwnu m
g = go+7T ( — - )—v
0= T 2 ) ) 2
m
= 98—2:71(5)5"2
P
— 09 4.724
- gO 2V Y ( N )

thus arriving at the usual form of a Galilean transformed energy.

4.12.2 Gap Equations

We shall now allow for anisotropic gaps (4.104) of the same distorted form (4.491)
as discussed previously in the Ginzburg-Landau limit, i.e.,

a AJ_
A = A° a = Al , (4.725)
c A

where A and A, are the gaps orthogonal and parallel to the flow. Introducing the
gap distortion parameter

r=1- L (4.726)

and the directional cosine z of the quasiparticle momentum with respect to the
preferred axis, which lies parallel to the current for symmetry reasons, we may write
the anisotropic gap as

AYpi? = A%(2) = AT (1-2%) + AT22 = A% (1-12%27). (4.727)

a

This paramerization of the gap permits a simultaneous discussion of B-, A-, planar,
and polar phases. With the form (4.725) the last term in the free energy ¢g” becomes

1, 1 , a1 r?
@\Aail =@(2AL JFAH):EAL -5 (4.728)

Minimizing ¢* with respect to A% and A ? we find the two conditions:

1 1

— TS 322 ] A, = 0, 4.729

lg Zp (wn — ipp2)* + E2(p)] (4.729)
1 3 1
TN 2 (1= 22 ]A - 0. 4.730
lg wzp 2 ( ) (wn — ivpr2)? + E2(p)] (4.730)
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If we assume both gaps A, and A, to be nonzero, there are two nontrivial gap
equations. Sometimes it is useful to compare the general result with the hypothetical
case of a gap that is free of distortion, Ay = A, or r = 0. Then only the average
gap equation [5 (longitudinal 42 transverse )] survives with no directional factor z
in the integration and with » = 0 inserted. Moreover, since the polar phase in
which A, vanishes (corresponding to r — —o0) is physically rather uninteresting,
due to its small condensation energy, we shall henceforth work with the average gap
equation together with the transverse one (4.730). From the latter we shall often
draw comparison with the A-phase by inserting r = 1.

In the two gap equations, the sums over Matsubara frequencies may be performed
in the standard fashion using Formula (4.242) to find

1 1
TS — —
%; 2F <iwn—|—vppz—E(p) Wy, —|—vppz—|—E(p)>

1 E —vppz

2T

Decomposing the integral over momenta according to direction and size

/ / hdz / de, (4.732)

the average and the transverse gap equations become
1 B /1 dz (2),
GN@©O) — S22V
1 L dz3
= —Z(1-2° 4.733
o = L3220, (4.733)

where v(z) denotes the function

{tanh + (v — —v)} : (4.731)

- 1
V(z) = TZ/_ df n — 0prz)” + E2(p)
) / d{_ [tanhE ;ppz s —>—U)}7 (4.734)

which is logarithmically divergent. It may be renormalized via the critical temper-
ature which satisfies

gA;(O) = / df—tanh 5 = log <;—:267/7T>
_ log— n / dg—tanh ;T (4.735)
Subtracting this expression on both sides the gap equations take the form
log% - / 11 d;?y( ), (4.736)
log% - /11 %2(1 _ 2)(a), (4.737)

C
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with the subtracted finite function

v(z) = /_ dﬁ{ [tanh % + (v — —v)} - %tanh i} . (4.738)

For calculations it is more convenient to return to the Matsubara sum forms (4.729)
and (4.730). Then the integrals over d can be performed and with the above renor-
malization procedure, and we find the simple expression

1 1
e = W% (\/(wn —joppz)? + A3 (1 — r222) wn)
_ % 3 ( _ ! - i) . (4.739)

n=—oco \/(xn —ivz)? + (1 —1r222) Tn

In this and many formulas to come we have introduced the following dimensionless
variables:

Ay
§ = ==
7T’
UpFr
= = 4.740
We
T, = .
Ay

In order to check the gap equations we first re-derive the previous Ginzburg-Landau
results by going to the limit 7" — T.. Then the variables x,, become very large and
we may approximate the two equations (4.736) and (4.737) for log T/Tc ~ 1 —T/T.
as

T Ldz 2\ 2 ; 3
1—i A 5/ {%1_2 }nzo[l—i-(l/—r)z —ZZVan}/mcn
i 7¢(
= 52[1+{i}(21/ — ]C— (4.741)
5
Combining the two equations we see that near T, the gap distortion grows with the
square of the velocity:

AQ 2
70221—A—2 1—¥=2y2. (4.742)

Inserting this into (4.741), the transverse gap behaves like

AG = 7°T?5* ~ 7{? 3) T2 <1 — %) ~ 3.063 <1 — %) : (4.743)

i.e., it is independent of the current velocity. Note that it follows the same near-
T.-equation as the gap in a superconductor [compare (3.121)]. Inserting this into
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Eq. (4.740), we find an equation for the reduced current velocity x = v/vg [see
(4.459)]:

2 vpE vipF
- A? 8, 2( T)
— T2 (1 - =
7CE)" T,
2 1 2
:g v :g v _3. (4.744)

1 2 1— Z ug(T) 2
2m£0 TC

Via the gap distortion (4.742), this determines the ratio of logitudinal versus
trasverse gap as a function of k:

A 2 2
A—‘l‘Q - % =1 -3k (4.745)

These results agree with the Ginzburg-Landau formulas (4.515) and (4.516), if we
insert the appropriate expansion coefficients [3; of the corresponding state.

In the opposite limit of zero temperature the distance between neighboring values
x, goes to zero so that we may replace the sum over z, in (4.739) by an integral
according to the rule

— / dz,. (4.746)

As in Chapter 3 and in Eq. (4.293), care is necessary to treat the last sum Y, 1/,
n (4.739), since each term diverges at 7= 0. As in the case of the superconductor
gap equation (3.159), leading to (3.161) and (3.162), the proper replacement is

2. 1
S — AT oe(267). (4.747)

= Tn 1/6 T

Therefore we obtain
T Ldz 1
log = —Re [ =
BT e )2 { 5(1—-2% }
x /Ood ! 1 g2 (4.748)
T — — —log2 — v .
0 \/(3: —vz)?+1—1r222 JisX

1
:—Re/l%{ %(11_22) }log(\/l—(V2+T2)22—i6z—ivz) —logd — 7.

Taking v and logd to the other side, the log T-divergence cancels and we find

1
log ——— AT —Re / dz { 3 —z2) } log<\/1— (V2 4 r?) 22 —z'ez—z'l/z),
5 (

ABcs
(4.749)
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where we have introduced the 7' = 0 gap of the BCS theory [compare (3.153)]
Apcs = 1The ™ ~ 17638 T.. (4.750)

When calculating the logarithm, we have to be careful to use the correct square root.
Taking the branch cut, as usual, to the left, this is specified by the ie prescription.

As a cross check we see that for v = 0, 7 = 0 (B-phase) the orthogonal gap
becomes A = Agcg, while for = 1 (A-phase) the lower equation gives

1
log B = /dz3 1—z)log\/1—22 ——log2 (4.751)

Apcs  Jo1 22

such that

5/6
Ay = Apcs—- ~ 2.03T.. (4.752)

While the full solution of the gap equation (4.749) can only be found numerially,
we can see directly that at T" = 0, the gap distortion parameter r vanishes for all
v =uvpr/A; <1, so that A} = Apcs is a solution of both equations (4.748): in
fact, the real part of the logarithm vanishes identically for r = 0.

The full T-behavior of the gaps can be found from the average [i.e., %(longitudinal
+2 transverse)| between the two gap equations (4.736) and (4.737). Then there is
no dependence on z, and the result is

A (T = 1d
7“ 0) = —Re / ?Z log (\/1 — 1222 —jez — iyz) . (4.753)
-1

lo
& Apcs

There exists a real part only for v > 1, which is

[ dzlog (\/1/222—1—1-1/2) =

1/v

1
dz acosh vz = [z acoshvz — 1/vVv?22— 1}

1/v’
(4.754)

1/v

which is why the 7" = 0 -gap without distortion (using a superscript u for “undis-
torted”) is given by'®

w = —f(v—1) (acoshl/ — %\/ V2 — 1) ) (4.755)

lo
s Apcs

The gap remains equal to Agcs up to ¥ = 1. From there on it drops rapidly
to zero. The place where it vanishes is found from (4.755) by inserting the limit
v =vpr/Ap — 00, which yields in this limit

—log Apcs = — log 2upp + 1, (4.756)

18Carrying the Euler-Maclaurin expansion one step further, the right-hand side in (4.755) would
have an additional —#6%vv/»% — 1, which in (4.757) would give a factor exp{—%%} ~1-
26201 (T)T.)? ~1—0.29 (T/T.)* .
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or

vpp e
= — ~ 1.359. 4.757
Apcs 2 ( )

In physical units this amounts to

Y ome — 2pF 7¢(3 7¢(3
v o= © \/48 7re‘YT \/48

- p FU 0.47 ~ 0.64. (4.758)

Apcs

For comparison we see that in the A-phase

AT =0 1 dz3
log 20 =0 :_Re/l 222

Agcs

1

:_/ dz3 1—2)10g\/1—z2
122

' %%( _

1VI+Z 2 2

(1—2 )log(\/1—22—u2z2—iez—iuz>

\/(1+1/2)z2—1+vz

V1— 22 7

2?) log (4.759)

t19

A (T=0) 1 3 vz
log———+—% = / 1— h—
og ABCS€5/6/2 WWie=: 2 ( z )acos 0

implying tha

L v (1+17) (4.760)
= ——— — = vo). .
21+12 28

Here the gap decreases smoothly and hits zero at

UpFr

Apcs

/6
or

Y ~0.892. (4.762)
Vo
The full solution of the gap equations are shown in Fig. 4.41. For comparison we
also have displayed the solutions in the B-phase and the A-phase neglecting the gap
distortion [i.e., using r = 0 or A} = A, and either of the two equations (4.729),
(4.730)].
All curves as functions of v are double-valued. It will be seen later that this
behavior is an artifact of neglecting Fermi liquid corrections. Once included, these
will turn the lower branches anticlockwise into the region of higher velocities while

9T next order in 1/6, the Euler-Maclaurin expansion gives —v?2/ (1 + V2)2 262 which enters in
(4.761) as a factor e~ T 2(rv)? oy ] 9e8/3 42y (T/TC)2 ~1-0.44 (T/TC)Q.
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N (AL/LT6T? (1 T/T.) !

----- B-phase without gap distortion
~—B-phase with gap distortion
-===A-phase

(w/0)? (1 — T/T2)

FIGURE 4.41 Velocity dependence of the gap in the A- and B-phases.

distorting only slightly the upper branches at lower velocities. In this way the curves
become single-valued.

For numerical calculation we have used formulas (4.736)—(4.738), after having
performed the integrals over dz analytically: The average gap equation requires the
integral

Ld 1 L d 1
Re/ i :Re/ i . (4.763)
-1 2 \/(:E—z'yz)2+1—'r‘2z2 -1 2 \/1+x2—2iuxz—(r2+y2)z2

The square root has to be taken with a positive real part, i.e., with the standard
choice of the branch cut running to the left from zero to —ico. The result is
Q, 1 V2 +r? +iva,

= arcsin , 4.764
V2412 V242 \/1/2—1—7’2—1-7’24-33% ( )

or

a, = %arecos ({(1/2 + 7’2) \/(1 + a2 — 2 —12)° 4 422 — (u2 + r2)2 — y%i}) ,

(4.765)
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which lies in the interval (0,7/2), so that the average of the gap equations (4.748)
becomes

T 2 1 1
log — = - 0 — — | . 4.
och 87;)( 1/2+r2a $n> (4.766)
For » = 0, we have
1 2 2 2
OénziCOS (\/(1+x%—|—y2) —4dv? —v —I'n), (4767)

and thus we recover the result of the B-phase, neglecting gap distortion. For the
transverse gap, we have to perform the integral (4.763) with an additional weight
factor 2 (1 — 2?) and find

T 32 & 1 V- a

log — = —— 1 — 2 2 n
Och 2(5;:‘;{( 22 +1r?) * (1/2+7"2)2xn> N E
V2 +r? — 3ive,
2 (12 +12)? 3z,

+Re

At r =1, this is seen to reduce to the gap equation of the A-phase since

V1+ 2

a,| = arctan ————, (4.769)
r= T
and
V2 +1 - 3iva, 1— 207
Ty — V) = ———. 4.770
2 (12 + 1) ( ) 22 +1) ( )
The second term in the sum may be evaluated explicitly by defining
vz,
Yn = eurctanlﬂ—_i_r2 € (0,7/2),
2va,
B, = arctan o € (0,m), (4.771)

1+ 22 —v? —r?

which brings it to the form

V2 +12)% 4 9u2g2 ? l -
\/( ) ”{(1/2—}-7"2—1—1'%) +4V251fircos %Jrﬁ_

2 (12 4 12)?
N 1 1
_ VT cos <fyn + 7) . (4.772)

2 (1% 4 r2) \/sin B3, cos vy,
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4.12.3 Superfluid Densities and Currents

By construction, the current density in the presence of the external source (4.717)
is
dg"
v’
This, however, is not the full current density of the system. In calculating ¢* we have
assumed the field A%, to be a constant in space (and time). In this way the Cooper
pairs have been forced artificially to remain immobile. In full thermal equilibrium

also these follow the drag of the external source, and in the ground state the gap
AP, acquires a phase modulation

(4.773)

e2mvx A0 (4.774)

The gradient of this order parameter accounts for the flow of the condensate, i.e.,
the 3He quasiparticles bound in Cooper pairs.

If calulated at an unmodulated gap AY,, the gradient (4.773) accounts only for
the movement of the quasiparticles which are not bound in Cooper pairs. These
make up the normal component of the superfluid. If the current associated with
this flow is written with a subscript n it reads:

0g"

Jp = —
ov

= const. (4.775)
A0,

From this we deduce the mass density of the normal component via the relation
Jn = ppv. (4.776)
Since the full current would be
J = pv, (4.777)
we may attribute the difference entirely to the flow of Cooper pairs and write
Js=J—Jp=(p— pn)v = psv. (4.778)

This quantity defines the superfluid density p, from the density of flowing pairs in
the liquid. Since J = pv is obtained from —dgg/0v, Js is obtained directly from the
derivative of the condensation energy

_ dg; _ 9g° 0Ogy _ Og"

v v v o —(A=0). (4.779)

Using (4.722) we perform the differentiation and find

I

1
Js = —T;PW <iwn+va_E+(E—>—E)> —(A=0)
3 rtd ) E —
-5/ 722/\/(0) /_oo df{[tanh%—(v% —v)} - [A:O]}, (4.780)
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where we have replaced the momentum sum as in (4.732), and added a factor 2 for
the two spin orientations. For numerical evaluations it is more convenient to keep
the Matsubara sum (4.780), but perform analytically the integration over . Then
we find

L dz twy, + Vppz
J, = / deT
. Z Wy — i0ppz)” + A2 (1 —1222) 4 €2
_ / —zRe Z Wy, + VPRZ
(wn — vppz)2 + A% (1 —1r222)

6 rld = T,
= / % Re Z Wt V2 pv = plo, (4.781)

dv n=0 \/(xn —ivz)? 1 — 22

where we have inserted 2N (0) = 3p/p}. from (4.16). Thus we can identify the
superfluid density parallel to the flow as:

b S (B o)

6 s 1T, + vz

= / ® . Re > . (4.782)
v n=0 \/(asn — i)+ 1 — 222
The integral over z yields
Pl 3P v 2 2 2.2 Qn
= = — —— (V' +r°+3rx ) ——— 4.783
p ov n—O{(V2 +r2)? ( n) V2 +r? ( )
2 . 1 . 2 2
—Rem |:Zl'n+§7/ (1—32m)] \/(l‘n—ll/) +1—7’2}.

If we neglect gap distortion by setting » = 1, we recover the result of previous
calculations

—92202\ /(1 + 2 + 22) — 47/2} } . (4.784)

The last term becomes simply —3z,v/ (v? + 1)2, so that p! at r = 1 reduces to the
expression for the A-phase:

I A 3 1 > Viz+1

Ps A-phase —— > l(yQ—l— 1+ 33:721) arctan L 3Vri+ 1:1:4. (4.785)
p 0 (124 1)2 1o Ln

For general r, the real part in (4.783) consists of two terms, of which the second

coincides with —2v times the corresponding term in the transverse gap equation.

The first may be rewritten in terms of the angle § of (4.771) as

21z, 2 i
\/(xn — )24+ 1—r2=—Re QZ—f 5 [(1+xi—y2—r2> + 4u2xﬂ *emiBn/2
V24

2z,
= - +r2\/l/xn tan (3, /2. (4.786)

21z,
V24 r?

—Re
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Let us compare the result with our Ginzburg-Landau calculation in Section 4.10.2.
For T' ~ T,, we may take the limit z,, — oo and remain with

oo Oz oS L o1 ) T(3)
>~ 3.3 (17’);%— (3 5>8. (4.787)

This coincides with our previous result if we insert (4.744):

,0_2 _ /1 dz/ dx T+ vz

p x —ivz)? + 1 —r22?

L d
= §/ —Zz [I/Z — Re z\/l — (V2 +12) 22 —devz| . (4.788)
viJ-1 2

The square root gives a contribution only for z? > 1/v* +r? implying that p!
remains equal to p until v? =1 — r2.

Since the upper branch of the gap is isotropic up to v =1, there is also an upper
branch with p! = p up to v = 1. On the lower branch one has v?>1—7r?and

I 3 1
Pe _ 1——Re/ dzz\/(v2+r2)22—1
p T=0 v e
1 3
_ _ 2 2 _
= 1-0(F+rt-1) T TQ)\/ﬂ +r2 -1, (4.789)

where O(z) is the Heaviside function. This result agrees with those of B- and A-
phases for » = 0 and 1, respectively.

4.12.4 Critical Currents

In the Ginzburg-Landau regime, the critical currents are known from Section 4.10.
These results agree with the present calculation since p! of (4.788) is the same as
before. In the opposite limit T"— 0, an exact calculation is difficult but the current
can be fixed to a high accuracy by the following consideration:

Due to the distortion of the gap, the current Js as a function of v must be below
the current calculated by neglecting distortion. Now, up to v = 1, both currents are
identical since the gap distortion was derived to be zero for v < 1. Thus Js(v) is
known to reach the value

Ayzl
PFr '

Js(v)‘yzl = pPpUy=1 =p (4790)

Since A,—1 = Apcs also at T' = 0 [see the text after (4.752)], we have the lower

bound on the critical current

Apcs
PF

J(v) > p ~ 0.47J;. (4.791)
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As an upper bound we may use the maximum of JZ%(v) which can easily be cal-
culated exactly. We shall see in a moment that the critical velocity is determined
by

_ |
V1— (23— 1)

Inserting this into the superfluid density (4.789) at r = 0, we find

~ 1.036. (4.792)

Ve

pBu 3
Bl =1-(25-1) ~ 0982 (4.793)
P,
This leads to a critical current
1 ABu Y
JBu = p [1 — (21/3 — 1)3} | e, (4.794)
J1— (23 —1)7 Pr
But the gap at v, can be evaluated from (4.755), with the result
Al 1
= logv,+log |1 — (23— 1) + (25 —1),  (4.795)
so that
_ 213111 _ (o1/3 _
AB v TZO ABCS (& [1 (2 1)} Ve. (4796)
Thus we find, altogether, a critical current
A
JCBu — |:1 - (21/3 o 1)3:| 271/36(21/3—1) Bcsp
Pr
A
~ 1.0112=2%) ~ 0.486 . (4.797)
PF

This lies only slightly above the lower bound. Therefore the true critical current,
including the effect of gap distortion, is determined extremely well by the upper and
lower bounds

0.470Jy < JP < 0.486.J;. (4.798)
Note that the critical velocity in the B-phase is

A Apcs 91/3,(21/-1) Apcs

U —
“Apcs pr DF

A
1.029=25 ~ 0.48 vy, (4.799)
Pr

Ve =

Q
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i.e., it is reached immediately above v = 1. Thus the critical velocity v, lies between
0.47v9 and 0.48 vy.

Let us now derive (4.792). Certainly, the maximum of the current is determined
by

d d

—Js = —ps s(v) = 0. 4.

T s = g ps(v) +ps(v) =0 (4.800)
In general, p, is a function of v, 9§, T, where p is itself a function of v and T via gap
equation:

log% = (0, v). (4.801)

We can therefore express the derivative at fixed T as

0 ov (00 0 0
" 0 (5% + 5) . (4.802)
But since v = vpp /A, we have
v pr (1 10v3dd
ov  aT <5 82 O ay> ’ (4.803)
or
ov v 1
0 Ov
In this way, the extremal condition (4.802) may be written in terms of the natural
variables as
d6 0 0 106 1
(55 + 5) Ps + <g$ + ;) Ps = 0. (4805)

The derivative 96/0v may be taken from (4.804) as — (0v/dv) / (0v/0d). Let us
evaluate condition (4.805) at zero temperature. Then p; becomes independent of §,
and the first term in (4.805) is absent. The gap equation (4.804), on the other hand,
has the form

A
log A = (v), (4.806)
BCS
so that
100 . 8*70

The critical velocity at T = 0 is therefore obtained from the simple relation

Ops 0 B
ll/ 2 + (v 5 + 1) p] . =0. (4.808)
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For the B-phase, neglecting gap distortion, we see from (4.789)

Bu
9 _ g, 2T (4.809)

ov v

The gap function 7y is taken from (4.755), so that

a0 v2—1

g _ VY T g - ). 481
al -1 (45810)
The condition (4.808) becomes
3
2 _ 2] 2]
B A Sy R ) Y | & ) (4.811)
vl v v3

This awkward equation is solved by setting y = m and rewriting
Y+ 32 +3y—1=0, (4.812)
which has the only real solution
y=2"%—1, (4.813)

which verifies the critical current of the previous discussion (4.792)—(4.799).
For comparison we may use (4.808) to derive also the depairing critical current
for the A-phase. From (4.789) with » = 1 and (4.760) we see that

Py 1
B o 4814
. T (4.814)
Ay s 1 v?
1 = =log— — =log (14 1*) + ———— 4.815
N, Y0(v) = log —— — 3 og ( +”>+2(1+y2)’ (4.815)

which is inserted into (4.808) to give

202 1 vt
IR R <1 S+ 1/2)2> - 810

This is solved by 7/2 =1/ v/2. From this we obtain the critical current

JA — P!V A, Agcs

? CABcs pbr
\/§ 1 65/6 V2-1 ABCS
- <\/§+1 21/4 \ 2 Wﬁ_l)ﬁe S ) e
L eb/6 A
= V2 (\/§ — 1)3/2 e@% ;FCS,O
Agcs
~ 0.534=2% ) ~ 0.25,, (4.817)

Pr
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implying a critical velocity
J. / vio1 /% A
’UCZ—H = \/5—16%7 BCS
ps pr
~ 0.428. (4.818)

Apcs
Pr

0.911

Q

4.12.5 Ground State Energy at Large Velocities

Let us now consider the superfluid in motion. As before, we imagine bringing the
liquid adiabatically from v = 0 to its actual velocity. This will result in an additional
energy

0 = geluco+ [ b, (1.819)
0

where g|,—o is the previously calculated condensation energy f., and p! is the su-
perfluid density parallel to the flow. Alternatively, we may take the energy of the
freely moving fermions

9o = fo— o2, (4.820)

and form the total energy as a combination

g=fo+ fo— / dv'p,, (V) (4.821)
0
where

P =P — Py (4.822)

is the density of the normal component of the liquid.

4.12.6 Fermi Liquid Corrections

With (4.821), the expression for the energy reaches a convenient form which permits
the inclusion of the quantitatively very important Fermi liquid corrections due to
the current-current coupling (4.379). In Eq. (4.393) we have seen that the associated
molecular fields ¢; enter the collective action on the same footing as the velocity v
of the liquid.

In equilibrium we expect a constant nonzero mean molecular field. For symme-
try reasons, only the field parallel to the flow can contribute. Therefore we may
substitute simply v — v + ¢ in (4.821) and add, after this, the quadratic term as
in (4.392). Then the energy, corrected by the constant mean molecular field, may
be written as

11,
2P F 3" |

v+
gt = msgn lfo + fo— / ? dv'pl (V') (4.823)
0
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Differentiating with respect to ¢ we see that the minimum lies at the mean field

o _%w v+ o). (4.824)

Inserting this back into (4.823), the energy becomes an explicit function of the
quantity

v =v+ . (4.825)

This may be interpreted as the local fluid velocity felt by the quasi-particles including
the effects of the molecular field. In terms of v* it reads:

v* 1F
¢ = fotd [ b - 3 P e
0 2 p
v 1F
= fo+fe— / dv/Jn(v/)—§$J2(v*). (4.826)
0

Given an arbitrary physical velocity v, the quantity v* may be found from
Eq. (4.824), which can be rewritten in the form

Ey pn (v7)
14 =L * = . 4.827
( + 5, ) vt = ( )
Expression (4.826) allows a calculation of the Fermi-liquid-corrected supercurrent
and superfluid density. By differentiation with respect to v we find

. 09" SOt F/3 o O (V%)
Jn(/U) - 8'[) - Jn('U ) an + D Jn('U ) av
F,/30J, | ov*
= N+ = : 4.82
Jn(v){[—i— p 61}*] c%} (4.828)
By writing (4.827) in the form
F
v* + 1/3Jn(v*) =, (4.829)

we see that the factor in curly brackets of (4.828) is unity. Hence the Fermi-liquid-
corrected current equals the uncorrected one, except for its evaluation at the local
velocity v* rather than the physical v:

Jr(w) = pr(v)v = J,(v") = pp(v*)v*. (4.830)

As in Section 4.9.4 we have found it convenient to introduce p; as the corrected
density of the normal component

* * ’U* pn(U*)
pi(v) = palvr) = = —Lot) (4.831)
vl 4 %%(v*)
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which is reduced with respect to p, by the ratio of v* and v. The same reduction
appears in the superfluid density. Here we have to subtract the normal current from
the total one, pv. In order to do so we have to remember that p contains the true
mass of the *He atoms m = may,, while all quantities derived from the original
action involve the effective mass m* = (1 + F;/3)m

Therefore the supercurrent is given by

B = o Ji)
= pv—p, (V)"

B m* pp(v*) v
= pU— pﬁ P 1 n 1 pn( ) (4832)
o
which can further be brought to the form:
Fi\ pn 1 1
Ji(v) = pv—(l—l— )p( ) :
3 P14+ 1 pn(v) q + 1 pn(v*)
) )
s (U 1
= ) . (4.833)
P 1+ 1Pn( *)

p

The effect of Fermi-liquid corrections is to reduce the superfluid fraction ps/p by a
factor 1/[1 + %@], and to change the velocity coordinate from v to v*:

g0 ) 1 L3

pn(v*)
p poo14 el

Note that for small velocities the integral in (4.826) may be performed, which brings
g* to the simple form

* 1 ps(vY) 1 2
g - f0+fc__v +2P P 14 1Pn(*)v
p
— fot fc—p"T(”)v?. (4.835)

As far as our Figure 4.41 is concerned we learn that in A, Al, At the curves remain
the same except that the v axis has to be read as v*. The same statement holds for
p! and p* which are, in addition, reduced by the factors 1/1+54 p”(p ealvt))

Sometimes in an experiment, the velocity v is given, rather than the current. The
corresponding quantity v* is easily extracted graphically from a plot of J, versus v*
(see Fig. 4.42). By rewriting Eq. (4.833) as

Jo(v*) 1+%’U* v
p F/3 Fy/3

(4.836)

we see that for any value of F,/3, we may draw a straight line of unit slope and
intercept (1 —wv)/(F;/3). It intercepts the curves of Jg/p at v*. The same statement
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FIGURE 4.42 Current as a function of velocity.

=

holds for the reduced quantities (J/Jy) (1 — T/T.)"**, (v/vo) (1 = T/T.)"
that the result carries a factor 1/[2 (1 — T/T.)].

The Fermi liquid corrections have the pleasant property of removing the double
valuedness of the variables when plotted as a function of v rather than v*. The reason
is that the lower branch of p! (v*) corresponds, via (4.829), to a higher physical
velocity v at the same v*. This has the effect of rotating all lower branches with
positive slope anticlockwise, until their slopes are negative. In this all curves become
single-valued even at zero pressure where F) takes its smallest value where F} /3 ~ 2.

, except

4.13 Collective Modes in the Presence of Current
at all Temperatures T < T,

In Subsection 4.10 we have seen that, in the neighborhood of the critical temper-
ature, the distorted gap parameter (4.725) is stable under small space- and time-
independent fluctuations. Here we want to extend this consideration to all temper-
atures below T.. For simplicity we shall only consider the weak-coupling limit in
which the hydrodynamic properties were discussed (recall Section 4.9).

4.13.1 Quadratic Fluctuations

As in Section 4.9. we parametrize the fluctuations around the extremal field config-
uration A?; by

A= Ay — AV (4.837)



4.13 Collective Modes in the Presence of Current at all Temperatures T" < T, 293

Inserting this into the collective action (4.221) and expanding in powers of A/, up
to quadratic order, we find

2 qv __ _1 v 0 A;io—aiﬁi v 0 Agiaai@i
CAT= T [G (A’C;;aam 0 C\ aoiw 0
1
—g/d“éle;A?, (4.838)

where GV is the generalization of the 4 x 4 matrix (4.222):

= -1
v_ i 0eFVV —¢ Agiaavi
“= Z( Agz *Uaﬁi 0y +v-V + & ’ (4839)

This contains the source term (4.717) to guarantee the velocity v of the fluid. as
in the collective action (4.719). Assuming that A?, is extremal, i.e., that it satisfies
gap equations like (4.729), (4.730), there are no linear terms in A/,.

The explicit form of the matrix G* in energy-momentum space reads

v _ i €+ Vp — §(p) _Agiaaﬁz‘
G (67 p) - —(E+pV)2 +E2 ( _Agjo_aﬁi €+Vp+f(p) . (4840)

It is the propagator of the pair of Fermi field f = (¢, c1)*) in the presence of a
velocity v and a constant pair field AY,.

We now pass from quantum mechanics to quantum statistics at constant temper-
ature T by replacing everywhere € by iw, = i(2n+ 1)7T, and integrals over energies
[ de/2m by sums over Matsubara frequencies

de
/g = ZTWZ (4.841)
Correspondingly, we decompose the fluctuations of the pair field as in (3.53):
Ay(rox) = T [ it g (1, 1), (4.842)
o) (2m)?
with bosonic Matsubara frequencies
vp = 2nmT. (4.843)
With the short notation (3.55),
Ty / (;Z:;B flon k) = T3 1(h), (4.844)

the fluctuation action (4.838) may be written as

PN R TY {TZ% [G <p _ g) (Al ) 0 A’(—kz)gaﬁi— ) (4.845)

k)oap;

k 0 A'(k)oupi Lo e
XG<p+§> <A,*(—k3)0'a]3;r 0 _glAaz(kjﬂ .
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Here we have collected again frequency v, and momentum k in a single four-vector
symbol k. Also, by restricting our consideration to long wavelengths with k < pr
only, we have set (p + k) ~ p;. For small k compared to the Fermi energy ez and
momentum pg, this can be approximated by (p/:I:vk:) ~ p;. After a little matrix
algebra, the fluctuation action can be written as

02 A" ~ ——TZ (A i (k), A (—k)) L7 (k) (k) (ﬁ:(f?_k)> ~ (4846)

with the matrix

ngj(k‘)é‘ab L?sz ab(k) > (4847)

vij,ab
L (k> < vagab(k) LUU(]C)(S ab

whose coefficients Fi, (k) involve the four 2 x 2 submatrices of G”

cu- (&40 88)

as follows:
LYV (k)6 ~ ltrTZGU p—E 0 piGY p+5 o,
11 2 2%2 > 22 2 alr™~11 2 2
Ly (k)6 ~ = trTZG ) gupic +E owh;,  (4.849)
22 2 2%2 p— 9 aDilago | D 92 bPj, .
L3 (k)6 ~ ltrTZGU p—E 0 piGY p+E o p;
2 2x > 12 2 12 9 2
L7 (k)6 ~ Ly Ty Gy _k e +E i
22><I' ~ 21 | P 9 OaPilao1 | P 92 Oppj-
Using (4.840) we find
LV(k) = TZ “”* E)(io-+6), . L5 (4.850)
~ (0% + EB%) (&% + E?) iP5 T 3g % '
Ly (k) = L}ﬁ”(—k» (4.851)
1

va] ,ab k - T AiA‘A % (7 ,AO, AO, 4.852
(k) ;(@3+Ei)(@3+E3)ppjpkpl varty Agrk Ay ( )
L;fj,ab(k) — Lqijzij’ak(_k)*' (4853)
with the tensor ¢,y being the trace

1 ’ / /
Labarty = itr (Ua Uaab Ub ) = Oaa’ 5bb’ + 5ab’ 5ba’ - 5ab5a’b’7 (4854)
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and &4, w4, F4 abbreviating
£+ = {Eurpk,
Oy = w,v/2—ivPpp, (4.855)
Be = E(p*k/2)= (€ vebk) + [ Auiiil>

If we split the energy—momentum summation into size and angular parts using the
density of states N'(0) = 2p/p%, then L7, 15,95 can be written as an angular average

vij,a L dp A A A A A *
Lyy” b 2p 3/ p kOapk)pr]pk’pl taba’b’Ag’kAg’l’ (4856)
2
where LY(ko, pk) is the following function:
o0 1
L*(ko, pk) =T [ d . 4.857
(Fo. Pe) zw: TR 02y B (4.857)

It is a generalization of the Yoshida function ¢(A) in Eq. (4.320) to the nonzero flow
situation. For v =20, k = 0:

1

L (ko PK) = TZ/ o +E2) = 379(AY). (4.858)

4.13.2 Time-Dependent Fluctuations at Infinite Wavelength

Let us now specialize on those fluctuations which depend only on time and not on
space. Then the only preferred spatial direction is the anisotropy axis [ and we may
decompose the tensor L]}’ into components parallel and orthogonal to 1, i.e.,

LY (v) = (8 — lily) Ly (v) — L, L0 V(). (4.859)
Alternatively we shall decompose

Using the general decomposition formula for an integral

3/%f(pl)ﬁiﬁj = l d;; (1= )f(Z)] (0i; — Lil;) + V %32 f(z )]
_ [/11%2(1 2 )f(z)] 5 — Vl d;z (1-3 )f(z)] i1, (4.861)

which may be verified by contraction with d,; and [;1;, we identify

. op [t d23 / ZW+ €+)(2W +&)
L11J_(V> = ﬁ . 22 lTZ/ g +E2)( +E2) +’Y]>
. _ p [tdz3 (1o — &)+ &)
LW = g | 53073 [TZ/ W E T + B ”]
P[P8 gy, (4.862)

S pE )1 22
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where 7 is the gap function introduced earlier in (4.734):

VZTZW:/_O;dfﬁ. (4.863)

Note that in LY, (v), the function 7 cancels out. To keep the expressions for both
coefficients as similar as possible, however, we have left v in the equation. The
advantage of this is that the square bracket can be simplified, due to the fact that v
may also be summed in terms of variables w4 and E. instead of @, F, a replacement
that merely amounts to a translation of the infinite sum. Thus, taking the average
of both forms, we may write

1w +@% +E? + E?
T / de - + T 4.864
T Z 3 o2 1+ E2)(@2 1 E2) (4.864)

Now the numerators in (4.862) can be combined to

p dz v? p
Ly (v) = A+ — | L'(v) = —5¢"" 4,
1) = o [ 5 (4745 ) 200 = o) (4.865)

1 2
Ly0(v) = 2; 1%2(1 - 32?) KA? + %) L'(v) - V] = égp”o(u), (4.866)
with the function L(ko, pk) of Eq. (4.857). On the right-hand side of (4.865) we have
introduced convenient dimensionless quantities ¢+, % associated with L, L3P.

It is a pleasant feature of the B-phase that the ~ term in (4.866) does not
contribute due to the simultaneous validity of the longitudinal and the transversal
gap equations (4.603) and (4.604). Thus the B-phase acts as if there is no gap
distortion at all. This is not so in the A-phase where only the transversal gap
equation is available and ~ does contribute!

Let us now perform a tensorial decomposition of LY,. Generalizing (4.861), we
may decompose

3/ F(pl) pip;prpr = A (8450k1 + irdji + 0410,1)
+B (85lkls + Silsly + Salily + Sinlily + 851l + Sralily) + ClLlsll , (4.867)

where A, B, C are the following angular projections of F':

1
A = 8/ dzl—z F(z),

B = - 11‘22(1_2)@—52)17()
c = 2[11%(3—3%%35%)17(2),
_ -3 [ gy, (4.868)

8J-1 2
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For the purpose of obtaining the final results in the simplest possible form it is
convenient to use the alternative dimensionless projections

o1(v) = 2(A+ B)A? = /_1 %32’ (1—22)F'(v)A?,

oa(v) = 4AA2 :/ d;g(l—ZQ)QFU(V)Ai, (4.869)
d
o3(v) = (3A+6B+0)Ai_6/ C ARV (1)A.

Note that due to (4.238), the functions A and B at v = 0 contain the information
on the orthogonal superfluid density, since

py = [BA+20(A+B)| AL =205(0) + 01(0). (4.870)

We now evaluate the full tensor L'47*’(1) in terms of 0123. Contracting (4.867) with
taba/b/ of (4.854), we find

A {2 (64i0b; + 0aj0bi — 30ap0ij)
+(1 = ¢) [2(2laly — 0ap) + 2(Sailvly + dpilaly + (i <> J)) — 40aplil;]
+ (1= ¢)* [~ (dap — 2laly) (055 + 2%‘)]}
+B{[(2laly — dap)0ij + 2(0ailpl; + Opilal; + (i > 7)) — 5éaplil;]
+(1 = ¢) [2(2laly — 0ap) (BLil; + 6:5) + 2(dailvly + Ovilalj + (i <> J)) — 40aplil;]
+(1 = )2 [(2laly — a3 + 5(2laly, — 0u)lily]} + C{ (2Ll — du)lily } . (4.871)
Collecting terms of equal tensorial properties this becomes
2A[80i00; + (i > )] + [~2A4 — A(A+ B)| dudij + [-24 + 2¢(A + B)| Llsdy
+[24+ (A + B) — A(3BA+ 6B + C)| dulil;
+ [=2A 4+ 2(A + B)] [bailslj + dailal; + (i > j)]
+4(1 = (A + B) = 6(1 — ) B + 2¢°C| Lubylil;. (4.872)
Multiplying LY, L}, with the pair of fluctuating fields A}, = A d,;, and taking

account of the fact that the contributions from LJ,, L3, are complex conjugate to
each other, leads to an action

Aip

02 A" = VTZ{ (vp) trdtd — ©°(v,)|d1)?

1
+ ?(daadbb + daidia + hC) — Q(CQO'Z‘ + 02)(diadia + hC)
1 1
5(20201 — 0'2) {(]Td)a(]Td)a -+ hC:| + 5(0'1 + 09 — 620'3) |:(]Td)a<]Td)a + hC}
2(201 — 02) [(d")a(1"d), + hoc.|

+ {—(1 +de+ Aoy + 202 + CQUS} (" dn(”d1) +he] ], (4.873)
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where d denotes the matrix whose matrix elements are d,. As a cross-check of
the result we verify that this expansion reduces in the static case v, = 0, and the
Ginzburg-Landau limit 7' ~ T, to the previous expression (4.125). Indeed, if we
insert d(0) = d/T and 0> A = —6%fV/T, and express

Alp 1 pE p 11

~ = ~2f———, 4.874
4p% 6 m2E2 4pk J 61—T/T, ( )
we observe that for T ~ T,:
1 T
[(0)A2 ~ ~¢(A?) ~ (1 - —) , (4.875)
2 T,
so that 0123 have the extremely simple Ginzburg-Landau limits
g2 (1 T) (4.876)
oL ) .

4.13.3 Normal Modes

It is pleasant to realize that also the new formula (4.873), which is valid for all T" < T,
and v, # 0, can be diagonalized on the same subspaces of real and imaginary parts
of dui(Vn) = Tai(Vn) + 11ai (V)

11, 722, "33, T12,T21; T13,731; 723, 1'32;

11, 122, 133; 912, 1215 113, 315 123, U32. (4.877)

On these two 3424242 -dimensional subspaces, the curly brackets in the energy
(4.873) can be written as a quadratic form

. A3
A = — 4;2pVTZ { [(7’11, 722, T33) R(r11,ma2,733)" + (r12,721) R (r12,721)"
F Un

+ (713, 7“31)R13(7’13> 7"31)T + (o3, 7"32)R23(7"23, 7"32)T}

+ (R — 1, rai = ia) } (4.878)

in which the real parts are a sum of three matrices

AJ'+C2O'1 — 09 —09 —200'1
R = — 09 )\L+020'1—0'2 —200'1 s
—200'1 —200'1 )\L—)\0+20'1 —620'2
M+ o) — o o
12 _ 1 2 2
R? = ( o NS (4.879)

RE A=\ — 2oy 2co,
N 200’1 AL‘FCQO'l —20'2 '
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Similar matrices are found for the imaginary parts, except that the o-terms appear
with reversed sign.

These matrices serve two purposes. On the one hand, we can now verify the
stability under static fluctuations for all temperatures 17" # T, by finding the eigen-
values at v, = 0. On the other hand, the matrices contain information on the energy
of collective excitations at infinite wavelengths: By continuing analytically from the
discrete values v, to physical frequencies

Vp — —i(w + ie€) (4.880)

these energies are given by the frequency w at which the matrices become singu-
lar. The corresponding eigenvectors are the normal modes of the order parameter
fluctuations dg;(w).

To embark on this calculation it is useful to express the functions o, ©° of
(4.865), (4.866) in terms of the functions o; as follows

L dz3 V2 dz 3
vl _ G20 0 oveq 2.2 2 n [@Z9 o o 2
© (yn)—/_122(1 29)(1 TZ)QFAJ_+2A%_/22<1 Z)QFAJ_.
(4.881)
Using (4.869), this becomes
2
' (1) = Por + 209 +2—2- (01 + 203) . (4.882)
4A%
Similarly, we find
I vy
QOU (I/n) = 201+03+2—n(201+03)
4A%
= oIl —"%%0,). (4.883)
Inserting these relations into (4.879) we obtain
3092w (01 +209) o9 2c0q
R = o9 302-2w?(01+203) 2c0, ,
2c04 2c04 2c%03—2w?(201+03)
12 [ o2 2w?(o1+202) o9
R = < ()] 02—2w2(01—|—202) ’ <4884)
Y _ 201—2w?(20,+03) 2c04
- 2co, 2¢%01—2w? (014205

For the imaginary parts of d,; the fluctuation matrices are

02+20201—2w2(01+202) —02 —200'1
I = —09 02+20201—2w2(01+202) —200'1 s
—2co —2coy 4o1—2w*(201+03)
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309+2c2 012w (01+2073) e
12 2 1 1 2 9
"= < — 03 302—1-20201—21112(01—1—202) ’ (4.885)
]éﬁ, = 2<‘71+C2‘73)_2w2(201+03) —2coq
— 2¢o4 4oy—2w?(01+203)
For brevity, we have introduced the dimensionless frequency variable
2 - \2
2 Un (w + i€)
- - 4.886
YETIAT T AT (4.886)

It is now straightforward to determine the places of vanishing determinants: For
R'% I'? we immediately find

0 .
wi = { oo } with {
2 o1+202

(1,-1)7
(1
Zo14209 T
wi = { q1+202 }with {8 1T) } (4.887)

3 c‘o1+o9 )
)

o1+202
respectively. Behind each eigenvalue we have written down the corresponding eigen-
13 . .
vector. For R23, the eigenvalues are given

,—1)

)T

—_

Y

—_

w? = ] with{(L /9" (4.888)
b ety (267 + 1)o1+200 4oy (0120, ¢(201+03)) T [

(201+03
For I2: the roots can no longer be written down explicitly. Here we find

2 02 o1 + 2oy 1
_ i 4.889
e o1+ 205 | 20201 +05) 2001 + 209)(201 + 03) (4.889)

X\/[(Qal + 03)209 — (01 + c?03) (01 + 209)] + 4203 (201 + 03) (01 + 202).

In the 3 x 3 subspaces the eigenvalues look simple only for the imaginary components
of dg;. First we observe that (1,1,¢)” is an eigenvector of I with eigenvalue

w?=0  (1,1,¢)7. (4.890)

For ¢ = 1, this is the pure phase oscillation of zero sound. By adding the second
and the last column times c to the first, the determinant of I can be written as

[I| = —2w?(0y + 203)

1 0 —2coq
x| 1 o9+ 2c%0; — 2w?(oy + 203) —2coq . (4.891)
c —2coy 4oy — 2w*(20, + 03)

The remaining determinant has the form

4(01+202) (201 +03)w* —dw? {(0201 +09) (201 +03)+(2+c%) o1 (01 + 1202)}
+4(c*oy 4+ 09) (2 + oy = 0, (4.892)
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so that the remaining two eigenvalues are

2 2
wg _ ( +c )0'1’
201 + 03
2
2 c°o1 + 09
= —. 4.893
W3 o1 + 20, ( )

For the real 3 x 3 matrix R, finally, we can find a trivial eigenvector (1, —1,0)7 with
eigenvalue

wr=—22 (4.894)

o1+ 209

It is degenerate with the second of the eigenvalues of R'2. By subtracting in the
determinant of R the second from the first row we obtain

|R| = [202 — 2W2(0y + 209)]

1 —1 0
X| oy 209 — 2w?(0y + 203) 2c0, ,
2601 200’1 2020'3 — 2w2(01 + 0'3)

so that the remaining two roots are found from the secular equation

w4(01 -+ 20’2)(20’1 -+ 03) — UJ2 {(0’1 + 202)020'3 + (20'1 + 0'3)20'2}
=0

+ 2c* (0903 — 07) = 0, (4.895)
which is solved by
y _ L oy o ! (4.896)
Wo - by .
3 2201+03 0'1+20'2 2(0’1+20’2)(0'1+0'3)

X \/[(01 + 205) 205 — (201 + 03)200)° + 8c202 (01 + 204) (201 + 03).

All these equations are transcendental since the right-hand sides depend again on
w?. They can, however, be solved quite simply in an iterative fashion.

4.13.4 Simple Limiting Results at Zero Gap Deformation

Before attempting a numerical solution of these equations we may extract several
results right away: For small current the asymmetry parameter r vanishes at all
temperatures. As a consequence, 0123 becomes independent of z and we find im-
mediately, from integrating (4.869), that the functions oy : 09 :03 have a fixed ratio
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1:2:3. As a result we obtain the well-known collective frequencies of the B phase,
at all temperatures:

0 0 : (1, -1)"
o 3] el o {0}
: A1 (L,1)"
0 0 : (1, -1)"
R { } , wr= { } with { ’ } 5
2 EA% (1,1)T (4.897)
z SA% (1,-1,0)"
R: 1 3, w?={ 4A% with (1,1, )T ,
: A1 (1,1,-2)7
and
1 4A? _ (1,—1)7 }
2. , W= 5 with ’ ,
()l ) {03
oo (1 4A2 | (1,—1)7 }
I , wr= & with ’ ;
g e {in e L0 ] e
% %Ai (17_170)T
I: 20, wl=1¢ 2A7 } with (1,1,-2)" 3,
0 0 (L1, 17

where the eigenvectors have again been recorded in each case. Moreover, since at
T = 0 there is no gap deformation for ¥ < 1 these results remain true for all velocities
up to < v,.

It is useful to classify this symmetric situation in terms of angular momentum.
The real and imaginary 3 x 3 matrices contain a J =0, J =1, and J = 2 tensor
with the correspondence

(11,1 100),
(L -1,0) = 55(2,2)+12,-2)), R
7(L1,-2) = [2,0),
%(17_1) = |1,0>,
%(171) = %(|2’2>_|2’_2>)’ R12>[12 (4-899)
(1, -1) = S (L1)+[1,-1)), R 13
#11) = =(2,1) +2,-1)),
(L1 = 5(]1,1) =1, -1)), R 1%
%(171) %(|271>_|27_1>)7

explaining the degeneracies among the 5 real J = 2 modes, the three real w? = 0
Goldstone modes with J = 1, the 5 imaginary J = 2 modes with w? = A%, and
the 3 imaginary J = 1 modes with w? = 4A2.

Now, if a current is turned on, the levels of different |.J3| within each multiplet
split up. Using the explicit forms of analytically continued o; functions, to be
discussed in the next section, we find for 1" close to T, the level structure displayed
in Fig. 4.43.
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4.0

all T | 0.0>R

0.1 0.2
2 -1
(v/vo)” (1-T/T;)
FiGURE 4.43 Collective frequencies of B-phase in the presence of superflow of velocity v
at zero and slightly below the critical temperature 7, (Ginzburg-Landau regime). Near T,
there is a considerable splitting between the levels of different |J3|. The quantum numbers
of angular momentum are displayed at the right end of each curve. The gap distortion
r? = 1 — A}/A7 is related to the superfluid velocity v by r* = 3(v/vo)*(1 — T/T,)~*
r? = 3(v/vy)?(1 - T/T,)~ .

4.13.5 Static Stability

In order to verify static stability we have to take the matrices R, I before analytic
continuation at zero Matsubara frequency v, = 0 and calculate their eigenvalues.
These are found as

R : 209,209+ o5+ \/(202 — 027’3)2 + 8c202,

s [0 . (1,-1)7

B )

RE {(1+()C2)01} with {gj(f)il)T}» (4.900)
and

I : 2(oy+09),2( +2)0y

2c%0, + 4o : (1, -7

12 . 1 2 )

= { 220, + 209, } with { (Ln? |
13

I3 : o1+ 209 + o3 + \/(01 — 209 + 02)2 + 4c202. (4.901)
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The eigenvectors are marked explicitly if they are simple. We can now easily verify
that all nonzero values remain positive for all subcritical velocities thus guaranteeing
static stability.

4.14 Fluctuation Coefficients

We have seen in the last section that all properties of quadratic fluctuations at finite
wavelengths are expressible in terms of the functions 017273(w2) which in turn are
angular projections of the function F"(iv,, pk) [recall (4.869)]

N ol _ &0 1
F¥(iv,, Pk) = T;/_OO YRy ey (4.902)

formed at |k| = 0. For the particular case of static fluctuations, F(0,0) reduces

directly to the standard Yoshida function

1
A7

F¥(0,0) = ¢"(0,0). (4.903)
It can then easily be checked that in this case the projection ¢;(0) are positive thus
guaranteeing the stability of static fluctuation frequencies (4.901): First close to T,
all nonzero eigenvalues are positive since o; have the simple form (4.876). Moreover,
as the temperature reaches zero, the gap becomes uniform and
1
F'AT — 3 (4.904)

for subcritical velocities so that ¢;(0) are positive members with the same ratios
1:2:3. Inserting this together with ¢ = 1 into (4.901) all eigenvalues become again
positive. By monotony of the gap distortion at fixed velocity (v2/12) (1 —T/T.)""
(see Fig. 4.41) as a function of temperature, we conclude that there is stability at
all temperatures 7' < T, and all subcritical velocities.

For dynamic fluctuations, let us continue F analytically in the frequency —uv,,.
For this we decompose

00 1 1
Fo(iv, pk) =TS [ dé - . 4.905
(v, k) Zw: —s0 £w3+E3wi+Ei ( )
as in (3.201), and use the summation formula (3.199) to find
1 1 1 1 E+vppz E—vppz)]
—T ——=— |1+ - (tanh ——— + tanh ——— )| . (4.
2E zw: it E 2E [ 2 ( L (4.906)

Again we have made use of the fact that the frequency shift v, in wy does not appear
in (4.906) since it amounts to a mere translation in the infinite sum. Collecting the
different terms we find

F*(iv, pk) = T/OO de
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1 I Ey+E- 1 Ey +vppz :|
5\ fanh————— - Ei < E_) (4

><4E+E_1 (E.+E_) +,,2[2< an 5T +(v = —v) |+ (Ey <> E_)| (4.907)

E+_E— 1 E+—|—UpFZ }

- 5\ tanh — Ei < E
(E+—E_)2+yg[2<t nh=r Tl ) = e B
with

E? = (£+vppk)’ + A% (4.908)

At k =0, and v = 0, we recover the Yoshida function in the presence of superflow
(4.903) that governs the superfluid densities:

P00 = [~ d§E2TZ +E2
= ¢'(A%)/207, (4.909)

The expression (4.907) can readily be continued analytically to physical frequencies
w by merely replacing
Wy, — w+ e, (4.910)

which is independent of the direction p. Let us now turn to the calculation of the
functions. For this we consider the continued expression at infinite wavelength

00 1 1 E +vppz
F?(w,0 :/ d——{t h—— — —v)|. 4.911

@0 = Egagm_ms b~ T ) (4.911)
The temperature region close to T, is explored most easily by inserting the expansion
(4.906). Then the integral over £ can be done and we find by the same steps as from
Eq. (3.201) to (3.202):

FY(w,0) = %/ng:rz(w !

— iuprz)? + w?/4

1 1
8 [52 FA2— w24 (w, —ivppz)? + E2 4+ A2

T 1 1 w/2+v

= ————— |tanh — 4.912
1 a7 —oraw [ anh ——-—— + (v— v)] ( )
v 1 2 1

w
: + .
om (W —ivppz)? 4 \/(wn —ivppz)? + A?

Using the previously introduced dimensionless variables (4.886), this may be rewrit-
ten as

F'(w,0)A% = i ! {tanh { (w — 1/2')(5] +(v— —V)}
8 V1—1r222 —w?
= gy ! ! (4.913)
26 oo (@ —wz)? +w? \/(xn —wz)2+1-— r2z2 '
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where the square root has to be taken with a positive real part.
In the limit T" — T,, 6 — 0 and the sum is suppressed by one power of § as
compared with the first term so that we may use the simple expression

et 1

T—-T. 8 /1 —1222 — w?

For T — 0, the integral is found easily from (4.911) if the velocity v is satisfies
v < Apcs/pr ~ ve. Then tanh[(E + ppz)/2T] = 1, and we have

F'(w,0)A% (4.914)

F*(w,0) (4.915)

1 oo 1 1
- Z/_oodg\/mguyu—wa'

It is useful to remove the square root by an auxiliary integration, writing

1 1
F(w,0) 47r/ / 24+ 2+ A28+ A2(1—w?)’ (4.916)

Using Feynman’s formula

S

1
AB 2/0 ds [sA+ (1 — s2)B]? (4.917)

this becomes

Fo(w / as [~ [ dgd(us) e +A21 e 49

Due to rotational invariance in the (&, sp)-plane this can be evaluated in polar
coordinates to give

r
2 4.91
/ ds/ dr (r2 4+ A% — (1 — s?)w?)? / ds (1—s2)w? (4.919)

Thus we arrive at the simple integral representation

1 joo 1
F(w,0)A2 — —/ d 4.920
(w,0)A% 2 Jo 832w2+1—r222—w2’ ( )
which can be integrated to
1 1 1 w
F¥(wy,0)A% = = — arcsin —. 4.921
(w1, 0041 21 =122 —w?w V1 —r222 ( )

We can now proceed to calculate the 093 functions. Consider first the limit
T — T,. Straightforward integration yields, with the overall factor

a=726/4=nA, /4T, (4.922)



4.15 Stability of Superflow in the B-Phase under Small Fluctuations for T ~ T, 307

the expressions

3 Ldz 1
2 _ 2 2
o1 (w?) o %3, 5% (1—27) ———— (4.923)
3 3 242 2 2 3 2 r?
=1 5{ [——(1—11} ) +r(l—w )]l—i— Z(l—w )—5 rvl—wzrz},
”
1 dz 1
nw?) = o / — (4.924)

= %g{ [(1 —w?)? — 27’2(1 —w? - 7‘2)] [+ [—(1 —w?) + 27‘2} rm},

L dz 1
2y _ A
os(w*) o 3« /1 2 T (4.925)
2

i{ [—§(1 —w?)? + 731 - wQ)} [+ E(l —w?) + %7‘21 rm}

T 4yh A

Here [ is the fundamental integral

l(w?) = r/l e ! = arcsin ———— (4.926)
) 2 VT —w? =222 V1—w? '

This formula may be used as long as w? < 1 —r2. For w? between 1 —r? and [ there
is an imaginary part whose sign is controlled by the ie prescription in w:

T i, r+ywr—(1-r?)
l(w?) ==+ ~log N : (4.927)

2
It may in principle give rise to a width of the collective excitation due to pair
breaking along directions where the gap is not maximal.

4.15 Stability of Superflow in the B-Phase under
Small Fluctuations for T ~ T.

Let us finally investigate the important question whether the ansatz (4.763) for the
distorted order parameter is a local minimum of the free energy for all currents up
to J.. Previously, we have shown this form to develop for infinitesimal currents. We
shall now study, for all currents up to the critical value J., the small fluctuations in
the 18 parameter field space A,;.

With the time driving term of the collective action being of the simple pure
damping form, it will be sufficient to consider only static fluctuations. It is a dis-
advantage of the Ginzburg-Landau regime that there are no properly oscillating
modes which could easily be detected experimentally. On the other hand, there is
the advantage of a simple parametrization of strong-coupling corrections.

Let us parametrize the static fluctuations in the form

Am' = AB [(l ((Sm' + Tlali) + dai] s (4928)
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where
—1 (4.929)

ISHES

r

and ¢ and a are the equilibrium values of the gap parameters in the presence of a
current (we shall leave out the magnetic field, for simplicity). Inserting (4.928) into
the energy we obtain the potential terms for r =0

2

r/20 = —%|d3i| + i‘—5 (361 + Bas) (d2 + d22)
+ (685 — 681 + 264) |d2] + (481 +28,) [t + Ba (12 + %)
+2B35]d2| + i (dajdja + hc.)] . (4.930)

Here t denotes the trace of d,;. The linear terms have been left out since they are
all of the form ¢ + ¢t* and cancel at the extremum. Moreover, with the equilibrium
value of a? being a/ (gBB), the first term simply cancels the 65g-term inside the

bracket.
Neglecting strong-coupling corrections, the expression simplifies to

0*f/2f.

The term containing the gap distortion gives an additional

a? 2 2 | gx2 3.0
. 1—5{5|dai|+(dajdja+h.c.)+(t +t )—§(dm.+h.c.)}. (4.931)

CL2

5 { By [4r%)dss|” + 47 (td3y + h.c.)]
+6y [2r|dss|® + 2r (td3s + huc.) + 2r (24 7) |d]?]
+Bs [202|dss[? + 2r (disd3; + h.c.) +2r(2 + 7)|dus?]
+ By 2021l + Arldl? + 20 (2 + 1) dus ]
+ B [2r?|dss|® + 27 (dsadfy + huc.) + 2r(2 + 7)|ds?]
+ Bir(2+7) (d* + hec.)
+ By [r? (d3y + hoc.) + 2 (tags + h.c.)]
+ B3 {73 (d?))z + h.c.) +2r (dgz + h.c.)}
+ B [r? (d3y + hoc.) + 27 (disds; + h.c)]
Bir(2+7) (d2 +he.)} (4.932)

Without strong-coupling effects this simplifies considerably leaving only
S{2( 1) (142 + 21dus?)
5 (@ 1) (@ +he) +2(e— 17 (& +he)
+2(c— 1) (tdss + hc.) + (¢ = 1) (df; + hoc.)
—(=1) (d2 +he)} (4.933)
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where we have made use of @ = 1 so that

r=c—1. (4.934)
The result can be written in matrix form
52
15 2ff = Tai Rai,a’i’ Tarit + iai Iai,a’i’ ia’i’ (4935)

where we have separated d into real and imaginary parts
dai = Tai13.33 + Ula;- (4.936)

The matrix R may be decomposed as R x R'? x R' x Ry3 where R is a 3 x 3
(F
submatrix acting only in the space | re3 | while R'2, R'3 | R? are 2 x 2 blocks in

733

() ) o7

An analogous decomposition holds for I. Collecting the different contribution we
find

the subspaces

54 c? 2 2c
R = 2 5+ 2 2¢c ,
2¢ 2¢c 92 -3
2
12 c’ + 1 2
R ( 2 241 ) ’
13 302 —1 2c
fis = ( 2 302—1>’
1+ 3¢? 2 —2¢
I = -2 143 -2 ,
— 2c —2c 1+ 3¢
1.12 o 302 + 5 —2
- -2 3+5 )
13 -1+ 9¢? —2¢
23 = ( Y 74 2 ) (4938)

In the absence of a current, we have ¢ = 1 and can recover immediately the eigen-
values:

R
R12,13,23 : (
I : (0,6, 6),
1323 (6,10). (4.939)
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We observe the occurrence of 4 Nambu-Goldstone modes corresponding to overall
phase oscillations (sound) and three vibrations of the order parameter 6, one for the
length and two for the direction.

These correspond to the residual part of the original SO(3)spinX SO(3)orbit X
U(1)phase Symmetry left unbroken by the isotropic parameter A%, of the B-phase.

The strong-coupling corrections change the eigenvalues only slightly. Since the
Nambu-Goldstone bosons are a consequence of the symmetry of the action and A?;,
their eigenvalues remain exactly zero. Collecting the different terms in (4.932) we

find the corrected matrices

Birazas  Pre Bi2 o
R = 4| B2 Biazas B2 53,
Bi2 B2 B12345 B

12,13,23 1 o
R 2/8345 < 1 1 ) g/BBv
2 -1 -1 o
I = 4| -1 2 -1 |2, (4.940)
1 -1 2 ) afs
_ 2<—651—535+54 B35 — Pa )i
B35 — P —631 — B35 + b4 gﬁB’

ot

]12,13,23

with eigenvalues

o
R (128, 4P3s, 4Bss) 55—
=0B

a
RI2123 . B0, 4) (4.941)
s

2183 (2128, — 128, +4(Bs — Bss)) Q

2B
Remember that QO‘EA g represents the corrected gap value in the B-phase.
5
Note that if 8345 = 0, there would be two more zero-frequency modes in R.
This fact is associated with the accidental degeneracy of polar and planar phase
at 345 = 0: the two modes correspond to linear interpolations between these two
phases.

Let us now turn on the current. Then we have to add the fluctuations from the
term

552
gl + )
which in equilibrium contributes inside the curly brackets of (4.932):
32
2a? + 3c?
—4a* (7’%1 + 7“§2> — 362733

—8ri1rpaa® — 24ac (riy + r22) 733 (4.943)

(4.942)

(1451 + |d ] + 3ldgsl) (20° +3¢%)
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Without strong-coupling corrections a = 1 this adds directly

32 —2 —4 —12¢ 1
( 2 1 2
1—c) ST —4 3-2 —12¢ |, 1 ,
T J12c —12¢ 6 — 272 3

() () (09) (R0)) o

to R, I, R'2, I'2, Ra, I» so that we obtain the new matrices:

227 +8  2(c*+4) 2c(9¢* —4)
R = 2(c2+4) 222 +8  2c(92——4) |,
2¢(9¢* —4) 2¢(9¢* —4) 6c* (9% —4)
12 2 2
i = < 22 )
12 2 2
= < 2c 2c* ) '
2(1+¢?) -2 —2c
I = —2 201+ -2 |,
—2c —2c 4
2 _ 2¢2 +6 —2
N -2 2246 )’
13 6¢2 +2 —2c
I3 ( DS ) . (4.945)

The eigenvalues are now

R : (% [(27(;4 +8) & é\/(902)4 —8(9¢2)® — 48 (9¢2)% + 512 (9¢2) + 576] ,402) 7
RIQ . (0)4)7

Rx ¢ (0,2(1+¢%)),

I (O,§(2+62),§(2+02)>,

I - (2(;2 14,9+ 8)

1 14
I (38 5,y [et = e 1) . (4.946)

For increasing current, ¢ = 1 — 3x? decreases and with it also the eigenfrequencies.
At the critical current 2 = 5/27 the value of ¢* drops to 4/9 and the eigenvalues

become
16 16
R : (O,—,—),
379
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R : (0,4),
5 2
R (0, —
44 44
I (0, —, —) )
5’ 45
7z . (4_4 @)
" \9'9 )
Iz @ (4.2,7.04). (4.947)

The zero eigenvalue in R signalizes the instability for decay into the planar (or A)
phase.

Summary

We have presented only a short introduction into the wide field of *He physics
which has been developed over the last forty years. The methods used in describing
the physical properties of the superfluid run hand in hand with those which are
popular nowadays in particle physics and field theory. For a particle physicist it
can be rewarding to study some of the phenomena and their explanations since it
may provide him with a more transparent understanding of the o-type of models.
Also, the visualization of functional field spaces in the laboratory may lend a more
realistic appeal to topological considerations which have become a current tool in
the analysis of solutions of gauge field equations.

Finally, there may even be direct applications of superfluid *He in particle
physics. Since the condensate is characterized by two vectors L and S, there is
a vector L x S which is time-reversal invariant, but parity violating. If there are
neutral currents of this symmetry type in weak interactions they may build up a
small electric dipole moment in the Cooper pairs. This has to be aligned necessarily
with L x S. In the condensed phase of the superfluid, this very small dipole mo-
ment can pile up coherently and might result in an observable macroscopic dipole
moment. This could lead to a more sensitive test than those available right now.
Unfortunately, the uncertainty in the Cooper pair wave function is, at present, an
obstacle to a reliable estimate of the effect. Also, the detection of the resulting
macroscopic dipole moment may be hampered by competing orientational effects.

Appendix 4A Hydrodynamic Coefficients for T ~ T,

Here we give a brief derivation of the hydrodynamic energy (4.125) as it follows from
the original form (4.85) which we rewrite as

1
Jerad = §A,24 {K1|3z¢j|2 + Ky (aiﬁb; j¢i> + K3V &* + Ko3|dV d,|* + 2K, (3ida)2}
(4A.1)
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with the notation K5 = K5+ K3. First we process the pure ¢ parts. The first term
is decomposed as follows:

10,0;> = (Bi0™M)? + (9,02, (4A.2)

Observing that the vector 9;p™ has only an 1 and a ¢® component, due to the
trivial orthogonality relation dM9;0M =0, we write

06" = (10:6M) 1+ (6@0,0") 6. (4A.3)
In terms of the superfluid velocity

1
L EPNCOPWNE)
Usi de’ 0id (4A.4)

and using the further orthogonality relation 18;,¢™1? = — (8;1) &2 which follows
from the orthogonality between 1 and ¢, we have

9,01 = —(6HP1 T 2muyd>Y. (4A.5)
By squaring this, we obtain
(9;01)? = (6Wa1)? + 4m?v2. (4A.6)
Adding once more the same term with cb(l) and c1>(2) interchanged we obtain
10:0)2 = (V912 + (6P 0;1)? + 8m2vs®
= (01 + 8m?v?, (4A.7)

having dropped a trivially vanishing term — (19,1)>. The first term can be decom-
posed into splay, twist, and bend terms as

@G> = (V- D> +[1-(vx D+ 1 x (vx 1) (4A.8)

so that we find the final form

10,02 =(V - 1>+ [1-(V x D> + [ x (V x D)]* + 8m?v2. (4A.9)
The third derivative term ¢ is treated as follows:

Vo> = (Vo) + (V@)

(1061 + (6@0,0M)8”]" + (1 45 2)
[—(dV ) — 2mug V)7 + (1 45 2,0, — —v,) (4A.10)
(V1) + dmugl876 — (1 4 2)] (i) i + 4m? [v2 = (1-v.]P) .

J

Here the first term is of the pure bend form

V] =[1x (Vv x D). (4A.11)
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The second term can be rewritten using

o0 — 3V = —€rjmlm (4A.12)
as
—MUs €k jmlm (05l ;)i (4A.13)
With the formula
li€kjm = lk€ijm + Li€kim + Ln€rji (4A.14)
it becomes
—4m (vs - 1)1+ (V x D]+ 4mv, - (V x 1). (4A.15)

The second gradient term in (4A.1) becomes, finally, by a similar treatment:
0i¢50;¢0; = [1 x (V x D]* + 4m?[v? — (vy - DY —dm(v, - D1- (V x 1)].  (4A.16)
Hence, the pure ¢ part of the gradient energy is
1
€¢ = §A124 {4m2(2K1 + Kgg)vg — 4m2K23 (l : Vs)2
+4mK3vy - (V x 1) —dmKoz (v - 1) [1- (V x 1) (4A.17)
R (V1P + K 1 (9 x D+ (K + Kos) [ x (W x D}

If the d bending energies are neglected, we find the hydrodynamic energy (4.125)
with the coefficients

Ps A4(2K: + Ka3) 4m?, (4A.18)
Po 2mco = AiKQg 4m2, <4A19)
c A% K3 2m, (4A.20)
Co AiKQg 2m, (4A21)
K, K, = N4K, (4A.22)
K, A% (K + Kas). (4A.23)
Inserting the weak-coupling results (4.82) for Ki,2,3, one has
T
s =2p(1— = 4A.24
ps = 2p ( Tc> ( )
and the relations
1
Po=5Ps = Co 2m = 2¢ 2m, (4A.25)
11 1 3
K=K, =——-ps; Ky=-—5-ps. 4A.26
t 4m2 4/0 b 4m2 4p ( )
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The terms containing the d-vectors can be processed similarly. With

6V d > = (6Vd,)” + (6P Vd,)?

= (0d.)’ - (1vd,)” (4A.27)
we obtain
¢ = SO (2K + K)(0da)? — Kas(19,)7) (4A.28)
amounting to the bending constants
K{ = N\(2K, 4 K33), Kj§ = A% Ko, (4A.29)

In the case that d and I are locked to each other by the dipole energy, the general
bending energy of the d, field

1
et = 5 {K{(0ida)* — K§(1V da)*} (4A.30)
contributes to the [ field an energy
1
foaea = SEH{(V D+ 1 (V x D+ [1x (¥ x D’}
— K$[1x (Vv xD]?). (4A.31)

Adding this to (4.125) we obtain again the general form (4.125), now with the
coefficients

K=K +K{ K=K +K! K=K +K—KS. (4A.32)
For the present case with the coefficients (4A.17) and (4A.28) this gives
K, =K, = K, = A} (3K, + K»3). (4A.33)

In the weak-coupling limit these are related to the superfluid density by

1 5
K&t’b = szs <4A34)

Appendix 4B Hydrodynamic Coefficients for Al T < T .

For arbitrary temperatures 7' < T,, the hydrodynamic limit is
1
1 ‘ 1 —— Dk OkliOl; A
f= mpijklakAaialAajATAB - { 4m20]lg RS }, { 3 }phase
(4B.1)

with A, having the forms (4.103), (4.104) but being permitted to contain smooth
spatial variations of the direction vectors. We now evaluate this further for the two
phases:
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A-phase

Here, we have to contract the three covariants of (4.343),

Az’jkl = 0ij0k + 050,k + 0301,
Bz’jkl = Oileli + 0urlils + Oulily + Ok;lili + 01l + Opalily,
Can = Ll (4B.2)
with
ak (daq);k) al (daq)j) = (8kdaalda) (I);kq)] + 3k<13:0lq)] (4B3)

From A we find
A (0,052 + 0,050;®; + [V®|* +2(Vd,)? +2[®V d,|* (4B.4)

These gradient terms have been expanded in Appendix 4A in terms of the generic
hydrodynamic gradient terms in the energy (4.125). If we use the following short
notation for the various invariants in that energy

éz2mvs-(’v x 1 co=—2m(l-vy)[1-(V x1]),
( = xD?, b=[x(V xD)?,
§=—(1-Vd,), (4B.5)

the hydrodynamic expansion reads

17 ps . 00 . c . <. . R . R .
f=3 <4m2p+ e e %CO+K58+Ktt+Kbb+Kiikil+ng‘g).
(4B.6)

With the same invariants we can write (4B.4) as
(5+b+i+2p)+ (b+p+po+co)+ (b+p+po+e+0)+4K]+2K], (4B.7)

where parentheses indicate the different terms in (4B.4).
The covariant B;jj; has a very simple contribution to the d bending energy

B: 2(1-Vd,)’ = —2K¢, (4B.8)

as follows immediately from ¢l = 0. As far as the gradient terms of the ¢ field are
concerned we use (4A.5) to rewrite

h®;00; = (6V0k1) 1; (61A1) 1 + (1 4 2) — dmPvgva [0 65" + (1 4 2)]
+{[2mvad? (@O + (k 1, i < 5)] = [1 > 2} (4B.9)
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and employ (4A.12) to bring the terms in curly brackets to the form
—2MUs1€jrmnlnOklinli + (k <> 1, i 4> j). (4B.10)
Contracting the pure 1 terms of (4B.9) with Bijkl we find
B: 501V + (6Wa1)2 + (1 2) =5(1-V1)* + (0uls)’
—5b+ (8+1+D). (4B.11)

The first v-terms in (4B.9), on the other hand, contribute

A

B: am? (Iv,)* = =2 (4B.12)
while the others extracted in (4B.10) add to this

B: — 2mi€imnln (19 )l — 2m(105) €imnln il
—2m(Ivy) €imnlnOilm — 2mui€imnl, 1V )1y,
= —4dm(l-vy)[1- (V x 1) +4m[vs - (V x )] —4m(l- vy)[1- (V x 1)]
= ¢+ 26 (4B.13)
The contributions of the third covariant C’ijkl, finally, are obtained by contracting
four l-vectors with (4B.8) giving
C DAV +[1 =2 =[1-V)*=01-(VxD*=b  (4B.14)

Collecting all terms we obtain
(AA + BB + CO)ij10(de®)0;(de®;) = 4Ap + 2(A — B)py + 4AKT + 2(A — B)K¢
+(A+B)C+2(A+ B)Co+ (A+ B)s+ (A+ B)i+ (3A+ 6B+ C)b. (4B.15)
Inserting (4.345)-(4.346) we obtain the energy (4.125) with the coefficients

2mC = Lpl, 2me! = 2m(cy — c) = 3pl,
4m*K{ = ps, 4m* Ky = po,
Am*K, = 4m’K, = gpl, 4Ky =gy

We now turn to the p;jp-term in the gradient energy (4B.1). This tensor has
once more the same expansion into covariants

AAijkl + Bszkz + C_'éijk, (4B.16)

with the coefficients A and B given by (4.370) while C_’Z-jkl does not contribute when
contracting it with 0yl;0,l; as required by (4.369). In fact, doing this contraction on
(4B.16) gives

A(Bs+1t+0b)+Bb, A=ps/8, A+B=pl/4 (4B.17)
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This adds —3A, —A, —(A + B) to the bending constants %4m2Ks7t7b, respectively,
which therefore become

AmP K, = ps/4, 4m’K, = (ps +4p!) /12, 4m’K, = (p! +v)/2  (4B.18)
as stated in (4.375).

B-phase

Let the vacuum be given by
A% = ApRyi(6p)e "#°. (4B.19)
We may parametrize the oscillators around this nonzero value by letting
Rai(0) = Ray (00) Rya(0). (4B.20)
Since the subscripts a of A, are always contracted, we may also use
Ay = R7Y00) aw Awi (4B.21)

as an order parameter without changing the energy. With this the derivative terms
of the field become simply

Gk/iai = —z’Lg,ﬁkéc = —ecaﬁkéc, (4B22)
where L¢, are the 3 x 3 generating matrices of the rotation group LS, = —i€.4;.
Consider now the expression (4B.1) with coefficient in the B-phase being:

Pijkl = ngAiQB% (0401 + 0udjk + 0irbj1) - (4B.23)
The derivatives are
8kA:iazAaj = 314;121;(91;1@]'
= A} (akwalw@j + ak}?aial}?aj) + mixed terms. (4B.24)
The mixed terms can be neglected since

AYi (O Roi RajOrp — RaiOlRajOkp) (4B.25)

is antisymmetric under (i <» j, k <> [), while (4B.23) is symmetric. Contracting
this with the covariant in (4B.21) gives

A% B4 141)(9:9)” + 0k0cDiBaccai €caj (550 + St + Sdj1)]
= A% {5(0i0)* + 2(0:0;)” + (046, — (0:0)] + [(0:6,)* — 0:0,0,0:} , (4B.26)
so that

B 4~ 1, -~ 1~ -
am?f = B [(v PP+ 2 (08; — Z(VO) - 2 (00,0, j)] , (4B.27)

as given in (4.358).
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Appendix 4C Generalized Ginzburg-Landau Energy

If one assumes all temperature dependence to come from py = p! (1 — €) = pla, the
coefficients of the energy are in the dipole-locked regime:

A
Ag
Al

g

A/l

g
Mg
M,

M//

1+as = 1+ s, (4C.1)
GL
—A!
1

A7? =
@ cL (14 s)?’

1
—20%A473 = -2

@ cL (1“'3)3’
/1_

(1—sA—1) 1-5 = °,

GL 1+s

1 3—

1+ 23947 —2(1 — s)asA] 2V s = _2\/E(1+ss)2’

— 1= (4=35)A7 = 4(3s* = bs + 2)A 2 + 8(1 — 5)%saA 5] J4(1 — 5)/2
B 1 1
GL 4(1 —8)3/2 (1 + )4

(11— 7s — 1552 + 35°) |

g5+3s+2$2

3(5—23(1—5)A‘1) =

Y

) -1 -1 _ 2 3
5—3[2—33—5(1—3)14 ]A &m(5+6395 + 4s°),
2(35s — 1)A™t — 2(35 — 2)saA™? — 25*(1 — s)aA™®

_ 2 3 2
= (1+8)3(s + 35"+ 3s — 1).
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The supreme misfortune is when theory outstrips performance.
LEONARDO DA VINCI (1452-1519)

5

Liquid Crystals

In 1888, Friedrich Reinitzer investigated the thermodynamic properties of crystals
of cholesteryl benzoate [1]. He observed that they melt at 145.5°C to form a cloudy
liquid. This was stable up to 178.5°C, before it melted again to form a clear liquid.
The cloudy liquid is a new phase of matter intermediate between a crystal and a
liquid which is now referred to as a liquid crystal. A liquid crystal is a system of
rod-like or disk-like molecules which behave under translations in the same way as
the molecules in an ordinary liquid, while their molecular orientations can undergo
phase transitions into states of long-range order, a typical property of crystals.

In this part of the book we shall focus our attention on molecules whose shape
strongly deviates from spherical symmetry but which mechanically have no dipole
properties, i.e., a reversal of the direction of the principal axis remains energetically
negligible. Examples for such molecules are p, p’-azoxyanisole shortly called PAA, or
p-methoxybenzylidene-p-n-butylaniline, usually abbreviated as MBBA. The chemi-
cal structure of the latter is shown in Fig. 5.1.

FIGURE 5.1 Molecular structure of PAA.

The long molecules in this and similar materials opened the way for the con-
struction of all modern displays in watches and computers [2]. See the internet page
for a movie illustration on how they function.! For some of these long molecules it
may happen that the atomic array exhibits a slight screw-like structure. This is
the case in many derivatives of steroids whose prime example is cholesterol. Such
molecules violate mirror reflection symmetry.

A satisfactory description of the long-range correlations in such systems can again
be given by means of a collective field theory. It is constructed by using the lowest
non-vanishing multipole moment of the molecules as a local field characterizing the

'http://plc.cwru.edu/tutorial/enhanced/files/lcd/tn/tn.HTM.
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orientation of the molecules and expanding the free energy in a power series in
this field and its derivatives. The thermodynamic properties are then obtained by
calculating the partition function for all fluctuating field configurations:

7 — Z e—Energy/kBT‘ (51)

field
configurations

If the system is not extremely close to a critical point, where fluctuations become
important, the partition function can be approximated by the field configuration
which extremizes the energy (saddle point method). This is equivalent to considering
the collective field as a mean-field variable of the Landau type [3, 4, 5, 6].

For a theoretical description of the system we derive first a mean-field theory in
terms of a non-fluctuating order parameter [3], [4]. This is extended by derivative
terms to find a Ginzburg-Landau type of field theory [5] which describes the physical
properties resulting from the long-range fluctuations or the order field.

5.1 Maier-Saupe Model and Generalizations

The simplest microscopic model for the description of phase transitions in liquid
crystals was constructed by Maier and Saupe. It is based on the standard molecular
field approximation invented long time ago by Pierre Weiss [7] to explain ferromag-
netism. By construction, the model is confined to nematic systems.

5.1.1 General Properties

The molecules are assumed to be non-polar, rod-like objects. If the direction of the
body axis is denoted by the unit vector n(z), the instantaneous orientation may be
characterized by the traceless tensor field

3

19x) = e (m() =[5 (mal@mse) = 56 ) 52

In the normal phase, this field fluctuates around zero. Below the phase transition,
however, there is a non-vanishing average order

3 1
Qap = (Qug") = SV (n) = S\@ (nanﬁ - géaﬁ) . (5.3)

This is due to the intermolecular forces which tend to align the vector field n,(z) to a
common average value n,. The interaction may be approximated by an orientational
energy

Hor = _AOQSEIQCY/@ (54)
with some coupling strength Ay. Inserting this into Boltzmann’s distribution law,
one finds the self-consistency relation

_ _ Z*l dQ_n mol ,—Hor /kpT
Qus = (Quoy = 27 [ LR Qutetontia®, (5.5
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where

2
7 d ne—Hor/k:BT

47

Orienting n along the z-direction and setting n - n = z, we see that
S — 1 3 ldz (z2 _ 1) o3A°8(°~3) /ksT
3

Z = /dze;AOS =5)/ kBT

b

Introducing o = S/k and k = kgT/3A°, this takes the form

——J(0),

KJO':—

1 § 1 d
2J(U)
where

1 2
J(U):/ dz e’
0

is related to Dawson’s integral

T 3 5 7
_ W T x x
D(x) /Oe dy x+3‘1!+5.2!+7.3!+...
by
1
J(U):%D(\/E)

After a partial integration we see that

d
J(o)=¢€ — ZU%J(U)

so that Eq. (5.9) can be written as

- 0= 3 )

1 3/1 4 2 2 2! 3
= —+—-|=4+ —0— o~ + 70' 4+ ... ].

2 2\3 45 33-5-7 34-52.

This implicit equation is the extremum of the free energy density
1 kgT
f= 5AOSQ kpTlog Z = == (ro® —3log Z)

where Z is the partition function of (5.7)

Z = /01 dze?(73) = ¢~3° D(y/o).

(5.6)

(5.7)

(5.8)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
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S(7)

0.43

-1/2

FIGURE 5.2 Graphical solution of the gap equation (5.14).

The solution of Eq. (5.14) is most easily found by choosing a parameter x and de-
termining the temperature 7T for various values of 0. Geometrically, the solution is
given by the intersection of the straight lines ko with the curves S(o) (see Fig. 5.2).
For k > k. = 0.147, the only solution is S = 0 = 0 (normal phase).

At Kk = Ko, the order parameter jumps, in a first-order phase transition, to some

finite value
S. =043, o0.=5./k.=2.93. (5.17)

In the limit k — 0 (i.e., T" — 0), o approaches unity corresponding to a perfect
order of the system.
5.1.2 Landau Expansion

For small values of o we may use (5.16) and (5.11) to expand the free energy (5.15)
in powers of o:

3f 2y 8 22
e 5.18
knT (“ 15)0 $.5.70 3.0 T (5.18)

Conventionally one denotes the temperature at which the quadratic term changes

sign by 7™, i.e.,
T
K <— — 1) , (5.19)

K —

2 _QkBT*<T )

153 A, \T* T+
so that ok T 5
B
= = —. 5.20
34, 15 ( )

With this notation, the expression (5.18) amounts to the Landau-de Gennes free
energy expansion for the nematic liquid crystal. If terms beyond the fourth powers
are neglected, the first-order nature of the transition H is seen to arise from the
cubic term at a transition temperature 7} determined by the equation

(cubic term)? ~ cubic term

- - = . , (5.21)
4 - quadratic - quartic term 2 - quartic term
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from which we find

oo (8/3%-5-7)2 10
T+ 7 4(2/15)(4/33-52-7) 63

(5.22)

or Ty /T* = 73/63 ~ 1.159. This lies quite a bit higher than the exact ratio T} /T™* =

kel5/2 &~ 1.1 determined from the full gap equation (5.14). Experimentally, 77 lies

much closer to T* (T} /T* ~ 1.0025) which shows that the cubic coefficient of the

theory is somewhat too large with respect to fourth-order and quadratic coefficients

in order to justify the Landau expansion, a well-known weakness of the model.
The x-value at the transition point is

ke =K' (TY/T*) =2-73/15-63. (5.23)
The order parameter ¢ jumps from zero to
0. =5, (5.24)

so that S jumps from zero to

273
S, = Ko, =0, = —— ~ 1.35. 5.25
KeOp = O 363 ( )

5.1.3 Tensor Form of Landau-de Gennes Expansion

Let us rewrite the free energy density (5.15) in another form using the following

auxiliary field quantity:
15
\/ gnan/g@a/g =Q(n). (5.26)

Then the free energy density (5.15) can be written as

f 4 [ d’n _,
S [ Rr e z 2
kgT 3k J 4rm @ 08 2, (5.27)

with a partition function
& /52 Gm))
A :/Ee 53 . (528)

Expanding (5.27) in powers of Q)(n) we obtain
3
f 1 ( 2> d’n (2)3 4 rdPn
o (k-2 Vx| 02— (2 = [Z2=
e v URRE T Al Bea S C oy B -l e

(2) [ L pEng 1(dngy
3K 5} 24 ) Arw 8 4

... (529
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The angular integrals yield

d’n

EQ - 8 _QaﬁQaﬁu

d2n 5 1 3/2

EQ - (8) 105%5@“@””

n _, 15\2 36

e ( )T ’ (5.30)

so that (5.29) takes the tensor form

e Ly ) WYY
G (5)

kpT 3k2 3-5-7\3k
. (3)4@ QY2 + (5.31)
700 3,% I . . .

Inserting here Qus = koe® (m) with tre®? = 1, tre©® = 1/v/6, we recover (5.18).
_In the sequel, we shall abbreviate the dimensionless reduced energy f /kgT by
f.

5.2 Landau-de Gennes Description of Nematic Phase

The lowest non-vanishing multipole moment of the elongated molecules is of the
quadruple type. Thus a traceless symmetric tensor s is the appropriate order
parameter for a Landau expansion [3, 4]. To lowest approximation, any other phys-
ical property described by the same type of tensor must be a multiple of this order

parameter (),g. Examples are the deviations of the dielectric tensor e,z or the
magnetic permeability pi,p from the isotropic value

d0e = €48 — €00aB;
o = pap — Holas- (5.32)

If Q.5 vanishes, there can be no orientational preference. Thus §*’¢ = 0 and §u = 0.
For small ),3, one can expand

where, from symmetry arguments, M,g,5 can only have the general form

b
Ma[o”yé - a5a,6'5'y§ + 3 (50475&5 + 5&55,57) (534)

But applied to a symmetric traceless tensor ()5, the a-term vanishes while the b-term
gives simply (b/2) Q.5. Hence, the deviations of electric and magnetic permeability
are proportional to (). This makes all properties of the order parameter observable
via an interaction Hamiltonian

1
Hint = §/d3x (fEQa,BEaEﬂ + é-MQa,BHaHﬁ) . (535)
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It will be convenient to choose the normalization of (),g such that
Qop = 0€ap ,ie. Ep =1 (5.36)

Locally, the symmetric order parameter may be diagonalized by a rotation and has
the form
—Q1

Qap = —Qs : (5.37)
Q1+ Qo

If Q1 # @9, the order is called biaxial, if )1 = ()9, it is called uniaxial. Suppose
now that (); and @)y are of similar magnitude and both are of equal sign, either
positive or negative. In the first case, the dielectric tensor has two small and one
larger component. This corresponds to an ellipsoid of rod-like shape. If they are of
opposite sign ()1 ~ —()s, the order corresponds to a disc. For the molecular systems
discussed before we expect the rod-like option to have the lower energy. This will,
in fact, emerge on very general grounds, except for small regions of temperature and
pressure (close to the critical point in the phase diagram).

Let us now expand the free energy in powers of (),3. On invariance grounds, we
can have the folllowing terms

I, = tr@Q? (5.38)
I; = tr@?, (5.39)
I, = tr@Q*, L7 (5.40)
I; = trQ° I, (5.41)
Iy = trQ% I 1,7 (5.42)

For traceless symmetric tensors, there is only one independent invariant of fourth

and one of fifth order: . 5
I4 - 5[22, [5 = 6[2[3. (543)

At sixth-order there are two invariants, which may be taken as I5?> and I,®. Then,
for space- and time-independent order parameters, the free energy density may be
expanded as [11]

Qg

1 a
f= 5 <a2]2 +asls + 54]22 +aslods + 5

L+ %If) +0(Q"). (5.44)

Typical phase transitions take place roughly at room temperature. They are caused
by the fact that the coefficient of the quadratic invariant vanishes at some temper-
ature 7%, and can be expanded in a small neighborhood of T™ as

T
as ~ aj <T— - 1> : (5.45)
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The temperature T* may be called would-be critical temperature. If the expansion
(5.44) has only coefficients as, a4 it is a a so-called Landau expansion. This has a
second-order phase transition at the temperature 7, which would then be a critical
temperature T.. The actual values of T* and aj usually depend on pressure. In
model calculations one typically finds that the other coefficients are of the same
order as a3. The only exception is a3 which sometimes happens to be small. Then
we define the dimensionless parameter

2

as
= 1. 5.46
%0 12a9ay < ( )

It can be used to characterize the strength of the first-order transition. By increasing
the pressure to several hundred atmospheres, the parameter s, can be decreased so
much that the point a3 = 0 can be approached quite closely [12]. In the following
we shall assume the existence of a point (P*,7*) in the (P, T)-diagram, where both
as and agz vanish. The neighborhood of this point will be particularly accessible to
theoretical investigations. Within the (P, T)-diagram, the lines of constant as and
az can be used to define a local coordinate frame whose axes cross at (P*, T%) at a
non-zero angle (see Fig. 5.3). In some models, the coefficient a3 is negative at low

2
a; ay g ag<()

\\is( trog )i('/

>

Il:j

rod-like disc-like

first - order line

phase

FIGURE 5.3 Phase diagram of general Landau expansion (5.44) of free energy in the
(as, az)-plane.

pressure such that the az-axis points roughly in the direction of increasing P. With
this mapping in mind we may picture all results directly in the (a3, as)-plane with
the az-axis pointing to the right, and only a slight distortion has to be imagined in
order to transfer the phase diagrams to the (P, T)-plane.

Before starting it is useful to realize that the expansion (5.44), although it is
a complicated sixth-order polynomial in the eigenvalues )1, ()2 of the diagonalized
order parameter, is a simple third order polynomial if treated as a function of the
variables Iy, I3. It is therefore convenient to treat it directly as such. One only
has to keep in mind the allowed range of I5, I3: First of all, I is positive definite.
Second, I3 is bounded by

2 < 13 (5.47)

| =



5.2 Landau-de Gennes Description of Nematic Phase 331

The boundaries are reached for the uniaxial phase. This follows from the property

Q Q 27 3/2

Rt Tl

tr —Q, = +V6 |tr —Q, for Q150. (5.48)
2@1 2@1

There is one boundary with I3 = ;’/ 2 /+/6 where the order is positive or rod-like, the

other has I3 = —1I 3 /2 /+/6 where the order is negative or disc-like. Only between these
boundaries are I, I3 independent corresponding to a biaxial phase. The domain is
shown in Fig. 5.4.

2
@y agag- az> 0

\n l‘x)pk/
>

ay
rod-like \\ disc-like
\

\

second - order line

biaxial
\

azay=asag

FIGURE 5.4 Biaxial regime in the phase diagram of the general Landau expansion (5.44)
of free energy in the (as, az)-plane.

In this simplified view of the expansion (5.44) let us, for a moment, consider the
expansion only up to the fourth power and look for the minimum in /5 and I3. Since
J0f /013 = ag, there is no extremum in the allowed domain of Fig. 5.4, except for
az = 0. There the transition is of second order: For ay > 0, T > T™ one has only
I, = 0 and hence (),3 = 0, which is the isotropic phase. For a; < 0, T < T™ one
finds I, = —as/ay, and the system is ordered. Since I3 is not specified, the order
can be anywhere on the biaxial line in Fig. 5.4 between the rod-like and disc-like end
points. The energy is

2 02 2
as as (T )
- 2 ([ _ 1) . 5.49
! 4ay day (T* ( )
The specific heat has the usual jump
*f  11a

Ac = -z (5.50)

N o ,
8T2 T+ 2 ay
when passing from 7" > T to T' < T™.
The situation is quite different in the presence of the cubic term as # 0. Since
there cannot be any minimum for independent I, and I3, it must necessarily lie
at the uniaxial boundaries (there must exist a minimum since F' is continuous in
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Q1,Q2 and eventually F' — oo for @)1, ()2 — o0). Let us insert the particular
uniaxial parametrization

3 1
Qop = goe((loﬁ)(n) = \/; (nanﬁ — 5(5&5) , (5.51)

where n is an arbitrary unit vector, ¢ > 0 the order parameter, and ¢®(n) the
traceless polarization tensor

eO(n) = \/g (nang — %%g) . (5.52)

The order is rod-like for ¢ > 0, and disc-like for ¢ < 0. Then we find, using the
traces tr(e2) =1, tr(e®3) =1/,

1 a
f:—aggo +2\/_a3g0 + 4904 (5.53)

This energy is minimal at ¢ = 0 with f = 0 and at

3as 96asa4
= 1441 - : 5.54
which are the solutions of

= <a2 + 2\/—(1390 + asp ) v =0. (5.55)

Combining (5.55) with (5.53) we see that the energy at ¢ is

<
fo -ty (5.56)
490 \/6 4P

The energy vanishes at a point ¢ # 0, if ¢ satisfies
<

a3

=— ) 5.57
L (5.57)
From (5.54) we see that this happens at a temperature 77 at which
T as?
0 1 3
_ o) = 5.58
2= <T* ) 12a; (5.58)
i.e., at which
Ly (5.59)
— —1=s. .
T 0

At this point the potential has the usual symmetric double-well form entered around
¢~ /2 (see Fig. 5.5).
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FIGURE 5.5 Jump of the order parameter ¢ from zero to a nonzero value - in a first-order
phase transition at T = Tj.

The quantity (5.59) tells us how much earlier the first-order transition takes
place with respect to the would-be critical temperature. It will be referred to as
the precocity of the first-order transition due to the cubic term az # 0 in the energy
expansion (5.44).

Once aq is nonzero then, as T passes the temperature 77 which lies above T,
the order jumps discontinuously from the old minimum at ¢ = 0 to the new one at
© = @~. At that point, the entropy changes by

of of ) 1T 1 adas
As = —T (— - = = ——ayp? = ——-2= (5.60)
O g e OT |, 2T - T ay
giving a latent heat,
T ay* (T 0%
Ag = T_i% (T—i - 1) ~ %so. (5.61)

It is proportional to the precocity sg which may therefore also be viewed as the
strength of the first-order transition. From Eq. (5.54) it follows that, for a3 < 0, the
order is positive uniaxial, for ag > 0 negative uniaxial.

Energetically, the higher powers of the free energy are negligible as long as ¢-
is sufficiently small. From Eqs. (5.57) and (5.59) we see that, at the transition, the
order parameter has the value

2@8 Tl
=/—\/=——-1. 5.62
o =2 T (5:62

Since a9 and a4 are of the same order of magnitude, the corrections in the energy
are of order O (1 [Ty)T* — 1). Experimentally, the temperature precocity of the first
order transition 77 /T* — 1 = sq is extremely small, typically ~ 1/400. First-order
transitions with this property is usually referred to as being weakly first-order. For
ay > 0 and close to the critical point (P*,T*), the higher orders are rather insignif-
icant. They do become relevant for a; < 0, in particular in some neighborhood of
the az = 0 line where the different phases are unspecified. In order to get a qual-
itative picture, let us neglect the ag-term which could give only slight quantitative
changes but which would make the following discussion much more clumsy. Varying
f independently with respect to Iy and I3 we find the extremality conditions

ag + asly +asls = 0,
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as + a512 + CLGI;J, = 0. (563)
For
asae — a52 > 0, (564)
or
asag — as’ < 0, (5.65)

this can be solved by

Iy . 1 —Gg Qs a2
( I3 ) " agag — as? < as —ay as ) (5.66)

We shall exclude the accidental equality sign since a4, as, ag are rather invariable
material constants. The extremum is a minimum only under the condition (5.64).
We then have to see whether I, and I3 remain inside the allowed domain I,® > 6152
For this we simply map the position of the boundaries into the (as, as)-plane. On
the rod-like and disc-like boundaries, we have

1 .
az = —agly F a5%[;/2>
1
as = —CL5IQ + a6%123/2. (567)
We may form two combinations
1
asas — asays = *(agag — as?)—=1""2, 5.68
205 304 (asag 5 )\/8 2 ( )
20 — Q305 — —(a4a6 — (152)[2. (569)

Eliminating I from these equations gives

3/2
1 o0 — Q305
— =+ —a5’) —= | ————=_ 5.70
G205 — A3Q4 (a4a6 as ) \/6 l_((m% — a52)] ( )
If the right-hand side is absent, this yields a straight line
a9 = %ag (571)
as

in the (as, az)-plane. It is easy to see that the right-hand side of (5.70) gives only
a correction of order as*? to this result. Indeed, inserting the lowest-order approx-
imation (5.71), the right-hand side of (5.70) becomes

1 a9 3/2
+(asa —a2—<——> ) 5.72
(@105 — a5*) 7= (2 (5.72)
so that, up to order ay?/?,
1 a9 3/2
aa—aa:iaa—a2—<——) +... . 5.73
205 304 (asae 5)\/6 s ( )
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The two boundary curves are displayed in Fig. 5.4. Between these branches the
order is biaxial with a well determined ratio @)1/@2. One may envisage the effect
of higher powers in the free energy expansion as having slightly rotated the vertical
degenerate line in Fig. 5.3, and opened it up into the two branches of Fig. 5.4, thereby
generating an entire domain for the biaxial phase. Since the order parameter moves
continuously towards the uniaxial boundary, the transition uniaxial to biaxial is of
second order.

If the determinant asag — as? becomes smaller, the biaxial region shrinks. For
negative sign, it disappears and the two uniaxial regions overlap. Since only one
of them can have the lower energy, there must be a line at which the transition
takes place. This is found most easily by considering the uniaxial energy in the
parametrization (5.51) which reads

2f = asy? —i—\/_go + 4go4+\fgo + 2 <p . (5.74)

Here ag/12 can be thought of as containing also a parameter ag/3 coming from the
last term in (5.44). In the Landau approximnation, only the terms ay, and a4 are
present.

The minimum lies at a nonzero field ¢ which satisfies the equation

3 2
as + —=aszp + as” + +a 0. 5.7
<2 N 2\[90 690>90 (5.75)
Keeping the coefficients up to ay4, this is solved by
3 as 96azay
=——F—(1+4/1- . 5.76
LW ( 942 ) (5.76)

Only ¢~ gives a minimum, the other a maximum. As aj, ag are turned on, the
maximum may become a minimum. In order to see where this happens let us
assume ag to be very small, as compared with asas. Then ¢ is given by

[— 3 a3
+ 1+ —— +...0. 5.77
[ aq ( 46\ —asay ) ( )

Inserting this back into the energy we find that the two energies become equal at

a4 1 3/2  —1/2 2
=a3— + — @ ) 5.78
ap = as @ + \/éag as + O(a3) (5.78)

For small a5 this reduces back to the line a3 = 0. The latent heat is now

as 8&2 ('9a3 1
Aq=——T——-T—— — 5.79
1= 30 o7 AT 20y 2% T W) (5.79)
Let us finally calculate the correction to the isotropic-uniaxial curve in Figs. 5.4 and

5.3. For small a3 we find

1 (132 1 (13 as

—= O(as* 5.80
12 Qy * 36 36 CL43 + (Gg )’ ( )

Ao =
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which may be used to calculate a small correction to the latent heat (5.61).
All ordered phases described here are referred to as mematic. In the Landau

approximation, the minimum of the energy lies at ¢? = —ay/a, and has the value
1 a3

L = ——— 5.81

fer=—7u. (5.81)

called the Landau condensation energy.

5.3 Bending Energy

The order parameters discussed in the last section were independent of space and
time. In the laboratory, such configurations are difficult to realize. External bound-
aries usually do not permit a uniform order but enforce spatial variations. The sys-
tem tries, however, to keep the variations as smooth as possible. It exerts resistance
to local deformations. In order to parametrize the restoring forces one expands the
free energy in powers of the derivatives of the collective field (). If the fields bend
sufficiently smooth, the expansion may be terminated after the lowest derivative.
Due to rotational invariance, there can only be the following bending energies

b c c
fbend - iv'yQaﬁvaaﬁ + glva@avvﬁ@ﬁw + ;anﬁwvﬁQaw' (582)

As far as the total energy F' = [d®zf is concerned, the latter two terms may be
collected by a partial integration into one, say the first, by substituting ¢; — ¢;+cy =
c.

In the ordered phase which is usually of the rod-like type we may use the
parametrization (5.51) and split the gradient of Q,s into variation of the size ¢
and the direction n. In the bulk liquid the size of the order parameter ¢ is caught
in the potential minimum at - (see Fig. 5.5) and only the direction n will vary
from point to point. Then we can find from (5.82) the purely directional bending
energy:

3
Joend,dir = 1302 [bvv(nanﬂ)vv(nanﬂ) +a va(nanv)vﬁ(nﬂnv)
+ ¢ Va(ngny)Va(nen,).  (5.83)

Since n,? = 1, we may use the orthogonality property n,V.,n, = 0, and write
3 9 2 2 2
Joend,dir = 1% {anaﬂ + [(V n)*+ (n-Vn,) }
+ 2 [(Vang)(Vana) + (n-Vn 2} (5.84)
We now rewrite

n2s=(V-n’+Mn-(Vvxn)+nx(Vxn)? (5.85)
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and
NaATya = (V )2 + Va(nsVang) — Vz(nsgVana), (5.86)

so that
3 5 c 2 2 c 2
frenae =S¢ {(b+§> (V -n)>+b[n-(V xn)?+ (b+§) % (V xn)]
o [Va(n5Vsna) — Vs(nsVana)] } (5.87)
The last term is a pure surface term. The coefficients
C\ 2
KlEKS:3(b+§>QO s
Ky =K, =3 by

Ky= K, — 3<b + g) 2 (5.88)

are known as Frank constantsof textural bending. The subscripts s, t, b stand
for splay, twist, and bend and indicate that each term dominates a certain class of
distortions of the directional field. They are shown in Fig. 5.6. The experimental

=

splay

~
=

bend

\

|

twist

FIGURE 5.6 Different configurations of textures in liquid crystals.

values of K73 are of the order of 5 to 10 x 1077 dynes, for example [6]:

MBBA : T ~22°C  Ki3=(53+05,22+0.7, 7454 1.1) x 10" "dynes,
PAA: T=~125°C  Kys3= (45,29, 9.5) x 10 "dynes. (5.89)

For topological reasons, the field configurations may have singularities called defects.
In their neighborhood, also the size ¢ has spatial variations. This is also true near
boundaries or at the interface between two phases. The derivative terms for these
variations are found from (5.82) by calculating

V2QasV,Qap = (V)? + O(Vn)? (5.90)
1 1
VQQayvﬁQﬁ,Y = VQ(PVNP 5 (nang + §5QB> (591)

1
+ 3((Vana), + na(Vans)] (nam, — 565, ) Vi + O(Vi)
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= S Ve (Ve +2n - V)V (n- Vi, )V,p + OV,
VaQsyVQay = VapVpp %(nanﬁ + %%ﬁ) (5.92)

+ 3l(Vang), +15(Fan)] (nary =560, ) V- O(Vm)?

= S0 Ve (Ve 420 Vi)V (00 V) Vnt O(Vn)?

so that the combined bending energies are

fbend = fbend,dlr (b + ) (V (p) g (l’l .V ()0)2
2612—02 [e(n-Ve) (V- -n)+pm-Vn,) Vay]. (5.93)

5.4 Light Scattering

The bending energies determine the length scale at which local field fluctuations
take place. These in turn are directly observable in light scattering experiments.

Consider at first the region 7" > Tj. There the order parameter vanishes such
that the field (Qnap fluctuates around zero. If the temperature is sufficiently far
above T (precisely how far will soon be seen), the quadratic term in the energy
strongly confines such fluctuations and we can study their properties by considering
only the quadratic term in the free energy

CL2

b
5 2t = ( +Qap) + VQQOWV/BQ@Y + surface terms. (5.94)

fbend

Obviously, b/as and c¢/as have the dimension of a length square and it is useful to
define the squares of the coherence lengths for 7" > T™:

b b /T -1 2 (T -1
2TE—=—<——1) ;°<_—1>
61() as a(2) T* ) 1 T* 1

T B 2 (T B
== =5 (m-1) =& (5-1)
62() as (1/(2) T 2 T

which increase as the temperature approaches T* from above. These length scales
will turn out to control the range of local fluctuations.
Let us expand ), in plane waves

(5.95)

Qas( eU*Q 8 ( 5.96
s(x \/— Z s(q ( )
where Qu.5*(q) = Qas(—q). Then the total energy becomes

Fyena = %Z Qas(—q) [(GQ +04*)daar + thvqw} Qup(a). (5.97)
q
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The spin orbit coupling term ¢ can be diagonalized most easily on states of fixed
helicity. The spin matrix for the tensor field is

(5, Q)ap = —i[eya0: Qurp + (2] (5.98)
The helicity is defined as the projection of S along q
H=S-q (5.99)
We now calculate

[HQ(—a)l,5 [HR(A)]s = (44600 Qup(—a) + (a28)] [Gs€s007 Qarp(a) + (as25)]
= 4Qus(—a)Qap(q) — 6Qus(—a)dadarQup(q),  (5.100)

so that (5.97) can be rewritten as

1 2 c

Fona = 5 ©{ |2+ (b4 5¢) ] Qus(@ - SIHQ@P]. (5.101)
q

This is obviously diagonal on eigenstates of helicity. These are easily constructed.

First those of unit angular momentum: For this one simply takes the spherical

combinations of unit vectors

1
(:l:) _ ~ N
€ = — (xx1y),
% (x +iy)
e = 3 (5.102)
which are eigenstates of S5 and S?:
Sset = +eF,  S3€’ =0, (5.103)
S%e* = 2eF, S%’=0. (5.104)
We rotate them into the direction of q by a matrix
‘ ' cosp —sing 0 cos# 0 sind
R(§) = e ®he 2 — | ginp  cosp 0 0 1 0 |, (5105
0 0 1 —sinf 0 cosf

where ¢ and 6 are the polar angles of q. This turns X,y,z into a local triped
1M, 1@ g of unit vectors,

IV = R(@)x, 1? = R(@)y, 4V = R(@)z. (5.106)

From these we create the rotated polarization vectors e ®9(q) = R(q)e®? which
diagonalize H with eigenvalues +1, 0:

(He ™o = —idyeas (I £057) =i x (10 £a) =4 (10 £a®)
(He®)y = —ideyapds = 0. (5.107)
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Now we couple pairs of these vectors symmetrically to tensors and obtain the angular
momentum helicity tensors of spin 2 and helicities h = (-2, —1,0, 1, 2):

(@) = €5 (@) = lls = € (—a) |
. e 1 ) )
end(@) = —eis (@) = 7 (lads + lsGa) = —W (—4), (5.108)

0)/ - 3/. . 1 .
5&,6)’((1) =3 (an,B - g%ﬁ) =9 (-q),

where we have introduced the unit vector 1 = % (l(l) + il(2)>. Using its properties
12=0, 1-1"* =1, we verify directly the orthogonality

tr (E(h)(éﬁe(hl)*((i)) = 6hh’- (5109)

The completeness relation is found to be

2
Z 6((1}2 ((EI)G'(y}:S)((Al) = Iaﬂ,'y& (5110)
h=-2
where X ,
Iog~s = 3 ((5&75/35 + 5a55/3,y) - géa/gém; (5.111)

is the projection into the space of symmetric traceless tensors of spin 2, as it should.?
The energy can now be diagonalized by expanding Q,3(x) in terms of the egl)(q)-
eigenmodes:

Qas(x) = X [e} (@) " (a) +c.c.]. (5.112)
aQ,h
This yields
F=[dof =3 "= (@l (@), (5.113)
q,h a,h

with

T(h)(q) = a9+ [b—i— <§ — %2> c] 7

2 h?

5.114
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We can now calculate the correlation functions of the field. If we express the partition
function
Z =3 e t/ksT (5.115)
Q

2Compare with the gravitational polarization tensors in Subsection 4.10.6 of the textbook [5].
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in terms of the diagonalized modes, we have

zZ = H/dso(h)(q)eXp{—kBLT;f(h)(q)}

- I;I/dso(h)(q) e><p{—#%T(h)(q)lw(h’(q)ﬁ}- (5.116)

3

From the “equipartition theorem”=, we deduce that the thermal expectation values

of the correlation functions are*
. kT /2
(" (@)™ (q)) = 6“""7(T(q)' (5.117)
For the amplitude @),p, this implies the expectation values in g-space
N kBT (hy oy (h)x, 4
(Qas()[Qrs(d)]*) = bqq D 70 (q) e (d) ey (a), (5.118)
h
so that in x-space,
/ A=) )
(Qus(X)Qus (X)) = kaT 3= “rreld@)ey (a (5.119)
q
The correlation function reads
(h) )™
€ €
Gl(q) = kpT Y 200 (@eys () (5.120)

These can be rewritten as

(1) _ _;5_% 1 L 2
FED g <1 4(§%+%§§)5}%>+<€f+2€§) <q¢26+c> , (5.121)

» &, _d\
T S S G Y (5.122)

3 b

The correlations are observable in inelastic scattering of visible light. Recall that
we assumed in (5.33) that the deviations de,s of the dielectric tensor from the
average isotropic value are equal to the order parameter fluctuations Q),g, so that
the interaction energy of the liquid crystal with the vector potential is, under the
assumption (5.36), equal to

1
oHin = 5 / 1By Qs Ep. (5.123)

3See page 327 in the textbook [10].
4The factor % is due to the dependence of ¢ and ¢*, M (—q) = pW*(q).
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Let Ei, be the field of incoming light with momentum £;, and frequency w. For a
given fixed dielectric configuration €(x), the polarization of the medium is given by

) 1 )
P(x)e™t = 16 = 1] By e~ i@t -kinx), (5.124)
T
Since P(x) may be considered as a density of radiating dipoles, these will emit light
in a spherical wave which, at a large distance R away from the sample, has an

electric field strength

/ w1 g
Eout(x) = gﬁ@ PJ_(X), (5125)
where k = w/c, R = |x’ — x|. We have accounted for the dipole nature of the

radiation by putting on the right-hand side P,, which is the component of the
polarization transverse to the direction of the outgoing wave. We now expand R
around x = 0, so that kR ~ kRy — kouX, integrate over the entire sample, and
obtain the scattering amplitude A for incoming and outgoing polarization directions

€in, €out-
w? .
A= Trc2 €out {/d3x€—qu [e(x) — 1]} €in, (5.126)
where q = kouy — Ky is the momentum transfer. See Fig. 5.7 for the experimental

setup. The outgoing electric field is given by

Ein ;
€out * Eout(xl) - —elkROA‘ (5127)
Ry
The square of A gives the differential cross section per unit solid-angle:
do
—= =14 5.128
2 =lA (5.128)

Eliminating the direct beam associated with the spatially constant part of the €,5(x),

we may write
do w?

aa m {E(T)utde(q)ein} [EL&*(Q)%M} : (5.129)

In the present case, the dielectric tensor has thermodynamic fluctuations and we
have to replace de(q)de*(q) by the correlation function (5.123). This gives

do wt  kgT 1 i 9
m = (471'02)2 9 zh: (k) (q) |€out€( )(Q)Ein| : (5130)

Let the incoming beam run in the z-direction with the outgoing beam being rotated
by an angle 0 towards the y-axis (see Fig. 5.7). Then

kin = k(0,0,1), kouw = k(0,sin 6, cos ), (5.131)

and the momentum transfer is

7 6
q=gq (O, cos o, sin 5) , (5.132)
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FI1GURE 5.7 Experimental setup of the light-scattering experiment.

with
q® = 2k*(1 — cos ). (5.133)
For an incoming polarization vertical to the scattering plane, i.e., along the z-axis,

we have
€en =€y = (1,0,0). (5.134)

Let the final polarization be inclined by an angle ¢ against the vertical direction,
then

Eout = Eout(cos ¢, —sin ¢ cos b, sin ¢ sin 0). (5.135)
The tensors €)(q) are all given in terms of ¢ and 1, which may be taken as
1 6 0 x
1= % (1,—7;8111 5,—7;(308 5) = (1*) . (5136)
In this way we find
E2) (g 1 L0
coun€ " (Qev = 5 |cospFpsinpsing |,
P L. 0
e (Qey = —gsingcos o, (5.137)
1
b (@ey = ——coso.

V6

If the initial polarization is horizontal

€en =€ =(0,1,0), (5.138)
then the scalar products (5.137) read
1.6 7
el eF?) (Q)ey = —sin— | Ficosp —sinpsin = |,
2 2 2
() (g L0
el € (qey = 5 Co8 5 COS P, (5.139)

1 0
el eO(Qey = 7 sin (1 + cos? 5) .
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Inserting this into (5.130) we find the cross section for a vertical incidence:

dU—V = W' ksl ! cos® p + E ! + ! cos’ Qsin2
Q@ r@2 2 [6r0(q) " ¥ T a\70(q) " 7 D(a) o M ¥

1/ 1 1 L0

+Z (T(Z)(q) + T(_2)(q)> (— sin” o sin goﬂ : (5.140)

For the horizontal incidence it is

dO’H (.U4 k’BT 1 . 9 2 0

S, 1 Z

0 @n)? 2 [67'(0)((1) R

YO S L0
— COS™ — COS
1\ 70(q) " 7D(a) 9 “ ¥

1( 1 1 20 . 2
+ 1 (7'(2)((1) + T(_2)(q)> (1 — cos” 5 sin @)] . (5.141)

The experimental results show very little g-dependence. In fact, for visible light of
long wavelength with

SUASE NERSTRSE Y (5.142)

i.e., for which the wavelength is much larger than both coherence lengths, we may
neglect &, & for a moment and see that

7O m 7D 5 752 (5.143)

Therefore the intensity of the scattered light goes like

11 1 0 1 0
Iy ~ o |6 cos? ¢ + 5 cos® 3 sin® ¢ + 3 (1 — sin® 3 sin® gp)] : (5.144)

For final polarizations vertical or horizontal to the scattering plane at a scattering
angle = 90, the result implies that

2
Iyy ~ —
Vv 3@2 )
1
Iy ~ — 5.145
HV 2@2’ ( )
so that I A
174%
—_~ . 5.146
T 3 ( )

This ratio is approximately observed experimentally for 7" sufficiently above T [13].
As T approaches T*, the coherence length grows larger, and the g-dependence has
a chance of becoming observable. Expanding 1/7)(q) to lowest order in £2¢% we

find ) 1 .
M) (q) :a_z{l_ l£12+ <§_€> 5221 q2+...}, (5.147)
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such that the intensities Iy, Igy behave like

1 2 1
Iyy ~ = |1—(&° —2)2} —(1=&%¢%) +...
4% 6[ (51 +3§2 q +2( 51@1)‘1‘ )
1 2, 2.9\ o] 1 2 2
IHVNZ{l_(él +§fz)Q]+Z<1—§1Q>+~', (5.148)
with their ratio being
—~ =14+ = e 5.149
Tov 3 +12§2C] + ( )

For a comparison with the data it is most convenient to plot the inverse intensity
against temperature which must behave for large enough T (a few °C above T*) like
[recall (5.45)].
T

IV o ad <ﬁ— 1) 1+&¢F+...), (5.150)
i.e., it grows like a straight line, where £2 is a combination of &2 and &2 depend-
ing on the polarizations (see Fig.5.8). As the temperature drops towards 7™, the
intensity of scattered light increases like a5 ', which is a manifestation of increasing
fluctuations. This result is in agreement with experiment [13], with £? > 0.
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i ((!C )
FIGURE 5.8 Inverse light intensities as a function of temperature. Note the small difference
between 31y /4 and Iy,{;, which will be commented on after Eq. (5.219).

4

Comparing such lines at different ¢ values it is possible to deduce the size of the
coherence lengths, for example in MBBA:

T ~1/2
¢(T) ~ 5.5 x (T— _ 1) A. (5.151)
As the temperature hits 7} which usually lies one half to one °C above T*, the
inverse square of the coherence length jumps down to very small values, as shown in
Fig.5.9. This is where the intensity grows large in Fig. 5.8. The sample looks milky
all of a sudden (critical opalescence).

It is easy to understand this behavior. At T}, the size of the order parameter
jumps from ¢ = 0 to ¢ = 1 # 0. Due to rotational invariance of the energy, there
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FIGURE 5.9 Behavior of inverse square of coherence length as a function of temperature
near the weakly first-order phase transition in MBBA (see Ref. [13]).

is an infinite number of points in the ),z parameter space with the same energy,
namely all those which differ only by a rotation of the direction vector n. The
associated continuous degeneracy causes strong directional fluctuations, and these
result in strong fluctuations of the dielectric tensor that is proportional to Q3. The
latter can be observed by scattering light on the material.

Let us calculate the cross section of a small deviation 0Q.s(x) of the order
parameter from the homogenous field configuration of the ground state. Expressing
this in terms of the deviations of the director n,(x) via Eq. (5.51), the cross section
is

do w?

dQ  (472c2)?
where q = kout — ki, is the momentum transfer. For unpolarized incoming light, or
if we do not measure the polarization of the outcoming light, the thermal average
of the right-hand side requires knowledge of the correlation function

3
kBTZ 902 |€lutﬁ(kout)5[(nanﬁ) (q)]eina<kin) |27 (5 152)

(0(nang)d(nang)) = (0ngdn,)ngns+(0nadns)ngn.,+(0ngon,)nans+(dngodns) nen..
(5.153)

To find (dn,0ng), we consider the bending energy (5.87) for the Fourier transformed
field

on(x) “X5n(q (5.154)

2%
It has the form

1
5 3 [Katags + Falm x @)aln x @) + Ko 0)*das] 0 (~a)na ().
q
(5.155)
In order to simplify the discussion suppose the system has an average orientation
n||z. Then

Fyena =

—_

Fhenda ==Y {Klqaqg + K5q10q15 + Kng2(5a5} Ine(—q)in.(q), (5.156)
a

[\]
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where ¢; = (—¢2,q1,0). The fluctuations can have only z- and y-components. This
follows from the trivial equation %5 (nana)2 = dnan, = 0. We can diagonalize
this expression by introducing two orthogonal unit vectors e;(q) = (g1, G2, 0) and
ex(q) = ¢.. If we decompose

on(q) = e (q)oni(q) + ex(q)dns(q), (5.157)
as illustrated in Fig. 5.10, we find the diagonal form
1
F =23 (Kugt + Kaa?) [na(@)”. (5.158)
a=1,2

Thus the fluctuations of dn; and dny diverge for ¢ — 0. The liquid crystal becomes
opaque.

FIGURE 5.10 Relevant vectors of the director fluctuation (5.157).

In this fashion, the bending constants K, K,, K3 can be measured with values
for which examples were quoted before.

5.5 Interfacial Tension between
Nematic and Isotropic Phases

At the different lines of first-order phase transition, the order parameter moves from
one value to another. Due to the derivative terms in the free energy, this change
cannot take place abruptly but must be distributed over a length scale of the order
of £ in order to save gradient energies. It is a simple application of mean-field theory
to calculate the energy stored in the interface.

Experimentally this quantity can be measured in the form of a surface ten-
sion [16]. This may be deduced to light scattering experiments [17] or, more directly,
by looking at the curvature radius of a droplet of one phase embedded inside the
other [18]. In this way, the surface tension was found for MBBA to be

o~23x107% erg/cm®, [17] (5.159)

o~ 1.6x1072 erg/em®. [18] (5.160)
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For the calculation it is convenient to go to natural dimensionless quantities and
introduce a renormalized field

2
Gag = —4 “4 Qaﬁ (5.161)

We further measure the energy density in units of

_ 94
fi = Fat (5.162)

and find .
f=ht (5.163)

Then the energy density consisting of the sum of the Landau expansion f of
Eq. (5.44) and the bending energy (5.94), fiot = foena + f, corresponds to a di-
mensionless energy density [recall (5.95)]

- 52
Jrot = 27’05? (v%@ab’) 52 VaPayVpepy

V6

1 2\ 2
5 PasPiPra t 5 (Pas®) +.oo (5.164)

where 7; is a dimensionless parameter

+ T(,Oag2 —

0
4aya,

(5.165)

O =
3(1,32

whose inverse s = 7, ' measures how strongly the phase transition is of first order. It
is useful to introduce the temperature-dependent dimensionless parameter

(5.166)

dagas  4asad as T
T = 3 = 5 0 =70 <—* — 1) .
3as 3a3 as T
Then we may write
1
872

where f. 1 is the the Landau condensation energy (5.81)

1= s er (5.167)

1 2
for = —=2. (5.168)

4&4

The nematic phase with the order parameter

0
Pap = pes)(n) (5.169)
has a dimensionless potential energy
< 5 1 1

f =T — 5903 + §§04, (5170)
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if it is measured in units of f; of Eq. (5.162). This has a first-order transition at

(1/3)* _ 2
= = 5.171
where ¢ jumps from ¢ = 0 to
1/3 4
=P =—F——=—. 5.172
Y =¢ 21/8) 3 ( )
Note that at that temperature
T 2
ﬁ:mGg_Q:§. (5.173)

The energy density (5.164) can be used to study a planar interface between the
nematic and the disordered phase in the xy-plane. Let the region z > 0 be nematic
and z < 0 be disordered. For symmetry reasons, we assume all gradients to point
along the z-axis, leading to a bending energy

2

beend = 27—06% [(vzwaﬁ)2 + %vz@zvvz¢z71 . (5174)

With the order parameter (5.169) and ¢ # 0, this is minimized by letting n point
orthogonal to the z-axis. Then (5.174) becomes

16, 2
2
Therefore, the total energy density across the interface reads at T = T7:

. 1, 1
f=6(Vep) +7ep” = 29" + 16 (5.176)

where we have introduced the transverse coherence length at 7' = T:

163
C=2mff (1+ 22 . 5.177
If we adopt &, as our transverse length scale, we may rewrite
= (V:0)’+V(p)
= (V.0)> + Vo’ (¢ — ¢1)*, (5.178)

where Vy = 1/8, ¢1 = 4/3. The potential term has the standard form of a symmetric
double well, with minima at ¢ = 0 and ¢; = 4/3 (see Fig. 5.5). Inside the interface,
the order parameter moves from one value to the other while keeping the total
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interface energy minimal, i.e., satisfying the Euler-Lagrange differential equation
[10] which amounts here to
V.20 =V'(p). (5.179)

This is precisely the same as the equation of motion of a point particle at position
v as a function of pseudotime z, but in the reversed potential: The solution corre-
sponds to a mass point rolling “down” the hill from ¢ = 0 through the “valley” at
© = ¢1/2 up to the other hill at ¢ = ;. The total pseudoenergy of this motion is
conserved, i.e.,

(V.¢)? — V(p) = const. (5.180)

Far away from the interface, the field tends against ¢ = 0 or ¢ = ;. Having there
the value V' = 0, the constant is equal to zero, and we may integrate

2= /w dy (5.181)
to
o(z) = %@1 (1 + tanh @) : (5.182)
This is the same as
o(z) = § (1 + tanh %) . (5.183)

The total free energy for this situation is found from the integral

Fe [ a[er+vie) =2 [Tavig) =2 [ doyV(e)

o1 VAT 16
= 2\/?0/0 dp o(p — 1) = 3°<pi’ V2 (5.184)

This is the surface tension which, back in physical units, reads

= VG (5.185)

The value of f; involves a3 and a4, which are both somewhat hard to determine
experimentally. But there is a simple experimental quantity which contains f; rather
directly: the latent heat of the transition. In MBBA, for example, one measures
[19]:

k
Ag=03-L 19d Zq0.107%8 (5.186)
mol g g
Within the present natural units, the latent heat is found from (5.170) as
0
Ag = f L5T ( f‘
L,DZO

16 T 32T, (T -1
2 = : 1( : 1) fi. (5.187)

= f”“ﬁ SN =g\ T

T*
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Comparing this with (5.185) we find the simple relation

T /T,
— VoAgE— (2L 1), 1
o=V2 1€ <T* ) (5.188)

For MBBA we may insert Aq of (5.186) on the right-hand side and estimate

.1 1

so that o ~ 1.5 x 1072 erg/cmz, in reasonable agreement with the experimental

values (5.159), (5.160).

5.6 Cholesteric Liquid Crystals

The collective field theory developed up to this point is able to describe an ensemble
of rod-like, disc-like or biaxial order. In the introduction it was mentioned that, in
cholesterol and similar compounds, the molecular build-up exhibits a slight screw-
like distortion. This violates mirror reflection symmetry. In order to describe such
systems we have to add a parity violating piece to the energy. To lowest order there
exists the following quadratic term with this property:

fpv =—d Gaﬁnyaﬁvaﬁ'w (5190)

This may be written alternatively in terms of the spin matrix (5.97) as

fpv = —1 anﬁ (SV Q)aﬁ . (5191)

For the Fourier transformed field, we can write (with ¢ = |q|):

fov = =d Y- Qap(—a)qg (HQ(Q)) .5 - (5.192)

In a notation slightly different from that in Subsection 5.1.3, this can also be written
as

For = —z'd/oﬁnQS VO, (5.193)

where S is the operator
S=—inx V,. (5.194)

The total free-energy density fiot = f + foend = f + faer + fpv describes the
cholesteric phase transition. Let us construct the cholesteric ground state. For this
we consider small fluctuations, and expand () into normal modes as

Qas =D (Z egg (q)e*S™ (q) + c.c.) : (5.195)
a \n
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where €*2)(q), €*D(q), € (q) are the five polarization tensors of helicities h =
—2,...,2 of Eq. (5.108). Inserting (5.195) into foend = faer + fpv Of (5.94) and
(5.190), the bending energy becomes

fbend . L (h)
Tl WAL (5.196)
= > {% [az - <b+ §c> qz] 1SO(q)?

|52 (q)|2}. (5.197)

2 2 4 T 1
=32 ("”— E) -5 (F - 1) ol (5.198)

From light scattering experiments we find S and S® to be the modes of largest
fluctuations. The first has zero momentum q® = 0, the second has a non-vanishing
momentum q© pointing in an arbitrary direction, whose size is given by the mini-
mum of the bending energy at

where

(2
0

d 1
@_-Z_ - 5.199
' =3"G (5.199)
This gives rise to a normal reflection of circularly polarized light of wavelength

A R — 47 fh.
The cholesteric ground state may now be found from a superposition of the
dominant A = 2 and A = 0 modes

Qop = SOeL)(@?) + SP(@?) [eBei @™ 4 cc], (5.200)

where 0 is an arbitrary phase. If we set n-q® = z, the quantity defined in Eq. (5.26)
becomes

Averaging over all directions and a period along g, and replacing S®™ by ko™,
this results in a free energy

f L o2, 2 @\
= P I
kT 3o gk wb) ¢
27 1 2 1 3 2 2
- Qi/ dalog/ dz e(=8)70+y/F(1-22)7® coss (5.202)
™ JO 0

Kk o2 1 2 d? 2 1 y2r
— (0 250 4 =2 _ 2 )@ = 0 52
= 30 —|—30 —|—3/{<1 K{))a 27?/0 d5logJ(a , o, 5),
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where

J(U(O), c®, 5) = /01 dz 622(0(0)_@0@ C086> (5.203)

is the generalization of the previous integral (5.10). In equilibrium, we now have the
equations

1 21 2 1 0

© - 42 - dd———— 204
"7 2" 327 Jo J 950 % (5.204)
d? 31 2 1 0
Il1=- 215 = Z_— — i 2
" ( Kb) ? 22w Jo d5J80(2) / (5.205)

The first equation can again be expressed in the same fashion as before in (5.14),

except that o has to be replaced by ¢(® — \/gcr@) cosd, and an average has to be

taken over all §: )

1
) _ 0) _ @)
Kot = o do S(O’ \/ga cos 5) . (5.206)

m™Jo

The other equation has an additional weight factor \/g cosd, to be averaged as

d? 21 g2
g (¢ R e el 0 _ /252
2K (1 /eb) o¥ = \/;27r ; do cos & S(O’ \/;a ) . (5.207)

Remember (5.14) for the definition of the function S(x).
In order to establish contact with the previous calculations of the cholesteric free
energy, it is useful to go to the natural variables to find

/<a—12—5 = 22—1(T+2a), 2a522—1§d—b2, I@LTE%JE’ (5.208)
@ = 1745x , 0@ = 14—5% (5.209)
Then f has the simple expansion
f=(+2a)2* +7y% - %xg + xy? + é <x2 +y2>2 +..., (5.210)
and the field equations (5.206), (5.207) read
[(7'+204) + g] x = %%/O%dé S(%5 (3: — %ycosé)) ,
2 (T+ g) Yy = ﬂ%%/jﬂdécosé S(% (x — %ycosd)) , (5.211)

which may be solved by iteration. The results for f, z, and y as functions of o and
7 are shown in Fig. 5.11 as contour plots.

The main defect of the Maier-Saupe model is that the size of the cubic term is
too large in comparison with the physical transition. In Appendix 5A we show how
this aspect can be improved by a biaxial version of the Maier-Saupe model.
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FiGURE 5.11 Contour plots of constant reduced free energy density fext with order pa-
rameters ¢ = ¢(©) and y = @),

5.6.1 Small Fluctuations above T}

If the temperature lies far enough above T; (say a few °C') the fluctuations are
dominated by the quadratic part of the free energy. The normal modes are still
given by the different helicity tensors € (q), and energies behave on the average
like [see (5.196)]

Ta) = a <1+§€12q2>, (5.212)
d

Q) = ay [1 + (512 + %522) <q2 + = %q)] , (5.213)

T(iz)(q) = as [1 + &2 (q2 + Q%qﬂ . (5.214)

Another way of writing the last two equations is

(1) _ 1 g 2 1o d \*
- [ S +< + = ) +- 2 ], 5215
' - ( A& + 363) &%) gk (q 2b + c) (5:215)
- , N2
TE = gy 11— 5—; + & (q + —) (5.216)
&h b
The quantity d/b is equal to 1/&, = ¢® by Eq. (5.199). Similarly we set
d/(2b+c) = ¢V = (1 +£2/262)qW. (5.217)

The behavior of 7 (q) for h = 0, £1, £2, is sketched in Fig. 5.12.
While 79 (q) is unaffected by the parity-violating d-term, the helicity one and
two fluctuations now are strongest for non-vanishing momenta (recall Fig. 5.8)

O 1 1
4q = 52 71 L c2/9c 2’

26, 1+ £92/26

1
¢? = (5.218)

&
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FIGURE 5.12 Momentum dependence of the gradient coefficients 7(®)(q) of the modes of
helicity h, as specified in Eqgs. (5.212), (5.215), and (5.216).

This fact will be seen to give rise to a number of distinctive physical properties of
cholesteric systems.

5.6.2 Some Experimental Facts

As far as Rayleigh scattering far above 77 is concerned, the momentum transfers are
so small that the result of (5.148),
IVH_I 4
A=t (5.219)
is still expected to be true. Experimentally a slight deviation (1.448+.94) is observed
which has not yet been explained (see Fig. 5.8).

The most striking difference with respect to the nematic case, however, consists in
the following. The data points of I~! no longer end at a precocious phase transition
at T1 > T*. Instead, they turn off the straight line and can now be followed down
to below T (see Fig. 5.8) by half a degree Celsius, where they suddenly jump down
to small values as the ordered phase is reached. These values are, however, much
(= 10 times) larger than those in the nematic ordered phase, i.e., the scattered light
intensity is much smaller. This indicates a lower level of degeneracy of orientational
degrees of freedom as compared to the nematic phase. There is another characteristic
feature which was already observed by Reinitzer [1] in his first investigations of such
systems. The liquid appears in a bright blue color. For this reason, this temperature
regime is referred to as the blue phase [20)].

When pressed into a thin layer between two glass plates, the liquid forms a great
number of domains, called plaquelets, some of them blue [21]. As the temperature
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is lowered by one more degree, the colors suddenly disappear and the intensity
of scattered light jumps up once more. Now the liquid shows the same degree
of opaqueness as nematic ordered phases. This temperature regime is called the
cholesteric phase.

If the liquid is subjected to more detailed optical investigations, it reveals several
important phenomena:

1.

The refractive indices for ordinary and extraordinary light rays are equal in
the blue phase but differ by about one percent in the cholesteric phase [21, 22].

. The cholesteric phase shows a single strong Bragg reflex of circularly polarized

light at normal incidence at barely UV wavelengths. Thus, the liquid is capable
of transferring a certain momentum?,

q=2ky=— (5.220)

upon the incoming light of momentum £y and wavelength Agz. The quantity
P = 47/q is referred to as optical pitch.

For oblique incidence there are also reflexes of higher order 2¢, 3¢, at Bragg
angles 6:

P
Ap = —sinf (5.221)
m

(6 = 90°, normal incidence). But now the polarizations are elliptical.

. Also the blue phase gives Bragg reflexes but with a larger pitch P, which

is about two times larger than that in the cholesteric phase (this is why the
color is blue rather than UV). Moreover, the plaquelets described above reflect
light at wavelengths which are integer fractions of the above pitch By, and of
Piwe - V2. As a matter of fact, the directions of reflexes can be fitted by the
same Bragg condition as those in a bcc lattice:

< sin @ )2 _my® +mo® 4 mg? (5.222)

A R / B b 2 ’
where the Miller indices can take integer values with even numbers. The pres-

ence of lattice planes (1,1,0), (2,0,0), (2,0,0) has apparently been established
[22].

. There is one more important observation [22]. The wave length of reflected

light remains constant for about half a degree Celsius. Then it has a jump to a
higher value and increases even more for another half degree before it falls back
to a low value as the cholesteric phase is reached. The jump is present only
for samples of shorter pitch. We shall now try to understand these properties
theoretically.

°If the light is observed outside the medium, Ag has to be replaced by Ag/n.
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5.6.3 Mean-Field Description of Cholesteric Phase

In the presence of the parity violating term (5.191), the ground state is much harder
to determine than in nematics, even at the mean-field level. The reason is that a
constant field configuration can no longer give the lowest energy. For the following
discussion let us truncate the free energy after the quartic term, for simplicity. In
the natural energy units (5.162) introduced before we may write the free energy
density as

1

V6 2
fr=(1+20)0us” = - paspprora + 7 (¢2s)

2
—I—QCMf,% (V790a5)2 + %va¢avvﬁgpﬁv‘|

—4abp€apypas Vo pss. (5.223)
Here we have introduced the additional dimensionless parameter

dagbd® 284(Th)
0= —— == ,
3&32 b? 9 6}21
where & (T1) = & (T1/T* — 1) = v/6asb/as is the coherence length at the first-order
phase transition [recall (5.95)]. The cholesteric phase condenses when 742« becomes
negative. Recalling (5.170) and (5.171), we identify

dasbas  4asbad < T ) < T ) 2E4(Ty)
90 = % 20 (1 ) _ (2 _q) =2 . 22
T+ 2 T 70 {7 5 €(T) (5.225)

The parameter \/a measures the coherence lenght & = 1/b/as at T} in units of the
cholesteric length scale &, apart from a trivial factor 1/3. For this reason we call «
the cholestericity of the liquid crystal. Obviously, the limit @ — 0 which is reached
for d* — 0, restores the nematic case [see (5.224)], in which case (5.225) coincides
with the previous definition (5.166), and 2a&7 becomes 279£7.

We have seen in the last chapter that, at the level of small fluctuations, the last
term in (5.223) gives a preference to the helicity-two (¢ ~ ¢®) mode with ¢ ~ ¢®
(see Fig. 5.12). Thus we may expect a lower energy for an ansatz:

1
N

Inserting this into (5.223) we find

(5.224)

(€ (@)e™p® +c.c.) . (5.226)

2
RGOS a4 (2)?
=10 + g% + 2« (q(z) 1] . (5.227)
There is no cubic term since the product of three ¢?(q), ¢?*(q) tensors vanishes.
The energy is minimized by setting ¢ = ¢®, where it becomes

F=1@ 4+ 2o (5.228)
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This is to be compared with the helicity-zero expression:

2 1 3 1 4
_loo3 1o
37 87

Lod? (14 280 ) 2,07 (5.229)
h 3 £22 q 90 *

f = (r+2a)p?®

which is minimal at ¢ = 0.

We now realize that for large enough « the energy (5.228) is always lower than
(5.229). For if 2a0 > 2/g, the energy (5.229) vanishes for 7 > (2/g) — 2« while
(5.227) has a second-order phase transition at 7 = 0 and starts being negative for
7 < 0. But this is by far not the lowest possible energy. In order to see this let us
combine both helicities linearly and take

1 1 ;
Pag = W [6(0)(n)¢(0) + E (6(2) (q)equ(p@) + C.C.>‘| , (5230)

where q points in an arbitrary direction and the direction vector m may be
parametrized as

n = (ng,ny,n,) =sinf(cos px +sin ¢y) + cos Hz. (5.231)

Now the energy has the form

(0)3
] ) ; o
fr=(r+20) + 7l — = — 0Ol (3fi- A — 1)
L1027 4,0 (0)],)2 04
5 (@ +[0P]) + 66 1e@ ] + O ). (5.232)

The two modes are coupled at the cubic level. This gives rise to a linear asymmetry
for the p(®-amplitude such that it is pulled out of the equilibrium position to a new
minimum thereby reducing the remaining quartic potential for ¢®). This effect is
strongest if the cubic term is maximal and the quartic term minimal, which happens
for

n-1=0. (5.233)

The associate energy density is

- 3 1 2
f=(r+2a)2* +1y* — % + zy® + 3 (x2 + y2> . (5.234)
Here we have changed variables from ©© and ¢ to z and y, for convenience. We
now minimize f with respect to x and y and find

1 1
(T4 2a)z — 53:2 + 5y2 +z(z*+y*) = 0, (5.235)

Ty 4+ xy +y(zt + %) = 0. (5.236)
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From these two equations we obtain
y® = 327 — dax, (5.237)
which, after inserting it back into (5.233), gives
2+ (1—a)r+7=0, (5.238)

which has the two solutions

1— 1—a)?
x1,2——[ S Gl i (5.239)
At the extrema, the energy is
~ 3
fext =2 <m2 + % — owx)

_T2+%(1_a)7_§ (M _7) (1_O‘i (1_0‘)2—Tﬂ ,(5.240)

=2
3 4 2 4

and we see that the + sign corresponds to the lower value.

The phase transition takes place at 7. = 7.(«), where fext vanishes. Instead of
solving fex = 0 from (5.240) it is more convenient to combine foxt = 0 with (5.238)
to get two linear equations:

2
p=_TTO (5.241)
Oé"—g
and
org)r ;210
T i (a3 (5:242)

Using these we eliminate once the lowest and once the highest power of z in fu = 0.
Combining the resulting equations we obtain

g7° 4+ 2(ga — 1)1 — 3a(1 — a)* =0, (5.243)

which determines the curve in the (a, 7)-plane, where f vanishes. For a < 0, this
happens first at a value 7. > 0, which for a = 0 takes the nematic value 2/9, and
which decreases down to zero at & = 1. Above o = 1, the curve (5.241) does not
correspond to a minimum. In that region, the phase transition takes place at 7 =0
and is of second order, as can be seen directly from (5.240). Above o = 1, the energy
becomes for small 7 < 0:

fot = =272 <1 + ) +0(). (5.244)

3(a—1)

The full behaviour of fuy as a function of temperature 7 and cholestericity « is
shown in the form of contour plots in Fig. 5.11.
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The order parameters x and y are also displayed in the contour plots of Fig. 5.11.
The lines of constant z are straight: € = za — (2 + x). For @ > 0 one winds up in
the cholesteric phase. Notice that for « — oo, the helicity-zero component becomes
more and more suppressed, and only ¢ = y survives.

What happens if also the helicity-one component is admitted? In order to study
this let us assume all fields to vary only along the z-axis. For symmetry reasons, we
may take 1 = \/ii (x +7y). Then we have n = z from (5.233), and we may expand

1 1
Pas(2) = = [eiog)(i)w(o)(@ 7 (ed ()" (2) + €2(2) 0™ (2) + )] , (5.245)
with a real field »(®(2) and two complex fields (V) (2), ¢ (z). The energy density
bocomes using (5.232)

fo= (r+20) (¢ + WP + )

1 3 1 V3 . 2
—_80(0) _ —90(0) (|¢(1)|2 _ 2|80(2)|2) -7 <90(2) 30(1) + c.c.)

3 2
1 2 2
3 (QP(O) + WP + |¢(2)|2) (5.246)

+20z§2 {ro (VZQP(O))2 tr <|v2¢(1)|2 + |Vz<p(2)|2)

—2aé, (M 790(1) + 20 7&2))]‘

Here we have introduced the convenient abbreviations
261+CQ . 47“1—1

=1 —
Tn=1t3y 3
1+ ¢ C
—1 1+ S 5.247
=ity % (5.247)

Both are experimentally accessible in the ordered phase by measuring the ratio of

Frank constants
_ K1+ K3 Ks+ K -0

r = =

2K, 2K,
In momentum space, the quadratic terms can be rewritten after a quadratic com-
pletion as

(5.248)

= S| (r+ 20+ 20m80) 16(@F
_|._

1 1\?
20 (1——]+2 — =D (q))?
<T+ a( 4“) +2ar (qSh = 2“) ) [ (a)]

+ (7420 (g6 F 1)*) |02 (q)lz} : (5.249)

where ¢ = q.. For very large «, this is certainly minimal at the former solution with
q=1/&,, and no @, p? components can be present. Experimentally, however, a



5.6 Cholesteric Liquid Crystals 361

is not so large to justify ignoring ¢®, p®: A typical cholesteric system has &) ~ 11A
and &, ~ 2000/47rA, so that o ~ 0.21. Therefore, " will be present. From the
energy we see that the amplitude ™) enters only in higher orders. Thus there
can be a second-order phase transition with ¢ # 0 developing from the previous
solution with ¢©, ¢ =£ 0 along a line in the o — 7 plane where the coefficient of
the quadratic term becomes negative:

2
D=r71+2a (1—4—;) + 2ar, (1—%) - %x - ?y + i (2* +¢%) <0. (5.250)
Inserting the solutions (5.237) and (5.239) we find that this cannot happen. At
a = 0 one has =z = —% + \/% — 7,y = —V/3x, and 2% + z + 7 = 0, implying that
D = 0. But for all allowed o > 0, and 7 in the cholesteric phase, we can verify that
THa—3— ?y + 1 (22 + y?) starts out with O(a?) and is always > 0. This ensures
also D > 0 since the first line in (5.250) is 7 + « (1 + %) and m > 0.

Let us take a look at the cholesteric order parameter with ¢, ¢ £ 0. It may
be written in a matrix form as

ooy = 0L - 1 IEEION 1 _il 8 G e
v VG 2 v2h 12 0 0 o -
ap aB
) —\ifﬁljt(i\? cos gz, —%gpiii sin ?z o 0
= — zePsingz =2z — S cos gz 02 ) : (5.251)
0 0 %80( ) B

This has to be added to €yd,p in order to obtain the dielectric tensor which is usually
parametrized as

€+d6cos2kz  —IOsin2kz O
€aB = —dsin2kz €—0cos2kz 0 . (5.252)
0 0 €3 o
Note that the mixing between 90(0) and 90(2) induces, in general, biaxiality. The local
eigenvalues are now all three different € + 9, € — 9, €3.
In order to interpret the order parameter (5.254) physically it is useful to realize
the following: Suppose the helicity zero rod-like form e(aog(n) = \/g (nanf; — %50(5)
is taken in the direction

n(z) = (cos kz, —sinkz,0), (5.253)
that is rotated away from the z-direction into the zy-plane. Then ecgg(n(z)) becomes
3 cos’kz — % —sinkzcoskz 0
eg)ﬂ) (n(z)) = 5 sinkzcoskz  sin’kz — 3 0
0 0 ~5 /s
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3 % + % cos 2kz —sin 2kz 0
= \/; sin 2kz % — %cos 2kz 0

0 0 —

2
6 af

= % (—6(0)(,2) + ﬁ% (5(2)(2)@iqz + c.C.))aﬁ . (5.254)

Thus it has precisely the form (5.230), with the particular ratio

(@)
Y
POiai V3. (5.255)

In this case we may interpret the solution (5.248) as a purely transverse helical
configuration of rod-like molecules. These parameters can be measured in optical
experiments. They show that the biaxiality remains usually small: the eigenvalue
€ — ¢ is usually equal to €3 (typical example: € = 2.745, 6 = 0.315, €3 = 2.430
[23]).

Thus experimentally, the ratio (5.255) is observed. Looking back at (5.237) we
notice that, for &« = 0, this is automatically true (as it should be since « = 0
corresponds to the absence of the parity violating term). The uniaxiality remains
approximately true for the typical experimental value o ~ 0.21. Thus we find for
the ratio of the dielectric eigenvalues of (5.252):

e 3§ 1 2
€043 <7 - —) . (5.256)
4

5.7 Other Phases

There are several other possible configurations of momenta where we can expect a
low total energy.

One is the hezatic phase, in which the order parameter contains one component
¢ (n) and three components ¢?(g;) where qi, qa, gz form an equilateral triangle,
for whose directions we may choose

1., V3

e+ Y 5.957
SXEt 5y ( )

A A

q1 =X, 23 = —

The polarization vectors associated with these momenta may be taken as

1

L = —=(y+iz)em/? (5.258)
V2
1 3. 1 .
Ly = % <¢§x - 55/ + zz) e23/2, (5.259)

For symmetry reasons, the chirality of all polarization vectors has to be the same,
i.e., they must form a positively oriented triped.
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Another possible phase is a body-centered cubic (bce) phase in which the mo-
menta and polarization vectors are oriented, as shown in Fig. 5.13.

The regimes where the four possible phases, cholesteric, hexatic, or bee, are the
lowest are shown in the phase diagram in Fig.5.14. A discussion of all possible
phases was given in 1981 by Kleinert and Maki [24] (the development reviewed in
Ref. [25]). The most interesting phase is the icosahedral phase in which the momenta
and polarizations are arranged as shown in Fig. 5.15. Such a phase is not periodic in
space but it displays a fivefold symmetry under rotation. It is called quasicrystalline.
For the liquid crystal with a Landau-de Gennes expansion of the order field, this
phase has so far not been shown to be a stable configuration. Higher powers in the
field seem to be necessary to achieve stabilization.

Such a phase would have an interesting density profile displayed in Fig. 5.16.

FIGURE 5.13 Momenta and polarization vectors for a body-centered cubic (bcc) phase of
a cholesteric liquid crystal.

FIGURE 5.14 Regimes in the plane of «, 7, where the phases cholesteric, hexatic, or bcc
have the lowest energy.
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FIGURE 5.15 Momenta and polarization vectors for an icosahedral phase of a cholesteric
liquid crystal.

This profile can be obtained in two dimensions from the simplest set of momenta
with fivefold symmetry

pr = (cosag,sinay), ax =27k/N. (5.260)

A possible order parameter is composed of a sum of exponentials
N-1
P(x) =) P, (5.261)
k=0

This leads directly to the density p(x) = |¢(x)|*> shown in Fig. 5.16.

In the year 2011, Dan Shechtman was awarded the Nobel Prize for his 1984
discovery of a quasicrystalline phase with five-fold symmetry [30] in a sputtered
Al-Mn alloy. While the solid-state community considered his observation for some
time with great skepticism, as is vividly described in many newspaper articles and
Shechtman’s Wikipedia page [31], such a phase has been discussed three years ear-
lier in the context of liquid crystals [24]. There it may appear as the so called blue
phase, as calculated by Seidemann [25] and by Rokhsar and Sethna [26, 27]. Ther-
modynamics of various phases in cholesteric liquid crystals is shown in Fig. 5.18.
For a comprehensive analysis of the blue phases see Ref. [28]. Recent experiments
are discussed in [29].

0]
2
&

FIGURE 5.16 Density profile p(x) = |¢(x)|? with five-fold symmetry.
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In two dimensions, we may also take N = 7 and expect to find a heptagonal
density distribution shown in Fig. 5.17 [33].

For more details on quasicrystals see the textbooks [34, 35, 36].

Appendix 5A Biaxial Maier-Saupe Model

In order to improve the Maier-Saupe model with respect to the large-as coefficient,
let us try a modified version in which the basic molecules are biaxial. In the general
discussion of the free energy in Section 5.2 we have seen that the cubic term, as
produces a region of biaxial order. Thus the large size of a3 in the model seems
to be connected with the basic assumption of uniaxial molecules at the microscopic
level. Let us see whether this is, in fact, true. Consider again the nematic free
energy (5.29). The integral over n corresponds to averaging over all microscopic

FIGURE 5.17 Density profile p(x) = |¢(x)|? with seven-fold symmetry.
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F1GURE 5.18 Blue phases in a cholesteric liquid crystal.
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orientations of the rod-like uniaxial molecules such that the orientational energy
(5.4) is proportional to

\/8:\/>QmOIQa/3 F(nanﬁ ;505> Qag. (5A1)

Suppose now the microscopic order parameter is biaxial. Then it contains an extra
term in addition to the axial order parameter (5.2):

mo. 3 1 1
= 3 [(rams  5) e (s - 55)] oA

where m is another unit vector orthogonal to n. If n, m point in z- and x-directions,
respectively, we have the explicit matrices:

_1 _2
2 mol 5 1 ’ 1
\/; af T R ~3

—(1+e€) : (5A.3)
—(2—¢€)
By an appropriate choice of ¢ we can now simulate any desired ratio for the three

principal axes of the molecules. The spatial averages are a little more involved. Let
us parametrize n and m in terms of angles as

Wl =

= (sinfcosp, sinfsing, cosh) (5A.4)

n
m = (cosf cospcosy —sinpsiny, cosfsinpcosy + cospsiny, —sinfcos?y).
Then the directional average must be performed as a product of integrals
271' d 1d dr 9 2m
— / = / : / =, (5A.5)
0 0

The resulting invariants of products of the tensors (), will be unique up to fourth
power. We may therefore work with the simple specific form

-Q
Qap = —-Q : (5A.6)
2Q)

and substitute, at the end:

Q? — étr Q?, Q® — étr Q*, Q- (tr QQ) (5A.7)
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With (5A.6) we see that the source term QN§'Qqp satisfies

[Qmol@aﬁ _

32%a — b) , (bA.8)
where we have set
a=1—ecos’y, bEl—e<3cos2'y—1>. (5A.9)

The averages over z are now easily performed, yielding:

(@) = = trQ2<5 2ab+b2>

8T 6 o
15\*? tr@* /27 27
3 _ (12 20 3 4l 9 2 13
(@) = (87r) 6 <7a 5@ 0+ 3ab b>7
2 22
<Q4(n)> = (;—5) %<%a4— £78a3b+55—4a2b2— 13—2a63+b4> .(bA.10)
s

v

For ¢ = 0 one has a = b = 1, leading back to the previous results (5.30) for
nematic liquid crystals. For cholesteric liquid crystals, we must perform a remaining
nontrivial average over . This is easily done using the basic average formula

on _ (2n—1)Y
<COS ")/>’y = W, (5A11)

which yields explicitly the averages 1/2, 3/8, 5/16 35/(8-16) for n =1,2,3,4. If
we write a = 1 —ea, b=1—¢€f with a = cos?vy, B =3cos’y— 1, we Calculate

1 3 5 11
@={=5 (=3 (hH=2 ()=t
S 9 17 29
(@”) = 16 (0*8) = 150 (0B =15 (8% = 36 (5A.12)
35 65 123 233 467
() = (%) = o (0 =t (o) = (g = T
Hence we find
(a®) = 1—6—|—§6<ab>_1—€+§€<b2>—1—6+%6
(@® = 1- ge + %62 - %637
(a®b) = 1-— §6 EGQ — g63,



368 5 Liquid Crystals

2 8 16
by = 1- ge %3 %e?’,
(a®y = 1—2e+ ?ez — 263 132—5864,
(a®h) = 1—2e+3e* — 26 + %64,
(a®b?) = 1—2¢+ %62 — %63 + %64,
(ab®) = 1— 2+ 66 — %63 + 82-3136 e,

66 29 467
vy = 1-2 — - Td g ——— Al
(b*) e+86 1€ +8.166 (bA.13)

Combining these we obtain the following correction factors to the e = 0 -terms of
(5A.10)

(1 —e+62>,
<1 — ge — g +e3) ) (bA.14)
(1—26+362—263+e4) = <1—e+62)2.

Going back to (5.29) we see that the first two coefficients multiply directly the
coefficients in the Landau expansion (5.31) with ¢ = 0, while the quartic term
receives a combined correction factor produced by the third row of (5A.14):

4y — ag E (1 —6+62)2 - g (1 —6+62)2} = a4 (1 —6+62)2. (5A.15)

Since the cubic factor may be written as (e - %) (e+1) (e — 2) we see that we can

indeed make it arbitrarily small, for example by choosing € ~ % Note that the
values € = %, e =—1, €= 2 correspond to
3 mol _ 1 . - !
1 1 0
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Simplicity is the ultimate sophistication.
LEONARDO DA VINCI (1452-1519)

6

Exactly Solvable Field-Theoretic Models

The techniques developed in the previous chapters can be understood better by
observing how they work in some simple exactly solvable models whose physics is
well known on the basis of conventional techniques. This will be illustrated in this
chapter in several typical cases.

6.1 Pet Model in Zero Plus One Time Dimensions
Consider the extremely simple case of a fundamental theory with a Hamiltonian
H = (a'a)?/2, (6.1)

where a' and a denote the creation and annihilation operator of eitherj a boson or
a fermion. In the first case, the eigenstates are

|n) = (aH"0), n=0,1,2,..., (6.2)

2=

with the energies

In the fermionic case, there are only two eigenstates
0),  [1) = a'|0), (6.4)

with the energy eigenvalues

The Lagrangian corresponding to H is
2
L(t) = a' ()idea(t) - $[at(B)a(t)] ", (6.6)

371
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and the generating functional of all Green functions reads
Zin'al = (T exp i [ dtCnia+ain)| o)
= N / Da'Daexp {z / dt (E +n'a+ aTn)] . (6.7)

A collective field may be introduced via the formula

exp{—%’/ahf[otT } /Dp exp{ /dt t) — 2p(t)al (t)}} (6.8)

Equivalently we may add to the exponent of (6.7) a term

[t o) - atate)]”

and integrate the generating functional Z over the p-field [compare the Hubbard-
Stratonovich transformation in Eq. (1.79)].
The resulting Z can be rewritten as

Zntn) = N/DaTDa'Dp

X exp {dt laf(t)z‘ata(t) — p(t)a'(t)a(t) + p22(t)

+ 1 (t)a(t) + aT(t)n(t)] } . (6.9)

The collective field p(t) describes the particle density. Indeed, a functional derivative
of the Lagrangian density in the exponent of (6.9) displays the dependence

p(t) = al (t)al?) (6.10)

which holds exactly at the classical level.
Integrating out the af, a fields gives

2 = N [ Dpexp {zA — [ draty ) (t’)}, (6.11)
with the collective field action [see once more (1.79)]
Alp] = i@Trlog @G /dt (6.12)

where G, denotes the propagator of the fundamental particles in a classical p(t) field
satisfying

[0, — p(t)) G, (t, 1)) = id(t — t'). (6.13)

The solution can be found by introducing an auxiliary field

olt) = [ pltit! (6.14)
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in terms of which
G,(t, 1) = e WGy (t — 1), (6.15)

with GGy being the free-field propagator of the fundamental particles. At this point
one has to specify the boundary condition on Gg(t — t'). They have to be adapted
to the physical properties of the system. The generating functional is supposed to
describe the amplitude for vacuum to vacuum transitions in the presence of the
source fields ', 7. The propagation of the free particles must take place in the same
vacuum. If ag, ag describes a free particle, their time ordered product in the free
vacuum is

Go(t — ') = (0T (ao(t)ab(t)) 10) = O(t — t'). (6.16)
Using (6.15), we find
G,(t, 1) = e WOt — ). (6.17)

Equipped with this knowledge we can readily calculate the Trlog term in (6.12).
The functional derivative is certainly

o {:l:iTrlog(iGgl)} = FG,(t, 1)

50 =0, (6.18)

t'=t+e

where the ¢ — ¢ limit is specified in such a way that the field p(¢) in (6.9) couples
to

af(t)a(t) = £T (a(t)a' (1)) =+ GP(t,t)

t'=t+e

(6.19)

t'=t+e

Hence, the ©-function in (6.17) makes the functional derivative vanish and the Trlog
becomes an irrelevant constant. The generating functional reduces to the simple
expression

Z'on) = N [ Dottyexp {3 [ drp(e? = [ deary!n)e #0e e e~ 1)}
(6.20)

where we have used the relation
Dp = Dy det ((5(15 — t’)) = const - Dep. (6.21)

Observe that it is the field (t) which becomes a convenient dynamical plasmon
variable, not p(t) itself.

The original theory has been transformed into a new one involving plasmons of
zero mass. At this point we take advantage of the equivalence between functional and
quantized operator formulation by considering the plasmon action in the exponent
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of (6.20) directly as a quantum field theory. The first term may be associated with
a Lagrangian

Lo(t) = 5¢(t)%, (6.22)

describing free plasmons.
The Hilbert space of the corresponding Hamiltonian H = p?/2 consists of plane

waves which are eigenstates of the functional momentum operator p = —id/0dyp:
T p— (6.23)
V2 7
normalized according to
| de (wle} (elp'y = o0 — o). (6:24)

In the operator version, the generating functional reads
Znt ] = {0|0} {0 'Texp [— [y @(ee OO0 - t')} ' o} . (6.25)

where ¢(t) are free field operators. Note that it is the zero functional momentum
states between which the operator is evaluated. Due to the norm (6.24) there is an
infinite normalization factor which has formally been taken out.

We can now verify the generation of all Green functions of fundamental particles
from the functional derivatives with respect to n',n. First

A
0|Ta(t)a’(t)|0) = ——o—r
OO0 = =5 o) oo
= 0le~wWe® ol ot —t). 6.26
ol ooy o)
Inserting the time translation operator
et = i3t (6.27)

the matrix element (6.26) becomes

. . . 2 . . 2
—2p22€—up(0) e—z%(t—t’)eup(O)e—z%t/

0}.(6.28)

1 . 2 N
04 = ——_)le#(0) o =i (t=t") pig(0)
} {0|0}{ ’ ‘ ¢

But the state ¢?(©]0 } is an eigenstate of the functional momentum p with p = 1,
so that (6.28) equals

ﬁ{o e

{OTO} {1]1} e~/ = gmitt=t)/2 (6.29)
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and the Green function (6.26) becomes
(0|Ta(t)al(t)|0) = e =20t — 1), (6.30)
This coincides exactly with the result of a calculation within the fundamental field
operators a'(t), a(t):
(OITa(t)a'(#)[0) = Ot —¢){0]e’' " 2a(0)e 3= ql ()i *¢/2|)
= Ot —t)e i t71)/2, (6.31)

Observe that nowhere in the calculation have Fermi- or Bose- statistics been used.
This becomes relevant only for higher Green functions. Expanding the exponent
(6.25) to nth order gives

2 [t n) = {OTO} / dtydty -~ dtndtyn' (t)n(t) ' (tn)n(t),)

{ ‘Te t1) gie(th) | . . p=ip(tn) (1)

}Ot 1))+ O(t, —1,). (6.32)

n

The Green function

OlTa(ty) - - a(ta)a'(t,) - a'(t))0) (6.33)

n

is obtained by forming the derivative

(—i)2"5(2n)Z[nTn]/&f(tl) ..... 5771(%)57]%) ..... on(t).

There are (n!)? contributions due to the product rule of differentiation, n! of them
being identical, thereby canceling the factor 1/n! in (6.32). The others correspond,
from the point of view of combinatorics, to all Wick contractions of (6.33), each
being associated with a factor e=*®e(®)  In addition, the Grassmann nature of
source fields n causes a minus sign to appear in all contractions which deviate from
the natural order 11/,22',33,... by an odd permutation. For example

(0T aty)a(th)a! (th)a' (£;)]0)
— (0|T(a(tr)alt) alty)a’ (£) [0) + (O|T(a(tr)a(ts) a(ty)a’ (£) [0)  (6.34)
_ {OT_O} {0|eistmeieten ciett et )

= [O(t; — t])O(ta — t5) £ O(t; — t5)O(to — t7)], (6.35)

where the upper sign holds for bosons, the lower for fermions. The lower sign enforces
the Pauli exclusion principle: If ¢, > ty > t, > t|, the two contributions cancel,
reflecting the fact that no two fermions a'(t,)a’(t]) can be created successively on
the particle vacuum. For bosons one may insert again the time translation operator
(6.27) and complete sets of states [ dp|p { p| = 1, with the result:

{OTO}/dpdp/{ole—w@)e—ié(tl—tz)e—w(o) e~ i (t2 ~t5) iw(O)e—ié(t’g—ti)ew(O)|0}

— e—i(tl—tg)/Qe—iQ(tQ—t’z)e—i(té—t/l)/Q. (636)
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Here the expectation values {0le=*©|p} = §(1 — p), {ple O’} =d(p+1—p)
have been used. The result agrees again with an operator calculation of the type
(6.31).

We now understand how the collective quantum field theory works in this model.
Its Hilbert space is very large consisting of states of all functional momenta |p).
When it comes to calculating the Green functions of the fundamental fields, however,
only a small portion of this Hilbert space is used. A fermion can make plasmon tran-
sitions back and forth between the ground state |0} and the unit momentum state
|1} only, due to the anticommutativity of the fermion source fields n', 7. Bosons, on
the other hand, can connect states of any integer momentum |n}. No other states
can be reached. The collective basis is over-complete as far as the description of the
underlying system is concerned. Strong selection rules, p — p £ 1, together with
the source statistics make sure that only a small subspace becomes involved in the
dynamics of the fundamental system. The compatibility of such a projection with
unitarity is ensured by the conservation law a'a = const. In higher dimensions,
there have to be infinitely many conservation laws (one for every space point).

Actually, in the boson case, the overcompleteness can be removed by defining
the collective Lagrangian in (6.20) on a cyclic variable, i.e., one takes (6.22) on
¢ € [0,27) and extends it periodically. The path integral (6.20) is then integrated
accordingly. In this case, the Hilbert space would be grated containing only integer
momenta p = 0, +1,£2, ... coinciding with the multi-boson states.

The following observations may be helpful in understanding the structure of the
collective theory: It may sometimes be convenient to build all Green functions not
on the vacuum state |0) but on some other reference state |R) for which we may
choose the excited state |n). In the operator language this amounts to a generating
functional

"2l = (alT esp {i [ de [ 0a(t) + a n(o)] b ). (6:37)
This would reflect itself in the boundary condition of Gy for bosons

"Go(t =) = (n|T(an(t)al(t)) In)
= (n+ 1O —1t)+n0O{ —1). (6.38)

For fermions, only n = 1 would be an alternative, with
'Go(t — 1) = (1T (ao(t)ab(t)) 1) = —O( —1). (6.39)

As a consequence of (6.38) or (6.39), formula (6.18) would become

0 . 1 n
] {i@Trlog (@Gp )} = —{ 1 } . (6.40)

Integrating this functionally gives

o0

+iTrlog (i, ") = —{ ! }/oo p(t)dt, (6.41)
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so that the functional form of (6.37) reads, according to (6.12):

{120t ) /D@exp[/&h‘(——{ }gb)dt]
X exp {_ / dtd'n! (£)n(¢)e 0 e/t H";l} Ot —t') + { fl} ot — t)] } (6.42)
The collective Lagrangian of this model is
oy = - { " } ¢
ST e

With the help of the functional canonical field momentum

(1)

we find the Hamiltonian

_ & <p+{ ! }>2 (6.44)

Thus the spectrum is the same as before, but the momenta are shifted by n (or 1)
units accounting for the fundamental particles contained in the reference state |R)
of (6.37). In the collective quantum field theory, this reference state has a functional
momentum zero:

n 1 . I
Uzt g = ooy 1017 exp [— / dtdt'n! (£)n(t)e Do)

x H _nl}@(t—t’) + {_”1} (# —t)” 0. (6.45)

In fact, the one-particle Green function becomes

o CT
{1}G(t,t) = —W{l}Z[nT,n]

- — _{o|T —ip(t) up(t 0

x H ”31 }@(t—t’)+{ " }@(t’—t)]. (6.46)



378 6 Exactly Solvable Field-Theoretic Models

Inserting the times translation operator corresponding to (6.44) this yields, for t > ¢/,

Gty = exp [—z{ n;:/;/Q }(t—t/)] { ”gl }

_ { (n+1)exp[—i((7)l+1/2)(t—t/) } (6.47)

and for t < ¢

Moty = exp [—z{ ”1/2/2 }(t—t’)H " }
_ { nexp|—i(n —1/2)(t — t) } (6.48)

_ milt—t)/2

in agreement with a direct operator calculation.

The appearance of the additional derivative term ¢ in the Lagrangian (6.43) can
be understood in an alternative fashion. The reference state |n) of "Z in (6.37) can
be generated in the original generating functional by applying successively deriva-
tives —6® /ont(t)dn(t), letting ' — —oo, t — oo and absorbing the infinite phase
exp[—tAE x (0o — (—00))] into the normalization constant where AE is the energy
difference between |n) and |0):

5(n) 5(n)
"ZInT )l i,y < ; = Zn",n 6.49
e R T i e (AR NP
Each such pair of derivatives brings down a Green function
) S 3
e~ WOt —t') = exp [—@' / gb(t”)dt"] ot —t). (6.50)
t/

In the limits ¢ — —o0, t — oo we obtain, for n such factors,

exp [—m/ gb(t)dt] , (6.51)
in agreement with the derivative term in (6.42).

While the functional Schrédinger picture is useful in understanding what happens
in the Hilbert space of the collective field theory, it is quite awkward to apply to
more than one dimension, in particular to the relativistic situation where the time
does not play a special role. A more direct and easily generalizable method for the
evaluation of fermion propagators in the collective theory consists in the following
procedure: One brings the products of exponentials in (6.32) to normal order by
using Wick’s contraction formula in the functional form. Let the “charges” of the
incoming and outgoing fermions be ¢; = +1 and ¢; —1, respectively. Then the matrix
element to be calculated in (6.32) are

O e i S aipte)| 10 = T exp i [ st — 1] l0}, (65
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where we have re-numbered the times in the exponents as t1, ts, t3, 4, . . . rather than
t1, 1), ta, th, ..., etc. Now, from Wick’s contraction rule one has

——/dtdth, t—t;) Zq] t—t]

exp

{0|T¢"

x{0|T : exp [i/dtgo(t) ZQi(S(t/ — tz)] . |0}

= exp

-5 Z aia; P (L, )} : (6.53)

]

where a contraction denotes again the propagator of a p-field. This is well defined
after introducing a small regulator mass x:

dE i iy
t . t/ _ —zE(t—t)
P2 27 B2 — K2 + e
1 A1
_ =t — L ok, 6.54
5C 5 ot =11+ 0k (6.54)

As k — 0 this expression vanishes unless the sum of all charges is zero: >, q; = 0.
Thus one finds the general result for (6.32):

{07 exp [Z’Z@(ti)] 0} = 05, 0exp { > aigslti — ] : (6.55)
qi 1>7
In particular, the two-point function (6.26) agrees with the Schrédinger calculation
(6.30).

6.1.1 The Generalized BCS Model in a Degenerate Shell

A less trivial but completely transparent example is provided by the BCS degenerate-
shell model used in nuclear physics to describe the energy levels of some nuclei
in which pairing forces are dominant (for example Sn and Pb isotopes [31]). For
understanding the structure of the collective theory it is useful to consider at first
both bosons and fermions as well as a more general interaction, and impose the
restriction to fermions and to the particular BCS pairing force at a later stage. This
more general Hamiltonian reads

H = Ho—i—Hmt—eZaZaz—l—bb ——Zazb bja;
=1 ,J
v
+g > (aita; + bTb;) £, (6.56)

where g = 0 reduces to the actual BCS model in the case of fermions. The model
can be completely solved by introducing quasi-spin operators

Q Q
L= a1, L™= ba; = (LN, (6.57)
i=1 =1
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1 1 1

(2

where N counts the total number of particles. These operators generate the group
SU(1,1) or SU(2) for bosons or fermions, respectively:

[L?n Li] = iLi)
(LT, L] = F2Ls. (6.58)
Using
LY'L =L*F Ly + L3” (6.59)

we can write

H = 2eL3F eQ—V(L* % L3*> F gLs5?)
= 2eLz— V[L* + (1 — g)Ls*] F Q. (6.60)

Note that for g = 1, the interaction term is SU(1,1)- or SU(2)-symmetric. The
irreducible representation of the algebra (6.58) consists of the states

In[Q, v]) = N,(L")"0[, v]), (6.61)

where the seniority label v denotes the presence of v unpaired particles a; or bjT, ie.
those which are orthogonal to the configurations (L1)"|0). For v = 0 the spectrum
of L3 in an irreducible representation is

iQ iQ +1 iQ +2 (6.62)

AR E5, 12, :

This continues ad infinitum for bosons due to the non-compact topology of SU(1, 1)
while it terminates for fermions at €2/2 corresponding to a finite spin /2. The
invariant Casimir operator

L*=12+ L2 F L2 (6.63)

characterizing the representation has the eigenvalue Q/2(1 F ©/2) showing, in the
fermion case, again the quasi-spin €2/2. If v unpaired particles are added to a
vacuum, the eigenvalues start at +(Q + v)/2. Thus the quasi-spin is reduced to
(Q —v/2). If v = Q unpaired fermions are present, the state is quasi-spin symmetric,
for example:

10[Q, Q]) = b1y - ... boT|0). (6.64)

Due to the many choices of unpaired particles with the same total number, the
levels show considerable degeneracies and one actually needs another label for their
distinction. This has been dropped for brevity.

On the states |n[Qv]), the energies are taken from (6.60) and become, after
inserting N = 2n + v:

U9 vl s0 (6.65)

0+ 0+
E:e(NiQ)—Vl ”(1; ”) v

2 2
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FiGURE 6.1 Level scheme of the BCS model in a single degenerate shell of multiplicity
) = 8. The abscissa denotes the third component of quasi-spin. The index v at each level
stands for the number of unpaired particles (“seniority”).

In Fig. 6.1, a typical level scheme is displayed for fermions of 2 = 8 with ¢ =
0. If the single particle energy ¢ is non-vanishing, the scheme is distorted via a
linear dependence on L, lifting the right- and depressing the left-hand side. For an
attractive potential and given total particle number N, the state with v = 0 is the
ground state, with the higher seniorities having higher energies:

Exoy — Exao =V (Q Fl+ g) . (6.66)

The Lagrangian of the model is from (6.56)

L) = Y (a' (t)(i0 — €)as(t) + bil (t)(i0; — €)bi(1))

%

3
+% {Zaﬁbﬁbjai} + %9 {Z(%‘Tai + bibiT)} ; (6.67)
,J

(2

implying the generating functional
Zin'n A = [T PaiDa;Db Dy,
X exp [Z / dt {[, + Z mTai + GiTﬁi + )\ZTbl + blTAZ}] . (668)

The fourth-order terms in the exponential can be removed by introducing a complex
field S = S; +iS,, ST=S; —iS, and a real field S, adding

(2

v {}Sm -] w0 -} Sata+ bibﬂ>r} (6.69)
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and integrating Z functionally over DS = DS;DS;DS3. The addition of (6.69)
changes L to:

,C(t) = Z{aﬁ(z’@t —E&F gVSg/)ai + b,,(z@t +e=£ gVS;;/)biT}

+VSYS " a bt + > Vba S — V(ISP F 9S5%) £ (6.70)

By using the more convenient two-spinor notation for fundamental fields and sources
i
fi = <b:T> ; = (aiT, bi)

o= )i

the generating functional can be rewritten as

AN z/IZIDfiTDfiDSeXp [Z/ { +Z T+t H (6.72)

(n:", A (6.71)

with

Q . / +
b Zat —E&F gVSg Vs ‘
—V(|S)? F gS5"*) £Q . (6.73)

Now the fundamental fields f;f, f; can be integrated out in (6.72) yielding the col-
lective action [32]

A[S] = £iTrlog(iGs™') — V(S1? + S F g — S5'?) £Q (6.74)

where (g is the matrix collecting the Green functions of the particles in the external
field S = (Sl, SQ, S3) (S S 53)

Y (Db (F
Gs(t,t')i; = ( ai(t)as(F) - au(t)b; (F) ) : (6.75)
tyah () B0yt
The associated equation of motion of Gg(t,t') reads
i@t—éiFgVS;»,’ VST N o? oy
( VS i0, + ¢+ gV Sy Gs(t,t') =1 . it —t). (6.76)

It may be solved by an ansatz
Gs(t,t') = Ut (t)Go(t, ! U(t), (6.77)

where Gy is a solution of (6.76) for S =0, S3'=0,e =0.
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Before we proceed it is useful to absorb € and ¢ into S3’, by defining the more
symmetric variable

, 9
F = F95 — - (6.78)

Then Eq. (6.76) reads

—i ; 3
<¢at LV { 52 } o 4V { 51 } o T vs303> UNOGU() =i © Vst — ).
Si —59 1
(6.79)
This can be solved be parametrizing the matrix U(t) in terms of Euler angles as

73

. __B ﬁ . o
U(t) = emTe{ s 3 (6.80)

Then they satisfy the identity

3

Ut(t) {”1 }U(t) - {“13} (6.81)

Thus they form a subgroup of the rotation group SU(2) in the fermion case, or of
the Lorentz group SU(1,1) in the Bose case. The differential equation (6.79) can
be rewritten as

Ut Ute) "t = —v ({ —bi’;% } ol + {2521 } o’ F nga?’) . (6.82)

In the Bose case, the left-hand side can be expressed as an exponential €’ involving
the angular velocities @ = (&1, @9, w3) of SU(1,1) matrices. They depend on the

Lorentz version of the Euler angles as

w = Bsinv—l—o}sinhﬁcosy:m/&,
@y = Bcosy— asinhBsiny =2V 5S,, (6.83)
@3 = dcoshf+4 =2V 58,

In the Fermi-case, where the matrices (6.80) are of the rotation group SU(2), the
time-derivatives UT(#)U(t) can be expressed as exponentials ¢™ involving the or-
dinary angular velocities w = (w;, w9, w3) depending on the standard Euler angles
as

w; = —Qfsiny+ asinfcosy = —2V .9,

wy = Bcosy+ dsinfsiny = —2VS,, (6.84)

w3 = acosf+y=-2VS;.

The upper equations in (6.82) follow from the lower ones by replacing in (6.80)
B — —ifB, and in (6.82) S; — —iS,, S — 1Sy, S3 — —S3. Since this transition
can be done at any later stage it is convenient to avoid the clumsy distinction of
different cases and focus attention upon the Fermi case only. Then Eq.(6.80) is
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unitary and commdes with the well-known representation matrix D (aﬂy) of the
rotation group'. The formal solution of Eq. (6.82) is

, t
U(t) =€ =Texp [—z/ 2V'S - Gdt/} : (6.85)

Given this U(t)-matrix we can now proceed to evaluate the Trlog-term in (6.74).
By differentiation with respect to S we find:

0 ) G i /
55e(0) [—iTrlog(iGg")] =V > Tr (FGE(t )y (6.86)

The right-hand side can be calculated in terms of Euler angles by inserting (6.80). In
addition one has to choose the reference state for Z[n', 5] by specifying the boundary
condition on Gy. Since Gg represents the same matrix of Green functions as (6.75),
except with free oscillators ag, bo! of zero energy, this is easily done.

Let us choose as our reference state |R) one of the quasi-spin symmetric states
of seniority v = €, say (6.64). Then Gg has to have the form

Ot —1t) 0
GOJ(t,t’):<O( ) ot ) )5]. (6.87)
As a consequence Gg(t,)|,_,,. = 0 such that also (6.86) vanishes and

—iTrlog(iGg ') becomes an irrelevant constant.
Hence the generating functional in the quasi-spin symmetric reference state
(6.64) is

Rz(57, 4] /DSexp l/dt VS(t /dtdt@ Zﬁ (t7:(t)] .

(6.88)
As in the case of the trivial model it is now convenient to change variables and inte-
grate directly over the Euler angles «, 3, rather than the vectors S = (S, 52, S3).
Using the derivatives

1 0S;(t)
2V5qj( "

= A(t);0(t —t') + B(t);0(t — t)

0 dqcosfBcosy —Bcosy — dsinfsinvy
= 0 dcosfBsiny —fsinvy + dsinfcosy (6.89)
0 —dasinf 0 i
sin fcos By —siny 0
x0(t—1t')+ | sinfsiny cosy 0 | 4(t—1t), (6.90)
cos 3 0 1

]

'For conventions see: A.R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton
University Press, 1960.
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one calculates the functional determinant as the determinant of the second matrix
B. This can be seen most easily by multiplication with the constant (functional)
matrix [ dt'©(t' — t”) which diagonalizes the §(t — ') and brings the §(t — ')-term
completely to the right of the functional diagonal: 00" = ©. The determinant of
such a matrix equals the determinant of the diagonal part only. Thus, up to an
irrelevant factor, one has

DS = const. X DaDSDysin (6.91)

corresponding to the standard measure of the rotation group. Inserting now (6.84)
into (6.88) we find

1 1
Zlit 5] = /DaDcosBD’yexp lz’/dt{—m [w12 +wo + 5(0)3 — 25)21 — 59}

X eXp [z / atdr et — ) 3 jil (U (U (#) ji(t’)] . (6.92)

The collective Lagrangian becomes

2

1
(% + e cos 5)—;—9—5@ (6.93)

2 a2 L. .
L= _W{(62 + &% sin’ ) + §(7+ acosﬁ)2}+

£
Vg

This has the standard form
1

£ = 5d 950 + ala)i’ = v(g). (6.94)
with the metric
. sin? B + é cos’f 0 % cos 3
gij(Q) =—55 10 10 ) (6.95)
2V | 1 1
2 cosf3 0 =
g g
1 0 —Llcosp
% — —1 i g J g
97 (@)= (9 ()" = — a3 | " 10 (6.96)
—2cosf3 0 sin? 3 + 5 cos’ B
of determinant -

in the space labelled again by ¢' = («, 3, 7).
In this curved space, the Hamiltonian is given by [33]

1 .
H:H1 +H2+H3+U(q)+§alai(q), (698)
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with the three terms

1 0 0
H - — = _1/2—. 1/2 z]_' 699
oy = Ly (D gizgia ) (6.100)
2 aq ! ’
H; = iai(q)gijgiji.. (6.101)
oq

Here we find H; as the standard asymmetric-top Hamiltonian,

H =V aa—;z + cot 5% + (g + cot ﬁ)aa; + sileBail - ;(:‘2% aﬁ;’y] . (6.102)
Since .
a; = V—g(cos £,0,1), (6.103)
the second part, Hs, vanishes and the third part becomes
H3 = —2¢i0,. (6.104)

The resulting Hamiltonian is exactly the Schrodinger version of the quasi-spin form
(6.60) with

L* = & |£0s + cot Bid, — iﬁ@v :
Ly = —i0,. (6.105)
The eigenfunctions of H coincide with the rotation matrices
D yla, 8,7) = € (8). (6.106)
The energy eigenvalues of H; are well-known
Ej,,==V[i(j+1) —m*(1-g), (6.107)
such that the full energies are
Ejm =2em —V[j(j+1)— (1 — g)m?] + e (6.108)
This coincides with the fermion part of the spectrum (6.65) if m, j are set equal to

Q—v

(6.109)

For g = 1,e = 0 the spectrum is degenerate as the Lagrangian (6.93) is rotation-
ally invariant. It may be worth mentioning that in this case the Lagrangian can also
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be written as a standard o-model in ‘ghe time dimension. In order to see this, we
use the identity iUT(t)U(t) = —iUT(t)U(t) = w;(t)o;/2 to bring (6.85) to the form

e ) = - L awrtuute
L= 4‘/(0«)Z + wo® +ws®) = 2vtr(U uu'o). (6.110)

If we now define field o(t) and 7(t) by decomposing
U(t) =o(t) +in(t) - o, (6.111)

where o%(t) + m%(t) = 1 due to unitary of U(t), the Lagrangian takes the familiar

expression

L= —%(62 + 7). (6.112)

It is instructive to exhibit the original quasi-spin operators and their algebra
within the collective Lagrangian. For this we add to the Hamiltonian (6.56) a
coupling to external currents:

AH = —2V/Li(t)li(t)dt, (6.113)
where L; are the operators (6.57). In the Lagrangian (6.70), this amounts to
AL(t) =2V L;(t)l;(t)dt, (6.114)

which modifies (6.73) by adding the matrix

.i.
Vi) ( ;3 ;3 >f(t). (6.115)
This has the effect of replacing
S, — S =S+, (6.116)

in the Trlog term in (6.74). .
Performing a shift in the integration DS — DS = D(S + 1) we can also write

A[S, l] = +ZTI‘10g(ZG§1) -V [(Sl - l1)2 + (SQ - l2)2 — é (Sg + % - lg)Q] .
(6.117)

The Green function involving angular momentum operators can now be generated
by differentiating

Z[l) = / DS exp{iA[S, 1]}
with respect to dl;: '
L — o (6.118)
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In the reference state |R) in which the Trlog-term vanishes, the derivatives
(—i/QV)é/él;, —(i/2V')§ /015 generate the fields Sy o — 112, (S5 +¢/V —l3) /g via the
source terms (6.114) in the functional integral.

In the fermion case, this implies for [ = 0, using Eq. (6.80),

1 ) 1 L .. i

L* = ——QV(wlzl:sz):—W(:I:zﬁ—l—ozsmﬂ)ei”, (6.119)
1 1 . .

Ls = —gygles =20 = —gp (deosft7 = 2e), (0120

which are exactly the angular momenta of the Lagrangian (6.93) with moments of

inertia 1 1
Iy — — Jo— —— 6.121
Moy T vy (6.121)

Inserting the canonical momenta of (6.93)

1 1
P, = ~37 asin? B + 5(7+dcosﬁ — 2¢) cos 3
1
= _Wé‘ sin® 8 + cos Bp, = —i0,, (6.122)
1. '
Py = ——B=—isin"V2B0ssin"/2B = —ids — —cot B,  (6.123)
2V 2
1
P, = —Q—VQ("V + decos f — 2¢) = —id,,

we recover the differential operators (6.105).
The quasi-spin algebra can now be verified by applying the derivatives:

1§
Sy 4
2V IR SI

1 ) ) ) ) )
(6.124)
What would have happened in this model if we had not chosen the symmetric
reference state |R) to specify the boundary condition on G? Consider for example

the vacuum state |0). Then the Green function becomes, for S = 0,

t=0

i ot —1t) 0 ”
] A i
Go(t,t)—< 0 e -0 )5 (6.125)
rather than (6.87). In this case there is a contribution of —iTrlog(iGs™ ") since from
(6.86) and (6.77):

_ 3
52 [—itrlog(iGs )] = —VQtr <0iUT(Z) ! ; ? U(t'))

(6.126)

t'=t

Now (6.80) implies

UT(t)o®U(t) = cos fog + sin f(cos yo, + sin yoy)
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yielding for the right-hand side of (6.126) the expression
ny sin (3 cos 7y
—VQ<S ny p=-VQLS sinfsiny ;. (6.127)
n3 cos 8

Observe that due to the differential equations (6.84), the unit vector n; can be found
to satisfy the equation of motion

n=2VnxS8. (6.128)

We can now proceed and find —iTrlogiGg™' by functionally integrating (6.126). We
shall do so in terms of the Euler variables af~y. Using (6.126), (6.127), (6.90), and
the chain rule of differentiation

) t
—iTrlogGs™'] = dt iTrlogiGg ™"
(5(]j(t/)[ g2ls ] Z/ 5% )[ g S ]
05i(t)
= —VQ dtn;(t , 6.129
ZZ:/ ( )5qj(t') (6:129)
we find
0
—iTrlociGe™ Y = = — (B — ¢
ol THosiCs ] Z/dt ni(£) A (05t — ) + ni(t) By (1)5(t — 1))
Q
= 10,0, ~Fsin A(# +/dt (1,0, cos B(1));8(t — t')].
(6.130)
The second part in brackets yields upon a partial integration
(1,0, cos B(t))d(t — t")[I=> + (0,0, Bsin B(t)). (6.131)
With the boundary condition cos f(£o00) = 1, one has therefore
L[—z’Tﬂo iGs '] = 9(1 0,1)[0(0c0 —t) — §(—00 — 1)] (6.132)
5(0(’/87 ")/)(t) g S 2 ) ) M .

This pure boundary contribution can immediately be functionally integrated with
the result

i TrlogiCls! = % /: [G(t) + 5 (t)]dt. (6.133)

Hence the exponent of the generating functional Z[j', j] on the reference state |0)
becomes

| ! 1 Q.
Z/dt {_W lwf —|—w22 —+ 5(&)3 — 28)2‘| + E[Oé + ’7] — 69} (6134)

_/dtdt Z]Z { 120 U)ot — U (t)

1—o3

U)o - t)} (),
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rather than (6.92). As in the case of the Pet model in the last section, the Hamil-
tonian changes rather trivially. The canonical momenta P, P, become

B 1. .5 cosfB,. . Q
P, = —5y |@sin B+ (4 + cecos B — 2¢) +5
1. ., Q .
= ——asin® S+ cos fp, — —(cos B — 1) = —i0,, (6.135)
2V 2
P L 4 dcosf—25) - 2 = 0
= —— acosff —2¢) + — = —id,.
g g 2 I

The additional term can be removed by multiplying all eigenfunctions belonging to
(6.136) by a phase exp[—i§2/2(a+7)] thereby reducing them to the previous case. In
the present context it is really superfluous to discuss such trivial surface terms. We
are doing this only because these terms become important at that moment where
the transition to the true BCS model is made by going to the weak-coupling limit
g — 0. This will be discussed in the next section.

6.1.2 The Hilbert Space of the Generalized BCS Model

Let us now study in which fashion the Hilbert space of all rotational wave functions
imbeds the fermion theory. For this consider the generation of Green functions by
functional derivation of £Z[;1, j], with the reference state |R) being the quasi-spin
symmetric one (6.62), for simplicity.

The resulting one-particle Green function will have to coincide with

Ta;(t)al(t') Ta;(t)b;(t)
TH()al(t) TH(1)by(¥)

J

Gl (t1) = (Ofbg ...~ by < ) bif-...-ball0). (6.136)

If we differentiate (6.92) accordingly, we find
G () = / DaD cos BDVE (U (BT ) Ot — 1) expli / dtL(t).  (6.137)
This can be calculated most easily by going to the Schrodinger picture

Gl (1) = SARIDL (B (D) D0y ()| RYSIO( —¢).  (6.138)

Since the reference state is symmetric, it must be associated with the wave function

{aBy(t)|R} = Diy(aBy(t)) = 1/V8r?
ER = Eo;() = . (6139)
Inserting the time translation operator?

D(af(t)) = ¢ D(af(0)e™, (6.140)

2The Schrodinger angles «, 3,7 coincide with the time dependent angles a(t), 3(t),y(t) at t = 0.
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with H in the differential form (6.98) one finds a phase
eIAEt), (6.141)

where AF is the energy difference between the state [jm) = |11) and the reference
state |R) =10, 0):

L g
The orthogonality relation is
> [ dadcos By {RlaBy} DL (aB9)Difn (0B1){aBy|RY = . (6.143)

This coincides exactly with the result one would obtain from (6.136) by using the
original operator (6.56) and observing the energy spectrum (6.65).

Note that the orthogonality relation together with the Grassmann algebra ensure
the validity of the anticommutation rules among the operators. For higher Green
functions the functional derivatives amount again to the contractions as in (6.35),
except that here the contractions are associated with

Fmit) () = Dy (U )U(t’)@(t )8
= ZD1/2 t D;/2I(U(t)>@(t_t/)5ij’ (6.144)

m

where fi/9;, f-1/2; stands for (a;, bi").

We can now proceed and construct the full Hilbert space by piling up operators
al or b; on the reference state |R) = byf - ... - bo'|0). First we shall go to the true
vacuum state |0) of af, b" which means that we calculate °Z[;7, j] in this state. For
this we obviously have to bring down successively into the main integral line of the
functional (6.92) the operators b;T(c0) - ... - bo(—00)ba(—00) - ... by (—00). We do
this by forming the functional derivatives:

629
7°[0,0] ox — = AN (6.145)
0j-1/2,1(00) - ... 5171/2,1(_00) j=0

Of the resulting n! contractions, only one combination survives, since all indices 7, j
are different and the Kronecker-6“ permits only one set of contractions. The result
is

0710,0] = N/DsaDcosBDvexp

i [ dte )] (D2, U (o) (~00)) (6.146)
But from the coupling rules of angular momenta and the group property one has:
Q
DYy 1 (U (00)U (=00} = D2, (Ut (00)U(~00))
Q *
= ZDk/?)ﬂ ))Dka/Q(U(—OO))' (6.147)
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Going to the Schrédinger picture and inserting the time translation operator (6.140)
one finds an infinite phase exp[i(Er — Fy)200] which can be absorbed in the normal-
ization factor N. Here Ey = Eq/2_q/2 is the energy of the ground state |0) which
has [jm) = [©2/2 — Q/2). The eigenfunctions D(«, ,v) now appear both at ¢ = 0.
The functional (6.146) in the Schrédinger picture becomes,

Q/2

0Z0,0]= 3 / dadBdry siny{0k|a By} {af|0k), (6.148)
k=—0Q/2

with the vacuum wave functions
{aB]0,k} = D%, 5 (aBy) = et (3). (6.149)

It is easy to verify, how an additional unpaired particle af, added to the vacuum,
decreases 2/2 — (2 — 1)/2 and raises the third component of quasi-spin by 3 unit.
Differentiating (6.90) by —52/5j%1(oo)5j11(—oo) in addition to (6.145) leads to a
different set of contractions. Picturing them within the original fermion language,
these are

(R|T (b, (4+00) - ... - bo (+00)a1(+00)a; ' (—00)bg(—00) - ... - bi(—00))|R)

— (R|T(b1"(00) - ... .- b (00) ar(00)al (=0) - . .. -ba(—00) - . .- by (—00)) | R)

Q—-1)/2
- D(f(Qf)l/)/Z “a-1),2(U(00)U(=00)) D

Employing the explicit formulas

0
D%2/2—Q/2(0457) = e/ (COS g) ;

D3, (aBy) = /2 cos g (6.151)

57

N

1
2
1
2
1
2

D2, (ap)D] () = —sin’ L,

NI o=

11
22
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the r.h.s. of (6.150) becomes

Q Q-1
e~Uet)/2 <cos g) e @/2 cog g + e~ (@ Nlet)/2 (cos g) sin’ g

0-1
Y B Q
=e (Q@=1)(at7)/2 (COS 5 = D( (Ql)l/)2/2 —(2-1 /2(046'7)7 (6'152)
and therefore, by analogy with (6.146) and (6.148),

all0)Z[5%, 5] = N/DaDcosBD7 “@ )1/)2/2 (@_1y/2(@B7) exp [—/dtﬁ]

§=0
(Q-1)/2

= Z /dt dad cos Bdy{ark|oaSyY{afy|alk}, (6.153)

with the Schrodinger wave functions

{aBlai'k} = DEE Q") (aB7). (6.154)

In a similar fashion we may work our way through the whole Hilbert space!
The method has been applied to field theories of nuclear excitations where they
form the basis of a theory of supersymmetry in nuclei.?

6.2 Thirring Model in 141 Dimensions

Let us also study an example of a quantum field theory in two spacetime dimensions,
the Thirring model [3, 4]. It is a model of a self-interacting spin-4 field with an action

A= [ @ {d@)itr o) - i@ o) . (6.155)

In this model, the technique presented here leads to an exact translation from the
Fermi fields ¢ to collective Bose fields ¢(z), A(z). Consider the partition function
of the model

Z - / DYDPeAn, (6.156)

and let us perform a Hubbard-Stratonovich transformation a la Eq. (1.79), by adding
to the action the complete square

AA = g / & [Py (x) — A (6.157)

3See the web pages http://klnrt.de/55/1978 and http://klnrt.de/55/1978/1978-4.gif
where the theory is illustrated.
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This removes the four-fermion interaction term and makes the action quadratic in
the fermion fields. They can be integrated out to obtain the collective action as a
functional of the vector field A,:

Acn[A,) = =iTrlog (it — g.4) + 2 / d'z A2 (z). (6.158)

Now one can make use of the fact that in two dimensions, a vector field A* has only
two components and can be expressed in terms of two scalar fields as

At (x) = — (0"p(x) — O, N\ (), (6.159)
\/5
so that 1 1
g
SALD) = 5 0@ = S M @) (6.160)
The trace log term can be expanded as in (2.15), with only the n = 1 -term con-
tributing. This is equal to
2 AV 2
g9 o oro
o l(g 7 )A,,(ac)] . (6.161)

Hence the collective action is simply

Aconp, A /d4 [ x))? — % (1 + %) (aA)2] : (6.162)

Since this transformation from the i) to the ¢— and A-field description is exact, one
can also calculate the Green functions of the original fermion fields . For this, an
external source term

/d4 )+ e (6.163)

is added in the exponent of the generating functional. After a quadratic completion
the source term leads to an additiaonal quadratic term in the collective action (6.162)
(setting h = 1 from here on, for brevity)

Ao = [ aayie) (=) et (6164

i
i) —g4
Using the decomposition (6.159), the Green function in this expression can also be
calculated exactly as follows:

i i
Ty S I [ERay

— o iEe@ @)

@(-T,y

(z,9)

)ei\/s?(so(y)ﬂs)\(y)

L ivae@s @) L Y @) eaw)
e _ e . (6.165)
Ami (x — y)? + ie
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All Green functions of the theory can now be calculated by applying the functional

derivatives %% and 577(296)% to the generating functional
Z[ig, n) = /At Aem /), (6.166)
In particular, the original one-particle Green function is obtained from the derivative
5 ¢
57(2) 51(5) and reads
1 4 . .
Gz, y) = — 0l: e~ Va(P(@)+5A(@)) . . iv/g(P(0)+75A(0)). |0 6.167
(0.9) = g Ok ‘ 0. (6167

We now apply the standard rule for calculating the exponential of free fields

% % (0] e=i99(0) , iaelw), ) 0 (pl)e) (6.168)
™ X €

that follows directly from Wick’s theorem [see (1.253)], together with the use of the
expectation values of the two-dimensional massless scalar fields [2]

Olp@)p(0)10) =~ log(us?), (6.169
ON@AOI0) = o log(ia?). (6.170)

In this way we find for the vacuum expectation value in the Green function (6.167)

2

2\ (ot 877 ) 1 2\ ~Timr
<x—> - (x—> . (6.171)

112
Hence we find the exact Green function of the Thirring model

2

Glo,0) = L7 <x—2>—/_ (6.172)

T dmia? + de 112

The result is very interesting. It is scale-invariant and for this reason it contains an
arbitrary mass parameter u that can be chosen freely. The physical reason for this
freedom is the absence of a mass term in the Thirring action (6.157). Such a mass
term would destroy the exact solvability of the theory. It would make it calculable
only approximately in perturbation theory, order by order in the coupling strength
g. In this case the above exact solution would be the result of a strong-coupling
limit [1]. This limit is of special interest in all quantum field theories. Take for
instance the Heisenberg model of ferromagnetism. In the classical limit it is a theory
of an N-component scalar field with O(V) rotational symmetry. That model can
be studied experimentally in the strong-coupling limit by going to a second-order
phase transition. Then the model possesses scale-invariant correlation functions
which have a pure power form and contain an arbitrary mass scale. The powers
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reflect a dynamically generated anomalous dimension of the field. This vanishes, of
course, in the free-field limit.

Note that a mass term in the original action m could be obtained from the
generating functional (6.166) by a derivative

I
() op(’)

Due to Eq. (6.165), this is equivalent to the replacement
mipt = m (Vs + Y3vn) = m (€3G e + e | (6.174)

where 1y are free fields. In the two-dimensional model world all matrix elements of
products of many Fermi fields ¢§;%02, ¥j,%01 can also be calculated with the help
of exponentials of the massless Bose fields ¢(z) and A(z), for instance

(6.173)

r=x'

W thos ~= €V, (6.175)
Moreover, the matrix elements of

¢! @VaNtHViTy) (6.176)

are, again due to (6.168), (6.169), (6.170), the same as those of

—i 4
e VTRr?, (6.177)

Thanks to this, the mass term of the Thirring model can be expressed with the help
of the scalar field ¢(x) as

b ()0 (z) ~ 2m cos (, /#ﬂ@) | (6.178)

In this way we arrive at the well-known sine-Gordon bosonic description of the
massive Thirring model [4].

In a similar way, the Schwinger model can be treated exactly. It is a two-
dimensional version of QED with the action

A= [ e {3y 0, - eAn) o) - %F,WFW} | (6.179)

where F,, = 0,A, — 0, A, is the tensor collecting the electric and magnetic field
strengths. The partition function

Z - / DYDPeiA/n (6.180)

can be calculated by integrating out the Fermi fields, which leads to the new collec-
tive action

1
Ap = —iTrlog (ih) — g4) — § [ EaF P (6.181)
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The subscript emphasizes the similarity of the new vector potential to the collective
plasmon field in Chapter 2. The trace log term can be evaluated exactly as before
and the action becomes

1 2
Ay = / Az (—ZFWFW + %AMF‘) , (6.182)

with
2

mpl = —
It describes a single free plasmon Bose field of mass my, (see also Section 14.12 in
the textbook [5]).

6.3 Supersymmetry in Nuclear Physics

We may consider the algebra formed by the creation operators aI, bg and their anni-
hilation operators a;, b; as well as the quasi-operators (6.70). Then the eigenstates
contain even and odd nuclei. They form a broken supersymmetry. The level scheme
looks like a generalization of Fig. 6.1 which includes half-integer nuclei. For more
details see Refs. [6, 7]. This model has been the answer to a question posed to Ser-
gio Ferrara after his lecture on supersymmetry in elementary-particle physics by the
student Yuan K. Ha at the Erice summer school.*
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