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Preface

Strongly interacting many-body systems behave often like a system of weakly inter-
acting collective excitations. When this happens, it is theoretically advantageous
to replace the original action involving the fundamental elds (electrons, nucleons,
3He, 4He atoms, quarks etc.) by another action in which only certain collective ex-
citations appear as independent quantum elds. Mathematically, such replacements
can be performed in many dierent ways without changing the physical content of
the initial theory. Experimental understanding of the important processes involved
can help theorists to identify the dominant collective excitations. If they possess
only weak residual interactions, these can be treated perturbatively. The associated
collective eld theory greatly simplies the approximate description of the physical
system.

It is the purpose of this book to discuss some basic techniques for deriving such
collective eld theories. They are based on Feynman’s functional integral formula-
tion of quantum eld theory. In this formulation, the transformation to collective
elds amounts to mere changes of integration variables in functional integrals.

Systems of charged particles may show excitations of a type whose quanta are
called plasmons. For their description, a real eld depending on one space and one
time variable is most convenient. If the particles form bound states, a complex eld
depending on two spacetime coordinates renders the most economic description.
Such elds are bilocal , and are referred to as pair elds. If the attractive potential
is of short range, the bilocal eld simplies to a local eld. This has led to the eld
theory of superconductivity by Ginzburg and Landau. A bilocal theory of this type
has been used in elementary-particle physics to explain the observable properties of
strongly interacting mesons.

The change of integration variables in path integrals will be shown to correspond
to an exact resummation of the perturbation series, thereby accounting for phenom-
ena which cannot be described perturbatively in terms of fundamental particles.
The path formulation has the great advantage of translating all quantum eects
among the fundamental particles completely into the eld language of collective ex-
citations. All uctuation corrections may be computed using only propagators and
interaction vertices of the collective elds.

The method becomes unreliable if several collective eects compete with each
other. An example is a gas of electrons and protons at low density where the attrac-
tive forces can produce hydrogen atoms. They are absent in a description involving
a plasmon eld. A mixture of plasmon and pair eects is needed to describe these.
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Another example is superuid 3He, where pairing forces are necessary to produce
the superuid phase transition. Here plasma-like magnetic excitations called para-

magnons provide strong corrections. In particular, they are necessary to obtain
the pairing in the rst place. If we want to tackle such mixed phenomena, another
technique must be used called variational perturbation theory .

In Chapter 1, I explain the mathematical method of changing from one eld
description to another by going over to collective elds representing the dominant
collective excitations. In Chapters 2 and 3, I illustrate this method by discussing
simple systems such as an electron gas or a superconductor. At the end of Chapter
3, I had good help from my collaborator S.-S. Xue, with whom I wrote the basic
strong-coupling paper (arxiv:cond-mat/1708.04023), that is cited as Ref. [89] on
page 143. In Chapter 4, I apply the technique to superuid 3He. In Chapter 5, I
use the eld theoretic methods to study physically observable phenomena in liquid
crystals. In Chapter 6, nally, I illustrate the working of the theory by treating
some simple solvable models.

I want to thank my wife Dr. Annemarie Kleinert for her great patience with
me while writing this book. Although her eld of interest is French Literature and
History (her homepage https://a.klnrt.de), and thus completely dierent from mine,
her careful reading detected many errors. Without her permanent reminding me of
the still missing explanations of certain questions I could never have completed this
work. My son Michael, who just received his PhD in experimental physics, deserves
the credit of asking many relevant questions and making me improve my sometimes
too formal manuscript.

Berlin, December, 2017
H. Kleinert
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Reality is nothing more

than a collective hunch.

Jane Wagner (1935-)

1

Functional Integral Techniques

An important goal of many-body physics is the study of collective phenomena in
systems of many bosons or fermions. The interactions are typically caused by two-
body forces. In their eld-theoretic description, such forces emerge in a perturbation
theory from the exchange of virtual particles, such as photons or phonons. More
complicated forces can also be generated by the exchange of virtual particles carried
by higher tensor elds. So far, all forces in nature between particles can be reduced
to such exchange processes. Depending on the detailed properties of forces and
thermodynamic parameters such as density, pressure, and temperature, bosons or
fermions may exhibit dierent collective behaviors. In an electron gas, for example,
one may observe density uctuations or pair condensation. The rst type is found
if the exchanged particles couple strongly to other particles or holes. Examples
are plasma oscillations in a degenerate electron gas. The second type of behavior
is found if the forces favor the formation of bound states between pairs of parti-
cles. This is usually observed below a certain critical temperature Tc. Examples are
excitons in a semiconductor or Cooper pairs in a superconductor.

For systems showing plasma type of excitations, real elds depending on space
and time are most convenient to describe the physical phenomena. To describe
pair condensation, complex elds render the most economic description of such
phenomena. They contain the two spatial arguments of the constituents and their
common time coordinates. Such elds will be called bilocal . In relativistic systems,
also the time coordinates of the constituents may be dierent. If the potential
has a suciently short range, the bilocal eld degenerates into a local eld. The
most important example for the latter case is the collective pair-eld theory of
superconducting electrons which is known as the Ginzburg-Landau theory.

A bilocal eld theory is useful in elementary particle physics where it allows to
study the transition from inobservable quark elds to observable meson elds (see
[1] or Chapter 26 in the textbook [2]). The new basic eld quanta of the converted
theory are no longer the fundamental particles but the set of all quark-antiquark
meson bound states which are obtained by solving a Bethe-Salpeter bound-state
equation in the so-called ladder approximation. They are called bare mesons . Such a
formulation can also be given to quantum electrodynamics of electrons and positrons,
where the bare mesons are positronium atoms [1].

1



2 1 Functional Integral Techniques

1.1 Nonrelativistic Fields

Let us begin with the description of functional methods that can be used for the
study of many-body physics of relativistic particles. We shall follow the historic
development.

1.1.1 Quantization of Free Fields

Consider free nonrelativistic particles, whose energy ε depends on the momentum
p by some function ε(p). In free space, this has the form ε(p) = p2/2m. For
a particle moving in a periodic solid, the momentum dependence is usually more
complicated. However, for many purposes it can be approximated by the same
quadratic behavior, provided that we exchange the mass m by an eective mass
parameter m∗ = m called the eective mass. The action of a free nonrelativistic
eld describing an ensemble of these particles reads

A0 =


d3xdtψ∗(x, t) [ih̄∂t − ǫ(−ih̄∇)]ψ(x, t). (1.1)

By extremizing this, we nd the equation of motion

δA0

δψ∗(x, t)
= [ih̄∂t − ǫ(−ih̄∇)]ψ(x, t) = 0, (1.2)

which coincides with the Schrödinger equation for a single free particle.
In the Lagrange formalism of classical mechanics, each dynamical variable pos-

sesses a canonically conjugate variable called momentum variable. For the action
(1.14), this is the eld momentum

π(x, t) ≡ h̄
δA

δ∂tψ(x, t)
= ψ†(x, t). (1.3)

According to the rules of quantum mechanics, the elds and their conjugate mo-
menta are turned into operators ψ̂(x, t) and π̂(x, t), which satisfy the equal-time
commutation rules:

[ψ̂(x, t), ψ̂(x′)] = 0, (1.4)

[π̂(x, t), π̂(x′)] = 0, (1.5)

[π̂(x, t), ψ̂(x′)] = −ih̄δ(3)(x− x′). (1.6)

Inserting (1.3), these become commutation rules of independent creation and annihi-
lation operators â†

x
(t) ≡ ψ̂†(x, t) and âx(t) ≡ ψ̂(x, t) of harmonic oscillators situated

at each space point x:

[âx(t), âx′(t)] = [ψ̂(x, t), ψ̂(x′, t)] = 0, (1.7)

[â†
x
(t), â†

x′(t)] = [ψ̂†(x, t), ψ̂†(x′, t)] = 0, (1.8)

[âx(t), â
†
x′(t)] = [ψ̂(x, t), ψ̂†(x′, t)] = δ(3)(x− x′). (1.9)
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For each oscillator, there exists a ground state |0x dened by the condition
ψ̂(x, t)|0 = 0. The excited states are obtained by multiplying |0x with nx cre-
ation operators ψ̂†(x, t). They are denoted by (a†)nx

x
|0x= [ψ̂†(x, t)]nx |0x, where

nx are integer quantum numbers nx = 0, 1, 2, 3, . . . . These are interpreted as the
numbers of particles at point x.

Thus, by quantizing the eld and converting it to a eld operator , the single-
particle Schrödinger theory changes into a theory of arbitrarily many identical oscil-
lators at all space point x. The ground state of the system is the direct product of
the ground states of all these oscillators: |0 ≡ 

x |0x. The resulting many-particle
Hilbert space is called the Fock space, and the procedure of eld quantization is
called second quantization. The usual quantization is ensured by the correspon-
dence rule p → −ih̄∇ in the single-particle Schrödinger equation (1.14) and the
action (1.1).

The free quantum eld ψ̂(x, t) can be expanded into a Fourier series

ψ̂(x, t) =


p

eipx−iǫ(p)t

√
V

ap, (1.10)

where V is the volume of the system and p are the discrete momenta in it. The
operators ap and their hermitian conjugates a†

p
are annihilation and creation oper-

ators of single particles in momentum space. From (1.7)–(1.9), we nd that these
satisfy the oscillator commutation rules

[âp(t), âp′(t)] = 0, (1.11)

[â†
p
(t), â†

p′(t)] = 0, (1.12)

[âp(t), â
†
p′(t)] = δ(3)(x− x′). (1.13)

An important quantity of free elds is the free Green function G0(x, t;x
′, t′),

which satises the inhomogeneous version of the eld equation (1.14):

[ih̄∂t − ǫ(−ih̄∇)]G0(x, t;x
′, t′) = iδ(3)(x− x′, t− t′). (1.14)

This can be solved by the spectral representation, that has, for translationally in-
variant systems at hand, a Fourier decomposition:

G0(x, t;x
′, t′) =



dE

2π



d3p

(2π)4
e−i[E(t−t′)−p(x−x

′)] i

E − ǫ(p) + iη
. (1.15)

The solution of Eq. (1.14) is not unique, since there are various ways to carry the
contour of the energy integration past the pole at E = ǫ(p). Dierent ways produce
Green functions with dierent boundary properties. The dierences are solutions
of the homogeneous eld equation. In integral (1.15) we have chosen a contour of
integration which passes above the pole, where the denominator in (1.15) diverges.
This is indicated by adding a term −iη to the energy ǫ(p), where η is a positive
innitesimal number, a procedure called the iη-prescription. With that choice, the
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Green function (1.15) coincides with the vacuum expectation value of the time-
ordered product of eld operators (1.10):

G0(x, t;x
′, t′) = 0|T̂ ψ̂(x, t)ψ̂†(x′, t′)|0. (1.16)

The time-ordering operator T̂ is dened to change the position of the operators
behind it in such a way that elds with later time arguments stand to the left
of those with earlier time arguments. The expectation value on the right-hand
side is also called the free propagator of the quantum eld ψ̂(x, t). By inserting the
expansion (1.10) into (1.16) it is easy to verify that the evaluation of the expectation
value (1.16) gives exactly the expression (1.15).

1.1.2 Fluctuating Free Fields

There exists an equivalent approach to second quantization where the thermody-
namic partition of the above system is expressed as a functional integral over all
possible uctuating elds [4, 5]. For free elds, we dene a partition function

Z0 = N


Dψ∗(x, t)Dψ(x, t) exp {iA0[ψ
∗,ψ]} , (1.17)

where N is some constant which will play no role in all subsequent discussions. From
here on we shall work with natural units in which h̄ = 1.

The functional formulation was found by Richard Feynman. He observed that
the amplitudes of diraction phenomena of light are obtained by summing over
the individual amplitudes for all paths which the light could possibly have taken.
Each path is associated with a pure phase depending only on the action of the light
particle along the path. For elds, this principle leads to Formula (1.17) for the
partition function.

The functional integral may conveniently be dened by grating the spacetime
into a ner and ner cubic lattice of spacing δ with corners at (xi1 , yi2, zi3 , ti4) =
(i1, i2, i3, i4) δ. The elds are characterized by their values at the nearest lattice
point:

ψi1i2i3i4 ≡ ψ (xi1 , yi2, zi3 , ti4)
√
δ
4
. (1.18)

The measure in the functional integral in (1.17) is then dened by the product of
all integrals over the cubus around each lattice point:



Dψ∗(x, t)Dψ(x, t) ≡


i1i2i3i4
i′
1
i′
2
i′
3
i′
4

  dψ†
i1i2i3i4dψi′1i

′

2i
′

3i
′

4√
2πi

√
2πi

. (1.19)

The double integral over complex variables
 

dψ∗dψ symbolizes the real integrals

 ∞

−∞

 ∞

−∞
d



ψ + ψ∗

√
2



d



ψ − ψ∗

√
2i



. (1.20)
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This naive denition of path integration is straightforward for Bose elds. If
we want to use the functional technique to describe also the statistical properties
of fermions, some modications are necessary. Then the elds must be taken to be
anticommuting c-numbers. In mathematics, such objects form a Grassmann algebra.
If ξ, ξ′ are any two real elements in this algebra, they satisfy the anticommutation
relation

{ξ, ξ′} ≡ ξξ′ + ξ′ξ = 0. (1.21)

A trivial consequence of this condition is that the square of each Grassmann element
vanishes, i.e., ξ2 = 0. If ξ = ξ1 + iξ2 is a complex Grassmann variable, then
ξ2 = −ξ∗ξ = −2iξ1ξ2 is nonzero, but (ξ∗ξ)2 = (ξξ)2 = 0.

All results to be derived later will make use of only one simple class of inte-
grals over Grassmann variables. For boson elds, they are generalizations of the
elementary Gaussian (or Fresnel) formula for A > 0 [6]:

 ∞

−∞

dξ√
2πi

exp


i

2
ξAξ



= A−1/2. (1.22)

The rst generalization concerns the dimension. For a D-dimensional real space of
vectors ≡ (ξ1, ξ2, . . . , ξD), and a diagonal matrix A with diagonal elements Ak, the
integral (1.22) becomes

 ∞

−∞

dDξ
√
2πi

D ei
TA /2≡



k



 ∞

−∞

dξk√
2πi



exp



i

2



k

ξkAkξk



=





k

Ak

−1/2

. (1.23)

Next we generalize the exponent to the matrix form (i/2)


k,l ξkAklξl, where Akt is
an arbitrary symmetric positive matrix. An orthogonal transformation of the ξk’s
can be used to bring Akl to a diagonal form. The orthogonality ensures that the
measure of integration remains invariant. Thus an equation like (1.23) is still valid
with the right-hand side becoming the product of eigenvalues of the matrix Akl.
This can be written as a determinant, so that we obtain the formula

 ∞

−∞

dDξ
√
2πi

D ei
TA /2≡



m



 ∞

−∞

dξm√
2πi



exp





i

2



k,l

ξkAklξl



=[detA]−1/2. (1.24)

Even more generally, we allow ξ to be a complex variable, and A to be a hermitian
and positive matrix. Then the result (1.24) follows separately for the real and for
the imaginary part, yielding

 ∞

−∞

dDξ†dDξ

2πiD
ei

†A /2≡


m





dξ∗mdξm√
2πi

√
2πi



exp



i


k,l

ξ∗kAklξl



 = [detA]−1 . (1.25)

For the study of fermion systems, the integrals are performed over anticommuting
real or complex variables ξ or ξ∗ξ. In this case, the right-hand sides of Eqs. (1.24)

and (1.25) are replaced by their inverses [detA]1/2, [detA]1.
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Let us prove this for complex variables. After bringing the matrix Akl to a
diagonal form via a unitary transformation, the integral reads





m



dξ∗mdξm√
2πi

√
2πi



exp



i


n

ξ∗nAnξn



=


m



dξ∗mdξm√
2πi

√
2πi

exp (iξ∗mAmξm) . (1.26)

Expanding the exponentials into a power series leaves only the rst two terms, since
(ξ∗mξm)

2 = 0. Thus the integral becomes



m



dξ∗mdξm√
2πi

√
2πi

(1 + iξ∗mAmξm). (1.27)

Each of these integrals can be performed trivially by dening two basic integrals
over the Grassmann variables, from which all the others follow using the linearity
of integrals. For real Grassmann variables, these rules are



dξ√
2πi

= 0,


dξ√
2πi

ξ = 1. (1.28)

The integrals over higher powers vanish trivially due to the anticommutation prop-
erty (1.21):

 dξ√
2πi

ξn = 0, n > 1. (1.29)

The two rules (1.28) and (1.29) determine the integrals over any function F (ξ) of
a real Grassmann variable ξ. They ensure that such a function is determined by
only two parameters: the zeroth- and the rst-order Taylor coecients. Indeed,
due to the property ξ2 = 0, the Taylor series can only possess the rst two terms
F (ξ) = F0 + F ′ξ, where F0 = F (0) and

F ′ ≡ dF (ξ)/dξ. (1.30)

But according to (1.28), the integral yields also F ′:

 dξ√
2πi

F (ξ) = F ′. (1.31)

Remarkably, this property makes the linear operation of integration over Grassmann
variables in (1.28) identical to the linear operation of dierentiation. As a conse-
quence, a linear change of Grassmann integration variables multiplies the integral by
the inverse of the Jacobian. For example, going from a real ξ to another Grassmann
variable ξ′ = aξ, the integrals over ξ′ have again the properties (1.28):



dξ′√
2πi

= 0,


dξ′√
2πi

ξ′ = 1. (1.32)
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In order to be compatible with (1.28), the measure must change as follows:


dξ′√
2πi

=
1

a



dξ√
2πi

. (1.33)

This is in contrast to ordinary integrals where the factor on the right-hand side
would be a.

From the real rules (1.28), we derive the integrals involving complex Grassmann
variables:


dξ√
2πi

= 0,


dξ∗√
2πi

dξ√
2πi

iξ∗ξ = 1,


dξ∗√
2πi

dξ√
2πi

(ξ∗ξ)n = 0, n > 1. (1.34)

The integration rules (1.28) imply that the right-hand side of (1.27) becomes the
product of eigenvalues Am:



m

Am = detA, (1.35)

which is exactly the inverse of the bosonic result (1.25), thus proving the statement
after Eq. (1.25).

For real Fermi elds, the proof is slightly more involved, since now the hermitian
matrix Akl can no longer be diagonalized by a unitary transformation, so that the
invariance of the measure of integration



m(dξm/
√
2πi) is no longer automatically

guaranteed. However, the integral can be done after all by observing that Akl may
always be assumed to be antisymmetric. If there is any symmetric part, it cancels
in the quadratic form



kl ξkAklξl due to the anticommutativity of the Grassmann
variables. Now, an antisymmetric hermitian matrix can always be written as A =
−iAR, where AR is real and antisymmetric. Such a matrix is standard in symplectic
spaces. It can be brought to a canonical form C which is zero everywhere except
for 2× 2 matrices,

c = iσ2 =



0 1
−1 0



, (1.36)

along the diagonal. Here σ2 is the second Pauli matrix. Then A can be written as

A = −iT TCT (1.37)

where the hermitian matrix −iC contains only σ2-matrices along the diagonal. This
matrix has a unit determinant so that det T = det 1/2(A). Thus, under a linear
transformation of Grassmann variables ξ′k ≡ Tkξl, the measure of integration changes
according to



k

dξk = (det T )


k

dξ′k, (1.38)

as a direct consequence of the integration rule (1.33). With the help of the rules
(1.28) and (1.29), the Grassmann version of the functional integral (1.24) can now
be evaluated as follows:



m





dξm√
2πi



exp



i


k,l

ξkAklξl




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= (det T )


m



 dξ′m√
2πi



exp



−


kl

ξ′kCklξ
′
l



= (detA)1/2
∞


n





dξ′2n√
2πi



dξ′2n+1√
2πi



1 + ξ′2n+1ξ
′
2n



= (detA)1/2. (1.39)

Thus the right-hand side is the inverse of the bosonic result (1.24), as announced
after Eq. (1.25).

In order to apply these formulas to elds ψ(x, t) dened on a continuous space-
time, both formulas have to be written for the lattice eld (1.18) in such a way that
the limit of innitely ne lattice spacing δ → 0 can be performed without problem.
For this we recall the useful matrix identity

[detA]∓1 = exp[i(±iTr logA)], (1.40)

where logA may be expanded in the standard fashion as

logA = log [1 + (A− 1)] = −
∞


n=1

[−(A− 1)]n
1

n
. (1.41)

This formula reduces the calculation of the determinant to a series of matrix multi-
plications. In each of these, the limit δ → 0 can easily be taken. One simply replaces
all sums over lattice indices by integrals over d3xdt, for instance

trA2 =


kl

AklAlk −−−→ TrA2 =


d3xdtd3x′dt′ A(x, t;x′, t′)A(x′, t′,x, t). (1.42)

With this in mind, the eld versions of (1.24) and (1.25) amount to the following
functional formulas for boson and fermion elds:



Dϕ(x, t) exp


i

2



d3xdtd3x′dt′ ϕ(x, t)A(x, t;x′, t′)ϕ(x′, t′)


= exp



i



±
i

2
Tr log



1
i



A



, (1.43)



Dψ∗(x, t)Dψ(x, t) exp


i


d3xdtd3x′dt′ ψ∗(x, t)A(x, t; x′, t′)ψ(x′, t′)


= exp [i(±iTr logA)] . (1.44)

Here ϕ,ψ are arbitrary real and complex elds, with the upper sign holding for
bosons, the lower for fermions. The same result is of course true if ϕ and ψ have
several components (describing, for example, spin) and A is a matrix in the corre-
sponding space.

1.1.3 Interactions

Consider now a many-particle system described by an action of the form (in natural
units with h̄ = 1):

A ≡ A0 +Aint =


d3xdtψ∗(x, t) [i∂t − ǫ(−i∇)]ψ(x, t) (1.45)

− 1

2



d3xdtd3x′dt′ ψ∗(x′, t′)ψ∗(x, t)V (x, t;x′, t′)ψ(x, t)ψ(x′, t′).
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The fundamental eld ψ(x) may describe bosons or fermions. The interaction po-
tential is usually translationally invariant in space and time:

V (x, t;x′, t′) = V (x− x′, t− t′). (1.46)

In nonrelativistic many-body systems, the potential is often instantaneous in time:

V (x, t;x′, t′) = δ(t− t′)V (x− x′). (1.47)

This property simplies many calculations. It is in general fullled only approxi-
mately.

For instance, the attraction between electrons in a low-temperature supercon-
ductor is caused by phonon exchange which contains retardation eects due to the
nite speed of sound.

The complete information on the physical properties of the system resides in its
Green functions. In the eld operator language, one uses the so-called Heisenberg

picture, where the Green functions are given by the expectation values of the time-
ordered products of the eld operators

G (x1, t1, . . . ,xn, tn;xn′, tn′, . . . ,x1′ , t1′) (1.48)

= 0|T̂


ψ̂H(x1, t1) · · · ψ̂H(xn, tn)ψ̂
†
H(xn′, tn′) · · · ψ̂†

H(x1′ , t1′)


|0,

where ψ̂H(x, t) are the Heisenberg operators of the interacting eld. The time-
ordering operator T̂ changes the position of the operators behind it in such a way
that elds with later time arguments stand to the left of those with earlier time
arguments. To achieve this order, a number of eld transmutations are necessary. If
F denotes the number of transmutations of Fermi elds, the nal product receives
a sign factor (−1)F .

It is convenient to view all Green functions (1.48) as derivatives of the generating
functional

Z[η∗, η] = 0|T̂ exp


i


d3xdt


ψ̂
†
H(x, t)η(x, t) + η∗(x, t)ψ̂H(x, t)





|0, (1.49)

namely

G (x1, t1, . . . ,xn, tn;xn′ , tn′, . . . ,x1′, t1′) (1.50)

= (−i)n+n′ δn+n′

Z[η∗, η]

δη∗(x1, t1) · · · δη∗(xn, tn)δη(xn′, tn′) · · · δη(x1′, tn′)











η=η∗≡0

.

Physically, the generating functional describes the amplitude that the vacuum re-
mains a vacuum in spite of the presence of external perturbations.

The calculation of this Green functional is usually performed in the interaction
picture which can be summarized by the operator formulation for Z[η∗, η]:

Z[η∗, η] = N0|T̂ exp


iAint[ψ̂
†, ψ̂] + i



d3xdt


ψ̂†(x, t)η(x, t) + h.c.




|0. (1.51)
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In the interaction picture, the eld operators ψ̂(x, t) move according to the free-eld
equation of motion (1.14). The time-ordered product of two of these eld operators
coincide with the free-eld propagator calculated before in (1.16).

The normalization constant N is determined by the condition [which is trivially
true for (1.49)]:

Z[0, 0] = 1. (1.52)

The calculation may now proceed perturbatively. One expands the exponential
exp{iAint} in (1.51) in a power series and obtains

Z[η∗, η]=N
∞


n=0

1

n!
Zn[η

∗, η], (1.53)

where the contribution of order n is given by

Zn[η
∗, η]≡N0|T̂





iAint[ψ̂
†, ψ̂]

n
exp



i


d3xdt


ψ̂†(x, t)η(x, t) + h.c.




|0. (1.54)

This expression is further expanded in powers of η∗ and η. The resulting vacuum
expectation values of time-ordered products of eld operators can be expanded in
products of Green functions of the free eld operators. The rules for doing this is
provided by Wick’s theorem [5, 6, 7]. This theorem states that any time ordered
product of free eld operators ψ(x, t) and its hermitian conjugate ψ†(x, t) can be
expanded into a sum of normal products with all possible contractions taken via
Feynman propagators.

1.1.4 Normal Products

Given an arbitrary set of n free eld operators φ1(x1) · · ·φn(xn), each of them con-
sists of a creation and an annihilation part:

φi(xi) = φc
i(xi) + φa

i (xi). (1.55)

Some φi may be commuting Bose elds, some anticommuting Fermi elds. The
normally ordered product or normal product of n of these eld operators will be
denoted by N̂(φ1(x)φ(x2) · · ·φ(xn)). In the present context, a function symbol is
more convenient than the earlier double-dot notation. The normal product is a
function of a product of eld operators which has the following two properties:

i) Linearity: The normal product is a linear function of all its n arguments, i.e.,
it satises

N̂ ((αφ1 + βφ′
1)φ2φ3 · · ·φn) = αN̂(φ1φ2φ3 · · ·φn) + βN̂(φ′

1φ2φ3 · · ·φn). (1.56)

If every φi is replaced by φc
i +φa

i , it can be expanded into a linear combination
of terms which are all pure products of creation and annihilation operators.



1.1 Nonrelativistic Fields 11

ii) Normal Ordering: The normal product reorders all products arising from
a complete linear expansion of all elds according to i) in such a way that
all annihilators stand to the right of all creators. If the operators φi describe
fermions, the denition requires a factor −1 to be inserted for every transmu-
tation of the order of two operators.

For example, let φ1,φ2,φ3 be scalar elds, then with two eld operators normal
ordering produces:

N̂(φc
1φ

c
2) = φc

1φ
c
2 = φc

2φ
c
1,

N̂(φc
1φ

a
2) = φc

1φ
a
2,

N̂(φa
1φ

c
2) = φc

2φ
a
1,

N̂(φa
1φ

a
2) = φa

1φ
a
2 = φa

2φ
a
1, (1.57)

and with three eld operators:

N̂(φc
1φ

c
2φ

a
3) = φc

1φ
c
2φ

a
3 = φc

2φ
c
1φ

a
3,

N̂(φc
1φ

a
2φ

c
3) = φc

1φ
c
3φ

a
2 = φc

3φ
c
1φ

a
2,

N̂(φa
1φ

c
2φ

c
3) = φc

2φ
c
3φ

a
1 = φc

3φ
c
2φ

a
1. (1.58)

If the operators φi are fermions, the eect is

N̂(φc
1φ

c
2) = φc

1φ
c
2 = −φc

2φ
c
1,

N̂(φc
1φ

a
2) ≡ φc

1φ
a
2,

N̂(φa
1φ

c
2) = −φc

2φ
a
1,

N̂(φa
1φ

a
2) = φa

1φ
a
2 = −φa

2φ
a
1, (1.59)

and

N̂(φc
1φ

c
2φ

a
3) = φc

1φ
c
2φ

a
3 = −φc

2φ
c
1φ

a
3,

N̂(φc
1φ

a
2φ

c
3) = −φc

1φ
c
3φ

a
2 = φc

3φ
c
1φ

a
2,

N̂(φa
1φ

c
2φ

c
3) = φc

2φ
c
3φ

a
1 = −φc

3φ
c
2φ

a
1. (1.60)

The normal product is uniquely dened. The remaining order of creation or anni-
hilation parts among themselves is irrelevant, since these commute or anticommute
with each other by virtue of the canonical free-eld commutation rules. In the fol-
lowing, the elds φ may be Bose or Fermi elds and the sign of the Fermi case is
recorded underneath the Bose sign.

The advantage of dening normal products is their important property that
they have no vacuum expectation values. There is always an annihilator on the
right-hand side or a creator on the left-hand side which produce 0 when matched
between vacuum states. The method of calculating all n-point functions consists
in expanding all time ordered products of n eld operators completely into normal
products. Then only the terms with no operators survive between vacuum states.
This is the desired value of the n-point function.
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Let us see how this works for the simplest case of a time-ordered product of two
identical eld operators

T̂ (φ(x1)φ(x2)) ≡ Θ(x0
1 − x0

2)φ(x1)φ(x2)±Θ(x0
2 − x0

1)φ(x2)φ(x1). (1.61)

The basic expansion formula is

T̂ (φ(x1)φ(x2)) = N̂(φ(x1)φ(x2)) + 0|T̂ (φ(x1)φ(x2))|0. (1.62)

For brevity, we shall denote the propagator of two elds as follows:

0|T (φ(x1)φ(x2))|0 = φ(x1)φ(x2) = G(x1 − x2). (1.63)

The hook which connects the two elds on the top are referred to as a contraction

of the elds.
We shall prove the basic expansion formula (1.62) by considering it separately

for the creation and annihilation parts φc and φa. This will be sucient since the
time ordered product is linear in each eld just as the normal product. Now, in
both cases x0

1
>
< x0

2 we have

T̂ (φc(x1)φ
c(x2)) =



φc(x1)φ
c(x2)

± φc(x2)φ
c(x1)



= φc(x1)φ
c(x2) + 0|



φc(x1)φ
c(x2)

± φc(x2)φ
c(x1)



|0, (1.64)

which is true since φc(x1)φ
c(x2) commute or anticommute with each other, and

annihilate the vacuum state |0. The same equation holds for φa(x1)φ
a(x2). The

only nontrivial cases are those with a time-ordered product of φc(x1)φ
a(x2) and

φa(x1)φ
c(x2). The rst becomes for x0

1
>
< x0

2:

T (φc(x1)φ
a(x2)) =



φc(x1)φ
a(x2)

± φa(x2)φ
c(x1)



= φc(x1)φ
a(x2) + 0|



φc(x1)φ
a(x2)

± φa(x2)φ
c(x1)



|0. (1.65)

For x0
1 > x0

2, this equation is obviously true. For x0
1 < x0

2, the normal ordering
produces an additional term

±(φa(x2)φ
c(x1)∓ φc(x1)φ

a(x2)) = ±[φa(x2),φ
c(x1)]∓. (1.66)

As the commutator or anticommutator of free elds is a c-number, they may equally
well be evaluated between vacuum states, so that we may replace (1.66) by

±0| [φa(x2),φ
c(x1)]∓ |0. (1.67)

Moreover, since φa annihilates the vacuum, this reduces to

±0|φa(x2),φ
c(x1)|0. (1.68)



1.1 Nonrelativistic Fields 13

The oppositely ordered operators φa(x1)φ
c(x2) can be processed by complete anal-

ogy.
We shall now generalize this basic result to an arbitrary number of eld operators.

In order to abbreviate the expressions let us dene the concept of a contraction inside
a normal product

N̂



φ1 · · ·φi−1φiφi+1 · · ·φj−1φjφj+1 · · ·φn



≡ η φiφj N̂ (φ1 · · ·φi−1φi+1 · · ·φj−1φj+1 · · ·φn) . (1.69)

Here η = 1 for bosons and η = (−1)j−i−1 for fermions, each minus-sign counting
the number of fermion transmutations which is necessary to reach the nal order.
A normal product with several contractions is dened by the successive execution
of each of them. If only one eld is left inside the normal ordering symbol, it is
automatically normally ordered so that

N̂(φ) = φ. (1.70)

Similarly, if all elds inside a normal product are contracted, the result is no longer an
operator and the symbol N̂ may be dropped using linearity and the trivial property

N̂(1) ≡ 1. (1.71)

The fully contracted normal product is the relevant one in determining the n-particle
propagator. With these preliminaries we are now ready to prove Wick’s theorem for
the expansion of a time-ordered product in terms of normally ordered products.1

The formula for an arbitrary functional of free elds ψ,ψ∗ is

TF [ψ∗,ψ] = e


d3xdtd3x′dt′ δ
δψ(x,t)

G0(x,t;x′,t′) δ

δψ∗(x,t′) N̂(F [ψ∗,ψ]). (1.72)

Applying this to

0|TF [ψ∗,ψ]|0 = 0|T exp


i


dxdt(ψ∗η + η∗ψ)


|0 (1.73)

one nds:

Z0[η
∗, η] = exp



−


dxdtdx′dt′ η∗(x, t)G0(x, t;x
′, t′)η(x′, t′)



× 0|N̂


exp


i


dxdt(ψ∗η + η∗ψ)
 

|0. (1.74)

Each term can be pictured graphically by so-called Feynman diagrams. They have
the physical interpretation as a virtual process.

The perturbation expansion of (1.51) may be used to dene an interacting the-
ory. In praxis, however, it can only be carried up to a certain nite order in n.

1G.C. Wick, Phys. Rev. 80 , 268 (1950); F. Dyson, Phys. Rev. 82 , 428 (1951).
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As such it is unable to describe many important physical phenomena. Examples
are bound states living in the vacuum, or collective excitations of many-body sys-
tems. These require the summation of innite subsets of Feynman diagrams to all
orders. In many situations it is well known which subsets have to be taken if we
want to account approximately for a specic eect. What is not clear is how such
approximations can be improved in a systematic manner. The point is that, as soon
as a selective summation of Feynman diagrams is performed, the original coupling
constant has lost its meaning as an organizer of the expansion and there is need for
a new systematics of diagrams. Such a systematic approach will be presented in
what follows.

As soon as bound states or other collective excitations are formed, it is suggestive
to construct a quantum eld theory for these and continue working with the new
elds rather than the original fundamental elds ψ(x, t). The goal would then to
rewrite the expression (1.51) for Z[η∗, η] in terms of new elds whose unperturbed
propagator has the free energy spectrum of the bound states or of the other collective
excitations. It would also display their mutual interactions. In the operator form
(1.51), such changes of elds are not so easy to achieve.

The ideal theoretical framework for describing the generating functional Z[η∗, η]
of a physical system in terms of the new quantum elds is oered by the above-
introduced functional integral techniques [4, 5, 6]. In these, changes of elds amount
to changes of integration variables, as we shall see in the sequel.

1.1.5 Functional Formulation

In the functional integral approach, the generating functional (1.49) is given by

Z[η∗, η]=N


Dψ∗(x, t)Dψ(x, t) exp


iA[ψ∗,ψ]+i


d3xdt [ψ∗(x, t)η(x, t) + c.c.]


.

(1.75)

Note that in contrast to the expression (1.49), the eld ψ(x, t) is now a complex-
valued eld, not an operator. All quantum eects are accounted for by the uc-
tuations in the functional integral. This does not only include the classical eld
congurations, but all possible eld congurations, also those which are classically
forbidden, i.e., all those which do not run through the valley of extremal actions in
the exponent.

In order to evaluate functional integrals of the type (1.75) involving source terms,
we must extend the Gaussian formulas (1.24), (1.25) and (1.43), (1.44) to include
linear terms. This complicates the integrals only slightly. We simply eliminate the
linear terms by a quadratic completion. If this is done in (1.24) and (1.25), we
obtain for both bosons and fermions (dropping product and summation symbols):

 ∞

−∞

dξ√
2πi

exp


1

2
ξAξ + ijξ



=
 ∞

−∞

dξ√
2πi

exp


i

2



ξ + jA−1


A


ξ + A−1j


− i

2
jA−1j



, (1.76)
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 dξ∗dξ√
2πi

√
2πi

exp(iξ∗Aξ + ij∗ξ + iξ∗j)

=


dξ∗dξ√
2πi

√
2πi

exp


i


ξ∗ + j∗A−1


A


ξ + A−1j


− ij∗A−1j


. (1.77)

The shift in the integral ξ → ξ + A−1ξ gives no change due to the innite range of
integration. Hence

 ∞

−∞

dξ√
2πi

exp


i

2
ξAξ + ijξ



=



1
i1/2



A∓1/2 exp


− i

2
jA−1j



,

 ∞

−∞

dξ∗dξ√
2πi

√
2πi

exp(iξ∗Aξ + ij∗ξ + iξ∗j) = A∓1 exp(−ij∗A−1j). (1.78)

A corresponding operation on the functional formulas (1.43) and (1.44) leads to the
so-called Hubbard-Stratonovich transformations:



Dϕ(x, t)e
i
2



d3xdtd3x′dt′ [ϕ(x,t)A(x,t;x′,t′)ϕ(x′,t′)+2j(x,t)ϕ(x,t)δ3(x−x
′,t)δ(t−t′)]

= e
i(± i

2
Trlog



1
i



A)− i
2



d3xdtd3x′dt′ j(x,t)A−1(x,t;x′,t′)j(x′,t′)
, (1.79)

or


Dψ∗(x, t)Dψ(x, t)ei


d3xdtd3x′dt′ {ψ∗(x,t)A(x,t;x′,t′)ψ(x,t′)+[η∗(x,t)ψ(x)δ3(x−x
′)δ(t−t′)+c.c.]}

= ei(±iTrlogA)−i


d3xdtd3x′dtη∗(x,t)A−1(x,t;x′,t′)η(x′ ,t′). (1.80)

These integration formulas will be needed repeatedly in the remainder of this text.
They have been applied frequently in many-body theory, ever since the work of
Hubbard and Stratonovic [10], and for this reason they have been named in many
publications after these authors. They are the basis for the treatment of any inter-
acting quantum eld theory in terms of collective quantum elds .

Although this transformation is mathematically exact, it may be of little use in
applications in which various collective eects compete with each other. This can be
understood only after treating a few important phenomena using this tranformation.
A way out of the diculties will be shown in Section 3.9. The improved treatment
will allow us to study competing mechanisms in terms of collective classical elds .

1.1.6 Equivalence of Functional and Operator Methods

As an exercise we shall apply (1.79) and (1.80) and demonstrate the equivalence
betweeen the operator expression (1.51) for the generating functional Z[η∗, η] with
Feynman’s functional integral formula (1.75).

First we note that the interaction can be taken outside the integral or the vacuum
expectation value in either formula as

Z[η∗, η] = exp



iAint



1

i

δ

δη
,
1

i

δ

δη∗



Z0[η
∗, η], (1.81)
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where Z0[η
∗, η] is the generating functional for the free elds. Thus Eq. (1.75)

contains only A0 of (1.45) in the exponent, i.e.

A0[ψ
∗,ψ] =



dxdtψ∗(x, t) [i∂t − ǫ(−i∇)]ψ(x, t). (1.82)

The functional integral in Z0[η
∗, η] is of the type (1.80), where A(x, t;x′, t′) is the

functional matrix

A(x, t;x′, t′) = [i∂t − ǫ(−i∇)] δ(3)(x− x′)δ(t− t′). (1.83)

The inverse of this functional matrix yields the so-called propagator of the free
particle:

G0(x, t;x
′, t′) = iA−1(x, t;x′, t′). (1.84)

It can be calculated explicitly in the spectral representation which, for translationally
invariant operators, is a Fourier representation:

G0(x, t;x
′, t′) =



dE

2π



d3p

(2π)4
e−i[E(t−t′)−p(x−x

′)] i

E − ǫ(p) + iη
. (1.85)

Inserting this into (1.80), we see that

Z0[η
∗, η]=N exp



i


±iTr log iG−1
0



−


d3xdtd3x′dt′ η∗(x, t)G0(x
′, t′)η(x′, t′)



. (1.86)

We now x the normalization constant N to satisfy the condition (1.52):

N = exp [i (±iTr log iG0)] , (1.87)

and arrive at

Z0[η
∗, η] = exp



−


d3xdtd3x′dt′ η∗(x, t)G0(x, t;x
′, t′)η(x′, t′)



. (1.88)

This coincides exactly with what would have been obtained from the operator ex-
pression (1.51) for Z0[η

∗, η] (i.e., without Aint).

1.1.7 Grand-Canonical Ensembles at Zero Temperature

All these results are easily generalized from vacuum expectation values to thermo-
dynamic averages at xed temperatures T and chemical potential µ. The change at
T = 0 is trivial: The single particle energies in the action (1.45) have to be replaced
by

ξ(−i∇) = ǫ(−i∇)− µ, (1.89)
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and new boundary conditions have to be imposed upon all Green functions via an
appropriate iǫ prescription in G0(x, t;x

′, t′) of (1.85) [see [5, 8]]:

T=0G0(x, t;x
′, t′) =

 dEd3p

(2π)4
e−iE(t−t′)+ip(x−x

′) i

E − ξ(p) + iη sgn ξ(p)
. (1.90)

As a consequence of the chemical potential, fermions with ξ < 0 inside the Fermi
sea propagate backwards in time. Bosons, on the other hand, have in general ξ > 0
and, hence, always propagate forward in time.

In order to simplify the notation we shall often use the four-vectors p = (p0,p)
and write the measure of integration in (1.90) as



dEd3p

(2π)4
=


d4p

(2π)4
. (1.91)

Note that in a solid, the momentum integration is really restricted to a Brillouin
zone. If the solid has a nite volume V , the integral over spacial momenta becomes
a sum over momentum vectors,



d3p

(2π)3
=

1

V



p

, (1.92)

and the Green function (1.90) reads

T=0G0(x, t;x
′, t′) ≡



dE

2π

1

V



p

e−ip(x−x′) i

p0 − ξ(p) + iη sgn ξ(p)
. (1.93)

The resulting formulas for T=0Z[η∗, η] can be brought to a conventional form by
performing a Wick rotation in the complex energy plane in all energy integrals
(1.90), implied by formulas (1.51) and (1.74). For this, one sets E = p0 ≡ iω and
replaces

 ∞

−∞

dE

2π
→ i

 ∞

−∞

dω

2π
. (1.94)

Then the Green function (1.90) becomes

T=0G0(x, t;x
′, t′) = −



dω

2π

d3p

(2π)3
eω(t−t′)+ip(x−x

′) 1

iω − ξ(p)
. (1.95)

Note that with formulas (1.88) and (1.81), the generating functional T=0Z[η∗, η] is
the grand-canonical partition function in the presence of sources [8].

Finally, we have to introduce arbitrary temperatures T . According to the stan-
dard rules of quantum eld theory (for an elementary introduction see Chapter 2 in
Ref. [5]), we must continue all times to imaginary values t = iτ , restrict the imag-
inary time interval to the inverse temperature2 β ≡ 1/T , and impose periodic or

2Throughout this chapter we use natural units so that kB = 1, h̄ = 1.
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antiperiodic boundary conditions upon the elds ψ(x,−iτ) of bosons and fermions,
respectively [5, 8]:

ψ(x,−iτ) = ±ψ(x,−i(τ + 1/T )). (1.96)

When there is no danger of confusion, we shall usually drop the factor −i in front
of the imaginary times in all eld arguments, for brevity. The same thing will be
done in the Green functions.

By virtue of (1.81) and (1.88), also the Green functions satisfy these boundary
conditions, implying that

T
G0 (x, τ + 1/T ;x′, τ ′) ≡ ±

T
G0(x,−iτ ;x′,−iτ ′). (1.97)

This property is enforced automatically by replacing the energy integrations
∞
−∞ dω/2π in (1.95) by a summation over the discrete Matsubara frequencies [in
analogy to the momentum sum (1.92), the temporal “volume” being β = 1/T ]:

 ∞

−∞

dω

2π
→ T



ωn

, (1.98)

which are even or odd multiples of πT

ωn =



2n
2n+ 1



πT for



bosons
fermions



. (1.99)

The prefactor T of the sum over the discrete Matsubara frequencies accounts for the
density of these frequencies yielding the correct T → 0-limit.

Thus, for the imaginary-time Green function of a free nonrelativistic eld at nite
temperature (the so-called free thermal Green function), we obtain the following
expression:

T
G0(x, τ,x

′, τ ′) =− T


ωn



d3p

(2π)3
e−iωn(τ−τ ′)+ip(x−x

′) 1

iωn − ξ(p)
. (1.100)

Incorporating the Wick rotation in the sum notation we may write

T


p0

= −iT


ωn

= −iT


p4

, (1.101)

where p4 = −ip0 = ω. If both temperature and volume are nite, the Green function
is written as

T
G0(x, τ,x

′, τ ′) = − T

V



p0



p

e−iωn(τ−τ ′)+ip(x−x
′) 1

iωn − ξ(p)
. (1.102)

At equal space points and equal imaginary times, the sum can easily be evaluated.
One must, however, specify the order in which τ → τ ′. Let η denote an innitesimal
positive number and consider the case τ ′ = τ + η, i.e., the Green function

T
G0(x, τ,x, τ + η) =− T



ωn

 d3p

(2π)3
eiωnη

1

iωn − ξ(p)
.
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Figure 1.1 Contour C in the complex z-plane for evaluating the Matsubara sum (1.104).

The sum is now found by changing it into a contour integral

T


ωn

eiωnη
1

iωn − ξ(p)
=

T

2πi



C
dz

eηz

ez/T ∓ 1

1

z − ξ
. (1.103)

The upper sign holds for bosons, the lower for fermions. The contour of integration
C encircles the imaginary z axis in the positive sense, thereby enclosing all integer
or half-integer valued poles of the integrand at the Matsubara frequencies z = iωm

(see Fig. 1.1). The factor eηz ensures that the contour in the left half-plane does not
contribute.

By deforming the contour C into C ′ and by contracting C ′ to zero we pick up
the pole at z = ξ and nd

T


ωn

eiωnη
1

iωn − ξ(p)
= ∓ 1

eξ(p)/T ∓ 1
= ∓ 1

eξ(p)/T ∓ 1
= ∓n(ξ(p)). (1.104)

The function on the right is known as the Bose orFermi distribution function.
By subtracting from (1.104) the sum with ξ replaced by −ξ, we obtain the

important sum formula

T


ωn

1

ω2
n + ξ2(p)

=
1

2ξ(p)
coth±1 ξ(p)

T
. (1.105)

In the opposite limit τ ′ = τ − η, the phase factor in the sum would be e−iωmη,
and the Matsubara sum would be converted into a contour integral

−kBT


ωm

eiωmη 1

iωm − ξ(p)
= ±

kBT

2πi



C
dz

e−ηz

e−z/kBT ∓ 1

1

z − ξ
, (1.106)
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yielding 1± nξ(p).
In the operator language, these limits correspond to the expectation values

T
G (x, τ ;x, τ + η) = 0|T̂



ψ̂H(x, τ)ψ̂
†
H(x, τ + η)



|0=±0|ψ̂†
H(x, τ)ψ̂H(x, τ)|0,

T
G (x, τ ;x, τ − η) = 0|T̂



ψ̂H(x, τ)ψ̂
†
H(x, τ − η)



|0=0|ψ̂H(x, τ)ψ̂
†
H(x, τ)|0

= 1± 0|ψ̂†
H(x, τ)ψ̂H(x, τ ∓ η)|0.

The function n(ξ(p)) is the thermal expectation value of the number operator

N̂ = ψ̂
†
H(x, τ)ψ̂H(x, τ). (1.107)

It is useful to employ a four-vector notation also in T = 0 -ensembles. The
four-vector

pE ≡ (p4,p) = (ω,p) (1.108)

is called the Euclidean four-momentum. Correspondingly, we dene the Euclidean

spacetime coordinate

xE ≡ (−τ,x). (1.109)

The exponential in (1.100) can be written as

pExE = −ωτ + px. (1.110)

Collecting integral and sum in a single four-summation symbol, we shall write (1.100)
as

T
G0(xE − x′) ≡ −T

V



pE

exp [−ipE(xE − x′
E)]

1

ip4 − ξ(p)
. (1.111)

It is quite straightforward to derive the general T = 0 Green function from a
path integral formulation analogous to (1.75). For this we consider classical elds
ψ(x, τ) with the periodicity or anti-periodicity

ψ(x, τ) = ±ψ (x, τ + 1/T ) . (1.112)

They can be Fourier-decomposed as

ψ(x, τ) =
T

V



ωn



p

e−iωnτ+ipxa(ωn,p) ≡
T

V



pE

e−ipExEa(pE), (1.113)

with a sum over even or odd Matsubara frequencies ωn. If now a free action is
dened as

A0[ψ
∗,ψ] = −i

 1/2T

−1/2T
dτ


d3xψ∗(x, τ) [−∂τ − ξ (−i∇)]ψ(x, τ),

(1.114)
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Eq. (1.80) renders [4, 10]

T
Z0[η

∗, η] = e
∓Tr logA+

  1/2T

−1/2T
dτdτ ′



d3xd3x′η∗(x,τ)A−1(x,τ,x′,τ ′)η(x′ ,τ ′)
, (1.115)

with

A(x, τ ;x′, τ ′) = [∂τ + ξ (−i∇)] δ(3)(x− x′)δ(τ − τ ′). (1.116)

Henceforth A−1 is equal to the propagator (1.100). The Matsubara frequencies arise
from the nite τ interval of Euclidean space together with the periodic boundary
condition (1.112).

Again, interactions are taken care of by multiplying TZ0[η
∗η] with the factor

(1.81). In terms of the elds ψ(x, τ), the exponent has the form

Aint =
1

2

  1/2T

−1/2T
dτdτ ′

×


d3xd3x′ψ∗(x, τ)ψ∗(x′, τ ′)ψ(x′, τ ′)ψ(x, τ)V (x,−iτ ;x′,−iτ ′). (1.117)

In the case of a potential of type (1.47), which becomes instantaneous in τ :

V (x,−iτ ;x′,−iτ ′) = V (x− x′) iδ(τ − τ ′). (1.118)

Then Aint can be written in terms of the interaction Hamiltonian as

Aint = i
 1/2T

−1/2T
dτHint(τ). (1.119)

Thus the grand canonical partition function in the presence of external sources may
be calculated from the path integral [10]:

T
Z[η∗, η] =



Dψ∗(x, τ)Dψ(x, τ)e
i
T
A+
 1/2T

−1/2T
dτ


d3x[ψ∗(x,τ)η(x,τ)+c.c.]
, (1.120)

where the grand-canonical action is

i
T
A[ψ∗,ψ] = −

 1/2T

−1/2T
dτ


d3xψ∗(x, τ) [∂τ + ξ(−i∇)]ψ(x, τ) (1.121)

+
i

2

 1/2T

−1/2T
dτdτ ′



d3xd3x′ψ∗(x, τ)ψ∗(x′, τ ′)ψ(x, τ ′)ψ(x, τ)V (x,−iτ ;x,−iτ ′).

The Green functions are obtained from the functional derivatives

G (x1, τ1, . . . ,xn, τn;xn′ , τn′, . . . ,x1′, τ1′) (1.122)

= (−i)n+n′ δn+n′

Z[η∗, η]

δη∗(x1, τ1) · · · δη∗(xn, τn)δη(xn′, τn′) · · · δη(x1′, τn′)











η=η∗≡0

.
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The right-hand side consists of the functional integrals

N


Dψ∗(x, t)Dψ(x, t) ψ̂(x1, τ1) · · · ψ̂(xn, τn)ψ̂
∗(xn′ , τn′) · · · ψ̂∗(x1′ , τ1′)e

iA[ψ∗,ψ].(1.123)

In the sequel, we shall always assume the normalization factor to be chosen in such
a way that Z[0, 0] is normalized to unity. Then the functional integrals (1.123) are
obviously the correlation functions of the elds, commonly written in the form

ψ̂(x1, τ1) · · · ψ̂(xn, τn)ψ̂
∗(xn′, τn′) · · · ψ̂∗(x1′ , τ1′). (1.124)

In contrast to Section 1.2, the bra and ket symbols denote now a thermal average
of the classical elds.

The functional integral expression (1.120) for the generating functional oers the
advantageous exibility with respect to changes in the eld variables.

Summarizing we have seen that the functional (1.120) denes the most general
type of theory involving two-body forces. It contains all information on the physical
system in the vacuum as well as in thermodynamic ensembles. The vacuum theory
is obtained by setting T = 0, µ = 0, and continuing the result back from T to
physical times. Conversely, the functional (1.75) in the vacuum can be generalized to
ensembles in the straightforward manner by rst continuing the times t to imaginary
values −iτ via a Wick rotation in all energy integrals and then going to periodic
functions in τ .

There is a complete correspondence between the real-time generating functional
(1.75) and the thermodynamic imaginary-time expression (1.120). For this reason
it is sucient to exhibit all techniques only in one version for which we shall choose
(1.75). Note, however, that due to the singular nature of the propagators (1.85) in
real energy-momentum, the thermodynamic formulation species the way how to
avoid singularities.

1.2 Relativistic Fields

We shall also study collective phenomena in relativistic fermion systems. For this
we shall need elds describing relativistic particles of spin zero, 1/2, and 1. Their
properties will now be briey reviewed.

1.2.1 Lorentz and Poincaré Invariance

For relativistic particles, the relation between the physical laws in two coordinate
frames which move with a constant velocity with respect to each other are dierent
from the nonrelativistic case. Suppose a frame moves with velocity v into the −z-
direction of another xed frame. Then in the moving frame, the z-momentum of
the particle will be increased. The particle appears boosted in the z-direction with
respect to the original observer. The momenta in x- and y-directions are unaected.
Now, the total four momentum still satises the energy momentum relation

E(p) =


p2 +M2. (1.125)
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Introducing the four-vector notation

pµ ≡ (p0, pi) with p0 ≡ (p)/c, (1.126)

we see that the four-vector satises the mass shell condition

p0
2 − p2 = M2. (1.127)

For the particle moving in the z-direction, the combination p0
2−p3

2
remains invari-

ant. This implies that there must be a hyperbolic transformation mixing p0 and p3,
which may be parametrized by a hyperbolic angle ζ called rapidity :

p′0 = cosh ζ p0 + sinh ζ p3,

p′3 = sinh ζ p0 + cosh ζ p3. (1.128)

This is called a pure Lorentz transformation. We may write it in a 4×4 matrix form
as

p′µ =











cosh ζ 0 0 sinh ζ
0 1 0 0
0 0 1 0

sinh ζ 0 0 cosh ζ











µ

ν

pν ≡ B3(ζ)
µ
νp

ν . (1.129)

The subscript 3 of B3 indicates that the particle is boosted into the z-direction. A
similar matrix can be written down for x and y-directions. In an arbitrary direction
p̂, the matrix elements are

Bp̂(ζ) =





cosh ζ p̂i sinh ζ

p̂i sinh ζ δij + p̂ip̂j(cosh ζ − 1)



 . (1.130)

By combining rotations and boosts one obtains a 6-parameter manifold of matrices

Λ = Bp̂(ζ)Rˆ(ϕ), (1.131)

called proper Lorentz transformations. For all these

p′0
2 − p′2 = p0

2 − p2 = M2c2 (1.132)

is an invariant. These matrices form a group, the proper Lorentz group. We can
easily see that the Lorentz group allows reaching every momentum pµ on the mass
shell by applying an appropriate group element to some xed reference momentum
pµR. For example, if the particle has a mass M we may choose for pµR the so-called
rest momentum

pµR = (M, 0, 0, 0), (1.133)

and apply the boost in the p̂ direction

Λ = Bp̂(ζ), (1.134)
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with the rapidity given by

cosh ζ =
p0

M
, sinh ζ =

|p|

M
. (1.135)

But we may also choose Λ(p) = Bp̂(ζ)Rˆ(ϕ) where Rˆ is an arbitrary rotation,
since any of these leaves the rest momentum pµR invariant. In fact, the rotations
form the largest subgroup of the group of all proper Lorentz transformations, which
leaves the rest momentum pµR invariant. It is referred to as the little group or Wigner

group of a massive particle. It has an important physical signicance since it serves
to specify the intrinsic rotational degrees of freedom of the particle. If the particle
is at rest it carries no orbital angular momentum. If its quantum mechanical state
remains completely invariant under any member Rˆ of the little group, the particle
must also have zero intrinsic angular momentum or zero spin. Besides this trivial
representation, the little group being a rotation group can have representations of
any angular momentum s = 1

2
, 1, 3

2
, . . . . In these cases, the state at rest has 2s+ 1

components which are mixed with each other upon rotations.
The situation is quite dierent in the case of massless particles. They move with

the speed of light and pµ cannot be brought by a Lorentz transformation from the
light cone to a rest frame. There is, however, another standard reference momentum
from which one can generate all other momenta on the light cone. It is given by

pµR = (1, 0, 0, 1)p, (1.136)

and it remains invariant under a dierent little group, which is again a three-
parameter subgroup of the Lorentz group. This will be discussed later.

It is useful to write the invariant expression (1.132) as a square of a four vector
pµ formed with the metric

gµν =











1
−1

−1
−1











, (1.137)

namely
p2 = gµνp

µpν . (1.138)

In general, we dene a scalar product between any two vectors as

pp′ ≡ gµνp
µp′ν = p0p′0 − pp′. (1.139)

A space with this scalar product is called Minkowski space. . It is useful to introduce
the covariant components of any vector vµ as

vµ ≡ gµνv
ν . (1.140)

Then the scalar product can also be written as

pp′ = pµp
′µ. (1.141)
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With this notation the mass shell condition for a particle before and after a Lorentz
transformation reads simply

p′
2
= p2 = M2c2. (1.142)

Note that, apart from the minus signs in the metric (1.137), the mass shell con-
dition p2 = p0

2 − p1
2 − p2

2 − p3
2
= M2c2, left invariant by the Lorentz group, is

completely analogous to the spherical condition p4
2
+ p1

2
+ p2

2
+ p3

2
= M2c2 which

is left invariant by the rotation group in a four-dimensional euclidean space. Both
groups are parametrized by six parameters which are associated with linear trans-
formations in the six planes 12, 23, 31; 10, 20, 30 or 12, 23, 31; 14, 24, 34, respectively.
In the case of the four-dimensional euclidean space these are all rotations which
form the group of special orthogonal matrices called O(4). The letter S indicates
the property special . A group is called special if all its transformation matrices have
a unit determinant. In the case of the proper Lorentz group one uses by analogy
the notation SO(1,3). The numbers indicate the fact that in the metric (1.137), one
diagonal element is equal to +1 and three are equal to −1.

The fact that all group elements are special follows from a direct calculation of
the determinant of (1.130), (1.131).

How do we have to describe the quantum mechanics of a free relativistic particle
in Minkowski space? The energy and momenta p0,p must be related to the time
and space derivatives of particle waves in the usual way

p0 =
ǫ

c
= ih̄

∂

∂ct
≡ ih̄

∂

∂x0
,

pi = −ih̄
∂

∂xi
. (1.143)

They satisfy the canonical commutation rules

[pµ, pν ] = 0,

[xµ, xν ] = 0,

[pµ, xν ] = −ih̄gµν . (1.144)

We expect that associated with the pure momentum state p there will be some wave
function

fp(x) = e−i(p0x0−pixi)/h̄ ≡ e−ipx/h̄. (1.145)

At this point we do not yet know the proper scalar product necessary to extract
physical information from such wave functions.

We have stated previously that permissible energy momentum states of a free
particle can be realized by considering one and the same particle in dierent coor-
dinate frames connected by the transformation Λ(p). Suppose that we change the
coordinates of the same space time point as follows:

x → x′ = Λx. (1.146)



26 1 Functional Integral Techniques

Under this transformation the scalar product of any two vectors remains invariant:

x′y′ = xy. (1.147)

This holds also for scalar products between momentum and coordinate vectors

p′x′ = px. (1.148)

For the transformation matrix Λ, it implies that

(Λp)(Λx) = px. (1.149)

If the scalar products are written out explicitly in terms of the metric gµν this
amounts to

gµνΛ
µ
λp

λ
Λ

ν
κx

κ = gλκp
λxκ, (1.150)

for all p, x. The Lorentz matrices Λ satisfy therefore the identity

gµνΛ
µ
λΛ

ν
κ = gλκ, (1.151)

or, written without indices,
Λ

T gΛ = g. (1.152)

If the metric is Euclidean, this would be the denition of orthogonal matrices. In
fact, in the notation of scalar products in which the metric is suppressed as in
(1.153), there is no dierence between the manipulation of orthogonal and Lorentz
matrices. In both cases one has

(Λp)(Λx) = pΛ−1
Λx = px. (1.153)

When changing the coordinates, the same particle wave in space behaves like

fp(x) = e−ipΛ−1x′/h̄

= e−i(Λp)x′/h̄ = fΛp(x
′) = fp′(x

′). (1.154)

This shows that, in the new coordinates, the same particle appears with dierent
momentum components

p′ = Λp. (1.155)

Consider a wave ψ(x) which is an arbitrary superposition of dierent momentum
states. After a coordinate transformation it will still have the same value at the
same space time point. Thus ψ′(x′), as seen in the new frame, must be equal to
ψ(x) in the old frame

ψ′(x′) = ψ(x). (1.156)

At this place one denes the substantial change under the Lorentz transformation
Λ as the change at the same values of the coordinates x (which corresponds to a
transformed point in space)

ψ(x)
Λ

−−−→ ψ′
Λ
(x) =ψ(Λ−1x). (1.157)
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We have marked by a subscript the transformation under which ψ′(x) arises. Clearly,
this transformation property is valid only if the particle does not possess any intrinsic
orientational degree of freedom, i.e., no spin. A eld with this property is called a
scalar eld or, for historical reasons, a Klein-Gordon eld .

If a particle has spin degrees of freedom, the situation is quite dierent. Then
the wave function has several components to account for the spin orientations. The
transformation law must be such that the spin orientation in space remains un-
changed at the same space point. This implies that the eld components which
specify the orientation with respect to the dierent coordinate axes will have to
be transformed by certain matrices. It is well-known how this is done in the case
of electromagnetic and gravitational elds, whose vector and tensor transformation
properties follow standard rules. In the next sections these will be recalled. After-
wards it will be easy to generalize everything to the case of arbitrary spin.

Before coming to this, however, let us conclude this section by mentioning that
there are other space transformations which leave the scalar products pµx

µ invariant
but which are not contained in the group SO(1,3): Most importantly there is the
space inversion, also called mirror reection or parity transformation:

P =











1
−1

−1
−1











, (1.158)

which reverses the direction of the spatial vectors, x → −x. There is further the
time inversion

T =











−1
1

1
1











, (1.159)

which changes the sign of x0. If P and T are incorporated into the special Lorentz
group SO(1,3), one deals with the full Lorentz group.

Note that the determinants of both (1.158) and (1.159) are negative, so that
the full Lorentz group no longer deserves the letter S in its name. It is then called
O(1,3).

1.2.2 Relativistic Free Scalar Fields

From all this it is obvious how the non-relativistic free eld action

A =


dtdxψ∗(x, t)



ih̄∂t + h̄2 ∂x
2

2M



ψ(x, t) (1.160)

must be modied to describe relativistic n-particle states. In order to accommodate
the kinematic features, discussed in the last section, we require the action to be
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invariant under Lorentz transformations. Depending on the possible internal spin
degrees of freedom there are dierent ways of making the action relativistic. These
will now be discussed separately.

Scalar Fields

If the eld ψ(x, t) carries no spin degree of freedom which varies under space ro-
tations, the spatial derivative ∂x always has to appear squared in the action to
guarantee rotational invariance. With the Lorentz symmetry between ∂0 and ∂x we
are led to a classical action

A =


dx0L =


dx0d3xψ∗(x, t) [c1∂
µ∂µ + c2]ψ(x, t), (1.161)

where c1, c2 are two arbitrary real constants. It is now easy to see that this action is
indeed Lorentz invariant: Under the transformation (1.146), the four-volume element
does not change

dx0d3x ≡ d4x → d4x′ = d4x. (1.162)

If we therefore take the action in the new frame

A =


d4x′ψ∗′(x′)


c1∂
′µ∂′

µ + c2


ψ′(x′), (1.163)

we can use (1.161) and (1.156) to rewrite

A =


d4xψ∗(x)


c1∂
′µ∂′

µ + c2


ψ(x). (1.164)

But since

∂′
µ = Λµ

ν∂ν , ∂µ′ = Λ
µ
ν∂

ν (1.165)

with Λµ
ν ≡ gµλg

νκΛλ
κ, we see that

∂′2 = ∂2, (1.166)

and the transformed action becomes

A =


dx0d3xψ∗(x, t) [c1∂
µ∂µ + c2]ψ(x, t), (1.167)

which is the same as (1.161).
It is useful to introduce the integrand of the action as the so-called Lagrangian

density

L(x, t) = ψ∗(x, t)


c1(∂
02 − ∂x

2) + c2


ψ(x, t). (1.168)

Then the invariance of the action under Lorentz transformation is a direct conse-
quence of the Lagrangian density being a scalar eld, satisfying the transformation
law (1.156),

L′(x′) = L(x), (1.169)
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as implied by (1.163), (1.164), and (1.166).
The free-eld equations of motion are derived from (1.161) as follows. We write

A =


dx0L =


dx0


d3xψ∗(x, t)


c1(∂
02 − ∂x

2) + c2


ψ(x, t), (1.170)

and vary this independently with respect to the elds ψ(x) and ψ∗(x). The inde-
pendence of these variables is expressed by the functional dierentiation rules

δψ(x)

δψ(x′)
= δ(4)(x− x′),

δψ∗(x)

δψ∗(x′)
= δ(4)(x− x′),

δψ(x)

δψ∗(x′)
= 0,

δψ∗(x)

δψ(x′)
= 0. (1.171)

Applying these rules to (1.170) we obtain directly

δA

δψ∗(x)
=



d4x′δ(4)(x′ − x)(c1∂
2 + c2)ψ(x)

= (c1∂
2 + c2)ψ(x) = 0. (1.172)

Similarly,

δA

δψ(x)
=



d4x′ψ∗(x′)(c1∂
2 + c2)δ(x

′ − x)

= ψ∗(x)(c1
←

∂2 +c2), (1.173)

where the arrow on top of the last derivative indicates that it acts on the eld to the
left. The second equation is just the complex conjugate of the previous one. Then
the functional derivative with respect to ψ∗(x) is simple. In terms of the Lagrangian
density, the extremality condition can be expanded in terms of partial derivatives
with respect to increasing partial derivatives of all elds in L,

δA

δψ(x)
=

∂L(x)

∂ψ(x)
− ∂µ

∂L(x)

∂∂µψ(x)
+ ∂µ∂ν

∂L(x)

∂∂µ∂νψ(x)
+ . . . , (1.174)

with the same equation for ψ∗(x). This follows directly from the dening relations
in (1.171). The eld equation for ψ(x) is particularly simple:

δA

δψ∗(x)
=

∂L(x)

∂ψ∗(x)
. (1.175)

For ψ∗(x), on the other hand, all derivatives written out in (1.174) have to be
evaluated.

Both eld equations (1.172) and (1.173) are solved by the quantum mechanical
plane wave (1.145),

fp(x) = e−ipx/h̄, (1.176)
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if the momentum satises the condition

−c1p
µpµ + c2 = 0. (1.177)

This has precisely the form of the mass shell relation (1.142) if we choose

c2h̄
2/c1 = M2c2. (1.178)

It is customary to normalize c1 to

c1 = −h̄2. (1.179)

The sign is necessary to have stable eld uctuations. The size can be brought
to this value by a multiplicative renormalization of the eld. Then the mass shell
condition xes the free eld action to the standard form

A =


dx0d3xψ∗(x, t)


−h̄2∂µ∂µ −M2c2


ψ(x, t). (1.180)

The appearance of the constants h̄ and c in all future formulas can be avoided
if we agree to work with natural units l0, m0, t0, E0 dierent from the ordinary cgs
units. They are chosen to give h̄ and c the value 1. Expressed in terms of the
conventional length, time, mass, and energy, these new natural units are given by

l0 =
h̄

Mc
=

h̄

E0

c, t0 =
h̄

Mc2
, (1.181)

m0 = M, E0 = Mc2. (1.182)

If, for example, the particle is a proton with mass mp, these units are

l0 = 2.103138× 10−11cm (1.183)
= Compton wavelength of proton,

t0 = l0/c = 7.0153141× 10−22sec (1.184)
= time taken by light running along Compton wavelength,

m0 = mp = 1.6726141× 10−24g, (1.185)

E0 = 938.2592MeV. (1.186)

For any other mass, they can easily be rescaled.
With these natural units we can drop c and h̄ in all formulas and write the action

simply as

A =


d4xL(x) =


d4xψ∗(x)(−∂2 −M2)ψ(x). (1.187)

Actually, since we are dealing with relativistic particles there is no fundamental
reason to assume ψ(x) to be a complex eld. In the non-relativistic theory this was
necessary in order to construct a term linear in the time derivative



dtψ∗i∂tψ. (1.188)
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For a real eld ψ(x) this would have been a pure surface term that does not inuence
the dynamics of the system. For second-order time derivatives as in (1.187) this is
no longer necessary.

Thus we shall also study the real scalar eld with an action

A =


d4xL(x) =
1

2



d4xφ(x)(−∂2 −M2)φ(x). (1.189)

In this case, a prefactor 1
2
is the normalization convention for the eld. We have

also here used the letter φ(x) to denote the real eld, as is commonly done.

1.2.3 Electromagnetic Fields

Electromagnetic elds move with light velocity and have no mass term.3 The elds
have two polarization degrees of freedom (right and left polarized) and are described
by the usual electromagnetic action. Historically, this was the very rst example of
a relativistic classical eld theory. Thus it could also have served as a guideline for
the previous construction of the action of the scalar eld φ(x).

The action may be given in terms of a real auxiliary four-vector potential Aµ(x)
from which the physical electric and magnetic elds can be derived as follows

Ei = −(∂0Ai − ∂iA0) = −∂tA
i − ∂iA

0, (1.190)

H i = −1

2
ǫijk(∂

iAk − ∂kAi) =
1

2
ǫijk(∂jA

k − ∂kA
j). (1.191)

Here ǫijk is the completely antisymmetric Levi-Cività tensor with ǫ123 = 1. It is
useful to introduce the so-called four-curl of the vector potential

Fµν = ∂µAν − ∂νAµ. (1.192)

Its six components are directly the eld strengths

Ei = −F 0i = F0i, H i = −F jk = −Fjk; ijk = cyclic. (1.193)

For this reason Fµν is also called the eld tensor. The electromagnetic action reads

A =


d4xL(x) =


d4x
1

2
(H2 − E2) = −1

4



d4xFµν
2. (1.194)

The four-curl Fµν satises the so-called Bianchi identity for any smooth Aµ [which
satises the Schwartz integrability condition (∂λ∂κ − ∂κ∂λ)Aµ = 0]:

∂µF̃
µν = 0, (1.195)

3The best upper limit for the mass of the electromagnetic eld Mγ deduced under terrestrial
conditions, from the shape of the earth’s magnetic eld, is Mγ < 4 · 10−48g corresponding to a
Compton wavelength λγ = h̄/Mγc > 1010cm (= larger than the diameter of the sun). Astrophysical
considerations (“whisps” in the crab nebula) give λγ > 1016cm. If metagalactic magnetic elds
are discovered, the Compton wavelength would be larger than 1024 − 1025cm, quite close to the
ultimate limit set by the horizon of the universe= c× age of the universe ∼ 1028cm. See G.V.
Chibisov, Sov. Phys. Usp. 19 , 624 (1976).
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where
F̃ µν = ǫµνλκFλκ (1.196)

is the so called dual eld tensor , with ǫµνλκ being the four-dimensional Levi-Cività
tensor with ǫ0123 = 1.

The equations of motion which extremize the action are

δA

δAµ(x)
= −∂µ

∂L(x)

∂µAν(x)
= ∂µF

µν(x) = 0. (1.197)

Separating the equations (1.196) and (1.197) into space and time components they
are seen to coincide with Maxwell’s equation in empty space

∂µF
µν = 0 : ∇ · E = 0, ∇×B− ∂tE = 0, (1.198)

∂µF̃
µν = 0 : ∇ ·B = 0, ∇× E+ ∂tB = 0. (1.199)

The eld tensor is invariant under local gauge transformations

Aµ(x) −−−→ Aµ(x) + ∂µΛ(x), (1.200)

where Λ(x) is any smooth eld which satises the integrability condition (∂µ∂ν −
∂ν∂µ)Λ = 0. In terms of the vector eld Aµ, the action reads explicitly

A =


d4xL(x) = −1

2



d4x[∂µAν(x)∂µAν(x)− ∂νAν(x)∂
µAµ(x)]

=
1

2



dxAµ(x)(g
µν∂2 − ∂µ∂ν)Aν(x). (1.201)

The latter form is very similar to the scalar action (1.160). The rst piece is the
same as (1.161) for each of the spatial components A1, A2, A3. The time component
A0, however, appears with an opposite sign. A eld with this property is called a
ghost eld . When trying to quantize such a eld, the associated particle states turn
out to have a negative norm. In order for the theory to be physically consistent it
will be necessary to make sure that such states can never appear in any scattering
process. The second piece in the action ∂νAν∂

µAµ is novel with respect to the scalar
case. It exists here as an additional Lorentz invariant since Aµ is a vector eld under
Lorentz transformation.

In order to see the Lorentz transformation properties, let us remember that in
electrodynamics the Lorentz forces on a moving particle carrying a charge and a
classical magnetic pole are obtained from the eld transformation

E||
′ = E|| , E⊥

′ = γ(E⊥ + v ×B), (1.202)

B||
′ = B|| , B⊥

′ = γ(B⊥ − v × E), (1.203)

with v being the velocity of the particle and γ ≡


1− v2/c2. Here E and B are
the elds in the laboratory, whereas E′ and B′ are the corresponding elds in the
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frame of the moving particle. They exert electric and magnetic forces eE′ + gB′.
The subscripts || and ⊥ denote the components parallel and orthogonal to v.

From this experimental fact we can derive the transformation law of the vector
eld Aµ under Lorentz transformations. The frame in which the moving particle is
at rest is related to the laboratory frame by

x′ = Bv̂(ζ)x, (1.204)

where Bv̂(ζ) is a boost in the v-direction with the rapidity

cosh ζ = γ, sinh ζ = γ
v

c
, tanh ζ =

v

c
. (1.205)

The transformation law (1.202) is equivalent to

A′µ(x′) = Bv̂(ζ)
µ
νA

ν(x). (1.206)

An analogous transformation law holds for rotations so that we can write, in general,

A′µ(x′) = Λ
µ
νA

ν(x). (1.207)

This transformation law diers from that of a scalar eld (1.156) in the way en-
visaged above for particles with non-zero intrinsic angular momentum. The eld
has several components. It points in the same spatial direction before and after the
coordination change. This is ensured by its components changing in the same way
as the coordination of the point xµ. Notice that as a consequence, ∂µAµ(x) is a
scalar eld in the sense dened in (1.156). Indeed

∂′µA′
µ(x

′) = (Λµ
ν∂

ν)Λµ
λAλ(x) = ∂νAν(x). (1.208)

For this reason the second term in the action (1.218) is Lorentz invariant, just as
the mass term in (1.189). The invariance of the rst term is shown similarly

A′ν(x′)∂′2A′
ν(x

′) = Λ
ν
λA

ν(x)∂′2
Λν

κAκ(x
′)

= Aν(x)∂′2Aν(x) = Aν(x)∂2Aν(x). (1.209)

Hence the action (1.218) does not change under Lorentz transformations, as it
should.

Just as the scalar action, also the electromagnetic action (1.194) is invariant
under a Lorentz group extended by translations (the so-called Poincaré group):

A′µ(x′) = Aµ(x) (1.210)

where
x′µ = Λ

µ
νx

ν + aµ. (1.211)

Similarly, we have under parity

Aµ P
−−−→ A′µ

P (x) = Ãµ(x̃), (1.212)
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and under time reversal,

A
T

−−−→ A′µ
T (x) = Ãµ(xT ) (1.213)

where the tilde inverts the spacial components

Ãµ = (A0,−Ai). (1.214)

In principle, there would have been the possibility of a parity transformation

Aµ
P

−−−→ Aµ
P (x) = ηP Ã

µ(x̃), (1.215)

with ηP = ±1, and in the case ηP = −1 the eld Aµ would have been called an axial

vector eld . The electromagnetic gauge eld Aµ, however, is denitely a vector eld.
This follows from the vector nature of the electric and the axial vector nature of
the magnetic eld, which are observed in the laboratory. Similarly, the phase under
time reversal of Aµ, which in principle could have been

Aµ
T

−−−→ A′µ
T (x) = ηT Ã

µ(xT ) (1.216)

with ηT = ±1, is given by (1.213). This is due to time reversal, under which all
currents change their direction. This reverses the direction of the B-eld but has
no inuence on the E-eld.

It is also possible to perform the operation of charge conjugation by exchanging
the sign of all charges without changing their direction of ow. Then E and B

change directions. Hence

Aµ C
−−−→ A′µ

C(x) =−Aµ(x). (1.217)

In general, the vector eld could have been transformed as

Aµ
C

−−−→ A′µ
C(x) = ηCA

µ(x) (1.218)

with ηC = ±1. The phase factor ηC = −1 expresses the experimental fact that the
electromagnetic eld is odd under charge conjugation.

1.2.4 Relativistic Free Fermi Fields

For Fermi elds, the situation is technically more involved. Experimentally, fermions
always have an even number of spin degrees of freedom. In order to describe these we
give the eld ψ a spin index α running through (2s+1) components. Under rotations,
these spin components are mixed with each other as observed experimentally in
the Stern-Gerlach experiment . Lorentz transformations lead to certain well dened
mixtures of dierent spin components.

The question arises whether we can construct a Lorentz invariant action involving
(2s+1) spinor eld components. To see the basic construction principle we use the
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known transformation law (1.207) for the 4-vector eld Aµ as a guide. For an
arbitrary spinor eld we postulate the transformation law

ψ(x)α
Λ

−−−→ψ′
α(x

′) = Dα
β(Λ)ψβ(x), (1.219)

with an appropriate (2s+1)× (2s+1) spinor transformation matrix Dα
β(Λ) which

we have to construct. This can be done by purely mathematical arguments. The
construction is the subject of the so-called group representation theory. First of all,
we perform two successive Lorentz transformations,

x′′ = Λx = Λ2x
′ = Λ2Λ1x. (1.220)

Since the Lorentz transformations Λ1,Λ2 are elements of a group, the product Λ ≡
Λ2Λ1 is again a Lorentz transformation. Under the individual factors Λ2 and Λ1,
the eld transforms as

Ψ(x)
Λ1−−−→ Ψ

′(x′) = D(Λ1)Ψ(x), (1.221)

Ψ
′(x)

Λ2−−−→ Ψ
′′(x′′) = D(Λ2)Ψ

′(x′), (1.222)

so that under Λ = Λ2Λ1,

Ψ(x)
Λ2Λ1−−−→ Ψ

′′(x′′) = D(Λ2)D(Λ1)Ψ(x). (1.223)

But for Λ itself, the transformation matrix is D(Λ) and

Ψ
′′(x′′) = D(Λ2Λ1)Ψ(x). (1.224)

Comparison of this with (1.223) shows that the matrices D(Λ) which mix the spinor
eld components under the Lorentz group must follow a group multiplication law
which has to be compatible with that of the group itself. The mapping

Λ −−−→ D(Λ) (1.225)

is a homomorphism and the D(Λ)’s form a matrix representation of the group.
Notice that the transformation law (1.207) for Aµ follows the same rule, with

D(Λ) ≡ Λ (1.226)

being the dening 4× 4 representation of the Lorentz group.
The group laws for Λ andD(Λ) are suciently stringent to allow only a countable

set of fundamental4 nite dimensional transformation laws D(Λ). They are char-
acterized by two quantum numbers, s1 and s2, with either one taking the possible
half-integer or integer values 0, 1

2
, 1, 3

2
, . . . .

4Mathematically, “fundamental” means that the representation is irreducible. Any arbitrary
representation is equivalent to a direct sum of irreducible ones.
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A representation D(s1,s2)(Λ) will turn out to harbor particles of spin |s1 − s2|
to s1 + s2. Hence, particles with a single xed spin s can only follow the D(s,0)(Λ)
or D(0,s)(Λ) transformation laws. For spin 1/2, the relativistic free-eld which is
invariant under parity has four components and is called the Dirac eld. It is
described by the action

A =


d4xL(x) =


d4xψ̄(x) (iγµ∂µ −M)ψ(x), (1.227)

where M is the mass of the spin-1/2 -particles described by ψ(x). The quantities
γµ are the Dirac matrices. , dened by dened by

γµ =



0 σµ

σ̃µ 0



, (1.228)

where σµ is a four-vector formed from the 2×2-dimensional Pauli matrices as follows:

σµ ≡ (1, σi), (1.229)

and

σ̃µ ≡ (1,−σi). (1.230)

The symbol ψ̄(x) is short for
ψ̄ ≡ ψ†γ0. (1.231)

As a historical note we mention that Dirac did not nd his equation by invoking
group-theoretic arguments. Instead, he was searching for an alternative solution to
the relativistic time-independent Schrödinger equation of an electron

Ĥψ(x) =


p̂2 +M2ψ(x) = Eψ(x). (1.232)

He observed that a square root linear in the momentum operator exists if the equa-
tion is considered as a matrix equation acting on several components of ψ(x, t).
These would indeed be necessary to represent the spin degrees of freedom of the
electron. So he made the ansatz

ĤDψ(x) = (−iαip̂i + βM)ψ(x) = Eψ(x), (1.233)

with unknown matrices αi, β. Being the square root of Ĥ, the operator ĤD has
to fulll the equation Ĥ2

D = p̂2 + M2. This implies that the matrices satisfy the
algebraic relations:

{αi,αj} = δij , {αi, β} = 0, β2 = 1. (1.234)

By multiplying Eq. (1.235) with β and going over to a time-dependent equation by
replacing E by i∂x0 , he obtained the Dirac equation

(iγµp̂µ −M)ψ(x) = 0, (1.235)
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with the matrices
γ0 ≡ β, γi ≡ βαi. (1.236)

These satisfy the anticommutation rules

{γµ, γν} = 2gµν, (1.237)

which are indeed solved by the Dirac matrices (1.228).
It has become customary to abbreviate the contraction of γµ with any vector vµ

by
/v ≡ γµvµ, (1.238)

and write the Dirac equation as

(/p −M)ψ(x) = 0, (1.239)

or
(i/∂ −M)ψ(x) = 0. (1.240)

1.2.5 Perturbation Theory of Relativistic Fields

If interactions are present, the Lagrangian consists of a sum

L


ψ, ψ̄,ϕ


= L0 + Lint. (1.241)

As in the case of nonrelativistic elds, all time ordered Green’s functions can be
obtained from the derivatives with respect to the external sources of the generating
functional

Z [η, η̄, j] = const × 0|Tei


dx(Lint+η̄ψ+ψ̄η+jϕ)|0. (1.242)

The elds in the exponent follow free equations of motion and |0 is the free-eld
vacuum. The constant is conventionally chosen to make Z [0, 0, 0] = 1, i. e.

const =


0|Tei


dxLint(ψ,ψ̄,ϕ)|0
−1

. (1.243)

This normalization may always be enforced at the very end of any calculation such
that Z [η, η̄, j] is only interesting as far as its functional dependence is concerned,
modulo the irrelevant constant in front.

It is then straightforward to show that Z [η, η̄, j] can alternatively be computed
via the Feynman path integral formula

Z [η, η̄, j] = const ×


DψDψ̄Dϕei


dx[L0(ψ,ψ̄,ϕ)+Lint+η̄ψ+ψ̄η+jϕ]. (1.244)

Here the elds are no more operators but classical functions (with the mental reser-
vation that classical Fermi elds are anticommuting objects). Notice that contrary
to the operator formula (1.242) the full action appears in the exponent.
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For simplicity, we demonstrate the equivalence only for one real scalar eld ϕ(x).
The extension to other elds is immediate [1, 3]. First note that it is sucient to
give the proof for the free eld case, i. e.,

Z0 [j] = 0|Tei


dxj(x)ϕ(x)|0
= const ×



Dϕei


dx[ 12ϕ(x)(−✷x−µ2)ϕ(x)+j(x)ϕ(x)]. (1.245)

Indeed, if it holds there, a simple multiplication on both sides of (1.245) by the
dierential operator

ei


dxLint( 1
i

δ
δj(x)) (1.246)

would extend it to the interacting functionals (1.242) or (1.244). Equation (1.245)
follows directly from Wick’s theorem according to which any time ordered product
of a free eld can be expanded into a sum of normal products with all possible time
ordered contractions. This statement can be summarized in an operator form valid
for any functional F [ϕ] of a free eld ϕ(x):

TF [ϕ] = e
1
2



dxdy δ
δϕ(x)

D(x−y) δ
δϕ(y) N̂(F [ϕ]), (1.247)

where D(x− y) is the free-eld propagator

D(x− y) =
i

−✷x − µ2 + iǫ
δ(x− y) =



d4q

(2π)4
e−iq(x−y) i

q2 − µ2 + iǫ
. (1.248)

Applying this to (1.247) gives

Z0 = e
1
2



dxdy δ
δϕ̂(x)

D(x−y) δ
δϕ̂(y) 0|N̂(ei



dxj(x)ϕ̂(x))|0
= e−

1
2



dxdyj(x)D(x−y)j(y) 0|N̂(ei


dxj(x)ϕ̂(x))|0
= e−

1
2



dxdyj(x)D(x−y)j(y). (1.249)

The last part of the equation follows from the vanishing of all normal products of
ϕ(x) between vacuum states.

Exactly the same result is obtained by performing the functional integral in
(1.245) and using the functional integral formula (1.79). The matrix A is equal to
A(x, y) = (−✷x − µ2) δ(x− y), and its inverse yields the propagator D(x− y):

A−1(x, y) =
1

−✷x − µ2 + iǫ
δ(x− y) = −iD(x− y) (1.250)

thus reproducing once more (1.249).
For the generating functional of a free Dirac eld theory

Z0 [η, η̄] = 0|Tei


(η̄ψ̂+ˆ̄ψη)dx|0
= const ×



DψDψ̄ei


dx[L0(ψ,ψ̄)+η̄ψ+ψ̄η], (1.251)
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with the free-eld Lagrangian

L0(x) = ψ̄(x) (iγµ∂µ −M)ψ(x), (1.252)

we obtain, similarly,

Z0[η̄, η] = e
1
2



dxdy δ
δψ(x)

G0(x−y) δ

δψ̄(y) 0|N̂(ei


dx(η̄ψ̂+ˆ̄ψη))|0
= e−

1
2



dxdyη̄(x)G0(x−y)η(y) 0|N̂(ei


dx(η̄ψ̂+ˆ̄ψη))|0
= e−

1
2



dxdyη̄(x)G0(x−y)η(y). (1.253)

Now,
A(x, y) = (iγµ∂µ −M) δ(x− y), (1.254)

and its inverse yields the fermion propagator G0(x− y):

A−1(x, y) =
1

iγµ∂µ −M + iǫ
δ(x− y) = −iG0(x− y). (1.255)

Note that it is Wick’s expansion which supplies the free part of the Lagrangian
when going from the operator form (1.247) to the functional version (1.244).
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Our observation of nature must be diligent,

our reection profound, and our experiments exact.

Denis Diderot (1713–1784)

2

Plasma Oscillations

In this chapter we develop a collective quantum eld theory for a gas of many
electrons which interact only via long-range Coulomb forces. The Coulomb forces
give rise to collective modes called plasmons.

2.1 General Formalism

The simplest application of the functional method transforms the grand-canonicel
partition function (1.120) from the dening formulation in terms of a fundamental
eld to a re-formulation in terms of a collective quantum eld. The new formulation
describes the phenomeana directly by means of its fundamental excitations called
plasmons. For this, we make use of the Hubbard-Stratonovich transformation in
the form (1.79) and observe that a two-body interaction (1.45) in the generating
functional can be created by a uctuating auxiliary eld ϕ(x) as follows:

exp


−
i

2



dxdx′ψ∗(x)ψ∗(x′)ψ(x)ψ(x′)V (x, x′)


(2.1)

= const ×


Dϕ



i

2



dxdx′



ϕ(x)V −1(x, x′)ϕ(x′)−2ϕ(x)ψ∗(x)ψ(x)δ(x− x′)




.

To abbreviate the notation, we have used a four-vector notation with

x ≡ (x, t), dx ≡ d3xdt, δ(x) ≡ δ3(x)δ(t).

The symbol V −1(x, x′) denotes the functional inverse of the matrix V (x, x′), which
is the solution of the equation



dx′V −1(x, x′)V (x′, x′′) = δ(x− x′′). (2.2)

The constant prefactor in (2.1) is [det V ]−1/2. Absorbing this in the always omit-
ted normalization factor N of the functional integral, the grand-canonical partition
function Ω = Z becomes

Z[η∗, η] =


Dψ∗DψDϕ exp


iA+ i


dx (η∗(x)ψ(x) + ψ∗(x)η(x))


, (2.3)
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42 2 Plasma Oscillations

where the new action is

A[ψ∗,ψ,ϕ] =


dxdx′



ψ∗(x) [i∂t − ξ(−i∇)− ϕ(x)] δ(x− x′)ψ(x′) (2.4)

+
1

2
ϕ(x)V −1(x, x′)ϕ(x′)



.

Note that the eect of using formula (1.79) in the generating functional amounts to
the addition of the complete square involving the eld ϕ in the exponent:

1

2



dxdx′



ϕ(x)−


dyV (x, y)ψ∗(y)ψ(y)


V −1(x, x′)


ϕ(x′)−


dy′V (x′, y′)ψ∗(y′)ψ(y′)


,

(2.5)
followed by a functional integration over ϕ(x). The addition of (2.5) to the action
(2.12) can be generated from a source term

AI =


DI(x) e−
1

2



dxI(x)V (x.x′)I(x′)+I(x)[ϕ(x)−


dy V (x,y)ψ∗(y)ψ(y)]. (2.6)

The generating functional Z remains unchanged by the two successive manipulations
as follows from the observation that the integral Dϕ produces the irrelevant constant
[det V ]1/2, which is precisely cancelled by the functional over I(x). This procedure
of going from (1.45) to (2.4) is probably simpler mnemonically than formula (1.79).

The physical signicance of the new eld ϕ(x) is easy to understand: ϕ(x) is
directly related to the particle density. At the classical level this is seen immediately
by extremizing the action (2.4) with respect to variations δϕ(x), which yield:

δA

δϕ(x)
= ϕ(x) −



dy V (x, y)ψ∗(y)ψ(y) = 0. (2.7)

Quantum mechanically, there are uctuations around the eld conguration ϕ(x)
that is determined by Eq. (2.7). These make the eld ϕ(x) dierent from the com-
posite operator O(x) ≡



dyV (x, y)ψ∗(y)ψ(y). But due to the Gaussian nature of
the functional integral over ϕ(x), the uctuations are rather trivial. Thus we can
easily see that the propagators of the two elds ϕ(x) and O(x) dier only by the
direct interaction, i.e.,

T (ϕ(x)ϕ(x′)) = V (x− x′) + T (O(x)O(x′)) .

Note that if a potential V (x, y) is dominantly caused by a single fundamental-
particle exchange, the eld ϕ(x) coincides with the eld of this particle: If, for
example, V (x, y) represents the Coulomb interaction

V (x, x′) =
e2

|x− x′|
δ(t− t′), (2.8)

then Eq. (2.7) amounts to

ϕ(x, t) = −
4πe2

∇
2 ψ∗(x, t)ψ(x, t). (2.9)
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This reveals that the auxiliary eld ϕ(x, t) is the electric potential of the system.
If the particles ψ(x) have spin indices, the potential will, in this example, be spin

conserving at every vertex, and Eq. (2.7) must be read as spin-contracted:

δA

∂ϕ(x)
= ϕ(x) −O(x) ≡ ϕ(x)−



d4yV (x, y)ψ∗α(y)ψα(y) = 0. (2.10)

This restriction is just for convenience and can easily be lifted later. Nothing in
our procedure depends on this particular form of V (x, y) and O. In fact, V could
arise from the exchange of one or many dierent fundamental particles and their
multiparticle congurations (for example, π, ππ, σ,ϕ, etc. in nuclei [1]) so that the
spin dependence is the rule rather than the exception.

The important point is now that the auxiliary eld ϕ(x) can be made the only

eld of the theory by integrating out ψ∗,ψ in Eq. (2.3), using formula (1.80). Thus
one obtains

Z[η∗, η] ≡ Ω[η∗, η] = NeiA, (2.11)

where the new action is

A[ϕ] = ±Tr log


iG−1
ϕ



+
1

2



dxdx′η∗(x)Gϕ(x, x
′)η(x′), (2.12)

with Gϕ(x, x
′) being the Green function of the fundamental particles in an external

classical eld ϕ(x):

[i∂t − χ(−i∇)− ϕ(x)]Gϕ(x, x
′) = iδ(x− x′). (2.13)

The eld ϕ(x) is called a plasmon eld. The new plasmon action can easily be
interpreted graphically. For this, one expands Gϕ(x, x

′) in powers of ϕ:

Gϕ(x, x
′) = G0(x− x′)− i



dx1G0(x− x1)ϕ(x1 − x′) + . . . (2.14)

Hence the couplings to the external currents η∗, η in (2.12) amount to radiating one,
two, etc. ϕ elds from every external line of fundamental particles (see Fig. 2.1). An
expansion of the expression Tr log(iG−1

ϕ ) in powers of ϕ gives

±iTr log(iG−1
ϕ ) = ±iTr log(iG−1

0 ) ± iTr log(1 + iG0ϕ)

= ±iTr log(iG−1
0 ) ∓ iTr

∞


n=1

(−iG0ϕ)
n 1

n
. (2.15)

i
E−ζ(p)

ϕ

Figure 2.1 This diagram displays the piece of the collective action (2.12). The original

fundamental particle (fat line) can enter and leave the diagrams only via external currents.

It emits an arbitrary number of plasmonson its way (wiggly lines).
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The nth term corresponds to a loop of the original fundamental particle emitting
nϕ lines (see Fig. 2.2).

Figure 2.2 The non-polynomial self-interaction terms of plasmons arising from the Tr log

in (2.12) are equal to the single loop diagrams emitting n plasmons.

Let us now use the action (2.12) to construct a quantum eld theory of plasmons.
For this we may include the quadratic term

±iTr(G0ϕ)
21

2
(2.16)

into the free part of ϕ in (2.12) and treat the remainder perturbatively. The free
propagator of the plasmon becomes

{0|Tϕ(x)ϕ(x′)|0} ≡ (2s+ 1)G0(x
′, x). (2.17)

This corresponds to an inclusion of all ring graphs into the V -propagator (see Fig.
2.3).

Figure 2.3 Free plasmon propagator containing an innite sequence of single loop cor-

rections (“bubblewise summation”)

It is worth pointing out that the propagator in momentum space Gpl(k) contains
actually two important physical informations. From the derivation at xed temper-
ature it appears in the transformed action (2.12) as a function of discrete Euclidean
frequencies νn = 2πnT only. In this way it serves for the time-independent descrip-
tion of the system at xed T . However, the calculation of the correlation function
(2.17) makes use of the Fourier representation in the entire complex energy plane. A
suitable analytic continuation of this Fourier representation can be used to calculate
also the time-dependent collective phenomena for real times [2].

With the propagator (2.17) and the interactions given by (2.15), the original the-
ory of fundamental elds ψ∗,ψ has been transformed into a theory of ϕ-elds whose
bare propagator accounts for the original potential which has absorbed ringwise an
innite sequence of fundamental loops.
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This transformation is exact. Nothing in our procedure depends on the statistics
of the fundamental particles nor on the shape of the potential. Such properties
are important when it comes to solving the theory perturbatively. Only under
appropriate physical circumstances will the eld ϕ represent important collective
excitations with weak residual interactions. Then the new formulation is of great
use in understanding the dynamics of the system. As an illustration consider a dilute
fermion gas of very low temperature. Then the function ξ(−i∇) is ǫ(−i∇)−µ with
ǫ(−i∇) = −∇

2/2m.

2.2 Physical Consequences

Let the potential be translationally invariant and instantaneous:

V (x, x′) = δ(t− t′)V (x− x′). (2.18)

Then the plasmon propagator (2.17) reads in momentum space

Gpl(ν,k) = V (k)
1

1− V (k)π(ν,k)
, (2.19)

where the single electron loop symbolizes the analytic expression1

π(ν,k) = 2
T

V



p

1

iω − p2/2m+ µ

1

i(ω + ν) − (p+ k)2/2m+ µ
. (2.20)

The frequencies ω and ν are odd and even multiples of πT , respectively. In order
to calculate the sum we introduce a convergence-enforcing factor eiωη, and rewrite
(2.20) as [3]

π(ν,k) = 2


d3p

(2π)3
1

ξ(p+ k)− ξ(p)− iν

× T


ωn

eiωnη



1

i(ωn + ν) − ξ(p+ k)
−

1

iωn − ξ(p)



. (2.21)

Using the summation formula (1.104), this becomes

π(ν,k) = 2


d3p

(2π)3
n(p+ k) − n(p)

ǫ(p + k)− ǫ(p)− iν
, (2.22)

or, after some rearrangement,

π(ν,k) = −2


d3p

(2π)3
n(p)



1

ǫ(p+ k) − ǫ(p) − iν
+

1

ǫ(p− k)− ǫ(p) + iν



. (2.23)

1The factor 2 stems from the trace over the electron spin.
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Let us study this function for real physical frequencies ω = iν where we rewrite it
as

π(ω,k)=−2


d3p

(2π)3
n(p)



1

ǫ(p+k)−ǫ(p)− ω
+

1

ǫ(p−k)−ǫ(p) + ω



, (2.24)

which can be brought to the form

π(ω,k)=2
k2

mω2



d3p

(2π)3
n(p)

1

(ω − p · k/m+ iη)2 − (k2/2M)2
. (2.25)

For |ω| > pFk/m+ k2/2m, the integrand is real and we can expand

π(ω,k) = 2
k2

mω2



d3p

(2π)3
n(p)



1 +
2p · k

mω
+ 3



p · k

mω

2

+



p · k

mω

3

+
80(p · k)4 +m2ω2k4

16m2ω4
+ . . .



 . (2.26)

2.2.1 Zero Temperature

For zero temperature, the chemical potential µ is equal to the Fermi energy εF =
p2F/2m, and all states below the Fermi momentum pF are occupied so that the
occupation number is given by a Heaviside function n(p) = Θ(p − pF ). Then the
integral in (2.26) can be performed trivially as

N

V
= n = 2



d3p

(2π)3
nT=0(p) =

p3F
3π2

, (2.27)

and we obtain the expansion

π(ω,k)=
k2

ω2

n

m



1 +
3

5



pFk

mω

2

+
1

5



pFk

mω

4

+
1

16

k4

m2ω2
+ . . .



 . (2.28)

Inserting this into (2.19) we nd, for long wavelengths, the Green function

Gpl(ν,k) ≈ V (k)



1−
V (k)

ω2

n

m
+ . . .



−1

. (2.29)

Thus the original propagator is modied by a factor

ǫ(ω,k) = 1−
4πe2

ω2

n

m
+ . . . . (2.30)

The dielectric constant vanishes at the frequency

ω = ωpl =



4πe2

m
, (2.31)
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which is the famous plasma frequency of the electron gas. At this frequency, the
plasma propagator (2.19) has a pole on the real-ω axis, implying the existence of an
undamped excitation of the system.

For an electron gas, we insert the Coulomb interaction (2.9) and obtain

Gpl(ν,k) ≈
4πe2

k2



1−
4πe2

mω2
n+ . . .



−1

. (2.32)

Thus the original Coulomb propagator is modied by a factor

ǫ(ω,k) = 1−
4πe2

mω2
n + . . . , (2.33)

which is simply the dielectric constant.
The zero temperature limit can also be calculated exactly starting from the

expression (2.26), written in the form

π(ω,k) = −2


d3p

(2π)3
Θ(p− pF )



1

p · k+ k2/2m− ω
+ (ω → −ω)



. (2.34)

Performing the integral yields

π(ω,k) = −
mpF
2π2







1−
1

2kpF



p2F −



k

2
+

mω

k

2

+ p2F



 log
k2 + 2mω − 2kpF
k2 + 2mω + 2kpF







+ (ω → −ω). (2.35)

The lowest terms of a Taylor expansion in powers of k agree with (2.28).

2.2.2 Short-Range Potential

Let us also nd the real poles of Gpl(ν,k) for a short-range potential where the
singularity at k = 0 is absent. Then a rotationally invariant [V (k)]−1 has the long-
wavelength expansion

[V (k)]−1 = [V (0)]−1 + ak2 + . . . , (2.36)

as long as [V (0)]−1 is nite and positive, i.e., for a well behaved overall repulsive
potential satisfying V (0) =



d3xV (x) > 0. Then the Green function (2.19) becomes

Gpl(ω,k) = ω2







ω2 [V (0)]−1 + aω2k2 − k2 n

m



1 +
3

5



pFk

mω

2

+ . . .











−1

. (2.37)

There is a pole at ω = ±c0k, where

c0 = V (0)
n

m
(2.38)
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is the velocity of zero sound.

In the neighborhood of the positive-energy pole, the propagator has the form

Gpl(k0, k) ≈ V (0)×
|k|

ω − c0|k|
. (2.39)

More details can be studied in the textbook [4].

Appendix 2A Fluctuations around the Plasmon Field

Here we derive the quantum mechanical uctuations around the classical equation
of motion [recall (2.7)]

ϕ(x) =


dy V (x, y)ψ†(y)ψ(y). (2A.1)

They are quite simple to calculate. Let us compare the Green function of ϕ(x) with
that of the composite operators on the right-hand side of Eq. (2A.1). The Green
functions of ϕ are generated by adding external currents



dxϕ(x)I(x) to the nal
action (2.12) respectively, and by forming functional derivatives δ/δI . The Green
functions of the composite operators, on the other hand, are obtained by adding



dx



dyV (x, y)ψ†(y)ψ(y)


K(x)

to the original actions (2.4) and by forming functional derivatives δ/δK. It is obvious
that the sources K(x) can be included in the nal action (2.12) by simply replacing:

ϕ(x) → ϕ′(x) = ϕ(x)−


dx′K(x′)V (x′, x).

If one now shifts the functional integrations to these new translated variables and
drops the irrelevant superscript “prime”, the actions can be rewritten as

A[ϕ] = ±iTr log(iG−1
ϕ )+

1

2



dxdx′ϕ(x)V −1(x, x′)ϕ(x′)+i


dxdx′η†(x)Gϕ(x, x
′)η(x)

+


dxϕ(x)I(x)−
1

2



dxdx′I(x)V (x, x′)I(x′). (2A.2)

In this form, the action display clearly the fact that derivatives of the partition
function with respect to the source I(x) coincide exactly with the the right-hand
side of (2.1). Thus the propagators of the plasmon eld ϕ(x) and of the composite
operator



dyV (x, y)ψ†(y)ψ(y) are related by

ϕ(x)ϕ(x′) = −
δ(2)Z

δI(x)δI(x′)
= V −1(x, x′) −

δ(2)Z

δK(x)δK(x′)
(2A.3)

= V −1(x, x′) + 0|T̂



dyV (x, y)ψ†(y)ψ(y)




dy′V (x′, y′)ψ†(y′)ψ(y′)


|0,

where T̂ is the time-ordering operator.
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What we wish, we readily believe,

and what we ourselves think, we imagine others think also.

Julius Caesar (100 B.C.–44B.C.)

3

Superconductors

Superconductors are made from materials which do not pose any resistance to the
ow of electricity. The phenomenon was rst observed in 1911 by the Dutch physicist
Heike Kamerlingh Onnes at Leiden University. When he cooled mercury down to
the temperature of liquid helium, which appears at about 4 degree Kelvin (1 degree
Kelvin −273.15 ◦C), its resistance suddenly disappeared. For this discovery, Onnes
won the Nobel Prize in physics in 1913.

Superconductors have an important property, which distinguishes them from or-
dinary conductors of extremely low resistance: They are perfect diamagnets. This
implies that they do not tolerate, in their inside, any magnetic elds. This is the
so-called Meissner-Ochsenfeld eect discovered in 1933. This eect causes supercon-
ductive materials to hover over a suciently strong magnetic eld. They are lifted
as soon as they are cooled below the critical temperature (levitation). A perfect
conductor would only hover above the magnet if brought in from the outside due to
induction, generating a current with a magnetic moment opposite to the external
eld.

For the purpose of energy conservation, it is a challenge to nd superconductive
materials which can transport high currents without loss at room temperature. Since
1941, the record was held for a long time by niobium-nitride, which becomes super-
conductive at 16 K, surpassed in 1953 by vanadium-silicon with a critical tempera-
ture of 17.5 K. In 1962, a rst commercial superconducting wire was manufactured
from an alloy of niobium and titanium. First applications were made in 1987 in
the Fermilab high-energy particle-accelerator Tevatron where the necessary strong
magnetic elds were produced by supercurrents in copper-clad niobium-titanium.
The magnets had been developed in 1960 at the Rutherford Appleton Laboratory
in the UK.

The rst satisfactory theory of superconductivity was developed in 1957 by J.
Bardeen, L.N. Cooper, and J.R. Schrieer [1], now called BCS theory, which won
them the Nobel prize in 1972. The theory made essential use of a fermionic version
of a canonical transformation that had been invented ten years earlier for bosons
by N.N. Bogoliubov, to expain the phenomenon of superuidity in a dilute gas of
bosons [2]. The BCS theory explains the early forms of superconductivity observed
for elements and simple alloys at temperatures close to absolute zero.
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New advances were made in the 1980 when the rst organic superconductor was
synthesized by the Danish researcher Klaus Bechgaard of the University of Copen-
hagen and his group [3]. The new material turned out to become superconductive
at a transition temperature of about 1.2K. The possibility that this could happen
had been pointed out in 1964 by Bill Little at Stanford University [4].

A more recent major breakthrough was made in 1986 by Alex Müller and Georg
Bednorz at the IBM Research Laboratory in Rüschlikon, Switzerland [5]. They
synthesized brittle ceramic compound that became superconducting at the record
temperature of 30 K. What made this discovery so remarkable was that ceramics
are normally insulators, and do not conduct electricity at all. So, researchers had
not considered them as possible high-temperature superconductor candidates. The
compound that Müller and Bednorz synthesized of a mixture of Lanthanum, Barium,
Copper, and Oxygen behaved in a not-as-yet-understood way. Their discovery won
them the Nobel Prize in 1987. It was later found that tiny amounts of this material
were actually superconducting at 58 K. Since then there has been a great deal
of activity trying to nd ceramics of many combinations with higher and higher
critical temperatures. In 1987 superconductivity was reached in a material called
YBCO (Yttrium Barium Copper Oxide) at 92 K, a temperature which can simply
be reached by cooling the material with liquid nitrogen.

The present world record was reached in 2015 at Tc = 203K in a sulfur hydride
system. Under extreme pressure of 300 000 atmospheres, this critical temperature
can be raised by 25 to 30 more degrees (see Fig. 3.1). For more details see [6, 7, 8].

Figure 3.1 Time evolution of critical temperatures at which superconductivity sets in (in

units of Kelvin). The right-hand margins indicate the liquid by which the temperatures

can be reached. From Ref. [6].
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3.1 General Formulation

The theoretical description of low-temperature superconductivity is based on a col-
lective eld complementary to the plasmon eld. The complementary eld is a pair

eld which describes the dominant low-energy collective systems such as the su-
perconductors to be discussed in this Chapter. The pair eld is in general bilocal
and will be denoted by ∆(x t;x′t′), with two space and two time arguments. It
is introduced into the generating functional by performing a Hubbard-Stratonovich
transformation of the type (1.80), according to which one rewrites the exponential
of the interaction term in (2.1) in the partition function (1.75) as [9, 10]:

exp


− i

2



dxdx′ψ∗(x)ψ∗(x′)ψ(x′)ψ(x)V (x, x′)


= const ×


D∆(x, x′)D∆
∗(x, x′)

×exp



i

2



dxdx′


|∆(x, x′)|2
1

V (x, x′)
−∆

∗(x, x′)ψ(x)ψ(x′)− ψ∗(x)ψ∗(x′)∆(x, x′)



.

(3.1)

In contrast to the similar-looking plasmon expression (2.1), the inverse 1/V (x, x′) in
(3.1) is understood as a numeric division for each x, y, not as a functional inversion.
Hence the grand-canonical potential becomes

Z[η, η∗] =


Dψ∗DψD∆
∗D∆ eiA[ψ∗,ψ,∆∗,∆]+i



dx(ψ∗(x)η(x)+c.c.), (3.2)

with the action

A[ψ∗,ψ,∆∗,∆] =


dxdx′


ψ∗(x) [i∂t − ξ(−i∇)] δ(x− x′)ψ(x′)

−1

2
∆

∗(x, x′)ψ(x)ψ(x′)− 1

2
ψ∗(x)ψ∗(x′)∆(x, x′) +

1

2
|∆(x, x′)|2

1

V (x, x′)



, (3.3)

where ξp ≡ εp − µ is the grand-canonical single particle energy (recall Subsec-
tion 1.1.7). This new action arises from the original one in (1.75) by adding to it
the complete square

i

2



dxdx′ |∆(x, x)− V (x′, x)ψ(x′)ψ(x)|2
1

V (x, x′)
,

which removes the fourth-order interaction term and gives, upon functional integra-
tion over



D∆
∗D∆, merely an irrelevant constant factor to the generating func-

tional.
At the classical level, the eld ∆(x, x′) is nothing but a convenient abbreviation

for the composite eld V (x, x′)ψ(x)ψ(x′). This follows from the equation of motion
obtained by extremizing the new action with respect to δ∆∗(x, x′). This yields

δA

δ∆∗(x, x′)
=

1

2V (x, x′)
[∆(x, x′)− V (x, x′)ψ(x)ψ(x′)] ≡ 0. (3.4)
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Quantum mechanically, there are Gaussian uctuations around this solution which
are discussed in Appendix 3C.

Expression (3.3) is quadratic in the fundamental elds ψ(x) and can be rewritten
in a matrix form as

1

2
f ∗(x)A(x, x′)f(x′)

=
1

2
f †(x)



[i∂t − ξ(−i∇)] δ(x− x′) −∆(x, x′)
−∆

∗(x, x′) ∓ [i∂t + ξ(i∇)] δ(x− x′)



f(x′), (3.5)

where f(x) denotes the fundamental eld doublets f(x) =



ψ(x)
ψ∗(x)



and f † ≡ f ∗T .

The eld f ∗(x) is not independent of f(x). Indeed, there is an identity

f †Af = fT



0 1
1 0



Af. (3.6)

Therefore, the real-eld formula (1.79) must be used to evaluate the functional
integral for the generating functional

Z[η∗, η] =


D∆
∗D∆ eiA[∆∗,∆]− 1

2



dx


dx′j†(x)G∆(x,x′)j(x′), (3.7)

where j(x) collects the external source η(x) and its complex conjugate, j(x) ≡


η(x)
η∗(x)



. Then the collective action reads

A[∆∗,∆] = ±
i

2
Tr log



iG−1
∆
(x, x′)



+
1

2



dxdx′|∆(x, x′)|2
1

V (x, x′)
. (3.8)

The 2 × 2 matrix G∆ denotes the propagator iA−1 which satises the functional
equation



dx′′


[i∂t − ξ(−i∇)] δ(x−x′′) −∆(x, x′′)
−∆

∗(x, x′′) ∓ [i∂t + ξ(i∇)] δ(x−x′′)



G∆(x
′′, x′)= iδ(x−x′).

(3.9)

Writing G∆ as a matrix



G G∆

G†
∆

G̃



, the mean-eld equations associated with this

action are precisely the equations used by Gorkov to study the behavior of type II
superconductors.1 With Z[η∗, η] being the full partition function of the system,
the uctuations of the collective eld ∆(x, x′) can now be incorporated, at least in
principle, thereby yielding corrections to these equations.

Let us set the sources in the generating functional Z[η∗, η] equal to zero and
investigate the behavior of the collective quantum eld ∆. In particular, we want to

1As an example see p. 444 in Ref. [11].
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develop Feynman rules for a perturbative treatment of the uctuations of ∆(x, x′).
As a rst step we expand the Green function G∆ in powers of ∆ as

G∆ = G0 − iG0



0 ∆

∆
∗ 0



G0 −G0



0 ∆

∆
∗ 0



G0



0 ∆

∆
∗ 0



G0 + . . . (3.10)

with

G0(x, x
′) =











i

i∂t − ξ(−i∇)
δ(x− x′) 0

0 ∓ i

i∂t + ξ(i∇)
δ(x− x′)











. (3.11)

We shall see later that this expansion is applicable only close to the critical tempera-
ture Tc. Inserting this expansion into (3.7), the source term can be interpreted graph-
ically by the absorption and emission of lines ∆(k) and ∆

∗(k), respectively, from
virtual zig-zag congurations of the underlying particles ψ(k),ψ∗(k) (see Fig. 3.2).

i
ν−ν′+ω−ξq−q′+p

i
ν′−ω−ξq′−p

i
ω−ξp∆∗(ν′,q′)

∆(ν,q)

Figure 3.2 Fundamental particles (fat lines) entering any diagram only via the external

currents in the last term of (3.7), absorbing n pairs from the right (the past) and emitting

the same number from the left (the future).

The functional submatrices in G0 have the Fourier representation

G0(x, x
′) =

T

V



p

i

p0 − ξp
e−i(p0t−px), (3.12)

G̃0(x, x
′) = ±

T

V



p

i

−p0 − ξ−p

e−i(p0t−px), (3.13)

where we have used the notation ξp for the Fourier components ξ(p) of ξ(−i∇).
The rst matrix coincides with the operator Green function

G0(x− x′) = 0|Tψ(x)ψ†(x′)|0. (3.14)

The second one corresponds to

G̃0(x− x′) = 0|Tψ†(x)ψ(x′)|0 = ±0|T


ψ(x′)ψ†(x)


|0
= ±G0(x

′ − x) ≡ ±[G0(x, x
′)]T , (3.15)
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where T denotes the transposition in the functional sense (i.e., x and x′ are in-
terchanged). After a Wick rotation of the energy integration contour, the Fourier
components of the Green functions at xed energy read

G0(x− x′,ω) = −


p

1

iω − ξp
eip(x−x′) (3.16)

G̃0(x− x′,ω) = ∓


p

1

−iω − ξ−p

eip(x−x′) = ∓G0(x
′ − x,−ω). (3.17)

The Tr log term in Eq. (3.8) can be interpreted graphically just as easily by expand-
ing as in (3.134):

±
i

2
Tr log



iG−1
∆



= ±
i

2
Tr log



iG−1
0



∓ i

2
Tr



−iG0



0 ∆

∆
∗ 0



∆
∗
n

1

n
. (3.18)

The rst term only changes the irrelevant normalization N of Z. To the remaining
sum only even powers can contribute so that we can rewrite

A[∆∗,∆] = ∓i
∞


n=1

(−)n

2n
Tr



i

i∂t − ξ(−i∇)
δ



∆



∓i

i∂t + ξ(i∇)
δ



∆
∗
n

+
1

2



dxdx′|∆(x, x′)|2
1

V (x, x′)

=
∞


n=1

An[∆
∗,∆] +

1

2



dxdx′|∆(x, x′)|2
1

V (x, x′)
. (3.19)

This form of the action allows an immediate quantization of the collective eld ∆.
The graphical rules are slightly more involved technically than in the plasmon case
since the pair eld is bilocal. Consider at rst the free collective elds which can be
obtained from the quadratic part of the action:

A2[∆
∗,∆] = − i

2
Tr



i

i∂t − ξ(−i∇)
δ



∆



i

i∂t + ξ(i∇)
δ



∆
∗


. (3.20)

Variation with respect to ∆ displays the equations of motion

∆(x, x′) = iV (x, x′)



i

i∂t − ξ(−i∇)
δ



∆



i

i∂t + ξ(i∇)
δ



. (3.21)

This equation coincides exactly with the Bethe-Salpeter equation [18], in ladder
approximation, for two-body bound-state vertex functions, usually denoted in mo-
mentum space by

Γ(p, p′) =


dxdx′ exp[i(px + p′x′)]∆(x, x′). (3.22)

Thus the free excitations of the eld ∆(x, x′) consist of bound pairs of the original
fundamental particles. The eld ∆(x, x′) will consequently be called pair eld. If
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we introduce total and relative momenta q and P = (p − p′)/2, then (3.21) can be
written as2

Γ(P |q) = −i


d4P ′

(2π)4
V (P − P ′)

i

q0/2 + P ′
0 − ξq/2+P′ + iη sgn ξ

× Γ(P ′|q)
i

q0/2− P ′
0 − ξq/2−P′ + iη sgn ξ

. (3.23)

Graphically this formula can be represented shown in Fig. 3.3. The vertex Γ(P |q)

Figure 3.3 Free pair eld following the Bethe-Salpeter equation as pictured in this dia-

gram.

produces a Bethe-Salpeter wave function:

Φ(P |q) = N
i

q0/2 + P0 − ξq/2+P + iη sgn ξ

×
i

q0/2 + P0 − ξq/2+P + iη sgn ξ
Γ(P |q). (3.24)

It satises

G0 (q/2 + P )G0 (q/2− P )Φ(P |q) = −i
 dP ′

(2π)4
V (P, P ′)Φ(P ′|q), (3.25)

thus coinciding, up to a normalization, with the Fourier transform of the two-body
state wave functions

ψ(x, t;x′, t′) = 0|T (ψ(x, t)ψ(x′, t′)) |B(q). (3.26)

If the potential is instantaneous, then (3.21) shows ∆(x, x′) to be factorizable ac-
cording to

∆(x, x′) = δ(t− t′)∆(x,x′; t), (3.27)

so that Γ(P |q) becomes independent of P0.

2Here q is short for the four-vector qµ = (q0,q) with q0 = E.
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Consider now the system at T = 0 in the vacuum. Then µ = 0 and ξp = εp > 0.
One can perform the P0 integral in (3.23) with the result

Γ(P|q) =


d3P ′

(2π)4
V (P−P′)

1

q0 − εq/2+P′ − εq/2−P′ + iη
Γ(P′|q). (3.28)

Now the equal-time Bethe-Salpeter wave function

ψ(x,x′; t) ≡ N
 d3Pdq0d

3q

(2π)7
exp



−i



q0t− q ·
x + x′

2
−P · (x− x′)



×
1

q0 − εq/2+P − εq/2−P + iη
(3.29)

satises


i∂t − ǫ(−i∇) − ǫ(−i∇′)



ψ(x,x′; t) = V (x − x)ψ(x,x′; t), (3.30)

which is simply the Schrödinger equation of the two-body system. Thus, in the
instantaneous case, the free collective excitations in ∆(x, x′) are the bound states
derived from the Schrödinger equation.

In a thermal ensemble, the continuous integrals over the energies P ′0 in (3.23) are
restricted to sums over the Matsubara frequencies. First, we write the Schrödinger
equation as

Γ(P|q) = −


d3P′

(2π)3
V (P−P′)l(P′|q)Γ(P′|q) (3.31)

with

l(P|q) = −i


P0

G0 (q/2 + P ) G̃0 (P − q/2)

= −i


P0

i

q0/2+P0−ξq/2+P+iη sgn ξ

i

q0/2− P0−ξq/2−P+iη sgn ξ
. (3.32)

After a Wick rotation and setting q0 ≡ iν, the replacement of the energy integration
by a Matsubara sum leads to

l(P|q) = −T


ωn

1

i (ωn + ν/2)− ξq/2+P

1

i (ωn − ν/2) + ξq/2−P

= T


ωn

1

iν − ξq/2+P − ξq/2−P

×



1

i(ωn + ν/2)− ξq/2+P

− 1

i(ωn − ν/2) + ξq/2−P



= −
±


nq/2+P + nq/2−P



iν − ξq/2+P − ξq/2−P

. (3.33)
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Here we have used the frequency sum [see (1.104)]

T


ωn

1

iωn − ξp
= ∓ 1

eξp/T ∓ 1
≡ ∓np, (3.34)

with np being the occupation numbers of the state of energy ξp. In Chapter 1
we have used the generic notation n(p) for the occupation numbers of fermions
and bosons. In this Chapter we shall save some space by placing the momentum
argument into a subscript.

The expression in brackets is antisymmetric under the exchange ξ → −ξ, since
under this substitution n(p) → ∓1 − n(p). In fact, one can write it in the form
−N(P,q) with

N(P|q) ≡ 1±


nq/2+P + nq/2−P



=
1

2



tanh∓1 ξq/2+P

2T
+ tanh ∓1 ξq/2−P

2T



, (3.35)

so that

l(P|q) = − N(P|q)

iν − ξq/2+P − ξ(q/2−P

. (3.36)

Dening again a Schrödinger type wave function as in (3.29), the bound-state
problem can be brought to the form (3.28) but with a momentum dependent po-
tential V (P−P′)×N(P′|q). We are now ready to construct the propagator of the
pair eld ∆(x, x′) for T = 0. This is most simply done by considering Eq. (3.23)
with a potential λV (P, P ′) rather than V , and asking for all eigenvalues λn at xed
q. Let Γn(P |q) be a complete set of vertex functions for this q. Then one can write
the propagator as

∆(P |q)∆†(P ′|q′) = −i


n

Γn(P |q)Γ∗
n(P

′|q)

λ− λn(q)











λ=1

(2π)4δ(4)(q − q′), (3.37)

where a hook denotes, as usual, the Wick contraction of the elds. Obviously the
vertex functions have to be normalized in a specic way, as discussed in Appendix 3B.

An expansion of (3.37) in powers of [λ/λn(q)]
n exhibits the propagator of ∆ as

a ladder sum of exchanges as shown in Fig. 3.4 (see also Appendix 3B).

Figure 3.4 Free pair propagator, amounting to a sum of all ladders of fundamental

potential exchanges. This is revealed explicitly by the expansion of (3.37) in powers of

[λ/λn(q)].

For an instantaneous interaction, either side is independent of P0, P
′
0. Then

the propagator can be shown to coincide directly with the scattering matrix T of



3.2 Local Interaction and Ginzburg-Landau Equations 59

the Schrödinger equation (3.30) and the associated integral equation in momentum
space (3.28) [see Eq. (3B.13)].

∆∆
† = iT ≡ iV + iV

1

E −H
V. (3.38)

Consider now the higher interactions An, n ≥ 3 of Eq. (3.19). They correspond to
zig-zag loops shown in Fig. 3.5. These have to be calculated with every possible
Γn(P |q),Γ∗

m(P |q) entering or leaving, respectively.

Figure 3.5 Self-interaction terms of the non-polynomial pair Lagrangian amounting to

the calculation of all single zig-zag loop diagrams absorbing and emitting n pair elds.

Due to the P dependence at every vertex, the loop integrals become very in-
volved. A slight simplication arises for an instantaneous potential where at least
the frequency sums can be performed immediately. Only in the special case of a
completely local action the full P -dependence disappears and the integrals can be
calculated at least approximately. This will be done in the following section.

3.2 Local Interaction and Ginzburg-Landau Equations

Let us study the case of a completely local potential in detail. For the electrons in
a crystal, such a local potential is only an approximation which, however, happens
to be quite reliable. In a crystal, the interaction between the electrons is mediated
by phonon exchange. An electron moving through the lattice attracts the positive
ions in its neighborhood and thus creates a cloud of positive charge around its path.
This cloud, in turn, attracts other electrons and this is the origin of pair formation.
The size of the cloud is of the order of the lattice spacing, i.e., a few Å. Although
this can hardly be called local, it is eectively so, as far as the formation of bound
states is concerned. The reason is that the strength of the interaction is quite small.
This leads to a rather wide bound-state wave function. Its radius will be seen to
extend over many lattice spacings. Thus, as far as the bound-states are concerned,
the potential may just as well be considered as local. This is what justies the
theoretical treatment to be developed in the sequel.

We assume the fundamental action to be a sum

A = A0 +Aint, (3.39)
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with a free-particle term

A0 =


d3xdtψ∗
β(x, t)[i∂t − ξ(−i∇)]ψβ(x, t), (3.40)

and a δ-function interaction

Aint =
g

2



α,β



d3xdtψ∗
α(x, t)ψ

∗
β(x, t)ψβ(x, t)ψα(x, t), (3.41)

with g > 0, for an attractive potential. Following the general arguments leading to
formula (3.1), we rewrite the exponential of this interaction as3

exp





i

2
g


α,β



d3x dtψ∗
α(x, t)ψ

∗
β(x, t)ψβ(x, t)ψα(x, t)



=const×


D∆(x, t)D∆
∗(x, t)

×exp



− i

2



d3xdt


αβ



|∆αβ|
2

g
− ψβ∆

∗
βαψα − ψ∗

α∆αβψ
∗
β





 , (3.42)

where the new auxiliary eld is a (2s + 1) × (2s + 1) non-hermitian matrix which
satises the equation of constraint:

∆αβ(x, t) = gψα(x, t)ψβ(x, t). (3.43)

Observe the hermiticity property

∆αβ(x, t)
∗ = ∆

∗
βα(x, t). (3.44)

The free part of the action is now written in a 2× 2 matrix form analogous to that
in (3.5):

A0 =


d3x dt d3x′ dt′ f ∗(x)A(x, t;x′, t′)f(x′), (3.45)

where fT (x) denotes here the doubled fundamental eld

fT (x) =


ψα(x),ψ
∗
β(x)



, (3.46)

and A(x, t;x′, t′) is the functional matrix

A(x, t;x′, t′) =



[i∂t − ξ(−i∇)] δ(x− x′)δαβ −∆αβ(x)δ(x− x′)
−∆

∗
αβ(x)δ(x− x′) ∓ [i∂t + ξ(i∇)] δ(x− x′)δαβ



.

(3.47)

Then the action (3.19) becomes

A [∆∗,∆] = ∓i
∞


n=1

(−)n

2n
Tr trspin



i

i∂t − ξ(−i∇)
δ



(∆ δ)



∓i

i∂t + ξ(i∇)
δ



(∆∗ δ)

n

,

(3.48)

3Note that the hermitian adjoint ∆
∗
↑,↓(x) comprises transposition of the spin indices, i.e.,

∆
∗
↑,↓(x) = [∆↓,↑(x)]

∗
.
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where trspin indicates the trace over the spin indices, and Tr refers to the trace in the
functional matrix space. The dierent terms on the right-hand side will be denoted
by An[∆

∗,∆].
Consider fermions of spin 1/2 close to a critical region, i.e., for T ≈ Tc. There

only long-range properties of the system dominate. As far as such questions are
concerned, the expansion

A[∆∗,∆] =
∞


2

An[∆
∗,∆] (3.49)

may be truncated after the fourth term without much loss of information. The
dimensions of the neglected terms are so high that they become irrelevant at long
distances. The free part of the action A2[∆

∗,∆] is given by

A2[∆
∗,∆] = ±iTr trspin



i

i∂t − ξ(−i∇)
δ



(∆δ)



∓i

i∂t + ξ(i∇)
δ



(∆∗δ)



−1

2
trspin



dx∆∗(x)∆(x)
1

g
. (3.50)

The spin traces can be performed by noting that due to Fermi statistics, the square
of the eld at a point vanishes, ψ2

↓(x) = 0, ψ2
↑(x) = 0, so that there is really only

one independent pair eld:

∆(x) ≡ ∆↓↑(x) = gψ↓(x)ψ↑(x) = −∆↑↓(x). (3.51)

Thus A2 becomes:

A2[∆
∗
∆] = −i



dxdx′G0(x, x
′)G̃0(x

′, x)∆∗(x)∆(x′)− 1

g



dx|∆(x)|2. (3.52)

Let us expand the pair eld into its Fourier components

∆(τ,x) = T


νn



d3k

(2π)3
e−i(τνn−kx)

∆(νn,k), (3.53)

with the bosonic Matsubara frequencies

νn = 2nπT. (3.54)

Using the short notation

T


νn



d3k

(2π)3
f(νn,k) = T



k

f(k), (3.55)

the quadratic action A2[∆
∗
∆] can be written in momentum space as

A2[∆
∗,∆] =

T

V



k

∆
∗(k)L(k)∆(k), (3.56)
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where

L(k) ≡ −i
T

V



p

i

p0 + k0 − ξp+k + iη sgn ξp+k

i

p0 + ξp − iη sgn ξp
− 1

g

=
T

V



p

l(p|k)− 1

g
. (3.57)

This is pictured by a Feynman diagram in Fig. 3.6.

Figure 3.6 Free part of the ∆-Lagrangian containing the direct term plus the one loop

diagram. As a consequence, the free ∆-propagator sums up an innite sequence of such

loops.

The expression l(p|k) appeared in the general discussion in Eq. (3.31), where it
was brought to the form (3.33). In the present case of Fermi statistics this leads to

L(ν,k) =
1

2

1

V



p

1

ξp+k + ξp−iν



tanh
ξp+k

2T
+tanh

ξp

2T



− 1

g
. (3.58)

At k = 0, one has

L(0) =
1

2

1

V



p

1

ξp
tanh

ξp

2T
− 1

g

≈ N (0)
 ∞

0

dξ

ξ
tanh

ξ

2T
− 1

g
. (3.59)

When going from the rst to the second line we have used the equality in a large
volume for rotationally symmetric integrands

1

V



p

≡


d3p

(2πh̄)3
=

1

(2πh̄)3



dp̂


dpp2 =
4π

(2πh̄)3



p2
dp

dξ
dξ. (3.60)

In a further approximation of a weak attraction between the electrons caused by
phonons, we include only momenta near the surface of the Fermi sphere in momen-
tum space which cover the neighborhood of |p| ≈ pF . There we can approximate
the sum over states by the integrals

1

V



p

≡ 4π

(2πh̄)3



p2
dp

dξ
dξ ≈ N (0)



dξ , (3.61)



3.2 Local Interaction and Ginzburg-Landau Equations 63

where

N (0) =
mpF
2π2h̄3 =

3

4h̄3

ρ

p2F
(3.62)

is the density of states on the Fermi surface at zero temperature. Here ρ is the mass
density which is related to the particle density N/V by

ρ = m
N

V
. (3.63)

In (3.62), we have expressed the Fermi momentum of free spin-1/2 particles in terms
of ρ by

pF =


3π2
1/3

ρ1/3h̄ ≈ g × 10−20g cm/sec. (3.64)

It is only slightly pressure dependent. The associated Fermi temperature dened by
TF ≡ (1/kB)p

2
F/2m corresponds in most materials to around 10 000 times the Fermi

momentum of free spin-1/2 particles.

The ξ-integral in (3.59) is logarithmically divergent. This is a consequence of
the local approximation to the attractive interaction between the electrons assumed
in Eq. (3.41). As explained earlier, the attraction between electrons is caused by
phonon exchange. Phonons, however, have frequencies which are at most of the order
of the Debye frequency ωD. This may be used as a cuto to all energy integrals of the
type



dξ, which will be restricted to the interval ξ ∈ (−ωD,ωD). The associated
Debye temperature TD ≡ h̄ωD/kB is of the order of 1000 K and thus quite large
compared to the characteristic temperature Tc where superconductivity sets in, the
so-called critical temperature.

The Debye temperature TD, although being much larger than Tc, is an order of
magnitude smaller than TF . As a consequence, the attraction between electrons is
active only between states within a thin layer in the neighborhood of the surface of
the Fermi sphere. Using the cuto energy h̄ωD in Eq. (3.59) yields (from now on in
natural units with h̄ = kB = 1)

L(0) ≈ N (0)
 ωD

0

dξ

ξ
tanh

ξ

2T
− 1

g
= N (0) log



ωD

T

2eγ

π



− 1

g
, (3.65)

where γ is Euler’s constant

γ = −Γ
′(1)/Γ(1) ≈ 0.577, (3.66)

implying that eγ/π ≈ 1.13.
The integral in (3.65) is evaluated as follows: First there is an integration by

parts, yielding

 ωD

0

dξ

ξ
tanh

ξ

2T
= log

ξ

T
tanh

ξ

2T











ωD

0

− 1

2

 ∞

0
d
ξ

T
log

ξ

T

1

cosh2 ξ

2T

. (3.67)
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Since ωD/πT ≫ 1, the rst term is equal to log(ωD/2T ), with exponentially small
corrections which can be ignored. In the second integral, we have taken the upper
limit of integration to innity since it converges. We may use the integral formula4

 ∞

0
dx

xµ−1

cosh2(ax)
=

4

(2a)µ



1− 22−µ


Γ(µ)ζ(µ− 1), (3.68)

set µ = 1 + δ, expand the formula to order δ, and insert the special values

Γ
′(1) = −γ, ζ ′(0) = −1

2
log(2π) log(4eγ/π), (3.69)

to nd from the linear terms in δ:
 ∞

0
dx

log x

cosh2(x/2)
= −2 log(2eγ/π). (3.70)

Hence we obtain
 ωD

0

dξ

ξ
tanh

ξ

2T
= log



ωD

T

2eγ

π



. (3.71)

The value L(0) of Eq. (3.65) vanishes at a critical temperature determined by

Tc ≡
2eγ

π
ωDe

−1/N (0)g . (3.72)

Using this, we can rewrite Eq. (3.65) as

L(0) = N (0) log
Tc

T
≈ N (0)



1− T

Tc



. (3.73)

The constant L(0) obviously plays the role of the chemical potential of the pair eld.
Its vanishing at T = Tc implies that, at this temperature, the eld propagates over a
long range (with a power law) in the system. Critical phenomena are observed [19].
For T < Tc, the chemical potential becomes positive indicating the appearance of a
Bose condensate. If ν = 0 and k = 0, one can write (3.52) in the subtracted form

L(ν, 0)− L(0, 0) =
T

V



p



1

2ξp − iν
− 1

2ξ(p)



tanh
ξp

2T
(3.74)

≈ iνN (0)
 ωD

−ωD

dξ

2ξ − iν

1

2ξ
tanh

ξ

2T
. (3.75)

Since the subtracted integral converges fast it can be performed over the entire
ξ-axis with the small error of relative order T/ωD ≪ 1. For ν < 0, the contour
may be closed above, picking up poles exactly at the Matsubara frequencies ξ =
i(2n + 1)πT = iωn. Hence

L(ν, 0)− L(0, 0) ≈ νN (0)πT


ωn>0

1

ωn − ν/2

1

ωn

. (3.76)

4See, for instance, I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 3.527.3.
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The sum can be expressed in terms of Digamma functions: For |ν| ≪ T , one expands



ωn>0



1

ω2
n

+
ν

2

1

ω3
n

+
ν2

4

1

ω4
n

+ . . .



, (3.77)

and applies the formula



ωn>0

1

ωk
n

=
1

πkT k
[1− 2−k]ζ(k), (3.78)

to express everything in terms of the Riemann zeta function

ζ(z) =
∞


n=1

n−z. (3.79)

Some of its values are

ζ(2) =
π2

6
, ζ(3) = 1.202057,

ζ(4) =
π4

90
, ζ(5) = 1.036928, (3.80)

... ,

implying the Matsubara sums



ωn>0

1

ω2
n

=
1

π2T 2

3

4

π2

6
=

1

8T 2
, (3.81)



ωn>0

1

ω3
n

=
1

π3T 3

7

8
ζ(3), (3.82)



ωn>0

1

ω4
n

=
1

π4T 4

15

16

π4

90
=

1

96T 4
, (3.83)

... . (3.84)

Using the power series for the Digamma function

ψ(1− x) = −γ −
∞


k=2

ζ(k)xk−1, (3.85)

the sum is

− 2

νπT



ψ



1− ν

2πT



− ψ



1− ν

4πT



/2 + γ/2


=
1

νπT



ψ



1

2



− ψ



1

2
− ν

4πT



,

with the rst term

1

8T 2
+ ν

1

2π3T 3

7

8
ζ(3) +

ν2

4 · 96T 4
+ . . . . (3.86)
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For ν > 0, the integration contour is closed in the lower half-plane, and the same
result is obtained with ν replaced by −ν. Thus one nds

L(ν, 0)− L(0, 0) = N (0)



ψ



1

2



− ψ



1

2
+

|ν|

4πT



≈ −N (0)


π

8T
|ν|− ν2 1

2π2T 2

7

8
ζ(3) + . . .



. (3.87)

The k-dependence at ν = 0 is obtained by expanding directly

L(0,k) =
T

V



ω,p

1

iω − ξ(p+ k)

1

−iω − ξ(p)
− 1

g

= T
∞


n=0

1

V



ω,p

1

[iω − ξ(p)]n+1



pk

m
+

k2

2m

n
1

−iω − ξ(p)
− 1

g
. (3.88)

The sum over p may be split into radial and angular integrals [compare (3.62)]:

1

V



p

 d3p

(2π)3
≈ N (0)



dξ
 dp̂

4π
, (3.89)

where the second integral runs over all unit vectors p̂ as follows:


dp̂

4π
=
 π

−π

dφ

2π

 1

−1

d cos θ

2
. (3.90)

Here θ and φ are the spherical angles of the momenta p̂.
The momentum integrals in (3.88) receive only contributions from a thin shell

around the Fermi sphere, where |p| ≈ pF , and there are only small corrections of
the order O(TD/TF ) ≈ 10−3. Introducing now the Fermi velocity vF ≡ pF/m, for
convenience, and performing the ξ-integrals in the form



dξ
1

(iω − ξ)n+1

1

−iω − ξ
= (−i sgnω)n

π

2n|ω|n+1
, (3.91)

we nd

L(0,k) ≈ 2N (0)Re
∞


n=0

(−i)n
π

2n|ω|n+1



dp̂

4π



vF p̂k+
k2

2m

n

− 1

g
. (3.92)

For k = 0, we recover the logarithmically divergent sum

L(0, 0) = N (0)


ω

π

|ω|
− 1

g
. (3.93)

This is just another representation of the energy integral (3.65). It can therefore be
made nite by the same cuto and subtraction procedure as before.
The higher powers can be summed via formula (3.78) with the result

L(0,k)=L(0,k) + 2N (0)Re
∞


n=1

(−i)n

2nπnT n
(1−2−(n+1))ζ(n+ 1)



dp̂

4π



vF p̂k+
k2

2m

n

= L(0, 0) + N (0) Re


dp̂

4π



ψ



1

2



−ψ



1

2
−i



vF p̂k+
k2

2m



1

4πT



. (3.94)
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Comparing this with Eq. (3.87), we see that the full k- and ν-dependence is obtained
by adding |ν|/4πT to the arguments of the second Digamma function. This can also
be checked by a direct calculation. In the long-wavelength limit in which kυF/T ≪ 1,
one has also

k2/2m

T
≈ k

pF

kvF
T

≪ kvF
T

, (3.95)

and one may truncate the sum after the quadratic term as follows:

L(0,k) = L(0, 0) +


Λkl(0)kkkl, (3.96)

where

Λkl(0) = −2N (0)
1

4π2T 2

7

8
ζ(3)v2F



dp̂

4π
p̂kp̂l. (3.97)

The angular integration yields



dp̂

4π
p̂kp̂l =

1

3
δkl, (3.98)

so the lowest terms in the expansion of L(ν,k) are, for kvF ≪ T and ν ≪ T ,

L(ν,k) ≈ L(0, 0)−N (0)


π

8T
|ν|+

1

6π2T 2

7

8
ζ(3)v2Fk

2


. (3.99)

The second term in (3.97) may also be conveniently calculated in x-space. For large
x ≫ 1/pF , the Green function behaves like

G0(x,ω) ≈ − m

2π|x|
exp



ipF |x| sgnω − |ω|

vF
|x|



, (3.100)

so that the second spatial derivatives of ∆(x) contribute to the expansion (3.52) a
term



dx



1

2



d3x′T


ωn

G0(x− x′,ωn)G0(x− x′,−ωn)(x−x′)i(x−x′)j



∆
∗(x)∇i∇j∆(x).

(3.101)

The expression in parentheses becomes

1

2



d3zT


ωn



m

2π|z|

2

exp



−2
|ωn|

vF
|z|



zizj

=
1

24
δijT



d3z
1

sinh2π|z|T/vF
= δij

7ζ(3)

48
N (0)

v2F
π2T 2

, (3.102)

which makes (3.101) agree with (3.96).
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In many formulas to come it is useful to introduce the characteristic length
parameter

ξ0 ≡


7ζ(3)

48

vF
πTc

. (3.103)

In proper physical units, the right-hand side carries a factor h̄/kB. Inserting ζ(3) ≈
1.202057 from (3.81), this becomes

ξ0 ≈ 0.4187×
vF
πTc

. (3.104)

Using TF ≡ µ ≡ p2F/2m, the right-hand side of (3.103) can also be written as

ξ0 =



7ζ(3)

48

2TFp
−1
F

πTc

≈ 0.25×
TF

Tc

p−1
F . (3.105)

In most superconductors, Tc is of the order of one degree Kelvin, about 1/1000 of
the Fermi temperature TF . The length parameter ξ0 is of the order of 1000 Å.

The low-frequency and long-wavelength result (3.99) corresponds, in the collec-
tive action (3.56), to a term5

A2[∆
∗,∆] ≈ −iN (0)T



ν≪T,k

∆
∗(ν,k)



1− T

Tc



− ξ20k
2 − π

8T
|ν|


∆(ν,k). (3.106)

This implies that for T ≤ Tc, the eld ∆ has a correlation function

∆
∗(νn,k)∆(νm,k

′)=−(2π)3δ(3)(k− k′)
1

T
δnm

1

N (0)



− π

8T
|νn|+



1− T

Tc



− ξ20k
2
−1

.

(3.107)

The spectrum of collective excitations can be extracted from this expression by
continuing the energy back to real values from the upper half of the complex plane:

k0 = −i
8

π
(T − Tc)− i

8T

π
ξ20k

2. (3.108)

These excitations are purely dissipative.

If the system is close enough to the critical temperature, all interaction terms
except A4[∆

∗,∆] become irrelevant because of their high dimensions. And in A4

only the momentum-independent contributions are of interest, again because they
have the lowest dimension.

5Note that only the Matsubara frequency ν0 = 0 satises the condition ν ≪ T . The neigh-
borhood of ν0 = 0 with the linear behavior |ν| becomes visible only after analytic continuation of
(3.107) to the retarded Green function which amounts to replacing |νn| → −ik0.
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Its calculation is standard, applying the procedure in Eq. (3.101) to the higher
terms in the expansion (3.49):

A4[∆
∗
∆] =

i

4
TrTrspin



i

i∂t − ξ(−i∇)
∆δ



i

i∂t + ξ(i∇)
δ



∆
∗δ

2

=− i

2



dx1dx2dx3dx4G0(x1x2)G̃0(x2x3)G0(x3x4)G̃0(x4x1)∆
∗(x1)∆(x2)∆

∗(x3)∆(x4)

≈−1

2



dx |∆(x)|4


d3x2d
3x3d

3x4

× T


ωn

[G0(x− x2,ωn)G0(x3 − x2,−ωn)G0(x3 − x4,ωn)G0(x− x4,−ωn)]

≡ −β

2



dx|∆(x)|4. (3.109)

The coecient β is computed as follows:

β = T


ωnp

1

(ω2
n + ξ2p)

2
≈ N (0)T



ωn



dξ
1

(ω2
n + ξ2)2

= N (0)
π

2
T


ωn

1

|ωn|3

= N (0)
7ζ(3)

8(πTc)2
= 6N (0)

ξ20
v2F

= 9
ρ

m2

ξ20
v4F

≈ 10−3 p3F
TFT 2

c

. (3.110)

In proper physical units, the right-hand side carries a factor 1/h̄2. The time-
independent part of this action at the classical level has been derived long time
ago by Gorkov on the basis of Green function techniques [11, 12]. His technical
manipulations are exactly the same as presented here. The dierence lies only in
the theoretical foundation [15, 16, 17, 19] and the ensuing prescriptions on how to
improve the approximations. Our action of (3.8) is the exact translation of the fun-
damental theory into pair elds. These elds can be turned into quantum elds in
the standard fashion, by going from functional formalism to the operator language.
The result is a perturbation theory of ∆-elds with (3.107) as a free propagator
and An, n > 2 treated as perturbations. The higher terms A6,A8, . . . are very weak
residual interactions as far as long distance questions are concerned. In fact, for the
calculation of the critical indices, A2 and A4 contain the whole relevant information
about the system.

3.2.1 Inclusion of Electromagnetic Fields into

the Pair Field Theory

The original action A in (3.3) can be made invariant under general spacetime-
dependent gauge transformations

ψ(x, T ) → exp[−iΛ(x, t)]ψ(x, t). (3.111)

Such transformations can be absorbed into an electromagnetic vector potential

A = (ϕ,A) (3.112)
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by letting it transform via the addition of a pure derivative

ϕ → ϕ− 1

e
∂tΛ, Ai → Ai +

c

e
∇iΛ. (3.113)

Then the action with the well-known minimal replacement

A[ψ∗,ψ]






i∂t→i∂t+
1

e
ϕ,−∇i→−i∇i+

c

e
Ai

(3.114)

is invariant under (3.111) and (3.113). Adding to this the action of the electromag-
netic eld itself in the Coulomb gauge, ∇A = 0, we arrive at the complete action
of the superconductor:

Asc = A[ψ∗,ψ]






i∂t→i∂t+
1

e
ϕ,−∇i→−i∇i+

c

e
Ai

+
1

8π



dx


−ϕ∇2ϕ+
1

c2
A2 + A∇2A



.

(3.115)

Since the nal pair action (3.8) describes the same system as the initial action (1.45),
it certainly has to possess the same invariance after inclusion of electromagnetism.
From the constraint equation (3.4) we see

∆(x, x′) → exp {−i[Λ(x) + Λ(x′)]}∆(x, x′). (3.116)

For the local pair eld appearing in (3.42) this gives

∆(x) → exp [−2iΛ(x)]∆(x). (3.117)

Near the critial temperature, we approximate the electron pair action in (6.75) by
a sum of the quadratic action A2 in Eq. (3.106) and a fourth-order term A4 of
Eq. (3.109). The rst is made gauge invariant by the minimal substitution

i∂t → i∂t + 2eϕ, − i∇i → −i∇i + 2
e

c
Ai,

k0 → k0 + 2eϕ, ki → ki + 2
e

c
Ai. (3.118)

This leads to the full time-dependent Lagrangian close to the critical point:

L =
N (0)π

8T
∆

∗(x)(−∂t + 2ieϕ)∆(x) +N (0)


1− T

Tc



∆
∗
∆

−N (0)ξ20



∇i − 2i
e

c
Ai



∆
∗(x)



∇i + 2i
e

c
Ai



∆(x)

−3N (0)
ξ20
v2F

|∆(x)|4 +
1

8π



−ϕ∇2ϕ+
1

c2
Ȧ2 + A∇2A



. (3.119)

The discussion of this Lagrangian is standard. At the classical level there are, above
Tc, doubly charged pair states that possess a chemical potential

µpair = L(0) = N (0)


1− T

Tc



=
3

2

ρ

m2

1

p2F



1− T

Tc



< 0; T > Tc. (3.120)
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In proper physical units, the right-hand side carries a factor 1/h̄3.

Below Tc the chemical potential becomes positive causing an instability which
settles, due to the stabilizing fourth-order term, at a nonzero eld value (the “gap”)

∆0(T ) =



µpair

β
=



8

7ζ(3)
πTc



1− T

Tc

1/2

. (3.121)

Inserting ζ(3) ≈ 1.202057, this is approximately

∆0(T ) ≈ 3.063× Tc



1− T

Tc

1/2

. (3.122)

The new vacuum obviously breaks gauge invariance spontaneously: the eld ∆ will
now uctuate in size with a chemical potential

µpair = −2N (0)


1− T

Tc



< 0; T < Tc. (3.123)

For static spatially constant pair elds, the energy density in the Landau expansion
up to |∆|4 is given by the minimum of

f = µpair|∆|2 +
β

2
|∆|4. (3.124)

The minimum lies at the gap (3.154) where it has the value

fmin =
µpair

2
|∆|2 = −µ2

pair

2β
= − ρ

m2



1− T

Tc



h̄2

2ξ20
×

1

4
. (3.125)

Its negative value is the so-called condensation energy density fc = −fmin.

Due to the gradient terms in (3.119), spatial changes of the absolute size of the
eld ∆ can take place over a length scale

ξc(T ) ≡








coecient of |∇∆|2

|µpair|
= ξ0



1− T

Tc

−1/2

, (3.126)

called the temperature-dependent coherence length [11, 12]. The azimuthal uctu-
ations experience a dierent fate in the absence of electromagnetism; they have a
vanishing chemical potential due to the invariance of L under phase rotations. As
an electromagnetic eld is turned on, the new center of oscillations (3.121) is seen
in (3.119) to generate a mass term 1/8πµ2

AA
2 for the photon. The vector potential

acquires a mass

µ2
A = 8π coecient of A2 in |∇∆|2 −term = 8ω

4e2

c2
N (0)ξ20∆

2
0. (3.127)



72 3 Superconductors

This mass limits the penetration of the magnetic elds into a superconductor. The
penetration depth is dened as [11, 12]:

λ(T ) ≡ µ−1
A =



3

πN (0)

c

4evF



1− T

Tc

−1/2

=



3π

8



c

vFα
p−1
F



1− T

Tc

−1/2

. (3.128)

Here we have introduced the ne-structure constant

α =
e2

h̄c
≈ 1

137
. (3.129)

The ratio

κ(T ) ≡ λ(T )

ξ(T )
=









9π3

14ζ(3)



c

vFα

Tc

TF

≈ 4.1×



c

vFα

Tc

TF

(3.130)

is the Ginzburg-Landau parameter that decides whether it is energetically preferable
for the superconductor to have ux lines invading it or not. For κ > 1/

√
2 they do

invade, and the superconductor is said to be of type II, for κ < 1/
√
2 they don’t,

and the superconductor is of type I.

3.3 Far below the Critical Temperature

We have seen in the last section that for T smaller than Tc the chemical potential of
the pair eld becomes positive, causing oscillations around a new minimum which
is the gap value ∆0 given by (3.121). That formula was based on the expansion
(3.134) of the pair action and can be valid only as long as ∆ ≪ Tc, i.e., T ≈ Tc.
If T drops far below Tc, one must account for ∆0 non-perturbatively by inserting
it as an open parameter into G∆ of the collective action (3.8) and by extremizing
A[∆∗,∆]. If the extremum lies at ∆0(x, x

′), we insert

∆(x, x′) = ∆0(x− x′) +∆
′(x, x′) (3.131)

into the collective action (3.8)

A[∆∗,∆] = ±
i

2
Tr log



iG−1
∆0+∆′(x, x′)



+
1

2



dxdx′|∆0 +∆
′(x, x′)|2

1

V (x, x′)
,

(3.132)

and expand everything in powers of ∆′(x, x′). The Green function of the pair eld
is expanded around

G∆0
(x, x′) = i



[i∂t − ξ(−i∇)]δ −∆0

−∆
†
0 ∓i[∂t − ξ(i∇)]δ

−1

(x, x′) (3.133)



3.3 Far below the Critical Temperature 73

as follows:

G∆=G∆0
− iG∆0



0 ∆
′

∆
′∗ 0



G∆0
−G∆0



0 ∆
′

∆
′∗ 0



G∆0



0 ∆
′

∆
′∗ 0



G∆0
+ . . . .

(3.134)

This replaces the expansion (3.134).

3.3.1 The Gap

In the underlying theory of elds ψ∗,ψ, the matrixG∆0
collects the bare one-particle

Green functions:

G∆0
(x, x′) =







ψ(x)ψ†(x′) ψ(x)ψ(x′)

ψ†(x)ψ†(x′) ψ†(x)ψ(x′)





 . (3.135)

The o-diagonal (also called anomalous) Green functions are nonvanishing. This
signalizes that for T < Tc, a condensate is present in the vacuum. The presence of
∆0 causes a linear dependence of the action (3.132) on ∆

′(x, x′):

A1[∆
′∗,∆′] = ±Tr



G∆0



0 ∆
′

∆
′∗ 0



+
1

2



dxdx′


∆
∗
0(x− x′)∆′(x, x′)

1

V (x, x′)
+ c.c.



. (3.136)

The gap function may now be determined optimally by minimizing the action with
respect to δ∆′ at ∆′ = 0 which amounts to the elimination of A1[∆

′∗,∆′]. Taking
the functional derivative of (3.136) gives the gap,equation

∆0(x− x′) = ±V (x− x′) tr2×2



G∆0
(x, x′)

τ−

2



, (3.137)

where τ−/2 is the matrix



0 0
1 0



in the 2 × 2 dimensional matrix space of (3.9).

If the potential is instantaneous, the gap has a factor δ(t− t′), i.e.,

∆0(x− x′) ≡ δ(t− t′)×∆0(x− x′), (3.138)

and the Fourier transform of the spatial part satises

∆0(p) = ±
T

V



ω,p′

V (p− p′) tr2×2



G∆0
(ω,p′)

τ−

2



. (3.139)

Inverting (3.133) renders the propagator:

G∆0
(τ, x) = (3.140)

∓T

V



ω,p

exp [−i(ωτ − px)]
1

ω2 + ξ2(p)∓ |∆0(p)|2



∓ [iω + ξ(p)] ∆0(p)
∆

∗
0(p) [iω − ξ(p)]



,
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so that the gap equation (3.139) takes the explicit form

∆0(p) = −T

V



ω,p′

V (p− p′)
∆0(p

′)

ω2 + ξ2p′ ∓ |∆0(p′)|2
. (3.141)

Performing the frequency sum yields

∆0(p) = − 1

V



p′

V (p− p′)
∆0(p

′)

2Ep′

tanh ∓1Ep′

2T
, (3.142)

where

Ep =


ξ2p ∓ |∆0(p)|2. (3.143)

For the case of the superconductor with an attractive local potential

V (x− x′) = −gδ(3)(x− x′)δ(t− t′) (3.144)

this becomes

∆0 = g
T

V



ω,p

∆0

ω2 + ξ2p + |∆0|2
=



g
1

V



p

1

2Ep

tanh
Ep

2T



∆0. (3.145)

There is a nonzero gap if

1

V



p

1

2Ep

tanh
Ep

2T
=

1

g
. (3.146)

Let T = Tc denote the critical temperature at which the gap vanishes. At that
temperature, the gap vanishes and Ep = ξp, so that Eq. (3.145) determines the
same Tc as the previous Eq. (3.72) which were derived for T ≈ Tc in a dierent
fashion. The result (3.145) holds for any temperature.

The full temperature dependence of the gap cannot be obtained in closed form
from (3.146). For T ≈ Tc one may expand directly (3.145) in powers of ∆0:

1 = g
T

V



ω,p











1

ω2 + ξ2p
−∆

2
0

1


ω2 + ξ2p

2 + . . .











(3.147)

The rst sum on the right-hand side yields the same integral as in (3.65), and we
obtain

1 = gN (0)



log
ωD

T
2
eγ

π
−∆

2
0

7ζ(3)

8π2T 2
+ . . .



= 1 +N (0)





1− T

Tc



−∆
2
0

7ζ(3)

8π2T 2
+ . . .



. (3.148)
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From this we nd

∆
2
0(T ) ≈

8

7ζ(3)
π2T 2

c



1− T

Tc



, (3.149)

in agreement with (3.121). For very small temperatures, on the other hand,
Eq. (3.145) can be written as

1 = gN (0)
 ωD

0

dξ


ξ2 +∆2
0



1− 2 exp(−


ξ2 +∆2
0/T )− . . .



= gN (0)


log
2ωD

∆0

− 2K0(∆0/T )


+ . . . . (3.150)

For small T , the function 2K0 (∆0/T ) vanishes exponentially fast like

2K0



∆0

T



→ 1

∆0



2πT∆0e
−∆0/T . (3.151)

At T = 0 we nd the gap

∆0(0) = 2ωDe
−1/gN (0). (3.152)

Using Eq. (3.72), this is related to the critical temperature Tc by

∆0(0) = πe−γTc ≈ 1.76× Tc. (3.153)

This value is approached by the the temperature-dependent gap∆0(T ) exponentially
fast for T → 0, since from (3.150)

log
∆0(T )

∆0(0)
≈ ∆0(T )

∆0(0)
− 1 ≈ − 1

∆0(0)



2πT∆0(0)e
−∆0(0)/T . (3.154)

For arbitrary T , the calculation of (3.268) is conveniently done via the expansion
into Matsubara frequencies

1

2E
tanh

E

2T
=

1

2E
T


ωn



1

iωn + E
− 1

iωn − E



= T


ωn

1

ω2
n + ξ2 +∆2

0

. (3.155)

This can be integrated over ξ and we nd

log
T

Tc

= 2πT


ωn>0





1


ω2
n +∆2

0

− 1

ωn



 . (3.156)

Here it is convenient to introduce the auxiliary dimensionless quantity

δ =
∆0

πT
, (3.157)
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Figure 3.7 Energy gap of a superconductor as a function of temperature. The points

are from ultrasonic attenuation data at two dierent frequencies measured by Morse and

Bohm [20].

and a reduced version of the Matsubara frequencies:

xn ≡ (2n+ 1)/δ. (3.158)

Then the gap equation (3.156) takes the form

log
T

Tc

=
2

δ

∞


n=0





1


x2
n + 1

− 1

xn



 . (3.159)

The temperature dependence of ∆0 is plotted in Fig. 3.7. The behavior in the vicin-
ity of the critical temperature Tc can be extracted from Eq. (3.159) by expanding
the sum under the assumption of small δ and large xn. The leading term gives

log
T

Tc

≈ −2

δ

∞


n=0

1

2x3
n

= −δ2
∞


n=0

1

(2n+ 1)2
= −δ2

7

8
ζ(3) (3.160)

so that

δ2 ≈ 8

7ζ(3)



1− T

Tc



(3.161)

and

∆0

Tc

= πδ = π



8

7ζ(3)



1− T

Tc

1/2

≈ 3.063×


1− T

Tc

1/2

, (3.162)

as before in (3.122).
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3.3.2 The Free Pair Field

The quadratic part of the action (3.132) in the pair elds ∆′ reads

A2[∆
′∗,∆′] = ±

i

4
Tr



G∆0



0 ∆
′

∆
′∗ 0



G∆0



0 ∆
′

∆
′∗ 0



+
1

2



dxdx′|∆(x, x′)|2
1

V (x, x′)
, (3.163)

with an equation of motion


∆
′(x, x′)

∆
′∗(x, x′)



= ∓ i

2
V (x, x′)tr2×2



G∆0



0 ∆
′

∆
′∗ 0



G∆0



0 ∆
′

∆
′∗ 0



τ±

2



(x, x′),

(3.164)

rather than (3.21). Inserting the momentum space representation (3.140) of G∆0
,

this renders the two equations

∆
′(P |q) = −T

V



p′

V (P − P ′) [l11(P
′|q)∆′(P ′|q) + l12(P

′|q)∆′∗(P ′|q)] , (3.165)

∆
′∗(P |q) = −T

V



p′

V (P − P ′) [l11(P
′|q)∆′∗(P ′|q) + l12(P

′|q)∆′(P ′|q)] , (3.166)

where (with P0 ≡ iω)

l11(P |q) =
ω2 − ν2/4 + ξq/2+P ξq/2−P



(ω + ν/2)2 + E2
q/2+P

 

(ω − ν/2)2 + E2
q/2−sP

 , (3.167)

l12(P |q) = ±
∆

2
0 (q/2 +P)



(ω + ν/2)2 + E2
q/2+P

 

(ω − ν/2)2 + E2
q/2−sP

 . (3.168)

Thus for T ≪ Tc the simple bound-state problem (3.31) takes quite a dierent form
due to the presence of the o-diagonal terms in the propagator (3.140).

Note that the parenthesis on the right-hand side of Eqs. (3.165) and (3.166)
contain precisely the Bethe-Salpeter wave function of the bound state (compare
(3.24), (3.26) in the gapless case)

ψ(P |q) ≡ ±
i

2
tr2×2



G∆0



q

2
+ P





0 ∆
′(P |q)

∆
′∗(P |q) 0



G∆0



P − q

2



τ ∗

2



= l11(P |q)∆′(P |q)l12(P
′|q)∆′∗(P |q). (3.169)

Not much is known on the general properties of the solutions of equations (3.166).
Even for the simple case of a δ(4)(x−x′) function potential, only the long wavelength
spectrum has been studied. There is, however, one important solution which always
occurs for T < Tc due to symmetry considerations: The original action (1.45) is
symmetric under phase transformations

ψ → e−iαψ, (3.170)
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guaranteeing the conservation of the particle number. If the pair elds oscillate
around a nonzero value ∆0(x − x′), this symmetry is spontaneously broken (since
the complex c-number does not take part in such a phase transformation). As a con-
sequence, there must now be an excitation of the system related to the innitesimal
symmetry transformation. This is known as the Goldstone theorem. If the whole
system is transformed at once, we are dealing with momentum q = 0. The symme-
try ensures that this state has also a vanishing energy q0 = 0. Indeed, suppose the
gap equation would has a non-trivial solution ∆0(P ) ≡ 0. Then we can easily see
that a solution of the bound-state equations (3.165) and (3.166) at q = 0 would be

∆
′(P |q = 0) ≡ i∆0(P ). (3.171)

Take

l11(P |q = 0) =
ω2 + ξ2P
ω2 + E2

P

, (3.172)

and insert (3.171) into (3.166). The associated gap is

∆0(P ) =
T

V



P ′

V (P − P ′)



1

(ω′2 + E2
P′)

2



ω2 + ξ2P′ ∓ |∆0(P
′)|2




= −T

V



P ′

V (P − P ′)
∆0(P

′)

ω′2 + E2
P′

, (3.173)

i.e., the bound-state equation at q = 0 reduces to the gap equation. Moreover, due
to (3.169), the expression

ψ0(P |q = 0) ≡ 1

ω2 + E2
P

∆0(P ) (3.174)

is the Bethe-Salpeter wave function of the bound state with q = 0. If the potential
is instantaneous, it is possible to calculate the equal-time amplitude ψ0(x− x′, τ) ≡
ψ(x, τ ;x′τ). Doing the sum over ω in (3.173) we nd

ψ0(x− x′, τ) =
 d3P

(2π)3
eiP(x−x′)T



ω

ψ0(P|q = 0)

=
 d3P

(2π)3
eiP(x−x′) tanh∓1EP

2T

∆0(P)

2EP

. (3.175)

Note that the time-dependence of this amplitude happens to be trivial since the
bound state has no energy. The q = 0 -bound state described by the wave function
ψ0(x− x′, τ) = ψ0(x− x′, 0) is called a Cooper pair.

In conguration space, (3.173) amounts to a Schrödinger type of equation:

−2E(−i∇)ψ0(x) = V (x)ψ(x). (3.176)
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This may be interpreted as the q = 0 -bound state of two quasi-particles whose
energies are

EP =


ξ2(P)∓ |∆0(P)|2. (3.177)

Note that Eq. (3.176) is non-linear since ∆0(P) in EP is a functional of ψ0(x). In
order to establish contact with the standard discussion of pairing eects via canonical
transformations (see Ref. [11]), a few comments may be useful. Let us restrict
the discussion to instantaneous potentials. From equation (3.140) one sees that
the propagator G∆ can be diagonalized by means of an ω-independent Bogoliubov
transformation

Bp =



u∗
p ∓v∗p

− vp up



, (3.178)

where

|up|
2 =

1

2



1 +
ξp

Ep



, |vp|2 = ∓1

2



1− ξp

Ep



, 2upv
∗
p =

∆0(p)

Ep

. (3.179)

Since

|up|
2 ∓ |vp|

2 = 1, (3.180)

one nds

B−1
p =



up ±v∗p
vp u∗

p



=



σ3B
†
pσ3 for bosons

B†
p for fermions



. (3.181)

Thus Bp is a unitary spin rotation in the Fermi case, and a non-unitary element of
the non-compact group SU(1, 1) [21]. After the transformation, the propagator is
diagonal:

Gd
∆0
(ω,p) = BpG∆0

(ω,p)B†
p

= −


(iω − Ep)
−1

±(iω + Ep)
−1



. (3.182)

The poles in the complex ω-plane may be interpreted as quasi-particles of energy

Ep =


ξ2p ∓ |∆0(p)|2. (3.183)

In fact, we can introduce new creation and annihilation operators



αp(τ)

β
†
−p(τ)



= Bp



ap(τ)

a†−p(τ)



. (3.184)
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Their propagators would be

Gd
∆0
(τ − τ ′,p) ≡







αp(τ)α
†
p(τ

′) αp(τ)β−p(τ
′)

β
†
−p(τ)α

†
p(τ

′) β
†
−p(τ)β−p(τ

′)







= T


ω

e−iω(τ−τ ′)Gd
∆0
(ω,p) . (3.185)

At equal “times”, where τ ′ = τ + ǫ, the frequency sums may be performed with the
result



ω

Gd
∆0
(ω,p) =



±nb,f
p 0
0 ±1 + nb,f

p



, (3.186)

where nb,f
p are the usual Bose and Fermi occupation factors for the quasi-particle

energy (3.177):
nb,f
p =

1

eEp/T ∓ 1
. (3.187)

The corresponding frequency sum for the original propagator becomes

T


ω

G∆0
(ω,p) = T



ω

B−1
p Gd

∆0
(ω,p)B−1

p
† (3.188)

=









±|vp|
2tanh ∓1Ep

2T
± nb,f

p upυ
∗
ptanh

∓1Ep

2T

u∗
pvptanh

±1Ep

2T
±|up|

2tanh ∓1Ep

2T
− nb,f

p









. (3.189)

The o-diagonal elements of G∆0
describe, according to Eq. (3.135), the anomalous

vacuum expectation values

ψ(x, τ)ψ(x, τ) =
 d3p

(2π)3
eipxupv

∗
ptanh

∓1Ep

2T

=


d3p

(2π)3
eipx

∆0(p)

2Ep

tanh ∓1Ep

2T
.

According to Eq. (3.175), this coincides with the Schrödinger type of wave function
of the bound state ψ(x, τ)ψ(x, τ)|B(q) at q = 0.

After this general discussion let us now return to the superconductor. The qua-
dratic part (3.163) of the action (3.132) in the pair elds ∆

′ reads, with the local
interaction [generalizing (3.50) to T < Tc],

A2[∆
′∗,∆′]=− i

2
Tr



G∆0



0 ∆
′

∆
′∗ 0



G∆0



0 ∆
′

∆
′∗ 0



− 1

g



dx|∆′(x)|2. (3.190)

This action can be written in momentum space in a form that generalizes (3.56):

A2[∆
′∗,∆′] =

1

2

T

V



k

[∆′∗(k)L11(k)∆
′(k) +∆

′(−k)L22(k)∆
′(−k)

+∆
′∗(k)L12(k)∆

′∗(−k) +∆
′(−k)L21(k)∆

′(k)] . (3.191)



3.3 Far below the Critical Temperature 81

The Lagrangian matrix elements Lij(k) are obtained by inserting the Fermi form of
the propagator (3.140) into (3.190) [compare (3.166), (3.168)]. Setting ν = ik0 one
has:

A2[∆
′∗,∆′] = −1

2

T

V



ω,p

1


ω + ν
2

2
+ E2

p+k
2

1


ω − ν
2

2
+ E2

p−k
2

×Tr









i


ω + ν
2



+ ξp+k
2

∆0

∆
∗
0 i



ω + ν
2



− ξp+k
2







0 ∆
′(k)

∆
′∗(k) 0



×





i


ω − ν
2



+ ξp−k
2

∆0

∆
∗
0 i



ω − ν
2



− ξp−k
2







0 ∆
′(−k)

∆
′∗(k) 0







− 1

g



k

∆
′∗(k)∆′(k). (3.192)

This is equal to

A2[∆
′∗,∆′]=

1

2

T

V



ωn,p





ω +
ν

2

2

+ E2
p+k

2

 



ω − ν

2

2

+ E2
p−k

2

−1

×



ω2 − ν2

4
+ ξp+k

2

ξp−k
2



[∆′∗(k)∆′(k) +∆
′(−k)∆′∗(−k)]

− |∆0|
2 [∆′∗(k)∆′∗(−k) +∆

′(k)∆′(−k)]



− 1

g



k

∆
′∗(k)∆′(k). (3.193)

From this, we read o the coecients in (3.191):

L11(k) = L22(k) =
T

V



ω,p

l11(p|k)

=


d3p

(2π)3
T


ωn

ω2
n − ν2/4 + ξ+ξ−





ωn +
ν
2

2
+ E2

+

 



ωn − ν
2

2
+ E2

−

 − 1

g
, (3.194)

and

L12(k) = [L21(k)]
∗ =

T

V



ω,p

l12(p|k)

= −


d3p

(2π)3
|∆0|

2T


ωn

1




ωn +
ν
2

2
+ E2

+

 



ωn − ν
2

2
+ E2

−

 . (3.195)

Here ξ± ≡ ξp±k
2

and E± ≡ Ep±k
2

, so that with v ≡ p/m we get



E+

E−



=











ξ2+
ξ2−



+ |∆0|2 ≈ E ±
1

2
vk

ξ

E
+

1

8
(vk)2

|∆0|
2

E3
+ . . . , (3.196)
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

ξ+
ξ−



≡ (p± k/2)2

2m
=

p2

2m
±

1

2
vk +

k2

8m
≈ ξ ±

1

2
vk+ . . . , (3.197)

with ξ and E =


ξ2 + |∆0|2. The integral over d3p can be split into a size and a

directional integral, according to (3.89), and we can approximate v ≡ F/m ≈ vF p̂.
We now rearrange the terms in the sum in such a way that we obtain combinations
of single sums of the type

T


ωn

1

iωn − E+

, (3.198)

which lead to the Fermi distribution function

T


ωn

1

iωn − E
= nf

E ≡ 1

eE/T + 1
(3.199)

with the property

nf
E = 1− nf

−E . (3.200)

In contrast to (1.104) and (3.34), we label here the occupation numbers with the
energies as subscripts. If we introduce the notation ω± ≡ ω ± ν/2, the rst term in
the sum (3.195) for L12(k) can be decomposed as follows:

1

(ω2
+ + E2

+) (ω
2
− + E2

−)

=
1

4E+E−



1

iω+ + E+

− 1

iω+ − E+



1

iω− + E−
− 1

iω− − E−



=
1

4E+E−



− 1

E+ + E− − iν



1

iω+ − E+

− 1

iω− − E−



+
1

E+ + E− + iν



1

iω+ + E+

− 1

iω− + E−



− 1

E+ − E− + iν



1

iω+ + E+

− 1

iω− + E−



+
1

E+ − E− − iν



1

iω+ − E+

− 1

iω− − E−



. (3.201)

We now use the summation formula (1.104) and the fact that the frequency shifts ν
in ω± do not appear in the nal result. They amount to a mere discrete translation
in the innite sum (3.199). Collecting the dierent terms we nd

L12(k) = [L21(k)]
∗ =−



d3p

(2π)3
|∆0|

2 1

2E−E+

(3.202)

×



E+ + E−

(E+ + E−)2 + ν2



1− nf
E+

− nf
E−



+
E+ − E−

(E+ − E−)2 + ν2



nf
E+

− nf
E−





.



3.3 Far below the Critical Temperature 83

In Eq. (3.194) for L11(k), we decompose

ω2
n − ν2/4 + ξ+ξ−

(ω2
+ + E2

+) (ω
2
− + E2

−)
=

1

2



1

ω2
+ + E2

+

+
1

ω2
− + E2

−

− (E2
+ + E2

− + ν2 − 2ξ+ξ−)
1

(ω2
+ + E2

+) (ω
2
− + E2

−)



. (3.203)

When summing the rst two terms, we use the formula

T


ω

1

ω2 + E2
=

1

2E
(nf

−E − nf
E) =

1

2E
tanh

E

2T
. (3.204)

In the last term, the right-hand factor is easily evaluated as before: Replacing the
factor E2

− +E2
+ + ν2, once by (E− +E+)

2 + ν2 − 2E−E+ and once by (E− −E+)
2 +

ν2 + 2E−E+, we obtain immediately

L11(k)=L22=


d3p

(2π)3



E+E− + ξ+ξ−

2E+E−

E+ + E−

(E+ + E−)2 + ν2



1− nf
E+

− nf
E−



−E+E− − ξ+ξ−

2E+E−

E+ − E−

(E+ − E−)2 + ν2



nf
E+

− nf
E−





− 1

g
. (3.205)

Let us study in more detail the static case and consider only the long-wavelength
limit of small k. Hence, we shall take ν = 0 and study only the lowest orders in k.
At k = 0 we nd from (3.202)

L12(0) = −N (0)|∆0|
2
 ∞

−∞
dξ


1

4E3



1− 2nf
E



+
1

2E2
nf ′

E



. (3.206)

Inserting E =


ξ2 +∆2
0, this can be rewritten as

L12(0) = −1

2
N (0)φ(∆0). (3.207)

Here we have introduced the so-called Yoshida function

φ(∆0) ≡ ∆
2
0

 ∞

0
dξ


1

E3



1− 2nf
E



+
2

E2
nf ′

E



. (3.208)

Now we observe that

∂ξ



ξ

∆2
0E

nf
E



=
1

E3
nf
E +



1

∆2
0

− 1

E2



nf ′
E , (3.209)

so that we can bring (3.208) to the form

φ(∆0) ≡ |∆0|
2
 ∞

0
dξ



1

E3
+

2

∆2
0

nf ′
E − 2∂ξ



ξ

∆2
0E

nf
E



. (3.210)
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The surface term vanishes, and the rst integral in Eq. (3.210) can be done to arrive
at the more convenient expression

φ(∆0) = 1 + 2
 ∞

0
dξ nf ′

E = 1− 1

2T

 ∞

0
dξ

1

cosh2(E/2T )
. (3.211)

We now turn to Eq. (3.205) which reads at ν = 0, k = 0:

L11(0) = N (0)
1

2

 ∞

0
dξ



E2 + ξ2

E3



1− 2nf
E



− 2
∆

2
0

E2
nf ′

E − 1

g



. (3.212)

Here we observe that due to the gap equation (3.141), L11(k) can also be expressed
in terms of the Yoshida function φ(∆0) as

L11(0) = −1

2
N (0)φ(∆0). (3.213)

For T ≈ 0, this function approaches zero exponentially fast. The full temperature
behavior is best calculated by using the Matsubara sum (3.204) to write

φ(∆0) = 2T


ωn



dξ
∆

2
0

(ω2
n + E2)2

= −2∆2
0T


ωn

∂

∂ω2
n



dξ
1

ω2
n + ξ2 +∆2

0

= −2∆2
0T


ωn

∂

∂ω2
n

π


ω2
n +∆2

0

= 2Tπ


ωn>0

1


ω2
n +∆2

0

3 . (3.214)

Using again the variables δ and xn from (3.157) and (3.158), this becomes

φ(∆0) =
2

δ

∞


n=0

1


x2
n + 1

3 . (3.215)

For T → Tc and small δ we have

φ(∆0) ≈ 2δ2
∞


n=0

1

(2n + 1)3
= 2δ2

7ζ(3)

8
≈ 2


1− T

Tc



. (3.216)

In the limit T → 0, the sum turns into an integral. Using the formula

 ∞

0
dx

xµ−1

(x2 + 1)ν
=

1

2
B(µ/2, ν − µ/2) (3.217)

with B(x, y) = Γ(x)Γ(y)/Γ(x+ y), we see that

φ(∆0) =
T=0

1. (3.218)

Note that we can also write L11(0) as

L11(0) = − 3

4M2v2F
ρs (3.219)
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with

ρs ≡ ρ φ(∆0). (3.220)

The function ρs is the superuid mass density. To justify this, let us calculate the
bending energies of the collective eld ∆(x). For this, we expand L11(ε,k) and
L12(ε,k) at ν = 0 into powers of the momentum k up to k2. Let us denote the
zero-frequency parts of L11(k) and L12(k) by L11(k) and L11(k), respectively, with
the explicit form

L11(k) =
T

V



ωn,p

ω2 + ξ+ξ−

(ω2 + E2
+) (ω2 + E2

−)
− 1

g
, (3.221)

L12(k) = −T

V



ωn,p

∆
2
0

(ω2 + E2
+) (ω2 + E2

−)
. (3.222)

Inserting the expansions

ξ+ξ− = ξ2 − 1

4
(vk)2 + . . . ,



E2
+

E2
−



= E2 ± ξvk+
1

2
(vk)2 + . . . , (3.223)

we have

L11(k)− L12(k) ≈
 d3p

(2π)3
T


ω

ω2 +∆
2
0 + ξ2 − 1

4
(vk)2

(ω2 + E2)2


1 + 1
2
(vk)2

ω2−ξ2+∆2
0

(ω2+E2)2

 − 1

g
+ . . .

=


d3p

(2π)3



T


ω

1

ω2 + E2
− 1

g



+ T


ωn



1

4

1

(ω2 + E2)2
− ω2 +∆

2
0

(ω2 + E2)3



(vk)2


+ . . . . (3.224)

Due to the gap equation, the rst parentheses vanish so that we are left with

L11(k)− L12(k) ≈ N (0)


dp̂

4π



pk

m

2

×
 ∞

−∞
dξ



1

4

1

(ω2 + ξ +∆2
0)

2
− ω2 +∆

2
0

(ω2 + ξ2 +∆2
0)

3



. (3.225)

Similarly, we obtain

L12(k) ≈ −N (0)
 dp̂

4π

 ∞

−∞
dξ



∆
2
0

(ω2 + ξ2 +∆2
0)

2

+(vk)2


1

2

1

(ω2 + ξ2 +∆2
0)

3 − ω2 +∆
2
0

(ω2 + ξ2 +∆2
0)

4



. (3.226)
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Using the integrals

 ∞

−∞
dξ

1

(ω2 + ξ2 +∆2
0)

2,3,4 =


1

2
,
3

8
,

5

16



π


ω2 +∆2
0

3,5,7 , (3.227)

we nd

L11(k)− L12(k) ≈ −N (0)

4

(vk)2

∆2
0



dp̂

4π
φ(∆0), (3.228)

L12(k) ≈ −N (0)

2
φ(∆0) +

N (0)

8
(vk)2



dp̂

4π
φ̄(∆0), (3.229)

where φ(∆0) is again the Yoshida function (3.215), while φ̄(∆0) is a further gap
function:

φ̄(∆0) = 2∆4
0πT



ωn>0

1


ω2
n +∆2

0

5 ≡ 2

δ

∞


n=0

1


x2
n + 1

5 . (3.230)

For T ≈ Tc, this behaves like

φ̄(∆0) ≈ 2δ4
∞


n=0

1

(2n+ 1)5
= δ4

31ζ(5)

16
, (3.231)

and thus, by (3.161), the temperature behavior is

φ̄(∆0) ≈ 21.8144×


1− T

Tc

2

. (3.232)

In the limit T → 0, on the other hand, the sum turns into an integral whose value
is, by formula (3.217),

φ̄(∆2
0) =

T=0

2

3
. (3.233)

Altogether, we nd for the energy density the gradient terms

fgrad(x) =
1

4m2



ρ11ij ∇i∆
∗(x)∇j∆(x)/∆2

0 + Re ρ12ij ∇i∆
∗(x)∇j∆

∗(x)/∆2
0



. (3.234)

Here we have dropped the primes on the eld gradients, since the additional constant
∆0 does not matter. The rst coecient is given by

ρ11ij =
3ρ

2



dp̂

4π
p̂ip̂j



φ(∆0)−
1

2
φ̄(∆0)



, (3.235)

the second by

ρ12ij = −3ρ

2



dp̂

4π
p̂ip̂j

1

2
φ̄(∆0), (3.236)
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where we have expressed N (0) in terms of the mass density of electrons ρ via the
relation (3.62). Performing the angular integral gives

ρ11ij =
1

2
ρ



φ(∆2
0)−

1

2
φ̄(∆0)



δij, (3.237)

ρ12ij = −1

4
ρφ̄(∆0)δij. (3.238)

Decomposing the collective eld ∆(x) into size |∆(x)| and phase ϕ(x),

∆(x) = |∆(x)|eiϕ(x), (3.239)

the energy density reads

fgrad(x) =
1

4m2



(ρ11 − ρ12)(∇φ)2 + (ρ11 + ρ12)(∇|∆(x)|)2/∆2
0



. (3.240)

Introducing, in addition, the notation

ρ̄s ≡ ρφ̄(∆) (3.241)

and adding to the energy density the earlier k = 0 result, we nd the total quadratic
uctuation energy density

fgrad(x) = ρs(∇ϕ)2 + (ρs − ρ̄s)(∇|∆(x)|)2/∆2
0 + 6ρs(∇|∆(x)|)2)/v2F . (3.242)

The behavior of ρs and ρ̄s for all T ≤ Tc is shown in Fig. 3.8.

1

1

ρs/ρ

ρ̄s/ρ

T/Tc

Figure 3.8 Temperature behavior of the superuid density ρs/ρ (Yoshida function) and

the gap function ρ̄s/ρ.

The phase uctuations are of innite range, the size uctuations have a nite
range characterized by the temperature-dependent coherence length

ξ(T ) =









v2F
6∆2

ρs − ρ̄s

ρs
. (3.243)
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For T close to Tc, the second ratio tends towards unity, while ∆2 goes to zero accord-
ing to Eq. (3.121). Thus we recover the previous result (3.105) for the coherence
length:

ξ(T ) ≈ ξ0



1− T

Tc



, (3.244)

with

ξ0 =



7ζ(3)

48

vF
πTc

≈ 0.419×
vF
πTc

. (3.245)

For T → 0, ξ(T ) tends exponentially fast against

ξ(0) =
eγ

3

vF
πT

≈ 0.591×
vF
πT

≈ 1.4179× ξ0. (3.246)

The behavior of ξ20/ξ
2(T ) is displayed in Fig. 3.9.

1

0.5

ξ20/ξ
2(T )

T/Tc

Figure 3.9 Temperature behavior of the inverse square coherence length ξ−2(T ).

At low temperatures we can ignore the size uctuations of the collective eld
parameter ∆(x). This is called the hydrodynamic limit or London limit . Thus we
approximate

∆(x) ≈ ∆0e
iφ(x). (3.247)

In this limit, the bending energy is simply

fgrad(x) =
1

4m2
ρs[∂iφ(x)]

2. (3.248)

By studying the behavior of this expression under Galilei transformations we identify
the superuid velocity of the condensate

vs =
1

2m
∇φ. (3.249)
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In terms of this, the energy density takes the form

fgrad(x) =
1

2
ρsv

2
s . (3.250)

This shows that ρs is the superuid density of the condensate.

For temperatures close to zero, the sum over Matsubara frequencies T


ω

may

also be performed as an integral


dω/2π, and the result is [recall (3.221), (3.222)]

L11(k) = L22(k) =
T

V



ω,p

l11(p|k)−
1

g
=

1

V



p

E+E− + ξ+ξ−

2E+E−

E+ + E−

(E+ + E−)2 + ν2
− 1

g
,

(3.251)

L12(k) = L21(k) =
T

V



ω,p

l12(p|k) = −|∆0|
2 1

V



p

1

2E+E−

E+ + E−

(E+ + E−)2 + ν2
. (3.252)

We now express 1/g in terms of the gap equation (3.268) at T = 0,

1

g
=


p

1

2E(p)
, (3.253)

so that the last term in L11(k) provides us with a subtraction of the sum.
The energies of fundamental excitations are obtained by diagonalizing the action

A2 [∆
′∗,∆′], and by searching for zero eigenvalues of the matrix L(k) via

L11(k)L22(k)− L2
12(k) = 0. (3.254)

Since L11(k) = L22(k), this amounts to the two equations

L11(k) = L12(k), (3.255)

and

L11(k) = −L12(k). (3.256)

These equations can be solved for small k. Expanding them to fourth order in ν

and k [22], and using once more the gap equation (3.253) at T = 0, one nds

L11(k) = −M2vF
4π2



1 +
ν2

3∆2
0

+
v2Fk

2

9∆2
0

− v2F ν
2k2

30∆4
0

− ν4

20∆4
0

− v4Fk
4

100∆4
0

+ . . .



, (3.257)

L12(k) = −M2vF
4π2



1− ν2

6∆2
0

− v2Fk
2

18∆2
0

+
v2F ν

2k2

45∆4
0

+
ν4

30∆4
0

+
v4Fk

4

150∆4
0

+ . . .



. (3.258)

We have ignored terms such as k4/M2
∆

2 compared to v2Fk
4/∆4 since the Fermi

energy is much larger than the gap in a superconductor, i.e., Mv2F /2 ≪ ∆. With
these expansions, the Eq. (3.255) has the solution with small k0 = −iν:

k0 = ±c|k|(1− γk2), c ≡ vF√
3
, γ =

v2F
45∆2

0

. (3.259)
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The Eq. (3.256) can be solved directly for small k and k0 = −iν. Using (3.252) and
(3.253) one can write −L11(k) − L12(k) = 0 as6

1

V



p



1

2E
+

(∆2
0 − EE ′ − ξξ′)(E + E ′)

2EE ′ [(E + E ′)2 + ν2]



= 0. (3.260)

For small k, this leads to the energies [22]

k
(n)
0 = 2∆0 +∆0



vFk

2∆0

2

zn , (3.261)

with zn being the solutions of the integral equation

 1

−1
dx
 ∞

−∞
dy

x2 − z

x2 + y2 − z
= 0. (3.262)

Setting et =
√

1− z + 1


/
√

1− z − 1


this is equivalent to

sinh t + t = 0, (3.263)

which has innitely many solutions tn, starting with

t1 = 2.251 + i4.212, (3.264)

and tending asymptotically to

tn ≈ log[π(4n− 1)] + i


2πn− π

2



. (3.265)

The excitation energies are

k
(n)
0 = 2∆0 −

v2F
4∆0

k2 1

sinh2 tn/2
. (3.266)

Of these, only the rst one at k
(1)
0 ≈ 2∆0 + (.24− .30i)v2F/4∆

2
0k

2 lies on the second
sheet and may have observable consequences, while the others are hiding under
lower and lower sheets of the two-particle branch cut from 2∆0 to ∞. The cut is
logarithmic due to the dimensionality of the surface of the Fermi sea at T = 0.

The basic strength of the Hubbard-Stratonovich transformation is that the two
ways of eliminating the four-particle interaction via formula (3.1) and (2.4) yield
both a complete description of the system, once in terms of a bilocal pair eld
∆(x, x′), and once in terms of the local scalar eld ϕ(x). In practice, however,
this is an important weakness. In either description the eects of the other can
be recovered by summing an innity of diagrams formed with the other collective

6For T = 0, each result appears with a factor 1

2



tanh E
2T

+ tanh E′

2T



, to which we must add

once more the entire expression with E′ replaced by −E′.
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quantum eld. Such an innite set of diagrams can unfortunately never be calculated
and summed. The only way out of this dilemma is to go to classical collective elds
∆(x, x′) and ϕ(x).

The way how to do this has been shown for simple systems in the textbook
[23], and for large-order eects in general quantum eld theory in the textbook
[24]. Here we shall present the method for the example of the superconducting local
four-particle interaction (3.41).

3.4 From BCS to Strong-Coupling Superconductivity

The above calculations were valid only for weak coupling since they were based on
the assumption that, in momentum space, only a small layer of electrons in the
neighborhood of the Fermi sphere is subject to the phonon-induced attraction. This
was implied by the approximation (3.61) which was used to simplify the evaluation of
the gap function in (3.59). This approximation explained the phenomena observed
in all old-fashioned superconductors known until 1986 (recall Fig. 3.1).

As described in the beginning of this chapter, this was the year that supercon-
ductivity was discovered in a completely new class of material by Johannes Georg
Bednorz and Karl Alexander Müller [5]. A rst attempt to explain this phenomenon
was to free the BCS-theory from the weak-coupling assumption, by allowing the
phonon attraction to extend beyond the thin shell around the Fermi surface in mo-
mentum space. For strong coupling g, the attraction can lead to the formation of
tightly bound bosons rather than loosely bound Cooper pairs. These can undergo
Bose-Einstein condensation, and all calculations have to be reconsidered. Initially,
this was done in Refs. [25, 47]. More recently the same mechanism has come un-
der renewed investigation with the hope that it might explain experimental data of
high-Tc superconductivity in underdoped cuprate samples [26, 53]. These materials
show an anomalous behavior in the normal phase well above the superconductive
transition Tc. In particular, they exhibit an anomalous temperature dependence in
resistivity, specic heat, spin susceptibility, and similar properties. Angle Resolved
Photoemission Spectroscopy (ARPES) indicates the existence of a pseudogap in the
single-particle excitation spectrum [30, 56]. This manifests itself in a signicant
suppression of low-frequency spectral weight. This suppression is in contrast to the
complete suppression in the presence of an ordinary gap.

Thus we study what happens if we increase the coupling strength g. We shall
be able to explain a few of the features of high-Tc superconductors, although many
of them will remain unexplained. In particular one cannot explain the fact that
the physical system undergoes merely a crossover from the pseudogap-regime to the
normal phase, rather than performing a proper phase transition of the model.

In an exactly solvable eld theoretic model, a strong attraction leads to two
phase transitions: rst a second order one in which tightly bound bosonic bound
states are formed, and a second one of the Berezinskii-Kosterlitz-Thouless type [31],
in which these undergo a Bose-Einstein condensation [34]. This has been discussed
in Chapter 23 of the textbook Ref. [35].
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There is a possible connection between the presence of a pseudogap and the
existence of an anomalous normal state above Tc in underdoped cuprates, as was
pointed out experimentally in [36, 37]. ARPES experiments have shown that the
superconducting gap below Tc in both underdoped and optimally doped materials
have the same magnitude and wave vector dependence as a pseudogap well above
Tc. Further experimental facts display the pseudogap behavior above Tc:

1. Experiments on YBCO [38, 39] observe a signicant suppression of in-plane
conductivity σab(ω) at frequencies below 500 cm−1. They begin at temper-
atures much above Tc. The temperature T ∗, where the suppression starts,
increases with decreasing doping. This is conrmed by recent experiments
[37, 40] on underdoped samples which show clearly the increase of resistivity
for decreasing temperature if T drops below a certain value.

2. Specic heat experiments [41] also clearly display a pseudogap behavior much
above Tc.

3. Nuclear Magnetic Resonance (NMR) and some neutron scattering observations
[42, 43] show that, below a temperature T ∗ which lies much higher than Tc,
magnetic response starts decreasing. Within the model to be studied the con-
nection of pseudogap and loss of magnetic response was studied theoretically
in [44].

4. Experiments reviewed in Ref. [26] on optical conductivity [45, 46] and on
tunneling exhibit the opening of a pseudogap in underdoped and optimally
doped cuprates.

The model to be presented here was investigated in various ways in a number of
papers [47, 48]. We shall describe now the superconductive phase at small but nite
temperature and the pseudogaped normal phase where mean-eld methods should
also be reliable [44, 50]. Indeed, the paramagnetic susceptibility was studied in the
anomalous phase in Ref. [44], and the experiments exhibit the pseudogap behavior.

Some years ago, analytic results were obtained within the same model for the
entire crossover region at T = 0 in a three-dimensional system [51]. For the two-
dimensional system, similar results were obtained earlier at T = 0 in [52].

In this chapter we shall begin by reproducing the results of Refs. [51, 52] for∆(0).
Then we extend the results to nd the temperature behavior of gap and pseudogap
as well as of thermodynamic functions.

3.5 Strong-Coupling Calculation of the Pair Field

We work with the same action as before in (3.39), but make two important changes
with respect to the earlier weak-coupling calculations. First, the gap equation (3.268)
is evaluated without the approximation of Eq. (3.65), which led to the simple results
(3.147) and (3.150). Second, the chemical potential is no longer close to its zero-
temperature limit εF , but has a pronounced temperature behavior. To nd it, we
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have to evaluate an extra equation obtained from the derivative of the Euclidean
action with respect to the chemical potential. This yields the equation for the
particle densiy:

ρ =
N

V
=


p

ρp =
1

V



p



1− ξp

Ep

tanh
Ep

2T



. (3.267)

Taking the gap equation (3.146) and converting the momentum sum into an integral
over ξ and an integral over the directions p̂, as in (3.60), we arrive at the three-
dimensional gap equation

1

g
=

1

V



p

1

2Ep

tanh
Ep

2T
= κ3

 ∞

−µ
dξ

√
ξ2 + µ

2
√
ξ2 +∆2

tanh

√
ξ2 +∆2

2T
, (3.268)

where the constant is κ3 = m3/2/
√
2π2.

Instead of the coupling constant one can parametrize the attractive δ-function
attraction by the renormalized coupling constant

1

gR
=

1

g
− 1

V



p

1

ǫp
. (3.269)

and express the renormalized coupling constant in terms of the exprimentally mea-
surable s-wave scattering length a:

1

gR
= − m

4πh̄3

1

a
. (3.270)

The factor denominator 4π instead of 2π accounts for the fact that two equal masses
have a reduced massm/2, and the negative sign is there since an attractive positive g
refers to a negative s-wave phase shift. The explanation of all this is in the textbook
[35] in Chapter 9 Eqs. (9.264)–(9.266).

Thus we can write the gap equation (3.268) also as:

− m

4πh̄3

1

a
=

1

gR
=

1

V



p



1

2Ep

tanh
Ep

2T
− 1

2ǫp



. (3.271)

In two-dimensions, the density of states is constant, and the gap equation be-
comes

1

g
= κ2

 ∞

−µ
dξ

1

2
√
ξ2 +∆2

tanh

√
ξ2 +∆2

2T
, (3.272)

with a constant κ2 = m/2π. The particle number density in Eq. (3.267) can be
integrated with the result

ρ =
m

2π





µ2 +∆2 + µ+ 2T log



1 + exp



−
√
µ2 +∆2

T



, (3.273)

the right-hand side being a function ρ(µ, T,∆).
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The δ-function potential produces a divergence similar to that in (3.65), which
requires regularization. Since the momentum sum is running over the entire momen-
tum space rather than merely over the vicinity of the Fermi sphere, the divergence
is the same as in the calculation of the scattering amplitude for the δ-function po-
tential. It can therefore be removed by a subtraction, based on going from g to the
renormalized coupling gR via Eq. (3.269).

For the temperature of pair dissociation we obtain the estimate:

Tdissoc ≃ εB/ log(εB/εF )
3/2. (3.274)

This shows that, at strong couplings, T ∗ is indeed related to pair formation [50]
which lies above the temperature of phase coherence [26, 47].

The gap in the spectrum of single-particle excitations has a special feature at
the point where the chemical potential changes its sign [25, 57, 58]. The sign change
occurs at the minimum of the Bogoliubov quasiparticle energy Ek where this energy
denes the gap energy in the quasiparticle spectrum:

Egap = min[ξ2k +∆
2]1/2. (3.275)

Thus, for a positive chemical potential, the gap energy is given directly by the gap
function ∆, whereas for a negative chemical potential, it is larger:

Egap =



∆ for µ > 0,
(µ2 +∆

2)1/2 for µ < 0.
(3.276)

In three dimensions at T = 0, equations (3.267) and (3.268) were solved analytically
in the entire crossover region in [51] to obtain ∆ and µ as functions of the reduced
chemical potential

µ̂ ≡ µ/∆. (3.277)

This will be referred to as crossover parameter. The results for ∆ and µ are:

∆

εF
=

1

[µ̂I1(µ̂) + I2(µ̂)]2/3
, (3.278)

µ

εF
= µ̂

∆

εF
=

µ̂

[µ̂I1(µ̂) + I2(µ̂)]2/3
, (3.279)

where µ̂ is related to the s-wave scattering length by

1

kFa
= − 4

π

µ̂I2(µ̂)− I1(µ̂)

[µ̂I1(µ̂) + I2(µ̂)]1/3
. (3.280)

Here we have introduced the functions

I1(z) ≡
 ∞

0
dx

x2

[(x2 − z)2 + 1]3/2
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= (1 + z2)1/4E(π/2, y)− 1

4z21(1 + z2)1/4
F (π/2, z), (3.281)

I2(z) ≡ 1

2

 ∞

0
dx

1

[(x2 − z)2 + 1]1/2

=
1

2(1 + z2)1/4
F (π/2, y), (3.282)

where

x2 ≡ k2

2M

1

∆
, y2 ≡ z21

(1 + z2)1/2
, z1 ≡

1

2
(
√
1 + z2 + z), (3.283)

and E(π/2, x) and F (π/2, x) are the standard elliptic integrals.
The calculations for D = 2 are similar. They were obtained in Ref. [52] and need

not be presented here. The results are

∆

εF
=

2

µ̂+
√
1 + µ̂2

, (3.284)

from (3.278), and

µ

εF
=

µ

∆

∆

εF
=

2µ̂

µ̂+
√
1 + µ̂2

, (3.285)

from (3.278). The rst equation relates the gap ∆ to µ by



∆

εF

2

+


µ

εF

2

= 2, (3.286)

which shows that the gap disappears at the critical value µ = µc ≡
√
2εF . Combining

this with Eq. (3.273), we nd that at µc, the particle number density has the critical
value

ρ = ρc ≡
m

π
µc. (3.287)

If the number density exceeds this critical value, the gap disappears, and the su-
perconductor becomes a normal metal. In Fig. 3.10, we plot the three- and two-
dimensional quantities ∆ and µ as a function of the ratio µ̂ = µ/δ.

Let us also calculate the pair binding energy εB from the bound-state equation

−1

g
=

1

V



k

1

k2/m+ εB
=

m

2π

 ∞

−µ̂
dz

1

2z + εB/∆ + 2µ̂
. (3.288)

After performing the elementary integrals, we nd

εB

∆
=


1 + µ̂2 − µ̂. (3.289)
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Figure 3.10 Gap function ∆ and chemical potential µ at zero temperature as functions

of the crossover parameter µ̂ in D = 3 (left-hand plot) and D = 2 (right-hand plot).

By combining (3.289) with (3.284) we nd the dependence of the ratio ǫ0/ǫF on the
crossover parameter µ̂:

εB

εF
= 2

√
1 + µ̂2 − µ̂√
1 + µ̂2 + µ̂

. (3.290)

These relations can easily be extended to non-zero temperature. In the ensuing
analysis of the gap or pseudogap function at xed coupling strength we no longer
consider the carrier density as xed, but rather assume the system to be in contact
with a reservoir of a xed chemical potential µ = µ(1/kFas). This will be most
convenient for deriving simple analytic results for the nite-temperature behavior
of the system.7

The idea of the present discussion is to produce, at strong couplings and zero
temperature, a large mean-eld gap∆eiγ(x) with a rather rigid phase factor γ(x) ≡ γ.
As the temperature is raised, the phase uctuations increase, depending on the
stiness. At a certain temperature to be identied with Tc, the stiness becomes so
small that the phase uctuations become decoherent. The gap is still there, but the
uctuations are so violent that order is destroyed. This is the pseudogap regime.
As the temperature is raised further, it reaches some value T ∗ where the mean-eld
gap is completely destroyed.

Let us now turn to the region near zero temperature, where we can derive exact
results for the gap. From (3.278) we extract the asymptotic behavior in the three-
dimensional case for µ̂ > 1. In this region one can assume density of states to be
roughly constant, since the integrand of (3.268) is peaked in the narrow region near
ξ = 0. The small-T behavior is

∆(T )= ∆(0)−∆(0)



π

2



T

∆(0)
e−∆(0)/T



1 + erf





√
µ̂2 + 1− 1

T/∆(0)

1/2






 , (3.291)

7In Ref. [44], the temperature dependence of the chemical potential was calculated numerically
within a ”xed carrier density model”, where it turned out to be very weak in comparison with
the strong dependence on the coupling strength.
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where erf(x) is the error function. Since the density of states is nearly constant in
this limit, the same equation holds in two-dimensions — apart from a modied gap
∆(0) given by (3.284).

In the weak-coupling limit, µ̂ = µ/∆(0) tends to innity, and the expression
above approaches exponentially fast the well-known BCS-result:

∆(T ) = ∆(0)− [2π∆(0)T ]1/2e−∆(0)/T . (3.292)

For strong couplings with µ̂ < −1, where the three-dimensional momentum integrals
are no longer peaked on a thin shell around the Fermi surface, the gap is given by

∆(T ) = ∆(0)− 8√
π



−µ̂



∆(0)

T

3/2

e−
√

µ̂2+1∆(0)/T . (3.293)

Near T = 0, the gap ∆(T ) tends exponentially fast to ∆(0).
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Figure 3.11 Temperature dependence of the gap function in three (a) and two (b) di-

mensions. The solid line corresponds to the crossover parameter µ̂ = 10 (which lies in the

BCS regime), crosses represent µ̂ = 0 (i.e., the intermediate regime), and lines with boxes

and circles represent µ̂ = −2 and µ̂ = −5, respectively, and the dashed line represents

µ̂ = −10 (i.e., the strong-coupling regime).
In two dimensions, the behavior is similar:

∆(T ) = ∆(0)− ∆(0)

2
E1





µ̂2 + 1∆(0)/T


, (3.294)

where E1 is the exponential integral E1(z) =
∞
z e−t/t dt. For very strong couplings,

this becomes:

∆(T ) = ∆(0)− ∆(0)

2

T

∆(0)

1√
µ̂2 + 1

e−
√

µ̂2+1∆(0)/T . (3.295)

For a plot of the temperature dependence of the gaps and the associated transition
temperatures T ∗, see Figs. 3.11 and Figs. 3.12.
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Figure 3.12 Dependence of T ∗ on the crossover parameter in three (a) and two (b)

dimensions.

Let us also calculate the grand-canonical free energy FG near T = 0 which we
shall denote by Ω = FG, as often done in thermodynamics

Ω =


k







∆
2

2


ξ2k +∆2
tanh



ξ2k +∆2

2T
− 2T log



2 cosh



ξ2k +∆2

2T



 + ξk







. (3.296)

Here and in the following formulas, ∆(0) will be abbreviated as ∆. In three dimen-
sions, Eq. (3.296) turns into the integral

Ω

V
= κ3

 ∞

−µ
dξ


ξ + µ



∆
2

2
√
ξ2 +∆2

tanh

√
ξ2 +∆2

2T
−2T log



2 cosh

√
ξ2 +∆2

2T



+ξ



.

(3.297)

In two dimensions, the integral is

Ω

V
= κ2

 ∞

−µ
dξ



∆
2

2
√
ξ2 +∆2

tanh

√
ξ2 +∆2

2T
−2T log



2 cosh

√
ξ2 +∆2

2T



+ξ



. (3.298)

The two expressions are regularized by subtracting their normal-state values Ωn =
Ω(∆ = 0).

For weak couplings, the thermodynamic potential (3.297) has the temperature
dependence

Ωs

V
≡ Ω− Ωn

V
= κ3

√
µ



−∆
2

4
+

1

2
µ|µ|− 1

2
µ


µ2 +∆2



. (3.299)

In the BCS-limit (µ̂ → ∞) this reduces to the well-known result

Ωs

V
= −κ3

√
µ∆2/2. (3.300)

In two dimensions, we nd a result valid for any coupling strength:

Ωs

V
= κ2



−∆
2

4
+

1

2
µ|µ|− 1

2
µ


µ2 +∆2



, (3.301)
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with the same BCS-limit as in (3.300):

Ωs

V
= −κ2∆

2/2. (3.302)

In both three- and two-dimensional cases, the low-temperature corrections to the
BCS-limit are πT 2/3.

In the opposite limit of strong couplings, we nd in three dimensions

Ω

V
= − π

64
κ3∆

5/2(µ̂2)−3. (3.303)

The gap ∆(0) has, by Eq. (3.278), the strong-coupling limit

∆(0) ≈
µ̂→−∞

εF [16/3π]
3/2|µ̂|1/3, (3.304)

yielding the large-µ̂ behavior

Ω

V
∼ −κ3ǫ

5/2
F

π

64



16

3π

15/4

|µ̂|−2/3. (3.305)

In two dimensions, we substitute the gap function ∆ of Eq. (3.284) into the ther-
modynamic potential (3.301) and obtain, for strong couplings where µ < 0, the
result

Ω

V
≡ 0. (3.306)

Let us now turn to the entropy. In three dimensions near T = 0 it is given in
the weak-coupling limit µ̂ = µ/∆ → ∞ by

S

V
= κ3



µ̂



8π∆4

T
e−∆/T , (3.307)

and in two dimensions by

S

V
= κ2



8π∆3

T
e−∆/T . (3.308)

In the strong-coupling limit where µ̂ = µ/∆ ≪ −1, the results are in three dimen-
sions

S

V
= κ3

√
π

4
T 1/2

∆



µ̂2e−µ̂∆/T , (3.309)

and in two dimensions:

S

V
= −2κ2∆



µ̂2e−µ̂∆/T . (3.310)
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From the entropy, we easily derive the heat capacity at a constant volume cV . In
three dimensions and near T = 0, it becomes near T = 0:

cV = κ3

√
2π∆4



µ̂
2∆

T 3/2
e−∆/T , (3.311)

and in two dimensions:

cV = κ3

√
π

4
T−1/2

∆
2µ̂2e−µ̂∆/T . (3.312)

The strong-coupling behavior is in three dimensions

cV = κ3

√
π

4
T−1/2

∆
2µ̂2e−

√
µ̂2∆/T , (3.313)

and in two dimensions

cV = 2κ2
∆

2

T
µ̂2e−

√
µ̂2∆/T . (3.314)

3.6 From BCS Superconductivity Near Tc
to the Onset of Pseudogap Behavior

We now turn to the region near T ∗, for which we derive the asymptotic behavior
of the ratios ∆(T )/T ∗ and ∆(T )/∆(0), as well as other thermodynamic quantities.
In doing so, we shall consider ∆(T )/T as a small parameter of the problem. In our
calculations near T ∗ it is convenient to use the reduced chemical potential µ̃ ≡ µ/2T ∗

rather than µ̂ = µ/∆ as a crossover parameter (which also tends to ∞ in the weak-,
and to −∞ in the strong-coupling limit). In three dimensions, we nd for weak
couplings



∆(T )

2T ∗

2

=



1− T

T ∗



1 + tanh
µ̃

2



1

4



1

µ̃/2
− 1

(µ̃/2)2
tanh

µ̃

2



+


2

π

2 

1+
2

π
arctan

µ̃

π



. (3.315)

In the limit µ̃ → ∞ this tends to the BCS-result

∆(T )

Tc

≃ 3



1− T

Tc

. (3.316)

In the opposite limit of strong couplings, both T ∗ and ∆(0) approach innity. The
ratio ∆(T )/T near T ∗ goes to zero exponentially as a function of the crossover
parameter µ̃:



∆(T )

2T ∗

2

=
16√
2π



1− T

T ∗



− µ̃

2

3/2

eµ̃. (3.317)
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In two-dimensions the same near-T ∗ formula (3.315) is applicable. In the weak-
coupling limit, it reproduces once more the BCS-result (3.316). In the strong-
coupling limit, we nd once more that the ratio ∆(T )/T tends to zero exponentially
and behaves now on the crossover parameter µ̃ like



∆(T )

2T ∗

2

= 2



1

4
−


2

π

2
−1 

µ̃

2



1− T

T ∗



eµ̃. (3.318)

Let us calculate the dependence of T ∗ on the crossover parameter µ̃ in the strong-
coupling limit. In three dimensions, we obtain from Eq. (3.268) the relation

T ∗

εF
=


1

3

2/3

e−2µ̃/3. (3.319)

This is solved for T ∗ (up to a logarithm) by

T ∗ ≃ −2

3
µ log−1 (−µ/εF ) (3.320)

As a function of the crossover parameter µ̂, we obtain

T ∗

εF
≃ 1

2



16

3π

2/3

|µ̂|4/3 log−1




16/π|µ̂|


. (3.321)

In two dimensions we nd from (3.272)

T ∗

εF
=

1

2
e−µ̃, (3.322)

and thus

T ∗ ≃ −µ log−1 (−µ/εF ) . (3.323)

As a function of µ̂, this implies

T ∗

εF
= 2µ̂2 log−1



2
√
2|µ̂|


. (3.324)

Let us also derive the dependence of the ratio ∆(0)/T ∗ on the crossover parameter
in the strong-coupling region, which in three dimensions reads

∆(0)

T ∗ =
4√
π
(−µ̃)1/4 eµ̃/2, (3.325)

and in two dimensions

∆(0)

T ∗ = 2
√
2 (−µ̃)1/2 eµ̃/2. (3.326)
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In the weak-coupling regime, the results are in both three and two dimensions

∆(0)

T ∗ =
π

eγ



1− ∆
2(0)

4µ2

−1/2

=
π

eγ



1− 1

4µ̂2

−1/2

≃ π

eγ



1 +
1

8µ̂2



. (3.327)

In the weak-coupling regime of three- and two dimensional systems, the temperature
T ∗ is the following function of µ̂:

T ∗

ǫF
≃ eγ

π



1

µ̂
− 3

8µ̂3



. (3.328)

Using this, we can also calculate the asymptotic behavior of the ratio ∆(T )/∆(0)
near T ∗. In three dimensions, the strong-coupling limit is



∆(T )

∆(0)

2

=

√
π

2



− µ̃

2



1− T

T ∗



, (3.329)

and in two dimensions:


∆(T )

∆(0)

2

=
1

8



4

π2
− 1

4

−1 

1− T

T ∗



. (3.330)

At weak couplings, both the three- and two-dimensional gap functions behave like



∆(T )

∆(0)

2

=
4π2

e2γ



1− T

T ∗

 

1 + tanh
µ̃

2



1

4



1

µ̃/2
− 1

(µ̃/2)2
tanh

µ̃

2



+


2

π

2 

1 +
2

π
arctan

µ̃

π



. (3.331)

In order to calculate the thermodynamic potential near T ∗, we expand the general
expression (3.296) in powers of ∆(T )/∆(0) and, keeping only terms of the lowest
order, we get

Ωs

V
≃ −(T ∗ − T )∆2

4T ∗



dDp

(2π)D
cosh−2 ξ

2T ∗

−∆
4

8



dDp

(2π)D
1

ξ2



1

2T ∗ cosh
−2 ξ

2T ∗ − 1

ξ
tanh

ξ

2T ∗



, (3.332)

where D is the space dimension. Recall again that we consider here the temperature
behavior of the system at a xed chemical potential µ(T, 1/kFas) ≈ µ(0, 1/kFas),
and regularize Ω by subtracting Ωn = Ω(∆ = 0). Then we obtain in three dimensions
at weak-couplings near T ∗ the thermodynamic potential:

Ωs

V
= −κ3



µ̃
√
T ∗



(T ∗ − T )∆2

2T ∗



1 + tanh
µ̃

2



+ (3.333)

+
∆

4

4

1

(2T ∗)2



1

4



1

µ̃/2
− 1

(µ̃/2)2
tanh

µ̃

2



+


2

π

2 

1 +
2

π
arctan

µ̃

π





.
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In the BCS-limit, this reduces to the well-known formula:

Ωs

V
= −κ3



µ̃
√
T ∗ ∆2



1− T

Tc

− 1

2π2

∆
2

T 2
c



. (3.334)

In the strong-coupling limit we have

Ωs

V
= −κ3



π

64
∆

4(2T ∗)−3/2


− µ̃

2

−3/2

+


1− T

T ∗



∆
2

√
π

2

√
T ∗eµ̃



. (3.335)

Using the asymptotic estimates derived above for the strong-coupling limit, and the
fact that in this limit

µ

T ∗ ≃ − log


− µ

εF



≃ −const × log(|µ̂|), (3.336)

we nd near T ∗ the dierence between the thermodynamic potential of the gapless
and pseudogaped normal states:

Ωs

V
≃ −const



1− T

T ∗

2

|µ̂|−3/2. (3.337)

In two dimensions near T = T ∗, the thermodynamic potential of the gas of bound
pairs is given by the formula

Ωs

V
= −κ2



(T ∗ − T )∆2

2T ∗



1 + tanh
µ̃

2



+ (3.338)

+
∆

4

4

1

(2T ∗)2



1

4



1

µ̃/2
− 1

(µ̃/2)2
tanh

µ̃

2



+


2

π

2 

1 +
2

π
arctan

µ̃

π





,

which holds in the crossover region, where it can be approximated by

Ωs

V
= −κ2∆

2



1− T

T ∗ − 1

2π2

∆
2

T ∗ 2



. (3.339)

In the strong-coupling limit it reads

Ωs

V
= −κ2





1− T

T ∗



∆
2eµ̃ +

∆
4

4

1

(2T ∗)2





1

4
− 4

π2



1

µ̃/2



. (3.340)

Using the earlier-derived asymptotic behavior, plus the limiting equation (3.336)
which also holds in two dimensions, we derive the µ̂-behavior of the thermodynamic
potential

Ωs

V
≃ −const ×



1− T

T ∗

2

log |µ̂|. (3.341)

The entropy behaves in three dimensions in the weak-coupling regime near T ∗ like

Ss

V
≡ S − Sn

V
= −κ3



µ̃
√
T ∗ ∆

2

2T ∗



1 + tanh


µ̃

2



, (3.342)
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with the BCS-limit

Ss

V
= −κ3

√
µ
∆

2

Tc

. (3.343)

The strong-coupling limit in three dimensions yields

Ss

V
= −κ3

√
π

2

∆
2

√
T ∗

eµ̃. (3.344)

Inserting in the above asymptotic formulas the quantities ∆, µ, and T ∗, we nd

Ss

V
≃ −const ×



1− T

T ∗



|µ̂|−5/3. (3.345)

In two dimensions, the entropy is given in the entire crossover region by

Ss

V
= −κ2

∆
2

2T ∗



1 + tanh
µ̃

2



. (3.346)

In the BCS-limit, the behavior is

Ss

V
= −κ2

∆
2

T ∗ , (3.347)

and in the strong-coupling limit:

Ss

V
= −κ2

∆
2

T ∗ e
µ̃. (3.348)

Using corresponding asymptotic formulas for ∆, µ and T ∗ in two dimensions, this
depends on µ̂ as

Ss

V
= −const ×



1− T

T ∗



µ̂−2. (3.349)

Let us now derive the specic heat. From the derivative with respect to the
temperature we nd, in three dimensions and at weak-couplings near T ∗:

Cs

V
= 2Tκ3



µ̃
√
T ∗



1 + tanh
µ̃

2

2

1

4



1

µ̃/2
− 1

(µ̃/2)2
tanh

µ̃

2



+


2

π

2 

1 +
2

π
arctan

µ̃

π



, (3.350)

which has the well-known BCS-limit

Cs

V
≃ κ3



µ̃
√
T ∗π2Tc. (3.351)

In the strong-coupling limit, the result is

Cs

V
= κ316

√
2T ∗3/2



− µ̃

2

3/2

e2µ̃. (3.352)
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Inserting earlier- derived asymptotic formulas we see that Cs tends to zero in the
strong-coupling limit as

Cs

V
∼ const × |µ̂|−2. (3.353)

In two dimensions, the result for the entire crossover region is

Cs

V
= 2T ∗κ2



1 + tanh
µ̃

2

2

1

4



1

µ̃/2
− 1

(µ̃/2)2
tanh

µ̃

2



+


2

π

2 

1 +
2

π
arctan

µ̃

π



. (3.354)

In the BCS-limit, this becomes

Cs

V
≃ κ2π

2T ∗, (3.355)

and in the strong-coupling limit

Cs

V
= 4κ2



µ̃
√
T ∗


1

4
− 4

π2

−1

e2µ̃. (3.356)

As a function of µ̂, the result is

Cs

V
∼ const × µ̂−2. (3.357)

From the above calculation near T ∗ we see that both quantities Ss and Cs tend
rapidly to zero with growing coupling strength in the pseudogaped regime (like a
power of the crossover parameter µ̂ or with an exponential dependence on µ̂).

Note that, in the strong-coupling regime, the modied gap function√
µ2 +∆2=

√
µ̂2 + 1∆ of Eq. (3.276) enters the expressions for thermodynamic

quantities below T ∗ in the same way as the ordinary gap ∆ in the BCS-limits
(3.309), (3.310), (3.313), and (3.314).

3.7 Phase Fluctuations in Two Dimensions and

Kosterlitz-Thouless Transition

In the previous sections we have calculated the properties of the theory in the mean-
eld approximation. One of the results is the bending energy of the complex gap
function ∆(x) = |∆(x)|eiθ(x). Most important are the stiness uctuations of the
phase angle θ(x). These determine the superuid density ρs. As the temperature
increases, the stiness decreases just like in an ordinary solid. In two dimensions,
the defects in the phase angle eld are observable as vortices and antivortices. These
attract each other with logarithmic potentials, thus behaving like a two-dimensional
gas of electric charges. When the softening of the stiness proceeds, one reaches a
temperature TBKT, where the vortex pairs separate. This so-called pair unbinding
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transition was discovered by Berezinskii and developed further by Kosterlitz and
Thouless, and named after them [54]. At the transition, the stiness collapses in the
same way as in the melting process of a crystal, where the elastic constants collapse.
We shall now present a calculation of the stiness, rst in the two-dimensional
system. There the phase uctuations are quite violent so that the Mermin-Wagner-
Hohenberg-Coleman theorem [55] forbids the existence of a strict long-range order.
It rather leads to a power behavior of correlation functions for all temperatures
below TBKT.

The crossover of the Kosterlitz-Thouless transition from weak to strong coupling
was rst considered in the 1990s by [48, 49]. It was also studied by means of an
XY-model, whose stiness of phase uctuations was derived from a xed nonvanish-
ing modulus of the order parameter ∆ [44]. Writing the spacetime-dependent order
parameter as ∆(x)eiθ(x), the partition function may be expressed as a functional
integral

Z(µ, T ) =


∆D∆Dθ e−Ae
∆ . (3.358)

The exponent contains a Euclidean collective action Ae
∆
= −iA[∆∗,∆]:

Ae
∆
=

1

g

 β

0
dτ


dx∆
2(x)− Tr log (Ge

∆
)−1 + Tr log (Ge

∆0
)−1. (3.359)

This can be extracted from (3.8) by a Wick rotation of the time t to imaginary
values −iτ . The right-hand side contains the inverse Euclidean Green functions of
the fermions in the collective pair eld. These can be read o the Wick-rotated
version of Eq. (3.47), which reads for fermions

(Ge
∆
)−1 =



[−∂τ − ξ(−i∇)] δ(x−x′′) ∆(x, x′′)
∆

∗(x, x′′) [i∂τ + ξ(i∇)] δ(x−x′′)



. (3.360)

This may also be written in a matrix notation as

(Ge
∆
)−1 = −Î∂τ + τ3



∇
2

2M
+ µ



+ τ1∆(τ,x), (3.361)

where Î = τ0, τ1, τ3 are Pauli matrices.
We want to study the action as a functional of the phase uctuations of∆(x). For

this we can in principle proceed as in Eq. (3.132). In the present context, however,
we shall be interested mainly in the bending energy of the phase uctuations. Then
it is more convenient to absorb the phase factor of ∆ = eiθ(x)∆0 into the external
fermions before integrating them out in the functional integral. Then the inverse
Green function has the matrix form

(Ge
∆
)−1 ≡ (Ge

∆0
)−1 − Σ = −Î∂τ + τ3



∇
2

2M
+ µ



+ τ1∆0 − Σ, (3.362)

where

Σ ≡ τ3Σ3 + τ0Σ0 ≡ τ3



i∂τθ

2
+

(∇θ)2

8M



− Î



i∇2θ

4M
+

i∇θ(τ,x)∇

2M



. (3.363)
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By expanding the collective action (3.359) in powers of Σ, we derive the gradient
expansion

Ae
∆
= Ae,pot

∆
+Ae,grad

∆
, (3.364)

where

Ae,grad
∆

= Tr
∞


n=1

1

n
(Ge

∆0
Σ)n. (3.365)

From now on we shall neglect the subscript of ∆0 as being superuous because we
work only at the extremal value of ∆, and study only phase modulations. The rst
term in the expansion (3.365) is

Ae(1)
∆

=
 β

0
dτ


dDx
∞


n=−∞



dDk tr[Ge
∆
(iωn,k)τ3]



i∂τθ

2
+

(∇θ)2

8m



, (3.366)

with

Ge
∆
(iωn,k) = −iωnÎ + τ3ξk − τ1∆

ω2
n + ξ2k +∆2

. (3.367)

After summing over the Matsubara frequencies and integrating over k, we obtain

A
e(1)
∆

=
 β

0
dτ


dDx ρ(µ, T,∆)



i∂τθ

2
+

(∇θ)2

8m



, (3.368)

with ρ(µ, T,∆) given by (3.267).
For the second expansion term we obtain two contributions. The rst is

A
e(2,1)
∆

= −1

2

 β

0
dτ


dDxK(µ, T,∆)



i∂τθ

2
+

(∇θ)2

8M

2

, (3.369)

where K(µ, T,∆) is the integral

K(µ, T,∆) =
M

8π



1 +
µ√

µ2 +∆2
tanh

√
µ2 +∆2

2T



. (3.370)

The second term is

A
(2,2)
∆

= −
 β

0
dτ


dDx
1

32π2M2



dDk
k2

cosh2[


ξ2k +∆2/2T ]
(∇θ)2. (3.371)

Combining (3.368), (3.369), and (3.371), we obtain

Ae grad
∆

=
1

2

 β

0
dτ


dDx [ρ(µ, T,∆)i∂τθ

+ J(µ, T,∆(µ, T ))(∇θ)2 +K(µ, T,∆(µ, T ))(∂τθ)
2


, (3.372)
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where J(µ, T,∆) is the stiness coecient

J(µ, T,∆) =
1

4M
ρ(µ, T,∆)− T

4π

 ∞

−µ/2T
dx

x+ µ/2T

cosh2


x2 +∆2/4T 2
. (3.373)

At the temperature T ∗ where the modulus of ∆ vanishes, also the stiness disap-
pears. The gradient energy corresponds to an XY-model with a Hamiltonian [54, 33]:

H =
J

2



dx[∇θ(x)]2. (3.374)

The only dierence with reprect to the standard XY-model lies in the dependence
of the stiness constant J on the temperature. Here this is determined from the
solutions of gap- and number-equations (3.268) and (3.267). Clearly, in this model
the Berezinskii-Kosterlitz-Thouless transition always takes place below T ∗. In the
XY-model with vortices of a high fugacity, the temperature of the phase transition
is determined by a simple formula [33, 59]:

TBKT =
π

2
J. (3.375)

The transition point is found from the divergence of the average square distance
of the vortex-antivortex pair. The two attract each other by a Coulomb potential
v(r) = 2πJ log(r/r0), and the average square distance is

r2 ∝
 ∞

r0
d2x r2e−(2πJ/T ) log(r/r0) ∝ 1

4− 2πJ/T
. (3.376)

This diverges indeed at the temperature (3.375). In our case, TBKT is determined
self-consistently from the equation

TBKT =
π

2
J(µ, TBKT,∆(µ, TBKT)). (3.377)

Using Eqs. (3.373) and (3.375), we can easily see that TBKT tends to zero when
the pair attraction vanishes. In general, the behavior of TBKT for strong and weak
couplings is found by the following considerations. We observe that the particle num-
ber n does not vary appreciably if the temperature lies in the interval 0 < T < T ∗,
so that weak-coupling estimates for TBKT derived within the model under the as-
sumption of a temperature-independent chemical potential practically coincide with
those derived from a xed fermion density. Further it is immediately realized that
in the weak-coupling limit, ∆(TBKT, µ)/TBKT is a small parameter. At zero cou-
pling, the stiness J(µ, TBKT,∆(µ, TBKT)) vanishes identically, so that an estimate
of J at weak couplings requires calculating a lowest-order correction to the second
term of Eq. (3.373) which is a term proportional to ∆(TBKT, µ)/TBKT. Thus the
weak-coupling approximation expression to the stiness reads:

J(T ) ≃ 7ζ(3)

16π3
εF

∆
2(T )

T ∗2 . (3.378)
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Inserting here the BCS value (3.316), and equating J with the critical stiness
(3.375), we obtain the weak-coupling equation for TBKT:

TBKT ≃ εF

4



1− TBKT

T ∗



, (3.379)

where εF = (π/M)ρ is the Fermi energy of free fermions in two dimensions.
It is useful to introduce the reduced dimensionless temperatures T̃KT ≡ TKT/εF

and T̃ ∗ = T ∗/εF , which are both small in the weak-coupling limit. Then we rewrite
Eq. (3.379) as

T̃KT ≃ 1

4

1

1 + 1/4T̃ ∗
. (3.380)

For small T̃ ∗, we may expand

T̃KT ≈ T̃ ∗ − 4T̃ ∗2. (3.381)

This equation shows explicitly how TBKT merges with T ∗ for decreasing coupling
strength.

For weak coupling, TBKT behaves like

TBKT ≈ eγ

π
∆(0). (3.382)

The merging of the two temperatures in the weak-coupling regime is displayed in
Fig. 3.13.

0

0.02

0.04

0.06

0.08

0.1

10 20 30 40 50 60 70 0

0.05

0.1

0.15

0.2

0.25

0.3

4 6 8 10 12 14 16 18 20

µ/∆(0)

T ∗

Tc

µ/∆(0)

T ∗

Tc

Figure 3.13 Dependence of the pair-formation temperature T ∗ on the chemical potential.

Dashed lines represent the pair condensation temperature Tc. The left gure is for D = 2

dimensions, where Tc = TBKT, the right for D = 3.

Consider now the opposite limit of strong couplings. There we see, using Eqs.
(3.377), (3.267), (3.268), and (3.373) for TBKT, ρ(T, µ), and∆(T, µ), that TBKT tends
to a constant value. We further observe that in the strong-coupling limit, ∆(TBKT)
is always situated close to the zero-temperature value of ∆(TBKT, µ) ≈ ∆(T = 0, µ).
Taking this into account, we derive an estimate for the second term in (3.373), thus
obtaining the strong-coupling equation for TBKT:

TBKT ≃ π

8







ρ

M
− TBKT

π
exp



−


µ2 +∆2(TBKT, µ)

TBKT











. (3.383)
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With the approximation∆(TBKT, µ) ≈ ∆(T = 0, µ), we nd that the rst term in the
exponent tends, in the strong-coupling limit, to a constant ∆2(TBKT, µ)/2µTBKT →
−4. The rst term in brackets tends to −∞. Hence Eq. (3.383) has the limiting
form

TBKT ≃ π

8

ρ

m



1− 1

8
exp


2µ

εF
− 4


. (3.384)

Thus for increasing coupling strength, the phase-decoherence temperature TBKT

tends rapidly towards a constant:

TBKT ≃ π

8

ρ

m
. (3.385)

In this limit we know, from Eq. (3.267), that the dierence in the carrier density
at zero temperature, ρ(T = 0), becomes equal to ρ(T = TKT ), so that our limiting
result coincides with that obtained in the “xed carrier density model”:

TBKT =
εF (n0)

8
=

π

8m
ǫ0, (3.386)

where we have inserted εF (n) = (π/m)ρ for the Fermi energy of free fermions at the
carrier density ρ0 = ρ(T = 0).

From the above asymptotic formulas for weak- and strong-coupling limits we
observe that the temperature of the Berezinskii-Kosterlitz-Thouless transition is a
monotonous function of coupling strength and carrier density. The crossover takes
place in a narrow region where µ/∆(0) ∈ (−1, 1). It is also observed in the behavior
of the three-dimensional condensation temperature Tc of a gas of tightly bound,
almost freely moving, composite bosons. In Refs. [47, 50] which include only qua-
dratic uctuations around the mean eld (corresponding to ladder diagrams), Tc

was shown to tend to a constant free Bose gas value Tc = [ρ/2ζ(3/2)]2/3π/M , with
no dependence on the internal structure of the boson.

Here we nd a similar result in two dimensions, where TKT tends to a constant,
depending only on the mass 2M and the density ρ/2 of the pairs. No dependence
on the coupling strength remains. The only dierence with respect to the three-
dimensional case is that here the transition temperature Tc = TKT is linear in the
carrier density n, while growing like ρ2/3 in three dimensions. Our limiting result
(3.386) agrees with Refs. [48] and [44]. There exists a corresponding equation for
the temperature T ∗ in the strong-coupling limit ε0 ≫ εF :

T ∗ ≃ ε0

2

1

log ε0/εF
. (3.387)
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3.8 Phase Fluctuations in Three Dimensions

In this section we discuss, in a completely analogous way, the uctuations in three
dimensions. For small temperatures, where ∆(T ) is close to ∆(0), we obtain from
(3.373):

J3D(µ, T,∆) =
1

4m
ρ(µ, T,∆)−

√
2M

16π2

1

T

 ∞

−µ
dξ

(ξ + µ)3/2

cosh2(
√
ξ2 +∆2/2T )

, (3.388)

governing the phase uctuations via an eective XY-model

H =
J3D

2



d3x[∇θ(x)]2. (3.389)

The temperature of the phase transition in this model can reasonably be estimated
using mean-eld methods for the lattice 3D XY-model [33]:

TMF
3D ≃ 3J3Da . (3.390)

Then the lattice spacing of the theory [33] is a = 1/n
1/3
b , where nb denotes the

number of vortex-antivortex pairs.
In the weak-coupling limit, the stiness coecient becomes, approximating Tc

by T ∗,

J3D ≈ 7

48π4
ζ(3)

p3F
M

∆
2

T ∗2 . (3.391)

This is precisely the coecient of the gradient term in the Ginzburg-Landau ex-
pansion. In the weak-coupling limit, the two temperatures merge according to the
formula

T̃c = T̃ ∗ − αT̃ ∗5/2, (3.392)

which contains a larger power of T̃ ∗ in the second term, as well as a smaller prefactor
α = (2π2)2/3/2 ≈ 3.65. Formula (3.392) is compared with the two-dimensional
expression in (3.381). The merging behavior of the two T ∗-curves is displayed in
Fig. 3.13.

In the strong-coupling limit of the theory, there exist tightly bound composite
bosons, and the phase stiness tends asymptotically to

J =
ρ

4m
− 3

√
2πm

16π2
T 3/2e−

√
µ2+∆2/T . (3.393)

For small T this goes rapidly to

JBE =
ρ

4m
. (3.394)

An estimate for the critical temperature, obtained via the mean-eld treatment of
the 3D XY-model on the lattice, reads in this limit:

Tc =
3

2m





ρ

2

2/3

− 1

ρ1/3
1

27/6π3/2
T 3/2
c m3/2e−

√
µ2+∆2/Tc



. (3.395)
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This quickly tends from below to the value:

T 3DXY
c =

3ρ2/3

25/3m
= εF

3

(6π2)2/3
≃ 0.2εF . (3.396)

The result is very close to the temperature of the condensation of bosons of mass
2M and density ρ/2, which was obtained after including the eect of Gaussian
uctuations on the mean-eld equation for the particle number [47, 50] (as discussed
above), yielding

TBosons
c = [ρ/2ζ(3/2)]2/3π/m = 0.218εF . (3.397)

Let us remark that the separation of T ∗ and Tc has an analogy in ferroelectrics
and magnets. These also contain two separate characteristic temperatures, for ex-
ample in the latter case — the Stoner- and the Curie-temperature. It also can be
studied more precisely in a simple eld theoretic model in 2+ε dimensions with an
O(n) symmetry for large n. In such a model, the existence of two small parameters
ε and 1/n has permitted us to prove the existence of two transitions, and to exhibit
clearly their dierent physical origins [34].

3.9 Collective Classical Fields

The introduction of a uctuating pair eld ∆αβ via the Hubbard-Stratonovich trans-
formations (1.79) and (1.80), together with the identity (3.42), is an exact procedure.
It allows to re-express the interaction in the partitian function in the form (3.42)
which contains the fundamental eld only quadratically. However, since our calcula-
tions of the physical properties will eventually be merely approximate, the exactness
of the transformation is not a virtue, but turns out to be a handicap. A better ap-
proximation is more useful than an exact expression in the wrong environment.
We have seen in Chapter 2 that there exists another possibility of eliminating the
fourth-order interaction term with the help of a completely dierent real density eld
ϕ. That procedure led also to an exact reformulation of the theory in terms of a uc-
tuating collective quantum eld. The question as to which of the two formulations
is better depends on the phenomena which one wants to study. The phenomena
emerging in one formulation from a low-order approximation may require, in the
other formulation, the summation of innitely many diagrams. Usually, this is a
hard task, so we need a procedure where the collective eects in each possible chan-
nel emerge from a low-order calculation. The way out is found by giving up the
attempt of rewriting the functional integral of the theory in terms of a uctuat-
ing collective quantum eld . Instead, we must resort to a non-uctuating collective

classical eld . Such a theory was developed in the context of quantum mechanics
under the name of Variational Perturbation Theory (VPT) [23]. This theory has
been shown to produce exponentially fast converging results which contain the ef-
fects of all possible collective phenomena. They are based on the introduction and
subsequent optimization of a variety of collective classical elds. The theory has
been extended to QFT in the textbook [24].
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Following the classical collective eld approach we modify the classical action
in a trivial way, rather than applying the functional integral identity (3.42) in the
partition function (3.1). Initially, the classical action consists of a sum

A = A0 +Aint, (3.398)

with a free term

A0 =


d3x dtψ†
α(x, t)[i∂t − ξ(−i∇)]ψα(x, t), (3.399)

and an interaction term

Aint =
g

2



α,β



d3xdtψ∗
α(x, t)ψ

∗
β(x, t)ψβ(x, t)ψα(x, t). (3.400)

To this we add and subtract a dummy term which has the form of a simple spacetime-
dependent mass term:

AM = −1

2

 

d3x dtf †(x, t)M(x, t)f(x, t). (3.401)

It contains in a mass matrix

Mαβ ≡


Σαβ ∆αβ

∆
∗
αβ ±Σαβ



, (3.402)

which depends an as yet undetermined o-diagonal trial eld ∆αβ(x) and a diagonal
eld Σαβ(x). Explicitly, the mass term (3.401) reads

AM = −


d3xdt


±ψ∗
αΣαβψβ +

1

2



±ψ∗
αΣαβψβ + ψβ∆

∗
βαψα + ψ∗

α∆αβψ
∗
β





. (3.403)

After adding and subtracting AM, we reorganize the action (3.398): We change the
free part A0 to Anew

0 ≡ A0 +AM, and the interaction to the new subtracted inter-
action Anew

int ≡ Aint − AM. In terms of the four-components elds f(x) introduced
in Eq. (3.46), the new free action may be written in a 4× 4-matrix form analogous
to (3.47):

Anew
0 =



d4x f ∗(x)Anew
Σ,∆f(x), (3.404)

where Anew
Σ,∆ is the same functional matrix as before in (3.78), except that it contains,

in addition to the pair eld ∆αβ , the density eld Σαβ in the form

Anew
Σ,∆=



[i∂t − ξ(−i∇)] δαβ − Σαβ(x) −∆αβ(x)
−∆

∗
αβ(x) ∓ [i∂t + ξ(i∇)] δαβ ∓ Σαβ(x)



δ(x−x′), (3.405)

with Σαβ and ∆αβ being matrices in spin space.
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An important dierence with respect to the earlier treatment is that Σαβ and
∆αβ are now nonuctuating classical elds . They will be determined at the end of
the calculation by an optimization process. The new interaction Anew

int ≡ Aint −AM

reads explicitly

Anew
int =

g

2



α,β



d3xdtψ∗
α(x, t)ψ

∗
β(x, t)ψβ(x, t)ψα(x, t)

+


d3xdt


±ψ∗
αΣαβψβ +

1

2



ψβ∆
∗
βαψα + ψ∗

α∆αβψ
∗
β





. (3.406)

We now calculate the partition function of the action A = Anew
0 + Anew

int in
perturbation theory. To zeroth order, the quadratic terms produce the collective
action

A0[∆,Σ] = ±
i

2
Tr log



iG−1
∆,Σ(x, x

′)


, (3.407)

where the 4 × 4-matrix G∆,Σ denotes the propagator which satises the functional
equation


[i∂t − ξ(−i∇)] δαβ − Σαβ(x) −∆αβ(x)
−∆

∗
αβ(x) ∓ [i∂t + ξ(i∇)] δαβ ∓ Σαβ(x)



G∆.Σ(x, x
′)= iδ(x−x′).(3.408)

To rst order in perturbation theory we calculate the expectation value of the
interaction (3.42) using Wick’s theorem. First we have

ψ∗
α(x, t)ψ

∗
β(x, t)ψβ(x, t)ψα(x, t) = ψ∗

α(x, t)ψα(x, t)ψ∗
β(x, t)ψβ(x, t)

± ψ∗
α(x, t)ψβ(x, t)ψ∗

β(x, t)ψα(x, t)
+ ψ∗

α(x, t)ψ
∗
β(x, t)ψβ(x, t)ψα(x, t). (3.409)

We now introduce the expectation values8

G∆∗
αβ (x, t) ≡ ψ∗

α(x, t)ψ
∗
β(x, t), G∆

αβ(x, t) ≡ ψβ(x, t)ψα(x, t), (3.410)

GΣ

αβ(x, t) ≡ ψ∗
α(x, t)ψβ(x, t), GΣ∗

αβ(x, t) ≡ ψ∗
β(x, t)ψα(x, t). (3.411)

Then we can rewrite the interaction as

Aint = (1/2g)


d3xdt (Σ̃ααΣ̃ββ ± Σ̃αβΣ̃βα + ∆̃
∗
βα∆̃βα

− (1/2g)


d3xdt (±2Σ̃αβΣαβ + ∆̃βα∆
∗
βα + ∆̃

∗
αβ∆βα), (3.412)

Aint = (g/2)


d3xdt (GΣ

ααG
Σ

ββ ±GΣ

αβG
Σ

βα + G̃∆∗
βαG̃

∆

βα

− (1/2)


d3xdt (±2GΣ

αβΣαβ +G∆

βα∆
∗
βα +G∆∗

αβ∆βα). (3.413)

8As in Eq. (3.44), the hermitian adjoint ∆∗
↑↓(x) comprises transposition in the spin indices, i.e.,

∆
∗
↑↓(x) = [∆↓↑(x)]

∗
.
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The total action is then

A1[∆,Σ] = A0[∆,Σ] + (g/2)


d3xdt (GΣ

ααG
Σ

ββ ±GΣ

αβG
Σ

βα + G̃∆∗
βαG̃

∆

βα

− (1/2)


d3xdt (±2GΣ

αβΣαβ +G∆

βα∆
∗
βα +G∆∗

αβ∆βα). (3.414)

Now we observe that

δ

δ∆∗
αβ

A0[∆,Σ] =
1

2
G∆

αβ,
δ

δΣαβ

A0[∆,Σ] = GΣ

αβ . (3.415)

This shows that the rst-order collective action

A1[∆,Σ] = A0[∆,Σ] + Aint (3.416)

is automatically extremal in the variational parameters Σαβ and ∆αβ, and that their
extremal values are

Σαβ = gGΣ

αβ, ∆αβ = gG∆

αβ. (3.417)

Moreover, if we insert the extremal solutions (3.417) into the rst-order collective
action A1[∆,Σ], it becomes

A1[∆,Σ] = ±
i

2
Tr log



iG−1
∆,Σ(x, x

′)


− g

2



d3xdt (−GΣ

ααG
Σ

ββ ±GΣ

αβG
Σ

βα + G̃∆∗
βαG̃

∆

βα),

(3.418)

or

A1[∆,Σ] = ±
i

2
Tr log



iG−1
∆,Σ(x, x

′)


− 2

g



d3xdt (−ΣααΣββ ± ΣαβΣβα +∆
∗
βα∆βα).

(3.419)

3.9.1 Superconducting Electrons

We now focus attention upon electrons of spin 1/2 where the interaction (3.420) is
simply9

Aint = g


d3xdtψ∗
↑(x, t)ψ

∗
↓(x, t)ψ↓(x, t)ψ↑(x, t), (3.420)

and the Wick contractions (3.409) are

ψ∗
↑(x, t)ψ

∗
↓(x, t)ψ↓(x, t)ψ↑(x, t) = ψ∗

↑(x, t)ψ↑(x, t)ψ∗
↓(x, t)ψ↓(x, t)

± ψ∗
↑(x, t)ψ↓(x, t)ψ∗

↓(x, t)ψ↑(x, t)
+ ψ∗

↑(x, t)ψ
∗
↓(x, t)ψ↓(x, t)ψ↑(x, t). (3.421)

9Note that g > 0 is the attractive case.
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In the absence of a magnetic eld we expect that

G∆

↓↑(x, t) ≡ G∆(x, t), G∆∗
↑↓ (x, t) ≡ G∆∗(x, t), (3.422)

GΣ

↑↑(x, t) ≡ GΣ(x, t) = GΣ

↓↓(x, t), GΣ

↑↓(x, t) ≡ GΣ

↓↑(x, t) ≡ 0. (3.423)

Then the interaction (3.413) becomes

Aint =
1

g
(Σ̃2 + |∆̃|2) − (2GΣ

Σ +G∆∗
∆+G∆

∆
∗). (3.424)

Now the action at the extremum (3.419) reads

A1[∆,Σ] = A0[∆,Σ]− 1

g
(Σ2 + |∆|2). (3.425)

If the interactions are strong and the attraction is not conned to a narrow layer
around the Fermi sphere, the present quantum eld theory needs subtractions of
the same type as encountered before. We must add a mass counterterm to the
interaction (3.406)

Adiv = −gGdiv
∆

1

2



d3xdt (ψαψα + ψ∗
αψ

∗
α) , (3.426)

with a divergent integral Gdiv
∆

. Then all equations become nite if we replace the
inverse coupling constant g by the renormalized one gR.

Note that if we assume that Σ vanishes identically, the extremum of the one-
loop action A1[∆,Σ] gives the same result as the one obtained from the mean-
eld collective quantum eld action (3.8), which reads for the present δ-function
attraction

A1[∆, 0] = A0[∆, 0]− 1

g
|∆|2. (3.427)

On the other hand, if we extremize the action (3.425) at∆ = 0, we nd the extremum
from the expression

A1[0,Σ] = A0[0,Σ]−
1

g
Σ

2. (3.428)

The essential dierence between the collective quantum eld theory and the col-
lective classical eld theory is only manifest at higher orders. In the collective
quantum eld theory based on the Hubbard-Stratonovich transformation where a
functional integral remains over the uctuating pair eld ∆αβ(x), there are higher-
order diagrams to be calculated with the help of the propagators of the collective
eld. These are extremely complicated quantities, and this makes all higher dia-
grams formed with them practically impossible to integrate. Moreover, and most
importantly, they contain innities which cannot be removed by counter terms.
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There exists so far no technique that would allow a renormalization of the eld
theory based on the uctuating collective eld ∆αβ(x).

In contrast to that, the higher-order diagrams in the present theory can all be
calculated with ordinary free-particle propagators G∆ and GΣ of Eqs. (3.410) and
(3.411), using the interaction (3.420). Even that can become tedious for higher
orders in g. But all encountered innities can be compensated by divergent counter
terms. These have all the same form as the terms which are already present in the
original action (3.398). They are either diagonal or o-diagonal mass terms which
are quadratic in the original elds, or their gradients, or they are interaction terms.

Moreover, there is a simple rule to nd the higher terms of the theory [33].
One calculates the diagrams with only the four-particle interaction, and collects
the contributions to order gn in a term An[∆,Σ]. Then one replaces An[∆,Σ] by
An[∆ − εg∆,Σ − εgΣ] and re-expands all results up to the order gn, forming an
expression

N
n=0 ε

nÃn[∆,Σ]. Finally one sets ε equal to 1/g.10 If the result of these
operations up to order N is denoted by

N
n=0 Ãn[∆,Σ], we arrive at the nal action

by an expression like (3.425):

A1[∆,Σ] = A0[∆,Σ] +
N


n=1

Ãn[∆,Σ]− 1

g
(Σ2 + |∆|2). (3.429)

Note that this action must be merely extremized, as any action in a classical treat-
ment. There are no more quantum uctuations in the classical collective elds ∆,Σ.
At the extremum, the action (3.429) is directly the grand-canonical potential.

3.10 Strong-Coupling Limit of Pair Formation

Our goal is to understand the phenomena arising in a Fermi liquid at low tempera-
ture in an external magnetic eld. In order to set up a theory at strong couplings,
we shall work in a four-dimensional “world crystal” discussed in the textbook [83].
The forth dimension represents the inverse temperature of the system. We shall
treat the electrons and holes with the help of relativistic elds. After the calculation
we can go back to the non-relativistic limit. In that limit, the Klein-Gordon wave

function reduces to the Schrödinger eld multiplied with a phase factor ei
mc

2
t

h̄ , just as
in Schrödinger’s original derivation of his time-displacement operator HS = k2/2m:

ei
kx
h̄ e−i

√
k2+m2c2ct

h̄ ei
mc

2
t

h̄ ≈ ei
kx
h̄ e−i k2

2mh̄
t = ei

kx
h̄ e−iHS

t

h̄ . (3.430)

The attraction between any two particles can be tuned as a function of an exter-
nal magnetic eld. Ultimately it can be made so strong that the coupling constant
reaches the unitary limit of innite s-wave scattering length by means of a so-called
Feshbach resonance. This phenomenon is discussed in detail in Subsection 9.2.8 of
the textbook [35] and more recently in the review [84]. At that point, the Cooper

10The alert reader will recognize here the so-called square-root trick of Chapter 5 in the textbook
Ref. [23].
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pairs which form in the weak-coupling limit at low temperature and make the system
a BCS superconductor, become so strongly bound that they behave like elementary
bosonic particles. These form a Bose-Einstein condensate (BEC). At low temper-
ature, the condensate behaves like a superconductor in which vortices can form
behaving like bosonic quasi-particles. We study what happens with this condensate
in the neighborhood of the unitarity limit.

By setting up strong-coupling equations for the fermions moving in a Bose-
Einstein condensate we nd that in 2+ǫ dimensions they couple to the gas of boson
pairs encircling them, thus forming new fermionic quasi-particles. These can bind,
in their own right, to bosonic pairs which condense at low enough temperature
and form a new type of condensate. That condensation happens at a much higher
temperature than the rst condensation process, so that it may be at the origin of
high-Tc superconductivity.

The problem of understanding the behavior of a Fermi gas as a function of
temperature has been investigated with reasonable success in a review paper by
Randeria and Taylor [27], which is discussed in great detail in [28]. The results are
summarized in Figure 3 of their paper which we reprint in Fig. 3.14. The abcissa
shows the inverse of the s-wave scattering length which is innite at 1/kFa = 0.
Near the origin, the gure has a weak-coupling regime where pairs form, and the
Fermi liquid is dominated by the physics of these Cooper pairs. The right-hand part
of the gure is denoted as “Normal Bose Liquid”.

Figure 3.14 Qualitative phase diagram of the BCS-BEC crossover as a function of tem-

perature T/ǫF and coupling 1/kF a, where kF is the Fermi momentum and a the scat-

tering length. The picture shows schematically the evolution from the BCS limit with

large Cooper pairs to the BEC limit with tightly bound molecules. Unitarity (1/kF a = 0)

corresponds to strongly interacting pairs with size comparable to k−1
F . The pair-formation

crossover scale T ∗ diverges away from the transition temperature Tc, below which a con-

densate exists and the system is superuid, as the attraction increases. Reproduced from

Figure 3 of Randeria and Taylor in Ref. [27].
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In Ref. [85] it has been argued that their Randeria-Taylor-results should be im-
proved as follows. The region to the right of the vertical dashed line is still dominated
by strongly interacting fermions. In addressing the many-body problem at nite
temperature we can incorporate the relevant s-wave scattering physics via a “zero-
range” contact potential in the Hamiltonian for spinor wave functions, ψσ = ψ↓(x)
for σ = −1 and ψσ = ψ↑(x) for σ = +1, and start with

βH =
 β

0
dτ


dx


H0 − gψ†
↑(x)ψ

†
↓(x)ψ↓(x)ψ↑(x)



, (3.431)

where x = (x, τ), and β = 1/T is the inverse temperature. The kinetic energy of
fermions with mass m and chemical potential µ is collected in

H0 =


σ

ψ†
σ(x)[∂τ −∇2/2m− µ]ψσ(x). (3.432)

It will eventually be necessary to include, in addition to the two-body interaction,
also three-body interactions [61, 62].

Let an attractive interaction be parametrized by a positive coupling constant
g(Λ), where Λ = πℓ−1

0 represents the inverse range of the four-fermion interaction
(3.431). The distance ℓ0 is usually much smaller than the lattice spacing ℓ of the
mean separation between two atoms (ℓ0 ≪ ℓ). The bare coupling constant deter-
mines the gap size by the gap equation (3.268) or its renormalized version (3.271):

1

g(Λ)
=

1

V



|k|<Λ

1

2Ek

tanh
Ek

2T
,

1

gR
=

1

V



|k|<Λ



1

2Ek

tanh
Ek

2T
− 1

ǫk



, (3.433)

where Ek denotes the quasipaticle energy, and the symbol


ωn,|k|<Λ contains the
phase-space integral plus the sum over the Matsubara frequencies ωn = 2πTn for
n = 0,±1,±2, · · · . Let us go to the regime of large enough temperature where
we the system is in the nomal phase and the gap vanishes. Then we are dealing
with free fermions which will participate in the strong-coupling expansion, and the
unrenormalized coupling constant fullls the equation

1

g(Λ)
=

1

V



|k|<Λ

1

2ǫk
tanh

ǫk

2T
. (3.434)

If we now allow for scattering between the fermions with an s-wave scattering length
a, that satises the equation [compare with Eq. (3.271)]:

m

4πa
= − 1

g(Λ)
+

1

V



|k|<Λ

1

2ǫk
tanh

ǫk

2T
. (3.435)

In d = 3 dimension, this can be written as

4πa

mg(Λ)
=

kFa

4πh̄3b
S3(T )− 1, (3.436)
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where

S3(T ) ≡
 1

0
dt tanh



ǫF

T

π2t2

8b2



(3.437)

is the reduced temperature-dependent phase-space sum in (3.433). Although we
shall work eventally with a continuum model, we may adopt a “world-crystal” lattice
language and dene an eective lattice spacing ℓ by setting the Fermi wave number
equal to

kF ≈ (3π2)1/3

ℓ
. (3.438)

The so-called half-lling electron density is simply n ≈ 1/ℓ3 ≈ k3
F/(3π

2). More-
over, we have introduced the dimensionless length parameter b = ℓ0kF/2 =
2−1(3π2)1/3ℓ0/ℓ ≪ 1 as the relative width of the electron density around the surface
of their Fermi sphere (its “thickness”). The denition of b ensures the normalization
S3(0) = 1. For low temperatures and small a, Eq. (3.433) reduces properly to its
well-known BCS expressions [72, 74]. In the opposite limit of strong-coupling where
1/kFa = 0, we arrive at the so-called unitary fermion gas.

In the weak-coupling region, one is confronted with spontaneous symmetry break-
ing and Cooper-pair formation in the Bardeen-Cooper-Schrieer (BCS) model of
superconductivity. There the standard collective quantum eld treatment is to in-
troduce C(x) = ψ↓(x)ψ↑(x) = ∆(x)eiθ(x) and to express Eq. (3.431) in terms of
quadratic fermion elds. After integrating out the fermion elds one obtains the
collective quantum eld action [72, 74]:

A[∆∗,∆]=
1

2

 β

0
dτ


dx



− i

2
Tr ln (iG−1

∆
) +

|∆(x)|2

g



, (3.439)

where G−1
∆

is the inverse operator of quadratic fermion elds, which is a functional of
∆(x) and its spacetime derivatives. After performing a regularization of the coupling
strength via the experimental s-wave scattering length a in (3.433), we adopt the
approximation of a uniform static saddle point C(x) ≈ C(0) = ∆ that satises the
saddle-point condition δA/δ∆ = 0, as well as the fermion number N = −δA/δ∆.
Then the renormalized gap and number equations are obtained from (3.268) and
(3.267) [72, 74, 75]:

m

4πa
=

1

V



k



1

2ǫk
− tanh(βEk/2)

2Ek



, n =
1

V



k



1− ξk

Ek

tanh



βEk

2



. (3.440)

Here Ek =


ξ2k +∆2 with ξk = ǫk − µ. In the weak-coupling limit where 1/kFa →
−∞ and the temperature is a small T/µ ≪ 1, the chemical potential is close to the
Fermi energy µ ≈ ǫF = h̄2k2

F/2m = h̄2(3π2n)2/3/2m and one obtains the BCS results
[75]: There the critical temperature is Tc = 1.1ǫF exp(−π/2kF |a|), and the energy
gap is ∆0 ≡ ∆(T = Tc) = 1.76Tc. The Cooper-pair size ξpair is much larger than
the lattice spacing ξpair ∼ k−1

F exp(π/2kF |a|) ≫ k−1
F . This implies that the Cooper
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pair C(x) = ψ↓(x)ψ↑(x) is a loosely bound pair of spin-up electron and spin-down
electron. In the domain of the infrared-stable xed point, the Cooper-pair size ξpair
sets the physical scale for scaling laws. The critical temperature Tc is scaled by the
gap value ∆0 as ∆(T )/∆0 = 1.74 (1− T/Tc)

1/2.
As the four-fermion attractive coupling g or 1/kFa increases, it is expected that

the Cooper pairs become tightly bound states of bosons. They form a superuid
Bose liquid, provided the temperature T is less than the crossover temperature T ∗

of Cooper-pair formation (T < T ∗). Otherwise, the Cooper pairs dissociate into two
fermions and form a normal Fermi liquid of unpaired fermions (T > T ∗). It was
qualitatively shown that the crossover temperature T ∗ of Cooper-pair formations
diverges away from the transition temperature Tc as the four-fermion attraction
increases. They approach each other in the weak-coupling 1/kFa → −∞ regime of
BCS [74].

The crossover from the weak-coupling BCS pairing to strong-coupling BEC of
tightly-bound pairs, as a function of the attractive interaction (3.431), has long
been of interest to theoretical physicists. For that it is important to study the
pair-formation crossover temperature T ∗, and the transition temperature Tc, as well
as the phase diagram of T/ǫF versus 1/kFa, in particular the infrared (IR) scaling
domain 1/kFa → −∞ for the BCS-limit and the ultra-violate (UV) scaling domain
1/kFa → 0± in the unitarity limit.

Inspired by strong-coupling quantum eld theories [76, 77], we calculate the
two-point Green functions of the composite boson and fermion elds. We use a
strong-coupling expansion to diagonalize the Hamiltonian into a bilinear form of the
composite elds. This produces composite-particle spectra in the strong-coupling
phase. We nd that the Fermi liquid of composite fermions coexists with the Bose
liquid of composite bosons in the pseudogap region (Tc < T < T ∗) as well as in the
BEC region (T < Tc). The lattice representation of the Hamiltonian (3.431), for
one-electron per cubic lattice site (half lling), reads

βH=β


i,σ=↑,↓
(ℓd)ψ†

σ(i)


−∇2/2mℓ2 −µ


ψσ(i)−gβ


i

(ℓd)ψ†
↑(i)ψ

†
↓(i)ψ↓(i)ψ↑(i). (3.441)

Here each fermion eld is dened at a lattice site “i” as ψ↑(i) = ψ↑(x) or ψ↓(i) =
ψ↓(x), the parameter d is the spatial dimension, and the index i runs over all lattice
sites. The fermion eld ψσ has a length dimension [ℓ−d/2], and the four-fermion
coupling g has a dimension [ℓd−1]. The Laplace operator∇2 is dened in d spacetime
dimensions as

∇2ψσ(i) ≡


ℓ̂



ψσ(i+ ℓ̂) + ψσ(i− ℓ̂)


− 2ψσ(i) ⇒ 2




ℓ̂

cos(kℓ̂)− 1


ψσ(k)

≈ −k2ℓ2ψσ(k). (3.442)

The vectors ℓ̂ for l = 1, . . . , d indicate the orientated lattice space vectors to the
nearest neighbors, and ψσ(k) are the Fourier components of ψσ(i) in momentum-
space. In the last line we assume that k2ℓ2 ≪ 1. The chemical potential µ controls
the density of free fermions with a dispersion ǫk = k2/2m.
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Following the framework of chiral gauge eld theories [77], we calculate the ex-
pansion in the strong-coupling limit. Here we relabel βℓd → β and 2mℓ2 → 2m,
so the lattice spacing ℓ is eectively set equal to unity; this rescales ψσ(i) →
(βg)1/4ψσ(i) and ψ†

σ(i) → (βg)1/4ψ†
σ(i). The Hamiltonian (3.441) can there-

fore be written as βH =


i [hH0(i) +Hint(i)], where the hopping parameter is
h ≡ β/(βg)1/2, and

H0(i) =


σ=↑,↓
Hσ

0 (i) ≡


σ=↑,↓
ψ†
σ(i)(−∇2/2m− µ)ψσ(i), (3.443)

Hint(i) ≡ −ψ
†
↑(i)ψ

†
↓(i)ψ↓(i)ψ↑(i). (3.444)

The partition function is given by

Z = Πi,σ



dψσ(i)dψ
†
σ(i) exp(−βH), (3.445)

· · · = Z−1
Πi,σ



dψσ(i)dψ
†
σ(i)(· · ·) exp(−βH). (3.446)

Fermion elds ψ↑ and ψ↓ are one-component Grassman variables, ψσ(i)ψσ′(j) =
−ψσ′(j)ψσ(i) and



dψσ(i)ψσ′(j) = δσ,σ′δij ,


dψ†
σ(i)ψ

†
σ′(j) = δσ,σ′δij , (3.447)

and all others vanish.
In the strong-coupling limit h → 0 for g → ∞ and nite T , the kinetic terms

(3.443) are neglected, and the partition function (3.445) becomes the one-site inte-
gral at the spatial point “i”

Πi



i↓



i↑
exp


ψ
†
↑(i)ψ

†
↓(i)ψ↓(i)ψ↑(i)



= −Πi



i↓
ψ↓(i)

†ψ↓(i) = (1)N , (3.448)

where N is the total number of lattice sites,


i↑ ≡ 

[dψ†
↑(i)dψ↑(i)] and



i↓ ≡


[dψ†
↓(i)dψ↓(i)]. The strong-coupling expansion can now be performed in powers

of the hopping parameter h, so that it is a hopping expansion.

3.11 Composite Bosons

In the strong-coupling phase, we rst consider a composite bosonic pair eld C(x) =
ψ↓(x)ψ↑(x). We want to study its two-point function

G(x) = ψ↓(0)ψ↑((0),ψ
†
↑(x)ψ

†
↓(x) = C(0), C†(x). (3.449)

Here the fermion elds are not re-scaled by (βg)1/4, and x stands for the point at
the nearest lattice site labeled by “i”. The leading strong-coupling approximation
to (3.449) is

G(x) =
δ(d)(x)

βg
. (3.450)
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The rst correction is obtained by using the one-site partition function Z(i) and the
integral

ψ↑ψ↓ ≡ 1

Z(i)



i↓



i↑
ψ↑(i)ψ↓(i)e

−hH0(i)−βHint(i),

= h2
ave


ℓ̂

ψ↑(i; ℓ̂)
ave


ℓ̂′

ψ↓(i; ℓ̂
′) ≈ h2

ave


ℓ̂

ψ↑(i; ℓ̂)ψ↓(i; ℓ̂), (3.451)

where the non-trivial result needs ψ
†
↑(i) and ψ

†
↓(i) elds in the hopping expansion

of e−hH0(i), and
ave

ℓ̂
ψσ(i; ℓ̂) ≡ ℓ̂



ψσ(i + ℓ̂) + ψσ(i− ℓ̂)


. When integrating over

elds ψ↑,↓(i) at the site “i” in the expansion of (3.449), the rst corrected (3.449)
reads:

G(x) =
δ(d)(x)

βg
+

1

βg



β

2m

2


ℓ̂



Gnb(x+ ℓ̂) +Gnb(x− ℓ̂)


. (3.452)

Here δ(d)(x) is a spatial δ-function and Gnb(x ± ℓ̂) is the Green function (3.449)
without integration over the elds ψσ at the neighbor site x. Note that the nontrivial
contributions come only from kinetic hopping terms ∝ (h/2m)2 = (1/βg)(β/2m)2.
The chemical potential term µψ†

σ(i)ψσ(i) in the Hamiltonian H0 (3.443) does not
contribute to the hopping.

Replacing Gnb(x± ℓ̂) by G(x± ℓ̂) converts Eq. (3.452) into a recursion relation for
G(x), which actually takes into account all high-hopping corrections in the strong-
coupling expansion. Going to momentum space we obtain

G(q) =
1

βg
+

2

βg



β

2m

2

G(q)


ℓ̂

cos(qℓ̂). (3.453)

This equation is solved by

G(q) =
(2m/βℓ)2

4ℓ−2


ℓ̂ sin
2(qℓ̂/2) +M2

B

, (3.454)

where we have returned to the original lattice spacing ℓ by replacing back β → βℓ3

and 2m → 2mℓ2. This implies that in the strong-coupling eective Hamiltonian,
the two-fermion eld C = ψ↓ψ↑ possesses a massive composite boson mode, i.e., a
bosonic bound state with a propagator

gG(q) =
gR2

B/2MB

(q2/2MB) +MB/2
=

gR2
B

q2 +M2
B

, (qℓ ≪ 1). (3.455)

This has a pole at the mass MB with a residue gR2
B:

M2
B =



g(2m)2(ℓ/β)− 2d


ℓ−2 > 0, R2
B = (2m/βℓ)2. (3.456)
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The condition M2
B = 0 determines a critical curve that satises in d = 3 dimensions

T − 1

g

3

2m2ℓ
= 0. (3.457)

The strong-coupling eective Hamiltonian of the composite boson eld C associated
with the propagator (3.455) can be written as

βHB
e = β



i

(ℓ3)Z−1
B C†(i)



−∇2/2MBℓ
2 − µB



C(i), (3.458)

where µB = −MB/2 is the chemical potential and ZB = gR2
B/2MB the wave-

function renormalization constant. As long as ZB is nite, we renormalize the ele-
mentary fermion eld and the composite boson eld as

ψ → (gR2
B)

−1/4ψ, and C → (2MB)
1/2C. (3.459)

Now the composite boson eld C behaves like a quasi particle in Eq. (3.458). Con-
trary to a loosely-packed bound state of two electrons in a Cooper pair formed at
a small s-wave scattering length (kFa)

−1 ≪ 0 in the weak-coupling region, this is a
tightly-packed bound pair, i.e., the proper bound state of a Feshbach resonance for
(kFa)

−1 ≫ 0 in the strong-coupling region.
At weak coupling, the bound states are composed of two constituent fermions

ψ↓(k1) and ψ↑(k2) around the Fermi surface, k1 ≈ k2 ≈ kF and k2 − k1 = q ≪
kF . The form factor or wave-function renormalization ZB ∝ gT 2 (3.455) relates
to the bound-state size ξboson. As gT 2 → 0, ZB decreases and C(x) decribes a
loosely-bound Cooper pair. The vanishing wave function renormalization constant
indicates the fact that the bosonic bound state pole dissolves into two fermionic
constituent cuts [78]. At this dissociation scale, i.e., at the crossover temperature
T ∗, the phase transition takes place which leads to a normal Fermi liquid of unpaired
fermions. Limited by the validity of strong-coupling expansion, we have not been
able to quantitatively obtain the dissociation scale T ∗ as it results from the inverse
scattering length 1/a. At the unitary point 1/kFa = 0, we can estimate the crossover
temperature as T ∗ ≈ ǫB/ log(ǫB/ǫF )

3/2 [74, 27], and the binding energy ǫB from
(3.290) as

ǫB

ǫF
= 2

√
1 + µ̂2 − µ̂√
1 + µ̂2 − µ̂

. (3.460)

Inserting here the crossover parameter µ̂ = µB/MB = −1/2, obtained from taking
MB as the mass gap at the unitary point 1/kFa=0, we nd ǫB/ǫF = 5.24 and
T ∗/ǫF = 4.86.

Note that the mass term M2
BCC

†(x) changes its sign from M2
B > 0 to M2

B < 0
and the pole MB in (3.455) becomes imaginary, implying the second-order phase
transition from the symmetric phase to the condensed phase [77]. The vanishing
boson mass M2

B = 0 gives rise to the critical curve (3.457), which can also be
written as

Tc

ǫF
=

T u
c (Tc)

ǫF



1− 4πh̄3b

S3(Tc)

1

akF



, (3.461)
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where T u
c = T u

c (Tc = T u
c ) is the temperature at the unitarity point 1/kFa = 0. The

prefactor is a solution of the following equation:

T u
c (Tc)

ǫF
= (3π2)−1/3 3S3(Tc)

(4π)2b
. (3.462)

Indeed, by inserting Eqs. (3.436) and (3.438) into Eq. (3.461), we obtain

Tc

ǫF
=

m

4πa

4πa

g(Λ)

3

2m2ℓǫF
=

m

4πa



kFa

4πh̄3b
S3(T )− 1



3

2m2ℓǫF

=
3kFS3(Tc)

2m(4π)2h̄3b ℓǫF



1− 4πh̄3b

S3(Tc)

1

kFa



, (3.463)

Going here the unitary point 1/kFa = 0 and returning to physical dimension, we
verify (3.462).

We now calculate the phase diagram numerically for the Fermi layer thickness
parameters b = 0.02, 0.03 corresponding to the ratios ℓ0/ℓ = 0.013, 0.02. We nd
T u
c /ǫF ≈ 0.31, 0.2 and plot the result of (3.461) in Fig. 3.15. In contrast to the prac-

tically horizontal phase boundary estimated by Randeria and Taylor in their Fig. 3
of Ref. [27] (reprinted in Fig. 3.14), we obtain a decreasing critical temperature Tc

as a function of 1/kFa ≥ 0. At an “innite” coupling strength we nd Tc = 0 where
1/kFa → S3(0)/4πh̄

3b = 1/4πh̄3b. The limit Tc → 0 at gc → ∞ is taken while
keeping the product Tcgc constant, so that the hopping parameter h ∝ 1/(Tg)1/2

is a small number. This means that the composite pairs are very massive at this
“innite” coupling point, and their kinetic energies are negligible. Here we have a
quantum phase transition. Viewing the four-fermion interaction as an attractive po-
tential, this “innite”-coupling point indicates the most tightly bound state located
at the lowest energy level of the potential, with a scattering length a that is of the
order of −2πℓ0. If the attraction comes from a δ-function, the length parameters
a and b vanish, while 1/kFa → ∞, recovering the nearly horizontal critical line
presented in Fig. 3.14. Note that Eq. (3.461) is inapplicable in the weak-coupling
regime of BCS where 1/kFa ≪ 0. It holds only in the strong-coupling regime with
1/kFa ≫ 0. There we nd a superuid phase with tightly bound composite bosons
which have undergone a Bose-Einstein condensation (BEC). This means that the
pair eld C(x) ≡ |∆(x)|eiθ(x) has developed a nonzero vacuum expectation value in
the same way as it happened in the BCS weak-coupling regime.

Analogously, we consider the composite eld of an electron and a hole, i.e., the
plasmon eld P(x) = ψ

†
↓(x)ψ↑(x). The same calculations are applied for the two-

point Green function GP(x) = P(0),P†(x). In the lowest nontrivial order of a
strong-coupling expansion, we obtain the same result as in (3.455) and (3.456), indi-
cating a tightly bound state of a plasmon eld. Its Hamiltonian has the same form as
in Eq. (3.458), only that C(i) has been replaced by P(i). This is not a surprise since
the pair eld C(x) and the plasmon P(x) eld appear in the same way in the strongly
interacting Hamiltonian (3.441). However, the pair eld C(x) is a charged eld
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Figure 3.15 Qualitative phase diagram in the unitarity limit. Solving Eq. (3.438),

the transition temperature Tc/ǫF is plotted as a function of 1/kF a ≥ 0 for the selected

parameters b = 0.02, 0.03. The “innite”-coupling points are shown to lie at one of the

corresponding zeros (1/kF a)Tc=0 = 4.0, 2.7. These are points of quantum phase transition.

Above the critical line is a normal liquid consisting of massive composite bosons and

fermions. Below the critical line lies a superuid phase with a new type of BEC, that

involves composite massive fermions.

whereas the plasmon eld P(x) is neutral, so that they can be dierent up to a rel-
ative phase θ(x). We select the relative phase such that |P(x)| = |C(x)| = ∆(x).

In the weak-coupling regime 1/kFa → −∞ we go into the super-uid phase
of BCS, where the ground state is parametrized by the minimum of the vacuum
expectation value. Here the Cooper eld C(x) has the expectation value C(x) ≡
∆ = 0, rather than forming a condensate of the plasmon eld P(x). This makes
the dierence between the charged Cooper pair and the neutral plasmon pair of an
electron and a hole, which does not contribute to low-temperature superconductivity
in the BCS-limit.

In the strong-coupling limit, we also consider the two-point Green function of
the Cooper eld C(x) with a plasmon eld P(x):

GM(x) = P(0), C†(x) = ψ†
↓(0)ψ↑(0)ψ

†
↑(x)ψ

†
↓(x). (3.464)

From it we shall see their correlations and mixing. The same calculations up to the
lowest nontrivial order of the strong-coupling expansion lead to

GM(x) =
1

βg



β

2m

2


ℓ̂



GM(x+ ℓ̂) +GM(x− ℓ̂)


. (3.465)

Going to Fourier space, this is solved to be identically vanishing, as one eld is
charged while the other is neutral.
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3.12 Composite Fermions

To exhibit the presence of composite fermions in the strong-coupling eective Hamil-
tonian H of Eqs. (3.443) and (3.444), we use the Cooper eld C(x) = ψ↓(x)ψ↑(x)
and calculate the two-point Green functions:

SLL(x)≡ψ↑(0),ψ
†
↑(x), (3.466)

SML(x)≡ψ↑(0), C
†(x)ψ↓(x)=ψ↑(0), [ψ

†
↑(x)ψ

†
↓(x)]ψ↓(x), (3.467)

S†
ML(x)≡ψ†

↓(0)C(0),ψ
†
↑(x)=ψ†

↓(0)[ψ↓(0)ψ↑(0)],ψ
†
↑(x), (3.468)

SMM (x)≡ψ†
↓(0)C(0), C

†(x)ψ↓(x)=ψ†
↓(0)[ψ↓(0)ψ↑(0)], [ψ

†
↑(x)ψ

†
↓(x)]ψ↓(x). (3.469)

Here the fermion elds are not re-scaled by (βg)1/4. Using the following fermionic
integrals:

ψ†
↑ ≡ 1

Z(i)



i↓



i↑
ψ

†
↑(i)e

−hH0(i)−βHint(i) ≈ h3
ave


ℓ̂

ψ
†
↑(i; ℓ̂)ψ↓(i; ℓ̂)ψ

†
↓(i; ℓ̂),(3.470)

ψ†
↑ψ↓ψ

†
↓ ≡ 1

Z(i)



i↓



i↑
ψ

†
↑(i)ψ↓(i)ψ

†
↓(i)e

−hH0(i)−Hint(i) = h
ave


ℓ̂

ψ
†
↑(x; ℓ̂), (3.471)

ψ↑ψ
†
↑ψ↓ψ

†
↓ ≡

1

Z(i)



i↓



i↑
ψ↑(i)ψ

†
↑(i)ψ↓(i)ψ

†
↓(i)e

−hH0(i)−Hint(i) = 1, (3.472)

we obtain, by analogy with (3.449)–(3.452), for the composite-fermion Green func-
tions (3.466)–(3.469) the recursion relations

SLL(x) =
1

βg



β

2m

3


ℓ̂

[SML(x + ℓ̂) + SML(x− ℓ̂)], (3.473)

SML(x) =
δ(d)(x)

βg
+

1

βg



β

2m





ℓ̂

[SLL(x+ ℓ̂) + SLL(x− ℓ̂)], (3.474)

SMM (x) =
1

βg



β

2m





ℓ̂

[S†
ML(x + ℓ̂) + S†

ML(x− ℓ̂)]. (3.475)

Transforming these three two-point functions to momentum space SX(p) =


x e
−ipxSX(x) where X stands for the symbol-pairs LL,ML,MM , respectively,

we obtain the recursion relations

SLL(p) =
1

βg



β

2m

3


2


ℓ̂

cos(pℓ̂)


SML(p), (3.476)

SML(p) =
1

βg
+

1

βg



β

2m





2


ℓ̂

cos(pℓ̂)


SLL(p), (3.477)

SMM (p) =
1

βg



β

2m





2


ℓ̂

cos(pℓ̂)


S†
ML(p). (3.478)
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They are solved by

SML(p) =
(1/βg)

1− (1/βg)2(β/2m)4


2


ℓ̂ cos(pℓ̂)
2 . (3.479)

From this SLL(p) is found via (3.476) and SMM(p) via (3.478). By analogy with
Eqs. (3.454) and (3.455) for the composite boson, we nd

S(p) = R−1
B SLL(p) + 2R−2

B SML(p) + R−3
B SMM (p)

=
2

4ℓ−2


ℓ̂ sin
2(pℓ̂/2) +M2

F

⇒ 2

p2 +M2
F

, (p ℓ ≪ 1), (3.480)

where RB and M2
F = M2

B are given by (3.456) in the lowest order calculation.
We have returned to the original lattice spacing ℓ by re-substituting β → βℓ3 and
2m → 2mℓ2. Equation (3.480) represents a composite fermion consisting of the
elementary fermion ψ↑ and the three-fermion state C(x)ψ†

↓(x),

Ψ↑(x) = R
−1/2
B ψ↑(x) + R

−3/2
B C(x)ψ†

↓(x) ⇒ g1/4ψ↑(x) + g3/4C(x)ψ†
↓(x). (3.481)

The three-fermion state C(x)ψ†
↓(x) is made of a hole ψ

†
↓(x) that is “dressed” by a

cloud of Cooper pairs. The associated two-point Green function satises

Ψ↑(0),Ψ
†
↑(x) = ψ↑(0),ψ

†
↑(x)+ ψ↑(0), C

†(x)ψ↓(x)
+ C(0)ψ†

↓(0),ψ
†
↑(x)+ C(0)ψ†

↓(0), C
†(x)ψ↓(x), (3.482)

and its momentum transform is given by Eq. (3.480). A similar result holds for the

spin-down composite fermion eld Ψ↓(x) = R
−1/2
B ψ↓(x) + R

−3/2
B C(x)ψ†

↑(x).
Dening the quantity gS(p) as the propagator of the composite fermion

SFermion(p), the composite fermion can be described by the strong-coupling eec-
tive Hamiltonian:

βHF
e = β



i,σ=↑,↓
(ℓ3)Z−1

F Ψ
†
σ(i)


−∇2/2MF ℓ
2 − µF



Ψσ(i). (3.483)

Its chemical potential is µF = −MF /2 and its wave function renormalization con-
stant is ZF = g/MF . Following the renormalization (3.459) of elementary fermion
elds, we renormalize the composite fermion eld Ψ↑,↓ ⇒ (ZF )

−1/2
Ψ↑,↓, which be-

haves like a quasi-particle in Eq. (3.483), analogously to the composite boson (3.458).
The negatively charged (e) three-fermion state is a combination of a twice negatively
charged (2e) Cooper eld C(x) = ψ↓(x)ψ↑ of two electrons with a once positively
charged hole in ψ↓(x). Similarly, positively charged (−e) composite fermion elds

Ψ
†
↑(x) or Ψ

†
↓(x) are composed of two-hole states C†ψ

†
↑ψ

†
↓ combined with a single hole

state ψ
†
↑ or ψ

†
↓. Suppose that two constituent electrons ψ↓(k1) and ψ↑(k2) of the

Cooper pair eld are combined with a constituent hole ψ↑(k3) lying close to the
Fermi surface k1 ≈ k2 ≈ k3 ≈ kF , then the Cooper bound state q = k2 − k1 ≪ kF
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and the three-fermion bound state p = k1 − k2 + k3 ≈ k3 ≈ kF lie also around the
Fermi surface. As a result, the composite fermion bound states Ψ↑,↓ live around the
Fermi surface as well.

Due to the Cooper eld C(x) and the plasmon eld P(x) appearing in an equiva-
lent way in the interacting Hamiltonian (3.441), the same results (3.480)–(3.483) are
obtained for the case of a plasmon eld P(x) = ψ

†
↓(x)ψ↑(x) combined with another

electron or hole. The associated composite fermion eld is given by

Ψ
P
↑ (x) = R

−1/2
B ψ↑(x) + R

−3/2
B P(x)ψ↓(x) ⇒ g1/4ψ↑(x) + g3/4P(x)ψ↓(x), (3.484)

whose two-point Green function reads:

ΨP
↑ (0),Ψ

P†
↑ (x) = ψ↑(0),ψ

†
↑(x)+ ψ↑(0),P

†ψ
†
↓(x)

+ Pψ↓(0),ψ
†
↑(x)+ Pψ↓(0),P

†ψ
†
↓(x). (3.485)

For the spin-down eld we nd similarly Ψ
P
↓ (x) = R

−1/2
B ψ↓(x)+R

−3/2
B P(x)ψ↑(x).

The composite fermions can be represented in the strong-coupling eective Hamil-
tonian of Eq. (3.483) with Ψσ(i) → Ψ

P
σ (i), following the renormalization (3.459) of

elementary fermion elds, and a renormalization Ψ
P
↑,↓ ⇒ (ZF )

−1/2
Ψ

P
↑,↓. The charged

three-fermion states Pψ↑,↓ or P†ψ
†
↑,↓ are composed of one electron or one hole com-

bined with a neutral plasmon eld P(x) = ψ
†
↓(x)ψ↑(x) or P†(x) = ψ

†
↑(x)ψ↓(x) of

an electron and a hole. The composite fermion elds Ψ
P
↑,↓(x) are composed of a

three-fermion state Pψ↑,↓ that consists of a plasmon in combination with a further
elementary fermion ψ↑ or ψ↓.

The same thing is true for its charge-conjugate state. Suppose that a constituent
electron ψ↓(k1) and a hole ψ

†
↓(k2) are combined with another constituent electron

ψ↑(k3), and suppose that all momenta lie around the Fermi surface k1 ≈ k2 ≈ k3 ≈
kF . Let the plasmon have the momentum q = k2 − k1 ≪ kF , and the composite
fermion bound state have momenta p = k1 − k2 + k3 ≈ k3 ≈ kF near the Fermi
surface. We can consider a three-fermion state C(x)ψ†

↓(x) in Eq. (3.481). It can be
written as

C(x)ψ†
↓(x) = ψ↓(x)ψ↑(x)ψ

†
↓(x) = −ψ

†
↓(x)ψ↑(x)ψ↓(x) = −P(x)ψ↓(x). (3.486)

This implies that the three-fermion state C(x)ψ†
↓(x) is the same as the three-fermion

state P(x)ψ↓(x) up to a denite phase factor eiπ. As a result, the composite fermion
eld Ψσ(x) in (3.481) is the same as the composite fermion Ψ

P
σ (x) in (3.484), up to

a denite phase factor.

3.13 Conclusion and Remarks

In the weak-coupling limit, as the running energy scale becomes smaller correspond-
ing to an increase of the lattice spacing ℓ, the limit 1/kFa → −∞ produces an
IR-stable xed point. Its scaling domain is described by an eective Hamiltonian of
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BCS physics. The temperature region T ∼ Tc is characterized by the energy scale
∆0 = ∆(Tc). In elementary particle physics, this is analogous to the IR-stable xed
point and scaling domain of an eective Lagrangian of the Standard Model (SM).
The physics at this electroweak scale is recapitulated in Ref. [86, 71].

As the running energy scale becomes larger, which happens when the lattice spac-
ing ℓ becomes smaller, the coupling g becomes stronger and 1/kFa becomes nite,
crossing over to the region where the Cooper pairs are getting tightly bound. Their
size becomes smaller and smaller and the width of the Feshbach resonance becomes
sharper and sharper. At negative 1/kFa → 0, the fermion system approaches the
unitarity limit, where the Feshbach resonance turns into a tightly bound composite
boson which behaves like an elementary scalar particle.

In Ref. [87], it is shown that at zero temperature and for d > 2, the unitarity
limit of negative 1/kFa → 0− and positive 1/kFa → 0+ represents an UV-stable
xed point of large coupling. The couplings g > gUV and g < gUV approach gUV, as
the running energy scale becomes larger (which happens when the lattice spacing ℓ

becomes smaller). In the scaling domain of this UV-stable xed point in the unitar-
ity limit 1/kFa → 0±, where T ∗ > T → Tc, an eective Hamiltonian of composite
bosons and fermions is realized with characteristic scales MB,F (T ). These consider-
ations apply to the dimension d = 2 + ǫ > 0 case. In elementary particle physics,
this is analogous to the xed point in the UV-regime with its scaling domain, where
an eective Lagrangian of composite particles is realized with the characteristic
scale probably in TeV range. The eective Lagrangian preservers SM chiral gauge
symmetries and composite particles are made of SM elementary fermions [89].

We have shown here that the eective Hamiltonians (3.458) and (3.483) exist
for composite bosons and fermions if 1/kFa ≥ 0 at dierent values of temperature
T . In the rst regime T ∈ (T ∗, Tc), one nds a mixed liquid of composite bosons
and fermions with the pseudogap MF,B(T ). It is expected to dissolve to a normal
unpaired Fermi gas at the crossover temperature T ∗. These composite quasi particles
are either charged or neutral. They behave like superuids up to a relatively high
crossover temperature T ∗. In a second regime T < Tc, the superuid phase of
composite bosons undergoes BEC and one nds in the ground state the coexistence of
BEC and semi-degenerate fermions Ψ↑(x) and Ψ↓(x). The latter couple to the BEC
background to form massive quasi-particles of fermion type, moreover they form
tightly bound states Ψ↑Ψ↓ or Ψ

†
↑Ψ↓, which are new bosonic quasi-particles producing

a new condensate of the Bose-Einstein type. In both cases, whenever the Coulomb
repulsion between electrons can be compensated by “phonons” in an analogous
way to either composite bosons via a Feshbach resonance, or new bosonic quasi-
particles via a composite-fermion pair state, this would result in superconductivity
and superuity at high temperature Tc ∝ O(ǫF ). The scale of that is the result
of a large coherent mass gap MF,B(T ), being much larger than the BCS gap. The
coherent supercurrents consist of composite fermions and bosons. These features,
which we have discussed for 1/kFa ≥ 0, are expected to be also true in 1/kFa ≪
0, only with a much smaller scale MF,B(T ). Due to the presence of composite
fermions in addition to composite bosons, we expect a further suppression of the low-
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energy spectral weight for single-particle excitations and for the material following a
harder equation of state. Its observable consequences include a further T -dependent
suppression of heat capacity and gap-like dispersion in the density-of-states and spin
susceptibility. Moreover, we discuss the quantum critical point and speculate upon
the phase of complex quasi-particles involved. It is known that the limit 1/kFa ≪ 0
produces an IR-stable xed point, and its scaling domain is described by an eective
Hamiltonian of BCS physics with the gap scale ∆0 = ∆(Tc) in T ∼ Tc

<∼ T ∗. This is
analogous to the IR-stable xed point and scaling domain of an eective Lagrangian
of the Standard Model (SM), which contains up to the electroweak scale all relevant
elds of elementary particle physics [71, 86].

The unitarity limit 1/kFa → 0± representing a scale invariant point [88] was
formulated in a renormalization group framework [87], implying an UV-stable xed
point of large coupling. The couplings g > gUV and g < gUV approach gUV, as the
running energy scale becomes larger. In the scaling domain of this UV-stabe xed
point 1/kFa → 0± and T → T u

c , an eective Hamiltonian of composite bosons and
fermions is realized with a characteristic scale

MB,F (T ) =











T − T u
c

T u
c











ν/2
(2d)1/2

(3π2)1/d
kF , T >∼T u

c , (3.487)

where ν = 1 is the critical exponent derived from the β-function which determines
the scaling laws. Equation (3.487) shows that the relevant cuto are the Fermi
momentum kF and the physical correlation length ξ ∝ M−1

B,F . The last characterizes

the size of composite particles via their form factor ZB,F ∝ M−1
B,F (3.458) and (3.483).

This domain should be better explored experimentally. The analogy was discussed
in elementary particle physics with anticipations of the UV-scaling domain at TeV
scales and an eective Lagrangian of composite particles made by SM elementary
fermions including those of Majorana type [89].

Appendix 3A Auxiliary Strong-Coupling Calculations

Here we present the following one-site functional integrals over fermion elds that
are useful for obtaining the recursion relations of two-point Green functions of com-
posite boson and fermion elds. The integral of one eld ψ↑(i) at the point “i” is
dened as,

ψ†
↑(x) ≡

1

Z(i)



i↓



i↑
ψ

†
↑(i)e

−hH0(i)−βHint(i), (3A.1)

where


i↓ ≡ 

[dψ†
↓(i)dψ↓(i)] and



i↑ ≡ 

[dψ†
↑(i)dψ↑(i)]. To have a non-vanishing

integral


i↑, it needs a ψ↑(x)-eld in the expansion of e−hH↑
0
(x),

ψ↑(i) =
h

Z(i)

ave


ℓ̂

ψ
†
↑(i; ℓ̂)



i↓
e−hH↓

0
(i)


i↑
ψ↑(i)ψ

†
↑(i)e

−Hint(i),

= − h

Z(i)

ave


ℓ̂

ψ
†
↑(i; ℓ̂)



i↓
e−hH↓

0
(i) (3A.2)
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where
ave

ℓ̂
ψ

†
↑(i; ℓ̂) =



ℓ̂



ψ
†
↑(i, ℓ̂) + ψ

†
↑(i,−ℓ̂)



and



i↑
ψ↑(i)ψ

†
↑(i)e

−Hint(i) =
1

ψ
†
↓(i)ψ↓(i)

= −1, (3A.3)

using Eq. (3.448). The integral


i↓ needs to have ψ↓(i) and ψ
†
↓(i) elds in expansion

of e−hH↓
0
(i),

ψ↑(i) =
h3

Z(i)

ave


ℓ̂

ψ
†
↑(i; ℓ̂)

ave


ℓ̂′

ψ↓(i; ℓ̂
′)

ave


ℓ̂′′

ψ
†
↓(i; ℓ̂

′′)


i↓
ψ↓(i)ψ

†
↓(i),

≈ h3
ave


ℓ̂

ψ
†
↑(i; ℓ̂)ψ↓(i; ℓ̂)ψ

†
↓(i; ℓ̂), (3A.4)

where the three elds ψ†
↑, ψ↓ and ψ

†
↓ are approximately at the same point i + ℓ̂ for

the lowest non-trivial contribution.

The integral of two elds ψ↑(i)ψ↓(i) at “i” is dened as

ψ↑(i)ψ↓(i) ≡
1

Z(i)



i↓



i↑
ψ↑(i)ψ↓(i)e

−hH0(i)−βHint(i). (3A.5)

To have a non-trivial result, it needs ψ
†
↑(i) and ψ

†
↓(i) elds in the expansion of

e−hH0(i),

ψ↑(i)ψ↓(i) = h2
ave


ℓ̂

ψ↑(i; ℓ̂)
ave


ℓ̂′

ψ↓(i; ℓ̂
′) ≈ h2

ave


ℓ̂

[ψ↑(i; ℓ̂)ψ↓(i; ℓ̂)]. (3A.6)

The integral of three elds at the site “i” is dened as

ψ†
↑(i)ψ↓(i)ψ

†
↓(i) ≡ 1

Z(i)



i↓



i↑
ψ

†
↑(i)ψ↓(i)ψ

†
↓(i)e

−hH0(i)−Hint(i)

=
h

Z(i)

ave


ℓ̂

ψ
†
↑(x; ℓ̂)



i↓



i↑
ψ↑(i)ψ

†
↑(i)ψ↓(i)ψ

†
↓(i)e

−hH↓

0
(i)−Hint(i)

= h
ave


ℓ̂

ψ
†
↑(x; ℓ̂), (3A.7)

where a ψ↑(i) eld comes from the expansion of e−hH↑
0
(i).

The integral of the four fermion elds at site “i” reads:

ψ↑(i)ψ
†
↑(i)ψ↓(i)ψ

†
↓(i) ≡

1

Z(i)



i↓



i↑
ψ↑(i)ψ

†
↑(i)ψ↓(i)ψ

†
↓(i)e

−hH0(i)−Hint(i) = 1. (3A.8)
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Appendix 3B Propagator of the Bilocal Pair Field

Consider the Bethe-Salpeter equation (3.23) with a potential λV instead of V

Γ = −iλV G0G0Γ. (3B.1)

Take this as an eigenvalue problem in λ at xed energy-momentum q = (q0,q)=
(E,q) of the bound states. Let Γn(P |q) be all solutions, with eigenvalues λn(q).
Then the convenient normalization of Γn is:

−i
 d4P

(2π)4
Γ
†
n (P |q)G0



q

2
+ P



G0



q

2
− P



Γn′(P |q) = δnn′ . (3B.2)

If all solutions are known, there is a corresponding completeness relation (the sum
may comprise an integral over a continuous part of the spectrum)

−i


n

G0



q

2
+ P



G0



q

2
− P



Γn(P |q)Γ†
n(P

′|q) = (2π)4δ(4)(P − P ′). (3B.3)

This completeness relation makes the object given in (3.37) the correct propagator
of ∆. In order to see this, write the free ∆ action A2[∆

†
∆] as

A2 =
1

2
∆

†


1

λV
+ iG0 ×G0



∆, (3B.4)

where we have used λV instead of V . The propagator of ∆ would have to satisfy



1

λV
+ iG0 ×G0



∆∆
† = i. (3B.5)

Performing this calculation on (3.29), one has indeed for Γn and λn, by virtue of
(3B.1), the equation



1

λV
+ iG0 ×G0



×



−iλ


n

ΓnΓ
†
n

λ− λn(q)



= −iλ


n

1
λV

ΓnΓ
†
n + iG0 ×G0ΓnΓ

†
n

λ− λn(q)

= iλ


n

−λn(q)
λ

+ 1

λ− λn(q)
(−iG0 ×G0ΓnΓ

†
n)

= i



−i


i

G0 ×G0ΓnΓ
†
n



= i. (3B.6)

Note that the expansion of the propagator in powers of λ, namely

∆∆
† = i



k







n



λ

λn(q)

k

ΓnΓ
†
n



 , (3B.7)
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corresponds to the graphical sum over one, two, three, etc. exchanges of the potential
λV . For n = 1 this is immediately obvious due to (3B.1):

i


n

λ

λn(q)
ΓnΓ

†
n =

 λ

λn(q)
λn(q)V G0 ×G0ΓnΓ

†
n = iλV. (3B.8)

For n = 2 one can rewrite, using the orthogonality relation,

i


n



λ

λn(q)

2

ΓnΓ
†
n=


nn′

λ

λn(q)
ΓnΓ

†
nG0 ×G0Γn′Γ

†
n′

λ

λn′(q)
=λV G0 ×G0λV, (3B.9)

which displays the exchange of two λV terms with particles propagating in between.
The same procedure applies at any order in λ. Thus the propagator has the expan-
sion

∆∆
† = iλV − iλV G0 ×G0iλV + . . . . (3B.10)

If the potential is instantaneous, the intermediate


dP0/2π can be performed re-
placing

G0 ×G0 →
i

E − E0(P|q)
, (3B.11)

where

E0(P|q) = ξ



q

2
+P



+ ξ



q

2
−P



is the free particle energy which may be considered as the eigenvalue of an operator
H0. In this case the expansion (3B.10) reads

∆∆
† = i



λV + λV
1

E −H0

λV + . . .


= iλV
E −H0

E −H0 − λV
. (3B.12)

We see it related to the resolvent of the complete Hamiltonian as

∆∆
† = iλV (RλV + 1), (3B.13)

where

R ≡ 1

E −H0 − λV
=


n

ψnψ
†
n

E − En

, (3B.14)

with ψn being the Schrödinger amplitudes in standard normalization. We can now
easily determine the normalization factor N in the connection between Γn and the
Schrödinger amplitude ψn. In the instantaneous case, Eq. (3B.2) gives



d3P

(2π)3
Γ
†
n(P|q)

1

E −H0

Γn′(P|q) = δnn′ . (3B.15)
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Inserting ψ from (3.29) renders the orthogonality relation

1

N2



d3P

(2π)
ψ†
n(E −H0)ψn′(P|q) = δnn′. (3B.16)

But since

(E −H0)ψ = λV ψ, (3B.17)

the orthogonality relation reads also

1

N2



d3P

(2π)3
ψ†
n (P|q)λV ψn′ (P|q) = δnn′ . (3B.18)

For wave functions ψn in standard normalization, the integral expresses the dier-
ential

λ
dE

dλ
.

For a typical calculation of a resolvent, the reader is referred to Schwinger’s treat-
ment of the Coulomb problem [60]. His result may directly be used for a propagator
of electron hole pairs bound to excitons.

Appendix 3C Fluctuations Around the Composite Field

Here we show that the quantum mechanical uctuations around the classical equa-
tions of motion

∆(x, y) = V (x− y)ψ(x)ψ(y) (3C.1)

are quite simple to calculate. This will be compared with the collective plasmon
eld in equation

ϕ(x) =


dyV (x, y)ψ†(y)ψ(y). (3C.2)

For this let us compare the Green functions of ∆(x, y) [or ϕ(x)] or with those of
the composite operators on the right-hand side of Eqs. (3C.1) or (3C.2). The Green
functions of ∆ [or ϕ] are generated by adding to the original actions (3.3) [or (2.4)],
respectivly, the external currents 1/2



dxdy(∆(y, x)I†(x, y)+c.c.) [or


dxϕ(x)I(x)]
to the nal actions (3.8) [or (2.12)], respectively, and by forming functional deriva-
tives δ/δK [or δ/δI ]. The Green functions of the composite operators ψ(x)ψ(y) [or
ψ†(x) ψ(x)], on the other hand, are obtained by adding to the original actions (3.3)
[or (2.4)] the source terms

1

2



dx


dy [V (x− y)ψ(x)ψ(y)K†(x, y) + c.c. (3C.3)
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[or



dx


dyV (x, y)ψ†(y)ψ(y)


I(x) ], (3C.4)

and by forming functional derivatives δ/δK [or δ/δI ]. To do this most simply we
observe that the source K can be included in the nal actions by replacing in (3.8)

∆(x, y) → ∆
′(x, y) = ∆(x, y)−K(x, y), (3C.5)

[or in (2.12)

ϕ(x) → ϕ′(x) = ϕ(x)−


dx′I(x′)V (x′, x) ]. (3C.6)

If one now shifts the functional integrations to the new translated variables and
drops the irrelevant superscript “prime”, the combined action can be rewritten as

A[∆∗,∆] = ±
i

2
Tr log



iG−1
∆



+
1

2



dxdx′|∆(x, x′)|2
1

V (x, x′)

+
i

2



dxdx′j†(x)G∆(x, x
′)j(x′)

1

V (x, x′)
(3C.7)

+
1

2



dxdx′


∆(y, x)K†(x, y) + h.c.


+
1

2



dxdx′|K(x, x′)|2V (x, x′),

[or

A[ϕ] = ±iTr log(iG−1
ϕ )+

1

2



dxdx′ϕ(x)V −1(x, x′)ϕ(x′)+i


dxdx′η†(x)Gϕ(x, x
′)η(x)

+


dxϕ(x)I(x) +
1

2



dxdx′I(x)V (x, x′)I(x′) ]. (3C.8)

In this form the actions display clearly the fact that derivatives with respect to
the sources K or I coincide exactly, except for all possible insertions of the direct
interaction V . For example, the propagators of the plasmon eld ϕ(x) and of the
composite operator



dyV (x, y)ψ†(y)ψ(y) are related by

ϕ(x)ϕ(x′) = − δ(2)Z

δI(x)δI(x′)
= V −1(x, x′)− δ(2)Z

δK(x)δK(x′)
(3C.9)

= V −1(x, x′) + 0|T̂
 

dyV (x, y)ψ†(y)ψ(ϕ)
 

dy′V (x′y′)ψ†(y′)ψ†(y′)ψ(y′)


|0,

where T̂ is the time-ordering operator. Similarly, one nds for the pair elds:

∆(x, x′)[∆(y, y′)]† = δ(x− y)δ(x′ − y′)iV (x− x′)

+ 0|T̂


V (x′, x)ψ(x′)ψ(x)


V (y′, y)ψ†(y)ψ†(y′)


|0. (3C.10)
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Note that the latter relation is manifestly displayed in the representation (3B.10) of
the propagator ∆. Since

∆∆
† = iV G(4)V,

one has from (3C.10)

0|T̂ [V (ψψ)(ψ†ψ†V )]|0 = V G(4)V, (3C.11)

which is certainly true, since G(4) is the full four-point Green function. In the equal-
time situation in the presence of an instantaneous potential, G(4) is replaced by the
resolvent R.
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Men freely believe what they desire.

Julius Caesar (100 B.C.–44 B.C.)

4

Superuid 3He

The explanation of the phenomenon of superconductivity by Bardeen, Cooper, and
Schrieer in 1957 [1], and a little later by Bogoliubov and his school [2], prompted
a search for similar phenomena in other Fermi systems, such as fermionic nuclei [3]
and, in particular, liquid 3He [4]. While nuclear forces did, in principle, allow a
direct application of the BCS formalism [5], it was soon realized [6] that in 3He the
strong repulsive core of the interatomic potential would not permit the formation
of s-wave Cooper pairs as in superconductors. Thus, if anything similar to Cooper
pairing should occur, it had to be in a nonzero angular momentum.

4.1 Interatomic Potential

If we take a look at the shape of the potential shown in Fig. 4.1, we see that the
hard core starts at a radius of about r ≈ 2.5 Å. At r ≈ 3 Å there is a minimum of
roughly −10K. Beyond this, the potential approaches zero with the van der Waals
behavior r−6. It is obvious that the hard core prevents the formation of s-wave
bound states since the wave function must vanish at zero relative distance. There
is, however, the possibility of bound states in nonzero angular momentum states. Let

Figure 4.1 Interatomic potential between 3He atoms as a function of the distance r.
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us estimate its probable magnitude. As in superconductors, only the fermions close
to the surface of the Fermi sphere in momentum space are capable of substantial
interactions. They move with a momentum p ≈ pF ≈ 8 × 10−19 g cm/sec. For
angular momenta l = 0, h̄, 2h̄, 3h̄, the impact parameter, i.e., the distance at which
the particles pass one another, is of the order of l/pF ≈ 0, 1.25Å, 2.5 Å, 3.75 Å, . . . .
With the repulsive core rising at r ≤ 2.5 Å, it was estimated that the lowest partial
wave having a chance of showing a bound state would be the d-wave. In fact, the
rst quantitative analyses indeed suggested that d-wave pairs do form a superuid
condensate, and a rst extension of the entire BCS formalism was undertaken for
this case [8].

The situation is, however, more complicated than in superconductors. There are
strong many-body eects which have been neglected in these rst considerations.
The strong-coupling eects lead to a screening of the fundamental interatomic poten-
tial, so that the partial wave estimates had to be modied. Moreover, the hard core
together with the Pauli exclusion principle generate strong spin-spin correlations.
As a consequence, there is a pronounced resonance in the dynamic susceptibility (see
Fig. 4.2), which is usually referred to as a paramagnon excitation. The exchange

Im Γ(q,ω)

ωPar(q)

ω

Im χ(q,ω)

Figure 4.2 Imaginary part of the susceptibility caused by repeated exchange of spin

uctuations, as a function of energy ω. There is a pronounced peak whose sharpness

increases with decreasing q. Thus, for small q, there are long-lived excitations in the

system which are called paramagnons. The straight line shows the imaginary part of the

susceptibility for a free Fermi system.

of these particle-like states between two atoms gives rise to an additional attraction
between parallel spins, and this enhances the bound states of odd angular momenta.

It would clearly be desirable to calculate these eects quantitatively from rst
principles, i.e., from an n-body Hamiltonian of 3He-atoms with the fundamental
interaction V (r) shown in Fig. 4.1. However, the strength of this interaction makes
the calculation an extremely hard task. Therefore we decide to take the evidence
from experiment showing that Cooper pairs form at a lower angular momentum
than expected, namely at l = 1. Apparently, the screening eects weaken somewhat
the hard core, and the paramagnons provide sucient additional attraction between
parallel spins to cause binding in the p-wave with its rather small impact parameter.
By statistics, an l = 1 -state must be symmetric in the spin wave function, so that
its total spin is necessarily S = 1 (spin triplet) [9, 10, 11].
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Given the diculties in calculating which orbital wave is the leading one in
binding the Cooper pairs, also the estimates for the transition temperature Tc were
initially quite inaccurate. Early estimates started as high as Tc ≈ 0.1 K. They were
lowered successively when a phase transition was not yet seen.

Experimentally, the transition was discovered in 1972 [7] at 2.7mK, when cooling
liquid 3He down along the melting curve. A second transition was found at 2.1mK.
Since then, the superuid phases of 3He have attracted increasing experimental and
theoretical attention. On the one hand, these pose the practical challenge of achiev-
ing and maintaining ultra-low temperatures. On the other hand, the observed phe-
nomena show macroscopic system in anisotropic quantum statea passessing rather
interesting collection excitations. Many surprising properties have been found and
are probably waiting for their discovery. They form a beautiful eld of applica-
tions with many theoretical methods still being developed for dierent branches of
physics.

At the microscopic level, they are based on converting the fundamental action
involving 3He atoms to an alternative, equivalent form in which collective excita-
tions can be studied most directly. This was done by generalizing the treatment of
superconductors to superuid 3He.

4.2 Phase Diagram

The reason why measurements were rst performed along the melting curve lies
in the simplicity of the cooling technique and of the temperature control via the
so-called Pomeranchuk eect . It is useful to keep in mind how temperatures in the
milli-Kelvin range can be reached and maintained: First, the system is pre-cooled
to roughly 77K by working inside a Dewar container lled with liquid nitrogen.
Embedded in this is another container lled with liquid 4He which maintains, at
atmospheric pressure, a temperature of 4K. Enclosed in this lies a dilution refrig-
erator. This exploits the fact that liquid 3He, when brought into contact with 4He,
forms a well-dened interface. Across it, diusion takes place in the same way as in
the evaporation process across a water surface. This lowers the temperature. The
process can be made cyclic just like in an ordinary evaporation refrigerator. Tem-
peratures of a few mK were easily reached. In the beginning, the dilution cooling
was used only down to around 100 mK. From there on, the Pomeranchuk eect was
exploited. This is based on the observation that according to the Clausius-Clapeyron
equation,

dP

dT
=

Sliquid − Ssolid

Vliquid − Vsolid

, (4.1)

the temperature is lowered by increasing the pressure, since the entropy of the liquid
becomes smaller than that of the solid in spite of its larger volume. Thus, in order
to cool the system, one just has to compress it.

If one wants to measure the phase diagram away from the melting curve, adia-
batic demagnetization may be used in addition to the Pomeranchuk eect. The best
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magnetic materials for this purpose are either CMN (cereous magnesium nitrate) or
copper. In the rst material, the magnetic moments of the electrons are demagne-
tized, in the second, the demagnetization is done on the nuclei. There for copper,
temperatures of a few mK can be maintained for several days.

With such techniques, the phase diagram has been measured for very low pres-
sures (see Fig. 4.3). The two phases originally discovered along the melting curve are

Figure 4.3 Phase diagram of 3He plotted against temperature, pressure, and magnetic

eld H . At H = 0 there are two phases, A and B. For increasing magnetic elds, a

widening phase A1 develops. At pressures above the melting plane, the liquid solidies.

called A and B. For large magnetic elds, there is another phase, called A1, which
forms between the A-phase and the normal liquid. In order to improve visibility in
Fig. 4.3, we have exaggerated the corresponding temperature interval.

Many properties of these three phases have meanwhile been investigated exper-
imentally, and they are all in best agreement with the theoretical description via
p-wave spin triplet Cooper pairs.

While it was hard to predict the precise value of the transition temperature,
the nally observed value Tc = 2.7 mK is in perfect scale with respect to that of
low-temperature superconductors (see Table 4.1).

Table 4.1 A factor of roughly 1000 separates the characteristic length scales of super-

conductors and 3He.

TF mass Tc

Superconductor 1000 K 1 melectron 2.7 K
3He 1 K 1000 melectron 2.7 mK
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4.3 Preparation of Functional Integral

4.3.1 Action of the System

It will be convenient to consider the system as a grand canonical ensemble in which
the particle number can uctuate while its average remains xed (recall Subsec-
tion 1.1.7). Then, instead of the Hamiltonian H , the time evolution is driven by the
grand-canonical energy HG = H − µN where H is the Hamiltonian, and N counts
the particle number:

N =


d3xψ∗(x, t)ψ(x, t). (4.2)

The Lagrangian multiplyer µ is the chemical potential, as usual. Then the total eld
action reads for free elds

A0 =

d4xψ∗(x)ih̄∂tψ(x)−


dt (H0 − µN), (4.3)

where H0 is the free Hamiltonian, so that

H0 − µN =

d3xψ†(x)


−h̄2∇2

2m
− µ


ψ(x), (4.4)

The interaction contains the pairing term

Aint ≡ − 1

2


d4xd4x′ ψ∗(x)ψ∗(x′)V (x′, x)ψ(x′)ψ(x). (4.5)

As in the previous Chapter 3, we shall use a four-vector notation for spacetime.
The italic symbol x indicates space and time with the four components xµ ≡ (x0,x).
We shall also write d4x ≡ dtd3x = dtdx1dx2dx2dx3. The potential V (x, x′) may be
approximated by an instantaneous and time-independent function of the distance
between x and x′:

V (x′, x) = δ(t′ − t)V (x′ − x). (4.6)

The dominant part of V (x′ − x) consists in the van der Waals molecular potential
thet was displayed in Fig. 4.1.

4.3.2 Dipole Interaction

In contrast to electrons in a superconductor, the 3He-atoms are electrically neutral,
so that there are no Coulomb forces at atomic distances. There is, however, a weak
nuclear magnetic moment γ ≈ 2.04× 104 (gauss sec)−1 causing an additional small
spin-spin dipole interaction

Hdd = γ2

d3x′d3x vab(|x

′ − x|)ψ∗(x′, t)
σa

2
ψ(x′, t)ψ∗(x, t)

σb

2
ψ(x, t), (4.7)

with the dipole potential

vab(|x
′ − x|) = −∂a∂b

1

r
=


δab − 3

(x′ − x)a(x− x)b
|x′ − x|2


1

r3
. (4.8)
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Due to its smallness, this interaction is negligible in the normal Fermi liquid. In the
highly sensitive superuid phase, however, it has interesting consequences, causing
a variety of domain structures. There the Hamiltonian (4.4) with the dipole interac-
tion Hdd is sucient to explain quantitatively most of the properties of the normal
and superuid 3He. As stated in the beginning of this chapter, the condensate of
Cooper pairs is a very sensitive system. We shall see that many of its interesting
phenomena are a direct manifestation of the very small dipole coupling (even though
this is merely a hyperne interaction).

4.3.3 Euclidean Action

As shown in the previous Chapter 3, the thermodynamic action governing the sta-
tistical mechanics of the uid is obtained by analytic continuation to imaginary time
τ :

−iA → AT =
 h̄β

0
dτd3xψ∗(x)h̄∂τψ(x) +

 h̄β

0
dτ (H − µN +Hdd) , (4.9)

with ψ(x) in this Euclidean expression standing for ψ(x, τ), and β ≡ 1/kBT as usual.
In the partition function, the path integral extends over all elds ψ(x) = ψ(x, τ)
which are antiperiodic under the replacement τ → τ + h̄β:

ψ(x, τ) = −ψ (x, τ + h̄β) . (4.10)

Faced with the action (4.9) it appears, at rst sight, quite hopeless to attempt
any perturbative treatment. First of all, the potential V (r) has a strongly repulsive
core. Moreover, from the experimental density we can estimate the average distance
between the atoms in the liquid to be about 3.5 Å, where the potential is still of
considerable strength. The salvation from this diculty is provided by Landau’s
observation that many features of this strongly interacting Fermi liquid will obey
the same laws as in a free Fermi system:

1. The specic heat behaves like CV ∼ T .

2. The susceptibility behaves like χ ∼ const.

3. The compressibility behaves, for small T but in the normal liquid, like κ ∼
const.

In fact, all free Fermi liquid laws for these quantities are valid, provided we replace
the atomic mass m3He by an eective mass me which is a few times larger than the
true mass m3He. The factor ranges from 3 to 6, depending on whether one works
close to zero or close to the melting pressure (∼ 35 bar). Apart from that, there
is a simple multiplicative renormalization by a factor which can be attributed to
molecular eld eects, similar to what happens in Weiss’ theory of ferromagnetism.

Landau’s interpretation of this phenomenon is the following: By restricting
one’s attention to low-energy and momentum properties of a system, the strong-
interaction problems simplify considerably. The rapid uctuations cause an almost
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instantaneous re-adjustment of the particle distribution. For this reason, if slow and
long-wavelength disturbances are applied to the system, several 3He atoms that are
in their mutual range of interaction will respond simultaneously as a cluster, called
quasiparticle, with an eective mass larger than the atomic mass. The residual in-
teraction between these quasiparticles is very smooth and weak since any potential
hole, which could appear as a result of a small displacement in the liquid, is im-
mediately lled up and screened away by a rapid redistribution of the atoms. It
is this screening eect, mentioned in the introduction, which makes quantitative
calculations managable at least at the level of quasiparticles. Apparently, the fast
uctuations generate a new eective action of approximately the same form as (4.3),
except that ψ(x) has to be read as a quasiparticle eld, m as the eective mass me

which is a few times larger than the true mass m3He.
The potential V (x − x′) in (4.5) is the residual eective potential between the

quasiparticles. The energy range of integrations in the Fourier decomposition of the
elds is, however, limited to some cuto frequency ωcuto beyond which the eective
action becomes invalid. Using the path integral formulation of the partition function
we shall quite easily be able to rewrite the fundamental expression A in terms of
quasiparticle elds, at least in principle.

4.3.4 From Particles to Quasiparticles

It was argued that uctuations cause a signicant screening of the potential. The
screened lumps of particles move almost freely but with a larger eective mass. In
order to formulate this situation we rst need a precise distinction between fast and
slow uctuations. For this we expand the eld in a Fourier series

ψ(x, t) =
1

(tb − ta)V



ωn,k

e−iωnt+ikx, (4.11)

where V is the spatial volume of the system and ωn are the Matsubara frequencies

ωn ≡ 2π (n+ 1/2)

tb − ta
, (4.12)

which enforce the anti-periodic boundary condition (4.10). Apparently, there are
natural energy and momentum scales ωs and ks, so that a separation of the eld
into slow and long-wavelength and fast and short-wavelength makes sense:

ψ(x, t)≡ ψs(x, t) + ψh(x, t) (4.13)

=
1

(tb − ta)V






|ωn|<ωs
|k|<ks

e−iωnt+ikxψ(ωn,k) +


|ωn|≥ωs
|k|>ks

e−iωnt+ikxψ(ωn,k)


 .

This can be used to simplify the path integral. The two terms are referred to as
soft and hard components of the eld ψ(x, t). When written in energy momentum
space, the functional integral measure may be separated accordingly:


DψDψ∗ =

DψsDψ∗

s


DψhDψ∗

h
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≡


|ω|<ωs,|k|<ks

dψ(ωn,k)dψ
∗(ωn,k)

2πi



|ω|≥ωs,|k|≥ks

dψ(ωn,k)dψ
∗(ωn,k))

2πi
. (4.14)

If we now perform the path integral over the hard components we remain with a
partition function

Z =


DψsDψ∗
se

iAs[ψ∗
s ,ψs], (4.15)

where As[ψ
∗
s ,ψs] is a functional of only the soft components. The point of Landau’s

argument is now that due to the high quality of the free Fermi gas laws there seems
to exist an optimal choice for ωs and ks so that the action looks like the action of the
initial 3He particles, except that the new elds ψs(x, t) have a larger eective mass
m∗ and that the interactions are much weaker than in the original fundamental form
(4.3).

Certainly, the actual calculation of the path integral over the fast components
is extremely dicult due to the strength of the interactions. We shall therefore
accept Landau’s argument on phenomenological grounds and see its justication in
the successful derivation of the physical properties of the liquid.

At rst sight, the precise choice of ωs and ks seems to be a rather ad hoc matter
and one might fear that all results derived from the partition function (4.14) depend
strongly on which values are taken. It is gratifying to note, however, that this is
not really true. Only the prediction as to the size of the transition temperature Tc

varies strongly with ωs, ks. But in all nal results ωs, ks can be eliminated in favor
of the observable temperature Tc. In this way, any arbitrariness is removed. This is
completely analogous to the independence of all physical amplitudes on the cuto
in renormalizable eld theory.

For the phenomena of superuidity, the optimal choice of ωs, ks will be so that
ωs is about ten times larger than the transition temperature Tc while ks comprises
approximately ten atomic distances (i.e., ks ≈ 2π/10Å). In this way quasiparticle
elds are well enough localized in space and time to describe excitations with fre-
quencies between zero and one MHz, corresponding roughly to 1 kBTc in 3He, and
wavelengths of up to about 100 Å.

4.3.5 Approximate Quasiparticle Action

We are thus confronted with a simplied problem of calculating the partition func-
tion over soft eld components ψs. For brevity, the subscripts will be dropped. The
soft eld quanta are precisely what Landau introduced as quasiparticles. Since we
are not able to calculate As explicitly, we have to deduce its structure from exper-
imental facts. As argued above, the action must account for the free-particle-like
behavior of the specic heat and of the susceptibility with a characteristic transition
temperature Tc modied by a simple renormalization factor.
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Table 4.2 Pressure dependence of Landau parameters F1, F0, and FS
0 of 3He, together

with the molar volume v and the eective mass ratio m∗/m. The values of v, m∗/m and

F1 are from Greywall [12], whereas F0, F
S
0 are from Wheatley [13], except for corrections

using more recent values of m∗/m. The values at P = 34.39 bar are from Wheatley [13].

P (bar) v(cm3) m∗/m F1 F0 F S
0

0 36.84 2.80 5.39 9.30 −0.695
3 33.95 3.16 6.49 15.99 −0.723
6 32.03 3.48 7.45 22.49 −0.733
9 30.71 3.77 8.32 29.00 −0.742
12 29.71 4.03 9.09 35.42 −0.747
15 28.89 4.28 9.85 41.73 −0.753
18 28.18 4.53 10.60 48.46 −0.757
21 27.55 4.78 11.34 55.20 −0.755
24 27.01 5.02 12.07 62.16 −0.756
27 26.56 5.26 12.79 69.43 −0.755
30 26.17 5.50 13.50 77.02 −0.754
33 25.75 5.74 14.21 84.79 −0.755

34.39 25.50 5.85 14.56 88.47 −0.753

Let us briey take a look at the experimental situation: For a free Fermi gas
with g spin states in a volume V , the total density of states per unit energy at the
Fermi surface for the two spin-1/2 states is 2N (0), and

N (0) =
mpF

2π2h̄3 =
3

4h̄3

ρ

p2F
(4.16)

is the density of states at the surface of the Fermi sea [recall Eq. (3.62)], where
ρ = MN/V is the particle density. As before in Eq. (3.64), the quantity

pF =

3π2

1/3 N
V

1/3

h̄ ≈ g × 10−20g cm/sec (4.17)

is the Fermi momentum of free spin-1/2 particles. The associated Fermi velocity
vF ≡ pF/m varies from 5.5 · 103 cm/sec at zero pressure to about 3 · 103 cm/sec at
melting pressure (see Table 4.2 above).

From this it is easy to calculate the three quantities specic heat , magnetic

susceptibility , and compressibility :1

CV = N
mpF

3h̄3 kBT, (4.18)

1The standard derivation is omitted at this point since it will appear anyhow later. Note that
we keep the physical constants h̄ and kB explicit in these formulas.
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χN =
γ2

4

mpF
π2

1

h̄
, (4.19)

κT =
m

ρ2
pF
π2h̄3 . (4.20)

The parameter γ = 2µ/h̄ is the gyromagnetic ratio of the 3He nucleus, and µ is the
nuclear magnetic moment.

Experimentally one nds the linear behavior of cV below 20 mK to be enhanced
by a factor 6 to 14 for pressures ranging from atmospheric to 35 bar (melting pres-
sure). This enhancement may be attributed to a change in the eective mass from
m to a larger value m∗. The eective mass is dened so that the energy of quasipar-
ticles starts for small momentum as p2/2m∗+O(p4). Let Σ(ω,p) be the self-energy
of the fermions after all interactions are taken into account. Then the fermion Green
may be written as [generalizing (1.95)]

G(x, t;x′, t′) = −
 dω

2π

d3p

(2π)3
eω(t−t′)+ip(x−x′) 1

iω − ξ∗(ω,p)
. (4.21)

where

ξ∗(ω,p) ≡ ξ(p) + Σ(ω,p). (4.22)

Expanding this in powers of ω and p2, the chemical potential is shifted from µ to
the renormalized value µ+Σ(0, 0), and the eective mass is found from the equation

m∗

m
=

1− i∂iωξ
∗(ω,p)

2m ∂ξ∗(ω,p)/∂p2


ω=0,p2=p2

F

=
1− i∂iωΣ(ω,p)

1 + 2m ∂Σ(ω,p)/∂p2


ω=0,p2=p2

F

. (4.23)

It is customary to introduce the parameter F1 so that this equation reads

m∗

m
= 1 +

F1

3
. (4.24)

The precise values of F1 can be seen in Table 4.2.

The spin susceptibility is found to be independent of temperature below 40 mK.
If one inserts the eective mass m∗ into the free-fermion formula (4.19) one nds
a value about four times too small. This is attributed to molecular eld eects. If
the atomic magnetic moments are partially oriented, the magnetic eld seen by an
individual atom consists of the external eld plus that of the other moments in the
liquid. The enhancement factor is usually denoted as

1

1 + F S
0

≡ 1

1 + Z0/4
, (4.25)

with F S
0 ≡ Z0/4 being roughly −3 up to the melting pressure of ≈ 35 bar (see Table

4.2).
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The compressibility κT , nally, is determined my measuring the velocity of sound.
Inserting m∗ into Eq. (4.20), we obtain it from

c =
1

√
ρκT

=
vF√
3


1 +

F1

3

1/2

, (4.26)

where
vF =

pF
m∗ (4.27)

is the Fermi velocity for the eective mass m∗, which ranges from 5 to 3×103 cm/sec
(see Table 4.2). Experimentally, formula (4.26) turns out to fail by a factor 3 to 10,
a failure which is again attributed to molecular eld eects upon the density eld
ρ. Thereby the sound velocity is multiplied by a correction factor 1/(1 + F0), and
becomes

c =
vF√
3


1 +

F1

3


(1 + F0)

1/2
, (4.28)

with F0 ranging from 10 to 100 (Table 4.2). Thus the compressibiliy κT = 1/c2ρ is
modied by a factor 1/(1 + F0).

4.3.6 Eective Interaction

What an action can we set up to explain these low-frequency and small-momentum
features of liquid 3He observed in a wide range above the superuid transition tem-
perature? It appears simple to include the eective mass. All we have to do is
choose a free-particle Hamiltonian

H0 =


d3x ψ∗(x)


i∂t +

∇
2

2m∗


ψ(x), (4.29)

where we have used natural units with h̄ = 1, kB = 1.This naive approximation
would indeed lead to the specic heat (4.18) with the mass m replaced by m∗,
provided the number of quasiparticles is taken to be equal to the true particle
number, so that also the Fermi momentum pF . Recall that according to Eq. (4.17),
this depends simply on the particle density N/V .

If one would set the system into motion by displacing all particle velocities

v =
p

m∗ (4.30)

by a certain amount ∆v, the total momentum P of the system would change by

∆P = ∆vNm∗ (4.31)

rather than by the bare expression

∆P = ∆vNm. (4.32)
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This can only be corrected by introducing an additional interaction which, however,
must not modify the previous calculation of the specic heat. Such interactions are
well known in molecular eld theories. We simply add to the free Hamiltonian a
current interaction

Hcurr−curr =
1

2ρ∗
F1

3


d3xψ∗(x)

i

2

↔
∇ψ(x)ψ∗(x)

i

2

↔
∇ψ(x), (4.33)

where
↔
∇ ≡

→
∇ −

←
∇ is the right-minus-left derivative, the constant F1 denotes the

coupling strength, and

ρ∗ =
m∗N

V
(4.34)

is the mass density of quasi-particles. Then the kinematic properties of single quasi-
particle states are automatically correct. Indeed, such a state has an energy

E =
p2

2m∗


1 +

F1

3


, (4.35)

so that the velocity is

v =
∂E

∂p
=

p

m∗


1 +

F1

3


, (4.36)

and the total momentum changes, upon a change ∆v in the velocity, by

∆P =
∆vNm∗

1 + F1/3
, (4.37)

as it should, due to Eq. (4.32), if we use the relation (4.24).
The renormalization factors for susceptibility and compressibility have to be

inferred in a similar manner.
It is nontrivial to see that the interaction (4.33) really leaves the specic heat

in the form (4.18), only that m is replaced by m∗. When going from one Galilean
frame of reference to another one that moves with velocity v, the energy changes by

∆Hv = −

d3xψ∗(x)

↔
∇

2
ψ(x) ∆v. (4.38)

When turning on a magnetic eld, the energy changes by

∆HH =

d3xψ∗(x)

σa

2
ψ(x) γHa, (4.39)

due to the interaction with the spin magnetic moments.
Finally, if a chemical potential is introduced by contact with a particle reservoir,

the energy is modied by

∆Hµ = −


d3xψ∗(x)ψ(x) µ . (4.40)
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Thus, the current density

j ≡ 1

2
ψ∗ ↔

∇ψ, (4.41)

the spin density

sa ≡ ψ∗σ
a

2
ψ, (4.42)

and the particle density
n ≡ ψ∗ψ, (4.43)

all appear on the same footing.
We have seen that the quadratic current density coupling brings changes in the

kinetic energy to the correct form

1

m∗pdp → 1

m∗


1 +

F1

3


pdp =

p

m
dp. (4.44)

Thus we expect quadratic spin density and particle density couplings

Hdd =
1

2

F0

ρ∗


d3xψ∗(x)ψ(x)ψ∗(x)ψ(x), (4.45)

Hsd =
1

2

F S
1

ρ∗


d3xψ∗(x)

2
ψ(x)ψ∗(x)

2
ψ(x), (4.46)

to produce corresponding correction factors for changes in the magnetic and chemical
energy density

χHdH → χ (1 + F0)HdH, (4.47)

κµdµ → κ

1 + F S

0


µdµ. (4.48)

These are needed to obtain agreement with experiment.
The above simple couplings are just the leading terms in the more complete

multipole expansion

Hint =
1

2ρ∗

∞

l=0


d3x

Fl

2l + 1
ψ∗(x)∂lmψ(x)ψ

∗(x)∂lmψ(x)

+
1

2ρ∗

∞

l=0


d3x

F S
l

2l + 1
ψ∗(x)

σa

2
∂lmψ

∗(x)
σa

√
2
∂lmψ(x). (4.49)

The parameters Fl can depend also on the momentum transfer, i.e., the momen-
tum of the composite eld which is given by −il times the spherical derivative of the
angular momentum l with z-component m, to be denoted by ψ∗∂lmψ. Such a depen-
dence characterizes the form factor of the quasiparticles. The spherical derivative
∂lm is a short notation for the product of l spatial derivatives which are combined to
be traceless. In this way one projects out a denite angular momentum, for instance

∂2m ∝ ∂i∂j −
1

3
δij∂

2, (4.50)

∂3m ∝ ∂i∂j∂k −
1

5


δij∂

2∂k + 2 cyclic permutations

. (4.51)
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We shall choose the proportionality factor to comply with the spherical momentum
denition in terms of spherical harmonics Ylm(k̂):

klm =


4π

2l + 1
Ylm(k̂)|k|

l. (4.52)

Since the labels m refer to a spherical basis, we must distinguish klm and k∗
lm =

(−1)mkl−m. If one wants to form rotationally invariant objects, the labels must be
contracted accordingly, for instance ∂∗

lm∂lm = (−1)m∂lm∂l−m.
It will turn out that many phenomena depend only on the values of Fl at zero

momentum transfer. Moreover, only the parameters which appear in Eq. (4.28) are
easily accessible to experimental measurement.

4.3.7 Pairing Interaction

With the couplings introduced so far, the properties of the degenerate Fermi liquid
can be explained within very simple approximations as long as the temperature
is above the critical value Tc. As explained in the introduction, the superuid
properties below Tc require the formation of p-wave spin triplet Cooper pairs. This
can only happen due to an additional attractive interaction which must consist of one
screened version of the original potential V . Its accurate shape is unknown. This,
however, turns out to be no handicap. The reason is the following: The attractive
force is extremely weak. Therefore the Cooper pairs are only barely bound, as
manifested by the fact that the critical temperature Tc is much smaller than the
characteristic temperature unit of the system which is TF = p2F/2m (which is the
Fermi energy of the system of the order of ≈ 1 K). This makes the radius of the
bound-state wave functions much larger than 1/pF ≈ 1 Å. Its size will turn out to
be a few hundred Å. For this reason, it does not matter what the detailed shape of
V (x′ − x) in Eq. (4.6) really is, and it can be chosen to be point-like with a range
of a few Å. That has only a single bound state. It must only bind in a p-wave spin
triplet state, we may directly write

Hpair = − 3g

4p2F


d3xψ∗(x)

σa

2
c†

↔
∇ ψ∗(x)ψ(x)c

σa

2

↔
∇ ψ(x). (4.53)

The matrix c is

c = iσ2 =


0 1

− 1 0


, (4.54)

which ensures that ψcσaψ transforms in the same way as ψ∗σaψ, i.e., like a vector,
due to the equivalence of the 2 × 2 rotation matrix U to its complex conjugate by
U∗ = cUc−1.
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4.4 Transformation from Fundamental to
Collective Fields

While fundamental elds provide the theoretically most satisfactory way of dening
the action of a theory, they are quite ineconomic as far as the description of low-
energy and long-wavelength phenomena of systems like 3He and superconductors is
concerned. The reason is basically the following: Below the transition temperature
Tc at which the superuid phase arises, the binding between the fundamental parti-
cles in Cooper pairs results in an energy gap ∆ of the single particle spectrum. This
becomes

E(p) =

ξ2(p) +∆2. (4.55)

For 3He, the size of the gap is of the order of mK, while for most superconductors
∆ lies in the K-regime. As a consequence, the propagator

0|T (ψ(x)ψ∗(y))|0 (4.56)

has no singularities in the energy plane below E = ∆. A description of the rich set of
physical phenomena with energies much smaller than ∆2 such as zero-sound waves,
spin waves etc. is quite complicated when employing the fundamental eld ψ(x).
An innite set of Feynman graphs is necessary even for a lowest order understanding
of these phenomena. On the other hand, there are Green functions which directly
display excitations of this type in the complex energy plane, for example those of
the composite eld operators

0|T (ψ∗(x)ψ(x)ψ∗(y)ψ(y))|0, (4.57)

0|T

ψ∗(x)

σa

2
ψ(x)ψ∗(y)

σb

2
ψ(y)


|0. (4.58)

Singularities which appear in such composite Green functions but not in (4.56) are
called collective excitations. One may expect that the most economic description
of the associated physical phenomena can be obtained by rst transforming the
full theory to the appropriate composite elds. Such transformations have, in fact,
been studied long time ago in many-body theory at the quasiclassical level. For
superconductors [14] and 3He, the result is the so-called Ginzburg-Landau equation
[15]. This equation has been extremely successful in explaining many low-energy
properties of the system. The approximate methods leading to this equation have
been described in general in Chapter 1. They have been applied to plasmons in
Chapter 2 and to superconductors in Chapter 3. Following this method we add here
to the sum of a free action (4.3) and the pair interaction (4.53):

Aint =

dtHpair (4.59)

2These will often be called “infrared” phenomena, for brevity.
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a complete square involving an auxiliary collective eld Aai(x):

∆A = − 1

3g2


d4x

Aai(x)−
3g

2pF
ψi(x)

↔
∇ic

σa

2
ψ(x)



2

. (4.60)

This does not change the theory. Up to this point, Aai(x) is a nondynamical eld,
since its time derivative ∂tAai(x) does not appear in the action. Such a eld can be
eliminated from the action by solving the Euler-Lagrange equation δA/δAai(x) = 0
which yields the relation

Aai(x) = Aψψ
ai (x) ≡

3g

2pF
ψ(x)i

↔
∇ic

σa

2
ψ(x). (4.61)

At the classical level, Aai coincides with the composite eld of a pair of 3He atoms
in a p-wave spin triplet conguration. Since it serves to describe the collective
phenomena it will, from now on, be called the collective pair eld of liquid 3He.
Reinserting (4.61) into (4.60) gives ∆A = 0 so that, at the classical level, the
addition of ∆A really leaves the action unchanged.

As before in Chapter 3 for the case of superconductors, this remains true at the
full quantum level. By analogy with that chapter, we consider the partition function
of the theory

Z =


Dψ∗DψDA∗
aDAaie

i(A0+Aint+∆A). (4.62)

The integral over the auxiliary eld DAai is of the Gaussian type. It peaks for
each spacetime point x when Aai is equal to Aψψ

ai (x). Since the integral runs at each
point from −∞ to +∞, the nite shift is irrelevant and the integral renders the
same irrelevant constant for each x. The merit of choosing (4.60) for ∆A lies in its
eliminating the fourth-order term in the action in (4.62), so that the combination

A = A0 +Aint +∆A (4.63)

=


d4x

ψ∗(x) [i∂t − ξ(−i∇)]ψ(x) +


A∗

ai(x)ψi∇̃ic
σa

2
ψ + c.c.


− 1

3g
A∗

aiAai



is quadratic in the elds ψ(x). For this reason, the functional integral

Dψ∗Dψ

can be performed in (4.62), and the result is a quantum eld theory formulated
entirely in terms of the pair eld Aai. In (4.63) we have gone over to a dimensionless
right-minus-left derivative

∇̃ ≡ 1

2pF

↔
∇, (4.64)

for convenience.
We now bring the path integral over Fermi elds to the standard form by rewrit-

ing the action as in Eq. (3.405), with the help of the four-component eld which
combines the ψ(x) and ψ∗(x) components into a single quadruplet

f =


ψ

cψ∗


. (4.65)
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Then (4.63) can be rewritten as

A =

d4x


1

2
f ∗(x)


i∂t − ξ(−i∇) i∇̃iσaAai

i∇̃iσaA
∗
ai i∂t + ξ(i∇)


f(x)− 1

3g
A∗

aiAai


. (4.66)

The derivatives ∇̃i are meant to act only on f ∗(x), f(x) but not on the collective
eld Aai(x). Performing now the functional integral


Df ∗Df with the help of the

fermionic Gaussian functional formula (1.80), written as


Df ∗Dfei

1
2
f∗Mf = e

1
2
Tr logM , (4.67)

we obtain
Z =


DA∗

aiDAaie
iAcoll[A

∗, A]. (4.68)

The exponent contains the collective action

Acoll [A
∗, A] = − i

2
Tr log


i∂t − ξ(−i∇) i∇̃iσaAai

i∇̃iσaA
∗
ai i∂t + ξ(i∇i)


− 1

3g


d4xA∗

ai(x)Aai(x).

(4.69)

The functional integral (4.68) over the uctuating Aai-eld promotes this eld from
a collective classical eld to a collective quantum eld [17].

The Trace log part is treated as in the case of a superconductor [recall (3.9)–
(3.19)]. It is rewritten as

− i

2
Tr log


i∂t − ξ(−i∇) 0

0 i∂t + ξ(i∇)


(4.70)

− i

2
Tr log


1− i




i

i∂t − ξ(−i∇)

0
i

i∂t + ξ(i∇)





0 i∇̃iσaAai

i∇̃iσaA
∗
ai 0


,

and the rst term can immediately be calculated, yielding the lowest contribution
to iAcoll [A

∗, A] /h̄:

Tr log [(i∂t − ξ)δαβ] = 2


d3p

(2π)3
log


1 + e−ξ(p)/T


≡ −F0/T, (4.71)

where F0 is the free energy of a free fermion system.
The second term can be expanded in powers of Aai as follows:

i
∞

n=1

(−i)2n

2n
Tr


i

i∂t − ξ(−i∇)
i
↔
∇iσaAai

i

i∂t + ξ(i∇)
i
↔
∇jσaA

∗
bj

n
. (4.72)

The lowest terms of this expansion correspond to the loop diagrams shown in
Fig. 3.2. The free part of the collective action is given by the term in (4.72) with
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n = 1, plus the last term in (4.69). By Fourer-decomposing the eld in space and
imaginary time

Aai(x) =
1
V/T



k

Aai(k)e
−ikx ≡ 1

V/T



ωn,k

Aai(ωn,k)e
−i(ωnτ−kx), (4.73)

we nd the action for static collective elds in which all Aai(ωn,k) with ωn = 0 are
equal to zero, and only the ωn = 0 component Aai(0,k) ≡ Aai(k) is present,

A0[A
∗, A]≈N (0)

3


dt


k

A∗
ai(k)


1− T

Tc


δij− 3

5
ξ20


k2δij+ 2kiki


Aaj(k). (4.74)

Here

ξ0 =


7ζ(3)

48π2

vF
Tc

≈ 120Å (4.75)

is the basic coherence length of the superuid3, and Tc is the critical temperature.
Its value is obtained by solving the gap equation [compare (3.65)–(3.71)]

0 =


d3p

(2π)3
1

2ξ(p)
tanh

ξ(p)

2T
− 1

g
≈ N (0)

 ωcuto

−ωcuto

dξ

2ξ
tanh

ξ

2T
− 1

g

= N (0) log

2
2γ

π

ωcuto

T


− 1

g
, (4.76)

where N (0) is the density of states at the surface of the Fermi sea in Eq. (3.62).
The critical temperature is therefore determined by the equation [compare (3.72)]

Tc ≡ ωcuto 2
eγ

π
e−1/gN (0). (4.77)

Close to Tc, the right-hand side of Eq. (4.76) is approximately equal to
N (0) (1− T/Tc), and this leads to the rst term of Eq. (4.74).

The lowest-order interaction in the collective action is fourth order in the Aai(x)-
elds. It becomes in the static case for long-wavelengths

Aint[A
∗, A] = −


d4x


β1A

∗
aiAbjA

∗
aiAbj + β2 (A

∗
aiAai)

2 (4.78)

+β3A
∗
aiAajA

∗
biAbj + β4A

∗
aiAbiA

∗
bjAaj + β5A

∗
aiAbiA

∗
ajAbj


.

The coecients βi are found from the loop integral for n = 2 in the same way as in
the case of the superconductor [recall (3.110)]:4

−2β1 = β2 = β3 = β4 = −β5 =
2

5
N (0)

ξ0
2

vF 2h̄2 =
3

5

ρ

m2

ξ20
v4F h̄

2 . (4.79)

3The constant is ζ(3) ≡
∞

n=1 1/n
3 ≈ 1.202 . See Eq. (3.82).

4The coecient β2 is related to the coecient β of the superconductor β = 6N (0)ξ0
2/vF

2h̄2

in Eq. (3.110) by β2 = β/15 (assuming that we take account of the dierent mass parameters).
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The full interaction contains innite powers of the collective eld Aai(x). If
one restricts the consideration to temperatures close to the critical point (T ≈ Tc),
where µA is very small, the elds Aai(x) undergo large long-range uctuations. As
far as long-wavelength properties are concerned, higher and higher powers in Aai(x)
become more and more irrelevant, due to the fact that the dimension of Aai(x) is
1/length. This type of discussion is standard in the renormalization group treatment
of critical phenomena [18].

In x-space, the free part of the action can be written as

A0[A
∗, A] =


d4x


µAA∗

aiAai−
K1

2
∂iA

∗
aj∂iAaj −

K2

2
∂iA

∗
aj∂jAai −

K3

2
∂iA

∗
ai∂jAaj


,

(4.80)
with the temperature dependence residing all in

µA =
1

3
N (0)


1− T

Tc


=

1

2

ρ

m2

1

v2F


1− T

Tc


, (4.81)

which is related to the chemical potential in the superconductor calculation by a
factor 1/3. The stiness constants satisfy

K1 =
2

5
N (0)ξ0

2 = v2F h̄
2β2 =

3

5

ρ

m2

ξ20
υF 2

, K2 +K3 = 2K1. (4.82)

The static long-wavelength action consisting of the free part (4.80) and the interac-
tions (4.78) is referred to as the “weak-coupling” Ginzburg-Landau action of 3He.
The functional integral (4.68) with this action denes a uctuating eld theory of
the superuid in the neighborhood of the critical temperature. From this, all univer-
sal critical properties can be calculated with great accuracy. The general procedure
for doing this is amply described in the literature [18].

If uctuation corrections are calculated, they do not change the general form
of (4.78) and (4.80) for small and smooth elds Aai(x). Only the numerical values
of the coecients are modied, and will no longer satisfy the relations (4.79) and
(4.82) obtained from the expansion (4.72). This is actually a consequence of the
symmetry properties of the original action (4.56), which is invariant under separate
rotations of spin, orbits, and phase of the fermion elds ψ → eiαψ. The collective
action derived from the original action displays the same invariance. In the static
long-wavelength limit with T ≈ Tc, this leaves only the form (4.78) plus (4.80).

On the same symmetry grounds it is obvious that the dipole action (4.60) cannot
be included by a mere change of the coecients: The action contracts spatial with
spin indices and is no longer invariant under separate spin and orbital rotations.
It can be shown [19] that the collective form of the dipole action gives rise to an
additional mass term for the Aab eld:

Ad = gd


d4x


A∗

aaAbb + A∗
abAba −

2

3
A∗

abAab


. (4.83)

The coupling of spatial and spin degrees results in the most interesting observable
phenomena of the superuid phase.
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At the mean-eld level, the integrand of the collective action yields the Ginzburg-
Landau free energy to be used in the sequel:

f = f0 + fint + fd

= −µAA
∗
aiAai +

K1

2
∂iA

∗
aj∂iAaj +

K2

2
∂iA

∗
aj∂jAai +

K3

2
∂iA

∗
ai∂jAaj

+β1A
∗
aiAbjA

∗
aiAbj + β2 (A

∗
aiAai)

2

+β3A
∗
aiAajA

∗
biAbj + β4A

∗
aiAbiA

∗
bjAaj + β5A

∗
aiAbiA

∗
ajAbj .

−gd


A∗

aaAbb + A∗
abAba −

2

3
A∗

abAab


. (4.84)

The terms proportional to K1, K2, K3 constitute the so-called gradient energy

fgrad ≡ K1

2
∂iA

∗
aj∂iAaj +

K2

2
∂iA

∗
aj∂jAai +

K3

2
∂iA

∗
ai∂jAaj . (4.85)

4.5 General Properties of a Collective Action

The static action (4.78) with (4.80) describes the 3He-liquid in terms of a complex
3 × 3 -matrix, i.e., an 18-component eld called the order eld . If the dipole in-
teraction is left out, the action is invariant under global SU(2)×SU(2)×U(1) -
transformations:

Aai → Rab(
s)Rij(

o)e−2iϕ

=

e−i s


ab


e−i2 o


ij
e−2iϕAbj , (4.86)

where (ǫa)bc ≡ −iǫabc are the 3× 3 matrix generators of the three-dimensional rota-
tion group and the angular vectors s, o denote the associated rotation parameters.
Remembering the classical equality

Aai(x) =
3g

2pF
ψ(x)i

↔
∇ic

σa

2
ψ(x) (4.87)

we see that the rst transformation corresponds to pure spin, the second to pure
orbital rotations to the original eld ψ. The last phase is associated with particle
number conservation and is doubled because of the two elds occurring in (4.87).

Accordingly, there are three conserved Noether currents which are obtained by
functional derivatives with respect to innitesimal x-dependent symmetry transfor-
mations:
First there is the particle current density:

ji ≡
δA

δ∂iϕ
(4.88)

= i

K1A

∗
aj

↔
∇iAaj +K2


A∗

aj

↔
∇jAai−A∗

ai

↔
∇jAaj


+ K3


A∗

ai

↔
∇jAaj−A∗

ai

↔
∇jAai


.
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This current density ji coincides also with 1/m times the components T 0i of the
energy momentum tensor. Indeed, under an innitesimal Galilei transformation

ψ(x) → e−imv·xψ(x), (4.89)

the collective eld changes as follows:

Aai(x) → e−2imv·xAai(x), (4.90)

so that the energy changes by

δE = m


d3x j(x) · v. (4.91)

Similarly, we derive, from an innitesimal spin rotation, the conserved spin current
density:

jspinai ≡ δA

δ∂iϕs
a

= ǫabc


K1


A∗

bj

↔
∇iAcj + A∗

cj

↔
∇iAbj


(4.92)

+ K2


A∗

bj

↔
∇jAcj + A∗

cj

↔
∇jAbj


+K3


A∗

bi

↔
∇jAcj + A∗

cj

↔
∇jAbi


.

The orbital current density can be written as

mjorbi = ǫijk

xjT 0k − xkT 0i


. (4.93)

This is equal to
jorb ≡ x× j, (4.94)

since angular momentum density is the vector product of x with the momentum
density m j. Both orbital and spin currents have zero divergence:

∇ · j = 0, ∇ · jorb = 0, (4.95)

if the elds satisfy the Euler-Lagrange equation. The two currents follow from
Noether’s theorem and the invariance under spatially independent symmetry
transformations.5

As a consequence of ∇ · jorb = 0, the integral over (4.94), which is the total
angular momentum

L =

d3x x× jorb, (4.96)

is a time-independent quantity.
Since the invariance of the collective action under (4.86) is a direct consequence

of the original fundamental action being invariant under separate phase, spin, and
orbital rotations dened as

ψ → e−iϕψ, (4.97)

ψ → e−i s· ψ, (4.98)

ψ → e−
o·(x×∇)ψ, (4.99)

5See Chapter 3 in the textbook [44] or Chapter 8 in the textbook [45].
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the currents (4.88), (4.92), and (4.94) are simply the collective versions of the fun-
damental Noether currents following from the continuous symmetries under the
transformations (4.97)–(4.99):6

ji ≡ 1

2mi
ψ∗ ↔

∇iψ,

jai ≡ 1

2mi
ψ∗σa

↔
∇iψ,

jorb ≡ x× j. (4.100)

Because of the invariance under (4.97)–(4.99) and the fourth-order form of
the collective action, the theory at hand is what is called a 3 + 1 dimensional
SU(2) × SU(2) × U(1) -symmetric linear σ-model. It is of the same type as the
O(3)-symmetric Landau model of ferromagnetism.

When confronted with such a model, the discussion usually starts with the sta-
bility analysis of all possible vacuum states. One examines small oscillations of the
eld Aai around its static ground state congurations. There the action A can be
expressed in terms of the energy as

A = −


dtE = −


dtd3x f (4.101)

A glance at Eq. (4.84) shows that small oscillations of Aai around zero are stable as
long as

µA =
N (0)

3


1− T

Tc


< 0, i.e., T > Tc. (4.102)

As the temperature drops below the critical value Tc, the quadratic potential be-
comes unstable and the fourth-order term is needed to control the uctuations.
The eld Aai settles at some new minimum away from zero. Unfortunately, no full
mathematical analysis is available on the minima for all possible congurations of
the coecients βi. Among the many minima discussed in the literature [21], there
are three which apparently have been found in the laboratory associated with the
phases which were shown in Fig. 4.3. Each of these is non-unique due to a residual
degeneracy and can be parametrized as follows:

A-phase

A0
ai = ∆Ada


φ(1) + iφ(2)


i
. (4.103)

Here d, (1), (2) are arbitrary real unit vectors with (1)⊥ (2).

B-phase

A0
ai = ∆BRai(n̂, θ)e

iϕ. (4.104)

6Recall Subsec. 3.5.3 in the textbook [44].
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Here Rai is an arbitrary rotation around an axis n̂ by an angle θ with ϕ being some
phase angles.

A1-phase

Aai = ∆A1


d(1) + id(2)


a


φ(1) + iφ(2)


i
. (4.105)

Here d(1),d(2); (1), (2) are unit vectors with d(1)⊥d(2) and (1)⊥ (2). The mag-
nitudes of ∆ are controlled by the free energy. In the three cases, this becomes:

fA = −2µA∆
2
A + (β2 + β4 + β5) 4∆

4
A,

fB = −3µA∆
2
B + (β1 + β2) 9∆

4
B + (β3 + β4 + β5) 3∆

4
B,

fA1 = −4µA∆
2
A1

+ 16 (β2 + β4)∆
4
A1
. (4.106)

For µA < 0, the minima lie at the nonzero values

∆A =


µA

4β245

= πTc


10

7ζ(3)



1− T

Tc

,

∆B =


µA

6β12 + 2β345

= πTc


8

7ζ(3)



1− T

Tc

,

∆A1 =


µA

8β24

= πTc


10

7ζ(3)



1− T

Tc

, (4.107)

where βij, βijk, . . . are short for βi + βj , βi + βj + βk, . . . . The minimal values are

fmin
A = µA∆

2
A = − ρ

m2


1− T

Tc


h̄2

2ξ20
×

5

24
,

fmin
B = −3

2
µA∆

2
A = − ρ

m2


1− T

Tc


h̄2

2ξ20
×

1

4
,

fmin
A1

= −2µA∆
2
A1

= − ρ

m2


1− T

Tc


h̄2

2ξ20
×

5

48
, (4.108)

respectively. Note that in the B-phase, the expression for the gap and for the energy
(4.108) are the same as for the superconductor in Eqs. (3.154) and (3.125) (apart
from the dierent mass values).

It is useful to introduce the various relevant β-values in the dierent phases,

1) B: β−1
B =


β12 +

1
3
β345

−1
= 6

5
β−1
2

2) A: β−1
A = ( 2

3β245)
−1 = 1 β−1

2

3) A1: β−1
A1

= (2β24)
−1 = 1

3
β−1
2

so that the gap is given by

∆ =


µA

6β
, (4.109)
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and the minimal energy is the negative of the condensation energy

fmin = −fc = − µ2
A

4β
= − 5

24

ρ

m2


1− T

Tc


h̄2

2ξ20
×

β2

β
. (4.110)

The uctuations around the new minima can be separated according to massive
and massless ones. The massive ones all occur with a mass of the same order of
magnitude as is found for the oscillations of ∆ at the new minimum. This can be
calculated as follows: Introducing

∆ → ∆+∆
′, (4.111)

we nd for ∆′-oscillations
f = fmin + δ2f, (4.112)

with a mass term twice the opposite of that in (4.106):

δ2f = 4µA∆
′2. (4.113)

The massive oscillations in directions other than ∆ have the same type of mass
term except that it is accompanied by a numerical factor (determined by a Clebsch-
Gordon coecient). The massless oscillations arise for small displacements of the
direction vectors d and and the phase ϕ characterizing the minima. They are
called Goldstone bosons.

Group-theoretically, the following considerations are useful. The action is in-
variant under the global transformations of the group SU(2)× SU(2) × U(1). The
innitesimal transformations consist of those which change the directions of the
minima and a subgroup leaving them invariant. The rst ones coincide with the
long-wavelength limit of Goldstone bosons oscillating around the new minimum.
The mass of these oscillations is zero, since the action is invariant in the limit of
innite wavelength in which the small displacements become uniform rotations of
d, , ϕ. The subgroup of symmetry transformations which leave the directions at
the minima invariant, but they mix the Goldstone modes with each other. These
transformations describe the residual symmetry left for the physics of the Goldstone
modes.

The collective eld Aai has 18 parameters while the above Aai have only 6, 5,
or 7 parameters in A,B, and A1-phases, respectively. The above parametrizations
of the vacuum, therefore, does not allow to describe all massive oscillations (only
those of the size parameter ∆ are included).

In eld theoretic considerations a particular direction di0 is usually chosen as a
vacuum of the theory. The freedom of taking an arbitrary direction corresponds to
an innite degeneracy of the possible vacua. In 3He physics such a uniform choice is
usually not possible since, as we shall see, boundary eects do not permit the ground
state to settle in a uniform direction of the A0

ai eld. The “vacua” are nontrivial. In
addition to boundaries, also external elds7, currents8, and topology may serve to

7For a general discussion and references see Ref. [17].
8Non-trivial helix-like textures in the presence of currents have rst been found in Ref. [40].
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stabilize dierent non-uniform eld congurations. The latter fact establishes links
with discussions of topologically interesting vacua in eld theory.

As we have stressed repeatedly, we shall analyze the quantum liquid only with
respect to those phenomena which take place at energies much smaller than the
gap energy ∆. In this limit, all massive oscillations become unimportant (since
their energy lies in the ∆ regime). We can therefore assume ∆ to be pinned down
tightly at one of the degenerate extremal values (4.114) and allow only uctuations
of the direction of A0

ai. This approximation, in which only the Goldstone modes
are studied, is called the hydrodynamic or the London limit of the theory. In σ-
models of eld theory, this corresponds to letting the mass of the σ-particle (the
σ-oscillations) go to innity. This limit leaves only the pion as a dynamical eld in
what is called a nonlinear σ-model. In the following, we shall restrict our discussions
to this hydrodynamic limit.

4.6 Comparison with O(3)-Symmetric Linear σ-Model

For comparison, we briey recall the symmetry-breakdown in the simple O(3)-
symmetric σ-model, also known as the classical Heisenberg model of ferromagnetism.
There the free-energy density reads, for constant elds,

f =
µ2

2


π2
1 + π2

2 + π2
3


+

λ

4


π2
1 + π2

2 + π2
3

2
. (4.114)

For µ2 < 0, this has the following set of degenerate minima:

π0
i ≡ ∆

0d0i with ∆
0 =



−µ2

λ
, (4.115)

where d0i is an arbitrary unit vector in three-space. The oscillations of πi ≡ ∆di
around π0

i consist of massive radial oscillations in ∆ controlled by

f = −µ4

4λ
+ (−µ2)(∆ −∆

0)2 (4.116)

and massless oscillations of di around the direction of d0i . If d0i points along the
3−axis, these oscillations can be parametrized as

di =


π′

i

∆
,



1−
′2

∆2


 . (4.117)

The energy depends only on ∆. Rotations leaving d0i invariant transform the uc-
tuationg elds π′

1 and π′
2 among each other and correspond to the residual O(2)

symmetry after spontaneous symmetry breakdown of the original O(3). The situ-
ation here is simpler than that for 3He since the parametrization πi = ∆di of the
ground state can be used to cover the entire three-dimensional eld space.
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4.7 Hydrodynamic Properties Close to Tc

In the hydrodynamic limit the only degrees of freedom of the liquid consist in ground
state congurations A0

ai with slow spatial variations of the directional vectors. In
the A-phase, in which

A0
ai = ∆Adaφi

φi ≡ φ
(1)
i + iφ

(2)
i , (4.118)

where φ
(1)
i and φ

(2)
i are orthogonal unit vectors, the magnitude ∆A is pinned down

at the potential minimum (4.108) with a value (4.107). The unit vectors da and

φ
(1)
i , φ

(2)
i vary in space. It is useful to visualize the physical meaning of these direc-

tions. Remembering the relation (4.87) expressing the collective eld Aai in terms
of the pair of fundamental elds, the vector da indicates the direction along which
the spin has the wave function 1√

2
(↑↓ + ↓↑), along which the third spin component

vanishes.9 The plane in which the Cooper pair moves is given by the plane spanned
by the unit vectors (1) and (2). It has become customary to introduce a vector

l ≡ (1) × (2), (4.119)

which denotes the direction of the intrinsic orbital angular momentum of the Cooper
pairs in the condensate. For the completeness of the description, one has to specify,
in addition, the azimuthal angle α of φ(1) in the plane orthogonal to 1. This speci-
cation can be made unique, for example, by the following choice of parametrization:

≡ (1) + i (2) (4.120)

= e−iα {(− sin γ, cos γ, 0) + i(− cos β cos γ, − cos β sin γ, sin β)} ,

l ≡ (sin β cos γ, sin β sin γ, cos β) . (4.121)

Consider now the gradient energy density (4.85) in the hydrodynamic limit.
Inserting the above parametrization of the order eld, it becomes

fgrad =
1

2
∆

2
A


K1|∇iφj|

2 +K2∇i


φ
†
j∇jφi − φ

†
i∇jφj


+K23|∇iφi|

2

+K23| ·∇da|
2 + 2K1(∇ida)

2

, (4.122)

with the notation K12 ≡ K2 + K3. The last term is a pure divergence and can
be neglected in most discussions. Since the magnitude of all directional vectors
is unity, the mass term in (4.80) and the fourth-order term (4.78) add up to the
minimal values given in (4.108). Since ∆ is tightly pinned down at that minimal
value, any deviation of the energy from this minimum is completely determined by
the derivative terms (4.122) of the Ginzburg-Landau expansion (4.84). These vanish

9To verify this, let da = (0, 0, 1)a so that da(cσ
a)αβ = − (↑α↓β + ↓α↑β) , where ↑α, ↓β are the

spin- 12 two-spinors with spin up and down, respectively.
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for uniform eld congurations and grow with increasing bending of the eld lines.
For this reason, the gradient-energy (4.122) is often referred to as bending energy .

The prefactor 1
2
∆2

A can be brought to a physically more transparent form: Using
(4.76) and (4.107), we nd in the weak-coupling limit:

1

2
∆

2
A =

1

2

µA

4β245

=
1

2

1

3
N (0)

1
8
5
N (0)ξ20/v

2
F


1− T

Tc


=

5

48

v2F
ξ20


1− T

Tc



=
ρ

16m2


1− T

Tc


1

K1

, (4.123)

where ρ is the mass density of 3He particles per unit volume. Now, if a collective
excitation of wave vector k runs through the liquid, its energy density per particle
is of the order (k2/2m) (1− T/Tc). It grows with decreasing temperature due to the
increasing condensation energy.

Instead of the complex vector , one may express the energy density in a some-
what more intuitive fashion by using the more physical vector l of (4.121). To this
end we dene a gradient vector called the macroscopic superuid velocity :

vs i =
1

2m
(1)∇i

(2) =
i

4m
†∇i , (4.124)

where the vectors (1) and (2) are those introduced in Eq. (4.103). Then the gra-
dient part (4.85) of the free energy density takes the form (see Appendix 4A)

fgrad =
1

2
ρsv

2
s −

1

2
ρ0(l · vs)

2 + cvs · (∇× l)− c0(l · vs) [l · (∇× l)]

+
1

2
Ks(∇ · l)2 +

1

2
Kt [l · (∇× l)]2 +

1

2
Kb [l× (∇× l)]2

+
1

2
Kd

1 (∇ida)
2 − 1

2
Kd

2 (l ·∇da)
2 , (4.125)

with the coecients

ρs = ∆
2
A(K1 + 1

2K23) 4m
2, ρ0 = ∆

2
AK23 4m

2,

c = ∆
2
AK32m, c0 = ρ0/2m,

Ks = Kt = ∆
2
AK1, Kb = ∆

2
A(K1 +K23),

Kd
1 = ρs/4m

2, Kd
2 = ρ0/4m

2. (4.126)

In the weak-coupling limit (4.84) these expressions simplify to

ρs

2
= ρ0 = 2mc0 = 4mc

= (2m)22Ks = (2m)22Kt = (2m)2
2

3
Kb (4.127)

= (2m)2
1

2
Kd

1 = (2m2)Kd
2 .
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The material constants Ks,b,t parametrize the stiness for the various fundamental
deformations of the l-eld which are illustrated in Fig. 4.4. They have been dened
in the theory of liquid crystals to be discussed in Chapter 5 as splay, bend and twist

deformations [22] (see Section 5.3 of Chapter 5). It is easily veried that in these
three congurations the terms with Ks, Kb, and Kt give the dominant contributions.
Indeed, if the spatial changes of the l eld take place only in the z-direction, one
can write the relevant part in gradient energy (4.125) as

fgrad stb ≈ 1

2
Ks (∇ · l)2 +

1

2
Kt [l · (∇× l)]2 +

1

2
Kb [l× (∇× l)]2 (4.128)

=
1

2
Ks sin

2 β β2
z +

1

2
Kt sin

4 β γ2
z +

1

2
Kb


cos2 β (sin2 β γ2

z + β2
z )

.

In the twist texture, l changes in the xy-plane from the x- to the −x-direction.
Hence β ≡ π/2 is a constant, and only γz contributes to the gradient energy

fgrad t =
1

2
Ktγ

2
z . (4.129)

The other two textures are not that clearly separated: In both, γ ≡ 0 is constant,
so that

fgrad sb =
1

2
Ks sin

2 β β2
z +

1

2
Kb cos

2 β β2
z . (4.130)

In the splay case, l turns in the xz-plane from z to −z-direction. In the middle
of the texture, i.e., in the place of largest βz where angle β is π/2, the rst term
dominates. In the bend case, l turns in the xz-plane from x- to −x-direction. Thus,
for the largest βz where β ≈ π, the second term dominates.

Figure 4.4 Three fundamental planar textures: splay (a), bend (b), and twist (c). The

left-hand side of the gure shows eld congurations with a singular plane where the elds

reverse direction. Since the superuid would have to be normal in this plane, it prefers

the right-hand conguration in which the direction changes smoothly through a domain

wall of nite size. The thickness ξd is determined by the competition of the dipole and

bending energy.
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The currents can now be calculated by inserting (4.118) into (4.87) and (4.88).
For the mass current density we nd

ji = ρs ijvsj + cij (∇× l)j , (4.131)

with the matrices

ρs ij ≡ ρsδij − ρ0lilj ,

cij = cδij − c0lilj. (4.132)

Note, that this result also follows directly from an innitesimal Galilean transfor-
mation. If one multiplies A by e2imvx, this leaves l invariant while changing the
superuid velocity (4.123) as follows

vs → vs + v. (4.133)

This shows that vs transforms indeed like any velocity (thus justifying its name).
Using this transformation together with (4.91) on (4.125) yields again the current
density (4.131). This current density describes the superow of Cooper pairs in the
rest frame of the normal liquid. The superuid density is a tensor with a component
longitudinal to l, ρ

s = ρs − ρ0, and a transverse one, ρs⊥ = ρs.
We now turn to the “orbital current”. It describes the collective motion of the

atoms within the Cooper pairs. It is similar to the current density ∇ × M which
appears in magnetostatics in the presence of magnetizable matter [23] in the Maxwell
equation

∇×B = 4π (j+∇×M) . (4.134)

The second current term describes the electronic current density owing within the
molecular orbits of the matter. In complete analogy to this, there is a local matter
current associated with the rotation of 3He atoms inside the Cooper pairs. This
current contributes to the total superow.

The spin current density can be derived similarly to the matter current density
via the appropriate symmetry transformation which brings A → e−2 s

A and da →
da + δda with

δdb = −2ϕs
aǫabcdc. (4.135)

Since the spin current density is dened by jspinai ≡ −∂e/∂iϕ
s
a we nd directly, from

the hydrodynamic energy (4.128):

jai = 2

Kd

1δij −Kd
2 lilj


ǫabcdb∇jdc. (4.136)

In order to keep as much analogy as possible with the superuid velocity we may
dene a superspin velocity

vsai ≡
1

2m
ǫabcdb∇idc, (4.137)

in terms of which the current density becomes

jai = 4m

Kd

1δij ,−Kd
2 lilj


vsaj (4.138)
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where, again, there is a longitudinal term proportional to Kd
1 −Kd

2 and a transverse
one with a factor Kd

1 .

Under a spin rotation (4.135), the velocity transforms according to

vsai → −2ϕs
aǫabcvsci +∇iϕ

s/m. (4.139)

The orbital angular momentum current density is obtained from (4.131) by forming
the vector product with x.

The action is still incomplete since, until now, we have left out the dipole force.
Inserting the parametrization (4.118) and (4.120) into (4.83), we nd

fd = −2gd∆
2
A


(d · l)2 − 1

3


. (4.140)

Thus, the dipole force tends to align d and l parallel or antiparallel. This can
physically be understood as follows: Let the atoms orbit around each other, say, in
the xy-plane. If the spin points in the z-direction, the two nuclear moments have
equal poles all the time adjacent to each other. In the Sz = 0 conguration they
are, on the other hand, aligned so that opposite poles face each other for half the
orbit. This corresponds to d l .

A comparison of the strength of the dipole energy with the main term (4.119) of
the bending energy is possible if we write

fd = −∆A
2K23

1

ξ2d
(d · l)2 + const . (4.141)

Then, the dipole length

ξd =

K23/2gd (4.142)

measures the length scale over which the direction of eld lines has to vary apprecia-
bly in fd of (4.141) in order to give the bending energy a comparable size with the
dipole energy. The microscopic calculation yields ξd ≈ 10−3 cm (1− T/Tc) which is
two orders of magnitude larger than the coherence length ≈ 1000Å (1− T/Tc).

The small dipole energy (4.141) in the σ-model of 3He plays a very similar role
as the small PCAC-violation in σ-models of particle physics. Before fd is turned
on, all Goldstone modes are massless. With (4.141), the oscillations in which the
relative angle between d and l vibrates produce a small mass. The experimental
resonance frequency is ΩA ≈ 50 kHz corresponding, energetically, to the temperature
TA ≈ 5× 10−7 K. It is, therefore, much smaller than the gap energy (≈ m ·K).

While l and vs-vectors have physically the most transparent meaning, they are
dynamically not independent, since vsi =

1
2m

(1)∇i
(2) involves derivatives of l. In

fact, the curl of vs is related to the l eld as follows

∇× vs =
1

4m
ǫijk l · (∇jl×∇kl) . (4.143)
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For the proof, one forms the derivative of (4.124):

(∇× vs)i =
1

2m
ǫijk∇j


(1)∇k

(2)


=
1

2m
ǫijk


∇j

(1)∇k
(2)

. (4.144)

Since (1)∇k
(1) = 0 (due to (1)2 = 1), ∇k

(1,2) has only a component along l and
(2,1). Thus

∇j
(1)∇k

(2) =

l ·∇j

(1)
 

l ·∇k
(2)

. (4.145)

But l ·∇j
(1,2) = − (1,2)∇jl (due to (2)l = 0) so that we can write

(∇× vs)i =
1

4m
ǫijk


(1)∇jl

 
(2) ·∇kl


−


(1)∇kl
 

(2)∇jl


. (4.146)

From this, Eq. (4.142) follows directly since (1), (2), l are an orthonormal triplet.
The relation (4.142) will be powerful in relating the ow vortices to the geometric
properties of the container of the liquid. For, if one takes the scalar product of
(4.142) with l, we nd [25]

2ml · (∇× vs) =
1

2
ǫijkli [l · (∇jl×∇kl)] = K. (4.147)

The right-hand side is the Gaussian curvature of a surface cutting normally through
the l eld. If there is a closed normal surface anywhere inside the liquid, the integral
over k gives 2π times the Euler invariant characteristic E of a closed surface. This
characteristic is

E = 2(1−m) (4.148)

for a surface equivalent to a sphere with m handles (see Fig. 4.5). Performing the
same integral over the left-hand side renders 2π times the number of singular vortex
lines which have to enter the closed surface at some place. Indeed, consider a closed
contour on top of the closed surface (see Fig. 4.6).

Let t be the tangent vector and n = l × t be the normal vector of the contour
inside the surface. Since (1), (2) lie in the tangent plane they can be spanned as
follows:

(1) = cos θ n+ sin θ t,
(2) = − sin θ n+ cos θ t. (4.149)

As one proceeds a little way along the surface the tangential component of vs is

2mvs · t = ds (1) ×
d

ds
(2)

= ds


dθ

ds
+ t ·


l×

d

ds
t


. (4.150)
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+

Figure 4.5 Sphere with one, two, or no handles, and their respective Euler characteristics

E = 0,= 2, or 2.

Figure 4.6 Local tangential coordinate system n, t, i for an arbitrary curve on the surface

of a sphere.

The second term

γ = t ·


l×

d

ds
t


(4.151)

is called the geodesic curvature since it describes the rate of change of t away from
the t direction (it is zero on the equator of a sphere). If we now convert the integral
over the left-hand side of (4.147) into a contour integral and increase the contour
throughout the surface leaving out all singular points, the result is



i


ds


dθ

ds
+ γ


(4.152)
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with the sum over all enclosed singularities. If the circles are innitesimal, the
surface can be considered as a plane and the integral over the geodesic curvature
renders 

ds γ = 2π. (4.153)

The integral over dθ/ds, on the other hand, depends on the vertex strength Ni at
the point i as

2π(Ni − 1). (4.154)

For, if there is no vortex, the vectors φ(1), φ(2) stay xed in space along the contour.
Thus, the intrinsic coordinate θ of (4.149) changes by −2π. If, on the other hand,
there is a vortex with φ(1),φ(2) rotating Ni times around l in the positive sense,
when going around the contour, there will be an additional change of 2π ·Ni. Thus
the Euler characteristic determines the number of vortex lines passing through any
closed surface normal to the l-eld inside the liquid. This theorem will be useful for
the discussion to follow.

In the B-phase, in which

A0
ai = ∆BRai (θ) e

iϕ, (4.155)

the magnitude of ∆B is pinned down at the potential minimum (4.108) with a value
(4.107). Only the angles θ and ϕ are allowed to vary. Due to (4.80), the gradient
energy becomes

fgrad =
1

2
∆

2
B


K1δijδkl +

1

2
K23 (δilδjk + δikδjl)


∇k


Rai (θ)e

−iϕ

∇l


Raj(θ)e

iϕ

.

(4.156)

The derivative factor can be rewritten as

∇kϕ∇lϕ+∇kRai∇lRaj + . . . , (4.157)

with mixed terms ∇R∇ϕ vanishing in the contraction with the tensor (4.152), for
symmetry reasons. If we parametrize small oscillations in θ as

Rai(θ) = Raj(θ0)Rji(θ), (4.158)

the energy becomes

fgrad =
1

2
∆

2
B


K1


3(∇ϕ)2 + 2(∇iθ̃j)

2


+K23


(∇ϕ)2 + (∇iθ̃j)

2 − 1

2
(∇θ̃)2 − 1

2
(∇iθ̃j∇j θ̃i)


. (4.159)

Using the result of Eq. (4.107) together with (4.123), we have

1

2
∆

2
B =

8

10

1

2
∆

2
A =

8

10

1

16m2
ρ


1− T

Tc


1

K1

, (4.160)
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which can be used to bring the energy to the form

fgrad =
1

4m2

1

2
ρBs


3

5
(∇ϕ)2 +

2

5
(∇iθ̃j)

2

+
K23

2K1


2

5
(∇ϕ)2 +

2

5
(∇iθ̃j)

2 − 1

5
(∇θ̃)2 − 1

5
∇iθ̃j∇j θ̂i


. (4.161)

Here, we have introduced the quantity

ρBs ≡ 2ρ

1− T

Tc


, (4.162)

which for T ≈ Tc is the superuid density of the rmB-phase. The current density
can be obtained either by inserting (4.158) into (4.88), or by performing ϕ → ϕ+2δϕ
in (4.161):

ji = ρBs
1

2m2

1

5
(3 +K23/K1)∇iϕ. (4.163)

The spin current density may be obtained by inserting (4.158) into (4.92), from
which we nd

jai = Raa′( 0)j̃a′i,

j̃ai = − 1

2m2
ρs


2

5


1 +

K23

2K1


∇iθ̂a −

1

5

K23

2K1

∇aθ̃i + δia∇ · ˜

. (4.164)

4.8 Bending the Superuid 3He-A

The experimental interest lies in the possibility of preparing many nontrivial eld
congurations by gaining control over the directions of l- and d-vectors. Their
presence can be detected by magnetic and sonic resonances. The principal means
of enforcing certain eld directions are the following:

1. External Magnetic Fields

These try to enforce d⊥H with a strength comparable to the dipole energy if
H ≈ 35 Oe. The energy is proportional to (d ·H)2. The microscopic reason
for this collective eect is clear. The eld H becomes the quantization axis
so that the direction d (that species the direction along which the magnetic
quantum number vanishes, S3 = 0) is orthogonal to H.

2. Walls

Since l denotes the direction of the orbital angular momentum of the Cooper
pairs, one expects l to stand orthogonal to the walls of the container since a
plane of orbital motion parallel to the walls should energetically be favored
over the orthogonal conguration. This expectation is veried by calculations.
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Figure 4.7 The ld-eld lines in a spherical container. There are necessarily two ux

quanta associated with a singular point either in the form of two vortex lines (a) or of

one with double circulation (b). Since vortex lines store condensation energy, they act

approximately like a rubber band and draw the point to the wall (c), thereby generating

a ower-like texture called a boojum [24, 25].

Apart from this, currents and probably also electric elds act as directional agents
upon l.

Let us now discuss what is called an open system. It is dened by a liquid in
a container which is large compared to the dipole length ξd (i.e., much bigger than
103 cm) and with no magnetic eld being present. In order to avoid the pile-up of
dipole energy, d and l-vectors will stay aligned over most of the volume. Only in the
neighborhood with a radius ξd around the line-like singularities, where the bending
energies become comparable with a dipole energy, alignment may be destroyed. Such
singularities will be present in any sample prepared carelessly. Moreover, even with
the most delicate cooling into the superuid phase, the geometry of most containers
will enforce the existence of some singularities. This will now be discussed separately.

4.8.1 Monopoles

If a sphere is cooled smoothly through the transition region, the eld lines of l(x)
will be planted uniformly orthogonal to the walls and develop towards the inside
like the spines of a hedgehog. At some place there has to be a point-like singularity.
Moreover, since the Euler characteristic of the sphere is E = 2, any closed surface
orthogonal to the l-eld inside the liquid has to be passed by two vortex quanta.
Possible eld congurations are shown in Fig. 4.7. In the rst case, two separate
vortex lines of strength one emerge from the singularity, one running to the north,
the other to the south pole. In the second¡ case, there is, instead, one single line of
vortex strength two at the north pole. In the third case the singularity has settled
at the boundary forming a ower-like structure, a texture called a boojum [25]. The
last case is apparently favored energetically since there is considerable condensation
energy stored in the vortex line inside of which the liquid is normal. The vortex
line acts like a rubber band (compare the next section on vortex lines) pulling the
singularity to the boundary. The rst situation corresponds to the eld lines of (1)

and (2) running along the lines of equal longitude or latitude like on a globe, the
l-vector pointing, of course, radially outward. North and south poles are singular.
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Figure 4.8 Two possible parametrizations of a sphere, either with two singularities, as

the standard geographic coordinate frame on the globe, or with one singularity, as shown

in the right-hand gure. The geographic parametrization corresponds to liquid 3He having

two singular vortex lines, one emerging at the north pole and one at the south pole. The

vectors (1) × (2) are tangential to the coordinates. The vector l = (1) × (2) points

radially outwards. The lower parametrization corresponds to one vortex line with double

circulation emerging at the north pole. The south pole is a regular point.

The two other situations correspond to a parametrization of the globe with only one
singularity at the north pole (see Fig. 4.8).

In order to estimate the energies let us parametrize the eld lines as10

l = er, = (eθ + ieϕ) e
iχ. (4.165)

Then the superuid velocity is:

vs =
1

2m


∇χ− cot θ

r
eϕ


(4.166)

with a vorticity

2m (∇× vs) =
1

r2
er. (4.167)

Integrating this over a spherical closed surface gives 4π = 2 × 2π, corresponding
to the passing of two vortex units. Choosing χ ≡ 0 we see vs to be singular at
θ = 0 and π, so that two vortices of one quantum run from the center upwards or
downwards [see Fig. 4.7a)], respectively. If χ is chosen to be χ = ϕ, the singularity
on the north (south) pole is cancelled with the other one being doubled [see Fig.
4.7(b)]. Inserting these congurations into the energy (4.126) with 2K1 ∼ K23 = 2K
one has [26]

E =
ρs

m2

π

4
R log


2R

ξ
− 5

2


(4.168)

in the rst case. Recall that ρs ≈ 2ρ (1− T/Tc).
The energy of the second case is obtained by replacing log (2p/ξ − 5/2) by the

larger value 2 log (2R/ξ − 7/4). The volume integration has to be cut o at the

10We neglect, for simplicity, all energy terms involving the d-vector.
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Figure 4.9 Spectra of Goldstone bosons versus gauge bosons. Goldstone bosons have

energies going to zero with increasing wavelength due to an underlying symmetry. Gauge

bosons have no energy for any vector case since their elds correspond to local symmetry

transformations under which a gauge theory is invariant.

coherence distance ξ = ξ0/

1− T/Tc away from the singularity. This is physically

the correct procedure. Closer than ξ, the liquid cannot support the large bending
energies coming from the directional change of φ(1) and φ(2) around the vs-vortex line
and it escapes by ∆ leaving the valley of minimal action and returning to the normal
liquid point where ∆ = 0. At that point, d and in (4.118) lose their meaning and
the singularity is avoided. Since the energy is proportional to ∆2 and ∆4, it vanishes
in the normal region so that the integration can be cut o there. Remember, though,
that the complete energy consists of the sum of the bending energy e of (4.119) and
the negative condensation energy fmin of (4.92). When comparing this structure to
the monopole-like solutions in gauge theories coupled with Higgs elds [29] there
is an essential dierence: The energy increases with the radius of the sphere. The
energy of a monopole, on the other hand, is constant. The reason for this is simple:
In a σ-type of model, a eld conguration which is radial asymptotically has a
bending energy


∇i

xj

r

2

=


δij − xixj/r

2

r

2

∼ 1

r2
. (4.169)

Hence, the integral diverges with R. In a gauge eld theory, on the contrary, the
vector potential is oriented radially, but the bending energy measures only the gauge
invariant derivative F 2

µν = (∇µAν −∇νAµ)
2. This vanishes asymptotically very fast

and all the energy is concentrated around the origin.

The situation can also be described in the particle language. In the σ-model,
the nontrivial vacuum consists of a coherent superposition of static o-shell Gold-
stone bosons with many k-vectors. Their energy increases with k2 and even in the
asymptotic region there is a considerable amount of energy. In gauge theory, the
asymptotic region contains only longitudinal gauge particles which, by gauge invari-
ance, correspond to Goldstone bosons with energies that vanish identically for all
k-vectors (see Fig. 4.9).

Therefore, the asymptotic region is free of energy. Since it is the curvature of
the container walls which enforces asymptotic bending energy (or the presence of
Goldstone bosons close to the walls) the growth of energy with the radius of a sphere
cannot be avoided, even if one patches together the eld of a monopole with that
of another monopole and forms what may be called a monopolium [26]. In order to
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study the situation, the point singularities sit at (0, 0, C) and (0, 0,−C). Then an
ansatz

l =
r2 − C2

λ
cos θ er +

r2 + C2

λ
sin θ eθ (4.170)

with

λ ≡

r2 − C2

2
+ 4C2r2 sin2 θ


(4.171)

can be used to construct a vector eld φ so that the superuid velocity is

vs =
1

2M


∇χ− r2 cos2 θ − C2

λr sin θ
eθ


. (4.172)

The energy becomes

E =
56

24
π
ρs

m2
R +

π

2

ρs

m2
C


ln

2C

ξ
−

9

4
+

3π2

32


(4.173)

within a sphere of radius R. Thus, in addition to the energy proportional to R en-
forced by the spherical container, there is a linear binding energy with a logarithmic
correction which stems from the bending energy in the neighborhood of the vortex
line. The vortex line pulls the point singularities together according to an almost
constant force.

Note, that apart from the rst term in the energy caused by geometry, there is
an essential dierence of this σ-model result with what one expects for string like
solutions of pure gauge theories. There, color is supposed to be screened completely
in the vacuum so that the color eld does not leave the vortex line. This is the
reason why the force is purely linear! The monopolium state can be stabilized by
placing ions of equal charge at both ends.

4.8.2 Line Singularities

If a cylindrical container is cooled, the l-lines will develop radially inwards. One
therefore expects a singular line along the axis. At this line, the liquid would have
to be in its normal state since the l-vectors are undened. This amounts to the
accumulation of a large condensation energy, which can be avoided by the l-lines
aring upwards like in a chimney [26] (see Fig. 4.10). Then the entire liquid can
remain superuid and contain only bending energies.

Quantitatively, the energy can be minimized by an l-eld

l = ez cos β + eρ sin β, (4.174)

with
β(ρ = 0) = 0, β(ρ = R) =

π

2
. (4.175)

There are many complex vectors φ which can be constructed with this l, for example:

φ = eimϕ [− sin β ez + cos β eρ + ieϕ] . (4.176)
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Figure 4.10 Cylindrical container with the l  d eld lines spreading outwards when
moving upwards. The line singularity on the left stores condensation energy. The curved
conguration on the right contains only bending energy, which is preferable in a large
container. Small containers and magnetic elds, on the other hand, may give preference
to the singular line.

They lead to a superuid velocity

vs =
1

2Mρ
(m− cos β) eρ. (4.177)

At m = 1, there is no vortex line along the axis. This situation is favored energet-
ically. Inserting vs and l into the energy (4.125) and extremizing with respect to
δβ(ρ), one nds the solution for β(ρ) from the integral:

ρ

R
= exp



 T/2

β(ρ)


Ks cos

2 β +Kb sin
2 β

Ks sin
2 β + ρs

4m2 (1− cos β)2

1/2

dβ


 . (4.178)

The total energy of this conguration is

E ≈ 1.145π
ρs

m2
L, (4.179)

where L is the length of the cylinder. Here, the weak coupling equalities (4.120)
have been used.

Note that from (4.177) there is an azimuthal current owing in this eld cong-
uration, which therefore may have a nonvanishing orbital angular momentum. In
order to calculate this, consider the second, convective, part of the current

∇× l = (l ·∇) βeϕ = −(cos β)′eϕ. (4.180)

This part also circulates around the axis but with a dierent radial dependence.
The total angular momentum is then, due to (4.94),

L =


d3x (x× j) . (4.181)
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It is directed along the z-axis with a value

Lz = 2π


dzdρρ


ρs

2Mρ
(1− cos β)− c

∂

∂ρ
(cos β)



= 2π


dzdρ

ρs

2M
(1− cos β) + c cos β



≈ R2 ρs

2m


1− 1

π
+

2

π2


L. (4.182)

For the last equation, we have again inserted the weak-coupling value c = ρs/4.
During the phase transition, the angular momentum must manifest itself in a re-
coil imparted upon the container. It would be interesting to detect this eect
experimentally.11

There is also a way to prepare the singular vortex line. For this, a magnetic eld
has to be turned on along the z- axis which drives the d-vectors into the xy-plane.
This enforces a singularity in the d-eld lines along the axis causing the liquid to
be normal there. Once the condensation energy is spent, the weak dipole force is
sucient to pull also the l-eld into the radial direction [30].

4.8.3 Solitons

Let us now turn to planar textures in an open geometry [26, 28]. A direction may
be dened by magnetic eld pointing, say, along the z-axis. Then, the d-vectors will
be forced to lie in the xy-plane:

d = sinψ x̂+ cosψ ŷ. (4.183)

The bending energy is minimized by a constant ψ in space. The dipole force pulls
the l vector in the same or in the opposite directions. Since this force is very weak,
there will be some regions where l is parallel and others where l is anti-parallel to d.
The wall separating the dierent domains is stabilized by the competition between
bending and dipole energy. If the thickness of the domain wall, a, shrinks, the
bending energy density grows like ρs

m2
1
a2

× a, while the corresponding dipole term
falls o like ρs

m2
1

ξd2
× a. Conversely, a large domain accumulates an overwhelming

dipole energy. Equilibrium is reached at a ≈ ξ2d. If one studies, for simplicity, only
congurations with a pure z-dependence and with l in the xy-plane

l = sinχ x̂+ cosχ ŷ, (4.184)

the most general -vector is

= eiϕ (− cosχ x̂+ sinχ ŷ + iẑ) , (4.185)

11Also, the boojum in a sphere has an angular momentum which would set the sphere into
rotation when cooling through the transition point.
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and the bending energy becomes, for the weak-coupling values of the parameters,

fbend =
ρ
s

8m2


2(∇ψ)2 + 2(∇ϕ)2 +

1

2
(∇χ)2


. (4.186)

The dipole energy contributes

fdip =
ρ
s

8m2

2

ξ⊥2
d

sin2 (χ− ψ) . (4.187)

The phase ϕ occurs only in the bending energy and is uniform, in equilibrium. The
remaining dependence on the elds χ, ψ can be diagonalized by setting

v ≡ χ− ψ, u ≡ χ + 4ψ. (4.188)

Then, the energy takes the sine-Gordon form

f = fbend + fdip =
ρ
s

4m2


1

20
u2
z +

1

5
v2z +

1

ξ⊥2
d

sin2 v


. (4.189)

This is minimized by a constant u and a soliton in the variable v:

sin vsol = cosh−1 (z/ξsol) , tan
vsol
2

= e±z/ξsol , (4.190)

where the width of the soliton is of the order of the dipole length

ξsol ≡
1√
5
ξ⊥s , (4.191)

as expected. The energy per unit area of the domain wall is

E

σ
=

ρ
s

4m2

2

ξ2d

 ∞

−∞
dz cosh−1(z/ξsol) =

ρ
s

m2

ξsol

ξ2d
=

ρs

m2

1√
5

1

ξd
. (4.192)

The soliton corresponds to d- and l-vectors twisting in opposite directions inside the
domain wall with l moving four times as far as d (see Fig. 4.11).

The presence of such a domain wall can be detected in the laboratory via a
nuclear magnetic resonance experiment (NMR). Suppose a vibrating eld is turned
on along the z-axis (in addition to the static orienting eld Hext). This is what is
done in a so-called longitudinal resonance experiment. Then the vector l associated
with the spin uctuates around the z-direction (see Ref. 16), so that its azimuthal
angle is

ψ = ψsol + δ, (4.193)

and consequently

u = usol + 4δ,

v = vsol − δ. (4.194)
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Figure 4.11 Field vectors in a composite soliton. At z = +∞, l and d are parallel, at

z = −∞ they are antiparallel. Inside the domain wall of size ξd the vectors change their

direction, l four times as much as d.

This gives an additional vibrational energy

δ2f =
ρ
s

4m2
×


δ2z +

1

ξ⊥ 2
d


1− 2

cosh2(z/ξsol)


δ2

. (4.195)

The extrema of this energy correspond to the bound states of the Schrödinger
equation12


−∇2

z +
1

ξ⊥ 2
d


1− 2

cosh2(z/ξsol)


δ(z) = λδ(z). (4.196)

This is a standard soluble problem (see the textbook on quantum mechanics by
Landau-Lifshitz, ch. 23). The ground state is

δ(z) ∝ 1

cosh2(z/ξsol)
, (4.197)

with

s ≡ 1

2


−1 +


1 + 4

2

ξ⊥ 2
d

ξ2sol


=

1

2


−1 +



1 + 4
2

5


 ≈ 0.306. (4.198)

Since s ≤ 1 there is only one bound state. This bound state has an energy

λ =
1

2

√
65− 7

 1

ξ⊥ 2
d

. (4.199)

12The time driving term can be shown to go as 1
2 δ

2, so that λ corresponds to a frequency square.
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Absorbed energy f2
L
(109Hz2)

Figure 4.12 Nuclear magnetic resonance frequencies in a superuid 3He-A sample in
an external magnetic eld, as measured in Ref. [27]. The large peak corresponds to the
main absorption line, the small peak to the right is a satellite frequency line attributed
to the trapping of spin waves in planar domain walls. The lower part of the gure shows
the position of these lines for dierent external frequencies of the longitudinal magnetic
eld. The ratio of the satellite frequency to the main frequency agrees with the theoretical
calculation.

The continuum has a spectrum

λ = k2 +
1

ξ⊥ 2
d

. (4.200)

Experimentally, the vibrating eld is homogeneous so that in the continuum only
the k = 0 value is excited. This leads to the main NMR resonance absorption
line. If now a soliton is present, this is the only observed signal. The bound state
trapped by the soliton has the eect of creating a line whose frequency lies by a
factor 1

2

√
65− 7


≈ (0.728)2 below the main line. Such a “satellite” frequency has

indeed been observed experimentally (see Fig. 4.12).
Note that the satellite line provides a good test for the weak-coupling values of

the coecients K1,2,3 in the bending energies. If κ denotes the ratio

κ ≡ 2K1/(K2 +K3), (4.201)

the frequency should be found at

1

2κ


(3κ+ 2)(κ+ 2)− (5κ+ 2)


, (4.202)

instead of (0.728)2. The experimental value (0.74)2 implies that κ is close to 1, in
agreement with the weak-coupling result.

If the parameter s had been a positive number, there would have been more
bound states, one for each n = 0, 1, 2, . . . , s.

4.8.4 Localized Lumps

We have argued before that the energies of point- and line-like singularities are
necessarily not localized. In a hedgehog-like eld structure, the σ-model bending
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energy behaves asymptotically like 1/R2, so that the spherical (or cylindrical) inte-
gral diverges linearly (or logarithmically). The energy can be conned to a small
region only for a eld conguration which is asymptotically at but contains some
knots, say, close to the origin. Topologically, one has to nd a nontrivial mapping of
the entire three-dimensional space into the parameter space of the liquid where all
points are mapped into one point, except those in a small neighborhood of the origin.
In the A-phase of 3He there exists, in fact, such a mapping with l- and d-vectors
aligned [35] (see Fig. 4.13). Indeed, the covering space of the parameter space SO(3)

Figure 4.13 Vectors of orbital and spin orientation in the A-phase of superuid 3He.

is SU(2), which is equivalent to S3, the surface of a sphere in four dimensions. Since
the ordinary space corresponds to S3, which is the space S3 with the north pole
removed, one has a nontrivial mapping S3 → S ′

3 with a large neighborhood of the
north pole of S3 mapped into one point of S3, accounting for asymptotic uniformity.
This corresponds to a diuse smoke-ring type of conguration which moves through
the liquid with a velocity v = h̄/mR, a momentum P ≈ h̄ρsR

2/m, and an energy
E ≈ h̄2ρsR/m2, respectively. Note that the velocity is inversely proportional to the
radius R of the smoke-ring.

Actually, the topological stability does not prevent this object from having only
a small lifetime. While it moves through the liquid, orbital friction eats up the
energy and decreases the size. Once the object has shrunk to the size of the order
of the dipole length ξd, the locking and d and l-vectors will be overcome, and the
parameter space is increased to

R = S2 × SO(3)/Z2. (4.203)

Then the topological stability is lost. The knot in eld space unwinds and disap-
pears.

4.8.5 Use of Topology in the A-Phase

In the A-phase of 3He, as in gauge theories, topological considerations are helpful
in classifying the dierent stable eld congurations. In the superuid, topological
stability means that there is no continuous deformation to a lower energy state
within the hydrodynamic limit. Since this limit is an approximation, the stability is
not perfect. The size of the order parameter ∆ which, in the hydrodynamic limit, is
assumed to be pinned down at the value of minimal energy, does in fact uctuate.
On rare occasions it will arrive at the point ∆ = 0, where the liquid becomes
normal. This process is called nucleation. For example, there is topological stability
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in a superconductor contained in a torus with the phase of the order parameter
changing by einϕ when going once around the circle. There is no continuous way
to relax the ensuing supercurrent in the hydrodynamic limit. But the supercurrent
does decay, albeit it may take years. The reason is that, at some place on the
inner boundary, the size of the order parameter may, by uctuations, climb up
from the valley of lowest energy into the normal phase with ∆ = 0. There the
phase ϕ loses its meaning and can unwind by one unit of 2π. This point may
lie at the inside of the torus and can develop into a thin ux tube. This tube
can carry one unit of electric ux away from the supercurrent. Such a process is
facilitated by putting together two superconductors in a Josephson junction where
the diusion of such units can be observed in the clearest fashion. Thus topological
stability in the hydrodynamic regime really amounts to metastability with extremely
long life times. For most purposes, such life times can be assumed to be innite.
Then the topological classication provides us with good quantum numbers of eld
congurations.

What is the connection between two eld congurations of the same topological
class? They can be deformed into each other by continuous changes only of the
directions of the elds with the magnitude being xed. If initial and nal states
are both dynamically stable, there is an energy barrier to be crossed during such
a deformation. Its energy density is only due to the bending of the eld lines and,
therefore, extremely small as compared with the condensation energy which enforces
topological stability.

Consider now the topology in the parameter space of 3He [32]. In the A-phase,
the vacuum is determined by the product of the vectors da and φi. The vector
da covers the surface of the unit sphere in 3 dimensions, S2, the complex vector

= (1) + i (2) is a three-parameter space equivalent to the space SO(3), i.e., a
sphere of radius r = 1 with diametrically opposite points at the surface identied.
Every point is determined by the direction of the vector l = (1) × (2) and the
length which characterizes the azimuthal angle of (1) in the plane orthogonal to l.
Due to the occurance of a product daφi, a sign change of da can be absorbed in φi

so that the total parameter space is

R = S2 × SO(3)/Z2. (4.204)

Stable singular points exist if the homotopy group π2(R) of mappings of the
sphere S2 in three dimensions into this parameter space is nontrivial. But it is well-
known [33] that, for the above space π2(R) = Z, the group consists of the integer
numbers. Thus each point singularity is characterized by an integer number. There
can be innitely many dierent stable classical eld congurations of the monopole
type. This purely topological argument is based on the independence of the vectors d
and l. We know, however, that the dipole force tries to align the d and l-vectors. For
this reason, as soon as the size of the container exceeds the dipole length ξd ≈ 10−3

cm, d and l will stay parallel asymptotically thereby reducing the parameter space
to

R = SO(3) (d  l). (4.205)
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Then the homotopy group is π2(R) = 0 and there are no monopoles.
Thus monopoles could be created only in very small regions (r << 10−3 cm)

of the liquid. Their d and l eld lines are non-aligned. As a consequence, their
neighborhood contains considerable dipole energy. If the volume of the neighbor-
hood becomes much larger than the dipole length, uctuations in the liquid cause
nucleation to the normal phase with the monopole vanishing in favor of a d  l

alignment and no dipole energy. Quantitatively, the transition point to the con-
guration with d  l is determined by the competition of the small dipole energy
density fd ∼ (ρ/m2)(1/ξ2d), stored in a nite volume, with the large condensation
energy density fc ∼ (ρ/m2)(1/ξ2), stored in the immediate neighborhood vlume ξ3

of the singularity of size ξ(≈ 1000 Å) . The relaxation occurs at

R3

ξ2d
>

ξ3

ξ2
, (4.206)

or
R > 3


ξξ2d ≈ 10−4 cm. (4.207)

For line singularities we have to consider π1(R). If d and l are independent of each
other, this homotopy group is

π1(R) = Z4. (4.208)

Hence there are four types of line singularities which can be labelled by their vortex
strengths s = ±1

2
,±1. Examples:

±
1

2
: = e±iξ/2 (ex + iey) , d = ex cos

γ

2
∓ ey sin

γ

2
, l = ez (4.209)

±1 : = (ez + ieϕ) , d = eρ, l = eρ. (4.210)

As the volume increases, R ≫ ξd, the dipole force leads again to alignment of d and
l, reducing the parameter space to

π1(R) = Z2 (l  d). (4.211)

Thus only two types of singular lines survive and one sees from (4.209) that it is the
±1 vortex lines which survive.

4.8.6 Topology in the B-Phase

The discussion of the hydrodynamic limit can be extended to the B-phase. Consider
the parametrization (4.104) of the degenerate ground state

Aai = ∆BR
ai (n, θ) eiϕ (4.212)

with ∆B pinned at the point (4.107) of minimal energy density (4.107). The matrix
R may be written explicitly as

Rai (n, θ) = cos θδai + (1− cos θ)nani + sin θǫaiknk. (4.213)
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Inserting this into the collective action (4.78), (4.80) the energy becomes the sum
of bending energies involving gradients of θ,n and ϕ.

The parameter space of (4.212) consists of the direct product of a phase (which is
isomorphic to the circle S1) and the group space SO(3). As the dipole force is turned
on, the angle θ is pined at the value θ ≈104◦ and the space SO(3) is narrowed down
to the dierent directions of n only, covering the surface of a sphere S2. The point-
and line-like singularities are classied by considering the homotopy groups π2(R)
and π(R) of the parameter spaces R=S2× SO(3) for small congurations, r ≪ ξd,
and R = S2 × S2 for large ones.

In the rst case one has

π2(R) = 0, π1(R) = Z + Z2. (4.214)

Thus, there are no topologically stable point singularities while there are two types
of vortex lines: One set has its origin in the pure phase eiφ of the parametrization
and is characterized by an arbitrary integer N . These vortex lines are of exactly
the same type as those of superuid 4He. In addition, there are singular lines in the
n, θ parameter space, two of which can annihilate each other (due to Z2). For large
samples where θ = 104◦, the homotopy groups are

π2(R) = Z, π1(R) = Z. (4.215)

Thus, there are stable point like solutions of arbitrary integer charge, the simplest
being a hedgehog with the n-vector pointing radially. The line singularities are all
due to the phase eiϕ and therefore again of the same nature as in superuid bosonic
helium.

The B-phase possesses also interesting planar structures. In order to classify
them one has to map the line z ∈ (−∞,∞) into the parameter space SO(3). In
an open geometry any such mapping can be deformed into the identity. Stable
congurations arise if a magnetic eld is turned on along the z-direction which
aligns the n vector parallel or anti-parallel. Note, however, that, contrary to the A-
phase, the directional energy of the magnetic eld is quite weak: Since the B-phase
corresponds to J = 0 -Cooper pairs, only the small distortion of the wave function
caused by the dipole coupling which leads to a net magnetic energy of the order of

fmg(H) ∼ gd


γ

∆

2

(n ·H)2 (4.216)

Thus, the characteristic length over which bending and magnetic energies are com-
parable is much larger than ξd, namely

ξmg(H) ∼ ∆

γH
ξd. (4.217)

With ∆ ∼ 1m0K and γH ∼ 0.156 × 103 m0K/gauss, this is, at 100 gauss, of the
order of one mm. At large distances, however, this weak-coupling does result in the
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Figure 4.14 Parameter space of 3He-B containing the parameter space of the rotation

group. Thus, points which lie diametrically opposite on the surface are identical. The

dipole energy (hyperne coupling between the spins) favors a spherical shell within this

sphere. It corresponds to rotations around any axis by 104◦. Planar textures (solitons)

have to start and end asymptotically on this shell. The gure shows the four topologically

distinct classes of paths starting and ending on this spherical shell.

n-vector lying parallel or anti-parallel to H. By the same token, also the dipole force
is active and the angle θ between d and l settles at the value θ ≈ 104◦.

We can visualize this asymptotic situation by drawing a sphere of radius π and
by specifying, within this, the surface of xed radius forming at a given θ ≈ 104◦.
Then, any planar eld conguration corresponds to a line starting and ending at
the north or south pole of the θ ≈ 104◦ -surface. Thus, the asymptotic space is
Z2. There are eight classes of mappings, four of which are the mirror images of the
others. They are shown in Fig. 4.14.

The rst class (+ + 0) is trivial and can be deformed continuously into the
uniform eld conguration. The second, (+ − 0), is a θ soliton where θ starts out
and ends at θ ∼ 104◦. The third soliton, (+−1), has the angle θ run from 104◦ to π

and come back from the identical point at the south pole into 104◦ with n pointing
in the opposite direction. The last class, (++ 1), is topologically equivalent to the
sum of the previous two and can, in fact decay into them.

In order to imagine the dierent energies of these eld congurations remember
that the dipole force makes the radial shells have constant dipole energy with a
minimal valley at the shell θ ≈ 104◦. The magnetic force, on the other hand, pulls
n into the z-direction, thus creating a potential valley running through the sphere
from north to south. Since the magnetic force is much weaker than the dipole force,
however, this valley is extremely at. Let us now follow the movement of the eld
conguration as z runs from +∞ to −∞. Clearly, the order parameter θ likes to
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Figure 4.15 Possible path followed by the order parameter in a planar texture (soliton)

when going from z = −∞ to z = +∞. The path tries to stay all the way on the spherical

shell preferred by the dipole energy.

stay close to the north and south poles for the largest possible portion of the z-axis.
The crossing over to the other takes place on a small piece only. The dipole energy
is the strongest eect at hand, the value of θ stays xed at 104◦. Thus, the curve
representing the eld moves as shown in Fig. 4.15.

While crossing to the other side, θ moves through the valley θ ≈ 104◦ and has
to overcome only the magnetic energy. Correspondingly, the soliton (+ − 0) has
the size determined by ξmg, which is quite large. This is in contrast to the soliton
(+− 1), which always has to cross the dipole barrier and has the much smaller size
ξd.

Finally, the last conguration (++1) can lower its energy by deforming the line
as shown in Fig. 4.16. By inspecting this gure it is obvious that such a soliton can
decay into the previous two, one with dipole and one with the much lower magnetic
energy.

Figure 4.16 Another possible class of solitons has an order parameter which starts at

the north pole (say) of the spherical shell, goes to the surface of the sphere, re-emerges at

the diametrically opposite (identical) point and ends up at the point it started out. Along

the way it tries to stay as much as possible on the spherical shell preferred by the dipole

energy.

4.9 Hydrodynamic Properties at All Temperatures T≤ Tc

Until now, the discussion has been limited to temperatures in the vicinity of Tc.
Only then can the expansion of the collective action (4.66) in Aai converge. For
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T ≪ Tc the eld Aai can no longer be assumed to be small since it uctuates around
a nite average value A0

ai whose size increases as the temperature decreases. For
T ≈ Tc, such a behavior is described by formula (4.107). Here we shall extend the
results to all temperatures.

4.9.1 Derivation of Gap Equation

We separate the collective eld Aai in the collective action (4.66) into a constant
background eld A0

ai, plus uctuations A
′
ai around it, by setting

Aai ≡ A0
ai + A′

ai . (4.218)

Then the collective action becomes a functional of A′
ai:

Acoll[A
′
ai] = − i

2
Tr log


i∂t − ξ(−i∇) i∇̃iσa(A

0
ai + A′

ai)

i∇̃iσa(A
0∗
ai + A′

ai
∗) i∂t + ξ(i∇)



− 1

3g


d4xA0∗

aiA
0
ai −

1

3g


d4x


A0∗

aiA
′
ai + c.c.


− 1

3g


d4xA′

ai
∗A′

ai. (4.219)

Here we have introduced the dimensionless derivative

∇̃i ≡
1

2pF

↔
∇i. (4.220)

The trace log part can be rewritten by analogy with (4.70) as

Acoll[A
′
ai] = − i

2
Tr log


i∂t − ξ(−i∇) i∇̃iσaA

0
ai

i∇̃iσaA
0∗
ai i∂t + ξ


− 1

3g


d4xA0∗

aiA
0
ai

− i

2
Tr log


1− iGA0


0 i∇̃iσaA

′
ai

i∇̃iσaA
′
ai
∗ 0



− 1

3g


d4x


A0

ai
∗A′

ai + c.c.

− 1

3g


d4x|A′

ai|
2, (4.221)

where

GA0 ≡ i


i∂t − ξ(−i∇) i∇̃iσaA

0
ai

i∇̃iσaA
0∗
ai i∂t + ξ(i∇)

−1

(4.222)

is the propagator in the presence of the constant A0 eld.
The rst two terms can be dropped since they are an irrelevant constant due to

their lack of depending on the uctuating eld A′. Expanding in powers of A′, we
have

Acoll[A
′
ai] =

∞

n=1

An[A
′
ai] (4.223)

with a linear term

A1[A
′
ai] =

1

2
Tr


GA0i∇̃iσaA

′
ai

τ+

2


− 1

3g


d4xA0∗

aiA
′
ai + c.c. (4.224)
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where τ+/2 is the same 2×2-matrix as σ+/2 =


0 1
0 0


but acting on the two eld

components of (4.65). The quadratic term is

A2[A
′
ai] =

i

4
Tr


GA0


0 i∇̃iσaA

′
ai

i∇̃iσaA
′
ai
∗ 0

2
− 1

3g


d4xA′

ai
∗A′

ai. (4.225)

The linear term is eliminated by the requirement that A is stationary under uctu-
ations in A′

ai. This condition yields the gap equation:

A0
ai =

3g

2
Tr


σai∇̃iGA0(x, y)

τ−

2


x=y−ǫ

. (4.226)

The propagator (4.222) can be calculated most easily for the case of a unitary
matrix

∆αβ(p̃) ≡ p̃i(σa)αβAai, (4.227)

where p̃ denotes the dimensionless vector p/pF . Then

∆αβ∆
†
βγ =

1

2
Tr(∆∆

†)δαγ . (4.228)

The condition is satised if A0
ai has the form (4.103) in the A-phase or (4.104) in the

B-phase [not, however, for the A1-phase (4.105)]. In A- and B-phases the right-hand
side becomes 

∆2
A sin2 θ

∆
2
B


p̃2 ≡ ∆

2p̃2, (4.229)

where θ is the angle between l and the momentum vector p̃. In momentum space,
the propagator is

GA0(ω, p) =
1

ω2 + ξ2(p) +∆2
A sin2 θ p̃2


(iω + ξ(p))δαβ −∆αβ(p̃)

−∆
†
αβ(p̃) (iω − ξ(p))δαβ


(4.230)

for the A-phase, with ∆
2
A sin2 θ replaced by ∆

2
B in the B-phase. This matrix can

be diagonalized via a so-called Bogoliubov-transformation. This is a 2×2-matrix in
which the diagonal values display pure propagators of the energy

E(p) = ±

ξ(p)2 +


∆2

A sin2 θ

∆
2
B


. (4.231)

The energies show a gap ∆2
A sin2 θ or ∆2

B. In the B-phase, the gap is isotropic just
as in a superconductor. In the A-phase, on the other hand, there is an anisotropy
along the l-axis with the gap vanishing for momenta along l.
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The size of the gap is found by solving the gap equation (4.226). Inserting
(4.230), this takes the form

A0
ai = 3g



j

T


ωn,p

p̃ip̃j
1

ω2
n + E2(p)

A0
aj

= 3g


j



p

p̃ip̃j
1

2E(p)
tan

E(p)

2T
A0

aj , (4.232)

or

δij

3g
=



p

p̃ip̃j
1

2E(p)
tan

E(p)

2T
. (4.233)

The momentum integration can be split into size and direction [recall (3.61)]


d3p

(2π)3
≈ N (0)


dp̂

4π


dξ, (4.234)

where N (0) is the density of states (3.62) at the surface of the Fermi sea. Since
the integration over dξ is cut o at a value ωcuto ≈ 1

10
TF , the momenta stay su-

ciently close to the Fermi sphere forcing the dimensionless vectors p̃ ≡ p/pF to be
approximately equal to the unit vectors p̂ ≡ p/|p|. Then (4.233) becomes

1

g


dp̂

4π
p̂ip̂j ≈ N (0)



j


dp̂

4π
p̂ip̂j

 ωcuto

−ωcuto

dξ
1

2E
tan

E

2T


. (4.235)

We may eliminate the coupling constant g in favor of the critical temperature Tc by
using (4.76). This gives

 ωcuto

−ωcuto

dξ
1

2ξ
tan

ξ

2Tc

=
3

4

 1

−1
dz

1− z2

  ωcuto

ωcuto

dξ
1

2
√
ξ2 +∆2

tan

√
ξ2 +∆2

2T
.

(4.236)

In order to extract the nite content, one may subtract

 ωcuto

ωcuto

dξ
1

2ξ
tan

ξ

2T

on both sides. Then ξ-integral converges and we can remove the cuto which leads
to

log
T

Tc

=
3

4

 1

−1
dz

1− z2

  ∞

−∞
dξ


1

2
√
ξ2 +∆2

tan


ξ2 +∆2/2T

− 1

2ξ
tan

ξ

2T


.

(4.237)

From this we may calculate T/Tc as a function of ∆AB/Tc as follows:
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For small T , the integral increases as log T due to the small-ξ behavior of the
second term. The nite term is determined by setting tan

√
ξ2 +∆2/2T


≈ 1

(which is good to t experimental data, except in the A-phase for z ≈ ±1) and
integrating the rst while partially integrating the second term:

log
T

Tc

≈ 3

4

 1

−1
dz(1− z2)


log

√
ξ2 +∆2 + ξ

2T
− log

ξ

2T
tan

ξ

2T


+
 ∞

0
dx

log x

cosh2 x



=
3

4

 1

−1
dz(1− z2)


log

4T

∆
− log

4eγ

π



= log
T

∆maxeγ/π
− 3

8

 1

−1
dz(1 − z2) log

∆2

∆2
max

. (4.238)

In the B-phase, ∆ ≡ ∆max = ∆B, and

∆B/Tc = πe−γ ≈ 1.76, T ≈ 0. (4.239)

In the A-phase, ∆ = ∆A sinΘ, and the integral becomes

−3

8

 1

−1
dz(1− z2) log(1− z2) =

5

6
− log 2 ≈ log 1.15, (4.240)

so that

∆A/Tc = πe−γ e
5/6

2
≈ 2.03 . (4.241)

For small T , this value is approached exponentially fast ∼ e−∆B/T for the B-phase
and with a power law T 4 for the A-phase (due to the vanishing of ∆A sin θ along the
anisotropy axis l).

For arbitrary T , the calculation of (4.237) is done (as in the case of supercon-
ductivity in Chapter 3) by using the expansion into Matsubara frequencies

1

2E
tan

E

2T
=

1

2E
T


ωn


1

iωn + E
− 1

iωn − E


= T



ωn

1

ω2 + ξ2 +∆2
. (4.242)

This can be integrated over ξ to nd, for the gap equation (4.237):

log
T

Tc

= 2π
3

4

 1

−1
dz(1− z2) T



ωn>0


 1

ω2
n +∆2

− 1

ωn


 . (4.243)

At this place we introduce the auxiliary dimensionless quantity

δ =
∆

πT
, (4.244)

and a reduced version of the Matsubara frequencies:

xn ≡ (2n + 1)/δ. (4.245)
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Figure 4.17 Fundamental hydrodynamic quantities of superuid 3He-B and -A, shown as

a function of temperature. The superscript FL denotes the Fermi liquid corrected values.

Then the gap equation (4.237) takes the form

log
T

Tc

=
2

δ


3

4

 1

−1
dz(1− z2)

 ∞

n=0


1
x2

n +


1
1− z2


− 1/xn


 (4.246)

in the B- and in the A-phase, respectively. In the B-phase, the angular integral of
the parentheses gives a factor 1, so that

B : log
T

Tc

=
2

δ

∞

n=0


 1

x2
n + 1

− 1

xn


 . (4.247)

In the A-phase it leads to

A : log
T

Tc

=
2

8

∞

n=0


3

4


(1− x2

n) arctan
1

xn

+ xn


− 1

xn


. (4.248)

The curves ∆A,B/Tc are plotted in Fig. 4.17.
The T ≈ Tc behavior can be extracted from (4.246) by expanding the sum for

large xn. The leading term is


1

1− z2

 ∞

n=0

1

2x3
n

=


1

1− z2


δ3

2

∞

n=0

1

(2n+ 1)2
=


1

1− z2


δ3

2

7

8
ζ(3),

(4.249)
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so that

∆B/Tc = πδ = π


8

7ζ(3)


1− T

Tc

1/2

≈ 3.063

1− T

Tc

1/2

,

∆A/Tc = πδ = π


10

7ζ(3)


1− T

Tc

1/2

, (4.250)

in agreement with the determination (4.107).

4.9.2 Ground State Properties

The superuid densities do not only characterize the hydrodynamic bending ener-
gies. They also appear in the description of the thermodynamic quantities of the
ground state. Close to the critical temperature Tc, these can be extracted directly
from the Ginzburg-Landau free energies (4.108). These limiting results can be used
to cross-check the general properties to be calculated now.

Free Energy

Since the ground state eld A0
ai is constant in space and time the rst two terms

in Eq. (4.221) can be calculated explicitly. In energy momentum space the matrix
inside the trace log is diagonal


ǫ− ξ(p) p̃iσaA

0
ai

p̃iσaA
0∗
ai ǫ+ ξ(p)


(4.251)

in the functional indices ǫ,p. In the 4× 4 matrix space this can be diagonalized via
a Bogoliubov transformation with the result


 (ǫ− E(p))


1 0
0 1


0

0 (ǫ+ E(p))


1 0
0 1



 (4.252)

where E(p) are the quasi-particle energies (4.231). Thus the rst trace log term in
the expression (4.221) can be written as

−i(tb − ta)V


dǫ

2π

d3p

(2π)3
log (ǫ− E(p)) (ǫ + E(p)) . (4.253)

The second term contributes simply

− 1

3g


3∆2

B

2∆2
A


(tb − ta)V. (4.254)

After a Wick rotation which replaces A → iE/T, tb−ta → −i/T,
∞
−∞ dǫ → iT


ωn
,

this corresponds to the free-energy density

f = −


ωn



p

log[(iωn − E(p))(iωn + E(p))] +
1

g


∆2

B
2
3
∆

2
A


+ const . (4.255)
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The constant accounts for the unspecied normalization of the functional integra-
tion. It is removed by subtracting the free fermion system with ∆ = 0, g = 0 [note
that ∆2 ∼ e−1/gN (0) → 0 for g → 0 due to (4.77), (4.239), (4.241)]. Since the energy
of the free fermion system is well-known

f0 = −2T


p

log

1− eξ(p)/T


, (4.256)

it is sucient to study only

∆f =f−f0=−T


ωn,p

log
iωn − E(p)

iωn − ξ(p)
+ (E → −E, ξ → −ξ) +

1

g


∆2

B
2
3
∆2

A


. (4.257)

This energy dierence is the condensation energy associated with the transition into
the superuid phase.

The sum over Matsubara frequency can be performed, by analogy with the treat-
ment of the propagator in Eq. (1.103), using Cauchy’s formula:

T


ωn

log

1− E

iωn


= − 1

2πi


dz

ez/T + 1
log


1− E

z


, (4.258)

where the contour C encircles all poles along the imaginary axis at z = iωn in the
positive sense but passes the logarithmic cut from z = 0 to E on the left if E > 0
(see Fig. 1.1). By deforming the contour C into C ′ the integral becomes

−
 E

0

dz

ez/T + 1
=
 E

0
dE nf

E . (4.259)

Since
∂nf

E

∂E
= −nf

E(1− nf
E)/T, (4.260)

this can be calculated as

−
 E

0
dEnf

E = T
 nf

E

1/2
df ′ 1

1− f ′ = −T log[2(1− nf
E)]. (4.261)

Therefore the expression (4.257) becomes

∆f = T


p


log(1− nf

E)n
f
E − log(1− nf

ξ )n
f
ξ


+

1

g


∆2

B
2
3
∆

2
A


, (4.262)

where nf
ξ denotes the free-fermion distribution. Alternatively, we may write

∆f = 2T


p


log(1− nf

E))− (E − ξ)

+

1

g


∆2

B
2
3
∆2

A


− 2T



p

log(1− nf
ξ ).

(4.263)
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The rst two terms give the energy of the superuid ground state, while the last
term is the negative of the energy of the free system.

The explicit calculation can be conveniently done by studying ∆f of (4.263) at
xed T as a function of g. At g = 0, ∆AB = 0 and ∆f = 0. As g is increased to
its physical value, the gap increases to ∆AB. Now, since ∆f is extremal in changes
of ∆ at xed g and T , all g-dependence comes from the variation of the factor 1/g,
i.e.,

∂∆f

∂g


T

=


∆2

B
2
3
∆2

A


. (4.264)

We can therefore calculate ∆f by simply performing the integral

∆f = −
 ∞

1/g
d (1/g′)


∆

2
B (1/g′)

2
3
∆

2
A (1/g′)


. (4.265)

The 1/g-dependence of the gap is obtained directly from (4.227), (4.246) as

1

gN (0)
− log


2
eγ

π

ωc

T


=

3

4

 1

−1
dz(1− z2)A(δ2, z), (4.266)

with the angle-dependent function

A(δ2, z) ≡ 1

δ

∞

n=0


1
x2

n +


1

1− z2


− 1/xn


 . (4.267)

Dierentiating this with respect to δ2 at xed T yields

∂

∂δ2


1

gN (0)


T

= − 1

2δ

3

4

 1

−1
dz(1− z2)A(δ2, z)

= − 1

2δ2
φB,A(δ2) = − 1

2δ2


ρBs /ρ
ρs/ρ


, (4.268)

where ρBs and ρAS are the superuid densities of B- and A-phases, respectively. Using
these we can change variables of integration in (4.265) from g′ to δ using (4.266),
and write

∆f = N (0)π2T 2 1

2

 δ2

0
dδ′

2


φB(δ′2)

2
3
φA(δ′2)


. (4.269)

Inserting φB from the upper part of equation (4.323), we can perform the integral
with the result:

1

δ2

 δ2

0
dδ′

2
φB(δ′

2
) =

4

8

∞

n=0


− 1

x2
n + 1

+ 2


x2
n + 1− xn


 . (4.270)
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We shall denote this angular average by φ̃B. By analogy with the relation φB
s = ρBs /ρ

[see (4.268)], we shall also write φ̃B ≡ ρ̃Bs /ρ, and state the result (4.270) in the form

ρ̃Bs
ρ

≡ 4

δ

∞

n=0


− 1

x2
n + 1

+ 2


x2
n + 1− xn


 . (4.271)

When plotted against temperature, this function starts out like 1−T/Tc for T ∼ Tc,
and is equal to unity at T = 0.

Similarly, we may integrate the lower part of Eq. (4.269). The integral

1

δ2

 δ

0
dδ′

2
φA(δ′

2
)

produces a further gap function, that will be encountered later in the discussion of
the superuid density as the ratio ρ

s/ρ in Eq. (4.335).

The condensation energy can therefore be written in the simple form

∆f = −N (0)π2T 2


1
2
ρ̃Bs /ρ
1
3
ρ
s/ρ


δ2. (4.272)

For T → Tc, both ρ̃Bs and ρ
s behave like (1− T/Tc)

2, so that

∆e ≈ −Nπ2T 21

2


1− T

Tc

2 8

7ζ(3)


1
5
6


, (4.273)

in agreement with our previous calculation (4.108) in the Ginzburg-Landau regime
for T ∼ Tc.

For T → 0, both ρ̃B and ρ
s tend to ρ, with the approach to that limit like

δ2π2T 2 →


3.111
4.118


T 2
c . (4.274)

Thus the condensation energies become at zero temperature

∆f |T=0 = −


0.236
0.209


cn(Tc). (4.275)

The right-hand part of the equation has been normalized with respect to the specic
heat of the liquid just above the critical temperature

cn(Tc) = −2

3
π2N (0)Tc. (4.276)

The full temperature dependence of ∆e is shown in Fig. 4.18.
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Figure 4.18 Condensation energies of A- and B-phases as functions of the temperature.

Entropy

Let us now calculate the entropy. For this it is useful to note that at xed T and
1/g the energy is extremal with respect to small changes in ∆. It is this condition
which previously lead to the gap equation (4.226). Thus when forming

s = − ∂f

∂T
(4.277)

we do not have to take into account the fact that ∆
2 varies with temperature.

Therefore we nd

∆s = −∂∆f

∂T
= −2



p


log(1− nf

E)−
T

nf
E(1− nf

E)

∂nf
E

∂T


. (4.278)

But the derivative is
∂nf

E

∂T
= nf

E(1− nf
E)

E

T 2
, (4.279)

so that the entropy becomes

∆s = −2


p


log


1− nf

p


− nf

E

Ep

T


, (4.280)

which can be rewritten in the more familiar form

∆s = −2


p


(1− nf

E) log(1− nf
E) + nf

E log nf
E


, (4.281)
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after having inserted the identity

E

T
= log

1− nf
E

nf
E

. (4.282)

For an explicit calculation, we dierentiate (4.269) with respect to the temperature
and nd

∆s = −∂∆f

∂T
= N (0)π2T

 δ2

0
dδ′

2


φB

2
3
φA


+N (0)π2T 21

2


φB

2
3
φA


∂δ2

∂T
.

(4.283)

From Eq. (4.246) we know log(T/Tc) as a function of δ2. Dierentiating it leads to

1

T

dT

dδ2
= − 1

2δ2
3

4

 1

−1
dz(1− z2)φ(δ, z) = − 1

2δ2
φB,A, (4.284)

so that the condensation entropy density is simply

∆sB,A = −N (0)π2T


1
2
3

 δ2

0
dδ′2


1− φB,A(δ′2)


. (4.285)

If we normalize this again with the help of cn(Tc), it can be written as

∆sB,A/cn(Tc) = −


2
3
(1− ρ̃B/ρ)
(1− ρ

s/ρ)


δ2. (4.286)

For T → Tc this behaves like

∆sA,B/cn(Tc) ≈
T≈Tc

−3

2


1
5
6


1− T

Tc


8

7ζ(3)
. (4.287)

In order to calculate the T → 0 limit we consider the expansion (4.269). For T → 0,
δ → ∞ so that the spacings of xn = (2n+ 1)/δ become innitely narrow and the
sum converges towards an integral according to the rule13

∞

n=0

f(xn) =
δ

2


dxf(x)− 1

2! · 3δ2
(f ′(∞)− f ′(0))

+


1

2! · 3

2

− 1

4! · 5


1

δ4
(f ′′′(∞)− f ′′′(0)) + . . . . (4.288)

For ρ̃B this implies

ρ̃B

ρ
(δ2)


δ2→0

= 2
 ∞

0
dx


− 1√

x2 + 1
+ 2

√
x2 + 1− x


− 2

3δ2
+ . . .

= 1− 2

3δ2
+ . . . . (4.289)

13Note that this Euler-MacLaurin expansion misses exponential approaches e−δ.
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Figure 4.19 The temperature behavior of the condensation entropies in B- and A-phases.

Similarly, we can treat the series for ρ
s/ρ in (4.335):

ρ
s

ρ
(δ2)


δ2→0

=
3

2

 ∞

0
dx

−3x +


3x2 + 1) arctan

1

x


− 1

δ2
+ . . .

= 1− 1

δ2
+O


1

δ4


. (4.290)

Note that for T → 0, the condensation entropy densities are in both phases

∆sB,A = −2

3
N (0)π2T. (4.291)

This is cancelled exactly with the normal entropy

sn =
2

3
N (0)π2T. (4.292)

Hence the total entropy vanishes at T = 0, as it should. The full T behavior is
plotted in Fig. 4.19.

It is worth pointing out that the procedure of going from sums to integrals works
only if the integral over the function f(x) has no singularity at x = 0. In the T → 0
limit of (4.246), for example, the following more careful limiting procedure becomes
necessary

N

n=0

1

xn

= δ
N

n=1

1

2n+ 1
= δ




2(N+1)

n=1

1

n
− 1

2

N+1

n=1

1

n



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≈
N large

δ


log 2(N + 1 + γ − 1

2
[log(N + 1) + γ]



=
δ

2

 xN

1/δ

dx

x
+ log(2eγ)


. (4.293)

Thus one would obtain

log
T

Tc

−−−→
T→0

3

4

 1

−1
dz(1− z2)




 ∞

0
dx

1x2 +


1

1− z2

 −
 ∞

1/δ

1

x




=
3

4

 1

−1
dz(1− z2)


−γ − log δ


1√

1− z2



= − log (δeγ) +


0

log

e5/6/2



, (4.294)

in agreement with (4.239), (4.240). The above treatment of the logarithmic di-
vergence is equivalent to applying the mnemonic rule that the

∞
n=0 1/xn can be

replaced by the integral

δ

2

 x

0

dx′

x′ → δ

2
(log x− log 0). (4.295)

At the lower limit one has to substitute

log 0 → − log (2δeγ) = − log
2∆eγ/π

T
= − log

2∆

∆BCS

Tc

T
, (4.296)

where ∆BCS denotes the isotropic gap of the B-phase at zero temperature

∆BCS = πe−γTc ∼ 1.764 Tc . (4.297)

The mnemonic rule can be extracted directly from the relation

 ωc

−ωc

dξ

2ξ
tan

ξ

2T
=

2

δ

∞

n=0

1

xn

= log

2ωc

T

eγ

π


. (4.298)

Specic Heat

By a further dierentiation with respect to the temperature we immediately obtain
the specic heat

∆cB,A = T
∂∆sB,A

∂T
= ∆sB,A −N (0)π2T


1
2
3


1− φB,A(δ2)


T
∂δ2

∂T

= ∆sB,A + 2N (0)π2T
1− φB,A(δ2)

φB,A(δ2)


1
2
3


δ2. (4.299)
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1

T/Tc

cB(T )/cn(Tc)

cA(T )/cn(Tc)

Figure 4.20 Specic heat of A- and B-phases as a function of temperature. The dashed

line is the contribution of the normal Fermi liquid.

This can be rewritten in terms of the superuid density function as

∆cB/cn(Tc) =
T

Tc


−3

2


1− ρ̃Bs /ρ


+ 3(ρ/ρBs − 1)


δ2, (4.300)

∆cA/cn(Tc) =
T

Tc

[− (1− ρ
s/ρ) + 2(ρ/ρs − 1)] δ2. (4.301)

At T = Tc there are nite discontinuities

∆cB/cn(Tc) =
3

2

8

7ζ(3)
= 1.43, (4.302)

∆cA/cn(Tc) =
10

7ζ(3)
= 1.19, (4.303)

which can also be derived directly from Ginzburg-Landau expressions in Eqs. (3.20).
For the full specic heat one has to add the normal contribution of the normal Fermi
liquid to both equations (4.296), which is simply equal to T/Tc.

For T → 0 we use the results (4.289), (4.290) to nd

∆cB,A/cn(Tc) = −T/Tc. (4.304)

This is exactly the opposite of the specic heat of the normal liquid so that the
curves for the total cA,B/cn(Tc) start out very at at the origin [exponentially at
for the B-phase due to the nonzero gap (i.e., a nite activation energy) and power-
like for the A-phase since the gap vanishes along l]. The full temperature behavior
of the specic heat is shown in Fig. 4.20.

Certainly, all these results need strong-coupling corrections which are presently
only known in the Ginzburg-Landau regime T → Tc.
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4.9.3 Bending Energies

Consider now the free-eld part A2[A
′
ai] of the collective action in Eq. (4.225). In

momentum space, with the imaginary zeroth component k0 = −iν, it can be written
in the form

A2 =
1

2



k


A′

ai(k)
∗Lij

11(k)A
′
aj(k) + A′

ai(−k)Lij
22(k)A

′
aj(−k)∗

+ A′
ai(k)

∗Lij,ab
12 (k)A′

bj(−k)∗ + A′
ai(−k)Lij,ab

21 (k)A′
bi(k)


, (4.305)

where

Lij
11(k) = Lij

22(k) =


d3p

(2π)3
p̃ip̃jT



ωn

ω2
n − ν2/4 + ξ+ξ−

ωn − ν
2

2
+ E2

+

 
ωn +

ν
2

2
+ E2

−

 − δij

g
,

(4.306)

and

Lij,ab
12 (k) =


Lij,ab
21 (k)

∗
(4.307)

= −


d3p

(2π)3
p̃ip̃j p̃i′ p̃j′A

0
a′i′A

0∗
b′j ta′b′,ab T



ωn

1
ωn − ν

2

2
+ E2

+

 
ωn +

ν
2

2
+ E2

−

 ,

with the tensor

ta′b′ab ≡
1

2
tr(σa′σb′σaσb) = δa′aδb′b + δa′bδb′a − δa′b′δab, (4.308)

and the energies (containing the abbreviation v ≡ p/m):


ξ+
ξ−


≡ (p± k/2)2

2m
+ . . . =

p2

2m
±

1

2
v · k +

k2

8m
≈ ξ ±

1

2
v · k+ . . . ,


E+

E−


=




ξ2+
ξ2−


+∆2 ≈ E ±

1

2
v · k

ξ

E
+

1

8
(v · k)2

∆2

Ē3
+ . . . . (4.309)

Here ξ and E =
√
ξ2 +∆2 denote the energy values of ξ+, ξ− and E+, E−. As usual,

the integral over d3p can be split into size and directional integral, and we can
approximate v ≈ vF p̂, as in (4.76). Compare also with (3.221) and (3.222).

We now rearrange the terms in the sum in such a way that we obtain combina-
tions of single sums of the type

T


ωn

1

iωn − E
, (4.310)

which lead to the Fermi distribution function [recall (3.199)]

T


ωn

1

iωn − E
= nf

E ≡ 1

eE/T + 1
, (4.311)



4.9 Hydrodynamic Properties at All Temperatures T ≤ Tc 209

with the property
nf
E = 1− nf

−E . (4.312)

If we introduce the notation ω± ≡ ω± ν/2, the decomposition of the dierent terms
Lijab
12 (k) can be done as in Eq. (3.201). After that we use formula (4.311), and the

fact that the frequency shifts ν in ω± do not appear at the end, since they amount
to a mere translation in the innite sum. Collecting the dierent terms we nd

Lij,ab
12 (k) =


Lij,ab
21 (k)

∗
= −


d3p

(2π)3
p̃ip̃j p̃i′ p̃j′A

0
a′i′A

0∗
b′j′

ta′b′,ab
2E−E+

(4.313)

×


E+ + E−

(E+ + E−)2 + ν2


1− nf

E+
− nf

E−


+

E+ − E−
(E+ − E−)2 + ν2


nf
E+

− nf
E−


.

In the rst expression we decompose

ω2
n − ν2/4 + ξ+ξ−

[ω2
+ + E2

+] [ω
2
− + E2

−]
=

1

2


1

ω2
+ + E2

+

+
1

ω2
− + E2

−

−(E2
+ + E2

− + ν2 − 2ξ+ξ−)
1

(ω2
+ + E2

+) (ω
2
− + E2

−)


. (4.314)

For summing up the rst two terms we use the formula

T


ω

1

ω2 + E2
=

1

2E
(nf

−E − nf
E) =

1

2E
tanh

E

2T
. (4.315)

In the last term of (4.314), the right-hand factor is treated as before in (3.201).
Replacing its factor E2

− + E2
+ + ν2 once by (E− + E+)

2 + ν2 − 2E−E+ and once by
(E− − E+)

2 + ν2 + 2E−E+, and proceeding as in the derivation of Eq. (3.205), we
obtain

Lij
11(k) = Lij

22(k) =


d3p

(2π)3
p̃ip̃i

×


E+E− + ξ+ξ−

2E+E−

E+ + E−
(E+ + E−)2 + ν2


1− nf

E+
− nf

E−


(4.316)

−E+E− − ξ+ξ−
2E+E−

E+ − E−
(E+ − E−)2 + ν2


nf
E+

− nf
E−


− δij

g
.

For the remainder of this chapter we shall specialize on the static case with k0 = 0.
We consider only the long-wavelength limit of small k. At k = 0 we nd from
(4.316) and (4.313)

Lij
11(0) = N (0)


dp̂

4π
p̂ip̂j


dξ


E2 + ξ2

4E3


tan

E

2T
+ 2nf

E
′

− 1

g


, (4.317)

and

Lij,ab
12 (0) = −1

2
N (0)


dp̂

4π
p̂ip̂j p̂

′
ip̂

′
j

φ(∆)

∆2
A0

a′i′A
0∗
b′j′ta′b′ab, (4.318)
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where we have introduced the function

φ(∆) = ∆
2
 ∞

0
dξ

1

E3
tan

E

2T
+ 2

 ∞

0
dξ

1

E2
nf
E
′

. (4.319)

The rst integral in this equation can be done by parts, after which it turns into the
expression (3.214) for the Yoshida function of the superconductor:

φ(∆) = 1− 1

2T

 ∞

0
dξ

1

cosh2(E/2T )
. (4.320)

In the A-phase, the gap depends on the direction p̂ of the momentum, so that the
gap ∆, and with it the function φ(∆), depend on z = p̂ · ẑ.

We now observe that, due to the gap equation (4.235), Lij
11(k) can also be ex-

pressed in terms of the Yoshida function (3.214) of the superconductor as

Lij
11(0) = −1

2
N (0)


dp̂

4π
p̂ip̂jφ(∆). (4.321)

For T ≈ 0, this function approaches zero exponentially. The full temperature be-
havior is best calculated by using the Matsubara sum expression for φ(∆) that can
be read o from (4.307):

φ(∆) = 2T


ωn


dξ

∆2

(ω2
n + E2)2

= −2∆2T


ωn

∂

∂ω2
n


dξ

1

ω2
n + ξ2 +∆2

= −2∆2T


ωn

∂

∂ω2
n

π
ω2
n +∆2

= 2Tπ


ωn>0

1

ω2
n +∆2

3 . (4.322)

Using again the variables δ and xn from (4.244) and (4.245), and the directional
parameter z, we may write

φ(∆) =
2

δ


1

1− z2

 ∞

n=0

1
x2

n +


1

1− z2

3 in

B

A


−phase. (4.323)

For T ≈ Tc where δ ≈ 0, the Yoshida function has the limiting behaviors

φ(∆) ≈ 2δ2


1
1− z2


7ζ(3)

8
in

B

A


−phase. (4.324)

Let us consider the equations (4.317), (4.321) in more detail and rewrite Lij
11(0)

as follows

Lij
11(0) = − 1

4m2v2F
ρij , (4.325)

where

ρij ≡ 3ρ


dp̂

4π
p̂ip̂jφ(∆). (4.326)
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In the B-phase, the angular integral in (4.321) is trivial and yields

ρBij =
2

3
v2Fm

2N (0)φ(∆)δij = ρφ(∆)δij ≡ ρBs δij (4.327)

where φB(∆) is the upper of the functions (4.323) (the isotropic Yoshida function).
The invariant ρBs is called the superuid density of the B-phase. For T ≈ Tc, we
use the expression (4.322) to see that

ρBs ≈ 2ρ

1− T

Tc


. (4.328)

For T = 0, on the other hand, we better use (4.319) to deduce that φ = 1, which
implies that in this limit

ρBs = ρ, T = 0. (4.329)

The full T -dependence of the reduced superuid density ρ̃B ≡ ρB/ρ is plotted in
Fig. 4.21.

1

1

T/Tc

ρ

s

ρs

ρBs

Figure 4.21 Temperature behavior of the reduced superuid densities in the B- and in

the A-phase of superuid 4He.

The gure contains also the corresponding quantities of the A-phase. They are
found from the integral

ρAij ≡ 3ρ
 dp̂

4π
p̂ip̂jφ(∆), (4.330)

after expanding it into covariants as

ρAij = ρs (δij − lilj) + ρ
slilj , (4.331)
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whose coecients are the superuid densities of the A-phase

ρs

3ρ
≡


dp̂

4π
p2xφ(∆) =

1

2

 1

−1

dz

2
(1− z2)φ(∆) ≡ 1

2
φA(∆),

ρ
s

3ρ
≡


dp̂

4π
p2zφ(∆) =

1

2

 1

−1

dz

2
(1− z2)φ(∆). (4.332)

The second function is the same ratio that occurred in the lower expression (4.272)
for the free energy.

The spatially averaged φ function in the rst line will appear repeatedly in the
further description of the A-phase and has therefore been given an extra name
φA(∆). Using the integrals

 1

−1
dz

1

x2
n + 1− z2

3 =
2

xn(x2
n + 1)

=
2

x3
n

− 2

x5
n

+ . . . ,

 1

−1
dz

z2

x2
n + 1− z2

3 = 2

1

xn

− arctan
1

xn


=

2

3

1

x3
n

− 2

5

1

x5
n

+ . . . , (4.333)

 1

−1
dz

1

x2
n + 1− z2

3 = xn+ 2
x2
n + 1

xn

−3(1 + x2
n) arctan

1

xn

=
2

5

1

x3
n

− 6

35

1

x5
n

+ . . . ,

these densities are seen to have the expansions

ρs

3ρ
=

1

2δ

∞

n=0


3xn −

2xn

x2
n + 1

+

1− 3x2

n


arctan

1

xn



=
8

15

1

δ

 ∞

n=0

1

x3
n

− 9

7

∞

n=0

1

x5
n

+ . . .


, (4.334)

ρ
s

3ρ
=

1

δ

∞

n=0


−3xn − (3x2

n + 1) arctan
1

xn



=
4

15

1

δ

 ∞

n=0

1

x3
n

− 6

7

∞

n=0

1

x5
n

+ . . .


. (4.335)

For T ≈ Tc :

δ ≈ 10

7ζ(3)


1− T

Tc


→ 0. (4.336)

The rst two sums in each expression can be done with the results:

ρs ≈
8

5
c3δ

2

1− 9

7

c5
c3
δ2 + . . .


≈ 2


1− T

Tc


+ . . . , (4.337)

ρs
 ≈ 4

5
c3δ

2

1− 6

7

c5
c3
δ2 + . . .


≈


1− T

Tc


+ . . . , (4.338)

where the coecients

ck =
2k − 1

2k
ζ(k) (4.339)
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are the results of the sums
∞

n=0(2n+ 1)−k (c3 ≈ 1.0518, c5 ≈ 1.0045). The higher
terms are omitted on the right-hand sides, although they will be of use later.

For T = 0, we have again φ(∆) = 1, and from Eqs. (4.332) and (4.333) we nd
that

ρs = ρ
s = ρ, T = 0.

The full temperature behavior of the superuid densities was shown above in
Fig. 4.21.

Consider now the function Lij,ab
12 (0). Here it is useful to introduce a tensor

ρijkl ≡
3

2
ρ


dp̂

4π
p̂ip̂j p̂kp̂l φ(∆)/∆2, (4.340)

in terms of which Lij,ab
12 (0) can be written as

Lijab
12 (0) = − 1

2mv2F
ρijklA

0
a′kA

0∗
b′l ta′b′ab, (4.341)

with the tensor ta′b′ab of Eq. (4.308). In the B-phase, where the gap is isotropic, the
angular integration is trivial and we nd from (4.340):

ρijkl =
1

10
(δijδkl + δilδkj + δikδjl) ρ

B. (4.342)

In the A-phase, this tensor can be expressed in terms of the three covariants

Âijkl = δijδkl + δilδkj + δikδjl,

B̂ijkl = δij lkll + δikljll + δilljlk + δjklill + δjllilk + δkllilj ,

Ĉijkl = liljlkll, (4.343)

as follows:

ρijkl = AÂijkl + BB̂ijkl + CĈijkl. (4.344)

Contracting this with δijδkl and δij lkll, we nd that the coecients A and B are
given by the following combinations of ρs and ρ

s:

A =
1

8
ρs, A + B =

1

4
ρ
s. (4.345)

The third covariant leads to another function of the gap parameter γ(∆) dened by:

3A+ 6B + C =
3

8
γ(∆) (4.346)

where γ(∆) is calculated from the angular integral

γ(∆) ≡ 4ρ


dp̂

4π
p̂4zφ(∆)

∆2
A

∆2
. (4.347)
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Inserting (4.323) and performing the angular integrals, we nd the series represen-
tation

γ

ρ
=

4

δ

∞

n=0


3xn +

2

xn

− 3(x2
n + 1) arctan

1

xn


. (4.348)

By comparing this series with (4.248) and (4.334), we see that γ(∆) is not a new
gap function. In fact, by adding and subtracting the series for 4 log(T/Tc), we nd

γ

ρ
≡ −4 log

T

Tc

− 2
ρ
s

ρ
. (4.349)

For T ≈ Tc, γ starts out like

γ ≈ 2

1− T

Tc


, (4.350)

just as ρs/ρ. As T approaches zero, however, there is a logarithmic divergence which
is due to the zeros in the gap along the l direction [see Eq. (4.347)].

Let us now turn to the bending energies. For this, we expand L11(k) and L12(k)
to lowest order in the momentum k and nd

fgrad =
1

4m2


ρ11ijkl∂kA

∗
ai∂lAaj/∆

2
A,B + Re ρ12ijkl,ab∂kA

∗
ai∂lA

∗
bj


in

A

B


−phase. (4.351)

Here we have dropped in the primes on the elds, since in the presence of derivatives,
the additional constant A0

ai does not matter. The tensor coecients are found by
performing similar calculations as in Eqs. (3.194) and (3.195) for the superconductor,
except that we must now include directional integrations in momentum space:

ρ11ijkl =
3ρ

2


dp̂

4π
p̂ip̂j p̂kp̂l


φ(∆)− 1

2
φ̄(∆)


∆2

A,B

∆2
, (4.352)

ρ12ijkl,ab = −3ρ

2


dp̂

4π
p̂ip̂j p̂kp̂lp̂mp̂n

1

2
φ̄(∆)

∆2
A,B

∆4
A0

a′mA
0
b′nta′b′ab, (4.353)

where φ(∆) is the same as in (4.320) and (4.322), whereas φ̄(∆) denotes another
function of the gap:

φ̄(∆) ≡ 2πT∆4


ωn>0

1
√
ω2 +∆2

5 =
2

δ
(1− z2)2

∞

n=0

1
x2

n +


1− z2

1

5 . (4.354)

In the superconductor, this function does not appear in the hydrodynamic limit. We
therefore expect a similar cancellation in the B-phase, where the gap is isotropic. In
fact, by assuming that

Aai = ∆B eiϕRai(θ), (4.355)
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we nd that the second term in (4.351) becomes

Re ρ12ijklab∂be
−iϕRai(θ)∂le

iϕRbj(ϕ)

= −3ρ

2


dp̂

4π
p̂ip̂j p̂kp̂l

1

2
φ̄(∆)

∆2
B

∆2
p̂mp̂nRa′mRb′nta′b′ab (−∂kϕ∂lϕRaiRbj + ∂kRai∂lRbj)

= −3ρ

2


dp̂

4π
p̂kp̂l

1

2
φ̄(∆)

∆2
B

∆2
(−∂kϕ∂lϕ− p̂kp̂l∂kRai∂lRaj) . (4.356)

And this coincides exactly with the φ̄ content in ρ11ijkl∂ke
−iϕRai∂le

iϕRaj .
Note that the two terms change sign for dierent reasons: ∂kϕ∂lϕ does, because of

the equality of the phases eiϕ, and ∂kRai∂lRbj does, because of symmetry properties
of the tensor ta′b′ab. Thus, for the B-phase, the result is simply

fgrad =
1

4m2
ρijkl∂kA

∗
ai∂lAaj/∆

2
B, (4.357)

with ρijkl being the tensor discussed before in (4.340). This result is exactly the same
as for a superconductor except for two additional direction vectors p̂ip̂j inserted into
the spatial average which are contracted with the vector indices of the elds A∗

aiAaj .
Inserting the decomposition (4.342) we nd the energy (see Appendix 4B for details)

fgrad =
1

4m2

ρBs
2


(∇ϕ)2 +

4

5
(∂iθ̃j)

2 − 1

5
(∇θ̃)2 − 1

5
∂iθ̃j∂j θ̃i


. (4.358)

For T ≈ Tc, we insert (4.328) and reobtain the previous Ginzburg-Landau result
(4.159), if we use the fact that close to Tc:

K23 ≈
T≈Tc

2K1. (4.359)

The superuid density ρBs was shown before in Fig. 4.21.
In the A-phase, matters are considerably more complicated. This is due to the

fact that the gap size varies which prevents the φ̄(∆) function to cancel. Consider
the eld dependent parts of the ρ12 contribution:

ReAa′m
0Ab′n

0ta′b′ab∂kA
∗
ai∂lA

∗
bj/∆

2
A = (4.360)

∆A
2Re da′db′φmφnta′b′ab


∂kda∂ldbφ

†
iφ

†
j + dadb∂bφbφ

†
i∂lφ

†
j


.

Contracting now the indices a′ and b′, we see that the gradients of d appear
with opposite signs in the form

−Re∆A
2∂kda∂edbφmφnφ

†
iφ

†
j (4.361)

whereas the derivatives ∂φ keep their sign

∆
2
AReφm∂kφ

∗
i∂lφ

†
j. (4.362)
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Using Formula (4A.5) of Appendix 4A, the expression (4.360) can be cast in the
form

∆
2
A {(∂klm)li(∂lln)lj (4.363)

− [(ǫmprlr∂klpli − 2mvsk (δmi − lmli)) × (ǫnqsls∂qlqlj − 2mvsl (δnj − lnlj))]} .

The calculation is simplied considerably by observing that an expression

∆
2
AReΦ

∗
m∂kΦiΦn∂eΦ

†
j , (4.364)

instead of (4.362), would give exactly the same result as that in (4.363), except with
a plus sign in front of the bracket instead of a minus sign. Thus (4.362) can be
written as

2∆2
A (∂klm) li (∂eln) lj −∆

2
AReΦ

∗
m∂kΦiΦn∂eΦ

†
j . (4.365)

Now, the second term together with (4.353) corresponds to an energy

∆f (2) = − 1

4m2

3ρ

2


dp̂

4π
p̂ip̂j p̂kp̂l

1

2
φ̄(∆)

∆2
A

∆2


∆2

A

∆2
p̂mA

∗
b p̂nAbn


∂kA

∗
ai∂lAaj

1

∆2
A

,(4.366)

which again cancels the φ̄-part in the ρ11-term. Hence, this part of the energy f has
again the form (4.357), thus simply doubling it.

Let us now study the contribution of the rst term in (4.365) to the energy:

∆f = − 1

4m2

3ρ

2

 dp̂

4π
p̂lp̂j p̂kp̂lp̂nφ̄(∆)

∆4
A

∆4
(∂klm) li (∂lln) lj . (4.367)

Since p̂ · l = z, we can introduce the tensor

ρ̄ijkl =
3ρ

2


dp̂

4π
p̂ip̂j p̂kp̂l

z2

1− z2
φ̄(∆)

∆2
A

∆2
, (4.368)

so that the additional energy (4.367) can be written as

∆f = − 1

4m2
ρ̄ijkl∂kli∂llj. (4.369)

Decomposing ρ̄ijkl in the same way as ρijkl in (4.346), we nd the coecients

Ā =
1

8
ρ̄s,

Ā+ B̄ =
1

4
ρ̄
s, (4.370)

where ρ̄s, ρ̄

s are auxiliary quantities dened as

ρ̄s ≡ 3

4
ρ

 1

−1
dz(1− z2)φ̄(∆)

∆2
A

∆2
,

ρ̄
s ≡ 3

2
ρ

 1

−1
dzz4φ̄(∆)

∆2
A

∆2
. (4.371)
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Inserting the explicit form (4.354) for φ̄(∆), we can partially integrate Eq. (4.371)
and nd

ρ̄s =
3

4
ρ

 1

−1
dz(1 − z2)2z2

2

δ

∞

n=0

1

x2
n + 1− z2

5

= −3

4
ρ

 1

−1
dz

1

3
− 2z2 +

5

3
z4


φ(∆)

(1− z2)
, (4.372)

ρ̄
s =

3

4
ρ

 1

−1
dz(z4)2(1− z2)

2

δ

∞

n=0

1

x2
n + 1− z2

5

= −3

4
ρ

 1

−1
dz

z2 +

5

3
z4


φ(∆)

(1− z2)
. (4.373)

The auxiliary quantities are therefore expressible in terms of the superuid densities
as follows:

ρ̄s =
2

3
ρ
s −

1

3
ρs,

ρ̄
s = −ρ

s +
1

2
γ. (4.374)

If we now perform the contractions of the covariants in (4.357) and (4.369), we nd
the energy in the form given in (4.125), but now with coecients (see Appendix 4B
for details):

2mc = 1
2ρ


s, 2c0m = ρ

s,

4m2Kd
1 = ρs, 4m2Kd

2 = ρ0 = ρs − ρ
s, (4.375)

4m2Ks = ρs/4, 4m2Kt = (ρs + 4ρ
s)/12, 4m2Kb = (ρ

s + γ)/2.

Their temperature dependence is known for all T down to T = 0 (see Fig. 4.22).
The twist, bend, and splay bending constants are displayed in Fig. 4.22. There
is no need to plot Kd

1 , K
d
2 since Kd

1 is equal to ρs/4m
2, which was plotted in Fig.

4.21. Similarly, the coecients c, c0 need no extra plot, since they are proportional
to ρ

s of Fig. 4.21. To see what Kd
2 looks like we introduce, by analogy with ρ

s, the
longitudinal quantity

Kd
 ≡ K1 −K2, (4.376)

which is equal to ρ
s/4m

2.

If d is locked to l, the bending constants Kd
1 , K

d
2 change Kt, Kb, Ks into

K l
s = Ks + ρs = 5ρs/4,

K l
t = Kt + ρs = (13ρs + 4ρ

s)/12,

Kb = Kb +Kd
 = (3ρ

s + γ)/2. (4.377)
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Figure 4.22 Superuid stiness functions Kt,Kb,Ks of the A-phase, in units of ρ/4m2,

as functions of the temperature, once without and once with Fermi liquid corrections,

indicated by the superscript FL.

4.9.4 Fermi-Liquid Corrections

In order to compare the above results with experiment at all temperatures below
Tc, the pair interaction turns out not to be sucient. The more T drops below
Tc, the more other interactions become important. Here we shall discuss the most
relevant of these which is due to a current-current coupling between particle and
spin currents.

In Landau’s theory of the normal Fermi liquid, these interactions are
parametrized with coupling constants F1, F S

1 as follows:

Acurr−curr = −1

2


d4x


F1

2N (0)
ψ∗i∇̃iψψ

∗∇̃iψ +
F S
1

2N (0)
ψ∗i∇̃iσaψψ

∗i∇̃iσ
aψ


.

(4.378)

Using the particle and spin currents of Eq. (4.100) and the relation 2N (0)p2F = 3ρ,
this can be written compactly as

Acurr−curr = −1

2


d4x

m2

ρ


1

3
F1j

2
i +

1

3
F S
1 j

2
ai


. (4.379)

As in the case of the pair interaction, these fourth order expressions in the fun-
damental elds ψ∗,ψ can be eliminated in favor of quadratic ones by introducing
collective elds ϕi, ϕai and by adding, to the action, the complete squares

1

2


d4x

m2

ρ


1
3
F1


ji +

ρ

m2

1

F1

ϕi

2

+
1

3
F S
1


jai +

ρ

m2

1

F S
1

ϕai

2

 , (4.380)
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by analogy with (4.60). Then the current-current interaction becomes

Acurr−curr =


d4x


jiϕi + jaiϕai +

1

2

ρ

m2


1

1
3
F1

ϕ2
i +

1
1
3
F S
1

ϕ2
ai


. (4.381)

After integrating out the Fermi elds, the rst term in (4.69) is changed to −i/2
times Tr log of the matrix


i∂t − ξ(−i∇) + i
2m

∇̃iϕi +
i

2m
∇̃iσaϕai i∇̃iσaAai

i∇̃iσaA
∗
ai i∂t + ξ(−i∇) + i

2m
∇̃iϕi +

i
2m

∇̃iσaϕai


, (4.382)

depending on ϕi,ϕai.
In the hydrodynamic limit, where only quadratic eld dependencies are consid-

ered, there is a simple method to nd this dependence without going again through
loop calculations. For this we observe that a term in the action


d4x (jiϕi + jaiϕai) (4.383)

is equivalent to adding velocity source terms to the energy density, thereby forming
quantity that looks like an enthalpy density, except that the roles of pressure and
volume are played by momenta and velocities, i.e.,

f → fent = f − piVi − paiVai . (4.384)

Here pi ≡ mji, pai ≡ mjai are the momentum densities of particle and spin ow.
We call e → fent the ow enthalpy . The minimum of this quantity determines
the equilibrium properties of the system at externally enforced velocities Vi, Vai of
particles and spins:

Vi ≡ ϕi/m, Vai ≡ ϕai/m. (4.385)

Consider now the energy (4.125) in a planar texture which has all l-vectors
parallel. If we want to take into account the eect of the current-current interactions
we must extend this expression. Recall that the earlier calculations were all done in
a frame in which the normal part of the liquid was at rest. When studying nonzero
velocities of the system, as we now do, we must add to the energy density the kinetic
contribution of the normal particle and spin ows

ρn

2


v⊥

2

ni
+ v⊥

2

nai


+

ρ
n

2


v
ni

2 + v
nai

2

, (4.386)

where v⊥ and v are dened by

v⊥ = v − v,

v = l (l · v), (4.387)

with similar denitions for the spin velocities. The corresponding currents are

p = mj = ρsvs + ρnvn, (4.388)

pa = mja = ρsvsa + ρnvna. (4.389)
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The additional terms (4.386) are necessary to guarantee the correct Galilei trans-
formation properties of the energy density f .

We now study the equilibrium properties of the liquid. First we minimize the ow
enthalpy (4.389). If topology does not enforce a nonzero superow, both velocities
vn and vs are equal to a single velocity v. Thus, in equilibrium, we may rewrite the
ow enthalpy density also as

fent =
ρ

2


v2i + v2ai


− piVi − paiVai. (4.390)

This expression is minimal at

vi = Vi, vai = Vai, (4.391)

where it has the equilibrium value

fent

eq

= −ρ

2


V 2
i + V 2

ai


. (4.392)

Let us compare this with the calculation of the ow enthalpy from the trace log
term of the collective action. The enthalpy density is

fent=− log


i∂t − ξ(p) + piVi + piσaVai p̃iσaA

′
ai

p̃iσaA
′
ai
∗ i∂t + ξ(p)− piVi − piσaVai


. (4.393)

The quadratic term in the uctuating eld A′
ai around the extremum has been

calculated before. It has led to the hydrodynamic-limit result

f =
ρs

2


vs

⊥2

i + vs
⊥2

ai


+

ρ
s

2


v
si

2 + v
sai

2

. (4.394)

In addition, there are now linear terms

∆1f = −ρs

vsiVi + v⊥s aiVai


− ρ

s (v

siVi + v

saiVai) . (4.395)

We would like to nd quadratic terms in Vi, Vai. They certainly have the form

∆2f = −a

2


V ⊥
i

2 + V ⊥
ai

2

− a

2


V 
i
2 + V 

ai
2

. (4.396)

In order to determine a and a, we simply minimize the enthalpy in v⊥,
si and v⊥,

sai ,
which become equal at V ⊥,

i and V ⊥,
ai , respectively. At these velocities,

fent

eq

= −ρs + a

2


V ⊥
i

2 + V ⊥
ai

2

− ρ

s + a

2


V 
i
2 + V 

ai
2

. (4.397)

Comparing this with (4.390), we see that

a = ρn = ρ− ρs,

a = ρ
n = ρ− ρ

s, (4.398)
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implying that the coecients in (4.396) are simply the normal-liquid densities. Thus,
the hydrodynamic limit of the collective energy density is given by

f =
ρs

2


v⊥s i

2 + v⊥s ai
2

+

ρ
s

2


v
si

2 + v
sai

2

− jiϕi − jaiϕai

− 1

2

m2

ρ


1

1
3
F s
i

+
ρn

ρ


ϕ⊥
i
2 +


1

1
3
F1

+
ρ
n

ρ


ϕ
i
2

+


1

1
3
F S
1

+
ρn

ρ


ϕ⊥
ai
2 +


1

1
3
F S
1

+
ρ
n

ρ


ϕ


ai
2


. (4.399)

We now complete the squares in the elds ϕ⊥
ai and ϕ


ai, and obtain

f =
1

2
ρs

v⊥s i

2 + v⊥s ai
2

+

ρ
s

2


v
si

2 + v
sai

2


+
1

2

m2

s




1
3
F s
a

1 + 1
3
F1

ρn
ρ

j⊥i
2 +

1
3
F a
a

1 + 1
3
F S
1

ρn
ρ

j⊥ai
2 +

1
3
F1

1 + 1
3
F s
a
ρ

n

ρ

j
i
2 +

1
3
F S
1

1 + 1
3
F S
1

ρ

n

ρ

j
ai
2




− 1

2

ρ

m2





1
1
3
F1

+
ρn

ρ


ϕ⊥

i −
1
3
F s
a

1 + 1
3
F1

ρn
ρ

j⊥i




2

+


1

1
3
F S
1

+
ρn

ρ


ϕ⊥

ai −
1
3
F S
1

1 + 1
3
F S
1

ρn
ρ

j⊥ai




2

+ (⊥ → )


 . (4.400)

The path integrals over the elds ϕi, ϕai can then be performed, and this makes
the harmonic terms in brackets disappear.

Finally, we allow l to vary in space. This produces Fermi liquid corrections to
the stiness constants Ks,t,b [recall (4.126)], which are plotted in Fig. 4.22.

In the presence of a nontrivial l texture, the currents acquire additional terms.
The particle current density ji becomes

mj⊥ = ρsvs + c (∇× l)⊥ , 2mc =
ρ
s

2
,

mj = ρ
sv


s − c (∇× l) , 2mc =

ρ
s

2
, (4.401)

where we have separated ∇× l into transverse and longitudinal parts:

(∇× l)⊥ = (∇× l) − l [l · (∇× l)] ,

(∇× l) = l [l · (∇× l)] , (4.402)

respectively. The squares of the currents are
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m2j⊥i
2 = ρ2sv

⊥2 +
1

4m2

ρ
s
2

4


(∇× l)2 − (l · (∇× l))2


+

1

2m

ρsρ

s

2
v⊥(∇× l)⊥

= ρ2s


v2 − (l · v)2


+

1

4m2

ρ2s
4
[l× (∇× l)]2

+
1

2m

ρsρ

s

2
[v · (∇× l)− (v · l)(∇× l)] , (4.403)

m2j
i
2 = ρ

s
2(l · v)2 +

1

4m2

ρ
s
2

4
[l · (∇× l)]2 − 1

2m

ρ
s
2

2
(v · l)(∇× l), (4.404)

m2j⊥ai
2 = ρ2sv

⊥
ai
2 =

ρ2s
4m2

{ǫabcdb [∇i − li(l ·∇)] dc}
2

=
ρ2s
4m2


(∇ida)

2 − (l ·∇da)
2

, (4.405)

m2j
ai
2 = ρ

s
2v

ai
2 =

ρ
s
2

4m2
[liǫabcdb(l ·∇)dc]

2

=
ρ
s
2

4m2
(l ·∇da)

2 . (4.406)

Using these, we nd the energy density

f =
1

2
ρs

1 + 1
3
F1

1 + 1
3
F1

ρn
ρ


v2
s − (l · vs)

2

+

1

2
ρ
s

1 + 1
3
F1

1 + 1
3
F1

ρ

n

ρ

(l · vs)
2

+
1

2
ρs

1 + 1
3
F S
1

1 + 1
3
F S
1

ρn
ρ

1

4m2


(∇ida)

2 − (l ·∇da)
2)

+

1

2
ρ
s

1 + 1
3
F S
1

1 + 1
3
F S
1

ρ

n

ρ

(l ·∇da)
2

+
ρ
s

2

1 + 1
3
F s
a

1 + 1
3
F1

ρn
ρ

1

2m
{vs · (∇× l) − (l · vs) [l · (∇× l)]}

−ρ
s

2

1

2m

1 + 1
3
F1

1 + 1
3
F1

ρ

n

ρ

(l · vs) [l · (∇× l)]

+
1

2
Ks(∇ · l)2 +

1

2


Kt +

1

4m2

ρ
s
2

4ρ2

1
3
F 3
1

1 + 1
3
F1

ρ

n

ρ


 [l · (∇× l)]2

+
1

2


Kb +

1

4m2

ρ
s
2

4ρ2

1
3
F1

1 + 1
3
F1

ρn
ρ


 [l× (∇× l)]2 . (4.407)

As discussed in the beginning, the mass parameter m in these expressions is the
eective mass of the screened quasiparticles in the Fermi liquid. As a consequence,
the velocity

vs =
1

2m
Φ

∗ ↔
∇Φ (4.408)

is not really the correct parameter of Galilean transformations. To play this role,
the phase change in the original fundamental elds would have to be

ψ → eim0v·xψ, (4.409)
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where m0 is the true physical mass of the 3He atoms. If we introduce the corre-
sponding physical velocity

v0s =
i

2m0

Φ
∗ ↔
∇Φ, (4.410)

with a similar expression for the spin velocity v0sai, the rst term in (4.407) takes
the form

1

2


ρs
m0

m


1

1 + 1
3
F1

ρn
ρ

m0


1 + 1

3
F1



m


v0s

2 − (l · vs)
2

. (4.411)

The other terms in (4.407) change accordingly.
We now add to the energy density the kinetic energy of the normal component

1

2
ρn

v0n

2 − (l · v0n)
2

+

1

2
ρn(l · v0n)

2. (4.412)

By Galilei invariance, the sum of the coecients has to add up to the total density
ρ0 = nm0, where n is the number of particles (≡ number of quasiparticles) per unit
volume:


ρs
m0

m


1

1 + 1
3
F1

ρn
ρ

m0


1 + 1

3
F1



m
+ ρn = ρ0 = nm0. (4.413)

At T = 0, the normal density ρn vanishes, and we obtain

ρs

T=0

= ρ = ρ0
m

m0

. (4.414)

Thus, consistency requires the following relation between the eective mass m and
the atomic mass m0 ≡ m3He :

m =

1 +

1

3
F1


m0. (4.415)

This brings the term (4.413) to the form

1

2
ρ0

ρs

ρ

1

1 + 1
3
F1

ρn
ρ


v0s

2 − (l · v0s)
2

. (4.416)

The prefactor can be interpreted as the superuid density with Fermi liquid correc-
tions:

ρFLs ≡ ρ0
ρs

ρ

1

1 + 1
3
F1

ρn
ρ

. (4.417)

It is now convenient to introduce the dimensionless ratio

ρ̃FLs ≡ ρFLs
ρ0

. (4.418)

At T = 0, this goes to unity just as in the uncorrected case. See Fig. 4.23 for a plot.
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Figure 4.23 Superuid densities of B- and A-phase after applying Fermi liquid correc-

tions, indicated by the superscript FL.

For T ≈ Tc, however, it receives a strong reduction by a factor

1

1 + 1
3
F1

=
m0

m
, (4.419)

so that
ρ̃FLs


T≈0

≈ ρs

ρ

m0

m
. (4.420)

Thus near Tc the number of particles in the normal component is equal to the
true particle density if it is multiplied by the quasiparticle mass m instead of the
atomic mass m0. Specic-heat experiments [13] determine the eective mass ratios
m/m0 mentioned in the beginning. Inserted into Eq. (4.419), these ratios yield the
parameters

1

3
F1 = (2.01, 3.09, 3.93, 4.63, 5.22) (4.421)

at pressures
p = (0, 9, 18, 27, 34.36) bar. (4.422)

Similarly, we may go through the Fermi liquid corrections of the spin currents and
obtain

K̃FL
d ≡ KFL

d

ρ0
=

ρs

ρ

1 + 1
3
F S
1

1 + 1
3
F S
1

ρn
ρ

1

1 + 1
3
F1

, (4.423)

K̃
d
FL ≡ K

d
FL

ρ0
=

ρ
s

ρ

1 + 1
3
F S
1

1 + 1
3
F S
1

ρ

n

ρ

1

1 + 1
3
F1

, (4.424)

while the coecients c and c satisfy

c̃FL ≡ 2m0c
FL

ρ0
=

2mc

ρ

1

1 + 1
3
F1

ρn
ρ

, (4.425)
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c̃FL ≡ 2m0c
FL

ρ0
=

2mc

ρ

1

1 + 1
3
F1

ρ

n

ρ

. (4.426)

These are plotted in Fig. 4.24.

0.5

0
1T/Tc

c = c‖cFLc‖FL

Figure 4.24 Coecients c = c and their Fermi liquid corrected values in the A-phase,

indicated by the superscript FL, in units of ρ/m.

The stiness coecients of the pure l-parts of the bending energy receive the
Fermi liquid corrections:

K̃FL
s ≡ 4m2

0Ks
FL

ρ0
=

4m2Ks

ρ

1

1 + 1
3
F1

, (4.427)

K̃FL
t ≡ 4m2

0

ρ0
KFL

t =



4m2Kt

ρ
+

1

4

ρ
s
2

ρ2

1
3
F1

1 + 1
3
F1

ρ

n

ρ




1

1 + 1
3
F1

, (4.428)

K̃FL
b ≡ 4m2

0

ρ0
KFL

b =


4m2Kb

ρ
+

1

4

ρ
s
2

ρ2

1
3
F1

1 + 1
3
F1

ρn
ρ


 1

1 + 1
3
F1

. (4.429)

They are plotted in Figs. 4.25–4.26. In the sequel, it is convenient to dene the
momenta

ṽ ≡ 2m0v. (4.430)

Then the energy density can be written in the following nal form

4m2
0

ρ0
e ≡ 1

2
ρ̃FLs


ṽ2
s − (l · ṽs)

2

+

1

2

1̃

2
ρ̃
s
FL(l · ṽs)

2

+
1

2
K̃FL

d


(∇ida)

2 − (l ·∇a)
2

+

1

2
K̃

d
FL (l ·∇da)

2

+ c̃FL {ṽ · (∇× l)− (ṽs · l) [l · (∇× l)]}
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− c̃FL (ṽs · l) [l · (∇× l)]

+
1

2
K̃FL

s (∇ · l)2 +
1

2
K̃FL

t [l · (∇× l)]2 +
1

2
K̃FL

b [l× (∇× l)]2 . (4.431)

In large containers, where l and d are locked to each other, the K̃FL
d , K̃

d
FL terms

can be absorbed into K̃FL
s,t,b which then take the dipole-locked values

K̃FL
s |lock = K̃FL

s + K̃FL
d , (4.432)

K̃FL
t |lock = K̃FL

t + K̃FL
d , (4.433)

K̃FL
b |lock = K̃FL

t + K̃FL
d . (4.434)

The temperature dependence of all these quantities is shown in Figs. 4.25 and 4.26
for the experimental Fermi liquid parameters 1

3
F1 = 5.22 and 1

3
F S
1 = −.22.

The Fermi liquid corrections in the B-phase can be applied in completely analo-
gous manner. There the energy becomes

4m2
0

ρ0
f =

1

2
ρ̃Bs

FL(∇ϕ)2 + λ(4 + δ)(∇iθj)
2 − (1 + δ)∇iθj∇jθi − (∇iθi)

2 , (4.435)

with the dimensionless parameters

ρ̃Bs
FL =

ρBs
ρ

1

1 + 1
3
F1

ρBn
ρ

, (4.436)

λ =
1 + 1

3
F S
1

1 + 1
3
F S
1

ρBn
ρ
+ 1

3
F S
1

2
15

ρBs
ρ

1

1 + 1
3
F1

, (4.437)

T/Tc
1

1

0

l‖dKs

Ks

l‖dKFL
s

KFL
s

Figure 4.25 Coecient Ks for splay deformations of the elds, and its Fermi liquid

corrected values, indicated by the superscript FL, in the A-phase in units of ρ/4m2 as

functions of the temperature.
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1

0
1T/Tc

l‖dKt

Kt

l‖dKFL
t

KFL
t

4

2

0

Kb

l‖dKFL
b

KFL
b

l‖dKt

T/Tc
1

Figure 4.26 Remaining hydrodynamic parameters for twist and bend deformations of

superuid 3He-A, together with their Fermi liquid corrected values, indicated by the su-

perscript FL, in units of ρ/4m2, as functions of the temperature.

δ =
1
3
F S
1

ρBs
ρ

1 + 1
3
F S
1

ρBn
ρ

. (4.438)

the rst being plotted in Fig. 4.23. The combinations

K̃B
1

FL = ρBs λ(4 + δ)/5, (4.439)

K̃B
2

FL = ρBs λ(1 + δ)/5, (4.440)

are plotted in Fig. 4.27.
Certainly, all these results need strong-coupling corrections which are presently

only known in the Ginzburg-Landau regime T → Tc.

4.10 Large Currents and Magnetic Fields in the

Ginzburg-Landau Regime

The properties of superow are most easily calculated close to the critical temper-
ature. In this regime, thermodynamic uctuations are governed by the Ginzburg-
Landau form of the energy. There the depairing critical currents have been derived
quite some time ago. For the sake of a better understanding of our general results
to follow later, we nd it useful to review the well-known results.

Suppose a uniform current is set up in a container along the z direction. Since
the bending energies tend to straighten out textural eld lines it may be expected
that, in equilibrium, and in uniform currents, also the textures are uniform. It
will be shown later in a detailed study of local stability in Section 4.13, that this
assumption is indeed justied in the B-phase. In the A-phase, on the other hand,
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we shall see that the textural degrees of freedom play an essential role in the ow
dynamics.

We shall at rst neglect this complication and proceed with a discussion of ow
in uniform textures. Correspondingly, the collective eld will for now be assumed
to have the simple form

∆ai(z) = ∆
0
aie

iϕ(z), (4.441)

where ∆0
ai is a constant matrix. The phase factor eiϕ(z) allows a non-vanishing

matter current, which may be calculated from Eq. (4.88) as

ji = i

K1|∆

0
ak|

2δij +K2


∆

0∗
aj∆

0
ai − (i ↔ j)


+K3


∆

0∗
ai∆aj − (i ↔ j)


∂jϕ(z).

(4.442)

Because of the smallness of strong-coupling corrections on the coecients Ki(≤ 3%)
we may assume for K the common value (4.82). The presence of a non-vanishing
gradient of ∂jϕ requires a new minimization of the energy. This will in general
modify the normal forms (4.111)–(4.114) of the gap parameters in equilibrium.

4.10.1 B-Phase

For a rst crude estimate of the eect of a current we shall assume only the overall
size of the gap parameter (4.112) of the B-phase to be changed by the current.

Neglecting Gap Distortion

If the current runs along the z-axis, we nd from (4.103)

f =
K

2
5

a2(∂zϕ)

2 + (∂za)
2

∆

2
B − 3αµa2∆2

B + 9βBβ0∆
4
B. (4.443)
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K = 1
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T/Tc

1.00

40K̃B
2

FL

10K̃B
1

FL

0.8

Figure 4.27 Hydrodynamic parameters of superuid 3He-B , together with their Fermi

liquid corrected values, indicated by the superscript FL, in units of ρ/4m2, as functions

of the temperature.
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For the discussions to follow, it is convenient to measure the energy densities in
terms of the condensation energy of the B-phase in the weak-coupling limit. In the
Ginzburg-Landau regime this is

fc = fB
c =

ρ

4m2ξ20


1− T

Tc

2

. (4.444)

By using the denition (4.105) and the temperature-dependent coherence length

ξ(T ) =
ξ0

1− T/Tc

, (4.445)

with ξ0 from (4.75), we nd the simple form

f

2fc
= a2ξ2


(∂zϕ)

2 + (∂za)
2

− αa2 +

1

2


6

5
βB


a4. (4.446)

If one wants to study the system in the presence of a non-vanishing current, one may
eliminate the cyclic variable ϕ in favor of the canonical momentum-like variable

j ≡ 1

2ξ

∂

∂∂zϕ

f

2fc
= a2ξ∂zϕ. (4.447)

This has the virtue of being z-independent, as follows from the equation of motion
for ϕ.

The associated Legendre transformed energy

g =
f

2fc
− 2ξj∂zϕ (4.448)

can then be used to study the remaining problem in only one variable a(z)

g = (∂za)
2 − αa2 +

1

2


6

5
βB


a4 − j2

a2
. (4.449)

By comparing (4.446) and (4.442) we see that the physical current j3 ≡ J is deter-
mined in terms of the dimensionless quantity j up to a factor two:

J = 2
∂f

∂∂zϕ
= 10∆2

BK∂zϕ

= j
h̄

2mξ0
ρ 2

1− T

Tc

3/2

≡ j J0


1− T

Tc

3/2

. (4.450)

Thus the quantity j measures the physical mass current in units of

J0


1− T

Tc

3/2

= v0


1− T

Tc

1/2

2ρ

1− T

Tc


, (4.451)
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where v0 is the following reference velocity

v0 ≡
h̄

2mξ0
, (4.452)

at which the de Broglie wavelength of the quasiparticles equals the coherence length
ξ0. Consequently, we shall refer to v0 as the coherence velocity and to J0 as coherence
current.

By analogy with the denition of ξ0(T ) from ξ0 in (4.445), we introduce also
here temperature-dependent quantities that contain the Ginzburg-Landau factor
(1− T/Tc), for instance the temperature-dependent coherence velocity and the cur-
rent

v0(T ) ≡ v0


1− T

Tc

1/2

, J0(T ) ≡ J0


1− T

Tc

3/2

, (4.453)

respectively. Using the superuid velocity

vs =
h̄

2m
∂zϕ, (4.454)

we can identify the superuid density ρs via the denition

J ≡ ρsvs, (4.455)

where

ρs = a2 2ρ

1− T

Tc


. (4.456)

By writing (4.454) in the form

vs = v0(T )ξ∂zϕ, (4.457)

we see that the quantity

κ ≡ ξ∂zϕ = j/a2 (4.458)

measures the superow velocity in units of the temperature-dependent coherence
velocity v0(T ):

κ ≡ vs
v0(T )

=
vs
v0


1− T

Tc

− 1
2

. (4.459)

In order to be able to compare the forthcoming results with experiments we may
use the parameters of Wheatley [13], which are listed in Table 4.2, to calculate

v0 =
1

2m∗ξ0
=


48

7ζ(3)
π
kBTc

pF
= 7.504

kBTc

pF

≈


6.25 cm/sec
15 cm/sec


for


p = 0, Tc = 1mK,
p = 34.36 bar, Tc = 2.7mK.


(4.460)
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Figure 4.28 Shape of potential determining stability of superow.

It is now quite simple to study the equilibrium gap conguration for a given
current density j. According to (4.449) the energy looks like the Lagrangian of a
mass point at position a moving as a function of “time” z in a potential which is
turned upside down:

−V (a) = −αa2 +
1

2


5

6
βB


a4 − j2

a2
. (4.461)

The shape of this potential is displayed in Fig. 4.28. For a small enough current,
there is a constant solution satisfying ∂V/∂a = 0:

a(z) ≡ a0 (4.462)

This amounts to a current density

j2 = a40


α −


6

5
βB


a20


. (4.463)

Obviously, this solution can exist only as long as j stays below the maximal value
allowed by (4.463). By dierentiation we nd

a2c =
2

3

α
6
5
βB

, (4.464)
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with the maximal j equal to

jc =
2

3

1√
3

α3/2

6
5
βB

≡ a20κc. (4.465)

This value determines the depairing critical current density

Jc = J0(T )jc. (4.466)

At zero pressure, this becomes numerically

Jc = 12.5
cm

sec
ρ


1− T

Tc

3/2 α3/2

6
5
βB

. (4.467)

With the values of α and βB listed previously we nd that the strong-coupling
corrections cause an increase of the critical current by a factor of about 30%.

For completeness, let us insert (4.463) into (4.449), and evaluate the total energy

g = −αa2 +
5
6
βB

2
a4 − a2


α − βBa

2

,

= −2αa2 +
3

2


6

5
βB


a4. (4.468)

It is cumbersome to express this analytically as a function of j since this would
involve solving the cubic equation (4.449). However, if we do not try to express it
in terms of the current density j but, instead, in terms of the parameter κ, i.e., the
superuid velocity in natural units, we have [see (4.447), (4.448), (4.449)]

κ2 = α − βBa
2, (4.469)

and the current dependence of the energy is written explicitly as:

g = − 1

2βB


α− κ2

 
α + 3κ2


. (4.470)

Note that the free energy itself is simply

f

2fc
= − 1

2βB


α − κ2

2
. (4.471)

Including a Magnetic Field

The critical currents in the B-phase depend sensitively on external magnetic elds.
In order to see this consider the additional eld energy

fmg = gz|Ha∆ai|
2, (4.472)

where gz was calculated microscopically to be

gz =
3

2

ρ

p2F

ξ20
v2F

γ2

1 +

Z0

4

−2

, (4.473)
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with γ being the magnetic dipole moment of the 3He atoms

γ ≈ 2.04× 104
1

gauss sec
, (4.474)

and Z0 = F S
0 is the Fermi liquid parameter of the spin density coupling.

According to Table 4.2 its value is, at zero pressure, −Z0 ≈ 2.69. It will be useful
to rewrite fmg in a dimensionless form as

fmg

2fc
= h2|Ĥa∆ai/∆B|

2, (4.475)

where Ĥ is the unit vector in the direction of the eld and h ≡ H/H0(T ) measures
the magnetic eld in terms of the following natural units

H0(T ) ≡


3
2
ρp2F
gz



1− T

Tc

=

1 +

Z0

4


vF
ξ0γ



1− T

Tc

≡ H0



1− T

Tc

≈ 16.4K gauss



1− T

Tc

. (4.476)

For the undistorted gap parameter (4.441), the additional magnetic energy is simply

fmg

2fc
= h2a2. (4.477)

This enters into the expression for the equilibrium current (4.463) in the form

j2 = a40


α−


6

5
βB


a20 − h2


, (4.478)

so that the current is now maximal at

a20 =
2

3

1
5
6
βB


α− h2


, (4.479)

with values jc, κc:

jc =
2

3

1√
3

1
5
6
βB


α − h2

3/2
, κc =

1√
3

1
5
6
βB

√
α− h2. (4.480)

Thus, at higher magnetic elds, the liquid supports less superow. For

hc
2 = α, (4.481)

the liquid becomes normal. Note that this result is independent of the direction of
H with respect to the texture of the B-phase.

Let us also calculate the changes in the total energies. With (4.447) and (4.458)
we have now

κ2 = α − 6

5
βBa0

2 − h2, (4.482)
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and

gB = − 1

2

6
5
βB



α − κ2 − h2

 
α+ 3κ2 + 3h2


, (4.483)

or

fB

2fc
= − 1

2

6
5
βB



α − κ2 − h2


2. (4.484)

Allowing Gap Distortion

Certainly, the assumption of a purely multiplicative modication of the gap was an
over-simplication. For, if we look at the energy for a general gap parameter

∆
0
ai = ∆Baaie

iϕ(z), (4.485)

we nd from the energy (4.84) (neglecting the gd-terms)

f

2fc
=

1

5
(a∗aiaai + 2a∗azaaz)(∂zϕ)

2+β1a
∗
aiabja

∗
aiabj + β2 (a

∗
aiaai)

2

+β3a
∗
aiaaja

∗
biabj + β4a

∗
aiabia

∗
bjaaj + β5a

∗
aiabia

∗
ajabj . (4.486)

In the absence of magnetic eld and current, the energy is invariant under the full
group of independent rotations on spin and orbital indices (apart from a phase
invariance aai → eiϕaai ).

As a eld and a current are turned on, two specic directions in these spaces are
singled out. Due to the original invariance, however, the energy at the extremum
cannot depend on which directions are chosen. Therefore we may pick for both,
H and the current J, the z-direction. Given the solution for the order parameter
aai in this particular case, the general result is obtained by simply performing an
appropriate SO(3)spin×SO(3)orbit rotation relevant for the actual directions of H and
J.

We shall now determine the functional direction in which the deformation of
the gap parameter has to take place. Consider at rst a small current density j.
Then the gap parameter can be assumed to be close to the equilibrium value in the
B-phase:

aai = a0δai + a′ai ≡ a0δai + rai + i iai (4.487)

with

a0 =


α

6
5
βB

. (4.488)
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Inserting this into (4.444) we can pick up all terms up to quadratic order and nd:

δ2f

2fc
=

1

5


|a′ai|

2 + 2|a′az|
2

+ 2a0 (r11 + r22 + 3r33)


(∂3ϕ)

2

+
1

15

α
6
5
βB


2 (2β124 + β35)R

1 + 4β12R
3 + 2β345R

5

−8β1I
′ + 8β1I

3 − 6β1I
5 − 2 (3β1 + β35 − β4) I

6

. (4.489)

Here R1,3,5,6 represent the following quadratic forms

R1 ≡ r211 + r222 + r233,

R3 ≡ 2 (r11r22 + r22r33 + r33r11) ,

R5,6 ≡ (r12 ± r21)
2 + (r23 ± r32)

2 + (r31 ± r13)
2 , (4.490)

with I1,3,5,6 being the same expressions in terms of the imaginary parts iai.
Now, the linear term involves only the real diagonal elements r11, r22 and r33.

Thus only these will develop new equilibrium values. Moreover, since r11 and r22
enter symmetrically, their new values are equal. For small currents we are just led
to a new gap parameter

∆ai = ∆B




a
a

c


 eiϕ(z). (4.491)

We shall now assume that this form of the distortion is also present in stronger
currents, up to its critical value Jc.

In order to ensure this, we have to examine the stability of this form under small
oscillations for any current. This will be done in Sections 4.13.5 and 4.15, where
local stability of the form (4.491) will indeed be found (up to Jc). As a side result,
the analyses will provide us with the energies of all collection excitations in the
presence of superow.

In order to study the problem with a distorted gap (4.491) let us, at rst, neglect
the strong-coupling corrections. Then the energy (4.446) takes the simple form

f

2fc
=

1

5
ξ2

2a2 + 3c2


(∂zϕ)

2 + 2a2z + 3c2z


−1

3


2a2 + c2


+

1

15


4a4 + 2a2c2 +

3

2
c4

+ h2c2, (4.492)

where we have included the magnetic eld. The current density is now

j =
1

5


2a2 + 3c2


ξ∂zϕ =

2a2 + 3c2

5
κ, (4.493)

so that the superuid density becomes

ρ
s =

1

5


2a2 + 3c2


2ρ

1− T

Tc


. (4.494)
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Note that this is valid only parallel to the ow, which is why we have added a
superscript  to ρs. Since a and c are dierent, an additional small gradient of ϕ
orthogonal to the ow would be associated with a dierent current density

j =
1

5


4a2 + c2


ξ∂zϕ, (4.495)

i.e., the transverse superuid density would rather be

ρ⊥s =
1

5


4a2 + c2


2ρ

1− T

Tc


. (4.496)

The Legendre transformed energy reads

g =
1

5
ξ2

2a2z + 3c2z


− 1

3


2a2 + c2



+
1

15


4a4 + 2a2c2 +

3

2
c4

− 5j2

2a2 + 3c2
+ h2c2. (4.497)

Minimizing this with respect to a and c we nd two equations

−2

3
+

1

15


2

2a2 + c2


+ 4a2


+

10j2

(2a2 + 3c2)2
= 0, (4.498)

−1

3
+

1

15


2a2 + c2


+ 2c2


+ 15

j2

(2a2 + 3c2)2
+ h2 = 0. (4.499)

They are solved by

a20 = 1 +
3

2
h2, (4.500)

j2 =
1

25


2 + 3c20 + 3h2

2 1
3


1− c20 + 6j2


. (4.501)

Thus, in the absence of a magnetic eld, the gap parameter orthogonal to the ow
is not distorted after all,

∆
⊥ ≡ ∆B a0 = ∆B, (4.502)

whereas the gap parallel to the ow is reduced to

∆
 ≡ ∆B c0, (4.503)

with c0 satisfying (4.502).
The current has a maximal size for

c2c =
4

9
− h2

13
, (4.504)

where jc, κc take the values

jc =
2

9


5

3


1− 3h2

3/2
, κc =

1

3


5

3


1− 3h2

1/2
. (4.505)
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The critical current is smaller than the previously calculated value by a factor of
about 3/4.

The energy can be expressed most simply as a function of κ. From (4.493) and
(4.502) we identify

κ2 =
1

3


1− c2 − 6h2


. (4.506)

Inserting this into (4.492), which in terms of κ reads

f

2fc
=

1

5


2a2 + 3c2


κ2

− 1

3


2a2 + c2


+

1

15


4a4 + 2a2c2 +

3

2
c4

+ h2c2, (4.507)

we may evaluate only half of the quadratic terms according to the general rule that
in equilibrium, the fourth-order part is half the opposite of the quadratic one. In
this way we easily nd

f

2fc
= −1

2


1− κ2 − h2

2 − 5

2


h2 +

2

5
κ2
2

, (4.508)

so that

g =
f

2fc
− 2jκ

= −1

2


1− κ2 − h2

2 − 2κ2

1− 3h2 − 9

5
κ2

. (4.509)

Let us now see how strong-coupling corrections modify this result. It is straight-
forward to calculate that then the free energy reads

g =
1

5


2a2z + 3c2z


− 1

3


2a2 + c2


+

1

15


β12


2a2 + c2

2
+ β345


2a4 + c4



− 5j2

2a2 + 3c2
+ h2c2. (4.510)

The local minimum is given by the extrema in a and c:

−2

3
+

4

15


β12


2a2 + c2


+ β345a

2

− 10

j2

(2a2 + 3c2)2
= 0, (4.511)

−1

3
+

2

15


β12


2a2 + c2


+ β345c

2

− 15

j2

(2a2 + 3c2)2
+ h2 = 0, (4.512)

so that c and a are now related by

(4β12 + 3β345) a
2 + (2β12 − β345) c

2 = 5

1 +

3

2
h2

. (4.513)



238 4 Superuid 3He

From this we nd

κ2 =
25j2

(2a2 + 3c2)2
=

5β345

3 (β12 + 3β345)


α − 6

5
βBc

2 − 2β12 + β345

β345

3h2


, (4.514)

and obtain the longitudinal gap parameter

∆2

∆B
2
= c2 =

1
6
5
βB


α − 9

5


4β12

3β345


κ2 −


1 +

2β12

β345


3h2


. (4.515)

Similarly, we nd for the transversal direction

∆⊥2

∆B
2
= a2 =

1
6
5
βB


α +

3β12

β345

h2 −

1− 2β12

β345


3

5
κ2


. (4.516)

The current is now maximal at

κ2
c =

5

9

5β345

8β12 + 11β345


α − 4β12 + 3β345

5β345

3h2


, (4.517)

where jc, κc become

jc =
1

6
5
βB

2
√
5

9


5β345

8β12 + 11β345


α− 4β12 + 3β345

5β345

3h2

3/2

,

κc =


5

9


5β345

8β12 + 11β345


α − 4β12 + 3β345

5β345

3h2

1/2

. (4.518)

The free energy density is found by the same method as before

f

2fc
= −1

2


α − κ2 − h2

2 1
6
5
βB

+
5

β345


h2 +

2

5
κ2
2

. (4.519)

This result is rather simple since some of the strong-coupling corrections cancel in
the rst quadratic term of (4.508)

2a2 + c2 =
3

6
5
βB


α − κ2 − h2


. (4.520)

The free energy density g, on the other hand, looks more complicated because of
the awkward form of the longitudinal superuid density

ρ
s

2ρ

1− T

Tc

 =
1

5


2a2 + 3c2


=

1
6
5
βB


α− 4β12 + 3β345

5β345

3h2 − 8β12 + 11β345

5β345

3

5
κ2



(4.521)

entering the additional term

−2jκ = −2κ2 2a
2 + 3c2

5
. (4.522)
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4.10.2 A-Phase

Before discussing the result in the B-phase further, it is useful to compare them
with the A-phase. As before, we shall rst assume a uniform texture

∆ai = ∆
0
aie

iϕ(z). (4.523)

Later we shall see that this ansatz is stable only for very small currents. Still, it is
instructive to go through the same calculation as in the B-phase.

The kinetic energy has the form

f =
κ

2
ξ2

|∆0

ai|
2 + 2|∆0

a3|
2

κ2. (4.524)

If we suppose again that the gap parameter suers only from a change of size, we
may write

∆
0
ai = ∆A∆̂ai = ∆Ba ∆̂ai, (4.525)

and we assume for ∆̂ai the standard form up to spin and orbital rotation. From
(4.524) we see that the bending energy is minimal if ∆̂a3 is chosen to vanish implying
that the eld l(x) points in the direction of ow. Then the total energy has the form

f =
κ

2
∆

2
B2a

2(∂ϕ)2 − 3αµa2∆2
B + 4β0βAa

4
∆

4
B.

The current has now the form

J = 4mκ∆2
Ba

2ξ∂zϕ. (4.526)

In order to compare with the previously derived results for the B-phase it is useful
to measure again all energies in units of 2fc of the B-phase. Then we obtain14

f

2fc
=

2

5
a2 (∂zϕ)

2 − 2

3
αa2 +

2

9

6

5
βAa

4, (4.527)

for which the dimensionless current density is now

j =
2

5
a2ξ∂zϕ =

2

5
a2κ. (4.528)

Therefore the Legendre transformed energy

g =
f

2fc
− 2jκ = −5j2

2a2
− 2

3


αa2 − 2

5
βAa

4


(4.529)

14This result agrees, of course, with energy (4.492) of the distorted B-phase if one inserts c = 0
and takes α = βA, i.e., the weak-coupling limit, since the planar phase and the A-phase are
energetically the same.
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is extremal at

j2 =
4

15
a4

α − a2

4

5
βA


. (4.530)

By comparison with (4.525) we nd the gap parameter as a function of the velocity
κ as

a2 =
5

4βA


α − 3

5
κ2

, (4.531)

from which we may calculate

∆A
2 = ∆B

2a2. (4.532)

The current has a maximum at a2 = 5α/6β with the critical values

jc =

√
5

9

α3/2

βA

,

κc =

√
5

3
α1/2. (4.533)

In terms of κ the energies take the simple explicit forms:

f

2fc
= − 1

6
5
βA


α − 3

5
κ2
2

,

g =
f

2fc
− 1

βA


α − 3

5
κ2

κ. (4.534)

It is important to realize that all these results are true, irrespective of the presence
of a magnetic eld: The d-texture can always lower its energy by orienting itself
orthogonal to H, because of the absence of magnetic energy.

4.10.3 Critical Current in Other Phases for T ∼ Tc

For completeness let us analyze the energies of the Ginzburg-Landau expansion in
the presence of superow in all the above possible phases. It could happen that the
presence of superow induces a transition into a phase with zero current which is
unphysical because of its high energy. In order to eliminate this possibility we shall
carry out an analysis for all known phases found in the analysis of the Ginzburg-
Landau energy by Barton and Moore [21]. For each of these the order parameter
may be written as

Aai = ∆∆̂ai, (4.535)

where Âai is sometimes normalized to unity

tr

ÂaiÂai


= 1. (4.536)
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The energy is

f = −µ∆2 + ββ̂∆4, (4.537)

where β is a combination of various βi’s for the phase under consideration. This is
minimal at

∆
2
0 =

µ

2β0β̂
, (4.538)

with f = −fc and the condensation energy density

fc =
µ2

4β0

1

β
. (4.539)

Now let there be an equilibrium current owing through a uniform texture. The
order parameter may be normalized as

Aai = ∆Âaie
iϕ, (4.540)

so that the bending energies are

f =
K

2
∆

2

(∂iϕ)

2 + 2(∂xϕ)
2 (Aax)

2 + 2(∂yϕ)
2(Aay)

2 + 2(∂zϕ)
2(Aaz)

2

. (4.541)

In the presence of the velocity (∂iϕ)/2m, the energy does not minimize any longer
a gap value (4.538), but it is minimal at a new modied order

∆ = ∆0a, (4.542)

so that the energy can be written as

f =−K

2
∆

2
0a

2

(∂iϕ)

2 + 2(∂xϕ)
2 + 2(∂xϕ)

2(Aax)
2 + 2(∂yϕ)

2(Aay)
2 + 2(∂zϕ)

2(Aaz)
2


−µ∆0
2a2 + β0βa

4
∆0

4. (4.543)

It is again convenient to divide out the condensation energy of the phase in the
absence of a current by substituting

µ∆0
2 = 2fc,

β̂β0∆0
4 = fc. (4.544)

In addition, we have from (4.82)

K∆0
2

2
=

3

5
N (0)µ

1

2β0β
ξ0

2 =
6

5
fc. (4.545)

Therefore the energy has the generic reduced form

f

fc
=

6

5
a2ξ0

2(∂ϕ)2 − 2a2 + a4, (4.546)
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with

α = 1 + 2|Âaiĵ|
2 (4.547)

and ĵ being the direction of the current. The physical current is

J = fc 4m
6

5
a2ξ0

2(∂ϕ)α

= ρ


1− T

Tc

7/2 1

ξ0m2

1

2β
a2ζ(∂ϕ)

= jJ0. (4.548)

Here J0 is the same quantity as introduced in (4.451), and j is the dimensionless
reduced current density

j =
1

2β
a2ξ(∂ϕ). (4.549)

At a xed j, we have to minimize

g

fc
=

f − 24
5
j(∂ϕ)

fc

= −24

5

j2

a2
β2

α
− 2a2 + a4. (4.550)

The equilibrium value of a lies at

j2 = Ra4

1− a2


, (4.551)

where R is the quantity

R =
5

12

α

β2
. (4.552)

Since β and α are independent of a, the current is maximal for a2 = 2/3, where it
is given by

j2 =
1

3

4

9
R. (4.553)

Let us now calculate the parameters α and R for each of the dierent superuid
phases. The results are displayed in Table 4.3. Since α depends on the direction of
the current with respect to the texture, the energy has to be minimized for each of
the standard forms Aai listed in [21]. In the second column we have therefore marked
the possible directions of the equilibrium current. Clearly, in the presence of strong-
coupling corrections, R is modied by a suitable factor. The last column contains
the condensation energy as compared to that of the B-phase. At the critical current,
the energy −g is lower than −fB

c by a factor 4
3
. Thus it might, in principle, happen
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Table 4.3 Parameters of the critical currents in all theoretically known phases

Phases α direction of
current β βGL RGL fc/fc

B gc/fc
B

B 5
3

x, y, z β12 +
1
3
β345

5
6

1 1 −4
3

planar 1 z β12 +
1
2
β345 1 5

9
5
6

−10
9

polar 1 y, z β12 + β345
3
2

5
12

5
9

−20
27

α 5
3

x, y, z β2 +
1
3
β345

4
3

5
27

5
18

−10
27

bipolar 1 z β2 +
1
2
β345

3
2


5
8

2
5
9

−20
27

axial 1 z β245 1 5
12

5
6

−10
9

β 1 y, z β234 3 5
108

6
15

− 8
15

γ 1 z β124 2 5
48

5
12

−5
9

that one of the higher-lying phases drops underneath a lower one when increasing
the current. It can be checked, however, that such a crossover does not take place.
For this we compare g at the critical currents

g = −4a2 + 3a4 = −4

3


fc
fB
c


fB
c . (4.554)

for the dierent phases. Starting out with the B-phase, the energy drops from −1
to −4

3
. In the A-phase it starts out at −5

6
and drops down to −10

9
. This value is

underneath −1 so that there is, in principle, the possibility of a crossover, but we
can check that the energy of the B-phase drops fast enough to avoid a collision.
Similar arguments can be applied to any other pair of phases. In order to study this
behavior in detail one has to plot the energy g as a function of the current density
j. As a function of a, the energy g is most easily determined by solving the cubic
equation (4.551) in a geometric way, writing

a2 =
1

3
+

1

3
cos

2

3
ϕ− 1√

3
sin

2

3
ϕ, (4.555)

where

cosϕ =
3

2

√
3

j√
R
. (4.556)

At j = 0 and j = jc, the angle φ and the size a are given by

j = 0, ϕ =
π

2
, a2 = 1,

j = jc, ϕ = 0, a2 =
2

3
. (4.557)

Consider now the non-inert phases. Then the coecients α and β contain one
more parameter, for instance an angle θ. In addition to

∂g

∂a
= 0 (4.558)
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which leads, as before, to

j2

R
= a4


1− a2


. (4.559)

Now we have to minimize g also with respect to θ :

∂g

∂θ
≡ g′ = 0. (4.560)

Therefore we also have

−2

j2

a2
1

R
− 2a2 + a4


f ′
c +

R

R2

j2

a2
fc = 0, (4.561)

where, according to (4.944), the θ-dependence is ruled by the dierential equation

R′

R
= −


2
β ′

β
− γ′

γ


. (4.562)

From (4.932) we see that fc depends on θ only via 1/β(θ). Hence

f ′
c = −β ′

β
fc, (4.563)

so that (4.561) becomes

j2

R
= a4


1− a2

2


1

1− τ
, (4.564)

where we have abbreviated

τ ≡ βα′

β ′α
. (4.565)

By equating (4.564) and (4.559) we nd

a2 =
τ

τ − 1
2

, (4.566)

and the relation between current density and angle θ becomes

j2 =
1

2

τ 2(θ)

[τ(0)− 1/2]3
R(θ). (4.567)

This current density is maximal if θ solves the equation


α′

α
+

β ′

β


α′′

α′ −
β ′′

β ′


=

α′

α


2
α′

α
− 5

2

β ′

β


. (4.568)
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If α′′ = 0, this can also be written in the more convenient form

−2β

α′2β ′ +

1

2
α′β ′′


= β ′α


β ′′α − 5

2
α′β ′


. (4.569)

As an example consider the ζ-phase with

Aai =
∆√
s




sin θ cosφ −i sin θ sin φ 0
i sin θ sinφ sin θ cosφ 0

0 0
√
2 cos θ


 . (4.570)

Actually, this parametrization interpolates between several phases:

polar : all φ, θ = 0, Aai = ∆




0
0 √

2


 ,

planar : all φ, θ = π
2
, Aai = ∆




1
1

0


 ,

B : φ = 0, sin θ =
√
23, Aai =

∆√
3




1 0
1

0 1


 ,

(4.571)

and, certainly, the non-inert phase ζ itself. The potential energy is

fp = −µ∆2 +∆
4β0βζ , (4.572)

where

βζ = β1 4

1− 2 sin2 φ sin2 θ

2
+ β2 4

+β35


2 sin4 θ


1− sin2 2φ


+ ϕ cos4 θ


+ β4


2 sin4 θ


1 + sin2 2φ


+ ϕ cosϕθ



= (4β1 + 2β345) sin
4 θ + (4β1 + 4β345) cos

4 θ + 4β2

+ (β4 − β35 − 2β1) 2 sin
4 θ sin2 2φ+ 8β1 sin

2 θ cos2 θ cos2 φ. (4.573)

Minimizing this with respect to φ gives either

tan2 θ cos2 φ = T ≡ 2β1

β4 − β135 − β1

(4.574)

or the trivial solution

φ = 0, π. (4.575)

In the latter case, Aai interpolates only between the three phases (4.571). In par-
ticular, the previously discussed distorted B-phase is contained in it.

In either case, the function β becomes:

βζ = β4 sin
4 θ + (β1345 + β1T ) cos

4 θ + β2, (4.576)
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β
φ=0
ζ = β12 +

1

2
β345


sin4 θ + 2 cos4 θ


. (4.577)

Consider now the bending energy. Inserting (4.571) into (4.80) gives

fbend =
K

2
∆

2

(∂iϕ)

2(1 + sin2 θ) + (∂zϕ)
2(2− 3 sin2 θ)


. (4.578)

The orientation of the current with respect to the texture depends on the equilibrium
value of θ. If

sin2 θ <
>

2

3
, (4.579)

the current points in the x, y-plane, or in the z-direction, respectively. In these two
cases the bending energies are

fbend =
K

2
∆

2(∂iϕ)
2


1 + sin2 θ

3− 2 sin2 θ


. (4.580)

Therefore we identify

α =


1 + sin2 θ

3− 2 sin θ


, sin2 θ

< 2/3,
> 2/3.

(4.581)

In the absence of a current the extremal value for θ is given by

tan2 θ =
Tβ1 + β1345

β4

. (4.582)

In the Ginzburg-Landau domain we nd

T = −1

2
, tan2 θ =

3

4
, sin2 θ =

3

7
. (4.583)

At the value where sin θ = 2/3, both equations are solved at equal θ. Setting more
generally sin2 θ = x, we can easily calculate the critical current. For simplicity we
use only the weak-coupling values of βi and have

α = 1 + x, α′ = 1, α′′ = 0,

β = x2 +
3

4
(1− x)2 + 1 =

7

4


x2 − 6

7
x + 1


,

β ′ =
7

4


2x− 6

7


, β ′′ =

7

4
· 2. (4.584)

With these values, our equation (4.569) becomes linear and is solved by

x =
1

4
. (4.585)



4.10 Large Currents and Magnetic Fields in the Ginzburg-Landau Regime 247

At that point, the parameter τ = βα′/β ′α is equal to

τ =
19

10
, (4.586)

implying via Eq. (4.566) the equilibrium value of a

a2 =
19

24
. (4.587)

The corresponding critical current density is then from (4.567):

jc =


5

6 · 27
. (4.588)

Note that this current density is smaller than that of the B-phase by a factor
5/24 ∼ 1/2.
For consistency, we convince ourselves that at critical current the value of x is

smaller than at j = 0 so that the direction of the current with respect to the texture,
and therefore the choice of the bending energy with α = 1+ x, remains valid for all
equilibrium currents.

As a cross check of this method let us conrm the critical current of the B-phase
with gap distortion by using the parametrization (4.577) in the weak-coupling limit:

βφ=0 =
1

2


1 + x2 + 2(1− x)2


=

3

2
x2 − 2x+

3

2
. (4.589)

Here we start out with the B-phase where

x = sin2 θ =
2

3
. (4.590)

From our previous calculation we know that c ≤ a, which says that in all currents
the value of θ stays above the value implied by (4.590). Then we have to use the
bending energy with

x = 3− 2x. (4.591)

Inserting β, γ, β ′, γ′, β ′′γ′′ into (4.569), we nd the linear equation

x = sin2 θ =
9

11
(4.592)

which is indeed larger than (4.590). The associated values of τ, a2, and R are
−42

15
, 28

33
, and 113

4·(21)2 , so that the critical current density becomes

j2 = Ra4

1− a2


=

20

3

1

81
, (4.593)

as obtained before.
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4.11 Is 3He-A a Superuid?

Equipped with the calculations of the last section and the topological arguments
of Sections 4.8.5 and 4.8.6, we are now ready to address an important question:
Does superuid 3He really deserve the prex “super” in its name (apart from the
similarity in the formalism with that of the superconductor)? In order to answer
this question one usually performs a gedanken experiment of putting the liquid in
a long and wide torus, stirring it up to a uniform rotation along the axis, cooling it
down into the A- or B-phase, and waiting whether the liquid will slow down after a
nite amount of time. Superconductors and the bosonic superuid 4He will preserve
the rotation for a long time. Mathematically. the reason is that the order parameter
describing the condensate is ∆0e

iϕ with ϕ varying from zero to 2πN (where N is a
very large number) when going around the torus. The liquid can slow down only
if N decreases stepwise unit by unit. In order to do so the order parameter has to
vanish in a nite volume, for example by the formation of a narrow vortex ring. This
may form from a roton on the axis. With time, the radius increases until it reaches
the surface where it annihilates, thereby reducing N by one unit (see Fig. 4.29).

Figure 4.29 Superow in a torus which can relax by vortex rings. Figure shows ther

formation and their growth until they nally meet their death at the surface. In a super-

conductor or superuid 4He, these rings have to contain a core of normal liquid and are

therefore very costly in energy. This assures an extremely long lifetime of superow. In
3He-A, on the other hand, there can be coreless vortices which could accelerate the decay.

Since such a vortex ring contains a rather large amount of energy (the condensation
energy), the probability of this relaxation process is extremely small. Only at a very
narrow place (e.g., at a Josephson junction of two superconducting wires) can this
process be accelerated so that the relaxation takes place within minutes or seconds.

The maximal size of a current which is stable against this type of decay is reached
when the kinetic energy density of the superuid reaches the order of magnitude of
the condensation energy density. Then the liquid can use up the kinetic energy,
via uctuations, to become normal, and the phase eiϕ can unwind. Obviously, the
existence of a macroscopic superow hinges on the possibility of having large ux
numbers conserved topologically along the torus.

In the B-phase, this is indeed the case. According to (4.214) and (4.215), the
homotopy group describing the mapping of the axis of a torus into the parameter
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space of the B-phase contains the group of integer numbers Z which can pile up a
macroscopic superow. In the A-phase, on the other hand, one has in a large torus
π1 = Z2 [see (4.211)]. Hence, there is only one nontrivial mapping. The associated
ux is of unit strength and therefore necessarily microscopic. Thus it appears as if
the liquid 3He is not really “super” at all in comparison with superconductors and
superuid 4He.

We shall now show that this is, fortunately, not completely true. Although in
a much weaker sense, i.e., with much smaller critical currents and shorter lifetimes,
3He-A does support a stable superow. Moreover, as the temperature drops below
a certain value, say Tstab, there are even two separate supercurrents, which both
are topologically conserved [39]. Thus in the weaker sense, 3He-A is really a double

superuid .
In order to understand this, one has to observe that in the bulk it is not really

necessary to have an overwhelming potential barrier of condensation energy guaran-
teeing the stability at a macroscopic time scale. A barrier with a moderately large
energy density, say ρs/m

2ξ2b , can also prevent a state from decaying, and the length
scale characterizing the size of the barrier ξb can be quite a bit larger than the coher-
ence length ξ0. This can make a phase metastable, if the volume is suciently large.
As argued above, such a decay can only proceed via the nucleation of a vortex tube
of length L and diameter d with the energy (ρs/m

2ξ2b ) ·d
2L (for a potential barrier of

the order of the dipole force ξd ∼ 1000ξ0, this energy corresponds to ≈ 10−6 mK per
Cooper pair). The diameter d will adapt itself to the characteristic length scale of
the potential barrier, i.e., d ≈ ξb. Thus the energy of the vortex tube is (ρs/M2)L.
It is this number that enters the exponent in the Boltzmann factor dominating the
decay rate

1

τ
∼ 1

τ0
exp


−

ρs

m2

1

ξ2b
− fcurr


ξ2b
L

T


, (4.594)

where fcurr is the energy density of the current ow, and τ0 is the characteristic
time of vortex motion. This parameter varies for the decay mechanism associated
with dierent barriers, but not by many orders of magnitude. The main eect
of the smaller barrier energy lies in the signicant reduction of the critical energy
density which can be accumulated in the current (note that the barrier strength
parameter 1/ξb can be small enough to be cancelled by the energy density fcurr in
the exponential). As a consequence, if we are satised with a rather small critical
current, the potential barrier does not need to be completely unsurmountable to
allow the use of topological arguments to classify stable ow congurations.

The important property of 3He-A is that a current, once established, attracts
the l-vector into its direction via the second term in the energy (4.125):

−ρ0 (l · vs)
2 . (4.595)

It is this term which creates a potential barrier permitting a supercurrent to accumu-
late. In order to simplify the discussion we shall assume the torus to be suciently
long and wide to neglect its curvature and boundaries. Thus, the elds in the energy
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(4.125) can be assumed to depend only on the variable z (if we assume the z-axis
to coincide with the axis of the torus). In order to avoid the use of constraints
for respecting the curl condition (4.147) it is convenient to work directly with the
parametrization of l and in terms of Euler angles (4.120), (4.121), so that vs of
Eq. (4.124) becomes

vs = − 1

2m
(∇α + cos β∇γ) . (4.596)

We shall also express d in terms of directional angles as

d = (sin θ cosϕ, sin θ sinϕ, cos θ) . (4.597)

For pure z-variations of the elds we calculate the derivatives

∇ · l = − sin β βz; ∇× l = −γzl
⊥ − cos β βz

ez × l

|ez × l|
,

l · (∇× l) = − sin2 β γz; [l× (∇× l)]2 = cos2 β

β2
z + sin2 β γ2

z


, (4.598)

(∇ida)
2 = θ2z + sin2 θφ2

z; (l ·∇da)
2 = cos2 β


θ2z + sin2 θ φ2

z


,

and nd the energy density

2f =A(s)α2
z +G(s)γ2

z +2M(s)αzγz +B(s)β2
z +T (s)


θ2z + sφ2

z


+2

ρ
s

ξ⊥d
2


1− (l · d)2


,

(4.599)

where the coecients are the following functions of s ≡ sin2 β:

A(s) ≡ ρ
s + ρ0s; ρ

s ≡ ρs − ρ0,

B(s) ≡ Kb + (Ks −Kb)s,

G(s) ≡ ρ
s + (Kb − 2c0 + ρ0 − ρ

s) s+ (Kt −Kb + 2c0 − ρ0) s
2,

M(s) ≡ [ρ
s + (ρ0 − c0) s]

√
1− s,

T (s) ≡ Kd
1 −Kd

2 +KD
2 s. (4.600)

Here we have dropped several factors 2m by going to time units t0 in which 2m ≡ 1,
i.e., where

t0 =
vF
2pF

=
1

2m

is a unit of time. The energy possesses two mass currents

J1 ≡ − 1

2m

∂f

∂αz

= − 1

2m
[A(s)αz +M(s)γz] , (4.601)

J2 ≡ − 1

2m

∂f

∂[(α + γ)z/2]
= − 1

2m
[G(s)γz +M(s)αz + T (β)sφz] , (4.602)

which are separately conserved:

∂zJ1 = ∂2J2 = 0.



4.11 Is 3He-A a Superuid? 251

Note that such a conservation law is certainly not enough to stabilize a superow
since small dissipative eects neglected in (4.599) will ruin the time independence
and swallow up momentum and energy. To make the following discussion as trans-
parent as possible, let us go to units which are most natural for the problem at
hand: We shall measure all lengths in units of ld ≡ ξd, the energy in units of
fd ≡ ρ

s/(4m
2ξ2d), and the current density as multipoles of Jd ≡ ρ

s/(2mξd), respec-
tively. Physically, the fd is the energy density which the system would have if all d
and l-vectors were orthogonal, contrary to the dipole alignment force. The second
current component in (4.602 ) is the current which ows if the Bose condensate
moves with “dipole velocity” vd ≡ 1/2mξd parallel to l. Now, the energy 2f has
again the form (4.599) except that all coecients are divided by ρ

s and there is no
ρ
s/ξ

2
d in front of the dipole coupling. In the Ginzburg-Landau regime, in which the

parameters of the liquid satisfy the identities (4.127), the coecients simplify to

A(s) = 1 + s, B(s) =
1

2
(3− 2s), G(s) = 1− 1

2
s,

M(s) =
√
1− s, T (s) = 1 + s. (4.603)

Since we are interested in the system at a xed current we study the energy

2g ≡ 2(f − jγz)

= Agj
2 +Ggγ

2
z + 2Mgγzj + Bβ2

z + T

θ2z + sφ2

z


+ 2 (1− [l · d)2], (4.604)

where

Ag ≡ −A−1, Mg ≡ M/A, Gg ≡ G−M2/A ≡ ∆(s)/A, (4.605)

and

∆(s) ≡ GA−M2

=
s

ρ
s
2


ρ
sKb +


ρ
s(Kt −Kb) + (ρ0Kb − c20)


s +


ρ0(KtKb) + c20


s2


≡ s

∆0 +∆1s+∆2s

2

. (4.606)

In the Ginzburg-Landau regime, this becomes simply (see Appendix 4C)

∆(s) =
GL

s

2
(3− s). (4.607)

In order to gain as much experimental exibility as possible let us also add a magnetic
eld

g → g + gz (d ·H)2 . (4.608)

It is convenient to bring this to a form in which it can be compared most easily with
the dipole energy. Let Hdd be the magnetic eld (Hdd ≈ 300 /O) at which

gzH
2
dd = ρ

s/4m
2ξ2d. (4.609)
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If we measure H in terms of these units, say via the dimensionless quantity

h ≡ H/Hdd, (4.610)

we have

f =
ρ
s

4m2ξ2d
(d · h)2 , (4.611)

which for the energy (4.604) amounts to simply adding

2g → 2g − 2h2s. (4.612)

In order to obtain a rst estimate of the stability properties let us assume j and h
to be much smaller than one (i.e., current and eld energies are much smaller than
the characteristic dipole values). Then the d  l alignment force causes a complete
locking of these two vectors and we may set τ ≡ β, φ ≡ γ. Now the energy 2g reads

2gl = Agj
2 +Gl

gγ
2
z + 2Mgγzj + Blβ2

z − 2h2s (4.613)

where Gl
g, B

l have the same form as those in (4.605), but with Ks, Kt, Kb replaced
by

K l
s ≡ Ks +Kd

1 ,

K l
t ≡ Kt +Kd

1 ,

K l
b ≡ Kb +Kd

1 −Kd
2 , (4.614)

as shown in Appendix 4A. In the Ginzburg-Landau regime, their values are, if we
divide out the factor ρ

s:

K l
s =

1

2
+ 2 =

5

2
,

K l
t =

1

2
+ 2 =

5

2
, (4.615)

K l
b =

3

2
+ 2− 1 =

5

2
.

Consider now the problem of stability of the d l jh conguration with s = 0.
Expanding the energy up to the rst power in s gives15

2g= j2+ 2jγz +
Kb

g
s
β2
z +


ρ0

ρ

s
j2 − 2h2


s+

Kb

ρ

s
sγ2

z − 2
c0+

1
2
ρ
s

ρ

s

sγzj (4.616)

= j2+ 2jγz +
Kb

ρ

s
β2
z +



ρ0

ρ

s


1−


c0+

ρ

s

2

2

ρ0Kb


 j2 − 2h2


s+

Kb

ρ

s
s


γz −

c0+
ρ

s

2

Kb

j




2

.

15Here we omit the superscript l, and understand all K ′s as locked values (4.614).
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Note that the term linear in γz is a pure surface term and does not inuence the
stability. Let us introduce the quantity

K ≡ ρ0Kb
c0 +

ρ

s

2

2 . (4.617)

For small β, the term proportional to β2 is

2


1

2

ρ0

ρ

s


1−K−1


− h2

j2


β2j2. (4.618)

Hence the position at β = 0 is stable if and only if

h2

j2
≤ h2

c

j2
≡ 1

2

ρ0

ρ

s
(1−K−1). (4.619)

In the absence of a magnetic eld, stability implies [36]

K > 1.

In the Ginzburg-Landau regime, this is barely satised:

K =
GL

10

9
. (4.620)

For decreasing temperature, however, ρ0 is known to vanish. Hence we expect K
to cross eventually the line K = 1. If one uses the energy parameters (4.126), but
with the Fermi liquid corrections of Subsection 4.9.4 [37], one can argue that this
will happen well within the A-phase at a temperature [38]

Tstab ≡ T (K = 1) ≈ 0.86 Tc. (4.621)

Thus we can conclude: For T ∈ (Tstab, Tc), the presence of a superow acts self-
stabilizing. It creates its own potential well, which prevents the free motion of d  l

away from the direction of the current. In the parameter space SO(3) of the d  l -
phase, this corresponds to a potential mountain around the equatorial region (see
Fig. 4.30). This mountain is sucient to prevent the deformation of contours to the
two basic ones (corresponding to integer and half-integer spin representation). For
these deformations, the passage of the equator would have to be unhindered (see
Fig. 4.31).

It is easy to convince oneself that the SO3-sphere with forbidden equatorial
regions allows an innity of inequivalent paths: The allowed type within the SO(3)
sphere has its upper face coinciding with the lower one (except for a reection on the
axis). The parameter space becomes equivalent to a torus and π1 = Z. Therefore
there are again large quantum numbers which are conserved topologically in the
weaker sense discussed above. Thus there exists indeed superow in 3He-A.
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Figure 4.30 In the presence of a superow in 3He-A, the l-vector is attracted to the
direction of ow. In the parameter space of 3He-A this force corresponds to forbidding
the equator of the sphere, thereby favoring a conical section. Since diametrally opposite
points are identical, the topology is innitely connected. The gure shows an example of
a closed curve with two breaks.

Figure 4.31 Doubly connected parameter space of the rotation group corresponding to

integer and half-integer spin representations. Note that the continuous deformation of

arbitrary contours to the two fundamental ones (either a point or a line running from a

point at the surface to the diametrally opposite point) always has to pass via the equator

of the sphere. An alignment force between l and the current which forbids the equator of

the sphere therefore changes drastically the topology to being innitely connected.

Note that in the dipole-locked regime with β0 = 0 both currents (4.602) and
(4.601) coincide and are equal to

j1 ≡ J1/Jd = j2 ≡ J2/Jd = − (αz + γz) . (4.622)
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Figure 4.32 Helical texture in the presence of a supercurrent. The vectors show the
directions of l which rotate around the axis of superow when preceding along the z-axis.
The angle of inclination has a constant value β0. The pitch of the helix is constant with
a ratio γz/j ≈ (c0 + ρ

s) /Kb ≈ 3
5 .

Topological conservation in a torus implies that αz + γz is pinned down at 2π/L
times an integer number, say N , when going once around the axis. Hence both
currents are topologically stable at a value

j1 = j2 = 2πN/L, (4.623)

where L is the length of the torus.

What happens when the temperature drops below Tstab? Then the quadratic
term becomes negative and β starts moving away from the forward direction. We
can then show that the higher orders in β stop this motion at a value β0 = 0. In
this case the coecient of the last term in (4.616) becomes nite so that γz will be
driven to an average value

γz ≈ γ0
z ≡ c0 +

ρ

s

2

Kb

j =
GL

3

5
j. (4.624)

A texture with xed angle of inclination β0 and γz = γ0
z looks like a helix with

constant pitch γ0
z (see Fig. 4.32).

It is in this helical texture that the two currents (4.601) and (4.602) no longer
coincide and, moreover, become both conserved topologically [39].
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In order to prove the dynamic stability of the helix we rst consider all stationary
solutions. Since 2g does not depend on γ, a solution at s ≡ s0 is stationary if and
only if16

2g′ = A′
gj

2 + 2M ′
gγzj +G′

gγ
2
z − 2h2 = 0. (4.625)

For every s0 there are two values of γz at which this happens:

γ±
z

j
= −M ′

g

G′
g

±



M ′

g

G′
g

2

− A′
g

G′
g

+ 2
h2

j2
1

G′
g

. (4.626)

Since M and G are simpler expressions than Mg and Gg, we use

M ′
g =

M ′A− AM ′

A2
=
GL

− 1

2
√
1− s

, (4.627)

G′
g = G′ − 2MM ′/A+M2A′/A2 =

GL


5 + 6s+ 9s2 + 4s3


/4(1 + s)2, (4.628)

which satisfy

M ′
g
2 −G′

gA
′
g =


M ′2 −G′A′


/A2, (4.629)

to write [see (4.605) and the forthcoming Appendix 4C]

γ±
z

j
=


A2G′ − 2MM ′A+M2A′

−1
(4.630)

×

−(M ′A−MA′)±A


M ′2 −G′A′ + A2G′

g
2h2/j2



=
GL

√
1− s


5 + 6s+ 9s2 + 4s3

−1
(4.631)

×

3− s±


(3− s)2 − 2[1− (1 + s)22h2/j2](5 + 6s+ 9s2 + 4s3)(1− s)


.

This equation has two solutions if

M ′2 −G′A′ −A2G′
g2h

2/j2 > 0. (4.632)

Consider at rst the case h = 0. After a somewhat tedious calculation one can write

M ′2 −G′A′ = α(s− s+)(s− s−)/4(1− s), (4.633)

with

s± ≡ β

α


1±


1 + 4αKbρ0(1−K−1)/βρ

s
2


, (4.634)

where

α ≡

ρ202ρ0c0 + gc20 + 8(Kt −Kb)ρ0


/ρ

s
2 =

GL
8, (4.635)

16As we noted after Eq. (4.616), a linear term in γz does not inuence the eld equation of the
system since it is a pure surface term. It is a mere constant after integration over z.
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Figure 4.33 Three dierent regions in which there are equilibrium congurations of the

texture at H = 0 (schematically).

β =
2ρ0

(c0 +
1
2
ρ


s)ρ


s
2


3c0Kb(K

−1 − 1) + (c0 +
1

2
ρ
s)(2Kt −

1

2
ρ
s)−

3

2
ρ
sKb


,

(4.636)

and K is the ratio (4.617). In the absence of a magnetic eld, s± give the boundaries
of stationary solutions. Due to our incomplete knowledge of the parameters of the
liquid we shall estimate the regions in the following fashion: Since the passage of
K through unity is eventually enforced by the vanishing of ρ0, we shall assume, for
simplicity, that all coecients have their Ginzburg-Landau value in the list (4.127),
except for ρ0 which we assume to be equal to

ρ0 = ρ
s(1− ǫ) = ρ

s

9

10
K. (4.637)

Then

K =
10

9
(1− ǫ), ǫ = 1− 9

10
K, (4.638)

and

α = 8 + ǫ2, β = 3 + 6ǫ, (4.639)

so that
s± =

GL


3 + 6ǫ± (1− ǫ)

√
17− 10ǫ


/(8 + ǫ2). (4.640)

The curves s±(ǫ) are shown in Fig. 4.33.
The regions above the upper and below the lower curve correspond to stationary

solutions. As the lower curve drops underneath the axis (ǫ < 1/10), the solution
becomes meaningless. But this is precisely the region discussed before in which the
β = 0 solution is stable.
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In the following we shall try to keep the discussion as general as possible but
nd it useful to indicate a size and temperature dependence of more complicated
expressions by exhibiting their generalized Ginzburg-Landau form in which only ρ0
deviates from the values (4.127) via (4.637). This limit will be indicated with a
symbol =

L
and be referred to as L-limit. The Ginzburg-Landau case (4.127) will be

exhibited with an equality sign =
GL

, as before.
Let us now include the magnetic eld. Then the boundaries of stationary solu-

tions are

α(s− s†)(s− s−) +
8h2

j2


∆0 + 2∆1s+


3∆2 +

ρ0

ρ
s
∆1


s2 + 2

ρ0

ρ
s
∆2s

3


(1− s)

=
GL

8s2 − 6s− 1 + 4
h2

j2


5 + 6s+ 9s2


(1− s) ≥ 0. (4.641)

This equation is no longer quadratic in s and its solution is complicated. It is
gratifying to note that the physically interesting regions can easily be studied with
a good approximation. First observe that at s ≥ 0 there are stationary solutions if
the magnetic eld is larger than the value given by

αs†s− + 8
h2
c

j2
∆0 = 0. (4.642)

This implies [see (4.233)]:

h2
c

j2
= −αs†s−

8Kb

ρ
s. (4.643)

But from (4.634) one has

αs†s= − 4
Kbρ0

ρ

s
2


1−K−1


, (4.644)

so that the value of hc from (4.643) coincides with the critical value determined
previously from the stability of the texture with β = 0 (see (4.619). Thus as h
exceeds hc, the aligned solution destabilizes in favor of a new extremal solution.
The new equilibrium position can be calculated to lowest order in ∆h2 ≡ h2h2

c by
expanding formula (4.641):


8
h2
c

j2
(2∆1 −∆0)− (s† + s−)α


s+ 8

∆h2

j2
> 0, (4.645)

which amounts to

s < s−h ≡ 4

β − 4h2
c

j2
(2∆1 −∆c)

∆j2

j2
. (4.646)

Using the limiting value

h2
c

j2
=
L

(1− 10ǫ) /20, (4.647)
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we estimate the prefactor to be

4

β − 4h2
c

j2
(2∆1 −∆0)

=
L

10

3 + 6ǫ− (1− 10ǫ)2/10
(4.648)

=


100/29
100/36

for
ǫ = 0, T = Tc,
ǫ = 1/10, T = Tstab ,

(4.649)

which is therefore ≈ 1/3 for all temperatures between Tc and Tstab.
Within this small-s region we can now solve (4.626) for γ±

a . Since γz goes with
the square root of s−s−h , sh, it is sucient to keep, for small ∆h2, only the constants
in the other terms and we nd

γ±
z

j
≈ c0 +

1
2
ρ
s

Kb

±
ρ
s

2Kb


α(s− s−h )(s

−
h − s†h) (4.650)

=
c0 +

1
2
ρ
s

Kb

±
ρ
s

Kb


β

2


1 +

α

β2

4Kbρ0

ρ

s
2


1−K−1

1/4
s−h − s.

If we choose, in addition, also K ≈ 1, we have

γz

j
≈ γ0

z

j
+±

ρ
s

Kb


β

2


s−h − s, (4.651)

which in the L-limit reads explicitly

γz

j
≈
L

3

5


1±

5

4


20

9

h2

j2
− (K − 1)


− s


 . (4.652)

As the magnetic eld increases one can solve this equation for the external positions
only numerically. The results are shown in Figs. 4.34 a)–c) for three dierent values
of ǫ : ǫ = 0, ǫ = 0.1, ǫ = 0.2. Note that the small-s regions coincide if the magnetic
eld lines are labelled by ∆h2/j2 rather than h2/j2. Let us now nd out which of
these positions correspond to stable extrema. The energy density can be written in
the form

2g = B̄s2z + V (s, γz). (4.653)

The stationary points were determined from

∂V

∂s


s0, γ±

z


= 0. (4.654)

If we now assume linear oscillations around this value we have

2δ2g = B̄(δsz)
2 +

∂V

∂γz
(s0, γ±

z )(δγz)

+
∂2V

∂s2
(s0, γ±

z ) + 2
∂2V

∂s∂γz
(s0, γ

±
z ) +

∂2V

∂γz
(s0, γ±

z ). (4.655)
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Figure 4.34 Pitch values for stationary helical solutions as a function of the angle of

inclination β0. The curves are lines of constant ratio between magnetic eld and current.

The shaded areas are regions of stability for the helical texture, the left one has l close

to the direction of ow, the right one has l transverse to the ow. a) The temperature

lies close to the transition point; b) at the lower temperature T = Tstab, at which the

helix begins forming in a zero magnetic eld; c) at a temperature below T = Tstab. The

temperature dependence of the hydrodynamic coecients is simplied assuming that only

ρ0 diers from the Ginzburg-Landau values.
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The second term is a pure surface term and can be ignored. The equations of motion
of (4.655) are linear. Therefore the superposition principle holds and we can test
stability separately by using plane waves of an arbitrary wave vector k. With such
an ansatz 2δ2g becomes

2δ2g =

V ′ + B̄k2


(δs)2 + 2V̇ ′k(δs)/(δγ) + V̈ k2(δγ)2. (4.656)

This is positive-denite for all k if

V̈ ≡ ∂2V

∂γ2
z

> 0, (4.657)

and
V ′′V̈ − V̇ ′2 > 0. (4.658)

In terms of the functions dened in (4.605), these conditions read

Gg > 0, (4.659)

2

G′′

gγ
±
z
2 + 2M ′′

g jγ
±
z + A′′

gj
2

Gg − 4


G′

g +M ′
gjγ

±
z

2
> 0. (4.660)

Using (4.626), the second condition takes the alternative form

D± =

G′′

gγ
±
z
2 + 2M ′′

g jγ
±
z + A′′

gj
2
 Gg

2G′
g
2
− (γ+

z − γ−
z )

2

4j2
> 0. (4.661)

Now it is easy to see that Gg > 0 for all s, and only (4.661) remains to be tested.
Analytically, the small-s region is simple to study. Since

Gg

2G′
g
2
≈ ρ

s

2Kb

s, (4.662)

we have to satisfy

ρ
s

2Kb


−2

ρ20
ρ


s
2
+


c0 −

ρ
s

4
+ 2

ρ0c0
ρ


s


1

ρ

s

c0 +
1
2
ρ
s

Kb

+


2 (Kt −Kb) + 2c0 +

ρ
s

2
− 2

(c0 +
1
2
ρ
s)

2

ρ

s


c0 +

1
2
ρ
s

Kb

2


 s

>
ρ
s
2

K2
b

β

2


1 +

α

β2

4Kbρ0

ρ

s
2

(1−K−1)(s−h − s). (4.663)

For K ≈ 1, we can keep only terms linear in K − 1, s−h , s. Using the generalized
Ginzburg-Landau values for the parameters gives

1

5


1

2

36

25
+

1

4


9

10

2

(K − 1)


s >

36

125
(s−h − s). (4.664)
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Figure 4.35 Regions of stable helical texture, II- and II+. In the region of overlap there

are two possible pitch values γ+z , γ−z for which a helix can be stable.

But on the left-hand side, K − 1 can be neglected since it contributes higher orders
in s. Thus we nd that the extremal solutions, which exist for

s < s−h , (4.665)

are stable if

s >
2

3
s−h . (4.666)

Using (4.652), this result can also be phrased in the form

γz − γ0

z

γ0
z

2

<
1

3
(1−K). (4.667)

In Fig. 4.35, this statement amounts to the upper third portion underneath the curve
s−h to be stable at s ≈ 0. In general, the stability can be decided only numerically.
In Figs. 4.34 a–c we have encircled the stable regions with a dashed line. Note that
for xed h2, the instability sets in as γ+

z and γ−
z become separated. Looking at the

expression (4.661) the reason is clear: The second derivative V ′ is positive but not
very large. If the branches separate too much, the positivity cannot be maintained.
We see that as h2 increases, the helix is stable only up to s ≈ 0.3−0.45. Beyond this
it collapses. For completeness, we have also indicated the stable regions in Fig. 4.36.

Note that the existence of the dipole force is essential for stability. First of all,
the position s = 0 is never stable if the vectors d and l are not coupled at all. To
see this remember that the constant K of (4.617) would be, in the Ginzburg-Landau
region [compare (4.614)], considerably smaller than unity:

K =
Kbρ0

(c0 +
1
2
ρ


s)2

=
2

3
< 1. (4.668)

There is no hope that this situation reverses for smaller temperatures (since ρ0 → 0
for small T ). The magnetic eld does not help since it couples only to d. Also the
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Figure 4.36 Regions of a stable helical texture (shaded areas). Contrary to Figs. 4.33

and 4.35, the full temperature dependence of the hydrodynamic coecients is taken into

account, including Fermi liquid corrections. The regions of a stable helical texture are

denoted by II- and II+. In the overlap region, there are two possible pitch values γ+z , γ−z
for which a helix can be stable.

hope that a position s = 0 may be stable is futile, even though there are stationary
solutions: If we calculate in the Ginzburg-Landau limit

M ′2 −A′G′ =
1

4(1− s)
− (1)


−1

2


> 0, (4.669)

this is fullled for all physical values s = sin2 β ∈ (0, 1) with

γ±
z

j
=

1√
1− s

1

3− 2s− s2


3− s± (1 + s)

√
3− s


. (4.670)

At s = 0, the ratios are 1.577 and 0.4226. For s → 1, the upper branch tends
monotonously to innity with 1/

√
1− s, the lower goes to zero with

√
1− s. Thus

(γ+
z − γ−

z )
2
/j2 increases rapidly. It is exactly for this reason why there is no hope

of making D > 0 in (4.661). The second term is too large (remembering that the
separation between γ+

z and γ−
z is also the origin of the instability for small s in the

dipole-locked regime).
Recognizing this fact we are compelled to study the eect of the dipole force

with more sensitivity than implied by the assumption of dipole locking in the above
discussion. Certainly, the results gained there will be valid for h, j ≪ 1, i.e., as
long as the dipole force is strong with respect to the other alignment forces. What
happens if h, j grow to a comparable size? Consider again rst the stability of the
forward position where dljh. For small, θ, β the quadratic part in the energy
can be written as

2g = const +
1

ρ

s


ρ0j

2β2 +Kb


β2
z + β2χ2

z


− 2


c0 +

ρ
s

2


β2γzj
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+

Kd

1 −Kd
2

 
θ2z + β2φ2

z


+ 2


θ2 + β2 − 2θβω(γ − φ)


− 2h2β2


.

(4.671)

Introducing coordinates which are regular at the origin

u = β cos γ, v = β sin γ, ū = θ cosφ, v̄ = θ sin φ, (4.672)

so that

γz = (uvz − vuz) /
√
u2 + v2; φz = (ūv̄z − v̄ūz) /

√
ū2 + v̄2, (4.673)

the energy becomes

2g =
1

ρ
s


ρ0j

2

u2 + v2


+Kb


u2
z + v2z


− 2


c0 +

ρ
s

2


(uvz − vuz) j

+

Kd

1 −Kd
2

 
ūz

2 + v̄2z

+ 2


(u− ū)2 + (v − v̄)2


− 2h2


ū2 + v̄2


.

Since the corresponding equations of motion are linear, we can again test the stability
of all plane waves

u, ū ∼ sin kx; v, v̄ ∼ cos kx, (4.674)

each of which gives

2g =
1

ρ

s


ρ0j

2 +Kbk
2 − 2kj


c0 +

ρ
s

2


+ 2ρ

s


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

+

Kd

1 −Kd
2


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
h2 − 1


ρ
s

 
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

×





1

ρ

s


ρ0j2 +Kbk

2 − 2kj


c0 +

ρ
s

2


− 4ρ

s
2


Kd

1 −Kd
2


k2 − 2(h2 − 1)ρ

s

+ 2ρ
s




×

u2 + v2

 
Kd

1 −Kd
2


k2 − 2(h2 − 1)ρ

s



×





ū− 2ρ

s
Kd

1 −Kd
2


k2 − 2(h2 − 1)ρ

s

u




2

+ (u → v)







. (4.675)

Since Kd
1 −Kd

2 > 0, the second term is positive denite for all k if:

h2 < 1. (4.676)

Thus we remain with deciding the region in the h, p-plane for which

A(k) = ρ0j
2 +Kbk

2 + 2ρ − 2kj


c0 +

ρ
s

2


− 4ρ

s
2


Kd

1 −Kd
2


k2 − 2(h2 − 1)ρ

s

= ρ0j
2 +Kb


k − c0 +

ρ

s

2

Kb

j




2

−Kb


c0 +

ρ

s

2

Kb




2

+
2ρ

s


1− 2ρ

s
Kd

1 −Kd
2


k2 − 2 (h2 − 1) ρ

s


 > 0. (4.677)
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Figure 4.37 If the assumption of dipole locking is relaxed, the regions of stability shrink

as shown in this gure. The entire region to the left of the line j/h =
√
20 is stable in

the dipole-locked limit. The nite strength of dipole locking reduces this to region I. It is

reduced to the origin, depending on whether the temperature is T = Tc or T = Tstab. Here

a a stable helix can begin forming. For completeness, we have given also the region II for a

temperature half-way between Tc and Tstab. Similarly, if dipole locking would be perfect,

the whole region below j/h =

40/7 would be stable, with d  l pointing orthogonal to

the magnetic eld. The niteness of the dipole locking force reduces this region to the

solid curve which becomes horizontal for large h.

Only the regions with k ≈ h2/(Kd
1 −Kd

2 ) and k ≈ (c0 +
ρ

s

2
)j/Kb are dangerous. If

we assume h, j ≪ 1, then k ≪ 1 is also a dangerous value, and we expand

A(k) ≈ ρ0j
2 +Kb


k − c0 +

ρ

s

2

Kb

j




2

−Kb


c0 +

ρ

s

2

Kb




2

+ 2ρ
s


−h2 +


Kd

1 −Kd
2


k2/2ρ

s



= ρ0j
2 + Ll

b


k − c0 +

ρ

s

2

Kbl
j




2

− ρ0K
−1 − 2ρ

sh
2 > 0. (4.678)

From this we nd

h2

j
< −1

2

ρ0

ρ

s


K−1 − 1


=
L

1

2


1

10
− ǫ


, (4.679)

in agreement with the dipole-locked result (4.619), as it should. Thus the straight
line (4.679) will now be tangential to the stability curve at the origin. For larger
values of h, that curve bends upwards and cuts the z axis at some nite value of j.
In Fig. 4.37 we have plotted the new stability curves for the generalized Ginzburg-
Landau constants with ρ0 = ρ

s (1− ǫ) at ǫ = 0, ǫ = 0.05 and ǫ = 0.1. Even at h = 0,
the forward texture is stable only for j ≤ jmax = 1.17, 0.83, 0, respectively. The
reason for the onset of stability at h = 0 is easy to understand: The current tries to
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Figure 4.38 As a stable helix forms in the presence of a superow in 3He-A, the parameter

space reduces even more. In addition to the equator being forbidden by the alignment

force, a narrow cylinder along the axis is outruled as well. The topology of the remainder is

doubly-innitely connected. Continuous paths can either break at the surface and continue

from the diametrally opposite point or they can wind an arbitrary number of times around

the central one.

curl up the texture in form of a helix (see the second term of (4.678)). The dipole
force drags d behind. But the bending energies of d favor a uniform d texture.
Thus, if the current is too strong, the d  l alignment breaks. As soon as d and l

are decoupled, the texture destabilizes, as was observed before in the general case.
The full analysis of equilibrium positions in the unlocked case is tedious. How-

ever, as long as j, h are small enough, say j < 3
4
jmax, h < hc, the results of the

dipole locked situation are perfectly applicable.
Let us now turn to a disussion of the physical content of the helix which was

alluded to in the beginning of this chapter. As the helix forms at h > hc, the β = 0
position turns into a potential mountain which forbids the alignment of d  h with
j  h. In the SO(3) parameter space of the dipole-locked A-phase, this amounts to
removing a narrow cylindrical region running along the axis (shown in Fig. 4.38).
Together with the potential mountain around the equator discussed before, the
parameter space becomes now doubly-innitely connected:

π1 = Z + Z. (4.680)

In addition to paths running from south to north, continuing again at the diamet-
rically opposite point at the south, etc., also those which wind an arbitrary number
of times around the narrow cylinder become topologically inequivalent. Physically,
this corresponds to the fact that in a torus not only

αz + γz = 2πN/L, (4.681)

but also the average pitch
γz = 2πM/L, (4.682)
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Figure 4.39 Angle of inclination as a function of the magnetic eld at dierent tem-

peratures. The values K = 10
9 , 1,

8
9 correspond to T = Tc, T = Tstab, T < Tstab. As

the magnetic eld is increased, the helix collapses. Then the magnetic eld is so strong

that it tears apart the stabilizing dipole locking between 1 and d. The solid curves show

the behavior if only the temperature dependence of ρ0 is taken into account. The dashed

curves contain the full T -dependence.

are both topological invariants. A consequence of this is that, when increasing the
magnetic eld beyond hc, or when decreasing the temperature so that h2

c < 0, the

pitch value γz ≈

c0 +

1
2
ρ
s


/Kbj = γ0

z at which the helix begins forming [due to

the last term in (4.616)] will be frozen. Therefore the angle of inclination β0 will be
pinned down topologically, precisely at the value corresponding to s−h [see (4.646)].

In Fig. 4.39 we have displayed the curves of constant γz/(αz + γz) = γ0
z/j for

increasing h2/j2 at xed values of ǫ, until the point of collapse. These curves can
be deduced from plots like those in Figs. 4.34 a)–c), by following almost a straight
line to the right starting from γz/j = 3

5
. The line is not exactly straight since

this would imply γz/j = 3
5
rather than γz/(αz + γ2) = 3

5
. The relation is, in the

Ginzburg-Landau limit,

γz

j
=
GL

γz/(αz + γz)

1 + s− (1 + s−
√
1− s)γz/(αz + γz)

≈ 3

5


1− 1

10
sin2 β + . . .


, (4.683)

so that there is very little deviation for small s.

The separate topological conservation of the two currents is intimately related
with the fact that 3He-A contains p-wave Cooper pairs. Remembering our discussion
of Eq. (4.131) there are two current terms of dierent physical origin. The helix
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stabilizes both currents topologically and provides, in addition, the perfect tool for
measuring their ratio. The pair current

Jpair = ρsvs − ρ0 l(l · vs) (4.684)

is a sum of two terms

Jpair =−

ρs − ρ0 cos

2 β
 1

2m
(αz + cos βγz) ez + ρ0l

⊥ cos β
1

2m
(αz + cos βγz)

= − 1

2m
A (αz + cos βγz) ez + ρ0l

⊥ cos β
1

2m
(αz + cos βγz) , (4.685)

of which the rst ows in the z-direction, while the second forms stratied layers of
currents whose direction changes with l⊥ when proceeding along the helix.

The orbital current

Jorb = c (∇× l)− c0l [l · (∇× l)]

= c0 cos β sin2 βγzez −

c− c0 sin

2

γzl

⊥ + c cos ββzeϕ, (4.686)

on the other hand, is the sum of three terms, the last of which points into the
azimuthal direction

eϕ ≡ (ez × l) /|ez × l|,

and vanishes in equilibrium where βz = 0. With β = β0 and αz, γz frozen topolog-
ically, both currents are determined. In particular, the ratio of their z-components
is

Jorb
z

Jpair
z

= 2mc0 sin
2 β0 cos β0

γz

(ρs − ρ0 cos2 β0) (dz + cos β0γz)
. (4.687)

There is a simple way to measure sin2 β0. As is well-known, sound attenuation is
sensitive to the angle between the l-vector and the direction of propagation of the
sound [43]. In fact, if δ denotes this angle, the attenuation constant is given by

α ≡ α⊥ cos4 δ + 2αc sin
2 5 cos2 δ + α⊥ sin4 δ,

= (α11 − 2αc + α⊥) cos
4 δ + 2 (αcα⊥) cos

2 δ + α⊥. (4.688)

If the helix is probed with a transverse signal, the angle δ becomes

cos δ = sin β cos γ. (4.689)

Therefore one has the averages

cos2 δ = sin2 β0cos2 γ =
1

2
sin2 β, cos4 δ = sin4 β0cos4 γ =

3

8
sin4 β, (4.690)

so that

α = α⊥ + (αc − α⊥) sin
2 β0 +

3

8
sin4 β. (4.691)
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Figure 4.40 Sound attenuation can be parametrized in terms of three constants. Ex-

perimental measurements are shown here and compared with theoretical calculations of

Ref. [43]. The most sensitive test for a helical texture can be performed in the region of

largest dierence between α⊥ and α11.

The experimental values for the coecients are displayed in Fig. 4.40 (taken from
Ref. [43]). Thus, if one goes into a region of large |αc−α⊥|, and turns on a magnetic
eld, α will stay constant for h < hc [from (4.619) and (4.647)]. For h > hc it will
begin to drop linearly in ∆h2/j2 (if αcα⊥ < 0) with a slope ≈ (αc − α⊥) 3∆h2/j2.
It appears that this eect has been seen at the University of California in La Jolla
[42].17

Until now we have focussed our discussion on helical textures which may develop
from a previously aligned d  l  j  h conguration. A look at Figs. 4.34 a–c shows
that there is another domain of stability for s ≈ 1 (open helices), as h2/j2 exceeds
some critical value h2

c2
/j2. The reason for this is obvious: If h is large enough, a

potential valley is created for the d-vector at θ ≈ π/2. Dipole locking stabilizes also
l in this position. In order to calculate the boundary in the dipole-locked regime,
consider the energy for s ≈ 1:

2g = const + 2


h2

j2
− 1

2

ρ0ρ

s

ρ2s


(1− s)j2 + 2

√
1− s

ρs − c0
ρs

γzj

+
Kt

ρ
s
γ2
z

= const + 2


h

2

j2
− ρ0ρ


s

2ρ2s


ρsc0
ρs

2
ρ
s

2Kt


 j2

17I thank Prof. Kazumi Maki for a discussion of this point, and of the experiment performed by
R.L. Kleinberg at La Jolla [42].
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+
Kt

ρ

s


γz +

√
1s


ρs − c0

ρs


ρ
s

Kt

2
. (4.692)

Thus the β ≈ π/2 -position is stable as long as

h2

j2
>

h2
c2

j2
=

ρ
s

2ρ2s


ρ0 +

(ρs − c0)
2

Kt



=
L

7

40

(1− ǫ)

1− 2

7
ǫ


(1− ǫ/2)2
. (4.693)

This boundary was shown in Fig. 4.37 for T ≈ Tc (i.e., ǫ ≈ 0). It is important to
realize that for h > hc2, not only the angle β = π/2, but also an entire neighborhood
of it is stable. This can easily be shown: Since M ′

g is diverging for s ≈ 1 as 1/
√
1− s,

the solution of (4.630) becomes simply

γ−
z

j
≈ 1

M ′
g


h2

j2
− A′

g

2

 
s≈1

=
L

− 2
2− ǫ

1− ǫ

√
1− s


h2

j2
− 1− ǫ

8(1− ǫ/2)2


,

γ+
z

j
≈ −2

M ′
g

G′
g


s≈1

=
L

1√
1− s

1− ǫ

6− 5
2
ǫ
, (4.694)

which can be compared with Fig. 4.34 a)–c).
Now the rst stability criterion (4.659) is fullled trivially:

Gg|s=1 =
Kt

ρ

s
> 0. (4.695)

The second criterion on the determinant in Eq. (4.661) is, on the other hand, dom-
inated by the singularity in M ′′

g where

2M ′′
g jγ

±
z

Gg

2G′
g
2
>≈

γ+
z
2

4j2
. (4.696)

Inserting (4.694) we see that only the negative values of γ−
z on the lower branch can

satisfy this under the condition:

h2

j2
− A′

g

2
>

M ′
g
2

M ′′
g

1

Gg

. (4.697)

Inserting the parameters of the liquid, this becomes exactly the same condition
as (4.693), but now it guarantees stability of all positions in the neighborhood of
s ≈ 1. Note that, contrary to s = 0, where s = 0 and s = 0 correspond to two
dierent parameter manifolds, the point s = 1 is in no way special as compared to
its neighborhood.
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If dipole locking is relaxed, the straight boundary (4.693) in the j, h plane will
curve for larger values of j (see Fig. 4.37), and will eventually approach an asymp-
totic line j = jmax. In order to nd jmax, consider the terms of the energy quadratic
in β̃ ≡ β − π/2, θ̃ ≡ θ − π/2, γ, φ:

2g = const + 2


h2

j2
θ̃ − ρ0ρ


s

2ρ2s
β̃2


j2 +Ksβ̃

2
z + 2β̃

ρsc0
ρs

γzj

+
Kt

ρ

s
γ2
z +

Kd
1

ρ

s


θ2z + φ2

z


+ 2


θ̃ − β̃

2
+ 2 (γ − φ)2 , (4.698)

where now Ks, Kt are the unlocked values (Ks =
GL

Kt =
GL

1

2
also Kd

1 =
GL

2). For a

plane wave ansatz this becomes

2g = const +B̃β̃2 + T̃ θ̃2 − 4θ̃β̃ + G̃γ2 + 2Mjkβ̃γ + F̃φ2 − 4γφ, (4.699)

with

B̃ = Ksk
2 − ρ0ρ


s

ρ2s
j2 + 2,

G̃ =
Kt

ρ

s
k2 + 2, (4.700)

T̃ =
Kd

1

ρ

s
k2 + 2h2 + 2,

F̃ =
Kd

1

ρs
k2 + 2.

After a few quadratic completions one nds

2g = const + B̄β̃2 + T̃ θ̄2 + Ḡγ̄2 + F̃ φ̄2, (4.701)

with

Ḡ ≡ G̃ − 4/F̃ =
K l

t

ρ
s
k2


1 +

KtK
d
1

2K l
tρ


s
k2


1 +

1

2

Kd
1

ρ
s
k2


,

B̄ = B̃ − M̃2/Ḡj2 − 4/T̃ (4.702)

=
Ks

ρ

s
k2 − ρ0ρ


s

ρ2s
j2 + 2−


ρs − c0

ρs

2
k2

G
j2 − 2

Kd
1

2ρ

s

k2 + h2 + 1
,

and new angles

θ̄ = θ̃ − β̃/T̃ ,

γ̄ = γ −

Mjk/Ḡ


β, (4.703)

φ̄ = φ− γ/F̃ .
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We now observe that F̃ ≥ 0, T̃ ≥ 0, Ḡ ≥ 0, and that the quadratic form (4.701)
is positive-denite for all k if

B̄(k) > 0. (4.704)

For small h2, j2, we can expand in h2, j2, and k2 and recover the dipole-locked result
(4.693). As h increases, the stability curve approaches the line j = jmax determined
by the h = ∞ version of (4.704) which renders

j2max −
2ρ20/ρ


s

ρ0 +
(ρs−c0)2

Kl
t

=
GL

40

7
. (4.705)

In fact, if the coecients are close enough to their Ginzburg-Landau values, the
value B̄(k = 0) is the most dangerous one, yielding the boundary curve,

j2 ≤ 2ρ2s
ρ


s

1

ρ0 +
(ρs−c0)2

Kl
t

h2

h2 + 1
, (4.706)

which starts out as (4.693) and becomes horizontal for h ≫ 1 (see Fig. 4.37).
A nal remark concerns the possibility that the stability discussion presented here

becomes invalid due to transverse oscillations which we have neglected. Certainly,
these oscillations must be included to believe the above stability criteria. This
makes the discussion of the energy much more tedious. Until now, only oscillations
with very small transverse momentum have been tested. Fortunately it turns out
that at least for this limit the transverse oscillations have higher energies than the
longitudinal ones, so that the instabilities are always triggered along the z-direction.
Since the discussion of this point is very technical, the reader is referred to Ref. [40].

A similar helical texture exists in an external magnetic eld, as was found soon
after the above discovery of the helix in a owing superuid [41].

4.11.1 Magnetic Field and Transition between A- and B-Phases

At zero ow we can observe a transition between A- and B-phases at a magnetic
eld which satises

α
6
5
βB


α − h2

2
+

5

β345

h4 =
α

6
5
βA

. (4.707)

The solution is

h2
AB =

α

3

β345

2β12 + β345

[1− f(β)] , (4.708)

where

f(β) ≡


3βB

βAβ345


2β13 − β345. (4.709)
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In the weak-coupling limit, the result is

h2
AB =

1

6
. (4.710)

Recalling the denition of h in Eq. (4.476), this translates into the relation between
the physical magnetic eld H , and the temperature between A- and B-phase:

H2

H0
2
=

1

6


1− TAB

Tc


, (4.711)

from which we see that the transition temperature is shifted downwards quadrati-
cally with an increasing magnetic eld. At the polycritical pressure ppc one has

βA = βB, (4.712)

and

3β13 = 2β345, f(β) = 1, (4.713)

so that the transition occurs at zero magnetic eld, as it should.
Let T 0

AB be the temperature of the transition in the absence of a magnetic eld.
We may expand the right-hand side of Eq. (4.708) around this temperature by
setting

1− f(β) = f ′

T 0
AB


1− T 0

AB

T


. (4.714)

Inserting this into (4.708) we nd that a magnetic eld shifts the transition from
T 0
AB to T h

AB according to the approximate formula

h2
AB =

α

3

β345

2β12 + β345

f ′

T 0
AB


T 0
AB − T h

AB


, (4.715)

or in terms of physical magnetic elds:

H2
AB

H2
0

=
α

3

β345

2β12 + β345

f ′

T 0
AB


T 0
AB − T h

AB


1− T 0

AB

Tc

+
T 0
AB − T h

AB

Tc


. (4.716)

Thus we see that far away from the polycritical pressure ppc there is a quadratic
response of T h

AB to H . Close to ppc, on the other hand, the response is linear. This
explains why the experimental curve of phase transition shows the most signicant
dependence on H in the neighborhood of the polycritical pressure ppc.

It should be noted that, in the absence of strong-coupling corrections, the order
parameter of the B-phase is distorted continuously into that of the A-phase as H
reaches HAB. There the order parameters a2 = 1 + 3

2
h2, c2 = 1 − 6h2 become

a2 = 5
4
, c2 = 0.

Thus the transition is of second order. Since it is sometimes believed that strong-
coupling corrections become small for p → 0, this amounts to a decreasing latent
heat.
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4.12 Large Currents at Any Temperature T ≤Tc

4.12.1 Energy at Nonzero Velocities

For general temperatures T ≤ Tc we shall conne our discussion to the weak-coupling
regime. Fermi liquid correction will be included at a later stage.

Adding the external source

vJ = −vψ∗(x)
i

2

↔
∇ψ(x) (4.717)

to the action (4.75) gives rise, in the 2 × 2 matrix M of (4.80), to the additional
entries


vp 0
0 vp


. (4.718)

Therefore, the nal collective action (4.83) becomes simply

Av = − i

2
Tr log


 i∂t − ξ(p) + vp Aaiσa

↔
∇i/2

Aai∗σa

↔
∇i/2 i∂t + ξ(p) + vp


− 1

3g


d3x|Aai|

2. (4.719)

For constant eld congurations, Aai ≡ A0
ai, this results in the free energy density

at velocity v:

gv ≡ −T

V
Av (4.720)

= −T


ωn,p

[log (iωn + vp− E(p)) + (E − E)] +
1

3g
|A0

ai|
2 + const ,

with

E(p) =

ξ2(p) +∆2

⊥ + (1− r2z2). (4.721)

As usual in such expressions, it is convenient to subtract from this the free energy
of the free Fermi liquid, now with the external source vp. Then

gv0 = −T


ωn,p

[log (iωn + vp− ξ(p)) + (ξ → −ξ)] + const. (4.722)

For v = 0 this quantity was calculated earlier [recall Eq. (4.264)]. For v = 0 we
observe that we may perform a quadratic completion

∓vp− ξ(p) = −(p±mv)2

2m
+ µ+

m

2
v2. (4.723)
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The rst term gives the same g0 as the v = 0 formula since the integration over p is
merely shifted by mv. As far as the additional kinetic energy mv2/2 is concerned
we may assume it to be very much smaller than p2F/2m so that we can expand

gv0 = g00 + T


ωn,p


eiωnµ

iωn − ξ(p)
− e−iωnµ

iωn + ξ(p)


m

2
v2

= g00 −


p

n(ξ)
m

2
v2

= g00 −
g

2
v2, (4.724)

thus arriving at the usual form of a Galilean transformed energy.

4.12.2 Gap Equations

We shall now allow for anisotropic gaps (4.104) of the same distorted form (4.491)
as discussed previously in the Ginzburg-Landau limit, i.e.,

A0
ai = ∆

0




a
a

c


 =




∆⊥
∆⊥

∆


 , (4.725)

where ∆⊥ and ∆ are the gaps orthogonal and parallel to the ow. Introducing the
gap distortion parameter

r ≡ 1− ∆2


∆2
⊥
, (4.726)

and the directional cosine z of the quasiparticle momentum with respect to the
preferred axis, which lies parallel to the current for symmetry reasons, we may write
the anisotropic gap as

|A0
aip̂i|

2 = ∆
2(z) = ∆

2
⊥

1− z2


+∆

2
z

2 ≡ ∆
2
⊥

1− r2z2


. (4.727)

This paramerization of the gap permits a simultaneous discussion of B-, A-, planar,
and polar phases. With the form (4.725) the last term in the free energy gv becomes

1

3g
|Aai|

2 =
1

3g


2∆⊥

2 +∆
2

=

1

g
∆

2
⊥


1− r2

3


. (4.728)

Minimizing gv with respect to ∆
2 and ∆⊥

2 we nd the two conditions:


1

g
− T



ωn,p

3z2
1

(ωn − ipF z)
2 + E2(p)


∆ = 0, (4.729)


1

g
− T



ωn,p

3

2


1− z2

 1

(ωn − ivpF z)
2 + E2(p)


∆⊥ = 0. (4.730)
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If we assume both gaps ∆ and ∆⊥ to be nonzero, there are two nontrivial gap
equations. Sometimes it is useful to compare the general result with the hypothetical
case of a gap that is free of distortion, ∆ = ∆⊥ or r = 0. Then only the average
gap equation [1

3
(longitudinal +2 transverse )] survives with no directional factor z

in the integration and with r = 0 inserted. Moreover, since the polar phase in
which ∆⊥ vanishes (corresponding to r → −∞) is physically rather uninteresting,
due to its small condensation energy, we shall henceforth work with the average gap
equation together with the transverse one (4.730). From the latter we shall often
draw comparison with the A-phase by inserting r = 1.

In the two gap equations, the sums over Matsubara frequencies may be performed
in the standard fashion using Formula (4.242) to nd

T


ωn

1

2E


1

iωn + vpFz − E(p)
− 1

iωn + vpFz + E(p)



=
1

4E


tanh

E − vpFz

2T
+ (v → −v)


. (4.731)

Decomposing the integral over momenta according to direction and size


d3p

(2π)3
≈ N (0)

 1

−1

dz

2

 ∞

−∞
dξ, (4.732)

the average and the transverse gap equations become

1

gN (0)
=

 1

−1

dz

2
γ(z),

1

gN (0)
=

 1

−1

dz

2

3

2


1− z2


γ(z), (4.733)

where γ(z) denotes the function

γ(z) ≡ T


ωn

 ∞

−∞
dξ

1

(ωn − vpFz)
2 + E2(p)

=
 ∞

−∞
dξ

1

4E


tanh

E − vpF z

2T
+ (v → −v)


, (4.734)

which is logarithmically divergent. It may be renormalized via the critical temper-
ature which satises

1

gN (0)
=

 ∞

−∞
dξ

1

2ξ
tanh

ξ

2Tc

= log

ωc

Tc

2e−γ/π


= log
T

Tc

+
 ∞

−∞
dξ

1

2ξ
tanh

ξ

2T
. (4.735)

Subtracting this expression on both sides the gap equations take the form

log
T

Tc

=
 1

−1

dz

2
γ(z), (4.736)

log
T

Tc

=
 1

−1

dz

2

3

2
(1− z2)γ(z), (4.737)
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with the subtracted nite function

γ(z) =
 ∞

−∞
dξ


1

4E


tanh

E − vpFz

2T
+ (v → −v)


− 1

2ξ
tanh

ξ

2T


. (4.738)

For calculations it is more convenient to return to the Matsubara sum forms (4.729)
and (4.730). Then the integrals over d can be performed and with the above renor-
malization procedure, and we nd the simple expression

γ(z) = π


ωn


 1

(ωn − ivpF z)2 +∆2
⊥(1− r2z2)

− 1

ωn




=
1

δ

∞

n=−∞


 1

(xn − iνz)2 + (1− r2z2)
− 1

xn


 . (4.739)

In this and many formulas to come we have introduced the following dimensionless
variables:

δ =
∆⊥
πT

,

ν =
vpF
∆⊥

, (4.740)

xn =
ωc

∆⊥
.

In order to check the gap equations we rst re-derive the previous Ginzburg-Landau
results by going to the limit T → Tc. Then the variables xn become very large and
we may approximate the two equations (4.736) and (4.737) for log T/TC ≈ 1−T/Tc

as

1− T

Tc

≈ 2

δ

 1

−1

dz

2


1

3
2
(1− z2)

 ∞

n=0


1 +


2ν2 − r2


z2 − 2iνzxn


/2x3

n

= δ2

1 +


1
3
1
5


2ν2 − r2

 7ζ(3)
8

. (4.741)

Combining the two equations we see that near Tc, the gap distortion grows with the
square of the velocity:

r2 = 1− ∆2


∆2
⊥
= 1− c2

a2
= 2ν2. (4.742)

Inserting this into (4.741), the transverse gap behaves like

∆
2
⊥ = π2T 2δ2 ≈ 8

7ζ(3)
π2T 2

c


1− T

Tc


≈ 3.0632


1− T

Tc


, (4.743)

i.e., it is independent of the current velocity. Note that it follows the same near-
Tc-equation as the gap in a superconductor [compare (3.121)]. Inserting this into
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Eq. (4.740), we nd an equation for the reduced current velocity κ ≡ v/v0 [see
(4.459)]:

ν2 =
v2p2F
∆2

⊥
=

v2p2F
8

7ζ(3)
π2Tc

2

1− T

Tc



=
3

2

v2


1

2mξ0

2

1

1− T

Tc

=
3

2

v2

v20(T )
=

3

2
κ2. (4.744)

Via the gap distortion (4.742), this determines the ratio of logitudinal versus
trasverse gap as a function of κ:

∆
2

∆⊥2
=

c2

a2
= 1− 3κ2. (4.745)

These results agree with the Ginzburg-Landau formulas (4.515) and (4.516), if we
insert the appropriate expansion coecients βi of the corresponding state.

In the opposite limit of zero temperature the distance between neighboring values
xn goes to zero so that we may replace the sum over xn in (4.739) by an integral
according to the rule



xn

−−−→
T→0

2

δ


dxn. (4.746)

As in Chapter 3 and in Eq. (4.293), care is necessary to treat the last sum


n 1/xn

in (4.739), since each term diverges at T = 0. As in the case of the superconductor
gap equation (3.159), leading to (3.161) and (3.162), the proper replacement is

2

δ

∞

n=0

1

xn

→
 xN

1/δ

dx

x
+ log(2eγ). (4.747)

Therefore we obtain

log
T

Tc

−−−→
T→0

Re
 1

−1

dz

2


1

3
2
(1− z2)



×



 ∞

0
dx

1
(x− iνz)2 + 1− r2z2

−
 ∞

1/δ

1

x
− log 2− γ


 (4.748)

= −Re
 1

−1

dz

2


1

3
2
(1− z2)


log


1− (ν2 + r2) z2 − iǫz − iνz


− log δ − γ.

Taking γ and log δ to the other side, the log T -divergence cancels and we nd

log
∆⊥(T = 0)

∆BCS

= −Re
 1

−1

dz

2


1

3
2
(1− z2)


log


1− (ν2 + r2) z2 − iǫz − iνz

,

(4.749)
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where we have introduced the T = 0 gap of the BCS theory [compare (3.153)]

∆BCS = πTce
−γ ∼ 1.7638 Tc. (4.750)

When calculating the logarithm, we have to be careful to use the correct square root.
Taking the branch cut, as usual, to the left, this is specied by the iǫ prescription.

As a cross check we see that for ν = 0, r = 0 (B-phase) the orthogonal gap
becomes ∆⊥ = ∆BCS, while for r = 1 (A-phase) the lower equation gives

log
∆⊥
∆BCS

= −
 1

−1

dz

2

3

2


1− z2


log

√
1− z2 =

5

6
− log 2, (4.751)

such that

∆⊥ = ∆BCS

e5/6

2
∼ 2.03Tc. (4.752)

While the full solution of the gap equation (4.749) can only be found numerially,
we can see directly that at T = 0, the gap distortion parameter r vanishes for all
ν = vpF/∆⊥ ≤ 1, so that ∆⊥ = ∆BCS is a solution of both equations (4.748): in
fact, the real part of the logarithm vanishes identically for r = 0.

The full T -behavior of the gaps can be found from the average [i.e., 1
3
(longitudinal

+2 transverse)] between the two gap equations (4.736) and (4.737). Then there is
no dependence on z, and the result is

log
∆⊥(T = 0)

∆BCS

= −Re
 1

−1

dz

2
log

√
1− ν2z2 − iǫz − iνz


. (4.753)

There exists a real part only for ν > 1, which is

−
 1

1/ν
dz log

√
ν2z2−1+νz


=−

 1

1/ν
dz acosh νz=


z acosh νz − 1/ν

√
ν2z2−1

1
1/ν

,

(4.754)

which is why the T = 0 -gap without distortion (using a superscript u for “undis-
torted”) is given by18

log
∆u

B(T = 0)

∆BCS

= −θ(ν − 1)

acoshν − 1

ν

√
ν2 − 1


. (4.755)

The gap remains equal to ∆BCS up to ν = 1. From there on it drops rapidly
to zero. The place where it vanishes is found from (4.755) by inserting the limit
ν = v pF/∆B → ∞, which yields in this limit

− log∆BCS = − log 2vpF + 1, (4.756)

18Carrying the Euler-Maclaurin expansion one step further, the right-hand side in (4.755) would

have an additional − 1
6
δ2ν

√
ν2 − 1, which in (4.757) would give a factor exp{− 1

6
π2T 2

(pF v)2
} ∼ 1 −

2
3e

2(γ−1) (T/Tc)
2 ∼ 1− 0.29 (T/Tc)

2
.
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or

vpF
∆BCS

=
e

2
≈ 1.359. (4.757)

In physical units this amounts to

v

v0
= v 2mξ0 = v

2pF
πTc


7ζ(3)

48
=

vpF
πe−γTc

2e−γ


7ζ(3)

48

=
pF v

∆BCS

0.47 ≈ 0.64. (4.758)

For comparison we see that in the A-phase

log
∆⊥(T = 0)

∆BCS

= −Re
 1

−1

dz

2

3

2


1− z2


log

√
1− z2 − ν2z2 − iǫz − iνz



= −
 1

−1

dz

2

3

2


1− z2


log

√
1− z2

−2
 1

1/
√
1+ν2

dz

2

3

2


1− z2


log


(1 + ν2) z2 − 1 + νz

√
1− z2

, (4.759)

implying that19

log
∆⊥(T = 0)

∆BCSe5/6/2
= −

 1

1/
√
1+ν2

3

2


1− z2


acosh

νz√
1− z2

=
1

2

ν2

1 + ν2
− 1

2
log


1 + ν2


. (4.760)

Here the gap decreases smoothly and hits zero at

vpF
∆BCS

=
e5/6

2

√
e ≈ 1.897, (4.761)

or

v

v0
≈ 0.892. (4.762)

The full solution of the gap equations are shown in Fig. 4.41. For comparison we
also have displayed the solutions in the B-phase and the A-phase neglecting the gap
distortion [i.e., using r ≡ 0 or ∆⊥ ≡ ∆, and either of the two equations (4.729),
(4.730)].

All curves as functions of v are double-valued. It will be seen later that this
behavior is an artifact of neglecting Fermi liquid corrections. Once included, these
will turn the lower branches anticlockwise into the region of higher velocities while

19To next order in 1/δ, the Euler-Maclaurin expansion gives −ν2/

1 + ν2

2
2δ2 which enters in

(4.761) as a factor e−π2T 2/2(pF ν)2 ≈ 1− 2e8/3+2γ (T/Tc)
2 ≈ 1− 0.44 (T/Tc)

2
.
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(v/v0)2 (1− T/Tc)
−1

1

(∆⊥/1.76Tc)2 (1− T/Tc)
−1

B-phase without gap distortion

B-phase with gap distortion

A-phase

= T/Tc

0 1.60.8

4

3

2

1

Figure 4.41 Velocity dependence of the gap in the A- and B-phases.

distorting only slightly the upper branches at lower velocities. In this way the curves
become single-valued.

For numerical calculation we have used formulas (4.736)–(4.738), after having
performed the integrals over dz analytically: The average gap equation requires the
integral

Re
 1

−1

dz

2

1
(x− iνz)2 + 1− r2z2

=Re
 1

−1

dz

2

1
1 + x2 − 2iνxz − (r2 + ν2) z2

. (4.763)

The square root has to be taken with a positive real part, i.e., with the standard
choice of the branch cut running to the left from zero to −i∞. The result is

αn√
ν2 + r2

≡ 1√
ν2 + r2

arcsin
ν2 + r2 + iνxn
ν2 + r2 + r2 + x2

n

, (4.764)

or

αn =
1

2
arccos


ν2 + r2


(1 + x2

n − ν2 − r2)2 + 4ν2x2
n −


ν2 + r2

2 − ν2x2
n


,

(4.765)
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which lies in the interval (0, π/2), so that the average of the gap equations (4.748)
becomes

log
T

Tc

=
2

8

∞

n=0


1√

ν2 + r2
αn −

1

xn


. (4.766)

For r = 0, we have

αn =
1

2
cos


(1 + x2

n + ν2)2 − 4ν2 − ν2 − x2
n


, (4.767)

and thus we recover the result of the B-phase, neglecting gap distortion. For the
transverse gap, we have to perform the integral (4.763) with an additional weight
factor 3

2
(1− z2) and nd

log
T

Tc

=
3

2

2

δ

∞

n=0






1− 1

2 (ν2 + r2)
+

ν2 − r2

2

(ν2 + r2)2
x2
n


 αn√

ν2 + r2

+Re
ν2 + r2 − 3iνxn

2 (ν2 + r2)2


(xn − iν)2 + 1− r2 − 2

3

1

xn


. (4.768)

At r = 1, this is seen to reduce to the gap equation of the A-phase since

αn


r=1

= arctan

√
1 + ν2

xn

, (4.769)

and

Re
ν2 + 1− 3iνxn

2 (ν2 + 1)2
(xn − iν) =

1− 2ν2

2 (ν2 + 1)
. (4.770)

The second term in the sum may be evaluated explicitly by dening

γn ≡ arctan
3νxn

ν2 + r2
∈ (0, π/2) ,

βn ≡ arctan
2νxn

1 + x2
n − ν2 − r2

∈ (0, π) , (4.771)

which brings it to the form


(ν2 + r2)2 + 9ν2x2

n

2 (ν2 + r2)2


ν2 + r2 − 1− x2

n

2
+ 4ν2x2

n

 1
4

cos


γn +

βn

2



=

√
2νxn

2 (ν2 + r2)

1√
sin βn

1

cos γn
cos


γn +

βn

2


. (4.772)
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4.12.3 Superuid Densities and Currents

By construction, the current density in the presence of the external source (4.717)
is

−∂gv

∂v
. (4.773)

This, however, is not the full current density of the system. In calculating gv we have
assumed the eld A0

ai to be a constant in space (and time). In this way the Cooper
pairs have been forced articially to remain immobile. In full thermal equilibrium
also these follow the drag of the external source, and in the ground state the gap
A0

ai acquires a phase modulation

e2imvxA0
ai. (4.774)

The gradient of this order parameter accounts for the ow of the condensate, i.e.,
the 3He quasiparticles bound in Cooper pairs.

If calulated at an unmodulated gap A0
ai, the gradient (4.773) accounts only for

the movement of the quasiparticles which are not bound in Cooper pairs. These
make up the normal component of the superuid. If the current associated with
this ow is written with a subscript n it reads:

Jn ≡ − ∂gv

∂v


A0

ai

= const. (4.775)

From this we deduce the mass density of the normal component via the relation

Jn ≡ ρnv. (4.776)

Since the full current would be

J = ρv, (4.777)

we may attribute the dierence entirely to the ow of Cooper pairs and write

Js ≡ J − Jn = (ρ− ρn) v = ρsv. (4.778)

This quantity denes the superuid density ρs from the density of owing pairs in
the liquid. Since J = ρv is obtained from −∂gv0/∂v, Js is obtained directly from the
derivative of the condensation energy

Js =
∂gvc
∂v

≡ ∂gv

∂v
− ∂gv0

∂v
=

∂gv

∂v
− (∆ = 0) . (4.779)

Using (4.722) we perform the dierentiation and nd

Js = −T


ωn,p

pF z


1

iωn + vpF − E
+ (E → −E)


− (∆ = 0)

=
3

2

 1

−1

dz

2
2N (0)

 ∞

−∞
dξ


tanh
E − vpF z

2T
− (v → −v)


− [∆ = 0]


, (4.780)
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where we have replaced the momentum sum as in (4.732), and added a factor 2 for
the two spin orientations. For numerical evaluations it is more convenient to keep
the Matsubara sum (4.780), but perform analytically the integration over ξ. Then
we nd

Js =
3ρ

pF

 1

−1

dz

2

 ∞

−∞
dξT



ωn

iωn + vpFz

(ωn − ivpF z)
2 +∆2

⊥ (1− r2z2) + ξ2

=
3ρ

pF
πT

 1

−1

dz

2
zRe



ωn

iωn + vpFz
(ωn − vpFz)

2 +∆2
⊥ (1− r2z2)

=


 6

δν

 1

−1

dz

2
zRe

∞

n=0

ixn + νz
(xn − iνz)2 + 1− r2z2


 ρv = ρ

sv , (4.781)

where we have inserted 2N (0) = 3
2
ρ/p2F from (4.16). Thus we can identify the

superuid density parallel to the ow as:

ρ
s

ρ
=

3

2

1

pF v

 1

−1

dz

2

 ∞

−∞
dξ


tanh
E − vpFz

2T
− (v → −v)


− [∆ = 0]



=
6

δν

 1

−1

dz

2
zRe

∞

n=0

ixn + νz
(xn − iν)2 + 1− r2z2

. (4.782)

The integral over z yields

ρ
s

ρ
=

3ρ

δν

∞

n=0


ν

(ν2 + r2)2


ν2 + r2 + 3r2x2

n

 αn√
ν2 + r2

(4.783)

−Re
2

(ν2 + r2)


ixn +

1

2
ν


1− 3i

νxn

ν2 + r2


(xn − iν)2 + 1− r2


.

If we neglect gap distortion by setting r = 1, we recover the result of previous
calculations

ρ
s

ρ

r≡0
=

3

δν3

∞

n=0


αn −

1√
2


ν2 − 9x2

n

 
1− ν2 + x2

n


− 12ν2x2

n

−9x2
nν

2

(1 + ν2 + x2

n)
2 − 4ν2


. (4.784)

The last term becomes simply −3xnν/ (ν
2 + 1)

2
, so that ρ

s at r = 1 reduces to the
expression for the A-phase:

ρ
s

ρ

A−phase
=

3

δ

1

(ν2+ 1)
3
2

∞

n=0


ν2+ 1 + 3x2

n


arctan

√
ν2+ 1

xn

− 3
√
ν2+ 1xn


. (4.785)

For general r, the real part in (4.783) consists of two terms, of which the second
coincides with −2ν times the corresponding term in the transverse gap equation.
The rst may be rewritten in terms of the angle β of (4.771) as

−Re
2ixn

ν2+ r2


(xn − iν)2+ 1− r2 =−Re

2ixn

ν2+ r2


1+x2

n−ν2−r2
2

+ 4ν2x2
n

 1
4

e−iβn/2

= − 2xn

ν2 + r2


νxn tanβn/2. (4.786)
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Let us compare the result with our Ginzburg-Landau calculation in Section 4.10.2.
For T ∼ Tc, we may take the limit xn → ∞ and remain with

ρ
s

ρ
≈ 6

δ

 1

−1

dz

2
z2

1− r2z2

 ∞

n=0

1

x3
n

= 6δ2

1

3
− r2

5


7ζ(3)

8
. (4.787)

This coincides with our previous result if we insert (4.744):

ρ
s

ρ
=

3

ν

 1

−1

dz

2

 ∞

0
dx

ix+ νz
(x− iνz)2 + 1− r2z2

=
3

ν

 1

−1

dz

2
z

νz − Re i


1− (ν2 + r2) z2 − iǫνz


. (4.788)

The square root gives a contribution only for z2 > 1/ν2 + r2, implying that ρ
s

remains equal to ρ until ν2 = 1− r2.
Since the upper branch of the gap is isotropic up to ν = 1, there is also an upper

branch with ρ
s ≡ ρ up to ν = 1. On the lower branch one has ν2 > 1− r2 and

ρ
s

ρ
=
T=0

1− 3

ν
Re

 1

1/(ν2+r2)
dzz


(ν2 + r2) z2 − 1

= 1− Θ


ν2 + r2 − 1

 1

ν2 (ν2 + r2)

√
ν2 + r2 − 1

3
, (4.789)

where Θ(z) is the Heaviside function. This result agrees with those of B- and A-
phases for r = 0 and 1, respectively.

4.12.4 Critical Currents

In the Ginzburg-Landau regime, the critical currents are known from Section 4.10.
These results agree with the present calculation since ρ

s of (4.788) is the same as
before. In the opposite limit T → 0, an exact calculation is dicult but the current
can be xed to a high accuracy by the following consideration:

Due to the distortion of the gap, the current Js as a function of v must be below
the current calculated by neglecting distortion. Now, up to ν = 1, both currents are
identical since the gap distortion was derived to be zero for ν ≤ 1. Thus Js(v) is
known to reach the value

Js(v)

ν=1

= ρvν=1 = ρ
∆ν=1

pF
. (4.790)

Since ∆ν=1 = ∆BCS also at T = 0 [see the text after (4.752)], we have the lower
bound on the critical current

Js(v) ≥ ρ
∆BCS

pF
≈ 0.47J0. (4.791)
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As an upper bound we may use the maximum of JBu
s (v) which can easily be cal-

culated exactly. We shall see in a moment that the critical velocity is determined
by

νc =
1

1− (21/3 − 1)
2
≈ 1.036. (4.792)

Inserting this into the superuid density (4.789) at r = 0, we nd

ρBu
s

ρ


νc

= 1−

21/3 − 1

3 ≈ 0.982. (4.793)

This leads to a critical current

JBu
c = ρ


1−


21/3 − 1

3 1
1− (21/3 − 1)

2

∆
Bu|νc
pF

. (4.794)

But the gap at νc can be evaluated from (4.755), with the result

log
∆


B

∆BCS


νc

= − log

νc +


ν2
c − 1


+


1− 1

ν2
c

= log νc + log

1−


21/3 − 1


+

21/3 − 1


, (4.795)

so that

∆B


νc

=
T=0

∆BCS e
21/3−1


1−


21/3 − 1


νc. (4.796)

Thus we nd, altogether, a critical current

JBu
c =


1−


21/3 − 1

3
2−1/3e(2

1/3−1)∆BCS

pF
ρ

≈ 1.0112
∆BCS

pF
ρ ≈ 0.486J0. (4.797)

This lies only slightly above the lower bound. Therefore the true critical current,
including the eect of gap distortion, is determined extremely well by the upper and
lower bounds

0.470J0 ≤ JB
c ≤ 0.486J0. (4.798)

Note that the critical velocity in the B-phase is

vc = vc
∆

∆BCS

∆BCS

pF
= 21/3e(2

1/3−1)∆BCS

pF

≈ 1.029
∆BCS

pF
≈ 0.48 v0, (4.799)
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i.e., it is reached immediately above ν = 1. Thus the critical velocity vc lies between
0.47v0 and 0.48 v0.

Let us now derive (4.792). Certainly, the maximum of the current is determined
by

d

dv
Js =

d

dv
ρs(v) + ρs(v) = 0. (4.800)

In general, ρs is a function of ν, δ, T, where ρ is itself a function of ν and T via gap
equation:

log
T

Tc

= γ(δ, ν). (4.801)

We can therefore express the derivative at xed T as

∂

∂v
=

∂ν

∂v


∂δ

∂ν

∂

∂δ
+

∂

∂ν


. (4.802)

But since ν = vpF/∆⊥ we have

∂ν

∂v
=

pF
πT


1

δ
− 1

δ2
∂ν

∂v

∂δ

∂ν


, (4.803)

or

∂ν

∂v
=

ν

v

1

1 +
v

δ

∂δ

∂ν

. (4.804)

In this way, the extremal condition (4.802) may be written in terms of the natural
variables as


∂δ

∂ν

∂

∂δ
+

∂

∂ν


ρs +


1

δ

∂δ

∂ν
+

1

ν


ρs = 0. (4.805)

The derivative ∂δ/∂ν may be taken from (4.804) as − (∂γ/∂ν) / (∂γ/∂δ). Let us
evaluate condition (4.805) at zero temperature. Then ρs becomes independent of δ,
and the rst term in (4.805) is absent. The gap equation (4.804), on the other hand,
has the form

log
∆

∆BCS

= γ0(ν), (4.806)

so that

1

δ

∂δ

∂ν
=

∂γ0

∂ν
. (4.807)

The critical velocity at T = 0 is therefore obtained from the simple relation

ν
∂ρs

∂ν
+


v
∂γv

∂ν
+ 1


ρ



νc

= 0. (4.808)
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For the B-phase, neglecting gap distortion, we see from (4.789)

∂ρBu
s

∂ν
= −θ(ν − 1)

3

ν4

√
ν2 − 1. (4.809)

The gap function γ0 is taken from (4.755), so that

∂γ0

∂ν
= −

√
v2 − 1

ν2
θ(ν − 1). (4.810)

The condition (4.808) becomes

−3ν

√
ν2 − 1

ν4
+


1−

√
ν2 − 1

ν


1−

√
ν2 − 1

3

ν3


 = 0. (4.811)

This awkward equation is solved by setting y ≡

1− 1

ν2
and rewriting

y3 + 3y2 + 3y − 1 = 0, (4.812)

which has the only real solution

y = 21/3 − 1, (4.813)

which veries the critical current of the previous discussion (4.792)–(4.799).
For comparison we may use (4.808) to derive also the depairing critical current

for the A-phase. From (4.789) with r = 1 and (4.760) we see that

ρ
s

ρ
=

1

1 + ν2
, (4.814)

log
∆⊥
∆BCS

= γ0(v) = log
e5/6

2
− 1

2
log


1 + ν2


+

ν2

2 (1 + ν2)
, (4.815)

which is inserted into (4.808) to give

− 2ν2

(1 + ν2)2
+

1

(1 + ν2)


1− ν4

(1 + ν2)2


= 0. (4.816)

This is solved by ν2
c = 1/

√
2. From this we obtain the critical current

JA
c =

ρ
s

ρ
νc

∆⊥
∆BCS

∆BCS

pF
ρ

=

 √
2√

2 + 1


1

21/4


e5/6

2

√
2− 1

√
2e

√
2−1
2


∆BCS

pF
ρ

=
√
2
√

2− 1
3/2

e
√

2−1
2

e5/6

2

∆BCS

pF
ρ

≈ 0.534
∆BCS

pF
ρ ≈ 0.25J0, (4.817)
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implying a critical velocity

vc =
Jc

ρ
s

=
√

2− 1e
√

2−1
2

e5/6

2

∆BCS

pF

≈ 0.911
∆BCS

pF
≈ 0.428v0. (4.818)

4.12.5 Ground State Energy at Large Velocities

Let us now consider the superuid in motion. As before, we imagine bringing the
liquid adiabatically from v = 0 to its actual velocity. This will result in an additional
energy

g(v)c = gc|v=0 +
 v

0
dv′ρ

s(v
′)v′, (4.819)

where g|v=0 is the previously calculated condensation energy fc, and ρ
s is the su-

peruid density parallel to the ow. Alternatively, we may take the energy of the
freely moving fermions

g0 = f0 −
ρ

2
v2, (4.820)

and form the total energy as a combination

g = f0 + fc −
 v

0
dv′ρ

n(v
′)v′, (4.821)

where

ρ
n = ρ− ρ

s (4.822)

is the density of the normal component of the liquid.

4.12.6 Fermi Liquid Corrections

With (4.821), the expression for the energy reaches a convenient form which permits
the inclusion of the quantitatively very important Fermi liquid corrections due to
the current-current coupling (4.379). In Eq. (4.393) we have seen that the associated
molecular elds ϕi enter the collective action on the same footing as the velocity v
of the liquid.

In equilibrium we expect a constant nonzero mean molecular eld. For symme-
try reasons, only the eld parallel to the ow can contribute. Therefore we may
substitute simply v → v + ϕ in (4.821) and add, after this, the quadratic term as
in (4.392). Then the energy, corrected by the constant mean molecular eld, may
be written as

g∗ = min
ϕ


f0 + fc −

 v+

0
dv′ρ

n(v
′)v′ − 1

2
ρ

1

F1/3
ϕ2


. (4.823)



290 4 Superuid 3He

Dierentiating with respect to ϕ we see that the minimum lies at the mean eld

ϕ = −F1

3

ρn(v + ϕ)

ρ
(v + ϕ) . (4.824)

Inserting this back into (4.823), the energy becomes an explicit function of the
quantity

v∗ ≡ v + ϕ. (4.825)

This may be interpreted as the local uid velocity felt by the quasi-particles including
the eects of the molecular eld. In terms of v∗ it reads:

g∗ = f0 + fc −
 v∗

0
dv′ρ

n(v
′)v′ − 1

2

F1/3

ρ
ρ
n
2(v∗)v∗2

= f0 + fc −
 v

0
dv′Jn(v

′)− 1

2

F1/3

ρ
J2
n(v

∗). (4.826)

Given an arbitrary physical velocity v, the quantity v∗ may be found from
Eq. (4.824), which can be rewritten in the form


1 +

F1

3

ρn (v
∗)

ρ


v∗ = v. (4.827)

Expression (4.826) allows a calculation of the Fermi-liquid-corrected supercurrent
and superuid density. By dierentiation with respect to v we nd

J∗
n(v) = −∂g∗

∂v
= Jn(v

∗)
∂v∗

∂v
+

F1/3

ρ
Jn(v

∗)
∂Jn(v

∗)

∂v

= Jn(v
∗)


1 +

F1/3

ρ

∂Jn

∂v∗


∂v∗

∂v


. (4.828)

By writing (4.827) in the form

v∗ +
F1/3

ρ
Jn(v

∗) = v, (4.829)

we see that the factor in curly brackets of (4.828) is unity. Hence the Fermi-liquid-
corrected current equals the uncorrected one, except for its evaluation at the local
velocity v∗ rather than the physical v:

J∗
n(v) ≡ ρ∗n(v)v = Jn(v

∗) = ρn(v
∗)v∗. (4.830)

As in Section 4.9.4 we have found it convenient to introduce ρ∗n as the corrected
density of the normal component

ρ∗n(v) ≡ ρn(v
∗)
v∗

v
=

ρn(v
∗)

1 +
F1

3
ρn
ρ
(v∗)

, (4.831)
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which is reduced with respect to ρn by the ratio of v∗ and v. The same reduction
appears in the superuid density. Here we have to subtract the normal current from
the total one, ρv. In order to do so we have to remember that ρ contains the true
mass of the 3He atoms m = m3He, while all quantities derived from the original
action involve the eective mass m∗ = (1 + F1/3)m.

Therefore the supercurrent is given by

J∗
s (v) = ρv − J∗

n(v)

= ρv − ρn (v
∗) v∗

= ρv − ρ
m∗

m

ρn(v
∗)

ρ

v

1 +
F1

3
ρn(v∗)

ρ

, (4.832)

which can further be brought to the form:

J∗
s (v) = ρv −


1 +

F1

3


ρn(v

∗)

ρ

1

1 +
F1

3
ρn(v∗)

ρ

1

1 +
F1

3
ρn(v∗)

ρ

= ρv
ρs (v

∗)

ρ

1

1 +
F1

3
ρn(v∗)

ρ

. (4.833)

The eect of Fermi-liquid corrections is to reduce the superuid fraction ρs/ρ by a

factor 1/[1 +
F1

3
ρn(v∗)

ρ
], and to change the velocity coordinate from v to v∗:

ρFLs (v)

ρ
=

ρs (v
∗)

ρ

1

1 +
F1

3
ρn(v∗)

ρ

. (4.834)

Note that for small velocities the integral in (4.826) may be performed, which brings
g∗ to the simple form

g∗ = f0 + fc −
ρ

2
v2 +

1

2
ρ
ρs (v

∗)

ρ

1

1 +
F1

3
ρn(v∗)

ρ

v2

= f0 + fc −
ρ∗n (v)

2
v2. (4.835)

As far as our Figure 4.41 is concerned we learn that in ∆, ∆, ∆⊥, the curves remain
the same except that the v axis has to be read as v∗. The same statement holds for
ρ and ρ⊥ which are, in addition, reduced by the factors 1/[1 +

F1

3
ρn(v∗)

ρ
].

Sometimes in an experiment, the velocity v is given, rather than the current. The
corresponding quantity v∗ is easily extracted graphically from a plot of Js versus v

∗

(see Fig. 4.42). By rewriting Eq. (4.833) as

Js (v
∗)

ρ
=

1 +
F1

3
v∗

F1/3
− v

F1/3
(4.836)

we see that for any value of F1/3, we may draw a straight line of unit slope and
intercept (1−v)/(F1/3). It intercepts the curves of Js/ρ at v∗. The same statement
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(v/v0)2(1 − T/Tc)−1

J/J0(1− T/Tc)−3/2

Figure 4.42 Current as a function of velocity.

holds for the reduced quantities (J/J0) (1− T/Tc)
−3/2 , (v/v0) (1− T/Tc)

− 1
2 , except

that the result carries a factor 1/[2 (1− T/Tc)].

The Fermi liquid corrections have the pleasant property of removing the double
valuedness of the variables when plotted as a function of v rather than v∗. The reason
is that the lower branch of ρ

s (v
∗) corresponds, via (4.829), to a higher physical

velocity v at the same v∗. This has the eect of rotating all lower branches with
positive slope anticlockwise, until their slopes are negative. In this all curves become
single-valued even at zero pressure where F1 takes its smallest value where F1/3 ≈ 2.

4.13 Collective Modes in the Presence of Current

at all Temperatures T ≤ Tc

In Subsection 4.10 we have seen that, in the neighborhood of the critical temper-
ature, the distorted gap parameter (4.725) is stable under small space- and time-
independent uctuations. Here we want to extend this consideration to all temper-
atures below Tc. For simplicity we shall only consider the weak-coupling limit in
which the hydrodynamic properties were discussed (recall Section 4.9).

4.13.1 Quadratic Fluctuations

As in Section 4.9. we parametrize the uctuations around the extremal eld cong-
uration A0

ai by

A′
ai = Aai −A0

ai. (4.837)
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Inserting this into the collective action (4.221) and expanding in powers of A′
ai up

to quadratic order, we nd

δ2Av = − i

4
Tr


Gv


0 A′

aiσai∇̃i

A′ ∗
aiσai∇̃i 0


Gv


0 A′

aiσai∇̃i

A′ ∗
aiσai∇̃i 0



−1

3


d4x|A′

ai|
2, (4.838)

where Gv is the generalization of the 4× 4 matrix (4.222):

Gv = i


i∂t + v∇− ξ A0

aiσa∇̃i

A0
ai

∗σa∇̃i i∂t + v ·∇ + ξ

−1

. (4.839)

This contains the source term (4.717) to guarantee the velocity v of the uid. as
in the collective action (4.719). Assuming that A0

ai is extremal, i.e., that it satises
gap equations like (4.729), (4.730), there are no linear terms in A′

ai.
The explicit form of the matrix Gv in energy-momentum space reads

Gv(ǫ,p) =
i

−(ǫ + pv)2 + E2


ǫ+ vp− ξ(p) −A0

aiσap̃i
− A0∗

aiσap̃i ǫ + vp+ ξ(p)


. (4.840)

It is the propagator of the pair of Fermi eld f = (ψ, cψ∗) in the presence of a
velocity v and a constant pair eld A0

ai.
We now pass from quantum mechanics to quantum statistics at constant temper-

ature T by replacing everywhere ǫ by iωn = i(2n+1)πT , and integrals over energies
dǫ/2π by sums over Matsubara frequencies


dǫ

2π
→ iT



ωn

. (4.841)

Correspondingly, we decompose the uctuations of the pair eld as in (3.53):

A′
ai(τ,x) = T



νn


d3k

(2π)3
e−i(τνn−kx)A′

ai(νn,k), (4.842)

with bosonic Matsubara frequencies

νn = 2nπT. (4.843)

With the short notation (3.55),

T


νn


d3k

(2π)3
f(νn,k) = T



k

f(k), (4.844)

the uctuation action (4.838) may be written as

iδ2Av ≈ T


k


T


p

1

2


G


p− k

2


0 A′(−k)σap̂

−
i

A′ ∗(k)σap̂
−
i 0


(4.845)

×G


p+

k

2


0 A′(k)σap̂

+
i

A′ ∗(−k)σap̂
+
i 0


− 1

3g
|A′

ai(k)|
2


.
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Here we have collected again frequency νn and momentum k in a single four-vector
symbol k. Also, by restricting our consideration to long wavelengths with k ≪ pF
only, we have set (p± k) ≈ p̂∓i . For small k compared to the Fermi energy εF and

momentum pF , this can be approximated by (p± k) ≈ p̂i. After a little matrix
algebra, the uctuation action can be written as

iδ2Av ≈ −1

2
T


k

(A′ ∗
ai(k), A

′
ai(−k))Lv ij,ab(k)(k)


A′(k)
A′ ∗(−k)



bj

(4.846)

with the matrix

Lv ij,ab(k) ≡


Lv ij
11 (k)δab Lv ij,ab

12 (k)

Lv ij,ab
21 (k) Lv ij

22 (k)δab


(4.847)

whose coecients Fαβ(k) involve the four 2× 2 submatrices of Gv

Gv(k) =


Gv

11(k) Gv
12(k)

G21(k) Gv
22(k)


(4.848)

as follows:

Lv ij
11 (k)δab ≈ 1

2
tr
2×2

T


p

Gv
22


p− k

2


σap̂iG

v
11


p+

k

2


σbp̂j ,

Lv ij
22 (k)δab ≈ 1

2
tr
2×2

T


p

Gv
11


p− k

2


σap̂iG

v
22


p+

k

2


σbp̂j , (4.849)

Lv ij
12 (k)δab ≈ 1

2
tr
2×2

T


p

Gv
12


p− k

2


σap̂iG

v
12


p+

k

2


σbp̂j ,

Lv ij
21 (k)δab ≈ 1

2
tr
2×2

T


p

Gv
21


p− k

2


σap̂iG

v
21


p+

k

2


σbp̂j .

Using (4.840) we nd

Lv ij
11 (k) = T



p

(iω̃+ − ξ+) (iω̃− + ξ−)

(ω̃2
+ + E2

+) (ω̃
2
− + E2

−)
p̂ip̂j +

1

3g
δij , (4.850)

Lv ij
22 (k) = Lv ij

11 (−k), (4.851)

Lv ij,ab
12 (k) = T



p

1

(ω̃2
+ + E2

+) (ω̃
2
− + E2

−)
p̂ip̂j p̂kp̂l taba′b′A

0
a′kA

0
b′l, (4.852)

Lv ij,ab
21 (k) = Lv ij,ak

12 (−k)∗. (4.853)

with the tensor taba′b′ being the trace

taba′b′ ≡
1

2
tr

σa′σaσb′σb′


= δaa′δbb′ + δab′δba′ − δabδa′b′ , (4.854)
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and ξ±, ω̃±,E± abbreviating

ξ± = ξ ± vF p̂k,

ω̃± ≡ ωn ± ν/2− ivp̂pF , (4.855)

E± = E (p± k/2) ≡

(ξ ± vF p̂k)

2 + |Aaip̂i|2.

If we split the energy-momentum summation into size and angular parts using the
density of states N (0) = 3

4
ρ/p2F , then Lv ij,ab

12 can be written as an angular average

Lv ij,ab
12 (k) =

ρ

2p2F
3
 1

−1

dp̂

4π
Lv(k0, p̂k)p̂ip̂j p̂kp̂l taba′b′A

0
a′kA

0∗
b′l, (4.856)

where Lv(k0, p̂k) is the following function:

Lv(k0, p̂k) = T


ω

 ∞

−∞
dξ

1

(ω̃+
2 + E2

+) (ω̃−2 + E2
−)

. (4.857)

It is a generalization of the Yoshida function φ(∆) in Eq. (4.320) to the nonzero ow
situation. For v = 0, k = 0:

Lv(k0, p̂k) =
v=0,k=0

T


ω

 ∞

−∞
dξ

1

(ω2 + E2)2
=

1

2∆2
φ(∆2). (4.858)

4.13.2 Time-Dependent Fluctuations at Innite Wavelength

Let us now specialize on those uctuations which depend only on time and not on
space. Then the only preferred spatial direction is the anisotropy axis l and we may
decompose the tensor Lv ij

11 into components parallel and orthogonal to l, i.e.,

Lv ij
11 (ν) = (δij − lilj)L

v⊥
11 (ν)− liljL

v (ν). (4.859)

Alternatively we shall decompose

Lv ij
11 (ν) = δijL

v⊥
11 (ν) − liljF

v 0
11 (ν). (4.860)

Using the general decomposition formula for an integral

3


dp̂

4π
f(pl)p̂ip̂j =

 1

−1

dz

2

3

2


1−z2


f(z)


(δij − lilj) +

 1

−1

dz

2
3z2f(z)


lilj

=

 1

−1

dz

2

3

2
(1−z2)f(z)


δij −

 1

1

dz

2

3

2


1−3z2


f(z)


lilj, (4.861)

which may be veried by contraction with δij and lilj , we identify

Lv⊥
11 (ν) =

ρ

2p2F

 1

−1

dz

2

3

2
(1− z2)


T


ω

 ∞

−∞
d′ξ

(i ω̃+ − ξ+)(i ω̃− + ξ−)

(ω̃2
+ + E2

+)(ω̃
2
− + E2

−)
+ γ


,

Lv 0
11 (ν) =

ρ

2p2F

 1

−1

dz

2

3

2
(1− 3z2)


T


ω

 ∞

−∞
d′ξ

(i ω̃+ − ξ+)(i ω̃− + ξ−)

(ω̃2
+ + E2

+)(ω̃
2
− + E2

−)
+ γ



− ρ

2p2F

 1

−1

dz

2

3

2
(1− 3z2)γ, (4.862)
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where γ is the gap function introduced earlier in (4.734):

γ = T


ω

 ∞

−∞
dξ

1

(ω̃2 + E2)
. (4.863)

Note that in L0
11(ν), the function γ cancels out. To keep the expressions for both

coecients as similar as possible, however, we have left γ in the equation. The
advantage of this is that the square bracket can be simplied, due to the fact that γ
may also be summed in terms of variables ω̃± and E± instead of ω̃, E, a replacement
that merely amounts to a translation of the innite sum. Thus, taking the average
of both forms, we may write

γ = T


ω

 ∞

−∞
dξ

1

2

ω̃2
+ + ω̃2

− + E2
+ + E2

−
(ω̃2

+ + E2
+)(ω̃

2
− + E2

−)
. (4.864)

Now the numerators in (4.862) can be combined to

Lv⊥
11 (ν) =

ρ

2p2F

 1

−1

dz

2


∆

2 +
ν2

2


Lv(ν) ≡ ρ

4p2F
ϕv⊥(ν), (4.865)

Lv 0
11 (ν) =

ρ

2p2F

 1

−1

dz

2

3

2
(1− 3z2)


∆

2 +
ν2

2


Lv(ν) − γ


≡ ρ

4p2F
ϕv 0(ν), (4.866)

with the function Lv(k0, p̂k) of Eq. (4.857). On the right-hand side of (4.865) we have
introduced convenient dimensionless quantities ϕv⊥, ϕv 0 associated with Lv⊥

11 , Lv 0
11 .

It is a pleasant feature of the B-phase that the γ term in (4.866) does not
contribute due to the simultaneous validity of the longitudinal and the transversal
gap equations (4.603) and (4.604). Thus the B-phase acts as if there is no gap
distortion at all. This is not so in the A-phase where only the transversal gap
equation is available and γ does contribute!

Let us now perform a tensorial decomposition of Lv
12. Generalizing (4.861), we

may decompose

3


dp̂

4π
F (pl) p̂ip̂j p̂kp̂l = A (δijδkl + δikδjl + δilδjk)

+B (δijlkll + δikljlj + δilljlk + δiklill + δjllilk + δkllilj) + Cliljlkll , (4.867)

where A, B, C are the following angular projections of F :

A =
3

8

 1

−1

dz

2
(1− z2)2F (z),

B = −3

8

 1

−1

dz

2
(1− z2)(1− 5z2)F (z),

C =
3

8

 1

−1

dz

2
(3− 30z2 + 35z4)F (z),

= −7B − 3

8

 1

−1

dz

2
(1− 3z2)F (z). (4.868)
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For the purpose of obtaining the nal results in the simplest possible form it is
convenient to use the alternative dimensionless projections

σ1(ν) ≡ 2(A+ B)∆2
⊥ =

 1

−1

dz

2
3z2(1− z2)F v(ν)∆2

⊥,

σ2(ν) ≡ 4A∆2
⊥ =

 1

−1

dz

2

3

2
(1− z2)2F v(ν)∆2

⊥, (4.869)

σ3(ν) ≡ 2(3A+ 6B + C)∆2
⊥ = 6

 1

−1

dz

2
z4F v(ν)∆2

⊥.

Note that due to (4.238), the functions A and B at ν = 0 contain the information
on the orthogonal superuid density, since

ρ⊥s =

8A+ 2c2(A+ B)


ν=0

∆
2
⊥ = 2σ2(0) + c2σ1(0). (4.870)

We now evaluate the full tensor Lv ijab
12 (ν) in terms of σ1,2,3. Contracting (4.867) with

taba′b′ of (4.854), we nd

A {2 (δaiδbj + δajδbi − 3δabδij)

+(1− c) [2(2lalb − δab) + 2(δailblj + δbilalj + (i ↔ j))− 4δablilj]

+ (1− c)2 [−(δab − 2lalb)(δij + 2lilj)]


+B {[(2lalb − δab)δij + 2(δailblj + δbilalj + (i ↔ j))− 5δablilj ]

+(1− c) [2(2lalb − δab)(3lilj + δij) + 2(δailblj + δbilalj + (i ↔ j))− 4δablilj ]

+(1− c)2 [(2lalb − δab)δij + 5(2lalb − δab)lilj ]

+ C


c2(2lalb − δab)lilj


. (4.871)

Collecting terms of equal tensorial properties this becomes

2A[δaiδbj + (i ↔ j)] +

−2A− c2(A+ B)


δabδij +


−2A + 2c2(A+ B)


lalbδij

+

2A + c2(A+ B)− c2(3A+ 6B + C)


δablilj

+ [−2A + 2(A+ B)] [δailblj + δailalj + (i ↔ j)]

+

4(1− c)2(A+ B) − 6(1− c2)B + 2c2C


lalblilj . (4.872)

Multiplying Lv
11, L

v
12 with the pair of uctuating elds A′

ai = ∆⊥dai, and taking
account of the fact that the contributions from Lv

22, L
v
21 are complex conjugate to

each other, leads to an action

iδ2Av = −∆2
⊥ρ

4p2F
V T



νn


ϕ⊥(νn) tr dd

†dd− ϕ0(νn)|ddl|
2

+
σ2

2
(daadbb + daidia + h.c.)− 1

2
(c2σi + σ2)(diadia + h.c.)

+
1

2
(2c2σ1 − σ2)


(lTdd)a(l

Tdd)a + h.c.

+

1

2
(σ1 + σ2 − c2σ3)


(lTdd)a(l

Tdd)a + h.c.


+ 2(2σ1 − σ2)

(ddT l)a(l

Tdd)a + h.c.


+

−(1 + 4c+ c2)σ1 +

3

2
σ2 + c2σ3

 
(lTdd l)(lTdd l) + h.c.

 
, (4.873)
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where dd denotes the matrix whose matrix elements are dai. As a cross-check of
the result we verify that this expansion reduces in the static case νn = 0, and the
Ginzburg-Landau limit T ∼ Tc , to the previous expression (4.125). Indeed, if we
insert d(0) = d/T and iδ2A = −δ2fV/T , and express

∆2
⊥ ρ

4p2F
≈ 1

6

p2F
m2ξ2

ρ

4p2F
≈ 2fc

1

6

1

1− T/Tc

, (4.874)

we observe that for T ∼ Tc:

Lv(0)∆2
⊥ ≈ 1

2
φ(∆2) ≈


1− T

Tc


, (4.875)

so that σ1,2,3 have the extremely simple Ginzburg-Landau limits

σi ≈ i ·
2

5


1− T

Tc


. (4.876)

4.13.3 Normal Modes

It is pleasant to realize that also the new formula (4.873), which is valid for all T ≤ Tc

and νn = 0, can be diagonalized on the same subspaces of real and imaginary parts
of dai(νn) ≡ rai(νn) + i iai(νn)

r11, r22, r33; r12, r21; r13, r31; r23, r32;

i11, i22, i33; i12, i21; i13, i31; i23, i32. (4.877)

On these two 3+2+2+2 -dimensional subspaces, the curly brackets in the energy
(4.873) can be written as a quadratic form

iδ2Av = −∆2
⊥ρ

4p2F
V T



νn


(r11, r22, r33)R(r11, r22, r33)

T + (r12, r21)R
12(r12, r21)

T

+ (r13, r31)R
13(r13, r31)

T + (r23, r32)R
23(r23, r32)

T


+ (R → I, rai → iai)

, (4.878)

in which the real parts are a sum of three matrices

R =




λ⊥ + c2σ1 − σ2 −σ2 −2cσ1

− σ2 λ⊥ + c2σ1 − σ2 −2cσ1

− 2cσ1 −2cσ1 λ⊥ − λ0 + 2σ1 − c2σ2


 ,

R12 =


λ⊥ + c2σ1 − σ2 σ2

σ2 λ⊥ + c2σ1 − σ2


, (4.879)

R
13
23 =


λ⊥ − λ0 − c2σ3 2cσ1

2cσ1 λ⊥ + c2σ1 − 2σ2


.



4.13 Collective Modes in the Presence of Current at all Temperatures T ≤ Tc 299

Similar matrices are found for the imaginary parts, except that the σ-terms appear
with reversed sign.

These matrices serve two purposes. On the one hand, we can now verify the
stability under static uctuations for all temperatures T = Tc by nding the eigen-
values at νn = 0. On the other hand, the matrices contain information on the energy
of collective excitations at innite wavelengths: By continuing analytically from the
discrete values νn to physical frequencies

νn → −i(ω + iǫ) (4.880)

these energies are given by the frequency ω at which the matrices become singu-
lar. The corresponding eigenvectors are the normal modes of the order parameter
uctuations dai(ω).

To embark on this calculation it is useful to express the functions ϕ⊥, ϕ0 of
(4.865), (4.866) in terms of the functions σi as follows

ϕv⊥(νn) =
 1

−1

dz

2

3

2
(1− z2)(1− r2z2)2F∆

2
⊥ +

ν2
n

2∆2
⊥


dz

2

3

2


1− z2


2F∆

2
⊥.

(4.881)

Using (4.869), this becomes

ϕv⊥(νn) = c2σ1 + 2σ2 + 2
ν2
n

4∆2
⊥
(σ1 + 2σ2) . (4.882)

Similarly, we nd

ϕv (νn) = 2σ1 + σ3 + 2
ν2
n

4∆2
⊥
(2σ1 + σ3)

≡ ϕv  − ϕv 0(νn). (4.883)

Inserting these relations into (4.879) we obtain

R =




3σ2−2w2(σ1+2σ2) σ2 2cσ1

σ2 3σ2−2w2(σ1+2σ2) 2cσ1

2cσ1 2cσ1 2c2σ3−2w2(2σ1+σ3)


 ,

R12 =


σ2−2w2(σ1+2σ2) σ2

σ2 σ2−2w2(σ1+2σ2)


, (4.884)

R
13
23 =


2σ1−2w2(2σ1+σ3) 2cσ1

2cσ1 2c2σ1−2w2(σ1+2σ2)


.

For the imaginary parts of dai the uctuation matrices are

I =




σ2+2c
2σ1−2w2(σ1+2σ2) −σ2 −2cσ1

−σ2 σ2+2c
2σ1−2w2(σ1+2σ2) −2cσ1

−2cσ −2cσ1 4σ1−2w2(2σ1+σ3)


 ,
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I12 =


3σ2+2c

2σ1−2w2(σ1+2σ2) −σ2

−σ2 3σ2+2c
2σ1−2w2(σ1+2σ2)


, (4.885)

I
13
23 =


2(σ1+c

2σ3)−2w2(2σ1+σ3) −2cσ1

− 2cσ1 4σ2−2w2(σ1+2σ3)


.

For brevity, we have introduced the dimensionless frequency variable

w2 ≡ − ν2
n

4∆2
⊥
=

(ω + iǫ)2

4∆2
⊥

. (4.886)

It is now straightforward to determine the places of vanishing determinants: For
R12, I12 we immediately nd

w2
1
2

=


0
σ2

σ1+2σ2


with


(1,−1)T

(1, 1)T


,

w2
1
2

=





c2σ1+2σ2

σ1+2σ2
c2σ1+σ2

σ1+2σ2



 with


(1,−1)T

(1, 1)T


, (4.887)

respectively. Behind each eigenvalue we have written down the corresponding eigen-
vector. For R

13
23 , the eigenvalues are given

w2
1
2
=


0

σ1

(σ1+2σ2)(2σ1+σ3)
[(2c2 + 1)σ1+2σ2+c2σ3]


with


(1,−1/c)T

(σ1+2σ2, c(2σ1+σ3))
T



.(4.888)

For I
13
23 the roots can no longer be written down explicitly. Here we nd

w2
1
2

=
σ2

σ1 + 2σ2

+
σ1 + c2σ3

2(2σ1 + σ3)
±

1

2(σ1 + 2σ2)(2σ1 + σ3)
(4.889)

×

[(2σ1 + σ3)2σ2 − (σ1 + c2σ3)(σ1 + 2σ2)] + 4c2σ2

1(2σ1 + σ3)(σ1 + 2σ2).

In the 3×3 subspaces the eigenvalues look simple only for the imaginary components
of dai. First we observe that (1, 1, c)T is an eigenvector of I with eigenvalue

w2
1 = 0 (1, 1, c)T . (4.890)

For c = 1, this is the pure phase oscillation of zero sound. By adding the second
and the last column times c to the rst, the determinant of I can be written as

|I| = −2w2(σ1 + 2σ2)

×



1 0 −2cσ1

1 σ2 + 2c2σ1 − 2w2(σ1 + 2σ2) −2cσ1

c −2cσ1 4σ1 − 2w2(2σ1 + σ3)


. (4.891)

The remaining determinant has the form

4(σ1+2σ2)(2σ1+σ3)w
4−4w2


(c2σ1+σ2)(2σ1+σ3)+(2+c2)σ1(σ1+ 12σ2)



+ 4(c2σ1 + σ2)(2 + c2)σ1 = 0, (4.892)
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so that the remaining two eigenvalues are

w2
2 =

(2 + c2)σ1

2σ1 + σ3

,

w2
3 =

c2σ1 + σ2

σ1 + 2σ2

. (4.893)

For the real 3×3 matrix R, nally, we can nd a trivial eigenvector (1,−1, 0)T with
eigenvalue

w2
1 =

σ2

σ1 + 2σ2

. (4.894)

It is degenerate with the second of the eigenvalues of R12. By subtracting in the
determinant of R the second from the rst row we obtain

|R| =

2σ2 − 2W 2(σ1 + 2σ2)



×



1 −1 0
σ2 2σ2 − 2w2(σ1 + 2σ2) 2cσ1

2cσ1 2cσ1 2c2σ3 − 2w2(σ1 + σ3)


,

so that the remaining two roots are found from the secular equation

w4(σ1 + 2σ2)(2σ1 + σ3)− w2

(σ1 + 2σ2)c

2σ3 + (2σ1 + σ3)2σ2



+ 2c2(σ2σ3 − σ2
1) = 0, (4.895)

which is solved by

w2
2
3

=
1

2

c2σ3

2σ1 + σ3

+
σ2

σ1 + 2σ2

±
1

2(σ1 + 2σ2)(σ1 + σ3)
(4.896)

×

[(σ1 + 2σ2)c2σ3 − (2σ1 + σ3)2σ2]

2 + 8c2σ2
1(σ1 + 2σ2)(2σ1 + σ3).

All these equations are transcendental since the right-hand sides depend again on
w2. They can, however, be solved quite simply in an iterative fashion.

4.13.4 Simple Limiting Results at Zero Gap Deformation

Before attempting a numerical solution of these equations we may extract several
results right away: For small current the asymmetry parameter r vanishes at all
temperatures. As a consequence, σ1,2,3 becomes independent of z and we nd im-
mediately, from integrating (4.869), that the functions σ1 :σ2 :σ3 have a xed ratio
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1 : 2 : 3. As a result we obtain the well-known collective frequencies of the B phase,
at all temperatures:

R12 :


0
2
5


, ω2 =


0

8
5
∆

2
⊥


with


(1,−1)T

(1, 1)T


,

R
13
23 :


0
2
5


, ω2 =


0

8
5
∆2

⊥


with


(1,−1)T

(1, 1)T


,

R :





2
5

1
2
5




, ω2 =





8
5
∆2

⊥
4∆2

⊥
8
5
∆2

⊥





with





(1,−1, 0)T

(1, 1, 1)T

(1, 1,−2)T




,

(4.897)

and

I12 :


1
3
5


, ω2 =


4∆2

⊥
12
5
∆2

⊥


with


(1,−1)T

(1, 1)T


,

I
13
23 :


1
3
5


, ω2 =


4∆2

⊥
12
5
∆2

⊥


with


(1,−1)T

(1, 1)T


,

I :





3
5
3
5

0




, ω2 =





12
5
∆2

⊥
12
5
∆2

⊥
0





with





(1,−1, 0)T

(1, 1,−2)T

(1, 1, 1)T




,

(4.898)

where the eigenvectors have again been recorded in each case. Moreover, since at
T = 0 there is no gap deformation for ν ≤ 1 these results remain true for all velocities
up to ≤ vn.

It is useful to classify this symmetric situation in terms of angular momentum.
The real and imaginary 3 × 3 matrices contain a J = 0, J = 1, and J = 2 tensor
with the correspondence

1√
3
(1, 1, 1) = |00,

1√
2
(1,−1, 0) = 1√

2
(|2, 2+ |2,−2) , R, I

1√
6
(1, 1,−2) = |2, 0,
1√
2
(1,−1) = |1, 0,
1√
2
(1, 1) = 1√

2
(|2, 2 − |2,−2) , R12, I12

1√
2
(1,−1) = 1√

2
(|1, 1+ |1,−1) , R13, I13

1√
2
(1, 1) = 1√

2
(|2, 1+ |2,−1) ,

1√
2
(1,−1) = 1√

2
(|1, 1 − |1,−1) , R23, I23

1√
2
(1, 1) = 1√

2
(|2, 1 − |2,−1) ,

(4.899)

explaining the degeneracies among the 5 real J = 2 modes, the three real ω2 = 0
Goldstone modes with J = 1, the 5 imaginary J = 2 modes with ω2 = 12

5
∆2

⊥, and
the 3 imaginary J = 1 modes with ω2 = 4∆2

⊥.
Now, if a current is turned on, the levels of dierent |J3| within each multiplet

split up. Using the explicit forms of analytically continued σi functions, to be
discussed in the next section, we nd for T close to Tc the level structure displayed
in Fig. 4.43.
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ω2

∆2
⊥

Figure 4.43 Collective frequencies of B-phase in the presence of superow of velocity v

at zero and slightly below the critical temperature Tc (Ginzburg-Landau regime). Near Tc,

there is a considerable splitting between the levels of dierent |J3|. The quantum numbers

of angular momentum are displayed at the right end of each curve. The gap distortion

r2 ≡ 1 − ∆
2
/∆

2
⊥ is related to the superuid velocity v by r2 = 3(v/v0)

2(1 − T/Tc)
−1

r2 = 3(v/v0)
2(1− T/Tc)

−1.

4.13.5 Static Stability

In order to verify static stability we have to take the matrices R, I before analytic
continuation at zero Matsubara frequency νn = 0 and calculate their eigenvalues.
These are found as

R : 2σ2, 2σ2 + c2σ3 ±

(2σ2 − c2r3)

2 + 8c2σ2
1,

R12 :


0
2σ2


with


(1,−1)T

(1, 1)T


,

R
13
23 :


0

(1 + c2)σ1


with


(1,−c−1)T

(1, c)T


, (4.900)

and

I : 2(c2σ1 + σ2), 2(c
2 + 2)σ1

I12 :


2c2σ1 + 4σ2

2c2σ1 + 2σ2,


with


(1,−1)T

(1, 1)T


,

I
13
23 : σ1 + 2σ2 + c2σ3 ±


(σ1 − 2σ2 + c2)2 + 4c2σ2

1. (4.901)
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The eigenvectors are marked explicitly if they are simple. We can now easily verify
that all nonzero values remain positive for all subcritical velocities thus guaranteeing
static stability.

4.14 Fluctuation Coecients

We have seen in the last section that all properties of quadratic uctuations at nite
wavelengths are expressible in terms of the functions σ1,2,3(ω

2) which in turn are
angular projections of the function F v(iνn, p̂k) [recall (4.869)]

F v(iνn, p̂k) = T


ω

 ∞

−∞
dξ

1

(ω̃2
+ + E2

+)(ω̃
2
− + E2

−)
(4.902)

formed at |k| = 0. For the particular case of static uctuations, F v(0, 0) reduces
directly to the standard Yoshida function

F v(0, 0) =
1

2∆2
⊥
φv(0, 0). (4.903)

It can then easily be checked that in this case the projection σi(0) are positive thus
guaranteeing the stability of static uctuation frequencies (4.901): First close to Tc,
all nonzero eigenvalues are positive since σi have the simple form (4.876). Moreover,
as the temperature reaches zero, the gap becomes uniform and

F v
∆

2
⊥ → 1

2
(4.904)

for subcritical velocities so that σi(0) are positive members with the same ratios
1 : 2 : 3. Inserting this together with c = 1 into (4.901) all eigenvalues become again
positive. By monotony of the gap distortion at xed velocity (v2/ν2

0) (1− T/Tc)
−1

(see Fig. 4.41) as a function of temperature, we conclude that there is stability at
all temperatures T ≤ Tc and all subcritical velocities.

For dynamic uctuations, let us continue F v analytically in the frequency −νn.
For this we decompose

F v(iνn, p̂k) = T


ω

 ∞

−∞
dξ

1

ω̃2
− + E2

−

1

ω̃2
+ + E2

+

(4.905)

as in (3.201), and use the summation formula (3.199) to nd

1

2E
T


ω

1

iω̃± ± E
=

1

2E


1±

1

2


tanh

E + vpFz

2T
+ tanh

E − vpF z

2T


. (4.906)

Again we have made use of the fact that the frequency shift νn in ω± does not appear
in (4.906) since it amounts to a mere translation in the innite sum. Collecting the
dierent terms we nd

F v(iνn, p̂k) = T
 ∞

−∞
dξ
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×
1

4E+E−


E++E−

(E++E−)2+ν2
n


1

2


tanh

E+ + vpF z

2T
+(v → −v)


+(E+ ↔ E−)


(4.907)

− E+−E−
(E+−E−)2+ν2

n


1

2


tanh

E+ + vpFz

2T
+(v → −v)


−(E+ ↔ E−)


.

with

E2
± = (ξ ± vF p̂k)

2 +∆
2. (4.908)

At k = 0, and v = 0, we recover the Yoshida function in the presence of superow
(4.903) that governs the superuid densities:

F v(0, 0) =
 ∞

−∞
dξ

1

E2
T


ω

E2

(ω̃2 + E2)2

= φv(∆2)/2∆2
⊥. (4.909)

The expression (4.907) can readily be continued analytically to physical frequencies
ω by merely replacing

iνn → ω + iǫ, (4.910)

which is independent of the direction p. Let us now turn to the calculation of the
functions. For this we consider the continued expression at innite wavelength

F v(ω, 0) =
 ∞

−∞
dξ

1

E(4E2 − ω2)

1

2


tanh

E + vpF z

2T
+ (v → −v)


. (4.911)

The temperature region close to Tc is explored most easily by inserting the expansion
(4.906). Then the integral over ξ can be done and we nd by the same steps as from
Eq. (3.201) to (3.202):

F v(ω, 0) =
1

4

 ∞

−∞
dξ T



ω

1

(ωn − ivpF z)2 + ω2/4

×


1

ξ2 +∆2 − ω2/4
− 1

(ωn − ivpFz)2 + ξ2 +∆2



=
π

4

1
∆2 − ω2/4

1

ω


tanh

ω/2 + v

2T
+ (v → −v)


(4.912)

−πT

4



ωm

1

(ωm − ivpFz)2
+

ω2

4

1
(ωn − ivpFz)2 +∆2

.

Using the previously introduced dimensionless variables (4.886), this may be rewrit-
ten as

F v(ω, 0)∆2
⊥ =

π

8

1√
1− r2z2 − w2


tanh


π

2
(w − νz)δ


+ (ν → −ν)



− 1

2δ
Re

∞

n=0

1

(xn − iνz)2 + w2

1
(xn − ivz)2 + 1− r2z2

, (4.913)
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where the square root has to be taken with a positive real part.
In the limit T → Tc, δ → 0 and the sum is suppressed by one power of δ as

compared with the rst term so that we may use the simple expression

F v(ω, 0)∆2
⊥ =

T→Tc

π2δ

8

1√
1− r2z2 − w2

. (4.914)

For T → 0, the integral is found easily from (4.911) if the velocity v is satises
v < ∆BCS/pF ≈ vc. Then tanh[(E ± pF z)/2T ] = 1, and we have

F v(ω, 0) =
1

4

 ∞

−∞
dξ

1√
ξ2 +∆2

1

ξ2 +∆2(1− w2)
. (4.915)

It is useful to remove the square root by an auxiliary integration, writing

F v(ω, 0) =
1

4π

 ∞

−∞
dξ
 ∞

−∞

1

ξ2 + µ2 +∆2

1

ξ2 +∆2(1− w2)
. (4.916)

Using Feynman’s formula

1

AB
= 2

 1

0
ds

s

[sA+ (1− s2)B]2
(4.917)

this becomes

F v(ω, 0) =
1

π

 1

0
ds
 ∞

−∞

 ∞

−∞
dξd(µs)

1

[ξ2 + s2µ2 +∆2 − (1− s2)w2]2
. (4.918)

Due to rotational invariance in the (ξ, sµ)-plane this can be evaluated in polar
coordinates to give

2
 1

0
ds
 ∞

0
dr

r

(r2 +∆2 − (1− s2)w2)2
=
 ∞

0
ds

1

sA2 − (1− s2)w2
. (4.919)

Thus we arrive at the simple integral representation

F v(ω, 0)∆2
⊥ =

1

2

 ∞

0
ds

1

s2w2 + 1− r2z2 − w2
, (4.920)

which can be integrated to

F v(ω1, 0)∆
2
⊥ =

1

2

1√
1− r2z2 − w2

1

w
arcsin

ω√
1− r2z2

. (4.921)

We can now proceed to calculate the σ1,2,3 functions. Consider rst the limit
T → Tc. Straightforward integration yields, with the overall factor

α ≡ π2δ/4 = π∆⊥/4T, (4.922)
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the expressions

σ1(w
2) =

T→Tc

α
3

2

 1

−1

dz

2
z2(1− z2)

1√
1− w2 − r2z2

(4.923)

=
3

4r5

 
−3

4
(1− w2)2 + r2(1− w2)


l +


3

4
(1− w2)− r2

2


r
√
1− w2r2


,

σ2(w
2) =

T→Tc

α
3

4

 1

−1

dz

2
(1− z2)2

1√
1− w2 − r2z2

(4.924)

=
3

4r5
3

8

 
(1− w2)2 − 8

3
r2(1− w2 − r2)


l +


−(1 − w2) + 2r2


r
√
1− w2 − r2


,

σ3(w
2) =

T→Tc

3 α

 1

−1

dz

2
z4

1√
1− w2 − r2z2

(4.925)

=
3

4r5

 
−3

4
(1− w2)2 + r2(1− w2)


l +


3

4
(1− w2) +

r2

2
r2

r
√
1− w2 − r2


.

Here l is the fundamental integral

l(w2) ≡ r
 1

−1

dz

2

1√
1− w2 − r2z2

= arcsin
r√

1− w2
. (4.926)

This formula may be used as long as w2 < 1− r2. For w2 between 1− r2 and l there
is an imaginary part whose sign is controlled by the iǫ prescription in ω:

l(w2) =
π

2
+

i

r
log

r +

w2 − (1− r2)
√
1− w2

. (4.927)

It may in principle give rise to a width of the collective excitation due to pair
breaking along directions where the gap is not maximal.

4.15 Stability of Superow in the B-Phase under
Small Fluctuations for T ∼ T c

Let us nally investigate the important question whether the ansatz (4.763) for the
distorted order parameter is a local minimum of the free energy for all currents up
to Jc. Previously, we have shown this form to develop for innitesimal currents. We
shall now study, for all currents up to the critical value Jc, the small uctuations in
the 18 parameter eld space Aai.

With the time driving term of the collective action being of the simple pure
damping form, it will be sucient to consider only static uctuations. It is a dis-
advantage of the Ginzburg-Landau regime that there are no properly oscillating
modes which could easily be detected experimentally. On the other hand, there is
the advantage of a simple parametrization of strong-coupling corrections.

Let us parametrize the static uctuations in the form

Aai = ∆B [a (δai + rlali) + dai] , (4.928)
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where

r ≡ c

a
− 1 (4.929)

and c and a are the equilibrium values of the gap parameters in the presence of a
current (we shall leave out the magnetic eld, for simplicity). Inserting (4.928) into
the energy we obtain the potential terms for r = 0

δ2f/2fc

pot

= −α

3
|d 2

ai|+
a2

15


(3β1 + β35)


d 2
ai + d∗ai

2


+ (6βB − 6β1 + 2β4) |d
2
ai|+ (4β1 + 2β2) |t|

2 + β2


t2 + t∗2



+2β35|d
2
ai|+ β4 (dajdja + h.c.)


. (4.930)

Here t denotes the trace of dai. The linear terms have been left out since they are
all of the form t + t∗ and cancel at the extremum. Moreover, with the equilibrium
value of a2 being α/


6
5
βB


, the rst term simply cancels the 6βB-term inside the

bracket.
Neglecting strong-coupling corrections, the expression simplies to

δ2f/2fc

pot

=
a2

15


5|d 2

ai|+ (dajdja + h.c.) +

t2 + t∗2


− 3

2


d 2
ai + h.c.


. (4.931)

The term containing the gap distortion gives an additional

a2

15


β1


4r2|d33|

2 + 4r (td∗33 + h.c.)


+β2


2r2|d33|

2 + 2r (td∗33 + h.c.) + 2r (2 + r) |d|2


+β3


2r2|d33|

2 + 2r (di3d
∗
3i + h.c.) + 2r(2 + r)|da3|

2


+ β4


2r2|d3i|

2 + 4r|d3i|
2 + 2r(2 + r)|da3|

2


+ β5


2r2|d33|

2 + 2r (d3id
∗
i3 + h.c.) + 2r(2 + r)|d3i|

2


+ β1r(2 + r)

d2 + h.c.



+ β2


r2

d233 + h.c.


+ 2r (ta33 + h.c.)



+ β3


r2

d23i + h.c.


+ 2r


d23i + h.c.



+ β4


r2

d233 + h.c.


+ 2r (di3d3i + h.c.)



β5r(2 + r)

d2a3 + h.c.


(4.932)

Without strong-coupling eects this simplies considerably leaving only

1

15


2

c2 − 1

 
|d2ai|+ 2|da3|

2


−1

2


c2 − 1

 
d2ai + h.c.


+ 2 (c− 1)2


d233 + h.c.



+2 (c− 1) (td33 + h.c.) +

c2 − 1

 
d23i + h.c.



−

c2 − 1

 
d2a3 + h.c.


(4.933)
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where we have made use of a = 1 so that

r = c− 1. (4.934)

The result can be written in matrix form

15
δ2f

2fc
= rai Rai,a′i′ ra′i′ + iai Iai,a′i′ ia′i′ (4.935)

where we have separated d into real and imaginary parts

dai = rai13.33 + i iai. (4.936)

The matrix R may be decomposed as R × R12 × R13 × R23 where R is a 3 × 3

submatrix acting only in the space




r11
r23
r33


 while R12, R13 , R23 are 2× 2 blocks in

the subspaces


r12
r21


r13
r31


r23
r32


. (4.937)

An analogous decomposition holds for I . Collecting the dierent contribution we
nd

R =




5 + c2 2 2c
2 5 + c2 2c
2c 2c 9c2 − 3


 ,

R12 =


c2 + 1 2

2 c2 + 1


,

R
13
23 =


3c2 − 1 2c

2c 3c2 − 1


,

I =




1 + 3c2 −2 −2c
− 2 1 + 3c2 −2c
− 2c −2c 1 + 3c2


 ,

I12 =


3c2 + 5 −2
− 2 3c2 + 5


,

I
13
23 =


−1 + 9c2 −2c
−2c 7 + c2


. (4.938)

In the absence of a current, we have c = 1 and can recover immediately the eigen-
values:

R : (10, 4, 4) ,

R12,13,23 : (0, 4) ,

I : (0, 6, 6) ,

I12, 13, 23 : (6, 10) . (4.939)
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We observe the occurrence of 4 Nambu-Goldstone modes corresponding to overall
phase oscillations (sound) and three vibrations of the order parameter θ, one for the
length and two for the direction.

These correspond to the residual part of the original SO(3)spin× SO(3)orbit ×
U(1)phase symmetry left unbroken by the isotropic parameter A0

ai, of the B-phase.
The strong-coupling corrections change the eigenvalues only slightly. Since the

Nambu-Goldstone bosons are a consequence of the symmetry of the action and A0
ai,

their eigenvalues remain exactly zero. Collecting the dierent terms in (4.932) we
nd the corrected matrices

R = 4




β12345 β12 β12

β12 β12345 β12

β12 β12 β12345




α
6
5
βB

,

R12,13,23 = 2β345


1 1
1 1


α

6
5
βB

,

I = −4β1




2 −1 −1
− 1 2 −1
− 1 −1 2




α
6
5
βB

, (4.940)

I12,13,23 = 2


−6β1 − β35 + β4 β35 − β4

β35 − β4 −6β1 − β35 + β4


α

6
5
βB

,

with eigenvalues

R : (12βB, 4β345, 4β345)
α

6
5
βB

,

R12,13,23 : β345(0, 4)
α

6
5
βB

(4.941)

I12,13,23 : (−12β1, − 12β1 + 4 (β4 − β35))
α

6
5
βB

.

Remember that α
6
5
βB

∆B represents the corrected gap value in the B-phase.

Note that if β345 = 0, there would be two more zero-frequency modes in R.
This fact is associated with the accidental degeneracy of polar and planar phase
at β345 = 0: the two modes correspond to linear interpolations between these two
phases.

Let us now turn on the current. Then we have to add the uctuations from the
term

− 5j2

|d 2
ai|+ |d 2

a3|
, (4.942)

which in equilibrium contributes inside the curly brackets of (4.932):

3κ2

2a2 + 3c2


|d 2

a1|+ |d 2
a2|+ 3|d 2

a3|
 

2a2 + 3c2


−4a2

r211 + r222


− 36c2r33

2

−8r11r22a
2 − 24ac (r11 + r22) r33


. (4.943)
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Without strong-coupling corrections a = 1 this adds directly


1− c2






1

2 + 3c2




3c2 − 2 −4 −12c
− 4 3c2 − 2 −12c
− 12c −12c 6− 27c2


 ,




1
1

3


 ,


1

1


,


1

1


,


3 0
0 1


,


3 0
0 1


(4.944)

to R, I, R12, I12, R
13
23 , I

13
23 so that we obtain the new matrices:

R =




22c2 + 8 2 (c2 + 4) 2c (9c2 − 4)
2 (c2 + 4) 22c2 + 8 2c (9c2 −−4)
2c (9c2 − 4) 2c (9c2 − 4) 6c2 (9c2 − 4)


 ,

R12 =


2 2
2 2


,

R
12
23 =


2 2c
2c 2c2


,

I =




2 (1 + c2) −2 −2c
− 2 2 (1 + c2) −2c
− 2c −2c 4


 ,

I12 =


2c2 + 6 −2
− 2 2c2 + 6


,

I
13
23


6c2 + 2 −2c
− 2c 8


. (4.945)

The eigenvalues are now

R :

1

5


27c4 + 8


±

1

3


(9c2)4 − 8 (9c2)3 − 48 (9c2)2 + 512 (9c2) + 576


, 4c2


,

R12 : (0, 4) ,

R
13
23 :


0, 2


1 + c2


,

I :

0,

2

5


2 + c2


,
2

5


2 + c2


,

I :

2c2 + 4, 2c2 + 8



I
13
23 :


3c2 + 5±,



c4 − 14

9
c2 + 1


 . (4.946)

For increasing current, c2 = 1− 3κ2 decreases and with it also the eigenfrequencies.
At the critical current κ2

c = 5/27 the value of c2 drops to 4/9 and the eigenvalues
become

R :

0,

16

3
,
16

9


,



312 4 Superuid 3He

R12 : (0, 4) ,

R
13
23 :


0,

26

9


,

I :

0,

44

45
,
44

45


,

I12 :

44

9
,
62

9


,

I
13
23 : (4.2, 7.04) . (4.947)

The zero eigenvalue in R signalizes the instability for decay into the planar (or A)
phase.

Summary

We have presented only a short introduction into the wide eld of 3He physics
which has been developed over the last forty years. The methods used in describing
the physical properties of the superuid run hand in hand with those which are
popular nowadays in particle physics and eld theory. For a particle physicist it
can be rewarding to study some of the phenomena and their explanations since it
may provide him with a more transparent understanding of the σ-type of models.
Also, the visualization of functional eld spaces in the laboratory may lend a more
realistic appeal to topological considerations which have become a current tool in
the analysis of solutions of gauge eld equations.

Finally, there may even be direct applications of superuid 3He in particle
physics. Since the condensate is characterized by two vectors L and S, there is
a vector L × S which is time-reversal invariant, but parity violating. If there are
neutral currents of this symmetry type in weak interactions they may build up a
small electric dipole moment in the Cooper pairs. This has to be aligned necessarily
with L × S. In the condensed phase of the superuid, this very small dipole mo-
ment can pile up coherently and might result in an observable macroscopic dipole
moment. This could lead to a more sensitive test than those available right now.
Unfortunately, the uncertainty in the Cooper pair wave function is, at present, an
obstacle to a reliable estimate of the eect. Also, the detection of the resulting
macroscopic dipole moment may be hampered by competing orientational eects.

Appendix 4A Hydrodynamic Coecients for T ≈ Tc

Here we give a brief derivation of the hydrodynamic energy (4.125) as it follows from
the original form (4.85) which we rewrite as

fgrad =
1

2
∆

2
A


K1|∂iφj|

2 +K2


∂iφ

∗
j∂jφi


+K3|∇ |2 +K23| ∇da|

2 + 2K1 (∂ida)
2


(4A.1)
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with the notation K12 ≡ K2+K3. First we process the pure φ parts. The rst term
is decomposed as follows:

|∂iφj|
2 = (∂i

(1))2 + (∂i
(2))2. (4A.2)

Observing that the vector ∂i
(1) has only an l and a (2) component, due to the

trivial orthogonality relation (1)∂i
(1) = 0, we write

∂i
(1) =


l ∂i

(1)

l +


(2)∂i

(1)


(2). (4A.3)

In terms of the superuid velocity

vsi =
1

2m
(1)∂i

(2) (4A.4)

and using the further orthogonality relation l ∂i
(1,2) = − (∂il)

(1,2) which follows
from the orthogonality between l and (1,2), we have

∂i
(1,2) = −( (1,2)∂il)l∓ 2mvsi

(2,1). (4A.5)

By squaring this, we obtain

(∂i
(1))2 = ( (1)∂il)

2 + 4m2v2
s . (4A.6)

Adding once more the same term with (1) and (2) interchanged we obtain

|∂i |2 = ( (1)∂il)
2 + ( (2)∂il)

2 + 8m2vs2

= (∂il)
2 + 8m2v2

s , (4A.7)

having dropped a trivially vanishing term − (l∂il)
2. The rst term can be decom-

posed into splay, twist, and bend terms as

(∂il)
2 = (∇ · l)2 + [l · (v × l)]2 + [l× (v × l)]2 (4A.8)

so that we nd the nal form

|∂i |2 = (∇ · l)2 + [l · (∇× l)]2 + [l× (∇× l)]2 + 8m2v2
s . (4A.9)

The third derivative term φ is treated as follows:

|∇ |2 = (∇ (1))2 + (∇ (2))2

=

(l∂i

(1))li + ( (2)∂i
(1))φ

(2)
i

2
+ (1 ↔ 2)

= [−( (1)∂il)li − 2mvsiφ
(2)
i ]2 + (1 ↔ 2, vs → −vs) (4A.10)

= (l∇lj)
2 + 4mvsk[φ

(2)
k φ

(1)
j − (1 ↔ 2)] (∂ilj) li + 4m2


v2
s − (l · vs]

2

.

Here the rst term is of the pure bend form

[l∇lj]
2 = [l× (∇× l)]2 . (4A.11)
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The second term can be rewritten using

φ
(2)
k φ

(1)
j − φ

(1)
k φ

(2)
j = −ǫkjmlm (4A.12)

as

−mvskǫkjmlm(∂ilj)li. (4A.13)

With the formula

liǫkjm = lkǫijm + ljǫkim + lmǫkji (4A.14)

it becomes
−4m (vs · l) [l · (∇× l)] + 4mvs · (∇× l). (4A.15)

The second gradient term in (4A.1) becomes, nally, by a similar treatment:

∂iφ
∗
j∂jφi = [l× (∇× l)]2 + 4m2[v2

s − (vs · l)
2]− 4m(vs · l)[l · (∇× l)]. (4A.16)

Hence, the pure φ part of the gradient energy is

eφ =
1

2
∆

2
A


4m2(2K1 +K23)v

2
s − 4m2K23 (l · vs)

2

+4mK3vs · (∇× l)− 4mK23 (vs · l) [l · (∇× l)] (4A.17)

+K1 (∇ · l)2 +K2 [l · (∇× l)]2 + (K1 +K23) [l× (∇× l)]2

.

If the d bending energies are neglected, we nd the hydrodynamic energy (4.125)
with the coecients

ρs = ∆A(2K1 +K23) 4m
2, (4A.18)

ρ0 = 2mc0 = ∆
2
AK23 4m2, (4A.19)

c = ∆
2
AK3 2m, (4A.20)

c0 = ∆
2
AK23 2m, (4A.21)

Ks = Kt = ∆
2
AK1, (4A.22)

Kb = ∆
2
A(K1 +K23). (4A.23)

Inserting the weak-coupling results (4.82) for K1, 2, 3 , one has

ρs = 2ρ

1− T

Tc


(4A.24)

and the relations

ρ0 =
1

2
ρs = c0 2m = 2c 2m, (4A.25)

Ks = Kt =
1

4m2

1

4
ρs; Kb =

1

4m2

3

4
ρs. (4A.26)
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The terms containing the d-vectors can be processed similarly. With

| ∇da|
2 = ( (1)

∇da)
2 + ( (2)

∇da)
2

= (∂ida)
2 − (l∇da)

2 (4A.27)

we obtain

ed =
1

2
∆

2
A


(2K1 +K23)(∂ida)

2 −K23(l∇da)
2


(4A.28)

amounting to the bending constants

Kd
1 = ∆

2
A(2K1 +K23), Kd

2 = ∆
2
A K23. (4A.29)

In the case that d and l are locked to each other by the dipole energy, the general
bending energy of the da eld

ed =
1

2


Kd

1 (∂ida)
2 −Kd

2 (l∇da)
2


(4A.30)

contributes to the l eld an energy

f d
locked =

1

2
(Kd

1


(∇ · l)2 + [l · (∇× l)]2 + [l× (∇× l)]2



−Kd
2 [l× (∇× l)]2 ). (4A.31)

Adding this to (4.125) we obtain again the general form (4.125), now with the
coecients

K l
t = Kt +Kd

1 , K l
s = Ks +Kd

1 , Kb = Kb +Kd
1 −Kd

2 . (4A.32)

For the present case with the coecients (4A.17) and (4A.28) this gives

Ks = Kt = Kb = ∆
2
A(3K1 +K23). (4A.33)

In the weak-coupling limit these are related to the superuid density by

Ks,t,b =
1

4m2

5

4
ρs. (4A.34)

Appendix 4B Hydrodynamic Coecients for All T ≤ T c

For arbitrary temperatures T ≤ Tc, the hydrodynamic limit is

f =
1

4m2
ρijkl∂kA

∗
ai∂lAaj

1

∆2
AB

−




1

4m2
ρ̄ijkl∂kli∂llj

0



 ,


A
B


phase

(4B.1)

with Aai having the forms (4.103), (4.104) but being permitted to contain smooth
spatial variations of the direction vectors. We now evaluate this further for the two
phases:
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A-phase

Here, we have to contract the three covariants of (4.343),

Âijkl ≡ δijδkl + δilδjk + δikδjl,

B̂ijkl ≡ δij lkll + δikljll + δilljlk + δkjlill + δljlilk + δkllilj,

Ĉijkl ≡ liljlkll (4B.2)

with

∂k (daΦ
∗
i ) ∂l (daΦj) = (∂kda∂lda)Φ

∗
iΦj + ∂kΦ

∗
i ∂lΦj . (4B.3)

From Â we nd

Â : |∂iΦj |
2 + ∂iΦ

∗
j∂jΦi + |∇ |2 + 2(∇da)

2 + 2| ∇da|
2. (4B.4)

These gradient terms have been expanded in Appendix 4A in terms of the generic
hydrodynamic gradient terms in the energy (4.125). If we use the following short
notation for the various invariants in that energy

ρ̂ ≡ 4m2v2
s , ρ̂0 ≡ −4m2 (l · vs)

2 ,

ĉ ≡ 2mvs · (∇× l) , ĉ0 ≡ −2m (l · vs) [l · (∇× l]) ,

ŝ ≡ (∇ · l)2 , t̂ ≡ [l · (∇× l)]2 , b̂ ≡ [l× (∇× l)]2 ,

k̂d
1 ≡ (∂ida)

2 , k̂d
2 ≡ − (l ·∇da)

2 , (4B.5)

the hydrodynamic expansion reads

f=
1

2


ρs

4m2
ρ̂+

̺0

4m2
ˆ̺0 +

c

2m
ĉ+

c0
2m

ĉ0 +Ksŝ+Ktt̂+Kbb̂+Kd
1 k̂

d
1 +Kd

2 k̂
d
2


.

(4B.6)

With the same invariants we can write (4B.4) as


ŝ+ b̂+ t̂+ 2ρ̂


+

b̂+ ρ̂ + ρ̂0 + ĉ0


+

b̂+ ρ̂ + ρ̂0 + ĉ+ ĉ0


+ 4K̂d

1 + 2K̂d
2 , (4B.7)

where parentheses indicate the dierent terms in (4B.4).
The covariant B̂ijkl has a very simple contribution to the d bending energy

B̂ : 2 (l ·∇da)
2 = −2K̂d

2 , (4B.8)

as follows immediately from l = 0. As far as the gradient terms of the eld are
concerned we use (4A.5) to rewrite

∂kΦ
∗
i ∂lΦi =


(1)∂kl


li


(1)∂ll

lj + (1 ↔ 2)− 4m2vskvsl


φ
(1)
i φ

(1)
j + (1 ↔ 2)



+

2mvslφ

(2)
j (φ(1)∂kl)li + (k ↔ l, i ↔ j)


− [1 ↔ 2]


(4B.9)
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and employ (4A.12) to bring the terms in curly brackets to the form

−2mvslǫjmnln∂klmli + (k ↔ l, i ↔ j) . (4B.10)

Contracting the pure l terms of (4B.9) with B̂ijkl we nd

B̂ : 5[ (1)(l ·∇)l]2 + ( (1)∂kl)
2 + (1 ↔ 2) = 5 (l ·∇li)

2 + (∂kli)
2

= 5b̂+ (ŝ+ t̂ + b̂). (4B.11)

The rst v-terms in (4B.9), on the other hand, contribute

B̂ : 4m2 (lvs)
2 = −2ρ̂0 (4B.12)

while the others extracted in (4B.10) add to this

B̂ : − 2mviǫimnln(l∇)lm − 2m(lvs)ǫimnln∂ilm

− 2m(lvs)ǫimnln∂ilm − 2mviǫimnln(l∇)lm

= −4m(l · vs)[l · (∇× l) + 4m[vs · (∇× l)]− 4m(l · vs)[l · (∇× l)]

= ĉ+ 2ĉ0. (4B.13)

The contributions of the third covariant Ĉijkl, nally, are obtained by contracting
four l-vectors with (4B.8) giving

Ĉ : [ ′(l ·∇)l]
2
+ [1 → 2] = [(l ·∇)l]2 = [l · (∇× l)]2 = b̂. (4B.14)

Collecting all terms we obtain

(AÂ + BB̂ + CĈ)ijkl∂k(daΦ
∗
i )∂l(daΦj) = 4Aρ̂+ 2(A− B)ρ̂0 + 4AK̂d

1 + 2(A−B)K̂d
2

+(A+ B)Ĉ + 2(A+ B)Ĉ0 + (A+ B)ŝ+ (A+ B)t̂ + (3A+ 6B + C)b̂. (4B.15)

Inserting (4.345)-(4.346) we obtain the energy (4.125) with the coecients

2mC = 1
2
ρ
s, 2mc = 2m(c0 − c) = 1

2
ρ
s,

4m2Kd
1 = ρs, 4m2Kd

2 = ρ0,
4m2Ks = 4m2Kt =

1
2
ρ
s, 4m2Kb = 3

4
γ.

We now turn to the ρ̄ijkl-term in the gradient energy (4B.1). This tensor has
once more the same expansion into covariants

ĀÂijkl + B̄B̂ijkl + C̄Ĉijk, (4B.16)

with the coecients Ā and B̄ given by (4.370) while C̄ijkl does not contribute when
contracting it with ∂kli∂llj as required by (4.369). In fact, doing this contraction on
(4B.16) gives

Ā(3ŝ+ t̂ + b̂) + B̄b̂, Ā = ρ̄s/8, Ā+ B̄ = ρ̄
s/4. (4B.17)
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This adds −3Ā,−Ā,−(Ā + B̄) to the bending constants 1
2
4m2Ks,t,b, respectively,

which therefore become

4m2Ks = ρs/4, 4m2Kt = (ρs + 4ρ
s) /12, 4m2Kb = (ρ

s + γ)/2 (4B.18)

as stated in (4.375).

B-phase

Let the vacuum be given by

A0
ai = ∆BRai(θ0)e

−iϕ0 . (4B.19)

We may parametrize the oscillators around this nonzero value by letting

Rai(θ) = Raj(θ0)Rji(θ̃). (4B.20)

Since the subscripts a of A′
ai are always contracted, we may also use

Ãai ≡ R−1(θ0)aa′Aa′i (4B.21)

as an order parameter without changing the energy. With this the derivative terms
of the eld become simply

∂kÃai = −iLc
ai∂k θ̃c = −ǫcai∂kθ̃c, (4B.22)

where Lc
ai are the 3× 3 generating matrices of the rotation group Lc

ai = −iǫcai.
Consider now the expression (4B.1) with coecient in the B-phase being:

ρijkl =
3

2
ρbs

1

∆2
B

1

15
(δijδkl + δilδjk + δikδjl) . (4B.23)

The derivatives are

∂kA
∗
ai∂lAaj = ∂kÃ

∗
ai∂lÃaj

= ∆
2
B


∂kϕ∂lϕδij + ∂kR̃ai∂lR̃aj


+mixed terms. (4B.24)

The mixed terms can be neglected since

∆
2
Bi

∂kR̃aiR̃aj∂lϕ− R̃ai∂lR̃aj∂kϕ


(4B.25)

is antisymmetric under (i ↔ j, k ↔ l), while (4B.23) is symmetric. Contracting
this with the covariant in (4B.21) gives

∆
2
B


(3 + 1 + 1)(∂iϕ)

2 + ∂kθ̃c∂lθ̃dǫcai ǫcaj (δijδkl + δil + δikδjl)


= ∆
2
B


5(∂iϕ)

2 + 2(∂iθ̃j)
2 +


(∂iθ̃j)

2 − (∂iθ̃)
2

+

(∂iθ̃j)

2 − ∂iθ̃j∂j θ̃i


, (4B.26)

so that

4m2f =
ρBs
2


(∇ϕ)2 +

4

5
(∂iθ̃j)

2 − 1

5
(∇θ̃)2 − 1

5
(∂iθ̃j∂j θ̃j)


, (4B.27)

as given in (4.358).
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Appendix 4C Generalized Ginzburg-Landau Energy

If one assumes all temperature dependence to come from ρ0 = ρ
s (1− ǫ) ≡ ρ

sα, the
coecients of the energy are in the dipole-locked regime:

A = 1 + αs =
GL

1 + s, (4C.1)

Ag = −A−1,

A′
g = αA−2 =

GL

1

(1 + s)2
,

A′′
g = −2α2A−3 =

GL
− 2

1

(1 + s)3
,

Mg =

1− sA−1

√
1− s =

GL

√
1− s

1 + s
,

M ′
g = −


1 + (2− 3s)A−1 − 2(1− s)αsA−3


/2
√
1− s =

GL
− 1

2
√
1− s

3− s

(1 + s)2
,

M ′′
g = −


1− (4− 3s)A−1 − 4(3s2 − 5s+ 2)A−2 + 8(1− s)2sαA−3


/4(1− s)3/2

=
GL

1

4(1− s)3/2
1

(1 + s)4


11− 7s− 15s2 + 3s3


,

Gg =
s

2


5− 2s(1− s)A−1


=
GL

c

2

5 + 3s+ 2s2

1 + s
,

G′
g =

5

2
− s


2− 3s− s(1− s)A−1


A−1 =

GL

1

2(1 + s)2
(5 + 6s9s2 + 4s3),

G′′
g = 2(3s− 1)A−1 − 2(3s− 2)sαA−2 − 2s2(1− s)αA−3

=
GL

2

(1 + s)3
(s3 + 3s2 + 3s− 1).
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The supreme misfortune is when theory outstrips performance.

Leonardo da Vinci (1452–1519)

5

Liquid Crystals

In 1888, Friedrich Reinitzer investigated the thermodynamic properties of crystals
of cholesteryl benzoate [1]. He observed that they melt at 145.5◦C to form a cloudy
liquid. This was stable up to 178.5◦C, before it melted again to form a clear liquid.
The cloudy liquid is a new phase of matter intermediate between a crystal and a
liquid which is now referred to as a liquid crystal . A liquid crystal is a system of
rod-like or disk-like molecules which behave under translations in the same way as
the molecules in an ordinary liquid, while their molecular orientations can undergo
phase transitions into states of long-range order, a typical property of crystals.

In this part of the book we shall focus our attention on molecules whose shape
strongly deviates from spherical symmetry but which mechanically have no dipole
properties, i.e., a reversal of the direction of the principal axis remains energetically
negligible. Examples for such molecules are p, p′-azoxyanisole shortly called PAA, or
p-methoxybenzylidene-p-n-butylaniline, usually abbreviated as MBBA. The chemi-
cal structure of the latter is shown in Fig. 5.1.

Figure 5.1 Molecular structure of PAA.

The long molecules in this and similar materials opened the way for the con-
struction of all modern displays in watches and computers [2]. See the internet page
for a movie illustration on how they function.1 For some of these long molecules it
may happen that the atomic array exhibits a slight screw-like structure. This is
the case in many derivatives of steroids whose prime example is cholesterol. Such
molecules violate mirror reection symmetry.

A satisfactory description of the long-range correlations in such systems can again
be given by means of a collective eld theory. It is constructed by using the lowest
non-vanishing multipole moment of the molecules as a local eld characterizing the

1http://plc.cwru.edu/tutorial/enhanced/files/lcd/tn/tn.HTM.
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orientation of the molecules and expanding the free energy in a power series in
this eld and its derivatives. The thermodynamic properties are then obtained by
calculating the partition function for all uctuating eld congurations:

Z =


eld
congurations

e−Energy/kBT . (5.1)

If the system is not extremely close to a critical point, where uctuations become
important, the partition function can be approximated by the eld conguration
which extremizes the energy (saddle point method). This is equivalent to considering
the collective eld as a mean-eld variable of the Landau type [3, 4, 5, 6].

For a theoretical description of the system we derive rst a mean-eld theory in
terms of a non-uctuating order parameter [3], [4]. This is extended by derivative
terms to nd a Ginzburg-Landau type of eld theory [5] which describes the physical
properties resulting from the long-range uctuations or the order eld.

5.1 Maier-Saupe Model and Generalizations

The simplest microscopic model for the description of phase transitions in liquid
crystals was constructed by Maier and Saupe. It is based on the standard molecular
eld approximation invented long time ago by Pierre Weiss [7] to explain ferromag-
netism. By construction, the model is conned to nematic systems.

5.1.1 General Properties

The molecules are assumed to be non-polar, rod-like objects. If the direction of the
body axis is denoted by the unit vector n(x), the instantaneous orientation may be
characterized by the traceless tensor eld

Qmol
αβ (x) = ǫ

(0)
αβ (n(x)) =



3

2



nα(x)nβ(x) −
1

3
δαβ



. (5.2)

In the normal phase, this eld uctuates around zero. Below the phase transition,
however, there is a non-vanishing average order

Qαβ = Qmol
αβ  = Sǫ(0)(n̄) = S



3

2



n̄αn̄β −
1

3
δαβ



. (5.3)

This is due to the intermolecular forces which tend to align the vector eld nα(x) to a
common average value n̄α. The interaction may be approximated by an orientational
energy

Hor = −A0Q
mol
αβ Qαβ (5.4)

with some coupling strength A0. Inserting this into Boltzmann’s distribution law,
one nds the self-consistency relation

Qαβ = Qαβ = Z−1


d2n

4π
Qmol

αβ e−Hor/kBT , (5.5)
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where

Z =
 d2n

4π
e−Hor/kBT . (5.6)

Orienting n̄ along the z-direction and setting n · n̄ ≡ z, we see that

S =
1

Z

3

2

 1

0
dz


z2 − 1

3



e
3
2
A0S(z2− 1

3)/kBT , (5.7)

Z =
 1

0
dz e

3
2
A0S(z2− 1

3)/kBT . (5.8)

Introducing σ ≡ S/κ and κ ≡ kBT/
3
2
A0, this takes the form

κσ = −1

2
+

3

2

1

J(σ)

d

dσ
J(σ), (5.9)

where

J(σ) =
 1

0
dz eσz

2

(5.10)

is related to Dawson’s integral

D(x) =
 x

0
ey

2

dy = x +
x3

3 · 1!
+

x5

5 · 2!
+

x7

7 · 3!
+ . . . (5.11)

by

J(σ) =
1√
σ
D(

√
σ). (5.12)

After a partial integration we see that

J(σ) = eσ − 2σ
d

dσ
J(σ), (5.13)

so that Eq. (5.9) can be written as

κσ = S(σ) ≡ −1

2
+

2

3

1

2



eσ√
σD(

√
σ)

− 1

σ



= −1

2
+

3

2



1

3
+

4

45
σ − 23

33 · 5 · 7
σ2 +

24

34 · 52 · 7
σ3 + . . .



. (5.14)

This implicit equation is the extremum of the free energy density

f =
1

2
A0S

2 − kBT logZ =
kBT

3



κσ2 − 3 logZ


, (5.15)

where Z is the partition function of (5.7)

Z =
 1

0
dzeσ(z

2− 1
3) = e−

1
3
σ 1√

σ
D(

√
σ). (5.16)
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Figure 5.2 Graphical solution of the gap equation (5.14).

The solution of Eq. (5.14) is most easily found by choosing a parameter κ and de-
termining the temperature T for various values of σ. Geometrically, the solution is
given by the intersection of the straight lines κσ with the curves S(σ) (see Fig. 5.2).
For κ > κc = 0.147, the only solution is S = σ = 0 (normal phase).

At κ = κ0, the order parameter jumps, in a rst-order phase transition, to some
nite value

Sc = 0.43, σc = Sc/κc = 2.93. (5.17)

In the limit κ → 0 (i.e., T → 0), σ approaches unity corresponding to a perfect
order of the system.

5.1.2 Landau Expansion

For small values of σ we may use (5.16) and (5.11) to expand the free energy (5.15)
in powers of σ:

3f

kBT
=


κ− 2

15



σ2 − 8

33 · 5 · 7
σ3 +

22

33 · 52 · 7
σ4 + . . . . (5.18)

Conventionally one denotes the temperature at which the quadratic term changes
sign by T ∗, i.e.,

κ− 2

15
≡ 2

3

kBT
∗

A0



T

T ∗ − 1


≡ κ∗


T

T ∗ − 1


, (5.19)

so that

κ∗ =
2kBT

∗

3A0

≡ 2

15
. (5.20)

With this notation, the expression (5.18) amounts to the Landau-de Gennes free
energy expansion for the nematic liquid crystal. If terms beyond the fourth powers
are neglected, the rst-order nature of the transition H is seen to arise from the
cubic term at a transition temperature T1 determined by the equation

(cubic term)2

4 · quadratic · quartic term
=

cubic term

2 · quartic term
, (5.21)
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from which we nd

T1

T ∗ − 1 =
(8/33 · 5 · 7)2

4(2/15)(4/33 · 52 · 7)
=

10

63
, (5.22)

or T1/T
∗ = 73/63 ≈ 1.159. This lies quite a bit higher than the exact ratio T1/T

∗ =
κc15/2 ≈ 1.1 determined from the full gap equation (5.14). Experimentally, T1 lies
much closer to T ∗ (T1/T

∗ ≈ 1.0025) which shows that the cubic coecient of the
theory is somewhat too large with respect to fourth-order and quadratic coecients
in order to justify the Landau expansion, a well-known weakness of the model.

The κ-value at the transition point is

κc = κ∗(T1/T
∗) = 2 · 73/15 · 63. (5.23)

The order parameter σ jumps from zero to

σc = 5, (5.24)

so that S jumps from zero to

Sc = κcσc = σc =
2

3

73

63
≈ 1.35. (5.25)

5.1.3 Tensor Form of Landau-de Gennes Expansion

Let us rewrite the free energy density (5.15) in another form using the following
auxiliary eld quantity:



15

8π
nαnβQαβ ≡ Q(n). (5.26)

Then the free energy density (5.15) can be written as

f

kBT
=

4π

3κ



d2n

4π
Q2 − logZ, (5.27)

with a partition function

Z =
 d2n

4π
e
√

4π
5

2
3
Q(n)/κ. (5.28)

Expanding (5.27) in powers of Q(n) we obtain

f

kBT
=

1

3κ



κ− 2

15



4π


d2n

4π
Q2 −



2

3κ

3


4π

5

3


d2n

4π
Q3

+


2

3κ

4


4π

5

4 



1

24



d2n

4π
Q4 − 1

8





d2n

4π
Q2

2


+ . . . . (5.29)
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The angular integrals yield



d2n

4π
Q2 =

15

8π

2

15
QαβQαβ ,



d2n

4π
Q3 =



15

8π

3/2 8

105
QαβQβγQγα,



d2n

4π
Q4 =



15

8π

2 36

945



Qαβ
2
2

, (5.30)

so that (5.29) takes the tensor form

f

kBT
=

1

3κ2



κ− 2

15



trQ2 −
√
6

3 · 5 · 7



2

3κ

3

trQ3

+
1

700



2

3κ

4

(trQ2)2 + . . . . (5.31)

Inserting here Qαβ = κσǫ(0)(m) with tr ǫ(0)2 = 1, tr ǫ(0)
3
= 1/

√
6, we recover (5.18).

In the sequel, we shall abbreviate the dimensionless reduced energy f/kBT by
f̃ .

5.2 Landau-de Gennes Description of Nematic Phase

The lowest non-vanishing multipole moment of the elongated molecules is of the
quadruple type. Thus a traceless symmetric tensor Qαβ is the appropriate order
parameter for a Landau expansion [3, 4]. To lowest approximation, any other phys-
ical property described by the same type of tensor must be a multiple of this order
parameter Qαβ . Examples are the deviations of the dielectric tensor ǫαβ or the
magnetic permeability µαβ from the isotropic value

δǫ = ǫαβ − ǫ0δαβ ,

δµ = µαβ − µ0δαβ . (5.32)

If Qαβ vanishes, there can be no orientational preference. Thus δαβǫ = 0 and δµ = 0.
For small Qαβ , one can expand

δǫαβ = M ǫ
αβγδQγδ + . . . , (5.33)

where, from symmetry arguments, Mαβγδ can only have the general form

Mαβγδ = a δαβδγδ +
b

2
(δαγδβδ + δαδδβγ) . (5.34)

But applied to a symmetric traceless tensor Qγδ, the a-term vanishes while the b-term
gives simply (b/2)Qαβ. Hence, the deviations of electric and magnetic permeability
are proportional to Qαβ . This makes all properties of the order parameter observable
via an interaction Hamiltonian

Hint =
1

2



d3x (ξEQαβEαEβ + ξMQαβHαHβ) . (5.35)
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It will be convenient to choose the normalization of Qαβ such that

Qαβ ≡ δǫαβ , i.e. ξE ≡ 1. (5.36)

Locally, the symmetric order parameter may be diagonalized by a rotation and has
the form

Qαβ =







−Q1

−Q2

Q1 +Q2





 . (5.37)

If Q1 = Q2, the order is called biaxial, if Q1 = Q2, it is called uniaxial. Suppose
now that Q1 and Q2 are of similar magnitude and both are of equal sign, either
positive or negative. In the rst case, the dielectric tensor has two small and one
larger component. This corresponds to an ellipsoid of rod-like shape. If they are of
opposite sign Q1 ≈ −Q2, the order corresponds to a disc. For the molecular systems
discussed before we expect the rod-like option to have the lower energy. This will,
in fact, emerge on very general grounds, except for small regions of temperature and
pressure (close to the critical point in the phase diagram).

Let us now expand the free energy in powers of Qαβ. On invariance grounds, we
can have the folllowing terms

I2 = trQ2, (5.38)

I3 = trQ3, (5.39)

I4 = trQ4, I2
2, (5.40)

I5 = trQ5, I2I3, (5.41)

I6 = trQ6, I3
2, I2

3. (5.42)
... .

For traceless symmetric tensors, there is only one independent invariant of fourth
and one of fth order:

I4 =
1

2
I2

2, I5 =
5

6
I2I3. (5.43)

At sixth-order there are two invariants, which may be taken as I3
2 and I2

3. Then,
for space- and time-independent order parameters, the free energy density may be
expanded as [11]

f =
1

2



a2I2 + a3I3 +
a4
2
I2

2 + a5I2I3 +
a6
2
I23 +

a′6
3
I2

3



+O(Q7). (5.44)

Typical phase transitions take place roughly at room temperature. They are caused
by the fact that the coecient of the quadratic invariant vanishes at some temper-
ature T ∗, and can be expanded in a small neighborhood of T ∗ as

a2 ≈ a02



T

T ∗ − 1


. (5.45)
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The temperature T ∗ may be called would-be critical temperature. If the expansion
(5.44) has only coecients a2, a4 it is a a so-called Landau expansion. This has a
second-order phase transition at the temperature T ∗, which would then be a critical

temperature Tc. The actual values of T ∗ and a02 usually depend on pressure. In
model calculations one typically nds that the other coecients are of the same
order as a02. The only exception is a3 which sometimes happens to be small. Then
we dene the dimensionless parameter

s0 ≡
a23

12a02a4
≪ 1. (5.46)

It can be used to characterize the strength of the rst-order transition. By increasing
the pressure to several hundred atmospheres, the parameter s0 can be decreased so
much that the point a3 = 0 can be approached quite closely [12]. In the following
we shall assume the existence of a point (P ∗, T ∗) in the (P, T )-diagram, where both
a2 and a3 vanish. The neighborhood of this point will be particularly accessible to
theoretical investigations. Within the (P, T )-diagram, the lines of constant a2 and
a3 can be used to dene a local coordinate frame whose axes cross at (P ∗, T ∗) at a
non-zero angle (see Fig. 5.3). In some models, the coecient a3 is negative at low

Figure 5.3 Phase diagram of general Landau expansion (5.44) of free energy in the

(a3, a2)-plane.

pressure such that the a3-axis points roughly in the direction of increasing P . With
this mapping in mind we may picture all results directly in the (a3, a2)-plane with
the a3-axis pointing to the right, and only a slight distortion has to be imagined in
order to transfer the phase diagrams to the (P, T )-plane.

Before starting it is useful to realize that the expansion (5.44), although it is
a complicated sixth-order polynomial in the eigenvalues Q1, Q2 of the diagonalized
order parameter, is a simple third order polynomial if treated as a function of the
variables I2, I3. It is therefore convenient to treat it directly as such. One only
has to keep in mind the allowed range of I2, I3: First of all, I2 is positive denite.
Second, I3 is bounded by

I3
2 ≤ 1

6
I2

3. (5.47)
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The boundaries are reached for the uniaxial phase. This follows from the property

tr







−Q1

−Q1

2Q1





 = ±
√
6









tr







−Q1

−Q1

2Q1







2








3/2

for Q1
<
> 0. (5.48)

There is one boundary with I3 = I
3/2
2 /

√
6 where the order is positive or rod-like, the

other has I3 = −I
3/2
2 /

√
6 where the order is negative or disc-like. Only between these

boundaries are I2, I3 independent corresponding to a biaxial phase. The domain is
shown in Fig. 5.4.

Figure 5.4 Biaxial regime in the phase diagram of the general Landau expansion (5.44)

of free energy in the (a3, a2)-plane.

In this simplied view of the expansion (5.44) let us, for a moment, consider the
expansion only up to the fourth power and look for the minimum in I2 and I3. Since
∂f/∂I3 = a3, there is no extremum in the allowed domain of Fig. 5.4, except for
a3 = 0. There the transition is of second order: For a2 > 0, T > T ∗ one has only
I2 = 0 and hence Qαβ = 0, which is the isotropic phase. For a2 < 0, T < T ∗ one
nds I2 = −a2/a4, and the system is ordered. Since I3 is not specied, the order
can be anywhere on the biaxial line in Fig. 5.4 between the rod-like and disc-like end
points. The energy is

f = −a2
2

4a4
= −a02

2

4a4



T

T ∗ − 1
2

. (5.49)

The specic heat has the usual jump

∆c = −T
∂2f

∂T 2
= − 1

T ∗
1

2

a02
2

a4
, (5.50)

when passing from T > T ∗ to T < T ∗.

The situation is quite dierent in the presence of the cubic term a3 = 0. Since
there cannot be any minimum for independent I2 and I3, it must necessarily lie
at the uniaxial boundaries (there must exist a minimum since F is continuous in
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Q1, Q2 and eventually F → ∞ for Q1, Q2 → ∞). Let us insert the particular
uniaxial parametrization

Qαβ = ϕ ǫ
(0)
αβ(n) ≡ ϕ



3

2



nαnβ −
1

3
δαβ



, (5.51)

where n is an arbitrary unit vector, ϕ > 0 the order parameter, and ǫ(0)(n) the
traceless polarization tensor

ǫ(0)(n) ≡


3

2



nαnβ −
1

3
δαβ



. (5.52)

The order is rod-like for ϕ > 0, and disc-like for ϕ < 0. Then we nd, using the
traces tr (ǫ(0)2) = 1, tr (ǫ(0)3) = 1/

√
6,

f =
1

2
a2ϕ

2 +
1

2
√
6
a3ϕ

3 +
a4
4
ϕ4. (5.53)

This energy is minimal at ϕ = 0 with f = 0 and at

ϕ>
<
= − 3a3

4
√
6a4



1±



1− 96a2a4
9a32



, (5.54)

which are the solutions of

f ′ =



a2 +
3

2
√
6
a3ϕ+ a4ϕ

2



ϕ = 0. (5.55)

Combining (5.55) with (5.53) we see that the energy at ϕ>
<

is

f = −1

4
ϕ3



a3√
6
+ a4ϕ



. (5.56)

The energy vanishes at a point ϕ = 0, if ϕ>
<

satises

ϕ = − a3√
6a4

. (5.57)

From (5.54) we see that this happens at a temperature T1 at which

a2 = a02



T1

T ∗ − 1


=
a3

2

12a4
, (5.58)

i.e., at which
T1

T ∗ − 1 = s0. (5.59)

At this point the potential has the usual symmetric double-well form entered around
ϕ>/2 (see Fig. 5.5).
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Figure 5.5 Jump of the order parameter ϕ from zero to a nonzero value ϕ> in a rst-order

phase transition at T = T1.

The quantity (5.59) tells us how much earlier the rst-order transition takes
place with respect to the would-be critical temperature. It will be referred to as
the precocity of the rst-order transition due to the cubic term a3 = 0 in the energy
expansion (5.44).

Once a0 is nonzero then, as T passes the temperature T1 which lies above T ∗,
the order jumps discontinuously from the old minimum at ϕ = 0 to the new one at
ϕ = ϕ>. At that point, the entropy changes by

∆s = − T



∂f

∂T











T=T1+ǫ

− ∂f

∂T











T=T1−ǫ



=
1

2

T

T ∗a
0
2ϕ

2
> = − 1

T ∗
a02a2
a4

, (5.60)

giving a latent heat,

∆q =
T1

T ∗
a02

2

a4



T1

T ∗ − 1


≈ a02
2

a4
s0. (5.61)

It is proportional to the precocity s0 which may therefore also be viewed as the
strength of the rst-order transition. From Eq. (5.54) it follows that, for a3 < 0, the
order is positive uniaxial, for a3 > 0 negative uniaxial.

Energetically, the higher powers of the free energy are negligible as long as ϕ>

is suciently small. From Eqs. (5.57) and (5.59) we see that, at the transition, the
order parameter has the value

ϕ> =



2a02
a4



T1

T ∗ − 1 . (5.62)

Since a02 and a4 are of the same order of magnitude, the corrections in the energy

are of order O


T1/T ∗ − 1


. Experimentally, the temperature precocity of the rst

order transition T1/T
∗ − 1 = s0 is extremely small, typically ≈ 1/400. First-order

transitions with this property is usually referred to as being weakly rst-order . For
a2 > 0 and close to the critical point (P ∗, T ∗), the higher orders are rather insignif-
icant. They do become relevant for a2 < 0, in particular in some neighborhood of
the a3 = 0 line where the dierent phases are unspecied. In order to get a qual-
itative picture, let us neglect the a′6-term which could give only slight quantitative
changes but which would make the following discussion much more clumsy. Varying
f independently with respect to I2 and I3 we nd the extremality conditions

a2 + a4I2 + a5I3 = 0,
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a3 + a5I2 + a6I3 = 0. (5.63)

For
a4a6 − a5

2 > 0, (5.64)

or
a4a6 − a5

2 < 0, (5.65)

this can be solved by


I2
I3



=
1

a4a6 − a52



−a6 a5
a5 −a4



a2
a3



. (5.66)

We shall exclude the accidental equality sign since a4, a5, a6 are rather invariable
material constants. The extremum is a minimum only under the condition (5.64).
We then have to see whether I2 and I3 remain inside the allowed domain I2

3 ≥ 6I3
2.

For this we simply map the position of the boundaries into the (a3, a2)-plane. On
the rod-like and disc-like boundaries, we have

a2 = −a4I2 ∓ a5
1√
6
I
3/2
2 ,

a3 = −a5I2 ∓ a6
1√
6
I2

3/2. (5.67)

We may form two combinations

a2a5 − a3a4 = ±(a4a6 − a5
2)

1√
6
I2

3/2, (5.68)

a2a6 − a3a5 = −(a4a6 − a5
2)I2. (5.69)

Eliminating I2 from these equations gives

a2a5 − a3a4 = ±


a4a6 − a5
2
 1√

6



a2a6 − a3a5
−(a4a6 − a52)

3/2

. (5.70)

If the right-hand side is absent, this yields a straight line

a2 =
a4
a5

a3 (5.71)

in the (a3, a2)-plane. It is easy to see that the right-hand side of (5.70) gives only
a correction of order a2

3/2 to this result. Indeed, inserting the lowest-order approx-
imation (5.71), the right-hand side of (5.70) becomes

±(a4a6 − a5
2)

1√
6



−a2
a4

3/2

, (5.72)

so that, up to order a2
3/2,

a2a5 − a3a4 = ±(a4a6 − a5
2)

1√
6



−a2
a4

3/2

+ . . . . (5.73)
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The two boundary curves are displayed in Fig. 5.4. Between these branches the
order is biaxial with a well determined ratio Q1/Q2. One may envisage the eect
of higher powers in the free energy expansion as having slightly rotated the vertical
degenerate line in Fig. 5.3, and opened it up into the two branches of Fig. 5.4, thereby
generating an entire domain for the biaxial phase. Since the order parameter moves
continuously towards the uniaxial boundary, the transition uniaxial to biaxial is of
second order.

If the determinant a4a6 − a5
2 becomes smaller, the biaxial region shrinks. For

negative sign, it disappears and the two uniaxial regions overlap. Since only one
of them can have the lower energy, there must be a line at which the transition
takes place. This is found most easily by considering the uniaxial energy in the
parametrization (5.51) which reads

2f = a2ϕ
2 +

a3√
6
ϕ3 +

a4
2
ϕ4 +

a5√
6
ϕ5 +

a6
12

ϕ6 + . . . . (5.74)

Here a6/12 can be thought of as containing also a parameter a′6/3 coming from the
last term in (5.44). In the Landau approximnation, only the terms a2 and a4 are
present.

The minimum lies at a nonzero eld ϕ which satises the equation


a2 +
3

2
√
6
a3ϕ+ a4ϕ

2 +
5

2
√
6
ϕ3 + a6ϕ

4



ϕ = 0. (5.75)

Keeping the coecients up to a4, this is solved by

ϕ>
<
= − 3

4
√
6

a3
a4



1±



1− 96a2a4
9a23



. (5.76)

Only ϕ> gives a minimum, the other a maximum. As a5, a6 are turned on, the
maximum may become a minimum. In order to see where this happens let us
assume a3 to be very small, as compared with a2a4. Then ϕ is given by

ϕ = ±



−a2
a4



1±
3

4
√
6



a23
−a2a4

+ . . .



 . (5.77)

Inserting this back into the energy we nd that the two energies become equal at

a2 = a3
a4
a5

+
1√
6
a3

3/2a5
−1/2 +O(a23). (5.78)

For small a5 this reduces back to the line a3 = 0. The latent heat is now

∆q = − a3
2a4

T
∂a2
∂T

− T
∂a3
∂T

1

2a5
(a2a5 − a3a4). (5.79)

Let us nally calculate the correction to the isotropic-uniaxial curve in Figs. 5.4 and
5.3. For small a3 we nd

a2 =
1

12

a3
2

a4
+

1

36

a3
3a5
a43

+O(a3
4), (5.80)
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which may be used to calculate a small correction to the latent heat (5.61).
All ordered phases described here are referred to as nematic. In the Landau

approximation, the minimum of the energy lies at ϕ2
L = −a2/a4 and has the value

fc,L = −1

4

a22
a4

(5.81)

called the Landau condensation energy.

5.3 Bending Energy

The order parameters discussed in the last section were independent of space and
time. In the laboratory, such congurations are dicult to realize. External bound-
aries usually do not permit a uniform order but enforce spatial variations. The sys-
tem tries, however, to keep the variations as smooth as possible. It exerts resistance
to local deformations. In order to parametrize the restoring forces one expands the
free energy in powers of the derivatives of the collective eld Qαβ . If the elds bend
suciently smooth, the expansion may be terminated after the lowest derivative.

Due to rotational invariance, there can only be the following bending energies

fbend =
b

2
∇γQαβ∇γQαβ +

c1
2
∇αQαγ∇βQβγ +

c2
2
∇αQβγ∇βQαγ . (5.82)

As far as the total energy F =


d3xf is concerned, the latter two terms may be
collected by a partial integration into one, say the rst, by substituting c1 → c1+c2 ≡
c.

In the ordered phase which is usually of the rod-like type we may use the
parametrization (5.51) and split the gradient of Qαβ into variation of the size ϕ

and the direction n. In the bulk liquid the size of the order parameter ϕ is caught
in the potential minimum at ϕ> (see Fig. 5.5) and only the direction n will vary
from point to point. Then we can nd from (5.82) the purely directional bending
energy:

fbend,dir =
3

4
ϕ2 [b∇γ(nαnβ)∇γ(nαnβ) + c1 ∇α(nαnγ)∇β(nβnγ)

+ c2 ∇α(nβnγ)∇β(nαnγ)] . (5.83)

Since nα
2 = 1, we may use the orthogonality property nα∇γnα = 0, and write

fbend,dir =
3

4
ϕ2


2b n2
α,β + c1



(∇·n)2 + (n ·∇nγ)
2


+ c2


(∇αnβ)(∇βnα) + (n ·∇nγ)
2


. (5.84)

We now rewrite

n2
α,β = (∇ · n)2 + [n · (∇× n)]2 + [n× (∇× n)]2, (5.85)
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and
nα,γnγ,α = (∇)2 +∇α(nβ∇βnα)−∇β(nβ∇αnα), (5.86)

so that

fbend,dir =
3

2
ϕ2


b+
c

2



(∇ · n)2 + b [n · (∇× n)]2 +


b+
c

2



[n× (∇× n)]2

+ c2 [∇α(nβ∇βnα)−∇β(nβ∇αnα)]


. (5.87)

The last term is a pure surface term. The coecients

K1 ≡ Ks = 3


b+
c

2



ϕ2,

K2 ≡ Kt = 3 b ϕ2,

K3 ≡ Kb = 3


b+
c

2



ϕ2 (5.88)

are known as Frank constantsof textural bending. The subscripts s, t, b stand
for splay, twist, and bend and indicate that each term dominates a certain class of
distortions of the directional eld. They are shown in Fig. 5.6. The experimental

Figure 5.6 Dierent congurations of textures in liquid crystals.

values of K1,2,3 are of the order of 5 to 10× 10−7 dynes, for example [6]:

MBBA : T ≈ 220C K1,2,3 = (5.3± 0.5 , 2.2± 0.7 , 7.45± 1.1)× 10−7dynes,

PAA : T ≈ 1250C K1,2,3 = (4.5 , 2.9 , 9.5)× 10−7dynes. (5.89)

For topological reasons, the eld congurations may have singularities called defects .
In their neighborhood, also the size ϕ has spatial variations. This is also true near
boundaries or at the interface between two phases. The derivative terms for these
variations are found from (5.82) by calculating

∇γQαβ∇γQαβ = (∇ϕ)2 +O(∇n)2 (5.90)

∇αQαγ∇βQβγ = ∇αϕ∇βϕ
1

2



nαnβ +
1

3
δαβ



(5.91)

+ 3 [(∇αnα)nγ + nα(∇αnγ)]


nβnγ−
1

3
δβγ



∇βϕ+O(∇n)2
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=
1

2
(n ·∇ϕ)2+

1

6
(∇ϕ)2+2(n ·∇ϕ)∇n−(n ·∇nγ)∇γϕ+O(∇n)2,

∇αQβγ∇βQαγ = ∇αϕ∇βϕ
1

2
(nαnβ +

1

3
δαβ) (5.92)

+ 3[(∇αnβ)nγ+nβ(∇αnγ)]


nαnγ−
1

3
δαγ



∇β∇βϕ+O(∇n)2

=
1

2
(n ·∇ϕ)2+

1

6
(∇ϕ)2+2(n ·∇nγ)∇γϕ−(n ·∇ϕ)∇n+O(∇n)2,

so that the combined bending energies are

fbend = fbend,dir +
1

2



b+
c

6



(∇ϕ)2 +
c

2
(n ·∇ϕ)2

+
2c1 − c2

2
[ϕ (n ·∇ϕ) (∇ · n) + ϕ (n ·∇nα)∇αϕ] . (5.93)

5.4 Light Scattering

The bending energies determine the length scale at which local eld uctuations
take place. These in turn are directly observable in light scattering experiments.

Consider at rst the region T > T1. There the order parameter vanishes such
that the eld Qααβ uctuates around zero. If the temperature is suciently far
above T1 (precisely how far will soon be seen), the quadratic term in the energy
strongly connes such uctuations and we can study their properties by considering
only the quadratic term in the free energy

fbend =
a2
2
Q2

αβ +
b

2
(∇γQαβ) +

c

2
∇αQαγ∇βQβγ + surface terms. (5.94)

Obviously, b/a2 and c/a2 have the dimension of a length square and it is useful to
dene the squares of the coherence lengths for T > T ∗:

ξ21(T ) ≡
b

a2
=

b

a02



T

T ∗ − 1
−1

≡ ξ01
2


T

T ∗ − 1
−1

ξ22(T ) =
c

a2
=

c

a02



T

T ∗ − 1
−1

≡ ξ02
2


T

T ∗ − 1
−1 (5.95)

which increase as the temperature approaches T ∗ from above. These length scales
will turn out to control the range of local uctuations.

Let us expand Qαβ in plane waves

Qαβ(x) =
1√
V



q

eiq·xQαβ(q) (5.96)

where Qαβ
∗(q) = Qαβ(−q). Then the total energy becomes

Fbend =
1

2



q

Qαβ(−q)


(a2 + bq2)δαα′ + cqαqα′



Qα′β(q). (5.97)
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The spin orbit coupling term c can be diagonalized most easily on states of xed
helicity. The spin matrix for the tensor eld is

(SγQ)αβ = −i [ǫγαα′Qα′β + (α↔β)] . (5.98)

The helicity is dened as the projection of S along q

H ≡ S · q̂. (5.99)

We now calculate

[HQ(−q)]αβ [HQ(q)]αβ = [q̂γǫγαα′Qα′β(−q) + (α↔β)] [q̂δǫδαα′′Qα′′β(q) + (α↔β)]

= 4Qαβ(−q)Qαβ(q)− 6Qαβ(−q)q̂αq̂α′Qα′β(q), (5.100)

so that (5.97) can be rewritten as

Fbend =
1

2



q



a2 +


b+
2

3
c


q2


|Qαβ(q)|
2 − c

6
|HQ(q)|2



. (5.101)

This is obviously diagonal on eigenstates of helicity. These are easily constructed.
First those of unit angular momentum: For this one simply takes the spherical
combinations of unit vectors

(±) = ∓ 1√
2
(x̂± iŷ) ,

(0) = ẑ, (5.102)

which are eigenstates of S3 and S2:

S3
± = ± ±, S3

0 = 0, (5.103)

S2 ± = 2 ±, S2 0 = 0. (5.104)

We rotate them into the direction of q by a matrix

R(q̂) = e−iϕL3e−iθL2 =







cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1













cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ





 , (5.105)

where ϕ and θ are the polar angles of q̂. This turns x̂, ŷ, ẑ into a local triped
l(1), l(2), q̂ of unit vectors,

l(1) = R(q̂)x̂, l(2) = R(q̂)ŷ, q(1) = R(q̂)ẑ. (5.106)

From these we create the rotated polarization vectors (±,0)(q̂) ≡ R(q̂) (±,0) which
diagonalize H with eigenvalues ±1, 0:

(H (1,−1))α = −iq̂γǫγαβ


l
(1)
β ± il

(2)
β



= iq̂×


l(1) ± il(2)


α
= ±i



l(1) ± il(2)


α
,

(H (0))α = −iq̂γǫγαβ q̂β = 0. (5.107)
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Now we couple pairs of these vectors symmetrically to tensors and obtain the angular
momentum helicity tensors of spin 2 and helicities h = (−2,−1, 0, 1, 2):

ǫ
(2)
αβ(q̂) = ǫ

(−2)∗
αβ (q̂) = l̂α l̂β = ǫ(2) (−q̂) ,

ǫ
(1)
αβ(q̂) = −ǫ

(−1)∗
αβ (q̂) =

1√
2
(lαq̂β + lβ q̂α) = −ǫ(1) (−q̂) , (5.108)

ǫ
(0)
αβ(q̂) =



3

2



q̂αq̂β −
1

3
δαβ



≡ ǫ(0) (−q̂) ,

where we have introduced the unit vector l ≡ 1√
2



l(1) + il(2)


. Using its properties

l2 = 0, l · l∗ = 1, we verify directly the orthogonality

tr


ǫ(h)(q̂)ǫ(h
′)∗(q̂)



= δhh′. (5.109)

The completeness relation is found to be

2


h=−2

ǫ
(h)
αβ (q̂)ǫ

(h)
γδ (q̂) = Iαβ,γδ, (5.110)

where

Iαβ,γδ ≡
1

2
(δαγδβδ + δαδδβγ)−

1

3
δαβδγδ (5.111)

is the projection into the space of symmetric traceless tensors of spin 2, as it should.2

The energy can now be diagonalized by expanding Qαβ(x) in terms of the ǫ
(h)
αβ (q)-

eigenmodes:

Qαβ(x) =


q,h



eiqxǫ
(h)
αβ (q̂)ϕ(h)(q) + c.c.



. (5.112)

This yields

F =


d3xf =


q,h

f (h)(q) =


q,h

τ (h)(q)|ϕ(h)(q)|2, (5.113)

with

τ (h)(q) = a2 +



b+



3

2
− h2

6



c



q2

= a2



1 +



ξ1
2 +



2

3
− h2

6



ξ2
2



q2


. (5.114)

We can now calculate the correlation functions of the eld. If we express the partition
function

Z =


Q

e−F/kBT (5.115)

2Compare with the gravitational polarization tensors in Subsection 4.10.6 of the textbook [5].
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in terms of the diagonalized modes, we have

Z =


q



dϕ(h)(q) exp







− 1

kBT



q,h

f (h)(q)







=


q



dϕ(h)(q) exp







− 1

kBT



q,h

τ (h)(q)|ϕ(h)(q)|2







. (5.116)

From the “equipartition theorem”3, we deduce that the thermal expectation values
of the correlation functions are4

ϕ(h)(q)ϕ(h)∗(q′) = δq,q′
kBT/2

τ (h)(q)
. (5.117)

For the amplitude Qαβ , this implies the expectation values in q-space

Qαβ(q)[Qγδ(q
′)]∗ = δq,q′



h

kBT

τ (h)(q)
ǫ
(h)
αβ (q̂′) ǫ

(h)∗
γδ (q̂), (5.118)

so that in x-space,

Qαβ(x)Qγδ(x
′) = kBT



q

eiq(x−x)

τ (h)(q)
ǫ
(h)
αβ (q̂)ǫ

(h)
γδ (q̂)∗ . (5.119)

The correlation function reads

Gγδ
αβ(q) = kBT



h

ε
(h)
αβ (q)ε

(h)
γδ (q)

τ (h)(q)

∗

(5.120)

These can be rewritten as

τ (±1) = a2







1− 1

4(ξ21 +
1
2
ξ22)

ξ21
ξ2h



+


ξ21 +
1

2
ξ22





q ∓ d

2b+ c

2


 , (5.121)

τ (±2) = a2



1− ξ21
ξ2h

+ ξ21



q ∓ d

b

2


 . (5.122)

The correlations are observable in inelastic scattering of visible light. Recall that
we assumed in (5.33) that the deviations δǫαβ of the dielectric tensor from the
average isotropic value are equal to the order parameter uctuations Qαβ , so that
the interaction energy of the liquid crystal with the vector potential is, under the
assumption (5.36), equal to

σHint =
1

2



d3xEαQαβEβ. (5.123)

3See page 327 in the textbook [10].
4The factor 1

2 is due to the dependence of ϕ and ϕ∗, ϕ(h)(−q) = ϕ(h)∗(q).
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Let Ein be the eld of incoming light with momentum kin and frequency ω. For a
given xed dielectric conguration ǫ(x), the polarization of the medium is given by

P (x)e−iωt =
1

4π
[ǫ(x) − 1]Eine

−i(ωt−kinx). (5.124)

Since P (x) may be considered as a density of radiating dipoles, these will emit light
in a spherical wave which, at a large distance R away from the sample, has an
electric eld strength

Eout(x
′) =

ω2

c2
1

R
eikRP⊥(x), (5.125)

where k = ω/c, R = |x′ − x|. We have accounted for the dipole nature of the
radiation by putting on the right-hand side P⊥, which is the component of the
polarization transverse to the direction of the outgoing wave. We now expand R
around x = 0, so that kR ≈ kR0 − koutx, integrate over the entire sample, and
obtain the scattering amplitude A for incoming and outgoing polarization directions

in, out:

A =
ω2

4πc2
ǫ∗out



d3xe−iqx [ (x)− 1]


in, (5.126)

where q ≡ kout − kin is the momentum transfer. See Fig. 5.7 for the experimental
setup. The outgoing electric eld is given by

out · Eout(x
′) =

Ein

R0

eikR0A. (5.127)

The square of A gives the dierential cross section per unit solid-angle:

dσ

dΩ
= |A|2. (5.128)

Eliminating the direct beam associated with the spatially constant part of the ǫαβ(x),
we may write

dσ

dΩ
=

ω4

(4πc2)2



†
outδǫ(q) in

 

†
inδǫ

∗(q) out



. (5.129)

In the present case, the dielectric tensor has thermodynamic uctuations and we
have to replace δǫ(q)δǫ∗(q) by the correlation function (5.123). This gives

dσ

dΩ
=

ω4

(4πc2)2
kBT

2



h

1

τ (h)(q)
| †

outǫ
(h)(q) in|

2. (5.130)

Let the incoming beam run in the z-direction with the outgoing beam being rotated
by an angle θ towards the y-axis (see Fig. 5.7). Then

kin = k(0, 0, 1), kout = k(0, sin θ, cos θ), (5.131)

and the momentum transfer is

q = q



0, cos
θ

2
, sin

θ

2



, (5.132)
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Figure 5.7 Experimental setup of the light-scattering experiment.

with
q2 = 2k2(1− cos θ). (5.133)

For an incoming polarization vertical to the scattering plane, i.e., along the x-axis,
we have

in = V = (1, 0, 0). (5.134)

Let the nal polarization be inclined by an angle ϕ against the vertical direction,
then

Eout = Eout(cosϕ,− sinϕ cos θ, sinϕ sin θ). (5.135)

The tensors ǫ(h)(q̂) are all given in terms of q̂ and l, which may be taken as

l =
1√
2



1,−i sin
θ

2
,−i cos

θ

2



= (l∗)∗ . (5.136)

In this way we nd

†
outǫ

(±2)(q̂) V =
1

2



cosϕ∓ ϕ sinϕ sin
θ

2



,

†
outǫ

(±1)(q̂) V = −1

2
sinϕ cos

θ

2
, (5.137)

†
outǫ

(0)(q̂) V = − 1√
6
cosϕ.

If the initial polarization is horizontal

in = H = (0, 1, 0), (5.138)

then the scalar products (5.137) read

†
outǫ

(±2)(q̂) H =
1

2
sin

θ

2



∓i cosϕ− sinϕ sin
θ

2



,

†
outǫ

(±1)(q̂) H =
1

2
cos

θ

2
cosϕ, (5.139)

†
outǫ

(0)(q̂) H = − 1√
6
sinϕ



1 + cos2
θ

2



.
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Inserting this into (5.130) we nd the cross section for a vertical incidence:

dσV

dΩ
=

ω4

(4πc2)2
kBT

2



1

6τ (0)(q)
cos2 ϕ+

1

4



1

τ (1)(q)
+

1

τ (−1)(a)



cos2
θ

2
sin2 ϕ

+
1

4



1

τ (2)(q)
+

1

τ (−2)(q)



− sin2 θ

2
sin2 ϕ



. (5.140)

For the horizontal incidence it is

dσH

dΩ
=

ω4

(4πc2)2
kBT

2



1

6τ (0)(q)
sin2 ϕ



1 + cos2
θ

2



+
1

4



1

τ (1)(q)
+

1

τ (−1)(a)



cos2
θ

2
cos2 ϕ

+
1

4



1

τ (2)(q)
+

1

τ (−2)(q)



1− cos2
θ

2
sin2 ϕ



. (5.141)

The experimental results show very little q-dependence. In fact, for visible light of
long wavelength with

ξ1q ≪ 1, ξ2q ≪ 1, (5.142)

i.e., for which the wavelength is much larger than both coherence lengths, we may
neglect ξ1, ξ2 for a moment and see that

τ (0) ≈ τ (±1) ≈ τ (±2). (5.143)

Therefore the intensity of the scattered light goes like

IV ∼ 1

a2



1

6
cos2 ϕ+

1

2
cos2

θ

2
sin2 ϕ+

1

2



1− sin2 θ

2
sin2 ϕ



. (5.144)

For nal polarizations vertical or horizontal to the scattering plane at a scattering
angle = 900, the result implies that

IV V ∼ 2

3a2
,

IHV ∼ 1

2a2
, (5.145)

so that
IV V

IHV

∼ 4

3
. (5.146)

This ratio is approximately observed experimentally for T suciently above T ∗ [13].
As T approaches T ∗, the coherence length grows larger, and the q-dependence has
a chance of becoming observable. Expanding 1/τ (h)(q) to lowest order in ξ2q2 we
nd

1

τ (h)(q)
=

1

a2



1−


ξ1
2 +



2

3
− h2

6



ξ2
2



q2 + . . .



, (5.147)



5.4 Light Scattering 345

such that the intensities IV V , IHV behave like

IV V ∼ 1

6



1−


ξ1
2 +

2

3
ξ2

2


q2


+
1

2



1− ξ1
2q2



+ . . . ,

IHV ∼ 1

4



1−


ξ1
2 +

2

3
ξ2

2


q2


+
1

4



1− ξ1
2q2



+ . . . , (5.148)

with their ratio being

IV V

IHV

∼ 4

3



1 +
1

12
ξ2

2q2 + . . .


. (5.149)

For a comparison with the data it is most convenient to plot the inverse intensity
against temperature which must behave for large enough T (a few 0C above T ∗) like
[recall (5.45)].

I−1 ∝ a02



T

T ∗ − 1


(1 + ξ2q2 + . . . ), (5.150)

i.e., it grows like a straight line, where ξ2 is a combination of ξ1
2 and ξ2

2 depend-
ing on the polarizations (see Fig. 5.8). As the temperature drops towards T ∗, the
intensity of scattered light increases like a−1

2 , which is a manifestation of increasing
uctuations. This result is in agreement with experiment [13], with ξ2 > 0.

Figure 5.8 Inverse light intensities as a function of temperature. Note the small dierence

between 3IHV /4 and I−1
V V , which will be commented on after Eq. (5.219).

Comparing such lines at dierent q values it is possible to deduce the size of the
coherence lengths, for example in MBBA:

ξ(T ) ≈ 5.5×


T

T ∗ − 1
−1/2

Å. (5.151)

As the temperature hits T1 which usually lies one half to one 0C above T ∗, the
inverse square of the coherence length jumps down to very small values, as shown in
Fig. 5.9. This is where the intensity grows large in Fig. 5.8. The sample looks milky
all of a sudden (critical opalescence).

It is easy to understand this behavior. At T1, the size of the order parameter
jumps from ϕ = 0 to ϕ = ϕ1 = 0. Due to rotational invariance of the energy, there
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Figure 5.9 Behavior of inverse square of coherence length as a function of temperature

near the weakly rst-order phase transition in MBBA (see Ref. [13]).

is an innite number of points in the Qαβ parameter space with the same energy,
namely all those which dier only by a rotation of the direction vector n. The
associated continuous degeneracy causes strong directional uctuations, and these
result in strong uctuations of the dielectric tensor that is proportional to Qαβ . The
latter can be observed by scattering light on the material.

Let us calculate the cross section of a small deviation δQαβ(x) of the order
parameter from the homogenous eld conguration of the ground state. Expressing
this in terms of the deviations of the director nα(x) via Eq. (5.51), the cross section
is

dσ

dΩ
=

ω4

(4π2c2)2
kBT

3

4
ϕ2 | †

outβ(kout)δ[(nαnβ)(q)] inα(kin)|
2, (5.152)

where q ≡ kout − kin is the momentum transfer. For unpolarized incoming light, or
if we do not measure the polarization of the outcoming light, the thermal average
of the right-hand side requires knowledge of the correlation function

δ(nαnβ)δ(nαnβ) = δn∗
αδnγnβnδ+δnαδnδnβnγ+δnβδnγnαnδ+δnβδnδnαnγ .

(5.153)

To nd δnαδnβ, we consider the bending energy (5.87) for the Fourier transformed
eld

δn(x) =
1√
V



q

eiqxδn(q). (5.154)

It has the form

Fbend =
1

2



q



K1qαqβ +K2(n× q)α(n× q)β +K3(n · q)2δαβ


δnα(−q)δnα(q).

(5.155)
In order to simplify the discussion suppose the system has an average orientation
nẑ. Then

Fbend =
1

2



q



K1qαqβ +K2q⊥αq⊥β +K3qz
2δαβ



δnα(−q)δnα(q), (5.156)
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where q⊥ ≡ (−q2, q1, 0). The uctuations can have only x- and y-components. This
follows from the trivial equation 1

2
δ (nαnα)

2 = δnαnα = 0. We can diagonalize
this expression by introducing two orthogonal unit vectors e1(q) = (q̂1, q̂2, 0) and
e2(q) = q̂⊥. If we decompose

δn(q) = e1(q)δn1(q) + e2(q)δn2(q), (5.157)

as illustrated in Fig. 5.10, we nd the diagonal form

F =
1

2



a=1,2



Kaq
2
⊥ +K3q

2
z



|δna(q)|
2. (5.158)

Thus the uctuations of δn1 and δn2 diverge for q → 0. The liquid crystal becomes
opaque.

Figure 5.10 Relevant vectors of the director uctuation (5.157).

In this fashion, the bending constants K1, K2, K3 can be measured with values
for which examples were quoted before.

5.5 Interfacial Tension between

Nematic and Isotropic Phases

At the dierent lines of rst-order phase transition, the order parameter moves from
one value to another. Due to the derivative terms in the free energy, this change
cannot take place abruptly but must be distributed over a length scale of the order
of ξ in order to save gradient energies. It is a simple application of mean-eld theory
to calculate the energy stored in the interface.

Experimentally this quantity can be measured in the form of a surface ten-
sion [16]. This may be deduced to light scattering experiments [17] or, more directly,
by looking at the curvature radius of a droplet of one phase embedded inside the
other [18]. In this way, the surface tension was found for MBBA to be

σ ≈ 2.3× 10−2 erg/cm2, [17] (5.159)

σ ≈ 1.6× 10−2 erg/cm2. [18] (5.160)
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For the calculation it is convenient to go to natural dimensionless quantities and
introduce a renormalized eld

ϕαβ = −4



2

3

a4
a3

Qαβ. (5.161)

We further measure the energy density in units of

f1 ≡
9

29
a43
a34

, (5.162)

and nd
f = f1f̃ . (5.163)

Then the energy density consisting of the sum of the Landau expansion f of
Eq. (5.44) and the bending energy (5.94), ftot = fbend + f , corresponds to a di-
mensionless energy density [recall (5.95)]

f̃tot = 2τ0ξ
2
1



(∇γϕαβ)
2 +

ξ2
2

ξ12
∇αϕαγ∇βϕβγ



+ τϕαβ
2 −

√
6

3
ϕαβϕβγϕγα +

1

8



ϕαβ
2
2

+ . . . , (5.164)

where τ0 is a dimensionless parameter

τ0 ≡
4a4a

0
2

3a32
(5.165)

whose inverse s ≡ τ−1
0 measures how strongly the phase transition is of rst order. It

is useful to introduce the temperature-dependent dimensionless parameter

τ =
4a4a2
3a23

≡ 4a4a
0
2

3a23

a2
a02

= τ0



T

T ∗ − 1


. (5.166)

Then we may write

f1 =
1

8τ 2
fc,L. (5.167)

where fc,L is the the Landau condensation energy (5.81)

fc,L = −1

4

a22
a4

. (5.168)

The nematic phase with the order parameter

ϕαβ = ϕǫ
(0)
αβ(n) (5.169)

has a dimensionless potential energy

f̃ = τϕ2 − 1

3
ϕ3 +

1

8
ϕ4, (5.170)
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if it is measured in units of f1 of Eq. (5.162). This has a rst-order transition at

τ1 =
(1/3)2

4(1/8)
=

2

9
, (5.171)

where ϕ jumps from ϕ = 0 to

ϕ = ϕ1 =
1/3

2(1/8)
=

4

3
. (5.172)

Note that at that temperature

τ1 = τ0



T1

T ∗ − 1


=
2

9
. (5.173)

The energy density (5.164) can be used to study a planar interface between the
nematic and the disordered phase in the xy-plane. Let the region z ≫ 0 be nematic
and z ≪ 0 be disordered. For symmetry reasons, we assume all gradients to point
along the z-axis, leading to a bending energy

f̃bend = 2τ0ξ
2
1



(∇zϕαβ)
2 +

ξ2
2

ξ12
∇zϕzγ∇zϕzγ



. (5.174)

With the order parameter (5.169) and ϕ = 0, this is minimized by letting n point
orthogonal to the z-axis. Then (5.174) becomes

2τ0ξ
2
1



1 +
1

6

ξ2
2

ξ12



(∇zϕ)
2 . (5.175)

Therefore, the total energy density across the interface reads at T = T1:

f̃ = ξ2tr (∇zϕ)
2 + τcϕ

2 − 1

3
ϕ3 +

1

4
ϕ4, (5.176)

where we have introduced the transverse coherence length at T = T1:

ξtr
2 = 2τ0ξ

2
1



1 +
1

6

ξ22
ξ21











T=T1

. (5.177)

If we adopt ξtr as our transverse length scale, we may rewrite

f̃ = (∇zϕ)
2 + V (ϕ)

= (∇zϕ)
2 + V0ϕ

2(ϕ− ϕ1)
2, (5.178)

where V0 = 1/8, ϕ1 = 4/3. The potential term has the standard form of a symmetric
double well, with minima at ϕ = 0 and ϕ1 = 4/3 (see Fig. 5.5). Inside the interface,
the order parameter moves from one value to the other while keeping the total
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interface energy minimal, i.e., satisfying the Euler-Lagrange dierential equation
[10] which amounts here to

∇z
2ϕ = V ′(ϕ). (5.179)

This is precisely the same as the equation of motion of a point particle at position
ϕ as a function of pseudotime z, but in the reversed potential: The solution corre-
sponds to a mass point rolling “down” the hill from ϕ = 0 through the “valley” at
ϕ = ϕ1/2 up to the other hill at ϕ = ϕ1. The total pseudoenergy of this motion is
conserved, i.e.,

(∇zϕ)
2 − V (ϕ) = const. (5.180)

Far away from the interface, the eld tends against ϕ = 0 or ϕ = ϕ1. Having there
the value V = 0, the constant is equal to zero, and we may integrate

z =
 ϕ

0

dϕ′


V (ϕ′)
. (5.181)

to

ϕ(z) =
1

2
ϕ1



1 + tanh
z
√
V0ϕ1

2



. (5.182)

This is the same as

ϕ(z) =
2

3



1 + tanh
z

3
√
2



. (5.183)

The total free energy for this situation is found from the integral

f̃ =
 ∞

−∞
dz


(∇zϕ)
2 + V (ϕ)



= 2
 ∞

0
dzV (ϕ) = 2

 ϕ1

0
dϕ


V (ϕ)

= 2


V0

 ϕ1

0
dϕ ϕ(ϕ− ϕ1) =

√
V0

3
ϕ3
1 =

16

81

√
2. (5.184)

This is the surface tension which, back in physical units, reads

σ =
16

81

√
2 ξtrf1 . (5.185)

The value of f1 involves a3 and a4, which are both somewhat hard to determine
experimentally. But there is a simple experimental quantity which contains f1 rather
directly: the latent heat of the transition. In MBBA, for example, one measures
[19]:

∆q = 0.3
kJ

mol
≈ 1.2

J

g
= 1.2 · 107

erg

g
. (5.186)

Within the present natural units, the latent heat is found from (5.170) as

∆q = f1
∂τ

∂T
T



∂f̃

∂τ











ϕ=ϕ1

−∂f̃

∂τ











ϕ=0





= f1τ0
T1

T ∗ϕ
2
1 =

16

9
τ0
T1

T ∗f1 =
32

81

T1

T ∗



T1

T ∗ − 1
−1

f1. (5.187)
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Comparing this with (5.185) we nd the simple relation

σ =
√
2∆q ξtr

T ∗

T1



T1

T ∗ − 1


. (5.188)

For MBBA we may insert ∆q of (5.186) on the right-hand side and estimate

ξtr ≈ 150Å,
T1

T ∗ − 1 ≈ 1

400
, (5.189)

so that σ ≈ 1.5 × 10−2 erg/cm2, in reasonable agreement with the experimental
values (5.159), (5.160).

5.6 Cholesteric Liquid Crystals

The collective eld theory developed up to this point is able to describe an ensemble
of rod-like, disc-like or biaxial order. In the introduction it was mentioned that, in
cholesterol and similar compounds, the molecular build-up exhibits a slight screw-
like distortion. This violates mirror reection symmetry. In order to describe such
systems we have to add a parity violating piece to the energy. To lowest order there
exists the following quadratic term with this property:

fpv = −d ǫαβγQαβ∇γQβγ . (5.190)

This may be written alternatively in terms of the spin matrix (5.97) as

fpv = −i dQαβ (S∇Q)αβ . (5.191)

For the Fourier transformed eld, we can write (with q ≡ |q|):

fpv = −d


q

Qαβ(−q)q (HQ(q))αβ . (5.192)

In a notation slightly dierent from that in Subsection 5.1.3, this can also be written
as

fpv = −id


d2nQ Ŝ ·∇Q, (5.193)

where Ŝ is the operator

Ŝ = −in×∇n. (5.194)

The total free-energy density ftot = f + fbend ≡ f + fder + fpv describes the
cholesteric phase transition. Let us construct the cholesteric ground state. For this
we consider small uctuations, and expand Q into normal modes as

Qαβ =


q





h

ǫ
(h)
αβ (q̂)e

iq·xS(h)(q) + c.c.



, (5.195)
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where ǫ(±2)(q̂), ǫ(±1)(q̂), ǫ(0)(q̂) are the ve polarization tensors of helicities h =
−2, . . . , 2 of Eq. (5.108). Inserting (5.195) into fbend = fder + fpv of (5.94) and
(5.190), the bending energy becomes

fbend
kBT

=
1

kBT



q,h

f (h)(q) (5.196)

=


q



1

2



a2 +


b+
2

3
c


q2


|S(0)(q)|2

+
1

2









a2 −
d2

4


b+ c
2





+


b+
c

2





q ∓ d

2


b+ c
2







2




 |S(±1)(q)|2

+
1

2







a2 −
d2

b



+ b



q ∓ d

b

2


 |S(±2)(q)|2


. (5.197)

where

A =
2

3κ2



κ− 2

15



=
4

45



T

T ∗ − 1


1

κ2
. (5.198)

From light scattering experiments we nd S(2) and S(0) to be the modes of largest
uctuations. The rst has zero momentum q(0) = 0, the second has a non-vanishing
momentum q(0) pointing in an arbitrary direction, whose size is given by the mini-
mum of the bending energy at

q(2) =
d

b
=

1

ξh
. (5.199)

This gives rise to a normal reection of circularly polarized light of wavelength
λR = 4πξh.

The cholesteric ground state may now be found from a superposition of the
dominant h = 2 and h = 0 modes

Qαβ = S(0)ǫ
(0)
αβ(q̂

(2)) + S(2)(q̂(2))


ǫ
(2)
αβe

i(q(2)·x+δ) + c.c.


, (5.200)

where δ is an arbitrary phase. If we set n·q(2) ≡ z, the quantity dened in Eq. (5.26)
becomes



4π

5

2

3
Q(n) =



z2 − 1

3



S(0) +



2

3



1− z2


S(2) cos


q(2) · x+ δ


. (5.201)

Averaging over all directions and a period along q̂(2), and replacing S(h) by κσ(h),
this results in a free energy

f

kBT
=

1

3
κσ(0)2 +

2

3
κ



1− d2

κb



σ(2)

− 1

2π

 2π

0
dδ log

 1

0
dz e(z

2− 1
3)σ(0)+

√
2
3(1−z2)σ(2) cos δ (5.202)

=
κ

3
σ(0)2 +

1

3
σ(0) +

2

3
κ



1− d2

κb



σ(2)2 − 1

2π

 2π

0
dδ log J



σ(0), σ(2), δ


,
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where

J


σ(0), σ(2), δ


≡
 1

0
dz e

z2


σ(0)−
√

2
3
σ(2) cos δ



(5.203)

is the generalization of the previous integral (5.10). In equilibrium, we now have the
equations

κσ(0) = −1

2
+

2

3

1

2π

 2π

0
dδ

1

J

∂

∂σ(0)
J, (5.204)

2κ



1− d2

κb



σ(2) =
3

2

1

2π

 2π

0
dδ

1

J

∂

∂σ(2)
J. (5.205)

The rst equation can again be expressed in the same fashion as before in (5.14),

except that σ has to be replaced by σ(0) −


2
3
σ(2) cos δ, and an average has to be

taken over all δ:

κσ(0) =
1

2π

 2π

0
dδ S



σ(0) −


2
3σ

(2) cos δ


. (5.206)

The other equation has an additional weight factor


2
3
cos δ, to be averaged as

2κ



1− d2

κb



σ(2) =



2

3

1

2π

 2π

0
dδ cos δ S



σ(0) −


2
3σ

(2)


. (5.207)

Remember (5.14) for the denition of the function S(x).
In order to establish contact with the previous calculations of the cholesteric free

energy, it is useful to go to the natural variables to nd

κ− 2

15
≡ 2

21
(τ + 2α) , 2α ≡ 21

2

3

2

d2

b
,

f

kBT
≡ 25

56
f̃ , (5.208)

σ(0) ≡ 15

4
x , σ(2) ≡ 15

4

y√
2
. (5.209)

Then f̃ has the simple expansion

f̃ = (τ + 2α)x2 + τy2 − 1

3
x3 + xy2 +

1

8



x2 + y2
2

+ . . . , (5.210)

and the eld equations (5.206), (5.207) read



(τ + 2α) +
7

5



x =
21

5

1

2π

 2π

0
dδ S



15
4



x− 1√
3
y cos δ



,

2


τ +
7

5



y =
√
3
21

5

1

2π

 2π

0
dδ cos δ S



15
4



x− 1√
3
y cos δ



, (5.211)

which may be solved by iteration. The results for f̃ , x, and y as functions of α and
τ are shown in Fig. 5.11 as contour plots.

The main defect of the Maier-Saupe model is that the size of the cubic term is
too large in comparison with the physical transition. In Appendix 5A we show how
this aspect can be improved by a biaxial version of the Maier-Saupe model.
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Figure 5.11 Contour plots of constant reduced free energy density f̃ext with order pa-

rameters x = ϕ(0) and y = ϕ(2).

5.6.1 Small Fluctuations above T1

If the temperature lies far enough above T1 (say a few 0C) the uctuations are
dominated by the quadratic part of the free energy. The normal modes are still
given by the dierent helicity tensors ǫ(2)(q̂), and energies behave on the average
like [see (5.196)]

τ (0)(q) = a2



1 +
2

3
ξ1

2q2


, (5.212)

τ (±1)(q) = a2



1 +


ξ1
2 +

1

2
ξ2

2




q2 ±
d

b+ c
2

q



, (5.213)

τ (±2)(q) = a2



1 + ξ1
2



q2 ± 2
d

b
q



. (5.214)

Another way of writing the last two equations is

τ (±1) = a2







1− 1

4(ξ21 +
1
2
ξ22)

ξ21
ξ2h



+


ξ21 +
1

2
ξ22





q ±
d

2b + c

2


 , (5.215)

τ (±2) = a2



1− ξ21
ξ2h

+ ξ21



q ±
d

b

2


 . (5.216)

The quantity d/b is equal to 1/ξh = q(2) by Eq. (5.199). Similarly we set

d/(2b+ c) ≡ q(1) = (1 + ξ22/2ξ
2
1)q

(1). (5.217)

The behavior of τ (h)(q) for h = 0,±1,±2, is sketched in Fig. 5.12.
While τ (0)(q) is unaected by the parity-violating d-term, the helicity one and

two uctuations now are strongest for non-vanishing momenta (recall Fig. 5.8)

q(1) ≡ 1

2ξh

1

1 + ξ22/2ξ12
,

q(2) =
1

ξh
. (5.218)



5.6 Cholesteric Liquid Crystals 355

Figure 5.12 Momentum dependence of the gradient coecients τ (h)(q) of the modes of

helicity h, as specied in Eqs. (5.212), (5.215), and (5.216).

This fact will be seen to give rise to a number of distinctive physical properties of
cholesteric systems.

5.6.2 Some Experimental Facts

As far as Rayleigh scattering far above T1 is concerned, the momentum transfers are
so small that the result of (5.148),

IV H
−1

IV V
−1

≈ 4

3
, (5.219)

is still expected to be true. Experimentally a slight deviation (1.448±.94) is observed
which has not yet been explained (see Fig. 5.8).

The most striking dierence with respect to the nematic case, however, consists in
the following. The data points of I−1 no longer end at a precocious phase transition
at T1 > T ∗. Instead, they turn o the straight line and can now be followed down
to below T ∗ (see Fig. 5.8) by half a degree Celsius, where they suddenly jump down
to small values as the ordered phase is reached. These values are, however, much
(≈ 10 times) larger than those in the nematic ordered phase, i.e., the scattered light
intensity is much smaller. This indicates a lower level of degeneracy of orientational
degrees of freedom as compared to the nematic phase. There is another characteristic
feature which was already observed by Reinitzer [1] in his rst investigations of such
systems. The liquid appears in a bright blue color. For this reason, this temperature
regime is referred to as the blue phase [20].

When pressed into a thin layer between two glass plates, the liquid forms a great
number of domains, called plaquelets, some of them blue [21]. As the temperature
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is lowered by one more degree, the colors suddenly disappear and the intensity
of scattered light jumps up once more. Now the liquid shows the same degree
of opaqueness as nematic ordered phases. This temperature regime is called the
cholesteric phase.

If the liquid is subjected to more detailed optical investigations, it reveals several
important phenomena:

1. The refractive indices for ordinary and extraordinary light rays are equal in
the blue phase but dier by about one percent in the cholesteric phase [21, 22].

2. The cholesteric phase shows a single strong Bragg reex of circularly polarized
light at normal incidence at barely UV wavelengths. Thus, the liquid is capable
of transferring a certain momentum5,

q = 2k0 =
4π

λR

, (5.220)

upon the incoming light of momentum k0 and wavelength λR. The quantity
P = 4π/q is referred to as optical pitch.

3. For oblique incidence there are also reexes of higher order 2q, 3q, at Bragg
angles θ:

λR =
P

m
sin θ (5.221)

(θ = 900, normal incidence). But now the polarizations are elliptical.

4. Also the blue phase gives Bragg reexes but with a larger pitch Pblue which
is about two times larger than that in the cholesteric phase (this is why the
color is blue rather than UV). Moreover, the plaquelets described above reect
light at wavelengths which are integer fractions of the above pitch Pblue and of
Pblue ·

√
2. As a matter of fact, the directions of reexes can be tted by the

same Bragg condition as those in a bcc lattice:



sin θ

λR/Pb

2

=
m1

2 +m2
2 +m3

2

2
, (5.222)

where the Miller indices can take integer values with even numbers. The pres-
ence of lattice planes (1, 1, 0), (2, 0, 0), (2, 0, 0) has apparently been established
[22].

5. There is one more important observation [22]. The wave length of reected
light remains constant for about half a degree Celsius. Then it has a jump to a
higher value and increases even more for another half degree before it falls back
to a low value as the cholesteric phase is reached. The jump is present only
for samples of shorter pitch. We shall now try to understand these properties
theoretically.

5If the light is observed outside the medium, λR has to be replaced by λR/n.



5.6 Cholesteric Liquid Crystals 357

5.6.3 Mean-Field Description of Cholesteric Phase

In the presence of the parity violating term (5.191), the ground state is much harder
to determine than in nematics, even at the mean-eld level. The reason is that a
constant eld conguration can no longer give the lowest energy. For the following
discussion let us truncate the free energy after the quartic term, for simplicity. In
the natural energy units (5.162) introduced before we may write the free energy
density as

f̃ = (τ + 2α)ϕαβ
2 −

√
6

3
ϕαβϕβγϕγα +

1

4



ϕ2
αβ

2

+2αξ2h



(∇γϕαβ)
2 +

ξ2
2

ξ12
∇αϕαγ∇βϕβγ



−4αξhǫαβγϕαβ∇γϕβδ. (5.223)

Here we have introduced the additional dimensionless parameter

2α ≡ 4a4b

3a32
d2

b2
=

2

9

ξ21(T1)

ξ2h
, (5.224)

where ξ1(T1) = ξ1(T1/T
∗ − 1) =

√
6a4b/a3 is the coherence length at the rst-order

phase transition [recall (5.95)]. The cholesteric phase condenses when τ+2α becomes
negative. Recalling (5.170) and (5.171), we identify

τ + 2α ≡ 4a4b

3a23

a2
b

≡ 4a4b

3a32
a02
b



T

T ∗ − 1


= τ0



T

T ∗ − 1


≡ 2

9

ξ21(T1)

ξ21(T )
. (5.225)

The parameter
√
α measures the coherence lenght ξ1 =



b/a2 at T1 in units of the

cholesteric length scale ξh, apart from a trivial factor 1/3. For this reason we call α
the cholestericity of the liquid crystal. Obviously, the limit α → 0 which is reached
for d2 → 0, restores the nematic case [see (5.224)], in which case (5.225) coincides
with the previous denition (5.166), and 2αξ2h becomes 2τ0ξ

2
1 .

We have seen in the last chapter that, at the level of small uctuations, the last
term in (5.223) gives a preference to the helicity-two (q ≈ q(2)) mode with q ≈ q(2)

(see Fig. 5.12). Thus we may expect a lower energy for an ansatz:

ϕαβ =
1√
2V



ǫ(2)(q̂)eiqxϕ(2) + c.c.


. (5.226)

Inserting this into (5.223) we nd

f̃ = τϕ(2)2 +
1

8
ϕ(2)4 + 2α



q

q(2)
− 1

2

ϕ(2)2. (5.227)

There is no cubic term since the product of three ǫ(2)(q), ǫ(2)∗(q) tensors vanishes.
The energy is minimized by setting q = q(2), where it becomes

f̃ = τϕ(2) +
1

8
ϕ(2)4. (5.228)
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This is to be compared with the helicity-zero expression:

f̃ = (τ + 2α)ϕ(0)2 − 1

3
ϕ(0)3 +

1

8
ϕ(0)4

+2dξh
2



1 +
2

3

ξ1
2

ξ22



q2ϕ(0)2 (5.229)

which is minimal at q = 0.
We now realize that for large enough α the energy (5.228) is always lower than

(5.229). For if 2α > 2/g, the energy (5.229) vanishes for τ > (2/g) − 2α while
(5.227) has a second-order phase transition at τ = 0 and starts being negative for
τ < 0. But this is by far not the lowest possible energy. In order to see this let us
combine both helicities linearly and take

ϕαβ =
1√
V



ǫ(0)(n)ϕ(0) +
1√
2



ǫ(2)(q̂)eiqxϕ(2) + c.c.




, (5.230)

where q̂ points in an arbitrary direction and the direction vector n may be
parametrized as

n = (nx, ny, nz) = sin θ(cosφ x̂+ sinφ ŷ) + cos θẑ. (5.231)

Now the energy has the form

f̃ = (τ + 2α)ϕ(0)2 + τ |ϕ(2)|2 − ϕ(0)3

3
− ϕ(0)|ϕ(2)|2



3|̂l · n̂|2 − 1


+
1

8



ϕ(0)2 + |ϕ(2)|2


+ 6ϕ(0)|ϕ(2)|2


+O(|ϕ(0)|4). (5.232)

The two modes are coupled at the cubic level. This gives rise to a linear asymmetry
for the ϕ(0)-amplitude such that it is pulled out of the equilibrium position to a new
minimum thereby reducing the remaining quartic potential for ϕ(2). This eect is
strongest if the cubic term is maximal and the quartic term minimal, which happens
for

n̂ · l̂ = 0. (5.233)

The associate energy density is

f̃ = (τ + 2α)x2 + τy2 − x3

3
+ xy2 +

1

8



x2 + y2
2

. (5.234)

Here we have changed variables from ϕ(0) and ϕ(2) to x and y, for convenience. We
now minimize f̃ with respect to x and y and nd

(τ + 2α)x− 1

2
x2 +

1

2
y2 + x(x2 + y2) = 0, (5.235)

τy + xy + y(x2 + y2) = 0. (5.236)
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From these two equations we obtain

y2 = 3x2 − 4αx, (5.237)

which, after inserting it back into (5.233), gives

x2 + (1− α)x+ τ = 0, (5.238)

which has the two solutions

x1,2 = −




1− α

2
±



(1− α)2

4
− τ



 . (5.239)

At the extrema, the energy is

f̃ext =2



x2 +
x3

3
− ατx



=2



−τ 2+
1

3
(1−α)τ− 4

3



(1− α)2

4
− τ







1−α

2
±



(1−α)2

4
−τ







 ,(5.240)

and we see that the + sign corresponds to the lower value.
The phase transition takes place at τc = τc(α), where f̃ext vanishes. Instead of

solving f̃ext = 0 from (5.240) it is more convenient to combine f̃ext = 0 with (5.238)
to get two linear equations:

x = −τ + α − α2

α + 1
3

, (5.241)

and

x =



α + 1
3



τ

τ + (α− 1)/3
. (5.242)

Using these we eliminate once the lowest and once the highest power of x in f̃ext = 0.
Combining the resulting equations we obtain

gτ 2 + 2(gα− 1)τ − 3α(1− α)2 = 0, (5.243)

which determines the curve in the (α, τ)-plane, where f̃ vanishes. For α < 0, this
happens rst at a value τc > 0, which for α = 0 takes the nematic value 2/9, and
which decreases down to zero at α = 1. Above α = 1, the curve (5.241) does not
correspond to a minimum. In that region, the phase transition takes place at τ = 0
and is of second order, as can be seen directly from (5.240). Above α = 1, the energy
becomes for small τ ≤ 0:

f̃ext = −2τ 2


1 +
4

3(α− 1)



+ O(τ 3). (5.244)

The full behaviour of f̃ext as a function of temperature τ and cholestericity α is
shown in the form of contour plots in Fig. 5.11.
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The order parameters x and y are also displayed in the contour plots of Fig. 5.11.
The lines of constant x are straight: ǫ = xα − (x2 + x). For α > 0 one winds up in
the cholesteric phase. Notice that for α → ∞, the helicity-zero component becomes
more and more suppressed, and only ϕ(2) = y survives.

What happens if also the helicity-one component is admitted? In order to study
this let us assume all elds to vary only along the z-axis. For symmetry reasons, we
may take l̂ = 1√

2
(x̂+ iŷ). Then we have n = ẑ from (5.233), and we may expand

ϕαβ(z) =
1√
V



ǫ
(0)
αβ(ẑ)ϕ

(0)(z) +
1√
2



ǫ
(1)
αβ(ẑ)ϕ

(1)(z) + ǫ
(2)
αβ(ẑ)ϕ

(2)(z) + c.c.




, (5.245)

with a real eld ϕ(0)(z) and two complex elds ϕ(1)(z), ϕ(2)(z). The energy density
bocomes using (5.232)

f̃ = (τ + 2α)


ϕ(0)2 + |ϕ(1)|2 + |ϕ(2)|2


−1

3
ϕ(0)3 − 1

2
ϕ(0)



|ϕ(1)|2 − 2|ϕ(2)|2


−
√
3

4



ϕ(2)∗ϕ(1)2 + c.c.


+
1

8



ϕ(0)2 + |ϕ(1)|2 + |ϕ(2)|2
2

(5.246)

+2αξ2h



r0


∇zϕ
(0)
2

+ r1


|∇zϕ
(1)|2 + |∇zϕ

(2)|2


−2αξh(ϕ
(1)∗∇z

2
ϕ(1) + 2ϕ(2)∗∇z

2
ϕ(2))



.

Here we have introduced the convenient abbreviations

r0 ≡ 1 +
2

3

c1 + c2
b

=
4r1 − 1

3
,

r1 ≡ 1 +
c1 + c2
2b

= 1 +
c

2b
. (5.247)

Both are experimentally accessible in the ordered phase by measuring the ratio of
Frank constants

r1 ≡
K1 +K3

2K2

=
K3 +K − b

2Kt

. (5.248)

In momentum space, the quadratic terms can be rewritten after a quadratic com-
pletion as

f̃ =


q





τ + 2α+ 2αr0ξ
2
hq

2


|ϕ(0)(q)|2

+



τ + 2α


1− 1

4r1



+ 2αr1



qξh ∓
1

2r1

2


|ϕ(±1)(q)|2

+


τ + 2α (qξh ∓ 1)2


|ϕ(±2)(q)|2


, (5.249)

where q ≡ qz. For very large α, this is certainly minimal at the former solution with
q = 1/ξh, and no ϕ(0),ϕ(2) components can be present. Experimentally, however, α
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is not so large to justify ignoring ϕ(0),ϕ(2): A typical cholesteric system has ξ01 ≈ 11Å
and ξh ≈ 2000/4πÅ, so that α ≈ 0.21. Therefore, ϕ(1) will be present. From the
energy we see that the amplitude ϕ(1) enters only in higher orders. Thus there
can be a second-order phase transition with ϕ(1) = 0 developing from the previous
solution with ϕ(0), ϕ(2) = 0 along a line in the α − τ plane where the coecient of
the quadratic term becomes negative:

D ≡ τ + 2α


1− 1

4r1



+ 2αr1



1− 1

2r1

2

− 1

2
x−

√
3

2
y +

1

4



x2 + y2


≤ 0. (5.250)

Inserting the solutions (5.237) and (5.239) we nd that this cannot happen. At

α = 0 one has x = −1
2
+


1
2
− τ , y = −

√
3x, and x2 + x + τ = 0, implying that

D = 0. But for all allowed α > 0, and τ in the cholesteric phase, we can verify that
τ +α− x

2
−

√
3
2
y+ 1

4
(x2 + y2) starts out with O(α2) and is always > 0. This ensures

also D > 0 since the rst line in (5.250) is τ + α


1 + r1
2



and r1 > 0.

Let us take a look at the cholesteric order parameter with ϕ(0), ϕ(2) = 0. It may
be written in a matrix form as

ϕαβ = ϕ(0) 1√
6







−1
−1

2







αβ

+
1√
2
ϕ(2)









1

2







1 i 0
ǫ −1 0
0 0 0







αβ

eiqz + c.c.









=









− 1√
6
+ 1√

2
cos qz, − 1√

2
ϕ(2) sin qz 0

− 1√
2
ϕ(2) sin qz − 1√

6
ϕ(0) − 1√

2
ϕ(2) cos qz 0

0 0 2√
6
ϕ(0)









αβ

. (5.251)

This has to be added to ǫ0δαβ in order to obtain the dielectric tensor which is usually
parametrized as

ǫαβ =







ǭ+ δ cos 2kz −δ sin 2kz 0
− δ sin 2kz ǭ− δ cos 2kz 0

0 0 ǫ3







αβ

. (5.252)

Note that the mixing between ϕ(0) and ϕ(2) induces, in general, biaxiality. The local
eigenvalues are now all three dierent ǭ+ δ, ǭ− δ, ǫ3.

In order to interpret the order parameter (5.254) physically it is useful to realize

the following: Suppose the helicity zero rod-like form ǫ
(0)
αβ(n) =



3
2



nαnβ − 1
3
δαβ



is taken in the direction

n(z) = (cos kz,− sin kz, 0) , (5.253)

that is rotated away from the z-direction into the xy-plane. Then ǫ
(0)
αβ(n(z)) becomes

ǫ
(0)
αβ (n(z)) =



3

2







cos2 kz − 1
3

− sin kz cos kz 0
sin kz cos kz sin2 kz − 1

3
0

0 0 −1
3







αβ
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=



3

2







1
6
+ 1

2
cos 2kz − sin 2kz 0

sin 2kz 1
6
− 1

2
cos 2kz 0

0 0 −2
6







αβ

=
1

2



−ǫ(0)(z) +
√
3

1√
2



ǫ(2)(z)eiqz + c.c.




αβ

. (5.254)

Thus it has precisely the form (5.230), with the particular ratio

ϕ(2)

ϕ(0)
=

y

x
=

√
3. (5.255)

In this case we may interpret the solution (5.248) as a purely transverse helical
conguration of rod-like molecules. These parameters can be measured in optical
experiments. They show that the biaxiality remains usually small: the eigenvalue
ǭ − δ is usually equal to ǫ3 (typical example: ǭ = 2.745, δ = 0.315, ǫ3 = 2.430
[23]).

Thus experimentally, the ratio (5.255) is observed. Looking back at (5.237) we
notice that, for α = 0, this is automatically true (as it should be since α = 0
corresponds to the absence of the parity violating term). The uniaxiality remains
approximately true for the typical experimental value α ≈ 0.21. Thus we nd for
the ratio of the dielectric eigenvalues of (5.252):

ǭ− δ

ǫ3
= 1 +

3

8





1


1
4
− τ

− 2

3



 . (5.256)

5.7 Other Phases

There are several other possible congurations of momenta where we can expect a
low total energy.

One is the hexatic phase, in which the order parameter contains one component
ϕ(0)(n) and three components ϕ(2)(q̂i) where q1, q2, q2 form an equilateral triangle,
for whose directions we may choose

q̂1 = x̂, q̂2,3 = −1

2
x̂±

√
3

2
ŷ. (5.257)

The polarization vectors associated with these momenta may be taken as

l1 =
1√
2
(ŷ + iẑ)eiγ1/2 (5.258)

l2,3 =
1√
2



∓
√
3

2
x̂− 1

2
ŷ + iẑ



eiγ2,3/2. (5.259)

For symmetry reasons, the chirality of all polarization vectors has to be the same,
i.e., they must form a positively oriented triped.
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Another possible phase is a body-centered cubic (bcc) phase in which the mo-
menta and polarization vectors are oriented, as shown in Fig. 5.13.

The regimes where the four possible phases, cholesteric, hexatic, or bcc, are the
lowest are shown in the phase diagram in Fig. 5.14. A discussion of all possible
phases was given in 1981 by Kleinert and Maki [24] (the development reviewed in
Ref. [25]). The most interesting phase is the icosahedral phase in which the momenta
and polarizations are arranged as shown in Fig. 5.15. Such a phase is not periodic in
space but it displays a vefold symmetry under rotation. It is called quasicrystalline.
For the liquid crystal with a Landau-de Gennes expansion of the order eld, this
phase has so far not been shown to be a stable conguration. Higher powers in the
eld seem to be necessary to achieve stabilization.

Such a phase would have an interesting density prole displayed in Fig. 5.16.

Figure 5.13 Momenta and polarization vectors for a body-centered cubic (bcc) phase of

a cholesteric liquid crystal.

Figure 5.14 Regimes in the plane of α, τ , where the phases cholesteric, hexatic, or bcc

have the lowest energy.
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Figure 5.15 Momenta and polarization vectors for an icosahedral phase of a cholesteric

liquid crystal.

This prole can be obtained in two dimensions from the simplest set of momenta
with vefold symmetry

pk = (cosαk, sinαk), αk = 2πk/N. (5.260)

A possible order parameter is composed of a sum of exponentials

φ(x) =
N−1


k=0

eixpk . (5.261)

This leads directly to the density ρ(x) = |φ(x)|2 shown in Fig. 5.16.
In the year 2011, Dan Shechtman was awarded the Nobel Prize for his 1984

discovery of a quasicrystalline phase with ve-fold symmetry [30] in a sputtered
Al-Mn alloy. While the solid-state community considered his observation for some
time with great skepticism, as is vividly described in many newspaper articles and
Shechtman’s Wikipedia page [31], such a phase has been discussed three years ear-
lier in the context of liquid crystals [24]. There it may appear as the so called blue

phase, as calculated by Seidemann [25] and by Rokhsar and Sethna [26, 27]. Ther-
modynamics of various phases in cholesteric liquid crystals is shown in Fig. 5.18.
For a comprehensive analysis of the blue phases see Ref. [28]. Recent experiments
are discussed in [29].

Figure 5.16 Density prole ρ(x) = |φ(x)|2 with ve-fold symmetry.
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In two dimensions, we may also take N = 7 and expect to nd a heptagonal
density distribution shown in Fig. 5.17 [33].

For more details on quasicrystals see the textbooks [34, 35, 36].

Appendix 5A Biaxial Maier-Saupe Model

In order to improve the Maier-Saupe model with respect to the large-a3 coecient,
let us try a modied version in which the basic molecules are biaxial. In the general
discussion of the free energy in Section 5.2 we have seen that the cubic term, a3
produces a region of biaxial order. Thus the large size of a3 in the model seems
to be connected with the basic assumption of uniaxial molecules at the microscopic
level. Let us see whether this is, in fact, true. Consider again the nematic free
energy (5.29). The integral over n corresponds to averaging over all microscopic

Figure 5.17 Density prole ρ(x) = |φ(x)|2 with seven-fold symmetry.

Figure 5.18 Blue phases in a cholesteric liquid crystal.
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orientations of the rod-like uniaxial molecules such that the orientational energy
(5.4) is proportional to

Q(n) =



15

8π



2

3
Qmol

αβ Qαβ =



15

8π



nαnβ −
1

3
δαβ



Qαβ. (5A.1)

Suppose now the microscopic order parameter is biaxial. Then it contains an extra
term in addition to the axial order parameter (5.2):

Qmol
αβ =



3

2



nαnβ −
1

3
δαβ



+ ǫ



mαmβ −
1

3
δαβ



, (5A.2)

where m is another unit vector orthogonal to n. If n, m point in z- and x-directions,
respectively, we have the explicit matrices:



2

3
Qmol

αβ =







−1
3

−1
3

2
3





+ ǫ







−2
3

−1
3

−1
3







=
1

3







2ǫ− 1
−(1 + ǫ)

−(2− ǫ)





 . (5A.3)

By an appropriate choice of ǫ we can now simulate any desired ratio for the three
principal axes of the molecules. The spatial averages are a little more involved. Let
us parametrize n and m in terms of angles as

n = (sin θ cosϕ, sin θ sinϕ, cos θ) (5A.4)

m = (cos θ cosϕ cos γ − sinϕ sin γ, cos θ sinϕ cos γ + cosϕ sin γ, − sin θ cos γ) .

Then the directional average must be performed as a product of integrals

. . . = . . .z. . .γ

=


d2n

4π

 2π

0

dγ

2π
=
 1

1

dz

2

 dπ

0

2ϕ

2π

 2π

0

dγ

2π
. (5A.5)

The resulting invariants of products of the tensors Qαβ will be unique up to fourth
power. We may therefore work with the simple specic form

Qαβ =







−Q
−Q

2Q





 , (5A.6)

and substitute, at the end:

Q2 → 1

6
trQ2, Q3 → 1

6
trQ3, Q4 → 1

36



trQ2
2

. (5A.7)
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With (5A.6) we see that the source term Qmol
αβ Qαβ satises



2

3
Qmol

αβ Qαβ = Q


−nx
2 − nγ

2 + 2nz



+ ǫ


−mx2 −my
2 + 2mz

2


= Q


3nz
2 − 1 + ǫ



3mz
2 − 1



= Q


3z2 − 1 + ǫ


3 cos2 α


1− z2


− 1


= Q


3z2a− b


, (5A.8)

where we have set

a ≡ 1− ǫ cos2 γ , b ≡ 1− ǫ


3 cos2 γ − 1


. (5A.9)

The averages over z are now easily performed, yielding:



Q2(n)


=
15

8π

trQ2

6



9

5
a2 − 2ab+ b2



γ



Q3(n)


=


15

8π

3/2 trQ3

6



27

7
a3 − 27

5
a2b+ 3ab2 − b3



γ



Q4(n)


=


15

8π

2 (trQ2)2

36



81

9
a4 − 108

7
a3b+

54

5
a2b2 − 12

3
ab3 + b4



γ

. (5A.10)

For ǫ = 0 one has a = b = 1, leading back to the previous results (5.30) for
nematic liquid crystals. For cholesteric liquid crystals, we must perform a remaining
nontrivial average over γ. This is easily done using the basic average formula



cos2n γ


γ
=

(2n− 1)!!

2n!!
, (5A.11)

which yields explicitly the averages 1/2, 3/8, 5/16, 35/(8 · 16) for n = 1, 2, 3, 4. If
we write a = 1− ǫα, b = 1− ǫβ with α = cos2 γ, β = 3 cos2 γ − 1, we calculate

α = β = 1

2
, α2 = 3

8
, αβ = 5

8
, β2 = 11

8
,

α3 = 5

16
, α2β = 9

16
, αβ2 = 17

16
, β3 = 29

16
, (5A.12)

α4 = 35

128
, α3β = 65

128
, α2β2 = 123

128
, αβ3 = 233

128
, β4 = 467

128
.

Hence we nd

a2 = 1− ǫ +
3

8
ǫ2ab = 1− ǫ +

5

8
ǫ2b2 = 1− ǫ +

11

8
ǫ2,

a3 = 1− 3

2
ǫ+

9

8
ǫ2 − 5

16
ǫ3,

a2b = 1− 3

2
ǫ+

13

8
ǫ2 − 9

16
ǫ3,
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ab2 = 1− 3

2
ǫ +

21

8
ǫ2 − 17

16
ǫ3,

b3 = 1− 3

2
ǫ +

33

8
ǫ2 − 29

16
ǫ3,

a4 = 1− 2ǫ+
18

8
ǫ2 − 5

4
ǫ3 +

35

128
ǫ4,

a3b = 1− 2ǫ+ 3ǫ2 − 2ǫ3 +
65

128
ǫ4,

a2b2 = 1− 2ǫ+
34

8
ǫ2 − 52

16
ǫ3 +

123

8 · 16
ǫ4,

ab3 = 1− 2ǫ+ 6ǫ2 − 80

16
ǫ3 +

233

8 · 16
ǫ4,

b4 = 1− 2ǫ+
66

8
ǫ2 − 29

4
ǫ3 +

467

8 · 16
ǫ4. (5A.13)

Combining these we obtain the following correction factors to the ǫ = 0 -terms of
(5A.10)



1− ǫ+ ǫ2


,


1− 3

2
ǫ− 3

2
+ ǫ3



, (5A.14)



1− 2ǫ+ 3ǫ2 − 2ǫ3 + ǫ4


=


1− ǫ + ǫ2
2

.

Going back to (5.29) we see that the rst two coecients multiply directly the
coecients in the Landau expansion (5.31) with ǫ = 0, while the quartic term
receives a combined correction factor produced by the third row of (5A.14):

a4 → a4



7

2



1− ǫ + ǫ2
2 − 5

2



1− ǫ+ ǫ2
2


= a4


1− ǫ + ǫ2
2

. (5A.15)

Since the cubic factor may be written as


ǫ− 1
2



(ǫ + 1) (ǫ− 2) we see that we can

indeed make it arbitrarily small, for example by choosing ǫ ≈ 1
2
. Note that the

values ǫ = 1
2
, ǫ = −1, ǫ = 2 correspond to



3

2
Qmol =

1

2







0
−1

1





 ,







−1
0

1





 ,







1
−1

0





 . (5A.16)
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Simplicity is the ultimate sophistication.

Leonardo da Vinci (1452–1519)

6

Exactly Solvable Field-Theoretic Models

The techniques developed in the previous chapters can be understood better by
observing how they work in some simple exactly solvable models whose physics is
well known on the basis of conventional techniques. This will be illustrated in this
chapter in several typical cases.

6.1 Pet Model in Zero Plus One Time Dimensions

Consider the extremely simple case of a fundamental theory with a Hamiltonian

H = (a†a)2/2, (6.1)

where a† and a denote the creation and annihilation operator of either¡ a boson or
a fermion. In the rst case, the eigenstates are

|n = 1√
n!
(a†)n|0, n = 0, 1, 2, . . . , (6.2)

with the energies

En =
n2

2
. (6.3)

In the fermionic case, there are only two eigenstates

|0, |1 = a†|0, (6.4)

with the energy eigenvalues

E0 = 0, E1 =
1

2
. (6.5)

The Lagrangian corresponding to H is

L(t) = a†(t)i∂ta(t)− 1

2



a†(t)a(t)
2
, (6.6)

371
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and the generating functional of all Green functions reads

Z[η†, η] = 0|T exp


i


dt(η†a+ a†η)


|0

= N


Da†Da exp


i


dt


L+ η†a+ a†η




. (6.7)

A collective eld may be introduced via the formula

exp


− i

2



dt[a†a(t)]2


=


Dρ(t) exp


i

2



dt


ρ2(t)− 2ρ(t)a†a(t)




. (6.8)

Equivalently we may add to the exponent of (6.7) a term

i

2



dt


ρ(t) − a†(t)a(t)
2
,

and integrate the generating functional Z over the ρ-eld [compare the Hubbard-
Stratonovich transformation in Eq. (1.79)].

The resulting Z can be rewritten as

Z[η†, η] = N


Da†DaDρ

× exp



dt



a†(t)i∂ta(t) − ρ(t)a†(t)a(t) +
ρ2(t)

2
+ η†(t)a(t) + a†(t)η(t)



. (6.9)

The collective eld ρ(t) describes the particle density. Indeed, a functional derivative
of the Lagrangian density in the exponent of (6.9) displays the dependence

ρ(t) = a†(t)a(t) (6.10)

which holds exactly at the classical level.
Integrating out the a†, a elds gives

Z[η†, η] = N


Dρ exp


iA[ρ]−


dtdt′η†(t)Gρ(t, t
′)η(t′)



, (6.11)

with the collective eld action [see once more (1.79)]

A[ρ] = ±iTrlog


iG−1
ρ



+


dt
ρ2(t)

2
, (6.12)

where Gρ denotes the propagator of the fundamental particles in a classical ρ(t) eld
satisfying

[i∂t − ρ(t)]Gρ(t, t
′) = iδ(t− t′). (6.13)

The solution can be found by introducing an auxiliary eld

ϕ(t) =
 t

ρ(t′)dt′, (6.14)
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in terms of which

Gρ(t, t
′) = e−iϕ(t)eiϕ(t

′)G0(t− t′), (6.15)

with G0 being the free-eld propagator of the fundamental particles. At this point
one has to specify the boundary condition on G0(t − t′). They have to be adapted
to the physical properties of the system. The generating functional is supposed to
describe the amplitude for vacuum to vacuum transitions in the presence of the
source elds η†, η. The propagation of the free particles must take place in the same
vacuum. If a†0, a0 describes a free particle, their time ordered product in the free
vacuum is

G0(t− t′) = 0|T


a0(t)a
†
0(t

′)


|0 = Θ(t− t′). (6.16)

Using (6.15), we nd

Gρ(t, t
′) = e−iϕ(t)eiϕ(t

′)
Θ(t− t′). (6.17)

Equipped with this knowledge we can readily calculate the Trlog term in (6.12).
The functional derivative is certainly

δ

δρ(t)



±iTrlog(iG−1
ρ )


= ∓Gρ(t, t
′)









t′=t+ǫ

= 0, (6.18)

where the t′ → t limit is specied in such a way that the eld ρ(t) in (6.9) couples
to

a†(t)a(t) = ±T


a(t)a†(t′)










t′=t+ǫ

=̂±Gρ(t, t′)









t′=t+ǫ

. (6.19)

Hence, the Θ-function in (6.17) makes the functional derivative vanish and the Trlog
becomes an irrelevant constant. The generating functional reduces to the simple
expression

Z[η†, η] = N


Dϕ(t) exp


i

2



dtϕ̇(t)2 −


dtdt′η†(t)η(t′)e−iϕ(t)e−iϕ(t′)
Θ(t− t′)



,

(6.20)

where we have used the relation

Dρ = Dϕ det


δ̇(t− t′)


= const · Dϕ. (6.21)

Observe that it is the eld ϕ(t) which becomes a convenient dynamical plasmon
variable, not ρ(t) itself.

The original theory has been transformed into a new one involving plasmons of
zero mass. At this point we take advantage of the equivalence between functional and
quantized operator formulation by considering the plasmon action in the exponent
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of (6.20) directly as a quantum eld theory. The rst term may be associated with
a Lagrangian

L0(t) =
1

2
ϕ̇(t)2, (6.22)

describing free plasmons.
The Hilbert space of the corresponding Hamiltonian H = p2/2 consists of plane

waves which are eigenstates of the functional momentum operator p = −i∂/∂ϕ:

{ϕ|p} =
1√
2π

eipϕ, (6.23)

normalized according to

 ∞

−∞
dϕ {p|ϕ} {ϕ|p′} = δ(p− p′). (6.24)

In the operator version, the generating functional reads

Z[η†, η] =
1

{0|0}



0








T exp


−


dtdt′η†(t)η(t′)e−iϕ(t)eiϕ(t
′)
Θ(t− t′)









0


, (6.25)

where ϕ(t) are free eld operators. Note that it is the zero functional momentum
states between which the operator is evaluated. Due to the norm (6.24) there is an
innite normalization factor which has formally been taken out.

We can now verify the generation of all Green functions of fundamental particles
from the functional derivatives with respect to η†, η. First

0|Ta(t)a†(t′)|0 = − δ(2)Z

δη†(t)δη(t′)











η†,η=0

=
1

{0|0}



0




e−iϕ(t)eiϕ(t
′)




 0


Θ(t− t′). (6.26)

Inserting the time translation operator

eiHt = ei
p2

2
t, (6.27)

the matrix element (6.26) becomes

1

{0|0}



0








e−ip22e−iϕ(0)e−i p
2

2
(t−t′)eiϕ(0)e−i p

2

2
t′








0


=
1

{0|0}



0








e−iϕ(0)e−i p
2

2
(t−t′)eiϕ(0)









0


.(6.28)

But the state eiϕ(0)|0 } is an eigenstate of the functional momentum p with p = 1,
so that (6.28) equals

1

{0|0}
{1|1} e−i(t−t′)/2 = e−i(t−t′)/2, (6.29)
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and the Green function (6.26) becomes

0|Ta(t)a†(t′)|0 = e−i(t−t′)/2
Θ(t− t′). (6.30)

This coincides exactly with the result of a calculation within the fundamental eld
operators a†(t), a(t):

0|Ta(t)a†(t′)|0 = Θ(t− t′)0|ei(a†a)2t/2a(0)e− i
2
(a†a)2(t−t′)a†(0)e−i(a†a)2t′/2|0

= Θ(t− t′)e−i(t−t′)/2. (6.31)

Observe that nowhere in the calculation have Fermi- or Bose- statistics been used.
This becomes relevant only for higher Green functions. Expanding the exponent
(6.25) to nth order gives

Z [n]


η†, η


=
1

{0|0}

(−)n

n!



dt1dt
′
1 · · · dtndt

′
nη

†(t1)η(t
′
1) · · · η

†(tn)η(t
′
n)

×


0




Te−iϕ(t1)eiϕ(t
′

1
) · · · e−iϕ(tn)eiϕ(t

′

n)




 0


Θ(t1 − t′1) · · ·Θ(tn − t′n). (6.32)

The Green function

0|Ta(t1) · · · · · a(tn)a†(t′n) · · · · · a†(t′1)|0 (6.33)

is obtained by forming the derivative

(−i)2nδ(2n)Z[η†η]/δη†(t1) · · · · · δη
†(tn)δη(t

′
n) · · · · · δη(t).

There are (n!)2 contributions due to the product rule of dierentiation, n! of them
being identical, thereby canceling the factor 1/n! in (6.32). The others correspond,
from the point of view of combinatorics, to all Wick contractions of (6.33), each
being associated with a factor e−iϕ(t)eiϕ(t

′). In addition, the Grassmann nature of
source elds η causes a minus sign to appear in all contractions which deviate from
the natural order 11′, 22′, 33′, . . . by an odd permutation. For example

0|Ta(t1)a(t′2)a†(t′2)a†(t′1)|0

= 0|T (a(t1)a(t2) a(t′2)a†(t′1) |0± 0|T (a(t1)a(t2) a(t′2)a†(t′1) |0 (6.34)

=
1

{0|0}



0




Te−iϕ(t1)e−iϕ(t2)eiϕ(t
′

2
)eiϕ(t

′

1
)




 0


= [Θ(t1 − t′1)Θ(t2 − t′2) ±Θ(t1 − t′2)Θ(t2 − t′1)] , (6.35)

where the upper sign holds for bosons, the lower for fermions. The lower sign enforces
the Pauli exclusion principle: If t1 > t2 > t′2 > t′1, the two contributions cancel,
reecting the fact that no two fermions a†(t′2)a

†(t′1) can be created successively on
the particle vacuum. For bosons one may insert again the time translation operator
(6.27) and complete sets of states



dp|p}{p| = 1, with the result:

1

{0|0}



dpdp′{0|e−iϕ(0)e−i p
2

2
(t1−t2)e−iϕ(0)e−i p

2

2
(t2−t′

2
)eiϕ(0)e−i p

2

2
(t′

2
−t′

1
)eiϕ(0)|0}

= e−i(t1−t2)/2e−i2(t2−t′
2
)e−i(t′

2
−t′

1
)/2. (6.36)



376 6 Exactly Solvable Field-Theoretic Models

Here the expectation values {0|e−iϕ(0)|p} = δ(1 − p), {p|e−iϕ(0)|p′} = δ(p + 1 − p′)
have been used. The result agrees again with an operator calculation of the type
(6.31).

We now understand how the collective quantum eld theory works in this model.
Its Hilbert space is very large consisting of states of all functional momenta |p.
When it comes to calculating the Green functions of the fundamental elds, however,
only a small portion of this Hilbert space is used. A fermion can make plasmon tran-
sitions back and forth between the ground state |0} and the unit momentum state
|1} only, due to the anticommutativity of the fermion source elds η†, η. Bosons, on
the other hand, can connect states of any integer momentum |n}. No other states
can be reached. The collective basis is over-complete as far as the description of the
underlying system is concerned. Strong selection rules, p → p ± 1, together with
the source statistics make sure that only a small subspace becomes involved in the
dynamics of the fundamental system. The compatibility of such a projection with
unitarity is ensured by the conservation law a†a = const. In higher dimensions,
there have to be innitely many conservation laws (one for every space point).

Actually, in the boson case, the overcompleteness can be removed by dening
the collective Lagrangian in (6.20) on a cyclic variable, i.e., one takes (6.22) on
ϕ ∈ [0, 2π) and extends it periodically. The path integral (6.20) is then integrated
accordingly. In this case, the Hilbert space would be grated containing only integer
momenta p = 0,±1,±2, . . . coinciding with the multi-boson states.

The following observations may be helpful in understanding the structure of the
collective theory: It may sometimes be convenient to build all Green functions not
on the vacuum state |0 but on some other reference state |R for which we may
choose the excited state |n. In the operator language this amounts to a generating
functional

nZ[η†, η] = n|T exp


i


dt


η†(t)a(t) + a†(t)η(t)




|n. (6.37)

This would reect itself in the boundary condition of G0 for bosons

nG0(t− t′) = n|T


a0(t)a
†
0(t

′)


|n
= (n+ 1)Θ(t− t′) + nΘ(t′ − t). (6.38)

For fermions, only n = 1 would be an alternative, with

1G0(t− t′) = 1|T


a0(t)a
†
0(t

′)


|1 = −Θ(t′ − t). (6.39)

As a consequence of (6.38) or (6.39), formula (6.18) would become

δ

δρ(t)



±iTrlog


iG−1
ρ



= −


n
1



. (6.40)

Integrating this functionally gives

±iTrlog


iG−1
ρ



= −


n
1



 ∞

−∞
ρ(t)dt , (6.41)
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so that the functional form of (6.37) reads, according to (6.12):

{n
1}Z[η†, η] =



Dϕ exp



i


dt



ϕ̇2

2
−


n
1



ϕ̇



dt



× exp



−


dtdt′η†(t)η(t′)e−iϕ(t)eiϕ/t
′)



n+1
0



Θ(t− t′) +



n
−1



Θ(t′ − t)



.(6.42)

The collective Lagrangian of this model is

L(t) =
ϕ̇2

2
−


n
1



ϕ̇

=
1

2



ϕ̇−


n
1

2

− 1

2



n2

1



. (6.43)

With the help of the functional canonical eld momentum

p = ϕ̇−


n
1



we nd the Hamiltonian

H =



ϕ̇−


n
1



ϕ̇− L

=
ϕ̇2

2
=



p+



n
1

2

2
. (6.44)

Thus the spectrum is the same as before, but the momenta are shifted by n (or 1)
units accounting for the fundamental particles contained in the reference state |R
of (6.37). In the collective quantum eld theory, this reference state has a functional
momentum zero:

{n
1}Z[η†, η] =

1

{0|0}
{0|T exp



−


dtdt′η†(t)η(t′)e−iϕ(t)eiϕ(t
′)

×


n

−1



Θ(t− t′) +


n

−1



Θ(t′ − t)


|0}. (6.45)

In fact, the one-particle Green function becomes

{n
1}G(t, t′) = − δ(2)

δη†(t)δη(t′)
{n

1}Z[η†, η]

=
1

{0|0}
{0|Te−iϕ(t)eiϕ(t

′)|0}

×



n+ 1
0



Θ(t− t′) +



n
− 1



Θ(t′ − t)



. (6.46)



378 6 Exactly Solvable Field-Theoretic Models

Inserting the times translation operator corresponding to (6.44) this yields, for t > t′,

{n
1}G(t, t′) = exp



−i



n+ 1/2
3/2



(t− t′)



n + 1
0



=



(n + 1) exp[−i(n + 1/2)(t− t′)
0



, (6.47)

and for t < t′

{n
1}G(t, t′) = exp



−i



n− 1/2
1/2



(t− t′)



n
− 1



=



n exp[−i(n− 1/2)(t− t′)
− e−i(t−t′)/2



, (6.48)

in agreement with a direct operator calculation.
The appearance of the additional derivative term ϕ̇ in the Lagrangian (6.43) can

be understood in an alternative fashion. The reference state |n of nZ in (6.37) can
be generated in the original generating functional by applying successively deriva-
tives −δ(2)/δη†(t)δη(t′), letting t′ → −∞, t → ∞ and absorbing the innite phase
exp[−i∆E × (∞− (−∞))] into the normalization constant where ∆E is the energy
dierence between |n and |0:

nZ[η†, η]|
η†=η=0 ∝

δ(n)

(δη†(+∞))n
δ(n)

(δη(−∞))n
0Z[η†, η]









η†=η=0
. (6.49)

Each such pair of derivatives brings down a Green function

e−iϕ(t)eiϕ(t
′)
Θ(t− t′) = exp



−i
 t

t′
ϕ̇(t′′)dt′′



Θ(t− t′). (6.50)

In the limits t′ → −∞, t → ∞ we obtain, for n such factors,

exp


−in
 ∞

−∞
ϕ̇(t)dt



, (6.51)

in agreement with the derivative term in (6.42).
While the functional Schrödinger picture is useful in understanding what happens

in the Hilbert space of the collective eld theory, it is quite awkward to apply to
more than one dimension, in particular to the relativistic situation where the time
does not play a special role. A more direct and easily generalizable method for the
evaluation of fermion propagators in the collective theory consists in the following
procedure: One brings the products of exponentials in (6.32) to normal order by
using Wick’s contraction formula in the functional form. Let the “charges” of the
incoming and outgoing fermions be qi = +1 and qi−1, respectively. Then the matrix
element to be calculated in (6.32) are

{0|T exp



i


i

qiϕ(ti)



|0} = {0|T exp


i


dtϕ(t)∂iqi(t− ti)


|0}, (6.52)
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where we have re-numbered the times in the exponents as t1, t2, t3, t4, . . . rather than
t1, t

′
1, t2, t

′
2, . . ., etc. Now, from Wick’s contraction rule one has

{0|Tei


i
qiϕ(ti)|0} = exp



−1

2



dtdt′


i

qiδ(t− ti)ϕ(t)ϕ(t
′)


j

qjδ(t− tj)





×{0|T : exp



i


dtϕ(t)


i

qiδ(t
′ − ti)



: |0}

= exp



−1

2



ij

qiqj ϕ(ti)ϕ(tj)



 , (6.53)

where a contraction denotes again the propagator of a ϕ-eld. This is well dened
after introducing a small regulator mass κ:

ϕ̇(t)ϕ̇(t′) =


dE

2π

i

E2 − κ2 + iǫ
e−iE(t−t′)

=
1

2κ
e−κ|t−t′| =

1

2κ
− i

2
|t− t′|+O(κ). (6.54)

As κ → 0 this expression vanishes unless the sum of all charges is zero:


i qi = 0.
Thus one nds the general result for (6.32):

{0|T exp



i


qi

ϕ(ti)



|0} = δΣqi ,0
exp





i

2



i>j

qiqj |ti − tj |



 . (6.55)

In particular, the two-point function (6.26) agrees with the Schrödinger calculation
(6.30).

6.1.1 The Generalized BCS Model in a Degenerate Shell

A less trivial but completely transparent example is provided by the BCS degenerate-
shell model used in nuclear physics to describe the energy levels of some nuclei
in which pairing forces are dominant (for example Sn and Pb isotopes [31]). For
understanding the structure of the collective theory it is useful to consider at rst
both bosons and fermions as well as a more general interaction, and impose the
restriction to fermions and to the particular BCS pairing force at a later stage. This
more general Hamiltonian reads

H = H0 +Hint = ǫ
Ω


i=1

(ai
†ai + bi

†bi)−
V

2



i,j

ai
†bi

†bjaj

±
V

4
g





i

(ai
†ai + bi

†bi) ± Ω



, (6.56)

where g = 0 reduces to the actual BCS model in the case of fermions. The model
can be completely solved by introducing quasi-spin operators

L† =
Ω


i=1

ai
†bi

†, L− =
Ω


i=1

biai = (L†)†, (6.57)
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L3 =
1

2





i

(ai
†ai + bi

†bi)± Ω



=
1

2



i

ai
†ai ± bibi

† =
1

2
[N ± Ω],

where N counts the total number of particles. These operators generate the group
SU(1, 1) or SU(2) for bosons or fermions, respectively:

[L3, L
±] = ±L±,

[L+, L−] = ∓2L3. (6.58)

Using
L+L− = L2 ∓ L3 ± L3

2 (6.59)

we can write

H = 2εL3 ∓ ǫΩ− V (L2 ± L3
2 ∓ gL3

2)

= 2εL3 − V [L2 ± (1− g)L3
2]∓ εΩ. (6.60)

Note that for g = 1, the interaction term is SU(1, 1)- or SU(2)-symmetric. The
irreducible representation of the algebra (6.58) consists of the states

|n[Ω, ν] = Nn(L
+)n|0[Ω, ν], (6.61)

where the seniority label ν denotes the presence of ν unpaired particles ai
† or bj

†, i.e.
those which are orthogonal to the congurations (L†)n|0. For ν = 0 the spectrum
of L3 in an irreducible representation is

±
Ω

2
,±

Ω

2
+ 1,±

Ω

2
,+2, . . . . (6.62)

This continues ad innitum for bosons due to the non-compact topology of SU(1, 1)
while it terminates for fermions at Ω/2 corresponding to a nite spin Ω/2. The
invariant Casimir operator

L2 ≡ L1
2 + L2

2 ∓ L3
2 (6.63)

characterizing the representation has the eigenvalue Ω/2(1 ∓ Ω/2) showing, in the
fermion case, again the quasi-spin Ω/2. If ν unpaired particles are added to a
vacuum, the eigenvalues start at ±(Ω + ν)/2. Thus the quasi-spin is reduced to
(Ω− ν/2). If ν = Ω unpaired fermions are present, the state is quasi-spin symmetric,
for example:

|0[Ω,Ω] = b1
†b2

† · . . . · bΩ
†|0. (6.64)

Due to the many choices of unpaired particles with the same total number, the
levels show considerable degeneracies and one actually needs another label for their
distinction. This has been dropped for brevity.

On the states |n[Ων], the energies are taken from (6.60) and become, after
inserting N = 2n+ ν:

E = e(N ± Ω)− V



Ω± ν

2



1∓ Ω± ν

2



±
(1− g)

4
(N ± Ω)2



∓ εΩ. (6.65)
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Figure 6.1 Level scheme of the BCS model in a single degenerate shell of multiplicity

Ω = 8. The abscissa denotes the third component of quasi-spin. The index ν at each level

stands for the number of unpaired particles (“seniority”).

In Fig. 6.1, a typical level scheme is displayed for fermions of Ω = 8 with ε =
0. If the single particle energy ε is non-vanishing, the scheme is distorted via a
linear dependence on L2 lifting the right- and depressing the left-hand side. For an
attractive potential and given total particle number N , the state with ν = 0 is the
ground state, with the higher seniorities having higher energies:

ENΩν − ENΩ0 = V


Ω∓ 1±
ν

2



ν. (6.66)

The Lagrangian of the model is from (6.56)

L(t) =


i

(ai
†(t)(i∂t − ε)ai(t) + bi

†(t)(i∂t − ε)bi(t))

+
V

2









i,j

ai
†bi

†bjai







∓ V

4
g





i

(ai
†ai ± bibi

†)

3

, (6.67)

implying the generating functional

Z[η†, η, λ] =




i

Dai
†DaiDbi

†Dbi

× exp



i


dt



L+


i

ηi
†ai + ai

†ηi + λi
†bi + bi

†λi



. (6.68)

The fourth-order terms in the exponential can be removed by introducing a complex
eld S = S1 + iS2, S

† = S1 − iS2 and a real eld S ′
3, adding

−V

















S(t)−


i

ai
†bi

†











2

∓ g



S ′
3(t)−

1

2



i

(ai
†ai ± bibi

†)

2






(6.69)
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and integrating Z functionally over DS = DS1DS2DS3. The addition of (6.69)
changes L to:

L(t) =


i

{ai
†(i∂t − ε∓ gV S3

′)ai ∓ bi(i∂t + ε± gV S3
′)bi

†}

+V S†


i

ai
†bi

† +


i

V biaiS − V (|S|2 ∓ gS3
′2)± εΩ. (6.70)

By using the more convenient two-spinor notation for fundamental elds and sources

fi ≡


ai
bi†



; fi
† ≡ (ai

†, bi)

ji ≡


ni

λi
†



; ji
† ≡ (ηi

†, λi) (6.71)

the generating functional can be rewritten as

Z[j†, j] =




i

Df †
i DfiDS exp



i


dt



L(S) +


i

(j†i fi + f †
i ji)



, (6.72)

with

L(S) =
Ω


i=1

fi
†(t)



i∂t − ε∓ gV S3
′ V S†

V S ∓(i∂t + ε± gV S3
′)



fi(t)

− V (|S|2 ∓ gS3
′2)± εΩ . (6.73)

Now the fundamental elds fi
†, fi can be integrated out in (6.72) yielding the col-

lective action [32]

A[S] = ±iTrlog(iGS
−1) − V (S1

2 + S2
2 ∓ g − S3

′2) ± εΩ , (6.74)

where GS is the matrix collecting the Green functions of the particles in the external
eld S = (S1, S2, S3) = (S, S†, S3):

GS(t, t
′)ij =







ai(t)a
†
j(t

′) ai(t)bj(t
′)

b†i(t)a
†
j(t

′) b†i(t)bj(t
′)





 . (6.75)

The associated equation of motion of GS(t, t
′) reads



i∂t − ε∓ gV S3
′ V S†

∓ V S i∂t + ǫ± gV S3
′



GS(t, t
′) = i



σ3

1



δ(t− t′). (6.76)

It may be solved by an ansatz

GS(t, t
′) = U †(t)G0(t, t

′)U(t′), (6.77)

where G0 is a solution of (6.76) for S = 0, S3
′ = 0, ε = 0.
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Before we proceed it is useful to absorb ε and g into S3
′, by dening the more

symmetric variable

∓S3 = ∓gS3
′ − ε

V
. (6.78)

Then Eq. (6.76) reads



i∂t + V
−iS2

S1



σ1 + V


iS1

−S2



σ2 ∓ V S3σ
3


U †(t)G0U(t′) = i



σ3

1



δ(t− t′).

(6.79)
This can be solved be parametrizing the matrix U(t) in terms of Euler angles as

U(t) = eiα
σ3
2 e



−β̃
iβ



σ2

2 eiγ
σ3
2 . (6.80)

Then they satisfy the identity

U †(t)



σ3

1



U(t) =



σ3

1



. (6.81)

Thus they form a subgroup of the rotation group SU(2) in the fermion case, or of
the Lorentz group SU(1, 1) in the Bose case. The dierential equation (6.79) can
be rewritten as

iU̇ †(t)U †(t)−1 = −V
−iS2

S1



σ1 +


iS1

S2



σ2 ∓ V S3σ
3


. (6.82)

In the Bose case, the left-hand side can be expressed as an exponential ei˜· involving
the angular velocities ˜ = (ω̃1, ω̃2, ω̃3) of SU(1, 1) matrices. They depend on the
Lorentz version of the Euler angles as

ω̃1 ≡ β̃ sin γ + α̇ sinh β̃ cos γ = 2V S1,

ω̃2 ≡ β̃ cos γ − α̇ sinh β̃ sin γ = 2V S2, (6.83)

ω̃3 ≡ α̇ cosh β̃ + γ̇ = 2V S3.

In the Fermi-case, where the matrices (6.80) are of the rotation group SU(2), the
time-derivatives U̇ †(t)U(t) can be expressed as exponentials ei · involving the or-
dinary angular velocities = (ω1,ω2,ω3) depending on the standard Euler angles
as

ω1 ≡ −β̇ sin γ + α̇ sin β cos γ = −2V S2,

ω2 ≡ β̇ cos γ + α̇ sin β sin γ = −2V S2, (6.84)

ω3 ≡ α̇ cos β + γ̇ = −2V S3.

The upper equations in (6.82) follow from the lower ones by replacing in (6.80)
β → −iβ̃, and in (6.82) S1 → −iS2, S2 → iS1, S3 → −S3. Since this transition
can be done at any later stage it is convenient to avoid the clumsy distinction of
dierent cases and focus attention upon the Fermi case only. Then Eq. (6.80) is
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unitary and coincides with the well-known representation matrix D
1/2
m′m(αβγ) of the

rotation group1. The formal solution of Eq. (6.82) is

U(t) = ei · = T exp


−i
 t

∞
2V S · dt′



. (6.85)

Given this U(t)-matrix we can now proceed to evaluate the Trlog-term in (6.74).
By dierentiation with respect to S we nd:

δ

δSk(t)
[−iTrlog(iG−1

S
)] = V



i

Tr(σkGii
S
(t, t′)|t′=t+ε. (6.86)

The right-hand side can be calculated in terms of Euler angles by inserting (6.80). In
addition one has to choose the reference state for Z[η†, η] by specifying the boundary
condition on G0. Since G0 represents the same matrix of Green functions as (6.75),
except with free oscillators a†0, b0

† of zero energy, this is easily done.
Let us choose as our reference state |R one of the quasi-spin symmetric states

of seniority ν = Ω, say (6.64). Then G0 has to have the form

G0
ij(t, t′) =



Θ(t− t′) 0
0 Θ(t− t′)



δij . (6.87)

As a consequence Gij
0 (t, t

′)|t′=t+ε = 0 such that also (6.86) vanishes and
−iTrlog(iGS

−1) becomes an irrelevant constant.
Hence the generating functional in the quasi-spin symmetric reference state

(6.64) is

RZ[j†, j] =


DS exp





dt V S(t)2 −


dtdt′Θ(t− t′)


i

ji
†(t)U †(t)U(t′)ji(t

′)



.

(6.88)
As in the case of the trivial model it is now convenient to change variables and inte-
grate directly over the Euler angles α, β, γ rather than the vectors S = (S1, S2, S3).
Using the derivatives

− 1

2V

δSi(t)

δqj(t′)
≡ A(t)ijδ(t− t′) + B(t)ij δ̇(t− t′)

=







0 α̇ cos β cos γ −β̇ cos γ − α̇ sin β sin γ

0 α̇ cos β sin γ −β̇ sin γ + α̇ sin β cos γ
0 −α̇ sin β 0







ij

(6.89)

×δ(t− t′) +







sin β cos βγ − sin γ 0
sin β sin γ cos γ 0
cos β 0 1







ij

δ(t− t′), (6.90)

1For conventions see: A.R. Edmonds, Angular Momentum in Quantum Mechanics , Princeton
University Press, 1960.
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one calculates the functional determinant as the determinant of the second matrix
B. This can be seen most easily by multiplication with the constant (functional)
matrix



dt′Θ(t′ − t′′) which diagonalizes the δ̇(t− t′) and brings the δ(t− t′)-term
completely to the right of the functional diagonal: δΘ′ = Θ. The determinant of
such a matrix equals the determinant of the diagonal part only. Thus, up to an
irrelevant factor, one has

DS = const. ×DαDβDγ sin β (6.91)

corresponding to the standard measure of the rotation group. Inserting now (6.84)
into (6.88) we nd

Z[j†, j] =


DαD cos βDγ exp



i


dt



− 1

4V



ω1
2 + ω2

2 +
1

g
(ω3 − 2ε)2



− εΩ



× exp



i


dtdt′Θ(t− t′)


i

ji
†(t)U †(t)U(t′)ji(t

′)



. (6.92)

The collective Lagrangian becomes

L = − 1

4V



(β̇2 + α̇2 sin2 β) +
1

g
(γ̇ + α̇ cos β)2



+
ε

V g
(γ̇ + α̇ cos β)− ε2

V g
−εΩ. (6.93)

This has the standard form

L =
1

2
q̇igij(q)q̇

j + ai(q)q̇
i − v(q), (6.94)

with the metric

gij(q) = − 1

2V







sin2 β + 1
g
cos2 β 0 1

g
cos β

0 1 0
1
g
cos β 0 1

g





 , (6.95)

gij(q) ≡ (g−1(q))ij = −2V
g

sin2 β







1
g

0 −1
g
cos β

0 1 0
−1

g
cos β 0 sin2 β + 1

g
cos2 β





 (6.96)

of determinant

g ≡ det (gij) = − 1

8V 3

1

g
sin2 β, (6.97)

in the space labelled again by qi ≡ (α, β, γ).

In this curved space, the Hamiltonian is given by [33]

H = H1 +H2 +H3 + v(q) +
1

2
aiai(q), (6.98)
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with the three terms

H1 = −1

2
g−1/2 ∂

∂qi



g1/2gij
∂

∂qj



, (6.99)

H2 =
i

2
g−1/2



∂

∂qi
g1/2gijaj(q)



, (6.100)

H3 = iai(q)g
ijgij

∂

∂qi
. (6.101)

Here we nd H1 as the standard asymmetric-top Hamiltonian,

H1 = V



∂2

∂β2
+ cot β

∂

∂β
+ (g + cot β)

∂2

∂γ2
+

1

sin2 β

∂2

∂α2
− 2

cos β

sin2 β

∂2

∂α∂γ



. (6.102)

Since
ai =

ǫ

V g
(cos β, 0, 1), (6.103)

the second part, H2, vanishes and the third part becomes

H3 = −2εi∂γ . (6.104)

The resulting Hamiltonian is exactly the Schrödinger version of the quasi-spin form
(6.60) with

L± = e±iγ



±∂β + cot βi∂a − i
i

sin β
∂γ



,

L3 = −i∂γ . (6.105)

The eigenfunctions of H coincide with the rotation matrices

Dj
m′m(α, β, γ) = eiαm

′+γm)djm′m(β). (6.106)

The energy eigenvalues of H1 are well-known

E1
jm = −V [j(j + 1)−m2(1− g)], (6.107)

such that the full energies are

Ejm = 2εm− V [j(j + 1)− (1− g)m2] + εΩ. (6.108)

This coincides with the fermion part of the spectrum (6.65) if m, j are set equal to

m = (N − Ω)/2, j =
Ω− ν

2
. (6.109)

For g = 1, ε = 0 the spectrum is degenerate as the Lagrangian (6.93) is rotation-
ally invariant. It may be worth mentioning that in this case the Lagrangian can also
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be written as a standard σ-model in the time dimension. In order to see this, we
use the identity iU̇ †(t)U(t) = −iU †(t)U̇(t) = ωi(t)σi/2 to bring (6.85) to the form

L = − 1

4V
(ωi

2 + ω2
2 + ω3

2) = − 1

2V
tr(U̇ †UU †U̇). (6.110)

If we now dene eld σ(t) and π(t) by decomposing

U(t) = σ(t) + iπ(t) · σ, (6.111)

where σ2(t) + π2(t) = 1 due to unitary of U(t), the Lagrangian takes the familiar
expression

L = − 1

V
(σ̇2 + π2). (6.112)

It is instructive to exhibit the original quasi-spin operators and their algebra
within the collective Lagrangian. For this we add to the Hamiltonian (6.56) a
coupling to external currents:

∆H = −2V


Li(t)li(t)dt, (6.113)

where Li are the operators (6.57). In the Lagrangian (6.70), this amounts to

∆L(t) = 2V Li(t)li(t)dt, (6.114)

which modies (6.73) by adding the matrix

V f †(t)



l3 l†

l l3



f(t). (6.115)

This has the eect of replacing

Si → S̃i ≡ Si + li (6.116)

in the Trlog term in (6.74).
Performing a shift in the integration DS → DS̃ = D(S+ l) we can also write

A[S, l] = +iTrlog(iG−1
S
)− V



(S1 − l1)
2 + (S2 − l2)

2 − 1

g



S3 +
ε

V
− l3

2


.

(6.117)
The Green function involving angular momentum operators can now be generated
by dierentiating

Z[li] =


DS exp{iA[S, l]}

with respect to δli:

Li=̂− i

2V

δ

δli
. (6.118)
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In the reference state |R in which the Trlog-term vanishes, the derivatives
(−i/2V )δ/δl 1

2

,−(i/2V )δ/δl3 generate the elds S1,2− l1,2, (S3 + ε/V − l3)/g via the

source terms (6.114) in the functional integral.
In the fermion case, this implies for l = 0, using Eq. (6.80),

L± = − 1

2V
(ω1 ± iω2) = − 1

2V
(±iβ̇ + α̇ sin β)e±iγ, (6.119)

L3 = − 1

2V g
(ω3 − 2ε) = − 1

2V g
(α̇ cos β + γ̇ − 2ε), (6.120)

which are exactly the angular momenta of the Lagrangian (6.93) with moments of
inertia

I1,2 = − 1

2V
, I3 = − 1

2V g
. (6.121)

Inserting the canonical momenta of (6.93)

Pα = − 1

2V



α̇ sin2 β +
1

g
(γ̇ + α̇ cos β − 2ε) cosβ



= − 1

2V
α̇ sin2 β + cos βpγ = −i∂α, (6.122)

Pβ = − 1

2V
β̇ = −i sin−1/2 β∂β sin

1/2 β = −i∂β − i

2
cot β, (6.123)

Pγ = − 1

2Vg

(γ̇ + α̇ cos β − 2ε) = −i∂γ ,

we recover the dierential operators (6.105).
The quasi-spin algebra can now be veried by applying the derivatives:

− 1

4V 2



δ

δlj(t + ε)

δ

δli(t)
− δ

δli(t)
− δ

δli(t+ ε)

δ

δlj(t)



Z











t=0

=
1

2V
εijk

δ

δlk
Z











l=0

.

(6.124)
What would have happened in this model if we had not chosen the symmetric
reference state |R to specify the boundary condition on G0? Consider for example
the vacuum state |0. Then the Green function becomes, for S = 0,

Gij
0 (t, t

′) =



Θ(t− t′) 0
0 −Θ(t′ − t)



δij (6.125)

rather than (6.87). In this case there is a contribution of −iTr log(iGS
−1) since from

(6.86) and (6.77):

δ

δSi

[−itr log(iGS
−1)] = −V Ωtr



σiU †(l)
−1 + σ3

2
U(t′)

 









t′=t

. (6.126)

Now (6.80) implies

U †(t)σ3U(t) = cos βσ3 + sin β(cos γσ1 + sin γσ2)
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yielding for the right-hand side of (6.126) the expression

−V Ω











n1

n2

n3











≡ −V Ω











sin β cos γ
sin β sin γ
cos β











. (6.127)

Observe that due to the dierential equations (6.84), the unit vector ni can be found
to satisfy the equation of motion

ṅ = 2V n× S. (6.128)

We can now proceed and nd −iTrlogiGS
−1 by functionally integrating (6.126). We

shall do so in terms of the Euler variables αβγ. Using (6.126), (6.127), (6.90), and
the chain rule of dierentiation

δ

δqj(t′)
[−iTrlogGS

−1] =


i



dt
δSi(t)

δqj(t′)

δ

δSi(t)
[−iTrlogiGS

−1]

= −V Ω


i



dtni(t)
δSi(t)

δqj(t′)
, (6.129)

we nd

δ

δqi(t)
[−iTrlogiGS

−1] =
Ω

2



i



dt (ni(t)Aij(t)δ(t− t′) + ni(t)Bij(t)δ(t− t′))

=
Ω

2
[(0, 0,−β̇ sin β(t′))j +



dt(1, 0, cosβ(t))jδ(t− t′)].

(6.130)

The second part in brackets yields upon a partial integration

(1, 0, cosβ(t))δ(t− t′)|t=∞
t=−∞ + (0, 0, β̇ sin β(t′)). (6.131)

With the boundary condition cos β(±∞) = 1, one has therefore

δ

δ(α, β, γ)(t)
[−iTrlogiGS

−1] =
Ω

2
(1, 0, 1)[δ(∞− t) − δ(−∞− t)]. (6.132)

This pure boundary contribution can immediately be functionally integrated with
the result

−iTrlogiG−1
S

=
Ω

2

 ∞

∞
[α̇(t) + γ̇(t)]dt. (6.133)

Hence the exponent of the generating functional Z[j†, j] on the reference state |0
becomes

i


dt



− 1

4V



ω1
2 + ω2

2 +
1

g
(ω3 − 2ε)2



+
Ω

2
[α̇+ γ̇]− εΩ



(6.134)

−


dtdt′


i

ji
†(t)



U †(t)
1 + σ3

2
U(t′)Θ(t− t′)U †(t)

1− σ3

2
U(t′)Θ(t′ − t)



ji(t
′),
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rather than (6.92). As in the case of the Pet model in the last section, the Hamil-
tonian changes rather trivially. The canonical momenta Pα,Pγ become

Pα = − 1

2V



α̇ sin2 β +
cos β

g
(γ̇ + α̇ cos β − 2ε)



+
Ω

2

= − 1

2V
α̇ sin2 β + cos βpγ −

Ω

2
(cos β − 1) = −i∂α, (6.135)

Pγ = − 1

2V g
(γ̇ + α̇ cos β − 2ε) +

Ω

2
= −i∂γ .

The additional term can be removed by multiplying all eigenfunctions belonging to
(6.136) by a phase exp[−iΩ/2(α+γ)] thereby reducing them to the previous case. In
the present context it is really superuous to discuss such trivial surface terms. We
are doing this only because these terms become important at that moment where
the transition to the true BCS model is made by going to the weak-coupling limit
g → 0. This will be discussed in the next section.

6.1.2 The Hilbert Space of the Generalized BCS Model

Let us now study in which fashion the Hilbert space of all rotational wave functions
imbeds the fermion theory. For this consider the generation of Green functions by
functional derivation of RZ[j†, j], with the reference state |R being the quasi-spin
symmetric one (6.62), for simplicity.

The resulting one-particle Green function will have to coincide with

Gij
mm′(t, t′) = 0|bΩ · . . . · b1



Tai(t)a
†
j(t

′) Tai(t)bj(t
′)

Tb†i(t)a
†
j(t

′) Tb†i (t)bj(t
′)



mm′

b1
† · . . . · bΩ

†|0. (6.136)

If we dierentiate (6.92) accordingly, we nd

Gij
mm′(t, t′) =



DαD cos βDγδij(U †(t)U(t′)mm′Θ(t− t′) exp[i


dtL(t)]. (6.137)

This can be calculated most easily by going to the Schrödinger picture

Gij
mm′(t, t′) =



k

{R|D
1/2
km(αβγ(t))D

1/2
km′(αβγ(t′))|R}δijΘ(t− t′). (6.138)

Since the reference state is symmetric, it must be associated with the wave function
{αβγ(t)|R} = D0

00(αβγ(t)) ≡ 1/
√
8π2

ER ≡ E0;0 = εΩ. (6.139)

Inserting the time translation operator2

D(αβγ(t)) = eiHtD(αβγ(0))eiHt, (6.140)

2The Schrödinger angles α, β, γ coincide with the time dependent angles α(t), β(t), γ(t) at t = 0.
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with H in the dierential form (6.98) one nds a phase

ei∆E(t−t′), (6.141)

where ∆E is the energy dierence between the state |jm = | 1
2

1

2
 and the reference

state |R = |0, 0:
∆E = E 1

2

1

2

− E0,0 = ε− V


1

2
+

g

4



. (6.142)

The orthogonality relation is



k



dαd cosβdγ{R|αβγ}D
1/2∗

km (αβγ)D
1/2
km′(αβγ){αβγ|R} = δmm′ . (6.143)

This coincides exactly with the result one would obtain from (6.136) by using the
original operator (6.56) and observing the energy spectrum (6.65).

Note that the orthogonality relation together with the Grassmann algebra ensure
the validity of the anticommutation rules among the operators. For higher Green
functions the functional derivatives amount again to the contractions as in (6.35),
except that here the contractions are associated with

fmi(t)f
†
m′j(t

′) = D
1/2
mm′(U †(t)U(t′)Θ(t− t′)δij

=


k

D
1/2∗

km (U †(t))D
1/2
km′(U(t))Θ(t− t′)δij, (6.144)

where f1/2i, f−1/2i stands for (ai, bi
†).

We can now proceed and construct the full Hilbert space by piling up operators
a†i or bj on the reference state |R = b1

† · . . . · bΩ
†|0. First we shall go to the true

vacuum state |0 of a†, b† which means that we calculate 0Z[j†, j] in this state. For
this we obviously have to bring down successively into the main integral line of the
functional (6.92) the operators b1

†(∞) · . . . · bΩ(−∞)bΩ(−∞) · . . . · b1(−∞). We do
this by forming the functional derivatives:

Z0[0, 0] ∝ δ2Ω

δj−1/2,1(∞) · . . . · δj†−1/2,1(−∞)
RZ[j†, j]











j=0

. (6.145)

Of the resulting n! contractions, only one combination survives, since all indices i, j
are dierent and the Kronecker-δij permits only one set of contractions. The result
is

0Z[0, 0] = N


DsαD cos βDγ exp


i


dtL(t)


[D
1/2
−1/2−1/2U

†(∞)U(−∞))]Ω. (6.146)

But from the coupling rules of angular momenta and the group property one has:

[D
1/2
−1/2−1/2(U

†(∞)U(−∞))]Ω = D
Ω/2
−Ω/2−Ω/2(U

†(∞)U(−∞))

=


k

D
Ω/2∗

k−Ω/2(U(∞))Dk−Ω/2(U(−∞)). (6.147)
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Going to the Schrödinger picture and inserting the time translation operator (6.140)
one nds an innite phase exp[i(ER−E0)2∞] which can be absorbed in the normal-
ization factor N . Here E0 = EΩ/2,−Ω/2 is the energy of the ground state |0 which
has |jm = |Ω/2 − Ω/2. The eigenfunctions D(α, β, γ) now appear both at t = 0.
The functional (6.146) in the Schrödinger picture becomes,

0Z[0, 0] =
Ω/2


k=−Ω/2



dαdβdγ sin γ{0k|αβγ}{αβγ|0k}, (6.148)

with the vacuum wave functions

{αβγ|0, k} = D
Ω/2
k,−Ω/2(αβγ) = ei(kα−Ωγ/2)d

Ω/2
k,−Ω/2(β). (6.149)

It is easy to verify, how an additional unpaired particle a†, added to the vacuum,
decreases Ω/2 → (Ω− 1)/2 and raises the third component of quasi-spin by 1

2
unit.

Dierentiating (6.90) by −δ2/δj 1

2
1(∞)δj†1

2
1
(−∞) in addition to (6.145) leads to a

dierent set of contractions. Picturing them within the original fermion language,
these are

R|T (b1
†(+∞) · . . . · bΩ

†(+∞)a1(+∞)a1
†(−∞)bΩ(−∞) · . . . · b1(−∞))|R

= R|T (b1
†(∞) · . . . · bΩ

†(∞) a1(∞)a†1(−∞) · . . . · bΩ(−∞) · . . . · b1(−∞)) |R

...

+ < R|T (b1
†(∞) · . . . · bΩ

†(∞) a1(∞)a†1(−∞) · . . . · bΩ(−∞) · . . . · b1(−∞)) |R.

Under the functional integral (6.146), they lead to:

[D
1

2

− 1

2
− 1

2

(U †(∞)U(−∞))]ΩD
1

2
1

2

1

2

(U †(∞)U(−∞))

− [D
1

2

− 1

2
− 1

2

(U †(∞)U(−∞))]Ω−1D
1

2

− 1

2

1

2

(U †(∞)U(−∞))D
1

2
1

2
− 1

2

(U †(∞)U(−∞))

= [D
Ω/2
−Ω/2 −Ω/2(U

†(∞)U(−∞))]D
1

2
1

2

1

2

(U †(∞)U(−∞)) (6.150)

−D
(Ω−1)/2
−(Ω−1)/2 −(Ω−1)/2(U

†(∞)U(−∞))D
1

2

− 1

2

1

2

(U †(∞)U(−∞))D
1

2
1

2
− 1

2

(U †(∞)U(−∞)).

Employing the explicit formulas

D
Ω/2
−Ω/2−Ω/2(αβγ) = e−Ω(α+γ)/2



cos
β

2

Ω

,

D
1

2
1

2

1

2

(αβγ) = e(α+γ)/2 cos
β

2
, (6.151)

D
1

2

− 1

2

1

2

(αβγ)D
1

2
1

2
− 1

2

(αβγ) = − sin2 β

2
,
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the r.h.s. of (6.150) becomes

e−Ω(α+γ)/2



cos
β

2

Ω

e(α+γ)/2 cos
β

2
+ e−(Ω−1)(α+γ)/2



cos
β

2

Ω−1

sin2 β

2

= e−(Ω−1)(α+γ)/2



cos
β

2

Ω−1

= D
(Ω−1)/2
−(Ω−1)/2,−(Ω−1)/2(αβγ), (6.152)

and therefore, by analogy with (6.146) and (6.148),

a†1|0Z[j†, j]








j=0
= N



DαD cos βDγ D
(Ω−1)/2
−(Ω−1)/2,−(Ω−1)/2(αβγ) exp



i

h̄



dtL


=
(Ω−1)/2


k=−(Ω−1)/2



dt dαd cosβdγ{a1k|αβγ}{αβγ|a
†
1k}, (6.153)

with the Schrödinger wave functions

{αβγ|a1
†k} ≡ D

(Ω−1)/2
k,−(Ω−1)/2(αβγ). (6.154)

In a similar fashion we may work our way through the whole Hilbert space!

The method has been applied to eld theories of nuclear excitations where they
form the basis of a theory of supersymmetry in nuclei.3

6.2 Thirring Model in 1+1 Dimensions

Let us also study an example of a quantum eld theory in two spacetime dimensions,
the Thirring model [3, 4]. It is a model of a self-interacting spin- 1

2
eld with an action

A =


d2x


ψ̄(x)ih̄γµ∂µψ(x)−
g

2
[ψ̄(x)γµψ(x)]2



. (6.155)

In this model, the technique presented here leads to an exact translation from the
Fermi elds ψ to collective Bose elds ϕ(x), λ(x). Consider the partition function
of the model

Z =


DψDψ̄eiA/h̄, (6.156)

and let us perform a Hubbard-Stratonovich transformation à la Eq. (1.79), by adding
to the action the complete square

∆A =
g

2



d2x


ψ̄(x)γµψ(x)− Aµ
2
. (6.157)

3See the web pages http://klnrt.de/55/1978 and http://klnrt.de/55/1978/1978-4.gif

where the theory is illustrated.



394 6 Exactly Solvable Field-Theoretic Models

This removes the four-fermion interaction term and makes the action quadratic in
the fermion elds. They can be integrated out to obtain the collective action as a
functional of the vector eld Aµ:

Acoll[Aµ] = −iTrlog (ih̄∂/− gA/) +
g

2



d4xA2
µ(x). (6.158)

Now one can make use of the fact that in two dimensions, a vector eld Aµ has only
two components and can be expressed in terms of two scalar elds as

Aµ(x) =
1√
g
(∂µϕ(x)− ǫµν∂νλ(x)) , (6.159)

so that
g

2
A2

µ(x) =
1

2
[∂µϕ(x)]

2 − 1

2
[∂µλ(x)]

2 . (6.160)

The trace log term can be expanded as in (2.15), with only the n = 1 -term con-
tributing. This is equal to

g2

2π



gµν − ∂µ∂ν

∂2



Aν(x)

2

. (6.161)

Hence the collective action is simply

Acoll[ϕ, λ] =


d4x


1

2
(∂ϕ(x))2 − 1

2



1 +
g

π



(∂λ)2


. (6.162)

Since this transformation from the ψ to the ϕ− and λ-eld description is exact, one
can also calculate the Green functions of the original fermion elds ψ. For this, an
external source term 

d4x


ψ̄(x)η(x) + c.c.


(6.163)

is added in the exponent of the generating functional. After a quadratic completion
the source term leads to an additiaonal quadratic term in the collective action (6.162)
(setting h̄ = 1 from here on, for brevity)

Aext curr = i


d4xd4yη̄(x)



i

i∂/− gA/



(x, y)η(y). (6.164)

Using the decomposition (6.159), the Green function in this expression can also be
calculated exactly as follows:

i

i∂/ − gA/
(x, y) =

i

i∂/−√
g∂/(ϕ+ γ5λ)

(x, y)

= e−i
√
gϕ(x)+γ5λ(x)

i

i∂/
(x, y)ei

√
g(ϕ(y)+γ5λ(y)

= e−i
√
g(ϕ(x)+γ5λ(x))

1

4πi

/x − /y

(x− y)2 + iǫ
ǫi
√
g(ϕ)+γ5λ(y)). (6.165)
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All Green functions of the theory can now be calculated by applying the functional
derivatives δ

δη̄(x)
δ

δη(y)
and δ

δη̄(x)
δ

δη(y)
to the generating functional

Z[η̄, η] = ei(A+Aext curr/h̄). (6.166)

In particular, the original one-particle Green function is obtained from the derivative
δ

δη̄(x)
δ

δη(y)
and reads

G(x, y) =
1

4πi

/x

x2 + iǫ
0|:e−i

√
g(ϕ(x)+γ5λ(x)) : :ei

√
g(ϕ(0)+γ5λ(0)):|0. (6.167)

We now apply the standard rule for calculating the exponential of free elds

1

4πi

/x

x2 + iǫ
0|:e−iαϕ(x) : :eiαϕ(y):|0 = eα

2ϕ(x)ϕ(y), (6.168)

that follows directly from Wick’s theorem [see (1.253)], together with the use of the
expectation values of the two-dimensional massless scalar elds [2]

0|ϕ(x)ϕ(0)|0 = − 1

4π
log(µ2x2), (6.169)

0|λ(x)λ(0)|0 =
1

1 + g/π

1

4π
log(µ2x2). (6.170)

In this way we nd for the vacuum expectation value in the Green function (6.167)



x2

µ2

(−g+ g
1+g/π )

1

4π

=



x2

µ2

− g2

1+g/π
1

4π

. (6.171)

Hence we nd the exact Green function of the Thirring model

G(x, 0) =
1

4πi

/x

x2 + iǫ



x2

µ2

− g2

1+g/π
1

4π

. (6.172)

The result is very interesting. It is scale-invariant and for this reason it contains an
arbitrary mass parameter µ that can be chosen freely. The physical reason for this
freedom is the absence of a mass term in the Thirring action (6.157). Such a mass
term would destroy the exact solvability of the theory. It would make it calculable
only approximately in perturbation theory, order by order in the coupling strength
g. In this case the above exact solution would be the result of a strong-coupling
limit [1]. This limit is of special interest in all quantum eld theories. Take for
instance the Heisenberg model of ferromagnetism. In the classical limit it is a theory
of an N -component scalar eld with O(N) rotational symmetry. That model can
be studied experimentally in the strong-coupling limit by going to a second-order
phase transition. Then the model possesses scale-invariant correlation functions
which have a pure power form and contain an arbitrary mass scale. The powers
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reect a dynamically generated anomalous dimension of the eld. This vanishes, of
course, in the free-eld limit.

Note that a mass term in the original action mψ̄ψ could be obtained from the
generating functional (6.166) by a derivative

m
δ

δµ(x)

δ

δµ̄(x′)











x=x′

. (6.173)

Due to Eq. (6.165), this is equivalent to the replacement

mψ̄ψ = m (ψ∗
1ψ2 + ψ∗

2ψ1) → m


ei2
√
gλ(x)ψ∗

01ψ02 + c.c.


, (6.174)

where ψ0 are free elds. In the two-dimensional model world all matrix elements of
products of many Fermi elds ψ∗

01ψ02, ψ∗
02ψ01 can also be calculated with the help

of exponentials of the massless Bose elds ϕ(x) and λ(x), for instance

ψ∗
01ψ02 ≃ ei

√
4πϕ. (6.175)

Moreover, the matrix elements of

ei(2
√
gλ+

√
4πϕ) (6.176)

are, again due to (6.168), (6.169), (6.170), the same as those of

e
−i



4π
1+g/π

ϕ
. (6.177)

Thanks to this, the mass term of the Thirring model can be expressed with the help
of the scalar eld ϕ(x) as

mψ̄(x)ψ(x) ≃ 2m cos



4π

1 + (g/π)
ϕ(x)



. (6.178)

In this way we arrive at the well-known sine-Gordon bosonic description of the
massive Thirring model [4].

In a similar way, the Schwinger model can be treated exactly. It is a two-
dimensional version of QED with the action

A =


d2x


ψ̄(x)ih̄ (∂µ − eAµ)ψ(x)−
1

4
FµνF

µν


, (6.179)

where Fµν ≡ ∂µAν − ∂νAµ is the tensor collecting the electric and magnetic eld
strengths. The partition function

Z =


DψDψ̄eiA/h̄ (6.180)

can be calculated by integrating out the Fermi elds, which leads to the new collec-
tive action

Apl = −iTrlog (ih̄∂/− gA/)− 1

4



d2xFµνF
µν . (6.181)
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The subscript emphasizes the similarity of the new vector potential to the collective
plasmon eld in Chapter 2. The trace log term can be evaluated exactly as before
and the action becomes

Apl =


d2x



−1

4
FµνF

µν +
m2

pl

2
AµA

µ



, (6.182)

with

mpl =
e2

π
.

It describes a single free plasmon Bose eld of mass mpl (see also Section 14.12 in
the textbook [5]).

6.3 Supersymmetry in Nuclear Physics

We may consider the algebra formed by the creation operators a†i , b
†
i and their anni-

hilation operators ai, bi as well as the quasi-operators (6.70). Then the eigenstates
contain even and odd nuclei. They form a broken supersymmetry. The level scheme
looks like a generalization of Fig. 6.1 which includes half-integer nuclei. For more
details see Refs. [6, 7]. This model has been the answer to a question posed to Ser-
gio Ferrara after his lecture on supersymmetry in elementary-particle physics by the
student Yuan K. Ha at the Erice summer school.4
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