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PREFACE

This book introduces the physical principles of acoustics. The predominant
objective is to develop those concepts and points of view that have proven
most useful in traditional realms of application such as noise control, under-
water acoustics, architectural acoustics, audio engineering, nondestructive
testing, remote sensing, and medical ultrasonics. The book is suitable as a
text or as supplementary reading for senior and first-year graduate students
in engineering, physics, and mathematics.

Preliminary versions of the book in the form of class notes have been used
in a three-term (one academic year) introductory course in acoustics taken by
graduate students in electrical engineering, aerospace engineering, mechani-
cal engineering, engineering mechanics, and physics at the Georgia Institute
of Technology. Portions of the presentation evolved from a graduate course
on wave propagation previously taught at MIT to students from the depart-
ments of mechanical engineering, ocean engineering, and earth and planetary
sciences. The mathematical developments and the assumptions concerning
the prior academic experiences of the readers are such that no one with any
of the backgrounds just mentioned should be precluded from taking a course
in which this book is used as a text or as principal outside reading. The
text, however, is intended to be at a level of mathematical sophistication
and intellectual challenge comparable to distinguished graduate texts in the
basic engineering sciences (such as fluid dynamics, solid mechanics, thermo-
dynamics, and electromagnetic theory); a deep understanding of acoustical
principles is not acquired by superficial efforts.

Graduate courses rarely follow a text closely; the instructor is invariably
deeply involved in research or in the applications of the subject, and shapes
the course content to conform with what appears timely, with the research
programs at the institution, and with the common interests of the students.
This book is intended to facilitate such flexibility. The common ground of
introductory acoustics courses is covered thoroughly, so the student can fill
in whatever gaps result because of the pace of the lectures. Since the text
derives almost all of the equations frequently used in acoustics, the instructor

xi
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can relegate to outside reading whatever derivations seem too time consuming
for the lectures and can thereby concentrate on the physical implications and
on the applications of the results without sacrificing the course’s level of rigor.

Portions of the text’s material have also been used in senior elective courses
for engineering and physics students. This book is suitable for such a course,
provided the instructor exercises good judgment in the selection of topics and
the course does not cater to the handbook-oriented student. A possible path
through the text for a one-term undergraduate course begins with Chapter 1,
but omits Section 1-10; the course then continues with Chapter 2 through
Section 2-6, with an extraction of results from Sections 2-7 and 2-8. Sec-
tion 3-1 is terminated with the derivation of Eq. (3-2.1). Sections 3-2 and 3-3
are then covered, with a subsequent jump to Sections 4-1 through 4-4. Then,
a possibility is the discussion of reciprocity and transducers in Sections 4-9
and 4-10; Section 5-1 on sources near walls should always be included. If the
students are interested in noise control or architectural acoustics, the first
half of Chapter 6, through Section 6-4, possibly without Section 6-2, should
be covered. Sections 7-2, 7-3, 7-4, 7-6, 7-7, and 7-8 should be palatable with
careful circumnavigation of the more mathematical paragraphs. Students ori-
ented toward underwater sound, remote sensing, or medical ultrasonics may
be guided through Sections 8-1 through 8-5, followed by Sections 9-1 through
9-3. Other possibilities should be evident to an astute instructor.

Many of the exercises at the ends of the individual chapters come from ex-
aminations the author has given in either graduate or undergraduate courses
and can be briefly carried through, once the pertinent concepts are under-
stood. Others are more challenging and, in some cases, will require hints from
the instructor if they are to be solved in a reasonable period of time by the
average student. None of the problems are of the “plug-in” variety, but there
should be a sufficient quantity at various levels of difficulty that the instructor
can tailor homework assignments to the abilities of the students.

The footnotes scattered throughout the book embody the author’s opinion
that a textbook at this level should accurately cite the original sources of the
basic concepts and principles. Many citations lead us back to Rayleigh and
earlier, but this does not mean that the principles are any less applicable
today. Few readers will have the time to browse through the early archival
literature on the subject. Indeed, one reason why textbooks are written is
to obviate doing such a thing—although often (especially so with Rayleigh)
the person who conceived an idea and who said it first said it best. Eloquent
defenses of the value to the practicing professional of the history of the pro-
fession’s current stock of knowledge may be found within the works cited
in Section 1-1 by Hunt and by Lindsay. In any event, the citations in the
footnotes should be harmless to the recalcitrant pragmatic reader. The book
is intended to be self-contained; whatever omissions in background material
the reader encounters can be filled by consulting contemporary textbooks on
mathematics and basic physics.
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The more recent citations include most of the author’s favorite references
on acoustics; these are recommended reading for anyone who desires further
elaboration on the subject matter. The author regrets that the pedagogical
objectives of the book and the constraint that the book be of manageable
length precluded the inclusion of some of the more important topics in mod-
ern acoustics (such as, for example, jet noise, acoustic emissions, cavitation,
streaming, radiation pressure and levitation, combustion noise, parametric
arrays, propagation through turbulence, sound-structural interaction, sur-
face waves, and acoustical imaging). A consequence is that many works that
the author esteems highly are not mentioned here. An introductory text with
the objective of inculcating a deep understanding of the basic principles can-
not, however, be encyclopedic and some hard decisions had to be made. The
student should be able to proceed rapidly, once these basic principles are
understood, toward any of the current frontiers of acoustics.

Along with the writings of Rayleigh and of other past contributors to the
field, the style and content of this book have been influenced by the author’s
early teachers, Richard H. Duncan and Laszlo Tisza, and by his past asso-
ciations with Albert Latter, Elisabeth Iliff, Charles A. Moo, S. H. Crandall,
J. P. Den Hartog, Huw G. Davies, Y. K. Lin, T.-Y. Toong, Patrick Leehey,
Richard Lyon, P. P. Lele, Joe W. Posey, Wayne A. Kinney, Warren Strahle,
W. James Hadden, Jr., E.-A. Müller, W. Möhring, and F. Obermeier. The
writing of the book has also been affected by conversations or correspondence
with John Snowdon, Herbert S. Ribner, Dominic Maglieri, Lucio Maestrello,
Richard K. Cook, R. Bruce Lindsay, Geoffrey Main, David T. Blackstock, K.
Uno Ingard, David G. Crighton, Hugh G. Flynn, T. F. W. Embleton, Robert
Waag, Robert E. Apfel, Robert W. Young, Jiri Tichy, Donald Lansing, M.
C. Junger, H. M. Überall, C.-H. Chew, Edmund H. Brown, Prateen Desai,
T. J. Lardner, Preston W. Smith, Jr., Michael Howe, Phillip A. Thompson,
Joseph E. Piercy, Walter Soroka, Sigalia Dostrovsky, Wesley Cobb, Lawrence
A. Crum, Henry E. Bass, Bill D. Cook, and Steven D. Pettyjohn. Thanks
must also be expressed to the many students who pointed out weaknesses in
the earlier class notes and who suggested improvements.

Although the writing of this book has extended over many years, the
author’s ideas concerning its substance crystallized during a year’s sojourn
(1976–1977) with the Max-Planck-Institut für Strömungsforschung in Göt-
tingen. The Institute’s research objectives and atmosphere were conducive to
a sustained contemplation of the principles of acoustics, of their interconnec-
tions, and of their mechanical, thermodynamic, and mathematical founda-
tions. The author is grateful to Professor E.-A. Müller and his colleagues for
their hospitality and rapport and to the Alexander von Humboldt Foundation
for the generous award that made the stay in Göttingen possible.

The author thanks the staff of the School of Mechanical Engineering at
Georgia Tech for their forbearance throughout this long, seemingly inter-
minable, project. The empathy and encouragement of S. Peter Kezios, the
school’s Director, is very much appreciated.
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The author is also grateful to the library personnel who helped him in this
endeavor; he especially thanks Robert Perrault for advice and for facilitating
the procurement of rare bibliographic materials.

It was the author’s extreme good fortune to have the collaboration of Rosie
Atkins, an outstanding technical typist and manuscript stylist. Throughout
several generations of manuscripts, Mrs. Atkins patiently and accurately in-
terpreted and translated heavily scored, barely legible handscripts, laden with
equations and symbols, into attractive and readable typescripts.

The author’s largest debt of thanks is owed to his wife Penny and to his
children, Jennifer and Bradford. Their loyalty, encouragement, cheerfulness,
and willingness to sacrifice have contributed immeasurably to the successful
completion of this book.

Allan D. Pierce



LIST OF SYMBOLS

a = radius of sphere, cylinder, or disk
= characteristic dimension of object

an = coefficient in modal expansion of pressure field
= zero of Airy function

a′n = zero of derivative of Airy function
A = generic designation for amplitude factors
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CHAPTER ONE

THE WAVE THEORY OF SOUND

Acoustics is the science of sound, including its production, transmission, and
effects.† (In present usage, the term sound implies not only the phenomena in
air responsible for the sensation of hearing but also whatever else is governed
by analogous physical principles. Thus, disturbances with frequencies too low
(infrasound) or too high (ultrasound) to be heard by a normal person are also
regarded as sound. One may speak of underwater sound, sound in solids, or
structure-borne sound. Acoustics is distinguished from optics in that sound
is a mechanical, rather than an electromagnetic, wave motion.

The broad scope of acoustics as an area of interest and endeavor can
be ascribed to a variety of reasons. First, there is the ubiquitous nature of
mechanical radiation, generated by natural causes and by human activity.
Then, there is the existence of the sensation of hearing, of the human vocal
ability, of communication via sound, along with the variety of psychologi-
cal influences sound has on those who hear it. Such areas as speech, music,
sound recording and reproduction, telephony, sound reinforcement, audiol-
ogy, architectural acoustics, and noise control have strong association with
the sensation of hearing. That sound is a means of transmitting information,
irrespective of our natural ability to hear, is also a significant factor, espe-
cially in underwater acoustics. A variety of applications, in basic research and
in technology, exploit the fact that the transmission of sound is affected by,
and consequently gives information concerning, the medium through which
it passes and intervening bodies and inhomogeneities. The physical effects of
sound on substances and bodies with which it interacts present other areas
of concern and of technical application.

Some indication of the scope of acoustics and of the disciplines with which
it is associated can be found in Fig. 1-1. The first annular ring depicts the

† Definitions in the present text conform to ANSI/ASA S1.1, 2013 Edition, American Na-
tional Standard Acoustical Terminology (Acoustical Society of America Standards Store,
onlne site). Selected symbols for physical quantities conform to American National Stan-
dard Letter Symbols and Abbreviations for Acoustics (IEEE Xplore, 260.4–1996, online
site).
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2 1 The Wave Theory of Sound

traditional subdivisions of acoustics, and the outer ring names technical and
artistic fields to which acoustics may be applied. (The chart is not intended
to be complete, nor should any rigid interpretation be placed on the depicted
proximity of any subdivision to a technical field. An extensive survey of the
scope of acoustics can be found in (T. Rossing, editor) Springer Handbook of

Acoustics(2nd Edition, Springer, 2014).
The present text, while intended as an introduction to acoustics, is con-

cerned primarily with the physical principles underlying the discipline rather
than with a summary of the current state of knowledge and technology in its
many subfields. The general and specialized principles chosen for discussion
are those which have found application in one or more of the following sub-
fields: atmospheric acoustics, underwater acoustics, musical acoustics, ultra-
sonics, architectural acoustics, aeroacoustics, nonlinear acoustics, environ-
mental acoustics, and noise control. For the most part, the selected subject
matter is limited to sound in fluids, e.g., air and water.

We begin with a discussion of the wave theory of sound.

1-1 A LITTLE HISTORY

The speculation that sound is a wave phenomenon grew out of observations of
water waves. The rudimentary notion of a wave is an oscillatory disturbance

that moves away from some source and transports no discernable amount of
matter over large distances of propagation. The possibility that sound exhibits
analogous behavior was emphasized, for example, by the Greek philosopher
Chrysippus (c. 240 b.c.), by the Roman architect and engineer Vetruvius (c.
25 b.c.), and by the Roman philosopher Boethius (a.d. 480–524). The wave
interpretation was also consistent with Aristotle’s (384–322 b.c.) statement†

to the effect that air motion is generated by a source, “thrusting forward in
like manner the adjoining air, so that the sound travels unaltered in quality
as far as the disturbance of the air manages to reach.”

A pertinent experimental result, inferred with reasonable conclusiveness
by the early seventeenth century, with antecedents dating back to Pythago-
ras (c. 550 b.c.) and perhaps farther, is that the air motion generated by a
vibrating body sounding a single musical note is also vibratory and of the
same frequency as the body. The history of this is intertwined with the devel-
opment of the laws for the natural frequencies of vibrating strings and of the

† M. R. Cohen and I. E. Drabkin, A Source Book in Greek Science, Harvard Univer-
sity Press, Cambridge, Mass., 1948, pp. 289, 293–294, 307–308. Aristotle’s statements on
acoustics are also reprinted by R. B. Lindsay (ed.), Acoustics: Historical and Philosophical
Development, Dowden, Hutchinson, and Ross, Stroudsburg, Penn., 1972, pp. 22–24. For
a detailed account of the early history of acoustics, see F. V. Hunt, Origins of Acoustics,
Yale University Press, New Haven, Conn., 1978. Hunt, p. 26, states that the above-cited
aristotelian statement was probably written by Straton of Lampsacus (c. 340–269 b.c.).
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Figure 1-1 Circular chart illustrating the scope and ramifications of acoustics. [Adapted
from R. B. Lindsay, J. Acoust. Soc. Am. 36:2242 (1964).]

physical interpretation of musical consonances.‡ Principal roles were played
by Marin Mersenne (1588–1648), a French natural philosopher often referred
to as the “father of acoustics,” and by Galileo Galilei (1564–1642), whose
Mathematical Discourses Concerning Two New Sciences (1638) contained§

the most lucid statement and discussion given up until then of the frequency
equivalence.

Mersenne’s description in his Harmonie universelle (1636) of the first ab-
solute determination of the frequency of an audible tone (at 84 Hz) implies
that he had already demonstrated that the absolute-frequency ratio of two

‡ S. Dostrovsky, “Early vibration theory: physics and music in the Seventeenth Century,”
Arch. Hist. Exact Sci. 14:169–218 (1975).
§ The pertinent passages are reprinted in Lindsay, Acoustics, pp. 42–61, especially p. 48.
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vibrating strings, radiating a musical note and its octave, is as 1:2. The per-
ceived harmony (consonance) of two such notes would be explained if the
ratio of the air oscillation frequencies is also 1:2, which in turn is consistent
with the source-air-motion-frequency-equivalence hypothesis.

The analogy with water waves was strengthened by the belief that air mo-
tion associated with musical sounds is oscillatory and by the observation that
sound travels with a finite speed. Another matter of common knowledge was
that sound bends around corners, which suggested diffraction, a phenomenon
often observed in water waves. Also, Robert Boyle’s (1660) classic experi-
ment† on the sound radiation by a ticking watch in a partially evacuated
glass vessel provided evidence that air is necessary, either for the production
or transmission of sound.

The wave viewpoint was not unanimous, however. Gassendi‡ (a contem-
porary of Mersenne and Galileo), for example, argued that sound is due to a
stream of “atoms” emitted by the sounding body; velocity of sound is speed
of atoms; frequency is number emitted per unit time.

The apparent conflict§ between ray and wave theories played a major role
in the history of the sister science optics, but the theory of sound developed
almost from its beginning as a wave theory. When ray concepts were used
to explain acoustic phenomena, as was done, for example, by Reynolds and
Rayleigh‖ in the nineteenth century, they were regarded, either implicitly
or explicitly, as mathematical approximations to a then well-developed wave
theory; the successful incorporation of geometrical optics into a more com-
prehensive wave theory had demonstrated that viable approximate models of
complicated wave phenomena could be expressed in terms of ray concepts.
(This recognition has strongly influenced twentieth-century developments in
architectural acoustics, underwater acoustics, and noise control.)

The mathematical theory of sound propagation began with Isaac Newton
(1642–1727), whose Principia¶ (1686) included a mechanical interpretation of

† R. Boyle, New Experiments, Physico-Mechanical, Touching the Spring of the Air, 2d ed.,
1662, Experiment 27, reprinted by Lindsay, pp. 68–73. Lindsay gives a modern interpreta-
tion of Boyle’s experiment in “Transmission of sound through air at low pressure,” Am. J.
Phys. 16:371–377 (1948).
‡ R. B. Lindsay, “Pierre Gassendi and the revival of atomism in the Renaissance,” Am. J.
Phys. 13:235–242 (1945).
§ A. E. Shapiro, “Kinematic optics: A study of the wave theory of light in the Seventeenth
Century,” Arch. Hist. Exact Sci. 11:134–266 (1973).
‖ O. Reynolds, “On the refraction of sound by the atmosphere,” Proc. R. Soc. Lond. 22:
531–548 (1874); J. W. Strutt, Baron Rayleigh, The Theory of Sound, vol. 2, 1878; 2d ed.,
1896; reprinted by Dover, New York, 1945, secs. 286–290.
¶ There are several editions and translations. One generally available is the revision by F.
Cajori of Andrew Motte’s translation (1729), from Latin into English, of the third edition
(1726): Newton’s Principia: Motte’s Translation Revised, University of California Press,
Berkeley, 1934, reprinted 1947. Lindsay reprints passages from an 1848 edition of Motte’s
translation. Dostrovsky, “Early vibration theory,” gives a detailed deciphering of Newton’s
analysis. The first such was given by Euler (1744).
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sound as being “pressure” pulses transmitted through neighboring fluid parti-
cles. Accompanying diagrams (see Fig. 1-2) illustrated the diverging of wave
fronts after passage through a slit. The mathematical analysis was limited
to waves of constant frequency, employed a number of circuitous devices and
approximations, and suffered from an incomplete definition of terminology
and concepts. It was universally acknowledged by his successors as difficult
to decipher, but, once deciphered, it is recognizable as a development con-
sistent with more modern treatments. Some textbook writers, perhaps for
pedagogical reasons, stress that Newton’s one quantitative result† that could
then be compared with experiment, i.e., the speed of sound, was too low by
about 16 percent. The reason for the discrepancy and how it was resolved
is discussed below (Sec. 1-4), but it is a relatively minor aspect of the over-
all theory, whose resolution required concepts and experimental results that
came much later.

Substantial progress toward the development of a viable theory of sound
propagation resting on firmer mathematical and physical concepts was made
during the eighteenth century† by Euler (1707–1783), Lagrange (1736–1813),
and d’Alembert (1717–1783). During this era, continuum physics, or field
theory, began to receive a definite mathematical structure. The wave equa-
tion emerged in a number of contexts, including the propagation of sound in
air. The theory ultimately proposed for sound in the eighteenth century was
incomplete from many standpoints, but the modern theories of today can be
regarded for the most part as refinements of that developed by Euler and his
contemporaries.

In Secs. 1-2 to 1-5 the basic equations for the simplest realistic model of
sound propagation in fluids are described. Two of them, the conservation-
of-mass equation and Euler’s equation of motion for a fluid, come without
alterations from the eighteenth century; the third, which relates pressure and
density, is a nineteenth-century development. The model leads to the same
wave equation as developed in the eighteenth century but gives a value for the
sound speed that in most contexts of interest agrees satisfactorily with ex-
periment. Although this model is approximate and gives no account of sound
absorption, its predictions are often a good approximation to reality. Because
of its simplicity, it is the one most often used unless there is some positive
indication that the refinements contained in more complicated models are
necessary for the problem at hand.

† Quotations from textbooks and a defense are given by H. Whiteside, “Newton’s derivation
of the velocity of sound,” Am. J. Phys. 32:384 (1964).
† A detailed commentary on the Euler era is given in a sequence of articles by C. A. Trues-
dell that appear as editor’s introductions to volumes of Leonhardi Euleri Opera Omnia,
ser. 2, Orell Füssli, Lausanne and Zurich, 1954, 1955, and 1960: “Rational fluid mechanics,
1687–1765,” vol. 12, pp. ix–cxxv; “The theory of aerial sound, 1687–1788,” vol. 13, pp.
xix–lxxii; “Rational fluid mechanics, 1765–1788,” vol. 13, pp. lxxiii-cii; “The rational
mechanics of flexible or elastic bodies, 1638–1788,” vol. 11, pt. 2.
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Figure 1-2 Sketch in Newton’s Principia (1686) of the passage of waves through a hole.
The source is at point A; the hole is described by points B and C; de, fg, hi, etc., describe
the ‘’tops of several waves, divided from each other by as many intermediate valleys or
hollows.” (Adapted from Sir Isaac Newton’s Principia, 4th ed., 1726, reprinted 1871, by
MacLehose, Glasgow, p. 359.)

1-2 THE CONSERVATION OF MASS

For a fixed volume V (see Fig. 1-3a) inside a fluid (e.g., air or water), the
net mass in V at any time t can be taken as the volume integral of a density

ρ(x, t), representing a local average (or expected value) of mass per unit
volume in the vicinity of a spatial‡ point x. Conservation of mass requires
the time rate of change of this mass to equal the net mass per unit time
entering (minus that leaving) the volume V through the confining surface S.
The net mass per unit time leaving through a small area element ∆S with
outward unit normal vector n(xS) and centered at point xS on S is identified

‡ The text uses the spatial (eulerian) description rather than the material (lagrangian) de-
scription (in which fluid dynamic variables are considered as functions of material or initial
coordinates and time). Both descriptions originated with Euler; the terminology eulerian
and lagrangian originated with Dirichlet (1860). (Truesdell, “Rational Fluid Mechanics,
1687–1765,” p. cxx.)
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as
ρ(xS , t)v(xS , t) · n(xS)∆S.

Figure 1-3 (a) Nonmoving volume V within a moving fluid; time rate of change of mass
within V equals mass flowing through surface S (outward unit normal n) into V per unit
time. (b) Mass leaving through area element ∆S in time ∆t equals mass in slanted cylinder
of length |v∆t|, height v · n∆t, and base area ∆S.

Here v(x, t) is the fluid velocity at x, defined as the mass-weighted local
average particle velocity or, equivalently, as the average momentum per unit
mass in the vicinity of x. (The subscript S on xS refers to a point on the
surface.)

The validity of the above identification for v ·n∆S is demonstrated if one
considers all particles in the vicinity of ∆S to be moving identically with
velocity v. All the fluid within a slanted cylinder (see Fig. 1-3b) with ends of
area ∆S, sides parallel to v, and length |v|∆t will pass through ∆S in time
∆t. Since the volume of this cylinder is height v · n∆t times base area ∆S,
it contains mass ρv · n∆t∆S. The mass passing out through ∆S per unit
time is this mass divided by ∆t, or ρv · n∆S.

The net mass leaving V per unit time is accordingly the surface integral
over S of ρv · n, and so the conservation of mass requires

d

dt

∫∫∫

V

ρ dV = −
∫∫

S

ρv·n dS. (1-2.1)

The right side can be reexpressed as a volume integral by means of Gauss’s

theorem,† i.e.,
∫∫

S

A·n dS =

∫∫∫

V

∇ ·A dV, (1-2.2)

† This, also known as the divergence theorem, originated in a restricted sense with Laplace
(1760–1761) but was enunciated in a form equivalent to that above by C. F. Gauss (1813).
Related statements were given by George Green (1828). For references and precise state-
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where A(x, t) is a vector field and ∇·A = ∂Ax/∂x + ∂Ay/∂y + ∂Az/∂z is
its divergence. (This is a generalization of

f(x2)− f(x1) =

∫ x2

x1

df

dx
dx

to three dimensions.) With the aid of Eq. (2) and with A taken as ρv, the
mass-conservation relation becomes

∫∫∫

V

[

∂ρ

∂t
+∇ · (ρv)

]

dV = 0. (1-2.3)

The time derivative has here been taken inside the integral, and the two
volume integrals have been combined into a single integral.

Since Eq. (3) implies that the average value of the integrand is zero for an
arbitrary volume V , the integrand itself must be zero, so

∂ρ

∂t
+∇ · (ρv) = 0 (1-2.4)

gives the differential equation† for conservation of mass in a fluid.

1-3 EULER’S EQUATION FOR A FLUID

A general law of classical continuum mechanics is that the mass times ac-
celeration of center of mass of a fluid particle equals the net apparent force
exerted on it by its environment and by external bodies. A fluid particle
consists of all fluid within some moving volume V ∗(t) (see Fig. 1-4), each
point on the surface of which is moving with the local fluid velocity v(xS , t).
Since the mass in such a fluid particle is constant, mass times center-of-mass
acceleration is just the time rate of change of momentum (volume integral of
ρv) within the particle, so one has

d

dt

∫∫∫

V ∗

ρv dV =

∫∫

S∗

fS dS +

∫∫∫

V ∗

fB dV. (1-3.1)

Here fS represents apparent surface force per unit area exerted by the parti-
cle’s immediate environment; fB is body force, e.g., that due to gravity, per

ments concerning conditions that ensure its validity, see O. D. Kellogg, Foundations of
Potential Theory, 1929, reprinted by Dover, New York, 1953, pp. 38, 84–121.
† The relation is due to Euler and is derived in his “General principles of the motion
of fluids,” 1755 (Truesdell, “Rational fluid mechanics, 1687–1765,” pp. lxxxiv–lxxxix,
eq. 99).
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unit volume. From a microscopic standpoint,‡ fS includes the momentum
transferred, per unit time and area, into V ∗ by random molecular motion
across the surface S∗ as well as the short-range intermolecular force per unit
area exerted on molecules within the volume by molecules outside it. For
a gas, the former dominates overwhelmingly, but the continuum-mechanical
model makes no distinction between the two.

Figure 1-4 Forces acting on fluid particle occupying volume V ∗(t), each point on the
surface of which moves with the local fluid velocity v(xS , t). Here fS is surface force per
unit area; fB is body force per unit volume.

Although gravity is always present, it has negligible influence† on acoustic
disturbances of all but extremely low frequencies, e.g., those of order or less
than g/c, where g is acceleration due to gravity and c is the speed of sound; so,
for simplicity, the body force term is here neglected at the outset. Acoustic-

gravity waves (infrasonic waves with frequencies so low as to be strongly
affected by gravity) is a major topic of research in atmospheric acoustics but
falls outside the scope of an introductory discussion.

The classical assumption regarding fS is that it is directed normally into
the surface S∗, that is,

fS = −np, (1-3.2)

‡ J. G. Kirkwood, “The statistical mechanical theory of transport processes, I: General
theory,” J. Chem. Phys. 14:180–201 (1946).
† P. G. Bergmann, “The wave equation in a medium with a variable index of refraction,”
J. Acoust. Soc. Am. 17:329–333 (1946); N. A. Haskell, “Asymptotic approximation for
the normal modes in sound channel wave propagation,” J. Appl. Phys. 22:157–168 (1951);
C. O. Hines, “Atmospheric gravity waves: A new toy for the wave theorist,” Radio Sci.
69D:375–380 (1965); E. E. Gossard and W. H. Hooke, Waves in the Atmosphere, Elsevier,
Amsterdam, 1975.



10 1 The Wave Theory of Sound

with the magnitude p of this force per unit area identified as the pressure. The
adoption of this relation, holding ideally for static equilibrium (hydrostatics),
implies a neglect of viscosity. The lack of dependence of the pressure p(x, t)
on the orientation of ∆S, that is, the direction of n, may be regarded as a
hypothesis but also follows‡ from a fundamental requirement that the net
surface force divided by the mass of the fluid particle on which it acts should
remain finite in the limit as the particle volume goes to zero. That fS reverses
direction when n reverses direction is consistent with Newton’s third law.

If p should be independent of position, the net surface force on a fluid
particle integrates to zero, but otherwise it tends to be toward the direction
of lower pressure. Mathematical substantiation of this comes from an appli-
cation of Gauss’s theorem to the surface integral of −pn. The x component
of this integral is of the form in Eq. (1-2.2) with A identified as −pex. (Here
ex represents the unit vector in the direction of increasing x.) Since the di-
vergence ∇ · (−pex) is just −∂p/∂x, and since this is the x component of
−∇p, Gauss’s theorem implies

∫∫

S∗

fS dA = −
∫∫∫

V ∗

∇p dV, (1-3.3)

when fS = −pn, as in Eq. (2). Thus −∇p is the equivalent force per unit
volume due to pressure.

The time-rate-of-change-of-momentum term in Eq. (1) can similarly be
expressed as a volume integral, without a time derivative operator outside
the integral sign. A fluid particle is regarded as an aggregate of many “in-
finitesimal” fluid particles, each so small that the fluid velocity within it is
everywhere nearly the same as the velocity of its center of mass. Since the
mass of each fluid particle is constant, the time rate of change of momen-
tum of a subparticle is (ρ∆V ∗)(d/dt)v(xP (t), t), where xP (t) is its position
at time t. With help from the chain rule for differentiation, the acceleration
factor becomes

d

dt
v(xP (t), yP (t), zP (t), t) =

∂v

∂t
+
∂v

∂x

dxP
dt

+
∂v

∂y

dyP
dt

+
∂v

∂z

dzP
dt

=
∂v

∂t
+ (v · ∇)v =

Dv

Dt
(1-3.4)

since dxP /dt is just v(xP (t), t). (The operator ∂/∂t+ v · ∇ is here abbrevi-
ated† D/Dt and represents the time rate of change as measured by someone

‡ H. Lamb, Hydrodynamics, 1879, 6th ed., 1932, reprinted by Dover, New York, 1945, pp.
1–2. The proof originated with A.-L. Cauchy, “On pressure within a fluid,” 1827, reprinted
in Oeuvres complètes d’ Augustin Cauchy, ser. 2, vol. 7, Gauthier-Villars, Paris, 1889, pp.
37–39. (Here, and throughout the balance of the present book, titles of articles cited are
given in translation when the original is not in English.)
† This notation originated with G. G. Stokes, “On the theories of the internal friction
of fluids in motion, and of the equilibrium and motion of elastic fluids,” Trans. Camb.
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moving with the fluid.) The resulting sum of infinitesimal masses times ac-
celerations is equivalent to an integral, and so one obtains

d

dt

∫∫∫

V ∗

ρv dV =

∫∫∫

V ∗

ρ
Dv

Dt
dV, (1-3.5)

which represents an instance of Reynolds’ transport theorem.‡

The insertion of Eqs. (3) and (5) into Eq. (1) with the neglect of the
body-force term gives

∫∫∫

V ∗

(

ρ
Dv

Dt
+∇p

)

dV = 0. (1-3.6)

Consequently, one concludes, as in the derivation of the mass-conservation
equation, that the integrand is zero; one therefore has

ρ
Dv

Dt
= −∇p (1-3.7)

for an ideal (no viscosity) fluid.† The left side is mass per unit volume times
acceleration; the right side is the apparent force per unit volume caused
by spatial variation of the pressure. Because ∇p points in the direction of
increasing pressure, acceleration is toward decreasing pressure.

1-4 PRESSURE-DENSITY RELATIONS

The classical model of a compressible fluid presumes the existence of some
definite relation

p = p(ρ) (1-4.1)

between density and pressure. In the early literature, the assumption invari-
ably made was that p = Kρ, where K is a constant (ambient pressure divided

Phil. Soc. 8:287–319 (1845), especially sec. 5. Most of the article is reprinted in Lindsay,
Acoustics, pp. 262–289.
‡ O. Reynolds, Papers on Mathematical and Physical Subjects, vol. 3, The Sub-Mechanics
of the Universe, Cambridge University Press, London, 1903, secs. 13 and 14. A general
statement of the transport theorem is

d

dt

∫∫∫

V ∗

ρf(x, t)dV =

∫∫∫

V ∗

ρ
Df

Dt
dV,

where f(x, t) is an arbitrary function.
† L. Euler, “Principles of the motion of fluids,” 1752; see Truesdell, “Rational Fluid Me-
chanics, 1687–1765,” pp. lxii-lxxv, eq. 60.
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by ambient density), a notable exception being Lagrange’s second memoir‡

(1759–1761) on sound, which considered the general relation p = Kρm, with
m being also constant. The choice of a direct proportionality agrees in the
case of air with Boyle’s law;§ the volume of a confined amount of air should
be in inverse proportion to externally applied pressure under conditions now
characterized as isothermal. It leads, however, to a prediction of the speed of
sound about 16 percent lower than actually measured.

Laplace’s Hypothesis

Elements of a correct explanation of the discrepancy appeared in early
nineteenth-century writings‖ of Biot, Brandes, Poisson, and Laplace. It was
the last who first effectively applied the simple principle that sound prop-
agation occurs with negligible internal heat flow, to derive in terms of fun-
damental thermodynamic quantities an expression for the speed of sound in
air that satisfactorily agreed with experiment. For a gas (e.g., air) with con-
stant specific (per unit mass) heat coefficients cp and cv at constant pressure
and volume, respectively, and for which p is proportional to ρ at constant
temperature, this principle leads to the relation

p = Kργ , (1-4.2)

where γ = cp/cv is the specific-heat ratio (1.4 for air). According to Laplace’s
hypothesis, K should remain constant in time.

A simple derivation of Eq. (2) regards an adiabatic (no heat flow) variation
(δp, δρ) in unit mass of fluid as composed of two processes:

‡ J. L. Lagrange, “New research on the nature and propagation of sound,” reprinted in
Oeuvres de Lagrange, Gauthier-Villars, Paris, 1867, vol. 1, pp. 151–316. For a discussion,
see Truesdell, “The theory of aerial sound, 1687–1788,” pp. 51–54.
§ The law is often associated with various combinations of the names Boyle, Hooke, Mar-
riotte, and Towneley. For history and references, see C. Webster, “The discovery of Boyle’s
law, and the concept of the elasticity of air in the Seventeenth Century,” Arch. Hist. Exact
Sci. 2:441–502 (1965).
‖ J. B. Biot, “On the theory of sound,” J. Phys. Chim. 55:173–182 (1802). W. Brandes,
Die Gesctze des Gleichgewichts und der Bewegung Flüssiger Körper . . . (The Laws of
Equilibrium and of Motion of Fluids, according to Leonhard Euler), Leipzig, 1805, sum-
marized by Truesdell, in Leonhardi Euleri Opera Omnia, ser. 2, vol. 13, pp. ciii–cv, S.
D. Poisson, “Memoir on the theory of sound,” J. Ec. Polytech. 7:319–392 (1808), trans. of
pp. 319–329 in Lindsay: Acoustics, pp. 173–179. (Poisson refers to a theory developed by
Laplace, but it is not clear whether Laplace had then developed his concepts to the point
described in his 1816 paper.) P. S. Laplace, “On the velocity of sound through air and
through water,” Ann. Chim. Phys. (2)3:238–241 (1816), trans. in Lindsay, pp. 181–182.
For a historical appraisal, see B. S. Finn, “Laplace and the speed of sound,” Isis 55:7–19
(1964).
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1. p→ p+ δp, ρ→ ρ, T → T + (δT )1,

2. p+ δp→ p+ δp, ρ→ ρ+ δρ, T + (δT )1 → T + (δT )1 + (δT )2.

In process 1, the specific voume is constant and heat (δQ)1 = cv(δT )1 is
added, and in process 2, the pressure is constant and a (negative) amount
(δQ)2 = cp(δT )2 is added. Since (δQ)1+(δQ)2 = 0, one has (δT )1 = −γ(δT )2.
The gas relation p/ρ = F (T ) gives δp/p = [F ′(T )/F (T )](δT )1 and δρ/ρ =
−[F ′(T )/F (T )](δT )2. Consequently, one has (δp/p)/(δρ/ρ) = γ, which inte-
grates to Eq. (2). The function F (T ) is here not explicitly identified as RT ,
to demonstrate that the result is independent of temperature scale and does
not explicitly require the concept of an absolute zero of temperature.

Interpretation in Terms of Entropy

The modern statement of Laplace’s hypothesis is that the specific†entropy s
remains constant for any given fluid particle, i.e.,

Ds

Dt
= 0. (1-4.3)

The specific entropy can be considered a function† s(u, 1/ρ) of specific inter-
nal energy u and specific volume 1/ρ, whose total differential satisfies

T dS = du+ p dρ−1, (1-4.4)

so absolute temperature T and pressure p can also be regarded as functions
of u and 1/ρ. Consequently, s can be regarded as a function of any two of
the variables, T, p, ρ, u, and in particular one can write‡

† The adjective “specific” in general implies per unit amount; in the present context it
implies per unit mass. The International Commission on Pure and Applied Physics rec-
ommends (Phys. Today, June 1962, p. 23) that it be restricted to the meaning “divided by
mass,” but there are a number of standard terms (specific acoustic impedance, mobility,
resistance, reactance) used in acoustics where the implication is different.
† The existence of such a function s(u, 1/ρ) is a consequence of the second law of thermo-
dynamics; s has the property that, for a reversible process, T dS is the incremental heat
added per unit mass, where T is temperature in (SI units) kelvins, that is, degrees Celsius
plus 273.16. The differential relation (4), given this interpretation of s, is then a statement
of conservation of energy for an infinitesimal change in a reversible process. For a fuller
discussion, see, for example, A. H. Wilson, Thermodynamics and Statistical Mechanics,
Cambridge University Press, London, 1957, pp. 3–11, 17–23, 32.
‡ In seawater, pressure also depends on salt content or salinity (see Sec. 1-9), and the
customary assumption is that salinity of a fluid particle is constant in time; that is, D/Dt
of salinity is zero. This presumes that diffusion of dissolved salts is negligible in an acoustic
disturbance. A generalization is that the relation between p and ρ stays the same through-
out a particle’s motion, even though the relation may be different for different particles
and even though, at a given fixed point, there may be no unique relation between the two.
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p = p(ρ, s) (1-4.5)

as the replacement of p = p(ρ) in Eq. (1) above. If s is initially everywhere
the same (isentropic medium), and if the fluid is of homogeneous composition
(so that each fluid particle has same equation of state), then Eq. (1) is a
direct consequence of Eqs. (3) and (5); the dependence of p on s need not be
explicitly considered because s has the same value at all points and times.

The assumption of negligible heat flow is consistent with Ds/Dt = 0
since conservation of energy (heat added equals change in internal energy
plus work done against external forces), in conjunction with Eq. (4), implies
that Tδs equals incremental heat added per unit mass during a quasi-static
process; so TdS/Dt is the time rate at which heat is added per unit mass.
An additional assumption tacitly made is that the fluid is always in local
thermodynamic equilibrium, i.e., that the relation of the pressure appearing
in Euler’s equation of motion to other thermodynamic quantities is the same
as that holding in quasi-static processes.

Incorporation of Heat Conduction into Fluid Dynamics

That sound should be an adiabatic rather than an isothermal process§ follows
from consideration of heat conduction processes within a fluid. The flux q of
heat, according to Fourier’s law,† equals −κ∇T , where κ is the coefficient of
thermal conduction (here idealized as a constant). The net heat added per
unit time to a fluid particle is the integral of −q ·n over its surface or, from
Gauss’s theorem, the integral of −∇ · q over its volume; so κ∇2T is heat
added per unit volume and time. One may accordingly argue‡ that

ρT
Ds

Dt
= κ∇2T (1-4.6)

§ The question was first considered by G. G. Stokes, “An examination of the possible
effect of radiation of heat on the propagation of sound,” Phil. Mag. (4)1:305–317 (1851).
The transfer of heat by radiation in a sound wave is now believed to be of extremely small
significance. See, for example, J. B. Calvert, J. W. Coffman, and C. W. Querfeld, “Radiative
absorption of sound by water vapor in the atmosphere,” J. Acoust. Soc. Am.39:532–536
(1966). The explanation in terms of thermal conduction is due to Rayleigh, Theory of
Sound, sec. 247.
† J. Fourier, Analytical Theory of Heat, 1822, trans. by A. Freeman, 1878; reprinted by
Dover, New York, 1955, p. 52.
‡ An equivalent statement was given in linearized form for the case of an ideal gas and
without explicit mention of entropy by G. Kirchhoff, “On the influence of heat cvonduction
in a gas on sound propagation,” Ann. Phys. Chem. 134:177–193 (1868), trans. in R. B.
Lindsay (ed.): Physical Acoustics, Dowden, Hutchinson, and Ross, Stroudsburg, Pa., 1974,
pp. 7–19. In some circumstances the factor T Ds/Dt here can be replaced by cp∂T/∂t,
and the equation becomes the thermal diffusion equation first given by Fourier, Analytical
Theory of Heat, p. 102.
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should be an appropriate generalization of Ds/Dt = 0 to take thermal con-
duction into account. If conduction dominates, an approximation to this is
∇2T = 0; if it is negligible, one takes Ds/Dt = 0. The first leads to an
isothermal idealization for sound, the second to an adiabatic idealization.
Neither is exactly true, but for freely propagating acoustic waves with typi-
cal frequencies of interest, the numbers work out such that the implications
of Eq. (6) are nearly the same as those of Ds/Dt = 0. The details are given
in Sec. 1-10.

1-5 EQUATIONS OF LINEAR ACOUSTICS

Acoustic disturbances can usually be regarded as small-amplitude perturba-
tions to an ambient state. For a fluid, the ambient state is characterized by
those values (po, ρo, vo) which the pressure, density, and fluid velocity have
when the perturbation is absent. These ambient-field variables satisfy the
fluid-dynamic equations; but when the disturbance is present, one has

p = po + p′, ρ = ρo + ρ′, (1-5.1)

etc., where p′ and ρ′ represent the acoustic contributions to the overall pres-
sure and density fields.

The ambient state defines the medium through which sound propagates. A
homogeneous medium is one in which all ambient quantities are independent
of position; a quiescent medium is one in which they are independent of time
and for which vo is zero. In many cases, the idealization of a homogeneous
quiescent medium is satisfactory for the quantitative description of acoustic
phenomena. Its inherent simplicity, moreover, allows an unemcumbered in-
troduction to a number of fundamental concepts. (In subsequent sections the
primes on p′ and v′ are deleted if the context is such that there is negligible
possibility of confusing acoustic pressure with total pressure or of confusing
acoustic fluid velocity with some other velocity.)

The equations discussed in the previous sections [mass conservation, Eu-
ler’s equation, and the equation,† p = p(ρ, s) with s = so, a constant] can be
written in terms of the substitution (1) as

∂

∂t
(ρo + ρ′) +∇ · [(ρo + ρ′)v′] = 0, (1-5.2a)

† If the ambient state is inhomogeneous, p = p(ρ, so) cannot be used and one falls back on
p = p(ρ, s), Ds/Dt = 0 as a starting point. If po(x) and ρo(x) are independent of t, these
lead to

∂p′

∂t
+ v′

· ∇po = c2
(

∂ρ′

∂t
+ v′

· ∇ρo

)

as the linear equation that replaces (3c).
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(ρo + ρ′)

(

∂

∂t
+ v′

· ∇

)

v′ = −∇(po + p′), (1-5.2b)

po + p′ = p(ρo + ρ′, so). (1-5.2c)

Here vo = 0, while po, and ρo are constants related by po = p(ρo, so). The
terms in Eqs. (2a) and (2b) can be grouped into zero-order terms (all here
identically zero), first-order [just one primed variable, for example, ∇·(ρov

′)],
second-order [two primed variables; for example, ∇· (ρ′v′)], etc. In Eq. (2c),
the grouping results from a Taylor-series expansion in ρ′, that is,

p′ =

(

∂p

∂ρ

)

o

ρ′ +
1

2

(

∂2p

∂ρ2

)

o

(ρ′)2 + · · · , (1-5.2c′)

where the indicated derivatives are evaluated at constant entropy and with
density subsequently set to ρo.

The linear approximation (sometimes called the acoustic approximation)
neglects second- and higher-order terms, so the linear acoustic equations‡

take the form
∂ρ′

∂t
+ ρo∇ · v′ = 0, (1-5.3a)

ρo
∂v′

∂t
= −∇p′, (1-5.3b)

p′ = c2ρ′, c2 =

(

∂p

∂ρ

)

o

. (1-5.3c)

(Thermodynamic considerations require§ that c2 always be positive.) For rea-
sons made apparent in Sec. 1-7, c is referred to as the speed of sound.

Some criteria for the validity of the linear approximation result from the
requirement, for a representative solution, that each nonlinear term be almost
everywhere and almost always much less than each of the dominant retained
linear terms appearing in the same equation. A rough a priori estimate† of
ratios of various terms ensues if one assigns a characteristic time T and a
characteristic length L to the disturbance such that the order of magnitude
of ∂ψ′/∂t (or ∂ψ′/∂x) is 1/T (or 1/L) times the order of magnitude of ψ′ for
any acoustic field quantity ψ′. This yields the related criteria

‡ These particular equations (spatial or eulerian description, linearized, with p′, ρ′,v′ as
dependent variables, only with additional viscous terms) are given by Stokes (“Internal
friction of fluids”). Equivalent formulations given by earlier authors differ from that above,
either because of the use of the material description or because the authors chose to
postpone the linearization to a later stage of the calculations, e.g., after the introduction
of the velocity potential.
§ This is a special case of Le Châtelier’s principle: “Experimental and theoretical research
on chemical equilibrium,” Ann. Mines Carburants (8)13:157–380 (1888); L. D. Landau
and E. M. Lifshitz, Statistical Physics, Addison-Wesley, Reading, Mass., 1959, pp. 32–66.
† C. Eckart, “Vortices and streams caused by sound waves,” Phys. Rev. 73:68–76 (1948).
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|p′| ≪ ρo

(

L

T

)2

, |v′| ≪ L

T
,

|ρ′| ≪ ρo,
|ρ′|
ρo

≪ 2c2

ρo|(∂2p/∂ρ2)o|
. (1-5.4)

For plane-wave propagation at constant frequency (discussed in Secs. 1-7 and
1-8) the identifications for T and L (period divided by 2π and wavelength
divided by 2π) are such that L/T is c. Criteria based on this substitution,
however, are not valid in the immediate vicinity of localized sources or in
regions of wave focusing, since L can then be much smaller than cT . Also,
even when the general criteria above are satisfied and nonlinear terms are
all small, such terms can have an accumulative effect over large time inter-
vals or large distances of propagation. For plane-wave propagation at con-
stant frequency, these accumulative effects are significant when the ratio of
propagation distance to wavelength becomes comparable to ρoc2 divided by
a representative acoustic-pressure amplitude. There are in addition certain
acoustic phenomena (e.g., acoustic streaming) that cannot be explained un-
less nonlinear effects are taken into account.

To the linear acoustic equations (3) can be added one for the tempera-
ture perturbation T ′. From the thermodynamic relation T = T (p, s), with
s = so constant, one has T ′ = (∂T/∂p)op

′ in the linear approximation.
The coefficient can be reexpressed by means of thermodynamic identities‡

as (βT/ρcp)o in terms of the coefficient of thermal (volume) expansion
β = −(1/ρ)(∂ρ/∂T )p and the coefficient of specific heat at constant pres-
sure cp = T (∂s/∂T )p. Thus one has

‡ The stated relation follows from the mathematical identity

(

∂T

∂p

)

s

= − (∂s/∂p)T

(∂s/∂T )p
,

and from the version of the second law of thermodynamics that states that

d

(

u− Ts+
p

ρ

)

= −s dT +
1

ρ
dp,

which implies the Maxwell relation

(

∂s

∂p

)

T

= −
(

∂

∂T

1

ρ

)

p

= +ρ−2

(

∂p

∂T

)

p

.

Thus
(

∂T

∂p

)

s

=
−ρ−1(∂ρ/∂T )p

ρT−1[T (∂s/∂T )p]
=
βT

ρcp

Here (∂s/∂p)T is an abbreviation for ∂s(p, T )/∂p, etc. For more detailed discussions, see,
for example, K. Wark, Thermodynamics, 3d ed., McGraw-Hill, New York, 1977, pp. 552–
562; J. H. Keenan, Thermodynamics, M.I.T. Press, Cambridge, Mass., 1941, 1970, pp.
341–347; M. Tribus, Thermostatics and Thermodynamics, Van Nostrand, Princeton, N.J.,
1961, pp. 243–256.
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T ′ =

(

βT

ρcp

)

o

p′. (1-5.5)

Typically, β is positive (distilled water near freezing temperature being an
exception), and temperature peaks coincide with pressure peaks in a sound
disturbance.

1-6 THE WAVE EQUATION

The wave equation results from the linear acoustic equations given above if
one first uses (1-5.3c) to eliminate ρ′ from the mass-conservation equation
and then takes the time derivative of the resulting equation. If the order of
time differentiation and the divergence operation† are interchanged in the
second term, it then takes the form ∇· (ρo ∂v/∂t), which is −∇2p because of
(3b). (Here we delete the primes on p′ and v′.) This sequence of steps yields

∇2p− 1

c2
∂2p

∂t2
= 0, (1-6.1)

where the operator ∇2 is the Laplacian: sum of the second derivatives with
respect to the three cartesian coordinates, i.e., the divergence of the gradient.

The one-dimensional version of this wave equation was first derived in
1747 by d’Alembert‡ for the case of the vibrating string. He subsequently
recognized its possible applicability to sound in air but chose not to pub-
lish his derivation, presumably because of his strong reservations about the
physical admissibility of its solutions. Euler (1747–1748, 1750) and Lagrange
(1759) both treated the case of a sonorous line (see Fig. 1-5), a line of discrete
masses connected by linear springs, and suggested its applicability to sound,
although these early papers do not exhibit the wave equation per se. For rea-
sons not completely understood, Lagrange’s analysis† was the catalyst that
enabled Euler, within only a few days after first seeing Lagrange’s paper, to

† The use of vector notation in the derivation of the wave equation was considered novel
as recently as 1950. See, for example, W. J. Cunningham, “Application of vector analysis
to the wave equation,” J. Acoust. Soc. Am. 22:61 (1950); R. V. L. Hartley, “Note on the
‘application of vector analysis to the wave equation’ ”, ibid., 511.
‡ J.-le-Rond d’Alembert, “Investigation of the curve formed by a vibrating string,” 1747,
trans. in Lindsay, Acoustics, pp. 119–130. For commentary, see Truesdell, “The theory of
aerial sound,” p. xxxvii.
† J. L. Lagrange, “Research on the nature and propagation of sound,” 1759, reprinted in
Oeuvres de Lagrange, vol. 1, pp. 39–148; L. Euler, letter to J. L. Lagrange, dated Oct.
23, 1759; L. Euler, “On the propagation of sound,” 1759, 1766, commentary by Truesdell,
“Rational fluid mechanics, 1687–1765,” pp. cxix–cxxi; L. Euler, “Supplement to research on
the propagation of sound,” 1759, 1766, commentary by Truesdell, “Rational fluid mechanics,
1687–1765,” pp. cxxii–cxxiii, “The theory of aerial sound,” pp. xlv–xlvii; J. L. Lagrange,
“New research on the nature and propagation of sound,” 1760, 1762. Lindsay, Acoustics,
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develop the first theory of sound genuinely based on fluid-dynamic princi-
ples. The first derivation of the wave equation in one dimension for sound
appeared in a paper submitted in 1759 by Euler; a derivation of the three-
dimensional wave equation (with use of the material description) appeared
in a second paper. Lagrange (1760, 1762) gave a subsequent derivation more
nearly akin to that above, in which the linear approximation was made at an
earlier stage.

Figure 1-5 (a) Sonorous-line model used in early theories of sound propagation. A line
of masses, each of mass M , separated at nominal intervals h and coupled by linear springs
of spring constant k vibrates longitudinally. (b) Free-body diagram for the motion of the
nth mass, corresponding to the equation Mẍn = k(xn+1 + xn−1 − 2xn).

This same wave equation occurs (although, generally also as an approxi-
mation) in a variety of other contexts: electromagnetic theory, gravity waves
in shallow water, dilatational and shear elastic waves in solids, transverse
vibrations in stretched membranes, Alfvén waves in magnetohydrodynamics,
pressure surges in liquid-filled tubes with elastic walls, e.g., blood vessels, and
electromagnetic transmission lines.

The derivation above was with acoustic pressure as the dependent field
variable. The same equation (with change of dependent variable), however,
holds for ρ′, T ′, and ∇· v, given the assumption that the ambient medium is
homogeneous and quiescent. (The cartesian components of v also satisfy the
wave equation if ∇× v = 0.)

Two simple aspects of the wave equation may help one recall its form. First,
since c has the units of velocity, ct has the units of length, so (1/c2)(∂2/∂t2)
has the same units (1 over length squared) as ∇2 and the equation is dimen-
sionally consistent, as any relation between physical quantities should be.
Second, the minus sign in the equation implies that, at any point where p is
a maximum (so ∂2p/∂x2 < 0, ∇2p < 0)), the value of p should be accelerated
toward decreasing p (∂2p/∂t2 < 0). If the sign were positive, the acoustic
pressure at the point under consideration would grow without limit and the
medium would be instable.

gives translations of the second and third and of the introductory section of the first of
these articles.
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The Velocity Potential

An alternate formulation that leads to the wave equation is in terms of a
velocity potential.† Taking the curl of both sides of the linear version of Euler’s
equation and noting that ∇×∇p is zero‡ yields

∂

∂t
(∇× v) = 0, (1-6.2)

so the vorticity ∇ × v is constant in time. In most instances one considers
the initial value ∇ × v to be identically zero, and so it will always be zero.
In this case, one can consider v to be the gradient§ of a scalar Φ(x, t). The
linear version of Euler’s equation of motion for a fluid would consequently
require that ρo∂Φ/∂t+ p have zero gradient and thus be a function of t only.
If the velocity potential Φ is further restricted so that this function of t is
zero, then

v = ∇Φ, p = −ρo
∂Φ

∂t
. (1-6.3)

The linear version of Euler’s equation is identically satisfied, and the mass-
conservation equation, ∇ · v + ρ−1

o ∂ρ′/∂t = 0, with ρ′ = p/c2, gives

∇2Φ− 1

c2
∂2Φ

∂t2
= 0, (1-6.4)

† The velocity potential was introduced by Euler in his “Principles of the Motion of Flu-
ids,” 1752. Its first appearance in the context of sound, however, is in J. L. Lagrange,
Méchanique analitique, 1788, which includes a proof that the velocity potential satisfies
the wave equation.
‡ A proof (in cartesian coordinates) follows from

(∇×∇p) · ez =
∂

∂x
(∇p)y − ∂

∂y
(∇p)x =

∂2p

∂x ∂y
− ∂2p

∂y∂x
= 0.

§ To construct a velocity-potential field, given an irrotational velocity field v(x, t), choose
any surface in the fluid that is everywhere perpendicular to v and assign some value Φo

to the velocity potential along that surface. Since v = ∇Φ, the velocity potential at any
other point x is

Φ(x, t) = Φo +

∫

x

xo

v · dℓ,

where xo is any point on the original surface and the line integral is along any path
connecting xo and x. Stokes’ theorem (which requires the line integral of v around a closed
path to vanish if ∇ × v = 0) guarantees that the value of Φ(x, t) will be independent of
the choice of path if the region is simply connected. See, for example, I. S. Sokolnikoff and
R. M. Redheffer, Mathematics of Physics and Modern Engineering, 2d ed., McGraw-Hill,
New York, 1966, pp. 404–407.
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which again is the wave equation. Although the velocity potential is somewhat
of an abstraction, it is often convenient to describe an acoustic field in terms
of a single function from which all field quantities can be derived.

1-7 PLANE TRAVELING WAVES

The hypothesis that sound is a wave phenomenon is supported by the fact
that the linear acoustic equations and therefore the wave equation have solu-
tions conforming to the notion of a wave as a disturbance traveling through
a medium with little or no net transport of matter.

One simple solution exhibiting this feature that plays a central role in
many acoustical concepts is a plane traveling wave, which is such that all
acoustic field quantities vary with time and with some cartesian coordinate s
but are independent of position along planes normal to the s direction. Thus
p = p(s, t), etc. Because ∇p has only an s component, the fluid acceleration
∂v/∂t must be in the ±s direction and if v is initially zero within the region
of interest at some early time, components of v transverse to the s direction
will always be zero. Thus one writes v = v(s, t)n, where n is the unit vector
in the direction of increasing distance s. (The primes on p′ and v′ are deleted
because po does not appear in the linear acoustic equations and because vo
is zero.)

With the simplifications described, Eqs. (1-5.3) reduce to

∂p

∂t
+ ρoc

2 ∂v

∂s
= 0, ρo

∂v

∂t
= −∂p

∂s
, (1-7.1)

while the wave equation reduces to its one-dimensional form:

∂2p

∂s2
− 1

c2
∂2p

∂t2
= 0, (1-7.2a)

or
(

∂

∂s
− 1

c

∂

∂t

)(

∂

∂s
+

1

c

∂

∂t

)

p = 0. (1-7.2b)

The latter follows because commutable operators can be manipulated like
algebraic quantities and because (a− b)(a+ b) = a2 − b2.

The factored version (2b) suggests that writing its solution might be facil-
itated if p were considered as a function of ξ = t− (1/c)s and η = t+(1/c)s.
This choice gives ∂/∂t = ∂/∂ξ + ∂/∂η, ∂/∂s = −(1/c)(∂/∂ξ − ∂/∂η); so
∂/∂t ∓ c∂/∂s is 2∂/∂ξ or 2∂/∂η, and the wave equation consequently be-
comes

− 4

c2
∂

∂ξ

∂

∂η
p = 0. (1-7.3)
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The general solution of this is a sum of a function of ξ = t − s/c and of a
function of η = t+ s/c, that is,

p = f(t− c−1s) + g(t+ c−1s), (1-7.4)

where the functions f and g are arbitrary.†

To obtain the relation between the solutions for p and v, note that Eqs.
(1) imply

ρc

(

∂

∂t
± c

∂

∂s

)

v = ∓
(

∂

∂t
± c

∂

∂s

)

p, (1-7.5a)

or
∂

∂η
(ρcv + p) = 0,

∂

∂ξ
(ρcv − p) = 0, (1-7.5b)

so p + ρcv and p − ρcv are, respectively, functions of ξ and η, which we
denote by 2f(ξ) and 2g(η). This choice of notation reproduces Eq. (4) and,
moreover, gives

v = (ρc)−1
[

f(t− c−1s)− g(t+ c−1s)
]

, (1-7.6)

where the functions f and g are the same as in Eq. (4). (Here we introduce an
additional notational simplification by deleting the subscript on ρo, so that
ρ is here the ambient density.)

The wave interpretation of the solution follows since f(t− c−1s) and g(t+
c−1s) describe waves moving in the +s and −s directions, respectively, with
a speed c. If f(t− c−1s) is plotted versus s for two fixed successive values of
t (see Fig. 1-6), the two wave shapes are identical but the second is displaced
a distance c(t2 − t1) to the right, i.e.,

f(t2 − c−1s) = f(t1 − c−1[s− (t2 − t1)c]).

To evaluate f(t2 − c−1s) for a given value s′′ of s, one might, for example,
look at a plot or tabulation of f(t1 − c−1s) at a value s′ of s, where s′ =
s′′− c(t2− t1). Similarly, g(t+ c−1s) is interpreted as a wave moving without
change of form in the −s direction. Since c is the speed at which the two
waveforms move, we identify c as the speed of sound.

In many instances, there is just one traveling wave in a given spatial region,
namely the wave traveling away from the source. If we take this direction
as the +s direction, we would accordingly set g(t + c−1s) = 0 and have
p = f(t − c−1s). If n is the unit vector in the direction of increasing s,
one can write s = n · x as the cartesian component along the propagation
direction of the vector x going from the origin to the point of measurement.

† The solution is due to d’Alembert (“. . . curve formed by a vibrating string,” 1747), but
its wave implications first appeared in Euler’s “On the propagation of sound,” 1759, 1766.
That the functions f and g need not necessarily be analytic touched off one of the longest
and bitterest controversies in the history of mathematical physics. For a discussion, see
Truesdell, “The rational mechanics of flexible or elastic bodies, 1638–1788,” pp. 237–300.
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It can also be assumed that, for all values of s of interest (some finite range),
there is a time to in the remote past before which the wave has not yet arrived
and consequently, before which, the acoustic field variables, p, ρ′, v, and T ′,
are all identically zero. Then one has†

Figure 1-6 A function f(t− c−1s) describing a plane wave traveling in the +s direction,
sketched for two successive times.

p = f(t− c−1n · x), (1-7.7)

v =
n

ρc
p, ρ′ =

p

c2
, T ′ =

(

Tβ

ρcp

)

0

p, (1-7.8)

as characterizing the various acoustic-field quantities for a traveling plane
wave advancing in arbitrary direction n with speed c. The first of Eqs. (8)
follows from (6) and from the assumptions described, while the second and
third are a rewriting of Eqs. (1-5.3c) and (1-5.5). The velocity-pressure rela-
tion is not true for a standing wave or for superpositions of plane waves, but
it holds for the pressure and fluid velocity associated with each individual
traveling plane wave contributing to the overall wave disturbance. The fluid
velocity v is toward the direction (+n) of propagation if p is positive and
away from it if p is negative.

The factor of proportionality ρc is called the characteristic impedance of
the medium. For air its value is typically (with ρ = 1.2 kg/m3, c = 333m/s)
about 400 kg/(m2·s), the unit occasionally referred to as the mks rayl [in
honor of Rayleigh, 1 mks rayl = 1 kg/(m2·s)]. For water, a typical value
(ρ = 103 kg/m3, c = 1500m/s) is 1.5× 106 kg/(m2·s).
† The solution for plane waves propagating in an arbitrary direction not necessarily coin-
ciding with a coordinate axis is due to Euler, “Supplement to research on the propagation
of sound,” 1759, 1766.
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Processes Occurring during Passage of a Sound Wave

An example exhibiting some of the phenomena accompanying the propaga-
tion of sound is that for which f(t) is zero for t < 0, then is ppk sinωt for
0 < t < 2π/ω, then is zero again for t > 2π/ω (see Fig. 1-7), so that the
waveform is a single cycle of a sinusoidal function. (Here ω and ppk are posi-
tive constants.) At a given measurement site (coordinate s) there is no wave
disturbance until t = s/c. Immediately before that time, the fluid particles
just to the left of point s have an average velocity in the +s direction, so the
fluid starts to be compressed after the wave arrives and ρ′ starts to increase
with time. This compression in turn causes the pressure to increase. Since
the pressure is temporarily larger to the left of s, the pressure gradient is
in the −s direction, and fluid particles are accordingly accelerated in the +s
direction. This acceleration and compression continue until the pressure peak
arrives (one-quarter of a period later). After this, the compression and over-
pressure start to diminish, although v, p, and ρ′ are still positive. By the time
the pressure node (one-half period after onset) arrives, the density is back
to ambient, the fluid velocity has slowed to zero, and the net displacement
of fluid particles to the right has reached its maximum value. However, the
negative acceleration is still nonzero as there is a positive pressure gradient.
Consequently, the fluid velocity goes negative, the density and pressure de-
crease to values below ambient, and the fluid is rarefacted. When the peak
underpressure arrives, the fluid has attained its peak backward velocity. In
the final quarter of the cycle, the acceleration is once again positive, the
backward-moving fluid particles are slowed until, at the termination of the
passage of the pulse, they are again motionless.

If the time integral of f(t) is zero (as for the example discussed), the
net displacement of the fluid particles is zero. The wave disturbance moved
them temporarily to the right, but then moved them back to their original
positions.

One can infer (as originally hypothesized by Newton) that compression
and rarefaction play an important role in sound propagation. In the example
above, the disturbance is a moving region of compression followed by a moving
region of rarefaction. Because of the presence of such density fluctuations,
sound waves are compressional waves.

They are also longitudinal waves (as opposed to transverse waves) because
the fluid velocity is parallel or antiparallel to the direction of propagation.
This is a consequence of the vorticity’s being zero. If v were of the form of a
constant vector V times a scalar function of t−n·x/c, the relation ∇×v = 0
would require n × V = 0, so n and the fluid velocity direction would have
to be parallel or antiparallel.

The prediction of a zero net fluid displacement over a wave cycle demon-
strates that it is the disturbance rather than the fluid itself that is moving
with the sound speed. The disturbance may propagate over great distances,
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Figure 1-7 Fluid-particle positions during passage of one cycle of a sinusoidal plane
traveling wave.

but the fluid particles themselves remain at all times close to their original
positions.

1-8 WAVES OF CONSTANT FREQUENCY

An acoustic disturbance is of constant frequency if the field variables oscillate
sinusoidally with time, such that (for the acoustic pressure p), at any given
point,

p = ppk cos(ωt− φ) = ppk sin(ωt− φ′) = Re{p̂e−iωt}, (1-8.1)

where ppk (the amplitude or peak pressure), ω (the angular frequency), p̂ (the
complex pressure amplitude), and φ (the phase constant) are independent of
time t. (Re denotes “real part.”) These three expressions above are equivalent,
given the identifications

φ′ = φ− π

2
, p̂ = ppke

iφ, (1-8.2)

since
sin
(

α+
π

2

)

= cosα, eiα = cosα+ i sinα. (1-8.3)

[The validity of the latter (Euler’s formula) follows from a comparison of the
power-series expansions of the two sides.]
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The expressions in Eq. (1) oscillate between positive and negative values
and repeat themselves whenever their arguments ωt−φ or ωt−φ′ are changed
by 2π. Thus the time per cycle (period) is 2π/ω, and the number of cycles
per unit time (frequency) is

f =
ω

2π
. (1-8.4)

The units of frequency are hertz (Hz), where 1 Hz equals† 1 cycle per sec-
ond (or s−1). The units of angular frequency (sometimes referred to simply
as frequency without the qualifying adjective) are radians per second. Fre-
quencies audible to a normal human ear are roughly between 20 and 20,000
Hz. As mentioned in Sec. 1-1, constant-frequency disturbances correspond to
musical notes. A piano, for example, sounds a range of frequencies between
55 and 8360 Hz. Middle C corresponds to 262 Hz.

The complex-number representation in Eq. (1) is convenient† in theoret-
ical studies; in particular, it replaces the amplitude and phase by a single
complex number and condenses the writing of mathematical relations. One
could take the time-dependent factor to be e+iωt instead of e−iωt, but the
latter is traditional‡ in wave-propagation studies and is advantageous for the
description of traveling waves.

Although every wave disturbance, strictly speaking, has a beginning and
an end and should therefore be regarded as a transient, some long-duration
sounds can be idealized as being of constant frequency. [The terms “steady
wave” and “continuous wave” (cw) are also used in the literature to denote the
same property.] Also, even if not pure tones, persistent sounds may be super-
positions of independently propagating constant-frequency disturbances. The
mathematical apparatus of Fourier transforms, moreover, allows transients to
be considered as a superposition of a continuous smear of constant-frequency
components.

For disturbances like those described by Eq. (1), the mean squared pressure

(p2)av and root-mean-squared (rms) pressure prms are defined so that

(p2)av =
1

T

∫ to+T

to

p2 dt = p2rms, (1-8.5)

where T is either an integral number of half-wave periods or an interminably
long time interval. Because of the trigonometric identity

† That the hertz is a superfluous unit has not escaped commentary. See, for example,
H. M. Fitzpatrick, “The hertz,” J. Acoust. Soc. Am. 42:1098 (1967); R. W. Young, “On
the hertz,” ibid.; M. Strasberg, “Name for unit radian frequency” (the avis), ibid., 41:1367
(1967); F. Collins, “The Fitzpatrick method,” ibid., 43: 1460 (1968); L. G. Copley, “Angular
velocity,” ibid.; H. M. Fitzpatrick, “Some relevant fundamentals,” ibid., 1460–1461.
† This device was introduced into the acoustical literature by Rayleigh, Theory of Sound,
vol. 1, sec. 104.
‡ The reasons for the choice are discussed by C. J. Bouwkamp: “A contribution to the
theory of acoustic radiation,” Philips Res. Rep. 1:251–277 (1946).
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cos2 α = 1
2 + 1

2 cos 2α, (1-8.6)

the square of cos(ωt−φ) oscillates about an average value of 1
2 with a period

of 1/(2f). Thus, Eqs. (1) and (5) lead to

(p2)av = 1
2p

2
pk = 1

2 |p̂|
2. (1-8.7)

Time Average of a Product

A related identity, stated here for future reference, concerns the time average
of the product of two field quantities, each oscillating with the same frequency
but not necessarily in phase. If one writes

X = Re
{

X̂e−iωt
}

Y = Re
{

Ŷ e−iωt
}

, (1-8.8)

then
(XY )av = 1

2 Re
{

X̂Ŷ ∗
}

, (1-8.9)

where Ŷ ∗ is the complex conjugate of Ŷ . The derivation rests on the trigono-
metric identity [of which Eq. (6) is a special case]:

cosα cosβ = 1
2 cos(α − β) + 1

2 cos(α+ β). (1-8.10)

If α = ωt− φX and β = ωt− φY , the second term averages out to zero while
the first term has an average equal to 1

2 cos(φY − φX). Since

|X̂| · |Ŷ | cos (φY − φX) = Re
{

|X̂ | · |Ŷ |e±i(φY −φX )
}

,

relation (9) follows.
For sound in air, the lowest audible rms pressure amplitude is typically

2× 10−5 Pa; a very loud sound would be one with prms = 2 Pa; one causing
pain, with prms = 60 Pa, although these numbers vary with frequency and
from individual to individual. (Here Pa is the unit symbol for the pascal,
equal to 1 N/m2.) In contrast, the ambient pressure at sea level is 105 Pa, so
that the pressure amplitude in a sound wave is generally much less than po.

Spatially Dependent Complex Amplitudes

Since the field equations of Sec. 1-5 are (by design) linear and have time-
independent coefficients, it is possible for the field variables to oscillate at each
and every point with the same frequency. Thus ω may be considered indepen-
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dent of position. Equations governing the spatial dependences of the complex
amplitudes can be developed by substituting expressions like Re{p̂(x)e−iωt}
into the linear acoustic equations. Because (1) the derivative (with respect
to time or a spatial coordinate) commutes with the operation of taking the
real part (so ∂/∂t → −iω), (2) the product of a real number with the real
part of a complex number is the real part of the product, and (3) the sum
of the real parts of several complex numbers is the real part of the sum, one
obtains, for the mass-conservation equation,

Re
{

(−iωρ̂+ ρo∇ · v̂)e−iωt
}

= 0. (1-8.11)

This will be satisfied if both the real and imaginary parts of the quantity in
braces are zero or, equivalently, if the quantity in parentheses is zero. That
the latter should be zero follows since the above should be satisfied for all
values of time (in particular, when e−iωt has the values 1 or −i).

Thus, one arrives at the prescription that the equations for the complex
spatially dependent amplitudes can be obtained from the linear acoustic equa-
tions by (1) replacing the actual field variables by the corresponding ampli-
tudes and (2) replacing the operator ∂/∂t by the quantity −iω. Doing this
gives

− iωp̂+ ρc2∇ · v̂ = 0 − iωρv̂ = −∇p̂. (1-8.12)

(Here we again delete the subscript on the ambient density ρo.)
In a similar manner, the wave equation is transformed into the Helmholtz

equation†

∇2p̂+ k2p̂ = 0, (1-8.13)

where the wave number k is ω/c. This can also be derived directly from
Eqs. (12). An advantage of such equations is that the number of independent
variables is reduced by 1.

Plane Waves of Constant Frequency

For a plane traveling wave of constant frequency, the acoustic-pressure wave-
form function f(t) in Eqs. (1-7.4) and (1-7.7) is ppk cos (ωt− φo), where ppk
and φo are constants. Therefore one has

p = ppk cos[ω(t− c−1s)− φo] = ppk cos(ωt− ks− φo)

= ppk cos(ωt− k · x− φo) = Re
{

ppke
iφoeik·xe−iωt

}

, (1-8.14)

† H. Helmholtz, “Theory of air oscillations in tubes with open ends,” J. Reine Angew.
Math. 57: 1–72 (1860), especially p. 15. The equation was first given (in vector form for
the particle displacement) by Euler in his “Continuation of the research on the propagation
of sound,” 1759, 1766 (Truesdell, “The theory of aerial sound, 1687–1788,” p. il).
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where k = ω/c, as before, and

k =
ω

c
n = kn (1-8.15)

is the wave-number vector. Also used is the identification of s as n ·x, where
n is the unit vector in the direction of propagation. The corresponding ex-
pressions for v, ρ′, and T ′ are np/ρc, etc., as in Eqs. (1-7.8). One would also
identify, from Eqs. (1) and (14), the complex pressure amplitude as

p̂(x) = ppke
iφoeiks = ppke

iφoeik·x, (1-8.16)

which is a solution of the Helmholtz equation.
Equations (14) demonstrate that, in addition to being cyclic in time with

a period 1/f (where f denotes frequency), a constant-frequency traveling
plane wave is also cyclic with distance of propagation, the repetition length
being λ = 2π/k (the wavelength). Since k = ω/c and ω = 2πf , one has the
fundamental relation [dating back‡ as far as Newton’s Principia (1686)] that

λf = c. (1-8.17)

Thus, if the speed of sound in air is 340 m/s, the wavelength corresponding
to a frequency of 262 Hz (middle C on the piano) is 1.3 m. In terms of human
dimensions, typical sound wavelengths are neither very long nor very short.

1-9 SPEED OF SOUND AND AMBIENT DENSITY

The first measurement of the sound speed c in air was evidently† made by
Marin Mersenne and is reported in works published in 1635 and 1644. The
time lapse was measured from the visual sighting of a source excitation (e.g.,
the firing of a cannon) to the reception of the (transient) sound pulse; dividing
the known distance from the listener to the source by the time interval gave
the sound speed. Numerous measurements‡ have been made since Mersenne’s
time by a variety of methods; the now accepted value for the speed of sound
in dry air at 0◦C is 331.5 m/s.

‡ The relation was implicitly used in an unpublished note (c. 1682) by Huygens. The
concept of a wavelength that decreases with increasing frequency is also evident in Galileo’s
Mathematical Discourses, 1638. (See Dostrovsky, “Early vibration theory,” pp. 180, 192.)
† J. M. A. Lenihan, “Mersenne and Gassendi: An early chapter in the theory of
sound,” Acustica 2:96–99 (1951). Translated excerpts from Mersenne’s Cogitata Physico-
Mathematica, Paris, 1644, are given in Lindsay, Acoustics, pp. 64–66.
‡ J. M. A. Lenihan, “The velocity of sound in air,” Acustica 2:205–212 (1952).
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Speed of Sound in Gases

The value of c, according to Laplace’s adiabatic assumption for an ideal gas
(a valid idealization for air) with temperature-independent specific-heat ratio
γ, should be [see Eq. (1-4.2)] such that

c2 =
∂

∂ρ
Kργ = γKργ−1 =

γp

ρ
, (1-9.1)

where p and ρ denote ambient pressure and density. Since p = ρRT (the ideal-

gas equation resulting from Boyle’s law and from the definition of absolute
temperature T ), one accordingly has

c = (γRT )1/2. (1-9.2)

Both Eqs. (1) and (2) can be derived without assuming that γ is independent
of temperature, but for the temperature range of typical interest the variation
of γ is negligible. For most ordinary purposes γ can be taken as constant and,
for air, equal to 1.4. This value is consistent with the notion that the diatomic
molecules O2 and N2 (the primary atmospheric constituents) have five fully
excited degrees of freedom, three translational and two rotational; internal
vibrations and rotation about the symmetry axis are nearly “frozen” at room
temperatures. The incomplete freezing of the vibrational degree of freedom is
important for the attenuation of sound but has very small effect on the sound
speed. (This is explained in Sec. 10-8.) Basic kinetic-theory considerations†

for rigid molecules give γ = (d + 2)/d, where d is the number of excited
degrees of freedom, and with d = 5 this does lead to γ = 1.4.

Kinetic theory also gives the ideal-gas equation in the form p = NkBT,
where N is the number of molecules per unit volume and kB = 1.381 ×
10−23 J/K is Boltzmann’s constant. Thus R in the relation p = ρRT is
kB/mav, where mav is the average mass per molecule. Alternately, one can
write

R =
Ro
M
, (1-9.3)

† A principal result dating back to Daniel Bernoulli (1738) is that pressure equals two-
thirds the random molecular translational energy per unit volume. The equipartition the-
orem requires an average amount 1

2
kBT of energy per degree of freedom. Since there are

three translational degrees of freedom, the average translational energy per unit volume is
3
2
NkBT ; hence p = NkBT . The average total energy per molecule is (d/2)kBT , so the spe-

cific internal energy is u = (d/2)kBT/mav . From T ds = du+p d(1/ρ) and p = (kB/mav)ρT
one derives cv = du/dT and cp = du/dT + kB/mav . But du/dT is (d/2)kB/mav , so that
cp/cv = (d+2)/d. For a more detailed but still elementary discussion, see D. Halliday and
R. Resnick, Fundamentals of Physics, Wiley, New York, 1970, pp. 378–390. A general proof
of the equipartition theorem is given by D. ter Haar, Elements of Statistical Mechanics,
Rinehart, New York, 1954, pp. 30–32.
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where Ro = kB/mamu = 8314 J/(kg·K) is the universal gas constant,mamu =
1.661× 10−27 kg being the mass corresponding to 1 atomic mass unit (amu).
The quantity M = mav/mamu is the average molecular weight of the different
types of molecules in the gas, the weighting being the corresponding fraction
(by volume) of total number of molecules. Air is a mixture of gases, but
except for water vapor, the fractions by volume of its major constituents are
nearly constant. Dry air (no H2O) is made up of approximately 78 percent N2

(molecular weight 28), 21 percent O2 (molecular weight 32), and 1 percent
argon (molecular weight 40) by volume, so that its average molecular weight is
the sum of (0.78)(28), (0.21)(32), and (0.01)(40), or 29.0. The corresponding
value of R is 8314/29 = 287 J/(kg · K).

With the numbers just cited, the theoretical estimate of the speed of
sound in dry air at 0◦C (273.16 K), according to Eq. (2) above, would be
[(1.4)(287)(273.16)]1/2 = 331 m/s, in accord with the accepted experimental
value. For other temperatures of normal interest, it may be sufficient to ex-
pand c in a Taylor series about 273.16 K. Since dc/dT = (12 )(c/T ) or 0.61
(m/s)/K at 0◦C with the value of c just computed, one has approximately
(for dry air) that (c in meters per second, TC in degrees Celsius)

c = 331 + 0.6TC . (1-9.4)

The presence of H2O (with 6 degrees of freedom and a molecular weight of
18) causes the average number of degrees of freedom per molecule to increase
to 5 + h and M to decrease to 29− (29− 18)h, where h is the fraction of the
molecules that are H2O. The first effect decreases γ = (d+2)/d and therefore
tends to decrease the sound speed; the second tends to increase it. The second
dominates, so c increases. The resulting expansion of the expression (γRT )1/2

to first order in h is
cwet = [1 + 0.16h]cdry. (1-9.5)

The water-vapor correction is typically less than 1.5 percent since h rarely
exceeds 0.07 (100 percent humidity at 40◦C), although still measurable.

The ambient density of air can be calculated from the ideal-gas equation,
ρ = p/RT . Atmospheric pressure at sea level can be taken at 105 Pa, so when
temperature varies from 0 to 40◦C, ρ varies from 1.27 down to 1.11 kg/m3.
For general estimates, ρ = 1.2 kg/m3 suffices.

As regards the proportionality between T ′ and acoustic pressure p′ for
an ideal gas,† one has cp − cv = R, β = 1/T . Since cp/cv = γ, one has
cp = [γ/(γ − 1)]R. Thus, Eq. (1-5.5) gives

T ′

To
=
γ − 1

γ

p′

po
, (1-9.6)

where (γ − 1)/γ is 2
7 for air.

† See the preceding footnote.
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Acoustic Properties of Liquids

For liquids, such as water, the expression [∂p(ρ, s)/∂ρ]1/2 for the sound speed
is often written as

c =

(

Ks

ρ

)1/2

, (1-9.7)

where

Ks = ρ
∂

∂ρ
p(ρ, s) (1-9.8)

is the adiabatic bulk modulus. The reciprocal 1/Ks is the adiabatic compress-

ibility. (For an ideal gas, Ks is γ p.) For a liquid, little error would be intro-
duced into the computation of c if Ks (which is difficult to measure directly)
were replaced by the isothermal bulk modulus KT and the propagation ac-
cordingly considered to be isothermal rather than adiabatic. The discrepancy
can be computed from the thermodynamic identity‡

Ks −KT

Ks
=
Tβ2KT

ρcp
=
Tβ2c2

γcp
=
γ − 1

γ
. (1-9.9)

where β is the coefficient of volume (thermal) expansion. The number (γ −
1)/γ is, as remarked above, equal to 2

7 for air but turns out to be only of the
order of 0.001 for water at 10◦C and atmospheric pressure.

The earliest measurements (see Fig. 1-8) of sound speed in water were
made by J.-D. Colladon† at Lake Geneva in 1826; the value derived was
c = 1435 m/s at a time when the water temperature was 8◦C. For the same
temperature (and atmospheric pressure), the present accepted value‡ is 1439.

‡ A derivation starting from s = s(T, p(ρ, T )) leads to the mathematical identity

(

∂s

∂T

)

ρ

=

(

∂s

∂T

)

p

+

(

∂s

∂p

)

T

(

∂p

∂T

)

ρ

, cp − cv = −T
(

∂s

∂p

)

T

(

∂p

∂T

)

ρ

.

Then, since (∂p/∂T )ρ = −(∂p/∂ρ)T (∂ρ/∂T )p (a fundamental mathematical relation be-
tween partial derivatives) and since (∂s/∂p)T = −[∂(1/ρ)/∂T ]p (one of the Maxwell rela-
tions), one derives

cp − cv =
T

ρ

[

−1

ρ

(

∂ρ

∂T

)

p

]2
[

ρ

(

∂p

∂ρ

)

T

]

=
Tβ2KT

ρ
.

A relation for Ks − KT is derived similarly, starting from p(ρ, s(ρ, T )). See p. 16n and
the texts cited there on thermodynamics.
† J.-D. Colladon and J. C. F. Sturm, “Memoir on the compression of liquids,” Ann. Chim.
Phys. (2)36:225–257 (1827), especially p. 248. A translated extract from Colladon’s auto-
biography is given in Lindsay, Acoustics, pp. 195–201.
‡ M. Greenspan and C. E. Tshiegg, “Tables of the speed of sound in water,” J. Acoust. Soc.
Am. 31:75–76 (1959); J. R. Lovett, “Comments concerning the determination of absolute
sound speeds in distilled and seawater and Pacific sofar Speeds,” ibid., 45: 1051–1053
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1 m/s; the general dependence (for c in distilled water) on temperature and
pressure is as depicted in Fig. 1-9. For fixed T, c increases nearly linearly with
pressure, but for fixed p, it rises to a maximum and subsequently decreases
with increasing temperature. One is often only interested in water tempera-
tures between 0 and 20◦C and in pressures between 1 and 100 atm (105 and
107 Pa), and, with these limitations, the following empirical formula may
suffice:

c = 1447 + 4.0∆T + (1.6× 10−6)p. (1-9.10)

Here c is in meters per second, ∆T is T − 283.16 (temperature relative to
10◦C), and p is absolute pressure in pascals. A value of c sufficient for rough
numerical estimates would be 1500 m/s.

The presence of dissolved salts in seawater causes c to be of the order of 40
m/s higher. The salt content is described§ in terms of a salinity S (units of
grams per kilogram or, in common notation, %�) that is approximately the
total amount of (originally) solid material in grams contained in a kilogram of
water. The salinity suffices as a single-parameter description of the chemical
composition because (Mercet’s principle) the relative (to each other) propor-
tions of different types of salts in seawater are nearly the same all over the
world. Empirical formulas for c(p, T, S) have been developed by Wilson; an
approximate version applicable for the same circumstances as in Eq. (10) and
for S near 35%� is

c = 1490 + 3.6∆T + (1.6× 10−6)p+ 1.3∆S, (1-9.11)

where ∆T and p are defined as before and ∆S = S − 35. The reason for
the expansion about 35%� is that 99.5 percent of all seawater has a salinity
between 33 and 37%�.

Other thermodynamic properties of water can also approximately be ex-
pressed in a form analogous to the equations above. For fresh (distilled) water,
one has†

(1969); W. D. Wilson, “Speed of sound in distilled water as a function of temperature
and pressure,” ibid., 31:1067–1072 (1959); “Speed of sound in sea sater as a function of
temperature, pressure, and salinity,” ibid., 32:641–644 (1960); “Equation for the speed of
sound in sea water,” ibid., 1357.
§ R. A. Horne, Marine Chemistry, Wiley-Interscience, New York, 1969, pp. 146, 151.
† The data from which these are derived come from various tables collected by Horne,
Marine Chemistry, and the Handbook of Chemistry and Physics, Chemical Rubber Pub-
lishing Co., Cleveland, issued annually. Some judicious application has also been made of
such thermodynamic identities as

(

∂cp

∂p

)

T

= −T
ρ

[

β2 +

(

∂β

∂T

)

p

]

(

∂β

∂p

)

T

=
1

K2
T

(

∂KT

∂T

)

p

.
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Figure 1-8 Earliest measurement of the speed of sound in water. “I had my station at
Thonon, my ear attached to the extremity of an acoustic tube. The boat was oriented
so that my face was turned in the direction of Rolle. I was thus able to see the light
accompanying the striking of the bell and to hold the watch which served to measure the
time taken by the sound to reach me.” (J.-D. Colladon, Souvenirs et mémoires, Aubert-
Schuchardt, Geneva, 1893, plate facing page 138.)
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Figure 1-9 Temperature and pressure dependence of the sound speed in distilled water.
[Adapted from W. D. Wilson, J. Acoust. Soc. Am. 31:1070 (1959).]

ρ = 999.7 + 0.048× 10−5p− 0.088∆T − 0.007(∆T )2, (1-9.12a)

β = (8.8 + 0.022× 10−5p+ 1.4∆T )× 10−5, (1-9.12b)

cp = 4192− 0.40× 10−5p− 1.6∆T, (1-9.12c)

KT = (20.9 + 0.0058× 10−5p+ 0.10∆T )× 108, (1-9.12d)

βT

ρcp
= (6.0× 10−9)

(

1 +
∆T

6
+ 0.0024× 10−5p

)

, (1-9.12e)

γ − 1

γ
= 0.0011

(

1 +
∆T

6
+ 0.0024× 10−5p

)2

, (1-9.12f)

while the analogous expressions for seawater are

ρ = 1027 + 0.043× 10−5p− 0.16∆T − 0.004(∆T )2 + 0.75∆S, (1-9.13a)

β = (16.3 + 0.019× 10−5p+ 0.81∆T + 0.2∆S)× 10−5, (1-9.13b)
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cp = 3988− 0.23× 10−5p+ 0.54∆T − 5.4∆S, (1-9.13c)

KT = (22.6 + 0.0062× 10−5p+ 0.10∆T + 0.051∆S)× 108 , (1-9.13d)

βT

ρcp
= (1.1× 10−8)

(

1 +
∆T

20
+ 0.0012× 10−5p+ 0.012∆S

)

, (1-9.13e)

γ − 1

γ
= 0.0041

(

1 +
∆T

20
+ 0.0012× 10−5p+ 0.012∆S

)2

. (1-9.13f)

Here all the indicated quantities are in SI units: ρ in kg/m3, β in K−1, cp in
J/(kg·K), KT in Pa; γ is dimensionless. The temperature dependence of β is
strong, β being negative for distilled water near 0◦C.

1-10 ADIABATIC VERSUS ISOTHERMAL SPEEDS

Whether sound disturbances should be idealized as adiabatic or as isother-
mal can be investigated with the help of the linearized versions of the mass-
conservation equation, of Euler’s equation, and of the Fourier-Kirchhoff equa-
tion (1-4.6). Elimination of the fluid velocity from the first two (in a manner
similar to that in the derivation of the wave equation) gives

∂2ρ′

∂t2
−∇2p = 0, (1-10.1)

while the third can be reexpressed as

ρocp
∂

∂t

(

ρ′ − p

c2

)

= κ∇2

(

ρ′ − p

c2T

)

, (1-10.2)

where c2T = (∂p/∂ρ)T,o = c2/γ. (If the propagation is isothermal, the sound
speed is cT .) The latter equation results with the help of the thermodynamic
relations

s′ =

(

∂s

∂ρ

)

p,o

(

ρ′ − p

c2

)

, T ′ =

(

∂T

∂ρ

)

p,o

(

ρ′ − p

c2T

)

,

(

∂s

∂ρ

)

p

=

(

∂s

∂T

)

p

(

∂T

∂ρ

)

p

,

along with the definition T (∂s/∂T )p for cp.
A single wave equation for just one dependent variable is obtained from

Eqs. (1) and (2) by taking the second time derivative of Eq. (2), commuting
various operators and constants, and subsequently replacing ∂2ρ′/∂t2 by ∇2p
in accord with Eq. (1). Doing this gives
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∂

∂t

(

∇2 − 1

c2
∂2

∂t2

)

p =

(

κ

ρcp

)

∇2

(

∇2 − 1

c2T

∂2

∂t2

)

p, (1-10.3)

which is the generalization of the wave equation when thermal conduction is
taken into account.

The implications of Eq. (3) for plane-wave propagation at constant fre-
quency ω can be explored with the substitution

p = Re
{

Ae−iωteiks
}

, (1-10.4)

where A and k are independent of time and position. The same reasoning
applies as in the derivation of Eqs. (1-8.12), so the “equation” for A results
with the replacement of p by A in Eq. (3) and with the replacement of
the differentiation operators ∂/∂t and ∇2 by −iω and −k2. This gives a
homogeneous linear algebraic equation whose solution for A is zero unless k
is such that

k2 − (ω/c)2

k2 − (ω/cT )2
=

κ

ρcp

k2

iω
. (1-10.5)

(Any such relation between wave number k and angular frequency ω is termed
a dispersion relation.) For fixed ω, this determines the values of k2 such that
plane-wave solutions are possible; the imaginary part of k corresponds to
attenuation. Although this is a quadratic equation for k2, we here limit our
attention to the root closest in value to either (ω/cT )

2 or (ω/c)2.
If the adiabatic assumption is substantially better than the isothermal

assumption, there is a root k2 for which the right side of (5) has a magnitude
much smaller than 1. In this case k2 is approximately (ω/c)2 and the right
side becomes −iω/ωTC or −if/fTC, where

ωTC =
ρcpc

2

κ
= 2πfTC (1-10.6)

is a characteristic number (units of s−1) associated with thermal conduction
(TC). From this, one can infer that the adiabatic approximation is valid if
ω ≪ ωTC. In contrast, if ω ≫ ωTC, the propagation might be considered as
isothermal (although in such circumstances the hitherto neglected viscosity
would be expected to result in a high attenuation of sound). For angular
frequencies between these limits, neither idealization is necessarily preferable,
although nearly unattenuated propagation may still result if cT and c are close
to each other in value.

The frequencies of interest in acoustical studies are always much less than
fTC. For example, for air, ρcpc2 = γ2Rpo/(γ − 1) has the value 1.4 × 108

W/(m·s·kg) at atmospheric pressure. The thermal conductivity varies from
2.4 × 10−2 to 2.7 × 10−2W/(m · K) as the temperature ranges from 0 to
40◦C. Consequently, fTC is of the order of 109 Hz. Also, for water, with the
values given in the preceding section, ρcpc2 = 9 × 1012 W/(m·K) at 10◦C
and atmospheric pressure. The thermal conductivity varies from 0.56 to 0.60
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W/(m·K) as the temperature ranges from 0 to 20◦C. Thus, for water, fTC is
of the order of 2 ×1012 Hz. In contrast, the highest known frequency in air
detectable by animal life (bats and moths) is of the order of 1.5 × 105 Hz.
Frequencies used in ultrasonic-propagation studies in water are typically less
than 109 Hz; those used in underwater systems are typically less than 105

Hz.
The adiabatic approximation is better at lower frequencies than at higher

frequencies because the heat production due to conduction is weaker when
the wavelengths (varying inversely with frequency) are longer. For fixed am-
plitude A, the magnitude of the term κ∇2T ′ in the linear version of the
Fourier-Kirchoff equation (1-4.6) decreases with decreasing ω as ω2; the term
ρTo∂s

′/∂t decreases as ω. Since the thermal-conduction term decreases more
rapidly, the lower the frequency the more nearly valid the premise that the
implication of the overall equation is ∂s′/∂t = 0. (The often stated expla-
nation, that oscillations in a sound wave are too rapid to allow appreciable
conduction of heat, is wrong.)

1-11 ENERGY, INTENSITY, AND SOURCE POWER

Acoustic-Energy Corollary

The linear acoustic equations have a corollary (derived by Kirchhoff† in 1876)
which resembles a statement of energy conservation for an acoustic field and
which can be regarded as the acoustic counterpart of Poynting’s theorem‡ for
electromagnetic fields. To derive it, one takes the dot product of v with the
linear version of Euler’s equation (with the deletion of the primes on p′ and
v′), i.e.,

v ·

(

ρo
∂v

∂t

)

= −v · ∇p = −∇ · (vp) + p∇ · v

= −∇ · (pv)− pρ−1
o

∂ρ′

∂t
. (1-11.1)

Here the indicated mathematical steps follow from a vector identity and from
the linear version of the mass-conservation equation. The term on the left

† G. Kirchhoff, Vorlesungen über mathematische Physik: Mechanik, 2d ed., Teubner,
Leipzig, 1877, pp. 311, 336 (subsequently cited as Mechanik); Rayleigh, The Theory of
Sound, vol. 2, sec. 295.
‡ Poynting’s theorem is a corollary of Maxwell’s equations; for electromagnetic fields in free
space it takes the form of Eq. (2) with w = 1

2
ǫE2 + 1

2
µH2 and I = E ×H. The theorem

was derived in integral form by J. Poynting in 1884 and again in the same year by O.
Heaviside. For a full discussion, see J. A. Stratton, Electromagnetic Theory, McGraw-Hill,
New York, 1941, pp. 131–133.
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can be alternately written as (∂/∂t)(12ρov
2). Similarly, since ρ′ = p/c2, the

expression pρ−1
o ∂ρ′/∂t can be written (∂/∂t)(12p

2/ρoc
2). Therefore, Eq. (1)

can be reexpressed as†
∂w

∂t
+∇ · I = 0, (1-11.2)

where

w = 1
2ρov

2 +
1

2

p2

ρoc2
, I = pv. (1-11.3)

The interpretation of (2) as a conservation law follows if we integrate it
over an arbitrary fixed volume V within the fluid and reexpress the volume
integral of ∇ · I as a surface integral by means of Gauss’s theorem. Doing
this gives

d

dt

∫∫∫

V

w dV +

∫∫

S

I · n dA = 0, (1-11.4)

where n is the unit normal vector pointing out of the surface S enclosing
V . The form of this might be compared, for example, with the equation for
conservation of mass, given in integral form by Eq. (1-2.1).

Energy Conservation in Fluids

The above corollary resembles† the energy-conservation law that can be de-
rived from the original nonlinear fluid-dynamic equations [conservation of

† Various generalizations (corresponding to alternate versions of the linear acoustic equa-
tions) are discussed in Chaps. 8 and 10. Another, of importance for very-low-frequency
propagation in the atmosphere and oceans, results when ρo, po, and c are considered
to be functions only of height z (or depth) under the influence of gravity, such that
dpo/dz = −gρo. The linear acoustic equations with the gravitational-force term included
lead to Eqs. (2) to (4), but w has an additional term

(∆w)gravity = 1
2
ρoω

2
BVξ

2
z ,

where

ωBV =

(

− g
2

c2
− g

ρo

dρo

dz

)1/2

,
[

ω2
BV > 0, for stability

]

ξz =
−s′

dso/dz
, vz =

∂ξz

∂t
,

are identified as the Brunt-Vaissala frequency and vertical particle displacement. For a
derivation and discussion, see C. Eckart, Hydrodynamics of Oceans and Atmospheres, Perg-
amon, New York, 1960, pp. 53–60.
† N. Andrejev, “On the energy expression in acoustics,” J. Phys. (Moscow) 2:305–312
(1940); J. J. Markham, “Second-order acoustic fields: Energy relations,” Phys. Rev. 86:712–
714 (1952); “Second-order acoustic fields: Relations between energy and intensity,” ibid.,
89:972-977 (1953); A. Schoch, “Remarks on the concept of acoustic energy,” Acustica 3:
181–184 (1953); N. Andrejev, “Concerning Certain Second-Order Quantities in Acoustics,”
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mass, Euler’s equation, and p = p(ρ, s) with s constant], i.e.,

∂E

∂t
+∇ · (Ev + pv) = 0, (1-11.5a)

d

dt

∫∫∫

V

E dV +

∫∫

S

Ev · n dA+

∫∫

S

pv · n dA = 0, (1-11.5b)

E = 1
2ρv

2 + ρUP (ρ, s) UP =

∫ 1/ρo

1/ρ

p d
1

ρ
. (1-11.6)

Here p is total pressure, E is energy per unit volume, and UP is the potential
energy per unit mass relative to the ambient state. [This last identification
results from consideration of unit mass of fluid in a cylindrical vessel (cross-
sectional area A) with a movable piston at its top. When the piston moves
down a distance δh, the specific volume 1/ρ decreases by A δh. The work done
by the force pA is pA δh, so −p δ(1/ρ) is the increase of potential energy.]
In the integral form of the conservation law (5b), Ev ·n is energy convected
out of the volume per unit surface area and time due to fluid motion; pv · n

is rate of work done per unit area and by the fluid in V on its surroundings.
The resemblance mentioned above becomes apparent if E and (E + p)v

are expanded to second order in ρ− ρo, p− po, and v. To this order, one has

ρUP ≈ po
ρo

(ρ− ρo) +
1

2

c2

ρo
(ρ− ρo)

2, (1-11.7)

where ρ− ρo can be replaced by its first-order equivalent (p − po)/c
2 in the

second term. Thus one has

E ≈ 1
2ρov

2 +

[

po
ρo

(ρ− ρo)

]

+
1

2

(p− po)
2

ρoc2
, (1-11.8a)

(E + p)v ≈
[

po
ρo
ρv

]

+ (p− po)v., (1-11.8b)

so, if po were identically zero, one would have w ≈ E and I ≈ (E + p)v.
Also, if these second-order expressions for E and (E + p)v are inserted into
Eq. (5a), the terms in brackets drop out because of the mass-conservation
equation, and one obtains

∂

∂t

[

1
2ρov

2 +
1

2

(p− po)
2

ρoc2

]

+∇ · [(p− po)v] = 0 (1-11.9)

as a relation holding to second order for any solution of the original nonlinear
equations.

Akust. Zh. 1:2–11 (1955), trans. in Sov. Phys.: Acoust.1:2–11 (1955). For a derivation of
Eqs. (5), see Lamb, Hydrodynamics, sec. 10.
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One can conclude that the relation ∂w/∂t +∇ · I = 0 is consistent with
the requirement of energy conservation in a fluid to second order. With the
reservations indicated above, we refer to 1

2ρov
2 as the acoustic kinetic-energy

density, to 1
2p

2/ρoc
2 as the acoustic potential-energy density, and to I = pv as

the acoustic energy flux or acoustic intensity. (Here p represents the acoustic
pressure.)

For plane traveling waves, the expressions for w and I simplify because
v = np/ρc, so one has (with the subscript deleted on ρo)

1
2ρv

2 =
1

2

p2

ρc2
=
w

2
, (1-11.10a)

I =
np2

ρc
= cnw. (1-11.10b)

The kinetic and potential energies are therefore equal† for such a wave. Since
I represents energy transported per unit area and time in the direction n of
propagation, the relation I/w = cn is consistent with the assertion that the
acoustic energy moves as a unit with speed c in the propagation direction n,
so c is the speed with which acoustic energy travels.

Acoustic Power of Sources

Although the energy corollary adds nothing beyond what is already contained
in the fundamental acoustic equations, its existence facilitates the description
of gross properties of sound fields and their sources. It is also a useful point
of departure for the formulation of approximate acoustical theories (e.g., the
reverberation model of room acoustics). One important consequence is that
it enables one to define an acoustic power output of a source.

We assume, for simplicity, that the nature of the source is such that the
wave disturbance is of constant frequency, so the field variables p and v are of
the form Re{(p̂ or v̂)e−iωt} at any given point outside the source; the complex
amplitudes p̂ and v̂ vary from point to point. Since w and I are quadratic
in the field variables, it follows from the trigonometric identity (1-8.10) that
each must be of the form of the sum of a time-independent quantity plus a
quantity oscillating in time with angular frequency 2ω. Their time averages
can be expressed by means of the theorem (1-8.9) as

wav = 1
4ρv̂ · v̂∗ +

1

4

|p̂2|
ρc2

, (1-11.11a)

Iav = Re 1
2 p̂

∗v̂. (1-11.11b)

† This was first pointed out by Rayleigh, “On waves,” Phil. Mag. (5) 1:257–279 (1876).
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Because any such time average of ∂w/∂t is zero (given that the averaging
time is either an integral number of half periods or a very large interval), the
time average of Eq. (2) requires that the spatial variation of Iav be such that

∇ · Iav = 0. (1-11.12)

Similarly, the time average of Eq. (4) gives
∫∫

S

Iav · n dS = 0 (1-11.13)

for any surface S not enclosing a source. [This can also be derived from Eq.
(12).]

The derivation of the latter equation does not apply if S encloses a source,
e.g., a vibrating solid, and so we write instead (see Fig. 1-10a)

Pav =

∫∫

S

Iav · nout dS (1-11.14)

and identify Pav as the average acoustic power radiated by the source. Here
S lies within the region where the acoustic field equations are valid; nout is
the unit normal pointing out of the volume containing the source.

As long as S encloses the same sources, the power Pav computed according
to Eq. (14) is independent of the shape and size of S. To demonstrate this, let
S1 and S2 be two such surfaces (see Fig. 1-10b). Within the volume between
the two surfaces, ∇ · Iav = 0; so Eq. (13) holds with S consisting of the
combination of S1 and S2 and with n pointing out of the volume between
the surfaces. On the inner surface, n = −nout; on the outer, n = nout. Then
for S2 lying outside S1 (13) reduces to

∫∫

S

Iav · n dS =

∫∫

S2

Iav · nout dS2 −
∫∫

S1

Iav · nout dS1 = 0,

which confirms the statement. An equivalent reason for this invariance prop-
erty is that, since the acoustic energy is conserved and the net acoustic energy
in any fixed volume should be a constant plus an oscillating part, the average
power passing through any given surface enclosing the source should equal
the average power passing through any other such surface.

Another consequence of the relation ∇ · Iav = 0 is that the net power
radiated by a collection of sources is the sum of the powers radiated by the
individual sources, i.e.,

Pav =
∑

i

Pav,i =
∑

i

∫∫

Si

Iav · nout dSi, (1-11.15)

where Si is any surface enclosing just the ith source of sound. This relation-
ship results (see Fig. 1-10c) if one applies Eq. (13) to any volume bounded
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externally by any surface Sentire closing the entire collection of sources and
internally by the Si. The value of any Pav,i should not be construed to be
independent of the presence or strength of the other sources or independent
of the nature of its environment. These may be good assumptions, however,
if the source is many wavelengths away from other sources or from solid
boundaries.

Figure 1-10 (a) Surface S used for definition of acoustic power P radiated by a source.
(b) Two-surface geometry for proof that computed P is independent of size and shape of
the control-volume surface. (c) Geometry for proof that total power radiated is the sum of
powers radiated by the component sources.

1-12 SPHERICAL WAVES

In addition to that of a plane wave, another common idealization of an acous-
tic disturbance is a spherically symmetric wave spreading out from a source
in an unbounded fluid medium (see Fig. 1-11). The source is considered to
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be centered at the origin and to have complete spherical symmetry insofar as
the excitation of sound is concerned.

Figure 1-11 Definition of spherical coordinates r, θ, φ. For spherically symmetric waves
from a source at the origin, the acoustic field variables depend only on r and t;v is radially
outward. Here xL, yL, zL are listener coordinates.

Spherical Spreading of Acoustic Energy

The symmetry of the excitation and of the environment requires that the
acoustic intensity I have only a radial component Ir and that its time aver-
age Ir,av (for example, for a constant frequency disturbance) be dependent
only on the radial distance r from the source center. (For the concept of a
time average to be meaningful, the source should be idealized as one with
continuous excitation, a steady source.) To determine the radial dependence
one applies the acoustic-energy-conservation principle (1-11.14) with S taken
as a spherical surface of radius r, with n = er, and with Iav ·n = Ir,av. The
surface integral defining the average power Pav is I r,av times the area 4πr2

of a spherical surface of radius r, so one has

I r,av =
Pav

4πr2
. (1-12.1)
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This prediction, that intensity decreases as the inverse square of radial dis-
tance r, is known as the spherical spreading law.†

Spherically Symmetric Solution of the Wave Equation

As regards the detailed variation of the acoustic pressure p and the fluid
velocity v in such a wave, symmetry requires v to have only an r component
and also requires p and vr to depend only on r and t. The wave equation
for p(r, t) is reexpressed in spherical coordinates (r, θ, φ) if one notes (with
r2 = x21 + x22 + x23 and 2r∂r/∂xi = 2xi) that

∂

∂xi
p(r, t) =

∂p

∂r

∂r

∂xi
=
xi
r

∂p

∂r
,

∂2

∂x2i
p(r, t) =

1

r

∂p

∂r
+
x2i
r

∂

∂r

(

1

r

∂p

∂r

)

,

∇2p(r, t) =
3

r

∂p

∂r
+ r

∂

∂r

(

1

r

∂p

∂r

)

=
∂2p

∂r2
+

2

r

∂p

∂r
=

1

r

∂2

∂r2
(rp),

given that p has no φ or θ dependence. Consequently, the wave equation
becomes†

1

r

∂2

∂r2
(rp)− 1

c2
∂2p

∂t2
= 0. (1-12.2)

Multiplication of this by r [note that r ∂2p/∂t2 = ∂2(rp)/∂t2] produces the
same one-dimensional wave equation that governs plane-wave propagation,
i.e., Eq. (1-7.2a), only here the dependent variable is rp. We can conclude,

† Euler’s Physical Dissertation on Sound (1727, as translated by Lindsay, Acoustics, p.
106) has a statement: “When sound produced by a vibrating globule is propagated by
the communication of its compression with the globules arranged in the sphere around it,
the number of the latter globules increases as the square of the distance from the given
globule; hence the strength or loudness of the sound decreases as the inverse square of the
distance from the source. . . .” In his “Sequel to the research on the propagation of sound,”
1759, “force of sound” (presumably intensity) was considered as being proportional to the
product of particle displacement and particle velocity, each of which decreases at large r
as 1/r. (Truesdell, “The theory of aerial sound, 1687–1788,” p. xlviii.)
† A briefer but less direct derivation of Eq. (2) is to integrate ∇2p over the volume of a
spherical shell of outer radius r and inner radius ro and equate the integral (via application
of Gauss’s theorem, a recognition that the radial component of ∇p is ∂p/∂r, and the
requirement of spherical symmetry) to 4πr2 ∂p/∂r minus the same quantity evaluated at
ro. A differentiation of both sides of the resulting equation with respect to r then gives
4πr2∇2p as being equal to 4π(∂/∂r)(r2 ∂p/∂r). Consequently, one concludes that ∇2p
is r−2(∂/∂r)(r2 ∂p/∂r). The latter, however, is equivalent to r−1(∂2/∂r2)rp. The full
version of the Laplacian in spherical coordinates when p also depends on θ and φ is given
in Sec. 4-5; for the applicable expression for the Laplacian in any orthogonal curvilinear
coordinate system see the footnote referred to just above Eq. (4-5.3).
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from the form of the plane-wave solution, that Eq. (2) has the solution

p(r, t) =
1

r
f(t− c−1r) +

1

r
g(t+ c−1r), (1-12.3)

where f and g are a priori arbitrary functions.
Outside the region of initial excitation and if there are no sources except

that centered at the origin, waves move only in the direction of positive r
(away from the source) and consequently the function g(t+ c−1r) is zero. An
equivalent rationale for this is that of causality. If the source is first turned
on at some remote time to in the past, p(r, t) should be zero for t < to and
for any positive r outside the source. If g(t+ c−1r) is ever nonzero for some
time t1 (where t1 > to) and at some value r1 of r, then it will also be nonzero
at a positive radius r1 + c(t1 − to + ∆t) at time to − ∆t, where ∆t > 0.
Consequently, a nonzero disturbance in the external fluid would be present
before the source is turned on, in violation of the premise (causality) that
the disturbance is caused by the source. The function f(t− c−1r), however,
will conform to the causality requirement if f is identically zero whenever its
argument t− c−1r is less than to − c−1a, where a is the radius of the source.
Thus, at a distant point r, an acoustic disturbance does not appear until time
t = to+ c−1(r− a). A wave moving out from the source with speed c takes a
time (r − a)/c to traverse distance r − a.

The expression f(t− c−1r)/r describing p in an outgoing spherically sym-
metric wave implies that similar waveforms will be received by listeners at
different radii. In addition to the shift ∆r/c in reception time of similar
waveform features, waveforms received at larger distances will be reduced in
amplitude as 1/r. Thus, if the maximum value of p received at 1 m from the
source center is, say, 1 Pa, then that received at 10 m will be 0.1 Pa.

Fluid Velocity in a Spherically Symmetric Wave

To derive an expression for the fluid velocity v (which has only a radial
component vr) in a spherically symmetric wave, it is convenient to use the
velocity potential Φ introduced in Sec. 1-6. Since Φ should also be a function
of only r and t, and since it also satisfies the wave equation, it is also 1/r
times a sum of a function of t − c−1r and a function of t + c−1r. Causality
considerations rule out the second function, so Φ is any conveniently chosen
constant times F (t − c−1r)/r, where F is an a priori arbitrary function.
Equation (1-6.3) suggests that we take the “conveniently chosen constant” as
−ρ−1. Then one has

vr = −1

ρ

∂

∂r

F (t− c−1r)

r
p =

∂

∂t

F (t− c−1r)

r
. (1-12.4)
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This agrees with the previously derived expression f(t−c−1r)/r for the acous-
tic pressure in an outgoing spherical wave if f(t) = dF (t)/dt.

Here the quantities vr and p are not directly proportional to each other,
as the corresponding quantities in a plane traveling wave are. The indicated
differentiation in (4) gives instead

vr =
p

ρc
+
F (t− c−1r)

ρr2
, (1-12.5)

which can be contrasted with the traveling-plane-wave relation v = np/ρc.
However, because the peak values in time of the second term decrease with
distance as 1/r2 while those of the first term decrease as 1/r, the second
term at large r may be relatively unimportant compared with the first, so
the asymptotic relation between p and v would be the same as for a plane
wave. For waves of constant frequency, this will be so if r is much larger than
a wavelength.

Intensity and Energy Density

The intensity I r = pvr of a spherical wave, in accord with Eqs. (4) and (5),
becomes

Ir =
p2

ρc
+
∂

∂t

[

F 2(t− c−1r)

2ρr3

]

, (1-12.6)

so that if F (t) is periodic in time, and if Ir is averaged over an integral
number of half periods, one has

Ir,av =
(p2)av
ρc

. (1-12.7)

This is the same as the expression (1-11.10b) holding for a plane traveling
wave; it is also consistent with the decrease of pressure amplitude as 1/r and
with the decrease of time-averaged intensity as 1/r2.

For a constant-frequency disturbance, both p and vr and consequently
also f(t) and F (t) oscillate sinusoidally with time. One can write f(t) as
|A| cos (ωt − φA) or Re{Ae−iωt}, where A = |A|eiφA . Then, since F (t)
is an oscillating function whose derivative is f(t), it should be given by
ω−1|A| sin(ωt−φA) = Re [(iA/ω)e−iωt]. These expressions inserted into Eqs.
(4b) and (5) yield

p = |A|r−1 cos (ωt− kr − φA) =
1

r
Re
{

Ae−iωteikr
}

, (1-12.8a)
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ρcvr = |A|r−1 cos (ωt− kr − φA) + |A|k−1r−2 sin (ωt− kr − φA)

=
1

r
Re

{(

1 +
i

kr

)

Ae−iωteikr
}

(1-12.8b)

where we use the abbreviation k = ω/c. The second term in (8b) dominates if
kr ≪ 1; the first term if kr ≫ 1. Since the time average of the cosine squared
or of the sine squared is just 1

2 while the time average of the cosine times the
sine is zero, the following time averages result from the above relations:

Ir,av =
|A|2
2ρcr2

, (1-12.9a)

1

2

(p2)av
ρc2

=
|A|2

4ρc2r2
=
Ir,av
2c

, (1-12.9b)

1
2ρ(v

2
r )av =

|A|2
4ρc2r2

[

1 +
1

(kr)2

]

, (1-12.9c)

for the intensity, potential energy density, and kinetic energy density. The
average acoustic energy density wav is the sum of the last two. In the limit
kr ≪ 1, the energy is predominantly kinetic, and the ratio Ir,av to wav is
considerably less than the sound speed, but in the limit kr ≫ 1 the intensity
is cw and the potential and kinetic energy densities are the same.

Field at Large Distances from Source of Finite Extent

If the source is not spherically symmetric but is of limited size, the dis-
turbance at large r locally resembles a plane wave propagating with speed
c away from the source. Thus we can write p ≈ Bf(t − c−1r, θ, φ) and
v ≈ per/ρc, where θ and φ denote the polar and azimuthal angles in spheri-
cal coordinates and B is some function slowly varying over distances (radial
and transverse) comparable to a wavelength. To determine the general form
of the dependence of B on r, θ, φ, let f be a sinusoidal function of time, so
that the time-averaged intensity is B2(f2)aver/ρc, with (f2)av independent
of r. The relation ∇ · Iav = 0 would then require, via Gauss’s theorem (see
Fig. 1-12), that the integral of Iav · n over any conical segment pointing ra-
dially away from the source vanish; so since the approximate Iav has only a
radial component, the product Ir,av∆S of intensity times cone cross-sectional
area ∆S should be independent of radial distance r. But the area ∆S is r2

∆Ω, where ∆Ω is the solid angle subtended by the cone. This solid angle is
constant along the cone, and (f2)av and ρc are independent of r, so r2B2 is
independent of r. Hence B varies inversely with r. Since any θ and φ depen-
dence of B can be absorbed in the function f , we take B to be identically
1/r.
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Figure 1-12 Segment of a cone of solid angle ∆Ω with apex at central point in an asym-
metric source. The indicated geometry is used to show that intensity along any radial line
decreases as 1/r2 at large r from a finite-sized source.

The above reasoning leads to the following approximate expressions for
the acoustic field at large distances from any source of finite extent:

p =
1

r
f(t− c−1r, θ, φ), v =

per
ρc

, (1-12.10a)

Iav =
J(θ, φ)

r2
er, J(θ, φ) =

1

ρcT

∫ to+T

to

f2(t, θ, φ)dt, (1-12.10b)

with T being a suitably chosen (very long or an integral number of half peri-
ods) averaging time. The first two expressions are not restricted to periodic
signals, but the association of a time average with I normally implies that J
should be independent of to.

The function J(θ, φ) describes the radiation pattern of the source, acoustic
power radiated per unit solid angle. The acoustic power radiated by the source
is given by

Pav =

∫∫

S

Iav · nout dS =

∫ 2π

o

∫ π

o

J(θ, φ) sin θ dθ dφ (1-12.11)

since r2 sin θ dθ dφ is the differential element of area for a spherical surface
(sin θ dθ dφ is the differential of solid angle).
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Equation (10b) indicates that the spherical spreading law is not restricted
to spherically symmetric sources. The analysis assumes, however, an absence
of reflections from external boundaries and ignores the absorption (loss of
energy) of sound.

1-13 PROBLEMS

1-1 In an experiment pertaining to the anomalous effects of the atmosphere
on sonic booms, B. A. Davy and D. T. Blackstock, J. Acoust. Soc. Am.

49:732–737 (1971), studied the propagation of transient acoustic pulses
around and through a soap bubble filled with gaseous helium (monatomic
with molecular weight 4). Verify from fundamental principles the authors’
statement that the speed of sound in helium is about 1/0.34 times that in
air.

1-2 Prove by any convenient method that the time rate of change of the volume
V ∗(t) of a moving fluid particle is equal to the volume integral of the
divergence of the fluid velocity.

1-3 Give an alternate derivation of the conservation-of-mass equation start-
ing from the requirement that the mass in any moving fluid particle be
constant.

1-4 Show that if gravity is taken into account, Euler’s equation of motion for
a fluid can be written as

ρ
Dv

Dt
= −∇p− gρez,

where g is the acceleration due to gravity and ez is the unit vector in the
vertical direction.

1-5 (a) Given an ideal gas for which p = ρRT with temperature-independent
specific-heat coefficients cp and cv, where γ = cp/cv and cp− cv = R, show
that the entropy s per unit mass can be written as

s = so + cv ln

(

u

uo

)

−R ln

(

ρ

ρo

)

.

Here so (a constant) is the specific entropy when the specific internal
energy u and the density ρ have the values uo and ρo, respectively; u is
defined so that it vanishes at T = 0.
(b) Derive an expression for the pressure p in terms of the specific entropy
s and the density ρ. Compare your result with Eq. (1-4.2).

1-6 A common model for acoustic waves in inhomogeneous quiescent media
is one in which gravity is neglected and po is considered constant, but ρo
and therefore also c vary with position (although not with time).
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(a) Show that such a choice of ambient variables automatically satisfies
the fluid-dynamic equations.
(b) Show that the linear acoustic equations for such a model can be written
as

∂p

∂t
+ ρoc

2
∇ · v = 0, ρo

∂v

∂t
= −∇p.

Is it necessarily still true that p = ρ′c2?
(c) Show that the resulting wave equation for the acoustic pressure is

ρo∇ ·
(

1

ρo
∇p

)

− 1

c2
∂2p

∂t2
= 0.

1-7 Consider vertical (z) propagation (no horizontal coordinate dependence)
in an isothermal (c constant) quiescent (vo = 0) atmosphere with gravity
taken into account.
(a) Show that Euler’s equation of motion as in Prob. 1-4 and the ideal-gas
equation imply that po and ρo both decrease exponentially with height.
(b) Derive the linear acoustic equations for such a model and show in
particular that they include the relation

∂p′

∂t
+ (γ − 1)gρovz = c2

∂ρ′

∂t
.

(c) Show that the resulting one-dimensional wave equation for vertical
propagation can be written in the form

[

∂2

∂z2
− 1

c2

(

∂2

∂t2
+ ω2

A

)]

p

ρ
1/2
o

= 0,

where ωA = (γ/2)g/c is a constant. [H. Lamb, Proc. Lond. Math. Soc. 7:

122–141 (1908).]
1-8 Given that the vapor pressure of water at 30◦C is 4.24× 103 Pa, what is

the speed of sound in air at 30◦C when the relative humidity is 80 percent?
1-9 The acoustic pressure in a standing-wave pattern in an enclosed rectangu-

lar space in idealized cases may be of the form

p = A cosωt cos kxx cos kyy cos kzz,

where kx, ky, kz are constants depending on the dimensions of the enclo-
sure. What would the angular frequency ω have to be if this expression is
to satisfy the wave equation?

1-10 Show that Reynolds’ transport theorem and Euler’s equation of mo-
tion (without gravity) lead for any given fluid particle to the angular-
momentum conservation law

d

dt

∫∫∫

V ∗

ρxx× v dV = −
∫∫∫

S∗

x× pn dS,
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where x is a vector from a fixed point or from the center of mass of the fluid
particle. Hint: You will need a number of vector identities and a version
of Gauss’s theorem that transforms the volume integral of the curl of a
vector into a surface integral.

1-11 Starting from the relations p = ρRT , pρ−γ = const, for adiabatic
disturbances in an ideal gas, show that the relation between tempera-
ture fluctuations and pressure fluctuations in a sound wave is given by
T ′/To = [(γ − 1)/γ]p′/po.

1-12 (a) Verify that

p = A cos ωt sin kx

is a solution of the one-dimensional wave equation provided that ω = ck.
(b) Determine functions f(t− c−1x) and g(t+ c−1x) such that their sum
is equal to the expression above.
(c) What is the (x-component) fluid velocity associated with this acoustic
pressure?

1-13 A longitudinal compressional wave of very long wavelength compared with
h is propagating along the sonorous line sketched in Fig. 1-5. In terms
of M,k, and h, what is the speed of such a wave in the limit λ ≫ h?
(L. Brillouin, Wave Propagation in Periodic Structures, Dover, New York,
1953, pp. 1–33.)

1-14 A transient plane wave propagates in the +x direction through an initially
undisturbed region. The acoustic pressure at a given point is zero for t < 0,
is equal to ppk sinωt for 0 < t < 2π/ω, and is equal to 0 for t > 2π/ω.
Give an expression in terms of ppk, ω, ρo, and c for the peak displacement
of any given fluid particle to the right.

1-15 The speed of sound in pure water is nominally about 1500m/s; the mass
per unit volume is 103 kg/m3. A possible model for muddy water might
be water with many small rigid particles (idealized as having the same
density as water) suspended in it. Let f represent the fraction of any
given volume normally occupied by such particles. In terms of f , what
would you estimate for the velocity of sound in muddy water?

1-16 A plane sound wave propagating parallel to the ground has a waveform
with one pronounced pressure peak. Microphone 1 at the origin receives
this peak at time t1 = 0.0 s; microphone 2 at x = 1m, y = 0 receives it
at time t2 = 0.00255 s; microphone 3 at x = 0, y = 1m receives it at time
t3 = 0.00147 s. What is the speed of the wave, and in what direction is it
traveling?

1-17 If the oceans were isothermal and of constant salinity below a certain
depth, how would the sound speed vary with further increase in depth?

1-18 The acoustic pressure in a standing wave within a narrow pipe closed at
the end x = 0 and open at the end x = L is

p = A cos
cπt

2L
cos

πx

2L
.
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What is the time-averaged energy density (in terms of A, c, L, and ρo) of
this disturbance as a function of x?

1-19 A hypothetical instrument computes the rms pressure amplitude of an
acoustic wave by averaging p2 over a fixed time interval T and subsequently
taking the square root. Given that the possible frequencies of the wave are
greater than 1000 Hz, what is the smallest choice for T one should pick to
ensure that the error in prms will not exceed 10 percent?

1-20 An initial-value problem for one-dimensional acoustic propagation in an
unbounded space is posed when the values pin, ρ′in, vx,in (at t = 0) are
specified for acoustic pressure, density, and fluid velocity as functions of
x.
(a) Show that the general solution of the linear acoustic equations in one
dimension for such an initial-value problem is

p = f(t− c−1x) + g(t+ c−1x), ρ′ =
p

c2
+

[

ρ′in(x)−
pin(x)

c2

]

,

vx =
1

ρc
[f(t− c−1x)− g(t+ c−1x)],

where

2f(t− c−1x) = pin(x − ct) + ρcvx,in(x − ct),

2g(t+ c−1x) = pin(x + ct)− ρcvx,in(x+ ct).

(b) Given that, at t = 0, p = A for −L/2 < x < L/2, while p = 0 for
x > L/2 or for x < −L/2, sketch p, vx, and ρ′ versus x for t = 3L/2c.
Assume that the initial values of ρ′ and vx are zero for all x.
(c) Derive expressions for the total acoustic kinetic and potential energies
(densities integrated over x) per unit area transverse to the x axis at times
t = 0 and t = 3L/2c for the example above.
(d) After time t = L/c, the solution should exhibit less mass in the region
−L/2 < x < L/2 than originally. What happened to this mass?

1-21 The rms acoustic pressure (in pascals) at a distance of 2m from a small
appliance suspended in an anechoic chamber filled with air is found to be
prms = 0.20| cos θ|, where θ is the angle with respect to the vertical. Given
that the acoustic disturbance at such a distance from the source locally
resembles a plane wave propagating away from the source, what would you
estimate for the sound power output of this appliance?

1-22 The acoustic pressure of an acoustic disturbance in a medium with ambient
density ρ and sound speed c is given by

p = A cos [ω(t− c−1x)] +B sin [ω(t− c−1y)].

(a) Express p in the form Re{p̂(x)e−iωt} and determine the complex pres-
sure amplitude p̂(x).
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(b) Derive expressions for the time-averaged acoustic energy density and
acoustic intensity as functions of x and y.
(c) Verify by direct substitution that ∇ · Iav = 0.

1-23 Suppose the ambient density and sound speed vary with position x (as in
Prob. 1-6), although the ambient pressure po is constant. What modifica-
tions would this spatial variation require in the expressions given in the
text for acoustic energy density and acoustic intensity?

1-24 The acoustic pressure in a spherically symmetric wave is given by

p =
A

r
cos [ω(t− c−1r)],

where A is a constant. In terms of A,ω, c, ρo, and t, how much mass ṁ
passes per unit time out through a fixed spherical surface of radius Ro
in the limit Ro ≪ c/ω? Assume that Ro is larger than the radius of the
source and that A is sufficiently small for nonlinear effects to be negligible.

1-25 Derive an explicit partial-differential equation for the radial component of
the acoustic fluid velocity vr(r, t) in a spherically symmetric sound wave.

1-26 A spherically symmetric sound wave in water has an acoustic fluid velocity
at a distance of 1/(2π) wavelengths from the source center given by

vr(t) = (0.1)(2π) sinωt m/s.

(a) What is the acoustic-pressure amplitude at a distance of 10 wavelengths
from the source center?
(b) If the wavelength is 0.1 m, what is the average acoustic power output
of the source?

1-27 A plane sound wave with frequency 2000Hz is propagating through air
along the axis of a duct of 0.1 m2 cross-sectional area. What is the time
average of the acoustic power transmitted by this wave if the fluid-velocity
amplitude is 0.001m/s?

1-28 A simple method of modifying the linear acoustic equations to simulate
sound absorption introduced by Rayleigh (1877) is to add a term ρoαv to
the left side of the linearized version of Euler’s equation of motion. Here
α is some positive constant with units of reciprocal time.
(a) What is the resulting form of the wave equation if such a term is taken
into account?
(b) The energy-conservation corollary should be modified to

∂w

∂t
+∇ · I = −D ,

where D is always nonnegative. Determine the expressions for w, I, and
D .
(c) If plane waves of the form p = Re{Ae−iωteikx} are to satisfy the wave
equation derived in (a), what should the complex wave number k be?
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1-29 An idealized sonic-boom pressure waveform (acoustic pressure versus time)
is shown in the figure. Assume that such a wave is propagating freely
through air (sound speed c, ambient density ρ) and derive an expression
in terms of P, T, ρ, and c for the total acoustic energy carried across unit
area normal to the wavefront during passage of the sonic boom.

1-30 Verify that the fluid-dynamic energy-conservation equation (1-11.5a) fol-
lows from the equation of mass conservation, from Euler’s equation of
motion, and from the assumption p = p(ρ). Verify also that the expres-
sions in Eqs. (1-11.8) are valid second-order approximations for E and
(E + p)V .

1-31 Show that if Φ(x, y, z, t) is a solution of the wave equation, then ∂Φ/∂x, ∂2Φ/(∂x∂y),
∂2Φ/∂x2 are also solutions. If Φ is taken as F (t − r/c)/r, what forms do
these solutions take when expressed in spherical coordinates?

Problem 1-29 Sonic-boom pressure waveform.

1-32 (a) Derive an expression for ∇2p in spherical coordinates when p is a
general function of r, θ, and φ..
(b) Show that one possible solution of the wave equation in spherical co-
ordinates is

p = Re
{

Ae−iωt(3 cos2 θ − 1)(−k2 − 3 ikr−1 + 3r−2)r−1eikr
}

,

where A is an arbitrary complex constant. [If you have difficulty with part
(a), consult the derivation outlined in Sec. 4-5.]

1-33 What is the time-averaged acoustic power output of an isolated source
that generates the wave in Prob. 1-32?

1-34 Derive approximate two-term expressions in which each term is propor-
tional to some power (not necessarily integer or positive) of ω/ωTC for all
of the roots of the dispersion relation (1-10.5) for complex wave number
k in the limit ω/ωTC ≪ 1. Give a physical interpretation for each of the
roots.

1-35 For a freely propagating plane acoustic wave of constant frequency, what
is the relation between the time average of the square of the acoustic
intensity and the square of the time average of the acoustic intensity?
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1-36 Derive the relation ∇ · Iav = 0 with Iav = 1
2Re p̂

∗v̂ from Eqs. (1-8.12).
1-37 Sound is propagating through an ideal gas for which p = ρRT , where R is

a constant, but for which du/dT and the specific-heat ratio γ are functions
of temperature. Prove that even though γ is not constant, one still has the
sound speed given by (γRT )1/2 or by (γp/ρ)1/2.

1-38 Starting from the second law of thermodynamics and the definitions of
cp, β, and KT , show that

(

∂cp
∂p

)

T

= −T
ρ

[

β2 +

(

∂β

∂T

)

p

]

,

(

∂β

∂p

)

T

=
1

K2
T

(

∂KT

∂T

)

p

.

Are the coefficients in Eqs. (1-9.12) consistent with these identities?
1-39 A cylindrically symmetric (independent of z and azimuthal angle φ) wave

is spreading out from a source extending along the z axis. From energy-
conservation considerations, determine how the time average of the inten-
sity pointing away from the source should vary with the radial distance
r = (x2 + y2)1/2. How is I r,av at a given value of r related to the average
power (dP/dz)av per unit length generated by the source?

1-40 A set of linear acoustic equations obtained by Stokes (1845), which includes
the effects of viscosity and applies to sound waves at points substantially
removed from solid surfaces, can be taken as

∂p

∂t
+ ρc2∇ · v = 0, ∇× v = 0. ρ

∂v

∂t
= −∇p+ 4

3µ∇
2u.

Here µ is the viscosity and may be considered constant.
(a) What are the corresponding partial-differential equations for the spa-
tially dependent complex amplitudes p̂(x) and v̂(x)?
(b) Derive a single partial-differential equation for p(x, t) that does not
involve v(x, t).
(c) If one were to define a velocity potential Φ such that v = ∇Φ, what
would be an appropriate relation between p and Φ to replace the relation
p = −ρ∂Φ/∂t used in the inviscid case?
(d) If p(x, t) = Re{Ae−iωteikx}, what relation should hold between k and
ω? What are the real and imaginary parts of k (given that the real part is
positive) to lowest order in ω?

1-41 (a) Show that for a homogeneous medium with constant ambient velocity
vo, the linear acoustic equations take the form
(

∂

∂t
+ vo · ∇

)

p+ ρc2∇ · v′ = 0, ρ

[

∂v′

∂t
+ (vo · ∇)v′

]

= −∇p.

(b) Show that the corresponding wave equation for p is

∇2p− 1

c2

(

∂

∂t
+ vo · ∇

)2

p = 0.
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(c) If vo = voex and if pNF(x, y, z, t) and v′
NF(x, y, z, t), where NF stands

for “no flow,” are a solution of the equations when vo = 0, show that a
solution when vo 6= 0 can be taken as pNF(x

∗, y∗, z∗, t∗), v′
NF(x

∗, y∗, z∗, t∗),
where x∗ = x − vot, y∗ = y, z∗ = z, t∗ = t. (This is known as a galilean

transformation.) What is your interpretation of this result?
(d) Suppose one has a plane wave of the form p = f(t−n · x/vph), where
the phase velocity vph is some positive constant and n is the unit normal
to surfaces of constant phase. What is vph in terms of c, vo and the angle θ
between n and vo? Show that the corresponding expression for v′ is np/ρc
regardless of the directions of n and vo. Hint: Use the result of part (b).
(e) Verify that the energy corollary of the equations in (a) is

∂w

∂t
+∇ · (vow + I) = 0,

where w and I are the expressions that apply for a medium at rest. Show
that this leads to the prediction that

vw = vo + nc

is the velocity with which the energy is moving for a plane wave with
unit vector n pointing normal to surfaces of constant phase. Give a simple
interpretation of this result.

1-42 For a constant-frequency spherical wave propagating out from the origin,
what is the ratio (p4)av/(p

2)2av? What is the ratio (I2r )av/(Ir)
2
av? What

would be the corresponding ratios for a plane wave?
1-43 A gas mixture is made up of equal parts (in terms of numbers of molecules)

of O2,NH3, and CO2 (a linear molecule). What would you estimate to be
the specific heat ratio γ, gas constant R, and sound speed of this gas at
0◦C?

1-44 For an acoustic disturbance of constant angular frequency ω, how is
[(∂p/∂t)2]av related to (p2)av? If the disturbance is a plane wave, how
is [(∇p)2]av related to (p2)av? How is [(∂p/∂t)∇p]av related to Iav?

1-45 Two superimposed plane waves are propagating in the +x and −x direc-
tions, such that

p = Re{Ae−iω(t−x/c)}+Re{Be−iω(t+x/c)}.

What is the time average Iav,x of the net intensity in the +x direction?
How does Iav,x vary with x?

1-46 The acoustic pressure in a disturbance is of the form

p = Re
{

Ae−iω(t−z/c)
}

+Re
{

Br−1e−iω(t−r/c)
}

,
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which consists of a plane wave and of a spherical wave propagating out
from the origin. What is the net time-averaged acoustic power passing out
through any surface enclosing the origin?

1-47 The velocity potential associated with an acoustic disturbance is of the
form

Φ =
∂2

∂x ∂y
Re
{

Ae−iωtr−1eikr
}

.

(a) Express p̂, v̂r, v̂θ, v̂φ in terms of the spherical coordinates r, θ, φ.
(b) Prove that Iθ,av = Iφ,av = 0.
(c) How does Ir,av vary with r?
(d) Is it necessarily true that Ir,av = (p2)av/ρc?
(e) How will your answers to (b), (c), and (d) be altered, if the operator
∂2/(∂x ∂y) is replaced by ∂2/∂z2? By ∂3/(∂x ∂y ∂z)? What broad conclu-
sions can you draw concerning acoustic fields of this general type?

1-48 Variational principles are of frequent use in acoustics. A simple example
would be what results from multiplying both sides of the Helmholtz equa-
tion by ǫf(x), where f(x) is an arbitrary function and ǫ is some very small
quantity.
(a) Show that for any volume V enclosed by surface S, given that p̂(x)
satisfies the Helmholtz equation, one must have

∫∫

S

εf∇p̂ · n dS +

∫∫∫

V

(k2p̂εf − ε∇f · ∇p̂)dV = 0.

(b) Also show that if p̂(x) is required to satisfy either p̂ = 0 or ∇p̂·n = 0 on
S, then any value of k2 for which a nonzero solution p̂(x) of the Helmholtz
equation exists that satisfies this boundary condition must be related to
the corresponding function p̂(x), such that

k2 =

∫∫∫

V
(∇p̂)2dV

∫∫∫

V (p̂)
2dV

.

(c) Consequently, show for the k2 and p̂(x) described above that

k2 =

∫∫∫

V [∇(p̂+ εf)]2 dV − ε2
∫∫∫

V (∇f)2 dV
∫∫∫

V
(p̂+ ǫf)2dV − ǫ2

∫∫∫

V
f2 dV

,

where, if the boundary condition is p̂ = 0 on S, the function f(x) is
restricted to functions that vanish on S.
(d) If one did not know p̂ in advance, but had a “good guess” for its general
form, show that the corresponding estimate of k2 from the equation in (b)
would be a very good estimate in the sense that it deviates from the actual
value of k2 by a quantity proportional to the square of the deviation of the
guessed p̂ from the actual p̂. (If p̂ = 0 on S is prescribed, the guess must
also satisfy this boundary condition.) The above is a simplified version of
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Rayleigh’s principle, that a natural constant-frequency mode of motion of a
vibrating system is such that the maximum kinetic energy times frequency-
squared, divided by the maximum potential energy, must be stationary
for all admissible variations of the mode’s spatial dependence (Theory of

Sound, vol. 1, sec. 88).





CHAPTER TWO

QUANTITATIVE MEASURES OF
SOUND

The sound field near any point in a fluid (such as air or water) is charac-
terized by the acoustic pressure p(t) versus time. For typical sounds, this
function may be quite complicated, with many oscillations of varying ampli-
tude and duration and with no distinct pattern. A single-frequency sound is
an exception but an idealization not always realized. A plot or tabulation of
p versus t is often impractical to obtain, is often irreproducible in successive
“identical” experiments, and is often an awkward way of describing the na-
ture of the sound. Commonly used instead are various averages that measure
approximately the “magnitude” of the sound and its frequency content.

2-1 FREQUENCY CONTENT OF SOUNDS

Frequency Bands

The partitioning of a sound into frequency bands is most conveniently ex-
plained if one presumes at the outset that p(t) is a sum of constant-frequency
waveforms, i.e.,

p(t) =

N
∑

n=1

pn(t), (2-1.1)

where the nth frequency component is

pn(t) = An cos (ωnt− φn) = Re
{

p̂ne
−iωnt,

}

, (2-1.2)

where An = absolute amplitude
ωn = angular frequency (fn = ωn/2π = frequency, Hz)
φn = phase constant
p̂n = Ane

iφn = complex amplitude

61
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It is assumed that no two ωn are the same and that they are in ascending
order, so that ω1 < ω2, etc. (Two waveforms of the same frequency combine
into a single waveform with an amplitude equal to the sum of the complex
amplitudes of the original waveforms.)

With the representation just described, the contribution to p(t) from the
b-th frequency band, consisting of frequencies between a lower frequency f1(b)
and an upper frequency f2(b), is that part pb(t) of the overall sum which in-
cludes only terms for which fn is between f1(b) and f2(b). If the range of pos-
sible frequencies is divided into contiguous frequency bands, b = 1, 2, 3, . . . ,
such that f2(1) = f1(2), f2(2) = f1(3), etc., it follows that

p(t) =
∑

b

pb(t). (2-1.3)

Since each single-frequency term in the original sum of Eq. (1) occurs in one
and only one of the partial sums defining the pb(t), Eq. (3) gives the same
p(t) as Eq. (1).

Frequency Partitioning of Mean Squared Pressure

The time averages of the squares of p(t) and of its frequency-band components
pb(t) describe a multifrequency sound. Even though p(t) and the pb(t) are
not necessarily periodic, one can define their mean squared values as in Eq.
(1-8.5), but the averaging time T should be considered large; i.e.,

(p2)av = lim
T→∞

{

1

T

∫ tc+T/2

tc−T/2

p2(t) dt

}

, (2-1.4)

where tc is any arbitrarily chosen center time of the averaging interval. That
this average approaches a limit for T large which is independent of tc follows
from a substitution of Eq. (1) into the above definition and from a term-by-
term evaluation of the resulting integral.

We demonstrate the above assertion for a waveform with two frequency
components (N = 2). For this special case, one has

(p2)av = (p21)av + (p22)av + 2(p1p2)av (2-1.5)

since the average of a sum is the sum of the averages of the individual terms.
The averages (p21)av and (p22)av pertain to constant-frequency waveforms and,
in accord with Eqs. (2) and (1-8.7), are A2

1/2 and A2
2/2. (It is assumed that

none of the ωn’s are identically zero.) The cross-term average (p1p2)av, with
the trigonometric identity (1-8.10) for cosα cosβ, becomes
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(p1p2)av = 1
2A1A2

(

{cos [(ω1 + ω2)t− φ1 − φ2]}av

+ {cos [(ω2 − ω1)t− φ2 + φ1]}av
)

. (2-1.6)

Because the indicated trigonometric functions in this latter expression (given
that ω2 − ω1 6= 0) oscillate between 1 and −1 with constant angular fre-
quencies ω1 + ω2 and ω2 − ω1, the integrals under the peaks tend to cancel
those over the troughs. The two averages over a finite time T are bounded in
magnitude by 2/[(ω1+ω2)T ] and 2/[(ω2−ω1)T ]; they consequently approach
0 in the limit of large T . Thus, (p1p2)av = 0, and the third term in Eq. (5)
vanishes.

Generalization of this reasoning to arbitrary values ofN requires (pbpb′)av =
0 for any two nonoverlapping frequency bands, so one has

(p2)av =

N
∑

n=1

(p2n)av =
∑

b

(p2b)av. (2-1.7)

Thus, (p2b)av is an additive measure of the sound associated with the frequen-
cies within band b.

Frequency Partitioning of Intensity, Acoustic Power,

and Energy Density

A partitioning into frequency bands analogous to that discussed above for
(p2)av also holds for the average acoustic intensity Iav and for the average
acoustic power Pav radiated by a source. The acoustic field equations are
linear with time-independent coefficients, and so Eq. (1) implies that the
acoustic fluid velocity v at any given point can also be written either as a
sum of frequency components vn(t) or of band components vb(t), where vn(t)
is sinusoidal in time with the same frequency as is pn(t) and the contribution
vb(t) from frequency band b is defined analogously to pb(t). Since averages of
products of different frequency components vanish, (pnvm)av is zero if n 6= m,
so

Iav =
∑

n

[pn(t)vn(t)]av =
∑

n

In,av =
∑

b

Ib,av, (2-1.8)

where Ib,av = (pbvb)av is identified as the contribution to the average intensity
from band b.

The functions pn(x, t), vn(x, t) for any given angular frequency ωn them-
selves satisfy the linear acoustic equations, so they satisfy the acoustic-energy-
conservation corollary (1-11.2), only with w replaced by wn(x, t) and with I

replaced by In(x, t). Here wn and In are as given by Eqs. (1-11.3) with v

and p replaced by vn and pn. It follows (from reasoning analogous to that
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leading to ∇·Iav = 0 for constant-frequency waves) that ∇·Ib,av = 0 for any
given band. This leads to the definition of a source’s (time-averaged) acous-
tic power output Pb,av from frequencies in band b as the surface integral of
Ib,av ·n over any surface S enclosing the source, where n is the unit outward
normal to S. (The value Pb,av is independent of the size and shape of S.) It
then follows from Eq. (1-11.14) and (8) that Pav is the sum of the Pb,av, so
the total acoustic power is partitioned among the frequency bands.

A similar result is that the time average wav of the acoustic energy density
is a sum of the wb,av, where wb is the acoustic energy density computed as in
Eq. (1-11.3), only with v and p replaced by vb and pb. (It is not necessarily
true that at any instant w is the sum of the wb, even though v is always the
sum of the vb and p is always the sum of the pb.)

2-2 PROPORTIONAL FREQUENCY BANDS

If the frequency scale is divided into contiguous bands, the b-th band having
lower frequency f1(b) and upper frequency f2(b), the partitioning is said to
be into proportional frequency bands if f2(b)/f1(b) is the same for each band.
The center frequency fo of any such band is defined as the geometric mean
(f1f2)

1/2, which is always less than the arithmetic average 1
2 (f1 + f2). The

ratio of center frequencies of successive proportional bands is the same as
f2/f1 for any one band; in addition, one has

fo
f1

=
f2
fo

=

(

f2
f1

)1/2

. (2-2.1)

An octave band is a band for which f2 = 2f1; a 1
3 -octave band is one for

which f2 = 21/3f1; a (1/N)-th-octave band is one for which f2 = 21/Nf1.
Three contiguous 1

3 -octave bands or N contiguous (1/N)th-octave bands are
equivalent to an octave band. For example, the octave band (1000, 2000 Hz) is
made up of the 1

3 -octave bands (1000, 21/3×1000), (21/3×1000, 22/3×1000)

and (22/3 × 1000, 2000). For a (1/N)-th-octave band, Eq. (1) above shows
that fo is (1/2N)-th octave above f1 and below f2, so

f1 = 2−1/2Nfo, f2 = 21/2Nfo. (2-2.2)

Consequently, any proportional frequency band is defined by its center fre-
quency and by N . An octave band (N = 1) with center frequency 1000 Hz,
for example, would have f1 = 707 Hz and f2 = 1414 Hz.
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Standard Frequencies and Bands

In some areas of acoustics (especially noise control) a standard compromised
octave and 1

3 -octave frequency-partitioning scheme† uses the numerical acci-
dent that 210/3 = 10.079 is nearly 10. (Ten 1

3 -octaves are nearly a decade.)
Since round numbers are convenient, center frequencies of the standard 1

3 -
octave bands are chosen so that the (b+ 10)th center frequency is 10 times the
bth. Thus, given that 1000 Hz is the center frequency of a standard 1

3 -octave
band, the scheme (see Table 2-1) is such that 1, 10, 100, 1000, 10,000 Hz,
etc., are also standard 1

3 -octave-band fo’s. The other center frequencies are
simple numerical approximations to the integer powers of 101/10 = 1.25893,
these approximations being

n 1 2 3 4 5 6 7 8 9
10n/10 ≈ 1.25 1.6 2 2.5 3.15 4 5 6.3 8

Thus there are standard octave-band center frequencies at 16, 31.5, 63, 125,
250, 500, 1000, 2000, 4000, 8000, 16,000, and 31,500 Hz; a compromise has
been made because 2 × 16 6= 31.5 and 2 × 63 6= 125. A rule of thumb is
that successive 1

3 -octave-band center frequencies have ratios of 5:4. (The
standard octave and 1

3 -octave-band center frequencies also serve as preferred
frequencies for constant-frequency acoustical measurements.)

Equally Tempered Musical Scales

The concept of fixed frequency ratios (like those defining proportional fre-
quency bands) also occurs in the theory of musical temperament. Certain
instruments, e.g., the piano and stringed fretted instruments, once they are
tuned, sound only a discrete set of notes. Temperament refers to the system
by which these notes are systematically slightly mistuned (tempered) so that
a larger variety of melodious combinations are possible.

When two notes are played together or in succession, the resulting sound
is generally more harmonious to the ear when the corresponding frequencies
are in simple ratios, and much music takes advantage of this fact. Classic
musical intervals correspond to frequency ratios; particular intervals sounding
especially harmonious are those with frequency ratios of 2 : 1 (octave), 3 : 2
(perfect fifth), 4 : 3 (perfect fourth), and 5 : 4 (major third). The terms,
third, fourth, fifth, here refer to where the higher note falls in a musical scale
(do, re, mi, fa, so, la, ti, do) when the lower note is the key note do. Such
a scale is approximately realized by the notes C, D, E, F, G, A, B, C,

† ANSI S1.6-1967 (R1976), American National Standard Preferred Frequencies and Band
Numbers for Acoustical Measurements, American National Standards Institute, New York,
1976.
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Table 2-1 Center, lower, and upper frequencies for 1
3
-octave bands

Band no.
Frequency, Hz

Center Lower Upper

12 16† 14.0 18.0
13 20 18.0 22.4†
14 25 22.4† 28.0
15 31.5† 28.0 35.5
16 40 35.5 45†
17 50 45† 56
18 63† 56 71
19 80 71 90†
20 100 90† 112
21 125† 112 140
22 160 140 180†
23 200 180† 224

24 250† 224 280
25 315 280 355†
26 400 355† 450
27 500† 450 560
28 630 560 710†
29 800 710† 900
30 1, 000† 900 1, 120
31 1, 250 1, 120 1, 400†
32 1, 600 1, 400† 1, 800
33 2, 000† 1, 800 2, 240
34 2, 500 2, 240 2, 800†
35 3, 150 2, 800† 3, 550
36 4, 000† 3, 550 4, 500
37 5, 000 4, 500 5, 600†
38 6, 300 5, 600† 7, 100
39 8, 000† 7, 100 9, 000
40 10, 000 9, 000 11, 200†
41 12, 500 11, 200† 14, 000
42 16, 000† 14, 000 18, 000
43 20, 000 18, 000 22, 400†
44 25, 000 22, 400† 28, 000
45 35, 500† 28, 000 35, 500

† Also an appropriate quantity for an octave band. The 1000-Hz octave band, for exam-
ple, has lower and upper frequencies of 710 and 1400 Hz.

represented by the white keys (starting with C as indicated in Fig. 2-1) on
a piano keyboard. In just intonation (mathematically exact intervals) for a
major key of C, the frequencies corresponding to D, E, F, G, A, B, and C
are tuned to 9/8 (major interval), 5/4 (major third), 4/3 (fourth), 3/2 (fifth),
5/3 (sixth), 15/8 (seventh), and 2 (octave) times the frequency of the first C.

The option of playing all notes that can be reached by any succession of
melodious intervals, e.g., fourths, fifths, and octaves, starting from a given
keynote ideally requires a large number of notes within any given octave. The
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Figure 2-1 Segment of a piano keyboard showing letter designations of white keys and
corresponding notes on the great staff (treble and bass clefs). (From Beginning Piano Book
for Older Students, Copyright c© 1932, Clayton F. Summy Company. Used by permission.
All rights reserved.)

most common tuning system alleviating this problem is equal temperament†

with a 12-note-per-octave scale in which successive notes are (1/12)-octave
apart. An interval with a frequency ratio of 21/12 = 1.0595 is called a half

step. Any two half steps approximate a major interval, any four a major
third, any five a fourth, any seven a fifth, any nine a sixth, and any eleven a
seventh. (Any twelve is exactly an octave.) Note that

22/12 = 1.1225 ≈ 9/8 = 1.1250 27/12 = 1.4893 ≈ 3/2 = 1.5000
24/12 = 1.2599 ≈ 5/4 = 1.2500 29/12 = 1.6818 ≈ 5/3 = 1.6667

25/12 = 1.3348 ≈ 4/3 = 1.3333 211/12 = 1.8877 ≈ 15/8 = 1.8750

A piano keyboard has 7 white keys and 5 black keys (12 in all) per octave
and can be tuned with such a scheme. Insofar as the human ear cannot
perceive the discords caused by the deviations of the tempered ratios for
fifths and fourths from their ideal values, the scheme is satisfactory, although
to some trained listeners the discord in the major third is on the limit of
unpleasantness. The scheme has the virtues of simplicity and of not requiring
the instrument to be retuned whenever the key is changed. The interval G

† This topic is discussed by J. W. S. Rayleigh, Theory of Sound, vol. 1, 1877; Dover, New
York, 1945, secs. 15–20. See also A. J. Ellis, “On temperament,” sec. A of appendix 20 to his
translation (1885) of H. Helmholtz, On the Sensations of Tone, 2d ed., 1885; Dover, New
York, 1954, pp. 430–441, 548. According to Ellis, the concept may have originated in China
long before the time of Pythagoras (c. 540 b.c.). M. Mersenne, Harmonie universelle, 1636,
however, was the first to give the correct frequency ratios for equal temperament. Although
there is controversy whether J. S. Bach ever played on an instrument tuned according to
equal temperament, his Well-Tempered Clavier (1722) had considerable influence on the
use of the system.
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to the next higher D, for example, is as close to a perfect fifth as the interval
from C to G.

2-3 LEVELS AND THE DECIBEL

Sound-Pressure Levels

Although sound-pressure amplitudes or rms pressures (corresponding to a
given frequency component, a frequency band, or the acoustic pressure) can
be measured in terms of pascals (or any other physical unit of pressure), it is
customary in many contexts to measure and report a quantity varying linearly
as the logarithm, base 10, of the mean squared pressure. This quantity is said
to be a sound-pressure level and is defined generically by

Lp = 10 log

(

(p2s)av
p2ref

)

, (2-3.1)

the resulting number having the units of decibels (dB). The subscript s (ab-
breviation for “sample type”) indicates that the mean squared pressure (p2s)av
appearing in the argument may correspond to the acoustic pressure, to that
of one frequency component, to that of a band of frequencies, or (as discussed
below) to a weighted sum of (p2n)av corresponding to different frequency com-
ponents. The denominator factor pref represents a reference† pressure, which
is usually taken as 2× 10−5 Pa for airborne sound and 10−6 Pa for underwa-
ter sound. It is customary to specify pref when reporting data in an isolated
context, for example, 100 dB (re 1 µPa) or Lp/1 µPa = 100 dB, but the spec-
ification need not be made every time a numerical value for a sound-pressure
level is given.

The correspondence between the sound-pressure level Lp and the rms pres-
sure prms for the sample is such that

prms = pref 10
Lp/20, (2-3.2)

which follows from the definition of a logarithm. A level of 0 dB (re 20 µPa)
corresponds to prms = 2×10−5 Pa, 20 dB to 2×10−4 Pa, 40 dB to 2×10−3 Pa,
etc.; increasing Lp by 20 dB implies increasing prms by a factor of 10.

† ANSI S1.8-1969 (R1974), American National Standard Preferred Reference Quantities
for Acoustical Levels, American National Standards Institute, New York, 1974.
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Levels and Sound-Pressure Ratios

The ratio of two mean squared pressures corresponds to a difference in sound-
pressure levels, i.e.,

Lp2 − Lp1 = 10 log

(

(p22)av
(p21)av

)

, (2-3.3)

the difference Lp2−Lp1 being independent of the choice of pref . If (p22)av is N
times (p21)av, then Lp2 exceeds Lp1 by 10 logN dB. (Recall that the logarithm
of a ratio is the difference of the logarithms of numerator and denominator.)

Logarithms and Antilogarithms

The routine tasks of evaluating a logarithm and of raising 10 to a noninteger
power are facilitated if one writes the argument of the logarithm as A× 10M

and the exponent as M + B (M integer, 1 ≤ A ≤ 10 , 0 ≤ B ≤ 1); one
can then use

log (A× 10M) = logA+M ; 10B+M = 10B × 10M . (2-3.4)

(The first relation follows since the logarithm of a product is the sum of
the logarithms, the logarithm of any number raised to a power is the power
times the logarithm of the number, and log 10 is 1.) If A = 10B, then B is
logA. Consequently, either logA or 10B can be evaluated with reference to a
logarithm table giving B = logA versus A for values of A between 1 and 10.
When only one significant figure is needed, the abbreviated Table 2-2 should
suffice. It is convenient to remember that 10 log 2 is nearly 3, 10 log 4 is nearly
6, 10 log 8 is nearly 9 (since 22 = 4, 23 = 8, log 2M =M log 2), as well as the
basic definitions, log 1 = 0, log 10 = 1.

Table 2-2 Abbreviated logarithm (base 10) table

A = 10B B = logA A = 10B B = logA A = 10B B = logA

1.00 0.00 3.00 0.48 6.31 0.80
1.26 0.10 3.16 0.50 7.00 0.85
1.58 0.20 4.00 0.60 8.00 0.90
2.00 0.30 5.00 0.70 9.00 0.95
2.51 0.40 6.00 0.78 10.00 1.00

The decibel scale is analogous to the Celsius and Fahrenheit temperature
scales in thermodynamics because it places commonly encountered airborne
acoustical amplitudes on a scale of 0 to 100. A sound in air with a level of 0
dB is at best barely audible; one of 100 dB, for at least the middle frequency
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ranges (say, 250 to 4000Hz), would be very loud. The qualitative listing in
Table 2-3 gives an indication of the degree of loudness associated with various
sound levels.

Ranges of sound-pressure levels and of frequencies of interest in the acous-
tics of audible sounds are circumscribed by the empirically derived curves (see
Fig. 2-2) of the threshold of audibility Lp,min(f) and the threshold of feeling

Lp,feel(f) versus frequency f . The first gives the minimum sound-pressure
level of a pure tone that can just barely be “heard”; the second gives the
threshold for detection of some sensation different from sound, e.g., a tin-
gling in the ear. These frequency-dependent pure-tone thresholds vary from
person to person and vary somewhat with methods of measurement and with
time and circumstances; values shown in Fig. 2-2 are representative of a per-
son with very acute hearing (1 percent of population of the United States).

Table 2-3 Examples of sounds whose sound level might correspond to a given
value†

Level, dB (re 20 µPa) Examples

140 Near jet engine (at 3 m)
130 Threshold of pain
120 Rock concert
110 Accelerating motorcycle (at 5 m)
100 Pneumatic hammer (at 2 m)
90 Noisy factory
80 Vacuum cleaner
70 Busy traffic
60 Two-person conversation
50 Quiet restaurant
40 Residential area at night
30 Empty movie house
20 Rustling of leaves
10 Human breathing (at 3 m)
0 Hearing threshold for person with acute hearing

† Adapted from S. S. Stevens, Fred Warshofsky, and the Editors of Time-Life Books,
Sound and Hearing, Life Science Library, Time-Life Books, Alexandria, Virginia, 1965, p.
173.

History of the Decibel†

During the early 1920s, when routine measurements of sound amplitudes
first became practical, the wide range of magnitudes made it customary to

† R. Huntley, “A bel Is ten decibels,” Sound Vib. 4(1):22 (January 1970).
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Figure 2-2 Frequency-dependent thresholds of hearing and feeling for people with acute
hearing. [Adapted from H. Fletcher, “Auditory patterns,” Rev. Mod. Phys. 12:47 (1940).]

plot data on a logarithmic scale. Harvey Fletcher† and his colleagues in the
Bell System introduced (c. 1923) a term sensation unit for an incremental
change of 0.1 in the logarithm, base 10, of the mean squared pressure; a
second sound exceeded the first by 1 sensation unit if (p22)av/(p

2
1)av = 101/10

or 1.2589. This unit was roughly the same (within, say, a factor of 2) as the
minimum increment necessary for a noticeably louder sound.

Another term in use somewhat before that time was the mile of standard

cable. Because electric power P along a transmission line falls off exponen-
tially with distance, logP would decrease by qL after transmission over L
miles, q being a frequency-dependent property of the cable; any fractional
drop in power was an attenuation equivalent to L mi of cable if the decrease
in logP divided by q was equal to L. Thus, in general,

† H. Fletcher, “Physical measurements of audition and their bearing on the theory of
hearing,” Bell Syst. Tech. J. 2(4):145–173 (October 1923), especially p. 153. In this paper
what was later termed the sensation unit was introduced and called a loudness unit.
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P2 = P1 × 10−qL,

where L is attenuation in miles cable. While q depended on frequency, it was
numerically close to 0.1 mi−1 for the cables used and for frequencies originally
of interest. This plus the wish to have a unit independent of frequency led
to definition‡ of a transmission unit, in which the relation above would hold
when q was identically 1

10 and when L was the number of transmission units
(L now being dimensionless).

Since the voltage induced in a telephone receiver is proportional to the
sound pressure incident on it, the electric power is proportional to (p2)av.
Consequently, the sensation unit and the transmission unit were recognized
as being essentially the same quantity; 1 unit corresponds to a multiplicative
change of 101/10 in a powerlike quantity.

Also in use in Europe during the 1920s was the natural logarithm, base e
(Euler’s constant, 2.71828 · · · ), of the multiplicative drop in voltage (rather
than power); if voltage dropped by e−N , the attenuation was reported as N
units. The International Advisory Committee on Long Distance Telephony
in Europe (organized in 1924) sought to standardize the various measures of
attentuation then in use. Representatives from the United States attended
the meetings, and there was apparently considerable discussion of the relative
merits of the two units described above. Although unanimous adoption of
either system appeared impossible, the committee noted that e2 = 7.389 was
“close” to 10, so a multiplication of voltage by 1/e is roughly equivalent to a
multiplication of power by one-tenth. They suggested the term neper (after
John Napier, the inventor of logarithms) for the unit of attenuation in natural
logarithms of voltage and the term bel (after Alexander Graham Bell) for the
unit of attenuation in base-10 logarithms of power. Thus, 1 neper (Np) is
roughly 1 bel (B). The exact relation is 1 Np = 2 log e B = 0.869 B. The
transmission unit of the Bell System, identified as 1

10 B, was given the name
decibel; the sensation unit of the Bell System acousticians became the decibel.
(The bel has rarely been used.) The subsequent widespread adoption† outside
the Bell System of the decibel can be attributed to the inherent attractiveness
of a logarithmic scale and to the prominence in the 1920s and 1930s of the
Bell System’s acoustical research staff. The choice of reference pressure (for
sound in air) stems from the practice of plotting acoustical magnitudes in
“units above auditory threshold”; note (from Fig. 2-2) that 0 dB is roughly
the same as the auditory threshold in the midfrequency range.

‡ W. H. Martin, “The transmission Unit and telephone transmission reference systems,”
Bell Syst. Tech. J. 3:400–408 (1924); “Decibel: the name for the Transmission Unit,” ibid.
8:1–2 (1929).
† The first issue of the Journal of the Acoustical Society of America (1929) has perhaps
the first article by someone outside the Bell System in which the term decibel is used in
an acoustical context: V. O. Knudsen, “The hearing of speech in auditoriums,” J. Acoust.
Soc. Am. 1:56–82 (1929). Knudsen defines the decibel on p. 58, n 4.
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Intensity and Power Levels

The decibel also occasionally describes average acoustic intensity and power.
The intensity level LI and the power level LP are defined,‡ respectively, by

LI = 10 log
|Iav|
Iref

; LP = 10 log
Pav

Pref
. (2-3.5)

The preferred values for Iref and Pref are 10−12 W/m2 and 10−12W (1 pi-
cowatt), respectively. As with sound-pressure levels, one can also speak of
intensity and power levels for a given frequency band.

In earlier literature, the term “intensity level” is occasionally used for
sound-pressure level, but this is now discouraged because there is in gen-
eral no simple relation between pressure and intensity and because acoustical
standards assign a precise meaning to the term “intensity.” (Intensity level is
now rarely used.) However, for plane or spherical waves (see Secs. 1-11 and
1-12), |Iav| is (p2)av/ρc, so in these cases

Lp = 10 log

( |Iav|
p2ref/ρc

)

. (2-3.6)

For air under normal conditions ρc ≈ 400 kg/(m2 · s), and so p2ref/ρc ≈
10−12 W/m2 when pref is taken as the preferred (for gases) value of 20 µPa.
Consequently, for plane and spherical waves in air, sound-pressure level and
intensity level are approximately the same.

2-4 FREQUENCY WEIGHTING AND FILTERS

Frequency Weighting Functions

In many contexts, a frequency-weighted mean squared pressure (p2)av,W is
used rather than the mean squared acoustic pressure (p2)av. The weighted
version is defined by a frequency-dependent weighting function W (f) such
that if p(t) is a sum of discrete frequency components, then

(p2)av,W =
∑

n

W (fn)(p
2
n)av. (2-4.1)

‡ ANSI S1.1-1960 (R1976), American National Standard Acoustical Terminology (1976);
ANSI S1.21-1972, American National Standard Methods for the Determination of Sound
Power Levels of Small Sources in Reverberation Rooms (1972), American National Stan-
dards Institute, New York.
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If the W (fn) are all 1 (no weighting, or flat response), this reduces to Eq.
(2-1.7). A decibel description of the weighting results with the substitution

W (f) = 10∆LW (f)/10, (2-4.2)

where ∆LW (f) is the relative response (usually negative) in decibels. The
weighted sound-pressure level results from Eq. (2-3.1) with (p2s)av replaced
by (p2)av,W ; for a single-frequency waveform, the expressions above and the
definition of a sound-pressure level imply that

Lp,W = Lp +∆LW (f). (2-4.3)

Three common weightings correspond to the A, B, and C relative response
functions,† incorporated, for example, into commercially marketed sound-

level meters (see Fig. 2-3). The A weighting is the most commonly used;
the corresponding sound-pressure level is referred to as the sound level and
denoted by LpA (or LA). This weighting was originally intended to be such
that sounds of different frequencies giving the same decibel reading with A
weighting would be equally loud. A sound having a higher sound level than a
second sound (of different spectral content) would not always be louder, but
it often is; from this standpoint, the sound level is an improvement over the
unweighted sound-pressure level in that frequencies to which the human ear
is less sensitive are weighted less than those to which the ear is more sensitive.
Note that ∆LA(f) is roughly the same as the negative of the threshold of
audibility curve Lp,min(f) given in Fig. 2-2.

Sound-pressure levels associated with frequency bands can also be regarded
as weighted sound-pressure levels. The mean squared pressure (p2b)av associ-
ated with frequency band b results from Eq. (1) with W (f) = 1 (∆LW = 0)
for frequencies within the band, and W (f) = 0 (∆LW = −∞) for frequencies
outside the band. An octave-band sound-pressure level (OBSPL) is denoted
by Lp,1/1 (or L1/1), while a 1

3octave-band sound-pressure level (OBSPL) is
denoted by Lp,1/3 (or L1/3). The first subscript corresponds to the physical
quantity measured, but it is usually omitted for sound pressure.

Linear Filters

Passing p(t) through an appropriately designed filter, squaring the output,
then averaging over time gives a measurement of (p2)av,W . The filter (see
Fig. 2-4a) transforms p(t) at its input terminal into pF (t) = L {p(t)} at its
output terminal, where L is a linear operator characteristic of the filter. The
sequence of operations just described therefore yields

† ANSI S1.4-1971 (R1976), American National Standard Specifications for Sound Level
Meters, 1976.
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Figure 2-3 Relative response functions for A, B, and C weightings.

(p2)av,W =
[

(L {p})2
]

av
= (p2F )av. (2-4.4)

A possible realization of a linear filter is an electric circuit (see Fig. 2-4b)
with two wires leading in and two leading out. If the voltage across the input
terminal is f(t), the voltage across the output terminal when it is open (or
terminated by an extremely high electric impedance) is L {f(t)}.

Figure 2-4 (a) Concept of a linear filter that transforms input into output function.
(b) Electric-circuit representation; open-circuit voltage across output terminals is L {f(t)}
when applied voltage across input is f(t).
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Properties of the mathematical operator associated with a linear filter are
such that

L {af(t)} = aL {f(t)}, (2-4.5a)

L {f1(t) + f2(t)} = L {f1(t)}+ L {f2(t)}, (2-4.5b)

L

{

d

dt
f(t)

}

=
d

dt
L {f(t)}, (2-4.5c)

Re L {f(t)} = L {Ref(t)}. (2-4.5d)

Equation (5c) implies that the operation L is intrinsically time-invariant,
and Eq. (5d) guarantees that the filtered function will be real if the input is
real.

A corollary of the above relations is that, for any angular frequency ω,

L

{(

d2

dt2
+ ω2

)

f(t)

}

=

(

d2

dt2
+ ω2

)

L {f(t)}. (2-4.6)

Therefore if f(t) is sinusoidal with angular frequency ω (such that the left
side of the equation vanishes), L {f(t)} must satisfy the differential equation
obtained by setting the right side to 0 and must therefore also be sinusoidal
in time with the same angular frequency ω. Thus, if one writes Re{f̂e−iωt}
for f(t), L {f(t)} must be of the general form

L {f(t)} = Re
{

H(ω)f̂e−iωt
}

, (2-4.7)

where the filter transfer function H(ω) is a complex number independent of
the amplitude |f̂ | and phase of the input function but dependent on ω.

The considerations just stated plus the superposition property (5b) of a
linear filter imply that, if p(t) is a multifrequency waveform of the general
form of Eq. (2-1.1), the filtered waveform pF (t) = L {p(t)} should be given
by a similar expression with p̂n replaced by p̂Fn = H(ωn)p̂n. Consequently,
it follows from Eq. (2-1.7) that the mean square of pF (t) is

(p2F )av =
∑

n

|H(ωn)|2 (p2n)av. (2-4.8)

A comparison of the above with Eq. (1) indicates that the frequency
weighting function W (f) is given by |H(2πf)|2. Since this is independent
of the phase of H(ω), the filter phase shifts are of no consequence insofar
as the evaluation of the weighted mean squared pressure is concerned. Thus,
one has some latitude in the detailed design of the filter.
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2-5 COMBINING OF LEVELS

If a mean squared pressure (p2)av is a sum of (p2n)av (not necessarily discrete)
frequency components, the sound-pressure level L corresponding to the sum
is related to the levels Ln of the individual components by [see Eq. (2-3.2)]

L = 10 log

(

∑

n

10Ln/10

)

, (2-5.1)

which can be schematically denoted by

L = L1 ⊕ L2 ⊕ L3 ⊕ · · · ⊕ LN . (2-5.2)

The routine evaluation of expressions like Eq. (1) is facilitated by the
commutative and associative properties

L1 ⊕ L2 = L2 ⊕ L1 (2-5.3a)

L1 ⊕ L2 ⊕ L3 = (L1 ⊕ L2)⊕ L3 = L1 ⊕ (L2 ⊕ L3), (2-5.3b)

so the summation in (2) decomposes into pairwise sequences of “sum” oper-
ations. For the combination of two levels, Eq. (1) implies

L1 ⊕ L2 = L2 + C+(L2 − L1), (2-5.4)

where the decibel addition function C+(∆L) is

C+(∆L) = 10 log (1 + 10−∆L/10). (2-5.5)

Since L2 can always be considered larger than L1 (if necessary, interchange
L2 and L1), one need only consider C+(∆L) for positive values of ∆L.

The function C+(∆L) is 10 log 2 ≈ 3 dB when ∆L = 0 and decreases
monotonically to 0 as ∆L− → ∞ (see Fig. 2-5). For applications requiring
only integer decibel accuracy, a convenient approximation† is

C+(∆L) =















3 ∆L = 0, 1
2 ∆L = 2, 3
1 ∆L = 4, 5, 6, 7, 8, 9
0 ∆L = 10 or greater

Example The octave-band sound-pressure levels measured at a point near
a textile loom are as tabulated below:

† This scheme is suggested, for example, by M. D. Egan, Concepts in Architectural Acous-

tics, McGraw-Hill, New York, 1972, p. 16.
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Figure 2-5 Decibel addition function C+(∆L); solid line gives function for ∆L between 0
and 16 dB; dashed lines give 10C+(∆L+10) and 1

10
C+(∆L−10), both of which approach

C+(∆L) in limit of large ∆L. Dots are the integer-decibel approximation to C+(∆L).

dB center freq (Hz) dB center freq (Hz)
67 31.5 86 1,000
72 63 90 2,000
77 125 87 4,000
77 250 82 8,000
82 500 73 16,000

Estimate the A-weighted sound level.

Solution Since we do not know how the individual band components are
partitioned among frequencies, we correct for A weighting of each band by
using the correction appropriate to the band’s center frequency. This gives
(see Fig. 2-3) in integer decibels 67−39, 72−26, 77−16, 77−9, 82−3, 86−0,
90 + 1, 87 + 1, 82− 1, 73− 7 for the A-weighted octave-band sound-pressure
levels. The composite estimate is then
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LA = (28⊕ 46)⊕ (61⊕ 68)⊕ (79⊕ 86)⊕ (91⊕ 88)⊕ (81⊕ 66)

= [46 + C+(18)]⊕ [68 + C+(7)]⊕ [86 + C+(7)]⊕ [91 + C+(3)]

⊕ [81 + C+(15)]

≈ (46⊕ 69)⊕ (87⊕ 93)⊕ 81

≈ [69 + C+(23)]⊕ [93 + C+(6)]⊕ 81

≈ [94 + C+(25)]⊕ 81 ≈ 94⊕ 81 ≈ 94 dB.

Such a computation (see Fig. 2-6a) is quickly done by hand. Although the
order in which one combines pairs is unimportant, one common procedure
(see Fig. 2-6b) is first to combine the smallest two, then combine the smallest
two of the new set, etc. This may give a more accurate result when the
integer-decibel approximation for C+(∆L) is used, particularly if the set of
levels consists of one high value and a large number of low values. In this
example, the result is still 94 dB.

Figure 2-6 Computation of decibel sum with the integer-decibel approximation: (a) pair-
wise addition; (b) scheme whereby the smallest two values of each successive set of levels
are combined.
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2-6 MUTUALLY INCOHERENT SOUND SOURCES

For a sound field excited by a number of sources, the acoustic pressure p(t)
at a given point is a sum of waveforms ps(t) (s = 1, 2, . . .) caused by the
individual sources. The assumption is here made that, if only source s is
modified, only the term ps(t) will change. When only one source is of interest,
all other sources (which need not be identified) are considered as background-

noise sources and one can write p(t) as ps(t) + pbg(t), where pbg(t) is the
acoustic pressure associated with background noise.

Two sources, s1 and s2, are mutually incoherent if at any given point and
for any frequency band

[ps1,b(t)ps2,b(t)]av = 0. (2-6.1)

This would be so, for example, if ps1(t) and ps2(t) were each a superposition
of discrete frequency components and if any frequency present in ps1(t) were
absent from ps2(t). If the sources are genuinely independent, it is invariably
a good approximation that they are mutually incoherent. If the individual
terms ps(t) are caused by mutually incoherent sources, it follows that the
mean squared pressures due to individual sources are additive; that is, (p2)av
is the sum of the (p2s)av. The same decomposition holds for any given fre-
quency band and for any frequency weighting simultaneously applied to the
individual ps(t).

An application of such considerations is the calculation of a sound-pressure
level due to a number of independent sources when the level due to the sole
presence of each source is known. For example, suppose that when just source
1 is turned on, Lp = 97 dB, but when just source 2 is on, Lp = 98 dB. When
both are simultaneously on, one would expect Lp = 97⊕ 98 or 98+C+(1) ≈
101 dB.

Another application is the determination of the sound-pressure level due to
a given source alone from measurements taken in the presence of background
noise. If Lbg is the sound-pressure level due to background noise alone and
Lcomb is the combined level due to source plus background, the level Ls due
to the source alone should be such that

10Ls/10 = 10Lcomb/10 − 10Lbg/10,

or
Ls = Lcomb − Cbg(Lcomb − Lbg), (2-6.2)

where the background correction function Cbg(∆L) is defined as

Cbg(∆L) = −10 log(1 − 10−∆L/10). (2-6.3)
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The assumption of mutually incoherent sources requires ∆L = Lcomb − Lbg

be positive, so the argument of the logarithm in (3) is positive and less than
1. The logarithm is consequently negative and Cbg is positive.

Figure 2-7 Background correction function Cbg(∆L). Solid curve is such that if ∆L < 3,
Cbg and ∆L correspond to horizontal and vertical axes, respectively; axes are interchanged
if ∆L > 3. Dots are integer-decibel approximations for ∆L > 3. Note that Cbg(∆L) has
the asymptotic property of decreasing by a multiplicative factor of 1

10
when ∆L increases

by 10.

The function Cbg(∆L) (plotted in Fig. 2-7) is large fomall ∆L, decreases
to 3 for ∆L = 3, to 1 for ∆L = 6.9, to 0.5 for ∆L = 9.7, and to 0.1 for
∆L = 16.5. If the expected error in Cbg is to be no greater than that of ∆L
(or approximately the accuracy in the derived value of Ls is to be no less
than that in the measured values of Lcomb, and Lbg), ∆L must be sufficiently
large for |dCbg/d(∆L)| to be less than 1. This leads to the requirement that
Lcomb exceed Lbg by at least 3 dB; estimates of Ls when this requirement
is not met are expected to be less accurate than the measured levels. To the
nearest integer decibel, the background correction function simplifies to
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Cbg(∆L) =















3 ∆L = 3
2 ∆L = 4, 5
1 ∆L = 6, 7, 8, 9
0 ∆L = 10 or greater

Even though the sound level due to background noise may be much larger
than that due to the source, an individual frequency-band sound-pressure
level due to the acoustic wave from the source can be accurately estimated
if, within that frequency band, the signal’s band sound-pressure level is com-
parable to or exceeds that caused by background.

2-7 FOURIER SERIES AND LONG-DURATION

SOUNDS

If a given waveform p(t) is of interminably long duration but is not immedi-
ately recognizable as a superposition of discrete frequency components, one
way of describing it as such within a time segment of duration T is with a
Fourier series, i.e.,

p(t) =
n=∞
∑

n=−∞

q̂ne
−iωnt = Re

(

∞
∑

n=0

p̂ne
−iωnt

)

, (2-7.1)

where ωn = (2π/T )n and the complex coefficients q̂n are chosen so that the
series reproduces p(t) in the selected time interval. Because p(t) is real, the
two representations in Eq. (1) are equivalent, given the identifications

q̂n =







1
2 p̂n n > 0
p̂o n = 0

1
2 p̂

∗
−n n < 0

The value of the nth Fourier coefficient q̂n results from multiplying both sides
of Eq. (1) by exp iωnt and subsequently integrating over the time segment.
Then, since exp [i(ωn − ωm)t] integrates to 0 for n 6= m and to T for n = m,
one finds

q̂n =
[

p(t)eiωnt
]

av
=

1

T

∫

p(t)eiωnt dt, (2-7.3)

the average being over the selected interval (−T/2 + tc, T/2 + tc).
That the series (1) with the coefficients q̂n given by (3) reproduces p(t)

within the interval can be proved,† given some minor restrictions on the

† See, for example, R. Courant, Differential and Integral Calculus, 2d ed., vol. 1,
Interscience-Wiley, New York, 1940, pp. 447–455. Courant’s proof is for a sectionally
smooth function (derivative exists and is bounded except at discontinuities, derivative
continuous otherwise except for finite number of discontinuities).
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mathematical properties of p(t). However, unless p(t) is periodic with period
T , such that p(t + T ) = p(t), the series will not describe p(t) outside the
interval.

An important property of the Fourier-series representation is given by
Parseval’s theorem,‡ which states that the time average of p2(t) over the
interval is given by

[p2(t)]av = [p(t)p∗(t)]av =

∞
∑

n=−∞

∞
∑

m=−∞

q̂nq̂
∗
m(e−i(ωn−ωm)t)av

=

∞
∑

n=−∞

|q̂n|2 =

∞
∑

n=0

(p2n)av for p(t) real. (2-7.4)

Our previous deductions concerning multifrequency signals therefore apply
to any p(t), providing one restricts one’s attention to a definite time segment
and computes all averages with respect to this segment.

If one does not have a periodic waveform, a natural question is: Which
numbers associated with the Fourier-series representation are insensitive to
the choices of tc and T ? In this respect, many sounds of long duration are
such that if p(t) is passed through a filter designed to pass only frequencies
(without alteration of amplitude) falling within some passband b, then long-
term averages of the square of the filtered function will be insensitive to the
duration and center of the time segment selected.† A sound satisfying this
criterion may be called a steady sound. Given such a supposition (which can
be checked by experiment), the Fourier coefficients should yield a meaningful
estimate of (p2b)av for any given band provided T is sufficiently long. For
bands with nonzero lower frequency, this supposition leads to

(p2b)av = lim
T→∞





(b)
∑

n>0

2

∣

∣

∣

∣

1

T

∫

p(t)ei2πnt/T dt

∣

∣

∣

∣

2


 , (2-7.5)

where the sum extends over positive n such that fn = ωn/2π = n/T falls
within the band. (As before, the limits of intergration are −T/2 + tc and

‡ Named after Marc-Antoine Parseval des Chênes (1755–1836). Parseval’s original state-
ment (1799) was

∞
∑

n=0

Anan =
1

2π

∫ π

0

[(

∞
∑

n=0

Ane
inu

)(

∞
∑

m=0

ame
−imu

)

+

(

∞
∑

n=0

Ane
−inu

)(

∞
∑

m=0

ame
imu

)]

du,

and was phrased without reference to the notion of a Fourier series. For a discussion, see
the entry on Parseval by H. C. Kennedy in C. S. Gillispie (ed.), Dictionary of Scientific
Biography, vol. 10, Scribner’s Sons, New York, 1974, pp. 327–328. Note the statement that
“dozens of equations have been called Parseval’s equations, although some only remotely
resemble the original.”
† See, for example, C. T. Morrow, “Averaging time and data reduction time for random
vibration spectra, I,” J. Acoust. Soc. Am. 30:456–461 (1958).
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T/2+ tc.) The number of terms included in the sum increases with increasing
T and is approximately T (∆f)b, where (∆f)b is the width of band b. The
sum should be close to its limiting value when T (∆f)b ≫ 1.

Spectral Density

The band contribution (p2b)av can be regarded as being due to a continuous
smear of frequency components; (p2b)av/(∆f)b is then an average contribution
per unit bandwidth to the mean squared acoustic pressure. Consequently, one
conceives of a second limit in which the bandwidth becomes progressively
smaller; the limit is the spectral density p2f(f) of p(t), that is,

p2f (f) = lim
(∆f)b→0

{

(p2b)av
(∆f)b

}

, (2-7.6)

f denoting the center frequency of the band. Thus, with this double-limit
process (finite bandwidth, T → ∞, then bandwidth → 0, the order of taking
limits being fixed), we have the concept of a spectral-density function p2f (f),
where

(p2b)av =

∫ f2

f1

p2f (f) df (2-7.7)

gives the contribution to (p2)av from a band of frequencies between f1 and
f2.

Levels and Spectral Density

As discussed in previous sections for waveforms composed of a finite number
of frequencies, one associates frequency-band sound-pressure levels (fixed fre-
quency intervals, octaves, 1

3 -octaves, etc.) in decibels with any function p(t)
for which the concept of a spectral density is applicable (see Fig. 2-8). Levels
of weighted sound pressure can be calculated by taking the weighted mean
squared sound pressure as

(p2)av,W =

∫ ∞

0

W (f)p2f (f) df ≈
∑

b

W (fo,b)(p
2
b)av, (2-7.8)

where W (f) is the weighting function and fo,b is the center frequency for
band b.

For a description of the spectral density in terms of decibels, the natural
definition is that of the sound-pressure spectrum level,
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Lps(f) = 10 log

(

p2f (f)(∆f)ref

p2ref

)

≈ 10 log

(

(p2b)av(∆f)ref/(∆f)b
p2ref

)

, (2-7.9)

where (∆f)ref is a reference bandwidth, usually taken as 1 Hz. In the second
(approximate) expression, (p2b)av is the contribution to the mean squared
pressure from a band of width (∆f)b centered at the frequency f .

White and Pink Noise

Two idealizations of the frequency dependence of the spectral density are
p2f (f) constant over the band of interest and p2f (f) proportional to 1/f . The
first is called white noise, by analogy with white light, which is presumed
composed uniformly of all optical frequencies. The second is called pink noise

because the low frequencies are more prevalent. (Red light is lower-frequency
light.)

White noise has the property that (p2b)av for any band is (∆f)bp
2
f . Since

(∆f)b = (21/2N − 2−1/2N )fo(b) for a (1/N)th-octave band, (p2b)av varies as
the center frequency for proportional frequency bands. Thus the band sound-
pressure levels for successive bands increase as

Lb+1 − Lb = 10 log

(

fo(b+ 1)

fo(b)

)

=
1

N
10 log 2 ≈ 3

N
. (2-7.10)

The difference is 3 dB for successive octave bands and 1 dB for successive
1
3 -octave bands.

Pink noise has the property that (p2b)av is the same for all (1/N)-th octave
bands. This becomes evident if one sets p2f (f) = K/f , calculates

(p2b)av =

∫ f2

f1

K

f
df = K ln 21/N (2-7.11)

and notes that this is independent of center frequency. Thus, if one has pink
noise over the range of, say, 31.5 to 31,500 Hz and the 500-Hz-octave-band
sound-pressure level is 90 dB, then the 8000-Hz-octave-band sound-pressure
level is also 90 dB.

2-8 TRANSIENT WAVEFORMS

A transient waveform is one where p(t) is zero before some onset time and
after some termination time. All waveforms are transients (there is always a
beginning and an ending), although it may not be appropriate to consider
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Figure 2-8 Dependence of refrigerator noise-spectrum analysis on bandwidth selection:
(a) 1

3
-octave analysis for standard contiguous bands; (b)-band sound-pressure level versus

center frequency with bandwidth equal to 5 percent of center frequency; (c) band sound-
pressure level versus center frequency with 2 Hz bandwidth. (F. N. Fieldhouse, “Techniques
for identifying sources of noise and vibration,” Sound Vib. 4(12):16-17, December 1970.)
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them as such. Examples of waveforms whose transitory features may be an
important consideration are sonic booms generated by supersonic aircraft
and sounds generated by the impact of solids.

The frequency content of a transient waveform is described by its Fourier

transform p̂(ω). The basic concept follows from that of a Fourier series if one
sets tc = 0, q̂nT = 2πp̂(ωn), and then formally takes the limit as T → ∞.
The successive ωn then become close together and can be considered as values
of a continuous variable ω. The sum over n in Eq. (2-7.1) becomes an integral
over n = (T/2π)ω, or T/2π times an integral over ω. The net result is

p(t) =

∫ ∞

−∞

p̂(ω)e−iωt dω, (2-8.1)

while the corresponding expression (2-7.3) for q̂n gives

p̂(ω) =
1

2π

∫ ∞

−∞

p(t)eiωt dt. (2-8.2)

[If p(t) is real, then p̂(−ω) = p̂(ω)∗ and |p̂(−ω)| = |p̂(ω)|.] Similarly, Parseval’s
theorem, Eq. (2-7.4), in the same limit, gives

E =

∫ ∞

−∞

|p(t)|2 dt = 2π

∫ ∞

−∞

|p̂(ω)|2 dω, (2-8.3)

sometimes referred to as Rayleigh’s theorem.† The indicated integral E is
called the sound exposure.

The expression (2) for p̂(ω) is the definition of a Fourier transform used
throughout this text. Other definitions† are also in the literature, but Eq. (2)
minimizes writing factors of 2π in the solution of problems. All definitions
of the Fourier transform and of its inverse conform to the Fourier integral
identity

p(t) =
1

2π

∫ ∞

−∞

e−iωt
[∫ ∞

−∞

p(t′)eiωt
′

dt′
]

dω, (2-8.4)

which follows from the substitution of the expression for p̂(ω) into the inverse
relation that gives p(t) in terms of p̂(ω).

† The generalization of Parseval’s theorem to Fourier transforms was given by Rayleigh, “On
the character of the complete radiation at a given temperature,” Phil. Mag. (5)27:460–469
(1889). The common practice of referring to the generalization also as Parseval’s theorem
is followed throughout the present text.
† A common definition (due to Cauchy) is with the coefficients outside the integrals defining
p̂(ω) and the inverse transform both being 1/(2π)1/2 rather than 1 and 1/2π.
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Rigorous examination‡ indicates that a Fourier transform exists if p(t) has
at most a finite number of discontinuities, is bounded, and is such that both it
and its square are absolutely integrable. (These are sufficient conditions, not
necessary conditions, but they suffice for our present purposes.) The inverse
transform then converges to p(t) in the mean (average before and after at a
discontinuity). Furthermore, |p̂(ω)| and |p̂(ω)|2 are both integrable.

Dirac Delta Function

A rudimentary proof that the inverse transform reproduces p(t) is given here.
Let us denote the right side of Eq. (4) by (p?); we seek to demonstrate
that (p?) = p(t). We first replace the factor e−iωt by e−iωte−ω

2τ2

, with the
understanding that we take the limit as τ → 0 after the ω integration has
been performed. (Note that e−ω

2τ2

approaches 1 as τ → 0.) The added factor
ensures that the double integral for finite τ will be independent of the order
of integration, so that one has

(p?) = lim
τ→0

(∫ ∞

−∞

p(t′)δτ (t− t′) dt′
)

, (2-8.5)

with the abbreviation

δτ (t− t′) =
1

2π

∫ ∞

−∞

e−iω(t−t
′)e−ω

2τ2

dω

=
1

2π
e−(1/4)(t−t′)2/τ2

∫ ∞

−∞

e−τ
2Ω2

dω, (2-8.6)

where Ω = ω+(i/2)(t− t′)/τ2. The definite integral in the second expression
is evaluated by shifting the contour (permissible by Cauchy’s theorem†) to
the line along which Ω is real [where the imaginary part of ω is − 1

2 (t−t′)/τ2],
then changing the variable of integration to x = Ωτ . Since the integral over
x of e−x

2

from −∞ to ∞ is π1/2, the result is

‡ Possible sufficient conditions are given in summary form by G. E. Latta, “Transform
methods,” in C. E. Pearson (ed.), Handbook of Applied Mathematics, Van Nostrand Rein-
hold, New York, 1974, chap. 11, pp. 585–592. The conditions stated in the present text are
sufficient to be covered under the hypotheses of Plancherel’s (1915) theorem, discussed and
proved by N. Wiener, “Generalized harmonic analysis,” Acta Math. 55:117–258 (1930). A
proof for rather broad conditions is given by E. C. Titchmarsh, “A contribution to the
theory of Fourier transforms,” Proc. Lond. Math. Soc. 23:279–289 (1925). An uncompli-
cated proof [for the case when p(t) has only a finite number of minima and maxima and
only a finite number of discontinuities (Dirichlet conditions) and the integral of p(t) over
infinite limits exists] is given by I. N. Sneddon, Fourier Transforms, McGraw-Hill, New
York, 1951, pp. 9–19.
† See, for example, E. T. Copson, Theory of Functions of a Complex Variable, Oxford,
1935, pp. 59–60.
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δτ (t− t′) =
1

2τπ1/2
e−(1/4)(t−t′)2/τ2

. (2-8.7)

Figure 2-9 The function δτ (t−t′) when τ equals 0.5, 0.2, and 0.1. The sequence as τ → 0
defines the Dirac delta function.

The function defined by Eq. (7) (see Fig. 2-9) has the property, regardless
of the value of τ , that

∫ ∞

−∞

δτ (t− t′) dt′ = 1. (2-8.8)

Furthermore, when τ becomes progressively smaller, the function becomes
more and more concentrated near t − t′ = 0. Thus, in the limit of small
but not zero τ , the integral (p?) in Eq. (5) is approximately the same as
that resulting when p(t′) is set to p(t) in the integrand, the approximation
becoming progressively better the smaller one takes τ . Consequently, from
Eq. (8), one has (p?) = p(t), and the assertion is verified.

The above sequence of operations is facilitated by the concept of a Dirac

delta function, one of a class of generalized functions† frequently encountered

† A readable account is given by M. J. Lighthill, Fourier Analysis and Generalized Func-
tions, Cambridge University Press, London, 1964, p. 17. Note Lighthill’s dedication “to
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in modern applied mathematics. We formally conceive of a function δ(t−t′) as
the limit of δτ (t− t′) when τ → 0; this function is 0 unless t = t′, but infinite
at that point, the infinity being such that the integral over the function is
unity. Thus, for any function f(t) continuous at t′ = t, one has

∫ ∞

−∞

f(t′)δ(t− t′) dt′ = f(t). (2-8.9)

Strictly speaking, the delta function has meaning only under the integral sign;
an integral like that above is a shorthand notation for the limit as τ → 0 of
the integral with δ(t− t′) replaced by δτ (t− t′).

The sequence of functions δτ (t − t′) (varying τ) represented by Eq. (7)
is not the only sequence‡ for which the limit of an integral like that in Eq.
(5) should approach p(t) for any continuous function p(t′). One could, for
example, take δτ (t − t′) equal to 0 for |t − t′| > τ and equal to 1/2τ for
|t− t′| < τ , and the limit would be the same. Insofar as the net result is the
same, all such sequences are equivalent. However, we require δτ (t−t′) to be an
even function of its argument to avoid ambiguity when f(t′) is discontinuous
at t′ = t. With this restriction, the integral over t′ of f(t′)δ(t′ − t) is the
average of the values of f(t+ ε) and f(t− ε) in the limit as ε→ 0.

Sound-Exposure Spectral Density

The inverse Fourier transform (or Fourier integral) depicts a transient wave-
form as composed not of a discrete set of frequency components (as for a
Fourier series) but of a continuous smear of frequencies. It is inappropriate
to speak of a time average of p2(t) (unless the averaging time interval is fixed
and carefully specified) since, for large T , the average will change with in-
creasing T , the average going to 0 as T → ∞. It is possible, however, to speak

Paul Dirac who saw that it must be true, Laurent Schwartz who proved it, and George
Temple who showed how simple it could be made.” The modern use of the Dirac delta
function stems from P. A. M. Dirac, “The physical interpretation of the quantum dynam-
ics,” Proc. R. Soc. Lond. A113:621–641 (1927). According to D. S. Jones, The Theory of
Electromagnetism, Pergamon, London, 1964, p. 35, the symbol had been used considerably
earlier by G. Kirchhoff. An analogous concept was also used in 1922 by J. R. Carson, “The
Heaviside operator calculus,” Bell Syst. Tech. J. 1(2):43–55 (November 1922).
‡ Another common representation is

δ(t − t′) = lim
g→∞

(

sin g(t− t′)

(t − t′)π

)

discussed, for example, by L. I. Schiff, Quantum Mechanics, McGraw-Hill, New York,
1955, pp. 50–51. The representation given in the present text is due to E. A. Hylleraas,
Die Grundlagen der Quantenmechanik, Oslo, 1932, reprinted in Selected Scientific Papers
of Egil A. Hylleraas, vol. 1, NTH-Press, Trondheim, 1968, p. 261.



2-9 Transfer Functions 91

of the total integral E (for exposure) over all time of p2(t); this, according
to Parseval’s theorem, Eq. (3), is (with ω = 2πf) the integral over f from
−∞ to ∞ of 4π2|p̂(2πf)|2, or, since the integrand is even in f , it is the inte-
gral over f from 0 to ∞ of Ef = 8π2|p̂(2πf)|2. The sound-exposure spectral

density Ef serves as a measure of the frequency distribution of a transient
signal; the contribution to the time integral of p2 from any frequency band
is the integral of Ef over that band.

To have the decibel as a measure of a transient signal, one can define† the
sound-exposure level or time-integrated sound-pressure-squared level as

LE = 10 log

(

E

p2reftref

)

, (2-8.10)

where the reference time tref is 1 s. A time-integrated band sound-pressure
level LEb is similarly defined but with the integral of Ef over the band re-
placing E in the above. A Fourier sound-pressure (squared) spectrum level
LFps (or sound-exposure spectrum level LEs) is defined similarly, with the
integral over Ef replaced by Ef ∆fref ; the reference frequency bandwidth is
1 Hz.

2-9 TRANSFER FUNCTIONS

The concept of a transfer function (discussed in Sec. 2-4 for linear filters) is
useful in the description of relationships between waveforms. Let pa(t) and
F (t) describe the histories of two linearly related quantities, e.g., acoustic
pressures at two different points, pressure at one point and an applied voltage
on an electromechanical transducer radiating a sound field, or some acoustic
field variable at a given point and an elastic-strain component somewhere
on a vibrating body radiating sound. The existence of a linear relationship
between the two functions implies that the operation of computing pa(t) from
F (t) can be regarded as that of passing F (t) through a linear filter, so that
there is some linear operator La that gives pa(t) when applied to F (t). The
operator La has the properties listed in Eqs. (2-4.5) and is described by its
transfer function Ha(ω), defined such that La applied to e−iωt is Ha(ω)e

−iωt.
Consequently, if F (t) is a sum of discrete frequency components, one has

pa(t) =
∑

n

Re
{

Ha(ωn)F̂ne
−iωnt

}

, (2-9.1)

while, if F (t) is described by a Fourier integral, one has†

† R. W. Young, “On the energy transported with a sound pulse,” J. Acoust. Soc. Am.
47:441–442 (1970).
† Alternatively, if one uses the Fourier integral theorem to replace F̂ (ω) by
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pa(t) =

∫ ∞

−∞

Ha(ω)F̂ (ω)e
−iωt dω. (2-9.2)

In Eq. (1), p̂a,n = Ha(ωn)F̂n is identified as the complex amplitude associated
with the nth frequency component of pa(t); in Eq. (2),Ha(ω)F̂ (ω) is identified
as the Fourier transform p̂a(ω) of pa(t).

A consequence of such relations is that, if a second function pb(t) is also
linearly related to F (t), then pb(t) is related to pa(t) by an operator Lab

whose transfer function is Hab(ω) = Hb(ω)/Ha(ω). Consequently,

p̂b,n = Hab(ωn)p̂a,n, p̂b(ω) = Hab(ω)p̂a(ω), (2-9.3)

for the cases corresponding to Eqs. (1) and (2), respectively.
If pa(t) and pb(t) have spectral densities, p2f,a(f) and p2f,b(f), the den-

sities can be computed in terms of Fourier series representations, with the
double-limit process described by Eq. (2-7.6). The limit with p̂b,n replaced
by Hab(ω)p̂a,n, as in Eq. (3), yields

p2f,b(f) = |Hab(2πf)|2 p2f,a(f). (2-9.4)

An application of these relations is the prediction of the pressure spectral
density of a signal at a point xb given the spectral density at xa. By either ex-
perimental or analytical means, one determines for the same physical system
the acoustic-pressure amplitudes at xa and xb when the source is radiat-
ing a single angular frequency ω. The ratio (p2b)av/(p

2
a)av for this constant-

frequency case then gives |Hab(ω)|2. Then, for the prediction of p2f,b(f), given

p2f,a(f), one need only multiply p2f,a(f) by the previously derived |Hab(2πf)|2.
Another application (and also Parseval’s theorem) is in the measurement

of relative transfer functions using transient sources.‡ Suppose pa(t) is the
transient response (see Fig. 2-10) obtained in some control experiment and

F̂ (ω) =
1

2π

∫ ∞

−∞

F (τ)eiωτ dτ

and interchanges the order of integration, the result is

pa(t) =
1

2π

∫ ∞

−∞

ha(t − τ)F (τ) dτ,

where

ha(t) =

∫ ∞

−∞

Ha(ω)e
−iωt dω

is the inverse Fourier transform of Ha(ω). The quantity ha(t)/2π is called the unit impulse
response function since it describes pa(t) when F (t) is the delta function δ(t).
‡ The technique has been applied in acoustical model experiments on urban sound prop-
agation by R. H. Lyon, “Role of multiple reflections and reverberation in urban noise
propagation,” J. Acoust. Soc. Am. 55:493–503 (1974); Lectures in Transportation Noise,
Grozier, Cambridge, Mass., 1973, pp. 64–70.
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Figure 2-10 Measurement of transfer functions in experiment with transient source. A
spark-gap source generates sound pressure at the microphone; the resulting electric signal
p(t) passes through the 1

3
-octave-band filter. The measuring amplifier computes a running

time average (p2F )rta of the square of the filtered transient pF (t). The resulting oscilloscope
display is of 10 log(p2F )rta versus center time of averaging interval. In the example shown,
the averaging time T is 0.3 ms, and it is assumed pF (t) is made up of discrete pulses each
of duration less than T ; the height of any peak in the display corresponds to an integral
of p2F over the entire duration of the corresponding discrete pulse. The integral of p2F over
all time is the sum of all peak values of (p2F )rta. (Adapted from L. Pande, M.S. thesis,
Massachusetts Institute of Technology, 1972.)

pb(t) is the transient response in a second experiment and it is known that
pb(t) and pa(t) are linearly related; we wish to derive the function |Hab(ω)|2
from the data. The procedure used is to pass both pa(t) and pb(t) through
the same narrow-band filter, whose passband is centered at a given frequency
fo of interest. Then the estimate of |Hab(2πfo)|2 is

|Hab(2πfo)|2 =

∫∞

−∞ p2bF (t) dt
∫∞

−∞ p2aF (t) dt
, (2-9.5)
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where pbF (t) and paF (t) are the responses of the filter to pb(t) and pa(t).
That Eq. (5) affords an estimate of |Hab|2 follows from Parseval’s theorem,

Eq. (2-8.3), and from Eq. (2). If HF (ω) is the frequency-response function of
the filter, then

∫ ∞

−∞

p2bF (t) dt = 2π

∫ ∞

−∞

|p̂b(ω)|2|HF (ω)|2 dω

≈ 4π|p̂b(2πfo)|2
∫ ∞

0

|HF (ω)|2 dω, (2-9.6)

since the magnitude of the filter’s frequency-response function is presumed
sharply peaked near ω = 2πfo. A similar approximate expression holds for the
integral over p2aF (t). Consequently, the ratio of the two integrals is approxi-
mately |p̂b|2/|p̂a|2 evaluated at ω = 2πfo. But the latter ratio is |Hab(2πfo)|2,
so the assertion follows.

The technique just described circumvents wall-reflection problems in rooms
with reflecting walls. The estimated |Hab(ω)|2 will be representative of what
will be obtained in an open space if the time-integration upper limit is trun-
cated before the first reflection arrives. This assumes that the duration of the
first arrival after filtering is shorter than the time lag before the first reflected
arrival. The narrower the bandwidth of the filter the more difficult this is to
achieve, but the assumption can be checked by looking at oscilloscope traces
of pbF (t) and paF (t).

2-10 STATIONARY ERGODIC PROCESSES

Steady sounds are often described in statistical terms; a given p(t) is regarded
as one member of a family (ensemble) of possible outcomes of an experiment
(see Fig. 2-11). The overall set of time-dependent functions with regard to
its statistical properties is called a stochastic process; a process is stationary†

if averages (denoted by angle brackets) over the ensemble are independent
of the choice of time origin and ergodic if such averages are equivalent to
time averages over a single sample. In what follows, we assume that p(t) is a
member of a stationary ergodic process.

A principal statistical descriptor of a stochastic process is its autocorrela-
tion function Rp(τ), defined as 〈p(t)p(t+ τ)〉 or, equivalently (for an ergodic
process), as

Rp(τ) = lim
T→∞

{

1

T

∫ T/2

−T/2

p(t)p(t+ τ) dt

}

. (2-10.1)

† Precise definitions are given by A. Papoulis, Probability, Random Variables, and Stochas-
tic Processes, McGraw-Hill, New York, 1965, pp. 279–335.
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Since the process is stationary, 〈p(t)p(t+ τ)〉 is independent of t and depends
on only the time shift τ . Also, since the limit is unchanged if the integration
variable is changed to t + τ , it follows that Rp(τ) = Rp(−τ). The ergodic
property ensures that Eq. (1) gives the same Rp(τ) as the ensemble average,
regardless of the choice of time origin.

Figure 2-11 Possible waveforms p(t) that are members of an ensemble of possible out-
comes to an experiment.

For a stationary ergodic function, the mean µ = 〈p(t)〉 is also independent
of time; the autocovariance

Dp(t− t′) = 〈[p(t)− µ][p(t′)− µ]〉 = Rp(t− t′)− µ2 (2-10.2)

depends only on t − t′ and moreover is even in t − t′. The second relation
results when one writes the product in angle brackets as a sum of four terms
and subsequently recognizes that 〈p(t)p(t′)〉 and 〈µp(t)〉 are Rp(t − t′) and
µ2. If the correlation is negligible for large separation intervals, Dp(τ) should
vanish in the limit of large τ ; the autocorrelation function must therefore be
such that Rp(τ) in the limit of large τ is µ2, and Dp(τ) can therefore be
obtained from Rp(τ) without explicitly measuring 〈p〉.
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Wiener-Khintchine Theorem

The spectral density p2f(f) can be derived from the autocovariance. The re-
lation between the two functions results from the definition previously given
by Eqs. (2-7.5) and (2-7.6), which for a stationary ergodic process leads to

p2f (f) = lim
(∆f)b→0







lim
T→∞





2

(∆f)b

(b)
∑

n>0

〈|q̂n|2〉











. (2-10.3)

Here 〈|q̂n|2〉 is the ensemble average of the square of the magnitude of the
Fourier coefficient q̂n corresponding to a positive frequency n/T lying within
a band of width (∆f)b centered at frequency f . (The spectral density should
be independent of the choice of time origin, so the expression computed with
a definite value of center time tc can be replaced by an average over tc, but
the latter is equivalent to an ensemble average.)

Any particular q̂n is calculable from Eq. (2-7.3) or, equivalently, is the time
average of p(t + tc)e

iωn(t−tc) over the interval −T/2 to T/2. Also, since the
integral over t of any constant times ei2πnt/T is zero when n 6= 0, one can
replace p(t+ tc) by p(t+ tc)−µ. Consequently, the ensemble average of |q̂n|2
becomes

〈|q̂n|2〉 =
1

T 2

∫ T/2

−T/2

∫

〈[p(t′ + tc)− µ][p(t+ tc)− µ]〉 eiωn(t−t
′)dt dt′

=
1

T 2

∫ T/2

−T/2

∫

Dp(t− t′)eiωn(t−t
′) dt dt′. (2-10.4)

The appearance of the autocovariance Dp(t − t′) in the latter expression
follows from Eq. (2). Note that the integrand depends only on the difference
t − t′ (which ranges from −T to T ). Also note that the area dA(τ) of the
portion of the integration square bounded by the lines t− t′ = τ and t− t′ =
τ +dτ is the same as that of a strip of length 21/2(T −|τ |) and width dτ/21/2

(see Fig. 2-12). Thus, Eq. (4) yields

〈|q̂n|2〉 =
1

T

∫ T

−T

(

1− |τ |
T

)

Dp(τ)e
iωnτ dτ. (2-10.5)

It is assumed that Dp(τ) and |τ |Dp(τ) are absolutely integrable (which is
consistent with the assumption that Dp(τ) goes to 0 as τ → ∞), so, if T
is large, one can approximate (5) by neglecting the term |τ |/T and by let-
ting the integration limits be infinite. If the resulting approximate integral is
considered a function of ω (where ωn = 2πfn = 2πn/T is replaced by a con-
tinuous variable), the so-defined function will be continuous. Consequently,
if the bandwidth (∆f)b is sufficiently narrow, all of the 〈|q̂n|2〉 corresponding
to fn’s within the band are approximately the same, so the sum in Eq. (3)
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Figure 2-12 Integration over a square region of the tt′ plane for a function depending on
the difference t− t′.

becomes
(b)
∑

n>0

〈|q̂n|2〉 ≈
N

T

∫ ∞

−∞

Dp(τ)e
i2πfτ dτ, (2-10.6)

where f is a central frequency within the band. Here N is the number of
positive fn’s within the band and may be taken as (∆f)bT . The insertion of
(6) into (3) then yields the Wiener-Khintchine theorem†

p2f (f) = 2

∫ ∞

−∞

Dp(τ)e
i2πfτ dτ = 4

∫ ∞

0

Dp(τ) cos(2πfτ)dτ, (2-10.7)

which gives the spectral density as the Fourier transform [as in Eq. (2-8.2)]
of 4π times the autocovariance. [The second version follows from the first
because Dp(τ) is even in τ .]

Although p2f (f) has meaning only for positive frequencies, one can define
it for f = 0 and f < 0 by Eq. (7), such that p2f (f) is even in f . Then the
Fourier integral theorem would give (ω = 2πf)

† N. Wiener, “Generalized harmonic analysis,” Acta Math. 55:117–258 (1930); A. Khint-
chine, “Correlation theory of stationary stochastic processes,” Math. Ann. 109:604–615
(1934).
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Dp(τ) =
1

2

∫ ∞

−∞

p2f (f)e
−i2πfτ df =

∫ ∞

0

p2f (f) cos(2πfτ)df, (2-10.8)

i.e., the inverse transform [see Eq. (2-8.1)] of (4π)−1p2f (f). The spectral den-
sity as defined above is finite at f = 0 and therefore does not contain the
zero-frequency portion of p(t), this portion corresponding to µ = pav. The
p2f (f) in Eq. (8) is the spectral density of p(t) − µ, not of p(t), but the two
spectral densities are the same for nonzero frequencies. Thus, in the limit
τ → 0, Eq. (8) is consistent with the requirement (2-7.7) that the contribu-
tion to (p2)av from any frequency band with positive lower frequency be the
integral of the spectral density over the band.

Figure 2-13 Sequence of operations forming basis for common analog method of spectral
analysis.

2-11 BIAS AND VARIANCE

Although the expressions discussed in the previous sections for the mean
squared band-filtered sound pressure (p2b)av and for the spectral density p2f (f)
involve taking one or more limits, in the real world we must work with just
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one or a limited number of data segments. Two questions should always be
asked concerning data processing schemes for estimation of spectral quan-
tities. First, if one were to repeat the same sequence of measurements and
data processing a large number of times, would the numerical average of the
individual estimates agree with the desired spectral quantity’s actual value?
If not, the estimating scheme has a bias, whose value is the difference between
the average and the quantity’s true value. Second, what is the mean squared
deviation (variance) of the measured numbers from their average?

Perspective on the possible values of bias and variance can be obtained
by consideration of a prototype analog† method (see Fig. 2-13) for measur-
ing spectral quantities. The pressure signal passes continuously through a
filter for which the magnitude of the frequency-response function squared
(or frequency weighting function) is W (f |Q), the dependence on frequency
f being selected to facilitate the measurement of some spectral quantity Q.
The filtered output is squared, and a weighted average over time, e.g., as by a
measuring amplifier, is computed. If t = 0 is taken as the end of the averaging
interval, the estimate EQ for Q can be written

EQ =
1

T

∫ 0

−∞

A(t/T )p2F (t) dt (2-11.1)

Here pF (t) is the output of the filter, and A(t/T ) is a weighting function
characteristic† of the instrumentation, trailing off at large −t (so the lower
limit of integration is really finite), having a characteristic duration T , and
being normalized such that its integral over t/T from −∞ to 0 is 1. A pos-
sible A(t/T ) might be e−|t|/T ; the exact expression is not important in what
follows, providing A(t/T ) is slowly varying with t over intervals of 1/f , where
f is a representative frequency of either the signal or of the filter’s pass band;
i.e., we assume fT ≫ 1.

Let us first examine how the variance of the estimate EQ depends on the
functions W(f |Q) and A(t/T ) and on the characteristic duration T . If the
pressure signal is a stationary ergodic function, the ensemble average of EQ is
the (time-independent) ensemble average of p2F . The spectral density p2f,F (f)
of pF (t), according to Eq. (2-9.4), is W (f |Q) times the spectral density p2f (f)
of the unfiltered signal. Because the average of the square of a function with

† For a discussion of bias and variance associated with digital-computer estimation of
spectral density from records of finite length, see R. B. Blackman and J. W. Tukey, The
Measurement of Power Spectra, Dover, New York, 1958, pp. 11–25, 100–112. The above
discussion of the analog case is similar to that given in Blackman and Tukey, pp. 25–28
and 112–116.
† Of some interest is what may be considered to be the characteristic averaging time of com-
mercial sound-level meters. Taking the standard specifications [ANSI S1.4-1971 (R1976),
p. 16] for such meters and assuming A(t/T ) is exp(−|t|/T ), one can derive for the fast
dynamic characteristic that 0 < T < 0.2 s for type 1 instruments and 0 < T < 0.4 s for
type 2 and 3 instruments. For the slow dynamic characteristic, the corresponding ranges
are 0.7 < T < 1.3 and 0.5 < T < 1.7 s.
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zero mean is the integral over frequency of the corresponding spectral density,
the ensemble average 〈EQ〉 is given by the integral over f of p2f,F (f), where
it is assumed that the integrand goes to 0 as f → 0.

The difference between a given estimate EQ and its ensemble average
results from Eq. (1) when p2F (t) is replaced by p2F − 〈p2F 〉, the averaging
brackets here implying an average over the ensemble. The variance is the
expected square of the resulting integral expression. The product of the two
integrals can be regarded as a double integral over t1 and t2, and so the
variance becomes

1

T 2

∫ 0

−∞

∫

A(t1/T )A(t2/T )L(t1, t2) dt1 dt2 (2-11.2)

L(t1, t2) = 〈[p2F (t1)− 〈p2F 〉][p2F (t2)− 〈p2F 〉]〉 ≈ 2[Dp,F (t1 − t2)]
2 (2-11.3)

Here the latter identification in terms of the autocovariance results (after
some algebra) because the autocorrelation function and the autocovariance
of pF (t) are the same (the filtered function has no zero-frequency component)
and from the assumption that the incoming signal obeys gaussian statistics,†

such that

〈p2F (t1)p2F (t2)〉 = 〈p2F (t1)〉〈p2F (t2)〉+ 2〈pF (t1)pF (t2)〉2 (2-11.4)

With an application of the Wiener-Khintchine theorem, we can write
Dp,F (t1 − t2) in the form of Eq. (2-10.8); then, after an insertion of Eq.
(3) into Eq. (2), the variance of EQ becomes

∫ ∞

0

∫

p2f,F (f1)p
2
f,F (f2)M(f1, f2, T ) df1 df2 (2-11.5)

with

M(f1, f2, T ) =
2

T 2

∫ 0

−∞

∫

A(t1/T )A(t2/T ) cos [2πf1(t1 − t2)]

cos [2πf2(t1 − t2)] dt1 dt2 (2-11.6)

An application of the trigonometric identity (1-8.10) for the product of
two cosines transforms Eq. (6) to the form

M(f1, f2, T ) =
∑

+,−

ā([f1 ± f2]T ), ā(x) =

∣

∣

∣

∣

∫ 0

−∞

A(ξ)ei2πxξ dξ

∣

∣

∣

∣

2

(2-11.7)

† See, for example, Y. K. Lin, Probabilistic Theory of Structural Dynamics, McGraw-
Hill, New York, 1967, pp. 82–83; S. H. Crandall and W. D. Mark, Random Vibratian in
Mechanical Systems, Academic, New York, 1963, pp. 34–38; Papoulis, Probability, p. 477.
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where the quantity ā(x) is (apart from a numerical constant) equal to the
magnitude squared of the Fourier transform of A(ξ); the normalization of
A(t/T ) is such that ā(x) should be 1 when x = 0. For example, ā(x) =
[1 + (2πx)2]−1 if A(t/T ) = e−|t|/T for t < 0.

The variance of the estimate EQ, given by Eq. (5) above, simplifies for
larger values of T if p2f,F (f) is slowly varying with frequency f over intervals
of, say, 30/T . Because ā((f1±f2)T ) is down from its peak value of 1 by a factor
of the order of 5× 10−4 when |f1 ± f2| is of the order of 15/T , the dominant
contribution to the f2 integration in (5) comes from the ā((f1 − f2)T ) term
and, moreover, from only those values of f2 sufficiently close to f1 for p2f,F (f2)
to be approximately p2f,F (f1). Thus, the variance reduces to

∫ ∞

0

[p2f,F (f1)]
2

[∫ ∞

0

ā((f2 − f1)T ) df2

]

df1.

The indicated integral on f2, with an application of Parseval’s theorem, Eq.
(2-8.3), becomes 1/KT , where

1

K
=

∫ 0

−∞

A2(ξ) dξ, (2-11.8)

so the variance in the limit of large T further simplifies to

〈(EQ − 〈EQ〉)2〉 =
1

KT

∫ ∞

0

[p2f,F (f)]
2 df. (2-11.9)

Note that the dimensionless parameter K is greater than or equal† to 1. [It
is 1 if A(ξ) = 1 between 0 and −1; it is 2 if A(ξ) = e−|ξ|.]

An application of Eq. (9) is when the quantity to be estimated is the con-
tribution (p2b)av to the mean squared pressure from the band b of frequencies
between f1 and f2. Then W (f |Q) would ideally be 1 if f is between f1 and
f2 and would be zero otherwise. If the frequency spectrum of the sound is
white noise over the band, then p2f (f) = (p2b)av/(∆f)b for frequencies within
the band, 〈EQ〉 is (p2b)av, and Eq. (9) reduces to

〈(EQ − 〈EQ〉)2〉
〈EQ〉2

=
1

KT (∆f)b
(2-11.10)

for the mean squared fractional error in the estimate of (p2b)av. The rms
fractional error is [KT (∆f)b]

−1/2.
The error in the corresponding sound-pressure level will be less than N dB

(where N is of the order of 1 or less) if

† The statement is a consequence of the Schwarz inequality (due originally to Cauchy).
See, for example, R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 1,
Interscience, New York, 1953, p. 2.



102 2 Quantitative Measures of Sound

〈

(

10 log
EQ
〈EQ〉

)2
〉

≤ N2, (2-11.11)

where EQ is the estimate of (p2b)av. If EQ/〈EQ〉 is close to 1, the logarithm
can be approximated by its lowest order nonzero term in a Taylor-series
expansion; then the above criterion reduces to

〈(EQ − 〈EQ〉)2〉
〈EQ〉2

≤
(

ln 10

10

)2

N2 = 0.053N2,

so, with reference to Eq. (10), the requirement is

KT (∆f)b ≥ 18.86

N2
. (2-11.12)

Thus, for 1-dB accuracy, the characteristic averaging time T should be of the
order of 20 divided by the bandwidth; for 0.1-dB accuracy, it should be of
the order of 2000 divided by the bandwidth.

Bias is a more insidious quantity than variance, since the latter can be
estimated by performing the experiment a large number of times. In principle,
the method of measurement should be such that the bias is zero, regardless
of the signal to be analyzed, but this is impractical to achieve. For the analog
method described above, bias arises because of the deviation of the filter’s
transfer function from what is ideally desired. In digital data processing,
it arises when, to reduce variance, one multiplies the data segment by a
smooth window function that vanishes at both ends of the segment; so there
is a trade-off between bias and variance. The usual procedure is to design
the measurement process to be such that the estimate’s ensemble average
〈EQ〉 will be the desired spectral quantity Q if the spectral density is a
slowly varying function of frequency. This implies, however, that, to assign
a numerical value to the bias one must know the spectral density, which of
course one does not know in advance.

As an example, suppose we want to measure (p2b)av for a 1
3 -octave band

by the analog method described above. The bias B is given in general by

B =

∫ ∞

0

[

Wactual(f |Q)−Wideal(f |Q)
]

p2f (f) df. (2-11.13)

In this case, Wideal is 1 if f lies within the 1
3 -octave band and 0 if it is

outside; Wactual is the actual response function of the filter in the analog
system. A high-performance filter can be expected to meet the American
Standard specification† for a class III 1

3 -octave-band filter. Figure 2-14 gives
the minimum and maximum limits of the transmission loss (−10 logW ) of

† American National Standard S1.11-1966 (R1976), American National Standard Speci-
fication for Octave, Half-Octave, and Third-Octave Band Filter Sets, American National
Standards Institute, New York, 1976.
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Figure 2-14 Transmission-loss maxima in decibels for a class III 1
3
-octave band filter

versus ratio of frequency f to the band’s center frequency fc. Transmission loss here rep-
resents 10 times logarithm, base 10, of the ratio of square of amplitude of input signal to
that of output signal.

such a filter. The standard also specifies that, when p2f (f) is constant (white-
noise) with frequency, the bias should not be greater in magnitude than 0.1
times the integral of the (constant) p2f (f) over the ideal frequency band.
However, if the actual p2f(f) is not constant, the bias may be considerably
larger.

If the actual sound is a pure tone (or very narrow band noise) centered
at 400 Hz, with a sound pressure level of 80 dB (re 20 µPa), so (p2)av =
0.04 Pa2, the sound is entirely in the 1

3 -octave band centered at 400 Hz, but
a measurement using a class III filter would give a nonzero contribution from
the 1

3 -octave band centered at 500 Hz. The sound-pressure level from the
500-Hz band could appear to be as high as 70 dB, that is, 80 − 10, even
though it should ideally be −∞ dB. The bias for the 500-Hz band would be
0.1 times 0.04 = 0.004 Pa2.
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This example suggests that appreciable biases may exist in measured band
pressure levels when the actual waveform is dominated substantially by con-
tributions from other bands. If bias is a concern, one can often check for its
presence after the fact by estimating p2f (f) as best as one can from the data
and then estimating the bias from Eq. (13). If this indicates the bias is signif-
icant, the correction of the data for bias is uncertain because of the imprecise
a priori knowledge of p2f(f). It would be preferable to refine the measurement
technique so that Wactual(f |Q) is closer to Wideal(f |Q) or perhaps to analyze
the data in narrower frequency bands.

2-12 PROBLEMS

2-1 An omnidirectional (radiates in all directions equally) source in an open
space in air (ρc = 400Pa s/m) radiates sound comprising frequencies of
120, 240, 360, 480, 600, and 720 Hz. At a distance of 2 m from the center
of this source, the acoustic-pressure amplitude of each of the six frequency
components is 1 Pa. What are the time averages of the acoustic powers
generated by this source for the octave bands with center frequencies 125,
250, 500, and 1000 Hz?

2-2 The sound level LA in the weaving room of a textile mill when only one
loom is running is 80 dB (re 20 µPa).
(a) Estimate the expected sound level when 10 looms are running simul-
taneously.
(b) How many additional looms would be required to produce a further
increase of the sound level by the same number of decibels?

2-3 Suppose five sounds of frequencies 100, 200, 300, 400, and 500 Hz and of
sound-pressure levels of 0, 0, 0, 0, and 1 dB, respectively, are simultaneously
received.
(a) What is the sound-pressure level of the overall signal?
(b) What is the octave-band sound-pressure level for the octave centered
at 250 Hz?
(c) What is the A-weighted sound level?

2-4 Octave-band sound-pressure-level data on the noise generated by an elec-
tric shaver at 40 cm list levels versus band center frequencies as follows:

Hz 63 125 250 500 1000 2000 4000 8000
dB 60 60 50 65 60 65 60 55

Estimate what the A-weighted sound level would be under the same cir-
cumstances.

2-5 If a small compact source is radiating sound into an unbounded region,
how would one expect the various sound-pressure levels associated with
the source’s acoustic-pressure field to vary with distance along any given
radial line extending out from the source? By how many decibels does the
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sound-pressure level drop when such a distance is doubled? [Assume that
the distances of interest are sufficiently large to permit Eq. (1-12.10a) to
be considered valid.]

2-6 The sound level at a distance of 20 m from a single car is 70 dB. What
would you estimate for the sound level at a distance of 60 m from a highway
containing 1 car every 10 m of highway length? (Assume the acoustic-
pressure contribution from any single compact source varies with radial
distance as in spherical spreading and approximate the sum over sources
by an appropriate integral.)

2-7 An acoustic-pressure signal is of the form of a periodic square wave: p =
+A for a time interval T/2, then p = −A for a time interval T/2, then
p = +A for another time interval T/2, etc., there A is a constant. If the
period T is 0.001 s and the amplitude A is 1 Pa, what would the octave-
band sound-pressure level (re 20 µPa) of this signal be for the octave band
centered at 1000 Hz? By how many decibels (to the nearest 0.1 dB) is this
less than the flat-response sound-pressure level of the signal?

2-8 The acoustic pressure p in a sonic boom (see Prob. 1-29) is given by

p =

{−Ppk
t
T −T < t < T

0 t < −T or t > T

Here T is the duration of the waveform’s positive phase, and Ppk is the
peak boom overpressure; the time origin is chosen to coincide with the
arrival of the node between the positive and negative phases of the boom.
Derive an expression (and sketch versus frequency) for the acoustic energy
per unit frequency bandwidth and per unit area transverse to propagation
direction carried by the boom.

2-9 The spectral density of the acoustic pressure of a particular noise is uniform
over the octave band centered at 1000 Hz and is such that the sound-
pressure level for this band is 75 dB (re 20 µPa).
(a) What is the value of p2f(f) for frequencies within this band?
(b) What would the sound-pressure level be for the band of frequencies
between 1000 and 1001 Hz?

2-10 A sound is idealized as pink noise over the range of 100 to 2000 Hz. The
sound-pressure level for the 1

3 -octave band with center frequency 1000 Hz
is 80 dB. What would you expect for the sound-pressure level for the octave
band with center frequency 250 Hz?

2-11 The background sound level when no machines are running in a factory
is 80 dB. When one machine is running, the sound level goes up to 84
dB. What would you estimate as the sound level in this factory when two
machines are running?

2-12 Derive a simple approximate expression for the function C+(∆L) for the
addition of decibels in the limit of large ∆L and verify the assertion that
C+(∆L + 10) is nearly 1

10C+(∆L) when ∆L is large.
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2-13 Verify that the decibel-addition function C+(∆L) and the background-
correction function Cbg(∆L) are equal in the limit of large ∆L.

2-14 An acoustic-pressure waveform consists of a superposition of two constant-
frequency signals, both with peak amplitude of 1 Pa, the first having a fre-
quency 999 Hz and the second a frequency 1001 Hz. The sound-pressure
level of this composite signal is estimated by averaging p2 over a time in-
terval of 0.1 s and by subsequently calculating 10 log [(p2)av/p

2
ref ], where

pref = 20 µPa. If this estimate were computed continuously, it could be
regarded as a function of the center time tc of the averaging interval. Dis-
cuss the general nature of the resulting plot of estimated “instantaneous”
sound-pressure level versus center time tc. If the plot is nearly periodic,
give the period and the maximum and minimum levels to the nearest in-
teger decibel.

2-15 Some inexpensive instrumentations substitute a measurement of (p2)av
by one of K|p|av, where |p| is the rectified signal (magnitude) and the
constant K is chosen so that the two numbers agree when p(t) has only
one frequency component.
(a) What is K?
(b) Suppose p(t) is of the form A cosωt+A cos 2ωt. What would the error in
decibels be if such an instrument was used to measure the sound-pressure
level?

2-16 What key on a piano keyboard has a frequency closest to 7 times that of
middle C?

2-17 The nature of a particular filter is such that, for any given input p(t), the
output L {p(t)} is

L {p(t)} =
1

2π

∫ t

−∞

h(t− τ)p(τ) dτ

Here h(t − τ) is a real function which is integrable and which has an
integrable square. Verify that this filter satisfies all the criteria discussed
in Sec. 2-4. If p(t) is 0 for t < 0 and is Re{Ae−iωt} for t > 0, verify that,
in the limit of large t, L {p(t)} approaches Re{H(ω)Ae−iωt}.

2-18 In monatomic gases if sound absorption is taken into account, the ampli-
tudes of constant-frequency plane traveling waves decrease exponentially
with propagation distance x as exp(−βf2x), where β is a constant. Sup-
pose the sound received at x = 0 is white noise over the octave band
centered at frequency fo. Derive a general expression for the decrease in
decibels of the sound level for this same octave band as a function of the
dimensionless parameter βf2

ox and give approximate simple expressions
valid in the limit when this parameter is either very small or very large.
Hint: The “exact” answer involves the error function tabulated in many
reference books.
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2-19 The spectral density of a signal is constant and equal to So within the
frequency band f1<f<f2; outside this band it is zero. What is the auto-
correlation function for this signal?

2-20 It is desired to estimate the contribution to the mean squared pressure of a
sound from a narrow frequency band of width ∆f . You have the option of
basing your estimate on a single sample using an averaging time of 5T or of
taking the arithmetic average of estimates from five different uncorrelated
samples using an averaging time of T in each case. Which option should
you select? [Assume (∆f)T ≫ 1 and make whatever assumptions seem
necessary and reasonable concerning the statistical properties of the signal.
If you conclude that both options are equally good, justify your conclusion.]

2-21 A multifrequency sound is known to be made up of the frequencies 125
and 400 Hz. A sound-level meter gives sound-pressure levels of LA dB and
LC dB with the A and C weightings, respectively. Describe how one might
use the numbers LA and LC to obtain estimates of the sound-pressure
levels due to each of the two individual frequency components. Give a
numerical example.

2-22 A long time segment of noise from a machine is recorded and subsequently
digitized and fed into a computer. The Fourier analysis of the data between
t = 0 and t = 10 s suggests that the appropriate Fourier series for this time
interval is

p(t) =

∞
∑

n=−∞

An2e−αn
2

e−i2π nt/T eiφn

where α = 10−8, A = 10−10 Pa, φn = −φ−n is real and independent of
time t, and T = 10 s.
(a) Derive and plot the corresponding extrapolated expression for the con-
tinuous spectral density p2f (f) in square pascals per hertz.
(b) Estimate to within 3 dB what the A-weighted sound level (re 20 µPa)
would be.
(c) Derive and sketch the autocorrelation function versus delay time τ .

2-23 The A-weighted sound level near a thoroughfare leading into a major city is
monitored on a continuous basis over a 3-month period. If sound levels are
computed continuously using an averaging time T and are plotted against
time, what would you expect to be major causes of time fluctuations in
the sound level when (a) T = 1 s, (b) T = 1 h, and (c) T = 24 h?

2-24 The average acoustic-power output of a normal human voice is of the order
of 50 µW [V. O. Knudsen, J. Acoust. Soc. Am. 1:56–82 (1929)]. How close
must one be to a person in order to be assured that the received sound
level is at least 70 dB?

2-25 If a wave is spreading cylindrically rather than spherically, by how many
decibels does the sound-pressure level drop for each doubling of distance?

2-26 An approximate model for the statistical variations of a measured wave-
form sample of duration T is that the real and imaginary parts of all the
Fourier components (n ≥ 0) corresponding to a given frequency band are
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statistically independent and that 〈Re p̂n〉 = 0, 〈(Re p̂n)2〉 = σ2, and
〈(Re p̂n)4〉 = 3σ4, where σ2 is independent of n and the same relations
hold for ensemble averages of the powers of Im p̂n. From this model, what
would you estimate to be the ratio of the variance to the square of the ex-
pected value for the segment’s prediction of the mean squared value of the
pressure signal’s contribution from a frequency band of width ∆f , where
∆f is substantially larger than 1/T ?

2-27 A transient acoustic-pressure waveform, zero for t < 0, has the form
ppk sinωt for 0 < t < 27πN/ω and is thereafter zero, where N is an integer.
Estimate how large N must be to ensure that at least 90 percent of the
“energy” associated with the signal is carried by (angular) frequencies be-
tween 0.99ω and 1.01ω. Make whatever approximations seem appropriate.

2-28 Evaluate the integral

∫ 1

0

(sin−1 x) δ(4x2 − 3) dx

where δ(y) is the Dirac delta function.
2-29 In the usual equally tempered scale, the octave is divided into 12 parts,

the choice of the number 12 being such that certain integer numbers of
1
12 -octave intervals correspond closely to frequency ratios of 3 : 2, 4 : 3,
and 5 : 4. Is there any other choice between 12 and 24 for the number of
intervals per octave that would accomplish the same purpose?

2-30 Suppose one took the definition of the spectral density p2f (f) to be 4π
times the Fourier transform of the autocovariance, as in Eq. (2-10.7). Show
that this leads (with various assumptions that you should state) to the
prediction that this spectral density is the same as would be obtained
if one passed the signal through a filter of some narrow bandwidth ∆f
centered at f , took the time average of the square of the output, and
divided the result by ∆f .

2-31 Verify (with mathematical detail stating all pertinent assumptions) the
assertion made in the legend of Fig. 2-10 that for a filtered signal made
up of a sequence of discrete pulses the sum of successive peak values of
the running time average of the square of the output is the contribution
from frequencies within the filter’s passband to the total time integral of
the square of the original signal.

2-32 Nonlinear effects may distort an originally sinusoidal waveform into one
of sawtooth shape, so that the time history of p at a given point would
be approximately described by a periodic function f(t) = f(t+ T ), where
f(t) = (P )(1 − 2t/T ) for 0 < t < T . For such a waveform, what fraction
of the average value of p2 is attributable to higher-order harmonics, i.e.,
frequencies other than 1/T ?

2-33 A generalization of Parseval’s theorem for Fourier transforms is that, if
f(t) and g(t) are two real functions having Fourier transforms f̂(ω) and
ĝ(ω), then
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∫ ∞

−∞

f(t)g(t+ τ) dt = 2π

∫ ∞

−∞

f̂∗(ω)ĝ(ω)eiωτ dω

for any time shift τ . Give a proof of this, making use of the Dirac delta
function.

2-34 Suppose that one has a stationary ergodic function p(t), chooses a segment
extending from t = 0 to t = T , and defines a function g(t) as being
equal to p(t) for times within this interval and 0 outside this interval. The
Fourier transform ĝ(ω) of g(t) is then derived. How would one estimate the
average spectral density p2f of p(t) over a band of frequencies (in hertz)
extending from 100/T to 200/T from a knowledge of ĝ(ω)? Given that
the actual spectral density is uniform over the band, to within how many
decibels would you expect the derived octave-band sound-pressure level to
be accurate?

2-35 A hypothetical ideal filter is designed so that its transfer function H(ω) is
eiωτ for frequencies within an octave band consisting of angular frequen-
cies between 2−1/2ωo and 21/2ωo. The function H(ω) is equal to zero for
positive frequencies outside that band. [Recall that, for “negative” frequen-
cies, H(ω) is defined such that H(−ω) = H∗(ω).] Here τ is some relatively
large delay time. What will the output of the filter be if the input signal
equals 0 for t < 0 and equals ppke−αt for t > 0? Give your result in the
limit α → 0. What fraction of the “energy” of the output is concentrated
within an interval of duration 20π/ωo, that is, 10 periods, centered at time
t = τ?

2-36 A harmonic oscillator of mass m is acted upon by a time-varying force
F (t), and its motion is influenced by a spring with spring constant k and
by a dashpot (constant b), such that its displacement x(t) satisfies the
differential equation

mẍ+ bẋ+ kx = F (t)

The function F (t) is a stationary ergodic time series characterized by a
spectral density F 2

f (f).
(a) What is the spectral density v2f (f) of the velocity v = ẋ of the oscilla-
tor?
(b) Assuming that F 2

f (f) varies negligibly over a broad band of frequencies

centered at the resonance frequency [ωr = (k/m)1/2] of the oscillator and
that the oscillator is lightly damped [b ≪ (km)1/2], derive a simple ap-
proximate expression for (v2)av. With what frequency would the oscillator
appear to be predominantly vibrating?

2-37 Give an explicit proof that the operator ⊕ introduced in Sec. 2-5 to de-
scribe the addition of decibels satisfies the properties (2-5.3) and that Eqs.
(2-5.4) and (2-5.5) ensure that

L1 ⊕ L2 ⊕ L3 = 10 log(10L1/10 + 10L2/10 + 10L3/10).
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What changes in these formulas would be necessitated if one chose to
measure sound-pressure levels in nepers rather than decibels?

2-38 The autocovariance of a stationary ergodic time series must correspond to
a spectral density that is nonnegative for all frequencies. Given this crite-
rion, check whether each of the following is an admissible autocovariance
(a > 0, b > 0):

(a) Dp(τ) = e−aτ
2

(b) Dp(τ) =
1

1 + aτ2

(c) Dp(τ) = (1− bτ2)e−aτ
2

2-39 A pressure signal is of the form of a sudden jump followed by a very slow
exponential decrease, that is, p(t) = 0 if t < 0 and p(t) = ppke

−αt if t > 0.
In the limit α → 0 determine an expression for the integrated octave-
band sound-pressure level for an octave band centered at frequency fo. By
how many decibels does the integrated-band sound-pressure level differ for
successive contiguous octave bands?

2-40 Suppose p(t) is a function that goes to zero at least as fast as e−a|t| (for
some positive value of a) when t → ∞. We wish to know the asymptotic
form of its Fourier transform p̂(ω) without an explicit knowledge of p(t).
(a) Show that if p(t) has a positive discontinuity of ∆p at t = to and is
otherwise continuous, then

p̂(ω) → i∆p

2πω
eiωto ω → ∞.

(b) Show that if p(t) is everywhere continuous but dp(t)/dt has a discon-
tinuity of ∆ṗ at t = to and is otherwise continuous, then

p̂(ω) → −∆ṗ

2πω2
eiωto ω → ∞

(Lighthill, Fourier Analysis and Generalized Functions, pp. 43, 46–57.)
2-41 Suppose the signals corresponding to the acoustic pressure and the three

cartesian components of v are each passed through identical linear filters,
such that one obtains functions pF (x, t) and vF (x, t).
(a) Show that pF and vF satisfy the same linear acoustic equations as
the original unfiltered functions, that is, ∂pF/∂t + ρc2∇ · vF = 0 and
ρ ∂vF /∂t = −∇pF .
(b) Show that if an acoustic energy density wF and intensity IF are
constructed according to Eqs. (1-11.3) from these filtered functions, the
acoustic-energy corollary (1-11.2) will still be valid.
(c) Show in addition that this corollary holds for running time averages
(rta), defined by

wF,rta(x, t) =

∫ t

−∞

A(t− t′)wF (t
′,x) dt′,
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with a function A(t) whose integral from 0 to ∞ is 1, the function A(t)
being the same for the computation of both wF,rta and IF,rta.





CHAPTER THREE

REFLECTION, TRANSMISSION,
AND EXCITATION OF PLANE
WAVES

When a sound wave strikes a surface (an interface between two substances),
a reflected wave, or echo, results whose nature depends on the characteristics
of the surface and of the adjoining substances. In some instances, one may be
interested in the acoustic disturbance produced on the other side of the sur-
face. A related topic is the generation of sound by a vibrating surface. Many
acoustical phenomena involve such interactions of sound and surfaces, and
we accordingly here examine the principles pertaining to them. For the most
part, attention is restricted to situations where the plane-wave idealization is
applicable, although certain concepts such as boundary conditions, causality,
and specific acoustic impedance are introduced in more general terms.

3-1 BOUNDARY CONDITIONS AT

IMPENETRABLE SURFACES

A vibrating or stationary surface S adjacent to a fluid imposes constraints, or
boundary conditions, on the possible solutions of the fluid-dynamic equations.
We here consider S to separate a solid material from a fluid, although much
of the following discussion applies equally to an interface between two fluids,
e.g., air and water. The surface S (see Fig. 3-1) is also regarded as smooth,
so that, with any given (moving with the material in the solid) point xS
on S, we can associate a unit normal vector nS pointing out of the solid
into the fluid. One also associates with xS a surface velocity vS = dxS/dt,
representing the local average velocity of the solid particles near xS .

If the surface is impenetrable (not porous), a fluid particle adjacent to the
surface S at a time to must be adjacent to it at to+∆t. During a short interval
∆t, the surface S moves normal to itself a distance (vS∆t)·nS = vn∆t, where
vn = vS · nS is the normal velocity of the surface. If one ignores viscosity
or considers fluid particles that are close to, but not exactly at, the solid

113
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surface, e.g., just outside† a viscous boundary layer, the fluid may slip relative
to the solid surface but nevertheless has the same normal displacement in
time ∆t as a solid particle in its immediate vicinity does. Otherwise, the
fluid mass density would locally be anomalously very high or very small;
both possibilities are implausible. Consequently, the normal component of
the fluid velocity at the surface should be the same as that of the surface
proper, so one has‡

v · nS = vS · nS = vn (3-1.1)

at any point xS on S.

Figure 3-1 Idealized fluid-solid interface (surface S with unit normal nS). The position
xS(t) describes a material point in the solid; vS(t) is its velocity; v(xS , t) is the velocity
of a fluid particle adjacent to xS(t) at time t.

† The thickness of the viscous boundary layer in typical cases of acoustical interest is of
the order of (2µ/ρω)1/2 , where µ [∼ 2 × 10−5 kg/(m s) for air and ∼ 10−3 kg /(m s) for
water at 20◦C] is the viscosity. This thickness is invariably much less than a wavelength
for any frequency of interest. (Acoustic boundary layers are discussed in Sec. 10-4.)
‡ This condition may be recognized in early works by Euler, Lagrange, and Poisson. A
statement similar in form to that in the text is given by G. G. Stokes, “On some cases
of fluid motion,” Trans. Camb. Phil. Soc. 8:105 (read May 29, 1843); Mathematical and
Physical Papers, vol. 1, Cambridge University Press, Cambridge, 1880, pp. 17–68, especially
p. 22.
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Stationary Surfaces

If the surface S is stationary (vS = 0) though the fluid outside it may be
moving, Eq. (1) reduces to v ·nS = 0. If the linear acoustic equations (1-5.3)
hold within the fluid, then Eq. (1) and the linear version of Euler’s equation
imply nS · ∇p = 0 on the surface.

Vibrating Surfaces

If the surface is vibrating, the application of Eq. (1) can be complicated
because it applies at a moving rather than a fixed surface and because the
unit normal nS may be changing with time. However, if the surface-vibration
amplitude is small compared with a representative acoustic wavelength and
representative dimensions describing the surface, and if there is no ambient
flow (vo = 0), then it is consistent with the use of the linear acoustic equations
to require instead that

v · no = vS · no (3-1.2)

hold at a nonmoving surface So whose location is the average or nominal
location of S. The unit vector no is normal to So and therefore independent
of time. The velocity vS is the velocity (assumed small) of that point on the
solid nominally at the same point on So. The premise is that the acoustic
field within the fluid, predicted subject to specified normal component v ·no
of acoustic fluid velocity on a fixed surface, is very nearly the same as would
be predicted if v · nS were specified on the actual moving surface.

Example A rigid sphere of radius a rocks back and forth about an axle
(Fig. 3-2) located a distance b from its center. The peak angular displacement
is substantially less than π/2, so the motion of the center of the sphere is
very nearly along a straight line. What boundary condition would one place
on the linear acoustic equations to account for the presence of the oscillating
sphere?

Solution The axle is parallel to the y axis, with its center at x = b, z = 0.
The angular velocity vector Ω is accordingly in the y direction and can be
denoted Ω = Ω(t)ey. The velocity vS of any point xS of the surface is the
vector cross product of angular velocity with a vector from any point on the
axle to xS , so one has†

vS = Ωey × (xS − bex) = Ω(ey × xS) +Ωbez. (3-1.3)

† See, for example, S. H. Crandall, D. C. Karnopp, E. F. Kurtz, Jr., and D. C. Pridmore-
Brown, Dynamics of Mechanical and Electromechanical Systems, McGraw-Hill, New York,
1968, pp. 61–78. The general relation
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Figure 3-2 A rigid sphere of radius a pivoted about an axle displaced a distance b from its
center. The angular velocity Ω(t) oscillates with a small amplitude, such that the sphere’s
center is always close to the origin.

To the approximation implied by Eq. (2), only an expression of first order
in Ω(t) is desired, so the vector xS in (3) can be replaced by the vector
aer. However, since the nominal boundary surface So is a sphere of radius a
centered at the origin, no is er. Also, ey × er is perpendicular to er, so one
obtains (ey × aer) · no = 0 and

vS · no = Ωbez · no = Ωb cos θ, (3-1.4)

where θ is the polar angle in spherical coordinates. This result is the same
as would have been obtained if the sphere were translating without rotation
back and forth in the z direction with a velocity vC = Ωbez. The remaining
motion, which is described by the termΩ(ey×aer) and which can be regarded
as a rotation about the origin, gives no contribution to the acoustic boundary
condition (2) because it describes a motion tangential to the surface.

The result (4) allows the boundary condition (2) to be taken as vr =
Ωb cos θ at r = a. Alternatively, since er ·∇p = ∂p/∂r, the radial component
of the linear version of Euler’s equation of motion would require ∂p/∂r to be
−ρΩ̇b cos θ at r = a.

d

dt
(xA − xB) = Ω × (xA − xB)

for any two points fixed in a rigid body with angular velocity Ω is sometimes referred to
as Euler’s velocity equation and stems from a 1776 paper by Euler.
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A generalization to this example is a moving rigid sphere of radius a whose
center at time t is at xC(t), where |xC | ≪ a; the appropriate boundary
condition is vr = ẋC · er at r = a.

Continuity of Normal Component of Displacement

Boundary condition (2) raises conceptual difficulties when one seeks to un-
derstand phenomena in the near vicinity of the surface and moreover may
be inappropriate† if there is an ambient flow. One way to resolve such diffi-
culties is to regard the acoustic variables as functions‡ of xo, yo, zo, t rather
than x, y, z, t, where xo, yo, zo denote the cartesian coordinates a fluid par-
ticle would have had if there were no surface vibration or acoustic distur-
bance. Thus v′x(xo, yo, zo, t) denotes the x component of acoustic fluid ve-
locity for the fluid particle ordinarily at xo, yo, zo at that same time. Since
v′x(x, y, z, t) − v′x(xo, yo, zo, t) and analogous differences are second order in
acoustic amplitudes, the xo, yo, zo description necessitates no change in the
linear equations of acoustics (with or without ambient flow). A vibrating
impenetrable surface is then one whose mathematical description does not
change with t when xo, yo, zo, t are the independent variables. With the
xo, yo, zo, t description, all such surfaces formally appear stationary.

If there is an ambient flow past the surface, the appropriate principle re-
placing Eq. (2) is continuity of normal displacement. Consider a fluid particle
P adjacent to the surface whose nominal location is xo(P, t) and whose actual
location is x(xo(P, t), t) = xo(P, t)+∆ξ(P, t). A second fluid particle Q adja-
cent to the surface is selected such that x(xo(P, t), t)−xo(Q, t) is parallel to
the unit normal no(P, t) to the ambient surface So at xo(P, t); that is, at time
t particle P is on the same line extending out from the surface that passes
through the nominal location of Q. The displacement of P from the nominal
location of particle Q is ∆ξn(P, t)no(P, t), where ∆ξn(P, t) ≈ ∆ξn(Q, t) is
the normal displacement of the surface in the vicinity of particles P and Q
at time t. Then, since x = xo +∆ξ, one can write

xo(P, t) − xo(Q, t) +∆ξ(xo(P, t), t) = ∆ξn(P, t)no(P, t). (3-1.5)

Because the particles P and Q are close to each other for a typical small-
amplitude acoustic disturbance, the difference xo(P, t) − xo(Q, t) is nearly
tangential to So, so [xo(P, t) − xo(Q, t)] · no is much smaller than ∆ξn or

† An example when Eq. (2) is inappropriate is propagation across an interface (vortex
sheet) between two fluids with different ambient fluid velocities. The proper boundary
condition was pointed out by H. S. Ribner, “Reflection, transmission, and amplification of
sound by a moving medium,” J. Acoust. Soc. Am. 29:435–441 (1957).
‡ C. Eckart, “Some transformations of the hydrodynamic equations,” Phys. Fluids 6:1037–
1041 (1963); F. P. Bretherton and C. J. R. Garrett, “Wavetrains in inhomogeneous moving
media,” Proc. R. Soc. Lond. A302:529–554 (1969).
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∆ξ ·no. Consequently, to first order in acoustic amplitudes, Eq. (5) requires
that the normal component of displacement of a fluid particle at the surface be
the same as that of the adjacent element of surface. This condition, ∆ξ ·no =
∆ξn, leads to Eq. (2) when there is no ambient flow, as can be demonstrated
by a differentiation with respect to time.

3-2 PLANE-WAVE REFLECTION AT A FLAT RIGID

SURFACE

An application of Eq. (1) in the previous section is the reflection of a plane
wave from a flat rigid surface.§ The surface is taken as the y = 0 plane (see
Fig. 3-3) with the unit normal nS as ey. The incident plane wave, in accord
with Eqs. (1-7.7) and (1-7.8), can be written as

pI = f(t− c−1nI · x) vI =
nI

ρc
pI . (3-2.1)

The incident wave’s direction of propagation (unit vector nI) can be consid-
ered to have no z component, so

nI = ex sin θI − ey cos θI , (3-2.2)

where θI , the angle of incidence, is the angle nI makes with the unit vector
−ey pointing into the surface.

If the incident wave is a solution (throughout the spatial region of interest)
of the linear acoustic equations (1-5.3) when the solid surface at y = 0 is
not present, then the solution with the surface present, written as pI + pR,
vI + vR, must be such that the pair pR, vR are themselves a solution of the
linear acoustic equations. Moreover, the boundary condition v · nS = 0 at
y = 0 requires (vI + vR) · ey = 0 at y = 0.

In this particular case, the solution for the reflected wave is easily obtained
from the alternate boundary condition, ∂p/∂y = 0 at y = 0, which will be
satisfied if

pR(x, y, z, t) = pI(x,−y, z, t). (3-2.3)

(This represents an example of the method of images.†) Here, for positive y,
the quantity pI(x,−y, z, t) is the mirror extension of the acoustic pressure

§ S. D. Poisson, “Memoir on the theory of sound,” J. Ec. Polytech. 7:319–392 (April
1908), especially p. 351. The discussion in the present text derives in major part from
that of George Green, “On the reflexion and refraction of sound,” Trans. Camb. Phil. Soc.
6:403–412 (1838), reprinted in R. P. Lindsay (ed.), Acoustics: Historical and Philosophical
Development, Dowden, Hutchinson and Ross, Stroudsburg, Pa., 1972, pp. 231–241.
† This dates back to Euler’s “On the propagation of sound” (1759, 1766) and to his “More
detailed enlightenment on the generation and propagation of sound and on the formation
of echoes” (1765, 1767). The first paper is in Lindsay, Acoustics, pp. 136–154. The math-
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Figure 3-3 Reflection of a plane wave with angle of incidence θI at a flat rigid surface.

in the incident wave to negative values of y. If Eq. (3) is satisfied, the sum
pI + pR will be even in y and will therefore have zero y derivative at y = 0.
Since pI(x, y, z, t) is given by Eq. (1), pR becomes f(t − c−1nR · x), where
nR differs from nI in that its y (normal) component is of opposite sign; that
is, nR is ex sin θI + ey cos θI . That the angle between nR and ey is also θI is
the law of mirrors: angle of incidence equals angle of reflection.

Because f(t−c−1nR·x) describes a plane wave propagating in the direction
nR, and because the fluid velocity in a plane traveling wave is v = np/ρc
[see Eq. (1-7.8)], one has

vR =
nR

ρc
f(t− c−1nR · x) =

nR

ρc
pR, (3-2.4)

which satisfies the boundary condition (vR + vI) · ey = 0 at y = 0.
A consequence of the above solution is that, at y = 0, the acoustic pres-

sure and the tangential component of the fluid velocity for the total wave
disturbance are both exactly twice (or 10 log 4 ≈ 6 dB higher than) the cor-
responding quantities for the incident wave alone. If the incident wave is of
constant frequency, then

pI + pR = Re[Ae−iωteikxx(e−ikyy + eikyy)]

= 2 cos(ky cos θI)f(t− c−1x sin θI) (3-2.5)

ematical statement given in the text can be recognized in the previously cited paper by
Poisson.
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so the incident and reflected waves cancel whenever ky cos θI is an odd
multiple of π/2. (Here we use the abbreviations k = ω/c, kx = k sin θI ,
ky = k cos θI .) Similarly, if the incident wave is a stationary ergodic time
series with spectral density p2f,I(f), the resulting acoustic pressure due to the
combined incident and reflected waves will have a spectral density [see Eq.
(2-9.4)]

p2f (f) = 4 cos2
(

2πf

c
y cos θI

)

p2f,I(f). (3-2.6)

Consequently, if p2f,I(f) is slowly varying over a frequency interval of width
∆f = c/(2y cos θI), then an average of p2f (f) over an interval somewhat larger
than∆f will be twice the corresponding average of p2f,I(f). This leads to the
rule of thumb that sound-pressure levels due to higher (and broad) frequency
bands at points near (but not on) a rigid surface are 10 log 2 ≈ 3 dB higher
than would be obtained if there were no reflection from the surface. The
sound level exactly at the surface is 3 dB higher than at moderate distances
from the surface.‡

3-3 SPECIFIC ACOUSTIC IMPEDANCE

The concept of specific acoustic impedance leads to a boundary condition
describing a surface, e.g., a porous wall, that is not necessarily impenetrable
or rigid. To introduce the concept, we assume a linear relation (doubling
one causes the other to double) between the acoustic pressure p and the
inward normal component (into the surface and out of the fluid) v · nin of
the fluid velocity along a nonmoving surface So. If the surface vibrates under
the influence of an acoustic disturbance, So should represent the surface’s
nominal location, as described in Sec. 3-1.

If the properties of the environment on the other side of the surface So are
time-dependent, the existence of such a linear relation implies that different
frequency components of p and v ·nin = vin are uncoupled, so one need only
specify the linear dependence for individual frequency components. For cer-
tain idealized situations, e.g., the reflection of a plane wave from a nominally
flat surface of unlimited extent bounding a “wall” of uniform composition,
the invariance of the overall model under translation parallel to the surface
requires, moreover, that the ratio

(

p̂

v̂in

)

onS0

= Zs(ω) = ρcζ(ω) (3-3.1)

‡ E. W. Kellogg, “Estimating Room Errors in Loudspeaker Tests,” J. Acoust. Soc. Am.
4:56–62 (1932).
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be independent of position along So. Here p̂ is the complex amplitude of a
single-frequency component of p (the latter being Re{p̂e−iωt}) at any given
point on So, while v̂in is the corresponding complex amplitude of the same
frequency component of vin at the same point. That a linear relation between
p̂ and v̂in should be expressible in the above form is in accord with the ex-
pectation that when p̂ vanishes, v̂in should also, and conversely. The ratio
Zs(ω) is referred to as the specific acoustic impedance (or unit area acoustic

impedance) of the surface So; the ratio ζ(ω) of specific impedance Zs(ω) to
the characteristic impedance Zc = ρc of the fluid is a convenient dimension-
less quantity that simplifies writing mathematical relations. The real Rs and
imaginary Xs parts of Zs are the specific acoustic resistance and reactance,
respectively. (In literature where the time dependence of oscillating quantities
is described by ejωt, where j2 = −1, the reactance is the negative of what
the definition adopted here would give.) Units of specific acoustic impedance
are Pa s/m or kg/ m2 s.

In mechanics, a ratio of a force amplitude to a velocity amplitude is referred
to as an impedance. The term, although having an evident mechanical conno-
tation (something impeding motion), was introduced first into electric-circuit
theory as a ratio of voltage amplitude to current amplitude by Heaviside† in
the late nineteenth century as a generalization of the concept of electrical
resistance for ac applications. Impedance was introduced into acoustics† by
A. G. Webster in 1914 and independently in a context similar to that of Eq.
(1) by Kennelly and Kurokawa in 1921. Since pressure is force per unit area,
the ratio p̂/v̂in is an impedance per unit area or, since “specific” implies “per
unit amount” (area in this instance), it is a specific impedance.‡

Plane Traveling Waves and Specific Acoustic Impedance

An instance to which Eq. (1) applies is a plane traveling wave, with p =
f(t−nI ·x/c) and with v = nIp/ρc, propagating in a direction of incidence
nI . If So is a plane surface, and if a choice is made for the sense (toward

† “Let us call the ratio of the impressed force to the current in a line when electrostatic
induction is ignorable the Impedance of the line, from the verb impede. It seems as good a
term as Resistance, from resist,” O. Heaviside, “Electromagnetic induction and Its propa-
gation,” Electrician (Lond.) 17: July 23, 1886, pp. 212–213, reprinted in Electrical Papers,
vol. 2, Copley, Boston, 1925, p. 64. Heaviside’s definition has since been extended to imply
the ratio of complex voltage amplitude to complex current amplitude.
† A. G. Webster, “Acousticalimpedance and the rheory of horns and of the phonograph,”
Proc. Natl. Acad. Sci. (USA) 5:275–282 (1919) (originally presented in 1914 at an American
Physical Society Meeting); A. E. Kennelly and K. Kurokawa, “Acoustic impedance and its
measurement,” Proc. Am. Acad. Arts Sci. 61:3–37 (1921).
‡ However, what is called acoustic impedance without the adjective “specific” has units
of specific impedance divided by area rather than of specific impedance times area; see
Sec. 7-2.
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which side) of nin, the impedance Zs(ω) associated with So in this context
is f/(nI · ninf/ρc) or

Zs(ω) =
ρc

nI · nin
=

ρc

cos θI
, (3-3.2)

where θI is the angle between the propagation direction nI and the inward
normal nin. Although Zs(ω) is independent of ω in this instance, it does
depend on angle of incidence, so one could not consider Zs to be an intrin-
sic property of the surface So. Another implication of this relation is that
ζ(ω) should be unity for a plane traveling wave passing at normal incidence
through So.

Plane-Wave Reflection at a Surface with Finite Specific

Impedance

The example (Sec. 3-2 and Fig. 3-3) of plane-wave reflection at a rigid surface
can be generalized to reflection from a surface with finite specific impedance
Z (possibly depending on the angle of incidence). (Here and in what follows
the subscript s is omitted for brevity.) One takes the incident wave as given by
Eqs. (3-2.1), with nI as given by Eq. (3-2.2). The total disturbance consists of
incident and reflected plane waves; the reflected wave pressure pR, however,
is g(t− c−1nR ·x), where the function g(t) is not necessarily the same as the
incident waveform f(t).

If one considers f(t) to be a superposition, e.g., Fourier series, of constant-
frequency components, any one such component is of the form Re{f̂e−iωt}.
The pressure-amplitude reflection coefficient R(θI , ω) is defined such that the
quantity Re R(θI , ω)f̂e

−iωt is the corresponding component of g(t), so ĝ =

R(θI , ω)f̂ . Alternatively, if f(t) and g(t) are transient waveforms, R(θI , ω)
is the ratio of the Fourier transform of g(t) to that of f(t). In either event,
we can write

p̂ = f̂ eikxx[e−ikyy + R(θI , ω)e
ikyy], (3-3.3a)

v̂y =
cos θI
ρc

f̂eikxx[−e−ikyy + R(θI , ω)e
ikyy], (3-3.3b)

where kx = (ω/c) sin θI , ky = (ω/c) cos θI .
The boundary condition at y = 0 that p̂/v̂in = Z(ω) leads in this case

(v̂in = −v̂y) to

Z(ω) cos θI
ρc

=
1 + R(θI , ω)

1− R(θI , ω)
R(θI , ω) =

ζ(ω) cos θI − 1

ζ(ω) cos θI + 1
. (3-3.4)

The magnitude of R is less than 1 if and only if the real part of Z is
positive. Any surface having this property absorbs acoustic energy. The time-
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averaged acoustic power flowing into the surface per unit area of surface
equals (for a single-frequency component)

(pvin)av = 1
2Re {p̂v̂

∗
in} = 1

2 |v̂in|
2Re{Z(ω)} (3-3.5)

from Eq. (1) [and with the mathematical theorem of Eq. (1-8.9)]. The same
quantity [with Eqs. (3) and v̂in = −v̂y at y = 0] becomes

(pvin)av =
1

2

cos θI
ρc

|f̂ |2(1 − |R|2), (3-3.6)

since the real part of (1+R)(1−R∗) is 1−|R|2. The surface absorbs energy
if Re{Z(ω)} > 0 or, equivalently, if |R| < 1. This is so for a passive surface

(one with no sound sources on its −y side) that produces a reflected wave
only when an incident wave is present.

The expression 1
2 |f̂ |2(cos θI)/ρc gives the energy carried per unit time

by the incident wave into the surface So (per unit area of So), while the
same quantity multiplied by |R|2 gives the energy carried away per unit time
and area by the reflected wave. Thus, Eq. (6) yields the following principle:
On a time-averaged basis, the acoustic energy incident equals the acoustic
energy reflected plus the acoustic energy absorbed. The fraction absorbed
is the absorption coefficient α(θI , ω); its value is here (pvin)av divided by
1
2 |f̂ |2(cos θI)/ρc or, equivalently, is 1−ρE , where ρE = |R|2 (energy reflection

coefficient) is the fraction of incident energy that is reflected.
If the pressure-amplitude reflection coefficient R is 1, then the expression

for the reflected wave given above is such that v̂y = 0 at y = 0 and is the same
as for reflection from a rigid surface. Since R = 1 corresponds to |Z| → ∞,
the infinite specific-acoustic-impedance limit corresponds to a rigid surface.
The limit Z → 0 gives R = −1 and requires p̂ = 0 on So regardless of the
value of v̂in, so, in this limit, the surface So is said to be a pressure-release

surface. [A circumstance discussed further below (Sec. 3-6) in which the latter
idealization may be appropriate is when a wave propagating in water reflects
from a water-air interface.]

Locally Reacting Surfaces

The pressure-amplitude reflection coefficient R varies with angle of incidence
for surfaces not idealizable as rigid or as pressure-release surfaces, but in
some cases, the specific acoustic impedance Z is very nearly independent of
angle of incidence.† Such cases include, for example, surfaces of some typical
thick and thin porous materials, surfaces of typical porous materials with air

† For a review, see P. M. Morse and R. H. Bolt, “Sound waves in rooms,” Rev. Mod. Phys.
16:69–150 (1944).
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backing, with or without stiff impervious covering, with or without spaced
supports. The premise would be that, if Z(ω) is computed from Eq. (4),
given θI and realistic R(θI , ω), the result will be very nearly independent of
θI for fixed frequency. The value of Z determined from R(θI , ω) when θI =
0, termed the normal-incidence surface impedance (or the specific acoustic
impedance of the surface for normal-incidence reflection), thus suffices to
determine R(θI , ω) via Eq. (4) for any value of θI . A consequence is that if
Z is finite, R(θI , ω) approaches −1 (as for a pressure-release surface) in the
limit θI → π/2 (grazing incidence).

That Z should be independent of θI is consistent with the assumption that
the value of vin at a given point on So depends on the acoustic pressure p
at only the same point; i.e., pushing the surface at one point does not move
it elsewhere. Thus, one can conceive of a locally reacting surface on which
Eq. (1), p̂ = Zv̂in, holds at each and every point with fixed Z(ω) regardless
of the nature of the acoustic field outside the surface. The model allows the
possibility of the surface’s being curved and, moreover, of Z’s varying from
point to point along the surface, e.g., a concrete-block wall partially covered
with patches of corkboard.

The locally reacting model approximately accounts for passive wall vi-
brations caused by an external acoustic pressure. It can also approximately
account for fluid being forced into, or sucked out of, the pores in the wall
(leading to changes in normal fluid velocity on So) by pressure fluctuations
outside the surface. It ignores the effect pressure at one point may have on
fluid velocity at another point on the wall but has considerable advantage in
simplicity over models that take explicit account of the mechanical properties
of the wall.

Extensive measurements of the frequency dependence of the real and imag-
inary parts of ζ(ω) = Z(ω)/ρc for commercial materials that might be ideal-
ized as locally reacting have been given by Beranek,‡ and an example from
his paper is reproduced here (see Fig. 3-4). (Typically, such materials and
backing combinations are stiffness-controlled at sufficiently low frequencies
such that the specific acoustic reactance X is large and positive for small ω.)
The locally reacting model is also commonly applied to ground surfaces§ (see
Fig. 3-5).

‡ L. L. Beranek, “Acoustic impedance of commercial materials and the performance of
rectangular rooms with one treated surface,” J. Acoust. Soc. Am. 12:14–23 (1940).
§ T. F. W. Embleton, J. E. Piercy, and N. Olson, “Outdoor Sound Propagation over
Ground of Finite Impedance,” J. Acoust. Soc. Am., 59:267–277 (1976); J. E. Piercy, T.
F. W. Embleton, and L. C. Sutherland, “Review of noise propagation in the atmosphere,”
ibid., 61:1403–1418 (1977); P. J. Dickinson and P. E. Doak, “Measurements of the normal
acoustic impedance of ground surfaces,.” J. Sound Vib. 13:309–322 (1970).
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Figure 3-4 Specific acoustic impedance Z of small samples with a rigid wall backing.
Plotted are R/ρc and −X/ρc, where Z = R + iX. (a) Celotex C-4, 3.2 cm thickness.
(b) Johns-Manville Permoacoustic, 2.5 cm thickness. (c) Johns-Manville Acoustex, 2.2 cm
thickness. [L. L. Beranek, J. Acoust. Soc. Am., 12:14 (1940).]

Theory of the Impedance Tube

Values of Z(ω) are frequently deduced† from the standing-wave pattern re-
sulting outside a surface when a plane wave is incident upon it. The incident
and reflected waves propagate along a cylindrical tube (impedance tube) with
the sample surface at one end (see Fig. 3-6). The mean squared amplitude of
the total acoustic pressure, in accord with Eq. (3a), varies with y as

† Detailed specifications for conducting such measurements are given in the ASTM stan-
dard C384-58, Impedance and Absorption of Acoustical Materials by the Tube Method,
American Society for Testing and Materials, Philadelphia, 1958. The method dates back
to J. Tuma (1902), F. Weisbach (1910), Hawley Taylor (1913), and E. T. Paris (1927). The
earlier references are cited in E. T. Paris, “On the stationary wave method of measuring
sound-absorption at normal incidence,” Proc. Phys. Soc. (Lond.) 39:269–295 (1927). An
early explicit use of the method to determine impedance rather than absorption coefficient
was in W. M. Hall, “An acoustic transmission line for impedance measurement,” J. Acoust.
Soc. Am. 11:140–146 (1939).
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Figure 3-5 Real and imaginary components of the specific acoustic impedance of dif-
ferent samples of grass-covered ground from two sites in Ottawa. The agreement of the
inclined-track data (derived from reflection at two different angles of oblique incidence)
with impedance-tube data for normal incidence supports the locally reacting hypothesis.
[T. F. W. Embleton, J. E. Piercy, and N. Olson, J. Acoust. Soc. Am., 59:272 (1976).]

(p2)av = 1
2 |f̂ |

2|1 + Rei2ky|2

= 1
2 |f̂ |

2[1 + |R|2 + 2|R| cos(2ky + δR)] (3-3.7)

where δR is the phase of R. Thus, (p2)av has a maximum of 1
2 |f̂ |2(1 + |R|)2

whenever 2ky + δR is an even multiple of π (so successive maxima are 1
2

wavelength apart); it has its minimum value of 1
2 |f̂ |2(1 − |R|)2 whenever

2ky+ δR is an odd multiple of π (so successive minima are also 1
2 wavelength

apart). It follows that the ratio s2 of maximum to minimum values is given
by

s2 =
(p2)av,max

(p2)av,min
=

(1 + |R|)2
(1− |R|)2 (3-3.8)

and that δR = −2kymax,1 + 2mπ = −2kymin,1 + (2n+ 1)π (3-3.9)
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Here ymax,1 is the smallest distance y from the surface at which (p2)av attains
a maximum; ymin,1 is the smallest distance at which it attains a minimum.
The quantities n and m are arbitrary integers whose values are immaterial
insofar as the determination of the real and imaginary parts of the reflection
coefficient R is concerned.

Figure 3-6 Theory of the impedance tube. The incident wave undergoes amplitude change
and phase shift when reflected by sample. The resulting interference and reinforcement of
reflected and incident waves causes (p2)av along the tube to have successive maxima and
minima whose ratios and locations determine Z.

Once R = |R|eiδR has been determined from the above equations, the
normal-incidence surface impedance can be determined from Eq. (4) (with
θI set to 0). Thus, for example, if s2 = 4 and ymax,1 = λ/8, one has |R| = 1

3
and δR = −π/2, so ζ(ω) is (1− i/3)/(1 + i/3) or 0.8− 0.6i.

The plane-wave absorption coefficient α (equal to 1− |R|2) is found from
Eq. (8) to be 4s/(s+ 1)2. The same relations suffice to determine |R| and α
when the wave pattern results from partial reflection of an obliquely incident
(θI not 0) plane wave.† In the determination of δR from Eqs. (9), however, k
should be replaced by k cos θI .

† L. Cremer, “Determination of the degree of absorption in the case of oblique sound
incidence with the help of standing waves,” Elektr. Nachrichtentech. 10:302–315 (1933).
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3-4 RADIATION OF SOUND BY A VIBRATING

PISTON WITHIN A TUBE

Some key concepts associated with the generation of sound by vibrating bod-
ies are exemplified by the model‡ of a piston (see Fig. 3-7) that fits snugly
inside a hollow rigid tube of cross-sectional area A filled with fluid; the pis-
ton oscillates back and forth due to some external cause, making sound waves
that propagate in the fluid. The +x face of the piston is flat and transverse
to the (x) tube axis; the cross section of the tube is independent of x, so the
acoustic field in the tube is independent of the other coordinates y and z.
(We neglect viscosity and thermal conductivity.)

Figure 3-7 Vibrating piston at one end of a rigid-walled tube. The face of the piston at
xp(t) oscillates about x = 0.

Inside the tube on the +x side of the piston, the acoustic field variables,
satisfying Eqs. (1-5.3), can be taken to be of the form (1-7.4) and (1-7.6) as
a superposition of left- and right-traveling plane waves, i.e.,

{

p/ρc
vx

}

= U(t− c−1x)±W (t+ c−1x), (3-4.1)

where the functions U and W remain to be determined. If the +x face of the
piston is oscillating with small amplitude about x = 0 so that its position is
given by xp(t), the (approximate) boundary condition (3-1.2) gives U(t) −
W (t) for dxp/dt.

‡ This example was considered by S. D. Poisson, “Memoir on the movement of an elastic
fluid through a cylindrical tube, and on the theory of wind instruments,” Mem. Acad. Sci.
Paris 2:305–402 (1819). It is also discussed by Rayleigh, The Theory of Sound, vol. 2,
Dover, 1945, secs. 255–259.
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Causality

Other relations relevant to the determination of U and W come from consid-
erations of causality; e.g., the piston’s oscillations cause the sound field. If the
piston does not start to oscillate until t = 0, and if the tube is of length L,
the expressions on the right side of Eqs. (1) should be 0 if one has both t less
than 0 and x between 0 and L, so U(τ) = 0 if τ < 0 and W (τ) = 0 if τ < L/c.
If the far end of the tube is passive, one expects, moreover (causality again),
that no disturbance will originate at that end until the wave generated by the
piston reaches it. Since U(t− c−1x) does not become nonzero at x = L until
t = L/c, one accordingly does not expect W (t + c−1x) to become nonzero
until t+ c−1x exceeds L/c+ c−1L or 2L/c, so W (τ) is 0 if τ < 2L/c.

The analysis just given allows one to take

p

ρc
= vx = vp(t− c−1x) (3-4.2)

for values of x between 0 and L and for times t up to (2L − x)/c, that
is, until the echo from the far end of the tube first comes back to x. Here
vp(t) = dxp/dt is the velocity of the piston at time t, so vp(t − x/c) is the
velocity of the piston at a retarded time t− x/c which in x/c earlier than the
time at which the acoustic disturbance is currently being sensed at x.

Equations (2) will still describe the acoustic field in the tube at later
times if the echo from the far end is weak compared with the primary wave
generated by the piston. Attenuating mechanisms (discussed in Chap. 10 of
the present text) may cause the amplitude of the generated wave to decrease
exponentially as e−αx with increasing propagation distance x, where α is
a positive frequency-dependent quantity. If L is sufficiently large to ensure
that e−αL ≪ 1 for all frequencies of interest in the generated wave, the echo
will be negligible. Moreover, if αλ/2π ≪ 1, and if one limits one’s attention
to (not large) values of x such that e−αx is not appreciably different from
1, although e−2αL ≪ 1, Eqs. (2) may still give an adequate description of
the acoustic field, even for times larger than 2L/c. Thus, the concept of an
infinitely long tube, while an idealization, applies if there is a small amount
of attenuation in a long tube.

A common technique for anechoic (without echo) termination is to design
the tube and its lining so that the attenuation per unit length increases slowly
(to avoid partial reflection) but steadily from a small value near the source
end to a large value at the far end such that

exp

(

−2

∫ L

o

αdx

)

≪ 1. (3-4.3)
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The use of wedges of absorbing material on the walls of anechoic chambers†

(rooms without echoes) is based on a similar principle.

Tube with Rigid End; Resonance

If the attenuation within the tube is idealized as zero, and if the far end of the
tube is a rigid plane reflector, the incident wave of Eqs. (2) upon reflection at
x = L gives rise to a similar wave traveling in the −x direction; the pressure
in this wave must be ρcvp(t − (2L − x)/c) for the sum of the two pressure
terms to be symmetric about x = L. [This is an application of the method of

images; replacing L−x by −(L−x) is the same as replacing x by 2L−x.] This
reflected wave in turn reflects at x = 0, giving rise to a wave with acoustic
pressure ρcvp(t−(2L+x)/c), so the fluid-velocity contributions at x = 0 from
the second and third terms cancel each other. [The solution is such that the
first term alone satisfies the boundary condition at x = 0 of vx = vp(t), so the
sum of all successive terms must give a contribution to vx that vanishes at
x = 0.] If one extends the reasoning just described,† whereby each reflected
wave successively generates another reflected wave at the opposite end of the
tube, the net result is

vx = vp

(

t− x

c

)

− vp

(

t− 2L− x

c

)

+ vp

(

t− 2L+ x

c

)

− vp

(

t− 4L− x

c

)

+ vp

(

t+
4L+ x

c

)

− · · · (3-4.4)

so, with reference to Eqs. (1), one identifies

U
(

t− x

c

)

=

∞
∑

n=0

vp

(

t− x

c
− 2nL

c

)

(3-4.5a)

W
(

t+
x

c

)

=
∞
∑

m=1

vp

(

t+
x

c
− 2mL

c

)

(3-4.5b)

Note that the lower limits, n = 0 and m = 1, on the two sums are different;
n = 0 corresponds to the primary wave. The various terms in the above sums
do not become nonzero until t is sufficiently large for their arguments to be

† L. L. Beranek and H. P. Sleeper, Jr., “Design and construction of anechoic sound cham-
bers,” J. Acoust. Soc. Am. 18:140–150 (1946); W. Koidan, G. R. Hruska, and M. A. Pickett,
“Wedge design for National Bureau of Standards anechoic chamber,” ibid. 52:1071–1076
(1972).
† The application of the method images to account for multiple reflections of plane waves
in tubes is described by L. Euler in his “On the propagation of sound,” 1766; trans. in
Lindsay, Acoustics, pp. 136–154.
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positive, so there are only a finite number of nonzero terms in the sum for
any finite value of t.

If the end at x = L is a pressure-release surface, instead of a rigid surface,
the same analysis applies except that additional factors of (−1)n and (−1)m

should multiply the terms of Eqs. (5a) and (5b). The pressure-release surface
is an approximate boundary condition for a narrow (diameter small com-
pared to wavelength) open-ended tube protruding into an unbounded space;
a classic application is the upper end of an organ pipe.‡

Resonance arises when the successive echoes reinforce the pressure on the
piston face. Suppose the piston velocity is 0 up to t = 0 and thereafter is
periodic with a period equal to the round-trip time 2L/c. Then vp(t−2nL/c)
is equal to vp(t) if n < ct/2L or is equal to 0 if n > ct/2L; so one has, from
Eqs. (1) and (5),

(p)x=0 = ρc[1 + 2N(t)]vp(t), (3-4.6)

where N(t) is the largest integer less than ct/2L or, equivalently, the total
number of echoes returned to the piston within time t. For such periodic
motion of the piston, the pressure at x = 0 is always in phase with the
velocity and moreover has an amplitude increasing stepwise in time, so the
acoustic power output pvxA of the piston tends on the average to increase
linearly with time. Thus, the acoustic energy (equal to the time integral of
the input power) stored in the tube by time t = 2L(N + 1)/c is

E = 2ρAL(v2p)av

N
∑

n=0

(1 + 2n). (3-4.7)

Since the indicated sum on n is (N + 1)2 or (ct/2L)2, the acoustic energy
tends to increase quadratically with time.† Both the acoustic power output
by the source and the stored energy increase without bound unless some
account is taken of dissipative processes.

Because a function with period 2L/mc (with m a positive integer) au-
tomatically repeats itself at intervals of 2L/c, the above analysis holds if
the repetition period of vp(t) is 2L/mc, so if vp(t) is a sinusoidal function
of time, the frequencies fm (in hertz) at which resonance will occur are
fm = mc/2L for m = 1, 2, 3, . . .. The lowest resonant frequency (correspond-

‡ Daniel Bernoulli, “Physical, mechanical, and analytical researches on sound and on the
tones of differently donstructed organ pipes,” 1762; J. L. Lagrange, “New researches on the
nature and the propagation of sound,” 1762; L. Euler, “More detailed enlightenment on the
generation and propagation of sound and on the formation of echoes,” 1767. A synopsis
of these papers is given by C. A. Truesdell, “The theory of aerial sound, 1687–1788,” in
Leonhardi Euleri Opera Omnia, ser. 2, vol. 13, Orell Füssli, Lausanne, 1955, pp. li-lxiii.
(The validity of this boundary condition is discussed in Sec. 7-6.)
† This is analogous to the result for an undamped harmonic oscillator driven at its reso-
nance frequency, whereby the particular solution describing motion starting from rest has
an amplitude increasing linearly with time. See, for example, L. Meirovitch, Elements of
Vibration Analysis, McGraw-Hill, New York, 1975, pp. 45–46.
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ing to m = 1) is when L = λ/2. If the end at x = L is a pressure-release
surface (approximately the case for a narrow hollow tube protruding into an
open space), the resonance criterion is that (−1)nvp(t−2nL/c) equal vp(t) for
all n < ct/2L. This will be so if vp(t) is oscillating sinusoidally at resonance
frequencies fm = (m + 1

2 )(c/2L) for m = 0, 1, 2, 3, . . . . This follows because
sin[(2πfm)(t− 2nL/c)] is sin[2πfmt− (2m+1)nπ] or (−1)(2m+1)n sin 2πfmt.
This in turn reduces to (−1)n sin 2πfmt. The resonance frequenciesmc/2L for
the tube with two rigid ends do not occur when one end is a pressure-release
surface since contributions to the pressure at the piston from successive echoes
cancel each other when the piston is driven at such frequencies.

Constant-Frequency Oscillations

Any damping mechanism attenuates transients, so that if a source is set into
motion with a periodic vibration, the acoustic field variables eventually os-
cillate with the same repetition period. We demonstrate this for the example
just discussed of an oscillating piston in a tube. The velocity vp(t) is taken
to be 0 for t < 0 and to be Vo cosωt for t > 0, where the angular frequency
ω is not necessarily an integral multiple of πc/L.

If any weak damping mechanism is taken into account, one can ex-
pect the solution given by Eqs. (1) and (5) to be qualitatively correct,
except that terms corresponding to very high order echoes may have suf-
fered a large attenuation and phase shift. For larger values of n, an ap-
propriate replacement† of terms such as vp(t ± x/c − 2nL/c) in Eqs. (5)
is e−βnvp(t± x/c− 2nL/c+ n∆φ) where β and ∆φ are small constants but
βn and n∆φ are not necessarily small. The premise here is that the net at-
tenuation and phase shift suffered during successive round trips are the same.
With such a substitution, U(t− x/c) in Eq. (5a) becomes

Udamp(t, x) = Re

(

Voe
−iωteikx

N
∑

n=0

ψn

)

, (3-4.8)

where we use the abbreviation ψ = ei2kLe−βe−i∆φ and where N is the largest
integer less than (ct− x)/2L.

The sum over n in the above is (1−ψN+1)/(1−ψ), which is nearly 1/(1−ψ)
in the limit e−βN ≪ 1 or, equivalently, when t ≫ 2L/cβ. Also, unless kL is
very close to a multiple of π, the factor 1/(1−ψ) for smaller values of β and
∆φ is essentially the same as would be obtained if β and ∆φ were set to 0.
Thus, in the limit of large t, Udamp(t, x) reduces to

† If the only attenuation mechanism were viscous drag at the tube walls, approximate
values for β and ∆φ would be 2L(ωµ/8ρc2)1/2LP /A and its negative. Here LP is the
perimeter of the tube and µ the viscosity (see Sec. 10-5).
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VoRe
e−iωteikx

1− ei2kL
=
Vo
2

sinω(t− x/c+ L/c)

sin kL
. (3-4.9)

Similarly, the analogous version with damping included of the sum in Eq. (5b)
has a limit given by the above but with −x/c replaced by +x/c. Consequently,
with the aid of the trigonometric identity for sin(A+B), one has

{

p/ρc
vx

}

≈ Vo

sin cos
(ωt) (k(L− x))

cos sin

sinkL
(3-4.10)

for the asymptotic (steady-state) solution. The expression for vx reduces to
Vo cos(ωt) at x = 0 in accord with the boundary condition vx = vp(t) at
x = 0.

The steady-state solution, while not appreciably affected in mathematical
form by the presence of damping, depends on the existence of damping for
its eventual asymptotic emergence as the dominant response to a periodic
excitation.‡ Since p and vx are everywhere 90◦ out of phase in this asymptotic
solution, the actual acoustic power supplied to the tube by the oscillating
piston, once the steady-state field is realized, is small if the damping is weak.

Resonance is manifested by Eqs. (10) because p and vx become singular
when sinkL is 0. If damping is taken into account, the acoustic amplitudes at
such frequencies (where kL is a multiple of π) will be large but not singular.
A prediction of the actual magnification can be made by carrying through the
derivation leading to Eq. (9) without approximating 1/(1−ψ) by 1/(1−ei2kL).

An implication of Eqs. (10) is that at any frequency near a resonance
frequency fm = mc/2L (where km = πm/L), p is P sin 2πft cos(mπx/L)
approximately, where P is independent of x and t. This, however, for given
P and with f = fm, corresponds to a solution with constant frequency of
the linear acoustic equations that could exist within the tube if both ends
were closed by rigid planes, so that ∂p/∂x = 0 at both x = 0 and x = L.
This is accordingly a natural acoustic motion of constant frequency, which
in the absence of damping does not require a source for its maintenance.
Such natural constant-frequency disturbances are referred to as modes and
occur only for certain discrete frequencies (the fm = mc/2L in this instance)
termed natural frequencies. The analysis illustrates two general principles:
(1) the resonance frequencies are the same as the natural frequencies, and
(2) the spatial dependence of the acoustic field when driven at a frequency
close to a resonance frequency is nearly the same as that of the corresponding
natural mode.

‡ This assertion is commonly proved in texts on mechanical vibrations or electric-circuit
theory for a spring-mass-dashpot system or an RLC circuit. See, for example, J. P. Den
Hartog, Mechanical Vibrations, 4th ed., McGraw-Hill, New York, 1956, p. 54.
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The resonance frequencies and associated mode shapes are found by as-
suming e−iωt time dependence at the outset and then solving the eigenvalue
problem posed by the Helmholtz equation and the appropriate boundary con-
ditions at x = 0 and x = L. For example, if the end at x = 0 is rigid and
that at x = L is a pressure-release surface, one has

d2p̂

dx2
+ k2p̂ = 0 (3-4.11a)

dp̂

dx
= 0 atx = 0 p̂ = 0 atx = L (3-4.11b)

The differential equation and the x = 0 boundary condition are satisfied if
p̂(x) = P cos kx, where P is any constant. Only for certain discrete values
(eigenvalues) of k can a nontrivial (p̂ not identically 0) solution be found
that satisfies both boundary conditions; the km are such that cos kmx = 0 at
x = L, so kmL should be an odd multiple of π/2. Since km = 2πfm/c, one
accordingly concludes that fm = (c/4L)(2m+1), where m is an integer. The
mode shapes (eigenfunctions) are given by Pm cos[(2m+1)πx/2L]. There are
m + 1 pressure nodes (including that at x = L) representing values of x at
which p̂(x) = 0 and m − 1 pressure antinodes (including that at x = 0) at
which dp̂/dx ≈ 0.

Tube with Impedance Boundary Condition at End

The steady-state acoustic field generated by a piston with velocity Vo cosωt
can be derived directly by taking U(t) = Re ae−iωt and W (t) = Re be−iωt

in Eqs. (1) and subsequently choosing the constants a and b such that the
boundary conditions at the ends of the tube are met. The derivation† is
carried through here with the end at x = L characterized by a specific acoustic
impedance Z. We write Eqs. (1) in the form

{

p/ρc
vx

}

= Re [e−iωt(aeikx ± be−ikx)]. (3-4.12)

Then, since v̂x = Vo at x = 0 and since p̂/v̂x = Z at x = L, one has

a− b = Vo (Z − ρc)aeikL = (Z + ρc)be−ikL. (3-4.13)

Thus, with some algebra, it follows that

p̂ = ρcVo
Z cos k(L− x) − iρc sin k(L− x)

ρc cos kL− iZ sin kL
. (3-4.14)

† E. T. Paris, “On resonance in pipes stopped with imperfect reflectors,” Phil. Mag. 4:907–
917(1927).
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Note that Re p̂e−iωt reduces to the expression in Eqs. (10) (for tube with rigid
end) in the limit of large |Z/ρc|. Also, the above expression is identical to
that appropriate to the normal-incidence (θI = 0) reflection of a plane wave
from a wall with impedance Z. One can obtain Eq. (14) from Eq. (3-3.3a) by
replacing the symbols θI , y, and v̂y by 0, L−x, and −v̂x and choosing the f̂ in
(3-3.3a) so that v̂x = Vo at y = L; that is, f̂ = aeikL is the complex amplitude
of the net incident wave on the far end (x = L) of the tube. The amplitude-
reflection coefficient R [given, according to Eq. (3-3.4), by (Z−ρc)/(Z+ρc)]
is the same as be−ikL/aeikL.

The Q of a Resonance

The above solution exemplifies the behavior of an acoustic system driven
near a resonance frequency. For simplicity, we consider the case when the
end at x = L is “nearly rigid,” so |Z| ≫ ρc; we accordingly anticipate reso-
nant behavior near any angular frequency ω0

n = nπc/L with n an integer. If
both numerator and denominator in Eq. (14) are divided by Z cos kL and
terms of higher than first order in either ρc/Z or ω − ω0

n are discarded in
the denominator and terms of higher than zero order are discarded in the
numerator, the result (with some algebra) is

p̂ ≈
(

2Qn
k0nL

)

ρcVo

[

cos k0nx

1− i2Qn∆ω/ω0
n

]

, (3-4.15)

with

Qn =
k0nL(R

2 +X2)

2ρcR
, ∆ω = ω − ω0

n +
(ρc2/L)X

X2 +R2
. (3-4.16)

Here R and X are the real and imaginary parts of Z and are evaluated at ω0
n.

The approximate expression for v̂x is similar to that of Eq. (15), but ρcVo
should be replaced by Vo and cos k0nx should be replaced by i sin k0nx. Note
that Eq. (15) is not valid near points where cos k0nx = 0 (nominal locations
of pressure nodes), while the equation for v̂x is not valid near points where
sin k0nx = 0 (nominal locations of antinodes). Given the previously stated
assumption that |Z| ≫ ρc, both Qn/k0nL and Qn are much larger than 1.

A principal implication of Eq. (15) is that for any fixed value of x (other
than a pressure node) and for fixed piston velocity amplitude Vo, one has, for
variable but small ∆ω (see Fig. 3-8),

(p2)av ≃ (p2)av,max

1 + (2Qn∆ω/ωn)2
, (3-4.17)
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where (p2)av,max is the maximum mean squared pressure for frequencies in
the vicinity of ω0

n. The frequency at which the maximum is obtained is that at
which ∆ω = 0, that is, approximately at ω0

n. The above indicates that (p2)av
drops to one-half of its resonant value and the sound-pressure level drops
by 3 dB when |∆ω| = ωn/2Qn or |∆f | = fn/2Qn. The quantity fn/Qn is
accordingly the frequency width ∆f of the resonance peak measured between
its half-power points, i.e., where (p2)av = 1

2 (p
2)av,max. For such resonance

peaks, a quality factor Q can be defined† as fn/∆f , resonance frequency
divided by bandwidth between half-power points. Thus, the Q in the example
above is the Qn given by Eq. (16).

Figure 3-8 Sketch of a resonance peak in the frequency response of a system driven
at constant frequency. Plotted is (p2)av at a typical point for frequencies near the mth
resonance frequency fm. Peak drops to one-half maximum value at fm ± fm/2Qm, where
Qm is the quality factor for the resonance.

An alternate definition of the Q associated with a resonance is the energy
within the system divided by the average energy lost per radian when the
system is vibrating at a resonance frequency. In the steady state, the average
energy loss per unit time is the same as the average power Pav supplied by

† The definitions given here are consistent with those given in IEEE Standard Dictionary
of Electrical and Electronics Terms, Wiley-Interscience, New York, 1972, p. 453.
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the source. A radian corresponds to a time increment of 1/ω, so the energy
loss per radian is Pav/ω. Thus, if ωn is a resonant frequency, one should have

Qn = ωn
Eav

Pav
. (3-4.18)

We here show that Eq. (18) is consistent with Eq. (16) for the exam-
ple discussed in the preceding paragraphs. The average energy per unit vol-
ume is 1

4 |p̂|2/ρ c2 + 1
4ρ|v̂x|2, where p̂ is given by Eq. (15) with ∆ω = 0 and

v̂x is given as described in the discussion following Eq. (15). This yields
(Qn/k

0
nL)

2 (ρV 2
o )AL for the time-averaged acoustic energy Eav within the

tube. The time-averaged power is 1
2 Re (p̂ v̂

∗
x)A evaluated at any value of x.

Although the approximate expression (15) and its counterpart for v̂x indicate
that p̂ and v̂x are 90◦ out of phase, this is not exactly the case and Pav is
not zero; it is only small. A good approximation for Pav results from using
v̂x = Vo at x = 0, so Pav is 1

2VoA times Re p̂ at x = 0, or (Qn/k
0
nL)ρcV

2
o A,

or ck0nEav/Qn, where p̂ is taken from Eq. (15). Since ck0n ≈ ωn, Eq. (18)
results.

3-5 SOUND RADIATION BY TRAVELING

FLEXURAL WAVES

As a second example of plane-wave generation‡ by a vibrating solid, we con-
sider a wall consisting of a large plate (idealized as infinite) whose right face
nominally is flush with the y = 0 plane but which is undergoing transverse
vibrations (see Fig. 3-9). Thus, a given point on the plate’s face has y coordi-
nate η(x, z, t), which if positive, represents the displacement of that portion
of the plate to the right (toward y > 0).

A given displacement field η(x, z, t) can be represented via a triple Fourier
transform as a superposition of traveling transverse waves, and since the
acoustic disturbance due to the overall vibration is a superposition of acoustic
waves caused by the individual transverse waves, it is sufficient (as an initial
step for analysis) to limit one’s attention to a single traveling wave. Thus, we
consider the special case when η is such that ∂η/∂t = vW (t − c−1

W x), where
|vW | ≪ c. Here the wall (or plate) normal vibrational velocity vW (W being
an abbreviation for wall) is independent of z and depends on t and x only
through the combination t − c−1

W x; the function vW (t − c−1
W x) represents a

transverse wave (flexural wave) moving in the +x direction with the flexural-

‡ J. Brillouin, “Problems of radiation in the acoustics of buildings,” Acustica2:65–76 (1952).
The method of analysis dates back to Green, “On the reflexion and refraction of sound,”
1838. The closely related problem of radiation by flexural waves, periodic along axis, on
a transversely oscillating cylinder of infinite length was analyzed by A. Kalähne, “The
wave motion about a transversely vibrating string in an unbounded fluid,” Ann. Phys.
(4)45:657–705 (1914).
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Figure 3-9 Sound radiation by flexural wave moving along a wall with supersonic speed
cW . Wall moves in y direction with velocity vW (t − c−1

W x) and generates plane waves
propagating at angle θ. If the flexural-wave speed is subsonic, the disturbance (for constant-
frequency excitation) dies out exponentially with y.

wave speed cW and without change of form. (If the flexural wave is a natural
wave motion of the plate, the only such wave moving without change of form is
one of constant frequency, but this restriction need not be taken into account
at present.) As described below, the nature of the acoustic disturbance in the
fluid depends critically on whether the flexural wave is moving at supersonic
(cW > c) or subsonic (cW < c) speed.

Sound Generated by Supersonic Flexural Waves

If cW > c, the steady-state solution of the linear acoustic equations satisfying
the boundary condition vy = vW (t − c−1

W x) at y = 0, corresponding to the
notion (causality again) that the sound is actually caused by the vibrating
surface, and neglecting reflections from distant walls or surfaces on the far
+y side of the plate, is a plane wave. To demonstrate this, we consider a
plane traveling-wave solution (propagating at any angle θ with the y axis)
of the linear acoustic equations of the form p = f(t − n · x/c), v = np/ρc.
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The z independence of the boundary conditions suggests that n has no z
component, so we set n = nxex + nyey, where nx = sin θ and ny = cos θ are
the x and y components of n. Then the boundary condition vy = vW (t−c−1

W x)
at y = 0 is satisfied by

c

nx
=

c

sin θ
= cW f(t) =

ρc

ny
vW (t). (3-5.1)

Trace-Velocity Matching Principle

If any function, such as f(t − n · x/c) above, depends on t and x in the
combination t − v−1

tr x, where vtr is some constant, one says that vtr is the
trace velocity corresponding to the x direction. If a line of microphones or
sensors were placed parallel to the x axis so that each had the same y and z
coordinates, the relation between the signals received by the various sensors
could be interpreted as if the disturbance were moving in the x direction with
speed vtr (see Fig. 3-10). The actual disturbance might in reality be moving
at an angle with the x axis and, if it is a plane wave, its speed in the direction
of propagation will be less than vtr.

The trace-velocity matching principle† states that, under steady-state cir-
cumstances, the trace velocity of effect equals the trace velocity of the cause.
If a disturbance has t and x dependence only in the combination t − v−1

tr x,
and if this causes other disturbances, they should also depend on t and x
in the same combination. This presumes that the governing equations are
unchanged if one changes the time origin and the spatial origin such that
t→ t+∆t, x→ x+ vtr ∆t for arbitrary ∆t; that is, the governing equations
and boundary conditions must have an invariance under time and x-direction
translations. In the present example, this is guaranteed because the linear
acoustic equations are the same regardless of the choice of time and spatial
origins and because the interface between the vibrating solid and the fluid
is nominally flat and parallel to the x axis. The cause (the wall vibrations)
has trace velocity cW along the x direction, so the trace velocity c/nx of the
effect (the radiated sound wave) must also be cW .

† An early explicit stating of this is given by Rayleigh, The Theory of Sound, vol. 2, sec.
270. The term “trace matching” is also used to denote the related phenomenon by which
matching the trace velocity of an incident wave with the propagation velocity of a free
wave in a wall tends to reduce the transmission loss of a wall (L. Cremer, M. Heckl, and
E. E. Ungar, Structure-Borne Sound, Springer-Verlag, New York, 1973, p. 409).
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Figure 3-10 Plane-wave passage past linear array of microphones. Trace velocity vtr is
distance d between microphones divided by time lapse ∆t for reception of given wave
feature. The sketch indicates that vtr = c/(cos θ).

Outgoing versus Incoming Waves

In the solution represented by Eq. (1), there are two possible choices for ny.
Since n is a unit vector, one has n2

x+n
2
y = 1, and thus ny = ±[1−(c/cW )2]1/2.

The plus sign, leading to a plane wave propagating obliquely away from the
plate, is a plausible choice since it agrees with the notion that a wave should
propagate away from rather than toward its source. There do exist,† among
other physical categories of wave propagation, counterexamples to this no-
tion, but here the choice of the plus sign also leads to an Iy that is everywhere
positive. Thus, if we want a solution in which acoustic energy (as well as the
wave itself) propagates away from the source, ny > 0 is required. Two other
methods of substantiating this choice may also be mentioned. First, one can
solve a modified version of the linear acoustic equations in which a damping

† For counterexamples, see S. H. Crandall, “Negative group velocities in continuous struc-
tures,” J. Appl. Mech. 24:622–623 (1957); H. Lamb, “On group velocity,” Proc. Lond. Math.
Soc. (2)1:473–479 (1903–1904).
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mechanism‡ (causing internal loss of acoustic energy) is introduced. It is suf-
ficient to consider vW as a sinusoidal function of its argument and to take
the acoustic variables as being the real parts of complex spatially dependent
amplitudes times e−iωt. Then, although the source is not explicitly consid-
ered to be bounded in duration and spatial extent (with the steady-state
idealization of a traveling flexural wave), the wave far from the plate should
die out in amplitude with large y. One discards a possible wave that grows
with increasing distance as being unphysical and then examines the resulting
solution in the limit as the damping goes to zero. This results in just the
ny > 0 wave. A second method is to solve a transient problem in which the
plate is completely at rest at an early time to and then starts (gradually
growing in amplitude) after that time to vibrate so that ∂η/∂t is of the form
vW (t− c−1

W x). The wave field is required initially to be zero everywhere, and
it evolves gradually after the source has been turned on. At late times, the
acoustic field in the vicinity of the vibrating portions of the plate resembles
the physically realistic steady-state solution. The procedure just described
can be formally carried through by Fourier transform techniques; the asymp-
totic steady-state solution at finite y (the transient radiates away) is the same
as what results from the considerations previously mentioned.

The solution for acoustic waves generated by supersonic (cW > c) flexural
waves moving along a plate can be summarized as

p = ρcW vx =
ρc

ny
vW (t− n · x/c) (3-5.2a)

vy = vW

(

t− n ·
x

c

)

nx =
c

cW
ny =

[

1−
(

c

cW

)2
]1/2

(3-5.2b)

The intensity in the acoustic field is pv, or p2n/ρc since the disturbance is
a plane traveling wave. With p as given above, one accordingly has

I =
ρc

n2
y

[

vW

(

t− n ·
x

c

)]2

n. (3-5.3)

The energy radiated per unit time by the vibrating plate per unit area of its
surface is pvy = Iy, evaluated at y = 0, or (ρc/ny)v2W , where vW is evaluated
at t − c−1

W x. In the limit cW → ∞, vW is independent of x, and the plate
is moving back and forth as a unit, so the solution reduces to that of the
example discussed previously of a piston in a long tube. However, when cW
decreases to near the sound speed c in the fluid, ny → 0 and p, I, and the
radiated acoustic power per unit area become large. The infinite limit cannot
be realized because, among other reasons, the generation of acoustic energy
must result in a decrease of the vibrational energy in the plate.

‡ J. W. S. Rayleigh, “On progressive waves,” Proc. Land. Math. Soc., 9:21–26 (1877);
reprinted as an appendix to vol. 1 of the Dover edition of The Theory of Sound; H. Lamb,
Hydrodynamics, 6th ed., 1932, Dover, New York, 1945, pp. 399, 413.
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Acoustic Disturbances Created by Subsonic Flexural

Waves

When cW < c (subsonic flexural wave), the plane-wave solution described
above is inapplicable because it would require ny to be imaginary, but the
trace-velocity matching principle still applies. If one limits oneself to flexural
waves of constant frequency (a building block for more general cases) such
that vW (t− c−1

W x) is of the form Vo cos(ωt−ωc−1
W x), the boundary condition

at the plate is satisfied if one sets

vy = Vo cos(ωt− ωc−1
W x)F (y), (3-5.4)

where F (y) is 1 at y = 0. This above expression, representing a cartesian
component of v, should satisfy the wave equation and (since the latter is
separable in a cartesian coordinate system) one finds that it does, provided
F (y) satisfies the ordinary differential equation

d2F

dy2
−
(ω

c

)2

β2F = 0; where β =

[

(

c

cW

)2

− 1

]1/2

. (3-5.5)

This equation has linearly independent solutions that grow or die out ex-
ponentially with increasing y. Since the medium is here idealized as being
unbounded on the right (+y side), we discard the former as unphysical and
consequently obtain e−(ω/c)βy for F (y).

The acoustic pressure is found from expression (4) for vy , in conjunc-
tion with the trace-velocity matching principle, and from they component of
Euler’s equation of motion. (We rule out any term not having the same y
dependence as vy , since such a term that satisfied the conditions just stated
would not also satisfy the wave equation.) The x component of v is similarly
found from the expression for p, from the trace-velocity matching principle,
and from the x component of Euler’s equation of motion. In this manner, one
obtains a wave field of the form

p = ρcW vx = −ρcVoβ−1 sin(ωt− ωc−1
W x)e−(ω/c)βy (3-5.6a)

vy = Vo cos(ωt− ωc−1
W x)e−(ω/c)βy (3-5.6b)

Such a wave disturbance of constant frequency, propagating in one direction
but decaying exponentially in another, is an inhomogeneous plane wave.†

The acoustic-energy implications of the above solution are

† L. M. Brekhovskikh, Waves in Layered Media, Academic, New York, 1960, pp. 4–6.
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wav = 1
2ρV

2
o

(

c/cW
β

)2

e−2(ω/c)βy, (3-5.7a)

Ix,av = cWwav, Iy,av = 0, (3-5.7b)

where w is the acoustic energy per unit volume given by Eq. (1-11.3); the
time averages here are over an integral number of half periods. Here Iy,av is
zero because the y component of fluid velocity is 90◦ out of phase with the
acoustic pressure, so the time average of their product is zero. The acoustic
energy in the fluid associated with the presence of the flexural wave stays
close to the plate, as evidenced by the factor e−2(ω/c)βy, and moves as a unit
parallel to the plate in the +x direction with speed cW .

The Coincidence Frequency

The prediction that the flexural wave radiates sound only if cW > c applies
to the idealized case where the plate is of infinite extent and the flexural
wave continues indefinitely, but the model’s predictions have approximate
validity when a plate of finite size large in terms of flexural and acoustic
wavelengths is vibrating. The enhanced radiation when cW is near c can be
demonstrated† by suspending a large metal plate by strings and causing it
to vibrate by means of an electromagnetic shaker attached to the plate. If
the shaker is oscillating at fixed frequency f = ω/2π, the vibration over the
surface of the plate for higher frequencies can be considered for the most part
(except near the shaker and near the plate edges) as a superposition of freely
propagating plane flexural waves traveling in various directions, each with
speed (phase velocity) cW . The speed cW is proportional to ω1/2 for a thin
plate, the theoretical relation‡ being

cW = cpl = K1/4ω1/2, K =
Eh2

12ρS(1− ν2)
, (3-5.8)

where E = Young’s modulus
h = plate thickness
ρS = mass in plate per unit volume
ν = Poisson’s ratio

† L. Wittig, “Random vibration of point driven strings and plates,” Ph.D. thesis, Depart-
ment of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Mass.,
1971; S. H. Crandall and L. Wittig, “Chladni patterns for random vibrations of a plate,”
in G. Hermann and N. Perrone (eds.), Dynamic Response of Structures, Pergamon, New
York, 1971, pp. 55–72.
‡ L. Cremer, M. Heckl, and E. E. Ungar, Structure-Borne Sound, Springer-Verlag, New
York, 1973, pp. 95–101; Rayleigh, The Theory of Sound, vol. 1, secs. 214–217; Y. C. Fung,
Foundations of Solid Mechanics, Prentice-Hall, New York, 1965, pp. 456–463.
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For an aluminum (E = 72× 109 Pa, ρS = 2.7 × 103 kg/m3 , ν = 0.34) plate
of 0.5 cm thickness, for example, K is 63 N · m3/kg; thus, for a frequency
of 1000 Hz (ω = 6283 rad/s) one has cW = 220 m/s. Each of the superim-
posed plane flexural waves contributes independently to the radiated sound
amplitudes in accord with the linear nature of the boundary conditions. Con-
sequently, at typical points outside the plate, there should be a noticeable
increase in the received sound when the shaker frequency goes from some-
what below to somewhat above the coincidence frequency§ at which cW = c.
This coincidence frequency fc is c2/2πK1/2, that is, of the order of 2.3 kHz
for the 0.5-cm-thick aluminum-plate example just cited. Providing the plate
dimensions are large compared with c/fc (about 15 cm for the example), the
effect is quite observable. [One should design the demonstration so that the
averaged (over surface of plate) squared vibrational velocity caused by the
shaker does not vary substantially with frequency.]

Specific Radiation Impedance

For a body vibrating at fixed frequency, the ratio of complex pressure ampli-
tude p̂ to the outward component v̂out of the acoustic-fluid-velocity complex
amplitude is the local specific radiation impedance Zrad of the surface.† Thus,

Zrad =

(

p̂

v̂out

)

onS0

where v̂out = v̂S · nout, (3-5.9)

where vS is the surface velocity of the body, and nout is the unit normal to
the surface pointing into the fluid. In general, Zrad varies from point to point
along the surface and with frequency. It also depends on the environment
of the body; e.g., the specific radiation impedance of the example of the
vibrating piston in a tube, discussed previously, depends on the impedance
at the far end (x = L) and on the length L of the tube. In addition, the specific
radiation impedance at any given point depends on the relative phasing and
amplitudes of vibration at points all over the vibrating body. In the example
just discussed of sound generated by flexural waves on a plate, one finds from
Eqs. (2) and (6) that

§ The concept originated with L. Cremer, “Theory of the sound blockage of thin walls in
the case of oblique incidence,” Akust. Z. 7:81–104 (1942). The definition of coincidence
frequency given in the text is that of M. C. Junger and D. Feit, Sound, Structures, and
Their Interaction, M.I.T. Press, Cambridge, Mass., 1972, pp. 158–159.
† The term “radiation impedance” without the adjective “specific” is often used for the
complex-amplitude ratio of the net reaction force exerted by acoustic pressure on a ra-
diating body to a surface-averaged outward component of velocity. See, for example, P.
M. Morse, Vibration and Sound, McGraw-Hill, New York, 1948, p. 237; L. L. Beranek,
Acoustics, McGraw-Hill, New York, 1954, pp. 116–128.
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Zrad =































ρc

[

1−
(

c

cw

)2
]−1/2

=
ρc

cos θ
c < cW

−iρc
[

(

c

cW

)2

− 1

]−1/2

= − iρc
β

c > cW

(3-5.10a)

(3-5.10b)

i.e., it depends critically on the flexural-wave speed and changes from purely
resistive ( Zrad real) to purely reactive (Zrad imaginary) when the flexural-
wave speed drops below the sound speed in the fluid.

The concept of specific radiation impedance is useful in the prediction
of the effects of the surrounding fluid on the vibration of a solid.‡ (This
is of substantial importance when a body is vibrating under water and of
less importance when it is vibrating in air.) In addition, it is useful in the
analysis of the efficiency with which a vibration can generate sound. If the
outward component of the acoustic fluid velocity is known along the surface,
its complex amplitude v̂out and the radiation impedance Zrad give a prediction
of the time average of the acoustic power generated per unit area of the solid’s
surface:

(I · nout)av = 1
2 |v̂out|

2 ReZrad. (3-5.11)

The acoustic power radiated by the body is the area integral of this expression
over the ambient surface So of the vibrating body. [See Eq. (1-11.14).]

3-6 REFLECTION AND TRANSMISSION AT AN

INTERFACE BETWEEN TWO FLUIDS

The concepts of trace velocity, specific radiation impedance, and the trace-
velocity matching principle apply to the example† of a plane wave inci-
dent on an interface between two fluids (see Fig. 3-11). The incident wave
(henceforth indicated by subscript I in place of I) propagates through a
medium (y < 0) with sound speed c1 and ambient density ρ1 in the direction
nI = ex sin θI + ey cos θI toward an interface separating the first medium
from a second medium (cII, ρII, with y > 0). The interface nominally coin-

‡ See, for example, Junger and Feit, Sound, Structures, and Their Interaction, pp. 163–
165; G. Kurtze and R. H. Bolt, “On the interaction between plate bending waves and their
radiation load,” Acustica 9:238–242 (1959).
† The discussion in the text is similar to that of Green, “On the reflexion and refraction
of sound,” 1838. A treatment of sound reflection and refraction earlier than that of Green
had been given by S. D. Poisson, “Memoir on the movement of two superimposed elastic
fluids,” Mem. Acad. Sci. Paris 10:317–404 (1831). Poisson dealt with the normal-incidence
case earlier in his “Memoir on the movement of an elastic fluid through a cylindrical tube.”
The optical counterpart of the reflection-refraction problem had been considered in terms
of a mechanical model of light waves by Fresnel in 1823.
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cides with the y = 0 plane but oscillates and flexes because of the acoustical
disturbance. (The two fluids are presumed not to mix.)

Figure 3-11 Plane-wave reflection and refraction at an interface between two fluids. Re-
fracted wave (direction nII) is generated in fluid II if cI/(sin θI) > cII.

The analysis in this and succeeding sections regarding the transmission
and reflection of plane waves at one or more parallel interfaces applies also
when one or more of the considered substances is an elastic solid, providing
one limits one’s attention to normal incidence (θI = 0), considers only lon-
gitudinal waves, and replaces acoustic pressure p in the solid by −σyy, the
negative of the normal stress acting on surfaces perpendicular to the direc-
tion of propagation. The sound speed in the solid is interpreted as cD, the
dilatational elastic-wave speed; it and the shear-wave speed cS are given by

cD =

[

E(1 − ν)

(1 + ν)(1− 2ν)ρ

]1/2

cS =

[

E

2(1 + ν)ρ

]1/2

, (3-6.1)

where E = elastic modulus
ν = Poisson’s ratio
ρ = mass per unit volume

A brief list of values of cD, ρ, and other pertinent properties for common
solid materials is given in Table 3-1. The restriction to normal incidence
is necessary because a longitudinal wave striking an interface obliquely will



3-6 Reflection and Transmission at an Interface between Two Fluids 147

also excite shear (transverse) waves‡ within a solid. The ensuing analysis,
however, is written as if both materials were ideal fluids and makes no a
priori restriction to normal incidence.

The trace velocity vtr of the incident wave along the x axis, i.e., along the
y = 0 plane, is cI divided by the x component of nI, or cI/ sin θI. Whatever
disturbance is generated within the second fluid must have the same trace
velocity. For the reflected wave, this leads again to the law of mirrors (angle
of incidence equals angle of reflection), and the reflected wave is a plane wave
propagating in the direction ex sin θI − ey cos θI, that is, similar to that of
nI except that the y component has changed sign.

If the trace velocity is supersonic with respect to the second medium (vtr >
cII), the analysis above of the radiation of sound by a supersonic flexural wave
traveling along a plate [leading to Eqs. (3-5.2)] suggests that the disturbance
in the second fluid will be a plane wave propagating away from the interface.
The propagation direction (unit vector nII making angle θII with the y axis)
of this transmitted wave has a trace velocity in the x direction along the
interface of cII/(sin θII). The trace-velocity matching principle requires this
be the same as the trace velocity of the incident wave, so one has† (Snell’s

law)

c−1
I sin θI = c−1

II sin θII =
1

vtr
. (3-6.2)

‡ Insofar as the reflected wave is concerned, the analysis in Sec. 3-3, leading to Eqs.
(3-3.3) to (3-3.6), is applicable for oblique plane-wave reflection from a solid. If the wave is
incident from a fluid onto a homogeneous isotropic elastic solid half space, the appropriate
identification [replacing Eq. (4)] for the specific acoustic impedance of the reflecting surface
is

ZII = ρIIcD







[1− 2(cS/vtr)
2]2

[1− (cD/vtr)2]1/2
+ 4

cS

cD

(

cS

vtr

)2
[

1−
(

cS

vtr

)2
]1/2







,

where each radical is understood to have a phase of π/2 when its argument is negative.
An elastic solid is such that c2D > 2c2S , so ZII is imaginary and |RI,II| = 1 if vtr < cS .
There is a value of vtr (the Rayleigh wave speed) somewhat less than cS for which ZII

is identically zero and for which RI,II = −1; but in cases when ρII ≫ ρI, cD ≫ cI, the
range of incidence angles where |ZII| is comparable or smaller than |ZI| is very small and
typically |ZII| ≫ |ZI|, so RI,II ≈ 1 and the half space can be idealized as rigid. A derivation
of the above is given by Brekhovskikh, Waves in Layered Media, pp. 30–31. Brekhovskikh’s
Z1 cos2 2γ1 + Zt sin2 2γ1 in his eq. (4.25) is the same as our ZII with the identifications
Z1 = ρIIcD/[1− (cD/vtr)

2]1/2, Zt = ρIIcS/[1− (cS/vtr)
2]1/2, cos γ1 = [1− (cS/vtr)

2]1/2,
sinγ1 = cS/vtr.
† The hypothesis that (sin θ1)/(sin θII) is independent of θI in the case of optical radiation
was advocated with supporting (although incorrect) mathematical reasoning by Descartes
in his Dioptics (Leyden, 1637), but it is believed that Descartes learned about this exper-
imental fact from a manuscript (no longer in existence) circulated c. 1621 by Willebrord
Snell (1591–1626). The earliest discovery of this law of sines was by Thomas Harriott (c.
1560–1621). [J. W. Shirley, “Early experimental determination of Snell’s law,” Am. J. Phys.
19:507–508 (1951); W. B. Joyce and A. Joyce, “Descartes, Newton, and Snell’s law,” J.
Op. Soc. Am. 66:1–8 (1976).]
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Table 3-1 Representative mechanical and thermal properties of common solid materials at room temperature

Density ρ, Dilatational
wave speed cD,

Elastic modulus
E,

Poisson’s ratio Thermal con-
ductivity κ,

Specific heat cp

Material Composition 103 kg/m3 103 m/s 1010 N/m2 ν W/(m · K) 103 J/(kg · K)

Aluminum Pure and alloy 2.7–2.9 6.4 6.8–7.9 0.32–0.34 234 0.96
Brass 60–70% Cu,

40–30% Zn
8.4–8.5 4.7 10.0–11.0 0.33–0.36 146 0.37

Copper 8.9 5.0 11–13 0.33–0.36 385 0.39
Iron, cast 2.7–3.6% C 7.0–7.3 5.0 9–15 0.21–0.30 52 0.42
Lead 11.3 2.0 1.4 0.40–0.45 35 0.13
Steel Carbon and

low alloy
7.7–7.9 5.9 19–22 0.26–0.29 45 0.42

Stainless steel 18% Cr, 8% Ni 7.6–7.9 5.8 19–21 0.30 15 0.46
Titanium Pure and alloy 4.5 6.1 10.6–11.4 0.34 8 0.54
Glass Various 2.4–3.9 4.0–6.4 5.0–7.9 0.21–0.27 1.0 0.50–0.83
Methyl methacrylate 1.2 1.8–2.2 0.24–0.35 0.35
Polyethylene 0.91 2.0 0.014–0.076 0.45
Rubber 1.0–1.3 0.00008–0.0004 0.50 0.14–0.16 1.1–2.0

Source: S. H. Crandall, N. C. Dahl, and T. J. Lardner (eds.), An Introduction to the Mechanics of Solids, 2d ed., McGraw-Hill, New York, 1972, p.
286; T. Baumeister (ed.), Standard Handbook for Mechanical Engineers, 7th ed., McGraw-Hill, New York, 1967, pp. 4-11, 4-92, 4-95, 5-6, 6-7, 6-10;
D. E. Gray (coord, ed.), American Institute of Physics Handbook, 3d ed., McGraw-Hill, New York, 1972, pp. 3-101, 3-104, 4-106, 4-154, 4-155.



3-6 Reflection and Transmission at an Interface between Two Fluids 149

This phenomenon, whereby propagation direction changes on passage into a
medium with different sound speed, is known as refraction.

Internal boundary conditions coupling the solutions of the wave equation
in the two fluids are the continuity of normal particle velocity and of total
pressure at the actual (deformed) interface. The former leads to the approxi-
mate requirement that the normal component of displacement be continuous
at the nominal interface location or, in the absence of ambient flow, that vy
be continuous at y = 0. The requirement of pressure continuity assumes no
mass transport across the interface and neglects surface tension; under such
circumstances it is the fluid-dynamic counterpart of Newton’s third law. Since
the ambient pressure is constant (with the neglect of gravity), and since the
acoustic pressure changes negligibly over distances comparable to a particle
displacement, the appropriate approximate boundary condition is the conti-
nuity of acoustic pressure at the nominal interface location.

[With gravity taken into account and with y denoting the vertical direction,
however, the requirement, that acoustic pressure be continuous at y = 0, must
be modified‡ to

p′(x, 0−, z, t)− ρIgη = p′(x, 0+, z, t)− ρIIgη, (3-6.3)

where η = ∆ξ · ey at interface = normal (y-direction) displacement of inter-
face

g = acceleration due to gravity
p′(x, 0−, z, t) = acoustic pressure in fluid I extrapolated to

y = 0
This results because the total pressure in, say, medium II at y = η is [po(η)+
p′(x, η, z, t)]II. Then, since η is small and (dp0/dy)II = −gρII (hydrostatic
relation), the total pressure is equal to approximately po(0) − gρIIη + p′II,
where p′II denotes the acoustic part of the pressure just above the interface
in medium II.]

The disturbance in medium II is equivalent to what would be produced
by a traveling [with trace velocity c1/(sin θI)] flexural wave moving along
the interface, so if medium II is unbounded, the ratio p̂/v̂y at the interface
(which is continuous since p̂ and v̂y are continuous) is given by the radiation
impedance of Eqs. (3-5.10) with ρc replaced by ρIIcII and cW replaced by
cI/(sin θI); that is, p̂/v̂y = ZII at y = 0, where we use the abbreviation

ZII =















ρIIcII
cos θII

if sin θI <
cI
cII

− iρIIcII
βII

if sin θI >
cI
cII

(3-6.4a)

(3-6.4b)

where

‡ F. Press and D. G. Harkrider, “Propagation of acoustic-gravity vaves in the Atmosphere,”
J. Geophys. Res. 67:3889–3908 (1962).
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cos2 θII = −β2
II = 1−

(

cII
c1

)2

sin2 θI. (3-6.5)

For the respective cases in Eqs. (4a) and (4b), cos θII and βII are understood
to be positive.

Since p̂/v̂y is continuous across the interface, ZII is also the specific acous-
tic impedance at y = 0. The analysis given previously of plane-wave re-
flection from a surface of fixed impedance is therefore applicable here. In
particular, the acoustic field variables in the region y < 0 are given by Eqs.
(3-3.3) (providing one replaces y and v̂y there by their negatives to take
into account the difference between the choices of coordinate systems). The
pressure-amplitude reflection coefficient R is identified from Eq. (3-3.4) as

RI,II =
ZII − ZI

ZII + ZI
, (3-6.6)

where, by analogy to Eqs. (4), we define ZI = ρIcI/(cos θI). This reflection
coefficient has the significance that if

p̂I = f̂ei(ω/cI)nI·x (3-6.7)

is the complex pressure amplitude of the incident wave, the corresponding
quantity for the reflected wave p̂R is Eq. (7) multiplied by RI,II with nI

replaced by nR in the exponent. The analogous expression for the complex
pressure amplitude in the second medium is of the form of a constant TI,II

times Eq. (7) with nI/cI replaced by nII/cII in the exponent if sin θI < cI/cII.
For the other possibility, when sin θI > cI/cII, the transmitted wave is of the
form [see Eqs. (3-5.6)]

p̂T = TI,IIf̂e
i(ω/cI)(sin θI)xe−(ω/cII)βIIy. (3-6.8)

In either event, v̂y = p̂/ZII and v̂x = p̂/ρIIvtr throughout the second medium.
Also, the continuity of the pressure at the interface requires that the trans-
mission coefficient TI,II be 1 + RI,II or 2ZII/(ZII + ZI).

In the constant-frequency case, the energy per unit time and per unit area
of interface (averaged over an integral number of half cycles) carried in toward
the interface by the incident wave and carried out from the interface by the
reflected and transmitted waves can be identified, respectively, as

(

dP

dA

)

av,I

= 1
2 |f̂ |

2/Z1

(

dP

dA

)

av,R

= |RI,II|2
(

dP

dA

)

av,I
(

dP

dA

)

av,T

=

(

dP

dA

)

av,I

−
(

dP

dA

)

av,R

(3-6.9)

These follow from such considerations as those giving Eqs. (3-3.5) and (3-3.6);
the latter is in accord with the conservation of acoustic energy.
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Water-Air Interfaces

A plane sound wave incident from a medium with a higher sound speed onto
an interface separating it from a medium with lower sound speed is reflected
as if the interface had a real specific acoustic impedance given by Eqs. (4a)
and (5). If cII ≪ cI, it is a good approximation to replace cos θII in Eq. (4a)
by 1, giving ZII ≃ ρIIcII independent of angle of incidence θI, so the surface is
locally reacting. If, in addition, ρIIcII ≪ ρIcI, then, insofar as the prediction
of the reflected wave is concerned, it is also a good approximation to consider
ZII as identically zero, so the surface is idealized as a pressure-release surface.

The above considerations apply in particular to underwater sound reflec-
tion from the water’s surface (a water-air interface), since (cair/cwater)

2 ≃ 0.05
and (ρc)air/(ρc)water ≃ 0.0003.

Transient Reflection

If the incident waveform is not of constant frequency but is described by
f(t−nI · x/cI) for the acoustic pressure, then providing cI > cII or θI is less
than the critical angle sin−1(cI/cII), the reflected and transmitted waveforms
are similar to that of the incident waveform:

pR = RI,IIf

(

t− nR ·
x

cI

)

(3-6.10a)

pT = TI,IIf

(

t− nII ·
x

cII

)

(3-6.10b)

These follow from the inverse Fourier transforms of the previously described
expressions for p̂R and p̂T for the constant-frequency case when one recog-
nizes, for the circumstances just described, that the reflection and transmis-
sion coefficients are real and frequency-independent. (Note that |RI,II| ≤ 1
but |TI,II| can be larger than 1.)

However, if the second medium should have a sound speed greater than the
first, the reflected waveform will no longer be a constant times the incident
waveform when θI is greater than the critical angle, i.e., the θI giving a θII
equal to π/2 from Snell’s law, although one still has pR = g(t − nR · x/cI),
where the Fourier transform of g(t) is related† to that of f(t) by ĝ(ω) =

RI,IIf̂(ω) for positive real ω. In this circumstance, Eqs. (4b) and (6) require
that RI,II have a magnitude equal to 1 but be complex, so it may be written
(for ω > 0) as exp (−iφI,II) where

† A. B. Arons and D. R. Yennie, “Phase distortion of acoustic pulses obliquely reflected
from a medium of higher sdound velocity,” J. Acoust. Soc. Am.d 22:231–237 (1950); B. F.
Cron and A. H. Nuttall, “Phase distortion of a pulse caused by bottom reflection,” ibid.
37:486–492 (1965).
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φI,II = 2 tan−1 ρ1c1/(cos θI)

ρIIcII/βII
(3-6.11)

is an angle between 0 and π. Since g(t) should be a real function, ĝ(−ω)
equals ĝ(ω)∗, and since f̂(ω) also has the same property, RI,II for negative
real ω should be the complex conjugate of that for ω > 0. The Fourier integral
relations (2-8.1) and (2-8.2) accordingly give

g(t) = (cosφI,II)f(t) + (sinφI,II)fH(t) (3-6.12)

where

fH(t) = − 1

π
Re

(∫ ∞

o

e−iωt i

∫ ∞

−∞

eiωt
′

f(t′) dt′ dω

)

The order of integration in the above can be interchanged after insertion of a
factor e−ωτ [similar to what is done in Eq. (2-8.5)], with the understanding
that one should eventually take the limit as τ → 0. In this manner, one finds

fH(t) = lim
τ→0

[

1

π

∫ ∞

−∞

f(t′)
t′ − t

τ2 + (t′ − t)2
dt′
]

.

If τ is extremely small and f(t′) is continuous, then, since the fractional
quantity is odd in t′ − t, the contribution to the integral over t′ from t− ε to
t + ε is negligible (ε being taken as, say, some large but fixed integer times
τ). Outside this range of t′, the fractional quantity is very nearly 1/(t′ − t),
so the limit above is equivalent to

fH(t) =
1

π
Pr

∫ ∞

−∞

[

f(t′)

t′ − t

]

dt′, (3-6.13)

where Pr (denoting principal value) is an abbreviation for what is implied by
the above discussion; i.e., one performs the integration omitting an interval
of width 2ε centered at the singularity and takes the limit as ε → 0. In the
mathematical-physics literature fH(t) is called the Hilbert transform‡ of f(t).
Three examples are shown in Fig. 3-12.

An apparent paradox presented by Eqs. (12) and (13) is that fH(t) and
therefore g(t) may be nonzero at times arbitrarily long before f(t) first be-
comes nonzero. Thus, a person in the first medium hears a portion (precursor)
of the echo before he hears the direct wave. This, however, is not a violation of
causality, since the solution just described is for a steady-state circumstance
for which the incident wave has been impinging on the interface (although, at
large negative values of x) at all times in the remote past. Since the solution
described requires, in particular, that cII be greater than cI, it is possible for

‡ P. M. Morse and H. Feshbach, Methods of Theoretical Physics, vol. 1, McGraw-Hill, New
York, 1953, p. 372.
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Figure 3-12 Three simple pulse shapes and their Hilbert transforms. [D. Sachs and A.
Silbiger, J. Acoust. Soc. Am., 49:835 (1971).]

acoustic energy to arrive earlier at the listener location via a faster path that
takes advantage of the higher sound speed in the second medium.

3-7 MULTILAYER TRANSMISSION AND

REFLECTION

The foregoing analysis can be extended to plane-wave transmission through
any number of fluid layers of different density and sound speed† (see Fig. 3-13).
The trace-velocity matching principle applies for each layer, so p̂ throughout
has a common x-dependent factor of exp[i(ω/cI)(sin θI)x]. In any given layer,
the disturbance is a superposition of two obliquely propagating plane waves
if c < cI/(sin θI) or of exponentially growing and decaying (with y) inho-
mogeneous plane waves if c > cI/(sin θI). The internal boundary conditions,
continuity of p̂ and v̂y, allow one to define a y-dependent specific impedance
Zlocal(y) as the local ratio of p̂ to v̂y, which is continuous across interfaces.

† Rayleigh, The Theory of Sound, vol. 2, sec. 271; R. W. Boyle and W. F. Rawlinson,
“Passage of sound through contiguous media,” Trans. R. Soc. Can. (3)22:55–68 (1928).
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Within each layer, one can define an intrinsic specific impedance (ZI, ZII for
the first and second layers, etc.) such that, say, ZII is given by Eqs. (3-6.4)
with ZIII, ZIV defined analogously.

Figure 3-13 Plane-wave transmission through a sequence of nominally parallel fluid layers
with differing densities and sound speeds; yN−1,N gives the y coordinate of the interface
between the (N − 1)th and Nth layers.

A technique† for analyzing such multilayer transmission-reflection prob-
lems is based on an intermediate determination of Zlocal at the interface yI,II
between the first and second layers. Once Zlocal(yI,II) is determined, the re-
flection coefficient is given [by analogy with Eq. (3-6.6)] by

R =
Zlocal(yI,II)− ZI

Zlocal(yI,II) + ZI
, (3-7.1)

and the fractions of incident energy reflected and transmitted are |R|2 and
1−|R|2. [The latter follows from Eq. (3-3.6) and from the relation ∇·Iav = 0.
Since translational symmetry transverse to the y axis requires ∂Ix,av/∂x = 0,
the relation ∇· Iav = 0 implies that (pvy)av is independent of y. The average
energy transmitted past the I,II interface per unit time and area transverse
to the y axis equals that transmitted into the last layer.]

To determine Zlocal(yI,II), one begins with the “known” local specific
impedance at the last (largest y) interface yN−1,N . This may be some speci-
fied specific acoustic impedance of a surface, or if the last layer is idealized as
unbounded, it is the intrinsic specific impedance ZN . To find the local specific
impedance at the interface between the (N − 2)th and (N − 1)th layers, one
makes use of an impedance-translation theorem (proved below), which states

† Brekhovskikh, Waves in Layered Media, pp. 56–61.
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that, within any homogeneous layer, with intrinsic specific impedance Zint,
the local specific impedance Zlocal(y − L) at y − L is related to that at y by

Zlocal(y − L) = Zint
Zlocal(y) cosKL− iZint sinKL

Zint cosKL− iZlocal(y) sinKL
, (3-7.2)

which can be considered a generalization of Eq. (3-4.14). Here we abbreviate

K =
ωρ

Zint
=
ω

c

{

cos θ c > cI/(sin θI)

iβ c < cI/(sin θI)
(3-7.3)

where ρ and c are the ambient density and sound speed of the layer and cos θ
and β are determined as in Eqs. (3-6.5). (Recall that for any φ, cos iφ and
sin iφ are cosh φ and i sinhφ, respectively.)

To prove this impedance-translation theorem, note that, within such a
layer, the general solution of the linear acoustic equations, given e−iωt time
dependence and ei(ω/vtr)x dependence [with vtr = c1/(sin θ1)] on coordinate
x, is

{

p̂
Zintv̂y

}

= ei(ω/vtr)x(AeiKy ±Be−iKy),

where A and B are constants. The quantity p̂/v̂y at y or y − L gives
Zlocal(y) or Zlocal(y − L), respectively. Solution of the first such equation
for Be−iKy/AeiKy and substitution of that ratio into the second equation
yields Eq. (2).

The impedance-translation equation, plus the continuity of Zlocal across
layer interfaces, allows one to successively work back, layer by layer, from
Zint(yN−1,N ) to Zint(yI,II). As an illustration, consider three layers, one inter-
vening layer of thickness L sandwiched between two semi-infinite half spaces
(cI, ρI) and (cIII, ρIII). As long as cIII < cI/ sin θI), there will be a transmit-
ted plane wave in region III propagating (in accord with the trace-velocity
matching principle and Snell’s law) at an angle θIII with respect to the y axis,
where (sin θIII)/cIII is (sin θI)/cI. The local specific impedance at the +y side
of layer II (and throughout layer III) is ZIII. The local specific impedance at
the (I,II) interface results from Eq. (2) with Zlocal(y) and Zint identified as
ZIII and ZII, respectively, so the reflection coefficient becomes

R =
(ZIIZIII − ZIZII) cosKIIL− i(Z2

II − ZIZIII) sinKIIL

(ZIIZIII + ZIZII) cosKIIL− i(Z2
II + ZIZIII) sinKIIL

. (3-7.4)

If ZII is real (cII < cI/ sin θI), this reflection coefficient [as well as the lo-
cal specific impedance Zlocal(yI,II)] is periodic in layer thickness L with a
repetition length π/KII. It is also periodic in frequency.

One of the implications of Eq. (4) is that |R| = 1 whenever ZIII is purely
imaginary [cIII > c1/(sin θ1)], regardless of the properties of the intervening
layer. In general, |R| = 1 if the sound speed in the last layer exceeds the
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trace velocity, for any number of intervening layers, provided the last layer
is idealized as a half space (unbounded at large y). This must be so because
p̂ and v̂y are 90◦ out of phase in the last layer; the time average of power
transmitted is zero.

Another implication of the above expression is that R may be identically
zero under circumstances other than the trivial one where ZI = ZII = ZIII.
For example, if the angle of incidence and the layer properties are such that
Z2
II = ZIZIII, then R will be zero if KIIL is an odd multiple of π/2 (such that

its cosine is zero). A special case would be θI = 0 (in which case the analysis
also applies to longitudinal elastic-wave transmission through solid slabs).
Then, if one wants perfect transmission without reflection into medium III
from a source in medium I, a transmission plate† made of buffer material

is placed between the two substances; this buffer material should have (or
approximate) the property

ρIIcII = (ρIcIρIIIcIII)
1/2. (3-7.5)

The thickness of the layer would be selected so that (ω/cII)L = π/2 or, for
fixed frequency f = ω/2π, so that L = 1

4 (cII/f) is a quarter of the sound
wavelength at that frequency in the buffer material.

If the properties of medium III are the same as those of medium I (so one
has a layer of foreign material in an otherwise homogeneous medium), Eq.
(4) reduces (with ZIII = ZI and after dividing numerator and denominator
by ZIIZI) to

R =
−i(r − r−1) sinKIIL

2 cosKIIL− i(r + r−1) sinKIIL
, (3-7.6)

with the abbreviation r = ZII/ZI. The fraction of incident energy transmitted
is 1 − |R|2, and since both the incident wave and the transmitted wave (on
the far side of the intervening layer) are plane waves propagating in the same
direction through the same medium, the mean squared pressures have the
ratio 1− |R|2. After some algebra one therefore obtains

(p2T )av
(p2I )av

=
1

1 + 1
4 (r − r−1)2 sin2 KIIL

. (3-7.7)

Because (r − r−1) sinKIIL is real regardless of the sign of Z2
II, the above

relation holds (recall that i4 = 1) also when ZII is imaginary. Note that
(p2T )av/(p

2
I )av ≤ 1 and that it equals 1 (perfect transmission) when KIIL is a

multiple of π.

† P. J. Ernst, “Ultrasonic lenses and transmission plates,” J. Sci. Instrum. 22:238–243
(1945).
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3-8 TRANSMISSION THROUGH THIN SOLID

SLABS, PLATES, AND BLANKETS

Transmission Loss

For circumstances, like those described in the last part of the preceding sec-
tion, when a sound wave is incident on an intervening slab of material (not
necessarily a fluid layer), one defines a sound-power transmission coefficient

τ as the fraction of the incident sound power transmitted to the far side of
the slab. If the incident wave is a plane wave, and if the slab (or partition)
has properties unchanging with displacements parallel to its faces, the trans-
mitted wave will be a plane wave propagating in the same direction as the
incident wave. One can accordingly argue, as in the discussion preceding Eq.
(3-7.7), that the fraction of incident power transmitted is the same as the
quotient of the mean squares of transmitted and incident acoustic pressures.
Consequently, the plane-wave sound-power transmission coefficient τ(θI, ω)
(corresponding to angle of incidence θI and angular frequency ω) for such
circumstances becomes (p2T )av/(p

2
I )av. The transmission loss RTL (in deci-

bels) is defined in general in terms of the transmitted fraction τ of incident
power as 10 log (1/τ) and thus, for the plane-wave constant-frequency case,
the plane-wave transmission loss equals

RTL = Lp,I − Lp,T , (3-8.1)

where Lp,I and Lp,T are the sound-pressure levels for the incident and trans-
mitted plane waves.

Slab Specific Impedance

The analysis of transmission loss simplifies for the case (see Fig. 3-14) of
an intervening slab, i.e., a layer of different material, whose properties are
such that vfront = vback, where vfront denotes the normal component of the
fluid velocity (in the direction from front toward back) at the front of the
slab and vback denotes the analogous quantity on the opposite side of the
slab. (Which side one wishes to designate as the front is arbitrary, but in a
subsequent discussion we take the side from which the incident wave is coming
as the front side.) The assumption that the two velocities are nearly equal
is appropriate if the time for an acoustic disturbance to propagate across
the slab is substantially less than one-quarter of a wave period and if the
ratio of the characteristic impedance of the material in the slab to the local
specific acoustic impedance at the back of the slab is large compared to 2π
times the ratio of the thickness of the slab to a wavelength. For solid walls
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of typical thicknesses, with air on both sides, such is invariably the case at
audible frequencies.

Figure 3-14 Sound transmission through a thin slab. Here vfront is the fluid-velocity
component toward the slab at a small distance in front of slab. The model assumes that
vfront = vback , but corresponding pressures are not necessarily equal.

If the slab is porous, so that there is a net flow of fluid through it, the trans-
verse velocity of the solid material in the slab may not be the same as vfront
or vback, but vfront = vback nevertheless may be a good approximation if the
pore volume per unit slab area is substantially less than 1

4 wavelength. (This
follows from conservation-of-mass considerations and from the assumption
that density fluctuations of fluid within the pores are not markedly differ-
ent from those on either side of the slab. If there is flow through the pores,
then, on a microscopic scale, the fluid velocity just at the surface will vary
substantially over distances comparable to pore sizes and pore spacings, but
such variations smooth out for regions only slightly removed from the slab
surface. The quantities vfront and vback can be considered as local averages
over small areas parallel to the slab faces.)

Given this equivalence of fluid velocities on opposite sides of the slab, one
can define a slab specific impedance Zsl(vtr, ω) such that

p̂front − p̂back = Zsl(vtr, ω)v̂front = Zsl(vtr, ω)v̂back. (3-8.2)

Here p̂front and p̂back represent the complex acoustic-pressure amplitudes at
the front and back sides of the slab; vtr is the common, parallel to slab
face, trace velocity of the acoustic disturbances on the two sides of the
slab, each appropriate complex acoustic amplitude having the common factor
exp(i ωx/vtr) for its x dependence. An additional assumption implied in this
definition is that the slab’s dynamics are governed by linear equations.
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Dividing both sides of Eq. (2) by v̂front = v̂back and making use of the
definition of local specific impedance as ratio of p̂ to v̂y yields

Zlocal(yfront) = Zlocal(yback) + Zsl. (3-8.3)

(This is analogous to the result that the electric impedance of two circuit
elements in series is the sum of the impedances of the two elements.)

If the incident acoustic wave impinges on the slab from the front side, the
pressure-amplitude reflection coefficient R is given by Eq. (3-7.1) with yI,II
identified as yfront; also, Eq. (3-3.3b) requires that v̂front be (p̂1/Z1)(1 − R).
The relation (3) therefore yields

v̂front =
2 p̂I

2ZI + Zsl
. (3-8.4)

Here p̂I denotes the complex amplitude of the incident wave’s acoustic pres-
sure at the front of the slab; ZI is pc/(cos θI).

Since pressure and the y component of fluid velocity on the back side of
the slab are related as for a plane wave propagating at angle θI with they
axis, at the back side of the slab one has p̂T = ZIv̂back. Thus, Eq. (4) leads
to 2Z1/(2ZI + Zsl) for the pressure-amplitude transmission coefficient. The
square of the magnitude of this is the plane-wave sound-power transmission
coefficient, so the transmission loss, from Eq. (1), becomes

RTL = 10 log

(

∣

∣

∣

∣

1 +
1

2

Zs1

ρc
cos θI

∣

∣

∣

∣

2
)

, (3-8.5)

with the insertion of (cos θI)/ρc for 1/ZI.
The energy theorem for the circumstances just described can be derived

with appropriate identifications from Eqs. (3-3.5) and (3-3.6), i.e.,
(

dP

dA

)

av,T

=

(

dP

dA

)

av,I

−
(

dP

dA

)

av,R

−
(

dP

dA

)

av,d

, (3-8.6)

where
(

dP

dA

)

av,T

= 1
2 |v̂front|

2 Re {Zlocal(yback}) (3-8.7a)

(

dP

dA

)

av,d

= 1
2 |v̂front|

2 ReZsl (3-8.7b)

represent the power transmitted per unit face area and the rate at which en-
ergy is dissipated per unit area within the slab. The latter follows because the
average rate at which work is done on the slab is 1

2 Re [(p̂front − p̂back)v̂
∗
front].

If Zsl is purely imaginary, there is no energy dissipation and Eq. (6) reverts
to a strict conservation-of-energy statement.
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Oblique-Incidence Mass Law

A simple model† of a slab or a plate useful in the discussion and interpretation
of acoustic transmission phenomena is the perfectly limp plate, whose specific
impedance comes solely from the inertia of its mass. The model is such that,
if mpl is the plate mass per unit area, then, from Newton’s second law,

mpl =
∂vpl
∂t

= pfront − pback. (3-8.8)

Also, given that the plate is not porous, the boundary condition (3-1.2)
requires that v̂pl = v̂front = v̂back, so from Eq. (2) and the prescription
∂/∂t → −iω one identifies Zsl = −iωmpl. The transmission loss of Eq. (5)
accordingly becomes (limp-wall mass-law transmission loss)‡

RTL = 10 log

[

1 +

(

ωmpl

2ρc

)2

cos2 θI

]

, (3-8.9)

where we recognize 2ρc/ω as the mass per unit area of a slab of thickness
λ/π filled with fluid of density ρ.

For a slab of solid material in air for frequencies in the audible range it is
invariably true that 2πmpl/ρλ≫ 1. [For example, for a 1

2 -cm-thick aluminum
plate and a frequency of 340 Hz, one has mpl ≈ 13 kg/m2 and λ ≈ 1 m, and
(with ρ = 1.2 kg/m3) the ratio 2πmpl/ρλ is of the order of 70.] Given this
assertion and providing θI is not close to grazing incidence (so cos θI is not
too small), the 1 in the argument of the logarithm in Eq. (9) is negligible.
In this limit, doubling the plate mass mpl or frequency f increases RTL by
10 log 4 ≈ 6 dB.

The oblique-incidence mass law also follows from the expression (3-7.7) for
the sound-transmission coefficient of an intervening fluid layer in the limit
|KIIL| ≪ 1 and |ZII| ≫ |ZI|, (ρIIcII ≫ ρIcI). Then one can neglect r−1

in the expression r − r−1 and approximate sinKIIL by KIIL. Since rKIIL is
(ZII/ZI)(ωρII/ZII)L, which in turn is ω(ρIIL/ρIcI) cos θI, while ρIIL = mpl is
the slab mass per unit area, the quantity 10 times the logarithm, base 10, of
the right side of Eq. (3-7.7) in the limit described is the same as the RTL of
Eq. (9) above.

† L. Cremer, “Theory of the sound blockage of thin walls in the case of oblique incidence,”
Akust. Z. 7:81–104 (1942).
‡ I. L. Ver and C. I. Holmer, “Interaction of sound waves with solid structures,” in L. L.
Beranek (ed.), Noise and Vibration Control, McGraw-Hill, New York, 1971, pp. 270–361.
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Transmission through Euler-Bernoulli Plates

The springlike resistance of a thin plate to bending can be approximately
taken into consideration by replacing Eq. (8) by the Euler-Bernoulli plate

equation†

mpl
∂2ξpl
∂t2

= pfront − pback −Bpl

(

∂2

∂x2
+

∂2

∂z2

)2

ξpl, (3-8.10)

where ξpl is the normal displacement of the plate (positive if in y direction), so
vpl = ∂ξpl/∂t. The quantityBpl is the plate bending modulus (proportionality
factor between torque per unit length and curvature for cylindrical bending),
given, according to the theory of elasticity, for a homogeneous isotropic plate
by Eh3[12(1− ν2)]. Here E is elastic modulus, h is plate thickness, and ν is
Poisson’s ratio.

For plate vibrations excited by sound waves of angular frequency ω prop-
agating without dependence on z and with a trace velocity vtr along the x
axis, the prescription ∂/∂t → −iω, ∂/∂x → iω/vtr, ∂/∂z → 0 converts Eq.
(10) into an algebraic equation relating complex amplitudes. Consequently,
the slab specific impedance is identified, with reference to Eq. (2), as

Zsl = −iωmpl

[

1−
(

cpl
vtr

)4
]

, (3-8.11)

where cpl, abbreviated for ω1/2(Bpl/mpl)
1/4, is the same as in Eq. (3-5.8)

and represents the natural-phase velocity (so called because it is associated
with the speed of lines of constant phase) for traveling waves with straight
wavefronts of angular frequency ω on a plate. If vtr should equal cpl, one
could have a disturbance propagating along the plate without any external
influence; i.e., Eq. (10) can then be satisfied with pfront − pback = 0 but
with ξpl of the form of a constant-frequency plane traveling wave that is not
identically zero.

The oblique-incidence transmission loss for the Euler-Bernoulli plate model
is as given by Eq. (9) but with the prescription

† So called because it is based on the same general principles as the Euler-Bernoulli model of
a beam, which dates back to papers published by James Bernoulli (1705), Daniel (James’s
nephew) Bernoulli, (1741–1743, published 1751), and L. Euler (1779, 1782). The theory
of thin plates is due to S. D. Poisson, “Memoir on elastic surfaces,” 1814, “Memoir on the
equilibrium and movement of elastic bodies,” 1820; Sophie Germain, “Researches on the
theory of elastic surfaces,” 1821; and G. Kirchhoff, “On the equilibrium and the motion of
an elastic plate,” 1850. Summaries and bibliographical data for all these works are given
by I. Todhunter and K. Pearson, A History of the Theory of Elasticity and of the Strength
of Materials, vol. 1, 1866, reprinted by Dover, New York, 1960, pp. 10–13, 30–32, 50–56,
147–160, 208–276; vol. 2, pt. 2, 1893, reprinted 1960, pp. 39–48. For a modern derivation
of the thin-plate equation see, for example, C.-T. Wang, Applied Elasticity, McGraw-Hill,
1953, pp. 276–280.
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mpl → mpl

[

1−
(

cpl
vtr

)4
]

= mpl

[

1−
(

f

fc

)2

sin4 θI

]

, (3-8.12)

where, in the latter expression, vtr has been identified as c/(sin θI) and where
the variation of cpl as the square root of the frequency f has been used to
express cpl = (f/fc)

1/2c, fc being the coincidence frequency at which cpl =
c. As is described in the discussion following Eq. (3-5.8), fc should equal
c2/2πK1/2 with K equaling Bpl/mpl.

If f ≪ fc/(sin
2 θI), the factor in brackets in Eq. (12) is nearly 1; then

the transmission loss is unaffected by plate stiffness and is the same as that
predicted by the mass-law equation. However, if f = fc/(sin

2 θI) [or, equiva-
lently, if θ1 = sin−1 (fc/f)

1/2 or if vtr = cpl], the transmission loss predicted
by Eq. (9) with the substitution (12) is identically 0. It is also zero in the limit
of zero frequency. Thus, when considered as a function of frequency, the trans-
mission loss must have a maximum somewhere between 0 and fc/(sin

2 θI).
The maximum coincides with that of 2πfmpl[1 − (f/fc)

2 sin4 θI] and is ac-
cordingly at fc/(31/2 sin2 θI), that is, smaller by a factor of 1/(31/2) = 0.58
than the frequency at which perfect transmission occurs.

Internal energy losses within solids are frequently taken into account with
the replacement† of the elastic modulus E by (1 − iη)E [or, equivalently,
of Bpl by (1 − iη)Bpl in the case of a plate] in relations involving complex
amplitudes. Here η is a real quantity termed the loss factor (Table 3-2), which
can be measured for a given plate by a variety of methods‡ and which in
general varies with frequency. It should not strictly be considered a material
constant as it is strongly affected, in the case of metals, for example, by such
processes as cold rolling, heat treatment, and irradiation.† Typical values
for metals range from 10−4 (aluminum) to 10−2 (lead). A plate of laminar
construction or one covered with a viscoelastic layer has a composite loss
factor that can be estimated if one knows the dynamical properties of the
individual layers.‡

The substitution of a complex plate bending modulus (1− iη)Bpl into Eq.
(11) leads to

Zsl = ωηmpl

(

f

fc

)2

sin4 θI − iωmpl

[

1−
(

f

fc

)2

sin4 θI

]

(3-8.13)

† A. Schoch, “On the asymptotic behavior of forced plate vibrations at high frequencies,”
Akust. Z., 2: 113–128 (1937).
‡ L. Cremer, M. Heckl, and E. E. Ungar, Structure-Borne Sound, Springer-Verlag, New
York, 1973, pp. 189–205.
† C. Zener, Elasticity and Anelasticity of Metals, University of Chicago Press, Chicago,
1948, pp. 41–59, 94–95, 115–121.
‡ A review citing principal references is given by E. E. Ungar, “Damping of panels,” in
Beranek, Noise and Vibration Control, pp. 434–475.
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Table 3-2 Typical loss factors (flexural) at audio frequencies for common materials

Material Loss factor η Material Loss factor η

Aluminum 10−4 Magnesium 10−4

Brass, bronze < 10−3 Masonry blocks 5−7× 10−3

Brick 1−2× 10−2 Oak, fir 0.8−1× 10−2

Concrete: Plaster 5× 10−3

Light 1.5× 10−2 Plexiglass, Lucite 2−4× 10−2

Porous 1.5× 10−2 Plywood 1−1.3× 10−2

Dense 1−5× 10−2 Sand, dry 0.6–0.12
Copper 2× 10−3 Steel, iron 1−6× 10−4

Cork 0.13–0.17 Tin 2× 10−3

Glass 0.6−2× 10−3 Wood fiberboard 1−3× 10−2

Gypsum board 0.6−3× 10−2 Zinc 3× 10−4

Lead 0.5−2× 10−3

Source: E. E. Ungar, “Damping of panels,” in L. L. Beranek (ed.), Noise and Vibration
Control, McGraw-Hill, New York, 1971, p. 453.

for the slab specific impedance of a lossy plate. The transmission loss of Eq.
(5) derived from this when η ≪ 1 is close to that for η = 0 except in the
vicinity of the frequency fc/(sin

2 θI), where the lossless-plate theory would
predict a zero transmission loss. The modified theory gives instead

RTL = 20 log

(

1 +
1

2

ωηmpl

ρc
cos θI

)

at this frequency.

Transmission through Porous Blankets§

The simplest model of a porous slab is a blanket whose resistance to flow is
described by the specific flow resistance Rf , defined so that the transverse
fluid velocity on either side relative to the velocity vbl of the blanket is given
for steady flow by

vfront − vbl = vback − vbl =
1

Rf
(pfront − pback). (3-8.14)

This is a fluid-dynamic analog to Ohm’s law of electric resistance. For a homo-
geneous material of fixed density, Rf is proportional to the blanket thickness;

§ L. L. Beranek, “Acoustical properties of homogeneous, isotropic rigid tiles and flexible
blankets,” J. Acoust. Soc. Am. 19:556–568 (1947); R. H. Nichols, Jr., “Flow-resistance
characteristics of fibrous acoustical materials,” ibid., 19:866–871 (1947); ASTM C522-69,
Standard Method of Test for Airflow Resistance of Acoustical Materials, American Society
for Testing and Materials, Philadelphia.
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the specific flow resistance per unit thickness is the flow resistivity (Table 3-3).
The quantity Rf can be determined from a steady-flow experiment in which
the blanket is held fixed and fluid is forced to flow through it at a set rate
with the pressure measured on both sides of the blanket. The application of
Eq. (14) to situations in which vfront or vbl may be oscillating with time is
consistent with the assumption that Rf is independent of frequency.

Table 3-3 Flow resistivity of porous materials of various densities

Material Density, kg/m3 Flow resistivity, 103 N
· s/m4

Fiberglas AA 11.2 58
7.4 34

Fiberglas H-33 41.6 29
Rock wool (Johns-Manville Stonefelt, type M) 54.1 28

42.6 31
Kaowool Blanket B (Babcock and Wilcox) 50 65
Wood fiber 32.2 39
Ultralite no. 200 (Gustin Bacon Co.) 20.0 7

100.0 90
Ultrafine no. 1001 (Certain-teed) 40 30
Acoustiform-Mat Ceiling Board (Celotex) 160 70
Thermafiber insulating blanket (U. S. Gypsum) 30 3.5

Source: L. L. Beranek, J. Acoust. Soc. Am. 19:556–568 (1947); D. A. Bies, “Acousti-
cal properties of porous materials,” in L. L. Beranek (ed.), Noise and Vibration Control,
McGraw-Hill, New York, 1971, pp. 250–251.

The determination of transmission loss can be carried through with various
idealizations of how the blanket is supported. A particular case would be
that when the blanket is hanging freely. If the blanket is perfectly limp, Eq.
(8) applies but with mpl and vpl replaced by mbl and vbl, the change of
subscript implying that we are concerned with a blanket. Equations (14) and
(8) together then give an equation of the form of Eq. (2) in which the slab
specific impedance for the blanket is consequently identified as

Zsl =

[ −1

iωmbl
+

1

Rf

]−1

. (3-8.15)

This, in terms of an electric-circuit analogy, consists of impedances −iωmbl

and Rf in parallel. The expression for transmission loss, resulting from a
substitution of Eq. (15) into Eq. (5), is cumbersome, but if ω ≪ Rf/mbl, it
reduces to the mass-law transmission loss. In the other limit of ω ≫ Rf/mbl,
it reduces to the transmission loss for an immobile blanket, i.e.,

RTL = 10 log

(

∣

∣

∣

∣

1 +
1

2

Rf
ρc

cos θI

∣

∣

∣

∣

2
)

, (3-8.16)
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which is independent of frequency.

3-9 PROBLEMS

3-1 A solid sphere of radius a is rotating with uniform angular velocity ω
about an axle displaced a slight distance b from its center, where b ≪ a
and b ≪ c/ω. Here c is the sound speed in the surrounding fluid. Let
the rotational axis lie along the z axis and let the sphere’s center lie in
the z = 0 plane, so that with an appropriate choice of time origin the
sphere’s center at time t is at xC = b cos ωt, yC = b sin ωt. In terms
of spherical coordinates (r, θ, φ), where z = r cos θ, x = r sin θ cosφ,
what boundary condition would be imposed on the acoustic fluid velocity
on a sphere of radius a centered at the origin to enable one to predict the
resulting acoustic field approximately?

3-2 A broadband plane wave at an angle of incidence of 45◦ and propagating
through air with sound speed 340 m/s is reflected from a rigid surface.
Over the octave band centered at 500 Hz the incident sound has nearly
constant spectral density, and the sound level corresponding to this band
for the incident wave alone is 80 dB (re 20µPa). Determine and plot as a
function of distance from the wall the octave-band sound-pressure level for
the same band that results because of the sound reflection. Beyond what
minimum distance can one assume that the octave-band level is within
±0.5 dB of 83 dB? How does this answer change if one considers instead
an octave band centered at 250 or 1000 Hz?

3-3 An interface between two fluids nominally lies on the y = 0 plane. In the
absence of an acoustic disturbance, the fluid in the region y > 0 is moving
with a velocity vo in the x direction while that in the region y < 0 is
motionless. The sound speeds and ambient densities in the regions y < 0
and y > 0 are cI, pI and cII, pII, respectively. A plane wave of angular
frequency ω is incident from the y < 0 side of the interface with a propa-
gation direction characterized by a unit vector nI = ex sin θI + ey cos θI.
Show that one of the appropriate linear acoustic boundary conditions at
the interface is

(vy)
(−)
o =

(vy)
(+)
o

1− (vo/cI) sin θI
,

where (vy)
(−,+)
o denote the y components of the acoustic fluid velocity on

the two sides of the interface.
3-4 The acoustic pressure (incident wave plus reflected wave) just outside a

specimen of sound-absorbing material (interface coinciding with y = 0
plane) when an incident wave of frequency f = ω/2π is propagating toward
it at an angle of incidence of 45◦ is
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p = A cos

[

ω

(

t− x− y

21/2c

)]

− 0.5A sin

[

ω

(

t− x+ y

21/2c

)]

,

where A is the amplitude of the incident wave and y is the distance from
the interface. What is the specific acoustic impedance of this interface in
units of ρc? If the material is locally reacting, what will the absorption
coefficient for reflection with the same frequency at normal incidence be?

3-5 A particular type of acoustic tile is locally reacting and for a frequency of
200 Hz has a normal-incidence specific impedance of 1000+i2000 kg/(m2s).
A plane wave in air of 200-Hz sound with a sound-pressure level of 70 dB
in the absence of reflection is incident on the tile at an angle of θI .

(a) How close must θI be to grazing incidence for the resulting sound-
pressure level just at the surface of the tile to be less than 67 dB?

(b) Determine and plot the absorption coefficient as a function of θI .
3-6 Suppose that one knew at the outset that a particular interface was lo-

cally reacting and had determined, for a given frequency, the absorption
coefficient versus angle of incidence θI . Would it be possible to determine
the specific acoustic impedance of the surface from these data? If so, give
instructions and a numerical example for a possible data-analysis scheme.
[F. V. Hunt, J. Acoust. Soc. Am. 10:216–217 (1939); L. L. Beranek, ibid.,
12: 14–23 (1940).]

3-7 A plane wave is incident at an angle of incidence θI on a reflecting surface
of unknown specific acoustic impedance. The net acoustic pressure at a
point just outside the surface is measured and found to be B cos(ωt−ψ);
at the same point in the absence of reflection it would be A cosωt. In
terms of ρ, c, A, B, ω, θI , and ψ, determine an expression for the specific
acoustic impedance of the surface. [U. Ingard and R. H. Bolt, J. Acoust.

Soc. Am. 23:509–516 (1951).]
3-8 A long circular duct (length idealized as infinite) of radius a whose axis

coincides with the x axis is filled with fluid of ambient density ρ and
sound speed c. At x = 0 the duct has stretched across it a thin mem-
brane. The dynamics of the membrane are such that in circumstances of
interest it can be modeled as a thin rigid piston of effective mass meff

whose displacement xp (equal to the membrane’s displacement averaged
over the cross-sectional area) is resisted by a force proportional to xp, the
proportionality factor (spring constant) being keff . Thus, the membrane’s
displacement satisfies the differential equation

meff ẍp + keffxp = πa2(pfront − pback).

If a plane wave of angular frequency ω is incident on the membrane from
the −x side, what fraction of the incident power will be transmitted to the
air on the +x side of the membrane?

3-9 The membrane of Prob. 3-8 is displaced a distance xp = x0p and released
from rest at time t = 0. Before that time there is no acoustic disturbance in
the tube. Given the idealization that the only cause of vibrational-energy
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loss of the membrane is the radiation of sound, determine xp as a function
of time. What is the net acoustic energy radiated by the membrane in the
+x direction in the limit of large t? Under what circumstances will the
pressure variation be nonoscillatory?

3-10 A piston at one end of a tube (cross-sectional area 0.01 m2) whose length is
exactly one-fourth wavelength at a frequency of 1000 Hz is oscillating with
a displacement amplitude of 0.0001 m and with a frequency 1000Hz+∆f ,
where ∆f is much smaller than 1000 Hz. The apparent specific impedance
at the other end of the tube is ρc(0.02− i.006) where ρ = 1.2 kg/m3 and
c = 340 m/s. For what value of ∆f is the average acoustic power generated
by the oscillating piston a maximum? What is the quality factor Q for the
resonance?

3-11 Two fluids with sound speeds and densities (cI, pI) and (cII, pII), respec-
tively, are separated by a plane interface. In one experiment, a plane wave
at angle of incidence θI (less than the critical angle) is incident on the in-
terface from the first fluid and a plane wave propagating at angle θII with
the interface normal is generated in the second fluid, while in a second ex-
periment a plane wave is incident on the interface from the second fluid at
an angle of incidence θII. Prove that the fractions of incident power trans-
mitted are the same for the two experiments and the fractions of incident
power reflected are also the same.

3-12 A plastic transmission plate is to be designed to allow perfect transmis-
sion (without reflection) of normal-incidence plane waves from water (ρ =
1000 kg/m3, c = 1500m/s) into steel (ρ = 7700 kg/m3, c = 6100m/s).
The frequency of interest is 20,000 Hz, and the available plastics all have
a density of 1500 kg/m3. What should the sound speed in the plastic and
the plate’s thickness be? (A minimal thickness is desired.) Suppose the
same plate is used for transmission of the same frequency, also at normal
incidence, from steel into water. What fraction of the incident power will
be transmitted?

3-13 If a fluid occupying the region y > 0 is bounded by a locally reacting
surface of finite specific impedance, it is sometimes possible to have an
acoustic disturbance (surface wave) with an acoustic pressure of the form

p = Re
{

Pe−αyeikxe−iωt
}

,

where, for a given real angular frequency ω, the quantities P, α, and k
are complex constants, the real parts of α and k being positive and P
being arbitrary but nonzero. As an example, take Z = ρc(100 + i200)
and determine expressions for α and k. In terms of P, x, and y, what
are the time-averaged y and x components of the acoustic intensity in the
fluid? What is the time-averaged energy loss per unit surface area and per
unit time of the surface wave? How do the answers change if the specific
impedance is Z = ρc(100− i200)?
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3-14 A porous blanket of mass per unit area high enough not to move under
the influence of acoustic disturbances of interest is suspended a distance
L in front of a flat rigid wall. The flow resistance of the blanket is Rf .
A plane wave of angular frequency ω (wave number k = ω/c) is incident
normally on the blanket. Determine an expression for the specific acoustic
impedance on a surface just in front of the blanket. What fraction of the
incident power is absorbed? For given k and Rf , what choice of L gives
maximum absorption? What would the absorption coefficient be in the
latter case?

3-15 A piston at the x = 0 end of a tube of length L is set into motion at
time t = 0 with a velocity Vo for 0 < t < L/c, with a velocity −Vo for
L/c < t < 2L/c, with a velocity Vo for 2L/c < t < 3L/c, with a velocity
−Vo for 3L/c < t < 4L/c, etc. The far end of the tube is presumed
rigid, and loss mechanisms within the tube are of negligible significance.
Determine and sketch the acoustic pressure at the piston face as a function
of t for t up to 10L/c. Also determine and sketch the instantaneous acoustic
power output of the piston over the same interval of time. How much
acoustic energy is in the tube by time 10L/c?

3-16 For the idealized model (no viscosity) discussed in the text for reflection
of obliquely incident plane waves at an interface between two fluids, is
the tangential component of acoustic fluid velocity continuous across the
interface? Is the ambient density times tangential acoustic fluid velocity
continuous? Is the velocity potential continuous?

3-17 Following the Alaskan earthquake of March 28, 1964, Rayleigh waves trav-
eling at a velocity of the order of 10 times the speed of sound in air passed
across the United States. At Boulder, Colorado, the resulting infrasonic
pressure oscillation near the ground was at an amplitude of 2Pa and a pe-
riod of 25 s. Estimate the amplitude of the transverse velocity of the ground
motion. What was the time-averaged intensity of the resulting acoustic
wave? Assuming that all the radiated energy propagated to ionospheric
heights without reflection or refraction, what would the fluid-velocity am-
plitude have been at an altitude where the ambient density is 10−8 that
at the earth’s surface? [R. K. Cook, “Radiation of sound by earthquakes,”
pap. K19 in D. E. Commins (ed.), 5e Congr. Int. Acoust., G. Thone, Liège,
1965, vol. 1b.]

3-18 A sheet of porous material is suspended in air at a distance of 1
4 -wavelength

in front of a rigid wall. For the frequency of interest, the mass of the sheet
is high enough not to move significantly under the influence of a sound
wave. When a constant-frequency plane wave is normally incident on the
sheet, a microphone just in front of it registers an acoustic pressure with a
rms amplitude of 0.3 Pa, while a microphone behind it at the wall surface
registers a rms amplitude of 0.2 Pa. What is the specific flow resistance of
the sheet? What fraction of the incident sound power is absorbed? What
would the transmission loss of the same sheet be if the wall were not
present?
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3-19 Sound waves in air are incident at an angle of 45◦ on a 0.5-cm-thick sheet
of steel.
(a) At what frequency would you expect perfect transmission to occur
(with the neglect of internal losses)?
(b) At what lower frequency does the transmission loss have a maximum?
(c) At what frequency above that of part (a) does the transmission loss
first exceed that of part (b)?
(d) Discuss the general dependence of the ratio of the frequencies of parts
(c) and (b) on the elastic modulus E and Poisson’s ratio of the material in
the plate, the thickness of the plate, the angle of incidence, and the mass
per unit volume of the material in the plate. (Use the thin-plate model for
the sheet.)

3-20 It is planned to construct a sound barrier by suspending two identical lead
sheets at a distance d apart. Assuming that all the sound arrives at normal
incidence, is there some optimal nonzero choice for d (in terms of sound
wavelengths) that will give a maximum transmission loss? If so, by how
many decibels would the resulting transmission loss exceed that of a single
sheet of twice the mass per unit area?

3-21 A subsonic flexural wave with phase speed c/3 and angular frequency ω
is propagating along the surface of a plate immersed in a fluid of ambient
density ρ. Discuss the acoustically induced trajectories of fluid particles
moving with the local fluid velocity, nominally located at a distance h from
the plate. Are they circles, ellipses, or straight lines? When a given particle
is at a point on its trajectory that is closest to the plate surface, what is
the phase of the plate’s transverse displacement at the nearest point on
the plate?

3-22 A plane wave of angular frequency ω is incident normally on a slab of
foreign material (assumed lossless) of width d. Let pI and cI denote ambient
density and sound speed of the material on both sides of the slab and let
ρII and cII denote the analogous quantities for the slab itself.

(a) Let R̂1 be the complex amplitude of the reflected pressure wave just
at the near surface of the slab and let T̂III be the complex amplitude of the
transmitted pressure wave just at the far surface of the slab; show that

R̂I

T̂III
=
i

2

[

(ρc)I
(ρc)II

− (ρc)II
(ρ)c)I

]

sin
ωd

cII
.

(b) Suppose two identical transducers (which generate and receive
sound) are placed on opposite sides of the slab at distances L and L+∆L,
respectively, from the nearer side of the slab and are caused to oscillate
in phase but with different amplitudes for a short time less than 2L/cII
but larger than several 2π/ω. The net received plane wave at the farther
transducer is found to have negligible amplitude throughout most of its
time of reception for some choice of ∆L and for some ratio B/A of the two
amplitudes of the incident pressure pulses. How are B/A and ∆L related
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to ω, d, and the acoustical properties of the two materials? Could one de-
termine cII and ρII from such an experiment? [H. J. McSkimin, J. Acoust.

Soc. Am. 23:429–434 (1951).]
3-23 In Prob. 3-22, suppose that Euler’s equation of motion does not hold within

the slab proper; instead, for waves going in the +x and −x directions,
suppose that the complex amplitude v̂x of fluid velocity is related to the
corresponding amplitude σ̂xx of the normal component of stress by

ZII(ω)v̂x = ∓σ̂xx,

where ZII(ω) is some complex number depending on frequency. Suppose
that σ̂xx varies with distance x through the slab as

σ̂xx = AeikIIx +Be−ikIIx,

where kII(ω) is another complex number, the two terms here corresponding
to waves traveling in the +x and −x direction, respectively. Take σ̂xx = −p̂
(Newton’s third law) to hold at the two faces of the slab and discuss how
the experiment described above should be modified and how the results
should be interpreted in order to obtain information concerning ZII and
kII. Is it appropriate to assume that ZII = ρIIω/kII?

3-24 A sonic boom with acoustic-pressure waveform given by f(t − nI · x/cI),
where f(t) is as sketched in Prob. 1-29, is incident from air onto an air-
water interface at an angle of incidence of 45◦. Discuss the general char-
acteristics of the signature of the pressure signal received at a depth h
below the interface. Neglect viscosity and nonlinear effects. [R. K. Cook,
J. Acoust. Soc. Am., 47:1430–1436 (1970); J. C. Cook, T. Goforth, and R.
K. Cook, ibid., 51:729–741 (1972).]

3-25 Determine the natural frequencies and the corresponding eigenfunctions
describing the x dependence of acoustic pressure for a narrow tube ex-
tending from x = 0 to x = L with both ends open. Take the boundary
condition at each open end to be p = 0.

3-26 A piston at the x = 0 end of a tube (cross-sectional area A) of length L is
oscillating with a velocity amplitude Vo. The specific acoustic impedance
at the other end (x = L) is ερc, where ε is a small positive real number
much less than 1. Give approximate expressions for the lowest resonance
frequency, the Q of this resonance, and the peak time-averaged acoustic
power output of the piston for frequencies in the vicinity of this resonance.

3-27 A stretched membrane nominally lies in the xz plane and is surrounded
on both sides by a fluid of ambient density ρ and sound speed c. The
flexural vibrations of the membrane are governed by the partial differential
equation

σ
∂2η

∂t2
− T

(

∂2η

∂x2
+
∂2η

∂z2

)

= p(x, 0−, z, t)− p(x, 0+, z, t),
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where σ = mass per unit area of membrane
T = tension per unit length to which the membrane is stretched
η = transverse displacement of membrane in +y direction

The two pressures correspond to the y < 0 and y > 0 sides. It is here
assumed that (T/σ)1/2 ≪ c. Suppose one has a sinusoidal wave

η = A cos

[

ω

(

t− x

cW

)]

traveling in the x direction. What is the speed cW in terms of ω, σ, T, ρ,
and c?

3-28 A plane wave is incident on a continuously stratified medium for which
c and ρ are functions of y; the acoustic pressure is of the form p =
Re{p̂(y)e−iω(t−x/vtr)}, and vy is given by an analogous expression, where
vtr is some given trace velocity. Show that the local specific acoustic
impedance Zlocal(y) = p̂(y)/v̂y(y) satisfies the differential equation

−dZlocal

dy
= −iωρ+ iω

ρ
(c−2 − v−2

tr )Z2
local.

Discuss how, with appropriate approximations, one can derive the limp-
wall oblique-incidence mass-law transmission loss from this equation.





CHAPTER FOUR

RADIATION FROM VIBRATING
BODIES

Attention in the first few sections of the present chapter is directed toward
models of sound generation and propagation for which the resulting phenom-
ena are more conveniently described in terms of spherical coordinates than
cartesian coordinates. We begin with the fundamental examples of sound ra-
diation from radially and transversely oscillating spheres and subsequently
show that they can be used as building blocks for analyses of sound radia-
tion in less idealized circumstances. Various general relations between sound
sources and their radiated acoustic fields are discussed in the latter sections
of the chapter.

4-1 RADIALLY OSCILLATING SPHERE

The prototype of an omnidirectional source is a sphere† (see Fig. 4-1) cen-
tered at the origin whose radius oscillates about some nominal value a with
velocity vS(t). Given that the external medium is unbounded, the acoustic
field is spherically symmetric, and so Eqs. (1-12.4) apply. With F (t−[r/c])/ρc
replaced by an equivalent “to be determined” function ψ(t−[r/c]+[a/c]), these
equations become

vr =
ψ̇

r
+
cψ

r2
p =

ρcψ̇

r
, (4-1.1)

where ψ̇ denotes the derivative of ψ with respect to its argument (here un-
derstood to be t− [r/c]+ [a/c]). The boundary condition, vr(a, t) = vS(t),
resulting from Eq. (3-1.2), therefore requires

† G. G. Stokes, “On the communication of vibration from a vibrating body to a surrounding
gas,” Phil. Trans. R. Soc. Lond. 158:447–463 (1868); A. E. H. Love, “Some illustrations
of modes of decay of vibratory motions,” Proc. Lond. Math. Soc. (2) 2:88–113 (1905); J.
Brillouin, “Transient radiation of sound sources and related problems,” Ann. Telecommun.
5:160–172, 179–194 (1950).
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Figure 4-1 Sound generation by a radially oscillating sphere with radial surface velocity
vS(t).

a−1 d

dt
ψ(t) + ca−2ψ(t) = vS(t), (4-1.2)

which integrates to

ψ(t) = a

∫ t

−∞

e−(c/a)(t−τ)vS(τ) dτ, (4-1.3)

with the requirement that ψ(t) be zero before vS(t) first becomes nonzero.
The above expression for ψ(t) and Eqs. (1) for vr(r, t) and p(r, t) describe the
transient solution for the acoustic field radiated by the sphere.

The constant-frequency solution, resulting when vS has been oscillating for
a long time with an angular frequency ω, can be derived directly from Eqs.
(1-12.8); the constant A appearing there is identified from the requirement
that the v̂r in Eq. (1-12.8b) be v̂S at r = a, where v̂S is the complex amplitude
of vS(t). Thus, Eqs. (1-12.8) yield

p̂

ρc
=

v̂r
1 + i/kr

=
−ika2v̂S

r(1 − ika)
eik(r−a). (4-1.4)

These also result from the transient solution for a sphere that starts oscillating
at time to in the limit when the retarded time t− [r/c]+ [a]/c (minus the
time to) is large compared with the time (2πa)/c for a disturbance to travel
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around the perimeter of the sphere. (Here t − [r/c] + [a/c] is the time the
wave currently being received left the surface.)

The time-averaged intensity Ir,av of a spherically symmetric wave is
|p̂|2/2ρc, in accord with (4) and with the relation Ir,av = 1

2Re{p̂v̂∗r}. Con-
sequently, the time-averaged power Pav radiated by the radially oscillating
sphere is 4πr2|p̂|2/2ρc, so, from (4) one has

Pav =
(ka)2

1 + (ka)2
ρc(v2

S
)av(4πa

2). (4-1.5)

In the limit ka≫ 1, the power radiated per unit surface area of the sphere is
ρc(v2S)av (the same as for radiation to one side from a plate vibrating without
flexure with a velocity amplitude |v̂S|).

Low-Frequency Approximation

If vS(t) changes slowly over times of the order of a/c, a suitable approximation
to p(r, t) results from a neglect of the first term in Eq. (2), such that ψ(t) =
(a2/c)vS(t). Also, it is consistent to ignore the distinction between vS(t −
[r/c] + [a/c]) and vS(t− [r/c]) when ψ(t− [r/c] + [a/c]) is inserted into Eqs.
(1). In this manner, the acoustic pressure reduces to

p(r, t) =
ρ

4πr

(

dQS

dt

)

t→t−r/c

, (4-1.6)

where QS(t) = 4πa2vS (surface area of sphere times radial velocity) is the
time derivative of the volume enclosed by the source and is referred to as the
source-strength function. The result, moreover, is a good approximation† even
if, over any interval of time, the radius may change by an increment compara-
ble to, or larger than, its original value, providing QS(t) is the instantaneous
derivative of the actual volume enclosed by the sphere. It is required that the
velocity of the surface always be substantially less than c and that the surface
acceleration be substantially less than c2 divided by the sphere radius.

The constant-frequency version of Eq. (6) also results from Eq. (4) if one
neglects the term −ika in the factor (1− ika)−1 and approximates e−ika by
1. The equivalence is evident if one notes that dQS/dt evaluated at t − r/c
is equal to Re{(−iωQ̂Se

ikre−iωt)}, where Q̂S is 4πa2v̂S. The prescription for
incorporation of a time shift, t→ t−r/c, is to multiply the complex amplitude
by a factor of eikr.

† This was recognized and applied by M. Strasberg, “Gas bubbles as sources of sound in
liquids,” J. Acoust. Soc. Am. 28:20–26 (1956). A rigorous justification is given by P. A.
Frost and E. Y. Harper, “Acoustic radiation from surfaces oscillating at large amplitude
and small Mach number,” ibid. 58:318–325 (1975).
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Figure 4-2 Sound generation by a transversely oscillating rigid sphere of radius a. The
center of the sphere moves back and forth along the z axis with velocity vC(t).

4-2 TRANSVERSELY OSCILLATING RIGID

SPHERE

A rigid sphere (see Fig. 4-2) whose center is oscillating back and forth along
the z axis about the origin is the simplest model† of a source whose volume
does not change with time. The appropriate boundary condition, deduced
from Eq. (3-1.2), at the nominal location of the sphere’s surface is

vr(a, θ, t) = vC(t) · er = vC(t) cos θ, (4-2.1)

where vC(t) = vC(t)ez is the velocity of the sphere’s center. To construct a
solution of the linear acoustic equations satisfying this boundary condition,
we note that: (1) the derivative with respect to z of any solution of the wave
equation is also a solution, and (2) a known solution is 1/r times any function
of t− r/c, so

Φ =
∂

∂z

[

1

r
ψ
(

t− r

c
+
a

c

)

]

(4-2.2)

is a possible candidate for the velocity potential. Here the differentiation
is carried out at fixed x and y, and so, since r2 = x2 + y2 + z2, one has
∂r/∂z = z/r or cos θ. Thus, the operator ∂/∂z can be replaced by (cos θ)∂/∂r

† S. D. Poisson, “On the simultaneous movement of a pendulum and of the surrounding air,”
Mem. Acad. Sci., Paris 11:521–582 (1832); Stokes, “On the communication of vibration,”
1868.
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in the above. Because Eq. (2) and the expression in Eq. (1) both depend on
θ only through the multiplicative factor cos θ, a function ψ can be found that
ensures that vr = ∂Φ/∂r will reduce to vC(t) cos θ when r = a.

The ordinary differential equation that ψ(t) must satisfy so that ∂Φ/∂r
will equal vC(t) cos θ at r = a results from Eq. (2) if one recognizes that
the first and second derivatives with respect to r of ψ(t − [r/c] + [a/c]) are
−(1/c)ψ̇(t) and (1/c)2ψ̈(t), respectively, at r = a. The resulting substitutions
into the boundary-condition equation then yield

ψ̈(t) + 2
c

a
ψ̇(t) + 2

( c

a

)2

ψ(t) = c2avC(t). (4-2.3)

Such an inhomogeneous linear second-order ordinary differential equation
with constant coefficients can be solved† as a superposition of indicial re-
sponses, but we here limit ourselves to the steady-state case, such that vC(t)
equals Re{v̂Ce

−iωt}. The prescription ∂/∂t → −iω (discussed in Sec. 1-8)
converts Eq. (3) into an algebraic equation for the complex amplitude asso-
ciated with ψ, the solution of which leads to

ψ(t) = Re
{

Aeikae−iωt
}

, (4-2.4)

with the abbreviation

A =
v̂Ca

3e−ika

2− (ka)2 − 2ika
=

v̂C

[(d2/dr2)(r−1eikr)]r=a
. (4-2.5)

The quantity ψ(t − r/c + a/c) is obtained by inserting an additional factor
of eik(r−a) in Eq. (4). With this insertion, with subsequent substitution of
ψ(t−r/c+a/c) into Eq. (2), and with the relations p = −ρ∂Φ/∂t and v = ∇Φ,
the spatially dependent amplitudes of the field quantities are identified as

Φ̂ = A cos θ
d

dr

eikr

r
, (4-2.6a)

p̂ = iωρΦ̂, v̂r =
∂Φ̂

∂r
, v̂θ = r−1 ∂Φ̂

∂θ
. (4-2.6b)

In the above expressions, the operations by d/dr and d2/dr2 lead to mul-
tiplicative factors of d/dr → ik − 1/r and d2/dr2 → −k2 + 2r−2 − 2ikr−1.

† See, for example, K. N. Tong, Theory of Mechanical Vibration, Wiley, New York, 1960,
pp. 31–37. The differential equation can also be solved by the method of variation of pa-
rameters described, for example, by C. R. Wylie, Jr., Advanced Engineering Mathematics,
McGraw-Hill, New York, 1951, pp. 41–44. Transient solutions and their implications for
sound radiated by a transversely accelerating sphere are reviewed by A. Akay and T. H.
Hodgson, “Sound radiation from an accelerated or decelerated sphere,” J. Acoust. Soc. Am.
63:313–318 (1978). The earliest such solutions, for spheres suddenly accelerated from rest
to a uniform velocity and to a sinusoidally oscillating velocity, are given by G. Kirchhoff,
Mechanik, 2d ed., Teubner, Leipzig, 1877, pp. 317–321.
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Thus, in the far field, where kr ≫ 1, one has

p̂ ≈ −ω
2ρ

c
A cos θ

eikr

r
≈ ρcv̂r. (4-2.7)

Because |v̂θ| decreases at large r as r−2 rather than r−1, it is negligible. The
time-averaged intensity (pvr)av derived from this far-field approximation is

Ir,av =
(ka)4

4 + (ka)4
ρc[(vC · er)

2]av

(a

r

)2

. (4-2.8)

The same expression, moreover, holds for all points outside the sphere. The
time average (pvθ)av vanishes identically since p̂ and v̂θ are 90◦ out of phase.
Because of the cos θ factor in the acoustic pressure and of the cos2 θ factor
in the acoustic intensity, there is no sound at right angles to the direction of
the sphere’s translation; the sound is most intense in the directions θ = 0 or
180◦, where the sphere’s motion is directly toward or away from the listener.

The time average of the acoustic power emitted is the integral of Ir,av over
the surface of a sphere, or

Pav =

[

(ka)4

4 + (ka)4

]

ρc
(v2

C
)av
3

4πa2. (4-2.9)

Here 4πa2 is the surface area of the oscillating sphere; 1
3 (v

2
C)av is the surface

average of [(vC ·n)2]av. In the large ka limit (when the factor in brackets
becomes 1), each element of the sphere’s surface radiates sound as if it were
a segment of a very large flat surface vibrating perpendicularly to itself with
velocity vC ·n. In the opposite limit, where ka ≪ 1, Pav is smaller than its
high-frequency limit by a factor of (ka)4/4, while the corresponding factor in
the same limit for a radially oscillating sphere [see Eq. (4-1.5)] is (ka)2. Since,
in this low ka limit, (ka)2 ≫ 1

4 (ka)
4, the radially oscillating sphere is a much

more efficient radiator of sound at low frequencies than the transversely oscil-
lating sphere, given that the surface-averaged mean squared normal velocities
are of comparable magnitude.

Force Exerted by Transversely Oscillating Sphere

The net force exerted on the fluid by the sphere, in accord with Newton’s
third law, is the surface integral of p(a, θ, t)er. Symmetry requires that this
force have only a z component, so one has

F (t) = Fz(t)ez = eza
2

∫ 2π

o

∫ π

o

p(a, θ, t) cos θ sin θ dθ dφ. (4-2.10)
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The complex amplitude associated with this force is consequently found, from
Eqs. (6), to be

F̂z = iωρA(ika− 1)43πe
ika, (4-2.11)

where A is the constant in Eq. (5). The time-averaged acoustic power Pav

transmitted to the fluid must be 1
2Re{F̂z v̂∗C} and, in accord with the acoustic-

energy conservation theorem, this leads to the same result as Eq. (9).

Small-ka Approximation

In the low-frequency limit, when vC(t) is oscillating at frequencies such that
ka≪ 1, the appropriate approximation to Eq. (3) results when the first two
terms on the left side are neglected, so ψ(t) = 1

2a
3vC(t); it is also consistent

in this limit to approximate ψ(t − r/c + a/c) by ψ(t − r/c) . Consequently,
the velocity potential in Eq. (2) approximates to

Φ = 1
2a

3 cos θ
∂

∂r

[

1

r
vC

(

t− r

c

)

]

. (4-2.12)

The corresponding approximation for p, resulting from the relation p =
−ρ ∂Φ/∂t, yields

p =
1

2

ρa3

c

1

r
er ·

[(

∂

∂t
+
c

r

)

v̇C

(

t− r

c

)

]

. (4-2.13)

Also, in this low-frequency or ka ≪ 1 approximation, the force ampli-
tude F̂z given by Eq. (11) reduces, in lowest nonzero order, to −iωρA4

3π,
while A, from Eq. (5), reduces to v̂Ca

3/2. The time-dependent force F (t) =
ez Re{F̂ze−iωt} consequently appears in this approximation as†

F (t) = 1
2mdv̇C(t), (4-2.14)

where md = 4
3πa

3ρ is the mass displaced by the sphere. This resembles
Newton’s second law, force equals mass times acceleration, with an apparent
entrained mass equal to md/2. However, this approximate Fz(t) is 90◦ out
of phase with vC(t) and is consequently inadequate for a nonzero estimate
of the time-averaged acoustic power Pav = 1

2 Re{F̂z v̂∗C}. The lowest-order
approximation for the resistive part (that in phase with v̂C) of the complex

† P. M. Morse, Vibration and Sound, 2d ed., McGraw-Hill, New York, 1948, p. 319. For
incompressible flow, this dates back to George Green, “On the vibrations of pendulums
in fluid media,” 1833, reprinted in N. M. Ferrers (ed.), Mathematical Papers of the Late
George Green, Macmillan, London, 1871, pp. 315–324, and to G. G. Stokes, “On some cases
of fluid motion,” 1843, reprinted in G. G. Stokes, Mathematical and Physical Papers, vol.
1, Cambridge University Press, Cambridge, 1880, pp. 2–68. A modern derivation is given
by C.-H. Yih, Fluid Mechanics, McGraw-Hill, New York, 1969, pp. 99–108.
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amplitude, derived from Eq. (11), is

(F̂z)resist ≈
(ka)4ρcπa2v̂C

3
, (4-2.15)

and this suffices to reproduce the Pav in Eq. (9) to lowest nonzero order in
ka.

4-3 MONOPOLES AND GREEN’S FUNCTIONS

Concept of a Point Source

Any spherically symmetric source of sound of angular frequency ω in an
unbounded fluid gives rise to an outgoing spherically symmetric wave, the
complex velocity-potential amplitude, the complex pressure amplitude, and
time-averaged power output of which [see Eqs. (1-12.8a) and (1-12.9a )] are
representable in the form

Φ̂ = −Q̂S

eikR

4πR
, p̂ = Ŝ

eikR

R
, Pav =

2π|Ŝ|2
ρc

, (4-3.1)

where the source-strength amplitude Q̂S = −4πŜ/iωρ is a constant and
R = |x − xS| is radial distance from the center of the source (at xS). The
constant Ŝ is here referred to as the monopole amplitude. One possible re-
alization of a source of such a wave would be the radially oscillating sphere
discussed in Sec. 4-1, in which case Ŝ results from the coefficient of r−1eikr

in Eq. (4-1.4). One can consider a hypothetical limiting case for which a be-
comes progressively smaller but v̂S becomes simultaneously larger, such that
Ŝ ≈ −iωρa2v̂S remains constant. The sphere is then idealized as a point.
Although an extremely small source of sufficiently large strength to generate
audible sound at appreciable distances would in actuality require considera-
tion of nonlinear terms, the concept of a point source† (or acoustic monopole)
generating waves governed by the linear acoustic equations is a convenient
extrapolation consistent with the general framework of linear acoustic the-
ory. Typically, any small source, with time-varying mass of fluid in any small
volume enclosing it, has all the attributes of a point source, providing the
dimensions of the source are small compared with a wavelength and the dis-
cussion of the sound field is restricted to radial distances greater than several
body diameters. (This is discussed in Sec. 4-7.)

† The concept, which is analogous to those of a point mass and of a point charge, was
introduced into acoustics by H. Helmholtz, “Theory of air oscillations in tubes with open
ends,” J. reine angew. Math. 57:1–72 (1860).
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The field of Eq. (1) satisfies the Helmholtz equation (1-8.13) everywhere
except at the source; it is a limiting form (as ǫ → 0) of some particular
solution of the inhomogeneous equation‡ (see Fig. 4-3)

(∇2 + k2)p̂ǫ = −4πŜ ∆ǫ(R), (4-3.2)

where the right side has an R-dependent factor ∆ǫ(R).
Insight into the possible choices for ∆ǫ(R) such that ŜR−1eikR will be

a solution at finite R results after integration of both sides of Eq. (2) over
the volume of a sphere of radius Ro centered at xS. Since ∇2p̂ǫ is the di-
vergence of ∇p̂ǫ, the resulting first term becomes a surface integral. If p̂ǫ
is spherically symmetric (which would follow from symmetry if there were
no external boundaries and which is approximately true if Ro is sufficiently
small compared with the distance to the nearest boundary), then the angular
integration in each term results in a factor 4π, representing the total solid
angle about a point. In this manner, one obtains

4πR2
o

(

∂p̂ǫ
∂R

)

R0

+ 4πk2
∫ R0

o

p̂ǫR
2 dR = −4πŜ

∫∫∫

∆ǫ(R) dV. (4-3.3)

Figure 4-3 Possible form of a function ∆ǫ(R) that is concentrated where R < ǫ, negligibly
small for R > 10ǫ. As explained in the text, the integral of 4πR2 ∆ǫ(R) over R should be
1.

‡ The inhomogeneous Helmholtz equation for k = 0 is the mathematical equivalent of Pois-
son’s equation, ∇2V = −4πGρ, originally introduced as a relation between gravitational
potential and mass density by Poisson in 1813.
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Suppose ∆ǫ(R) is concentrated within the region R < ǫ and is negligible
for R greater than, say, 10ǫ. If one takes Ro = 10ǫ, the integral on the right
side is approximately the same as if carried over all space. Also, if ∆ǫ is to
be such that p̂ in Eq. (1) is a solution for R ≥ Ro, then, for sufficiently small
ǫ, the overall volume integral of ∆ǫ(R) must be such that (3) is satisfied
if p̂ǫ is replaced by ŜR−1eikR. This insertion and subsequent evaluation of
the indicated derivative and integral lead to a value for the left side that
is identically −4πŜ regardless of the value of Ro. The right side of Eq. (3)
must have the same value, so the appropriate identification of ∆ǫ(R) is any
function whose volume integral is 1 and which is of appreciable magnitude
only for values of R less than, say, 10ǫ. Such a function would be δǫ(x −
xS)δǫ(y − yS)δǫ(z − zS), where δǫ(x), defined by Eq. (2-8.7), is an element in
the sequence describing the Dirac delta function. This identification leads to
the generalized function relation†

(∇2 + k2)p̂ = −4πŜδ(x− xS) = −4πŜδ(x− xS)δ(y − yS)δ(z − zS). (4-3.4)

The indicated product expression defining δ(x− xS) implies that this Dirac
delta function with vector argument must be such that for any function ψ(x)

∫∫∫

ψ(x)δ(x− xS) dV = ψ(xS). (4-3.5)

The strict interpretation of Eq. (4) is that p̂ should be the limit as ǫ → 0 of
the solution p̂ǫ of Eq. (2), but for most purposes the process of taking such
a limit need not be considered explicitly.

Another interpretation of Eq. (4) is that p̂ should be a solution of the
homogeneous equation except in the near neighborhood (of vanishing volume)
of xS and that near xS it should become singular as R−1 in such a way that

p̂ =
Ŝ

R
+ Ŝ f(x, y, z), (4-3.6)

where f(xy, z) is bounded at xS. To prove this assertion, one recognizes that
any solution of the inhomogeneous differential equation can be represented
as any particular solution plus some solution of the homogeneous equation.
The particular solution ŜR−1eikR approaches Ŝ/R plus bounded terms as
R → 0, and the solution of the homogeneous equation is bounded; so Eq.
(6) results. This interpretation applies in particular when the propagation of
sound away from the source is altered by the presence of bounding surfaces,

† A delta function on the right side of the wave equation to denote the presence of a point
source was used as early as 1937 in their theory of Cherenkov radiation by I. Frank and
I. Tamm, C. R.Dokl. Acad. Sci. URSS 14:109–114 (1937). Its widespread use today was
undoubtedly considerably influenced by the chapter on Green’s functions in P. M. Morse
and H. Feshbach, Methods of Theoretical Physics, vol. 1, McGraw-Hill, New York, 1953,
pp. 791–895.
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e.g., a source above the ground. Note also that Eq. (6) is equivalent to the
condition Rp̂ ≈ Ŝ near xS.

Point Mass Source

A differential equation analogous to (4) results from the linear acoustic equa-
tions when a point-mass-source term is added to the linear version of the
mass-conservation equation; i. e., one replaces the zero on the right side of
Eq. (1-5.3a) by ṁS(t)δ(x − xS), where ṁS(t) is the rate at which mass is
added (negative if extracted) to the fluid existing outside some small fixed
region enclosing the source (see Fig. 4-4). Alternately, one can interpret ṁS

as ρQS, where QS(t) is the integral of v · n over a small surface enclosing
the source and accordingly represents the time rate of change of the volume
excluded from the fluid by the source.

If the derivation outlined in Sec. 1-6 of the wave equation is carried through
with the mass-conservation equation modified by the inclusion of a point-
mass-source term, the result is the inhomogeneous wave equation

∇2p− 1

c2
∂2p

∂t2
= −m̈S(t)δ(x− xS) = −ρQ̇S(t)δ(x − xS). (4-3.7)

The solution appropriate to an unbounded fluid can be developed from the
solution ŜR−1eikR of Eq. (4) and from the superposition principle. The quan-
tities p̂ and Ŝ can be interpreted as the Fourier transforms of p and m̈S/4π,
so Eq. (4) follows from (7). The product of eikR times the Fourier transform
of m̈(t), however, is the Fourier transform of m̈(t−R/c). The Fourier integral
theorem consequently gives

p = (4πR)−1m̈S

(

t− R

c

)

, (4-3.8)

which is equivalent to Eq. (4-1.6), previously derived for the radially oscillat-
ing sphere in the limit ka≪ 1.

If boundaries are to be taken into account, an appropriate solution of the
homogeneous equation should be added. Regardless of what such solution is
added, one can argue [in a manner similar to that leading to Eq. (6)] that
the presence of the delta function on the right side of the wave equation is
equivalent to the requirement that in the vicinity of xS

p ≈ m̈S(t)

4πR
+ f(x, y, z, t), (4-3.9)

where f(x, y, z, t) is bounded in magnitude.
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Figure 4-4 Sketch supporting idealization of a small source with time-varying volume as
a point-mass source. The fluid flow in a small sphere (radius Ro) surrounding the source
is approximately such that the rate of mass flow through the sphere’s surface is ρ times
the time derivative of the volume enclosed by the source.

Green’s Functions

The solution of Eq. (4) with Ŝ = 1, satisfying whatever boundary condi-
tions (presumed passive) are imposed by the presence of external surfaces or
causality considerations, is the Green’s function† Gk(x|xS), the first argu-
ment denoting the location of the listener and the second the location of the
source. Thus, Gk(x|xS) satisfies the inhomogeneous equation

(∇2 + k2)Gk(x|xS) = −4πδ(x− xS), (4-3.10)

and if the medium external to the source is unbounded, Gk is identified from
Eq. (1) as the free-space Green’s function R−1eikR.

A universal property of Green’s functions is the reciprocity relationGk(x|xS) =
Gk(xS|x); that is, Gk is unchanged if source and listener locations are inter-

† The name derives from George Green’s use of analogous functions in connection with
Laplace’s equation to derive solutions of electrostatic and magnetostatic boundary value
problems. (G. Green, An Essay on the Application of Mathematical Analysis to the The-
ories of Electricity and Magnetism, Nottingham, 1828, pp. 10–13.)



4-3 Monopoles and Green’s Functions 185

changed. The free-space Green’s function satisfies this trivially; the proof of
reciprocity for more general circumstances is deferred to Sec. 4-9.

The superposition principle allows the Green’s function to be used in
the construction of solutions corresponding to several point sources (see
Fig. 4-5). Thus, if one has N point sources, the complex acoustic-pressure
amplitude should satisfy the Helmholtz equation with a sum of source terms,
−4πŜnδ(x − xn), on the right side; the appropriate solution resulting from
Eq. (10) is

p̂ =

N
∑

n=1

ŜnGk(x|xn). (4-3.11)

Similarly, for a continuous smear of sources where ŝ(x) denotes the
monopole-amplitude distribution per unit volume, one has

∇2p̂+ k2p̂ = −4πŝ(x) = −4π

∫∫ ∫

ŝ(xS)δ(x− xS) dVS, (4-3.12)

p̂ =

∫∫∫

Gk(x|xS)ŝ(xS) dVS , (4-3.13)

where the integration extends over the source volume.

Figure 4-5 Nomenclature for discussion of sound radiation from N point sources. Here
Ŝn and xn denote monopole amplitude and location of the nth point source.

The Green’s function G(x, t|xS, tS) (corresponding to a unit point impul-
sive source) for the wave equation satisfies
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(

∇2 − 1

c2
∂2

∂t2

)

G(x, t|xS, tS) = −4πδ(t− tS)δ(x− xS), (4-3.14)

and from causality considerations should be zero if t < tS. The solution
when the external medium is unbounded results from Eqs. (7) and (8) with
m̈(t) → 4πδ(t− tS); that is,

G(x, t|xS, tS) =
δ(t− tS −R/c)

R
. (4-3.15)

The function satisfying Eq. (14) can be used to develop a solution for a dis-
tributed transient source of the inhomogeneous wave equation, where a source
term −4πs(x, t) is on the right side. The source function s(x, t) is written as
a time and volume integral (the differential of integration being dtS dVS) in a
manner analogous to that depicted in Eq. (12). The superposition principle
and Eq. (14) then yield

p =

∫∫∫∫

G(x, t|xS, tS)s(xS, tS) dVS dtS. (4-3.16)

When the Green’s function is given by Eq. (15), the tS integration can be
done using the property (2-8.9) of the delta function, and one accordingly
obtains

p =

∫∫∫

S(xS, t−R/c)

R
dVS. (4-3.17)

The retarded time t−R/c in the argument of s implies that the contribution
from each portion of the source travels to the listener with the sound speed.

4-4 DIPOLES AND QUADRUPOLES

Dipoles

The superposition of fields of two or more monopoles located at different
points gives a possible acoustic field because of the linearity of the basic
equations. One can conceive, in particular, of two point sources (see Fig. 4-6)
of opposite monopole amplitudes Ŝ and −Ŝ, that is, 180◦ out of phase with
each other, and located a distance d apart at xS + d/2 and xS − d/2. [If the
monopoles are both radially oscillating spheres of nominal radius a, then a
should be substantially less than d so that the acoustic-pressure field in the
vicinity of either source will be dominated by a 1/R term, as required in Eq.
(4-3.6).]

A point dipole corresponds to the limit in which d becomes small enough
to ensure that kd≪ 1. In this limit and given |x−xS| ≫ d, Gk(x|xS ± d/2)
can be approximated with a truncated Taylor series as Gk(x|xS) ± (d/2) ·
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∇SGk(x|xS), where the operator ∇S denotes the gradient with respect to
the source coordinates. Thus, the superimposed pressure field becomes

p̂ = d̂ · ∇SGk(x|xS), (4-4.1)

Figure 4-6 Acoustic dipole modeled by two point sources of monopole amplitudes Ŝ and
−Ŝ located at xS + d/2 and xS − d/2. The dipole-moment amplitude vector d̂ is Ŝd.

where the complex amplitude d̂ (dipole-moment amplitude vector) replaces
Ŝd. Since Gk(x|xS) satisfies Eq. (4-3.10), the differential equation that (1)
must satisfy is

∇2p̂+ k2p̂ = (d̂ · ∇S)[−4πδ(x− xS)] = 4πd̂ · ∇δ(x− xS). (4-4.2)

If the fluid surrounding the dipole is unbounded, the function Gk(x|xS)
is R−1eikR. Since ∇Sf = (df/dR)∇SR for any function f(R) of R and since
∇SR = (xS −x)/R, the acoustic field (1) for a dipole in an unbounded fluid
becomes

p̂ = −d̂ · eR
d

dR

eikR

R
= −∇ · (d̂R−1eikR). (4-4.3)

Here eR = (x− xS)/R is the unit vector pointing radially outward from the
dipole center toward the observation point.
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Point Force in a Fluid

The model of a point time-varying concentrated force† F (t) applied at a point
xS within a fluid furnishes another instance of the generation of a dipole field.
Such a model can be approximately realized by a very thin rigid disk of radius
a (see Fig. 4-7) oscillating transverse to its face, with F (t) identified as the
net force exerted by the disk on the adjacent fluid. [The value F (t) = 8

3ρa
3v̇C

is derived in Sec. 4-8.] The presence of the force is taken into account by the
inclusion of a term F (t)δ(x − xS) on the right side of the linear version of
Euler’s equation of motion for a fluid.

Figure 4-7 Transversely oscillating thin disk of radius a (where ka ≪ 1) as a possible
physical realization of a point force applied to a fluid. As discussed in Sec. 4-8, the apparent
equivalent force F (t) is 8

3
ρa3v̇C , where v̇C is the transverse acceleration of the disk.

The corresponding inhomogeneous wave equation is derived by taking the
divergence of both sides of the Euler equation with the source term included
and subsequently replacing ρ∇·v by −∂ρ′/∂t, in accord with the conservation
of mass equation, then replacing ∂ρ′/∂t by c−2 ∂p/∂t. In this manner, one
obtains

∇2p− 1

c2
∂2p

∂t2
= ∇ · [F(t)δ(x − xS)] = −F (t) · ∇Sδ(x− xS). (4-4.4)

Consequently, for the constant-frequency case, an equation of the same form
as Eq. (1) results, but with 4πd̂ replaced by F̂ . The solution when the fluid
is unbounded is given by Eq. (3) with d̂ replaced by F̂ /4π. Therefore, by the
same process by which Eq. (4-3.8) was derived, one can identify the transient
solution as

p =
1

4π
eR ·

(

1

R
+

1

c

∂

∂t

)

F (t−R/c)

R
. (4-4.5)

† J. W. S. Rayleigh, The Theory of Sound, vol. 2, 2d ed., 1896, reprinted by Dover, New
York, 1945, sec. 375.
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Quadrupoles

The simplest conceptual realization of a quadrupole is two closely spaced
dipoles† (see Fig. 4-8) with equal but opposite dipole-moment amplitude
vectors. Such a model would give, from Eq. (1), a superposition of the dipole
fields ±d · ∇SGk(x|xS ± d/2); the sum, in the limit of d ≪ R, kd ≪ 1,
approximates to

p̂ = (d̂ · ∇S)(d · ∇S)Gk(x|xS). (4-4.6)

If the medium is unbounded, the Green’s function is R−1eikR and since ∇S =
−∇ when applied to a function of x− xS, one has

p̂ = (d̂ · ∇)(d · ∇)
eikR

R
=

3
∑

µ,ν=1

Q̂µν
∂2

∂xµ∂xν

eikR

R
, (4-4.7)

where we write Q̂µν = D̂µdν . (One can also define Q̂µν as the average of
D̂µdν and D̂νdµ.)

Since d̂ and d are vectors whose directions are arbitrary and since
∂2/(∂x∂y) is the same as ∂2/(∂y∂x), the above implies that any quadrupole
field in an unbounded space is a linear combination of six functions cor-
responding to the differential operators ∂2/∂x2, ∂2/∂y2, ∂2/∂z2, ∂2/(∂x∂y),
∂2/(∂x∂z), and ∂2/(∂y∂z) applied to R−1eikR. Of these, there are two basic
types: a longitudinal quadrupole, for which d̂ and d are parallel, and a lateral

quadrupole, for which they are perpendicular.
The field of an axial quadrupole aligned along the z axis is given, according

to Eq. (7), by

p̂ = Q̂zz

[

(1− 3 cos2 θ)

(

ik

R
− 1

R2
+
k2

3

)

− k2

3

]

eikR

R
, (4-4.8)

where θ is the angle between eR and the z direction, so cos θ is (z − zS)/R.
Similarly, for a lateral quadrupole with d̂ in the x direction and with d in
the y direction, one finds

p̂ = Q̂xy
(x− xS)(y − yS)

R2
(−k2 − 3ikR−1 + 3R−2)

eikR
R

. (4-4.9)

† The definition here of quadrupole radiation is the same as that of M. J. Lighthill, “On
sound generated aerodynamically, I: General theory,” Proc. R. Soc. Lond. A211:564–587
(1952). The term is sometimes used to denote the portion of a field whose amplitude falls
off with r as r−2 or to denote the portion expressible in terms of second-order spherical
harmonics, but the proper definition is for a field resembling that corresponding to a
limiting case of four closely spaced point monopoles whose aggregate source strength and
dipole moment vanish. In the case of solutions of Laplace’s equation ∇2Φ = 0, a quadrupole
field in an unbounded space also has the properties mentioned above.
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Figure 4-8 Possible models of acoustic quadrupoles: (a) longitudinal quadrupole; (b)
lateral quadrupole. The general model discussed in the text consists of two dipoles with
dipole-moment amplitude vectors d̂ and −d̂ at xS + d/2 and xS − d/2.

Since the intensity in the far field (kR ≫ 1) is radial, and since its time
average equals 1

2 |p̂|2/ρc, Eqs. (8) and (9) yield

Ir,av =



















(k4 cos4 θ)|Q̂zz |2
2ρcR2

longitudinal

k4 sin4 θ cos2 φ sin2 φ

2ρcR2
|Q̂xy|2 lateral

(4-4.10a)

(4-4.10b)

The radiation patterns in the two cases vary with θ and φ as cos4 θ and
as sin4 θ cos2 φ sin2 φ (see Fig. 4-9). The total acoustic power outputs (time
average) found by integrating the appropriate expression for Ir,av over the
surface of a sphere of radius R are πk4/ρc times 2

5 |Q̂zz|2 and 2
15 |Q̂xy|2, since

the area averages of cos4 θ and sin4 θ cos2 φ sin2 φ are 1
5 and 1

15 .
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Multipole Expansions

A number (array) of monopole sources of the same frequency gives rise to a
composite acoustic field whose complex acoustic-pressure amplitude is of the
form of Eq. (4-3.11); we assume in what follows that the external medium
is unbounded, so that the contribution to the sum from the nth source is
ŜnR

−1
n eikRn , where Rn = |x−xn|. If the sources are clustered in the vicinity

of the origin within a volume of radius d, where kd ≪ 1, an expansion of
R−1
n eikRn in a multiple power series in the source coordinates should be

rapidly convergent at r ≫ d, so we replace†

Figure 4-9 Radiation patterns of (a) a longitudinal quadrupole and (b) a lateral
quadrupole. Here distance from the origin to a point on a sketched surface is proportional
to the magnitude of the acoustic intensity in the same direction.

† The derivation proceeds from

f(x− ǫ) = f(x)− ǫ
d

dx
f(x) +

1

2!
ǫ2

d2

dx2
f(x)− · · ·

= f(x)− (ǫex · ∇)f(x) +
1

2!
(ǫex · ∇)2f(x) − · · ·

If one has a function of x−xS , the coordinate system can be temporarily oriented so that
one of the axes points in the direction −xS . The above then applies if the components of
x− xS perpendicular to xS are held constant, with the result

f(x − xS) = f(x)− (xS · ∇)f(x) +
1

2!
(xS · ∇)2f(x)− · · · .

For a fuller explanation, see R. Courant, Differential and Integral Calculus, vol. 2, Wiley-
Interscience, Glasgow, 1936, pp. 80–81.
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R−1
n eikRn = [exp(−xn · ∇)] (r−1eikr), (4-4.11a)

exp (−xn · ∇) = 1− xn · ∇+
1

2!
(xn · ∇)(xn · ∇)− · · · . (4-4.11b)

The sum over sources then becomes

p̂ = Ŝr−1eikr − d̂ · ∇(r−1eikr) +
∑

µ,ν

Q̂µν
∂2

∂xµ∂xν

(

r−1eikr
)

+ · · · , (4-4.12)

where we use the abbreviations

Ŝ =
∑

n

Ŝn, d̂ =
∑

n

xnŜn, Q̂µν =
1

2

∑

n

xnµxnν Ŝn. (4-4.13)

Thus, the acoustic field formally appears as a monopole field plus a dipole
field plus a quadrupole field, etc.‡

Given kd≪ 1, the field is generally well approximated by that of a single
point monopole. An exception is when the sum of the Ŝn vanishes, either by
design or because of symmetry. Then the dipole term would dominate, and
the far-field pressure would have an amplitude diminished by a factor of the
order of kd from that nominally expected. If Ŝ is zero, d̂, as computed by
Eq. (13), should be independent of the choice of coordinate origin.

When both the monopole amplitude and dipole-moment-amplitude vector
vanish, the quadrupole term ordinarily dominates. In such a case, the far-field
pressure and the acoustic power output are decreased by factors of the order
of (kd)2 and (kd)4 from what would nominally be expected.

Example Suppose three point sources (see Fig. 4-10) lie on the z axis at
z = d, z = 0, and z = −d, with monopole amplitudes of Ŝ1, −2Ŝ1, and
Ŝ1, respectively. The total monopole amplitude is zero; the dipole-moment-
amplitude vector is also zero. The only nonzero quadrupole component is
Q̂zz = d2Ŝ1, so the acoustic field is that of a longitudinal quadrupole and
the net acoustic power output, resulting from Eq. (10a), is 2

5π(kd)
4|Ŝ1|2/ρc.

If the phase of the center source is reversed, so that all three are in phase,
the field will be that of a monopole with monopole amplitude 4Ŝ1 and the
acoustic power output will be 32π|Ŝ1|2/ρc, larger by a factor of 80/(kd)4.

‡ The theory of a multipole expansion of a static field described by a potential satisfying
Laplace’s equation originated with J. C. Maxwell, A Treatise on Electricity and Magnetism,
vol. 1, Oxford University Press, Oxford, 1873, pp. 157–178; the extension to the dynamic
case for electromagnetic fields is due to H. A. Lorentz, “Extension of the Maxwell theory,
theory of electrons: state of the field if the exciting charge lies in an infinitely small space,”
in A. Sommerfeld (ed.), Encyklopädie der mathematischen Wissenshaften, vol. 5, pt. 2, no.
1, 1904, reprinted by Teuber, Leipzig, 1922, pp. 177–178. A concise statement of the theory
for the acoustical case is given by P. E. Doak, “Multipole analysis of acoustic radiation,”
paper K56 in D. E. Commins (ed.), 5e Congr. Int. Acoust., G. Thone, Liège, 1965, vol. 1b.
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Figure 4-10 Example of sound radiation from three point sources lying on the z axis at
z = d, z = 0, and z = −d with monopole amplitudes Ŝ1, −2Ŝ, and Ŝ1. The field for kd≪ 1
is that of a longitudinal quadrupole.

4-5 UNIQUENESS OF SOLUTIONS OF ACOUSTIC

BOUNDARY-VALUE PROBLEMS

Many physical phenomena in acoustics are modeled as boundary-value prob-

lems, whereby some features of the acoustic field are specified on bounding
surfaces or throughout a spatial region at an initial instant. Using this infor-
mation, one seeks to predict the acoustic field at other points and at other
times. Such problems need not be solved explicitly by mathematical analy-
sis or numerical computation; answers to major questions can be obtained
by direct experimental measurement, by similitude analysis of the governing
equations, or possibly by experimentation on an analogous physical system
that can be modeled, with a suitable translation of symbols, by the same
equations. It is desirable (especially from the latter standpoint when one is
planning experiments) to know just how many initial data or boundary data
are required for a unique prediction.

Poisson’s Theorem and Its Implications

Causality is often incorporated, either explicitly or implicitly, in posing acous-
tic boundary-value problems. To characterize the wave caused by a source,
one must require the wave to be absent before the source is first turned on.
The earliest time at which such a wave disturbance appears at a distant point
is delayed by the minimum time of propagation at the sound speed c from
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Figure 4-11 Geometry for discussion of Poisson’s theorem, which relates the acoustic
pressure at xo at time t to the value and the time and spatial derivatives of the acoustic
pressure at time t−R/c averaged over the surface of a sphere of radius R centered at xo.

source to listener. This property of acoustic fields results with some generality
from a relationship derived originally by Poisson.†

Suppose the acoustic pressure p(x, t) satisfies the wave equation in some
region. We let xo be any point in the region and consider a hypothetical sphere
of radius R centered at the point xo (see Fig. 4-11). A restriction on R is that
during times to−(R/c) to to the spherical region must be entirely within the
fluid. Let p̄(xo, R, t) be the average (spherical mean) of p(xo + nR, t) over
the spherical surface, i. e.,

p̄(xo, R, t) =
1

4πR2

∫∫

p(xo + nR, t) dS, (4-5.1)

where n is the surface’s outward unit normal vector. Then Poisson’s relation-
ship (derived further below) is

p(xo, to) =

[(

∂

∂R
+

1

c

∂

∂t

)

Rp̄(xo, R, t)

]

t→to−R/c

. (4-5.2)

† The version of the proof given here is due to J. Liouville, “On two memoirs by Poisson,”
J. Math. Pures Appl. (2)1:1–6 (1856). Poisson’s original proof appeared in “Memoir on
the integration of some partial differential equations and, in particular, that of the general
equation of movement of elastic fluids,” Mem. Acad. Sci. Paris 3:121–176 (1818).
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This implies that if one knew p , n·∇p, and ∂p/∂t at all points on the surface
at time to−R/c, this information would be sufficient to determine p(xo, to)
at a time R/c later. (The relation also holds if one replaces c by −c.)

To demonstrate Eq. (2) it is sufficient to choose the coordinate system
so that xo is at the origin and to use spherical coordinates (r, θ, φ). Since p
satisfies the wave equation, one has (with r set to R)

lim
ǫ→0

1

4π

∫ 2π

o

∫ π−ǫ

ǫ

(

∇2p− 1

c2
∂2p

∂t2

)

sin θ dθ dφ = 0.

Here, in terms of spherical coordinates, the laplacian† of p is

∇2p =
1

r

∂2

∂r2
rp+

1

r2 sin θ

θ

∂θ

(

sin θ
∂p

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2
p, (4-5.3)

but the second and third terms give no contribution to the above average
over solid angles since ∂p/∂θ is finite at θ = 0 and θ = π and p is periodic

† Spherical coordinates constitute an orthogonal curvilinear coordinate system (discussed
in general here for future reference). If ξ1, ξ2, ξ3 are properly ordered coordinates, the unit
vectors ai = ∇ξi/|∇ξi| must form a right-handed set such that a1 ·a2 = 0,a1 ×a2 = a3,
etc. The incremental-displacement vector dx can be written

dx = h1 dξ1 a1 + h2 dξ2 a2 + h3 dξ3 a3, (i)

where

hi =





∑

j

(

∂xj

∂ξi

)2




1/2

(ii)

represents distance associated with unit change in ξi. In terms of the hi, the expressions
for the gradient, divergence, laplacian, and the ai are

∇p =

3
∑

i=1

ai
1

hi

∂p

∂ξi
(iii)

∇ · v =
1

h1h2h3

(

∂

∂ξ1
h2h3v1 +

∂

∂ξ2
h3h1v2 +

∂

∂ξ3
h1h2v3

)

(iv)

∇
2p =

1

h1h2h3

[

∂

∂ξ1

(

h2h3

h1

∂p

∂ξ1

)

+
∂

∂ξ2

(

h3h1

h2

∂p

∂ξ2

)

+
∂

∂ξ3

(

h1h2

h3

∂p

∂ξ3

)]

(v)

ai =
∑

j

1

hi

∂xj

∂ξi
ej (vi)

where e1, e2,e3 are unit vectors in the x1, x2, x3 directions and v1 = v · a1. For spherical
coordinates r, θ, φ with x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, one finds from (ii)
that hr = 1, hθ = r, hφ = r sin θ, so Eq. (3) results from (v). These details are discussed
in almost any text on vector analysis and in many texts on mathematical techniques,
electromagnetic theory, and fluid mechanics. See, for example, I. S. Sokolnikoff and R. M.
Redheffer, Mathematics of Physics and Modern Engineering, 2d ed., McGraw-Hill, New
York, 1966, pp. 416–417. Expression (v) is due to G. Lamé, “On the laws of equilibrium of
the fluid ether,” J. Ec. Polytech. 14:191–288 (1834).
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in φ with period 2π. The angular averaging operation can be carried out on
p first [giving the spherical mean p̄(0, R, t)] for the remaining two terms in
the integrand because R and t are independent of θ and φ. Consequently,
p̄(0, R, t) satisfies the wave equation (1-12.2) for a spherically symmetric
wave.

If one now defines

F (R, t) =
∂

∂R
Rp̄+

1

c

∂

∂t
Rp̄,

this wave equation can be written
(

∂

∂R
− 1

c

∂

∂t

)

F (R, t) = 0,

which has the general solution f(t+R/c) for F (R, t). However, if one takes
the above definition for F (R, t) in the limit R → 0 (given that ∂p̄/∂R and
∂p̄/∂t remain finite), one must identify f(t) as p̄(0, 0, t) or, equivalently, as
p(0, t); so one has p(0, t + R/c) = F (R, t). Substituting p(0, t + R/c) for
F (R, t) into the above differential equation and setting t = to − R/c, we
obtain Eq. (2), thereby verifying the theorem.

A simple consequence of Poisson’s theorem is that if, at some time t1, both
p(x, t1) and ∂p(x, t1)/∂t1 are identically zero within a sphere of radius Ro
centered at x0, then p(xo, t) must remain zero up until time t1+Ro/c. Hence
wave disturbances (with the neglect of nonlinear terms and ambient flow)
cannot move faster than the speed of sound. If initially the acoustic field in
some bounded or partially bounded space is zero, and if the walls are set in
vibration at time tinit, the earliest time one can expect a wave disturbance
at a given point is tinit +Rmin/c, where Rmin is the minimum distance from
that point to the boundary.

The above reasoning leads to Huygens’ construction† (see Fig. 4-12) for
determination of time of onset of a wave disturbance. The surface (wavefront)
separating disturbed and undisturbed regions moves into the undisturbed
region with speed c.

Closed Regions

We here consider the question of uniqueness when the region of interest
(Fig. 4-13) is enclosed by surfaces on which the normal component v · nS

† Huygens’ exposition on the principles underlying such a construction is in his Traité de
la lumière, Leyden, 1678. For a detailed summary and relevant history, see E. Mach, The
Principles of Physical Optics, 1926, reprinted by Dover, New York, 1954, pp. 255–271. The
modem viewpoint on Huygens’ principle is described by B. B. Baker and E. T. Copson,
The Mathematical Theory of Huygens’ Principle, Oxford, 1950, pp. 1–3.
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of the acoustic fluid velocity is specified as a function of time. If the acoustic
field within the enclosure is zero before the walls begin to vibrate, the subse-
quent acoustic field is unique. A proof† results if one assumes that there are
two such fields and then demonstrates that their difference is zero. This dif-
ference satisfies the same (zero) initial conditions and the same homogeneous
partial differential equations, but satisfies the requirement that ∆v · nS = 0
at all boundary surfaces. The energy theorem of Eq. (1-11.2) applies, with p
replaced by ∆p and v replaced by ∆v. The integral version of the latter for
the total volume V takes the form

∂

∂t

∫∫∫ [

(∆p)2

2ρc2
+
ρ(∆v)2

2

]

dV =

∫ ∫

∆p ∆v · nS dS, (4-5.4)

where the surface’s unit normal nS points into V .
Since ∆v ·nS = 0 at every point on the surface, the volume integral in Eq.

(4) must be independent of time. The initial values of ∆p and ∆v, however,
are zero, so the volume integral must be zero for all time. The only way
such an integral can be zero is for its integrand to vanish. Hence, ∆v and
∆p are zero at all points in V for all times. Thus, the two solutions of the
boundary-value problem must be the same, and uniqueness follows.

Uniqueness can be demonstrated similarly when p rather than v · nS is
specified at each point on the boundary, given that p and v are initially
specified everywhere. Also, one could specify the problem by giving one or
the other, p or v · nS, at each point on the bounding surfaces. One cannot
arbitrarily specify both along the boundary, since use of either one or the
other might lead to different solutions. Nevertheless, if the problem is to be
physically meaningful, the boundary data taken in a single experiment must
be consistent with the mathematical model, so it should not in principle make
any difference what subset of boundary data is used in the prediction of p and
v at interior points. Also, there is here an implication for the possible design
of acoustic systems. Given the broad assumptions that lead to the linear
acoustic equations (1-5.3) and the boundary condition (3-1.2), one cannot
independently control surface pressures and normal velocities.

† The general method of proving uniqueness with energy integrals dates back to C. F.
Gauss, “General theorems concerning the attracting and repelling forces that vary with
the inverse square of distance,” Leipzig, 1840, reprinted in Carl Friedrich Gauss Werke,
vol. 5, Königlichen Gesellschaft der Wissenschaften, Göttingen, 1877, pp. 197–242, es-
pecially pp. 226–237. The generalization to the wave equation is due to G. Kirchhoff,
Mechanik, 2d ed., Teubner, Leipzig, 1877, pp. 311, 336. For a modern discussion with per-
tinent twentieth-century references, see R. Courant, Methods of Mathematical Physics, vol.
2, Partial Differential Equations, Interscience, New York, 1962, pp. 642–647.
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Figure 4-12 Huygens’ construction of a wavefront at time to+∆t from wavefront at time
to. The new wavefront is the envelope of spheres of radius c ∆t centered at points on the
old wavefront.

Figure 4-13 Geometry for discussion of the uniqueness of solutions of the wave equation
for a closed region consisting of a volume V with bounding surface S. Here nS is the unit
normal to S pointing out of the surface into the fluid.
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Uniqueness and Open Regions

The above conclusions apply even when the fluid’s spatial extent is un-
bounded in certain directions (see Fig. 4-14). One limits one’s attention to a
finite region partly enclosed by solid surfaces and partly enclosed by a hypo-
thetical surface that lies within the fluid. This latter surface is taken to be
far enough removed from the cause of the sound, e.g., some vibrating solid
surface, to ensure that, for all times of interest, the wave disturbance has
not yet reached it. The existence of such a surface is guaranteed by Poisson’s
theorem. One chooses it to be at least a distance (c)(t − to), to being time
of initial source excitation, from any active surface. Then p and v are zero
on the surface. Consequently, if one postulates two solutions, each initially
zero, and specifies that they must both satisfy the same boundary conditions
(specified values of either p or v for all times up to t at each point on S), Eq.
(4) again results and leads to the conclusion that ∆p and ∆v must be zero
up to time t. The solution is unique up to time t, but since t is arbitrary, the
solution is unique for all time.

Figure 4-14 Conceptual device used for proof of uniqueness of transient solutions of the
wave equation for an open region. The outer surface is at least a distance (t − to)c from
any point on the inner boundary; to is the time of source excitation.
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Sommerfeld’s Radiation Condition

The boundary condition that the acoustic field vanish at points farther than
(t − to)c from the source is awkward to apply in analytical studies. Often
used instead is the Sommerfeld radiation condition,† which states that (in
spherical coordinates)

lim
r→∞

[

r

(

∂p

∂r
+

1

c

∂p

∂t

)]

= 0, lim
r→∞

[

r

(

∂p̂

∂r
− ikp̂

)]

= 0. (4-5.5)

(The constant-frequency version results from the first equation with the pre-
scription ∂/∂t → −iω.) This can be derived, given that all the bodies gen-
erating or perturbing the acoustic field are within a finite region centered
at the origin. At sufficiently large distance r, the acoustic field varies more
strongly with radial displacements than with displacements perpendicular to
the radial direction, and ∇2p is approximately r−1∂2(rp)/∂r2; one therefore
concludes that p at large r is of the form of Eq. (1-12.3), where the functions
f and g depend on the angular coordinates θ, φ, in addition to r and t. The
function g(t+ r/c, θ, φ) is argued to be zero from causality considerations,
so one is left with just the f term, the error being of the order of 1/r2 times
another function of t−r/c, θ, and φ. Consequently, one obtains the radiation
condition (5) above.

An equivalent statement of the Sommerfeld radiation condition is

lim
r→∞

{(p− ρcvr)} = 0, (4-5.6)

which results because the wave disturbance locally resembles a plane wave
(v ≈ np/ρc) propagating in the radial direction at large r. This version
leads to the identification of ρc as the apparent specific acoustic impedance
Z = p̂/v̂r associated with a sphere of radius r in the limit of large r.

With condition (6) imposed, the boundary-value problem for sound radia-
tion from a collection of vibrating solids all of finite extent and on the surface
of each of which either p or v ·nS is prescribed (but not both) must also have
a unique solution. If one assumes that there are two solutions, then Eq. (4)
holds. If V is taken to be finite and bounded by a sphere of large radius r
[not necessarily greater than (t− to)c], the right side is not a priori zero but

† A. Sommerfeld, “The Green’s function of the oscillation equation,” Jahresber. Dtsch.
Math. Ver., 21:309–353 (1912). Sommerfeld’s Ausstrahlungsbedingung appears on p. 331.
For later statements of radiation conditions (and proofs of uniqueness) see K. Rellich, “On
the asymptotic behavior of solutions of ∇2u+ ku = 0 in infinite regions,” ibid., 53:57–64
(1943); F. V. Atkinson, “On Sommerfeld’s radiation condition,” Phil. Mag.(7)40:645–651
(1949); C. H. Wilcox, “A generalization of theorems of Rellich and Atkinson,” Proc. Am.
Math. Soc., 7:271–276 (1956); R. Leis, “On the Neumann boundary value problem for
the Helmholtz oscillation equation,” Arch. Ration. Mech. Anal. 2:101–113 (1958); C. H.
Wilcox, “Spherical means and radiation conditions, ” ibid. 3:133–148 (1959).
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reduces, because of Eq. (6), to the nonpositive quantity

−
∫ ∫

Sr

ρc(∆vr)
2 dS,

where the integration extends over the sphere of radius r (on which nS is
−er). The time integral of the above cannot be positive, so the volume in-
tegral in (4) is either 0 or negative at any given instant. It cannot, however,
be negative, so it must be zero. One concludes that ∆v and ∆p are zero
throughout the volume V and, in particular, that ∆vr is zero on the outer
sphere. The solution is therefore unique.

Uniqueness of Constant-Frequency Fields

A constant-frequency acoustic field (or the Fourier transforms of acoustic
variables in a transient disturbance) is uniquely specified in a closed volume
V when p̂, v̂ ·nS, or Z = p̂/(−v̂ ·nS) (but only one of the three at any point)
is given at each and every point on the confining surface S, providing that,
on one portion of S, it is Z (rather than p̂ or v̂ ·nS) that is specified and on
this surface Re{Z} > 0 and |Z| is finite. The proof results from the corollary
∇ · (Re p̂∗v̂) = 0 of the steady-state field equations (1-8.12). If one has two
solutions, the differences∆p̂ and∆v̂ must also satisfy this divergence relation;
the integral of such a relation over V , in conjunction with Gauss’s theorem,
requires a zero value for the integral of Re{(∆p̂∗∆ ˆv · nS) over the surface
confining the volume V . If both solutions are required to satisfy boundary
conditions with either p̂ or v̂·nS (but not both) prescribed on various portions
of S, then ∆p̂ or ∆v̂ ·nS, respectively, will vanish on those portions. On the
remaining portions, the specific impedance Z = p̂/(−v̂ ·nS) is prescribed, so
∆p̂ = −Z∆v̂ ·nS and the requirement for a zero value of the surface integral
reduces to

∫∫

Re{Z} |∆v̂ · nS|2 dS = 0, (4-5.7)

where the integral extends over just those surfaces on which an impedance
boundary condition is prescribed. Equation (7) results in the conclusion that
on any surface of finite specific impedance over which Re Z > 0 one must
have ∆v̂ · nS = 0. The relation ∆p̂ = −Z∆v̂ · nS then requires ∆p̂ = 0 on
the same portion of surface.

The above analysis indicates that both ∆p̂ and its normal derivative van-
ish on some finite surface. Because ∆p̂ must satisfy the Helmholtz equation
(1-8.13), each and every higher derivative of ∆p̂ is zero on this surface. [For
example, if the surface lies on the z = 0 plane, ∆p̂ and ∂∆p̂/∂z are zero
for a finite range of x and y. Within this range, ∂∆p̂/∂x, ∂2∆p̂/∂x2, etc.,
are zero because ∆p̂ is constantly zero. Similarly, ∂2∆p̂/(∂x ∂z) is zero be-
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cause ∂∆p̂/∂z is constantly zero. The Helmholtz equation then predicts that
∂2∆p̂/∂z2 will be zero on the surface. Zero values for the higher derivatives
result because ∂∆p̂/∂z, ∂2∆p̂/∂z2, etc., also satisfy the Helmholtz equation.]

Figure 4-15 An implication of the uniqueness theorem: the acoustic field outside any
surface S′ enclosing the source can be determined from the knowledge of either p or v · n

on S′.

Since ∆p̂ and all its derivatives vanish on a portion of S, the prediction of
∆p̂ for points away from that surface based on a Taylor-series expansion is
zero. This then leads to the conclusion that the solution is unique.

The analysis just given implies that sufficient boundary conditions for
constant-frequency radiation from a finite-sized vibrating body (or an as-
semblage of vibrating bodies) in an open space result from specification of
v̂ ·nS, p̂, or Z at each point on the body and from specification of the Som-
merfeld radiation condition (6) on a large sphere surrounding the body. The
latter device formally makes the open region appear to be a finite volume V ;
because ρc is real and positive, there is a portion (the outer sphere) of the
confining surface on which Re Z > 0; the solution is therefore unique.

Since predictions of acoustic fields can be modeled as boundary-value prob-
lems, one has considerable latitude in the selection of what data might be
taken in the near field of a source to predict the field at moderate to large
distances. Over any surface (see Fig. 4-15) enclosing the source one can mea-
sure either p̂ or v̂ · n. The source need not be a vibrating solid, and the
surface on which near-field measurements are made need not be the surface
of the source, but it is required that the acoustic field equations hold outside
the surface of measurement. Because such data lead (although, possibly with



4-6 The Kirchhoff-Helmholtz Integral Theorem 203

the aid of a large computer) to a unique prediction of the field outside the
surface, any such prediction of p̂ or v̂ at a distant point is the same as would
be obtained from any other valid choice of near-field data.

4-6 THE KIRCHHOFF-HELMHOLTZ INTEGRAL

THEOREM

Discussions of sound radiation are often facilitated by a mathematical theo-
rem† due to Kirchhoff and Helmholtz, derived here for an isolated vibrating
body (or for a fixed surface enclosing a source) in an otherwise unbounded
fluid; each point on the surface S of the body vibrates with the same angular
frequency ω.

The derivation begins with the vector identity‡

G(∇2 + k2)p̂− p̂(∇2 + k2)G = ∇ · (G∇p̂− p̂∇G), (4-6.1)

where G is any function of position. Both sides are integrated over a volume
V consisting of all points outside S that are within some large sphere of ra-
dius R centered at the origin. The contribution from the first term on the
left is zero because (∇2+k2)p̂ = 0 within V . Gauss’s theorem transforms the
volume integration over the right side into a surface integral; there are contri-
butions from the inner surface S and from the outer sphere. The integration
accordingly yields

−
∫∫∫

p̂(∇2 + k2)GdV = −
∫ ∫

S

(G∇p̂− p̂∇G) · nS dS + IR, (4-6.2)

where

IR = R2

∫ 2π

o

∫ π

o

(

G
∂p̂

∂R
− p̂

∂G

∂R

)

sin θ dθ dφ (4-6.3)

is the surface integral over the outer sphere. The minus sign appears in front
of the first term on the right of (2) because nS is here understood to point
out of the surface S into the external volume.

We stipulate that G is a Green’s function Gk(x|xo) that throughout V
satisfies the inhomogeneous Helmholtz equation (4-3.10). This stipulation

† Helmholtz, “Theory of air oscillations . . . ,” especially pp. 22–25; G. Kirchhoff, “Toward
a theory of light rays,” Ann. Phys. Chem. 18:663–695 (1883), especially pp. 666–669.
A frequently cited modern derivation is that of J. A. Stratton, Electromagnetic Theory,
McGraw-Hill, New York, 1941, pp. 424–428. The basic mathematical ideas were used in
the case of Laplace’s and Poisson’s equations by Green, Essay on the Application of Math-

ematical Analysis, 1828.
‡ Green’s theorem can be derived from this by integrating both sides over a fixed volume,
then converting the integral on the right to a surface integral by means of Gauss’s theorem.
Green, Essay on the Application of Mathematical Analysis, 1828.



204 4 Radiation from Vibrating Bodies

causes the left side of Eq. (2) to be 4πp̂(xo) (given that xo is in V ) because
of the integral property of the Dirac delta function. Moreover, if G is required
to satisfy the Sommerfeld radiation condition, if |G| goes to zero at least as
fast as 1/R at large R, and if p̂ has the same properties (which must be
true for the actual solution), IR vanishes in the limit of large R. Because
the remaining terms in (2) are independent of the choice for R, one must
conclude that IR is identically zero for any sphere containing the surface and
the point xo. Thus, for xo exterior to S, Eq. (2) reduces to

p̂(xo) = − 1

4π

∫

F

∫

(G∇p̂− p̂∇G) · nS dS, (4-6.4)

where the integration extends over the vibrating surface only. (If xo were
within the interior of S, a similar equation would result but with the left side
replaced by zero.)

One has some latitude in the selection of the Green’s function G. One
could choose it, for example, so that G or ∇G · nS vanishes on the surface
S, and then one of the two terms in the integrand of (4) would drop out and
one would need only know (besides G) p̂ or ∇p̂ ·nS, respectively, to evaluate
p̂(xo). However, the simplest explicit choice for G is the free-space Green’s
function R−1eikR; we here make this choice to obtain the Kirchhoff-Helmholtz
integral theorem.

One may note, from Eq. (1-8.12), that ∇p̂ · nS = i ωρv̂n, and also that

∇G =
x− xo

R3
(ikR− 1)eikR. (4-6.5)

The transient version of Eq. (4) can consequently be identified with the pre-
scriptions that iω → −∂/∂t and that a factor eikR multiplying e−iωt is equiv-
alent to shifting t to t−R/c. Thus, with the symbol change x → xS, xo → x

we obtain

p(x, t) =
ρ

4π
∈
∫

v̇n(xS, t−R/c)

R
dS

+
1

4πc

∫ ∫

eR · nS

(

∂

∂t
+
c

R

)

p(xS, t−R/c)

R
dS, (4-6.6)

where here we write R = |x − xS| and eR = (x − xS)/R. The symbol xS

here denotes a point on the surface of the body; x denotes a point outside the
body. [The derivation of Eq. (4) led to a representation of the listener location
by the symbol xo, but since the choice of symbols to denote position is only
a matter of definition, one can make the substitutions x → xS and xo → x.]
The constant-frequency version of the Kirchhoff-Helmholtz integral theorem
is recovered if one replaces v̇n(xS, t−R/c) by −iωv̂n(xS)e

ikR, ∂/∂t→ −iω,
etc.



4-6 The Kirchhoff-Helmholtz Integral Theorem 205

Result (6) holds if x is any point outside S and, in particular, if x =
x′

S + n′
Sδ is a point displaced a slight distance δ from a point x′

S on the
surface. In the limit as δ becomes zero, the integrands become singular, but
the right side of (6) remains finite and approaches the sum of the principal
values (i.e., omit a small patch of radius ǫ centered at x′

S and take the limit
as ǫ → 0) of the integrals plus 1

2p(x, t) . Alternately, one can regard the right
side of (6) as yielding 1

2p(x, t) rather than p(x, t) when x is on the surface.
If x is inside the surface, the right side should yield zero.

Equation (6) or its constant-frequency counterpart is not a solution of an
acoustic boundary-value problem since, as discussed in the previous section,
one cannot specify both p and vn independently on the surface. Instead, it is a
corollary of the governing partial-differential equation and of the Sommerfeld
radiation condition. If v̂n, for example, is specified on S, the solution of the
acoustic boundary-value problem will have to be such that it gives values of
p̂(xS) on the surface S satisfying the x → xS version (as described above) of
Eq. (6). Such an equation can be regarded as an integral equation for p̂(xS)
and, indeed, the numerical solution of this integral equation is a common first
step for prediction of the acoustic field of a vibrating object.†

Multipole Expansions of the Kirchhoff-Helmholtz

Integral

The integral theorem leads to convenient expressions for the coefficients in
the multipole expansion of a small vibrating body.‡ Let us assume that the
body is confined to the vicinity of the origin and that any dimension a char-
acterizing the body’s size satisfies the criterion ka≪ 1, where k = ω/c and ω
is any angular frequency characterizing the surface vibrations. For simplicity,
we here use the transient expression (6); the constant-frequency result can
be determined with the prescription that the retarded time t − R/c in the
argument of a function corresponds to the presence of a factor of eikR in the
complex amplitude and with the replacement of ∂/∂t by −iω.

The derivation of an appropriate multipole expansion is similar to that of
Eq. (4-4.12). One replaces p(xS, t−R/c)/R by the expansion resulting from
the application of the operator exp (−xS · ∇) to p(xS, t− r/c)/r, where the

† Solution of the integral equation is not unique for certain discrete frequencies, but can
be made unique if one specifies that the Kirchhoff-Helmholtz integral vanish for all x

within the surface. [H. A. Schenck, “Improved integral formulation for acoustic radiation
problems,” J. Acoust. Soc. Am. 44:41–58 (1968); L. G. Copley, “Fundamental results con-
cerning integral representations in acoustic radiation,” ibid. 44:28–32 (1968); P. H. Rogers,
“Formal solution of the surface Helmholtz integral equation at a nondegenerate character-
istic frequency,” ibid. 54:1662–1666 (1973).]
‡ H. L. Oestreicher, “Representation of the field of an acoustic source as a series of multipole
fields,” J. Acoust. Soc. Am. 29:1219–1222 (1957), 30:481 (1958).
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exp (−xS · ∇) = 1− xS · ∇+ · · · is the expansion operator in Eq. (4-4.11b).
A similar expansion replaces v̇n(xS, t−R/c)/R. Note also that the operator
eR(∂/∂t+ c/R) applied to p(xS, t−R/c)/R is equivalent to −c∇ applied to
the same function. Thus, Eq. (6) becomes

p(x, t) =
ρ

4π

∫

int[exp (−xS · ∇)]
v̇n(xS, t− r/c)

r
dS

− 1

4π

∫ ∫

[exp (−xS · ∇)](nS · ∇)
p(xS, t− r/c)

r
dS (4-6.7)

A rearrangement of terms and application of differential calculus identities
subsequently yields the multipole expansion

p =
S(t− r/c)

r
−∇·

d(t− r/c)

r
+

3
∑

µ,ν=1

∂2

∂xµ∂xν

Qµν(t− r/c)

r
+ · · · , (4-6.8)

where

S(t) =
ρ

4π

∫∫

v̇n(xS, t) dS =
ρ

4π
Q̇S(t) (4-6.9a)

d(t) =
1

4π

∫∫

[ρxSv̇n(xS, t) + nSp(xS, t)] dS (4-6.9b)

Qµν(t) =
1

8π

∫∫

[ρxSµxSν v̇n(xS, t) + (xSµnν + xSνnµ)p(xS, t)] dS

(4-6.9c)

are identified as the monopole function, the dipole-moment vector, and the
µνth quadrupole component, respectively. Definition (9c) is such that Qµν =
Qνµ. In Eq. (9a), QS(t) is the instantaneous time derivative of the volume
enclosed by a surface that moves with the same normal velocity as the fluid
just outside the reference surface S and is consequently identified as the
source strength.

4-7 SOUND RADIATION FROM SMALL

VIBRATING BODIES

We have seen (Secs. 4-1 and 4-2) that simple expressions result for the sound
radiation from spherical bodies undergoing radial or transverse oscillations in
the limit ka≪ 1. Similar expressions, appropriate for sound at large distances
from small vibrating bodies of arbitrary shape, are derived here. The analysis
also gives some insight into the nature of acoustic fields near such bodies.

For vibrations of a given angular frequency ω or, alternately, of a given
value of k = ω/c, the boundary-value problem for radiation from an isolated
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vibrating body is posed by the Helmholtz equation (1-8.13), by a specifica-
tion of the normal component v̂S · n = v̂n of the complex amplitude of the
outward-normal component of the body’s surface velocity, and by the Som-
merfeld radiation condition. The boundary condition (3-1.2) implies that at
the surface, n ·∇p̂ should be ikρcv̂n. The resulting boundary-value problem,
in accordance with the remarks in Sec. 4-5, should have a unique solution.

An approximate solution scheme results from consideration of a sequence
of problems in which the frequency and therefore k varies continuously from
problem to problem but for which the complex surface velocity amplitude v̂n
at a given point on the surface is held fixed. If we let a be a representative
length characterizing the dimensions of the body, then ka is a dimensionless
parameter distinguishing various problems in the overall set. Two possible
expansions of p̂ in terms of ka would be an inner expansion in which r/a is
kept fixed and an outer expansion in which kr is kept fixed. Such expansions
exist as simple power series in ka for the known solutions [see Eqs. (4-1.4),
(4-2.5), and (4-2.6)] for a radially oscillating sphere and for a transversely
oscillating rigid sphere, so one can proceed with some hope of finding such
expansions for more general classes of vibrating bodies. The leading term in
the inner expansion should be at most of order ka; that in the outer expansion
should be at most of order (ka)2. Thus, one can write the inner expansion as

p̂ =

N
∑

n=1

p̂in,n +Rin
N , (4-7.1a)

where p̂in,n is of the form

p̂in,n = iρcv̂typ(ka)
nFn

( r

a
, θ, φ

)

, (4-7.1b)

with the dimensionless functions Fn(r/a, θ, φ) for n = 1, 2, . . ., yet to be
determined. Here v̂typ is some typical value of the v̂n; the quantity Rin

N is the
remainder. Similarly, the outer expansion can be written

p̂ =

N
∑

n=2

p̂out,n +Rout
N , (4-7.2a)

with
p̂out,n = iρcv̂typ(ka)

nGn(kr, θ, φ). (4-7.2b)

These are (at worst) asymptotic expansions in the sense that, for given
ǫ, r/a, φ, θ, and N , there is some finite value δ such that if ka < δ, the
remainder Rin

N in the inner expansion has absolute value less than ǫ(ka)N+1,
even though, for fixed ka, the quantity |Rin

N | may not go to zero when N
becomes large without limit.
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The method of matched asymptotic expansions† as applied to the general
boundary-value problem posed above is a scheme whereby the p̂in,n and p̂out,n
can be determined in a systematic fashion from the following requirements:

1. Both Eqs. (1a) and (2a) represent solutions of the Helmholtz equation.
2. The inner expansion (1a) must satisfy the inner boundary condition.
3. The outer-expansion terms must satisfy the Sommerfeld radiation condi-

tion.
4. The first few terms in both expansions describe the same function in a

hypothetical range where a≪ r ≪ 1/k.

Requirement 1 applied to the inner expansion is satisfied when Eqs. (1) are
substituted into the Helmholtz equation and when the resulting coefficients of
different powers of ka are equated to zero. Similarly, requirement 2 is satisfied
if the inner expansion is substituted into the inner boundary condition and if
this is required to be identically satisfied for arbitrary ka. In this manner, the
following sequence of (incompletely posed) boundary-value problems results:

∇2p̂in,1 = 0 with n · ∇p̂in,1 = iωρv̂n on S (4-7.3a)

∇2p̂in,2 = 0 with n · ∇p̂in,2 = 0 on S (4-7.3b)

∇2p̂in,3 = −k2p̂in,1 with n · ∇p̂in,3 = 0 on S (4-7.3c)

The form of the outer expansion can be derived from the constant-
frequency version of the multipole expansion, Eq. (4-6.8), of the Kirchhoff-
Helmholtz integral. For the evaluation of coefficients depending on surface
pressure, we use the inner expansion, Eq. (1a), for p̂. Thus, one can con-
sider d̂ and the Q̂µν as being expanded in a power series in ka, that is,
d = d̂1 + d̂2 + · · · , etc., where d̂1 results from Eq. (4-6.9b) with v̇n replaced
by −iωv̂n and with p replaced by p̂in,n and where

4πd̂n =

∫∫

nS p̂in,n dS, n ≥ 2. (4-7.4)

The Q̂µν,n are defined analogously with reference to Eq. (4-6.9c).

† Texts discussing the method of matched asymptotic expansions are A. H. Nayfeh, Pertur-
bation Methods, Wiley-Interscience, New York, 1973, pp. 111–154; J. D. Cole, Perturbation
Methods in Applied Mathematics, Blaisdell, Waltham, Mass., 1968, pp. 11–78, 129–162; M.
Van Dyke, Perturbation Methods in Fluid Mechanics, Academic, New York, 1964, pp. 77–
97. A general review of the method as applied to acoustics is given by M. B. Lesser and
D. G. Crighton, “Physical Acoustics and the Method of Matched Asymptotic Expansions,”
in W. P. Mason (ed.), Physical Acoustics, vol. 11, Academic, New York, 1976, pp. 69–149.
The modern development of the method was inaugurated by S. Kaplun, P. A. Lagerstrom,
and J. D. Cole in articles published c. 1955. The basic concept that the near field of a
small vibrating body is approximately the same as if the fluid were incompressible can be
discerned in papers by Rayleigh published in 1871 (Rayleigh scattering) and 1897.
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One can establish from Eq. (4-6.9a) that Ŝ is of the form −iρcv̂typka2
times a dimensionless quantity independent of ka. Similarly, from Eqs. (1b)
and (4-6.9b), one establishes that each d̂n is of the form of −iρcv̂typa2(ka)n
times such a dimensionless quantity. Each of the Q̂µν,n is of the form of
−iρcv̂typa3(ka)n times a dimensionless quantity independent of ka. Analo-
gous considerations hold for the coefficients arising from higher-order terms
in the multipole expansion. Consequently, a comparison of the ka dependence
for fixed kr of the various order (in ka) terms in the multipole expansion with
those in the outer expansion results in the identifications

p̂out,2 = Ŝ
eikr

r
, (4-7.5a)

p̂out,3 = −d̂1 · ∇
eikr

r
, (4-7.5b)

p̂out,4 =

(

−d̂2 · ∇
eikr

r

)

+

3
∑

µ,ν=1

Qµν,1
∂2

∂xµ ∂xν

eikr

r
. (4-7.5c)

[Below it is demonstrated that the dipole term (in parentheses) of Eq. (5c)
is zero.]

The determination of boundary conditions for the asymptotic behavior at
large r of the inner expansion functions p̂in,n is accomplished with the help
of a general matching condition that both expansions represent the same
function at intermediate distances r, where a≪r≪1/k, so that the inner
expansion’s form at large r/a should resemble the outer expansion’s form at
small ka. The latter can be derived by expanding each of the eikr appearing
in Eqs. (5) in a power series in kr

eikr =

∞
∑

m=0

(ika)m(r/a)m

m!
, (4-7.6)

so that one has, for example, that the mth term in the expansion of
[∂2/(∂xµ ∂xν ](r

−1eikr) is (ka)m/a3 times a dimensionless function of r/a, θ,
and φ. Thus, since Q̂µν,1 is −iρcv̂typka4 times a dimensionless quantity inde-
pendent of ka, the product of Q̂µν,1 and the mth term in the kr expansion
varies with ka for fixed r/a as (ka)m+1. Consequently, such a term gives in-
formation concerning p̂in,n for n = m+1 at large r/a. In such a manner, one
establishes that, in the limit of large r/a,
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p̂in,1 → Ŝ

r
− d̂1 · ∇

1

r
+

3
∑

µ,ν=1

Q̂µν,1
∂2

∂xµ ∂xν

1

r
− · · · , (4-7.7a)

p̂in,2 → ikŜ − d̂2 · ∇
1

r
+

3
∑

µ,ν=1

Q̂µν,2
∂2

∂xµ ∂xν

1

r
− · · · , (4-7.7b)

p̂in,3 → −1

2
k2

(

Ŝr − d̂1 · ∇r +
3
∑

µ,ν=1

Q̂µν,1
∂2r

∂xµ ∂xν
− · · ·

)

− d̂3 · ∇
1

r
+

3
∑

µ,ν=1

Q̂µν,3
∂2

∂xµ ∂xν

1

r
− · · · . (4-7.7c)

That Eqs. (7) are consistent with Eqs. (3) follows since the individual
terms in Eqs. (7a) and (7b) are solutions of Laplace’s equation ∇2ψ = 0.
Also, since ∇2r = 2/r [see Eq. (4-5.3)], Eqs. (7a) and (7c) are such that
∇2p̂in,3 = −k2p̂in,1. The function p̂in,1 is uniquely determined by Eq. (3a)
and by the requirement, derived from (7a), that it go to zero at large r at
least as fast as 1/r. That the asymptotic expansion of p̂in,1 should be given
by Eq. (7a), where the coefficients Ŝ, d̂1, Q̂µν,1 are given by the constant-
frequency versions of Eqs. (4-6.9) with p̂ → p̂in,1, follows from the k = 0
analog of the multipole expansion of the Kirchhoff-Helmholtz integral.

The only way the asymptotic expansion (7b) can be consistent with the
boundary condition in Eq. (3b) that ∇p̂in,2 ·n = 0 on the vibrating surface is
for one to have p̂in,2 = ikŜ identically. Equation (4) then yields the relation
d̂2 = 0. The Q̂µν,2 calculated from Eq. (4-6.9c) (with the vn term omitted
and p replaced by ikŜ) are zero unless µ = ν. The third term in Eq. (7b)
vanishes nevertheless because all three of the Q̂µν,2 are equal and because
∇2(1/r) = 0. Analogous considerations apply to the higher-order terms.

We now summarize the results of the preceding analysis, explicitly taking
into account the time dependence using the prescription −iω → ∂/∂t and
using the correspondence of the factor eikr to the time shift t → t − r/c.
Equations (3a) and (3b) imply that up to second order in ka the acoustic
pressure at distances r ≪ 1/k satisfies Laplace’s equation (which results for
incompressible potential flow),

∇2pin(x, t) = 0, (4-7.8a)

with the boundary condition

n · ∇pin(xS , t) = −ρ ∂
∂t
vn(xS, t) (4-7.8b)

at points xS on the surface of the vibrating body. At large r/a the inner
solution approaches
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pin(x, t) →
[

S(t)

r
− d1(t)·∇

1

r
+

3
∑

µ,ν=1

Qµν,1(t)
∂2

∂xµ ∂xν

1

r
− · · ·

]

− Ṡ(t)

c
,

(4-7.9)
where S(t), d1(t), and the Qµν,1(t) are as given by Eqs. (4-6.9), the latter
two with p replaced by pin. The quantity in brackets corresponds to first
order in ka (for fixed r/a), and the last term corresponds to second order.
Equation (9) imposes an outer boundary condition on pin, that it plus Ṡ/c
go to zero at least as fast as 1/r. In conjunction with Eqs. (8), this specifies
pin(x, t),d1(t), and the Qµν,1(t) uniquely.

Another implication of the analysis is that the acoustic-pressure field at
r ≫ a is given up to fourth order in ka (for fixed kr) by†

pout =
S(t− r/c)

r
−∇·

d1(t− r/c)

r
+

3
∑

µ,ν=1

∂2

∂xµ ∂xν

Qµν,1(t− r/c)

r
, (4-7.10)

where the monopole, dipole, and quadrupole terms correspond, respectively,
to second, third, and fourth order in ka for fixed kr. This satisfies the wave
equation and matches Eq. (9).

The monopole term in Eq. (10) is the same [see Eq. (4-1.6)] as derived
for the radially oscillating sphere in the limit ka ≪ 1. The implication here,
however, is that this should be a good approximation for sound radiation
at distances r ≫ a from any small vibrating body whose volume changes
with time. This confirms the assertion that any sufficiently small source with
time-varying volume can be considered as a point monopole source regardless
of the shape of the body.

Instances when the monopole term might be insufficient to explain radi-
ation from a small vibrating body are when the body is moving very nearly
as a rigid body or it is a vibrating plate or shell whose thickness changes
negligibly. For the latter case, vnxS is equal and opposite on opposite sides
of the shell, so the integral over the first term vanishes in Eq. (4-6.9b). Since
the surface integral over pnS is the net force F (t) exerted by the body on
the surrounding fluid, one identifies the leading term in the acoustic-pressure
field at r ≫ a as being the same as Eq. (4-4.5), derived for a point force
applied to a fluid.

For a rigid body, one can in general write (see Sec. 3-1) vn as n · (vC +
Ω × xS) where vC(t) is the velocity of the body’s geometric center (taken
as the origin) and Ω(t) is the body’s angular velocity. In such a case, an
application of Gauss’s theorem converts the surface integral of xS v̇n to the
volume integral

† A brief derivation of the first two terms here (taken individually) is given by L. D. Landau
and E. M. Lifshitz, Fluid Mechanics, Addison-Wesley, Reading, Mass., 1959, pp. 280–281.
Although Landau and Lifshitz do not use the full liturgy of what is now called the method
of matched asymptotic expansions, their approach employs the same concepts.
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∫∫

xS v̇n dS =

∫∫∫

[v̇C + Ω̇ × x+∇ · (Ω̇ × x)] dV = ρ−1mdv̇C. (4-7.11)

The second equality results because the choice of geometric center as origin
forces the volume integral of x to be zero and because ∇·(Ω×x) = 0. (Here
md is the mass of fluid displaced by the body.) Consequently, the dipole-
moment vector d1(t) is 1/4π times F 1(t) +md dvC/dt, and the leading term
in the associated pressure field at r ≫ a is‡

pdipole = − 1

4π
∇ ·

{

1

r

[

F 1

(

t− r

c

)

+mdv̇C

(

t− r

c

)]

}

. (4-7.12)

This is consistent with the result (4-2.13) for radiation from a transversely
oscillating sphere in the limit ka≪ 1. Since, for that special case, F 1(t) =
1
2mddvC/dt, the sum F1+mddvC/dt is 3

2mddvC/dt and, with md = 4
3πa

3r

and a vector identity, the above reduces to Eq. (4-2.13).
Instances where a vibrating body would radiate predominantly as a quad-

rupole would be when (1) the intrinsic symmetry of the body and of the
vibration is such that F 1(t) must be identically zero and (2) either v̇C is
identically zero throughout the motion or the vibrating body can be modeled
as a thin shell. As an example, consider the rigid body in Fig. 4-16, whose
nominal position is such that its surface is even in x and y, the body un-
dergoing rocking oscillations about the z axis passing through its geometric
center. The symmetry of the body and of the motion require that vn be an-
tisymmetric in x and y, so the normal derivative of p at the surface is also
antisymmetric in x and y. Since the wave equation and the radiation con-
dition are unchanged if x → −x or if y → −y, the solution of the resulting
boundary-value problem must conform to the symmetry properties of the
boundary conditions, so p is odd in both x and y. This automatically rules
out monopole and dipole fields. The symmetry requires that the lowest-order
(in some ka) outer solution for fixed kr be a lateral quadrupole field of the
form

pQ = 2
∂2

∂x ∂y

Qxy,1(t− r/c)

r
. (4-7.13)

Another example of quadrupole radiation is a vibrating bell† (see Fig. 4-17).
When the bell is vibrating with constant frequency in any one of its natural

‡ An alternate derivation applicable when F 1 and vC are parallel, e.g., because of symme-
try, dates back to H. Lamb, The Dynamical Theory of Sound, 2d ed., 1925, reprinted by
Dover, New York, 1960, pp. 240–241. A general statement, developed by H. M. Fitzpatrick
and M. Strasberg, c. 1957, is summarized by Strasberg, “Radiation from unbaffled bodies
of arbitrary shape at low frequencies,” J. Acoust. Soc. Am., 34:520–521 (1962).
† The first mathematical discussion of note of sound radiation by bells is that of Stokes, “On
the communication of vibration,” 1868, who modeled the bell as a sphere. His identification
of the radiation as quadrupole is implicit in his choice of the spherical harmonic of second
order to describe “the principal vibration for a sphere vibrating in the manner of a bell.”
J. W. S. Rayleigh, The Theory of Sound, 2d ed., Dover, New York, 1945, vol. 2, sec.
324, quotes the relevant passages from Stokes’s paper verbatim. An extensive discussion
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Figure 4-16 Example of a quadrupole radiator: a symmetric rigid body undergoing rock-
ing motion about its geometric center. (If the cross-section is a square, the radiation is
octupole.)

Figure 4-17 A symmetric bell vibrating in a mode that produces quadrupole radiation.
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vibration modes, the bell’s circular symmetry requires the normal velocity
v̂n to be periodic in azimuthal angle φ with period 2π/N , where N is an
integer. Any breathing mode with N = 0 typically corresponds to a frequency
far above the audible range; one mode with N = 1 is a simple pendulum
oscillation (caused by gravity) and corresponds to an infrasonic frequency;
other N = 1 modes involve flexing (as in transverse vibration of a beam)
of the bell without changing the circular shapes of its cross sections and
correspond to ultrasonic frequencies. Since the pressure radiated by any mode
has the same φ dependence as v̂n, one concludes that the monopole and
dipole terms vanish identically for any vibration corresponding to audible
frequencies. The only vibrational modes giving rise to quadrupole radiation
are those corresponding to N = 2, and if the bell’s symmetry axis is the z
axis, the only nonzero quadrupole components areQxy = Qyx, Qxx, andQyy.
Symmetry also requires Qxx = −Qyy. Thus, the radiated acoustic pressure
at r ≫ a is given predominantly by an expression of the form

pQ = 2
∂2

∂x ∂y

Qxy,1(t− r/c)

r
+

(

∂2

∂x2
− ∂2

∂y2

)

Qxx,1(t− r/c)

r.
(4-7.14)

An implication† of this equation is that there should be no sound along the
z axis (x = 0, y = 0).

4-8 RADIATION FROM A CIRCULAR DISK

As an application of the analytical technique described in the previous sec-
tion, we here consider a small circular disk‡ (see Fig. 4-18) of radius a os-
cillating parallel to its axis with velocity vC(t). Such an example furnishes
a model for sound radiation from an unbaffled loudspeaker and leads to a
prediction of acoustic power substantially less than what would be obtained
if the loudspeaker were mounted in a baffle. If the disk nominally lies in the
xy plane with its center at the origin, the inner boundary condition is that
vz = vC(t) for w < a, where w = (x2 + y2)1/2, and for z both slightly greater
and slightly less than 0.

of vibrations of bells and of their acoustic radiation is given by Rayleigh, “On bells,” Phil.
Mag.(5)29:1–17 (1890).
† J. W. S. Rayleigh, “Acoustical observations I,” Phil. Mag. (5)3:456–464 (1877).
‡ The problem of radiation by a vibrating disk is closely related to that of diffraction
by a disk, so that solution for one leads to solution of the other. This is discussed by F.
M. Wiener, “On the relation between the sound fields radiated and diffracted by plane
obstacles,” J. Acoust. Soc. Am. 23:697–700 (1951). The solution of the latter problem in
the small ka limit is due to Rayleigh, “On the passage of waves through apertures in plane
screens, and allied problems,” Phil. Mag. (5)43:259–272 (1897). The low-frequency result
for the oscillating disk was explicitly stated by Lamb, Dynamical Theory of Sound, p. 241.
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Figure 4-18 Oblate-spheroidal coordinates used in analysis of radiation from a vibrating
disk. The limiting surface ξ = 0 coincides with the disk’s nominal location.

The boundary-value problem for determination of the inner field can be
posed in terms of a velocity potential Φin(x, t), whose gradient is vin and
which is such that pin = −ρ ∂Φin/∂t. It follows from Eqs. (4-7.8) that
Φin should satisfy Laplace’s equation and satisfy the boundary condition
∂Φin/∂z = vC(t) for w < a and for z = 0+ and z = 0−.

Oblate-Spheroidal Coordinates

The natural coordinates for the problem are oblate-spheroidal coordinates†

(ξ, η, φ) where w = a cosh ξ sin η, z = a sinh ξ cos η, x = w cosφ, y = w sinφ
with ξ ≥ 0, 0 < η < π, and 0 < φ < 2π. A surface of constant ξ is given by

w2

a2 cosh2 ξ
+

z2

a2 sinh2 ξ
= 1 (4-8.1)

† H. Lamb, Hydrodynamics, 6th ed., 1932, reprinted by Dover, New York, 1945, sec. 107,
pp. 142–143. Our a is Lamb’s k, our ξ is Lamb’s η, our η is Lamb’s θ, our φ is Lamb’s ω.
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and represents an oblate spheroid formed by rotation of an ellipse (distance 2a
between its foci, major semidiameter a cosh ξ, minor semidiameter a sinh ξ)
about its minor axis, which coincides with the z axis. The disk is a degenerate
member of this family and corresponds to the surface ξ = 0.

In oblate-spheroidal coordinates, Laplace’s equation takes the general
form‡

∇2Φin =
1

a2(cosh2 ξ − sin2 η)

[

1

cosh ξ

∂

∂ξ

(

cosh ξ
∂Φin

∂ξ

)

+
1

sin η

∂

∂η

(

sin η
∂Φin

∂η

)]

+
1

a2 cosh2 ξ sin2 η

∂2Φin

∂φ2
= 0, (4-8.2)

and the component of ∇Φin pointing in the direction of increasing ξ and
perpendicular to a surface of constant ξ is given in general by

∇Φin · eξ =
1

a(cosh2 ξ − sin2 η)1/2
∂Φin

∂ξ
. (4-8.3)

Here

eξ =
1

(cosh2 ξ − sin2 η)1/2

[

sinh ξ sin η (ex sin φ+ ey cosφ)

+ cosh ξ cos η ez

]

(4-8.4)

is the unit vector in the direction of increasing ξ. Thus, on the surface of the
disk (ξ = 0), eξ is +ez if cos η > 0 (z = 0+) and −ez if cos η < 0 (z = 0−),
so eξ is the unit outward-normal vector n to a flat disk when ξ = 0.

Solutions of Laplace’s Equation

For future reference, we here digress to list three particular solutions (corre-
sponding to monopole, dipole, and quadrupole fields) of Eq. (2):

Fo(ξ), cos η F1(ξ), cos η sin η sinφF 1
2 (ξ). (4-8.5)

‡ The general statements on p. 173n. apply to oblate-spheroidal coordinates with the
identifications ξ1, ξ2, ξ3 → ξ, η, φ. Thus one has

hξ = hη = a (cosh2 ξ − sin2 η)1/2 hφ = a cosh ξ sin η,

such that hξ dξ is incremental displacement associated with ξ → ξ + dξ, etc. Equations
(2) to (4) follow from Eqs. (v), (iii), and (vi) in the footnote with the substitutions just
described.
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Their substitution into Laplace’s equation shows that each of the functions
Fmn (ξ) (no superscript if m = 0) must satisfy the ordinary differential equa-
tion†

1

cosh ξ

d

dξ

(

cosh ξ
dFmn
dξ

)

+

[

m2

cosh2 ξ
− n(n+ 1)

]

Fmn = 0. (4-8.6)

The equation for Fo(ξ) is relatively simple, the solution being any constant
times the indefinite integral of 1/(cosh ξ). If we require Fo(ξ) → 0 as ξ → ∞,
the resulting integration leads to

Fo(ξ) = sin−1

[

1

cosh ξ

]

. (4-8.7a)

The two differential equations for F1(ξ) and F 1
2 (ξ) have the respective

properties, which can be verified by substitution, that they have particular
solutions

F1(ξ) =
d

dξ
[(cosh ξ)Fo(ξ)]. (4-8.7b)

F 1
2 (ξ) =

d

dξ

[

(sinh ξ)F1 +
1
2 (cosh ξ)

dF1

dξ

]

. (4-8.7c)

Here the Fo(ξ) and F1(ξ) on the right sides are any particular solutions of
the n = 0,m = 0 and n = 1,m = 0 equations. Thus, with Fo(ξ) as given
above, one has

F1(ξ) = sinh ξ sin−1

(

1

cosh ξ

)

− 1, (4-8.7b′)

F 1
2 (ξ) = 3 sinh ξ cosh ξ sin−1

(

1

cosh ξ

)

− 3 cosh ξ +
1

cosh ξ
. (4-8.7c′)

Both go to zero as ξ → ∞.

For the boundary-value problem of the transversely oscillating disk, the
requirement, that ∇Φin · n equal vC or −vC if z = 0+ or z = 0−, is satisfied
if one requires ∇Φ · eξ = vC when ξ = 0 or, from (3) above, if ∂Φ/∂ξ =
vC a cosh η when ξ = 0. This suggests that one look for a solution of Laplace’s

† This is related to the differential equation satisfied by the associated Legendre functions.
The function Fm

n (ξ) is a constant times Qm
n (i sinh ξ), that is, an associated Legendre

function of the second kind with imaginary argument. Definitions and properties of the
Legendre functions are given in M. Abramowitz and I. A. Stegun (eds.), Handbook of
Mathematical Functions, Dover, New York, 1965, pp. 331–341. Our choice for Fo(ξ) is
iQo(i sinh ξ). The expressions for F1 and F 1

2 follow from eqs. (8.5.3) and (8.6.7) in the
Handbook. For derivations, see E. T. Whittaker and G. N. Watson, A Course of Modern
Analysis, 4th ed., Cambridge, 1927, pp. 318, 324.
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equation of the form cos η F (ξ), where dF (ξ)/dξ = vCa at ξ = 0 and F (ξ) →
0 as ξ → ∞. The function F (ξ) is identified from Eqs. (5) and (7b′) as
(2avC/π)F1(ξ), so the velocity potential of the inner field is given by†

Φin =
2avC

π
cos η

[

sinh ξ sin−1

(

1

cosh ξ

)

− 1

]

. (4-8.8)

Determination of the Outer Solution

The inner-field potential function is such that, on the two faces of the disk
(ξ = 0, cos η = ±(1− (w/a)2]1/2), one has‡

Φin = ∓ 2vCa

π

[

1−
(w

a

)2
]1/2

w < a (4-8.9)

while Φin is identically 0 for w > a on the plane z = 0 (η = π/2). In the limit
of large ξ, sinh ξ sin−1(1/ cosh ξ) approaches 1− 4

3e
−2ξ and eξ → 2r/a, where

r is the radial (spherical coordinates) distance from the origin. Consequently,
for r ≫ a, one has

Φin → 2vCa
3

3π

∂

∂z

1

r
(4-8.10)

which is characteristic of the potential for the incompressible-flow field of a
dipole. The pressure in the far field corresponding to this is −ρ ∂Φin/∂t, so,
with reference to Eq. (4-7.9), one identifies the dipole-moment vector as

† Lamb, Hydrodynamics, sec. 108, p. 144. Our Eq. (8) follows from Lamb’s expression
(3) for his φ (which is the negative of our Φin) with µ → cos η, ζ → sinh ξ, ζo →
0, e → 1, sin−1 e → π/2, ǫ → a, U → vC . The mathematical identity cot−1(sinh ξ) =
sin−1(1/ cosh ξ) has also been used. The solution is due to E. Heine, “Concerning some
problems that lead to partial differential equations,” J. reine angew. Math. 26:185–216
(1843).
‡ The prediction in Eq. (9) gives infinite tangential velocity at the edge of the disk, so if
the convection term ρv ·∇v [equal to ∇(ρv2/2) for irrotational flow] is taken into account,
the pressure at the edge will also be infinite when the plate is moving with constant speed.
The ideal-fluid solution is unrealistic for the steady-motion case, the actual flow developing
a wake behind the disk and eddies being generated at the edges that are swept downstream
with the fluid. In the acoustical case, however, the disk is not moving with steady velocity
but is oscillating back and forth with a small velocity amplitude. The theoretical prediction
is not valid within a distance of the order of (2µ/ρω)1/2 from the edge of the plate (where
µ is the viscosity of the fluid), but this length is much smaller than a and the potential-
flow solution gives a prediction that is on the whole reasonably accurate. For a discussion
with accompanying photographs for the related problem of nominally steady flow past a
strip (with a disclaimer in regard to the acoustical case) see A. Sommerfeld, Mechanics
of Deformable Bodies, 2d ed., 1947, Academic, New York, 1950, pp. 207–215. The feeble
influence of viscosity on flows associated with oscillatory motion is explained by Lamb,
Hydrodynamics, pp. 619–623, 654–657.
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d1(t) =
2ρv̇C(t)a

3

3π
=

F 1(t)

4π
(4-8.11)

The matching procedure corresponding to Eq. (4-7.9) allows us to identify the
acoustic pressure at distances r ≫ a (outer solution) as −∇· [d1(t− r/c)/r].

For a transversely oscillating sphere of radius a1, the quantitymd dvC/dt+
Fz is

(

3
2

) (

4
3

)

πa31ρ dvC/dt while for the disk it is 8
3ρa

3 dvC/dt; one can there-
fore conclude that the far field of a transversely oscillating disk (with ka≪ 1)
is equivalent to that radiated by a transversely oscillating sphere of radius
a1 = (4/3π)1/3a = 0.7515a.

4-9 RECIPROCITY IN ACOUSTICS

Reciprocity† refers to situations for which a magnitude associated with an
“effect” at a point is unchanged when the locations of “cause” and “point of
observation” are interchanged.

Reciprocity in Vibrating Systems

As an example, consider the mechanical system in Fig. 4-19 consisting of
three coupled masses that move because of applied forces F1, F2, and F3.
The motion is influenced by a spring with spring constant k2 and by dash-
pots (constants c2 and c3). If x1, x2, x3 denote the displacements of the corre-
sponding masses, the coupled equations of motion (derived from mechanical
principles) can be written in matrix form as









D11 −k2 −c3 ddt
−k2 D22 −c2 ddt
−c3 ddt −c2 ddt D33















x1

x2

x3






=







F1

F2

F3






(4-9.1)

where D11 = M1 d
2/dt2 + c3 d/dt+ k2, etc., are linear operators. The perti-

nent property of the matrix is its symmetry about the diagonal. Thus, if each
force is oscillating with angular frequency ω, such that F1 = Re F̂1e

−iωt, the
corresponding algebraic equations for the complex amplitudes (with the pre-
scription d/dt → −iω) of the velocities u1, u2, u3 (dx1/dt, dx2/dt, dx3/dt),
written as

† The concept dates back to Helmholtz, “Theory of air oscillations in tubes with open
ends,” 1860, and to J. C. Maxwell, “On the calculations of the equilibrium and stiffness of
frames,” Phil. Mag. (4)27:294–299 (1864).
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Figure 4-19 A mechanical system that satisfies the reciprocity principle.

3
∑

j=1

Yij ûj = F̂i i = 1, 2, 3 (4-9.2)

are such that the mobility matrix [Y ] is also symmetric†; that is, Yij = Yji.

Yij = Yji.

The solution of Eqs. (2) for the ûi takes the form

ûi =
∑

j

Zij F̂j , (4-9.3)

where the coefficients Zij are elements of the matrix [Z] representing the
inverse of [Y ]. This mechanical-impedance matrix [Z] is also symmetric
(Zij = Zji) because the inverse of a symmetric matrix must also be sym-
metric. Consequently, if a force with complex amplitude F̂a is applied to
mass Mi, no other active forces being applied, the velocity amplitude ûj of

† This was first demonstrated by J. W. S. Rayleigh, “Some general theorems relating to
vibrations,” Proc. Lond. Math. Soc. 4:357–368 (1873); Theory of Sound, vol. 1, pp. 91–104,
150–157. The symmetry is because a dissipation function D(ẋ1, ẋ2, . . .) exists such that
Lagrange’s equations for a conservative linear system can be extended to give

d

dt

∂T

∂ẋi
+
∂D

∂ẋi
+
∂V

∂xi
= Fi

where the kinetic-energy function T and potential-energy function V are quadratic in the
ẋi and the xi, respectively. The generalized force Fi is such that Fi δxi represents the work
done on the system during an admissible variation δxi. The proof is also given by E. T.
Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th ed.,
Cambridge University Press, London, 1937, pp. 230–232.
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mass Mj(j 6= i) is the same as would be obtained for the velocity amplitude
of mass Mi if the force F̂a were applied to Mj . This is a statement of the
principle of reciprocity.

Another statement of the reciprocity principle comes from a considera-
tion of two separate experiments in which the impressed forces are given by
F̂1a, F̂2a, F̂3a and F̂1b, F̂2b, F̂3b, respectively. Let û1a, û2a, û3a and û1b, û2b, û3b
denote the corresponding velocity amplitudes for the two experiments. Then
one can demonstrate that

∑

i

(F̂iaûib − F̂ibûia) = 0. (4-9.4)

The proof follows from either Eq. (2) or Eq. (3).
The above results [Yij = Yji, Zij = Zji, and Eq. (4)] apply to any lumped-

parameter vibrational system undergoing small-amplitude oscillations of con-
stant frequency. Analogous results apply to electric circuits.† Reciprocity does
not depend on the system’s being nondissipative and is thus not directly re-
lated to any requirement of energy conservation.

Reciprocity and the Linear Acoustic Equations

The linear acoustic equations derived in Chap. 1 require (given a nonmoving
time-independent ambient medium) that the complex amplitudes p̂(x) and
v̂(x) for a constant-frequency disturbance satisfy

− iωp̂+ ρc2 ∇ · v̂ = 0 − iωρv̂ +∇p̂ = 0. (4-9.5)

These also apply if ρ and c are position-dependent, given that po is con-
stant; in what follows, we allow for this possibility.‡ Suppose one has two sets
of solutions, p̂a, v̂a and p̂b, v̂b, of the above equations. Then, the following
statement (leading to a reciprocity principle) is in general true:

∇ · (p̂av̂b − p̂bv̂a) = 0. (4-9.6)

The proof is as follows:

† See, for example, H. H. Skilling, Electrical Engineering Circuits, Wiley, New York, 1957,
pp. 303–304, 331–332.
‡ The proof of the acoustic-reciprocity principle for an inhomogeneous medium is due to
L. M. Lyamshev, “A question in connection with the principle of reciprocity in ccoustics,”
Sov. Phys. Dokl. 4:405–409 (1959).
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∇ · (pav̂b) = pa∇ · v̂b + v̂b · (∇p̂a) = p̂a

(

iω

ρc2
p̂b

)

+ v̂b · (iωρ v̂a)

= p̂b

(

iω

ρc2
p̂a

)

+ v̂a · (iωρ v̂b)

= p̂b∇ · v̂a + v̂a · ∇p̂b = ∇ · (p̂bv̂a)

where the successive steps follow from Eqs. (5) and from vector identities.
Integration of Eq. (6) over a volume V and application of Gauss’s theorem

yields
∫∫

v̂b · ninp̂a dS −
∫∫

v̂a · ninp̂b dS = 0, (4-9.7)

where nin = −nout is the unit normal pointing into the volume V . This is
analogous to Eq. (4); p̂a(xS) dS is the force applied in the a experiment to the
volume by the external environment on a surface element of area dS centered
at xS; v̂a(xS) ·nin is the corresponding velocity at xS in the direction of the
impressed force.

Interchange of Source and Listener

To prove the version of the acoustic-reciprocity theorem that involves in-
terchange of listener and source positions, we let p̂a(x), v̂a(x) be the field
caused by a point source at x1 with source strength amplitude Q̂a, such that
Re Q̂ae

−iωt represents the time rate of volume efflux from the source. Then
the first of Eqs. (5) is modified to

− iωp̂a + ρc2∇ · v̂a = ρc2Q̂aδ(x− x1). (4-9.8)

Similarly, let p̂b(x), v̂b(x) describe the field caused by a point source Q̂b at
x2. Then a derivation analogous to that leading to Eq. (6) yields

∇ · (p̂av̂b − p̂bv̂a) = p̂aQ̂bδ(x− x2)− p̂bQ̂aδ(x− x1). (4-9.9)

On the boundaries of the volume of interest it is assumed that conditions
such as p̂ = 0, or v̂ · nout = 0, or p̂/v̂ · nout = Z(xS), or the Sommerfield
radiation condition are prescribed. Both the a and b fields satisfy the same
boundary conditions. Consequently, if one integrates both sides of Eq. (9)
over the volume, the surface integral resulting from the divergence on the left
side is zero,† so one is left with

† The recognition that the reciprocity principle for point sources applies when portions
of the boundary are locally reacting is due to E. Skudrzyk, Die Grundlagen der Akustik,
Springer, Vienna, 1954, p. 380. Lyamshev, “Principle of Reciprocity,” 1959, showed that
the principle applies if the medium has within it elastic bodies, e.g., plates, shells, or mem-
branes. A possible exception was described by J. H. Janssen, “A note on reciprocity in
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p̂a(x2)

Q̂a
=
p̂b(x1)

Q̂b
. (4-9.10)

The ratio of pressure amplitude to source strength remains the same if loca-
tions of source and listener are interchanged.

Reciprocity and Green’s Functions

For a homogeneous medium, ρ(x2) = ρ(x1), and the ratio p̂a(x2)/Q̂a is
−iωρ/4π times the Green’s function Gk(x2|x1) (see Sec. 4-3). Thus, Eq. (10)
implies that

Gk(x2|x1) = Gk(x1|x2) (4-9.11)

which can be regarded as the reciprocity principle for Green’s functions cor-
responding to point-source solutions of the Helmholtz equation. This holds
trivially for the free-space Green’s function R−1eikR, where R = |x2 − x1|,
but the analysis above shows that it has considerable general applicability.†

Example A barrier extending to some height h is to be erected between a
noise source and a region where quiet is desired. One side of the barrier is to
be treated with special sound-absorbing material; the other side is to be left
untreated. On which side should the treatment be applied?

Solution Given that the source radiates very nearly as a point source, that
the surfaces are locally reacting, and that the source and possible listeners are
symmetrically located on opposite sides of the barrier, the answer, according

linear passive acoustical systems,” Acustica 8:76–78 (1958), who whowed that reciprocity
is violated if the medium has within it a porous material described by equations of motion
like those devised by C. Zwikker and C. W. Kosten, Sound Absorbing Materials, Else-
vier, Amsterdam, 1949. However, some years later, J. F. Allard (Propagation of Sound in
Porous Media, Elsevier, 1992) pointed out that Eq. (3.05) in Zwikker and Kosten’s book
is incorrect. It has subsequently been shown that a reciprocity reklation applies for Biot’s
(J. Acoust. Soc. Am, 1956) model of porous media.
† A reciprocity relation when the source is a dipole rather than a monopole is derived by
J. W. S. Rayleigh, “On the application of the principle of reciprocity to acoustics,” Proc.
R. Soc. Lond. 25:118–122 (1876); Theory of Sound, vol. 2, sec. 294. A well-known case
(also discussed by Rayleigh) where reciprocity is not applicable is when the medium has an
ambient motion. For example, if the wind velocity increases with height, sound is always
heard better downwind than upwind. Reciprocity still applies, however, if the ambient flow
direction is reversed at each point when source and listener locations are interchanged.
From a strictly mathematical standpoint, reciprocity of the Green’s function follows if the
governing boundary-value problem (partial-differential equations and boundary conditions)
is self-adjoint. Analogous considerations hold for the set of Green’s functions corresponding
to a system of equations. If the problem is not self-adjoint, a reciprocity principle can be
derived relating the Green’s functions to those corresponding to the adjoint system. For
a full discussion, see C. Lanczos, Linear Differential Operators, Van Nostrand, London,
1961, pp. 239–244.
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to the principle of reciprocity, is that it makes no difference which side is
treated.

4-10 TRANSDUCERS AND RECIPROCITY

A transducer is any device that changes one form of energy into another;
loudspeakers and microphones are examples of electroacoustic transducers.
A model of a linear electroacoustic transducer‡ can be taken as a “black
box” (Fig. 4-20) embedded in a fluid with two wires at one end which carry
a current i into and out of the transducer and across which the voltage
is e. On the other side is a movable surface whose motion is characterized
by a volume velocity U representing the time rate of change of the volume
enclosed by the surface or, equivalently, the area integral over the transducer
surface of its outward-normal velocity. This surface is acted upon by some
perturbation pressure p. If the pressure is nonuniform over the surface of the
transducer, the value of p we use is a weighted surface average, the weighting
being such that, for this p, −pU is the net mechanical-power input to the
transducer. The product ei represents the net electric-power input, so with
such identifications we refer to −p and U or to e and i as conjugate variables;
−p and e are generalized forces; U and i are generalized velocities.

Figure 4-20 Sketch of an idealized transducer. Voltage e is across wires on electric side;
current i flows through transducer. Pressure p on acoustical side acts on a diaphragm,
whose vibration causes a volume velocity Uout flowing out from the transducer.

When all variables e, i,−p, and U are oscillating with the same angular
frequency ω, the physical properties of a linear transducer impose two al-

‡ For a general account of the mathematical description and properties of transducers, see
F. Hunt, Electroacoustics, Harvard University Press, Cambridge, Mass., 1954, especially
pp. 92-94, 103–109.
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gebraic relations† between the complex amplitudes ê, ı̂,−p̂, and Û ; we write
them as

[

ê
−p̂

]

=

[

Zec Tea
Tae Za

] [

ı̂

Û

]

. (4-10.1)

The matrix element Zec is the clamped electrical impedance (ê/ı̂ when Û is
zero), while Za is the open-circuit acoustic impedance (−p̂/Ûout when ı̂ is 0).
(The term “acoustic impedance” is discussed in detail in Sec. 7-2.) The values
of the matrix elements can be derived from fundamental principles if one
has a detailed model of the transducer. Alternately, they can be obtained by
experiment. The physical principles governing typical designs‡ result in either
Tea = Tae or Tea = −Tae, although this is not invariably the case (transducers
having the property |Tea| = |Tae| are called reciprocal transducers). When
this is so, the generalized velocity at one side of the transducer resulting
from an application of a generalized force on the other side has the same
direct proportionality to this force as when locations of generalized force and
generalized velocity are interchanged, i.e.,
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Û

ê

∣

∣

∣

∣

∣
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=

∣

∣
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∣

ı̂

p̂

∣

∣

∣

∣

ê=0

. (4-10.2)

This is a reciprocity principle analogous to those discussed previously for
mechanical and acoustical systems.

In general, one makes a distinction between the portion of p̂ due to ex-
ternal causes, e.g., another sound source, and that caused by the motion of
the surface, which causes a local motion of the surrounding fluid and which
radiates sound to the far field. For a given environment, the latter portion
p̂rad is directly proportional to Û , so we write p̂rad/Û = Za,rad, this serv-
ing to define the acoustic radiation impedance of the transducer. With this
definition, the second of the two algebraic equations implied by (1) can be
rewritten

− p̂ext − Za,radÛ = Taeı̂+ ZaÛ . (4-10.3)

† This was first recognized by H. Poincaré, “Study of telephonic reception,” Eclairage
Electr. 50:221–372 (1907). Writing the equations in terms of mechanical impedances as
well as electric impedances is due to R. L. Wegel, “Theory of magneto-mechanical systems
as applied to telephone receivers and similar structures,” J. Am. Inst. Electr. Eng. 40:791–
802 (1921).
‡ Reciprocity theorems for electroacoustic transducers date back to W. Schottky, “The law
of low-frequency reception in acoustics and electroacoustics” Z. Phys. 36:689–736 (1926).
For a general discussion and detailed proofs, see L. L. Foldy and H. Primakoff, “A general
theory of passive linear electroacoustic transducers and the electroacoustic reciprocity the-
orem, I and II,” J. Acoust. Soc. Am. 17:109–120 (1945); 19:50–58 (1947). That transducers
are not necessarily reciprocal was demonstrated in 1942 by E. M. McMillan; the analysis
is given in his “Violation of the reciprocity theorem in linear passive electromechanical
systems,” ibid. 18:344–347 (1946).
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This takes a form similar to the original equation if the second term on
the left is transferred to the right and if Za + Za,rad is abbreviated as Z ′

a.
Consequently, Eq. (1) also holds with the substitutions, p̂ → p̂ext, Za → Z ′

a.
If the transducer is a reciprocal transducer, Eq. (2) remains valid when p̂ is
replaced by p̂ext.

A transducer is acting as a loudspeaker when p̂ext = 0. In this case, its
performance is characterized by the ratio Û/ı̂ (with p̂ext = 0). The transducer
equation (with the substitutions described above) gives this ratio as −Tae/Z ′

a.
If the loudspeaker dimensions are small compared with a wavelength and if
the loudspeaker is located in an open space, it radiates as a monopole; the
monopole amplitude is identified from Eq. (4-6.9a) as −iωρÛ/4π. The far-
field pressure amplitude is (Ŝ/r)eikr , so one has

p̂(r) =

(

Û

ı̂

)

pext=0

(−iωρ
4πr

eikr
)

(̂ı) (4-10.4)

for the acoustic pressure amplitude in the far field.
If the transducer is acting as a microphone, the ideal operation is such that

negligible current passes through the transducer; ê will then vary in direct
proportion to the external pressure p̂ext, the proportionality factor derived
from Eq. (1) being −Tea/Z ′

a (with the substitutions described previously).
The magnitude of this factor is the microphone response M (open-circuit
voltage response to pressure in sound field).

If the transducer is a reciprocal transducer such that |Tea| = |Tae|, Eqs.
(1) (with p̂→ p̂ext) and (4) lead to Schottky’s law of low-frequency reception

M =

∣
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ê
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p̂ext=0

, (4-10.5)

which is completely independent of the constants of the transducer.
An application of (5) is in the calibration of microphones.† Suppose one

wants to determine the microphone response MA of microphone A. One has
in the laboratory a loudspeaker C and a reciprocal transducer B, neither

† The use of reciprocity in calibration of microphones was suggested by S. Ballantine in
1929 but was not used until 1940, when R. K. Cook and W. R. MacLean independently in-
vented the absolute-calibration method and Cook demonstrated its practicality. [S. Ballan-
tine, “Reciprocity in electromagnetic, mechanical, acoustical, and interconnected systems,”
Proc. Inst. Radio Eng. 17:929–951 (1929); R. K. Cook, “Absolute pressure calibrations
of microphones,” J. Res. Nat. Bur. Stand. 25:489–505 (1940); W. R. MacLean, “Abso-
lute measurement of sound without a primary standard,” J. Acoust. Soc. Am. 12:140–146
(1940).] A general review and historical account is given by H. B. Miller, “Acoustical mea-
surements and instrumentation,” ibid. 61:274–282 (1977). The free-field method (due to
MacLean) discussed in the text is less commonly used than the pressure-chamber method.
Detailed calibration methods are described in ANSI S1.10-1966 (R1976), American Na-
tional Standard Method for the Calibration of Microphones, American National Standards
Institute, New York, 1976.
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of which are necessarily calibrated. In a first experiment (see Fig. 4-21) the
loudspeaker C is turned on, transducer B is placed a distance d from the
loudspeaker, and its open-circuit voltage |êB|E1 (caused by the pressure from
the loudspeaker) is measured. Here E1 denotes experiment 1. In the second
experiment, transducer B is removed and microphone A is placed in the
identical position, the loudspeaker’s input voltage being unchanged. Then
the open-circuit voltage |êA|E2 is measured. It is expected that p̂ext will be
the same in the two experiments, so

|êA|E2

|êB|E1
=
MA

MB
. (4-10.6)

The third experiment is with the loudspeaker C replaced by the recip-
rocal transducer B and with microphone A left in the same position as in
experiment 2. The transducer B is driven as a loudspeaker and its input cur-
rent |̂ıB|E3 is measured. One also measures the open-circuit voltage |êA|E3

induced in microphone A by the sound from transducer B. According to (5),
the external pressure at microphone A in this experiment should be given by

|p̂ext,A|E3 =
ωρ

4πd
MB |̂ıB|E3 =

|êA|E3

MA
, (4-10.7)

where the second equality results from the definition of MA. Elimination of
MB (which is not necessarily known) from Eqs. (6) and (7) and subsequent
solution of the resulting equation for MA then yields

MA =

(

4πd

ωρ

)
1
2
( |êA|E3|êA|E2

|êB|E1 |̂ıB|E3

)
1
2

. (4-10.8)

Thus one has a measurement of the microphone response MA without ever
explicitly measuring a pressure.

4-11 PROBLEMS

4-1 A spherical body immersed in a compressible fluid has constant radius a up
until time to = a/c and then suddenly begins to expand so that the radial
velocity at the surface is Vo for t > a/c, where Vo ≪ c. Determine the
acoustic pressure and sketch p versus t for fixed r. (Limit your analysis
to when t − r/c ≪ a/Vo and use an approximate boundary condition
at r = a.) Show that the net acoustic energy imparted to the fluid is
approximately 4πa3ρV 2

o . What fraction of this energy propagates to the
far field? What happens to the rest of the energy? [M. C. Junger, J. Acoust.

Soc. Am., 40:1025–1030 (1966).]
4-2 Show that the transient solution of the differential equation (4-2.3) is



228 4 Radiation from Vibrating Bodies

Figure 4-21 Free-field method for absolute calibration of a microphone A by use of
a loudspeaker C and a reciprocal transducer B. Successive experiments E1, E2, E3 are
sketched in (a), (b), and (c).

ect/aψ(t) = ca2
∫ t

−∞

sin

[

c(t− τ)

a

]

vC(τ)e
cτ/adτ.

Show that for a sphere suddenly (at t = 0) accelerated from rest to constant
speed vC the above integral gives

ψ(t) =











0 t < 0

vCa
3

2

[

1− e−ct/a
(

cos
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a
+ sin
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a

)]

t > 0

4-3 Use the result of Prob. 4-2 in a discussion of sound radiation from an
impulsively accelerated sphere of radius a whose translational velocity is
0 before t = 0 and equal to a constant value vC for t > 0. Determine
an explicit expression for the acoustic pressure during the early history of
wave disturbances at radial distances r ≫ a. Show that the pressure has
a sudden jump at the onset of the pulse and determine the magnitude of
this jump. Sketch a typical pressure waveform and indicate how one can
determine a and vC from it when these quantities are not known a priori.
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[M. C. Junger and W. Thompson, Jr., J. Acoust. Soc. Am. 38:978–986
(1965).]

4-4 The center of a rigid sphere of radius a is moving along a circular path
of radius b with constant angular velocity Ω, where Ωb ≪ c, Ωa ≪ c.
Determine an expression for the acoustic pressure in the far field resulting
from this motion. What is the time-averaged acoustic power radiated?

4-5 A rigid sphere of radius a is oscillating back and forth along the z axis
about the origin with angular frequency ω such that its center moves with
velocity v̂Cez cos ωt, where v̂C is a constant. Determine expressions for
the time averages of the net acoustic kinetic energy and potential energy
contained within a large sphere of radius r (centered at the origin) and
verify that the difference of the two approaches a nonzero constant in the
limit of large r. Determine this constant and give an interpretation of its
magnitude for the case ωa/c ≪ 1 in terms of the related incompressible-
flow problem. [J. E. Jones (Lennard-Jones), Proc. Lond. Math. Soc. (2)
20:347–364 (1922).]

4-6 Give explicit expressions for the inner and outer expansions (in powers
of ka with a/r or kr held fixed) for the example of a radially oscillating
sphere. Discuss the order of magnitude of successive terms for the cases
ka = 0.01 and kr = 0.1 for both expansions. Show explicitly that the outer
expansion of the inner expansion is the same as the inner expansion of the
outer expansion for at least the first three terms.

4-7 An accelerometer mounted on the surface of a radially oscillating sphere
of nominal radius a indicates that the acceleration is composed of a very
large number of frequencies such that the mean squared acceleration as-
sociated with any finite frequency band of width ∆f is a2f ∆f , where a2f
(spectral density of acceleration) is nearly constant over the range of 250 to
2000 Hz. Determine an expression for the spectral density of the received
acoustic pressure at arbitrary radius r from the sphere for the same range
of frequencies. Given that ka≪ 1 for all the frequencies of interest, by how
many decibels would the octave-band sound-pressure levels corresponding
to two successive octave bands be expected to differ?

4-8 Answer the questions in Prob. 4-7 for a rigid sphere undergoing transverse
oscillations along the z axis, the accelerometer being mounted at a point
on the sphere corresponding to θ = 0.

4-9 Two point sources of monopole amplitudes Ŝ and −Ŝ, both radiating at
angular frequency ω, are located a distance d apart, where kd is not nec-
essarily small. Determine expressions for the far-field acoustic pressure
and the time-averaged net acoustic power radiated by this combination
of sources. For what values of kd is the acoustic power within 10 percent
of what would be predicted for a dipole with dipole-moment amplitude
Ŝd? Beyond what value of kd can one be assured that the radiated power
is within 10 percent of that corresponding to the sum of what would be
radiated by each source in the absence of the other source? How do you
reconcile your results with the prediction (Sec. 1-11) that the power output
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by a collection of sources is the sum of the powers output by the individual
sources?

4-10 Acoustic similitude. Show that the complex amplitude p̂ of acoustic pres-
sure in a sound field radiated by a body of characteristic dimension a
vibrating with angular frequency ω has the general and asymptotic forms

p̂ ≈ ρcv̂typF
(x

a
, ka
)

→ ρcv̂typM(θ, φ, ka)
a

r
eikr,

while the time average of the net acoustic power radiated by the body is
of the form

Pav = ρc

[∫ ∫

(v2n)av dA

]

Q(ka).

Here the functions F (x/a, ka), M(θ, φ, ka), and Q(ka) should be dimen-
sionless and should in general depend on the shape of the body and on the
relative amplitudes and phases of the normal velocity on the surface of the
body; v̂typ is a complex amplitude of the normal velocity at a typical point
on the surface;

∫∫

(v2n)av dA is the integral of the mean squared normal ve-
locity over the body’s surface. Show also that, in the limit of small ka, the
functions M(θ, φ, ka) and Q(ka) vary with ka as ka and (ka)2, respec-
tively, for monopole radiation; as (ka)2 and (ka)4, respectively, for dipole
radiation; and as (ka)3 and (ka)6, respectively, for quadrupole radiation.

4-11 A small vibrating body (ka ≪ 1) radiates primarily as a quadrupole into
an unbounded fluid. Assuming that the surface vibrations are unaffected by
the surrounding fluid, show that the time-averaged acoustic power output
varies with the ambient density and sound speed of the fluid as ρ/c5.
Suppose that the power output is Pav,o when the surrounding fluid is
air at a pressure of 105 Pa and a temperature of 20◦C. What is the power
output when the pressure is pumped down to 103 Pa with the temperature
held constant? Suppose, after the pumping down, hydrogen (a diatomic
gas with molecular weight 2) is added to the fluid until the pressure once
again is 105 Pa (the temperature still being held constant). What is the
resulting sound power output of the body in this air-hydrogen mixture?
[G. G. Stokes, Phil. Trans. R. Soc. Lond. 158:447–463 (1868).]

4-12 A sphere of nominal radius a, nominally centered at the origin, is si-
multaneously undergoing radial and transverse oscillations such that its
centerpoint has velocity v̂Cez cos ωt and its instantaneous radius is a +
(v̂S/ω) sin ωt. Determine an expression for the complex amplitude of the
acoustic pressure at an arbitrary point outside the sphere. Determine the
net time-averaged acoustic power output of the body and show that the
contributions from radial and transverse oscillations are additive. Given
that ka = 0.1, what would the ratio |v̂C/v̂S| have to be for the two contri-
butions to be equal? Is your result consistent with the assertion that any
body with time-varying volume tends to radiate primarily as a monopole
in the limit ka≪ 1?
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4-13 (The following exercise is intended to demonstrate that the near-field pres-
sure of a vibrating body may possibly be predicted from an incompressible-
flow model even when ka is comparable to 1.) A spherical body of nominal
radius a is undergoing quadrupole-type contortions such that the normal
velocity at the surface is given by Vo sin2 θ cos φ sin φ cos ωt. Determine
the ratio of the complex pressure amplitude at the surface to what would
be obtained if the surrounding fluid were incompressible and plot the real
and imaginary parts of this ratio versus ka. Up to what value of ka is the
real part within 25 percent of its low-frequency limit? Up to what value is
the imaginary part less than 25 percent of the real part?

4-14 Verify that an explicit substitution into the Kirchhoff-Helmholtz integral
formula of the surface pressures and normal velocities for a radially os-
cillating sphere leads to the expression for the acoustic pressure outside
the sphere derived in Sec. 4-1. For simplicity, limit your comparison to the
constant-frequency case and to points where r ≫ a, kr ≫ 1, but do not
necessarily assume that ka is small.

4-15 Carry through the exercise described in Prob. 4-14 for the example of a
transversely oscillating sphere.

4-16 One possible scheme to determine the acoustic power output of a vibrating
body is to measure p and vn simultaneously on the surface, compute the
time average of their product, and integrate the result over the surface
area. Suppose this method is tried for a transversely oscillating sphere
vibrating such that ka = 0.1. To what accuracy would the relative phase
between vn and p have to be measured at each point in order to guarantee
an accuracy of 10 percent in the acoustic power estimate? Would one
expect less stringent instrumentation requirements if the measurements
were made instead on a sphere whose radius were such that kr = 1?

4-17 Show that it is possible for three longitudinal quadrupoles to be mutually
oriented so that the resulting acoustic field is completely spherically sym-
metric. How would the acoustic power output of the combination of the
three quadrupoles compare with what would be expected for the sum of
the three acoustic powers associated with each quadrupole when radiating
alone?

4-18 In a large unbounded space, a sphere of fluid of radius a is suddenly heated,
e.g., by nuclear irradiation, to a temperature increment ∆T above the
ambient temperature To, such that, at t = 0, the sphere has pressure
po+∆p but is of ambient density and the fluid within it has not yet begun
to move. Assuming that the linear acoustic approximation is valid, what
is the time dependence of acoustic pressure p at an arbitrary radius r > a?
Give a sketch of your result.

4-19 A rectangular solid, a by 1.5a by 2a, is centered at the origin with each
of its six faces nominally perpendicular to the corresponding coordinate
axis; it is undergoing rotational oscillations (angular frequency ω) about
the z axis. Determine an approximate expression for the dependence on
r, θ, φ (spherical coordinates) of the acoustic pressure at distances r ≫ a.
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If the amplitude of the pressure oscillations at a distance corresponding
to kr = 10 at a point on the x = y line is p10, what would you estimate
as the total time-averaged acoustic power output (in terms of p10, ω, c, ρ)
of this sound source? Assume ka≪ 1. How would you expect p10 and the
power output to vary if the frequency were doubled but the peak angle of
rotation of the solid were kept constant?

4-20 The acoustic pressure on the surface of a vibrating sphere of radius a is
measured and found to be given by

p = A cosωt cos θ,

where A and ω are constant and θ is the polar angle in spherical coor-
dinates. What would you estimate as the time-averaged acoustic power
generated by this source in terms of A, ω, ρ, and c?

4-21 A sphere of radius a and mass M is suspended from a fixed point in an
otherwise open space by a spring with spring constant ksp, such that the
tether point lies on the z axis and the sphere’s center is nominally at the
origin. The sphere is displaced a distance zo(≪ a) and released from rest.
Discuss the subsequent motion of the sphere assuming M ≫ 4

3πρa
3. How

long will it be before 90 percent of the potential energy initially stored in
the spring is radiated away as sound? (Neglect viscosity.)

4-22 A cubical loudspeaker enclosure, dimensions a on each edge, has four loud-
speakers of radius b centrally placed in each of its four sides (but not on
the top and bottom). The enclosure is suspended in a large open space.
If only one loudspeaker is excited, the average acoustical power output
is Pav,1. What would the power output be if all four are excited with
the same amplitude and all four are in phase? (Assume ka ≪ 1.) If each
loudspeaker moved as a rigid disk of area A and with velocity amplitude
Vo and angular frequency ω, what would you estimate for Pav,1? Discuss
the nature of the radiation when the loudspeakers 2, 3, and 4 (numbered
counterclockwise looking down from the top) have phases of 90, 180, and
270◦ relative to the first loudspeaker.

4-23 When a small loudspeaker that radiates as a monopole in an open space
is placed in the corner of a room, the sound-pressure level in the center
of the room is 100 dB. The loudspeaker is then moved to the center of
the room, and the vibrational amplitude of its moving face is increased by
a factor of 2. What would you expect for the sound-pressure level in the
corner of the room (old loudspeaker position)?

4-24 A sound source located at point A in a building gives rise to a sound level
outside the building 100 m away at point B of 75 dB. It is known that the
sound leaves through an open window. In a second experiment, it is found
that a second sound source located a large distance away from the building
(in the same relative direction asB) causes a sound level inside the building
of 60 dB at point A. The sound level at the same distance from the source
along an unobstructed path is 65 dB. Estimate the acoustic power output
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the first sound source, i.e., in the building, would have if it were radiating
into an open space. Assume both sources to be nominally omnidirectional
and to have dimensions small compared with a wavelength. Both sources
have the same frequency content.

4-25 A small body of unspecified shape is oscillating with angular frequency ω
in a fluid with sound speed c and ambient density ρ. Any representative
dimension a of the body is much less than c/ω. At distances r, where r ≫ a
and r ≪ c/ω, the pressure perturbation caused by the body’s oscillations
is found to be given approximately by

p ≈ Kx

r3
cosωt,

where K is a constant. Estimate the time-averaged acoustic power that
this body radiates to the far field in terms of K, ρ, c, and ω.

4-26 A rigid square plate of dimensions a on a side is oscillating back and
forth along the z axis normal to its face, such that its center has velocity
Vo cos ωt. Assume that (ω/c)a ≪ 1, Vo/ω ≪ a. The value of Vo is not
measured, but it is known to be the same in two successive experiments.
In experiment 1, the ambient density is ρ, the sound speed is c, and the
angular frequency ω1. In experiment 2, the ambient density is pumped
down to 10−3ρ, the fluid is heated so that its sound speed becomes 2c,
and the frequency is increased to 2ω1. In the first experiment, the acoustic
pressure is measured on the z axis at a distance c/ω1 from the plate and
is found to be given by K1 cos ω1t. Give an expression for the acoustic
pressure at radial distances r ≫ a (but r not necessarily large compared
with c/ω1) for the second experiment. Express your result in terms of the
parameters c, ω1, ρ,K1 as well as the spherical coordinates r and θ.

4-27 Two identical reciprocal transducers are separated a distance of 4.8 m in an
unbounded fluid (sound speed 340 m/s, ambient density 1.2 kg/m

3
). One

transducer is used as a loudspeaker, the other as a microphone. When an
oscillating current of rms amplitude 10−2A is input to the first transducer,
it is found that an oscillating voltage of rms amplitude 1 V is induced in
the open circuit of the second transducer. The frequency is 200 Hz. What
is the rms acoustic pressure incident on the moving face of the second
transducer?

4-28 The disk described in Sec. 4-8 is undergoing rocking oscillations about
the diameter lying along the x axis, such that a point on the disk with
a given y coordinate has velocity vz = Ωy. Here Ω is the time-varying
angular velocity of the disk. Show that the acoustic-pressure field at large
distances from the disk is given in the small ka approximation by

p = 2
∂2

∂y∂z

Qyz,1(t− r/c)

r
Qyz,1(t) =

2ρΩ̇(t)a5

45π
.



234 4 Radiation from Vibrating Bodies

4-29 The circumstances of Prob. 4-28 are altered so that the disk is undergoing
rocking oscillations about the line y = ∆. Show that the resulting pressure
on the front face (z = 0+) of the disk is approximately

p ≈ 4

3π
ρΩ̇(t)(a2 − w2)1/2(y − 3

2∆),

and show that the acoustic pressure in the far field is

p ≈ 4ρa5

45π

(

∂

∂y
+

15

2

∆

a2

)

∂

∂z

Ω̇(t− r/c)

r
.

4-30 Devise any linear circuit having as elements at least one resistor, two in-
ductors, and a capacitor and demonstrate that reciprocity holds in the
sense that the complex amplitude of the current flowing through the sec-
ond inductor caused by a specified voltage imposed in series with the first
inductor is the same as when the voltage is imposed in series with the
second inductor and the measured current is that flowing through the first
inductor.

4-31 Give an alternate derivation of the reciprocity relation Eq. (4-9.10) starting
from Eq. (4-9.7) with a volume bounded externally by the fluid’s natural
boundaries and internally by two tiny spheres centered at x1 and x2.
Boundary conditions on the inner sphere centered at x1 should be such
that, for the a field, the net volume flowing per unit time out through the
sphere has complex amplitude Q̂a in the limit of vanishing sphere radius
while, for the b field, the corresponding limit is zero.



CHAPTER FIVE

RADIATION FROM SOURCES NEAR
AND ON SOLID SURFACES

The present chapter begins with a discussion of the effects of nearby solid
surfaces on the radiation of sound and then continues with the closely related
topic of radiation from a planar surface when a portion of it is vibrating. This
topic serves to introduce and illustrate concepts helpful in understanding the
influence of baffles on sound sources, the radiation from extended bodies, the
transition from near field to far field, and common phenomena associated
with the diffraction of sound.

5-1 SOURCES NEAR PLANE RIGID BOUNDARIES

The sound field radiated by a source is often appreciably affected by a neigh-
boring surface. If this surface (referred to here as a wall) is idealized as rigid,
planar, and of infinite extent, only simple considerations are required to take
its presence into account.

Image Sources

The conceptual device commonly used is an image source (see Fig. 5-1) such
that the original boundary-value problem of source plus wall is replaced by
one with two sources (original source and image source) but no wall. The
image source is the mirror image in all respects of the original source. Thus,
if the wall corresponds to the plane z = 0 and if (xS , yS , zS) is a point on the
surface of the original source, (xS , yS ,−zS) must be a point on the surface of
the corresponding image source. If the velocity at a point on the source’s sur-
face has cartesian components (v1, v2, v3), the velocity at the corresponding
point on the image source must have components (v1, v2,−v3).

235
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Figure 5-1 Concept of an image source. The original boundary-value problem (a) of a
vibrating body outside a rigid plane surface is equivalent to the boundary-value problem
(b) of radiation from source and image source in an unbounded medium.

The mirror symmetry of the boundary-value problem of two sources and
no wall requires the z component of the fluid velocity to vanish on the plane
z = 0. This is the condition imposed by the presence of the wall in the
original boundary-value problem with source and wall, so the solution to the
problem with source and image source but no wall satisfies the fluid-dynamic
equations and the boundary conditions appropriate to the original problem.
Our uniqueness theorems of Sec. 4-5 require the two solutions to be identical
in the region z > 0.

Remarks concerning Acoustic Power and Spherical

Spreading

Symmetry requires that one-half of the power radiated by a source and its
image in an open space be transmitted to the source side of the symmetry
plane. Consequently, the total power (radiating into the region z > 0) emitted
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by a source near a wall is half what would be radiated by the isolated source-
image combination (no wall) in all directions.

At radial distances large compared with source-image separation, source
dimensions, and a wavelength, the (far-field) acoustic pressure is of the form†

f(t− r/c, θ, φ)/r, the radial component of acoustic fluid velocity is p/ρc, and
the radial component of time-averaged intensity is (p2)av/ρc. The intensity
and mean squared pressure at such large distances decrease as 1/r2 with
increasing radial distance r (fixed θ and φ), so our conclusions concerning
spherical spreading for an isolated source apply equally well for a source near
a plane rigid wall, given r sufficiently large. If J(θ, φ)/r2 gives the far-field
intensity, the acoustic power Pav,W radiated into the region z > 0 by a source
near a wall is

Pav,W =

∫ π/2

0

∫ 2π

0

J(θ, φ) dφ sin θ dθ. (5-1.1)

Note that we integrate over a hemisphere rather than a sphere; θ ranges from
0 to π/2 rather than from 0 to π.

Cases When More than One Wall Is Present

For a source between two parallel rigid walls, one needs an infinite array
of images (see Fig. 5-2a). There are, first, the two images corresponding to
reflections of the source through the two walls, then images of the images
corresponding to reflections of the images through the opposite walls, then
images of these images, etc. The total array of sources has a repetition dis-
tance of twice the distance between walls. (This is what one sees in a room
with mirrors on two parallel walls.)

The array of sources is not confined to a region of limited spatial extent,
so our previous discussion concerning spherical spreading does not apply.
Energy-conservation considerations imply instead, at large cylindrical radial
distance w, that the integral over z between walls of the time-averaged ra-
dial component of intensity should fall off with w as 1/w for fixed azimuthal
angle φ. In general, the z component of intensity will not be negligible com-
pared with the radial component, and one cannot assume that the plane-wave
relation p = ρcvw holds at large w.

The method of images also applies when a source is near two rigid walls
meeting at right angles (see Fig. 5-2b); three image sources are required in
the equivalent boundary-value problem. If the source is near the corner of
three walls at right angles to each other, one obtains an equivalent boundary-
value problem by adding seven image sources (Fig. 5-2c). Since the source
and images are confined to a region of limited spatial extent, deductions

† F. A. Fischer, “Directionality and radiation intensity of acoustic ray groups in the vicinity
of a reflecting plane surface,” Elektr. Nachrichtentech. 10:19–24 (1933).



238 5 Radiation from Sources Near and on Solid Surfaces

Figure 5-2 Situations in which more than one image source is required to satisfy the
boundary conditions: (a) source between plane parallel walls; (b) source near where two
perpendicular walls meet; (c) source near intersection of three mutually perpendicular
surfaces; (d) source in a rectangular duct.

analogous to those for the single-wall case can be made concerning spherical
spreading at large distances from the source.

A more complicated example (Fig. 5-2d) is a source in an infinitely long
rectangular duct with rigid walls. In this case, there is a twofold infinity of
image sources, all lying in a plane transverse to the duct. For a source in
a six-sided rectangular room with rigid walls, there is a threefold infinity of
image sources arrayed in a three-dimensional rectangular lattice.

Dependence of Acoustic Far Field and Net Acoustic

Power Output on Distance from a Wall

For a source of characteristic dimension a vibrating at angular frequency
ω = ck and located a nominal distance zS from a single flat rigid wall (at
z = 0), the far-field pressure and the net acoustic power output depend on
kzS and a/zS. A principal assumption is that the state of vibration of the
body is independent of zS . (This is a good approximation for a solid body
vibrating in air.) In the limit a/zS ≪ 1, that is, where distance from the
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wall is great compared with a body dimension, the total acoustic field is well
approximated by the superposition of those fields resulting from separate
consideration of the source and image. Thus, if the far-field acoustic pressure
due to the source alone (no wall) is f̂(θ, φ)R−1

S eikRS , where RS is distance
from the source’s nominal location, the combination of the source and image
has a far-field pressure (with RS ≫ a, RI ≫ a) given by

p̂ = f̂(θ, φ)
eikRS

RS
+ f̂(π − θ, φ)

eikRI

RI
, (5-1.2)

where RI is distance from the image source. At distances r ≫ zS, one has
RS ≈ r − zS cos θ and RI ≈ r + zS cos θ, so the above reduces to

p̂ ≈ eikr

r
[e−ikzS cos θf̂(θ, φ) + eikzS cos θ f̂(π − θ, φ)]. (5-1.3)

From this one derives the time-averaged acoustic intensity 1
2 |p̂|2/ρc. The aver-

age acoustic power output results from Eq. (1) with J(θ, φ) = r2Ir,av. Taking
p̂ as given by Eq. (3), changing the θ integration variable to θ′ = π − θ in
appropriate terms, then replacing the symbol θ′ by θ, we find

Pav,W = Pav,ff +∆Pav (5-1.4)

where

Pav,ff =
1

2ρc

∫ 2π

0

∫ π

0

|f̂(θ, φ)|2 sin θ dθ dφ (5-1.5)

∆Pav =
1

2ρc
Re

[∫ 2π

0

∫ π

0

ei2kzs cos θ f̂(π − θ, φ)f̂∗(θ, φ) sin θ dθ dφ

]

(5-1.6)

Here Pav,ff is the free-field power output (wall not present), and ∆Pav is
the power increment (possibly negative) caused by the presence of the wall.

If the far-field radiation of the source when isolated is spherically symmet-
ric (as for a monopole), f̂(θ, φ) is the monopole amplitude Ŝ and the above
expressions reduce to†

p̂ ≈ 2Ŝ
eikr

r
cos(kzS cos θ, r ≫ zS (5-1.7a)

Pav,W = Pav,ff

[

1 +
sin 2kzS
2kzS

]

. (5-1.7b)

When kzS ≪ 1, the acoustic pressure in the far field is doubled, the intensity
increases by a factor of 4, and the power increases by a factor of 2. (Recall
that the power is going only into the region z > 0.) When 2kzS = 4.49

† U. Ingard and G. Lamb, Jr., “Effect of a reflecting plane on the power output of sound
sources,” J. Acoust. Soc. Am. 29:743–744 (1957).
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(zS = 0.358λ), the power output has its minimum value of 0.783 Pav,ff ; it
oscillates about Pav,ff at larger zS and is within 5 percent of the free-field
value for 2kzS > 20 (zS > 1.59λ).

If the radiation pattern for the source alone resembles that of a dipole
perpendicular to the wall, f̂(θ, φ) is −ikD̂z cos θ and f̂(π−θ, φ) is the negative
of f̂(θ, φ); Eq. (3) therefore yields

p̂ = −2 sin(kzS cos θ)kD̂z cos θ
eikr

r
, (5-1.8a)

where D̂z is the source’s dipole-moment amplitude. The field for kzS ≪ 1
is consequently that of a longitudinal quadrupole with quadrupole-moment
amplitude 2zSD̂z. The power output for arbitrary kzS is given (with η =
2kzS), according to Eqs. (5) and (6), by

Pav,W = Pav,ff(1− 6η−2 cos η − 3η−1 sin η + 6η−3 sin η). (5-1.8b)

The quantity in parentheses reduces to 3
10η

2 and to 1 − 3η−1 sin η in the
limits η ≪ 1 and η ≫ 1. Although the source’s acoustic power vanishes when
the source is at the wall, it is within 5 percent of the free-field value when
η > 60 (zS > 4.77λ).

One concludes from the above examples and from a study of Eq. (6) that
∆Pav can be regarded as 0 if kzS is sufficiently large. Since the real and
imaginary parts of exp (i2kzS cos θ) oscillate rapidly with θ if kzS is large, in
the limit of very large kzS the overall integrand is an oscillatory function, the
integrals over whose peaks tend to cancel integrals over troughs. Just how
far the source must be from the surface before the limit is nearly realized
depends on the complexity of the source.

5-2 SOURCES MOUNTED ON WALLS: THE

RAYLEIGH INTEGRAL; FRESNEL-KIRCHHOFF

THEORY OF DIFFRACTION BY AN

APERTURE

A model for a source with a baffle, e.g., a loudspeaker on one side of a large
enclosure, is that in which a limited portion of a surface has prescribed normal
velocity, the remainder of the surface being idealized as rigid. The surface is
here taken as the z = 0 plane, and the region on the +z side of the surface
is idealized as unbounded (see Fig. 5-3).

An expression for the acoustic pressure outside the surface can be extracted
from the Kirchhoff-Helmholtz integral theorem, Eq. (4-6.6), with the aid of
the method of images. The boundary-value problem, with nonzero vn(x, y, t)
specified on some area of the z = 0 plane and otherwise zero, is equivalent to
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Figure 5-3 Nomenclature for description of radiation from a nominally flat and rigid sur-
face (z = 0 plane), a limited portion of which is vibrating with normal velocity vn(x, y, t).

that of radiation from a thin disk of time-varying thickness in an unbounded
medium. The normal velocity vn for given x and y on the two sides of the disk
has the same value, i.e., both sides are either moving outward simultaneously
or moving inward simultaneously, so that the resulting z symmetry requires p,
vx, and vy to be even in z but vz to be odd in z. Consequently, the integrals in
Eq. (4-6.6) over the surface pressure give equal and opposite contributions,
and the net contribution from surface pressure to the Kirchhoff-Helmholtz
integral is zero. (The distance R from listener position to either of any two
surface points on opposite sides of the disk has the same value since the
disk is infinitesimally thin.) The integrals over the surface-normal velocity
from the front and back surfaces of the disk give equal contributions, so one
need integrate only over the front face providing the resulting expression is
multiplied by 2.

The result of the reasoning just outlined is that the Kirchhoff-Helmholtz
integral reduces to the Rayleigh integral†

† J. W. S. Rayleigh, The Theory of Sound, vol. 2, 2d ed., 1896, reprinted by Dover, New
York, 1945, sec. 278.
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p(x, t) =
ρ

2π

∫∫

v̇n(xS , yS , t−R/c)

R
dxS dyS , (5-2.1)

where R2 is z2+(x−xS)2+(y−yS)2. This is equivalent to the field generated
by a continuous smear of monopole sources distributed on the z = 0 plane;
that is, p satisfies the inhomogeneous wave equation

∇
2p− 1

c2
∂2p

∂t2
= −2ρv̇n(x, y, t) δ(z) (5-2.2)

in an unbounded space. The apparent mass added to the fluid per unit surface
area has a time derivative equal to 2ρvn(x, y, t); the volume excluded from
the fluid per unit area of the z = 0 plane by the source has a time derivative
equal to 2vn(x, y, t). The factor of 2 appears because both sides of the disk
are moving outward with velocity vn.

Green’s-Function Derivation of Rayleigh Integral

An alternate derivation‡ of Eq. (1) results for the constant-frequency case
from the Green’s-function formulation in Sec. 4-6. One can rephrase Eq.
(4-6.4) for the problem under consideration here as

p̂(x) =
1

4π

∫∫

[p̂(xS)∇SGk(xS |x)−Gk(xS |x)∇S p̂(xS)]zS=0 · ez dxS dyS ,

(5-2.3)
where Gk(xS |x) is a Green’s function for the Helmholtz equation, which we
choose to be that corresponding to a point source outside a rigid flat surface.
It can be derived by the method of images and is

Gk(xS |x) = R−1
1 eikR1 +R−1

2 eikR2 (5-2.4)

where

R1,2 = [(xS − x)2 + (yS − y)2 + (zS ∓ z)2]
1
2 (5-2.5)

[Here Gk(xS |x) = Gk(x|xS), in accord with the principle of reciprocity dis-
cussed in Sec. 4-9.] The Green’s function of Eq. (4) has the property that
∇SGk(xS |x) ·ez vanishes at zS = 0, so the first term in Eq. (3) drops out. In
regard to the second term, Gk(xS |x) at zS = 0 is 2R−1eikR. Also ∇S p̂(xS)·ez
at zS = 0 is iωρv̂n(xS , yS), in accord with Euler’s equation of motion, so Eq.
(3) reduces to

‡ A. Sommerfeld, “The freely vibrating piston membrane,” Ann. Phys. (5)42:389–420
(1943).
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p̂(x) =
−iωρ
2π

∫∫

v̂n(xS , yS)R
−1 eikR dxS dyS , (5-2.6)

which is recognized as the constant-frequency form (involving complex am-
plitudes) of Eq. (1).

Fresnel-Kirchhoff Theory of Diffraction

There is a resemblance between the Rayleigh integral in Eq. (6) and what
results from the Fresnel-Kirchhoff theory of diffraction† by an aperture A in a
screen (Fig. 5-4). If a wave disturbance, e.g., plane wave or diverging spherical
wave, is incident from the −z side of the screen on the aperture, the classic
assumptions (expressed in terms of acoustic quantities) of Kirchhoff would be
that insofar as the evaluation of the pressure on the +z side is concerned, the
p̂(xS , yS) and v̂n(xS , yS) in the Kirchhoff-Helmholtz integral can be taken as
p̂i(xS , yS) and v̂i(xS , yS) ·ez (i for incident) within the aperture and as zero
at points on the screen surface outside the aperture. This would then give
(z > 0)

p̂(x) =
1

4π

∫∫

A

[−p̂i(xS)(ik −R−1)eR − i ωρv̂i(xS)] · ezR
−1eikR dxS dyS ,

(5-2.7)
where the integral extends only over the aperture. At distances large com-
pared with a wavelength, the quantity R−1 is neglected compared with ik.
Furthermore, if the incident wave is a plane wave with propagation direction
ni, then pi = ρcvi · ni and vi · ez = (vi · ni)ni · ez, so Eq. (7) would reduce
to

p̂(x) =
−iωp
2π

∫∫

A

[

1

2

(

1 +
eR · ez

ni · ez

)]

v̂i(xS , yS) · ezR
−1eikR dxS dyS .

(5-2.8)
An equivalent version (with the assumptions described above) results when
v̂i is replaced by p̂ini/ρc.

Equation (8) can be compared with Eq. (6). The two agree if v̂n is inter-
preted as v̂i · ez and if the location of the observation point x is far enough
distant to make eR approximately constant and nearly equal to ni for all
straight lines connecting points on the aperture with x. If the Kirchhoff as-

† M. Born and E. Wolf, Principles of Optics, 4th ed., Pergamon, Oxford, 1970, pp. 378–381.
Pertinent original references are A. Fresnel, “On the diffraction of light; examination of the
colored fringes existing in the shadow of an illuminated body,” Ann. Chim. Phys. (2) 1:239–
281 (1816); G. G. Stokes, “On the dynamical theory of diffraction,” Trans. Camb. Phil.
Soc. 9:1 (1849), reprinted in Stokes, Mathematical and Physical Papers, vol. 2, Cambridge
University Press, Cambridge, 1883, pp. 243–328; G. Kirchhoff, “On the theory of light
rays,” Ann. Phys. Chem. 18:663–695 (1883).
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Figure 5-4 Unit vectors ni, eR, ez used in the Fresnel-Kirchhoff approximation for
diffraction by an aperture in a thin screen.

sumption that v̂ · ez = v̂i · ez on the aperture is accepted, expression (8)
would have to be erroneous unless eR · ez/ni · ez is identically 1, since Eq.
(6) represents the exact solution when v̂n is known over the plane z = 0 and
since v̂n must be zero on the plane at points outside the aperture.

The Fresnel-Kirchhoff theory of diffraction is intrinsically a high-frequency
approximation; it gives incorrect results when the aperture dimensions are
much smaller than a wavelength.† Furthermore, even if such dimensions are
large and one uses the theory to predict fields at only those distances which
are large compared with a wavelength, the predictions may be in substan-
tial error at large angular deviations from the direction ni. Nevertheless, the
theory is satisfactory for explaining small-angle high-frequency diffraction
phenomena and has an advantage in simplicity compared with rigorous theo-
ries of diffraction. It is extensively used in optics; applications to acoustics are
limited because many of the diffraction phenomena of interest either involve

† H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66:163–182 (1944); R.
D. Spence, “A note on the Kirchhoff approximation in diffraction theory,” J. Acoust. Soc.
Am. 21:98–100 (1949).



5-3 Low-Frequency Radiation from Sources Mounted on Walls 245

dimensions small compared with a wavelength or require an understanding
of diffraction through large angles.

5-3 LOW-FREQUENCY RADIATION FROM

SOURCES MOUNTED ON WALLS

Insight into the implications of the Rayleigh integral can be obtained from
examination of limiting cases. If the region in which v̂n is nonzero is confined
to a distance a from the origin, and if ka ≪ 1, the concepts of matched
asymptotic expansions discussed in Sec. 4-7 are applicable. The near-field
pressure satisfies Laplace’s equation and has a complex amplitude found from
Eq. (5-2.6) with eikR replaced by 1 + ikR

p̂in(x) =
−iωρ
2π

∫∫

v̂n(xS , yS)R
−1 dxS dyS +

ρck2

2π
Q̂S , (5-3.1)

where Q̂S is the surface integral of v̂n(xS , yS) and represents the complex
amplitude of the rate of volume flow out from the source.

The acoustic-pressure amplitude at distance r ≫ a is given by the multi-
pole expansion that matches Eq. (1); to fourth order in ka, one has

p̂out(x) = Ŝ
eikr

r
−
(

D̂x
∂

∂x
+ D̂y

∂

∂y

)

eikr

r

+

(

Q̂xx
∂2

∂x2
+ 2Q̂xy

∂2

∂x ∂y
+ Q̂yy

∂2

∂y2

)

eikr

r
(5-3.2)

where Ŝ is −(iωρ/2π)Q̂S, while D̂x and Q̂xy are given by −(iωρ/2π) times the
area integrals of xS v̂n (for D̂x) and of 1

2xSyS v̂n (for Q̂xy). The leading term
in Eq. (2), with the time dependence explicitly inserted, gives the prediction

pout(x, t) =
ρ

2πr
Q̇S

(

t− r

c

)

, (5-3.3)

which describes a radially symmetric spherical wave. This is the same as
the expression (4-1.6) for monopole radiation from a vibrating body of time-
varying volume if we replace Q̇S by 2Q̇S; the factor of 2 results because of
the image source.

The above solution indicates the substantial effect a baffle has on sound
radiation. If a circular disk of radius a is vibrating with constant frequency
(ka ≪ 1) transverse to its face in an open space, it radiates primarily as a
dipole and the acoustic power output to one side (see Sec. 4-8) is given by
(16/27π)2ρc(ka)4(πa)2(v2n)av/2. However, if the disk is baffled by placing it
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in an aperture of the same size in a large screen, the radiation is primarily as
a monopole and the power output to one side is ρc(ka)2(πa2)(v2n)av/2. Insofar
as ka≪ 1, the second case corresponds to a much greater power output.

Pressure on Vibrating Circular Piston at Low

Frequencies

For a vibrating circular piston of radius a mounted in a rigid wall (an ideal-
ization of a baffled loudspeaker), the pressure amplitude at the wall (z = 0),
given ka≪ 1, can be determined from Eq. (1) with v̂n set equal to a constant
over the surface of the piston; one then has

(p̂in)z=0 =
ρc

π
v̂n

[

−ikaψ
(w

a

)

+
π

2
(ka)2

]

(5-3.4)

where

2ψ
(w

a

)

= a−1

∫∫

(R−1)z=0 dxS dyS (5-3.5)

Because of the cylindrical symmetry and because of its lack of dimensionality,
(5) is a function only of w/a, where w is the distance of the point (x, y) from
the center of the piston.

To evaluate ψ(w/a) it is sufficient to let y = 0, x = −w. Then one can use
a cylindrical coordinate system in which xS = −w + ξa cosφ, yS = ξa sinφ,
such that ξa is the radial distance (cylindrical coordinates) from the point
(−w, 0). The differential area element is then a2ξ dξ dφ and, moreover, (R)z=0

is aξ, so 2ψ(w/a) =
∫∫

dξdφ with appropriate integration limits. With the
abbreviations η = w/a, ζ = (1− η2 sin2 φ)1/2, and φm = sin−1 (1/η) we find
that the disk occupies the region 0 < ξ < η cosφ+ ζ, 0 < φ < 2π, for η < 1,
and the region η cosφ − ζ < ξ < η cosφ + ζ, −φm < φ < φm, for η > 1.
Consequently, one has

2ψ(η) =
∫∫

dξ dφ =























∫ 2π

0

(η cosφ+ ζ)dφ η < 1

2

∫ φm

−φm

(1− η2 sin2 φ)1/2 dφ η > 1.

(5-3.6a)

(5-3.6b)

The second expression can be cast into a more convenient form if one changes
the integration variable to u = sin−1(η sinφ), such that u is π/2 when φ = φm
and such that ζdφ/du is the sum of −(η − η−1)(1 − η−2 sin2 u)−1/2 and
η(1− η−2 sin2 u)1/2.

The integral over cosφ from 0 to 2π in the η < 1 expression in Eqs. (6)
vanishes, and the integral over ζ from 0 to 2π is 4 times the integral from 0
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to π/2; the indicated integrations reduce in this manner to†

ψ(η) =











2E(η2) η < 1

2ηE

(

1

η2

)

− 2(η − η−1)K

(

1

η2

)

η > 1

(5-3.7a)

(5-3.7b)

Here we abbreviate
{

E(m)
K(m)

}

=

∫ π/2

0

(1−m sin2 φ)±1/2 dφ (5-3.8)

for the complete elliptical integrals‡ of the first and second kinds, respectively.
[Both K(m) and E(m) are π/2 at m = 0; as m → 1, K(m) → 1

2 ln [16/(1−
m)] and E(m) → 1.] The function ψ(η) (see Fig. 5-5) has the value of π
at η = 0, decreases monotonically to 2 at η̇ = 1, and further decreases for
η > 1 to an asymptotic form ψ(η) → π/2η at large η. This latter behavior is
consistent with the requirement that p̂in match the expression in Eq. (2) for
a≪ w ≪ 1/k.

Figure 5-5 Plot of function ψ(w/a) describing the relative magnitude of the acoustic
pressure [with complex amplitude −(ika/π)ρcv̂nψ(w/a)] at radius w = ηa outside (z = 0+)
a wall in which a piston of radius a is oscillating with very low frequency (ka≪ 1).

† H. Lamb, “On the vibrations of an elastic plate in contact with water,” Proc. R. Soc.
Lond. A98:205–216 (1920). A general result holding for arbitrary ka was later derived by
N. W. McLachlan, “The acoustic and inertia pressure at any point on a vibrating circular
disk,” Phil. Mag. (7)14:1012–1025 (1932).
‡ L. M. Milne-Thomson, “Elliptical Integrals,” in M. Abramowitz and I. Stegun (eds.),
Handbook of Mathematical Functions, Dover, New York, 1965, pp. 590–592, 608–611.
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Force Exerted by the Slowly Oscillating Baffled Piston

The complex amplitude of the force exerted by the piston on the fluid outside
the wall is the integral of (p̂in)z=0 over the area of the piston. In this respect,
note that

∫ 2π

0

∫ a

0

ψ
(w

a

)

w dw dφ = 4πa2
∫ 1

0

[

∫ π/2

0

(1 − η2 sin2 u)1/2 du

]

η dη.

A change of integration order allows the η integration to be performed; the
resulting integrand for the u integration is subsequently recognized as the
derivative of 1

3 [tan (u/2)+sinu]. Consequently, the above expression is 8
3πa

2.
Equation (4) therefore gves† the force exerted by the piston on the fluid to
second order in ka as

F̂z = (ρcv̂n)πa
2

[

−ika 8

3π
+

(ka)2

2

]

, (5-3.9)

or with the time dependence explicitly inserted,

Fz(t) = ρπa2
8a

3π
v̇n(t)−

ρπa4

2c
v̈n(t). (5-3.10)

The leading term, from the viewpoint of Newton’s second law, indicates that
the fluid entrained by the piston has an apparent mass of ρπa2(8a/3π), cor-
responding to the fluid in a cylinder of area πa2 and length 8a/3π.

5-4 RADIATION IMPEDANCE OF

BAFFLED-PISTON RADIATORS

The ratio of the force amplitude F̂z to the normal velocity amplitude v̂n
for a baffled piston (with v̂n constant over the piston’s area) is the piston’s
mechanical radiation impedance (here denoted by Zm,rad) and is the area
integral of the specific radiation impedance p̂/v̂n. Thus, from Eq. (5-2.6), one
has

Zm,rad =
−iωρ
2π

∫∫∫∫

R−1eikR dxS dyS dx dy, (5-4.1)

where R is [(x−xS)2+(y−yS)2]1/2 and the limits are such that (xS , yS) and
(x, y) are within the area A of the piston. The ratio (F̂z/A)/v̂nA = Zm,rad/A

2

is the acoustic radiation impedance Za,rad. The quadruple integral in Eq. (1)
is known as the Helmholtz integral.

† J. W. S. Rayleigh, “On the theory of resonance,” Phil. Trans. R. Soc. Lond. 161:77–118
(1870).
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Electroacoustic Significance of Radiation Impedance

This parameter Zm,rad is of importance in transducer design because it de-
scribes the influence of the environment on transducer performance. In par-
ticular, it is required for the evaluation of the transducer’s electroacoustic
efficiency. For a linear electroacoustic transducer operating at constant angu-
lar frequency ω, Eq. (4-10.1) relates the complex amplitudes (see Fig. 4-20) ê
and −F̂z/A to the complex amplitudes ı̂ and Û = v̂nA. [The p̂ in Eq. (4-10.1)
is the complex amplitude of an average pressure p, the averaging being such
that −pU is the power input to the transducer by the external fluid. Since,
for the rigid piston, this power is −Fzvn, and since U is vnA, we replace p̂
by F̂z/A.] If the transducer constants Zec, Tea, Tae, and Za are known, the
additional knowledge of the radiation impedance Zm,rad allows a prediction
of the ratios v̂n/ê and ı̂/ê when the transducer is operated as a loudspeaker;
i.e.,

(Av̂n, ı̂) =
(Tae, − Z ′

a)

TaeTea − ZecZ ′
a

, (5-4.2)

where Z ′
a abbreviates Za + Zm,rad/A

2. These relations, given the applied
voltage ê, determine the electric power 1

2 Re êı̂
∗ supplied and the acoustic

power output 1
2 |v̂n|2 ReZm,rad. The ratio of the latter to the former is the

electroacoustic efficiency η, given in terms of the symbols introduced above
by

η =
|Tae|2 ReZm,rad/A2

TaeTea − ZecZ ′
a

. (5-4.3)

Evaluation of Radiation Impedance for a Baffled

Circular Piston

The fourfold integration in Eq. (1) reduces† to tabulated functions of a single
variable for a circular piston of radius a with a series of mathematical manipu-
lations. Because of the symmetry in interchange of x and y with xS and yS , it
is sufficient to restrict the integration range so that (x2S+y

2
S)

1/2 ≤ (x2+y2)1/2

and subsequently to multiply the result by 2. For the xS , yS , integration, one
uses a coordinate system centered at the point (x, y) and rotated so that
the center of the disk lies at x′S = w, y′S = 0, where w = (x2 + y2)1/2,
and introduces cylindrical coordinates R, φS , such that x′S = R cosφS and
y′S = R sinφS . The region (x2S + y2S)

1/2 < w then comprises points where
−π/2 < φS < π/2 and 0 < R < 2w cosφS . In this manner, one obtains

Zm,rad =
−iωρ
π

∫ 2π

0

dφ

∫ a

0

w dw

∫ π/2

−π/2

dφS

∫ 2w cosφS

0

eikR dR. (5-4.4)

† Rayleigh, The Theory of Sound, vol. 2, sec. 302.
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The φ integration gives a factor of 2π; the last two integrations yield

1

π

∫ π/2

−π/2

dφS

∫ 2w cosφS

0

eikR dR =
1

πik

∫ π/2

−π/2

ei2kw cosφS dφS − 1

ik

=
1

ik
[J0(2kw) + iH0(2kw)− 1] (5-4.5)

where

J0(η) =
2

π

∫ π/2

0

cos(η cosφS) dφS H0(η) =
2

π

∫ π/2

0

sin(η cosφS) dφS

(5-4.6)
are the Bessel function and the Struve function† of zero order (see Table 5-1).
The functions J0(η) and H0(η) have the properties‡

∫ η

0

J0(η)η dη = ηJ1(η) = −η d
dη
J0(η) (5-4.7a)

∫ η

0

H0(η)η dη = ηH1(η) = η

[

2

π
− d

dη
H0(η)

]

(5-4.7b)

† The Bessel function Jn(η) and the Struve function Hn(η) for positive integer order n
can be considered to be defined by the integrals

{

Jn(η)
Hn(η)

}

=
2(2n + 1)ηn

[(2n+ 1)(2n − 1) · · · 3 · 1]π

∫ π/2

0







cos
(η cosφ)

sin







(sinφ)2n dφ

For a full discussion, see G. N. Watson, A Treatise on the Theory of Bessel Functions,
2d ed., Cambridge University Press, London, 1966, pp. 24–25, 328–338. The expression for
Jn(η) is known as Poisson’s integral for the Bessel function. The boldface symbol Hn(η)
for the Struve function is traditional and should not be construed as denoting a vector.
‡ For the Struve functions, the identity (7b) follows from

1 =

∫ π/2

0

∂

∂φ
[sinφ cos(η cos φ)] dφ

=

∫ π/2

0

{

∂

∂η
[sin(η cosφ)] + η sin2 φ sin(η cos φ)

}

dφ (i)

=

∫ π/2

0

{

∂

∂η

[

η
∂

∂η
sin(η cosφ)

]

+ η sin(η cosφ)

}

dφ (ii)

Equation (i) leads to 1 = (π/2)(dH0/dη + H1), while (ii) leads to 1 =
(π/2)[(d/dη)(η dH0/dη) + ηH0]. Since η dH0/dη = 0 at η = 0, the integral from 0 to
η of the latter yields η = (π/2)(η dH0/dη + L), where L is the left side of (7b). The
derivation of (7a) for the Bessel functions proceeds in an analogous manner from

0 = η

∫ π/2

0

∂

∂φ
[sinφ cosφ cos(η cosφ)] dφ
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where J1(η) and H1(η) are the Bessel function and the Struve function of
first order. These relations permit an evaluation of the remaining integration
over w in Eq. (4); the net result for the mechanical radiation impedance is

Zm,rad = ρcπa2[R1(2ka)− iX1(2ka)] (5-4.8)

with (see Fig. 5-6)

R1(2ka) = 1− 2J1(2ka)

2ka
X1(2ka) =

2H1(2ka)

2ka
. (5-4.9)

Table 5-1 Bessel and Struve functions of orders 0 and 1

η J0(η) J1(η) H0(η) H1(η)

0 1.00 0.00 0.00 0.00
0.5 0.94 0.24 0.31 0.05
1.0 0.77 0.44 0.57 0.20
1.5 0.51 0.56 0.74 0.41
2.0 0.22 0.58 0.79 0.65
2.5 −0.05† 0.50 0.73 0.86
3.0 −0.26 0.34 0.57 1.02
3.5 −0.38 0.14 0.36 1.09
4.0 −0.40 −0.07† 0.14 1.07
4.5 −0.32 −0.23 −0.06† 0.97
5.0 −0.18 −0.33 −0.19 0.81

5.5 −0.01 −0.34 −0.23 0.63
6.0 +0.15† −0.28 −0.18 0.48
6.5 0.26 −0.15 −0.08 0.38
7.0 0.30 −0.00 +0.06† 0.35
7.5 0.27 +0.141† 0.20 0.39
8.0 0.17 0.23 0.30 0.49
8.5 0.04 0.27 0.34 0.62
9.0 −0.09† 0.25 0.32 0.75
9.5 −0.19 0.16 0.24 0.85

10.0 −0.25 0.04 0.12 0.89

† Zeros of J0(η) are 2.405, 5.520, 8.654; zeros of J1(η) are 3.832, 7.016, 10.173; zeros of
H0(η) are 4.323, 6.780, 10.481.

For small values of the argument η, a power-series expansion and a term-
by-term integration of Eqs. (6) and (7) yields

J1(η) =
η/2

(1!)2
− 2(η/2)3

(2!)2
+

3(η/2)5

(3!)2
− · · · (5-4.10a)

H1(η) =
2

π

(

η2

12 · 3 − η4

12 · 32 · 5 +
η6

12 · 32 · 52 · 7 − · · ·
)

(5-4.10b)

so, for small values of 2ka, the piston impedance functions R1(2ka) and
X1(2ka) are given by
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Figure 5-6 Piston impedance functions R1(2ka) and X1(2ka) for a circular piston of
radius a mounted in a rigid planar baffle. These functions are such that the mechanical
radiation impedance of the piston is ρcπa2(R1 − iX1).

R1(2ka) =
(2ka)2

4 · 2 − (2ka)4

6 · 42 · 2 +
(2ka)6

8 · 62 · 42 · 2 − · · · (5-4.11a)

X1(2ka) =
(4/π)(2ka)

3
− (4/π)(2ka)3

5 · 32 +
(4/π)(2ka)5

7 · 52 · 32 + · · · (5-4.11b)

Both series are absolutely convergent but slow to converge when 2ka is
substantially larger than 1. Note that these are consistent with Eq. (5-3.10)
in the limit 2ka≪ 1.

In the other limit, when 2ka≫ 1, one uses the asymptotic expressions†

† To derive the asymptotic expression for H1(η), we write the integrand in Eq. (6) for
H0(η) as the real part of i exp (−iη cosφ) and interchange the order of taking the real
part and of integrating. The integration path is then deformed to one going from 0 to
π/2 + i∞ plus one going from π/2 + i∞ to π/2. For the first segment, the variable of
integration is changed to s, so that cosφ = 1 − is2 and s goes from 0 to +∞ along the
path. In the second segment, one lets ξ = Imφ be the integration variable. Doing all this
yields

H0(η) =

(

2

π

)

21/2 Re

[

e−i(η−3π/4)

∫ ∞

0

e−ηs2 ds

(1 − is2/2)1/2

]

+
2

π

∫ ∞

0

e−η sinh ξ dξ,
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J1(η) →
(

2

πη

)1/2

cos

(

η − 3π

4

)

(5-4.12a)

H1(η) →
2

π
+

(

2

πη

)1/2

sin

(

η − 3π

4

)

(5-4.12b)

to obtain

R1(2ka) → 1− (8/π)1/2 cos(2ka− 3π/4)

(2ka)3/2
(5-4.13a)

X1(2ka) →
4/π

2ka
+

(8/π)1/2 sin(2ka− 3π/4)

(2ka)3/2
(5-4.13b)

The limiting expressions of 1 and (4/π)/2ka are approached in an oscilla-
tory manner, the amplitude decreasing as (2ka)−3/2 with increasing ka. The
limiting value of ρcπa2 for Zm,rad is what would be expected if the acoustic
disturbance near z = 0 over the major portion of the piston were the same
as in a plane wave emanating from an unbounded wall vibrating without
flexure.

5-5 FAR-FIELD RADIATION FROM LOCALIZED

WALL VIBRATIONS

When the wall area undergoing constant-frequency vibrations is confined to
a distance a from the origin, a characteristic far field is realized at points
where the radial distance r is much larger than either a or ka2. In this event,
a suitable approximation for the Rayleigh integral (5-2.6) results when R is

where the phase of the radical is understood to be between 0 and −π/4. For large η one
can approximate (1 − is2/2)1/2 by 1 and sinh ξ by ξ without appreciably changing the
value of either integral, the resulting approximate integrals being then readily performed,
so one obtains

H0(η) →
2

πη
+

(

2

πη

)1/2

cos

(

η − 3π

4

)

.

From (7b), one has H1(η) = (2/π) − dH0/dη; using the above and keeping only terms of
order η−1/2, we obtain (12b). The derivation of (12a) proceeds in an analogous manner
from Eq. (6) except that one takes the imaginary part of i exp (−iη cosφ). The asymptotic
expression for J1(η) is obtained from that of J0(η) with the identity J1(η) = −dJ0(η)/dη.
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replaced† by r−xS ·er in the exponent and by r in the denominator, so that
R−1eikR becomes r−1eikr exp(−ikxS · er).

In this limit of large r Eq. (5-2.6) is reduced to the form of an outgoing
spherical wave with nonuniform directivity, i.e.,

p̂ = f(θ, φ)r−1eikr , (5-5.1)

where we abbreviate

f(θ, φ) =
−iωρ
2π

∫∫

v̂n(xS , yS)e
−kxS·er dxS dyS

=
−iωρ
2π

g(k sin θ cosφ, k sin θ sinφ) (5-5.2)

with
g(ξ, η) = ∫ ∫ v̂n(xS , yS)e−iξxSe−iηyS dxS dyS , (5-5.3)

representing the two-dimensional Fourier transform‡ of v̂n(xS , yS).
For a circular piston, where v̂n is constant up to radius a and thereafter

zero, the integral in Eq. (2) leads (after a change of integration variables to
cylindrical coordinates u, φS , where xS = u cosφS , yS = u sinφS) to

f(θ, φ) = −iωρv̂n
∫ a

0

(

1

2π

∫ 2π

0

e−iku sin θ cos(φ−φS) dφS

)

u du.

The periodicity of the integrand allows the integration on φS to be replaced
by one on φS−φ from 0 to 2π. Since the exponential is symmetrical in φS−φ,
it can be replaced by the cosine of its argument. With this replacement, the
integrations from 0 to π/2, π/2 to π, π to 3π/2, and 3π/2 to π yield identical
values, so the quantity in parentheses is 2/π times the integral from 0 to
π/2 over cos[ku sin θ cos(φS − φ)], the integration variable being φS − φ.
This quantity is subsequently recognized, from Eq. (5-4.6), as J0(ku sin θ).
Consequently, f(θ, φ) reduces† to

† In the analogous Fresnel-Kirchhoff theory of diffraction by an aperture (Sec. 5-2),
the diffraction is said to be Fraunhofer diffraction when the R in eikR can be re-
placed by r − xS · er. Points at which this approximation is satisfactory are said to
lie in the Fraunhofer region. Similarly the terms Fresnel diffraction and Fresnel region
are used when the quadratic terms (but not the higher-order terms) in the expression
R ≈ r − xS · er + 1

2
[x2S + y2S − (xS · er)2]/r affect the value of the integral. See Born and

Wolf, Principles of Optics, p. 383.
‡ R. C. Jones, “On the Theory of the Directional Patterns of Continuous Source Distribu-
tions on a Plane Surface,” J. Acoust. Soc. Am., 16:147–171 (1945).
† N. W. McLachlan, “Pressure distribution in a fluid due to the axial vibration of a rigid
disc,” Proc. R. Soc. Lond. A122:604–609 (1928). For Fraunhofer diffraction by a circular
aperture, the formula was first derived, although in a somewhat different form, by G. B.
Airy, Trans. Camb. Phil. Soc., 5:283 (1835).
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f(θ) =
−iωρv̂n
k2 sin2 θ

∫ ka sin θ

0

J0(η)η dη = −i ρcv̂nka
2

2

2J1(ka sin θ)

ka sin θ
. (5-5.4)

The Bessel function of first order in the latter expression results from Eq.
(5-4.7a). We have here deleted φ as an argument of f(θ), since the result,
because of the circular symmetry, is independent of φ.

The Bessel function J1(η) is η/2 for small η [see Eq. (5-4.10a)], while, for
large η, it has the asymptotic form given in Eq. (5-4.12a). The first three
zeros are at η = 3.832, 7.616, and 10.173; the nth zero in the limit of large n
is asymptotically (n+ 1

4 )π. Consequently, the factor 2J1(ka sin θ)/(ka sin θ),
considered as a function of θ, is 1 at θ = 0 and has one zero between 1 and
π/2 if 3.832 < ka < 7.016, two zeros if 7.016 < ka < 10.173, three zeros
if 10.173 < ka < 13.32, etc. Note that the far-field value of p̂ at θ = 0 is
the same as the leading term in the low-frequency (ka≪ 1) outer expansion
(5-3.2).

The far-field intensity corresponding to Eqs. (1) and (4) is

Ir,av =
|f(θ)|2
2ρcr2

= (Ir,av)θ=0

[

2J1(ka sin θ)

ka sin θ

]2

, (5-5.5)

so the radiation pattern (see Fig. 5-7) given by r2Ir,av when plotted versus θ
exhibits, for ka > 3.83, a central lobe centered at θ = 0 that is bounded at
θ = ± sin−1 (3.83/ka), plus one or more side lobes.

The acoustic power output Pav by the vibrating baffled piston is the sur-
face integral over a hemisphere (0 < θ < π/2) of large radius r of Ir,av.
The acoustic-energy corollary requires Pav to be the same as the integral of
1
2Re p̂ v̂

∗
n over the front face of the piston or to be 1

2 |v̂n|2 ReZm,rad, where
Zm,rad is the radiation impedance. Consequently, the function R1(2ka) ap-
pearing in Eqs. (5-4.8) and (5-4.9) should be the same as

R1(2ka) =
(ka)2

2

∫ π/2

0

[

2J1(ka sin θ)

ka sin θ

]2

sin θ dθ, (5-5.6)

and, indeed, a substitution of the power-series expansion (5-4.10a) of J1(η)
into the above reproduces Eq. (5-4.11a).
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Figure 5-7 Radiation patterns of a vibrating circular piston in an otherwise rigid wall for
various values of ka. The quantity plotted is Ir(θ)/Ir(0), where Ir(θ) is the time-averaged
intensity as a function of polar angle θ and Ir(0) is the intensity at θ = 0. (a) ka = 0; (b)
ka = 2; (c) ka = 4; (d) ka = 8.
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5-6 TRANSIENT SOLUTION FOR BAFFLED

CIRCULAR PISTON

We here discuss the transient radiation‡ from a baffled piston [radius a, cen-
tered at the origin, vn = vn(t) on the piston face, 0 on the remainder of the
wall] that results immediately following switch-on. To transform the double
integral in Eq. (5-2.1) into a single integral, one first changes the coordinate
system (xS , yS) to one centered at the point (x, y, 0) and rotated so that the
center of the piston is at x′S = w, y′S = 0, where w = (x2 + y2)1/2. The inte-
gration variables are taken as u and φ′S , where x′S = u cosφ′S , y′S = u sinφ′S ,
so that R = (u2 + z2)1/2 and the differential area element dxS dyS becomes
u du dφ′S (see Fig. 5-8). Points on the perimeter of the piston then correspond
to values of u and φ′S such that

u2 + w2 − 2uw cosφ′S = a2. (5-6.1)

For w < a (listener location within cylinder extending outward from the
piston face), the values of u corresponding to points within the piston area
range from 0 to a + w, and for u within these limits φ′S ranges from −π to
π for 0 < u < a− w, but for a− w < u < a+ w it ranges from −φm to φm,
where, from Eq. (1), we define

φm(u) = cos−1 u
2 + w2 − a2

2wu
(5-6.2)

to be such that it lies between 0 and π. For w < a, φm decreases monotonically
from π to 0 when u ranges from a− w to a+ w.

For w > a (listener outside the piston’s projection), the integration vari-
able u ranges from w − a to w + a, and for u fixed φS ranges from −φm to
φm, where φm is still as given by Eq. (2). In this case, however, φm increases
from 0 (at u = w − a) up to a maximum of sin−1 (a/w) [occurring when
u = (w2 − a2)1/2] and thereafter decreases, reaching 0 at u = w + a.

Since vn(t − R/c) is independent of φ′S , the φ′S integration in Eq. (5-2.1)
(with the changes in integration variables described above) can be done di-
rectly, with the result

p = −ρcH(a− w)

∫ a−w

0

d

du

[

vn

(

t− R

c

)]

du

− ρc

π

∫ a+w

|a−w|

φm(u)
d

du

[

vn

(

t− R

c

)]

du. (5-6.3)

‡ J. W. Miles, “Transient loading of a baffled piston,” J. Acoust. Soc. Am. 25:200–203
(1953); F. Oberhettinger, “Transient solutions of the baffled piston problem,” J. Res. Nat.
Bur. Stand. 65B:1–6 (1961). The derivation in the text is similar to that of P. R. Stepan-
ishen, “Transient radiation from pistons in an infinite planar baffle,” J. Acoust. Soc. Am.
49:1628–1638 (1971).
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Figure 5-8 Coordinate systems for derivation of the transient acoustic field of a circular
piston in a rigid baffle. The coordinate system (x′S , y

′
S) is centered at the projection (x, y, 0)

of the listener position on the piston plane and oriented so that the piston center is at x′S =

w, y′S = 0. The polar coordinates u and φS are such that x′S = u cosφS , y′S = u sinφS .

because (d/du)[vn(t−R/c)] = −(1/c)v̇n(t−R/c)u/R. Here H(a−w) is the
Heaviside unit step function (1 if w < a, 0 if w > a). Note that the first
integral is vn(t − Rs/c) − vn(t − z/c), where Rs = [(a − w)2 + z2]1/2 is the
smallest distance from the listener to the perimeter of the piston.

An alternate version (used in subsequent sections) of Eq. (3) results after
an integration by parts of the second term, such that

p = ρcH(a− w)vn

(

t− z

c

)

+
ρc

π

∫ a+w

|a−w|

dφm
du

vn

(

t− R

c

)

du. (5-6.4)

In addition, we make a further change of integration variable to ψ, where

u2 = w2 + a2 + 2wa sinψ, (5-6.5)

such that ψ ranges from −π/2 to π/2 as u ranges from |a−w| to a+w. Also,
it follows from (2) and the definition of ψ that

dφm
du

du = −au−2(a+ w sinψ) dψ. (5-6.6)
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Consequently Eq. (4) yields†

p = ρcH(a− w)vn
(

t− z
c

)

− ρc

π

∫ π/2

−π/2

a(a+ w sinψ)

w2 + a2 + 2wa sinψ
vn

(

t− R

c

)

dψ,

(5-6.7)
where, in terms of ψ, the distance R is now (w2 + a2 + z2 + 2wa sinψ)1/2.

Yet another version (used directly below) results from the change of inte-
gration variable in the second integral in Eq. (3) to τ = t−R/c such that

u = [c2(t− τ)2 − z2]1/2,
d

du
vn

(

t− R

c

)

du = v̇n(τ) dτ. (5-6.8)

Consequently, one obtains

p = ρcH(a− w)

[

vn

(

t− z

c

)

− vn

(

t− Rs
c

)]

+
ρc

π

∫ t−Rs/c

t−Rl/c

v̇n(τ)φm(u) dτ. (5-6.9)

with Rl and Rs representing the largest and smallest distances, [(a ± w)2 +
z2]1/2, from the listener position to the perimeter of the piston.

Equation (9) is frequently used with a numerical integration of the second
term to determine the transient field of the baffled circular piston when vn
is a given function. The overall expression can be rewritten as

p =

∫ t

−∞

v̇n(τ)pus(x, t− τ) dτ, (5-6.10)

where pus(x, t) is the unit step response, acoustic pressure resulting at the
listener location at time t when vn is zero before t = 0 and thereafter has value
1. The expression for pus(x, t) results from Eq. (9) if one sets vn(t) = H(t),
so v̇n(t) = δ(t), such that (see Fig. 5-9)

pus(x, t) =



























0 t < z
c

0 w > a, zc < t < Rs

c

ρc w < a, zc < t < Rs

c
ρc
π cos−1 c2t2−z2+w2−a2

2w(c2t2−z2)1/2
Rs

c < t < Rl

c

0 t > Rl

c

(5-6.11)

This multiplied by V0 gives the field radiated by a piston that is suddenly
accelerated to velocity V0 at time t = 0. Its implication for this case is that,
for w < a, the received acoustic-pressure pulse begins abruptly with a jump
to a value ρcV0 at t = z/c, stays constant until t = Rs/c, and then decreases

† A. Schoch, “Considerations in regard to the sound field of a piston diaphragm,” Akust.
Z. 6:318–326 (1941).
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monotonically, reaching 0 at t = Rl/c, and staying 0 thereafter. For w >
a, p stays 0 up until time Rs/c and increases from 0 following onset up to
a maximum value of (ρcVo/π) sin

−1 (a/w) [achieved when t = (w2 + z2 −
a2)1/2/c] and thereafter decreases, reaching 0 (and remaining 0 thereafter)
at t = Rl/c.

Figure 5-9 Transient acoustic-pressure waveforms at z = a and z = 4a caused by an
impulsively accelerated circular piston in an otherwise rigid wall. The piston is motionless
before t = 0 and thereafter has constant velocity V0. To take advantage of the model’s
intrinsic similitude p/ρcV0 is plotted versus ct/a for fixed values of w/a and z/a.

The various arrival times characterizing the field radiated by the piston in
the idealized situation just described are consistent with Poisson’s theorem
and Huygens’ construction and can be derived from simple considerations.
If the listener lies in the projection of the piston’s area, the earliest arrival
time is z/c and the arrival should be the same as for radiation from a piston
of infinite area up until the first arrival from the perimeter of the piston,
occurring at time Rs/c. At points outside the piston’s projection, the first
wave to arrive must come from the nearest point on the piston perimeter,
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so it arrives at time Rs/c. Since the Rayleigh integral gives no contribution
from points at which v̇n is zero, the last arrival in both cases must come from
the farthest point on the perimeter of the piston and arrives at time Rl/c.

5-7 FIELD ON AND NEAR THE SYMMETRY AXIS

The expressions derived in the previous section demonstrate that the field
of an oscillating baffled circular piston is not necessarily easy to describe
at intermediate radial distances. However, a simple expression results for the
field along the symmetry axis (x = 0, y = 0). This expression follows trivially
from Eq. (5-6.9) if w is set to zero, so that Rs = Rl, but inasmuch as the
steps leading to that equation are somewhat intricate, an alternate derivation
for the special case w = 0 is given here.

Field on Symmetry Axis

The derivation proceeds from the Rayleigh integral (5-2.1) with x and y set to
0 and with the integration variables xS , yS replaced by cylindrical coordinates
wS , φS , where xS = wS cosφS and yS = wS sinφS . Thus we have

p(0, 0, z, t) =
ρ

2π

∫ 2π

0

∫ a

0

v̇n(t−R/c)

R
wS dwS dφS , (5-7.1)

where R2 = z2 + w2
S .

The φS integration yields 2π; the wS integration can be replaced by one
over R, such that R−1wS dwS becomes dR and the integration limits become
z and (z2+a2)1/2. Since v̇n(t−R/c) is −c(∂/∂R)[vn(t−R/c)], we accordingly
obtain†

† H. Backhaus and F. Trendelenberg, “On the unidirectional beaming of piston di-
aphragms,” Z. Tech. Phys. 7:630–635 (1926). The analogous result for diffraction by a
circular aperture dates back to Fresnel, “On the diffraction of light . . . ,” 1816, and to
A. Schuster, “Elementary treatment of problems on the diffraction of light,” Phil. Mag.
(5)31:77–86 (1891). The result is related to Poisson’s famous prediction (originally intended
to debunk Fresnel’s theory of diffraction but shortly thereafter experimentally confirmed
by Arago) that there should be a bright spot in the shadow of a circular disk along the axis
of the disk. If the Fresnel-Kirchhoff integral with eR ·ez = ni ·ez = 1 in Eq. (5-2.8) is used
with v̂i ·ez = v̂n for wS > a, 0 for wS < a, and with a small attenuation factor inserted to
make the integral convergent, one obtains (Babinet’s principle) an expression equal to the
original incident plane wave minus what would be predicted for the problem of diffraction
by a circular aperture of the same size. This difference for points on the symmetry axis,
according to Eq. (2), is ρcvn(t − (z2 + a2)1/2/c), which has exactly the same amplitude
as that of the incident acoustic-pressure wave. For a historical account, see E. Mach, The
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p = ρc

[

vn

(

t− z

c

)

− vn

(

t− (z2 + a2)1/2

c

)]

. (5-7.2)

This can be regarded as the superposition of two waves, one propagating
from the center of the piston and the other (with a minus sign prefixed)
propagating from the edge of the piston (wS = a).

When the piston is oscillating with constant angular frequency ω, the two
terms in Eq. (2) may cancel for certain values of z. With the prescription
that the complex amplitude of vn(t− τ) is v̂neiωτ , Eq. (2) yields, after some
algebra, the expression

p̂ = −2iρcv̂n exp

{

ik[z + (z2 + a2)1/2]

2

}

sin

[

k(z2 + a2)1/2 − kz

2

]

. (5-7.3)

This (see Fig. 5-10) is zero whenever k(z2+a2)1/2 differs from kz by a multiple
of 2π or when

kz =
(ka)2 − (2nπ)2

4nπ
, (5-7.4)

where n is any positive integer less than ka/2π. Thus, if ka/2π is between
5 and 6, there would be five pressure nodes along the z axis. Moreover, if
ka should be an integer multiple of 2π, one of these nodes (largest n) is on
the face of the piston at z = 0, w = 0. There are one or more nodes only if
ka > 2π.

Figure 5-10 Variation along symmetry axis of acoustic-pressure amplitude |p̂| with dis-
tance z (units of a) from center of oscillating circular piston of radius a. Plot of |p̂|/|ρcv̂n|
versus z/a is for ka/2π = 5.5.

The existence of such nodes is a consequence of the circular symmetry of
the piston; they would not be expected for a piston of irregular shape. Beyond
the farthest node (n = 1), the pressure amplitude |p̂| rises to one additional
maximum of |2ρcv̂n| at kz = [(ka)2 − π2]/2π and thereafter decreases. In the
limit z ≫ a, one has (z2+ a2)1/2 ≈ z+ 1

2a
2/z and if, moreover, z ≫ ka2, Eq.

(3) above reduces to

Principles of Physical Optics: An Historical and Philosophical Treatment, 1926, reprinted
by Dover, New York, 1954, pp. 285–286.
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p̂→ − i

2
(ka2)ρcv̂n

eikz

z
, (5-7.5)

which has the characteristic form for spherical spreading and is the same
as would be predicted for a piston vibrating at low frequencies. [See Eq.
(5-3.2).] The reason for the latter behavior is that, if one is directly in front
of a piston (not necessarily circular) and sufficiently far from it, the phases
eikR of contributions from various points on the piston are all nearly the
same. The criterion for the leading term in Eq. (5-3.2) to hold is that the
path lengths from any two points on the piston to the listener differ by a
quantity considerably less than a wavelength.

Field near Symmetry Axis

To study the field when w is not identically zero but merely small compared
with a, we make use of Eq. (5-6.7). Within the integrand of the second term,
it is a good approximation to set w = 0 everywhere except in the time delay
R/c; the latter is approximated by a power-series expansion in w truncated
to first order, such that R ≈ (a2 + z2)1/2 + wa(a2 + z2)−1/2 sinψ. With
these approximations, the ψ integration for the determination of the complex
amplitude requires the evaluation of

∫ π/2

−π/2

exp

[

ikwa

(a2 + z2)1/2
sinψ

]

dψ = 2

∫ π/2

0

cos

[

kwa

(a2 + z2)1/2
sinψ

]

dψ.

(5-7.6)
This, however, is recognized from Eq. (5-4.6), after a change of integration
variable to π/2 − ψ, as πJ0(kwa/(z2 + a2)1/2). Consequently, the constant-
frequency version of Eq. (5-6.7), for w/a≪ 1, becomes†

p̂ = ρcv̂n

[

eikz − eik(z
2+a2)1/2J0

(

kwa

(z2 + a2)1/2

)]

. (5-7.7)

Since J0(0) = 1, the above expression for p̂ reduces to Eq. (2) when w = 0.
However, since‡

J0(η) →
(

2

πη

)1/2

cos
(

η − π

4

)

(5-7.8)

for η ≫ 1, the second term in Eq. (7) is small compared with the first when
kw ≫ [1+(z/a)2]1/2. This could be so even for w ≪ a if ka≫ 1. For example,
if ka = 100 and z = a, the criterion would be met for kw = 10 or w = a/10.

† Schoch, “Consideration . . . ,” 1941.
‡ The derivation of this asymptotic expression proceeds as outlined on p. 225n; the result
is due to Poisson (1823). For a general derivation that includes higher-order terms, see
Watson, Treatise on the Theory of Bessel Functions, pp. 196–198.
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One concludes that if ka ≫ 1, the field is approximately a plane wave at
points where a≫ w ≫ (z2 + a2)1/2/ka. Such a region exists for z ≪ ka2.

5-8 TRANSITION TO THE FAR FIELD

If ka ≫ 1, the field of a vibrating baffled piston persists as a collimated
beam of radius a for distances up to the order of ka2 from the piston with
some anomalous behavior due to symmetry (as discussed in the previous
section) near the beam’s axis and with some deterioration at the edge of the
beam. To describe the latter behavior and the transition to the far field, we
return to expression (5-6.7). Our interest here is in circumstances for which
kRl−kRs is substantially larger than 1, so that the real and imaginary parts
of the integrand in the second term undergo a large number of oscillations
over the range of integration. The integrals over adjacent peaks and troughs
tend to cancel each other, the exceptions being those near ψ = −π/2 and
ψ = π/2, where the derivative of the phase with respect to ψ vanishes. To
take advantage of this, we change the variable of integration to ξ = sinψ (so
R2 becomes z2 + w2 + a2 + 2waξ) and then deform the path of integration
going from ξ = −1 to 1 to the contour C = C1 + C2 sketched in Fig. 5-11.
The variable of integration for the C1 contour is changed to u1, so that

kR = kRs + iu21, 2k2wa(ξ + 1) = 2ikRsu
2
1 − u41.

The first equation defines u1 in terms of ξ; the second results from squaring
both sides of the first. Note that exp ikR dies out exponentially with increas-
ing u1 if the contour C1 is specified so that u1 is real and positive all along
C1. Similarly, the variable of integration for the integration along contour C2

is taken as u2, where

kR = kRl + iu22 2k2wa(ξ − 1) = 2ikRlu
2
2 − u42,

and C2 is specified such that u2 is real and positive along C2. (The integral
over the arc at infinity connecting C1 and C2 vanishes for w not identically
zero.)

With the substitutions just described, Eq. (5-6.7) leads to the expression

p̂ = ρcv̂nH(a− w)eikz − ρcv̂n
π

ei(kRs+π/4)

∫ ∞

0

e−u
2
1 φ1(u1) du1

− ρcv̂n
π

ei(kRl−π/4)

∫ ∞

0

e−u
2
2 φ2(u2) du2

(5-8.1)

where



5-8 Transition to the Far Field 265

φ1,2(u) =
2[2k2a(a∓ w) +G1,2](kRs,l + iu2)

[k2(a∓ w)2 +G1,2](4k2wa∓G1,2)1/2(2kRs,l + iu2)1/2
, (5-8.2)

with the abbreviation

G1,2(u) = 2ikRs,lu
2 − u4. (5-8.3)

The phases of the radicals in the integrands are here understood to be 0 when
u = 0 and to vary continuously with increasing u when u is real.

Figure 5-11 Deformed integration contour in the complex ξ plane for evaluation of the
acoustic-pressure field from a vibrating circular piston in the limit ka≫ 1, kRl−kRs ≫ 1.
The original integration path was from ξ = −1 to ξ = +1 along the real axis. The contour
C1 is the parabola 2(ξR + 1) = −(waξI/Rs)2. Contour C2 is defined analogously.

To obtain approximate expressions for the above integrals that elucidate
the phenomena occurring at intermediate values of z near the edges of the
original beam (i.e., near w = a) emanating from a piston of large ka, we
limit our attention here to circumstances in which ka ≫ 1 and 1/k ≪ z ≪
ka2, w > a/2. For these circumstances, such quantities as kRs, kRl, kwa/Rl,
kwa/Rs, and k(w+a)a/Rl are all large compared with 1. Since the integrands
in Eq. (1) are concentrated near u1 = 0 and u2 = 0, respectively, one can
approximate the quantities φ1(u1) and φ2(u2) by setting u21 or u22 to zero in
any factor whose magnitude is large compared with 1. In this manner, we
obtain
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φ1(u) ≈
(

2Rs
kwa

)1/2
ka(a− w) + iRsu

2

k(a− w)2 + 2iRsu2
(5-8.4)

φ2(u) ≈
a

a+ w

(

2Rl
kwa

)1/2

(5-8.5)

(Note that in the former expression we allow for the possibility of a−w being
close to zero.) To facilitate the evaluation of the corresponding integral, we
rewrite the above approximate expression for φ1(u) in the form

φ1(u) ≈
(

Rs
2kwa

)1/2

+
a+ w

4(wa)1/2

[

1

(π/2)1/2X + e−iπ/4 u
+

1

(π/2)1/2X − e−iπ/4 u

]

(5-8.6)

where we use the abbreviation

X =

(

k

πRs

)1/2

(a− w). (5-8.7)

In regard to the insertion of these expressions for φ1 and φ2 into Eq. (1),
note that the integral from 0 to ∞ of exp(−u2) is 1

2π
1/2 and that the integral

arising from the second term in the brackets in Eq. (6) can be rewritten
after a change of integration variable, u → −u, in the same form as the
integral arising from the first term but with integration limits of −∞ and 0.
Consequently, one obtains†

† The limiting case of a → ∞, w − a finite and abbreviated by x, corresponds to the case
when the x < 0 portion of the plane z = 0 is vibrating with constant amplitude and phase
and the x > 0 portion is motionless. This limit applied to (8) gives

p̂

ρcv̂n
= H(−x)eikz − 2−1/2AD(X) exp

{

i
[

k(x2 + z2)1/2 +
π

4

]}

, (i)

with X = −{k/[π(x2 + z2)1/2]}1/2x. This, with z ≫ |x|, reduces to

p̂

ρcv̂n
= eikz [H(−x)− 2−1/2eiπ/4AD(X)ei(π/2)X2

] = eikz2−1/2e−iπ/4

∫ ∞

−X

ei(π/2)t2 dt.

(ii)
The mathematical steps leading to (ii) are explained later in the present section. This in
the limit considered is the same as the classical result for Fresnel diffraction of a plane
wave by a straight edge in the Fresnel-Kirchhoff theory. See Born and Wolf, Principles of
Optics, pp. 433–434.
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p̂

ρcv̂n
= H(a− w)eikz −

(

Rs
8πkwa

)1/2

ei(kRs+π/4)

− 2a

a+ w

(

Rl
8πkwa

)1/2

ei(kRl−π/4) − a+ w

(8wa)1/2
AD(X)ei(kRs+π/4)

(5-8.8)

where AD(X) is the diffraction integral† given by

AD(X) =
1

π21/2

∫ ∞

−∞

e−u
2

du

(π/2)1/2X − e−iπ/4 u
(5-8.9)

= f(X)− ig(X) (5-8.9a)

the latter serving to define the auxiliary Fresnel functions‡ f(X) and g(X),
which represent the real and negative imaginary parts of AD(X).

Properties of the Diffraction Integral

The diffraction integral AD(X) has the properties of being odd in X but
discontinuous at X = 0 and of being related to the Fresnel integrals

C(X) =

∫ X

0

cos
(π

2
t2
)

dt, S(X) =

∫ X

0

sin
(π

2
t2
)

dt (5-8.10)

by the relation

AD(X) =
1− i

2
e−i(π/2)X

2 {sign (X)− (1 − i)[C(X) + iS(X)]}. (5-8.11)

[This equivalence is demonstrated for X > 0 by replacing (a mathematical
identity)

1

ζ − e−iπ/4u
= e−iπ/4

∫ ∞

0

exp [i(ζeiπ/4 − u)s] ds

in Eq. (9) with ζ = (π/2)1/2X , interchanging the order of s and u integra-
tions, and subsequently writing the total exponent as

† So called here because it is a ubiquitous feature of any asymptotic solution of the wave
equation when the boundary involves a sharp edge. Born and Wolf, Principles of Optics,
p. 428, use the term to refer, with some multiplicative factors, to the integral of eikR over
the aperture.
‡ W. Gautschi, “Error function and Fresnel integrals,” in Abramowitz and Stegun (eds.),
Handbook of Mathematical Functions, pp. 297–302, 323–324. Note that our AD(X) is
(1 − i)/2 times the w(z) in Gautschi’s eq. (7.1.4) with z = (π/2)1/2Xeiπ/4, so our (9a),
giving iAD(X) = [(1 + i)/2]w(z) as g(X) = if(X), is consistent with Gautschi’s (7.3.23)
and (7.3.24).
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−u2 + i(ζeiπ/4 − u)s = −iζ2 − y2 −
(

u+
is

2

)2

with y = s/2 + e−iπ/4ζ. The integral over u of e−(u+is/2)2 yields π1/2. The
integral over s of e−y

2

is changed to an integral over y from e−iπ/4ζ to ∞,
which in turn is broken into an integral from 0 to ∞ (which evaluates to
π1/2) minus an integral from 0 to e−iπ/4ζ. In the latter integral, the variable
of integration is changed to t, where y = (π/2)1/2te−iπ/4, such that the
t integration limits become 0 and X . The cited result then follows from
Euler’s formula (1-8.3), from Eqs. (10), and from the recognition that e±iπ/4

is (1± i)/21/2.]
Behavior of AD(X) at large and small values of |X | is determined, respec-

tively, by (1) expanding the integrand in Eq. (9) in an inverse power series in
X , then integrating term by term, and (2) expanding the integrands in Eqs.
(10) in a power series in (π/2)t2, then integrating term by term, subsequently
substituting the results plus a power-series expansion of exp [−i(π/2)X2] into
Eq. (11). In this manner, the large X limit yields

f(X) → 1

πX
− 3

π3X5
+ · · · (5-8.12a)

g(X) → 1

π2X3
− 15

π4X7
+ · · · (5-8.12b)

while the small X limit yields

f(X) = sign(X)

(

1

2
− π

4
X2 +

π

3
|X |3 − · · ·

)

(5-8.13a)

g(X) = sign(X)

(

1

2
− |X |+ π

4
X2 − · · ·

)

(5-8.13b)

The plots in Fig. 5-12 of f(X) and g(X) along with the leading terms in
their asymptotic expressions indicate that, for most purposes, the asymptotic
expressions are sufficient for |X | > 2.

Field Near Edge of Main Beam

If w is very close to a, that is, a listener at a point on a hypothetical cylinder
projecting out from the piston’s perimeter, the parameter X is vanishingly
small and, in accord with Eqs. (9a) and (13), AD(X) is (1 − i)/2 if X = 0+

(w = a − 0+) and −(1 − i)/2 if X = 0− (w = a + 0+), so the last term
(with the minus sign) in Eq. (8) is − 1

2e
ikz sign (a − w). Regardless of which

direction the limit is approached from, the sum of the first and fourth terms
gives 1

2e
ikz at w = a, so the right side in Eq. (8) is continuous at w = a (as

it should be). The complete expression at w = a consequently reduces to
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Figure 5-12 Auxiliary Fresnel functions f(X) and g(X) versus their argument X, rep-
resenting the real and negative imaginary parts of the diffraction integral AD(X) (an odd
function of X). The leading terms in the asymptotic expressions for f(X) and g(X) are
also shown. [A. D. Pierce, J. Acoust. Soc. Am. 55:946 (1974).]

p̂

ρcv̂n
≈ 1

2e
ikz

[

1− eiπ/4
( z

2πka2

)1/2
]

− (z2 + 4a2)1/4

(8 πka2)1/2
e−iπ/4 eik(z

2+4a2)1/2 .

(5-8.14)
The range of values of z for which the above is valid can be assessed with

reference to the exact expression [derived from Eqs. (5-6.3) or (5-6.7)] for
p̂/ρcv̂n when w = a, that is,

p̂

ρcv̂n
= 1

2e
ikz − 1

π

∫ π/2

0

eik[z
2+(2a)2 sin2 φ]1/2 dφ. (5-8.15)

For z = 0, this has the value† [see Eq. (5-4.6)]
(

p̂

ρcv̂n

)

z=0

= 1
2 [1− J0(2ka)− iH0(2ka)]. (5-8.16)

If ka ≫ 1, both the Bessel function and the Struve function are small com-
pared with 1 and the right side here is close to 1

2 .
In general, the second term in Eq. (15) is of small magnitude until z reaches

values comparable to ka2, in which case the appropriate approximate form
[derived after replacing the radical in the exponent by its truncated binomial

† A. G. Warren, “A note on the acoustic pressure and velocity relations on a circular disc
and in a circular orifice,” Proc. Phys. Soc. (Lond.) 40:296–299 (1928). Warren omits all
details; an explicit derivation is given by McLachlan, “The acoustic and inertia pressure
. . . ,” Phil. Mag., (7)14:1012–1025 (1932).
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expansion z + (2a2/z) sin2 φ] is

p̂

ρcv̂n
≈ 1

2e
ikz
[

1− eika
2/zJ0

(

ka2

z

)]

, (5-8.17)

which may be compared with Eq. (5-7.7). When the argument of the Bessel
function is small compared with 1, Eq. (17) reduces to Eq. (5-7.5) (as it
should), but it is equivalent to Eq. (14) [with (z2 + 4a2)1/2 replaced by z +
2a2/z in the latter] in the limit when the Bessel function can be replaced by
the leading term in its asymptotic expansion, e.g., when ka2/z is of the order
of 1 or greater. Consequently, one can conclude that, near w = a, Eq. (14)
gives a good description of the pressure field up to z = ka2. In addition, since
the terms other than 1

2e
ikz in both Eqs. (14) and (17) are of minor significance

unless z becomes comparable to ka2, Eq. (14) is also a good approximation
(for w near a) when z is close to the plane of the piston.

Characteristic Single-Edge Diffraction Pattern

In the range of values of z where both z and (z2+4a2)1/2 are small compared
with 8πka2, given that |w − a| ≪ a, the second and third terms in Eq.
(8) are of smaller magnitude than the first and fourth, so insight into the
phenomena occurring near the edge of the primary sound beam results from
the neglect of these two terms. (The stated criteria would apply, for example,
if ka = 100 and if z/a < 100.) To the same order of approximation, one can
set (a + w)/(8wa)1/2 = 1/

√
2 in the coefficient preceding AD(X); one can

also set Rs equal to z+(w−a)2/2z in the exponential factor eikRs and equal
to z in the argument of X . Thus, Eq. (8) reduces to

p̂ = ρcv̂ne
ikz

[

H(X)− eiπ/4

21/2
AD(X)ei(π/2)X

2

]

(5-8.18)

= ρcv̂ne
ikz

(

2−1/2e−iπ/4
∫ ∞

−X

ei(π/2)t
2

dt

)

. (5-8.18a)

with X now approximated to (k/πz)1/2(a − w). Here we have also replaced
the a−w in the argument of the Heaviside unit step function by X , since the
latter has the same sign as a−w. Note that the overall function is continuous
in X (as it should be) since, near X = 0, the second term (without the minus
sign) is 1

2 if X = 0+ and − 1
2 if X = 0−.

An implication of the above approximate expression for p̂ is that the spatial
and frequency dependence of the mean squared pressure is contained in a
single dimensionless parameter X , that is,
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(p2)av
(ρc)2(v2n)av

=

∣

∣

∣

∣

H(X)− eiπ/4

21/2
AD(X)ei(π/2)X

2

∣

∣

∣

∣

2

=
1

2

∣

∣

∣

∣

∫ ∞

−X

ei(π/2)t
2

dt

∣

∣

∣

∣

2

(5-8.19)

= 1
2{[ 12 + C(X)]2 + [ 12 + S(X)]2} (5-8.19a)

= 1
2{[f(X)]2 + [g(X)]2}, X < 0 (w > a). (5-8.19b)

This function, plotted in Fig. 5-13, occurs also in the theory of diffraction by
edges and may accordingly be called the characteristic single-edge diffraction

pattern. It decreases monotonically with increasing negative X , asymptot-
ically approaching 1/2π2X2; at X = 0 it has the value 1

4 , while at large
positive X it approaches

(p2)av
(ρc)2(v2n)av

→ 1− 21/2 cos[(π/2)X2 + π/4]

πX
, w < a (X > 0), (5-8.20)

i.e., it oscillates† about 1 with an amplitude that decreases with increasing
X .

The latter approximate expression exhibits local pressure minima when-
ever (π/2)X2 + π/4 is a multiple of 2π, that is, when (with λ = 2π/k)

a− w ≈ (2λz)1/2(n− 1
8 )

1/2. (5-8.21)

The positions of the local pressure maxima are given by an analogous expres-
sion, but with the number 1

8 replaced by 5
8 . With increasing a−w (decreas-

ing w) or, equivalently, with increasing n, these maxima and minima become
progressively closer together. With increasing distance z from the piston, the
overall pattern spreads out; the radial distance between the nth and (n+1)th
maxima increases with z as z1/2.

Similarly, if w > a, the radial distance w′(z) at which (p2)av first drops
below some set fraction ε (assumed substantially less than one-fourth) of the
nominal plane-wave value (ρc)2(v2n)av tends to increase with z, the quantity
w′(z)− a being approximately (λz/ε)1/2/2π. If the so-defined w′(z) is taken
as a measure of the radius of the broadened beam, the axial distance at which
the beam radius has increased by 2 wavelengths is 4 times that at which it
has increased by 1 wavelength and the beam therefore broadens at a slower
rate with increasing z. However, the heights and depths of particular maxima
or minima do not vary with z in the approximation considered here.

The successive minima and maxima within the beam near w = a can be
interpreted as partial interference and reinforcement of a plane wave coming
from the face of the piston with phase kz and a wave coming from the nearest
point on the perimeter of the piston with phase kRs + π + δ, where δ varies

† Photographs resulting from exposure of a photographic plate to an ultrasonic beam
radiating from a baffled piston exhibit such interference rings in a vivid manner. [J. T.
Dehn, “Interference patterns in the near field of a circular piston,” J. Acoust. Soc. Am.
32:1692–1696 (1960).]
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Figure 5-13 Characteristic single-edge diffraction pattern equal to 1
2

∣

∣

∣

∫∞
−X

ei(π/2)t2 dt
∣

∣

∣

2

plotted versus diffraction parameter X and Fresnel number NF = X2/2. [For a circular
piston in a rigid baffle, X is (k/πz)1/2(a − w) and is negative in the shadow zone.]

with position but is between 0 and π/4 (asymptotically π/4). Thus one has

NF =
Rs − z

λ/2
=

{

(2n− 1)− δ/π for reinforcement
2n− δ/π for partial cancellation

(5-8.22)

The left side, representing the difference between the path length from the
edge and the direct path length in units of half wavelengths, is the Fresnel

number NF . Since Rs − z is (w − a)2/2z in the approximation considered
here, the parameter X is (2NF )

1/2.
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The term “Fresnel number” derives from the concept of Fresnel zones† (see
Fig. 5-14). The set of all points on the surface at radial distance R (from the
listener) between z and z+λ/2 is said to lie in the first Fresnel zone; those for
which R lies between z+λ/2 and z+λ lie in the second Fresnel zone, etc. The
Rayleigh integral (5-2.6) can be interpreted as a sum over contributions from
the various Fresnel zones that overlap the active face of the vibrating piston.
Phase variations of wavelets that originate from points on the same Fresnel
zone are relatively minor, while wavelets originating from two adjacent zones
tend (on the average) to partially cancel each other. The Fresnel number in
Eq. (5-8.22) can be identified as the number of Fresnel zones that separate
the projection of the listener point on the z = 0 plane from the nearest point
on the piston’s perimeter. A unit change in Fresnel number corresponds to
the addition of the contribution from another Fresnel zone to the Rayleigh
integral, which partially cancels the contribution from the previously added
zone. This qualitatively explains why the distance from a maximum to the
next minimum or from a minimum to the next maximum corresponds asymp-
totically to a unit change in NF . However, no special significance should be
attached to integer values of NF .

Since the approximate expression Eq. (18) depends on the radius a of the
piston only through the distance w − a, it and all the intervening remarks
apply to the radiation from uniformly vibrating baffled pistons that are not
necessarily of circular shape. One can interpret w − a as transverse distance
from the listener position to the nearest point on the outward projection of
the piston’s perimeter. The solution’s validity is primarily limited to points
near the nominal edge of the beam; the restrictions described previously apply
if a is taken as a characteristic dimension of the piston.

Field far Outside the Central Beam

To describe the pressure field at points at a moderate distance from the
edge of the central beam, yet for circumstances in which the inequalities as-
sumed at the beginning of the present section are valid, one can approximate
AD(X) in Eq. (8) by its asymptotic limit 1/πX with X given by Eq. (7).
(This presumes that w − a is sufficiently large to ensure that |X | ≥ 2.) For
such circumstances, the first term in (8) vanishes, and the second and fourth
combine into one similar to the third but with a − w replacing a + w. In
this limit, the acoustic disturbance resembles the sum of two waves, coming
from the nearest and farthest points, respectively, on the piston’s perimeter.
These waves set up an interference and reinforcement pattern; local minima
in (p2)av occur when

† A. Sommerfeld, Optics, Academic, New York, 1950, pp. 218–220; Born and Wolf, Princi-
ples of Optics, pp. 371–375; F. W. Sears, Optics, 3rd ed., Addison-Wesley, Reading, Mass.,
1949, pp. 245–251.
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Figure 5-14 Fresnel zones on a circular piston. Example plotted is for ka = 20, wL/a = 6,
zL/a = 4, where a is piston radius and wL and zL are cylindrical coordinates of listener.

Rl −Rs
λ/2

≈ 2n+ 1
2 , (5-8.22)

where n is an integer less than 2a/λ− 1
4 . (Note that the maximum possible

value of Rl −Rs is 2a.)
For the considered range of z for which the approximation described above

is valid, the maxima in this interference pattern are substantially lower in
magnitude than those found in the central beam (w < a). The first discernible
minimum, for z fixed and for w > a, corresponds to a value of n for which the
cylindrical radial distance w satisfying Eq. (23) is somewhat greater than a,
so the minima corresponding to lower integer values of n are not present until
z has increased to some threshold value, depending on n. Typical patterns†

are shown in Fig. 5-15.

† The analysis in the present section is largely due to Schoch, “Considerations . . . ,” 1941.
For a comparable but mathematically dissimilar discussion of the field of a circular plane
piston in the ka ≫ 1 limit, see P. H. Rogers and A. O. Williams, Jr., “Acoustic Field of
a Circular Plane Piston in Limits of Short Wavelength or Large Radius,” J. Acoust. Soc.
Am., 52:865–870 (1972). Some detailed computational results for the intermediate range of
ka are displayed by H. Stenzel, Leitfaden zur Berechnung von Schallvorgängen, Springer,
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Figure 5-15 The development with increasing axial distance z of side lobes A, B, and C
in the radiation pattern of a circular piston (radius a) vibrating at a frequency such that
ka = 20. The quantity plotted is (p2)av in units of the nominal average value (ρc)2(v2n)av
expected for plane-wave propagation in the central beam; w is the radial distance in cylin-
drical coordinates from the axis of the piston. The computations are based on Eq. (5-8.8).

The partial cancellation at a minimum becomes nearly complete at radial
distances r sufficiently large to ensure that Rs/Rl ≈ 1, (w−a)/(w+a) ≈ 1. In
this limit one can set Rl ≈ Rs ≈ r and w−a ≈ w+a ≈ w in the coefficients of
the exponentials. However, to account for phase variations over a hemisphere
of fixed r, one should retain the first-order corrections to Rl and Rs in the
exponentials; that is, Rl,s ≈ r ± a sin θ. In this manner, one finds that Eq.

Berlin, 1939, pp. 75–79; they are also given by S. N. Rschevkin, A Course of Lectures on
the Theory of Sound, Pergamon, Oxford, 1963, pp. 441–443.
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(8) reduces to what is given by Eqs. (5-5.1) and (5-5.4) but with the Bessel
function replaced by its asymptotic expression (5-4.10a). Consequently, Eq.
(8) matches the far-field expression in the limit w ≫ a (as it should).

5-9 PROBLEMS

5-1 At the time a small airplane passes at 150 m altitude over point A on
the ground (see sketch), the sound level at A is 100 dB. Estimate the
sound level received at the same time at a point B (150 m from A) on the
intersection of an isolated building with the ground.

Problem 5-1

5-2 Verify that the method of images applies for a source near a planar
pressure-release surface if the image source’s surface motion is appropri-
ately chosen. What is the Green’s function for a unit-monopole-amplitude
point source near a pressure-release surface? Show that the field ap-
proaches that of a dipole when a monopole source is sufficiently close to a
pressure-release surface.

5-3 An acoustic monopole is near the corner of a large room. Take the floor
as the z = 0 plane and the two neighboring walls as the x = 0 and y = 0
planes; let the source be at the point (d, d, d) and let the power output
the source would have in an unbounded space be Pav,ff . Assuming that
the surfaces are perfectly rigid, determine and plot the resulting acoustic
power as a function of kd. Beyond what value of kd can one assume the
acoustic power output to be within 10 percent of Pav,ff? [J. Tickner, J.

Sound Vib., 36:133–145 (1974).]
5-4 The space (x > 0, y > 0, z > 0) is bounded by three rigid planes at

x = 0, y = 0, and z = 0.
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(a) Derive an expression for the Green’s functionGk(x|x0) for the Helmholtz
equation that satisfies the appropriate boundary conditions and verify that
Gk(x|x0) = Gk(x0|x).
(b) When |x0| is a large distance from the corner but x is much closer,
show that this Green’s function assumes the approximate form

Gk(x|x0) = F (kx, ei)r
−1
0 eikr0 ,

and determine the function F (kx, ei). Do not necessarily assume kr ≫ 1.
Here r0 = |x0| and ei = −x0/r0 is the unit vector pointing from source to
corner.
(c) How does this result apply when a plane wave rather than a wave from
a point source is incident on the corner?

5-5 An underwater monopole source with angular frequency ω = ck is at depth
zS below the water’s surface (a pressure-release surface) and is at a distance
xS from a large rigid surface occupying the x = 0 plane. Otherwise the
region occupied by the water is unbounded.
(a) Determine the Green’s functionGk(x, y, z|xS , yS, zS) for the Helmholtz
equation that satisfies the boundary conditions appropriate to this prob-
lem and verify that the Green’s function satisfies the reciprocity condition.
(b) Determine the far-field radiation pattern of the source at distances
|x| ≫ |xS | when k|x| ≫ 1.
(c) Determine the time-averaged acoustic power of the source and discuss
the limiting cases of kxS → 0 and kzS → 0.

5-6 Two loudspeakers of area A are mounted on a large rigid wall (z = 0) with
their centers at x = −l/2, y = 0, and x = l/2, y = 0. Both loudspeakers
have the same velocity amplitude |v̂n|, but they are 90◦ out of phase. De-
termine the time-averaged far-field acoustic intensity and power output of
this two-loudspeaker system. Consider the dimensions of the loudspeakers
to be small compared with a wavelength or with l but carry through the
derivation for arbitrary kl. (The analysis is simpler if the polar axis of
the spherical coordinate system is selected so that the resulting field is
independent of φ.)

5-7 Four small loudspeakers (labeled 1, 2, 3, 4) are mounted at (−l/2, l/2),
(l/2, l/2), (l/2,−l/2), and (−l/2,−l/2) on a rigid wall occupying the z = 0
plane. The separation distance l is large compared with a loudspeaker ra-
dius a but small compared with a wavelength of the radiated sound. De-
termine the power radiated out from the wall by this system to lowest
nonzero order in kl when each loudspeaker oscillates with velocity ampli-
tude |v̂n| for the following possible phase selections: (a) all loudspeakers
in phase; (b) speakers 1 and 2 in phase but 180◦ out of phase with 3 and
4; (c) speakers 1 and 3 in phase but 180◦ out of phase with 2 and 4.

5-8 A rigid circular diaphragm of mass m = 0.015 kg and radius 0.15 m
moves inside a cylindrical cavity whose mouth has a very large baffle. The
diaphragm is separated from the inner end of the cavity by an elastic
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material that behaves like a spring with a spring constant of 2000 N/m. A
sinusoidally varying force with a frequency of 330 Hz causes the diaphragm
to vibrate and to radiate 0.5 W of acoustic power.
(a) What is the velocity amplitude of the diaphragm?
(b) What force amplitude is required to produce this power? [Take ρc =
400 kg/(m2·s) and c = 350m/s.]

5-9 A square piston, dimensions a on each side, is mounted in a rigid wall
(z = 0) and vibrates with angular frequency ω and velocity amplitude
|v̂n|.
(a) Derive an expression for the far-field intensity for arbitrary ka.
(b) For ka = 2π, plot the ratio of intensity at polar angle θ to that at θ = 0
versus θ for fixed azimuthal angle φ when φ = 0◦ and when φ = 45◦. Also
plot the analogous ratio for fixed θ versus φ when θ = 90◦.
(c) Determine the smallest value of ka for which the far-field radiation
pattern has a nodal direction. Take the piston as occupying the region
−a/2 < x < a/2, −a/2 < y < a/2 in the z = 0 plane and let x =
r sin θ cosφ, y = r sin θ sinφ, z = r cos θ.

5-10 A small baffled loudspeaker driven by a transducer and oscillating at 1000
Hz frequency with rms velocity of 1 m/s causes the sound in air at a
radial distance of 10 m to have a rms acoustic pressure of 0.1 Pa. The
electroacoustic transducer (with baffled loudspeaker included) is such that
when it acts as a loudspeaker, a voltage Re1.0e−iωtV causes an area-
averaged loudspeaker velocity of Re (1 − i)e−iωt m/s and a current of
Re (1− i)e−iωt A. What is the electroacoustic efficiency of this system?

5-11 An annular piston with inner radius a and outer radius 4
3a is mounted on

a wall so that the inner area, 0 < w < a, does not move, while the piston,
a < w < 4

3a, oscillates with velocity amplitude |v̂n| and angular frequency
ω.
(a) What is the smallest nonzero value of ω at which the acoustic pressure
just in front of the center point (0, 0, 0) is zero?
(b) If ω is systematically varied, what is the maximum acoustic-pressure
amplitude one can expect at any given point on the symmetry axis?

5-12 A zone plate is constructed to enhance the acoustic-pressure amplitude
at a point on the symmetry axis 10 wavelengths from the center of a
baffled circular piston oscillating at angular frequency ω. The radius of
the piston is such that, at this frequency and for the cited listener point,
it corresponds to the outer edge of the fifth Fresnel zone. The piston is
oscillating with velocity amplitude |v̂n|, but the zone plate blocks out
the second and fourth zones so that only zones 1, 3, and 5 contribute to
the radiated field. What is the acoustic-pressure amplitude at the chosen
listener point?

5-13 A rigid sphere of radius a moves back and forth with small displacement
amplitude and angular frequency ck in a circular hole of the same radius
in a large rigid screen.
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(a) Given that ka ≪ 1 and that the velocity amplitude of the sphere is
|v̂C |, determine the acoustic power radiated to one side of the screen.
(b) How does your result compare with what would be expected without
the screen?

5-14 A baffled circular piston of radius a begins to vibrate at time t = 0 such
that vn(t) = 0 for t < 0, vn(t) = |v̂n| sinωt for t > 0. Plot the acoustic
pressure versus time at a point on the symmetry axis at a distance 3 πc/ω
from the piston center when ω = 4πc/a.

5-15 (a) Show that the method of images applies for a point source within the
interior region of a wedge formed by two rigid walls that intersect at an
angle of π/n, where n is a positive integer.
(b) Determine the location of all necessary images of a source at a point
described by cylindrical coordinates wS , φS , zS within a wedge-shaped
region formed by the planes φ = 0 and φ = π/3.
(c) Give an expression for the Green’s function that satisfies boundary
conditions appropriate to the circumstances of (b).
(d) How much enhancement in acoustic-power output relative to that ex-
pected in a free-field environment is obtained in the limit wS → 0?

5-16 Verify that the expressions in Eqs. (5-4.9) and (5-5.6) for R1(2ka) are
equivalent.

5-17 Determine a definite-integral expression for the acoustic power radiated by
the baffled square piston of Prob. 5-9 and show that its average approxi-
mates to (ρc)(ka)2a2(v2n)av/2π for ka≪ 1 and to ρca2(v2n)av for ka≫ 1.

5-18 For the low-frequency limit, when the acoustic field near an oscillating
baffled circular piston can be described as incompressible flow, determine
the component vw of the fluid velocity that corresponds to flow radially
away from the symmetry axis for points on the piston (z = 0). Plot your
result in a suitable dimensionless form versus w/a.

5-19 A limiting case of interest is when the x < 0 half of the z = 0 plane has
normal velocity Re v̂ne

−iωt while the other half remains rigid.
(a) Prove that the complex acoustic-pressure amplitude p̂ along the plane
x = 0 is 1

2ρcv̂ne
ikz .

(b) Show that p̂ is given by the expression on page 236n in the limit kz ≫ 1.
Give a derivation that proceeds from the Rayleigh integral without the
artifice of extracting the ka≫ 1 limit from the result for a circular piston.

5-20 (a) Show for the circumstances for which Eq. (5-8.18) is applicable that
the radial component (cylindrical coordinates) vw of the fluid velocity at
w = a has a complex amplitude v̂w, equal to [(1 + i)/2]v̂n(πkz)

−1/2eikz .
(b) Use this result to estimate to what distance z the primary beam (oc-
cupying the cylinder of radius a) propagates before the acoustic power
transported within it drops by 50 percent of its value near the piston
surface. (Assume ka≫ 1.)

5-21 Show that the quadruple Helmholtz integral in Eq. (5-4.1) (whose value
determines the piston’s radiation impedance) can be reduced to evaluation
of the double integral
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, ,
Ein(−ikR) dl · dlS

where dl and dlS are differential line elements, the two integrations pro-
ceeding around the perimeter of the piston. Here

Ein(η) =

∫ η

0

1− e−t

t
dt

is the exponential integral. Do not necessarily assume that the piston is
circular. [O. A. Lindemann, “Transformation of the Helmholtz integral into
a line integral,” J. Acoust. Soc. Am. 40:914–915 (1966).]

5-22 (a) Show that, in the limit of small ka, where a is a characteristic piston
dimension, the result in Prob. 5-21 reduces to the evaluation of

, ,
R dl · dlS .

(b) Hence show that the mechanical radiation impedance of a baffled rect-
angular piston of dimensions a by b is given in the limit of ka≪ 1, kb≪ 1,
by

Zm,rad = −i ρc
2π

k(ab)3/2f
(a

b

)

+
ρc

2π
k2(ab)2,

where

f(ζ) = 2ζ1/2 sinh−1 ζ−1+2ζ−1/2 sinh−1 ζ+ 2
3ζ

3/2+ 2
3ζ

−3/2− 2
3 (ζ+ζ

−1)3/2.

[O. A. Lindemann, “Radiation impedance of a rectangular piston at very
low frequencies,” J. Acoust. Soc. Am. 44:1738–1739 (1968).]

5-23 A point source of monopole amplitude Ŝ and oscillating at angular fre-
quency ω is at (0, 0, zS) between two parallel rigid walls, z = 0 and z = h.
(a) Show that the image sources have z coordinates 2nh± zS , where the
integer n is positive, negative, or zero.
(b) Show that the complex amplitude of the acoustic pressure can be al-
ternately written as

p̂ = Ŝ

∫ ∞

−∞

e
ik(ζ2+w2)1/2

(ζ2 + w2)1/2

∞
∑

n=−∞

[δ(ζ − z + zS + 2nh) + δ(ζ − z − zS + 2nh)] dζ

=
Ŝ

h

∫ ∞

−∞

e
ik(ζ2+w2)1/2

(ζ2 + w2)1/2

[

∞
∑

n=0

εn cos
nπzS
h

cos
nπ(z − ζ)

h

]

dζ

=
Ŝ

h

∞
∑

n=0

εn cos
nπzS
h

cos
nπz

h

∫ ∞

−∞

e
ik(ζ2+w2)1/2

(ζ2 + w2)1/2
cos

nπζ

h
dζ,

where
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εn =

{

1 for n = 0
2 for n ≥ 1

(c) Express the above definite integral as k times a function of [k2 −
(nπ/h)2]1/2w and show that the result is proportional to what is defined
as the Hankel function in standard reference texts.

5-24 (a) Verify that the complex acoustic-pressure amplitude at the perimeter
of an oscillating baffled circular piston is given by Eq. (5-8.16).
(b) Show that the result is compatible with Eqs. (5-3.4) and (5-3.7) in the
limit ka≪ 1.

5-25 (a) Determine an expression for the time-averaged axial component Iz,av of
the acoustic intensity along the symmetry axis of a baffled circular piston
oscillating at constant frequency.
(b) What is the corresponding limiting value (w → 0) of w−1Iw,av along
the symmetry axis? (Here w denotes the radial distance in cylindrical
coordinates.)
(c) Sketch the energy flow lines (lines everywhere tangential to I) in the
vicinity of the symmetry axis for ka = 6π. Indicate the direction of energy
flow with arrows.

5-26 A highly directional acoustic radiator is to be designed using a baffled
circular piston. The sound-pressure level in the far field at angles greater
than 10◦ should be at least 10 dB less than that at the same radial distance
along the symmetry axis. What is the minimum value of ka to accomplish
this objective?





CHAPTER SIX

ROOM ACOUSTICS

The sound in a room consists of that coming directly from the source plus
sound reflected or scattered (see Fig. 6-1) by the walls and by objects in the
room. Sound having undergone one or more reflections is called reverberant

sound because it corresponds for an impulsive source to a series of echoes.
If the direct wave predominates almost everywhere, the room is anechoic

(without echoes); rooms so designed† are anechoic chambers. A reverbera-

tion chamber is a room designed‡ so that the reverberant field predominates
overwhelmingly.

The bulk of the present chapter is concerned with sound in reverberant
rooms. Many of the concepts introduced here, e.g., room absorption, rever-
beration time, random-incidence absorption coefficients, and random wave
fields, have implications extending beyond room acoustic applications and
correspond to analogous concepts in such diverse areas as the propagation of
sound in the ocean, the vibrations of large complex bodies, the radiation of
sound by such bodies, and the propagation of sound within and out of ducts.

† J. Duda, “Basic design considerations for anechoic chambers,” Noise Control Eng. 9:60–
67 (1977); W. Koidan and G. R. Hruska, “Acoustical properties of the National Bureau of
Standards anechoic chamber,” J. Acoust. Soc. Am. 64:508–516 (1978).
‡ Standard design criteria are set forth in American National Standard Methods for the
Determination of Sound Power Levels of Small Sources in Reverberation Rooms, ANSI
S1.21-1972, American National Standards Institute, New York, 1972. See also the discussion
by W. K. Blake and L. J. Maja, “Chamber for reverberant acoustic power measurements
in air and in water,” J. Acoust. Soc. Am. 57:380–384 (1975).
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Figure 6-1 Sketch of ray paths from a source in a reverberant room.

6-1 THE SABINE-FRANKLIN-JAEGER THEORY OF

REVERBERANT ROOMS

An appropriate idealization (discovered by W. C. Sabine† at the turn of the
century) is that the sound “fills” a reverberant room in such a way that the av-
erage energy per unit volume in any region is nearly the same as in any other
region. The corresponding mathematical model (reverberant-field model) that
Sabine deduced from a series of ingenious experiments has a relation to the
full-wave model (wave equation plus boundary conditions) of classical acous-
tics similar to that of radiative heat transfer to electromagnetic theory or of
kinetic theory to classical mechanics. It applies best to “large” rooms whose
characteristic dimensions are substantially larger than a typical wavelength
and to “live” (as opposed to “dead”) rooms, for which the time determined by
the ratio of the total propagating energy within the room to the time rate
at which energy is being lost from the room (absorbed or transmitted out) is
considerably larger than the time required for a sound wave to travel across

† W. C. Sabine, “Architectural acoustics,” Eng. Rec. 38:520–522 (1898); “Architectural
acoustics,” ibid. 41:349–351, 376–379, 400–402, 426–427, 450–451, 477–478, 503–505
(1900); both the 1898 paper and the series of 1900 are also printed in Am. Archit. Build.
News 62:71–73 (1898), ibid.68:3–5, 19–22, 35–37, 43–45, 59–61, 75–76, 83–84 (1900). All
except that of 1898 are printed in W. C. Sabine, Collected Papers on Acoustics, Dover, New
York, 1964. Historical sidelights are given by L. L. Beranek: “The Notebooks of Wallace C.
Sabine,” J. Acoust. Soc. Am. 61:629–639 (1977).
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a representative dimension of the room. (Other limitations are discussed in
Secs. 6-3 and 6-6.)

Energy Conservation Equation for Rooms

The basic concepts involved in the Sabine model are best explained within
the context of the principle of conservation of acoustic energy. The portion of
the field associated with a given frequency band can be defined, even for non-
steady fields, in terms of functions pb(x, t) and vb(x, t) that correspond to the
instantaneous outputs when p(x, t) and v(x, t) are passed through frequency
filters. These filtered field variables also satisfy the linear acoustics equations
(see Prob. 2-41), and so the derivation of Eq. (1-11.2) is still applicable. After
an integration over the interior volume V of the room, the analogous differ-
ential equation involving pb and vb yields the energy-conservation relation

d

dt

∫∫∫

wb dV = Pb − Pb,d, (6-1.1)

where wb is the acoustic energy density given by (1-11.3) with pb and vb
replacing p and v. Here Pb is the net acoustic power associated with the
frequency band of interest supplied by sources in the room. The power dis-
sipated Pb,d is the power within the same frequency band leaving the room
through its bounding surfaces and is defined as a surface integral of pbvb·nout.
The dissipation within the interior of the room proper is usually not signifi-
cant, except at higher frequencies, but Eq. (1) (with a broader interpretation
of Pb,d) can still be used when one wants to take this into account (see
Sec. 10-8).

Equation (1), holding at every instant, is also true (Prob. 2-41) if wb,Pb,
and Pb,d are replaced by running time averages, w̄b, P̄b, and P̄b,d. One can
also argue that if the effective duration of the averaging interval is sufficiently
long, these running time averages are additive functions for nonoverlapping
bands. For example, the function w̄b for the band 1000 to 2000 Hz should
equal the sum of those corresponding to the bands 1000 to 1500 Hz and 1500
to 2000 Hz.

Spatial Uniformity

The principal assumption on which the Sabine model is based is that over
the major portion of the interior space of the room, the local spatial average

of w̄b is independent of position. (A local spatial average is here understood
to be an average over a volume with dimensions substantially larger than
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a representative acoustic wavelength but substantially smaller than those of
the room as a whole.) This assumption may not be valid near a source and
may also not be true near protruding obstacles, but one can limit the volume
of consideration to whatever portion V ′ of V the assumption applies. It must
nevertheless be assumed that only a small fraction of V is excluded.

This spatial uniformity requires the presence of the walls for its existence
and maintenance. If a source is suddenly turned on, the time interval within
which such a uniformity is established can be estimated as the time lapse
until the hundredth reflected wave arrives. For a rectangular room with nearly
rigid walls, the various reflected waves can be considered as coming from a
rectangular array of image sources (see Sec. 5-1); in the extended space there
is one image source per volume V , so the first 100 images lie within a radius of
the order of (3/4π)1/3(100)1/3V 1/3 = 2.9V 1/3. This suggests that an average
spatial uniformity is well established within a time interval of the order of
3l/c, where l is a representative dimension of the room. For l equal to, say,
10 m and with c = 340m/s, this gives a time interval of 0.1 s.

The Sabine model regards all acoustic fields with the same average energy
density w̄ as equivalent insofar as a field’s statistical properties are concerned.
(Here and in what follows w̄ represents the local spatial average of the running
time average; the subscript b is omitted, and no additional symbolism is used
to imply spatial averaging. Also, in accord with the remarks above, w̄ is
assumed independent of position.)

A consequence of the statistical-equivalence assumption is that P̄d de-
pends on the reverberant field in the room only through w̄. Furthermore,
because the boundary conditions at surfaces bounding V are governed by
linear equations relating the primary acoustic field variables p and v, this
relationship should be a direct proportionality. (Both w̄ and P̄d increase by
the factor K2 when the field variables are each increased by a factor K.) The
proportionality constant is a property of the room as a whole, independent of
the nature and position of the source but possibly dependent on frequency.

The proportionality just described can be written

P̄d =
c

4
Asw̄, (6-1.2)

where c is the speed of sound and As is a frequency-dependent room property
having units of area that can be considered to be defined by this equation.
For reasons explained below, As is referred to as the equivalent area of open

windows or the absorbing power of the room and is said to have the units
of metric sabins, the term sabin identifying the context in which it is used.
(The unit sabin without the adjective, refers to the area As in square feet,
although Sabine used metric units in his first papers.)
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With the substitution of Eq. (2) for P̄d, the running time average of the
energy-conservation law (1) is reduced to the differential equation†

V
dw̄

dt
+
c

4
Asw̄ = P̄. (6-1.3)

Reverberation Time

After the sudden extinction of a source in a reverberant room, the running
time average of sound pressure squared, as indicated by a sound-level meter
with the “fast” response, for example, may fluctuate somewhat erratically
(Fig. 6-2), but the gross tendency resembles an exponential decay, similar
to that experienced by the volume average w̄ of energy density. The latter
behavior results from an integration of Eq. (3) with P̄ set to zero, i.e.,

w̄(t) = w̄inite
−t/τ τ =

4V

cAs
. (6-1.4)

The so-defined characteristic decay time τ has units of seconds per half neper,
since whenever the amplitude of the primary acoustic variables decreases by
a factor of e−1 or by 1 neper (Np), the energy density (a bilinear quantity)
decreases by a factor of e−2.

The usual descriptor for the exponential decay of reverberant sound is the
time T60 required for the spatial average of the energy density to drop by a
factor of 106(60 dB). This reverberation time T60 is such that when t = T60
in Eq. (4), w̄init/w̄ is 106; therefore, T60 is (6 ln 10)τ = 13.82τ . Because w̄ is
proportional to p2 (a relation w̄ = p2/ρc2 is derived below), and because a
decrease of p2 by a factor of 106 corresponds to a decrease in sound level by
60 dB, T60 has the units of seconds per 60 dB; its relation to τ expresses the
equivalence of 60 dB to 13.82 Np/2.

Sabine’s Equation

One of Sabine’s principal contributions to room acoustics was the experimen-
tal discovery that for an empty room of volume V the reverberation time T60
is predictable from the relation† (in SI units)

† G. Jaeger, “Toward a theory of reverberation,” Sitzungsber. Kais. Akad. Wiss. (Vienna),
Math. Naturwiss. Kl., sec. IIa 120:613–634 (1911).
† Various slightly different experimentally determined values for the numerical coefficient
are mentioned in Sabine’s writings; 0.164 s/m is, for example, given in a 1906 paper (Col-
lected Papers on Acoustics, p. 103). The value 0.161 is predicted by theory when the room
temperature is 18.3◦C (65◦F); 0.164 corresponds to 9.4◦C (49◦F).
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T60 =
0.161V
∑

i αiAi
. (6-1.5)

Here the sum extends over all the distinct portions of the total surface area of
the room, each element of area Ai characterized by an absorption coefficient

αi determined from measurements of T60 with various mixtures of wall cov-
erings and from the requirement that αi be 1 for an open window. The model
presumes that αi is an intrinsic property of the wall material (depending also
on frequency), independent of the source, source location, magnitude (given
that it is sufficiently large), and location of area Ai and of the coverings on
other portions of the bounding surfaces. Sabine’s experimental data indicated
that Eq. (5) can predict reverberation times for specific cases using values
of the αi derived from previous measurements of reverberation times in dif-
ferent circumstances. Typical numbers measured by Sabine with a source of
512 Hz frequency for the absorption coefficient α were wood sheathing (hard
pine), 0.061; plaster on wood lath, 0.034; plaster on wire lath, 0.033; glass,
single thickness, 0.027; plaster on tile, 0.025; brick set in Portland cement,
0.025; seat cushions, 0.80; carpeting, 0.20; oriental rugs, extra heavy, 0.29;
linoleum, loose on floor, 0.12. (Table 6-1 lists absorption coefficients extracted
from more recent literature.)

Figure 6-2 Reverberant decay of running time average of square of acoustic pressure
as displayed by a high-speed level recorder. (a) Sudden turnoff of a narrow-band source
(1000±50Hz and (b) firing a pistol shot (600 to 1200 Hz). (W. Furrer, Room and Building
Acoustics and Noise Abatement, Butterworths, London, 1964, p. 89.)

The extension to Sabine’s derivation of Eq. (5) that successfully predicts
the numerical coefficient is due to W. S. Franklin;‡ a derivation similar in

‡ W. S. Franklin, “Derivation of equation of decaying sound in a room and definition of
open window equivalent of absorbing power,” Phys. Rev.16:372–374 (1903).
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basic concept but explicitly related to the wave theory of sound is given
below.

Diffuse Sound Fields

To demonstrate the equivalence of Eqs. (4) and (5) when As is as defined by
Eq. (2), it is sufficient to limit one’s consideration to the constant-frequency
case. Within the interior of a reverberant room, the field is regarded as a
superposition of freely propagating plane waves, no two of which are traveling
in the same direction (see Fig. 6-3a), so for the complex amplitudes we write

p̂ =
∑

q

p̂qe
iknq·x, ρcv̂ =

∑

q

nq p̂qe
iknq·x. (6-1.6)

The time average of the energy density associated with this field, expressed
using Eqs. (1-11.3) and (1-8.9), involves a double sum over indices q and q′,
but the process of taking a local spatial average causes the cross terms (q 6= q′)
to tend to average out. The spatial average of exp[ik(nq − nq′) · x] is nearly
zero for a sufficiently large averaging volume. Moreover, the spatial averages
of the cross terms should have a variety of magnitudes; either sign is equally
likely for terms having a given magnitude, so the total sum of such terms
should be small. The terms for which q = q′, however, are positive and must
be retained. With the neglect of cross terms, the time average of the energy
density reduces to the sum of the time averages of its constituent plane waves
[see Eq. (1-11.11a)], so one obtains

w̄ ≈ 1

2ρc2

∑

q

|p̂q|2 ≈ 1

ρc2
p2, (6-1.7)

which is analogous to Parseval’s theorem (see Secs. 2-1 and 2-7).
The portion w̄

∆Ω
of the average energy density propagating with directions

lying within a cone of solid angle ∆Ω is that part of the sum in Eq. (7) for
which nq lies in ∆Ω. One can conceive of a directional energy density D(e)
as the quasi limit as ∆Ω becomes small of w̄

∆Ω
/∆Ω. where ∆Ω is the solid

angle centered on the direction e. This D(e) (energy per unit volume and
per unit solid angle of propagation direction†) must accordingly be such that
its integral over all directions, 4π sr (steradians), is w̄.

† In the theory of radiative heat transfer, an intensity of radiation I is defined as the
energy emitted by a surface per unit area of surface per unit time and per unit solid
angle of propagation direction. The analog of the directional energy density defined in the
text can be identified for volumes just outside such a surface and for directions pointing
obliquely away from it as I/c, where c is the speed at which the energy propagates. See, for
example, F. Kreith, Principles of Heat Transfer, 3d ed., Intext, New York, 1973, p. 229.
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Table 6-1 Representative absorption coefficients of surfaces

Absorption coefficient α
Material 125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz

Brick, unglazed 0.03 0.03 0.03 0.04 0.05 0.07
Plaster, gypsum or lime, on

brick 0.01 0.02 0.02 0.03 0.04 0.05
On concrete block 0.12 0.09 0.07 0.05 0.05 0.04

Concrete block, coarse 0.36 0.44 0.31 0.29 0.39 0.25
Painted 0.10 0.05 0.06 0.07 0.09 0.08

Plywood, 1-cm-thick
paneling 0.28 0.22 0.17 0.09 0.10 0.11

Cork, 2.5 cm thick
with airspace behind 0.14 0.25 0.40 0.25 0.34 0.21

Glass, typical window 0.35 0.25 0.18 0.12 0.07 0.04
Drapery, lightweight, flat

on wall 0.03 0.04 0.11 0.17 0.24 0.35
Heavyweight, draped to

half area 0.14 0.35 0.55 0.72 0.70 0.65
Floor, concrete 0.01 0.01 0.02 0.02 0.02 0.02

Linoleum on 0.02 0.03 0.03 0.03 0.03 0.02
Heavy carpet on 0.02 0.06 0.14 0.37 0.66 0.65

Wood 0.15 0.11 0.10 0.07 0.06 0.07
Ceiling, gypsum board 0.29 0.10 0.05 0.04 0.07 0.09

Plastered 0.14 0.10 0.06 0.05 0.04 0.03
Plywood, 1 cm thick 0.28 0.22 0.17 0.09 0.10 0.11
Suspended acoustical

tile, 2 cm thick 0.76 0.93 0.83 0.99 0.99 0.94
Gravel, loose and moist,

10 cm thick 0.25 0.60 0.65 0.70 0.75 0.80
Grass, 5 cm high 0.11 0.26 0.60 0.69 0.92 0.99
Rough soil 0.15 0.25 0.40 0.55 0.60 0.60
Water surface, as in a pool 0.01 0.01 0.01 0.02 0.02 0.03

Source: M. D. Egan, Concepts in Architectural Acoustics, McGraw-Hill, 1972, pp. 32–34.

A field satisfying the criterion that D(e) be independent of e, so D(e) =
w̄/4π, is a perfectly diffuse field. Near an absorbing surface (especially at an
open window), the field departs from this ideal, but nevertheless D(e) for
directions pointing into the surface (out of the room) is representative of the
acoustic state within the interior of the room and should therefore be nearly
w̄/4π, where w̄ is the room’s average energy density.

The above considerations allow one to describe the energy lost at any large
flat (or nearly flat) portion of the room’s bounding surface. If many plane
waves are simultaneously incident on such a wall (Fig. 6-3b), the individual
waves reflect independently and the principle of superposition can be used
in conjunction with the theory of plane-wave reflection described in Sec. 3-3.
Such an analysis requires that the time average of the rate at which energy
is absorbed (not reflected) by the surface per unit area be
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Figure 6-3 (a) Reverberant field represented as a superposition of traveling plane waves.
(b) Waves incident on a surface adjacent to a reverberant field.

1

2ρc
Re

{

∑

q,r

′

p̂q p̂
∗
r(1 + Rq)(1 − R

∗
r )e

ik(nq−nr)·xTnr · nout

}

,

where Rq = pressure-amplitude reflection coefficient corresponding to incidence direction nq
xT = displacement vector tangential to surface

nout = unit vector pointing out of room

The prime implies that the sum is restricted to incident waves, such that nr
points obliquely toward the wall.

If the surface portion is sufficiently large, one can replace the above expres-
sion by its average over surface area. For reasons similar to those given in the
derivation of Eq. (7), the surface-area averages of the cross terms are small
and tend to average out. Consequently, one is left with just the area averages
of the terms for which q = r, for which the exponential factor is 1, and for
which p̂qp̂∗r = |p̂q|2 is real. Moreover, the real part of (1 +Rq)(1−R∗

q ) is the
absorption coefficient α(nq) for a plane wave incident in the nq direction.
The resulting expression is therefore

dP̄d

dA
=

1

2ρc

∑

q

α(nq) |p̂q|2 nq · nout. (6-1.8)

To eliminate explicit reference to the amplitudes |p̂q| of individual plane
waves, the above sum is arranged into a double sum, first over terms for
which nq lies within solid angle ∆Ω, then over solid angles. If an individual
solid-angle element is sufficiently small, the factors α(nq) and nq · nout for
all the constituent terms can be approximated with nq replaced by the solid
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angle’s central direction, unit vector e. Furthermore, the partial sum of the
|p̂q|2, corresponding to nq lying within this small range of solid angle, can
be recognized from Eq. (7) as 2ρc2 times D(e)∆Ω. The sum over solid-angle
elements goes into an integral over solid angle, so Eq. (8) yields

dP̄d

dA
= c

∫∫ ′

α(e)D(e)e · nout dΩ =
c

4
αriw̄, (6-1.9)

where the integral extends over just those directions for which e · nout ≥ 0.
The second equality follows from the perfectly diffuse idealization,D = w̄/4π,
and with the definition

αri =
1

π

∫∫ ′

α(e)e · nout dΩ (6-1.10)

for the random incidence absorption coefficient αri.
Equation (10) describes a weighted average of plane-wave absorption coef-

ficients because when α(e) is constant, the right side integrates to α(e). This
is verified if one chooses a coordinate system such that nout is in the z direc-
tion and if one uses the spherical coordinates θ, φ to describe directions, so
that e ·nout = cos θ and dΩ = sin θ dθ dφ; the integration limits are (0, π/2)
and (0, 2π) for θ and φ. Ordinarily, α(θ, φ) is independent of φ, so Eq. (10)
reduces to

αri = 2

∫ π/2

0

α(θ) cos θ sin θ dθ. (6-1.11)

Equivalent Area of Open Windows

For an open window of sufficiently large area, one would expect α(θ) to be
1 regardless of angle of incidence, so αri would also be 1. Thus, the average
absorption coefficient α for a given surface of area ∆A can alternately be
defined in the manner originally chosen by Sabine as the ratio of ∆P̄d/∆A
to that expected for an open window. The latter is identified from Eq. (9),
with α = 1, as (c/4)w̄. (In what follows the subscript ri is omitted.)

Sabine’s definition allows a broader conception† of absorption coefficient
transcending some of the limitations of the derivation. The average rate of
dissipation ∆P̄d by any portion of the walls or by any object in the room
can be written as (c/4)w̄ ∆As, where x∆As is the equivalent area of open
windows yielding the same ∆P̄d. The sum of all such ∆P̄d gives Eq. (2), so
As is the equivalent area of open windows for the room as a whole.

† That the absorption coefficient defined by Eq. (10) is not necessarily the same as what is
required to yield the reverberation time via Eq. (5) is discussed at some length by T. F. W.
Embleton, “Sound in large rooms,” in L. L. Beranek (ed.), Noise and Vibration Control,
McGraw-Hill, New York, 1971, pp. 219–244.
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If all such contributions come from surfaces for which it is meaningful to
associate an absorption coefficient, As becomes the sum of the αiAi. The
reverberation time T60 = (6 ln 10)τ , where τ is given by Eq. (4), becomes

T60 =
(24 ln 10)V

c
∑

i

αiAi
=

55.3V

cAs
. (6-1.12)

The first version, which has been referred to as the Sabine-Franklin rever-

beration time, ‡ reduces to Eq. (5) when c = 342m/s (corresponding to a
temperature of 18.3◦C or 65◦F).

Absorbing Power of Objects and Persons

To account for objects or people in a room, one adds the appropriate incre-
ment ∆As for each object to the absorbing power As. The following examples
show how ∆As can be determined.

Example 1 A room of volume V has reverberation times of T60,I or T60,II
when a person is not or is present in the room. The total As for each case is
determined from the second version of Eq. (12), and the increment ∆As due
to the person’s presence is the difference, i.e.,

∆As =
(24 ln 10)V

c

(

1

T60,II
− 1

T60,I

)

. (6-1.13)

Example 2 An area ∆A of the room in Example 1 nominally having absorp-
tion coefficient α0 is covered by an oil painting, and the reverberation time
decreases to T60,III. To determine the ∆As associated with the painting, one
follows the analysis of Example 1 but recognizes that the painting replaces a
wall portion having absorbing power α0∆A. The difference of the two As’s
is the ∆As intrinsically due to the painting minus α0 ∆A. Consequently, the
painting’s ∆As is

∆As = α0 ∆A+
(24 ln 10)V

c

(

1

T60,III
− 1

T60,I

)

. (6-1.14)

In such a manner, Sabine determined that the absorbing-power increment
associated with an isolated man is of the order of 0.48 metric sabin at 512 Hz.
(For a woman dressed in the style of 1900, it was 0.54 metric sabin.) For oil
paintings with an area of the order of 1 m2, he found the average absorption
coefficient ∆As/∆A (where ∆A included the frames) to be 0.28.

‡ W. B. Joyce, “Sabine’s reverberation time and ergodic auditoriums,” J. Acoust. Soc. Am.
58:643–655 (1975).
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A chief premise in typical applications is that the absorbing-power incre-
ment associated with an object is intrinsic to that object. It should be the
same for every room, regardless of position and orientation of the object,
regardless of the position of the source and of other objects, and regardless
of the room’s construction. However, even if the diffuse-field idealization is
appropriate in the bulk of the room, the premise is poor if two such objects
are close together or if a number obtained when the object was suspended in
the center of the room is to be used when the object is resting on the floor.

Such exceptions are generally recognizable as such. For example, if one
wishes to estimate the incremental absorbing power of an audience in an
auditorium,† one refers to data not for isolated persons but for other audi-
ences seated on the same type of chairs with the same seating density (see
Table 6-2). The premise would be that the average increment per person is
the same for both audiences.

6-2 SOME MODIFICATIONS

The Sabine-Franklin-Jaeger model introduced in the preceding section rests
on restrictive assumptions and holds at best only in an averaged sense. Most
of the simpler suggestions how the model might be modified to increase its
domain of application use the concept of a mean free path in a room.

Mean Free Path

The calculation leading to Eq. (6-1.9) indicates that the average rate at which
acoustic energy is incident on the walls of the room per unit surface area is
(c/4)w̄, so (c/4)w̄S is the rate at which energy is incident on all walls, S
being the total wall surface area. The ratio cS/4V of this to the total energy
w̄V in the room can be interpreted as an average rate (with a weighting de-
scribed below) at which a “ray” of sound bouncing about the room undergoes
reflections.

A simple derivation† supporting the above interpretation is as follows.
Suppose the energy E in the room is divided into energies E1, E2, E3, . . . ,
each being associated with a distinct ray (see Fig. 6-4). If one ignores absorp-
tion, the energy associated with each ray stays constant. If the number of
reflections ray r undergoes in time ∆t is ∆Nr, the average energy-weighted

† L. L. Beranek, “Audience and seat absorption in large halls,” J. Acoust. Soc. Am. 32:661–
670 (1960); Music, Acoustics, and Architecture, Wiley, New York, 1962, pp. 541–554.
† P. E. Sabine, Acoustics and Architecture, McGraw-Hill, New York, 1932, pp. 309–311. An
earlier but dissimilar derivation leading to the same result was given by Jaeger, “Toward a
theory of reverberation.”
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Table 6-2 Absorbing-power increments due to persons and seats

Absorbing-power increment, metric sabins
Description 125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz

Man standing,
in heavy coat

0.17 0.41 0.91 1.30 1.43 1.47

Without coat 0.12 0.24 0.59 0.98 1.13 1.12
Musician, sit-
ting, with
instrument

0.60 0.95 1.06 1.08 1.08 1.08

Student, seated,
including seat,
high school

0.20 0.28 0.31 0.37 0.41 0.42

Elementary
school

0.17 0.21 0.26 0.30 0.33 0.37

Person seated in
church pew

0.23 0.25 0.31 0.35 0.37 0.35

Per m2 of floor
area, with-
out audience,
moderately up-
holstered chairs,
0.90 × 0.55 m

0.44 0.56 0.67 0.74 0.83 0.87

Cloth-
covered seats
with perforated
bottoms

0.49 0.66 0.80 0.88 0.82 0.70

With audi-
ence, wooden
chairs, 2/m2

0.24 0.40 0.78 0.98 0.96 0.87

1/m2 0.16 0.24 0.56 0.69 0.81 0.78
Moderately

upholstered
chairs

0.55 0.86 0.83 0.87 0.90 0.87

Source: H. Kuttruff, Room Acoustics, Applied Science, London, 1973, pp. 156–157; L.
L. Beranek, Acoustics, McGraw-Hill, New York, 1954, pp. 300–301.

number of reflections per ray in time ∆t is

〈∆N〉 = ΣEr ∆Nr
ΣEr

. (6-2.1)

The numerator, however, is the total ray energy striking the walls in time ∆t,
or, from the discussion above, (c/4)w̄S ∆t, and the denominator is the total
energy w̄V in the room; the right side is therefore (cS/4V ) ∆t. The relation
〈dN/dt〉 = cS/4V therefore results.

The distance a “ray” moving with the sound speed c travels in time
1/〈dN/dt〉 is

lc =
4V

S
, (6-2.2)
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Figure 6-4 Partitioning of a room’s acoustic energy into many rays, each of fixed energy;
this idealization leads to 4V/S for the characteristic path length.

and represents a characteristic path length for sound in a room. For a cubical
room of length a on each side, one has V = a3, S = 6a2, so lc = 2

3a. For a
spherical room, lc is 4

3 times the radius. For a rectangular room, lc is between
2
3 and 2 times the room’s smallest dimension.

Various definitions† of a mean free path appear in the early literature on
architectural acoustics, but the ones most meaningful within the context
of the Sabine-Franklin-Jaeger model are those leading to the lc above. The
quantity lc is not the average distance between reflections for any given ray,
nor is it the average over rays of such an average distance; instead it is c times
the reciprocal of an average collision frequency per ray of rays with walls.
Consequently, lc is the reciprocal of the mean free reciprocal path length, but to
keep our terminology brief we refer to it as a mean free path or characteristic
path length.

Limitations of Sabine’s Equation

A possible weak point in the derivation of the Sabine-Franklin reverberation
time is the assumption that the energy-dissipation rate at time t depends
on the simultaneous value of the energy density in the room. What is more
nearly true is that it depends on the current values near each wall of the

† A geometrical definition (not explicitly involving energy) leading also to 4V/S has been
given by C. W. Kosten, “The mean free path in room acoustics,” Acustica 10:245–250
(1960). Various proposed definitions are reviewed by F. V. Hunt, “Remarks on the mean
free path problem,” J. Acoust. Soc. Am. 36:556–564 (1964).
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energy-density portion propagating toward the wall. But if the energy in the
room is changing rapidly with time, the approximation of this local quantity
by an average over room volume becomes suspect. One can argue, as in the
previous section, that a time of the order of 3lc/c or greater is required for
the spatial distribution of energy to equilibrate whenever some change in the
source output is made. Consequently, the model’s predictions for reverberant
decay may be invalid if the characteristic decay time τ is comparable to or less
than 3lc/c or, equivalently, if the average (surface-area-weighted) absorption
coefficient is of the order of 1

3 or greater.
Equations (6-1.4) often give a higher average energy-versus-time curve

during reverberant decay than is measured and thus predict a longer time
for w̄ to decay by some fixed fraction. The energy incident on the walls is
representative of the average energy density in the center of the room at a
time of the order of 1

2 lc/c or more earlier. This average energy density at the
earlier time is higher (during reverberant decay), so the energy incident on
the walls is higher than was assumed in the derivation; the rate of energy
dissipation is therefore also higher, and the energy in the room decreases
faster than predicted by the Sabine-Franklin-Jaeger model.

Norris-Eyring Reverberation Time

A simple assumption† overcoming the limitations just described (but rais-
ing other objections) is that the energy incident per unit time on the walls
decreases stepwise (see Fig. 6-5a) after the source has been turned off. For
the first‡ lc/c s, the directional energy density at the walls for propagation
directions pointing into the walls is taken as w̄init/4π and thus corresponds
to energy not having suffered wall reflections since t = 0. During the next
lc/c s, all arriving energy is assumed to have suffered one and only one wall
reflection, so the average energy density associated with it has decreased by
a factor of 1− ᾱ, where ᾱ is the area-averaged absorption coefficient. Thus,
D = (1− ᾱ)w̄init/4π for the second interval. Similarly, D is (1− ᾱ)2w̄init/4π
for the next lc/c s, etc.

The net energy absorbed in the first interval is ᾱV w̄init; the energy remain-
ing at the end of that interval is (1 − ᾱ)V w̄init. After another interval, it is
reduced again to 1−ᾱ times its value at the start of the interval. Consequently,
the net volume-averaged energy density remaining at time tN = Nlc/c is

† C. F. Eyring, “Reverberation time in “ ‘dead’ rooms,” J. Acoust. Soc. Am., 1:217–241
(1930). The first conception of Eq. (5) is attributed to R. F. Norris by C. A. Andree,
ibid. 3:549–550 (1932). Norris’ version of the derivation is given as appendix II in V. O.
Knudsen’s Architectural Acoustics, Wiley, New York, 1932, pp. 603–605.
‡ The variant on the derivation of taking the first interval as 1

2
lc/c, the rest as lc/c, yields

the same reverberation time.
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w̄(tN ) = w̄init(1 − ᾱ)N . (6-2.3)

Figure 6-5 (a) Norris-Eyring idealization of stepwise decrease in energy incident per
unit time on room walls. (b) Corresponding prediction of time variation of room’s energy
following source switch-off; dashed line is an exponentially decaying curve that passes
through the segment junctions.

The stepwise variation in P̄d implies that w̄(t) decreases linearly with time
between integer values of ct/lc (Fig. 6-5b), the slope changing discontinuously
at times nlc/c. A good approximation to the overall decay curve results if
one uses (3) even when N is not an integer, i.e.,
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w̄(t) = w̄init(1− ᾱ)ct/lc = w̄inite
−t/τNE, (6-2.4)

τNE =
4V

cS[− ln (1− ᾱ)]
. (6-2.5)

The corresponding Norris-Eyring reverberation time T60 is 13.82τNE.
The Norris-Eyring reverberation time is the same as the Sabine-Franklin

T60 except that ᾱ has been replaced by − ln (1 − ᾱ). The latter is approx-
imately ᾱ + ᾱ2/2 and differs from ᾱ by less than 10 percent if ᾱ < 0.2.
However, for ᾱ = 0.3, 0.4, 0.5, one has − ln (1− ᾱ) equal to 0.36, 0.51, 0.67,
so the distinction becomes appreciable when ᾱ is of the order of 1

3 or greater.
Since the Norris-Eyring T60 is less than the Sabine-Franklin T60, it implies a
more rapid decay of sound.

Rooms with Asymmetric Absorption†

The assumption that the energy incident per unit area and time is the same
at any given time for all wall surfaces may be questioned if one surface (area
S1) has an absorption coefficient α1 substantially different from the value α0

for the remaining surfaces (area S − S1).
If one idealizes the energy incident (per unit area and time) on any surface

as decreasing stepwise in time (as in the derivation of the Norris-Eyring
equation), the net energy absorbed during the second time interval is (see
Fig. 6-6)

(−∆E)2 = ∆t
∑

i,j

αjfji(1− αi)Sic
w̄init

4
. (6-2.6)

Here fji represents the fraction of the power (1 − αi)Sicw̄init/4 reflected by
the ith surface during the first time interval that is incident on the jth surface
during the second time interval. These fractions are such that

∑

j

fji = 1,
∑

i

fjiSi = Sj , where fji = 0 if i = j. (6-2.7)

The second relation ensures that the energy incident per unit time and area
will be the same for all surfaces when α is the same for all surfaces; the third
results because the reflected energy does not come directly back to the sur-
face Si. (Explicit expressions‡ for the fji, termed radiation shape factors in
heat-transfer applications, in terms of quadruple integrals result from simple

† T. W. F. Embleton, “Absorption coefficients of surfaces calculated from decaying sound
fields,” J. Acoust. Soc. Am. 50:801–811 (1971).
‡ H. C. Hottel, “Radiant heat transmission,” Mech. Eng. 52:699–704 (1930); D. C. Hamilton
and W. R. Morgan, “Radiant-interchange configuration factor,” Nat. Adv. Comm. Aero-
naut. Rep. NACA TN2836, Washington, 1952; Kreith, Principles of Heat Transfer, pp.
243–251.
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geometrical considerations; analytical formulas, tabulations, and curves ex-
ist in the literature. However, the example discussed below, when only one
surface has a dissimilar absorption coefficient, leads to results independent of
the numerical values of the fji.)

Figure 6-6 Partitioning of the energy reflected from surface S1 during the first time
interval. A fraction fj1 impinges on surface Sj during the second interval.

The double sum in the expression (6) for (−∆E)2, when all the αi except
α1 have the same value α0, reduces, after some algebra and with the help of
Eqs. (7), to

(−∆E)2 = [Einc(2)][ᾱ+ (∆ᾱ)E ] (6-2.8)

where ᾱ is the area-averaged absorption coefficient, Einc(2) is the net energy
incident on all surfaces during the second time interval, and

(∆ᾱ)E =
(α1 − α0)

2

1− ᾱ

(

S1

S

)2

(6-2.9)

Equation (8) allows the apparent absorption coefficient (net energy ab-
sorbed divided by net energy incident) during the second time interval to be
identified as ᾱ+ (∆ᾱ)E . A simple model results if this is assumed to be the
fraction of energy absorbed during all later intervals; the rationale is that
the asymmetry in the area distribution of incident energy is primarily caused
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by the most recent reflection; if the absorption coefficients were suddenly
changed so that all the αi became the same, the energy incident per unit
area and time would be nearly the same for all wall surfaces after a time
interval ∆t.

With the assumption just described, the average energy per unit volume
remaining in the room at time t = N ∆t for N ≫ 1 is approximately [1 −
ᾱ− (∆ᾱ)E ]

N times w̄init. Consequently, the train of reasoning leading to the
Norris-Eyring reverberation time must be modified so that ᾱ is replaced by
ᾱ+ (∆ᾱ)E . This modification, with ∆t = 4V/cS, yields

T60 =
(24 ln 10)V/cS

− ln[1− ᾱ− (∆ᾱ)E ]
(6-2.10)

The additional term −(∆ᾱ)E in the argument of the logarithm is the only
distinction between this and the Norris-Eyring reverberation time.

Example The floor (surface 1) of a cubical room has absorption coefficient
α1; the vertical walls and the ceiling each have absorption coefficient α0. The
quantity α0 is known from previous measurements; one measures T60 and
seeks to determine α1. Estimate the error resulting from use of the Norris-
Eyring model.

Solution Let α1,NE be the value of α1 computed from Eq. (5) with T60 =
13.82τNE and with ᾱ = 1

6α1 +
5
6α0. Equation (10) would give the same nu-

merical value for the argument of the logarithm as the Norris-Eyring model,
so the corrected value of α1 must be such that

1
6α1,NE = 1

6α1 + (∆ᾱ)E (6-2.11)

α1,NE − α1

α1
=

(α1 − α0)
2

α1(6− α1 − 5α0)
(6-2.12)

Equation (12) follows from Eq. (11) with (∆ᾱ)E taken from Eq. (9).
The fractional error in α1 predicted by Eq. (12) vanishes when α1 = α0;

if α1 ≫ α0, it reduces to α1/(6 − α1), which is still small if α1 < 0.1. If α1

were of the order of 1, the predicted error would be close to 20 percent.
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The Room Constant†

An extension of the Sabine-Franklin-Jaeger theory to take into account the
field near the source begins with the premise that the reverberant field has
no effect on direct wave or source power. At moderate distances from the
source, the time-averaged radial component of intensity conforms to spherical
spreading and is described by PavQθ/4πr

2, where the directivity factor Qθ
is a function of direction whose integral over all solid angles pointing from
the source into the room is 4π. For a spherically symmetric radiator some
distance from any surface, Qθ should be 1; for one resting on the floor, it
should be 2. If r is large enough for this direct wave to be considered locally
planar, the plane-wave relation wav = Ir,av/c applies, so the energy density
associated with the direct wave is PavQθ/4πr

2c. The product of this with
ρc2 yields the corresponding mean squared pressure.

The time averages of the energy densities (or of the mean squared pres-
sures) of the direct and reverberant fields are presumed to be additive. This
is not exactly true, especially if the frequency band of interest is narrow or if
the source is emitting a pure tone, but it may be regarded as approximately
so if one thinks in terms of local spatial averages, for the reasons cited in the
derivation of Eq. (6-1.7). The reverberant field consists of all energy reflected
one or more times from the room’s walls; it is assumed to be diffuse and to
be such that local spatial averages are independent of position, and thus it
is characterized by a uniform-reverberant-field energy density w̄R (a spatial
average). The energy density at any point in the room is then w̄R plus the
corresponding expression, PavQθ/4πr

2c, for the direct wave.
The power feeding and maintaining the reverberant field is the source

power minus the energy lost per unit time on the first reflection. If we assume,
in the absence of any evidence to the contrary, e.g., a highly directional source
aimed at an open window, that the fraction of power lost on one reflection
is the average wall-absorption coefficient ᾱ, then (1 − ᾱ)P̄ is the rate at
which energy is being added to the reverberant field. One may argue, as in
Sec. 6-1, that the rate at which this reverberant energy is being dissipated is
proportional to w̄R, the proportionality constant being ᾱSc/4. In the steady
state, dw̄R/dt = 0; since the energy added per unit time equals the rate of
dissipation, one obtains

w̄R =
4P̄

cRrc
Rrc =

ᾱS

1− ᾱ
(6-2.13)

† E. Dietze and W. D. Goodale, Jr., “The computation of the composite noise resulting from
random variable sources,” Bell Syst. Tech. J. 18:605–623 (1939); A. London, “Methods for
determining sound trransmission loss in the field,” J. Res. Natl. Bur. Stand. 26:419–453
(1941); Beranek, Acoustics, McGraw-Hill, New York, 1954, pp. 313–324; R. W. Young,
“Sabine reverberation equation and sound power calculations,” J. Acoust. Soc. Am.,
31:912–921 (1959).
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Here the room constant Rrc (units of area) represents the room’s absorbing
power divided by 1− ᾱ.

With the local spatial average p2 of the mean squared pressure taken as the
sum of the direct-field and reverberant-field contributions, each term being
ρc2 times the corresponding energy density, one finds, from the previously
given expressions for the two energy densities, that

p2 = ρc P̄

(

Qθ
4πr2

+
4

Rrc

)

(6-2.14)

This formula gives an indication of how far from, or close to, the source
one must be to be assured that the reverberant (or direct) field predominates.
At the radius of reverberation, or critical radius,

r0 =

(

RrcQθ
16π

)1/2

(6-2.15)

the two terms are of equal contribution, and the sound-pressure level is 3 dB
higher than expected from either alone. At 2r0 the direct-field contribution is
only one-fourth that of the near field, and the level is only 10 log (1+ 1

4 ) ≈ 1 dB
higher than that of the reverberant field alone; at 3r0 the discrepancy is 0.5
dB; at 4r0 it is 0.3 dB; at 5r0 it is 0.2 dB. At r0/2, r0/4, and r0/8, the levels
are 7, 12, and 18 dB higher than that of the reverberant field alone and
1, 0.3, and 0.1 dB higher than that of the direct field alone (see Fig. 6-7).
To determine the direct field of a source in a reverberant room to within 1
dB, one should pick a point at which the sound-pressure level is at least 7
dB greater than that typically measured at a distant point in the room or
sufficiently close to the source for the sound-pressure level to increase by at
least 5 dB when the distance from the source is halved. Alternatively, one
can estimate r0 in advance by taking Qθ = 1 (suspended source) or Qθ = 2
(source on floor) and by calculating the room constant from a reverberation-
time measurement, using Eq. (6-1.12) and Rrc = As/(1−As/S).

If the room constant Rrc is to be derived from a reverberation-time mea-
surement via the Sabine-Franklin equation, however, it is inconsistent to re-
tain the factor 1 − ᾱ in the denominator in the definition (13) of Rrc. The
model implicitly assumes ᾱ≪ 1, and since the factor (1−ᾱ)−1 gives a correc-
tion of second order in ᾱ, that is, ᾱ/(1− ᾱ) ≈ ᾱ + ᾱ2, one should disregard
it unless the reverberation-time formula is itself accurate to second order.
If ᾱS is the value derived from the Sabine-Franklin formula, and if ᾱS is
greater than the actual ᾱ for the room by some amount ∆ᾱ, then SᾱS would
be a valid second-order approximation to the room constant if ∆ᾱ/ᾱ = ᾱ.
According to the Norris-Eyring formula, ∆ᾱ ≈ 1

2 ᾱ
2, so ∆ᾱ/ᾱ ≈ 1

2 ᾱ. Further-
more, the Norris-Eyring equation often tends to overestimate ᾱ, partly for
the reasons cited in the derivation of Eq. (10), so ∆ᾱ/ᾱ is typically somewhat
larger than 1

2 ᾱ. For such reasons and in the absence of any better model of
comparable simplicity, it is usual practice to take Rrc = SᾱS .
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Figure 6-7 Sound-pressure level (relative to that of reverberant field) versus ratio of
distance r from source to radius of reverberation r0. Function plotted is 10 log [(r0/r)2+1];
dashed line, corresponding to direct field alone, is 10 log [(r0/r)2].

6-3 APPLICATIONS OF THE

SABINE-FRANKLIN-JAEGER THEORY

Design and Correction of Rooms

Criteria for what constitutes good acoustics for rooms intended for specified
purposes have been extensively developed since the time of Sabine and are
discussed in various books and articles.† An extensive discussion of them
is beyond the scope of the present text, but it should be noted that the
reverberation time T60 plays a central role in the quantitative formulation of
some of the simpler criteria (see Fig. 6-8).

An indication of why the reverberation time should be significant results
from the transient solution of (6-1.3). That equation, with 4V/cτ replacing
As, can be rewritten as an ordinary differential equation for w̄et/τ and sub-

† See, for example, Beranek, Music, Acoustics, and Architecture; W. Furrer, Room and
Building Acoustics and Noise Abatement, Butterworths, Washington, 1964; A. Lawrence,
Architectural Acoustics, Elsevier, Amsterdam, 1970; Knudsen, Architectural Acoustics; A.
F. B. Nickson and R. W. Muncey, “Criteria for Room Acoustics,” J. Sound Vib., 1:292–297
(1964); P. H. Parkin, W. E. Scholes, and A. C. Derbyshire, “The Reverberation Times of
Ten British Concert Halls,” Acustica, 2:97–100 (1952); H. Bagenal and A. Wood, Planning
for Good Acoustics, Methuen, London, 1931.
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sequently integrates to

w̄(t) = V −1

∫ t

−∞

e−(t−t′)/τ
P̄(t′) dt′ (6-3.1)

If P̄ has been constant for an indefinite time, one has the steady-state case
and (1) reduces to

w̄tot =
P̄τ

V
(6-3.2)

which can alternately be obtained from (6-1.3) by setting dw̄/dt = 0 at the
outset. (The subscript tot here implies that this is the energy density resulting
from the total history of the source.)

The portion of this steady-state energy density generated by the source
in the most recent interval of duration ∆t results from a replacement of the
lower integration limit in Eq. (1) by t−∆t, such that

w̄last ∆t = w̄tot(1 − e−∆t/τ ) (6-3.3)

If the sound from the source is transmitting information, e.g., speech or mu-
sic, “early” echoes reinforce the information and “late” echoes interfere. Con-
sequently, one can conceive† of a value of ∆t that splits the sound currently
received into “useful” sound and interfering sound. The ratio of the energy
densities associated with these two categories is identified from (3) as

w̄useful

w̄interfering
= e∆t/τ − 1 (6-3.4)

Since τ = T60/(6 ln 10), this indicates that, for specified ∆t, the ratio of
the useful to interfering energy is determined by the reverberation time; the
larger the T60 the lower the ratio.

The auditory sensation adheres to no semblance of simple mathematical
rules, but it is sometimes helpful‡ to view it as a system that responds to
a running time average of some function (not necessarily the square) of the
acoustic pressure outside the ear. For processing ordinary speech, existing

† This originated with C. Zwikker, “Partitioning of loudspeaker intensities,” Ingenieur
(The Hague) 44:39–45 (1929), and has subsequently been applied by a number of inves-
tigators, e.g., R. Thiele, “Directional distribution and chronological order of sound echoes
in rooms,” Acustica 3:291–302 (1953); F. Santon, “Numerical prediction of echograms and
the intelligibility of speech in rooms,” J. Acoust. Soc. Am. 59:1399–1405 (1976).
‡ W. A. Munson, “The growth of auditory sensation,” J. Acoust. Soc. Am. 19:584–591
(1947); J. J. Zwislocki, “Temporal summation of loudness: An analysis,” ibid.46:431–441
(1969); M. J. Penner, “A power law transformation resulting in a class of short-term inte-
grators That produce time-Intensity trades for noise bursts,” ibid. 63:195–201 (1978).
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Figure 6-8 Optimum midfrequency (500 to 1000 Hz) reverberation times for fully occu-
pied rooms versus volume. (From L. L. Doelle, Environmental Acoustics, McGraw-Hill,
New York, 1972, p. 56.)

data† suggest an integration time of the order of 50 ms. This integration
time represents a plausible choice for the ∆t in Eq. (4).

If the useful energy density masks the interfering energy density whenever
the former is greater than or equal to, say, 5 times the latter, little additional
improvement in the perception of information results when τ decreases below
the value ∆t/(ln 6) resulting when the right side of Eq. (4) is set equal to 5.
This transitional value of τ , with ∆t = 50 ms, corresponds to a reverberation
time T60 ≈ 0.4 s.

On the other hand, increasing T60, given fixed room volume V and fixed
source power output P̄, increases the average energy density in the room.
Because the auditory system tends to perceive the information associated
with louder sound better, the perception may increase somewhat if the re-
verberation time is increased beyond the lower value described above. If the
reverberation time becomes too long, the information becomes garbled and
perception decreases, even though the sound continues to become louder.
Thus, for given V and P̄, there is an optimum reverberation time‡ for the

† H. Haas, “On the influence of a simple echo on the comprehension of Speech,” Acustica
1:49–58 (1951). The value of 50 ms is what was chosen (with reference to speech) as the
break point in the partitioning of acoustic energy density into a useful and a disturbing
part in Thiele, “Directional Distribution. . . . ”
‡ S. Lifshitz, “Mean intensity of sound in an auditorium and optimum reverberation,” Phys.
Rev., 27:618–621 (1926); W. A. MacNair, “Optimum reverberation time for auditoriums,”
J. Acoust. Soc. Am. 1:242–248 (1930); J. P. Maxfield, “The time integral basic to optimum
reverberation time,” ibid. 20:483–486 (1948).
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room, which, according to the reasoning just described, should increase with
increasing room volume. For small rooms, in situations where maximum per-
ception of information is desired, e.g., speech, the optimum reverberation
time is substantially less than 1 s.

For music, it is desirable that the information be partially smeared out
to smooth over attack transients intrinsically associated with common types
of musical instruments. substantially less smearing is desired for chamber
music than for orchestral music. The optimum reverberation time in any
event should be higher for a given room volume for music reception than for
speech reception and experiments have been performed to determine what
this optimum should be.

There are other design considerations§ in architectural acoustics, but
within the context of the Sabine-Franklin-Jaeger model (which assumes the
sound to be perfectly diffuse and uniformly distributed) the only parameter
to be considered for a room of fixed volume is the reverberation time. If the
reverberation time differs from optimum, one seeks to change the absorbing
power As by altering the wall covering; rooms are designed to achieve the
optimum reverberation time.

Another category of application in this context is noise reduction. Factory
rooms are typically constructed so that they have high reverberation times;
a noise source in such a room produces sound levels at distant points sub-
stantially higher than would be received in an open space. The mean squared
pressure at distances somewhat larger than the radius of reverberation, ac-
cording to Eqs. (6-1.7) and (2), conforms on the average to the relation

p2 =
ρc2τP̄

V
=

ρc2T60P̄

(6 ln 10)V
(6-3.5)

so decreasing the reverberation time by a factor of K decreases the sound-
pressure level by 10 logK decibels. If ᾱ is much less than 1, an appreciable
reduction is feasible. The decrease of T60 will have little effect on the noise
in the immediate vicinity of the source, but if no one spends a considerable
fraction of time at such points, this need not be taken into consideration.
Otherwise, one would seek to reduce P̄ by altering or enclosing the source.

Measurement of Absorption Coefficients and

Reverberation Times

The use of reverberation-time measurements to deduce absorption coefficients
of wall coverings [see Eq. (6-1.14)] is a standard application of the Sabine-

§ See, for example, E. Meyer and H. Kuttruff, “Progress in architectural acoustics,” in E. G.
Richardson and E. Meyer (eds.), Technical Aspects of Sound, vol. 3, Elsevier, Amsterdam,
1962, pp. 221–337.
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Franklin-Jaeger model. Typically, such measurements are carried out in re-
verberation chambers especially constructed for the purpose (see Fig. 6-9),
and efforts are made to ensure that the assumptions inherent in the model
are satisfied. To determine the reverberation time, one ideally wants a decay
curve giving the average acoustic energy density or the volume average of
p2 versus time following source switch-off. This volume average can be ap-
proximated by the average (over microphones) of the running time averages
of the squared acoustic pressure taken from several microphones judiciously
spaced throughout the room or by the long-time average resulting when a
microphone traverses a long path within the room. The latter technique is
applicable if a steady-state source of known power output P̄ is used, the
reverberation time being subsequently derived from Eq. (2).

Figure 6-9 Reverberation room at Carrier Corporation, Syracuse, N.Y. The indicated
qualification loudspeaker is for assessing conformance with standard criteria for reverber-
ation rooms. Overhead is the rotating diffuser. [J. T. Rainey, C. E. Ebbing, and R. A.
Ryan, Noise Control Eng., 7:82 (1976).]

How best to estimate the reverberation time, given one and only one source
location and one and only one receiver location, is of practical interest for field
applications; what is often done is to fire a pistol and to record A-weighted or
octave-band sound-pressure levels versus time. The pistol shot injects acoustic
energyEinit into the room, and, for times somewhat larger than 3lc/c, this can
be presumed to fill the room uniformly. The instrumentation used to obtain
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the sound-pressure level versus time is invariably such that the resulting level
corresponds to a short-term (characteristic averaging time of the order of 0.1
s) running time average of p2. Typically, the decay curve is somewhat erratic,
but a smoother curve results if one plots instead†

10 log

[

1

Tref

∫ ∞

t

p2(t′)

p2ref
dt′
]

= 10 log

(

1

Tref

∫ ∞

t

10L(t
′)/10 dt′

)

(6-3.6)

where Tref is any arbitrarily chosen constant. Such a curve is a priori smoother
because the integral is a monotonically decreasing function of time. It should
be more representative of the decay of total sound energy in the room because
the deviations of p2(t) from its spatial average tend to average out over long
periods of time, so the integral from t to ∞ of p2(t) tends to be closer to the
corresponding integral of p2(t) than a typical value of p2(t) is to p2(t). If p2(t)
does decay as e−t/τ , as predicted by Eq. (6-1.4), the integral of p2(t) from t
to ∞ is τp2(t), so the integral above would be a good approximation to the
sound-pressure level corresponding to p2(t), plus a constant, 10 log (τ/Tref).
The slope (negative) of the curve described by Eq. (6) therefore gives the
decay rate in decibels per second and is equal to 60/T60.

Measurement of Source Power

The acoustic power P̄ of the source can be evaluated from Eq. (5), given
measurements of T60 and p2. The latter, and therefore also P̄, depends on
the location and orientation of the source, but one ideally‡ wants the free-
field power output P̄ff that would result if the source were suspended in an
open space or (a different P̄ff) if the source were resting on a rigid infinite
plane.

Some insight into whether P̄ is a good approximation to P̄ff results if one
considers the source to be a vibrating solid whose surface motion is unaffected
by the external pressure. The acoustic pressure on the surface of the solid
can be taken as pdir + prvrt (dir for direct, rvrt for reverberant). Then the
deviation ∆P̄ of the acoustic power from P̄ff is the integral of (prvrtvn)av
over the surface area S0 of the source.

To estimate the magnitude of ∆P̄, we take the rms value of prvrt, from
Eq. (5), to be (ρc2P̄τ/V )1/2. The source is taken to be a radially oscillating
sphere of radius a, where ka ≪ 1, so the rms value of vn, from Eq. (4-1.5),

† M. R. Schroeder, “New method of Measuring reverberation time,” J. Acoust. Soc.
Am. 37:409–412 (1965); W. T. Chu, “Comparison of reverberation measurements us-
ing Schroeder’s impulse method and decay-curve averaging method,” ibid. 63:1444–1450
(1978).
‡ T. J. Schultz, “Sound power measurements in a reverberant room,” J. Sound Vib. 16:119–
129 (1971).
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equals (4πP̄ff/ρc)
1/2(kS0)

−1. All phase differences between Prvrt and vn are
considered equally likely, so the expected value of (∆P̄)2 is 1

2 of what results
of Prvrt and vn are in phase. Thus, the rms value of ∆P̄ is

(∆P̄)rms =
1√
2

(

ρc2P̄τ

V

)1/2(
4πP̄ff

ρc

)1/2
S0

kS0
= (P̄P̄ff)

1/2

(

2πcτ

k2V

)1/2

(6-3.7)
The criterion for |∆P̄| ≪ P̄ff is therefore that 2πcτ/k2V ≪ 1 or, since
As = 4V/cτ , that

k2As ≫ 8π (6-3.8)

Consequently, a measured P̄ will be close to P̄ff if the frequency generated
is substantially larger than c/(As)1/2.

The foregoing analysis presumes that the Sabine-Franklin-Jaeger model is
applicable and that the source is some distance (relative to a wavelength)
from any wall surface. A similar reasoning applied to dipole and quadrupole
sources yields the same criterion. However, for larger sources, one finds the
additional criterion S0 ≪ As.

If the criteria just stated are marginally met, the value of ∆P̄ may be
expected to fluctuate somewhat with source-position displacements over dis-
tances comparable to a wavelength and also to fluctuate with frequency;
closer determination of P̄ff results from averaging over source positions and
over finite frequency bands.

One refinement† is the use of (slowly) rotating vanes (see Fig. 6-9) in
the reverberation chamber which cause the pressure patterns in the room to
fluctuate without changing room volume or its reverberation time. Ideally, the
rotation causes a long-time average to become representative of what would
result from an average over both source position and microphone position,
so the acoustic power computed from Eq. (5) would be closer to P̄ff .

Simultaneous Conversations in a Reverberant Room†

The theory of room acoustics gives quantitative insight into acoustical phe-
nomena (cocktail party effect) occurring when many people are in one room
and many conversations are simultaneously in progress. As the number of

† J. Tichy, “Effects of source position, wall absorption, and rotating diffuser on the quali-
fications of reverberation rooms,” Noise Control Eng. 7:57–70 (1976); J. Tichy and P. K.
Baade, “Effect of rotating diffusers and sampling techniques on sound-pressure averaging
in reverberation rooms,” J. Acoust. Soc. Am. 56:137–143 (1974); C. E. Ebbing, “Exper-
imental Evaluation of Moving Sound Diffusers for Reverberant Rooms,” J. Sound Vib.,
16:99–118 (1971).
† I. Pollack and J. M. Pickett, “Cocktail party effect,” J. Acoust. Soc. Am. 29:1262(A)
(1957); W. R. MacLean, “On the acoustics of cocktail parties,” ibid. 31:79–80 (1959); L.
A. Crum, “Cocktail party acoustics,” ibid. 57:S20 (1975).
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people increases, the overall sound level in the room increases, the interfer-
ence from other conversations makes listening more difficult, talkers raise
their voices, and people cluster closer together.

Suppose (see Fig. 6-10) there are N persons in the room, N/K persons per
group, and K conversations simultaneously in progress; the acoustic power
of each talker is P̄. A listener receives the direct sound from the nearest
talker plus the reverberant sound from all the talkers. It is assumed that the
radius of reverberation is substantially less than the spacing between clusters,
so the sound from other talkers may be regarded as reverberant sound. The
reverberant-sound energy density should be K times that due to any one
talker, so the sound energy density in the vicinity of one such talker at a
distance r should be the expression in Eq. (6-2.14) divided by ρc2 with the
second term multiplied by K, that is,

w̄ =
P̄

c

(

Qθ
4πr2

+
4K

Rrc

)

(6-3.9)

For simplicity, we take Qθ = 1 (spherical spreading).
The neglect of the direct field from neighboring clusters is justified if

1/4πd2cl is less than (13 )(4/Rrc) (so the reverberant field of any one clus-
ter dominates its own direct field beyond a cluster spacing distance dcl), that
is, if

dcl >

[

9(ln 10)V

2πcT60

]1/2

(6-3.10)

For example, for a room 10 by 10 by 5 m with V = 500m3, c = 342m/s, and
T60 = 1 s, one would require dcl > 2.2m for (9) to be valid.

An approximate criterion for one to comprehend a conversation is that the
signal-to-noise ratio S/N exceed 1. This ratio is that of the energy density
associated with the nearest talker to that of the other talkers. The appropriate
expression deduced from Eq. (9) is

S/N =
(r0/r)

2 + 1

K − 1
(6-3.11)

where r0 = (Rrc/16π)
1/2 is the radius of reverberation of the room.

The effect of the people in the room on the room constant can be taken
into account by setting Rcr = R0

cr +N ∆As, where ∆As is the incremental
additional absorbing power per person. For a party that is not too crowded,
this occupancy correction is negligible. For example, for a room 10 by 10 by 5
m and with a reverberation time of 1 s, the room constant is 81 metric sabins,
so if one takes ∆As ≈ 0.5 metric sabin (the value measured by Sabine), the
number N of guests would have to be 160 in order thatN ∆As ≈ R0

cr and this
would correspond to 0.6 m2 of floor area per person. Long before the party
became so crowded, however, the signal-to-noise ratio of Eq. (11) would drop
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below 1 for any reasonable choices of listener-talker separation distance r and
of N/K.

Figure 6-10 Parameters for discussion of cocktail party effect; N people are distributed
among K clusters; dcl denotes distance between clusters, and r denotes distance between
people in the same cluster.

Disregarding the possible dependence of r0 on N , one sees from the form
of Eq. (11) that for any given choice of r the signal-to-noise ratio decreases
as the number K of clusters increases. If one takes r0 = 1.3m (corresponding
to the example above, with Rcr = 81 metric sabins) and takes r = 0.6m,
the signal-to-noise ratio is below 1 when K exceeds 6. With four persons per
cluster, this would give N = 24 for the number of guests at this threshold of
conversational frustration. If the number of guests exceeds this threshold, r
must be decreased for intelligible conversation to be maintained, but eventu-
ally r must be so small that only one listener can stand sufficiently close to
a talker.

An acoustically overcrowded party can be avoided by choosing a room with
a sufficiently large room constant (as opposed to floor area) to accommodate
the anticipated number of simultaneous conversations.

6-4 COUPLED ROOMS AND LARGE ENCLOSURES

Transmission of Reverberant Sound through a Panel

In noise-control applications, the sound that escapes from a room is often of
major interest. To introduce the relevant principles, let us consider a room
in which the reverberant energy density is w̄in. The energy incident per unit
time on a panel of area ∆A, in accordance with the discussion leading to
Eq. (6-1.9), should be (c/4)w̄in ∆A; a fraction r is reflected, a fraction αd
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is dissipated within the wall proper, and a fraction τtrans is transmitted (see
Fig. 6-11). In accord with the examples of plane-wave transmission discussed
in Secs. 3-6 and 3-8, one expects an analog of the acoustic-energy-conservation
principle to apply, so that these three fractions sum to 1.

Figure 6-11 Reverberant-sound transmission through a wall. Interior field is assumed
perfectly diffuse, so that energy incident per unit time on area ∆A is (c/4)w̄in ∆A; fractions
αd, τtrans, and r are dissipated, transmitted, and reflected.

The transmission loss† of the wall segment under consideration is defined
as

RTL = 10 log
1

τtrans
(6-4.1)

Ideally, this is an intrinsic frequency-dependent property of the material,
but it can also depend on the panel’s area, shape, and installation. It does,
however, invariably satisfy a reciprocity relation

RTL(left → right) = RTL(right → left) (6-4.2)

This is in accord with the results on plane-wave transmission described in
Chap. 3 and can be inferred along more general lines in a manner similar
to that of Sec. 4-9. Its intrinsic validity becomes plausible if one considers

† E. Buckingham, “Theory and interpretation of experiments on the transmission of sound
through partition walls,” Sci. Pap. Bur. Stand. (U.S.) 20:193–219 (1924–1926).
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two rooms with no absorption separated by a panel; within each room there
is initially the same acoustic energy density. The energy going from room 1
to room 2 must equal that going from room 2 to room 1 [hence Eq. (2)], or
otherwise the energy densities would become unequal; i. e., the panel would
be performing similarly to a Maxwell’s demon.†

If the panel dimensions are sufficiently large compared with a representa-
tive wavelength, the energy transmitted per unit time and wall area should be
the integral over solid angle (direction e pointing obliquely into the wall and
out of the room) of τtrans(e)cD(e)e · nout, where τtrans(e) is the plane-wave
acoustic-power transmission coefficient corresponding to incidence direction
e. Thus, in a manner similar to that of the derivation of Eq. (6-1.10), one
identifies the ratio of total energy transmitted to total energy incident as

τtrans,ri =

∫∫ ′
τtrans(e)e · nout dΩ
∫∫ ′

e · nout dΩ
(6-4.3a)

= 2

∫ π/2

0

τtrans(θ) sin θ cos θ dθ (6-4.3b)

If the other side of the wall bounding a room filled with diffuse sound is an
open space without sources, the local volume average of the acoustic energy
density just outside the wall is

w̄out =
w̄in

4π

∫∫ ′

τtrans(e) dΩ (6-4.4)

where the integral extends over directions pointing obliquely toward the open
space. [The incident field is assumed to be made up of a large number of plane
waves uniformly distributed in propagation direction, each of which gener-
ates a plane transmitted wave, with amplitude decreased by [τtrans(e)]

1/2,
propagating in the same direction.] Consequently, the corresponding ratio of
local volume averages of mean squared pressures is

(p2)out
(p2)in

= 1
2Kτtrans,ri (6-4.5)

K =

∫ π/2

0
τtrans(θ) sin θ dθ

2
∫ π/2

0
τtrans(θ) sin θ cos θ dθ

(6-4.6)

A rough approximation often used in the absence of a knowledge of the
angular variation of τtrans is to take K = 1 (resulting exactly when τtrans

† J. C. Maxwell, Theory of Heat, Longmans Green, London, 1871, p. 308. The demon is “a
being whose faculties are so sharpened that he can follow every molecule in its course . . .
who opens and closes [a] hole [connecting two portions of a vessel], so as to allow only the
swifter molecules to pass from [side] A to [side] B, and only the slower ones to pass from
[side] B to [side] A.”
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is independent of θ), such that Eq. (5) yields

L̄out = L̄in −RTL − 3 dB (6-4.7)

with L̄in and L̄out representing sound-pressure levels corresponding to (p2)in
and (p2)out.

Transmission Out through an Open Window

An extension of the above analysis applies to the field at larger distances
from an open window (area ∆A). The energy passing through the window
per unit time and propagating within solid angle dΩ is the same as that
incident, or (cw̄in/4π)e · nout dΩ ∆A. At a large radial distance r from the
window (where r2 ≫ ∆A), this incremental power passes through a portion
(area r2 dΩ) of the sphere of radius r centered at the window. Hence, the
intensity at large r should be

Ir,av =
cw̄in

4π

e · nout dΩ ∆A

r2 dΩ
= cw̄in cos θ

∆A

4πr2
(6-4.8)

where θ is the angle with the line normal to the window. Since the field
locally resembles an outgoing spherical wave at large distances, and since w̄in

is (p2)in/ρc
2, Eq. (8) implies

[p2(r)]av = (p2)in cos θ
∆A

4πr2
(6-4.9)

As an example, suppose a room with a sound level inside of 90 dB has an
open window of area ∆A = 1 m2. The sound level outside is not less than 50
dB unless r exceeds 102/(4π)1/2 = 28m.

Theory of Large Enclosures

A common procedure (see Fig. 6-12) for reducing the acoustic power radiating
into the environment is to build an enclosure around the source. The simplest
theory† of such enclosures assumes that the sound field within the enclosure

† For analyses of enclosures that are not large compared to source dimensions, see R.
S. Jackson, “The performance of acoustic hoods at low frequencies,” Acustica 12:139–152
(1962), “Some aspects of the performance of acoustic hoods,” J. Sound Vib. 3:82–94 (1966);
M. C. Junger, “Sound transmission through an elastic enclosure acoustically closely coupled
to a noise source,” ASME Pap. 70-WA/DE-12, American Society of Mechanical Engineers,
New York, 1970.
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is reverberant and that the actual acoustic power output of the source is
unaltered by the presence of the enclosure.

The net energy per unit time escaping out of the enclosure, according to
the discussion in the earlier part of this section, should be

P̄out =
c

4
w̄in

∫∫

τtrans dS (6-4.10)

while that dissipated P̄d within the enclosure and not transmitted out is
given by a similar expression involving the surface integral of αd. The re-
quirement that the actual sound power output P̄actual of the source equal
P̄out + P̄d consequently yields the power ratio

P̄out

P̄actual
=

∫∫

τtrans dS
∫∫

τtrans dS +
∫∫

αd dS
(6-4.11)

Figure 6-12 Idealized model of “large” enclosure; source power output P̄actual causes re-
verberant field of energy density w̄in inside enclosure, while power P̄out escapes to external
environment.

An implication of Eq. (11) is that no sound-power reduction is achieved
unless there is some absorption. Thus, enclosure walls are typically lined with
absorbing material. If the quotient τ̄trans/ᾱd of the area averages of τtrans
and αd is small compared with 1, then the ratio P̄out/P̄actual approaches
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τ̄trans/ᾱd; for fixed ᾱd, an increase in the transmission loss of the walls results
in more power reduction. If one thinks in terms of sound rays bouncing about
inside the enclosure, an increased noise reduction caused by increased RTL

(decreased τ̄trans) is associated with rays undergoing more reflections and
thus losing more energy through dissipation at the walls before a significant
fraction of their original energy can be transmitted out.

Coupled Rooms

If a source (acoustic power P̄) is in a room (see Fig. 6-13) separated by a
panel of area ∆A from a second room, the difference of the sound-pressure
levels in the two rooms can be predicted from considerations of acoustic-
energy conservation. The appropriate generalization† of Eq. (6-1.3) for room
1 is

V1
dw̄1

dt
= − c

4
As,1w̄1 − c

4
τtransw̄1 ∆A +

c

4
τtransw̄2 ∆A + P̄ (6-4.12)

The first term on the right is the negative of the energy dissipated per unit
time within room 1; the second is the negative of the rate at which energy
is being transmitted from room 1 to room 2; the third is the rate at which
energy is being transmitted from room 2 to room 1. Similarly, for room 2,
one has

V2
dw̄2

dt
= − c

4
As,2w̄2 +

c

4
τtrans ∆A(w̄1 − w̄2) (6-4.13)

In the steady-state situation, the second of the two equations above leads
to

w̄2

w̄1
=

(p2)2

(p2)1
=

τtrans ∆A

τtrans ∆A+ As,2
(6-4.14)

which is independent of P̄ and of the properties of room 1. The correspond-
ing difference of the two sound levels, termed the noise reduction LNR, is
consequently

LNR = L̄1 − L̄2 = RTL + 10 log

(

10−RTL/10 +
As,2
∆A

)

(6-4.15)

The inverse relation, with RTL expressed in terms of LNR and As,2/∆A, is the
basis for the common method of experimentally measuring the transmission
loss of panels. [One measures L̄1 and L̄2 in the two coupled reverberant rooms
of a specially designed TL facility with a sample panel forming part of the

† A. H. Davis, “Reverberation equations for two adjacent rooms connected by an incom-
pletely poundproof partition,” Phil. Mag. (6)50:75–80 (1925).
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Figure 6-13 Adjacent rooms coupled by a panel of area ∆A with transmission loss RTL.
Source with power output P̄ causes energy densities w̄1 and w̄2 and sound-pressure levels
L̄1 and L̄2. Noise reduction LNR, equal to L̄1 − L̄2, is determined by ∆A, RTL, and
absorbing power As,2 of room 2.

common wall (the rest of the wall being virtually nontransmissive); As,2 is
found from measurement of the reverberation time of room 2.] Note that the
noise reduction increases when As,2 increases. In the ideal case when As,2 is
0, the noise reduction is 0, regardless of the RTL of the panel.

Reverberant Decay in Coupled Rooms†

If the source of sound in room 1 is suddenly turned off, the subsequent decay of
w̄1 and w̄2 is governed by the two coupled differential equations (12) and (13)
with P̄ set to zero. Their solution can be worked out by standard techniques‡

for systems of homogeneous ordinary differential equations with constant
coefficients; one sets

(w̄1, w̄2) = (A1, A2)e
−at + (B1, B2)e

−bt (6-4.16)

where a characteristic decay rate a and the corresponding eigenvector (A1, A2)
are related such that

† Davis, “Reverberation equations . . . ,”; H. Kuttruff, Room Acoustics, Applied Science,
London, 1973, pp. 119–123.
‡ See, for example, I. S. Sokolnikoff and R. M. Redheffer, Mathematics of Physics and
Modern Engineering, 2d ed., McGraw-Hill, New York, 1966, pp. 148–151.
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



−V1a+
c

4
(As,1 + τtrans ∆A) −

c

4
τtrans ∆A

− c

4
τtrans ∆A −V2a+

c

4
(As,2 + τtrans ∆A)





[

A1

A2

]

=

[

0
0

]

(6-4.17)
The same relation holds between b, B1, and B2. The quantities a and b are
the two roots of the equation that results when the determinant of coefficients
is set to zero: A1/A2, is determined subsequently from either of Eqs. (17).
Initial values of w̄1 and w̄2 supply the remaining information necessary for
determination of the four coefficients, A1, A2, B1, B2.

As long as τtrans ∆A is somewhat less than (V1V2)
1/2|As,2/V2 − As,1/V1|

and is less than either As,2 or As,1, the decay constants a and b are approxi-
mately the reverberation times for the two rooms considered separately, but
the coupling between the rooms implies that the decay of w̄1 or w̄2 can no
longer be strictly considered as a single exponential decay. If, for example,
a ≫ b, A1 ≫ B1, the energy density w̄1 at first decays nearly as e−at but
eventually as e−bt.

6-5 THE MODAL THEORY OF ROOM ACOUSTICS

The concept of a room mode† leads to a theory of room acoustics‡ intrinsically
less approximate than the Sabine-Franklin-Jaeger model. Here we confine
ourselves to a simple version of the modal theory that uses modes for a room
with rigid walls. Below, we show that the use of such modes does not preclude
the development of an approximate theory applicable to rooms with walls of
finite impedance.

The Eigenvalue Problem

For a room with rigid walls, there are a multitude of particular solutions
(labeled by n = 1, 2, 3, . . .) of the homogeneous wave equation of the form

† J. W. S. Rayleigh, The Theory Sound, vol. 2, 2d ed., reprinted by Dover, New York, 1945,
sec. 267. Earlier work by J. M. C. Duhamel gave eigenfunctions and natural frequencies
for finite segments of rectangular and circular tubes with rigid walls but ends that were
pressure-release surfaces [“On the vibrations of a gas in cylindrical, conical, etc., tubes,” J.
Math. Pures Appl. 14:49–110 (1849), especially pp. 84–86]. The basic concept per se of a
vibration mode as a building block in the description of a vibrating system with more than
1 degree of freedom dates back to Daniel Bernoulli’s modal description of the vibrating
string in 1753.
‡ K. Schuster and E. Waetzmann, “On reverberation in closed spaces,” Ann. Phys.
(5)1:671–695 (1929); M. J. O. Strutt, “On the acoustics of large rooms,” Phil. Mag.
(7)8:236–250 (1929); P. M. Morse, “Some aspects of the theory of room acoustics,” J.

Acoust. Soc. Am. 11:56–66 (1939).
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p = Ψ(x, n)e−iω(n)t. (6-5.1)

The eigenfunction Ψ(x, n) satisfies the Helmholtz equation and the rigid-wall
boundary condition

[∇2 + k2(n)]Ψ(x, n) = 0 in V, ∇Ψ(x, n) · nout = 0 on S. (6-5.2)

The eigenvalue k2(n), equal to ω2(n)/c2, is one of a discrete series of real pos-
itive numbers for which a nontrivial solution of the boundary-value problem
(2) exists. The determination of values of k2(n) and of the associated eigen-
functions is an eigenvalue problem; the field associated with a given Ψ(x, n)
is a room mode.

Modes for a Rectangular Room

To exemplify the above remarks, we consider a rectangular room (Fig. 6-14)
bounded by rigid walls lying along the planes x = 0, x = Lx, y = 0, y = Ly,
z = 0, z = Lz. A possible Ψ(x, n) of the factored form X(x)Y (y)Z(z) is
substituted into the Helmholtz equation, such that subsequent division by Ψ
yields

X−1X ′′(x) + Y −1Y ′′(y) + Z−1Z ′′(z) + k2 = 0. (6-5.3)

Because the second, third, and fourth terms are independent of x, the x
derivative of the first term is zero, so that term is a constant. Anticipating
that this constant is negative, we write it as −k2x and have

X ′′(x) + k2xX(x) = 0. (6-5.4)

Similar ordinary differential equations hold for Y (y) and Z(z), and from Eq.
(3) we conclude that the three separation constants are related such that
k2x + k2y + k2z = k2.

The solution of Eq. (4) ensuring that the boundary condition ∂Ψ/∂x = 0
at x = 0 will be satisfied is of the form of a constant times cos kxx. The
other boundary condition, ∂Ψ/∂x = 0 at x = Lx, requires that sin kxLx = 0.
This gives kx = πnx/Lx, so X(x) must be a constant times cos (nxπx/Lx)
for some integer nx. Since similar considerations apply to Y (y) and Z(z), a
possible eigenfunction Ψ(x, n) is

Ψ(x, nx, ny, nz) = A cos
nxπx

Lx
cos

nyπy

Ly
cos

nzπz

Lz
, (6-5.5)

where A is an arbitrary constant. The corresponding eigenvalue, from the
relation k2x + k2y + k2z = k2, is
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Figure 6-14 (a) Coordinate system and parameters for description of modes in a rectan-
gular room Lx by Ly by Lz . (b) Sketch of nx = 2, ny = 3, nz = 0 mode (independent of z
coordinate). Dashed lines indicate acoustic-pressure nodes; indicated signs of eigenfunction
result if p is taken as positive at the origin.

k2(nx, ny, nz) = π2

[

(

nx
Lx

)2

+

(

ny
Ly

)2

+

(

nz
Lz

)2
]

. (6-5.6)

Any combination of integers nx, ny, nz gives a mode. The index n in Eqs.
(2) in this case is the set of these three integers (each assumed nonnegative
to avoid redundancy).



322 6 Room Acoustics

Orthogonality of Modal Eigenfunctions

The identity

∫ Lx

0

cos
nxπx

Lx
cos

n′
xπx

Lx
dx = 0, nx 6= n′

x, (6-5.7)

(given nx ≥ 0, n′
x ≥ 0) requires that the volume integral of the product of

two eigenfunctions described by Eq. (6) be zero unless nx = n′
x, ny = n′

y,
and nz = n′

z.
To investigate the possibility of mutual orthogonality† of modal eigenfunc-

tions for general shapes of rooms, we let Ψ1 = Ψ(x, n1) and Ψ2 = Ψ(x, n2)
denote two eigenfunctions. Then from Eq. (2) it follows that

Ψ2(∇
2 + k21)Ψ1 − Ψ1(∇

2 + k22)Ψ2 = 0.

But Ψ2∇
2Ψ1−Ψ1∇

2Ψ2 is the divergence of Ψ2∇Ψ1−Ψ1∇Ψ2, so an integration
over room volume with subsequent application of Gauss’ theorem and of the
boundary condition yields

(k21 − k22) ∫ ∫ ∫ Ψ1Ψ2 dV = 0. (6-5.8)

Thus, the integral must be zero if k21 6= k22 .
It is possible, e.g., for a cubic room, that two or more independent eigen-

functions correspond to the same eigenvalue. One can always select them,
however, e.g., by the Schmidt orthogonalization process,‡ to be a linearly in-
dependent set and to be such that the volume integral of the product of any
two different members of the set vanishes. Furthermore, since any Ψ(x, n)
multiplied by a constant is still an eigenfunction, we assume that the multi-
plicative constant has been chosen such that Ψ(x, n) is normalized to have a
mean squared volume average of 1. With these choices, we have an orthonor-

mal set satisfying
∫∫∫

V

Ψ(x, n)Ψ(x, n′) dV = δnn′V. (6-5.9)

Another property of the set of eigenfunctions chosen in this manner is
∫∫∫

V

∇Ψ(x, n) · ∇Ψ(x, n′) dV = δnn′k2(n)V. (6-5.10)

† J. W. S. Rayleigh, “On the fundamental modes of a vibrating system,” Phil. Mag.
(5)46:434–439 (1873).
‡ See, for example, R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 1,
Interscience, New York, 1953, p. 4.
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The proof results from the consecutive replacements of ∇Ψ · ∇Ψ ′ by
∇· (Ψ ′

∇Ψ)−Ψ ′
∇

2Ψ (a vector identity) and of ∇2Ψ by −k2(n)Ψ (from the
Helmholtz equation). The volume integral of the first term is transformed
into a surface integral by Gauss’ theorem and is recognized as being zero
because of the boundary condition; the volume integral of the second term
yields δnn′k2(n)V because of Eq. (9), so Eq. (10) results.

Similarly, a multiplication of the Helmholtz equation by Ψ∗(x, n) and a
subsequent integration over V yields

k2(n) =

∫∫∫

∇Ψ(x, n) · ∇Ψ∗(x, n) dV
∫∫∫

|Ψ(x, n)|2 dV
, (6-5.11)

so k2(n) must be real and positive. Since the Helmholtz equation then requires
Ψ∗(x, n) to be an eigenfunction, we can always choose eigenfunctions to be
real.

Modal Expansion of Functions

The modal eigenfunctions satisfying Eqs. (2) constitute a complete set; any
well-behaved function f(x) for points x within the room can be approxi-
mated† as a linear combination of the Ψ(x, n). An expansion coefficient an
can be determined from the requirement

∫∫∫

f(x)Ψ(x, n) dV =

∫∫∫

[

∑

n′

an′Ψ(x, n′)

]

Ψ(x, n) dV,

such that Eq. (9) yields

an =
1

V

∫∫∫

f(x)Ψ(x, n) dV. (6-5.12)

† The applicable theorem is that “the eigenfunctions of any self-adjoint differential system
of the second order form a complete set.” That Eqs. (2) describe a self-adjoint system
follows from the equivalence of Ψ ∇

2φ − φ∇2Ψ to the divergence of Ψ ∇φ − φ∇Ψ and
from the vanishing of the normal component of the latter at the walls when both Ψ and
φ satisfy the boundary condition. For a general proof, see I. Stakgold, Boundary Value
Problems of Mathematical Physics, vol. 1, Macmillan, New York, 1967, pp. 212–220.
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Field of a Point Source in a Room with Walls of Large

Impedance

We now apply the mathematical apparatus of room modes to determine the
field of a point source of angular frequency ω and monopole amplitude Ŝ.
The room walls are characterized by a specific impedance Z, possibly having
different values on different surfaces, but being such that |Z|/ρc≫ 1 so that
the walls are nearly rigid. The complex pressure amplitude p̂ satisfies the
inhomogeneous Helmholtz equation with a source term −4πŜ δ(x − x0) on
the right side. On the walls of the room, p̂ satisfies the boundary condition (see
Sec. 3-3) ∇p̂·nout = ik(ρc/Z)p̂, where nout is the unit normal pointing out of
the room. The completeness property allows us to determine an expansion†

for p̂(x) in terms of eigenfunctions Ψ(x, n) appropriate to the same room
geometry but which satisfy the rigid-wall boundary condition of Eq. (2).

To develop expressions for the coefficients an, we follow a procedure similar
to that for solving a boundary-value problem in terms of a Green’s function,
but we use an eigenfunction rather than a Green’s function. Multiplying Eq.
(4-3.4) by Ψ(x, n) and subsequently integrating over room volume, expressing
Ψ ∇

2p̂ as p̂ ∇
2Ψ plus the divergence of Ψ ∇p̂ − p̂ ∇Ψ , then making use of

Gauss’ theorem and of the boundary condition of Eq. (2), we obtain

∫ ∫ ∫ p̂(∇2 + k2)Ψ(x, n) dV + ∫ ∫ Ψ(x, n)∇p̂ · nout dS

= −4πŜ ∫ ∫ ∫ Ψ(x, n)δ(x− x0) dV = −4πŜΨ(x0, n). (6-5.13)

Further reduction results because ∇
2Ψ(x, n) is −k2(n)Ψ(x, n) and from the

boundary condition ∇p̂ · nout = (ik)(ρc/Z)p̂.
Insertion of an eigenfunction expansion for p̂ results in the coupled alge-

braic equations

[k2 − k2(n)]an + ik
∑

m

Bnmam =
−4πŜΨ(x0, n)

V
, (6-5.14)

with the abbreviation

Bnm =
1

V

∫∫

Ψ(x, n)
ρc

Z
Ψ(x, m) dS, (6-5.15)

the integral extending over the surface area of the room.
For a room with nearly rigid walls, the coupling terms (m 6= n) in Eq.

(14) are of minor importance; the possibility that some k(n) may be close to
k can be taken into account if we group the m = n term, ikBnnan, with the
[k2 − k(n)]an term; we then solve the coupled equations by iteration, taking
Bnm = 0 for m 6= n in the first approximation. In such a manner, with the

† P. M. Morse and K. U. Ingard, “Linear Acoustic Theory” in S. Flügge (ed.), Handbuch
der Physik, vol. 11, pt. 2 (Akustik I), Springer, Berlin, 1961, p. 60.
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so-derived an’s inserted into the expansion for p̂, one obtains the approximate
expression

p̂ = −4π
Ŝ

V

∑

n

Ψ(x, n)Ψ(x0, n)

k2 − k2(n) + ikBnn
. (6-5.16)

For a typical higher-order mode in a room, the local volume average of Ψ2

is nearly independent of position. A similar statement holds for |Ψ |2 at points
on the walls, but the surface-area average is nearly twice the volume average.
These remarks are supported by the rectangular-room eigenfunctions given
by Eq. (5) when nx > 0, ny > 0, nz > 0. (If one or more of the three indices
is 0, the ratio is less than 2.) Such considerations suggest, for most of the
modes of interest, that Eq. (15) (for n = m) can be approximated by

Bnn =
2

V

∫∫

ρc

Z
dS. (6-5.17)

Another approximate identification results from the assumption that the
walls are locally reacting and from insertion† of the plane-wave absorption
coefficient α(θ), equal to 1− |R|2 and determined from Eq. (3-3.4), into Eq.
(6-1.11), so that, with β = ρc/Z replacing 1/ζ,

αri = 8βR

∫ π/2

0

cos2 θ sin θ dθ

(βR + cos θ)2 + β2
I

≈ 8βR. (6-5.18)

The latter expression, applicable for the case of the nearly rigid wall, results
when βR and βI are set to zero in the integrand. Our approximate expression
(17) for Bnn therefore leads to

c Re Bnn ≈ c

4V

∫∫

αri dS ≈ 1

τ
, (6-5.19)

where τ is the characteristic time of the Sabine-Franklin-Jaeger model.
The imaginary part of Bnn is of minor consequence. The denominator

factor in Eq. (16) can be written as [k − ksh(n)][k + ksh(n)− Ynn] + ikXnn,
where the shifted eigenvalue ksh(n) is such that k2sh − kshYnn = k2(n). Here
Xnn and Ynn are the real and imaginary parts of Bnn. One ordinarily is
interested in values of k much greater than any |Ynn|, so the term −Ynn
in the factor k + ksh(n) − Ynn can be discarded. For virtually all the terms
contributing to the sum, ksh(n) can be approximated by k(n)+ Ynn/2. Since
most of the Ynn have nearly the same value, the resonant frequencies cksh(n)
have nearly the same spacing as the ω(n). Insofar as one is not concerned
with a precise prediction of the resonance frequencies, the ksh(n) can be
replaced by the k(n) without changing the overall predictions of the modal
formulation. Thus, the denominator factor is replaced by k2−k2(n)+ ikXnn.

† E. T. Paris, “On the coefficient of sound-absorption measured by the reverberation
method,” Phil. Mag. (7)5:489–497 (1928).
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With the additional approximation represented by Eq. (19), we accordingly
obtain

p̂ ≈ −4π
Ŝ

V

∑

n

Ψ(x, n)Ψ(x0, n)

k2 − k2(n) + ik/cτ
. (6-5.20)

Acoustic Energy in a Room

To express the time average of the acoustic energy in the room in terms of
modes, one begins with the volume integral

E =
1

4ρc2

∫∫∫ [

|p̂|2 +
( c

ω

)2

∇p̂ · ∇p̂∗
]

dV. (6-5.21)

Insertion of the appropriate expansions for p̂ and p̂∗ [sums over n and m of
anΨ(x, n) and a∗mΨ(x, m)] yields a double sum over n and m, the cross
terms of which vanish because of Eqs. (9) and (10), so we obtain

E =
V

4ρc2

∑

n

|an|2
{

1 +

[

ω(n)

ω

]2
}

. (6-5.22)

The sums over n resulting from the 1 and the [ω(n)/ω]2 terms in the coeffi-
cient of |an|2 correspond to the potential energy EP and the kinetic energy
EK .

If the field is that of a point source, appropriate values for the an are
the coefficients of the Ψ(x, n) in Eq. (20). This replacement yields, for the
potential energy EP ,

EP =
p2V

2ρc2
=

2πP̄ff

cV

∑

n

Ψ2(x0, n)

[k2 − k2(n)]2 + k2/c2τ2
, (6-5.23)

where P̄ff = 2π|Ŝ|2/ρc is the power the source radiates in a free-field envi-
ronment.

The analogous sum for the kinetic energy EK diverges because the fluid
velocity in the vicinity of a point source varies as 1/r2. For large rooms and
higher-frequency sources, however, a meaningful value† is obtained if one
sums over only those k(n) which are less than, say, 1/5r0, where r0 is the ra-
dius of reverberation; the resulting truncated sum corresponds to the kinetic
energy E′

K in the reverberant part of the field. The analogous truncation
in Eq. (23) has negligible influence on EP ; the sum, E′ = E′

P + E′
K , corre-

sponds to the product of the energy density w̄ introduced in Sec. 6-1 with the
room-volume portion V ′ that excludes the source’s immediate neighborhood.

† This was pointed out to the author by Preston W. Smith, Jr.
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Modal Description of Power Injection

The near field of a single-frequency point source has the characteristic form
(discussed in Sec. 4-3)

p̂ =
Ŝ

R
+ Ŝf ν̂ =

1

ρω

(

iŜeR
R2

− iŜ∇f

)

, (6-5.24)

where, as before, Ŝ is monopole amplitude, R = |x−x0| is distance from the
source, and f is a function whose value and gradient are bounded at x = x0.
Starting from these general expressions and with consideration of the surface
integral of 1

2Re (p̂∗v̂ · eR) over a sphere centered at the source, one can
subsequently conclude, after taking the limit R → 0, that the time-averaged
power output of the source must be†

P̄ = P̄ff

(

Im
p̂

kŜ

)

x→x0

, (6-5.25)

where P̄ff is the power the source would radiate if it were in a free field
environment. [If the source is in an unbounded region, p̂ = ŜR−1eikR and
Eq. (25) reduces to P̄ff . Although p̂/Ŝ diverges as x → x0, its imaginary
part does not.]

In terms of room modes and in the approximation of the nearly rigid wall
represented by Eq. (20), the above expression reduces to‡

P̄ =
4πP̄ff

V

∑

n

(1/cτ)Ψ2(x0, n)

[k2 − k2(n)]2 + k2/c2τ2
. (6-5.26)

6-6 HIGH-FREQUENCY APPROXIMATIONS

The principal formulas of the Sabine-Franklin-Jaeger model result when
modal sums are approximated by integrals. The demonstration of this be-
gins with the derivation of an expression for the number of room modes per
unit frequency bandwidth.

† R. H. Lyon, “Statistical analysis of power injection and response in structures and rooms,”
J. Acoust. Soc. Am., 45:545–565(1969).
‡ G. C. Maling, Jr., “Calculation of the acoustic power radiated by a monopole in a re-
verberation chamber,” J. Acoust. Soc. Am. 42:859–865 (1967). The analogous result for a
point dipole is given by S. N. Yousri and F. J. Fahy, “An analysis of the acoustic power
radiated by a point dipole source into a rectangular reverberation chamber,” J. Sound Vib.
25:39–50 (1972).
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The Modal Density

Let N(ω) denote the number of room modes whose natural frequencies are
less than a given value of ω. For a rectangular room, Eq. (6-5.6) indicates
that N(ω) is the total number of points in kx, ky, kz space with coordinates
(nxπ/Lx, nyπ/Ly, nzπ/Lz) that lie in or on the boundaries of the first octant
(kx ≥ 0, ky ≥ 0, kz ≥ 0) at a radial distance less than ω/c (see Fig. 6-15).
Each point lies in a rectangular box of dimensions (π/Lx, π/Ly, π/Lz) with
volume π3/V , each box having only one such point, the set of all boxes filling
the space. The box corresponding to the index triplet nx, ny, nz confines kx
to between (nx− 1

2 )π/Lx and (nx+
1
2 )π/Lx; analogous limits confine ky and

kz .
The total volume in the kx, ky, kz space occupied by all boxes whose cen-

ter points satisfy the inequality consists approximately† of the sum of the
following:

1. The volume (π/6)(ω/c)3 in an octant with radius ω/c
2. The sum of the volumes of three quarter-circle slabs of radius ω/c having

thicknesses π/2Lx, π/2Ly, and π/2Lz, respectively
3. The sum of three volumes of rectangular columns each having length
ω/c, the three cross-sectional areas being 1

4π
2/LxLy,

1
4π

2/LyLz, and
1
4π

2/LxLz, respectively
4. A volume 1

8π
3/LxLyLz

The estimated total number of modes N(ω), taken as the sum of these vol-
umes divided by the volume π3/V per point, is consequently

N(ω) ≈ 1

6

V

π2

(ω

c

)3

+
1

16

S

π

(ω

c

)2

+
1

16

L

π

ω

c
+

1

8
(6-6.1)

where S = 2(LxLy +LyLz +LzLx) is the total surface area of the room and
L = 4(Lx + Ly + Lz) is the total length of all the edges in the room.

In the limit V ≫ 6S/(16ω/c) (room dimensions large compared with a
wavelength), the first term predominates. Although the above was derived
for a rectangular room, the same leading term holds† for a room of any
shape; that is, (c/ω)3N(ω)/V approaches 1/6π2 in the limit of large ω.

The number of modes in a frequency band of width ∆ω and centered at
angular frequency ω can be estimated as [dN(ω)/dω] ∆ω, with N(ω) taken
as the leading term in the above. Thus, the average number of modes per
unit angular frequency bandwidth (modal density) is

† D.-Y. Maa, “Distribution of eigentones in a rectangular chamber at low frequency range,”
J. Acoust. Soc. Am. 10:235–238 (1939).
† H. Weyl, “The asymptotic distribution law for the eigenvalues of linear partial differential
equations (with application to the theory of black body radiation)”, Math. Ann. 71:441–
479 (1912). A general proof is given by Courant and Hilbert, Methods of Mathematical
Physics, vol. 1, pp. 429–445.
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Figure 6-15 Sketch depicting some of the volume contributions in kx, ky, kz space to the
estimation of Nπ3/V , where N(ω) is the number of room modes whose natural frequencies
are less than ω; the room volume V is LxLyLz . There is one mode associated with each
rectangular block of dimensions π/Lx by π/Ly by π/Lz whose center lies within or on
the boundary of the portion of the sphere of radius ω/c lying within the first octant of
kx, ky, kz space.

dN

d ω
=

1

2

V

π2

ω2

c3
=

1

(∆ω)mode
=

1

2π(∆f)mode
(6-6.2)

Here (∆f)mode is the average spacing in hertz between successive room res-
onance frequencies. For example, in a room of volume 500 m3 and near fre-
quencies of 500 Hz, with c = 340 m/s, one has (∆f)mode = 0.025 Hz.
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The Schroeder Cutoff Frequency

If the quantity 1/cτ [see Eq. (6-5.20)] is sufficiently small compared with
k(n) − k(n − 1) or k(n + 1) − k(n), a resonance is apparent whenever the
source driving frequency ω is sufficiently close to the natural frequency ω(n).
The nth term in sums such as those in Eqs. (6-5.23) and (6-5.26) becomes
overwhelmingly larger than any other term as ω → ω(n) and the frequency
dependence of p2, of E′, or of P̄ is approximately described by the factor
{[k2 − k2(n)]2 + k2/c2τ2}−1. Near such a resonance this in turn is approxi-
mately [c2/2ω(n)]2{[ω−ω(n)]2+(1/2τ)

2}−1. This factor is down to one-half
its maximum value when |ω − ω(n)| = 1/2τ , so the Q of the resonance is
ω(n)τ or k(n)cτ ; the bandwidth of the resonance peak is therefore

(∆ω)res =
1

τ
(∆f)res =

6 ln 10

2πT60
=

2.20

T60
(6-6.3)

The latter, representing the bandwidth in hertz, is (∆ω)res/2π.
When the resonance peaks are closer together than the bandwidth associ-

ated with any one peak, the resonances are less evident. If the average spacing
(∆f)mode between peaks is of the order of or less than, say, 1

3 (∆f)res, the
resonance peaks may be regarded† as a smoothed-out continuum. Since the
average spacing (∆f)mode decreases with increasing frequency, there is a fre-
quency fSch (Schroeder cutoff frequency) below which (∆f)res > 3(∆f)mode

is not satisfied and above which it is. This frequency is identified, from Eqs.
(2) and (3), as

fSch =

(

c3

4 ln 10

)1/2(
T60
V

)1/2

= c

(

6

As

)1/2

(6-6.4)

This, in SI units and with c = 340 m/s, becomes (in round numbers)
2000(T60/V )1/2. Thus, for a room with V = 500 m3 and with T60 = 1 s,
the Schroeder cutoff frequency is 90 Hz. Note that the criterion f ≫ fSch is
equivalent to that previously derived in Sec. 6-3 for the deviation ∆P̄ of the
source power output to be small compared with P̄ff .

† M. Schroeder, “The statistical parameters of frequency curves of large rooms,” Acustica,
4:594–600 (1954); M. R. Schroeder and K. H. Kuttruff, “On frequency response curves in
rooms: comparison of experimental, theoretical, and Monte Carlo results for the average
frequency spacing between maxima,” J. Acoust. Soc. Am. 34:76–80 (1962). The first refer-
ence placed the transitional peak spacing at 1

10
(∆f)res, but this was changed to 1

3
(∆f)res

in the 1962 paper.
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Approximation of Modal Sums by Integrals

What can be termed Schroeder’s rule says that above the Schroeder cutoff
frequency a sum over mode indices can be approximated by an integral.
Suppose one has a sum of the generic form [see Eqs. (6-5.23) and (6-5.26)]

Sum =
∑

n

F (k(n), k)Ψ2(x0, n) (6-6.5)

and suppose also that there are a large number of terms of comparable mag-
nitude for which k(n) is between k′−∆k′/2 and k′+∆k′/2 for a ∆k′ consid-
erably less than k′. The number of terms corresponding to this wave-number
interval is c(dN/dω)ω=ck′∆k′, where dN/dω is the modal density of Eq. (2).
If the average 〈FΨ2〉k′ over the terms corresponding to such a wave-number
interval varies slowly from interval to interval, the sum is approximately the
integral

Sum → c

∫ ∞

0

〈FΨ2〉k′
(

dN

dω

)

ω=ck′
dk′ (6-6.6)

The various assumptions just stated increase in validity the larger k(n) is
compared with 2πfSch/c. Insofar as the dominant contribution comes from
terms where k(n) is comparable to or larger than k, the integral (6) approxi-
mates the sum (5) with increasing success the larger the source frequency is
compared with fSch. In the computation of the energies associated with the
reverberant field, the upper limit should be replaced by a fraction (whose
exact value should be of no consequence) of the reciprocal of the radius of
reverberation.

Because there is no systematic relation between the F ’s and Ψ2’s, the local
average 〈FΨ2〉k′ can be factored as 〈F 〉k′ 〈Ψ2〉k′ to a good approximation if a
great number of terms are involved. Thus, with dN/dω taken from Eq. (2),
one has

Sum → V

2π2

∫ ∞

0

F (k′, k)RP (k
′,x0)(k

′)2dk′ (6-6.7)

where RP (k′,x0) replaces 〈Ψ2〉k′ and is the average over n of those Ψ2(x0, n)
for which k(n) is in a small interval centered at k′.

Modal Averages of Squares of Eigenfunctions

The quantity RP (k,x0) can be alternately expressed as the ratio of the acous-
tic power output P̄ (time-averaged) of a monopole source at x0, with account
taken of the proximity of the source to the nearest walls only, to the free-field
acoustic power P̄ff
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RP (k,x0) =
P̄(k,x0)

P̄ff
(6-6.8)

Here k = ω/c, where ω is the frequency of the source generating power P̄.
The above assertion follows from the observation that the average of a

large number N of Ψ2(x, n) corresponding to nearly the same eigenvalue is
approximately

1

N

∑

n

Ψ2(x, n) ≈ 1

N

∣

∣

∣

∣

∣

∑

n

Ψ(x, n)eiφn

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

q̂(x)

∣

∣

∣

∣

∣

2

where the φn are randomly selected phase angles. The cross terms such as
2Ψ(x, n)Ψ(x,m) cos(φn − φm), n 6= m, have a large variety of magnitudes
and may have either sign, so they average out. The quantity q̂ identified
from the latter relation is an approximate solution of the Helmholtz equation
whose normal derivative at the walls is zero. Within any localized region large
compared with a wavelength, one can approximate q̂ by a large number of
plane waves uniformly distributed among propagation directions. Near the
walls of the room, the relationships between the phases of these plane waves
must be such that the boundary condition ∆q̂ · nout = 0 is satisfied. The
overall volume average of |q̂|2 is 1, and for the most part |q̂|2 should be
everywhere equal to its volume average, except near the walls of the room,
where there are systematic relations between the phases of its constituent
plane waves. Thus, |q̂(x)|2 → 1 at distances far from a room boundary.

If x is near a particular wall, then [ as in the derivation of Eq. (6-1.8)] the
above reasoning suggests that |q̂(x)|2 is a constant times the average over
incidence directions n of the mean squared pressure at x resulting when a
plane wave of unit amplitude is incident obliquely on the wall with direction
n and the wall is idealized as rigid. The multiplicative constant is chosen
so that |q̂(x)|2 approaches 1 at large distances from the well. Alternately, a
unit-amplitude incident plane wave can be regarded as being generated by
a point source of monopole amplitude Ŝ = d located at x − nd, where d is
large. The principle of reciprocity requires the corresponding |p̂2(x)| be the
same as the |p̂2(x−nd)| resulting when the point-source location is changed
to x. Consequently, the mean squared pressure at x due to a unit-amplitude
incident plane wave is proportional to the far-field radiation pattern from a
point source at x, the proportionality factor being independent of direction.
This implies that averaging over incidence directions is equivalent,† apart
from a multiplicative constant, to determination of the power P̄ radiated
from a source at x. Since |q̂(x)|2 must approach 1 at large distances from the
wall, and since P̄ → P̄ff at such distances, one arrives at Eq. (8).

The correspondence described above requires RP (k,x) to be nearly 1
within the interior of the room, to be 2 on most wall surfaces, to be 4 along

† R. V. Waterhouse, “Output of a sound source in a reverberation chamber and other
reflecting environments,” J. Acoust. Soc. Am. 30:4–13 (1958).
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an intersection of two walls, and to be 8 at a corner where three walls meet.
These values can be derived by the method of images (see Sec. 5-1) and are
supported by calculations‡ of modal sums.

Evaluation of Modal Integrals

The integral in Eq. (7) approximates the sums, represented by Eqs. (6-5.23)
and (6-5.26), that give p2 and P̄ for a point source in a room. For both cases,
the function F (k′, k) is of the form

F (k′, k) =
K

(k2 − k′2)2 + k2/c2τ2
(6-6.9)

Because F (k′, k) peaks strongly near k′ = k when 1/cτ ≪ k, a good approx-
imation results if we set k′ = k in the integrand except in the denominator
factor, where we replace k2 − k′2 by 2k(k − k′). Thus Eq. (7) becomes

Sum → KV

8π2

P̄(k,x0)

P̄ff

∫ ∞

0

dk′

(k − k′)2 + 1/(2cτ)2
. (6-6.10)

Given k ≫ 1/cτ , one may in addition make the further approximation of
extending the lower limit to −∞, so that the indicated integral [change inte-
gration variable to θ where k′ − k = (1/2cτ) tan θ] becomes 2πcτ .

In the application of the above analysis to the expressions, derivable from
Eqs. (6-5.23) and (6-5.26) for the volume average of mean squared pressure
and the acoustic-power output of a monopole source, the appropriate identi-
fications for K are 4π ρcP̄ff/V

2 and 4πP̄ff/(cτV ) . Thus, the two quantities
just mentioned become

p2 = ρc2τP̄(k, x0)/V P̄ = P̄(k, x0). (6-6.11)

The potential energy EP in the room is consequently 1
2τP̄. An analogous

derivation for the reverberant part of the kinetic energy leads with the sum-
mation truncation described in the previous section to

E′
K ≈ P̄

πc

∫ km

0

(k′/k)4dk′/k2

(1− k′/k)2(1 + k′/k)2 + 1/(cτk)2
, (6-6.12)

where the upper limit km should be much less than 1
2πcτk

2 but much larger
than 2/πcτ . The dominant contribution to the integration comes from k′ near
k, so an appropriate approximation sequence is to first set k′/k = 1 except
in the factor 1 − k′/k and to then change the integration limits to −∞ and
∞. Doing this yields E′

K ≈ 1
2τP̄ , so E′ = E′

P + E′
K ≈ τP̄ .

‡ See, for example, Maling, “Calculation of the acoustic power.”
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The similarity of the approximate relations derived above between P̄, p2, E′ =
V w̄, and τ with what holds in steady-state circumstances for the Sabine-
Franklin-Jaeger model demonstrates that the latter has a substantial basis in
the wave theory of sound but holds only in the high-frequency limit, i.e., for
f somewhat larger than fSch. While the analysis given here is for a constant-
frequency point source, one can expect the same conclusions to apply to any
type of source if the radiated frequencies are sufficiently high and the di-
mensions of the room sufficiently large. [However, the value of P̄(k,x0)/P̄ff

will not necessarily be the same as what is derived for a monopole source.
For a point dipole, for example, with its dipole-moment vector normal to the
nearest wall, one would use Eq. (5-1.8b).]

6-7 STATISTICAL ASPECTS OF ROOM ACOUSTICS

Deviations of acoustic field quantities from the averages predicted by the
Sabine-Franklin-Jaeger model are frequently given a statistical interpretation.
Suppose, for example, that a source at x0 causes the contribution to the
pressure from a given frequency band to be p(x, t|x0). The average over
time and over listener position x of p2 is predicted to be ρc2τP̄/V by the
reverberant-field model, but the model per se gives no information about how
much a given average over time of p2(x, t|x0) for fixed x and x0 may deviate
from this double average.

A probability density function w(q) for any field variable q(x) can be con-
structed by measuring q(x) at a large number of randomly selected points.
The fraction of the total number of measured values between qa and qb is
interpreted as the probability P (qb > q > qa) that q falls within this range.
The average probability per unit range of q is P (qb > q > qa)/(qb − qa), and
this ratio’s value in the quasi limit of small qb − qa is the probability density
function w(q) evaluated at the center of the interval. Thus, w(q) dq is the
probability that a random measurement is between q − dq/2 and q + dq/2.

The expected value of a function f(q) can be written in two ways:

〈f(q)〉 =
∫ ∞

−∞

f(q)w(q) dq =
1

V

∫∫∫

f(q(x)) dV. (6-7.1)

The latter defines the “randomly selected points” to be such that the numbers
of samples drawn from two subvolumes of equal size are the same.

One also defines a joint-probability-density function w(q1, q2) for any two
field variables q1(x) and q2(x) such that w(q1, q2) dq1 dq2 is the probability
that q1 and q2 simultaneously lie within the ranges (q1 − dq1/2, q1 + dq1/2)
and (q2 − dq2/2, q2 + dq2/2). This function should be such that the expected
value of any function f(q1, q2) is the average over volume of f(q1(x), q2(x)).
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The integral of w(q1, q2) over all values of q2 yields the probability density
function w(q1) for q1.

Frequency Correlation

A starting point for the development of the principal hypotheses of statisti-
cal room acoustics may be taken as the expression (6-5.20) for the complex
acoustic-pressure amplitude caused by a constant-frequency point source in
the nearly rigid wall approximation. This we rewrite as

p̂(x, ω|x0) =
4πŜ

V
(a+ ib), (6-7.2)

where

{a, b} ≈
∑

n

{An, Bn}Ψ(x, n)Ψ(x0, n), (6-7.3)

{An, Bn} =
{[k2(n)− k2], k/cτ}

[k2(n)− k2]2 + k2/c2τ2
. (6-7.4)

For given x and x0, the plots of a(ω) and b(ω) versus ω are calcula-
ble, but since the curves vary with x, one may consider† a(ω) and b(ω) as
stochastic processes. At frequencies somewhat above the Schroeder cutoff
frequency, these are quasi-stationary processes because their statistical prop-
erties are insensitive to shifts in the frequency origin. Each process has zero
mean since the spatial average is zero for each Ψ(x, n) (we assume that
the zero-frequency mode is negligibly excited). Also, since a large number of
terms contribute to their values, each of which could as well be negative as
positive, one expects, with reference to various proofs under restricted con-
ditions of the central-limit theorem,‡ that the pair a(ω), b(ω) forms a joint

gaussian process. This implies, in particular, that if one lets each q1, q2,
. . . , qN denote either a(ωi) or b(ωi) for various selected frequencies ωi, the
joint-probability-density function for the set of q’s is

w(q1, q2, . . . , qN ) = (2π)−N/2 det[M ]−1/2 exp



−1

2

∑

i,j

[M−1]ijqiqj



 ,

(6-7.5)
where det[M ] and [M−1] denote the determinant and inverse, respectively,
of a correlation matrix [M ] having elements Mij = 〈qiqj〉. This, with

† M. Schroeder, “The statistical parameters of frequency curves of large rooms,” Acustica
4:594–600 (1954).
‡ J. L. Doob, Stochastic Processes, Wiley, New York, 1953, pp. 71–72, 141.
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the assumption that the processes are quasi-stationary, leads to the con-
clusion that the only statistical averages needed for a specification of all
such probability density functions are the frequency autocorrelation functions

〈a(ω)a(ω + ∆ω)〉 and 〈b(ω)b(ω + ∆ω)〉 and the frequency cross-correlation

function 〈a(ω)b(ω +∆ω)〉.
Expressions for these functions follow from Eq. (1) and from the orthog-

onality and normalization of the Ψ(x, n). One has, for example [with An(ω)
rewritten as A(k(n), k)],

〈a(ω)b(ω +∆ω)〉 =
∑

n

A(k(n), k)B(k(n), k +∆k)Ψ2(x0, n). (6-7.6)

This sum is approximated by an integral in the manner described in the
derivation of Eqs. (6-6.7), with k(n) → k′, 〈Ψ2〉 → RP (k

′,x0), ∆n →
(V/2π2)(k′)2 dk′. Since the overall integrand is for most intents zero unless
k′ is moderately close to k (given |∆k| and 1/cτ both substantially less than
k), one sets k′ = k in the factors RP (k′, x0) and (k′)2 at the outset and
approximates

A(k′, k) ≈ 2k(k′ − k)

4k2(k′ − k)2 + k2/c2τ2
, B(k′, k) ≈ k/cτ

4k2(k′ − k)2 + k2/c2τ2
.

(6-7.7)
Also, since ∆k ≪ k, the only tangible effects of shifting k to k +∆k arise in
the factor k′−k; everywhere else in the expression for B(k′, k+∆k), one sets
k +∆k to k. A further approximation replaces the lower limit of integration
by −∞. Then, with a change of variable to β, where β/2cτ is k′ − k, one
obtains

〈a(ω)b(ω +∆ω)〉 ≈ V

4π2
RP (k,x0)cτ

∫ ∞

−∞

β dβ

(β2 + 1)[(β − 2τ ∆ω)2 + 1]
.

(6-7.8)
The indicated integral is performed by adding a semicircular arc (β =

Reiφ, 0 < φ ≤ π, R → ∞) to the integration path such that the resulting
contour encloses the poles (at β = i and β = 2τ ∆ω + i) in the upper half
plane. The result, by the residue theorem, is (π/2)τ ∆ω/[1 + (τ ∆ω)2].

The evaluation of 〈a(ω)a(ω + ∆ω)〉 and 〈b(ω)b(ω + ∆ω)〉 is performed
similarly, a distinction being that the β’s of the numerator in Eq. (8) are
replaced by β(β − 2τ∆ω) and 1, respectively. The integral factor in both
cases is (π/2)/[1 + (τ∆ω)2]. The three correlation functions consequently
vary with ∆ω in the following manner:

〈a(ω)a(ω +∆ω)〉 ≈ 〈b(ω)b(ω +∆ω)〉 ≈ 〈a2(ω)〉
1 + (τ ∆ω)2

, (6-7.9a)

〈a(ω)b(ω +∆ω)〉 ≈ 〈a2(ω)〉τ∆ω
1 + (τ∆ω)2

. (6-7.9b)
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The above expressions are applicable for estimation of the frequency auto-
correlation function 〈p2(ω)p2(ω+∆ω)〉 for the ensemble of frequency-response
curves p2(ω,x). Here p2(ω,x) is the time average of the squared acoustic pres-
sure when the source’s frequency is ω. If the source characteristicstics very
slowly with ω, and if they change negligibly over an interval ∆ω, then (for
∆ω ≪ ω)

〈p2(ω)p2(ω +∆ω)〉
〈p2(ω)〉

=
〈[a2(ω) + b2(ω)][a2(ω +∆ω) + b2(ω +∆ω)]〉

〈a2 + b2〉2 .

(6-7.10)
To evaluate this, we use the relation,† applicable if x and y are any two

random variables, for example, a(ω) and a(ω +∆ω) or b(ω) and a(ω +∆ω),
with a joint gaussian probability distribution and zero mean, that

〈x2y2〉 = 〈x2〉〈y2〉+ 2 〈xy〉2. (6-7.11)

This, in conjunction with Eqs. (9), leads to 4〈a2〉2{1 + [1 + (τ ∆ω)2]−1} for
the numerator of Eq. (10), so we obtain

〈p2(ω)p2(ω +∆ω)〉 = 〈p2〉2{1 + [1 + (τ ∆ω)2]−1}. (6-7.12)

The Poisson Distribution

For pure-tone excitation above the Schroeder cutoff frequency, the mean
squared acoustic pressure conforms to a Poisson distribution. The demon-
stration proceeds from the observation that

w(s) =
d

ds

∫ ∞

−∞

∫

w(a, b)H(s− a2 − b2) da db (6-7.13)

is the probability density function for a2 + b2. Here H is the Heaviside unit
step function; the double integral is the probability that a2 + b2 < s; its
derivative is thus the probability density function. Since the random variables
a and b are uncorrelated for ∆ω = 0, since both individually correspond
to a gaussian distribution with zero mean, and since both have the same
mean squared value, the exponent in Eq. (5) in this particular case becomes

† From (5) one has, for a bivariate gaussian distribution with q1 = x, q2 = y, r = 〈xy〉/〈y2〉,

∑

i,j

[M−1]ijqiqj =
〈y2〉x2 − 2〈xy〉xy + 〈x2〉y2

〈x2〉〈y2〉 − 〈xy〉2
=

(x− ry)2

〈(x − ry)2〉
+

y2

〈y2〉
,

so w(x, y) factors into a product of probability density functions for the statistically inde-
pendent quantities x−ry and y. Also, Eq. (5) yields 〈y4〉 = 3〈y2〉2. Consequently, algebraic
manipulation of the expression 〈[(x− ry) + ry]2y2〉 leads to Eq. (11).
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−(a2 + b2)/2〈a2〉. One converts the integration variables in Eq. (13) to polar
coordinates u, φ such that a = u cosφ, b = u sinφ, da db = u du dφ, a2 + b2 =
u2, and then lets u2 = v such that u du = 1

2dv; the φ integration gives a
factor 2π; the v integration limits are 0 and s. The s differentiation then
gives πw(a, b) with a2 + b2 = s, so w(s) = (1/〈s〉) exp(−s/〈s〉), which is the
probability density function for a Poisson distribution. Here 〈s〉 = 2〈a2〉 is
the average value 〈a2〉+ 〈b2〉 of s.

Since the time average p2 of p2 is a product of a nonrandom (i.e., indepen-
dent of x) quantity with a2 + b2 and since, for any random variable x with
probability density function wx(x), the probability density function wy(y) for
y = Kx is wx(y/K)/K, such that wx(x) dx = wy(y) dy, the quantity p2 also
conforms to a Poisson distribution, i.e.,

w(p2) =
1

〈p2〉
exp

−p2
〈p2〉

, (6-7.14)

where 〈p2〉 is the spatial average of p2. (The overbar here implies a time
average.)

The most probable value of p2 is 0, but since p2 is always nonnegative, the
expected value is finite. The variance is

〈(p2 − 〈p2〉)2〉 = 〈(p2)2〉 − 〈p2〉2 = 〈p2〉2, (6-7.15)

since the integrals of xe−x and x2e−x from 0 to ∞ are 1 and 2. Thus, the
rms deviation of a measurement of p2 from 〈p2〉 is the same as 〈p2〉. [This
is consistent with Eq. (12) in the limit τ∆ω = 0.] The probability that p2

exceeds 〈p2〉 is e−1 or 0.368, and the probability that it is less than the
average is 1− e−1 = 0.632, so at a randomly selected point, it is nearly twice
as probable that p2 will be less than the average rather than higher than the
average.

The Poisson distribution requires also that the average sound-pressure
level be 2.5 dB lower than that corresponding to 〈p2〉. To demonstrate this,
let z = 1

10 (ln 10)(L − L0), where L0 is the sound level corresponding to the
average 〈p2〉. Then, since p2/〈p2〉 = 10(L−L0)/10 is ez, the probability density
function for z is (see Fig. 6-16)

w(z) = exp

(

−p2
〈p2〉

)

d

dz

(

p2

〈p2〉

)

= ez−e
z

, −∞ < z <∞. (6-7.16)

The expected value 〈z〉 for z (with a change of integration variable to y = ez)
is
∫ ∞

−∞

zez−e
z

dz =

∫ 1

0

(ln y)
d

dy
(1 − e−y) dy −

∫ ∞

1

(ln y)
d

dy
e−y dy = −γ,

(6-7.17)
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where γ = 0.5772157 · · · is the Euler-Mascheroni constant.† Since 10γ/(ln 10)
is 2.5, the average level 〈L〉 is L0− 2.5 dB. The probable deviation of a single
measurement from L0 is 〈(L−L0)

2〉1/2, which is the same as [〈(L−〈L〉)2)+
(〈L〉 − L0)

2]1/2 or [10/(ln 10)][〈(z − 〈z〉)2〉 + γ2]1/2. The value π2/6 for the
quantity 〈(z − 〈z〉)2) results from a lengthy computation,‡ so the net result
is 〈(L− L0)

2〉1/2 = 6.1 dB.

Figure 6-16 Implications of the Poisson distribution. Curve A: Probability density func-
tion w(z) for 1

10
(ln 10)(L−L0). Curve B: Probability P (L) that measured sound-pressure

level is less than L. Curve C: Probability 1− P (L) that it is greater than L. The level L0

corresponds to spatial average over entire room of mean squared acoustic pressure.

The rms deviation of L from 〈L〉 becomes† [10/(ln 10)]π/61/2 = 5.6 dB.
The expected value of (L − L0)

2, given L > L0, is (3.2 dB)2; given L < L0,
it is (7.6 dB)2. Thus, if error brackets are to be placed on a data point, the
upper bracket should be 7.6 dB above and the lower bracket 3.2 dB below,
with a net spread of 10.8 dB.

† E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge
University Press, London, 1973, pp. 235–236, 243.
‡ H. Cramer, Mathematical Methods of Statistics, Princeton University Press, Princeton,
N.J., 1946, p. 376. [Our w(z) is Cramer’s j1(z) with ν = 1, such that his S1, and S2 are
both zero.]
† This is in accord with measurements reported by P. Doak, “Fluctuations of the sound
pressure level in rooms when the receiver position Is varied,” Acustica, 9:1–9 (1959).
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Effect of Finite-Frequency Bandwidth

If the source is broadband, the variations in the mean squared pressure p2

corresponding to any finite-frequency band of bandwidth∆ω are considerably
less than those for the constant-frequency case if τ ∆ω ≫ 1. To demonstrate
this,‡ we consider a band extending from ω1 to ω2 over which the power
output per unit frequency bandwidth is constant, such that the mean squared
pressure for the band, according to Eqs. (2-7.7) and (2-9.6), is

p2 = K

∫ ω2

ω1

[a2(ω,x) + b2(ω,x)] dω, (6-7.18)

where K is independent of x. The variance in p2 is then

〈(p2 − 〈p2〉)2〉 = K2

∫ ω2

ω1

∫

〈[f(ω)− 〈f〉][f(ω′)− 〈f〉]〉 dω dω′, (6-7.19)

where we abbreviate f for a2 + b2. A substitution from Eq. (12) then yields

〈(p2 − 〈p2〉)2〉 = 〈p2〉2
(ω2 − ω1)2

∫ ω2

ω1

∫

[1 + τ2(ω − ω′)2]−1 dω dω. (6-7.20)

The double integration can be performed by letting x = (ω−ω1)/(ω2−ω1),
y = (ω′−ω1)/(ω2−ω1) be new integration variables (limits 0 and 1) such that
ω − ω′ = (x− y) ∆ω, where we write ∆ω for ω2 −ω1. A further substitution
of α for x − y replaces the x integration by one on α from −y to 1 − y, so
one has 0 < y < 1− α for α between 0 and 1 and −α < y < 1 for α between
−1 and 0. With this recognition, one can do the y integration first, keeping
α fixed, the result being 1− |α|, so

〈(p2 − 〈p2〉)2〉 = 〈p2〉2
∫ 1

−1

(1− |α|)[1 + (τ ∆ω)2α2]−1 dα, (6-7.21)

and here it is sufficient to integrate only from 0 to 1 and subsequently multiply
the result by 2. A further change of integration variable to θ, where tan θ =
(d/dθ) ln (sec θ) replaces (τ∆ω)α, yields (see Fig. 6-17)

〈(p2 − 〈p2〉)2〉 = 〈p2〉2V (τ∆ω), (6-7.22)

‡ M. R. Schroeder, “Effect of frequency and space averaging on the transmission responses
of multimode media,” J. Acoust. Soc. Am. 46:277–283 (1969).
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V (τ∆ω) =
2

τ∆ω
{tan−1(τ∆ω) − (τ∆ω)−1 ln [1 + (τ∆ω)2]1/2},

≈







1− 1
6 (τ∆ω)

2 τ ∆ω ≪ 1
π

τ∆ω
− 2 ln(eτ∆ω)

(τ∆ω)2
τ ∆ω ≫ 1

(6-7.23)

The behavior when τ∆ω → 0 is consistent with Eq. (15) for the single-
frequency case. Also, the leading term π/(τ∆ω) in the asymptotic expansion
for V (τ∆ω) is the same as would be obtained if there were N = (τ∆ω)/π
discrete widely spaced frequencies, each equally strongly excited. The leading
term can also be written in terms of T60 and the bandwidth ∆f in hertz as
3 ln 10/(T60∆f) of as 6.9/(T60∆f).

With the last recognition, one can conjecture that, in the limit of large
τ∆ω, the probability density function w(p2) is the same as that of the sum of
N independent random variables each having a Poisson distribution and the
same mean, 〈p2〉/N . After a brief calculation similar to that in the derivation
of Eq. (14), this conjecture leads to

w(p2) =
1

Γ(N)

N

〈p2〉

(

Np2

〈p2〉

)N−1

exp

(

−Np
2

〈p2〉

)

, (6-7.24)

where Γ(N) [equal to (N − 1)! for integer N ] is the gamma function. This
reduces to Eq. (14) for N = 1 and has a mean of 〈p2〉 (as it should) and a
variance of 〈p2〉2/N . A comparison of the latter with Eq. (22) suggests that
the above would be a fairly good approximate probability density function
for arbitrary bandwidth if we set N = 1/V (τ ∆ω).

With z = ( 1
10 ln 10)(L − L0), as before, and with L0 representing the

sound-pressure level associated with 〈p2〉, the corresponding probability den-
sity function N exp (Nz − eNz) has a mean of −γ/N and a variance of
(π2/6)/N2. Thus, the average sound-pressure level L̄ is L0 − 2.5/N dB, and
the rms deviation from L̄ is 5.6/N dB.

Example For the third octave band with f0 = 250 Hz in a room with a
reverberation time of 1 s, what is the probability that L lies within ±0.5 dB
of L0?

Solution From the relations T60 = (6 ln 10)τ and ∆ω = 2π(21/6 − 2−1/6)f0
(third octave band) one-determines τ∆ω = 26.33, and from N = 1/V (τ∆ω)
one finds N = 9.35. Since ± 1

2 dB corresponds to a z of ±(ln 10)/20 = ±0.115,
the desired probability is the integral of N exp (Nz − eNz) from −0.115
to 0.115; this integral is the difference of the values of − exp(−eNz) (the
indefinite integral) at Nz = 1.1 and Nz = −1.1, so the probability is 0.66.
The probability of its lying within ±1 dB of L0 is similarly found to be 0.89.
The corresponding probabilities for a pure tone (N = 1) would be 0.08 and
0.17.
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Figure 6-17 Function V (τ∆ω) describing variance in p2 for sound of angular frequency
band-width ∆ω in a room with characteristic energy decay time τ , Also plotted are two
approximate asymptotic expressions for the function.

6-8 SPATIAL CORRELATIONS IN DIFFUSE SOUND

FIELDS

Our discussion of statistical room acoustics continues with an examination
of the spatial variation of sound fields in reverberant rooms.

The Spatial Autocorrelation Function for Acoustic

Pressure

The requisite statistical averages for the description of the spatial fluctua-
tions result from the idealization of the sound field as a superposition of a
large number of propagating plane waves, such that the acoustic pressure in
the constant-frequency case has a complex amplitude given by Eq. (6-1.6).
The autocorrelation function of the constant-frequency pressure field is the
average over volume of the product of p(x, t) and p(x+∆x, t+∆t) for fixed
∆x and ∆t; a derivation analogous to that of Eq. (6-1.7) yields
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〈p(x, t)p(x+∆x, t+∆t)〉 = 1

2

∑

q

|p̂q|2 cosω
(

∆t− nq ·
∆x

c

)

. (6-8.1)

With the diffuse-field idealization, the cosine here is replaced by its average
over propagation direction, and the sum of the |p̂q|2 is replaced by 2〈p2〉.
The average over solid angle of cos [ω(∆t − e ·∆x/c)] can be performed in
spherical coordinates taking ∆x in the z direction, so Eq. (1) reduces† to

〈p(x, t)p(x+∆x, t+∆t)〉 = 〈p2〉1
2

∫ π

0

cosω

(

∆t− |∆x|
c

cos θ

)

sin θ dθ

= 〈p2〉 cos(ω ∆t)
sin k|∆x|
k|∆x| . (6-8.2)

The time periodicity with a period of 2π/ω exhibited by the above auto-
correlation function follows from the periodicity of the pressure. The spatially
dependent factor is 1 when |∆x| = 0 but equals 0 when k|∆x| = π, 2π, 3π, . . .
or when |∆x| = λ/2, λ, 3λ/2, . . .. Since the amplitude decreases to zero as
1/k|∆x| when k|∆x| → ∞ (Fig. 6-18a), there is a basis for assuming that
pressure measurements spaced more than several wavelengths apart are sta-
tistically independent.

An expression for the spatial autocorrelation function‡ 〈p2(x)p2(x +
∆x)〉 of the mean squared acoustic pressure results analogously from the
superimposed-plane-waves hypothesis. With the recognition that the spatial
average of the coupling factor exp [ik(nq − nq′ + nr − nr′) · x] is negligibly
small unless q′ = q, r′ = r or r′ = q, r = q′, one obtains as an intermediate
result

〈p2(x)p2(x+∆x)〉 = 1

4

∑

q,r

|p̂q|2|p̂r|2 +
1

4

∑

q,r

|p̂q|2|p̂r|2eik(nr−nq)·∆x.

This in turn leads with the diffuse-field hypothesis to the expression (see
Fig. 6-18b)

〈p2(x)p2(x+∆x)〉 = 〈p2(x)〉2
(

1 +

∣

∣

∣

∣

1

4π

∫∫

eik∆x·e dΩ

∣

∣

∣

∣

2
)

= 〈p2(x)〉2
{

1 +
sin2 k|∆x|
(k|∆x|)2

}

. (6-8.3)

† R. K. Cook, R. V. Waterhouse, R. D. Berendt, S. Edelman, and M. C. Thompson, Jr.,
“Measurement of correlation coefficients in reverberant sound fields,” J. Acoust. Soc. Am.
27:1072–1077 (1955).
‡ D. Lubman, “Spatial averaging in a diffuse sound field,” J. Acoust. Soc. Am. 46:532–534
(1969).
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Figure 6-18 Spatial dependence of the autocorrelation functions of (a) acoustic pressure
(∆t = 0) and (b) mean squared acoustic pressure in a constant-frequency sound field.
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Note that this function’s limiting value of 2〈p2〉 when |∆x| = 0 is consistent
with Eq. (6-7.12).

The extension of the above result to when the field is composed of a band
of frequencies proceeds from the notion of a spectral density, which implies

〈p2(x)p2(x+∆x)〉 =
∫ ω2

ω1

∫

〈Sp(ω,x)Sp(ω′,x+∆x)〉 dω dω′. (6-8.4)

Here Sp(ω, x) is such that its integral over ω gives p2(x).
The average appearing in the above integrand can be written as 〈S2

p〉[1 +
G(ω, ω′, ∆x)] with some choice of the function G. We assume that the
spatial average of S2

p is independent of ω, so it is identified as 〈p2〉2/(∆ω)2.
Equations (6-7.12) and (3) require that G be [1 + (ω − ω′)2τ2]−1 or
(sin2 k|∆x|)/(k|∆x|)2, when ∆x is 0 or when ω = ω′. It must be 1 when both
∆x and ω − ω′ are zero, and it must go to zero when |ω −ω′|τ, (ω/c)|∆x|,
or (ω′/c)|∆x| becomes large. A simple approximate choice for G with these
properties is the product of the two limiting functions corresponding to ∆x =
0 and ω−ω′ = 0, with the replacement of k by kav = (ω+ω′)/c in the latter.
This synthesis yields

〈Sp(ω, x)Sp(ω′, x+∆x)〉 ≈ 〈p2〉2
(∆ω)2

{

1 + [1 + τ2(ω − ω′)2]−1 sin
2 kav|∆x|

(kav|∆x|)2
}

.

(6-8.5)
For typical rooms, τ is invariably much larger than |∆x|/c for any |∆x| of

interest. The factor (sin2 kav|∆x|)/(kav|∆x|)2 may be considered as constant
over the integration domain unless (∆ω/c)|∆x| is comparable to 1 or (since
cτ ≫ |∆x|) unless τ ∆ω ≫ 1. In the latter case, the sharp peak in the factor
[1 + τ2(ω − ω′)2]1/2 at ω = ω′ allows one to consider the spatially dependent
factor as being the same as if ω′ were set equal to ω at the outset when one
is doing, say, the ω′ integration first. On this basis, we conclude that the
value of the integral is unchanged for all practical purposes if the spatially
dependent factor is replaced by its average over the frequency interval. Thus,
with reference to the analysis leading to Eq. (6-7.22), we find that Eq. (5)
reduces to

〈p2(x)p2(x+∆x)〉
〈p2〉2

≈ 1 + V (τ∆ω)F (k1|∆x|, k2|∆x|), (6-8.6)

where V (τ∆ω) is the function defined in Eq. (6-7.23) and we abbreviate

F (a, b) =
1

b− a

∫ b

a

sin2 x

x2
dx

=
1

b− a
[Si (2b)− Si (2a)− b−1 sin2 b+ a−1 sin2 a], (6-8.7)

where
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Si (y) =

∫ y

0

t−1 sin t dt (6-8.8)

is the sine integral function.

Spatial Averaging

If one measures p2(x) at points x1, x2, . . . ,xK and then averages them, the
average being taken as an estimate of 〈p2〉, the variance associated with the
estimate is

〈(

1

K

∑

i

fi − 〈f〉
)2〉

=
〈f2〉
K2

∑

ij

( 〈fifj〉
〈f〉2 − 1

)

, (6-8.9)

where we write fi for p2(xi). The rms relative error ∆rms in the estimate is
the square root of the above divided by 〈f〉. Thus, from Eq. (3), one obtains
(for a pure tone)

∆rms =
1

K



K +
∑

i6=j

sin2(k|xi − xj |)
k2|xi − xj |2





1/2

. (6-8.10)

A minimum value of 1/K1/2 for ∆rms can be approximately achieved if one
chooses the xi and xj such that each of the terms in the above sum (i 6= j) is
much less than 1/K. This would be so, for example, if |xi−xj | ≫ λK1/2/2π.

A common method for spatial averaging is to move the microphone along
a path at slow speed and to take the long-term time average of the re-
ceived p2. If the path of length L is straight, and if the signal is a pure
tone, the expected rms relative error from this method is given by Eq.
(10) with the sum expressed as a double integral and with the prescriptions
∆i/K → dx/L, ∆j/K → dx′/L, |xi − xj | → |x− x′|, such that

(∆rms)
2 =

1

L2

∫ L

0

∫

sin2[k(x− x′)]

k2|x− x′|2 dx dx′

= 2

∫ 1

0

(1 − u)
sin2 kLu

(kLu)2
du, (6-8.11)

where the derivation of the second version is similar to that of Eq. (6-7.21).
The integral over u can be expressed in terms of tabulated functions, but we
confine ourselves here to limiting cases. For small kL, a power-series expan-
sion and subsequent term-by-term integration yield

∆rms ≈ 1− 1
36 (kL)

2. (6-8.12)
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In the limit of large kL, the u in the factor 1 − u is of minor consequence.
After its discard, the upper integration limit can be taken as ∞, so that Eq.
(11) takes the form of 2/kL times the definite integral of ξ−2 sin2 ξ, with ξ
replacing kLu. The integral is a standard definite integral whose value is π/2,
so the large-kL limit yields

∆rms =
( π

kL

)1/2

=

(

λ

2L

)1/2

. (6-8.13)

If one wants the expected relative error to be less than 0.3, for example, one
should choose L to be greater than (λ/2)/(0.3)2 = 5.5λ.

Frequency Averaging versus Spatial Averaging

Since the variance in measurements of p2 decreases as the frequency band-
width increases [see Eq. (6-7.23)], an average over frequency is roughly equiv-
alent to an average over position. From a comparison of Eqs. (6-7.22) and
(13), one arrives at the correspondence

k ∆L ≈ τ ∆ω, (6-8.14)

such that an average over a line of length ∆L leads to a prediction with
the same probable error as an average over a frequency band of width ∆ω
if ∆L and ∆ω are so related. Alternately, an insertion of τ from Eq. (6-1.4)
transforms the above correspondence into

As ∆L

4V
≈ ∆ω

ω
. (6-8.15)

This implies, for a cubic room with average absorption coefficient 0.1, that
averaging along a line extending the length of the room is equivalent to aver-
aging over a bandwidth of slightly less than 1

4 octave. For broadband sources
with power output per unit bandwidth slowly varying over 1

4 -octave inter-
vals, the frequency average, i.e., a broadband measurement, with a single
microphone position would normally be a simpler method of estimating the
acoustic energy per unit frequency bandwidth accurately than a spatial aver-
age of contributions from a narrow band. However, if the sound is a pure tone,
and if all the surfaces are motionless, e.g., no rotating vanes, some spatial
averaging is necessary.

One consequence of the correspondence just described is that long-period
time averages can replace spatial averages for any narrow-bandwidth sound
field whose bandwidth in hertz is nevertheless substantially larger than
1/2πτ . Given that the nominal frequency of the sound is itself much greater
than this bandwidth, the sound field may yet behave for other intents as a
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pure tone. Thus, for example, suppose one measured p(x1, t) and p(x2, t) at
two typical points x1 and x2 for such a narrow-band sound field. Then one
would expect, from Eq. (2), that†

lim
T→∞

1

T

∫ T

0

p(x1, t)p(x2, t) dt ≈ 〈p2〉sin k|x1 − x2|
k|x1 − x2|

≈ [p21(x1)p22(x2)]
1/2 sink|x1 − x2|

k|x1 − x2|
. (6-8.16)

provided |x1 − x2| is somewhat less than c/∆ω, where ∆ω is the bandwidth
of the sound.

6-9 PROBLEMS

6-1 An untreated room 6 m long, 5 m wide, and 3 m high has surfaces of
average absorption coefficient α0 = 0.01. When all the sources of sound
are on, the sound level is 90 dB. To reduce this level, the floor is covered
with a carpet with absorption coefficient αc. What should αc be if the
sound level is to be reduced to 80 dB?

6-2 The sound-pressure level in a factory room 10 by 10 by 4 m is typically 90
dB. The reverberation time for the room is 4 s. Estimate the sound power
output of the sources in the room.

6-3 A reverberation time of 5 s is measured when four people are present in
a room 5 by 5 by 4 m. What is the reverberation time when no one is
present?

6-4 The total absorbing power of the surfaces of a room is 5 metric sabins.
When a carpet of area 2m2 is hung on one wall of the room, the original
reverberation time of 5 s drops to 4 s. What is the random-incidence
absorption coefficient of the carpet?

6-5 In his original experiments, Sabine had no direct method of measuring
sound level or source power output but nevertheless accurately measured
reverberation times using two identical but widely spaced sound sources.
Suppose when one source is excited and suddenly turned off, 3 s lapses
before the sound in the room decreases to the threshold of audibility. If
both sources are excited and suddenly turned off, the corresponding time
is 4 s. What is the reverberation time of the room?

6-6 The sound-pressure level in a room is 90 dB. How much energy per unit
time passes out through an open window of 1 m2 area? What would the
sound-pressure level be in the open space outside the room at a point 20
m from the window along a line making 45◦ with the unit normal to the
window?

† Cook et al., “Measurement of correlation coefficient . . . .”
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6-7 The reverberation time of a room is 4 s when the walls, floor, and ceiling
all have absorption coefficient α0. If half of the total surface area of the
room is covered with an acoustic tile with absorption coefficient 4 α0, what
will the reverberation time be?

6-8 Suppose that a sound source in a room excites plane waves that propagate
only in the +x and −x directions. The two walls perpendicular to the x
axis are a net distance L apart, and each has normal incidence absorption
coefficient α. Determine an expression for the reverberation time T60 of
the room for the described circumstances in the limit α ≪ 1.

6-9 A two-dimensional reverberant sound field is in a low-ceilinged room with
parallel floor and ceiling. The field may be considered in any local region
as being a superposition of a large number of plane waves, all of the same
frequency and with propagation directions parallel to the floor.
(a) If the energy density in the room is w̄, how much energy is incident
per unit time and area on the average on the vertical walls of the room?
(b) If α(θ) is the absorption coefficient for a plane wave at angle of incidence
θ, what would be the fraction of incident energy absorbed for the two-
dimensional random-incidence situation described above?
(c) Determine an expression for the reverberation time T60 for such a sound
field in terms of the floor area of the room, the perimeter length or the
floor, sound speed c, and the apparent absorption coefficient.

6-10 What would be the counterpart of the Norris-Eyring reverberation time
for the one-dimensional field described in Prob. 6-8. What would be the
appropriate modification if the two walls had different absorption coeffi-
cients?

6-11 Derive Eq. (6-6.12) and state whatever assumptions are required. Show
that the integral expression leads to the approximate result E′

K = 1
2τP̄ .

6-12 Two rooms are connected by a panel of area 12 m2. Each room has dimen-
sions 4 by 4 by 3 m and an absorbing power of 1.2 metric sabins. What
should the transmission loss of the panel be if the sound pressure level in
room 2 is to be 60 dB when a source in room 1 causes a sound-pressure
level of 90 dB within that room?

6-13 A sound source rests on the floor of a room with dimensions 5 by 6.28 by
4 m whose reverberation time is 3.22 s. If the sound level at a distance of
3 m from the source is 95 dB, what would you estimate for the sound level
at a distance of 0.5 m from the source?

6-14 A limp panel, i.e., one that satisfies criteria for the mass law, has a trans-
mission loss for normal incidence of R0. Derive a simple expression for its
random-incidence transmission loss.

6-15 The sound level in a factory room is 95 dB, but if all the windows are
open simultaneously, the sound level drops to 90 dB. The dimensions of
the room are 10 by 10 by 4 m, and the total area of the open windows
is 10 m2. Give an estimate for the reverberation time of the room when
all windows are closed. What is the corresponding value of the average
absorption coefficient of the room’s surfaces?
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6-16 A panel separating two rooms has an area of 5 m2 and a transmission
loss of 20 dB. Room 1 has a sound source in it and has a sound level
at a representative point of 90 dB. Room 2 has no sound sources and
has negligible absorption. What would you estimate for the sound level in
room 2?

6-17 A small intense source of sound is in a room with a room constant of 25
metric sabins. A worker standing about 1 m from the source experiences
a sound level of 95 dB. Assuming that the source rests on a nearly rigid
floor, what reduction in sound level can be expected for this worker when
the room constant is increased by a factor of 10?

6-18 A cocktail party for serious conversationalists is planned for a room 10 by
10 by 4 m with a reverberation time of 1.2 s. Previous parties have been
such that attendees clustered in groups of four; typical listeners stand 0.5
m from the person they are trying to hear. What is the maximum number
of guests that should be invited?

6-19 Two adjacent apartment living rooms have a common wall of area 20 m2

with a transmission loss of 40 dB. Both rooms have absorbing power of
30 metric sabins. If a loud stereo in one room causes a sound level of 70
dB in the second room, what would you expect for the sound level in the
room in which the stereo is being played?

6-20 The absorption coefficient of a particular surface is 0.1 cos θ when radiated
by a plane wave at angle of incidence θ. What would be the corresponding
random-incidence absorption coefficient?

6-21 The sound level in a room is 85 dB. What is the sound level just outside
an exterior wall whose transmission loss is 30 dB?

6-22 The given wall of area A is of checkerboard construction such that a por-
tion A1 has a transmission loss R1 while the remaining portion A2 has a
transmission loss R2. What value would you assign for the transmission
loss RTL for the wall as a whole?

6-23 A cubic enclosure 2 m on each side is placed over a small sound source
resting on a rigid floor. The transmission loss of the walls of the enclosure
is 20 dB for each wall. What would the absorption coefficient of the inner
lining of the enclosure have to be if its insertion loss (10 log of ratio of
power transmitted out without enclosure to that with enclosure present)
is to be 15 dB?

6-24 Determine the lowest 10 nonzero natural frequencies for a rectangular
room of dimensions 4 by 5 by 7 m with rigid walls and give a plot of the
number of modes having resonance frequency less than f versus frequency
f . On the same graph plot both the asymptotic expression (6-6.1) and its
leading term. Discuss whether the other terms represent an improvement
to the fit. Are 10 points sufficient to test the derivation of the asymptotic
expression?

6-25 Determine the natural frequencies and modal eigenfunctions for a rectan-
gular swimming pool of dimensions Lx by Ly by Lz. The upper surface,
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z = Lz, is a pressure-release surface, while the remaining boundary sur-
faces are rigid.

6-26 For a cubical room with dimensions L on a side, determine a complete set
of orthonormal eigenfunctions that correspond to the natural frequency
ω = 5πc/L.

6-27 The surfaces of a room, dimensions Lx by Ly by Lz, have specific acoustic
impedance z = 1000 ρc. A point source of monopole amplitude Ŝ is placed
close to the corner (0, 0, 0) and is driven at angular frequency ω = πc/Lx.
Estimate the resulting acoustic-pressure amplitude at the opposite corner
(Lx, Ly, Lz). (Assume that only one mode is appreciably excited.)

6-28 A vertical line source in a rectangular room (floor dimensions Lx and Ly)
excites only those modes for which the eigenfunction is independent of z.
Derive an expression appropriate in the limit of large ω for the number
N(ω) of such modes that have natural frequency less than ω rad/s.

6-29 A room with dimensions 20 by 30 by 10 m has a reverberation time of 3 s.
(a) What is the corresponding Schroeder cutoff frequency?
(b) If a pure tone of 250 Hz is played in the room and causes an average
sound-pressure level of 80 dB, what is the probability that a given person
will hear 70 dB or less.
(c) If a person at a distance of 1 m from you hears 85 dB, what is the
probability that you will hear more than 90 dB?





CHAPTER SEVEN

LOW-FREQUENCY MODELS OF
SOUND TRANSMISSION

Acoustic phenomena are often interpreted in terms of concepts based on the
assumption that the acoustic wavelength is large compared with a character-
istic length. The radiation of sound from small vibrating bodies, discussed in
Chap. 4, is an instance of this; other examples emerge in the present chap-
ter. To establish a theoretical basis for examples involving low frequencies in
pipes and ducts, we begin with a discussion of guided waves.

7-1 GUIDED WAVES

Sound waves in a duct can be described in terms of guided wave modes.† We
here consider a duct (waveguide) of constant cross-sectional shape and area
(see Fig. 7-1), aligned so that its walls (idealized as rigid) are parallel to the
x axis.

Duct Cross-Sectional Eigenfunctions

Regardless of whether the cross-section is circular, rectangular, or less reg-
ularly shaped, one can construct appropriate separable solutions of the
Helmholtz equation of the form

† The concept originated in major part with J. W. S. Rayleigh, The Theory of Sound, vol.
2, 1878, 2d ed., 1896, reprinted by Dover, New York, 1945, secs. 268, 340. Existence of
higher-order modes was demonstrated experimentally by H. E. Hartig and C. E. Swanson,
“ ‘Transverse’ acoustic waves in rigid tubes,” Phys. Rev. 54:618–626 (1938). Such modes
are of interest in regard to noise generated by turbomachinery, fans, compressors, and
jet engines. See, for example, J. M. Tyler and T. G. Sofrin, “Axial flow compressor noise
studies,” Soc. Automot. Eng. Trans. 70:309–332 (1962).
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Figure 7-1 Duct of constant cross section: (a) rectangular duct, (b) circular duct.

p̂(x, y, z) = Xn(x)Ψn(y, z), (7-1.1)

because the separation-of-variables technique described in Sec. 6-5 leads, for
some separation constant α2

n, to the differential equations

(

∂2

∂y2
+

∂2

∂z2

)

Ψn + α2
nΨn = 0, (7-1.2a)

d2Xn

dx2
+ (k2 − α2

n)Xn = 0. (7-1.2b)

Furthermore, Eq. (1) will conform to the rigid-wall boundary condition if
∇Ψn · nwall = 0 at the duct walls.

The Ψn and α2
n are eigenfunctions and eigenvalues for a “two-dimensional

room” with rigid walls, so in accordance with the remarks in Sec. 6-5, the α2
n

are real and nonnegative and take on discrete values. The set of Ψn can be
chosen as orthonormal, such that

1

A

∫∫

Ψn(y, z)Ψn′(y, z) dA = δnn′ (7-1.3)

where the integral extends over the cross-sectional area A of the duct. Fur-
thermore, the Ψn(y, z) form a complete set, so for any function f(y, z), one
has, when (y, z) lies in the duct,
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f(y, z) =
∑

n

anΨn(y, z), an =
1

A

∫∫

f(y, z)Ψn(y, z)dA. (7-1.4)

Duct with Rectangular Cross Section

For a duct whose interior occupies the region 0 < y < Ly, 0 < z < Lz, the
eigenfunctions and eigenvalues are identified from Eqs. (6-5.5) and (6-5.6) as

Ψn = K(ny, nz) cos
nyπy

Ly
cos

nzπz

Lz
, (7-1.5a)

α2
n = π2

[

(

ny
Ly

)2

+

(

nz
Lz

)2
]

, (7-1.5b)

where the constant K(ny, nz) is determined from Eq. (3). (If both ny and nz
are zero, K is 1; if only one is zero, K is 21/2; if both are nonzero, K is 2.)

Duct with Circular Cross Section

If the duct has a circular cross section† of radius a, Eq. (2a) is appropriately
written in polar coordinates (r, φ) where y = r cosφ, z = r sinφ, for which
the laplacian‡ in two dimensions is ∂2/∂r2 + r−1∂/∂r + r−2∂2/∂φ2. The
resulting version of (2a) is further separable, so that a function R(r) times
either cosmφ or sinmφ is a possible solution. For the function Ψn to be single-
valued and continuous in φ, the separation constant m must be an integer.
The radial factor R(r) satisfies the differential equation that results when
∂2/∂φ2 is replaced by −m2:

[

d2

dr2
+

1

r

d

dr
+

(

α2
n − m2

r2

)]

R(r) = 0. (7-1.6)

This is Bessel’s equation;§ its only solution finite at r = 0 isKJm(αnr), where
K is a constant and Jm is the Bessel function of order m. The boundary con-

† J. W. S. Rayleigh, “Oscillations in cylindrical vessels,” Phil. Mag. (5)1:272–279 (1876);
“On the passage of electric waves through tubes, or the vibrations of dielectric cylinders,”
ibid. 43:125–132 (1897). A related analysis for elastic waves in a solid cylinder was given
by L. Pochhammer, “Concerning the velocities of small vibrations in an unlimited isotropic
circular cylinder,” J. reine angew. Math., 81:324–336 (1876).
‡ This follows from p. 173n. with ξ1, ξ2, ξ3 = r, φ, x and with hr = 1, hφ = r, hx = 1.
§ Derived by L. Euler in 1764 in an analysis of vibrations of a stretched membrane. That
Jm(αnr) is a solution follows from an explicit substitution of its power-series expansion
into the differential equation. G. N. Watson, A Treatise on the Theory of Bessel Functions,
2d ed., Cambridge University Press, Cambridge, 1944, pp. 5, 6, 15–19.
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dition requires dR/dr = 0 at r = a, so αn must be such that αnJ ′
m(αnα) = 0.

If ηqm denotes the qth root (q = 1, 2, . . .) of ηqmJ ′
m(ηqm) = 0, the correspond-

ing αn is ηqm/a and the corresponding eigenfunction is

Ψn(r, φ) = KqmJm

(nqmr

a

)

{

cos mφ
sin mφ

}

. (7-1.7)

For m > 0, the η = 0 root of ηJ ′
m(η) = 0 leads to the trivial solution Ψn =

0, but setting η to 0 reduces J0(ηr/a) to 1, so that Ψn in the m = 0, η = 0
case is a constant. The other roots (η 6= 0) are solutions of J ′

m(η) = 0. Taking
q = 1 as labeling the lowest root, one has in particular ηq0 = 0.0, 3.832, 7.016;
ηq1 = 1.841, 5.331, 8.536; ηq2 = 3.054, 6.706, 9.969 for q = 1, 2, 3. In the limit
of large q (fixed m), roots can be determined from the asymptotic-series
expression for the Bessel function and approach† (q +m/2− 3

4 )π.

Cutoff Frequencies and Evanescent Modes

Possible solutions of Eq. (2b) for the axial factor Xn(x) are exp(±iβnx),
where βn = (k2 − α2

n)
1/2 for k2 > α2

n and βn = i(α2
n − k2)1/2 for α2

n > k2. A
propagating guided wave is therefore described by the expression

p(x, y, z, t) = Re
{

Be−iωteiβnxΨn(y, z)
}

, (7-1.8)

providing k2 > α2
n; the corresponding disturbance has a trace velocity (phase

velocity) of vph = ω/(k2 − α2
n)

1/2 along the x axis. However, if k2 < α2
n,

the factor exp iβnx becomes exp (−|βn|x) and Eq. (8) then corresponds to a
disturbance dying out exponentially with increasing x.

For a given frequency, there are a limited number of modes for which
α2
n < k2. There is at least one, this being the plane-wave, or fundamental,

mode, for which αn is 0 and Psin is constant. Modes for which α2
n > k2

are evanescent, while those for which α2
n < k2 are propagating modes. If ω is

greater than the cutoff frequency ωc,n given by cαn, the mode is propagating,
but below that frequency it is evanescent. For all modes other than the plane-
wave mode, propagation above the cutoff frequency is dispersive. Different
frequencies correspond to different phase velocities and to different repetition
lengths along the x axis. If αn 6= 0, a wave packet composed of a sum of waves
of the form of Eq. (8), with n fixed but with various frequencies, would have a
time-dependent signature that distorts with increasing propagation distance.

An evanescent mode transports no net acoustic energy. If p is given by
Eq. (8), then vx (derived from ρ ∂vx/∂t = −∂p/∂x) is given by an anal-
ogous expression but with B replaced by βnB/ωρ. If βn is imaginary, as

† J. McMahon, “On the roots of the Bessel and certain related functions,” Ann. Math.
(Charlottesville, Va.) 9:23–30 (1894–1895).
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for an evanescent mode, the time average Ix,av of the x component of the
acoustic intensity vanishes because p and vx are 90◦ out of phase; the power
transported through the duct, represented by the integral of Ix,av over the
cross-sectional area, is also zero.

Figure 7-2 Point source in a duct.

In many situations of practical interest, the frequency is so low that the
only propagating mode is the plane-wave mode. For a rectangular duct, this
is so, according to Eq. (5b), if ω < cπ/Lmax, where Lmax is the maximum
of Ly or Lz. For a circular duct of radius a, the dispersive modes are all
evanescent if ω < 1.841c/a. The latter criterion requires, for example, that
the frequency be less than 1000 Hz for a 0.1-m-radius duct containing air at
20◦C.

Point Source in a Duct

At large distances from a source within a duct, only the propagating modes
need be considered. We illustrate this with an analysis† of the field (within a
duct of infinite length) of a point source with angular frequency ω, monopole
amplitude Ŝ, located at y0, z0, with x0 = 0 (see Fig. 7-2). The complex
pressure amplitude p̂(x, y, z) can be expanded in the Ψn(y, z) as in Eq. (4),

† First discussed by M. Taylor, “On the emission of sound by a source on the axis of a
cylindrical tube,” Phil. Mag. (6)24:655–664 (1912).
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with the coefficients an taken as functions Xn(x) [not necessarily the same
as those in Eq. (2b)].

If such a modal expansion is substituted into the Helmholtz equation with
a point-source term −4πŜδ(x − x0) on the right side, and if the result is
multiplied by a particular Ψn(y, z) and subsequently integrated over the cross-
sectional area of the duct, one obtains, with use of Eqs. (2a) and (3), the
inhomogeneous differential equation

[

d2

dx2
+ (k2 − α2

n)

]

Xn = −4πŜ

A
Ψn(y0, z0)δ(x). (7-1.9)

The solution for x 6= 0 satisfies the homogeneous equation (2b) and may be
taken as a constant times exp iβn|x|, such that it corresponds to a wave that
either propagates away (k2 > α2

n) or dies out exponentially (k2 < α2
n) from

the source. The multiplicative constant must be the same for x > 0 as for
x < 0 to ensureXn continuous at x = 0. The delta function requires, however,
that dXn/dx be discontinuous. Integration of both sides from x = −ǫ to x = ǫ
yields (in the limit ǫ→ 0)

(

dXn

dx

)

+ǫ

−
(

dXn

dx

)

−ǫ

→ −4πŜ

A
Ψn(y0, z0),

so the solution of (9) is

Xn =
−2πŜΨn(y0, z0)

iβnA
eiβn|x|. (7-1.10)

The resulting p̂ is the sum over n of XnΨn.
The analogous expression for v̂x derives from the x component of Euler’s

equation and from the solution for p̂, the result being

v̂x = ±
∑

n

βn
ωρ
Xn(x)Ψn(y, z), (7-1.11)

where the signs apply for x > 0 and x < 0, respectively. The quantity ωρ/βn
is the characteristic modal specific impedance associated with the nth mode.

The power transmitted in the +x direction is the area integral of 1
2 Re{p̂ v̂∗x}.

Because of the orthogonality (3) of the modal eigenfunctions Ψn(y, z), all
the cross terms in the resulting double sum integrate to zero, so the power
is the sum of the powers associated with the individual modes. Those asso-
ciated with the evanescent modes vanish, however, since their modal specific
impedances are imaginary. Consequently, one is left with

Pright =
2π2|Ŝ|2
Aωρ

∑

n

′ Ψ2
n(y0, z0)

(k2 − α2
n)

1/2
(7-1.12)
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for the power transmitted to the right of the source. The total power output,
to the left and to the right, is twice this. (Here the prime on the sum implies
that one include only terms for which α2

n < k2.) One implication is that the
power output of the source suddenly jumps to a very large value whenever
the driving frequency is increased from just below to just above any mode’s
cutoff frequency.

When the driving frequency is below the cutoff frequency for the first
dispersive mode, such that only the plane-wave mode (αn = 0, Ψn = 1) is
excited, the net power output P, equal to 2Pright, reduces to†

P =
4π2|Ŝ|2c
Aω2ρ

=
2πc2

ω2A
Pff , (7-1.13)

where Pff = 2π|Ŝ|2/ρc is the power radiated by the source in a free-field
environment. For the same circumstances, at distances sufficiently large for
evanescent modes to be neglected, the complex pressure amplitude reduces
to

p̂ =
i(2πcŜ)

ωA
ei(ω/c)|x|, (7-1.14)

BecauseRe [(i4πŜ/ωρ)e−iωt] is the time rate of change of the volume excluded
by the source, the latter leads to the identification for the time-dependent
acoustic pressure (at large |x|) as

p =
ρc

2A

(

dVS
dt

)

t→t−|x|/c

. (7-1.15)

This applies to sources that excite any combination of frequencies, providing
each is below the cutoff frequency for the first dispersive mode. It can be
compared with the corresponding expression (ρ/4πR) d2VS/dt

2 (with t →
t − R/c) for the acoustic pressure resulting from a monopole source in an
unbounded medium [see Eq. (4-1.6)].

7-2 LUMPED-PARAMETER MODELS

A lumped-parameter model‡ uses a limited number of time-dependent ag-
gregate variables rather than field quantities varying with both position and
time. The partial-differential equations and boundary conditions interrelating

† Taylor, “On the emission of sound,” derives this when the source is on the axis of a circular
tube. The generalization to a duct of arbitrary cross-sectional shape is given (although
without details of derivation) by H. Lamb, “The propagation of waves of expansion in a
tube,” Proc. Lond. Math. Soc. (2)37:547–555 (1934).
‡ An extensive exposition of the concept is given by H. H. Woodson and J. R. Melcher,
Electromechanical Dynamics, pt I, Discrete Systems, Wiley, New York, 1968, pp. 15–59.
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the field quantities are replaced by ordinary differential equations interrelat-
ing the aggregate variables. The coefficients (lumped-parameter elements) in
the latter description usually have a viable physical interpretation, either
in terms of an analogous mechanical system or an analogous electrical sys-
tem. Typically, lumped-parameter models are used when the frequency is
such that ka ≪ 1, where a is a characteristic dimension appropriate to the
physical system.

An example of a lumped-parameter model would be a spring, whereby one
idealizes an elastic solid of possibly complicated shape as a massless entity
whose sole property, as regards the analysis of the behavior of the physical
system of which it is a part, is its spring constant, i.e., incremental force
required per incremental change in elongation; force and elongation replace
stress and strain fields.

Volume Velocity and Average Pressure

In acoustics, the commonly used lumped-parameter variables are volume ve-
locity and average pressure. For a surface S1 terminated at its edges by a rigid
surface (see Fig. 7-3), the volume velocity U1 flowing across S1 is defined as
the integral

U1 =

∫∫

v ·n dS1. (7-2.1)

The side of S1 toward which the unit normal n points determines the positive
sense of U1. Since the surface integral of ρv ·n is the mass flowing across S1

per unit time in the linear acoustics approximation (without ambient flow),
U1 would be the volume flowing across S1 per unit time if the fluid were of
ambient density.

The second variable one associates with the aggregate acoustic field over
the surface S1 is the average acoustic pressure p1. This is the surface integral
of p v · n divided by U1, so it is a weighted (by v · n) area average of p.
The definition of p1 is such that p1U1 is the power transmitted across S1 in
the positive sense. In typical applications, S1 is selected so that the pressure
along it does not vary significantly and no distinction between pressure and
average pressure is made.

Acoustic Impedance

In the description of lumped-parameter models that use volume velocity and
pressure (we omit the qualifying adjective “average”) as variables, a convenient
concept is that of acoustic impedance ZA. For the surface S1, this frequency-
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dependent quantity is defined† as the ratio

ZA,1 =
p̂1

Û1

, (7-2.2)

where p̂1 and Û1 are either the complex amplitudes (constant-frequency dis-
turbance) or the Fourier transforms (transient disturbance) of p1(t) and U1(t).
The unit of ZA,1 is 1 kg/(m4 · s). The reciprocal Û1/p̂1 is called the acoustic

mobility (rather than acoustic admittance). If the identifications of plus and
minus sides of S1 are interchanged, ZA,1 changes sign.

Figure 7-3 The volume velocity across S1 is the area integral of v · n, where n points
normal to S1 toward the + side.

Acoustical Two-Ports

Suppose one takes two surfaces S1 and S2 in an acoustical system (see
Fig. 7-4a) and defines the plus and minus sides of each such that if U1 is
positive, volume will flow through S1 toward S2; positive U2 corresponds to
volume flowing from S1 through S2. The region between S1 and S2 is here
regarded as a passive black box, which we call a two-port‡ and which will
serve as our prototype of a lumped-parameter model.

† G. W. Stewart, “Acoustic wave filters,” Phys. Rev. 20:528–551 (1922).
‡ In electric-circuit theory, the term denotes any two-terminal-pair network. See, for exam-
ple, H. H. Skilling, Electrical Engineering Circuits, Wiley, New York, 1957, pp. 537–572.
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The acoustic boundary-value problem for the black-box region, given pres-
sures p1(t) and p2(t) on surfaces S1 and S2, should, according to the theorems
developed in Sec. 4-5, have a unique solution, and from this solution one can
determine U1 and U2. The linear nature of the governing partial differential
equations and the boundary conditions requires that U1 and U2 be linear
functions of p1 and p2. Thus, for the constant-frequency case, one should
have§

[

Û1

Û2

]

=

[

D11 D12

D21 D22

] [

p̂1
p̂2

]

, (7-2.3)

where the acoustic-mobility matrix [D] is a frequency-dependent property of
the two-port. Considerations of reciprocity require, moreover, that D12 =
−D21.

Given the reciprocity requirement, Eqs. (3) can be written alternatively
as

Û1 =(Z−1
left + Z−1

mid)p̂1 − Z−1
midp̂2, (7-2.4a)

Û2 =Z−1
midp̂1 − (Z−1

right + Z−1
mid)p̂2, (7-2.4b)

with a suitable definition of parameters Zleft, Zright, and Zmid in terms of
D11, D22, and D12 = −D21. These equations have a circuit analog‖ (see
Fig. 7-4b) in which p̂1 and p̂2 are voltages applied at the ends of a circuit
two-port consisting of a π network with lumped impedances Zleft, Zmid, and
Zright; Û1 and Û2 are currents flowing into and out of the two-port at its two
ends. The analogy holds because circuit-theory principles (voltage at a node
is univalued, and sum of currents flowing into a node is zero) applied to the
circuit yield the same equations.

Once the impedances for our two-port are identified, the relation between
the acoustic impedances ZA,1 and ZA,2 on surfaces S1 and S2 can be inter-
preted in terms of circuits. If the two-port in Fig. 7-4b has a load ZA,2 on
its right, ZA,1 will be the equivalent impedance of a one-port in which ZA,2
and Zright are in parallel, the combination being in series with Zmid, and that
combination being in parallel with Zleft, such that

ZA,1 =







1

Zleft
+

[

Zmid +

(

1

Zright
+

1

ZA,2

)−1
]−1







−1

(7-2.5)

§ W. P. Mason, “A study of the regular combination of acoustic elements, with application
to recurrent acoustic filters, tapered acoustic filters, and horns,” Bell Syst. Tech. J. 6:258–
294 (1927).
‖ This is the conventional acoustic analogy. An acoustic-mobility analogy in which pressure
→ current, volume velcocity → voltage, is also occasionally used. The latter was introduced
by F. A. Firestone, “A new analogy between mechanical and electrical systems,” J. Acoust.
Soc. Am. 4:249–267 (1932–1933).



7-2 Lumped-Parameter Models 363

Figure 7-4 (a) Acoustical two-port in which position-independent pressures p1 and p2
are applied at surfaces S1 and S2; sense of positive volume flow is from S1 toward S2. (b)
Corresponding electrical analog for constant-frequency case represented by a π network.

This is equivalent to what results from Eqs. (4) if one sets p̂2 = ZA,2Û2, then
eliminates Û2, and solves for ZA,1 = p̂1/Û1.

Continuous-Volume-Velocity Two-Port

Of the two limiting cases of principal interest, one is that for which Zleft and
Zright are so large that they can be idealized as infinite and replaced by open
circuits in the circuit diagram, such that (see Fig. 7-5a)

Û1 = Û2, p̂1 − p̂2 = ZmidÛ1, ZA,1 − ZA,2 = Zmid. (7-2.6)

The latter idealization generally implies the assumption of incompressible
flow. Suppose one has, for example, a volume V with openings of areas A1

and A2 on opposite sides, all other portions of the surface being rigid. Then
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the incompressible idealization would require, when one integrates ∇·v over
the volume and uses Gauss’s theorem, that U1 = U2.

Figure 7-5 Circuit analogs for (a) a continuous-volume-velocity two-port and (b) a
continuous-pressure two-port.

If the volume is hollow, and if Euler’s equation ρ ∂v/∂t = −∇p applies
throughout, ∇ × v = 0 for all time since it must have been zero in the
remote past; so one can describe v in terms of a potential function Φ(x, t)
such that v = ∇Φ, p = −ρ ∂Φ/∂t. (Here, as in previous sections of the text,
ρ is understood to be the ambient density ρ0.) Since ∇ · v = 0, one has
∇2Φ = 0. Given that p is uniform over A1 and A2, these surfaces must have
uniform potentials, which we denote by Φ1(t) and Φ2(t). The solution for
Φ(x, t), given Φ1 and Φ2, can be written as

Φ(x, t) = Φ1(t) + [Φ2(t)− Φ1(t)] f(x), (7-2.7)

where f(x) is independent of t, satisfies Laplace’s equation, and equals 0 on
A1 and 1 on A2; its normal derivative vanishes on all other boundary surfaces.
Taking the gradient and time derivative of this and multiplying by ρ gives

ρ
∂v

∂t
= [p1(t)− p2(t)]∇f. (7-2.8)

If one chooses any cross-sectional surface Smid of V such that A1 is on one
side and A2 is on the other and n points from the A1 side to the A2 side
normal to the surface, then an area integral of the above leads to

p1(t)− p2(t) =MA
dU

dt
, (7-2.9)

where U = U1 = U2 is the volume velocity flowing through the volume V
from A1 toward A2 and MA is ρ divided by the integral over Smid of ∇f · n.
One can argue that the surface integral of ∇f · n is independent of the
surface Smid (in the same manner as one concludes that U1 = U2); so the
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integral is a constant appropriate to the geometry of the volume and to the
choices forA1 and A2; consequently, the quantityMA (acoustic inertance) is a
constant independent of Smid and of U . Rewriting Eq. (9) in terms of complex
amplitudes and comparing the result with (6) then yields Zmid = −iωMA as
the acoustic impedance associated with this continuous-volume-velocity two
port.

Continuous-Pressure Two-Port

The other limiting case corresponds to Zmid → 0. The short circuit allows
a replacement of the parallel combination of Zleft and Zright by a single
impedance Zpar = (Z−1

left + Z−1
right)

−1, so one has (Fig. 7-5b)

p̂1 = p̂2 = Zpar(Û1 − Û2),
1

ZA,1
=

1

Zpar
+

1

ZA,2
. (7-2.10)

A nontrivial situation (Zpar 6= ∞) to which such a model applies is when
the inertial term in Euler’s equation is negligible, so ∇p = 0, but the com-
pressibility is not neglected; then the integral version of the conservation of
mass equation (with ρ′ replaced by p/c2) would give

U1 − U2 =
∂p

∂t

V

ρc2
= CA

∂p

∂t
, (7-2.11)

with p uniform throughout the volume V of the two-port. Then Eq. (10) leads
to the identification Zpar = 1/(−iωCA) with CA = V/ρc2. The quantity
CA (acoustic compliance) corresponds to capacitance in the electric-circuit
analog.

7-3 GUIDELINES FOR SELECTING

LUMPED-PARAMETER MODELS

There are two principal idealizations made in the construction of lumped-
parameter models: (1) the pressure changes very little over distances small
compared with a wavelength, and (2) the sum of the volume velocities flow-
ing out of a small volume is zero. The continuous-pressure two-port is based
on the first idealization, the continuous-volume-velocity two-port on the sec-
ond. In each case, one of the two idealizations is not made but is replaced
by a coupling relation involving a complex impedance (a lumped-parameter
element).
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Continuity of Pressure

The premise that acoustic pressure does not “ordinarily” vary appreciably
over distances much less than a wavelength can be examined by taking two
points x1 and x2 at which the pressures are p1 and p2, respectively (see
Fig. 7-6a). If one selects a path connecting x1 and x2 along which Euler’s
equation is a good approximation, then it should be so that (acoustic version
of Bernoulli’s equation)

ρ
∂

∂t

∫ x2

x1

v · dℓ = −
∫ x2

x1

∇p · dℓ = −(p2 − p1) (7-3.1)

where dℓ represents the differential displacement along the path. Conse-
quently, if the disturbance is of constant frequency, the magnitude |p̂2 − p̂1|
is bounded by ρc|v̂|maxk∆s, where ∆s is net distance along the path and
|v̂|max is the maximum value of |v̂| along the path.

Much closer than a wavelength in the present context means k∆s ≪ 1.
Granted this, one can regard the statement p̂2 ≈ p̂1 as a good approximation
if ρc|v̂|max is not substantially larger than either |p̂2| or |p̂1|. Recall that, for a
traveling plane wave, |p̂| = ρc|v̂|; the same holds for a traveling fundamental-
mode wave in a duct. Thus, if |v̂| is along the path of the same order of
magnitude in relation to |p̂| as for a plane wave, the requirement k ∆s ≪ 1
leads to p1 ≈ p2.

In other circumstances, |v̂|max can be estimated by assuming that the flow
between the points is incompressible and taking the path to be a streamline.
If one knows from other considerations that the velocities v̂1 and v̂2 are
of the order of magnitude of |p̂1|/ρc and |p̂2|/ρc (as they will be if x1 and
x2 are located in duct segments where the plane-wave mode dominates),
the question reduces to whether a streamtube (Fig. 7-6b) surrounding the
streamline narrows appreciably along the path. Conservation of mass implies
that |v̂| varies inversely as streamtube area, so a streamtube with a narrow
constriction allows the possibility of a large pressure change between x1 and
x2.

The foregoing analysis applies to two ducts joined by an elbow† (see
Fig. 7-6c). Because the evanescent modes die out with distance, p will be
uniform across either duct at a moderate distance (comparable to a cross-
sectional dimension) from the elbow. The pressures at such points on opposite
sides of the elbow are nearly the same if a streamtube connecting them or
their neighbors is not constricted. However, if the elbow has a sizable con-

† W. Lippert, “The measurement of sound reflection and transmission at right-angled bends
in rectangular tubes,” Acustica 4:313–319 (1954); J. W. Miles, “The diffraction of sound
due to right-angled joints in rectangular tubes,” J. Acoust. Soc. Am. 19:572–579 (1947).
Lippert’s fig. 7 (based on his data) and Miles’ theory suggest that the continuity of pressure
is a good approximation up to ka ≈ 1, where a is the width of the duct.
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Figure 7-6 (a) Path connecting points x1 and x2 used in investigation of the magnitude
of the difference of the acoustic pressures at the two points. (b) Streamtube of flow from
x1 to x2. (c) Two ducts joined by an elbow. (d) Flexible plate extending across the cross
section of a duct. The question considered is whether the pressures are nearly equal at x1

and x2.

striction, the streamtube may narrow considerably in going through the elbow
and one will not assume p̂1 ≈ p̂2.

An extreme case where p̂1 ≈ p̂2 is not indicated is when the geometry is
such that the flow must pass through a small orifice. For example, if a duct
has a rigid plate (Fig. 7-6d) extending across a cross section, the plate having
a small hole in its center, then any streamtube passing through the orifice
must be constricted. Other circumstances for which a substantial change in
pressure might occur over a short distance are when there is no path connect-
ing x1 and x2 along which Euler’s equation is everywhere valid. Examples
would be a flexible plate, membrane, or porous blanket extending across a
duct.
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Continuity of Volume Velocity

The idealization “ordinarily” made is that the net volume velocity flowing out
of a volume (with dimensions much less than a wavelength) is zero. Situations
for which this is a reasonable premise can be identified by integrating the
conservation-of-mass relation over the volume (see Fig. 7-7). Starting from
∂p/∂t+ ρc2∇ · v = 0, one obtains (with an application of Gauss’s theorem)

∑

Uout
n = − ∂

∂t

∫∫∫

p

ρc2
dV (7-3.2)

where Uout
n is the volume velocity flowing out through the portion Sn of the

surface bounding V .
Suppose there is only one opening of area A into the volume V , the re-

maining surface being rigid. We would normally regard the volume velocity
flowing out through this area as negligibly small if |Û | ≪ |p̂|A/ρc, that is,
|ZA| much larger than the value ρc/A expected for a plane wave in a duct of
cross-sectional area A. Equation (2) shows this criterion is satisfied if kV/A
is much less than unity; the lower the frequency the more likely this is to be
so. However, even though the volume’s dimensions may be much less than a
wavelength, it is still possible (see Fig. 7-8) to have kV/A ≈ 1 if the opening
area A is a small fraction of the surface area of V . For such a situation, the
assumption that the net volume velocity coming out of a small volume is zero
should be reconsidered.

Returning to the general case where there is more than one opening, let us
assume that the source of the disturbance transmits energy into the volume
through area A1 and that a subsidiary analysis (taking into account the
system’s terminations) has determined what the acoustic impedances at all
the other openings should be. Also, let us assume that the pressure is uniform
throughout the junction region. The complex-amplitude version of Eq. (2)
then gives

Ûout
1

p̂
= −

N
∑

n=2

1

Zout
A,n

+
ikV

ρc
(7-3.3)

We do not expect the terms on the right to cancel each other, so insofar as
we seek to determine the number on the left side, the ikV/ρc term can be
neglected if at least one of the Zout

A,n is substantially less in magnitude than

ρc/kV . Even if this is not satisfied, a “satisfactory” estimate of Ûout
1 /p̂ to

the order of the traveling-wave magnitude A1/ρc is obtained with the ikV/ρc
term neglected as long as kV/A1 ≪ 1. The approximation

∑

Uout
n = 0 will

therefore lead to the same implications as Eq. (2) if the terminal impedance
on any opening is substantially smaller in magnitude than ρc/kV or if our
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Figure 7-7 A volume V bounded partly by rigid boundaries and by surfaces S1, S2, . . ..
The volume velocity flowing out of V through Sn is Uout

n .

Figure 7-8 A volume with a single small opening for which the approximation that net
volume velocity flowing out of a volume should be zero may not be valid.

concern is with the impedance the junction and appendages present to a
subsystem coupled to the junction through an area large compared to kV .

Example: Duct with change in cross-sectional area In the duct
sketched in Fig. 7-9, all indicated dimensions are substantially less than a
wavelength, so evanescent modes are significant only between x = −δ1 and
x = δ2. The plane-wave-mode disturbance in, say, the x > δ2 region is a
superposition of plane waves traveling in the +x and −x directions, so an
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extrapolation of these waves back to x = 0 determines what the pressure and
volume velocity (positive sense corresponding to flow in the +x direction)
corresponding to the plane-wave mode would be at x = 0. Furthermore, the
orthogonality relation (7-1.3) leads to the conclusion that the other modes
never contribute to the volume velocity, so the x → 0 extrapolated volume
velocity associated with the plane-wave mode should be the same in the
limit kδ2 ≪ 1 as the actual volume velocity at x = 0. The extrapolated
pressure should be the area averaged pressure at x = 0. Such considerations
in conjunction with Eq. (2) lead to the conclusion that the volume velocity is
continuous across the junction. Since the volume intrinsically associated with
the junction is in effect zero, the right side of Eq. (2) gives no contribution.
This reasoning still applies when the opening at the junction is obstructed, by
a plate with an orifice, by a porous membrane, or by a flexible plate extending
across the junction.

Figure 7-9 Duct with change in cross-sectional area.

We cannot necessarily conclude, however, that the two plane-wave-mode
pressures extrapolated to x = 0 should be the same; nevertheless, from Eq.
(7-2.6) one can set

p̂(0−)− p̂(0+) = ZJ Û(0), (7-3.4)

where ZJ is an acoustic impedance associated with the junction;† p̂(0−) rep-
resents the plane-wave-mode pressure in the x < 0 duct segment extrapolated

† For results applicable to cylindrical ducts, see F. Karal, “The analogous acoustical
impedance for discontinuities and constrictions of circular cross-section,” J. Acoust. Soc.
Am. 25:327–334 (1953). Karal’s approximate low-frequency result in the present notation
is that the acoustic inertance [equal to ZJ/(−iω)] associated with a junction between
joined circular cylinders of radii b and a (with b < a) with a common axis is of the form

MA =
8ρ

3π2b
H

(

b

a

)

,

where H(b/a) is 1 when b/a → 0 and decreases monotonically to zero as b/a → 1.0. The
general theory for arbitrary ka is developed by J. W. Miles; “The reflection of sound due to
a change in cross section of a circular tube,” ibid. 16:14–19 (1944). A derivation based on
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to x = 0, and p̂(0+) is the corresponding extrapolated pressure for the x > 0
duct segment.

For an unobstructed junction, the simple rule that emerges from Eq. (1) is
that an upper limit to |ZJ | is ρck(δ1 + δ2)/Amin where Amin is the minimum
duct area. This can be compared with the traveling-plane-wave impedances
ρc/A1 and ρc/A2 for the two duct segments. If the estimated upper limit is
substantially less than either of these, we replace (4) by p̂(0−) = p̂(0+). A
circumstance where this might not be valid would be where both ducts are
circular and of radii a1 and a2, with a1 ≫ a2. Then we can take δ1+ δ2 ≈ a1,
so we would be concerned about the finite value of ZJ when ka1 is comparable
to a22/a

2
1 or when the frequency ω/2π is comparable to or larger than a critical

value of (ca22/a
3
1)/2π.

For example, if a duct of 3 cm radius joined to one of 10 cm radius, we
would consider taking the junction’s impedance into account at frequencies
of the order of (340)( 3

10 )
2/[(2π)(0.1)] ≈ 50 Hz. In contrast, the lowest cutoff

frequencies for dispersive modes in the two ducts are 3300 and 1000 Hz,
respectively.

Reflection and Transmission at a Junction

The estimation of the amplitude of waves, transmitted and reflected at a
junction, within the context of the model described by Eq. (4) proceeds along
lines similar to those discussed in Secs. 3-3 and 3-6. If the incident wave comes
from the −x side, the resulting traveling wave on the other side of the junction
causes the acoustic impedance for x > 0 to be ρc/A2. The impedance for the
plane-wave mode in the x < 0 portion will therefore be ZJ+ρc/A2 at x = 0−.

The pressure-amplitude reflection coefficient for the incident (plane-wave
mode) wave can be written, with a suitable interpretation of symbols in Eq.
(3-3.4), as

R =
ZA(0

−)− ρc/A1

ZA(0−) + ρc/A1
=
ZJ + ρc/A2 − ρc/A1

ZJ + ρc/A2 + ρc/A1
. (7-3.5)

The requirement that the volume velocity at x = 0 be (1−R)(A1/ρc) times
the incident pressure amplitude and that the transmitted pressure amplitude
at x = 0+ be ρc/A2 times the volume velocity at x = 0+ causes the ratio of

the Schwarz-Christoffel transformation applied to a rectangular duct, occupying the region
0 < y < a, 0 > z > d, with a rigid partition at x = 0 having a slit of width b in its middle
extending from z = 0 to z = d, y = (a− b)/2 to y = (a+ b)/2, yields an acoustic inertance

MA =
2ρ

πd
ln

[

csc

(

b

a

π

2

)]

,

which diverges logarithmically to ∞ as b → 0. J. W. Miles, “The Analysis of Plane Discon-
tinuities in Cylindrical Tubes, II,” ibid., 17:272–284 (1946); P. M. Morse and K. U. Ingard,
Theoretical Acoustics, McGraw-Hill, New York, 1968, pp. 483–487.
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transmitted pressure to incident pressure to be

T =
A1

A2
(1 − R) =

2ρc/A2

ZJ + ρc/A2 + ρc/A1
. (7-3.6)

In the usual case, when ZJ is neglected, R and T reduce to (A1−A2)/(A1+
A2) and 2A1/(A1+A2). The fraction of the incident power that is transmitted
is 4A1A2/(A1 +A2)

2.

7-4 HELMHOLTZ RESONATORS AND OTHER

EXAMPLES

The Helmholtz Resonator

The classic model (see Fig. 7-10a) of a Helmholtz resonator† (a wine bottle
being a ubiquitous example) consists of a rigid-walled volume connected to
the external environment by a small opening, which may or may not have a
neck. The overall dimensions are all much less than an acoustic wavelength.
Within the volume proper at points not near the opening, Eq. (7-3.1) sug-
gests that the pressure should be spatially uniform; the analysis leading to
Eq. (7-2.11) consequently requires the volume velocity Uinto flowing into the
volume to be (V/ρc2)∂p/∂t. The generalization of this relation that takes dis-
sipation into account is Ûinto = p̂in/Zvol, where Zvol is the acoustic impedance
(with a positive real part) associated with the volume. Here, however, we re-
strict our attention to the ideal case, such that Zvol = 1/(−iωCA) , where
the acoustic compliance CA is V/ρc2.

Near the opening, possibly also within the neck, and just outside the open-
ing in the external environment, the pressure may vary markedly with po-
sition. However, since the volume in that region is small (k ∆V/A ≪ 1),
we model the region near the opening as a continuous-volume-velocity two-
port. The complex pressure amplitude p̂out somewhat outside the opening†

† H. Helmholtz, “Theory of air oscillations in tubes with open ends,” J Reine Angew.
Math. 57:1–72 (1860); On the Sensations of Tone, 4th ed., 1877, trans. A. J. Ellis, Dover,
New York, pp. 42–44, 55, 372–374; M. S. Howe, “On the Helmholtz resonator,” J. Sound
Vib. 45:427–440 (1976); U. Ingard, “On the theory and design of acoustical resonators,”
J. Acoust. Soc. Am. 25:1037–1062 (1953); A. S. Hersh and B. Walker, “Fluid mechanical
model of the Helmholtz resonator,” NASA CR-2904 (1977). Applications to noise control
are discussed by M. C. Junger, “Helmholtz resonators in load-bearing walls,” Noise Control
Eng. 4:17–25 (1975).
† As is explained in the next section, the pressure amplitude at moderate distances r from
the opening is of the form Â(x) + B̂/r, where Â(x) is slowly varying with position x

relative to the center of the opening, B̂ is independent of position; the identification for
p̂out is Â(0).
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Figure 7-10 (a) Sketch of a Helmholtz resonator within which the pressure is pin and
through whose neck flows volume velocity Uinto. (b) Electric-circuit analog. (c) Mechanical
analog.

is therefore related to p̂in by the relation, p̂out − p̂in = ZopÛinto, where Zop is
the opening’s acoustic impedance.

If one neglects dissipation, Eq. (7-2.9) applies and Zop is −iωMA. If the
opening has a long neck of length l, the inertance is nearly that of a duct
segment of length l and area A within which the disturbance is in the plane-
wave mode. For such a circumstance, but for kl ≪ 1, the fluid in the neck
behaves like a lumped mass ρAl caused to accelerate by the force (p1−p2)A,
where A is the neck cross-sectional area. The resulting acceleration of this
lumped mass is A−1dUinto/dt, so ρl dUinto/dt should be (p1 − p2)A (mass
times acceleration equals force). A comparison of such a relation with Eq.
(7-2.9) leads to ρl/A for the neck’s acoustic inertance MA. If the neck is not
long or is even nonexistent, one can still write MA = ρl′/A, where l′ is an
“effective neck length.”

The definitions of Zop and Zvol taken together lead to
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p̂out = ZHRÛinto, p̂in =
Zvol

ZHR
p̂out, ZHR = Zvol + Zop. (7-4.1)

Here ZHR is the acoustic impedance just outside the opening of the res-
onator and HR stands for Helmholtz resonator. These relations correspond
to a circuit diagram (Fig. 7-10b) of a continuous-volume-velocity two-port
terminated by an impedance Zvol. If Zvol is taken as 1/(−iωCA) and Zop as
−iωMA, the analog is an LC circuit (inductor and capacitor in series). In the
latter idealized case, the substitutions −iω → d/dt and Ûinto → dXinto/dt
yield

MA
d2Xinto

dt2
+

1

CA
Xinto = pout, pin = C−1

A Xinto, (7-4.2)

where Xinto denotes the volume displacement.
Alternatively, if ξinto = Xinto/A denotes the average particle displacement

in the opening, the first of these can be written

Mmech
d2ξinto
dt2

+ kspξinto = Fmech, (7-4.3)

where Mmech = ρAl′ = apparent mass of fluid moving in vicinity of
opening

ksp = ρc2A2/V = apparent spring constant associated with
compressible fluid in volume

Fmech = poutA = apparent force exerted on opening by pres-
sure field outside opening

Thus the Helmholtz resonator can be interpreted (see Fig. 7-10c) as a forced
harmonic oscillator, i.e., a mass and a spring moving under the influence of
an external force.

The pressure pout outside the opening is affected by the dynamic state
of the resonator, but for simplicity we here regard Pout as being externally
controlled. Consequently, if it is made to oscillate with angular frequency ω,
Eq. (2) yields

Xinto = CApin =
pout

−ω2MA + C−1
A

. (7-4.4)

Resonance occurs when the denominator vanishes; this is at the resonance
frequency ωr, where

ωr =
1

(MACA)1/2
=

(

ksp
Mmech

)1/2

= c

(

A

l′V

)1/2

. (7-4.5)

If ω is close to ωr, the pressure oscillations inside the volume are considerably
larger than just outside the opening. In addition, because the resonator’s
impedance ZHR is (−iωCA)−1 − iωMA, Eq. (5) implies that ZHR is 0 at the
resonance frequency.
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Helmholtz Resonator as a Side Branch

We next consider the example† of a long straight duct (of cross-sectional area
AD and extending along the x axis) that has a Helmholtz resonator attached
to one of its walls in the vicinity of x = 0 (see Fig. 7-11a). Let ÛHR denote
the complex amplitude of the volume velocity flowing into the Helmholtz
resonator; let ÛD(0−) and ÛD(0+) denote volume-velocity amplitudes in the
duct just before and just after the junction with the resonator, positive sense
corresponding to flow in the +x direction. The discussion in Sec. 7-3 con-
cerning volume velocities flowing out of a small volume suggests that volume
velocity is locally conserved, so we set

ÛD(0
−) = ÛHR + ÛD(0

+). (7-4.6)

Also, the pressure pD(x, t) in the duct is expected to be continuous at x =
0, and p̂D(0) should be the pressure amplitude just outside the resonator
opening; p̂D(0−), p̂D(0+), and p̂out,HR are therefore all equal. Dividing both
sides of (6) by the common pressure amplitude then gives (see Fig. 7-11b)

Z−1
A (0−) = Z−1

HR + Z−1
A (0+), (7-4.7)

where ZA(x) is the acoustic impedance in the duct.
Reflection and transmission of waves past the resonator is analyzed as

described previously in the discussion of the effects of a change in duct cross-
sectional area. The pressure-amplitude reflection coefficient is given by the
first version of Eq. (7-3.5), which, from Eq. (7), leads to

R =
(Z−1

HR +AD/ρc)
−1 − ρc/AD

(Z−1
HR +AD/ρc)−1 + ρc/AD

=
−ρc/AD

2ZHR + ρc/AD
. (7-4.8)

The pressure-amplitude transmission coefficient T is 1+R because the pres-
sure amplitude at x = 0+ is (1 + R)p̂i(0

−). The fractions of incident power
reflected and transmitted are |R|2 and |T |2; the fraction absorbed by the
resonator is 1− |R|2 − |T |2.

Near the resonance frequency of the resonator, ZHR → 0 (or becomes very
small when energy dissipation is taken into account), so R → −1 (as for
reflection by a pressure-release surface) and T → 0. Thus the resonator has
the potentially useful property of causing nearly total reflection of acoustic
waves at frequencies near its resonance frequency.

† G. W. Stewart, “Acoustic transmission with a Helmholtz resonator or an orifice as a
branch line,” Phys. Rev. 27:487–493 (1926).
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Figure 7-11 Helmholtz resonator as a sidebranch: (a) geometrical configuration; (b)
equivalent circuit.

Composite Example†

Various seemingly complicated acoustical systems can be satisfactorily and
simply analyzed by lumped-parameter techniques; an example is shown in
Fig. 7-12a. A force of complex amplitude F̂ and angular frequency ω drives
a piston of mechanical mass MP at one end of a short duct segment of cross-
sectional area A. The other end is terminated by a closed cavity, while the
middle of the duct has two side branches. The upper branch leads succes-
sively through two cavities connected by a narrow constriction. The duct
(area AL) in the lower branch has a porous membrane of flow resistance
∆p/v = Rf stretched across it. Beyond the membrane, the lower duct leads
in an unspecified manner to the external environment, so that the (terminal)
acoustic impedance just below the membrane appears to be Zterm.

The modeling of the system proceeds with the replacement of the driving
force by a driving pressure of F̂ /A. The piston becomes an acoustic iner-
tance of MP /A

2. With each duct subsection or constriction one associates an
acoustic inertance, denoted by MA1, MA2, etc. With the cavities one asso-
ciates acoustic compliances CA1, CA2, CA3. The porous membrane becomes
an acoustic resistance RA = Rf/AL.

The circuit analog in Fig. 7-12b is a compact representation of all the equa-
tions constituting the model. The correspondences depicted between voltages
in the circuit diagram and pressures at points in the acoustical system are in
accord with the relations p̂1− p̂2 = ZAÛ12 and U1−U2 = p̂/ZA that hold for
continuous-volume-velocity and continuous-pressure two-ports, respectively.

† For a number of similar examples, see L. L. Beranek, Acoustics, McGraw-Hill, New York,
1954, pp. 67–69, 437–442.
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Figure 7-12 (a) Composite acoustical system discussed in the text. (b) Circuit represen-
tation of the lumped-parameter model. The voltages at the points a, b, c, . . . in the latter
correspond to the acoustic pressures at the corresponding points in the acoustical system.

Thus, for example, the current from b to c corresponds to the volume velocity
Ubc flowing into the cavity with compliance CA1. Part of this volume velocity
accounts for the time rate of change of pressure in the cavity and corresponds
to current flowing through CA1 in the circuit diagram; the other part of Ubc
is Ucd and corresponds to the current flowing through MA3 and CA2 in the
circuit diagram. From an analysis of the circuit equations, one can determine
the mechanical impedance presented by the system to the force F̂ and the net
power generated by the force, as well as the volume velocity flowing through
any portion of the system and the pressure at each designated point in the
sketch.
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7-5 ORIFICES

Another example for which a lumped-parameter model is applicable is the
transmission of sound through an orifice† (hole) in an otherwise rigid thin
plate (see Fig. 7-13); the orifice’s cross-sectional dimensions (a denoting a
representative value) are much less than λ/2π. Let the z axis be normal to
the plate, the coordinate origin being centered at the orifice. The analysis
here adopts the conceptual framework of matched asymptotic expansions
(discussed previously in Sec. 4-7). We eventually concentrate on the case
when the orifice is circular, but for the present we proceed without any special
assumption concerning its shape.

Matched-Asymptotic-Expansion Solution for Orifice

Transmission

On the −z side of the plate, a wave with pressure pi(x, y, z, t) is inci-
dent and in the absence of the orifice creates a reflected wave with pressure
pi(x, y, −z, t). We group these two (external) pressures together and call

the sum p
(−)
ext (x, t). Given that the orifice is small, the resulting field at large

distances r ≫ a from the orifice consists, in the region z < 0, approximately
of the incident wave, the reflected wave, and an outgoing spherical wave. On
the z > 0 side, the field in the same limit is a spherical wave. These two
spherical waves are caused by the motion of fluid at the opening, so the re-
sult (5-3.3) based on the low-ka approximation to the Rayleigh integral is
applicable. The surface integral appearing there over v̇n is identified from
the definition (7-2.1) as −U̇12 or U̇12 for the spherical waves propagating on
the −z and +z sides of the plate, where U12 is the volume velocity flowing
through the orifice from the −z side to the +z side. Thus, our expressions
for the outer solutions at large r become

p→ [p
(−)
ext (x, t), 0] ∓ ρ

2πr
U̇12

(

t− r

c

)

{

z < 0
z > 0

. (7-5.1)

These automatically satisfy the wave equation and, moreover, satisfy the
boundary condition ∇p · n = 0 on the plate boundary.

The inner solution for small ka is described by a velocity potential Φ(x, t)
that has an asymptotic expansion in powers of 1/r, each term of which sat-
isfies Laplace’s equation. If we keep just the first two terms, we have

Φ→ Φ(−,+)
∞ ± U12

2πr

{

z < 0
z > 0

(7-5.2)

† J. W. S. Rayleigh, “On the passage of waves through apertures in plane screens, and
allied problems,” Phil. Mag. (5)43:259–272 (1897).
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Figure 7-13 Geometry used in the discussion of sound transmission through an orifice.

where Φ(−)
∞ and Φ(+)

∞ are the asymptotic values of Φ on the −z and +z sides of
the orifice. That the coefficients of 1/r are equal but opposite is in accord with
the conservation of mass; the U12 appearing here must also be the volume
velocity from −z side to +z side through the orifice, so it is the same as the
U12 in Eq. (1). Because U12 must be linearly dependent on Φ

(−)
∞ and Φ

(+)
∞ ,

and because it must be zero when the two asymptotic potentials are equal,
one can set

Φ(+)
∞ − Φ(−)

∞ =
MA,or

ρ
U12, (7-5.3)

where the proportionality factor MA,or is the acoustic inertance intrinsically
associated with the orifice.

Matching Eqs. (1) to Eqs. (2) consists of expanding Eqs. (1) in a power
series in r (the leading term of which goes as 1/r) and equating the coefficients
of the r−1 and r0 terms with those in the expansion of −ρ ∂Φ/∂t. Matching
of the r−1 terms substantiates our use of the function U12(t − r/c) in Eqs.
(1); the matching of the r0 terms yields

[p
(−)
ext (0, t), 0]±

ρ

2πc
Ü12 = −ρΦ̇(−,+)

∞ . (7-5.4)

When inserted into Eq. (3), these give for the constant-frequency case
(∂/∂t→ −iω)

(−iωMA,or)Û12 = [p̂ext(0)−R
(−)
A Û12]− (R

(+)
A Û12), (7-5.5)

R
(−)
A = R

(+)
A =

ω2ρ

2πc
=
k2ρc

2π
. (7-5.6)

The transient version of (5) is an ordinary differential equation for U12(t).



380 7 Low-Frequency Models of Sound Transmission

Acoustic-Radiation Resistance

The second term of Eq. (5-3.1) indicates that the real part of the acoustic
radiation impedance associated with sound generation by fluid motion in the
orifice must always be ρck2/2π to lowest nonvanishing order in ka, which is

in accord with the values of R(+)
A and R

(−)
A in Eq. (5). Also, these values

yield (ρ/2πc)(U̇2
12)av for the averaged acoustic power radiated to each side of

the orifice by the fluid motion. Because this power is the same as is carried
away by each of the spherical waves in Eq. (1), the consistency of the solution

represented by Eqs. (1) and (3) is further substantiated. Although R(−)
A and

R
(+)
A are identical, we make a distinction between the two corresponding

terms in Eq. (5) because, in other instances, one or both of the acoustic
resistance terms do not appear in the formulation.

Helmholtz Resonator with Baffled Opening

One such instance is when the orifice connects a Helmholtz resonator to an
external environment (see Fig. 7-14). The “outer solution” for the interior of
the resonator would be taken as that where p is spatially uniform and v is
such that ∇ · v = −(ρc2)−1∂p/∂t. Matching this with the inner solution,

Eq. (2), gives pin = −ρΦ̇(+)
∞ and U12 = ṗinV/ρc

2, so that the transient version
of Eq. (5) becomes instead

pext − pin =MAU̇12 −
ρ

2πc
Ü12, (7-5.7)

with ṗin = ρc2U12/V . In this instance, the R(+)
A term in (5) is replaced by one

involving the acoustic compliance of the resonator. To the external pressure
field, the acoustic impedance p̂ext/Û12 of the Helmholtz resonator appears to

be −iωMA + 1/(−iωCA) +R
(−)
A , where CA is the acoustic compliance asso-

ciated with the volume and R(−)
A is the acoustic resistance given by Eq. (6).

From this point of view, the resonator, even in the absence of fluid friction,
is intrinsically a damped oscillator, the damping being associated with the
radiation of sound from the mouth of the resonator.

Acoustic Inertance of a Circular Orifice in a Thin Plate

The incompressible-flow inner-region solution can be found in closed form
when the orifice is circular (radius a), the plate thickness being idealized as
infinitesimal. The appropriate coordinate system for a determination of Φ is
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Figure 7-14 Orifice terminated by a Helmholtz resonator; U12 is volume velocity from
external medium into the resonator.

oblate-spheroidal coordinates, such that w = a cosh ξ sin η, x = w cosφ, y =
w sinφ, and z = a sinh ξ cos η, where† ξ ranges from −∞ to ∞, η ranges from 0
to π/2, and φ ranges from 0 to 2π (see Fig. 7-15). The boundary condition on
Φ corresponding to the presence of the rigid plate is ∂Φ/∂η = 0 at η = π/2 for
all ξ. The requirement that the potential Φ approach asymptotic expressions
of the form of Eqs. (2) at large r implies that Φ is independent of η and φ at
large |ξ|. All this will be so if Φ is a function only of ξ (other than of time t).
In this case, Laplace’s equation reduces to

1

cosh ξ

d

dξ
(cosh ξ

dΦ

dξ
) = 0, (7-5.8)

which successively integrates† to

† In the analysis (Sec. 4-8) of radiation from a vibrating circular plate, the range of ξ
was taken to be from 0 to ∞ and the range of η to be between 0 and π. The distinction
arises because we wish the coordinates to be continuous at all points not adjacent to solid
boundaries. Here we wish ξ to be continuous at the orifice and accept the discontinuity of
η at neighboring points on opposite sides of the plate.
† H. Lamb, Hydrodynamics, 1879, 5th ed., 1932, sec. 108, pp. 144–145. Lamb’s expression
in the present notation is Φ = −B cot−1(sinh ξ), which is −B[π/2 − tan−1(sinh ξ)], so
our result differs from his by a constant whose value is immaterial insofar as v = ∇Φ is
concerned. The solution dates back to E. Heine (1843).
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Figure 7-15 Oblate-spheroidal coordinate system used in the derivation of the acoustic
inertance of a circular orifice. Note that ξ ranges from −∞ to ∞, η from 0 to π/2. The
plate is the surface η = π/2; the orifice corresponds to ξ = 0.

dΦ

dξ
=

B

cosh ξ
= B

d(sinh ξ)/dξ

1 + sinh2 ξ
.

Φ =D +B tan−1(sinh ξ), (7-5.9)

whereD and B are constants, the arc tangent being understood to be between
−π/2 and π/2. Note that the orifice (ξ = 0) is a surface of constant potential,
as required by symmetry.

At large |ξ|, w → (a/2)e|ξ| sin η, |z| → (a/2)e|ξ| cos η, so r → (a/2)e|ξ|

and sinh ξ → ±r/a, where the two signs correspond to ξ > 0 and ξ <
0 (or z > 0 and z < 0). Since tan−1 f → π/2 − 1/f as f → +∞ and
tan−1 f → −π/2 + 1/|f | as f → −∞, one accordingly has, at large r, that
Φ→ (D∓Bπ/2)±Ba/r for z < 0 and z > 0. Comparison of these with Eq.
(2) then gives Ba = U12/2π, Φ

(+)
∞ − Φ

(−)
∞ = Bπ; Eq. (3) therefore yields‡

‡ For the more general case of an elliptical orifice of area A and eccentricity e [defined such
that (1− e2)1/2 is ratio of minor axis to major axis] the result is
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MA,or =
ρ

2a
(7-5.10)

as the acoustic inertance associated with the orifice. Since acoustic inertance
is the pressure per unit volume acceleration, the quantity (πa2)2MA,or or
(ρ)(πa2)(πa/2) is the apparent mass of air oscillating back and forth through
the orifice. This is the mass of fluid in a column of cross-sectional area πa2

and length πa/2.

Diffraction of Plane Wave by a Circular Orifice

The foregoing results lead to the conclusion that, if a plane wave p̂i = Aeik·x

[such that p̂(−)
ext (0) is 2A] is incident on a plate with a circular orifice of radius

a where ka ≪ 1, the diffracted wave on the z > 0 side of the orifice is given
by [see Eqs. (1), (5) (6), and (10)]

p̂ =
−iωρ
2π

2A

−iω(ρ/2a) + k2ρc/π

eikr

r
≈ 2aA

π

eikr

r
. (7-5.11)

The time-averaged transmitted power is 2πr2|p̂|2/2ρc, or

Pav =
4a2

π

A2

ρc
=

8a2

π
Ii,av. (7-5.12)

This is 8/π2 = 0.81 times the acoustic power πa2Ii,av incident on the aper-
ture when k is parallel to ez. By contrast, the Kirchhoff approximation (see
Sec. 5-2) would predict the volume velocity through the orifice to have an
amplitude (A/ρc)πa2 and the transmitted power to be (ka)2(πa2/4)A2/ρc,
or (ka)2/2 times the incident power when the incoming wave is at normal
incidence. Given ka ≪ 1, the latter would be considerably smaller than is
actually the case.

MA,or

ρ
=

1

2

( π

A

)1/2 2

π
K(e2)(1 − e2)1/4

≈ 1

2

( π

A

)1/2
(

1− e4

64
− e6

64
− . . .

)

,

where K(e2) is the complete elliptical integral of the first kind defined by Eq. (5-3.8). This
is derived by Rayleigh, Theory of Sound, vol. 2, sec. 306. Rayleigh’s discussion is in terms
of a conductivity, which is the same as ρ divided by the acoustic inertance. His conclusion
based on the above result is that it is a good approximation to take the conductivity as
2(A/π)1/2 [or to take MA,or as (ρ/2)(π/A)1/2 ]. For a general review, see C. L. Morfey,
“Acoustic properties of openings at low frequencies,” J. Sound Vib. 9:357–366 (1969).
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7-6 ESTIMATION OF ACOUSTIC INERTANCES

AND END CORRECTIONS

In the absence of dissipative mechanisms, the only lumped-parameter element
needed to describe a continuous-volume-velocity two-port is its acoustic in-
ertance MA. This is often difficult to calculate exactly (the circular-orifice
example in the previous section being an exception), but there are applica-
ble fluid-dynamic principles regarding incompressible flow for estimating and
putting bounds on its value.

Principle of Minimum Kinetic Energy

Euler’s equation leads to the conclusion ∇× v = 0, so one can conceive of a
velocity potential Φ such that v = ∇Φ, p = −ρ ∂Φ/∂t. This conclusion is
not changed if the flow is incompressible, so that ∇ ·v = 0 replaces the mass-
conservation equation, but there are also other conceivable incompressible
flows satisfying the appropriate boundary conditions that are not potential
flows. Of all such flows, however, the potential flow gives the minimum kinetic
energy.†

To demonstrate this, let v(x, t) be a potential-flow field and imagine that a
variation δv dependent on x is added to it. Both v and δv are incompressible
flow fields, but ∇× δv is not necessarily zero.

The total kinetic energy (KE)var associated with the varied field in a fixed
volume V is

(KE)var =

∫∫∫

1
2ρ(v + δv)2 dV. (7-6.1)

The cross term ρv · δv in the integrand can be written as ∇· (ρΦ δv) because
v = ∇Φ,∇· δv = 0; so its volume integral becomes a surface integral. Thus,
since δv · δv ≥ 0, Eq. (1) yields the inequality

(KE)var ≥ (KE)true +

∫∫

ρΦ δv · n dS, (7-6.2)

where the integral is over the surface S bounding V ; the “true” kinetic energy
corresponds to δv = 0.

Suppose that the boundary conditions on some portions of S are those
appropriate to a rigid boundary, so that v · n = 0, while on all other por-
tions v ·n is known. Then, for any incompressible flow field (not necessarily
irrotational) that satisfies the boundary conditions, the deviation δv of this
v from the actual v must be such that δv ·n = 0 everywhere on S. Since the

† The theorem is due to W. Thomson (Lord Kelvin), “On the vis-viva [kinetic energy] of a
liquid in motion,” Camb. Dublin Math. J., 1849; reprinted in Mathematical and Physical
Papers, vol. 1, Cambridge University Press, Cambridge, 1882, pp. 107–112.
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second term in Eq. (2) vanishes, the actual flow gives the minimum kinetic
energy of all conceivable incompressible flows that satisfy the same boundary
conditions.

Other applicable circumstances are when the boundary conditions are
specified so that Φ has value Φ1 on one portion S1 of S and has value Φ2 on
another portion S2 of S while v ·n = 0 on the remainder of S (see Fig. 7-16).
Thus n × v = 0 on S1 and S2. The solution of the boundary-value problem
can be characterized by a volume velocity U12 flowing from S1 to S2. Any
incompressible flow through V satisfying v ·n = 0 on all portions of S other
than S1 and S2 also corresponds to some U12. If the resulting U12 is the ac-
tual U12, the surface integral of δv · n vanishes on both S1 and S2. Since Φ
is constant on either S1 and S2, and since δv · n = 0 on all other portions,
the second term of (2) must vanish. Therefore, regardless of the values of Φ1

and Φ2, the potential-flow field corresponding to a given U12 is the one of all
such flow fields for which the kinetic energy is a minimum.

Figure 7-16 Circumstances for which the principle of minimum kinetic energy yields the
principle of minimum acoustic inertance.

Principle of Minimum Acoustic Inertance

For the circumstances described above where Φ is constant on portions S1

and S2 and v · n = 0 on the remainder of S, the acoustic inertance MA,
defined such that MA/ρ is (Φ2 − Φ1)/U12, can also be written† as 2KE/U2

12.

† The proof begins with the requirement Φ∇2Φ = 0. With a vector identity and with
v = ∇Φ, this leads to
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Consequently, the minimum-kinetic-energy principle yields

MA ≤ 2(KE)var
U2
12

. (7-6.3)

Any incompressible (but not necessarily irrotational) flow field passing through
V with v ·n = 0 on all portions of S other than S1 and S2 will give particular
values of U12 and KE; with them one can calculate an estimate of MA from
Eq. (3). Since the true kinetic energy corresponding to the same U12 will be
smaller, the estimated MA win be an upper bound.

Effect of Relaxing of Constraints

A consequence of Eq. (3) is that any relaxing of constraints must decrease
the acoustic inertance. Thus, for example, the geometry in Fig. 7-17b results
in a lower acoustic inertance than that in Fig. 7-17a. To demonstrate this,
let Vb be a control volume that corresponds to the less constrained flow;
let Va correspond to the constrained volume with the same choices for S1

and S2, so Va is entirely confined within Vb. A possible flow through Vb
corresponds to a potential flow through Va but with nonmoving fluid in the
regions of Vb not lying in volume Va. Such a flow field when inserted into the
right side of Eq. (3) would give the true acoustic inertance MA,a for Va but
must overestimate MA,b since it is not the true potential flow for Vb. Thus
MA,b < MA,a. The proof also implies that an imposition of a constraint must
increase the acoustic inertance.

Lower Bound for Acoustic Inertance

The principle of minimum kinetic energy gives a powerful method for obtain-
ing an upper bound to MA when the potential-flow boundary-value problem

1
2
ρ∇ · (Φv) = 1

2
ρv2.

Integration over the volume and subsequent application of Gauss’s theorem yields

1
2
ρΦ2U12 − 1

2
ρΦ1U12 = KE,

so the definition, MA/ρ = (Φ2 − Φ1)/U12, requires that 2KE/U2
12 also be MA.
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is not easily solvable. Here we describe a theorem due to Rayleigh† that can
yield a lower bound.

Figure 7-17 The geometry in (a) is such that the flow is constrained relative to that
for the geometry in (b). The assertion is made that the less constrained geometry has the
lower acoustic inertance.

Let us suppose the volume V is divided (see Fig. 7-18) into two volumes
VI and VII by a surface Smid extending across its middle, so that fluid flowing
from S1 to S2 must flow through Smid. Although S1 and S2 are specified
to be equipotential surfaces (n × v = 0), one does not necessarily expect
Smid to be an equipotential also. However, if VI were considered by itself, one
might formally regard Smid as being an equipotential and one could thereby
associate an acoustic inertance MA,I with volume VI. Similarly, acoustic in-

† J. W. S. Rayleigh, “On the theory of resonance,” Phil. Trans. R. Soc. Lond. 161:77–118
(1870); Theory of Sound, vol. 2, sec. 305. Rayleigh’s statement of the theorem, paraphrased
in the terminology of the present text, was that if the ambient density is diminished in
any region, the acoustic inertance should also be decreased. The inertance would be the
MA,I +MA,II in Eq. (4) if ρ were formally considered to go to zero in a thin layer about
the surface Smid. Consequently, the actual inertance should be greater than or equal to
MA,I+MA,II. In terms of the electrical analog, Rayleigh’s assertion seems obvious, but the
physical realization of such a limiting case in a fluid-dynamic context presents conceptual
difficulties, so the theorem is here demonstrated without consideration of cases where the
ambient density is nonuniform.
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ertance MA,II can be associated with VII. The statement that can be made
concerning the acoustic inertance MA for the volume V as a whole is

MA ≥MA,I +MA,II, (7-6.4)

so that the sum MA,I +MA,II gives a lower bound for MA.

Figure 7-18 Geometry used in proof of Rayleigh’s lower-bound theorem for acoustic
inertances.

To prove the assertion, let ΦI, ΦII be solutions for the boundary-value
problem corresponding to volumes VI and VII and let Φ be the solution cor-
responding to volume V as a whole. It is assumed that each such solution
corresponds to the same volume velocity. We denote the corresponding ve-
locity fields by vI, vII, and v. The kinetic energy KE for the boundary-value
problem corresponding to volume V can be expressed in terms of those values
(KE)I and (KE)II corresponding to the velocity fields vI and vII in volumes
VI and VII as

KE =

∫∫∫

1
2ρ(vI + v − vI)

2dVI +

∫∫∫

1
2ρ(vII + v − vII)

2dVII

≥ (KE)I+(KE)II +

∫∫∫

ρvI · (v − vI)dVI +

∫∫∫

ρvII · (v − vII)dVII,

(7-6.5)

where the inequality follows from (v− vI)
2 ≥ 0, (v− vII)

2 ≥ 0. In the third
term, we use vI = ∇ΦI, ∇ · (v − vI) = 0 to replace vI · (v − vI) by its
equivalent ∇ · [ΦI(v − vI)], such that, with Gauss’s theorem, we obtain
∫∫∫

ρvI · (v−vI) dVI =

∫∫

ρΦI(v−vI) ·nIdS1+

∫∫

ρΦI(v−vI) ·nIdSmid.

(7-6.6)
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(Recall that v ·nI = vI ·nI = 0 on the portions of the surface SI of VI other
than S1 and Smid.) Here nI denotes the unit outward normal on SI. Since
ΦI is constant on either S1 or Smid, the definition of the volume velocity U12

requires that each of the integrals in Eq. (6) vanish. Since the same is true for
the analogous integral over VII in Eq. (5), that equation requires KE to be
greater or equal to (KE)I+(KE)II. The identification of MA as 2KE/U2

12 and
the hypothesis that the three kinetic energies each correspond to the same
volume velocity then leads to Eq. (4).

Flanged Opening in a Duct

A circular duct (radius a) with a flanged opening (Fig. 7-19a) furnishes a
simple example to which the above principles apply. The potential-flow prob-
lem in the vicinity of the opening is such that Φ→ ΦD + (U/πa2)z for large
negative z within the duct and Φ→ Φ∞ −U/2πr at large r in the half space
outside the opening. The acoustic inertance MA is defined for this example
such that MA/ρ is (Φ∞ − ΦD)/U . To estimate its value by the principle of
minimum acoustic inertance, we postulate an incompressible flow such that
within the duct vz = U/πa2 is uniform over the cross section; the flow out-
side the opening is taken to be a potential flow. Conservation of mass across
each differential area of the opening imposes vz = U/πa2 at z = 0 for w < a
as a boundary condition on the z > 0 solution. The existence of the flange
requires vz = 0 on the remainder of the z = 0 plane.

The potential flow outside the flange has a kinetic energy equal to the
volume integral of 1

2ρ(∇Φ)2 = 1
2ρ∇ · (Φ∇Φ). Gauss’s theorem (with the

choice of 0 for Φ∞) converts this to an area integral over the opening of
− 1

2ρvzΦ. At the opening, vz is assumed equal to U/πa2. The area integral of
−ρΦ is the time integral of the area integral of p; the latter is identified from
the result for the vibrating circular piston in a rigid wall. Equation (5-3.10)
yields in the low-frequency limit a value of (8/3π)aU for the area integral of
−Φ, and the kinetic energy therefore becomes

KE =
1

2

8

3π2

ρ

a
U2. (7-6.7)

For the postulated flow field, this is the excess kinetic energy associated with
the presence of the opening; Eq. (3) consequently yields

MA ≤ 8

3π2

ρ

a
. (7-6.8)

To apply Rayleigh’s lower-bound theorem, we take Smid to be the opening.
Our definition of acoustic inertance is such that there is no inertance associ-
ated with the duct (MA,I = 0), so the lower bound MA,II is (Φ∞ −Φop)ρ/U ,
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Figure 7-19 (a) A semi-infinite duct with a flanged opening. (b) A duct segment of finite
length with flanges at both ends.

where Φop is the assumed uniform potential across the opening. This quantity
MA,II, however, can be taken from the solution given in Sec. 7-5 for potential
flow through a circular orifice in a thin rigid plate. That solution is such that
the orifice is of uniform potential and Φ(+)

∞ −Φor = Φor−Φ(−)
∞ . Consequently,

the inertance associated with the region z > 0 is one-half that given by Eq.
(7-5.10). Thus, we obtain, from Eq. (4),

MA ≥ 1

4

ρ

a
. (7-6.9)

This, in conjunction with Eq. (8), brackets MA between 0.250ρ/a and
0.270ρ/a. The actual value† is 0.261ρ/a.

† L. V. King, “On the electrical and acoustic conductivities of cylindrical tubes bounded
by infinite flanges,” Phil. Mag. (7)21:128–144 (1936).
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Circular Orifice in a Plate of Finite Thickness

This example (Fig. 7-19b) can be regarded as a short circular duct of length
l(kl ≪ 1) with flanges on both openings. If an incompressible flow is pos-
tulated that has uniform flow within the duct, the principle of minimum
acoustic inertance applies and an analysis similar to that leading to Eq. (8)
yields

MA ≤ ρl

πa2
+ 2

8

3π2

ρ

a
. (7-6.10)

Rayleigh’s lower-bound theorem similarly yields

MA ≥ ρl

πa2
+

1

2

ρ

a
. (7-6.11)

In the limit l → 0, MA is given by the expression (7-5.10) for an orifice
in a thin plate, so Eq. (11) is exact in this limit. If l/a is large, the cross
section in the middle of the duct should be of nearly uniform potential, so
MA should be twice the inertance of a duct segment of length l/2 with a
flanged opening; the inertance due to each half is nearly ρ(l/2)/πa2 plus the
inertance intrinsically associated with a flanged opening. Taking King’s result
of 0.261ρ/a for the latter, we have

MA ≈ ρl

πa2
+

2(0.261)ρ

a
, l ≫ a. (7-6.12)

It cannot necessarily be assumed that this is either a lower bound or an upper
bound for arbitrary l/a, but it is an overestimate in the limit l/a→ 0.

End Corrections

The acoustic inertance for the example above can be written in the form

MA =
ρ

A
(l +∆l), (7-6.13)

where A is the cross-sectional area of the duct and ∆l is an end correction
associated with the terminations of the duct at the two ends. If l ≫ (A)1/2,
the remarks preceding Eq. (12) indicate that ∆l is independent of l and
furthermore can be decomposed into contributions (∆l)1 and (∆l)2 that are
associated with each of the two ends. Thus, if one end of the duct opens
with a flange into an unlimited space, the correction (∆l)1 for this end is
AMA1/ρ, where MA1 is the acoustic inertance associated with the opening.
For a circular duct of radius a with a flanged opening, Eqs. (8) and (9) yield
an end correction (∆l)1 with the limits (8/3π)a and (π/4)a or, equivalently,
0.85a and 0.79a. King’s exact result for (∆l)1 is 0.82a.
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Another model of duct termination is that of a thin-walled hollow circular
tube protruding into an open space. The absence of the constraining flange
causes the acoustic inertance associated with the opening to decrease, so the
end correction must be less than 0.82a. There are no simple calculations that
place more stringent bounds on the end correction, but an intricate exact
solution† for the radiation of waves from an unflanged hollow tube yields, in
the low-frequency limit,

∆l = (0.61 · · · )a, unflanged opening. (7-6.14)

The corresponding acoustic inertance is ρ(πa2)−1∆l or 0.20ρ/a.

Effective Neck Lengths of Helmholtz Resonators

In the discussion preceding Eq. (7-4.1), the acoustic inertance of a Helmholtz
resonator is taken as ρl′/A, where l′ is an effective neck length. In the estima-
tion of l′ we distinguish cases where the actual neck length l is much less and
much greater than the radius a of the opening. In both cases, a is assumed
to be much less than the dimensions of the vessel. If l ≪ a, the opening is
similar to that of an orifice in a thin plate, so the appropriate estimate of the
acoustic inertance is that of Eq. (11), which leads to l+ (π/2)a for l′.

If l ≫ a, then l′ ≈ l + (∆l)1 + (∆l)2, where (∆l)1 and (∆l)2 are the end
corrections associated with the inner and outer openings. The inner opening
resembles a flanged termination, so we set (∆l)1 = 0.82a. This value would
also apply for (∆l)2 if the outer end of the neck terminates in a flange (a
Helmholtz resonator with a baffled opening). If the neck is long and its walls
are thin, the model of an unflanged opening is more appropriate so one would
set (∆l)2 = 0.61a. Thus, in the latter case, for example, one would have†

l′ = l + 0.82a+ 0.61a, l ≫ a. (7-6.15)

If the neck is not circular, the usual approximation is to replace a by (A/π)1/2.

† H. Levine and J. Schwinger, “On the radiation of sound from an unflanged circular
pipe,” Phys. Rev. 73:383–406 (1948). The case when the tube walls are of finite thickness
is analyzed by Y. Ando, “On the sound radiation from semi-infinite pipe of certain wall
thickness,” Acustica 22:219–225 (1970).
† W. P. Mason, “The approximate networks of acoustic filters,” Bell Syst. Tech. J. 9:332–
340 (1930).
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Figure 7-20 (a) Open-ended duct extending into open space. (b) Duct with end correction
∆l that has equivalent acoustical properties if the end is taken to be a pressure-release
surface.

Boundary Conditions at Open Ends of Ducts

A classic example of the application of an end correction is at the open end
of a duct (see Fig. 7-20). We begin with the observation that the end presents
an acoustic impedance Zend to any plane-wave-mode disturbance within the
duct (x < l), where, in the low-frequency limit,

Zend =− iωMA +RA, MA =
ρ

A
∆ℓ, (7-6.16a)

RA =
Kρck2

4π
. (7-6.16b)

The acoustic radiation resistance RA, according to Eq. (7-5.6), should be
ρck2/2π if the opening has an infinite flange, so the parameter K is identified
as 2 for that case. If the opening resembles a thin-walled tube protruding into
space, the acoustic pressure at large distances from the opening is only half
as large given the same volume velocity at the end, so K would then be 1.
[The derivation is analogous to that ensuing from Eq. (7-5.1).]
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The simplest end-correction approximation consists of the replacement† of
the boundary condition

p̂D

ÛD
= Zend. x = ℓ, (7-6.17a)

by

p̂D = 0, x = ℓ+∆ℓ. (7-6.17b)

Here p̂D(x) and ÛD(x) are the plane-wave-mode pressure and volume-velocity
amplitudes within the duct (x < l). Their values for x > l are regarded
as what would be extrapolated using the one-dimensional linear acoustic
equations. Adopting the boundary condition (17b) is equivalent to regarding
the end as being at x = ℓ + ∆ℓ and to assuming that this virtual end is a
pressure-release surface.

Approximate justification of Eq. (17b) proceeds with the neglect of the
radiation resistance, so that Eqs. (16a) and (17a) imply a zero value for
p̂D(ℓ)+ iωρ ∆ℓ ÛD(ℓ)/A. But Euler’s equation equates iωρÛD/A to dp̂D/dx,
and p̂D(ℓ) +∆ℓ(dp̂D/dx)ℓ is approximately p̂D(ℓ+∆ℓ), so Eq. (17b) results.

Since the radiation resistance is proportional to k2, its effects on the field
within the duct are ordinarily minor at low frequencies. The exception is when
the system is at resonance. Nevertheless, for the determination of the reso-
nance frequencies, Eq. (17b) remains a good approximation at low frequencies
and is preferable to taking the actual end at x = ℓ as a pressure-release sur-
face.

7-7 MUFFLERS AND ACOUSTIC FILTERS

A muffler‡ is a device that reduces the sound emanating from the end of a pipe
but which continues to allow the flow of gas through the pipe. In an idealized
conceptual model of a muffler (see Fig. 7-21), the source is characterized by
the volume velocity U(t) injected into the exhaust system; each frequency
component is assumed to propagate independently, and it is assumed that

† Helmholtz, “Theory of air oscillations”; Rayleigh, The Theory of Sound, vol. 2, sec. 314.
The necessity for an end correction emerged with the experimental discovery by Felix
Savart (1823) that the first velocity node is less than 1

4
wavelength from the open end.

The boundary condition of p = 0 at the open end (without end correction) was adopted
by Daniel Bernoulli, Euler, and Lagrange in the eighteenth century.
‡ P. O. A. L. Davies, “The design of silencers for internal combustion engines,” J. Sound
Vib. 1:185–201 (1964); T. F. W. Embleton, “Mufflers,” in L. L. Beranek (ed.), Noise and
Vibration Control, McGraw-Hill, New York, 1971, pp. 362–405; E. K. Bender and A. J.
Bremmer, “Internal-combustion engine intake and exhaust system noise,” J. Acoust. Soc.
Am. 58:22–30 (1975).
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the muffler and the configuration of the pipe do not alter the spectral density
of the volume velocity actually injected by the source. The interaction of the
acoustic portion of the flow with the mean flow is also neglected.

Figure 7-21 Simplified model of an exhaust system. The muffler is inserted between
points G and H.

The assumptions just stated imply, for any given muffler design, that there
should be a direct proportionality between the same frequency components of
volume velocities existing at two given points. Thus, we can characterize the
source for our present purposes by what the spectral density would be at a
given point if the pipe extended indefinitely without interruptions or changes
in cross-sectional area. We choose this point G to be just upstream of where
the muffler is to be inserted. The external sound radiation is determined by
the spectral density of the volume velocity leaving the tail of the pipe, which
in turn is determined by the ratio of the spectral density at the exit plane to
that nominally expected at G. This ratio, however, can be derived from an
analysis of constant-frequency sound propagation.

The Transmission Matrix and Its Consequences

The segment of the pipe that includes the muffler, extending between points
G and H in Fig. 7-21, can be regarded as an acoustical two-port, so the
matrix equation (7-2.3) applies. In an equivalent manner, we can write

[

p̂G
ÛG

]

=

[

K11 K12

K21 K22

] [

p̂H
ÛH

]

. (7-7.1)
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where the quantities Kij are frequency-dependent quantities embodying the
acoustical properties of the muffler. Reciprocity requires that the matrix de-
terminant be 1. Also, for a symmetric muffler, which looks the same from
both ends, K11 and K22 must be identical.

The ratio p̂H/ÛH is the acoustic impedance ZH just downstream of the
muffler presented by the tailpipe and the environment. The ratio p̂G/ÛG,
derived from Eq. (1), is accordingly

p̂G

ÛG
=
K11ZH +K12

K21ZH +K22
. (7-7.2)

If a wave is incident on the muffler at G from the upstream direction, then
ÛG = (1 − RG)Ûi, where Ûi is the portion of the volume velocity at G
associated with this incident wave and where

RG =
p̂G/ÛG − ρc/A

p̂G/ÛG + ρc/A
(7-7.3)

is the pressure-amplitude reflection coefficient for a wave incident on the
muffler. Since Eq. (1) leads to

(1− RG)Ûi = (K21ZH +K22)ÛH , (7-7.4)

we accordingly find

2ρc

A

Ûi

ÛH
= K11ZH +K12 +

ρc

A
K21ZH +

ρc

A
K22. (7-7.5)

Insertion Loss

The acoustic-pressure amplitude in the far field is directly proportional to
the volume velocity |ÛH | just downstream of the muffler. Consequently, the
performance of the muffler is characterized by the ratio of |ÛH |2 to what its
value would be without the muffler. With the assumption (discussed below)
that |Ûi| is unaffected by the muffler and with the recognition that [K] is
the unit matrix when the muffler is not present, one finds from (5) that the
reciprocal of this ratio is

|K11ZH +K12 + (ρc/A)K21ZH + (ρc/A)K22|2
|ZH + ρc/A|2 . (7-7.6)

The assumption that Ûi is unaffected by the muffler’s presence is equivalent
to the expectation that waves reflected back to the source by the muffler
have negligible amplitude when they eventually return to the muffler. Cir-
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cumstances for which the assumption is valid are when the pipe upstream of
the muffler is such that a traveling wave experiences, say, 5 dB attenuation
or more on one round trip. A similar assumption that further simplifies the
analysis is that there is sufficient attenuation along the tailpipe to ensure
that whatever is transmitted beyond the muffler at H does not return to the
muffler (anechoic termination). This allows us to assume a traveling plane
wave at H such that ZH = ρc/A. Both assumptions are traditional† in muf-
fler design but warrant reconsideration in particular cases. They are adopted
here to obtain an unencumbered perspective on muffler performance.

With the assumptions just described, the insertion loss of the muffler,
defined as the sound-pressure-level drop caused by its insertion, is 10 times
the logarithm of the expression (7-7.6) with ZH replaced by ρc/A, that is,

IL = 10 log

(

1
4 |K11 +K22 +

ρc

A
K21 +

A

ρc
K12|2

)

. (7-7.7)

Since we are assuming anechoic termination of the muffler, insertion loss is
the same as transmission loss. The objective of a good muffler design is that
IL be very low for low frequencies, so the steady flow is not inhibited, but IL
be high at those acoustic frequencies which convey the dominant portion of
the noise. Thus the muffler should perform like a low-pass filter.

Reactive and Dissipative Mufflers

A reactive muffler is one for which the dissipation in the muffler can be ne-
glected. In this event, the parameters Zleft, Zright, and Zmid in Eqs. (7-2.4)
are all imaginary numbers, and consequently one finds K11 and K22 to be
real and K12 and K21 to be imaginary. A reactive muffler reduces the sound
power entering the muffler by altering the acoustic impedance ZG at the en-
trance of the muffler. For example, if ZG were zero, no power would pass into
the muffler. Any plane wave incident on the muffler would undergo perfect
reflection. Even if the attenuation in the upstream pipe were insignificant,
this would still reduce the power radiated out of the tailpipe, because the
created standing wave would have a pressure at the source nearly 90◦ out of
phase with the source’s volume velocity.

A dissipative muffler, on the other hand, does not appreciably alter the
power entering the muffler but instead dissipates if before it leaves the muffler.
The simplest idealization of a dissipative muffler is a lined segment of pipe
of length L that attenuates the amplitude of a traveling plane wave by a

† D. D. Davis, G. M. Stokes, D. Moore, and G. L. Stevens, “Theoretical and experimental
investigation of mufflers with comments on engine-exhaust muffler design,” Nat. Advis.
Comm. Aeronaut. Rep. 1192, Washington, 1954; G. W. Stewart, “Acoustic wave filters,”
Phys. Rev. 20:528–551 (1922).
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factor of e−αL without appreciably reflecting the sound or altering the ratio
of pressure to volume velocity. The transmission loss in this case is easily
seen to be 10 times log e2αL, but it is instructive to see how the result follows
from the formulation developed above.

Letting p̂a and p̂b be the amplitudes at G and H , respectively, of two
coexisting plane waves traveling downstream and upstream, respectively, we
find

(

p̂G,
ρcÛG
A

)

= p̂a ± p̂be
ikLe−αL,

(

p̂H ,
ρcÛH
A

)

= p̂ae
ikLe−αL ± p̂b.

Elimination of p̂a and p̂b from these and a comparison with Eq. (1) yields

[K] =

[

cos (kL+ iαL) −i ρcA sin(kL+ iαL)
−i Aρc sin(kL+ iαL) cos (kL+ iαL)

]

, (7-7.8)

so the insertion loss of Eq. (7) reduces to (10 log e)(2αL). Thus, the larger
αL, the larger the insertion loss. The power entering the muffler is larger by
a factor of 10IL/10 than that leaving the muffler.

Helmholtz Resonators as Filters

The theory of a Helmholtz resonator as a side branch, developed in Sec. 7-4,
leads to p̂G = p̂H , ÛG = p̂G/ZHR+ ÛH , where ZHR is the acoustic impedance
of the resonator. Consequently, we identify K11 = 1, K12 = 0, K21 =
1/ZHR, K22 = 1, and Eq. (7) yields

10IL/10 =
|ZHR + 1

2ρc/A|2
|ZHR|2

(7-7.9)

= 1 +
1

4β2(f/fr − fr/f)2
, (7-7.9a)

where β2 = (MA/CA)(A/ρc)
2 and 2πfr = (MACA)

−1/2. In the second ver-
sion, we have explicitly inserted the expression (−iωCA)−1 − iωMA for the
acoustic impedance ZHR of the Helmholtz resonator.

The Helmholtz resonator primarily filters out frequencies close to the res-
onance frequency fr. The infinite insertion loss predicted at the resonance
frequency is consistent with the prediction that the resonator acts as a per-
fect reflector at such a frequency. However, if β is large compared with 1, the
bandwidth over which appreciable insertion loss occurs is small compared
with fr.
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Figure 7-22 Geometry of an expansion-chamber muffler.

Expansion-Chamber Muffler

Another simple prototype (see Fig. 7-22) of a muffler consists of a duct of
length L and of larger area AM inserted between pipes of area A. With the
neglect of the acoustic inertances at the duct junctions, the matrix [K] for
such a muffler can be identified from Eq. (8) with α set to zero and with A
replaced by AM . Subsequent insertion of these expressions into (7) yields

10IL/10 = cos2 kL+ 1
4 (m+m−1)2 sin2 kL = 1+ 1

4 (m−m−1)2 sin2 kL, (7-7.10)

where we use m for the area expansion ratio AM/A. This gives zero insertion
loss when kL is a multiple of π; the insertion loss is periodic in f with a
period of c/2L. A maximum occurs when f is an odd multiple of c/4L, such
that L is an odd multiple of quarter wavelengths. The maximum predicted
insertion loss is 10 log[(m + m−1)2/4 and is accordingly determined by the
area expansion ratio. Values of m = 4, 9, 16, 25, and 36 correspond to peak
insertion losses of 6.5, 13.2, 18, 22, and 25 dB.

Commercial Muffler Designs

The analysis of actual commercial mufflers (see Fig. 7-23) is often compli-
cated by multiple chambers and perforated pipes. The muffler insertion loss,
moreover, is often significantly affected by the ambient flow and by nonlinear
effects. However, some insight if not accurate predictions can still be obtained
with the classical lumped-parameter techniques. To determine† the [K] ma-
trix, one assumes that, within each segment, the pressure p is uniform over the
cross section but not the same inside and outside a perforated pipe. Within

† A detailed discussion along similar lines but with nonlinear orifice impedance and ambient
flow taken into account is given by J. W. Sullivan, “A method of modeling perforated tube
muffler components,” J. Acoust. Soc. Am. 66:772–788 (1979).
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Figure 7-23 Sketches of commercial mufflers. [From T. F. W. Embleton, “Mufflers, ” in
L. L. Beranek (ed.), Noise and Vibration Control, McGraw-Hill, New York, 1971, p. 379.]

such a pipe, the volume velocity parallel to the axis suffers a discontinuity at
each orifice, the discontinuity equaling the volume velocity through the ori-
fice. The latter’s complex amplitude is in turn given by (p̂in−p̂out)/(−iωMA),
where the orifice’s acoustic inertance MA is of the order of ρ/2a. When a pipe
extends only partway into a concentric chamber, the volume velocities up axis
for pipe and for surrounding chamber must sum to that down axis for the
chamber, as if three ducts of areas Apipe, Aout, and Apipe + Aout met at a
common junction. The three corresponding pressures are assumed to be the
same at the junction.

Example The straight-through muffler in Fig. 7-24 is analyzed by associat-
ing volume velocities Ûch(x) and Ûpipe(x) with the chamber (area Aout) and
pipe (area Apipe). The large number of perforations is taken into account in
a smeared-out manner by replacing the mass-conservation equations with

Aout

ρc2
(−iωp̂ch) +

dÛch

dx
=
n(p̂pipe − p̂ch)

−iωMA
, (7-7.11a)

Apipe

ρc2
(−iωp̂pipe) +

dÛpipe

dx
=
n(p̂ch − p̂pipe)

−iωMA
, (7-7.11b)

where n is the number of perforations per unit length of pipe axis. Since
Euler’s equation still holds for the interior and exterior regions, one has
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−iωρÛch =−Aout
dp̂ch
dx

, (7-7.12a)

−iωρÛpipe =−Apipe
dp̂pipe
dx

. (7-7.12b)

Elimination of Ûch and Ûpipe from Eqs. (11) and (12) yields two coupled
wave equations, general solutions of which are

p̂pipe =A cos kx+B sin kx+AoutC cosβx+AoutD sinβx, (7-7.13a)

p̂ch =A cos kx+B sin kx−ApipeC cosβx −ApipeD sinβx, (7-7.13b)

where A, B, C, D are arbitrary constants, k is ω/c, and

β2 = k2 − nρ

MA
(A−1

pipe +A−1
out). (7-7.14)

The boundary conditions, Ûch = 0 at x = 0 and at x = L, give two
relations between the four constants, while two other relations result from
Ûpipe = ÛH at x = L and from p̂pipe = p̂H at x = L. Consequently, the
constants, A, B, C, D become linear combinations of ÛH and p̂H . Equations
(12b) and (13b) with such substitutions and with x set to zero therefore yield
equations of the form (1). The matrix [K] can subsequently be identified and
the insertion loss can be determined from Eq. (7). (Since the intent here is
only to describe the analytical method, the algebra is not carried through.)

Figure 7-24 Parameters characterizing a simplified model of a straight-through muffler.
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7-8 HORNS

A horn† (see Fig. 7-25) is an impedance-matching device that increases the
acoustic power output of a source and gives a directional preference to the
radiated power. To understand the rationale underlying the first of these
properties, consider a small acoustic source of fixed volume-velocity ampli-
tude Û whose power output is

P = 1
2 |Û |2Re{Z}, (7-8.1)

where Z is the acoustic impedance presented to the source by its external
environment. For a radially oscillating sphere of radius a, Eq. (4-1.4) implies
that

Z =
ρc

4πa2
(ka)2 − ika

(ka)2 + 1
≈ ρck2

4π

(

1− i

ka

)

(7-8.2)

when the source is in a free environment; the second version results when
ka≪ 1. The time-averaged power radiated is therefore (ρc/8π)k2|Û |2 in the
low-frequency limit, which is characteristic of any monopole source. When
mounted on a rigid wall, the source produces twice this power. In contrast,
the power output when the source is at the rigid end of a tube of cross-
sectional area A and of unbounded length is ρc|Û |2/2A [twice that given by
Eq. (7-1.13)], providing the frequency is lower than the cutoff frequency for
the first dispersive mode. If k2A ≪ 2π, a source in a duct is a much more
powerful generator of acoustic energy than when it is in an open environment.

Figure 7-25 Schematic description of a horn and of its coupling to a transducer. [After
C. T. Molloy, J. Acoust. Soc. Am. 22:551 (1950 ).]

† For a historical overview, see J. K. Hilliard, “Historical review of horns used for audience-
type sound reproduction,” J. Acoust. Soc. Am. 59:1–8 (1976).



7-8 Horns 403

Such an enhancement in power output does not necessarily result when the
source is connected to the external environment by a duct segment of finite

length the far end of which is open. Reflections of sound from the open end
alter the impedance at the source position so that Re Z is not in general ρc/A.
For a duct of constant cross-sectional area and of length L, the impedance
at the source is given by†

Z =
ρc

A

Zend cos kL− i(ρc/A) sin kL

(ρc/A) cos kL− iZend sin kL
. (7-8.3)

For a narrow tube, the end impedance Zend, given by Eq. (7-6.16a), is small
in magnitude compared with ρc/A, so Re Z is typically (Re Zend)/(cos

2 kL),
which is much less than ρc/A except near the resonance frequencies. However,
the resonance peaks are narrow, so the tube is unsatisfactory as a coupling
device if one wants a substantial power amplification with minor frequency
distortion over a broad frequency band.

Figure 7-26 Real and imaginary parts of the acoustic impedance Z in units of ρc/A at
the mouth of an open-ended unflanged thin-walled circular tube (radius a). [After C. T.
Molloy, J. Acoust. Soc. Am. 22: 552 (1950); low-frequency limits based on results of H.
Levine and J. Schwinger, Phys. Rev. 73:383 (1948).]

† This follows from Eqs. (7-7.1) and (7-7.8) with α set to 0, with p̂H/ÛH set to Zend, and
with p̂G/ÛG set to Z.
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A duct of variable cross section can circumvent this difficulty if (ideally)
the cross-sectional area varies slowly enough to prevent internal reflections
and if the mouth at the far end is wide enough to ensure negligible reflection
at the abrupt termination. The graphs‡ (see Fig. 7-26) of the real and imag-
inary parts of AZmth/ρc versus ka for the acoustic impedance at the mouth
(mth) of an open-ended unflanged thin-walled circular tube when a plane
wave is incident from along its axis suggest that the squared magnitude |R|2
of the reflection coefficient will be less than 0.25 if ka > 2. If ka = 1, |R|2
is of the order of 1

2 . Below ka = 1, there may still be some overall amplifi-
cation of the radiated acoustic power if the area at the mouth is still large
compared with the area at the source, but the plot of P for fixed |Û | versus
frequency will exhibit distinct resonances. Consequently, the usually stated
design criterion† is that ka should be greater than 1 at the mouth for the low-
est frequency radiated. For a frequency of 100 Hz in air with a sound speed
of 340 m/s, this implies that the mouth diameter should be of the order of
1 m. In practice, however, smaller diameters are often used, it being asserted‡

that the resonance peaks are not noticeable to the human ear if the power
variation with frequency is substantially less than 10:1. Also, the coupling of
the transducer to the horn through the throat and the circuitry associated
with the transducer can be designed (so that the complex ratio of Û to the
signal amplitude is frequency-dependent) to minimize the variations caused
by the resonances.

The Webster Horn Equation

Most analyses of horns are based on a quasi-one-dimensional model of sound
propagation in a rigid-walled duct (see Fig. 7-27) of variable cross-sectional
area A(x). To derive the governing equation,† one integrates the wave equa-
tion for the acoustic pressure over the volume of a duct segment between x

‡ C. T. Molloy, “Response peaks in finite horns,” J. Acoust. Soc. Am. 22:551–557 (1950);
H. Levine and J. Schwinger, “On the radiation of sound from an unflanged circular pipe,”
Phys. Rev. 73:383–406 (1948).
† Beranek, Acoustics, p. 268.
‡ C. R. Hanna and J. Slepian, “The function and design of horns for loud speakers,” Trans.
Am. Inst. Elec. Eng. 43:393–411 (1924): “Variations in acoustic power of the order of ten
to one between 200 and 4000 cycles are not noticed by the ear, however, and the departure
from a uniform response can be kept within this range by a proper design of the horn.”
The

10: 1 is at variance with the original conception of the decibel as the minimum increment
of sound level detectable by the human ear but may be appropriate for broadband sound.
Beranek (Acoustics, p. 280) chooses a design in one of his examples for which the variation
is 2:1 and refers to such as “fairly well damped” resonances.
† A. G. Webster, “Acoustical impedance, and the theory of horns and of the phonograph,”
Proc. Natl. Acad. Sci. (U.S.) 5:275–282 (1919).



7-8 Horns 405

and x +∆x. Gauss’s theorem is then used to change the volume integral of
∇2p to a surface integral of ∇p ·n. But since ∇p ·n = 0 on the walls of the
duct, one is left with the differences of the integrals of ∂p/∂x over the cross
section at x + ∆x and x. Dividing by ∆x and taking the limit as ∆x → 0
then yields

∂

∂x

∫∫

∂p

∂x
dA− 1

c2
∂2

∂t2

∫∫

p dA = 0. (7-8.4)

The approximation is made that p is uniform over the cross section, and the
above reduces to the Webster horn equation

1

A

∂

∂x

(

A
∂p

∂x

)

− 1

c2
∂2p

∂t2
= 0, (7-8.5)

{

∂2

∂x2
+

1

4A2
[(A′)2 − 2AA′′]− 1

c2
∂2

∂t2

}

A1/2p = 0, (7-8.5a)

where in the second version (derived from the first), the primes denote dif-
ferentiation with respect to x. This is supplemented by Euler’s equation

ρ
∂vx
∂t

= − ∂p

∂x
, ρ

∂U

∂t
= −A∂p

∂x
, (7-8.6)

when a determination of the volume velocity is desired.
The criterion for the applicability of Eq. (5), that the fractional change of p

over a cross section be small, leads (after a brief analysis of the linear acoustic
equations) for cylindrically symmetric disturbances in a duct of radius r(x)
(with r′ = dr/dx) to

1
2rr

′(∂p/∂x)rep

prep
≪ 1,

krr′

2
≪ 1,

(r′)2

2
≪ 1. (7-8.7)

where the quantities (∂p/∂x)rep and prep denote representative magnitudes of
∂p/∂x and p; the second version results if one assumes (∂p/∂x)rep/prep ≈ k,
as for a plane wave. The third version results in the low-frequency limit if
one takes r = r′x with r′ constant and uses the outgoing spherical-wave
expression x−1eikx for prep. [While Eq. (5) formally applies to propagation in
a conical tube of solid angle ∆Ω with A → x2∆Ω when x is radial distance
from the apex, the interpretation adhered to here for A is area of a planar
cross section transverse to a fixed cartesian axis. A wide-angled cone of slowly
varying solid angle is therefore precluded from consideration.]
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Figure 7-27 Conceptual model used for derivation of the Webster horn equation.

Salmon’s Family of Horns†

Circumstances for which the Webster horn equation is most easily solved are
those for which the coefficient (1/4A2)[(A′)2−2AA′′] in Eq. (5a) is constant. If
we set this‡ to −m2 and replace A by πr2, we obtain the ordinary differential
equation

d2r

dx2
= m2r. (7-8.8)

The solution of this for r(x) is

r = rth(coshmx+ T sinhmx), (7-8.9)

where rth is the radius at the throat (x = 0) and rthTm is dr/dx at x = 0.
The case m = 0 yields the solution

r = rth +

(

dr

dx

)

th

x. (7-8.10)

which describes a conical horn. For m > 0, the special cases of T = 1 and
T = 0 yield the exponential horn, where r = rthe

mx, and the catenoidal horn,
where r = rth coshmx. In the former case, m is called the flare constant.

† V. Salmon, “Generalized plane wave horn theory” and “A new family of horns,” J. Acoust.
Soc. Am. 17:199–211, 212–218 (1946).
‡ One can also set it to +m2, in which case r(x) is rth(cosmx+T sinmx). This is discussed
by B. N. Nagarkar and R. D. Finch, “Sinusoidal horns,” J. Acoust. Soc. Am. 50:23–31
(1971), who point out that the bell of an English horn is a sinusoidal horn.
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For any member of Salmon’s family described by nonzero m, the solutions
p̂ of the Webster horn equation in the constant-frequency case are linear
combinations of A−1/2eiγx and A−1/2e−iγx, where γ = (k2−m2)1/2 for k > m
and γ = i(m2−k2)1/2 for k < m. Thus, one obtains the transmission relation
[by a derivation similar to that of Eq. (3-4.14)]

[

A1/2p̂
(A1/2p̂)′

]

x=0

=

[

cos γL −γ−1 sin γL
γ sin γL cos γL

] [

A1/2p̂
(A1/2p̂)′.

]

x=L

. (7-8.11)

This equation leads in turn to the impedance translation relation
(

iωρ

ZA
+
r′

r

)

th

= iγ

(

1 + ǫ

1− ǫ

)

, (7-8.11a)

ǫ = e2iγL
(

iωρ/ZA+ r′/r − iγ

iωρ/ZA+ r′/r + iγ

)

mth

, (7-8.11b)

where the subscripts th and mth refer to the throat and mouth. This suffices
to determine the throat impedance for any member of Salmon’s family of
horns.

Concept of a Semi-Infinite Horn

The quantity ǫ may be small in magnitude compared with 1 in either of
two limiting circumstances. In the high-frequency limit, where k2 ≫ m2, γ is
approximately k and r′/r is small compared with k. If the mouth is sufficiently
wide, the quantity iωρ/ZA at the mouth is also nearly ik, so the terms
iωρ/ZA and −iγ tend to cancel in the numerator. Since |e2iγL| is equal to 1,
the result is that |ǫ| is small.

The other limiting case is that where k < m, so γ → i|γ|, but L is large
enough to ensure that e−|γ|L ≪ 1. In either case, one can expand (1+ǫ)/(1−ǫ)
in a power series such that, to first order in ǫ,

(

iωρ

ZA

)

th

= iγ −
(

r′

r

)

th

+ 2iγǫ. (7-8.12)

With the “small” first-order term in ǫ discarded, the above is what would
have resulted if one had ignored the impedance boundary condition at the
outset and had required instead that A1/2p̂ be of the form of a constant times
eiγx within the horn, i.e., either an outgoing dispersive wave or an evanescent
wave that decreases exponentially with increasing x. If one disregards the
inapplicability of the Webster horn equation at large L and overlooks the fact
that eiγx satisfies the Sommerfeld radiation condition only in the limit k ≫ m,
the solution eiγx for A1/2p̂ can be loosely interpreted as that appropriate for a
horn of infinite length, i.e., a semi-infinite horn. The concept is useful because
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it leads to a simple expression for the throat impedance that has some validity
in limiting cases, as explained above.

The Cutoff Frequency

The semi-infinite-horn model predicts Re{Zth} = 0 and therefore no power
output [in accordance with Eq. (1)] when k < m or, equivalently, when f < fc,
where the cutoff frequency is given by

fc =
cm

2π
. (7-8.13)

This prediction results because Eq. (12) with ǫ set to 0 has a right side that is
purely real when k < m [iγ = −(m2−k2)1/2]. Zero power transmission below
the cutoff frequency is not absolutely correct, but the prediction indicates
that relatively small power output results for a long horn unless k is of the
order of m or larger. Equation (12) yields, to first order in ǫ, an expression
for Re Zth that varies with |γ| primarily as e−2|γ|L when e−2|γ|L is small and
k < m. Thus, for a long horn, where mL is somewhat larger than 1, there is
a rapid decrease of power transmission as the frequency decreases below the
cutoff frequency.

In the other limit, when k is large, the semi-infinite-horn model predicts

Zth =
ρc

Ath

k

γ + i(r′/r)th
→ ρc/Ath. (7-8.14)

The limiting expression is the same as for radiation into an infinitely long
duct of constant cross-sectional area Ath. Note that, for a catenoidal horn,
(r′/r)th is zero, so Zth is formally infinite according to this model when k = m
and is purely real (resistive) above the cutoff frequency. For the exponential
horn, (r′/r)th = m, so Zth reduces to

Zth =
ρc

Ath

(

γ − im

k

)

, (7-8.15)

and Re{Zth} is 0 at k = m and increases with k.
To illustrate the transition between the model represented by Eq. (11a)

and the semi-infinite-horn model, some numerical examples† are given in
Fig. 7-28 for an exponential horn where mrth = 1

30 ; the mouth impedances
are taken from Fig. 7-26.

† Similar examples are exhibited by H. F. Olson, “Horn loud speakers,” RCA Rev. 1(4):68–
83, April, 1937. Examples for the catenoidal horn are given by G. J. Thiessen, “Resonance
characteristics of a finite catenoidal horn,” J. Acoust. Soc. Am. 22:558–562 (1950).



7-8 Horns 409

Other Considerations in Horn Design

Electroacoustic transducers are typically coupled to horns through a small
cavity. The coupling can be modeled by an acoustic compliance CA in par-
allel with the impedance −iωMA + Zth. The compliance can be taken as
V/ρc2 from Eq. (7-2.11); an estimate of the acoustic inertance MA would be
0.261ρ/rth in accord with the model of a circular duct with a flanged opening
discussed in Sec. 7-6. The overall acoustic impedance seen by the transducer
diaphragm would be

Zdia = [−iωCA + (Zth − iωMA)
−1]−1. (7-8.16)

The selection of the throat radius, which governs the throat impedance
in the high-frequency limit, is constrained by the choice of the cutoff fre-
quency, the length of the horn, and the mouth radius. The cutoff frequency
fc determines m; for fixed type of radius profile and for given m and L, the
mouth radius is directly proportional to rth. Consequently, a smaller throat
radius leads to a mouth impedance departing more from the ideal value of
ρc/Amth that would give no plane-wave reflection. To circumvent this diffi-
culty, acoustical radiation systems frequently use two horns, one designed for
low frequencies and the other for high frequencies, with cross-over circuitry
to channel each frequency within the overall signal to the appropriate horn.

Because horn lengths required for the achievement of good impedance
matching at low frequencies are often unwieldy, many commercially marketed
horns are of a folded design,† so that the propagation direction reverses once
or twice before the wave leaves the mouth, although the wave continually
passes through regions with gradually increasing cross-sectional area.

Another consideration affecting the choice of throat radius is that of non-
linear distortion.‡ One cause of such distortion is the amplitude dependence
of the compliance of the cavity, that is, V/ρ0c2 → V/[γ(p0+p

′)] if the horn is
operating in air of specific-heat ratio γ. Another nonlinear effect is that the
speed of the wave propagating down the horn depends on amplitude, such
that c → c + βp′/ρ0c

2, where β is a positive constant intrinsic to the fluid.
(This is explained in Chap. 11.) The pressure peaks therefore tend to over-
take the troughs with increasing propagation distance, a tendency partially
offset by the amplitude decrease with propagation distance through a horn
of expanding area. The primary result of both effects is the generation of
the first overtone (twice the frequency) of the original signal. the distortion

† R. W. Carlisle, “Method of improving acoustic transmission in folded horns,” J. Acoust.
Soc. Am. 31:1135–1137 (1959).
‡ A. L. Thuras, R. T. Jenkins, and H. T. O’Neil, “Extraneous frequencies generated in air
carrying intense sound waves,” J. Acoust. Soc. Am. 6:173–180 (1935); S. Goldstein and N.
W. McLachlan, “Sound waves of finite amplitude in an exponential horn,” ibid. 275–278
(1935).



410 7 Low-Frequency Models of Sound Transmission

Figure 7-28 Real part of throat impedance, units of ρc/Ath, of an exponential horn with
flare constant m = (30 rth)

−1 versus k/m (frequency in units of nominal cutoff frequency,
cm/2π) for various choices of horn length L. (a) Lm = 0.5; (b) Lm = 1.0; (c) Lm = 2.0;
(d) Lm = 5.0. Dashed line corresponds to the semi-infinite horn limit.
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increases with the transducer driving amplitude, so the design must take into
account the peak power required.

7-9 PROBLEMS

7-1 A source that nominally generates 1 mW acoustic power in open air at a
frequency of 100 Hz is placed in the center of a very long rectangular duct
with cross-sectional dimensions of 0.1 by 0.2 m. (Take c = 340m/s and
ρ = 1.2 kg/m3.)
(a) What propagating modes are excited?
(b) How much acoustic power is generated?

7-2 A high-frequency source emitting sound of 8000 Hz frequency is at a ran-
domly selected point in the duct of Prob. 7-1. Estimate the number of
propagating duct modes that are excited.

7-3 A model for fan noise in a circular duct (radius a and aligned parallel to
the z axis) due to Tyler and Sofrin, “Axial flow compressor noise studies,”
is based on the concept of spinning modes. A simplified version of the
theory takes the z component vz of fluid velocity at the fan end (z = 0)
of the duct to be

vz = V0 cos[n(φ−Ωt)],

where Ω is fan angular speed and n is number of blades.
(a) What frequencies are generated according to this model?
(b) Give a general expression (involving Bessel functions) for acoustic pres-
sure at an arbitrary point in the duct (assumed to be of infinite length).
(c) Under what circumstances will only one propagating spinning mode be
excited?

7-4 An acoustic dipole of nominal power output Pff in a free-field environment
is placed in the center of a long circular duct (radius a) and is aligned with
its dipole-moment vector parallel to the duct axis. The dipole generates
angular frequency ω, where ω is less than the lowest cutoff frequency for
a non-dispersive mode.
(a) What is the power output of the dipole?
(b) How would this answer be affected if the dipole were aligned transverse
to the axis?

7-5 A semi-infinite rectangular duct (dimensions a by 2a) is capped at the
x = 0 end by a flat rigid wall.
(a) If a harmonic point source is located on the duct centerline at x0 = λ/3,
what will the resulting pressure amplitude at large x be? Let Pff be the
free-field acoustic power output; assume that the source angular frequency
ω = 2πc/λ is low enough for only the plane-wave mode to propagate.
(b) How does the answer change if x0 becomes λ/2?
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7-6 Verify (with as much generality as you wish) that the acoustic-mobility
matrix [D] for an acoustical two-port satisfies the reciprocity requirement
D12 = −D21.

7-7 The mechanical analog of an acoustical two-port is sketched in the accom-
panying figure.
(a) Sketch a possible acoustical system to which the analog applies.
(b) Is this a continuous-pressure two-port or a continuous-volume-velocity
two-port?
(c) Sketch the circuit analog for the system.

Problem 7-7

7-8 (a) If a duct segment of length L and cross-sectional area A with a plane-
wave-mode disturbance within it is modeled as an acoustical two-port,
what are the appropriate identifications for the elements Zleft, Zmid, Zright

in Fig. 7-4 for arbitrary kL?
(b) Show that the circuit analog in the low-frequency limit consists of two
capacitors and an inductor.
(c) What is the corresponding mechanical analog?
(d) How do your results in (b) and (c) compare with results when the
flow is considered incompressible? When the internal pressure gradients
are neglected?

7-9 Three pipes of cross-sectional areas A1, A2, and A3 are joined in a Y
configuration and contain fluid of ambient density ρ and sound speed c.
Consider the dimensions of the junction and the diameters of the three
pipes to be all substantially less than a characteristic wavelength. Sound
is incident from the far end of the first pipe; the conditions are such that
there are no reflected waves from the far ends of pipes 2 and 3. What
fraction of the incident acoustic power is transmitted into pipe 2?

7-10 A long circular duct of radius a is filled with air of ambient density ρ and
sound speed c. At x = 0 the duct has stretched across it a thin membrane
with negligible mass under tension TN/m. The nature of the membrane is
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such that it deflects an average distance ȳ given by

ȳ =
∆p

8T
a2,

when there is a net pressure drop ∆p across it. If a plane wave of angular
frequency ω is incident from the far left, what fraction of the incident
power will be transmitted to the air on the right side of the membrane?
(Consider ka≪ 1.)

7-11 The side branch to an infinitely long pipe of cross-sectional area A is
another pipe of cross-sectional area Ab. If this side branch is regarded as
a muffler, what is the corresponding insertion loss?

7-12 The influence of a side branch on acoustic waves in a duct system is such
that it causes the acoustic impedance in the duct just to the left of the
branch to be ZL when that just to the branch’s right is ZR and when the
source is also on the left side. In terms of ρ, c, ZL, ZR, and A (duct cross-
sectional area), what fraction of the incident acoustic power is transmitted
out of the duct into the side branch?

7-13 The incompressible potential flow through a slit of width b in a thin rigid
partition extending across a rectangular duct of dimensions a by d is de-
scribed in parametric form (0 < y < a/2, η ≥ 0) by the equations (see
accompanying figure)

Φ =B ln (ξ2 + η2)1/2,

x+ iy =
a

π
ln

[(ζ − α2)1/2 + (ζ − α−2)1/2]ζ1/2

α−1(ζ − α2)1/2 + α(ζ − α−2)1/2
,

α =tan

(

b

a

π

4

)

, ζ = ξ + iη,

where the mapping (Schwarz-Christoffel transformation) described by the
second equation is such that the center of the duct (y = a/2, all x) cor-
responds to the negative ξ axis in the complex ζ plane. Show that this
solution leads to the acoustic inertance given on page 329n. For what
ranges of frequency could one ignore the presence of the constriction?

7-14 A long rectangular tube, cross-sectional area A, has a circular patch of
area Ap = 0.1A on one of its walls replaced by an attenuating device.
The principal mechanical property of the device, which resembles a very
lightweight piston mounted flush with the duct wall, is that excess pressure
in the duct causes it to move outward with velocity v = pAp/b, where
b is a dashpot constant (force per velocity). If a plane wave of angular
frequency ω is incident from the left, what fractions of the incident power
are reflected, absorbed, and transmitted beyond the device? Give your
answer in terms of ω, A, c, ρ, and b and consider all applicable dimensions
to be much smaller than c/ω.
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7-15 A Helmholtz resonator (volume V ) has two circular mouths, each of radius
a and with negligible neck length. The separation distance between the two
orifices is large compared with a. If a turbulent pressure field Pext cosωt is
simultaneously at the two mouths, near what value of ω would you expect
resonance to occur?

Problem 7-13

7-16 A generalization of a Helmholtz resonator that takes into account the
elasticity of its walls assumes that the volume inside the bottle increases
by ∆V = G∆p when the pressure inside increases by ∆p, where G is a
constant. If the resonator has volume V , mouth cross-sectional area A,
and effective neck length l′, what are (a) its acoustical impedance and (b)
its resonance frequency with the wall elasticity taken into account? (c)
Relative to what combination of ρ, c, A, l′, and V should G be small if
wall elasticity is to be neglected?

7-17 A Helmholtz resonator has volume V , neck cross-sectional area A, and res-
onance frequency fr. In terms of these quantities and of c and ρ, determine
(a) resonator neck inertance MA, (b) effective neck length l′, and (c) ratio
of acoustic pressure inside to fluctuating pressure outside (just above the
neck) when the neck is oscillating at the resonance frequency. In part (c)
assume that the mouth has a wide flange and that the principal cause of
energy loss is acoustic radiation from the mouth.
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7-18 The internal friction of a Helmholtz resonator with a resonance frequency
of 250 Hz and a volume of 5 × 10−4m3 is such that, at resonance, the
pressure amplitude inside is 15 times that outside.
(a) If the acoustic impedance of the resonator is of the form

ZA = RA − i

(

ωMA − 1

ωCA

)

,

what are RA, MA, and CA?
(b) What is the Q of the resonator? (Take ρ = 1.2 kg/m3 and c = 340m/s.)

7-19 Two Helmholtz resonators (see accompanying figure), each of volume V ,
are connected by a neck with acoustic inertance MA. The first resonator
also has a mouth (inertanceMA) that opens into the external environment.
(a) Sketch the circuit analog for this system.
(b) Determine the acoustic impedance at the open mouth and sketch its
magnitude versus frequency.

Problem 7-19

(c) At what frequencies, if any, does the impedance vanish?
(d) What are the relative phases of the pressures in the two volumes when
the system is oscillating at each such frequency?

7-20 For a given fixed frequency, the acoustic impedance ZHR of a Helmholtz
resonator attached as a side branch to a duct of cross-sectional area A
is purely imaginary (reactive). Plane waves incident within the duct from
the left are partially reflected, such that only a fraction αT of the incident
power is transmitted beyond the resonator. In terms of αT , A, and ρc,
what are the possible values of ZHR?

7-21 To reduce the low-frequency noise transmitted by a square duct of cross-
sectional dimensions 0.4 by 0.4 m, a resonance chamber of volume V is
fitted over a 2-cm-radius hole on the side of the duct.
(a) If the chamber performs as a Helmholtz resonator without a neck, what
should V be for nearly total reflection of 60-Hz noise?
(b) If the chamber is designed in this manner, what fraction of incident
power is transmitted past the resonator when the frequency is 120 Hz?
(c) Suppose one uses three such resonators instead of one, spaced at inter-
vals that correspond to 1

4 wavelength at 120 Hz. What fraction of incident
power will be transmitted at 120 Hz?
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7-22 Discuss the example of sound transmission past a junction between two
ducts using the framework and terminology of matched asymptotic expan-
sions. In particular, explain how one would define and derive an acoustic
inertance associated with the junction from the incompressible-potential-
flow solution for the junction. Your definition should lead (and you should
demonstrate that this is so) to

MA,J =
2(KE)excess

U2
12

,

where (KE)excess is the excess kinetic energy caused by the presence of the
junction and U12 is the volume velocity through the junction.

7-23 A reverberant room contains sound of predominantly 500 Hz at a sound-
pressure level of 80 dB. One of the walls (concrete, 15 cm thick) has a
1-cm-radius hole leading to the outside.
(a) How much acoustic power leaks through the hole?
(b) If the wall dimensions are 4 by 3 m, what is its apparent transmission
loss due to the presence of the hole?

7-24 A plane wave impinges at angle of incident θ on a flat rigid surface that has
a circular patch of radius a at its center. At the frequency ω of interest,
the patch behaves like a pressure-release surface. Given that ka ≪ 1,
determine the effect of the patch on the reflected (or scattered) wave field.
If the incident wave has intensity Iav, how much power is scattered by the
patch?

7-25 Two long square ducts (each of cross-sectional dimensions w by w) are side
by side and share a common wall. An orifice of radius a through this wall
couples the two ducts so that a wave traveling through one causes waves
to propagate away from the orifice in the other. Derive an expression ap-
plicable to low frequencies for the sound-pressure-level difference between
the two ducts when the sound source is in one of the ducts.

7-26 Suppose that the orifice considered in Sec. 7-5 has a porous blanket of
flow resistance Rf extending across it. For the circumstances adopted in
the derivation of Eq. (7-5.11), determine expressions for the rate of energy
dissipation by the blanket and for the power transmitted to the other side
of the plate.

7-27 A circular duct of radius b has a rigid partition extending across its cross
section, within which is a circular orifice, centered at the duct axis, of ra-
dius a. Determine upper and lower bounds for the acoustic inertance of the
orifice. What nontrivial limiting expression should describe the inertance
in the limit of small a/b?

7-28 Karal’s low-frequency result cited on page 329n. for the acoustic inertance
associated with the junction between two cylindrical ducts is slightly in
error in the limit b/a≪ 1. What should the result in this limit be?

7-29 A long circular duct of radius a opens with a wide flange into an unbounded
space (z > 0). A plane wave of angular frequency ω = ck is incident from
the −z end of the duct toward the opening. Derive an approximate formula
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valid for ka≪ 1 for the fraction of the incident power radiated out of the
end of the pipe.

7-30 A piston oscillates with displacement amplitude of 0.0001 m at one end
of a thin-walled rigid circular tube of radius 0.05 m. The end of the tube
extends without a flange into open air of ambient density 1.2 kg/m3 and
sound speed 340 m/s.
(a) What should the length of the tube be if its lowest resonance frequency
is to be 250 Hz?
(b) What acoustic power is generated by the piston when it is oscillating
at 250 Hz in such a tube?
(c) What is the Q of the resonance?
(d) What is the next highest resonance frequency for the tube?

7-31 A single-expansion-chamber reaction muffler is to be designed to provide at
least 10 dB transmission loss for all frequencies between 500 and 1500 Hz.
The smallest possible expansion-area ratio m = AM/A, given AM > A,
compatible with this design objective is most desirable. What values of L
(expansion chamber length) and m would you select? Take the speed of
sound of the air in the muffler to be 340 m/s.

7-32 A segmented duct has cross-sectional area A1 for x < 0, area A2 for
0 < x < λ/2, area A3 for λ/2 < x < 3λ/4, and area A4 for x > 3λ/4,
where λ denotes an acoustic wavelength. If a plane wave is incident from
the left (x < 0) through the segment of area A1, what fraction of the
incident power is transmitted to the segment of area A4?

7-33 Derive an energy-conservation corollary for the Webster horn model repre-
sented by Eqs. (7-8.5) and (7-8.6). What does the model imply concerning
the time average of pU for constant-frequency disturbances?

7-34 A horn’s cross-sectional area A(x) is described by αx, where α is a con-
stant. Show that the solution of Webster’s horn equation for the constant-
frequency case can be expressed in terms of Bessel functions and Neumann
functions (Bessel functions of the second kind).

7-35 The diaphragm of a transducer has area Adia and is coupled to a horn of
throat area Ath via a cavity of volume V . Driving frequencies of interest
are such that neither kV/Adia or kV/Ath is necessarily small, although
k3V, k2Adia, and k2Ath are each much less than 1. Analysis of the system
gives an acoustic inertance MA for the flow from the cavity into the horn.
The acoustic impedance in the horn just beyond the throat is that ap-
propriate to a semi-infinite exponential horn of flare constant m. Discuss
how the system’s performance varies with the cavity volume V when the
driving frequency is 1

5 , equal to, and 5 times the nominal cutoff frequency
of the horn. (Make whatever assumptions seem reasonable concerning the
other parameters of the system.)

7-36 A perforated pipe of radius b has n holes per unit length, each of radius a.
If the pipe is in an open space, and if planar waves of constant frequency
are made to propagate down the pipe, what relation should hold between
wave number k and angular frequency ω? Derive a suitable wave equation
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using approximations analogous to those that yield Eqs. (7-7.11). Is there
a cutoff frequency for plane-wave propagation down the pipe? If so, adopt
some plausible values for the system’s parameters and estimate the cutoff
frequency’s order of magnitude.

7-37 Determine an expression for the insertion loss for the model of a straight-
through muffler (Fig. 7-24) represented by Eqs. (7-7.11a) to (7-7.14).
Sketch IL versus kL for Aout/Apipe = 3, nρ/MA = 100Apipe/L

2.



CHAPTER EIGHT

RAY ACOUSTICS

8-1 WAVEFRONTS, RAYS, AND FERMAT’S

PRINCIPLE

The concept of a wavefront plays a central role in that branch of acoustical
theory known as geometrical acoustics or ray acoustics. A wavefront is any
moving surface along which a waveform feature is being simultaneously re-
ceived (see Fig. 8-1). For example, if the time history of acoustic pressure has
a single pronounced peak that arrives at x at time τ(x), the set of all points
satisfying t = τ(x) describes the corresponding wavefront at time t. For a
constant-frequency disturbance, the wavefronts are surfaces along which the
phase of the oscillating acoustic pressure everywhere has the same value. It is
not necessarily assumed that the amplitude along a wavefront is constant or
that the wavefront is planar; however, the theory described below tacitly as-
sumes that the amplitude varies only slightly over distances comparable to a
wavelength and that the radii of curvature of the wavefront are substantially
larger than a wavelength.

Ray Paths in Moving Media

The theory of plane-wave propagation described in Sec. 1-7 predicts that
wavefronts move with speed c when viewed in a coordinate system in which
the ambient medium appears at rest. If the ambient medium is moving with
velocity v, the wave velocity cn seen by someone moving with the fluid be-
comes† v+cn in a coordinate system at rest. Here n is the unit vector normal
to the wavefront; it coincides with the direction of propagation if the coordi-

† G. G. Stokes, “On the effect of wind on the intensity of sound,” Rep. Br. Assoc. Adv. Sci.,
27th Meet., Dublin, 1857, pt II, Misc. Commun., pp. 22–23; G. Jaeger, “On the propagation
of sound in moving fluid,” Sitzungsber. Kais. Akad. Wiss. (Vienna), Math-Naturwiss. Kl.,

419
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Figure 8-1 Concept of a wavefront. Points over which the wavefront simultaneously passes
receive the same waveform feature at the same time.

nate system is moving with the local ambient fluid velocity v. However, the
direction of propagation perceived by a stationary observer is not necessarily
the same as that of n. The latter is independent of the velocity of the frame of
reference, but the direction of propagation is not. (Throughout the following
four sections, the subscript on vo is omitted.)

Let xP (t) be a moving point (Fig. 8-2) that lies on the wavefront t = τ(x)
at an initial time. Then, according to the reasoning outlined above, xP (t)
will always lie on the moving wavefront if its velocity is

dxP
dt

= v(xP , t) + n(xP , t)c(xP , t) = vray. (8-1.1)

Here we allow for the possibility that v and c may vary with both position
and time. The line described in space by xP (t) versus t is a ray path; the
function xP (t) is a ray trajectory. The speed of the wavefront normal to itself
is the dot product of the right side of (1) with n; this product equals c+v ·n,
which is less than the magnitude |cn+ v| of the ray velocity vray.

Equation (1) suffices to determine the wavefront at successive times and
represents an extension of Huygens’ principle. For inhomogeneous media,

sec. IIa 105:1040–1046 (1896); E. H. Barton, “ On the refraction of sound by wind,” Phil.
Mag. (6)1:159–165 (1901).
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Figure 8-2 Concept of a ray path. The point xP (t) moves with velocity cn+v such that
it is always on wavefront τ(x) = t and in so doing traces out a ray path.

however, it is awkward to use by itself because it requires a knowledge of n
at each instant along the path (which would require the construction of the
wavefront surface in the vicinity of the ray at closely spaced time intervals).
To circumvent this, we derive an additional differential equation that allows
the prediction of the time rate of change of n. Instead of dealing with n

directly, we use a wave-slowness vector† s(x) = ∇τ(x), which is parallel to
n because ∇τ is perpendicular to the surface t = τ(x).

The label “wave-slowness” applies because the reciprocal of |s| is the speed
c+n ·v with which the wavefront moves normal to itself. The demonstration
of this proceeds from a consideration of the wavefront at closely spaced times
t and t + ∆t. For a given ray trajectory xP (t), the position at t + ∆t is
approximately xP (t) + ẋP (t)∆t, so t+∆t ≈ τ(xP + ẋP∆t), which in turn
is approximately τ(xP ) +∆t ẋP · ∇τ . However, t = τ(xP ) and ∇τ = s, so
this requires that ∇τ · ẋP = 1 or, from (1), that

s · (cn+ v) = 1 cs · n = 1− v · s (8-1.2)

for any given point on the waveform at any given time. Since s is parallel to
n, one has s = (s · n)n and n = s/(s · n), and the above therefore yields

s =
n

c+ v · n
, n =

cs

Ω
, (8-1.3)

† For a plane wave of constant frequency, s is k/ω, so it is parallel to the phase velocity
and equal in magnitude to the reciprocal of the phase speed. The terminology dates back
to L. Cagniard, Reflection and Refraction of Progressive Seismic Waves, Gauthier-Villars,
Paris, 1939, trans. E. A. Flinn and C. H. Dix, McGraw-Hill, New York, 1962.
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where
Ω = 1− v · s = 1− v · ∇τ =

c

c+ v · n
. (8-1.4)

Equation (3) substantiates the assertion that |s|−1 = c+n ·v. Also, because
n · n = 1 and s = ∇τ , the above relations give

s2 =
Ω2

c2
, (∇τ)2 =

Ω2

c2
. (8-1.5)

This partial-differential equation is the eikonal equation, τ(x) being the
eikonal.†

A differential equation for the time rate of change of s along a ray trajec-
tory can be derived‡ starting from

ds(xP )

dt
= (ẋP · ∇)s = c(n · ∇)s+ (v · ∇)s, (8-1.6)

where all the indicated quantities are understood to be evaluated at xP (t).
Because n is in the direction of s, the first term has a factor (s · ∇)s, which
can be expressed

(s·∇)s = −s×(∇×s)+ 1
2∇s2 = 0+ 1

2∇
Ω2

c2
= −Ω

c2
∇(v·s)−Ω

2

c3
∇c, (8-1.7)

where we recognize that ∇ × (∇τ) = 0 and we substitute for s2 from Eq.
(5). Subsequent insertion of Eq. (7) and of n = cs/Ω into Eq. (6) yields

ds

dt
= −Ω

c
∇c−∇(v · s) + (v · ∇)s. (8-1.8)

† In optical literature, the eikonal W (x) is defined to be coτ(x), where co is a reference
(constant) wave speed, e.g., the speed of light in vacuo. Equation (5) then, with v set to
0, would yield (∇W )2 = (co/c)2, where co/c is the index of refraction. The introduction
of a reference sound speed, however, seems superfluous in the present context, so τ(x) is
here referred to as the eikonal. See M. Born and E. Wolf, Principles of Optics, 4th ed.,
Pergamon, Oxford, 1970, pp. 110–112. The term was introduced into optics by H. Bruns in
1895; the concept, however, is due to W. R. Hamilton (1832). The version given here of the
eikonal equation was derived for motion of weak discontinuities in a fluid by G. S. Heller,
“Propagation of acoustic discontinuities in an inhomogeneous moving liquid medium,” J.
Acoust. Soc. Am. 25:950–951 (1953), and by J. B. Keller, “Geometrical acoustics, I: The
theory of weak shock waves,” J. Appl. Phys. 25:938–947 (1954).
‡ The earliest of the many different published derivations is E. A. Milne, “Sound waves in
the atmosphere,” Phil. Mag. (6)42:96–114 (1921). The analysis of ray paths in a moving
stratified fluid dates back to Jaeger, “On the propagation of sound,” and Barton, “On the
refraction of sound by wind,” and to S. Fujiwhara, “On the abnormal propagation of sound
waves in the atmosphere,” Bull. Cent. Meteorol. Obs. Jap. vol. 1, no. 2 (1912); vol. 4,
no. 2 (1916), and R. Emden, “Contributions to the thermodynamics of the atmosphere,
II: On the propagation of sound in a wind-moving polytropic atmosphere,” Meterorol. Z.
53:13–29, 74–81, 114–123 (1918). For a medium without ambient flow, the ray equations
date back to Snell, Huygens, and W. R. Hamilton, although they were rarely applied to
the propagation of sound in inhomogeneous media until the twentieth century.
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A further reduction follows from the vector identity [of which that in Eq.
(7) is a special case]

∇(v · s) = v × (∇× s) + s× (∇× v) + (v · ∇)s+ (s · ∇)v, (8-1.9)

where the first term is zero because s is a gradient.
The ray-tracing equations are Eqs. (1) and (8), which we here write, with

the substitution n = cs/Ω and with the identity (9), as†

dx

dt
=
c2s

Ω
+ v, (8-1.10a)

ds

dt
= −Ω

c
∇c− s× (∇× v)− (s · ∇)v, (8-1.10b)

or (in cartesian coordinates)

dsi
dt

= −Ω
c

∂c

∂xi
−

3
∑

j=1

sj
∂

∂xi
vj . (8-1.10b′)

(Here and in what follows the subscript P is omitted.) These equations do not
depend on the spatial derivatives of s; so if c(x, t) and v(x, t) are specified,
and if a ray position x and wave-slowness vector s are specified at time to,
Eqs. (10) can be integrated in time to determine x and s at any subsequent
instant; no information concerning neighboring rays is required. These are
nonlinear, but they are ordinary differential equations of first order, so they
are amenable to standard numerical techniques of integration.‡

† These are a special case of the general ray equations for propagation of a wave packet of
slowly varying frequency ω(x, t) and wave number k(x, t) in a time-dependent inhomoge-
neous anisotropic medium. If F (ω,k,x, t) = 0 describes the dispersion relation at time t
near point x rays are given by the equations (in cartesian coordinates)

dω

dt
= − ∂F/∂t

∂F/∂ω

dxi

dt
= −∂F/∂ki

∂F/∂ω

dki

dt
=
∂F/∂xi

∂F/∂ω
.

In our particular case, F = (ω − v · k)2 − c2k2 = 0 comes from the eikonal equation.
For a derivation, see G. B. Whitham, “Group velocity and energy propagation for three-
dimensional waves,” Common. Pure Appl. Math. 14:675–691 (1961); “A note on group
velocity,” J. Fluid Mech. 9:347–352 (1960). Various versions of the second ray-tracing
equation (10b) are reviewed and shown to be equivalent by R. Engelke, who gives a deriva-
tion of his own in “Ray trace acoustics in unsteady inhomogeneous flow,” J. Acoust. Soc.
Am. 56:1291–1292 (1974).
‡ See, for example, R. W. Hamming, “Numerical solution of ordinary differential equations,”
in M. Klerer and G. A. Korn (eds.), Digital Computer User’s Handbook, McGraw-Hill,
New York, 1967, chap. 2.6; C. B. Moler and L. P. Solomon, “Use of pplines and numerical
integration in geometrical acoustics,” J. Acoust. Soc. Am. 48:739–744 (1970).
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Fermat’s Principle

If l denotes distance along a ray path, then dx/dl (abbreviated here as x′)
denotes ray direction. The ray-speed magnitude vray satisfying Eq. (1) is
therefore such that

cn = vrayx
′ − v. (8-1.11)

However, n ·n is 1 and x′
·x′ is also 1, so vray satisfies the quadratic equation

v2ray − 2vrayv · x′ − (c2 − v2) = 0,

whose positive solution, given c2 > v2, is

vray = v · x′ + [c2 − v2 + (v · x′)2]1/2. (8-1.12)

The time that a ray takes to go from xA to xB is consequently

TAB =

∫ lB

lA

dl

v · x′ + [c2 − v2 + (v · x′)2]1/2
. (8-1.13)

Here we assume that c and v are functions only of position, such that for a
given ray path they can be regarded as functions of distance l along the path.

Fermat’s principle† is that the actual ray path connecting xA and xB is
such that it renders the travel-time integral TAB stationary with respect to
small virtual changes in the path. If a small variation x(l) → x(l) + δx(l)
is imposed on the actual path (see Fig. 8-3), the resulting variation δTAB
should be zero to first order in the δx.

A proof for when the path has no intermediate reflections proceeds with
change of integration variable to the projection q of the ray path on the
straight line connecting xA and xB, such that dl becomes (xq ·xq)1/2dq and
x′ becomes xq/(xq · xq)

1/2, where xq is the derivative of x with respect to
q. The travel time TAB then becomes the integral from 0 to |xB − xA| over
q of L(xq,x), where

L(xq,x) =
x2q

v · xq + [(c2 − v2)x2q + (v · xq)2]1/2
. (8-1.14)

The requirement that the travel time be stationary then leads to the Euler-
Lagrange equation†

† Pierre de Fermat (1657) originally conjectured that the optical travel time is a minimum
(principle of least time), but it was later recognized by W. R. Hamilton (1833) that there
are exceptions to this and that the correct statement is that the actual path is stationary
with respect to other adjacent paths. The proof that the principle also applies to acoustic
waves in moving media is due to P. Uginčius. “Ray acoustics and Fermat’s principle in a
moving inhomogeneous medium,” J. Acoust. Soc. Am. 51:1759–1763 (1972).
† For introductory discussions of the calculus of variations, see J. Mathews and R. L.
Walker, Mathematical Methods of Physics, Benjamin, New York, 1965, pp. 304–326; S.
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Figure 8-3 Fermat’s principle: the travel time of the actual ray path connecting two
points is stationary with respect to small virtual changes.

d

dq

∂L

∂xq
− ∂L

∂x
= 0. (8-1.15)

(Here ∂L/∂x denotes the vector with components ∂L/∂x, ∂L/∂y, ∂L/∂z.)
Algebraic manipulations with the relations and definitions derived earlier in
this section reduce the partial derivatives of the function L(xq, x) to

∂L

∂xq
=

n

n · vray
= s, (8-1.16a)

∂L

∂x
= −dl/dq

vray

[

Ω

c
∇c+ s× (∇× v) + (s · ∇)v

]

. (8-1.16b)

so Eq. (15) is equivalent to the ray-tracing equation (10b). Fermat’s principle
is therefore a consequence of the ray equations.

In a wider sense, Fermat’s principle also applies to ray paths whose direc-
tions change abruptly. It leads to the predictions, inferred earlier (Chap. 3)
from the trace-velocity matching principle, that angle of reflection equals an-
gle of incidence (law of mirrors) upon reflection at a flat surface and that angle
of refraction is related to angle of incidence by Snell’s law (in the absence of
ambient flow) on transmission through a planar interface. The principle also
correctly predicts paths by which diffracted waves can reach a listener.

Example A source and listener (see Fig. 8-4) are at heights h and z above
a plane interface separating two fluids with sound speeds cI and cII, where

H. Crandall, D. C. Karnopp, E. F. Kurtz, Jr., and D. C. Pridmore-Brown, Dynamics of
Mechanical and Electromechanical Systems, McGraw-Hill, New York, 1968, pp. 1–35, 417–
424. There is an analogy between Eq. (15) and Lagrange’s equations of classical mechanics,
between L(xq , x) and a lagrangian, and between Fermat’s principle and Hamilton’s prin-
ciple.
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cII > cI. Two of the stationary paths are the direct path and the reflected
path. Another possibility is a path that goes from source to interface along
a line that makes an angle θ with the vertical, then proceed just below the
surface along a horizontal line, and then emerges into medium I along a path
that proceeds from surface to listener at an angle φ with the vertical. The
travel time along such a path is

TAB =
h

cI cos θ
+
r − h tan θ − z tanφ

cII
+

z

cI cosφ
, (8-1.17)

where r is the total horizontal distance. The requirement that TAB be sta-
tionary with respect to variations in θ leads to the equation ∂TAB/∂θ = 0
or, after some algebra, to sin θ = cI/cII. Consequently, θ is the critical
angle θc = sin−1(cI/cII), that is, the angle at which the reflection-coefficient
magnitude first becomes –1. The requirement ∂TAB/∂φ = 0 similarly leads to
φ = sin−1(cI/cII). The only constraint on the solution is that the travel time
along the middle segment must be positive, so r must exceed (h+ z) tan θc.

Figure 8-4 Possible ray paths connecting source and listener above a plane interface
separating two dissimilar fluids.

This refraction arrival path,† which we here infer from Fermat’s principle,
lies outside the domain of what is normally referred to as geometrical acous-
tics. The existence of such a path, however, is confirmed by the solution of the

† C. B. Officer, Introduction to the Theory of Sound Transmission, McGraw-Hill, New
York, 1958, pp. 195–201; W. M. Ewing, W. S. Jardetzky, and F. Press, Elastic Waves
in Layered Media, McGraw-Hill, New York, 1957, pp. 93–102; K. O. Friedrichs and J. B.
Keller, “Geometrical acoustics, II: diffraction, reflection, and refraction of a weak spherical
or cylindrical shock at a plane interface,” J. Appl. Phys. 26:961–966 (1955). Applications
of the refraction arrival to geophysical exploration date back to A. Mohorovičić (1910).
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boundary-value problem for a transient point source above a plane interface
above two fluids. If r is sufficiently large, the first arrival comes with a travel
time given by Eq. (17), with θ and φ set to θc, and arrives from a direction
that is proceeding obliquely upward at an angle of θc with the vertical.

The applicability of Fermat’s principle to the prediction of paths like that
of the refraction arrival is a principal tenet of the geometrical theory of diffrac-

tion.‡ A diffracted ray is a ray which originates at an interface, a surface, or
an edge and which propagates with all the attributes of a ray generated by
a real source but which is created by a process inexplicable (and therefore
labeled as diffraction) within the confines of the ordinary geometrical acous-
tics theory. The portion of the refraction arrival path from the interface to
the listener is an example of a diffracted ray.

8-2 RECTILINEAR SOUND PROPAGATION

For a homogeneous medium in which c and v are constant, a consequence
of the second ray-tracing equation (8-1.10b) is that s and n are constant.
The ray velocity dx/dt is also constant, and the ray paths are straight lines.
This deduction, for the circumstances just described, is the law of rectilinear

propagation of sound.

Parametric Description of Wavefronts

Suppose a wavefront (moving toward larger values of z) is given by z = f(x, y)
at t = 0. The ambient velocity v is zero, and c is constant. It is desired to
describe the wavefront at some later time t (see Fig. 8-5).

The ray passing through a point xP on the initial wavefront is moving in
the direction n, where (with fx = ∂f/∂x)

n =

{

∇[z − f(x, y)]

|∇[z − f(x, y)]|

}

x=xP

=
ez − fxex − fyey
(1 + f2

x + f2
y )

1/2
. (8-2.1)

At time t, the ray is at x = xP + ctn. If we let α and β represent xP and
yP , this position can be written

‡ J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am. 52:116–130 (1962);
“A geometrical theory of diffraction” in L. M. Graves (ed.), Calculus of Variations and Its
Applications, Proc. Symp. Appl. Math., vol. 8, McGraw-Hill, New York, 1958, pp. 27–52;
G. L. James, Geometrical Theory of Diffraction for Electromagnetic Waves, Peregrinus,
Stevenage, England, 1976, pp. 97–98, 130–131, 169–171.
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Figure 8-5 Construction of a wavefront at time t when the wavefront at time t = 0 is
given. The ambient fluid velocity is zero and the ambient sound speed is constant.

x(α, βt) = αex + βey + f(α, β)ez +
ct(ez − fαex − fβey)

(1 + f2
α + f2

β)
1/2

. (8-2.2)

This gives a parametric description of the wavefront at time t through the
parameters α and β; any choice of α and β generates a point on the wavefront.
Thus, an analytical expression replaces Huygens’ graphical construction.

Variation of Principal Radii of Curvature along a Ray

Any surface locally resembles an elliptical bowl (concave or convex) or a sad-
dle and has two principal radii of curvature. If one picks any point (Fig. 8-6)
on the surface, chooses it to be the origin, and lets the z direction be perpen-
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dicular to the surface at that point, the x and y axes can always be selected
in such a way that the surface near the selected point can be described to
second order in x and y by

z =
x2

2r1
+

y2

2r2
, (8-2.3)

where r1 and r2 (possibly negative) are the two principal radii of curvature.
[The identification follows since a circle in the xz plane of radius r1 that is
tangential to the z = 0 plane is given by (z− r1)2+x2 = r21 or by z = x2/2r1
for z ≪ r1, |x| ≪ r1.]

Figure 8-6 Characteristic local shapes of surfaces: (a) elliptical bowl; (b) saddle shape;
(c) geometry used in the discussion of the variation of wavefront radii of curvature along
a ray.

The variation of r1 and r2 along a ray moving through a homogeneous
quiescent medium can be deduced from Eq. (2). One chooses the coordinate
system so that the ray passes through the origin t = 0 in the +z direction
and f(α, β) equals α2/2r01 + β2/2r02 (to second order in α and β). Then, to
second order in α and β, the z component of (2) yields
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z = ct+
α2

2r01

(

1− ct

r01

)

+

(

β2

2r02

)(

1− ct

r02

)

. (8-2.4)

However, to first order (which is all that is required) in α and β, the x and y
components of Eq. (2) yield α(1 − ct/r01) and β(1 − ct/r02) for x and y; thus
to second order in x and y one has

z = ct+
1
2x

2

r01 − ct
+

1
2y

2

r02 − ct
. (8-2.5)

Since this is of the same form as Eq. (3), the directions associated with the
principal radii of curvature remain constant along any given ray. The radii
themselves decrease by ct during time t; or, equivalently, after the ray has
traveled distance ∆z, they are each decreased by ∆z. This assumes that the
wavefront is concave along the ray of interest. If it is convex or saddle-shaped
such that, say, r01 < 0, |r1| increases with the distance of propagation, the
incremental increase equaling the incremental change of distance along the
ray. A decrease of wavefront curvature radius is associated with a focusing of
rays and an increase with a defocusing.

Caustics

Equation (5) indicates that if, say, r01 > 0 and r02 > r01 , the wavefront will
develop a cusp (r1 = 0) at time t = r01/c. Points at which this occurs are
points at which adjacent rays intersect. The locus of all such points, each of
which corresponds to a given ray proceeding out from the original wavefront,
is a caustic surface (see Fig. 8-7). Since the wavefront has a cusp at the point
where it touches a caustic, the assumption that the wavefront everywhere
locally resembles a propagating plane wave is no longer approximately valid
and the basic tenets of geometrical acoustics are inapplicable. The extension
of the theory to cover such contingencies is deferred to Sec. 9-4.

The geometrical-acoustics prediction, however, of where the caustics occur
is of intrinsic interest because it indicates where abnormally high amplitudes
can be expected. Since the concept of a caustic applies also to rays in inhomo-
geneous media, the location and meteorological circumstances of intrinsically
noisy activities,† e.g., static tests of large rocket engines, are often carefully
selected so that distant populated areas are not touched by caustics.

Example A wavefront z = f(x) has a concave radius of curvature R(x) with
a minimum value Ro at x = 0. The z axis is perpendicular to the wavefront

† R. N. Tedrick, “Meteorological focusing of acoustic energy,” Sound: Uses Control 2(6):24–
27 (1963); J. Reed, “Climatology of airblast propagations from Nevada Test Site nuclear
airbursts,” Rep. SC-RR-69-572, Sandia Laboratories, Albuquerque, 1969, available from
National Technical Information Services, Washington, Accession No. N70-29525.
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Figure 8-7 Formation of a caustic. [From A. D. Pierce, J. Acoust. Soc. Am. 44:1055
(1968).]

at x = 0; also, the origin is selected so that f(0) = 0. We seek to describe
the caustic in the vicinity of the point x = 0, z = Ro (see Fig. 8-8).

Solution Since the ray passing through the wavefront at x = α touches the
caustic when ct = R(α), Eqs. (2) yield

x = α−R(α)f ′(α)[1 + (f ′)2]−1/2, (8-2.6a)

z = f(α) +R(α)[1 + (f ′)2]−1/2. (8-2.6b)

(primes denoting derivatives with respect to α) as the parametric description
of the caustic. If these are expanded in a power series in α, we find

x ≈ α− (Ro +
1
2R

′′
oα

2)(αf ′′
o + 1

6f
iv
o α

3)[1− 1
2 (f

′′
o α)

2]

≈ (1 −Rof
′′
o )α− [ 12R

′′
of

′′
o + 1

6Rof
iv
o − 1

2 (f
′′
o )

3Ro]α
3

z ≈ 1
2f

′′
0 α

2 + (Ro +
1
2R

′′
0α

2)[1− 1
2 (f

′′
o α)

2]

≈ Ro + [ 12f
′′
o − 1

2 (f
′′
o )

2Ro +
1
2R

′′
0 ]α

2,

with the zero subscript implying evaluation at α = 0. Note that the geometry
requires fo, f ′

o, f
′′′
o , and R′

o each to be zero.
Since the radius of curvature of a line is given by

R(α) =
[1 + (f ′)2]3/2

f ′′(α)
(8-2.7)
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Figure 8-8 Geometry adopted for study of the shape of a caustic surface near its vertex.

one finds f ′′
o = 1/Ro and R3

of
iv
o = 3 − RoR

′′
o , so the above approximate

description of the caustic reduces to

x ≈ −1

3

R′′
o

R0
α3, z −Ro ≈ 1

2R
′′
oα

2. (8-2.8)

The caustic is consequently given by

x = ∓
(

8

9R2
oR

′′
o

)1/2

(z −Ro)
3/2 (8-2.9)

in the vicinity of z = Ro, x = 0.

The characteristic cusp with which the two branches of the caustic meet is
sometimes called an arête.† Beyond the arête and between the two branches,
three rays, rather than one, pass through each point, and the wavefront has
a folded form.‡

† W. D. Hayes, in “Round table discussion on sonic boom problems,” Aircraft Engine Noise

and Sonic Boom, AGARD Conf. Proc. 42:36–38 (1969).
‡ See, for example, the shadowgraph by W. J. Pierson, Jr. of water waves focused by
passage over a bottom protuberance, given by J. J. Stoker, Water Waves, Interscience,
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8-3 REFRACTION IN INHOMOGENEOUS MEDIA

That sound waves refract (change their propagation direction) on passing
through an interface separating two fluids with different sound speeds is dis-
cussed in Sec. 3-6. In continuous media, refraction is characterized by a grad-
ual bending of ray paths rather than by an abrupt change of direction. Here
we explore the implications of the ray-tracing equations as regards such ray
bending.

Refraction by Sound-Speed Gradients

When the ambient fluid velocity is zero, and when the sound speed is inde-
pendent of time, the wave slowness s becomes n/c and Eqs. (8-1.10) reduce
to

dx

dt
= c2s,

ds

dt
= −1

c
∇c. (8-3.1)

To determine the influence of the sound-speed gradient on the bending of
rays, we consider the ray that initially passes through the origin in the +x
direction, such that s = ex/c(0) at t = 0. Then, to first order in t, the second
of Eqs. (1) yields

s =
1

c
ex −

1

c
(∇c) t, (8-3.2)

where c and its derivatives (cx, cy, cz) are understood to be evaluated at (0,
0, 0). It accordingly follows from the equations for dy/dt and dz/dt that y
and z are proportional to t2 for small t. Then, because x = ct to lowest order,
the first of Eqs. (1) yields, to lowest nonvanishing order in x,

y = −1

2

cy
c
x2, z = −1

2

cz
c
x2, (8-3.3)

which are the equations of parabolas.
Suppose, moreover, that one has selected the coordinate axes in such a

way that, at x = 0, cz = 0 and ∇c is parallel to ey. Then the ray path is
locally curved toward negative y if cy > 0 and curved toward positive y if
cy < 0. In either case the radius of curvature of the ray path is c/|cy| (see
Fig. 8-9).

The above discussion leads to the conclusion that if a sound ray is moving
through a medium with variable sound speed, the ray curves away from its di-
rection of propagation if the component ∇⊥c of ∇c transverse to the direction
of propagation is nonzero. The ray bends in the plane of ∇⊥c and the local

New York, 1957, p. 135. Analogous features appear in schlieren photographs of shock
waves after passage through jets; see, for example, S.-L. V. Hall, “Distortion of the sonic
boom pressure signature by high-speed jets,” J. Acoust. Soc. Am. 63:1749–1752 (1978).
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Figure 8-9 Ray-path curvature in a medium with spatially varying sound speed. Ray
bends in plane of transverse gradient ∇⊥c and of ray path, away from direction of ∇⊥c
with a radius of curvature equal to c/|∇⊥c|.

ray path but away from the direction of ∇⊥c, toward the lower-sound-speed
side. The radius of curvature of the ray path is c/|∇⊥c|, or c/(|∇c| sin θo),
where θo is the angle between the ray direction and the direction of ∇c.

The bending of rays toward regions of lower sound speed is explicable in
terms of wavefronts. Since the portion of the wavefront on the low-sound-
speed side of a ray is moving slower, the wavefront must tilt toward that
side. Since the ray (given v = 0) remains normal to the wavefront, it bends
in that direction.

Rays in a Medium with Constant-Sound-Speed

Gradient†

When ∇c is everywhere the same, the ray path is always a perfect arc of a
circle. To demonstrate this, it is sufficient to assume that c varies only with z
and that the ray is moving in the xz plane, so sy = 0. Equation (8-1.5) with
v = 0 therefore gives s2z = c−2 − s2x, and so the relation sz/sx = dz/dx [from

† A tabulation of sound-speed profiles for which the ray-tracing equations can be integrated
in closed form is given by A. Barnes and L. P. Solomon, “Some curious analytical ray paths
for some interesting velocity profiles in geometrical acoustics,” J. Acoust. Soc. Am. 53:147–
155 (1973).
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Eq. (1)] yields
(

dz

dx

)2

− 1

c2s2x
= −1. (8-3.4)

Furthermore, the second of Eqs. (1) predicts that sx is constant when c =
c(z).

That Eq. (4) describes a circle when dc/dz is constant results because the
algebraic equation

(x − a)2 + (z − b)2 = r2c

has the property

(

dz

dx

)2

=

(

x− a

z − b

)2

=
r2c

(z − b)2
− 1. (8-3.5)

Consequently, a comparison of Eqs. (4) and (5) indicates that if c = co − αz
(such that ∇c = −αez is constant), the integral of Eq. (4) is a circle of radius
rc = 1/αsx centered at a point on the line (see Fig. 8-10) at the virtual height
z = co/α where the sound speed extrapolates to zero. Of the possible rays
passing through the point, those moving perpendicular to the sound-speed
gradient bend the most.

Figure 8-10 For a medium in which sound speed varies linearly with height, ray path is
arc of circle centered at height where extrapolated sound speed goes to zero.
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Refraction by Wind Gradients

Let us next consider a ray that passes through the origin at t = 0 with
wavefront normal direction no. The corresponding initial value of the wave-
slowness vector is determined from Eq. (8-1.3); Eq. (8-1.10b′) therefore inte-
grates to first order in t to

s ≈ (c+ v · no)
−1[no − t∇(c+ v · no)]. (8-3.6)

Equation (8-1.10a) consequently yields the power-series expansion

x ≈ (cno + v)t+ 1
2 t

2[(vray · ∇)(cno + v)− c∇⊥(c+ v · no)], (8-3.7)

where ∇⊥ = ∇ − no(no · ∇) is the gradient transverse to no, and vray is
cno + v. All coefficients and derivatives are understood to be evaluated at
the origin.

The plane of bending of the ray is that containing the two vectors ẋ and
ẍ that appear as coefficients of t and 1

2 t
2 in Eq. (7). The ray bends toward

the direction of the component ẍ⊥ of ẍ that is transverse to ẋ; the radius of
curvature rc is ẋ · ẋ/|ẍ⊥|.

Many ambient velocity fields of interest are approximately such that
(v · ∇)v = 0, so v varies negligibly with translation along the direction
of flow. With this assumption and with the neglect of the slight difference
between no and the direction of ẋ, Eq. (7) leads to

ẍ⊥ ≈ c[(no · ∇)v −∇(c+ v · no)⊥] ≈ −c∇⊥c− cno × (∇× v). (8-3.8)

This applies, in particular, if |v| ≪ c or if no is parallel to v. From this
relation one concludes that the ray curves in a direction which is opposite to
that of ∇⊥c+no× (∇×v), with a radius of curvature approximately equal
to c divided by the magnitude of this vector.

As an example, suppose no = ez cos θ + ex sin θ and that c, vx, and vy
depend only on vertical distance z, while vz = 0. Then Eq. (8) reduces to

ẍ⊥ = −c
(

dc

dz
sin θ +

dvx
dz

)

e2 + c

(

dvy
dz

cos θ

)

ey, (8-3.9)

where e2, equal to ez sin θ − ex cos θ, is the unit vector in the xz plane that
is perpendicular to no.

The y component of ẍ⊥ is associated with the ray’s sideways drift caused
by crosswinds; it is often of minor consequence, either because rays of interest
are nearly horizontal (cos θ is small) or because the net shift in ray direction
due to this component averages out to nearly zero. Its neglect leads to a
radius of curvature† equal to

† B. Gutenberg, “Propagation of sound waves in the atmosphere,” J. Acoust. Soc. Am.
14:151–155 (1942).
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rc =
c

(dc/dz) sin θ + dvx/dz
. (8-3.10)

A positive value implies downward bending; a negative value implies upward
bending.

A further approximation, valid for rays proceeding in nearly horizontal
directions, is to replace sin θ by 1, so that c sin θ + vx is replaced by c + vx
in the above. This leads to the simple rule that the ray undergoes refraction
as if it were moving in a medium with no winds but with an effective sound
speed ceff = c + vx, where vx is the component of the wind velocity in the
vertical plane containing the ray. From this viewpoint, wind-speed gradients
and sound-speed gradients have the same influence on sound rays. However, if
θ is less than, say, 30◦, the influence of a wind-speed gradient is substantially
greater than that of a sound-speed gradient of the same magnitude.

8-4 RAYS IN STRATIFIED MEDIA

The ambient properties of the atmosphere and of the oceans (see Fig. 8-11)
vary primarily with height or depth, and the ambient fluid velocity is primar-
ily horizontal. Consequently, the stratified-fluid model discussed above [with
c = c(z), v = v(z), and vz = 0] is commonly used in approximate analyses
of sound propagation.

The Ray Integrals

For a stratified fluid, the ray-tracing equation (8.1.10b′) requires that sx and
sy both be constant along any given ray. This can be viewed either as a
consequence of the trace-velocity matching principle discussed in Sec. 3-5 or
as a generalization of Snell’s law. Furthermore, once sx and sy are specified,
sz can be determined as a function of height z from Eq. (8-1.5), i.e.,

sz = ±
[

(

Ω

c

)2

− s2x − s2y

]1/2

. (8-4.1)

(Note that 1−v ·s is independent of sz since v does not have a z component.)
Thus, Eqs. (8-1.10b) can be regarded as solved, and from Eqs. (8-1.10a) one
obtains† [with dx/dz = (dx/dt)/(dz/dt) and dt/dz = 1/(dz/dt)]

dx

dz
=
c2sx +Ωvx

c2sz
, o

dt

dz
=

Ω

c2sz
, (8-4.2)

† These were first derived by Fujiwhara, “On the abnormal propagation of sound.”
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Figure 8-11 Representative sound-speed-versus-height profiles for (a) the atmosphere
and (b) the oceans. These profiles are typical, but there is considerable variability with
seasons, geographical location, and meterological conditions, especially near the ground or
the sea surface. The sound speed in the atmosphere increases again with increasing height
above 90 km. [Based on tables and figures in A. E. Cole, A. Court, and A. J. Kantor,
“Model Atmospheres,” chap. 2 in S. L. Valley (ed.), Handbook of Geophysics and Space
Environments, Air Force Cambridge Research Laboratories, 1965, and by M. Ewing and
J. L. Worzel, “Long Range Sound Transmission,” in Propagation of Sound in the Ocean,
Geological Society of America, Memoir 27, 1948.]

with an analogous equation for dy/dz.
Since the right sides of Eqs. (2) are functions only of z, one can determine

x, y, and t as functions of z (and of sx and sy) by direct integration, e.g.,

x = xo +

∫ z

z0

c2sx + (1 − v · s)vx
c2sz

dz, (8-4.3)

where xo is the value of x at height zo.
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Channeling of Ray Paths

In the application of Eqs. (3) and its counterparts, one must take into account
the fact that a ray is confined to a height region for which s2z ≥ 0. For an
actual ray, x, y, and t may not be single-valued functions of z since sz changes
sign whenever the ray reaches a height (turning point) at which s2z goes to
zero (see Fig. 8-12). The initial position and direction of the ray determine sx
and sy and the initial sign for sz. Providing that 1− v · s > 0, the sign of sz
will be the same as that of dt/dz [see Eq. (2)] and will therefore be positive
for a ray proceeding obliquely up and negative for one proceeding obliquely
down.

Figure 8-12 Ray channeled between turning points.

Suppose the initial sign is positive. Then Eq. (3) and its counterparts
describe the ray trajectory up until it reaches that height (providing one
exists) at which s2z first becomes zero. At that point the ray trajectory is
horizontal and curving down, so it must thereafter return to lower heights.
Let zU be the height of this upper turning point, and let xU1, yU1, tU1 be the
values of x, y, and t at which it is first reached. Thereafter, sz, is negative,
and subsequent values of x for the next segment of the ray trajectory are
given by

x = xU1 +

∫ zU

z

c2sx +Ωvx
c2|sz|

dz. (8-4.4)

Analogous formulas hold for the corresponding values of y and t. Such rela-
tions hold up until the ray reaches that lower turning point zL (if one exists)
at which s2z again becomes zero and at which sz again changes sign.

Note that although sz vanishes at zU , integrals like that in Eq. (4) are
nevertheless finite. Near zU , the denominator factor |sz| goes to zero as (zU−
z)1/2, so the integrand remains integrable.
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If a ray trajectory has both upper and lower turning points, it is channeled.
Such a trajectory will be periodic both in time and in horizontal displacement.
The net x displacement in going from the lower turning point to the upper
turning point is the same as that from the upper turning point to the lower
turning point and is the same for every such segment of the ray path. The
same statement holds for y displacements and travel-time segments. The
average horizontal velocity of the ray is

vH =
(∆x)L→Uex + (∆y)L→Uey

(∆t)L→U
, (8-4.5)

where (∆t)L→U is the net time required to go from the lower turning point
to the upper turning point.

If the ray reaches a horizontal interface, such as the upper surface of the
ocean for underwater sound propagation, the wave associated with it will be
partially reflected and partially transmitted. However, so far as the reflected
wave is concerned, its wavefronts will also be locally planar and can also be
described in terms of rays. Thus, the incident ray gives rise to a reflected ray
that represents a continuation of the incident path back into the fluid. The
trace-velocity matching principle requires sx and sy to be the same for the
reflected ray as for the incident ray, so the only ray parameter that changes
on ray reflection is sz, which simply changes sign. However, at such a surface,
sz does not go to zero, as is the case for internal reflection.

Given the presence of interfaces, one has the possibility† of a ray being
channeled between an upper interface and a lower turning point, an upper
interface and a lower interface, etc.

Rays in Fluids without Ambient Flow

When the medium has no ambient fluid velocity, the ray path is always in
the same vertical plane and one can orient the coordinate system so that
sy = 0. Then sx can be identified [see Eq. (8-1.3)] as ±(sin θ)/c, where θ is
the angle between the ray direction and the vertical; sx is positive for a ray
proceeding obliquely in the +x direction. The constancy of sx along a ray
is thus identical to the elementary version of Snell’s law for refraction at an

† Terminology in underwater sound classifies rays by their upper and lower turning points.
A ray that goes from source to a lower internal turning point, then to the surface, where
it is reflected, is an RSR ray (refracted-surface-reflected). A ray that traverses between
upper and lower internal turning points is a SOFAR ray. A channeled ray is an SLR
(surface-limited ray) or a BLR (bottom-limited ray) if its upper turning point is the ocean
surface or if its lower turning point is the ocean bottom, respectively. See, for example,
Officer, Introduction to the Theory of Sound Transmission, pp. 98–101, 155–161; W. H.
Munk, “Sound channel in an exponentially stratified ocean, with application to SOFAR,”
J. Acoust. Soc. Am. 55:220–226 (1974).
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interface between two fluids. Equation (1) also reduces to

sz = ±(c−2 − c−2
o sin2 θo)

1/2, (8-4.6)

where sin θo is the value of sin θ at the height where the sound speed is co.
The ray is confined to a height regime for which

c2(z) ≤ c
2
o

sin2 θo
, (8-4.7)

and turning points occur at heights where the equality holds. Consequently,
any region of height in which the profile of c versus z has a minimum is a
potential sound-speed channel, e.g., the SOFAR channel in the ocean. Also, if
the sound speed at some depth below an interface has a higher value than that
just below the interface, a ray can be channeled between the interface and
the higher-sound-speed region. The region in which the ray is channeled can
in each case be determined from Eq. (7) without an explicit determination
of the path.

Example: Axial rays Suppose c(z) has a minimum value of co at z = 0
and that near the minimum c = co + α2z2. A model profile† which exhibits
such properties and which is amenable to analytic investigation is that where
1/c2 equals (1/co)

2(1 − z2/L2), with L2 = co/2α
2. For such a model, Eqs.

(2), with dt/dx = (dt/dz)/(dx/dz), can be rewritten with the help of Eq. (6)
as

dx

dz
=

± sin θo
(cos2 θo − z2/L2)1/2

,
dt

dx
=

1− z2/L2

co sin θo
. (8-4.8)

The first leads to the differential equation

sin2 θo

(

dz

dx

)2

+
z2

L2
= cos2 θo,

which has the solution

z = L cos θo sin
x− xo
L sin θo

. (8-4.9)

Thus the ray path crosses z = 0 at intervals of (∆x)U→L of πL sin θo; the
path-repetition distance is twice this. The time required for the ray to travel
the horizontal distance (∆x)U→L is just this distance times the average, over
x, of dt/dx [see Eq. (8)]. Since the average of z2, from Eq. (9), is 1

2L
2 cos2 θo,

one accordingly finds the average horizontal velocity to be

vH =
(∆x)U→L

(∆t)U→L
=

2co sin θo

1 + sin2 θo
. (8-4.10)

† R. R. Goodman and L. R. B. Duykers, “Calculation of convergent zones in a sound
channel,” J. Acoust. Soc. Am. 34:960–962 (1962).
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The above results strictly apply only if c(z) is given by co/[1− (z/L)2]1/2,

but the conclusion, that (∆x)U→L approaches π(c/c′′)1/2o as θo → π/2, ap-
plies to rays channeled in any region‡ where c/(d2c/dz2) at the sound-speed
minimum has the same value. (This presumes that c, c′, and c′′ are continu-
ous.) If c(z) is even about the altitude of its minimum, and if the source is

on the channel’s axis (where c is smallest), the skip distance π(c/c′′)1/2o for
the axial ray, θo = 90◦, is an extremal; adjacent rays intersect on the axis at
this distance and at its multiples, so a sequence of caustics must appear at
horizontal distances of nπ(c/c′′)1/2o , where n = 1, 2, . . .. If the profile is not
symmetric, however, this is not necessarily the case (see Fig. 8-13). Never-
theless, each channeled ray must graze a caustic somewhere between its first
and second turning points.

Abnormal Sound

Audible sound is often received at distances of 200 to 300 km from large
explosions, even though the sound may be inaudible at closer distances (see
Fig. 8-14). The analysis† (air seismology) of the arrival times, angles of inci-
dence, and locations of reception of this abnormal sound is a principal tool
for studying the meteorology of the upper atmosphere.

To explain the phenomenon, let us for simplicity ignore crosswinds, so that
rays from the source stay within a vertical plane. A ray proceeding in the
xz plane from a source on the ground will be such that the angle θ, between
unit wavefront normal n and the vertical, satisfies

sx =
sin θ

c+ vx sin θ
= const. (8-4.11)

Although the ray direction is in general slightly different from that of n, it
is horizontal when n is horizontal. Thus, the ray with initial angle θo turns
back to the ground when it reaches turning-point height ztp that satisfies

c(ztp) + vx(ztp) =
cg

sin θo
, (8-4.12)

‡ How this limit is approached is explored in detail by M. A. Pederson, “Ray theory applied
to a wide class of velocity functions,” J. Acoust. Soc. Am. 43:619–634 (1968); “Theory
of the Axial Ray,” ibid. 45:157–176 (1969); (with D. White) “Ray theory for sources and
receivers on an axis of minimum velocity,” ibid. 48:1219–1248 (1970).
† F. J. Whipple, “The propagation of sound to great distances,” Q. J. R. Meteorol. Soc.
61:285–308 (1935); E. F. Cox, “Abnormal audibility zones in long distance propagation
through the atmosphere,” J. Acoust. Soc. Am. 21:6–16, 501 (1949); A. P. Crary and V. C.
Bushnell, “Determination of high-altitude winds and temperature in the Rocky Mountain
area by acoustic soundings,” J. Meteorol. 12:463–471 (1955); W. L. Donn and D. Rind,
“Natural infrasound as an atmospheric probe,” Geophys. J. R. Astron. Soc. 26:111–133
(1971).
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Figure 8-13 Model underwater SOFAR channel and corresponding ray paths from source
at depth z1 of minimum sound speed. (Note compressed horizontal scale.) Each ray is
labeled by the angle α it initially makes with the horizontal; positive α means that the
ray is initially propagating obliquely downward; α = 0◦ ray is horizontal and remains at
depth z1. Sound speed c(z) is c1[1 + ǫ(η + e−η − 1)] with c1 = 1.492km/s, ǫ = 0.0074,
η = (z−z1)/(z1/2), z1 = 1.3 km. Selected profile is such that the caustic surface lies above
z = z1 and the point where the α = 0◦ ray grazes the caustic is not a vertex (arête) of
the caustic. The focusing on the channel axis is therefore considerably weaker than for a
channel symmetric about z1. [From W. H. Munk, J. Acoust. Soc. Am. 55:222 (1974).]

where cg is the sound speed at the ground. (The wind speed near the ground
is here considered negligible.)

For the atmosphere at middle latitudes, the effective sound-speed profile
c(z) + vx(z) typically has a shape like those sketched in Fig. 8-15. Whether
the peak value that occurs between 30 and 60 km altitude exceeds the value
at the ground depends on the direction associated with increasing x, with
the season of year, and with latitude. Since c + vx typically decreases with
height in the lower portion of the atmosphere (the troposphere), a zone of
silence is formed on the ground at intermediate distances from the source
(see Fig. 8-16). This is sometimes offset† by local meteorological conditions
close to the ground; the profiles in the first 3 km fluctuate in a less systematic
fashion. However, those rays leaving the source with elevation angles of 10◦

† See, for example, T. F. W. Embleton, G. J. Thiessen, and J. E. Piercy, “Propagation in
an inversion and reflections at the ground,” J. Acoust. Soc. Am. 59:278–282 (1976).
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Figure 8-14 Locations where sound was heard (black dots) and not heard (open circles)
following an explosion at Oppau, Germany, on Sept. 21, 1921. The anomalous zone of
audibility, to the east and south, beyond 200 km is explained by a model atmosphere in
which stratospheric winds are blowing toward the east. [From R. K. Cook, Sound 1:13
(1962).]

or greater are generally not refracted back to the ground until they have
reached altitudes of 30 km or higher.

The existence of ray paths that proceed from the ground to the strato-
sphere then to ground requires, from Eq. (12), that c + vx at some altitude
exceed the ground-level sound speed cg. The apparent angle of incidence θo
of the arriving sound (determined from measurement of wavefront horizon-
tal transit speed 1/sx across an array of microphones) yields c(ztp)+vx(ztp).
The arrival time is invariably substantially later (typically about 1 min) than
would be expected for a wave traveling (creeping) directly along the ground
with the sound speed. Such creeping waves (see Sec. 9-5) are frequently de-
tected with sensitive instrumentation when geometrical-acoustics considera-
tions would preclude their existence, but their amplitudes are very weak. The
geometrical-acoustics model retains its validity insofar as dominant arrivals
are concerned.

The striking feature of a zone within which abnormal sound is received
is its abrupt onset at a distance of the order of 200 km (see Fig. 8-16). The
existence of such a critical range follows from ray-theory computations of
the horizontal range R(θo) (skip distance) a ray must travel before it returns
to the ground. For a profile in which c + vx decreases monotonically to a
minimum value and then increases with further altitude increase until it
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Figure 8-15 Model atmospheric profiles of effective sound speed versus height for prop-
agation east to west in northeastern United States. [From D. Rind and W. L. Donn, J.
Atmos. Sci. 32: 1695 (1975).]

Figure 8-16 Representative ray paths east to west in Northern Hemisphere in summer.
[From B. Gutenberg, in T. F. Malone (ed.), Compendium of Meteorology, American Me-
teorological Society, Boston, 1951, p. 374.]
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reaches a maximum value greater than cg at altitude zm, a range R(π/2)
corresponding to grazing incidence θo = π/2 will exist and be of the order of
200 km or more. As θo decreases, R will at first decrease until it reaches some
minimum value Rmin; thereafter it increases up to the range R(θ0,m), where
θ0,m is the value of θo for which Eq. (12) predicts that ztp equals zm. As θo,
decreases below θ0,m, the range takes a sudden large jump [turning point at a
much higher altitude, where c+vx once again reaches c(zm)+vx(zm)], so that
the zone of abnormal audibility is limited by the ranges Rmin and R(θ0,m).
Since R(θo) has a minimum, a caustic must touch the ground at range Rmin.
The abnormal sound is consequently loudest just beyond the inner boundary
of the abnormal-audibility zone.

8-5 AMPLITUDE VARIATION ALONG RAYS

Wave Amplitudes in Homogeneous Media

To gain insight into how wave amplitudes vary along ray paths, we consider
a constant-frequency wave moving in a fluid with constant sound speed and
ambient density and for which the ambient fluid velocity is zero. The acous-
tic pressure therefore satisfies the wave equation (1-6.1) and has a complex
spatially dependent amplitude p̂(x) that satisfies the Helmholtz equation
(1-8.13). The insertion† of

p̂(x) = P (x, ω)eiωτ(x)

into the latter yields

∇
2P + iω(2∇P · ∇τ + P∇2τ)− ω2P

[

(∇τ)2 − 1

c2

]

= 0. (8-5.1)

To solve this in the high-frequency limit, we assume the existence of an
asymptotic expansion for P :

P (x, ω) = Po(x) +
1

ω
P1(x) +

1

ω2
P2(x) + · · · . (8-5.2)

This is then substituted into (1), and it is required that the resulting co-
efficient of each power of ω vanish identically. The first two in the infinite
sequence of equations so derived involve only τ and Po; we assume that Po
is an adequate approximation for P , so we keep only the first two equations
and therein replace Po by P ; the resulting equations are

† A. Sommerfeld and J. Runge, “Application of vector calculus to the fundamentals of
geometrical optics,” Ann. Phys. (4)35:277–298 (1911).
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(∇τ)2 =
1

c2
, (8-5.3a)

2∇P · ∇τ + P∇2τ = 0 or ∇ · (P 2
∇τ) = 0. (8-5.3b)

Note that these equations also result from equating the coefficients of ω2

and ω in Eq. (1) to zero. The second version of Eq. (3b) follows from a
multiplication of the first version by P .

Equation (3a) is the eikonal equation (8-1.5) with the ambient velocity set
to zero, so its solution can be given in terms of rays. Once any wavefront
surface is specified and a value of τ is associated with it, the value of τ(x) for
any position x can be determined by finding that ray connecting the originally
specified wavefront with the point x. If the ray passes through point xo on
the originally specified wavefront, and if τ(xo) = τo, τ(x) is τo plus the travel
time at speed c along the ray from xo to x.

The solution of Eq. (3b) can be developed in terms of ray-tube areas. With
the ray passing from x0 to x one associates a ray tube (Fig. 8-17) consisting
of all rays passing through a tiny area A(xo) centered at xo transverse to the
ray path. When the ray tube reaches x, its cross-sectional area will be A(x).
One integrates Eq. (3b) over the volume of the ray-tube segment connecting
x0 and x and applies Gauss’ theorem to convert it into a surface integral.
Then, since the ray path is everywhere in the direction of ∇τ = s, the surface
integral over the sides of the ray-tube segment vanishes identically and one
is left with contributions from just the two ends. Thus, one has

P 2(xo)A(xo)(∇τ · n)xo
= P 2(x)A(x)(∇τ · n)x,

where n is the unit vector in the direction of the ray or, equivalently (because
there is no ambient flow), the unit vector normal to the wavefront. However,
∇τ ·n = s ·n is here 1/c [from Eq. (8-1.3)], and since c is constant, the above
reduces to

P (x) = P (xo)

[

A(xo)

A(x)

]1/2

. (8-5.4)

Thus, wave amplitude varies along a ray in inverse proportion to the square
root of the ray-tube area. If the ray-tube area grows smaller (focuses) the
amplitude increases.

The volume integral of ∇2τ over the ray-tube segment is similarly found
to be (1/c)[A(x)−A(xo)]. Thus, for any short tube segment of length dl and
therefore of (approximate) volume A(x)dl, one has

∇
2τ =

1

cA

dA

dl
, (8-5.5)

where A(l) is ray-tube area at distance l along the ray. Moreover, if the
coordinate system is chosen so that the z axis points in the ray direction and
x and y axes in the principal curvature directions, the point of interest being
taken as the origin, then near that point, Eq. (8-2.3) yields
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Figure 8-17 Sketch of a ray tube.

τ ≈ const +
1

c

(

z − x2

2r1
− y2

2r2

)

, (8-5.6)

where r1 and r2 are the two principal radii of curvature (positive if concave)
of the wavefront at (0, 0, 0). Consequently, we conclude that

c∇2τ = −
(

1

r1
+

1

r2

)

. (8-5.7)

In addition, since r1 = r01−l and r2 = r02−l [from Eq. (8-2.5)], one can replace
−1/r1 by (d/dl)(ln r1). With a similar replacement for −1/r2 and with c∇2τ
replaced [from Eq. (5)] by (d/dl)(lnA), integration of Eq. (7) leads to the
conclusion that (A/r1r2) is independent of l, so the ratio of ray-tube areas
in Eq. (4) is the same as r01r

0
2/r1r2 (see Fig. 8-18). Therefore the amplitude

along the ray is

P (x) =

[

r01r
0
2

(r01 − l)(r02 − l)

]1/2

P (xo) (8-5.8)

and varies inversely as the geometric mean of the two principal radii of wave-
front curvature.

The above can be generalized to a superposition of different frequencies
or to a transient waveform. Since ray paths and travel times are independent
of frequency, and since amplitude ratios at different points on the ray path
are also independent of frequency, the solution of the wave equation in the
geometrical-acoustics approximation is

p = B(l, ξ)f(t− τ, ξ), (8-5.9)

where the parameter ξ (or, strictly speaking, pair of parameters, ξ1, ξ2) dis-
tinguishes different rays. The waveform shape f(t − τ, ξ) is the same along
any given ray, but the amplitude factor B(l, ξ) varies with distance l along
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Figure 8-18 Geometrical proof that ray tube area is proportional to the product of the
wavefront’s principal radii of curvature.

the ray. If f(t − τ, ξ) is chosen so that it equals p(x, t) at the initial point
(l = 0) on the ray, then B is the coefficient of P (xo) in Eq. (8) and τ is
τo + l/c.

Energy Conservation along Rays

Although the analog of the above derivation can be carried through for prop-
agation in a medium in which c(x) and ρ(x) are slowly varying functions
of position (we continue to assume no ambient flow), the following heuristic
derivation based on the conservation of acoustic energy may be more enlight-
ening. Let us assume at the outset that

p(x, t) = B(x)f(t− τ, ξ), (8-5.10)

where τ is a solution of the eikonal equation and ξ is a constant along any
given ray. The requirement that this describe a propagating plane wave in any
local region [via Eq. (1-7.8)] means that the acoustically induced fluid velocity
must be identified as (n/ρc)p or (B/ρ)∇τf , since n is c∇τ . The energy
density and intensity associated with this wave disturbance can consequently
be identified from Eqs. (1-11.3) [using (∇τ)2 = 1/c2] as

w =
B2

ρc2
f2(t− r, ξ), I = ncw. (8-5.11)

The acoustic-energy-conservation theorem ∂w/∂t+∇ · I = 0 then gives

2
B2

ρc2
f
∂f

∂t
+ f2

∇ ·

(

B2

ρ
∇τ

)

+ 2
B2

ρ
(∇τ · ∇f)f = 0. (8-5.12)



450 8 Ray Acoustics

If one ignores the weak dependence of f on position through ξ(x), then
∇f = − (∂f/∂t)∇τ ; the first and third terms in the above cancel [since
(∇τ)2 = 1/c2], and one is left with

∇ ·

(

B2

ρ
∇τ

)

= 0, (8-5.13)

which is analogous to the relation ∇ · Iav derived in Chap. 1.
Integration of Eq. (13) over a ray-tube segment leads, in a manner similar

to that yielding Eq. (4), to the conclusion that (B2/ρc)A is constant along
any ray tube, where A is ray-tube cross-sectional area. Thus, if xo and x are
any two points along the same ray,

B(x) =

[

(A/ρc)xo

(A/ρc)x

]1/2

B(xo) (8-5.14)

gives the general law of variation of pressure amplitude along a ray in an in-
homogeneous quiescent medium. For a constant-frequency wave, this relation
can be interpreted as the requirement that the time-averaged energy per unit
time flowing along a ray tube be independent of distance along the ray.†

8-6 WAVE AMPLITUDES IN MOVING MEDIA

Linear Acoustics Equations for Moving Media

To determine the effects of steady but inhomogeneous ambient flows on wave
amplitudes in the geometrical-acoustics approximation, we begin with the
nonlinear fluid-dynamic equations introduced in Chap. 1. With the various
idealizations described there, they can be written

† Sometimes labeled as Green’s law for acoustic waves because of George Green’s analogous
result for shallow-water waves: “On the motion of waves in a canal of variable depth and
width,” Trans. Camb. Phil. Soc. (1837), reprinted in N. M. Ferrers (ed.), Mathematical
Papers of the Late George Green, Macmillan, London, 1871, pp. 225–230. Green’s laws
in physical systems are reviewed by H. M. Paynter and F. D. Ezekiel, “Water hammer in
nonuniform pipes as an example of wave propagation in gradually varying media,” Trans.
Am. Soc. Mech. Eng. 80:1585–1595 (1958).
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Dv

Dt
+

1

ρ
∇p+ gez = 0, (8-6.1a)

Dρ

Dt
+ ρ∇ · v = 0, (8-6.1b)

Ds

Dt
= 0, (8-6.1c)

p = p(ρ, s). (8-6.1d)

Here, to demonstrate that gravity has no explicit influence on propagation
in the high-frequency limit, the gravitational force per unit mass (−gez, g
being acceleration due to gravity and ez being the unit vector in the vertical
direction) is included with Euler’s equation. If one follows the general proce-
dure outlined in Sec. 1-5, sets v = vo(x)+v′(x, t), p = po(x)+p

′(x, t), etc.,
and requires Eqs. (1) to be satisfied identically by the ambient state, then,
to first order in the acoustic perturbation, one has

Dtv
′ + v′

· ∇vo +
1

ρo
∇p′ − ρ′

ρ2o
∇p0 = 0, (8-6.2a)

Dtρ
′ + v′

· ∇ρo + ρ′∇ · vo + ρo∇ · v′ = 0, (8-6.2b)

Dts
′ + v′

· ∇so = 0, (8-6.2c)

p′ = c2ρ′ +

(

∂p

∂s

)

o

s′. (8-6.2d)

Here the sound speed c and the thermodynamic coefficient (∂p/∂s)o are
functions of position; Dt = ∂/∂t + vo · ∇ represents the time derivative
following the ambient flow.

Equation (2d) allows the elimination of ρ′ from Eqs. (2a) and (2b). In
regard to the first and third terms in Eq. (2b), the substitution yields

c2(Dtρ
′ + ρ′∇ · vo) =Dtp

′ −
(

∂p

∂s

)

o

Dts
′

+ c2p′∇ ·
vo

c2
− c2s′∇ ·

[

vo

c2

(

∂p

∂s

)

o

]

.

Also, because (1d) is satisfied in the ambient state, the ambient gradients
∇po,∇ρo, and ∇so satisfy the same relation as p′, ρ′, and s′ do in Eq. (2d).
Consequently, Eq. (2c) yields

−
(

∂p

∂s

)

o

Dts
′ = v′ ·∇po − c2v′

· ∇ρo,

and Eq. (2b) reduces to

Dtp
′+v′

·∇po+c
2p′∇·

vo

c2
+ρoc

2
∇·v′−s′c2∇·

[

1

c2

(

∂p

∂s

)

o

vo

]

= 0. (8-6.3)
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With such substitutions, the equations resulting from Eqs. (2a) and (2b)
can be approximated consistent with the notion of a slowly varying medium
if terms of second order in spatial derivatives of ambient variables are dis-
carded. Here any spatial derivative of any ambient variable is first order.
Since s′ would be zero for an acoustic wave in a homogeneous medium, its
departures from a zero value are due to spatial variations of the ambient
variables; consequently, s′ is also first order. A term like the last term in Eq.
(3) is then second order and is therefore discarded. The resulting equations
are

Dtv
′ + (v′

· ∇)vo +
1

ρo
∇p′ − p′

(ρoc)2
∇po = 0, (8-6.4a)

Dtp
′ + v′

· ∇po + c2p′∇ ·
vo

c2
+ ρoc

2
∇ · v′ = 0. (8-6.4b)

Conservation of Wave Action

The above equations, with some further approximations, lead to a conserva-
tion law† similar to that in Sec. 1-11. Taking the dot product of (4a) with
ρov

′, multiplying (4b) by p′/ρoc2, and adding the two equations yields
(

∂

∂t
+ vo · ∇

)

w − (v′)2(vo · ∇)
ρ0
2

− (p′)2(vo ·∇)(2ρoc
2)−1

+∇ · I + ρov
′
· [(v′

· ∇)vo] + ρ−1
o (p′)2 ∇ ·

vo

c2
= 0, (8-6.5)

where w = 1
2ρo(v

′)2 + (p′)2/2ρoc
2 and I = p′v′ represent what the energy

density and intensity would be when viewed by someone moving with the
ambient flow. If we limit our attention to a field that everywhere locally
resembles a traveling plane wave, then in all the smaller terms involving
spatial derivatives of ambient variables it is a consistent approximation to
set v′ = np′/ρoc and (p′)2 = ρoc

2w. (Both relations hold for a homogeneous
medium, even when vo is not zero.) This substitution then yields

∂w

∂t
+ v · ∇w − w

[

1

ρ
(v · ∇)

ρ

2
+ ρc2(v · ∇)(2ρc2)−1

]

+∇ · I + wn · [(n · ∇)v] + c2w∇ ·
v

c2
= 0 (8-6.6)

† C. J. R. Garrett, “Discussion: the adiabatic invariant for wave propagation in a nonuni-
form moving medium,” Proc. R. Soc. Lond. A299:26–27 (1967); F. P. Bretherton and C.
J. R. Garrett, “Wavetrains in inhomogeneous moving media,” ibid. A302:529–554 (1969).
The derivation here is similar to that of W. D. Hayes, “Energy invariant for geometric
acoustics in a moving medium,” Phys. Fluids 11:1654–1656 (1968).
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where we resume the custom of omitting the subscripts on ρo and vo whenever
the possibility of confusing them with other quantities is negligible.

In regard to the next to the last term in Eq. (6), the unit vector n can
alternately be written as (c/Ω)s, where s = ∇τ . Also s · [(s · ∇)v] is
(s · ∇)(s · v)− v · [(s · ∇)s] from a vector identity. In the first of these two
terms, s · v can be replaced by 1 − Ω; in the second term, (s · ∇)s can be
replaced by 1

2∇(Ω2/c2) from Eq. (8-1.7). Consequently, one obtains

n · [(n · ∇)v] = Ωcn · ∇
1

Ω
+
Ω

c
v · ∇

c

Ω
. (8-6.7)

To the same order of approximation as to which Eq. (6) was derived, one
can also set nw = c−1I in a term like wn · ∇(1/Ω) that vanishes when the
medium is homogeneous. Then, with the substitutions just described, Eq. (6)
reduces to

∂w

∂t
+ v · ∇w + wv · ∇

[

ln ρ−1/2 + ln(ρc2)1/2 + ln
c

Ω

]

+∇ · I +ΩI · ∇
1

Ω
+ c2w∇ ·

v

c2
= 0,

which, with further manipulation, yields

∂

∂t

(w

Ω

)

+∇ ·

(

I + vw

Ω

)

= 0. (8-6.8)

If v = 0, the above reduces to the law of conservation of acoustic energy,†

Eq. (1-11.2). Although we here have an added factor of 1/Ω in each term, the
equation is still a conservation law because it is a sum of a time derivative and
a divergence. An interpretation of what physical quantity is being conserved
follows from consideration of the constant-frequency case and multiplication
of both sides by 1/ω, so that the resulting equation resembles (8) with Ω
replaced by ωΩ. The quantity ωΩ or ω−ωv ·∇τ (abbreviated here as ω∗) can

† While Eq. (8) is approximate and holds only in the geometrical-acoustics approximation,
an exact acoustic-energy corollary of the linear acoustic equations for an inhomogeneous
steady ambient flow does exist in the form of a sum of a time derivative and a divergence,
although the resulting expression involves Clebsch potentials that are not local properties
of the acoustic field: W. Möhring, “Toward an energy statement for sound propagation
in stationary flowing media,” Z. Angew. Math. Mech. 50:T196–198 (1960); “Energy flux
in duct flow,” J. Sound Vib. 18:101–109 (1971); “On energy, group velocity, and mmall
damping of sound waves in ducts with shear flow,” ibid. 20:93–101 (1973). A simpler
corollary holds for potential isentropic flows: L. A. Chemov, “The flux and density of
acoustic energy in moving media,” Zh. Tech. Fiz. 16:733–736 (1946); R. W. Cantrell and
R. W. Hait, “Interaction between sound and flow in acoustic cavities: mass, momentum and
energy considerations,” J. Acoust. Soc. Am. 36:697–706 (1964). Other energy statements
for moving fluids are given by O. S. Ryshov and G. M. Shefter, “On the energy of acoustic
waves propagating in moving media,” J. Appl. Math. Mech. (USSR) 26:1293–1309 (1962),
and by C. L. Morfey, “Acoustic energy in non-uniform flows,” J. Sound Vib. 14:159–170
(1971).
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be regarded as the frequency one would measure if one were moving with the
ambient flow since the operation of ∂/∂t+v·∇ on exp[−iω(t−τ)] is equivalent
to a multiplication by −iω∗. [The exponential factor with t → t − τ(x)
describes the predominant spatial dependence in the geometrical-acoustics
approximation for a disturbance of constant frequency; p(x, t) should be of
the form, Re{B(x) exp[−iω(t− τ)]}, where B(x) is slowly varying.]

There exists in mechanics a theory of adiabatic invariance which originated
with Boltzmann in a thermodynamic context and which was subsequently
further developed by Ehrenfest and Burgers‡ for application to the old quasi-
classical quantum mechanics, i.e., that before the epochal work (1923–1926)
of de Broglie, Heisenberg, Schrödinger, Born, Jordan. The simplest version of
this theory† applies to a 1-degree-of-freedom system (Fig. 8-19) described by
a hamiltonian H(q, p, λ) depending on a generalized coordinate q, on its con-
jugate momentum p, and on some parameter λ that varies slowly with time.
For fixed λ, the equation H(q, p, λ) = E, where E (identified as energy) is
constant, describes a curve in a phase space described by coordinates p and
q. It is assumed that this curve is closed. The product of 1/2π with the area
enclosed in phase space by a curve of given constant E and λ defines an action
variable I(λ,E). The theory predicts that if λ varies slowly enough with t,
then E varies in such a manner that I remains nearly constant in time, so one
would say that action is conserved. For the harmonic oscillator, the hamilto-
nian is p2/2m+ 1

2kq
2, where m is mass and k is spring constant. The curve

H = E in phase space then describes an ellipse of area π(2mE)1/2(2E/k)1/2.
The action variable is therefore I = E/ω, where ω = (k/m)1/2 is the natural
frequency of the oscillator. Thus, for example, if k is a slowly varying function
of t, one expects E/ω to remain constant throughout the motion.

The theory applies in particular to a pendulum mass m suspended by a
string whose length l(t) is varied slowly by pulling the string through a small
hole in the ceiling. If the amplitudes of oscillation are small, the hamiltonian
is 1

2p
2
θ/ml

2 + 1
2mglθ

2, where pθ = ml2θ̇, θ is the angular deviation of the
string from the vertical and g is the acceleration due to gravity. For har-

‡ L. Boltzmann, “On the mechanical significasecond law of heat theory,” Sitzungsber. Kais.
Akad. Wiss. Math. Naturwiss. Kl., pt. 2 53:195–220 (1866); “On the priority of the discov-
ery of the relation between the second law of the mechanical heat theory and the principle
of least action,” Ann. Physik. Chem. 143:211–230 (1871); P. Ehrenfest. “Boltzmann the-
orem and energy quanta,” K. Akad. Wet. Amsterdam, Proc. Sec. Sci. 16:591–597 (1914);
“Adiabatic Invariants and quantum theory,” Ann. Phys. (4) 51:327–352 (1916); J. M. Burg-
ers, “The adiabatic invariants of conditionally periodic systems,” ibid. 52:195–202 (1917).
Some special cases are discussed by J. W. S. Rayleigh, “On the pressure of vibrations,” Phil.
Mag. (6)3:338–346 (1902). The acoustical version of the theorem is given by W. E. Smith,
“Generalization of the Boltzmann-Ehrenfest adiabatic theorem in acoustics,” J. Acoust.
Soc. Am. 50:386–388 (1971). Its principal application to acoustics before the development
of the concept of wave action was in the theory of radiation pressure. See, for example, R.
T. Beyer, “Radiation pressure: The history of a mislabeled tensor,” J. Acoust. Soc. Am.
63:1025–1030 (1978).
† L. D. Landau and E. M. Lifshitz, Mechanics, Pergamon, Oxford, 1960, pp. 154–156; E.
J. Saletan and A. H. Cromer, Theoretical Mechanics, Wiley, New York, 1971, pp. 259–263.
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Figure 8-19 (a) Curve in phase plane described by H(p, q, λ) = E. (b) Example for which
the action variable is an adiabatic invariant.

monic oscillations of frequency ω = (mgl/ml2)1/2 = (g/l)1/2, the energy E
is 1

2mglθ
2
max. The adiabatic invariance of I = E/ω requires that θmax change

with t so that l3/2θmax remains constant.
Because w/ω∗ resembles an action variable per unit volume, the conserva-

tion relation of Eq. (8), with Ω → ω∗, is regarded as a law of conservation of
wave action; w/ω∗ is the wave action per unit volume, or wave-action density,
while (I + vw)/ω∗ is the wave-action flux.

Equation (8), with Ω → w∗, although here derived for circumstances of
steady flow, applies† also to a wave packet of nearly constant frequency trav-
eling in a medium whose properties are slowly varying functions of both

† Hayes, “Energy invariant for geometric acoustics in a moving medium.”
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position and time. As the packet moves, the frequency viewed by an observer
at rest changes because of the time dependence of the sound speed and am-
bient velocity. However, if w and I are defined as above, and if ω∗ is taken as
the frequency (also time-dependent) measured by someone moving with the
ambient flow, the conservation of wave action still holds. The plausibility of
this assertion should be evident since what appears to be an inhomogeneous
time-independent flow to someone at rest appears to be changing with time
when viewed in a moving reference frame. Since w, I , and ω∗ are invariant
under changes of reference frame, Eq. (8), with Ω → ω∗, should be also.
If one considers the various quantities in that equation to be functions of
x′, t′ where x′ = x− vf t, t

′ = t, and the frame velocity vf is constant, then
∇ = ∇

′, ∂/∂t = ∂/∂t′ − vf · ∇
′, and the wave-action-conservation equation

is transformed into

∂

∂t′

( w

ω∗

)

+∇
′
·

(

I + v′w

ω∗

)

= 0, (8-6.9)

where v′ = v−vf represents the ambient velocity viewed in a reference frame
moving with velocity vf relative to the original reference frame.

The Blokhintzev Invariant

Given that one has selected a reference frame in which the ambient medium
appears to be time-independent, an advantage of the law of conservation
of wave action in the form of Eq. (8) is that it also applies to transient
disturbances. Thus, if one sets

p′ = P (x)f(t− τ(x), ξ) v′ =
np′

ρc
, (8-6.10)

where f is an arbitrary function (composed, however, primarily of high fre-
quencies) and ξ is constant along any given ray, an equation for P (x) results
from a substitution of these expressions into Eq. (8). Following this procedure
and neglecting terms involving ∇ξ, we obtain

w =

(

P 2

ρc2

)

f2, I + vw = vrayw,

∇ ·

(

I + vw

Ω

)

= f2
∇ ·

(

P 2vray

ρc2Ω

)

− 2

[(

P 2vray

ρc2Ω

)

· ∇τ

]

f
∂f

∂t
. (8-6.11)
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However, since vray ·∇τ = 1 [see Eq. (8-1.3)], the second term on the right
side of (11) is −∂(w/Ω)/∂t, so Eq. (8) yields†

∇ ·

(

P 2vray

ρc2Ω

)

= 0, (8-6.12)

which is one of the fundamental equations of geometrical acoustics. If the
ambient velocity is set to zero, this reduces to the previously derived Eq.
(8-5.13).

If one integrates Eq. (12) over the volume of a ray-tube segment and follows
the procedure described in the previous section, the conclusion is reached that
the Blokhintzev Invariant‡

P 2|vray|A
(1− v · ∇τ)ρc2

= const (8-6.13)

is constant along any given infinitesimal ray tube of variable cross-sectional
area A. [Alternate versions of this conclusion result with the replacement of
vray by v+cn or of Ω by c/(c+v · n).]

Example: Point source in a jet† Sound is emanating from a small
source at the origin in a medium of constant sound speed and ambient density
(see Fig. 8-20). The ambient fluid velocity is in the +x direction and varies
with the radial coordinate r = (y2 + z2)1/2 such that vx(r) has a maximum
along the x axis. Describe the variation of the mean squared pressure along
the x axis.

Solution Because of the cylindrical symmetry, each ray leaving the source
stays within a plane passing through the x axis. The refraction is therefore
the same as if the ray were moving in a stratified medium; thus Eqs. (8-4.1)
and (8-4.2) apply but with z → r, sz → sr. With the abbreviations M and L
for vx/c and 1/csx, these equations yield

dr

dx
=

(L−M + 1)1/2(L−M − 1)1/2

1−M2 +ML
. (8-6.14)

The flow Mach number M(r) has a maximum at r = 0, so we write

† A rigorous derivation leading to the same result follows the general procedure outlined
by S. Weinberg, “Eikonal method in magnetohydrodynamics,” Phys. Rev. 126:1899–1909
(1962).
‡ D. I. Blokhintzev, Acoustics of a Nonhomogeneous Moving Medium, Leningrad, 1946;
trans. NACA TM 1399, National Advisory Committee for Aeronautics, Washington, espe-
cially pp. 35–40; “The propagation of sound in an inhomogeneous and moving medium, I,”
J. Acoust. Soc. Am. 18:322–328 (1946).
† J. Atvars, L. K. Schubert, and H. S. Ribner, “Refraction of sound from a point source
placed in an air jet,” J. Acoust. Soc. Am. 37:168-170 (1965); L. K. Schubert, “Numerical
study of sound refraction by a jeflow, I: Ray acoustics,” ibid. 51:434–446 (1972).
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Figure 8-20 Ray paths from a point source on the axis of a symmetric jet. Here ξ is the
angle the ray initially makes with the direction of flow.

M ≈Mo − 1
2 (Mo + 1)2α2r2, (8-6.15)

where Mo is M(0) and α is a constant. The additional factor (Mo + 1)2 is
for analytical convenience. The other quantity L, in Eq. (14), is a constant
for any given ray; for the ray lying on the +x axis, dr/dx is 0, so the axial
ray’s L is Mo+1. Since we are only interested in rays within a small ray tube
centered at the +x axis, we accordingly set

L = (Mo + 1) + 1
2 (Mo + 1)2ξ2, (8-6.16)

where the ray parameter ξ is considered small compared with 1.
The substitution of (15) and (16) into (14) and the subsequent discard, in

factors of the order of 1, of small terms proportional to α2r2 and ξ2 yields
the approximate ray-path equation

dr

dx
= (α2r2 + ξ2)1/2, (8-6.17)

which in turn integrates to

r =
ξ

α
sinhαx, (8-6.18)

with the condition that the ray pass through the source position. The initial
slope dr/dx of the ray is ξ, but refraction causes the ray to bend away from
the x axis; sinhαx is larger than αx.

The cross-sectional area of the tube containing all rays with ξ<ξo is πr2,
where r is as given by Eq. (18) with ξ → ξo. All the other factors, except
P 2, in the Blokhintzev invariant are independent of x for the ray proceeding
along the x axis. Consequently, the mean squared pressure varies with x as
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(p2)av,r=0 =
const

α−2 sinh2 αx
. (8-6.19)

For small x, this corresponds to spherical spreading (const/x2), but at larger
x the decrease is exponential.

The model just discussed gives a partial explanation for why the noise
from a jet leaving a nozzle has an anomalous zone of relative quiet at large
distances downstream and at small angles with respect to the jet’s axis.

Why sound from a source near the ground is louder downwind than upwind
is explained in a similar manner.† The wind velocity increases with height,
so rays initially proceeding downwind in directions that are nearly horizontal
are refracted down; the drop-off with distance is less than that of spherical
spreading. Upwind, the opposite effect occurs.

8-7 SOURCE ABOVE AN INTERFACE

Another example illustrating some of the geometrical-acoustics concepts in-
troduced in previous sections is that of an isotropic point source located at
height h above a plane interface (Fig. 8-21). The nominal location of the in-
terface is the z = 0 plane, and the source location is (0, 0, h). If the interface
separates two fluids,‡ both are assumed to have zero ambient fluid velocity;
fluid I above the interface has sound speed cI and ambient density ρI; cII and
ρII denote the corresponding quantities below the interface. The example ap-
plies in particular to the problem of predicting the sound underwater caused
by a source in air above the water’s surface. Near the souce, where the direct
wave predominates, the acoustic pressure p is f(t−R/cI)/R, where f(t) is a
function characteristic of the source.

Sound Field above the Interface

In the upper medium, the received sound arrives via a direct ray and via a
ray that goes from the source to the interface and back to the observation

† Stokes, “On the effect of wind . . . ,” 1857; H. Bateman, “The influence of meteorological
conditions on the propagation of sound,” Mon. Weather Rev. 42:258–265 (1914).
‡ The full-wave solution dates back to A. Sommerfeld’s analysis of the analogous
electromagnetic-wave problem: “On the spreading of waves in the wireless telegraphy,”
Ann. Phys. (4)28:665–736 (1909). A detailed description is given by L. M. Brekhovskikh,
Waves in Layered Media, Academic, New York, 1960, pp. 234–302. For numerical results,
see M. S. Weinstein and A. G. Henney, “Wave solution for air-to-water sound transmission,”
J. Acoust. Soc. Am. 37:899–901 (1965); J. V. McNicholas, “Lateral wave contribution to
the underwater signature of an aircraft,” ibid. 53:1755 (1973).
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Figure 8-21 Point source above a plane interface.

point. Because angle of incidence equals angle of reflection, this reflected ray
appears to emanate from an image source at (0, 0, −h). We neglect any ray
displacement tangential† to the surface during reflection. Another assumption
is that the change in wave amplitude and phase on reflection is the same as
for a plane wave at the same angle of incidence. Ray-tube areas along the
two rays are proportional to R2 and R2

im, respectively, where R and Rim are
distances from the source and image source. The only modification caused
by an interface that is not perfectly reflecting is that the complex amplitude
of each frequency component of the reflected wave is multiplied by R(θI, ω),
where R(θI, ω) is the pressure-amplitude reflection coefficient when the angle
of incidence (medium I) is θI. This, according to Eq. (3-3.4) is given by

R(θI, ω) =
Z(θI, ω)− ρIcI/(cos θI)

Z(θI, ω) + ρIcI/(cos θI)
, (8-7.1)

† A narrow beam of sound incident obliquely on a surface does undergo a tangential
displacement; the cross-sectional distribution of the energy in the beam is also altered: A.
Schoch, “Sideways displacement of a totally reflected ray of ultrasound waves,” Acustica
2:18–22 (1952); M. A. Breazeale, J. Adler, and L. Flax, “Reflection of a Gaussian utrasonic
beam from a liquid-solid interface,” J. Acoust. Soc. Am. 56:866–872 (1974). The effect
is of minor consequence, however, for a very wide beam of sound or for a spherical wave
incident on the interface.
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where, for a locally reacting surface, the specific impedance Z is indepen-
dent of θI, while for an interface between two fluids ρIIcII/Z is a function of
(cII/cI) sin θI (see Sec. 3-6). The identification for θI is such that cos θI and
sin θI are (h+z)/Rim and w/Rim. Here w = (x2+y2)1/2 is cylindrical distance
from the vertical line passing through the source, and Rim = [(h+z)2+w2]1/2

is distance from the image source.

For waves of constant frequency, where f(t) = Re
{

f̂ e−iωt
}

, the solution in

the geometrical-acoustics approximation for the complex-pressure amplitude
p̂ is given, according to the discussion above, by

p̂ = f̂R−1ei(ω/cI)R + f̂R(θI, ω)R
−1
im e

i(ω/cI)Rim . (8-7.2)

The validity of this is suspect whenever it predicts an unusually small
value of p̂ since any corrections based on a full-wave analysis† could then be
an appreciable fraction of the total acoustic-pressure amplitude. An instance
of this would be the field near z = 0 (such that R ≈ Rim) when R(θI, ω) is
close to −1. This occurs, for example, for reflection from a locally reacting
surface when cos θI ≪ ρIcI/|Z| (or h+ z ≪ wρIcI/|Z|). Here we exclude such
cases from our consideration.

The transient solution corresponding to the above results if one takes f̂
and p̂ to be the Fourier transforms of f(t) and p(x, t). After application of
the Fourier integral theorem, Eq. (2-8.4), one finds

p =
1

R
f

(

t− R

cI

)

+
1

Rim
g

(

t− Rim

cI
, θI

)

, (8-7.3)

where the waveform g(t, θI) corresponding to the reflected wave is the inverse
Fourier transform of the product of R(θI, ω) and the Fourier transform of f(t).
For reflection from an interface between two fluids, when sin θI < cI/cII,R(θI)
is real and independent of frequency, so g(t, θI) = R(θI)f(t). If, however,
cII/cI > 1 and sin θI > cI/cII, the function g(t, θI) is given by Eq. (3-6.12) in
terms of the Hilbert transform of f(t).

† K. U. Ingard, “On the reflection of a spherical wave from an infinite plane,” J. Acoust.
Soc. Am. 23:329–335 (1951); A. Wenzel, “Propagation of waves along an impedance bound-
ary,” ibid. 55:956–963 (1974); S.-I. Thomasson, ‘Reflection of waves from a point source
by an Impedance boundary,” ibid. 59:780–785 (1976). A principal feature of the latter
formulations is a surface wave that propagates along the boundary. A detailed discussion
of the limitations of the geometrical-acoustics solution is given by M. E. Delany and E. N.
Bazley, “Monopole radiation in the presence of an absorbing plane,” J. Sound Vib. 13:269–
279 (1970). How the geometrical-acoustics model can be extended to incorporate multiple
reflections is discussed by Delany and Bazley in “A note on the sound field due to a point
source inside an absorbent-lined enclosure,” ibid. 14:151–157 (1971).
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Field below the Interface†

If the interface separates two different fluids, the wave arrives at a point
(x, y,−d) at depth d below the interface along a refracted path that crosses
the interface at intermediate radial distance wi making angles θI and θII with
the vertical above and below the interface, respectively (see Sec. 3-6). These
two angles are related by Snell’s law and are such that h tan θI and d tan θII
are wi and w − wi. Given w, h, d, cI, and cII, these relations and Snell’s law
suffice to determine θI, θII, and wi uniquely, regardless of whether cII > cI
or cI > cII. There is one and only one ray passing through any given point
below the surface.

To determine ray-tube-area variation along such a ray, consider two rays
leaving the source at angles θI and θI + δθI, both rays having the same az-
imuth angle φ (see Fig. 8-22). They cross the interface at cylindrical distances
h tan θI and h tan θI+h(sec2 θI)δθI [recall that (d/dθ) tan θ is sec2 θ] and sub-
sequently propagate in the refracted directions θII and θII+ δθII, where (take
differentials of Snell’s law)

c−1
I cos θIδθI = c−1

II cos θIIδθII. (8-7.4)

Also, the two rays cross the plane z = −d at radial distances of w and w+δw,
where

w = h tan θI + d tan θII (8-7.5a)

δw = h sec2 θIδθI + d sec2 θIIδθII

=

(

h sec2 θI + d
cII
cI

cos θI sec
3 θII

)

δθI (8-7.5b)

The corresponding values of wi and δwi result from setting d equal to 0 in
these expressions. The perpendicular separation of the two rays is (cos θII)δw
at depth d.

A ray tube can be taken as all rays leaving the source with azimuth angles
between φ and φ+δφ, angles with the vertical between θI and θI+ δθI. Because
of the cylindrical symmetry, each ray stays in the same vertical plane. Since
the azimuthal width of the tube at cylindrical distance w is wδφ, the ray-
tube area just before the ray crosses the interface is (wiδφ)(δwi cos θI). Just
after it crosses the interface it is (wiδφ)(δwi cos θII). When it reaches depth
d, the ray-tube area is (wδφ)(δw cos θII). Thus, in going from just below the
interface to depth d, the ray-tube area increases by a factor of wδw/(wiδwi)

† A. A. Hudimac, “Ray theory solution for the sound intensity in water due to a point
source above It,” J. Acoust. Soc. Am. 29:916–917 (1957); R. J. Urick, “Noise signature of
an aircraft in level flight over a hydrophone in the sea,” ibid. 52:993–999 (1972); R. W.
Young, “Sound pressure in water from a source in air and vice versa,” ibid. 53:1708–1716
(1973).
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Figure 8-22 Ray geometry for two adjacent rays that propagate from a source at height
h through an interface (z = 0) to a depth d.

and, in accord with Eq. (8-5.4), the pressure amplitude must decrease by a
factor of (wiδwi)1/2/(wδw)1/2.

The acoustic pressure just when the ray reaches the interface is that of
the direct wave alone, R−1f(t − R/cI), where R = h sec θI, multiplied by
the pressure-amplitude transmission coefficient T (θI) appropriate to angle
of incidence θI

T (θI) =
2ρIIcII/(cos θII)

ρIcI/(cos θI) + ρIIcII/(cos θII)
. (8-7.6)

Thereafter, the ray moves with speed cII in direction θII; at depth d the net
travel time from the source to depth d is (h/cI) sec θI + (d/cII) sec θII. The
time dependence of the signature must be that of f(t) with t replaced by t
minus this travel time.

The geometrical-acoustics solution to the problem can now be taken as
pressure at the interface (h sec θI)−1f(t−(h/cI) sec θI) [but with the additional
shift in argument of f(t) just described] times the transmission coefficient (6)
times the amplitude-diminution factor (wiδwi)

1/2/(wδw)1/2 for additional
ray-tube spreading in the propagation from the interface to depth d. In this
manner, one obtains
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p =
T (θI)f

(

t− h
cI
sec θI − d

cII
sec θII

)

(

h+ d tan θII
tan θI

)1/2 (

h sec2 θI + d cIIcI cos θI sec3 θII

)1/2

=
T (θI) cos θIf

(

t− h
cI
sec θI − d

cII
sec θII

)

(

h+ d cIIcI cos θI sec θII

)1/2 (

h+ d cIIcI cos3 θI sec3θII

)1/2
, (8-7.7)

where in the second version use has been made of Snell’s law.
To apply Eq. (7) to the prediction of the sound field at a given point, one

must first determine θI and θII in terms of w, h, and d from Snell’s law and
from Eq. (5a). In general, this requires a numerical solution, but limiting
cases are amenable to analytical approximation. In particular, if the point of
observation is directly below the source (w = 0), one has θI = θII = 0 and
Eq. (7) reduces to

p =
2ρIIcII

ρIcI + ρIIcII

f(t− h/cI − d/cII)

(cII/cI)[d+ (cI/cII)h]
. (8-7.8)

This varies with depth d as a spherically symmetric wave radiating from a
source at virtual height (cI/cII)h.

8-8 REFLECTION FROM CURVED SURFACES

The major features of reflection from a curved surface are amenable to
geometrical-acoustics techniques when the surface’s radii of curvature are
large compared with a wavelength. The chief assumption is that the reflec-
tion on any limited portion of the surface is locally the same as for plane-wave
reflection from a flat surface with the same unit outward-normal vector. Here
we consider the curved surface to be rigid, and we assume the ambient fluid
medium to be homogeneous and without ambient flow.

General Geometrical Considerations

Let xS be a point on the curved surface, let nS(xS) be the unit outward
normal (into the fluid) of the surface at xS , and let ni(xS) be the direction of
the incident sound ray that hits the surface at xS (see Fig. 8-23). According to
the law of mirrors, the unit vector nr(xS) in the direction of the reflected ray
must have the same tangential component as ni(xS) but the opposite normal
component. If one changes xS to xS+δxS , the three unit vectors ni,nr, and
nS undergo incremental variations δni, δnr, and δnS . For sufficiently small
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δxS , these are related by the differential versions of the equations requiring
ni +nr to be tangential to the surface, nr −ni to be normal to the surface,
and the unit vector to have unit length, i.e.,

(δni + δnr) · nS + (ni + nr) · δnS = 0, (8-8.1a)

(δnr − δni)× nS + (nr − ni)× δnS = 0, (8-8.1b)

ni · δni = nr · δnr = nS · δnS = 0. (8-8.1c)

To solve the above equations for δnr, we introduce unit vectors e1, e2, e3,
a1,a2,a3, b1, b2, and b3, where e3 is vector nS normal to the surface at
xS , e1 is the unit vector tangential to the surface in the direction of ni+nr at
xS , and a3 and b3 are unit vectors in the directions of ni and nr, respectively,
at xS . The unit vector e2 equals a2, and b2 and is such that e1 × e2 = e3;
the vector a1 is such that a2 × a3 = a1. An analogous definition holds for
b1. If θi denotes the angle of incidence of the wave at xS , the definitions are
such that

[

a1

a3

]

=

[

∓ cos θi − sin θi
sin θi ∓ cos θi

] [

e1
e3

]

. (8-8.2)

where the upper signs in the matrix product yield a1 and a3; the lower signs
yield b1 and b3.

These unit vectors allow the substitution of e3, (2 sin θi)e1, and (2 cos θi)e3

for nS , ni + nr, and nr − ni in Eqs. (1a) and (1b). Equations (1c) require
that δni have only a1 and a2 components, that δnr have only b1 and b2
components, and that δnS have only e1 and e2 components. Insertion of
these identifications into Eqs. (1a) and (1b) yields the two scalar equations

b1 · δnr = −a1 · δni + 2e1 · δnS , (8-8.3a)

b2 · δnr = a2 · δni + (2 cos θi)e2 · δnS . (8-8.3b)

Next note that, near the point xS , any incident wavefront reaching xS at
time δt = 0 can be described by

cδt = δx · a3 +
1

2

2
∑

µ,ν=1

giµν(δx · aµ)(δx · aν). (8-8.4)

where giµν = giνµ are the components of the curvature tensor of the incident
wavefront and δx = x − xS is here not restricted to be tangential to the
reflecting surface. (The two eigenvalues of the 2×2 curvature matrix† are the

† If the lines on the surface corresponding to principal radii ra and rb coincide with the
a1 and a2 directions, respectively, then g11 = 1/ra, g22 = 1/rb, and g12 = g21 = 0. If one
must rotate the tangential coordinate axes counterclockwise through an angle φ about the
surface normal for them to coincide with the principal directions, then
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Figure 8-23 Geometry of incident and reflected rays in the vicinity of a curved surface.

reciprocals of the surface’s principal radii of curvature, that is, g11g22−g212 =
1/rarb and g11 + g22 = 1/ra + 1/rb, where ra and rb are both positive if the
surface is convex.)

The gradient of the right side of Eq. (4) is ni(xS + δx), or a3+ δni, when
δx = δxS is tangential to the surface. Consequently, the components of δni
are

δni · a1 = gi11δxS · a1 + gi12δxS · a2, (8-8.5a)

δni · a2 = gi21δxS · a1 + gi22δxS · a2. (8-8.5b)

These, along with the analogous relations for the appropriate components
of δnr and δnS , recast Eqs. (3) into the matrix relation

g11 = r−1
a cos2 φ+ r−1

b sin2 φ, g12 = (r−1
a − r−1

b ) cosφ sinφ,
[

g11 g12
g21 g22

]

=

[

cosφ − sinφ
sinφ cosφ

] [

r−1
a 0

0 r−1
b

] [

cosφ sinφ
− sinφ cosφ

]

.

Regardless of the value of φ, the determinant (gaussian curvature) is 1/rarb, and the trace
is r−1

a + r−1
b .
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[

gr11 g
r
12

gr21 g
r
22

] [

δxS · b1
δxS · b2

]

=

[

−gi11 −gi12
gi21 g

i
22

] [

δxS · a1

δxS · a2

]

+ 2

[

gS11 gS12
gS21 cos θi g

S
22 cos θi

] [

δxS · e1
δxS · e2

]

. (8-8.6)

From this equation, two equations result for each of the cases: δxS in the
e1 direction and δxS in the e2 direction. Solution of these four equations for
gr11, g

r
12, g

r
21, and gr22, yields†

[

gr11 g
r
12

gr21 g
r
22

]

=

[

gi11 −gi12
−gi21 gi22

]

+ 2

[

gS11 sec θi gS12
gS21 gS22 cos θi

]

. (8-8.7)

This gives us a general law for how the wavefront curvature changes on re-
flection from a curved surface.

When the reflecting surface is perfectly flat (zero curvature tensor), the
second matrix term on the right is zero and the curvature of the reflected
wavefront is the same as that of the incident wavefront. The change of sign
of the off-diagonal components is because left appears right and vice versa
when viewed in a mirror.

If the incident wave is a plane wave, [gi] is zero. If it is a diverging spherical
wave, then gi11 = gi22 = 1/Ri and gi12 = gi21 = 0, where Ri is the incident
wave’s radius of curvature at the point xS . Similarly, if the reflecting surface
is spherical and convex, one has gS11 = gS22 = 1/RS, gS12 = gS21 = 0. Thus for a
spherical wave incident on a sphere, Eq. (7) predicts that the reflected wave
is concave with its principal radii of curvature equal to [1/Ri+2(sec θi/RS ]

−1

and [1/Ri+2 (cos θi)/RS ]
−1. If θi = 0 (normal incidence), the reflected wave

is locally spherical with both radii of curvature equal to (1/Ri + 2/RS)
−1.

In particular, if the incident wave is planar (Ri = ∞), the two radii for the
reflected wavefront are both RS/2.

Ray-Tube Area after Reflection

To determine the reflected wave amplitude after subsequent propagation
through a distance l, one needs the ratio A(l)/A(0) of ray-tube area at dis-
tance l to that at the point of reflection, which, from Eq. (8-5.8), is

A(l)

A(0)
=

(K−1
1 + l)(K−1

2 + l)

K−1
1 K−1

2

= 1 + l(K1 +K2) + l2K1K2, (8-8.8)

† G. A. Deschamps, “Ray techniques in electromagnetics,” Proc. IEEE 60:1022–1035 (1972).
The original derivation is due to A. Gullstrand, “The general optical imaging system,” K.
Sven. Vetenskapakad. Hangl. (4) 55:1–139 (1915).
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where K1 and K2 are the reciprocals of the two principal radii of curvature
of the wavefront just after reflection. However, since K1+K2 is gr11+g

r
22 and

K1K2 is the determinant of [gr], this can be rewritten

A(l)

A(0)
= det

[

1 + lgr11 lgr12
lgr21 1 + lgr22

]

= det

[

1 + (gi11 + 2gS11 sec θi)l (−gi12 + 2gS12)l
(−gi21 + 2gS21)l 1 + (gi22 + 2gS22 cos θi)l

]

, (8-8.9)

where the second version follows from Eq. (7).
For reflection of a spherical wave from a spherical surface, the off-diagonal

elements of [gi] and [gS ] are zero, while their diagonal elements are 1/Ri and
1/RS; therefore the above reduces to

A(l)

A(0)
= [1 + (R−1

i + 2R−1
S sec θi)l][1 + (R−1

i + 2R−1
S cos θi)l]. (8-8.10)

The corresponding result for when the incident wave is planar is obtained by
setting R−1

i = 0.
If the reflecting surface is a cylinder, not necessarily of circular cross sec-

tion, the two principal radii of curvature at the surface areRC and ∞. If we let
φ denote the angle between the plane of incidence and the line passing through
the reflection point parallel to the cylinder axis, such that gS11 = 0 when φ = 0
and gS11 = 1/RC when φ = π/2, then gS11 = R−1

C sin2 φ, gS22 = R−1
C cos2 φ, and

gS12 = gS21 = ±R−1
C sinφ cosφ. Consequently, when a spherical wave is inci-

dent, Eq. (9) reduces to

A(l)

A(0)
= (1 +R−1

i l)[1 +R−1
i l+ 2lR−1

C N(φ, θi)], (8-8.11)

N(φ, θi) = sin2 φ sec θi + cos2 φ cos θi =
1− (ni · eC)

2

−nS · ni
, (8-8.12)

where eC is the unit vector parallel to the cylinder axis. Again, the expression
appropriate to when a plane wave is incident results with R−1

i → 0.
With A(l)/A(0) determined, the pressure signature associated with the

reflected wave is

pr(xS + nrl, t) =

[

A(0)

A(l)

]1/2

pi

(

xS , t−
l

c

)

. (8-8.13)

This corresponds to what would be received at a point x = xS +nrl, where
nr = ni − 2(nS ·ni)nS is related to ni by the law of mirrors.
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Echoes from Curved Surfaces

As an application of the above formulation, we consider a small source at a
distance R from the nearest point on a curved surface. At that point, the
surface has principal radii of curvature RS,I and RS,II. If f(t−r/c)/r denotes
the incident wave, the echo returned back to the source will be

pr =

[

A(0)

A(R)

]1/2
f(t− 2R/c)

R
. (8-8.14)

In this example, it is possible to orient the coordinate system so that [gS ] is
diagonal. The angle θi is 0; l and Ri are both R, so Eq. (9) yields

pr =
f(t− 2R/c)

2R(1 +R/RS,I)1/2(1 +R/RS,II)1/2
. (8-8.15)

Thus, the echo will be smaller by 10 log[(1+R/RS,I)(1+R/RS,II)]dB relative
to what would be expected for reflection from a flat surface. If R is much less
than either RS,I or RS,II, the surface may be idealized as flat.

Sound Beam Incident on a Sphere

A collimated beam of sound is incident from the +z direction on a sphere of
radius Ro, (see Fig. 8-24), the beam’s diameter being larger than 2Ro. The
time-averaged intensity of the incident wave in the vicinity of the sphere is Ii,
and the intensity Ir of the reflected wave is to be estimated at radial distances
r much larger than Ro. We are here interested in the short-wavelength limit†

and accordingly use geometrical acoustics.
The ray of sound incident at a distance wo (less than Ro) from the z axis

will strike the surface at an angle of incidence θi where θi = sin−1(wo/R0)
and will reflect such that it makes an angle of 2θi with the z axis. After
a subsequent propagation distance l, it will pass through a point at z =
Ro cos θi + l cos 2θi, w = Ro sin θi + l sin 2θi, or, in spherical coordinates,
where r2 = R2

o + l2 + 2Rol cos θi and θ = tan−1(w/z). If l ≫ Ro, then
r ≈ l+Ro cos θi and θ ≈ 2θi. Thus, we can set θi ≈ θ/2, l ≈ r−Ro cos(θ/2),
so with R−1

i = 0 and RS = Ro, Eq. (10) becomes

A(l)

A(0)
≈
(

2
r

Ro
sec

θ

2
− 1

)(

1− 2 cos2
θ

2
+

2r

Ro
cos

θ

2

)

.

† Full-wave results for intermediate values of kRo are tabulated by H. Stenzel, “On trhe
disturbance caused by a sound field incident on a igid sphere,” Elektr. Nachrichtentech.
15:71–78 (1938); Leitfaden zur Berechnung von Schallvorgängen, Springer, Berlin, 1939,
pp. 104–114. Some of Stenzel’s results are given in Sec. 9-1 of the present text.
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Figure 8-24 Parameters used in the geometrical-acoustics theory of reflection from a rigid
sphere.

The quantity [A(0)/A(l)]1/2 is thus approximately Ro/2r, providing θ is such
that 2r/Ro ≫ sec(θ/2). (This excludes angles close to π). The net travel
time along the path from where the incident ray crosses the plane z = Ro
to the point (r, θ) is [l + Ro(1 − cos θi)]/c ≈ r/c + (Ro/c)[1 − 2 cos(θ/2)].
Consequently, Eq. (13) yields

pr(r, θ, t) ≈
Ro
2r
pi

(

0, t− r

c
+ 2

Ro
c

cos
θ

2

)

, (8-8.16)

where pi(0, t) is what the incident pressure would be at the origin without
the sphere. The cos(θ/2) factor in the retarded time implies that surfaces of
constant r are not surfaces of constant phase, but the phase variation should
be negligible for transverse displacements of the order of a wavelength.

If the incident plane wave is of constant frequency or is a superposition
of constant-frequency waveforms, we can identify Ii as (p2i /ρc)av and Ir as
(p2r/ρc)av, giving

Ir ≈
(

Ro
2r

)2

Ii (8-8.17)

for values of θ somewhat less than π. The net acoustic power reflected by the
sphere is therefore

Pr = 4πr2Ir = (πR2
o)Ii, (8-8.18)
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which is the net acoustic power incident on the front (projected area πR2
o) of

the sphere.

8-9 PROBLEMS

8-1 Show that the unit normal n to a wavefront varies with time along a ray
according to the differential equation (in cartesian coordinates)

dn

dt
= −[∇− n(n · ∇)]c−

∑

k

nk[∇− n(n · ∇)]vk,

dnx
dt

=

[

−(n2
y + n2

z)
∂

∂x
+ nxny

∂

∂y
+ nxnz

∂

∂z

]

(c+ n · v),

where nx, ny, and nz are formally treated as constant in carrying out the
differentiation. [R. Engelke, J. Acoust. Soc. Am. 56:1291–1292 (1974).]

8-2 Show that when there is no ambient flow a ray path satisfies the differential
equation

d

dl

(

c−1 dx

dl

)

= ∇c−1,

where l is distance along the path. (P. G. Frank, P. G. Bergmann, and A.
Yaspan, “Ray acoustics,” reprinted in R. B. Lindsay, Physical Acoustics,
Dowden, Hutchinson and Ross, Stroudsburg, Penn., 1974).

8-3 Show that the differential equation in Prob. 8-2 results from Fermat’s
principle. Carry through the derivation in detail starting with Eq. (8-1.13)
with v set to zero.

8-4 Show that the ray-tracing equations (8-1.10) follow from the relations on
p. 375n.

8-5 In an isentropic ideal gas with steady irrotational (∇ × v = 0) ambient
flow, the sound speed c and ambient velocity v are related by

2c2

γ − 1
+ v2 = K,

where K is a constant. Verify this relation and show that the ray-tracing
equations lead to

dn

dt
= n×

(

n×

{[

n− (γ − 1)v

2c

]

· ∇

}

v

)

.

8-6 A ray is moving in a cylindrically symmetric medium for which c depends
only on the radial distance w and for which v = 0. For a ray path lying in
the z = 0 plane, verify that weφ · n/c is constant along the ray.
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8-7 For a quiescent medium in which sound speed varies only with radial
distance r (spherical coordinates), determine whether or not a given ray
path always lies within a single plane.

8-8 For a medium whose ambient properties are described in cylindrical coor-
dinates by c = c(r), vφ = u(r), vr = vz = 0, determine what ray properties
are constant along a given ray. (What replaces Snell’s law?) [R. B. Lind-
say, J. Acoust. Soc. Am. 20:89–94 (1948); R. F. Salant, ibid., 46:1153–1157
(1969).]

8-9 Supply all necessary algebraic details for the proof that the ray-tracing
equation (8-1.10b) follows from the Euler-Lagrange equations (8-1.15) and
from Eq. (8-1.14).

8-10 Use Fermat’s principle to prove that angle of incidence equals angle of
reflection.

8-11 Use Fermat’s principle to prove that when source and listener lie on op-
posite sides of a plane interface separating two dissimilar homogeneous
quiescent fluids, angle of incidence and angle of refraction of the connect-
ing ray path are related by Snell’s law.

8-12 Two points are at equal distances L from the center of a solid sphere of
radial R. They are on opposite sides of the sphere and lie on a common
axis (L > R). Given that the ambient medium has constant sound speed c
and no flow, determine the minimum travel time between the two points.
What is the corresponding ray path?

8-13 A wavefront moving in the +z direction in a homogeneous nonmoving
medium is described by

z =
x2/2R

1 + 10x2/R2

at t = 0. Sketch the wavefront at times 0.9R/c, 1.0R/c, and 1.1R/c and
discuss possible physical interpretations of the results.

8-14 A wavefront moving in the +z direction in a homogeneous nonmoving
medium is described at time t = 0 by z = f(x).
(a) Show that the ray passing through the point x = α, z ≈ f(α) at time
t = 0 will graze a caustic at time

t =
(1 + f2

α)
3/2

cfαα

(given fαα > 0).
(b) Show also that the caustic surface is described by the parametric equa-
tions

x = α− fα(1 + f2
α)

fαα
, z = f +

1 + f2
α

fαα
.

(c) Determine and plot the caustic surface for the example described in
Prob. 8-13.
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8-15 Given a model atmosphere without winds for which c(z)/co is 1 for 0 < z <
H and is 0.9 + 0.1z/H for z > H , determine the horizontal skip distance
R(θo) versus initial angle of incidence θo. Is there a minimum range for the
reception of abnormal sound on the ground? Assume that the source is on
the ground. [L. M. Brekhovskikh, Sov. Phys. Usp. 70:159–166 (1960).]

8-16 A sound source is at x = 0, y = 0, z = h above a rigid ground in a medium
for which c(z) is described up to any height of interest by (1 − z/H)co,
where H > h.
(a) Show that points on the ground at horizontal distances greater than
(2hH − h2)1/2 do not receive any direct waves.
(b) What broken ray path conforming to Fermat’s principle would connect
the source with a point on the ground at a range greater than (2hH −
h2)1/2?
(c) Determine an expression for the travel time along such a ray path.

8-17 A stratified medium without ambient flow has a sound speed c(z) given by
co cosh(z/H). Determine the ray path in the xz plane that passes through
the origin making an angle of θo with respect to the vertical.

8-18 A source and receiver are separated by a distance d and are at equal heights
h above the ground. The sound speed c(z) increases linearly with height as
co+αz. Let a particular ray be reflected at the surface once and only once
between source and receiver and let the reflection point be at a horizontal
distance x from the source.
(a) Show that x satisfies the cubic equation

2x3 − 3dx2 + (2b2 + d2)x− b2d = 0,

where b2 = h2 + 2h/γ and γ = α/co.
(b) Determine the possible ray paths corresponding to the roots of this
equation. Under what circumstances are three different paths possible?
(Embleton, Thiessen, and Piercy, “Propagation in an Inversion.. . . ”)

8-19 A model for an underwater surface channel takes sound speed c as increas-
ing linearly with depth z, such that c = co + αz.
(a) Show that if the sound source is at the surface, a ray making initial
angle θo with the vertical has a path given in parametric form through a
parameter θ by

x = xn(θ, θo) = nR(θo) + co
cos θo − cos θ

α sin θo
,

z = zn(θ, θ0) = co
sin θ − sin θo
α sin θo

. R(θo) =
2co cot θo

α

for nR(θo) < x < (n+1)R(θo) and where θ ranges from θo to π− θo. Here
n = 0, 1, 2, . . . defines the nth branch of the ray; R(θo) is the ray’s skip
distance.
(b) Show that caustics correspond to the lines
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x2 = 4n(n+ 1)

(

2coz

α
+ z2

)

,

for n = 1, 2, . . .. [D. Raphael, J. Acoust. Soc. Am. 48:1249–1256 (1970).]
8-20 A sound source at the origin is surrounded by a medium for which c(z) is

co(1− z/H) and ρ(z) is constant for a wide range of altitudes both above
and below the source. If P is the power radiated by the source, what
would one expect for the mean squared acoustic pressure at a horizontal
distance x from the source?

8-21 For the circumstances described in Prob. 8-20 determine whether any of
the rays leaving the source encounter a caustic.

8-22 (a) Show that the wavefronts for the circumstances described in Prob. 8-20
are given by

τ(w, z) =
2H

co
tanh−1

[

w2 + z2

(2H − z)2 + w2

]1/2

,

where w corresponds to horizontal distance.
(b) Verify that each wavefront is a sphere whose center lies on the z axis.
[D. H. Wood, J. Acoust. Soc. Am. 47:1448–1452 (1970).]

8-23 A source of sound lies a distance d below the water surface. In the absence
of reflections from the air-water interface the acoustic pressure would be
f(t − R/cw)/R, where R is the distance from the source and cw is the
water’s speed of sound. The sound speed ca in the atmosphere is constant,
but the ambient density ρa varies with height z as ρa,0e−z/H , where H is
a constant.
(a) Using geometrical-acoustics techniques, determine the acoustically in-
duced fluid velocity at height 10H directly above the source.
(b) Suppose a source of the same power output is placed just above the
surface. Would it cause a greater or a smaller disturbance at the considered
altitude than the subsurface source does? (Take d to be much less than
H .)

8-24 An intrinsically omnidirectional point source lies at the origin in an un-
bounded medium for which sound speed c(z) and ambient density ρ(z)
vary only with height z. Show that the mean squared acoustic pressure
along the z axis is

(p2)av =
Pavρ(z)c(z)c

2(0)

4π
(∫ z

o
cdz
)2 ,

where Pav is the time-averaged acoustic power output of the source.
8-25 A plane interface z = 0 separates a medium with no ambient flow (cI, ρI for

z<0) from one with constant ambient horizontal flow velocity (cII, ρII,vII

for z>0). Prove that if a plane wave is incident from the first medium, the
time-average rate at which wave action arrives per unit interface area with
the incident wave equals the sum of the corresponding quantities carried
away by the reflected and transmitted waves.
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8-26 (a) Show that with the neglect of gravity and if the ambient state is isen-
tropic (so constant) and irrotational (∇× vo = 0). Eqs. (8-6.2) lead to

∂v′

∂t
+∇

(

vo · v
′ +

p′

ρo

)

= 0,
∂ρ′

∂t
+∇ · (ρov

′ + voρ
′) = 0,

∇ × v′ = 0, p′ = ρ′c2.

(b) Show that these equations have the corollary

∂W

∂t
+∇ · J = 0,

W = 1
2ρo(v

′)2 +
(p′)2

2ρoc2
+
p′v′

· vo

c2
,

J = (p′ + vo · v
′ρo)

(

v′ +
p′vo
ρoc2

)

.

(c) Is the energy statement in part (b) consistent with the wave-action-
conservation law of Eq. (8-6.8)? (Chernov, “The flux and energy density.
. . . ”)

8-27 The generalization of the Webster horn model, when a duct of cross-
sectional area A(x) has an ambient flow vo(x), is

A

c2
∂p′

∂t
+

∂

∂x

[

A

(

ρov
′ +

vop
′

c2

)]

= 0,

∂v′

∂t
+

∂

∂x

(

p′

ρo
+ vov

′

)

= 0.

(a) Derive these equations from Eqs. (8-6.2), making whatever approxi-
mations are necessary.
(b) Determine an energy corollary from these equations.
(c) Verify that the energy corollary is consistent with the wave-action-
conservation principle when waves are presumed to be propagating in the
+x direction without reflection.
(d) What is the Blokhintzev invariant for this model?

8-28 A plastic lens is to be placed on a transducer face to focus an ultrasound
beam on a point 30 cm distant. The beam propagates through water, sound
speed 1500 m/s; the plastic has sound speed 2600 m/s and density 1200
kg/m3. Using geometrical-acoustics concepts (such as Fermat’s principle),
design a lens-thickness-versus–radius profile that should accomplish the
focusing.

8-29 For the example discussed in Sec. 8-8 of sound reflection from a rigid
sphere, determine a simple approximate expression for the geometrical-
acoustics prediction of the field near the shadow-zone boundary (w−Ro ≪
Ro, z ≤ 0). Take the incident wave to be of constant frequency with a
complex pressure amplitude p̂i of Pe−ikz , where P is a constant, and take
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into account the interference of the reflected and incident waves. Assume
that kRo is large and use cylindrical coordinates.

8-30 A point source is at distance d = 4λ from the axis of a rigid cylinder of
radius RC . Take RC to be 3λ, the cylinder to be aligned along the x axis,
and the source to be at (0, 0, d).
(a) Determine and sketch the far-field radiation pattern of the source-
cylinder combination in the plane y = 0.
(b) What is the corresponding pattern in the plane x = 0? Use the
geometrical-acoustics approximation but take into account the interfer-
ence of direct and reflected waves.

8-31 A source is at height H/10 above the ground in an atmosphere where
the sound speed c is co(1 − z/H). The ground is locally reacting and
has specific impedance 5ρoco. The source is intrinsically omnidirectional
and has a time-averaged power output P. Determine the geometrical-
acoustics prediction for the mean squared acoustic pressure on the ground
as a function of horizontal distance w from the source.

8-32 Spherical aberration. A plane wave proceeding originally in the −z direc-
tion reflects from a hemispherical bowl described by z = −(R2

o − w2)1/2,
where Ro is radius of the bowl and w is radial distance in cylindrical co-
ordinates. Discuss the location and shape of whatever caustics are formed
by the reflected wave.



CHAPTER NINE

SCATTERING AND DIFFRACTION

An obstacle or inhomogeneity in the path of a sound wave causes scattering

if secondary sound spreads out from it in a variety of directions. Such an
inhomogeneity could be, for example, a fish in the ocean, a region of turbu-
lence in the atmosphere, or a red corpuscle in a bloodstream. The smearing of
propagation directions that results when a sound beam reflects from a rough
surface is also recognized as scattering.

The present chapter begins with a discussion (Sec. 9-1) of scattering of
sound by small isolated bodies and inhomogeneities. The basic experimental
configurations for the study of scattering are then discussed in Sec. 9-2. The
Doppler effect and, in particular, the frequency shift caused by a scatterer’s
motion occupy our attention in Sec. 9-3.

The remainder of the chapter is concerned with diffraction phenomena.
The term as used here applies to contexts where major features of the prop-
agation and of the overall acoustic field are well described by ray-acoustic
concepts. Diffraction is then the label assigned to those features of the field
which the ray model fails to explain. A common example is the field in the
shadow zone of a large solid object obstructing direct rays radiating from the
source.

Examples of diffraction previously discussed in the present text are trans-
verse spreading (Sec. 5-8) of a beam of sound radiated by a baffled piston in a
wall and transmission (Sec. 7-5) through an orifice. The analysis of diffraction
phenomena resumes here with discussions of fields near caustics (Sec. 9-4) and
of the penetration of sound into shadow zones bordered by limiting rays that
tangentially graze smooth surfaces (Sec. 9-5).

Subsequent sections analyze the fundamental problem of diffraction by a
wedge, which furnishes a building block for synthesis of models for diffraction
by objects whose sides meet at edges. Limiting cases of high-frequency diffrac-
tion introduce the basic vocabulary associated with the subject and serve as
benchmarks for the estimation of magnitudes and for the interpretation of
experiments.

477
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9-1 BASIC SCATTERING CONCEPTS

A dominant feature in many scattering phenomena is that (except when res-
onances are excited) low frequencies scatter much less than high frequencies.
The understanding of this led Tyndall and Rayleigh† to an explanation for
the color of the sky. Light from the sky is scattered light; higher-frequency
blue light scatters more than lower-frequency red light; hence the sky is blue.

Low-frequency (small ka) scattering is often referred to as Rayleigh scat-

tering because of Rayleigh’s fundamental contributions to the basic theory,
which he developed for acoustics‡ as well as for optics.

Scattering by a Rigid Object§

A prototype for Rayleigh scattering is a constant-frequency plane wave pro-
ceeding in direction ek (wave-number vector k = kek) that impinges on a
rigid immovable body centered at the origin (see Fig. 9-1). The overall acous-
tic pressure is written

p̂ = Beik·x + p̂sc(x), (9-1.1)

where B is the peak amplitude of the incident wave pi and p̂sc(x) is the
scattered wave’s complex amplitude.

The function p̂sc(x) satisfies the Helmholtz equation and the Sommerfeld
radiation condition. Also, the ∇p̂ · n = 0 requirement for a rigid surface
imposes

∇p̂sc ·n = −iBeik·xk · n (9-1.2)

at the body’s surface S (unit normal n pointing into fluid). Determination of
p̂sc is equivalent to determination of the field of a vibrating body of the same

† J. W. Strutt, Lord Rayleigh, “On the light from the sky, Its polarization and colour,”
Phil. Mag. (4)41:107–120 (1871); “On the transmission of light through an atmosphere
containing small particles in suspension, and on the origin of the blue of the sky,” ibid.
(5)47:375–384 (1899); V. Twersky, “Rayleigh scattering,” Appl. Opt. 3:1150–1162 (1964).
‡ J. W. S. Rayleigh, “Investigation of the disturbance produced by a spherical obstacle on
the waves of sound,” Proc. Lond. Math. Soc. 4:253–283 (1872); “On the passage of waves
through apertures in plane screens and allied problems,” Phil. Mag. (5)43:259–272 (1897).
§ H. Lamb, The Dynamical Theory of Sound, 2d ed., 1925, reprinted by Dover, New
York, 1960, pp. 244–248; J. Van Bladel, “On low-frequency scattering by hard and soft
bodies,” J. Acoust. Soc. Am. 44:1069–1073 (1968); D. A. Darling and T. B. A. Senior,
“Low-frequency expansions for scattering by separable and nonseparable bodies,” ibid.
37:228–234 (1965); A. F. Stevenson, “Solution of electromagnetic scattering problems as
power series in the ratio (dimension of scatterer)/wavelength,” J. Appl. Phys. 24:1134–
1151 (1953). The discussion in the present text is indebted to F. Obermeier, “Determination
of the scattering of a plane sound wave by a hard sphere with the assistance of the method
of matched asymptotic expansions,” unpublished (c. 1975).
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size and shape whose normal velocity is the negative of what is associated
with the incident wave.

Figure 9-1 Scattering of a plane wave by a rigid immovable object small compared with
a wavelength.

The expansion of the exponent in Eq. (2) to first order in k yields

v̂sc · n = −B

ρc
ek · n− i

B

ρc
(k · x)ek · n. (9-1.3)

The first term corresponds to rigid-body translation back and forth parallel
to ek with a velocity amplitude −B/ρc and, taken by itself, produces dipole
radiation (to lowest nonvanishing order in ka, as explained in Sec. 4-7). Al-
though the second term, which leads to monopole radiation, is smaller than
the first by a factor of the order of ka, both have comparable influence on the
far field because monopoles radiate more efficiently than dipoles. An approx-
imation to the lowest order in ka results with the discard of terms of higher
than the first order and with the neglect of higher-order multipoles for the
two remaining terms.

The monopole portion, calculated with the complex-amplitude version of
the leading term in Eq. (4-7.10), yields

p̂sc,mono =
−k2Beikr

4πr

∫ ∫

(ek · x)ek · ndS =
−k2BV
4πr

eikr (9-1.4)

with the aid of Gauss’s theorem and the identity ∇· [(ek ·x)ek] = 1; here V
denotes the total scattering body volume.

The dipole term results from Eq. (4-7.12), whose complex-amplitude ver-
sion with the appropriate substitution from Eq. (3) yields
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p̂sc,dipole =
−ikB
4π

∇ · [(M · ek)r
−1eikr], (9-1.5a)

Mµν = V δµν +Wµν M · ek =
∑

µν

eµMµνeν · ek. (9-1.5b)

The matched asymptotic expansion procedure outlined in Sec. 4-7 guaran-
tees that the tensor W is derivable from the solution for the incompressible
potential flow caused by translational motion of the body. The entrained-

mass tensor† ρW is such that ρW · v̇C is the force F exerted on the fluid
by the body when it experiences acceleration v̇C . The necessity for a tensor
arises because F may have components transverse to v̇C .

Since the components of M scale as a3, the monopole and dipole terms
are of comparable magnitude. The sum of these,

p̂sc =
−k2B
4π

[

V − er ·M · ek

(

1 +
i

kr

)]

eikr

r
(9-1.6)

implies a far-field scattered-wave amplitude proportional to k2a3/r.
Particular matrix expressions for the tensor M ,

3
2V





1 0 0
0 1 0
0 0 1





8
3a

3





0 0 0
0 0 0
0 0 1



 (9-1.7)

correspond, respectively, to a sphere [see Eq. (4-2.14)] and to a thin disk of
radius a oriented transverse to the z axis [see Eq. (4-8.11)]. The reciprocity
principle guarantees that such matrices are symmetric, so that selection of
the coordinate system can be such that the matrix is diagonal. For a body
of revolution centered at the z axis, the matrix is also such that Mxx =Myy

(see Fig. 9-2).

† The symbols adopted here are those of T. B. A. Senior, “Low-frequency scattering,” J.
Acoust. Soc. Am. 53:742–747 (1973). Senior refers to M as the magnetic-polarizability
tensor and to W as the virtual-mass tensor.
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The versions‡ of Eq. (6) that result for the sphere and disk examples (with
ek = ez) just mentioned are, respectively,

p̂sc =
−k2B
4π

(43πa
3)

[

1− 3
2 cos θ

(

1 +
i

kr

)]

eikr

r
(9-1.8)

p̂sc =
k2B

4π

8a3

3
cos θ

(

1 +
i

kr

)

eikr

r
(9-1.9)

Here cos θ is ek ·er, such that θ is the angle the scattered direction makes with
the incident direction. The monopole term is absent in the latter because the
disk has no volume.

Scattering Cross Section

The time-averaged intensity Isc of the scattered wave at large r, equal to
the asymptotic value of 1

2 |p̂sc|2/ρc, is proportional to the time-averaged in-
cident intensity Ii, decreases with r as 1/r2, and also depends in general on
the direction from the scatterer to where the scattered pressure is measured.
The quotient r2Isc/Ii, representing the power scattered per unit solid angle
and per unit incident intensity, is referred to as the differential cross section

dσ/dΩ, while the integral over solid angle of dσ/dΩ is referred to as the scat-

tering cross section σ. The latter term† is also used in literature emphasizing
analogies with radar applications for the directionally dependent quantity
4π dσ/dΩ; to avoid confusion, the alternative terms backscattering cross sec-

tion σback and bistatic cross section σbi are here used for 4πdσ/dΩ when the
direction toward the receiver extends back toward the source and at an angle

‡ Both results are due to Rayleigh (1872, 1897). A generalization of the sphere result to
include viscosity is due to C. J. T. Sewell, “The extinction of sound in a viscous atmosphere
by small obstacles of cylindrical and spherical form,” Phil. Trans. R. Soc. Lond. A210:239–
270 (1910); a fuller and extended account is given by H. Lamb, Hydrodynamics, 6th ed.,
1932, reprinted by Dover, New York, 1945, pp. 657–659. The required modification of Eq.
(8) for a freely suspended sphere that includes viscosity and also the acoustically induced
motion is (with ka≪ 1)

3
2
cos θ →

(m−md)
3
2
Kvis cos θ

m −md + 3
2
mdKvis

Kvis = 1 +
3i

βa
− 3

β2a2
β = eiπ/4

(

ωρ

µ

)1/2

,

where µ = viscosity
m = sphere’s mass
md = mass of fluid displaced by sphere

The immovable-sphere result is obtained in the limit m/md → ∞. The inviscid result is
obtained in the limit |βa| → ∞, so that Kvis → 1.
† Compare the definitions on pp. 818 and 509, respectively, of International Dictionary of
Applied Mathematics, Van Nostrand, Princeton, N.J., 1960, and IEEE Standard Dictionary
of Electrical and Electronics Terms, Wiley, New York, 1972.
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Figure 9-2 Principal components of the matrix M that appears in expression for dipole
portion of field scattered by a body in the ka≪ 1 limit; ρM is the entrained-mass tensor.
Plot is for spheroids (prolate if l > w; oblate if l < w) that are bodies of revolution (length
l, maximum diameter w) about the x3 axis. The volume V is 4

3
π(w/2)2(l/2). For the sphere

(l/w = 1), both M11/V and M33/V are 1; for the disk (l/w → 0), M33 → 8
3
(W/2)3, so

M33/V → (2/π)(w/l). [From T. B. A. Senior, J. Acoust. Soc. Am. 53:745 (1973).]

from the source, respectively. For an isotropic scatterer, for which dσ/dΩ is
independent of direction and equal to σ/4π, the backscattering cross section
and the bistatic cross section are the same as the scattering cross section σ.

Closely related to the backscattering cross section is the target strength,
measured in decibels and defined so that

TS = 10 log
σback
4πR2

ref

, (9-1.10)

where the reference length Rref is taken as 1 m in present-day literature.† The
ratio in the argument of the logarithm can also be regarded as the differential

† C. S. Clay and H. Medwin, Acoustical Oceanography: Principles and Applications, Wiley,
New York, 1977, pp. 180—183. The reference length of 1 yd (0.9144 m) is used in earlier
literature. See, for example, J. W. Horton, Fundamentals of SONAR, 2d ed., United States
Naval Institute, Annapolis, Md., 1959, pp. 41, 56–57, 329–330. Note that although Clay
and Medwin’s definition of backscattering cross section differs by a factor of 4π from that
used here, the above definition of target strength is the same as theirs.
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cross section in the backscattering direction divided by a reference differential
cross section of 1 m2/sr. If Li is the incident sound-pressure level at the
scatterer, and if Lback(Ro) is the sound-pressure level of the backscattered
wave at distance Ro from the scatterer, then the definition of target strength
implies that

TS = Lback(Ro) + 10 log
R2
o

R2
ref

− Li, (9-1.11)

providing the scattered wave decreases with distance as in spherical spread-
ing.

The differential cross section dσ/dΩ for the low-frequency scattering by a
rigid immovable body evolves out of Eq. (6) to the expression

dσ

dΩ
=

k4

16π2
|V − er ·M · ek|2 , (9-1.12)

while the backscattering cross section results with er set to −ek and with a
subsequent multiplication by 4π, such that

σback =
k4

4π
|V + ek ·M · ek|2 backscatter (9-1.13)

The predicted frequency dependence, as f4, holds also for the scattering
cross section σ. The required angular integration of dσ/dΩ becomes simpler
with the z axis selected in the direction of M · ek, so that er · M · ek is
|M · ek| cos θ. The cross term integrates to zero (since cos θ is odd about
θ = π/2), so the scattered acoustic powers associated with the monopole and
dipole contributions are additive. These two remaining terms integrate to
simple expressions because the average of cos2 θ over the surface of a sphere
is 1

3 and because the total solid angle about a point is 4π; the overall result
is therefore

σ =
k4

4π
[V 2 + 1

3 (M · ek)
2]. (9-1.14)

The scattering cross section σ, defined above as the scattered power per
unit incident intensity, is the apparent area blocking the incident wave. The
values resulting from Eqs. (7) for this parameter are

σ =

{

7
9 (πa

2)(ka)4 sphere
16
27 (πa

2 cos2 θk)(ka)
4/π2 disk

(9-1.15a)

(9-1.15b)

where θk is the angle between the disk’s symmetry axis and the incident
propagation direction. The scattering cross sections in these two cases are
smaller, by factors of 7

9 (ka)
4 and 16

27 (ka)
4π−2 cos θk, than the projected areas

πa2 and πa2 cos θk the scattering body presents to the incident wave. The
common factor (ka)4 substantiates the conclusion that small obstacles appear
even smaller to an incident wave.
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Higher-Frequency Scattering

In the limit of large ka, geometrical-acoustics considerations require

σ → 2Aproj σback → πRS,IRS,II. (9-1.16)

The latter expression presumes that there is only one point on the near side
of the scatterer where the unit normal points back toward the source [see Eq.
(8-8.9)]; the principal radii of curvature at that point are RS,I and RS,II; the
surface is assumed to be convex. The factor of 2 multiplying the projected
area Aproj in the expression for the scattering cross section arises because
the definition in Eq. (1) of p̂sc and the existence of the shadow require the
scattered field to be nearly opposite to the incident field behind the body (on
the side facing away from the source). The scattered power behind the body
is therefore the projected area times the incident intensity, which is the same
as the acoustic power reflected by the illuminated part of the body; hence
the factor 2.

The transition between high- and low-frequency limits is not amenable
to simple generalizations, but some insight results from an examination of
numerical calculations for the rigid-sphere example. The solution† of the re-
sulting boundary-value problem takes the form of a sum over products of
spherical harmonics and spherical Hankel functions. For small ka, the first
two terms, as further approximated by Eq. (8), suffice, but many terms must
be summed when ka is of the order of 1 or larger. The computational results
plotted in Fig. 9-3 are of (dσ/dΩ)1/2)/a; also shown are the analogous lim-
iting versions for the Rayleigh-scattering limit and the geometrical acoustics
limit, these being

1
a

(

dσ
dΩ

)1/2 →
{

1
3 (ka)

2|1− 3
2 cos θ| ka≪ 1

1
2 + π1/2∆(θ) ka≫ 1

(9-1.17a)

(9-1.17b)

Here ∆(θ) is a singular function concentrated at θ = 0 and defined so that
the integral of ∆2(θ) over solid angle is 1.

Scattering by Inhomogeneities

To study acoustic scattering by a departure of the medium from spatial ho-
mogeneity, we suppose that ρ(x) and c(x) differ near the origin from their

† H. Stenzel, “On the perturbation of the sound field caused by a rigid sphere,” Elektr.
Nachrichtentech. 15:71–78 (1938); N. A. Logan, “Survey of some early studies of the scat-
tering of plane waves by a sphere,” Proc. IEEE, 53:773–785 (1965). The derivation is out-
lined by P. M. Morse and H. Feshbach, Methods of Theoretical Physics, vol. 2, McGraw-Hill,
New York, 1953, pp. 1483–1484.
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Figure 9-3 Angular distribution of sound scattered by a rigid sphere of radius a. The
quantity {dσ/dΩ)1/2/a is plotted versus the polar angle θ, where dσ/dΩ is the differen-
tial cross section: θ = 0 corresponds to scattering in the forward direction, θ = 180◦ to
backscatter. The plots for ka = 2, 4, and 6 are based on calculations of H. Stenzel (1938).

prevalent uniform media values ρo, and co. The wave equation for an inho-
mogeneous quiescent medium (see Prob. 1-6),

ρ∇ ·

(

1

ρ
∇p

)

− 1

c2
∂2p

∂t2
= 0, (9-1.18)

leads for the constant-frequency case to

∇
2p̂+ k2p̂ = k2∆1p̂+∇ · (∆2∇p̂), (9-1.19a)

k =
ω

co
, ∆2 = 1− ρo

ρ
, ∆1 = 1− ρoc

2
o

ρc2
, (9-1.19b)
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where the right side of Eq. (19a) vanishes except near the origin. The two
right-side terms are associated with monopole and dipole scattering, respec-
tively. In what follows, the spatial dimension a characterizing the extent of
the inhomogeneity is such that kac 0/c ≫ 1 and (ka)2ρo/ρ≫ 1 everywhere.
As before, the incident acoustic pressure has complex amplitude Beik·x, so
p̂−Beik·x satisfies the Sommerfeld radiation condition.

The formal recognition of the right side of the above as a source term
allows the Green’s function solution, Eq. (4-3.13), to transform Eq. (19a)
into the integral equation

p̂ = Beik·x − k2

4π

∫∫∫

∆1(xs)p̂(xs)R
−1eikRdVs

− 1

4π
∇ ·

[∫∫∫

∆2(xs)∇sp̂(xs)R
−1eikRdVs

]

. (9-1.20)

This in turn yields the asymptotic (large r) expression for the scattered wave

p̂sc ≈
−k2B
4π

[

Veff − er ·M eff · ek

(

1 +
i

kr

)]

eikr

r
, (9-1.21)

where

Veff =
1

B

∫∫∫

∆1(xs)p̂(xs)dVs, (9-1.22a)

M eff · ek =
1

ikB

∫∫∫

∆2(xs)∇sp̂(xs)dVs. (9-1.22b)

Note that Eq. (21) is of the same form as Eq. (6). The coefficients are
understood to be evaluated in the limit ka → 0, so the scattering cross
section here also is proportional to f4.

In regard to the evaluation of the above coefficients, a solution technique
applicable when ∆1 and ∆2 are not necessarily small follows the matched-
asymptotic-expansion procedure outlined in Sec. 4-7. The differential equa-
tions for successive terms in the inner expansion result from insertion of a
power series in k into Eq. (19a). Outer boundary conditions for this sequence
of differential equations follow from the requirement that the inner solution
for large r/a match the outer solution Beik·x + p̂sc, with p̂sc represented
by Eq. (21), in the limit of small kr. In this manner, one finds the inner
expansion to first order in k to be

p̂inner ≈ B + iBk ·Φ(x), (9-1.23)

where the µth component of the vector Φ(x) satisfies

∇ · [(1−∆2)∇Φµ] = 0, Φµ(x)− xµ → 0 as r → ∞. (9-1.24)
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The identification of the first term in Eq. (23) results from requiring the
solution of the differential equation (19a) with k2 → 0 to match Beik·x in
the limit of small r. Note that the first-order term in Eq. (23) must also
satisfy the same k → 0 partial-differential equation. The outer boundary
condition in Eq. (24) results because iBk · Φ(x) must asymptotically equal
the first-order term iBk · x of the power-series expansion of Beik·x.

Equation (23) allows the coefficients in Eqs. (22)to become†

Veff =

∫∫∫

∆1(x)dV, (9-1.25a)

Meff,µν =

∫∫∫

∆2(x)
∂Φν(x)

∂xµ
dV. (9-1.25b)

The symmetry of the tensor M eff is a derivable consequence of Eqs. (24)
and (25b).

The explicit expression (25a) for the effective volume of the scatterer can
alternatively be interpreted as

Veff = −ρoc2o∆CA, (9-1.26)

where ∆CA is the increase of the acoustic compliance of a volume enclosing
the inhomogeneity. Here acoustic compliance is defined (see Sec. 7-2) as vol-
ume decrease per unit increase in external pressure. If the scatterer is rigid,
the compliance is reduced by V/ρoc2o, so that Veff is just the volume V of the
scatterer, which is consistent with the result in Eq. (6). If the scatterer is
more compliant than the ambient medium, (ρc2)sc < ρoc

2
o and ∆CA becomes

positive, so Veff is a negative number and its label as an effective volume
becomes a misnomer. The symbol Veff is retained here, however, as it makes
identification from Eqs. (12) and (14) for the scattering cross section easy.

Spherical Inhomogeneity

Solution for the Φν(x) in general requires further approximation or numerical
integration. An exception is that of the homogeneous sphere, such that ∆2 =
ǫ for r < a and ∆2 = 0 for r > a, where ǫ is constant. The symmetry
permits the substitution Φµ(x) = xµg(r)/r, yielding the ordinary differential
equation

d

dr

[

(1−∆2)r
2 dg

dr

]

− 2(1−∆2)g = 0, (9-1.27)

† J. W. S. Rayleigh, “On the incidence of aerial and electric waves upon small obstacles in
the form of ellipsoids or elliptic cylinders, and on the passage of electric waves through a
circular aperture in a conducting screen,” Phil. Mag. (5)44:28–52 (1897).
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with the derivable restrictions that g(r) and (1 −∆2)r
2dg/dr be continuous

at r = a. Solutions of the equation are g = αr for r < a and g = βr + γ/r2

for r > a. The outer boundary condition requires β = 1; the continuity
requirements yield α = 3/(3− ǫ) and γ = [ǫ/(3− ǫ)]a3. The substitution of
Φν = [3/(3− ǫ)]xν for r < a into Eq. (25b) then yields

Meff,µν =
3ǫ

3− ǫ
V δµν =

3(m−md)

2m+md
V δµν , (9-1.28)

where m = mass of foreign sphere,
md = mass of ambient fluid it displaces,
V = 4

3πa
3.

Inertia Effect for Freely Suspended Particle

The preceding result, Eq. (28), is the same as for a freely suspended rigid
sphere, and its interpretation is facilitated by the derivation† that proceeds
from such a viewpoint. Little additional complexity results if the body is
nonspherical, but we do assume that its geometry is such that the incident
acoustic wave causes no torque to be exerted about its center of mass and
that the product of the tensor W with the unit vector ek is also in direction
ek; we therefore write W · ek =Wek in what follows.

If ξ denotes the body’s center-of-mass position, Newton’s second law re-
quires that

mξ̈ = −V∇pi − F sc. (9-1.29)

The first term is the small-ka approximation to the force exerted on the body
by the incident wave; −F sc is the force exerted on the body by the scattered
wave’s pressure at the surface. The definition of the entrained-mass tensor
requires, however, that

F sc = ρW · (ξ̈ − v̇i), (9-1.30)

where vi is the fluid velocity associated with the incident wave and ρ is the
ambient density of the surrounding fluid. Elimination of F sc from the two
above equations, replacement of ∇pi by −ρv̇i, and a time integration yield

m(ξ̇ − vi) + ρW · (ξ̇ − vi) = −(m−md)vi. (9-1.31)

The above equation and the assumed properties of W in turn require ξ̇ to
be parallel to vi, with the result

md(ξ̈ − v̇i) + F sc = −
[

m−md

m+ ρW

]

ρM · v̇i. (9-1.32)

† Lamb, Hydrodynamics, 6th ed., p. 514.
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This, however, is the relevant quantity as regards the dipole radiation by
the scatterer since the boundary condition ξ̇ · n = vsc · n + vi · n enables
us to regard such radiation as being generated by a rigid body translating
with velocity ξ̇ − vi. The resulting dipole field is given by Eq. (4-7.12) with
v̇C replaced by ξ̈ − v̇i. Since v̇i has complex amplitude −iω(B/ρc)ek, we
conclude, after a comparison with Eq. (5a), that the only change required in
Eq. (6) is that the immovable-body M tensor be multiplied by

Kinertia =
m−md

m+ ρW
. (9-1.33)

For the transversely oscillating rigid sphere, ρW is 1
2md and Mµν is 3

2V δµν ;
so the above is consistent with Eq. (28).

Resonant Scattering

The foregoing derivation for Veff leading from Eq. (22a) to Eq. (25a) requires
the pressure near the scatterer to be not appreciably different from that of the
incident wave. Since the magnitude of the monopole term at the edge of the
scatterer is of the order of k2|B|Veff/4πa, this requires |∆1|k2a2 to be small.
A circumstance where this may be violated, with ka nevertheless small, is a
bubble (see Fig. 9-4a), within which the ambient density is much less than that
of the surrounding medium. (An example would be a gas bubble in water.)
Then for a narrow range of frequencies, yet with ka ≪ 1, it is possible to
have a monopole term of inordinately large amplitude.

To isolate the monopole portion of the wave scattered by a bubble, we
average the incident wave over the surface of a sphere so that eik·x is re-
placed by (kr)−1 sin kr. Since the bubble is assumed spherically symmetric,
the monopole portion of the incident and scattered fields becomes

(p̂i + p̂sc)mono =















B
sin kr

kr
+ Ŝ

eikr

r
r > a,

D
sin kbr

kbr
r < a,

(9-1.34a)

(9-1.34b)

where Ŝ and D are constants and kb = ω/cb is the wave number appropriate
to the interior of the bubble. Both expressions are spherically symmetric
solutions of the appropriate Helmholtz equation (see Sec. 1-12). The scattered
part of the exterior-region solution conforms to the Sommerfeld radiation
condition; the interior-region solution is required to be finite at the origin.

Determination of the coefficients Ŝ and D results from imposition of the
requirements that p̂ and (1/ρ) ∂p̂/∂r be continuous at r = a. Limiting our
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consideration to frequencies such that ka and kba are both small, we rewrite
Eqs. (34) as

(p̂i + p̂sc)mono =











B − 1
6B(kr)2 +

Ŝ

r
+ ikŜ r > a, kr ≪ 1

D − 1
6D(kbr)

2 r < a, kba≪ 1

(9-1.35a)

(9-1.35b)

Figure 9-4 Parameters and concepts adopted in the discussion of resonant scattering by
(a) a bubble; and (b) a Helniholtz resonator.

so that the continuity conditions yield

B +
Ŝ

a
+ ikŜ ≈ D, (9-1.36a)

1
3Bk

2a+
Ŝ

a2
≈ ρ

3ρb
Dk2ba. (9-1.36b)
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The solution† for Ŝ in the same approximation is

Ŝ =
−(k2/4π)Vb[1− (ρc2/ρbc

2
b)]B

1− 1
3 (kba)

2(ρ/ρb)(1 + ika)
(9-1.37)

which yields

p̂sc,mono =
(k2/4π)ρc2∆CAB

1− ω2MACA − iωCARA

eikr

r
(9-1.38)

with the identifications

MA =
3ρVb

(4πa2)2
CA =

Vb
ρbc2b

RA =
ρck2

4π
(9-1.39)

for the acoustic inertance, acoustic compliance, and acoustic (radiation) re-
sistance associated with the bubble. Here Vb is the bubble volume.

The above expression for MA is consistent with the model of a bubble in
which the fluid velocity in the external fluid varies with radius r as 1/r2, as
in potential flow. The kinetic energy associated with an interface velocity vs
is then

1
2ρv

2
S4π

∫ ∞

a

(

a2

r2

)2

r2dr ≈ 3
2mdv

2
S

where md = ρVb is the mass displaced by the bubble. Energy-conservation
considerations therefore suggest that 3mdv̇S is the difference 4πa2 ∆p of
pressure forces inside and outside the bubble. The volume velocity is 4πa2vS ,

† An appropriate idealization for the incorporation of thermal conductivity into the model
is that the bubble-temperature fluctuation vanishes at the interface. Techniques similar to
those described in Secs. 10-3 to 10-5 then yield for the replacement of Eq. (37)

Ŝ =
−(k2/4π)Vb[1− (ρc2/ρbc

2
b)ψ]B

1− 1
3
(kba)2(ρ/ρb)(1 + ika)ψ

,

ψ = 1+ (γb − 1)f(eiπ/4φb), f(u) = 3(u−2 − u−1 cot u),

where φb = (ωρcp/κ)
1/2
b a, with cp denoting the specific heat, γb denoting the specific-heat

ratio, and κ denoting the thermal conductivity. For small bubbles such that φb ≪ 1, the
bubble oscillates isothermally rather than adiabatically, so that ψ ≈ γb. Equation (37)
applies in the limit φb ≫ 1, so that ψ ≈ 1. Values of the complex function are

φb 0 2 4 6 8 10
f(eiπ/4φb) (1, 0) (0.91, 0.23) (0.54, 0.34) (0.35, 0.27) (0.27, 0.22) (0.21, 0.18)

The function f(u) approximates to 1 + (u2/15) at small u and to −3/u at large φb. The
imaginary part has a peak value of 0.36 ae φb = 3.41; the corresponding value for the
real part is 0.63. Viscosity is ordinarily of minor influence for bubble scattering. The basic
theory underlying the formula cited is due in major part to C. Devin, Jr., “Survey of
thermal, radiation, and viscous damping of pulsating air bubbles in water,” J. Acoust.
Soc. Am. 31:1654–1667 (1959); additional clarification and numerical results are given by
A. I. Eller, “Damping constants of pulsating bubbles,” ibid. 47:1469–1470 (1970).
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so the acoustic inertia, defined as ∆p divided by the time derivative of volume
velocity, is 3md divided by the surface area squared, as in Eq. (39).

The acoustic resistance in the above formulation is similarly explained as
that associated with a monopole radiating into an unbounded space. (This
follows from the result p̂in,2 = ikŜ derived in Sec. 4-7, with Ŝ identified as the
complex amplitude of ρ/4π times the time derivative of the volume velocity.)

A resonance in the scattering occurs when ω2 is near (MACA)
−1 or when

the frequency f in hertz is near the bubble resonance frequency†

fb =
cb
2πa

(

3ρb
ρ

)1/2

. (9-1.40)

Equation (38) also applies to scattering at near-resonance frequencies by
an isolated Helmholtz resonator (see Fig. 9-4b) provided the ∆CA in the nu-
merator is replaced by the acoustic compliance CA of the resonator’s cavity.
A derivation based on the method of matched asymptotic expansions pro-
ceeds similarly to what is given in Sec. 7-5 for scattering by a Helmholtz
resonator mounted on a wall. In the present case, the modified version of Eq.
(38) yields

p̂sc,mono =
ikρc

4πr

Beikr

ZHR + ρck2/4π
, (9-1.41)

where ZHR is the acoustic impedance of the Helmholtz resonator.
Near the resonant frequency, the scattered wave is overwhelmingly monopole,

so the scattered field is spherically symmetric and the scattering cross section
is 4πr2|p̂sc,mono|2/B2. With radiation damping as the only damping mecha-

† M. Minnaert, “On musical air-bubbles and the sounds of running water,” Phil. Mag. (7)16:
235–248 (1933). The generalization that correctly takes surface tension into account is

fb =
ρ−1/2

2πa

[

3

(

ρbc
2
b +

nb2σ

a

)

− 2σ

a

]1/2

,

where σ is surface tension in newtons per meter and nb is the derivative ∂(ρbc2b)/∂pb, carried
out at constant temperature and evaluated at the ambient pressure and temperature of
the external fluid. It is understood also that ρbc2b here denotes the value corresponding
to the ambient external temperature To and pressure po, so that ρbc2b = γbpo and nb =
γb for a gas bubble. An incorrect expression frequently seen in the literature forgets to
account for the difference between the external and internal ambient pressures. The above
result, attributed to J. M. Richardson (before 1947), is derived by R. W. Robinson and
R. H. Buchanan, “Undamped free pulsations of an ideal bubble,” Proc. Phys. Soc. Lond.
B69:893–900 (1956). Typical values of σ for an air-water interface are 0.076, 0.073, and
0.070 N/m at 0, 20, and 40◦C, so surface tension becomes important for underwater bubbles
only if a < 10−5m.
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nism taken into account, one finds from Eqs. (38) and (41) that σ is bounded‡

by 4π/k2 = λ2/π.
Analogous considerations apply to scatterers that radiate as dipoles or

quadrupoles when driven at a resonance frequency. A solid sphere suspended
by a spring, for example, should radiate primarily as a dipole when the in-
cident wave’s frequency equals the system’s resonance frequency. Similarly,
apropos of the legendary story of the operatic tenor whose voice could shatter
wine glasses, the scattered resonance sound in such a situation would most
likely have been quadrupole radiation. The guiding principle for prediction
of the scattered field’s radiation pattern is that the scattering body is caused
to vibrate as in its corresponding natural mode of free vibration when it is
excited by a resonance frequency.

9-2 MONOSTATIC AND BISTATIC SCATTERING;

MEASUREMENT CONFIGURATIONS

Instrumentation configurations for studies of scattering are broadly classi-
fied as monostatic and bistatic.† If the transmitter and receiver are at the
same or at closely spaced points, the configuration is monostatic. If they are
at widely spaced points, it is bistatic. In the discussion here, to emphasize
the similarities in concept with other types of remote sensing systems, the
sound-generation apparatus is referred to as the transmitter and the recep-
tion apparatus is referred to as the receiver unless special reference is being
made to acoustical or electroacoustical properties.

Monostatic Pulse-Echo Sounding

In the prototype pulse-echo sounding experiment, a directional transmitter
is aimed at a distant scattering object (see Fig. 9-5a). At time t = 0 the
transmitter sends out a pulse of duration τ and of nearly constant angular
frequency ω = 2πf , where the ratio of τ to the period 1/f is much larger
than 1. The distance rs to the scatterer, moreover, is in tum somewhat larger
than cτ/2 and is such that the scatterer is in the transmitter’s far field.

‡ H. Lamb, “A problem in resonance, illustrative of the theory of selective absorption of
light,” Proc. Lond. Math. Soc. 32:11–20 (1900); J. W. S. Rayleigh, “Some general theorems
concerning forced vibrations and resonance,” Phil. Mag. (6)3:97–117 (1902); Theory of
Sound, vol. 2, 2d ed., reissue of 1926, pp. 284A–284D.
† The terminology comes from radar. See, for example, M. I. Skolnik, Introduction to
Radar Systems, McGraw-Hill, New York, 1962, pp. 585–586. The “static” qualification in
the adjectives monostatic and bistatic was originally intended to distinguish ground-based
radar systems from airborne radar systems.
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The acoustic pressure incident near the scatterer is therefore describable (see
Sec. 1-12) by

pi = Dr−1F
(

θ, φ, t− r

c

)

, (9-2.1)

where the function F is nonzero only if 0 < t − r/c < τ and oscillates with
angular frequency ω throughout the pulse interval; its normalization is such
that the time average of F 2 is 1 for the time interval and for the direction
toward the scatterer, taken here as θ = 0. The constant D is then such that
(D2/ρc)/r2s is the incident wave’s average intensity at the scatterer during
the irradiation interval

The scatterer’s dimensions are regarded here as sufficiently small com-
pared to rs for the incident wave to appear locally planar, so that the defini-
tions introduced in the preceding section apply. The scattered-wave intensity
Isc varies with direction and with radial distance r from the scatterer as
(dσ/dΩ)Ii/r

2, where the differential cross section dσ/dΩ can alternatively
be expressed as σback/4π for the backscattered direction. Thus, the intensity
scattered back to the transmitter becomes

Iback =
D2

ρc
r−2
s

(σback
4π

)

r−2
s (9-2.2)

during the interval when 0 < t−2rs/c < τ . Because rs is larger than cτ/2, the
backscattered pulse does not overlap the incident pulse, and so the operation
mode of the transducer can be switched to that for reception in the interval
between termination of the transmission and first arrival of the echo.

The overall delay time, when multiplied by c, yields 2rs, so that the ad-
ditional measurement of the echo’s intensity, in conjunction with Eq. (2),
suffices to determine the backscattering cross section σback.

Example The transducer in a SONAR (sound navigation ranging) system
when transmitting causes an rms acoustic pressure prms within the central
beam at far-field distance r such that prmsr = 100N/m. If the peak backscat-
tered signal arrives after net delay time of 3 s with an rms pressure of 10−5

Pa, what is the target strength, backscattering cross section, and distance to
the scatterer?

Solution The peak backscattered signal results when the beam points to-
ward the scatterer, so the normalization of F requires the D in Eq. (1) to
be 100 N/m. The time delay is understood to include the pulse duration, so
that 2rs should be 3 × 1500m, yielding rs = 2250m, with c = 1500m taken
for the speed of sound in water. Then, since Iback is (ρc)−1 times the square
of the backscattered rms pressure, Eq. (2) yields

10−5 = (100)

(

1

2250

)2
(σback

4π

)1/2

,
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Figure 9-5 Instrumentation configurations for the study of scattering: (a) monostatic
and (b) bistatic.

which in turn yields σback/4π = 0.256m2, σback = 3.32m2, and TS = −5.9dB,
with 1 m taken as the reference length in Eq. (9-1.10).

Inhomogeneities and the Born Approximation

Scattering-measurement systems for inhomogeneous media are usually de-
signed so that the signal received during any given time interval is virtually
certain to be that which was scattered within a known spatial region (scatter-
ing volume) within the propagation medium. The size and dimensions of this
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scattering volume are controlled by the radiation pattern of the transmitter,
by the directivity pattern of the receiving system, by the duration and sig-
nature characteristics of the incident pulse, and by the sampling interval and
signalprocessing system for the echo signal (see Fig. 9-6). For the present,
we assume that such a design is achieved and, moreover, that the signal ex-
tracted from the echo has proceeded along a straight line from transmitter
to scattering volume and from there along a straight line to the receiving
system. Thus, we neglect multiple scattering, whereby the propagation direc-
tion changes more than once in the sound wave’s progress from transmitter
to receiver.

The Born approximation accompanies the assumption that the wave scat-
tered by the volume is independent of what has been scattered elsewhere.
The term, which originated with the analogous quantum-mechanical scatter-
ing problem,† in the present context implies what results when p̂(xs) under
the integral sign in Eq. (9-1.20) is replaced by the complex amplitude of the
incident wave alone. Doing such is the same as solving the integral equation
by iteration, with the first iteration accepted as satisfactory. Although this re-
quires in general that the scattered wave in the steady state be much weaker
than the incident wave wherever the dominant inhomogeneities occur, no
simple criteria involving magnitudes of ∆1 and ∆2 establish the upper limits
of the approximation’s validity. It should, however, yield a good estimate of
the scattered field if ∆1| ≪ 1 and |∆2| ≪ 1 and if the path integrals of both
k|∆1| and k|∆2| are small compared with unity.

The modification of Eq. (9-1.20) to when the pulse in Eq. (1) is incident,
with subsequent application of the Born approximation, yields the scattered
wave in the form (applicable for bistatic as well as monostatic configurations)

psc ≈
−k2D
4π

∫∫∫ ′

∆eff(xs)
F (θs, φs, t− rs/c−R/c)

rsR
dVs. (9-2.3)

∆eff(xs) = ∆1(xs)− es · eR∆2(xs). (9-2.4)

Here rs is the distance |xs| from the origin (center of transmitter) to the
scattering point; R = |x − xs| is the distance from scattering point xs to
reception point x; the unit vectors es and eR point from the origin to xs and
from xs to x. The derivation here neglects the transverse gradients of F and
assumes† that rs and R are both much larger than 1/k for points within the
scattering volume. (Note that the es and eR appearing here are analogous
to the ek and er in the preceding section.)

† M. Born, “Quantum mechanics of collision processes,” Z. Phys. 38:803–827 (1926); J.
Mathews and R. L. Walker, Mathematical Methods of Physics, Benjamin, New York, 1965,
p. 289.
† The stated assumption is what enables ∆1 and ∆2 to be combined into a single function
∆eff (xs). A more comprehensive model that takes into account ambient-flow deviations
δv (as in turbulence, for example) from a state nominally at rest yields (approximately)
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Figure 9-6 Scattering volume in a bistatic sounding experiment when the transmitter
and receiver are both characterized by narrow beam widths.

For the monostatic configuration, es ·eR approximates to −1, so that Eqs.
(9-1.19b) yield

∆eff(x) ≈
2δ(ρc)

ρc
(backscatter), (9-2.5)

where δ(ρc) is the deviation of the characteristic impedance of the medium
from its nominal value ρc (the subscript zero being now omitted). This con-
curs with the results in Sec. 3-6 for reflection at normal incidence from an
interface separating two fluids, where reflection arises from discontinuities in
impedance rather than in sound speed or density per se.

For a single clustered inhomogeneity of dimensions much smaller than a
wavelength, the Born approximation leads to the replacement of the Φν in Eq.
(9-1.25b) by xν , so that Eq. (9-1.21) agrees with Eq. (3) above. The resulting

∆eff (xs) ≈ ∆1(xs)− (es · eR)

[

∆2(xs)−
2

co
es · δv

]

≈ δ(ρc2)

ρc2
− (es · eR)

[

δ(ρc2)

ρc2
− 2

c
δ(c+ es · v)

]

,

so that the scattering can be regarded as being caused by fluctuations in bulk modulus ρc2

and in the wave speed c + es · v in the direction of propagation. For derivations leading
to this, see G. K. Batchelor, “Wave scattering due to turbulence,” in F. S. Sherman (ed.),
Symposium on Naval Hydrodynamics, National Academy of Sciences, Washington, 1957,
pp. 409–423; E. H. Brown and F. F. Hall, Jr., “Advances in atmospheric acoustics,” Rev.
Geophys. Space Phys. 16:47–110 (1978).
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Born approximation for the backscattering cross section, identified from Eqs.
(9-1.13) and (9-1.25), is consequently

σback =

[

1

π1/2

k2

ρc

∫∫∫

δ(ρc)dV

]2

. (9-2.6)

Scattering Volumes Delimited by Electroacoustic

Transducers

In order to refine the concept of a scattering volume further, it is convenient
to regard the transmitter and receiver explicitly as electroacoustic transduc-
ers (see Sec. 4-10), so that a single function itr(t), loudspeaker excitation

current, characterizes the transmission, and a second function erec(t), micro-

phone open-circuit voltage, characterizes the reception. Analogous quantities
can be defined for mechano-acoustic transducers: a rigid piston oscillating in
a finite baffle is characterized by a normal velocity vn(t); one acting as a re-
ceiver is characterized by the force exerted on the piston face by the impinging
sound wave, the piston being held virtually motionless. The physical design
of the two transducers is immaterial for the discussion that follows provided
the time-dependent functions we use are linearly related to the transmitted
and incident acoustic fields, but the electroacoustic realizations of the model
are most representative of typical applications.

When driven at constant frequency ω by a current of complex amplitude
ı̂tr, the transmitting transducer produces a far-field radiated acoustic pres-
sure,

p̂ =
−iωρ
4π

MtrF̂tr(θ, φ)(r
−1eikr )̂ıtr, (9-2.7)

in the direction with angular coordinates θ, φ. Here F̂tr(θ, φ), whose phase
is of minor interest, is normalized so that the transmitter radiation pattern
|F̂tr|2 is 1 when θ = 0. The remaining constant factor ωρMtr/4π is determined
by the ratio r|p̂|/|̂ıtr| along that axis. The quantity Mtr so introduced is a
convenient description of the transducer’s ability to transform electric current
into far-field pressure (as explained below).

The analogous description of a receiving transducer sets

êrec =MrecF̂rec(θ, φ)p̂ (9-2.8)

to describe the voltage caused by a plane wave nominally having amplitude
p̂ at the transducer face and arriving from direction θ, φ. Here the receiver
directivity function |F̂ 2

rec is normalized to 1 at θ = 0. The constant Mrec is
the microphone response at normal incidence, with units of volts per pascal.
Equivalently, if a point source of volume velocity amplitude (source strength)
Û is located a great distance away at a point with coordinates (r, θ, φ) so that
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the p̂ in Eq. (8) is −(iωρ/4π)Ûr−1eikr, that equation becomes

êrec =
−iωρ
4π

MrecF̂rec(θ, φ)(r
−1eikr)Û . (9-2.8a)

Comparison of this equation with Eq. (7) and reference to the reciprocity
theorems of Secs. 4-9 and 4-10 indicate that if a transducer is a reciprocal
transducer, then

Mtr =Mrec, F̂tr(θ, φ) = ±F̂rec(θ, φ). (9-2.9)

Although we do not necessarily assume that the transducers are reciprocal
in the discussion below, the possibility provides the rationale for the use of
the symbol Mtr in Eq. (7).

The incorporation of Eqs. (7) and (8) into the scattering model proceeds
with the observation, from Eq. (3), that the scattered wave originates from
a distributed source with source volume velocity per unit volume (source
strength density)

dUs
dVs

=
∆eff(xs)

ρc2
∂

∂t
pi(xs, t). (9-2.10)

The receiver voltage is the superposition of the incremental contributions (8a)
from each elemental volume; the incident pressure is as given by Eq. (7). An
appropriate relabeling and juxtaposition of coordinate systems consequently
yields

êrec =
iωρk2

(4π)2
MrecMtr ı̂tr

∫∫∫

F̀rec|F̂tr∆eff
eik(R+rs)

rsR
dVs, (9-2.11)

erec(t) =
−ρk2
(4π)2

MrecMtr

∫∫∫

|F̂recF̂tr|
∆eff

rsR

d

dt
itr dVs. (9-2.11a)

The second version, in which ditr/dt is evaluated at t−R/c− rs/c− ǫ/ω,
is a restatement of the first with the time dependence explicitly inserted, ǫ
representing the position-dependent phase of F̂rec(eR)F̂tr(es). The unit vec-
tors eR and es (denoting directions) and the distances R and rs here have
the same meanings as in Eq. (3).

Although both versions of Eq. (11) are derived for constant-frequency
propagation, the latter version should also apply to pulse propagation,
whereby itr(t) is of nearly constant frequency in the interval 0 < t < τ
and is zero or nearly zero outside that interval. The voltage output recorded
during any small interval centered at t depends primarily on the scattering
within a volume (see Fig. 9-7) between the ellipsoids t = (R + rs)/c and
t = τ +(R+ rs)/c. The volume is further restricted if (as is typically the case
and as is assumed in what follows) the transmitter and receiver patterns are
narrow-beam and if, for the bistatic case, the beams are directed to intersect
in a localized region centered at a point x̄s and at distances r̄s and R̄ from
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the transmitter and receiver. For the monostatic case, we consider the beams
to be coaxial and rely on the finite pulse duration to delimit the scattering
to a finite volume.

Since the scattering reaching a receiver in the bistatic configuration comes
from a finite volume regardless of whether or not the pulse duration is
short, for simplicity we here discuss first bistatic sounding assuming constant-
frequency transmission. Since |F̂tr| and |F̂rec| are 1 for direction ēs from origin
to x̄s and for direction ēR from x̄s to the receiver center, the scattering vol-
ume consists primarily of all points where |F̂tr| · |F̂rec| is greater than, say, 1

2 .
An estimate of its size is

Figure 9-7 Concentric prolate spheroids delimiting region of possible scatterer locations
for a bistatic pulse-sounding experiment. The given circumstances are such that the pulse
transmission began at time 0 and ended at time τ ; reception is taking place at time t.

∆Vs =

∫∫∫

|F̂tr|2|F̂rec|2dVs, (9-2.12)

as explained below, in the derivation of Eq. (19).
The assumption that the scattering volume has dimensions much smaller

than r̄s and R̄ allows the rs and R in the denominator of the integrand in
Eq. (11) to be replaced by r̄s and R̄. Additional substitutions from Eqs. (7)
and (8) consequently yield

p̂sc,ap =
p̂i

(4π)1/2
eikR̄

R̄
Ψ, (9-2.13)

Ψ =
−k2

(4π)1/2

∫∫∫

∣

∣

∣F̂trF̂rec

∣

∣

∣ eiǫ∆effe
ik(R−R̄+rs−r̄s)dVs, (9-2.14)

where p̂sc,ap is the apparent pressure impinging on the receiver from the di-
rection of the scattering volume center and p̂i is the incident wave’s acoustic
pressure at the volume’s center x̄s. The distinction between p̂sc,ap and p̂sc
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arises because the receiver weighs pressure contributions associated with dif-
ferent arrival directions differently.

Acoustic Radar Equation

The above formulation extends readily to monostatic sounding with a recip-
rocal transducer from a single localized scatterer at a point with coordinates
r̄s, θ̄s ,φ̄. The quantity Ψ in Eq. (14) is replaced by one such that

|Ψ |2 =
∣

∣

∣
F̂ (θ̄s, φ̄s)

∣

∣

∣

4

σback, (9-2.15)

where σback is as given by Eq. (6) for a small weak inhomogeneity. Equation
(13) then yields the acoustic radar equation†

Isc
(4πr2Ii)o

(e2rec)av
(e2rec)av,o

=
1

(4π)2
σback
r̄4s

∣

∣

∣
F̂ (θ̄s, φ̄s)

∣

∣

∣

4

, (9-2.16)

where
(e2rec)av
(e2rec)av,o

=
Isc,ap
Isc

is the ratio of mean square voltage recorded to what would have been recorded
if a signal had been of the same intensity incident from θ = 0. Here Isc is
the actual acoustic intensity returning to the transducer, while Isc,ap is its
apparent value when the returning wave is regarded as having come from the
θ = 0 direction. The quantity (4πr2Ii)o, equal to 4πr2 times the transmitted
intensity in the θ = 0 direction at far-field distance r, can be regarded as
acoustic power output times the directive gain associated with that direction;
(4πr2Ii)o|F̂ (θ̄s, φ̄s)|2 is power output times directive gain associated with the
direction θ̄s, φ̄s.

Incoherent Scattering

If the inhomogeneities causing scattering are dispersed throughout the scat-
tering volume, the relative phases of contributions from different volume ele-
ments in Eq. (14) are approximately taken into account with the substitution

† So called because it is the acoustical counterpart of the free-space radar transmission
equation (widely referred to as the radar equation) given, for example, by D. E. Kerr,
Propagation of Short Radio Waves, McGraw-Hill, New York, 1951, reprinted by Dover,
New York, 1965, p. 33. Kerr’s equation, rewritten in the present text’s notation and with
application of his eqs. (13), (14), and (19), is the same as our Eq. (16).
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R− R̄+ rs − r̄s ≈ (ēs − ēR) · ξ, (9-2.17)

which results from a truncated power-series expansion in the components of
ξ = xs − x̄s. With the abbreviation ∆k to represent the change (ēR − ēs)k
in wave-number vector undergone during the scattering, Eq. (14) yields

|Ψ |2 =
k4

4π

∫

· · ·
∫

Φ(ξ)Φ∗(ξ′)∆eff(ξ)∆eff(ξ
′)ei∆k·(ξ′−ξ)dVξdVξ′ , (9-2.18)

where we also use the abbreviation Φ(ξ) for |F̂trF̂rec|eiǫ as evaluated at the
position x̄s + ξ.

If ∆eff(ξ) in different regions appears to be statistically indistinguishable,
the idealization of a random medium† is appropriate. The notion of a statisti-
cally homogeneous random process whose correlation disappears over a rela-
tively short distance allows ∆eff(ξ)∆eff(ξ

′) to be replaced by its ensemble av-
erage or, equivalently, by the local spatial average of ∆eff(ξ)∆eff(ξ+∆ξ); this
average is the spatial autocorrelation function R(∆ξ;∆eff). The incoherent-

scattering model, whereby the acoustic power scattered by moderately dis-
tant inhomogeneities are additive, results when the autocorrelation function
is negligibly small for any ∆ξ whose magnitude is comparable to or larger
than a characteristic length over which Φ(ξ) changes appreciably. Such as-
sumptions reduce Eq. (18) to

|Ψ |2 = η(k,∆k) ∆Vs, (9-2.19)

where ∆Vs is as defined by Eq. (12) and where

η(k,∆k) =
k4

4π

∫∫∫

R(∆ξ;∆eff)e
i∆k·∆ξ d(∆ξx) d(∆ξy) d(∆ξz) (9-2.20)

= 1
4π

2k4S(∆k;∆eff). (9-2.20a)

Here S(∆k;∆eff), defined implicitly by the two versions of Eq. (20), is recog-
nized with reference to the Wiener-Khintchine theorem (see Sec. 2-10) as the
spectral density of ∆eff(ξ) in wave-number space. The normalization adopted
is such that

〈∆2
eff〉 =

∫∫ ∞

o

∫

S(∆k;∆eff) d(∆kx) d(∆ky) d(∆ky) (9-2.21)

† Frequently cited references on acoustic waves in random media are L. A. Chemov, Wave
Propagation in a Random Medium, 1958, 1960 trans. R. A. Silverman, reprinted by Dover,
New York, 1967; V. I. Tatarski, Wave Propagation in a Turbulent Medium, 1961 trans.
R. A. Silverman, reprinted by Dover, New York, 1967; V. I. Tatarski, The Effects of the
Turbulent Atmosphere on Wave Propagation, 1967, 1970, 1971 trans. by Israel Program for
Scientific Translations, available from U.S. Department of Commerce, National Technical
Information Service, Springfield, VA 22151. Brown and Hall, “Advances in Atmospheric
Acoustics,” list and appraise much of the literature pertaining to the subject.
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gives the mean squared value of ∆eff(ξ). The nominal propagation-medium
selection is here assumed to yield 〈∆eff〉 = 0.

Equation (19), in conjunction with Eq. (13), leads to the bistatic acoustic

sounding equation
Isc,ap

(4πr2Ii)o
=

η ∆Vs
(4π)2r̄2sR̄

2
, (9-2.22)

with η identified as the apparent bistatic cross section per unit volume. The
implication here that the scattered intensity is proportional to scattering
volume, which is the distinguishing feature of incoherent scattering, requires
that inhomogeneities causing scattering be randomly dispersed and that any
correlation length associated with the inhomogeneities be small compared
with the scattering volume’s dimensions. In contrast, if the scattering vol-
ume is small in terms of a correlation length, the far-field acoustic-pressure
contributions scattered by different volume elements are in phase and rein-
force each other; the scattering is then coherent, and the apparent bistatic
cross section is proportional to the square of the scattering volume.

The Echosonde Equation

The incoherent-scattering idealization allows a lucid interpretation of pulse-
echo measurements of scattering from inhomogeneous media. Equation (13),
with such an idealization, implies that for the monostatic case

δ

(

E

A

)

sc,ap

=
(4πr2Ii)oδt

(4π)2
η|F̂ |4δVs

r4s
(9-2.23)

is the apparent backscatter energy received per unit area due to scattering
during time interval δt from volume element δVs at a distant point rs, θs, φs.
The quantity (4πr2Ii)o is representative of the power the transmitter was
radiating at time t − 2rs/c. Hence the total apparent backscattered energy
per unit area received up to time t is

(

E

A

)

sc,ap

=
1

(4π)2
−
∫∫∫

η|F̂ |4
r4s

[

∫ t−2rs/c

−∞

(4πr2Ii)odt
′

]

dVs, (9-2.24)

where (4πr2Ii)o is zero up until t′ = 0 and is zero for t′ > τ . Taking the
time derivative and subsequently transforming the rs integration into one
over t′ = t− 2rs/c yields

Isc,ap =
c/2

(4π)2

∫ τ

o

[

∫∫

η|F̂ |4
r2s

dΩs

]

(4πr2Ii)odt
′ (9-2.25)
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for the apparent backscattered intensity. The quantity in brackets here is
understood to be evaluated at rs = (t − t′)c/2. Consideration is limited to
reception times t that are greater than the pulse duration τ .

If the time t is further taken to be much greater than τ , Eq. (25) approx-
imates to†

Isc,ap ≈ cτ/2

(4π)2
η∆Ωs
r̄2s

(4πr2Ii)o, (9-2.26)

with
∆Ωs = ∫ ∫ |F̂ |4dΩs (9-2.27)

interpreted as the solid angle being probed. The quantity (4πr2Ii)o now rep-
resents a time average, over the pulse duration τ , of transmitted power times
directive gain of the transmitter. The radial distance r̄s is approximately
ct/2 and represents an average distance to the scattering volume [extending
from rs = (t − τ)c/2 to rs = tc/2]. The quantity η is the average backscat-
tering cross section per unit volume [Eq. (20a) with ∆k = 2kez, where ez
points along the beam’s axis] for the spherical shell of solid angle ∆Ωs. As
before, Isc,ap is the apparent acoustic intensity of the backscattered wave at
the transducer, with account taken of the directional response characteristics
during reception.

The applicability of the incoherent-scattering assumption to the derivation
of Eq. (26) requires cτ and r̄s(∆Ωs)1/2 be large compared with a correlation
length of the inhomogeneities. If this is not so but the scattering medium is
nevertheless random, the prediction (26) is an ensemble average of possible
outcomes.

The generalization of the above considerations to pulse-echo sounding with
the bistatic configuration yields

Isc,ap =
η

(4π)2
(4πr2Ii)0

∫∫∫ ′′ |F̂tr|2|F̂rec|2
r2sR

2
dVs, (9-2.28)

where the double prime on the integral indicates that the region of integration
is restricted to that lying between the prolate spheroids rs + R = tc and
rs +R = (t− τ)c.

The similarities of Eq. (28) with Eq. (26) are emphasized with the intro-
duction of a dimensionless aspect factor A, equal to

A =
R̄2

(cτ/2)∆Ωtr

∫∫∫ ′′ |F̂tr|2|F̂rec|2
rssR

2
dVs, (9-2.29)

where

† This is analogous to the definition in R. E. Huschke (ed.), Glossary of Meteorology,
American Meteorological Society, Boston, 1959, of the radar storm-detection equation,
with η identified as the radar reflectivity of the echoing volume of the storm per unit
volume. A derivation due to H. Goldstein appears in Kerr, Propagation of Short Radio
Waves, pp. 588–591.
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∆Ωtr =

∫∫

|F̂tr|2dΩs (9-2.30)

is the apparent beam width in sterradians of the transmitted beam and R̄ is
the distance from the receiver to the intersection of the transmitted beam’s
axis with the spheroid R+ rs = ct. Insertion of these definitions into Eq. (28)
yields the echosonde equation†

Isc,ap ≈ cτ/2

(4π)2
η∆ΩtrA
R̄2

(4πr2Ii)o. (9-2.31)

For the monostatic configuration, the aspect factor A becomes ∆Ωs/∆Ωtr;
when a reciprocal transducer is used to receive as well as transmit, the A must
be less than 1 but approaches 1 for a sharp-edged beam. If |F̂ |2 varies with
angle as exp(−αθ2), where α is somewhat larger than 1, then A is 1

2 ; if it
varies as 1/(1 + αθ2)2, then A is 1

3 .

Example A transmitter in air sends out a 5-kHz pulse of 10 W acoustic
power and pulse length cτ = 3.3m. The transmitter beam with width ∆Ωtr

of the order of 0.1 sr is aimed at an angle of γtr = 45◦ with the ground.
An omnidirectional receiver at a distance d of 100m (see Fig. 9-8) receives
sound of intensity Isc = 10−14W/m2 after an interval of l/c = 420 ms. Make
the idealizations that sound travels with constant speed of 340 m/s and that
attenuation is negligible, to obtain a lower limit for the bistatic cross section
per unit volume causing the scattering.

Solution The problem statement and trigonometric principles require

(l − r̄s)
2 = r̄2s + d2 − 2r̄sd cos γtr, R̄ = l− r̄s, (9-2.32)

r̄s =
l2 − d2

2l − 2d cosγtr
, h = r̄s sin γtr, sin γrec =

h

R̄
. (9-2.33)

† The label is attributed to W. D. Neff by Brown and Hall in their review, “Advances
in atmospheric acoustics.” The correspondence of our Eq. (31) with the Brown and Hall
version emerges with the neglect of background winds and of attenuation along paths from
transmitter to scattering volume and from scattering volume to receiver. The following
identifications of Brown and Hall’s symbols with those used here also apply:

PR

gǫRAR
= Isc,ap, ǫTPT = (4πr2Ii)o

∆Ωtr

4π
, Rs = R̄, σs =

η

4π
, lp = cτ,

where PR is received electric power, ǫR is acoustical-to-electrical conversion efficiency of
the receiver when a plane wave is incident at normal incidence, the acoustical power being
taken as receiver area AR times incident intensity. The g is a receiver directivity gain equal
to ratio of apparent incident intensity at the receiver to actual incident intensity; ǫTPT

is acoustic power transmitted; PT is electric power consumed by transmitter; lp is pulse
length; and σb is the differential scattering cross section per unit volume. Appropriate
translations between terminology and symbols for analogous concepts that have arisen in
other subfields (underwater acoustics, ultrasonic nondestructive testing, biomedical ultra-
sonics) are usually easily effected if the principles and approximations leading to Eq. (31)
are understood.
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The omnidirectional receiver assumption implies |F̂rec|2 = 1. The aspect fac-
tor accordingly reduces to approximately A ≈ δrs/(cτ/2), where δrs is the
incremental radial distance the transmitter beam traverses in going through
the scattering volume. Taking the differential of the expression for rs in terms
of l yields

Figure 9-8 Parameters used in example discussed in text. Quantities d, γtr, and l are
specified; the width of the transmitted beam is also given. The objective is to determine
the bistatic cross section per unit volume.

δrs =
l2 + d2 − 2ld cosγtr
2(l − d cos γtr)2

δl, A =
l2 + d2 − 2ld cosγtr

(l − d cos γtr)2
, (9-2.34)

where the latter results from the identification of δl as cτ . Inserting the
numbers cited above then gives r̄s = 72m,R̄ = 71m, h = 51,m, γrec = 46◦,
and A = 2.0. Consequently, Eq. (31) states that

10−14 =
(3.3/2)η

(4π)2

[

(2.0)(4π)(10)

(71)2

]

,

which yields η = 1.9× 10−11 m2/m3.
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9-3 THE DOPPLER EFFECT

The classic prototype for the Doppler effect† (frequency shift associated with
motion) is a constant-frequency sound source moving at constant subsonic
speed V through a homogeneous medium. Wave crests emerge (see Fig. 9-9)
from the source at intervals of 2π/ω; each spreads out from its point of origin
as a sphere with radius growing with speed dR/dt = c. The successively
generated spheres are closer together ahead of the source but farther apart
behind the source. Since the number of crests passing a stationary listener
per unit time determines the frequency associated with the disturbance, the
frequency received is higher ahead of the source but lower behind the source.
A common instance of this Doppler shift is the drop in frequency of a train
whistle as heard by someone when a locomotive speeds by.

Doppler Shift for a Moving Source

The magnitude of the frequency shift for the circumstances just described can
be predicted by an extension of the geometric-acoustics model introduced in
Sec. 8-1. Near the source trajectory, taken as the x axis, the phase φ(x, t)
of the disturbance is ωoτ at x = V τ , where ωo is the intrinsic frequency at
the source. Since surfaces of constant phase move at constant speed c, one
accordingly has the parametric description

φ(x, t) = ωoτ, (9-3.1a)

|x− V τex| = (t− τ)c. (9-3.1b)

Since the latter implies

(x− V τ)2 + r2 = (t− τ)2c2, (9-3.2)

with r2 = y2 + z2 and τ = φ/ωo, it in turn yields

† Johann C. Doppler, who first propounded the principle in 1842 (although for a phe-
nomenon that it is inadequate to explain fully), gives an account of it in “Remarks on
my theory of the colored light from double stars, with regard to the objections raised by
Dr. Ballot of Utrecht,” Ann. Phys. Chem. 68:1–35 (1846). A historical appraisal is given
by J. Scheiner, “Johann Christian Doppler and the principle named after him,” Himmel
Erde 8:260–271 (1896). Rayleigh, Theory of Sound, vol. 2, 2d ed., pp. 154–156, summa-
rizes early experimental work on the acoustical Doppler effect by B. Ballot, S. Russell, E.
Mach, R. König, and A. M. Mayer. See also the historical comments by A. Wood, Acous-
tics, 2d ed., 1960, Dover, New York, 1966, pp. 324–331. For discussions of the Doppler
shift in electromagnetism from the viewpoint of the special theory of relativity, see J. D.
Jackson, Classical Electrodynamics, Wiley, New York, 1962, pp. 360–364; and D. S. Jones,
The Theory of Electromagnetism, Pergamon, Oxford, 1964, pp. 115–130.
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Figure 9-9 Prototype of the Doppler shift. Wave crests leave a moving source (speed V )
at intervals of the source period ∆t with result that crests are closer together ahead of the
source than behind the source.

φ(x, t)

ωo
=
c2t− V x

c2 − V 2
−
[

x2 + r2 − t2c2

c2 − V 2
+

(

c2t− V x

c2 − V 2

)2
]1/2

. (9-3.3)

The sign of the radical here is selected to be such that φ/ωo → t − (x2 +
r2)1/2/c in the limit V → 0, as required by Eq. (1b).

The frequency ω(x, t) perceived by a stationary listener is ∂φ/∂t, with x

held fixed in the differentiation. Although this can be derived directly from
Eq. (3), it is more instructive to extract ω by implicit differentiation of Eq.
(1b); doing so gives

− ω

ωo

V ex ·R

R
=

(

1− ω

ωo

)

c, (9-3.4)

so that
ω =

ωoc

c− V cos θ
. (9-3.5)
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Here R = x− V τex is the vector-ray displacement to the reception point x

from the point where the ray left the source’s trajectory; the angle θ(x, t) is
that between the vector R and the velocity V ex. The frequency shift there-
fore depends on only the velocity component directed toward the listener.
The result holds regardless of the detailed time history of the trajectory;
the Doppler-shifted frequency at a given time and position is affected only
by the source’s velocity and frequency at the instant of generation of the
wavelet currently being received. The source does not have to be traveling
with constant velocity or in a straight line for Eq. (5) to apply;† however,
determination of the point on the trajectory from which the wavelet origi-
nates requires additional labor to match the kinematics, possibly a graphical
solution if the motion is not rectilinear.

Galilean Transformations

A transformation from one coordinate system to a second moving at constant
speed relative to the first, with the classical assumption that velocities add
vectorially, is a galilean transformation. A Doppler shift accompanies any
such change in coordinate system because the frequency is not a galilean
invariant.

Let x2(x1, t) describe the position in coordinate system 2 of a fixed point
x1 in coordinate system 1 such that

x2(x1, t) = x1 − (t− to)v2;1, (9-3.6)

with x2 equaling x1 at time to and with v2;1 denoting the velocity of the sec-
ond system’s axes with respect to the first. If φ1(x1, t) and φ2(x2, t) describe
phases of the same acoustic disturbance, the fact that wave crests appear as
wave crests regardless of the coordinate system’s velocity requires

φ1(x2 + (t− t0)v2;1, t) = φ2(x2, t). (9-3.7)

In either coordinate system, the wave-number vector k is such that k =
−∇φ, while the angular frequency ω is such that ω = ∂φ/∂t. Consequently,
differentiating Eq. (7) with respect to one of the components of x2 or with
respect to t and then setting t to to yield

k2 = k1, ω2 = ω1 − v2;1 · k1 (9-3.8)

for the galilean transformations of wave-number vector and angular fre-
quency.

† See, for example, M. V. Lowson, “The sound field for singularities in motion,” Proc. R.
Soc. Land. A286:559–572 (1965).
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A derivation of Eq. (5) from Eq. (8) proceeds with the selection of a sys-
tem moving with the source as coordinate system 1 and with a system at rest
as coordinate system 2. For coordinate system 1, the boundary conditions
imposed by the vibrating source can be replaced by normal displacement os-
cillations on a motionless surface; a linear acoustic model therefore applies,
and the disturbance appears to have angular frequency ωo everywhere, even
though the ambient medium is moving. (This presumes low-amplitude oscil-
lations and neglects any turbulence associated with the ambient flow past the
source.) In coordinate system 2, on the other hand, the absence of an ambient
flow allows one to use the plane-wave relation ωn = ck and to equate ray
direction with that of k. Thus we have

k2 = k1 =
ω2

c
eR, ω1 = ωo, (9-3.9)

where eR is the unit vector R/R appearing in Eq. (4). Then, since v2;1 = −v,
where v is the velocity of the source with respect to a motionless ambient
medium, Eq. (8) yields

ω2 = ωo + v · eR
ω2

c
, ω2 =

ωo
1− v · eR/c

, (9-3.10)

which is equivalent to Eq. (5).

Echoes from Moving Targets

A scatterer’s motion can cause a Doppler shift in the echo detected by a dis-
tant receiver.† This in turn allows a deduction from the echo’s frequency of
one of the velocity components. The relation between the two can be under-
stood from the consideration of a coordinate system (labeled by 2) moving
with the scatterer (see Fig. 9-10). A volume V surrounding the scatterer
is presumed to be such that within it and in terms of coordinate system
2 the medium’s properties and the scatterer’s nominal location are time-
independent.

The discussion here presumes a bistatic measurement configuration; the
ray connecting transmitter and scatterer enters V at point A; that connect-

† Acoustical applications of the Doppler effect date back to World War II reports on
underwater sound by C. H. Eckart and C. L. Pekeris; citations and a brief summary of
wartime work are given by E. Gerjuoy and A. Yaspan, Physics of Sound in the Sea, 1946,
vol. 8 of Summary Technical Report of Division 6, National Defense Research Committee
(U.S.), reprinted 1969, U. S. Government Printing Office, Washington, pp. 329–331, 552.
Underwater acoustic applications and related system problems are summarized by J. W.
Horton, Fundamentals of Sonar, 2d ed., United States Naval Institute, Annapolis, Md.,
1959, pp. 364–378, and by C. S. Clay and H. Medwin, Acoustical Oceanography: Principles
and Applications, Wiley-Interscience, New York, 1977, pp. 334–337.
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Figure 9-10 Construction used to derive Doppler shift of pulse scattered by an inhomo-
geneity drifting along with the ambient flow at velocity v2,1 relative to transmitter and
receiver. Volume V and coordinate system x2, y2, z2 move so that the scatterer appears
at rest. Ray from source to scatterer enters V at A; ray from scatterer to receiver leaves V
at B.

ing scatterer and receiver leaves V at B. Since the scatterer is moving, A
and B also move with respect to the transmitter and receiver. We accord-
ingly further refine the definition of their positions so that (1) A and B are
not moving in terms of coordinate system 2 and (2) they occupy appropriate
instantaneous positions in terms of coordinate system 1. The latter are deter-
mined by the choice of the time of echo reception and by the time history of
the corresponding broken-ray trajectory connecting transmitter to scatterer
to receiver. Here coordinate system 1 is that in which the transmitter and
receiver appear motionless.

When examined in terms of coordinate system 2, the incident and scattered
waves appear to have the same frequency, which we here denote as ω2. Thus,
with kA and kB denoting the incident and scattered signals’ wave-number
vectors at A and B, respectively, the galilean transformation relations (8)
imply

ωA,1 = ω2 + v2;1 · kA ωB,1 = ω2 + v2;1 · kB (9-3.11)

for the angular frequencies at A and B as measured in coordinate system 1.
These, however, are the transmitted and received frequencies, ωtr and ωrec,
while v2;1 is the velocity vsc of the scatterer, so elimination of ω2 yields
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ωrec − ωtr = Vsc · (kB − kA) (9-3.12)

The simplest idealization accompanying the application of the above rela-
tion is that, apart from the scatterer and its wake, the ambient medium is
homogeneous and at rest relative to the transmitter and receiver. Then kA
and kB become (ωtr/c)ni and (ωrec/c)nsc, where ni and nsc are unit vectors
in the directions of the incident and scattered waves. The Doppler shift to
first order in vsc/c accordingly satisfies

ωrec − ωtr

ωtr
=

vsc

c
· (nsc − ni) (9-3.13)

=
vsc

c
· ebi2 sin

1
2∆θ, (9-3.13a)

where, in the latter version, the deflection angle ∆θ is that between nsc and
ni, while ebi is the unit vector in the direction nsc − ni, which bisects the
triangle with sides ni,nsc and ni + nsc and is perpendicular to ni + nsc.

For the monostatic echo-sounding configuration, nsc is −ni, and so the
right side of Eq. (13) becomes −2vsc ·ni/c, with the result that the Doppler
shift is proportional to twice the component of the scatterer’s velocity toward
the transmitter.

Doppler-Shift Velocimeters

In typical applications† where the Doppler shift is used to measure ambient
fluid velocity, the scatterer is presumed to be drifting along with the flow but
transmitter and receiver are outside the flow. The measurements ordinarily
require the idealization (see Fig. 9-11) that the ambient velocity and acousti-
cal properties appear unidirectional and stratified in the plane that contains
transmitter and scatterer and is tangential to the scatterer’s velocity vector.
The same should apply for the plane containing receiver, scatterer, and the
scatterer’s velocity. Then the translational invariance parallel to vsc between
the transmitter and scatterer yields a version of Snell’s law (in accordance
with the trace-velocity matching principle discussed in Sec. 3-5) that the
component of k parallel to vsc should be constant all along the incident-wave

† The applications currently receiving principal attention in the archival literature are the
measurement of flow velocities in blood vessels and the remote sensing of tropospheric
winds; these date back to S. Satamura, “Study of the flow patterns in peripheral arteries
by ultrasonics,” J. Acoust. Soc. Jap. 15:151–158 (1959); D. L. Franklin, W. A. Schlegel,
and R. F. Rushner, “Blood flow measured by Doppler frequency shift of backscattered
ultrasound,” Science 132:564–565 (1961); G. Kelton and P. Bricout, “Wind welocity mea-
surements Using sonic techniques,” Bull. Am. Meteorol. Soc. 45:571–580 (1964); and C.
G. Little, “Acoustic methods for the remote probing of the lower atmosphere,” Proc. IEEE
57:571–578 (1969). Other applications discerned from recent patents are the measurement
of subsurface-ocean-current velocities and the measurement of flow rates in ducts.
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path. This will hold even if the ray path is refracted† or if the propagation
is not wholly describable in terms of concepts of geometrical acoustics. An
analogous deduction concerns the scattered-wave path. The corresponding
wave-number-vector components, before and after scattering, however, are
not necessarily the same.

Figure 9-11 Sketch exemplifying how the Doppler shift evolves in a monostatic pulse-
echo experiment when the scatterer is drifting along with the fluid. Because of z-dependent
ambient flow, the ray path from transmitter to scatterer is not the same as the echo path
from scatterer back to transmitter. If the difference between the two wave-number vectors
has a nonzero component parallel to the scatterer velocity vsc, a Doppler shift results.

Given that the transmitter and receiver are each in a region without am-
bient flow and given the idealizations just described, Eq. (12) yields (to first
order in the Doppler shift)

V =
(ωrec − ωtr)c

ωtr(ev · nrec − ev · ntr)
(9-3.14)

for the speed of the flow at the position of the scatterer. Here ev is the unit
vector in the direction of the flow; the unit vectors, ntr and nrec, denote
propagation directions of the transmitted and received waves at the trans-
mitter and receiver, respectively. Ideally, the sounding experiment’s design is
such that ntr and nrec (or at least their components along the direction of
interest) are well-defined quantities. Then if ev is known, a measurement of
the Doppler shift determines V .

† T. M. Georges and S. F. Clifford, “Acoustic sounding in a refracting atmosphere,” J.
Acoust. Soc. Am. 52:1397–1405 (1972); “Estimating refractive effects in acoustic sounding,”
ibid. 55:934–936 (1974).
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If the direction of v is not known but the flow is stratified with the z
coordinate, the x and y components of v are determined by two separate
experiments: one with ntr and nrec lying in the xz plane, the other with
them lying in the yz plane. Equation (14) applies to the first experiment’s
results with V replaced by Vx and with ev replaced by ex.

Example: Volume-Blood-Flow-Computation An experimental pro-
cedure devised by D. W. Baker† for measuring volume of blood flowing per
unit time in a blood vessel is as follows. The transducer used consists of
two separate but closely spaced ceramic elements in a common housing; one
element is used as a transmitter, the other as a receiver. For our present pur-
poses, the system can be regarded as monostatic and as highly directional.
Since the vessel is not visible, it is first necessary to locate it, to determine
its orientation and radius. Moving the transducer over the surface of the skin
and monitoring the intensity of Doppler-shifted echoes determines the verti-
cal plane containing the vessel (with the skin’s surface defining the horizontal
plane). The transducer is then switched to a pulse-echo mode of operation,
and its beam is kept confined to the previously determined vertical plane
(see Fig. 9-12). The distance r of the transducer from the vessel centerline
when the transducer is pointing at angle θ with the flow is determined from
the time average of the echo delays from the near and far sides of the vessel.
When the transducer is rotated through angle ∆θ, r decreases to r1 while θ
changes to θ1 = θ+∆θ. The quantities r, r1, and ∆θ are measured; how does
one infer θ? Next the echo corresponding to the angle θ is monitored and the
spectral density of the Doppler-shifted portion of the echo is used to derive
an average frequency shift ∆f for the backscatter from the flowing blood.
How does one use this to determine the volume flow rate in the vessel?

Solution To determine the angle θ, we ignore the minor variations of the
sound speed and density in tissue and blood from the values appropriate to
water and assume the sound speed c to be 1500 m/s; refraction is negligible.
Measurements of time delays are therefore equivalent to measurements of
distance intervals (divided by c). A brief trigonometric analysis demonstrates
that r1 sin∆θ and r− r1 cos∆θ are lengths of opposite and adjacent sides of
a right-angle triangle with interior angle θ. Hence

θ = tan−1 r1 sin∆θ

r − r1 cos∆θ
. (9-3.15)

The radius R of the vessel is then deduced from the time delay ∆t of the
echoes from the near and far sides of the vessel when the transducer beam
makes angle θ with the vessel centerline; c ∆t should be 4R/(sin θ), so R =
1
4c∆t sin θ. The extra factor of 1

2 is because the second echo traverses an extra

† D. W. Baker, “Pulsed ultrasonic Doppler blood-flow sensing,” IEEE Trans. Sonics Ul-
trason. SU-17:170–185 (1970).
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Figure 9-12 Ultrasonic determination of the volume of blood flowing per unit time
through a blood vessel.

distance of one round trip across the vessel; the factor sin θ is because the
ray traverses the vessel obliquely.

Scattering of sound by blood† is caused by red cells (erythrocytes); nor-
mal human blood, although predominantly water, contains 5× 1015 red cells
per cubic meter; a typical cell has a volume of 87 × 10−18m3, a density of
1092 kg/m3, and an apparent adiabatic bulk modulus ρc2 exceeding that of
water by a factor of 1.35. The surrounding fluid (blood plasma) has a den-
sity of 1021 kg/m3 and a bulk modulus only 1.13 times that of water; the
scattering is significantly affected by the fluid’s viscosity, which is 1.8 times
that of water. However, insofar as the present example is concerned, the only
necessary assumptions are that the red cells are uniformly distributed across
the stream and that the backscattered power from any area element of the
cross section is proportional to the area. This allows the conclusion that ∆f
(the averaging being weighted by the spectral density) is proportional to V̄ ,

† K. K. Shung, R. A. Sigelmann, and J. M. Reid, “Angular dependence of scattering
of ultrasound from blood,” IEEE Trans. Biomed. Eng. BME-24:325–331 (1977); E. L.
Cartstensen, K. Li, and H. P. Schwan, “Determination of the acoustic properties of blood
and Its components,” J. Acoust. Soc. Am. 25:286–299 (1953).
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the cross-sectional area average of the flow velocity. If the flow is obliquely
toward the transducer, ev · ntr is − cos θ and ev ·nrec is +cos θ; so Eq. (14)
yields

V̄ =
∆fc

2ftr cos θ
(9-3.16)

for V̄ , where ftr is the transmitted frequency in hertz. The corresponding
volumetric flow rate Q is πR2V̄ , where the radius R is as determined above.

9-4 ACOUSTIC FIELDS NEAR CAUSTICS

The geometrical-acoustics model, described in the previous chapter, leads to
the implausible prediction that amplitudes are infinite along surfaces (caus-
tics) where adjacent rays intersect and where ray-tube areas vanish. Such
hypothetical surfaces (which can emerge even in the middle of a homoge-
neous medium) do, however, describe the central structural forms to which
characteristic wave patterns† are attached. Because such patterns develop
where geometrical acoustics would at first glance be regarded as applicable
but where it is actually not applicable, the patterns are diffraction phenom-
ena.

We initially limit our considerations to a homogeneous nonmoving medium
and to a constant-frequency field independent of the z coordinate, so that
the rays are all straight lines parallel to the xy plane. The portion of the
overall field of interest is that associated (see Fig. 9-13) with a family of
rays each member of which is tangential to a curved caustic surface. On the
convex side, two rays pass through each point. One ray has yet to touch the
caustic; the other has already touched it. On the concave side, there are no
rays of the considered family. Within any small region, the caustic surface
is characterized by its radius of curvature Rc, which is assumed much larger
than 1/k.

We orient our coordinate system in such a way that the point of interest
on the caustic is the origin and such that the caustic is tangential to the x
axis and bends into the region y < 0. Let the eikonal τ(x) associated with
the incident rays be 0 at the origin. The gradient ∇τ is tangent to the caustic

† The theory dates back to G. B. Airy, “On the intensity of light in the neighborhood
of a caustic,” Trans. Camb. Phil. Soc. 6:379–401 (1838); the exposition here is largely
inspired by that of R. B. Buchal and J. B. Keller, “Boundary layer problems in diffraction
theory,” Comm. Pure Appl. Math. 13:85–144 (1960). The limitation that the choice for
the caustic’s radius of curvature is not precisely defined when one seeks to determine the
field at some distance from the caustic and when Rc varies along the caustic is overcome
in D. Ludwig, “Uniform asymptotic expansions at a caustic,” Commun. Pure Appl. Math.
19:215–250 (1966); and Yu. A. Kravtsov, “Two new asymptotic methods in the theory
of wave propagation in inhomogeneous media (Review),” Sov. Phys. Acoust. 14(1):1–17
(1968).
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Figure 9-13 Ray geometry in the vicinity of a caustic when the ambient medium is
homogeneous.

with a positive x component and has magnitude 1/c, so

∇τ ≈ (ex cos θ − ey sin θ)/c, (9-4.1)

where θ(x, y) is such that

y + (Rc −Rc cos θ)

Rc sin θ − x
= tan θ.

When x = 0, this yields cos θ = Rc/(y+Rc). The corresponding value of sin θ
is (2yRc+y2)1/2/(y+Rc), which is approximately (2y/Rc)

1/2. Consequently,
along the line x = 0, y > 0, Eq. (1) integrates to cτ = −(8y3/9Rc)

1/2. Since
the eikonal equation (∇τ)2 = 1/c2 requires ∂τ/∂x = (1/c)(1 − 2y/Rc)

1/2

along the same line, near the origin one has
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τ ≈ 1

c

[

x− yx

Rc
−
(

8y3

9Rc

)1/2
]

. (9-4.2)

Ray-tube area near a caustic is proportional [see Eq. (8-5.7)] to −1/∇2τ ,
and so the above predicts that it varies with y as y1/2. Consequently, the
geometrical-acoustics prediction of the incident field near a caustic is

p̂i = P

(

Rc
16y

)1/4

eik(x−yx/Rc)e−i(2/3)|η|3/2, (9-4.3)

where |η| = (2k2/Rc)
1/3y(y > 0). The normalization takes P to be the am-

plitude at a distance Rc/16 from the caustic. Alternatively, since y ≈ l2/2Rc,
where l is distance the ray has yet to travel before it touches the caustic, P
corresponds to l ≈ Rc/8

1/2.
The field associated with rays propagating away from the caustic also

obeys the laws of geometrical acoustics at moderate values of y. The eikonal
for these rays (apart from a possible additive constant) must be of the form
of Eq. (2) but with the last term changed in sign. Thus, the overall field near
the origin should asymptotically (ky ≫ 1, y ≪ Rc, x≪ Rc) be

p̂i + p̂away = P

(

Rc
16y

)1/4

eik(x−yx/Rc)
(

e−i(2/3)|η|
3/2

+Rei(2/3)|η|3/2
)

,

(9-4.4)
where R is a constant. Our task is to find a solution of the Helmholtz equation
valid near the origin that asymptotically approaches Eq. (4) at moderate
positive values of y and approaches 0 at large negative values of y (on the
nonilluminated side).

If one assumes that p̂ is of the form eik(x−yx/Rc)F (x, y) and inserts this
into the Helmholtz equation, the result is a cumbersome partial-differential
equation for F . However, with the neglect of fourth and higher-order terms
in (1/kRc)

1/3 and with the restriction to values of y and x of the order of
1/k or less, considerable simplification results. Since we anticipate that the
magnitude of ∂F/∂y will be of the order of k(kRc)−1/3 times that of F ,
we discard terms like −(2ikx/Rc)∂F/∂y and (−k2x2/R2

c)F in comparison
with, say, ∂2F/∂y2. This allows a solution not depending on x and yields the
ordinary differential equation

d2F

dy2
+

2k2y

Rc
F = 0,

d2F

dη2
− ηF = 0, (9-4.5)

where the second version follows from the first with the abbreviation

η = −
(

2k2

Rc

)1/3

y, (9-4.6)
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which is consistent with the use of |η| in Eqs. (3) and (4).

The Airy Function

Apart from a multiplicative constant, the only solution of Eq. (5) having the
desired property of going to 0 as η → ∞(y → −∞) is the Airy function,
defined† for real η as

Ai(η) =
1

π

∫ ∞

o

cos

(

s3

3
+ ηs

)

ds (9-4.7a)

=
1

2π

∫

CAi

ei(s
3/3+ηs) ds. (9-4.7b)

In the latter version, which holds for arbitrary complex η, the contour CAi

begins at |s| = ∞ on the line where the phase of s is 5π/6 and terminates at
|s| = ∞ on the line where the phase of s is π/6. A demonstration that the
second version is equivalent to the first for real η results from a deformation
of CAi to the real axis; that either satisfies Eq. (5) follows from

∂2

∂η2
ei(s

3/3+ηs) =

(

i
∂

∂s
+ η

)

ei(s
3/3+ηs).

An asymptotic expression for Ai(η) at large |η| is derived from Eq. (7b)
for when −2π/3 < φ < 2π/3 (φ denoting phase of η) by deforming CAi to a
steepest-descent path,‡ s = s(l) with l real, passing through the saddle point
at s = eiπ/2η1/2, at which ds/dl = e−iφ/4. Since the integrand is sharply
peaked at the saddle point, s3/3 + ηs can be approximated by i

(

2
3

)

η3/2 +

i|η|1/2l2, where l is distance along the path from the saddle point. Thus, we
find

Ai(η) → e−(2/3)η3/2

2π1/2η1/4
, −2π

3
< φ <

2π

3
. (9-4.8)

If 2π/3 < φ < 4π/3, contour CAi is stretched so that its midpoint extends
to −i∞ on the negative imaginary axis. The left segment is deformed to a
steepest-descent path passing through the saddle point at s = eiπ/2η1/2, at
which ds/dl = e−iφ/4, while the right segment is deformed to one passing
through a saddle point at s = −eiπ/2η1/2, at which ds/dl = eiπ/2eiφ/4. Then,
with approximations similar to those described above, we find

† Various definitions are in the literature. That adopted here is as given by H. A. An-
tosiewićz, in M. Abramowitz and I. Stegun (eds.), Handbook of Mathematical Functions,
Dover, New York, 1965, pp. 446–452, 475–478.
‡ G. F. Carrier, M. Krook, and C. E. Pearson, Functions of a Complex Variable, McGraw-
Hill, New York, 1966, pp. 263–266.
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Ai(η) → 1

2π1/2η1/4

(

e−(2/3)η3/2 + ie(2/3)η
3/2
)

,
2π

3
< φ <

4π

3
. (9-4.9)

The apparent discontinuity along the lines φ = 2π/3 and φ = 4π/3 suggested
by a comparison of Eqs. (8) and (9) is nonexistent because e(2/3)η

3/2

is negli-
gibly small at large |η| along the first line and because the second of the two
terms constituting (9), when evaluated at φ = 4π/3, is the same as the first
term evaluated at φ = −2π/3.

If η is real and negative, Eq. (9), with η = |η|eiπ , yields

Ai(η) → eiπ/4

2π1/2|η|1/4
(

e−i(2/3)|η|
3/2 − iei(2/3)|η|

3/2
)

=
1

π1/2|η|1/4 cos
(

2
3 |η|

3/2 − π

4

)

η < 0, (9-4.10)

Thus, Ai(η), when considered as a function of real η, is oscillatory for η < 0
(see Fig. 9-14), Ai(0) is 0.355 · ··; for subsequent negative values of η, Ai(η)
rises to a peak value of 0.536 at η = −1.019, reaches its first zero at
η = −2.338, reaches a minimum value of −0.419 at η = −3.248, reaches a
second zero at η = −4.088, and reaches a second maximum value of 0.380 at
η = −4.820. The nth zero occurs asymptotically at η = −(32 )

2/3[n− 1
4 )π]

2/3.
For the problem of interest here, an increment ∆η corresponds to k ∆y =
(kRc/2)

1/3(−∆η) where kRc ≫ 1, so that intervals between successive undu-
lations along a line transverse to the caustic are of the order of a wavelength
or greater.

The first version of Eq. (10) is comparable to the geometrical-acoustics
solution of Eq. (4) for the field on the illuminated side of the caustic. Conse-
quently, we have

p̂ = Pπ1/221/12e−iπ/4(kRc)
1/6eik(x−yx/Rc)Ai(η) (9-4.11)

as the solution of the Helmholtz equation that matches Eq. (4) in the limit
ky ≫ 1. Equation (10) also requires, in Eq. (4), the identification R = e−iπ/2.

Since the maximum value of Ai(η) is 0.536, the peak pressure magnifi-
cation† at a caustic is 0.536π1/221/12(kRc)

1/6, or 1.01(kRc)
1/6, relative to

what the geometric-acoustics model would predict for the incident wave at
a transverse distance of Rc/16 from a caustic or at a propagation distance
of Rc/81/2 = Rc/2.83 from where the ray grazes the caustic. The indicated
sixth-root dependence on frequency of this magnification is very weak; in-
creasing the frequency by a factor of 10 increases the magnification by a
factor of only 1.47.

† A comparable analysis based on the uniform asymptotic expression is given by D. Ludwig,
“Strength of caustics,” J. Acoust. Soc. Am. 43:1179–1180 (1968).
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Figure 9-14 The Airy function for real values of its argument.

Generalization to Inhomogeneous Media

If an inhomogeneous medium varies slowly over distances comparable to a
wavelength, the acoustic pressure in any local region approximately satis-
fies the wave equation, providing the medium appears locally at rest in the
selected (possibly moving) coordinate system. The rays are curved, but as
indicated by the analysis in Sec. 8-3, the plane of curvature and the radius
of curvature will be nearly the same for each ray in the vicinity of any given
fixed point substantially removed from the source.

For most situations of interest, an appropriate idealization is that each
line on the caustic surface traced out by successively intersecting adjacent
rays lies locally in the same plane as the curved rays that graze the caustic.
Another idealization is that the curvature of the caustic surface is such that
the propagation direction of a grazing ray coincides with one of the principal
directions of curvature. Then, with an appropriate coordinate system, the
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geometry of the ray system in the vicinity of a point on the caustic‡ is as
sketched in Fig. 9-15; the ray proceeding locally in the +x direction and
grazing the caustic at the origin has a radius of curvature Rray; the caustic
has a principal radius of curvature Rc at the same point, the sing convention
being such that positive Rray corresponds to a bending in the +y direction;
positive Rc corresponds to a bending in the −y direction.

Figure 9-15 Curved rays near a curved caustic in an inhomogeneous medium. Circum-
stances assumed in the sketch are for when the sound speed decreases on the illuminated
side with distance from the caustic.

For the ray grazing the caustic at the origin, its distance |y′| from the
nearest point on the caustic increases with x approximately as

‡ Caustics in inhomogeneous media are discussed by B. D. Seckler and J. B. Keller,
“Geometrical theory of diffraction in inhomogeneous media,” J. Acoust. Soc. Am.31:192–
205 (1959); “Asymptotic theory of diffraction in inhomogeneous media,” ibid. 31:206–216
(1959); D. A. Sachs and A. Silbiger, “Focusing and refraction of harmonic sound and tran-
sient pulses in stratified media,” ibid. 49:824–840 (1971).
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|y′| = x2

2R′
c

,
1

R′
c

=
1

Rray
+

1

Rc
. (9-4.12)

Thus, if one were to choose a curvilinear orthogonal coordinate system (x′ ≈
x + yx/Rray and y′ ≈ y − x2/2Rray) such that x′ ≈ x, y′ ≈ y in the vicinity
of the origin and the ray passing through the origin appears to be straight,
the apparent radius of curvature of the caustic would be R′

c. Since the form
of the wave equation is only slightly altered by the switch in coordinate
system, the analysis leading to Eq. (11) is still applicable, providing one
substitutes R′

c for Rc. Since x′ − x′y′/R′
c is equivalent in this approximation

to x − xy/Rc, the substitution need not be made in the exponential factor
providing one interprets Eq. (11) in terms of the original coordinate system;
y is still regarded as the transverse distance of the point of observation from
the caustic.

Figure 9-16 Caustics formed by a family of similar rays cycling between upper and lower
turning points in a height region where the sound-speed profile has a minimum.

Field near a Turning Point

An application of the analogy just described would be when the ray system
consists (see Fig. 9-16) of a family of similar rays cycling† between upper (yU )
and lower (yL) turning points in a region where the sound speed c(y) has a
minimum between yL and yU . Successive rays differ only by a displacement

† N. A. Haskell, “Asymptotic approximation for the normal modes in sound channel wave
propagation,” J. Appl. Phys. 22:157–168 (1951); I. Tolstoy, “Phase changes and pulse
deformations in acoustics,” J. Acoust. Soc. Am. 44:675–683 (1968).
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parallel to the x axis, so the planes y = yL and y = yU are caustics; 1/Rc =
0 for both surfaces. Consequently, R′

c is Rray, which, from Eq. (8-3.3), is
c/|dc/dy| evaluated at the caustic. Equation (11) therefore becomes

p̂U,L ≈ PU,Lπ
1/221/12e−iπ/4

(

ω

|dc/dy|

)1/6

U,L

eikx Ai(ηU,L), (9-4.13)

with

ηU = −
(

2ω2

∣

∣

∣

∣

dc

dy

∣

∣

∣

∣

)1/3

U

yU − y

c
, ηL = −

(

2ω2

∣

∣

∣

∣

dc

dy

∣

∣

∣

∣

)1/3

L

y − yL
c

,

(9-4.14)
where k = ω/c and c = c(yL) = c(yU ).

These expressions hold only near yU and yL, respectively. Also, within
this context, the quantities PL and PU should be regarded as slowly varying
functions of x. Given fixed yU and yL, they may be independent of x if the net
phase shift along a complete ray cycle is an integer multiple of 2π, but this
occurs only for certain discrete frequencies. Alternatively, for fixed ω, it occurs
for certain discrete values of k = ω/c(yL) = ω/c(yU ); each such value kn(ω) of
k corresponds, however, to a different pair of turning points. Channeled waves
with dependence on x as eikx [where k = kn(ω)] are natural guided modes

analogous to the waveguide modes discussed in Sec. 7-1. Their existence does
not depend on the validity of the geometrical-acoustics approximation or
on the presence of two internal turning points. Such natural modes furnish a
cogent explanation of acoustic fields at large horizontal distances from sources
in the atmosphere and oceans. A discussion† of how they emerge in theoretical
formulations is beyond the scope of this text, but the analysis in the following
section (directed toward a different problem) bears some similarity to the
guided-mode theory of long-range sound propagation.

Phase Shift at a Caustic

The identification of R = e−iπ/2 in Eq. (4) implies that a ray undergoes a
phase drop of π/2 every time it grazes a caustic. Thus, the net phase change
over a long path is ω ∆τ−nπ/2, where ∆τ is the travel time predicted by the
ray-tracing equations and n is the number of caustics grazed along this path.
The π/2 phase shift at a caustic is consistent with the purely geometrical-
acoustics prediction that the amplitude varies inversely with the square root
of ray-tube area. Beyond the caustic, the ray-tube area is formally negative,
so predictions like that of Eq. (8-5.4) would still apply if we interpreted

† See, for example, L. M. Brekhovskikh, Waves in Layered Media, Academic, New York,
1960, pp. 454–460.
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(−|A|)−1/2 as e−iπ/2|A|−1/2; the analysis leading to Eq. (11) tells us which
of the two possible square roots of −1 should be used.

With this prescription, the geometrical-acoustic formulation‡ can be used
even when caustics are present. For a given far-field point, one determines all
the possible ray paths connecting source and receiver, computes amplitude
and phases (using the geometrical-acoustics theory and setting A = |A|)
for each ray’s contribution, shifts the phases by integer multiples of π/2 to
account for the caustics, and then superimposes the various individual ray
contributions. This assumes that the receiver is not near a caustic; if it is, the
contribution from two of the rays is replaced by an expression of the form of
Eq. (11). The Blokhintzev invariant for each ray tube is determined from the
wave field at moderately close distances to the source before refraction has
an appreciable effect on wave amplitudes.

The π/2 phase shift at a caustic has a significant effect on waveforms
from a transient source§ (a detonation, for example). Suppose a distant point
receives two distinct arrivals corresponding to two different ray paths; the first
ray to arrive never grazed a caustic, but the second did so once. Nominally,
one would expect the two waveforms to be similar, differing only in arrival
times and peak amplitudes, but the second ray’s remembrance of its π/2
phase shift at the caustic changes this expectation. If the first arrival p1
is f(t − τ1) and has a Fourier transform f̂(ω)eiωτ 1, the second arrival p2
will have a Fourier transform Kf̂(ω)eiωτ 2e

−iπ/2, for ω > 0, where K is a
positive constant. However, p2 is real, so its Fourier transform for ω < 0 is
the complex conjugate (causing e−iπ/2 → eiπ/2) of that for ω > 0. Thus,
we have p2 = KfH(t− τ2), where fH(t) is the Hilbert transform of f(t) (see
Sec. 3-6). Although p2(t) is dissimilar to p1(t), there is a definite mathematical
relation between the two waveform shapes.

If the second ray had encountered two caustics instead of only one, the
net experienced phase shift would be π, corresponding to a change in sign,
so that the second arrival’s waveform would resemble the negative of that of
the first (p→ −p).
‡ I. M. Blatstein, A. V. Newman, and H. Uberall, “A Comparison of ray theory, modified
ray theory, and normal-mode theory for a deep-ocean arbitrary velocity profile,” J. Acoust.
Soc. Am. 55:1336–1338 (1974).
§ R. M. Barash, “Evidence of phase shift at caustics,” J. Acoust. Soc. Am. 43:378–380
(1968); R. H. Mellen, “Impulse propagation in underwater sound channels,” ibid. 40:500–
501 (1966).
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9-5 SHADOW ZONES AND CREEPING WAVES

To obtain insight into how sound penetrates into shadow zones (regions with-
out direct rays from the source), we begin with the particular example† of
a source near the ground at height zo in a medium whose sound speed c(z)
decreases linearly with height at lower altitudes. (The analysis applies to
an underwater source in water with sound speed increasing linearly with in-
creasing depth, but for simplicity we refer to z as the upward direction and
to the surface z = 0 as the ground.) This decrease causes the rays initially
leaving the source in nearly horizontal directions to bend upward with a
curvature radius of R = c/|dc/dz|. One ray, the limiting ray, barely grazes
the ground, leaving a shadow zone (see Fig. 9-17) consisting of points where
w > (2Rzo)

1/2 + (2Rz)1/2, given that the horizontal distance w is substan-
tially less than R. The analysis below is directed toward the prediction of the
resulting field in such a shadow zone when w is substantially larger than a
wavelength.

Point Source above a Locally Reacting Surface in a

Stratified Medium

The source (monopole amplitude Ŝ) is emitting sound of angular frequency
ω, so with the neglect of density gradients, the complex amplitude of
the acoustic pressure satisfies the inhomogeneous Helmholtz equation with
−4πŜδ(x)δ(y)δ(z − zo) on the right side and with k2 replaced by ω2/c2(z).

The expression adopted as a starting point for development of a solution
is a double Fourier transform in x and y:

p̂ = − Ŝ
π
lim
ǫ→0

∫ ∞

−∞

∫

e−ǫ
2(α2+β2)eiαxeiβyZ(z, α, β) dα dβ. (9-5.1)

This will satisfy the inhomogeneous Helmholtz equation if the function Z
satisfies

d2Z

dz2
+

[

ω2

c2(z)
− k2

]

Z = δ(z − zo), (9-5.2)

where k2 is used as an abbreviation for α2+β2. The demonstration that such
yields a solution rests on the identification for the Dirac delta function

† C. L. Pekeris, “Theory of propagation of sound in a half-space of variable sound ve-
locity under conditions of formation of a shadow zone,” J. Acoust. Soc. Am. 18:295–315
(1946); D. C. Pridmore-Brown and U. Ingard, “Sound propagation into a shadow zone in
a temperature-stratified atmosphere above a plane boundary,” ibid. 27:36–42 (1955).
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Figure 9-17 Shadow zone resulting from a source at height zo above a plane bounding a
fluid in which the sound speed decreases linearly with height.

lim
ǫ→0

∫ ∞

−∞

e−ǫ
2α2

eiαx dx = 2πδ(x) (9-5.3)

developed in Sec. 2-8.
Since the field is cylindrically symmetric, Eq. (1) is unchanged if we re-

place y by 0 and set x = w. Changing the integration variables to k and θ,
where α = k cos θ and β = k sin θ, allows one integration (that over θ) to
be performed, since, from (2), Z may be presumed independent of θ. The
integral over θ from 0 to 2π of exp (ikw cos θ) is 2πJo(kw) [see Eq. (5-4.6)],
so we obtain

p̂ = −Ŝ lim
ǫ→0

∫ ∞

o

e−ǫ
2k22 Jo(kw)Z(z, k)kdk. (9-5.4)

The restriction of our interest to larger values of ωw/c(0) suggests a re-
placement of the Bessel function by its asymptotic limit,† which in turn de-
composes into

Jo(η) ≈
(

1

2π

)1/2

e−iπ/4
[

1

η1/2
eiη − 1

(−η)1/2 e
−iη

]

, (9-5.5)

† A relevant footnote appears in Sec. 5.5; see also Eq. (5-7.8).
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where, for η > 0, (−η)1/2 is understood to be eiπ/2η1/2. Thus, with Z(z, k)
regarded as an even function of k, we can rewrite (4) as

p̂ ≈ −
(

2

πw

)1/2

Ŝe−iπ/4
∫ ∞

−∞

k1/2eikwZ(z, k)dk, (9-5.6)

where k1/2 is eiπ/2|k|1/2 when k is negative. This integral is now regarded
as a contour integral with k1/2 = |k|1/2 exp(iφk/2) and with the phase φk
of k restricted to values between −π/2 and 3π/2. The convergence factor
exp(−ǫ2k2) in Eq. (4) is discarded because if the convergence is marginal,
the contour can always be deformed away from the real axis so that eikw

goes exponentially to zero when |k| → ∞ on either end of the contour.
As regards the function Z(z, k) that satisfies Eq. (2), we can conceive,

when k is real and positive, of two solutions, ψ(z, k) and Φ(z, k), of the
homogeneous equation that satisfy an upper boundary condition conforming
to the Sommerfeld radiation condition and a lower boundary condition at
z = 0, respectively. The upper boundary condition is that (for real k) ψ either
dies out exponentially or represents a wave propagating obliquely upward;
the lower boundary condition corresponding to a locally reacting surface of
specific impedance ZS is that

dΦ

dz
+ i

koρc

ZS
Φ = 0 at z = 0, (9-5.7)

where ko = ω/c(0); for a rigid surface, dΦ/dz = 0 (ZS → ∞), while for a
pressure-release surface (as for the ocean’s upper surface), Φ = 0 at z = 0.
The functions ψ and Φ for complex k are understood to be analytic except at
branch lines, none of which are constructed so that they cross the real axis.

The solution Z(z, k) of the inhomogeneous equation (2) is Aψ(z, k) for
z > zo and is BΦ(z, k) for for z < z0, where the constants A and B are such
that Z is continuous at zo but has a discontinuity in slope there of 1. Thus,
we have

Z(z, k) =
ψ(z>, k)Φ(z<, k)

[(dψ/dz)Φ− (dΦ/dz)ψ]z0
, (9-5.8)

with z< and z> representing the smaller and larger of zo and z. Since both
ψ and Φ satisfy the homogeneous-differential-equation version of (2), the
denominator expression (the wronskian of ψ and Φ) in (8) is independent of
zo; Eq. (7) therefore allows it to be reexpressed as

(

dψ

dz
Φ− dΦ

dz
ψ

)

zo

=

(

dψ

dz
+
ikoρc

ZS
ψ

)

o

Φ(0, k). (9-5.9)

Insofar as we are interested only in the disturbance at lower altitudes, we
suppose c(z) to decrease indefinitely with increasing height. This idealiza-
tion makes it possible to predict whether a given candidate for ψ(z, k) will
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satisfy the upper boundary condition from its behavior at moderately small
values of z; the differential equation is approximated by replacing 1/c2(z)
by [1/c2(0)](1 + 2z/R), where R = c(0)/|dc/dz|z=0 is the radius of curva-
ture of the ray initially propagating horizontally from the source. With this
approximation, the homogeneous equation becomes

d2ψ

dz2
+

(

k2o − k2 +
2k2oz

R

)

ψ = 0, (9-5.10)

where we abbreviate ko for ω/c(0). The differential equation is of the same
form as in Eq. (9-4.5); one possible solution is the Airy function Ai(τ̃ − y),
where

τ̃ = (k2 − k2o)l
2, y =

z

l
, l =

(

R

2k2o

)1/3

(9-5.11)

are convenient abbreviations. Other solutions areAi((τ̃−y)ei2π/3) and Ai((τ̃−
y)e−i2π/3). There are only two linearly independent solutions; any constant
times a solution is also a solution. Two recommended† after a study of various
solutions of similar problems are

v(η) = π1/2 Ai(η), w1(η) = 2π1/2eiπ/6 Ai(ηei2π/3), (9-5.12)

with η = τ̃ − y.
Fock’s w1(η) is chosen because it has the asymptotic behavior [derivable

from Eq. (9-4.8) and (9-4.9)]

w1(τ̃ − y) → eiπ/4

y1/4
ei(2/3)y

3/2

e−iτ̃y
1/2

y → ∞, (9-5.13)

which is representative of a wave propagating obliquely upward. Conse-
quently, w1(τ̃ − y) is an appropriate ψ(z, k).

The function Φ(z, k) that satisfies Eq. (7) can be taken as

Φ(z, k) = v(τ̃ − y)− v′(τ̃ )− qv(τ̃ )

w′
1(τ̂ )− qw1(τ̃ )

w1(τ̃ − y), (9-5.14)

with the abbreviation q = ikolρc/ZS. Such substitutions reduce Eq. (8) to

Z(z, k) =
w1(τ̃ − y>)Φ(z<, k)l

v′(τ̃ )w1(τ̃ )− w′
1(τ̃ )v(τ̃ )

= −w1(τ̃ − y>)Φ(Z<, k)l. (9-5.15)

† V. A. Fock, Electromagnetic Diffraction and Propagation Problems, Pergamon, London,
1965, pp. 237, 379–381; N. A. Logan, General Research in Diffraction Theory, vol. 1,
Lockheed Missiles Space Div. Rep. LMSD-288087, December 1959, pp. 5-1 to 5-13, available
from National Technical Information Service, Springfield, VA 22161, accession number AD
241228.
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The second version results because the wronskian v′w1 − w′
1v of the two

solutions of the Airy differential equation is a constant; its value of −1 can
be derived after an insertion of the asymptotic formulas into the wronskian
expression.

For lower-altitude reception sites, within and near the shadow zone, the
dominant contribution to the integral (6) comes from values of k that are not
substantially different from ko. This is anticipated because the integral can
be regarded as a superposition of plane and evanescent waves and because
waves propagating with horizontal phase velocities of the order of c(0) = ω/ko
predominate near the ground at larger horizontal distances. Consequently,
we make approximations consistent with such an anticipation al the outset;
the results eventually derived will support the hypothesis. In particular, we
replace the multiplicative factor k1/2 in the integrand by k

1/2
o , and we ap-

proximate k2 − k2o = (k + ko)(k − ko) in expression (11) for τ̃ by 2ko(k − ko)
so that τ̃ → τ , where τ = (2kol

2)(k − ko).
Changing the integration variable to τ in Eq. (6) consequently reduces the

complex pressure amplitude to a standard expression

p̂ =
Ŝ

w
eikowV (ξ, yo, y, q), (9-5.16)

where

V (ξ, yo, y, q) = e−iπ/4
(

ξ

π

)1/2 ∫ ∞

−∞

eiξτw1(τ − y>)
[

v(τ − y<)

− v′(τ) − qv(τ)

w′
1(τ)− qw1(τ)

w1(τ − y<)

]

dτ (9-5.17)

is Fock’s form† of the van der Pol–Bremmer diffraction formula. Here ξ ab-
breviates w/2kol2 or, equivalently, ξ = (koR/2)

1/3w/R; the quantity yo is
z0/l, so that yo = (2k2oR

2)1/3(zo/R).

Residues Series for the Shadow Zone

The definitions (12) and the asymptotic relations (9-4.8) and (9-4.9) lead to
the conclusion that the integrand in Eq. (17) goes to zero as τ → ∞ in the

upper half plane, Imτ > 0, if ξ − y
1/2
o − y1/2 > 0. The latter is equivalent

† Fock, Electromagnetic Diffraction and Propagation Problems, pp. 239–241; B. van der
Pol and H. Bremmer, “Propagation of radio waves over a finitely conducting spherical
earth,” Phil. Mag. (7) 25:817–837 (1938). Other representations of analogous formulas
are reviewed by Logan, Lockheed Missles Space Div. Rep. LMSD-288087. That latter’s
authoritative analysis of the interrelations between various published diffraction formulas
compels acceptance of his nomenclature choices.
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to the condition w > (2Rzo)
1/2 + (2Rz)1/2 that the listener is in the shadow

zone. The integral for such circumstances can be evaluated by a contour
deformation and becomes 2πi times the sum of those residues corresponding
to poles in the upper half plane. Such poles are the zeros τn (for n = 1, 2, . . .)
of the expression w′

1(τ)−qw1(τ) that appears in the integrand’s denominator.
Near τ = τn, the denominator function w′

1 − qw1 approximates to
[w′′

1 (τn)−qw′
1(τn)](τ−τn) or, because w′

1(τn) = qw1(τn) and because w′′
1 (τ) is

τw1(τ) from the differential equation (9-4.5), to (τn−q2)w1(τn)(τ −τn). This
makes an implicit identification possible for the residues. Also, the wronskian
relation v′w1 − w′

1v = −1 and the definition w′
1(τn) = qw1(τn) requires that

v′(τn)− qv(τn) = −1/w1(τn). Consequently, the residue series representation
for V becomes

V (ξ, yo, y, q) = (4πξ)1/2eiπ/4
∑

n

eiτnξ w1(τn − yo)w1(τn − y)

(τn − q2)[w1(τn)]2
, (9-5.18)

where it is understood that ξ > y
1/2
o + y1/2. Alternately, because w1(τn)

is w′
1(τn)/q, we can replace the denominator in the above by [(τn/q

2) −
1][w′

1(τn)]
2. The first version is appropriate for the limiting case q → 0, ZS →

∞, which corresponds to a rigid ground; the second version is appropriate for
the limiting case q → ∞, ZS → 0, which corresponds to a pressure-release
surface.

Since one or the other of the two limiting cases† just mentioned approx-
imate mate most circumstances of interest, and since the zeros of the Airy
function Ai(η) or its derivative Ai′(η) are all real, we replace τn by bne−i2π/3

in what follows. For the rigid surface, bn is a′n, where a′1, a
′
2, . . . are the

roots of Ai′(a′n) = 0, while for the pressure-release surface, bn is an, where
a1, a2, . . . are the roots of Ai(an) = 0. These identifications follow from Eq.
(12) and the requirement that the τn satisfy w′

1(τn)− qw1(τn) = 0. Since the
a′n and the an are all negative, each of the corresponding τn will lie in the
first quadrant of the complex τ plane along the line where the phase of τ is
π/3. The imaginary parts of successive τn’s therefore increase with successive
n, so if ξ is sufficiently large, given fixed y and yo, the sum (18) approximates
to just its leading term. In this manner, we obtain for the rigid boundary and
pressure-release surfaces, respectively,

† The bn are the roots of Ai′(b)+ ieiπ/3(ρc/ZS)k0lAi(b) = 0, so for |ρc/ZS |kol ≪ 1 (nearly
rigid surface), one has bn ≈ a′n + e−iπ/6(ρc/ZS)k0l/a

′
n, while for |ρoc/ZS |kol ≫ 1 (nearly

soft surface), one has bn ≈ an + eiπ/6ZS/ρck0l. Since kol = (k0R/2)1/3 increases with
frequency, any surface of finite impedance will appear nearly soft within the context of
the present theory if the frequency is sufficiently high. For a frequency of 1000 Hz, for
c = 340m/s, and for a ground impedance of ZS = 5ρc(1 + i) (see Fig. 3-5), |ρc/ZS |kol is
0.30R1/3, where R is curvature radius in meters. Thus, for an atmospheric profile where
R > 10, 000m, the boundary condition is more properly idealized as that of a pressure-
release surface. This was pointed out by R. Onyeonwu, “Diffraction of sonic boom past the
nominal edge of the corridor,” J. Acoust. Soc. Am. 58:326–330 (1975).
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V (ξ, yo, y, 0) ≈ (4πξ)1/2e−iπ/12 exp(ia′1ξe
−i2π/3)

f1(yo)f1(y)

(−a′1)
, (9-5-19a)

V (ξ, yo, y,∞) ≈ (4πξ)1/2e−iπ/12 exp(ia1ξe
−i2π/3)g1(yo)g1(y), (9-5-19b)

where we use the abbreviations

f1(y) =
Ai(a′1 − yei2π/3)

Ai(a′1)
=
w1(a

′
1e

−i2π/3 − y)

2π1/2eiπ/6Ai(a′1)
, (9-5.20a)

g1(y) =
Ai(a1 − yei2π/3)

Ai′(a1)
=
w1(a1e

−i2π/3 − y)

2π1/2eiπ/6Ai′(a1)
, (9-5.20b)

with ei2π/3 = (−1+ i
√
3)/2, a′1 = −1.0188, Ai(a′1) = 0.5357, a1 = −2.3381,

and Ai′(a1) = 0.7012. In either case, the truncation is a justifiable approxi-

mation† if ξ − y
1/2
o − y1/2 is somewhat larger than 1.

If both y and yo are moderately large, the functions w1(b1e
−i2π/3− y) and

w1(b1e
−i2π/3 − yo) can be replaced by asymptotic expressions of the form of

Eq. (13). Doing so reduces the leading term of Eq. (18) to

V ≈ eiπ/12ξ1/2ei(2/3)y
3/2

ei(2/3)y
3/2
o

K1(q)y
1/4
o y1/4

exp[e−iπ/6b1(ξ − y1/2o − y1/2)], (9-5.21)

K1(q) = (4π)1/2(−b1 + q2ei2π/3)[Ai(b1)]
2. (9-5.22)

= (4π)1/2
(

1− b1
q2
e−i2π/3

)

[Ai′(b1)]
2. (9-5.22a)

where the two versions are appropriate to the limits q → 0 (rigid surface) and
q → ∞ (pressure-release surface), respectively. In particular, K1(0) = 1.036
and K1(∞) = 1.743.

Creeping Waves

An implication of Eqs. (16) and (18) is that within the shadow zone and on
the surface, the amplitude of acoustic pressure or of any other acoustic field
quantity must asymptotically decrease with distance w along the surface as
w−1/2e−αw, where the attenuation coefficient α (nepers per meter) is given
by

† The criterion that emerges from a comparison of Eqs. (18) and (21) is that

| exp[e−iπ/6(b2 − b1)(ξ − y
1/2
o − y1/2)]| ≪ 1,

which is approximately satisfied if ξ − y
1/2
o is larger than 2/{Re[(−b2 + b1)e−iπ/6]}; this

quantity equals 1.034 and 1.3198 for the rigid surface and for the pressure-release surface,
respectively.
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α = Re(−e−iπ/6b1)
(

ko
2R2

)1/3

, (9-5.23)

=
n

2c
f1/3

(

− dc

dz

)2/3

o

, (9-5.23a)

with n = 2π1/3Re(−e−iπ/6b1) and with f denoting the frequency in hertz.
For a rigid surface, n is 2.58, while for a pressure release surface, n is 5.93.
The corresponding speed (phase velocity) at which lines of constant phase
move along the surface is similarly deduced to be

vph =
c(0)

1 + Im(e−iπ/6b1)/(2k20R
2)1/3

, (9-5.24)

and is always less than the sound speed c(0).
The weak attenuation and slightly retarded phase velocity are two distin-

guishing characteristics of a creeping wave.‡ Such waves move along surfaces
with ray paths (see Fig. 9-18) that are everywhere perpendicular to surfaces
of constant phase (given an absence of ambient flow tangential to the sur-
face). In the example considered here, the creeping-wave rays are straight
horizontal lines extending radially from the source, but in other instances
the rays curve along the surface. In addition to a weak exponential decay
with propagation distance, the amplitude along the surface varies inversely
with the square root of the perpendicular distance (ray-strip width) between
adjacent rays propagating along the surface. In the above example, ray-strip
width is proportional to w, so a factor of w−1/2 emerges from the insertion
of (21) into (16).

For propagation along a curved surface in a homogeneous medium,† the
requirement that the creeping-wave rays be perpendicular to the surfaces of
constant phase and that they move with a speed nearly equal to the sound
speed leads to the recognition that the paths are geodesics; the path con-
necting two points on the surface is the shortest of all possible paths. (This
property is analogous to Fermat’s principle of least time.) For the two ideal-
izations of principal interest, a sphere and a circular cylinder, the paths are
great circles and helices, respectively.

‡ The term Kriechwelle was introduced by W. Franz and K. Depperman, “Theory of
iffraction by a cylinder with consideration of the creeping wave,” Ann. Phys. (6)10:361–
373 (1952). The prediction of such waves dates back to G. N. Watson, ‘ The diffraction
of electric waves by the earth,” Proc. R. Soc. Lond.A95:83–99 (1919). That the wave
penetrating into the shadow zone above a plane boundary in a stratified medium can be
regarded as a creeping wave has been pointed out by G. D. Malyuzhinets, “Development in
our concepts of diffraction phenomena (On the 130th anniversary of the death of Thomas
Young),” Sov. Phys. Usp. 69:749–758 (1959).
† R. M. Lewis, N. Bleistein, and D. Ludwig, “Uniform asymptotic theory of creeping waves,”
Commun. Pure Appl. Math. 20:295–328 (1967); J. B. Keller, “Diffraction by a convex
cylinder,” IRE Trans. Antennas Prop. 4:312–321 (1956); B. R. Levy and J. B. Keller,
“Diffraction by a smooth object,” Commun. Pure Appl. Math. 12:159–209 (1959).
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Figure 9-18 Concept of a creeping wave propagating along a surface. If the sound speed
is constant, the creeping-wave ray is a geodesic. The amplitude on the surface decreases as
the reciprocal of the square root of strip width and decreases exponentially with distance
along path.

If a creeping wave is propagating along a curved surface in a homogeneous
medium, one can locally orient the coordinate system and origin so that the
surface is given by z = −x2/2R1 − y2/2R2, where R1 and R2 denote the
surface’s two principal radii of curvature. The disturbance near the origin is
taken of the form eikxξeikyηF (ζ), where ξ ≈ x− xz/R1, η ≈ y − yz/R2, and
ζ ≈ z+ x2/2R1+ y2/2R2. Approximations† similar to those described in the
derivations of Eqs. (10) and (9-4.5) then result in the differential equation

d2F

dζ2
+

(

k2o − k2 +
2k2ζ

Reff

)

F = 0, (9-5.25)

where

k2o =
ω2

c2
, k2 = k2x + k2y, R−1

eff = R−1
1 cos2 θk +R−1

2 sin2 θk, (9-5.26)

where θk is the direction of (kx, ky) relative to the x axis. Given ζ ≪ Reff , the
k2 in the last term can be approximated by k2o , so one recovers Eq. (10) but
with a new interpretation of R; ζ is interpreted as distance transverse to the
surface. The boundary condition and the selection of the least attenuated
wave then leads to an Airy function of the form w1(τ1 − ζ/leff) just as in
the leading term of Eq. (18), only with z/l replaced by ζ/leff , where leff =
(Reff/2k

2
o)

1/3.

† In the analogous theory of radio-wave propagation along the surface of a spherical earth,
this is known as the earth-flattening approximation: J. C. Schelleng, C. R. Burrows, and
B. B. Ferrell, “Ultra-short-wave propagation,” Proc. Inst. Radio Eng. 21:427–463 (1933);
C. L. Pekeris, “Accuracy of the earth-flattening approximation in the theory of microwave
propagation,” Phys. Rev. 70:518–522 (1946); “The field of a microwave dipole dntenna in
the vicinity of the horizon,” J. Appl. Phys. 18:667–680 (1947).
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Ray Shedding by a Creeping Wave

The implication of Eq. (21) is that deep within the shadow zone but not
near the surface (z somewhat larger than l) the disturbance propagates along
ordinary geometrical-acoustics rays. The origin of these rays,‡ however, is not
the source but the creeping wave (see Fig. 9-19). This identification emerges
if we write the product (16) with the insertion of Eq. (21) for V as

p̂ =
eiπ/12(R2/4k0)

1/6Ŝe−α∆w exp[iωτTR(z0) + i(ω/vph)∆w + iωτTR(z)]

w1/2[K1(q)/21/2][(2Rz0)(2Rz)]1/4
,

(9-5.27)
where

∆w = w − (2Rzo)
1/2 − (2Rz)1/2. (9-5.28a)

coτTR(z) = (2Rz)1/2 +
2

3

(

2z3

R

)1/2

. (9-5.28b)

Here (2Rzo)
1/2 is horizontal distance from the source to the edge of the

shadow zone; (2Rz)1/2 is horizontal distance from surface to listener along
a ray that leaves the ground at the grazing angle and subsequently passes
through the listener position. Such a ray would leave the ground at (wo, 0),
where wo = w − (2Rz)1/2. The quantity τTR(z) can be identified as the
travel time along such a ray segment. The latter follows from Eqs. (8-4.2),
which predict that dτTR/dw will be co/c2 since sw = 1/co for a ray initially
tangential to the surface. The quantity co/c2 is approximately (1+2z/R)/co,
but z is (w − wo)

2/2R along the ray, so dτTR/dw integrates to coτTR =
(w − wo) +

1
3 (w − wo)

2/R2. Then, replacing w − wo by (2Rz)1/2, we obtain
Eq. (28b).

Similarly τTR(zo) corresponds to travel time along the ray that goes
from source to edge of shadow zone at the surface, a horizontal distance
of (2Rzo)1/2. The phase change ωτTR(zo) + (ω/vph)∆w + ωτTR(z) therefore
corresponds to a broken ray path that travels from source to ground with the
sound speed, then along the ground a distance ∆w with the phase velocity
vph, and then from ground to listener with the sound speed.

The above observation yields the interpretation that the sound reaching
the listener at w, z is shed by the creeping wave at wo, 0. This view is
further supported by the attenuation factor e−α∆w. The disturbance at w, z
is carried by the creeping wave over only the interval [(2Rzo)1/2, 0] to [wo, 0],
a net distance of ∆w.

‡ That shedded rays are present has been demonstrated by schlieren photographs of acous-
tic pulses incident on cylinders. See, for example, W. G. Neubauer, “Experimental mea-
surement of ‘creeping’ waves on solid aluminum cylinders in water using pulses,” J. Acoust.
Soc. Am. 44:298–299 (1968).
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Figure 9-19 Shedding of rays by a creeping wave: (a) flat surface bounding a fluid where
the sound speed increases linearly with height; (b) curved surface bounding a fluid of
constant sound speed.

The factors of w1/2 and (2Rz)1/4 in the denominator of Eq. (27) are sim-
ilarly interpreted in terms of geometrical acoustics; their product is propor-
tional to the square root of the ray-tube area associated with the ray passing
through the listener location. Two rays successively shed at wo and wo+ δwo
will have an approximate perpendicular separation δz ≈ −δ[(w − wo)

2/2R],
or (w − wo)(δwo/R), after traversing a distance w − wo. Thus ray-tube area
varies with z as w − wo, or as (2Rz)1/2. The cylindrical spreading (which
began at the source) creates the other factor of w in the ray-tube-area ex-
pression.

9-6 SOURCE OR LISTENER ON THE EDGE OF A

WEDGE

A prototype for theories of diffraction by edges is that of the field in the
vicinity of a rigid wedge-shaped obstacle. The edge of the wedge coincides
with the z axis; one face occupies the half plane y = 0, x > 0 in such a
way that it is given by φ = 0 in a cylindrical coordinate system, x = r cosφ,
y = r sinφ. The other face is at φ = β, so the wedge exterior consists of
points for which φ is between 0 and β (see Fig. 9-20).

Exact solutions of the wave equation for the exterior region of such a wedge
are somewhat intricate, but simple expressions emerge for various limiting
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cases. We here begin with the simplest, that where either the source or the
listener is on the edge.

Source on Edge

Let a point source of time-dependent monopole amplitude S(t) be at z = zS
on the edge (rS = 0), the source being such that p(x, t) would be S(t −
R/c)/R without the wedge present, with R denoting the radial distance [r2+
(z − zS)

2]1/2 from the source.
The boundary condition at the wedge faces is satisfied by the free-space

solution, because it predicts a radial flow. However, the free-space solution
does not give the correct rate of mass flow out from the source (through a
surface close to the source) into the region exterior to the wedge. The net
rate ṁ(t) that mass flows from the source must, according to Eq. (4-3.9) and
Euler’s equation, be such that

dṁ

dt
= 4πS(t). (9-6.1)

Figure 9-20 Parameters for description of propagation in wedge-limited regions: (a) prop-
agation outside a wedge of exterior angle β; (b) propagation inside a wedge.

The definition of S(t) is such that this holds regardless of the location of the
source and in particular when the source is adjacent to a solid surface. This
is consistent, for example, with what is obtained when a source is near a flat
rigid plane and the field is determined by the method of images.

When the source is on the edge, the expelled mass flows into a solid angle
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∆Ω =

∫ β

o

∫ π

o

sin θ dθ dφ = 2β, (9-6.2)

rather than into 4π steradians, as for free-space radiation. Thus the time
rate of change of mass flow rate per solid angle must be 4πS(t)/2β when the
wedge is present and is enhanced relative to the free-space case by a factor
of 2π/β. Such reasoning results in the solution†

p =
2π

β

S(t−R/c)

R
(9-6.3)

for the acoustic pressure resulting from a point source on a wedge of exterior
angle β, where 0 < β < 2π.

Since the time-averaged acoustic intensity is proportional to the mean
squared acoustic pressure for a spherically spreading wave, Eq. (3) implies
that the intensity is enhanced by a factor of (2π/β)2 relative to when the
source is in a free environment. The energy spreads into 2β sr, so the en-
hancement of the acoustic power output is

P
Pff

=
2βR2(2π/β)2Iff

4πR2Iff
=

2π

β
, (9-6.4)

which is consistent with what would be derived by the method of images (see
Sec. 5-1) for the special cases β = π and β = π/2.

Listener on the Edge

When the listener (rather than the source) is on the edge, Eq. (3) also applies,
because of the principle of reciprocity; R is interpreted, as before, as distance
from source to listener. The field, however, will not be spherically symmetric
unless the source is also on the edge.

Example Suppose a wave from a distant source impinges on a thin rigid
screen. The acoustic-pressure amplitude at a given point on the edge would
nominally be Po without the barrier present. What is its value at the same
point when the screen is present?

Solution In this case, β is 2π, so reciprocity considerations and Eq. (3)
imply that the amplitude will also be Po when the screen is present. There
may be a marked change in the amplitude at points not on the edge of the
screen, however.

† Rayleigh, The Theory of Sound, vol. 2, pp. 112–113. The applicability of Rayleigh’s
analysis for a point source at the vertex of a rigid cone of given solid angle to a source on
a wedge’s edge is pointed out by R. V. Waterhouse, “Diffraction effects in a random sound
field,” J. Acoust. Soc. Am. 35:1610–1620 (1963).
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9-7 CONTOUR-INTEGRAL SOLUTION FOR

DIFFRACTION BY A WEDGE

To solve the more difficult boundary-value problem† with a harmonic point
source at an arbitrary point (zS set to zero for simplicity) near a rigid wedge,
we seek a complex pressure amplitude p̂ that satisfies the Helmholtz equation
(1-8.13) everywhere outside the wedge except at xS ; near xS it should be of
the form Ŝ/|x−xS | plus a bounded function; it should also satisfy the rigid-
wall boundary condition ∂p̂/∂φ = 0 at the faces (φ = 0, φ = β) of the wedge.
In addition, at large distances from the source and the edge, the solution must
satisfy the Sommerfeld radiation condition.

To describe the solution, it is convenient to introduce a wedge index ν =
π/β (≥ 1

2 ) and a function R(ζ), where

R(ζ) = (r2 + r2S − 2rrS cos ζ + z2)1/2 (9-7.1)

is the distance in the free-space Green’s function

G(ζ) = 1

R(ζ)
eikR(ζ). (9-7.2)

Thus R(φ − φS) represents the direct distance between source and listener;
ŜG(φ−φS) would be the solution without the wedge present. We shall be in-
terested in values of R(ζ) when ζ is complex, and in order to specify uniquely
which square root is implied by (1), we define R(ζ) so that it is positive for
real ζ and analytic except at branch cuts [at which the phase of R(ζ) has
a discontinuity of π] that extend vertically up and down from branch points

above and below the real axis, respectively (see Fig. 9-21). These branch
points, at which R = 0, are found from (1) to be at 2πl ± iα, where l is any
integer and where

α = cosh−1 r
2 + r2S + z2

2rrS
. (9-7.3)

The function G(ζ−φ) satisfies the Helmholtz equation, so the superposition
principle requires any contour integral of the form

p̂ = Ŝ

∫

C

f(ζ)G(ζ − φ)dζ (9-7.4)

to satisfy the Helmholtz equation, given position-independent contour C and
function f(ζ). This expression, moreover, will satisfy the Sommerfeld radi-

† H. M. MacDonald, “A class of diffraction problems,” Proc. Lond. Math. Soc. 14:410–427
(1915); T. J. I’A. Bromwich, “Diffraction of waves by a wedge,” ibid. 14:450–463 (1915).
A bibliography including references to earlier work by H. Poincaré (1892), A. Sommerfeld
(1896), and MacDonald (1902) is given by H. G. Garnir, Bull. Soc. R. Sci. Liege, 21:207–
231 (1952).
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Figure 9-21 Branch cuts in the complex ζ plane for the function G(ζ). Indicated closed
contour is appropriate for integer wedge index ν. The contributions from the two vertical
contours passing through −π and π cancel each other for ν an integer.

ation condition. Alternatively, we may change the variable of integration to
ζ − φ, rename it as ζ, and have

p̂ = Ŝ

∫

Cφ

f(ζ + φ)G(ζ)dζ. (9-7.5)

Insofar as Cφ can be deformed without crossing any poles or branch cuts into
a contour C independent of φ for any φ between 0 and β, we can take Cφ
to be independent of φ and the same as the original contour C. The task is
then to find appropriate f(ζ+φ) and C in order that Eq. (5), with Cφ → C,
will represent a solution of the boundary-value problem posed above.

Method of Images for Integer Wedge Index

If the wedge index ν is an integer, the problem can be solved by the method of
images introduced in Sec. 5-1. Locations of the 2ν−1 images (see Fig. 9-22a)
required to ensure that the boundary conditions will be satisfied are found
in a manner similar to that used to develop (Sec. 3-4) the solution for the
transient disturbance caused by a vibrating piston in a tube with a rigid end.
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The solution for integer ν is consequently

p̂ = Ŝ

ν−1
∑

m=0

[

G
(

2mπ

ν
− φS − φ

)

+ G
(

2mπ

ν
+ φs − φ

)]

. (9-7.6)

Alternatively, we can express the sum by a contour integral

p̂ =
Ŝ

2πi

∫

C

G(ζ)[h(ζ + φ+ φS) + h(ζ + φ− φS)]dζ, (9-7.7)

where h(ζ) has poles at ζ = 2mβ = 2πm/ν and the residue of h(ζ) at each
such pole is unity. The contour C is understood to encircle one pole each for
which m = 0(modν), m = 1(modν), . . . ,m = ν − 1(modν) (see Fig. 9-22b).
A choice for h(ζ) is

h(ζ) =
ν

2
cot
(ν

2
ζ
)

. (9-7.8)

The residue at the pole, ζ = 2mβ, is 1 because cosmπ = (−1)m and because
sin[(ν/2)ζ] → (−1)m[(ν/2)ζ−mπ] as ζ → 2mπ/ν. The additional restriction
that h(ζ) repeat itself at intervals of 2π assures that this choice for h(ζ) is
unique except for an arbitrary additive constant, which is of no consequence.
A possible choice for the contour C is one encircling all poles between −π
and π.

The closed-contour choice for C is satisfactory for integer ν, but when ν
is a noninteger, the number of enclosed poles varies with φ and the integral
therefore becomes a discontinuous function of φ. To circumvent this difficulty,
we pick another integration contour that does not cross the real axis. For
integer ν, we note that the integrand repeats itself at intervals of 2π, so
integration along a downward path from π+ i∞ to π− i∞ will exactly cancel
one along an upward path from −π − i∞ to −π + i∞. Thus the value of (7)
for integer ν is unchanged if we add additional contours that go parallel to
the imaginary axis up and down the lines ζR = −π and ζR = π, respectively.
The overall contour can then be split into contours CU , and CL, where CU
goes from π + i∞ to π, then arcs above the real axis from π to −π, then
goes from −π to −π+ i∞; CL is CU ’s inversion (ζ → −ζ) through the origin.
Alternatively, since G(ζ) → 0 as ζI → ∞ for −2π < ζR < −π and 0 < ζR < π,
we can deform CU to any contour (see Fig. 9-22b) that starts at ζI = ∞ for
some ζR between 0 and π, then goes down and passes below the branch point
at iα, and then goes back to ζI → +∞ in the region where ζR is between
−2π and −π. The corresponding deformed CL can be taken as the inversion
of CU , starting at ζI = −∞ with −π > ζR < 0, passing above −iα, and
ending at ζI → −∞ with π < ζR < 2π.
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Figure 9-22 (a) Images for a source within a 60◦ wedge (β = π/3, ν = 3). (b) Deformed
contour for integration that yields the sum of free-space fields of the source and its images.
(c) Deformed contour appropriate for when the listener is arbitrarily close to the source.
Contour CP gives field with 1/R singularity; contours CA and CB give finite contributions
at the source.

Generalization to Noninteger Wedge Indices

The claim is now made that Eq. (7) with h(ζ) given by Eq. (8) and with
C = CU + CL (where CU and CL are the contours described above) is also
the solution of the boundary-value problem for arbitrary ν (including ν < 1).
(Recall that the preceding derivation presumed that ν is an integer.) To
verify that our candidate solution has the requisite properties, we first note
that R(ζ) = R(−ζ) and that CU is the inversion of CL, so that (7) can be
reexpressed
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p̂ =
Ŝ

2πi

∫

CL

G(ζ)Σh dζ, (9-7.9)

Σh =

2
∑

n,m=1

ν

2
cot
(ν

2
[ζ + (−1)nφ+ (−1)mφS ]

)

. (9-7.10)

In the latter expression, the sum extends over all sign combinations of ±φ±
φS . Note that the sum includes the terms h(ζ + φ + φS), h(ζ + φ − φS),
−h(−ζ+φ+φS), and −h(−ζ+φ−φS), where the last two are the inversions
ζ → −ζ, with a sign change (since dζ on CU goes to −dζ on CL when ζ → −ζ)
of the first and second terms.

Expression (9) satisfies the Helmholtz equation because G(ζ) satisfies

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ζ2
+

∂2

∂z2
+ k2

)

G(ζ) = 0,

which in turn implies

(∇2 + k2)p̂ =
Ŝ

2πi

∫

CL

1

r2

[

G(ζ) ∂
2

∂φ2
Σh−Σh

∂2G
∂ζ2

]

dζ.

Since G(ζ) vanishes exponentially at the endpoints of CL, the second term
above can be integrated by parts twice, thereby transferring the operator
∂2/∂ζ2 from G to Σh. The integrand then contains the factor

(

∂2

∂φ2
− ∂2

∂ζ2

)

Σ, h = 0,

which (as demonstrated in Sec. 1-7) is identically zero because Σh is a sum
of terms that depend on ζ and φ only through one of the combinations ζ +φ
or ζ − φ.

Next we check that Eq. (9) exhibits the proper singular behavior near the
source location. When r → rS , z → 0, φ → φS , one finds that α → 0 and
that a pole of h(ζ+φ−φS) approaches the origin. To isolate the effect of the
pole, we deform CL + CU into CA + CB + CP , where CA, CB, and CP are
as sketched in Fig. 9-22c. The contributions from CA and CB are bounded
while that from CP gives ŜG(φS − φ), which is just the direct wave from the
source.

The boundary condition ∂p̂/∂φ = 0 at φ = 0 is guaranteed by Eq. (10)
because h(ζ) is an odd function of its argument, so Σh is even in φ for fixed ζ
and φS . The other boundary condition, ∂p̂/∂φ = 0 at φ = β, follows because
h(ζ) is periodic in ζ with period 2β; if one replaces φ by 2β−φ in Σh, uses the
periodicity property, and recognizes that each term is odd in its argument,
one finds Σh unchanged, so it must be even about φ = β.
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The Sommerfeld radiation condition is satisfied by Eq. (9) because G(ζ)
for all finite ζ satisfies this condition. (The asymptotic expressions derived in
the following section support this inference.)

The limit rS → 0 of Eq. (9) must, according to Eq. (9-6.3), yield
(2π/β)ŜR−1eikR. That such is indeed the case is demonstrated beginning
with the expansion† (Im ζ < 0)

Σh = 2iν

∞
∑

n=0

ǫne
−iνnζ cos νnφ cos νnφS , (9-7.11)

such that

p̂ =
2π

β
Ŝ

∞
∑

n=0

ǫn cos νnφ cos νnφS Iνn, (9-7.12)

with

Iνn =
1

2π

∫

CL

G(ζ)e−iνnζ dζ. (9-7.13)

Here ǫn is 1 for n = 0 and is 2 for n ≥ 1. The result derived in Sec. 9-6
emerges when rS → 0, because Io → R−1eikR and Iνn → 0(n ≥ 1) in this
limit.

9-8 GEOMETRICAL-ACOUSTIC AND

DIFFRACTED-WAVE CONTRIBUTIONS FOR

THE WEDGE PROBLEM

Here the contour solution for a point source in the vicinity of a wedge is
applied to determine an asymptotic approximation for the field. The contour

† A. A. Tuzhilin, “New representations of diffraction fields in wedge-shaped regions with
ideal boundaries,” Sov. Phys. Acoust. 9:168–172 (1963). Equation (11) is most easily de-
rived from a power-series expansion of Σh in u = e−iνζ , with the cotangents in Eq. (10)
expressed in terms of exponentials. Tuzhilin’s expression (given without a derivation) for
what is here termed Iνn is

Iνn = i

(

πk

2R1

)1/2 ∞
∑

s=0

H
(1)
nν+1/2+2s

(kR1)

s!Γ (nν + 1 + s)

(

krrS

2R1

)νn+s

where R1 is (r2 + r2S + z2)1/2 and H(1)
µ (kR1) is the Hankel function of the first kind with

(noninteger) index µ. The properties of the latter are such that

Iνn ≈ e−iνnπ/2

Γ (1 + νn)

(

krrS

2R1

)νn

R−1
1 eikR1

when kR1 is large compared with 1 and when krrS/2R1 is small. See, for example, G.
N. Watson, A Treatise on the Theory of Bessel Functions, 2d ed., Cambridge University
Press, Cambridge, 1922, p. 197.
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CL in Eq. (9-7.9) can be deformed† into one crossing the real axis at ζ = 0
and at ζ = π, provided one adds an additional contour that encircles the poles
between 0 and π in the counterclockwise sense. Since G(ζ) → 0 as ζI → ∞ for
ζR between 0 and π, the deformed CL contour can be split into left and right
segments that terminate and originate at ζ = π/2 + i∞ (see Fig. 9-23). The
left segment can be taken as symmetric with respect to inversions through the
origin and the integrand is odd in ζ; thus the integral along the left segment
vanishes identically, and we are left with a contour Cπ (the right segment)
plus a counterclockwise contour encircling the poles between 0 and π.

The Geometrical Acoustics Portion of the Field

The poles of Σh occur when sin[(π/2β)(ζ±φ±φS)] vanishes or when ζ±φ±φS
is 2βl, where l is any integer; the residue of Σh at each such pole is unity;
however, we must include only poles at points ζP , where 0 < ζP < π. The
residue theorem accordingly yields, for the geometrical-acoustics field,

Figure 9-23 Deformed contour in the complex ζ plane, yielding asymptotic representation
for sound diffraction by a rigid wedge. The integral along the contour segment passing
through the origin vanishes because of symmetry.

† F. J. W. Whipple, “Diffraction by a wedge and kindred problems,” Proc. Lond. Math.
Soc. 16:481–500 (1919).
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p̂GA = Ŝ
∑

l

′ G(2βl − φS − φ) + Ŝ
∑

l

′G(2βl + φS − φ), (9-8.1)

where both sums extend over all values of l for which the indicated argument
is −π and π.

Each included term represents a spherical wave diverging from an image
and corresponds to a possible ray path that connects source and listener. The
direct-ray term ŜG(φS − φ) corresponds to the l = 0 term in the second sum
and is present only if |φ − φS | < π. The ray reflected once from the φ = 0
face corresponds to the l = 0 term in the first sum and is present only if
φS + φ < π. The ray reflected once from the φ = β face corresponds to the
l = 1 term in the first sum and is present only if 2β − φS − φ < π. (Recall
that both φ and φS are between 0 and β.) A similar physical interpretation
can be given for each of the other terms.

If β > π/2(ν < 2), the only possible terms are those where the arguments
of the Green’s functions are φS − φ (direct), φ+ φS (0 face), 2β − φS − φ (β
face) 2β+φS−φ (0 face then β face), and −2β+φS−φ (β face then 0 face).
The second and third possibilities both occur if either the fourth or fifth is
realized, but the fourth and fifth are mutually exclusive. If β is between π/2
and π, there is always one singly reflected ray path, but a doubly reflected
path is possible only if |φS−φ| > 2β−π. For this range of β, there are two or
three paths if |φS −φ| is less than 2β−π and four paths if |φS −φ| > 2β− π
(see Fig. 9-24a).

If β > π(ν < 1), so that source and listener are in the exterior region of a
wedge, one has a direct ray if |φ − φS | < π, a ray reflected from the φ = 0
face if φ+φS < π, and a ray reflected from the φ = β face if φ+φS > 2β−π;
the last two possibilities are mutually exclusive. If φ+ φS is between 2β − π
and π, moreover, there is no reflected path. If φS > π and φ < φS − π, or
if φS < β − π and φ > π + φS , there is neither a direct path nor a reflected
path (see Fig. 9-24b). In such circumstances, the listener is in a shadow zone,
and any nontrivial estimation of the acoustic field requires an evaluation of
the contribution to p̂ from the contour Cπ .

The Diffracted Wave

The contour Cπ term is simply what is left over when one has constructed a
solution according to geometrical-acoustic principles; consequently it is iden-
tified as the diffracted wave p̂diffr. A less abstract representation results from
the deformation of Cπ to coincide with the line ζR = π. If one sets ζ = π− is,
then dζ = −i ds and s range from −∞ to ∞. Since cos(π−is) is − cosh s, the
quantity G(π − is) is even in s, so we need only keep terms even in s in the
remainder of the integrand. Thus, after some manipulation of trigonometric
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Figure 9-24 (a) Possible singly reflected ray paths connecting source and listener when
the wedge angle β is between π/2 and π. (b) Ranges of φ and φS in which various wave
contributions are expected for wedge with exterior angle β greater than π.

identities, we can make the substitution

cot
[ν

2
(x − is)

]

→ sin νx

cosh νs− cos νx
,

and the diffracted-wave contribution becomes†

p̂diffr = − Ŝ

4β

∫ ∞

−∞

G(π − is)
4
∑

q=1

sin νxq
cosh νs− cos νxq

ds, (9-8.2)

† Numerical calculations (which agree remarkably with experimental results) of this integral
have been carried out by P. Ambaud and A. Bergassoli, “The problem of the wedge in
acoustics,” Acustica 27:291–298 (1972).
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and we use the abbreviations x1, x2, x3, and x4 for π + φ+ φS , π − φ− φS ,
π + φ− φS , and π − φ+ φS .

Next we can combine the x1 and x2 terms together and the x3 and x4
terms together, with the result

p̂diffr =
Ŝ sin νπ

2β

∫ ∞

−∞

G(π − is)[Fν(s, φ+ φS) + Fν(s, φ− φS)] ds, (9-8.3)

where we use the abbreviation

Fν(s, φ) =

(cos νπ − cos νφ)− (cosh νs− 1) cos νφ

(cosh νs− 1)2 + 2(coshnus− 1)(1− cos νφ cos νπ) + (cos νπ − cos νφ)2
.

(9-8.4)
The presence of the factor sin νπ here demonstrates explicitly that there is
no diffracted-wave contribution if ν is an integer.

The transient solution‡ for the wedge-diffraction problem follows directly
from Eqs. (1) and (2) if the source time variation S(t) is regarded as the
integral from −∞ to ∞ of Ŝ(ω)e−iωt.

‡ To derive the transient expression for the diffracted wave, one uses the symmetry of
the integrand in Eqs. (2) and (3) and replaces the integration range from 0 to ∞ with
a simultaneous multiplication by 2. Then one changes the variable of integration to ξ =
R(π − is) so that

cosh s = 1 +
ξ2 − L2

2rrs
, s = 2 tanh−1

(

ξ2 − L2

ξ2 −Q2

)1/2

,

L2 = (r + rS)
2 + z2, Q2 = (r − rS)

2 + z2,

G(π − is) ds =
2eiωξ/cdξ

(ξ2 − L2)1/2(ξ2 −Q2)1/2
,

where ξ ranges from L to ∞. Then the Fourier integral theorem (2-8.4) allows the identi-
fication

pdiffr = − 1

β

∫ ∞

L

S

(

t− ξ

c

)

Kν(ξ, L,Q, φ, φS)dξ,

Kν =
1

(ξ2 − L2)1/2(ξ2 −Q2)1/2

4
∑

q=1

sin νxq

cosh νs− cos νxq
,

where s is given in terms of ξ. The unit impulse response results with S(t − ξ/c) set to
δ(t − ξ/c), so that

p̄diffr,ui = − c

β
Kν(ct, L,Q, φ, φS)H(ct − L),

where H denotes the Heaviside unit step function. Equivalent expressions are derived
using a different method by M. A. Biot and I. Tolstoy, “Formulation of wave propagation
in infinite media by normal coordinates with an application to diffraction,” J. Acoust. Soc.
Am. 29:381–391 (1957).
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Asymptotic Expression for the Diffracted Wave

To derive an approximate expression for the diffracted wave in the limit where
both kr and krs are large compared with 1, we regard s as a complex variable
and deform the integration contour to a steepest-descent path along which
the real part of R is constant and equal to its value at s = 0 but on which
the imaginary part increases without limit as one moves in either direction
away from s = 0. Then |eikR| decreases in the most rapid manner achievable
by a contour deformation. Since for small s

R(π − is) = (r2 + r2S + 2rrS cosh s+ z2)1/2 ≈ L+
rrS
2L

s2, (9-8.5)

the path considered makes an angle of π/4 with the real axis at s = 0. [Here
L2 is used as an abbreviation for (r + rs)

2 + z2.]
If krrS/2L ≫ 1, the dominant contribution to the integral comes from

very small values of s, so in the denominator of R−1eikR it is sufficient to
set s = 0 so that R−1 becomes L−1. Also it is sufficient to use Eq. (5)
as an approximation for the R in the exponent. However, for the factors
Fν(s, φ ± φS) the possibility exists that for certain values of φ ± φS , where
cos νπ = cos ν(φ ± φS), the integrand may be singular at s = 0, so we keep
the s2 term in the denominator. In the numerator, it is sufficient to set s = 0.
Then, with the aid of the algebraic identity (M + is)−1 + (M − is)−1 =
2M/(M2 + s2) we have

Fν(x, φ) ≈
1

2ν(1− cos νπ cos νφ)1/2

[

1

Mν(φ) + is
+

1

Mν(φ)− is

]

, (9-8.6)

Mν(φ) =
cos νπ − cos νφ

ν(1− cos νπ cos νφ)1/2
. (9-8.7)

Consequently, the diffracted wave becomes

p̂diffr =
Ŝ

2π

eikL

L

∑

+,−

sin νπ

[1− cos νπ cos ν(φ ± φS)]
1/2

∫ ∞

−∞

ei(π/2)Γ
2s2ds

Mν(φ± φS) + is
,

(9-8.8)
where we again take advantage of the symmetry of the contour and where
we abbreviate

Γ =

(

krrS
πL

)1/2

=

(

2rrS
λL

)1/2

. (9-8.9)

A further change of integration variable to u such that s = (2/π)1/2Γ−1eiπ/4u
reduces p̂diffr to the form†

† The result is due in essence to W. Pauli, “On asymptotic series for functions in the theory
of diffraction of light,” Phys. Rev. 54:924–931 (1938). Various different versions existing in
the literature are equivalent in the limit of large Γ because if F (φ) is any nonzero function
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p̂diffr = Ŝ
eikL

L

eiπ/4√
2

∑

+,−

sin νπ

[1 − cos νπ cos ν(φ± φS)]1/2
AD(ΓMν(φ± φS)),

(9-8.10)
where AD(X) is the diffraction integral

AD(X) =
1

π21/2

∫ ∞

−∞

e−u
2

du

(π/2)1/2X − e−iπ/4u
= sign (X) [f(|X |)− ig(|X |)],

(9-8.11)
which previously appeared as Eq. (5-8.9) and which is discussed in some
detail in Sec. 5-8.

Equation (10) gives us a uniform asymptotic expression for the diffracted
field, valid for large values of Γ and for any wedge angle β between 0 and 2π.
The total asymptotic solution is p̂GA + p̂diffr, where p̂GA is given by Eq. (1).

Physical Interpretation of the Diffracted Wave

If the quantities Mν(φ±φS) are not small in magnitude, the diffraction inte-
gral AD(X) is approximated by its asymptotic form 1/πX and p̂diffr reduces
to

p̂diffr =
Ŝ

2β

(

2π

kLrrS

)1/2

ei(kL+π/4)Dν(φ, φS), (9-8.12)

Dν(φ, φS) =
sin νπ

cos νπ − cos ν(φ + φS)
+

sin νπ

cos νπ − cos ν(φ − φS)
. (9-8.13)

The decrease in amplitude with increasing frequency here displayed is in
accord with the notion that the geometrical-acoustics solution is a high-
frequency approximation; the diffracted wave vanishes if k → ∞.

The diffracted wave, however, can also be interpreted in terms of geometrical-

acoustic concepts. The quantity L =
[

(r + rS)
2 + z2

]1/2
is the shortest dis-

tance of a broken line that goes from the source to the edge and thence
to the listener (see Fig. 9-25). This diffracted path touches the edge at
zE = [rS/(r + rS)]z, and there both incident and diffracted rays make the
same angle, γ = tan−1[(r+rS)/z], with the diffracting edge. (This is Keller’s

that equals 1 whenever ψ(φ) is 0, then

AD(ΓFψ) ≈ F−1AD(Γψ),

and because, if 1/ψ(φ) = 1/ψ1(φ) + 1/ψ2(φ), where ψ1 and ψ2 have different zeros, then

AD(Γψ) ≈ ψ1 + ψ2

ψ1 − ψ2
[AD(Γψ2)−AD(Γψ1)].

The version in the text applies for any ν, φ, and φS .



9-8 Geometrical-Acoustic and Diffracted-Wave Contributions for the Wedge Problem 551

Figure 9-25 Broken ray path from source to edge to listener in shadow zone; angle γ is
made by both segments with the edge. The listener lies on a diffracted wavefront at a point
where the two principal radii of curvature are L and r.

law of edge diffraction and follows from the extended interpretation of Fer-
mat’s principle discussed in Sec. 8-1.)

Since the phase variation of p̂diffr is predominantly that of eikL, the
diffracted wavefronts are surfaces of constant L. Thus, diffracted rays move
in the direction of ∇L, or of

n =
r + rS
L

er +
z

L
ez =

rer + (z − zE)ez
[r2 + (z − zE)2]1/2

. (9-8.14)
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The latter version substantiates the assertion that the diffracted ray origi-
nates at the point zE on the edge. (Recall that in a homogeneous medium
the rays are straight lines.)

Since a surface of constant L (with rS fixed) is circularly symmetric (see
Fig. 9-25), one of the two principal radii of curvature at a given point on
the wavefront is r. Since any cross section through the z axis is an arc of
a circle centered at (−rS , 0), the other principal radius of curvature is the
circle radius or L. Thus the quantity (rL)1/2 is the geometric mean of the
two principal radii of curvature. Since this is proportional to the square root
of ray-tube area, the amplitude variation with r and z in the approximation
represented by Eq. (12) is wholly consistent with the geometrical-acoustic
prediction of Eq. (8-5.8). Thus one can conclude that, for the most part, the
diffracted wave propagates according to the laws of geometrical acoustics.

With the interpretation just described, one can reconstruct the expression
(12), starting from the premise that near the edge the diffracted field is

p̂diffr ≈
p̂ince

iπ/4

2βr1/2

[

2π

k sin γ

]1/2

Dν(φ, φS), (9-8.15)

where p̂inc is the incident wave’s complex amplitude at the point where the
diffracted ray leaves the edge and γ is the angle that the ray makes with the
edge. The angle-dependent factor Dν here implies that the edge acts as a
directional source of acoustic energy.

In the same spirit, one concludes that Eq. (15) holds for a wave incident
from any source, regardless of whether the source can be idealized as omni-
directional. In particular, it is applicable when the incident wave is regarded
as either an obliquely incident plane wave or a cylindrical wave. In each such
case one determines the diffracted wave path and the point zE on the edge at
which the received diffracted ray originates along with the incident acoustic
pressure at this point. The apparent value of rS , determined by the local vari-
ation of γ with distance along the edge, is rS = ∓(sin2 γ)/(dγ/dzE), where
the two sign choices apply to when the incident ray is proceeding obliquely
in the +z or the −z direction. With such a substitution, Eq. (15) leads, for
larger r, to

p̂diffr =
p̂inc
2β

(2π)1/2ei(ks+π/4)

(kr)1/2(sin γ ∓ sdγ/dzE)1/2
Dν(φ, φS), (9-8.16)

where s = r/(sin γ) is distance along the diffracted ray from the edge. The
applicable result for an incident plane wave is obtained by setting dγ/dzE = 0.

The factor Dν(φ, φS) becomes singular if cos ν (φ ∓ φS) = cos νπ or,
equivalently if 2βl ± φ± φS = π for any integer l and any sign combination.
This, however, is just the condition that a pole in the ζ plane be at ζ = π
and thus lie on the contour Cπ . Alternatively, any value of φ for which such
a condition holds marks the transition between the presence or absence of
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some geometrical-acoustics ray path. Thus, if the region of absence of such a
ray is regarded as a shadow zone for such a geometrical-acoustics wave, the
transitional value of φ corresponds to the shadow-zone boundary. When there
are no geometrical-acoustic paths on one side of the boundary, the region
there is one of total shadow (from the standpoint of geometrical acoustics).

The use of the diffraction integral AD(X) rather than its asymptotic ex-
pression 1/(πX) in Eq. (12), on the other hand, leads to a finite prediction
for the diffracted wave. Since AD(X) is discontinuous at X = 0 [AD(0

+) =
(1 − i)/2, AD(0−) = −(1− i)/2], the quantity p̂diffr will be discontinuous at
each shadow-zone boundary. The discontinuity at any such φ is

∆pdiffr = Ŝ
eikL

L
= (p̂diffr)Mν=0+ − (p̂diffr)Mν=0− , (9-8.17)

since cos ν(φ±φS) is cos νπ and 1−cosν(φ±φS) cos νπ is sin2 νπ ifMν(φ+φS)
is 0. (The shadow-zone boundaries predicted for integer ν are merged in
pairs such that the discontinuity from illumination to shadow for any one
geometrical-acoustics term is exactly canceled by a discontinuity from shadow
to illumination for a second geometrical-acoustics term; the geometrical-
acoustics sum for integer ν has no discontinuities.)

The overall solution is continuous, so that each discontinuity in p̂diffr is
compensated by an equal and opposite discontinuity in p̂GA. To demonstrate
this, let a shadow-zone boundary be at, say, φsz = 2βl + φS − π. Then if φ
is slightly less than φsz, one will be in the shadow zone for the geometrical-
acoustics term ŜG(2βl + φS − φ). The net discontinuity in p̂GA at φsz is
accordingly ŜL−1eikL. However,Mν(φ−φS) for φ near φsz has a sign opposite
to that of φ − φsz, so Eq. (17) predicts ∆p̂diffr to be opposite to ∆p̂GA such
that the sum p̂GA + p̂diffr is continuous at φ = φsz.

Although the diffracted field near shadow-zone boundaries cannot be
wholly interpreted in terms of diffracted rays emanating from the edge, we
can nevertheless reexpress Eq. (10) in terms of parameters characterizing
such rays. In particular, one can write, in a manner similar to Eq. (16),

p̂diffr =
p̂ince

i(ks+π/4)

√
2

sin γ

sin γ ∓ s dγ/dzE

∑

+,−

sin νπ AD(ΓMν(φ± φS))

[1− cos νπ cos ν(φ± φS)]1/2
,

(9-8.18)
with

Γ =

[

(kr/π) sin2 γ

sin γ ∓ s dγ/dzE

]1/2

, (9-8.19)

where the various symbols appearing here have the same meaning as in Eq.
(16). Again, the result for an incident plane wave† is obtained by setting
dγ/dzE = 0.

† For plane waves incident on a thin screen (β = 2π, ν = 1
2
), Eq. (18) reduces to the exact

result
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9-9 APPLICATIONS OF WEDGE-DIFFRACTION

THEORY

The asympotic expression for diffraction by a wedge simplifies further when
the listener is near the shadow-zone boundary, yielding a method for rapid
estimation of a barrier’s insertion loss. The present section discusses this
simplification and gives examples of how geometrical acoustics can augment
the basic model so that it applies to situations in which edge diffraction takes
place under less idealized circumstances.

Insertion Loss of Single-Edged Barriers

We first consider the case when source and listener are at distant points on
opposite sides of an acute wedge with exterior angle β. The source angle φS
is between π and β but close to neither limit. Estimates are desired regarding
the effectiveness of the wedge as a barrier to sound when the listener is near
or only slightly within the shadow zone, such that φ is less than φS − π but
yet not close to the nearer side (φ = 0) of the wedge.

Because we are interested in the behavior near the edge of the shadow
zone, we write ∆φ = φ− (φS − π) and regard |∆φ| as small compared with
1. Then the φ−φS term dominates in Eq. (9-8.10), so we discard the φ+φS
term. We set ∆φ = 0 in the coefficient of AD(ΓMν), but since Mν(φ − φS)
vanishes when ∆φ = 0, we express Mν(φ − φS) to first order in ∆φ. Such
steps reduce the overall field near the shadow-zone boundary to

p̂ ≈ Ŝ
eikR

R
H(X) + Ŝ

eikL

L

eiπ/4√
2
AD(−X). (9-9.1)

where X = Γ ∆φ and R is the direct path distance from the source; the
Heaviside unit step function H(X) is 0 in the shadow zone and 1 in the
illuminated region.

Expansion of R in a power series in ∆φ yields, to second order,

R =
[

r2 + r2S + z2 − 2rrS cos(π −∆φ)
]1/2

≈ [L2 − rrS(∆φ)
2]1/2 ≈ L− 1

2

rrS
L

(∆φ)2, (9-9.2)

p̂diffr =
−p̂incei(ks+π/4)

√
2

∑

+,−

AD

[

(

4kr

π
sinγ

)1/2

cos 1
2
(φ± φs)

]

.

which, for normal incidence (s = r, sinγ = 1), was first derived by A. Sommerfeld, “Math-
ematical theory of diffraction,” Math. Ann. 47:317–374 (1896). An English translation (R.
J. Nagem, M. Zampolli, and G. Sandri) was published by Birkhäuser, Boston, 2004.
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so the X = Γ∆φ in Eq. (1), with Γ taken from Eq. (9-8.9), is such that

X2 =
2k

π
(L−R) = 2NF , NF =

L−R

λ/2
. (9-9.3)

Figure 9-26 Geometrical definition of Fresnel number NF = (L − R)/(λ/2) for circum-
stances when the z coordinates of source and listener are the same. Indicated circular arcs
have radii of r and R. The path length L is rS + r.

The quantity NF is identified as the Fresnel number (see Fig. 9-26), i.e.,
excess distance of shortest diffracted path from source to edge to listener in
units of half wavelengths; this appears also in the discussion in Sec. 5-8 of
radiation from a baffled piston source.

Since AD(X) is odd in X , since k(L− R) ≈ (π/2)X2, and since L/R ≈ 1
for the listener locations of interest, Eq. (1) reduces to

p̂ ≈ Ŝ
eikR

R

[

H(X)− eiπ/4

21/2
AD(X)ei(π/2)X

2

]

. (9-9.4)

The quantity appearing here in brackets is the same as in Eq. (5-8.18), so
the field near the shadow-zone boundary is similar to that at the edge of a
“beam” of sound radiated by a baffled piston.
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The insertion loss of the barrier, as predicted† by the approximation above,
is

IL = −10 log

∣

∣

∣

∣

H(X)− eiπ/4

21/2
AD(X)ei(π/2)X

2

∣

∣

∣

∣

2

(9-9.5)

or 10 times the logarithm of the reciprocal of the characteristic single-edge
diffraction pattern plotted in Fig. 5-13.

Within the illuminated region the insertion loss oscillates between negative
and positive values because of the interference between direct and diffracted
waves. The peak negative insertion loss, occurring at X = +1.2 (NF = 0.7),
is −10 log 1.28 ≈ −1dB. The insertion loss is 0 dB at X = 0.8 (NF = 0.3)
and is positive for all other X closer to, and into, the shadow zone. The
approximations (5-8.13) lead to

IL ≈ 20 log 2− 20

ln 10
X ≈ 6− 8.7X (9-9.6)

for X near 0, such that IL ≈ 6 + 12.28 (NF )
1/2 on the shadow side and

for small Fresnel number. This, however, is a fair approximation only up to
NF ≈ 0.1. For larger values of NF , the asymptotic formulas of Eq. (5-8.12)
become increasingly valid, so that

IL ≈ 10 log(4π2NF ) ≈ 16 + 10 logNF (9-9.7)

is a good approximation for NF > 2 on the shadow side. (This presumes,
however, that |∆φ| remains small.)

Equations (4) and (5) are remarkable in that they are independent of the
wedge exterior angle β. In the small ∆φ limit, all wedges diffract the same.
A diffraction boundary layer that marks the transition from illumination to
shadow can be regarded as a function of only one dimensionless parameter,
which can be taken as the Fresnel number NF . Such conclusions are the same
as those yielded by the Fresnel-Kirchhoff approximation (see Sec. 5-2), so the
claim that the latter can be valid for small deflections is substantiated.

Although the above analysis presumes that |∆φ| is small, it does not re-
quire Γ |∆φ| to be small; so the use of asymptotic expressions for f(X) and
g(X) in the derivation of Eq. (7) is not inconsistent. It would not be unrea-
sonable, given that, say, 2 dB accuracy is acceptable, to apply Eq. (7) for any
point in the shadow zone where |∆φ| is less than, say, 20◦ provided Γ |∆φ|
exceeds 2.

Example: Barrier on Rigid Ground An omnidirectional source resting
on the ground and generating 500-Hz sound is 15 m from a barrier 5 m high.

† Z. Maekawa, “Noise reduction by screens,” pap. F-13, Proc. 5th Int. Congr. Acoust. G.
Thone, Liège, 1965. The discrepancies between Maekawa’s Kirchoff-theory result, appear-
ing here as Eq. (5), and his empirical chart of thin-screen barrier attenuation versus Fresnel
number are explained by U. J. Kurze, “Noise reduction by barriers,” J. Acoust. Soc. Am.
55:504–518 (1974).
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A point 20 m farther on the opposite side of the barrier at 2 m height would
receive a sound-pressure level of 90 dB re 20 µPa without the barrier present.
Estimate the level when the barrier is present.

Solution There are two diffracted paths† connecting the source, edge, and
listener (see Fig. 9-27), the second having an intermediate ground reflection
between the edge and listener. The two path lengths, L1 and L2, are [(15)2+
(5)2]1/2+[(20)2+(3)2]1/2 = 36.04 m and [(15)2+(5)2]1/2+[(20)2+(7)2]1/2 =
37.00m. The two direct distances, R1 and R2, are both [(35)2 + (2)2]1/2 =
35.06m. Consequently, with c taken as 340 m/s so that λ = 0.68m, the two
Fresnel numbers are NF1 = 2.88 and NF2 = 5.71. The two waves arrive with
amplitudes corresponding to sound-pressure levels, from Eq. (7), of 90 −
10 log [(4π2)(2.88)] = 69.4dB and 90 − 10 log [(4π2)(5.71)] = 66.5dB. Their
phase difference is (kL2+π/4)− (kL1+π/4), according to Eq. (1) and to the
asymptotic approximation 1/πX for AD(X), or (2π/0.68)(0.96) = 8.87 rad
(508− 360 = 148◦). The sound-pressure level corresponding to the algebraic
sum of the two diffracted arrivals is therefore

Figure 9-27 Possible paths connecting source and listener and passing over a barrier on
the ground; the source is on the ground, and the listener is above the ground. Distances
cited correspond to the example discussed in the text.

Lp = 10 log |1069.4/20 + ei8.871066.5/20|2

= 10 log[1069.4/10 + 1066.5/10 + 2(1069.4/101066.5/10)1/2 cos 148◦]

= 64.1 dB (9-9.8)

If the ground on the listener side of the barrier were perfectly absorbing
instead of perfectly reflecting, Lp at the considered reception site would be
69.4 dB instead (5.3 dB higher).

† A general analysis when neither source or listener is on the ground and when the ground
has finite impedance is given by H. G. Jonasson, “Sound reduction by barriers on the
ground,” J. Sound Vib. 22:113–126 (1972).
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Far Field of a source on the Side of a Building

The sound reaching a distant listener in front of a building (see Fig. 9-28)
from a source on the side is described by Eq. (9-8.10) with β = 3π/2, ν = 2/3,
and φS = β, as for a source on one side of a 90◦ (interior-angle) wedge. If the
listener is sufficiently distant and the ground is perfectly reflecting, the field
is described by twice that of Eq. (9-8.10). In the limit r ≫ rS , the parameter
Γ reduces to (krS/π)

1/2, and L−1eikL approximates to r−1eikreikrS .

Figure 9-28 Geometry adopted for discussion of diffraction of sound around the corner
of a building. The source is on the ground adjacent to the building’s side; r is much larger
than rS .

Another factor of 2 emerges because cos ν(φ± β) = − cos νφ requires that
the two terms associated with φ+φS and φ−φS be the same in Eq. (9-8.10).
In the direct-wave term (present only if φ > π/2), a factor of 2 is included
because the reflected wave coincides with it; another factor 2 accounts for
ground reflection. Also, since r ≫ rS , the factor R−1eikR approximates to
eikrSsinφr−1eikr . Consequently, the far field becomes

p̂ = ŜF̂ (φ)
eikr

r
(9-9.9)

with

F̂ (φ) = 4eikrS sinφH
(

φ− π

2

)

− 61/2eiπ/4eikrSAD(X)

[1− 1
2 cos(2φ/3)]

1/2
(9-9.10)

X =
3

2

(

krS
π

)1/2 1
2 − cos(2φ/3)

[1− 1
2 cos(2φ/3)]

1/2
(9-9.11)

Our interest here is in values of φ between 0 and, say, 3π/4(135◦); the above
result neglects diffraction from all but one comer of the building, so it may
not be applicable near φ = 0 when r extends beyond the front of the building.
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Neither may it be applicable near φ = 3π/2(270◦) when r extends behind
the rear of the building.

The description in Eq. (9) is that of the spherical spreading in the
far field of a directional sound source. Its form dispels any misconception
that diffracted waves always spread cylindrically (amplitude proportional to
r−1/2), although such may be a good approximation in the other limit when
r ≪ rS .

The quantity |F̂ (φ)|2 describes the source’s far-field radiation pattern. Its
value is 4 for φ = π/2 and, given krS moderately large compared with 1,
it approaches 16 at larger φ − π/2. On the shadow side (φ < π/2), the
asymptotic limit of AD(X) yields for φ− π/2 negative and not small

|F̂ (φ)|2 → 8/(3πkrS)

[cos (2φ/3)− 1
2 ]

2
(9-9.12)

where the limiting expression is bounded from below by 32/(3 πkrS), oc-
curring when φ = 0. Thus the far-field intensity ultimately decreases with
distance rS from the comer as 1/krS for any fixed angle φ less than π/2.

Near φ = π/2, we can set sinφ ≈ 1 − (∆φ)2/2, 1 − 1
2 cos(2φ/3) ≈ 3

4 , and
cos(2φ/3) − 1

2 ≈ −∆φ/
√
3, where ∆φ = φ − π/2, such that Eq. (10) yields

for the radiation pattern in the transition region

|F̂ (φ)|2 = 16

∣

∣

∣

∣

H(X̄)− eiπ/4

21/2
AD(X̄)ei(π/2)X̄

2

∣

∣

∣

∣

2

(9-9.13)

with

X̄ =

(

krS
π

)1/2

∆φ (9-9.14)

Thus the characteristic single-edge diffraction pattern, plotted in Fig. 5-13,
emerges once again.

Backscattering from an Edge

Anomalous echoes of higher-frequency sound can often be explained in terms
of diffraction by edges. The analysis in Sec. 9-8 applies both when the source
is in the interior of a wedge-shaped region and when it is exterior to a wedge-
shaped obstacle. In either case, the echo from the edge is predicted by Eq.
(9-8.10) with r = rS , z = zS , φ = φS , such that L = 2r and Γ = (kr/2π)1/2 =
(r/λ)1/2. This yields
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p̂diffr = Ŝ
ei2kr

2r
eiπ/4

[

− cos
νπ

2
AD

(

(

2r

λ

)1/2

ν−1 sin
νπ

2

)

+
2−1/2 sin νπ

(1− cos νπ cos 2νφ)1/2
AD

(

( r

λ

)1/2

Mν(2φ)

)]

(9-9.15)

for the backscattered echo.
Among the particular cases for which the above result simplifies is that

when φ = 0 (or equivalently φ = β), which yields

p̂diffr = −Ŝ e
i2kr

r
eiπ/14 cos

νπ

2
AD

(

(

2r

λ

)1/2

ν−1 sin
νπ

2

)

≈ − Ŝ
β
cot
[νπ

2

]

(

λ

2

)1/2
ei(2kr+π/4)

r3/2
(9-9.16)

The latter results when the asymptotic limit, 1/πX for AD(X), applies and
is valid for moderately large r/λ provided sin(νπ/2) is not inordinately small.

Insight into how “strong” such an echo would appear to be can be obtained
by comparing the above with the reflection from a wall making 90◦ with the
surface φ = 0, this wall being also at distance r. The latter would give an echo
p̂refl = 2S(2r)−1ei2kr , where the extra factor of 2 is because the source rests
on a rigid surface. The relative weakness of the diffracted echo is accordingly

Figure 9-29 Echoes generated by a source on an interior surface of a 150◦ wedge. The
diffracted echoes radiate from the intersection of the two planes.

|p̂diffr|
|p̂refl|

=
∣

∣

∣cot
νπ

2

∣

∣

∣

1

β

(

λ

2r

)1/2

(9-9.17)
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Thus for a source (see Fig. 9-29) on an interior surface of a 150◦ wedge (β =
5π/6, ν = 6

5 ), one obtains an amplitude ratio of |cot(3π/5)|(λ/2r)1/26/5π =

0.0878(λ/r)1/2.
Alternatively, one can characterize the edge-diffracted echo by how much

farther removed a perfectly reflecting surface that returns an echo of the
same amplitude would be. If the latter is at distance r∗, then r/r∗ =
|p̂diffr|

/

|p̂refl|. For example, for the 150◦ wedge example mentioned above,
the edge-diffracted wave from an edge 10 wavelengths away appears to come
from a reflector at a distance of (10)3/2λ/0.0878 = 360 wavelengths.

9-10 PROBLEMS

9-1 Derive formulas for the target strength of a fixed rigid sphere of radius a
appropriate to the limiting cases of (a) ka≪ 1 and (b) ka≫ 1.
(c) What effect does a doubling of frequency have on target strength in
these two limits?

9-2 A harmonic plane wave impinges obliquely on a circular disk of radius a
centered at the origin. The disk’s faces are parallel to the xy plane, and
the incident wave has propagation direction nk = ex sin θk + ez cos θk.
(a) Determine an expression for the differential cross section of the disk in
the limit ka≪ 1. Use the spherical coordinates θ and φ.
(b) What is the backscattering cross section for the disk under the same
circumstances?
(c) What is the target strength?
(d) Explain in simple terms whatever results when θk is set to π/2 in your
answers to parts (a) to (c).

9-3 Prove that the tensor M eff whose cartesian elements are given by Eq.
(9-1.25b) is symmetric.

9-4 Derive the expression (9-1.41) for the scattering of sound by a Helmholtz
resonator in an open space when the incident sound’s frequency is close to
the resonance frequency.

9-5 A solid sphere of radius a and massM can move back and forth along the z
axis about its equilibrium position at z = 0 under the influence of a spring
with spring constant ksp N/m. A plane wave of angular frequency ω and
acoustic-pressure amplitude P propagating in the +z direction impinges
on the sphere, causes it to vibrate, and gives rise to a scattered wave.
Consider M and ksp to be such that a resonance scattering occurs at an
incident frequency for which ka≪ 1.
(a) At what ω does the resonance scattering occur?
(b) Show that the scattered wave is predominantly dipole.
(c) Give an expression for the scattered field at frequencies near the reso-
nance frequency.
(d) What is the total scattering cross section at the resonance frequency?



562 9 Scattering and Diffraction

(e) How does the result in part (d) compare with the upper limit of λ2/π
that results (see Sec. 9-1) for monopole resonance scattering?

9-6 A fluid contains a large number of similar discrete scattering centers, each
of which is small compared with the average distance between scatterers.
Given that multiple scattering can be neglected and that the scatterers are
randomly dispersed, give a heuristic argument or else refute the hypothesis
that when the scattering volume is sufficiently large, the scattering from
individual scatterers can be regarded as incoherent.

9-7 A narrow-beam but broadband sound wave whose pressure variation has
spectral density p2f (f) is incident on a bubble with radius a, resonance
frequency fres, and acoustic resistance RA.
(a) Estimate in the limit of small RA the total energy scattered per unit
time out of the incident beam by the bubble.
(b) Suppose that there are N bubbles per unit volume and that each such
bubble has a slightly different resonance frequency but the numbers a, fres,
RA are roughly representative of all the bubbles. Discuss how the spec-
tral density of the acoustic pressure decreases with increasing propagation
distance along the axis of the incident beam.

9-8 Sound is propagating along a rigid-walled narrow tube under circum-
stances for which the Webster horn equation (7-8.5a) is applicable. Con-
sider |(A′)2 → 2AA′′| to be much smaller than 4k2A2 and use the Born
approximation to predict the echo returned back to x = 0 when a narrow-
band pulse A1/2p = f(t− x/c) is propagating down the axis of the tube.
Discuss the feasibility of deriving the x dependence of the tube’s cross-
sectional area A(x) from the results of pulse-echo soundings.

9-9 A narrow-beam reciprocal transducer whose far field is as described by Eq.
(9-2.7) transmits a pulse of nearly constant frequency along the z axis.
The ambient medium is nearly homogeneous except for a weak planar
discontinuity at z = h, where ρ and c change by small increments δρ and
δc. The echo from this discontinuity is subsequently received by the same
transducer when it is in its reception mode.
(a) What is the apparent mean squared pressure received by the transducer
during the duration of the echo?
(b) What is the apparent backscattering cross-section?
(c) What is the apparent target strength?

9-10 Answer the questions in Prob. 9-9 when the planar surface of discontinuity
is tilted so that its unit normal makes an angle φ with respect to the z
axis. The discontinuity plane continues to pass through the point (0, 0, h).
Let the beam pattern of the transducer be described by |F̂tr|2 = e−αθ

2

,
where α is somewhat larger than 1, and discuss what variations result in
the answers when φ is small but nonzero.

9-11 The transmitter and receiver in a bistatic echo-sounding configuration both
have narrow beam patterns described by |F̂tr(θ, φ)|2 = e−αθ

2

, where α is
substantially larger than 1. Both transmitter and receiver beams make
a 45◦ angle with the ground and lie in a common vertical plane. The
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two beams intersect at height L/2, where L is the transmitter-receiver
separation distance. Determine, to lowest nonvanishing order in 1/α and
cτ/L, a simple expression (or a numerical value) for the aspect factor A
that appears in Eq. (9-2.29).

9-12 A moving sound source of nominal angular frequency ωo moves at speed
V = c/3 along the x axis past a listener at x = 0 and at cylindrical radial
distance r.
(a) Determine an expression for ω/ωo in terms of ct/r, where t = 0 is
the time the source passes the origin. Here ω is the angular frequency
perceived by the listener.
(b) Give a sketch of (ω − ωo)/ωo versus ct/r. Explain any asymmetries
between the +t and −t portions of the curve.

9-13 Two vehicles, one from the north and the other from the east, approach
an intersection in such a way that they are likely to collide at the origin
at time t = 0. Both vehicles have speed c/10. The southward-moving
vehicle sounds a warning device of frequency fo Hz. What is the frequency
detected by passengers in the westward-moving vehicle, and how does it
vary with time? Assume that the two vehicles barely miss each other at
the intersection and that the warning device continues to sound past the
intersection.

9-14 A spherical inhomogeneity of mass m and radius a, where m is slightly
larger than the displaced fluid mass md, is drifting along with the flow
at height h in a medium where the ambient velocity varies with height
z as vo = exV z/h. A nearly sinusoidal pulse of angular frequency ωo is
transmitted by a point source resting on a rigid ground at the origin. The
source has monopole amplitude Ŝ, and the transmission pulse-excitation
time is such that the pulse impinges on the moving inhomogeneity when it
is at x = L, y = 0, z = h. Consider the sound speed c and ambient density
ρ to be constant and L to be substantially larger than h but less than
(2ch2/V )1/2. Use geometrical acoustics and the approximation in which
ray paths resemble arcs of circles to determine the incident wave impinging
on the inhomogeneity and to trace the evolution of the scattered pulse back
to the transmitter (which also functions as a receiver).
(a) What is the delay time (to first order in V/c) before reception of the
backscattered pulse?
(b) From what direction does the echo appear to come?
(c) What Doppler shift is evidenced by the echo’s frequency?
(d) What is the rms amplitude of the acoustic pressure in the echo pulse
returned to the transducer?

9-15 The incoming portion of the acoustic pressure in a conically converging

wave of wave number k has complex amplitude approximately described
in cylindrical coordinates by

p̂i ≈
K

w1/2
e−ikw sin θ̄eikz cos θ̄
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at larger kw, with specified constants K and θ̄. Develop a theory analogous
to that given in Sec. 9-4 to explain (a) the amplitude of the resulting
overall disturbance near w = 0 and (b) the phase shift associated with
ray passage past the focus of a conically converging-diverging ray tube.
[The solution requires the use of a Bessel function and of its asymptotic
limiting expression. See, for example, J. N. Brune, J. E. Nafe, and L. E.
Alsop, Bull. Seismal. Soc. Am. 51:247–257 (1961).]

9-16 In an atmosphere whose temperature decreases with height near a rigid
ground (z = 0), the sound field near a point (0, 0, 0) on the inner border
of a zone of abnormal audibility (see Sec. 8-4) has the following ray struc-
ture. Each ray is an arc of a circle of radius R and moves parallel to the xz
plane, bending upward with increasing x. A caustic surface described by
the plane, z = −(tanα)x, intersects the ground at the origin with a graz-
ing angle α, so that no rays pass through the region x < 0, z < −(tanα)x.
Devise an applicable expression for the complex acoustic-pressure ampli-
tude along the ground near x = 0. Choose the normalization to be such
that p̂(0, 0, 0) is P . Sketch |p̂/P |2 versus x/R for kR = 100 and α = 15◦.
Here k is ω/c, with ω equaling the angular frequency and c equaling the
sound speed at the ground.

9-17 (a) Derive the equation corresponding to (9-5.13) that gives the asymptotic
behavior of w1(τ − η) at large positive η.
(b) Show that the function Φ that represents the phase of eikoxeiξτw1(τ −
η), with ξ = (koR/2)

1/3x/R and η = (2k20R
2)1/3z/R, is an approximate

solution of the eikonal equation

(

∂Φ

∂x

)2

+

(

∂Φ

∂z

)2

=
k2o

(1− z/R)2

when z ≪ R and w1(τ − η) is replaced by the large η asymptotic limit.
(c) Verify that the corresponding ray paths are such that dx/dz > 0 and
that they are propagating obliquely upward when dx/dt is positive.

9-18 (a) Show that the acoustic energy shed per unit time and area by a creeping
wave propagating along a surface of finite impedance is approximately
given by either of the two expressions

(p2cw)av,0
ρc

1

4π

(2/kR)1/3

|Ai(b1)|2
or ρc(v2z,cw)av,0

1

4π

(kR/2)1/3

|Ai′(b1)|2

where (p2cw)av,0 is the mean squared pressure of the creeping wave at the
surface and (v2z,cw)av,0 is the corresponding normal component of the fluid
velocity. What expression and numerical coefficient would you use for the
limiting case of (b) a rigid surface and (c) a pressure-release surface?

9-19 A creeping wave propagating along a surface of finite impedance loses
energy because of ray shedding and because of absorption at the surface.
Show that the ratio of the absorption loss to the ray-shedding loss is
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4πRe[Ai′(b1)Ai
∗(b1)e

iπ/6].

What limiting expressions, proportional to Re(1/ZS) or ReZS , are appli-
cable when |ZS| is much greater or much less than ρckl?

9-20 Develop a heuristic argument supporting the conclusion that the energy
per unit surface area associated with a creeping wave is ėav/2αc. Here ėav
is the energy lost per unit time area and time due to ray shedding and
surface absorption and α is the exponential decay rate (nepers per meter)
associated with the creeping wave. Show that this result, in conjunction
with that in Prob. 9-18, leads to l/3.2 for the approximate boundary-layer
thickness of a creeping wave propagating along a rigid surface.

9-21 A point harmonic source is adjacent (θ = 0) to a large (kR ≫ 1) rigid
sphere of radius R in an otherwise unbounded homogeneous medium.
(a) Use the earth-flattening approximation and the results in Sec. 9-5 to
argue that the acoustic pressure near the sphere (but θ not near 0 or π)
has complex amplitude approximately given by

p̂ =
ŜeikRθ

Rθ1/2(sin θ)1/2
V

(

Rθ

2kl2
, 0,

r −R

l
, 0

)

,

where l = (R/2k2)1/3.
(b) Show that the leading term in the residue series for V leads to a
creeping-wave description for the field.
(c) Why is the denominator factor θ1/2(sin θ)1/2 given above in (a) a better
choice than simply θ?
(d) Give a numerical value for Rp̂/Ŝ when kR = 100, r = R, and θ = π/2.

9-22 (a) For the circumstances described in Prob. 9-21, show that the field
in the shadow zone at points near neither the sphere’s surface nor the
shadow-zone boundary is approximately

p̂ =
Ŝe−iπ/12ei(ω/vph)R∆θ0e−αR∆θ0eiωτTR

[2krl2 sin θ]1/2[cτTR/(2Rl)1/2]1/2[−a′1Ai(a′1)]
,

where ∆θo and τTR refer to the path of least travel time that connects
source and reception point. The path follows the surface through angle
∆θo, then traverses a distance cτTR along a straight line that is tangential
to the sphere. Assume that αR is substantially larger than 1. Hint: Match
a geometrical acoustics field to the large (r−R)/l limit of the result from
Prob. 9-21.
(b) Show that the result in (a) reduces for r ≫ kR2 and θ > π/2 to

p̂→ Ŝ
eikr

r

e−iπ/12ei(ω/vph)R(θ−π/2)e−αR(θ−π/2)

(2kl2 sin θ)1/2(2Rl)−1/4 [−a′1 Ai(a′1)]
,

providing θ is not close to π. Sketch the resulting radiation pattern and
discuss its dependence on frequency.
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9-23 Apply the concepts implied by the statements in Prob. 9-15 to extend the
solution of part (b) of Prob. 9-22 to points near and including those where
θ = π.

9-24 The principle of reciprocity can transform the results in Probs. 9-22 and
9-23 to the solution for the acoustic pressure on the shadow side of the
surface of a large rigid sphere when a plane wave is incident.
(a) Explain why this is so and summarize the desired solution.
(b) Interpret the solution from part (a) in terms of creeping waves.

9-25 The analogy between sound penetration into a shadow zone caused by
upward refraction of rays in a stratified medium and sound diffraction
around a curved surface is demonstrated by the following two exercises.
(a) Show that the function ξ−1/2V (ξ, ηo, η, q) in Eq. (9-5.17) is a solution
of the parabolic equation

(

∂2

∂η2
+ η +

i∂

∂ξ

)

ξ−1/2V = 0,

with the boundary condition
(

∂

∂η
+ q

)

ξ−1/2V = 0 at η = 0.

(b) Show that if a plane wave impinges at normal incidence (toward the
+x direction) on a very wide barrier with a cylindrical locally reacting
top, the acoustic-pressure amplitude near the barrier top is approximately
(ǫ≪ 1)

p̂ = ei2ξ/ǫ
2

e−i(2/3)η
3/2

F (ξ, η),

where F (ξ, η) satisfies the parabolic equation and ǫ = (2/kR)1/3. Here R
is the radius of the top and ξ and η are related to cartesian coordinates x
and y (see the figure) by the transformation

x = Rǫξ − 1
6Rǫ

3(ξ3 − 3ξη + 2η3/2), y ≈ 1
2Rǫ

2(ξ2 − η).

The surface η = 0 corresponds to the barrier top. (See the paper by V. A.
Fock and L. A. Weinstein, reprinted in Fock, Electromagnetic Diffraction

and Propagation Problems, pp. 171–187.)
9-26 A point source is at distance R from an exterior comer (a point where

three edges meet) of a large rectangular rigid box. Given that P is the
pressure amplitude that would be measured at the same point if the box
were not present, what is the pressure amplitude at the corner?

9-27 The source and the listener are adjacent but on opposite sides (z = zS ,
r = rS ,φ = 0, φS = β ) of a thin rigid screen (β = 2π). Given that the
source has monopole amplitude Ŝ and that kr ≫ 1, what is the acoustic-
pressure amplitude at the listener location?
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Problem 9-25

9-28 Verify that the Sommerfeld solution (page 495n.) for plane-wave diffraction
by a thin screen (β = 2π) reduces to

p̂ = p̂inc

[

1− 2(1− i)

(

kr

π

)1/2

cos
φ

2
cos

φS
2

]

,

in the limit kr ≪ 1. Is this consistent with Eq. (9-7.12)? What does this
imply concerning the fluid velocity near the edge? Show that r1/2 cosφ/2
is a solution of Laplace’s equation and discuss the significance of this fact.

9-29 A heuristic simplified method for prediction of barrier insertion loss pro-
posed by R. S. Redfearn, Phil. Mag. (7)30:223–236 (1940), leads to an
insertion loss that is a function of h/λ and φ when z = zS, where h and φ
are the quantities indicated in the figure.
(a) Show that such an assumption is consistent for small φ with the Fresnel
number approximation and that, in such a limit, NF is approximately
(h/λ)φ.
(b) Show that an alternative substitution for the Fresnel number is
(h2/λ)(r−1 + r−1

S ) [Z. Maekawa, Appl. Acoust. 1:157–173 (1968)].
9-30 A square thin rigid plate occupies the region, −a < x < a, −a < y < a,

of the z = 0 plane. A harmonic point source of monopole amplitude Ŝ is
directly in front (z = 0+) of the plate’s center. Consider ka as large and
consider the field on the z > 0 side to be made up of a direct-plus-reflected
wave combination plus diffracted waves from each of the four plate edges.
(a) Determine an expression for the complex acoustic-pressure amplitude
along the +z axis.
(b) Describe the locations of any points along the axis where interference
from the diffracted waves may cause the acoustic pressure to be inordi-
nately small.
(c) Repeat part (a) for the −z axis.

9-31 A point source lies on the φS = β interior surface of a 120◦ wedge (γ = 3
2 ).
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Problem 9-29

(a) Given that krS and kr are both large, express the bistatic reflected
field for points near the plane φ = 60◦ in terms of single-edge diffraction
formulas.
(b) What corresponds to a Fresnel number for the circumstances just de-
scribed?

9-32 A square plate of dimensions a on a side is at sufficient distance R from
an acoustic transmitter to be regarded as being in the far field; ka, how-
ever, is substantially larger than 1. Use edge-diffraction theory to estimate
the target strength of the plate when the incident propagation direction
is normal to the plate. Take the transmitter to be omnidirectional and
reciprocal and take R to be substantially larger than ka2.

9-33 The question of whether interior or exterior edges cause the stronger echoes
arises in the following example. The terrain is flat and coincides with
the z = 0 plane for x < 0. Between x = 0 and x = 40λ, the terrain
slopes upward, rising 3 units for every 4 horizontal units, to a height of
30λ. Beyond x = 40λ, the terrain is once again level. The transitions
from level to sloped and from sloped to level at x = 0 and x = 40λ are
abrupt in terms of a wavelength λ. When an omnidirectional transducer
at x = −110λ, y = 0, z = 0 transmits a pulse of nearly constant frequency,
it subsequently receives two echoes. What is the ratio of the amplitude of
the second echo to that of the first echo?

9-34 A simple method for estimating diffraction around thick barriers (double-

edge diffraction) rests on the following heuristic concepts. When the direct
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wave from the source strikes the nearest edge, it excites a diffracted wave
that travels along the barrier top to the farther edge; there the incident
diffracted wave gives rise to a second diffracted wave that travels to the
listener on the far side of the barrier. The propagation from source to
edge, edge to edge, and from edge to listener is in accord with geometrical-
acoustic principles; the generation of diffracted waves by an incident wave
at an edge is predicted with Eq. (9-8.16). Apply the method just described
when source and listener are on opposite sides of a long rigid rectangular
three-sided barrier of width 10λ. A point source of monopole amplitude
Ŝ is adjacent to one side at a distance 10λ from the top and the listener
is adjacent to the opposite side (z = zS), also at a distance 10λ from the
top. What is the complex pressure amplitude at the listener location?





CHAPTER TEN

EFFECTS OF VISCOSITY AND
OTHER DISSIPATIVE PROCESSES

Phenomena that cannot be explained within the strict confines of the ideal
fluid-dynamic equations include attenuation of sound, radiation caused by
flow past obstacles, wave structure near a shock front, acoustic streaming,
and finite amplitudes of resonating systems. Pertinent physical processes are
not necessarily the same for each phenomenon, but the processes commonly
entering into consideration involve viscosity, thermal conduction, or relax-
ation. We here first consider viscosity and thermal conductivity and show how
the fluid-dynamic equations are modified when these processes are taken into
account. Subsequent sections explore the basic acoustical implications of the
resulting equations. Relaxation processes occupy our attention in the final
portions of the chapter.

10-1 THE NAVIER-STOKES-FOURIER MODEL

The Stress Tensor

To include viscosity in the basic fluid-dynamic equations, one must first aban-
don the assumption that the force exerted per unit area by adjacent fluid par-
ticles on the surface enclosing a given fluid particle is normal to the surface.
Consideration of phenomena involving viscosity, e.g., the drag on a solid body
when fluid is flowing past it, requires that this force fS(n,x) per unit area
also have a tangential component (see Fig. 10-1). The assumption is made,
however, that the molecular interactions between adjacent fluid particles are
of such short range that fS(n, x) is independent of the detailed shape and
volume of the fluid particle considered, so that it depends only on the point x
on the surface at which it is applied, on the outward normal n of the surface
at x, and on time t.

571
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Newton’s third law applied to neighboring fluid particles requires that
fS(−n, x) = −fS(n, x). Furthermore, the requirement that the net force
on a tetrahedron-shaped fluid particle divided by the mass of that particle
be finite in the limit as the volume becomes zero leads to the relation†

fS(n,x) = (n ·ex)fS(ex,x)+(n ·ey)fS(ey,x)+(n ·ez)fS(ez,x), (10-1.1)

where ex, ey, ez are unit vectors in the x, y, z (or x1, x2, x3) directions. The
three cartesian components of this vector equation take the form (Cauchy’s

stress relation)

ei · fS
(n,x) =

3
∑

j=1

σij(x)nj , i = 1, 2, 3, (10-1.2)

where
σij(x) = ei · fS(ej , x), i, j = 1, 2, 3 (10-1.3)

represents the ith component of the force exerted per unit area at a point x

on the surface of a fluid particle where the outward normal is in direction ej .
The nine quantities σij(x) constitute the components of the stress tensor;

the off-diagonal elements are the shear stresses. If the components are known
for any one given cartesian coordinate system, the components appropriate to
any other choice of axes can be derived from Eqs. (2) and from the geometrical
properties of vectors. The stress tensor must be symmetric, σij(x) = σji(x),
because the net torque about the center of any fluid particle corresponds to
a finite angular acceleration, even in the limit when the particle size becomes
vanishingly small.

The expression (2) for the cartesian components of fS(n,x) allows the net
surface force on a given fluid particle to be written as

3
∑

i=1

3
∑

j=1

ei

∫ ∫

[σij(x)ej ] · ndS =
∑

ij

ei

∫ ∫ ∫

∇ · (σijej)dV,

where the latter integral is over the volume of the particle. Consequently, the
steps in Sec. 1-3, which led there to Euler’s equation, lead here instead to the
Cauchy equation of motion

ρ
Dv

Dt
=
∑

ij

ei
∂σij
∂xj

. (10-1.4)

Without any additional assumptions concerning the stress tensor, this holds
equally well for solids and fluids.

† G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 1967,
pp. 1–10; Y. C. Fung, Foundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs,
N.J., 1965, pp. 62–65. The proof is due to A.-L. Cauchy.
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Figure 10-1 Surface force on an area element of an internal surface in a viscous fluid.

The Energy Equation

A basic law of mechanics† is that the net rate of change of energy within a
moving fluid particle (occupying time-dependent volume V ∗) must be equal
to the rate at which work is done on it by the surface forces plus the net rate
at which heat energy is flowing into it. Thus we write

d

dt

∫ ∫ ∫

V ∗

(12ρv
2 + ρu)dV =

∫ ∫

S∗

fS · vdS −
∫ ∫

S∗

q · ndS, (10-1.5)

where u is the internal energy per unit mass within the particle and q is
the heat-flux vector, defined so that −q · n is heat flowing per unit area
into the volume at a point on the surface where the outward unit normal

† For an extensive discussion and references, see Y. Elkana, The Discovery of the Conser-
vation of Energy, Harvard University Press, Cambridge, Mass., 1974.
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is n. The left side of this can be argued, in a manner similar to that in
which Eq. (1-3.5) was derived, to be equivalent to the volume integral of
ρ(D/Dt)(12v

2 + u). Also, with the components of fS, given by Eq. (2), one
has fS ·v = Σ(σijviej)·n, so Gauss’s theorem transforms both of the surface
integrals in (5) into volume integrals. The result applies for an arbitrary
volume, and thus the equation holds for the integrands themselves; so we
obtain the Fourier-Kirchhojf-Neumann energy equation†

ρ
D

Dt
(12v

2 + u) =
∑

ij

∂

∂xj
σijvi −∇ · q. (10-1.6)

A simplication in the above results if one subtracts from it the dot product
of v with the momentum equation, this product being

ρv ·
Dv

Dt
= ρ

D

Dt
(12v

2) =
∑

ij

vi
∂σij
∂xj

=
∑

ij

∂

∂xj
viσij −

∑

ij

σij
∂vi
∂xj

. (10-1.7)

Thus, with the subtraction, one has

ρ
Du

Dt
=
∑

ij

σij
∂vi
∂xj

−∇ · q, (10-1.8)

which replaces the ideal-fluid relation Ds/Dt = 0.

Constitutive Relations for a Fluid

Relations between the σij , q, and other variables describing the dynamical
and thermodynamical state of the fluid are called constitutive equations. The
Navier-Stokes model adopted here is a generalization of the observation that,
for common types of fluids (newtonian‡ fluids), the shear stress is proportional
to the rate of shear. For a steady unidirectional flow in which v has only an
x component vx(y), the stress component σxy is found for such a fluid to
equal µ∂vx/∂y, where the viscosity µ is independent of vx and of its spatial
variation.

The generalization of the newtonian constitutive relation to an arbitrary
state of motion is that any shear-stress component (i 6= j) must be a linear

† The name is suggested by C. Truesdell, Continuum Mechanics, vol. I, The Mechanical
Foundations of Elasticity and Fluid Mechanics, Gordon and Breach, New York, 1966, p.
40.
‡ The term derives from a statement in F. Cajori, Newton’s Principia: Motte’s Translation
Revised, University of California, Berkeley, 1947, p. 385: “The resistance arising from the
want of lubricity in the parts of a fluid, is, other things being equal, proportional to the
velocity with which the parts of the fluid are separated from one another.”
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combination of the spatial derivatives ∂vi/∂xj and that the shear stresses
vanish when all the ∂vi/∂xj are zero. Furthermore, the relation between
the σij and the ∂vi/∂xj must be independent of the choice of coordinate
system. To determine such a relation, it is expedient to first define σn as
the average normal component (one-third of the trace) of the stress tensor.
Then the tensor with components σij −σnδij is a symmetric tensor with zero
trace. The only way this can be linearly related to the ∂vi/∂xj in a form
independent of choice of coordinate system is for its components to be linear
combinations† of the components of whatever tensors can be formed from
the ∂vi/∂xj that are also symmetric and also have zero trace. Apart from a
multiplicative constant, there is only one such tensor, so

σij − σnδij = µφij , (10-1.9)

φij =
∂vi
∂xj

+
∂vj
∂xi

− 2
3∇ · vδij . (10-1.10)

The components φij of the rate-of-shear tensor have the desired properties
because φij = φji and Σφii = 0. That the proportionality factor is the
viscosity µ follows from the requirement that (9) must imply σxy = µ∂vx/∂y
when v = exvx(y).

In regard to the first term on the right side of the energy equation (8),
Eqs. (9) and (10) lead to

∑

ij

σij
∂vi
∂xj

= −σn
ρ

Dρ

Dt
+
µ

2

∑

ij

φ2ij , (10-1.11)

because Σφii = 0 and because the mass-conservation equation (1-2.4) implies
∇ · v = −ρ−1Dρ/Dt. Thus (8) becomes

ρ

(

Du

Dt
− σn

Dρ−1

Dt

)

=
µ

2

∑

ij

φ2ij −∇ · q. (10-1.12)

For quasi-static processes (disturbances of low frequency and with little
spatial variation), the fluid may be regarded as being in local thermodynamic
equilibrium. In this limit, particular values of internal energy u per unit mass
and specific (per unit mass) volume 1/ρ correspond to an entropy s(u, 1/ρ)
per unit mass whose differential ds is (1/T )du + (p/T )d(1/ρ), where p and
T are the pressure and temperature corresponding to the equilibrium state
associated with the values of u and 1/ρ. In the equilibrium state, σn must also

† A proof along such lines follows from the analysis of M. Reiner, “A mathematical theory
of dilatancy,” Am. J. Math. 67:350–362 (1945). See, for example, C.-S. Yih, Fluid Me-
chanics, McGraw-Hill, New York, 1969, pp. 26–32. The original derivation of Eq. (9) from
continuum-mechanical principles is due to G. G. Stokes, “On the theories of the internal
friction of fluids in motion, and of the equilibrium and motion of elastic solids,” Trans.
Camb. Phil. Soc. 8:75–102 (1845).
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be taken as −p. Also, for near-equilibrium states, one expects that q should
be proportional to ∇T but oppositely directed to ∇T because heat flows
from high temperature to low temperature, so one would adopt Fourier’s

law,‡ q = −κ∇T , where κ is the coefficient of thermal conductivity (referred
to for brevity as the thermal conductivity).

Within the context of the above discussion, the simplest assumptions§

concerning σn and q are that σn = −p and q = −κ∇T , where p and T have
the same relation to u and 1/ρ as for a fluid in equilibrium. Also, since the
equation of state s = s(u, 1/ρ) should be independent of time for any fluid
particle, one has

T
Ds

Dt
=
Du

Dt
+ p

D

Dt

1

ρ
. (10-1.13)

The right side here, with σn = −p, is the quantity in parentheses in Eq. (12).
The assumptions just stated allow us to write (8) as the Navier-Stokes

equation†

ρ
Dv

Dt
= −∇p+

∑

ij

ei
∂

∂xj
(µφij) , (10-1.14)

and to write (12) as the Kirchhoff-Fourier equation‡

ρT
Ds

Dt
=
µ

2

∑

ij

φ2ij +∇ · (κ∇T ), (10-1.15)

where it is understood that the relations between s, ρ, T , and p are the same
as for the fluid in equilibrium. Those thermodynamic relations, plus the mass-
conservation relation (1-2.4), along with the two equations above and with
some specification for κ and µ, constitute what we here call the Navier-Stokes-

Fourier model of a compressible fluid. The model’s chief limitation from the
standpoint of acoustics, as discussed in Secs. 10-7 and 10-8, is that it of-
ten fails to explain the actual values and the frequency dependence of sound
attenuation in extended regions remote from solid boundaries. In other in-
stances, however, it is adequate for understanding phenomena not explicable
with the ideal fluid-dynamic equations.

‡ J. Fourier, The Analytical Theory of Heat, 1822, trans. by A. Freeman, 1878; reprinted
by Dover, New York, 1955, p. 52.
§ Stokes’ original derivation gave (in the notation of the present text) σn = −p+µB∇·v,
where µB is the bulk viscosity. The modification to the fluid-dynamic equations caused by
the bulk viscosity is discussed in Sec. 10-7; here we proceed as if it were zero.
† The origins of this appear in nineteenth-century works by Navier (1822), Poisson (1829),
Saint-Venant (1843), and Stokes (1845), the last work being of greatest influence on the
subsequent development of fluid mechanics. For the original references, see Yih, Fluid
Mechanics, pp. 58–59.
‡ The terminology is somewhat inaccurate since neither Kirchhoff nor Fourier used the
concept of entropy in their relevant publications, but it is convenient to refer to Eq. (15)
and to the overall model by brief names.
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Values of Viscosity and Thermal Conductivity

For gases, µ and κ are functions of temperature T only. For air, in partic-
ular, the data and detailed calculations based on the molecular structure of
its constituents and on kinetic theory are consistent with the semiempirical
formulas§

µ

µo
=

(

T

To

)3/2
To + TS

T + TS

, (10-1.16a)

κ

κo
=

(

T

To

)3/2
To + TAe

−TB/To

T + TAe−TB/T
, (10-1.16b)

where µo and κo correspond to temperature To. If these formulas hold for any
given choice of To, they also hold for any other choice of To. The constants
TS, TA, and TB are TS = 110.4K, TA = 245.4 K, and TB = 27.6K. If To
is 300 K (27◦C), then µo = 1.846× 10−5 kg/(m · s) and κo = 2.624× 10−2

W/(m ·K).

Transport Properties of Water

Typical values for the viscosity and thermal conductivity† of water are µ =
1.002× 10−3 kg/(m · s) and κ = 0.597 W/(m ·K) for distilled water at 20◦C
and atmospheric pressure. Since the corresponding values for seawater are
µ = 1.081 × 10−3 kg/(m · s) and κ = 0.574 W/(m · K), salinity effects are
minor, less than 8 or 4 percent for µ or κ. The variation due to pressure
changes at fixed temperature are less than 5 percent up to pressures of the
order of 10,000 atm (109 Pa) in the case of µ, and it is expected that the
pressure dependence of κ is also weak. Thus, one may regard µ and κ as
functions only of temperature for most purposes.

The viscosity of pure water decreases with temperature (the opposite from
that of air) from 1.787 × 10−3 at 0◦C to 0.2818 × 10−3 at 100◦C. An ap-
proximate expression (accurate to 1 percent between 10 and 30◦C) for the
dependence near 20◦C is

µ = 1.002× 10−3e−0.0248∆T , (10-1.17a)

§ J. Hilsenrath et al., Tables of Thermodynamic and Transport Properties of Air, etc.,
Pergamon Press, Oxford, 1960, pp. 7, 10, 11, 26, 57–62. Equation (16a) is due to W.
Sutherland, ‘The viscosity of gases and molecular force,” Phil. Mag. (5)36:507–531 (1893).
† The values cited are extracted from the Handbook of Chemistry and Physics, 49th ed.,
Chemical Rubber, Cleveland, 1968, and from R. A. Horne, Marine Chemistry, Wiley-
Interscience, New York, 1969.
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where ∆T is the difference between the temperature and 20◦C. The temper-
ature dependence of κ is relatively weak; an approximate fit to the data near
20◦C is

κ = 0.597 + 0.0017∆T− 7.5× 10−6(∆T )2. (10-1.17b)

A dimensionless quantity characterizing the relative magnitudes of µ and
κ is the Prandtl number, Pr = µcp/κ, where cp is the specific heat at constant
pressure. For gases, an approximate kinetic-theory analysis‡ suggests that Pr
is 4γ/(9γ−5), where γ is the specific-heat ratio. For a diatomic gas (γ = 1.4),
this gives Pr = 0.737, and for air this value is not markedly different over the
temperature range of normal interest from what would be computed from
the actual values of µ, cp, and κ. [With cp = γR/(γ − 1), R = 287, γ = 1.4
(see Sec. 1-9), and with µ and κ as given by Eqs. (16), one finds Pr at 300 K
is 0.707.]

For water, the temperature dependence of the Prandtl number is roughly
the same as that of the viscosity. The value at 20◦C for Pr is 7.0, about 10
times the corresponding value for air.

10-2 LINEAR ACOUSTIC EQUATIONS AND

ENERGY DISSIPATION

Linear acoustic equations governing small-amplitude disturbances result from
the discard of terms of second order in the deviations of p, ρ,v, T, s from their
ambient values po, ρo,vo, To, so. For simplicity, we here regard the ambient
state as homogeneous and quiescent, such that vo = 0 and po, ρo, To, and so
are independent of position and time.

Linear Acoustic Equations

The deviations p′, ρ′, T ′, s′ are related by the thermodynamic equations of
state, ρ = ρ(p, s) and T = T (p, s), whose linearized versions give ρ′ and
T ′ as linear combinations of p′ and s′. With the thermodynamic identities
(∂ρ/∂s)p = −ρβT/cp and (∂T/∂p)S = Tβ/ρcp, the coefficients can be ex-
pressed in terms of cp = T (∂s/∂T )p, c2 = (∂p/∂ρ)S, and β = ρ[∂(1/ρ)/∂T ]p

‡ A. Eucken, “On the thermal conductivity, the specific heat, and the internal friction
of gases,” Phys. Z. 14:324–332 (1913). For a commentary and suggested replacements,
see S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases,
Cambridge University Press, Cambridge, 1939, 1952, p. 237; M. J. Lighthill, “Viscosity
effects in sound waves of finite amplitude,” in G. K. Batchelor and R. M. Davies (eds.),
Surveys in Mechanics, Cambridge University Press, London, 1956, pp. 250–351, especially
p. 259.
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(representing the specific heat at constant pressure, the sound speed squared,
and the coefficient of thermal expansion). One has, in particular,

ρ′ =
1

c2
p−

(

ρβT

cp

)

0

s, (10-2.1a)

T ′ =

(

Tβ

ρcp

)

o

p+

(

T

cp

)

o

s, (10-2.1b)

where, for convenience in subsequent writing, the primes on p′ and s′ have
been omitted and the coefficients are understood to be evaluated at the ambi-
ent state. (For an ideal gas, p = ρRT implies β = 1/T , so βT can be replaced
by 1 in the above.)

The remaining linear equations for the model come from the conservation-
of-mass relation (1-2.4), the Navier-Stokes equation (10-1.14), and the Kirchhoff-
Fourier equation (10-1.15). The quantities φij and ∇T are automatically first
order, so µ and κ need only be taken to zero order and are constants for any
given choice of ambient state. Thus, the linear equations reduce to

∂ρ′

∂t
+ ρo∇ · v = 0, (10-2.2a)

ρo
∂v

∂t
= −∇p+

∑

ij

µei
∂φij
∂xj

, (10-2.2b)

ρoTo
∂s

∂t
= κ∇2T ′, (10-2.2c)

where we adhere to our previous convention of omitting unnecessary primes.
Alternatively, with the definition (10-1.10) for the components of the rate-of-
shear tensor, Eq. (2b) can be written as

ρo
∂v

∂t
= −∇p+ µ[∇2v + 1

3∇(∇ · v)]. (10-2.2b′)

For a given ambient state, the coefficients 1/c2, (ρβT/cp)o, ρo, κ, etc., in Eqs.
(1) and (2) can be regarded as numerical constants.

The Energy Conservation-Dissipation Corollary

We here examine the changes the model described by Eqs. (1) and (2) above
necessitates in the acoustic energy-conservation law (1-11.2). Taking the dot
product of Eq. (2b) with v and adding to it p/ρo times (2a) and T ′/To times
(2c) yields
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∂

∂t
(12ρov

2) +
p

ρo

∂ρ′

∂t
+ ρoT

′∂s

∂t
= −∇ · (pv) + µ

∑

ij

∂

∂xj
viφij − µ

∑

ij

φij
∂vi
∂xj

+
κ

To
∇ · (T ′

∇T ′)− κ

To
(∇T ′)2. (10-2.3)

The sum of the second and third terms on the left side reduces, because of
Eqs. (1), to

p

ρo

∂ρ′

∂t
+ ρoT

′ ∂s

∂t
=

∂

∂t

[

1

2

p2

ρoc2
+

1

2

(

ρT

cp

)

o

s2
]

Also, as in the derivation of Eq. (10-1.11), we can replace the sum over i and
j of φij∂vi/∂xj by a similar sum over 1

2φ
2
ij .

The substitutions just described reduce Eq. (3) to

∂w

∂t
+∇ · I = −D (10-2.4)

where

w = 1
2ρov

2 +
1

2

p2

ρoc2
+

1

2

(

ρT

cp

)

o

s2, (10-2.5a)

I = pv − µ
∑

ij

ejviφij −
κ

To
T ′

∇T ′, (10-2.5b)

D = 1
2µ
∑

ij

φ2ij +
κ

To
(∇T ′)2, (10-2.5c)

These equations should be compared with the analogous acoustic-energy-
conservation theorem in Sec. 1-11 that results when viscosity and thermal
conduction are neglected.

The energy interpretation of Eq. (4) is most apparent when both sides are
integrated over some fixed control volume, so that an application of Gauss’s
theorem yields

d

dt

∫ ∫ ∫

wdV +

∫ ∫

I · ndS = −
∫ ∫ ∫

DdV (10-2.6)

Here the first term on the left is the time rate of change of disturbance energy
in the control volume; the second term is the net rate at which such energy is
flowing out through the control volume’s surface. Therefore the nonzero term
on the right (with the indicated minus sign) must be the negative of the rate at
which energy is “unaccountably” being lost. Since what is lost in this context
is said to be dissipated, D is the energy dissipated† per unit volume and time.
The two terms in expression (5c) for D are the rates of energy dissipation per

† Alternatively, D may be regarded as To times the rate per unit volume at which entropy
is being irreversibly generated by the disturbance. See, for example, R. C. Tolman and P.
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unit volume caused by viscosity and thermal conduction, respectively. Their
non-negative values are in accord with the expectation that the net energy
associated with any disturbance must always decrease after the cessation of
the source excitation.

Our expression for the disturbance energy w per unit volume in Eq. (5a)
includes an additional term proportional to the square of the entropy devia-
tion s. For disturbances normally classified as sound, this term is negligibly
small compared with the other two, but there are other types of disturbances
characterized primarily by heat conduction for which this term dominates. As
regards the energy-flux vector I, the dot product of the second term in (5b)
with n is the power transmitted per unit area by viscous stresses across a sur-
face with unit normal n; its contribution to the surface integral in (6) is the
work done per unit time and surface area by the viscous stresses on the envi-
ronment external to the control volume. The first two terms in (5b) combine
to give [in accord with Eq. (10-1.9)] −Σσ′

ijviej , where σ′
ij is the deviation

of the corresponding stress tensor component from its ambient value −poδij .
The net contribution of these terms to I · n is accordingly −f ′

S
(n,x, t) · v,

where −f ′
S is the deviation of the force per unit area exerted by the control

volume on its external environment. The third term in (5b) represents the
flux of disturbance energy associated with heat conduction, but because of
the factor T ′/To, it cannot be interpreted literally as heat energy flowing per
unit area and time.

Attenuation of Plane Sound Waves

A simple application of the energy conservation-dissipation theorem is the
calculation of the attenuation of a plane wave propagating in the +x1 direc-
tion (specified by unit vector e1 = ex) through a medium with small µ and κ.
The relations between the acoustic pressure p, fluid velocity v, temperature
deviation T ′, and their spatial dependences are then nearly the same over
any local region as predicted by the idealized model discussed in Chap. 1.
Thus v ≈ e1p/ρoc and T ′ ≈ (Tβ/ρcp)0p. Also, since the dependence of these
on t and x is approximately such that they vary only with t− x1/c, one has
[with ∇f(t− x1/c) = −(e1/c)∂f/∂t]

C. Fine, “On the irreversible production of entropy,” Rev. Mod. Phys. 20:51–77 (1948); C.
Eckart, “The thermodynamics of irreversible processes,” Phys. Rev. 58:267–269 (1940).
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∇T ′ ≈
(

Tβ

ρcp

)

o

(−e1

c

)

∂p

∂t
, (10-2.7a)

∇ · v =
∂v1
∂x1

≈ − 1

ρoc2
∂p

∂t
, (10-2.7b)

φ11 =
4

3

∂v1
∂x1

, φ22 = φ33 = −2

3

∂v1
∂x1

, (10-2.7c)

so [with the thermodynamic identity γ − 1 = Tβ2c2/cp from Eq. (1-9.9)]

(∇T ′)2 ≈
(

T

ρ2cpc4

)

o

(γ − 1)

(

∂p

∂t

)2

, (10-2.8)

∑

ij

φ2ij ≈
8

3

(∂p/∂t)2

(ρoc2)2
. (10-2.9)

Thus the dissipation, Eq. (5c), per unit volume and time is approximately

D ≈
[

4
3µ+

(γ − 1)κ

cp

]

(∂p/∂t)2

(ρoc2)2
, (10-2.10)

For a plane wave of constant angular frequency ω, in the absence of vis-
cosity and thermal conductivity, the time average of (∂p/∂t)2 is ω2(p2)av or
ω2ρocIav, where Iav is the intensity in the direction of propagation. Conse-
quently, to lowest nonzero order in κ and µ, Eq. (10) implies

Dav ≈ 2αclIav, (10-2.11)

where we use the abbreviations† (cl for classical)

αcl =
ω2δcl
c3

, δcl =
µ

2ρo

(

4

3
+
γ − 1

Pr

)

, (10-2.12)

and Pr is the Prandtl number µcp/κ.
Since the time average of the energy conservation-dissipation theorem, Eq.

(4), requires, for plane waves propagating in the x direction, that dIav/dx =
−Dav, the approximation (11) yields

Iav = Iav,0e
−2αclx, |p̂| = |p̂|x=0e

−αclx. (10-2.13)

† The original derivations of αcl proceeded along lines analogous to those described below
in the derivations of Eq. (10-3.6) and (10-8.10). The result without thermal conductivity
is due to Stokes, “On the Theories of the Internal Friction.” The inclusion of thermal
conduction was carried through for an ideal gas by G. Kirchhoff, “On the influence of heat
conduction in a gas on sound propagation,” Ann. Phys. Chem. (5)134:177–193 (1868). The
generalization to other classes of fluids is due to P. Langevin, whose work was reported by
P. Biquard, “On the absorption of ultrasonic waves by liquids,” Ann. Phys. (11)6:195–304
(1936).
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The second version follows because Iav is proportional to the square of any
field amplitude associated with the disturbance. Thus αcl gives the atten-
uation of the disturbance in nepers per meter as predicted by the Navier-
Stokes-Fourier model to lowest order in µ and κ.

Except for a monatomic gas,† the classical attenuation coefficient αcl is
generally not in accord with experiment and gives an underestimate. Ex-
tended models that remove such discrepancies are discussed in Sec. 10-7;
however, the Navier-Stokes-Fourier model is often sufficient when the bulk of
the disturbance energy is being dissipated within a wavelength or less from
a solid surface.

10-3 VORTICITY, ENTROPY, AND ACOUSTIC

MODES

At frequencies normal interest, any disturbance governed by the linear equa-
tions derived in the previous section can be considered as a superposition
of vorticity, entropy, and acoustic modal wave fields.‡ The individual modal
fields satisfy equations considerably simpler than those for the disturbance as
a whole and are uncoupled in the linear approximation except at boundaries.
To show such a decomposition is possible and to arrive at the appropriate
equations for the component fields, we begin with an analysis of plane-wave
disturbances.

Dispersion Relations for the Component Modes§

A plane-wave disturbance of angular frequency ω in a homogeneous time-
independent medium is one for which each field quantity (ψn denoting one

† M. Greenspan, “Propagation of sound in rarefied helium,” J. Acoust. Soc. Am. 22:568–
571 (1951); “Propagation of sound in five monatomic gases,” ibid. 28:644–648 (1956).
Greenspan’s data show that the so-called classical theory is valid if ρoc2/ωµγ is greater
than 10.
‡ Although this point of view was implicit in Kirchhoff’s (1868) solution for sound at-
tenuation in a circular tube, its modern origins began with L. Cremer, “On the acoustic
boundary layer outside a rigid Wwll,” Arch. Elektr. Uebertrag. 2:136–139 (1948); P. A.
Lagerstrom, J. D. Cole, and L. Trilling, “Problems in the theory of the viscous compress-
ible Fluids,” Calif. Inst. Technol. Guggenheim Aeronaut. Lab. Rep. Off. Nav. Res., 1949
(reprinted 1950); and L. S. G. Kovasznay, “Turbulence in supersonic flow,” J. Aeronaut.
Sci. 20:657–674, 682 (1953).
§ The discussion here is comparable to that developed by E. O. Astrom (1950) and others
for electromagnetic disturbances in an ionized gas with an impressed ambient magnetic
field. See, for example, T. H. Stix, The Theory of Plasma Waves, McGraw-Hill, New York,
1962, pp. 11–13.



584 10 Effects of Viscosity and Other Dissipative Processes

of these) varies with t and x as

ψn(x, t) = Re
{

ψ̂ne
−iωteik·x

}

. (10-3.1)

where the wave-number vector k is the same for each field quantity. The
number ψ̂n is independent of x and t and is in general complex, as are the
components of k. For an isotropic medium, where there is no preferred direc-
tion in space (as for the model in the previous section but not when gravity
is taken into account), any set of values (kx, ky, kz) yielding an appropriate
k2 = k2x+k

2
y+k

2
z is possible. However, there are only a small number of k2 for

a given ω for which a nontrivial solution (at least one ψ̂n not zero) exists. (In
the present case, there are three such values.) The resulting relations between
k2 and ω are the dispersion relations for the possible modes of propagation.

Given that k2 has one of the allowed values, there is at least one set
of ψ̂n’s for which the governing equations are satisfied by the substitution
(1). The equations do, however, impose linear relations (generically called
polarization relations†) between the members of the set. A procedure for
finding the possible k2’s and the corresponding polarization relations begins
with a formal substitution of expressions like (1) into the governing linear
partial-differential equations; all the requisite differentiations are then carried
out, and each such equation is written in the form

Re
{

(something)e−iωteik·x
}

= 0.

One subsequently argues that this will be true in general only if the “some-
thing” is zero. This leads to the prescription that all such amplitude equations
emerge from the original partial-differential equations with the replacement
of ∂/∂x by ikx, ∂/∂y by iky, ∂/∂z by ikz , ∂/∂t by −iω, and ψn by ψ̂n. In
this manner, Eqs. (10-2.2) are replaced by

ω

(

p̂

c2
− ρβT

cp
ŝ

)

− ρk · v̂ = 0, (10-3.2a)

−iωρv̂ = −ikp̂− µ(k2v̂ + 1
3kk · v̂), (10-3.2b)

iωŝ =
κ

ρcp
k2
(

ŝ+
β

ρ
p̂

)

. (10-3.2c)

In writing these, we have also used Eqs. (10-2.1) to replace ρ̂′ and T̂ ′ by the
corresponding expressions in terms of p̂ and ŝ. (Here and in what follows the
subscript 0 is omitted on symbols for ambient quantities whenever the risk
of misinterpretation is small.)

Taking the cross product and dot products, respectively, of k with Eq.
(2b) yields

† C. O. Hines, “Internal atmospheric gravity waves at ionospheric heights,” Can. J. Phys.
38:1441–1481 (1960).
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(−iωρ+ µk2)(k × v̂) = 0, (10-3.3a)

(ωρ+ i 43µk
2)k · v̂ = k2p̂. (10-3.3b)

The first of these allows two possibilities: k × v̂ = 0 or k2 = iωρ/µ. The
first possibility requires v̂ be parallel to k. The second possibility, with k2

replaced by iωρ/µ in Eqs. (3b), (2a), and (2c), requires zero values for k · v̂,
p̂, and ŝ (providing ω 6= 0). In particular, k and v̂ must be perpendicular.
This gives us one possible plane-wave mode for the fluid: k× v̂ 6= 0, k · v̂ = 0,
the remaining field quantities, p, ρ′, T ′, and s, all zero; k2 is iωρ/µ.

Returning to the first possibility (k × v̂ = 0), we simplify our algebra if
we abbreviate

X =
c2k2

ω2
, ǫµ = i

4

3

µω

ρc2
, (10-3.4a)

ǫκ =
iκω

ρc2cp
. (10-3.4b)

Equations (2c) and (3b), with k · v̂ taken from (2a), represent two simulta-
neous linear equations for ŝ and p̂, which can be written, with the definitions
(4) and with the thermodynamic identity γ− 1 = β2Tc2/cp [see Eq. (1-9.9)],
as

[

1 + ǫκX ǫκX
−(γ − 1)(1 + ǫµX) 1 + ǫµX −X

] [

ŝ
βp̂/ρ

]

=

[

0
0

]

. (10-3.5)

A nontrivial solution of Eq. (5) exists only if the determinant of coefficients
vanishes, yielding the following quadratic equation† (Kirchhoff’s dispersion

relation):
(−ǫκ + γǫµǫκ)X

2 + (ǫµ + γǫκ − 1)X + 1 = 0. (10-3.6)

The radical resulting from the exact solution of this is awkward to handle
when one considers generalizations to phenomena not describable as plane
waves of constant frequency. However, for all conceivable cases of interest,
both |ǫµ| and |ǫκ| are much less than 1, so the roots can be expressed as
truncated power series in ǫµ and ǫκ, causing the following approximate dis-
persion and polarization relations to result from Eqs. (5) and (6):

X ≈ 1 + ǫµ + (γ − 1)ǫκ, ŝ ≈ − ǫκβp̂
ρ

, (10-3.7a)

X ≈ − 1

ǫκ
+ (γ − 1)

(

1− ǫµ
ǫκ

)

,
βp̂

ρ
≈ (γ − 1)(ǫκ − ǫµ)ŝ. (10-3.7b)

† Given first for an ideal gas by G. Kirchhoff (1868). An extensive discussion of its solutions
without the restriction that |ǫµ| and |ǫκ| be small and with the bulk viscosity included
(such that 4µ/3 is replaced by 4µ/3 + µB) is given by C. Truesdell, “Precise theory of the
absorption and dispersion of forced plane infinitesimal waves according to the Navier-Stokes
equations,” J. Ration. Mech. Anal. 2:643–730 (1953).
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A Generalization Based on the Superposition Principle

Each of the three dispersion relations derived above can be written

k2 + f(iω) = 0, (10-3.8)

where f(iω) is a power series in iω with real coefficients. If a ψn(x, t) described
by Eq. (1) has a wave-number vector that conforms to one such dispersion
relation, then

Re
{

[−k2 − f(iω)]ψ̂ne
−iωteik·x

}

= 0. (10-3.9)

However, in this context −k2 is equivalent to ∇2 and iω is equivalent to
−∂/∂t, so one could alternatively write

[

∇2 − f

(

− ∂

∂t

)]

ψn(x, t) = 0. (10-3.10)

Furthermore, this is true for any superposition of plane-wave disturbances
that conform to the same dispersion relation. Similarly, the polarization re-
lations associated with each dispersion relation lead to partial-differential
equations.†

Vorticity Mode

The dispersion relation k2 = iωρ/µ leads to the diffusion equation

∇2vvor =
ρ

µ

∂vvor

∂t
. (10-3.11)

The corresponding polarization relations, as explained in the sentences fol-
lowing Eq. (3), must be

∇ · vvor = 0, pvor = svor = T ′
vor = ρ′vor = 0. (10-3.12)

These correspond to an incompressible flow that does not alter any of the
thermodynamic state variables. Since of the three classes of disturbance fields
this is the only one for which the vorticity ∇× v is nonzero, we refer to it
as the vorticity-mode field.

† L. Trilling, “On thermally induced sound fields,” J. Acoust. Soc. Am. 27:425–431 (1955).
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Acoustic Mode

The dispersion relation in Eq. (7a), given the definitions (4), leads to the
partial-differential equation

∇2pac −
1

c2
∂2pac
∂t2

+
2

c4
δcl
∂3pac
∂t3

= 0, (10-3.13)

where δcl is defined by Eq. (10-2.12). This may be regarded as the wave
equation for acoustic disturbances with a slight correction for viscosity and
thermal conduction. The differential-equation versions of the polarization re-
lations for this mode, with all terms of first or higher order in ǫµ and ǫκ
deleted, are

∇× vac = 0, sac = 0, ρ
∂vac

∂t
≈ −∇pac,

T ′
ac ≈

(

Tβ

ρcp

)

o

pac, ρ′ac ≈
pac
c2
. (10-3.14)

The first of these follows from k× v̂ = 0, the second from Eq. (7a), the third
from (2b), and the fourth and fifth from Eqs. (10-2.1) with sac ≈ 0.

The Entropy Mode

The dispersion relation in Eq. (7b), with the retention of only the leading
term, −1/ǫκ, on the right side, leads to the thermal-diffusion equation of
conduction heat transfer:

∇
2sent =

ρcp
κ

∂sent
∂t

; (10-3.15)

the same equation being satisfied for all components of the field, T ′
ent in

particular. (The development leading to this is the explanation of why cp
rather than cv should appear in the coefficient of ∂T/∂t in the thermal-
diffusion equation.)

The differential-equation versions of the polarization relations for this
mode, with all terms of first or higher order in ǫκ and ǫµ deleted, are

pent ≈ 0, vent ≈
(

βTκ

ρc2p

)

o

∇sent, ∇× vent = 0,

T ′ ≈
(

T

cp

)

o

sent, ρ′ent ≈ −
(

ρβT

cp

)

0

sent. (10-3.16)
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The first follows from the polarization relation in Eq. (7b); the third from
k× v̂ = 0; the fourth and fifth from Eqs. (10-2.1) with pent ≈ 0. To develop
the equation for vent, it is insufficient to set p̂ent to 0 in Eq. (2b) because
|k| is large; instead, use Eq. (3b) to eliminate the k · v̂ term in (2b) and
thereby obtain [ωρ + i(43 )µk

2]v̂ for kp̂. Substitution of k2 and p̂ from Eq.
(7b) then yields, with some manipulation [involving the definitions (4) and
the thermodynamic identity for γ − 1], the equation v̂ = −i(βTκ/ρc2p)okŝ,
so the second relation in Eq. (16) results. The velocity v̂ent is small but not
negligible because the dispersion relation k2 = iωρcp/κ allows the possibility
that |∇sent| will be much larger than (ω/c)|sent|.

Since Eqs. (16) indicate that vent ≈ (βκ/ρcp)o∇T ′
ent, in this mode (with

β > 0) the fluid flows from colder regions toward hotter regions. Although this
might contradict one’s intuition, it is dictated by the conservation of mass. At
a local temperature maximum, the diffusion equation (15) predicts that the
temperature is decreasing with time; thermodynamic considerations (with
p ≈ 0) require the density to be simultaneously increasing with time. The
fluid flows toward the temperature maximum to cause this density increase.

The label “entropy mode” applies because entropy fluctuations are a major
feature; in contrast, entropy fluctuations are totally absent in the vorticity
mode, and they are relatively small compared with those of, say, βp/ρ0 in
the acoustic mode.

10-4 ACOUSTIC BOUNDARY-LAYER THEORY

Any superposition of vorticity-, acoustic-, and entropy-mode fields will satisfy
the linear equations for a fluid with finite viscosity and thermal conductivity.
The converse statement, that any disturbance satisfying those equations can
be represented as such a superposition, is, for brevity, not proved here but
may be considered a reasonable premise† with which to begin an analysis of
any given boundary-value problem. Thus we write, for example,

v = vvor + vac + vent. (10-4.1)

† A proof for an ideal gas with a Prandtl number of 3
4

is given by T. Y. Wu, “Small
perturbations in the unsteady flow of a compressible, viscous, and heat-csonducting Fluid,”
J. Math. Phys. 35:13–27 (1956). A general proof could be constructed beginning with the
proposition that any solution of

(∇2 + λ1)(∇2 + λ2)(∇2 + λ3)ψ = 0

can be written ψ1 +ψ2 +ψ3, where (∇2 + λi)ψi = 0 and no two of the λi are equal. (The
latter premise is not valid in the limit ω = 0.) The one-dimensional version of this is a
fundamental theorem for homogeneous linear differential equations of arbitrary order with
constant coefficients. See, for example, R. Courant, Differential and Integral Calculus, vol.
2, Wiley-Interscience, Glasgow, 1936, pp. 438–442.



10-4 Acoustic Boundary-Layer Theory 589

for the acoustic fluid velocity.
For a given ω, the dispersion relations, k2 = iωρ/µ and k2 ≈ iωρcp/κ,

for the vorticity and entropy modes are such that the imaginary part of k
(associated with attenuation) for such modes is much larger than ω/c. This
suggests that the vorticity- and entropy-mode fields die out rapidly with
increasing distances from boundaries, interfaces, and sources. Consequently,
one expects a disturbance in an extended space to be primarily made up
of the acoustic-mode field (or else be inordinately small) except near such
perturbations.

Measures of how far from a boundary the vorticity- and entropy-mode
fields extend are the respective values of 1/|kI |. These boundary-layer thick-

nesses lvor and lent are [with i1/2 = (1 + i)/21/2]

lvor =

(

2µ

ωp

)1/2

, lent =

(

2κ

ωρcp

)1/2

=
lvor

(Pr)1/2
. (10-4.2)

While these lengths are not necessarily small (they tend toward ∞ as ω → 0),
they are nevertheless much less than the corresponding acoustic wavelength
divided by 2π,

2πlvor
λac

=
(ω

c

)

lvor =

(

2ωµ

ρc2

)1/2

≪ 1.

[For example, for 500 Hz in air, with µ = 1.85× 10−5, ρ = 1.2, c = 340 (SI
units), lvor is 10−4 m, while λac is 0.68 m; the ratio above is 10−3.]

In previous chapters it has tacitly been assumed that the physical dimen-
sions of the space and sources are much larger than lvor and lent. Thus, for
example, the analysis in Sec. 7-3 of low-frequency sound in ducts presumes,
for a circular duct of radius a, that ω be low enough to ensure that ω ≪ c/a
but still high enough to ensure that lvor ≪ a. Although this forces ω to lie
between 2µ/ρa2 and c/a, these limits often encompass a wide range. In the
present section we continue to assume that lvor and lent are much smaller than
the physical dimensions, but we recognize the presence of vorticity-mode and
entropy-mode boundary layers.

Boundary Conditions at a Solid Surface

Once viscosity is taken into account, the requirement that the normal compo-
nent of fluid velocity be continuous at an interface is no longer sufficient (along
with the other conditions of continuity of pressure and of causality, described
in Chap. 3) to guarantee a unique solution of the fluid-dynamic equations.
This is so because the Navier-Stokes equation, unlike Euler’s equation, is not
of first order in the spatial derivatives. An additional condition invariably
imposed is that the tangential components of velocity also be continuous, the
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rationale being that a fluid should not slide any more freely with respect to
an interface than it does with itself; this lack of slip is observed when the
motion is examined sufficiently close to an interface.†

The surface force per unit area fS(n,x) must also be continuous (in accord
with Newton’s third law) across any interface with unit normal n. Thus, if n
is in the x1 direction, Eq. (10-1.2) requires that σ11, r12 = σ21, and σ13 = σ31
all be continuous. The other components, σ22, σ23 = σ32, and σ33, however,
can be discontinuous. Similarly, conservation of energy requires that q · n,
the normal component of the heat flux vector, be continuous at an interface.
In addition, the temperature is continuous.

Since solids are generally much better conductors of heat than fluids, the
requirements that q ·n and T be continuous at a solid-fluid interface are often
replaced by the simpler requirement that the solid’s surface be at ambient
temperature, or equivalently that

T ′ = 0 (10-4.3)

at the surface. A brief analysis suggests that the criteria for this being a valid
replacement are‡

(ρcpκ)fluid ≪ (ρcpκ)solid, (10-4.4a)

(κρcp)
1/2
fluid ≪ ω1/2(ρcp)solid

(

volume

surface

)

solid

. (10-4.4b)

The premise on which (3) is based is that although an external disturbance
may impart heat to the solid, it also periodically extracts heat; the extra
energy within the solid at any given time is never sufficient to change the
average temperature within the solid perceptibly and since the body is a good
conductor, the average temperature is the same as the surface temperature.

† A. H. Shapiro, Shape and Flow: The Fluid Dynamics of Drag, Doubleday, Garden City,
N.Y., 1961, pp. 59–63.
‡ The first equation results from an analysis of plane-wave reflection at normal incidence
from an elastic half space with finite thermal conductivity. The second is based on a
computation of the heat flow into the solid that uses the plane-wave result; this energy is
assumed to be uniformly distributed within the solid, and the requirement is imposed that
the peak temperature rise within the solid be substantially less than the peak temperature
rise of the incident wave.
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Vorticity- and Entropy-Mode Fields near a Solid

Surface†

We consider a solid-fluid interface nominally occupying the xy plane with
the z axis pointing into the fluid (see Fig. 10-2). The disturbance is assumed
to have constant angular frequency ω, where ω is such that both µω/ρc2

and κω/ρc2cp are much less than 1. This allows us to take the polarization
relations for the acoustic and entropy modes in the approximate forms Eqs.
(10-3.14) and (10-3.16).

Figure 10-2 (a) Concept of an acoustic boundary layer. (b) Vorticity-mode portion of
oscillating fluid velocity at a surface; vx,vor is confined within an envelope that dies expo-
nentially as e−z/lvor . The lines of constant phase have apparent upward phase velocity of
ωlvor; moving nodal lines are at intervals of πlvor.

Since the boundary conditions discussed above apply to the sum of the
three modal fields, rather than to each individually, we first do not consider
them explicitly. However, since we are interested in cases when vorticity- and
entropy-mode fields are caused by sound of much longer wavelength than
lvor or lent, we assume that these fields vary much more rapidly with the z
coordinate than with the x and y coordinates and consequently approximate
the operator ∇2 by ∂2/∂z2 in the two diffusion equations. Note also that the
solution of the equation

∂2

∂z2
ψ̂(x, y, z) = −2i

l2
ψ̂(x, y, z) (10-4.5)

† Cremer, “On the acoustic boundary layer . . . .”
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is
ψ̂(x, y, z) = ψ̂(x, y, 0)e−(1−i)z/l. (10-4.6)

The sign in the exponent is chosen such that the solution is bounded at
large distances from the wall. Applied to Eqs. (10-3.11) and (10-3.15), this
approximate result leads to the prediction that the complex spatially depen-
dent amplitudes of the components of the vorticity- and entropy-mode fields
should vary with z as in Eq. (6), where l = lvor for the vorticity mode and
l = lent for the entropy mode. Thus, in the modal relations (10-3.12) and
(10-3.16) between the complex spatially dependent amplitudes, one can re-
place ∂/∂z wherever it appears by −(1 − i)/lvor and −(1 − i)/lent for the
vorticity- and entropy-mode fields, respectively.

Applying the prescription just described yields the z-independent relations

∇T · v̂vor,T − (1− i)v̂vor ·
n

lvor
= 0, (10-4.7a)

v̂ent,T =
βκ

ρcp
∇T T̂

′
ent ≈ 0, (10-4.7b)

v̂ent · n = − βκ

ρcp
(1− i)

T̂ ′
ent

lent
, (10-4.7c)

where the subscript T (for tangential) denotes the tangential component
and n = ez is the unit vector normal to the surface. The approximation
v̂ent,T ≈ 0 is in accord with the expectation |∇

T
T̂ ′
ent| ≪ |T̂ ′

ent|/lent.

Boundary Condition on the Acoustic-Mode Field

If the surface is oscillating as a rigid body such that every material point on
the surface has a velocity with complex amplitude v̂wall, the no-slip condition
requires

v̂wall = v̂vor + v̂ac + v̂ent (at z = 0), (10-4.8)

at the surface’s nominal location. If, in addition, the solid is highly conducting
and has a high “capacity for storing heat,” Eq. (3) requires

T ′
ent + T ′

ac = 0 (10-4.9)

at the surface.
Taking the horizontal divergence (operating with ∇

T
·) of (8) and using

Eqs. (7) yields

0 = (1 − i)v̂vor ·
n

lvor
+∇T · v̂ac,T . (10-4.10)

Similarly the normal component of (8) gives [with (7c) replacing v̂ent · n]
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v̂wall · n = v̂vor · n+ v̂ac · n− βκ

ρcp
(1− i)

T̂ ′
ent

lent
. (10-4.11)

With an elimination of v̂vor · n from these, the subsequent replacement of
T̂ ′
ent by −T̂ ′

ac, of T̂ ′
ac by (Tβ/ρcp)op̂

′
ac [from (10-3.14)], of κ by ωρcpl

2
ent/2

[from Eq. (2)], and of β2To by (γ − 1)cp/c
2 (a thermodynamic identity), one

obtains

v̂wall ·n = v̂ac ·n− (1+ i)
lvor
2

∇
T
· v̂ac,T +(1− i)(γ− 1)

ω

c

lent

2

p̂ac
ρc

(10-4.12)

at the surface (z = 0). Because this involves only the acoustic-mode field
variables, it represents an approximate boundary condition for that modal
field. In the limit lvor → 0 and lent → 0 it reduces to the commonly applied
boundary condition v̂wall · n = v̂ac · n.

The analysis above also suggests that within the boundary layer the flow
field associated with the vorticity mode is approximately described by

v̂vor ≈ (v̂wall,T − v̂ac,T )z=0 e
−(1−i)z/lvor , (10-4.13)

the vertical component being negligible in comparison. Similarly, the entropy-
mode-field temperature is approximately

T̂ ′
ent = −

(

Tβ

ρcp

)

0

(p̂ac)z=0 e
−(1−i)z/lent . (10-4.14)

In this approximation, the acoustic field variables at the surface suffice to
determine the vorticity- and entropy-mode fields. Alternatively, since p̂ac and
the tangential velocity v̂ac,T are expected to vary insignificantly over distance
intervals comparable to lent and lvor, the quantities v̂ac,T and p̂ac at z = 0 can
be interpreted as the total disturbance pressure and tangential fluid velocity
just outside the boundary layer, e.g. at z = 10lvor.

Insofar as the two boundary conditions can be adequately approximated
by vwall · n = vac · n at z = 0, the ideal acoustic model (with viscosity and
thermal conductivity neglected and with slip relative to boundaries allowed)
produces accurate predictions except near solid surfaces. If one wants to know
the tangential velocity and the temperature near such surfaces, one need only
add expressions (13) and (14) to the predictions of the ideal acoustic model.

Energy Loss from the Acoustic Mode at a Boundary

In most instances, one is not interested in the total energy loss per se but in
the energy irreversibly lost from the acoustic-mode field, because this loss ac-
counts for the attenuation of sound. Since the acoustic-mode field constitutes
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a solution of the overall set of equations developed in Sec. 10-2, the energy-
conservation-dissipation theorem applies equally to that field by itself. The
net power flowing out of that field (into other modal fields) at a boundary
per unit area is very nearly −pacvac · n since the other terms contributing
to the acoustic intensity are considerably smaller for the acoustic-mode field.
The time average of this, with the normal component v̂ac ·n taken from the
boundary condition (12) and with a vector identity for p̂∗∇

T
· v̂ac,T , is

−(Iac · n)av = −1

2
Re {p̂∗v̂wall · n} −

1

2

lvor
2

∇ · (Re {(1 + i)p̂∗v̂ac,T })

+
1

2

lvor
2

Re {(1 + i)∇T p̂
∗
· v̂ac,T }+

1

2

lent
2

(γ − 1)
ω

c

|p̂ac|2
ρc

. (10-4.15)

The first term is the negative of the work done per unit time and area by
the wall motion against the surface pressure on the fluid; the second term is
a total derivative and therefore averages out to zero over a sufficiently large
area and is of no consequence as regards the calculation of irreversible energy
loss. The third term can be reexpressed with ∇

T
p̂ac = iωρv̂ac,T , so with lvor

and lent replaced by Eqs. (2) we identify

(

d2E

dAdt

)

diss

=
(ωρµ

2

)1/2

(v2ac,T )av + (γ − 1)

(

ωρκ

2cp

)1/2
(p2)av
(pc)2

(10-4.16)

as the energy dissipated per unit area and time at the surface.†

Plane-Wave Reflection at a Solid Surface

The boundary condition (12) allows an examination of the effects of viscosity
and thermal conduction on the reflection of plane waves. For a plane wave
at angle of incidence θi (see Fig. 10-3), the trace-velocity matching principle
requires that all field quantities vary with t and with tangential coordinates in
the combination t−ni,T ·x, so c∇

T
p is −ni,T ∂p/∂t. The component ni,T of

the unit vector in the direction of incidence is such that ni,T ·ni,T = sin2 θi.
Consequently, an application of the divergence operator to the tangential
portion vac,T = ni,T p/ρc of the plane-wave relation (which holds for sum of
incident and reflected waves) yields

∇
T
· vac,T = − sin2 θi

ρc2
∂p

∂t
. (10-4.17)

† R. F. Lambert, “Wall viscosity and heat conduction losses in rigid tubes,” J. Acoust. Soc.
Am. 23:480–481 (1951).
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Figure 10-3 Definitions of symbols used in discussion of the reflection of a plane acoustic
wave at a rigid wall when viscosity and thermal conduction are taken into account.

Subsequent insertion of the above into Eq. (12), with the wall assumed
motionless, leads to

1

Z
= − v̂ac · nwall

p̂
= 1

2 (1 − i)
ω

ρc2
[lvor sin

2 θi + (γ − 1)lent]

=
e−iπ/4

ρc
ηµ(ω)

[

sin2 θi +
γ − 1

(Pr)1/2

]

(10-4.18)

as the apparent specific admittance (reciprocal of specific impedance) of the
surface. Here and in what follows, we abbreviate

ηµ(ω) =

(

ωµ

ρc2

)1/2

, ηκ(ω) = (γ − 1)

(

ωκ

ρc2cp

)1/2

, (10-4.19)

such that ηκ/ηµ = (γ − 1)/(Pr)1/2 (approximately 0.48 for air). Because Z
depends on θi, the surface cannot be regarded as locally reacting.

Insertion of the above expression for Z into Eq. (3-3.4) yields the reflection
coefficient for the acoustic pressure. The absorption coefficient 1 − |R|2 is
subsequently found to be

α(θi) =
4η̄

√
2 cos θi

(
√
2 cos θi + η̄)2 + η̄2

, (10-4.20)

where η̄ is used as an abbreviation for ηµ sin
2 θi + ηκ. When θi is 0, this has

the approximate value (since ηκ ≪ 1)

α(0) = 2
√
2ηκ. (10-4.21)

With increasing θi, the absorption coefficient rises to a maximum (see
Fig. 10-4) and then drops to zero at grazing incidence, θi = π/2. Because
η̄ is generally small compared with 1, the maximum occurs when θi is close
to π/2, so its location can be determined by setting η̄ equal to ηµ+ ηκ in Eq.
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(20). Doing this and setting the derivative to zero yields θi = cos−1(ηµ+ ηκ),
which in turn is approximately π/2− ηµ − ηκ. The corresponding maximum
value is

αmax =
4
√
2

(
√
2 + 1)2 + 1

= 0.828. (10-4.22)

Such a large value, however, is not representative for typical choices of θi. At
θi = 45◦, for example, Eq. (20) yields approximately 4η̄ when ηκ and ηµ are
small compared with 1; so the mirror-reflection model is usually an excellent
first approximation.

Figure 10-4 Angular dependence of absorption coefficient α(θi) for reflection from a
rigid wall with acoustic boundary layer taken into account. The absorption coefficient
is largest for angles near grazing incidence and (in such a limit) is a function only of
(π/2 − θi)/(ηµ + ηκ), where ηµ is (ωµ/ρc2)1/2 and ηκ/ηµ is (γ − 1)/(Pr)1/2.

The specific impedance in Eq. (18) also implies that the phase φR of the
reflection coefficient |R|eiφR increases from 0 to π as θi varies from 0 to π/2.
However, when ηµ and ηκ are small, φR remains close to 0 until θi approaches
grazing incidence. The value π/2 for φR is obtained when θi has that value
for which α = αmax.

The absorption coefficient α(θi) in Eq. (20) is compatible with the expres-
sion, Eq. (16), for the rate at which energy is absorbed by the surface because
(p2)av is |1+R|2(p2i )av and because (v2ac,T )av is |1+R|2(p2i )av(sin2 θi)/(ρc)

2.
Since the incident energy per unit area and time is (p2i )av(cos θi)/ρc, Eqs.
(16) and (18) lead to

α =
|1 +R|2η̄√
2 cos θi

=
4Re {ρc/Z cos θi}
|1 + (ρc/Z cos θi)|2

, (10-4.23)

which is the same as 1− |R|2.
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10-5 ATTENUATION AND DISPERSION in DUCTS

AND THIN TUBES

The effects of viscosity and thermal conduction on sound in ducts† are much
greater than for propagation in free space because of the boundary conditions
imposed by the duct walls. Here we consider the walls to be rigid and always
at ambient temperature, so v = 0 and T ′ = 0 at the walls. Two limiting cases
are of principal interest, i.e., when a representative cross-sectional dimension
is (1) much larger and (2) much smaller than the boundary-layer thicknesses
lvor and lent.

Propagation in Wide Ducts

We consider the duct to be large enough for the boundary layers to occupy a
very small fraction of the duct’s cross-sectional area A. If a nominally plane
wave is propagating down the duct, most of the disturbance is associated
with the acoustic-mode field and, for the most part, the field quantities vary
only with distance x along the axis of the duct (see Fig. 10-5a).

An approximate equation for the pressure perturbation can be derived
by variational techniques.† Starting with the partial-differential equation
(10-3.13), recognizing that pac ≈ p, and letting p = Re[p̂(x, y, z)e−iωt] yields

∇
2p̂+Mp̂ = 0, M =

ω2

c2
+

2iω3δcl
c4

. (10-5.1)

Multiplying Eq. (1) by a small variation δp̂, recognizing that δp̂∇2p̂ is
∇· (δp̂∇p̂)− δ[ 12 (∇p̂)2] and (δp̂)p̂ is δ(12 p̂

2) to first order, subsequently inte-
grating over a slice of the duct between x1 and x2, applying Gauss’s theorem,
and requiring that δp̂ = 0 at x1 and x2 gives

δ

∫ x2

x1

(∫ ∫

[

1
2M(p̂)2 − 1

2 (∇p̂)2
]

dA

)

dx+

∫ x2

x1

(,
(δp̂)∇p̂ · nwalldl

)

dx = 0,

(10-5.2)
where l denotes distance around the perimeter of the duct.

† H. Helmholtz, “On the influence of friction in the air on sound motion,” Verhandl.
Naturhist. Med. Ver. Heidelberg 3:16–20 (1863), reprinted in Wissenschaftliche Abhand-
lungen, vol. 1, Barth, Leipzig, 1882, pp. 383–387; Kirchhoff, “On the influence of heat
conduction”; D. E. Weston, “The theory of the propagation of plane sound waves in tubes,”
Proc. Phys. Soc. (Lond.) B66:695–709 (1953).
† S. H. Crandall, D. C. Karnopp, E. F. Kurtz, Jr., and D. C. Pridmore-Brown, Dynamics of
Mechanical and Electromechanical Systems, McGraw-Hill, New York, 1968, pp. 336–343,
417–424; P. M. Morse and H. Feshbach, Methods of Theoretical Physics, vol. 1, McGraw-
Hill, 1953, pp. 301–318.
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The disturbance resembles a plane wave, so to lowest nonvanishing order
in κ and µ, Eq. (10-4.18) gives the boundary condition

∇p̂ · nwall =
iωρ

Z
p̂,

ρc

Z
= e−iπ/4[ηµ(ω) + ηκ(ω)], (10-5.3)

where the apparent specific impedance is evaluated with θi = π/2 (grazing
incidence). Thus our variational indicator becomes

δ

∫ x2

x1

{
∫ ∫

[

t
2Mp̂2 − 1

2 (∇p̂)2
]

dA+
iωρ

2Z

,
p̂2dl

}

dx = 0. (10-5.4)

If we restrict our set of trial functions to those which vary with x only (which
approximates the actual case), then the “best choice” for p̂(x) is such that

δ

∫ x2

x1

{[

1
2Mp̂2 − 1

2

(

∂p̂

∂x

)2
]

A+
iωρ

2Z
p̂2LP

}

dx = 0, (10-5.5)

where LP is the perimeter of the duct cross section.
Upon taking the variation of the above integral, using

1

2
δ

(

∂p̂

∂x

)2

=
∂p̂

∂x

∂(δp̂)

∂x
,

then integrating by parts, and invoking the requirement that δp̂ vanish at x1
and x2, we obtain an expression of the form

∫ x2

x1

(something) δp̂ dx = 0.

But the factor (something) must be zero because of the arbitrariness in x1
and x2, so

d

dx

(

A
dp̂

dx

)

+

(

MA+
iωρ

Z
LP

)

p̂ = 0 (10-5.6)

is the appropriate partial-differential equation for p̂(x).
The above equation when A and LP vary with x is the generalization of

the Webster horn equation (Sec. 7-8) that includes dissipation effects. The
interest here is in the uniform-duct case where A and LP are independent
of x, such that Eq. (6) has solutions of the form p̂eikx, where k2A is the
coefficient of p̂ in Eq. (6). With M and Z taken from Eqs. (1) and (3), the
square of the complex wave number becomes

k2 =
ω2

c2
+

2iω

c
[αcl + (1− i)αwalls], (10-5.7)

where
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αwalls = 2−3/2ηµ(ω)

[

1 +
γ − 1

(Pr)1/2

]

LP
A
. (10-5.8)

The quantity ηµ is (ωµ/ρc2)1/2, as defined in Eq. (10-4.19).
For the frequencies of interest, αcl and αwalls are much less than ω/c.

(The latter assertion stems from the restriction that lvor and lent be much
smaller than A/LP .) Consequently, the square root of (7) is approximately
ω/c +iαcl+(1+i)αwalls. The frequencies are nevertheless assumed sufficiently
low to ensure that αcl ≪ αwalls, so we discard the iαcl term. This implies that
the dissipation within the interior of the duct is much less than that within
the boundary layer. The two assumptions αwalls ≪ ω/c and αwalls ≫ αcl

restrict ω to the range

(

LP
A

)2
µ

8ρ
≪ ω ≪

[

9

32

(

LP
A

)2
ρc4

µ

]1/3

. (10-5.9)

Because µ/ρc is of the order of 5 × 10−8 and 7× 10−10 m for air and water,
respectively, such a range exists for any macroscopic value of A/LP .

The approximations just described lead to the dispersion relation†

k =
ω

c
+ (1 + i)αwalls (10-5.10)

for the propagation of sound waves in a duct.
The attenuation coefficient αwalls, given by the imaginary part of the above

expression, varies with ω as ω1/2 and thus has a relatively strong dependence
on frequency at lower frequencies. Another feature is that the real part of k
is not identically ω/c but is shifted. Thus, a traveling wave p = RePe−iωteikx

is of the form (taking the constant P as real) Pe−αx cos(ωt − kRx), where
the apparent phase velocity vph = ω/kR is

vph =
ω

ω/c+∆kR
≈ c− c2

ω
∆kR ≈ c− c2αwalls

ω
. (10-5.11)

This is lower than the speed of sound in an open space by an increment that
varies as ω−1/2 and becomes larger the smaller the frequency. Thus, sound
in pipes travels slower than sound in open air. [A pulse of sound of nearly
constant angular frequency travels with a group velocity‡ vg of the order of
1/(dkR/dω) or 1/(c−1 + 1

2∆kR/ω) since ∆kR varies with ω as ω1/2. This
would give c− vg ≈ 1

2 (c− vph) so the group would travel with only half the
reduction in speed of a point of constant phase. However, vg is still less than
c.]

† This was experimentally verified by W. P. Mason, “The propagation characteristics of
sound tubes and acoustic filters,” Phys. Rev. 31:283–295 (1928).
‡ P. S. H. Henry, “The tube effect in sound-velocity measurements,” Proc. Phys. Soc.
43:340–361 (1931).
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Propagation in Narrow Tubes

In the other limit, when the cross-sectional dimensions of the tube are very
small or when the frequency is sufficiently low, the boundary layer encom-
passes the entire duct and the theory of Sec. 10-4 is no longer applica-
ble. For simplicity, we here limit our consideration to a circular cylinder
(Fig. 10-5b) whose radius a is sufficiently small for the criteria ωρa2/µ ≪ 1
and ωρa2cp/κ ≪ 1 to be satisfied. The analysis can be carried out for arbi-
trary radius a with some exactitude in terms of Bessel functions of complex
argument, but here we confine ourselves to a brief heuristic derivation for the
small a case† that leads to the same results as the exact solution in the same
limit.

Our starting point is the x component of the linearized version (10-2.2b′)
of the Navier-Stokes equation

ρo
∂vx
∂t

= − ∂p

∂x
+ µ

[

∇2vx +
1

3

∂

∂x
∇ · v

]

. (10-5.12)

Given that ωρ ≪ µ/a2 (as assumed above) and presupposing that ∇2vx is
of the order of vx/a2, we discard the inertial term on the left side at the
outset. The fluid is flowing for the most part in the +x direction and this, in
conjunction with the requirement vx = 0 at r = a, suggests that the radial
velocity’s contribution to the right side is minor. Also, we anticipate that the
r dependence of vx will be much greater than its x dependence (as is so for a
steady flow), so we discard all terms involving x derivatives of vx. This leaves
us with

1

r

∂

∂r

(

r
∂vx
∂r

)

=
1

µ

∂p

∂x
. (10-5.13)

The no-slip requirement, vx = 0 at r = a, implies that vx should vary rela-
tively strongly with r, but we anticipate that the r dependence of ∂p/∂x will
be minor, so we integrate the above treating ∂p/∂x as being independent of
r. One constant of integration is obtained from the requirement that vx be
finite at r = 0, the other from vx = 0 at r = a, so the result‡ is

vx = − 1

4µ

∂p

∂x
(a2 − r2). (10-5.14)

† J. W. S. Rayleigh, “On porous bodies in relation to sound,” Phil. Mag. (5)16:181–186
(1883).
‡ This is the fundamental result for Poiseuille flow, steady flow of an incompressible
viscous fluid in a circular tube. The term stems from Poiseuille’s experimental discovery
(1840–1841, 1846) that the mass flowing per unit time through a tube is proportional to
−a4dp/dx. See H. Lamb, Hydrodynamics, 6th ed., reprinted by Dover, New York, 1945,
pp. 585–586.
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Another assumption, compatible with the restriction ωρa2cp/κ ≪ 1, is
that the implication of the linearized version of the Kirchhoff-Fourier equation
and the boundary condition T ′ ≈ 0 at r = a is that T ′ ≈ 0 throughout the
interior of the tube; i.e., the flow is isothermal. This would then require, from
Eqs. (10-2.1), that

ρ′ ≈
(

1

c2
+
β2T

cp

)

p =
1

c2T
p, (10-5.15)

where cT = c/γ1/2 is the isothermal sound speed (see Sec. 1-10).

Figure 10-5 (a) Duct of variable cross-sectional area A(x) and perimeter LP . (b) Circular
duct of radius a. The indicated geometries are used in the discussion of thermoviscous
effects on sound propagation in ducts.

The conservation-of-mass equation (10-2.2a) with the above substitution
for ρ′ becomes

1

c2T

∂p

∂t
+ ρ

(

∂vx
∂x

+
1

r

∂

∂r
rvr

)

= 0, (10-5.16)

and a subsequent integration over the cross-sectional area of the tube, with
the boundary condition vr = 0 at r = a, yields

1

c2T

∂

∂t

∫∫

pdA+ ρo
∂

∂x

∫∫

vxdA = 0. (10-5.17)

But, since vx is approximately given by Eq. (14), and since p is nearly inde-
pendent of r, this approximates to
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∂2p

∂x2
=

8µ

ρc2Ta
2

∂p

∂t
, (10-5.18)

which is a diffusion equation.
The volume velocity Ux through the tube, defined by the integral of vx over

a cross-sectional area, satisfies the same differential equation and is related to
p by what results† from integrating both sides of (14) over a cross-sectional
area:

Ux = −πa
4

8µ

∂p

∂x
. (10-5.19)

Also, in terms of Ux, Eq. (17) leads to

πa2
∂p

∂t
= −ρc2T

∂Ux
∂x

. (10-5.20)

The last two equations have the energy corollary

∂

∂t

(

πa2

2ρ2T
p2
)

+
∂

∂x
pUx = − 8µ

πa4
U2
x , (10-5.21)

with the identification of pUx as power transported in the +x direction and
of (8µ/πa4)U2

x as energy dissipated per unit time and per unit distance along
the tube axis. (We have no kinetic-energy term because we discarded the
inertial term in the Navier-Stokes equation. For the type of flow considered,
the time rate of change of kinetic energy is always much less than the rate at
which energy is being dissipated by viscosity at the walls.)

The differential equation (18) predicts that a constant-frequency distur-
bance traveling in the +x direction in a tube of infinite length will be such
that the complex wave number ω/vph + iα is eiπ/4(8µω/ρc2Ta

2)1/2, so

vph = cT

(

ρωa2

4µ

)1/2

, and α =

(

4µω

ρc2T a
2

)1/2

(10-5.22)

describe the phase velocity and attenuation coefficient. For the considered
range of frequencies, one has vph ≪ cT , α ≫ ω/c, and so the disturbance is
traveling slowly with a high attenuation.

† For a tube of other than circular cross section, Eqs. (19) and (20) remain valid providing
πa2 is replaced by the tube cross-sectional area and 8µ/a2 is replaced by a coefficient of
resistance R that is proportional to µ and depends on the size and shape of the cross
section. See H. Lamb, The Dynamical Theory of Sound, 2d ed., 1925, reprinted by Dover,
New York, 1960, pp. 197–199. For an elliptical cross section, R is 4µ(a2 + b2)/a2b2, where
a, b are semiaxes, this result being due to Boussinesq (1868).
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Slab with Circular Pores

A rudimentary model of a porous material† consists of a thick rigid slab (see
Fig. 10-6) with many long cylindrical holes bored perpendicular to its face.
If the number of such holes per unit area is N , and if each has radius a (such
that the porosity is Nπa2), what is the absorption coefficient of the slab?

Figure 10-6 Rudimentary model of a porous material: a thick slab with many circular
holes drilled perpendicular to the face.

If p̂ is the complex pressure amplitude just outside the slab, the volume
velocity flowing into the pores per unit area of slab is Û/A = Np̂/ZA,h, where
ZA,h is the acoustic impedance of a single hole. The ratio p̂/(Û/A), however,
is the apparent specific impedance ZS of the slab. Equation (20) gives

† The modern theory of sound propagation in porous materials involves the porosity, the
apparent compressibility of the fluid, the flow resistivity, and a structure factor, equal
to the ratio of apparent to actual densities of the fluid in the pores: C. Zwikker and
C. W. Kosten, Sound Absorbing Materials, Elsevier, Amsterdam, 1949; L. L. Beranek,
Acoustic Measurements, Wiley, New York, 1949, pp. 844–860; P. M. Morse and K. U.
Ingard, Theoretical Acoustics, McGraw-Hill, New York, 1968, pp. 252–255.
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ZA,h =
ρc2T
πa2

k

ω
=

(

8µρc2T
π2ωa6

)1/2

eiπ/4, (10-5.23)

with the wave number k identified as eiπ/4(8µω/ρc2Ta
2)1/2. Consequently,

ZS

ρc
=

1

Nπa2

(

8µ

ρωγa2

)1/2

eiπ/14, (10-5.24)

and the corresponding absorption coefficient results when this replaces Z/ρc
in the second version of Eq. (10-4.23).

For normal incidence and in the low-frequency limit, the absorption coef-
ficient is

α(0) = Nπa2
(

ρωγa2

µ

)1/2

, (10-5.25)

and increases with ω as ω1/2 and with pore radius a, for fixed N , as a3. How-
ever, the larger a is the thicker the slab must be to permit the assumption
that reflections from the far ends of the pores have negligible effect. The anal-
ysis here presumes that the thickness is somewhat larger than the reciprocal
of the attenuation coefficient α in Eq. (22).

10-6 VISCOSITY EFFECTS ON SOUND RADIATION

The coupling of vorticity-mode and acoustic-mode fields at a surface affects
the radiation of sound from that surface. To see how this is possible, we
extend the analysis of sound generation, developed in Chap. 4, to include
viscous effects.

Revision of the Kirchhoff-Helmholtz Theorem

A general result, expressing pressure external to a surface in terms of field
quantities on the surface, can be derived in a manner similar to that described
in Sec. 4-6. For simplicity, we ignore thermal conduction and take (from
Sec. 10-3) the governing equations for a field of constant angular frequency
ω = ck to be

v = vac + vvor, ∇× v̂ac = 0, ∇ · v̂vor = 0, (10-6.1)

−iωρv̂vor = µ∇2v̂vor, −iωρv̂ac = −∇p̂, (10-6.2)

−iωp̂+ ρc2∇ · v̂ac = 0. (10-6.3)

Here the far-field viscous attenuation of the acoustic-mode field is neglected.
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From the above equations, it follows with some vector identities† that, for
any function G,

∇ · (iωρGv̂ac − p̂∇G) = −p̂(∇2 + k2)G, (10-6.4)

∇ · [iωρGv̂vor − µ(∇× v̂vor)×∇G] = 0. (10-6.5)

The sum of these two relations in turn implies

∇ · [iωρGv̂ − p̂∇G− µ (∇× v̂)×∇G] = −p̂(∇2 + k2)G. (10-6.6)

The derivation now proceeds as in Sec. 4-6 with the integration of Eq.
(6) over the volume external to a closed surface S and with G taken as the
free-space Green’s function. The Kirchhoff-Helmholtz theorem of Eq. (4-6.6)
is consequently replaced‡ by

p(x, t) =
ρ

4π

∫ ∫

v̇n(xS, t−R/c)

R
dS

+
1

4πc

∫ ∫

eR · nS

(

∂

∂t
+
c

R

)

p(xS, t−R/c)

R
dS

− µ

4πc

∫ ∫

nS ·

(

∂

∂t
+
c

R

)

eR ×Ω(xS, t−R/c)

R
dS, (10-6.7)

where Ω = ∇×v is the vorticity. The assumptions adopted in the derivation
are the same as in Sec. 4-6, except that here the existence of the vorticity
mode is taken into account. It is required in addition that the vorticity-mode
field vanish sufficiently rapidly at great distances from the source that the
integral over the outer sphere can be discarded.

The multipole expansion of Eqs. (4-6.8) and (4-6.9) is similarly modified;
retention of only the monopole and dipole terms yields

p = S
(

t− r

c

)

−∇ ·
D(t− r/c)

r
, (10-6.8)

with

† Note that (with vvor replaced by A)

∇ · [(∇×A)×∇G] = (∇G) · [∇× (∇× A)]− (∇×A) · (∇×∇G),

= (∇G) · [∇(∇ ·A)−∇2A] = −(∇G) · (∇2A) if ∇ ·A = 0.

‡ This is similar to, and can be regarded as a special case of, the fundamental aeroacoustic
theorem derived and extended in the following papers: N. Curle, “The influence of solid
boundaries on aerodynamic sound,” Proc. R. Soc. Lond. A286:559–572 (1965); W. F.
Möhring, E.-A. Müller, and F. F. Obermeier, “Sound generation by unsteady flow as a
singular perturbation problem,” Acustica 21:184–188 (1969); J. E. Ffowcs-Williams and
D. L. Hawkings, “Sound generation by turbulence and surfaces in arbitrary motion,” Phil.
Trans. R. Soc. Lond. A264:321–342 (1969).
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S(t) =
ρ

4π

∫ ∫

v̇ · nSdS, (10-6.9a)

D(t) =
1

4π

∫ ∫

(ρxSv̇ · nS + nSp+ µnS ×Ω)dS, (10-6.9b)

The distinction from the inviscid case is the term µnS ×Ω in the integrand
of (9b).

Transversely Oscillating Rigid Bodies

For a transversely oscillating rigid body, the quantity S(t) is zero and v̇ = v̇C
is constant along the surface, so the operator ∇ can be regarded as having
only an nS component in the evaluation of Ω at the surface. Consequently

nS × (∇× v) = nS × [nS × (nS · ∇)v] = −[(nS · ∇)v]T , (10-6.10)

where the subscript T denotes the component tangential to the surface. Since
the tangential derivative of any cartesian component of v is zero at the sur-
face, one can rewrite this as

nS ×Ω = −
∑

ij

nS · ei

(

∂vi
∂xj

+
∂vj
∂xi

)

ej,T ≈ −
∑

ij

nS · eiφijej , (10-6.11)

where φij is the rate of shear tensor. [The indicated approximation makes
negligible change in Eq. (9b), provided |p̂| ≫ µ|∇ · v̂|. Moreover, it is con-
sistent with the neglect of the viscous term in Eq. (2b).] Consequently, the
second and third terms in Eq. (9b) combine to give

nSp+µnS ×Ω = −
∑

ij

(nS ·ei)(−pδij+µφij)ej = −f
S
(nS, xS), (10-6.12)

where f
S
(nS,xS) is the force per unit area exerted on the surface by the

external fluid.
With the substitution (12) and with the surface integral of xSv̇ · nS re-

placed by v̇Cρ
−1md, as in Eq. (4-7.11), the function D(t) appropriate to the

dipole field reduces to

D(t) =
1

4π
[mdv̇C(t) + F (t)] , (10-6.13)

where md is the displaced mass and where F (t) is the force exerted on the
fluid by the body [opposite in sense to fS(nS, xS)]. This is exactly the same
as results when viscosity is ignored; here, however, F (t) can include a force
caused by shear stresses as well as a force caused by surface pressures.
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Stokes Flow Limit

An example that can be analyzed in some detail† is that of a transversely
oscillating sphere of radius a. If the oscillation is very slow, such that
(ωρ/µ)1/2a≪ 1, then the force F (t) is the same as for low-Reynolds-number
incompressible flow (see Fig. 10-7) past a sphere; the governing equations are
what results when inertial terms and nonlinear terms are neglected in the
Navier-Stokes equation. The solution, due to Stokes,‡ gives

F (t) = 6πaµvC(t). (10-6.14)

In the same limit the inertial term in D(t) is negligible, so the far-field acous-
tic pressure in Eq. (8) reduces to

p = − 3
2aµ∇ ·

(

vC(t− r/c)

r

)

. (10-6.15)

Thin-Boundary-Layer Approximation

If the frequency is high enough (for the transversely oscillating sphere exam-
ple just discussed) to ensure that (ωρ/µ)1/2a≫ 1, the boundary-layer model
of Sec. 10-4 is applicable. The boundary condition perceived at the surface
of the sphere (see Fig. 10-8) by the acoustic-mode field is identified from Eq.
(10-4.12) as (at r = a)

v̂C cos θ = v̂ac,r − (1 + i)
lvor
2

1

a sin θ

∂

∂θ
(v̂ac,θ sin θ). (10-6.16)

The above boundary condition is satisfied if we take the solution of the
Helmholtz equation in a form analogous to that adopted in Sec. 4-2:

p̂ = iωρv̂Ca
3B cos θ

∂

∂r

eik(r−a)

r
. (10-6.17)

The second of Eqs. (2) then requires that

† Lamb, Hydrodynamics, 6th ed., pp. 654–657.
‡ G. G. Stokes, “On the effect of the internal friction of fluids on the motion of pendulums,”
Trans. Camb. Phil. Soc. vol. 9 (1851), reprinted in Mathematical and Physical Papers, vol.
3, Johnson Reprint, New York, 1966, pp. 1–141; G. K. Batchelor, An Introduction to Fluid
Dynamics, Cambridge University Press, London, 1967, pp. 230–234.
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Figure 10-7 Streamlines about a transversely oscillating sphere in the Stokes’ flow limit.
Each streamline is a line along which sin2 θ(3r/a − a/r) is constant. (After H. Lamb,
Hydrodynamics, 6th ed., Dover Publications, New York, 1945, p. 599.)

Figure 10-8 Boundary conditions and geometry for discussion of radiation from a trans-
versely oscillating sphere in a viscous fluid.
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v̂ac,r = a3v̂CB

(

cos θ

r3

)

(2− 2ikr − k2r2)eik(r−a), (10-6.18a)

v̂ac,θ = a3v̂CB

(

sin θ

r2

)

(1− ikr)eik(r−a). (10-6.18b)

The constant B is therefore identified from (16) as being such that

1 = (2− 2ika− k2a2)B − (1 + i)
lvor
a

(1− ika)B. (10-6.19)

This implies that in the limit of small ka the effect of viscosity on the
pressure amplitude is to multiply it by a factor

p̂withµ

p̂noµ
=

1

1− (1 + i)(lvor/2a)
. (10-6.20)

For the thin-boundary-layer case, (lvor/a) ≪ 1, the magnitude of the above
factor is greater than 1, so viscosity increases the sound radiation, given that
the amplitude of oscillation remains constant. This is consistent with the
Stokes-flow-limit result (15), which predicts the amplitude to increase linearly
with µ. An increase in viscosity increases the force that the fluid exerts on
the oscillating sphere; the reaction to this force, equal and opposite, generates
the sound; more force, more sound.

Gutin’s Principle

A principle† implied by Eqs. (8) and (13) is that forces exerted on a surface
generate sound regardless of how such forces originate. Thus, if a flow past
a cylinder‡ (Fig. 10-9) generates sound (aeolian tones), one can regard it as
being caused by the reactions to the fluctuations of the forces, e.g., lift and
drag, exerted by the unsteady flow on the cylinder. Superposition of such
forces yields

p(x, t) = −∇·

{

1

4π

∫ [

ρπa2v̇c

(

l, t−R

c

)

+ f

(

l, t−R

c

)]

1

R
dl

}

, (10-6.21)

where

† L. Gutin, “On the sound field of a rotating airscrew,” Phys. Z. Sowjetunion, 9:57–71
(1936).
‡ P. Leehey and C. E. Hanson, “Aeolian tones associated with resonant vibration,” J. Sound
Vib. 13:465–483 (1970); O. M. Phillips, “The intensity of aeolian tones,” J. Fluid Mech.
1:607–624 (1956).
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l = distance along cylinder
R = |x− xc(l)| = distance of listener from contributing element of

cylinder
f(l, t) = force that element exerts per unit cylinder length on

surrounding fluid
If the cylinder is constrained not to move, one is left with just the force
contribution.

Figure 10-9 Concepts applicable to the generation of aeolian tones by flow past a cylinder.
The acoustic field can be regarded as being caused by the fluctuating portions of the forces
(reactions to lift and drag) exerted by the cylinder on the fluid.

The principle just described reduces the problem of determining the sound
field to the problem of determining the force. The latter, however, may be
nearly independent of the compressibility of the fluid, such that its analysis
can be guided by a model of incompressible flow. Even if the force is un-
steady and random, similitude considerations can yield gross predictions. For
example, aeolian tones of a nonmoving cylinder are usually of nearly con-
stant frequency (for Reynolds number between 50 and 104). The frequency
should be a function of the nominal steady-flow velocity U past the cylinder,
of the fluid density ρ, of the viscosity µ, of the cylinder diameter d = 2a, and
of nothing else. Dimensional considerations† then require that the Strouhal

number,

† J. W. S. Rayleigh, The Theory of Sound, vol. 2, 2d ed., 1896, reprinted by Dover, New
York, 1945, pp. 412–414; V. Strouhal, “On a special type of tone excitation,” Ann. Phys.
n.s., 5:216–251 (1878); L. S. G. Kovásznay, “Hot-wire investigation of the wake behind
cylinders at low Reynolds numbers,” Proc. R. Soc. Lond. A198:174–190 (1969); T. von
Kármán, “On the resistance mechanism which a moving body in a fluid experiences,” Nachr.
K. Ges. Wiss. Goettingen, Math. Phys. Kl. 1912:547–556 (1912).
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S =
fd

U
, (10-6.22)

depend only on the Reynolds number Re = Uρd/µ. Experiments indicate
that S = 0.13 when Re = 50, it increases to 0.2 at Re = 300, and thereafter
remains nearly constant up to Re ≈ 104. Thereafter the sound is not narrow-
band, so the identification of a unique Strouhal number becomes difficult. The
force is associated with the alternate shedding of oppositely rotating vortices
from the top and the bottom of the cylinder. These vortices move downstream
from the cylinder in an array called the von Kármán vortex street.

Helicopter Rotor Noise

The classical application of Gutin’s principle is to sound radiation by a rotat-
ing helicopter rotor (see Fig. 10-10). The simplest model‡ considers the blades
to be infinitesimally thin and the lift and drag forces (caused by viscosity)
on the blades to be time-independent. The force exerted on the air, however,
is fluctuating because the blades are rotating. Thus, when the helicopter is
hovering, the force per unit area of rotor acting on the air due to blade n
(defined such that its integral over an annular segment of area w∆w∆φ is
the force on that segment) is

w−1[−fL(w)ez + fD(w)eφ]δ
(2π)(φ − φn − ωRt), (10-6.23)

where fL(w) and fD(w) are the lift and drag forces per unit blade length at
radial distance w from the hub. The function δ(2π)(φ) is defined so that it
behaves like a delta function near wherever its argument is an integer multiple
of 2π. Thus it is described formally by the Fourier series, as in Eq. (2-7.1),

δ(2π)(φ) =
1

2π

∞
∑

ν=−∞

eiνφ. (10-6.24)

With the argument taken as φ − φn − ωnt, the singularities occur at the
angular position, φn + ωRt, mod 2π, of the nth blade, where ωR is the
angular velocity of the rotor.

With the forces on the air as described above, the superposition principle,
in conjunction with Eqs. (8) and (13), then leads to

‡ For later work and improved models, see I. E. Garrick and E. W. Watkins, “A theoretical
study of the effect of forward speed on the free-space sound pressure field around heli-
copters,” NACA TR1198, 1954; M. V. Lowson and J. B. Ollerhead, “A theoretical study of
helicopter rotor noise,” J. Sound Vib. 9:197–222 (1969); J. W. Leverton and F. W. Taylor,
“Helicopter blade slap,” ibid., 4:345–357 (1966); A. R. George, “Helicopter noise: state of
the art,” J. Aircraft, 15:707–715 (1978).
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Figure 10-10 Geometry and parameters adopted for discussion of sound radiation by x
a helicopter rotor.

p = − 1

4π
∇ ·

[

∫ 2π

o

∫ L

o

f

(

l, φ′, t− R

c

)

1

R
ldldφ′

]

, (10-6.25)

where

f(w, φ, t) =

NB
∑

n=1

w−1[−fLez − (sinφ)fDex

+ (cosφ)fDey]δ
(2π)(φ− φn − ωRt) (10-6.26)

represents the force per unit area of rotor plane exerted on the fluid by the NB

blades. Here L is the length of a blade and R is distance from the integration
point.

If the blades are symmetrically spaced, so that φn = 2πn/NB, the sum
over n of the δ(2π)(φ− φn − ωRt) becomes, from Eq. (24),

NB

2π

∞
∑

ν=−∞

exp
[

iν
(

φ− ωRt+
ωR
c
R
)] Iν

NB
,

where
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Iν
NB

= NB
−1

NB
∑

n=1

e−i2πνn/NB

=

{

1 ν = integermultipleofNB
0 otherwise

Consequently, Eq. (25) reduces to

p =
∞
∑

m=0

ǫmRe
{

p̂me
−iωmt

}

, (10-6.27)

where

p̂m = − 1

4π
∇ ·

[

∫ 2π

o

∫ L

o

f̂m(l, φ′)R−1eikmRldldφ′

]

, (10-6.28)

f̂m(w, φ) =
NB
2π

1

w
[−fLez − (sinφ)fDex + (cosφ)fDey]e

imNBφ. (10-6.29)

Here ǫm = 1 for m = 0 and ǫm = 2 for m ≥ 1; the quantity ωm = mNBωR is
the (m− 1)th harmonic of the blade-passage frequency, while km is ωm/c.

The far-field approximation results when R is replaced by r in the de-
nominator and by r − l sin θ cos(φ− φ′) in the exponential in Eq. (28). With
subsequent discard of terms smaller than 1/r resulting after the divergence
operation, one obtains

p̂m = −e
ikmr

4πr
ikmer·

[

∫ 2π

o

∫ L

o

f̂m(l, φ′)e−ikml sin θ cos(φ−φ
′)ldldφ′

]

, (10-6.30)

where er is the unit vector in the radial direction. The insertion, into the
above, of the expression in Eq. (29) subsequently yields

p̂m =
i(−i)NkmNBe

ikmreiNφ

4πr

[

cos θ

∫ L

o

fL(l)JN (kml sin θ)dl

− N

km

∫ L

o

l−1fD(l)JN (kml sin θ)dl

]

.

(10-6.31)

Here we abbreviate NBm by N and recognize that

iN

2π

∫ 2π

0

eiNφ
′

e−iX cosφ′

dφ′ = JN (X) (10-6.32)
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is the Bessel function of Nth order.†

The above results imply that the received sound is composed of the blade-
passage frequency and its harmonics. On the axis itself (θ = 0) there is no
pressure fluctuation. Since

JN (X) ≈ (X/2)N

N !
, for X ≪ 1,

the fundamental (m = 1) dominates for points near the axis; the amplitude
for small θ varies as (sin θ)NB and with rotation frequency as (ωR)

NB .
Another implication is that the pressure amplitude should be roughly pro-

portional to the weight W of the helicopter. This follows from

W = NB

∫ L

o

fL(w)dw.

with the assumption that the length distributions of fL and fD and the lift-
to-drag ratio fL/fD do not vary with the weight carried by the helicopter.

These conclusions are not wholly valid for actual helicopter noise, but
they serve as convenient comparison standards in the discussion of data and
of more realistic models.

† G. N. Watson, A Treatise on the Theory of Bessel Functions, 2d ed., Cambridge Uni-
versity Press, London, 1944, pp. 17, 20. Watson’s eq. (3), p. 20, leads to

JN (X) =
1

2π

∫ 5π/2

π/2

ei(Nθ−X sin θ)dθ,

which, with θ replaced by φ′+π/2, yields Eq. (32) above. Note also that (32) implies, with
sinφ′ replaced by (eiφ

′ − e−iφ′

)/2i,

iN

2π

∫ 2τ

o

(sinφ′)eiNφ′

e−iX cosφ′

dφ′ =
1

2i

[

1

i
JN+1(X) − iJN−1(X)

]

= −1

2

2N

X
JN (X),

where the second equality follows from Watson’s eq. (1), p. 17.
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10-7 RELAXATION PROCESSES

The fluid-dynamic models resulting for different fluids† when relaxation pro-
cesses are taken into account have some similarities, although the details vary
from fluid to fluid. In the present text, the analysis of relaxation processes
is restricted to dilute gases, but the relevant analogous results for water are
cited.

Partitioning of Internal Energy

The internal energy u per unit mass of a parcel of gas can be regarded as a sum
of energies of individual molecules. Each molecule has a translational kinetic
energy (defined relative to the average flow velocity), a rotational kinetic
energy, and an energy of internal vibration (the latter two are negligible for a
monatomic molecule) that can be any one of a discrete set† of possible values.
Thus, we write

u = utr + urot +
∑

ν

uν, (10-7.1)

where uν , is the vibrational energy, per unit mass of fluid, of all molecules
of species ν, for example, O2, N2,CO2, or H2O. At temperatures of nominal
interest, most molecules are in their ground vibrational state; uν is taken as
zero if all are in the ground state. Then, with kT ∗

ν denoting the difference in
energies between the ground state and the first excited state, uν approximates
to

uν = (n)
nν
n
fν1kT

∗
ν , (10-7.2)

† R. T. Beyer and S. V. Letcher. Physical Ultrasonics, Academic, New York, 1969, pp. 91–
182; J. J. Markham, R. T. Beyer, and R. B. Lindsay, “Absorption of sound in fluids,” Rev.
Mod. Phys. 23:353–411 (195l). Speculations that relaxation processes may play a role in
sound propagation date back to Rayleigh (1899), J. H. Jeans (1904), and A. Einstein (1920).
Pertinent early experimental papers are those of G. W. Pierce (1925), who discovered the
anomalous frequency dependence of the phase velocity of sound in air, and of V. O. Knudsen
(1931, 1933), who gave the first precise measurements of the absorption of sound in air
and discovered its anomalous dependence on humidity. The early theoretical explanations
were developed by K. F. Herzfeld and F. O. Rice (1928), H. O. Kneser (1931, 1933, 1935),
and P. S. H. Henry (1932). Eight of these papers are reprinted in R. B. Lindsay, Physical
Acoustics, Dowden, Hutchinson and Ross, Stroudsburg, Pa., 1974.
† This is a consequence of the quantum theory. Internal vibrations of a diatomic molecule
are analogous to those of a harmonic oscillator with natural angular frequency ων . The
quantized energy levels are (n + 1

2
)(h/2π)ων , where h = 6.623 × 10−23J · s is Planck’s

constant. Thus, kT ∗
ν is (h/2π)ων . See, for example, E. C. Kemble, The Fundamental Prin-

ciples of Quantum Mechanics, McGraw-Hill, New York, 1937, pp. 155–157: L. I. Schiff,
Quantum Mechanics, McGraw-Hill, New York, 1955, pp. 60–62, 298–307.
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where k = 1.380× 10−23 J/K = Boltzmann’s constant
T ∗
ν = molecular constant, K
n = total number of molecules per unit mass

of fluid
nν/n = fraction of all molecules that are of species

ν
fν1 = fraction of molecules of species v in first

excited state
The neglect of higher-order states presumes that T ∗

ν is much larger than the
ambient temperature.

When the fluid is in internal equilibrium at temperature T , the theory of
statistical thermodynamics requires that there be an average energy‡ 1

2kT for
each translational and rotational degree of freedom of a molecule. Thus, utr
would be 3

2nkT and urot would be 1
2 (dof − 3)nkT where dof is the average

number of degrees of freedom per molecule. If the fluid is not in internal
equilibrium, we nevertheless define apparent temperatures Ttr and Trot for
translation and rotation, such that

utr =
3
2RTtr, urot =

1

2

5− 3γ

γ − 1
RTrot. (10-7.3)

Here we have replaced nk by the gas constant R [287 J/(kg · K) for air] and
dof by 2/(γ − 1).

Another prediction§ for a gas in internal equilibrium is that the vibrational
population ratio fν1/fν0 is exp(−T ∗

ν /T ). With this as a guide, we define the
apparent vibration temperature Tν for molecules of species ν such that

uν =
nν
n
RT ∗

ν exp

(

−T
∗
ν

Tν

)

, (10-7.4)

where exp(−T ∗
ν /Tν) is presumed to be much less than 1.

If the gas is in equilibrium, Ttr, Trot, and the Tν are the same, so for any
given value of u, the ratios of the energies have definite values. If the actual
ratios are not appropriate for equilibrium, and if u is constant, the long-
term tendency should be so for energy to be transferred between deposition
modes until eventually Ttr, Trot, and the Tν , are all equal. Processes by which
this occurs are relaxation processes; their characteristic time durations are
relaxation times.

‡ A general proof is given by D. ter Haar, Elements of Statistical Mechanics, Rinehart,
New York, 1954, pp. 30–32. The key assumption, dating back to Boltzmann (1871), is that
the probability density function in generalized coordinate-momentum space is proportional
to exp[−H(p, q)/kT ], where H is the hamiltonian.
§ This is a consequence (ter Haar, Elements of Statistical Mechanics, pp. 22–25, 46–50) of
the quantum-mechanical version of the Boltzmann distribution, which requires the relative
populations of nondegenerate energy states to be proportional to exp(−En/kT ), where En

is the energy level associated with the nth state.
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The Bulk Viscosity

The small departure of the rotational and translational modes of molecular
motion from mutual thermodynamic equilibrium can be taken into account
with a bulk viscosity µB . Since the molecular vibrational energies uν are much
smaller than utr or urot, an appropriate definition of an equivalent equilibrium
temperature T for the fluid when it is not in equilibrium is such that, from
Eqs. (3),

utr + urot =
RT

γ − 1
. (10-7.5)

For a dilute gas, kinetic theory predicts† that the average normal stress
is − 2

3ρutr, so the pressure in the Navier-Stokes equation should be ρRTtr,
rather than ρRT ; this accordingly requires

σn = −ptr = −ρRTtr = −p+ ρR(T − Ttr). (10-7.6)

An alternate expression for the second term results from examination of the
time rate of change of translational energy per unit mass. Conservation of
energy, with the neglect of heat conduction, then leads to

Dutr
Dt

+ ptr
D

Dt

1

ρ
= nṄc∆ǫtr = −Durot

Dt
, (10-7.7)

where Ṅc is the number of collisions any given molecule has per unit time
and ∆ ǫtr (equal to −∆ǫrot) is the average translational energy gained in
each such collision. The quantity ∆ǫtr should vanish if Ttr equals Trot, so it
approximates for gases nearly in equilibrium to βrotk(Trot − Ttr), where βrot
depends on T only. On the left side of (7), we approximate Ttr by T in the
same spirit in substitutions from Eqs. (3) and (6), obtaining to first order in
the ratio of the derivatives of the thermodynamic variables to Ṅc,

Trot − Ttr =
1

βrotRṄc

(

utr
u

Du

Dt
+ p

D

Dt

1

ρ

)

. (10-7.8)

But Du/Dt is approximately −pDρ−1/Dt, and Trot−Ttr approximates to
−(u/urot)(Ttr − T ) because of Eqs. (3) and (5), so

T − Ttr =
1

βrotRṄc

u2rot
u2

p
D

Dt

1

ρ
. (10-7.9)

Also, conservation of mass requires Dρ−1/Dt to be ρ−1
∇ · v, so Eq. (6)

reduces to

† J. G. Kirkwood, “The statistical mechanical theory of transport rocesses, I: General
theory,” J. Chem. Phys. 14:180–201 (1946).
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− σn = p− µB∇ · v, µB =
p

βrotṄc

u2rot
u2

. (10-7.10)

Since p = ρRT , and since Ṅc should be proportional to ρ at fixed T , the
bulk viscosity† µB should be a function of temperature only. Also, the bulk
viscosity should be zero for a monatomic gas, since urot = 0 for such a gas.

Instantaneous Entropy Function

At any given instant, one can associate with the fluid an instantaneous en-
tropy function‡ s(u, ρ−1, Tν) such that

Tds = du+ pdρ−1 +
∑

ν

AνdTν , (10-7.11)

where the affinities Aν are defined by this equation. The statistical-thermodynamics
definition of entropy in terms of probabilities of molecules being in various
states, in conjunction with the assumption that the vibrational states are sta-
tistically independent of the translational and rotational energies, requires§

s = sfr(utr + urot,ρ
−1) +

∑

ν

sν(Tν), (10-7.12)

where sfr is the entropy that would result were the vibrational degrees of
freedom frozen and sν is the entropy associated with the internal vibrations
of the νth species of molecules. The former satisfies

Tdsfr = d(utr + urot) + pdρ−1,

which, with utr + urot = cv,frT and p = ρRT , integrates to

sfr = cv,fr ln

(

u−
∑

ν

uν

)

+R ln ρ−1 + const. (10-7.13)

† The mechanism (structural relaxation) underlying water’s bulk viscosity has a different
physical origin; L. Hall, “The origin of ultrasonic absorption in water,” Phys. Rev. 73:775–
781 (1948).
‡ This is a chief tenet of irreversible thermodynamics. See, for example, S. R. de Groot
and P. Mazur, Non-equilibrium Thermodynamics, North-Holland, Amsterdam, 1962. The
analysis in the present text is similar to that developed by J. Meixner, “Absorption and
dispersion of sound in gases with chemically reacting and excitable components,” Ann.
Phys. (5)43:470–487 (1943); “General theory of sound absorption in gases and liquids
under the consideration of transport phenomena,” Acustica 2:101–109 (1952); “Flows of
fluid media with internal transformations and bulk viscosity,” Z. Phys. 131:456–469 (1952).
§ This follows from a formulation given by L. D. Landau and E. M. Lifshitz, Statistical
Physics, Pergamon, London, 1959, pp. 116–119.
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Here cv,fr, identified as R/(γ−1) from Eq. (5), is the coefficient of specific heat
at constant volume when the vibrational degrees of freedom are frozen. The
sν are such that Tνdsν = duν , so Eq. (4), with T ∗

ν ≫ Tν , yields sν ≈ uν/Tν .
The affinity Aν is consequently identified, from Eqs. (11) to (13), as

Aν = T

( −cv,fr
utr + urot

duν
dTν

+
1

Tν

duν
dTν

)

=

(

T

Tν
− 1

)

cvν , (10-7.14)

where

cvν =
duν
dTν

=
nv
n
R

(

T ∗
ν

Tν

)2

e−T
∗

ν /Tν (10-7.15)

is the specific heat associated with the internal vibrations of the ν-type
molecules.

Fluid-Dynamic Equations with Relaxation lncluded†

In regard to the energy equation (10-1.12), Eqs. (10) and (11) allow us to
write

Du

Dt
− σn

Dρ−1

Dt
= T

Ds

Dt
−
∑

ν

Aν
DTν
Dt

− µB∇ · v
Dρ−1

Dt
. (10-7.16)

Since Dρ−1/Dt is ρ−1
∇ · v and since ∇ · q is T∇· (q/T ) + (q/T ) · ∇T , the

above transforms Eq. (10-1.12) into the entropy-balance equation

ρ
Ds

Dt
+∇ ·

q

T
= σS, (10-7.17)

where

TσS = µB(∇ · v)2 + 1
2µ
∑

ij

φ2ij +
κ

T
(∇T )2 + ρ

∑

ν

Aν
DTν
Dt

. (10-7.18)

Similarly, the Navier-Stokes equation (10-1.14), with the introduction of the
bulk viscosity, becomes

ρ
Dv

Dt
= −∇p+∇(µB∇ · v) + µ

∑

ij

ei
∂φij
∂xj

. (10-7.19)

† Equations (16) to (19) apply to other fluids (including seawater) if the Tν are replaced
by appropriate “internal variables” nν . For freshwater, no internal variables are needed if
a bulk viscosity is included in the formulation.
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An alternate version of Eq. (17) resulting with the substitution,† sfr+Σsν ,
for s, is

ρ
Dsfr
Dt

+
∑

ν

ρ

Tν
cvν

DTν
Dt

−∇ ·

( κ

T
∇T

)

= σS. (10-7.20)

Note that if sfr is regarded as a function of any two of the variables p, ρ, or
T , then it is independent of the Tν . The thermodynamic identities relating
sfr, p, T , and ρ are the same as when there are no molecular vibrations.

The Relaxation Equations

The fluid-dynamic model must be supplemented by one additional equation
for each vibrational temperature Tν included as a thermodynamic variable.
(For air, detailed experiments and calculations‡ based on molecular kinetics

† For liquids, an appropriate decomposition is

s(u, ρ−1, nν) ≈ seq(p, ρ
−1) +∆s,

where seq(p, ρ−1) is the equilibrium value that corresponds to the local instantaneous value
of p [as defined by Eq. (11) with Tν replaced by nν ]; the quantity ∆s is of first order in the
Aν . For seawater, where the relaxation processes are chemical, a simplified model takes
∆s = ∆s1 +∆s2, with

∆sν =
cp(∆K

−1
T )ν

βT
∆ξν , ρAν

Dnν

Dt
= (∆K−1

T )ν
(∆ξν)2

τν
, ∆ξν =

nν − ne
ν(p, T )

∂ne
ν(p, T )/∂p

,

where the ∆ξν satisfy the relaxation equations

(

D

Dt
+

1

τν

)

∆ξν = −Dp
Dt

.

The quantity n1 is the number of dissolved B(OH)3 (boric acid) molecules per unit mass
of water as a whole that are in the fully associated state (rather than being broken into
two spatially separated ions); n2 is the analogous number of dissolved MgSO4 (magnesium
sulfate) molecules; the superscript e denotes the equilibrium value. In the above relations,
β is the coefficient of volume expansion; (∆K−1

T )ν is the contribution of the dissolved
molecules of species ν to the isothermal compressibility (reciprocal of bulk modulus). The
theory that a pressure-dependent chemical reaction can cause absorption and dispersion of
sound is due to L. N. Liebermann, “Sound propagation in chemically active media,” Phys.
Rev. 76:1520–1524 (1949) and was further developed by M. Eigen and K. Tamm, “Sound
absorption in electrolyte solutions as a sequence of chemical reactions,” Z. Elektrochem.
66:93–121 (1962). The identifications of MgSO4 and B(OH)3 as the principal contributors
to relaxation processes in seawater are due to O. B. Wilson, Jr. and R. W. Leonard, “Sound
absorption in aqueous solutions of magnesium sulfate and in sea water,” J. Acoust. Soc.

Am. 23:624A (1951) and to E. Yeager, F. Fisher, J. Miceli, and R. Bressel, “Origin of the
low-frequency sound absorption in sea water,” ibid. 53:1705–1707 (1973).
‡ J. E. Piercy, “Noise Propagation in the Open Atmosphere,” pap. presented at 84th Meet.
Acoust. Soc. Am., Miami Beach, Fl., November 1972; and L. C. Sutherland, J. E. Piercy,
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suggest it is sufficient to include only the temperatures associated with O2

and N2 vibrations.) The appropriate additional equations evolve from the
counterpart of Eq. (7) for Duν/Dt,

Duν
Dt

= cuν
DTν
Dt

= nνṄcν∆ǫν , (10-7.21)

where Ṅcν is the number of collisions a molecule of type ν has per unit time.
The average vibrational energy ∆ǫν acquired per collision depends on the
differences T − Tν and Tν′ − Tν , but since the bulk of the energy resides in
molecular translation and rotation, we set ∆ǫν = βνk(T − Tν) and thereby
assume that it is independent of the other vibrational temperatures. This
yields the relaxation equation†

DTν
Dt

=
1

τν
(T − Tν), withτν =

cvν

nνkβνṄcν
. (10-7.22)

The above equation implies that if T is suddenly increased by an increment
∆T , a time τν will lapse before the incremental change in Tν is (1− e−1)∆T .
Consequently, τν is the relaxation time for the vibrational energy of type ν.
Since τν is inversely proportional to Ṅcν , and since the latter is proportional
to p or to ρ when T and the relative molecular proportions are held constant,
the relaxation time τν is inversely proportional to the pressure at fixed T . As
explained further below, 1/2πτν is called the relaxation frequency.

Numerical Values for the Constants of the Model

For air, the viscosity µ and the thermal conductivity κ are as given in
Sec. 10-1; the bulk viscosity µB deduced from acoustic absorption data re-
ported by Greenspan is such that‡

H. E. Bass, and L. B. Evans, “A Method for Calculating the Absorption of Sound in the
Atmosphere,” pap. presented at 88th Meet., St. Louis, Mo., November 1974, rev. November
1975. The analysis in these papers constitutes part of the background for the absorption
calculation procedure in ANSI Standard S1.26/ASA23-1978, American National Standard
Method for the Calculation of the Absorption of Sound by the Atmosphere. More extensive
models are described by L. B. Evans, H. E. Bass, and L. C. Sutherland, “Atmospheric
absorption of sound: theoretical predictions,” J. Acoust. Soc. Am. 51:1565–1575 (1972),
and by H. E. Bass, H.-J. Bauer, and L. B. Evans, “Atmospheric absorption of sound:
analytical expressions,” ibid. 52:821–825 (1972).
† K. F. Herzfeld and F. O. Rice, “Dispersion and absorption of high frequency sound waves,”
Phys. Rev. 31:691–695 (1928).
‡ M. Greenspan, “Rotational relaxation in nitrogen, oxygen, and air,” J. Acoust. Soc. Am.
31:155–160 (1959); P. A. Thompson, Compressible-Fluid Dynamics, McGraw-Hill, New
York, 1972, pp. 230–232; Bass, Bauer, and Evans, “Atmospheric absorption . . . : analytical
expressions.”
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µB = 0.60µ (10-7.23)

Greenspan’s experiments were carried out at room temperature, but it is
believed that the ratio µB/µ should be relatively insensitive to temperature
variations.§

The characteristic molecular-vibration temperatures† T ∗
ν (ν = 1, 2) for O2

and N2 are 2239 and 3352 K. The corresponding fractions nν/n are approx-
imately 0.21 and 0.78 for air. These numbers, when inserted into Eq. (15),
lead to the following values:

T,◦C −10 0 10 20 30 40
cv1/R 0.0031 0.0039 0.0048 0.0059 0.0071 0.0084
cv2/R 0.00037 0.00055 0.00079 0.00118 0.00150 0.00201

The relaxation times τ1 and τ2 are sensitive to the fraction h of air
molecules that are H2O molecules; an O2 molecule or an N2 molecule colliding
with a H2O molecule is much more likely to experience a change in vibrational
energy than when colliding with another O2 or N2 molecule. Experimental
data and calculations carried out for a CO2 fraction of 3.1 × 10−5 (repre-
sentative of normal air) yield the semiempirical formulas† (see Fig. 10-11)

pref
p

1

2πτ1
= 24 + 4.41× 106h

0.05 + 100h

0.391 + 100h
, (10-7.24a)

pref
p

1

2πτ2
=

(

Tref
T

)1/2

(9 + 3.5× 104he−F ), (10-7.24b)

F = 6.142

[

(

Tref
T

)1/3

− 1

]

, (10-7.24c)

where pref = 1.013× 105 Pa and Tref = 293.16 K. (These equations should
be accurate to within 10 percent between 0 and 40◦C.) The relative humidity
RH (expressed as percentage) is defined such that

h =
10−2(RH)pvp(T )

p
, (10-7.25)

§ The ratio µB/µ for water is nearly independent of temperature, ranging from 3.01 to
2.72 as T varies from 0 to 60◦C. Experimental results are given by J. M. M. Pinkerton,
“A Pulse Method for the Measurement of Ultrasonic Absorption in Liquids: Results for
Water,” Nature, 160:128–129 (1947). Other constants appropriate for seawater are cited
further below, p. 558n.
† These are the values used in the ANSI Standard, American National Standard for the
Calculation of the Absorption of Sound in the Atmosphere, 1978.
† The first relation is due to J. E. Piercy, “Comparison of Standard Methods of Calculating
the Attenuation of Sound in Air with Laboratory Measurements,” presented orally to 82nd
Meet. Acoust. Soc. Am., Denver, Co., October 1971; the second is due to Sutherland,
Piercy, Bass, and Evans. “A method for calculating the absorption of sound” and is based
in major part on experimental data of C. M. Harris and W. Tempest (1965).
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Figure 10-11 Relaxation frequencies f1 = 1/2πτ1 and f2 = 1/2πτ2 versus water-vapor
fraction h for O2 and N2 internal vibrations in air at atmospheric pressure.

where pvp(T ) is the vapor pressure of water at temperature T . Representative
values of pvp(T ) are

T,◦ C 5 10 15 20 30 40
pvp(T ), Pa 872 1228 1705 2338 4243 7376
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10-8 ABSORPTION OF SOUND

Linear Acoustic Equations for Air

For a homogeneous quiescent medium, the equations developed in the previ-
ous section, with the neglect of nonlinear terms, yield‡

∂ρ′

∂t
+ ρo∇ · v = 0, (10-8.1a)

ρo
∂v

∂t
= −∇p+ µB∇(∇ · v) + µ

∑

ij

ei
∂φij
∂xj

, (10-8.1b)

ρo
∂sfr
∂t

+
∑

ν

( ρ

T

)

o
cvν

∂Tν
∂t

− κ

To
∇

2T ′ = 0, (10-8.1c)

∂Tν
∂t

=
1

τν
(T ′ − Tν), (10-8.1d)

ρ′ =
1

c2
p−

(

ρβT

cp

)

o

sfr, (10-8.1e)

T ′ =

(

Tβ

ρcp

)

o

p+

(

T

cp

)

o

sfr, (10-8.1f)

φij =
∂vi
∂xj

+
∂vj
∂xi

− 2
3∇ · vδij . (10-8.1g)

Here Eq. (1a) is a restatement of the linearized version of the conservation-of-
mass equation; Eqs. (1b) to (1d) are the linearized versions of Eqs. (10-7.19)
to (10-7.21); Eqs. (1e) to (1g) are restatements of Eqs. (10-2.1a), (10-2.1b)
and (10-1.10). The primes on v′, p′, s′fr, and T ′

ν have been deleted, so sfr, for
example, here represents the deviation from its ambient value of the entropy
for the gas when molecular vibrations are frozen. The thermodynamic coef-
ficients in Eqs. (1e) and (1f) are those appropriate to such a frozen state,
although the deviations from the values appropriate to a gas in thermody-
namic equilibrium are slight. For a gas, β is 1/To, cp is γR/(γ − 1), c2 is
γRTo, and γ is (dof + 2)/dof.

‡ For seawater, the corresponding versions of (1c) and (d), resulting from the relations on
p. 552n., are

ρo
∂s′eq

∂t
+
∑

ν

[

ρcp(∆K
−1
T )ν

βT

]

o

∂(∆ξν)

∂t
=

κ

To
∇

2T ′, (i)

(

∂

∂t
+

1

τν

)

∆ξν = −∂p
∂t
. (ii)

Equations (1e) and (1f) remain unchanged except that sfr should be replaced by s′eq.
Whether the thermodynamic coefficients are evaluated at the equilibrium state or the
frozen state makes little quantitative difference in the predictions.
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Energy Corollary

An energy-conservation-dissipation theorem,

∂w

∂t
+∇ · I = −D (10-8.2)

also holds for the model represented by Eqs. (1). A derivation similar to that
described in Sec. 10-2 leads to the identifications

w = 1
2ρov

2 +
1

2

p2

ρoc2
+

1

2

(

ρT

cp

)

o

s2fr +
∑

ν

1

2

(ρcvν
T

)

o
T 2
ν , (10-8.3a)

I = pv − µBv(∇ · v)− µ
∑

ij

viφijej − κT−1
o T ′

∇T ′, (10-8.3b)

D = µB(∇ · v)2 +
1

2
µ
∑

ij

φ2ij + κT−1
o (∇T )2 +

∑

ν

(

ρocvν
Tτν

)

o

(T ′ − Tν)
2,

(10-8.3c)

Thus, the molecular vibrations contribute additive terms to the acoustic
energy density and to the rate D of acoustic-energy dissipation† per unit
volume.

Dispersion Relation for Plane Traveling Waves

The bulk viscosity and the vibrational relaxation terms in Eqs. (1) are of
significance only for the acoustic mode. Here we examine the changes these
terms necessitate in the corresponding dispersion relation. Setting v = vex,
v = Rev̂eikxe−iωt, T ′ = ReT̂ eikxe−iωt, etc., we find that Eqs. (1a) and (1b)
imply

k2p̂ =

(

ω2 + iωk2
µB + 4

3µ

ρ0

)

ρ̂, (10-8.4)

while Eqs. (1c) and (1d) imply

iωρoŝfr =

[

( κ

T

)

o
k2 −

(

iωρ

T

)

o

∑ .

cvν
1− iωτν

]

T̂ . (10-8.5)

Also, Eqs. (1e) and (1f) lead to

† M. J. Lighthill, “Viscosity effects in sound waves of finite amplitude,” in G. K. Batchelor
and R. M. Davies (eds.), Surveys in Mechanics, Cambridge University Press, London, 1956,
eqs. (13), (18), and (63).
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ρ̂ =
p̂

c2
− (βT/cp)

2
0(ŝfr/T̂ )p̂

1− (T/cp)0(ŝfr/T̂ )
, (10-8.6)

where (βT/cp)
2
o is recognized as being (γ−1)To/cpc

2. Then, with Eq. (4), we
obtain the dispersion relation

k2

ω2 + iωk2(µB + 4
3µ)/ρ0

=
1

c2
− (γ − 1)To(ŝfr/T̂ )/cpc

2

1− (T/cp)o(ŝfr/T̂ )
, (10-8.7)

where ŝfr/T̂ is as given by Eq. (5).
For the acoustic mode, k2 is approximately ω2/c2, and for the frequencies

of interest we can assume that ωκ/ρocpc2 ≪ 1 and ωµ/ρoc
2 ≪ 1; it is also

true that cvν/cp ≪ 1. Consequently, we ignore terms of second order in these
quantities. This implies that the denominator in the second term on the right
side of Eq. (7) can be set to 1 and that when both sides are multiplied by
the denominator on the left side, terms involving products of µB and µ with
κ and the cvν can be discarded; the algebraic steps therefore yield

k2 =
ω2

c2
+ iω3µB + 4

3µ+ (γ − 1)κ/cp

ρ0c4
+ (γ − 1)

ω2

c2

∑

ν

cvν/cp
1− iωτν

, (10-8.8)

which in turn has the approximate square root‡

k =
ω

c
+ iα′

cl +
1
2 (γ − 1)

ω

c

∑

ν

cvν/cp
1− iωτν

, (10-8.9)

=
ω

co
+ iα′

cl +
1
2 (γ − 1)

ω

c

∑

ν

cvν
cp

iωτν
1− iωτν

, (10-8.9a)

=
ω

co
+ iα′

cl +
1

π

ω

c

∑

ν

(ανλ)m
iωτν

1− iωτν
, (10-8.9b)

where

‡ A comparable derivation based on the linear acoustic equations for seawater leads also
to a dispersion relation of the form of Eq. (9b) but with

(ανλ)m =
π

2
ρoc

2(∆K−1
T )ν ,

where (∆K−1
T )ν is the contribution of the dissolved molecules of species v to the isothermal

compressibility (see p. 552n.). In both cases the co in Eq. (9b) is the phase velocity in the
limit of zero frequency.
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co =
c

1 + π−1
∑

ν
(ανλ)m

, (10-8.10a)

(ανλ)m =
π

2

(γ − 1)cvν
cp

, (10-8.10b)

α′
cl =

ω2µ

2ρ0c3

[

4

3
+
µB
µ

+
(γ − 1)κ

cpµ

]

=
ω2

c3
δ′cl. (10-8.10c)

Since k/ω in the limit as ω → 0 is 1/co, the speed co is the phase velocity
in the limit of zero frequency and represents the equilibrium sound speed,
while c here represents the phase velocity (frozen sound speed) in the high-
frequency limit where ωτν ≫ 1 for each relaxation time τν . Note also that
α′
cl is the classical absorption coefficient of Eq. (10-2.12) with 4

3 replaced by
4
3 + µB/µ.

Absorption by Relaxation Processes

The absorption coefficient (nepers per meter), represented by the imaginary
part of the expression (9b) for k, decomposes into

α = α′
cl +

∑

ν

αν , αν =
1

λ
(ανλ)m

2ωτν
1 + (ωτν)2

, (10-8.11)

so that (see Fig. 10-12)

ανλ

(ανλ)m
=

2

fν/f + f/fν
,

f

fν
= ωτν . (10-8.12)

Here λ = 2πc/ω is the nominal wavelength of sound of angular frequency ω,
so ανλ is the attenuation (in nepers) due to the ν-type relaxation process for
propagation through a distance of 1 wavelength. Since 2ωτν/[1+ (ωτν)

2] has
a maximum value of 1, occurring when ωτν = 1, the quantity (ανλ)m is the
maximum absorption per wavelength associated with the ν-type relaxation
process. Typical values† for air at 20◦C are 0.0059(π/2)(γ − 1)2/γ = 0.0011

† For seawater, an analysis by F. H. Fisher and V. P. Simmons, “Sound absorption in sea
water,” J. Acoust. Soc. Am. 62:558–564 (1977), suggests the values

α′
cl

f2
= (55.9 − 2.37TC + 0.0477T 2

C − 0.000348T 3
C )(1 − 3.84× 10−4P + 7.57× 10−8P 2)× 10−15,

2

c
(α1λ)m =

S

35
(1.03 + 0.0236TC − 0.000522T 2

C )× 10−8,

2

c
(α2λ)m =

S

35
(5.62 + 0.0752TC)(1 − 10.3× 10−4P + 3.7× 10−7P 2)× 10−8,

f1 =
1

2πτ1
= 1320Te−1700/T , f2 =

1

2πτ2
= 15.5× 106Te−3052/T .
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for (α1λ)m (O2 vibrational relaxation) and 0. 00118(π/2)(γ−1)2/γ = 0.0002
for (α2λ)m (N2 vibrational relaxation).

Figure 10-12 (a) Frequency dependence of absorption per wavelength for a single relax-
ation process. (b) Variation of phase velocity with frequency. Horizontal axis is frequency
in units of the relaxation frequency.

The frequency dependence of αν indicated by Eq. (12) is characteristic of
attenuation coefficients associated with relaxation processes. The quantity αν
increases monotonically with ω, but ανλ has a maximum. At low frequencies,

Here the subscripts 1 and 2 refer to boric acid B(OH)3 and magnesium sulfate MgSO4,
respectively. The quantities Tc and P represent temperature in degrees Celsius and pressure
in atmospheres (1atm = 1.01325×105 Pa), while T is absolute temperature (Tc+273); the
quantity S is salinity in parts per thousand. Estimated uncertainties in the expressions for
(α1λ)m and f1 are of the order of ±10 percent and ±25 percent, while those for (α2λ)m
and f2 are of the order of ±5 percent and ±4 percent; that for α′

cl/f
2 is of the order of

±4 percent. Fisher and Simmons point out also that there are unresolved discrepancies
between the model’s predictions and field measurements.
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ω ≪ 1/τν, αν increases quadratically with ω so that

αν ≈ τν
πc

(ανλ)mω
2, ω ≪ 1

τν
, (10-8.13)

while at high frequencies it approaches a constant value,

αν ≈ (ανλ)m
πcτν

, ω ≫ 1

τν
. (10-8.14)

The transition between these two limiting expressions occurs near the relax-

ation frequency fν. If the fν are all widely spaced, they and the corresponding
values (ανλ)m can be identified from an experimental tabulation of α ver-
sus ω. If, for example, there are two relaxation frequencies f1 and f2, with
f1 > 8f2, then a log-log plot (see Fig. 10-13) of α versus f will resemble
straight lines with slope d(lnα)/d(ln f), equal to 2 over the frequency inter-
vals of 0 < f < f2/2, 2f2 < f < f1/2, and 2f1 < f . As one moves upward in
frequency, the successive line segments will be displaced downward, although
α will increase monotonically with frequency f . From the highest-frequency
segment, one identifies the coefficient α′

cl/f
2. Then a plot of (α−α′

cl)λ versus
f should have a peak value of (α1λ)m at a frequency f1. [This presumes that
(α2λ)mf2 is substantially less than (α1λ)mf1.] Then, to determine (α2λ)m
and f2 one plots (α− α′

cl − α1)λ versus f , where α1 is taken from Eq. (12).
In the low-frequency limit, the absorption due to a relaxation process is

indistinguishable from that due to an additional increment

∆µB =
2ρoc

2τν
π

(ανλ)m (10-8.15)

being added to the bulk viscosity.† Consequently, the apparent bulk viscosity
within a given frequency range is composed of contributions from all relax-
ation processes whose relaxation frequencies are higher than the upper limit
of that frequency range. In the model described in the preceding section for
air, µB was ascribed to rotational relaxation; since the rotational relaxation
frequency is much higher than any acoustical frequency of interest, the inclu-
sion of this process with the bulk viscosity is appropriate.

Phase-Velocity Changes due to Relaxation Processes

A fundamental property of a relaxation process is that different frequencies
propagate with different phase velocities, so the propagation is dispersive.

† L. Tisza, “Supersonic absorption and Stokes’s viscosity relation,” Phys. Rev. 61:531–536
(1942); J. Meixner, “Flows of fluid media with internal transformations and bulk viscosity,”
Z. Phys. 131:456–469 (1952).
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Figure 10-13 Log-log plot of sound-absorption coefficient versus frequency for sound
in air at 20◦C at 1 atm pressure and with a water-vapor fraction h of 4.676 × 10−3

(RH = 20%). The two relaxation frequencies are 12,500 Hz (O2) and 173 Hz (N2).

Taking the real part kR of the k in Eq. (9b) and neglecting second-order
terms in (kR − ω/c)/(ω/c). we find

ω

kR
= vph = co +

c

π

∑

ν

(ανλ)mω
2τ2ν

1 + ω2τ2ν
, (10-8.16)

= c− c

π

∑

ν

(ανλ)m
1 + ω2τ2ν

, (10-8.16a)

where co and c, as noted previously, are the low- and high-frequency limits
of the phase velocity. Thus, with increasing frequency, the phase velocity
increases monotonically from co to c. Over any frequency decade centered at
an isolated relaxation frequency, the phase velocity increases (see Fig. 10-12)
by an increment ∆cν equal to (c/π)(ανλ)m. In air at 20◦C, the corresponding
increments are 0.11 and 0.023 m/s for the O2 and N2 vibrational relaxation
processes, respectively.
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For gases, the two limiting sound speeds are associated with the values γo
and γfr of the specific-heat ratio γ appropriate to the equilibrium and frozen
states, given by

γo =
cp,fr +Σcuν
cv,fr +Σcvν

, γfr =
cp,fr
cv,fr

, (10-8.17)

where cp,fr and cv,fr are the specific heats that result when the molecu-
lar vibrations are frozen. The corresponding sound speeds, co and cfr, are
(γoRT )

1/2 and (γfrRT )
1/2. [The latter is what is denoted by c in Eqs. (9)

and (10).] From this point of view,† the phase velocity in Eqs. (16) can be
regarded as the sound speed in a gas whose apparent specific-heat ratio in-
creases monotonically from γo to γfr as ω ranges from 0 to ∞.

10-9 PROBLEMS

10-1 Suppose Eqs. (10-1.16) with particular choices of µo, κo, and To yield values
of µ′

o and κ′o at temperature T ′
o. Prove that the predicted values of µ and

κ at any third temperature T are unchanged when µo, κo, and To are
replaced by µ′

o, κ
′
o, and T ′

o.
10-2 What fractional error (order of magnitude) would result in the plane-wave

attenuation coefficient of water if thermal conduction is neglected at the
outset?

10-3 Show that the components of the viscous portion of the stress tensor are
given in spherical coordinates by

σrr = 2µ

(

∂vr
∂r

− 1
3∇ · v

)

, σθθ = 2µ

(

1

r

∂vθ
∂θ

+
vr
r

− 1
3∇ · v

)

,

σφφ = 2µ

(

1

r sin θ

∂vφ
∂φ

+
vr
r

+
vθ cot θ

r
− 1

3∇ · v

)

,

σrθ = µ

(

r
∂

∂r

vθ
r

+
1

r

∂vr
∂θ

)

, σrφ = µ

(

1

r sin θ

∂vr
∂φ

+ r
∂

∂r

vφ
r

)

,

σφθ = µ

(

sin θ

r

∂

∂θ

vφ
sin θ

+
1

r sin θ

∂vθ
∂φ

)

.

10-4 A model for explaining sonically induced rises in ambient temperature
takes the ambient temperature to satisfy

ρcp
∂T

∂t
−∇ · (κ∇T ) = Dac,

† H. O. Kneser, “The dispersion theory of sound,” Ann. Phys. (5)20:761–776 (1931); P. S.
H. Henry, “The energy exchanges between molecules,” Proc. Camb. Phil. Soc. 28:249–255
(1932).
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where Dac is the acoustic energy dissipated per unit time and volume.
Discuss a possible rationale for this equation, starting from the Navier-
Stokes-Kirchhoff fluid dynamic model of Sec. 10-1. Suppose plane waves
are at normal incidence from a first medium, with negligible attenuation
and thermal conductivity, onto a second medium, within which the atten-
uation is α Np/m and the thermal conductivity is κ. If the intensity of the
incident wave is I (time-averaged), and if ρc for both media are the same,
what steady-state temperature perturbation can be expected in medium
2? (Assume αλ≪ 1.)

10-5 (a) Show that the acoustic pressure in a plane wave propagating in the
+x direction through a medium for which Eqs. (10-2.1) and (10-2.2) are
applicable approximately satisfies either

∂p

∂x
+

1

c

∂p

∂t
+
δcl
c3
∂2p

∂t2
= 0, or

∂p

∂x
+

1

c

∂p

∂t
+
δcl
c

∂2p

∂x2
= 0.

(b) Hence show that if p is given by f(x) at t = 0, then

p(x, t) =

∫ ∞

−∞

G(x − ct− ξ, 4tδcl)f(ξ)dξ,

where
G(x, y2) = (πy2)−1/2e−(x/y)2.

(c) Suppose that f(x) is P sin(πx/L) for x between −L and L and is 0 for
other values of x. Take L to be 10δcl/c. Determine the pulse’s waveform
versus x at a time such that (4tδcl)

1/2 is 3L. Make any approximations
that seem appropriate and if necessary evaluate the integral numerically.
Sketch your result.

10-6 The superposition principle requires that the energy-conservation-dissipation
theorem, Eq. (10-2.4), hold for the acoustic-, vorticity-, and entropy-mode
fields separately. Show that this is so and give the appropriate expressions
for w, I, and D for each of the mode fields in as simple a form as possible
that is consistent with the approximations entailed in the tabulations in
Sec. 10-3.

10-7 A large flat immovable surface of a solid with high thermal conductivity
is adjacent to a fluid with thermal conductivity κ, sound speed c, ambient
density ρ, specific-heat ratio γ, coefficient of volume expansion β, and co-
efficient cp of specific heat at constant pressure. The surface temperature
of the solid is made to oscillate about ambient temperature To with a de-
viation (∆T )S cosωt. Determine the resulting acoustic disturbance within
the fluid at large distances from the surface to lowest nonvanishing order
in κ and (∆T )S.

10-8 A plane wave of constant frequency is incident on a rigid immovable sphere
for which ka ≪ 1 but a/lvor ≫ 1. Estimate, to lowest nonvanishing order
in µ and ka, how much energy is dissipated per unit time in the viscous
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boundary layer when the incident wave’s time-averaged intensity is I. (The
ratio of these two quantities is the absorption cross section.)

10-9 Estimate the attenuation in nepers per meter of the higher modes in a
rectangular duct. Assume that the attenuation is due solely to thermal-
and viscous-energy dissipation within the boundary layers at the duct
walls. Use Eq. (10-5.2) as a starting point and replace ∇p̂·nwall by iωρv̂ac ·

nwall, where the latter is identified from Eq. (10-4.12). Take

p̂ = ψ̂(x) cos
nyπy

Ly
cos

nzπz

Lz
,

and derive from the variational principle a differential equation for ψ̂(x)
whose solution of the form eikx determines α = Imk.

10-10 A Helmholtz resonator resembling a bottle with a long neck has a res-
onance frequency of 250 Hz and a neck 5 cm long with a 1-cm inner
diameter. Use one of the models discussed in Sec. 10-5 for sound waves
in tubes to estimate the resistive part of the acoustic impedance of the
resonator. Assuming that the resonator is in air at 27◦C, determine which
is dominant: loss of energy through viscous friction or through radiation
out the mouth. What is the Q of the resonator?

10-11 How should the absorption coefficient in Eq. (10-5.25) for reflection from
a thick slab with cylindrical holes be modified when the angle of incidence
θi is not zero?

10-12 Modify the model leading to Eq. (10-5.25) to account for the finite thick-
ness h of the slab. Determine an expression for the transmission loss of the
slab.

10-13 (a) If a flat rigid surface of extensive area is oscillating tangential to itself
with displacement Reξ̂e−iωt, show that the force exerted on the adjacent
fluid per unit area of surface is

f = − ωµ

lvor
Re[(1 + i)ξ̂e−iωt],

where lvor → (2µ/ωρ)1′2.
(b) Estimate the force exerted on the adjoining fluid by a thin circular
disk of radius a that is oscillating in such a manner in the limit a ≫ lvor.
(Assume a laminar boundary layer.)
(c) Given that ka ≪ 1, what would be the far-field acoustic pressure and
the time-averaged radiated acoustic power for the circumstances of (b)?

10-14 Given that the force amplitude on a cylinder immersed in a nominally
steady flow is nearly independent of viscosity over a wide range of Reynolds
number, how should the radiated acoustic power associated with the aeo-
lian tone vary with the nominal velocity of the flow past the cylinder?

10-15 A steady flow past an obstacle of characteristic dimension a causes a ra-
diation of sound. Assume that Gutin’s principle applies and that the fre-
quencies of interest are such that ka ≪ 1. If the Reynolds number of the
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incoming flow is held constant, how would you expect the radiated acous-
tic power to vary with the velocity (much slower than the sound speed)
of the flow? Devise a similitude theory for the sound radiation that ex-
presses the spectral density of the far-field acoustic pressure in terms of
dimensionless parameters, including the Strouhal number fa/U and the
Reynolds number Uρa/µ.

10-16 The m = 0 term in the far-field acoustic pressure of a helicopter rotor is
responsible for the transmission of the helicopter weight W to the ground.
A helicopter’s rotor has six blades, each 6 m long, and is rotating at 200
r/min; it slowly flies at 100 m altitude over the ground. If the helicopter
mass is 3000 kg, what would you estimate as the nonoscillating part of the
pressure increment at the ground caused by the helicopter’s passage?

10-17 Some additional simplification in the helicopter-noise model discussed
in Sec. 10-6 results when fL(l) and fD(l) are assumed to be concen-
trated at radial distance Leff such that fL(l) = (W/NB)δ(l − Leff),
fD(l) = fL(l)/RL/D, where RL/D ≈ 0.2 is the lift-to-drag ratio. For such
circumstances determine and sketch the radiation patterns for the funda-
mental and first two harmonics (m = 1, 2, 3) when (NBωR/c)Leff is 0.1.
(Approximate the Bessel functions by the leading term in their power-
series expansions.)

10-18 A Bessel function of large order is well approximated over the range of
arguments where the function has its largest values by the expression (M.
Abramowitz and I. Stegun (eds.), Handbook of Mathematical Functions,
Dover, New York, 1965, p. 367)

JN (z) ≈
(

2

N

)1/3

Ai

[

−
(

2

N

)1/3

(z −N)

]

,

where Ai(η) is the Airy function. Using this approximation and the prop-
erties of the Airy function, discuss the radiation of helicopter noise by the
higher harmonics of the blade-passage frequency for the circumstances de-
scribed in Prob. 10-17 but with NB(ωR/c)Leff not fixed. For what thresh-
old value of the latter parameter does the radiated power begin to rise
abruptly? Within what range of angle θ does the sound appear to be
concentrated when NB(ωR/c)Leff has a specified value that exceeds this
threshold?

10-19 Use the energy-conservation-dissipation theorem, Eq. (10-8.2), to derive
the absorption coefficient for constant-frequency plane-wave sound propa-
gation in air, following a procedure analogous to that in the derivation of
Eq. (10-2.11).

10-20 Carry through the steps leading to Eq. (10-8.9b) for a gas with µ, µB, and
κ set to zero and with only one relaxation process. Show that the resulting
dispersion relation can be written
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k =
ω

co
+ ω(c−1

o − c−1
∞ )

iωτν
1− iωτν

,

where c∞ is the sound speed in the high-frequency limit. If p(x, t) describes
a transient plane wave propagating in the +x direction, each Fourier com-
ponent p̂e−iωteikx of which satisfies this dispersion relation, what partial-
differential equation would be appropriate for p(x, t)?

10-21 The Sabine-Franklin reverberation-time formula (6-1.12) can be modified
to take into account absorption within the interior of a room if one assumes
the field is a superposition of a large number of plane waves, each of which
is attenuated by αpl Np per unit propagation distance.
(a) What is the resulting modified version of the formula for T60?
(b) If the room has dimensions 8 by 8 by 4 m and a nominal reverberation
time of 6 s, what must αpl be to cause a 10 percent reduction in the
reverberation time?
(c) Discuss possible circumstances for which αpl might have a value of this
magnitude.

10-22 Sound of frequency 2000 Hz is propagating in the plane-wave mode in a
square duct of dimensions a on a side. The air temperature is 20◦C, the
relative humidity is such that the relaxation frequency for O2 vibrations
is 2000 Hz. How large must the dimension a be before the dissipation by
molecular relaxation within the interior of the duct exceeds that within
the thermoviscous boundary layer?

10-23 A sound wave of 5000 Hz frequency is propagating through air at 20◦C with
ambient pressure of 105 Pa. Plot the absorption coefficient in nepers per
meter versus relative humidity. At what relative humidity is α a maximum?
What is the corresponding value of α?

10-24 With as little mathematical detail as possible explain why the contribu-
tions to the attenuation coefficient from different mechanisms are usually
assumed to be additive.

10-25 Carry through the derivation of the dispersion relation (10-8.9b), taking
the linear acoustic equations for seawater as a starting point.

10-26 Determine the magnitudes of the contributions from the different mech-
anisms (viscosity, thermal conduction, bulk viscosity, O2 vibrational re-
laxation, and N2 vibrational relaxation) to the plane-wave attenuation for
50-Hz sound in air at 10◦C. Carry out the calculation for relative humidi-
ties of 0, 50, and 100 percent. Repeat the calculation for a frequency of
5000 Hz. What inferences would you draw concerning the relative impor-
tances of the various mechanisms over the range of audible frequencies?

10-27 An airplane flying at 3000 m causes a sound-pressure level of 90 dB on the
ground for the octave band centered at 500 Hz. The humidity is not mea-
sured, but the ambient temperature is 20◦C. To estimate an upper limit
for the sound-pressure level to be expected under similar circumstances,
a noise-control consultant assumes that the number 90 dB applies when
the humidity is such that the attenuation from airplane to the ground is a
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maximum but the upper-limit number applies when the humidity causes
the attenuation to be minimal. What is the calculated upper limit? What
would it be were the plane to fly at 6000 m instead?



CHAPTER ELEVEN

NONLINEAR EFFECTS IN SOUND
PROPAGATION

Acoustics is ordinarily concerned only with small-amplitude disturbances,
so nonlinear effects are typically of minor significance. There are instances,
however, when a small nonlinear term in the fluid-dynamic equations can lead
to novel and substantial phenonema. In some instances, e.g., shock waves, the
predominant behavior develops because of a long-term accumulation of small
nonlinear perturbations. In other instances, e.g., radiation pressure, nonlinear
effects cause a small but nonzero magnitude to be associated with a physical
entity, the existence of which the linear model precludes.

The present chapter is concerned primarily with instances of the first type
and in particular with how cumulative nonlinear effects distort acoustic wave-
forms propagating through fluids.

11-1 NONLINEAR STEEPENING

To study nonlinear aspects of sound propagation, we begin with the ideal
fluid-dynamic equations with the neglect of viscous and other dissipative
terms. The restriction of our attention to one-dimensional flow allows us to
recast the basic model in the form

∂ρ

∂t
+

∂

∂x
ρv = 0, (11-1.1a)

ρ

(

∂v

∂t
+ v

∂v

∂x

)

= − ∂p

∂x
, (11-1.1b)

ρ = ρ(p, s), (11-1.1c)

s = const. (11-1.1d)

Here, in our initial discussions, the specific entropy s is considered initially
constant so that it is always constant. This enables us to regard ρ and c =
(∂ρ/∂p)−1/2 as functions of the total pressure p.

637
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Plane Waves in Homogeneous Media

Particular solutions† analogous to plane waves traveling in the +x or −x
directions (v′ ≈ ±p′/ρoc2) result from the stipulation that v be a single-
valued function of p, so that ∂v/∂t = (dv/dp)∂p/∂t, etc. This assumption
inserted into the mass conservation equation and into Euler’s equation yields

dρ

dp

∂p

∂t
+
d(ρv)

dp

∂p

∂x
= 0, (11-1.2a)

ρ
dv

dp

∂p

∂t
+

(

ρv
dv

dp
+ 1

)

∂p

∂x
= 0. (11-1.2b)

These will be equivalent if the determinant of coefficients vanishes; such a
condition, with dρ/dp = 1/c2, leads to dv/dp = ±1/ρc. The choice of the
plus sign corresponds to propagation in the +x direction and reduces either
(2a) or (2b) to the nonlinear partial-differential equation

∂p

∂t
+ (v + c)

∂p

∂x
= 0. (11-1.3)

The implication of Eq. (3) is that if p(xobs(t), t) represents the pressure
at a moving observation point xobs(t), then p will appear constant in time
if dxobs/dt = v + c. This time invariance follows from a comparison of the
equation dp(xobs, t)/dt = 0 with (3). Since v+c is a function of p, and since p
appears constant to someone moving with speed v + c, each point with fixed
pressure amplitude p appears to move with constant (time-independent) ve-
locity, although two points of different amplitudes move with different veloc-
ities (see Fig. 11-1).

† An alternate approach defines

λ(ρ) =

∫ ρ

ρo

c(ρ)

ρ
dρ,

so that (subscripts denoting partial derivatives) ρt = (ρ/c)λt, px = ρcλx, etc., and Eqs. (1)
reduce to

λt + vλx + cvx = 0, vt + vvx + cλx = 0, (i)

or
(λ+ v)t + (v + c)(λ+ v)x = 0, (λ − v)t + (v − c)(λ− v)x = 0. (ii)

A particular solution (simple wave) results with v = λ, yielding

vt + (v + c)vx = 0, pt + (v + c)px = 0, (iii)

which is the same as Eq. (3). [B. Riemann, “On the propagation of plane air waves of finite
amplitude,” Abhandl. Ges. Wiss. Goettingen (1860), reprinted in The Collected Works of
Bernhard Riemann, Dover, New York, 1953, pp. 156–175.]
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Figure 11-1 Evolution of an acoustic-pressure waveform in a plane traveling wave. Each
amplitude portion travels with a characteristic amplitude-dependent speed c(p) + v(p).

A parametric description of the solution results with the specification of
p(x, t) at time t = 0. Setting p = po + p′(x, t) and p′(x, 0) = f(x) yields†

p′(x, t) = f(φ), x = φ+ (v + c)t, (11.1.4)

p′ = f(x− (v + c)t), (11.1.4a)

where v and c are evaluated at po + f(φ); at time t, the point at which p′

equals f(φ) is displaced a distance (v + c)t beyond where x is φ.
For given t, a plot of p′(x, t) versus x results from letting φ run through

all values for which f(φ) is nonzero, simultaneously tabulating p′ and x from
Eqs. (4). A possibility, ignored at this point but discussed further below, is
that the resulting graph of p′ versus x may not be single-valued.

For small-amplitude acoustic waves, the relations dv/dp = 1/ρc and
c = c(p) yield

v ≈ p′

ρoco
, c ≈ co +

(

∂c

∂p

)

o

p′, (11-1.5)

where the ambient fluid velocity vo is presumed zero. The derivative (∂c/∂p)o
(at constant entropy) is evaluated at the ambient state and is therefore con-
stant.

The two expressions in Eq. (5) combine into

c+ v ≈ co +
βop

′

ρoco
≈ co + βov, (11-1.6)

where the constant β0 (which should not be confused with the coefficient of
volume expansion) is

βo = 1 +

(

ρc
∂c

∂p

)

o

=
1

2

(

ρ3c4
∂2ρ−1

∂p2

)

o

(11-1.7)

† S. Earnshaw, “On the mathematical theory of sound,” Phil. Trans. R. Soc. Land.
150:133–148 (1859). A similar result for a gas in which p is directly proportional to ρ
had been obtained somewhat earlier by S. D. Poisson, “Memoir on the theory of sound,”
J. Ec. Polytech. 7:319–392 (1808).
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(The second version here follows from ∂ρ−1/∂p = −ρ−2c−2.) Alternatively,
if p is regarded as a function of s and ρ, then ∂c2/∂p is (∂c2/∂ρ)/(∂p/∂ρ) or
(∂2p/∂ρ2)/(∂p/∂ρ), which leads to

βo = 1 +
1

2

B

A
, A =

(

ρ
∂p

∂ρ

)

o

, B =

(

ρ2
∂2p

∂ρ2

)

o

, (11-1.8)

where A and B are coefficients in the expansion of p(ρ, s) at fixed s. The
two contributions, 1 and 1

2B/A, to βo are associated with the deviations
v′ = v − v0 and c− co of fluid velocity and sound speed from their ambient
values.

For an ideal gas, where p is proportional to ργ at fixed entropy, one finds
A = γpo and B = γ(γ − 1)po, so B/A is γ − 1 and βo is (γ + 1)/2. In the
case of air (γ = 1.4), βo = 1.2. For liquids,† B/A is typically of the order of
4 to 12, so from this viewpoint, liquids are more nonlinear than gases. For
water, B/A ranges from 4.2 to 6.1 and βo from 3.1 to 4.1 as the temperature
varies from 0 to 100◦C. The values at 20◦C are B/A = 5.0 and βo = 3.5. For
seawater, the values are slightly higher: B/A = 5.25 and βo = 3.6 at 20◦C.
There is no thermodynamic reason why βo should be positive, but it is so
invariably.

The approximation (6) allows restatement of Eqs. (4) in the form

p(x, t) = f(φ) x = φ+

(

c+ β
f(φ)

ρc

)

t, (11-1.9)

where we adopt the convention of dropping the prime on p′ and the subscript
on ρo, βo, and co, so that p now represents acoustic pressure and c represents
ambient sound speed. If the term βf(φ)/ρc is ignored in the second of Eqs.
(9), one recovers the familiar expression p = f(x − ct) for a traveling plane
wave in the linear acoustics approximation.

An alternate formulation results with the specification of p versus t at
x = 0, The wave slowness dt/dx for a moving point of fixed acoustic-pressure
amplitude p is approximately

dt

dx
≈ 1

c+ βp/ρc
≈ 1

c
− βp

ρc3
, (11-1.10)

so the appropriate counterpart of Eqs. (9) is

p(x, t) = g(ψ), t = ψ +
x

c
− x

c2
βg

ρc
, (11-1.11)

† R. T. Beyer, “Parameter of nonlinearity in fluids,” J. Acoust. Soc. Am. 32:719–721 (1960);
A. B. Coppens et al., “Parameter of nonlinearity in fluids, II,” ibid. 38:797–804 (1965); M.
P. Hagelberg, G. Holton, and S. Kao, “Calculation of B/A for water from measurements of
ultrasonic velocity versus temperature and pressure to 10,000 kg/cm2,” ibid. 41:564–567
(1967).
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where g(t) is p(0, t) and t is ψ when x = 0. Here it is assumed that βp ≪ ρc2

(with p denoting acoustic pressure and ρ ambient density).

Steepening of Waveforms

Since β > 0, an implication of Eqs. (9) is that waveform portions with higher
overpressures move faster than those with lower overpressures; pressure crests
move faster than pressure troughs. Portions of the waveform (Fig. 11-2) for
which dp/dx < 0 (where pressure is increasing with time) become steeper
with increasing time and propagation distance. At time t that portion char-
acterized by a given φ will have a slope

dp

dx
=

df(φ)/dφ

∂x(t, φ)/∂φ
=

f ′(φ)

1 + [βf ′(φ)/ρc]t
. (11-1.12)

If f ′(φ) < 0, the slope dp/dx approaches−∞ when t approaches (ρc/β)/[−f ′(φ)],
this time corresponding to a propagation distance on the order of (ρc2/β)/[−f ′(φ)].
For low-amplitude sound waves, the distance is typically very large (greater
than 600 m for a 100-Hz sound wave in air with an amplitude corresponding
to 80 dB re 20 µPa). Nevertheless, the possibility that dp/dx will become
very large is often realized, particularly at moderate distances from strongly
driven underwater transducers. After the earliest time (onset time of shock)
this occurs, the plot of p versus x derived from Eqs. (9) will be multivalued.
The resolution of this dilemma is given in Sec. 11-3, after we have examined
the steepening process in more detail.

11-2 GENERATION OF HARMONICS

An implication of Eqs. (11-1.11) is that higher harmonics develop with in-
creasing propagation distance from a source of constant frequency. Let us
suppose, for example, that the x = 0 version of the waveform is

g(ψ) = Po sinωψ, (11-2.1)

so that Eqs. (11-1.11) become

p = Po sinωψ, ωt′ = ωψ − σ sinωψ, (11-2.2)

with

σ =
x

x̄
, x̄ =

ρc2

βkPo
, t′ = t− x

c
. (11-2.3)
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Figure 11-2 Characteristic curves in the xt plane for a waveform advancing in the +x
direction. Each characteristic is described by x = φ+[c+βf(φ)/ρc]t, where f(x) describes
the acoustic pressure at t = 0; the parameter φ is constant along a characteristic, such
that each characteristic has constant slope equal to the reciprocal of the actual wave
speed. Onset of a shock occurs when two adjacent characteristics first intersect.

Here the shock-formation distance† x̄ is the earliest value of x for which ωψ
ceases to be a single-valued function of ωt′. In the present section, attention
is confined to values of x for which x < x̄, so σ < 1. Since dissipation
is neglected, the analysis applies only to situations where nonlinear effects
dominate dissipation.

† For air, with ρ = 1.2kg/m3, c = 340m/s, and β = 1.2, the value of x̄ in meters is
6.3 × 106/fPo when the frequency f is in hertz and Po is in pascals. For water, with
ρ = 1000kg/m3, c = 1500m/s, β = 3.5, the corresponding value of x̄ is 15.3× 1010/fPo, so
that, for example, a frequency of 200 kHz and a peak pressure amplitude of 104 Pa yield
an x̄ of 77 m.
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Fourier-Series Representation

The waveform described by Eqs. (2) is a periodic function of ωt′ for fixed σ.
This is so because increasing ωt′ by 2π must cause ωψ to increase by 2π if
the second of Eqs. (2) is to be satisfied; but increasing ωψ by 2π leaves p
unchanged. Another deduction is that p must be odd in ωt′. Consequently,
the Fourier-series expansion (2-7.1) for p takes the form

p =
∞
∑

n=1

pn,pk(σ) sinnωt
′, (11-2.4)

where the Fourier coefficients pn,pk(σ) are such that

pn,pk(σ) =
2

π

∫ π

o

p(θ, σ) sinnθdθ, (11-2.5)

when p is regarded as a function of θ = ωt′ and σ.
Changing the variable of integration to ξ = ωψ, so that θ = ξ−σ sin ξ and

p = Po sin ξ, reduces the integral above to

pn,pk(σ) =
2Po
π

∫ π

o

sin ξ sin[n(ξ − σ sin ξ)](1 − σ cos ξ)dξ,

=
2Po
πn

∫ π

o

cos[n(ξ − σ sin ξ)] cos ξdξ,

where the second version results after an integration by parts. This can also
be written, however, as

pn,pk(σ) =
2Po
πnσ

∫ π

o

(cosnθ)[1 − (1− σ cos ξ)]dξ

=
2Po
πnσ

∫ π

o

(

cosnθ − 1

n

d

dξ
sinnθ

)

dξ

=
2Po
πnσ

∫ π

o

cos[n(ξ − σ sin ξ)]dξ

=
2Po
nσ

Jn(nσ), (11-2.6)

where Jn(nσ) is the Bessel function† of order n.

† G. N. Watson, A Treatise on the Theory of Bessel Functions, 2d ed., Cambridge, 1944,
pp. 16, 20. The identity in Eq. (12), which yields

∞
∑

n=1

(nσ)−2J2
n(nσ) =

1
4

is attributed by Watson, p. 572, to N. Nielsen (1901).
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Insertion of the above into Eq. (4) yields the Fubini-Ghiron solution‡

p = Po

∞
∑

n=1

2

nσ
Jn(nσ) sin

[

nω
(

t− x

c

)]

. (11-2.7)

(It must be stressed, however, that this is inapplicable beyond σ = 1.)
Reference to the power-series expansion of the Bessel function shows

2

nσ
Jn(nσ) →

(nσ

2

)n−1 1

n!

[

1− (nσ)2

4(n+ 1)
+ . . .

]

, (11-2.8)

so the amplitude of the fundamental (n = 1) decreases for small σ as

p1,pk(σ) ≈ Po

(

1− σ2

8

)

, (11-2.9)

while the first harmonic (n = 2) grows as

p2,pk(σ) ≈ Po
σ

2
, (11-2.10)

and therefore varies linearly with x; higher harmonics grow more slowly (see
Fig. 11-3).

Figure 11-3 Amplitudes of harmonics (units of Po) versus distance x in units of x̄ for a
plane wave that is sinusoidal at x = 0; depicted curves without energy dissipation.

‡ E. Fubini-Ghiron, “Anomalies in acoustic wave propagation of large amplitude,” Alta
Freq. 4:530–581 (1935); D. T. Blackstock, “Propagation of plane sound waves of finite
amplitude in nondissipative fluids,” J. Acoust. Soc. Am. 34:9–30 (1962).
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Conservation of Energy

The growth of the harmonics must be at the expense of the fundamental.
Since the model represented by Eq. (2) incorporates no dissipation mecha-
nisms, one expects the energy per cycle to be independent of σ:

d

dσ

∫ 2π

o

p2(θ, σ)dθ = 0. (11-2.11)

To show that this follows from (2), change the integration variable to ξ = ωψ
so that the left side above becomes

d

dσ

∫ 2π

o

P 2
o sin2 ξ(1 − σ cos ξ)dξ = −P 2

o

∫ 2π

o

sin2 ξ cos ξ dξ,

which integrates to zero.
Parseval’s theorem (see Sec. 2-7) consequently requires that

∞
∑

n=1

p2n,pk(σ) = P 2
o (11-2.12)

be independent of σ (providing σ < 1). This deduction is consistent with Eqs.
(9) and (10); the decrease of p21,pk for small σ is compensated by the growth
of p22,pk.

Figure 11-4 Fixed control volume containing a moving surface of discontinuity.
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11-3 WEAK-SHOCK THEORY

The Rankine-Hugoniot Relations

The resolution of the multivalued waveform dilemma,† which was a major
unsolved problem during most of the nineteenth century, came with the dis-
covery and physical understanding of shock waves. The governing partial
differential equations require the assumption (see Secs. 1-2 and 1-3) that ρ,
v, and p are continuous. If they are not, then one must back up to the original
integral equations. For a fixed control volume of unit cross section and with
fixed endpoints x1 and x2, conservation of mass requires (see Fig. 11-4)

d

dt

∫ x2

x1

ρ dx = (ρv)x1 − (ρv)x2 , (11-3.1a)

or that the time rate of change of mass in the volume be the difference of the
rate at which mass is flowing in at x1 minus that at which it is flowing out
at x2. (Here the subscript denotes the point at which the indicated quantity
is evaluated.)

Similarly, the time rate of change of momentum in the volume is equal
to the rate (per unit area) (ρv)x1(v)x1 momentum is flowing in minus that
rate (ρv)x2(v)x2 at which it is flowing out plus the net force (per unit area)
px1 − px2 exerted on the control volume:

d

dt

∫ x2

x1

ρvdx = (ρv2 + p)x1 − (ρv2 + p)x2 . (11-3.1b)

A third relation comes from the consideration of the time rate of change of
energy (energy density equal to 1

2ρv
2 plus ρu, where 1

2ρv
2 represents kinetic

energy per unit volume and u represents internal energy per unit mass). For
the control volume, this should equal the rate (12ρv

2 + ρu)x1vx1 energy is
being convected in by the flow minus the rate at which it is convected out
plus the rate (pv)x1 − (pv)x2 at which work is being done on the control
volume by external pressures, or

d

dt

∫ x2

x1

ρ(12v
2+u)dx = [(12ρv

2+ρu+p)v]x1 − [(12ρv
2+ρu+p)v]x2 . (11-3.1c)

If one considers x1 and x2 as arbitrary and all quantities as continuous
and differentiable, the first two of these lead to the one-dimensional partial-
differential equations displayed in Secs. 1-2 and 1-3. To deriveDs/Dt = 0, one
uses the second law of thermodynamics in the form (1-4.4) with ds replaced

† J. Challis, “On the velocity of sound,” Phil. Mag. (3)32:494–499 (1848); G. G. Stokes, “On
a difficulty in the theory of sound,” ibid. 33:349–356 (1848); G. B. Airy, “The Astronomer
Royal on a difficulty in the problem of sound,” ibid., 34:401–405 (1849).
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by Ds/Dt, etc., and eliminates Dv2/Dt from the differential-equation version
of (1c) by using what results from the product of v with Euler’s equation. If
discontinuities are present, however, these steps cannot be carried through.

To see what results when a discontinuity is present, one postulates a mov-
ing point xsh(t) (eventually identified as the location of a shock) between x1
and x2, at which p, v, ρ, u are discontinuous. Each of the integrals over x in
Eqs. (1) can be split into integrals from x1 to xsh and from xsh to x2. Then,
standard rules for differentiation yield, for example,

d

dt

∫ x2

x1

ρdx = (ρ− − ρ+)vsh +

∫ xsh−

x1

∂ρ

∂t
dx+

∫ x2

xsh+

∂ρ

∂t
dx,

where ρ− and ρ+ represent the values of ρ on the −x and +x sides of the
discontinuity and vsh = dxsh/dt is the velocity of the discontinuity surface.
In the limit in which x1 and x2 are arbitrarily close to xsh, the integrals on
the right become negligible and (ρv)x1 → (ρv)−, (ρv)x2 → (ρv)+, so Eq. (1a)
yields

[ρ(v − vsh)]+ = [ρ(v − vsh)]−. (11-3.2a)

In a similar manner, Eqs. (1b) and (1c) imply

[ρv(v − vsh) + p]+ = [ρv(v − vsh) + p]−, (11-3.2b)

[ρ(12v
2 + u)(v − vsh) + ρv]+ = [ρ(12v

2 + u)(v − vsh) + pv]−. (11-3.2c)

Equations (2) are the Rankine-Hugoniot relations.†

An equivalent way of writing the second relation above is to subtract from
it vsh times the first, so that

[ρ(v − vsh)
2 + p]+ = [ρ(v − vsh)

2 + p]−. (11-3.2b′)

Similarly Eq. (2c) minus vsh times (2b) plus v2sh/2 times (2a) all divided by
(2a) yields

[h+ 1
2 (v − vsh)

2]+ = [h+ 1
2 (v − vsh)

2]−, (11-3.2c′)

where we abbreviate h = u+ p/ρ for the enthalpy per unit mass. In dividing
by [ρ(v− vsh)]+ we have ruled out contact discontinuities from consideration

† W. J. M. Rankine, “On the thermodynamic theory of waves of finite longitudinal distur-
bance,” Phil. Trans. R. Soc. Land. 160:277–288 (1870); H. Hugoniot, “On the propagation
of movement through a body and especially through an ideal gas,” J. Ec. Polytech. 58:1–
125 (1889); G. I. Taylor, “The conditions necessary for discontinuous motion in gases,”
Proc. R. Soc. Land. A84:371–377 (1910). When the flow is not perpendicular to the shock
front, the above still hold with v+ and v− interpreted at the normal components of v+

and v−. The tangential component of the velocity must be continuous across the shock
surface. See, for example, L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon,
London, 1959, pp. 317–319.
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(for which v+ = v− = vsh, p+ = p−, ρ+ 6= ρ−). The analysis here applies to
shock waves, for which v+ 6= vsh.

With the abbreviations ∆v = v−− v+, ∆h = h−−h+, vav = (v+ + v−)/2,
etc., Eqs. (2a), (2b′), and (2c′) yield, after some algebraic manipulations,†

∆p =
∆h

(1/ρ)av
, ∆v = (vsh − vav)

∆ρ

ρav
,

(vsh − vav)
2 = − (ρ−1)2av∆p

∆(ρ−1)
, (∆v)2 = −∆ρ−1∆p. (11-3.3)

It follows from these that ∆p, ∆ρ, ∆h, and ∆v/(vsh − vav) must all have the
same sign.

One further restriction comes from the inequality version of the second
law of thermodynamics. If the shock is advancing in the +x direction relative
to the fluid, so that vsh − vav > 0, then s− ≥ s+; a fluid particle’s entropy
cannot be decreased by passage of the shock, so ∆s and vsh − vav have the
same sign. (Below it is demonstrated that ∆s and ∆p must have the same
sign, so ∆p and vsh − vav have the same sign.)

Weak Shocks

If |∆ρ|/ρav ≪ 1, the consequences of the first of Eqs. (3) can be explored by
expanding h(p, s) in a Taylor series in δp = p−pav and δs = s−sav, the various
coefficients being denoted by h0, h0p, h

0
s, h

0
pp, h

0
ps, etc., such that, for example,

h0ps is ∂2h/(∂p ∂s) evaluated at pav and sav. To obtain h+, one sets δp =
−∆p/2, δs = −∆s/2 in this expansion; to obtain h−, one sets δp = ∆p/2,
δs = ∆s/2. An expansion for ρ−1 follows from the thermodynamic identity
ρ−1 = ∂h/∂p. (Note that dh = Tds+ ρ−1dp follows from Tds = du+ pdρ−1

and h = u+p/ρ.) The so-derived expansions for (ρ−1)+ and (ρ−1)− in terms
of ∆s and ∆p lead in turn to

∆h− (ρ−1)av∆p = h0s ∆s− 1
12h

0
ppp(∆p)

3 − 1
8h

0
pps(∆p)

2∆s− · · · . (11-3.4)

The left side of this is zero, according to Eq. (3); the resulting equation, when
solved by iteration for∆s in terms of∆p, yields, to lowest nonvanishing order,

∆s =
h0ppp
12h0s

(∆p)3. (11-3.5)

The entropy change is consequently very small for a weak shock.

† W. D. Hayes, “The basic theory of gasdynamic discontinuities,” in H. W. Emmons (ed.),
Fundamentals of Gas Dynamics, Princeton University Press, Princeton, N.J., 1958, pp.
416–481. The first of Eqs. (3) is the Hugoniot equation; the corresponding plot of p−
versus 1/ρ− for fixed p+ and 1/ρ+ is a Hugoniot diagram.
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An implication of Eq. (5) is that, to first order in ∆p, the ratio ∆ρ−1/∆p
can be approximated by the average of the derivatives ∂ρ−1/∂p at x = x+sh
and x = x−sh with entropy held fixed in the differentiation. This in turn ap-
proximates to −ρ−2

av c
−2
av . Similarly,∆ρ approximates to∆p/c2av. Consequently,

Eqs. (3) yield

vsh − vav = ±cav, ∆v = ± ∆p

ρavcav
. (11-3.6)

where the + signs correspond to a shock advancing in the +x direction rela-
tive to the fluid. Similar reasoning allows one to reexpress Eq. (5) as†

∆s =

(

∂2ρ−1/∂p2

12T

)

av

(∆p)3 =

(

β

6ρ3c4T

)

av

(∆p)3, (11-3.7)

where β, equal to 1+ ρc∂c/∂p or 1+ 1
2B/A, is identified from the thermody-

namic identity in Eq. (11-1.7).
Since β > 0, the discontinuities ∆s and ∆p must have the same sign, so

the second law of thermodynamics requires p− > p+ (or ∆p > 0) for a shock
advancing in the +x direction. The pressure behind the shock front is higher
because the specific entropy must be higher.

The Equal-Area Rule

The chief implication of the foregoing analysis‡ is that once a discontinuity
is formed, it moves with a speed vsh = vav + cav, that is, with the average
of the wave speeds behind and ahead of the shock. If f(φ−) is the acoustic
pressure behind the shock and f(φ+) that in front of the shock, the shock
speed must at that particular instant (with vo = 0) be

vsh = c+ 1
2β
f(φ+) + f(φ−)

ρc
. (11-3.8)

The location xsh of the shock is given by the second of Eqs. (11-1.9) with
φ set equal to either φ+ or φ−. As the shock moves, φ− decreases and φ+
increases; the portion f(φ) for φ−(t) < φ < φ+(t) of the initial waveform does
not contribute to the actual waveform at time t. The waveform so constructed
is single-valued, although discontinuous.

† R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience, New
York, 1948, pp. 142–144.
‡ L. D. Landau, “On shock waves,” J. Phys. (USSR) 6:229–230 (1942), “On shock waves at
large distances from the place of their origin,” ibid. 9:496–500 (1945); S. Chandrasekhar,
“On the decay of plane shock waves,” Ballist. Res. Lab. Rep. 423, Aberdeen Proving
Ground, Md., 1943; H. A. Bethe and K. Fuchs, “Asymptotic theory for small blast pres-
sure,” in “Blast Wave,” Los Alamos Sci. Lab. Rep. LA 2000, August 1947, pp. 135–176.
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Figure 11-5 The equal-area rule for determination of the location of a shock; the two
equal shaded areas are replaced by a discontinuity in the waveform.

Determination of the location of a shock at any instant is facilitated by the
following theorem.† Suppose one constructs the curve of p versus x from Eqs.
(11-1.9) and that over the interval xa to xb the function p is triple-valued,
the plot resembling a backward S (see Fig. 11-5). The shock location xsh is
denoted by a vertical line connecting the upper and lower portions of the
S, crossing the curve at some point fint and thereby delimiting two areas, a
lower area extending to the left of the line x = xsh and an upper area to the
right of this line. The assertion is that xsh must be such that these two areas
are the same; the waveform with shock is then as sketched in Fig. 11-5 with
the vertical line replacing the two arcs of the S.

Proof of the theorem results because the total area, with due regard to
sign, is given by

A(t) = −
∫ φ+(t)

φ−(t)

[x(φ, t)− xsh(t)]
df(φ)

dφ
dφ. (11-3.9)

Since x(φ−, t) and x(φ+, t) are both xsh(t), the integrand vanishes at the
upper and lower limits. The derivative dA(t)/dt is consequently given by
an analogous expression; note that x(φ, t) is replaced by ∂x(φ, t)/∂t or by
c+ βf(φ)/ρc, from Eq. (11-1.9). The resulting integral is readily performed,
yielding

dA(t)

dt
= −[f(φ+)− f(φ−)]

{

c− vsh +
1

2

β

ρc
[f(φ+) + f(φ−)]

}

.

The factor in braces here, however, is zero because of Eq. (8), so one concludes
that dA(t)/dt is zero. But A(t) = 0 at the instant the shock was first formed,
so A(t) is always zero and the equal-area rule is verified.

The general theory discussed in this section, known as the weak-shock

theory, is with the formal neglect of viscosity and other dissipative effects.
(An alternate theory, based on the Burgers equation, is described in Secs. 11-6

† L. D. Landau, “On shock waves,” “On shock waves at large distances,” G. B. Whitham,
“The flow pattern of a supersonic projectile,” Commun. Pure Appl. Math. 5:301–348 (1952).
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and 11-7.) Its principal implications, i.e., nonlinear steepening, the formation
of shocks, and their subsequent propagation according to the equal area rule,
are valid for the most part only if the inequality

βpω

ρc3
> α (11-3.10)

is satisfied. Here p is a representative acoustic-pressure amplitude, ω is a rep-
resentative angular frequency for the waveform, and α is the linear-acoustics
plane-wave attenuation coefficient in nepers per meter for waves of angular
frequency ω. The inequality follows from the heuristic consideration† that if
the waveform is sinusoidal, |dp/dx| at a point moving with speed c is increas-
ing at a rate β(dp/dx)2/ρc according to Eq. (11-1.12) because of nonlinear
effects. Attenuation alone would cause it to decrease at a rate αc|dp/dx|. For
the first effect to predominate, one must have β|dp/dx|/ρc > αc. But |dp/dx|
is of the order of pω/c, where p is the peak amplitude, so Eq. (10) results.
(Representative values of α can be deduced from the analysis in Sec. 10-8.)
The equal-area rule implies that the peak amplitude decreases with distance,
so eventually a point is reached at which the inequality (10) is no longer
satisfied and beyond which the weak-shock theory is no longer applicable.

11-4 N WAVES AND ANOMALOUS ENERGY

DISSIPATION

Plane-Wave Propagation of an N Wave

The N-wave shape (see Fig. 11-6) is often asymptotically realized at large
propagation distances by a transient pulse.‡ (A “proof” of this is given in
Sec. 11-8.) Here we suppose that the N-wave shape has already been realized
at the time we choose to call t = 0, so that p(x, 0) = f(x), where

f(φ) =







P0φ

L0
−L0 < φ < L0

0 φ < −L0andφ > L0

(11-4.1)

where Po is the initial peak amplitude and Lo is the initial length of the
positive and negative phases.

† Z. A. Gol’berg, “On the propagation of plane waves of finite amplitude,” Sov. Phys.
Acoust. 3:329–347 (1957).
‡ D. T. Blackstock, “Connection between the Fay and Fubini solutions for plane sound
waves of finite amplitude,” J. Acoust. Soc. Am. 39:1019–1026 (1966); Landau and Lifshitz,
Fluid Mechanics, pp. 372–375.
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The location of the front shock is easier to determine from Eq. (11-3.8)
than from the equal-area rule. Since f(φ+) = 0 and f(φ−) = Poφ−/Lo, the
velocity and position of the front shock are given by

vsh = c+
1

2

φ−
τN

, xsh = ct+

(

1 +
t

τN

)

φ−, (11-4.2)

where we abbreviate

τN =
L0ρc

βP0
. (11-4.3)

Equating the time derivative of xsh(t) to vsh(t) leads to an ordinary dif-
ferential equation for φ−(t), which integrates, with the initial condition,
φ−(0) = L0, to

φ−(t) =
Lo

(1 + t/τN)1/2
. (11-4.4)

Then Eq. (2) gives

xsh − ct = L(t) =

(

1 +
t

τN

)1/2

Lo, (11-4.5)

where L(t) is identified as the length of the positive phase at time t. The
corresponding shock amplitude Poφ−/Lo is similarly

P (t) =
Po

(1 + t/τN )1/2
(11-4.6)

Figure 11-6 Sketch of an N wave.

Once an N wave always an N wave follows from Eq. (1) and from the
second of Eqs. (11-1.9); φ varies linearly with x between the two shocks at
fixed t, so from Eq. (1), p(x, t) must also. The second shock is found from
reasoning similar to that above to be at ct−L(t); the pressure just ahead of
this shock is −P (t). Consequently, p(x, t) = Poφ/Lo can be written as
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p(x, t) =
P (t)

L(t)
(x− ct) (11-4.7)

for −L(t) < x − ct < L(t). Outside this range of x, the acoustic pressure
p(x, t) is zero. Equation (7) describes an N-shaped wave with peak pressure
P (t) and with L(t) for its positive and negative phase lengths. The zero
crossing at x = ct moves with speed c, but the initial shock moves with speed
c + βP (t)/2ρc; the second shock moves with speed c − βP (t)/2ρc. As the
wave propagates, its length 2L(t) increases, but the overpressure decreases;
the product L(t)P (t) = LoPo remains constant.

Dissipation of Acoustic Energy

In the absence of shocks, nonlinear effects do not change the net acoustic
energy associated with a pulse; they merely cause a rearrangement of the
frequency distribution of the energy. The demonstration of this is similar to
that of Eq. (11-2.11); the energy density is p2/ρc2 for a traveling wave because
v ≈ p/ρc. The net energy per unit area transverse to propagation direction
for a pulse of finite duration is then

E(t) =
1

ρc2

∫ ∞

−∞

p2dx. (11-4.8)

If Eqs. (11-1.9) are valid for a single-valued description of the pulse, this can
alternatively be written

E(t) =
1

ρc2

∫ ∞

−∞

f2(φ)
∂x

∂φ
dφ =

1

ρc2

∫ ∞

−∞

f2(φ)

(

1 +
βf ′(φ)t

ρc

)

dφ. (11-4.9)

The second term, however, integrates to zero since f3(φ) → 0 as φ → ±∞.
Consequently, E(t) is independent of time.

On the other hand, if a shock is present, the integral must be broken into
integrals from −∞ to φ−(t) and φ+(t) to ∞. The time derivative of E(t)
consequently yields, with some algebraic manipulation, the relation

ρc2
dE(t)

dt
= f2(φ−)

d

dt

[

φ− +
βf(φ−)t

ρc

]

− f2(φ+)
d

dt

[

φ+ +
βf(φ+)t

ρc

]

− 2β

3ρc
[f3(φ−)− f3(φ+)].

(11-4.10)

The first two quantities here in brackets [see Eq. (11-1.9)] are xsh−ct, so their
time derivatives [see Eq. (11-3.8)] are both 1

2 [f(φ+)+f(φ−)]β/ρc. Then, with
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additional manipulations Eq. (10) yields†

dE

dt
= − β

6ρ2c3
[f(φ−)− f(φ+)]

3 = −ρcTo∆s, (11-4.11)

where the latter version follows from Eq. (11-3.7). Since ∆s > 0, the presence
of the shock causes the energy in the wave to decrease with time.

The validity of Eq. (11) is substantiated by our N-wave example, for which
E(t) = 2

3P
2L/ρc2 decreases with t as 1/(1 + t/τN )1/2. With P (t), L(t), and

τN taken from Eqs. (6), (5), and (3), we find

dE

dt
= − 1

3ρc2
P 2
oLo/τN

(1 + t/τN )3/2
= −βP

3(t)

3ρ2c3
. (11-4.12)

The extra factor of 2 detected from a comparison of this with Eq. (11) is
because the N wave has two shocks.

Why do we find a dissipation of acoustic energy when no dissipation mech-
anisms are explicitly taken into account? An explanation proceeds from the
observation that if the model were modified to include a typical dissipation
mechanism such as viscosity, the resulting solutions would never be discontin-
uous. However, if the coefficient characterizing the dissipation were gradually
reduced in magnitude, regions of steep gradients would become evident. In
the limit as the coefficient approaches zero, these steep gradients approach
discontinuities with all the properties of the shocks predicted by the ideal-
fluid model. The dissipation rate per unit area transverse to the propagation
direction approaches a limit independent of the magnitude of the dissipa-
tion coefficient. Thus, one can regard the dissipation at a shock as caused
by some physical mechanism, but given that the real dissipation mechanisms
are weak, it is a fortunate occurrence† that the magnitude of the dissipation
is nearly independent of the nature and strength of the mechanism.

11-5 EVOLUTION OF SAWTOOTH WAVEFORMS

A plane wave with sufficient amplitude and generated by a transducer oscil-
lating at constant frequency approaches a sawtooth shape at large distances.‡

To investigate the transition, we let p(0, t) = Po sinωt be the acoustic pres-
sure at the face of the transducer. With the neglect of ambient flow, the
pressure amplitude Po sinωto created at time t0 will be at a point

† I. Rudnick, “On the attenuation of a repeated sawtooth shock wave,” J. Acoust. Soc.
Am. 25:1012–1013 (1953).
† See, for example, the comments by W. Heisenberg, “Nonlinear problems in physics,” Phys.
Today 20(5):27–33 (May 1967).
‡ Whitham, “The flow pattern of a supersonic projectile”; Blackstock, “Connection between
the Fay and Fubini solutions.”
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x =

[

c+
βPo
ρc

sinωto

]

(t− to) (11-5.1)

at time t; the quantity in brackets is the speed of the wave portion with am-
plitude Po sinωto. The above, along with p = Po sinωto, yields a parametric
description of the distorted waveform, with which one can construct p versus
x for any given t. (The description is equivalent to that in Sec. 11-2 given
that βPo ≪ ρc2.)

A single cycle of the waveform (see Fig. 11-7) generated at times to between
−π/ω and π/ω nominally lies between x = ct− cπ/ω and x = ct+ cπ/ω. The
portion generated between to = −π/ω and to = −π/2ω is such that ωto =
− sin−1(p/Po) − π, with the arc sine understood to be between −π/2 and
π/2. Similarly, the portion generated between to = −π/2ω and to = π/2ω is
such that ωto = sin−1(p/Po), while the portion generated between to = π/2ω
and to = τ/ω is such that ωto = π − sin−1(p/Po). These expressions for to,
when inserted into Eq. (1), give three relations for x in terms of p, which
(for low-amplitude acoustic waves where βp/ρc2 ≪ 1 but t may be large)
approximate to

x =



































ct+
βpt

ρc
+
c

ω

(

π + sin−1 p

Po

)

, − π

ω
< to < − π

2ω

ct+
βpt

ρc
− c

ω
sin−1 p

Po
, − π

2ω
< to <

π

2ω

ct+
βpt

ρc
− c

ω

(

π − sin−1 p

Po

)

,
π

2ω
< t0 <

π

ω

(11-5.2a)

(11-5.2b)

(11-5.2c)

The corresponding ranges of p are 0 to −Po, −Po to P0, and Po to 0.
If the above three curves for x versus p are each plotted with t fixed,

taking p as varying over the ranges specified, the composite curve will be
of one of the forms sketched in Fig. 11-7. The tail portion between A and
B corresponds to the first equation, the middle portion between B and C
to the second equation, and the leading portion between C and D to the
third equation. The curve so constructed is always such that it is symmetric
under inversions (x − ct → ct − x, p → −p) about the point x = ct, p = 0.
Consequently, the equal-area rule requires that if a shock is present it must
be at x = ct, so the shock is moving at the ambient sound speed c.

The earliest time a shock forms for the waveform segment considered above
is when Eq. (11-1.12) predicts ∂x/∂p = 0 at p = 0. This is when

t = t̄ =
ρc2

Po

1

βω
=
x̄

c
, (11-5.3)

where x̄ is the same as defined by Eq. (11-2.3). The shock at x = ct for t > f̄
continues to grow up until point B reaches x = ct. This occurs when the x
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Figure 11-7 Waveform segment of a plane traveling wave generated by a single cycle
of an oscillating transducer. (a) Segment before first formation of shock; (b) after shock
formation but before peak (at B) overtakes trough (at C); (c) after peak overtakes trough.
Transitions occur at t̄ and at (π/2)t̄. Vertical coordinate is ratio of acoustic pressure p to
peak amplitude Po that waveform has before peak overtakes trough.

predicted by Eq. (2c) is ct at p = Po, such that βPot/ρc = (c/ω)π/2, or when
t = (π/2)t̄. Up until this time the peak amplitude of the waveform is still Po.

After time t = (π/2)t̄, the shock at x = ct erodes the wave peak, and the
waveform resembles a sawtooth. The peak amplitude pmax at times t > (π/2)t̄
for the waveform segment considered is found by setting the x of Eq. (2c)
equal to ct, giving

t

t̄
=
π − sin−1(pmax/Po)

pmax/Po
, (11-5.4)

so the following tabulation results:
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pmax/P0 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
t/t̄ 1.57 2.25 2.77 3.38 4.16 5.24 6.83 9.46 14.70 30.41

For t/t̄ > 3, a good approximation (to within 4 percent) results from setting
sin−1(pmax/Po) ≈ pmax/Po, such that (4) yields

pmax =
πPo

1 + t/t̄
. (11-5.5)

In the same limit, Eq. (2c) reduces to

p

pmax
= 1 +

ω

cπ
(x − ct) (11-5.6)

for the description of the positive phase behind the shock (x − ct between
−cπ/ω and 0). Similar considerations hold for the peak underpressure and
the negative phase before the shock; the waveform remains symmetric under
inversions about x = ct, p = 0. The net discontinuity in pressure at the shock
is 2pmax.

Figure 11-8 (a) Sketch of acoustic pressure versus time at a point sufficiently distant
from an oscillating transducer for a sawtooth profile to have formed. (b) Sketch of acoustic
pressure versus x for a particular instant of time, showing the evolution of the sawtooth
profile.

Because the transducer oscillations are periodic, the foregoing analysis ap-
plies to any cycle of the overall waveform; each cycle has the same history,
given an appropriate shift in time origin. Thus at a given point where x > x̄
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the disturbance passing by will have shocks at time intervals of ∆t = 2π/ω.
The received signal will have the same period. At x greater than approx-
imately 3x̄, the waveform will be nearly sawtooth in shape, and the peak
overpressure of each cycle will be given by Eq. (5) with t replaced by x/c.
After each shock, each with net discontinuity 2pmax, the pressure decreases
linearly with increasing time until p reaches −pmax; then another shock ar-
rives, and the cycle repeats itself (see Fig. 11-8a).

When considered as a function of x for fixed t, the disturbance is not
periodic, although zero crossings are equally spaced at intervals of πc/ω.
Beyond x = x̄, there are shocks at intervals of ∆x = 2πc/ω. Beyond x =
(π/2)x̄, the successive peak amplitudes are smaller and smaller, all smaller
than Po, (see Fig. 11-8b).

The expression describing the waveform in the sawtooth limit when σ =
x/x̄ is larger than, say, 3 can be taken as

p =
πPo
1 + σ

fST(ωt
′), t′ = t− x

c
, (11-5.7)

where the sawtooth wave function is

fST(ωt
′) = 1− ωt′

π
, 0 < ωt′ < 2π, (11-5.8)

and is periodic in ωt′ with period 2π. The pressure has the equivalent Fourier-
series representation

p =

∞
∑

n=1

2Po/n

1 + σ
sin
[

nω
(

t− x

c

)]

, (11-5.9)

which differs from the σ < 1 version, Eq. (11-2.7), in that 1/(1 + σ) replaces
Jn(nσ)/σ.

At large distances, such that 1+x/x̄ ≈ x/x̄, the peak overpressure at fixed
x becomes

pmax(x) ≈
Poπx̄

x
=
πρc3

βωx
, (11-5.10)

which is independent of Po and which decreases inversely with x. The only
feature characteristic of the excitation that remains is the driving frequency.

The phenomenon described by Eq. (10) leads to the concept of saturation.†

At a fixed far-field value of x, the received peak pressure varies with Po as

† The possibility that finite-amplitude effects may limit the acoustic efficiency of a sound
source was suggested by L. V. King, “On the propagation of sound in the free atmosphere
and the acoustic efficiency of fog-signal machinery: An account of experiments carried ut
at Father Point, Quebec, September, 1913,” Phil. Trans. R. Soc. Lond. A218:211–293
(1919). The first correctly interpreted observation of saturation is due to C. H. Allen,
Finite Amplitude Distortion in a Spherically Diverging Sound Wave in Air, Ph.D. thesis,
Pennsylvania State University, 1950. For recent reviews, see J. A. Shooter, T. G. Muir,
and D. T. Blackstock, “Acoustic saturation of spherical waves in water,” J. Acoust. Soc.
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pmax = Po , Po <
πρc3

2βxω
, (11-5.11a)

pmax ≈ πPo
1 + (xβω/ρc3)Po

, Po >
3ρc3

βxω
, (11-5.11b)

so one infers that pmax increases monotonically with Po; but regardless of how
high Po is raised, pmax cannot exceed the saturation value in Eq. (10), which
gives the theoretical upper limit to what can be received at a distance x from
a transducer oscillating at angular frequency ω. The amplitude is within 90◦

of the upper limit when Po is greater than 9ρc3/βωx.
The above discussion, based on the weak-shock theory, presumes that Po

is somewhat less than ρc2 (say, less than 0.1ρc2). The neglect of dissipative
mechanisms requires, moreover, that pmax be greater than 3αρc3/ωβ [see Eq.
(11-3.10)]. Consequently, Eq. (10) implies that, for the analysis to be applica-
ble, x should be less than π/3α ≈ 1/α, where α is the plane-wave attenuation
coefficient. The sawtooth region therefore extends from x ≈ (π/2)ρc3/βωPo
to x ≈ 1/α. As discussed further in Sec. 11-7, beyond the upper distance (the
“old-age” region), the wave resembles a sinusoidal wave whose peak amplitude
decreases as e−αx.

11-6 NONLINEAR DISSIPATIVE WAVES

The dispersion relation derived in Sec. 10-8 for plane acoustic waves can be
augmented to account for nonlinear distortion. We here discuss an approx-
imate model for nonlinear propagation in a dissipative medium that results
from such an augmentation.

Approximate Equations for Transient Plane Waves

The dispersion relation (10-8.9b) with the abbreviations

δ =
µ

2ρ

[

4

3
+
µB
µ

+
(γ − 1)κ

cpµ

]

, (11-6.1a)

c

π
(ανλ)m = (∆c)ν , (11-6.1b)

can equivalently be written to the same order of approximation [first order
in δ and (∆c)ν ] as

Am. 55:54–62 (1974); D. A. Webster and D. T. Blackstock, “Finite-amplitude saturation
of plane sound waves in air,” ibid. 62:518–523 (1977).
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ω = ck − ik2δ − k
∑

ν

iωτν(∆c)ν
1− iωτν

, (11-6.2)

where c is the equilibrium sound speed and (∆c)ν is the increment in the
phase velocity at high frequencies attributable to the freezing of the νth
relaxation process.

For any plane wave of constant frequency governed by the dispersion re-
lation (2), we can take the acoustic pressure to be Rep̂e−iωteikx, and we can
define variables pν = Rep̂νe

iωteikx, where p̂ν = −iωτν p̂/(1− iωτν). Thus, Eq.
(2) leads to the coupled partial-differential equations

∂p

∂t
= −c ∂p

∂x
+ δ

∂2p

∂x2
−
∑

ν

(∆c)ν
∂pν
∂x

, (11-6.3a)

(

1 + τν
∂

∂t

)

pν = τν
δp

∂t
. (11-6.3b)

The superposition principle requires that these also apply for transient pulses.
For a gas, the physical interpretation of the pν is that

pν =

(

ρcp
βT

)

0

(T ′ − Tν), (11-6.4)

where Tν is the deviation from its ambient value of the temperature associated
with the internal vibrations of molecules of species ν. This identification
follows from Eqs. (10-8.1d) and (10-8.1f). The entropy deviation sfr from
its ambient value is small, so T ′ ≈ (Tβ/ρcp)op. Consequently, the relaxation
equation (10-8.1d) becomes (1 + τν∂/∂t)Tν = (Tβ/ρcp)op, which yields Eq.
(3b). (Here β is the coefficient of volume expansion; in the remainder of
the section, it denotes the sum 1 + B/2A, where B/A is the parameter of
nonlinearity.)

Modification to Include Nonlinear Effects

The principal effect the nonlinear terms in the fluid-dynamic equations have
on traveling acoustic waves in a nondissipative medium is that the wave
speed becomes c+ βp/ρc rather than c (see Sec. 11-1). This suggests that if
the attenuation per wavelength is small, a comparable substitution will be
appropriate in Eqs. (3). Since the second and third terms on the right side
of (3a) should typically be much smaller in magnitude than the first term, it
is a good approximation† for low-amplitude plane waves to account for the

† This technique for obtaining an approximate nonlinear equation for propagation in a dis-
persive medium is sometimes referred to as Whitham’s rule. Less heuristic derivations with
various degrees of generality are given by P. A. Lagerstrom, J. D. Cole, and L. Trilling,
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amplitude dependence of wave speed in the first term only. Doing this yields

∂p

∂t
+ c

∂p

∂x
+
βp

ρc

∂p

∂x
− δ

∂2p

∂x2
+
∑

ν

(∆c)ν
∂pν
∂x

= 0, (11-6.5)

or, equivalently, in terms of the particle velocity v = p/ρc in the propagation
direction,

vt + (c+ βv)vx = δvxx −
∑

ν

(∆c)νvν,x. (11-6.5a)

Here the t and x subscripts denote partial derivatives; the resulting model
for plane-wave propagation is completed by Eq. (3b) with p and pν replaced
by v and vν .

The Burgers Equation

For a fluid without relaxation processes, e.g., monatomic gases or pure water,
Eq. (5a), with the (∆c)ν set to zero, reduces to the Burgers equation.‡ With
suitable redefinitions of the parameters c and δ, we can also use this as an
approximate description§ for nonlinear propagation of an initially constant-
frequency wave when the dispersion relation (2) is well approximated by
c∗k = ω+ i(ω/c∗)2δ∗ for a wide range of ω centered at the waveform’s initial
frequency with particular choices for c∗ and δ∗.

For propagation in air at 1 atm pressure and at 20◦C, the order of magni-
tude of δ∗ is 1.9× 10−6m2/s above the O2 vibrational relaxation frequency;
this value is augmented in accord with Eq. (10-8.15) by an amount 6.4/f1
between the two relaxation frequencies and by an additional amount 1.2/f2
below the N2 vibrational relaxation frequency f2. Similarly, in seawater at

“Problems in the theory of viscous compressible fluids,” Calif. Inst. Tech. Guggenheim
Aeronaut. Lab. Rep. Of. Nav. Res., 1949; M. J. Lighthill, “Viscosity effects in sound waves
of finite amplitude,” in G. K. Batchelor and R. M. Davies (eds.), Surveys in Mechan-
ics, Cambridge University Press, London, 1956; Hayes, “The basic theory of gasdynamic
discontinuities”; and H. Ockendon and D. A. Spence, “Non-linear wave propagation in a
relaxing gas,” J. Fluid Mech. 39:329–345 (1969).
‡ H. Bateman, “Some recent researches on the motion of fluids,” Mon. Weather Rev. 43:163–
170 (1915); the equation later emerged in a mathematical model of turbulence proposed
by J. M. Burgers (1939, 1940) and summarized in his “A mathematical model illustrating
the theory of turbulence,” in R. von Mises and T. von Kármán (eds.), Adv. Appl. Mech.,
vol. 10, Academic, New York, 1948. Its recent extensive applications to nonlinear acoustics
originated with the work of Lagerstrom, Cole, and Trilling, “Problems in the theory of
viscous compressible fluids,” and with J. D. Cole, “On a quasi-linear parabolic equation
occurring in aerodynamics,” Q. Appl. Math. 9:225–231 (1951).
§ D. T. Blackstock, “Thermoviscous attenuation of plane, periodic, finite-amplitude sound
waves,” J. Acoust. Soc. Am. 36:534–542 (1964).
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10◦C, 1 atm pressure, and 35◦/oo salinity, the Fisher-Simmons tabulation†

suggests

δ∗ =











3.1× 10−6m2/s above 91 kHz

6.3× 10−5m2/s from 920 Hz to 91 kHz

1.2× 10−3m2/s below 920 Hz

A standard representation of the Burgers equation results if we regard v
as a function of x′ = x− ct and t rather than of x and t. Then, since the time
derivative of v at fixed x is (∂/∂t− c∂/∂x′)v(x′, t), the truncated version of
Eq. (5a) reduces (with subscripts denoting partial derivatives) to

vt + βvvx′ = δvx′x′ . (11-6.6)

The solution of this in the limit β → 0, δ → 0 is v = f(x − ct), which is the
linear-acoustics expression for a plane wave in an ideal fluid.

An equation that is equivalent to the same order of approximation results
if one regards v as a function of t′ = t − x/c and x. In the small nonlinear
term βvvx and in the dissipative term δvxx in Eq. (5a), setting ∂/∂x equal
to its approximate equivalent −(1/c)∂/∂t yields‡

vx −
β

c2
vvt′ =

δ

c3
vt′t′ . (11-6.7)

As discussed further in Sec. 11-7, this version is especially convenient for
studies of boundary-value problems when v is specified as a function of t at
some fixed value of x.

Rise Times and Thicknesses of Weak Shocks

The weak-shock model discussed in Sec. 11-3 leads to abrupt discontinuities,
but when the model incorporates dissipation processes, such discontinuities
become instead transition regions over which the pressure and fluid velocity
change rapidly. Insight§ into the nature of the transition results from con-
sideration of the idealized model (see Fig. 11-9) of a wave moving without
change of form in the x direction with speed V . For x≫ V t, p and v should
be zero, while for x≪ V t, p and ρcv approach the shock overpressure psh.

† F. H. Fisher and V. P. Simmons, “Sound absorption in sea water,” J. Acoust. Soc. Am.
62:558–564 (1977). (See Section 10-8 of the present text.)
‡ J. S. Mendousse, “Nonlinear dissipative distortion of progressive sound waves at moderate
amplitudes,” J. Acoust. Soc. Am. 25:51–54 (1953).
§ The study of shock structure dates back to Taylor, “The conditions necessary for dis-
continuous motion in gases,” and to R. Becker, “Shock waves and detonations,” Z. Phys.
8:321–362 (1922). The latter’s result for an ideal gas with finite viscosity and thermal
conductivity reduces to that given here in the weak-shock limit.
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Figure 11-9 Profile of the shock structure of the early portion of a weak shock governed
by the Burgers equation. The shock is advancing into a medium originally at rest.

The assumption v = v(x−V t), when inserted into Eq. (5a) with the (∆c)ν
set to zero, yields (with ξ = x− V t)

(c− V + βv)vξ = δvξξ, (11-6.8)

which integrates, with the boundary condition v → 0 as ξ → ∞, to

(c− V )v + 1
2βv

2 = δvξ. (11-6.9)

The other boundary condition, that v → psh/ρc as ξ → −∞, requires V =
c + 1

2βpsh/ρc, which is the speed predicted by the weak-shock theory. This
recognition reduces (9) (with the abbreviation vsh = psh/ρc) to

1

vξ
=
dξ

dv
= − 2δ/β

v(vsh − v)
= −2δ/β

vsh

(

1

v
+

1

vsh − v

)

, (11-6.10)

which in turn integrates to

ξβvsh
2δ

= − ln

(

v

vsh − v

)

, (11-6.11)

v

vsh
=

p

psh
=

exp(−4ξ/l)

1 + exp(−4ξ/l)
=

1

2

(

1− tanh
2ξ

l

)

, (11-6.12)

l =
8δ

βvsh
=

4µc

βpsh

[

4

3
+
µB
µ

+
(γ − 1)κ

cpµ

]

. (11-6.13)



664 11 Nonlinear Effects in Sound Propagation

In Eq. (12), the constant of integration has been chosen such that v/vsh = 1
2

at ξ = 0 (x = V t).
The thickness parameter l has the property

l =
vsh

(−dv/dξ)
v=

1
2vsh

, (11-6.14)

so a straight line tangent to the waveform at its half-peak point (ξ = 0)
reaches from the line v = vsh to the line v = 0 over a distance interval
of l. This accordingly allows us to regard l as the shock thickness. From
an analogous point of view, l/c is the shock rise time. Both are inversely
proportional to the shock overpressure.

Relaxation Effects on Shock Structure

To examine how a relaxation process affects the propagation of a weak shock,
we consider a medium with only one such process. The application of the
operator (1 + τ∂/∂t) in such a case to both sides of Eq. (5a) then yields,†

with the help of Eq. (3b),
(

1 + τ
∂

∂t

)

[vt + (c+∆c+ βv)vx − δvxx] = (∆c)vx. (11-6.15)

As in the preceding discussion, we assume that v is of the form v(ξ), where
ξ = x − V t, and that v → vsh as ξ → −∞. The latter requirement leads to
V = c+ 1

2βvsh, so the following ordinary differential equation for v results:

(

1− V τ
d

dξ

)[

v(v − vsh)−
vshl

4
vξ

]

= V τφvshvξ, (11-6.16)

where l is the characteristic length given by Eq. (13) and where

φ =
2∆c

βvsh
= 2ρc

∆c

βpsh
(11-6.17)

is a dimensionless quantity that measures the relative strength of the re-
laxation process and of the nonlinearity. The limit φ → 0 yields the same
differential equation (9) as neglect of relaxation processes.

If l + 4V τφ is substantially larger than V τ , the differential equation (16)
can be approximated by setting the operator 1 − V τd/dξ equal to 1 on the

† A. L. Polyakova, S. I. Soluyan, and R. V. Khokhlov, “Propagation of finite disturbances
in a relaxing medium,” Sov. Phys. Accoust. 8(1):78–82 (1962); Ockendon and Spence,
“Nonlinear wave propagation”; O. V. Rudenko and S. I. Soluyan, Theoretical Foundations
of Nonlinear Acoustics, Consultants Bureau, New York, 1977, pp. 88–96.
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left side, so that Eq. (12) results but with l replaced by an augmented shock
thickness

l∗ = l + 4V τφ ≈ l + 4cτφ. (11-6.18)

The conclusion is the same as that from a low-frequency approximation to the
relaxation process’s contribution to the dispersion relation, so that the bulk
viscosity is augmented by an amount∆µB given by Eq. (10-8.15). This applies
in particular for shocks sufficiently weak to ensure that φ≫ 1. Any semblance
of a shock in the waveform will be lost if l∗ is larger than one-fourth a
representative wavelength. Under such circumstances, the weak-shock theory
discussed in Sec.10-3 loses applicability, even as a gross approximation.

The differential equation (16) is difficult to solve in general, but some
insight results from setting l to zero at the outset, so that

1

V τvξ
=

d

dv

ξ

V τ
=

(φ− 1)vsh + 2v

v(v − vsh)
=

1 + φ

v − vsh
− φ− 1

v
, (11-6.19)

which integrates to

eξ/V τ = (const)(vsh − v)1+φv1−φ. (11-6.20)

At this point, one must distinguish between the cases φ < 1 and φ > 1. If
φ < 1, the frozen sound speed c+∆c is less than the wave speed c+ 1

2βvsh,
so the only possibility for a wave advancing into an undisturbed medium
is for the waveform to begin with a discontinuity of net overpressure ρcvf
(f for front), where vf < vsh. This discontinuity must move with a speed
c + ∆c + (β/2)vf ; one uses the frozen sound speed here rather than the
equilibrium sound speed because the fluid just behind the discontinuity must
behave as if the internal degrees of freedom were frozen over any time interval
small compared with the relaxation time τ . The speed c+∆c+(β/2)vf must
be the same as V , however, so we identify vf = (1 − φ)vsh. If ξ = 0 locates
the discontinuous beginning of the waveform, the constant of integration in
(20) must be such that v = (1− φ)vsh when ξ = 0. Thus, we have (φ < 1)

v = 0, ξ > 0, (11-6.21a)

eξ/V τ =

(

1− v/vsh
φ

)1+φ(
v/vsh
1− φ

)1−φ

, 1− φ <
v

vsh
< 1. (11-6.21b)

In the other case, when φ > 1, the waveform is continuous and has a
precursor (which arises because the frozen sound speed exceeds the nominal
shock velocity). To pinpoint the region of transition near ξ = 0, we choose
the constant of integration to be such that v = vsh/2 when ξ = 0. Thus, Eq.
(20) yields (φ > 1)

eξ/V τ =
(2 − 2v/vsh)

φ+1

(2v/vsh)φ−1
, 0 < v < vsh, (11-6.22)
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which in turn leads to

4V τφ =
vsh

(dv/dξ)
v=

1
2vsh

, (11-6.23)

so 4V τφ ≈ 4cτφ can be regarded as the apparent shock thickness for the case
φ > 1. However, the waveform is not symmetric about the half-peak crossing,
except in the limit when φ ≫ 1. In the latter case, Eq. (22) reduces to Eq.
(12) but with l replaced by 4V τφ.

Figure 11-10 Profiles of the leading portions of shock waves of various amplitude in
a medium with a single relaxation process and with viscosity and thermal conduction
neglected. The parameter φ is 2ρc∆c/βpsh, where ∆c is difference between frozen sound
speed and equilibrium sound speed, psh is shock overpressure, and β is 1 + 1

2
B/A. (a) If

φ < 1, the asymptotic waveform begins with a discontinuity, while (b) if φ > 1, it has a
precursor and no discontinuity.

Plots of v/vsh = p/psh versus ξ/V τ , derived from Eqs. (21) and (22), are
given in Fig. 11-10 for various values of φ. From the inspection of such plots
and from the analysis above, one concludes that the relaxation process has
relatively little effect on the transition region if the overpressure amplitude
is such that φ < 0.2. In the other limit, when the overpressure is sufficiently
low for φ to be greater than, say, 4, the effect of a relaxation process can be
formally taken into account by the thermoviscous model, i.e., that leading
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to the Burgers equation, with a suitable augmentation of the bulk viscosity.
This presumes that l+4V τφ is substantially smaller than one-fourth of a rep-
resentative wave-length of the disturbance. In the opposite circumstance, the
nonlinear effects would be of negligible importance compared with dissipation
and dispersion.

For sound in air, the value of ∆c at 20◦C is 0.11 m/s for O2 vibrational
relaxation and is 0.023 m/s for the N2 vibrational relaxation. The correspond-
ing values of ρc∆c/β are 39.0 and 7.8 Pa, respectively. Consequently, these
relaxation processes have minor influence on shock structure if psh > 200
Pa. If psh < 2Pa, the presence of relaxation processes is accounted for by an
appropriate augmentation of the bulk viscosity, providing the shock duration
is somewhat longer than what the model would predict for the rise time.

11-7 TRANSITION TO OLD AGE

The gradual rounding of the shocks in a sawtooth waveform results ultimately
in a sinusoidal waveform. We here complete the discussion of the example be-
gun in Sec. 11-2 with an analysis of the corresponding solution of Mendousse’s
version, Eq. (11-6.7), of the Burgers equation.

Reduction to the Linear Diffusion Equation

The insertion† of

v(x, t′) = a
Ft′(x, t

′)

F (x, t′)
(11-7.1)

into Eq. (11-6.7), where a is a constant, yields the differential equation

F 2(Ft′x − δc−3Ft′t′t′)−FFt′ [Fx − (3δc−3 − βac−2)Ft′t′ ]

+ (Ft′)
3(βac−2 − 2δc−3) = 0. (11-7.2)

Consequently, Eq. (1) satisfies the Mendousse-Burgers equation if

a =
2δ

βc
, (11-7.3)

Fx = δc−3Ft′t′ . (11-7.4)

† Cole, “On aquasi-linear parabolic equation”; E. Hopf, “The partial differential equation
ut + uux = µuxx,” Commun. Pure Appl. Math. 3:201–230 (1950); the adaption to Eq.
(11-6.7) of this technique for solving quasi-linear partial-differential equations is included
in Mendousse, “Nonlinear dissipative distortion.”
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Thus, the problem of solving the nonlinear partial-differential equation is
reduced to that of solving the linear diffusion equation.

Solution of the Boundary-Value Problem

If the acoustic pressure at x = 0 is Po sinωt, as in Sec. 11-2, the function F
should satisfy the boundary condition

Po
ρc

sinωt =
2δ

βc

∂

∂t
(lnF ), x = 0

or

F = exp

(

−Γ
2
cosωt

)

, x = 0, (11-7.5)

Γ =
βPo
ρωδ

=
c3/δ

ω2x̄
. (11-7.6)

The diffusion equation (4) is separable and has particular solutions

e−n
2ω2(δ/c3)x cosnωt′ = e−n

2αx cosnωt′,

where α = ω2δ/c3 (or, equivalently, α = 1/Γ x̄) is the attenuation coefficient
for plane-wave propagation. Since the boundary condition in Eq. (5) requires
that F be even in t′ and periodic with period 2π/ω, we can set

F =

∞
∑

n=0

Ane
−n2αx cosnωt′, (11-7.7)

where the coefficients An satisfy

∞
∑

n=0

An cosnωt = e−(Γ/2) cosωt. (11-7.8)

This subsequently yields [see Eq. (2-7.3)]

An =
ǫn
π

∫ π

o

cos nθe−(Γ/2) cos θdθ (11-7.9a)

= ǫn(−1)nIn

(

Γ

2

)

(11-7.9b)
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for the Fourier coefficients. Here ǫn is 1 for n = 0 and is 2 for n ≥ 1; the In
are the modified Bessel functions†

In(z) = (−i)nJn(iz) =
∞
∑

m=0

(z/2)n+2m

m!(n+m)!
. (11-7.10)

Putting the above An into Eq. (7), then inserting the resultant into Eq.
(1), with α = 2δ/βc recognized as 2Po/ρcωΓ and with ρcv recognized as p,
yields

p

P0
=

4

Γ

∞
∑

n=1
(−1)n+1In

(

Γ

2

)

ne−n
2σ/Γ sin nωt′

Io

(

Γ

2

)

+ 2
∞
∑

n=1
(−1)nIn

(

Γ

2

)

e−n2σ/Γ cosnωt′
, (11-7.11)

where we replace αx by the equivalent σ/Γ , with σ = x/x̄.

Relative Importances of Nonlinear and Dissipative

Effects

The parameter Γ in the above solution serves as a measure of the predom-
inance of nonlinear effects over dissipative effects. The inequality Γ > 1 is
equivalent to that of Eq. (11-3.10) and marks the transition from primarily
dissipatively controlled waveform distortion to primarily nonlinear distortion.
Because the problem formulation reduces to that in Sec. 11-2 when δ = 0,
the above result must reduce to the Fubini-Ghiron solution, Eq. (11-2.7), in
the limit Γ − ∞, σ < 1, although the correspondence is obscured by the
mathematical representations. However, in the event σ/Γ is of the order of,
say, 0.2 or larger, the factors e−n

2σ/Γ in the various terms above indicate
that the Fubini-Ghiron solution is then a poor approximation.

In the Γ ≪ 1 limit, Eq. (11) reduces to

p ≈ Poe
−αx sin

[

ω
(

t− x

c

)]

, (11-7.12)

which is the same as would be obtained if nonlinear terms had been neglected
at the outset. Thus, one need not be concerned about such nonlinear effects
within the present context if the driving amplitude is sufficiently weak. For
sound in pure water, for example, where δ is of the order of 3 × 10−6m2/s,
β ≈ 3.5, setting Γ = 1 gives Po/f ≈ 0.0054 Pa/Hz, so if f = 20kHz, the
nonlinear effects should be minor, even in an accumulative sense, if Po is sub-

† G. N. Watson, A Treatise on the Theory of Bessel Functions, 2d ed., Cambridge Uni-
versity Press, London, 1944, pp. 77–80.
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stantially less than 100 Pa. The tendency for nonlinear steepening is nullified
by the greater erosion of the higher-frequency harmonics by the dissipative
processes.

Transition from Sawtooth to Old Age

The sawtooth solution described by Eq. (11-5.9) must correspond to Eq.
(11-7.11), in the limit Γ → ∞, with σ somewhat greater than 3. The demon-
stration† of this results from a replacement of In(Γ/2) in Eq. (11) by its
approximate asymptotic limit

In

(

Γ

2

)

≈ Io

(

Γ

2

)

e−n
2/Γ , (11-7.13)

such that

p

Po
=

1

Γ

[

(∂/∂z)θ4(z, q)

θ4(z, q)

]

2z=ωt′,q=e−(σ+1)/Γ

, (11-7.14)

where

θ4(z, q) = 1 + 2
∞
∑

n=1

(−1)nqn
2

cos 2nz (11-7.15)

is the theta function of the fourth type. The indicated logarithmic derivative‡

of θ4(z, q) can be shown, moreover, to be

2

∞
∑

n=1

sin 2nz
1
2 (q

−n − qn)
(11-7.16)

so the above result becomes

p

Po
≈ 2

Γ

∞
∑

n=1

sin[nω(t− x/c)]

sinh[n(σ + 1)/Γ ]
(11-7.17)

† D. T. Blackstock, “Thermoviscous attenuation of plane, periodic, finite-amplitude sound
waves,” J. Acoust. Soc. Am. 36:534–542 (1964). A heuristic justification of Eq. (13) pro-
ceeds from the recursion relation (Watson, p. 79)

Iν+1(Γ/2) − Iν−1(Γ/2)

(ν + 1) − (ν − 1)
= −2ν

Γ
Iν

(

Γ

2

)

to
d

dν
Iν

(

Γ

2

)

= −2ν

Γ
Iν

(

Γ

2

)

which integrates to Eq. (13).
‡ A proof is outlined by E. T. Whittaker and G. N. Watson, A Course of Modern Anal-
ysis, 4th ed., Cambridge University Press, Cambridge, 1927, p. 489. Applicable numerical
results for the evaluation of the logarithmic derivative are given by L. M. Milne-Thomson,
“Jacobian elliptic functions and Theta functions,” in M. Abramowitz and I. Stegun (eds.),
Handbook of Mathematical Functions, Dover, New York, 1965, pp. 567–585.
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Since the hyperbolic sine equals its argument n(σ + 1)/Γ when Γ is large,
this expression for p/Po reduces to a sawtooth series, Eq. (11-5.9), in the
limit Γ → ∞, σ remaining finite.

The old-age limit is realized when the waveform once again has a sinusoidal
form, such that the fundamental component dominates. This implies that
(σ + 1)/Γ is of the order of, say, 2 or more. In this limit, (17) becomes

p

Po
≈ 4

Γ
e−1/Γ e−αx sin

[

ω
(

t− x

c

)]

, (11-7.18)

or, since Γ as given by Eq. (6) is presumed large,

p ≈ 4ωρδ

β
e−αx sin

[

ω
(

t− x

c

)]

. (11-7.19)

This is independent of the driving amplitude (or of the value of Po), so the
existence of a saturation limit, predicted in Sec. 11-5, is upheld, even when
dissipation is taken into account.

Note that Eqs. (12) and (18), holding in the limit of large σ for Γ ≪ 1 and
Γ ≫ 1, respectively, are special cases of the large σ limit of Eq. (11), i.e.,

p ≈ 4ωρδ

β

I1(Γ/2)

I0(Γ/2)
e−αx sin

[

ω
(

t− x

c

)]

. (11-7.20)

The saturation upper limit results when I1/Io is replaced by its asymptotic
value of 1,

A numerical example of the foregoing considerations would be a sinu-
soidally driven plane wave of original amplitude Po = 104 Pa and frequency
200 kHz propagating through water; δ = 3×10−6m2/s, β = 3.5, c = 1500m/s,
ρ = 103kg/m3. Equations (6) yield x̄ = 77m, Γ = 19. Shocks therefore start
to form at x = 77m; the sawtooth regime begins at x ≈ (π/2)77 = 121m; old
age is realized at x ≈ (2Γ−1)x̄ = 2800m. The saturation amplitude at 2800m
is (4ωρδ/β)e−α/Γ ≈ 600 Pa and does not increase with further increase of
Po.
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11-8 NONLINEAR EFFECTS IN CONVERGING

AND DIVERGING WAVES

A wedding† of the nonlinear theory of plane-wave propagation to geometrical
acoustics results with the assumptions that nonlinear effects do not appre-
ciably alter directions of wavefront normals or alter ray-tube areas. In what
follows, we proceed without explicit consideration of dissipation processes.

Figure 11-11 Geometry used in the determination of the nonlinear acoustics correction
to the travel time along a curved ray path in an inhomogeneous moving fluid.

Corrected Travel Time along Ray Path

The linear acoustics theory predicts that acoustic pressure along a ray path
(see Fig. 11-11) varies with path distance l as

p = B(l)g (t− τ(l)) , (11-8.1)

† W. D. Hayes, R. C. Haefeli, and H. E. Kulsrud, “Sonic boom rropagation in a strati-
fied atmosphere, with computer program,” NASA CR-1299, 1969; G. B. Whitham, “On
the propagation of weak shock waves,” J. Fluid Mech. 1:290–318 (1956). The most notable
circumstances for which the weak-shock-ray-theory wedding breaks down are those of caus-
tics: W. D. Hayes, “Similarity rules for nonlinear acoustic propagation through a caustic”
in 2d Conf. Sonic Boom Res., Washington, 1968, NASA SP-180, pp. 165–171; R. Seebass,
“Nonlinear acoustic behavior at a caustic,” 3d Conf. Sonic Boom Res., NASA SP-255,
1971, pp. 87–120; F. Obermeier, “The behavior of asonic boom in the neighborhood of a
caustic,” Max Planck Inst. Strömungsforschung, Rep. 28, Göttingen, 1976.
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where B(l) continually adjusts to preserve the Blokhintzev invariant, Eq.
(8-6.13), such that

d

dl

(

B2(l)(c+ v · n)|v + cn|A
ρc3

)

= 0. (11-8.2)

Here A(l) is the ray-tube area along the path, and τ(l) is ray travel time from
a given reference point.

The ray construction requires, moreover, that p/B(l) = g(ψ) appear con-
stant (or, alternatively, that ψ = t− τ appear constant) to someone moving
with the trace velocity of a wavefront along the ray. If cn is the speed of a
wavefront normal to itself, then cn/(eray ·n) is the trace velocity, where eray
is the unit vector in the ray direction and n is the unit vector normal to
the wavefront. The integral along the ray path of the reciprocal of this trace
velocity gives the nominal travel time of the ray

τ(l) =

∫ l

o

eray · n

c+ v · n
dl, (11-8.3)

where c+ v · n is recognized as cn.
The nonlinear acoustic modification of the above formulation, resulting

from Eq. (11-1.6), is such that

c+ v · n → co + vo · n+
βp

ρoco
=(eray · n)

(

dτ

dl

)−1

+(eray · n)
dA

dl

(

dτ

dl

)−2

g(ψ), (11-8.4)

where τ(l) is as defined above in terms of ambient quantities and the age

variable A (l) is defined as

A (l) =

∫ l

o

βB(l)eray · n

ρc(c+ v · n)2
dl, (11-8.5)

For propagation in a homogeneous medium without ambient flow, eray
equals n and c+ v ·n is c, so the nominal travel time τ(l), amplitude factor
B(l), and age A (l) reduce to

τ(l) =
l

c
, B(l) =

[

A(0)

A(l)

]1/2

,

A (l) =
β

ρc3

∫ l

o

[

A(0)

A(l)

]1/2

dl, (11-8.6)

where A(l) is ray-tube area and B(l) is normalized so that p = g(t) at l = 0.
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The requirement that g(ψ) appear constant to someone moving along the
ray path with the augmented trace velocity, when expressed in the manner
of Eq. (11-1.3), yields

∂g

∂t
+

[

(

dτ

dl

)−1

+
dA

dl

(

dτ

dl

)−2

g(ψ)

]

∂g

∂l
= 0. (11-8.7)

Since ∂g/∂l is −(dτ/dl)∂g/∂t when nonlinear terms are neglected, little er-
ror is incurred if such a substitution is made above in the (a priori small)
nonlinear term itself, so that the differential equation becomes

∂g

∂l
+

[

dτ

dl
− g(ψ)

dA

dl

]

∂g

∂t
= 0. (11-8.8)

This in turn integrates to the parametric solution

t = ψ + τ(l)− g(ψ)A (l), p = B(l)g(ψ), (11-8.9)

so that ψ(t, l) is t when l = 0.
Equations (9) are similar to the previously discussed Eqs. (11-1.11) and

reduce to those equations when B(l) = 1, τ(l) = l/c, and A (l) = βl/ρc3.

Weak Shocks

The modification of the model represented by Eqs. (9) to allow for the pres-
ence of shocks proceeds along lines similar to those described in Sec. 11-3. A
shock moves relative to the ambient flow with a speed c+βpav/ρc, where pav
is the average of the acoustic pressures ahead and behind the shock front;
hence the shock slowness, identified from Eq. (9), is

dtsh
dl

=
dτ

dl
− 1

2 [g(ψ+) + g(ψ−)]
dA

dl
. (11-8.10)

Here ψ+ and ψ− are such that Bg(ψ−) is the pressure arriving just before the
shock and Bg(ψ+) that arriving just after the shock, so B[g(ψ+)− g(ψ−)] is
the shock overpressure, ψ− < ψ+. The portion of the initial waveform with
ψ between ψ−(l) and ψ+(l) does not contribute to the waveform received at
distance l.

The equal-area rule for this model,

d

dl

∫ ψ+

ψ−

[tsh(l)− t(ψ, l)]
dg(ψ)

dψ
dψ = 0 (11-8.11)
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results from Eq. (9) and from the above expression for dtsh(l)/dl. The integral
is zero where the shock is first formed and consequently is always zero. The
conclusion is not changed if g(ψ) is replaced by p(l, ψ) = B(l)g(ψ).

Application of the equal-area rule is facilitated if the integral in Eq. (11)
is integrated by parts. Subsequent insertion of t(l, ψ) from Eq. (9) yields

∫ ψ+

ψ−

g(ψ)dψ = 1
2A (l)[g2(ψ+)− g2(ψ−)]. (11-8.12)

Then, since ψ+ − ψ− = A (l) [g(ψ+) − g(ψ−)] results from the equivalence
of t(l, ψ−) and t(l, ψ+), the above relation yields in turn

∫ ψ+

ψ−

+

[

g(ψ)− g(ψ−)−
1

A (l)
(ψ − ψ−)

]

dψ = 0. (11-8.13)

Figure 11-12 Graphical technique for the application of the equal-area rule to a plot of
of the original undistorted waveform g(ψ). The straight line, whose slope is the reciprocal
of the age variable, is drawn so that the two shaded areas are equal. Construction yields
ψ−, g(ψ−), ψ+, and g(ψ+).

A graphical interpretation (see Fig. 11-12) of the above associates the
integrand with a straight line with slope 1/A (l) extending from [ψ−, g(ψ−)]
to [ψ+, g(ψ+)] in the plane described by coordinate axes ψ and g. This
straight line crosses the curve of g(ψ) versus ψ at ψ−, ψ+, and an intermediate
point. At ψ− and ψ+, the derivative dg/dψ must be negative, so g(ψ) is below
the line for ψ slightly larger than ψ− but is above the line for ψ slightly less
than ψ+. Equation (13) states that ψ− and ψ+ must be such that the areas
so delimited above the line are equal to those below the line. The line, whose
slope is fixed, is moved to a position such that the areas cancel.

The construction also applies to the coalescence of shocks. Consider, for
example, the three-cycle waveform sketched in Fig. 11-13a. At an early stage
in the evolution (Fig. 11-13b), there are four shocks, which we number 1,
2, 3, 4. Shock 2 is moving faster [higher average g(ψ)] than shock 1, so it
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Figure 11-13 (a) Original nondistorted three-cycle waveform. (b) Intermediate form of
distorted waveform with four shocks. (c) Asymptotic waveform predicted by weak-shock
theory. Shocks 1 and 2 and shocks 3 and 4 have coalesced during the time since the
waveform had the shape in (b).

eventually overtakes shock 1. However, shock 3 is moving slower than shock
2, so it never overtakes 2; instead it is overtaken by 4, so 3 and 4 coalesce.
Thus, in the limit of very large A (l), one has two shocks, the construction
being as indicated in Fig. 11-13c.

Asymptotic Form of a Transient Pulse

The analysis just described can be extended to an arbitrary transient pulse
of short duration. In the limit of large age variable A (l), the waveform at l
will typically begin with a jump from zero g to positive g; the value of g(ψ−)
for this shock must be zero, so Eq. (12) yields

g2(ψ+) =
2

A (l)
I(ψ+), I (t) =

∫ t

−∞

g(t)dt. (11-8.14)
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These suffice to determine ψ+ and g(ψ+) and therefore yield the leading
shack’s overpressure pfs = B(l)g(ψ+), where fs stands for front shock, and,
via Eq. (9), its time of arrival t(l, ψ+). For any value of ψ+(l) that corresponds
to the leading shock, I(ψ+) and g(ψ+) must be positive and dg/dψ is less
than 1/A . Also, ψ+ must increase with increasing l, possibly with some dis-
continuities. In the absence of shock coalescence, I(ψ+) must increase with
l. Since the coalescence of a second shock with the leading shock cannot
result in a lower value for g(ψ+) at that particular instant, one concludes
from (14) that I(ψ+) must always increase with l. Thus, as l increases indef-
initely, I(ψ+) approaches the maximum value Imax of the integral I(t). If
Imax < 0, there will be no shock at the beginning of the waveform, the pres-
sure disturbance being eventually terminated by a shock instead.

Given Imax > 0, the reasoning outlined above leads to the conclusion that
the overpressure of the leading shock must approach

pfs = B(l)

[

2Imax

A (l)

]1/2

. (11-8.15a)

Similarly, the tail shock will asymptotically have a jump from −pts to 0, with

pts = B(l)

[

2Jmax

A (l)

]1/2

, (11-8.15b)

where Jmax is the maximum value of

J(t) = −
∫ ∞

t

g(t)dt = −I(∞) + I(t). (11-8.16)

To determine the asymptotic-pulse duration, note that at ψ = ψo, where
I(ψo) = Imax and J(ψo) = Jmax, the function g(ψ) is 0 and dg/dψ is negative.
At large l, we anticipate that ψ+ for the front shock and ψ− for the tail shock
will be sufficiently close to ψo for g(ψ) to be approximated by (dg/dψ)o(ψ−
ψo) for any intermediate value of ψ. Also, in the limit of large A (l), one
should have A (l) ≫ 1/|(dg/dψ)o|. Consequently, an expansion of the first
of Eqs. (9) about ψo yields t − ψo − τ(l) for −(dg/dψ)oA (l)(ψ − ψo). The
pressure waveform, when approximated by B(l)(dg/dψ)θ(ψ − ψo), therefore
becomes

p(l, t) = −B(t)

A (l)
[t− ψo − τ(l)], (11-8.17)

which has a linear variation with time, as for an N wave. The front shock
arrives when p(l, t) = pfs, and the tail shock arrives when it is −pts; so this
expression describes the waveform for

[2JmaxA (l)]
1/2

> t− ψo − τ(l) > − [2ImaxA (l)]
1/2

. (11-8.18)
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Outside this range of time, the quantity p(l, t) is asymptotically zero. Since
A (l) increases with l, the pulse duration, represented by the difference of the
upper and lower limits in (18), also increases.

The above analysis presumes that A (l) increases indefinitely with increas-
ing l. If it is bounded, the asymptotic form may not be realized.

11-9 N WAVES IN INHOMOGENEOUS MEDIA;

SPHERICAL WAVES

The formulation above is here applied to the propagation of N waves un-
der more general circumstances than considered in Sec. 11-4. The theory is
then applied to the particular example of spherically diverging waves in a
homogeneous medium.

N-Wave Propagation

The waveform at l = 0 is here presumed already in the form of an N wave,
so that g(t) is 0 for t < −T0, is −Pot/To for −T0 < t < To, and is 0 for
t > To. The ray-tube parameter B(l) is defined as 1 when l = 0, so Po is
the N-wave over-pressure at the initial point on the ray path. Equating the
shock-slowness expression (11-8.10), with g(ψ−) = 0, to the l derivative of
the t(l, ψ+(l)) expression, derived from Eq. (11-8.9), yields the differential
equation

dψ+

dl
+
Po
To

dψ+

dl
A (l) = −1

2

Po
To
ψ+

dA

dl
. (11-9.1)

This in turn integrates to

ψ+(l) = − T 2
0

T (l)
T (l) = To

[

1 +
Po
To

A (l)

]1/2

, (11-9.2)

with the requirement that ψ+(l) = −To when l = 0.
The overpressure at the leading shock is B(l)g(ψ+) or

P (l) = B(l)Po

[

1 +
Po
To

A (l)

]−1/2

. (11-9.3)

This shock arrives when t is t(ψ+, l) or, equivalently, is τ(l)−T (l). Similarly,
the acoustic pressure just before the arrival of the second shock is −P (l); this
shock arrives at time τ(l) + T (l). Between the two shocks, p(l, t) decreases
linearly with time; it is zero at t = τ(l). Thus, the received waveform at any
subsequent point l is also an N wave. The peak overpressure is P (l), and the
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positive-phase duration is T (l). The quantity P (l)T (l)/B(l) is independent
of l; T (l) increases with increasing l while P (l)/B(l) decreases.

For plane waves in homogeneous media, B(l) is 1, and the age A (l) is
βl/ρcs, so Eqs. (2) and (3) reduce respectively to Eq. (11-4.5), with Lo = cTo,
and to Eq. (11-4.6).

Waves with Spherical Spreading†

For spherically spreading waves in a homogeneous quiescent medium, the
length l may be taken as r − ro, where r is distance from the center of the
source and ro is a reference distance. The ray-tube area is proportional to r2,
so Eq. (11-8.6) yields B(l) = ro/r. Consequently, the age variable becomes

A (r) =
β

ρc3
ro ln

r

ro
. (11-9.4)

Although A (r) increases more slowly with r than it does with distance in
plane-wave propagation [where A (l) increases linearly with l], A (r) neverthe-
less increases indefinitely. Consequently, spherical spreading cannot prevent
the formation of shocks. Equations (11-8.9) predict that the plot of p versus
t for fixed r will be multivalued if there is a solution of dg(ψ)/dψ = 1/A (r).
The smallest value of r at which this occurs is

ronset = r0 exp
ρc3/βr0

[dp(r0, t)/dt]max
. (11-9.5)

The denominator in the exponent is the maximum positive value of dp/dt at
r = ro. The exponential dependence on (dp/dt)−1

max is indicative of the greater
distance a spherical wave must travel than a plane wave with the same initial
waveform before a shock is formed.

The N-wave model of Eqs. (2) and (3) applies in particular to the initial
part (positive phase) of the shock waveform received at a moderate distance r
from a sudden local release of energy in an unbounded homogeneous medium.
To cast the expressions for positive-phase duration T (r) and for the shock
overpressure into an invariant form, we first note that 1 + (Po/To)A (r) can
be written as (βro/ρc

3)(Po/To) ln(r/r
∗), where r∗ is a constant satisfying

r∗ = r exp

(

−Tρc
3

Pβr

)

. (11-9.6)

† Landau, “On shock waves,” “On shock waves at large distances”; D. T. Blackstock,
“On plane, spherical, and cylindrical sound waves of finite amplitude in lossless fluids,”
J. Acoust. Soc. Am. 36:217–219 (1964).
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Although our initial derivation requires this to be evaluated with r = ro,
T = To, and P = Po, the quantity on the right with T = T (r) and P = P (r)
is actually independent of r, so it makes no difference what the choice of ro
may be (given that the positive phase resembles a half N wave) insofar as
the computation of r∗ is concerned. That the right side should be invariant
follows from Eqs. (2) to (4), with B(l) identified as ro/r. The other invariant
for the propagation is P (l)T (l)/B(l), so we set

rP (r)T (r) = (r∗)2ρcβK2, (11-9.7)

where K is a dimensionless constant. Solution of Eqs. (6) and (7) for T (r)
and P (r) then yields

T (r) = βK
r∗

c

(

ln
r

r∗

)1/2

, P (r) = Kρc2
r∗

r

(

ln
r

r∗

)−1/2

. (11-9.8)

The extrapolation to smaller values of r implies T (r) → 0, P (r) → ∞ as
r → r∗, so the model is meaningless unless r is somewhat larger than r∗. An
implication of the model is that a doubling of T requires that r increase by
a factor of e4 = 54.6.

Example Numerical integration† of the fluid-dynamic equations for an ideal
gas (γ = 1.4) when a finite amount of energy E is suddenly added at a point
yields

P = 0.09
ρc2

γ
, T = 0.36

(

γE

ρc5

)1/3

, r = 3

(

γE

ρc2

)1/3

, (11-9.9)

for the shock overpressure and positive-phase duration at the stated radius
r. What are the corresponding extrapolations to larger values of r?

Solution Direct substitution, with γ = 1.4 and β = 1.2, of (9) into Eqs. (6)
and (7) yields

r∗ = 0.7

(

E

ρc2

)1/3

, K = 0.4,

so

cT (r) = 0.32

(

E

ρc2

)1/3
(

ln
r

r∗

)1/2

,
P (r)

ρc2
=

0.4(r∗/r)

[ln(r/r∗)]1/2
.

If E were 0.23 J, for example, one would find r∗ = 0.8 cm for an atmosphere
of ambient density 1.2 kg/m3 and sound speed 340 m/s. At a distance of 1
m, the quantity [ln(r/r∗)]1/2 is 2.2, so that T = 25µs and P = 200Pa.

The model of a point energy source is usually relatively poor for laboratory-
scale sources such as a spark in air (whose region of energy deposition re-

† H. L. Brode, “Numerical solutions of spherical blast waves,” J. Appl. Phys. 26:766–775
(1955).
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sembles a finite line source‡), but it should apply to sources whose physical
dimensions are much smaller than (E/ρc2)1/3. An atomic bomb, for example,
would satisfy this criterion.

11-10 BALLISTIC SHOCKS; SONIC BOOMS

The simplest prototype of sonic-boom generation† is a slender needle-shaped
body moving in a straight line at constant supersonic speed V > c (Mach
number M = V/c) through a homogeneous medium. We first discuss the
linear acoustic theory for the resulting disturbance and then discuss how
nonlinear effects are incorporated into the model.

Linear Acoustic Model for Sound Generation by a

Moving Body

The applicable theory is most simply introduced with the consideration of a
cylinder aligned along the x axis with cross-sectional area A(x, t). The radius
r = (A/π)1/2 is assumed small compared with c times any characteristic time
associated with its variation. The moving surface under such circumstances
can be regarded as a linear distribution of acoustic monopoles such that
volume Ȧ(x, t)dx is being exuded per unit time by the cylinder segment
between x and x+dx. The superposition principle and Eq. (4-3.7) accordingly
yield the inhomogeneous wave equation

∇2p− 1

c2
∂2p

∂t2
= −pÄ(x, t)δ(y)δ(z). (11-10.1)

The point of view leading to the above equation applies to a needle-shaped
slender body‡ (see Fig. 11-14) moving at speed V if we replace A(x, t) by the

‡ W. M. Wright and N. W. Medendorp, “Acoustic radiation from a finite line source with
N-wave excitation,” J. Acoust. Soc. Am. 43:966–971 (1968).
† A suggested guide to the voluminous early literature on sonic booms is L. J. Runyan
and E. J. Kane, “Sonic boom literature survey,” vol. 2, “Capsule summaries,” Fed. Av.
Admin. Rep. FAA-RD-73-129-II, AD771-274, 1973, available from Nat. Tech. Inf. Serv.,
Springfield, Va.
‡ The topic discussed here is essentially that of linearized supersonic flow about a body
of revolution, the theory of which originated with T. von Kármán and N. B. Moore, “Re-
sistance of slender bodies moving with supersonic vdelocities with special reference to
projectiles,” Trans. Am. Soc. Mech. Eng., sec. APM 54:303–310 (1932). Antecedents date
back to J. Ackeret (1925, 1928) and earlier. While the sonic boom has intrinsic nonlinear
features, i.e., shock waves, it was demonstrated by G. B. Whitham that a viable theory of
the sonic boom could be developed taking the linearized flow solution as a starting point:
“The behavior of supersonic flow past a body of revolution, far from the axis,” Proc. R.
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cross-sectional area of whatever portion of the body happens to be passing
point x at time t. Thus, if AB(ξ) is the area a distance ξ behind the nose of
the body, then

A(x, t) = AB(V t− x), (11-10.2)

where the time origin is selected so that the nose of the needle is at x = 0
when t = 0. Here AB(ξ) is understood to be nonzero only for ξ between 0
and L, where L is the body length.

The trace-velocity matching principle, when (2) is inserted into (1), re-
quires that p depend only on t and x through the combination t1 = t− x/V ,
so we set ∂p/∂t = ∂p/∂t1 and ∂p/∂x = −(1/V )∂p/∂t1, with the result that
Eq. (1) reduces to

(

∂2

δy2
+

∂2

∂z2

)

p−
(

1

c2
− 1

V 2

)

∂2p

∂t21
= −ρV 2A′′

B(V t1)δ(y)δ(z), (11-10.3)

where A′′
B(ξ) is d2AB/dξ2.

Figure 11-14 Parameters used for discussion of sound radiation from a needle-shaped
body of revolution moving at supersonic speed V , Mach number M > 1, in a straight line.
Here AB(ξ) denotes cross-sectional area at distance ξ from the nose.

If one introduces a bogus coordinate x∗, Eq. (3) takes the form

(∇∗)2p− 1

(c∗)2
∂2p

∂t21
= −ρV 2A′′

B(V t1)δ(y)δ(z),

where (∇∗)2 =
∂2

∂y2
+
∂2

∂z2
+

∂2

∂x∗∂x∗
c∗ =

1

(c−2 − V −2)1/2
=

V

(M2 − 1)1/2

(11-10.4)

Soc. Land. A201:89–109 (1950); “The flow pattern of a supersonic projectile,” Commun.
Pure Appl. Math. 5:301–348 (1952).
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This, however, is the inhomogeneous wave equation† with a new identification
for c, so the solution must be of the form of Eq. (4-3.17) with s(x∗, y, z, t1)
identified as −1/4π times the right side. Consequently, the appropriate solu-
tion of Eq. (3) is

p =
1

4π

∫ ∞

−∞

ρV 2A′′
B((V )(t1 −R/c∗))

R
dx∗, (11-10.5)

where R = [(x∗)2 + y2 + z2]1/2.
Since the above integrand is symmetric about x∗ = 0, we need only inte-

grate from 0 to ∞ and then multiply by 2. Changing the variable of integra-
tion to ξ = (t1 −R/c∗)V then yields†

p =
ρV 2

2π

∫ ξm

−∞

A′′
B(ξ)dξ

[(V t− x− ξ)2 − (M2 − 1)r2]1/2
, (11-10.6)

where we replace t1 by t − x/V and (x2 + y2)1/2 by the cylindrical radial
distance r. The upper limit ξm is that value of ξ for which the quantity in
the radical first becomes zero, so

ξm = V t− x− (M2 − 1)1/2r =
[

t− n ·
x

c

]

V, (11-10.7)

where

n =
1

M
ex +

(M2 − 1)1/2

M
er (11-10.8)

is the unit vector making an angle cos−1(1/M) with the projectile’s trajec-
tory.

Since A′′
B(ξ) is zero unless ξ is between 0 and L, expression (6) requires p

to be zero unless ξm > 0 or, equivalently, unless the listener is within a Mach

cone moving with speed V with its apex at the projectile’s nose and with
an apex angle (Mach angle) of θM = sin−1(1/M) such that (see Fig. 11-15)
tan θM is the quotient r/(V t− x) on the surface ξm = 0.

Noting that the denominator in Eq. (6) can be expressed

[(V t− x− ξ)2 − (M2 − 1)r2]1/2 = (ξm − ξ)1/2[2(M2 − 1)1/2r + ξm − ξ]1/2,

we anticipate that if 2(M2 − 1)1/2r ≫ L, little error will be incurred if the
ξm − ξ term is neglected in the latter factor. Doing such reduces Eq. (6) to

† The analogy of the homogeneous version of (3) to that for sound propagation in two
dimensions is known as von Kármán’s acoustic analogy: T. von Kármán, “Supersonic aero-
dynamics: principles and applications,” J. Aeronaut. Sci. 14:373–409 (1947); J. W. Miles,
“Acoustical methods in supersonic aerodynamics,” J. Acoust. Soc. Am. 20:314–323 (1948).
† The model represented by Eq. (6) is inapplicable if A′(ξ) should be discontinuous since it
would lead to a singular prediction for p. A method of treating such contingencies is given
by M. J. Lighthill, “Supersonic flow past slender bodies of revolution, the slope of whose
meridian section is discontinuous,” Q. J. Mech. Appl. Math. 1:90–102 (1948).
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p =
ρV 2

21/2(M2 − 1)1/4
FW (V [t− n · x/c])

r1/2
, (11-10.9)

where the Whitham F function‡ (see Fig. 11-16) is

FW (ξ) =
1

2π

∫ ξ

−∞

A′′
B(µ) dµ

(ξ − µ)1/2
(11-10.10)

=
1

2π

d2

dξ2

∫ ∞

o

AB(ξ − η) dη

η1/2
, (11-10.10a)

and is dependent on the geometry of the projectile. Note that FW (ξ) = 0
for ξ < 0. It is understood that AB(ξ) goes to zero as ξ → 0 at least as fast
as ξ3/2 so FW (ξ) is finite near ξ = 0. Such is satisfied if the projectile has a
pointed nose. Similar restrictions are placed on the shape of the projectile at
its tail.

Geometrical-Acoustics Interpretation

Surfaces of constant phase in the above solution are surfaces along which
the argument of FW is constant and are therefore cones of apex angle θM .
The rays are straight lines normal to this family of cones and point in the
direction n. A ray leaving the x axis at xo in a given plane passing through
the x axis has coordinates (Fig. 11-17)

x = xo + (sin θM )s, r = (cos θM )s, (11-10.11)

where s is the distance along the ray from the trajectory. The cone normal to
the ray has principal radii of curvature, s and ∞, at the point described by
these coordinates, so the ray-tube area is proportional to s, as for cylindrical
spreading.

Along the ray described by Eqs. (11), n ·x is xo sin θM + s, so Eq. (9) has
the alternate description, along a given ray path,

‡ The version (10a) is inapplicable for a projectile of infinite length. The modification to
allow for discontinuities in A′

B(ξ) proposed by Whitham (1962) proceeds from Lighthill’s
(1948) result and yields the Riemann-Stieltjes integral

FW (ξ, α) =
1

2π

∫
(

2

αR

)1/2

h

(

ξ − µ

αR

)

dA′
B(µ),

where R(µ) is the body radius and α is (M2−1)1/2. The function h(X) decreases monoton-
ically from 1 at X = −1, passes through 0.73, 0.56, 0.48 at X = 0, 1, 2, and asymptotically
approaches 1/(2X)1/2 . The integration extends up to µmax(ξ), where ξ = µmax−αR(µmax)
determines µmax.



11-10 Ballistic Shocks; Sonic Booms 685

Figure 11-15 Concept of a Mach cone. The geometry in the sketch shows that tan θM is

c/(V 2 − c2)
1
2 or (M2 − 1)−1/2, where θM is the Mach angle and M is the Mach number

V/c.

p =
ρV 2M1/2FW (−xo + (t− s/c)V )

21/2(M2 − 1)1/2s1/2
. (11-10.12)

With an arbitrary choice of reference point sref and with l defined as s− sref ,
this is of the standard geometrical-acoustics form

p = B(l)g(t− τ(l)), (11-10.13)

with the identifications

B(l) =
(sref
s

)1/2

, τ(l) =
s

c
+
xo
V
, (11-10.14a)

g(t) =
ρV 2M1/2FW (V t)

(M2 − 1)1/2(2sref)1/2
, (11-10.14b)

where s = sref + l. The dependence of the amplitude on the inverse square
root of distance is the same as for cylindrical spreading.
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Figure 11-16 Whitham F function for a body of revolution whose plot of radius versus
axial distance is a segment of a parabola: (a) radius versus distance behind nose; (b)
Whitham F function.

Nonlinear Modifications

The analysis proceeds as if Eq. (13) described the acoustic pressure at l =
0, s = sref such that the major nonlinear distortion is regarded to take
place at s > sref . (The result turns out to be insensitive to the choice for
sref , so ws eventually take the limit sref → 0.) The formulation in Sec. 11-8
should therefore apply. Computation of the age variable A (l) in Eq. (11-8.5)
proceeds with eray · n = 1 and c+ v · n = c since the model considered has
no winds; the integration therefore yields

A (l) = 2
β

ρc3
sref

[

(

s

sref

)1/2

− 1

]

. (11-10.15)
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Figure 11-17 Geometry used in the discussion of accumulative nonlinear effects on the
pressure waveform generated by a projectile moving at supersonic speed.

At large l, the signature approaches that of an N wave whose front-shock
and tail-shock pressure jumps conform to Eqs. (11-8.15). In particular, the
front-shock overpressure is

pfs =

[

2B2(l)

A (l)(2sref)1/2

]1/2 [
ρV 2M1/2

(M2 − 1)1/2

]

[

max
1

V

∫ ξ

−∞

FW (ξ)dξ

]1/2

.

(11-10.16)
Equations (14a) and (15) imply, moreover, that

2B2(l)

A (l)(2sref)1/2
→ ρc3

21/2βs3/2
(11-10.17)

in the limit s≫ sref , the resulting limit being independent of sref . Thus, with
s replaced by r/(cos θM ) from Eq. (11), the above reduces to

pfs =
ρc2(M2 − 1)1/8

21/4β1/2r3/4
S
1/2
max

L1/4
K, (11-10.18)

where (see Fig. 11-18) Smax is the maximum cross-sectional area of the pro-
jectile, and

SmaxL
−1/2K2 = max

∫ ξ

−∞

FW (ξ)dξ, (11-10.19)
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such that K is a dimensionless constant† determined by only the shape of
the body.

Although the linear acoustics model predicts amplitude to decrease as
r−1/2, the above result shows that the dissipation at the shock front causes
it to decrease as r−3/4. The Mach-number dependence, as (M2 − 1)1/8, is
extremely weak; the factor (M2 − 1)1/8 is close to 1 for any M of normal
interest; e.g., it is 0.82 when M = 1.1 and 1.30 when M = 3.

The definite integral of FW (ξ) from −∞ to ∞ must be 0 in accord with
Eq. (10a), so Eq. (11-8.16) requires Jmax = Imax. Consequently, the pressure
jump at the tail shock is the same‡ as that of Eq. (18); pts = pfs.

The positive-phase duration T in the asymptotic limit is as described by
Eq. (11-8.18), so

T 2 =
ρV 2M1/2

(M2 − 1)1/2
2V −1SmaxL

−1/2K2 A (l)

(2sref)1/2
. (11-10.20)

The ratio A (l)/(2sref)
1/2 in the corresponding limit is 21/2(β/ρc3)s1/2, and

s is rM/(M2 − 1)1/2; thus the theory predicts

T =
23/4β1/2MS

1/2
maxKr1/4

L1/4c(M2 − 1)3/8
. (11-10.21)

Note that the ratio
pfs
T

=
ρc3(M2 − 1)1/2

2βrM
(11-10.22)

is asymptotically independent of the geometry of the projectile. The linear
theory implies a pulse duration of the order of L/V , so these asymptotic
expressions are not expected to be valid unless r is sufficiently large that 2T
is somewhat larger than L/V .

Because of the r1/4 dependence of the positive-phase duration the surfaces
at which the front and back shocks are received diverge, rather than being
parallel (see Fig. 11-19).

† D. L. Lansing, “Calculated effects of body shape on the bow-shock overpressures in the
far field of bodies in supersonic flow,” NASA Tech. Rep. R-76, Langley Research Center,
Hampton, Va., 1960. Lansing introduces a body shape constant Cb related to the K above
such that

Cb =
γ
√
π

25/4β1/2
K,

so Eq. (18) becomes

pfs =
po(M2 − 1)1/8

(r/L)3/4
2Rmax

L
Cb.

Typical values of Cb range from 0.54 to 0.81, so K ranges from 0.57 to 0.85.
‡ When lift contributions are taken into account, this is no longer exactly the case, as
explained by R. Seebass and F. E. McLean, “Far-field sonic boom waveforms,” Am. Inst.
Aeronaut. Astronaut. J. 6:1153–1155 (1968).
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Figure 11-18 (a) Radius profile with a discontinuous slope for a body of revolution
with a conical nose of length LN and with subsequent constant radius Rmax (eventually
terminating in some unspecified manner). (b) Corresponding early portion of Whitham

F function with singularity at ξ = LN . (c) Integral

∫ ξ

o

FW (ξ)dξ, units of R2
max/L

1/2
N ,

versus ξ/LN . Because the latter is bounded, it is suggested that formal application of the
equal-area rule to the waveform represented by the linear acoustics F function (b) may
yield a realistic waveform (beginning with a weak shock) at large distances from the flight
trajectory.
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Figure 11-19 Summary of theoretical predictions for asymptotic form of shock wave
generated by a supersonically moving body of revolution.

The extension† of the above theory to the case when the source of the
shock is a supersonic airplane rather than a needle-shaped body of revolution
presents a number of complications outside the scope of the present text.
However, the simpler applicable models generally used when the airplane is
flying slower than Mach 3 lead also to a Whitham F function but one which
depends on azimuth angle, vehicle Mach number, weight, and angle of attack.
The analysis, given the F function appropriate to the ray path connecting
airplane flight track and observation point, is then along the lines summarized

† W. D. Hayes, “Linearized supersonic flow,” Ph.D. thesis, California Institute of Tech-
nology, 1947; H. Lomax, “The wave drag of arbitrary configurations in linearized flow as
determined by areas and forces in oblique planes,” NACA RM A55A18, National Advisory
Committee for Aeronautics, Washington, 1955; F. Walkden, “The shock pattern of a wing-
body combination, rar from the flight path,” Aeronaut. Q. 9:169–194 (1958); J. Morris,
“An investigation of lifting effects on the intensity of sonic booms,” J. R. Aeronaut. Soc.
64:610–616 (1960).
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here. Taking into account the variation of atmospheric properties with height
proceeds in the manner outlined in Sec. 11-8.

11-11 PROBLEMS

PROBLEMS

11-1 Use data for water summarized in Sec. 1-9 to derive the parameter of
nonlinearity B/A for pure water at 10◦C.

11-2 For a simple wave, not necessarily of low amplitude, advancing in the +x
direction through a gas of original ambient pressure po, density ρθ, and
sound speed co, give explicit expressions for fluid velocity v(p) and sound
speed c(p) as functions of total pressure p.

11-3 Tabulations of Bessel functions indicate (see Prob. 10-18) that

Jn(nσ) →
0.447

n1/3
+ 0.411(σ − 1)n1/3

in the limit of small σ − 1 and large n. Use this result to show that the
Fubini-Ghiron solution is convergent at σ = 1 but its derivative with
respect to t diverges at σ = 1 for some value of ωt′. What does the latter
imply is occurring in the waveform as σ = 1 is approached?

11-4 Prove that the tangential component of the fluid velocity must be contin-
uous across a shock.

11-5 The weak-shock model predicts that a shock of overpressure psh advances
with speed c+ 1

2βpsh/ρc into a medium at rest with ambient sound speed
c and ambient density. Derive an expression for the lowest nonvanishing-
order (in psh/ρc

2) correction to this, assuming that the fluid is an ideal
gas.

11-6 The signature (acoustic pressure versus time) of a wave recorded at a
point x = 0 is shown in the figure. The wave propagates in a homogeneous
medium without ambient flow in the +x direction.
(a) To what distance xonset must the wave propagate before a shock is first
formed?
(b) Sketch the waveform giving expressions for peak overpressure and
positive-phase duration for x = xonset.
(c) Describe the evolution in the signature for x > xonset.

11-7 A microphone at x = 0 records a transient waveform whose early portion
is shown in the figure. The disturbance is a plane wave propagating in the
+x direction.
(a) How far must the wave propagate beyond x = 0 before the second
shock overtakes the first?
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Problem 11-6

(b) Sketch the waveform’s early portion for x less than and for x greater
than the value determined in (a) and give expressions for all times and
overpressures that characterize the waveform.

Problem 11-7

11-8 Neglecting thermal conduction, determine an expression for the ambient-
temperature rise in a fluid after the passage of an N wave of overpressure
P and positive-phase duration T .

11-9 (a) Show that the solution of the Mendousse version (11-6.7) of the Burgers
equation in the limit of small-amplitude disturbances is

v =
B

x1/2

∫ t′

−∞

v(0, τ)e−K(t′−τ)2/xdτ

where v(0, τ) is the value of v at x = 0 at time τ .
(b) What are appropriate identifications for the constants K and B?
(c) Explain whether this result is consistent with the particular solution
(11-7.12).

11-10 Show that there is a logarithmic derivative substitution analogous to that
in Eq. (11-7.1) which reduces the solution of the Burgers equation (11-6.6)
to the solution of the linear diffusion equation. Explain how this technique
might yield a solution of the Burgers equation when v is specified versus
x at t = 0.



11-11 Problems 693

11-11 (a) Show that the approximate dispersion relation derived in Sec. 10-5 for
quasi-planar waves in a duct leads in the same spirit of approximation for
a transient pulse to the integrodifferential equation

∂p

∂t
+ c

∂p

∂x
= −δD

∂

∂t

∫ t

−∞

p(x, to)

(t− to)1/2
dto

(b) What is the appropriate identification for the parameter δD?
(c) What would be a simple modification of this equation that takes non-
linear effects into account?

11-12 (a) Show that the Burgers equation (11-6.6) has the energy-conservation-
dissipation corollary

1
2ρ(v

2)t + ρ[ 13βv
3 − δvvx′ ]x′ = −δρ(vx′)2

(b) Hence show that the energy dissipated (per unit time and per unit area
transverse to propagation direction) by a stepped shock of overpressure psh
is independent of δ if the propagation is governed by the Burgers equation.
(c) How does your expression for the energy-dissipation rate compare with
the result in Eq. (11-4.11)?

11-13 An N wave measured at 10 cm from an electric spark in air has a half
duration of 10 µs and a pressure amplitude of 1600 Pa. What should
these two parameters be at 60 cm from the spark? [B. A. Davy and D. T.
Blackstock, J. Acoust. Soc. Am. 49:732–737 (1971).]

11-14 The waveform described in Prob. 11-6 is a cylindrically symmetric wave
radiating outward from the z axis and corresponds to the radial distance
ro, where ro ≫ cTo.
(a) At what value of r would a shock first be formed?
(b) Determine peak overpressure and positive-phase duration as functions
of r.

11-15 (a) Determine an expression for the age variable for a cylindrically diverg-
ing wave.
(b) What rules apply for extrapolation from values of shock overpressure
and positive-phase duration of an N wave received at radius r1 to values
appropriate to radius r2?

11-16 A pulse propagating radially outward has the form Po sinωt for 0 < ωt <
2π and is otherwise 0 at the radius ro.
(a) Determine expressions for the asymptotic r dependence of the result-
ing N-wave over-pressure P (r) and positive-phase duration T (r). Assume
Po ≪ ρc2 and make whatever approximations are appropriate to the model
of a weak shock.
(b) What are the corresponding values of the constants r∗ and K that
appear in Eqs. (11-9.8)?
(c) Give numerical values appropriate for Po = 104 Pa, 2π/ω = 10µs, ro =
5 cm, the medium being air at a pressure of 105 Pa and at a temperature
of 20◦C. The far-field prediction is desired for a radius of 10 m.
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11-17 The sound wave passing into the throat of an exponential horn, throat
radius rt and flare constant m, has pressure amplitude Po and angular
frequency ω. Determine an approximate expression for the fraction of the
radiated power that goes into the higher harmonics. Ignore dissipation and
assume that the parameters are such that no shocks are formed within the
horn. Assume also that k2 ≫ m2 and that the horn can be regarded as a
ray tube.

11-18 A plane wave is propagating obliquely downward so that its wavefront
normal makes an angle of θ with the −z axis. The ambient medium is ide-
alized as an isothermal atmosphere whose density decreases exponentially
with height, so that dρ/dz = −ρ/H , where H is a constant. At height
hf the acoustic pressure is given by ǫ sin(2πt/T ) for 0 < t < T and is
zero otherwise. For given ρo(hf ), H , θ, T , and c, there is some value of ǫ
below which a shock can never be formed, regardless of how far the wave
propagates. Determine this critical value of ǫ.

11-19 For the circumstances described in Prob. 11-18 and for θ = 0, deter-
mine the asymptotic form of the waveform at heights h many multiples
of H below hf given that ǫ has one-half the critical value determined in
Prob. 11-18.

11-20 A typical sonic boom received on the ground below a supersonic airliner
(flying at Mach 2 and 13 km altitude) has an overpressure of 100 Pa and
a positive-phase duration of 0.1 s. If the air is at 20◦C and has a relative
humidity of 50 percent, which of the following processes should have the
greatest effect on the shape of the waveform near the shock front: viscos-
ity, O2 vibrational relaxation, or N2 vibrational relaxation? (The preva-
lent view is that atmospheric turbulence is more important for explaining
waveform shape alterations than any dissipative mechanism.)

11-21 A pressure pulse at x = 0 has the form p = K/∆ for −∆/2 < t < ∆/2 at
x = 0 and is otherwise 0. Discuss the nonlinear plane-wave propagation of
this pulse in the limit of large distance x. How does the asymptotic result
evolve when ∆ is allowed to become vanishingly small?

11-22 A theory of sonic-boom generation caused by lift proceeds from the model
of a distribution of forces moving at supersonic speed through the air.
Suppose that the forces are such that Euler’s equation in the linear ap-
proximation becomes

ρ
∂v

∂t
+∇p = −f(V t− x)δ(y)δ(z) where f(ξ) = ez

πFL
2L

sin
πξ

L

for 0 < ξ < L and is otherwise zero. Here FL is the total lift force, and
f(ξ) is the lift force per unit length.
(a) Determine the linearized acoustics solution for the resulting sound field
at a large distance |z| below (y = 0) the flight trajectory.
(b) What is the appropriate identification for the Whitham F function?
(c) Determine the asymptotic form of the pulse below the source when
accumulative nonlinear propagation effects are taken into account.
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11-23 How should the Burgers equation be modified to apply to a spherically
spreading wave?

11-24 (a) Determine analytical expressions for the Whitham F function of the
body depicted in Fig. 11-16.
(b) What is the corresponding value for the constant K that appears in
Eq. (11-10.19)?

11-25 Determine asymptotic expressions for the far-field pressure waveform gen-
erated by the supersonic motion of the body of revolution depicted in
Fig. 11-18.
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A weighting, 66, 67, 70
Abnormal sound, 393–396
Absolute temperature, 12, 28–29
Absorption of sound:

in air, 555–562, 564–565
in boundary layers, 523–534
in narrow tubes, 535–537
by porous materials, 537–538
within room interiors, 564–565
in seawater, 555–562, 565
as source of heat, 562
at surfaces and walls, 108–113, 253–259
by thermal conduction, 517–519
by vibrational relaxation, 555–562
by viscosity, 517–519
(See also Attenuation; Dissipation)

Absorption coefficient:
classical, 518
for plane-wave propagation, 518, 557–559
for plane-wave reflection, 109, 530–531
at porous wall, 537–538
random incidence, 258, 289
Sabine-Franklin, 255, 259

Absorption cross section, 563
Acceleration of fluid particle, 10–11
Acoustic approximation, 15
Acoustic compliance, 324
Acoustic-energy corollary:

of Burgers’ equation, 616
with gravity included, 37n.
for homogeneous medium, 36–37
for inhomogeneous medium, 399
for irrotational isentropic flow, 422
for moving media, 52, 403, 422
with thermal conduction, 516–517
with vibrational relaxation, 556–557
with viscosity, 516–517

Acoustic-energy dissipation rate, 516–519,
556–557

Acoustic-energy flux, 39
(See also Acoustic intensity)

Acoustic fluid velocity, 14
Acoustic-gravity waves, 9, 48, 133, 520n.
Acoustic impedance, 320–321

at end of duct, 359
Acoustic inertance, 322–324

of duct junction, 329n., 370
estimation of, 341–348
of open-ended duct, 348
of orifice, 339–341
of slit in duct partition, 329n., 367

Acoustic intensity:
in conservation laws, 36–40
of plane wave, 39
along ray tube, 400
relation to complex amplitudes, 40
of spherical wave, 42, 44–45
in thermoviscous fluid, 516–517

Acoustic mobility, 321
Acoustic-mobility analogy, 321n.
Acoustic-mobility matrix, 321
Acoustic mode of a thermoviscous fluid,

522
Acoustic power (see Power)
Acoustic pressure, 14
Acoustic radar equation, 446–447
Acoustic radiation impedance, 201, 220
Acoustic-radiation resistance, 337–338
Action, wave, 402–406, 422
Action variable, 405
Adiabatic bulk modulus, 30
Adiabatic compressibility, 30
Adiabatic process, 11–14
Adjoint system of equations, 199n.
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Admissible variation, 196n.
Aeolian tones, 534–544, 564
Aeroacoustics, 538–547, 564
Aerodynamic sound, 538–547, 564
Affinities, thermodynamic, 550–552
Age variable, 559–605
Air, properties of, 28–30, 513–514, 553–555
Airy function, 463

asymptotic expressions, 463–464, 472
Fock’s functions, 472
relation to Bessel function, 564

Airy’s differential equation, 462
Alaskan earthquake, 150
Ambient state, 14
American National Standards Institute

(ANSI):
absorption of sound, 552n., 554n.
band filter sets, 93n.
calibration of microphones, 202n.
letter symbols, 1n.
preferred frequencies, 57n.
sound-level meters, 66n., 90n.
sound-power levels, 65n.
terminology, 1n., 65n.

Amplification of sound power:
by baffle, 217–218
within ducts and tubes, 318–319,

357–359
by horns, 358–359
by proximity to walls, 211–213

Amplitude, 24
near caustics, 460–465
complex, 24
variation along ray paths, 396–408

Analog method of spectral analysis, 89–90
Anechoic chamber, 115, 250
Anechoic termination, 115
Angle:

of incidence, 105
of refraction, 130–133

Angular frequency, 24
Angular-momentum conservation, 48, 510
Angular velocity, 102, 188
Anomalous zone of audibility, 394
Antilogarithms, 61–62
Antinodes, 119
Aperture, diffraction by, 215–217, 225n.,

227n. (See also Orifices)
Architectural acoustics, 250–312
Arête, 382–384
Array of sources, 169–171
Aspect factor, 449–451
Asymptotic expansions, 184

Airy functions, 463–464

auxiliary Fresnel fucntions, 238
Bessel functions, 224–225, 234
Fock’s functions, 472
matched (see Matched asymptotic

expansions)
Struve functions, 224–225

Atmosphere, sound speed in, 389, 394–395
Atmospheric acoustics, 393–396
Atomic bombs, 382, 605
Atomic mass unit, 29
Attenuation:

in air, 555–561
classical, 516–519
coefficient, 518
in ducts, 532–534
of N wave, 579–581
nonlinear effects on, 587–593
by relaxation process, 555–561
of sawtooth, 582–586
in seawater, 558–559
by thermal conduction, 516–519
by viscosity, 516–519

Auditory threshold, 63, 65
Autocorrelation function, 85

frequency, 299–300
spatial, 305–307

Autocovariance, 86
Auxiliary Fresnel functions, 237–238
Averaging time, characteristic, 90n.
Avis (proposed unit), 24n.
Axial quadrupole, 168
Axial ray, 392

Babinet’s principle, 232n.
Background correction function, 72–73, 95
Background noise, 72
Backscattering:

from edge, 500–501
from inhomogeneities, 439–451
from moving target, 455–456
from sphere, 429, 431

Backscattering cross section, 429
Baffle, 213

effect on sound power, 217–218
Ballistic shocks, 606–615, 617
Bands (see Frequency bands)
Barrier:

curved, 504–505
double-edged, 506–507
on ground, 497–498
insertion loss, 496–497
reciprocity, 199
single-edged, 495–497

Bel (unit), 64
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Bell as sound source, 190–191
Bending modulus, 144
Bernoulli’s equation, 325
Bessel functions:

asymptotic expressions, 224–225, 234
identities, 222, 546n., 572n., 596n.
integrals, 222, 546, 572, 595
modified, 595–597
power series, 223, 547
recursion relations, 546n.
relation to Airy functions, 564
table, 223

Bessel’s differential equation, 315
Bias in spectral analysis, 89, 92–94
Bioacoustics, 456–460
Bistatic acoustic sounding equation, 448
Bistatic configuration, 439–440
Bistatic cross section, 429
Blade-passage frequency, 546
Blankets, transmission through, 146–148
Blokhintzev invariant, 406, 598
Blood:

acoustic properties of, 459–460
measurement of flow, 458–460

BLR (bottom-limited ray), 391n.
Body force, 8
Body shape constant, 613n.
Boltzmann distribution, 548n.
Boltzmann’s constant, 29, 548
Boric acid in seawater, 552n.
Born approximation, 441–443
Boundary conditions, 100

on displacement, 103–104
at edge of moving fluid, 148
impedance, 107–111
at interfaces, 133
linear acoustics approximation, 102
no-slip condition, 525
on normal velocity component, 101–103
at open ends of ducts, 349–350
for organ pipes, 116, 349–350
on pressure, 133
at pressure-release surface, 109
at rigid surface, 102
on stress, 525
on temperature, 525–526
thin-boundary-layer approximation,

527–528
for unique solution, 174–180

Boundary-layer theory, acoustic, 523–531
Boundary-layer thickness, 524
Boundary-value problems, 171
Boyle’s law, 11, 28
Breathing mode of bell vibrations, 190

Bright spot in shadow of disk, 232n.
Brunt-Väisälä frequency, 37n.
Bubbles, scattering by, 435–439
Buffer material for enhanced transmission,

140
Bulk modulus, 30
Bulk viscosity, 550

air, 553
water, 553n.

Burgers’ equation, 588–591, 616, 617

Calculus of variations, 53, 376–377,
532–534

Calibration of microphones, 202–203
Cauchy’s equation of motion, 510
Cauchy’s stress relation, 509
Cauchy’s theorem for complex variables, 80
Causality, 43–44, 114–115, 124–126,

172–174
Caustics, 381–384, 460–469, 598n.
Central-limit theorem, 298
Channeled ray, 389–393
Characteristic curves, 570
Characteristic impedance, 22, 107
Characteristic single-edge diffraction

pattern, 239–243, 496, 499
Cherenkov radiation, 161n.
Circuit analogs, 321–324, 331, 335
Circuit-theory principles, 322
Circular disk:

diffraction by, 191n., 232n.
radiation from, 191–195, 207
scattering by, 425–430

Circular piston with baffle, 218–245
far-field radiation, 225–227
field on axis, 232–233
pressure on surface, 218–220
radiation impedance, 220–225
radiation pattern, 226–227
transient solution, 227–231
transition to the far field, 234–245

Clamped electric impedance, 200
Clebsch potentials, 403n.
Coalescence of shocks, 601
Cocktail party effect, 276–277, 311
Coefficient of nonlinearity, 568
Coincidence frequency, 128
Complex elastic modulus, 145–146
Complex number representation, 24–28
Compliance, acoustic, 324
Compressibility, 30, 553n.
Compressional wave, 23–24
Conservation:

of energy: acoustic, 36
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in fluids, 13, 38, 510, 575
in nonlinear propagation, 573, 575, 581

on reflection, 134–135
of mass, 6–8
of momentum, 8

Consonances, musical, 3, 59–60
Constitutive relations, 511
Constraints, effect of, on inertance, 343
Constriction in duct, 325, 329n., 367
Contiguous frequency bands, 55
Continuum-mechanical model, 6–11
Control volume, 41, 574
Convective derivative, 10
Convergence zone (see Caustics)
Coupled rooms, 281–283
Creeping waves, 396, 475–478, 503, 504
Cross-over circuitry, 365
Cross section:

absorption, 563
backscattering, 429
bistatic, 429
differential, 428
per unit volume, 448

Curvature:
gaussian, 415
principal radii, 415–417
tensor, 415

Curved surface, reflection from, 413–419,
423

Curvilinear coordinates, 173n.
Cutoff frequency:

for guided modes, 316
in horns, 363
Schroeder, 293–294

Cylinder, sound generated by flow past a,
543–544

Cylindrical coordinates, 315–316
Cylindrical source, 606
Cylindrical spreading, 211, 610

Damping:
flow resistance, 146–148
loss factor, 145–147
in transition to steady state, 117–119

Dash pot in mechanical systems, 98,
195–196

Decade (of frequency), 57
Decay time, characteristic, 254
Decibel, 60–63

history of, 63–65
Decibel-addition function, 69–71, 95
Degrees of freedom (dof), 28–29, 547–549
Delta function, 79–81, 97, 161–162
Density:

directional energy, 257
energy, 36–39
mass, 6

Diaphragm:
across duct, 149, 325
of transducer, 200
(See also Piston)

Diatomic molecules, 28
Differential element:

area, 47
solid angle, 47
(See also Curvilinear coordinates)

Diffracted ray, 378, 477–478, 492–494
Diffraction:

by aperture, 215–217, 225n., 227n.
by curved surface, 478, 504–505
by disk, 191n., 232n.
at edge, 491–494
Fraunhofer, 225n.
Fresnel, 225n.
Fresnel-Kirchhoff theory, 215–217
geometrical theory of, 378, 491–494
multiple edges, 506–507
by orifices, 341
by sphere, 430–431, 478, 504–505
by wedge, 481–494

Diffraction boundary layer, 477
Diffraction integral, 236–238, 491
Diffraction pattern, 239–243
Diffuse field, 257, 307
Diffusion equation:

for oscillations in thin tubes, 536
relation to Burgers’ equation, 616
relation to Mendousse-Burgers equation,

594
for thermal conduction, 523
for vorticity, 522

Dilatational wave speed, 130, 132
Dipole, 165–167

in duct, 366
radiation pattern, 158
small oscillating body, 188–189
transversely oscillating disk, 191–195
transversely vibrating sphere, 156–159
near wall, 212

Dipole-moment vector, 166, 183
Dirac delta function, 79–81, 97, 161–162
Directional energy density, 257
Directivity factor, 267
Directivity gain, 450n.
Dirichlet conditions, 79
Disk (see Circular disk)
Dispersion relation, 35, 519

acoustic mode, 521
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in derivation of approximate wave
equations, 521–522

entropy mode, 521
Kirchhoff’s, 521
with relaxation, 557–558, 564, 587
with thermal conduction, 35, 557–558
with viscosity, 51–52, 556–558
vorticity mode, 520
for wave in duct, 534, 537

Dissipation:
in Burgers’ equation, 616
in energy corollary, 516–517
at shock front, 581
by thermal conduction, 516–517
in thin tubes, 536
by vibrational relaxation, 556–557
by viscosity, 516–517

Dissipation function, 196n.
Divergence operator, 7–8, 173n.
Divergence theorem, 7n.
Doppler effect, 451–460
Doppler-shift velocimeters, 456–460
Duct(s):

absorption at walls, 531–534
circular, 314–316
with discontinuous cross section, 328
guided modes in, 313–315
rectangular, 315
resonances in, 115–122
with right-angled bend, 326n.
side branch in, 333, 367
transient pulse propagation, 616

Earth-flattening approximation, 477n.
Earthquake, radiation from, 150
Eccentricity of ellipse, 340
Echoes:

from curved surfaces, 417–418
from edges, 500–501
from inhomogeneities, 441–448
from interfaces, 502
from spheres, 418–419, 430

Echosonde equation, 448–450
Eddies:

behind cylinders, 544
in flow past objects, 194n.

Edge:
backscattering from, 500–501
diffraction at, 490–494
field at, 480
radiation from source on, 479–480
singularities at, 194n.

Eigenfunctions, 119, 284–287
Eigenvalues, 119, 284

Eikonal equation, 374
Elastic modulus, 130, 132

complex, 145–146
Electracoustic efficiency, 221
Electrolyte solutions, 552n.
Elliptical duct, 536n.
Elliptical integrals, 219, 340n.
Elliptical orifice, 340n.
Enclosures, 280–281
End corrections, 348–350
Energy:

conservation of (see Conservation of
energy)

kinetic-energy density, 38–39
potential-energy density, 38–39

Energy equation of fluid dynamics, 510
Energy flux (see Acoustic intensity)
Energy reflection coefficient, 109
Ensemble, 85–87
Entrained mass:

for baffled piston, 220
for freely suspended disk, 195
in orifice, 340
for oscillating sphere, 159

Entrained-mass tensor, 427
Entropy:

conservation of, 12
discontinuity at shock, 577
for fluid with internal degrees of freedom,

550
for frozen state, 552
for ideal gas, 47
irreversible production of, 518n.
mode in thermoviscous flow, 523
relation to other thermodynamic

variables, 515
Entropy-balance equation, 551
Equal-area rule, 577–578, 600–601
Equal temperament, 60
Equipartition theorem, 29n.
Equivalent area of open windows, 253, 259
Ergodic process, 85
Error function, 96
Erythrocytes as scatterers, 459
Euler-Bernoulli plate, 144
Euler-Lagrange equation, 376–377
Euler-Mascheroni constant, 301
Eulerian description, 6n.
Euler’s equation of motion for a fluid, 8–11
Euler’s formula, 24
Euler’s velocity equation, 102n.
Evanescent mode, 316–318
Exponential integral, 248
Exposure, 78, 81–82
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F function, Whitham, 608–610, 612
Fan noise, 366
Fermat’s principle, 376–378, 476
Field, acoustic, 14
Fifth (musical interval), 60
Filters:

acoustic, 350–357
band pass, 75, 84–85, 93
class III, 93
ideal, 98
linear, 68, 82–83
transfer function, 68
transmission loss, 93–94

Flanged opening:
of duct, 347
of Helmholtz resonator, 338, 348–349

Flare constant (horns), 362
Flexural-wave speed, 123, 128
Flexural waves, radiation by, 122–129

subsonic, 126–127
supersonic, 123–126

Flow resistivity, 146–147
Fluid particle, 8
Focusing:

by ultrasonic lens, 423
by zone plate, 247
(See also Caustics)

Force:
caused by viscosity, 541, 563
on disk, 195, 563
generalized, 196n.
as source of sound, 166–167
on sphere, 158–159, 541
(See also Gutin’s principle)

Fourier coefficient, 74
Fourier integral, 78–81
Fourier-Kirchhoff equation, 14, 34, 513
Fourier-Kirchhoff-Neumann energy

equation, 511
Fourier series, 74–75
Fourier transform, 78–79
Fourier’s law, 14, 512
Fourth (musical interval), 60
Fraunhofer diffraction, 225n.
Free-space Green’s function, 164
Frequencies, 24

preferred, 57–59
Frequency bands:

center frequency, 57
compromised, 57–59
contiguous, 55
octave, 57
partitioning, 54–57
proportional, 57

third octave, 57
(See also Parseval’s theorem)

Frequency response, 68, 90
Frequency weighting, 66–69
Fresnel diffraction, 225n.
Fresnel functions, auxiliary, 237–238
Fresnel integrals, 237
Fresnel-Kirchhoff theory of diffraction,

215–217
Fresnel number, 242–243, 495–497, 505
Fresnel zones, 242–243
Fubini-Ghiron solution, 571–573
Fundamental mode, 316

Gain, directivity, 450n.
Galilean transformation, 52, 454
Gases:

bulk viscosity, 550
entropy, 47
gas constant, 29
ideal, 12, 28, 47
internal degrees of freedom, 547–549
molecular weight, 29
monatomic, 519
sound speed in, 28–30
specific-heat ratio, 29n.

Gauss’ theorem, 7, 10
Gaussian curvature, 415n.
Gaussian process, 298
Gaussian statistics, 91
Generalized functions, 81
Generation of sound:

by flexural waves, 122–129
by fluid flow, 543–547
by temperature oscillations, 563
by vibrating bodies, 183–191

Geodesics, 476
Geometric mean, 57
Geometrical acoustics, 371–423
Geometrical theory of diffraction, 378,

491–494
Gradient operator, 10, 173n.
Gravity:

in acoustic equations, 37n., 48
in fluid-dynamic equations, 47
influence on boundary conditions, 133
reasons for neglect of, 9n.

Green’s functions:
in boundary-value problems, 180–181,

214–215
in constrained environment, 215, 245,

247
differential equation for, 164, 165
for Helmholtz equation, 164
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for impulsive source, 165
reciprocity relation, 164, 199
singularity near source, 162
for wave equation, 165

Green’s law, 400n.
Ground, impedance of, 110–112
Group velocity, 125n., 534
Guided waves, 313–319

(See also Duct; Horns)
Gutin’s principle, 543, 563, 564

Hamiltonian, 404–405, 584n.
Hankel function, 248
Harmonic oscillator (see Oscillator,

harmonic)
Harmonics:

in Fourier series, 74–75
in helicopter noise, 544–547
in horns, 365, 617
nonlinear generation of, 571–573

Heat conduction, effect of, on sound speed,
13, 14, 34–36

Heat flux, 13–14, 510
Heating caused by sound absorption, 562
Heaviside unit step function, 229
Helicopter rotor noise, 544–547, 564
Helium, acoustic properties of, 47
Helmholtz equation, 27
Helmholtz integral, 220, 248
Helmholtz resonator, 330–333

analog circuit for, 331
with baffled opening, 338–339
as filter, 354
impedance of, 332
inertance of neck, 348–349
as muffler, 354
scattering by, 338–339, 438
as side branch, 333–334

Hertz (unit), 24
Highway noise, 95
Hilbert transform, 136–137, 411, 469
Homogeneous medium, 14, 52
Hoods, acoustic, 280n.
Horns:

with ambient flow, 422–423
catenoidal, 362
conical, 361
cutoff frequency, 363
exponential, 362–364
nonlinear distortion, 365, 617
Salmon’s family of, 361–362
semi-infinite model, 362–363
sinusoidal, 361n.
throat impedance of, 362

Hugoniot diagram, 576n.
Humidity, effects of, on sound, 29–30, 554,

555, 561–562
Huygens’ principle, 174–175
Hydrogen, influence of, on source power,

205
Hydrostatic relations, 9, 133
Ideal gas, 12, 28, 47
Images:

method of, 105–106, 115–116, 208–209,
482–484

of source: near corner, 211
in duct, 210–211
near pressure-release surface, 245
near rigid wall, 209
in room, 210–211
in wedge region, 482–483

Impedance, 107–108
acoustic, 320–321, 359
characteristic, 22, 107
mechanical, 107
slab, 142
specific, 107
at throat of horn, 362, 364
of traveling plane wave, 108, 329
tube, 111–113

Impedance-translation theorem, 139
Incoherence, mutual, 72
Incoherent scattering, 447–448
Incoherent sources, 72
Incompressible flow:

near baffled piston, 227–230
near disk, 191–195
in inner region, 187
through orifice, 339–341
near oscillating sphere, 159
(See also Acoustic inertance)

Index of refraction, 374n.
Inertance (see Acoustic inertance)
Infrasound, 1, 9

from Alaskan earthquake, 150
vertical propagation in atmosphere, 48

Inhomogeneities, scattering by, 431–434
Inhomogeneous media:

energy-conservation corollary, 50, 399
reciprocity theorem for, 197–198
wave equation for, 47–48, 432
(See also Moving media; Ray paths;

Scattering)
Inhomogeneous plane wave, 127
Initial-value problems:

requirements for unique solution,
174–178
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solution for one-dimensional propaga-
tion, 49

Inner expansion (see Matched asymptotic
expansions)

Insertion loss:
of barriers, 495–498
of mufflers, 352–353

Instantaneous entropy function, 550
Institute of Electric and Electronics

Engineers (IEEE), 122n., 428n.
Integer-decibel approximation, 69
Integrodifferential equation for transient

pulse in absorbing duct, 616
Intensity:

acoustic (see Acoustic intensity)
of radiation, 257n.

Intensity level, 65
Interface, 100, 101

between air and water, 135
between different fluids, 130–131, 133
between fluid and elastic solid, 130
between moving fluids, 104n., 148, 422
point source above, 408–413
(See also Boundary conditions;

Reflection; Transmission)
Internal energy:

of ideal gas, 29n.
rotational, 548
in second law of thermodynamics, 13
translational, 548–550
vibrational, 549

Internal variables:
for air, 547–549
for seawater, 552n.

International Commission on Pure and
Applied Physics, 12n.

Inverse transform, 78–79
Ionosphere, propagation to, 150
Irreversible thermodynamics, 550–553

(see also Entropy; Relaxation processes)
Irrotational flow, 19–20, 341–342
Isentropic flows, 403n., 422
Isothermal atmosphere, propagation in, 48
Isothermal sound speed, 34–36

Jet, point source in, 407–408
Just intonation, 59

Keller’s law of edge diffraction, 492
Key note, 59
Kinetic energy, 38–39

principle of minimum, 341–343
Kinetic theory of gases, 29
Kirchhoff approximation, 215–217

for orifice transmission, 341
relation to rigorous diffraction theory,

217, 497
Kirchhoff-Helmholtz integral theorem,

180–182
in derivation of Rayleigh integral,

213–214
extension to include viscosity, 538–539
integral equation for surface pressures,

182
multipole expansion of, 182–183, 539–540

Kirchhoff’s dispersion relation, 521
Kirchhoff’s laws of circuit analysis, 322
Lagrange’s equations, 196n.
Lagrangian, 377n.
Lagrangian description, 6
Laplace’s equation, 167, 187, 192
Laplacian:

curvilinear coordinates, 173
cylindrical coordinates, 315
oblate-spheroidal coordinates, 192
rectangular coordinates, 17
spherical coordinates, 174

Lateral wave, 409n.
Layered media, 138–140

(See also Stratified media)
Least time, principle of, 376n.
Le Châtelier’s principle, 15n.
Legendre functions, 193n.
Letter symbols, standard, 1n.
Levels, 60

combining of, 69–71
exposure, 82
intensity, 65
power, 65
sound, 66
sound-pressure, 60
spectrum, 76

Lift and drag forces on helicopter blades,
544–545

Lift-to-drag ratio, 547
Lift contributions to sonic boom, 613n.,

617
Limiting ray, 469, 470
Limp plate, 143
Linear acoustic equations:

constant-frequency disturbance, 27
homogeneous medium, 15
inhomogeneous medium, 197
with internal relaxation, 555–556
moving media, 400–402
in one-dimension, 20
with viscosity and thermal conduction,

515
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[See also Wave equation(s)]
Linear operator, 68, 82–83
Liquids, properties of, 30–34, 569

(See also Seawater; Water)
Local spatial average, 252
Locally reacting surface, 110
Logarithms, 61–62
Longitudinal waves, 24
Loss factor, 145–147
Loudspeakers, 201, 443

(See also Transducers)
Lumped-parameter elements, 319–324

Mach number, 607
Magnesium sulfate in seawater, 552n.
Magnetic-polarizability tensor, 427n.
Major interval (music), 60
Mass, point source of, 162–163
Mass-conservation equation, 8
Mass-law transmission loss, 143–144
Matched asymptotic expansions, 185

radiation: from baffled pistons, 217
from vibrating bodies, 183–190

in scattering, 425–428, 432–433
transmission: through duct junctions,

369
through orifices, 336–337

Material description, 6n.
Materials, acoustic, 110, 111
Maxwell relations (thermodynamics), 16n.,

31n.
Maxwell’s demon, 279
Maxwell’s equations, 36n.
Mean free path, 260–262
Measuring amplifier, 84, 90
Mechanical analogs, 17, 18, 48, 331–333,

366
Medium, 14
Membrane, 152, 367
Mendousse-Burgers equation, 589, 594, 616
Mercet’s principle, 31
Method of images (see Images, method of)
Microphone, 201–203

(See also Transducers)
Microphone response, 202
Mile of standard cable, 64
Mobility, acoustic, 321
Mobility matrix, 196

acoustic, 321
Modal density, 291–293
Modal integrals, 294–297
Modal specific impedance, 318
Mode:

fundamental, 316

guided, 313–319
natural, in tube, 119
room, 284
of thermoviscous flow: acoustic, 522

entropy, 523
vorticity, 522

Modified Bessel function, 595–597
Molecular vibrations, 547–549
Molecular weight, 29
Molecules:

in air, 29
dissolved in seawater, 552

Momentum, conservation of, 8
Monopole, 159–162
Monopole amplitude, 160
Monopole function, 183
Monostatic configuration, 439–441
Moving coordinate system, 52, 454
Moving media:

energy corollaries, 52, 403
galilean transformation, 52, 454
linear acoustic equations, 400–402
ray acoustics of, 371–377
refraction in, 386–388, 407–408
(See also Blokhintzev invariant; Doppler

effect; Wave action)
Moving source, 453
Moving targets, 455–456
Muddy water, 49
Mufflers:

commercial, 355
dissipative, 353–354
expansion chamber, 354, 355
Helmholtz resonator, 354
reactive, 353
straight-through, 356–357
transmission matrix, 351

Multifrequency sounds, 54–57
Multilayer transmission, 137–140
Multipole expansions:

array of point sources, 169–171
Kirchhoff-Helmholtz integral, 183
small vibrating body, 188
source on rigid wall, 317–318

Musical notes, 25, 59–60

N waves:
as asymptotic limit, 602–603
dissipation of, 581–582
energy in, 50, 51, 581
Fourier spectrum, 95
in inhomogeneous media, 603–604
nonlinear propagation, 579–581
in sonic boom theory, 611–614
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spherical-wave propagation, 604–605
Natural frequencies, 119

(See also Resonance)
Navier-Stokes equation, 513
Navier-Stokes-Fourier model, 513
Near field:

of baffled piston, 217–220, 239
of point source, 162, 163, 290
(See also Matched asymptotic

expansions)
Neck length, effective, 348–349
Neper (unit), 64
Network theory, 322
Newtonian fluid, 511
Noise reduction:

between adjacent rooms, 282
by decrease of reverberation, 272

Nonlinear acoustics, 566–617
Nonlinear distortion:

asymptotic pulse form, 600–603
in horns, 365
of N waves, 579–581
of pulses, 567–571
of sinusoidal wave trains, 571–573,

582–586
Nonlinear propagation, parametric

description of, 568, 569, 599
Nonlinear terms:

criteria for neglect, 16
incorporation into linear equations, 588

Nonlinearity:
coefficient of, 568–569, 577
parameter of, 569

Normal-incidence surface impedance, 110
Norris-Eyring reverberation time, 263–265
Nuclear explosions, 382, 605

Oblate-spheroidal coordinates, 191–195,
339–341

Octave, 57
Old-age limit of waveforms, 594–597
Omnidirectional source, 94, 153
One-port, 322
Open-circuit acoustic impedance, 200
Open space, uniqueness theorem for,

176–180
Organ pipes, 116, 349–350
Orifices:

acoustic inertance of, 339–341
diffraction by, 341
effect on transmission loss, 369
elliptical, 340n.
entrained mass in, 340–341
in plate of finite thickness, 347–348

with porous blanket, 369
transmission through, 336–341

Orthogonal curvilinear coordinates, 173n.
Orthogonality of eigenfunctions, 286
Orthonormal set, 287
Oscillator, harmonic, 98, 117n.

as mechanical analog, 330–333
radiation by, 206
response to random force, 98
scattering by, 501

Outer expansion (see Matched asymptotic
expansions)

Outgoing wave, selection of, 43–44,
124–126

Parabolic equation, 504
Parameter of nonlinearity, 569
Parseval’s theorem:

for convolution of two functions, 97
Fourier series, 74–75
Fourier transforms, 78
multifrequency sounds, 56

Particles, fluid, 8
motion above oscillating plate, 151
motion in plane wave, 22–24

Partitions between rooms, 277–283
Passband of filter, 75, 84–85
Passive surface, 109
Pendulum with time-varying length,

404–405
Perforations:

in muffler pipes, 355–357, 370
in thick slabs, 537–538

Period, wave, 24
Phase constant, 24
Phase shift:

at caustics, 468–469
in reflection, 136

Phase space, 405
Phase velocity:

of flexural waves, 128
in medium with relaxation process, 559,

561–562
Pi (π) network, 322
Piano keyboard, 59–60
Pink noise, 76, 78
Piston:

circular, with baffle (see Circular piston
with baffle)

at end of tube, 113–122
rectangular, 248
in rigid wall, 213–218

(See also Circular piston with baffle)
Piston impedance functions, 223, 224
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Plancherel’s theorem, 79n.
Planck’s constant, 548n.
Plane wave, 20

polarization relations, 22
(See also Dispersion relation)

Plane-wave mode in ducts, 316
Plates:

coincidence frequency for, 128
Euler-Bernoulli model, 144
flexural waves in, 123
with internal damping, 145–146
radiation from, 122–129

Point energy source, 605
Point force, radiation from, 166–167
Point mass source, 162–163
Point source:

near field of, 162
mass efflux from, 479
power radiation, 160
term in Helmholz equation, 161
term in wave equation, 162
(See also Green’s functions)

Poiseuille flow, 535n., 536n.
Poisson distribution, 300–301
Poisson’s equation, 160n.
Poisson’s ratio, 128, 130, 132
Poisson’s theorem, 172–174
Polarization relations, 22, 520–521

(See also Mode, of thermoviscous flow)
Porous blanket, 146–148, 369
Porous media, 198, 537
Potential, velocity, 19–20
Power:

effect of nearby surfaces on, 211–213
frequency partitioning of, 56
measurement of, 274–275
radiated: by dipole, 212

by monopole, 160, 291
by quadrupoles, 169
by spheres, 155, 158

relation to radiation pattern, 46–47
of source in room, 273–291
surface integral for, 39–41

Power injection in room, 290
Power levels, 65
Poynting’s theorem, 36
Prandtl number, 514
Precursor:

refraction arrival, 378
in transient reflection, 136–137

Pressure, 9
acoustic, 14
ambient, 14
atmospheric, 30

decrease of, with increasing height, 37n.
hydrostatic, 9
level, sound-pressure, 60
reference, 61
relation to density, 11–13
thermodynamic, 513
translational, 549

Pressure node in traveling wave, 23
Pressure-release surface, 109, 116
Principal value of integral, 136
Probability density function, 297–298
Propagation, 3
Pulse-echo sounding, 439–441

Q (quality factor), 120–122
Quadrupoles, 167–191

examples of, 189–191, 207
radiation patterns, 169
terms in multipole expansions, 170, 183,

188, 217

Radar equation, 446n.
Radar reflectivity, 449n.
Radar storm-detection equation, 449n.
Radiation condition, 177–178
Radiation impedance:

acoustic, 201, 220
of baffled circular piston, 220–225
mechanical, 129n., 220
specific, 129
of surface with flexural vibrations, 129

Radiation pattern, 46–47
of baffled circular piston, 226–227
of quadrupole sources, 169

Radiation pressure, 404n.
Radiation resistance, 338
Radiation shape factors, 265
Radiative heat transfer, 13n., 257n.
Radii of curvature:

surface, 415n.
wavefront, 380–381

Random incidence, 257–258
Random medium, 447
Rankine-Hugoniot relations, 574–576
Rarefaction in acoustic wave, 23
Rate-of-shear tensor, 512
Ray acoustics, 371–423
Ray paths:

average horizontal velocity, 390
curvature of, 384–388
differential equations for, 375, 384, 419,

420
diffracted, 378, 492
integrals for, 388, 390
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Ray shedding by creeping wave, 477–478,
503–505

Ray strip, 476
Ray-tracing equations, 375, 384, 419, 420
Ray tube, 397, 399

energy conservation along, 399–400
wave action conservation along, 406

Rayleigh dissipation function, 196n.
Rayleigh integral, 214
Rayleigh scattering, 425
Rayleigh wave, 131n., 150
Rayleigh’s lower-bound theorem, 343–345
Rayleigh’s principle, 53
Rayleigh’s theorem for Fourier transforms,

78
Reactance (see Impedance)
Reciprocity principle, 195–199

for acoustic-mobility matrix, 321
applications of, 199, 206, 296, 480–481,

504
for circuits, 197, 207
for Green’s function, 164, 199
for transducers, 200–203
for transmission loss, 278
for transmission matrix, 351

Rectilinear propagation, law of, 379
Red cells as scatterers, 459
Reflection, 100

at caustic surface, 460–469
coefficient, 108–109
from elastic solid, 130n.
at ends of tubes, 115–117
from interface, 130–135
interference with direct wave, 106, 148
from locally reacting surface, 108–109
for multilayered medium, 137–140
from pressure-release surface, 109, 116
from rigid surface, 104–106
thermoviscous effects on, 529–531
from thin slabs, 140–148
transient, 135–137

Refraction:
at interfaces, 131, 133
Snell’s law, 133
by sound-speed gradients, 384–386
by wind-speed gradients, 386–388

Refraction arrival, 378
Relative humidity, 555
Relative response functions, 66, 67
Relaxation equations, 552–553
Relaxation frequencies:

for air, 554, 555
for seawater, 559n.

Relaxation processes, 549

of dissolved salts, 552n.
of molecular vibrations, 547–549
structural, 550n.

Relaxation time, 553
(See also Relaxation frequencies)

Remote sensing, 456n.
Residue series, 473–475
Resonance, 116

in horns, 359, 364
in open-ended ducts, 119, 358
in oscillator, 98
in rooms, 293
in tubes, 116–117

Resonance frequency, 117
Resonance peak, 120–122
Resonant scattering, 435–439
Resonator (see Helmholtz resonator)
Retarded time, 115, 165
Reverberant-field model, 251–253
Reverberation chamber, 250, 273
Reverberation time, 254

effect of dissipation within interior, 564
measurement of, 254, 274, 310
Norris-Eyring, 263–265
optimum, 270–272
rooms with asymmetric absorption,

265–267
Sabine, 255
Sabine-Franklin, 259

Reynolds number, 544, 564
Reynolds’ transport theorem, 10
Riemann-Stieltjes integral in sonic boom

theory, 608
Rigid body, oscillating, 188–189
Rise times of shocks, 589–593
Room acoustics, 250–312
Room constant, 267–270
Room mode, 284–286
Rotating diffusers, 273, 275
RSR (refracted-surface-reflected) ray, 391n.
Running time average, 90, 99, 252

Sabin (unit), 253
Saddle point method, 463
Salinity, 13n., 31, 559
Salts in seawater, 552n.
Saturation in nonlinear propagation, 586,

597
Sawtooth waveforms, 97, 582–586, 596–597
Scattering:

by bubbles, 435–438
by disk, 427, 430
effect of inertia, 434–435
effect of surface tension, 438n.
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effect of thermal conduction, 436n.
effect of viscosity, 427n.
by Helmholtz resonator, 436, 438
by inhomogeneities in medium, 431–434
by moving body, 455–458
by red cells in blood, 458–460
resonant, 435–439
by sphere, 427, 430, 431
by spheroids, 428
by surface inhomogeneities, 369
by turbulence, 442n., 447–448

Scattering cross section, 428–429
Scattering volume, 441–443
Schmidt orthogonalization process, 286
Schottky’s law of low-frequency reception,

202
Schroeder cutoff frequency, 293–294
Schroeder’s rule, 294
Schwarz-Christoffel transformation, 329n.,

367
Schwarz inequality, 92
Seawater, properties of, 31, 34, 514, 553,

558–559, 569
Second law of thermodynamics, 13, 16n.,

512, 550
Seismology of the atmosphere, 393
Sensation unit, 64
Separation constant, 285
Separation of variables method, 284–286,

314–316
Shadow zone, 424, 469–478

behind curved body, 478
caused by intervening wedge, 488–494
external to main beam, 234–245
limiting ray for, 469, 470
on nonilluminated side of caustic,

460–467
in stratified medium, 469–475
(See also Creeping waves; Diffraction)

Shear, rate of, 512
Shear stresses, 510
Shear-wave speed, 130, 132
Shocks:

coalescence of, 601
discontinuities at, 574–577
dissipation at, 581–582
equal-area rule for, 577–579, 600–601
formation of, 570–571, 583
location of, 577–579, 600–601
Rankine-Hugoniot relations for, 574–576
relaxation effects on, 591–593
speed of, 577, 599
thicknesses, 587–593

(See also Nonlinear distortion; Sonic
booms)

Signal processing, 54–99
Similitude, 204–205, 544, 564
Simple wave, 567
Skip distance, 396
Slab, transmission and reflection by,

140–144
SLR (surface-limited ray), 391n.
Snell’s law, 133
SOFAR channel, 391, 393
Solid angle, 46–47
Solid materials, properties of, 130, 132
Sommerfeld radiation condition, 177–178
SONAR (sound navigation and ranging),

441
Sonic booms, 47, 50–51, 95, 151–152,

606–615, 617
Sonorous-line model, 17, 18, 48
Sound exposure, 78, 81–82
Sound level, 66
Sound-level meter:

averaging time, 90n.
dynamic characteristics of, 90n.
frequency weightings, 66–67
use of rectified waveforms, 96

Sound-pressure level, 60
Source strength, 155, 160
Spark as sound source, 47, 605, 617
Specific acoustic impedance, 107
Specific flow resistance, 146–147, 150
Specific heat coefficients, 12, 28–30, 34, 35

for frozen state, 551, 561
for internal degrees of freedom, 551, 554
ratio of, 12, 29n., 34, 561–562
for solids, 132

Specific volume, 13
Spectral density, 75–78

estimation of, 89–94
Speed of sound, 5, 15, 21

for air, 29–30
in blood, 460
effect of water vapor, 30, 554, 561
effective, 394, 395
for gases, 28–29
isothermal, 34–36
Laplace’s theory, 11–12
for liquids, 30–31
measurement of, 28, 31
profile for atmosphere, 389, 395
profile for ocean, 389
for seawater, 31
for water, 31, 33

Sphere:
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creeping wave on, 476
diffraction by, 431, 504
radially oscillating, 153–155
reflection from, 418–419
scattering by, 427, 430, 431
transversely oscillating, 156–159,

540–542
Spherical aberration, 423
Spherical coordinates, 42, 43

laplacian, 174
Spherical mean, 172–173
Spherical spreading, 42, 47, 209–211
Spherical waves, 41–47

nonlinear propagation of, 604–605, 617
Spheroidal coordinates, 191–195, 339–341
Spinning modes, 366
Square wave, 95
Standing wave, 48

in tube, 111–113
outside wall, 106

Stationary process, 85
Statistical room acoustics, 297–310
Statistical thermodynamics, 548
Steady sound, 75
Steepening of waveforms, 569–571, 583
Steepest descents method, 463
Stochastic process, 85
Stokes’ flow, 540, 541
Stokes’ theorem, 19n.
Stratified media, 388–396, 467–468,

469–478
Stress, average normal, 511–512, 549–550
Stress tensor, 508–510
String, vibrating, 17, 122n.
Strouhal number, 544, 564
Structural relaxation, 550n.
Structure factor of porous material, 537n.
Struve functions:

asymptotic formulas, 224
integral expressions, 222
power-series expansion, 223

Superposition principle, 21, 72, 164
Supersonic airplane, 614–615
Supersonic projectile, 606–615
Surface forces, 8, 508–510, 563
Surface Helmholtz integral equation, 182n.
Surface tension in bubbles, 438n.
Surface wave, 150, 410n.
Sutherland’s formula for viscosity, 513

Target strength, 429
Temperament, musical, 59–60
Temperature:

absolute, 12, 28–29

characteristic, 548, 554
fluctuations in sound wave, 17, 48
for molecular vibrations, 549

Terminology, standard, 1n.
Thermal conduction:

cause of absorption, 517–519
diffusion equation, 523
effect on sound speed, 34–36
in entropy mode, 523
in scattering by bubbles, 436n.

Thermal conductivity, 14, 34–36, 512
of air, 513–514
of solids, 132
of water, 514

Thermal-diffusion equation, 14n.
Thermal expansion, coefficient of, 17, 30,

33n., 34
Thermodynamic identities, 16n., 30–31,

33n. 35, 515
Theta function, 596
Thin-plate model, 128, 144–146
Three-layered medium, 139–140
Threshold:

of audibility, 63, 66
of feeling, 63

Time average of a product, 25–26
Trace velocity, 124–125
Trace-velocity matching principle, 124
Transducers, 199

electroacoustic efficiency of, 220–221
as loudspeakers, 201
matrix description of, 200
as microphones, 201–202
reciprocal, 201
in scattering experiments, 443–447

Transfer functions, 82–85
Transient waves, 78

diffracted by wedge, 489n.
Fourier integral representation, 78–79
from piston in tube, 113–117
from piston in wall, 227–231
reflection at interface, 135–137
sound-exposure, 78, 81–82
from transversely oscillating sphere,

203–204
Transmission:

through plates, 144–146, 311
through porous blankets, 144–148
random incidence, 279, 311
through walls, 277–280

Transmission coefficient, 141
Transmission loss, 94, 141, 278
Transmission matrix, 351–353
Transmission plate, 140, 149
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Transmission unit (decibel), 64
Transport theorem, 10
Transverse wave, 24, 123
Transversely oscillating body, radiation

from, 188–189
disk, 191–195
sphere, 156–159

Turning point of ray, 389, 390
field near (for guided wave), 467–468
location of, 391

Two-ports, 321–324
continuous-pressure, 324
continuous-volume-velocity, 322–324

Ultrasound, 1
Uniqueness of solutions, 171–180
Unit area acoustic impedance, 107
Unit impulse (see Dirac delta function)
Unit impulse response function, 83n.
Universal gas constant, 29

van der Pol-Bremmer diffraction formula,
473

Vapor pressure of water, 555
Variance in signal processing, 89–92
Variation of parameters, method of, 157n.
Variational calculus, 53, 376–377, 532–534
Vector identities, 19, 37, 180, 188, 197,

287, 343, 374, 402, 539n.
Velocimeters, Doppler-shift, 456–460
Velocity potential, 19–20
Vibrational relaxation, 547–553
Vibrations:

molecular, 547–549
radiation, damping by, 206

Virtual-mass tensor, 427n.
Viscosity, 511–513

of air, 513–514
artificial, 50
in boundary layers, 523–527
bulk, 549–550, 553
effect on radiation, 540–543
effect on reflection, 529–531
effect on scattering, 427n.
Sutherland’s formula, 513
of water, 514

Viscous boundary layers, 101n., 523–531
Viscous flow in tubes, 535–537
Viscous forces, sound generation by,

538–544, 563
Voice, acoustic power of, 97
Volume velocity, 200, 320
von Kármán vortex street, 544
von Kármán’s acoustic analogy, 607n.

Vortex sheet, 104n., 422
Vortex street, 544
Vorticity, 19, 539
Vorticity mode, 522

Wakes:
absence at acoustic frequencies, 194
vortex street, 544

Wall:
boundary layer near, 523–529
piston in, 213–215, 218–227
source near, 208–213
transmission through, 277–279
vibrating, 122–129

Water, properties of, 31–34, 514, 553,
558n., 569

Water-air interface, 135
Water vapor:

effect on relaxation frequencies, 554, 555
effect on sound speed, 29–30, 561–562

Wave, 3
Wave action, 402–406, 422
Wave equation(s), 17–19, 20

for acoustic-gravity waves, 48
derived from dispersion relations,

521–522, 564, 587, 616
Helmholtz equation, 27
for horns, 360, 533
for inhomogeneous media, 48, 432, 599
with internal relaxation, 564, 587
for moving media, 52
with nonlinear terms, 567, 588–589, 599
with thermal conduction, 35
for traveling waves, 562, 587, 616
with viscosity, 51–52
for waves in ducts, 533, 536, 616

Wave number, 27
Wave packet, 375n.
Wave-slowness vector, 373
Wavefront, 371
Wavelength, 27
Waves of constant frequency, 24–28
Weak-shock theory, 574–586
Webster horn equation, 360

with ambient flow, 422
with thermoviscous terms, 533

Wedge:
diffraction by, 486–497
source within, 247, 482–484, 500-501

Wedge index, 481
Weighting of different frequencies, 66–69,

76
White noise, 76
Whitham F function, 608–610, 612
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Whitham’s rule, 588n.
Wiener-Khintchine theorem, 86–88, 448
Wind:

in effective sound speed, 394–395
propagation against, 408
refraction by gradients, 386–388
in stratosphere, 394–395

Windows:
equivalent area of, for absorbing surface,

259

transmission out of, 280
Wronskian, 471, 472

Young’s modulus, 128, 130

Zone(s):
of audibility, 394
Fresnel, 242–243
of silence, 394, 395

Zone plate, 247
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