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PREFACE

It has been 17 years since the publication of the original edition of this monograph.
Over this period, I have taught, almost on a yearly basis, a course at theUniversity of
Southern California that is based largely on the contents of this book. This second
edition incorporates much of the experience I have gained and student feedback I
have received from teaching this class. I have also received input from the many
instructors who have used this book for their classes. To all these readers, I am
deeply appreciative of their helpful comments and questions. The primary goals of
this book remain the same as in the first edition: to highlight the basic techniques
employed in control theory, systems analysis, and model identification and to give
the biomedical engineering student an appreciation of how these principles can be
applied to better understand the processes involved in physiological regulation. As
before, my assumption is that much of the contents of this second edition are
suitable for use in a one-semester course on physiological control systems or
physiological systems analysis taken by junior or senior undergraduates or as an
introductory class on physiological systems for first-year graduate students. The
more advanced parts of this book and its accompanying software may also prove to
be a useful resource for biomedical engineers and interested life science or clinical
researchers who have had little formal training in systems or control theory.
Throughout this book, I have emphasized the physiological applications of control
engineering, focusing in particular on the analysis of feedback regulation. In
contrast, the basic concepts and methods of control theory are introduced with
little attention paid to mathematical derivations or proofs. For this reason, I would
recommend the inclusion of a more traditional, engineering-oriented control theory
course as a supplement to the material covered in this volume.

xiii



xiv PREFACE

One of themain issues I have hadwith the first editionwas the “gap” between the
main concepts in systems and control that were introduced assuming continuous-
time systems and some of the more advanced applications that featured discrete-
time models. Chapter 7 has been introduced to bridge this gap, and to show the
reader how continuous-time systems can be converted into discrete-time systems,
as well as the impact of different methods of conversion on stability characteristics
of the system in question. This additional background should also be useful since
many physiological processes (including cardiac, respiratory, and neural) are
naturally oscillatory, andmodels that employ a cycle-by-cycle (and hence, discrete)
time basemay bemore suitable for characterizing longer term dynamics. In Chapter
9, I have revamped what was previously Chapter 8 to cover the essential aspects of
time-varying or nonstationary systems. The chapter on physiological system
identification (now Chapter 8) has been expanded to include more techniques,
such as nonparametric identification using multivariable autoregressive with
exogenous (ARX) models and basis function expansion. Finally, the chapter on
nonlinear analysis (now Chapter 10) has been expanded to include the Volterra
kernel approach to nonparametric estimation of nonlinear systems as well as an
introductory discussion of other methods. I have also added material to update
various other sections, as well as new problems to the end of each chapter. The
MATLAB/SIMULINK files accompanying the book have also been expanded and
existing programs have been updated to be compatible with release version
R2016b. I see these programs to be an essential complement to the learning
experience, allowing the reader to explore “first-hand” the dynamics underlying
the biological mechanisms being studied. I domake the implicit assumption that the
reader has some basic familiarity with MATLAB/SIMULINK. For the reader who
has not used MATLAB or SIMULINK, it is fortunate that there are currently many
“primers” on the subject that can be easily found online or in any academic
bookstore.

The completion of this second edition has taken much longer than I had
anticipated when I took on the project (and I am quite embarrassed to disclose
how long ‘long’ is!). I thank Wiley-IEEE Press for giving me the opportunity to
produce this second edition, editor Mary Hatcher for her infinite patience, and my
friend Metin Akay, the book series editor, for his constant encouragement. This
second edition would not have been possible without the feedback and insights
gained through my interactions with my past and present Ph.D. students over the
years. In particular, I am most grateful to my former student and current research
associate, P. “Sang” Chalacheva, who so generously gave her spare time and effort
to help with the development of the newMATLAB files and the editing of all parts
of this second edition. I would be remiss if I did not also mention the supportive
environment provided by the NIH-NIBIB-funded Biomedical Simulations
Resource (BMSR), which has funded my research on physiological control and
modeling for the past three decades. Themodeling activities of my colleagues in the
BMSR, David D’Argenio, Vasilis Marmarelis, and Ted Berger, have been a great
source of intellectual stimulation over the years. I cannot help but end these remarks



PREFACE xv

by citing my favorite line from the writings of the late Professor Fred Grodins, who
recruited me to USC many many moons ago:

“There is nothing magic about Models (or is there?)!”

Michael C.K. Khoo
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1
INTRODUCTION

1.1 PRELIMINARY CONSIDERATIONS

A control systemmay be defined as a collection of interconnected components that
can be made to achieve a desired response in the face of external disturbances. The
“desired response” could be the tracking of a specified dynamic trajectory, in which
case the control system takes the form of a servomechanism. An example of this
type of control system is a robot arm that is programmed to grasp some object and to
move it to a specified location. There is a second class of control system termed the
regulator, forwhich the “desired response” is tomaintain a certain physical quantity
within specified limits. A simple example of this kind of control system is the
thermostat.

There are two basic ways in which a control system can be made to operate. In
open-loop mode, the response of the system is determined only by the controlling
input(s). As an example, let us suppose that we wish to control the temperature of a
room in winter with the use of a fan-heater that heats up and circulates the air within
the room. By setting the temperature control to “medium,” for instance, we should
be able to get the room temperature to settle down to an agreeable level during the
morning hours. However, as the day progresses and the external environment
becomes warmer, the room temperature also will rise, because the rate at which heat
is added by the fan-heater exceeds the rate at which heat is dissipated from the room.
Conversely, when night sets in and the external temperature falls, the temperature in

Physiological Control Systems: Analysis, Simulation, and Estimation, Second Edition. Michael C.K. Khoo.
 2018 The Institute of Electrical and Electronics Engineers, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/khoo/controlsystems2e
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2 INTRODUCTION

the roomwill decrease below the desired level unless the heater setting is raised. This
is a fundamental limitation of open-loop control systems. They can perform
satisfactorily as long as the external conditions do not affect the system much.
The simple example we have described may be considered a physical analog of
thermoregulatory control inpoikilothermicor “cold-blooded” animals. Thedesign of
the thermoregulatory processes in these animals do not allow core body temperature
to be maintained at a level independent of external conditions; as a consequence, the
animal’s metabolism also becomes a function of external temperature.

Coming back to the example of the heating system, one way to overcome its
limitation might be to anticipate the external changes in temperature and to
“preprogram” the temperature setting accordingly. But how would we know
what amounts of adjustment are required under the different external temperature
conditions? Furthermore, while the external temperature generally varies in a
roughly predictable pattern, there will be occasions when this pattern is disrupted.
For instance, the appearance of a heavy cloud cover during the day could limit the
temperature increase that is generally expected. These problems can be eliminated
bymaking the heater “aware” of changes in the room temperature, thereby allowing
it to respond accordingly. One possible scheme might be to measure the room
temperature, compare themeasured temperaturewith the desired room temperature,
and adjust the heater setting in proportion to the difference between these two
temperatures. This arrangement is known as proportional feedback control. There
are, of course, other control strategies that make use of the information derived from
measurements of the room temperature. Nevertheless, there is a common feature in
all these control schemes: They all employ feedback. The great mathematician-
engineer, Norbert Wiener (1961), characterized feedback control as “a method of
controlling a system by reinserting into it the results of its past performance.” In our
example, the system output (themeasured room temperature) is “fed back” and used
to adjust the input (fan speed). As a consequence, what we now have is a control
system that operates in closed-loop mode, which also allows the system to be
self-regulatory. This strategy of control is ubiquitous throughout Nature: The
physiological analog of the simple example we have been considering is
the thermoregulatory control system of homeothermic or “warm-blooded” animals.
However, as we will demonstrate throughout this book, the exact means through
which closed-loop control is achieved in physiological systems invariably turns out
to be considerably more complicated than one might expect.

1.2 HISTORICAL BACKGROUND

The concept of physiological regulation dates back to ancient Greece (∼500 BC),
where the human body was considered a small replica of the universe. The four
basic elements of the universe – air, water, fire, and earth – were represented in the
body by blood, phlegm, yellow bile, and black bile, respectively. The interactions
among pairs of these elements produced the four irreducible qualities of wetness,
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warmth, dryness, and cold. It was the harmonious balance among these elements
and qualities that led to the proper functioning of the various organ systems. The
Greek physician, Galen (about second century AD), consolidated these traditional
theories and promoted a physiological theory that was largely held until the end of
the sixteenth century. Similar concepts that developed alongside the Taoist school
of thought may be traced back to the third century BC in ancient China. Here, the
universe was composed of five agents (Wu Xing): wood, fire, earth, metal, and
water. These elements interacted with one another in two ways – one was a
productive relationship, in which one agent would enhance the effects of the other;
the other was a limiting or destructive relationship whereby one agent would
constrain the effects of the other. As in the Graeco-Roman view, health was
maintained by the harmonious balancing of these agents with one another
(Unschuld, 1985).

The notion of regulatory control clearly persisted in the centuries that followed,
as the writings of various notable physiologists such as Boyle, Lavoisier, and
Pflüger demonstrate. However, this concept remained somewhat vague until the
end of the nineteenth century when French physiologist Claude Bernard thought
about self-regulation in more precise terms. He noted that the cells of higher
organisms were always bathed in a fluidmedium, for example, blood or lymph, and
that the conditions of this environment were maintained with great stability in the
face of disturbances to the overall physiology of the organism. The maintenance of
these relatively constant conditions was achieved by the organism itself. This
observation so impressed him that he wrote: “It is the fixity of the ‘milieu interieur’
which is the condition of free and independent life.” He added further that “all the
vital mechanisms, however varied they may be, have only one object, that of
preserving constant the conditions of life in the internal environment.” In the earlier
half of this century, Harvard physiologist Walter Cannon (1939) refined Bernard’s
ideas further and demonstrated systematically these concepts in the workings of
various physiological processes, such as the regulation of adequate water and food
supply through thirst and hunger sensors, the role of the kidneys in regulating excess
water, and themaintenance of blood acid–base balance. Hewent on to coin theword
homeostasis to describe the maintenance of relatively constant physiological
conditions. However, he was careful to distinguish the second part of the term,
that is, “stasis,” from the word “statics,” since he was well aware that although the
end result was a relatively unchanging condition, the coordinated physiological
processes that produce this state are highly dynamic.

Armedwith the tools ofmathematics,Wiener in the 1940s explored the notion of
feedback to a greater level of detail than had been done previously. Mindful that
most physiological systems were nonlinear, he laid the foundation for modeling
nonlinear dynamics from a Volterra series perspective. He looked into the problem
of instability in neurological control systems and examined the connections
between instability and physiological oscillations. He coined the word “cybernet
ics” to describe the application of control theory to physiology, but with the passage
of time, this term has come to take on a meaning more closely associated with
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robotics. The race to develop automatic airplane, radar, and other military control
systems during the Second World War provided a tremendous boost to the
development of control theory. In the post-war period, an added catalyst for
even greater progress was the development of digital computers and the growing
availability of facilities for the numerical solution of the complex control problems.
Since then, research on physiological control systems has become afield of study on
its own, with major contributions coming from a mix of physiologists, mathemati
cians, and engineers. These pioneers of “modern” physiological control systems
analysis include Adolph (1961), Grodins (1963), Clynes and Milsum (1970),
Milhorn (1966), Milsum (1966), Bayliss (1966), Stark (1968), Riggs (1970),
Guyton et al. (1973), and Jones (1973).

1.3 SYSTEMS ANALYSIS: FUNDAMENTAL CONCEPTS

Prior to analyzing or designing a control system, it is useful to define explicitly the
major variables and structures involved in the problem. One common way of doing
this is to construct a block diagram. The block diagram captures in schematic form
the relationships among the variables and processes that comprise the control
system in question. Figure 1.1 shows block diagrams that represent open- and
closed-loop control systems in canonical form. Consider first the open-loop system

FIGURE 1.1 Block diagrams of an open-loop control system (a) and a closed-loop control
system (b).
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(Figure 1a). Here, the controller component of the system translates the input (r) into
a controller action (u), which affects the controlled system or “plant,” thereby
influencing the system output (y). At the same time, however, external disturbances
(x) also affect plant behavior; thus, any changes in y reflect contributions from both
the controller and the external disturbances. If we consider this open-loop system in
the context of our previous example of the heating system, the heater would be the
controller and the roomwould represent the plant. Since the function of this control
system is to regulate the temperature of the room, it is useful to define a set point that
would correspond to the desired room temperature. In the ideal situation of no
fluctuations in external temperature (i.e., x= 0), a particular input voltage setting
would place the room temperature exactly at the set point. This input level may be
referred to as the reference input value. In linear control systems analysis, it is useful
(and often preferable from a computational viewpoint) to consider the system
variables in terms of changes from these reference levels instead of their absolute
values. Thus, in our example, the input (r) and controller action (u) would represent
the deviation from the reference input value and the corresponding change in heat
generated by the heater, respectively, while the output (y) would reflect the resulting
change in room temperature. Due to the influence of changes in external tempera
ture (x), rmust be adjusted continually to offset the effect of these disturbances on y.

As mentioned earlier, we can circumvent this limitation by “closing the loop.”
Figure 1.1b shows the closed-loop configuration. The change in room temperature
(y) is now measured and transduced into the feedback signal (z) by means of a
feedback sensor, that is, the thermostat. The feedback signal is subsequently
subtracted from the reference input and the error signal (e) is used to change
the controller output. If room temperature falls below the set point (i.e., y becomes
negative), the feedback signal (z) would also be negative. This feedback signal is
subtracted from the reference input setting (r= 0) at themixing point or comparator
(shown as the circular object in Figure 1.1), producing the error signal (e) that is
used to adjust the heater setting. Since z is negative, e will be positive. Thus, the
heater setting will be raised, increasing the flow of heat to the room and conse
quently raising the room temperature. Conversely, if room temperature becomes
higher than its set point, the feedback signal now becomes positive, leading to a
negative error signal, which in turn lowers the heater output. This kind of closed-
loop system is said to have negative feedback, since any changes in system output
are compensated for by changes in controller action in the opposite direction.

Negative feedback is the key attribute that allows closed-loop control systems to
act as regulators. What would happen if, rather than being subtracted, the feedback
signal were to be added to the input? Going back to our example, if the room
temperaturewere to rise and the feedback signal were to be added at the comparator,
the error signal would become positive. The heater setting would be raised and the
heat flow into the room would be increased, thereby increasing the room tempera
ture further. This, in turn, would increase the feedback signal and the error signal,
and thus produce even further increases in room temperature. This kind of situation
represents the runaway effect that can result from positive feedback. In lay
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language, one would refer to this as a vicious cycle of events. Dangerous as it may
seem, positive feedback is actually employed in many physiological processes.
However, in these processes, there are constraints built in that limit the extent to
which the system variables can change. Nevertheless, there are also many positive
feedback processes, for example, circulatory shock, that in extreme circumstances
can lead to the shutdown of various system components, leading eventually to the
demise of the organism.

1.4 PHYSIOLOGICAL CONTROL SYSTEMS ANALYSIS:
A SIMPLE EXAMPLE

One of the simplest andmost fundamental of all physiological control systems is the
muscle stretch reflex. The most notable example of this kind of reflex is the knee
jerk, which is used in routine medical examinations as an assessment of the state of
the nervous system. A sharp tap to the patellar tendon in the knee leads to an abrupt
stretching of the extensor muscle in the thigh to which the tendon is attached. This
activates the muscle spindles, which are stretch receptors. Neural impulses, which
encode information about themagnitude of the stretch, are sent along afferent nerve
fibers to the spinal cord. Since each afferent nerve synapses with one motorneuron
in the spinal cord, the motorneurons get activated and, in turn, send efferent neural
impulses back to the same thigh muscle. These produce a contraction of the muscle
that acts to straighten the lower leg. Figure 1.2 shows the basic components of this

FIGURE 1.2 Schematic illustration of the muscle stretch reflex. (Adapted from Vander
et al. (1997).)
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reflex. A number of important features of this system should be highlighted. First,
this and other stretch reflexes involve reflex arcs that are monosynaptic, that is, only
two neurons and one synapse are employed in the reflex. Other reflexes have at least
one interneuron connecting the afferent and efferent pathways. Second, this closed-
loop regulation of muscle length is accomplished in a completely involuntary
fashion, as the name “reflex” suggests.

A third important feature of the muscle stretch reflex is that it provides a good
example of negative feedback in physiological control systems. Consider the block
diagram representation of this reflex, as shown in Figure 1.3. Comparing this
configuration with the general closed-loop control system of Figure 1.1, one can see
that the thigh muscle now corresponds to the plant or controlled system. The
disturbance x is the amount of initial stretch produced by the tap to the knee. This
produces a proportionate amount of stretch y in themuscle spindles, which act as the
feedback sensor. The spindles translate this mechanical quantity into an increase in
afferent neural traffic (z) sent back to the reflex center in the spinal cord, which
corresponds to our controller. In turn, the controller action is an increase in efferent
neural traffic (u) directed back to the thigh muscle, which subsequently contracts in
order to offset the initial stretch. Although this closed-loop control system differs in
some details from the canonical structure shown in Figure 1.1, it is indeed a negative
feedback system, since the initial disturbance (tap-induced stretch) leads to a
controller action that is aimed at reducing the effect of the disturbance.

FIGURE 1.3 Block diagram representation of the muscle stretch reflex.
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1.5 DIFFERENCES BETWEEN ENGINEERING
AND PHYSIOLOGICAL CONTROL SYSTEMS

While the methodology of systems analysis can be applied to both engineering
and physiological control systems, it is important to recognize some key
differences:

(a) An engineering control system is designed to accomplish a defined task,
and frequently the governing parameters would have been fine-tuned
extensively so that the system will perform its task in an “optimal” manner
(at least under the circumstances in which it is tested). In contrast, physio
logical control systems are built for versatility andmay be capable of serving
several different functions. For instance, although the primary purpose of
the respiratory system is to provide gas exchange, a secondary but also
important function is to facilitate the elimination of heat from the body.
Indeed, some of the greatest advances in physiological research have been
directed at discovering the functional significance of various biological
processes.

(b) Since the engineering control system is synthesized by the designer, the
characteristics of its various components are generally known. On the other
hand, the physiological control system usually consists of components that
are unknown and difficult to analyze. Thus, we are confronted with the need
to apply system identification techniques to determine how these various
subsystems behave before we are able to proceed to analyze the overall
control system.

(c) There is an extensive degree of cross-coupling or interaction among
different physiological control systems. The proper functioning of the
cardiovascular system, for instance, is to a large extent dependent on
interactions with the respiratory, renal, endocrine, and other organ systems.
In the example of the muscle stretch reflex considered earlier, the block
diagram shown in Figure 1.3 oversimplifies the actual underlying physi
ology. There are other factors involved that we had omitted and these are
shown in the modified block diagram shown in Figure 1.4. First, some
branches of the afferent nerves also synapse with the motorneurons that
lead to other extensor muscles in the thigh that act synergistically with the
primary muscle to straighten the lower leg. Second, other branches of the
afferent nerves synapse with interneurons, which, in turn, synapse with
motorneurons that lead to the flexor or antagonist muscles. However, here
the interneurons introduce a polarity change in the signal so that an
increase in afferent neural frequency produces a decrease in the efferent
neural traffic that is sent to the flexor muscles. This has the effect of
relaxing the flexor muscles so that they do not counteract the activity of
the extensor muscles.
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FIGURE 1.4 Contributions of interrelated systems to the muscle stretch reflex.

(d) Physiological control systems, in general, are adaptive. This means that the
systemmay be able to offset any change in output not only through feedback
but also by allowing the controller or plant characteristics to change. As an
example of this type of feature, consider again the operation of the muscle
stretch reflex. While this reflex plays a protective role in regulating muscle
stretch, it also can hinder the effects of voluntary control of the muscles
involved. For instance, if one voluntarily flexes the knee, the stretch reflex,
if kept unchanged, would come into play and this would produce effects
that oppose the intended movement. Figure 1.5 illustrates the solution
chosen by Nature to circumvent this problem. When the higher centers
send signals down the alpha motorneurons to elicit the contraction of the
flexor muscles and the relaxation of the extensor muscle, signals are sent
simultaneously down the efferent gamma nerves that innervate the muscle
spindles. These gamma signals produce in effect a resetting of the
operating lengths of the muscle spindles so that the voluntarily induced
stretch in the extensor muscles is no longer detected by the spindles. Thus,
by employing this clever, adaptive arrangement, the muscle stretch reflex
is basically neutralized.
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FIGURE 1.5 Adaptive characteristics of the muscle stretch reflex.

(e) At the end of Section 1.4, we alluded to another difference thatmay be found
between physiological control systems and simpler forms of engineering
control systems. In Figure 1.1, the feedback signal is explicitly subtracted
from the reference input, demonstrating clearly the use of negative feedback.
However, in the stretch reflex block diagram of Figure 1.3, the comparator is
nowhere to be found. Furthermore, muscle stretch leads to an increase in
both afferent and efferent neural traffic. So, how is negative feedback
achieved? The answer is that negative feedback in this system is “built
into” in the plant characteristics: Increased efferent neural input produces
a contraction of the extensor muscle, thereby acting to counteract the
initial stretch. This kind of embedded feedback is highly common in
physiological systems.

(f) One final difference is that physiological systems are generally nonlinear,
while engineering control systems can be linear or nonlinear. Frequently,
the engineering designer prefers the use of linear system components since
they have properties that are well-behaved and easy to predict. This issue
will be revisited many times over in the chapters to follow.
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1.6 THE SCIENCE (AND ART) OF MODELING

Aswe have shown, the construction of block diagrams is useful in helping us clarify
in our ownmindswhat key variables best represent the system under study. It is also
helpful in allowing us to formalize our belief (which is usually based partly on other
people’s or our own observations and partly on intuition) of how the various
processes involved are causally related. The block diagram that emerges from these
considerations, therefore, represents a conceptual model of the physiological
control system under study. However, such a model is limited in its ability to
enhance our understanding or make predictions, since it only allows qualitative
inferences to be made.

To advance the analysis to the next level involves the upgrading of the
conceptual model into a mathematical model. The mathematical model allows
us to make hypotheses about the contents in each of the “boxes” of the block
diagram. For instance, in Figure 1.3, the box labeled “controller” will contain an
expression of our belief of how the change in afferent neural frequency may be
related to the change in efferent neural frequency. Is the relationship between
afferent frequency and efferent frequency linear? If the changes in afferent
frequency follow a particular time-course, what would the time-course of the
response in efferent frequency be like? One way of answering these questions
would be to isolate this part of the physiological control system and perform
experiments that would allow us to measure this relationship. In this case, the
relationship between the controller input and controller output is derived purely on
the basis of observations, and therefore it may take the form of a table or a curve best
fitted to the data. Alternatively, these data may already have been measured, and
one could simply turn to the literature to establish the required input–output
relationship. This kind of model assumes no internal structure and has been given a
number of labels in the physiological control literature, such as black-box,
empirical, or nonparametric model. Frequently, on the basis of previous knowl
edge, we also have some idea of what the underlying physical or chemical
processes are likely to be. In such situations, we might propose a hypothesis
that reflects this belief. On the basis of the particular physical or chemical laws
involved, we would then proceed to derive an algebraic, differential, or integral
equation that relates the “input” to the “output” of the system component we are
studying. This type of model is said to possess an internal structure, that is, it places
some constraints on how the inputmay affect the output. As such, wemight call this
a structural or gray-box model. In spite of the constraints built into this kind of
model, the range of input–output behavior that it is capable of characterizing can
still be quite extensive, depending on the number of free parameters (or coef
ficients) it incorporates. For this reason, this type of model is frequently referred to
as a parametric model.

Mathematical modeling may be seen as the use of a “language” to elaborate on
the details of the conceptual model. However, unlike verbal languages, mathemat
ics provides descriptions that are unambiguous, concise, and self-consistent. By



12 INTRODUCTION

being unambiguous, different researchers are able to use and test the same model
without being confused about the hypotheses built into the model. Since the
equations employed in the model are based, at least in large part, on existing
knowledge of the physiological processes in question, they also serve the useful
purpose of archiving past knowledge and compressing all that information into a
compact format. The inherent self-consistency of the model derives from the
operational rules of mathematics, which provide a logical accounting system for
dealing with the multiple system variables and their interactions with one another.
On the other hand, the hypotheses embedded in some components of the model are
only hypotheses, reflecting our best belief regarding the underlying process. More
often than not, these are incorrect or oversimplistic. As a consequence, the behavior
of the model may not reflect the corresponding reality. Yet, the power of the
modeling process lies in its replication of the scientific method: The discrepancy
betweenmodel prediction and physiological observation can be used as “feedback”
to alert us to the inadequacies of one or more component hypotheses. This allows us
to return to themodel development stage once again in order tomodify our previous
assumptions. Subsequently, we would retest the revised model against experimen
tal observations. And so, the alternating process of induction and deduction
continues until we are satisfied that the model can “explain” most of the observed
behavior. Then, having arrived at a “good” model, we could venture to use this
model to predict how the system might behave under experimental conditions that
have not been employed previously. These predictions would serve as a guide for
the planning and design of future experiments.

1.7 “SYSTEMS PHYSIOLOGY” VERSUS “SYSTEMS BIOLOGY”

We would be remiss if we did not mention the currently widespread application of
mathematical modeling and control theory to biological systems over a much
broader spectrum of spatial and temporal scales. “Systems biology” has come to be
recognized as amainstay of biological science, rather than an isolated discipline. To
understand the compelling need for systems biology, one must look back into the
1950s whenWatson and Crick (1953) published their two-page, landmark paper in
Nature, entitled “Molecular Structure of Nucleic Acids: A Structure for Deoxy
ribose Nucleic Acid.” This paper provided a jump-start to the nascent field of
molecular biology at the time. In subsequent lectures and papers, Crick introduced
the “sequence hypothesis” that evolved into the “central dogma”: This laid out the
two-step process, transcription and translation, through which genetic information
flows fromDNA to mRNA to protein. These and other concurrent developments in
molecular biology heralded the golden age of modern biology. The rush was on to
develop more reliable and higher throughput methods of DNA sequencing, which
ushered in the field of genomics. In turn, technologies were also developed to detect
gene mutations using SNP methods. Attention then turned to the development
of other technologies (e.g., gene chips, microarrays) for transcriptomics – the
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cataloging of the complete set of RNA molecules produced by the genome – and,
subsequently, proteomics and metabolomics.

As these developments progressed at exponentially increasing speeds, it became
clear that the original “reductionist” approach of attempting to “explain” a
biological system as the sum of its various components was woefully inadequate.
Instead, it was necessary to consider the networks that bind these disparate
components and to study the dynamic interactions among these components.
Sequential reasoning and intuitive thinking, which worked well for the classical
physiologists and biologists, fell by the wayside as high-throughput techniques and
new tools from the “-omics” generated avalanche after avalanche of data. As such, it
has become necessary to adopt the rigorous framework with the necessary
computational tools to select out features from the data that bear relevance to
the questions being posed, arrive at a mathematical framework for capturing the
dynamic relationships among the interacting dynamic variables, and subsequently
use the model structure to predict what would likely be observed under a variety of
experimental conditions. The basic workflow cycle of observation, feature extrac
tion, model building, parameter estimation, and prediction using the model lies at
the core of systems biology. The same fundamental principles (with perhaps
different specific techniques and tools) apply to systems physiology as well. A
key difference is that systems biology, as the term is used now, requires information
at the molecular and cellular levels and as such requires the development of models
that transcend multiple levels of spatial and temporal scales – what is commonly
referred to as “multiscale modeling.” However, our focus, in this book, is on the
application of model building and control theory to physiological systems at the
organ systems level. Nevertheless, we believe that the principles and techniques
presented here provide a useful foundation for the reader who is interested in
pursuing a more comprehensive grasp of systems biology. There are a number of
textbooks and review papers that focus on system biology: for example, Kitano
(2002), Ideker et al. (2006), Voit (2013) and Klipp et al. (2016). For less
“textbookish” reading, one is referred to the elegantly written introduction to
systems biology by Noble (2006).

PROBLEMS

Based on the verbal descriptions of the following physiological reflex systems,
construct block diagrams to represent the major control mechanisms involved.
Clearly identify the physiological correlates of the controller, the plant, and the
feedback element, as well as the controlling, controlled, and feedback variables.
Describe how negative (or positive) feedback is achieved in each case.

P1.1. The Bainbridge reflex is a cardiac reflex that aids in the matching of cardiac
output (the flow rate at which blood is pumped out of the heart) to venous
return (the flow rate at which blood returns to the heart). Suppose there is a



14 INTRODUCTION

transient increase in the amount of venous blood returning to the right
atrium. This increases blood pressure in the right atrium, stimulating the
atrial stretch receptors. As a result, neural traffic in the vagal afferents to
the medulla is increased. This, in turn, leads to an increase in efferent
activity in the cardiac sympathetic nerves as well as a parallel decrease in
efferent parasympathetic activity. Consequently, both heart rate and
cardiac contractility are increased, raising cardiac output. In this way,
the reflex acts like a servomechanism, adjusting cardiac output to track
venous return.

P1.2. The pupillary light reflex is another classic example of a negative feedback
control system. In response to a decrease in light intensity, receptors in the
retina transmit neural impulses at a higher rate to the pretectal nuclei in the
midbrain, and subsequently to the Edinger–Westphal nuclei. From the
Edinger–Westphal nuclei, a change in neural traffic down the efferent nerves
back to the eyes leads to a relaxation of the sphinctermuscles and contraction
of the radial dilator muscles that together produce an increase in pupil area,
which increases the total flux of light falling on the retina.

P1.3. The regulation of water balance in the body is intimately connected with the
control of sodium excretion. One major mechanism of sodium reabsorption
involves the renin–angiotensin–aldosterone system. Loss of water and
sodium from the body, for example, due to diarrhea, leads to a drop in
plasma volume,which lowersmean systemic blood pressure. This stimulates
the venous and arterial baroreflexes that cause an increase in activity of the
renal sympathetic nerves, which in turn stimulates the release of renin by
the kidneys into the circulation. The increase in plasma renin concentration
leads to an increase in plasma angiotensin, which stimulates the release of
aldosterone by the adrenal cortex. Subsequently, the increased plasma
aldosterone stimulates the reabsorption of sodium by the distal tubules in
the kidneys, thereby increasing plasma sodium levels.

P1.4. The control system that regulates water balance is intimately coupled with
the control of sodium excretion. When sodium is reabsorbed by the distal
tubules of the kidneys,waterwill also be reabsorbed if the permeability of the
tubular epithelium is lowered. This is achieved in the following way. When
there is a drop in plasma volume, mean systemic pressure decreases, leading
to a change in stimulation of the left atrial pressure receptors. The latter send
signals to a group of neurons in the hypothalamus, increasing its production
of vasopressin or antidiuretic hormone (ADH). As a result, the ADH
concentration in blood plasma increases, which leads to an increase in water
permeability of the kidney distal tubules and collecting ducts.

P1.5. Arterial blood pressure is regulated by means of the baroreceptor reflex.
Suppose arterial blood pressure falls. This reduces the stimulation of the
baroreceptors located in the aortic arch and the carotid sinus, which lowers
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the rate at which neural impulses are sent along the glossopharyngeal and
vagal afferents to the autonomic centers in the medulla. Consequently,
sympathetic neural outflow is increased, leading to an increase in heart
rate and cardiac contractility, as well as vasoconstriction of the peripheral
vascular system. At the same time, a decreased parasympathetic outflow
aids in the heart rate increase. These factors together act to raise arterial
pressure.

P1.6. A prolonged reduction in blood pressure due to massive loss of blood can
lead to “hemorrhagic shock” in which the decreased blood volume lowers
mean systemic pressure, venous return, and thus cardiac output. Conse
quently, arterial blood pressure is also decreased, leading to decreased
coronary blood flow, reduction in myocardial oxygenation, loss in the
pumping ability of the heart, and therefore further reduction in cardiac
output. The decreased cardiac output also leads to decreased oxygenation of
the peripheral tissues, which can increase capillary permeability, thereby
allowing fluid to be lost from the blood to the extravascular spaces. This
produces further loss of blood volume and mean systemic pressure, and
therefore, further reduction in cardiac output.
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2
MATHEMATICAL MODELING

2.1 GENERALIZED SYSTEM PROPERTIES

In this chapter, we will review the basic concepts and methods employed in the
development of “gray box”models. Models of very different systems often contain
properties that can be characterized using the same mathematical expression.
The first of these is the resistive property. Everyone is familiar with the concept
of electrical resistance (R), which is defined by Ohm’s law as

V � RI (2.1)

where V is the voltage or driving potential across the resistor and I represents the
current that flows through it. Note that V is an “across”-variable and may be viewed
as ameasure of “effort.”On the other hand, I is a “through”-variable and represents a
measure of “flow.” Thus, if we define the generalized “effort” variable ψ and the
generalized “flow variable, ζ, Ohm’s law becomes

ψ � Rζ (2.2)

where R now represents a generalized resistance. Figure 2.1 shows the application
of this concept of generalized resistance to different kinds of systems. In the
mechanical dashpot, when a force F is applied to the plunger (and, of course, an

Physiological Control Systems: Analysis, Simulation, and Estimation, Second Edition. Michael C.K. Khoo.
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FIGURE 2.1 “Resistance” in (a) mechanical, (b) fluidic, (c) thermal, and (d) chemical
systems.

equal and opposite force is applied to the dashpot casing), it will move with a
velocity v that is proportional to F. As illustrated in Figure 2.1a, this relationship
takes on the same form as the generalized Ohm’s law (Equation 2.2), when F and v
are made to correspond to ψ and ζ, respectively. The constant of proportionality,
Rm, which is related to the viscosity of the fluid inside the dashpot, provides a
measure of “mechanical resistance.” In fact, Rm determines the performance of the
dashpot as a shock absorber and is more commonly known as the “damping
coefficient.” In fluid flow, the generalized Ohm’s law assumes the form of
Poiseuille’s law, which states that the volumetric flow of fluid (Q) through a rigid
tube is proportional to the pressure difference (ΔP) across the two ends of the tube.
This is illustrated in Figure 2.1b. Poiseuille further showed that the fluid resistance
Rf is directly related to the viscosity of the fluid and the length of the tube, and
inversely proportional to the square of the tube cross-sectional area. In Fourier’s law
of thermal transfer, the flow of heat conducted through a given material is
directly proportional to the temperature difference that exists across the material
(Figure 2.1c). Thermal resistance Rt can be shown to be inversely related to the
thermal conductivity of the material. Finally, in chemical systems, the flux Q of a
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given chemical species across a permeable membrane separating two fluids with
different species concentrations is proportional to the concentration difference Δφ
(Figure 2.1d). This is known as Fick’s law of diffusion. The diffusion resistance Rc

is inversely proportional to the more commonly used parameter, the membrane
diffusivity.

The second generalized system property is that of storage. In electrical systems,
this takes the form of capacitance, defined as the amount of electrical charge (q)
stored in the capacitor per unit voltage (V) that exists across the capacitor:

q
C � (2.3)

V

Note that q represents the accumulation of all electric charge delivered via current
flow to the capacitor, so the following relationship exists between q and I:

t

q � ∫ I dt (2.4)

0

Thus, using Equation 2.4 in Equation 2.3 and rewriting the result in generalized
form, we obtain the following expression:

t
1

ψ � ζ dt (2.5)
C ∫

0

For mechanical systems, this storage property takes the form of “compliance,” as
in the case of the elastic spring shown in Figure 2.2a. For a given applied force, the
mechanical compliance determines the extent to which the spring will be extended
or compressed. This property is also inversely related to the stiffness or elastic
modulus of the spring: The more compliant the spring, the less stiff it would be,
and the more it would extend for a given applied tension. Similarly, in fluidic
systems, as represented in the example of the fluid-filled balloon (Figure 2.2b),
compliance determines the volume by which the balloon will expand or contract
per unit change in applied pressure. The compliance here is determined primarily
by the elasticity of the balloon material: The stiffer the material, the less
“compliant” the balloon. A much smaller contribution to the compliance arises
from the compressibility of the fluid inside the balloon. In thermal systems, the
“thermal mass” represents the amount of heat stored in a certain medium per unit
difference in temperature that exists between the interior and exterior
(Figure 2.2c). This thermal capacitance depends on the dimensions and specific
heat of the medium in question. Finally, in chemical systems, the storage property
is represented by the total volume of the fluid in which the chemical species exists
(Figure 2.2d), that is, for given volume, the total mass of the chemical species
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FIGURE 2.2 “Capacitance” in (a) mechanical, (b) fluidic, (c) thermal, and (d) chemical
systems.

present is proportional to its concentration. This property, in fact, is used in the
definition of concentration.

The resistive and storage properties also represent elements through which
energy is dissipated or stored, respectively. In the context of electrical resistance,
note that the product of voltage and current yields power. In mechanical systems,
force multiplied by velocity also yields power. Similarly, in fluidic systems, power
is defined as the product of pressure and flow rate. Thus, in any general system,
energy is dissipated when effort is applied to produce flow through the resistive
element. On the other hand, the storage element allows the accumulation of “static”
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or potential energy. For instance, in the mechanical spring, application of force F
that produces an extension of x length units will lead to the storage of F�x units of
potential energy. Similarly, in the balloon system, potential energy is stored when
the balloon is expanded with the application of internal pressure.

The final generalized system property, inertance, allows the storage of kinetic
energy in electrical systems. This property is also known as inductance (L), which is
defined as the voltage required to produce a given rate of change of electrical
current:

dI
V � L (2.6)

dt

Replacing V and I by the corresponding generalized system variables ψ and ζ, we
have

dζ
ψ � L (2.7)

dt

Note that in the context of mechanical systems, ψ becomes F (force) and ζ becomes
velocity; so Equation 2.7 becomes Newton’s second law of motion: Force equals
mass times acceleration. Thus, in this case, the inertance is simply the mass of the
system. Inertance is also present in fluidic systems; so fluid acceleration is
proportional to the pressure differential applied. On the other hand, there is no
element that represents inertance in thermal and chemical systems; kinetic energy
storage does not exist in these systems.

2.2 MODELS WITH COMBINATIONS OF SYSTEM ELEMENTS

An assumption implicit in the previous section is that the systemproperties are time-
invariant and independent of the values of the generalized system variables. In other
words, the three basic model elements are linear. In reality, this will not be the case.
An electrical resistor will heat up as the current that passes through it increases,
thereby raising its resistance. Similarly, fluid resistance remains relatively constant
only under conditions of steady, laminar flow; as flow increases and becomes
turbulent, the resistance becomes a function of flow itself. Thus, as the effect of
nonlinearities increases, the similarities in behavior among these different systems
will be progressively reduced. Nevertheless, in scientific exploration, we always
have to start somewhere – and past scientific history has shown that it is wise to
begin with the simplest model. Therefore, linear analysis plays an important role in
physiological systems modeling by allowing us to obtain a first approximation to
the underlying reality.

We will proceed with our discussion of linear analysis by considering how we
can derive the overall model equations from various combinations of the three basic



22 MATHEMATICAL MODELING

FIGURE 2.3 Simple model consisting of a network of generalized system elements.

types of system elements. Figure 2.3 shows a simple “circuit” linking three
generalized system elements in series and parallel. The node labeled “0” represents
the reference level of the “effort” variable ψ with which all other nodes are
compared; this is set equal to zero. In electrical systems, this node would be called
“electrical ground.” ψa and ψb represent the values of the across-variables at nodes
a and b, respectively, relative to node 0. ζ1, ζ2, and ζ3 represent the values of the
through-variables that pass through the elements E1, E2, and E3, respectively. The
mathematical relationships among these variables can be derived by applying two
fundamental physical principles:

(1) The algebraic sum of the “across-variable” values around any closed circuit
must equal zero. Thus, in the loop a–b–0–a in Figure 2.3, we have

�ψ a � ψb� � �ψb � 0� � �0 � ψ a� � 0 (2.8)

(2) The algebraic sum of all “through-variable” values into a given node must
equal zero. In Figure 2.3, the only node where this rule will apply is node b:

ζ1 � �� ζ2 � ζ3 0� � � � � (2.9)

The preceding two generalized principles take the form of Kirchoff’s laws when
applied to electrical systems. The first (voltage) law appears trivial in the form
presented, but in order to apply this law, each of the component terms on the left-
hand side of Equation 2.8 has to be expressed as a function of the corresponding
through-variables and the system elements. The second (current) law is essentially a
statement of the conservation ofmass principle. In Equation 2.9, ζ2 and ζ3 are given
negative signs since, in Figure 2.3, they assume a flow direction that points away
from node b. Although each of the boxes labeled E1, E2, and E3 was intended to
represent one of the three basic system elements, each in general could also contain a
network within itself; within each network, the above two laws would still apply.
Thus, starting from the basic system elements, we can construct progressively more
complex models by connecting these elements in either series or parallel configu
rations. And by using the generalized Kirchoff’s laws, it is possible to deduce
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FIGURE 2.4 Model properties that emerge from simple networks of system elements in
electrical, fluidic, thermal, and chemical systems.

mathematical expressions that characterize the overall properties of these synthe
sized networks. Figure 2.4 illustrates the resultant system properties that emerge
from simple combinations of resistive and storage elements for electrical, fluidic,
thermal, and chemical systems. These results are easily derived using basic circuit
analysis.

The expressions that relate combined resistances and compliances to their
respective component elements are somewhat different for mechanical systems,
as Figure 2.5 shows. Consider Figure 2.5a, where the two mechanical dashpots
(resistances) are placed in parallel. This parallel configuration constrains themotion
of the two dashpot plungers by requiring them to move at the same velocity.
Therefore, the total forceF required to extend the two dashpots with resistancesRm1

and Rm2 at velocity v is

F � v R� m1 � Rm2� (2.10)

But the combined resistance R is defined as F/v. Thus, Equation 2.10 yields

R � Rm1 � Rm2 (2.11)

This relationship for the two mechanical resistances in parallel is different from the
corresponding expression for parallel combinations of the other types of resistances.
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FIGURE 2.5 Models of parallel and series combinations of mechanical dashpots (resist
ances) and springs (compliances).

Figure 2.5c represents mechanical springs with compliances Cm1 and Cm2

connected in parallel. As in Figure 2.5a, the parallel mechanical arrangement
constrains the springs so that they must extend by equal amounts (= x). Thus,

x � F1Cm1 � F2Cm2 (2.12)

whereF1 andF2 represent the corresponding tensions developed in the two springs.
But the sum of F1 and F2 yields the total force F required to extend the spring
combination by x, and since C= x/F by definition, Equation 2.12 leads to

1 1 1� � (2.13)
C Cm1 Cm2

which again differs from the corresponding situation for capacitances placed in
parallel in other systems. Similar considerations apply to series combinations of
mechanical dashpots and springs (Figure 2.5b and d). As such, one has to be
cautious in converting models of mechanical systems into their electrical analogs.

2.3 LINEAR MODELS OF PHYSIOLOGICAL SYSTEMS:
TWO EXAMPLES

In this section, we will derive the mathematical formulations that characterize the
input–output properties of two simple physiological models. The first model
provides a linearized description of lung mechanics (Figure 2.6). The airways
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FIGURE 2.6 Linear model of respiratory mechanics.

are divided into two categories: the larger or central airways and the smaller or
peripheral airways, with fluid mechanical resistances equal to RC and RP, respec
tively. Air that enters the alveoli also produce an expansion of the chest wall cavity
by the same volume. This is represented by the connection of the lung (CL) and chest
wall (CW) compliances in series. However, a small fraction of the volume of air that
enters the respiratory system is shunted away from the alveoli as a result of the
compliance of the central airways and gas compressibility. This shunted volume is
very small under normal circumstances at regular breathing frequencies, but
becomes progressively more substantial if disease leads to peripheral airway
obstruction (i.e., increased RP) or a stiffening of the lungs or chest wall (i.e.,
decreasedCL orCW).We account for this effect by placing a shunt complianceCS in
parallel withCL andCW. The pressures developed at the different points of this lung
model are Pao at the airway opening, Paw in the central airways, PA in the alveoli,
and Ppl in the pleural space (between the lung parenchyma and chest wall). These
pressures are referenced to P0, the ambient pressure, which we can set to zero.
Suppose the volume flow rate of air entering the respiratory system is Q. Then, the
objective here is to derive a mathematical relationship between Pao and Q.

FromKirchoff’s second law (applied to the nodePaw), if the flowdelivered to the
alveoli is QA, then the flow shunted away from the alveoli must be Q�QA.
Applying Kirchoff’s first law to the closed circuit containing CS, RP, CL, and CW,
we have

RPQA � 1 1
CL CW

� ∫QAdt � CS ∫�Q � QA�dt1
(2.14)

Applying Kirchoff’s first law to the circuit containing RC and CS, we have

1
Pao � RCQ �

CS ∫�Q � QA�dt (2.15)
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Differentiating Equation 2.14 and Equation 2.15 with respect to time, and subse
quently, reducing the two equations to one by eliminating QA, we obtain the
equation relating Pao to Q:

d2Pao 1 dPao d2Q 1 RC dQ 1 1 1� � RC � � � � Q
dt2 RPCT dt dt2 dt RPCSCS RPCT CL CW

(2.16)

where CT is defined by

�11 1 1� � (2.17)CT �
CL CW CS

The second example that we will consider is the linearized physiological
model of skeletal muscle, as illustrated in Figure 2.7. F0 represents the force
developed by the active contractile element of the muscle, while F is the actual
force that results after taking into account the mechanical properties of muscle. R
represents the viscous damping inherent in the tissue, while CP (parallel elastic
element) andCS (series elastic element) reflect the elastic storage properties of the
sacrolemma and the muscle tendons, respectively. First, consider the mechanical
constraints placed on the model components as a result of the parallel configu
ration. If spring CP is stretched by an incremental length x, the entire series
combination of R and CS will also extend by the same length. Furthermore, the
sum of the force transmitted through the two branches of the parallel configura
tion must equal F. Although the sum of the extensions of CS and R will have to
equal x, the individual length contributions from CS and R need not be equal.
Thus, if we assume CS is stretched a length x1, then the extension in the parallel
combination of R and F0 will be x� x1. The velocity with which the dashpot
represented by R is extending is obtained by differentiating x� x1 with respect to
time, that is, d(x� x1)/dt.

FIGURE 2.7 Linear model of muscle mechanics.
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Using the principle that the force transmitted through CS must be equal to the
force transmitted through the parallel combination of F0 and R, we obtain the
following equation:

x1
CS

� R
dx dx1
dt dt

� � F0 (2.18)

Then, using the second principle, that is, the total force from both limbs of the
parallel combination must sum to F, we have

F � x1 � x
(2.19)

CS CP

Eliminating x1 from Equation 2.18 and Equation 2.19 yields the following
differential equation relating F to x and F0:

dF 1 1 1 dx 1 F0� F � � � x � (2.20)
dt RCS dt RCSCP RCSCS CP

Note that in Equation 2.20, under steady-state, isometric conditions (i.e., themuscle
length is constrained to be constant), x= 0, dx/dt= 0, and dF/dt= 0, which lead to
the result F=F0. Therefore, under steady-state isometric conditions, the force
developed by the muscle model will reflect the force developed by the active
contractile element of the muscle.

2.4 CONVERSIONS BETWEEN ELECTRICAL AND
MECHANICAL ANALOGS

In the previous section, we developed the ordinary differential equations that
characterize two dynamic linear systems, one representing the pressure–airflow
dynamics of the respiratory system and the other representing mechanical behavior
ofmuscle. Alongwith the differential equations, we introduced the electrical analog
of the respiratorymechanicsmodel and themechanical analog of themuscle model.
As alluded to earlier in this chapter, we could just as easily have represented the
respiratory mechanics model as a mechanical analog consisting of springs and
dashpots, instead of an electrical analog with capacitors and resistor, or the muscle
model as an electrical circuit. All analogs of each of these models would still be
characterized by the same underlying ordinary differential equations derived in
Section 2.3.Here,wewill demonstrate howone can convert an electrical analog into
an equivalent mechanical analog, and vice versa, using the two examples consid
ered in the previous section. Note that once a given analog of a model has been
correctly constructed, we do not need to go back to “first principles” to construct a
different analog of the same model. We only need to keep track of how the various
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FIGURE 2.8 Mechanical analog of electrical circuit model of respiratory mechanics in
Figure 2.6.

“elements” of the model are related to one another through the generalized
Kirchoff’s laws.

Figure 2.8 displays the mechanical analog of the respiratory model that was
originally characterized as an electrical circuit. First, the overall “voltage” applied to
the electrical circuit (Figure 2.6) is Pao�P0, and therefore this translates into
the overall force applied to the equivalent mechanical analog (Figure 2.8). The
elements RP, CL, and CW are in series electrically, meaning that they share the
same “current” that flows through them. Mechanically, this translates to their
equivalent dashpot and springs being connected together in parallel (i.e., mechani
cally, these three elements are constrained to be stretched or compressed by
the same displacement). On the other hand, CS is electrically in parallel with the
RP–CL–CW series combination, meaning that the two “branches” share the same
potential difference. This translates mechanically to their sharing the same force –
hence, mechanically, Cs must be in series with the RP–CL–CW parallel combina
tion. Finally, in the electrical analog, RC is in series with the rest of the circuit,
meaning that it shares the same current. Thus, in the mechanical equivalent, RC

should share the same displacement as the CS–RP–CL–CW combination. Note that
in the mechanical analog, PA�P0 is given by the sum of the forces transmitted
through CL and CW.

In this next example, we convert the mechanical analog of the muscle model to
an electrical analog. In the muscle model (Figure 2.7), the element CP is mechani
cally in parallel with the rest of the elements, meaning that it is constrained to share
the same displacement or velocity. Thus, electrically, CP should be in series
with the rest of the circuit, since the current that flows throughCP will flow through
the rest of the circuit. In the mechanical analog, CS is in series with the parallel
F0–R combination, and thus the same force is transmitted through CS and
the F0–R combination. This means that electrically, CS must be in parallel with
the F0–R combination. In Figure 2.7, the force generator F0 represents the
contractile element of muscle – thus, it acts against the tensile force created



29DISTRIBUTED-PARAMETER VERSUS LUMPED-PARAMETER MODELS

FIGURE 2.9 Electrical analog of linear muscle mechanics model in Figure 2.7.

when the external F is applied to the mechanical system. In the electrical analog, F0

takes the form of a voltage generator whose positive voltage terminal opposes the
voltage resulting from the applied external F. As such, the potential difference
across the resistor R is reduced by F0. The complete electrical analog of the muscle
model is displayed in Figure 2.9.

2.5 DISTRIBUTED-PARAMETER VERSUS
LUMPED-PARAMETER MODELS

The models that we have considered up to this point are known as lumped-
parameter models. A given property of the model is assumed to be “concentrated”
into a single element. For example, in the lung mechanics model (Figure 2.6), the
total resistance of the central airways is “lumped” into a single quantity, RC, even
though in reality the central airways are comprised of the trachea and a few
branching generations of airways, each of which has very different fluidmechanical
resistance. Similarly, a single constantCL is assumed to represent the compliance of
the lungs, even though the elasticity of lung tissue varies from region to region. In
order to provide a more realistic characterization of the spatial distribution of
system properties, it is often useful to develop a distributed-parameter model. This
kind of model generally takes the form of one or more partial differential equations
with time and some measure of space (e.g., length or volume) as independent
variables.

A distributed-parameter model can be viewed as a network of many infinites
imally small lumped-parameter submodels. To illustrate this relationship, we will
derive the governing differential equation of a distributed-parameter model of the
passive cable characteristics of an unmyelinated nerve fiber. As shown in
Figure 2.10, the nerve fiber is modeled as a network containing serially connected
multiple subunits, each with circuit elements rx, rM, and cM. rx represents the
axial resistance of 1 cm of nerve tissue per cm2 of cross-sectional area, and is
given in Ω-cm. rM and cM represent the resistance and capacitance of 1 cm2 of
nerve membrane surface area, respectively. We assume that the extracellular
medium bathing the nerve fiber represents the electrical ground in this model.
How do we relate the current passing through to the voltage found at any point in
this “cable?”
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FIGURE 2.10 Relationship between the lumped-parameter and distributed-parameter
models of the passive cable characteristics of an unmyelinated nerve fiber.

In the distributed-parameter model, the nerve fiber takes the form of a long
cylindrical conductor of radius a. We focus our analysis on a small length δx of this
cable that contains one of these resistance–capacitance subunits. We assume the
intracellular voltage to increase by δV and the axial current to increase by δI over this
small segment of cable. The assumption of “increases” instead of “decreases” in V
and I merely establishes a sign convention. In reality, the voltage along the nerve
fiber drops as current flows out of the nerve fiber through a leaky membrane. If we
adopt the stated sign convention in a consistent manner, the final results will show
the change in V or I with length to be negative. The voltage increase δV occurring
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over an axial distance of δx is related to the axial current by

IrxδxδV � � (2.21)
πa2

The right-hand-side of Equation 2.21 bears a negative sign since the “increase” in
voltage should be associated with a current flowing in a direction opposite to that
assumed in the figure. Dividing both sides of Equation 2.21 by δx, and taking the
limit as δx is made to approach zero, we obtain

@V Irx� � (2.22)
@x πa2

The membrane current δI is related to the intracellular voltage V by

V @V
δI � � (2.23)� 2πa � δx � cM � 2πa � δx �

rM @t

Again, dividing both sides of Equation 2.23 by δx and taking the limit as δx
approaches zero, we obtain

@I V @V� � � 2πa � cM � 2πa � (2.24)
@x rM @t

Finally, Equations 2.22 and 2.24 can be combined into one equation by differenti
ating Equation 2.22 with respect to x and substituting for @I/@x in Equation 2.24:

@2V 2rx @V V� cM � � (2.25)
@x2 a @t rM

Equation 2.25 is known as the one-dimensional cable equation, and describes intra
cellular voltage along the nerve fiber as a continuous function of length and time.

2.6 LINEAR SYSTEMS AND THE SUPERPOSITION PRINCIPLE

All the models we have considered up to this point are linear systems. We have
shown that these linear systems can be characterized by linear ordinary or partial
differential equations. A differential equation is linear when all its terms that contain
the output and input variables and its derivatives are of thefirst degree. For example,
the model differential equations that we have derived are of the general form:

d2y dy d2x dx
a2 � a1 � y � b2 � b1 � b0x (2.26)

dt2 dt dt2 dt
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Since all terms in y and its derivatives, aswell as all terms in x and its derivatives, are
raised to only the first power (degree), Equation 2.26 is linear. If the coefficients a1,
a2, b0, b1, and b2 are constants, then Equation 2.26 is also time-invariant. On the
other hand, if one or more of these coefficients are functions of time, for example,
a1= t, Equation 2.26 remains linear but becomes time-varying. However, if one or
more of the coefficients are functions of y or x, Equation 2.26 becomes nonlinear.

Let us suppose that the input x of the system described by Equation 2.26 takes on
a particular time-course, for example, x= x1(t), and the resulting time-course for y is
y1(t). Then, it follows that

d2y1 dy1 d2x1 dx1a2 � a1 � y1 � b2 � b1 � b0x1 (2.27)
dt2 dt dt2 dt

When x takes on a different time-course x2(t) and the resulting time-course for y is
y2(t), the following relationship also holds:

d2y2 dy2 d2x2 dx2a2 � a1 � y2 � b2 � b1 � b0x2 (2.28)
dt2 dt dt2 dt

By adding terms on both sides of Equations 2.27 and 2.28 with the same
coefficients, we have

d2�y1 � y2 d y1 � y2� d2�� � x1 � x2�a2 � a1 � �y1 � y2� � b2dt2 dt dt2 (2.29)
d x1 � x2��� b1 � b0�x1 � x2�dt

What Equations 2.27 through 2.29 together imply is that the response of a linear
system to the sum of two different inputs is equal to the sum of the responses of
the system to the individual inputs. This result can be extended to more than
two inputs and is known as the principle of superposition. It is a defining
property of linear systems and is frequently used as a test to determine whether a
given system is linear.

The principle of superposition also implies that the complete solution (i.e.,
response in y) to Equation 2.26 can be broken down into two components:

y t� � � yc� � � yp� � (2.30)t t

where yc(t) is known as the complementary function and yp(t) is called the particular
solution. yc(t) is the response of the linear system in Equation 2.26 when the input
forcing x(t) is set equal to zero:

d2yc dyca2 � a1 � yc � 0 (2.31)
dt2 dt
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Thus, yc(t) reflects the component of y(t) that remains the same independent of
the form of input x(t). However, the time-course of yc(t) depends on the initial
values taken by y and its derivatives immediately prior to input stimulation. On
the other hand, yp(t) is the response of the same linear system when the input
forcing x(t) is a particular function of time. Thus, yp(t) satisfies the differential
equation:

d2 d2yp dyp x dx
a2 � a1 � yp � b2 � b1 � b0x (2.32)

dt2 dt dt2 dt

Unlike yc(t), yp(t) depends only on the coefficients of Equation 2.32 and the time-
course of the input x(t). If the linear system in question is stable, then the com
ponent of y(t) characterized by yc(t) will eventually decay to zero while the overall
response of the systemwill be increasingly dominated by yp(t). For this reason, yc(t)
is also called the transient response; yp(t) is known as the steady-state response
when x(t) is an input forcing function that persists over time.

2.7 ZERO-INPUT AND ZERO-STATE SOLUTIONS OF ODEs

A parallel approach to solving linear ordinary differential equations, used more
widely in the engineering community, is to consider the complete solution to
be the sum of the zero-input and zero-state solutions. The zero-input solution is
the response of the linear time-invariant system to nonzero initial conditions but
no input. The zero-state solution is the response of the system to the external input
but starting with zero initial conditions. Thus, if we again consider the system
represented by Equation 2.26, we have the following expression for the complete
solution for y(t):

y t� � � yzi t t (2.33)� � � yzs� �
where yzi(t) is the zero-input solution and yzs(t) is the zero-state solution. Consid
ering the zero-input solution first, we set x(t) to zero in Equation 2.26 and thus
we obtain

d2yzi dyzia2 � a1 � yzi � 0 (2.34)
dt2 dt

The zero-input solution is obtained by solving Equation 2.34 assuming nonzero
values for yzi(0) and dyzi/dt(0). Equation 2.34 is essentially the same as the
homogeneous equation in Equation 2.31. However, a key difference is that in
Equation 2.31, the initial conditions are specified at time t= 0+, that is, immediately
after the input (if any) has been applied. In Equation 2.34, the initial conditions are
specified at time t= 0�. Thus, the complementary function (solution to the
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homogeneous equation) and the zero-input solution can, in general, be different
from one another.

The zero-state solution is obtained by solving the following differential equation
for the particular input x(t) in question, assuming zero initial conditions:

d2y dy d2x dxzs zsa2 � a1 � yzs � b2 � b1 � b0x (2.35)
dt2 dt dt2 dt

Unlike the “steady-state response” or “particular solution” (Section 2.6), the zero-
state solution will in general contain a transient component. However, the overall
solution, obtained by adding together the zero-input and zero-state solutions, turns
out to be exactly the same as what one would obtain using the more conventional
way of solving the same ordinary differential equation for the complementary
function and particular solution. Both Equations 2.34 and 2.35 are most conve
niently solved using the Laplace transform, as demonstrated in the next section.

2.8 LAPLACE TRANSFORMS AND TRANSFER FUNCTIONS

The Laplace transformation, denoted byL[�], and its inverse, denoted byL�1[�], are
mathematical operations defined as follows:

1
L�y t� �� � Y s� � � ∫ y t� �e stdt (2.36a)

0

σ�j1
y t� � � L�1�Y s� �� � 1

Y s� �estds (2.36b)
2πj ∫

σ�j1
p

where the Laplace variable s is complex, that is, s= σ + jω, and j= � 1. By
employing the mathematical operation defined in Equation 2.36a, the function of
time y(t) is converted into an equivalent function Y(s) in the complex s-domain. If
we apply this mathematical operation to the time-derivative of y, dy/dt, we can
evaluate the result by performing an integration by parts procedure:

1 1
dy t� � 1�stL � ∫

dy
e stdt � s ∫ y t� �e stdt � y t� �e 0 (2.37a)

dt dt
0 0

Thus,

dy
L � sY s� � � y 0 (2.37b)� �

dt
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By applying the same transformation to d2y/dt2, it can be shown that

d2y dy
L � s2Y s � � �� � � sy 0 (2.38)

dt2 dt t�0

Conversely, the Laplace transform of the time-integral of y(t), assuming y(t)= 0 for
t< 0, is

t
Y s� �

L y t� �dt � (2.39)∫ s
0

Laplace transforms of various “standard” functions in time have been evaluated and
are available in the form of tables, such as that presented inAppendixA. These same
tables are also used to convert Laplace expressions back into time-domain
functions.

If we apply the Laplace transformation to the linear system represented by
Equation 2.26, and use the above expressions in Equations 2.37b and 2.38 to
evaluate the transforms of the derivatives, we will obtain the following result:

a2s
2Y s� � � a1sY s� � � Y s� � � b2s

2X s� � � b1sX s� � � b0X s� � (2.40a)

Equation 2.40a assumes that the values of x and y and their first time-derivatives are
all equal to zero at time t= 0. Even if any one of these initial values are actually
nonzero, they do not affect the functional nature of the dynamics of the linear system
being characterized. Equation 2.40a can be rearranged and presented in the
following form:

Y s� � b2s2 � b1s � b0� (2.40b)
X s� � a2s2 � a1s � 1

Equation 2.40b describes in very compact format how the input to the linear system
in question is transformed into its output. Starting with the time-domain represen
tation of the input x(t), we first determine its Laplace transform X(s). Then,
multiplying X(s) by the function displayed on the right-hand-side of
Equation 2.40b, we obtain the Laplace transform Y(s) of the system response.
Finally, by determining the inverse Laplace transform of Y(s), we recover the
time-course of the response y(t). Of course, we could have derived y(t) by solving
the differential equation inEquation2.26 in the timedomain.However, application of
the Laplace transformation converts the differential equation into an algebraic
equation, which is generally easier to solve. The ratio of Y(s) to X(s) in
Equation 2.40b is called the transfer function of the system in question. Employing
this approach allows the convenient representation of the input–output characteristics
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FIGURE 2.11 Transfer function representation of the linear system described in
Equation 2.6.

of any linear system in block diagram form, as illustrated in Figure 2.11 for the
example that we have been discussing.

2.8.1 Solving ODEs with Laplace Transforms

Weconsider below an example that highlights the utility of theLaplace transform for
solving ordinary differential equations. Assume, in Equation 2.26, the following
values for its coefficients: b2= 0, b1= 0.5, b0= 1.25, a2= 0.25, and a1= 1.25. Also,
assume the initial conditions are y(0)= 1 and y_�0� � 1. If the input were to take the
form of a unit step (i.e., x(t)= 1 for t> 0 and x(t)= 0 for t< 0), what would be the
response y(t)?

To determine the solution to Equation 2.26, we employ the approach outlined in
Section 2.7, which applies the principle of superposition and considers the complete
solution y(t) to be the sum of the zero-input and zero-state solutions. First, we
consider the zero-input solution, which is the solution to the case where the input is
assumed to be absent, that is,

d2yzi dyzi0:25 � 1:25 � yzi � 0 (2.41)
dt2 dt

but subject to the initial conditions: yzi(0)= 1 and y_zi(0)= 1. Taking the Laplace
transform of both sides of Equation 2.41, we get

0:25s � � � 0:25s � 0:25 � 1:25sYzi s � � � 02Yzi s � � � 1:25 � Yzi s (2.42a)

Rearranging and simplifying terms inEquation 2.42a,we obtain the following result:

s � 6 s � 6
Yzi� � �s � (2.42b)

s2 � 5s � 4 �s � 1��s � 4�
In order to simplify the process for determining the inverse Laplace transform of
Yzi(s), we express the right-hand-side of Equation 2.42b in terms of partial fractions:

5=3 �2=3
Yzi� � �s � (2.43)

s � 1 s � 4
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By looking up the Laplace transform table in Appendix A, we can solve for yzi(t) in
the time domain. By doing this, we obtain the zero-input solution of yzi(t) as follows:

5 2�t � �4t� � � e e u t� � (2.44)yzi t 3 3

where u(t) is the unit step (or Heaviside) function, so that u(t)= 1 for t> 0 and
u(t)= 0 for t< 0. The presence of u(t) in Equation 2.44 underscores the point that
yzi(t) is a causal response, that is, yzi(t) is zero prior to the imposition of the (nonzero)
initial conditions.

Next, we turn to determining the zero-state solution. This is for the case where
initial conditions are assumed to be zero but the external input is taken into account.
Thus, inserting the values of the coefficients into Equation 2.35, we have

d2 dxyzs dyzs0:25 � 1:25 � yzs � 0:5 � 1:25x (2.45)
dt2 dt dt

Applying the Laplace transformation to both sides of Equation 2.45 andmultiplying
throughout by 4, we obtain

�s s � � � (2.46)2 � 5s � 4�Yzs� � � 2s � 5�X s

Since we are assuming x(t) to be the unit step input (= u(t)), from Appendix A, we
find that X(s)= 1/s. Thus, after rearranging terms, Equation 2.46 becomes

2s � 5
Yzs s (2.47)� � �

s s� � 1��s � 4�
Breaking Equation 2.47 into partial fractions, we have

1:25 1 0:25
Yzs s � � (2.48)� � �

s s � 1 s � 4

We obtain the zero-state solution yzs(t) by applying the inverse Laplace transfor
mation to the partial fractions on the right-hand side of Equation 2.48 (AppendixA):

yzs� � � 1:25 � e�t � 0:25e�4tt u t� � (2.49)

Finally, we add the zero-input and zero-state solutions to arrive at the complete
solution to Equation 2.26:

2 11�t � �4ty t� � � 1:25 � e e u t� � (2.50)
3 12
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More details on the methodological aspects of solving differential equations via
Laplace transforms can be found in any standard text on applied mathematics or
linear systems theory, for example, Lathi (2004) and Mitra (2015).

2.9 THE IMPULSE RESPONSE AND LINEAR CONVOLUTION

Suppose we have a linear system with unknown transfer function H(s). By
definition, Y(s)=H(s) X(s). So, if we can find an input x(t) that has the Laplace
transform X(s)= 1, then Y(s)=H(s), that is, the Laplace transform of the resulting
response would reveal the transfer function of the unknown system. Appendix A
shows that the time-function that corresponds to X(s)= 1 is δ(t), the Dirac delta
function or the unit impulse. The unit impulsemay be considered a rectangular pulse
of infinite amplitude but infinitesimal duration. Consider the function p(t) defined
such that p(t)= a for 0� t� 1/a, and p(t)= 0 for t< 0 and t> 1/a, where a is positive
constant. Applying the Laplace transformation to p(t) yields

1 1=a �s=a1 � e
p t� �e�stdt � ∫ ae�stdt � (2.51)∫ s=a

0 0

Expanding the exponential term as an infinite series, we obtain

s=a s=a 2a
1 � e�s=a �

1 � 1 � s

a
�

s

a

2

2
� ∙ ∙ ∙

� 1 � s � ∙ ∙ ∙ (2.52)

Now, if a→1, then p(t)→ δ(t), and Equation 2.51 will yield the Laplace transform
of δ(t):

1
δ� �t e�stdt � 1 (2.53)∫

0

Thus, when X(s)= 1, the inverse Laplace transformation of Y(s)=H(s) yields the
result: y(t)= h(t). The system output resulting from the unit impulse input, that is,
the system impulse response h(t), is also the inverse Laplace transform of the
transfer function H(s).

In the case where H(s) is a known transfer function and X(s) is the Laplace
transform of some arbitrary input x(t), we have shown through the example
presented in Section 2.7 that the corresponding output y(t) is deduced by performing
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the inverse Laplace transformation of Y(s)=H(s)X(s). In general, for any H(s) and
X(s), we have

σ�j1
y t� � � L�1�H s� �X s� �� � 1

H s� �X s� �estds
2πj ∫

σ�j1
σ�j11

1� h τ e� � �estds (2.54)� � sτdτ � X s
2πj ∫ ∫

σ�j1 0

1 σ�j1
1 s t� �τ� ∫ X s� �e �ds � h τ dτ� �
2πj ∫

0 σ�j1

Note that in Equation 2.54, we have reversed the order of integration so that the
outer integral is based on the time-variable τ. Consider the inner integral, which is a
contour integral made with respect to the complex variable s. By definition of the
inverse Laplace transform,

σ�j1
1 s t� �τX s� �e �ds � x t� � τ� (2.55)
2πj ∫

σ�j1

Thus, Equation 2.54 simplifies to the following:

1
y t� � � L�1�H s� �X s� �� � ∫ � �x t� � τ�dτh τ (2.56)

0

The last term in Equation 2.56 represents the linear convolution of h(t) and x(t);
this could be considered the most important and most fundamental of all mathe
matical operations in linear systems and signals analysis. Equation 2.56 forms the
basis of the following key notions:

(a) The multiplication operation in the time domain is equivalent to the con
volution operation in the s-domain. Similarly, it can be shown that the
convolution operation in the time domain is equivalent to the multiplication
operation in the s-domain.

(b) The impulse response	 h(t) provides a complete characterization of the
dynamic behavior of a given linear system; once h(t) is known, the time-
response y(t) of this system to any arbitrary input x(t) can be deduced by
convolving h(t) with x(t).
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FIGURE 2.12 The equivalence between block diagram representations in time and
Laplace domains.

(c) Alternatively, the dynamics of a linear system can also be completely
characterized in terms of its transfer function H(s). Once H(s) is known,
the Laplace transform of the system response Y(s) to any arbitrary input
can be deduced by multiplying H(s) with the Laplace transform of the
input X(s).

These concepts are illustrated in Figure 2.12.
In the special case where x(t) takes the form of a unit step input (i.e., x(t)= u(t),

where u(t)= 1 for t> 0 and u(t)= 0 for t� 0), Equation 2.56 yields the following
result:

t

y t� � � g t h τ (2.57)� � � ∫ � �dτ
0

which implies that the step response g(t) of a linear system can be obtained by
integrating its impulse response with respect to time.

2.10 STATE-SPACE ANALYSIS

To characterize the complexities that are generally found in physiological systems,
we often have to resort to the use of differential equations of high order. Analytical
solutions of such complicated equations generally are not available, and, further
more, the numerical solution of these high-order differential equations is often
fraught with problems of instability. The Laplace transform approach is useful, but
this method of solution can become complicated when some of the initial
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conditions have to assume nonzero values. In such circumstances, state-space
modeling offers an attractive alternative. A very significant advantage of this
approach is that the state-space model can quite easily be extended to characterize
time-varying and nonlinear systems. In addition, problems that are formulated as
state-space models are readily amenable to standard parameter estimation tech
niques, such as Kalman filtering.

A key premise in state-space analysis is that the dynamics of a given system
can be completely characterized by a minimal set of quantities known collect
ively as the state. This means that if the equations describing the system
dynamics are known, one can predict the future state of the system given the
present state and the complete time-course of the inputs to the system. Suppose
we have a linear system that can be described in terms of the following Nth-order
differential equation:

dNy dN�1y dy� aN�1 � ∙ ∙ ∙ � a1 � a0y � b0x t� � (2.58)
dtN dtN�1 dt

We define a set of N-state variables z1(t), z2(t), . . . , zN(t) such that

� � � y t� �
dy t� � dz1� �t

z1 t

� � � �z2 t
dt dt
...

(2.59)

dN�1y t� � dzN�1� �t� � � �zN t
dtN�1 dt

Then, using Equation 2.59, we can recast Equation 2.58 into the following form:

dzN � �a0z1 � a1z2 � ∙ ∙ ∙ � aN�1zN � b0x (2.60)
dt

The above equations can be combined to yield the following first-order matrix
differential equation:

dz� �t � Fz� � �t Gx t� � (2.61)
dt

where

z1� �t 0 1 0 ∙ ∙ ∙ ∙ ∙ ∙ 0 0
z2� �t 0 0 1 0 ∙ ∙ ∙ 0 0

z t� � � ... ; F � ...
...

...
...

...
... ; and G � ...

0 0 0 ∙ ∙ ∙ 0 1zN�1� �t �a0 �a1 ∙ ∙ ∙ ∙ ∙ ∙ �aN�2 �aN�1 b0zN � �t
(2.62)

0
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It is clear that, basically, what the state-space approach does is to convert the
Nth-order differential equation (Equation 2.58) into a set ofN first-order differential
equations (Equation 2.62).

Finally, we can relate the state vector z(t) to the output y(t) of the system in
question through

y t� � � Cz t � �� � � Dx t (2.63)

where in this case

C � 1 0 ∙ ∙ ∙ 0 0 and D � 0 (2.64)

Equation 2.63 allows the possibility that onemight not be able tomeasure the state
variables directly, although in the particular example that we have considered,
we are able to observe the first state variable z1(t). Equation 2.63 is commonly
referred to as the observation equation, while Equation 2.61 is called the state
equation.

In linear systems, it is a relatively simple matter to convert a model repre
sented as a transfer function (i.e., in Laplace transform description) into the state-
space form, and vice versa. For the sake of illustration, consider the transfer
function given by Equation 2.40b. We define a new intermediate variable U(s)
such that this transfer function H(s) can be expressed as the product of two
components:

U s� � Y s� � 1 b2s2 � b1s � b0� � �s : � � (2.65)
X s� � U s� � a2s2 � a1s � 1 1

Now, the first component of this product yields

a2s
2U s� � � a1sU s� � � U s� � � X s� � (2.66)

The inverse Laplace transform of Equation 2.66 is

d2u t� � du t� �
a2 � a1 � u t� � � x t� � (2.67)

dt2 dt

As in Equation 2.59, we define the state variables z1(t) and z2(t) such that

� � � u t� � (2.68a)z1 t

dz1� �t du t� �
z2� � �t � (2.68b)

dt dt
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Then, Equation 2.67 can be rewritten:

dz2� �t a1 1 1� � � � � � � � x t� � (2.69)z2 t z1 t
dt a2 a2 a2

Equations 2.68a, 2.68b, and 2.69 can be combined to form the following matrix
state equation:

dz1 t� �
dt

dz2 t� �
dt

�
0 1

� 1
a2

� a1
a2

z1 t� �
z2 t� � � 0

1
a2=

x t� � (2.70)

We turn next to the other component of H(s). Here, we have

Y s� � � b2s
2U s� � � b1sU s� � � b0U s� � (2.71)

Taking the inverse Laplace transform of Equation 2.71, we obtain

y t� � � b2
d2u t� �
dt2

� b1
du t� �
dt

� b0u t� � (2.72)

Then, using Equations 2.68a, 2.68b, and 2.69, we obtain the following result:

z1b2 a1 b2y t� � � � x t� � (2.73)b0 � b1 � b2a2 a2 a2z2

Thus, conversion of the transfer function in Equation 2.40b into state-space form
leads to the state equation given by Equation 2.70 and the observation equation
given by Equation 2.73.

2.11 COMPUTER ANALYSIS AND SIMULATION:
MATLAB AND SIMULINK

Although the use of Laplace transforms and state-space modeling greatly simplifies
the mathematical characterization of linear systems, models that provide adequate
representations of realistic dynamical behavior are generally too complicated to
dealwith analytically. Therefore, in such complex situations, the logical approach is
to translate the system block representation into a computer model and to solve the
corresponding problem numerically. Traditionally, one would derive the differen
tial equations that represent the model and develop a program in some basic



44 MATHEMATICAL MODELING

programming language, for example, C or Fortran, to solve these equations.
However, a variety of software tools are available that further simplify the task
of model simulation and analysis. One of these, named SIMULINK, is currently
used by a large segment of the scientific and engineering community. SIMULINK
provides a graphical environment that allows the user to easily convert a block
diagram into a network of blocks of mathematical functions. It runs within the
interactive, command-based environment called MATLAB. In the discussions that
follow, it is assumed that the reader has access to, at least, the Student Versions of
MATLAB and SIMULINK, both of which are products of The Mathworks, Inc.
(Natick, MA). We also assumed that the reader is familiar with the most basic
functions inMATLAB.One advantage of employingMATLABandSIMULINK is
that these tools are platform-independent; thus, the same commands apply whether
one is using SIMULINK on a Windows-based machine or on a Unix-based
computer. In the rest of this section, our aim is to give the reader a brief
“hands-on” tutorial on the use of SIMULINK by demonstrating in a step-by
step manner how one would go about simulating the linear lung mechanics model
discussed in Section 2.3. Formore details and advanced topics, the reader is referred
to the User’s Guides of both SIMULINK (Dabney and Harman, 2004) and
MATLAB (Hanselman and Littlefield, 2012).

Let us suppose that wewould like to find out howmuch tidal volume is delivered
to a patient in the intensive care unit when the peak pressure of a ventilator is set at a
prescribed level. Obviously, the solution of this problem requires a knowledge of
the patient’s lung mechanics. We assume that this patient has relatively normal
mechanics, and the values of the various pulmonary parameters are as follows:

1 1 1RC= 1 cm H2O s L� , RP= 0.5 cm H2O s L� , CL= 0.2 L cm H2O
� , CW=

0.2 L cm H2O
�1, and CS= 0.005 L cm H2O

�1 (see Figure 2.6). We will consider
two ways of approaching this problem. The first and most straightforward method
is to derive the transfer function for the overall system and use it as a single “block”
in the SIMULINK program. The differential equation relating total airflowQ to the
applied pressure at the airway opening Pao was derived using Kirchoff’s laws
and presented in Equation 2.16. Substituting the above parameter values into this
differential equation and taking its Laplace transform yields, after some re
arrangement of terms, the following expression:

Q s� � s2 � 420s� (2.74)
Pao� �s s2 � 620s � 4000

To implement the above model, run SIMULINK from within the MATLAB
commandwindow (i.e., type simulink at theMATLABprompt). The SIMULINK
Start Page will be displayed in a new window. Next, select Blank Model in the
New tab. This will open another window named untitled – This is the working
window in which we will build our model. To open Library Brower where we
can select standard block functions from for model development, go to View
menu and select Library Browser. In our case, we would like to choose a block
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that represents the transfer function shown in Equation 2.74. Open the Continu
ous sub-library – This will display a number of block functions in this sub-
library. Select Transfer Fcn and drag this block into the working window.
Double-click this block to input the parameters of the transfer function. Enter
the coefficients of the polynomials in s in the numerator and denominator of the
transfer function in the form of a row vector in each case. Thus, for our example,
the coefficients for the numerator will be [1 420 0]. These coefficients
are ordered in descending powers of s. Note that, even though the constant
term does not appear in the numerator of Equation 2.74, it is still necessary to
include explicitly as zero the “coefficient” corresponding to this term. Once the
transfer function block has been set up, the next step is to include a generating
source for Pao. This can be found in the Sources sub-library. In our case, we will
select and drag the Sine Wave function generator into the working window.
Double-click this icon in order to modify the amplitude and frequency of the sine
wave: We will set the amplitude to 2.5 cm H2O (i.e., peak-to-peak swings in Pao

will be 5 cm H2O), and the frequency to 1.57 rad s�1, which corresponds to
1.57/(2∗π)= 0.25 Hz or 15 breaths min�1. Connect the output port of the sine
wave block to the input port of the transfer function block with a line. To view
the resulting output Q, open the Sinks sub-library and drag a Scope block into
the working window. Double-click the Scope block – This will open the Scope
window where you can view the plot and modify the plot layout/range. To
change the range of y-axis, go to View menu, select Configuration Properties,
click the Display tab, and then enter y-axis limits. It is always useful to view the
input simultaneously. So, drag another Scope block into the working window
and connect the input of this block to the line that “transmits” Pao. At this point,
the model is complete, and one can proceed to run the simulation. However, it is
useful to add a couple of features. We would also like to view the results in terms
of volume delivered to the patient. This is achieved by integrating Q. From the
Continuous sub-library, select the integrator block. Send Q into the input of
this block and direct the output (Vol) of the block to a third Scope. It is also
advisable to save the results of each simulation run into a data file that can be
examined later. From the Sinks sub-library, select and drag the To File block
into the working window. This output file will contain a matrix of numbers. A
name has to be assigned to this output file as well as to the matrix variable. In our
case, we have chosen to give the file the name respm1.mat, and the matrix
variable the name respm1. Note that “mat” files are the standard (binary) format
in which Matlab variables and results are saved. The first row of matrix respm1

will contain the times that correspond to each iteration step of the simulation
procedure. In our case, we would like to save the time-histories of Pao, Q, and
Vol. Thus, the To File block will have to be adjusted to accommodate three
inputs. Since this block expects the input to be in the form of a vector, the three-
scalar variables will have to be transformed into a three-element vector prior to
being sent to the To File block. This is achieved with the use of the Mux block,
found in the Signal Routing sub-library. After dragging it into the working
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window, enter “3” for the Number of inputs and press Enter. Note that there are
now three input ports on the Mux block. Connect the Mux output with the input of
the To File block. Connect the input ports of the Mux block to Pao, Q, and Vol.
The block diagram of the completed SIMULINK model is shown in Figure 2.13a.
The final step is to run the simulation. Go to the Simulationmenu and selectModel
Configuration Parameters. This allows the user to specify the duration over which
the simulation will be conducted, as well as the minimum and maximum step sizes
for each computational step. The latter will depend on the dynamics of the system
in question – In our case, we have chosen both the Max and Min step sizes to be
0.01 s. The algorithm (Solver) for performing integration is selected automatically,
but the user can also select the algorithm from the Solver list depending on the
problem at hand. The user is encouraged to experiment with different algorithms

FIGURE 2.13 Two SIMULINK models of simple lung mechanics.
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for a given problem. Some algorithms may produce numerically unstable solu
tions, while others may not. Finally, go to Simulation menu and select Run to
proceed with the simulation.

In the SIMULINK model of Figure 2.13a, the bulk of our effort in solving the
problem was expended on deriving the analytical expression for the transfer
function Q(s)/Pao(s) (Equation 2.16). This clearly is not the approach that we
would want to take in general, since one of the reasons for computer simulation is
to simplify the task of modeling. Obtaining the solution forQ(t), for given Pao and
lung mechanical parameters, leads also to the simultaneous solution of other
“internal” variables that might be of interest. These include the alveolar pressure
PA and the airflow actually delivered to the alveoli, QA. However, the implemen
tation of the model in Figure 2.13a does not allow access to these internal variables
since the system dynamics are “lumped” into a single transfer function block. The
SIMULINK implementation of the same model in Figure 2.13b displays a more
“open structure.” Various segments in the block diagram shown correspond
directly with the basic circuit equations (Equations 2.14 and 2.15) derived from
applying Kirchoff’s laws to the model of Figure 2.6. For instance, the double loop
containing the gains 1/CL, 1/CW, RP, and CS in the SIMULINK diagram of
Figure 2.13b represents Equation 2.14. This kind of open architecture also makes
it easier to determine how alterations in the parameters, such as what might occur
with different lung diseases, are expected to affect overall lung mechanics.
However, a common limitation with this approach is the creation of algebraic
loops. This problem arises when blocks with direct feedthrough are connected
together in a loop. For example, in Figure 2.13b, the gains RP andCS are connected
together with the derivative block in a closed loop. These functions are all
feedthrough blocks; so at any integration step, the simultaneous solution of the
two equations represented by this loop is required. This is accomplished itera
tively, but numerical ill-conditioning could lead to no convergent solution. For
each algebraic loop, SIMULINK reports an error when more than 200 iterations
are expended per integration step. We eliminate this problem in our example by
adding a Memory block to the closed loop in question. The Memory block simply
adds a delay of one integration time-step to the circuit. However, one should be
cautioned that this “fix” does not always work and, under certain circumstances,
could lead to numerical instability.

Figure 2.14 shows sample simulation results produced by either of the model
implementations. As indicated earlier, we assume the ventilator generates a
sinusoidal Pao waveform of amplitude 2.5 cm H2O. In Figure 2.14a, the ventilator
frequency is set at 15 breathsmin�1, which is approximately the normal frequency
of breathing at rest. At this relatively low frequency, the volume waveform is more
in phase with Pao; the airflowQ shows a substantial phase lead relative to Pao. This
demonstrates that lung mechanics is dominated by compliance effects at such low
frequencies. The peak-to-peak change in volume (i.e., tidal volume) is approxi
mately 0.5 L,while peakQ is∼0.4 L s�1.When the ventilator frequency is increased
fourfold to 60 breathsmin�1 with amplitude kept unchanged, peak Q clearly
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FIGURE 2.14 Sample simulation results from SIMULINK implementation of lung
mechanics model. (a) Predicted dynamics of airflow Q and volume Vol in response to
sinusoidal forcing of Pao (amplitude= 2.5 cm H2O) at 15 breathsmin�1. (b) Predicted
dynamics of Q and Vol in response to sinusoidal forcing of Pao (amplitude= 2.5 cm
H2O) at 60 breathsmin�1.

increases (to ∼1.2 L s�1), while tidal volume is decreased (to ∼0.4 L). Now, Q has
become more in phase with Pao while volume displays a significant lag. Thus,
resistive effects have become more dominant at the higher frequency. The changes
in peak Q and tidal volume with frequency demonstrate the phenomenon pulmo
nologists refer to as frequency dependence of pulmonary resistance and compli
ance, that is, the lungs appear stiffer and less resistive as frequency increases from
resting breathing.

The SIMULINK programs displayed in Figure 2.13a and b have been saved as
the model files respm1.slx and respm2.slx, respectively. These have been
included in the library of MATLAB script files (m-files) and SIMULINK model
files (slx-files) accompanying this book. For a full compilation of all script files,
model files, and MATLAB and SIMULINK functions employed in this book, the
reader is referred to Appendix B.
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PROBLEMS

sTX sP2.1. (a) Show thatLfx t� � T�g � e � �, whereLf g is the Laplace transform
operator, x t� � T� � 0 for t�T, and X s� � � Lfx t� �g.

t(b) Show that the Laplace transform of ∫ � �dτ is equal to X s� �=s.0x τ

(c) Show that multiplication in the s-plane corresponds to convolution in
the time domain: L� X � � � X � �g � ∫0x � �x � �1f 1 s 2 s

t
1 τ 2 t � τ dτ

P2.2. (a) Determine the impulse response for the linear system characterized
by the following differential equation (assuming x(t) to be the input,
and y(t) to be the output) by solving the equation in the time domain:

d2y dy
2
� 4	 � 3y � x t� �

dt dt

(b) Determine the transfer function for the above equation, and by taking
the inverse Laplace transform, obtain an expression for the impulse
response (time domain). The impulse response determined in (b)
should be the same as that determined in (a).

P2.3. Figure P2.1 shows a schematic diagram of the five-element Windkessel
model that has been used to approximate the hemodynamic properties of
the arterial tree. The model consists of a distensible (as illustrated by the
two-ended arrows) aorta and a lumped representation of the rest of the
arterial vasculature. The latter is modeled as a simple parallel combination
of peripheral resistance RP and peripheral compliance CP. The mechanical
parameters pertinent to the aortic portion are (a) the compliance of the aortic
wall Cao, (b) the viscous resistance of the aortic wall Rao, and (c) the
inertance to flow through the aorta, Lao. Note that resistance to flow in the
aorta is considered negligible compared to RP. Construct the electrical

FIGUREP2.1 Schematic representation of thefive-elementWindkesselmodel
of aortic and arterial hemodynamics.
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analog of this model and derive the transfer function and equivalent state-
space model relating aortic pressure Pao to aortic flow Q.

P2.4. A somewhat different version of linear muscle mechanics from that
displayed in Figure 2.7 is shown in Figure P2.2. Here, the elastic element
CP is placed in parallel to the viscous damping elementR and the contractile
element, and the entire parallel combination is placed in series with the
elastic element CS and the lumped representation of the muscle mass m.
Derive an expression for the transfer function relating the extension of the
muscle x to an applied force F. Convert this transfer function description
into the equivalent state-space model.

FIGUREP2.2 Alternativemodel ofmusclemechanics that includes the effect of
muscle mass.

P2.5. Figure P2.3 displays the equivalent circuit of a short length of squid axon
according to the Hodgkin–Huxley model of neuronal electrical activity.
The elements shown as circles represent voltage sources that correspond
to the Nernst potentials for sodium, potassium, and chloride ions. The
resistances are inversely proportional to the corresponding membrane

FIGURE P2.3 Hodgkin–Huxley model of the electrical properties of nerve
membrane.
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conductances for these three types of ions, while C represents membrane
capacitance.

(a) Derive the Hodgkin–Huxley equation, that is, the differential equation
that relates the net current I flowing through the membrane to the
applied voltage V across the membrane.

(b) Develop themechanical analog of this electrical circuit. Briefly explain
why the various system elements are placed in series or parallel.

P2.6. The time-domain response of a mechanoreceptor to stretch, applied in the
form of a step of magnitude x0 (in arbitrary length units), is

�5tV t� � � x0 1 � e u t� �
where the receptor potential V is given in millivolts and u(t) is the unit step
function (u(t)= 1 for t> 0 and u(t)= 0 for t< 0) and time t from the start of
the step is given in seconds. Assuming the system to be linear:

(a) Derive an expression for the transfer function of this system.

(b) Determine the response of this system to a unit impulse.

(c) Determine the response of this system to a unit ramp.

P2.7. A linear dynamic system is represented by the following state-spacemodel:

dz � Az � Bx �2 �9
dt ; where A � ;

1 0y � Cz

5 z1
B � ; C � 0 1 ; z �

0	 z2

where y is the observed output, x is the input, and z is the state vector. Derive
the transfer function (input= x, output= y) for this system.

P2.8. Figure P2.4 displays a lumped-parameter mechanical model (known as the
“Burger” model) of a strip of viscoelastic material. The model consists of
two linear springs (with compliances CS and CP) and two linear dashpots
(with mechanical resistances RS and RP). If F is the tensile force applied to
this strip of material, the model is extended by a displacement x, the left
plate that couples RP and CP is displaced by x1, and the right plate that
couples RP and CP is displaced by x2 (all displacements are relative to the
immovable wall).

(a) Derive the three equations ofmotion (i.e., one forCS, one forCP andRP,
and the third for RS) that characterize the dynamics of this system.

(b) Assuming force to be equivalent to voltage and displacement (exten
sion) to be equivalent to electrical charge, develop the electrical analog
of the Burger model. Provide brief explanations of why certain
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FIGURE P2.4 Lumped-parameter mechanical model of a strip of viscoelastic
material.

components are in series or parallel. Label clearly the electrical
equivalents of CS, CP, RS, RP, F, x, x1 and x2.

P2.9. Figure P2.5 shows the lumped-parameter mechanical model of a block of
tissue extracted from a cancerous mass (mass mm) that is placed on an
elastic platform (platform hasmassmt). The cancerous tissue is being tested
for its mechanical response to a variable force F applied to it. km and b
represent the elastic stiffness and viscous damping, respectively, of the
tissue, whereas kt represents the elastic stiffness of the platform. xm and xt
represent the vibrational displacements of the tissue and platform, respec
tively, in response to F. Note: stiffness= 1/compliance. Ignore the effects
of gravity.

(a) Derive the ordinary differential equations that characterize the dynam
ics of mm and mt.

FIGURE P2.5 Lumped-parameter mechanical model of a block of tissue
extracted from a cancerous mass and placed on an elastic platform.
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(b) Develop the electrical analog of this model. Briefly explain why the
various components are in parallel or series. Label each of the elements
(e.g., km and b).

P2.10. Using the SIMULINK program respm2.slx as the starting point, incor
porate into the respiratory mechanics model the effect of inertance to gas
flow in the central airways (LC). Assume a value of 0.01 cm H2O s2 L�1 for
LC. Keep the values of the other parameters unchanged. Through model
simulations, determine how airflow and tidal volume would vary in
response to sinusoidal pressure waveforms at the airway opening (Pao)
applied at 15, 60, 120, 240, 480, and 960 breaths min�1. To simulate a
subjectwith emphysema, increase lung compliance (CL) to 0.4 L cmH2O

�1
and peripheral airway resistance (RP) to 7.5 cm H2O s L�1. Repeat the
simulations at the frequencies listed above. Compare the frequency depen
dence of the resulting airflow and volume waveforms to those obtained for
the normal subject.
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3
STATIC ANALYSIS OF
PHYSIOLOGICAL SYSTEMS

3.1 INTRODUCTION

Although the primary interest in most studies of physiological control systems is in
the dynamic aspects, a preliminary investigation of steady-state behavior invariably
leads to useful insights. This information can be used subsequently as the basis
for further dynamic analysis. Steady-state measurements are generally easier to
make in physiological systems, and, therefore, this knowledge is usually more
complete than knowledge about the dynamics. As such, it is useful to conduct an
analysis that can demonstrate how the static characteristics of the various compo
nents lead to the steady-state behavior of the overall system. This allows us to verify
our working hypothesis of how these components are interconnected and to
determine whether there may be other factors that need to be included. Steady-
state analysis also allows us to compare the operating characteristics of the system
with and without feedback.

Under normal circumstances, physiological control systems generally operate
within a relatively narrow range. For instance, body temperature hovers around
37 °C, resting arterial bloodPCO2 close to 40mmHg, and cardiac output is generally
about 5 Lmin�1. These are just a few examples of Walter Cannon’s homeostatic
principle at work. How are these equilibrium or steady-state values determined? As
we had discussed in Section 1.3, in an engineering control system, one can always
introduce a reference input that then determines the set point of the system (see

Physiological Control Systems: Analysis, Simulation, and Estimation, Second Edition. Michael C.K. Khoo.
 2018 The Institute of Electrical and Electronics Engineers, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/khoo/controlsystems2e
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Figure 1.1). However, in most physiological systems, it is difficult to identify any
explicit “reference input” signal. We also mentioned previously that the equivalent
of the “comparator” in engineering control systems is generally not found explicitly
in physiology. Instead, negative feedback is embedded into the properties of one of
the system components. It turns out that it is this “embedded” negative feedback
that allows the closed-loop physiological system to determine its steady-state
operating level.

3.2 OPEN-LOOP VERSUS CLOSED-LOOP SYSTEMS

In Chapter 1, we pointed out in a qualitative way the advantage of employing
negative feedback to regulate some selected variable. Here, we will examine this
notion quantitatively. We turn back to the example in Chapter 1 of the simple
control scheme to regulate the temperature of a room in winter with the use of a fan-
heater. The open-loop control scheme is shown in Figure 3.1a. Let us first assume
that the environmental temperature is 0 °C, and that if the fan-heater is not turned on,
the room temperature will also equilibrate to 0 °C.Wewill also assume that the two
subsystems involved, the fan-heater and the room, have linear characteristics. For
the fan-heater, this takes the form of a constant gainGC, so that if a reference voltage

FIGURE 3.1 Analysis of the influence of input fluctuations on the control of room
temperature using (a) open-loop and (b) closed-loop schemes.
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x0 (in volts) is supplied to the fan-heater, the rate at which heat is produced is u0 (in
cal s�1) will be related to x0 by

u0 � GCx0 (3.1)

The addition of heat at this rate to the room in the steady state will equal the rate at
which heat is lost to the cold exterior at the equilibrium temperature of y0 (in °C). y0
will be related to u0 by

y0 � GPu0 (3.2)

where GP is the “gain” of the room. Note that GC and GP will have units of
cal s�1 V�1 and °C s cal�1, respectively. Thus, for the overall open-loop system,
we have

y0 � GCGPx0 (3.3)

Now, assume that there is an unexpected change in input voltage to the fan-heater of
magnitude δx. Ignoring transient effects, the resulting room temperature will
become

y � GCGP�x0 � δx� (3.4)

Subtracting Equation 3.3 from Equation 3.4, we find that the change in room
temperature, δy, is

δy � GCGPδx (3.5)

If we extend this result to the case of the general linear open-loop control system,
Equation 3.5 states that the change in the output or regulated variable is proportional
to the magnitude of the input disturbance. The constant of proportionality is known
as the open-loop gain (OLG), and

OLG � GCGP (3.6)

We turn now to the closed-loop control scheme, illustrated in Figure 3.1b. Here
the room temperature is measured and converted into a feedback voltage (z), which
is subtracted from the reference input. The resulting voltage is used to drive the fan-
heater. We assume the reference input required to support a temperature set point of
y0 °C is xC V. Under set point conditions, the driving voltage will be xC� z0 and,
consequently, the heat output rate of the fan-heater will be

u0 � GC�xC � z0� (3.7)
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As in the open-loop case, the temperature set point will be related to u0 through
Equation 3.2. Therefore, combiningEquations 3.7 and 3.2, the relationship between
y0 and the driving voltage of the fan-heater will be

y0 � GCGP�xC � z0� (3.8a)

But z0 is linearly proportional to y0 through the feedback gain H:

z0 � Hy0 (3.9)

By eliminating z0 from Equations 3.8a and 3.9 and rearranging terms, we obtain the
following result:

GCGPy0 � xC (3.8b)
1 � GCGPH

Comparing Equations 3.8b and 3.3, it is clear that the reference voltage in the open-
loop case, x0, will be different from the reference input voltage in the closed-loop
case, xC. Now, consider the effect of a disturbance of magnitude δx and assuming
this leads to a change in the room temperature by δy, we obtain the following:

GCGPy0 � δy � �xC � δx� (3.10)
1 � GCGPH

Subtracting Equation 3.8b from Equation 3.10 yields

GCGP
δy � δx (3.11)

1 � GCGPH

Thus, by definition, the closed-loop gain (CLG) of the feedback system is

GCGPCLG � (3.12a)
1 � GCGPH

Comparing Equations 3.6 and 3.11, it follows that

OLG
CLG � (3.12b)

1 � OLG � H
SinceGC,GP, andH are all positive quantities, Equation 3.12b implies that CLG is
always smaller than OLG. This means that the incorporation of negative feedback
into a control system can lead to a reduction of the effect of disturbances
on the system. As a result, a closed-loop regulator has a greater ability to maintain
the regulated variable within narrower limits than its open-loop counterpart. In
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addition, a closed-loop servomechanism possesses greater inherent capability of
tracking its prescribed trajectory in the presence of external noise.

In Equation 3.11, note that the degree to which feedback reduces the effect of
disturbances depends on the factor GCGPH. The larger this term, the smaller
the effect of disturbances on the system output. Since GCGPH represents the
product of gains of all system components along the closed loop, it is also known
as the loop gain (LG). Therefore, an increased LG enhances the effectiveness
of the negative feedback. Notice also that, to increase LG, we are not necessarily
limited to increasing the feedback gain H; LG can be increased by increasing one
or more of the gains GC, GP, and H. On the other hand, Equation 3.10 also
implies that although the effect of a constant input disturbance on the operating
level of the controlled variable (y) is attenuated, it is never completely
eliminated unless LG is infinitely high. Therefore, in closed-loop systems
with proportional feedback, there will always be a steady-state error between
the new steady-state operating level (in the presence of the disturbance) and the
previous set point.

3.3 DETERMINATION OF THE STEADY-STATE
OPERATING POINT

In the previous example, the temperature set point was a direct function of a
reference voltage input. We turn now to physiological control systems that
generally do not have an explicitly controlled set point. On the other hand, if
the primary function of the control system is to regulate some physiological
variable, this controlled variable normally will fluctuate within a relatively narrow
range. So, although there is no explicit set point, there is generally a steady-state
operating point. One could also use the term “equilibrium” loosely to refer to the
steady-state operating point. However, in reality, the regulated variable is subjected
to many cyclical influences, such as circadian rhythms, as well as influences
resulting from coupling with other physiological organ systems. Therefore, a true
static equilibrium never really exists.

We consider again the simple model of the muscle stretch reflex discussed in
Section 1.4. However, this time around, we will ignore all dynamic aspects of the
model and assume that we know the steady-state characteristics of all the three
component blocks. These are as illustrated in Figure 3.2. At the level of the spinal
cord, afferent neural discharge frequency fa is converted into efferent discharge
frequency fe through the linear relationship:

f � GCf (3.13)e a

Since a larger increase in efferent neural frequency leads to a greater contraction of
the extensor muscle, the gain of the plant component must be negative. We have
indicated in Chapter 1 that this is where the negative feedback of the closed-loop
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FIGURE 3.2 Block diagram displaying the steady-state characteristics of the muscle
stretch reflex model components.

control system is “embedded,” since there is no physiological component that can
be identified as an explicit “comparator.” Assuming the amount of contraction is
proportional to the increase in efferent frequency, we have the following steady-
state muscle characteristic:

L � L0 � GMf (3.14)e

where L0 is the (hypothetical) muscle length if the efferent nerve is completely
silenced. Finally, we assume that the muscle spindle sends afferent neural impulses
back to the spinal cord in proportion to the length of the muscle, so that afferent
traffic increases when the muscle is stretched:

f a � GSL (3.15)

Given these characteristics and the fact that there is no explicit reference input in this
case, what would be the steady-state operating point of this system?

Figure 3.3 shows in graphical form how this equilibrium level is arrived at.
Here, we have rearranged the graphs of the static characteristics of the three
system components such that they share common axes. The spinal cord (fe versus
fa) graph shares the same fe axis as the muscle (L versus fe) graph and is rotated
90° clockwise, so the fa axis points downward. The spindle (fa versus L) graph is
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FIGURE 3.3 Graphical determination of the steady-state operating point.

rotated 180° clockwise and shares the same axis as the spinal cord graph. If the
spindle were to be somehow isolated from the muscle and stretched by some
artificial means, then both afferent and efferent neural frequencies would
increase with increasing stretch. Thus, if length sensed by the spindle is
equivalent to a muscle length of L1́ (> equilibrium muscle length), the afferent
neural discharge rate sent to the spinal cord would be fa1 (> equilibrium afferent
discharge rate). This induces an efferent neural discharge rate of fe1 (>
equilibrium efferent discharge rate). This increased efferent discharge rate would
produce a contraction of the extensor muscle to length L1 (< equilibrium muscle
length). On the other hand, if the length sensed by the spindle is equivalent to a
muscle length of L2́ (< equilibrium muscle length), the afferent neural discharge
rate sent to the spinal cord would be fa2 (< equilibrium discharge rate) and the
resultant efferent neural discharge rate would be fe2 (< equilibrium discharge
rate). This decreased efferent discharge rate would produce a relaxation of the
extensor muscle to length L2 (> equilibrium muscle length). It follows that at
some point in between these two extremes, these opposing effects will come to a
balance, establishing the steady-state operating level that is the equilibrium
muscle length (L3́ = L3→ fa3→ fe3).
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FIGURE 3.4 The point of intersection (E) between the “muscle” and “spindle+spinal
cord” plots yields the steady-state operating point of the muscle stretch reflex system.

A simpler way of determining the steady-state operating level is shown in
Figure 3.4. Here, we combine Equations 3.13 and 3.15 so that fe is expressed as a
function of L:

f e � GCGSL (3.16)

This, in essence, collapses two graphs (fe versus fa and fa versus L) into one. In
Figure 3.4, Equation 3.16 is plotted on the same axes as Equation 3.14. However,
since L is plotted on the vertical axis, the slope of the line corresponding to
Equation 3.16 is 1/GCGS. Figure 3.4 shows that the equilibrium level (labeled E) is
determined by the intersection between the two plots, since it is only at the
intersection point that both muscle and spindle+spinal cord relationships are
simultaneously satisfied.

The above considerations point to a third but nongraphical way of arriving at the
same answer: simultaneous solution of the algebraic equations represented by
Equations 3.13 through 3.15. Eliminating fa and fe from these three equations, we
obtain the equilibrium solution (L3) for L:

L0L3 � (3.17)
1 � GMGCGS
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Substituting Equation 3.17 into Equation 3.16 yields the equilibrium
solutions (fa3 and fe3) for the afferent and efferent neural discharge frequen
cies, respectively:

f a3 � GSL0
1 � GMGCGS

(3.18)

f e3 � GCGSL0
1 � GMGCGS

(3.19)

3.4 STEADY-STATE ANALYSIS USING SIMULINK

In systems that contain several components, graphical solution of the steady-state
operating point may prove to be somewhat laborious. Furthermore, if these
components are nonlinear, simultaneous solution of the corresponding algebraic
equations could be difficult. In such situations, it may be useful to solve the problem
through numerical means. In this section, we illustrate how a steady-state analysis
may be conducted using SIMULINK.

We turn once again to our simple model of the muscle stretch reflex. In the
present example, however, we will assume a nonlinear relationship to represent L
versus fe for the muscle component:

f 5eL � 1 � (3.20)
0:55 � f 5e

For simplicity, we have scaled all variables involved (L, fa, and fe) to their
corresponding maximum values, so that scaled variables range between 0 and
1. To represent the spindle, we assume another nonlinear expression:

f a � 0:6Le0:5L (3.21)

Finally, for the spinal cord, we will assume a simple linear gain of unity between fa
and fe:

f e � f a (3.22)

For reference purposes, we first deduce the steady-state operating point of this
system using the graphical procedure described in the previous section. Figure 3.5
shows, on the same set of axes, a plot of the muscle characteristics (Equation 3.20)
superimposed against a plot of the combined characteristics of the spindle and spinal
cord (Equations 3.21 and 3.22 combined). The intersection, labeledE, represents the
steady-state operating point of this system; here, L= 0.58 and fe= 0.47.
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FIGURE 3.5 Steady-state solution for muscle stretch reflex model with nonlinear char
acteristics. The equilibrium point is labeled E.

The SIMULINK implementation of the above model, named msrflx.slx, is
shown in Figure 3.6. The three system components, representing the spinal cord,
muscle, and spindle, are linked together in a closed loop. The spinal cord component
takes the form of a simple linear gain function (with gain= 1). To represent the
nonlinear muscle characteristics, we employ the Fcn block from the User-Defined
Functions sub-library. This block allows us to custom-design any mathematical
relation using MATLAB-styled expressions. The MATLAB expression corre
sponding to Equation 3.20 is

5=�0:55 � u5�1 � u

where u, the default input variable name, represents fe. The same kind of Fcn block
is used to represent the spindle characteristics. Here, the corresponding MATLAB
expression is

0:6 � u � exp �0:5 � u�
where u (again, the default input variable name) now represents L. Since this
SIMULINK implementation solves the system of equations, Equations 3.20
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FIGURE 3.6 SIMULINK program msrflx.slx used for steady-state analysis of the
muscle stretch reflex model.

through 3.22, in an iterative fashion, an “initial guess” of the solution has to be
made. We achieve this by introducing an initial “impulse” into the closed loop.
This is done by using a PulseGenerator block from the Sources sub-library. The
period of the pulse is set to a value (15 s) larger than the duration (i.e., simulation
time= 10 s) for which the simulation will be run. The “impulse” is approximated by
using a very short pulse duration by setting the duty cycle in the PulseGenerator

block to 0.75%. Themagnitude of the pulse can be set to some arbitrary number; we
have chosen a value of unity in this case. A Scope block is positioned to display
how Lwould behave as a function of “time” (which translates into iteration number,
since this is a steady-state and not dynamic analysis). Since we are interested in the
final steady-state operating point, we introduce anXYGraph block to plotL versus fe
at every iteration. Figure 3.7 shows the results of one simulation, using a total
simulation duration of “10 s” and time-step of “0.01 s”. In Figure 3.7a, L can be seen
to start off at its initial condition of “1” and very rapidly converge to its steady-state
solution of 0.58. In Figure 3.7b, where L is plotted against fe, the solution begins at
point (1,1) and follows a straight line trajectory to end at the final steady-state point
where fe= 0.47 and L= 0.58. This solution is consistent with the reference solution
obtained graphically (see Figure 3.5).

In the sections that follow, we will perform steady-state analyses of three
physiological control models. The purpose is not only to show further examples
of the analysis procedures that we have been discussing but also to demonstrate to
the reader that steady-state analysis can yield important insights into the integrative
physiology of the system in question.
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FIGURE 3.7 Sample simulation results from the SIMULINK model of Figure 3.6. (a)
After short initial transient, L settles quickly to its steady-state value of 0.58. (b) L (y-axis) is
plotted against fe (x-axis). Starting from initial conditions at (1,1), the system heads for its
final steady-state operating point at fe= 0.47 and L= 0.58.

3.5 REGULATION OF CARDIAC OUTPUT

The fundamental notion underlying cardiac output regulation was best summarized
by Patterson et al. (1914) in what is commonly called Starling’s law. They stated in
their classic paper that

“the output of the heart is equal to and determined by the amount of blood flowing
into the heart, and may be increased or diminished within very wide limits according
to the inflow.”
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In other words, in the steady state, the venous return, which is determined
primarily by the mechanical properties of the systemic circulation, is always equal
to the cardiac output, which is a function of many factors affecting the pumping
ability of the heart.

3.5.1 The Cardiac Output Curve

The simplest possible model of the heart and systemic circulation is shown in
Figure 3.8. In this simplified model, the component that we will label the “heart”

FIGURE 3.8 Simplified model of cardiac output regulation.
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actually incorporates the combined functional characteristics of the right heart, the
pulmonary circulation, and the left heart. The “heart” is modeled by assuming its
capacitanceCH to vary between two levels. During diastole (the phase of ventricular
relaxation), CH=CD; while during systole (ventricular contraction), CH=CS,
where CD is about an order of magnitude larger than CS. During diastole, the
heart model is connected to the venous side of the circuit, so that CH (= CD) is
“charged up” by the filling pressure, which is equal to the right atrial pressure
(referenced to atmospheric pressure), Pra, minus the pleural pressure Ppl (which, in
the intact subject, is negative relative to the atmosphere). Thus, at the end of
diastole, the volume of blood in the heart would be

(3.23)VHD � CD Pra � Ppl

During systole, the switch S takes on its other position, connecting the variable
capacitor to the arterial side of the circuit, allowing the capacitor to “discharge” into
the systemic circulation. Therefore, at the end of systole, the volume of blood in the
heart becomes

� CSPA (3.24)VHS � CS PA � Ppl

The approximation in Equation 3.24 is valid because PA is much larger than Ppl in
magnitude. The difference between the end-diastolic volume and the end-systolic
volume is the amount of blood ejected in one beat, that is, the stroke volume SV:

� CSPA (3.25)SV � VHD � VHS � CD Pra � Ppl

But the volume of blood pumped out in each beat multiplied by the number of beats
that occurs per unit time (f), that is, the heart rate, must equal the cardiac outputQC:

QC � f � SV (3.26)

Substituting Equation 3.25 into Equation 3.26, we obtain the following relationship:

CSPAQC � f CD Pra � � Ppl (3.27)
CD

Equation 3.27 states that cardiac output increases proportionally with right atrial
pressure (known as “preload”) but decreases with increasing arterial pressure
(known as “afterload”). Also, note that, since QC cannot be negative, cardiac
output becomes zero when

CSPAPra � � Ppl (3.28)
CD
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SinceCS�CD andPpl is negative, it follows that in the intact subject, cardiac output
decreases to zero when Pra takes on slightly negative values. This also means that
even when Pra= 0, there remains a substantial cardiac output. In Equation 3.27,QC

increases linearly with Pra without bound. This, of course, cannot be possible
physiologically. The degree of diastolic filling is limited beyond a certain point by
factors such as increasing stiffening of heart connective tissue and the size
restrictions imposed by the pericardial sac. Thus, we impose a threshold limitation
on QC so that

� f CD P∗ � C

C
SP

D

A � Ppl (3.29)raQC � QCmax

whereP∗ is the value ofPra abovewhichQC cannot increase any further. The plot ofra
QC against Pra is known as the cardiac output curve or cardiac function curve.
Figure 3.9 displays the form of the cardiac output curve, as predicted by our simple
model. Note that an increase in heart rate or sympathetic stimulation leads to an
elevation in the slope of the curve as well as an increase in QCmax. Conversely,
parasympathetic stimulation, a decrease in heart rate, or the presence of myocardial
damage due to heart disease leads to a reduction in slope and a decreased QCmax

(Figure 3.9a). Opening the chest wall eliminates the negative intrapleural pressure
and therefore shifts the cardiac output curve to the right, without increasingQCmax.
On the other hand, breathing into a chamber held at negative pressure reduces
intrapleural pressure further, thereby shifting the cardiac output curve to the left
(Figure 3.9b). Again, in this case, QCmax is not affected.

3.5.2 The Venous Return Curve

We now turn our attention to the systemic circulation part of the model. The
resistance and capacitance of the arterial vasculature are modeled as lumped
elements RA and CA, respectively. Similarly, we also lump the resistance and
capacitance of the venous vasculature into the elements RV and CV, respectively.
The total resistance of the capillaries is incorporated into RA, while the capacitance
of the capillaries is neglected since it is much smaller than CA or CV. We first
consider the hypothetical situation where there is no blood flow. Under this
condition, pressures throughout the systemic circulation would be equilibrated.
However, due to thefinite capacitance of the combined vasculature, this equilibrium
pressure would not be zero but would take on a positive value (∼7mmHg). This is
called themean systemic pressure (Pms) ormean circulatory pressure. If the volume
of blood in the arterial vasculature is VA and the volume of blood in the venous
vasculature is VV, then

VA � VVPms � (3.30)
CA � CV
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FIGURE 3.9 Cardiac output curves. (a) Factors that affect slope and position. (b) Factors
that affect only position.

Now, consider the situation where blood is flowing through the systemic circula
tion at the volumetric rateQR. Under steady-state conditions, the arterial pressurePA

and venous pressure PV will be related to QR through Ohm’s law (see Figure 3.8):

PA � QR�RA � RV� � Pra (3.31)

PV � QRRV � Pra (3.32)

However, since VA and VV remain the same regardless of whether there is blood
flow or not, these volumes will be related to PA and PV, respectively, through the
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following equations:

VV � CVPV (3.33)

VA � CAPA (3.34)

Substituting Equation 3.31 through 3.34 into Equation 3.30 yields the result:

CAQR�RA � RV� � CAPra � CVQRRV � CVPraPms � (3.35a)
CA � CV

Rearranging terms in Equation 3.35a, we obtain the following expression that
relates QR to Pra:

Pms � PraQR � (3.35b)
RACARV �

CA � CV

One should be reminded that Equation 3.35b describes howQR would vary with
Pra in the systemic circulation only: This is equivalent to a hypothetical situation in
whichwe have “disconnected” the heart from the systemic circulation andwherewe
are now concerned only with the input–output characteristics of the latter.
The significance of Equation 3.35b is that it tells us what the cardiac output would
be, given the mechanical properties of the systemic circulation, the total blood
volume (which determines Pms), and right atrial pressure. We could also use
Equation 3.31 to make this prediction, but we would need to know arterial blood
pressure also. For example, if we wanted to know howQR would change if RAwere
doubled, it would be more difficult to deduce the answer from Equation 3.31, since
PAwould also be changed.On the other hand, in Equation 3.35b,Pms is independent
of this change; so if we know Pra and the other mechanical properties of the
circulation, QR can be determined simply.

The venous return curve, described by Equation 3.35b and illustrated in
Figure 3.10, shows that QR varies linearly with Pra but with a negative slope, so
that as Pra becomes more positive, QR decreases. However, the range of Pra over
whichEquation 3.35b remains valid is limited.WhenPra becomes equal to or higher
than Pms, no flow occurs. At the other end of the spectrum, when Pra decreases to
approximately�4mmHg or below,QR does not increase any further. This is due to
the collapse of the veins in the thoracic cavitywhen the intramural pressures become
lower than intrathoracic pressure. The slope of the linear part of the venous return
curve is a function of the mechanical properties of the circulation. Systemic
vasoconstriction, which increases peripheral resistance, lowers this slope, while
vasodilation increases it (Figure 3.10a). The effect of an arteriovenous (A-V)fistula,
which represents a “short-circuiting” of the systemic circulation, is to produce a
large increase in slope of the venous return curve. On the other hand, factors that
alter Pms act only to shift the venous return curve to the right (increased Pms) or left
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FIGURE 3.10 Venous return curves. (a) Factors that affect slope. (b) Factors that affect
position.

(decreased Pms) without altering its slope (Figure 3.10b). An increase in total blood
volume (e.g., due to transfusion) would raise Pms and thus shift the venous return
curve to the right, while a decrease in blood volume due to hemorrhage would have
the opposite effect. Increased vasomotor tone, which decreases the arterial and
venous compliances, would also raise Pms.

Equation 3.35b points to an important model prediction that initially may
appear counterintuitive. Since CV is generally about 18 times as large as CA,
Equation 3.35b may be approximated by

Pms � PraQR � (3.36)RARV �
19
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Theaboveequation implies that a change inRVwouldhave amuch larger effecton
venous return than a change in RA of the same magnitude, whereas one would
generally think otherwise, since RA is much larger than RV. The reason for this
apparent paradox is that when venous resistance is raised,PV does not increasemuch
because of the largevenouscapacitance; thus, the increase indrivingpressure is small
compared to the increase in resistance and, consequently, blood flow is dramatically
reduced. On the other hand, when RA is increased, PA also increases substantially
because of the relatively small arterial compliance. As a result, venous return is not
decreased as much. This kind of initially counterintuitive result is encountered
frequently in modeling and underscores the fact that, when several variables are
involved inaproblem,only thesystematicapproachinherent inamathematicalmodel
will allowus tomakepredictions that areconsistentwithourunderlyingassumptions.

3.5.3 Closed-Loop Analysis: Heart and Systemic Circulation Combined

Starling’s law is the consequence of connecting the “heart” and “systemic circula
tion” components of the model together and allowing the system to operate in
closed-loop mode (Guyton et al., 1973). We assume the following parameter
values, which have been chosen so that the model provides a first approximation
to the human cardiovascular system under normal resting conditions: f=
72 beats min�1, CD= 0.035 LmmHg�1, CS= 0.0007 LmmHg�1, Ppl=�4mmHg,
RA= 19.2mmHgmin L�1, RV= 0.4mmHgmin L�1, CA= 0.028 LmmHg�1,
CV= 0.5 LmmHg�1, Pms= 7mmHg, PA= 100mmHg. Under such conditions,
the cardiac output and venous return curves are as shown in Figure 3.11a. The
intersection between the two curves yields the steady-state operating point labeled
N. This is established at a cardiac output of 5 Lmin�1 and Pra of 0mmHg.

Using this model, can we predict what cardiac output would be duringmoderate
exercise? At the onset of exercise, the tensing of the muscles involved plus an
increase in venomotor tone produces a decrease in venous compliance, thereby
raisingPms. Sympathetic stimulation leads subsequently to an increase in heart rate,
which elevates the slope of the cardiac output curve and increased vasomotor tone.
Then, local vasodilation of the muscular vascular beds produces a marked decrease
in peripheral resistance. In this example, we have assumedCA,CV,RA, andRV each
to decrease by 40% and f to increase by 40%. These changes affect the cardiac
output and venous return curves in the manner shown in Figure 3.11b, with the new
condition being represented in the form of dashed curves. The new steady-state
cardiac output is now increased to∼10.5 Lmin�1, twice the resting value, while Pra

remains relatively unchanged (point E). These predictions are consistent with
empirical evidence. Note, however, that the bulk of the increase in cardiac output
has come about as a result of changes in the systemic circulation: If the latter were to
remain at its original state, cardiac output would increase only fractionally by less
than 1 Lmin�1 (point E∗

). This somewhat unexpected result is yet another excellent
example of howmathematical modeling can lead us to a conclusion that would have
been difficult to predict otherwise.
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FIGURE 3.11 Steady-state closed-loop analysis of cardiac output regulation during (a)
normal resting conditions, (b) moderate exercise, and (c) compensated heart failure.

In Figure 3.11c, the model is used to predict the steady-state values of cardiac
output and Pra in heart failure following myocardial infarction. To represent the
reduction in effectiveness of the heart as a pump, we assume thatCS is increased and
CD is decreased by 30%. Thus, the ratio CS/CD is increased from 0.02 to 0.05.
According to Equation 3.27, this decreases the slope of the cardiac output curve and
shifts zero-flow intercept to the right by approximately 3mmHg. If thiswere the only
effect of heart failure, cardiac output would decrease by 40% to about 3 Lmin�1
(point F

∗
). At the same time, Pra would rise by ∼3mmHg. Fortunately, the body

generally compensates for this decreased cardiac output by reducingurine output and
thus retaining body fluid. This raises blood volume so that Pms increases, thereby
shifting the venous return curve to the right. The net effect of these compensatory
changes,which usually occur over aweek, is to restore cardiac output back toward its
normal level. In this example, the steady-state cardiac output following compensa
tion falls just short of 5 Lmin�1. Pra is now ∼4mmHg higher than normal.

3.6 REGULATION OF GLUCOSE INSULIN

We turn to another example of a physiological control system with negative
feedback: The system that regulates blood glucose levels. When plasma glucose
levels are elevated, insulin secretion is stimulated. This raises the level of insulin in
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FIGURE 3.12 Schematic representation of the processes involved in the regulation of
glucose and insulin.

the blood, which increases the uptake of blood glucose by the tissues. The increased
outflow of glucose from the blood and interstitial fluid leads to a decrease in glucose
concentration, which subsequently produces a reduction in insulin secretion.

The model we will introduce in this section was first proposed by Stolwijk and
Hardy (1974). Themodel assumes that the total volumeof blood and interstitialfluids
is represented by a single large compartment, and that the steady-state concentration
of glucose in this compartment is x (in units ofmgmL�1). For this level of x to remain
constant, the total inflow of glucose into the compartment must equal the total
outflow from the compartment. Figure 3.12 shows a schematic representation of the
main processes that affect this balance. Under normal circumstances, glucose enters
the blood through absorption from the gastrointestinal tract or through production
from the liver. We assume this input flow rate to be QL (in mg h�1). There are three
major ways through which glucose is eliminated from the blood:

a) When x is elevated beyond a certain threshold (θ), glucose is excreted by the
kidneys at a rate proportional to the gradient between x and θ:

Renallossrate � μ�x � θ�; x > θ (3.37a)

Renal loss rate � 0; x � θ (3.37b)
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b) Glucose leaves the blood to enter most cells through facilitated diffusion. In
some tissues, the rate of glucose utilization depends only on the extrac
ellular-to-intracellular concentration gradient. In most circumstances, we
can ignore the intracellular concentration. Thus, we have

Tissueutilizationrate insulin-independent� � � λx (3.38)

c) In certain types of cells, such as those in muscle and adipose tissue, insulin
helps to stimulate this facilitated diffusion process. Therefore, the rate at
which glucose is taken up by these cells is proportional to x as well as to the
blood insulin concentration y:

Tissueutilizationrate insulin-dependent� � � vxy (3.39)

In the above equations, μ, λ, and ν are constant proportionality factors.

Equating the inflow to the sum of the three outflows, we obtain the following
mass balance equations for blood glucose:

QL � λx � vxy; x � θ (3.40a)

QL � λx � vxy � μ�x � θ�; x > θ (3.40b)

Note that in the above equation, a strong nonlinearity in the form of the product of x
and y is introduced, alongwith the thresholding nonlinearity that defines one regime
above θ and one below it. Also, the negative feedback in this control system is
clearly embedded in the characteristics described by Equations 3.40a and 3.40b:
Since QL is a constant, an increase in x must lead to a corresponding decrease in y,
and vice versa.

A similar mass balance can be established for blood insulin. Insulin is produced
by the pancreas at a rate dependent on the plasma glucose level. However, if x falls
below a certain threshold (φ), insulin production ceases. Thus, we have

Insulinproductionrate � 0; x � φ (3.41a)

Insulinproductionrate � β�x � φ�; x > φ (3.41b)

Insulin is destroyed through a reaction involving the insulinase enzyme, at a rate
proportional to its concentration in blood:

Insulindestructionrate � αy (3.42)

Combining Equations 3.41 and 3.42, we obtain the following equations relating the
steady-state level of y to that of x:

y � 0; x � φ (3.43a)

y � β

α
x � φ� �; x > φ (3.43b)
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Therefore, aside from the threshold nonlinearity, the insulin response to glucose is
basically linear.

The steady-state level of glucose and insulin in the blood under a given set of
conditions can be predicted from this model by solving Equations 3.40 and 3.43
simultaneously. As we have shown in the regulation of cardiac output example,
graphical analysis is useful in providing not only the steady-state solution but also
substantial insight into the overall problem. In Figure 3.13a, the steady-state insulin
concentration (in milliUnits per mL blood) is plotted against the steady-state blood
glucose concentration (in mgmL�1). The insulin response to glucose is shown as

FIGURE 3.13 Steady-state analysis of glucose regulation under (a) normal conditions,
(b) type-1 diabetes, and (c) type-2 diabetes.
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the bold curve, while the lighter curve reflects the glucose mass balance equation.
The parameter values employed in this calculation correspond to the normal adult:
θ= 2.5mgmL�1, μ= 7200mL h�1, λ= 2470mL h�1, ν= 139,000mU�1 h�1,
φ= 0.51mgmL�1, β= 1430mUmlmg�1 h�1, α= 7600mL h�1, and QL= 8400
mg h�1. The intersection of the glucose and insulin curves yields the steady-state
operating point labeledN, where the glucose concentration is 0.81mgmL�1 and the
insulin concentration is 0.055mUmL�1.

Themodel is used next to predict the steady-state operating levels of glucose and
insulin that would arise from diabetes. In type-1 or insulin-dependent diabetes, the
main defect is in the inability of the islet cells in the pancreas to produce sufficient
insulin. The most common form of this disorder begins in childhood and, for this
reason, is frequently called juvenile-onset diabetes. The other form begins in
adulthood and is known as ketone-prone diabetes. We can model this condition
by lowering the sensitivity of the insulin response to glucose, β. Figure 3.13b
demonstrates the effect of reducing β to 20% of its normal value. The new steady-
state operating point is now established at D1, resulting in a highly elevated blood
glucose concentration of 1.28mgmL�1 and a depressed plasma insulin concentra
tion of 0.029mUmL�1.

Type-2 diabetes is also referred to as noninsulin-dependent diabetes, since here
the pancreas may be making normal amounts of insulin. However, for reasons that
remain unclear, there is a drastic reduction in the ability of insulin to stimulate
glucose uptake by the body tissues. We model this condition by changing the
value of the parameter ν, which is the constant that multiplies the product of x and
y in the glucose mass balance equation. The insulin response to glucose may
remain normal or may decrease. In Figure 3.13c, however, we have reduced ν to
20% of its original value while leaving the insulin curve unchanged. This change
produces a shift of the glucose curve away from the origin as well as a steepening
in local slopes. The new equilibrium point is established atD2, where the glucose
concentration is elevated to 1.29mgmL�1. A somewhat counterintuitive result is
that the steady-state insulin concentration now is actually almost three times
higher than normal, at a level of 0.146mUmL�1. Thus, in this case, treatment
with insulin clearly would not be useful.

3.7 CHEMICAL REGULATION OF VENTILATION

The final example that we will consider in this chapter is the chemoreflex regulation
of respiration. In normoxic conditions, breathing is controlled almost exclusively
by the level of CO2 in the arterial blood. In fact, ventilation is highly sensitive to
PaCO2, the partial pressure of CO2 in arterial blood. A rise inPaCO2 by 1mmHg from
its normal level of approximately 40mmHgmay increase the ventilatory output by a
third of its resting level. However, upon ascent to altitude or during inhalation of a
gas mixture containing lowO2 content, there is an additional drive to breathe due to
hypoxia. This hypoxic drive becomes noticeable when the partial pressure of O2 in



79CHEMICAL REGULATION OF VENTILATION

arterial blood, PaO2, drops below 70mmHg. Since the metabolic consumption rate
of O2 and the metabolic elimination rate of CO2 are relatively constant in the steady
state, a higher level of ventilationwould lead to an increase inPaO2 and a decrease in
PaCO2, which in turn would lower ventilation. Therefore, the “negative” part of this
negative-feedback system is embedded in the gas exchange characteristics of the
lungs. The simple model that we will analyze is depicted in block diagram form in
Figure 3.14a. The ventilatory control system is divided into two components: the
gas exchanging portion and the respiratory controller. An important distinction
between this model and the previous models that we have analyzed is that the

FIGURE 3.14 (a) Steady-state model of the chemical regulation of ventilation. (b) Model
of steady-state CO2 exchange in the lungs. (c) Model of steady-state O2 exchange in the
lungs.
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components are either dual-input-single-output (controller) or single-input-dual
output (lungs) systems.

3.7.1 The Gas Exchanger

The gas exchanging component involves a combination ofmany processes that take
place in the lungs, vasculature, and body tissues. However, as a first approximation,
we will restrict our attention only to gas exchange occurring in the lungs. The
operating characteristics of the gas exchanger are obtained by deriving the mass
balance equations for CO2 and O2. We begin by considering CO2 exchange, which
is depicted schematically in Figure 3.14b. We assume the metabolic CO2 produc
tion rate to be VCO2 ; this is the rate at which CO2 is delivered to the lungs from the_

blood that is perfusing the pulmonary circulation. In the steady state, thismust equal
the net flow of CO2 exiting the lungs in gas phase. The latter is equal to the
difference in volumetric fraction (or concentration) of CO2 in the air entering
(FICO2) and leaving (FACO2) the alveoli multiplied by the alveolar ventilation VA._

_The alveolar ventilation represents that portion of the total ventilation, VE, that
_actually participates in the gas exchange process. Part of VE is “wasted” on

ventilating the non-gas-exchanging airways in the lungs; this flow is known as
“dead space ventilation,” VD. Thus, we have_

VA � VE � VD (3.44)

and the CO2 mass balance:

_ (3.45)VCO2 � kV_ A FACO2� FICO2

In Equations 3.44 and 3.45, the ventilatory flow rates are generally measured in
BTPS (body temperature pressure saturated) units, while the CO2 metabolic
production rate is usually expressed in STPD (standard temperature pressure
dry, that is, at 273Kand760mmHg) units. The constant k allows volumes andflows
measured in BTPS units to be converted into STPD units. This conversion is
achieved by using the ideal gas equation:

VSTPD760 VBTPS�PB� 47�� (3.46a)
273 310

The above equation assumes body temperature to be 37 °C or 310K and a saturated
water vapor partial pressure of 47mmHg at that temperature. PB represents the
barometric pressure under which the gas exchange process is taking place; at sea
level, this is 760mmHg, but the value decreases with ascent to high altitude. Upon
rearranging Equation 3.46a, we obtain the following expression for k:

VSTPD PB� 47
k � � (3.46b)

VBTPS 863
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The volumetric fractions FICO2 and FACO2 can be converted into their correspond
ing partial pressures PICO2 and PACO2 using Dalton’s law:

PICO2 � FICO2 �PB � 47� (3.47a)

PACO2 � FACO2 �PB � 47� (3.47b)

Therefore, using Equations 3.46b, 3.47a, and 3.47b in Equation 3.45 yields the
following result:

_863VCO2PACO2 � PICO2 � (3.48)
_VA

_Equation 3.48 shows a hyperbolic relation between PACO2 and VA, and for this
reason it is commonly referred to as the metabolic hyperbola. By employing the
same kind of mass balance analysis (see Figure 3.14c), a similar “metabolic
hyperbola” can be deduced for O2:

863V_ O2PAO2 � PIO2 � (3.49)
_VA

The negative sign in Equation 3.49 accounts for the fact that O2 is removed from the
lungs by the perfusing blood and, therefore, the alveolar O2 content (PACO2) will
always be lower than the inhaled O2 content (PIO2).

A further assumption that we will make in this model is that the alveolar partial
pressures are completely equilibrated with the corresponding arterial blood gas
partial pressures, that is,

PaCO2 � PACO2 (3.50a)

PaO2 � PAO2 (3.50b)

This is approximately true in normals, although for O2 there is an alveolar–arterial
gradient of 5mmHg or more. However, in patients with lung disease, ventilation–
perfusionmismatch can give rise to rather substantial gradients between the alveolar
and arterial partial pressures.

Apart from the shared value of VA, Equations 3.48 and 3.49 appear to suggest_

that CO2 and O2 exchange are independent of each other. This, however, is a
consequence of limiting our considerations only to the exchange processes that
occur in gas phase. For more realistic modeling, it is essential to incorporate the
blood–gas dissociation relationships for CO2 and O2, as well as considerations of
gas exchange at the level of the body tissues. For instance, CO2 affects the affinity
with which O2 is bound to hemoglobin (Bohr effect), and the level of oxygenation
affects the blood CO2 concentration at any given partial pressure (Haldane effect).
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At the level of cellular metabolism, the rate at which CO2 is produced for a givenO2

consumption rate depends on the type of nutrient being oxidized. Fortunately, the
effects of these complications on the final predictions of the alveolar or arterial
partial pressures are not very large.

3.7.2 The Respiratory Controller

The controller part of the system includes chemoreceptors, neuronal circuits in the
lower brain involved in the generation of the respiratory rhythm aswell as the neural
drive to breathe, and respiratory muscles. The controller response to CO2 has been
shown to be linear over the physiological range. In the absence of vigilance, such as
during sleep, the controller output falls rapidly to zero (i.e., central apnea occurs)
when PaCO2 decreases slightly below normal awake resting levels. Exposure to
hypoxia (i.e., when PaO2 decreases below 100mmHg) leads to an increase in the
CO2 response slope as well as in the ventilatory controller output. Hence, there is a
strong interaction between CO2 and O2 at the level of the controller. Cunningham
(1974) modeled the ventilatory controller output (VC) as the sum of an O2_

independent term and a term in which there is a multiplicative interaction between
hypoxia and hypercapnia:

_VC � 1:46 � 32
PaO2� 38:6

PaCO2� 37 ; PaCO2 > 37 (3.51a)

_VC � 0; PaCO2 � 37 (3.51b)

Note that the above expression becomes progressively less valid asPaO2 approaches
the asymptote value of 38.6, in which case VC would become infinitely large. As_

pointed below, precautions have to be taken to ensure thatPaO2 does not fall below a
physiologically realistic range.

3.7.3 Closed-Loop Analysis: Lungs and Controller Combined

_
_
In the closed-loop situation, the controller output VC would equal the ventilation
VE, driving the gas exchange processes for CO2 and O2, as shown in Figure 3.14a.
To obtain the steady-state operating point for the closed-loop system, Equations
3.48 through 3.51must be solved simultaneously. As we have done previously, it is
possible to arrive at the solution through graphical analysis. However, since three
variables (VE, PACO2, and PAO2) are involved, both graphical and algebraic_

methods of solution can be quite laborious. Thus, in this case, we resort to a
numerical approach using SIMULINK.

Figure 3.15 displays the layout of the SIMULINK model file respss.slx that
allows the solution of the steady-state ventilatory control equations. Basically, the
program simulates the closed-loop system in “open-loop mode.” A Repeating

Sequence block (labeled “VdotEin Input Ramp”) is used to generate a linearly
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increasing sequence ofVE values. EachVE value is fed into Equations 3.48 and 3.49
so that correspondingPACO2 andPAO2 values are generated. Each pair ofPACO2 and
PAO2 values is subsequently used in Equations 3.50 and 3.51 to generate
the corresponding ventilatory controller output, VC (labeled “VdotEout” in_

_Figure 3.15). The initially low VE values would produce high PACO2 and low
_PAO2 levels, whichwould act on the controller to produce highVC values.However,

as VE increases, chemical drive levels would decrease, in turn, decreasing VC.
The steady-state equilibrium point is established at that combination of PACO2

and PAO2 values where VE level becomes equal to VC. A relational operator block
is incorporated to check for this condition and to stop the simulation when the
condition is satisfied. The steady-state values of VE, PACO2, and PAO2 are saved to_

the MATLAB workspace in the scalar variables “vent”, “paco2,” and “pao2,”
respectively. An important point to note is that we included a “saturation block
to limit the allowable range forPAO2. This ensures thatPAO2would not fall to a point
where the O2-dependent term in the controller becomes infinite or negative,

FIGURE 3.16 Results of SIMULINK simulations to determine the steady-state operating
point during (a) normoxia (PIO2= 150mmHg) and (b) inhalation of 15% O2 mixture
(PIO2= 107mmHg). Left panels:Ventilatory controller output versus ventilation in Lmin�1
(simulation is terminated when they become equal). Right panels: Corresponding trajectory
of PAO2 versus PACO2 in mmHg.
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The results of two SIMULINK simulations are shown in Figure 3.16. In case A,
PIO2 is set equal to 150mmHg (i.e., 21% room air), whilePICO2 is set equal to 0.Due
to the initially low VE value, PACO2 and PAO2 are initially ∼67 and ∼65mmHg,_

respectively,whileVC is higher than 20 Lmin�1.AsVE increases,PACO2 decreases,
whilePAO2 rises andVC falls. The simulation is terminatedwhenVC becomes equal
to VE. This occurs at VE =VC = 6 Lmin�1, PACO2= 40mmHg, and PAO2=
100mmHg. In case B, we simulate a subject inhaling a gas mixture containing
only 15% O2 or, equivalently, a subject ascending to an altitude of 8500 ft. Thus,
PIO2 is set equal to 107mmHg, while PICO2 is left at 0. As before, the initial value of
PACO2 is in the high 60s, whilePAO2 is consistent with a value lower than 40mmHg.
However, due to the effect of the saturation block, PAO2 is not allowed to fall below
40mmHg. The final equilibrium point is established at VE = 6.1 Lmin�1,_

PACO2= 39, and PAO2= 58.3. These two examples demonstrate quite clearly the
negative feedback nature of respiratory control. Although exposure to hypoxia
tends to produce an additional drive to breathe, the added ventilation blows off CO2

and, consequently, the lower PACO2 acts to offset the hypoxic-induced drive. As a
result, ventilation remains close to its original normoxic level.

The equivalent graphical analyses of cases A andB are presented in Figure 3.17a
and b. The controller responses are depicted as bold curves, while the gas exchange
responses are shown as light curves. The steady-state operating points for
normoxia and hypoxia are labeled N and H, respectively. The two-dimensional
plots do not provide a good sense of the three-dimensional nature of the problem.

FIGURE 3.17 Graphical analysis of the steady-state regulation of ventilation during (a)
normoxia (PIO2= 150mmHg) and (b) exposure to mild hypoxia through inhalation of 15%
O2mixture or ascent to altitude (∼8500 ft). The steady-state operating points are labeledN in
case (a) and H in case (b).
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FIGURE 3.17 (Continued)

For instance, the controller plot shown in the ventilation–PACO2 graph in case A
represents only the PAO2 value of 100mmHg. Similarly, the controller plot shown
in the ventilation–PAO2 graph in case A assumes PACO2 to be 40mmHg. The same
comments apply to the graphs in case B.

PROBLEMS

P3.1. Assume that the block diagram of a temperature-regulating space-suit to
be worn by an astronaut for a mission to Mars is as shown in Figure P3.1.
The variable x represents the external temperature, while y represents the
temperature inside the space-suit. GC is the steady-state gain of the heating/

FIGURE P3.1 Block diagram of the temperature control system of a space-suit.
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cooling device (controller) built into the space-suit, while GP represents the
steady-state gain associated with the thermal characteristics of the astronaut.
H is the gain withwhich the internal temperature is fed back to the controller.
The operating internal temperature (y) is allowed to range from 60 to 100°F.

Assume that GC= 2, GP= 1, and H= 7.

(a) What range of external temperatures can this space-suit be used for, if it
is deployed in open-loop mode?

(b) What is the permissible range of external temperatures when the space
suit is deployed in closed-loop mode?

(c) Based on the results obtained in (a) and (b), what can you conclude about
the effect of negative feedback in this device.

P3.2. Figure P3.2 shows the block diagram of a sophisticated biomedical device
for regulating the dosage of anesthetic gases being delivered to a patient
during surgery. Note that the plant and controller are themselves feedback
control systems.

(a) Derive an expression for the open-loop gain of the overall control
system.

(b) Derive an expression for the closed-loop gain of the overall control
system.

(c) IfG1= 1,G2= 2,H1= 1, andH2= 2, what is the loop-gain of the overall
system?

FIGURE P3.2 Block diagram of the control system of a hypothetical biomedical device.
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P3.3. The cardiac output curve of a heart that has been transplanted into a patient is
given in the following tabular form:

Right atrial 0 1 2 3 4 5 6 7 8 9 10 11 12 13
pressure
(mmHg)

Cardiac 0 0.3 1.0 2.5 4.8 7.0 9.0 10.5 11.0 11.3 11.5 11.6 11.6 11.6
output
(Lmin�1)

Suppose the venous return characteristics of the patient’s systemic
circulation can be expressed in the form of the following equations:

QR � 14; Pra � 0

QR � 14 � 2Pra; 0 < Pra < 7

QR � 0; Pra � 7

(a) Deduce the patient’s steady-state right atrial pressure (Pra) and cardiac
output, assuming the transplant operation has been successful.

(b) What would be the steady-state values for cardiac output and Pra if the
total circulatory resistance were to be doubled?

(c) To counteract the increased circulatory resistance in (b), suppose a
sufficient quantity of blood is transfused into the patient so that mean
systemic pressure is raised by 5mmHg. What would be the new steady-
state values for Pra and cardiac output?

P3.4. Assume the metabolic hyperbola for CO2 given by Equation 3.48, where the
steady-state CO2 production rate is 200mLmin�1 and the inspired CO2

concentration is 0. Also, assume a dead-space ventilation rate of 1 Lmin�1.
Now, suppose the steady-state ventilatory response to CO2 is given by
Equation 3.51, where PaO2 is set equal to 100mmHg.

(a) What are the steady-state values of ventilation and PaCO2?

(b) The onset of sleep shifts the CO2 response curve to the right, so that the
apneic threshold is increased from 37 to 42 mmHg. How would this
affect the steady-state values of ventilation and PaCO2?

(c) How would inhalation of a gas mixture containing 7% CO2 in air affect
the steady-state ventilation and PaCO2 during sleep?

P3.5. Rising suddenly from a reclining to standing position sometimes causes a
feeling of faintness due to a decrease in blood flow to the brain. However,
in the normal person, this is quickly compensated for by adjustments in
the circulation. Although cardiac output and venous return curves reflect
steady-state responses, they remain useful for providing a qualitative
picture of the sequence of events accompanying the change in posture.
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Explain how the cardiac output and venous return curves are affected at
each stage of the response. Also, describe how cardiac output and right
atrial pressure are changed:

(a) Rising suddenly causes extra blood to be stored in the veins of the legs.
(b) The drop in blood pressure is sensed by the baroreceptors, which lead to

an increase in generalized sympathetic outflow. This increases heart rate
and cardiac contractility as well as peripheral resistance.

(c) Finally, venoconstriction restores mean systemic pressure back toward
its normal level.

P3.6. In Figure P3.3, the thin curve represents the glucose response to insulin,
while the bold line represents the insulin response to glucose. In this case, the
subject represented by these curves is a type-1 diabetic patient (one whose
pancreas is unable to produce sufficient insulin), who has high glucose and
low insulin levels.

(a) Deduce what would be the new steady-state operating point for glucose-
insulin, if this patient were to wear an insulin pump that continuously
infuses insulin at a constant rate into his body (independent of blood
glucose level) – Would the new insulin and glucose levels be lower/
higher compared to the operating levels indicated by the filled (dark)
circle in Figure P3.3?Hint:To arrive at your answer, sketch on thefigure
the new “insulin response to glucose” line and/or the new “glucose
response to insulin” curve, consistent with the installation of the insulin
pump, and determine the new equilibrium point.

(b) Next, assume that this patient does not receive insulin therapy. Instead,
he is prescribed a drug that increases his insulin resistance, thus reducing

FIGUREP3.3 Plots showing insulin dependence on glucose concentration (thick line) and
glucose dependence on insulin (thin curve).
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the ability of insulin to stimulate glucose uptake by the body tissues.
What would the new insulin and glucose levels be now, relative to the
original operating levels indicated by the filled (dark) circle? Explain
how you arrived at your answer.

P3.7 Figure P3.4 displays a schematic block diagram of a simplified closed-loop
model of cardiac baroreflex regulation. When blood pressure decreases, the
baroreflexes increase heart rate and cardiac contractility, the combined effect
of which increases cardiac output. The increase in cardiac output subse
quently raises blood pressure via Ohm’s law: cardiac output × systemic
vascular resistance= arterial blood pressure.When blood pressure increases,
the opposite effect occurs. Note that in Figure P3.4a, systemic vascular
resistance is represented by the block labeled “circulatory mechanics.”
Figure P3.4b displays the steady-state characteristics of the baroreflex
and circulatory mechanics.

(a) Which component of the model (“baroreflex” or “circulatory mechan
ics”) does each of the lines A, B, and C represent?

(b) Suppose administering a drug intravenously at a constant infusion rate
leads to vasodilation of the peripheral blood vessel, lowering systemic
vascular resistance. Using the information provided in Figure P3.4b,
determine the preinfusion and postinfusion values of cardiac output and
arterial blood pressure (be sure to indicate which set of values represents
“pre” and which set represents “post”). Briefly explain how you
obtained your answers.

(c) Using Figure P3.4b, estimate what the drop in arterial blood pressure
would be if the infused drug not only lowers vascular resistance but also
blocks the baroreceptors from responding to changes in blood pressure?
Briefly explain how you arrived at your answer.

FIGURE P3.4 Block diagram of simplified closed-loop model of cardiac baroreflex
regulation.
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4
TIME-DOMAIN ANALYSIS OF
LINEAR CONTROL SYSTEMS

4.1 LINEARIZED RESPIRATORY MECHANICS:
OPEN-LOOP VERSUS CLOSED-LOOP

In the previous chapter, we considered how feedback can change the steady-state
behavior of physiological systems. In this chapter, we will explore the basic
concepts and analytical techniques used to quantify the dynamics of linearized
physiological models. We will perform extensive mathematical analyses of models
with first- and second-order dynamics. These are models that one can employ as
“first approximations” to a number of physiological systems. They are useful in
demonstrating the methods of analysis and concepts that can be applied, while
allowing the mathematics to remain at a manageable, nondistracting level.

We consider a simplified version of the linearized lung mechanics model
discussed in Section 2.3. Instead of the several regional resistances and compli
ances, this model contains only one resistance (R) and one compliance (C) element
that represent, respectively, the overall mechanical resistive and storage properties
of the respiratory system. Thus, R represents a combination of resistance to airflow
in the airways, lung tissue resistance, and chest wall resistance. C represents the
combined compliance of lung tissue, chest wall, and airways. In addition, however,
we will also add an inductance element L that represents fluid inertance in the
airways. The electrical analog of this model is displayed in Figure 4.1. Our task is to

Physiological Control Systems: Analysis, Simulation, and Estimation, Second Edition. Michael C.K. Khoo.
 2018 The Institute of Electrical and Electronics Engineers, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/khoo/controlsystems2e
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FIGURE 4.1 Electrical analog of lung mechanics model.

predict how the alveolar pressure PA will respond dynamically to different pressure
waveforms (Pao) applied at the airway opening.

Applying Kirchoff’s first law (see Chapter 2) to the model, we find that the
pressure drop across the entire model must be equal to the sum of all the pressure
drops across each of the circuit elements. Thus,

Pao � P0 � L
dQ � RQ �

C

1
∫Qdt (4.1)

dt

In Equation 4.1,Q represents the airflow rate. A similar expression can be derived to
relate PA to Q:

1
PA � P0 � C ∫Qdt (4.2)

We will reference all pressures to the ambient pressure (i.e., set P0= 0). Combining
Equations 4.1 and 4.2 and eliminating Q from both equations, we obtain

d2PA dPAPao � LC � RC � PA (4.3)
dt2 dt

Equation 4.3 describes the dynamic relationship between Pao and PA. Applying the
Laplace transform to this second-order differential equation yields the transfer
function of the model:

PA� �s 1� (4.4)
Pao� �s LCs2 � RCs � 1

This transfer function is displayed schematically in Figure 4.2a. Note that since PA

is entirely dependent on Pao, this depicts an open-loop configuration.
Let us now consider an alternative situation where we would like to be able to

attenuate the changes in PA as much as possible, for a given set of lung mechanical
parameters and a given imposed change in Pao. In the clinical setting, this is
desirable, since largefluctuations inPA can cause pulmonary barotrauma or damage
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FIGURE 4.2 (a) Lung mechanics model – open loop configuration. (b) Lung mechanics
model – closed-loop configuration.

to lung tissue. In order to “control” PA, it is necessary to measure this variable and
feed the measurement back to the controller. In practice, this can be achieved by
measuring the pressure in themid-esophagus with the use of an esophageal balloon,
since fluctuations in esophageal pressure have been demonstrated to closely reflect
fluctuations in alveolar pressure. Thus, we assume the arrangement shown in
Figure 4.2b, where PA is measured and a scaled representation of this measurement
is fed back and subtracted from the input Pao. This clearly is a closed-loop
configuration and the type of control scheme is known as proportional feedback,
since the feedback variable is proportional to the system output. Reanalysis of the
new block diagram yields the following result:

PA� �s 1� (4.5a)
Pao s � �� � � kPA s LCs2 � RCs � 1

By rearranging terms in Equation 4.5a, we can derive the following expression for
the overall transfer function of the closed-loop system:

PA� �s 1� (4.5b)
Pao� �s LCs2 � RCs � �1 � k�

Equations 4.4 and 4.5b can be generalized to represent both the open- and closed-
loop conditions:

PA� �s 1� (4.6)
Pao� �s LCs2 � RCs � λ

where λ= 1 for the open-loop case, and λ= 1+ k for the closed-loop case.
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4.2 OPEN-LOOP VERSUS CLOSED-LOOP TRANSIENT
RESPONSES: FIRST-ORDER MODEL

In the range of spontaneous breathing frequencies, studies with reasonably realistic
models of respiratory mechanics, such as that by Jackson andMilhorn (1973), have
demonstrated that airway fluid inertance plays a virtually insignificant role in
determining lung pressures and airflow. Thus, under these conditions, we can
ignore inertance effects by setting L to zero. The transfer function in Equation 4.6
then becomes

PA� �s 1� (4.7)
Pao� �s τs � λ

where τ=RC.

4.2.1 Impulse Response

We can obtain the impulse response h1(t) of the first-order system in Equation 4.7
by setting Pao(s) to 1, since we are assuming the input to take the form of a unit
impulse. We also multiply both numerator and denominator of the right-hand side
of Equation 4.7 by 1/τ to reduce it to the standard form:

1=τ
PA s (4.8)� � �

s � λ=τ

Using the table of Laplace transforms in AppendixA, it can be seen that the impulse
response is

1 ��λ=τ�th1� � �t e (4.9)
τ

Thus, the impulse response under both open- and closed-loop conditions is a
simple exponential. Note that the peak of the impulse response is a function only
of τ, which depends on the system parameters R andC, but not of λ, that is, it is the
same value under open- and closed-loop conditions. However, the time constant
of the exponential is τ/λ. Without proportional feedback, this time constant is τ,
since λ is unity. However, with proportional feedback, λ> 1 and, therefore, the
closed-loop impulse response decays faster. Theoretically, the “response time” of
the system can be made infinitely fast if the feedback gain k is raised to an
infinitely high level. A comparison of open- and closed-loop responses is shown
in Figure 4.3a for the case where R= 1 cm H2O s L�1, C= 0.1 L cm H2O

�1, and
λ= 2 (i.e., k= 1).
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FIGURE 4.3 (a) Response of first-order lung mechanics model to a unit impulse. (b)
Response of first-order lung mechanics model to a unit step. Solid and dashed lines represent
the model responses in open-loop and closed-loop modes. Parameter values used: R= 1 cm
H2O sL�1, C= 0.1 L cm H2O

�1, λ= 2.

4.2.2 Step Response

To deduce the response g1(t) of the first-order model to a unit step, we set Pao(s) to
1/s and rearrange Equation 4.7 to obtain

1=τ
P � � � (4.10)A s

s s� � λ=τ�
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Again, the corresponding response in the time domain can be found by taking the
inverse Laplace transform of Equation 4.10 using the table in Appendix A:

1 ��λ=τ�t� � � 1 � e (4.11)g1 t
τ

As in the case for the impulse response, the time constant for the step response is
decreasedwhen proportional feedback is introduced, that is, the closed-loop system
responds faster.Whereas the peak amplitude of the impulse response is not affected
by feedback, the steady-state magnitude of the closed-loop step response is
inversely proportional to λ. Thus, the greater the feedback gain k, the smaller
the steady-state value of the closed-loop step response. This can also be expressed as
the steady-state error ε1, defined as the final (t→1) difference between the input
(which is the unit step function) and the closed-loop step response. Thus, in this
case, ε1 increases as k and λ increase:

1
ε1 jt!1 � 1 � (4.12)

λ

Figure 4.3b compares the step responses of the first-order open- and closed-loop
respiratory mechanics model for the same parameter values as in Figure 4.3a. In the
open-loop case, there is no steady-state error.

4.3 OPEN-LOOP VERSUS CLOSED-LOOP TRANSIENT
RESPONSES: SECOND-ORDER MODEL

We now turn to the more general situation that covers a larger range of respiratory
frequencies. As the rates of change of airflow become larger, so will the effects
derived from fluid inertance L. This brings us back to the second-order model
represented by Equation 4.6.

4.3.1 Impulse Responses

To deduce the impulse response h2(t) of the second-order system, we set Pao(s)= 1
in Equation 4.4, which becomes

1=LC
PA s (4.13)� � �

s2 � �R=L�s � λ=LC

To determine the inverse Laplace transform of Equation 4.13, it is necessary to
evaluate the roots of the quadratic function in s. If we denote the roots by α1 and α2,
then

α1;2 � � �R

2L
R2 λ

4L2 LC
� (4.14)
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Depending on the values of the model parameters, the roots α1 and α2 can be
imaginary, complex, real and equal, or real and different. As we will demonstrate
below, these roots determine whether the model behavior is oscillatory, under-
damped, critically damped, or overdamped. We will consider each of these cases
individually.

4.3.1.1 Undamped Behavior The roots α1 and α2 are imaginary when R= 0, so
Equation 4.13 becomes

1=LC
PA s� � �

s2 � λ=LC
(4.15)

Thus, the roots are

α1 � j
λ

LC
and α2 � �j λ

LC
(4.16)

The inverse Laplace transform of Equation 4.15 is

(4.17)h2 t� � � 1

λLC
p sin

λ

LC
t

Equation 4.17 implies that the response of the model to an impulsive change in Pao

is a sustained oscillation. In the open-loop configuration (λ= 1), the amplitude
and the angular frequency of this oscillation are equal in magnitude, with both
assuming values of (LC)�1/2.. However, in the closed-loop situation, λ> 1, which
lowers the amplitude of the oscillation but increases its frequency. These
responses are shown graphically in Figure 4.4a. In the example displayed,
we have assumed the following parameter values: L= 0.01 cm H2O s2 L�1 and
C= 0.1 L cmH2O

�1. Under open-loop conditions, these parameter values produce
an oscillation of frequency (1000)1/2/(2π) Hz, or approximately, 5 Hz. As in
Section 4.2.1, we again assume the feedback gain k is set equal to unity, so thatp
λ= 2. Then, the closed-loop oscillation amplitude will be 1/ 2 times, or approxi
mately 71%, the oscillation amplitude in the open-loop case. At the same time, thep
oscillation frequency will be 2 times the corresponding value under open-loop
conditions, or approximately 7 Hz.

4.3.1.2 Underdamped Behavior The sustained oscillatory responses in the
previous section are, of course, highly unrealistic, since they require that R be
reduced to zero. Consider now the situation when R is nonzero but small, so that

R2 λ
(4.18)

4L2
<

LC
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FIGURE4.4 Responses of the second-order lungmechanicsmodel to a unit impulse under
open-loop (solid lines) and closed-loop (dashed lines) modes. (a) Undamped responses. (b)
Underdamped responses. (c) Critically damped responses. (d) Overdamped responses.

The term within the square-root operation in Equation 4.14 will become negative,
and, consequently, the characteristic roots α1 and α2 will be complex. Equation 4.13
then becomes

1=LC� � � 2 (4.19)PA s
R λ R2

s � �
2L LC 4L2
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which is easily converted to the standard form:

1=LC� � � 2 (4.20)PA s
R � γ2s �
2L

where

R 4Lλ R
γ � �1 > (4.21)

R2C2L 2L

From Equation 4.14, the characteristic roots of the denominator are clearly

R
α1;2 � � � jγ (4.22)

2L

Applying the inverse Laplace transform to Equation 4.20, we obtain the following
impulse response:

��R=2Lh2� � �t e � �1 �t sin γt (4.23)
LCγ

The above result shows that, in the underdamped situation, the model responds to a
unit impulsewith dynamics that can be described as a damped sinusoid.Note that, in
the limit when R decreases to zero, Equation 4.23 degenerates into the sustained
oscillation represented by Equation 4.17.

How does the incorporation of negative feedback affect this underdamped
response? In the closed-loop situation, λ becomes larger than unity, which increases
γ relative to the open-loop case. This, in turn, reduces the amplitude of the damped
oscillations but increases their frequency. However, the exponential decay term is
unaffected by λ. A graphical comparison of underdamped impulse responses under
open-loop versus closed-loop conditions is displayed in Figure 4.4b. In this
example, the values of L and C are the same as those employed in Section
4.3.1.1. The value of R used here is 0.5 cm H2O s L�1. With these parameter
values, γ = 19.4 in the open-loop case; thus, the frequency of the damped oscillation
is approximately 3Hz. With the incorporation of negative feedback (k= 1, so that
λ= 2), γ � 37.1 so that the damped oscillation frequency becomes approximately
6Hz. At the same time, the amplitude of the damped oscillation in the closed-loop
case is approximately half as large as that in the open-loop case.

4.3.1.3 Critically Damped Behavior IfR is increased further until the following
condition becomes valid:

R2 λ� (4.24)
4L2 LC
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γ will become zero and Equation 4.13 will reduce to

1=LC� � � 2 (4.25)PA s
R

s �
2L

Thus, in this case, the characteristic roots will be real and equal, as shown below:

R
α1;2 � � (4.26)

2L

The inverse Laplace transform of Equation 4.25 yields the impulse response of the
model:

h2� � �t
1

te�t=τc (4.27)
LC

where

2L LC
τc � � (4.28)

R λ

Note that the second part of Equation 4.28 follows directly from the equality
condition expressed in Equation 4.24.

The above results demonstrate that, in the critically dampedmode, all oscillatory
behavior disappears. How is the response affected by the introduction of negative
feedback? Equation 4.28 shows quite clearly that, in the closed-loop configuration
where λ> 1, the single time constant for the exponential decay is shorter compared
to the open-loop case when λ= 1. Thus, as was the case for the first-order model,
proportional feedback increased the speed of response of the system. This compari
son is displayed graphically in Figure 4.4c. However, compared to the open-loop
case, we see from Equation 4.24 that R has to be increased to a higher value before
the damped oscillatory behavior disappears and critical damping is achieved in the
closed-loop system.

4.3.1.4 Overdamped Behavior When R increases above the point at which
critical damping occurs, the following inequality will take effect:

R2 λ
(4.29)

4L2
>

LC

Under these circumstances, the characteristic roots of Equation 4.14 become real
and different:

R
α1;2 � � �1 � μ� (4.30)

2L
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where

4Lλ
μ � 1 � (4.31)

R2C

It follows from the inequality expressed in Equation 4.29 that μ must lie between
zero and unity in Equation 4.31. The resulting expression for PA(s) becomes

1=LC
PA s� � �

s � R

2L
1 � μ� � s � R

2L
1 � μ� �

(4.32)

Consequently, the inverse transform of Equation 4.32 yields

1
h2 t� � �

μRC
e�t=τ1 � e�t=τ2 (4.33)

where

τ1 � 2L
R 1 � μ� � (4.34a)

τ2 � 2L
R 1 � μ� � (4.34b)

Thus, in the overdamped system, the impulse response is composed of two
exponential decay contributions with larger time constant τ1 and smaller time
constant τ2.

To compare the overdamped impulse responses in the closed-loop versus open-
loop cases, we assume the values of L and C employed previously: L= 0.01 cm
H2O s2 L�1 and C= 0.1 L cm H2O

�1. To ensure that the condition described by
Equation 4.29 is met in both open- and closed-loop conditions, we set R= 1 cm
H2O s L�1. Since the “tails” of the impulse responses will be dominated by the
contributionwith the longer time constant, wewill compare only the values of τ1 for
open-loop versus closed-loop conditions. Applying Equation 4.34a, we find that in
the open-loop situation, τ1 is approximately 0.09 s, while in the closed-loop
condition, it is approximately 0.04 s. This comparison is shown in Figure 4.4d.
Therefore, as the previous cases considered, closing the loop here also increases the
speed of response of the system.

4.3.2 Step Responses

To determine the response of our lungmechanicsmodel to a unit step change inPao,
we could apply the same approach that was employed for calculating the step
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response of the first-order model. However, for illustrative purposes, we will
proceed along a somewhat different path by making use of the results that were
derived for the impulse response of the second-order model. The basic principle
employed here is the equivalence betweenmultiplication in the Laplace domain and
convolution in the time domain (Section 2.7). Thus, the step response, represented
in the Laplace domain as

1 1
PA� � �s � (4.35)

LCs2 � RCs � λ s

can be evaluated in the time domain from

t

g2� � �t ∫ h2 σ u t � σ�dσ (4.36)� � �
0

where

u t� � � 1; t > 0 � 0; t � 0 (4.37)

and h(t) represents the impulse response of the model. Inserting Equation 4.37 into
Equation 4.36, the step response can be evaluated as follows:

t

g2 t h2 σ (4.38)� � � ∫ � �dσ
0

The expression shown in Equation 4.38 implies that the step response can be
evaluated by integrating the impulse response with respect to time.

4.3.2.1 UndampedBehavior Integrating Equation 4.17with respect to time, we
obtain

1 λ� � � � cos t � A (4.39a)g2 t
λ LC

where A is an arbitrary constant. Imposing the initial condition PA(0)= 0 on
Equation 4.39a, we obtain the step response for undamped conditions:

1 λ� � � 1 � cos t (4.39b)g2 t
λ LC
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FIGURE 4.5 Responses of the second-order lung mechanics model to a unit step under
open-loop (solid lines) and closed-loop (dashed lines) modes. (a) Undamped responses. (b)
Underdamped responses. (c) Critically damped responses. (d) Overdamped responses.

As in the case for the impulse response, the step input elicits a sustained oscillation
when there is no resistance in the system. Closing the loop increases the frequency
of the oscillation but decreases its amplitude. These responses are shown in
Figure 4.5a.

4.3.2.2 Underdamped Behavior As in the undamped case, we obtain the step
response here by convolving the impulse response described in Equation 4.23 with
a unit step. This turns out to be the same as integrating the impulse response
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with respect to time:
t

��R=2Lg2� � �t e � �dσ1 �σ sin γσ (4.40)
LCγ ∫

0

where γ is given byEquation 4.21. Performing integration by parts and imposing the
initial condition that PA(0)= 0, we obtain the following expression for the under-
damped step response:

1 R��R=2L�t ��R=2L�� � � 1 � e cos � � �γt e t sin γt� � (4.41)g2 t
λ 2Lγ

As can be seen from Figure 4.5b, the damped oscillatory characteristics of this
response are the same as those of the impulse response in both open- and closed-
loopmodes. However, in the steady state, the oscillations become fully damped out
and the response settles to the constant level given by

1
g2�t ! 1� � (4.42)

λ

In Equation 4.42, note that in the open-loop case where λ= 1, the response in PA

settles down to a value of 1, that is, the same as the unit step in Pao. With the loop
closed, however, where λ> 1, the steady-state value of PA is less than unity. Thus,
as it was for the first-order model, the underdamped step response for the second-
order model shows a steady-state error ε2 given by

1
(4.43)ε2 jt!1 � 1 �

λ

4.3.2.3 Critically Damped Behavior We obtain the critically damped response
to the unit step by integrating Equation 4.27with respect to time. After imposing the
initial condition PA(0)= 0, we have

1 �t=τc� � � τ2 � τc�τc � t�e (4.44)g2 t cLC

where τc is defined by Equation 4.28. The step responses for open- and closed-loop
conditions are displayed in Figure 4.5c.As in the case for the corresponding impulse
responses, closing the loop leads to a smaller τc and thus faster speed of response. In
the steady state, as t→1, Equation 4.44 becomes

τ2 1cg2�t ! 1� � � (4.45)
LC λ
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where the second part of the above equation is derived by using Equation 4.28 to
substitute for τc. Thus, the steady-state response to a unit step and the corresponding
steady-state error in the critically damped mode are the same as those in the
underdamped mode.

4.3.2.4 Overdamped Behavior For the overdamped response to the unit step,
we integrate Equation 4.27 with respect to time and impose the initial condition
PA(0)= 0 to obtain

1 �t=τ1 �t=τ2� � � 1 � e 1 � e (4.46)� τ2τ1g2 t
μRC

As in the critically damped case, introducing negative feedback increases the speed
of response. In the steady state, as t→1, we obtain the following result:

τ1 � τ2g2�t ! 1� � (4.47a)
μRC

By substituting for τ1 and τ2 in Equation 4.47a and employing the definition of μ, it
can be shown that this equation reduces to

1
g2�t ! 1� � (4.47b)

λ

Closing the loop gives rise to a steady-state error of the same magnitude as in the
previous step responses. Open- and closed-loop overdamped responses to the unit
step are compared in Figure 4.5d.

4.4 DESCRIPTORS OF IMPULSE AND STEP RESPONSES

4.4.1 Generalized Second-Order Dynamics

The impulse and step responses of both first- and second-order lung mechanics
models have demonstrated that when proportional feedback is introduced, alveolar
pressure changes resulting from perturbations in Pao (the input) are attenuated. The
resulting fluctuations in PA also respond more quickly to changes in Pao under
closed-loop conditions.

In the various impulse and step responses derived for the lung mechanics model
in Section 4.3, it should be pointed out that although the model contained three
physiological parameters (L, C, and R), these parameters always appeared in
combination with one another, for example, LC and RC. Indeed, the transfer
function PA(s)/Pao(s) contains only two free parameters for a given value of k, the
feedback gain; thus, more than one combination of R, C, and L may produce the
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same dynamics. In this section, we will present the system equations for a
generalized second-order model that is characterized by the same dynamics as
the lungmechanicsmodel. In the generalizedmodel, the second-order dynamics are
governed by two independent parameters. A third parameter, the steady-state input–
output gain,GSS is also introduced. In the particular example of the lungmechanics
model, GSS turned out to be unity. In addition, we generalize the input and output
to be x(t) and y(t). Then, denoting the Laplace transforms of x(t) and y(t) by X(s) and
Y(s), respectively, we can convert Equation 4.5a to

Y s� � GSS� (4.48)
X s� � � kY s� � LCs2 � RCs � 1

We can generalize Equation 4.48 further by introducing two new parameters to
substitute for the three redundant parameters: R, L, and C. It will soon become
obvious that these two new parameters provide a highly intuitive description of the
dynamic properties of the model. We begin by considering the undamped open-
loop system (k= 0). As we had shown earlier, the responses to unit impulse or step
took the form of a sustained oscillation. In fact, the angular frequency of the
oscillation represents the highest frequency at which the system will “resonate.”
This frequency is commonly referred to as the natural frequency ωn. From
Equation 4.17, we find that ωn is defined by

1
ωn � p (4.49)

LC

The second new parameter that we will introduce is ζ, defined as

R C
ζ � (4.50)

2 L

Substituting Equations 4.49 and 4.50 into Equation 4.48 and rearranging
terms, it can be easily shown that the overall transfer function for the model now
becomes

Y s� � GSSω2
n� (4.51)

X s� � s2 � 2ζωns � �1 � kGSS�ω2
n

The open- and closed-loop versions of this generalized system are depicted
schematically in Figure 4.6a and b, respectively.

Whether the resulting impulse or step responses are undamped, underdamped,
critically damped, or overdamped depends on the roots of the denominator
in Equation 4.51. It can be seen that this, in turn, depends on the value of the
parameter ζ. Note that when ζ= 0, the impulse or step response will be a sustained
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FIGURE 4.6 (a) Generalized second-order open-loop model. (b) Generalized second-
order closed-loop model.

oscillation. In the open-loop case, when 0< ζ< 1, the impulse and step responses
will show damped oscillatory behavior. However, when ζ� 1, these responses will
assume an exponential form. It is clear that ζ represents the amount of “damping”
inherent in the system, and for this reason, it is commonly referred to as the damping
factor or damping ratio.

4.4.1.1 Undamped Dynamics In the case when ζ= 0, Equation 4.51 becomes

Y s� � GSSω2
n� (4.52)

X s� � s2 � �1 � kGSS�ω2
n

The inverse Laplace transform of Equation 4.52 yields an oscillatory solution for
the impulse response h2(t):

pGSSωnh2 t p� � � sin (4.53)1 � kGSSωnt
1 � kGSS

The step response, g2(t), which is also oscillatory, is obtained by integrating h2(t)
with respect to time:

pGSS� � � 1 � cos (4.54)1 � kGSSωntg2 t
1 � kGSS

Note from Equation 4.54 that the step response oscillates around the constant level
GSS/(1+ kGSS).
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4.4.1.2 Underdamped Dynamics In the underdamped mode, when ζ2< 1+
kGSS, the denominator in Equation 4.51 can be rearranged so that the following
form is obtained:

Y s� � GSSω2
n� (4.55)

X s� � �s � ζωn�2 � ω2 1 � kGSS � ζ2

The impulse response corresponding to Equation 4.55 is

n

GSSωnh2 t p e 1 � kGSS � ζ2 ωnt� � � �ωnζt sin (4.56)
1 � kGSS � ζ2

while the step response is

�ζωnteGSS� � � 1 �p sin ωn 1 � kGSS � ζ2 t � θg2 t
1 � kGSS 1 � kGSS � ζ2

(4.57)

where p
1 � kGSS � ζ2

θ � tan�1
ζ

4.4.1.3 CriticallyDampedDynamics The roots of the denominator become real
and equal when ζ2= 1+ kGSS. At this point, all oscillatory dynamics disappear and
the system becomes “critically damped.” Equation 4.51 becomes

Y s� � GSSω2
n� 2 (4.58)

X s� � �s � ζωn�
The impulse response that corresponds to Equation 4.58 is

h2 t te�ζωnt (4.59)� � � GSSω
2
n

while the step response is

1 1GSS �ζωnt� � � e� ωntg2 t
ζ ζ ζ

(4.60)
1 1GSS �ζωntp � p � ωnt� p e

1 � kGSS 1 � kGSS 1 � kGSS
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4.4.1.4 Overdamped Dynamics When ζ2 exceeds 1+ kGSS, the roots of the
denominator of Equation 4.51 become real and different; so the corresponding
impulse and step responses now become

p pGSSωn ζ� ζ2 − 1 � kGSS ζ� ζ2 − 1 � kGSS t�ωn �ωnt � e
2 ζ2 � 1 � kGSS


� � � p eh2 t

(4.61)
p p�ωn ζ� ζ2−1� kGSS t �ωn ζ� ζ2 − 1 � kGSS t1� e 1 � eGSSg2 t p p � p

2 ζ2 � 1 � kGSS


� � �
ζ � ζ2 − 1 � kGSS ζ � ζ2 − 1 � kGSS

(4.62)

4.4.1.5 Steady-State Error In the underdamped, critically damped, and over-
dampedmodes of the generalized second-order system, the step response attains the
same steady-state value. In Equations 4.57 and 4.60, we can deduce this final value
easily by letting t tend to infinity. The same can be done for the overdampedmode in
Equation 4.62, except that a little algebra will be needed to obtain the following
expression for the steady-state response:

GSSg2�t ! 1� � (4.63)
1 � kGSS

The steady-state error is deduced by subtracting the steady-state response from the
input value, which is unity since the unit step was employed. Under open-loop
circumstances (k= 0), the steady-state error would be

ε2 jopen-loop � 1 � GSS (4.64)

Note that in the special case whenGSS= 1, as in the example considered in Section
4.3.2, the open-loop steady-state error is zero. However, when GSS assumes other
values, the open-loop steady-state error can be quite large. In the closed-loop case,
the steady-state error is given by

GSSε2 jclosed-loop � 1 � (4.65)
1 � kGSS

In the special case where GSS= 1, the steady-state error becomes k/(1+k), as was
previously shown in the example in Section 4.3.2.

4.4.2 Transient Response Descriptors

The first- and second-order impulse and step responses we have discussed consti
tute the simplest approximations to the corresponding time-domain dynamics of
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real physiological systems. To characterize more realistic impulse and step
responses, one could in principle extend the modeling analysis to higher order
models. But as this process continues, themathematics rapidly become less and less
tractable. Furthermore, the number of parameters needed to describe these
responses will also increase. In some situations, it may be necessary to compare
the dynamic behavior of one system with that of another. Alternatively, one may
need to compare the dynamic characteristics of the same system under different
conditions. In order to do this, it is possible to first estimate the impulse and/or step
responses, and then extract certain descriptors from these responses empirically.
Subsequently, standard statistical analyses, such as the Student t-test, can be
employed to determine if the two sets of dynamic responses are significantly
different from one another. The descriptors discussed in the following sections are
among the most commonly used in systems analysis.

4.4.2.1 ImpulseResponseDescriptors These descriptive features of the impulse
response are illustrated in Figure 4.7a. Themost direct feature is the peak amplitude,
which simplymeasures themaximum (orminimum, if the response is predominantly
negative) value of the impulse response. Thus,

Peak amplitude � max �h t� �� or jmin �h t� ��j (4.66)

The area under the impulse response function represents the integral of h(t) over
time, which in turn yields the steady-state gain GSS of the system:

1
GSS � ∫ h t� �dt (4.67)

�1

Finally, the characteristic time Tc provides a measure of the approximate latency
followingwhich the bulk of the impulse response occurs. Alternatively, Tcmay also
be thought of in the following way. If the impulse response function is represented
as a two-dimensional mass, then Tc will be the location (on the time axis) at which
the center of mass acts.

1
t h t� � dt∫ j j

�1Tc � 1 (4.68)

jh t� �jdt∫�1

4.4.2.2 Step Response Descriptors Themost commonly used descriptors of the
step response are shown in Figure 4.7b. As mentioned previously, the final value of
the response is the steady-state level achieved by the system in question. If the input
is a unit step, this final value will yield the steady-state gainGSS. If the peak value of
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FIGURE 4.7 Descriptors of the (a) impulse and (b) step responses.

the step response is larger than the final value, the overshoot will be the difference
between this peak value and the final value. Frequently, this overshoot is expressed
in percentage terms:

peak response � final value
Percent overshoot � � 100% (4.69)

final value
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The time taken for the step response to achieve its peak value is known as the peak
time or Tp, as illustrated in Figure 4.7b. Aside from peak time, there are two other
measures of speed of response. One is the rise time Tr defined as

T r � t90% � t10% (4.70)

where t90% and t10% are the times at which the responsefirst attains 90 and 10%of its
final value, respectively.

The other measure of speed of response is the settling time Ts, defined as the time
taken for the step response to settle within ±δ% of the final value (Figure 4.7b).
The upper and lower levels of this band of values, that is, 100+ δ%and 100� δ%of
the final value, define the tolerance limits within which the step response
will remain at all times greater than Ts. The values of δ generally employed range
from 1 to 5%.

4.5 OPEN-LOOP VERSUS CLOSED-LOOP DYNAMICS:
OTHER CONSIDERATIONS

4.5.1 Reduction of the Effects of External Disturbances

In our previous discussions of thefirst- and second-ordermodels of lungmechanics,
we showed that one clear consequence of introducing negative feedback into the
control scheme is an increase in speed of system response. A secondmajor effect of
closing the loop is the reduction in overall system gain. For both first- and second-
order models, closing the loop led to a significant reduction of the final values in the
unit step responses (see Figures 4.3b and 4.5). This result is consistent with
the conclusion that we arrived at in Section 3.2, although those considerations
were based entirely on steady-state conditions. As we had pointed out in that
section, what is most advantageous about this reduction in overall system gain is the
enhanced ability of the closed-loop system to attenuate the impact of external
disturbances. To emphasize the importance of this point, we will consider a simple
example here.

Figure 4.8a and b illustrates the open- and closed-loop versions of a generalized
linear control system. D(s) represents the Laplace transform of an external distur
bance that contributes “noise” directly and additively to the output. Thus, in the
open-loop case,

Y s� � � G s� �X s� � � D s� � (4.71)

which clearly shows that 100% of the external disturbance is reflected in the output.
However, in the closed-loop case, we have

Y s� � � G s� ��X s� � � H s� �Y s� �� � D s� � (4.72a)
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FIGURE 4.8 (a) Generalized linear open-loop system. (b) Generalized linear closed-loop
system.

which, upon rearranging terms, becomes

G s� � 1
Y s� � � � � � � � (4.72b)X s D s

1 � G s� �H s� � 1 � G s� �H s� �
Since we have explicitly incorporated negative feedback into the equations, the
common denominator in Equation 4.72b satisfies the following condition:

j1 � G s� �H s� �j > 1 (4.73)

As such, the effect ofD(s) on Y(s) will be attenuated and can be further attenuated as
we increase the magnitude of the product G(s)H(s), which is the loop gain (LG) of
the closed-loop system.

4.5.2 Reduction of the Effects of Parameter Variations

There are situations, particularly when dealing with the artificial control of some
physiological variable, where there may be a need to decide upon a range of the
input x(t) signal in order to closely regulate variations in the output y(t). This can
only be done if we have a very good idea of the characteristics of the feedforward
subsystem G(s). However, this may not always be possible, as we may have
erroneous estimates ofG(s) orG(s) may actually be time-varying. These variations
in the system parameters will have an impact on the controlled output.

First, consider the open-loop case. Assume that there is a small change in the
transfer characteristics ofG(s), which we will denote byΔG(s). Then, the effect on
the output will be

Y s� � � ΔY s� � � �G s� � � ΔG s� ��X s� � � D s� � (4.74)
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Eliminating the equivalent expression for Y(s), we can derive the following:

ΔY s� � � ΔG s� �X s� � (4.75)

The above result shows that the variation in G(s) is directly reflected in the output.
Now, consider the corresponding result as we apply the same type of analysis to the
closed-loop system:

Y s� � � ΔY s� � � D s� � � �G s� � � ΔG s� ���X s� � � H s� ��Y s� � � ΔY s� ��� (4.76)

Again, we expand Equation 4.76 and eliminate Y(s) from both sides of the equation.
We also eliminate the term containing the product of differences ΔG(s) and ΔY(s),
since we have assumed these differences to be small. These steps lead to the
following result:

ΔG s� �
ΔY s� � � 2 X s� � (4.77)�1 � G s� �H s� ��

Thus, in the closed-loop case, the effect ofΔG(s) is reduced by a factor of {1+G(s)
H(s)}2.

4.5.3 Integral Control

In spite of the many advantages of employing proportional feedback control, one
problem that can be highly aggravating in some applications is the existence of
the steady-state error. We will demonstrate in this section that the steady-state error
can be eliminated completely by employing integral control. To understand how
this can be achieved, consider the proportional control and integral control systems
shown in Figure 4.9a and b, respectively.

First consider the proportional control system shown. This represents a gener
alization of the particular first- and second-order models discussed in Sections 4.2
and 4.3. The Laplace transform of the difference (error) between the input and
output is given by

G s� �
E s� � � X s� � � Y s� � � 1 � X s� � (4.78)

1 � kG s� �
The steady-state error e(t→1) can be deduced from the above equation by using
the unit step input (i.e., settingX(s)= 1/s) and evaluating the result via thefinal value
theorem for Laplace transforms:

e t� ! 1� � lim sE s� � (4.79)
s!0
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FIGURE4.9 Different closed-loop control schemes. (a) Proportional feedback control. (b)
Integral control. (c) Derivative feedback control.

Applying Equation 4.79 to Equation 4.78, we obtain

1 � �k � 1�GSSe t� ! 1� � (4.80)
1 � kGSS

whereGSS represents the steady-state value ofG(s). Note that we can minimize the
steady-state error by setting k equal to unity, in which case

1
e t� ! 1� (4.81)min � 1 � GSS

Now consider the case for integral control, in which the error signal is integrated
prior to being used to drive the actuator (plant) portion of the closed-loop system. In
this case, the Laplace transform of the difference between input and output is

G s� �
E s� � � X s � � �� � � Y s 1 � X s� � (4.82)

s � kG s� �
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Using Equation 4.79 and assuming the input to be a unit step (X(s)= 1/s), we
obtain

�k � 1�GSSe t� ! 1� � (4.83)
kGSS

In this case, we can eliminate the steady-state error completely by setting k to unity.
However, this advantage of not having a steady-state error is derived at the expense
of speed of system response.

For a more intuitive explanation as to why there is always a steady-state error in
proportional feedback control but not in integral control, consider both cases when
k= 1. In proportional control, if the steady-state error (e(t→1)= x(t→1)� y
(t→1)) is zero, this would also make the error signal that drives the actuator/plant
zero, which in turn implies that the steady-state output y(t→1) would become
zero. This result would be incompatible with the prior assertion that e(t→1) is
zero, since x(t→1) equals unity. Thus, for the proportional feedback system, a
steady-state error must exist in order for the system to produce a nonzero output.
Now consider the integral control scheme.Assume that, before time zero, both input
and output are zero. When the unit step takes effect at the input, y(t) will initially
remain at zero and, consequently, there will be a large error signal that feeds into the
integrator. However, with time, as y(t) increases toward its final value, this error
signal will diminish. On the other hand, the output of the integrator will remain high
since it represents the accumulation of all previous values of the error signal.
Finally, when y(t→1) attains the same value as x(t→1), the steady-state error
will become zero, and the integrator output, which drives the actuator/plant, will
cease increasing but remain at its final positive value so that y(t→1) will be
unchanged (and equal to x(t→1)).

4.5.4 Derivative Feedback

Instead of feeding back a signal directly proportional to the system output, how
would closed-loop dynamics be different if the feedback signal were propor
tional to the time-derivative of the output? Consider the control scheme
illustrated in Figure 4.9c and, for the sake of simplicity, let us assume in this
example that

1
G s� � � (4.84)

τs � 1

Then,

Y s� � 1� (4.85)
X s� � � kdsY s� � τs � 1
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From Equation 4.85, we derive the following expression for the overall system
transfer function:

Y s� � 1� (4.86)
X s� � τ´s � 1

where

τ´ � τ � kd (4.87)

The unit step response corresponding to Equations 4.86 and 4.87 is

��t=τ�kd�g1 t (4.88)� � � 1 � e

It is clear from this result that derivative feedback increases the effective time
constant and therefore produces a more sluggish response. In other words, deriva
tive feedback increases system damping.

To determine how derivative feedback affects steady-state error, we derive from
Equation 4.86 the following expression:

1
E s� � � X s � � �� � � Y s 1 � X s� � (4.89)

τ´s � 1

Then, using Equation 4.79, the steady-state error is found to be

1 1
e t� ! 1� � lim s 1 � � 0 (4.90)

s!0 τ´s � 1 s

Thus, derivative feedback of the kind shown in Figure 4.9c leads to the elimination
of the steady-state error.

There is a popular variant of this type of control known as “velocity feedback,” in
which the feedback signal consists of the sum of a term proportional to the output
and a term proportional to the derivative of the output. In this case, there will in
general be a steady-state error. However, the steady-state error can be attenuated by
increasing the gain of the forward block, GSS. In the limit, when GSS→1, the
steady-state error will become zero.

4.5.5 Minimizing Effect of External Disturbances by Feedforward Gain

Following up on the discussion of minimizing the effect of external disturbances on
the response of a closed-loop system, consider the scheme illustrated in Figure 4.10.
Here, the closed-loop system in question consists of the controller Gc(s) and plant
Gp(s) blocks. The external disturbance takes the form of δ(s) that is added as an
additional input to Gp(s).
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FIGURE4.10 Scheme forminimizing the effect of external disturbance using feedforward
gain.

Here we have added an element that senses the disturbance and produces a
proportional output that is “fedforward” into the closed-loop system. This compo
nent is known as a feedforward element. The system response to the disturbance is
now given by

Gp� �s �1 � KfGc� �s �ΔY s� � � δ� �s (4.91)
1 � Gc� �s Gp� �s

IfGc(s) is a proportional controllerwith gainK, and δ(s) takes the form of a unit step,
then the steady-state change in the output becomes

sGp� �s �1 � KfK� 1 Gpss�1 � KfK�Δy t� ! 1� � lim sΔY s� � � lim � (4.92)
s!0 s!1 1 � KGp s s� � 1 � KGpss

where Gpss is the steady-state gain of the plant Gp(s). The steady-state response to
the disturbance can bemade to become zero if the feedforward gainKf is set equal to
the negative inverse of the controller gain, that is,

1
Kf � � (4.93)

K

The discussion above illustrates the kind of considerations that a designer of an
engineering control system would make if the sole purpose of the design is to
eliminate the steady-state influences of external disturbances to the system.
However, it is also clear that these considerations represent an oversimplification
of what would have been taken into account in the design of a “real” control
system. In the examples discussed, we used the steady-state system response to an
external disturbance as the measure of “performance”: The “better” system would
be the one in which the disturbance produces the smaller steady-state change in
output. Instead of this criterion, we could have based our performance measure on
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the complete (i.e., transient+ steady state) response to the disturbance. A different
performance measure is likely to have led us to a different conclusion as to which
controller design is the most meritorious. Thus, the “optimal” solution is not
necessarily a unique one and depends heavily on the criterion used to measure
performance.

4.6 TRANSIENT RESPONSE ANALYSIS USING MATLAB

If the form of the transfer function of a given model is known, the response of the
system to standard inputs, such as the unit impulse or unit step, as well as any
arbitrary input waveform, can be deduced easily in MATLAB. The following
MATLAB command lines (also found in the script file tra_llm.m) demonstrate
how transient response analysis can be applied to the linearized lung mechanics
model that we have been discussing.

Assuming that the parameter values of L, R,C, and k in Equation 4.5b have been
preassigned, we begin by setting up the transfer function, Hs, of the model:

>> num = [1];
>> den = [L*C R*C 1+k];
>> Hs = tf(num,den);
>> t = [0:0.005:0.8];

The first two lines assign values to the various terms in the numerator (num) and
denominator (den) of Hs. In the case of the denominator, these values are assigned
in the order of descending powers of s. The fourth line simply generates a time
vector covering the duration of the response that we will examine.

The impulse response is computed and plotted using the following command
lines:

>> x = impulse(Hs,t);
>> plot(t,x)

The command lines that follow produce a plot of the unit step response:

>> y = step(Hs,t);
>> plot(t,y)

Finally, the response of this system to an input u of arbitrary time-course can be
computed using the lsim function:

>> [u,t]=gensig(’square’,0.5,5,0.005);
>> y=lsim(Hs,u,t);
>> plot(t,y)
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In this example, the “arbitrary input” is a square wave of period 0.5 s, lasting up
to time t= 5 s (in time-steps of 0.005 s), generated with the function gensig.

4.7 SIMULINK APPLICATION 1: DYNAMICS OF
NEUROMUSCULAR REFLEX MOTION

Up to this point, we have limited our analyses to simple models with only first- or
second-order dynamics. This was done intentionally in order to demonstrate the
methodology employed in classical time-domain analysis without letting the
mathematical details become too intractable and distracting. To extend this kind
of analysis to more complex (and more realistic) physiological models, it becomes
progressively more convenient to employ the methods of computer simulation.
In this section, we will demonstrate an example of time-domain analysis using
SIMULINK.

4.7.1 A Model of Neuromuscular Reflex Motion

Examination of the dynamics of neuromuscular reflex motion can yield valuable
insight into the status of patients who have neurological disorders. The model that
we will consider assumes the following test. The patient is seated comfortably and
his shoulder and elbow are held by adjustable supports so that the upper arm remains
in afixed horizontal position throughout the test. The subject’s forearm is allowed to
move only in the vertical plane. At the start of the experiment, he is made to flex his
arm by pulling on a cord that has been attached to a cuff on his wrist. The cord runs
around a pulley system and supports a sizable weight. The initial angle between the
forearm and upper arm is 135°. The subject is not given any specific instructions
about maintaining this angle, except to relax his arm as much as possible while
supporting the weight. Then, at time t= 0, an electromagnetic catch is switched off
so that an additional weight is abruptly added to the original load. Changes in
angular motion, θ(t), of the forearm about the elbow are recorded during and after
the quick release of the weight. Themathematical model used to interpret the results
of this test is based on the work of Soechting et al. (1971).

4.7.1.1 Limb Dynamics Figure 4.11a shows a schematic diagram of the fore
arm, with the black filled circle representing the elbow joint. Mx represents the
change in external moment acting on the limb about the elbow joint; in this
experiment, Mx would be a step. M represents the net muscular torque exerted in
response to the external disturbance. Neglecting the weight of the forearm itself,
application of Newton’s second law yields the following equation of motion:

M � � �M t� � � Jθ€ (4.94)x t

where J is the moment of inertia of the forearm about the elbow joint.
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FIGURE 4.11 Components of the neuromuscular reflex model. (a) Limb dynamics. (b)
Muscle model. (c) Muscle spindle model.

4.7.1.2 Muscle Model Although this reflex involves both the biceps and triceps
muscles, we will assume for simplicity that the net muscular torque in response to
Mx is generated by a single equivalent muscle model, illustrated in Figure 4.11b.
Note that in this mechanical analog,M is treated as if it were a “force,” although it is
actually a torque. Accordingly, the “displacements” that result are in fact angular
changes, θ and θ1. As such, the muscle stiffness parameter k and the viscous
damping parameter B have units consistent with this representation. The equations
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of motion for the muscle model are

M t� � � k�θ � θ1� (4.95)

and
_M t� � � M � � � B 1 (4.96)0 t θ

whereM0(t) is the torque exerted by the muscle under isometric conditions.M0(t) is
represented as a function of time, since it is dependent on the pattern of firing of the
alpha motorneurons.

4.7.1.3 Plant Equations By combining Equations 4.94 through 4.96 and
eliminating θ1 and M(t), we obtain an equation of motion that characterizes the
dynamics of the plant, that is, describing how θ would change due to the torque
exerted by the external disturbance Mx and the resulting muscular response:

BJ B€_ _ _ x t x t 0 t (4.97)θ � Jθ€� Bθ � M � � �M � � �M � �
k k

4.7.1.4 Muscle Spindle Model This model describes the dynamics by which
changes in θ are transduced at the level of the muscle spindles into afferent neural
signals. The latter travel to the spinal cord, which sends out efferent signals to the
contractile machinery of the muscle to generate M0(t). We assume that the neural
output of the spindle is proportional to the amount bywhich its nuclear bag region is
stretched, so that ultimately

M0 t � 2�� � � β θ � θ (4.98)

Figure 4.11c shows the mechanical analog of the muscle spindle model. ksp and Bs

are parameters that represent the elastic stiffness and viscous damping properties,
respectively, of the pole region of the spindle, while kss represents the elastic
stiffness of the nuclear bag region. Γ0 represents the contractile part of the pole
region, which allows the operating length of the spindle to be reset at different
levels, using the gammamotorneuronal pathways.Wewill assumeΓ0 to be constant
at the equilibrium length of the spindle, so that this parameter does not play a role in
the dynamics of changes about this equilibrium length. With this consideration in
mind, the dynamics of the muscle spindle model may be characterized by the
following equations:

Ms � kss�θ � θ2� (4.99)

and

_Ms � Bsθ2 � kspθ2 (4.100)
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Another important factor that must be taken into account is the fact that, although θ
is sensed virtually instantaneously by the spindle organs, there is a finite delay
before this feedback information is finally converted into corrective action at the
level of the muscle. This total delay Td includes all lags involved in neural
transmission along the afferent and efferent pathways as well as the delay taken
for muscle potentials to be converted into muscular force. Eliminating the inter
mediate variables, Ms and θ2, from Equations 4.98 through 4.100, we obtain the
following equation for the feedback portion of the stretch reflex model:

θ�t � Td�M0 __M0 � � β θ�t � Td� � (4.101)
τ ητ

where
Bsτ � (4.102)

kss � ksp

and

kss � ksp
η � (4.103)

ksp

4.7.1.5 Block Diagram of Neuromuscular Reflex Model Taking the Laplace
transforms of Equations 4.97 and 4.101, we obtain the following equations that are
represented schematically by the block diagram shown in Figure 4.12:

�B=k�s � 1� � � �M0 s� Mx s � �
θ s (4.104)� � �

s��BJ=k�s2 � Js � B�
and

τs � 1=η �sTdθ sM0 s e (4.105)� � � β � �
τs � 1

FIGURE 4.12 Block diagram of neuromuscular reflex model.



126 TIME-DOMAIN ANALYSIS OF LINEAR CONTROL SYSTEMS

4.7.2 SIMULINK Implementation

The SIMULINK implementation of the neuromuscular reflex model is depicted
in Figure 4.13. This program has been saved as the file nmreflex.slx. Note
that the model parameters appear in the program as variables and not as fixed
constants. This gives us the flexibility of changing the parameter values by
entering them in the MATLAB command window or running a MATLAB
m-file immediately prior to running the SIMULINK program. In this case, we
have chosen the latter path and created an m-file called nmr_var.m that specifies
the parameter values. The nominal parameter values used in the simulation are as
follows: J= 0.1 kgm2, k= 50Nm, B= 2 Nm s, Td= 0.02 s, τ (tau in Figure 4.13)
= 1/300 s, η (eta in Figure 4.13)= 5, and β (beta in Figure 4.13)= 100. These
values are consistent with the average physiological equivalents found in normal
adult humans.

Figure 4.14 displays the results of three simulation runs with nmreflex.slx

using the nominal parameter values mentioned above. Figure 4.14a shows the time-
course of the external disturbance, Mx, which is a step increase of 5Nm in the
moment applied to the forearm. The solid tracing in Figure 4.14b represents
the corresponding response in θ, the angular displacement of the forearm,
when β was set equal to 100. Note that positive values of θ correspond to
increases in the angle of flexion between the forearm and the upper arm. There is
a slight overshoot in θ, followed by an almost undetectable oscillation before the
steady-state value of approximately 0.25 rad is attained. Note that β represents
the overall gain of the reflex arc. When β was increased to 150, the response was
a damped oscillation, but the steady-state value achieved by θ became smaller

FIGURE 4.13 SIMULINK implementation of neuromuscular reflex model.
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FIGURE 4.14 Sample results of simulations using the SIMULINK implementation of the
neuromuscular reflex model.

than that obtained with the nominal value of β. In the third simulation, β was
decreased to half the nominal value (i.e., 50). This produced an overdamped
response and also resulted in a larger end-value for θ. These results reiterate the
point that increased feedback gain leads to better attenuation of the effects of
imposed disturbances – Higher values of β produced smaller ending values for θ.
On the other hand, the responses also become more oscillatory. This issue of
instability will be discussed further in Chapter 6.

4.8 SIMULINK APPLICATION 2: DYNAMICS OF
GLUCOSE–INSULIN REGULATION

In Section 3.6, we examined the model of glucose and insulin regulation proposed
by Stolwijk and Hardy (1974), but limited the scope of our analysis to the steady
state. Here, we present the complete, dynamic version of this model as well as its
SIMULINK implementation.

4.8.1 The Model

Employing the same notation as that presented in Section 3.6, Equations 3.40a and
3.40b, which characterize the mass balance of glucose in the blood plasma, may be
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extended to incorporate dynamics in the following way:

dx
CG � U t� � � QL � λx � νxy; x � θ (4.106a)

dt

dx
CG � U t� � � QL � λx � νxy � μ�x � θ�; x > θ (4.106b)

dt

In the above equations, CG represents the glucose capacitance in the extracellular
space and U(t) represents the time-course with which external glucose is infused
into the bloodstream, as part of the “glucose tolerance test.” Basically, Equations
4.106a and 4.106b state that the net difference between the rate at which glucose is
added to the blood and the rate at which it is eliminated equals the rate at which the
glucose concentration x will increase (or decrease). It is important to note that
the cross-product term between x and y, the insulin concentration, makes the above
equations nonlinear (or strictly speaking, bilinear). The corresponding dynamic
mass balance for insulin is simply a straightforward extension of Equations 3.43a
and 3.43b:

C1
dy

dt
� �αy; x � ϕ (4.107a)

C1
dy

dt
� �αy � β x � ϕ� �; x > ϕ (4.107b)

where CI is the insulin capacitance of the extracellular space.
The SIMULINK implementation of this model (filename: glucose.slx) is

displayed in Figure 4.15b. The top half of the interconnected block structures
represents Equations 4.106a and 4.106b, characterizing the dynamics of blood
glucose buildup and elimination, while the bottom half models insulin dynamics, as
described by Equations 4.104a and 4.104b. Saturation blocks are employed to
function as thresholding operators, with the lower limit set equal to zero and the
upper limit set equal to a very large number (so that there is effectively no saturation
at the high end). One of these saturation blocks allows for the disappearance of
the last term in Equation 4.106b when x� θ, where θ is the threshold concentration
below which all glucose is reabsorbed in the kidneys, which results in no glucose
loss in urine. The other saturation block in the insulin portion of the model allows
for the disappearance of the last term in Equation 4.107b when x�φ, where φ is the
threshold glucose concentration for insulin secretion.

The glucose–insulin regulation model is encapsulated into a Subsystem

block, which is shown in relation to the source and sink blocks in Figure 4.15a.
The Subsystem block is created by dragging its icon from the Commonly Used
Blocks sub-library to the model window. By double-clicking on the Subsystem

block, a subsystem window will appear and the user can proceed to create the
model in question within this window. In1 blocks are used for all signals entering
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FIGURE 4.15 SIMULINKmodel of blood glucose–insulin regulation. Part (a) shows the
input to and outputs from the model; part (b) shows details of the dynamic structure.
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FIGURE 4.16 Response of the glucose–insulin regulation model to a rapid (15min)
infusion of 25 g of glucose in a simulated normal (solid lines) and type-2 diabetic (dashed
lines).
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the subsystem, while Out1 blocks form the terminal points for all signals leaving
the subsystem.

4.8.2 Simulations with the Model

Glucose infusion into the model is simulated through the use of a Pulse Genera

tor block, which produces a rectangular wave. The period of the output waveform
is set equal to the simulation time of 5 h, with time-step being 0.01 h. The duty cycle
is set to 5% so that glucose infusion occurs over a duration of 0.25 h or 15min,
starting at t= 0.5 h. The glucose infusion rate (amplitude of the rectangular wave) is
set equal to 100,000mg h�1.

Examples of two simulation runs are displayed in Figure 4.16. The input
waveform is shown in Figure 4.16a. The resulting time-courses in glucose concen
tration and insulin concentration are shown in Figure 4.16b and c, respectively.
Two classes of subjects are examined here: the normal adult (solid curves) and the
type-2 diabetic (dashed curves). Note that in the diabetic, the steady-state levels for
glucose and insulin are both higher than corresponding levels in the normal, which
confirms what we had found a graphical method of solution in Section 3.6. In
addition, in the diabetic, the decay of glucose and insulin concentrations toward
steady-state levels following the infusion is noticeably slower compared to the
normal subject. Furthermore, the glucose time-course does not show the slight
undershoot exhibited by the corresponding time-course in the normal.

PROBLEMS

P4.1. Figure P4.1 shows a simplified linear model of the baroreflex regulation of
heart rate and arterial blood pressure. ΔHR and ΔABP represent changes
(from the mean) of heart rate and arterial blood pressure, respectively.
The “blocks” represent the various physiological components of this reflex.
G, kb, and kc represent constant gains (all with positive values), while τ
represents time constant for the response of the sino-atrial (SA) node (in the
heart) to changes in efferent vagal traffic (ΔVg). The expression shown in
the box representing the SA node is its transfer function, with s being the
Laplace variable. The external stimulus (labeled ΔZ) to this closed-loop
system represents the effect of administering a vasoconstrictor drug (e.g.,
phenylephrine) that acts to raise blood pressure.

(a) Assuming thismodel to be correct, describe howyou thinkΔABP,ΔVg,
andΔHRwould change when the external stimulusΔZ (>0) is applied
in the form of a step (i.e., the vasoconstrictor drug, which acts to raise
ABP) is infused continuously at a constant dose). Is this model a
negative or positive feedback system? Which of the physiological
components shown is primarily responsible for the negative or positive
feedback?
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FIGURE P4.1 Simplified linear model of blood pressure and heart rate regulation.

(b) Deduce the transfer function relatingΔABP toΔZ, withΔZ as input and
ΔABP as output.

(c) Assuming that τ= 1, G= 1, kb= 1, and kc= 1, derive an expression for
the time-course of ΔABP, following application of a unit step in ΔZ.
Sketch this time-course as accurately as you can.

(d) Using the step-response derived in (c), deduce the impulse response of
this system.

P4.2. Figure P4.2 displays the block diagram of a simplified, linear closed-loop
model used to characterize the pupillary light reflex. The input isΔL (change
in light intensity) and the output is ΔA (change in pupil area), and the gains
G1 and G2 are nonnegative.

(a) Derive expressions for the open- and closed-loop transfer functions of
this system.

FIGURE P4.2 Simplified linear closed-loop model of pupillary light reflex.
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(b) IfΔL takes the form of a unit step, determine howΔAwill respond (in the
time domain) when G1= 10, G2= 0, and τ= 0.1 s.

(c) IfΔL takes the form of a unit step, determine howΔAwill respond (in the
time domain) when G1= 10, G2= 1, and τ= 0.1 s.

(d) Is this model (when G2> 0) a negative-feedback control system? By
comparing the open- and closed-loop transfer functions, determine
how feedback affects the dynamics of the pupil’s response to a step
change in ΔL. Specifically, how does the response magnitude and
speed of response change? Briefly explain how you arrived at your
answer.

P4.3. In the simplified model of eye-movement control, displayed in
Figure P4.3, J represents the moment of inertia of the eyeball about the
axis of rotation, while B represents the viscous damping associated with
the rotational movement of the eye. The target angular position of the eye,
θref, is set by the higher centers. G is a gain that converts the controlling
signal into the torque exerted by the extraocular muscles. Information
about the angular position of the eye, θ, is fed back to the controller with
unity gain. Velocity information is also fed back with variable gain, Kv

(>0). Deduce expressions for the responses of this system to a unit step
change in θref when

(a) there is no feedback at all;

(b) there is only position feedback (Kv= 0);

(c) both position and velocity feedback exist.

FIGURE P4.3 Simple model of eye-movement control.

P4.4. The following transfer function is one of the simplest linear approximations
to the pure time delay T:

1 � �Ts=2�
H s� � �

1 � �Ts=2�
Determine the open- and closed-loop responses for the system shown in

Figure P4.4 when the input is a unit step.
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FIGURE P4.4 Closed-loop system containing time-delay approximation.

P4.5. Many types of physiological receptors exhibit the property of rate sensitivity.
Carbon dioxide receptors have been found in the lungs of birds and reptiles,
although it remains unclear whether such receptors are also found in human
lungs. Figure P4.5 shows a highly simplified model of the way in which
ventilation may be controlled by these intrapulmonary receptors following
denervation of the carotid bodies. The feedforward element in the closed-
loop system represents the gas exchange processes of the lungs, while the
feedback element represents the dynamic characteristics of the intrapulmo
nary CO2 receptors. The parameter α determines how rate-sensitive these
receptors are. Determine the responses of this system to a large hyper-
ventilatory sigh (which may be approximated by an impulse function) when
(a) α= 0 (there is no rate sensitivity), (b) α= 1/2, and (c) α= 2. (Note that the
feedback element belongs to a class of systems known as lag-lead (when
α< 1) or lead-lag (when α> 1) systems.)

FIGURE P4.5 Simplified model of ventilatory control with intrapulmonary CO2 receptor
feedback.

P4.6. Figure P4.6 shows a highly simplified model of glucose–insulin regulation
that has been linearized about its operating point under normal resting

FIGURE P4.6 Simplified linear model of glucose–insulin regulation.
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conditions. The variable u represents the amount of glucose entering the body
from all sources external to the blood compartment, while x represents
changes in bloodglucose level and y represents changes in blood insulin level.

(a) Derive the open-loop transfer function of this system.

(b) Derive the closed-loop transfer function of this system.

(c) Following a step increase of 20 units of glucose entering the body,
determine how the blood insulin level will change with time, and sketch
this time-course.

P4.7. The SIMULINKprogramglucose.slx is a dynamic version of the glucose
regulationmodel discussed in Section 3.6. Determine the time-courses of the
concentrations of glucose and insulin in response to the steady infusion of
glucose at the rate of 80,000mg h�1 for a period of 1 h. The values of the
other parameters are as given in Section 3.6. Compare these time-courses to
the corresponding cases where the insulin production parameter β has been
reduced to 20% of its nominal value.

P4.8. The degree of spasticity in patients with neuromuscular disorders can be
quantified with the use of the “pendulum test.” In this clinical procedure, the
subject sits relaxed on a table with his lower leg initially supported by the
medical examiner so that the knee joint is fully extended. The examiner
abruptly releases the lower leg so that it swings freely until it finally comes to
rest in the vertical position. The trajectory of the swing, as measured by the
change in angle of knee flexion, can reveal information about the neuro
muscular stretch reflex. Modify the SIMULINK program nmreflex.slx so
that it can be used to simulate this test. Note that themajor difference between
the pendulum test and the procedure described in Section 4.7 is that, here, the
externally applied moment does not remain constant but varies according to
the angular displacement of the lower leg, since it is a function of the weight
of the lower leg and the moment arm between the center of gravity of the
lower leg and the knee joint. Assume the same parameter values used in
nmr_var.m, except for the following: moment of inertia of the lower leg
about the knee joint= 0.25 kgm2; length of lower leg= 40 cm, weight of
lower leg= 5 kg. Determine how the trajectory of the lower leg would
change with different values of stretch reflex gain β.
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5
FREQUENCY-DOMAIN ANALYSIS OF
LINEAR CONTROL SYSTEMS

5.1 STEADY-STATE RESPONSES TO SINUSOIDAL INPUTS

While the impulse and step functions are useful test signals to use in the
characterization of linear systems, it is difficult to find naturally occurring
signals that approximate these highly idealized waveforms. Moreover, abrupt
steps and impulsive changes are difficult to generate as test signals. On the
other hand, periodic phenomena are a common occurrence in physiology.
Since it is possible, using the Fourier series, to decompose any periodic signal
into its sinusoidal components, sine waves represent a highly useful class of
basic test inputs. Furthermore, sinusoidal changes are generally much easier to
approximate in practice relative to other periodic and most nonperiodic
signals.

5.1.1 Open-Loop Frequency Response

Consider the linearized respiratory mechanics model discussed in the previous
chapter, expressed in differential equation form:

d2PA dPALC � RC � PA � Pao (5.1)
dt2 dt

Physiological Control Systems: Analysis, Simulation, and Estimation, Second Edition. Michael C.K. Khoo.
 2018 The Institute of Electrical and Electronics Engineers, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/khoo/controlsystems2e
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Suppose the input Pao were to assume the form of a sinusoidal waveform of
amplitudeX0 and angular frequencyω. Note thatω is related to absolute frequency f
by the following relationship:

ω � 2πf (5.2)

To simplify the mathematics, we employ the generalized sinusoidal (or complex
exponential) function instead of the sine or cosine:

Pao� �t � X0e
jωt (5.3)

where X0 is a real constant. Solution of the inhomogeneous differential equation,
Equation 5.1, in which the right-hand side takes the particular form shown in
Equation 5.3, yields a solution for PA that contains two parts, as discussed
previously in Section 2.6. The complementary function represents the transient
part of the response, while the particular solution characterizes the steady-state
response. In this discussion, we will be concerned only with the steady-state
response in PA. With the input given by Equation 5.3, the only way for equality to
hold for arbitrary values of t (time) between the left- and right-hand sides of
Equation 5.1 is for the particular solution of PA to contain the function e jωt. Thus,
we assume the following form for PA(t):

PA� �t � Zejωt (5.4)

which states that the output of the system defined by Equation 5.1 must also be
sinusoidal with the same frequency as the input signal. In Equation 5.4, we allow the
function Z to be complex. Substituting Equation 5.4 into Equation 5.1, we obtain,
after canceling ejωt from both sides of the equation and rearranging terms,

Z � H0 ω X0� � (5.5)

where

1
H0� �ω � (5.6)�1 � LCω2� � jRCω

H0(ω) is a complex function of the frequency of the input and can be expressed in
polar form as

� �jϕ0 ωH0 ω � � �je� � jH0 ω (5.7)

where the magnitude is

1� � � (5.8)
�1 � LCω2�2 � R2C2ω2

jH0 ω j
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and the phase component is

RCω
ϕ0 ω tan�� � � � 1 (5.9)

1 � LCω2

The complex function Ho(ω) represents the relationship between the sinusoidal
input Pao(t) and the sinusoidal output PA(t). Substituting Equation 5.5 and 5.7 back
into Equation 5.4, we obtain the following expression for PA(t):

j�ωt�ϕ0 ωPA t j � �j � �� (5.10)� � � H0 ω X0e

Since Pao(t) is X0 e
jωt, Equation 5.10 implies that, although the outputPA(t) remains

sinusoidal at the same angular frequency ω, its amplitude and phase are different
from those ofPao(t). The ratio between the output and input amplitudes, or the gain,
is given by |H0(ω)|, while the phase difference is represented by ϕ0(ω). It is
important to note that both gain and phase difference are functions of the forcing
frequencyω. Figure 5.1 shows predictions ofPA(t) produced by the lungmechanics
model when Pao(t) assumed the form of sinusoidal waves of unit amplitude at
absolute frequencies of 1, 4, and 8Hz. The values of the parameters employed here
were R= 0.3 cm H2O s L�1, C= 0.1 L cm H2O

�1, and L= 0.01 cm H2O s2 L�1. At
very low frequencies, PA oscillates virtually in synchrony with Pao and is of the
same amplitude. At very high frequencies, PA lags substantially behind Pao and is
significantly attenuated. Using this set of parameters, however, there is a range of
frequencies over which PA is amplified and becomes larger in amplitude than Pao.
The amplification is greatest at approximately 4Hz. If one determines the impulse
or step response for this model with these parameter values, one would find an
underdamped response with an oscillation frequency of about 4Hz. Thus, exciting
the system with an external sinusoidal input at this frequency produces resonance,
since the applied forcing acts to reinforce the natural vibrations of the system.

The complex function H0(ω) contains all the information shown in Figure 5.1
and much more. It predicts how the lung mechanics model will respond to
sinusoidal inputs of unit amplitude and all possible frequency values. As such,
it is also called the frequency response of the system. Figure 5.2 illustrates one
method of graphically representing the frequency response of the lung mechanics
model. At each absolute frequency f, we evaluate the gain and phase ofH0(ω). Two
frequency responses are shown in this diagram. The first represents the under-
damped system, with R= 0.3 cm s L�1; this frequency response encompasses the
results shown in Figure 5.1. The second frequency response shown represents the
overdamped system where R= 1 cm s L�1. In this case it is clear that there is no
resonance peak, so the gain continually decreases with increasing frequency.

Note from Equation 4.4 that the transfer function corresponding to the lung
mechanics model described by Equation 5.1 is

PA� �s 1� � � � (5.11)H0 s
Pao� �s LCs2 � RCs � 1
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FIGURE 5.1 Steady-state responses (dashed tracings) at PA of linearized lung mechanics
model to sinusoidal excitation (solid tracings) at Pao. Frequencies of sine waves are at (a)
1Hz, (b) 3Hz, and (c) 8Hz.

An alternative (and shorter) approach to deriving the frequency response function
H0(ω) is by evaluating H0(s) along the imaginary axis on the s-plane, that is, by
setting s= jω. Substituting jω for s in Equation 5.11, we obtain

1� � � (5.12)H0 ω
LC j� �ω 2 � RCjω � 1

Since j2=�1, rearranging terms in Equation 5.12 leads to Equation 5.6.
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FIGURE 5.2 Frequency responses of the linearized lung mechanics model in under-
damped (solid curves) and overdamped (dashed curves) conditions. The values shown for R
are in cm H2O s L�1. Other parameter values are C= 0.1 L cm H2O

�1 and L= 0.01 cm
H2O s2 L�1.

5.1.2 Closed-Loop Frequency Response

Now, consider the closed-loop situation where there is proportional feedback of
PA(t). The corresponding transfer function would be as given in Equation 4.5b.
Evaluating the frequency response, we obtain

1
Hc ω �� � (5.13)�1 � k � LCω2� � jRCω

Thus, for the closed-loop case, the magnitude and phase of the frequency response
are given by

1jHc ω j � (5.14)� �
2 � R2C2ω2�1 � k � LCω2�
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and

RCω
ϕc ω � tan�� � � 1 (5.15)

1 � k � LCω2

The closed-loop frequency responses are shown together with the open-loop
responses in Figure 5.3. Here, the feedback gain k has been assumed to be unity.
Closing the loop leads to a reduction of the steady-state gain from 1 to 0.5, that is,
|Hc(ω= 0)|= 0.5 compared to |H0(ω= 0)|= 1. This is consistent with the results
that were presented in Chapters 2 and 4. Closing the loop also shifts the location of
the resonance peak to a substantially higher frequency (∼6.5 versus∼4Hz). This is
also consistent with the impulse and step responses of the underdamped system in

FIGURE 5.3 Frequency responses of the linearized lung mechanics model in closed-loop
(solid curves) and open-loop modes. The values of the parameters used are R= 0.3 cm
H2OL�1, C= 0.1 L cm H2O

�1, L= 0.01 cm H2O s2 L�1 and k= 1 (or equivalently, λ= 2).
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Chapter 4 where we found an increase in frequency but decrease in amplitude of the
transient oscillations. The phase portion of the frequency response shows a general
decrease in the phase lag introduced by the closed-loop system vis-à-vis the open-
loop system. This is equivalent to our earlier finding in Chapter 4 that closing the
loop produces an increase in the speed of response of the system.

5.1.3 Relationship between Transient and Frequency Responses

Since the transfer function of any linear system is the Laplace transform of its
impulse response and the frequency response can be deduced by replacing s in the
Laplace transform by jω, it follows that the frequency response can be derived by
taking the Fourier transform of the impulse response. This implies that one should
be able to deduce various features of the transient response from the corresponding
frequency response. Consider an idealized linear system with the following
frequency response:

�jωτH� �ω � e ; � ωc � ω � ωc � 0; ω > ωc (5.16)j j
that is, this system has a gain of unity at angular frequencies between �ωc and ωc

and zero gain at all frequencies outside this range. The bandwidth of a linear systemp
is defined as the range of frequencies over which the system gain exceeds 1/ 2 or
0.7071 (see sections to follow). Thus, in this case, ωc represents the system
bandwidth. The phase of this system is linear with frequency within the bandwidth;
the slope of the phase curve (line) is�τ, that is, the output is delayed by τ relative to
the input at all frequencies. This frequency response is displayed in Figure 5.4a
and b.

To deduce the corresponding impulse response h(t), we take the inverse Fourier
transform of Equation 5.16:

1 jωtdωh t� � � H ω e� �
2π

ωc

(5.17)1 �jωτ jωt dω� e e
2π

ωc� sinc�ωc�t � τ��
π

where the function sinc(x) represents sin(x)/x. Figure 5.4c shows the form of h(t).
Note three important features in Equation 5.17. First, the impulse response peaks
τ units of time after the input impulse has occurred, due to the delay inherent in H
(ω). Second, themaximumvalue of the impulse response or the peak amplitude (see
Section 4.4.2.1) is proportional to the bandwidthωc. Thismakes sense since a larger

1

�1

ωc
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FIGURE5.4 Relationship between frequency response (a and b) and the impulse response
(c) of a linear system.

bandwidth allows the impulse response to be composed of a broader range of
frequencies: In particular, the higher frequencies add sharpness or abruptness to the
impulse response. In the limit, as bandwidth becomes infinite, the peak amplitude
also becomes infinite as the impulse response approaches a delta function, that is,
the same form as the input itself. The third important feature relates to the half-
width, thw, of the impulse response, that is, the time taken for the main response to
the impulse to fully develop. From Equation 5.17, thw can be deduced from the
interval between the impulse response peak and the preceding zero-crossing (see
Figure 5.4c):

π
thw � (5.18)

ωc

Since the step response is simply the integral of the impulse response, it also can be
shown that the rise time Tr of the step response is proportional to thw and therefore
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inversely proportional to ωc. In fact, for a second-order system such as our
linearized lung mechanics model, the following approximate relationship holds:

2
T r � (5.19)

ωc

In Section 4.4.1, we showed that the natural frequency ωn and damping ratio ζ are
the two key parameters that characterize the impulse and step responses of the
generalized second-order linear system. These parameters can be easily derived
from the frequency response of the same system. Consider the linearized lung
mechanics model in open-loop mode, the frequency response of which is given by
Equations 5.8 and 5.9. Note from Equation 4.49 that ωn= 1/(LC)2. Thus,
1 � LCω2 � 0, so that φ0(ωn)=�tan�1(1)=�90°. Therefore, by locating then
frequency at which the phase plot attains a phase lag of 90°, we can deduce ωn.
Evaluation of the frequency response magnitude at ωn allows us to deduce ζ, since

1 C 1� � � � R � (5.20)jH0 ωn j
RCωn L 2ζ

where the last equality in Equation 5.20 is based on Equation 4.50.
For the (open-loop) case where L= 0.01, C= 0.1, and R= 0.3, note that ωn

= 31.62 rad s�1, corresponding to a frequency of approximately 5Hz. At this
frequency, |H0(ωn)|∼ 1.05. It is important to note that this does not correspond
to the resonant frequency, which is located at ∼4Hz (ωr∼ 25). Moreover, the peak
value of |H0(ω)|, which occurs at the resonant frequency, is∼1.2. In fact, resonance
occurs at the natural frequency only when there is no damping in the system (R= 0).

5.2 GRAPHICAL REPRESENTATIONS OF FREQUENCY
RESPONSE

5.2.1 Bode Plot Representation

In the field of control engineering, Bode plots represent one of the most popular
classicalmethods for displaying the frequency response of a linear system. These plots
are similar to but differ from the graphs presented in Figures 5.2 and 5.3 in that the gain
(ormagnitude) and frequency scales arepresented in logarithmic form,while thephase
remains on a linear scale. In addition, the frequency scale is generally displayed in
terms of the angular frequency ω, and therefore in units of radians per second.

The gain of the frequency response H(ω) is expressed in units of decibels (dB),
defined as follows:

GdB ω 10 log10 jH ω j� � � � � 2
(5.21)� 20 log10 jH ω j� �
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The first equality in Equation 5.21 is shown to emphasize the fact that for a linear
system, |H(ω)|2 represents the ratio between the power of the output and the power
of the input signal. The value of ω at which only half of the input signal power is
transmitted is known as the corner or cutoff frequency ωc. Thus, |H(ωc)|

2= 0.5.p
Since |H(ωc)|= 1/ 2, it turns out that the range of frequencies between 0 andωc is
also the system bandwidth, as discussed previously. Using Equation 5.21, we find
thatGdB(ωc)=�3 dB. This definition assumes only the case where the system takes
the form of a low-pass filter, where the high frequencies are attenuated. For systems
that are high-pass in nature, the corner frequency is defined as the frequency at
which the input signal power is amplified and doubled at the output. In this case, |H
(ωc)|

2= 2, and therefore, GdB(ωc)= 3 dB. Thus, in general, the corner frequency is
the frequency at which the gain of the linear system is changed by 3 dB.

The logarithmic nature ofGdB represents one of the major strengths of the Bode
plot. In general, it is possible to factorize the numerator and denominator of any
given frequency response function into a cascade of first-order systems. For
instance, consider the following generalized frequency response function:

GSS∏M
1�1 � jωτm�H� �ω � m� (5.22)

N∏P� �jω 1�1 � jωτi�i�

Note that in Equation 5.22,GSS is the steady-state gain since |H(ω= 0)|=GSS. If we
express the magnitude of H(ω) in terms of logarithmic gain, then

p
GSS∏M

1 1 � ω2τm
2

m�pGdB� �ω � 20 log10 (5.23a)
ωN∏P 1 � ω2τ2i�1 i

Evaluating the logarithm of the expression in curly brackets in Equation 5.23a, we
obtain

M
1=2 NGdB� �ω � 20 log10GSS � 20 log10 1 � ω2τ2 � 20 log10ω

�
m

m�1
(5.23b)

P �1=2� 20 log10 1 � ω2τ2i
i�1

This representation converts the logarithm of the products of several factors into
equivalent sums of the logarithms of these factors. As a result, the contribution of
each term is additive, which makes it easy to determine how the individual factors
contribute to the overall gain. The overall phase of H(ω) can also be decomposed
into the sum of all its individual components:

M P

ϕ ω �� � tan�1�ωτm� � Nπ � tan�1�ωτi� (5.24)
2

m�1 i�1
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From the above example, one can see that it is useful to consider the magnitude and
phase contributions of the basic components ofH(ω), which take the form of either
(jω)�1 or (1+ jωτ) ±1. Let us first consider the term (jω)�1. Note that since jω is
purely imaginary and has no real part, its phase contribution is π/2 rad. Conse
quently, the phase contribution of ( jω)�N is �Nπ/2 rad, the negative sign implying
that the phase shift is a lag. The magnitude contribution of ( jω)�N is infinite at zero
frequency, but zero at infinite frequency.

Now, consider the term (1+ jωτ). This factor adds a phase shift of +tan�1(ωτ),
that is, a phase lead, to H(ω). At very low frequencies (ω≪ 1/τ), this phase lead
would be close to zero. At very high frequencies, that is, ω≫ 1/τ, this phase lead
would approach π/2 rad or 90°. What about the gain contributions of this factor? At
very low frequencies (ω≪ 1/τ), the gain would be ∼20 log10(1)= 0 dB, that is, this
would appear as a straight line on the zero-decibel axis. At very high frequencies
(ω≫ 1/τ), the gain would approximate 20 log10(ωτ) dB, and thus behave like a
straight line (on the Bode plot) with a slope of 20 dB per decade. These two straight
lines bound the actual gain plot and are known as the low-frequency and high-
frequency asymptotes, respectively. Conversely, each (1+ jωτ)�1 factor would
contribute a phase shift of �tan�1(ωτ), that is, a phase lag, to H(ω). As in the
previous case, at very low frequencies, the phase lagwould approach zero, while the
low-frequency asymptote for the gain plot would coincide with the zero-decibel
axis. At very high frequencies, the phase lag would approach 90°, and the high-
frequency asymptote for the gain plot would be a straight linewith slope�20 dB per
decade. The Bode plots for these two basic functions are displayed in Figure 5.5,
together with the low-frequency and high-frequency asymptotes.

The Bode plots of the frequency response of the linearized lung mechanics
model discussed earlier are presented in Figure 5.6. It should be noted that these
plots contain the same information as the linear frequency response plots displayed
in Figure 5.3. One difference is that the frequency scale is expressed in terms ofω, in
units of radians per second. Another important feature is that the logarithmic scaling
enhances the appearance of the resonance peaks in both the open- and closed-loop
systems. In both cases, the bandwidth of the system can be readily determined as the
frequency range over which the gain lies above �3 dB.

5.2.2 Nichols Charts

Instead of presenting gain and phase in separate plots, an alternative approach is to
plot the logarithmic magnitude in decibels versus phase for a range of frequencies.
These plots are known as Nichols charts. The log-magnitude versus phase curves
for the frequency responses (1+ jωτ) and (1+ jωτ)�1 are displayed in Figure 5.7.
The closed circles on these plots correspond to the frequencies listed. In this case,
the individual values of the product ωτ are shown, so that the same plots would
apply irrespective of the specific value of τ being employed. Figure 5.8 shows the
Nichols charts for the linearized lung mechanics model in open- and closed-loop
modes. The values placed next to the closed circles represent the corresponding
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FIGURE 5.5 Bode plots of the first-order frequency response functions (1+ jωτ) and
(1+ jωτ)�1. Note, in this case, that the “frequency scale” has been normalized and presented
in terms of the product ωτ.

angular frequencies ω, in radians per second. These curves convey the same
information that was contained in the Bode plots of Figure 5.6 and the linear
frequency response plots of Figure 5.3. However, as we will see later, the shapes of
these curves at the points where gain approaches 0 dB and the phase approaches
180° can yield useful information about system stability.

5.2.3 Nyquist Plots

Nyquist plots are sometimes also called polar plots. Here, the frequency response
H(ω) is plottedon a plane inwhich the horizontal axis reflects themagnitudeof the real
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FIGURE5.6 Bode plots of the frequency response of the linearized lungmechanicsmodel
in open- and closed-loop modes.

part ofH(ω), while the vertical axis reflects the imaginary part. Thus, at any frequency
ω, H(ω) is represented by a vector linking the origin to the point in question, and the
length of the vector represents the magnitude of H(ω). As illustrated in the inset in
Figure 5.9, the angle subtended by this line and the positive real axis represents φ, the
phaseofH(ω). The signconventiongenerally adopted is thatanticlockwise rotations of
the vector H(ω) from the positive real axis yield positive values for φ.

Nyquist plots corresponding to the basic frequency response functions 1/jωτ,
(1+ jωτ) and (1+ jωτ)�1 are shown inFigure5.9.Theplot for 1/jωτ coincideswith the
negative portion of the imaginary axis:Whenω= 0, 1/jωτ is at�j1, but asω becomes
large, 1/jωτ approaches the origin along the imaginary axis. The locus of (1+ jωτ)
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FIGURE 5.7 Nichols charts for the frequency response functions (1+ jωτ) and
(1+ jωτ)�1.

FIGURE 5.8 Nichols charts for the linearized lung mechanics model in open-loop (part
(a)) and closed-loop (part (b)) modes. The parameter values assumed are the same as the
values employed in Figures 5.3 and 5.5.
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FIGURE 5.9 Nyquist plots for the basic frequency response functions 1/jωτ, (1+ jωτ), and
(1+ jωτ)�1. Selected values ofωτ are shown as closed circles.Dotted circle represents locus of
pointswheregainequalsunity. Inset showsdefinitionsof |H(ω)|andϕ–anticlockwiserotations
of vector H(ω) from the positive real axis yield positive values of ϕ, and vice versa.

begins with a gain of unity on the real axis. As ω increases, this frequency response
function moves vertically upward, tracing a path that is parallel with the positive
imaginary axis. By contrast, the locus traced by (1+ jωτ)�1 is a semicircular arc that
begins at 1 on the real axis when ω= 0 and ends at the origin when ω= 4.

The loop-like forms of the Nyquist plots presented in Figure 5.10 are more
representative of the frequency responses of physiological systems. The particular
plots shown characterize the frequency responses of the linearized lung mechanics
model in both open- and closed-loop modes. These frequency responses repre
sented here are exactly the same as those shown in Figure 5.3 where magnitude and
phase were separately plotted against frequency. However, it is clear from the
Nyquist plots that the points at which these curves intersect the imaginary axis (i.e.,
when φ=�90° and ω=ωn) do not correspond to the points of resonance at which
the gain is maximum (and ω=ωr).
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FIGURE 5.10 Nyquist plots for the frequency responses of the linearized lung mechanics
model in open-loop (>OL=, broken curve) and closed-loop (>CL=, solid curve) modes.
Dotted circle represents the locus of points at which the gain equals 1.

5.3 FREQUENCY-DOMAIN ANALYSIS USING MATLAB AND
SIMULINK

5.3.1 Using MATLAB

To demonstrate the utility of employing MATLAB to examine the frequency
response of a known system, we turn again to our linearized model of lung
mechanics. We will use the closed-loop transfer function expression given in
Equation 4.5b, since this can be converted to the open-loop expression by simply
setting k equal to zero. Assuming that the values of L, R, C, and k have been
preassigned, the following command lines set up the transfer function, Hs, of the
model and produces the frequency vectorw that contains the range of frequencies (in
rad s�1) to be examined:

>> num =[1];
>> den =[L*C R*C (1+k)];
>> Hs = tf(num, den);
>> f = 0:0.1:10;
>> w = 2*pi*f;
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The MATLAB Control System Toolbox function freqresp is used next to
compute the frequency response, Hw, of Hs over the frequency range of
0–10 Hz. Since Hw is a complex mutlidimensional array, the squeeze

function is used to collapse it into a complex vector, which is subsequently
decomposed into magnitude and phase components using the abs and angle

functions, respectively. Finally, the magnitude and phase components are
plotted against w.

>> Hw = freqresp(Hs, w);
>> Hwmag= abs(squeeze(Hw))’;
>> Hwpha= 180*angle(squeeze(Hw))/pi;
>> subplot(2,1,1); plot(w,Hwmag);
>> ylabel(’Freq Resp Magnitude’);grid on;
>> subplot(2,1,2); plot(w,Hwpha);
>> xlabel(’Frequency (rad/s)’);
>> ylabel(’Freq Resp Phase (deg)’); grid on;

The above command lines will produce linearly scaled frequency response plots
of the type shown in Figures 5.2 and 5.3.

To produce Bode plots, the following commands can be used:

>> bode(Hs,w);
>> [Hwmag,Hwpha] = bode(Hs,w);

The first command line will lead to the automatic generation of Bode gain and
phase diagrams. The second command line will not produce the plots, but will save
the results in the variables Hwmag and Hwpha.

In similar fashion, the Nichols chart can be generated using the following lines:

>> nichols(Hs,w);
>> [Hwmag,Hwpha] = nichols(Hs,w);

Again, the second line will only compute the results but will not produce the
plots.

Finally, the Nyquist plot can be produced as follows:

>> nyquist(Hs,w);
>> [Hwreal,Hwimag] = nyquist(Hs,w);

In this case, however, the second command line yields the real and imaginary
parts of the frequency response, Hw, and not the magnitude and phase.

All of the above command lines are contained in a script file called fda_llm.m,
which has been included in the library of MATLAB and SIMULINK files that
accompany this book.
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FIGURE 5.11 SIMULINK model used for determining the frequency response of the
linearized lung mechanics (closed-loop) transfer function.

5.3.2 Using SIMULINK

The MATLAB functions described in the previous section are extremely useful
when the exact transfer function of the system being analyzed is known. However,
withmore complicatedmodelswhere theremay exist several subsystems connected
through forward and feedback loops, deriving a closed form for the overall
frequency response can be very laborious. In such situations, an alternative
approach would be to perturb the model with a known input, monitor the resulting
output, and use both input and output to deduce the frequency response of the
system. This is a basic system identification technique; systems identification and
parameter estimation will be discussed in greater detail in Chapter 7.

Figure 5.11 provides an illustration of how the frequency response of our
linearized lung mechanics model can be “measured.” Here, we assume the
following values for the model parameters (see Equation 4.5b): L= 0.01 cm
H2O s2 L�1, R= 0.3 cm H2O s L�1, C= 0.1 L cm H2O

�1, and k= 1 (i.e., closed-
loop mode), so that the particular transfer function employed here is given by

1
H s� � � (5.25)

0:001s2 � 0:03s � 2

This model is represented in Figure 5.11 by the LTISystem block, labeled Hs, found
in the SIMULINKControl System Toolbox library. Although Hs is represented by the
simple form shown in this example, in general it could be composed of several
interconnected subsystems. The point of relevance here is that one has to identify the
input and output that relate to the overall transfer function of themodel.White noise is
fed into the input of Hs, and both input and output are fed into a block known as
Spectrum Analyzer, found in the Sink sub-library of theDSP System Toolbox. The
Spectrum Analyzer produces the graphical results shown in Figure 5.12: Here
Figure 5.12a displays the input and output time-courses, and Figure 5.12b and c show
the frequency response magnitude and phase. Note that since the results displayed are
computed fromdata sets offinite duration, it is inevitable that “noise”will appear in the
estimated frequency response plots. Themodel shown inFigure 5.11has been saved in
the SIMULINK model file fdallm.slx, which may be found in the library of
MATLAB/SIMULINK files that accompany this book.
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FIGURE 5.12 Determination of frequency response of linearized lung mechanics model
using the SIMULINKprogram shown in Figure 5.11. Part (a) shows time-courses of the input
to and output from the model. Note that the actual mean level of the output signal (lower
tracing) was zero: The displayed time-course was shifted vertically to enhance clarity of
presentation.

An important detail that the user should note is that, when setting up
Spectrum Analyzer, a value is required for the Sample time. This value
allows the block to assign a timescale to the input and output data. The Sample
time also determines the frequency range over which the estimated frequency
response is plotted. In our example, we were concerned with the frequency
range of 0–10 Hz, corresponding to a range inω of about 0–63 rad s�1. Thus, we
chose a minimum sampling frequency of 20 Hz, which translated to a sampling
interval of 0.05 s.
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5.4 ESTIMATION OF FREQUENCY RESPONSE FROM
INPUT–OUTPUT DATA

5.4.1 Underlying Principles

The algorithm embedded in Spectrum Analyzer is based on the following
principle that is valid for all linear systems: The frequency response of the system
under study can be derived by dividing the cross-spectrum of the input and output
by the spectrum of the input. This principle is derived from the basic linear
properties of convolution and superposition. Assuming x(t) and y(t) to represent
the input and output of the linear system with impulse response h(t), we begin by
recalling the convolution equation displayed in Equation 2.45:

y t� � � h t� �´ x t� � t´�dt´ (5.26)

Multiplying both sides of Equation 5.26 by x(t� τ) and then taking expectations, we
obtain

E x t� � τ�y t� �� �� h t� �´ E x t � τ�x t � t´��dt´� � � (5.27a)

where the expectations operator E[�] is defined by

E z� � � zp z� �dz (5.28)

and p(z) is the probability distribution function of the variable z. However, by
definition, the left-hand side of Equation 5.27a yields the cross-correlation function
between x and y,Rxy(τ), while the expectation term on the right-hand side is equal to
the autocorrelation function of x, Rxx(τ). Thus, we replace Equation 5.27a with

1
� � � h t� �´ Rxx�τ � t´�dt´ (5.27b)Rxy τ

It can be shown thatFourier transformation ofRxy andRxx yields the cross-spectrum
Sxy and autospectrum Sxx, respectively; this equivalence principle is also known as
theWiener�Khinchine theorem.And since the frequency responseH(ω) is obtained
by Fourier transforming h(t), the time-convolution on the right-hand side of
Equation 5.27b can be converted into a product in the frequency domain:

Sxy ω � � ω (5.29a)� � � H ω Sxx� �

1

0

1

0

1

�1

0
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where

�jωτdτ� � � � � (5.30a)Sxy ω Rxy τ e

1
�jωτdτ� � � � � (5.30b)Sxx ω Rxx τ e

1
�jωτdτH ω� � � h� �τ e (5.30c)

Thus, the frequency response can be estimated from

� �Sxy ωH ω (5.29b)� � � � �Sxx ω

Note that for good estimates of H(ω) to be derived from Equation 5.29b, it is
important for Sxx to be positive over the range of interest for ω. Ideally, the input or
stimulus signal should have a spectrum that is relatively flat over a wide bandwidth,
that is, the input should be broadband. In fact, the optimal type of input, from the
viewpoint of estimation, is white noise (see Chapter 8).

5.4.2 Physiological Application: Forced Oscillation Technique in
Respiratory Mechanics

The “forced oscillation technique” has been used to noninvasively assess lung
mechanical function in humans. Figure 5.13 shows how this is implemented in the
clinical setting. The subject breathes through a mouthpiece or face mask that is
connected to a breathing circuit with a loudspeaker at the other end. The loud
speaker is used to generate fluctuations in airflow to perturb the subject’s respiratory
system.At the same time, the circuit isflushed by a biasflow that brings fresh air into
the system and removes exhaled CO2. The tubing and inlets associated with the bias
flowpresent high impedance to the high-frequency oscillations but low resistance to
spontaneous breathing, so that the subject is able to breathe normally during the test.
The oscillatory airflow delivered into the subject’s mouth is measured using a
pneumotachograph. The airway opening pressure is measured near themouthpiece.
Thus, in this example, the airflow generated by the loudspeaker is considered the
“input,” whereas the resulting fluctuations in pressure are considered the “output”
of the respiratory system in response to the random flow perturbations. The transfer
function relating the input airflowperturbations to the output pressurefluctuations is
called the “respiratory system impedance,”Zrs. Ifwe assume the lungs act as a single

1

�1

�1

�1
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FIGURE 5.13 Schematic illustration of the equipment setup for the forced oscillation
technique. (Reproduced with permission from Oostveen et al. (2003).)

compartment, the R�L�C electrical analog (see Figure 4.1) would provide an
approximate model of respiratory system mechanics:

Pao � L
dQ

dt
� RQ � 1

C
Qdt (5.31)

where Q is the airflow. Taking Laplace transforms of both sides, we get

Pao s� � � LsQ s� � � RQ s� � � Q s� �
Cs

(5.32)

Thus,

Zrs s� � � Pao s� �
Q s� � � Ls � R � 1

Cs
(5.33)

By setting s= jω, we obtain an expression for the frequency dependence of
respiratory system impedance, that is, the frequency response of this system:

1
Zrs ω (5.34)� � � R � j L �

Cω

Note that the real part of this frequency response is simply the resistance and
independent of frequency. The imaginary part is often called the “reactance” and
contains contributions from inertance and compliance that are of opposite signs.
When frequency is low, the compliance contribution to reactance is large and highly
negative. When frequency is high, the inertance contribution dominates and
reactance becomes highly positive.At the resonant frequency, the two contributions
cancel each other out and reactance becomes zero; at this point, the impedance
consists solely of the resistance contribution.
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5.5 FREQUENCY RESPONSE OF A MODEL OF CIRCULATORY
CONTROL

The regulation of heart rate and systemic blood pressure is achieved in short term
primarily through the feedback control via the arterial baroreflexes. However, both
cardiovascular variables are continually perturbed by respiration. Breathing can
affect heart rate and arterial blood pressure through a number of mechanisms. First,
respiratory-induced intrathoracic pressure changes exert a direct effect on arterial
pressure, which, in turn, affects heart rate through the baroreflexes. Second, the
present evidence suggests a direct coupling between the respiratory pattern
generator in the medulla and the autonomic centers that influence heart rate. Third,
vagal feedback from the pulmonary stretch receptors during breathing has been
shown to reflexively affect heart rate. Finally, changes in heart rate can lead to
changes in cardiac output, which, in turn, produce arterial blood pressure fluctua
tions that alter heart rate through the baroreflexes. The overall effect of respiration
on heart rate, commonly referred to as the respiratory sinus arrhythmia, can be
quantified in terms of a frequency response function. Changes in phase and/or
magnitude of this frequency response function would suggest changes in one of the
factors that influence autonomic control of heart rate.

5.5.1 The Model

The model of circulatory control that we will examine was developed by Saul et al.
(1991) from the Harvard Medical School and Massachusetts Institute of Technol
ogy. The SIMULINK implementation of this model (filename: rsa.slx) is shown
in Figure 5.14. Respiration, measured in the form of lung volume change V is

FIGURE 5.14 SIMULINK model of circulatory control that accounts for the effect of
respiration on heart rate and arterial blood pressure.
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assumed to directly affect the autonomic inputs to the sino-atrial node: Inspiration
leads to decreases in both vagal and sympathetic efferent activity (note signs in
summing blocks). The model does not distinguish between respiratory inputs from
the pulmonary stretch receptors from the central drive that originates in the
medullary centers. Feedback from the baroreceptors also directly influences the
autonomic inputs to the heart: A rise in arterial blood pressure, abp, produces a
decrease in sympathetic activity and an increase in parasympathetic activity.During
inspiration, the decrease in vagal efferent activity acts on the sino-atrial node to
increase heart rate hr. The transfer function that models the dynamics of this
relationship is a simple low-passfilter with a cutoff frequency (fp) that is on the order
of 0.2 Hz and a negative gain�Kp. In contrast, the response of the sino-atrial node to
sympathetic stimulation is considerably slower. In addition to a latency of 1–2 s, the
transfer function that characterizes the dynamics of sympathetic activity to heart
rate conversion has a cutoff frequency fs of 0.015Hz. In this case, the gain is
positive.

Changes in heart rate are assumed to affect arterial blood pressure after a delay of
0.42 s. For simplicity, the transfer function representing the properties of the arterial
vasculature is assumed static with a gain of 0.01mmHgmin bt�1. In addition, since
the transduction of abp into baroreceptor output occurs with very rapid dynamics,
we assume that the baroreflex can be adequately represented by a static gain (equal
to 0.01) in series with a fixed delay of 0.3 s. Finally, the direct mechanical effects of
respiration on abp are modeled as a negative differentiator, that is, inspiration tends
to decrease abp, while expiration tends to increase it. Thus, the model simulates
respiratory sinus arrhythmia by allowing the direct autonomic stimulation of heart
rate. In addition, the resulting changes in heart rate and the direct mechanical effects
of respiration produce fluctuations in abp, which subsequently affect hr via the
baroreflexes.

5.5.2 Simulations with the Model

To determine the frequency response of the circulatory control model, we employ a
source block that produces a chirp signal. This is a sine wave, the frequency of
which increases linearly with time. In our case, we set the parameters of the chirp
block such thatwe start offwith a frequency of 0.005Hz and endwith a frequency of
0.5Hz after a duration of 300 s (simulation time). Since the amplitude of the chirp
signal is not adjustable, a gain block of 0.3 is included between the source block and
the rest of the model. This limits the peak-to-peak amplitude of the “respiration
signal” to 0.6 L. Before starting the simulation, the m-file rsa_var.m has to be
executed in order to assign values to the adjustable parameters of the model. The
following nominal parameter values represent the normal subject in supine posture:
SA node vagal transfer function gain, Kp= 6; SA node sympathetic transfer
function gain, Ks= 18; SA node vagal transfer function cutoff frequency, fp= 0.2
Hz; SA node sympathetic transfer function cutoff frequency, fs= 0.015Hz. The
relative weight factors for the conversion of respiratory drive or baroreflex drive to
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efferent neural activity are Ap (for the vagal branch)= 2.5 and As (for the
sympathetic branch)= 0.4.

Figure 5.15 displays the results obtained from one simulation run; for the sake of
clarity, only 100 s of the simulated “data” are shown. Figure 5.15a shows the chirp
signal (respiratory input) used to stimulate themodel. The corresponding changes in
heart rate predicted by the model are displayed in Figure 5.15b. Note that at low
frequencies, heart rate fluctuates almost in synchrony with lung volume change;
however, at the higher frequencies, it tends to lag respiration. Also, the amplitude of

FIGURE 5.15 Responses in heart rate and arterial blood pressure to a controlled breathing
pattern (slow-to-high frequency), as predicted by the SIMULINK model of circulatory
control (“normal” conditions).
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the heart rate signal decreases with increasing frequency, underscoring the low-pass
nature of the overall frequency response. The predicted behavior of arterial blood
pressure is somewhat different: As frequency increases, the respiratory-induced
changes in abp become larger. This results from the growing influence of the direct
mechanical effects of breathing on blood pressure as frequency increases.

5.5.3 Frequency Response of the Model

Using the method described in Section 5.4.1, the frequency response of the model
can be deduced from the input and simulated output. Instead of inserting the
SpectrumAnalyzer block, the reader can also save the input (V) and output (hr or
abp) variables to the Workspace, and use the following MATLAB code (saved as
rsa_tf.m) to deduce the frequency response:

% We assume the sampling interval is 0.1 s so that N=3000
% for a total simulation time of 300 s
>> freq = [0:1/300:5]’;
% compute Power spectrum of V and Cross-spectrum between
% V and hr
>> Pv = psd(V,N,10);
>> Pvhr = csd(V,hr,N,10);
% compute Frequency Response magnitude and phase
>> Hvhr = Pvhr./Pv;
>> Hvhrmag = abs(Hvhr);
>> Hvhrpha = angle(Hvhr)*180/pi;

The chirp signal is useful as an input waveform since it produces a reasonably
broad spectrumover the frequency range of interest: 0�0.4Hz. Figure 5.16 displays
the magnitude (part (a)) and phase (part (b)) components of the frequency response
between respiration and heart rate estimated for the simulated supine normal subject
(solid curves). The low-pass nature of the magnitude response is clearly evident;
however, the frequency response values toward the low (0Hz) and high (0.4Hz)
ends of the range displayed cannot be regarded as accurate sincemost of the spectral
power of the chirp input is contained in the frequencies in the middle of this range.

The results of two other simulation cases are also presented in Figure 5.16. The
first simulates how the frequency response of the respiratory sinus arrhythmia
would change if the “subject” were given a dose of atropine (+atropine, dashed
curves) that produces complete parasympathetic blockade. In addition, the model
parameters are also modified to simulate the subject in a standing posture, when the
sympathetic influence on heart rate is enhanced. Under such conditions, heart rate
controlwould bemodulated predominantly by the sympathetic nervous system.Not
surprisingly, the resulting frequency response magnitude curve shows a substantial
increase at frequencies below 0.03Hz and a large decrease at frequencies higher
than 0.1 Hz. The phase curve shows a much steeper slope, indicating an increase in
the lags inherent in the system. The values of the model parameters employed here
are Ap= 0.1, Kp= 1, fp= 0.07Hz, As= 4.0, Ks= 9, and fs= 0.015Hz.
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FIGURE 5.16 Frequency responses of the circulatory control model under conditions that
simulate normal heart rate control, complete β-adrenergic blockade (+propanolol), and
complete parasympathetic blockade (+atropine).

In the other simulation case, the “subject” is given a dose of propranolol, which
produces β-adrenergic blockade. Furthermore, we assume a supine posture, thus
making vagal modulation the predominant mode of control. The frequency
response curves corresponding to this condition are labeled +propranolol. Com
pared to the control case, there is little change in the frequency response above
0.05Hz. However, loss of sympathetic modulation leads to a significant decrease in
frequency response magnitude and phase at the very low frequencies. Under this
“purely vagal” state, the phase difference between respiration and heart rate is
relatively small over the 0�0.4Hz range, indicating that the respiratory-induced
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changes in heart rate occur rapidly. The parameter values used to represent this state
are Ap= 2.5, Kp= 6, fp= 0.2Hz, As= 0.1, Ks= 1, and fs= 0.015Hz.

PROBLEMS

P5.1. Consider the simplified model of eye-movement control displayed in
Figure P4.3. Assuming that G/J= 14,400 rad2 s�2, B/J= 24 rad s�1, and
Kv= 0.01, compute the frequency response for this model. Display the
magnitude and phase components of the frequency response in the form of

(a) linear-scale frequency response plots (e.g., Figures 5.2 and 5.3);

(b) Bode plots;

(c) Nichols charts;

(d) Nyquist plots.

P5.2. (a) Derive the expressions for the Bode plots (magnitude and phase) of the
transfer function H s� � � e sT , where T is a constant. Sketch the magni
tude and phase curves as a function of frequency ω.

(b) Derive the expressions for the Bode plots (magnitude and phase) of the
transfer function:

�sT � sT =2�� � �H s� � � e
2

where T is a constant.
Sketch the magnitude and phase curves as a function of frequency ω.

P5.3. Recall the simplified linear model of the baroreflex regulation of heart rate
and arterial blood pressure introduced in Problem P4.1. ΔHR and ΔABP
represent changes (from the mean) of heart rate and arterial blood pressure,
respectively. The “blocks” represent the various physiological compo
nents of this reflex. G, kb, and kc represent constant gains (all with positive
values), while τ represents time constant (in seconds) for the response of
the sino-atrial (SA) node (in the heart) to changes in efferent vagal traffic
(ΔVg). The expression shown in the box representing the SA node is its
transfer function, with s being the Laplace variable. The external stimulus
(labeled ΔZ) to this closed-loop system represents the effect of admin
istering a vasoconstrictor drug (e.g., phenylephrine) that acts to raise blood
pressure. Assuming that τ= 1, G= 1, kb= 1 and kc= 1, and ΔZ is a sine
wave with unit amplitude and frequency of 1Hz, calculate the amplitude
and phase of ΔABP relative to ΔZ.

P5.4. Determine the frequency responses of the ventilatory control model shown
in Figure P4.5, assuming (a) α= 0 (no rate sensitivity), (b) α= 1/2 (lag-lead
feedback), and (c) α= 2 (lead-lag feedback).
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P5.5. Derive a closed-form expression for the frequency response of the circula
tory control model shown in Figure 5.13, with respiration as the input and
heart rate as the output. Using the parameter values given in the SIMULINK
implementation of the model (rsa.slx) and Section 5.4.3, deduce and plot
the frequency responses of this model for the three cases shown in
Figure 5.15: (a) normal supine subject, (b) following atropine administra
tion, and (c) following propranolol infusion. Compare these plots with those
presented in Figure 5.15.

P5.6. The model of Figure 5.13 can be used to investigate the dynamics of blood
pressure regulation by the baroreflexes in the following way. In the
SIMULINK model, rsa.slx, remove the respiratory input from the model
and add an external source that imposes a random excitation directly on
arterial blood pressure. This can be achieved experimentally in approximate
fashion by imposing positive and negative pressure changes on the neck,
thereby changing carotid sinus pressure. Assuming the applied pressure
time-course to be the input and the resulting heart rate changes to be the
output, use the method outlined in Section 5.3.2 to deduce the frequency
response of the closed-loop baroreflex control system.

P5.7. Derive an expression for the closed-loop frequency response of the neuro
muscular reflex model displayed in Figure 4.11, assuming the external
momentMx to be the input and angular displacement of the forearm θ to be
the output. Using the parameter values given in Section 4.6.2, display the
magnitude and phase plots of the frequency response.

P5.8. Using the SIMULINK implementation of the neuromuscular reflex model
(nmreflex.slx), displayed in Figure 4.12, estimate the frequency response
of the closed-loop system by using the method discussed in Section 5.3.2.
Employ a random noise source as the driving input,Mx. Check your results
against the magnitude and phase plots of frequency response deduced
analytically in Problem P5.7.
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6
STABILITY ANALYSIS:
LINEAR APPROACHES

6.1 STABILITY AND TRANSIENT RESPONSE

The concept of stability is best explained by referring to the illustration in
Figure 6.1. The four plots in this figure represent the impulse responses from a
linear system under different conditions. In case (a), the response is similar to that
exhibited by an overdamped or critically damped system. In case (b), the system
exhibits an underdamped response, that is, there is some oscillation in the response
but it is eventually damped out. In both cases, the system is said to be stable.
However, in case (d), the impulsive stimulus produces a response that is oscillatory
with growing amplitude; as a consequence, the system output never returns to its
original operating point prior to stimulation. This is the hallmark of an unstable
system. With these examples in mind, we introduce the following definition of
stability: A stable dynamic system is one that will respond to a bounded input
with a bounded response. Apart from the clear-cut cases of “stable” and “unstable”
systems, there are conditionally or marginally stable systems that exhibit
undamped oscillations. Here, the response is bounded but never returns to the
steady operating level prior to perturbation; however, such systems can exhibit
unbounded responses if stimulated with certain bounded inputs, such as sinusoidal
waves with frequencies that match the characteristic frequencies of the system.

We examined to considerable detail in Chapter 4 how first- and second-order
systems, operating in either open- or closed-loop modes, respond to impulsive or

Physiological Control Systems: Analysis, Simulation, and Estimation, Second Edition. Michael C.K. Khoo.
 2018 The Institute of Electrical and Electronics Engineers, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/khoo/controlsystems2e
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FIGURE 6.1 Responses of a system that is (a) stable and overdamped; (b) stable and
underdamped; (c) marginally stable or oscillatory; and (d) unstable.

step inputs. Recall that the dynamics of the system responses, that is, the “transient
responses,” were determined by the roots of the denominator, or the poles, of the
model transfer function. For the closed-loop (k> 0) generalized second-order
system, this was shown in Equation 4.51 to be

Y s� � GSS ω2
n� (6.1)

X s� � s2 � 2ζωns � �1 � kGSS�ω2
n

so that the system poles are given by the roots (α1 and α2) of

s2 � 2ζωns � �1 � kGSS�ω2 � 0 (6.2)n

that is,

α1;2 � �ζωn � ωn ζ2 � �1 � kGSS� (6.3)

The poles can be real, imaginary, or complex, depending on the size of ζ2 relative
to the term 1+ kGSS, as shown by Equation 6.3. Thus, the impulse response
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corresponding to Equation 6.1 is given by

GSSω2
n α1tα2t � eh t� � � �e � (6.4)

α2 � α1

For positive values of ζ, ωn, k, and GSS, Equation 6.4 shows that the transient
response will take on one of the forms represented in cases (a)–(c) in Figure 6.1, but
not case (d). This arises from the fact that in cases (a)–(c), the real parts of the roots
are either negative or zero, so that the terms within the curly parentheses in
Equation 6.4 represent exponential decaying, exponentially damped, or simply
sinusoidal dynamics. The exponentially growing behavior of the unstable system
would only occur if the real parts of α1 and/or α2were positive. This could be so if ζ
or ωn were negative; however, this would not be physically feasible. The only
possible way in which the closed-loop model represented by Equation 6.1 could
realistically be made unstable would be by making k negative: If k were to be
negative and to assume a magnitude larger than 1/GSS, one of the roots in
Equation 6.3would start to become positive real, and the resulting impulse response
(Equation 6.4) would increase exponentially with time.

We can summarize the conclusions from the above discussion on stability by
extending the results to more generalized systems of the forms shown in Figure 6.2.
In Figure 6.2a, the dynamics of the forward and feedback components are
characterized by transfer functions P(s) and Q(s), respectively. The gain of the

FIGURE 6.2 Closed-loop systems with variable forward (a) and feedback (b) gains.
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forward path is controlled by the static factor K, which can be varied between zero
and infinity. Figure 6.2b shows a similar configuration except that, here, the feed
back gain can be varied by varying K between zero and infinity. For the kind of
system represented in Figure 6.2a, the closed-loop transfer function is

Y s� � KP s� �
HA� � �s � (6.5)

X s� � 1 � KP s� �Q s� �
For the type of system shown in Figure 6.2b, the closed-loop transfer function is

Y s� � P s� �
HB� � �s � (6.6)

X s� � 1 � KP s� �Q s� �
Note that in both cases, the denominator of the closed-loop transfer function is
the same. Thus, for given forms of P(s) andQ(s) and gain K, both types of systems
will have the same transient response. As in the example of the lung mechanics
model, the transient response and stability of both these systems are determined by
the poles of their closed-loop transfer functions, that is, the roots of the following
characteristic equation:

1 � KP s� �Q s� � � 0 (6.7)

Note that the product KP(s)Q(s) yields the loop transfer function {LG(s)} of both
closed-loop systems. (Recall from Section 3.2 that the magnitude of LG(s) is the
loop gain of the feedback control system.) Thus, Equation 6.7 can be generalized
further to

1 � LG s (6.8)� � � 0

Extending the result arrived at earlier, we can conclude that in each of the
closed-loop systems shown in Figure 6.2, the transient response will become
unstable if the real part of any root of its characteristic equation (Equation 6.7)
is positive.

6.2 ROOT LOCUS PLOTS

The root locus method is a classical procedure used to determine how the poles
of the closed-loop transfer function would change as a function of a system
parameter (generally, some gain constant), given the location of the open-loop
poles and zeros. In fact, the “root locus” is the path on the complex s-plane
traced by the closed-loop poles when the system parameter in question varies
over a range of values. To illustrate how this method is applied, we turn once
again to our simple lung mechanics model. Referring back to Figure 4.2b, we
find that the lung mechanics model is merely a special case of the closed-loop



171ROOT LOCUS PLOTS

form shown in Figure 6.2, where

1
P s� � � (6.9)

LCs2 � RCs � 1

Q s� � � 1 (6.10)

and

K � k (6.11)

For given values of the lung mechanics parameters (L, C, and R), the root locus
will show us how the dynamic behavior of the model changes as the feedback gain
takes on a range of values. Applying Equation 6.7, the task then is to solve for the
roots of the following characteristic equation as k varies:

k
1 � � 0 (6.12)

LCs2 � RCs � 1

This is equivalent to solving

LCs2 � RCs � 1 � k � 0 (6.13)

The general solution for the roots of Equation 6.13 is
p�R � R2 � 4L�1 � k�=C

α1;2 � (6.14)
2L

To solve Equation 6.14, we will assume, as in Section 4.3, that L= 0.01 cm
H2O s2 L�1, C= 0.1L cm H2O

�1, and R= 1 cm H2O sL�1. It is generally useful to
determine the locations of the closed-looppoleswhen k assumes its twomost extreme
values. First, note that when k= 0, solving Equation 6.13 becomes equivalent to
determining the locations of the poles of the open-loop system,P(s). Substituting the
above values of L,C, R, and k into Equation 6.14, we obtain the following solutions:
α1=�88.73 and α2=�11.27. For these parameter values, both poles are real and
negative.At the other extreme,when k becomes infinitely large, Equation 6.14 yields
the solutions: α1=�50+ j4 and α2=�50� j4. Thus, for very large k, the poles
become complex. Finally, the value of k at which the two real poles become complex
can be found by solving for the value of kwhere the expression inside the square-root
operation in Equation 6.14 goes to zero, that is,

R2C
k � � 1 (6.15)

4L

Substituting in values for L, R, and C, we obtain k= 1.5.
The complete root locus plot of the system in question can be obtained easily

with the use of the MATLAB Control System Toolbox function rlocus. This
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function assumes that the productP(s)Q(s) yields a transfer functionH that takes the
form of the ratio of two polynomial functions of s:

N s� �
P s� �Q s� � � H s� � � (6.16)

D s� �
Then, Equation 6.7 can be recast into the following form:

D s� � � KN s� � � 0 (6.17)

rlocus finds the solution to Equation 6.17 for all values of K between 0 and
infinity. For our specific example, the following MATLAB command lines can be
used to plot the corresponding root locus:

>> Ns = [1];
>> Ds = [L*C R*C 1];
>> Hs = tf(Ns,Ds);
>> rlocus(Hs);

The resulting root locus plot is displayed in Figure 6.3. Note that the locations of
the closed-loop poles when k equals zero, 1.5, and infinity are exactly as we had
deduced earlier. Also, since the poles always lie on the left-hand side of the s-plane
(i.e., real parts of poles are always negative), the closed-loop system is stable for all
positive values of feedback gain, k. Note that the root locus gives us a good global
picture of the transient response characteristics of the system, but tells us little about
its frequency response.

As a further example, we consider the linear lung mechanics model when
integral feedback control is employed instead of proportional feedback, that is, in
this case, the fluctuations in alveolar pressure are integrated before being fed back to
the comparator. This system is displayed in Figure 6.4. Referring to Figure 6.2b, the
forward transfer function P(s) remains the same, while the feedback transfer
function Q(s) is now given by

1
Q s� � � (6.18)

s

The characteristic equation (Equation 6.17) now assumes the specific form:

LCs3 � RCs2 � s � k � 0 (6.19)

The above equation can be solved easily using MATLAB by simply inserting an
extra term into the row vector that represents D(s):

>> Ns = [1];
>> Ds = [L*C R*C 1 0];
>> Hs = tf(Ns,Ds);
>> rlocus(Hs);
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FIGURE 6.3 Root locus plot for the lung mechanics model with proportional feedback.
Locations marked x indicate positions of poles when k= 0. Arrows indicate direction in
which the poles move as k is increased from zero to infinity. Dotted horizontal and vertical
lines represent the real and imaginary axes, respectively.

The corresponding root locus plot, displayed in Figure 6.5, shows a form that
differs significantly from the plot in Figure 6.3. Because the characteristic
equation is now third order, there are three poles instead of two. When k= 0,
all three poles are located on the real axis, one of which is situated at the origin
(s= 0). As k increases, the most negative pole becomes progressively more
negative while remaining real. However, when k increases beyond 2.64, the other
two poles become complex, that is, the transient response becomes a damped
oscillation that becomes less and less damped, and the frequency of which

FIGURE 6.4 Linear lung mechanics model with integral feedback.
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FIGURE6.5 Root locus plot for the lungmechanicsmodel with integral feedback. Poles at
k= 0 are marked x. Arrows indicate direction in which the three poles move as k is increased
toward infinity.

progressively increases, as k continues to increase. Finally, when k exceeds 100,
the system becomes unstable as these two poles move into the right-hand side
of the s-plane, that is, the impulse response assumes the form of a growing
oscillation. These results demonstrate that the integral feedback system depicted
here exhibits dynamics that are less stable than the proportional feedback case,
although it gives a faster response.

6.3 ROUTH–HURWITZ STABILITY CRITERION

The root locus method requires the evaluation of all roots of the characteristic
equation in order to determine whether a given system is stable or unstable. The
Routh–Hurwitz technique is a classical stability test that enables such a determina
tion without the need to actually evaluate the roots. With the computational tools
that are available nowadays, this test has become somewhat obsolete. Nonetheless,
we will describe it here for the sake of completeness.

We assume the following general form for the characteristic equation of the
closed-loop system in question:

ans
n � an�1sn�1 � ∙ ∙ ∙ � a1s � a0 � 0 (6.20)
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The Routh–Hurwitz technique requires the computation of values based on the
coefficients of the characteristic equation and the arrangement of these values into
an array of the following construction (with each row corresponding to a power of s,
as indicated in the margin to the left of the array):

sn an an�2 an�4 ⋮
sn�1 an�1 an�3 an�5 ⋮
sn�2 b1 b2 b3 ⋮
n�3s c1 c2 c3 ⋮ (6.21)

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ⋮
1s p1
0s q1

where

b1 � an�1an�2 − anan�3
an�1

; b2 � an�1an�4 � anan�5
an�1

; c1 � b1an�3 � b2an�1
b1

(6.22)

and so on. The Routh–Hurwitz criterion states that the number of closed-loop poles
located on the right-hand side of the s-plane is given by the number of changes in
sign in the first column of the constructed array in Equation 6.21. Thus, for a stable
system, there should be no changes in sign in the first column of the array.

To illustrate the use of the Routh–Hurwitz test, we will apply it to the two
examples discussed in Section 6.2. Consider first the linear lung mechanics
model with proportional feedback. The characteristic equation here is given by
Equation 6.13. Using Equation 6.21, the Routh array is

2 LC 1 � ks

s RC 0 (6.23)
0s 1 � k 0

For positive values of L, C, and R and for k� 0, there are no changes in sign in the
terms of the first column of the array. Therefore, by the Routh–Hurwitz criterion,
the system defined by Equation 6.13 will always be stable.

In the lung mechanics model with integral feedback, the characteristic equation
is given by Equation 6.19. In this case, the first two columns of the Routh array are

3 LC 1s
2 RC ks

Lk (6.24)
1 � 0s

R
0s k 0
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For positive values of L, C, R, and k, note that all terms in the first column of
Equation 6.24 will be positive, except for the third term that can become negative if

R
k > (6.25)

L

For R= 1 cm H2O s L�1 and L= 0.01 cm H2O s2 L�1, Equation 6.25 predicts that
there will be two changes of sign in Equation 6.24 when k exceeds the value of
100: There is one change of sign from positive to negative (sign of RC to sign
of 1� Lk/R), and a second change of sign from negative to positive (sign of 1�
Lk/R to sign of k). This implies that there are two closed-loop poles located on the
right-hand side of the s-plane – exactly the result obtained in Section 6.2 when
we employed the root locus method. Therefore, this closed-loop system can
become unstable when k>R/L.

6.4 NYQUIST CRITERION FOR STABILITY

One primary disadvantage of the Routh–Hurwitz method is that the test becomes
difficult to apply when the characteristic equation cannot be simply expressed as a
polynomial function of s. Pure time delays are abundantly found in physiological
systems. Although these can be approximated by rational polynomial expressions
(see Problem P4.3), the resulting characteristic equation can become extremely
unwieldy. For these kinds of problems, it is generally more convenient to employ
the Nyquist stability test.

The formal mathematical development of the Nyquist stability criterion will not
be presented here, as it involves a fair bit of complex variable theory; the interested
reader can find this in most engineering texts on control systems. Instead, we will
employ a more intuitive approach by illustrating the basic notions underlying this
criterion. Consider the very simple negative feedback system shown in Figure 6.6.
The input u represents a disturbance to the system that is nonzero for only a brief
period of time. The systemoutput x is fed back through a static gain�K and added to
the input before being fed forward through the time-delay (TD) block. Note that the

FIGURE 6.6 Simple negative feedback system with delay. Note that, in this example, the
negativity in feedback is embedded in the “loop gain” block.
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negativity in feedback control is implemented through the assignment of a negative
value to the feedback gain and the addition (not subtraction) of the resulting
feedback signal (z) at the level of the summing junction.

Figure 6.7 shows three of the many possibilities with which the system responds
following the imposition of a transient disturbance u. In all these cases, we have
assumed that u takes the form of a half-sine wave. Consider case (a) in which we
assumeK= 0.5 andTD is half the duration of u. Here, the initial passage of u through
the forward and feedback blocks produces an inverted and attenuated (by 50%) half-
sine wave at z, labeled 1 in Figure 6.7a (upper panel). Propagation of this signal
around the loop a second timewould produce a response at z of the form labeled as 2.
Similarly, the third and fourth traversals around the entire loop would produce “3”

FIGURE6.7 Response of the negative feedback systemwith delay to an initial disturbance
when (a) loop gainmagnitude<1 and phase lag<180°, (b) loop gainmagnitude<1 and phase
lag= 180°, and (c) loop gain magnitude= 1 and phase lag= 180°.
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and “4”, respectively. This process would continue until the “echoes” of the initial u
are finally damped out totally. Each time there is a complete traversal around the
loop, there is a change in sign, reflecting the negative nature of the feedback.
Superimposition of all these individual effects on the initial disturbance leads to the
complete response at x shown in the lower panel of Figure 6.7a. Thus, the system
response to u is a rapidly damped oscillation, that is, the system in this case is stable.
In Figure 6.7b, K is assigned the value of 0.5 again, but TD is now increased to a
value equal to the duration of u. This produces the responses in z labeled as “1” after
the first traversal around the loop and “2” after the second traversal (Figure 6.7b,
upper panel). The net result again is a damped oscillation (Figure 6.7b, lower panel).
However, in this case, the oscillation appears to be more slowly damped and the
frequency of the oscillation is also lower. Note, in this case, that the corrective
actions (“1” in response to u and “2” in response to “1”) have been delayed somuch
that they occur out of phase (i.e., at 180°) with the preceding fluctuations. Finally, in
case (c), the time delay is kept the same as that for case (b), but the loop gain
magnitude is increased to 1. As in case (b), due to the increased delay, the feedback
signal tends to reinforce the effect of the initial disturbance rather than to cancel it
out. However, in this case, since there is no attenuation in the feedback loop, the net
result is a sustained oscillation or period equal to twice the length of TD. It is easy to
see that if the loop gain were to be increased further to a value exceeding 1, the
system response would be an oscillation with growing amplitude.

From the examples shown in Figure 6.7, it is clear that a closed-loop system can
become unstable if the total phase lag imposed by all system components around the
loop equals 180° and the loop gain magnitude is at least unity. This is the basic
notion underlying the Nyquist criterion. Thus, in order to determine whether a
specific closed-loop system is stable or unstable, we would first deduce the loop
transfer function (i.e., the product of all component transfer functions around the
closed loop). The Nyquist plot of the loop transfer function is generated. Note that a
loop gain of unit magnitude and phase lag of 180° is represented by the point
(�1+ j0) on the complex plane. The system is stable if the (�1+ j0) point lies to the
left of the Nyquist plot as the locus is traversed in the direction of increasing
frequency. Another way of stating this criterion is that in the stable system, the
Nyquist plot will not encircle the (�1+ j0) point. In order to make this determina
tion, it is generally necessary to evaluate the loop transfer function from zero
frequency to infinity, or at least, over a wide band of frequencies. This criterion, as
stated above, is valid as long as the loop transfer function does not contain any poles
with positive real parts. If this condition does not apply, one has to employ a
different version of the Nyquist criterion; more details of the method under such
circumstances can be found elsewhere (Dorf and Bishop, 2011).

The reader may recall that the Nyquist representation was previously discussed
in Section 5.2.3. However, one should be cautioned that, in Chapter 5, the examples
shown were those in which we characterized the frequency responses correspond
ing to the open- and closed-loop transfer functions of the systems in question. For a
determination of stability, we need to evaluate the loop transfer function, which
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will yield a Nyquist plot quite different from the Nyquist plots that correspond to
the open- or closed-loop transfer functions of the same system.

To illustrate the application of the Nyquist stability criterion, we turn once again
to the two examples that have been discussed earlier. For the linear lung mechanics
model with proportional feedback, the loop transfer function, HL1(s), is given by

k
HL1 s (6.26)� � �

LCs2 � RCs � 1

The frequency response corresponding to Equation 6.26 is obtained by substituting
jω for s:

k
HL1 ω (6.27)� � � �1 � LCω2� � jRCω

The Nyquist plots corresponding to Equation 6.27 are shown in Figure 6.8 for three
values of feedback gain (k= 1, 10, and 100). Note that at ω= 0, HL1(ω)= k.
However, the zero frequency values forHL1(ω) when k= 10 and k= 100 lie outside
the range displayed. In Equation 6.27, also notice that when ω→1, HL1(ω)→ 0.
Thus, for each plot, the Nyquist locus begins at the point (k+ j0) at zero frequency
and ends at the origin at infinite frequency. The direction of traversal of each locus
with increasing values of frequency is indicated by the arrows (Figure 6.8). Except
for the hypothetical case when k becomes infinite, it can be seen that none of the
Nyquist loci touch or encircle the (�1+ j0) point (represented as the filled circle in
Figure 6.8). Thus, this system is stable for all finite values of feedback gain.

The loop transfer function for the linear lung mechanics model with integral
feedback, HL2(s) is given by

HL2 s� � � k

LCs3 � RCs2 � s
(6.28)

The frequency response corresponding to the above transfer function is

HL2 ω� � � k

�RCω2 � jω 1 � LCω2� � (6.29)

In this case, note that when ω→ 0, HL2(ω)→ j1. When ω is very large, the term
in ω3 will become much more important than the other terms in the denominator
in Equation 6.29. Thus, when ω→1,HL2(ω)→ 0, with the Nyquist locus at high
values of ω tending to approach the origin along the positive imaginary axis.
Figure 6.9 shows the behavior of Nyquist loci at four different values of feedback
gain (k= 1, 10, 100, and 1000). All loci start off from �j1 and curve in toward
the origin as frequency increases toward infinity. For values of k below 100, the
Nyquist loci remain to the right of the (�1+ j0) point, so the system remains
stable. When k= 100, the Nyquist locus passes through the (�1+ j0) point,
indicating that the system becomes conditionally stable in this condition. Then,
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FIGURE6.8 Nyquist plots for the linear lungmechanicsmodelwith proportional feedback.
Feedback gains shown are k= 1, 10, and 100. For the latter two cases, only portions of the
Nyquist plots lie outside of the scale shown. Arrows indicate direction of Nyquist trajectories
as frequency increases from 0 to infinity. Filled circle represents location of the�1+ j0 point.

FIGURE 6.9 Nyquist plots for the linear lung mechanics model with integral feedback. In
all cases (k= 1, 10, 100, 1000), portions of theNyquist plot lie outside of scale shown.Arrows
indicate direction of Nyquist trajectories as frequency increases from 0 to infinity. Filled
circle represents location of the �1+ j0 point.
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when k> 100, the system becomes unstable with the Nyquist plot encircling the
(�1+ j0) point.

6.5 RELATIVE STABILITY

While it is useful to be able to determine underwhat conditions a closed-loop system
would become marginally stable or unstable, it is equally useful to have a means of
assessing how “far” the point of instability is from the current state of system
stability. Consider two stable systems. Suppose the effect of an impulsive distur
bance elicits a rapidly damped, nonoscillatory response from the first system, while
the same disturbance produces an underdamped oscillatory response from the
second system. Although both systems are “stable,” it would be reasonable to
conclude that the first may be considered “more stable” than the second. This is the
basis underlying the notion of relative stability.

The relative stability of a given system can be quantified in terms of either the
gainmargin or the phasemargin. Both providemeasures of the (�1+ j0) point from
specific points on the locus of the loop transfer function. The gain margin refers to
the factor by which the loop gain corresponding to a phase of �180° has to be
increased before it attains the value of unity. The frequency at which the phase of
the loop transfer function becomes �180° is known as the phase crossover
frequency. To illustrate this point, consider a special case of the linear lung
mechanics model with integral feedback that has the following specific loop
transfer function:

1
HL2 s (6.30)� � �

s3 � 3s2 � 2s

The Bode magnitude and phase plots corresponding to Equation 6.30 are displayed
in Figure 6.10. Note that at the phase crossover frequency ωpc, when the phase of
HL2(ωpc) becomes equal to �180°, the gain of HL2(ωpc) remains less than unity,
implying that this system is stable. By definition, the gain margin (GM) in this case
is given by

� GM � 1 (6.31)HL2 ωpc

Therefore, the gain margin, expressed in decibels, is

GMdB � 20 log10
1

HL2 ωpc
� �20 log10 HL2 ωpc (6.32)

As shown in the top panel of Figure 6.10, GMdB is given by the vertical distance
between the 0 dB axis and the point on the gain plot at which the phase crossover
frequency is attained.
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FIGURE 6.10 Derivation of gain and phase margins from the Bode plots of the loop
transfer function.

The other measure of relative stability, the phase margin, is defined as the shift in
phase at unit loop gain necessary to produce a phase lag of 180°. The frequency at
which the loop gain becomes equal to unity is known as the gain crossover
frequency (ωgc). Referring to the lower panel of Figure 6.10, note that the phase
margin is given by the vertical distance between the�180° line and the point on the
Bode phase plot at which the gain crossover frequency is attained.

The gain and phase margins can also be readily deduced from the Nichols chart
(Figure 6.11) and the Nyquist plot (Figure 6.12). In the case of the Nyquist plot,
the intersection between the Nyquist locus and the negative horizontal axis yields
|HL2(ωpc)|, which, by Equation 6.31, gives the reciprocal of GM. Note, however,
that here GM is expressed as a ratio and not in terms of decibels. It can be
appreciated from Figures 6.10 through 6.12 that larger positive values for the gain
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FIGURE 6.11 Derivation of gain and phase margins from the Nichols chart of the loop
transfer function.

FIGURE 6.12 Derivation of gain and phase margins from the Nyquist plot of the loop
transfer function.
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or phase margins imply greater relative stability. On the other hand, negative
values for either gain or phase margins would imply that the system in question is
already unstable.

Numerical evaluation of the gain and phase margins can be performed easily
using the function margin in theMATLABControl SystemToolbox. For instance,
to evaluate the gain and phase margins for the loop transfer function defined by
Equation 6.30, the following MATLAB command lines (contained in script file
gpmargin.m) may be applied:

>>%First construct loop transfer function and vector of
frequencies
>> num = [1];
>> den = [1 3 2 0];
>> Hs = tf(num, den);
>> f = 0.01:0.01:10;
>> w = 2*pi*f;

>>%Compute magnitude (mag) and phase (pha)
of loop transfer function
>> [mag,pha] = bode(Hs,w)

>>%Compute gain margin (GM), phase margin (PM), gain
crossover
>>%frequency (wcG) and phase crossover frequency (wcP)
>> [GM,PM,wcG,wcP] = margin(mag,pha,w);

>>%Plot Bode diagram showing gain and phase margins
>> margin(mag,pha,w);

6.6 STABILITY ANALYSIS OF THE PUPILLARY LIGHT REFLEX

Thepupillary light reflex has been studied extensively using control systemanalysis,
beginning with bioengineering pioneers Lawrence Stark (1959) and Manfred
Clynes (1960). The purpose of this reflex is to regulate the total light flux reaching
the retina, although the same pupil control system is also used to alter the effective
lens aperture so as to reduce optical aberrations and increase depth of focus. The
reflex follows the basic scheme shown in Figure 6.13a. An increase in the intensity
(I) of ambient light elevates the total light flux (L) received by the retina, which
converts the light into neural signals. The afferent neural information is sent via the
optic nerve to the lateral geniculate body and then to the pretectal nucleus.
Subsequently, the Edinger–Westphal nucleus sends efferent neural signals back
toward the periphery to the iris sphincter and dilator muscles, which, respectively,
contract and relax to reduce the pupil area (A).

Not surprisingly, quantitative investigations into this feedback control scheme
have revealed significant nonlinearities in each of the system components. How
ever, Stark came up with a linear characterization that provides a reasonably good
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FIGURE 6.13 (a) Functional scheme for the pupillary control system. Note that the total
light flux L is given by the product of light intensity I and pupil area A; (b) linearized (small-
signal) model of the pupillary light reflex.

approximation of the underlying dynamics when the changes involved are rela
tively small. This linearized model is schematized in Figure 6.13b. Using an
ingenious experimental design (see Figure 7.13), he was able to functionally “open
the loop” of this reflex and measure the dynamics of this system. (This technique is
discussed further in Section 7.4.5.) He found that the dynamics could be modeled
by a third-order transfer function with time constant τ, in series with a pure time
delay D. In Figure 6.13b, ΔI represents a small change in light intensity from the
reference intensity level, Iref, while ΔA represents the corresponding change in
pupil area from the reference value Aref and ΔL is the change in total light flux
reaching the retina. Based on the model, the closed-loop transfer function of the
pupillary reflex can be deduced as

�sDΔA �ArefK1e =�1 � τs�3� (6.33)
ΔI 1 � IrefK1e�sD=�1 � τs�3
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By inspection of Figure 6.13b and Equation 6.33, one can readily infer that the loop
transfer function of this model is given by

Ke�sD
HL s (6.34)� � � �1 � τs�3

whereK= IrefK1. Therefore, the characteristic equation for the closed-loopmodel is

Ke�sD
1 � 3 � 0 (6.35)�1 � τs�

Fromhismeasurements on normal humans, Stark found the following values for the
model parameters: K= 0.16, D= 0.18 s, and τ= 0.1 s. In the next two sections that
follow, we will assume the above values of D and τ in our analyses and determine
the critical value of K above which the model becomes unstable.

6.6.1 Routh–Hurwitz Analysis

InSection6.3,whentheRouth–Hurwitzstabilitycriterionwasfirstdiscussed,applica
tion of the testwas simple since the examples consideredhad characteristic equations
that could be expressed as polynomials in s. In Equation 6.35 however, the presence
of the time delay complicates matters a little. Llaurado and Sun (1964) suggested
that this problem can be circumvented by expanding e�sD as a power series in s:

� D2s2 D3s3
e sD � 1 � Ds � � (6.36)

2 6

Substituting the above approximation for e�sD into Equation 6.35 and collecting
terms for each power of s, we obtain the following third-order polynomial
expression in s:

KD3 KD2

τ3 � s3 � 3τ2 � s2 � �3τ � KD�s � �1 � K� � 0 (6.37a)
6 2

Inserting the numerical values for D and τ into Equation 6.37a, we obtain

�0:001 � 0:000972K�s3 � �0:03 � 0:0162K�s2 � �0:3 � 0:18K�s � �1 � K� � 0

(6.37b)

The Routh array corresponding to Equation 6.37b is

0:001 � 0:000972K 0:3 � 0:18K 03s

0:03 � 0:162K 1 � K 02s
(6.38)890 � 431:72K � 19:44K2

s 0 0
300 � 162K

0s 1 � K 0 0
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The requirement for stability is that all terms in thefirst column of the above array
should have the same sign. Since the term corresponding to s0 is 1+K, and Kmust
be positive, then for the system to be stable, all terms in the first column of the Routh
array must also be positive. Thus, the following inequalities have to be satisfied
simultaneously:

0:001 � 0:000972K > 0 (6.39a)

0:03 � 0:0162K > 0 (6.39b)

890 � 431:72K � 19:44K2

> 0 (6.39c)
300 � 162K

1 � K > 0 (6.39d)

From the first inequality (Equation 6.39a), we find that K< 1.029. The second and
fourth inequalities are satisfied for all values of K that are greater than zero. In the
third inequality, the quadratic expression in the numerator of the left-hand side has
to be factorized first. From this, it can be deduced that the inequality is satisfied if
�24.196<K< 1.996. Thus, combining this result with that from thefirst inequality,
we conclude that for the closed-loop system to be stable,Kmust be less than 1.029.
Since the average value of K measured by Stark was 0.16, we can conclude from
Routh–Hurwitz analysis that the normal pupillary reflex is a highly stable negative
feedback system.

6.6.2 Nyquist Analysis

The frequency response HL(ω) corresponding to the loop transfer function can be
obtained by substituting jω for s in Equation 6.34:

jωD jωDKe� Ke�
HL ω � 3 (6.40)� � ��1 � jωτ� �1 � 3ω2τ2� � jωτ�3 � ω2τ2�

The problem of evaluating the transfer function with time delay in Equation
6.40a can be approached in a number of ways. One way is to apply the power
series expansion approach employed in the previous section. Another possibility
is to employ a Padé approximation to the delay, as illustrated in Problem P4.2.
The first of these methods converts the time-delay transfer function into a
polynomial function of s, while the second approximates it with a transfer
function that consists of the ratio of two polynomials in s. However, a third
approach is to express HL(ω) in polar form and recognize that the delay will
only affect the phase component of the transfer function. MATLAB offers a
convenient means of performing this computation over a given range of
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frequencies. An illustration of this procedure is given in the MATLAB
command lines below:

>>% Construct undelayed transfer function & evaluate
frequency response
>> num = [K]; den = [tau^3 3*tau^2 3*tau 1];
>> Hs = tf(num, den);
>> [R,I] = nyquist(Hs); I = squeeze(I); R = squeeze(R);
>>
>>% Add delay to results
>> Rdel = real((R+j*I).*exp(-j*w*D));
>> Idel = imag((R+j*I).*exp(-j*w*D));
>>
>>% Plot final Nyquist diagram
>> plot(Rdel,Idel);

The complete script file (named pupil.m) for evaluating Equation 6.40 and
plotting the Nyquist diagrams is included in the library of MATLAB/SIMULINK
files accompanying this book.

Figure 6.14a displays the Nyquist plot for the normal pupil control system with
K= 0.16, generated using the above MATLAB code and assuming the parameter
values, D= 0.18 s and τ= 0.1 s. The Nyquist plots corresponding to increased
values of K: 1.6 (dotted curve) and 2 (solid curve) are shown in Figure 6.14b. Note
that the scale of the axes in Figure 6.14b has been increased to cover a substantially
larger range of values. It is clear that the pupillary reflex model is unstable when
K= 2 but stable when K= 1.6. Further computations show that the critical value of
K for the development of self-sustained oscillations is 1.85. This is larger than
the 1.029 value deduced in Section 6.6.1. However, the critical value arrived at here
is the more accurate prediction, since in the previous section, an approximation had
to be assumed in order to represent the pure-delay transfer function as a power
series.

Examination of all the Nyquist plots in Figure 6.14 shows that the intersection
of each locus with the negative real axis (i.e., phase=�180°) occurs at the same
critical frequencyωc, regardless of the value ofK. This can be confirmed by analysis
of the phase ofHL(ω). At the critical frequency, since the phase ofHL(ω) must equal
�π rad (or �180°), we have

ωcτ 1 � ω2τ2c�π � �ωcD � tan�1 (6.41)
1 � 3ω2τ2c

Note thatωc can be deduced by solving Equation 6.41. However, in Equation 6.41,
since none of the terms depend on K, ωc must also be independent of K. ωc can be
found from solution of Equation 6.41 or from inspection of the Nyquist plots to
be equal to 7.1 rad s�1, which corresponds to an absolute frequency of 1.1 Hz. This
predicted frequency is close to the frequency of continuous oscillations of the
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FIGURE6.14 Nyquist plots of the linearized pupillary reflexmodel at (a) normal loop gain
factor (K= 0.16); (b) elevated loop gain factors (K= 1.6 and K= 2).

pupil, known as “hippos,” which have been observed under certain pathological
conditions. Stark was able to artificially induce hippus in normal subjects using a
clever experimental design. He focused a thin beam of light at the edge of the pupil.
This stimulation of the reflex led to constriction of the pupil, which produced a
large decrease in retinal illumination (since much of it was now blocked by the
iris). This, in turn, acted through the reflex to dilate the pupil, restoring the effect of
the applied retinal illumination. This experimental design was tantamount to
elevating the loop gain of the closed-loop system tremendously, thereby setting the
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stage for a self-sustained oscillation to occur. The frequency of this oscillation was
found to be close to that predicted by the model. The good agreement between
model prediction and experimental observation supports the approximate validity
of the linear assumption in this case.

6.7 MODEL OF CHEYNE–STOKES BREATHING

The term periodic breathing refers to the cyclic modulation of respiration that
occurs over the timescale of several breaths. The resulting ventilatory pattern may
or may not include periods of apnea, in which breathing ceases altogether. Periodic
breathing does not commonly occur in normals during wakefulness; however, its
frequency of incidence increases dramatically during ascent to altitude as well as
during sleep onset. An exaggerated form of periodic breathing, known as Cheyne–
Stokes breathing, is frequently observed in patients with congestive heart failure.
A large body of evidence suggests that periodic breathing results from an
instability in the feedback control system that regulates ventilation and arterial
blood gases. In this section, we will demonstrate that this is a reasonable
hypothesis by applying stability analysis to a linearized model of chemoreflex
regulation of ventilation. Recall that a steady-state nonlinear model for arterial
CO2 and O2 regulation was discussed previously in Section 3.7. In the present
model, we assume that the system is operating under normoxic conditions, so that
the chemoreflex response to hypoxia can be ignored. However, the various
components of the model are assigned dynamic properties. Since the response
of the “central” chemoreceptors located in the ventral medulla is much more
sluggish than that of the “peripheral” (carotid body) chemoreceptors, it is conve
nient to assume that there are functionally two feedback loops in this system: one
representing the central chemoreflex and the other representing the peripheral
chemoreflex. We also incorporate into the model the delays taken to transport
blood from the lungs and the chemoreceptors. A simplified schematic diagram of
this dynamic model is shown in Figure 6.15.

6.7.1 CO2 Exchange in the Lungs

The dynamic equivalent of the gas exchange equation given in Equation 3.48 is

dPACO2V lung dt
� (6.42)VE � VD PICO2 � PACO2 � 863Q CvCO2 � CaCO2

whereQ represents pulmonarybloodflow,Vlung is the effectiveCO2 storage capacity
of the lungs, and CaCO2 and CvCO2 are the CO2 concentrations in arterial and mixed
venousblood, respectively.Other symbols are as definedpreviously inSection 3.7. It
should also be noted that, in the steady state, the last term in Equation 6.42 would
equal 863 VCO2, where VCO2 is the metabolic production rate of CO2.
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FIGURE 6.15 Linearized dynamic model of the chemoreflex control of ventilation.

_Suppose that small perturbations are imposed onVE (ΔV_ E) and that these lead to
small perturbations inPACO2 (ΔPACO2) andCaCO2 (ΔCaCO2). If we ignore the effect
of the arterial blood gas fluctuations on mixed venous CO2 concentration (since the
body tissues represent a very large buffer of CO2 changes), assume that dead space
ventilation remains constant and ignore terms involving the product ΔVEΔPACO2,_

we can derive the following small-signal expression from Equation 6.42:

d ΔPACO2 ΔV_ E � 863QΔCaCO2VE � VDV lung ΔPACO2 � PICO2 � PACO2dt
(6.43a)

If we approximate the blood CO2 dissociation curve with a straight line relating
CaCO2 to PaCO2 with slope KCO2, and impose the assumption of alveolar–arterial
PCO2 equality, we obtain from Equation 6.43a the following result:

d ΔPaCO2 ΔV_ E� VE � VD � 863QKCO2V lung ΔPaCO2 � PICO2 � PaCO2dt
(6.43b)

_Note that in Equations 6.43a and 6.43b, VE and PaCO2 represent the steady-state
operating levels of minute ventilation and arterial CO2 tension, respectively. If we
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take the Laplace transform of Equation 6.43b and rearrange terms, we can obtain
the following expression for the transfer function, Hlung(s), of the lungs:

ΔPaCO2 �GlungHlung s� � � � (6.44)
ΔV_ E τlungs � 1

where

V lung
τlung � (6.45)

VE � VD � 863QKCO2

and

PaCO2 � PICO2Glung � (6.46)
VE � VD � 863QKCO2

Equations 6.44 through 6.46 indicate that, under small-signal conditions, the
dynamics of CO2 exchange in the lungs may be modeled approximately as a
simple first-order system with time constant τlung and gain Glung. Note, however,
that τlung and Glung will vary, depending on the steady-state operating levels of VE

_

and PaCO2. This reflects the fundamentally nonlinear nature of the gas exchange
process. Another important detail is that the negative value for Hlung(s) in
Equation 6.44 merely implies that the negative feedback in this closed-loop system
is embedded in the CO2 exchange process (i.e., when ventilation increases, PaCO2

decreases).Glung will always be positive sincePaCO2must be greater thanPICO2 (for
positive metabolic CO2 production rates).

6.7.2 Transport Delays

Weassume that pulmonary end-capillary blood returning to the heart will take some
time (Tp) to arrive at the peripheral chemoreceptors (carotid bodies) and a slightly
longer time (Tc> Tp) to first appear at the site of the central (medullary) chemo
receptors. Thus,

t (6.47a)t � TpΔPpCO2
� � � ΔPaCO2

ΔPcCO2 � � �t ΔPaCO2 �t � Tc� (6.47b)

All mixing effects in the vasculature during the convective process are ignored.
The Laplace transforms corresponding to Equations 6.47a and 6.47b are

ΔPpCO2
s sTpΔPaCO2 � � (6.48a)� � � e s

ΔPcCO2 s
sTcΔPaCO2 � � (6.48b)� � � e s
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6.7.3 Controller Responses

Following Bellville et al. (1979), we assume the following dynamic relations for the
peripheral and central chemoreflex responses:

_dVp _ (6.49a)τp dt
� Vp � Gp PpCO2

� Ip

_dVc _ (6.49b)τc � V c � Gc PcCO2 � Icdt

V c � Vp � VE (6.49c)

In the above controller equations, τp and τc represent the characteristic response
times of the peripheral and central chemoreflexes, respectively; it is assumed that
τc≫ τp. Gp and Gc represent the steady-state gains for the peripheral and central
controllers, respectively. The brackets on the right-hand side of Equations 6.49a and
6.49b are used to imply a thresholding operation: That is, these terms will be set
equal to zero if the quantities within the parentheses become negative. Thus, Ip and
Ic represent the corresponding apneic thresholds for the peripheral and central
chemoreceptors, respectively.

Assuming that the “set point” of operation is nowhere in the vicinity of the
apneic thresholds, Equations 6.49a and 6.49b can be linearized using small-
signal analysis. The result of this analysis following Laplace transformation
yields

GpΔV_ p� � �s ΔPpCO2
� �s (6.50a)

τps � 1

GcΔV_ c� � �s ΔPcCO2 � �s (6.50b)
τcs � 1

6.7.4 Loop Transfer Functions

Corresponding to the two feedback loops in this model are two loop transfer
functions: one for the peripheral chemoreflex loop (HLp(s)) and the other for the
central chemoreflex loop (HLc(s)). These are derived by combining Equations 6.44,
6.48a, and 6.50a:

�sTpΔV_ p� �s GlungGpeHLp s � (6.51a)� � �
τps � 1ΔV_ E� �s τlungs � 1

ΔV_ c� �s GlungGce�sTc� � � � (6.51b)HLc s �τcs � 1�ΔV_ E� �s τlungs � 1
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The overall frequency response of the loop transfer function is defined as

ΔV_ p� � Δ _ ωω � V c� �� � � (6.52)HL ω
ΔV_ E ω� �

If we combine Equations 6.51a and 6.51b and introduce the substitution s= jω,
we obtain the following expression for the overall frequency response of the
two loops:

�jωτp �jωτcGpe GceGlungHL ω �� � � (6.53)�1 � jωτc�1 � jωτlung 1 � jωτp

The stability of the respiratory control model for a given set of parameters (Vlung,Q,
KCO2,Gp, τp,Gc, τc) and conditions (V_ E,PaCO2,PICO2) can be tested by applying the
Nyquist criterion to Equation 6.53.

6.7.5 Nyquist Stability Analysis Using MATLAB

The generation of the Nyquist diagram from Equation 6.53 can be carried out
relatively easily using MATLAB. The following shows sample lines of MATLAB
code that can be used for this purpose:

>> % Construct loop transfer functions
>> num1 = [Glung*Gp]; den1 = [taulung*taup (taulung+taup) 1];
>> Hs1 = tf(num1, den1);
>> num2 = [Glung*Gc]; den2 = [taulung*tauc (taulung+tauc) 1];
>> Hs2 = tf(num2, den2);

>> % Compute Nyquist results, excluding effect of pure delays
>> [R1,I1] = nyquist(Hs1,w); R1 = squeeze
(R1); I1 = squeeze(I1);
>> [R2,I2] = nyquist(Hs2,w); R2 = squeeze(R2); I2 =
squeeze(I2);

>> % Add delay to results
>> R1del = real((R1 + j*I1).*exp(-j*w*Tp));
>> I1del = imag((R1 + j*I1).*exp(-j*w*Tp));
>> R2del = real((R2 + j*I2).*exp(-j*w*Tc));
>> I2del = imag((R2 + j*I2).*exp(-j*w*Tc));
>> Rdel = R1del + R2del;
>> Idel = I1del + I2del;

>> % Plot Nyquist diagram of overall frequency response
>> axis square; plot(Rdel,Idel); grid;

Figure 6.16 shows Nyquist plots representing the overall frequency responses in
the case of the typical normal subject (N) and the patient with congestive heart
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FIGURE 6.16 Nyquist plots representing the frequency responses of the linearized
ventilatory control model in the normal subject (“N”, dotted curve) and patient with
congestive heart failure (“C”, continuous curve). Frequencies represented in plots range
from 0.01 to 0.1Hz.

failure (C).We have assumed the following parameter values to represent both types
of subjects: Vlung= 2.5L, KCO2= 0.0065mmHg�1, Gp= 0.02L s�1mmHg�1, Gc=
0.04 L s�1mmHg�1, τp= 20 s, τc= 120 s, VE= 0.12L s�1, VD= 0.03L s�1, PICO2=
0, and PaCO2=PACO2= 40mmHg. In the normal subject, the following circulatory
parameter values were assigned: Tp= 6.1 s and Tc= 7.1 s and Q= 0.1L s�1. In the
patient with congestive heart failure, we assumed a halving of cardiac output and a
doubling of the circulatory delays: Q= 0.05L s�1, Tp= 12.2 s, and Tc= 14.2 s. The
MATLAB script file (nyq_resp.m) used to generate the Nyquist plots shown
is included with the set of MATLAB/SIMULINK files that accompany this book.

The Nyquist plots in Figure 6.16 represent a bandwidth of frequencies that
range from 0.01 to 0.1Hz. These correspond to interbreath periodicities of cycle
durations 10–100 s. In the normal subject (N), the Nyquist plot shows a stable
system with a critical loop gain (i.e., at �180°) of 0.34. This critical point occurs at
f= 0.0295Hz or the equivalent of a periodicity of 34 s. Thus, when transient
oscillations in ventilation appear in the normal subject, we would expect these
oscillations to have a cycle duration of 34 s. On the other hand, in the subject with
congestive heart failure, the halving of Q and doubling of circulatory delays lead
to a rotation and stretching of the Nyquist locus. Since the locus encircles the
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(�1+ j0) point, we can conclude that under the assigned conditions, this system is
unstable. The loop gain at �180° is now 1.02, with the critical frequency occurring
at f= 0.0165Hz, which is equivalent to a periodicity of approximately 61 s. These
cycle durations are consistent with the oscillation periods that have observed in
normals and heart failure subjects who exhibit Cheyne–Stokes respiration. For
more complicated models and analyses, the reader is referred to journal reports
such as those published by Khoo et al. (1982), Carley and Shannon (1988), and
Nugent and Finley (1987).

PROBLEMS

P6.1. Figure P6.1 shows a simple negative feedback control systemwith a variable
gainK in the feedback element. Determine the smallest value ofK that would
render this closed-loop system unstable, using (a) the Routh–Hurwitz test
and (b) the Nyquist stability criterion.

FIGURE P6.1 Simple control system with variable feedback gain.

P6.2. Consider the simplemodel of eye-movement control shown schematically in
Figure P4.1. Assume that G/J= 14,400 rad2 s�2, B/J= 24 rad s�1.
(a) If Kv= 0.01, deduce the gain and phase margins of this closed-loop

system.

FIGUREP6.2 Negative feedback systemwith the first-order Padé approximation of delay
T as the feedback block.
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(b) Using the Routh–Hurwitz and Nyquist stability tests, determine the
value ofKv atwhich youmight expect themodel to exhibit self-sustained
oscillations in θ.

P6.3. In the model of ventilatory control with feedback from the intrapulmonary
CO2 receptors shown in Figure P4.3, determine how rate sensitivity is
expected to affect relative stability. Compute the gain and phase margins
of this system, and display the corresponding Bode diagrams, when the rate
sensitivity factor α assumes the following values: (a) α= 0; (b) α= 1/2;
and (c) α= 2.

P6.4. In the analysis of the pupillary light reflexmodel discussed in Section 6.6, the
transfer function representing the pure delayDwas approximated as a power
series in the Laplace variable s. Repeat the Routh–Hurwitz and Nyquist
stability analyses, assuming a first-order Padé approximation to the delay,
that is,

1 � �Ds=2��sD �e
1 � �Ds=2�

In each case, find the value of the steady-state loop gainK that would lead to
the production of self-sustained oscillations in pupil diameter.

P6.5. Consider the neuromuscular reflex model of Figure 4.12. Develop a MAT
LAB program that would enable you to assess the relative stability of this
model as the feedback gain β is changed.Assume the following values for the
rest of the model parameters: J= 0.1 kgm2, k= 50Nm, B= 2Nm s, τ= 1/
300 s,Td= 0.02 s, and η= 5.Determine if your prediction of the critical value
of β for instability to occur is compatible with simulation results using the
SIMULINK program nmreflex.slx.

P6.6. It is known that hyperoxia, induced by breathing a gas mixture with high
O2 content, can substantially attenuate the CO2 sensitivity of the peripheral
chemoreceptors. As a first approximation, we can assume that this sets the
parameter Gp in the chemoreflex model of Section 6.7 equal to zero. This
effectively reduces the model to only one feedback loop – that involving
the central chemoreflex. Employing Routh–Hurwitz and Nyquist stability
analyses, show that administration of inhaled O2 would eliminate Cheyne–
Stokes breathing in the patient with congestive heart failure. Use the
parameter values given in Section 6.7.5.

P6.7. Develop a SIMULINK representation of the chemoreflex model described
in Section 6.7, using the parameter values pertinent to the normal subject.
Investigate the stability of the SIMULINK model by introducing impul
sive perturbations into the closed-loop system. Determine how changes in
the following model parameters may promote or inhibit the occurrence of
periodic breathing: (a) Vlung; (b) PICO2; (c) Gc; and (d) Gp. Verify your
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conclusions using the Nyquist analysis technique illustrated in Section
6.7.

P6.8. Consider the closed-loop system in Figure P6.2, where the transfer function
of the feedback block is the first-order approximation to the delay T. Derive
the characteristic equation of this system and determine, by evaluating
the roots of the characteristic equation, whether the system is stable or
unstable when K= 2. Assume T= 1.
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7
DIGITAL SIMULATION OF
CONTINUOUS-TIME SYSTEMS

7.1 PRELIMINARY CONSIDERATIONS:
SAMPLING AND THE Z-TRANSFORM

Up to this point, the models and their associated signals have been assumed to be
characterized in continuous time: there is an infinitesimal difference in time
between one time point and the next time point. Ordinary or partial differential
equations have been the mathematical representations that we have employed to
characterize the dynamics of models of physiological systems, and these operate in
the continuous-time domain. Analytical solutions exist for a large class of continu
ous-time differential equations, but for the rest the only viable path is to employ a
numerical method of solution. However, to do so requires a conversion of the
problem from one in continuous time to the equivalent problem in discrete time.
The way this is achieved in practice is to sample the continuous-time signal
(commonly referred to as the analog signal) on a periodic basis. Continuous-
time systems can also be converted to discrete-time systems, and in this chapter, we
will demonstrate that this can be accomplished using different methods, each with
different ramifications.

In Figure 7.1, we consider from a theoretical perspective what exactly occurs
in the transformation of a continuous-time signal x(t) into a discrete-time signal
xD(n). The first part of the transformation involves the multiplication of x(t) by
a train p(t) of unit impulses uniformly spaced T time units apart. Thus, p(t) is

Physiological Control Systems: Analysis, Simulation, and Estimation, Second Edition. Michael C.K. Khoo.
 2018 The Institute of Electrical and Electronics Engineers, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/khoo/controlsystems2e
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FIGURE 7.1 Schematic illustration of the process of sampling a continuous-time signal
and converting it to discrete-time signal.

defined as

p t� � � δ�t � nT� (7.1)
n

where n= 0, ±1, ±2, ±3, . . . , ±1, and p t� � � 0 when t≠ nT.
The resulting product is

x t � � � p t� � � x t� � �s� � � x t δ�t � nT� (7.2)
n

Thus,

xs t� � � x n� � �T δ�t � nT� (7.3)
n

Since

δ�t � nT� � 0; when t ≠ nT (7.4)

at the time points at which x(t) is sampled, we have

xD n T (7.5)� � � x n� �

1

��1

1

��1

1

��1
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Note that, as a discrete-time signal, xD(n) is not defined between consecutive values
of n.

Now, take the two-sided Laplace transform of Equation 7.3:

1 1 1�st �stXs s e t e� � � ∫ xs� �dt � x nT � (7.6a)� �δ t � nT�dt∫
n��1�1 �1

11
� x nT� � ∫ e�stδ�t � nT� dt (7.6b)

n��1 �1

1
� x nT �snT (7.6c)� �e

If we define the following equality
sTz � e (7.7)

and use Equation 7.5, the right-hand side of Equation 7.6c can be converted
into a form that contains the variable z. We can then define the following
function of z:

� � � xD n �n (7.8)� �zXD z

Equation 7.8 yields a mapping between the discrete-time signal x(n) and the
corresponding transformed quantity in the complex z-domain, XD(z). This “map
ping” is called the z-transform.

The similarity in form between Equations 7.6c and 7.8 indicates that there is
a one-to-one mapping between Laplace transform of xs(t) and the z-transform
of xD(n). It can also be demonstrated that as T goes to zero, XD(z) converges
to X(s).

The utility of the z-transform for solving difference equations in discrete-time
systems parallels that of the Laplace transform for solving differential equations in
continuous time. A very simple result that is useful to keep inmindwhen employing
the z-transform is the “delay theorem”:

1 1�n � z�mxD�n � m�z xD� �n z�n � z�mXD� �z (7.9)
n��1 n��1

n��1

1

n��1

We will employ this result frequently in the following sections when we convert
difference equations into transfer functions.
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7.2 METHODS FOR CONTINUOUS-TIME TO
DISCRETE-TIME CONVERSION

In this section, we examine fourways of converting a continuous-time linear system
to a discrete-time linear system. In order to keep our focus on the conceptual aspects
of these four methods, we will base our considerations on a highly simplified linear
system: the lung mechanics model displayed in Figure 4.1. We will assume further
that the fluid inertance effects are negligible, and thus the inductance element Lwill
be equal to zero. Let PA= y and Pao= x. Then, from Equation 4.3, we have

dy
τ � y � x (7.10)
dt

where τ=RC. We showed in Equation 4.7 that the transfer function with x(Pao) as
input and y(PA) as output (for the open-loop configuration of the model) is given by

Y s� � 1
H s� � � � (7.11)

X s� � τs � 1

The corresponding impulse response for this model is

1 �t=τh t� � � e (7.12)
τ

7.2.1 Impulse Invariance

In the impulse invariance method, the impulse response is sampled at a uniform
interval of T time units, and thus the resulting sampled discrete-time impulse
response is

1 �nT=τ� � � e ; n � 0 (7.13a)hD n
τ

and hD n n < 0� � � 0; (7.13b)

Note that Equation 7.13b holds because hD(n) is causal.
Taking the z-transform of hD(n), we obtain

n�1
� � � hD� �n z�n (7.14a)

n��1
HD z

But because of Equation 7.13b,

� � � hD� �n z�n (7.14b)
n�0

HD z
n�1
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Substituting for hD(n) in Equation 7.14b, we get

n�1 n�1 n1 1�nT=τ � �T=τ �1n �HD� �z � e z e z (7.15)
τ τ

n�0 n�0

However, note the equality:
1 1

∝n � (7.16)
1 � ∝

n�0

Using Equation 7.16 in Equation 7.15 yields

1=τ
HD z �� � (7.17)�T=τz�11 � e

We can use Equation 7.17 to derive the equivalent difference equation relating
the output y(n) to the input x(n) by recognizing thatHD(z) is by definition Y(z)/X(z).
Then, substituting into Equation 7.17 and rearranging terms, we get

X z� ��T=τ �11 � e z Y z� � � (7.18)
τ

Taking the inverse z-transform of both sides of Equation 7.18, we obtain

y n� � � e�T=τy n � 1� � � �� x n
(7.19)

τ

Equation 7.19 gives the solution to the equivalent discrete-time equivalent of
Equation 7.10 for any type of input. A hallmark of this solution is that it is recursive
in nature:At each time point, ydepends on its own past value, aswell as the values of
the input x(n). Thus, note that if the input is a unit impulse, that is,

x� �0 � 1 and � � � 0; for n > 0x n (7.20)

then Equation 7.19 yields the impulse response:

1�T=τh �2T=τ h �nT=τy n � hD n � e D�n � 1� � e D�n � 2� � ∙ ∙ ∙ � e (7.21)� � � �
τ

which is the expression for the impulse response that we started with in
Equation 7.13a.

7.2.2 Forward Difference

In thismethod,wemake use of the following numerical approximation for dy/dt that
becomes more and more exact as T tends toward zero:

dy y n � 1� � y n� � �� (7.22)
dt T
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Thus, substituting this into Equation 7.10 yields

τ
y n� � 1� � y n� � � y n� � � � �x n (7.23)

T

Rearranging terms in Equation 7.23, we obtain

T T
y n� � 1� � 1 �

τ
y n� � � x n (7.24a)� �

τ

or equivalently,

T T
y n �� � 1 � y n � 1� ��

τ τ
x n� � 1� (7.24b)

Equation 7.24b provides a somewhat different solution in discrete time to Equa
tion 7.10 than we had found using the impulse invariance method (Equation 7.19).

Using Equation 7.20 in Equation 7.24b allows us to derive the discrete-time
impulse response of this system:

h � � � 0; n � 0 (7.25a)D n

n�1 TT
h � � � 1 � ; n > 0D n

ττ
(7.25b)

The corresponding discrete-time transfer function can be derived by taking the z-
transform of Equation 7.24b:

T T
Y z� � � 1 � z�1Y z� � � z�1X z� �

ττ
(7.26a)

Rearranging terms, Equation 7.26a yields the z-transform for the discrete-time
system in question:

HD z� � � Y z� �
X z� � �

�T=τ� z�1
1 � 1 � �T=τ�� �z�1 (7.26b)

7.2.3 Backward Difference

Here, the following numerical approximation for dy/dt, based on the difference
between the current time point and the previous time point, is used:

dy y n �� � � y n � 1�� (7.27)
dt T
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Substituting into Equation 7.10, we have

y n �� � � y n � 1�
τ � y n � �� � � x n (7.28)

T

Rearranging terms, we obtain

1 T=τ
y n� � � y n � 1� � � � (7.29)� x n

1 � �T=τ� 1 � �T=τ�
As in the previous cases, we obtain the impulse response by setting x(n) to be equal
to the unit impulse (Equation 7.20):

�nT T=τ
hD n� � � 1 � ; n � 0 (7.30)

τ 1 � �T=τ�
The transfer function for the backward difference system can be derived from
Equation 7.29 by taking the z-transform of Equation 7.29:

1 T=τ
Y z� � � z 1Y z� � � X z� � (7.31a)

1 � �T=τ� 1 � �T=τ�
Rearranging terms in Equation 7.31a yields the transfer function:

�1Y z� � T=τ 1 �1H � � � � 1 � z (7.31b)D z
X z� � 1 � �T=τ� 1 � �T=τ�

7.2.4 Bilinear Transformation

The bilinear transformation is best known through the following mapping between
the s terms in the continuous-time transfer function H(s) and the z terms in the
discrete-time transfer function H(z):

�12 1 � z
s � �1 (7.32a)

T 1 � z

The following expression characterizes the same mapping, but expressing z as a
function of s:

1 � �T=2�s
z � (7.32b)

1 � �T=2�s
One disadvantage of the bilinear transformation is that we need to have the
expression representing the transfer functionH(s) before the conversion to discrete
time can be performed.
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For a more intuitive interpretation of this transformation, consider the inverse of
Equation 7.32a:

�11 T 1 � z� � (7.32c)
s 2 1 � z 1

Denoting the right-hand side of Equation 7.32c as H(z), and remembering that it is
by definition equal to Y(z)/X(z):

�1Y z� � T 1 � z�
1

(7.33a)
X z� � 2 1 � z

Rearranging terms in Equation 7.33a, we obtain

T
Y z� � � z�1Y z� � � X z� � � z�1X z� � (7.33b)

2

Taking the inverse z-transform of Equation 7.33b yields

T
y n � � � �x n � �� (7.34)� � � y n � 1 � � � x n � 1

2

Equation 7.34 provides a useful, practical interpretation of Equation 7.32c. What it
says is that the bilinear transformation converts the integration operation in
continuous time (represented by 1/s) into the equivalent operation of numerical
integration in discrete time by employing the “trapezoidal rule.”

We now turn back to deriving the discrete-time equivalent of the first-order
continuous-time transfer function given in Equation 7.11. Starting with
Equation 7.11 and applying the transformation defined in Equation 7.32a,we obtain

1
HD z� � � (7.35)�1� �1�1 � �2τ=T� �1 � z =�1 � z

From Equation 7.35, it is easy to show that the corresponding finite difference
equation is

1 � �T=2τ� T=2τ
y n� � � y n � 1� � � � � � x n � 1�� x n � � (7.36)

1 � �T=2τ� 1 � �T=2τ�
The corresponding discrete-time impulse response can be derived from
Equation 7.36 by setting x(n) to be equal to the unit impulse (Equation 7.20):

T=2τ
hD n ; n � 0 (7.37a)� � �

1 � �T=2τ�
T=τ

hD n ; n � 1 (7.37b)� � � 2�1 � �T=2τ��
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n�11 � �T=2τ� T=τ� � � ; n > 1 (7.37c)hD n
1 � �T=2τ� 1 � �T=2τ�2

7.3 SAMPLING

In the previous section, we showed that a given continuous-time system can be
converted into more than one equivalent discrete-time systems, depending on the
method employed to perform the analog-to-digital transformation. Another impor
tant parameter in this process is the rate at which the sampling of the continuous-
time signal is carried out. It should be quite intuitive that, with a very slow sampling
rate, one could miss much of the dynamics of a particular signal. In the example
discussed above, different values of the ratio T/τ could lead to discrete-time
equivalents with very different system dynamics. In addition, there is another
fundamental phenomenon that poses its own challenges, if certain constraints are
not kept – and this is the problem of aliasing that arises from employing sampling
rates that are too low, relative to the dynamics of the continuous-time system.

Consider a continuous-time impulse response h(t). The frequency response of
this system is given by the Fourier transform of h(t):

1
H ω h t e�jωtdt (7.38)� � � ∫ � �

�1

Conversely, the inverse Fourier transform of H(ω) yields the impulse response:

1
1 jωtdωh t� � � � �eH ω (7.39)
2π ∫

�1

If h(t) is sampled at uniform intervals ofT, the values of h(t) at those pointswould be

1
1 jnωTdωh nT� � � H ω e� � (7.40)
2π ∫

�1

Equation 7.40 can be reformulated in a somewhat different way for use later. We
make the following change in variables:

ϕ � ωT (7.41a)

From Equation 7.41a, we obtain

1
dω � dϕ (7.41b)

T
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Then, Equation 7.40 can be rewritten as

11 jnϕdϕh nT� � � H ϕ� �e
2πT ∫�1

�2m�1�π (7.42a)11 jnϕdϕ� H ϕ� �e∫2πT m��1�2m�1�π

Define

Ω � ϕ � 2πm (7.43)

Substituting into Equation 7.42a yields

π11 jnϕdΩh nT� � � H�Ω � 2πm�e∫2πT m��1�π
(7.42b)π 11 H�Ω � 2πm� jnϕdΩ� e

2π ∫ Tm��1�π

To better appreciate how aliasing affects the sampling process, we first return to the
definition of the z-transform in Equation 7.8. Recall that the mapping between
the s-domain and the z-domain is given by Equation 7.7. If we are interested in
determining how the frequency response of a continuous-time system translates
to the frequency response of its equivalent discrete-time system, what we would do
is to evaluate the z-transform of the discrete-time system along the contour of the
unit circle in the z-domain, that is,

�jΩnz � e (7.44)

Thus, the z-transform of the discrete-time impulse response becomes

1 �jΩn� � � hD nT (7.45)� �eHd Ω
n��1

Note that Equation 7.45 says that the frequency response of the discrete-time system
is given by the discrete-time Fourier transform of its impulse response. Conversely,
we can represent the discrete-time impulse response as the inverse of the Fourier
transform of its frequency response:

π
1 jΩndΩhd nT HD Ω (7.46)� � � � �e
2π ∫

�π
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Since h(nT) in Equation 7.42b is equal to hD(nT) in Equation 7.46,we can equate the
term within the integral on the right-hand-side of Equation 7.42b to the corre
sponding term in Equation 7.46:

1 H�Ω � 2πm�� � � (7.47)Hd Ω
Tm��1

From Equations 7.41a and 7.43, we see that

Ω � 2πm
ω � (7.48)

T

Substituting Equation 7.48 into Equation 7.47, we obtain the following result:

1 H�ω � �2πm=T��� � � (7.49)Hd Ω
Tm��1

Equation 7.49 is highly significant in that it shows the fundamental relationship
between the frequency response of a continuous-time system and the corresponding
frequency response of its discrete-time equivalent derived by sampling the impulse
response of the continuous-time system. This is best understood by presenting
the concept in graphical form, as displayed in Figure 7.2. Figure 7.2a shows the
frequency response (magnitude) plot of the continuous-time system, with the
abscissa representing angular frequencyω. Since the (absolute) sampling frequency
is 1/T, whereT is the sampling interval, the angular sampling frequencyωs is related
to T in the following way:

2π
ωs � (7.50)

T

Figure 7.2b displays the frequency response (magnitude) of the corresponding
discrete-time system. Equation 7.49 shows that this frequency response is a
reduced-amplitude version of the original frequency response. In addition, the
frequency response of the continuous-time system is duplicated an infinite number
of times and centered around multiples of 2πm, where m= 0, ±1, ±2, and so on.
Figure 7.2 highlights another important detail that appears in Equation 7.49: That
the magnitude of the frequency response of the continuous-time system H(ω)
(Figure 7.2a) is scaled by the factorT in the frequency response of the corresponding
discrete-time system HD(Ω) (Figure 7.2b). The scaled duplicates of the original
frequency response are known as aliases. The relationship between H(ω) and
HD(Ω) is best understood if we recall fromEquation 7.7 that the sampling process is
equivalent to mapping the imaginary axis (jω) of the s-plane into the unit circle of
the z-plane, that is,

ejΩ � ejωT (7.51)
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FIGURE7.2 (a) Frequency response of a continuous-time system. (b) Frequency response
of the discrete-time equivalent of the above continuous-time system derived using impulse
invariance.ωB= highest frequency associatedwith dynamics of the continuous-time system;
ωs= sampling frequency.

As illustrated in Figure 7.3, the segment of the jω axis fromω=�π/T toω= π/T
gets mapped to the unit circle of the z-plane from Ω=�π to Ω= π in the
anticlockwise direction. What about the segment of jω from ω= π/T to ω= 3π/
T in the s-plane? One can surmise from Figures 7.2 and 7.3 that this next segment is
mapped into the z-plane as another anticlockwise wrap around the unit circle, from
Ω=�π toΩ= π. Similarly, each “strip” of length 2π/T of the jω axis gets wrapped
around the unit circle in the z-plane.

Based on the considerations illustrated in Figures 7.2 and 7.3, it is not too
difficult to understand why HD(Ω) contains multiple aliases of H(ω). However, it
is important to note that each alias of HD(Ω) takes the exact form of H(ω) under
certain constraints. In Figure 7.2, H(ω) is shown to have a bandwidth (highest
frequency) of ωB, and ωB is less than π/T. Since the (angular) sampling frequency
ωs is equal to 2π/T,

ωsωB < (7.52)
2
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FIGURE 7.3 Schematic illustration of how the s-plane (associated with continuous-time
system) maps to the z-plane (associated with discrete-time system), according to the
relationship z= esT.

Figure 7.4 shows an example when the condition specified in Equation 7.52 does
not hold. Here, because ωB>ωs/2, the ends of the frequency responses of the main
transfer function and its aliases run into one another, causing distortion in the regions
where there is overlap. When this happens, parts of the system response with
frequencies higher than ωs/2 appear as components in frequencies lower than ωs/2.
This phenomenon is known as aliasing.ωs/2 is also known as theNyquist frequency
or folding frequency. Equation 7.52 represents the concise version of the Nyquist–
Shannon sampling theorem, namely, that a continuous-time signal can be fully
reconstructed from its discrete-time equivalent only when the sampling frequency is
greater than or equal to twice the highest frequency component of original signal. A
corollary of this theorem is that if one samples a periodic phenomenon at the primary
frequency of the process, then the aliasing effectwillmake the dynamic phenomenon
appear static. This is the principle by which the stroboscopic effect works.

7.4 DIGITAL SIMULATION: STABILITY AND
PERFORMANCE CONSIDERATIONS

In this section, we compare how well the various methods of converting
continuous-time systems to discrete-time systems work when they are imple
mented in MATLAB. We use the example of the first-order system discussed in
Section 7.3. Assuming the associated time constant τ to be equal to 1 s, we will
consider how the dynamics of the equivalent discrete-time systems derived from
the four methods of discrete-to-continuous-time conversion compare with the
dynamics of the original continuous-time system. The MATLAB program
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FIGURE 7.4 Aliasing occurs when the bandwidth or the highest frequency of the
continuous-time system is greater than half the sampling frequency, that is, ωB>ωs/2.
This is equivalent to ωs< 2ωB, thus violating the sampling theorem.

CT2DTsys_impresp.m implements the four methods of conversion discussed
in the last section:

%% Continuous time
h = 1/tau * exp(-tc/tau);

%% Discrete time
x = zeros(size(t));
x(t==0) = 1; %input = unit impulse x(n=0) = 1
n0 = find(t==0); %n=0

%Method 1: impulse invariance
yii = nan(size(t));
yii(t<0) = 0; %y(n<0)
for nn=n0:length(t)

yii(nn) = exp(-T/tau) * yii(nn-1) + x(nn)/tau; %y(n>0)
end

%Method 2: forward difference
yfd = nan(size(t));
yfd(t<0) = 0; %y(n<0)
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for nn=n0:length(t)
yfd(nn) = (1 - T/tau)*yfd(nn-1) + (T/tau)*x(nn-1);

end
yfd = yfd/T; % scaling factor

%Method 3: backward difference
ybd = nan(size(t));
ybd(t<0) = 0; %y(n<0)
Ky = 1/(1 + T/tau); %scaling factor of y
Kx = (T/tau)/(1 + T/tau); %scaling factor of x
for nn=n0:length(t)

ybd(nn) = Ky*ybd(nn-1) + Kx*x(nn);
end
ybd = ybd/T; % scaling factor

%Method 4: bilinear transformation
ybt = nan(size(t));
ybt(t<0) = 0; %y(n<0)
Ky = (1 - T/(2*tau)) / (1 + T/(2*tau)); %scaling factor of y
Kx = (T/(2*tau)) / (1 + T/(2*tau)); %scaling factor of x
for nn=n0:length(t)

ybt(nn) = Ky*ybt(nn-1) + Kx*(x(nn) + x(nn-1));
end
ybt = ybt/T; % scaling factor

As displayed in Figure 7.5a and b, the thick black curve represents the impulse
response of the continuous-time system, that is, h(t) in Equation. 7.12. The impulse
invariance method consists of simply sampling h(t) at uniform time intervals of T;
the mathematical representation is given in Equation 7.13a. Figure 7.5 displays the
sampled points as closed black circles that lie on the trajectory of h(t) at two different
sampling intervals: T= 0.1 s (Figure 7.5a) and T= 1 s (Figure 7.5b). This is clearly the
reasonwhy thismethod is knownas “impulse invariance.”With the forwarddifference
method, the impulse response of the discrete-time equivalent is describedbyEquations
7.25a and 7.25b. As shown in Figure 7.5 (upright triangles), the peak of the impulse
response is delayed by one point. In the case for T= 0.1, since the impulse response
beginswithmagnitudezero at timezero, thediscrepancybetween thediscrete-timeand
continuous-time impulse responses is largest before t= 0.5 s, but both responses
converge subsequently. However, when T= 1, the impulse response of the discrete-
time systemgenerated using forward difference oscillates between values of�2 and 2.
Thus, clearly, with relatively large T (with respect to τ), the stable continuous-time
system gets converted into an unstable discrete-time equivalent. On the other hand,
with the backward difference method (inverted triangles, Figure 7.5), the impulse
response of the discrete-time system converges toward the trajectory of h(t), regardless
of whether T is 0.1 or 1 s, following an initial period of discrepancy. Similarly, the
impulse response of the discrete-time equivalent obtained by using the bilinear
transformation (open squares, Figure 7.5) converges toward h(t) after the second
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FIGURE 7.5 Impulse responses of discrete-time systems derived from a first-order low-
pass continuous-time system using various methods of CT–DT conversion: impulse
invariance (closed circles), forward difference (upright triangles), backward difference
(inverted triangles), and bilinear transformation (squares), using time step (T) of (A) 0.1 s
and (B) 1 s.
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point. Note that, in the code for CT2DTsys_impresp.m (displayed above), a scaling
factor of 1/T is applied to the solutions corresponding to the forward difference,
backward difference, and bilinear transformation systems in order to make the
magnitudes of the discrete-time impulse responses comparable to that of the continu
ous-time system. This scaling factor stems from the fundamental difference between
continuous-time systems and discrete-time systems. In continuous time, the “impulse”
takes the form of an infinitely high and infinitely thin “spike,” but the total area under
the spike is one. In discrete time, the “impulse” simply takes on the value of 1 at time
zero. While the discrete-time system generated using impulse invariance has an
impulse response function whose values fall on the impulse response of the continu
ous-time system, its step response needs to be scaled appropriately to match the step
response of the continuous-time system.

The relationship between τ, which reflects the dynamics of the continuous-time
system, and the sampling interval T used in developing the discrete-time equivalent is
simply anothermanifestationof the relationshipbetween the systembandwidthωBand
the sampling frequency ωs, as we had discussed in Section 7.3. When the sampling
frequency is less than twice the bandwidth of the continuous-time system in question,
aliasing occurs. Equivalently, when the ratio of T to τ becomes too large, aliasing
introduces “distortion” into the dynamics of the discrete-time system vis-à-vis the
original continuous-time system. This is the reason why the impulse responses of the
discrete-time systems become progressively more different from that of the parent
continuous-time system as T increases. On the other hand, the unstable behavior of the
discrete-time system generated via the forward difference method with large T is
derived from a different source. Recall, from Chapter 6, that the poles of a stable
continuous-time system are always located on the left-hand side of the s-plane, that is,
the real parts of the poles must be negative. Now, consider Figure 7.3 that shows how
the s-plane gets mapped into the z-plane. Notice that the left-hand side of the s-plane
maps into the area within the unit circle in the z-plane (shaded regions in Figure 7.3).
Thus, discrete-time equivalent of a continuous-time systemwill be stable as long as the
poles of the discrete-time system fall within the unit circle. Now, consider Equation.
7.26b, the transfer functioncorresponding to thediscrete-time systemderivedusing the
forward difference method. This transfer function can be rewritten as

T=τ
HD z (7.26c)� � �

z � �1 � �T=τ ��
Thus, the pole at s=�1/τ in the continuous-time system gets mapped into a pole at
z= 1�T/τ in the discrete-time equivalent derived using forward differencemethod.
Note that, when T ranges between zero and 2τ, the pole of the discrete-time system
falls within the unit circle (i.e., �1< z< 1). But when T> 2τ, this pole will lie
outside the unit circle – This is when the discrete-time equivalent of the stable
continuous-time system becomes unstable. Similar considerations can be applied to
the backward difference and bilinear transformation methods – But in these cases,
the corresponding discrete-time system always remains stable.
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7.5 PHYSIOLOGICAL APPLICATION: THE INTEGRAL
PULSE FREQUENCY MODULATION MODEL

A major motivation for converting a model containing continuous-time systems
and signals into a representation in which these systems and signals are now
expressed in discrete time is that this allows for more convenient estimation of the
model parameters, especially when the measurements employed for estimation are
collected on a sample-by-sample basis. This is essentially what happens anyway
since analog signals have to be digitized before being acquired on any computer.
However, when sampling frequency is very high relative to the dynamics of the
system under study, we can still employ continuous-time models (e.g., in the form
of differential equations) but use a wide plethora of numerical integration
techniques to solve these equations. But there are many instances in which the
physiological variables under study occur naturally on a sample-by-sample basis.
The obvious examples are cardiac variables, such as heart period and stroke
volume, both of which can be quantified on a beat-to-beat basis. Respiratory
variables can be expressed on a per-breath basis. Physiological oscillations are so
ubiquitous that it is not unusual to quantify the underlying time base in units of
“cycles.” Since arterial blood pressure fluctuates between systolic and diastolic
levels within each cardiac cycle, one can define new descriptors such as the cycle-
averaged blood pressure, systolic pressure, and diastolic pressure on a beat-by
beat basis.

Neural signals are another excellent example of the kind of model where
continuous-time inputs can yield outputs that may be approximated as discrete
“spikes.” In this case, the underlying “drive”may be continuous, but the output is in
the form of a train of neural impulses. Generally, when the “drive” is high, the
neural system would depolarize more rapidly and generate an action potential
more quickly –As such, a high drive would produce a high rate of neuronal firing.
The integral pulse frequency modulation (IPFM) model, introduced by Bayly
(1968), has been employed in many theoretical studies of neuronal dynamics.
Figure 7.6 displays a schematic diagram that highlights how the IPFM model
works. The following equations specify the operations of each of the modules in

FIGURE 7.6 Schematic diagram of the integral pulse frequency modulation (IPFM)
model. (Adapted from Chiu and Kao (2001).)
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the IPFM model:

t

y t� � � ∫ ��s0 � s t� ��dt� (7.53)

tn

where tn� t� tn+1, and

y t� n � � y tn (7.54)�1 � � � Δ

Note, in Equation 7.53, that s0 represents the intrinsic drive, while s(t) represents
the modulated component of the drive. The square brackets [ . . . ] operate by
disallowing any negative values to occur; if the argument becomes negative, the
square brackets will function as a thresholding operation, setting everything to
zero if the argument within the square brackets goes negative. Δ represents a
threshold that determines the intrinsic frequency of the generated pulses when s(t)
is equal to zero. The output of the integral in Equation 7.53 is constantly compared
to the selected threshold Δ, and once the difference between y at time tn+1 and y at
time tn equals Δ, a spike is generated at the output of the comparator module. At
that same instant, a signal is sent to the integrator to reset and start integrating the
input again.

A SIMULINK implementation of the IPFM model (IPFM.slx) is displayed in
Figure 7.7. Figure 7.7a shows the IPFM model as a subsystem that receives the
neural drive input and outputs the corresponding response in the form of a spike
train. Figure 7.7b shows the internal workings of the IPFM. The “neural drive”
takes the form of a continuous-time signal with mean value s0 and fluctuating
component s(t). It has units of impulses (or cycles) per second – Hence, it
represents the instantaneous neural firing frequency. This continuous-time signal
is first integrated and compared with the thresholdΔ. When the integral has risen to
the point at which it attains the value of the threshold, the model generates a
“spike.” This “process”may be thought of as being analogous to the depolarization
of the nerve cell membrane prior to the point at which an action potential is
generated. The SIMULINK implementation shown here assumes a threshold value
of 1, and we can consider this example as a model of how the totality of autonomic
input to the heart generates the surge of electrical activity that triggers ventricular
contraction (observable via the electrocardiogram as the “R-wave”). The “neural
drive” in this case would be the instantaneous heart rate. In the SIMULINK
implementation, the instantaneous heart rate (in cycles per second) is integrated
continuously until the integral attains the value of 1. At this point, the “hit crossing”
block generates a unit impulse (spike), the integrator is reset to zero, and integration
of the input (instantaneous heart rate) resumes, starting from zero. The total
duration over which each cycle of integration takes place equals the heart period for
that beat. In the SIMULINK implementation, the tracking of the “R-to-R interval”
is taken care of through the use of the second integrator, which integrates a constant
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FIGURE 7.7 SIMULINK implementation of IPFM model. (a) Overall model showing
IPFM subsystem with input (neural drive or neural firing frequency) and outputs. (b)
SIMULINK structure of IPFM mechanism (see text for explanation).

input value of 1 until it is reset to zero by the next “spike” issued by the “hit
crossing” block:

tn�1

x n� � � ∫ 1 dt (7.55)

tn

Figure 7.8 displays the results of running IPFM.slxwith a constant level of cardiac
autonomic input equivalent to a heart rate of 0.5 beat s�1 (or 30 beats min�1) for the
first 30 s and a different constant level of 1 beat s�1 (or 60 beatsmin�1) for the
following 30 s (part (a)). Figure 7.8b shows, for each beat, the running time count
(output of the second integrator) that occurs in parallel with the integration of the
cardiac autonomic input signal (accomplished through the first integrator in
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Figure 7.7). Recall that the first integrator resets to zero once the integral attains
the value of 1. The second integrator resets to zero simultaneously, but in this case,
the highest value of the integral achieved before it is reset yields the duration
of time elapsed since the previous beat. In this example, this time interval equals 2 s
in the first half of the simulation and 1 s in the second half. Figure 7.8c displays the
main output of the IPFM model, that is, the “spikes” of unit amplitude that are
generatedwith periodicities consistentwith the input neural drive. In thisfirst half of
this simulation, the heart rate is 0.5 beat s�1, equivalent to a heart period of 2 s,
whereas in the second half, the heart rate of 1 beat s�1 yields a heart period of 1 s.
Figure 7.9 shows another simulation, but this time, the autonomic input to the heart
fluctuates sinusoidally with an amplitude of 0.5 beat s�1 around a mean level of 1
beat s�1. This input represents an oscillatory drive that should make instantaneous
heart rate vary between 0.5 and 1.5 beats s�1. When it is sent through the IPFM,
the output is a train of spikes (beats) that varies in interbeat interval between 0.6 and
1.8 s (Figure 7.9b and c).

PROBLEMS

P7.1. Consider a saline-filled catheter that has been inserted into the brachial artery
of a patient so that the proximal tip of the catheter is exposed to bloodflowing
through the artery at pressure Pa. The distal tip of the catheter is connected to
a pressure transducer. The transducer works by means of an internal thin
diaphragm that deflects by an amount proportional to the difference between
the pressure in the transducer chamber (Pm) and the ambient pressure (which
we will consider to be equal to zero). This arrangement is displayed in
Figure P7.1. Under static conditions, Pm should be exactly equal to Pa.
However, this will not be true ifPa varies dynamically. HowmuchPm differs

FIGURE P7.1 Schematic illustration of catheter–transducer system for measuring arterial
pressure.
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fromPa at any given timewould depend on the response characteristics of the
catheter–transducer system. If the mechanical properties of the transducer
diaphragm and the dynamics offluidmotion in the catheter are known (based
on prior testing), it is possible to employ a simplemodel to determine how the
true arterial pressure signal is likely to be distorted dynamically by the
measurement process.

(a) Derive the simplest linear lumped parameter model of the catheter–
transducer arrangement that relates Pm to Pa. Include in the model the
effects of (i) resistance R to fluidmotion along the catheter, (ii) inertance
L due to fluid acceleration along the catheter, and (iii) compliance C of
the transducer diaphragm.Wewill consider the saline inside the catheter
to be incompressible and the catheter wall to be nondistensible.

(b) Use the forward difference (Euler) method for converting the continu
ous-time model above into a discrete-time model. With the resulting
difference equation, compute the responses in Pm of the discrete-time
model to a unit step inPa when the time step (sampling interval) T= 0.1 s
and when T= 2 s. Assume the following values for the model parame
ters: R= 0.05, L= 0.1, and C= 10.

(c) Using SIMULINK, determine the response of the continuous-time
system to a unit step, and display this alongside the two responses
obtained in part (b).

(d) Determine an expression for the transfer function of the discrete-time
system (Pm(z)/Pa(z)). By examining the locations of the poles of this
system on the z-plane, explain why the stability properties of the two
discrete-time representations (T= 0.1 versus T= 2) are different.

P7.2. In an experiment on humans, the ventilatory response to a single-breath
challenge of CO2 was measured, that is, during one breath, the inhaled CO2

concentration was changed abruptly from 0 to 10% against a background
mixture of air. Subsequently, the same subjects were exposed to the same
CO2 challenge, except that this was performed against a backgroundmixture
of hypoxic gas. In all subjects, the following model was found to provide an
adequate fit to the data:

y n� � � � �ay n � 1� � bx n �M�
where x and y represent changes from the mean levels of inhaled CO2

concentration and ventilation, respectively. n represents the current breath,
andM represents the delay (in number of breaths) between exposure to CO2

and the change in ventilation that follows. Note that the measurements were
made on a breath-by-breath basis, and therefore as afirst approximation, they
may be considered samples of an underlying continuous-time process that
were acquired with a sampling interval equal to the subject’s average breath
period (T ).
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(a) Derive an expression for the transfer function (i.e., H(s)=Y(s)/X(s)) of
the equivalent continuous-time model, assuming impulse invariance.
Show clearly how a, b, M, and T are related to the parameters of H(s).

(b) In one subject, suppose the following values were estimated from the
data:

Normoxia: a= 0.684, b= 0.059, M= 3, T= 3.3 s
Hypoxia: a= 0.624, b= 0.257, M= 2, T= 2.6 s

How has hypoxia affected the steady-state gain and time constant of the
underlying continuous-time model for the CO2 ventilatory response for
this particular subject?

P7.3. Consider the following discrete-time linear system with transfer function (z
domain) as given below:

H z� � � z

z � 0:5

(a) Derive the corresponding finite difference equation for this system that
will enable you to determine how the output y(n) would respond to the
input x(n) in the (discrete) time domain.

(b) Sketch as accurately as possible the response of the above system to a
unit impulse.

(c) The values tabulated below represent the output of the system to an
unknown input signal. Assume both output and input were sampled at
1Hz. Determine the corresponding values of the input signal at the times
displayed in the table below:

Time, t (s) 0 1 2 3 4 5 6 7
y(t) �4 3 8 �2 6 �7 �5 1

P7.4. Combine the IPFMmodel, implemented in SIMULINK as IPFM.slx, with
the model of circulatory control introduced in Section 5.5.1 (rsa.slx), so
that the extended “RSA”model will generate simulated “R-waves,” similar
to the ECG spikes that accompany each heart beat. Then, using the
successive intervals between adjacent R-waves, produce plots of heart
period variability similar to those displayed in Figure 5.15. Generate
such plots for the “normal,” “+atropine,” and “+propranolol” conditions.
By resampling these R-to-R interval time series with a uniform sampling
interval of 0.5 s and applying rsa_tf.m to the resulting time series,
determine if the corresponding frequency responses are similar to the plots
displayed in Figure 5.16.
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8
MODEL IDENTIFICATION AND
PARAMETER ESTIMATION

8.1 BASIC PROBLEMS IN PHYSIOLOGICAL SYSTEM ANALYSIS

In the past several chapters, we have examined a variety of techniques for analyzing
the steady-state and dynamic characteristics of feedback control systems. A
common thread among all these different methods has been the use of the systems
approach: The physiological process under study is decomposed into a number of
interconnected “systems” or “subsystems,” under the assumption that each of these
components can be characterized functionally by a set of differential equations or
their Laplace equivalents. This is displayed schematically in Figure 8.1a. Up to this
point, we have always assumed that the equations in each of the “boxes” are known
or can be derived by applying physical principles and physiological insight to the
process in question. Thus, knowing the form of the independent variable (the
“input”), the equations (representing the “system”) can be solved to deduce the form
of the dependent variable (the “output”). This type of analysis is known as the
forward problem or prediction problem. Predictions allow us to determine if the
model postulated provides an accurate characterization of the process under study.
A somewhat greater challenge is posed by the inverse problem. Here, amodel of the
process in question is available and the output ismeasured; however, the input is not
observable and therefore has to be deduced. This is known as the diagnosis problem
and often involves the need for deconvolution of the model impulse response with
the output in order to deduce the input.

Physiological Control Systems: Analysis, Simulation, and Estimation, Second Edition. Michael C.K. Khoo.
 2018 The Institute of Electrical and Electronics Engineers, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/khoo/controlsystems2e
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FIGURE8.1 (a) The three fundamental problems in system analysis. (b) Identification of a
closed-loop system.

The third type of problem, that of system identification, is the most pervasive in
physiological system analysis. There are two basic approaches to system identifi
cation. It is often the case, when dealing with physiological processes, that we have
only very limited insight into the underlying mechanisms or that the complexity of
the processes involved is just too overwhelming.Under such conditions, it would be
difficult to begin with physical principles to derive the differential equations that
appropriately characterize the system under study. At this level of knowledge (or
lack of it), it would probably be more useful to probe the system in question with
known stimuli and to record the system’s response to these inputs. This is the black-
box or nonparametric approach to system identification, where little is assumed
about the system except, perhaps, whether we expect it to be linear or nonlinear.
Ideally, we would deduce from the measured input and output the system impulse
response, if it is linear, or kernels if it is nonlinear (see Chapter 10), that
subsequently are used to catalog the behavior of the unknown process. The result
would be a purely empirical model of the system under study.

In the case of systems for which some knowledge regarding mechanisms is
available, it is generally possible to put this knowledge to use by coming up with a
mathematical description (which could consist of a set of differential or difference
equations or their frequency-domain equivalents). This characterizes the second
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approach to system identification, in which a structural or gray box model is
constructed. While the “structure” of such a model is derived from what we know
about the physiological process being studied, there remain unknown model
coefficients or parameters that have to be determined. Thus, the next stage in
system identification in such cases, following model building, is the problem of
parameter estimation. For this reason, structural models fall into the category
referred to as parametricmodels. In the case of the linear lungmechanicsmodel that
we analyzed in Chapters 4 through 6, the unknown parameters (R, L, and C) each
bear a one-to-one correspondence to a physiological entity – airway resistance,fluid
inertance, and lung compliance. But this is not a requirement of all parametric
models. Functional orminimal models are models that contain only parameters that
can be estimated from input–output data. Frequently, some of these parametersmay
be related to the underlying physiological entities, but a one-to-one correspondence
may not exist. In many models of pharmacokinetics, for example, there are often
assumed “compartments” that may be used to account for effects arising frommany
different sources but not one single definable physiological entity. In some other
functional models, a negative delay may have to be postulated; such a parameter
clearly has no physiological meaning but may be needed in order to fully
characterize the observed system behavior.

The control engineering literature is replete with countless methods of system
identification, particularly for linear systems. In this chapter, we will discuss the
few basic techniques that have been most commonly applied in physiology
system analysis. While there is a large body of literature on the theory of system
identification in simple single-input single-output systems, there has been
relatively much less work published on the identification of closed-loop systems.
The fact that most physiological systems are closed-loop systems can introduce
some complications into the process of system identification or parameter
estimation. Referring to the example illustrated in Figure 8.1b, if we could
only measure the input (u) and the output (y) of the overall closed-loop system,
but the internal variables x and z were unobservable, it would be impossible for
us to know (just based on the measurements of u and y) that this is in fact a
closed-loop system. On the other hand, if we could measure x in addition to u and
y, then in principle, we would be able to identify subsystem A; then, having
identified the overall closed-loop system, we would be able to determine
subsystem B. Similarly, if we could measure the feedback variable z, it would
be possible (at least in theory) to determine subsystem B; then, from knowledge
of the overall closed-loop model, we would be able to deduce subsystem A. This
is the fundamental basis of closed-loop estimation. In some cases, it may be
possible to “open the loop” through surgical, physiological, or pharmacological
interventions. Indeed, some of the biggest advances in physiology have resulted
from clever experimental designs that allowed the researchers to “open the loop”
in one or more of these ways. We will review some examples of these in the
sections to follow.
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8.2 NONPARAMETRIC AND PARAMETRIC
IDENTIFICATION METHODS

We begin by reviewing some of the basic computational techniques commonly
employed in the identification of single-input, single-output, open-loop systems.
While most physiological models have been developed assuming a continuous-
time base, in practice physiological measurements are generally obtained as
discrete-time samples of the signals under study. Some of these time series
contain measurements obtained at a fixed sampling rate, for example, arterial
blood pressure and the electroencephalograph. There are also measurements that
involve pulsatile or cyclic quantities, for example, beat-to-beat heart period and
breath-by-breath ventilation, which provide information on a per cycle basis.
These measurements have an integer time base – in beats, cycles, or breaths, for
example; but they do not give information that is uniformly sampled in absolute
time, because the cycle periods vary with each cycle. Since the process of system
identification requires the use of real data, the vast majority of identification
techniques that have been developed assume a discrete-time base. Thus, for the
most part, system identification problems are solved by numerical methods and
do not have closed-form analytical solutions. An important assumption that we
will make, however, is that the sampling interval has been selected to be small
enough so that the time series obtained adequately capture the fastest dynamics
present in the observed signals. As demonstrated in Chapter 7, sampling the
input and output signals at rates that are lower than one-half of the highest
frequency present in the signals can lead to the problem of aliasing, in which the
sampled data may appear to contain dynamic components that were really not
contained in the original signals. Use of these aliased input and output time
series would definitely lead to erroneous estimates of the system impulse
responses or transfer functions.

8.2.1 Numerical Deconvolution

Themost direct nonparametric techniques for linear system identification have been
discussed earlier in Chapter 4. The response to the step input has been one of the
most commonly used methods for characterizing physiological system dynamics,
provided the stimulus can indeed be made to follow a time-course that closely
approximates a step. Having found the step response, the impulse response can be
deduced by differentiating the former with respect to time. In general, impulsive
inputs cannot be easily implemented in physiological applications. If the step input
is also not a convenient option, one might resort to stimulating the system under
study with a bolus type of input. Then, in order to estimate the impulse response
from the bolus response and the input, one can employ the method of numerical
deconvolution.

Assuming that the data samples are obtained at uniformly spaced time intervals
of T s, the convolution integral for continuous-time linear time-invariant systems
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(Equation 2.56) can be converted into its equivalent in discrete-time as follows:


n

k�0
y n �� � h n � k�u k (8.1)� � �T

where u(n) represents the input, y(n) the output, and h(n) the (discrete-time) impulse
response at time t= nT. In order to make the magnitude of h(n) consistent with h(t),
the sampling interval T is introduced to scale the convolution sum accordingly on
the right-hand side of Equation 8.1. In the special cases where n= 0, 1, and 2,
Equation 8.1 becomes

y 0 � � � � �T� � h 0 u 0 (8.1a)

y 1 � �h 1 u 0 � �u 1 (8.1b)� � � � � � � h 0 � ��T
y� �2 � �h 2 u 0 � �u 1 � �u 2 �T� � � � � h 1 � � � h 0 � � (8.1c)

Thus, from Equation 8.1a, assuming u(0)≠ 0, we find that

y 0 =T� �
h� �0 � (8.2a)

u 0� �
Similarly, rearranging Equation 8.1b, we obtain

��y 1 =T� � h 0 u 1� � � � � ��
h� �1 � (8.2b)

u0

so that once h(0) has been deduced fromEquation 8.2a, the next point in the impulse
response function, h(1), can be determined fromEquation 8.2b. Subsequently, from
Equation 8.1c, we get

��y 2 =T� � h 1 u 1 � � � ��� � � � � � � h 0 u 2
h� �2 � (8.2c)

u0

where h(2) can be determined, since h(0) and h(1) are now known. This estimation
procedure is continued for all subsequent values of h(n). Thus, the general
deconvolution formula is

n�y�n�=T� � h n � k�u k� � �
k�1h n �� � (8.2d)
u0

While Equation 8.2d is valid in principle, in practice it is hardly used. The reason is
that small values for u(0) can amplify errors enormously, and errors made in each
sequential estimate of h tend to accumulate.
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8.2.2 Least-Squares Estimation

A key problem of numerical deconvolution is that the estimated impulse response
function is “forced” to satisfy Equation 8.1 even when it is clear that the output
measurements y will contain noise. The effect of this noise accumulates with each
step in the deconvolution process. One way to get around this problem is to build
some averaging into the estimation procedure.

To do this, we restate the problem in the following way: Given N pairs of input–
output measurements, estimate the impulse response function (consisting of
p points, where p≪N) that would allow Equation 8.1 to be satisfied on average.
To develop thismathematically,we recast the relationship between input and output
measurements in the following form:

p�1
y n � � � � �T � � �; (8.3)� � h k u n � k e n n � 0; 1; . . . ;N � 1

k�0

where e(n) represents the error between the measured (noisy) value and the “best
estimate” of the response at time t= nT. The “best estimate” of the response is
obtained by selecting the impulse response function {h(k), k= 0, 1, . . . ,p� 1} that
wouldminimize the sumof the squares of all the errors, {e(n), n= 0, 1, . . . , N� 1}.
This method is analogous to the fitting of a straight line to a given set of data points,
except that the “line” in this case is a multidimensional surface.

To find the least-squares estimate of h(n), we proceed by defining the following
matrix and vector quantities:

y � y 0� � y 1� � ∙ ∙ ∙ y N � 1� � ´
(8.4)

h � h 0� � h 1� � ∙ ∙ ∙ h p � 1� � ´
(8.5)

e � e 0� � e 1� � ∙ ∙ ∙ e N � 1� � ´
(8.6)

and

U �

u 0� � 0 ∙ ∙ ∙ 0
u 1� � u 0� � ∙ ∙ ∙ 0

..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
.

u N � 1� � u N � 2� � ∙ ∙ ∙ u N � p� �

T (8.7)

In Equations 8.4 through 8.6, y, h, and e are column vectors (and the superscript ´
represents the transpose operation). Then, the system of equations represented by
Equation 8.3 can be compactly rewritten in matrix notation as

y � Uh � e (8.8)
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Let J represent the sum of squares of the errors. Then,

J � e n� �2 � e´e (8.9)

Combining Equations 8.8 and 8.9, we get

´
J � y � Uh y � Uh (8.10)

N�1

n�0

To find the minimum J, we differentiate Equation 8.10 with respect to the vector h,
and equate all elements in the resulting vector to zero:

@J � �2U´y � 2U´Uh � 0 (8.11)
@h

Rearranging Equation 8.11, we find that the least-squares solution for the impulse
response function is

�1U´h � �U´U� y (8.12)

It can be shown further that a lower bound to the estimate of the variance
associated with the estimated elements of h is given by

U´ �1 σ2var h � diag � U�� � (8.13)e

where σ2 is the variance of the residual errors {e(n), n= 0, 1, . . . , N� 1}, that is,e

N�11
σ2 � e n 2 (8.14)� �e N � 1

n�0

This method produces much better results for h(n) than numerical deconvolu
tion, since we are usingN pieces of information to deduce estimates of p unknowns,
where p should be substantially smaller than N. How small the ratio p/N should be
depends on the relativemagnitude of noise in the data. As a rough rule of thumb, p/N
should be smaller than 1/3. Another requirement for obtaining good estimates of
h(n) is that the matrixU´Umust not be ill-conditioned since it has to be inverted: As
one can see from Equation 8.13, the variance of h(n) becomes infinite if U´U is
singular. Since U consists of all the input measurements, the conditioning of U´U
depends on the time-course of the stimulus sequence. This problem will be
discussed further in Section 8.3.

The practical implementation of this method is relatively straightforward in
MATLAB. An example of the MATLAB code that can be used to estimate the
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elements of vector h and their associated standard errors (in column vector hse) is
given in the script file sysid_ls.m. The main portion of this code is displayed
below:

>> % Construct observation matrix UU
>> UU = zeros(N,p);
>> for i=1:p,
>> if i==1
>> UU(:,1)=u;
>> else
>> UU(:,i)= [zeros(i-1,1)’ u(1:N-i+1)’]’;
>> end
>> end;
>> UU = T*UU;
>>
>> % Construct autocorrelation matrix
>> AA = UU’*UU;
>> b = UU’*y;
>>
>> % Compute estimate of h
>> h = AA\b;
>>
>> % Compute estimated standard errors of h, hse
>> e = y - U*h;
>> sigma = std(e);
>> AAinv = inv(AA);
>> hse = zeros(size(h));
>> for i=1:p,
>> hse(i) = sqrt(AAinv(i,i))*sigma;
>> end

The above code assumes that the input and output data are contained in the
N-element column vectors u and y, respectively. As an illustration of how one can
apply the estimation algorithm, we use sample input and output “data” generated by
the linear lung mechanics model discussed in Chapters 4 and 5. The following
parameter values are assumed: L= 0.01 cm H2O s2 L�1, R= 1 cm H2O s L�1, and
C= 0.1 L cm H2O

�1. The input in this case is a unit step in Pao, beginning at time
t= 0. The output is the model response in PA. Gaussian white noise is added to the
output to simulate the effects ofmeasurement noise. The simulated input and output
measurements are displayed in Figure 8.2a; these time series are also contained in
the file labeled data_llm.mat. The estimated impulse response is shown in
Figure 8.2b, along with upper and lower bounds that reflect the estimates plus and
minus 1 standard error. Superimposed on the estimates is the “true” impulse
response, which appears as the smooth curve. The fluctuations in the estimated
impulse response illustrates how sensitive it is to measurement noise, since in this
case the p/N ratio of ∼1/2 was large. Note that, as in Section 8.2.1, multiplying the
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^^

FIGURE 8.2 (a) Step change in Pao and resulting response in PA (with noise added).
(b) Estimated impulse response with error bounds superimposed on “true” impulse response
(smooth curve). Horizontal axes represent time in seconds.

input time series by the sampling interval T (see Equations 8.3 and 8.7) introduces
the correct scaling so that h(n) can be compared directly with h(t).

Althoughwe have confined the application of this identificationmethod to linear
systems here, in Chapter 10 we show that Equation 8.3 can be readily extended to
take the form of a Volterra series, which also contains nonlinear dependencies of
y(n) on u(n). This formulation allows us to estimate the parameters that characterize
the dynamics of a certain class of open-loop nonlinear systems.

8.2.3 Estimation Using Correlation Functions

Starting with Equation 8.3, for any m� 0, if we multiply both sides of the equation
by u(n�m), sum up allN�m nonzero terms, and then divide through byN�m, we
will obtain

p�1
Ruu Rue^ � � � h k� �Ruy m �m � k�T � m (8.15a)� �

k�0
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where

N�11� � �Ruy m^
N � m n�m

N�11

� y nu n � m� � � (8.16)

N � m n�m
Ruu

and

N�1
Rue^

^ �m � k� � u n� � m�u n � k�� (8.17)

1
m �� �

N � m n�m
� e nu n � m� � � (8.18)

Ruy, Ruu, and Rue

averages of the lagged products between u and y, u and itself, and u and e. Assuming
that the stochastic processes that underlie u and y are ergodic, these ensemble

^

averages provide reasonably good estimates of the cross-correlation between u and
y, the autocorrelation in u, and the cross-correlation between u and e, respectively
(see Section 5.3.2).We select that solution of h such that R̂ue(m) becomes zero for all

^

values of m – thus, Equation 8.15a becomes

^Note that in Equations 8.16 through 8.18 represent ensemble

p�1

k�0

^^

R̂uu

Equation 8.15b may be considered the discrete-time version of Equation 5.27b,
andmay be solved by applying a little matrix algebra, as in Section 8.2.2.We define
the following vector and matrix quantities:

´
Ruy

^ � � � h k� �Ruy m m � k�T ; m � 0; 1; . . . ; p � 1 (8.15b)�

� R̂uyR̂uy

and

(8.19)0� � 1� � �Ruy�p � 1

R̂uu

R̂uu
...

^
^

...
...

^
^

...

Ruu Ruu

Ruu Ruu

0� � 1� � p � 1��
1� � 0� � p � 2��

� (8.20)uu
...

^

...
...

^

...
Ruu Ruu�p � 1� p � 2� 0� ��^

^

^

R

Ruu

Note from Equation 8.17 that
Ruu

^R̂uu Ruu

in Equation 8.20 is symmetric. Equation 8.15b can be written in
m � k� � k � m� and therefore the� � ,

matrix
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matrix form as

R Ruu

where h is defined by Equation 8.5. Since all elements of

^^ � T h (8.21)uy

^Ruy and Ruu^

computed from the input and output data by applying Equations 8.16 and 8.17, the
unknown impulse response function is determined through the solution of

Ruu:^

can be

Equation 8.21 by inverting

1
R�

uuT
^ 1

^

Ruy
^

It can be shown that, aside from possible differences in the details of computing
the autocorrelation and cross-correlation functions, Equation 8.22 is essentially
equivalent to Equation 8.12. As before, the feasibility of applying this approach

Ruu.

h � (8.22)

depends on the invertibility of the autocorrelation matrix

8.2.4 Estimation in the Frequency Domain

Since the Laplace transform of the impulse response is the system transfer function,
carrying out the system identification process in the frequency domain should, in
principle, yield the same results as any of the time-domain methods discussed
earlier. The problem of transfer function identification is actually the same as that of
estimating the frequency response. The underlying idea is very simple and is
illustrated in Figure 8.3. At each frequency in the range of interest, apply a
sinusoidal input of known amplitude and phase to the system under study; then,
measure the resulting output. If the system is linear, themeasured output alsowill be
a sinusoid of the same frequency. The ratio between themagnitude of the output and
the magnitude of the input (= Aout/Ain in Figure 8.3) would yield the system gain at
that frequency. The phase difference between the output and input waveforms
(= 2πTp/Tc) would be the system phase at that frequency. By repeating thismeasure
ment over all frequencies of interest, one would be able to arrive at the frequency
response of the system and therefore obtain an estimate of the transfer function.

Although the above method can provide very good estimates of the system
transfer function at the frequencies investigated, one major drawback is that the
entire identification procedure can be extremely time-consuming and therefore
impractical for application in human or animal studies. An alternative would be to
employ the spectral analysis technique presented in Section 5.4.1; the basic idea
here is that the frequency response is estimated from the ratio between the input–
output cross-spectrum (Suy) and the input power spectrum (Suu), that is,

� �Suy ωk� � � (8.23)H ωk � �Suu ωk
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FIGURE8.3 Illustration of transfer function identification using sinusoidal inputs. System
gain and phase at given frequency ω= 2π/Tc are as defined above.

where ωk= 2πk/pT {k= 0, 1, . . . , p� 1}, and the spectral quantities are defined in
the following way:

�jωkmT^� � � � �e ; k � 0; 1; . . . ; p � 1 (8.24)Suy ωk Ruy m

p�1
�jωkmT^� � Ruu� �m e ; k � 0; 1; . . . ; p � 1 (8.25)Suu ωk �

p�1

m�0

m�0

As shown in Equations 8.24 and 8.25, Suy(ωk) and Suu(ωk) are computed by
applying the discrete Fourier transform to R̂uy and R̂uu, respectively. Equations 8.23
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through 8.25 are the discrete frequency equivalents of Equations 5.29 and 5.30,
which were applied to correlation quantities based on continuous time. As
mentioned in Section 5.3.2, all values of Suu must be positive in order for
meaningful estimates of the transfer function to be obtained.Whether this condition
is attained depends on the form of the input sequence, as we will see in Section 8.3.

OnceH(ω) has been estimated, it is possible to interpret the results in the context
of physiologically meaningful entities if a parametric model is available. As an
example of how this can be done, consider the linear lungmechanicsmodel that was
discussed in Chapters 4 and 5. FromEquation 5.6, the frequency response predicted
from this model takes the following form:

1
Hmodel� �ω � (8.26)�1 � LCω2� � jRCω

The values of the lung mechanical parameters (R, L, and C) that most closely
correspond to the measured frequency response Hmeas(ω) can be estimated by first
defining a “criterion function” J, which represents the “distance” between Hmodel

and Hmeas and, second, by searching for the parameter values that minimizes this
distance. Since Hmodel and Hmeas are complex-valued functions of ω, a suitable
criterion function could be

p�1
J � � � � �ωk � � � � ��� � � ωk � � �2 � � � � ���

k�0
Re Hmeas Re Hmodel ωk Im Hmeas Im Hmodel ωk

2

(8.27)

The above expression assumes that frequency responsemeasurements are available
at the frequenciesωk, where k= 0, 1, . . . ., p� 1. Themethodology forminimizing
J is described in the next section.

8.2.5 Optimization Techniques

Aswehadmentioned at the beginning of this chapter, the identification of “gray box”
or “parametric” models consists of two stages. First, the model structure has to be
developed, consistent with prior knowledge about the physiological system in
question. Frequently, this takes the form of a set of differential equations. Once
the model has been formulated, the next task is to estimate the unknown model
parameters by minimizing (or maximizing) some criterion that reflects the goodness
of fit between the model predictions and the observed output measurements. When
dealing with models represented by differential equations of high order, we
mentioned in Section 2.8 that it is generally better, from the viewpoint of numerical
stability, to employ a state-space framework. Another advantage of employing a
state-space model is that the analysis can readily be extended to nonlinear systems.
Wewill now illustrate how this system identification techniqueworks by considering
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our favorite example of the linear lungmechanicsmodel. Amore advanced example,
involving the analysis of a nonlinear model, is given in Section 8.5.1.

8.2.5.1 State-Space Model Formulation The differential equation characteriz
ing the lung mechanics model was derived in Section 4.1 and is given by

d2PA dPALC � RC � PA � Pao (8.28)
dt2 dt

Since Pao is the input and PA is the output of this system, we make the new variable
assignments:

y1 � PA and u � Pao (8.29a,b)

Also, assume

y2 � dPA

dt
� dy1

dt
(8.30)

Then, we can rewrite Equation 8.28 as

LC
dy2
dt

� RCy2 � y1 � u (8.31)

Then, using Equations 8.30 and 8.31, rearranging terms, and writing the two
equations in matrix form, we obtain

0 1 0y1 y1d � � u (8.32a)1 R 1
dt y2 y2LC L LC

If we define

y1y � (8.33)
y2

0 1
A � (8.34)1 R

LC L

and

0
(8.35)B � 1

LC
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Equation 8.32a becomes

d
y � Ay � Bu (8.32b)

dt

Thus, we have converted the second-order scalar differential equation (Equation
8.31) into the equivalent first-order matrix state equation. This type of equation can
be conveniently solved by numerical integration using one of the MATLAB
ordinary differential equation solver functions: ode45, ode23, ode113,
ode15s, and ode23s. An even easier way is to construct a state-space representa
tion of the model within MATLAB using the ss function, and then use the lsim

function (see Section 4.6) to generate themodel response to a given input waveform
u(t). TheMATLAB script file (provided as the file sss_llm.m) that performs these
tasks is displayed below:

>> A = [0 1; -1/L/C -R/L];
>> B = [0 1/L/C]’;
>> t = [0:0.005:0.8]’;
>> u = ones(size(t));

% Construct the system using state-space formulation
>> Hs = ss(A,B,[1 0],0);

% Solve state space equation using lsim and plot results
>> y = lsim(Hs,u,t);
>> plot(t,u,t,y);

In the above MATLAB script file, note that we have assumed the following
companion “observation equation”:

ŷ � Dy � Eu (8.36)

where ŷ represents the measured output of this system, that is, PA. In this case, we
are able to measure the state variable y1 (=PA) directly. Thus, here, we have

D � 1 0 and E � 0 (8.37a,b)

This accounts for the last two items in the argument list of the function ss in the
aboveMATLAB script. One other detail is that the matricesA andB do not need to
be evaluated directly. If the transfer function of the model is available, then the
MATLAB function tf2ss can be used to convert the system representation from
transfer function format to state-space format:

>> [A,B,D,E] = tf2ss(num,den);

8.2.5.2 Optimization Algorithm Having constructed the model, the next step is
to select themeans bywhich the response of themodel to a given input sequence can
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be compared with the response of the physiological system to the same input. The
comparison is made through the use of a criterion function that provides a measure
of the goodness of fit between the two time series. There are many possible
candidates for the criterion function, but the one most commonly employed is
the sum of squares of the differences between the measured and predicted outputs:

N�1 N�1
J � y n � � 2 � e n 2 (8.38)� �� � � ypred n

n�0 n�0

This is the same expression as that presented in Equation 8.9.
With the criterion function having been defined, the problem of parameter

estimation becomes transformed into a problem of optimization, where the objec
tive is to find the combination of parameter values that minimizes the criterion
function. The entire scheme of parameter estimation is illustrated in the schematic
block diagram shown in Figure 8.4. It should be noted that if the model selected
provides an accurate representation of the dynamics of the real system, then the
residual errors {e(n), n= 0, 1, . . . , N� 1} should closely reflect the measurement
noise affecting the output. On the other hand, if the selected model is largely
“wrong” and does not provide an adequate description of the output dynamics, there
will be a significant contribution from structural errors as well. This is one of the
major drawbacks of opting to employ a “structural”model: Erroneous information
about the dynamics of the underlying physiology can translate into large errors in

FIGURE 8.4 Schematic diagram of the optimization approach to parameter estimation.
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the parameter estimates and/or an inability of the model predictions to “fit” the
data well.

The choice of the algorithm employed to perform the minimization of the
criterion function is also important. There is a large array of algorithms available,
but it is not within the scope of this chapter to examine all or evenmost of these. The
most commonly applied methods employ the gradient descent approach. These
methods are best explained by considering a problem inwhich two parameters need
to be estimated. We will refer to these two parameters as θ1 and θ2. Since J is a
function of θ1 and θ2, evaluating J over selected ranges of θ1 and θ2 would yield a
surface in a three-dimensional spacewith the Cartesian axes formed by θ1, θ2, and J.
Suppose the surface looks like the contour map shown in Figure 8.5a, where each

FIGURE 8.5 Methods for finding the minimum of the criterion function surface.
(a) Steepest gradient method. (b) Simplex method.
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contour corresponds to a uniform value of J. In the gradient descent approach, we
start off with an initial guess of the parameters, represented as the point a. Then,
information about the slope of the local terrain is obtained, and based on this
information, wemove down the slope along the direction of “steepest descent.”The
size of the step taken in this direction differs with the different gradient descent
methods, with some methods using information about the curvature (i.e., second
derivatives) of the surface as well.

One drawback of the gradient approach is the need to evaluate the derivatives of J
with respect to all the parameters being estimated at every iteration step. Further
more, these methods are generally quite susceptible to producing solutions that
correspond to false local minima, if the J-surface is highly irregular, as would be the
case when the signal-to-noise ratio is low. A popular alternative, which does not
require any derivative computations at all, is the Nelder–Mead simplex algorithm.
For a three-parameter problem, the simplex takes the form of a tetrahedron,while for
the two-parameter problem, it is a triangle. Figure 8.5b shows the same criterion
function surface discussed above, together with the simplex (triangle) and how the
shape and position of the triangle moves over the course of a few iterations. The
vertices of the triangle represent the three points on the J-surface that are known at
any given iteration of the algorithm. Starting at the initial three points, the triangle is
reflected over the two vertices with the lowest J-values and the height of the triangle
is expanded or contracted so that the remaining vertex is located at the point of
lowest J-value. Next, the triangle is reflected over the two of the three vertices that
have the lowest J-values, and the new third vertex is found by stretching or
shrinking the height of the triangle. This process is repeated until some tolerance for
convergence toward the minimum is met.

The MATLAB function fminsearch employs the Nelder–Mead simplex
algorithm to determine the minimum point of a given multidimensional function.
The MATLAB script (contained in the m-file named popt_llm.m) presented
below shows an example of how fminsearch can be used to estimate the values of
the two unknown parameters in the state-space formulation of the linear lung
mechanics model (Section 8.2.5.1).

>> global u y
>> theta_init(1)=input
(’ Enter initial value of 1st parameter >>’);
>> theta_init(2)=input
(’ Enter initial value of 2nd parameter >>’);

% Perform optimization to minimize the objective function J
% defined by the function "fn_llm"
>> [theta,options] = fminsearch(’fn_llm’,theta_init);

Two items are required as inputs to fminsearch. The first is a user-defined
function that defines the model being employed and returns to fminsearch the
value of the criterion function at each iteration in the optimization process. In our
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particular example, we have named this function fn_llm. The second input is a
column vector (theta_init) containing an initial guess of the parameters to be
estimated. fminsearch produces two sets of outputs. The first set contains the
estimated parameter vector (theta). The second set of outputs (options) contains
information about the minimization process. For instance, the 10th element of
options contains the total number of iterations or function calls in the optimization
run. Besides, in this example, the data file data_llm.mat has to be loaded prior to
running popt_llm so that the input and output data are present in the workspace as
vectors u and y, respectively, for fminsearch to work on. Since the function
fn_llm must also use these data, the global declaration is included in both
popt_llm and fn_llm to make u and y universally accessible. The relevant
portion of theMATLAB code for fn_llm is given below, with the complete listing
given in the m-file fn_llm.m.

>> function J = fn_llm(theta)
>> global u y
>> A = [0 1; -theta(1) -theta(2)];
>> B = [0 theta(1)]’;
>> Hs = ss(A,B,[1 0],0);
>> ypred = lsim(Hs,u,t);
>> e = y - ypred;
>> J = sum(e.^2);

It should be noted from the script for fn_llm that the two parameters being
estimated, θ1 and θ2, correspond to the lung mechanical parameters 1/LC and R/L,
respectively (see Equations 8.34 and 8.35). Application of this algorithm to the
simulated data given in data_llm.mat produces the estimated parameter values of
1006.3 and 100.8, which agree closely with the “true” values for 1/LC and R/L of
1000 and 100, respectively:

Final Parameter Values:
1.0e+003 *

1.0063
0.1008

Total Number of Iterations:
198

8.3 PROBLEMS IN PARAMETER ESTIMATION:
IDENTIFIABILITY AND INPUT DESIGN

8.3.1 Structural Identifiability

The problem of structural identifiability is intimately coupled to the problem of
model-building. In theory, if knowledge about the underlying physiology of the
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system in question is available, it should be possible for us to translate this
knowledge into a parametric model by applying the basic laws of physics and
chemistry. The more we know about the system, the more details we would be able
to add to the model. In general, a more detailed and complex model would be
expected to account for a greater range of observations under a larger variety of
conditions. However, the price that one has to pay for the increased model
complexity is the emergence of more model parameters, the values of which
have to be assumed or estimated. In the several models that we have discussed in
previous chapters, we assumed the parameter values to be known. For example, in
the linear lung mechanics model, we assumed values for R, L, and C that were
considered “representative” of the population of subjects with normal lungs. This
assumption ignores the fact that there is a considerable degree of variability in these
lung mechanical parameters across subjects that one can consider “normal.”On the
other hand, we could choose to estimate the parameters in each individual subject.
The problem of structural identifiability arises when the information that is required
for the parameter estimation process is incomplete. This could be due to the
inaccessibility of certain signals or the lack of dynamic content in the stimulus.

As an example, consider the differential equation (Equation 8.28) that character
izes the linear lungmechanics model. Here, there are three unknown parameters: R,
L, andC. However, themathematical structure of thismodel turns out to be such that
the parameters only appear as paired combinations of one another: LC and RC. As a
consequence, the dynamics of the model are determined by only two parameters
(LC and RC) and not by the original three (R, L, and C). This fact again becomes
evident when one looks at the state-space formulation of the model in
Equation 8.32a. Here, only two independent parameters determine the solution
(i.e., dynamics) for the vector y, and these are 1/LC and R/L. Thus, it is clear that,
using only measurements of PA and Pao, the linear lung mechanics model is not
completely identifiable in terms of all three parameters – R, L, and C. We should
stress that this assertion on identifiability (or rather, the lack of it) holds true
regardless of whether noise is present or absent in the measurements. On the other
hand, this model can become fully identifiable if an additional channel of mea
surement, such as airflow, were to become available. For instance, one could
estimateC separately from static changes, for example, from the ratio of the change
in lung volume resulting from an applied change in pressure. Then, by combining
this additional piece of information with the two parameters that can be estimated
from the step-response in PA, we would be able to identify all three original model
parameters.

8.3.2 Sensitivity Analysis

A model that has been found to be structurally identifiable may still turn out to be
unidentifiable in practice, if the parameter estimation process is sufficiently
degraded by the presence of measurement noise. Therefore, having arrived at a
structurally identifiable model, the next test that we should subject the model to is
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the determination of whether the parameters that need to be estimated are resolvable
in the presence of noise. Since the parameter estimation process requires us to find
the lowest point on themultidimensional surface of the criterion function, it follows
that parameter identifiability depends heavily on the quality of the J-surface.
Figure 8.6 illustrates this statement with the help of two hypothetical examples
that assume the case involving only a single parameter (θ1). In both cases, we also
assume that the presence ofmeasurement noise limits the resolvability of changes in
J to a valueΔJ. In Figure 8.6a, there is a deep minimum. The error in the parameter
estimate (Δθ1) made in arriving at a solution that is located at a criterion function
valueΔJ above the global minimum is small. On the other hand, in Figure 8.6b, the
J-surface contains a very shallow minimum. In this case, the effect of the same
amount ofmeasurement noise is amuch larger error in the parameter estimate.What
distinguishes part (a) from part (b) in this example is the fact that in part (a), a given

FIGURE 8.6 Relationship between sensitivity to parameter variations and parameter
estimation error. (a) High sensitivity. (b) Low sensitivity.
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change in the parameter value leads to a large (and, therefore, highly observable)
change in the model output or J. Thus, in part (a), the model possesses high
sensitivity to parameter variations, whereas in part (b) sensitivity is low.

The inverse relationship between sensitivity and parameter estimation error can
be demonstrated analytically. We begin by recalling the definition of the criterion
function (see Equation 8.38) but rewriting it in vector form:

´
J � � y � y

pred
(8.39)y � y

pred

Differentiating J with respect to the parameter vector θ, we obtain

´ dydJ pred (8.40)� � y � y
preddθ dθ

Note that the derivative on the right-hand side of Equation 8.40 is aN× pmatrix, the
elements of which represents the effect of a small change in each parameter on the
model output. Thus, we can refer to this entity as the sensitivity matrix S:

dy
S � pred (8.41)

dθ

Suppose θ
∗
represents the parameter vector at the global minimum point on the

J-surface. Then, by applying aTaylor’s series expansion andkeepingonly first-order
terms, the model output in the vicinity of the minimum point can be expressed as

y
pred

θ � y
pred

θ∗ � dy
pred

dθ
θ∗

θ � θ∗ � y
pred

θ∗ � Sθ∗ θ � θ∗ (8.42)

where Sθ∗ denotes the matrix S evaluated at the minimum point. At the minimum
point, @J/@θ in Equation 8.40 becomes a null vector. Thus, substituting
Equation 8.42 into Equation 8.40, we obtain

dJ ´
Sθ∗ � θ � θ∗ ´θ∗� � 0 � Sθ́∗Sθ∗ (8.43)y � y

preddθ

which can be rearranged to yield the following expression for the parameter
estimate error:

�1´ ∗´ ´θ � θ∗ � e Sθ∗ (8.44)Sθ∗ Sθ∗
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where e
∗
represents the vector that contains the residual errors between the

measurements and the predicted output values. Left-multiplying both sides of
Equation 8.44 with (θ � θ

∗
) and applying the expectation operator (see

Equation 5.28) to both sides of the resulting equation, we get

Pθ � E θ � θ∗ θ � θ∗ ´ � Sθ∗
´Sθ∗

�1
Sθ́∗E e∗e∗

´
Sθ∗ Sθ∗

´Sθ∗
�1

(8.45)

where Pθ is also known as the parameter error covariance matrix. The diagonal
elements of Pθ contain the variances of all p parameters in θ, whereas the off-
diagonal elements represent the cross-covariances between the different paired
combinations of the parameters. If we assume the sequence of residual errors to be
white, that is, the present error is uncorrelated with past or future errors, then the

∗matrixE[e e∗´] reduces to the identitymatrix scaled by a factor equal to the variance
σ2 of the residual errors. Thus, Equation 8.45 simplifies to

�1
Pθ � σ2 (8.46)Sθ∗ ´Sθ∗

From Equation 8.46, it is important to note that each element of the symmetric
matrix S´θ∗Sθ∗ reflects the change in model output resulting from small changes in
all possible pairings of the parameters. If changes in one or more of the parameters
have no effect on the model output (zero sensitivity), then one or more columns and
rows of S´θ∗Sθ∗ will be zero; as a result, S´θ∗Sθ∗ will be singular and the parameter
errors will be infinite. This occurs when the model is not structurally identifiable. In
structurally identifiablemodels, S´θ∗Sθ∗ can still become close to singular if there are
strong interdependencies between some of the parameters; in this case, there will be
strong correlations between columns or rows of matrix S´θ∗Sθ∗. Inversion of this
close-to-singular matrix will yield variance and covariance values in Pθ that are
unacceptably large. However, it is important to bear in mind from Equation 8.46
that, even under circumstances wheremodel sensitivity is high, it is still possible for
the parameters to be poorly estimated if the variance of the measurement noise (σ2)
is very large.

Equation 8.46 provides lower bound estimates of the variances and cross-
covariances associated with the model parameters when these are estimated from
noisy measurements. However, computation of the Pθ matrix is based on local
changes in the vicinity of the optimal set of parameter values. A common alternative
method of assessing model sensitivity is to base the calculations over a larger range
of parameter value changes. In this approach, the criterion function J is evaluated
over a selected span of values (say,±50%) for each parameter in turn, while holding
the rest at their nominal values. Ideally, the

∗
“nominal” or “reference” values

selected should correspond to the optimal set θ . The form of the criterion function
Jθ is the same as that given in Equation 8.39, except that in this case the vector of
observations y is replaced by yref, where the latter represents the model predictions
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FIGURE 8.7 Sensitivity of the linear lung mechanics model to variations in the model
parameters about their nominal values (R= 1, L= 0.01, C= 0.1). Flat curve for L (i.e., very
low sensitivity) suggests identifiability problems for this parameter.

when the parameters are at their nominal values. Here, ypred corresponds to the
vector of model predictions at any of the parameter combinations (≠θ

∗
) being

evaluated. An example of this type of sensitivity analysis is shown in Figure 8.7 for
the linear lungmechanics model. The nominal parameter set in this case is R= 1 cm
H2O s L�1, L= 0.01 cmH2O s L�2, andC= 0.1 L cmH2O

�1. Themodel is assumed
to be perturbed by a unit step in Pao. The plot for R, for instance, shows changes in J
that would result ifRwere to be varied over the range 0.5–1.5 cmH2O s L�1,whileL
and C are kept at their nominal values. The model output is reasonably sensitive to
changes in R andC, but virtually insensitive to changes in L. This kind of “flatness”
in the sensitivity curve provides a good indication that at least one of the parameters
will not be identifiable. This conclusion is consistent with our analysis of structural
identifiability of this model in Section 8.3.1. The sensitivity results in Figure 8.7
were generated by the MATLAB script file sensanl.m (which also calls the
function fn_rlc.m).

8.3.3 Input Design

The result represented by Equation 8.46 is valid for any general parametric model.
Comparison of this result with Equation 8.13 shows a striking similarity between
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the two equations. This similarity is by no means coincidental. In fact,
Equation 8.13 represents a special case of Equation 8.46 when the assumed
“model” is simply the impulse response of the system under study. To demonstrate
this, note that the vector h containing the sampled impulse response is the unknown
parameter vector θ that we would like to estimate. Thus, the model predictions are
given by

p�1
y � � � θku n � k� n � 0; 1; . . . ;N � 1 (8.47)� T ;pred n

k�0


where

� �θk � h k (8.48)

The sensitivity of the nth output value to changes in the kth parameter is

@y � �pred n
Snk � � u n � k�T; n � 0; 1; . . . ;N � 1; k � 0; 1; . . . ; p � 1 (8.49)�

@θk

Looking back at Equation 8.7, it can be easily seen that the matrix U is simply a
special case of the sensitivity matrix S. Consequently, we have the following
equality:

Sθ́∗Sθ∗ � U´U (8.50)

While it was not specifically mentioned in the previous section, it is clear from
Equation 8.50 that the p× p matrix S´θ∗Sθ∗ is a function of the input time-course.
This implies that if the researcher has control over the type of stimulus that can be
administered to the system in question, it should be possible to design the input
waveform in such a way as to best “condition” the matrix S´θ∗Sθ∗ so that the
elements of its inverse can be minimized. From linear algebra, we know that a
matrix is singular if there is linear dependence between any two or more of its
columns (or rows). The best-case scenario for matrix inversion occurs when the
matrix to be inverted is diagonal and all the diagonal elements are nonzero. For the
matrix U´U to become diagonal, it would be necessary to choose an input time-
course in which any sample in the waveform is uncorrelated with all other samples.
Another way of saying this is that the input waveform should have zero auto-
correlation over all lags, except at the zeroth lag (which simply measures how
correlated the signal is with itself). One type of input waveform that has this kind of
autocorrelation function is white noise. This is one of the reasons for the popularity
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of white noise as a test input. Another reason relates to the fact that the white noise
time series also has a power spectrum that is essentially flat over a broad range of
frequencies. This persistently exciting kind of stimulation allows the system to be
probed over a larger range of dynamic modes.

Although white noise has been employed as a test input in many studies
investigating various neural systems, it has not been used as much for identifying
other physiological systems. A major reason for this is the practical difficulty of
implementing this kind of input forcing. The pseudo-random binary sequence
(PRBS) offers an attractive alternative that is very easy to implement and can
lead to good estimation results in many applications. The PRBS is so named
because the time series produced is actually periodic with a cycle duration of
N+ 1 samples, if N is the total number of points in the sequence. However,
within one period of this series, each sample is virtually uncorrelated with other
samples. One of the most commonly used methods for generating the PRBS
employs binary shift-registers with feedback. Figure 8.8a displays a four-stage
shift-register. The process begins with all stages assigned a value of 1. Then, at
the end of each time-step (T), the value contained in each stage is moved to the
right by one stage. The value in the rightmost stage of the shift-register (=1)
becomes the first value of the PRBS. At the same time, this value is fed back
toward the first stage and is exclusive “OR”ed (“XOR”ed) with the value
originally in the first stage. In this case, applying Boolean arithmetic, we get
1 ⊕ 1= 0. Thus, at the end of the first time-step, the values in the shift-register
are 0111. During the next time-step, the value 1 in the rightmost stage is moved
to the right and becomes the second value in the PRBS. At the same time, this
value (1) is fed back to the first stage and XORed with its current value (0); thus,
1+ 0= 1. This new result is assigned to the first stage. At the end of the second
time-step, the values in the shift-register are 1011. This process continues until
the values in the shift-register revert to 1111, which was what it had started with.
It can be easily shown that the four-stage shift register assumes the 1111 value at
the end of the 16th time-step and the whole sequence repeats itself. The output of
this process is a 15-point sequence with random-like properties, as depicted in
Figure 8.8b. The autocorrelation function of this kind of sequence approximates
that of white noise up to a maximum lag number of 14, as is shown in
Figure 8.8c. However, beyond this range, it is clear that the sequence is periodic.
The maximum autocorrelation value for a PRBS signal of amplitude A is A2, and
the minimum value is �A2/N. Thus, in our example, the maximum and minimum
values turn out to be 0.25 and �0.01667, respectively. Although the PRBS
example shown here is based on a four-stage shift-register, the latter may be
extended to more stages. For an m-stage shift-register, the total output sequence
will consist of 2m� 1 “random” values. The PRBS signal displayed in
Figure 8.8b was generated by executing the MATLAB script file prbs.m.

Using the PRBS as an input can lead to a dramatic simplification of the
correlation method of system identification (see Section 8.2.3). If an N-sample
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^

FIGURE 8.8 (a) Shift register method for generating a 15-point pseudorandom binary
sequence. (b) The 15-point PRBS signal generated from (a). (c) Theoretical autocorrelation
function of the 15-point PRBS signal.

RuuPRBS input of amplitude A is employed, the autocorrelation matrix (of size

^

N×N) becomes

N �1 ∙ ∙ ∙ �1
�1 N ∙ ∙ ∙ �1

Ruu
A2�
N

...
...

...
... (8.51)

�1 �1 ∙ ∙ ∙ N
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This matrix can be easily inverted, taking the following form:

2 1 ∙ ∙ ∙ 1
1 2 ∙ ∙ ∙ 1

R̂
�1 N� ...

...
...

...uu A2�N � 1� (8.52)
...

...
...

...
1 1 ∙ ∙ ∙ 2

R̂uu

multiplying this by the right-hand side of Equation 8.51 and showing that the result
yields the identity matrix.

Then, applying Equation 8.22, we obtain the impulse response vector:

One can verify that the right-hand side of Equation 8.52 is the inverse of by

h � N

A2 N � 1� � T

2 1 ∙ ∙ ∙ 1
1 2 ∙ ∙ ∙ 1
..
. ..

. ..
. ..

.

..

. ..
. ..

. ..
.

1 1 ∙ ∙ ∙ 2

R̂uy 0� �
R̂uy 0� �

..

.

..

.

R̂uy N � 1� �T� �

(8.53)

By evaluating the right-hand side of Equation 8.53, we can decompose the above
matrix equation into the following set of equations:

N�1N
h k� � � ^ � � �Ruy k R̂uy� �i ; k � 0; 1; . . . ;N � 1 (8.54)

A2�N � 1� T i�0

The expression for h(k) in Equation 8.54 makes it necessary only to compute the
cross-correlation between the input and output sequences. Explicit matrix inversion
is thereby averted. However, a serious practical limitation of Equation 8.54 is that
the errors associated with the estimates of the impulse response can be unacceptably
large if the input and output measurements are very noisy, since N values of h(k)
have to be estimated from N pairs of input–output data (see Section 8.2.2). A good
example of the application of this technique to the identification of a physiological
system is given in Sohrab and Yamashiro (1980).

8.4 IDENTIFICATION OF CLOSED-LOOP SYSTEMS: “OPENING
THE LOOP”

The system identificationmethods discussed in Section 8.3were based implicitly on
the assumption of an open-loop system: The stimulus (input) to the system was
assumed to be unaffected by the response (output). However, since most
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physiological control processes operate under closed-loop conditions, researchers
have applied a variety of techniques to “open the loop” by isolating the components
of interest from other components that comprise the entire system. In some cases,
“opening the loop” has meant literally that the subsystem of interest was surgically
separated from the rest of the system. Denervation, ablation of certain focal areas,
and the redirection of blood flow have become standard techniques in physiological
investigations. Another group ofmethods have been less invasive, involving the use
of pharmacological agents to minimize or eliminate potentially confounding
influences while the component of interest is studied. A third class of techniques
apply clever, noninvasive experimental manipulations to the intact physiological
system in order to open the loop functionally rather than physically or pharmaco
logically. In this chapter, we will review several classic examples that represent the
wide spectrum of these methods.

8.4.1 The Starling Heart–Lung Preparation

In Section 3.5, we discussed a simple closed-loop model of cardiac output
regulation, consisting of essentially two major subsystems, one comprising of
the heart and pulmonary circulation and the other representing the systemic
circulation. The now legendary experiments by Patterson et al. (1914) provided
the first systematic characterization of the former subsystem, thereby enabling the
measurement of the intrinsic response of the heart to changes in venous return and
arterial blood pressure. As illustrated schematically in Figure 8.9, the heart and
lungs were surgically isolated from the rest of the systemic circulation. By
connecting the right atrium to a reservoir of blood placed above it and controlling
the flow of blood from the reservoir to the heart, the researchers were able to
artificially vary the right atrial pressure. Blood ejected from the left ventriclewas led
to an arterial capacitance and then through an adjustable resistance (Starling
resistance) back to the venous reservoir after being heated to body temperature.
Adjustment of the Starling resistor or the vertical position of the arterial capacitance
allowed the researchers to control arterial (or aortic) pressure. In this way,
systematic changes in right atrial pressure and arterial pressure were related to
the corresponding cardiac output. These data formed the basis of Guyton’s cardiac
function curves (see Section 3.5.1).

8.4.2 Kao’s Cross-Circulation Experiments

Kao and Ray (1954) performed experiments on anesthetized dogs to determine
whether the increase in cardiac output observed during exercisewas due to neural or
humoral (blood-borne) factors. In order to separate the neural from humoral effects,
their experiments were designed in the following way. In each experiment, two
anesthetized dogs were used. The hind limbs of the “neural dog” were stimulated
electrically so that muscular work was induced. However, arterial blood perfusing
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FIGURE 8.9 Schematic illustration of the way in which Starling and coworkers “opened
the loop” to study the control of cardiac output.

the hind limbs of this dog came from the second dog, and venous blood leaving the
limbs were directed back to the “humoral dog.” The basic experimental design is
displayed in Figure 8.10. The authors hypothesized that (i) if the exercise-induced
cardiac output increase was solely due to neural feedback from the exercising limbs,
the “neural dog” would continue to show this increase, while the “humoral dog”
should not respond at all; and (ii) if the exercise-induced cardiac output increasewas
solely due to humoral factors, the “humoral dog” should show this increase, while
there should be no response in the “neural dog.”Based on the results of nine pairs of
these animals, it was found that cardiac output increased significantly in both
“neural” and “humoral” dogs. This led the authors to conclude that both neural and
humoral factors are involved in the regulation of cardiac output during muscular
activity.
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FIGURE 8.10 Kao’s experimental design for separating neuromuscular feedback from
humoral effects on exercise-induced hyperpnea. (Reproducedwith permission fromKao and
Ray (1954).)

8.4.3 Artificial Brain Perfusion for Partitioning Central and
Peripheral Chemoreflexes

In Section 6.7, we examined the stability properties of a model of the chemo
reflex regulation of ventilation. The analysis showed that the gains and time
constants associated with the central and peripheral chemoreflexes are impor
tant determinants of respiratory stability. The question of being able to measure
the dynamics of these two chemoreflexes in isolation from one another was
addressed by Berkenbosch et al., 1979 in a series of experiments that employed
the clever technique of artificial brain perfusion. This method is illustrated
schematically in Figure 8.11. In anesthetized cats, the researchers directed
blood from one of the femoral arteries through an extracorporeal circuit in
which the blood was equilibrated in a foamer with a gas mixture of known
composition, defoamed, and then returned to the cat through a cannulated
vertebral artery. The other vertebral artery was clamped, so that the brain was
perfused only by the blood leaving the extracorporeal circuit. This allowed the
PCO2, PO2, and pH of the blood perfusing the medullary chemosensitive regions
to be maintained at constant levels set by the researchers. This effectively
“opened” the central chemoreflex loop. Consequently, the effects of dynamic
changes in arterial PCO2 or PO2 (produced by inhalation of hypercapnic or
hypoxic gas mixtures) on the peripheral chemoreflex contribution to ventilation
could be measured in isolation from the central contribution.
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FIGURE 8.11 Schematic representation of the artificial brain perfusion setup for separat
ing central and peripheral chemoreflex drives.

8.4.4 The Voltage Clamp

The basic mechanism for the neuronal action potential is a classic example of a
physiological process inwhich both negative and positive feedback occur. Consider
the Hodgkin–Huxley model shown in circuit form in Figure 8.12a and block
diagram form in Figure 8.12b; the model has been simplified here to exclude the
leakage channel due to the chloride ions.Normally, potassium ions (K+) tend to leak
out of the nerve cell because of the much larger K+ concentration in the axosplasm
relative to the extracellular fluid. The opposite occurs with the sodium ions (Na+).
When the membrane is depolarized by a presynaptic stimulus, the variable Na+

conductance increases rapidly and considerably, allowing a large influx of Na+ ions
from the extracellular fluid, which depolarizes the cell membrane even further.
Thus, the positive feedback dominates this initial phase of the action potential.
Fortunately, the increase in Na+ conductance is short-lived and the influx of Na+

ions slows after a fraction of a millisecond. At the same time, the K+ conductance
starts to increase, following a short delay. This allows K+ ions to flow out of the
axoplasm, acting to reverse the depolarization of the membrane. The repolarization
speeds up the decline in Na+ conductance, which, in turn, promotes the
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FIGURE 8.12 (a) Simplified schematic of the Hodgkin–Huxley model. (b) “Opening the
loop” via application of the voltage clamp technique.

repolarization process (Figure 8.12b). Through the insertion of an electrode into the
axoplasm, it is possible to precisely control the voltage inside the nerve cell. By
applying a step depolarization through this electrode and keeping the applied
voltage constant, one is effectively “opening” both the positive and negative
feedback loops. Then, by measuring the current flowing across the membrane
and by altering the composition of the extracellular fluid to isolate the Na+ fromK+

effects, it is possible to deduce the time-courses of the Na+ and K+ conductances to
the step depolarization. This was the basic methodology employed by Hodgkin
et al. (1952), as well as researchers after them, to study the mechanisms underlying
the generation of the action potential.

8.4.5 Opening the Pupillary Reflex Loop

The model of the pupillary light reflex that we employed in Section 6.6 to
demonstrate stability analysis was based largely on Stark’s ingenious experiments
in which he developed techniques to functionally open the reflex loop. The two
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basic means by which this was done are illustrated in Figure 8.13. In the normal
closed-loop state, an increase in total light flux impinging on the retina results in a
reduction in pupil area that, assuming the light intensity remains constant, would
decrease total light flux to offset the initial increase. In Figure 8.13a, Stark used a
pupillometer to measure the size of the pupil and an adjustable light source that
delivered light at intensities that were inversely proportional to the pupil area. By
introducing these devices into the feedback loop, he was able to offset the effect of
changing pupil area on total light flux by raising the light intensity. In this way, the
total light flux could be controlled quite precisely, enabling him to deduce the loop
transfer function characteristics of the reflex. Another technique that he used to
effectively “open the loop” is illustrated in Figure 8.13b. Here, he applied a very
narrow beam of light through the pupil. By restricting the cross-sectional area of the
beam to a size that was smaller than the residual area of the pupil, total light fluxwas
rendered completely independent of pupil area, since the area of the light beam

FIGURE 8.13 Two methods of functionally opening the pupillary reflex loop. (a) Modu
lation of applied light intensity using measurements of pupil area. (b) Application of narrow
light beam to residual area of pupil.
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impinging on the retina was not affected by changes in pupil size. Under these
conditions, it was possible to completely control the time-course of the input (total
light flux) and measure the corresponding response (pupil area) of the “opened”
reflex loop.

8.4.6 Read Rebreathing Technique

Under normal operating circumstances, ventilation (V̇E) and arterial PCO2

(PaCO2) are tightly coupled through the powerful negative feedback loops of
the chemoreflexes: Any increase in PaCO2 leads rapidly to increase in V̇E, which
act to offset the initial rise in PaCO2. However, Read (1967) found a simple
experimental technique of functionally breaking this closed-loop relationship.
The subject breathes into and out of a small (4–6 L) rebreathing bag that is filled
with an initial gas mixture containing 7% CO2 in oxygen. After an initial
transient phase, an equilibrium is established between arterial blood, oxygenated
mixed venous blood, and gas in the lungs and rebreathing bag. Thereafter, the
PCO2 in both blood and gas phases increases linearly with time, and V̇E also
increases proportionally, without reversing the rise in PCO2 as one would expect
in the closed-loop situation. The way in which the technique works is best
appreciated from a modeling perspective. The following differential equation
provides the simplest dynamic characterization of CO2 exchange at the level of
the body tissues:

Vt dPvCO2 _� VCO2 (8.55)� QKCO2 PaCO2 � PvCO2863 dt

Equation 8.55 assumes the capacitance effect of the body tissues to be lumped
into the volume Vt. VCO2 is the metabolic production rate of CO2. Following the_

establishment of the equilibrium between the arterial and mixed venous blood
and gas in the lungs and bag, it can be seen that in Equation 8.55 the
arteriovenous gradient disappears and the derivative becomes a constant pro
portional to the CO2 metabolic production rate. Integrating Equation 8.55 results
in PvCO2 assuming a linear dependence on time. Since PaCO2, alveolar PCO2

(PACO2), and the bag PCO2, are equilibrated with PvCO2, these variables also
increase linearly with time during the rest of the rebreathing process. With the
linearly rising arterial and tissue PCO2, brain tissue PCO2 will also increase in
linear fashion, driving V̇E along a similar time-course. The increasing V̇E is
mediated almost completely by the central chemoreceptors, since the high
oxygenation levels suppress peripheral chemoreception. However, because of
the equilibration between the bag (inspired) PCO2 and PACO2 (see
Equation 6.42), the increasing V̇E is prevented from influencing PACO2, hence
breaking the negative feedback in this closed-loop system. A schematic block
diagram of the rebreathing model is shown in Figure 8.14.
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FIGURE 8.14 Schematic block diagram of respiratory control during rebreathing.

8.5 IDENTIFICATION UNDER CLOSED-LOOP CONDITIONS:
CASE STUDIES

Although we have seen a wide range of physiological examples in which exper
imental interventions were employed to “open the loop,” such techniques are not
always applicable. Moreover, a major criticism leveled against this kind of
approach is that the systemunder study is placed under nonphysiological conditions
and subjected to nonphysiological inputs when these interventions are applied.
Ideally, wewould like to identify the physiological system under “normal operating
conditions”when its feedback loops are functionally intact. However, consider the
problem involved with identifying the impulse response h(t) of the closed-loop
system component shown in Figure 8.15. The unknown (and unobservable)
disturbance u(t) that enters the closed loop represents both a “measurement”
and “process” noise input. It is considered “measurement noise” since it corrupts
the measurements x(t), which otherwise would be related solely to y(t), the input to
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FIGURE 8.15 Correlation of the process noise input u(t) with y(t) complicates the
identification h(t) from closed-loop measurements y(t) and x(t). f(t) is the impulse response
of the closed-loop system.

the system component. This is clear from the mathematical expression relating x(t)
to y(t) and u(t):

x t� � � h� �τ y t� � τ�dt � u t� � (8.56)

u(t) also takes the form of “process noise” since it enters the closed-loop system and
becomes correlated with y(t). If we consider u(t) the input and y(t) the output of the
overall system (as defined by the dashed rectangle in Figure 8.15), we obtain

y t� � � f � �τ u t� � τ�dτ (8.57)

In order to obtain an unbiased estimate of h(t) from Equation 8.56 by the least-
squares approach using y(t) as input and x(t) as output, the final solution must be
such that u(t) becomes uncorrelated with (or orthogonal to) y(t). However, as
Equation 8.57 clearly shows, y(t) is correlated with u(t). Thus, the direct application
of open-loop system identification methods to this problem will not yield accurate
estimates of h(t). A couple of approaches for circumventing this problem are
described in the following two sections. One other approach is to impose constraints
on the orthogonality condition, but this falls outside the scope of the present

1

0

1

0
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discussion. For further information about this last method, the interested reader is
referred to a study by Khoo (1989a, 1989b).

8.5.1 Minimal Model of Blood Glucose Regulation

One effective way of partitioning the effects of the feedforward and feedback
components of a closed-loop system from one another is to assume a model
structure for at least one of these components. Then, if the effects of all other
extraneous influences (process noise) entering the closed-loop system are small
relative to the magnitude of the system responses, the parameters of the assumed
model can be estimated. The “minimal model” of blood glucose regulation,
developed by Bergman et al. (1979), represents a good example of this kind of
approach. Referring to Figure 8.15, suppose that x(t) and y(t) correspond to the
plasma glucose and insulin concentrations at time t, respectively. Then, the impulse
response function h(t) would represent glucose regulation kinetics, while g(t)would
reflect the dynamics of insulin production and utilization. The closed-loop system is
perturbed by an impulsive input u(t), consisting of an intravenous injection
(300mg kg�1 in dogs) of glucose. By using the resulting time-courses in y(t)
and x(t) as input and output, respectively, the model of glucose dynamics can be
identified. Subsequently, by using x(t) as input and y(t) as output, the parameters of
the model of insulin dynamics can be estimated. Bergman and coworkers have
referred to this methodology as partition analysis, since both halves of the closed-
loop system are identified as if they were in the open-loop state. It should be
emphasized that the key assumptions that make this kind of closed-loop estimation
possible are (a) the imposition of structure and causality on the dynamics charac
terizing glucose and insulin production and utilization and (b) relatively large
signal-to-noise ratios in the measurements.

In this section, we will discuss only the estimation of the minimal model of
glucose regulation, that is, how insulin affects glucose. The estimation of the
converse model in which glucose affects insulin will not be considered. Thus, the
input here is the measured plasma insulin concentration y(t) following the intra
venous glucose injection, while the output is the corresponding measured blood
glucose concentration x(t). The model employed by Bergman contains the features
incorporated in the glucose kinetics model proposed by Stolwijk and Hardy (see
Sections 3.6 and 4.8), but is more realistic in that it allows for the delayed effect of
insulin on glucose disappearance, a feature that has been observed. The insulin
concentration y(t) does not affect glucose dynamics directly. Instead, it acts through
a “remote compartment,” so the effective insulin concentration yeff(t) is given by

dyeff � k2y t� � � k3yeff � �t (8.58a)
dt

where k2 and k3 represent the fractional rate parameters for insulin transport into and
elimination from the remote compartment. This compartment is “remote” in that yeff
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is not directly measurable. It should also be noted that the volume of the remote
compartment has been factored into the rate constants k2 and k3. The rate of change
of glucose in the blood plasma is given by

dx � net rate of glucose production by the liver
dt

�rate of glucose utilization by other tissues (8.59a)

where

Net rate of glucose production by the liver � B0 � k5x t� � � k6yeff � �t x t� � (8.60)

and

Rate of glucose utilization by other tissues � Rd0 � k1x t� � � k4yeff� �t x t� � (8.61)

In Equation 8.60, B0 represents the rate of glucose production by the liver. The rate
of glucose uptake by the liver is assumed to be proportional to an insulin-
independent component (through rate constant k5) and an insulin-dependent
component (through rate constant k6). Similarly, in Equation 8.61, the rate of
glucose utilization by nonhepatic tissues is assumed to have a constant component,
a component proportional to glucose concentration and a component sensitive to
both glucose and effective insulin concentration. Substituting Equations 8.60 and
8.61 into Equation 8.59a and rearranging terms, we obtain the result:

dx � �B0 � Rd0� � �k5 � k1�x t� � � �k6 � k4�yeff � �t x t� � (8.59b)
dt

As in Equation 8.58a, the effective plasma glucose capacitance is factored into the
parameters on the right-hand side of Equation 8.59b.

Equations 8.58a and 8.59b provide a complete characterization of glucose
kinetics. However, it is obvious that there are too many redundant parameters.
For instance, in Equation 8.59b, it would not be possible to estimate B0 and Rd0

separately; only the combined term [B0�Rd0] can be identified. The same is true for
[k5+ k1] and [k6+ k4]. In addition, since yeff(t) is notmeasurable, a further reduction
in parametrization can be achieved by defining the new variable z(t) that is
proportional to yeff(t):

z t� � � �k6 � k4�yeff� �t (8.62)

Substituting Equation 8.62 into Equations 8.58a and 8.59b, we obtain

dz � �p2z t� � � p3y t� � (8.58b)
dt
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and

dx � p4 � p1x t� � � z t� �x t� � (8.59c)
dt

where p1= k1+ k5, p2= k3, p3= k2(k4+ k6), and p4=B0�Rd0. Equations 8.58b and
8.59c provide the same dynamic characterization of glucose regulation for the
minimum number of unknown parameters that have to be estimated from the input–
output data. For this reason, it is referred to as a minimal model.

The way in which the unknown parameters p1, p2, p3, and p4 are estimated is as
follows. First, we begin with initial guesses for the unknown parameters. Using the
measured input time-course y(t) and the initial parameter values, Equation 8.58b is
first solved to obtain the value of z at the current time-step. Using this value of z in
Equation 8.59c and integrating this equation, the glucose concentration at the next
time-step can be computed. This process is repeated until predictions for x(t) have
been made for the entire duration of the experiment. The predictions are compared
with the actual blood glucose measurements, and the value of the criterion function
(sum of squares of the differences between measured and predicted glucose values)
is computed. An optimization algorithm is used to search for another combination
of the four unknown parameters that would produce a lower value of the criterion
function. Using the new combination of parameter values, z(t) and x(t) are again
solved using Equations 8.58b and 8.59c, and the whole process is repeated until the
incremental reduction in criterion function is considered insignificant.

An example of the results achieved with minimal model estimation is displayed
in Figure 8.16. “Data” required for the estimation were generated using a
SIMULINK implementation (named gmm_sim.slx) of Bergman’s models of
both glucose and insulin subsystems (Bergman et al., 1979, 1985; Toffolo
et al., 1980). These were combined and made to operate in closed-loop mode.
Random perturbations were added to the glucose concentration x(t) predicted by the
model to simulate “measurement noise” in the glucose observations. The SIMU
LINKmodel, shown in Figure 8.17, produced samples of x(t) and the plasma insulin
concentration y(t) at intervals of 1min tomimic the blood sampling conducted in the
real experiments. These “measurements” are shown as the closed circles in
Figure 8.16a and b. This particular set of “measurements” have also been saved
in the MATLAB data file: data_gmm.mat. Parameter estimation is performed
using the Nelder–Mead simplex algorithm, which is implemented in MATLAB
with the function fminsearch. The primary command lines of the MATLAB
script file, labeled gmm_est.m, are as follows:

>> options(1) = 1;
>> [p,options] = fminsearch(’fn_gmm’,p_init,options,[]);

where the function fn_gmm (inMATLAB file fn_gmm.m) is used by gmm_est.m to
produce values of the criterion function J with each iteration of the algorithm. For
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FIGURE 8.16 “Measurements” of blood glucose and insulin levels (closed circles)
following intravenous bolus infusion of 300mg kg�1 of glucose. The best-fit prediction
for glucose is shown as the solid curve.

each new set of parameter values, fn_gmm solves the model equations given in
Equations 8.58b and 8.59c using the Euler method of integration (with time-steps of
0.01min) and computes the sum of squares of the differences between the
“observed” glucose concentration samples and the values predicted by model
solution. The parameters to be estimated are the four unknown coefficients in
Equations 8.58b and 8.59c: p1, p2, p3, and p4; in addition, the “true” glucose
concentration at time zero, x(0), is treated as the fifth unknown parameter. In the
above MATLAB command lines, note that the array options is used as both an
input and output argument. This is done (specifically, the first element of options
is set equal to 1) to allow the algorithm to display the value of J, along with the
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FIGURE 8.17 SIMULINK model gmm_sim.slx of combined glucose–insulin kinetics
based on Bergman’s minimal models. (a) Model input and outputs. (b) Details of the
SIMULINK implementation.
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parameter values associated with the simplex vertices, at each stage of the compu
tations. The final estimated set of parameter values are p1= 0.068, p2= 0.091,
p3= 6.72 H 10�5, p4= 6.03, and x(0)= 284.9mg100ml�1. Thesemay be compared
with the “true” parameter values used in the SIMULINK program: p1= 0.049,
p2= 0.091, p3= 8.96 H 10�5, and p4= 4.42. These latter values were selected
from the results obtained by Bergman and coworkers from their experiments on
dogs. The “best-fit” model prediction is shown as the solid curve in Figure 8.16.

The minimal model has been employed successfully in many clinical studies to
quantitate insulin sensitivity and glucose effectiveness in various populations at risk
for diabetes. More details on the relationship between these indices and the model
parameters may be found in the original papers by Bergman and coworkers listed in
the Bibliography section of this chapter.

8.5.2 Closed-Loop Identification of the Respiratory Control System

In this section, we illustrate a somewhat different approach to closed-loop identifi
cation. In the previous example, an optimization technique was employed for
parameter estimation. Aswe hadmentioned earlier, one disadvantage of this kind of
iterative method is the possibility of convergence to a local minimum instead of the
global solution. Here, we take the alternative approach of least-squares estimation,
where the optimal solution is arrived at in one computational step. Another
difference that we will highlight here is the use of a persistently exciting input
to stimulate the closed-loop system, instead of the brief but potent impulsive
disturbance employed in the minimal model of glucose regulation. Practical
considerations dictate the use of the former type of input in the case of the
respiratory control system. A potent impulsive disturbance in this case would
take the form of an inhaled breath of gas with very high CO2 content. Such a potent
stimulus would be certain to evoke a behavioral response in addition to the
chemoreflex-mediated changes, thereby allowing the measurement process to
affect the system under observation. In this case, the stimulus takes the form of
a pseudorandom binary sequence (PRBS) in the inhaled PCO2. This allows the
system to be excited with relatively low CO2 concentrations over a broad range of
frequencies within the limited experimental duration. An example of the practical
implementation of this kind of PRBS time-course in inhaled PCO2 (PICO2) and the
resulting effects on alveolar PCO2 (PACO2) and ventilation (V̇E) in a normal human
subject is displayed in Figure 8.18. As in the previous section, partition analysis is
employed in the identification procedure. The first stage of the analysis involves the
estimation of the parameters of the plant (i.e., gas exchange in the lungs), using
measurements of V̇E and PICO2 as inputs and PACO2 as output. The second stage
consists of the estimation of the controller and lung-to-chemoreceptor delay using
PACO2 as the input and V̇E as the output (Figure 8.19).

8.5.2.1 Identification of the Plant The model employed to represent the CO2

exchange in the lungs is the small-signal expression derived in Equation 6.43b.
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FIGURE 8.18 Responses in PACO2 (part (b)) and ventilation (part (c)) produced in a
normal subject during inhalation of 6% CO2 in air, administered on a pseudorandom binary
basis (PICO2, part (a)). (Reproduced from Ghazanshahi and Khoo (1997).)
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FIGURE 8.19 Application of partition analysis for identification of the plant (above
dashed line) and controller (below dashed line) portions of the closed loop.

However, in Equation 8.63, we have also allowed for perturbations inPICO2 (which,
in Equation 6.43b, was kept constant):

d ΔPACO2τL � ΔPACO2 � G1ΔPICO2 � G2ΔV_ E (8.63)
dt

whereΔPACO2,ΔV̇E, andΔPICO2 represent small changes in PACO2, V̇E, and PICO2

about their equilibrium values, and

G1 � _VE � _VD

_VE � _VD � 863QKCO2

(8.64)

G2 � PACO2 � PICO2

_VE � _VD � 863QKCO2

(8.65)

Since, in this analysis, our attention is focused on the characterization of how small
changes in PICO2 elicit changes in PACO2 and V̇E, we assume, to a first approxima
tion, that the operating values of PACO2, V̇E, V̇D, and PICO2 are constant. Hence, we
regard the two factorsG1 andG2 to be constant-valued parameters, which have to be
estimated from the measurements, as we demonstrate below.

Since the measurements of PACO2, PICO2, and V̇E are not made continuously in
time but are obtained on a breath-by-breath basis, for purposes of parameter
estimation, it is more useful to express the plant equation in the form of a difference
equation with a discrete time base (with “breaths” as the unit of time). Furthermore,
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PACO2 cannot be directly sampled; instead, we assume that end-tidal PCO2 (the
highest value of PCO2 measured in the exhaled stream during expiration) reliably
reflects PACO2. By integrating Equation 8.63 from the end of the previous breath to
the end of the current breath, the differential equation can be converted into a
difference equation of the following form:

ΔPACO2 n �n � 1� � � � � β2Δ _ � � � � �� � � αΔPACO2 β1ΔPICO2 n VE n e n (8.66)

where n represents the current breath number and 0� n�N� 1, N being the total
number of breaths used for data analysis. Recalling the material covered in
Chapter 7, this type of continuous-time to discrete-time conversion is an example
of the impulse invariance method (Jackson, 1995).

It can be further shown that α, β1, and β2 in Equation 8.63 are related to the
parameters G1, G2, and τL of Equation 8.60 through the following relations:

G1β1 � (8.67)
τL

G2
β2 � (8.68)

τL

�T=τLα � �e (8.69)

where T is the “sampling interval” that, in this case, would be the breath duration.
Strictly speaking, Twould vary from breath to breath, since the breathing frequency
is somewhat variable. However, previous studies in this field have demonstrated
that assuming T to be constant and equal to the average breath duration simplifies
matters considerably without affecting the outcome of the analysis significantly in
most experimental situations.

In Equation 8.66, the last term e(n) is added to account for the residual error
between the measured ΔPACO2 and model-predicted ΔPACO2. Equation 8.66 is a
special case of the general class of models known as ARX (autoregressive with
exogenous input) models (Ljung, 1987). In this special case, α, β1, and β2 are the
unknown parameters to be estimated usingΔPACO2 as the output measurement and
ΔPICO2 and ΔV̇E as the inputs. Estimation of these parameters can be easily
achieved using least-squares minimization, as the following equations illustrate.
Rewriting Equation 8.66 for all values of n in vector form, we have

� � e 0� �0 ΔPICO2 � � �Δ _ � �0 VE 0ΔPACO2 0
� � e 1� ��ΔPACO2 0 ΔPICO2 1 � VE 1� � � � Δ _ � �ΔPACO2 1

α
...

...
...

...�... �β1
β2 ...

...
...

...
...

e�N � 1�ΔPACO2 �N � 1� �ΔPACO2 �N � 2� ΔPICO2 �N � 1� �ΔV_ E�N � 1�
(8.70)
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It can be seen that Equation 8.70 is of the form displayed in Equation 8.8, that is,

y � Uθ � e (8.71)

where y represents the column vector on the left-hand-side of Equation 8.67, U is
the N× 3 matrix on the other side of the equation, and θ is the vector containing the
unknown parameters. Thus, θ can be estimated using Equation 8.12, which we
rewrite as Equation 8.72:

�1U´θ � �U´U� y (8.72)

8.5.2.2 Identification of the Controller and Circulatory Delay To model the
controller and circulatory delay, we assume the form proposed by Bellville et al.
(1979) (see Section 6.8.3). Using the Laplace transform version of this model, we
have (from Equations 6.50a and 6.50b)

Gc GpΔV_ E s� � � � e sTdΔPACO2 � �s (8.73a)
τcs � 1 τps � 1

Here, we have made the simplifying assumption of using only one common
circulatory delay, Td, in place of the separate central (Tc) and peripheral (Tp) delays
assumed in the chemoreflex model of Section 6.8.3. Employing a common
denominator for both terms in the summation of Equation 8.73a, we can rewrite
the equation in the following form:

s � Gc � GpGcτp � GpτcΔV_ E s� � � e�sTd ΔPACO2 s (8.73b)� �
s � 1τcτps2 � τc � τp

When inverse-Laplace transformed back into the time domain, Equation 8.73b
takes the following differential equation form:

τcτp
d2 Δ _VE

dt2
� τc � τp

d Δ _VE

dt
� Δ _VE � Gcτp � Gpτc

d ΔPACO2 t � Td� �
dt

� Gc � Gp ΔPACO2 t � Td� � (8.74)

As in Section 8.5.2.1, since themeasurements aremade on a breath-by-breath basis,
it is more convenient to assume a discrete-time base and recast the model in finite
difference form, as in Equation 8.66 for the plant. In this case, the corresponding
finite difference equation is

ΔV_ E� � �n a1ΔV_ E�n � 1� � a2ΔV_ E�n � 2� � b0ΔPACO2 �n � Nd�
� b1ΔPACO2 �n � 1 � Nd� � ε n� �

(8.75)



272 MODEL IDENTIFICATION AND PARAMETER ESTIMATION

where, as in Equation 8.66, n represents the current breath number and 0� n�N
� 1. Nd represents the circulatory delay in number of breaths, that is, Nd= Td/T. In
this case, ε(n) is added to account for the discrepancy between the model-predicted
ΔV̇E and the measured ΔV̇E. Equation 8.75 can also be cast in the following form:

� �ΔV_ E n � �ΔV_ E�n � 1� �ΔV_ E�n � 2� ΔPACO2 �n � Nd�
a1
a2ΔPACO2 �n � Nd � 1�� � ε n (8.76)� �
b0
b1

By applying Equation 8.76 to all N sets of data points, we can again construct a
matrix equation of the form displayed in Equation 8.70, and thus estimate the
unknown parameters a1, a2, b0, and b1 using least-squares minimization. However,
in order to solve for the unknown parameters, it is necessary to know what Nd is.
Determination of Nd is done in the following way. We first select a range of
physiologically feasible values for Nd. The lung-to-ear delay in most normals is
generally in the range of 6–12 s. Thus, a reasonable range for Nd might be 1–4 for
breath durations that range from 3 to 6 s. For each of these values ofNd, we solve the
least-squares minimization problem and estimate a1, a2, b0, and b1. For each case,
we compute J, the residual sum of squares of the differences between the measured
and predicted ΔV̇E (as given in Equation 8.35). The “best” estimate of Nd is that
value that yields the lowest value of J.

Having estimated the unknown parameters, a1, a2, b0, and b1, it is possible in
principle to relate them to the gains (Gc and Gp) and time constants (τc and τp) that
characterize the corresponding differential equation (Equation 8.74) in a way
similar to Equations 8.67 through 8.69. However, in this case, the relations will
be nonlinear and the latter group of parameters would generally tend to be sensitive
to errors in the estimates of a1, a2, b0, and b1. A more robust alternative approach is
to characterize the controller dynamics in terms of its corresponding unit impulse
response. This can be achieved quite easily by setting ΔPACO2(0) to 1 and
ΔPACO2(n) to 0 for all n> 0, and computing ΔV̇E recursively from
Equation 8.75. The error terms ε(n) are set equal to zero during this computation.
Note that this would produce results similar to the PRBS technique described in
Section 8.3.3. However, one can expect much less noisy estimates of the impulse
response function from the present method, since h(n) in this case would be derived
from only four parameters estimated from a large number (128 or higher) of data
points. Further details on the application of this approach to human respiratory data
and the results obtained may be found in Khoo et al. (1995) and Ghazanshahi and
Khoo (1997). In the problems given at the end of this chapter, the reader will be able
to explore this technique in greater detail by applying the accompanyingMATLAB
script file rcs_est.m to a number of data sets (prbs1.mat, prbs2.mat, prbs3.
mat, prbs4.mat) obtained from human experiments.
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8.5.3 Closed-Loop Identification of Autonomic Control Using
Multivariate ARX Models

Another example of the ARX modeling approach employed in Section 8.5.2 is
presented here for application to a different physiological system in which there are
two inputs and one output. It is well accepted that rhythm of the heart and other
pulsatile cardiovascular variables is not regular but contains a significant degree of
variability. Variability of the heart period, or the inverse of heart rate, arises from
twomajor sources: (i) respiration affects heart period through the mechanical effect
of pleural pressure transmission, as well as autonomically through neural coupling
between the medullary centers and the heart; (ii) fluctuations in blood pressure also
affect heart period through the arterial baroreflexes, mediated by the carotid and
aortic baroreceptors. Heart period is measured directly from the interval between
successive R-waves in the electrocardiogram; hence, we denote changes in heart
period as ΔRRI. Jo et al. (2003) postulated the following ARX model for relating
changes in heart period to respiration (V) and changes in systolic blood pressure
(ΔSBP):

n na b

ΔRRI� �n � � aiΔRRI�n � i� � bjV n� � NRCC � j�
i�1 j�0

� ckΔSBP�n � N � � e n (8.77)ABR � k � �

Since the model includes measurements of both respiration and beat-to-beat values
of heart period and systolic blood pressure, the data are “resampled” in units of time
less than the minimum heart period; in the study of Jo et al. (2003), the “resampling
interval”was 0.5 s. Thus, in Equation 8.77, the time base is given in terms of number
of samples (n). NRCC and NABR are the latencies (in units of samples) associated
with the respiratory–cardiac coupling (RCC) and baroreflex (ABR) mechanisms,
respectively. e(n) represents the variability in ΔRRI not explained by the RCC and
ABR mechanisms. The above model is similar in form to models that have been
employed in other studies of heart rate variability (Barbieri et al., 2001; Baselli et al.,
1988; Mullen et al., 1997).

The unknown ARX model coefficients (ai, bj, and ck) in Equation 8.77 are
estimated using least-squares minimization in the same way as described in Section
8.5.2.2. The least-squaresminimization procedure is repeated over a range of values
for the latencies (NRCC andNABR) andmodel orders (na, nb, and nc). Thus, in a sense,
Equation 8.77 represents not just a single model, but a substantial number of model
candidates, each with a unique combination of na, nb, nc,NRCC, andNABR. As such,
we have to select the “best” among all the model candidates. For this purpose, a
metric that quantifies the quality of fit between model prediction and data has to be
employed. However, a model candidate that has a larger number of parameters than
another that has fewer parameters ismore likely to produce a betterfit to the data. On

nc

k�0
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the other hand, the former model candidate with the larger number of parameters to
be estimated is also likely to have larger parameter variances and cross-covariances.
Rissanen (1978) introduced theminimumdescription length (MDL) as ameasure of
the quality of fit that also penalizes for increasing model complexity:

σ2 log N� �eMDL � log � NCtot � (8.78)
σ2 NΔRRI

In Equation 8.78, σ2 is the variance of the residual errors between themeasurementse
and the predicted ΔRRI, σ2ΔRRI is the variance of the measured ΔRRI, and N is the
total number of data points. NCtot is the total number of ARX model coefficients:

NCtot � na � �nb � 1� � �nc � 1� (8.79)

Note that MDL decreases as the fit between model predictions and data improves,
but increases as the number of parameters in the model increases (i.e., as model
complexity increases).

Selection of the “optimal” candidate model is based on a global search (over all
model orders and latencies) for the minimum MDL. Thus, unlike the example in
Section 8.5.2, in which a fixed “structure” of the model was assumed, in this
application the model is allowed to be more flexible and “data driven” by searching
for that combination of number of terms (na, nb, nc, NRCC, NABR) in Equation 8.77
that produces the lowest global value of MDL. Once the ARX coefficients for the
optimal candidate model are estimated, the impulse response functions for the RCC
(hRCC(n)) and baroreflex (hABR(n)) components of themodel can be computed from
the recursive equations below, by setting the initial values of the inputsV andΔSBP
to unity and all other values to zero:

p q

hRCC� �n � � aihRCC�n � i� � bjV n� � NRCC � j� (8.80)
i�1 j�0

p m

hABR� �n � � aihABR�n � i� � ckΔSBP�n � NABR � k� (8.81)
i�1 k�0

where 0� n� p� 1.
In Equations 8.80 and 8.81, the values of hRCC(n) and hABR(n) for all n< 0 are set

equal to zero. It should be kept in mind also that hRCC(n) and hABR(n) are estimated
from input–output data assuming a discrete time base, and therefore any compari
son to the continuous-time versions of these impulse responses, hRCC(t) and
hABR(t), will need to include a scaling factor based on the sampling interval T
(see Sections 8.2.1 and 8.2.2).

An example of the kind of data collected in the study of Jo et al. (2003) is shown
in Figure 8.20. The goal of this studywas to derive estimates of hRCC(n) and hABR(n)



275IDENTIFICATION UNDER CLOSED-LOOP CONDITIONS: CASE STUDIES

FIGURE 8.20 Waveforms of respiration (V), beat-to-beat systolic blood pressure (SBP),
and heart period (RRI) measured in a sleeping subject. The subject was placed on a bilevel
positive pressure ventilator that provided 5 cm H2O pressure boost during inspiration on
random breaths; this was intended to increase the variability of ventilation.

from sleeping subjects using noninvasive measurements of respiration (obtained
from nasal airflow), continuous blood pressure monitoring, and electrocardiogram.
In order to enhance the accuracy of parameter estimation, the pattern of breath-to
breath ventilation wasmademore “broadband” by connecting the subject’smask to
a bilevel positive pressure ventilation that, on a random basis, would increase
inspiratory pressure by 5 cm H2O over the baseline level for one or more breaths.
This intervention increased the variability of the breathing pattern, resulting in a
wide range of large and small and longer and shorter breaths (Figure 8.20). This
consequently induced larger variations in SBP and RRI. By applying the method
ology discussed above, the impulse responses in the RCC and ABR components of
heart period variability can be estimated. Examples of the estimated hRCC(n) and
hABR(n) from one of the subjects participating in the study are displayed in
Figure 8.21. One can interpret hRCC(n) to represent the time-course in ΔRRI
following a very rapid inspiration and expiration of 1 L of air. The large negative dip
in hRCC(n) is consistent with the well-accepted observation that, in respiratory sinus
arrhythmia, inspiration leads to an acceleration of heart rate (or equivalently, a
reduction in RRI). hABR(n) represents the time-course of ΔRRI resulting from an
abrupt increase in SBP of 1mmHg. In this case, there is an initial large positive
overshoot and a subsequent smaller negative undershoot, consistent with the notion
that the net baroreflex response to an increase in blood pressure is a slowing of heart
rate (or equivalently, an increase in RRI). The interested reader is referred to the
study of Jo et al. (2003) for further details in the modeling approach and results.
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FIGURE 8.21 Estimated impulse responses of the respiratory–cardiac coupling (RCC,
part (a)) and baroreflex (ABR, part (b)) components of the model of heart rate variability
derived from one subject’s data.

8.6 IDENTIFICATION OF PHYSIOLOGICAL SYSTEMS USING
BASIS FUNCTIONS

8.6.1 Reducing Variance in the Parameter Estimates

In this chapter, we have introduced a number of techniques for system identification
of parametric and nonparametricmodels, but these fall into either one of two general
approaches. Optimization of a selected criterion function is the underlying principle
for both approaches, but what distinguishes one approach from the other is the
way in which the global minimum value of the criterion function is arrived at. Most
parametricmodels are identifiedusingmultistep, iterative optimization techniques–
gradient descent and simplex are examples of two classes of these methods.
Nonparametric models and some parametric models can be identified using
least-squares minimization or related techniques. This is possible because in
such cases, the model is “linear in the parameters,” and as a result, the parameter
estimation process is analogous to multiple linear regression. The least-squares
estimation and correlationmethods introduced in Sections 8.2.2 and 8.2.3 are prime
examples of this approach when the impulse response function is directly estimated
from the input and output data sets. The key assumption here is that the impulse
response lasts over a finite duration. Depending on the “persistence” of the true
impulse response and the length of the data sets that one has to work with, the
“truncation” of the impulse response can definitely bias the estimates of the impulse
response coefficients. On the other hand, assuming a longer impulse response for a
given total number of data sampleswould lead to greater variance in the estimates of
the impulse response coefficients – the well-known problem of overparametriza
tion. Employing anARXmodel structure, as in Sections 8.5.2 and 8.5.3, reduces the
number of model parameters that have to be estimated. On the other hand, the
autoregressive structure of ARX makes it such that the disturbances are coupled to
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the system dynamics. Thus, if the extraneous “noise” is large compared to the
deterministic part of the observed output, the parameter estimates can be unreliable
and biased. Aside from the case in which the model is used as a “one-step ahead
predictor,” predictions that employ only past inputs and past predicted outputs can
diverge from the actual data.

8.6.2 Use of Basis Functions

One approach that can dramatically reduce the impact of the aforementioned
problems assumes that the impulse response can be represented as a weighted
sumof orthonormal basis functions. The advantage of this technique is that it greatly
reduces the number of parameters to be estimated and also constrains the behavior
of the impulse response, thereby reducing variance in the parameter estimates.With
the improved estimation robustness, this technique can be applied on relatively
short and noise-contaminated data where the inputs do not have to be strictly
broadband and Gaussian. The Laguerre set has been employed in many studies of
physiological systems since these functions have a built-in exponential decay that
enables the constructed impulse response to mimic long-tailed distributions
(Marmarelis, 1993; Chon et al., 1996; Belozeroff et al., 2002).

The impulse response for a single-input single-output linear system is expanded
into the weighted sum of q+ 1 basis functions as follows:

c i� �Bi� �n ; 0 � n � p � 1 (8.82)h n �� �

If the set of basis functions are Laguerre, then

Bi� �n � � �;Li n 0 � i � q (8.83)

where

q

i�0

i
n i�n�i� 1=2 i� k� � � a � � �1 k� � a k�1 � α� ; n � 0 (8.84)Li n

=2 1 � α
k k

k�0

For a more efficient implementation, Li n� � can be computed recursively as follows:

p� � � αn�1 � α� (8.85a)
p p

L0 n

� � � αLi�n � 1� � α � � � Li�1�n � 1�; i > 0 (8.85b)Li n Li�1 n

The parameter (0< α< 1) determines the rate of exponential decay of the Laguerre
functions. α is selected based on the “memory” or effective duration (=p) of the
impulse response and the number of Laguerre functions used for the expansion, so
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FIGURE 8.22 Basis functions used for kernel expansion in the model: Laguerre (a) and
Meixner (b). See text for more details.

that all these functions would converge sufficiently close to zero toward the end of
the systemmemory. TheMATLAB function genalphacoef generates the α value
that is consistent with the system “memory” and the maximum order of Laguerre
function to be used in constructing the impulse response function. The function
laguer generates the family of q+ 1 Laguerre functions for a given values of α and
p. Both of these functions appear in the larger MATLAB script file laguerest.m.
Figure 8.22a displays the zeroth-, first-, second-, and third-order Laguerre functions
for α= 0.6 and a system memory of 25 samples.

Substituting Equations 8.82 and 8.83 into Equation 8.3 yields

p�1 p�1 q

y n �� � � � � � �h k u n � k�T � e n � c i� �L � � � �T � � � (8.86a)i k u n � k e n
k�0 k�0 i�0

In Equation 8.86, if we reverse the order of the summations for indices k and i, we
will get

y n �� � c i� �v � � � e n (8.86b)i n � �

where

v � � � L � �u n � k T (8.87)i k � �
k�0

i n

q

i�0

p�1
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The problem of estimating p unknown coefficients of the impulse response function
in Equation 8.86a has now been converted into a problem of estimating q (≪p)
unknown weights of the basis functions used in this method, as displayed in
Equation 8.87. This feature is what accounts for the advantage of employing the
basis function expansion method. Note that the time series vi(n), where i= 0,
1, . . . , q, represents filtered versions of the input signal, since the input is
convolved with the set of basis functions that range from order 0 through q.
Thus, the coefficients of the basis functions can be estimated through least-squares
minimization. Once the coefficient estimates have been calculated, the impulse
response function of the system to be identified can be deduced usingEquation 8.82.

A generalized form of Laguerre functions, known as Meixner-like basis
functions, can also be employed in the aforementioned estimation procedure
(Asyali and Juusola, 2005). Like the Laguerre function, the Meixner function
has an exponential decaying form, making it suitable for modeling biological
impulse responses, since the impulse response of a stable system always decays to
zero. A feature of the Meixner function not found in the Laguerre function is a
parameter known as the “order of generalization”; this parameter allows us to have
control over the rise time of the function, making it suitable for modeling impulse
responses that have pure delays and exhibit slow initial dynamics. The higher the
order of generalization, the slower the initial rise time. A Meixner function can be
generated from the corresponding Laguerre function simply by an orthogonal
transformation (Brinker, 1995). Figure 8.22b displays a number of Meixner
functions of different model orders and orders of generalization.

As an example of the application of the Laguerre expansion technique, we use
the same input and output “data” that were analyzed using the least-squares
correlation method (implemented through sysid_ls.m) in Section 8.2.2. How
ever, in this case, we apply the aforementioned Laguerre expansion technique
implemented through the program laguerest.m accompanying this volume. As
in the case of theARXmodel discussed in Section 8.5.3, the “optimal” q (number of
basis functions) is arrived at by determining which of the candidate models
produces the minimum MDL. The results of this exercise are displayed in
Figure 8.23. In Figure 8.23a, the input step in Pao and the resulting response in
PA (noisy tracing) are displayed along with the best-fit model prediction (smooth
tracing). Figure 8.23b shows the true impulse response (thick tracing) alongwith the
estimated impulse response (thin tracing). Comparison with the results of using the
correlation method (Figure 8.2) clearly suggests that the application of the Laguerre
expansion technique has drastically reduced the variance of the parameter esti
mates, although it has introduced a certain degree of bias into the estimation process.

8.6.3 Baroreflex and Respiratory Modulation of Heart Rate Variability

Methods employing basis function expansions, as described in Section 8.6.2, have
been applied to characterize the dynamics of the two main autonomic mechanisms
that contribute to heart rate variability. Belozeroff et al. (2002, 2003) used the
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FIGURE 8.23 Results obtained from applying the Laguerre expansion technique to
simulated “data” from lung mechanics model used in Figure 8.2. Part (a) shows input
Pao (step), the output “data,” and the best fit to the data. Part (b) shows the estimated impulse
response plotted along with the “true” impulse response of the model.
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Laguerre expansion technique, while Chaicharn et al. (2009) employed Meixner
basis functions. As in Section 8.5.3, the starting point in these studies was the
following model relating changes in heart period to respiration and change in
systolic blood pressure:

p�1 p�1
hRCC� �i V n � NRCC � i� � � hABR� �i ΔSBP�n � NABR � i� � e n� �ΔRRI n� � �

i�0 i�0
(8.88)

where 0� n�N� 1.
In both studies, the first step was to express each of the impulse responses as the

weighted sum of the set of basis functions:

� � � cRCC� �i Bi� �n (8.89)
i�0

hRCC n

h � � � c � �B � � (8.90)ABR n ABR i i n

The system “memory” (p) assumed for the above impulse responses was 50
sampling intervals, each sampling interval being 0.5 s. Since the measurements
were made noninvasively under closed-loop conditions between SBP and RRI, it
was necessary to impose causality constraints on the baroreflex impulse response in
an explicit fashion during the parameter estimation procedure. In the studies by
Belozeroff and Chaicharn cited earlier, a minimum value of 1 sample (0.5 s) was
assumed for NABR, the latency associated with the baroreflex.

Using Equations 8.89 and 8.90 in Equation 8.88 reduced the latter to the
following form:

q q

ΔRRI n� � � cRCC� �i vRCC�i; n� � cABR i vABR�i; n� � e n (8.91)� � � �
i�0 i�0

where

vRCC�i; n� � Bi k V n� � k � N � (8.92)� � RCC

and

vABR�i; n� � Bi k ΔSBP�n � k � N � (8.93)� � ABR
k�0

q

q

i�0

p�1

k�0

p�1
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The basis function coefficients were solved using least-squares estimation for a
wide range of combinations ofmodel order (q), delays (NABR andNRCC), and, in the
case for Meixner functions, various orders of generalization. The “optimal”model
was selected based on a search for the minimum MDL, similar to the procedure
described for the multi-input ARX model in Section 8.5.3.

Figure 8.24 displays the results obtained from the study of Belozeroff et al.
(2003) for estimates of the respiratory–cardiac coupling (RCC, part (a)) and
baroreflex (ABR, part (b)) impulse responses estimated from 11 control (normal)
subjects and 11 subjects with obstructive sleep apnea (OSA); measurements
were obtained from all subjects during wakefulness. The symbols (open
circles= normals, closed circles=OSA) represent the means of each subject
group, with standard errors of the mean shown as error bars. The basic forms of
the estimated RCC and ABR impulse responses agree well with the correspond
ing estimates displayed in Figure 8.21 derived from a different study (Jo et al.,
2003) and collected from a subject during sleep. What is interesting is that both
RCC and ABR impulse responses estimated from the OSA group were notably
smaller than the corresponding impulse responses derived from the normal
controls, indicating impaired autonomic control of heart rate in the OSA
subjects. It should be pointed out that the individual signal characteristics of
RRI and SBP by themselves did not reveal any apparent differences between the
subjects of the two groups, whereas comparison of the estimated impulse
responses of the RCC and ABR mechanisms showed clear differences. This
result is a prime example of the class of problems where examining the dynamics
of the “system” linking input and output signals can yield greater dividends than
examining the waveforms of the individual signals themselves.

FIGURE 8.24 Respiratory–cardiac coupling (RCC, part (a)) and baroreflex (ABR, part
(b)) impulse responses estimated from 11 controls (normal, shown as open circles) subjects
and 11 subjects with obstructive sleep apnea (OSA, shown as closed circles) during
wakefulness in the supine posture. (Reproduced with permission from Belozeroff et al.
(2003).)
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PROBLEMS

P8.1. One technique that has been used to assess lung mechanical function is
known as themethod of “forced oscillations.” In one variant of thismethod, a
loudspeaker system is used to generate random pressure perturbations (Pao,
considered the “input”) that are directed into the subject’s airways. The
resulting fluctuations in airflow (V̇, considered the “output”) are measured.
Using these input–output measurements, it is possible to deduce the
quantities that represent airway resistance (R), airway inertance (L), and
respiratory compliance (C) by assuming a linear model of respiratory
mechanics, such as the linear model that we have considered previously
(see Figure 4.1). Using the MATLAB script file sensanl.m, perform a
sensitivity analysis to assess parameter identifiability. Plot sensitivity curves
such as those displayed in Figure 8.7, assuming nominal parameter values of
R= 1.5 cm H2O s L�1, L= 0.01 cm H2O s2 L�1, and C= 0.1 L cm H2O

�1.
Use theMATLAB randn function to generate the white noise sequence that
represents the applied forcing inPao. Assume a time-step of 0.01 s and a total
duration of 25 s for each experimental trial. (Note: You will need to
implement and solve the model differential equation in a function that
will be called by sensanl.m.)

P8.2. The data set provided in thefiledata_fo.mat containsmeasurements of the
input (labeled Pao) and output (labeled Flow) signals measured during an
application of the method of forced oscillations, described in Problem P8.1.
Assuming the respiratory mechanics model structure shown in Figure 4.1,
estimate the model parameters (R, L, andC) from the input–output data. Use
the optimization technique discussed in Section 8.2.5.2. It is expected that
you will modify and apply the MATLAB script file popt_llm.m. Perform
the minimization using different starting parameter estimates in order to
obtain several sets of final parameter estimates. The differences in values of
each parameter will give you some idea of the estimation error.

P8.3. Using the data set in data_fo.mat and assuming Pao to be the input and
Flow to be the output, apply least-squares estimation (see Section 8.2.2) to
deduce the impulse response of the corresponding system. It is expected that
you will modify the MATLAB script file sysid_ls.m. The sampling
interval is 0.01 s. Assume the number of points in the impulse response
to be 50. Compute also the error band associated with the impulse response
estimate.

P8.4. Use the SIMULINKmodel file gmm_sim.slx to generate 10 sets of insulin–
glucose “data”: In all cases, set the variance of the “measurement noise” at
36mg2 per 100ml2, but in each case set the random generator seed to a
different integer. For each data set, use gmm_est.m to estimate the parame
ters p1, p2, p3, and p4 of the minimal model. Then, from the results of all 10
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data sets, compute the mean and standard error associated with each of the
model parameters.

P8.5. The data sets provided in the files – prbs1.mat, prbs2.mat, prbs3.mat,
and prbs4.mat – represent measurements of PACO2 and V̇E obtained from
four human subjects who were breathing from a gas mixture, the composi
tion of which was alternated between air and 6% CO2 in air on a pseudo
random binary basis. One set of these measurements is displayed in
Figure 8.18. Using the MATLAB script file rcs_est.m, estimate in
each case (a) the impulse response that characterizes the dynamics of gas
exchange in the lungs; (b) the impulse response that characterizes the
dynamics of the chemoreflexes; and (c) the lung-to-chemoreceptor delay.
Assume the timescale to be expressed in numbers of breaths. By applying the
fast Fourier transform to the impulse responses in (a) and (b), deduce the
corresponding frequency responses. How much intersubject variability is
there in the responses?

P8.6. Consider the linearized model of the pupillary light reflex displayed in
Figure 6.13b. First, develop the SIMULINK implementation of this model,
using the parameter values given in Section 6.6. Suppose we want to
approximate the dynamics of this model using a simpler, open-loop model
such as the generalized second-order system whose transfer function is
displayed below (we will refer to this simpler model as “M2”):

ΔA s� � GSSω2
n� �M2�

ΔI s� � s2 � 2ζωns � ω2
n

whereGSS represents the steady-state gain, ζ the damping factor, and ωn the
natural frequency of M2. To do this, we determine the (unknown) model
parameters (Gss, ζ, andωn) that would give us the best fit between the output
ofM2 and the output of the SIMULINKmodel for the same inputΔI.Write a
MATLAB program to accomplish this task (parameter estimation) using
popt_rlc.m and fn_rlc.m as examples. For an input sequence ΔI(t) that
consists of a “chirp” function (with starting frequency of 0.5Hz and end
frequency of 4Hz over a duration of 100 s, and with an amplitude of
0.002mlmmm�2), use your SIMULINK program to simulate the response
ΔA(t). Then, using ΔI(t) and ΔA(t), apply the optimization technique to
estimate the parameters (GSS, ζ, and ωn) of M2. Since it is necessary to
provide an initial estimate of the parameters with each optimization run,
perform this parameter estimation process with at least 10 different combi
nations of initial parameter values.

(a) Display in a table, the initial parameter estimates, the final parameter
estimates, and also the normalized mean square error∗ for each of the
runs.
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(b) Plot an example of how the criterion function (J) changes with iteration
number during the optimization process.

(c) From the list of final parameter estimates, select what you think should
be your “best” estimates of the parameters of M2 – explain your choice
for these estimates.

(d) Compare (plot) the best-fit (predicted) ΔA(t) with the simulated “data”
(ΔA(t) from the SIMULINKmodel) as functions of time, so that visually
we can see how well M2 is able to reproduce the dynamics of the
pupillary light reflex model – In order to display the difference between
predicted and simulated ΔA(t) clearly, show these comparisons over a
span of 5 s for (i) a low-frequency region (∼0.5Hz); (ii) a moderate
frequency region (∼2Hz); and (iii) a high-frequency region (∼4Hz).
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9
ESTIMATION AND CONTROL OF
TIME-VARYING SYSTEMS

9.1 MODELING TIME-VARYING SYSTEMS: KEY CONCEPTS

Implicit in the physiological models that we have focused on thus far is the
assumption that the model parameters are time invariant. On the one hand, this
assumption may be approximately valid under “basal” steady-state conditions,
when the key physiological variables are regulated so that internal conditions
remain relatively stable and operate within narrow bounds, evenwhen the system in
question is perturbed by changes in the external environment. On the other hand, as
we have demonstrated in the previous chapters, “homeostatic” conditions are
established through the interplay of a multitude of dynamic factors that act to
oppose or reinforce one another. As such, even in the “steady state,” there can be
significant fluctuations of various timescales around the equilibrium point of any
given variable. For example, arterial blood pressurefluctuates between diastolic and
systolic levels within each cardiac cycle, and although the simple Windkessel
model assumes that peripheral resistance is a constant, this is clearly not true since
peripheral resistance itself is altered by the baroreflex control of the peripheral
vasculature. Breathing influences diastolic and systolic pressures, while over longer
timescales, there are also fluctuations that result from dynamic changes in cardiac
output and vascular resistance. And over even more extended timescales, blood
pressure fluctuates as a by-product of the dynamic processes at play in renal
autoregulation and thermoregulation. Thus, over a timescale of a few minutes, a

Physiological Control Systems: Analysis, Simulation, and Estimation, Second Edition. Michael C.K. Khoo.
 2018 The Institute of Electrical and Electronics Engineers, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Khoo/ControlSystems2e
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stationary model with constant total peripheral resistance may be sufficient to
capture the dynamics of blood pressure. But over a longer timescale, such a time-
invariant model is unlikely to be successful in predicting the fluctuations in blood
pressure.

Figure 9.1 shows two physiological examples of time-varying or nonstationary
behavior. In Figure 9.1a, mean arterial blood pressure in a chronically instrumented
mouse displays diurnal fluctuations: Blood pressure is generally higher when the
animal is active during the night and lower when the animal is likely to be sleeping
during the day. Superimposed on the diurnal rhythm is a shorter periodicity
(ultradian rhythm) that occurs when the mouse is in active state, most likely related
to feeding. Finally, superimposed on these shorter fluctuations is what appears to be
a downward trend over the 4 days of the recording. It is unclear if the downward
trend is part of a low-frequency variation with periodicity of 16 ormore days. In any
case, if the blood pressure signal were to be the output of aWindkessel-type model,
the parameters of themodel would likely have to be time-varying in order to capture
these nonstationary features. Figure 9.1b displays a different kind of time-varying
behavior – a much faster type of nonstationarity. Beat-to-beat heart period or R–R
interval (RRI, third panel), systolic blood pressure (SBP, fourth panel), and
respiratory airflow (bottom panel) are recorded along with electroencephalogram
(EEG – first panel) and muscle sympathetic nerve activity (MSNA – second panel)
in a sleeping subject for about 30 s. At time t = 0, an acoustic stimulus is applied,
arousing the subject from sleep transiently (as indicated by the increased fluctua
tions in EEG). This change in state elicits a surge in sympathetic activity (MSNA),
as measured at the peroneal nerve just below the knee. The brief awakening
decreases RRI (or equivalently, increases heart rate), increases SBP, and slightly
alters respiratory airflow. After these brief changes, the system appears to settle
back into sleep mode.

For nonstationarities that occur slowly, relative to the dynamics of the system
in question, the simplest approach is to model the process as piecewise
stationary. For example, frequency-domain (spectral) analysis of heart rate
variability is generally carried out assuming conditions to be stationary. For
this reason, one has to preclude data segments that contain overt transient
fluctuations (“spikes” or artifactual behavior), and the consensus among most
experts in the field is that one should not apply stationary analysis to RRI data
segments that are longer than 5min in duration (Task Force, 1996). If it is clear
that one cannot adopt a piecewise stationary assumption, the next step up is to
consider a time-varying linear model such as that illustrated in Figure 9.2. Here,
the “external influence” is considered the source of nonstationary behavior. We
assume that this external influence affects the linear model by altering the
parameters of the model as well as through a separate additive contribution to the
model output. The nonstationary influence on the model parameters can be
characterized in the form of a time-varying impulse response, h(t,τ). Assuming
that the time variable t associated with the nonstationarity is separable from the
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FIGURE9.1 Physiological examples of time-varying or nonstationary behavior. (a)Mean
arterial blood pressure in a chronically instrumented mouse displays diurnal fluctuations,
being higher in the active period (dark) and lower during sleep (light). (Modified from Figure
1 ofChalacheva et al. (2013). (b) changes in heart period (RR), systolic blood pressure (SBP),
respiration, and muscle sympathetic nerve activity in a human subject during transient
arousal from sleep (indicated by the change in EEG pattern), following administration of an
acoustic stimulus at time t= 0. (Modified from Figure 1 of Blasi et al. (2003).
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FIGURE 9.2 Schematic block diagram showing that nonstationary behavior may be the
result of an external influence, and its effect on system dynamics modeled as a time-varying
impulse response h(t,τ).

time variable τ associated with the dynamics of the linear system, one can
visualize h(t,τ) to take the form of the three-dimensional structure as depicted in
Figure 9.3 – This “structure” contains impulse responses (functions of τ that
represent the system dynamics at the current time) that evolve with time t. The
next question that arises is how can we estimate the time-varying impulse
response from data, assuming that a time-varying linear model provides a good
approximation to the underlying physiological process.

FIGURE 9.3 Three-dimensional visualization of a time-varying impulse response. τ
represents the lag associated with the dynamics of the system, whereas time t is associated
with the nonstationarity.
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time. Thus, we have

ŷ n� � � h i� �x n � i� � � hTx (9.1)

and

e n� � � y n� � � ŷ n� �; where n � 0; 1; . . . ;N � 1 (9.2)

M�1

i �0

9.2 ESTIMATION OF MODELS WITH TIME-VARYING
PARAMETERS

9.2.1 Optimal Estimation: The Wiener Filter

Consider the situation shown in Figure 9.4, in which we are trying to estimate the
impulse response of the linear model that would best predict the output of a
physiological system. The derivation to follow is easiest to demonstrate in discrete

Note that the impulse response of the model is assumed to be nonzero over a
finite duration of time (M samples), and it is represented by the M× 1 column
vector h. Also, e(n) is the error between the measured physiological signal y(n)
and the model prediction ^� �. Since e(n) is stochastic, we can define they n
following cost function J based on the variance of the error (i.e., mean of
the squared errors):

J h � �2� � � E e n (9.3)

whereE{ . . . } represents the expectations operator, as introduced in Section 5.3.2.
Using Equations 9.1 and 9.2 in Equation 9.3, we obtain

J h� � � E yn � hT yn � hTx (9.4a)

J h� � � E y2n � 2hTynx � hTxx Th (9.4b)

FIGURE 9.4 Using a time-varying linear system to model the behavior of a physiological
system.
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Applying the expectations operator to all the terms within the curly bracket, we get

J h� � � σ2y � 2hTryx � hTRxxh (9.5)

where

ryx � E y gnf r � Ryx 0 1� � Ryx� � Ryx�M � 1� T
(9.6)

and

Rxx 0� � Rxx 1� � Rxx�M � 1�
TRxx � E xx � ...

...
... (9.7)O

Rxx�M � 1� Rxx�M � 2� ∙ ∙ ∙ Rxx 0� �
Note that ryx is a (M× 1) column vector and Rxx is an (M×M) matrix.

To obtain the “optimal” h, we find the solution for h that yields the minimum J.
Thus, we calculate the derivative of J with respect to h, and set all elements in that
vector to zero:

@J

@h
� �2ryx � 2Rxxh � 0 (9.8)

Solving Equation 9.8 yields

hopt � R�1
xx r yx (9.9)

Inserting Equation 9.9 into Equation 9.5 leads to the result

Jmin � σ2y � hTryx (9.10)

Equation 9.6 is known as theWiener–Hopf solution, and the vector hopt contains the
impulse response of the Wiener filter.

9.2.2 Adaptive Estimation: The LMS Algorithm

The Wiener filter is a stationary system. To extend the filter for applicability to
nonstationary systems, we allow h to change with time:

h�n � 1� � � � � Δh n (9.11)h n � �
Assuming the current time t= nT, where T is the time-step between samples,
Equation 9.11 shows how h is updated at time t= (n+ 1)T. There are several
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approaches to determining the specific composition of the parameter update term
Δh(n).

We begin here with an algorithm based on steepest descent; this is the “least
mean squares” (LMS) method, first developed by Widrow and Hoff. Starting with
Equation 9.3, we can obtain an alternative expression for @J/@h:

@J

@h
� 2e n� � @e n� �

@h
(9.12)

But since

e n� � � y n� � � hTx n� � (9.13)

we find that

@e n� � � �x n (9.14)� �
@h

Substituting Equation 9.14 into Equation 9.12, we obtain

@J � �2e n x n (9.15)� � � �
@h

In order tofind theminimum J in an interactivemanner, it wouldmakemost sense to
choose Δh(n) such that

J�h� � �n Δh� �n � < J h n� � �� (9.16)

If we expand the left-hand side of Equation 9.16 as a Taylor series, and assuming
that the norm of Δh(n) is small, we obtain the following approximate result:

T @J h n �� � �� � � Δh n � � �� � Δh nJ�h n � �� � J h n � � (9.17)
@h

To guarantee the inequality in Equation 9.16, it is clear that the second term on the
right-hand side of Equation 9.17 must be negative. One way to do this is to let

@J h n �� � �
Δh� �n � �μ (9.18)

@h

Note that μ is a positive constant that controls the size of the parameter update. μ
needs to be small enough to suppress the influence of the higher order terms in the
Taylor expansion (Equation 9.17) and thus guarantee convergence to the minimum
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FIGURE 9.5 Flowchart for the LMS (least mean squares) algorithm for adaptive filtering.

J. In fact, it has been shown that themore noisy the observations y(n), the smaller the
μ needs to be.

Substituting Equation 9.18 into the second term in Equation 9.17 yields

T

@J�h� �n � @J h n �� � �

Δh n� �T @J h� �
@h

� �μ @J h n� � ��
@h

@J h n� � ��
@h

(9.19)

T

Since the norm of must be positive, Equation 9.18 ensures@h @h

that the inequality in Equation 9.16 is satisfied. In the LMS algorithm, we combine
Equations 9.15 and 9.18 to give the result:

Δh� �n � � �x n2μe n � � (9.20)

The flowchart of the LMS algorithm is displayed in Figure 9.5.

9.2.3 Adaptive Estimation: The RLS Algorithm

Another widely used method for estimation of linear systems with time-varying
parameters is the recursive least-squares (RLS) algorithm. In the RLS method, the
criterion function to be minimized assumes the form:

n � 2J h n � λn ie i� � (9.21)� � � �
i�0
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where e(i) represents the error between observed and predicted values of the model
output. λ is a constant factor (with values between 0 and 1). In effect, λ provides a
means of assigning relative weights to more recent observations and less to
observations further in the past. For instance, if λ is given a value close to zero,
then J(n) will be determined predominantly by e(n) with virtually no influence from
past errors. At the other extreme, when λ is equal to unity, J(n) will be equal to the
sum of squares of the residuals for the current and all past samples. In general, the
weight given to the observations decays exponentially with time, the further back in
the past they are from the current instant. For this reason, λ is often referred to as the
forgetting factor. In practice, λ generally ranges from 0.95 to 0.9995. Lower values
of λ tend to produce more variability in the estimates of the model parameters.

To find the minimum J, we differentiate J with respect to the vector of
parameters, and set the derivative to equal the null vector:

n@J � �2 λn�ie i� � � � � 0x i (9.22)
@h

i�0

Replacing e(i) in Equation 9.22 with Equation 9.13, we obtain

λn�i y i� � � hT � � x i (9.23a)x i � � � 0opt

Rearranging terms, Equation 9.23a becomes

n n

λn�ix� �i x� �i T � � � λn�iy i� �x� �i (9.23b)hopt n
i�0 i�0

From Equation 9.23b, we derive the following expression for the optimal value of
the parameter vector:

hopt n � � � �� � � R�1 n r n (9.24)

where

n
Tλn�iR n� � � x� �i x� �i (9.25a)

and

r n� � � λn�iy i� �x� �i (9.26a)
i�0

n

i�0

i�0

n
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We take the following steps to convert Equation 9.24 into a form that is recursive in
n and thus implementable as an adaptive algorithm. Equation 9.25a can be rewritten
as

λn�i�1 TT �R� �n � � �x nx n � � λ x� �i x� �i (9.25b)

Then, applying Equation 9.25a again in the second term of the right-hand side of
Equation 9.25b, we get

R n � � �x n � (9.25c)� � x n � �T � λR n � 1�
In similar vein, Equation 9.26a can also be rewritten:

r� �n � � �x n � (9.26b)y n � � � λr�n � 1

If we define the matrix P(n) to be the inverse of R(n),

P n 1 (9.27)� � � R�

then, using the matrix inversion lemma (also known as the Sherman–Morrison–
Woodbury formula), it can be shown (through a somewhat complicated proof) that
P(n) can be expressed in the recursive form:

1 P�n � 1�x n x n TP�n � 1�� � � �
P� �n � P�n � 1� � (9.28)

λ λ � x n TP�n � 1�x n� � � �
Using Equation 9.26b and 9.28 in Equation 9.24, we obtain, after some algebraic
manipulation, the following parameter update equation:

h� �n � h�n � 1 � � � � (9.29)� �K n ε n

where

P�n � 1�
K� �n � � �x n (9.30)

λ � x n TP n � 1�x n� � � � �
and

y n Tx n (9.31)ε� �n � � � � h�n � 1� � �
It is important to distinguish the variable ε(n), given by Equation 9.31 from the

error e(n) that is defined by Equation 9.13, even though the expressions look almost
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identical. ε(n) is the error between the current observation y(n) and the model
prediction based on the estimate of the model parameters computed at the previous
time-step h n � 1�). On the other hand, e(n) is the error between y(n) and the model�
prediction after the parameters of themodel have been updated to the current time n.
For this reason, ε(n) is often referred to as the a priori error, whereas e(n) is the a
posteriori error. Equations 9.28–9.31 form the crux of the RLS algorithm, allowing
estimates of themodel parameters to be updated at each new time-step after themost
current observation y(n) becomes available: ε(n) is calculated based on the previous
estimate of themodel parameters, and this error ismultiplied by a “gain” vectorK(n)
and added to the previous parameter vector to obtain the latest estimate. K(n) is
known as the Kalman gain. K(n) depends on P(n� 1), which turns out to be the
parameter error covariance matrix (see Section 8.3.2). Figure 9.6 displays the
flowchart of the RLS estimation algorithm.

The RLS algorithm takes on a form that is very similar to the more ubiquitous
Kalman filter, and one might think of RLS as a special case of the Kalman filter.
The Kalman filter is generally derived assuming a state-space model structure, in
which the model parameters evolve in time as the state equation, while the
observation equation is used to relate the observed measurements to the model
predictions. Thus, there are additional terms that represent the covariance matrix
of the noise component of the state equation, as well as the covariance matrix of
the observation noise. The RLS filter does not contain these parameters, but it
does have the forgetting factor λ. The original version of the Kalman filter was

FIGURE 9.6 Flowchart for the RLS (recursive least squares) algorithm for estimating the
parameters of a time-varying system.
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not formulated as an adaptive filter, but it can be extended for application to
time-varying systems.

9.3 ESTIMATION OF TIME-VARYING
PHYSIOLOGICAL MODELS

9.3.1 Extending Adaptive Estimation Algorithms to Other
Model Structures

In the previous sections, we assumed a finite impulse response (FIR) structure
for the model to be estimated. As pointed out in Chapter 8, one problem with this
kind of model structure is that there are usually many coefficients in an
impulse response – especially when the system response is sluggish but the
sampling rate is quite high. This generally leads to significant error in the
estimated impulse response (see Section 8.2.2). To circumvent this problem, we
can adopt model structures that can adequately characterize the underlying
dynamics of the system being modeled with substantially fewer parameters. One
type of “structure” that we introduced in the example in Section 8.5.2 was the
ARX (autoregressive with exogenous input) model. Another approach that we
can adopt is to employ orthonormal basis functions to reduce the level of
parametrization, as outlined in Section 8.6. In the following examples, we
demonstrate how the RLS algorithm can be applied using these model
formulations.

9.3.2 Adaptive Estimation of Pulmonary Gas Exchange

We adopt the linearized model of CO2 exchange in the lungs derived from
Equation 6.42; this takes the form very similar to Equation 8.63, but we will
assume here that the subject is breathing air and thus PICO2= 0.

d ΔPACO2 � ΔPACO2 � �G2ΔV_ E (9.32a)τlung dt

where

V lung
τlung � (9.32b)

VE � VD � 863QKCO2

and

PACO2G2 � (9.32c)
VE � VD � 863QKCO2
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Since the measurements are made on a breath-by-breath basis, we can use any of
the methods introduced in Chapter 7 to convert the continuous-time system in
Equation 9.32a into its discrete-time equivalent. As in Section 8.5.2, we obtain the
following ARX representation:

ΔPACO2 � � � αΔP �n � 1� � βΔ _ � � � � �n ACO2 VE n e n (9.33a)

where

�T=τlungα � �e (9.33b)

and

G2
β � � (9.33c)

τlung

and n represents the current breath. Note that T is the average breath duration.
And α and β are related to the parameters in the continuous-time model via
Equations 9.33b and 9.33c, if we employ the impulse invariance method. To
allow the model to accommodate time-varying effects in the parameters, we let α
and β be functions of time (in breaths). Thus, we have the following time
varying ARX model:

ΔPACO2 � � � α n ΔP n � 1� � β n ΔV_ E n e n (9.34)n � � ACO2 � � � � � � � �
We can rewrite Equation 9.34 in a form similar to Equation 9.31:

Te n � � � � θ n x n (9.35a)� � y n � � � �
where

y n � ACO2 n (9.35b)� � ΔP � �
´θ n � α n β n (9.35c)� � � � � � � ��

and

´� �x n � ΔPACO2 �n � 1�ΔV_ E� �n (9.35d)

The criterion function for minimization is defined as

n � 2J θ n� � � λn ie i� � (9.36)
i�0
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The estimation procedure using RLS follows the same sequence as was
presented in Section 9.2.3 and illustrated in the flowchart in Figure 9.6. The steps
are as follows:

(a) Assume a value for the forgetting factor λ, generally between 0.97 and
0.995. Start with initial educated guesses for the parameters (α and β) to be
estimated, as well as the parameter error covariance matrix P.

(b) Using previous parameter estimates, generate the predicted y (ypred), and
thus compute the a priori error ε:

ε� �n � � � � θ n � 1�T � �y n � x n (9.37a)

(c) Compute the Kalman gainK(n) from ε(n) and P(n� 1) using Equation 9.30.

(d) Obtain updated P(n) using Equation 9.28.

(e) Calculate the updated estimate of the parameter vector, using

θ� �n � � � �ε nθ n � 1� �K n � � (9.37b)

(f) Update the prediction error (a posteriori error) using the updated parameters
in

Te n � � � � θ n x n (9.37c)� � y n � � � �
(g) Increment n by 1 and repeat the sequence starting at step (b).

In this example, the parameter error covariance matrix P is 2× 2 and the
Kalman gain vector is 2× 1 in dimensions. The MATLAB script file that
incorporates this algorithm is named TVmodel_RLS.m.

To demonstrate the application of TVmodel_RLS.m, we use the ARX model
given in Equation 9.33a to simulate the ventilation–CO2 exchange process, and
subsequently employ the RLS algorithm to estimate the original parameters of
the ARX model. The advantage of testing the estimation algorithm with “data”
simulated by a model is that it allows us to check the estimated parameters
against “ground truth.” In the example shown in Figure 9.7, the “data”
generating model assumes ARX parameter values of α=�0.7 and β=�0.14
for the first half of the simulation (breaths 1 through 250) and an abrupt change
in these parameters to α=�0.9 and β=�0.28 in the second half of the
simulation (breaths 251 through 500). The ARX model is assumed to incorpo
rate Gaussian white noise (e(n) in Equation 9.33a) with standard deviation of
0.2 mmHg, while the ventilation input also takes the form of a Gaussian white
noise sequence (not correlated with the former white noise sequence) with
standard deviation of 1 Lmin�1, representing breath-by-breath variability in
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FIGURE 9.7 Application of RLS for estimation of the parameters of a time-varying
model of lung gas exchange. Ventilation (part (a)) is considered the input to the model,
and changes in alveolar PCO2 are the output (part (b), closed circles). The predicted
change in PACO2 is shown as the black continuous tracing that tracks the closed circles
rather closely.

spontaneous breathing. In reality, changes in gas exchange are unlikely to be as
large and as abrupt as simulated in Figure 9.7. However, applying the RLS
estimation algorithm to the simulated “data set” offers a way in which we can
determine how quickly the parameter estimates will adapt toward the “true
values,” given an assumed value of the forgetting factor λ. In this example, we
employed a value of 0.98 for λ. The breath-to-breath values of the simulated
“noisy data,” that is, ΔPACO2, are displayed as closed circles in Figure 9.7b. The
model predicted ΔPACO2 is shown as the continuous dark tracing. The estimated
time-varying ARX model parameters are displayed as the continuous tracings in
Figure 9.8, with α in part (a) and β in part (b). The “true” values of α and β are
displayed in Figure 9.8 as broken lines. Note that the parameter estimates begin
far away from their “true” values and converge toward these values after 10–20
breaths. Following the abrupt change in values of the “true” parameter values,
the estimate of α adapts to its new value within 50 breaths, but the estimate of β



304 ESTIMATION AND CONTROL OF TIME-VARYING SYSTEMS

FIGURE 9.8 Plots of the estimated parameters α (part (a)) and β (part (b)) of the time-
varying ARX model against their corresponding “true” values.

converges more slowly. Convergence behavior will differ depending on λ and
the level of noise in the data. Smaller values of λ lead to faster convergence but
also considerably more variability from one point to the next.

9.3.3 Quantifying Transient Changes in Autonomic
Cardiovascular Control

In Section 8.6.3, we introduced theminimalmodel that characterized the respiratory
and baroreflex modulation of heart period and employed the Laguerre function
expansion technique to estimate the impulse responses of these two main mecha
nisms of heart rate variability. This approach can be easily adapted for applicability
to nonstationary (time-varying) conditions. As illustrated in Figure 9.1b, cardio
vascular and respiratory fluctuations that accompany arousal from sleep are a
common example of time-varying behavior. This raises the question of whether
these cardiorespiratory fluctuations are also associated with transient changes in the
baroreflex and respiratory–cardiac coupling mechanisms that mediate heart rate
variability. The model discussed in Section 8.6.3 can allow us to examine this
question if we relax the assumption of stationarity and let the RCC and ABR
impulse responses be time-varying:

p�1 p�1
ΔRRI n �� � hRCC�i; n� � �V n � NRCC� i� hABR�i; n�ΔSBP�n�NABR�i�� � �e n

i�0 i�0
(9.38)
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The time-varying impulse responses are each expanded as the weighted sum of
basis functions, but here the coefficients are allowed to be time-varying:

hRCC�i; n� � cRCC�k; n�Bk� �i ; 0 � i � p � 1 (9.39)
k�0

hABR�i; n� � cABR�k; n�Bk� �i ; 0 � i � p � 1 (9.40)

Substituting Equations 9.39 and 9.40 into Equation 9.38 yields

q q

ΔRRI n� � � cRCC�k; n�vRCC�k; n� � cABR�k; n�vABR�k; n� � e n (9.41)� �
k�0 k�0

where

vRCC�k; n� � Bk� �i V n � i � NRCC�� (9.42)

and

vABR�k; n� � Bk� �i ΔSBP�n � i � NABR� (9.43)

vRCC(k,n) and vABR(k,n) are the new input time series that have been derived
from having the respiration and ΔSBP inputs convolved with each member of
the family of q+ 1 basis functions. Thus, Equation 9.41 takes on a form
equivalent to Equation 9.37c in which the time-varying coefficients cRCC(k,n)
and cABR(k,n) form the elements of the time-varying parameter vector θ(n),
while input vector is composed of vRCC(k,n) and vABR(k,n). The RLS algorithm
is applied to estimate θ(n) in a manner similar to what was described previously
in Section 9.3.2. Having estimated the time-varying coefficients cRCC(k,n) and
cABR(k,n), the corresponding time-varying impulse responses hRCC(i,n) and
hABR(i,n) can be derived using Equations 9.39 and 9.40. The final outcome
of these calculations would take the form of 3D plots such as that displayed in
Figure 9.3, with “slices” that represent the impulse response at any given time
and the stacks of these slices representing how the impulse response in question
varies with time. Since it is generally easier to display changes in 2D format, one
can extract salient features from the impulse response and track how these
features change with time. One feature that is simple to extract is the peak
amplitude or impulse response magnitude (IRM), which we have defined as the
magnitude of the difference between the first successive maximum and

q

q

k�0

p�1

i�0

p�1

i�0
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FIGURE9.9 Changes in the estimated RCC (part (a)) andABR (part (a)) impulse response
magnitudes from a group of normal controls (closed circles) and subjects with obstructive
sleep apnea syndrome (OSAS) following transient arousal from sleep with an acoustic
stimulus.

minimum values of the impulse response (see Section 4.4.2). Figure 9.9 displays
the results obtained by applying the above adaptive estimation technique to
respiration, ΔSBP and ΔRRI data collected from a group of sleeping subjects
with obstructive sleep apnea (OSA) and normal controls during which they were
transiently aroused from sleep by a brief acoustic stimulus (Khoo and Blasi,
2013). The subjects with OSA were placed on continuous positive airway
pressure during the study to stabilize their upper airways, allowing them to
attain a steady level of quiet sleep before the acoustic stimulus was applied. As
shown in Figure 9.9, the estimated RCC and ABR impulse responses displayed a
substantial increase (∼40–50% above baseline) over a 10 s duration following
the start of the tone-induced arousal in the control subjects, but not in the OSA
subjects.

The MATLAB program TVmodel_RLS.m can be modified to incorporate the
basis function expansion technique discussed in this section and the reader is
challenged to develop the equivalent code for the time-varying two-input model of
heart rate variability in Problem P9.2. An important detail that should bementioned
is that the model order q (number of basis functions to use) and the delays in the
model, NRCC and NABR, should first be determined based on the stationary version
of the model (see Section 8.6.3), using “baseline” data before the point when time-
varying changes are expected to occur. This can be done usingMDL as the criterion
function tominimize. This provides a “fixed”model structure whose parameters are
allowed to be time-varying when the algorithm is applied to the section of data to be
analyzed. The alternative path of allowing the model structure to evolve with time
would inject unpredictable complications into the parameter estimation process.
The reader who is interested in employing the above method of time-varyingmodel
estimation is referred to the published studies by Blasi et al. (2006) and Chaicharn
et al. (2009).
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9.4 ADAPTIVE CONTROL OF PHYSIOLOGICAL SYSTEMS

9.4.1 General Considerations

The basic features that distinguish adaptive control from simple feedback control
are the addition of a parameter estimator to determine the changes in dynamics of
the unknownplant and a control law that uses an optimization algorithm to select the
control signal that is optimally adjusted for the altered plant dynamics. Most
adaptive control schemes require a model of the plant. Therefore, the accuracy and
reliability with which this model characterizes plant dynamics are key factors that
govern how well the adaptive control system will work in practice.

The two major types of adaptive controllers employed in online physiological
control and closed-loop drug delivery schemes are illustrated in Figure 9.10. In the
clinical setting, there is always considerable variability in plant dynamics across
subjects as well as within an individual subject at different times. The multiple

FIGURE 9.10 Schematic block diagrams of (a) a multiple-model adaptive control
(MMAC) system, and (b) a model reference adaptive control (MRAC) system.
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model adaptive control (MMAC) system, shown in Figure 9.10a, allows a finite
range of representations of plant states by containing a model bank. Constraints are
placed on the parameters of each model employed, so the controller responses
remain reasonable and bounded. One disadvantage of this approach is that it
requires significant knowledge of the plant dynamics. Another is that the controller
may not be able to handle plant behavior that lies beyond the range specified in the
model bank. The model reference adaptive control (MRAC) system, on the other
hand, uses a single general model of the plant (Figure 9.10b). Thus, it can be more
versatile. However, there is no guarantee of stability for the parameter estimates and
for the physiological variable being controlled. Both these types of adaptive control
schemes have been used in a variety of closed-loop drug delivery applications,
including blood pressure control, neuromuscular blockade, and control of blood
glucose level (Katona, 1982; Martin et al., 1987; Olkkola and Schwilden, 1991;
Fischer et al., 1987). A detailed consideration of adaptive control theory and its
applications lies beyond the scope of this text. For this, the reader is referred to a
number of excellent volumes, such as Harris and Billings (1981), Astrom and
Wittenmark (1989), and Haykin (2013).

9.4.2 Adaptive Buffering of Fluctuations in Arterial PCO2

In this section, we consider to some degree of detail a biomedical example that
illustrates howadaptive control theory can be implemented in practice. The problem
at hand concerns the considerable amount of breath-to-breath variability that has
been observed in spontaneous ventilation. Accompanying this ventilatory varia
bility are the corresponding fluctuations in alveolar and, therefore, arterial PCO2.
Modarreszadeh et al. (1993) addressed the issue of buffering these fluctuations in
arterial PCO2 in an optimal manner by changing the CO2 composition of the inhaled
gas (FICO2) breath-by-breath basis. Figure 9.11 shows a block diagram of the
scheme employed for achieving this goal. The bottom portion of the block diagram
represents the respiratory control system. Fluctuations in arterial PCO2, which we
assume are measured in the form of fluctuations in the end-tidal CO2 fraction
(FETCO2), result from “ventilatory noise” entering the closed-loop system as well as
changes in gas exchange dynamics in the lungs. A simple linearized model of the
gas exchange process is assumed, and based on measurements of ventilation (V ̇E)
and FETCO2, the plant model parameters are identified. However, since gas
exchange dynamics can change with sleep–wake state or other conditions of the
subject, the estimation of plantmodel parameters has to be performed adaptively.At
any given breath, the estimated plant model parameters are used alongwith existing
measurements of V ̇E and FETCO2 to predict what FICO2 should be applied next to
minimize the fluctuation of FETCO2 in the next breath.

9.4.2.1 Plant Model Since the purpose of the scheme is to minimize the
fluctuations in FETCO2 about its mean level, we define the new variables ΔFETCO2,
ΔV ̇E, and ΔFICO2 as the deviations in FETCO2, V ̇E, and FICO2, respectively, about
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FIGURE 9.11 Control scheme for adaptive buffering of spontaneous fluctuations in end-
tidal CO2 in humans.

their corresponding means. Since negative FICO2 cannot be realized in practice, it is
assumed that the “resting” or mean level of FICO2, prior to the application of
adaptive control, is 2.5% and not zero (i.e., the subject is breathing a gasmixture that
resembles air but contains a small amount of CO2). The linearized plant model takes
a form very similar to that given in Equation 8.66:

ΔFETCO2 � � �n a n� � 1�ΔFETCO2 n � 1� � b n � 1�Δ _ �� � VE n � 1�
(9.44)� c n � 1� n � 1� � � �� ΔFICO2 � e n

Apart from the fact thatΔFETCO2 andΔFICO2 are now used in place ofΔPACO2 and
ΔPICO2, respectively, a large difference between Equations 9.44 and 8.66 is that the
unknown parameters here (a, b, and c) are assumed to be time-varying. n refers to the
current breath. Thus, ΔFETCO2(n� 1) and ΔV ̇E(n� 1) represent the changes in
FETCO2 andV ̇E at thepreviousbreath.However, the exception iswithΔFICO2(n� 1),
which represents the change inFICO2 of the current breath. This peculiar assignment
of breath number is made because, in the real-time implementation of this scheme,
the measurement of FICO2 in the preceding inspiration is already available for use in
the algorithm during the expiratory phase of the nth breath. By the same token,
ΔV ̇E(n� 1) has to be used in place of ΔV ̇E(n) in Equation 9.44 (note the use of
ΔV ̇E(n) in Equation 8.66), because the computation of ΔV ̇E(n) requires knowledge
of the tidal volumeand total periodof thenth breath, and the lattermeasurement is not
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available until the endof the expiratory phase in the current breath (n). Finally, e(n) in
Equation 9.44 represents the error between themeasuredΔFETCO2 at breathn and the
corresponding value predicted by using the plant model. Thus, the predicted
ΔFETCO2 (Δ∗ ) is given byFETCO2

ΔF∗ a n � 1 � ΔV_ E n � 1�ETCO2
� �n � � �ΔFETCO2 �n � 1� � b n � 1� �

(9.45)� �� c n � 1�ΔFICO2 �n � 1

9.4.2.2 Plant Model Parameter Estimation The plant model parameters are
estimated adaptively, so that with each new breath, the new set of measurements
obtained can be used to update our knowledge about the gas exchange process. To
achieve this task, Modarreszadeh et al. (1993) selected the recursive least-squares
(RLS) method, discussed in Section 9.2.3.

Since the estimation involves three parameters, we can recast Equation 9.45 in
the form of a vector equation:

ΔF∗
ETCO2

n� � � θ n� �´y n � 1� � (9.46)

where

θ n� � � a n� � b n� � c n� � ´
(9.47)

and

´_y�n � 1� � ΔFETCO2 �n � 1� ΔVE�n � 1� ΔFICO2 �n � 1� (9.48)

Thus, Equation 9.21 can be rewritten as

n 2´λn�iJ n �� � ΔFETCO2 � � �n θ� �n y�n � 1� (9.49)
i�0

The next steps are the same as described in Section 9.2.3, yielding the following
results that have been rewritten in a form directly applicable to this particular
problem. The parameter error covariance matrix is updated in the following way:

P�n � 1� � �y n TP�n � 1y n � � �1
P� �n � P�n � 1� � (9.50)

λ � � y nλ � y n TP�n � 1� � �
The Kalman gain vector, which determines the relative contribution of the predic
tion error e(n) to the estimate of the parameter vector θ(n) takes the following form:

P�n � 1�
K� �n � � �y n (9.51)

λ � y n TP n � 1�y� �n� � �
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The parameter vector update equation is given by

θ� �n � � � �e nθ n � 1� �K n � � (9.52)

9.4.2.3 Adaptive Control Law Having estimated the most current values of the
plant model parameters, the next task in each time-step (breath) would be to
determine the optimal value of ΔFICO2 in the current breath (i.e., ΔFICO2(n� 1))
that minimizes the predicted ΔFETCO2 at the end of the expiration phase of the
current breath (i.e., ΔFETCO2(n)). The criterion function to be minimized, in this
case, was selected by Modarreszadeh et al. (1993) to be the following:

2
∗ � 2

I n � αΔF n� � � � � βΔFICO2 �n � 1 (9.53)ETCO2

The reason for including the term with ΔFICO2(n� 1) in Equation 9.53 was to
minimize the fluctuations in inhaled CO2 concentration along with those in alveolar
CO2. This allows for a solution that does not lead to minimal ΔFETCO2 at the
“expense” of employing large ΔFICO2. This is important from a practical point of
view, since high values of FICO2 can be a source of unpleasant sensation to the
subject. The relative contributions ofΔFETCO2 andΔFICO2 to the criterion function
are determined by theweights α and β. Based on preliminary tests, the authors chose
values of 1 for α and 0.5 for β.

To determine the “optimal” ΔFICO2(n� 1), Equation 9.45 is substituted into
Equation 9.53, and this is differentiated with respect toΔFICO2(n� 1). The result of
the differentiation is set equal to zero. After rearranging terms, we obtain

�α2 �c n � 1� _� ETCO2 � � VE�n � 1ΔFICO2 �n � 1�� α�n�1 ΔF n�1� � b n � 1�Δ �
α2c n � 1�2 � β2�

(9.54)

In Equation 9.54, note that the plant parameter estimates from the previous breath
(i.e., a(n� 1), b(n� 1), and c(n� 1)) are used since, from Equations 9.51 and 9.52,
the parameter estimates from the current breath (i.e., a(n), b(n), and c(n)) are
determined in part by ΔFICO2(n� 1).

The overall algorithm for the adaptive control scheme is displayed in the form of
a flowchart in Figure 9.12. When the algorithm is initiated from starting conditions
(n= 0), it is useful to employ initial values for the plant parameters that are not too
far from their “true” values. For this reason, Modarreszadeh et al. estimated these
values beforehand bymeasuring the subjects’ responses to a dynamic CO2 stimulus
that was altered in pseudorandom binary fashion (see Section 8.5.2.1). The average
values of a, b, and c in eight subjects were found to be 0.66, �0.02, and 0.69,
respectively. The value for b assumes that ventilation is measured in Lmin�1 and
FETCO2 is expressed as a percentage. A starting value for the parameter error
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FIGURE 9.12 Flowchart of adaptive control algorithm.

covariancematrixP is also required. A common procedure is to setP(0) equal to the
identity matrix scaled by a factor of 100.

9.4.2.4 Performance of the Adaptive Controller Breath-by-breath measure
ments of FETCO2 in a normal subject during spontaneous breathing are shown in
Figure 9.13a. These can be compared with the corresponding measurements of
FETCO2 in the same subject during adaptive buffering of the end-tidal CO2

fluctuations, shown in Figure 9.13b. It is clear that the adaptive controller produced
a significant reduction of the fluctuations in FETCO2, particularly in the lower
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FIGURE 9.13 (a) Breath-by-breath measurements of FETCO2 in an adult human, showing
considerable spontaneous variability. (b) FETCO2 measurements in the same subject during
application of the adaptive buffering scheme. (Reproduced from Modarreszadeh et al.
(1993).)

frequency region. It would have been possible to reduceΔFETCO2 further by setting
β in the criterion function I to zero. But this would be achieved at the expense of
incurring larger fluctuations in FICO2.

The properties of this adaptive control scheme can be studied further by
executing the MATLAB script file acs_CO2.m included with this book. However,
instead of obtaining measurements for a real human subject, a simple dynamic
simulation of the chemoreflex control system is used to generate “data” and to
interact with the adaptive controller. The fluctuations in V̇E, FICO2, and FETCO2 are
assumed to occur around their corresponding mean levels.

PROBLEMS

P.9.1. By applying the matrix inversion lemma, determine how Equation 9.28 is
derived from Equation 9.25c.

P.9.2. Develop a MATLAB program that implements the LMS algorithm dis
cussed in Section 9.2.2 and illustrated by the flowchart in Figure 9.5.
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P.9.3. Starting with the MATLAB script files laguerest.m from Chapter 8 and
TVmodel_RLS.m from this chapter, use the content of Section 9.3.3 to
develop the time-varying two-inputmodel of heart rate variability discussed
in that chapter.

P.9.4. Using the MATLAB script file acs_CO2.m, determine how the ratio of the
variance (=standard deviation2) of the fluctuations in FETCO2 during
adaptive buffering to the corresponding variance of FETCO2 during sponta
neous breathing (no buffering) would change as the weighting factor β for
FICO2 in the control law is changed from0 to 1; plot this relative variance as a
function of β. Determine also how these changes in β would affect the
fluctuations in FICO2. Use increments of 0.1 in β.
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10
NONLINEAR ANALYSIS OF
PHYSIOLOGICAL CONTROL
SYSTEMS

10.1 NONLINEAR VERSUS LINEAR CLOSED-LOOP SYSTEMS

Thus far, the methods we have employed to analyze the dynamics of physiological
control systems have been primarily linear methods, although it is clear that
nonlinearity is the rule and not the exception in biology. As a first approximation,
linearmodelswork surprisinglywell inmany instances, but one canfindmanymore
instances in which the nonlinear features are critical for the functioning of the
system in question. Classic examples of this include the mechanism through which
the nerve action potential is generated, as modeled by the Hodgkin–Huxley
equations, and various phenomena associated with nonlinear oscillators, such as
frequency entrainment and phase resetting. These will be discussed in detail later.

A key disadvantage in the analysis of nonlinear systems is that the principle of
superposition can no longer be applied. This has profound consequences, for it
means that in contrast to linear systems where the dynamics can be fully character
ized in terms of the impulse response, the same concise means of description cannot
be applied to the nonlinear system. Another consequence of the inapplicability of
the superposition principle is that local solutions cannot be extrapolated to the
global scale. As an example, consider the comparison of the linear lung mechanics
model described in Chapters 4 and 5 with a version that contains nonlinear
feedback. Both models are illustrated in Figure 10.1. The responses of the linear
and nonlinear models to input steps in Pao are displayed in Figure 10.2a and b,

Physiological Control Systems: Analysis, Simulation, and Estimation, Second Edition. Michael C.K. Khoo.
 2018 The Institute of Electrical and Electronics Engineers, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/khoo/controlsystems2e
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FIGURE10.1 (a) Linear lungmechanicsmodel. (b) Lungmechanicsmodelwith nonlinear
feedback.

FIGURE 10.2 (a) Responses of the linear lung mechanics model to a unit step (light
tracing) and a step ofmagnitude 2 inPao. (b) Responses of themodel with nonlinear feedback
to the same inputs, showing that the principle of superposition is no longer valid in nonlinear
systems.
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respectively. In each case, the responses in PA to step inputs of amplitude 1 and
2mmHg in Pao (starting at time 0.5 s) are shown as the light and bold tracings,
respectively. In the linear case, the response to a step input that is twice as large leads
to a proportionately scaled version of the response to the unit step. However, in the
nonlinear case, the steady-state response to the larger step is clearly less than twice
the steady-state response to the unit step in Pao. Furthermore, the response to the
larger step is more oscillatory than the unit step response. Thus, knowing the unit
impulse response or unit step response of the nonlinear system does not enable us to
predict the responses to input steps of other amplitudes.

There is another major difference between the dynamics of linear and nonlinear
systems. As one might recall from Chapter 5, the dynamics of linear systems can
also be characterized in terms of their frequency responses, since sinusoidal
perturbation of a linear system results in a sinusoidal output of the same frequency.
In nonlinear systems, however, sinusoidal perturbation can give rise to a response
that contains not only the fundamental frequency of the perturbation but also higher
harmonics of that frequency. Figure 10.3 shows a comparison between responses
elicited from the linear and nonlinear versions of the lung mechanics model
displayed in Figure 10.1. The linear response to an input sine wave of unit

FIGURE 10.3 Responses of the linear (a) and nonlinear (c) lung mechanics models to
sinusoidal forcing in Pao. The corresponding phase-plane plots are displayed in parts (b) and
(d), respectively.
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amplitude and frequency 0.3Hz shows a sinusoidal output of amplitude 0.5 and the
same frequency (Figure 10.3a). The same input forcing produces a nonlinear
response of the same fundamental frequency and with an amplitude of approxi
mately 0.5. The shape of the response is clearly nonsinusoidal but appears more
“squarish,” since it contains higher frequency components (Figure 10.3c). The
difference becomes much more apparent when these responses are viewed in terms
of their corresponding phase-plane plots. As described further in the next section,
signals generated by systems that are governed by second-order differential
equations can be completely characterized by plotting the first time-derivative
versus the variable in question. In the examples given, dPalv/dt is plotted
against Palv. In the linear case, the phase-plane plot of the system response is an
ellipse (Figure 10.3b). In the nonlinear case, the phase-plane plot also shows a
closed-loop figure, but the structure of the plot is much more irregular than the
ellipse (Figure 10.3d).

Another feature that illustrates the dynamic complexity of nonlinear systems is
that, under certain conditions, the response to periodic stimulation at a given
frequency can change dramatically if the amplitude of the stimulus is varied. Again,
we illustrate this point with the example of the closed-loop nonlinear lung
mechanics model of Figure 10.1b. When the nonlinear model is stimulated by a
sinusoidal perturbation in Pao of frequency 0.16Hz and amplitude 10mmHg, the
response, as depicted by the time series and phase-plane plots in the top panel of
Figure 10.4, is essentially a very high-frequency oscillation that rides on top of the
(slower) fundamental frequency. When the forcing amplitude is decreased to
1mmHg (middle panel of Figure 10.4), the frequency of the “fast” oscillatory
component is decreased and the response contains a mixture of periodic and
aperiodic components. Finally, when the forcing amplitude is decreased to less
than 0.01mmHg (bottom panel of Figure 10.4), the fluctuations in Palv become
aperiodic and appear unpredictable. This type of dynamic behavior is known as
deterministic chaos, since the seemingly randommotion is generated by a perfectly
deterministic model with no explicit noise input.

10.2 PHASE-PLANE ANALYSIS

Consider the motion of a simple linear spring–mass system, which is characterized
by the following second-order differential equation:

d2x
m � kx � 0 (10.1)
dt2

The steady-state solution to the above equation is given by

k
x t� � � A sin t � ϕ (10.2)

m
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FIGURE 10.4 Changes in the dynamics of the sinusoidally forced nonlinear lung
mechanics model from almost periodic to chaotic as the forcing amplitude is reduced
(top to bottom panels). Forcing frequency is 0.16Hz.

where the constants A and ϕ are determined by the initial conditions, that is, the
initial position and velocity of the mass. If we differentiate Equation 10.2 with
respect to time, we obtain the velocity y(t) of the mass:

k k
y t� � � x t_� � � A cos t � ϕ (10.3)

m m
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Then, normalizing Equation 10.2 byA and Equation 10.3 by (k/m)2A, and using the
trigonometric equality,

sin2
k

m
t � ϕ � cos2

k

m
t � ϕ � 1 (10.4)

we obtain the following relation between x(t) and y(t):
2

x2 � y � A2 (10.5)
k=m

Equation 10.5 allows the motion of the mass to be completely characterized by a
knowledge of the instantaneous position and velocity of the mass, given that the
initial position of the mass is also known. As such, x and y represent the state of the
system. Note that although x and y are functions of time, Equation 10.5 contains no
explicit terms in time. Thus, when y is plotted against x, a “stationary” ellipse
appears, similar to that displayed in Figure 10.3b. For different values of A, ellipses
of different sizes are generated. Each of these ellipses is known as a trajectory of the
system. And the plane formed by the position and velocity axes is the phase plane.

10.2.1 Local Stability: Singular Points

The above example of a system with second-order dynamics can also be expressed
in terms of a set of coupled first-order differential equations involving the position
variable x(t) and the velocity variable y(t):

dx

dt
� y (10.6)

dy

dt
� � k

m
x (10.7)

On the phase plane, the locus of points in which dx/dt (velocity) or dy/dt
(acceleration) becomes zero is known as a nullcline. In general, the locus of points
in the phase plane through which phase trajectories pass with constant slope is
termed an isocline. The x-nullcline (dx/dt= 0) is a special case of an isocline that has
infinite slope, while the y-nullcline (dy/dt= 0) is an isocline that has zero slope. In
the linear oscillator, the x-nullcline coincides with the x-axis of the phase plane,
while the y-nullcline lies on the y-axis. At the point where both nullclines intersect
(i.e., at the origin), dx/dt and dy/dt both are simultaneously zero. This corresponds to
an equilibrium point, a point at which there is nomotion. Equations 10.6 and 9.7 can
also be represented in the form of the following differential equation, in which there
is no longer any explicit dependence on time:

dy ��k=m�x� (10.8)
dx y
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At the equilibrium point, the numerator and denominator on the right-hand side of
Equation 10.8 each becomes zero. As such, equilibrium points are also referred to as
singular points in phase-plane terminology. Although there is “no motion” at the
singular points, they do not necessarily represent stable points of equilibrium. The
type of stability in the vicinity of each singular point can yield useful information
about overall system dynamics.

Consider a second-order system that can be characterized by the following
phase-plane equations (in which y= dx/dt):

dx

dt
� F x; y� � (10.9)

dy

dt
� G x; y� � (10.10)

where F and G can be nonlinear functions of x and y. Suppose one of the singular
points is at (x0, y0). Consider the dynamics of motion at a point (x,y) located in the
proximity of the singular point, where

x � x0 � u (10.11)

y � y0 � v (10.12)

If we use Equations 10.11 and 10.12 to substitute for x and y, respectively, in
Equations 10.9 and 10.10, and perform aTaylor expansion about �x0; y0�, we obtain,
after ignoring terms higher than first order, the following expressions are obtained
for the local dynamics around �x0; y0�:

du @F @F� Fxu � Fyv � u � v (10.13)
dt @x @y

dv @G @G� Gxu � Gyv � u � v (10.14)
dt @x @y

where the partial derivative terms (Fx, Fy, Gx, Gy) are all evaluated at the singular
point �x0; y0�.

Equations 10.13 and 10.14 can be combined in order to eliminate v, resulting in
the following linear second-order differential equation:

d2u du � u � 0 (10.15)Fx � Gy FxGy � GxFydt2 dt

The solution to Equation 10.15 is given by

u � A1e
α1t � A2e

α2t (10.16)
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where the constants A1 and A2 depend on the initial conditions, and α1 and α2 are
given by the roots of the following quadratic equation:

α2 � α � � 0 (10.17)Fx � Gy FxGy � GxFy

The solution for v takes a form similar to that of Equation 10.16, except that the
coefficient of each exponential termwill be different from the corresponding term in
Equation 10.16.

From Equation 10.16, it can be seen that the singular point in question will be
stable only if the real parts of α1 and α2 are both negative. For this to be the case, two
conditions must hold:

(A) The sum of the roots must be negative, that is,

Fx � Gy < 0 (10.18)

(B) The product of the roots must be positive, that is,

FxGy � GxFy > 0 (10.19)

Even if the singular point is stable, there is the additional question of whether the
associated dynamics is oscillatory. For nonoscillatory dynamics, both roots must be
real (i.e., have no imaginary parts):

2 � 4 Fx � Gx
(C) > 0 (10.20)Fx � Gy Gy Fy

Thus, depending on the values of the roots of Equation 10.17, one can have
singular points with a variety of dynamics:

(1) Both roots real and negative: Here, conditions A, B and C are all satisfied.
This singular point represents a stable node: The decay toward this
equilibrium point is nonoscillatory.

(2) Both roots complex with negative real parts: Conditions A and B are
satisfied but not condition C. The equilibrium point is stable, but the decay
toward it is oscillatory. This kind of singularity is known as a stable focus.

(3) Both roots real and positive: Here, conditions B and C are satisfied but not
conditionA.This produces anunstable node: Any infinitesimal perturbation
will cause the state point to move away from the singularity but the motion
will not be oscillatory.

(4) Both roots complex with positive real parts: Only condition B is satisfied.
This produces an unstable focus: Any infinitesimal perturbation will
cause the state point to move away from the singularity with oscillatory
dynamics.
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(5) Both roots imaginary (zero real parts): Since the roots must be conjugate,
their sum in this case is zero but their product is a positive real value. Thus,
only condition B is satisfied. This leads to a center, which is considered
neutrally stable. The singular point associated with the linear spring–mass
system in Equation 10.1 is an example of a center.

(6) Both roots real, one positive and one negative: Here, conditionC is satisfied,
but not condition B. However, condition Amay or may not hold, depending
on the magnitude of the negative root relative to that of the positive root.
This gives rise to a peculiar type of unstable equilibrium point known as a
saddle point.

10.2.2 Method of Isoclines

While the complete phase portrait of any given second-order system can be arrived
at by simply solving the set of coupled first-order differential equations (Equations
10.9 and 10.10), a good understanding of the dynamics of the system can often be
obtained by applying an approximate, semigraphical analysis known as themethod
of isoclines. We illustrate the application of this method here by considering the
dynamics of a simple nonlinear system: the pendulum. We assume that this
pendulum consists of a heavy steel disk linked by a weightless rigid rod to a
vertical fixture (Figure 10.5). If we apply Newton’s second law to the motion of the
bob in the direction tangential to the rod, we obtain the following second-order
differential equation:

d2θ
mL � �mg sin θ (10.21a)

dt2

where θ, the angular displacement of the pendulum, is as shown in Figure 10.5. The
above equation simplifies to

d2θ

dt2
� K sin θ � 0 (10.21b)

where K (=g/L) is a constant.
To apply the method of isoclines, we express Equation 10.21b in the form of the

equivalent phase-plane equations. Thus, we have

dθ � ϕ (10.22)
dt

dϕ � �K sin θ (10.23)
dt

These can also be combined to give

dϕ K sin θ� � (10.24)
dθ ϕ
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FIGURE 10.5 Idealized rigid pendulum, showing tangential acceleration and tangential
component of gravitational force.

The θ-nullcline (i.e., points along which dθ/dt= 0) is defined by the line ϕ= 0,
which corresponds to the θ-axis. The ϕ-nullcline (i.e., along which dϕ/dt= 0) is
given by sin θ= 0. Since θ can take on values between �π and π radians, there are
three possible solutions for sin θ= 0 in this range and therefore three ϕ-nullclines:
θ= 0, θ=�π, and θ= π. However, it should be noted that θ=�π and θ= π
correspond to the same physical configuration for the pendulum, that is, when
the bob is vertically above the hinge (see Figure 10.5). Intersection of the θ-nullcline
with the three ϕ-nullclines yields three singular points. Treating θ as the horizontal
axis and ϕ as the vertical axis, these singular points are located at coordinates (0,0),
(�π,0), and (π,0), as indicated by the filled circles in Figure 10.6. The θ- and
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FIGURE10.6 Illustration of the method of isoclines. Bold lines represent the nullclines
of the system. Arrows indicate the direction of the phase-plane trajectories. a, b, c, and d
represent four regions of the phase space in which the general flow directions are
different.

ϕ-nullclines also divide up the phase plane into four regions, labeled a, b, c, and d in
Figure 10.6. In region a, θ is negative and ϕ is positive, so by Equations 10.22 and
10.23, dθ/dt> 0 and dϕ/dt> 0; thus, the trajectories in this region will generally be
directed upward and to the right. In region b, both θ and ϕ are positive, so from
Equations 10.22 and 10.23, dθ/dt> 0 and dϕ/dt< 0; therefore, the flow is now
directed downward and to the right. In region c, θ is positive andϕ is negative, so dθ/
dt< 0 and dϕ/dt< 0. Finally, using similar considerations, it may be shown that in
region d, the flow is directed upward and to the left. In Figure 10.6, we have also
included arrows to indicate the directions of the flows on the nullclines. Thus, the
overall “picture” we obtain from this approximate analysis is that for ϕ> 0, the
trajectories generally flow from left to right, while for ϕ< 0, they flow from right to
left. Furthermore, there is also a tendency for the flow to rotate in a clockwise
manner around the origin.

Figure 10.7 shows a set of phase trajectories for the pendulum system, computed
by solving Equation 10.21b numerically for K= 39.5. Each phase trajectory is
obtained by assigning different values to the initial conditions for θ and ϕ before
computing the numerical solution. It is clear that the trajectories shown here are
consistent with the inferencesmade using themethod of isoclines. For small starting
values of θ and ϕ, the motion of the pendulum is a sinusoidal function of time,
oscillating about θ= 0 rad. Applying Equations 10.18–10.20 to this example, we
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FIGURE 10.7 Phase-plane portrait of the dynamics of the rigid pendulum. Filled circles
represent the singular points, while the bold trajectories represent the separatrices that divide
the oscillatory mode (inside) of the pendulum from the rotating mode (outside).

find that the singular point (0,0) corresponds to a center (imaginary roots). As the
starting value for θ approaches �π or π, the oscillations become less sinusoidal in
character. Finally, if the initial condition for θ is set equal to�π or π, the pendulum
in principle would achieve an equilibrium position with its bob directly above its
hinge. Theoretically, one can imagine that a virtually imperceptible nudge in either
direction would send the pendulum swinging in that direction, making a 2π rotation
until it comes to rest again with its bob balanced directly above its hinge. Thus, the
singular points (�π,0) and (π,0) correspond to saddle points that are attractingwhen
the phase trajectories approach them from one direction but repelling for trajectories
in the orthogonal direction. Application of Equations 10.18–10.20 will allow a
verification that (�π,0) and (π,0) are saddle points.

For phase trajectories that begin at θ=�π or θ= π with nonzero velocity (i.e.,
ϕ≠ 0), ϕ remains uniformly positive or negative over the whole range of θ
values. This implies that the motion of the pendulum now is no longer
oscillatory; instead it simply rotates either in clockwise or anticlockwise manner
around its hinge. In Figure 10.7, it is clear that the phase trajectories that lead
into or away from the singular points (�π,0) and (π,0) define the boundaries that
separate the oscillatory type of motion from the rotational type of motion. These
trajectories, which divide the phase plane into regions of differing dynamic
modes, are known as separatrices.
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10.3 NONLINEAR OSCILLATORS

10.3.1 Limit Cycles

The only type of singularity associated with periodic oscillations that was discussed
in the previous section is the center. The motion associated with a center takes the
form of phase trajectories that close in themselves and enclose the singularity.
Which particular phase trajectory is taken depends on the initial conditions that
preceded the dynamics. For example, in the case of the rigid pendulum, applying an
impulsive disturbance to the bob at the end of its swing can increase or decrease the
swing amplitude, depending on the relative direction of the disturbance. On the
phase portrait, this corresponds to a sudden change in phase trajectory to another of
the concentric elliptical (or circular) orbits that enclose the center singularity. In
Figure 10.8a, the pendulum bob is given a knock directed toward the equilibrium
point (θ= 0) at the end of its swing. This allows it to pass the θ= 0 position with
increased velocity, and consequently allows it to achieve an oscillation of larger
amplitude. In the phase-plane diagram, this is represented by a change in trajectory
from a to b (Figure 10.8a). Since no damping is present, the state point will not
return to the original phase trajectory unless another externally imposed disturbance
forces it to do so.

Many physiological oscillators exhibit a behavior that is quite different from that
displayed in Figure 10.8a. On the phase plane, these oscillations assume the form of
a stable, closed trajectory called a limit cycle. What distinguishes the limit cycle
from the type of oscillation discussed previously is that, although external
perturbations can move the state point away from the limit cycle trajectory, it
eventually always rejoins the original trajectory. This is illustrated in Figure 10.8b.
Whether the state point is moved to a location outside the limit cycle (a in
Figure 10.8b) or a location inside the limit cycle (b in Figure 10.8b), the original
oscillatory behavior is always reestablished after some time.

10.3.2 The van der Pol Oscillator

In 1928, van der Pol and van der Mark proposed the first dynamic model of
oscillatory activity in the heart. Theirmodel consisted of the following second-order
nonlinear differential equation:

d2x dx� c 1 � x2 � x � 0 (10.25)
dt2 dt

where the constant c> 0. The phase-plane properties of the van der Pol equation are
most conveniently explored by applying Lienard’s transformation, that is:

31 dx x
y � � � x (10.26a)

c dt 3



330 NONLINEAR ANALYSIS OF PHYSIOLOGICAL CONTROL SYSTEMS

FIGURE 10.8 Differences between a non-limit-cycle oscillator (a) and a limit-cycle
oscillator (b). In the former, external disturbance (bold arrow) moves the phase trajectory
to a different orbit (b versus a) around the center. In the stable limit cycle, the state point
always returns to its original trajectory even after an external disturbance moves it to a
different location.

Differentiating Equation 10.26a with respect to time and substituting the result into
Equation 10.25, we obtain

dy x� � (10.27)
dt c

Rearranging Equation 10.26a, we have

3dx x� c y � � x (10.26b)
dt 3
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Equations 10.26b and 10.27 form a set of coupled first-order differential equations
that do not have a closed-form analytic solution.However, the techniques of Section
10.2 can be employed to provide a rough picture of the phase portrait of this
dynamic system.

First, we deduce the phase-plane locations of the nullclines. The x-nullcline
(dx/dt= 0) corresponds to the locus defined by the cubic function:

3x
y � � x (10.28)

3

The y-nullcline (dy/dt= 0) is given by the vertical axis, or

x � 0 (10.29)

The x- and y-nullclines intersect at only one point, that is, at the origin �0; 0�. We
determine the nature of the singular point found at �0; 0� by evaluating the
coefficients of Equation 10.17 and subsequently the roots of the characteristic
equation. Assuming that

3x
F x; y� � c y � � x� (10.30)

3

and that

x
G x� ; y� � � (10.31)

c

the characteristic equation describing the dynamics in the vicinity of �0; 0� takes the
form:

α2 � cα � 1 � 0 (10.32)

Condition A is clearly not satisfied, while condition B is valid for all values of c.
Whether condition C is satisfied depends on the value of c. When c� 2, the roots of
Equation 10.32 will be real and positive, in which case the singular point would be
an unstable node. However, when c< 2, the roots become complex with positive
real parts; in this case, the singular point is an unstable focus. Therefore, for all
feasible values of c, the equilibrium point at the origin will be an unstable one.

The nullclines divide the phase plane into four major regions, as shown in
Figure 10.9. In region a, x> 0 and y> x3/3� x. Therefore, from Equation 10.26b,
dx/dt> 0 and from Equation 10.27, dy/dt< 0. This means that the phase trajectories
here in general would be directed downward and to the right. In region b, x> 0 and
y< x3/3� x, so dx/dt< 0 and dy/dt< 0, and the phase trajectories would tend to
point downward and to the left. Applying similar considerations, the pattern of flow
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FIGURE 10.9 Method of isoclines applied to the van der Pol model. Arrows indicate
direction of phase-plane trajectories. a, b, c, and d represent four regions in which the general
flow directions are different. The nullclines (y= x3/3 �x and x= 0) are shown as bold lines.
The filled circle at the origin represents the only singular point for this system.

is upward and to the left in region c, and upward and to the right in region d. For
consistency, the directions of flow on the nullclines must be as displayed in
Figure 10.9. Thus, in general, there is a clockwise flow of phase trajectories around
the origin; however, at the same time, because of the unstable node or focus, the
trajectories are also directed away from the origin.

To complete the picture, we numerically integrate Equations 10.26b and 10.27
for given values of c, but with several different initial conditions. This can be
achieved quite easily by implementing the system defined by Equations 10.26b and
10.27 as a SIMULINKmodel. This model, the source code for which may be found
in the SIMULINK file vdpmod.slx, is displayed in Figure 10.10. Figure 10.11a
shows an example of the oscillatory dynamics generated by the van der Pol model
for c= 3. This saw-toothed type of waveform is commonly referred to as a
relaxation oscillation. A more complete representation of van der Pol dynamics
is displayed in Figure 10.11b, which shows the portraits for six phase trajectories
that originate from different starting points (or initial conditions, shown as filled
circles) in the phase space. The x-nullcline (shown as the dotted curve) is displayed
for reference. Note that phase trajectories that originate from inside the limit cycle
move away from the singular point toward the limit cycle, whereas the phase
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FIGURE 10.10 SIMULINK implementation of the van der Pol oscillator. This model is
contained in SIMULINK model file vdpmod.slx.

trajectories from outside the limit cycle move inward toward the limit cycle. All
trajectories tend to circulate around the origin in a clockwise pattern, as predicted in
Figure 10.9.

One feature that distinguishes a nonlinear oscillator, such as the van der Pol
system, from a linear oscillatory system is that the former can exhibit the
phenomenon of entrainment or phase-locking. The coupling of two linear systems
with different natural oscillatory frequencies leads to beating, in which the
combined output shows the original two frequencies of oscillation plus a new
oscillation that corresponds to the difference between the two frequencies. How
ever, when a nonlinear oscillator is driven by an external periodic stimulus whose
frequency is quite different from the former, the output of the oscillatory systemwill
contain a mixture of components that result from the interaction of the driving
periodicity and the natural oscillation. As the driving frequency approaches the
natural frequency of the nonlinear oscillator, there will be a range of frequencies
over which the nonlinear system will adopt the frequency of the driving stimulus.
This is illustrated for the case of the van der Pol oscillator in Figure 10.12. Here, the
system of equations becomes

3dx x� c y � � x (10.33)
dt 3
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FIGURE10.11 (a) Time-course of oscillatory activity generated by the van der Polmodel.
(b) Phase portrait showing limit cycle formed by several trajectories initiated at different
starting points (shown asfilled circles). The x-nullcline is shown as the dotted curve,while the
singular point at the origin is marked as a cross. Note consistency of flows with Figure 10.10.

and

dy x B� � � � (10.34)sin 2πf t�
dt c c

where B and f represent the amplitude and frequency, respectively, of the periodic
stimulus. As shown in Figure 10.12a, the natural frequency of the van der Pol
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FIGURE 10.12 Responses of the van der Pol oscillator to external sinusoidal forcing. The
top panel (a) shows spontaneous oscillations at 0.113Hz. The system becomes entrained to
the frequency of the external forcing when the former is close to the natural frequency of the
oscillator.

oscillator is 0.113Hz. When this system is stimulated periodically at frequencies
that are substantially lower (Figure 10.12b) or higher (Figure 10.12e) than
0.113Hz, the result is a mixture of the forcing and natural frequencies. However,
at frequencies close to 0.113Hz, the van der Pol system adopts the frequencies of
the driving stimulus (Figure 10.12b and c). Frequency entrainment is an important
phenomenon from a practical standpoint, since it forms the basis on which heart
pacemakers work. Frequency entrainment also explains the synchronization of
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many biological rhythms to the light–dark cycle, the coupling between respiration
and blood pressure, as well as the synchronization of central pattern generators
during walking and running.

10.3.3 Modeling Cardiac Dysrhythmias

Under normal circumstances, the cardiac cycle originates as electrical activity
generated by the sinoatrial node. This impulse spreads through the atrial muscula
ture, the atrioventricular node, and finally through the Purkinje network of
conducting fibers to elicit ventricular contraction. A common class of disorders,
known as atrioventricular heart block, can occur, in which the relative timing
between atrial and ventricular contractions becomes impaired. One line of thought
postulates that these dysrhythmias are the result of dynamic interaction among two
or more coupled nonlinear oscillators in heart tissue. One of the simplest oscillator
models that can demonstrate this type of phenomena is thePoincaré oscillator. This
dynamic system is characterized by the following set of differential equations:

dr

dt
� ar 1 � r� � (10.35)

and

dΦ
dt

� 2π (10.36)

where r represents the radial coordinate and Φ (�1<Φ<1) the angular coordi
nate (in radians) of the state point in the phase plane. These dynamics give rise to a
limit cycle that rotates anticlockwise on the unit circle (Figure 10.13). As such, it is
more convenient to define the new angular coordinate ϕ as follows:

Φ
ϕ � �mod1� (10.37)

2π

so that 0�ϕ< 1. ϕ is also known as the (normalized) phase of the oscillation.
Guevara and Glass (1982) considered what would occur if this oscillator were

perturbed by an isolated, brief stimulus in the limit where a→1. This is illustrated
in Figure 10.13. The stimulus is represented by the heavy arrow that shifts the state
point from its prestimulus location, corresponding to phaseϕ (shown in black), to its
poststimulus location, corresponding to phase θ (shown in gray). The length of the
arrow represents b, the magnitude of the stimulus. Because a is infinite, the new
state point moves instantaneously along the radial direction back to the limit cycle.
It can be seen thatwhen 0<ϕ< 0.5, the state point is pushed back to a location that it
had previously traversed; thus, the perturbation causes a phase delay. On the other
hand, when 0.5<ϕ< 1, the same stimulus would push the state point to a location
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FIGURE 10.13 The Poincaré oscillator. Application of a brief stimulus of magnitude
b leads to a resetting of the phase from ϕ to θ (old state point shown as black circle, new state
point shown as gray circle).When 0<ϕ< 0.5, the perturbation produces a delay in phase, but
when 0.5<ϕ< 1, the same stimulus causes an advance in phase.

further along the limit cycle; in this case, the perturbation causes a phase advance.
This type of phenomenon is known as phase resetting. By careful consideration of
the geometrical details of Figure 10.13, it can be shown that the new phase θ is
related to the old phase ϕ through the following relationship:

b � cos �2πϕ�
cos �2πθ� � p (10.38)

1 � 2b cos �2πϕ� � b2

However, depending on the magnitude of the stimulus b, Equation 10.38 can yield
very different looking functions that relate θ to ϕ; these functions are termed phase
transition curves. As illustrated in Figure 10.14, when b< 1 (weak resetting), there
is a phase delay (i.e., θ<ϕ) for the range 0<ϕ< 0.5 and a phase advance (i.e.,
θ>ϕ) for 0.5<ϕ< 1, as noted earlier. Since the average slope of the phase
transition curve is unity, this type of phase resetting is also commonly referred
to as Type 1 resetting. However, when b> 1 (strong resetting), the effect of the
perturbation on the trajectory of the state point becomes interesting and somewhat
surprising at first glance. As ϕ increases from zero toward 0.5, θ initially increases
but subsequently decreases so that when ϕ attains the value of 0.5, θ becomes zero.
The reason for this form of relationship may be better understood if one considers
what happens for the case whenϕ equals 0.5: The perturbation forces the state point
to a location on the horizontal axis that is past the center of the circle. The closest
point on the limit cycle to this new state location is at ϕ= 0. When ϕ increases
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FIGURE 10.14 Phase transition curves for the Poincaré oscillator. The dotted (identity)
line represents the case in which there is no perturbation. When the system is perturbed by a
brief stimulus of magnitude b (b< 1), Type 1 or weak resetting occurs (light solid curve).
However, when b> 1, Type 0 or strong resetting occurs (bold solid curve) inwhich there is an
apparent discontinuity at ϕ= 0.5.

beyond 0.5, perturbation of the state point leads to a resetting of phase to points that
begin atϕ= 1, decrease below 1, but eventually increase back toward 1. As a result,
the phase transition curve shows an apparent discontinuity and the average slope
becomes zero (Figure 10.14, bold curve). This kind of resetting is known as Type 0
resetting.

Equation 10.38 characterizes the effect on the Poincaré oscillator of a single,
isolated stimulus, delivered when the phase of the oscillation is ϕ. This can be
extended to produce a corresponding formula that characterizes how a periodic train
of impulses would affect the behavior of the oscillator. If ϕi is the phase of the
oscillator immediately prior to the ith stimulus, then the phase just before the next
stimulus occurs is given by

b � cos 2πϕi�� T sϕi�1 � 1
cos�1 � (10.39)

2π 1 � 2b cos �2πϕi� � b2 T0

where T0 is the period of the limit cycle and Ts is the interval between successive
stimuli. Guevara and Glass showed that the nonlinear finite difference equation
represented by Equation 10.39 can give rise to dynamics that are qualitatively
similar to the dysrhythmias that have been observed in the electrocardiogram. To
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FIGURE10.15 SIMULINK implementation of the Poincaré oscillator model poincare.
slx.

reproduce their simulations, we have developed the SIMULINK implementation
(labeled poincare.slx) of the Poincaré model, as shown in Figure 10.15. Since
the constant a in Equation 10.35 is taken to be infinitely large, the state point is
assumed to instantaneously return to the limit cycle after each perturbation by the
external stimulus. As such, r is assumed to be always equal to unity, and the radial
dynamics in Equation 10.35 are neglected. In this model, we have also assumed that
whenever the rotating arm of the oscillator passes through ϕ= 0, the system will
generate a unit impulse (simulating a neural spike). The “stimulus period” (tau in
Figure 10.15) that has to be specified prior to running the simulation is normalized
with respect to the natural period of the limit cycle, that is, tau= Ts/T0.

Figure 10.16 displays some examples of the response of the Poincaré oscillator
to a periodic stimulation of magnitude b= 1.13. In Figure 10.16a, the period of the
stimulation is 75% as long as the natural oscillatory cycle of themodel. Entrainment
occurs so that the Poincaré oscillator “fires” at approximately the same frequency as
the external periodic stimulus. This kind of entrainment is also called 1:1 phase
locking. When the normalized stimulation period is reduced to 0.69 (Figure
10.16b), the Poincaré oscillator now alternates between a long interspike interval
and a short interspike interval. For every two stimulus spikes, the system responds
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FIGURE 10.16 Responses (heavy bars) of the Poincaré oscillator to periodic stimulation
(light bars) of magnitude b= 1.13. The different panels represent responses to different
stimulation periods: Ts/T0= 0.75, 0.69, 0.68, 0.65, and 0.60 in panels (a)–(e), respectively.
See text for further details.

with one long interval and one short interval; then, the pattern repeats itself. This
type of phenomenon is known as 2:2 phase locking. With further decrease of Ts/T0
to 0.68 (Figure 10.16c), four stimulus spikes give rise to four response impulses, but
the time relationship between each stimulus spike and its corresponding response is
different for the four pairs, producing 4:4 phase-locking. In Figure 10.16d, where
Ts/T0 is decreased to 0.65, the periodicity in the response disappears. Now the
response spikes appear in an unpredictable fashion, giving rise also to skipped beats
(e.g., at t∼ 2.5 s and t∼ 4.5 s in Figure 10.16d). Guevara andGlass have argued that
this pattern reflects chaotic dynamics arising in this highly nonlinear system.
Finally, in Figure 10.16e, decreasing Ts/T0 to 0.6 leads to a re-emergence of
periodicity in the response. However, under these conditions, four stimulus spikes
correspond to only two response spikes, producing what is known as 4:2 phase
locking.

The changes in dynamics exhibited by the Poincaré oscillator or any nonlinear
system that occurs abruptly as a system parameter is decreased or increased are
commonly referred to as bifurcations. In the examples considered above, the
bifurcations occurred at the points where changes in the value of the stimulus period
led to sudden changes fromone type of phase-locking to anothermode. Bifurcations
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FIGURE 10.17 Responses (heavy bars) of the Poincaré oscillator to periodic stimulation
(light bars) of period Ts/T0= 0.67. The different panels represent responses to different
stimulation magnitudes: b= 1.40, 1.22, 1.15, 1.12, and 1.02 in panels (a)–(e), respectively.
See text for further details.

also occur when the magnitude of the stimulus (b) is continually varied.
Figure 10.17 shows examples of the model response to periodic stimulation
when Ts/T0 is kept constant at 0.67, but the stimulus magnitude is varied. In
Figure 10.17a, when b= 1.4, there is 1:1 phase-locking. Decreasing b to 1.22 leads
to 2:2 phase-locking (Figure 10.17b), and subsequently, 4:4 phase-locking when
b= 1.15 (Figure 10.17c). Decreasing b a little further to 1.12 produces chaotic
dynamics (Figure 10.17d). Finally, with b decreased to 1.02, the system once again
exhibits periodic dynamics (Figure 10.17e). There is now 3:2 phase-locking of the
typewhere the stimulus–response spike interval becomes progressively longer until
the Poincaré oscillator misses a beat (e.g., at t∼ 2 s and t∼ 4 s in Figure 10.17e).
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This kind of pattern is similar to the clinically observed electrocardiographic
phenomenon known as “second-degree AV (atrioventricular node) block with
Wenckebach periodicity.”

10.4 THE DESCRIBING FUNCTION METHOD

10.4.1 Methodology

The describing functionmethod, sometimes also known as the method of harmonic
balance, is useful in determining the conditions that produce limit cycles in
relatively simple nonlinear systems. It may be viewed as an extension of the
Nyquist stability criterion discussed in Chapter 6. The method assumes a closed-
loop nonlinear model of the type displayed in Figure 10.18. This system can be
decomposed into two parts: a linear portion that contains dynamic features, G(s),
and a static nonlinear component, characterized by the function F(ε). It is also
assumed that this system is oscillating at some fundamental frequency ω (given in
radians per unit time) without any input perturbation (i.e., in Figure 10.18, u= 0). In
general, the output x of the nonlinear subsystem will be a periodic oscillation with
fundamental frequency plus its harmonic components. This can be expressed as a
Fourier series:

x t� � � X0 � �an sin �nωt� � bn cos �nωt�� (10.40a)

On the other hand, if we assume the linear “plant” subsystem to be low-pass in
nature, the harmonics in xwill befiltered out and the output y of the linear subsystem
is likely to be approximately sinusoidal in form. Since ε is equal to the negative of y
in the absence of any external input, we can assume that

ε t � �� � � A sin ωt (10.41)

1

n�1

FIGURE 10.18 Closed-loop nonlinear control system with static nonlinearity and linear
dynamic components.
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And for purposes of assessing stability of the closed-loop system, we focus only on
the fundamental component of x(t), so that from Equation 10.40a we obtain

x t� � � X0 � a1 sin � � �ωt b1 cos � �ωt (10.40b)

The describing function DF of the nonlinearity F(�) is defined as the complex
coefficient for the fundamental frequency output divided by the input signal
amplitude. The mathematical definition is as follows:

a1 � jb1DF� �A � (10.42)
A

In Equation 10.42, DF is shown explicitly to be a function of the input amplitude A.
Although, in principle, DF can also be a function of frequency, this dependence is
rare undermost practical circumstances. In general, the nonlinearityF(�) is assumed
to be static and, therefore, independent of frequency.

If we let θ=ωt, then bymaking use of the property of orthogonality for sin θ, we
can deduce a1 by multiplying both sides of Equation 10.41 by sin θ and then
integrating over the range of 0–2π. After simplification and rearrangement of terms,
we obtain

1
x θ (10.43)� � sin θdθa1 �

π

Similarly, it can be shown that

1
x� �θ cos θdθ (10.44)b1 �

π

Since x(θ) is periodic, changing the range of integration in Equations 10.43 and
10.44will not alter the values of a1 and b1. For reasons that will become self-evident
as our discussion proceeds, we choose to change the integral limits in Equations
10.43 and 10.44 to the range�π to 3π/2. Also, we introduce the following change of
variable:

z � sin θ (10.45)

so that the differentials dx and dθ are related by

p
dz � cos θdθ � � 1 � z2 dθ (10.46)

2π

0

2π

0
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Note that the square-root term in Equation 10.46 will take on positive values when
�π/2< θ< π/2 and negative values when π/2< θ< 3π/2. Thus, Equation 10.44
becomes

π=2 3π=2
1

x θ cos θdθ �� � x θ cos θdθ� �b1 �
π

�π=2 π=2
(10.47)

1 �1
1� x z� �dz � x z� �dz � 0
π

�1 1

The result derived fromEquation 10.47 is important, as it implies that the imaginary
part of DFwill be zero as long the nonlinear functionF(�) is single-valued. If there is
hysteresis in the nonlinearity, the two integrals in Equation 10.47 (second line)
would not be equal in magnitude and opposite in sign, and as a consequence, b1
would not be zero.

The same analysis applied to Equation 10.43 yields the following result for a1:

a1 �

(10.48)�

1
π

π=2

�π=2
x θ� �sin θdθ �

3π=2

π=2

x θ� �sin θdθ

π
�1 1 � z2

p
1

1 � z2
p1

1

x z� � z
dz �

�1
x z� � �z

dz

1
2 z� x z� �p dz
π 1 � z2�1

The following expression, analogous to the Nyquist stability criterion, provides
the conditions under which a limit cycle of amplitude A and angular frequency ω
might exist:

1 � DF A G jω � 0 (10.49a)� � � �
Note the similarity in form between the above equation and Equation 6.8, which
characterizes the condition in which any linear closed-loop system becomes
unstable. One might consider Equation 10.49a to be an extension of the Nyquist
criterion (see Section 6.4) to a particular class of nonlinear closed-loop systems.

Equation 10.49a can be rearranged into the following form:

1
G jω � (10.49b)

DF A� �
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Equation 10.49b can be solved graphically by plotting G(jω) on the Nyquist
plane and determining the values of A and ω from the point of intersection of
the G(jω) curve and the line running along part of the real axis, represented by
�1/DF(A).

10.4.2 Application: Periodic Breathing with Apnea

To illustrate a specific application of the describing function method, we turn to the
model of Cheyne–Stokes breathing discussed in Section 6.7. As one might recall,
this was a linearized model. However, for our present purposes, we will introduce a
thresholding nonlinearity into themodel by assuming that the controller output will
become zero once the operating level ofPaCO2 falls below a certain valueB. In other
words, the simulated episodes of Cheyne–Stokes breathing would include periods
of apnea. A schematic block diagram of this model is shown in Figure 10.19a, and
examples of the waveforms in PaCO2 and V̇E that one would expect to find are
displayed in Figure 10.19b.

For simplicity, in the current example we will assume that there is only one
chemoreflex loop in the system and that, unlike the example considered in
Section 6.7, the controller responds instantaneously to changes in PaCO2. Suppose
the controller response is given by

_VE � SCO2 PaCO2 � B ; PaCO2 > B (10.50)� 0; PaCO2 � B

where SCO2 is the slope of the steady-state ventilatory response to CO2.We assume
also that during periodic breathing, thePaCO2 waveform can be characterized by the
following expression:

PaCO2 � A sin θ � PM (10.51)

where θ=ωt and PM represents the mean level of the arterial PCO2 signal.
Substituting Equation 10.51 into Equation 10.50, we obtain

_VE � SCO2 �A sin θ � PM � B�; 0 < θ < θ1 or θ2 < θ < 2π (10.52)� 0; θ1 � θ � θ2

where θ1 and θ2 represent the two points in the periodic breathing cycle at which
PaCO2 crosses the apneic threshold B (see Figure 10.19b). Thus, θ1 and θ2 can be
computed from Equation 10.51:

B � PMθ1;2 � sin�1 (10.53)
A
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FIGURE10.19 (a)Model of periodic breathingwith apnea. (b) Input (PaCO2) to and output
(V_ E) from the thresholding nonlinearity.

If we assume, as illustrated in Figure 10.19b, that B<PM, then sin θ1< 0, implying
that θ1 will be in the third quadrant (π < θ1< 3π/2). If we define

θ0 � sin�1 jB � PM j
A

(10.54)

so that if 0< θ0< π/2, then

θ1 � π � θ0 (10.55a)
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and

θ2 � 2π � θ0 (10.55b)

We know from the previous section that since Equation 10.50 is a single-valued
function, the imaginary part (b1) of DFmust equal zero. In order to evaluate the real
part a1, we substitute the expressions in Equation 10.52, 10.55a, and 10.55b into
Equation 10.43 to obtain

a1 � A sin θ � PM � B�sin θdθ

�

1
π

θ1

0

SCO2 A sin θ � PM � B� �sin θdθ �
2π

θ2

SCO2 �

SCO2A 4 PM � B�
2π

π � 2θ0 � sin 2θ0�
A

� � cos θ0
�

(10.56)

Therefore, the describing function of the nonlinear chemoreceptor characteristic is

4�PM � B�a1 SCO2DF A �� � � π � 2θ0 � sin 2� θ0� � cos θ0 (10.57)
A 2π A

where θ0 is determined from Equation 10.54. The linear dynamic portion of this
model (see Figure 10.19b and Section 6.7) is characterized by the following
frequency response:

Glung �G jω � e jωTd (10.58)� �
1 � jωτlung

where Td represents the lung-to-chemoreceptor delay and Glung and τlung were
defined in Equations 6.45 and 6.46.

The existence of a limit cycle is predicted if the locus of G(jω) on the Nyquist
plane intersects with the locus defined by �1/DF(A). Figure 10.20 shows the
solution obtained using Matlab m-file df_resp.m for the case of the patient with
congestive heart failure. As in Section 6.7, the parameter values used to represent
this type of subject were Vlung= 2.5 L, KCO2= 0.0065mmHg�1, V̇E= 0.12 L s�1,
V̇D= 0.03 L s�1,PICO2= 0, andPaCO2=PACO2= 40mmHg,Q= 0.05 L s�1,B= 37
mmHg, and SCO2= 0.02 L s�1mmHg�1. Using Equations 6.45 and 6.46, it can be
determined that these parameters produced values forGlung and τlung of 108mmHg
s L�1 and 6.75 s, respectively. The circulatory delay (TD) employed was 14.2 s.
Since the function�1/DF(A) consists only of real values, its locus merely retraces a
portion of the real axis. The point at which the two functions intersect (indicated by
the open circle in Figure 10.20) corresponds to a frequency of 0.026Hz, which
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FIGURE 10.20 Illustration of the describing function method for determining the
periodicity and amplitude of Cheyne–Stokes breathing in congestive heart failure. Thick
line on real axis represents the locus of the function�1/DF(A). Intersection of this locus with
that of the linear transfer function G(jω) yields solution for limit cycle.

translates into a periodicity of 38.5 s. This point also yields a value of 9.95mmHg
for the amplitude of the oscillation in PaCO2. This calculation was undertaken
merely to illustrate how the describing function method can be applied. As a
predictor, it grossly underestimates the periodicity associated with Cheyne–Stokes
breathing since it does not take into account the contributions of both chemoreflex
loops and also ignores the response time associated with the chemoreflex. Incor
porating these factors would producemore realistic predictions, but wouldmake the
expression for G(jω) much more complicated.

10.5 MODELS OF NEURONAL DYNAMICS

Wesaw inSection 10.3 the utility of employing the van der Pol and Poincarémodels
as theoretical constructs for characterizing the dynamic behavior observed in
physiological oscillators, such as cardiac and circadian pacemakers. However,
they represent only the class of systems that are spontaneously oscillating. There is
an even larger class of systems that do not spontaneously oscillate, but which can
oscillate given sufficient stimulation. These systems provide a better description of
the properties of nerve and muscle tissue. As the following discussion will show,
thesemodelsmay be viewed as closed-loop systemswith both negative and positive
feedback.
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10.5.1 The Hodgkin–Huxley Model

The first relatively complete mathematical model of neuronal membrane dynamics
was published by Hodgkin and Huxley in 1952. This work laid the foundation for
further development of a quantitative approach to understanding the biophysical
mechanism of action potential generation and was the seminal achievement that
won them the Nobel Prize in 1963. Their model was based largely on empirical
findings obtained through application of the voltage–clamp technique, which we
discussed briefly in Section 8.4.4. This melding of physical intuition, modeling
principles, and excellent experimental design is a classic example of first-class
bioengineering research.

Under resting conditions, the intracellular space of the nerve cell is on the order of
60mVmore negative relative to the extracellularfluid. This net equilibriumpotential
is determined by the ionic concentration gradients across the slightly permeable
membrane as well as by the effect of active transport by the sodium–potassium
pump. There is a higher concentration of potassium ions inside the cell versus a
higher concentration of sodium and chloride ions on the outside. However, the
membrane permeabilities to sodium and potassium are strongly dependent on the
membrane potential. Depolarization of the membrane potential leads to rapid
changes in sodium permeability and a somewhat slower time-course in potassium
permeability. The Hodgkin–Huxley model postulates that it is the initial rapid influx
of sodium ions and the subsequent outflow of potassium ions that account for the
generation of the action potential that follows the depolarizing stimulus.The chloride
ions do not play much of a role but account primarily for a small leakage current into
the cell. The electrical circuit analog of this model is displayed in Figure 10.21a. EK,
ENa, and ECl represent the Nernst potentials for potassium, sodium, and chloride,
respectively. Based on their measurements on the squid giant axon, Hodgkin and
Huxley employed values of�77, 50, and�54mV forEK,ENa, andECl, respectively.
(It should be noted that they assumed the membrane potential difference to be
measured outside relative to inside; thus, their sign convention was opposite to what
has generally been adopted since their early work.) C represents the membrane
capacitance, which is on the order of 1 μF cm�2. gK, gNa, and gCl represent the
respective conductance for potassium, sodium, and chloride ions that correspond to
the resistive elements displayed in Figure 10.21a; because of their voltage depen
dence, gK and gNa have been shown as variable resistors.

Application of Kirchoff’s law to the circuit in Figure 10.21a yields the following
equation relating the totalmembrane current I to the potential differenceV across the
membrane:

dV
I � C � gk�V � Ek� � gNa�V � ENa� � gCl�V � ECl� (10.59)

dt

The dependence of gNa on membrane voltage is characterized by the following
expressions:

gNa � GNam
3h (10.60)
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FIGURE10.21 (a) Circuit analog of theHodgkin–Huxley nervemembranemodel. (b) The
Hodgkin–Huxley model as a closed-loop system with negative and positive feedback.

where GNa is a constant and assigned the value of 120millimho cm�2 by Hodgkin
and Huxley. The time-course of gNa is assumed to be the result of interaction
between two processes, one represented by the “activation” state variablem and the
other by the “inactivation” state variable h, wherem and h each may vary from 0 to
1. These state variables each obey first-order dynamics:

dm

dt
� αm 1 � m� � � βmm (10.61)

and
dh

dt
� αh 1 � h� � � βhh (10.62)
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where the rate “constants” are voltage-dependent quantities defined by the follow
ing:

�1�25�V�=10 � 1αm � 0:1 25 � V�� e (10.63)

�V=80βm � 0:125e (10.64)

�V=20αh � 0:07e (10.65)

�30�V�=10 � 1e (10.66)βh � 1=

The potassium conductance follows similar but somewhat simpler dynamics:

gK � GKn
4 (10.67)

where GK is the constant and given the value of 36millimho cm�2 in Hodgkin and
Huxley’s simulations. The single state variable n is assumed to obey the following
first-order differential equation:

dn � αn�1 � n� � β n (10.68)ndt

where

�1�10�V�=10 � 1αn � 0:01 10 � V�� e (10.69)

and

�V=80β � 0:125e (10.70)n

Finally, the membrane conductance for chloride ions is assumed to be constant and
equal to 0.3millimhos cm�2.

Equations 10.59 through 10.70 constitute the Hodgkin–Huxley model. Func
tionally, the dynamic behavior represented by this set of equations can also be
modeled in terms of the closed-loop system shown in Figure 10.21b. A depolarizing
stimulus that exceeds the threshold produces an increase in sodium conductance,
which allows sodium ions to enter the intracellular space. This leads to further
depolarization and greater increase in sodium conductance. This positive feedback
effect is responsible for the rising phase of the action potential. However,
fortunately, there is a built-in inactivation mechanism (represented by h) that
now begins to reverse the depolarization process. This reversal is aided by the
negative feedback effect of the increase in potassium conductance, which follows a



352 NONLINEAR ANALYSIS OF PHYSIOLOGICAL CONTROL SYSTEMS

FIGURE 10.22 Time-courses of ionic conductances and membrane potential during an
action potential, as predicted by numerical solution of the Hodgkin–Huxley equations. Mem
brane voltage is displayed as predominantly negative because Hodgkin and Huxley referenced
all voltages to the intracellular fluid. (Reproduced from Hodgkin and Huxley (1952).)

time-course slower than that of the sodium conductance. The outflow of potassium
ions leads to further repolarization of the membrane potential. Thus, the action
potential is now in its declining phase. Because the potassium conductance remains
above its resting level even after sodium conductance has returned to equilibrium,
the nerve cell continues to be slightly hyperpolarized for a few more milliseconds
following the end of the action potential. Figure 10.22, reproduced from the original
Hodgkin–Huxley paper, shows the time-courses for V, gNa, and gK as predicted by
the model to occur during an action potential. The curve labeled g represents the
time-course of the overall membrane conductance.Multiplying this functionwithV
allows us to predict the time-course for the net membrane current during the action
potential.

10.5.2 The Bonhoeffer–van der Pol Model

Although the Hodgkin–Huxley equation set is able to reproduce many features of
neuronal dynamics, it constitutes a somewhat unwieldy model, containing several
state variables and a large number of empirical constants. Fitzhugh (1961)
considered the Bonhoeffer–van der Pol (BvP) model as a simplified alternative,
demonstrating the similarity of the phase-space characteristics of the former to the
reduced phase-space behavior of the Hodgkin–Huxley model. The differential
equations representing the BvP model are very similar to those of the van der Pol,
which was discussed in Section 10.3.2. These are

3dx x� c y � � x � z (10.71)
dt 3
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and

dy

dt
� � 1

c
x � a � by� � (10.72)

where a, b, and c are constants that satisfy the following constraints:

1 � 2b
3

< a < 1 (10.73)

0 < b < 1 (10.74)

b < c2 (10.75)

The variable z in Equation 10.71 represents themagnitude of the stimulus applied to
the model. This can consist of two components. The first is the steady-state level of
the stimulus (i.e., z= constant); as we will demonstrate below, since this enters into
Equation 10.71 explicitly, it can change the dynamics of the model quite dramati
cally. The second component of z is the transient contribution, which generally
takes the form of a brief pulse of given magnitude.

By setting dx/dt and dy/dt in Equations 10.71 and 10.72 to zero, we can obtain
expressions for the x- and y-nullclines, respectively. The x-nullcline is given by the
cubic equation:

3x
y � � x � z (10.76)

3

which is the same as the x-nullcline for the van der Pol model except that, here, the
vertical position (in phase space) of the cubic curve is controlled by the stimulus
level (z). The y-nullcline is given by

�a � x�
y � (10.77)

b

which is a straight line with negative slope. The conditions specified in Equations
10.73 through 10.75 guarantee that there will be only one intersection between the
two nullclines. An example of the phase-plane diagram for a= 0.7, b= 0.8, c= 3,
and z= 0 is displayed in Figure 10.23a. In this case, the single equilibrium point is
located at coordinates x= 1.2 and y=�0.625 (point e in Figure 10.23a). This
singular point may be shown, using the analysis technique of Section 9.2.1, to be a
stable focus. To the left of the y-nullcline (y< (a� x)/b), evaluation of
Equation 10.72 shows that dy/dt must be positive. Thus, the trajectories that cross
the x-nullcline in this region must be directed upward. Conversely, in the region to
the right of the y-nullcline, the trajectories that cross the x-nullcline must point
downward. In the region above the x-nullcline, evaluation of Equation 10.71 shows
that dx/dt is positive and, therefore, the horizontal arrows on the y-nullcline in this
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FIGURE 10.23 (a) Phase-plane diagram of the Bonhoeffer–van der Pol model with
steady-state stimulus level (z) set equal to zero. Bold dashed curve represents x-nullcline (dx/
dt= 0, vertical arrows); bold chained line represents y-nullcline (dy/dt= 0, horizontal
arrows). Other curves are sample phase trajectories. E is the stable singular point;
a= 0.7, b= 0.8, and c= 3. (b) Time response of BVP model to impulsive disturbance
delivered at t= 10 (bold arrow).

region must be directed rightward. By similar reasoning, the trajectories that cross
the y-nullcline below the x-nullcline must be directed leftward. Thus, the general
flow is in a clockwise direction, as shown in Figure 10.23a.

The time-course of x, which simulates membrane voltage, for one of the sample
phase trajectories is displayed in Figure 10.23b. Application of a brief pulse of
magnitude (Δz=)�5 units at time t= 10 produces an abrupt decrease in x, followed
later by a more gradual recovery, a small overshoot, and finally a slow return to
baseline. Thus, this pattern of x simulates an inverted action potential (compare this
with Figure 10.22). For this reason, we will refer to negative changes in x or z as
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FIGURE 10.24 SIMULINK implementation (bvpmod.slx) of the Bonhoeffer–van der
Pol model for parameter values: c= 3, a= 0.7, and b= 0.8. x represents membrane voltage
(with inverted sign), while z represents the applied stimulus, which includes a constant level
plus instantaneous impulses applied at times specified in the repeating sequence block.

“depolarizing” and positive changes as “repolarizing.”The simulation result shown
in Figure 10.23b and others that are displayed in subsequent figures were produced
by a SIMULINK implementation of the BvP model, named bvpmod.slx. The
diagram of the SIMULINKconfiguration for thismodel is shown in Figure 10.24. A
RepeatingSequence block is used to generate the brief “shocks” (pulses in z) that
are applied to themodel. It should be noted fromFigure 10.23a that, in general, only
negative pulses in z (if sufficiently strong) would generate action potentials, since
these displace the state point to the left of the equilibrium point.

One basic property of nerve andmuscle tissue is the “all or none” phenomenon of
thresholding. A pulse of insufficient magnitude, when applied to the nerve or
muscle cell, produces only a small “depolarization” but does not elicit a full-fledged
action potential. However, if the stimulus magnitude is increased above threshold,
the action potential becomes unstoppable. The BvP model shows this type of
behavior, as illustrated in Figure 10.25. In Figure 10.25a, a brief pulse of magnitude
�1.0 produces only subthreshold behavior – a small and brief depolarization before
x returns to baseline. In the phase-plane diagram, this is represented by a small
displacement of the state point to the left of the equilibrium point E. As long as the
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FIGURE 10.25 Demonstration of the threshold property of the Bonhoeffer–van der Pol
model. Brief pulses of magnitudes �1.0 (a), �1.1 (b), and �1.2 (c) are applied through the
variable z (baseline level of z= 0) at t= 10. Only the latter two cases are suprathreshold and
produce “action potentials.”

displaced state point falls to the right of the negatively sloped portion of the x
nullcline or not too far to the left of it, the resulting phase trajectory will follow a
small loop that leads back into E. However, if the pulse is large enough to push
the state point sufficiently leftward of the x-nullcline, the subsequent phase
trajectory will be one that moves leftward and upward, turns to the right, and
then moves back toward E. The corresponding time-course of xwould be the action
potential displayed in Figure 10.25b. Increasing the stimulus pulse magnitude does
not alter the size of the action potential, as shown in Figure 10.25c and
Figure 10.23a.

Another fundamental neuronal property is the presence of a refractory period. If
a depolarizing stimulus is applied to a nerve cell too soon after the firing of an action
potential, this stimulus would not elicit another action potential. The BvP model
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FIGURE 10.26 Demonstration of the refractory property of the Bonhoeffer–van der Pol
model. (a) Brief pulses of magnitude�5 applied at t= 10 and t= 20 produce separate “action
potentials.” (b) The brief pulse applied at t= 10 produces an action potential, but the
succeeding pulse at t∼ 14, during the “refractory interval,” does not.

also exhibits this kind of behavior. Figure 10.26a shows the effect of stimulating the
BvPmodel with two brief pulses of magnitude�5 units, spaced 10 time units apart.
The second pulse occurs after much of the response to the first pulse has already
taken place. Consequently, this second pulse leads to another action potential. In
Figure 10.26b, the second pulse is applied only four time units after the application
of the first pulse. This occurs during the early stages of “repolarization.” The net
result is a small and brief depolarization, but a second action potential does not take
place. This behavior can be better understood if one turns again to the phase-plane
diagram in Figure 10.23. It can be seen that any stimulus that displaces the state
point horizontally to the left (negativeΔz) when the latter is on thefinal two portions
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of the phase trajectory will not change its subsequent movement much, because the
state point will basically follow its original course back toward E.

Thus far, we have examined how the BvP model responds to brief pulses in z.
What is the effect of changing the baseline level of z, which until now has been
assumed to equal zero? FromEquation 10.76, it is clear that giving z a nonzero value
would shift the vertical position of the x-nullcline: Positive z-valueswouldmove the
cubic curve downward, while negative z-values, corresponding to step
depolarization, would move it upward. Figure 10.27 shows how the model would

FIGURE10.27 Responses of theBonhoeffer–van der Polmodel to “step depolarizations.”
(a) Phase-plane diagram showing the change in singular point from E to P following
application of step in z of �0.16 units. The resulting response in x is subthreshold. When the
step is made slightly more negative (z=�0.17), an action potential is generated. The singular
point corresponding to z=�0.17 is located very close to P and therefore is not shown
separately. (b) Time-courses of x following step depolarizations applied at t= 5 (indicated by
black horizontal bar).
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respond when subjected to step changes in z from zero to �0.16 and �0.17. In the
phase-plane diagram (Figure 10.27a), the state-point starts off at E, prior to
application of the step stimulus. When the step is applied, the x-nullcline moves
upward so that the new singular point (labeled P) is now located at x= 1.1 and
y=�0.5. The resulting response in x, however, is subthreshold (Figure 10.27b), and
the corresponding phase trajectory is a small loop that begins at E and ends at P
(Figure 10.27a). If the step in z is made only slightly more negative (z=�0.17), the
response becomes quite different. Now, the phase trajectory that describes the
dynamics of x between z= 0 and z=�0.17 takes the form of the large loop that
corresponds to the generation of an action potential (Figure 10.27b). In both cases,
the new singular points remain stable. Consequently, following the occurrence of
the action potential, the state variable x settles down to a new steady level. However,
when the applied steps in z are made sufficiently negative, in addition to being
displaced further upward, the new singular point (U) also becomes unstable (Figure
10.28). Instead of converging to the new “equilibrium” level, x simply oscillates
around it (Figure 10.28b). In the phase-plane diagram (Figure 10.28a), this
corresponds to the phase trajectory that begins at E but eventually gets trapped
in the limit cycle that encloses the unstable focus U. Thus, the BvP model predicts
that when sufficiently large step depolarizations are applied, an infinite periodic
train of action potentials will be generated. However, both BvP and Hodgkin–
Huxley models are not able to simulate finite trains of action potentials, a
phenomenon commonly observed in experimental nerve preparations.

10.6 NONPARAMETRIC IDENTIFICATION OF NONLINEAR
SYSTEMS

The methods for analyzing nonlinear systems that we have discussed so far assume
the existence of a structured model – in the form of a set of ordinary differential
equations or difference equations – that is employed to characterize the dynamics of
the phenomenon being studied. In order to estimate the parameters of the structured
model, a common approach is to apply an optimization technique, in a manner
similar to what we had discussed in Section 8.2.5. However, it can be extremely
challenging to come up with a nonlinear model primarily based on data and with
only very basic assumptions about the underlying process. Under such circum
stances, it may be useful to extract as much information about the characteristics of
the dynamic nonlinearities as possible first, using a “black-box” approach (see
Section 8.1). Due to the diversity of types of nonlinear systems, our focus in this
section will be limited to one approach that has been widely applied to analyze
physiological systems that have stable nonlinear dynamic input–output character
istics – models that employ functional expansions or Volterra–Wiener kernels.
There have been many advances in this modeling approach over the past few
decades, and confining our discussion to only one section of one chapter clearly
does not do justice to this area of work. Our goal here is only to provide the reader
with a brief overview of the key concepts and how these are applied to a
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FIGURE 10.28 Conditions that lead to a train of “action potentials” from the Bonhoeffer–
van der Pol model. (a) Simulating a “step depolarization” by setting z=�0.4 shifts the x
nullcline upward and produces a newunstable singular point (U). The net result is the creation
of a stable limit cycle that encloses the unstable focus. (b) Time-course of x during application
of depolarizing step.

physiological system. The interested reader is referred to the many excellent
volumes and review articles have been published that provide more comprehensive
and expert coverage of the material. These include, among others, Marmarelis and
Marmarelis (1978), Schetzen (1989), Westwick and Kearney (2003), and Marmar
elis (2004).

10.6.1 Volterra–Wiener Kernel Approach

The Volterra series may be considered an extension of the Taylor series expansion
to functionals that can collectively represent a nonlinear dynamic system. The
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Volterra representation of the response y(t) of a continuous-time nonlinear system to
an input time series u(t) is given by

1 1 1
y t� � � h � �u t� � τ1�dτ1 � h2�τ1; τ2�u t� � τ1�u t� � τ2�dτ1dτ21 τ1

�1 �1 �1
1 1

� hM�τ1; . . . ; τM�u t� � τ1� ∙ ∙ ∙ u t� � τM�dτ1 ∙ ∙ ∙ dτM � ∙ ∙ ∙ � e t� �
�1 �1

(10.78)

The above equation assumes that the means of both the input and output signals
have been removed and that x(t) and y(t) represent changes from those means. In
Equation 10.78, the function hM (τ1 , . . . .τM ) is known as theMth order Volterra
kernel. When the highest order of the Volterra series equals 1, Equation 10.78
defaults to the canonical characterization of a linear system. Under such circum
stances, the first-order Volterra kernel is simply the impulse response of the system.
Thus, one might consider hM(τ1 , . . . .τM) a “higher order impulse response” of the
nonlinear system. For practical applications, the discrete-time representation of the
Volterra or Wiener series with a finite number of terms is more frequently
employed:

p�1 p�1 p�1
y n� � � h1 k1 u n � k1� �� � � h2�k 2�u n � k1�u n � k21; k � � �

k1�0 k1�0 k2�0
p�1 p�1

� hM�k1; . . . ; kM�u n � k1� ∙ ∙ ∙ u n� � kM� � ∙ ∙ ∙ � e n� � �
k1�0 kM�0

(10.79)

To provide further insight into what the higher order kernels of a nonlinear
dynamic system represent, consider the case of a system that is fully character
ized by a Volterra series where the highest order is 2. This would be a special
case of Equation 10.79 where M= 2. Suppose further that the first-order
kernel h1(k1) takes the form of an exponential function and the second-order
kernel h2(k1,k2) takes the form of the “2D” exponential function displayed in
Figure 10.29. Then, the response of this nonlinear system to two unit impulses
δ1 and δ2 occurring at the times indicated by the heavy arrows is predicted
through Equation 10.79 to be the thin black tracing displayed in Figure 10.30.
The observation noise e(n) is assumed to be zero in this example. The
contribution of only the first-order kernel to the overall response is represented
by the thick gray tracing. Thus, the difference between the thin and thick curves
represents the contribution of h2(k1,k2) alone. This difference therefore is the
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FIGURE 10.29 Example of a second-order discrete-time Volterra kernel h2 (k1 ,k2 ). Each
point on the kernel represents the nonlinear (second-order) response to a unit impulse
occurring k1 samples earlier and another unit impulse occurring k2 samples earlier.

FIGURE10.30 Response of a nonlinear systemwith an exponentially decaying first-order
kernel and second-order kernel h2 (k1,k2 ) (as shown in Figure 10.29) to unit impulses δ1 and
δ2 (displayed as black arrows). The thin black tracing represents the total systemoutput, while
the thick gray tracing represents the contribution from the linear component alone.
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result of the nonlinear properties of this particular dynamic system.
Notice, however, that in the duration between δ1 and δ2 (i.e., following the
first impulse but before the second impulse), the difference between the two
curves is attributed to the nonlinear portion of the response to δ1 only. But
following the occurrence of δ2, the difference between the curves reflects the
continuing nonlinear contribution in the response to δ1, the (new) nonlinear
contribution in the response to δ2, and also the contribution from the interac
tion between the responses to δ1 and δ2. Any point on the h2(k1,k2) surface
represents the response of the system to a unit impulse that occurred k1
samples ago and a unit impulse that occurred k2 samples ago, after one has
accounted for the contributions from the linear responses of these two unit
impulses.

In general, the highest order of the Volterra series should be infinite in order
for the representation to be complete. This kind of representation immediately
points to two key difficulties associated with the practical utility of Volterra
series. The first is the issue of convergence of the series, similar to what one faces
with the Taylor series – the contribution of the Mth order functional, in general,
should diminish as M increases toward infinity. The second problem is that
estimation of the Volterra kernels is complicated by the fact that the basis
functionals of the series are correlated with one another. Wiener (1958) intro
duced his approach to circumvent these limitations by orthogonalizing the
Volterra series in the case where the input is Gaussian white noise of given
power level. This orthogonalization procedure allows each of the new (Wiener)
kernels to be estimated one at a time. Lee and Schetzen (1965) introduced a
practicable method for estimating the Volterra kernels from the above Volterra
series by using cross-correlation to first estimate the Wiener kernels and
subsequently converting these results into Volterra kernels. However, the
cross-correlation method requires long data records, strict whiteness of the
input, and a heavy computational burden associated with the estimation of
higher order kernels. These strict input requirements are relaxed with the
“exact orthogonalization technique” based on least-squares fitting (Korenberg,
1988).

Another method that alleviates most of the deficiencies inherent in the cross-
correlation technique is the Laguerre expansion of kernels technique (LEK),
introduced by Marmarelis (1993). Here, the unknown Laguerre expansion
coefficients are estimated using least-squares, and Gram–Schmidt orthogonal
ization with respect to Gaussian white noise is not utilized, thus relaxing the
requirement for strict whiteness of the input. This leads to increased estimation
accuracy in the presence of noise, reduces the requirement for long data records,
and allows relatively accurate kernel estimation when the input deviates from the
theoretical requirement for white-noise stimuli. The basis expansion method
discussed in Section 8.6.2 for linear systems is essentially a special case of the
LEK. In LEK, the Volterra kernels are expanded into weighted sums of Laguerre
basis functions. The expansions for the first- and second-order kernels are as
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shown below:

h � � � c � �L � �; 0 � k (10.80)1 i1 i1 k1 1 � p � 1
i1�0

1 k1

h2�k1; k2� � c � �L � �L k ; 0 � k k (10.81)k � �

where Li(k) are the Laguerre basis functions, as defined in Equation 8.84. The above
expressions are substituted in Equation 10.79 to yield

2 i1; i2 i1 1 i2 2 1; 2 � p � 1

q q q

q

q

i1�0

q

i2�0

y n �� � c � �v � � � c2�i1; i2�vi1 � �vi2 n � � (10.82)n � � � ∙ ∙ ∙ � e n1 i1 i1 n
i1�0 i1�0 i2�0

where

v n �� � L k u n � k� (10.83)� � �i1 i1

and

v n �� � Li k u n � k�2 � � � (10.84)i2

Since vi1(n) and vi2(n) are known time series (essentially Laguerre-filtered versions
of the input), Equation 10.82 takes the form of a multiple linear regression problem
whose unknown coefficients c1(i1) and c2(i1,i2) can be solved using least-squares
minimization, analogous to what was discussed in Section 8.6.2. Of course, as the
number of basis functions (q) and the order of the model (M) increase, statistical
reliability of this estimation procedure decreases. The MATLAB function sta

tionaryVolterra2_1in1out.m provided along with the other programs in this
book implements the LEK for a single-input single-output second-order Volterra
model.

10.6.2 Nonlinear Model of Baroreflex and Respiratory Modulated
Heart Rate

The dual-input model of heart rate variability discussed in Section 8.6.3 has been
extended to incorporate nonlinearity up to the second order in the baroreflex and
respiratory–cardiac coupling mechanisms (Jo et al., 2007). In addition, the interac
tion between the baroreflex and respiratory–cardiac coupling mechanisms is
also included in the extended model. The mathematical representation of the

p�1

k�0

p�1

k�0
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model is as follows:

p�1 p�1
ΔRRI n �� � hRCC� �i V n� � NRCC � i� � hABR� �i ΔSBP�n � NABR � i�

i�0

hRCC2� �i; j V n � NRCC � i� � RCC � j�� V n � N
i�0 j�0

hABR2� �i; j ΔSBP�n � NABR � i�ΔSBP�n � NABR � j�
i�0 j�0
p�1 p�1

hABR�RCC i; j V n � NRCC � i�ΔSBP n � NABR � j e n� � � � � � � �
(10.85)

The above model is displayed schematically in Figure 10.31. Thus, apart from
the contributions from the linear impulse responses hRCC and hABR, there are
contributions from the nonlinear portions of the RCC and ABR mechanisms (i.e.,
hRCC2 and hABR2), as well as a contribution from the interaction between RCC and
ABR (“cross-kernel” hABR-RCC).Note that the second-order self-kernels (hRCC2 and
hABR2) are symmetric functions of their arguments, whereas the second-order cross-
kernel (hABR-RCC) is asymmetric with respect to its arguments. Other parameters of
this model have been defined previously in Section 8.6.3. e(n) represents the
variability of ΔRRI not explained by the model.

To estimate the kernels of this model from the measured responses in ΔRRI,
the LEK technique is applied to expand each kernel into an orthonormal set of

i�0

�
p�1 p�1

�
p�1 p�1

�
i�0 j�0

FIGURE 10.31 Schematic representation of the nonlinear dual-input model of heart rate
variability (Jo et al., 2007).
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discrete-time Laguerre functions, as displayed below:

h � � � c � �L � �; 0 � n � p � 1RCC i1 i1 n (10.86)
i1�0

RCC n

� � cABR i1 Li1 � �; 0 � n � p � 1 (10.87)� � nhABR n �
i1�0

hRCC2�n1; n2� � c � 1; i �L n L � �; 0 � n1; n p �� � n 2 � 1RCC2 i 2 i1 1 i2 2

(10.88)

hABR2�n1; n2� � cABR2�i 2�L 1 � �1 L 2 n2 ; 0 � n n p � 11; i i n i � � 1; 2 �
(10.89)

c � �L � �L n ; 0 � n n p � 1n � �hABR�RCC�n1; n2� � ABR�RCC i1; i2 i1 1 i2 2 1; 2 �
(10.90)

In Equations 10.86–10.90, {cRCC(�), cABR(�), cRCC2(�), cABR2(�), cABR-RCC(�)} are
the sets of the unknown expansion coefficients, which are to be estimated from the
input–output data. Li(n) represents the ith order Laguerre basis function, the form of
which was given in Equation 8.84. qABR and qRCC are the number of Laguerre
functions used in the expansion of the kernels for the ABR and RCC mechanisms,
and these are allowed to be different across individual data sets.

Substitution of Equations 10.86–10.90 into Equation 10.85 enables the conver
sion of Equation 10.85 into the form:

q qRCC ABR� � � 1; n � � � 1; n
i1�0 i1�0

ΔRRI n �� � cRCC i1 vRCC i � � cABR i1 vABR i �

cRCC2�i1; i2�vRCC�i1; n�vRCC�i2; n�
i1�0 i2�0

(10.91)
q qABR ABR

cABR2�i1; i2�vABR�i1; n�vABR�i2; n�
i1�0 i2�0

cABR�RCC�i1; i2�vRCC�i1; n�vABR�i2; n� � e n� �
i1�0 i2�0

qRCC

qABR

qRCC

i1�0

qRCC

i2�0

qABR

i1�0

qABR

i2�0
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i1�0
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i2�0
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p�1

k�0

where

vRCC�i; n� � L � �V n � k � N �; 0 � i � q (10.92)i k � RCC RCC

and

p�1
vABR�i; n� � Li k ΔSBP�n � k � N �; 0 � i � qABR (10.93)� � ABR

k�0

Equation 10.91 turns out to be simply an extension of Equation 10.82 with more
terms. As in Section 10.6.1, we can treat this as a multiple linear regression problem
and solve for the unknown Laguerre coefficients using least-squares minimization.
Since there are many combinations of qRCC, qABR, NRCC, NABR, and α, the least-
squares minimization would have to be carried out for each of these “model
candidates.” The “optimal” solution is arrived at by selecting the model candidate
with the lowest MDL, as discussed in Section 8.5.3.

Jo et al. (2007) applied the nonlinear model to data obtained from normal
controls and subjects with obstructive sleep apnea (OSA) during ventilator-
assisted, randomized breathing in wakefulness and sleep. Adding the second-
order and interaction kernels to the linear model produced a significant improve
ment in the goodness of fit between the model-predicted ΔRRI and the
corresponding data. When only linear terms were included, the model accounted
for less than 50% of the total variance in the data. After including the nonlinear
terms, the proportion of total variance explained by the model increased to
approximately 70%. These findings suggest that nonlinearities account for a
significant portion of heart rate variability. The estimated second-order kernels
were found to be different in the OSA subjects relative to normal controls.
Figure 10.32 shows sample plots of the second-order ABR kernel, hABR2, in one
of the controls (panel (a)) and one of the OSA subjects (panel (b)). It is clear that
the overall magnitude of hABR2 was lower in the OSA subject compared to the
normal control. Indeed, they found statistically significant differences between
the two subject groups. The interaction kernel hABR-RCC was also found to be
significantly reduced in the OSA group.

10.6.3 Interpretations of Kernels

One of the drawbacks of using Volterra kernels to characterize nonlinear dynamics
in physiological systems is the difficulty in interpreting the resulting kernelmodel in
terms of the structure and function of the underlying physiological system.
However, it should be possible in many situations to extract “meaning” from
the estimated kernels by using them to simulate the conditions under which the
systemhas been studied previously. Then, one can compare the simulated responses
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FIGURE 10.32 Sample plots of the second-order ABR kernel, hABR2, estimated in a
normal subject (a) and a subject with obstructive sleep apnea (OSA) (b) in the study of Jo et al.
(2007). The study found that the OSA group had significantly smaller magnitudes of hABR2
than controls. (Modified with permission from Figure 6 of Jo et al. (2007).)

of the model with the observed responses to the same kinds of stimuli that were
employed in the previous studies.

Consider, for instance, the Volterra kernels estimated for the nonlinear heart rate
variability model of Jo et al. (2007). It has been previously observed by others that
the frequency response relating respiration to RRI is dependent on tidal volume.
The second-order RCC kernel hRCC2 was tested to determine whether its presence
introduces tidal volume dependence into the frequency response of RRI with
respect to respiration. The model was convolved with a respiration input taking on
the form of a chirp signal with frequency increasing from 1 to 45 cycles per minute.
The simulations were conducted with tidal volumes ranging from 0.5 to 3 L, and the
frequency response of the system was determined for each tidal volume condition.
The simulations confirmed that increasing tidal volume does indeed increase the
RCC gain at any given frequency when hRCC2 was included in the model, but
volume dependence of the frequency response did not occurwhen themodel did not
contain hRCC2.

It is also well established that the steady-state ABR response is not linear,
showing saturation at higher blood pressure levels. In other order to test the
hypothesis that hABR2 contributes to this phenomenon, Jo et al. convolved the
model with step functions in ΔSBP of different magnitudes ranging from 1 to
5mmHg.They found that,with hABR2 present in themodel, the saturation effectwas
indeed observed.

Finally, it has been shown that neck suction when applied during inspiration
produces smaller increases in RRI than when applied during expiration, indi
cating that ABR gain is modulated by respiratory phase. The model was
stimulated with brief pulses of ΔSBP that were triggered at various phases
of the inspiratory/expiratory cycle. The simulations demonstrated that ΔSBP
pulses delivered during expiration exert a greater effect on ΔRRI than when
these pulses were delivered during inspiration, consistent with reported
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experimental data on humans. This effect was only present when the cross-
kernel hABR-RCC was included in the model.

10.6.4 Higher Order Nonlinearities and Block-Structured Models

One can appreciate from the examples in Sections 8.6.3 and 10.6.2 that the number
of unknown parameters (i.e., all the Laguerre coefficients and time delays) increases
rapidly as the order of the model increases, even with the incorporation of the LEK
technique. Studies that have applied theVolterra–Wiener approach to physiological
systems have generally employed kernels only as high as the third order, due to
problems that arise from computational burden and interpretability of the results.
Block cascade models offer one avenue for accommodating stronger nonlinearities
in compact form (Billings and Fakhouri, 1982; Hunter and Korenberg, 1986). The
“Wiener cascade” or L–N system is one of the most commonly used block cascade
models; it consists of a linear dynamic system whose output feeds into a static
nonlinearity. Its counterpart is the “Hammerstein cascade” orN–L system, inwhich
the static nonlinearity precedes the linear dynamic system. A more general class is
the “sandwich” or “L–N–L” model in which linear dynamic systems precede and
succeed a static nonlinearity. Artificial neural networks may be considered to be a
greater generalization of such models. However, one of the main drawbacks with
these block-structured models is that the parameters generally have to be estimated
using iterative optimization techniques.

The “hybrid” approach advocated by Marmarelis (2004) follows along the lines
of theWiener system by decomposing the nonlinear dynamics into two operational
layers. Such a system is illustrated schematically in Figure 10.33 for a single-input
single-output discrete-time system. The input u(n) feeds into a linear filter bank
whose impulse response functions form a complete and orthogonal basis
(B1 through BM) that spans the system dynamics. The second layer consists of a
multi-input static nonlinearity that is the recipient of the outputs from the first layer
and transforms them into the output of the whole system. In the case of the LEK

FIGURE10.33 The nonlinear dynamic system as the cascade of afilter bank of orthogonal
linear dynamic filters with a multi-input static nonlinearity, as proposed by Marmarelis
(2004).
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technique, the Laguerre functions of successively increasing order constitute the
filters B1 through BM in Figure 10.33. The output of each filter is given by an
equation similar to Equation 10.83 or 10.84. The output from one filter is
subsequently multiplied by itself and the outputs from the other filters once or
more times, depending on the order of the system. And the resulting products are
weighted by the coefficients associatedwith theLaguerrefilters involved andfinally
summed to produce the system output. Thus, the Volterra models described in
Sections 10.6.1 and 10.6.2 are covered in this general signal processing scheme.
The beauty of this conceptual scheme is that it allows for a means of capturing the
“essential” dynamic characteristics of a given nonlinear system by transforming the
system into one with a smaller number of “necessary” filters. This simplifying
transformation can be achieved to derive the “principal dynamic modes” (PDM) of
the system through the eigen-decomposition of the matrix constructed from the
Laguerre expansion coefficients. This approach does not totally solve the problem
of “interpretability” associated with Volterra kernels, but it does offer a useful
means of capturing the “essence” of the observed dynamics, thus casting the
findings in a more understandable form by nonmathematical researchers. A clear
and detailed exposition of the PDM approach can be found in Marmarelis (2004).

PROBLEMS

P10.1. Consider the dynamical system defined by the following pair of coupled
first-order differential equations:

3dx x� x � � y � 15
dt 3
dy 1 � 0:6x � 0:48y�
dt 5:4

Sketch the phase-plane diagram for this system, showing the x- and y
nullclines, as well as the general directions of flow for the phase
trajectories. Find out where the singular point in this system is located
and determine its stability characteristics.

P10.2. A genetically engineered form of white blood cell has been developed for
therapeutic use in fighting the bird flu virus. When introduced into the
body, these white blood cells feed on other cells that have been invaded by
the virus. A simple model that characterizes the growth of these two cell
populations is given below:

dx � x � cxy
dt
dy � cxy � y
dt



PROBLEMS 371

Here, x represents the fraction of lung cells that have been infected by
the virus, while y represents the fraction of the genetically engineered
white blood cells. c is a (positive) constant parameter. Note that, without
therapeutic intervention (y= 0), x would grow exponentially. In contrast,
the therapeutic cells are self-limiting but the growth rate (dy/dt) of their
population is enhanced by the number of virally infected lung cells.

(a) For the case in which c= 2, determine the values of the cell popula
tions at which therewill be no net growth in the population of both cell
types.

(b) Determine whether the equilibrium points determined in (a) are stable
or unstable. In addition, deduce the nature of stability at these points
(i.e., are they stable/unstable foci or nodes, or saddle points, etc.).

(c) Sketch the phase-plane diagram for this system (when c= 2), showing
clearly the x- and y-nullclines, as well as the general directions (using
arrows) of flow for the phase trajectories.

(d) When the populations of both the flu-infected cells and the white
blood cells are very small (i.e., both x and y are close to zero), the
dynamics become approximately linear. Under such circumstances,
how would you expect x and y to change with time? Provide sketches
of the time-courses of x and y, as well as a brief explanation for your
answer. Assume c= 2 here as well.

P10.3. Develop the SIMULINK model of the system given in Problem P10.1.
Determine the phase portrait of this dynamical system by computing the
phase trajectories from several different starting locations on the phase
plane.

P10.4. Use the describing function method to determine whether a limit cycle
exists for the respiratory control model discussed in Section 10.4.2 if the
controller response is characterized by the following equations:

_VE � 0:02 PaCO2 � 37 ; PaCO2 > 39

� 0; PaCO2 � 39

where V̇E is given in units of L s�1. This controller response function
differs from that given inEquation 10.50 in that there is an abrupt silencing
of chemoreceptor output when PaCO2 is decreased from values slightly
greater than 39mmHg to values below 39mmHg. Assume in your
computations the values for the other parameters as given in Section
10.4.2. If the limit cycle exists, determine the periodicity and amplitude of
the oscillation.

P10.5. In the example of describing function analysis given in Section 10.4.2, the
predicted oscillation period for Cheyne–Stokes breathingwas on the order
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of 40 s. This is substantially shorter than the ∼60 s cycle time that is more
frequently observed. Determine whether the inclusion of additional
factors, such as circulatory mixing and chemoreceptor response time,
can account for the much of the difference. To do this, extend the overall
transfer function of the linear component so that it takes on the following
frequency response:

Glung �jωTd� �G jω � e
1 � jωτlung �1 � jωτcirc��1 � jωτchemo�

Assume that τcirc= 2 s and τchemo= 15 s. For other parameters, use the
values employed in Section 10.4.2.

P10.6. In the Poincaré oscillator model, described in Section 10.3.3, a neural
spike is generated each time the traveling “particle” passes through the
ϕ= 0 point on the unit circle (see Figure 10.13). It will normally not
generate another neural spike until 1 revolution later when the “particle”
passes through ϕ= 0 again.

(a) Suppose at ϕ= 0.625 (i.e., midway between ϕ= 0.5 and ϕ= 0.75),
the oscillator is hit by an external stimulus (b in Figure 10.13) of
magnitude 2.Determine graphicallywhat would be the “new phase” θ
of the oscillator immediately following the perturbation? Note that
bothϕ and θ are each normalized to 1 revolution (i.e.,ϕ= 1 represents
360°) – so provide your answer for θ in normalized units.

(b) Suppose the natural period of this oscillator is 1 s. What would be the
duration (in seconds) between the last natural spike generated by this
oscillator and the occurrence of the spike that follows the perturbation
by the stimulus? Does the spike that occurs following perturbation
appear earlier or later than what would have been expected if there
was no perturbation? Assume that the parameter a in Equation 10.35,
describing the radial dynamics of the particle, is positive and
extremely large (i.e., effectively infinite).

(c) Note that in Equation 10.35, dr/dt becomes zero when r= 0 (i.e.,
when the particle is at the origin) or when r= 1 (when the particle is
located on the limit cycle). Is the origin (r= 0) a stable or unstable
equilibrium point? Explain how you have arrived at your answer.

P10.7. By decreasing the normalized period (Ts/T0) of the stimulation from 0.95
to 0.5 in the SIMULINKprogram poincare.slx, explore the changes in
the phase relationship between the stimulus and response changes in the
Poincaré oscillator during Type 1 resetting with the magnitude of the
stimulus, b, set equal to 0.9.

P10.8. Modify the SIMULINK implementation (vdpmod.slx) of the van der Pol
model so that it can be driven by an external periodic stimulus of
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FIGUREP10.1 Linearized SIMULINK representation (linhhmod.slx) of theHodgkin–
Huxley model.

magnitudeB and frequency f. Thus,modify thismodel so that its dynamics
are described byEquations 10.33 and 10.34. First, setB equal to 2 and vary
f in small increments from 0.01 to 0.2 Hz. Then, setB equal to 0.5 and vary
f over the same range of frequencies. In each case, determine the band of
frequencies over which entrainment occurs. Does the strength of the
external forcing affect the entrainment band?

P10.9. Figure P10.1 shows the SIMULINK implementation (linhhmod.slx) of
the linearized, closed-loop representation of the Hodgkin–Huxley model
displayed in Figure 10.21b. Use this model to determine the membrane
voltage response to a brief depolarization pulse of 60mV.Does thismodel
display the properties of thresholding and refractoriness? Modify the
model to simulate voltage clamp experiments, in which the membrane
voltage is constrained to follow a step change of +60mV. Determine the
time-courses of the sodium and potassium currents following the step
depolarization.

P10.10. Figure P10.2 displays the control block diagram of a closed-loop system
that contains a dynamic linear forward block and a static nonlinear
feedback block. Note that since the input to the static nonlinear feedback
block is x, the output of this blockwould be h(x). Thus, if the input z to this
closed-loop system is zero, the dynamics of x(t) can be characterized by
the following ordinary differential equation:

d2x dx� � h x� � � 0
dt2 dt

Consider the case where the function h(x) is defined as

h x 2 � x � 2� � � x
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FIGURE P10.2 Closed-loop control system with nonlinear feedback element.

(a) By introducing the variable y (=dx/dt), convert the differential
equation above into the form where you can perform a phase-plane
(y versus x) analysis of the dynamics of this system.

(b) Determine the x- and y-nullclines and singular point(s) of this system.

(c) Determine the stability properties (i.e., stable or unstable; node or
focus or center or saddle point) of the system’s singular point(s).
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11
COMPLEX DYNAMICS IN
PHYSIOLOGICAL CONTROL
SYSTEMS

11.1 SPONTANEOUS VARIABILITY

The examples presented in Chapter 10 showed that the presence of nonlinearity can
dramatically increase the range of dynamic behavior exhibited by relatively simple
open- or closed-loop systems. Linear systems are, by definition, constrained to obey
the principle of superposition, which makes prediction of their future behavior
relatively easy, unless the output measurements are heavily contaminated by
random noise. By contrast, nonlinear systems can produce responses that are
difficult to predict, even in the absence of noise. However, unless one subjects these
signals to careful analysis, it is often difficult to distinguish one kind of “complex
ity” from the other. This is very much the case with the naturally occurring
fluctuations, or spontaneous variability, exhibited by physiological control systems
of all kinds. An important question that continues to stimulate bioengineering
research is whether these spontaneous physiological fluctuations represent the
effect of random perturbations on the underlying system or whether they are the
result of the complex dynamics generated by a deterministic, nonlinear system. It is
likely that both random and nonlinear influences contribute in various degrees to
these natural variations. The purpose of this chapter is to examine in greater detail
some of the possible mechanisms through which complex dynamics can arise.

The spontaneous variability exhibited by physiological systems ranges from
highly periodic and regular waveforms to highly complex temporal structures. To

Physiological Control Systems: Analysis, Simulation, and Estimation, Second Edition. Michael C.K. Khoo.
 2018 The Institute of Electrical and Electronics Engineers, Inc. Published 2018 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/khoo/controlsystems2e
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FIGURE 11.1 Time series plots and corresponding Fourier spectra of four types of system
responses.

illustrate the breadth of complex physiological patterns, we examine four very
different time series displayed in Figure 11.1 (panels a, c, e, and g). From visual
inspection, all four contain different degrees of regularity and irregularity. To aid in
distinguishing one signal from the other, it is useful to also examine the frequency
content of these signals. Panels b, d, f, and h display the Fourier transform
magnitudes of the four signals; these were computed using the fft command
in MATLAB and subsequently applying the abs command to each result:

(1) Although it is difficult to pick this out from the display in the time domain,
the signal displayed in Figure 11.1a actually contains three sinusoidal
components with center frequencies of 1.2, 3.6, and 7.2Hz, as the Fourier
spectrum reveals in Figure 11.1b. However, the regularity of this signal is
obscured by the substantial amount of random noise that accompanies it. On
the other hand, linear filtering techniques can easily strip away the noise and
reveal the underlying periodic nature of this signal.

(2) The second signal displayed in Figure 11.1c does not exhibit the “noisiness”
of the first signal and looks “almost” periodic, but is not. This is
a quasiperiodic signal with no noise added. As its Fourier spectrum



379SPONTANEOUS VARIABILITY

(Figure 11.1d) shows, this time series, like the first in Figure 11.1a, is
actually composed of three sinusoidal components. However, the three
frequencies are incommensuratewith one another, that is, the ratio between
any two of the frequencies is not a rational number. Thus, the signal exhibits
recurrence (i.e., segments of the signal regularly “resemble” each other but
are not completely reproducible) but not strict periodicity.

(3) The third time series displayed in Figure 11.1e appears quite “noisy,” but the
“noisiness” is different from that in Figure 11.1a. In fact, this signal was
generated by a completely deterministic system and contains no random
noise. At the same time, however, it is also quite different from the
quasiperiodic signal in Figure 11.1c. The corresponding Fourier spectrum
in Figure 11.1f shows no dominant periodicities, unlike the previous two
signals. Instead, the power of the signal is spread over a broadband of
frequencies. This is an example of a chaotic signal.

(4) The final time series displayed in Figure 11.1g looks like a hybrid between
the first and second signals. However, its Fourier spectrum is broadband and
more similar to that of the chaotic signal (Figure 11.1f) than to the spectra of
the other two time series. In fact, this signal was generated by low-pass
filteringwhite noise. This kind of signal is commonly referred to a coloredor
correlated noise.

The above discussion was aimed at highlighting the fact that it is not always easy
to determine the nature of the system that produces spontaneous variability.
Oscillatory systems that generate periodic signals are the easiest to recognize.
However, measurement or system noise can “bury” the weaker oscillatory compo
nents (Figure 11.1a). Oscillations with incommensurate frequencies can lead to
quasiperiodic outputs that look “almost” but not exactly periodic (Figure 11.1b).
However, such signals are easily distinguishable from others by the presence of
significant peaks in their Fourier spectra. Although the chaotic signal is very
different from the periodic or quasiperiodic signal, a common feature is that the
values taken by any of these signals are always bounded. In phase-space represen
tation, one would observe that all the corresponding points fall only in certain
defined regions, leaving other areas void. The multidimensional object formed by
these filled regions is called the attractor. By contrast, the random signal would
have a representation that fills the entire phase space.

In the rest of this chapter, we will highlight a number of control mechanisms that
can give rise to the spontaneous variability that is so much a trademark of
physiological signals. Nonlinear component properties and delays in the transmis
sion of feedback information provide a potent source of periodic, quasiperiodic, and
chaotic behavior. There are several oscillatory components in the body, and the
interactions among these oscillators aswell as the effect of external rhythms, such as
the environmental light, can produce complex and unexpected consequences.
Moreover, most physiological parameters are time-varying. Thus, one would
expect these “nonstationarities” to exert an important influence on the physiological
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system in question. Finally, most people would agree on the existence of truly
random processes at various hierarchical levels in physiology. The propagation of
noise generated by these processes through the feedback loops of a given system can
also lead to highly complex behavior.

11.2 NONLINEAR CONTROL SYSTEMS WITH DELAYED
FEEDBACK

11.2.1 The Logistic Equation

The logistic equation, proposed byMay (1976) as a model of population growth, is
one of the best examples of how a simple nonlinear process can lead to highly
complicated dynamics. In May’s population model, xn represents the (normalized)
population of the current generation of a given species. xn depends on two opposing
influences. The first is a factor tending to increase the species population – This, of
course, depends on the birth date and the population of the previous generation of
this species. The second factor represents the limiting influence to growth resulting
from a finite supply of food or energy. This second factor is what imparts
nonlinearity to the model. Thus, the model can be written as

2xn � αxn�1 � αxn�1 � α�1 � xn�1�xn�1 (11.1)

This process can also be cast in the form of a nonlinear feedback control system, as
illustrated in Figure 11.2. Note that, in this case, the parameter α can be thought of as
a “gain factor” in the feedback control system.

The dynamic behavior of the logistic equation depends on the magnitude of α.
When α is less than 3, xn simply converges to a steady-state equilibrium value after a
number of iterations. However, when α increases above 3 but is below 3.4495, this
system exhibits a simple oscillation with a period of two time steps; this is known as
a period-2 oscillation (Figure 11.3a). When α increases further and falls into the
range of 3.4495–3.5441, the behavior changes character and becomes a period-4

FIGURE 11.2 The logistic equation as a nonlinear feedback control system.
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FIGURE 11.3 Dynamic behavior of the logistic equation as α is increased, showing the
period-doubling route to chaos.

oscillation (Figure 11.3b). Subsequently, when α is increased to any value between
3.5441 and 3.5644, the cycling continues but now the oscillation is a period-8 cycle
(Figure 11.3c). With further increases of α, there are successive doublings of the
periodicity. However, when α increases beyond 3.57, the periodic behavior
disappears and chaotic dynamics emerges instead (Figure 11.3d). This kind of
change in dynamics of the system is a classic illustration ofwhat has been termed the
period-doubling route to chaos. The reader should be cautioned that the logistic
system does not always behave chaotically when α is between 3.57 and 4. In certain
subranges of α, the system reverts to an orderly periodic behavior, such as the
period-3 cycling shown in Figure 11.3e when α= 3.83. Then, just as abruptly, in
other regions, the behavior can become chaotic again (e.g., Figure 11.3f, when
α= 3.87).

As one may recall from Section 10.3.3, the points at which the dynamics of the
system changes abruptly, as the “gain” α is increased, are known as bifurcations. A
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FIGURE 11.4 (a) Bifurcation diagram of the logistic equation. (b) Expanded view of the
logistic map within the rectangular region shown in part (a).

useful way of displaying the dependence of these bifurcations on α is to plot the
solutions for xn (after allowing for the transients to fade away) as a function of α. The
result is a bifurcation diagram. The bifurcation diagram for the logistic equation,
frequently called the logisticmap, is shown in Figure 11.4a for values ofα that range
from 2.8 to 4. Here, the bifurcations are particularly evident as the points at which a
given locus of points “pitchforks” into two daughter branches. One feature of the
logistic map that is quite apparent to any observer is the shortening of distances
between successive bifurcations. For instance, the range of α-values over which
period-2 oscillations occur is 3.4495–3= 0.4495, whereas the range in α overwhich
period-4 oscillations occur is 3.5441–3.4495= 0.0946; subsequently, the range in α
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over which period-8 oscillations occur becomes 0.0203. Note that the ratio of the
α-range for period-2 oscillations to the α-range for period-4 oscillations is approxi
mately 4.75, whereas the ratio of the α-range for period-4 oscillations to the
corresponding range for period-8 oscillations is about 4.66. Feigenbaum (1980)
showed theoretically that the ratio of the range in α for period-n oscillations to the
corresponding range for period-2n oscillations approaches a value of approximately
4.6692 when n approaches infinity. For obvious reasons, this limiting value is
known as Feigenbaum’s number. Another interesting feature of the logistic map is
that it exhibits self-similarity. By this, we mean that if we were to “zoom” into a
selected section of the bifurcation diagram (as illustrated by the small rectangle in
Figure 11.4a), examination of the resulting view would yield a structure that is
similar to the original diagram. This kind of self-similarity is characteristic of fractal
structures. Further discussion of fractals falls beyond the scope of this volume, and
the interested reader is encouraged to look up a number of excellent sources, such as
Feder (1988), West (1990), and Bassingthwaighte et al. (1994).

The key property that distinguishes the chaotic waveform from other periodic
and quasiperiodic signals is its sensitivity to initial conditions. This property is
illustrated in Figure 11.5, which shows two possible outputs (bold versus thin
tracing) generated by the logistic equation. Both were produced using exactly the
same value of α. The only difference is that in the bold tracing, the initial value (i.e.,
x0) was set equal to exactly 0.1, whereas for the thin tracing, the initial state was

FIGURE 11.5 Illustration of “sensitivity to initial conditions” in a chaotic signal. Both
signals (bold and thin tracings) were generated by the logistic model. In the bold tracing,
initial value was set to 0.1; in the thin tracing, initial value was set equal to 0.1001. The two
time-courses diverge considerably from one another after ∼10 iterations.
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assigned the value of 0.1001. For the first few iterations, both trajectories are
extremely close. However, after the tenth iteration, the thin tracing begins to diverge
further and further away from the bold tracing, so that eventually two totally distinct
trajectories emerge. In the other types of deterministic signal, two state points that
are initially close to each other will always remain so. The logistic system is an
example of a process that is both fractal and, when α� 3.57, sensitive to initial
conditions. However, it is important to remember that not all fractal processes are
chaotic and not all chaotic processes are fractal.

Sensitivity to initial conditions implies that it is impossible to predict the future
values of a chaotic signal in the long run. Because we can only measure this signal
with finite precision, the initially very small difference between our initial mea
surement and the true signal value at that point would, over time, grow exponen
tially. Referring again to Figure 11.5, if we take the thin tracing to be our prediction
of the “true” signal (bold tracing), it is clear that the predicted values after the tenth
iteration are totally off the mark. The rate at which two initially nearby trajectories
become increasingly separated from each other as time progresses is quantified by
the dominant Lyapunov exponent. The presence of a positive Lyapunov exponent
indicates that the underlying system is chaotic. However, the computation of the
Lyapunov exponent itself is difficult and the statistical reliability of the solution
depends on the quality and quantity of the available data. The reader is again
referred to other excellent references that exclusively cover the topic of chaos, such
as Thompson and Stewart (1986), Moon (1987), and West (1990).

11.2.2 Regulation of Neutrophil Density

The white blood cell counts of patients with chronic myeloid leukemia (CML) are
known to fluctuate wildly about elevated levels. These fluctuations are roughly
periodic with cycle durations that range from 30 to 70 days. Mackey and Glass
(1977) speculated that these oscillations may be related to changes in the dynamic
properties of the physiological control system that regulates the balance between
production and destruction of the neutrophils that circulate throughout the body.
They proposed the following differential-delay equation to account for the dynam
ics of this regulatory process:

dx βθnx t� � Td�� � γx t� � (11.2)ndt θn � x t� � Td�
where x(t) represents the neutrophil density in blood at time t and Td is the
“maturation time,” that is, the delay between the time the new neutrophils are
produced by the stem cells in the marrow and the time the mature neutrophils are
released into the circulation. The parameter γ, assumed constant, represents the rate
at which the cells are destroyed due to a variety of factors. The parameters θ and n
determine the relationship between the neutrophil production rate and the past
neutrophil density, while the parameter β represents a scaling factor. Figure 11.6
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FIGURE 11.6 The steady-state relationships characterizing the production (thick curve)
and destruction (thin line) of neutrophil cells as functions of the circulating neutrophil density
in blood. There are two steady-state equilibrium points (filled circles).

shows this nonlinear function (thick curve) when θ, n, and β are assigned the values
of 1, 10, and 0.2, respectively. Also shown is the linear function relating destruction
rate to neutrophil density; here, a value of 0.1 is assumed for γ. Over a large range of
neutrophil densities, poietin feedback control exerts its effects by reducing the
production of new neutrophils when the circulating neutrophil density increases.
However, as the neutrophil density decreases toward zero, it is assumed that the
production rate also falls to zero. Under these conditions, the type of feedback
therefore changes from negative to positive.

As shown in Figure 11.6, the intersection between the straight line represent
ing destruction rate as a function of neutrophil density and the nonlinear curve
representing production rate yields the steady-state (equilibrium) solutions for x.
There is a trivial solution at the origin. The other solution (located at x= 1,
y= 0.1) can be shown, using the method of phase-plane analysis (see Chapter 9),
to be stable. To examine the dynamic behavior of this system in the presence of
feedback time delay, we solve Equation 11.2 through computer simulation: The
SIMULINK implementation (named hematop.slx) of the model is shown in
Figure 11.7. Some simulation results are displayed in Figure 11.8. When Td is
small (=2 days), as would be expected under normal circumstances, the system
is stable and, following any perturbation in neutrophil density (e.g., due to blood
loss), there is a rapid return to the stable steady-state level (Figure 11.8a).
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FIGURE 11.7 SIMULINK implementation of the neutrophil density regulation model of
MacKey and Glass (1977).

However, if the maturation time is increased threefold to 6 days, following an
initial perturbation, x does not return to its previous stable steady state. Instead, it
oscillates with a small amplitude around the original equilibrium level (Figure
11.8b). The period of this oscillation is 18 days, which falls in the range of
periodicities (17–28 days) observed in humans who have disorder known as
cyclical neutropenia

IfTd is increased to 20 days to simulate the conditions of CML, large fluctuations
in neutrophil density occur, as illustrated in Figure 11.8c. These fluctuations look
somewhat periodic but they are actually quite irregular, displaying a significant
degree of “noisiness.” The irregular, yet almost periodic, waveform of Figure 11.8c
resembles the pattern of white blood cell count that has been observed in some
patients with CML. Note, however, that the differential-delay equation (Equation
11.2) that produced this time-course is absolutely deterministic –No random noise
has been added to the simulation output. In other words, the neutrophil time-course
in Figure 11.8c is chaotic. To confirm that this indeed reflects chaotic behavior, we
need to determine that the dynamic evolution of the predicted neutrophil density is
sensitive to small changes in initial conditions. Figure 11.9 shows the result of just
such a determination. Solution of Equation 10.2 using the SIMULINK model in
Figure 11.7 is performed using two sets of initial conditions. The first assumes the
initial neutrophil density, x(0), to be 1.22; in the second simulation, x(0) is set equal
to 1.21. As Figure 11.9 shows, after an initial period of remaining very close
together, the two simulated time-courses begin to diverge after t= 100 days.
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FIGURE 11.8 Spontaneous dynamics of neutrophil density predicted by the MacKey-
Glassmodel as the cell maturation time, Td, increases from the “normal” value of 2 days (a) to
6 days (b), and in chronic myeloid leukemia to 20 days (c).

Eventually, each trajectory appears to follow its own course, although both remain
within a bounded range of values. This is the hallmark of chaotic behavior.

11.2.3 Model of Cardiovascular Variability

Beat-to-beat fluctuations in the duration of the cardiac cycle, arterial blood pressure,
and cardiac output are well-known phenomena. Are these simply manifestations of
intrinsically noisy processes? Recent applications of the tools of nonlinear dynam
ics to cardiovascular measurements suggest that deterministic chaos may be the
underlying mechanism. In this section, we examine a model published recently by
Cavalcanti andBelardinelli (1996) that postulates that the spontaneous variability in



388 COMPLEX DYNAMICS IN PHYSIOLOGICAL CONTROL SYSTEMS

FIGURE 11.9 Sensitivity of the neutrophil regulation model to initial conditions indicates
that the model becomes chaotic when the cell maturation delay, Td, is increased to 20 days.

heart rate and blood pressure results from chaotic behavior occurring in the
baroreflex control system. Functionally, the model contains two feedback loops:
one representing the effect of the baroreflex on heart rate and the other representing
the effect of the baroreflex on cardiac contractility, which in turn affects stroke
volume.

To highlight the importance of interaction between the two feedback loops, we
begin by discussing a simplified variant of this model. The schematic block
diagram that represents this model is shown in Figure 11.10a, and the corresponding
SIMULINK implementation of the model (cvvar1.slx) appears in Figure 11.10b.
For a given cardiac output, circulatory mechanics determines the corresponding
level of arterial blood pressure. In the model, circulatory mechanics is charac
terized by a three-element Windkessel model. The latter consists of a resistance,
representing the aortic characteristic impedance (r), placed in series with a
parallel combination of the peripheral resistance (R) and the total arterial
compliance (C). The differential equation describing the three-element Wind
kessel model is given by

dP dQ
RC � P � rRC � �R � r�Q (11.3)

dt dt

where P and Q represent arterial blood pressure and cardiac output, respectively.
The resistances and compliance are assumed constant and given the following
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FIGURE 11.10 (a) Cardiovascular variability model with single feedback loop. (b)
SIMULINK implementation (cvvar1.slx) of the above model.

values: C= 1.333mLmmHg�1, R= 0.900mmHg smL�1, and r= 0.039mmHg s
mL�1. Thus, the circulatory mechanics subsystem is linear.

Changes in P are sensed by the baroreceptors that relay this information back to
the vasomotor center in the brainstem. The vasomotor responds with changes in
vagal and sympathetic nerve activity that, in turn, modulate the cardiac period T
(and thus, heart rate= 1/T). In this simplified version of the Calvacanti model, we
assume stroke volume (Vs) to be independent ofP. The steady-state characteristic of
this baroreflex response is shown in Figure 11.11a.AsP decreases,T also decreases,
meaning that cardiac output increases, since Q=Vs/T and Vs is constant. Con
versely, as P increases, T also increases, decreasing Q. This accounts for the
negative feedback effect of the baroreflex. However, when P falls below 80mmHg
or rises above 100mmHg, the sensitivity of T to further changes in P drops
substantially. The baroreflex response therefore saturates at low and high levels of
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FIGURE11.11 (a) Steady-state characteristics of the baroreflex; stroke volume is assumed
to be fixed and independent of arterial blood pressure. (b) Steady-state properties of the
baroreflex and heart combined (bold curve), shown together with the arterial pressure–
cardiac output dependence determined by circulatory mechanics. Intersection of these two
functions yields a single equilibrium point E1.

P. The dependence of T on P is given by the following equation:

Tmax � TminT P � min � (11.4)� � T �αP=Pe1 � γe

where Tmin and Tmax are the lowest and highest possible values for T, assumed to
be 0.66 and 1.2 s, respectively. Pe is the equilibrium level of arterial pressure and
is equal to 89mmHg. The constants α and γ control the range and slope of the
linear portion of the T–P curve; they are assigned values of 31 and 6.7× 1013,
respectively.
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The model does not take into account the dynamics of the sinoatrial node, as in
the model of Saul et al. (see Section 5.4). However, an overall delay τ is
incorporated. This delay represents the combined lag associated with the baror
eceptor response time and the response times of the sinoatrial node to vagal and
sympathetic stimulation. In the discussions that follow, we will examine how the
dynamics of this baroreflexmodel are affected by τ as it is given different values that
span the range of feasible delays.

Before proceedingwith our exploration of the dynamics of thismodel, it is useful
to apply the approach presented in Chapter 3 and to determine the steady-state
operating point that results from the matching of the feedforward (circulatory
mechanics) and feedback (baroreflex+ delay+ heart) portions of this closed-loop
system. This is shown in terms of the variables Q and P in Figure 11.11b.
Intersection of the curve representing the baroreflex and heart (bold curve) with
the straight line representing linear circulatory mechanics yields the equilibrium
point E1 at which P=Pe= 89mmHg and Q= 78.8mL s�1. Applying the phase-
plane method of analysis (Section 10.2), it can be determined that this equilibrium
point is stable. Since these considerations involve only the steady state, the delay
plays no role in the determination of the equilibrium point.

Figure 11.12 shows some simulation results obtained with the SIMULINK
model ccvar1.slx. The evolution of the time-course of instantaneous heart rate
(= 60/T, expressed in beats per minute) is displayed in each of the left panels (a, c, e,
and g) of Figure 11.12; the transient effects of starting the simulations with arbitrary
initial conditions have been removed from these plots. The corresponding phase-
space plots, withQ plotted againstP, are shown in the panels on the right.When τ is
small, for example, 0.5 s (as in Figure 11.12a), the response rapidly converges to the
equilibrium level; this is represented as a single dot in the phase space (Figure
11.12b). As τ is increased, the system becomes oscillatory, as demonstrated by the
periodic waveform (Figure 11.12c) and limit cycle behavior in the phase-space plot
(Figure 11.12d). This periodic behavior persists with further increases in τ (Figure
11.12e-h). The cycle duration of the oscillation, however, increases as τ is
increased. Again, this example demonstrates that prolongation of the time delays
inherent in a closed-loop system constitutes a highly destabilizing effect.

A schematic block diagram representing the complete version of the model is
displayed in Figure 11.13a. The SIMULINK implementation of this model,
cvvar2.slx, is shown in Figure 11.13b. Here, stroke volume Vs is assumed to
be a function of arterial pressure. Figure 11.14a illustrates the dependence of Vs on
P, which is also basically sigmoidal in form as in the relation between T and P.
Above 90mmHg, Vs remains relatively constant. Below 80mmHg, Vs decreases
steeply with decreases in P. This is due to the concomitant increase in heart rate,
which reduces the time for ventricular filling. As P decreases even further, Vs

decreases toward zero, as the heart begins to fail. Incorporation of the dependence of
Vs on P produces a dual feedback-loop model. Furthermore, since cardiac output is
the ratio ofVs to T, this introduces a nonlinear interaction between the two feedback
loops.
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FIGURE 11.12 Simulation results produced by ccvar1.slx. Left panels show predicted
time-courses of heart rate; right panels show x–y plots of cardiac output (= heart rate× stroke
volume) versus arterial blood pressure. A and B: τ= 0.5 s; C and D: τ= 1.2 s; E and F:
τ= 1.8 s; andG andH: τ= 2.5 s. As the delay increases, the system becomes oscillatory with
increasing cycle duration.

Figure 11.14b displays the steady-state relations between cardiac output and P
for both the circulatory mechanics subsystem (thin line) and the subsystem
representing the baroreflex and heart (thick curve). Notice that as P decreases
from physiological levels, Q attains a peak and subsequently decreases monotoni
cally toward zero. Consequently, intersection of the two curves yields two
equilibrium points, E1 and E2, unlike the single feedback-loop case. Stability
analysis shows that E1 is stable and corresponds to the same equilibrium point that
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FIGURE 11.13 (a) Cardiovascular variability model with two interacting feedback loops.
(b) SIMULINK implementation (cvvar2.slx) of the above model.

we found for the simpler version of the model. However, it can be shown that E2 is
an unstable fixed point. This is basically due to the fact thatE2 falls on the portion of
the baroreflex–heart Q–P curve where the slope now has become positive, instead
of negative as for the case of E1. In other words, the system contains negative
feedback over the range of high P values, but becomes one with positive feedback
when P falls below 80mmHg.

What is the dynamic behavior of this model when the time delay is taken into
account? Figure 11.15 shows some examples of simulations performed with the
SIMULINK program ccvar2.slx. When τ is kept small at, say, 0.5 s, the system
trajectory converges rapidly to the steady state represented by E1, after the initial
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FIGURE 11.14 (a) Steady-state characteristics of the baroreflex; both cardiac period and
stroke volume are assumed to be dependent on arterial blood pressure. (b) Steady-state
properties of the baroreflex and heart combined (bold curve), shown together with the arterial
pressure–cardiac output dependence determined by circulatory mechanics. Intersection of
these two functions yields two nontrivial equilibrium points, E1 and E2.

transient that depends on starting conditions (Figure 11.15a and b). As τ is
increased, a periodic oscillation develops (Figure 11.15c and d for τ= 1.2 s) as
in the single feedback-loop case; in this case, the frequency of the oscillation is
0.28Hz. However, with further increases in τ, period-doubling occurs. At τ= 1.8 s,
the system remains periodic; however, the oscillations now contain multiple
frequencies at a subharmonic and superharmonics of 0.19Hz (Figure 11.15e).
The corresponding phase-space plot shows a complicated double loop (Figure
11.15f). When τ is increased beyond 2 s, the oscillations turn into chaos, as
illustrated in the example in Figure 11.15g and h; in this case, τ= 2.5 s.
Figure 11.16a provides a closer look at the relative time-courses of the
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FIGURE 11.15 Simulation results produced by ccvar2.slx. Left panels show predicted
time-courses of heart rate; right panels show x–y plots of cardiac output versus arterial blood
pressure. (a and b) τ= 0.5 s. (c and d) τ= 1.2 s. (e and f) τ= 1.8 s. (g and h) τ= 2.5 s. As the
delay is increased, the system becomes periodic; then period-doubling occurs, and finally,
chaos sets in.

system variables P, heart rate (or equivalently, T), and Vs when the system is in
chaoticmode,with τ set equal to 2.5 s.When these three state variables are plotted in
three-dimensional format, the picture of the chaotic attractor emerges (Figure
11.16b).

As in the neutrophil regulationmodel of Section 11.2.2, the preceding discussion
demonstrates that chaotic behavior can be produced in systems with relatively low-
order dynamics when the important ingredients of time delay and mixed feedback
are present. However, the predictions made by this model are not so consistent with
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FIGURE 11.16 (a) Time courses of arterial blood pressure, heart rate, and stroke volume
when the system is in chaotic mode (τ= 2.5 s). (b) Three-dimensional view of the chaotic
attractor.

empirical observations, which tend to show more chaotic behavior in heart rate
variability in normals (where τ would be expected to be small) and less chaotic,
more periodic behavior in patientswho suffer frommyocardial infarction (wherewe
would expect τ to be increased due to the dominant influence of the sympathetic
nervous system). One reason could be that this model is highly simplistic in not
explicitly incorporating the dynamics of the sinoatrial node, the baroreflex, and the
heart. Another important factor is that the influence of breathing on arterial pressure
and heart rate fluctuations is ignored. Finally, the assumed dependencies relating P
to T and Vs may be too simplistic.
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11.3 COUPLED NONLINEAR OSCILLATORS: MODEL OF
CIRCADIAN RHYTHMS

In Section 10.3.2, we pointed to the phenomenon of “entrainment” as a distin
guishing feature of nonlinear oscillators that are coupled together. Since the body
contains a number of pacemakers and we have evolved to adapt to the 24 h rhythm
of the light–dark cycle, it follows that several of these circadian oscillators must be
entrained to the external zeitgeber (or, if translated literally from German, “time
giver”). There is a large body of evidence to support this notion. For example, in
subjects who have been isolated from all external time cues for over 2 months, the
sleep–wake and body temperature rhythms become internally desynchronized, with
the temperature oscillator assuming a periodicity that is slightly longer than 24 h and
the sleep–wake cycle being prolonged to approximately 30 h. Other physiological
rhythms in these subjects then tend to be entrained to either the temperature or the
sleep–wake cycle. Kronauer et al. (1982) have proposed a model consisting of two
coupled van der Pol oscillators to represent the temperature and sleep–wake
pacemakers. Under normal circumstances, both oscillators are entrained to the
external 24 h zeitgeber. However, under conditions that simulate temporal isolation,
the model exhibits the complex variations in periodicities and relative phasing
between the temperature and sleep–wake rhythms that closely resemble empirical
measurements.

The schematic diagram in Figure 11.17a shows the temperature and sleep–wake
oscillators and the mutual coupling between them. Kronauer and coworkers found
that itwas necessary to assume that the synchronizing zeitgeber is applied directly to
the sleep–wake oscillator instead of the temperature system in order to obtain
realistic phase relations between them during zeitgeber entrainment. We represent
the outputs of the temperature and sleep–wake oscillators by x and y, respectively.
The zeitgeber output is represented by z. The model is characterized by the
following pair of van der Pol equations:

k2x€� kμ x2 � 1 x_ � ω2 ky_ � 0 (11.5)x xx � Fyx

and

ωztk2y€� kμy y2 � 1 y_ � ω2
yy � Fxykx_ � Fzysin (11.6)

k

In the above equations, the scaling factor k (= 24/2π) is introduced so that the
intrinsic periods of the (uncoupled) temperature and sleep–wake oscillators would
equal 24 h if the angular frequenciesωx andωy, respectively, were each set equal to
unity. Similarly, ωz is set equal to unity so that the zeitgeber period is 24 h. The
parameters μx and μy represent the “stiffness” of the temperature and sleep–wake
oscillators, respectively. They determine the time constants of the transient duration
of adjustment in phase of each oscillator to that of the zeitgeber following release
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FIGURE 11.17 (a) Schematic representation of the circadian model of Kronauer et al.
(1982). (b) SIMULINK implementation (circad.slxl) of the circadian model.

from entrainment or after re-entrainment. In our simulations, μx and μy are each
assigned the value of 0.1. Fyx and Fxy represent the strengths of the coupling
between the temperature and sleep–wake oscillators. Fyx and Fxy are assigned the
values of �0.04 and �0.16, respectively. The relative magnitudes of these values
imply that the temperature oscillator has a stronger influence on the sleep–wake
oscillator than vice versa. Fzy is assigned the value of unity. The SIMULINK
implementation of this model (circad.slx) is shown in Figure 11.17b. Note the
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FIGURE 11.18 Phase relations between the oscillations in core body temperature (x) and
activity (y) during entrainment by the external 24 h zeitgeber (z). Time is shown in hours
starting at midnight (“00”); “12” represents noon. The gray and dark horizontal bars indicate
the durations over which temperature and activity, respectively, are below their mean levels.
Dotted lines indicate times at which temperature and activity are at their lowest levels.

use in this model file of Goto and From blocks in order to couple the two oscillators
to each other without creating a mess in signal lines.

Figure 11.18 shows the simulated behavior of temperature (x, middle panel) and
activity (y, bottom panel) during entrainment by the zeitgeber (z, top panel). The
selected model parameters allow the establishment of the following phase relations
among the three oscillations. The positive half of the z-oscillation corresponds to the
12 h duration between midnight and noon; these times are represented as 00 and 12,
respectively, in Figure 11.18 and all subsequent graphs. The negative half of the x-
oscillation corresponds to the duration over which core body temperature is below
its mean level. Similarly, the negative half of the y-oscillation represents the
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duration over which activity is below average. Kronauer used themiddle two-thirds
of this duration to represent the period of sleep. However, for simplicity, we will
take the entire below-average activity duration to correspond to sleep. The model
simulation shows that the start of the “sleep period” (represented by the dark bars in
Figure 11.18, bottom panel) occurs at approximately 9:30 p.m. Core body temper
ature starts to fall below its mean level (gray bars in Figure 11.18, middle panel)
some 40min later, at about 10:20 p.m. Thus, temperature attains its lowest value at
approximately 4 a.m., some 6.5 h after sleep onset. This is reasonably consistent
with empirical observations.

In the simulation shown in Figure 11.18, the following intrinsic frequencies of
the temperature and sleep–wake oscillators were assigned:ωx= 0.99 andωy= 0.92.
These frequencies correspond to periodicities of 24.37 h for temperature and
26.09 h for activity. To simulate the “free run” condition (i.e., release from zeitgeber
entrainment), Fzy was set equal to zero. In addition, ωy was assumed to decrease
linearly so that by the end of the 100th day after the start of free run, ωy would
become 0.78, which corresponds to a period of 30.8 h. Kronauer found this latter
assumption to be necessary to produce a better match between the simulation results
and empirical data.

Figure 11.19 shows the relative phasing between x (light waveforms) and y (bold
waveforms) during selected segments of the free run duration. In the first 5 days
following release from zeitgeber drive, the time of sleep onset, which previously
preceded the drop in temperature below its mean level, can be seen to be delayed
progressively (top panel, Figure 11.19). On day 5 after release into free run, the
point of lowest activity (mid-sleep) occurs approximately 3 h after the point of
lowest core body temperature. This gradual delaying of the period of sleep relative
to that of lower-than-average body temperature continues until approximately day
35. The day-to-day periods (τx and τy) of the two oscillators are shown in
Figure 11.20, along with their intrinsic periods (Tx and Ty). Note that immediately
following release into free run, the temperature oscillator abruptly increases its
period by about 2 h, but almost as abruptly, moves back toward τx. From day 36
through day 70, the “drift” in relative phase between x and y ceases to occur; instead,
there is a tendency for both oscillators to arrive at a compromise cycle duration and
relatively constant phase relationship. This results in the tendency for τx and τψ to
fluctuate around each other (Figure 11.20). This stage of the free run is referred to as
phase-trapping, and is illustrated in themiddle panel of Figure 11.19. After the 70th
day, a new stage begins, known as internal desynchronization. Here, each oscillator
tends to track its own intrinsic period, as Figure 11.20 quite dramatically illustrates.
The oscillations in τx and τψ reflect the fact that both oscillators still exert some
influence on the other and are not totally independent. During internal desynch
ronization, the sleep and low-temperature periods can become out-of-phase
with one another (Figure 11.19, bottom panel). The sleep–wake cycle duration
alternates between shorter periods of ∼26 h and very long periods of ∼35 h. Again,
these simulated results resemble what has been observed in temporally isolated
humans.
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FIGURE 11.19 Phase relations between the temperature and activity oscillators following
release from24 h entrainment by the external zeitgeber. Each panel shows 5 days of simulated
behavior. Light waveforms represent temperature, and bold waveforms represent activity.
Gray and dark bars represent durations over which temperature and activity, respectively, are
below their corresponding mean levels.

11.4 TIME-VARYING PHYSIOLOGICAL CLOSED-LOOP SYSTEMS:
SLEEP APNEA MODEL

In the previous section, we saw how direct input “forcing” from the temperature
oscillator affected the dynamics of the sleep–wake (or activity) oscillator, and vice
versa. The coupling between related systems is frequently not as direct. For instance,
changes in sleep–wake state are known to affect chemoreflex gain, cardiac output,
and circulatory delay. These factors are not state variables, but instead comprise the
“parameters” in any model of respiratory control. In the previous models of
respiratory control that we have discussed (see Sections 3.7, 6.7, and 8.5.2), these
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FIGURE 11.20 Dynamic changes in the periods of the temperature (τx, light tracing) and
activity (τy, bold tracing) oscillators following release from entrainment by the external 24 h
zeitgeber. The dotted and dashed lines represent the intrinsic periods of the temperature (Tx)
and activity (Ty) oscillators. Both τx and τy assume values between 24 and 25 h throughout
much of the duration of free run. However, after 70 days, there is desynchronization between
the two oscillators and τy takes on much larger values.

parameterswere always assumed to take on constant values.Amodel inwhichone or
more of the key parameters change with time is said to be time-varying or
nonstationary.

In this section, we examine the dynamics that can result from a simple model of
obstructive sleep apnea (OSA). A primary mechanism that leads to the obstructive
apnea in patients with OSA is the pronounced decrease in tone of the upper airway
muscles when sleep sets in. Compounding the effect of this mechanism is the added
predisposing factor that the upper airway passage in these patients is already
anatomically narrower than in normal individuals. As such, when negative intra
luminal pressure is applied to the upper airway during inspiration, the net result is a
tendency for the “floppy” airway to collapse, thereby obstructing airflow. There are,
of course, many other factors involved, but what we have just described is the basic
chain of events that generally occurs during the periodic episodes of sleep apnea. A
schematic diagram of the model is shown in Figure 11.21. Figure 11.22a shows the
SIMULINK implementation of thismodel (osa.slx). TheOSAmodel is similar to
the respiratory control models that we have considered previously, except for three
major added features:

(1) The first is the addition of the “upper airway conductance” component. In
themodel, this takes the form of a “gain” that transforms the total respiratory
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FIGURE 11.21 Model of state–chemoreflex interaction in ventilatory control.

drive into ventilation (or airflow). However, this gain is a time-varying
parameter. During wakefulness, upper airway conductance is assumed to be
equal to unity so that all of the total respiratory drive is converted directly
into ventilation. During the transition fromwake to sleep,we assume that the
upper airway conductance decreases in proportion to the “state-related
drive,” so that when sleep is attained, conductance becomes zero (i.e., the
upper airway is fully obstructed). Thus, the upper airway conductance, aswe
have defined it, is a normalized quantity that can only assume values
between zero and unity. The SIMULINK subsystem block that represents
this model component is shown in Figure 11.22b.

(2) Aside from the time-varying effect of state changes on upper airway
conductance, the model also includes the direct effect of sleep–wake state
on respiratory drive. There is much empirical evidence that suggests that
a “wakefulness drive” (or “wakefulness stimulus”) to breathing that is
present during the awake state is withdrawn or inhibited as sleep sets in.
This state-related drive is separate from the chemical drive that depends
on feedback from the chemoreceptors. Thus, in the model, we have
assumed that total respiratory drive consists of the sum of the combined
chemoreflex or chemical drive and this state-related drive. During the
transition from wake to sleep, we assume a simple linear decrease in this
state-related drive, so that it becomes zero when stable sleep has been
achieved. As we will demonstrate later, the duration over which this
linear decrease (or equivalently, the wake-to-sleep transition) occurs, τ,
plays an important role in determining the ventilatory and state dynamics
that accompany sleep.
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FIGURE 11.22 (a) SIMULINK implementation (osa.slx) of the model of state–
chemoreflex interactions in obstructive sleep apnea. (b) Subsystem showing how upper
airway conductance is dependent on state. (c) Subsystem that characterizes CO2 exchange in
the lungs and body tissues.



TIME-VARYING PHYSIOLOGICAL CLOSED-LOOP SYSTEMS: SLEEP APNEA MODEL 405

(3) The final key component in this model is the “sleep–wake state controller.”
This controller determines the time-course of the decrease in state-related
drive during the transition from wake to sleep. It also receives two forms of
feedback from the other parts of the model. First, it monitors the arterial
PCO2 (PaCO2). Second, it monitors the chemical drive, that is, the combined
output of the central and peripheral chemoreflexes. During sleep or during
the transition from wake to sleep, if PaCO2 exceeds 55mmHg or the
chemical drive exceeds 25 Lmin�1, the controller will revert the current
state back to wakefulness and restart the transition from wake to sleep. This
automatic mechanism simulates, to a first approximation, the arousals that
are known to occur when the stimulation of respiratory drive exceeds certain
arousal thresholds. The arousal mechanism is a potent protective defense
against asphyxiation during sleep.However, at the same time, it is the reason
why sleep architecture is so severely disrupted in subjects who have OSA.

The equations characterizing the rest of the model are the same as those
described in Section 6.7.1, except for the addition of the body tissues compartment
in the gas exchange subsystem. CO2 exchange in this compartment is characterized
by the differential equation (Equation 11.7):

_VT dPvCO2 VCO2� � (11.7)PaCO2 � PvCO2Q dt QKCO2

where PvCO2 is the mixed venous PCO2, V̇CO2 is the metabolic production rate of
CO2, Q is the cardiac output, and VT is the effective volume of the body tissues
compartment. KCO2 is the slope of the CO2 dissociation curve (approximated as a
straight line) for blood. In the simulations, we assume that VT= 15 L,Q= 0.1 L s�1,
KCO2= 0.0065mmHg�1, and V̇CO2= 210mLmin�1. The SIMULINK implemen
tation of the gas exchange subsystem is shown in Figure 11.22c. The values of the
other parameters are the same as those employed in Section 6.7.1.

Two simulations with the model showing how sleep onset would affect
subsequent ventilatory and state variability are displayed in Figure 11.23. In
both cases, the wake-to-sleep transition time τ is assumed to be 60 s. The first
example (top panel of Figure 11.23) represents a “normal” subject, in which we
have assumed upper airway conductance to be unchanged from wake to sleep.
(In reality, upper airway resistance increases – or equivalently, upper airway
conductance decreases – quite significantly during sleep, even in normals,
although not to the point of collapsing the airway.) During the transition
from wake to sleep (first 60 s), ventilation (V̇E) decreases and PaCO2 increases
as a consequence of the reduction in state-related drive. However, after the
transition period, there is some recovery of PaCO2 and V̇E toward their original
equilibrium levels. Finally, the new equilibrium level during sleep is established
with PaCO2 about 2mmHg higher than during wakefulness and V̇E about
1 Lmin�1 lower. The main point here is that the wake-to-sleep transition occurs
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FIGURE 11.23 Sample simulations generated by osa.slx, showing effect of sleep onset
on ventilation andPaCO2, aswell as subsequent sleep–wake state. In the “normal subject” (top
panel), stable levels of ventilation,PaCO2, and sleep are attained. However, in the subject with
obstructive sleep apnea, there are alternating episodes of upper airway obstruction and
arousal-induced hyperpnea.

smoothly and without incident. However, in the second simulation representing
OSA subject (lower panel of Figure 11.23), the result is quite different. Here, as
the transition from wake to sleep occurs, the rate of decrease in V̇E takes place
more rapidly than in the normal subject. This is due to the fact that, in addition to
the decrease in state-related drive, there is also a concomitant decrease in upper
airway conductance. PaCO2 also rises at a substantially faster rate. When sleep is
established, upper airway conductance becomes zero, and consequently there is
approximately 50 s of obstructive apnea. During this interval, PaCO2 continues to
rise until it exceeds the arousal threshold (55mmHg). When arousal is triggered,
there is an abrupt restoration of the state-related drive as well as a sudden
increase in upper airway conductance from zero to unity. This abrupt return to
the wake state briefly produces a large increase in V̇E. However, subsequently, a
new transition from wake to sleep occurs, leading to obstructive apnea and then
another arousal. Hence, a periodic alternation between apnea and hyperpnea,
which coincides with the alternation between sleep and wake, occurs. The
periodicity of this cyclic behavior is approximately 76 s in duration, which falls
in the range of cycle times observed in OSA.
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FIGURE 11.24 Simulations showing the effect of wake-to-sleep transition time on
ventilatory and state stability following sleep onset. Top panel shows results for a rapid
wake-to-sleep transition (20 s). Lower panel shows the effects of a slow wake-to-sleep
transition (180 s). Although there is periodic ventilation in both cases, the rate
of occurrence of arousals is much lower in the case with slow wake-to-sleep transition
time.

Figure 11.24 shows the effect of altering the wake-to-sleep transition time on
the subsequent dynamics of respiration and sleep–wake state. The first example
(top panel of Figure 11.24) simulates the case in which τ= 20 s. Although this
represents the fast end of the spectrum, it is not entirely unrealistic: EEG
measurements in sleep-deprived individuals do show a very rapid change in
pattern that reflects fast sleep onset; these changes can occur over time spans as
short as a few breaths. The rapid sleep onset leads to a long period of obstructive
apnea, during which PaCO2 and chemical drive build up to a point where arousal
is triggered. This is followed by a brief hyperpnea and then a subsequent rapid
wake-to-sleep transition, and a repetition of the same cycle of events. The period
between these apneas (or equivalently, arousals) is 34 s. An alternative means of
expressing this result is to convert it into the corresponding apnea index, that is,
the number of apneas per hour. In this case, the apnea index is about 106. This is
at the high (although not impossible) end of the severity scale for OSA. On the
other hand, if τ is large (i.e., wake-to-sleep transition is very slow), the arousals
would be much less frequent and the apneas substantially shorted in duration, as



408 COMPLEX DYNAMICS IN PHYSIOLOGICAL CONTROL SYSTEMS

represented in the example in the lower panel of Figure 11.24. Here, τ= 180 s
and the corresponding periodicity is about 182 s.

The previous examples assumed central and peripheral chemoreflex sensitivities
of 2 and 0.5 Lmin�1mmHg�1, respectively. Consider what happens when the
peripheral chemoreflex gain is increased to 2 Lmin�1mmHg�1, simulating what
would occur if the subject became hypoxic. The top panel of Figure 11.25 shows the
result for the simulated “normal” (i.e., upper airway conductance unchanged by
sleep onset). Due to the enhanced loop gain, the disturbance produced by the wake
to-sleep transition becomes progressively amplified until periodic breathing results.
However, the cycling in V̇E and PaCO2 is mediated completely by the chemoreflex
loops and does not involve the arousalmechanism.As such, a stable stage of sleep is
attained while the periodic respiration persists. The periodicity in this case is
approximately 18 s, similar to the cycle times reported for periodic breathing at
altitude. In the corresponding simulation for the OSA subject (lower panel,
Figure 11.25), a more complex pattern occurs. Following the initial transition

FIGURE 11.25 Simulations showing the dynamics of ventilatory and state variability
following sleep onset in “subjects” with high chemoreflex gain. The top panel shows the
results for a “normal” with no upper airway obstruction: Periodic breathing occurs, but the
episodes do not elicit periodic arousal. The lower panel shows the corresponding results for
the obstructive sleep apnea patient. Periodic arousals that are accompanied by brief durations
of strong hyperpnea occur together with chemoreflex-mediated oscillations that do not
involve arousal.
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from wake to sleep, there is a brief interval of upper airway obstruction that is
punctuated by an arousal. This produces a burst of hyperpnea that drives the PaCO2

down to the point where central apnea (i.e., period of zero respiratory drive) occurs.
The central apnea is followed, in turn, by an overshoot in V̇E, a subsequent
undershoot, and a second (but not so large) overshoot. The key point is that these
latter oscillations are mediated by the chemoreflexes and take place while a new
wake-to-sleep transition occurs. Thus, in this case, there is a periodic alternation
between the large arousal-induced hyperpneas and the chemoreflex-mediated
oscillations in ventilation. The arousals are spaced approximately 1min apart,
while the chemoreflex oscillations have a period of roughly 20 s. This example
underscores the kind of interaction that can occur between the arousal and chemo
reflex feedback loops as a consequence of the time-varying model parameter
representing upper airway conductance.

11.5 PROPAGATION OF SYSTEM NOISE IN FEEDBACK LOOPS

We have seen thus far that a variety of factors, such as mixed feedback, time delays,
nonlinear coupling, and time-varying properties, can contribute to the complex
dynamical behavior of physiological control systems. These factors, however, share
a common feature: They are all deterministic characteristics. Random influences are
clearly present in physiological systems of all hierarchical levels. We will show
through a simple example in this section that one potential source of the spontane
ous variability observed in physiological systems may be the responses elicited in
these systems by random input perturbations.

We turn once again to the chemoreflex control of respiration model presented
in Section 6.7.1. The natural variability in ventilation in wakefulness or sleep is
known to be quite substantial, even when the respiratory control system is
operating under clearly stable conditions. We propose that some, if not a large
part, of this spontaneous variability may be due to the continual perturbation of
the chemoreflex dynamics by random noise inputs. Figure 11.26a shows the
proposed scheme through which “system noise” might enter the closed-loop
structure of the respiratory control system. Since the primary structures that
generate the drive to breathe are neural systems, it is reasonable to assume that
respiratory drive, which is ultimately converted into ventilation, consists of the
chemoreflex-mediated chemical drive plus some random influences that repre
sent neural noise. Another obvious source of “noise” is the gas exchange process
itself. Regional inhomogeneities in ventilation and perfusion of the lungs, as
well as temporal fluctuations in cardiac output and the circulatory delays, can
give rise to noise that contaminates the time-evolution of alveolar PCO2 (PACO2)
and consequently PaCO2. These reasons have prompted us to select the sites
shown in Figure 11.26a as the points in the closed-loop structure at which noise
enters the system. The SIMULINK implementation of this model (noisycls.
slx) is displayed in Figure 11.26b. One detail that is of special importance in
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FIGURE 11.26 (a) Schematic diagram showing the “sites” at which noise might enter the
closed-loop respiratory control system. (b) SIMULINK implementation (noisycls.slx) of
the closed-loop respiratory control model with noise inputs.

this example relates to the method by which “breath-by-breath” values of
ventilation and PaCO2 are simulated, since the underlying equations assume a
continuous-time process. To generate “breaths,” the total respiratory output
(chemoreflex drive plus “neural noise”) is sent through a Zero-Order Hold

block, which samples the continuous respiratory drive waveform every 4 s and
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FIGURE 11.27 Spontaneous variability in ventilation (top panel, bold tracing) and PaCO2

(lower panel, bold tracing) resulting from the propagation of noise (both panels, light
tracings) in the chemoreflex loops of the respiratory control model. “Chemical drive” in the
top panel refers to the combined output of the central and peripheral chemoreflexes in
response to the “noisy” PaCO2.

holds each sampled value constant for the following 4 s. Then, ventilation,
PaCO2, and the noise processes are sampled at 4 s intervals and saved to the
MATLAB workspace for further analysis.

Figure 11.27 shows samples of the spontaneously varying waveforms in
ventilation (top panel) and PaCO2 (lower panel) generated by the model. The
coefficient of variation (standard deviation divided bymean value) of the simulated
ventilation time-course is approximately 12%, which falls in the range commonly
observed in resting humans. The peripheral and central chemoreflex gains are
assigned values of 0.5 and 2 Lmin�1mmHg�1, respectively. One may note the
strong similarity between the ventilation time-course and the ventilatory noise
waveform, since the former is simply the sum of the latter and the combined central
and peripheral chemoreflex drives. Ventilation is causally related to current and past
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values of the ventilatory noise input because of the propagation of the noise around
the chemoreflex loops; however, the ventilatory noise is not causally related to past
values of ventilation. The waveform labeled “chemical drive” represents the
combined response of the chemoreflexes to the variations in PaCO2 elicited in
part by the past spontaneous fluctuations in ventilation as well as by the noise
entering the system through the gas exchange process (PACO2 noise). The
coefficient of variation of the PaCO2 waveform in the lower panel of
Figure 11.27 is approximately 2%.

The corresponding spectra of these fluctuations in ventilation and PaCO2 show
enhanced power in the 0.01–0.05Hz range (bold tracings in Figure 11.28). These
contrast with the much flatter (broadband) spectra of the noise inputs (light tracings

FIGURE 11.28 Power spectra of the spontaneous fluctuations in ventilation (top panel,
bold tracing) andPaCO2 (lower panel, bold tracing) shown in Figure 11.27. Note the increased
power in the 0.01–0.05Hz range. This contrasts with the much flatter (broadband) spectra of
the random noise inputs (light tracings).
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in Figure 11.28). Thus, the propagation of these noise inputs through the feedback
loops of the closed-loop system gives rise to certain oscillations that appear within a
bandwidth that is consistent with the dynamic characteristics (i.e., gains, compo
nent lags, and delays) of the system. In this case, the bandwidth of frequencies
0.01–0.05Hz corresponds to periodicities in the range of 20–100 s. These are
compatible with the oscillation cycle durations that have been observed and reflect
the frequency range for “resonance” in the human respiratory control system.When
the peripheral chemoreflex gain is increased by 140% to 1.2 Lmin�1mmHg�1, the
resulting simulation clearly shows enhanced oscillatory activity in both ventilation
and PaCO2 (Figure 11.29). Furthermore, bursts of oscillations in ventilation and
PaCO2 occur somewhat randomly, giving the appearance that the underlying system
contains time variations in loop gain, although the model parameters, in fact, have
been assigned constant values. The increased oscillatory activity is clearly evident

FIGURE 11.29 Spontaneous variability in ventilation (top panel) andPaCO2 (lower panel)
produced by the propagation of random noise through the chemoreflex loops. In this case,
peripheral chemoreflex gain has been increased to 1.5 times its nominal value. Notice the
much more oscillatory pattern and the appearance of “bursts” of oscillations.
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FIGURE 11.30 Power spectra of the fluctuations in ventilation (top panel) and PaCO2

(lower panel) when peripheral chemoreflex gain has been increased by 140% of its nominal
value. Note the substantially increased power in the 0.02–0.04Hz range (compared to the
original condition in Figure 11.28), reflecting the amplification of oscillatory activity visible
in Figure 11.29.

in the corresponding power spectra shown in Figure 11.30 (for comparison, see
Figure 11.28). However, the spectral composition of the fluctuations in both
ventilation and PaCO2 here is concentrated primarily in a narrower band of
frequencies that range from ∼0.02 to 0.04Hz.

The example presented above demonstrates that the propagation of random
influences through the feedback loops of a closed-loop control system can give rise
to temporally correlatedfluctuations in the systemvariables. Thesefluctuations take
the form of oscillations that have frequencies consistent with the stability properties
of the closed-loop system in question. “Bursts” of oscillations, which represent
somewhat lower frequency phenomena, can also appear. In this way, an intrinsi
cally stable closed-loop system can appear to be intermittently unstable as these
oscillatory bursts take place.
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PROBLEMS

P11.1. Develop a MATLAB or SIMULINK program to simulate the “logistic
equation” given by

xn � �1 � xn�1� xn�1
Use this program to generate time series for different values of the
parameter α that range from 2.9 to 4 in increments of 0.01. Demonstrate
that, prior to exhibiting chaotic behavior, this nonlinear dynamical system
undergoes several stages of period-doubling. Display the magnitude
spectrum of the fast Fourier transforms of each time series to determine
how the system dynamical behavior changes in the frequency domain.

P11.2. Explore the changes in behavior of the neutrophil regulation model
(hematop.slx) as the shape of the neutrophil production rate function
changes with the parameter n increasing from 5 to 20 (see Equation. 11.2).
Present phase-plane plots (i.e., dx/dt versus x) of the dynamics for each
value of n employed. For your simulations, use the following values for the
other parameters: β= 2, θ= 1, γ = 1, and Td= 2.

P11.3. Determine how the dynamics of the model of cardiovascular variability
(cvvar2.slx) would be affected by conditions that simulate (a) vagal
blockade, and (b) β-adrenergic blockade. Simulate vagal blockade by
adding a low-pass filter of unit gain and time constant of 10 s to
the feedback loop for cardiac period (T). To simulate β-adrenergic
blockade, employ a low-pass filter of unit gain and time constant of
0.8 s. In each case, determine how the phase-space plots would change
as the delay τ is increased in increments of 0.1 s from 0.5 to 2.5 s. In
each case, does the model still exhibit chaotic behavior for certain ranges
of τ?

P11.4. Use the Kronauer model of circadian oscillators (circad.slx) to simulate
the effect of “jet travel” on the temperature and sleep–wake cycles. First
entrain the model to the 24 h light–dark cycle until a steady state has been
attained. Then, “expose” the model to a 24 h period of light (to simulate a
12 h flight in continuous daylight from Los Angeles to Tokyo) before it
returns to the regular 24 h light–dark cycle. Determine how this “distur
bance” affects the time of sleep onset, the duration of sleep, and the phase
relation between the activity and temperature oscillations in the few days
that follow.

P11.5. Using the model of obstructive sleep apnea (osa.slx), determine the
dynamics of ventilation and sleep state following sleep onset in a patient
whose symptoms have been improved by treatment. Modify the model so
that upper airway conductance does not decrease to zero but only falls to
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one-quarter of its waking value during sleep. Assume a range of wake-to
sleep transition times from 20 to 120 s. What are the cycle durations of the
periodic breathing episodes in each case? How would oxygen administra
tion (simulated by eliminating the peripheral chemoreflex gain) affect the
ventilation-state dynamics in such a patient?

P11.6 Modify the model of chemoreflex ventilatory control (noisycls.slx) to
determine how random fluctuations in cardiac output (Q) might lead to
spontaneous variations in ventilation and PaCO2. Assume a nominal
value of 0.1 L s�1 for Q and a coefficient of variation of 3% for its
random fluctuations. Determine the coefficients of variation for the result
ing fluctuations in ventilation and PaCO2, as well as the corresponding
spectra.
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Appendix A

COMMONLY USED LAPLACE
TRANSFORM PAIRS

Waveform, x(t) Laplace Transform, X(s)

Unit impulse, δ(t) 1
Unit step, u(t) 1=s

1
e atu t� �

s � a
tk �at 1
e u t� �

k! �s � a�k�1
1

tu t� �
s2

tk 1
u t� �

sk�1k!
ω

sin � �ωt u t� �
s2 � ω2

s
cos ωt u t� � � �

s2 � ω2

ω
e at sin ωt u t� � � � �s � a�2 � ω2

(continued )
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(Continued )

Waveform, x(t) Laplace Transform, X(s)

e�atcos ωt� �u t� � s � a

s � a� �2 � ω2

t sin ωt� �u t� � 2ωs

�s2 � ω2�2

t cos ωt� �u t� � s2 � ω2

�s2 � ω2�2



Appendix B

LIST OF MATLAB AND
SIMULINK PROGRAMS

TABLE B.1 MATLAB Script Files

Chapter Program Name Description

4 nmr_var.m Assigns values to parameters of
msreflex.slx prior to
simulation

4 tra_llm.m Transient response analysis of
linearized lung mechanics
model

5 fda_llm.m Frequency-domain analysis of
linearized lung mechanics
model

5 rsa_tf.m Computes transfer functions
from simulated outputs of
rsa.slx

5 rsa_var.m Assigns values to parameters of
RSA model prior to
simulation

6 gpmargin.m Computes gain and phase
margins of given linear
system

(continued )
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TABLE B.1 (Continued )

Chapter Program Name Description

6 nyq_resp.m

6 pupil.m

7 CT2DTsys_impresp.m

8 fn_gmm.m

8 fn_llm.m

8 fn_rlc.m

8 gmm_est.m

8 laguerest.m

8 popt_llm.m

8 prbs.m

8 rcs_est.m

8 sensanl.m

8 sss_llm.m

8 sysid_ls.m

9 acs_CO2.m

9 TVmodel_RLS.m

10 df_resp.m

10 stationaryVolterra2_1in1out.m

Nyquist stability analysis of
respiratory control model

Nyquist stability analysis of
pupillary reflex model

Converts continuous-time to
discrete-time linear system

Computes goodness of fit
between glucose–insulin
model and data

Computes criterion function for
linearized lung mechanics
model

Predicts output of R–L–C model
for given input

Estimates parameters of glucose–
insulin minimal model

Estimates impulse response from
input-output data using
Laguerre expansion technique

Estimation of lung mechanics
model using optimization
technique

Generates pseudorandom binary
sequence

Estimation of respiratory control
model parameters

Performs sensitivity analysis for
given model

Simulation using state-space
formulation of lung mechanics
model

Nonparametric system
identification using least
squares

Simulates adaptive buffering of
spontaneous fluctuations in
ventilation

Adaptive parameter estimation
using recursive least squares

Stability analysis of respiratory
control model using
describing function

Estimate optimal kernels using
basis function expansion
technique



423HOW TO DOWNLOAD THE MATLAB AND SIMULINK FILES

TABLE B.2 SIMULINK Model Files

Chapter Program Name Description

2 respm1.slx Simulation of patient–ventilator system
2 respm2.slx Simulation of patient–ventilator system

(alternative model)
3 msrflx.slx Neuromuscular stretch reflex model (steady state)
3 respss.slx Simulation of steady-state respiratory control
4 glucose.slx Simulation of glucose–insulin regulation

(Stolwijk and Hardy model)
4 nmreflex.slx Simulation of neuromuscular reflex model
5 fdallm.slx Computes frequency response of linearized lung

mechanics model
5 rsa.slx Simulation of respiratory sinus arrhythmia (Saul

model)
7 IPFM.slx Simulation of integral pulse frequency

modulation model
8 gmm_sim.slx Simulation of minimal model of glucose–insulin

dynamics (Bergman)
10 bvpmod.slx Simulation of Bonhoeffer–van der Pol model
10 linhhmod.slx Simplified and linearized version of Hodgkin–

Huxley model
10 poincare.slx Simulation of cardiac dysrhythmias using

Poincaré oscillator
10 vdpmod.slx Simulation of the van der Pol oscillator
11 circad.slx Simulation of Kronauer circadian rhythms model
11 cvvar1.slx Simulation of cardiovascular variability (stroke

volume constant)
11 cvvar2.slx Simulation of cardiovascular variability (stroke

volume variable)
11 hematop.slx Simulation of neutrophil density regulation
11 noisycls.slx Simulation of spontaneous variability in control

of ventilation
11 osa.slx Simulation of ventilatory instability in obstructive

sleep apnea

B.1 HOW TO DOWNLOAD THE MATLAB AND SIMULINK FILES

The programs accompanying this edition are compatible with MATLAB/
SIMULINK release version R2016b. The files listed in Tables B.1 and B.2 can
be downloaded, along with some accompanying data files (∗.mat), from the
following website Wiley-IEEE Press:

www.wiley.com/go/khoo/controlsystems2e
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action potential, 256–257, 349–359
adaptive control
of fluctuations in arterial PCO2,
308–313

law, 307, 311–312
model reference, 308
multiple model, 307

adaptive estimation
LMS algorithm, 294–296
RLS algorithm, 296–299

algebraic loops, 47
aliasing, 207–215, 228
arousal from sleep, 290–291, 304–306,

403–409
artificial brain perfusion, 255–256
ARX model, 270–275, 301–304
atrioventricular heart block, 336–342
attractor, 379, 395–396
autocorrelation, 156, 234–235, 249–252
autonomic control, 159–163

backward difference, 204–205, 213–215
Bainbridge reflex, 13–14

baroreflex control, 14–15, 90, 131–132,
159–163, 273, 279, 282, 364–367,
388–396

basis functions, 276–281, 300–306,
363–364

bilinear transformation, 205–206, 213–215
block diagram, 4
block-structured models, 369
Bode plots, 145–147
Bonhoeffer-van der Pol model, 352–359
broadband input, 157, 162, 253, 267

cardiac dysrhythmias, 336–342
cardiac output curve, 67–69, 73–74
cardiovascular variability, 387–396
chaos
bifurcations, 340, 382
example of, 320
Feigenbaum’s number, 383
Lyapunov exponent, 384
period-doubling route to, 381, 394
sensitivity to initial conditions, 383

characteristic time, 112
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chemoreflexes, 193, 255, 259,284, 405,
409, 411–412

Cheyne-Stokes respiration, 193–197,
345–348, 371

chronic myeloid leukemia, 387
circadian rhythms, 59, 397
continuous-time to discrete-time

conversion, 203–205, 270
control
derivative feedback, 117–119
adaptive, 307–315
integral, 116–117
proportional feedback, 95

control system
adaptive, 10
closed-loop, 2, 7, 56–59
controlled part of, 5, 7
controller, 5
effects of noise in, 409–413
generalized linear, 114
nonlinear, 10, 343, 385–395
open-loop, 56–58
regulator, 5
servomechanism, 1, 14
time-varying, 289–314, 401–409

convolution, 39–40
correlated noise, 379
criterion function, 237, 240–246, 264
cross-circulation, 253
cross-correlation, 156, 234–235, 252, 363
cut-off frequency, 146
cyclical neutropenia, 386

damping ratio, 109
decibels, 145–147, 181–182
deconvolution, 228–231
describing function, 342–348, 371

equilibrium, 55
estimation
closed-loop, 227, 252–275
least squares, 230–233

exercise
cardiac output during, 73–74, 253–255

feed-forward, 119–120
feedback

INDEX

delayed, 380–395
embedded, 10, 56
positive, 5–6, 131, 256, 350

forced oscillation technique, 157–158, 166
forgetting factor, 299, 302–303
forward difference, 203, 212–215
fractal structures, 383
frequency entrainment, 335
frequency response, 137–165

gain
closed-loop, 58, 87
feedback, 58
loop, 170, 176–182
open-loop, 57, 87
steady state, 112–113

gain margin, 181–184
glucose regulation, 77, 135, 262–267

hippus, 189
homeostasis, 3

impulse invariance, 202, 210–215, 223,
270, 301

impulse response
definition of, 38–40

descriptors, 112
estimation of, 228–235
first-order system, 96–97
half-width, 144
peak amplitude, 112–113
second-order system, 98–103, 107–111

integral pulse frequency
modulation, 216–221

isoclines
method of, 325–328

Kirchoff’s laws, 22, 25, 28

Laguerre basis functions, 277–281, 304,
363–370

Laplace transforms, 34–49
limit cycles, 329–349, 371–372
LMS algorithm, 294–296
lung
gas exchange, 79–80, 134, 190–192,

267, 284, 300, 303, 308
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mechanics, 24, 44–48, 90–97, 105, 107,
121, 139–155, 170–181

MATLAB script files
acs_CO2.m, 313–314
CT2DTsys_impresp.m, 212–213
df_resp.m, 347
fda_llm.m, 153
fn_gmm.m, 264–265
fn_llm.m, 242–243
fn_rlc.m, 248, 284
gmm_est.m, 264, 283
gpmargin.m, 184
laguerest.m, 278–279
nmr_var.m, 126, 135
nyq_resp.m, 195
popt_llm.m, 242–243, 283
prbs.m, 250
pupil.m, 188
rcs_est.m, 272, 284
rsa_tf.m, 162, 223
rsa_var.m, 160
sensanl.m, 248, 283
sss_llm.m, 239
stationaryVolterra2_1in1out.m, 364
sysid_ls.m, 232, 279, 283
tra_llm.m, 121
TVmodel_RLS.m, 302, 306, 314

mean systemic pressure, 15
Meixner basis functions, 278–285
metabolic hyperbola, 81
model
ARX, 270, 273–279, 282
baroreflex, 14, 90, 131, 159–165,
304–306, 389–396

black-box, 11, 226, 359
cable equation, 29–31
chemoreflex, 78, 190–198, 255–286,

313, 345–348, 401–416
Cheyne-Stokes breathing, 190–197,
345–348

conceptual, 11
diabetes, 77–78
distrbuted-parameter, 29–30
empirical, 11
eye-movement control, 133, 164
functional, 227

glucose-insulin regulation, 89,
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