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This book is an intermediate-level text on electromagnetic fields and waves. It represents 

a revision of the first two editions of the text, which in turn built upon an earlier volume 

by two of the authors.* It assumes an introductory course in field concepts, which can 

be the lower-division physics course in many colleges or universities, and a background 

in calculus. Material on vectors, differential equations, Fourier analysis, and complex 

notation for sinusoids is included in a form suitable for review or a first introduction. 

We have given such introductions wherever the material is to be used and have related 

them to real problems in fields and waves. Throughout the book, the derivations and 

analyses are done in the most direct way possible. Emphasis is placed on physical 

understanding, enhanced by numerous examples in the early chapters. 

The fundamentals of electromagnetics, based on Maxwell’s brilliant theories, have 

not changed since the first version of the text, but emphases have changed and new 

applications continue to appear. The field of coherent optics for communications and 

information processing continues to grow. New materials of importance to electronic 

devices (for example, superconductors) have been developed. Integrated circuit ap- 

proaches to guides, resonators, and antennas have grown in importance. All these ev- 

olutions are reflected in expanded text and problem material in this edition. Perhaps the 

most important change for persons who need to solve field problems is the growing 

power of computers. At the simplest level, computers greatly speed numerical evalua- 

tion of analytic expressions, easily giving answers over a wide range of parameters. 

But there is also a growing library of wholly numerical techniques for finding solutions 

to field and wave problems in which complex boundary shapes preclude analytic so- 

lutions. We can only give an introduction to this important subject but excellent texts 

and reviews are available to carry the interested student farther. It still remains important 

to understand the basic laws and to develop strong physical pictures and computer 

simulations can substantially add insight, especially in dynamic problems. 

The basic order remains that of the second edition. The purpose of beginning with 

static fields is not only to develop familiarity with vector field concepts but also to 

recognize the fact that a large number of practical time-varying problems (especially 

with small devices) can be treated by static techniques (i.e., are quasistatic). The dy- 

namic treatment of Maxwell, with wave examples, follows immediately so that even in 

a first term, the student will meet a mix of static, quasistatic, and wave problems. Once 

the reader has covered the material of the first three chapters, he or she will find con- 

* § Ramo and J. R. Whinnery, Fields and Waves in Modern Radio, John Wiley & Sons (first 

edition 1944; second edition, 1953). The first edition was prepared with the assistance of 
the General Electric Company when the authors were employed in ifs laboratories. 
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Vill Preface |    siderable flexibility in using the text. Material on the electromagnetics of circuits (Chap- 

ter 4) or on special waveguides (Chapter 9) may be delayed or even omitted and the 

later chapters on microwave circuits, materials, and optics can be used in various orders. 

Selections from among the more advanced sections within a chapter are also possible 

without disrupting the basic flow. | 
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1.1. INTRODUCTION 

Electric fields have their sources in electric charges—electrons and ions. Nearly all real 

electric fields vary to some extent with time, but for many problems the time variation 

is Slow and the field may be considered stationary in time (static) over the interval of 

interest. For still other important cases (called quasistatic) the spatial distribution is 

nearly the same as for static fields even though the actual fields may vary rapidly with 

time. Because of the number of important cases in each of these classes, and because 

static field concepts are simple and thus good for reviewing the vector operations needed 

to describe fields quantitatively, we start with static electric fields in this chapter and 

Static magnetic fields in the next. The student approaching the problem in this way 

must remember that these are special cases, and that the interactions between time- 

varying fields can give rise to other phenomena, most notably the wave phenomena to 

be studied later in the text. 

Before beginning the quantitative development of this chapter, let us comment briefly 

on a few applications to illustrate the kinds of problems that arise in electrostatics or 

quasistatics. Electron and ion guns are good examples of electrostatic problems where 

the distribution of fields is of great importance in the design. Electrode shapes are 

designed to accelerate particles from a source and focus them into a beam of desired 

size and velocity. Electron guns are used in cathode-ray oscilloscopes, in television 

tubes, in the microwave traveling wave tubes of radar and satellite communication 

systems, in electron microscopes, and for electron-beam lithography used for precision 

definition of integrated-circuit device features. 

Many electronic circuit elements may have quite rapidly varying currents and volt- 

ages and yet at any instant have fields that are well represented by those calculated 

from static field equations. This is generally true when the elements are small in com- 

parison with wavelength. The passive capacitive, inductive, and resistive elements are 

thus commonly analyzed by such quasistatic laws, up to very high frequencies; so also 

are the semiconductor diodes and transistors which constitute the active elements of 

electronic circuits.



2 Chapter! Stationary Electric Fields 

Transmission lines, including the strip line used in microwave and millimeter-wave 

integrated circuits even for frequencies well above 10 GHz, have properties that can be 

calculated using the laws for static fields. This is far from.being a static problem, but 

we will see later in the text that for systems having no structural variations along one 

axis (along the transmission line), the fields in the transverse plane satisfy, exactly or 

nearly exactly, static field laws. | 
There are many other examples of application of knowledge of static field laws. The 

electrostatic precipitators used to remove dust and other solid particles from air, 

xerography, and power switches and transmission systems (which must be designed to 

avoid dielectric breakdown) all use static field concepts. Electric fields generated by 

the human body are especially interesting examples. Thus the fields that are detected 

by electroencephalography (fields of the brain) and electrocardiography (fields of the 

heart) are of sufficiently low frequency to be distributed’: in the body in the same way 

that static fields would be. 
In all the examples mentioned, the general problem is that of finding the distribution 

of fields produced by given sources in a specified medium with defined boundaries on 

the region of interest. Our approach will be to start with a simple experimental law 

(Coulomb’s law) and then transform it into other forms which may be more general or 

more useful for certain classes of problems. | 

Most readers will have met this material before in physics courses or introductory 

electromagnetics courses, so the approach will be that of review with the purposes of 

deepening physical understanding and improving familiarity with the needed vector 

algebra before turning to the more difficult time-varying problems. 

  

  

Basic Laws and { Concepts c of ‘Electrostatics 

| 
1.2 FORCE BETWEEN ELECTRIC CHARGES: THE copes OF ELECTRIC FIELD 

It was known from ancient times that electrified bodies exert forces upon one another. 

The effect was quantified by Charles A. Coulomb through brilliant experiments using 

a torsion balance.' His experiments showed that like charges repel one another whereas 

opposite charges attract; that force is proportional to the product of charge magnitudes; 

| 
' An excellent description of Coulomb’s experiments and| the groundwork of earlier re- 

searchers is given in R. S. Elliott, Electromagnetics, McGraw-Hill, New York, 1966, For a 
detailed account of the history of this and other aspects|of electromagnetics, see E. T. 
Whittaker, A History of the Theories of Aether and Electricity, Am. Inst. Physics, New York, 

1987, or P. F. Mottelay, Blographical History of rlecticily a and Magnetism, Ayer Co, Pub- 
lishers, Salem, NH, 1975.
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that force is inversely proportional to the square of the distance between charges; and 
that force acts along the line joining charges. Coulomb’s experiments were done in air, 
but later generalizations show that force also depends upon the medium in which 

charges are placed. Thus force magnitude may be written 

1142 
f=K-; 

er 
(1) 

where q, and q, are charge strengths, 7 is the distance between charges, € is a constant 

representing the effect of the medium, and K is a constant depending upon units. Di- 

rection information is included by writing force as a vector f (denoted here as boldface) 

and defining a vector Ff of unit length pointing from one charge directly away from the 

other: 

=Kof 2) 
er® 

Various systems of units have been used, but that to be used in this text is the 

International System (SI for the equivalent in French) introduced by Giorgi in 1901. 

This is a meter—kilogram—second (mks) system, but the great advantage is that electric 

quantities are in the units actually measured: coulombs, volts, amperes, etc. Conversion 

factors to the classical systems still used in many references are given in Appendix 1. 

Thus in the SI system, force in (2) is in newtons (kg-m/s*), g in coulombs, r in meters, 

and « in farads/meter. The constant K is chosen as 1/47 and the value of e for vacuum 
found from experiment is 

1 F 
= 8854 x 107!2 = — x 10°99 — 3 

“0 36% m @) 

For other materials, 

EE = E-Eg (4) 

where &, is the relative permittivity or dielectric constant of the material and is the 

value usually tabulated in handbooks. Here we are considering materials for which ¢ 

is a scalar independent cf strength and direction of the force and of position. More 

general media are discussed in Sec. 1.3 and considered in more detail in Chapter 13. 

Thus in SI units Coulomb’s law is written 

f= 4192 f (5) 
9 

Acrer~ 

Generalizing from the example of two charges, we deduce that a charge placed in 

the vicinity of a system of charges will also experience a force. This might be found 

by adding vectorially the component forces from the individual charges of the system, 

but it is convenient at this time to introduce the concept of an electric field as the force 

per unit charge for each point of the region influenced by charges. We may define this 

by introducing a test charge Aq at the point of definition small enough not to disturb
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the charge distribution to be studied. Electric field E is |then 

f 
= Ag (6) 

  where f is the force acting on the infinitesimal test charge Aq. 

The electric field arising from a point charge g in a homogeneous dielectric is then 

given by the force law (5): 

  

q ., 
EK = r | 7 

Aner? | 7) 

Since f is the unit vector directed from the point in a direction away from the charge, 

the electric field vector is seen to point away from positive charges and toward negative 

charges as seen in the lower half of Fig. 1.22. The units of electric field magnitude in 

the SI system are in volts per meter, as may be found by substituting units in (7): 

coulombs meter _ volts (V) 

farads (meter) meter (m) 
ny 
  

We can see from the form of (7) that the total electric field for a system of point 

charges may be found by adding vectorially the fields from the individual charges, as 

is illustrated at point P of Fig. 1.2a for the charges g and!— q. In this manner the electric 

field vector could be found for any point in the vicinity of the two charges. An electric 

Aime 

Bo NB 

x \ 

  
| 

FiG. 1.2a Electric fields around two opposite charges. Lower half of figure shows the separate 
fields E, and E_ of the two charges. Upper half shows the vector sum of E, and E_. Con- 
struction of E is shown at one point P.
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field line is defined as a line drawn tangent to the electric field vector at each point in 

space. If the vector is constructed for enough points of the region, the electric field lines 

can be drawn in roughly by following the direction of the vectors as illustrated in the 

top half of Fig. 1.2@. Easier methods of constructing the electric field will be studied 

in later sections, but the present method, although laborious, demonstrates clearly the 

meaning of the electric field lines. 

For fields produced by continuous distributions of charges, the superposition is by 

integration of field contributions from the differential elements of charge. For volume 
distributions, the elemental charge dq is p dV where pis charge per unit volume (C/m?) 

and dV is the element of volume. For surface distributions, a surface density p, (C/m7) 

is used with elemental surface dS. For filamentary distributions, a linear density p, 

(C/m) is used with elemental length d/. An example of a ccentinuous distribution 

follows. 

Example 1.2 
FIELD OF A RING OF CHARGE 

Let us calculate the electric field at points on the z axis for a ring of positive charge of 

radius a located in free space concentric with and perpendicular to the z axis, as shown 

in Fig. 1.2b. The charge p, along the ring is specified in units of coulombs per meter 

so the charge in a differential length is p, dl. The electric field of p, d/ is designated by 

dE in Fig. 1.2b and is given by (7) with r? = a* + 2°. The component along the z 
axis is dE cos @ where cos 8 = z/(a* + z*)!/*. Note that, by symmetry, the component 
perpendicular to the axis is canceled by that of the charge element on the opposite side 

of the ring. The total field at points on the axis is thus directed along the axis and is 

the integral of the differential axial components. Taking d/ = a dd we have 

20r p= [ —egedd 
0 4ne( + 27? ea? + 2? 

  (8) 

pidl 

do a ~ 

7S dE cos 6 

z oe 

0 dE 
  

FiG. 1.2b Electric field of a ring of charge. 
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1.38 THE CONCEPT OF ELECTRIC FLUX AND FLUX! DENSITY: GAUSS’S LAW 

It is convenient in handling electric field problems to introduce another vector more 

directly related to charges than is electric field E. If we define 

D = cE | (1) 

we notice from Eq. 1.2(7) that D about a point charge is radial and independent of the 

material. Moreover, if we multiply the radial component D, by the area of a sphere of 

radius 7, we obtain 

A4nr?D,. = q | (2) 

We thus have a quantity exactly equal to the charge (in coulombs) so that it may be 

thought of as the flux arising from that charge. D may then be thought of as the electric 

flux density (C/m7). For historical reasons it is also known as the displacement vector 

or electric induction. 

It is easy to show (Prob. 1.35) that for an arbitrarily shaped closed surface as in Fig. 

1.3a, the normal component of D integrated over the surface surrounding a point charge 

also gives g. The analogy is that of fluid flow in which the fluid passing surface S of 

Fig. 1.3b in a given time is the same as that passing plane S , perpendicular to the flow. 

So fluid flow rate out of a region does not depend upon the shape of the surface used 

to monitor it, so long as all surfaces enclose the same source. By superposition, the 

result can be extended to a system of point charges or a continuous distribution of 

charges, leading to the conclusion | 

electric flux flowing out of a closed surface = charge enclosed (3) 

This is Gauss’s law and, although argued here from Coulomb’ s law for simple media, 

is found to apply to more general media. It is thus a most general and important law. 

Before illustrating its usefulness, let-us look more carefully at the role of the medium. 

A simplified picture showing why the force between charges depends upon the pres- 

ence of matter is illustrated in Fig. 1.3c. The electron clouds and the nuclei of the atoms 

experience oppositely directed forces as a result of the presence of the isolated charges. 

  

FiG. 1.3aq@ Charge g and arbitrary surrounding surface.
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                  y ¥ yyy v 

FiG. 1.36 Flow of a fluid through surfaces S and S,. 

Y 

Thus the atoms are distorted or polarized. There is a shift of the center of symmetry of 

the electron cloud with respect to the nucleus in each atom as indicated schematically 

in Fig. 1.3c. Similar distortions can occur in molecules, and an equivalent situation 

arises in some materials where naturally polarized molecules have a tendency to be 

aligned in the presence of free charges. The directions of the polarization are such for 

most materials that the equivalent charge pairs in the atoms or molecules tend to coun- 

teract the forces between the two isolated charges. The magnitude and the direction of 

the polarization depend upon the nature of the material. 

The above qualitative picture of polarization introduced by a dielectric may be quan- 

tified by giving a more fundamental definition than (1) between D and E: 

D=cE+P (4) 
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Fic. 1.3¢ Polarization of the atoms of a dielectric by a pair of equal positive charges.
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The first term gives the contribution that would exist if'the electric field at that point 
were in free space and the second measures the effect of the polarization of the material 
(as in Fig. 1.3c) and is called the electric polarization. — 

The polarization produced by the electric field in a material depends upon material 

properties. If the properties do not depend upon position, the material is said to be 

homogeneous. Most field problems are solved assuming homogeneity; inhomogeneous 

media, exemplified by the earth’s atmosphere, are more difficult to analyze. If the 

response of the material is the same for all directions of the electric field vector, it is 

called isotropic. Special techniques are required for handling a field problem in an 

anisotropic medium such as an ionized gas with an applied steady magnetic field. A 

material is called linear if the ratio of the response P to the field E is independent of 

amplitude. Nonlinearities are generally not present except for high-amplitude fields. It 

is also possible that the character of a material may be time variable, imposed, for 

example, by passing a sound wave through it. Throughout most of this text, the media 

will be considered to be homogeneous, isotropic, linear, and time invariant. Exceptions 

will be studied in the final chapters. | 

For isotropic, linear material the polarization is proportional to the field intensity and 

we can write the linear relation | 

P = e9x.E | (5) 
where the constant y, is called the electric =| Then (4) becomes the same 

as (1), 

D = «(1 + yJE = cE (6) 

and the relative permittivity, defined in Eq. 1.2(4) is e, = s/e) = 1+ xX 
Although we will describe a dielectric material largely by its permittivity, the con- 

cepts of polarization and susceptibility are in a sense more fundamental and are con- 

sidered in more detail in Chapter 13. 

1.4 EXAMPLES OF THE USE OF GAWSS’S LAW   
The simple but important examples to be discussed in this section show that Gauss’s 

law can be used to find field strength in a very easy way for problems with certain 

kinds of symmetry and given charges. The symmetry gives the direction of the electric 

field directly and ensures that the flux is uniformly distributed. Knowledge of the charge 

gives the total flux. Symmetry is then used to get flux density D and hence E = D/c. 

    

  

Example 1.4a 

FIELD IN A PLANAR SEMICONDUCTOR DEPLETION LAYER 

For the first example, we consider a one-dimensional situation where a metal is in 

intimate (atomic) contact with a semiconductor. We assume that some of the typically 

valence 4 (e.g., silicon) atoms have been replaced by ‘'dopant’’ atoms of valence 5  



1.4 Examples of the Use of Gauss’s Law 9 

Metal oe Semiconductor     
Charge-—free 

region 

| 
| 
| 
| 
| 
| 

O | 1 

| 
| 
| 
| 
| 

Depletion 

layer 

FIG. 1.4a@ Model of a metal—semiconductor contact. The region to which Gauss’s law is applied 
is the region between parallel planes shown dashed. 

(e.g., phosphorus). The one extra electron in each atom is not needed for atomic bonding 

and becomes free to move about in the semiconductor. Upon making the metal contact, 

it is found that the free electrons are forced away from the surface for a distance d. The 

region 0 = x = dis called a depletion region because it is depleted of the free electrons. 

Since the dopant atoms were neutral before losing their extra electrons, they are posi- 

tively charged when the region is depleted. This can be modeled as in Fig. 1.4a. In the 

region x > d the donors are assumed to be completely compensated by free electrons 

and it is therefore charge-free. (The abrupt change from compensated to uncompensated 

behavior at x = d is a commonly used idealization.) By symmetry, the flux is 

— x-directed only. The surface used in application of Gauss’s law consists of two infinite 

parallel planes, one at x < d and one at x = d. This approximation is made because 

the transverse dimensions of the contact are assumed to be much larger than d. With 

no applied fields, there is no average movement of the electrons in the compensated 

region x = d so E must be zero there. Thus D is also zero in that region and all the 

flux from the charged dopant atoms must terminate on negative charges at the metal 

contact. Therefore, Gauss’s law gives, for a unit area, 

—D (x) = Npe(d — x) (1) 

where N, and e are the volume density of donor ions and the charge per donor (mag- 

nitude of electronic charge), respectively. Then the x component of the electric field is 

D, — Npex — d) 
E, = = 2 (2) 

E€ € 

It should be clear that the simplicity of solution depended upon the symmetry of the 

system; that is, that there were no variations in y and z. 
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Example 1.4b 
FIELD ABOUT A LINE CHARGE OR BETWEEN COAXIAL CYLINDERS 

We introduced the line charge in ring form in Ex. 1.2. Let us now find the field E 
produced by a straight, infinitely long line of uniformly distributed charge. The radius 

of the line is negligibly small and can be thought of as the two-dimensional equivalent 

of a point charge. Practically, a long thin charged wire|is a good approximation. The 

symmetry of this problem reveals that the force on a test charge, and hence the electric 

field, can only be radial. Moreover, this electric field will not vary with angle about the 
line charge, nor with distance along it. If the strength of the radial electric field is desired 

at distance 7 from the line charge, Gauss’s law may be applied to an imaginary cylin- 

drical surface of radius r and any length /. Since the electric field (and hence the electric 
flux density D) is radial, there is no normal component at the ends of the cylinder and 

hence no flux flow through them. However, D is exactly normal to the cylindrical part 

of the surface, and does not vary with either angle or distance along the axis, so that 

the flux out is the surface area 2r/ multiplied by the electric flux density D,. The 

charge enclosed is the length / multiplied by the charge/per unit length g,. By Gauss’s 

law, flux out equals the charge enclosed: 

27rlD, = Iq, 

If the dielectric surrounding the wire has constant e, 

D 
E. =~ = 41 (3) 

E 27€r   Hence, the electric field about the line charge has been obtained by the use of Gauss’s 

law and the special symmetry of the problem. 

The same symmetry applies to the coaxial transmission line formed of two coaxial 

conducting cylinders of radii a and b with dielectric ¢ between them (Fig. 1.4). Hence 

the result (3) applies for radius r between a and b. We use this result to find the 

capacitance in Sec. 1.9. | 

  

  ety Rage ™ i 

FiG. 1.45 Coaxial line. 
{ 
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Fig. 1.4c¢ Spherical electrodes separated by two layers of dielectric materials. 

Example 1.4¢ 
FIELD BETWEEN CONCENTRIC SPHERICAL ELECTRODES WITH TWO DIELECTRICS 

Figure 1.4c shows a structure formed of two conducting spheres of radii a and c, with 

one dielectric ¢, extending from r = a to r = b, in spherical coordinates,” and a 

second, €,, from 7 = btor = c. This problem has spherical symmetry about the center, 

which implies that the electric field will be radial, and independent of the angular 

direction about the sphere. If the charge on the inner sphere is Q and that on the outer 

sphere is — Q, the charge enclosed by an imaginary spherical surface of radius r selected 

anywhere between the two conductors is only that charge Q on the inner sphere. The 

flux passing through it is the surface 477? multiplied by the radial component of the 

flux density D,.. Hence, using Gauss’s law, 

p, = © 
Arr? 
  (4) 

The equation for the flux density is the same for either dielectric, since the flux passes 

from the positive charge on the center conductor continuously to the negative charge 

on the outer conductor. The electric field has a different value in the two regions, 

however, since in each dielectric, D and E are related by the corresponding permittivity: 

    

| g 5 a<r<b (5) 
4qre\r* 

Q 
EL = b<er< 6 

"  Aqresr? me (6) 

2 Note thatr is used both for radius from the axis in the circular cylindrical coordinate 
system and for radius from the origin in the spherical coordinate system. p is frequently 

used for the former but may be confused with charge density, and R is used for the latter, 
but is here reserved for distance between source and field points.
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The radial flux density is continuous at the dielectric discontinuity at r = b, but the 

radial electric field is discontinuous there. 

Example 1.4d 
FIELDS OF A SPHERICAL REGION OF UNIFORM CHARGE DENSITY 

Consider a region of uniform charge density p extending from r = Otor = a. Asin 

the preceding example, Gauss’s law can be written as (4) where, in this case, O = Sar p 

for r = aand Q = $ma°p for r = a. Then the flux densities for the two regions are 

D, = 5p rsa (7) 

3 a 
D.=75P r=a (8) 

  

  1.5 SURFACE AND VOLUME INTEGRALS: GAUSS’S P LAW IN VECTOR FORM 

Gauss’s law, given in words by Eq. 1.3(3), may be rin 

® D cos @dS = q_ | (1) 

The symbol ¢, denotes the integral over a surface and of course cannot be performed 

until the actual surface is specified. It is in general a double integral. The circle on the 

integral sign is used if the surface is closed. | 

The surface integral can also be written in a still more compact form if vector notation 

is employed. Define the unit vector normal to the surface under consideration, for any 

given point on the surface, as f. Then replace D.cos 0 by D - ni. This particular product 

of the two vectors D and fi denoted by the dot between the two is known as the dot 

product of two vectors, or the scalar product, since it results by definition in a scalar 

quantity equal to the product of the two vector magnitudes and the cosine of the angle 

between them. Also, the combination fi dS is frequently jabbreviated further by writing 

it dS. Thus the elemental vector dS, representing the element of surface in magnitude 

and orientation, has a magnitude equal to the magnitude of the element dS under con- 
sideration and the direction of the outward normal to the surface at that point. The 

surface integral in (1) may then be written in any of the equivalent forms: 

} D cos @dS = > D- ds = > D- aS (2) 
S s Is 

All of these say that the normal component of the vector D is to be integrated over the 

general closed surface S.
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If the charge inside the region is given as a density of charge per unit volume in 

coulombs per cubic meter for each point of the region, the total charge inside the region 

must be obtained by integrating this density over the volume of the region. This is 

analogous to the process of finding the total mass inside a region when the variable 

mass density is given for each point of a region. This process may also be denoted by 

a general integral. The symbol /,, is used to denote this, and, as with the surface integral, 

the particular volume and the variation of density over that volume must be specified 

before the integration can be performed. In the general case, it is performed as a triple 

integral. 

Gauss’s law may then be written in this notation: 

6 p-as =| pav (3) 
S V 

Although the above may at first appear cryptic, familiarity with the notation will im- 

mediately reveal that the left side is the net electric flux out of the region and the nght 

side is the charge within the region. 

Example 1.5 

RROUND BEAM OF UNIFORM CHARGE DENSITY 

Consider the circular cylinder of uniform charge density p and infinite length shown in 

Fig. 1.5. A region of integration is taken in the form of a prism of square cross section. 

We will demonstrate the validity of (3), utilizing the fact that D has only a radial 
component. The right side of (3) is 

1 pb/2 b/2 
| pdV = 7| ay | p dx = Ilb*p (4) 

V —b/2 —b/2 
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Fic. 1.5 Square cylindrical region of integration in a circular cylinder of free charge.
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At any radius, D, can be found as in Sec. 1.4 to be | 

(mr*)p _ 7p 
207 2 | 

To do the surface integration on the left side of (3), wel note that D- dS = D, dx dz 

cos 6, that cos 6 = b/2r, and that the four sides make ome contributions to the integral. 

‘Thus | 

  D.= r (5) 

b/2 

p D -dS = { az | D, cos jax = = [bp (6) 
b/2 

and from (6) and (4) we see that (3) is satisfied. Problem 1.5b contains a similar situ- 

ation, but is somewhat complicated by having the charge density dependent upon radius. 

  

1.6 TUBES OF FLUX: PLOTTING OF FIELD LINES 

For isotropic media, the electric field E is in the same direction as flux density D. A 

charge-free region bounded by E or D lines must then have the same flux flowing 

through it for all selected cross sections, since no flux can flow through the sides parallel 

with D, and Gauss’s law will show the conservation of flux for this source-free region. 
Such a region, called a flux tube, is illustrated in Fig, 1.6a. Surface S; follows the 

direction of D, so there is no flow through S3. That flowing in S,; must then come out 

S, if there are no internal charges. These tubes are analogous to the flow tubes in the 

fluid analogy used in Sec. 1.3. 

The concept of flux tubes is especially useful in making maps of the fields, and will 

be utilized later (Sec. 1.19) in a useful graphical field-mapping technique. We show in 

the following example how it may be used to obtain field lines in the vicinity of parallel 

line charges. 

  

  

Example 1 6 | 
FLUX TUBES AND FIELD LINES ABOUT PARALLEL LINES OF OPPOSITE CHARGE 

To show how field lines may be found by constructing aux tubes, we use, as an example, 

two infinitely long, parallel lines of opposite charge. It 1 is obvious from symmetry that 

the plane in which the two charge lines lie will contain D lines and hence can be a 
boundary of a fiux tube. We introduce the flux function| 

v= | D-as | (1)
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Sj 

Fic. 1.6a@ Tube of flux. 

which measures the flux crossing some chosen surface. For example, suppose S is the 

cross-hatched surface in Fig. 1.6b. First, let the angles a, and a, shrink to zero so S 

also vanishes. Then the flux function will be zero along the plane of the lines of charge. 

(The surface S also could be chosen in some other way, making the flux function 

different from zero on that plane. The resulting additive constant is arbitrary, so we 

take it to be zero.) We get other flux tube boundaries by taking nonzero values of the 

angles aw, and a. First we derive an expression for the flux passing between the ww = 

0 plane and line L in Fig. 1.6b. Then paths will be formed along which L may be moved 

while keeping the same flux between it and the &w = O surface. Moving L along such 

a path therefore generates a surface which is the boundary of a flux tube of infinite 

length parallel to L. The flux may be divided into the part from the positive line charge 

and the part from the negative line charge, since the effects are superposable. The flux 

from the positive line goes out radially so that the amount (per unit length) crossing S 

is g,(a,/27). The flux passing radially inward toward the negative line charge through 

S adds directly to that of the positive line charge and has the magnitude g,(a,/277). The 

total flux per unit length crossing S is 

y= so (a + a) (2) 
7 

  
Fic. 1.66 Construction of flux tubes about line charges.
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Fic. 1.6¢ Tubes of flux between line charges. 

The surface generated by moving L in such a way as to keep wW constant is a circular 

cylinder that passes through the charge lines with its axis in the plane normal to the 

us = O line midway between the line charges. Figure 1.6c shows several flux tubes, 

with the values of ws indicating the amount of flux between the yy = O surface and the 

one being considered, as a, is increased from zero to 27r. Note that as a path is taken 

around one of the lines, the flux function goes from 0 to q,; the total flux per unit length 

coming from a line charge is q,. It is clear from this example that the flux function 

is not single-valued since it continues to increase as a@, Or a, increases; more flux lines 

are crossed as motion about the line charge continues. We must therefore limit a, and 
a, to the range 0 to 27 to ensure unique values for w. | 

Since the boundaries of the flux tubes lie along D vectors and D = eK, they also lie 

along E vectors. Thus, by plotting flux tubes, we find the directions of the electric field 

vectors surrounding the charges. There is a given amount of flux in each tube so the 

flux density D, and therefore also E, become large where the cross section of the tube 

becomes small. | 

1.7. ENERGY CONSIDERATIONS: CONSERVATIVE PROPERTY 
OF ELECTROSTATIC FIELDS 

Since a charge placed in the vicinity of other charges experiences a force, movement 

of the charge represents energy exchange. Calculation lof this requires integration of 

force components over the path (line integrals). It will be found that the electrostatic
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system is conservative in that no net energy is exchanged if a test charge is moved 

about a closed path, returning to its initial position. 

Consider the force on a small positive charge Ag moved from infinity to a point P 

in the vicinity of a system of positive charges: g, at Q,, g» at Q,, q3 at Q3, and so on 

(Fig. 1.7a). The force at any point along its path would cause the particle to accelerate 

and move out of the region if unconstrained. A force equal to the negative of that from 

surrounding charges must then be applied to bring Ag from infinity to its final position. 

The differential work done on Ag from q, in the system is the negative of the force 

component in the direction of the path, multiplied by differential path length: 

dU, = —F,: dl 

Or, using the definition of the scalar product, the angle 0 as defined in Fig. 1.7a, and 

the force as stated above, we write the line integral for total work related to q, as 

*21 Agq, cos 6 dl 
9 

0 Aqer~ 

PQ, 

where +r is the distance from q, to the differential path element dl at each point in the 

integration. Since di cos 6 is dr, the integral 1s simply 

y= { A qq) dr 

o 4er 

and similarly for contributions from other charges, so that the total work integral is 

PQ, A PQ2 Aga, PQ3 A y = -| WM», -| 192. -| 93 4. 
9 9 

o 497Eer- co  49rer- Ader? 
    

Note that there is no component of the work arising from the test charge acting upon 

itself. Integrating, 

_ Aqq 4 Aqq + Aqq; 1 = 2 
AqmePQ, 47ePQ, 47ePQ; ) 

By 

0 P 

dl 
/ 

/ 
/ 

/r 
/ eg 

3 

ba Os 
Q) 

Fic. 1.7a Integration path for force on test charge.



18 Chapter 1 Stationary Electric Fields 

Equation (2) shows that the work done is a function only of final positions and not 

of the path of the charge. This conclusion leads to another: if a charge is taken around 

any closed path, no net work is done. Mathematically this is written as the closed line 

integral 
t 

Edi = 0 | (3) 

This general integral signifies that the component of electric field in the direction of 

the path is to be multiplied by the element of distance along the path and the sum taken 

by integration as one moves about the path. The circle through the integral sign signifies 

that a closed path is to be considered. As with the designation for a general surface or 

volume integral, the actual line integration cannot be performed until there is a speci- 

fication of a particular path and the variation of EK about that path. 

In the study of magnetic fields and time-varying electric fields, we shall find corre- 

sponding line integrals which are not zero. 

    
Example 1.7 ! 

DEMONSTRATION OF CONSERVATIVE PROPERTY 

To illustrate the conservative property and the use of line integrals, let us take the line 

integral (3) around the somewhat arbitrary path through a uniform sphere of charge 

density p shown in Fig. 1.7b. The path is chosen, for simplicity, to lie in the x = 0 

    

  
Fic. 1.76 Path of integration (broken line) through electric field of sphere of uniform charge 
to show conservative property.
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plane. The integrand E - dl involves electric field components E, and E,. The radial 

electric field E, = pr/3e, is found from Eq. 1.4(7). The components are Ey = E,( y/r) 

and E. = E,(z/r) so E, = py/3e9 and E, = pz/3é . The integral (3) becomes 

C2 by Cy by 

pE-a= | E,dz+ j, B, dy + | Baz + | Ey dy 
2 bz 

_ ple 
3&5 | 2 

by 

~ ° by 

The general conservative property of electrostatic fields is thus illustrated in this 

example. 

bs 2 

Z 
+ = 

by 

2 y? 

+ 

2         Cy Co 

  

1.8 ELECTROSTATIC POTENTIAL: EQUIPOTENTIALS 

The energy considerations of the preceding section lead directly to an extremely useful 

concept for electrostatics—that of potential. The electrostatic potential function is de- 

fined as the work done per unit charge. Here we start generally and define a potential 

difference between points 1 and 2 as the work done on a unit test charge in moving 

from P, to Po. 
Po 

Dp, — Pp = - E-: dl (1) 2 P, 

The conclusion of the preceding section that the work in moving around any closed 

path is zero shows that this potential function is single-valued; that 1s, corresponding 

to each point of the field there is only one value of potential. 

Only a difference of potential has been defined. The potential of any point can be 

arbitrarily fixed, and then the potentials of all other points in the field can be found by 

application of the definition to give potential differences between all points and the 

reference. This reference is quite arbitrary. For example, in certain cases it may be 

convenient to define the potential at infinity as zero and then find the corresponding 

potentials of all points in the field; for determination of the field between two conduc- 

tors, it is more convenient to select the potential of one of these as zero. 

If the potential at infinity is taken as zero, it is evident that the potential at the point 

P in the system of charges is given by U of Eq. 1.7(2) divided by Aq, so 

q1 q2 q3 @ = + + —S— 2 
4mePQ, 4ePQ, 47ePQ; @) 
    

This may be written in a more versatile form as 

dr) = >} —— (3) 

where R; is the distance of the ith charge at r; from the point of observation at r, as 

seen in Fig. 1.8a.
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yi 

oq. 
3 

07; 

P 

r 

——- XT 

z 

Fic. 1.8a Potential of g,, q2, 73, ..., 9; is found at point P. 

R, = We — ri] = (@ — i + Cy — yi + @ — BP? (4) 
Here x, y, and z are the rectangular coordinates of the point of observation and 

x, y}, and z’ are the rectangular coordinates of the ith charge.? Generalizing to the case 

of continuously varying charge density, 

_ | e@)av' 
P(r) = j AtreR ©) 

The p(r’) is charge density at point (x’, y’, z’), and the integral signifies that a summation 

should be made similar to that of (2) but continuous over all space. If the reference for 

potential zero is not at infinity, a constant must be added of such value that potential 

is zero at the desired reference position. 

_ f pe) av’ 
P(r) = I 4aeR te (9)   It should be kept in mind that (2)—(6) were derived assuming that the charges are located 

in an infinite, homogeneous, isotropic medium. If conductors or dielectric discontinu- 

ities are present, differential equations for the potential (0 be given shortly) are used 

for each region. 

We will see in Sec. 1.10 how the electric field E can be found simply from ®(r). It 

is usually easier to find the potential by the scalar operations in (3) and (5) and, from 

it, the field E than to do the vector summations discussed in Sec. 1.2. Such convenience 

in electrostatic calculations is one reason for introducing this potential. 

In any electrostatic field, there exist surfaces on which the potential is a constant, so- 

called equipotential surfaces. Since the potential is single-valued, surfaces for different 

3 Throughout the text we use primed coordinates to designate the location of sources and 
unprimed coordinates for the point at which their fields are to be calculated.
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values of potential do not intersect. The pictorial representation of more than one such 

surface in a three-dimensional field distribution is quite difficult. For fields that have 

no variation in one dimension and are therefore called two-dimensional fields, the third 

dimension can be used to represent the potential. Figure 1.8b shows such a representa- 

tion for the potential around a pair of infinitely long, parallel wires at potentials ®, and 

—Q@,. The height of the surface at any point is the value of the potential. Note that 

lines of constant height or constant potential can be drawn. These equipotentials can 

be projected onto the x—y plane as in Fig. 1.8c. In such a representation, the equipo- 

  

  

      
  

  

  

  
(b) 

  

  
{c) 

Fic. 1.8 (5) Plot of a two-dimensional potential distribution using the third dimension to show 
the potential. (c) Equipotentials for the same potential system as in (b) plotted onto the x—y plane.
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tentials look like the contour lines of a topographic map and, in fact, measure potential 

energy of a unit charge relative to a selected zero-potential point just as contours meas- 

ure potential energy relative to some reference altitude, often sea level. It should be 

kept in mind that these lines are actually traces in the x—y plane of three-dimensional 

cylindrical equipotential surfaces. 

We will discuss the boundary conditions on conductors in some detail in Sec. 1.14. 

At this point it is sufficient to say that the electric fields inside of a metallic conductor 

can be considered to be zero in electrostatic systems. Therefore, (1) shows that the 

conductor is an equipotential region.   
  

"Example | 1.8a 

POTENTIALS AROUND A LINE CHARGE AND BETWEEN COAXIAL CYLINDERS 

  As an example of the relations between potential and electric field, consider first the 

problem of the line charge used as an example in Sec. 1.4, with electric field given by 

Eq. 1.4(3). By (1) we integrate this from some radius rp chosen as the reference of zero 

potential to radius r: 

o=-| pa=-| 4-447 (7) 
r ry 2TEr 27e \I' 0 0 

Or this expression for potential about a line charge may be written 

@= “Hr tc (8) 
21E 

Note that it is not desirable to select infinity as the reference of zero potential for the 
line charge, for then by (7) the potential at any finite point would be infinite. As in (6) 

the constant is added to shift the position of the zero potential. 

In a similar manner, the potential difference between the, coaxial cylinders of Fig. 1.4b 

may be found: 
| 

0-2 [ee sel (9) 

pb 27er 27e \a 

  

Example 1.8b | 
POTENTIAL OUTSIDE A SPHERICALLY SYMMETRIC CHARGE 

n saw in Eq. 1.4(4) that the flux density outside a spherically symmetric charge Q is 

= Q/4nr?. Using E = D/e, and taking the reference potential to be zero at in- 
fiity, we see that the potential outside the charge Q is the negative of the integral of
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FE. & dr from infinity to radius r: 

" Q dr, _ Q 5 = 
eo A4Tegry 479!" 

  Or) = — (10) 

  

Example 1.8¢ 
POTENTIAL OF A UNIFORM DISTRIBUTION OF CHARGE 

HAVING SPHERICAL SYMMETRY 

Consider a volume of charge density p that extends from r = 0 tor = a. Taking 

® = 0 atr = ©, the potential outside a is given by (10) with Q = $7rea°p, so 

3 

@7)=-F  +-ZBa (11) 
3g" 

In particular, atr = a 

ba) = (12) 
3& 

Then to get the potential at a point where 7 = a we must add to (12) the integral of the 

electric field from a to r. The electric field is given as E, = pr/3e, (Ex. 1.7) and the 

integral is 

‘ r 9 9 Or) — Oa) = - | 5 dr, = a (a2 — 72) (13) 
a 0 0 

So the potential at a radius r inside the charge region is 

Or) =—$— Ba2- 9) rsa (14) 
6& 

  

Example 1.8d 
ELECTRIC DIPOLE 

A particularly important set of charges is that of two closely spaced point charges of 

opposite sign, called an electric dipole. 

Assume two charges, having opposite signs to be spaced by a distance 26 as shown 

in Fig. 1.8d. The potential at some point a distance r from the origin displaced by an 

angle @ from the line passing from the negative to positive charge can be written as the 

sum of the potentials of the individual charges: 

1 ] 
@ = £(+ — +) (15) 

4ne\r., r
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Fic. 1.9 (qa) Parallel-plane capacitor with fringing sets (b) Idealization. 

the surface charge density p, on each plate. Since the field E = D/eis assumed uniform, 

the potential difference ®, — ®, is, by Eq. 1.8(1), | 

d 
b,- = (2) 

e 
The total charge on each plate of area A is p,A so (1) and (2) give the familiar expression 

C=— F 

In practice, (3) is modified by the fringing fields, which are increasingly important as 

the ratio of plate spacing to area is increased. | 

Next consider a capacitor made of coaxial, circular cylindrical electrodes. We assume 

that fields are only radial and neglect any fringing at the ends if it is of finite length. 

The charge on each conductor is distributed uniformly in this idealization, as required 

by symmetry, with the total charge per unit length being q,. The potential difference 

found from the field produced by this charge is given by Eq. 1.8(9). The capacitance 

per unit length is thus 

2TE 

In(b/a) 

where b and a are the radii of larger and smaller conductors, respectively. 

Finally, consider two concentric spherical conductors of radii a and b, with b > a, 

separated by a dielectric s. Using symmetry, Gauss’s law! and E = D/es, it is clear that 

at any radius 

  C= F/m (4) 

Q 
Aqrer? 
  E, = (5) 

where Q is the charge on the inner conductor (equal in magnitude and opposite in sign  
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to the charge on the inside of the outer sphere). Integration of (5) between spheres gives 

®, — ©®, and this, substituted into (1), yields 

CH= Are _ Atreab 

~ (1/a) - (i/b) b-a 

The flux tubes in these three highly symmetric structures are very simple, being 

bounded by parallel surfaces in the first example and by cylindrically or spherically 

radial surfaces in the last two. In Sec. 1.21 we will see a way of finding capacitance 

graphically for two-dimensional structures of arbitrary shape in which the flux tubes 

have more complex shapes. 

Capacitance of an isolated electrode is sometimes calculated; in that case, the flux 

from the charge on the electrode terminates at infinity and the potential on the electrode 

is taken with respect to an assumed zero at infinity. More extensive considerations of 

capacitance are found in Sec. 4.9. 

  (6) 
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Differential Forms of Electrostatic Laws 

1.10 GRADIENT 

We have looked at several laws of electrostatics in macroscopic forms. It is also useful 

to have their equivalents in differential forms. Let us start with the relation between 

electric field and potential. If the definition of potential difference is applied to two 

points a distance dl apart, 

di = —-E-dl (1) 

where dl may be written in terms of its components and the defined unit vectors: 

di = Xd + yay + izdz (2) 

We expand the dot product: 

d® = —(E, dx + E, dy + E, dz) 

Since ® is a function of x, y, and z, the total differential may also be written 

dD dD dD 
d® = —-dx + —dy+—d 

ax | ay oa 

From a comparison of the two expressions, 

aD dD aD 
E. = - = Ei =-— k,=-—= (3) 

ax’ y dy’ * az
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so | 
aD dD ab 

= —|f§— + F — 4 
e (x25 Pas “0 ) 

or 

E = —grad ® (5) 

where grad ®, an abbreviation of the gradient of ®, is a vector showing the direction 

and magnitude of the maximum spatial variation of the scalar function ®, at a point in 
space. 2 

Substituting back in (1), we have 

= (grad &) dl, (6) 
Thus the change in ® is given by the scalar product of the gradient and the vector dl, 

so that, for a given element of length dl, the maximum value of d® is obtained when 

that element is oriented to coincide with the direction of| the gradient vector. From (6) 

it is also clear that grad ® is perpendicular to the equipotentials because d® = 0 for 
dl along an equipotential. 

The analogy between electrostatic potential and gravitational potential energy dis- 

cussed in Sec. 1.8 is useful for understanding the gradient. It is easy to see in Fig. 1.8b 

that the direction of maximum rate of change of potential is perpendicular to the 

equipotentials (which are at constant heights on the potential hill). 

If we define a vector operator V (pronounced del) 

  

0 0 a 
v &§k-4 59-43 7 

x Ox y oy az! 1) 

then grad ® may be written as V® if the operation is interpreted as 

ab ab a 
V@® =*K—+97—-4+2— (8) 

Ox oy Oz 

and | 

E = —grad@ & —Vo (9) 

The gradient operator in circular cylindrical and spherical coordinates is given on the 

inside front cover. 

Example 1.10 
ELECTRIC FIELD OF A DIPOLE 

| 
As an example of the use of the gradient operator, we will find an expression for the 

field around an electric dipole. The potential for a dipole is given in Sec. 1.8 in spherical 

coordinates so the spherical form of the gradient operator is selected from the inside
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front cover. 

Lad, b ae 
rd0- rsin@ dd 

Substituting Eq. 1.8(16) and noting the independence of ¢, we get 

VO =? 7 
or 

+6 

_p 80088 _ 9 dg sin 8 

wer? Qmer? 
Vb = 

Then from (9) the electric field is 

&q [, ~ sin 6 
E ee (+ cos 6+ 60 z ) (10)     

  

1.11 THE DIVERGENCE OF AN ELECTROSTATIC FIELD 

The second differential form we shall consider is that of Gauss’s law. Equation 1.5(3) 
may be divided by the volume element AV and the limit taken: 

D- dS dv 
im $P-a8 _ 5, ew (1) 
avoo AV avoo AV 

The right side is, by inspection, merely p. The left side is the outward electric flux 

per unit volume. This will be defined as the divergence of flux density, abbreviated div 
D. Then 

divD = p (2) 

This is a good place to comment on the size scale implicit in our treatment of fields 
and their sources; the comments also apply to the central set of relations, Maxwell’s 
equations, toward which we are building. In reality, charge is not infinitely divisible— 

the smallest unit is the electron. Thus, the limit of AV in (1) must actually be some 

small volume which is still large enough to contain many electrons to average out the 

granularity. For our relations to be useful, the limit volume must also be much smaller 

than important dimensions in the system. For example, to neglect charge granularity, 

the thickness of the depletion layer in the semiconductor in Ex. 1.4a should be much 
greater than the linear dimensions of the limit volume, which, in turn, should be much 
greater than the average spacing of the dopant atoms. Similarly the permittivity ¢ is an 

average representation of atomic or molecular polarization effects such as that shown 
in Fig. 1.3c. Therefore, when we refer to the field at a point, we mean that the field is 

an average over a volume small compared with the system being analyzed but large 

enough to contain many atoms. Analyses can also be made of the fields on a smaller 
scale, such as inside an atom, but in that case an average permittivity cannot be used. 

In this book, we concentrate on situations where p, ¢,, and other quantities.are.averages
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over small volumes. There are thin films of current practical interest which are only a 

few atoms thick and semiconductor devices such as that of Ex. 1.4a where these con- 

ditions are not well satisfied, so that results from calculations using p and s as defined 

must be used with caution. 

Now let us return to seeking an understanding of (2). Consider the infinitesimal 

volume as a rectangular parallelepiped of dimensions Ax, Ay, Az as shown in Fig. 
1.1la. To compute the amount of flux leaving such a volume element as compared with 

that entering it, note that the flux passing through any face of the parallelepiped can 

differ from that which passes through the opposite face only if the flux density perpen- 

dicular to those faces varies from one face to the other. If the distance between the two 

faces is small, then to a first approximation the difference in any vector function on the 

two faces will simply be the rate of change of the function with distance times the 

distance between faces. According to the basis of calculus, this is exactly correct when 

we pass to the limit, since the higher-order differentials are then zero. 

If the vector D at the center x, y, z has a component D,(x), then 

Ax\ _ Ax aD,@) bx + 2) = DQ) + > 

A Ax aD,(x) ©) Xx X OLAX v(x F) =p.) - FM 
In this functional notation, the arguments in parentheses show the points for evaluating 

the function D,. When not included, the point (, y, z) ‘will be understood. The flux 

flowing out the right face is Ay Az D(x + Ax/2), and that flowing in the left face is 

Ay Az D(x — Ax/2), leaving a net flow out of Ax Ay Az(aD,,/dx), and similarly for 
the y and z directions. Thus the net flux flow out of the parallelepiped is 

aD. 
Ax Ay Az 

ox 
  

dD ! aD. 
+ Ax Ay Az — + Ax Ay Az = 

oy | dz 

  

        

          
z 

Fic. 1.11q@ Volume element used in div D derivation.
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By Gauss’s law, this must equal p Ax Ay Az. So, in the limit, 

aD. OD, aD, 
+ + —= — + _ = 4 

Ox dy Oz p ) 
  

An expression for div D in rectangular coordinates is obtained by comparing (2) and (4): 

dD. OD, aD, 
divD = —* + — + — 5 

Ox oy dz ©) 

If we make use of the vector operator V defined by Eq. 1.10(7) in (4), then (5) indicates 

that div D can conveniently be written as V - D. It should be remembered that V is not 

a true vector but rather a vector operator. It has meaning only when it is operating on 

another quantity in a defined manner. Summarizing, 

v-pAdvp = 242%, _, (6) 
Ox oy Oz 

The divergence is made up of spatial derivatives of the field, so (6) is a partial 

differential equation expressing Gauss’s law for a region of infinitesimal size. The 

physical significance of the divergence must be clear. It is, as defined, a description of 

the manner in which a field varies at a point. It is the amount of flux per unit volume 

emerging from an infinitesimal volume at a point. With this picture in mind, (6) seems 

a logical extension of Gauss’s law. In fact (6) can be converted back to the large-scale 

form of Gauss’s law through the divergence theorem, which states that the volume 

integral of the divergence of any vector F throughout a volume is equal to the surface 

integral of that vector flowing out of the surrounding surface, 

V-Fdv =$ F-ds (7) 
Vv S 

Although not a proof, this is made plausible by considering Fig. 1.115. The divergence 

multiplied by volume element for each elemental cell is the net surface integral out of 
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FiG. 1.11b Solid divided into subvolumes to illustrate the divergence theorem. 
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that cell. When summed by integration, all internal contributions cancel since flow out 

of one cell goes into another, and only the external ‘surface contribution remains. 

Applications of (7) to (6) with F = D gives 

  § y-as-[v-pa-[ pa 
S V Vv 

which is the original Gauss’s law. 

(8) 

It will be useful to have expressions for the divergence: and other operations involving 

V in other coordinate systems for simpler treatment of problems having corresponding 

symmetries. Let us, as an example, develop here the divergence of D in spherical 

coordinates.* We use the left side of (1) as the definition of div D and apply it to the 

differential volume shown in Fig. 1.11c. We will find first the net radial outward flux 
from the volume. Both the radial component D, and the element of area r? d@ sin Odd 

change as we move from 7 tor + dr. Thus the net flux flow out the top over that in at 

the bottom is 

     diy. = (r + dry sin ao ae ( p+ . 

To first-order differentials, this leaves 

  

dw. = r? sin 6 dO age = a + 2r dr sin 0 d0 dé D, 

I sin 6 dr do dd - (r2D,) . 

Similarly for the 0 and ° directions,   
: 0 

dW, a0 — — 9 Po r sin 6 d@ dr) = r dr d@ do Fy. (sin 6 D,) 

0 OD y 
di, — dd ad Og r aé dr) = r dr d@ dd (ab 

The divergence is then the total dis divided by the element of volume 

di, + diy + dy 
V-D= 

r? sin 6 dr do.dd 
  

1 aD 4 
V-D 

in 6 ad 

  

3 7D) + — l ( 0D) +- _— — ee TT in 

reap oP 6 6 

3 — r* sin 6 dé ddD, 

(9) 

For the corresponding expression in circular cylindrical coordinates, see inside front 

cover and Prob. 1.1lc. 

4 Note that here, as with other curvilinear coordinate systems, it is not the scalar product 
of the gradient operator and the vector in spherical coordinates, but must be obtained 
from the basic definition given by (1) and (2).
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Fic. 1.11¢ Element of volume in spherical coordinates. 

Example 1.11 
UNIFORM SPHERE OF CHARGE 

We will show an example of the application of (6) using a sphere of charge of uniform 

density p having a radius a with divergence written in spherical coordinates. Since the 

spherical symmetry of the charge region leads to Dg = Dy = O, the last two terms of 

(9) vanish. We use the value of D, = rp/3 from Eq. 1.4(7) for the region inside the 

charge sphere and obtain 

1 a 
V-D=5> oa(®) | =p (10) 

r- or 3 

For the region outside the sphere we use D,(r) = a? p/3r? from Eq. 1.4(8) to show 
that 

1 @ ,. (arp _ 
V:D= 2 >, [ (£2) = 0 (11) 

This example shows that divergence is zero outside the charge region but equal to 

charge density within it. The same result is obtained if one uses divergence expressed 

in rectangular coordinates or other coordinates not so natural to the symmetry (Prob. 

1.11d). 

e
t
 

  

1.12 LAPLACE’S AND POISSON’S EQUATIONS 

The differential relations of the two preceding sections allow us to derive an important 

differential equation for potential. Differential equations can be applied to problems 

more general than those solved by symmetry in the first part of the chapter and it is
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often convenient to work with potential as the dependent variable. This is because 

potential is a scalar and because the specified boundary conditions are often given in 

terms of potentials. 

If the permittivity © is constant throughout the region, the substitution of EF. from 

Eq. 1.10(5) in Eq. 1.11(6) with D = cE yields 

div(grad ®) = V-V® = e 

But, from the equations for gradient and divergence in Tectangular coordinates [Eqs. 

1.10(7) and 1.11(6)], : 

rd ao Po     

    

ax? dy? dz (1) 

so that . 

Pb FH FO _ p 0) 

ax? ay? a € 

This is a differential equation relating potential variation at any point to the charge 

density at that point and is known as Poisson’s equation. It is often written 

Vo=-2 (3) 
é | 

where V7® (del squared of ®) is known as the Laplacian of ®. 

Vb 2V- VO = div(gradi®) (4) 

In the special case of a charge-free region, Poisson’s equation reduces to 

ro rbd ao 
2 + —~ + = 0 

ax2 "ay? * az? 

  

  
Or 

V*b = 0 (5) 
t 

which is known as Laplace's equation. Although illustrated in its rectangular coordinate 

form, V7 can be expressed in cylindrical or spherical coordinates through the relations 

given on the inside front cover. 

Any number of possible configurations of potential surfaces will satisfy the require- 

ments of (3) and (5). All are called solutions to these equations. It is necessary to know 

the conditions existing around the boundary of the region to select the particular solution 

which applies to a given problem. We will see in Sec. 1.17 a proof of the uniqueness 

of a function that satisfies both the differential equation and the boundary conditions. 

Quantities other than potential can also be shown to satisfy Laplace’s and Poisson’s 

equations, both in other branches of physics and in other parts of electromagnetic field 

theory. For example, the magnitudes of the rectangular components of E and the com- 

ponent £, in cylindrical coordinates also satisfy Laplace’s equation.  
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A number of methods exist for solution of two- and three-dimensional problems with 

Laplace’s or Poisson’s equation. The separation of variables technique is a very general 

method for solving two- and three-dimensional problems for a large variety of partial 

differential equations including the two of interest here. Conformal transformations of 

complex variables yield many useful two-dimensional solutions of Laplace’s equation. 

Increasingly important are numerical methods using digital computers. All these meth- 

ods are elaborated in Chapter 7. Examples for this chapter, after discussion of boundary 

conditions, will be limited to one-dimensional examples for which the differential equa- 

tions may be directly integrated. These show clearly the role of boundary and continuity 

conditions in the solutions. 

1.13 STATIC HELDS ARISING FROM STEADY CURRENTS 

Stationary currents arising from dc potentials applied to conductors are not static be- 

cause the charges producing the currents are in motion, but the resulting steady-state 

fields are independent of time. Quite apart from the question of designation, there is a 

close relationship to laws and techniques for the fields arising from purely static charges. 

We consider ohmic conductors for which current density is proportional to electric 

field E through conductivity” o siemens per meter (S/m): 

J = cE (1) 

Such a relationship comes from internal “collisons” and is discussed more in Chapter 

13. Since the electric field is independent of time, it is derivable from a scalar potential 

as in Sec. 1.10, so 

J = —aV® (2) 

For a stationary current, continuity requires that the net flow out of any closed region 

be zero since there cannot be a buildup or decay of charge within the region in the 

steady state, 

é J-dS = 0 (3) 
s 

or in differential form, 

V-jJ=0 (4) 

Substitution of (2) in (4), with o taken as constant, yields 

V:- Vb S Vo =0 (5) 

Thus potential satisfies Laplace’s equation as in other static field problems (Sec. 1.12). 

In addition to the boundary condition corresponding to the applied potentials, there is 

° The S! unit for conductivity is siemens per meter (S/m), but older literature sometimes uses 

mho as the conductivity unif.
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a constraint at the boundaries between conductors and insulators since there can be no 

current flow across such boundaries. Referring to (2), this requires that for such 

boundaries, on the conductor side, 

—=0 (6) 

  where n denotes the normal to such boundaries. Continuity relations between different 

conductors are considered in the following section. 
| 

1.14 BOUNDARY CONDITIONS IN ELECTROSTATICS 

Most practical field problems involve systems containing more than one kind of ma- 

terial. We have seen some examples of boundaries between various regions in the 

examples of earlier sections, but now we need to develop these systematically to utilize 

the differential equations of the preceding sections. 

Let us consider the relations between normal flux density components across an 

arbitrary boundary by using the integral form of Gauss’s law. Consider an imaginary 

pillbox bisected as shown in Fig. 1.14a by the interface between regions 1 and 2. The 

thickness of the pillbox is considered to be small enough that the net flux out the sides 

vanishes in comparison with that out the flat faces. If we assume the existence of net 

surface charge p, on the boundary, the total flux out of |the box must equal p, AS. By 

Gauss’s law, 

D,, AS — D,» AS = p, AS nl 

  

    
Fic. 1.14a@ Boundary between two different media.
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Or 

Dy ~ D2 = Ps (1) 

where AS is small enough to consider D,, and p, to be uniform. 

A second relation may be found by taking a line integral about a closed path of length 

Al on one side of the boundary and returning on the other side as indicated in Fig. 

1.14a. The sides normal to the boundary are considered to be small enough that their 

net contributions to the integral vanish in comparison with those of the sides parallel 

to the surface. By Eq. 1.7(3) any closed line integral of electrostatic field must be zero: 

é E ‘ dl — Es Al — Es Al = 0 

OT 

Ey = Eo (2) 

The subscript ¢ denotes components tangential to the surface. The length of the tangen- 

tial sides of the loop is small enough to take E, as a constant over the length. Since the 

integral of E across the boundary is negligibly small, 

2, = ®, (3) 

across the boundary. Equations (1) and (2), or (1) and (3), form a complete set of 

boundary conditions for the solution of electrostatic field problems. 

Consider an interface between two dielectrics with no charge on the surface. From 

(1) and Eq. 1.3(1). 

E} En = €5 En (4) 

It is clear that the normal component of E changes across the boundary, whereas the 

tangential component, according to (2), is unmodified. Therefore the direction of the 

resultant E must change across such a boundary except where either E,, or E, are zero. 

Suppose that at some point at a boundary between two dielectrics the electric field in 

region | makes an angle 0, with the normal to the boundary. Thus, as seen in Fig. 

1.148, 

  

Ey 
Gy Eni 

    Er2 
  

Ey 

62 

    EQ 
En2 Eo 

FiG. 1.14b Vector relations among electric field components at a point on a boundary between 

dielectrics (€, > &,).
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Q =tan'— 5 Ey (5) 

6, =tan~'!—2 6 2 an Ey | (6) 

Then using (2) and (4) we see that . 

4 E> | 
6, = tan —tan 4, (7) 

E, | 

Let us now consider the boundary properties of conductors, as exemplified by a piece 

of semiconductor with metallic contacts. The currents flowing in both the semiconductor 

and the metallic contacts are related to the fields by the respective conductivities so 

potential drops occur in them, as developed in Sec. 1.13. 

At the interface of two contiguous conductors, the normal component of current 

density is continuous across the boundary, because otherwise there would be a continual 

buildup of charges there. The normal component of electric field is therefore discontin- 

uous and given by : 

Ent = 2 E n2 | (8) Oo; | 

The argument used in dielectric problems for tangential components of electric field 

also applies in the case of a discontinuity of conductivity so that tangential electric field 

is continuous across the boundary. 

In problems with metallic electrodes on a less conductive material such as a semi- 

conductor, one normally assumes that the conductivity of the metallic electrode is so 

high compared with that of the other material that negligible potential drops occur in 

the metal. The electrodes are assumed to be perfect conductors with equipotential sur- 

faces. In this text we normally assume for dc problems that the electrodes in either 

electrostatic or dc conduction problems are equipotentials and therefore the tangential 

electric fields at their surfaces are zero. ! 

  

    
    

Example 1 114 | 
BOUNDARY CONDITIONS IN A DC CONDUCTION PROBLEM 

The structure in Fig. 1.14c illustrates some of the points we have made about boundary 

conditions. We assume that a potential difference is provided between the two metallic 
electrodes by an outside source. The electrodes are considered to be perfect conductors 

and, therefore, equipotentials. The space directly between them is filled with a layer of 

conductive material having conductivity o and permittivity «. The space surrounding 

the conductive system is filled with a dielectric having permittivity ce, and 0 = 0.  
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Conductor     
Fic. 1.14c Structure involving both dc conduction and static fields in a dielectric to illustrate 
boundary conditions. 

The normal component of the current density at the conductor—dielectric interface 

must be zero since the current in the dielectric is zero. This follows formally from (8) 

using zero conductivity for the dielectric. Therefore, since the electric field is J/o the 

normal component of electric field inside the conductor must be zero. Then the electric 

fields inside the conductor at the boundaries with the dielectric are wholly tangential. 

Since the electrodes are assumed to be equipotentials, the tangential field there is zero 

and the field lines are perpendicular to the electrode surfaces. 

It is clear that since there is an electric field in the conductive medium and it has a 

permittivity, there is also a flux density following the same paths as the current density. 

The flux must terminate on charges so there will be charges on the electrode- 

to-conductor boundary. 

The electric field in the dielectric region terminates on charges both on the perfectly 

conducting electrodes and on the sides of the other conductive medium. On the bound- 

ary of the imperfect conductor there is a tangential component and also surface charges, 

so the field makes an oblique angle with the conductor surface. 
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1.15 DIRECT INTEGRATION OF LAPLACE’S EQUATION: 
FIELD BETWEEN COAXIAL CYLINDERS WITH TWO DIELECTRICS 

The first simple example of Laplace’s equation we will take is that of finding the 

potential distribution between two coaxial conducting cylinders of radii a and c (Fig. 

1.15), with a dielectric of constant ¢, filling the region between a and b, and a second 

‘dielectric of constant s, filling the region between b and c. The inner conductor is at 

potential zero, and the outer at potential Vo. Because of the symmetry of the problem, 

the solution could be readily obtained by using Gauss is law as in Example 1.4b, but 

the primary purpose here is to demonstrate several | ‘Processes in the solution by 

differential equations. 

The geometrical form suggests that the Laplacian v6 be expressed in cylindrical 
coordinates (see inside front cover), giving for Laplace’s equation 

2 2 

Vb = 12 (2) + Lee + 7° 
or dd dz r or 

It will be assumed that there is no variation in the axial (z) direction, and the cylindrical 

symmetry eliminates variations with angle @. Equation (1) then reduces to 

1d (a0) 4 0) 
r dr dr : 

  = 0 (1) 

  

Note that in (2) the derivative is written as a total derivative, since there is now only 

one independent variable in the problem. Equation (2) may be integrated directly: 

d® | 
—=C | a i | (3) 

Integrating again, we have | 

®,=C,jnr+cC, | (4) 

  
Fic. 1.15 Coaxial cylinders with two dielectrics. 
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This has been labeled ©, because we will consider that the result of (4) is applicable 
to the first dielectric region (a < r < b). The same differential equation with the same 
symmetry applies to the second dielectric region, so the same form of solution applies 

there also, but the arbitrary constants may be different. So, for the potential in region 

2(b<r<c), let us write 

®, = C,Inr + C, (5) 

The boundary conditions at the two conductors are: 

(a) ®, = Oatr=a 

(b) ®, = Voatr=c 

In addition, there are continuity conditions at the boundary between the two dielectric 

media. The potential and the normal component of electric flux density must be 

continuous across this charge-free boundary (Sec. 1.14): 

(c) ®, = ®,atr = b 

(d) D,,; = D,, atr = b, or &, (d®,/dr) = e, (d®,/dr) there. 

The application of condition (a) to (4) yields 

C, = —C, Ina (6) 

The application of (b) to (5) yields 

Cy = Vy —- Calne (7) 

Condition (c) applied to (4) and (5) gives 

C,iInb+C, =C,nb+c, (8) 

And condition (d) applied to (4) and (5) gives 

€,C, = &C; (9) 

Any one of the constants, as C,, may be obtained by eliminating between the four 

equations, (6) to (9): 

Vo C= 
'  In(b/a) — (€,/€2) In(b/c) 

The remaining constants, C,, C,, and C,, may be obtained from (6), (9), and (7), 

respectively. The results are substituted in (4) and (5) to give the potential distribution 

in the two dielectric regions: 

Vp In(r/a) 

°1 = @/a + Je) Ines) 7 my) 

  (10) 

  

  

_ v] (€,/€2) In¢/r) 
| ~ Tn@b/a) + (e,/es) 2 bars (12)
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It can be checked that these distributions do satisfy Laplace’s equation and the boundary 

and continuity conditions of the problem. Only in such simple problems as this will it 

be possible to obtain solutions of the differential equation by direct integration, but the 

method of applying boundary and continuity conditions to the solutions, however ob- 

tained, is well demonstrated by the example. | 

1.16 DIRECT INTEGRATION OF POISSON‘S EQUATION: 
THE PN SEMICONDUCTOR JUNCTION 

The pn semiconductor junction is an important practical example in which properties 

can be found by direct integration of Poisson’s equation. Figure 1.16a shows a simpli- 

fied pn junction. The basic semiconductor is typically a valence 4 material such as 

silicon (or a compound semiconductor such as gallium arsenide that behaves much the 

same). The n region of the figure has been ‘‘doped’’ with valence 5 impurity atoms 

such as phosphorus (donors), which although electrically neutral in themselves, have 

more electrons than needed for bonding with adjacent silicon atoms and so contribute 

electrons which can move relatively freely about the material. The p region of the figure 

has valence 3 impurities such as boron (acceptors) which have fewer electrons than 

needed for bonding with adjacent silicon atoms. These too are electrically neutral in 

themselves, but leave holes that move from atom to atom with electric fields or other 

forces much like small positive charges. Aithcugh the transition between p and 1 regions 

must be over some finite region, we assume an idealized model in which it is abrupt— 

a step discontinuity. | 

When the junction is formed, the excess electrons in the n-type region at first diffuse 

into the p-type side. The holes diffuse to the n-type side. The electrons flowing into the 

p-type side fill the vacancies in the acceptor bonds, causing them to become negatively 

charged. (Remember that they were originally electrically neutral). Likewise, the holes 

moving into the n-type side are filled by the excess electrons there. The result is a zone 

near the junction in which there is a net negative charge density in a region on the 

p-type side and a net positive charge density on the n-type side called a depletion region, 

as in the metal—semiconductor junction of Sec. 1.4. The density on the n-type side is 

eNp since each of the donor atoms has been stripped of one electron. The density on 

the p-type side is —eN, since each acceptor atom has one additional electron. The 

widths of the zones stabilize when the potential arising in the charge regions is sufficient 

to prevent further diffusion. Outside the charged regioris, the semiconductors are neu- 

tral. No fields exist there in the equilibrium situation that we shall examine; if a field 

did exist it would cause motion of the charges and violate the assumption of equilibrium. 

The regions of charge are shown (not to scale) in Fig. 1.16b. 

One can deduce the form of the gradient of potential d®/dx = —E, = —D,/e 
from Gauss’s law as was done in Ex. 1.4a for the metal—semiconductor contact. We 

have just argued that Z, is zero outside the charge regions (x < —d, and x > d,). All 

the flux from the positive charges in 0 < x < d,, must therefore end on the negative 

charges in —d, < x < Q. This determines the relation between d, and d, in terms of 
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Fic. 1.16 (a) pn diode showing regions of uncompensated charge. (b) Charge density in the 
diode. (c) Potential gradient. (d) Potential. 

the given values of N, and N,. The flux density D, is negative and its magnitude 

increases linearly from x = —d, to x = O since the charge density is taken to be 

constant. It then falls linearly to zero between x = 0 andx = d,,. The gradient therefore 

takes the form shown in Fig. 1.16c. The potential is the integral of the linearly varying 

gradient so it has the square-law form in Fig. 1.16d. 

Now let us directly integrate Poisson’s equation to get the complete analytic forms. 

The boundary conditions on the integration are that the gradient is zero atx = —d, 

and at d,. The potential may be taken arbitrarily to have its zero atx = —d,. Spe- 

cializing Poisson’s equation 1.12(3) to one dimension and substituting for charge 

density the value —eN, for the region ~d, <x < 0, we have 

d’® _ eNn 
= —— 1 

dx? E () 
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The permittivity ¢ is not appreciably affected by the dopant, at least for low-frequency 

considerations. Integrating (1) from x = —d, to an arbitrary x = 0 making use of the 

zero boundary condition on the gradient atx = —d, gives 

d® eN. | 
Tel te et) (2) 

x x 

  

Integrating a second time taking P(—d,) = 0 gives ihe potential for —d, =x =O as 

Ox) = —“at+d 2 3 (x) S. “(x + d,) | (3) 

The gradient and potential evaluated at x = O are 

  

d®| _ &Na , (4) 
dx 0 € 

N | 
60) = Ag (5) 

2E 

These constitute the boundary conditions for the integration in the region 0 =x =d.,. 

Poisson’s equation for this region differs from (1) in the choice of charge density: 

  
d*® eN, : 
dx = —-—¥ | (6) 

x € | 

Integrating (6) with the boundary condition (4) gives 

dD N, N | = _ENpd x + ENA d (7) 
dx |. g ge ?     Then using the condition that the total positive charge must equal the total negative 

charge and therefore that Ny = N,(d,/d,,), (7) can be put in the form 

db| — eNgd ] —)| =? (1-= (8) 
dx |. E d, 

  

  

which is seen to be zero at x = d,, as expected from Gauss’ Ss law as discussed above. 

Integrating (8) with the boundary condition (5), we find 

  eNad, x | x2 
Ox) = —"{14+2--— = 9. ( d, ‘dd, ) 

| 
The maximum value of the potential is reached at x =| d,: 

eN,d? | N 
A® = @d,) = —“7/14+-4 (10) 

2€ Np 

Note that distance d,, in (10) is not immediately known. Since the potential barrier arises 

 



1.17 Uniqueness of Solutions 45 

to stop the diffusion of the charge carriers, it is expected that diffusion must also be 

considered. Diffusion theory reveals that the height of the potential barrier (10) is 

kel |N,N 
Ab = in| Na 2 | (11) 

e nF 

where kg is Boltzmann’s constant, VN, and Np are acceptor and donor doping densities, 

respectively, and 7, is the electron density of intrinsic (undoped) silicon, which is about 

1.5 X 10'° electrons/cm? at T = 300 K. Once A® is calculated, d, can be found from 
(10) and all quantities in the field and potential expressions are then known. 

1.17 UNIQUENESS OF SOLUTIONS 

It can be shown that the potentials governed either by the Laplace or Poisson equation 

in regions with given potentials on the boundaries are unique. With normal derivatives 

of potential (or, equivalently, charges) specified on the boundaries, the potential is 

unique to within an additive constant. Here we will prove the theorem for a charge- 

free region with potential specified on the boundary. The proofs of the other parts of 

the theorem are left as problems. 

The usual way to demonstrate uniqueness of a quantity is first to assume the contrary 

and then show this assumption to be false. Imagine two possible solutions, ®, and ®,. 

Since they must both reduce to the given potential along the boundary, 

®, — 6, =0 (1) 

along the boundary surface. Since they are both solutions to Laplace’s equation, 

V*®, = 0 and V*O, = 0 

or 

V(®, — ®,) = 0 (2) 

throughout the entire region. 

In the divergence theorem, Eq. 1.11(7), F may be any continuous vector quantity. In 

particular, let it be the quantity 

(®, ~ 0,)V(O, ~~ ®,) 

Then 

Jy [(®, — ®,)V(@, — 2)] dV = [((®, — ©®,)V(@, — ®,)]- dS 

From the vector identity 

div(A) = wdiv A + A- grad
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the equation may be expanded to : 

| (®, — ©,)V(@, — ©,) dv + | [Vi®, — ®,))? av 
v V 

= (®, ~ D,)V(®, — ®@,) - dS 

The first integral must be zero by (2); the last integral must be zero, since (1) holds 

over the boundary surface. There remains 
| 
| 

I (Vi, — ©,)P av = 0 3) 

The gradient of a real scalar is real. Thus its square can only be positive or zero. If its 

integral is to be zero, the gradient itself must be zero: 

V(®, — ®,) = 0 | (4) 
Or : 

(0, — ®) = constant (5) 
[ 

This constant must apply even to the boundary, where we know that (1) is true. The 

constant is then zero, and ®, — ®, is everywhere zero, which means that ®, and ®, 
are identical potential distributions. Hence the proof of uniqueness: Laplace’s equation 

can have only one solution which satisfies the boundary conditions of the given region. 

If by any method we find a solution to a field problem that fits all boundary conditions 

and satisfies Laplace’s equation, we may be sure it is the only one. 

  

Special Techniques for Electrostatic Problems 

1.18 THE USE OF IMAGES 

The so-called method of images is a way of finding the fields produced by charges in 

the presence of dielectric® or conducting boundaries with certain symmetries. Here we 

concentrate on the more common situations, those with conducting boundaries. (But 

see Prob. 1.18d.) 

& W. R. Smythe, Static and Dynamic Electricity, Hemiphere Publishing Co., Washington, 
DC, 1989.
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Fic. 1.18a@ Image of a point charge in a conducting plane. The field lines shown are for the 

charge qg with the conductor. 

Example 1.18a 
POINT IMAGE IN A PLANE 

The simplest case is that of a point charge near a grounded’ conducting plane (Fig. 

1.18a). Boundary conditions require that the potential along the plane be zero. The 

requirement is met if in place of the conducting plane an equal and opposite image 

charge is placed at x = —d. Potential at any point P is then given by 

1 o=-—(|f_4 
4te \r r (1) 

q =; (le - dP t+ yt Py? - [a+ dy t+ y? + 2) 
Atte 

? Use of the term grounded implies a source for the charge that builds up on the plane.
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ane x = OQ, so that (1) gives the 

ression of course does not apply 

ye everywhere zero. 

This reduces to the required zero potential along the pl: 

potential for any point to the right of the plane. The exp! 

for x < 0, for inside the conductor the potential must b 

If the plane is at a potential other than zero, the value of this constant potential is 

simply added to (1) to give the expression for potential at any point for x > 0. 

The charge density on the surface of the conducting plane must equal the normal 

flux density at that point. This is easily found by using: 

30 

  
p, = D, = eh, = eT (2) 

° OX]| <9 

Substituting (1) in (2) and performing the indicated differentiation gives 

d { p= -S @ ty + Ay” (3) 
qT   

Analysis of (3) shows that the surface charge density has its peak value at y = z = 0, 

with circular contours of equal charge density centered about that point. The density 

decreases monotonically to zero as y and/or z go to infinity. One application of the 

image method is in studying the extraction of electrons from a metallic surface as in 

the metal—semiconductor surface shown in Fig. 1.4a. 

  

Example 1.18b 
IMAGE OF A LINE CHARGE IN 

If there is a line charge of strength g, C/m parallel to 

d from it, we proceed as above, placing an image line 

] q) (x 

A PLANE 

a conducting plane and distance 

charge of strength —g, atx =   + dy” + y? 

  4a 
2TE 

—d, The potential at any point x > 0 is then 

>= - In| “<a 
r WE (x 

(4) | — dy + y? 

  

n( 

Example 1.18¢ 
IMAGE OF A LINE CHARGE IN A CYLINDER   For a line charge of strength q, parallel to the axis of a conducting circular cylinder, 

and at radius r, from the axis, the image line charge of strength — q, is placed at radius 

r’ = a’/r,, where a is the radius of the cylinder (Fig. 1.18b). The combination of the 
two line charges can be shown to produce a constant potential along the given cylinder 

of radius a. Potential outside the cylinder may be computed from the original line charge 

and its image. (Add gq, on axis if cylinder is uncharged.) If the original line charge is 

within a hollow cylinder a, the rule for finding the image is the same, and potential 

inside may be computed from the line charges.   
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Fic. 1.18b Image of line charge gq, in a parallel conducting cylinder. 

Example 1.18d 

IMAGE OF A POINT CHARGE IN A SPHERE 

For a point charge g placed distance 7 from the center of a conducting sphere of radius 

a, the image is a point charge of value (— ga/ r,) placed at a distance (a? / r,) from the 

center (Fig. 1.18c). This combination is found to give zero potential along the spherical 

surface of radius a, and may be used to compute potential at any point P outside of 

radius a. (Or, if the original charge is inside, the image is outside, and the pair may be 

used to compute potential inside.) 

  

Example 1.18e 
MULTIPLE IMAGINGS 

For a charge in the vicinity of the intersection of two conducting planes, such as q in 

the region of AOB of Fig. 1.18d, there might be a temptation to use only one image in 

each plane, as | and 2 of Fig. 1.18d. Although +g at Q and —q at 1 alone would give 

constant potential as required along OA, and +g at Q and —gq at 2 alone would give 

constant potential along OB, the three charges together would give constant potential 

om
) 

\ 

Lou Y 

  
FiG. 1.18¢ Image of a point charge in a sphere.
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Fic. 1.18d Multiple images of a point or line charge!between intersecting planes. 

i 

along neither OA nor OB. It is necessary to image these images in turn, repeating until 

further images coincide or until all further images are too far distant from the region to 

influence the potential. It is possible to satisfy exactly the required conditions with a 

finite number of images only if the angle AOB is an exact submultiple of 180 degrees, 

as in the 45-degree case illustrated by Fig. 1.18d. 

  

1.19 PROPERTIES OF TWO-DIMENSIONAL FIELDS: GRAPHICAL FIELD MAPPING 

Many important electrostatic problems may be considered as two-dimensional, as in 

the pair of parallel wires of Fig. 1.85 or the coaxial system of Fig. 1.15. In these the 

field distribution is the same in all cross-sectional planes, and although real systems are 

never infinitely long, the idealization is often a useful one. In the examples cited above, 

the field distributions could be found analytically, but for cylindrical systems with more 

complicated boundaries, numerical techniques may be called for and will be introduced 

in the next section. We wish to give first some properties of two-dimensional fields that 

can be used to judge the correctness of field maps and can even be used to make useful 

pictures of the fields and to obtain approximate values of such things as capacitance, 

conductance, and breakdown voltage. Perhaps the greatest value in making a few such 

maps is the feel they give for field behavior. 

It has already been established that equipotentials and electric field lines intersect at 

right angles, as in the coaxial system of Fig. 1.19a, where field lines are radial and 

equipotentials are circles in any given cross-sectional plane. It has also been shown that 

the region between two field lines may be considered a flux tube, and if the amount of
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FiG. 1.19 (a) Map of field between coaxial conducting cylinders. (b) Curvilinear rectangle for 
graphical field mapping. 

flux is properly chosen, the map is made up of small curvilinear figures with equal side 

ratios, that is, ‘‘curvilinear squares.’’ This also is illustrated in Fig. 1.19a. To show this 

more generally, consider one of the curvilinear rectangles from a general plot, as in 

Fig. 1.19. If An is the distance between two adjacent equipotentials, and As the distance 

between two adjacent field lines, the magnitude of electric field, assuming a small 

square, is approximately A®/An. The electric flux flowing along a flux tube bounded 
by the two adjacent field lines for a unit length perpendicular to the page is then 

  

Aw = D As = cE As = 2224S 
An 

or 

As Aw 

An e¢ A® @) 

So, if the flux per tube Aw, the potential difference per division A®, and the permittivity 

€ are constant throughout the plot, the side ratio As/An must also be constant, as stated 

above. 

We saw in Sec. 1.14 that conducting surfaces are equipotentials in an electrostatic 

field. Thus, the electric field lines meet the electrodes at right angles. 

In applying the principles to the sketching of fields, some schedule such as the 

following will be helpful. 

1. Plan on making a number of rough sketches, taking only a minute or so apiece, 

before starting any plot to be made with care. The use of transparent paper over 

the basic boundary will speed up this preliminary sketching. 

2. Divide the known potential difference between electrodes into an equal number 

of divisions, say four or eight to begin with. 

3. Begin the sketch of equipotentials in the region where the field is known best, as 

for example in some region where it approaches a uniform field. Extend the equi- 

potentials according to your best guess throughout the plot. Note that they should
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Fic. 1.19¢ Map of fields between a plane and stepped conductor. 

tend to hug acute angles of the conducting boundary, and be spread out in the 

vicinity of obtuse angles of the boundary. 

. Draw in the orthogonal set of field lines. As these are started, they should form 

curvilinear squares, but as they are extended, the condition of orthogonality should 

be kept paramount, even though this will result 1 in some rectangles with ratios 

other than unity. ! 

. Look at the regions with poor side ratios and try to see what was wrong with the 

first guess of equipotentials. Correct them and repeat the procedure until reason- 

able curvilinear squares exist throughout the plot. | 

. In regions of low field intensity, there will be large figures, often of five or six 

sides. To judge the correctness of the plot in this region, these large units should 

be subdivided. The subdivisions should be started back away from the region 
needing subdivision, and each time a flux tube is divided in half, the potential 

divisions in this region must be divided by the same factor. As an example, Fig. 

1.19c shows a map made to describe the field between a plane conductor at 

potential zero and a stepped plane at potential Vo with a step ratio of §. 

1.20 NUMERICAL SOLUTION OF THE LAPLACE AND POISSON EQUATIONS 

Numerical methods are becoming increasingly attractive as digital computer speed and 

memory capacity | continue to increase. Among the powerful methods are those using 

finite differences,® finite elements,® Fourier transformations,” or method of moments 

(Sec. 7.3). Still others will undoubtedly be developed as computing capabilities continue 

to increase. Here we illustrate the idea through the elemental difference equation ap- 

proach and some of its extensions. 

8 L. Collatz, The Numerical Treatment of Differential Equations, Springer-Verlag, New York, 

1966, D. Potter, Computational Physics, Wiley, New York, 1973. L. J. segerlind, Applied 
Finite Element Analysis, 2nd ed., Wiley, New York, 1984. R. Sorrentino (Ed.), Numerical 

Methods for Passive Microwave and Millimeter Wave SITUCTUTeS, IEEE Press, New York, 

1989, 

R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, Am. Inst. Physics, 
New York, 1988.
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We consider first the Poisson equation with potential specified on the boundary. For 

simplicity we take a two-dimensional problem (no variations in z). The internal region 

is divided by a grid of mutually orthogonal lines with potential eventually to be deter- 

mined at each of the grid points. Rectangular coordinates are used and potential at a 

point (x, y) is expanded in a Taylor series: 

a(x, y) | h’ PO, y) 

    

Ow + h, y) ~ OG, y) + h —— 5 1 ( 2, Y) (@ y) + A > xt (1) 

aD(x, h? OQ, 
Oa — h, y) ~ BG, y) — pew 5 oe (2) 

Ox 2 ox 

By adding (1) and (2) and rearranging, we have the approximation 

d°O, y) _ O@ + h, y) — 20G, y) + ®@ — A, y) 3) 

axz h? 

The second partial derivative with respect to y can be obtained in the same way. Then 

Poisson’s equation in two dimensions 

rob rh p 
9 + 7 

ox~ ay E 

    

can be expressed in the approximate form 

Ow + h, y) + ®@ — A, y) + OG, y + A) 
2 

+ OG, y — h) — 40G, y) = pn (4) 

where the distance increment /: is taken, for simplicity, to be equal in the two directions. 

It is of interest to note that, if space charge is zero, the potential at a given point is the 

average of the potentials at the surrounding points. 

Note that potential is known on boundary points so that a straightforward approach 

is to solve a set of equations such as (4) for the unknown potentials at the grid points 

in terms of the known values on boundary points. This is sometimes done by a matrix 

inversion technique, but if memory capacity is a problem, it may be better to use a 

method for direct iterative adjustment of grid potentials. This starts from an initial guess 

and corrects by bringing in the given values on the boundary through successive passes 

through the grid. We illustrate this first by a simple averaging technique. 

Example 1.20 
NUMERICAL SOLUTION OF LAPLACE EQUATION BY SIMPLE AVERAGING 

As an illustration of iteration with simple averaging, let us find the potentials for the 

grid of points in the structure in Fig. 1.20a. This is an infinite cylinder of square cross 

section with the potentials specified on the entire boundary. The space charge will be 

assumed to be zero so we will be solving Laplace’s equation. The broken lines represent
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Fic. 1.20a@ Cylinder of square cross section and grid for difference equation solution. 

the grid to be used to approximate the region for the finite-difference solution. The 

coarse grid was chosen to simplify the example; a finer grid would be used in most 

practical problems. The four unknown potentials designated ®, to ®, are assumed 

initially to be the average of the boundary potentials, 65 V. The first calculation is to 

find ®, as the average of the four surrounding potentials (80, 100, ®, = 65, ®, = 
65). Therefore, in the column labeled Step 1 in Table 1.20, ®, is given the value 77.50. 

Then ®, is found as the average of 100, 20, 77.50, and 65, and this value is put in the 

table in Step 1. The procedure is repeated for ®, and ®,. The Step 2 proceeds in the 

same way. It is seen that after several steps the potentials converge to definite values. 
Since (4) is approximate, the potentials have converged to approximate answers. They 

would differ less from the correct solution if the grid were made finer. The correct 

potentials for the four points are also listed in the table. 

  

Mesh Relaxation The above method, in which successive averaging of the poten- 

tials leads to a final result not far from the correct potentials, is convenient for small 

problems and, in many cases, has a satisfactory rate of convergence. A more generally 

useful method of calculation is based on a defined residual for each grid point that 

measures the amount by which the potential there differs from the value dictated by 

  

  

  

Table 1.20 | 
Iterative Calculation for Example 1.20 

Step Correct 
1 2 3 4 5 Potentials 

®, 77.50 79.07 77.89 77.60 77.51 75.2 
D, 65.63 63.28 62.70 62.55 62.51 60.5 
®; 70.63 68.28 67.70 67.52 67.52 65.4 
® 54.06 52.89 52.60 52.51 52.51 30.7 >
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the potentials on the neighboring grid points. The residual for the kth pass through the 

grid is defined by 

R® = ®%G, y + bh) + OMG, y — bh) + OOM + A, y) 
hp (5) 

+ OB — h, y) — 406~ Ya, y) +   

where i = kor k — 1 since, at any grid point, the potentials at some of the neighboring 

points will generally have already been adjusted on that pass through the grid, as was 

seen in the above illustration. On each pass (corresponding to Steps 1—5 in Table 1.20) 

and at each grid intersection, one calculates the residual R™ and then the new potential 
according to 

R® 

OH = OPE-Y 4+ —- (6) 

where () is called the relaxation factor because it determines the rate at which the 

potentials relax toward the correct solution. It is taken in the range 1 = 0, S 2. Selection 

of = 1, called simple relaxation, corresponds to the method of averaging illustrated 

above. When Q, > 1, the procedure is called the method of successive overrelaxation 

(SOR). If © is fixed, it is usually taken near 2 for problems with many mesh points, 

but this can cause an initial increase in error, so it is often better to start with = 1 

and increase it gradually with each iteration step. One procedure that is found useful 

for large grids is the cyclic Chebyshev method in which the following program of 

varying 2, is used: 

  

QO = I (7) 

Q@® = ft (8) 

1 — at 

where 
2 

1 
N, = j{cos" + cos) (9) 

4 n m 

for a grid with n mesh points in one direction and m points in the other. 

1 
QO +) = ——_ (10) 

—~ 27,0 

Om = 0, = a (11) 
ep 1 + 1 —™ Tit 

When this method is used, the mesh is swept like a checkerboard, with all the red 

squares being treated on the first pass with 2, all the black squares being treated on 
the second pass using 0, the reds on the third with ©, and so on. This method 
requires an additional memory cell in the computer for each mesh point but the speeded 

convergence usually makes it worthwhile. The convergence can be improved appreci-
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ably by having a good initial guess for the potentials, say by using results from a similar 

problem. |   
Boundary Conditioms In setting up the boundary conditions on a grid, the easiest 

situation occurs when potentials are specified on grid points. A more difficult problem 

is where the normal derivatives are specified. The derivatives are usually zero, as would 
be the case at an insulating surface in a conduction problem (Ex. 1.14) or along a line 

of symmetry used as an artificial boundary to reduce the required grid size. Examples 

of such boundaries are shown in Figs. 1.20b and 1.20c. In one case the structure has 

obvious symmetry in the x—y plane so that a solution need be found for only one-fourth 

of the structure. In the other example, the boundary may be taken along the axis of a 

cylindrically symmetric system. In the latter case, the difference equations can include 

the symmetry (Prob. 1.20e). In the former case, to make the normal derivative of po- 

tential zero at a boundary, an imaginary grid point is set up outside the boundary and 

its potential is kept the same as at the point symmetrically located just inside the bound- 

ary. Sometimes the boundary points do not lie on mesh points; in such cases, linear 

interpolation is used to set the potentials at mesh points nearest to the boundary. 
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FiG. 1.20b,c Examples in rectangular and cylindrical coordinates where symmetry reduces the 

required size of the grid for finite-difference solutions.
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1.2] EXAMPLES OF INFORMATION OBTAINED FROM FIELD MAPS 

Field maps of the two-dimensional regions, made by either numerical or graphical 

techniques, may be used to find field strength within the dielectric region or integral 

properties of the systems, such as capacitance per unit length and conductance per unit 

length. Field strengths are simply A®/An in the notation of Sec. 1.19, provided the 

divisions are fine enough. Danger of breakdown is obviously greatest near acute angles 

where spacing of equipotentials is smallest, as in the right-angle corner of Fig. 1.19c. 

For capacitance, we need to know electric flux density at the conductors, which 

corresponds to surface charge density. Values of potential, and not field, are typically 

obtained from numerical solutions, but the approximation to a normal derivative at the 

boundary is readily calculated. Equipotentials and field lines may be drawn in and then 

calculation of capacitance becomes particularly simple. By Gauss’s law, the charge 

induced on a conductor is equal to the flux ending there. This is the number of flux 

tubes N, multiplied by the flux per tube. The potential difference between conductors 

is the number of potential divisions N, multiplied by the potential difference per 

division. So, for a two-conductor system, the capacitance per unit length is 

Q  _ NAp 
&,- 6, NA 

The ratio Aw/A® can be obtained from Eq. 1.19(1): 

ON, An 

And, for a small-square plot with As/An equal to unity, 

  C= 

N 
C=e-— F/m (2) 

Np 

For example, in the coaxial line plot of Fig. 1.19a, there are 4 potential divisions and 

16 flux tubes, so the capacitance, assuming air dielectric, is 

10°? 16 
xX — = 35.3 xX 10° F 3 

3677 4 /™ 3) 
C=   

Calculation from Eq. 1.9(4), with b/a = 5.2, gives 33.6 X 107 12 E/m, indicating that 

the map is not perfect. 

This same technique can be used to find the conductance between two electrodes 

placed in a homogeneous, isotropic, conductive material. The conductivity of the elec- 

trode materials must be much greater than that of the surrounding region to ensure that, 

when current flows, there is negligible voltage drop in the electrodes and they can be 

considered to be equipotential regions. The potential and electric field are related in the 

same way as for the case in which there is no conductivity (Sec. 1.13). There is a current 

density J = o E, where o is conductivity, and current tubes replace the flux tubes of 

the dielectric problem. The current in a tube is
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A® A 
AI = J As = oE As = ———— 

The conductance per unit length between two electrodes is defined as 

I N; AL | 
G = =~ = — S/m 

®,- 6, N,A®! 

Using (4) and taking As/An = 1, | 

N, | 
G= — S o> /m 

p 

(4) 

(5) 

(6) 

From (2) and (6) we see the useful conclusion that the,conductance per unit length of 

electrodes is related to the capacitance per unit length between the same electrodes by 

the ratio 0 /e. This can be of use, for example, in transmission-line problems in giving 
the conductance per unit length between conductors when the capacitance is known. 

Before digital computer methods for solving field problems became so readily avail- 

able, the analogy seen above between the field distributions in conducting and dielectric 

media formed the basis for an important means of determining fields in dielectric sys- 

tems. Electrodes corresponding to those of the dielectric problem are set up in an 

electrolytic tank or on conduction paper and equipotentials measured in the conducting 

system (see Prob. 1.21c). | 
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Dielectric G 
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                Fic. 1.21 Field map for a conductive medium partially filling the space between two highly 

conductive electrodes.
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If a part of the boundary of the conducting region is a nonconducting dielectric, as 

in Fig. 1.21, current does not flow in the nonconductive region. As pointed out in 

Sec. 1.14, the normal component of E inside the conductive region must then vanish 

at the boundary with the dielectric region. By use of this condition and the fact that E 

is perpendicular to the equipotential electrode surfaces, the field in the conductor can 

be mapped. Suppose, for example, the conductive material between the electrodes in 

Fig. 1.21 is silicon with the common value of conductivity o = 100 S/m. Then 

G = 100 X (8/23) = 35 S/m. 

  

1.22 ENERGY OF AN ELECTROSTATIC SYSTEM 

The aim of this section is to derive an expression for electrostatic energy in terms of 

field quantities. The result we will obtain can be shown to be true in general; for 

simplicity, however, it is shown here for charges in an unbounded region. 

The work required to move a charge in the vicinity of a system of charges was 

discussed in Sec. 1.7. The work done must appear as energy stored in the system, and 

consequently the potential energy of a system of charges may be computed from the 

magnitudes and positions of the charges. To do this, let us consider bringing the charges 

from infinity to their positions in space. No force is required to bring the first charge 

in since no electric field acts on the charge. When the second charge gq, is brought to 

a position separated from the location of q, by a distance R,5, an energy 

— 4192 

? AmeR 15 
(1) 

is expended, as was shown in Sec. 1.7. When the third charge is brought from infinity, 

it experiences the fields of g, and qg. and an energy of 

9193 9293 
U,, + Uz = — + — 2 

I 23 AmeR,, 47eR,3 @) 

is expended. The total energy expended to assemble these three charges is the sum of 

(1) and (2). 

In summing over the three charges, we may write 
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With the factor 4, this yields the sum of (1) and (2), since by convention i and j are 

summed over all the particles, and each contribution to energy enters twice. In physical 

terms, the factor of 2 would result from assuming all other charges in position when 

finding the energy of the ith charge. The termi = / has been excluded since the self- 

energy of the point charge (i.e., the electron, ion, etc.) does not affect the energy of the 

field. Its contribution to the total system energy does not depend upon the relative 

positions of the charges. For 7 charges, the direct extension gives 

1 i 71 qj 

U.=-S gq, fj 3 BE 9 x i 2 4meR, | 7 (3) 
  

where the subscript F indicates energy stored in electric charges and fields. By use of 

Eq. 1.8(3) for potential, this becomes 

1 i 

Up = 4 2 q®; (4) 

Extending (4) to a system with continuously varying charge density p per unit volume, 

we have   1 
Up = > | p®&dVv (5) 

2 Jy | 
| 

The charge density p may be replaced by the divergence of D by Eq. 1.11(2): 

1 | 

Using the vector equivalence of Prob. 1.1 1a, | 

up =+] v-@pav +] v. (we) av 
2 Jy 2/y | 

The first volume integral may be replaced by the surface integral of ®D over the closed 

surface surrounding the region, by the divergence theorem [Eq. 1.11(7)]. But, if the 

region is to contain all fields, the surface should be taken at infinity. Since ® dies off 

at least as fast as 1/r at infinity, D dies off at least as fast as 1/r?, and area only 

increases as r”, this surface integral approaches zero as the surface approaches infinity. 

[v-@p av =¢ ®D - dS| = 0 
Vv Sea 

Then there remains 

1 1 
up= -+ | v-woyav =1| v-Ew (6) 

2 Jy 2 Jy 

This result seems to say that the energy is actually in the electric field, each element of 

volume dV appearing to contain the amount of energy  
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dU, = 4D-Edv (7) 

The right answer is obtained if this energy density picture is used. Actually, we know 

only that the total energy stored in the system will be correctly computed by the total 

integral in (6). 

The derivation of (6) was based on a system of charges in an unbounded, linear, 

homogeneous region. The same result can be shown if there are surface charges on 

conductors in the region. With both volume and surface charges present, (5) becomes 

1 1 
Up=+| poav++| p.oas (8) 

24y 2J5 

The proof that this leads to (6) is left to Prob. 1.22e. Note that in this equation, and the 

special case of (5), ® is defined with its reference at infinity, since the last term of 

(3) is identified as ®. The advantage of (6) is that it is independent of the reference for 

potential. 

For a nonlinear medium, the incremental energy when fields are changed (Prob. 

1.22f) is 

dU, = [E-aD av (9) 

Example 1.22 
ENERGY STORED IN A CAPACITOR 

It is interesting to check these results against a familiar case. Consider a parallel-plate 

capacitor of capacitance C and a voltage V between the plates. The energy is known 

from circuit theory to be CV”, which is commonly obtained by integrating the product 

of instantaneous current and instantaneous voltage over the time of charging. The result 

may also be obtained by integrating the energy distribution in the field throughout the 

volume between plates according to (6). For plates of area A closely spaced so that the 

end effects may be neglected, the magnitude of field at every point in the dielectric is 

E = V/d (d = distance between plates) and D = eV/d. Stored energy Ug given by 

(6) becomes simply 

l 1 EV\(V 
—_ — = ol A —_—— — Ue 5 (volume)(DE) 5 ( a( 7 (*) 

This can be put in terms of capacitance using Eq. 1.9(3): 

1/eA 1 
= -(“jy? = -cy? 10 U, : (4) 5 (10) 
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PROBLEMS 
| 

(i) Compute the force between two charges of 1 C each, placed 1 m apart in vacuum. 

(ii) The esu unit of charge (statcoulomb) is defined as one that gives a force of 1 dyne 
when placed 1 cm from a like charge in vacuum. Use this fact to check the conversion 
between statcoulombs and coulombs given in Appendix 1. 

Calculate the ratio of the electrostatic force of repulsion between two electrons to the 
gravitational force of attraction, assuming that Newton’s law of gravitation holds. The 
electron’s charge is 1.602 x 107'° C, its mass is 9.11 X 107’ kg, and the 
gravitational constant K is 6.67 X 107}! N- m*/kg?. » 

In his experiment performed in 1785, Coulomb suspended a horizontal rod from its 
center by a filament with which he could apply a torque to the rod. On one end of the 
rod was a charged pith ball. In the plane in which the rod could rotate was placed 
another, similarly charged, pith ball at the same radius. By turing the top of the fila- 
ment he applied successively larger torques to the rod with the amount of torque pro- 
portional to the angle tumed at the top. With the angle at the top set to 36 degrees, the 
angle between the two pith balls was also 36 degrees. Raising the angle at the top to 
144 degrees decreased the angular separation of the pith balls to 18 degrees. A further 
increase of the angle at the top to 575.5 degrees decreased the angular separation of 

the balls to 8.5 degrees. Determine the maximum difference between his measure- 
ments and the inverse-square law. (For more details, see R. S. Elliott.') 

Construct the electric field vector for several points in the x—y plane for like charges g 
at (d/2, 0, 0) and (—d/2, 0, 0), and draw in roughly a few electric field lines. 

Repeat Prob. 1.2d for charges of 2g and —q at (d/2, 0! 0) and (— d/2, 0, 0), respec- 
tively. Find a point where the field is zero. 

  1.2f Calculate the electric field at points along the axis perpendicular to the center of a disk 

13a 

1.3b 

1.3c 

1.da 

1.4b 

of charge of radius a located in free space. The charge on the disk is a surface charge 
p, C/m? uniform over the disk. 

Show by symmetry arguments and the results of Sec. 1.3 that there is no electric field 

at any point inside a spherical shell of uniform surface charge. 

Show that the integral of normal flux density over a general closed surface as in 

Fig. 1.3a with charge g inside gives q. Hint: Relate surface element to element of 
solid angle. 

Calculate that electric flux emanating from a point charge qg and passing through a 
mathematical plane disk of radius a located a distance d from the charge. The charge 
lies on the axis of the disk. Show that in the limit where a/d — ©%, the flux through 
the disk becomes g/2. 

A coaxial transmission line has an inner conducting cylinder of radius a and an outer 

conducting cylinder of radius c. Charge q, per unit length is uniformly distributed over 
the inner conductor and — u over the outer. If dielectric ¢, extends from r = ator = 
b and dielectric se, from r = btor = c, find the electric field forr <a, fora<r< 
b, forb <r <c, and for r > c. Take the conducting cylinders as infinitesimally thin. 
Sketch the variation of D and & with radius. 

  
A long cylindrical beam of electrons of radius a moving with velocity v, = 
Upll + 8,(7/a)*] has a charge-density radial variation P = poll — 8,(r/a)’]. Find the 

radial electric field in terms of the axial velocity vg and the total beam current /, and 
sketch its variation with radius.
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Derive the expression for the field about a line charge, Eq. 1.4(3), from the field of a 
point charge. 

A sphere of charge of radius a has uniform density pp except for a spherical cavity 

of zero charge with radius b, centered atx = d, y = 0,z = 0, where d < a and 
b <a — d. Find electric field along the x axis from — © < x < ~, Hint: Use super- 
position. 

As in Prob. 1.4d, but now find an expression for electric field for a general point 

inside the cavity, showing that the field in the cavity 1s constant. 

A point charge gq is located at the origin of coordinates. Express the electric field vec- 
tor in its rectangular coordinate components, and evaluate the surface integral for S 
chosen as the face perpendicular to the x axis of a cube of side lengths 2a centered on 

the charge. Use symmetry to show that Gauss’s law is satisfied. 

Perform the integrations in Eq. 1.5(3) for an infinitely long circular cylindrical ion 
beam with p = p,[1 + (r/a)*] using the square prism shown in Fig. 1.5 and plane 
ends at z = 0 and / orthogonal to the axis. 

If A, B, and C are vectors, show that 

B-A=A-B 

(A+B) + C=A + (B+ C) 

A-(B+t+CQO=A-BH+A-C 

Vector A makes angles a@,, B,, y, with the x, y, and z axes respectively, and B makes 
angles a5, B>, y> with the axes. If @ is the angle between the vectors, make use of the 
scalar product A - B to show that 

il 

cos 8 = cos @, cos a, + cos B, cos B, + cos y, Cos 7 

Show how the flux function may be used to plot the field from point charges g and 

—q distance d apart. Hint: Make use of solid angles and relate these to angle 6 from 
the axis joining charges. 

Plot the field from like charges g distance d apart (Prob. 1.2d) by making use of the 
flux function. 

Plot the field of charges 2g and —gq distance d apart (Prob. 1.2e) by use of flux. Note 
that not all flux lines terminate at both ends on charges. 

Evaluate ¢ F - dl for vectors F = & zxy + § x? and F = &y — J x about a rectangu- 
lar path from (0, 1) to (1, 1) to (1, 2) to (0, 2) and back to (0, 1). Repeat for a triangu- 

lar path from (0, 0) to (0, 1) to (1, 1) back to (0, 0). Are either or both nonconser- 

vative? 

A point charge gq is located at the origin of a system of rectangular coordinates. Evalu- 
ate f E - dl in the x—y plane first along the x axis from x = 1 to x = 2, and next 
along a rectangular path as follows: along a straight line from the point (1, 0) on the x 
axis to the point (1, 3); along a straight line from (1, 3) to (2, 3); along a straight line 
from (2, 3) to (2, 0). 

A circular insulating disk of radius a is charged with a uniform surface density of 
charge p, C/m?. Find an expression for electrostatic potential ® at a point on the axis 

distance z from the disk. 

A charge of surface density p, is spread uniformly over a spherical surface of radius a. 
Find the potential for r < a and for r > a by integrating contributions from the differ-
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ential elements of charge. Check the results by making use of Gauss’s law and the 
symmetry of the problem. | 

Check the result Eq. 1.8(8) for the potential about a line charge by integrating contri- 
butions from the differential elements of charge. Note that the problem is one of 
handling properly the infinite limits. 

A flat layer of charge of density pp lies perpendicular { to the z axis and is infinitely 
broad in the x and y directions. Using Gauss’s law and Eq. 1.8(1), find the dependence 
of the potential difference across the layer on its thickness d. 

Consider two parallel sheets of charge having equal surface charge densities but with 
opposite sign. The sheets are both of infinite transverse dimension and are spaced by a 
distance d. Using Gauss’s law and Eq. 1.8(1), find thelelectric fields between and out- 
side the sheets and find the dependence of potential difference between the pair of 
sheets on the spacing. (This is called a dipole layer.) © 

1.8f In a system of infinite transverse dimension, a sheet of charge of p, C/m? lies be- 

1.8¢ 

1.8h 

1.81 bo
s 

1.9 

1.10a 

1.10b 

1.10c 

1.10d 

1.10e* 

tween, and parallel to, two conducting electrodes at zero potential spaced by distance 
d. Find the distribution of electric field and potential between the electrodes for arbi- 

trary location of the charge sheet. Sketch the results for the cases where the sheet is 
(i) in the center and (ii) at position d/4. 

Show that all the equipotential surfaces for two parallel line charges of opposite sign 

are cylinders whose traces in the perpendicular plane are circles as shown in Fig. 1.8c. 
  

A linear quadrupole is formed by two pairs of equal and opposite charges located 

along a line such that +g lies at +6, —2gq at the origin, and +g at — 6. Find an 
approximate expression for the potential at large distances from the origin. Plot an 
equipotential line. 

Show that the magnitude of the torque on a dipole in an electric field is the product of 
the magnitude of the dipole moment and the magnitude of the field component 
perpendicular to the dipole.   
Find the capacitance of the system of two concentric spherical electrodes containing 
two different dielectrics used as Ex. 1.4c. | 

Find the gradient of the scalar function M = e“cos By cosh az. 

For two point charges g and —g at (d/2, 0, 0) and (— d/2, 0, 0), respectively, find the 
potential for any point (x, y, z) and from this derive the electric field. Check the result 
by adding vectorially the electric field from the individual charges. 

Three positive charges of equal magnitude gq are located at the corners of an equilateral 
triangle. Find the potential at the center of the triangle’ and the force on one of the 
charges. 

  

For two line charges g, and ~ gq, at (d/2, 0) and (— 4/2 0), respectively, find the po- 
tential for any point (x, y) and from this derive the electric field. 

Find the expression for potential outside the large sphere of Prob. 1.4d. Also find the 
electric field for that region as well as for the region outside the small sphere but 
inside the large sphere. 

1.10f Find £, and E, in the void in the sphere of charge in Prob, 1.4d by first finding the 
potential. The : zeros for the potentials of both large and small spheres should be at 
infinity. | 

{
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Utilize the rectangular coordinate form to prove the vector equivalences 

Vipd) = PVD + OV 

V-(WA) = WV -A+ A- Vib 

where & and @ are any scalar functions and A is any vector function of space. 

Show that the vector identity V- WA = A- Vu + WY -:A (inside back cover) is 
satisfied for wy = xyz and F = tx? + fxyz + Zyz’. 

Derive the expression for divergence in the circular cylindrical coordinate system. 

Evaluate the divergence of D in Exs. 1.4a, 1.4b, and 1.4c and compare with the known 
charge densities. Evaluate V - D for Ex.1.11 using rectangular coordinates. 

Given a vector F = Xx’, evaluate 6, F - dS for S taken as the surface of a cube of 
sides 2a centered about the origin. Then evaluate the volume integral of V - F for this 

cube and show that the two results are equivalent, as they should be by the divergence 
theorem. 

1.11f The width of the depletion region at a metal—semiconductor contact (Ex. 1.4a) can be 

1.12a 

1.12b 

1.12c 

1.12d 

1.12e 

1.13a 

1.13b 

calculated using the relation d* = (2e@,/eN), where ®, is the barrier potential, e is 
electron charge, and N is the density of dopant ions. Calculate d for ion densities of 
10'°, 10'8, and 107° cm~°? assuming a barrier potential of 0.6 V. Comment on the ap- 
plicability in this calculation of the concept of smoothed-out charge as assumed in 

using Poisson’s equation.Take e, = 11.7. 

Find the gradient and Laplacian of a scalar field varying as 1/r in two dimensions and 
in three dimensions. Use the operators in rectangular form and also in a more 

appropriate coordinate system in each case. 

Find the electric field and charge density as functions of x, y, and z if potential is 

expressed as 

® = C sin ax sin By e%* where y = Va? + PB? 

Find the electric field and charge density as functions of x for a space-charge-limited, 
parallel-plane diode with potential variation given by ® = V,(x/d)*/>. Find the 
convection current density J = pv and note that it is independent of x. 

Argue from Laplace’s equation that relative extrema of the electrostatic potential can- 
not exist and hence that a charge placed in an electrostatic field cannot be in stable 

equilibrium (Earnshaw’s theorem). 

The potential around a perpendicular intersection of the straight edges of two large 

perfectly conducting planes, where the line of intersection is taken to be the axis of a 
cylindrical coordinate system, can be shown to be expressible as 

® =Ar? sin 2o 

Show that this function satisfies Laplace’s equation in cylindrical coordinates and sat- 

isfies a zero-potential boundary condition on the planes. Find a generalization to an 
arbitrary angle @ between planes and verify that it satisfies Laplace’s equation. 

Which of the following may represent steady currents: J = xXx + jyorJ = 
(Rx + Py)Q@? + y?)~!? Sketch the form of the two vector fields. 

Conducting coaxial cylinders of radii a and b have a conducting dielectric with permi- 
tivity €, and conductivity a, for the sector 0 < @ < a, and loss-free dielectric ¢, for
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the remainder of the dielectric regions (Fig. P1.13b). Find capacitance and conduct- 

ance per unit length. 

Sketch the field and current lines for a structure of the form in Fig. 1.14c but with the 
dielectric and perfect conductor regions exchanged an d a potential difference applied 

between the two perfect conductors. Check all continuity conditions at boundaries. 

A solution to the problem of Fig. 1.14c can be shown 

Dy ®, + a/ ?) 2X if 
+ 1 + — jtan 

2 27 a y 

+ (: —_— 22a (= 

a y 

where a is the length of the conductive region. Show 

OC, y) = 

  2) —) + 

to be 

y 
a 
  

y? + @ = a/2/P 
In 

y? + @& + a/2/ 

that this satisfies the boundary 

conditions on the surface y = 0 and find induced surface charge density along this 
boundary. ! 

Obtain by means of Laplace’s equation the potential distribution between two concen- 
tric spherical conductors separated by a single dielectric. The inner conductor of radius 

a is at potential V,, and the outer conductor of radius b is at potential zero. 

Obtain by means of Laplace’s equation the potential distribution between two concen- 
tric spherical conductors with two dielectrics as in Ex 1.4c. 

Two coaxial cylindrical conductors of radii a and b are at potentials zero and Vp, re- 

spectively. There are two dielectrics between the conductors, with the plane through 
the axis being the dividing surface. That is, dielectric 
q, and e, extends from @ = mto @ = 27. Obtain the 
Laplace’s equation. 

e, extends from @ = 0 to d = 
potential distribution from 

' 

Obtain the electrostatic capacitances for the two conductor systems described in Sec. 
1.15 and in Probs. 1.15a, b, and c. 

Assume the charge-density profile shown in Fig. 1. 16h with N, = 10'©cm~? and 
Np = 10’? cm~3, T = 300 K, and e, = 12. Find the Iheight of the potential barrier 
and the width of the space-charge region d,, + d,. Determine maximum value 
of electric field. 

1.16b Calculate ®(x) for the metal—semiconductor junction i ih Ex. 1.4a by integrating Pois- 
son’s equation. Call total barrier height ®, in this case. Find the width of the space- 
charge region d, assuming N, constant. 

1.16c* To illustrate the effect of a continuous charge profile i the pn junction example of 
Sec. 1.16, consider a charge density in the depletion region of the form p =



1.17a 

1.17b 

1.18a 

1.18b 

1.18c 

1.18d* 

1.18e 

Problems 67 

(eN.x/a)exp[—|x/al]. Find the electric field and potential as a function of x, and 
sketch p, E, and ® versus x. Find the potential difference between x = — © and 
x = c and compare with Eq. 1.16(10), taking Ny = Np. 

Prove that, if charge density p is given throughout a volume, any solution of Poisson’s 

equation 1.12(3) must be the only possible solution provided potential is specified on a 
surface surrounding the region. 

Show that the potential in a charge-free region is uniquely determined, except for an 

arbitrary additive constant, by specification of the normal derivatives of potential on 
the bounding surfaces. 

Prove that the line charge and its image as described for a conducting cylinder in Ex. 
1.18c will give constant potential along a cylindrical surface at radius a in the absence 
of the conducting cylinder. 

Prove that the point charge and its image as described for the spherical conductor in 
Ex. 1.18d gives zero potential along a spherical surface at radius a in the absence of 

the conducting sphere. 

A circularly cylindrical electron beam of radius a and uniform charge density p passes 
near a conducting plane that is parallel to the axis of the beam and distance s from the 

axis. Find the electric field acting to disperse the beam for the edge near the plane and 
for the edge farthest from the plane. 

For a point charge g lying in a dielectric e, distance x = d from the plane boundary 

between €, and a second dielectric €,, the given charge plus an image charge 

q(e, — &)/(e, + &) placed atx = —d with all space filled by a dielectric ¢, may 
be used to compute the potential for any point x > 0. To find the potential for a point 

x < 0, a single charge of value 2ge,/(e, + 2) is placed at the position of qg with all 
space filled by dielectric e,. Show that these images satisfy the required continuity re- 

lations at a dielectric boundary. 

Find and plot the surface charge density induced on the conducting plane as a function 

of y, when a line charge g, lying parallel to the z axis is atx = d above the plane. 

1.18f Discuss the applicability of the image concept for the case of a line charge parallel to 

1.18¢ 
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and in the vicinity of the intersection of two conducting planes with an angle 
AOB = 270 degrees. (See Fig. 1.18d.) 

Find the potential at all points outside a conducting sphere of radius a held at potential 

®, when a point charge gq is located a distance d from the center of the sphere 

(a<d). 

Map fields between an infinite plane conductor at potential zero and a second conduc- 

tor at potential V,, as in Fig. 1.19c, but for step ratios a/b of j and 4. 

Map fields between an infinite flat plane and a cylindrical conductor parallel to the 
plane. The conductor has diameter d, and its axis is at height h above the plane. Take 
d/h = 1, 4. 

The outer conductor of a two-conductor transmission line is a rectangular tube of sides 

3a and 5a. The inner conductor is a circular cylinder of radius a, with axis coincident 
with the central axis of the rectangular cylinder. Sketch equipotentials and field lines 

for the region between conductors, assuming a potential difference Vy between 

conductors. 

Two infinite parallel conducting planes defined by y = a and y = —a are at potential 
zero. A semi-infinite conducting plane of negligible thickness at y = O and extending
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from x = 0 tox = © is at potential V,. (See Fig. mee) Sketch a graphical field 
map for the region between conductors. 

In Prob.1.12e take A to be 35 and r to be measured in! centimeters and make a plot of 

the 100-V equipotential. Construct a graphical field map between the zero and 100-V 
equipotentials showing the 25-, 50-, and 75-V equipotentials. Then sketch in the same 
equipotentials found from the formula given in Prob. 1.12e to evaluate your field map. 
Find the radial distance from the corner where the gradient exceeds the breakdown 
field in air, 30 kV/cm. What does this suggest about the shape the corner should have 

to avoid breakdown? | 

Subdivide the region in Fig. 1.19c into a mesh of squares of sides a/2. Terminate the 

region on the right a distance a from the corner and on the left a distance 3a/2 from 
the corner. Take b = 2a and V, = 100 V. Consider the potentials at the left and right 
edges of the above-defined grid to be fixed at the values found in linear variation from 
top to bottom. Start with all interior grid points at 50 V. Find the potentials at the 
mesh points assuming zero space charge and applying the simple averaging method. 

Repeat Prob. 1.20a using the cyclic Chebyshev method. 

Solve for the potentials at the grid points in the problem in Fig. 1.20a by direct inver- 
sion of the set of difference equations expressing Laplace’s equation for all grid 

points. Compare the results with those in Table 1.20 and discuss differences. Does di- 
rect inversion give the exact values of potentials at the grid points? Explain your 
answer. | 

Set up the difference equation for a three-dimensional potential distribution in rectan- 
gular coordinates. Consider a cubical box with the following potentials on the various 

sides: top, 80 V; right side, 60 V; bottom, 0 V; left side, 100 V; front, 40 V; back, 100 
V. Define a grid of the same coarseness as in Fig. 1.20@ and assume initial potentials 
for all interior grid points to be the average of the boundary potentials. Calculate the 

first set of corrected potentials by the three-dimensional equivalent of the simple 
scheme used for Table 1.20. ! 

Derive the difference equation for potential in cylindrical coordinates with axial 
symmetry assumed (60/d@ = 0). 

| 

An electron beam accelerated from zero potential passes normally through a pair of 

parallel-wire grids. Model the beam as infinitely broad and without transverse varia- 
tion. Set up a one-dimensional difference equation for the potential between the grids. 

Divide the 5-mm space between grids into five segments. Take both grid potentials to 
be 1000 V and the beam current to be 10* A/m?. Assume 1000 V as a first guess for 

all difference-equation grid points. Take three steps of ‘potential adjustment with space 
charge based on the first guess. Recalculate space charge based on the new potentials 
and again iterate the potential three times. Repeat recalculations of space charge and 

|
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potentials until the latter differ by no more than 3% between recalculations of space 
charge. Use the simple iterative form with Q = 1. 

Assume that Fig. 1.19c is full scale, and that Vy is 1000 V. Find the approximate di- 
rection of the minimum and maximum electric fields in the figure. Plot a curve of 
electric field magnitude along the bottom plane as a function of distance along this 
plane, and a curve showing surface charge density induced on this plane as a function 
of distance. 

Calculate the capacitance per unit length from your plots for Probs. 1.19b and c. 

Describe the simplest way to use resistance paper to determine the capacitance per 
wire between a grid of parallel round wires and an electrode lying parallel to the grid. 

(See Fig. P1.21c.) Assume the grid to be infinitely long and wide. Defend all decisions 
made in the design of the analog. 

—O © OO O ©O O O O-~ 
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For a given potential difference V, between conductors of a coaxial capacitor, evaluate 
the stored energy in the electrostatic field per unit length. By equating this to CV’, 

evaluate the capacitance per unit length. 

The energy required to increase the separation of a parallel-plate capacitor by a dis- 

tance dx is equal to the increase of energy stored. Find the force acting between the 
plates per unit cross-sectional area assuming constant charge on the plates. 

Discuss in more detail the exclusion of the self-energy term in Eq. 1.22(3), and 
explain why the problem disappeared in going to continuous distributions, as in 

Eq. 1.22(5). 

Show the equality of the energies found using Eqs. 1.22(5) and (6) for a spherical 
volume of charge of radius a and charge density p C/m?. 

Consider an arbitrarily shaped, charged finite conductor embedded in a homogeneous- 

dielectric region of infinite extent that also contains a volume-charge density distribu- 
tion. Starting from Eq. 1.22(8) show that (6) results. Make use of the identity in Prob. 
1.11a and consider the dielectric to be bounded by the surface of the conductor and 

that at infinity. 

If an incremental charge distribution is brought into a field, the incremental energy 

may be written 

V 

Use this to develop Eq. 1.22(9) for an unbounded region with a medium which may be 

nonlinear.



  

2.1 INTRODUCTION 

Magnetic effects have many similarities to electric effects, but there are also important 

differences. Magnetic forces were first observed through the attraction of iron to natu- 

rally occurring magnetic materials such as lodestone. The compass, apparently devel- 

oped in China, was introduced into Europe around A.D. 1190, and had a profound effect 

upon navigation thereafter. In 1600 William Gilbert, physician to Queen Elizabeth I, 

published an important book, De Magnete, presenting a rational and thorough summary 

of the magnetic effects known to that date, with discussions of some of the similarities 

to and differences from the electric effects then known. Had discoveries stopped at that 

point, we could immediately adapt the development of ithe preceding chapter to mag- 

netic fields, the two kinds of magnetic “charges” being called north and south poles. 

The important difference is that magnetic charges have $0 far been found only in pairs, 

not isolated, so that we would be concerned with fields from dipoles, as in Ex. 1.8d. 

Discoveries did not stop, hov,ever. In 1820, Hans Christian Oersted, during a class 

demonstration of an electric ba.tery, observed that the electric current in a wire caused 

a nearby compass neeaie to be deflected, thus establishing clearly the first of several 

important relationships between electric and magnetic je [fects. André-Marie Ampére 

very quickly extended the experiments and developed a quantitative law for the phe- 

nomenon. Others who contributed both to the understanding and to the practical use of 

electromagnets within a very short period were Jean-B aptiste Biot, Felix Savart, Joseph 

Henry, and Michael Faraday. The force produced by magnetic fields (either from per- 

manent magnets or from electromagnets) on electric currents was also clearly estab- 

lished through these many experiments. These relationships between electric currents 

and magnetic fields will constitute the starting point for our development of magnetic 

fields in this chapter. The relationships are somewhat more complicated than those of 

the preceding chapter, primarily because both the current that acts as the source of field 

70
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and the current element acting as a probe to measure it are vectors whose directions 

must be introduced into the laws. 

As with electric fields, the distributions studied in this chapter, although called 

“static,” are applicable to many time-varying phenomena. These “quasistatic” prob- 

lems are among the most important uses of the laws and, in some cases, are valid for 

extremely rapid rates of change. Still we must remember that other phenomena enter— 

and are likely to be important—when the fields change with time. These are studied in 

the following chapter. 

Before beginning the detailed development, let us look briefly at a few examples of 

important static or quasistatic magnetic field problems. There was the prompt appli- 

cation of Oersted’s observation to useful electromagnets. One of Henry’s early magnets 

supported more than a ton of iron, with the current driven only by a small battery. 

Electromagnets are now routinely used in loading or unloading scrap iron and many 

other applications. The development of practical superconductors in the 1960s has made 

possible magnets with high fields in large volumes with additional advantages of sta- 

bility and light weight. Large currents can be made to flow in the magnet winding since 

there is no voltage drop and no heating. The need to refrigerate is compensated suffi- 

ciently for a number of special applications. Superconductors are used extensively in 

high-energy physics, where the need is for large volumes of strong field. Fusion research 

depends on massive superconductive magnets for containment of the ionized gases of 

a plasma. Motors and generators for special applications such as ship propulsion are 

being made lighter and smaller by using superconductors.’ 

Moving charges constitute currents and magnetic fields produce forces on them as 

they travel through a vacuum or a semiconductor. Thus magnetic field coils are used 

for deflection and focusing of beams of electrons in television picture tubes and electron 

microscopes. The magnetic deflection of flowing charge carriers in a semiconductor 1s 

known as the Hall effect; it is used for measurement of the semiconductor properties 

or, with a known semiconductor, may be used as a probe for measurement of magnetic 

field. 

Coils are used to provide the inductance needed for high-frequency circuits and the 

magnetic fields can be found from the currents as in static calculations when the sizes 

involved are small compared with wavelength. (However, current distributions are com- 

plicated at high frequencies by distributed capacitance in the windings.) Just as we 

noted in Sec. 1.1 for electric fields, the distribution of magnetic field in the cross section 

of a transmission line is essentially the same as calculated using static field concepts, 

even though the fields can actually be varying at billions of times per second. 

' More details on superconductors can be found in Sec. 13.4.
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Static Magnetic | Field Laws and Concepts 

2.2 CONCEPT OF A MAGNETIC FIELD 
| 

As with the electrostatic fields of the preceding chapter, we use the measurable quantity, 

force, to define a magnetic field. We noted in Sec. 2.1 that magnetic forces may arise 

either from permanent magnets or from current flow. Since the approach from currents 

is more general—and on the whole more important—we start by consideration of the 

force between current elements. Permanent magnets may then be included, -at least 

conceptually, by considering the effects of these as arising from atomic currents of the 

magnetic materials. ! 

The force arising from the interaction of two current elements depends on the mag- 

nitude of the currents, the medium, and the distance between currents analogously to 

the force between electric charges. However, current has direction so the force law 

between the two currents will be more complicated than that for charges. Consequently, 

it is convenient to proceed by first defining the quantity we will call the magnetic field 

and then, in another section, give the law (Ampére’s) that describes how currents con- 

tribute to that magnetic field. A vector field quantity B, usually known as the magnetic 

flux density, is defined in terms of the force df produced on a small current element of 

length dl carrying current /, such that | 

df =I dlBsin @ | (1) 

where @ is the angle between dl and B. The direction relations of the vectors are so 
defined that the vector force df is along a perpendicular to the plane containing dl and 

B, and has the sense determined by the advance of a right-hand screw if dl is rotated 

into B through the smaller angle (Fig. 2.2). It is convenient to express this information 

more compactly through the use of the vector product. The vector product (also called 

cross product) of two vectors (denoted by a cross) is defined as a vector having a 

magnitude equal to the product of the magnitudes of the two vectors and the sine of 

the angle between them, a direction perpendicular to ‘the plane containing the two 

vectors, and a sense given by the advance of a right-hand screw if the first is rotated 

    

  

  

  
FiG. 2.2 Right-hand screw rule for force on a current element in a magnetic field.
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into the second through the smaller angle. Relation (1) may then be written 

df =/dl xB (2) 

The quantity known as the magnetic field vector or magnetic field intensity is denoted 

H and is related to the vector B defined by the force law (2) through a constant of the 

medium known as the permeability, pu: 

B = yH (3) 

Many technologically important materials such as iron and ferrite are nonlinear and/or 

anisotropic, in which case yw is not a scalar constant, but to keep this introductory 

treatment simple, the medium will first be assumed to be homogeneous, isotropic, and 

linear. A somewhat more general form of (3) will be given in Sec. 2.3. 

In SI units, force is in newtons (N). Current is in amperes (A), and magnetic flux 

density B is in tesla (T), which is a weber per square meter or volt second per square 

meter and is 10* times the common cgs unit, gauss. Magnetic field H is in amperes per 

meter and w is in henrys (H) per meter. Conversion factors to other cgs units are in 

Appendix I. The value of yw for free space is 

ly = 44 X 107’ H/m 

2.3 AMPERE’S LAW 

Ampére’s law, deduced experimentally from a series of ingenious experiments,” de- 

scribes how the magnetic field vector defined in Sec. 2.2 is calculated from a system 

of direct currents. Consider an unbounded, homogeneous, isotropic medium with a 

small line element of length di’ carrying a current /' located at a point in space defined 

by a vector r’ from an arbitrary origin as in Fig. 2.3a. The magnitude of the magnetic 

field at some other point P in space defined by the vector r from the origin is 

I(r’) dl’ sin @ 

AR? 
  dH(r) = 

  where R = |r — r’|, the distance from the current element to the point of observation. 

The angle @ is that between the direction of the current defined by dl’ and the vector 

2 For a description, see J. C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., 
Part lV, Chap. 2, Oxford Univ. Press, Oxford, 1892. The law is now more frequently named 
after Biot and Savart, but the assignment remains somewhat arbitrary. Following Oerst- 
ed’s announcement of the effect of currents on permanent magnets in 1820, Ampére 

immediately announced similar forces of currents on each other. Biot and Savart pre- 
sented the first quantitative statement for the special case of a straight wire; Ampére 
later followed with his formulation for more general current paths. The form given here 

is a derived form borrowing from all that work. For more of the history see E. T. Whitfaker, 

A History of the Theories of the Aether and Electricity, Am. Inst. Physics, New York, 1987, 

or P. F, Mottelay, Bibliographical History of Electricity and Magnetism, Ayer Co. Publishers, 

Salem, NH, 1975,
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Fic. 2.3a Coordinates for calculation of magnetic field from current element. 

R = r — r’ from the current element to the point of observation. The direction of 

dH(r) is perpendicular to the plane containing dl and R, and the sense is determined 

by the advance of a right-hand screw if dl is rotated through the smaller angle into the 

vector R. Thus, with the current direction shown in Fig. 2.3a, dH at P is outward from 

the page. We see then that the cross product can be used to write the vector form of 

Ampére’s law: | 

'ir') dl’ x R , 1 
AaR> | (1) 
  dH(r) = 

To obtain the total magnetic field of the current elements along a current path, (1) is 

integrated over the path 

'ir') dl’ xX R 

AR? 
    H(r) = | (2) 

It is of interest to examine further the relation between B and H. We see that the 

field H is directly related to the currents, without regard for the nature of the medium 

as long as it fills all space homogeneously. The force on a current element was seen in 

Sec. 2.2 to depend upon magnetic flux density. The influence of the medium in relating 

B and H comes about in the following way. The electronic orbital and spin motions in 

the atoms can be thought of as circulating currents on which a force is exerted by B 

and which produce a field M (called magnetization) that adds to H. This is analogous 
to the response of a dielectric medium shown in Fig. 1.3¢. Then B is related to H as 

though there were only free space but with the added field of the atomic currents 

B= »(H+M) | (3) 

Magnetization M may have a permanent contribution (to be considered in Sec. 2.15), 

but here we neglect this and assume the material isotropic so that M is parallel to H.
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We can then write 

B= p(l + xX_)H = wH = po 

where y,, is called the magnetic susceptibility, wis the permeability introduced in Sec. 

2.2, and yz, is the relative permeability. Many materials have nonlinear behavior so y,, 

and y are, in general, functions of the field strength. For diamagnetic materials y,, < 

O, and for paramagnetic, ferromagnetic, and ferrimagnetic materials y,, > 0. Most 

materials commonly considered to be dielectrics or metals have either diamagnetic or 

paramagnetic behavior and typically |x_,| < 10~> so we treat them as free space, taking 
jt = Mo. Ferromagnetic and ferrimagnetic materials usually have y,, and 41/9 much 

greater than unity and in some cases are anisotropic, that is, dependent upon direction 

of the field. All of these aspects are considered in more detail in Chapter 13. 

  

Example 2.3a 
FIELD ON AXIS OF CIRCULAR LOOP 

As an example of the application of the law, the magnetic field is computed for a point 

on the axis of a circular loop of wire carrying dc current J (Fig. 2.3b). The element dl’ 

has magnitude a dd’ and is always perpendicular to R. Hence the contribution dH from 

an element is 

la dq’ 
dH = ——>———— 

Am(a* + 27) 
(4) 

As one integrates about the loop, the direction of R changes, and so the direction of 

  
Fic. 2.365 Magnetic field from element of a circular current loop (Ex. 2.3a).
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dH changes, generating a conical surface as @ goes through 277 radians (rad). The radial 

components of the various contributions cancel, and the axial components add. 

Using (4) | 

  
| 

a dH 

  

dH, = dH sin @ = 

Integrating in @ amounts to multiplying by 277; thus 

Ia? 

  

  

te = 52 4 pee ©) 

Note that for a point at the center of the loop, z = 0, | 

I | 
H, = (6) 

z=0 2a | 

Example 2.3b | 
FIELD OF A FINITE STRAIGHT LINE OF CURRENT 

Let us find the magnetic field Hl at a point P a perpendicular distance r from the center 

of a finite length of current J, as shown in Fig. 2.3c. It is easy to see from the right- 

hand rule that there is only an 4, component. Its magnitude | is given by the integral of 

  

(1) over the length 2a | 

“ Tsin d dz | 

? ~a 4a7R? | 

We can see from Fig. 2.3c that sin @ = r/R and R = (r* + z*)!/*. Thus, 

hf ow tt a) 
*  Amsia (re? + 2/2 — Qar [(r/ay? + 1]? 

which becomes I/27r if |a| > %. This same result is found in Ex. 2.4a by a different 

method. 

  

  

  
FiG. 2.3¢ Calculation of magnetic field of straight section of current (Ex. 2.3b).
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Fic. 2.3d Tightly wound solenoid of 1 turns per meter and its representation by a current sheet 
of nf A/m (Ex. 2.3c). 

  

Example 2.3c 
FIELD IN AN INFINITE SOLENOID 

Let us here model the long, tightly wound solenoid shown in Fig. 2.3d by an equivalent 

current sheet to facilitate calculation of the magnetic field inside. We assume that though 

the wire makes a small helical angle with a cross-sectional plane, we can adequately 

model it with a circumferential current. The current flowing around the solenoid per 

meter is 17, where 7 is the number of turns per meter and / is the current in each turn. 

Then, in a differential length of the sheet model, there is a current n/dz. We will cal- 

culate, for simplicity, the field on the axis. But one can show, by means that will come 

later (see Ex. 2.4d) that the field for an infinitely long solenoid is uniform throughout 

the inside of the solenoid. We can adapt (4) for the present calculation by taking / 

in (4) to be n/dz. Then the total field on the axis for the infinitely long solenoid is 

given by 

nla* dz 

A, = [ 2(a* + z7 3/2 (8) 

In evaluating the integral in (8), one first takes symmetrical finite limits as in (7) and 

then lets the limits go to infinity with the result 

H. = nl (9) 

For a solenoid of finite length, it is easy to modify (8) to obtain on-axis fields (Prob. 

2.3c) but difficult to perform the integrals for fields not on the axis. 

  

2.4 THE LINE INTEGRAL OF MAGNETIC FIELD 

Although Ampére’s law describes how magnetic field may be computed from a given 

system of currents, other derived forms of the law may be more easily applied to certain 

types of problems. In this and the following sections, some of these forms are presented, 

with examples of their application. The sketch of the derivations of these forms, because 

they are more complex than for the corresponding electrostatic forms, will be left to 

Appendix 3.
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One of the most useful forms of the magnetic field laws derived from Ampére’s law 

is that which states that a line integral of static magnetic field taken about any given 

closed path must equal the current enclosed by that path. In the vector notation, 

  pH-dl=| J-as =1 (1) 

Equation (1) is often referred to as Ampére’s circuital law. The sign convention for 

current on the right side of (1) is taken so that it is positive if it has the sense of advance 

of a right-hand screw rotated in the direction of circulation chosen for the line integra- 
tion. This is simply a statement of the well-known right-hand rule relating directions 

of current and magnetic field. 

Equation (1) is rather analogous to Gauss’s law in electrostatics in the sense that it 

is an important general relation and is also useful for problem solving if there is suf- 

ficient symmetry in the problem. If the product H - dl iis constant along some path, H 

can be found simply by dividing / by the path length. 

  

Example 2.4a | 
MAGNETIC FIELD ABOUT A LINE|CURRENT 

An important example is that of a long, straight, round| conductor carrying current J. If 

an integration is made about a circular path of radius r centered on the axis of the wire, 

the symmetry reveals that magnetic field is circumferential and does not vary with angle 

as one moves about the path. Hence the line integral is just the product of circumference 

and the value of H,. This must equal the current enclosed 

$ Hdl = 2nrH, = 1 
Or 

] 

Hq, == | 
? 2ur A/m | 2) 

as was found by a different method in Ex. 2.3b. The sense relations are given in 

Fig. 2.4a. ) 

  

Example 2.4b | 
MAGNETIC FIELD BETWEEN COAXIAL CYLINDERS 

A coaxial line (Fig. 2.45) carrying current J on the inner conductor and —/ on the outer 

(the return current) has the same type of symmetry as the isolated wire, and a circular 

path between the two conductors encloses current /, so that the result (1) applies directly 

for the region between conductors:
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(5) 

FiG. 2.4 (a) and (b) Magnetic field about line current and between coaxial cylinders (Exs. 
2.4a and b). 

Ay => a<xr<b (3) 

Outside the outer conductor, a circular path encloses both the going and return currents, 

or a net current of zero. Hence the magnetic field outside is zero. 

  

Example 2.4¢ 
MAGNETIC FIELD INSIDE A UNIFORM CURRENT 

Let us find the magnetic field inside the round inner conductor in Fig. 2.4b assuming 

a uniform distribution of current. We will apply (2) but with J replaced by /(7), the 

current enclosed by a circle at radius 7. The total current in the wire is /(a) = J and 

the current density is //7ra”. The current /(r) is 
9 

Kr) = (=| I (4) 

Hy) = 5 = 55 (5) 
and using (2), 
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FiG. 2.4c Section through axis of infinite solenoid for Ex. 2.4d showing contributions to H on 
axis from two symmetrically spaced elements. 

  

  

    
Example 2.4d 

MAGNETIC FIELD OF A SOLENOID   
In Ex. 2.3c we showed that the magnetic field H, on the axis of an infinitely long 

solenoid of n turns per meter carrying a current J A is|n/. Now let us use the integral 
relation (1) to show that the field outside is zero and that inside is uniformly n/J. Figure 

2.4c shows the section through the solenoid in a plane containing the axis. Let us 

consider the integration paths shown by broken lines to be 1 m long in the z direction 

for simplicity of notation. Any radial component of H [produced by a current element 

is canceled by that of a symmetrically located element! This 1s illustrated in Fig. 2.4c 

for the fields H, and H, from elements a and b located equal distances from the point 

P. Thus, H - dl is zero along the sides BD and AE. 
Taking the line integral around path ABDEA and setting it equal to the enclosed 

current gives | 

E 

OH dl = nl + | H-dl= nl (6) 
D 

since H on the axis is n/. From (6) the integral from D to E is zero. Since the placement 

of the outside path DE is arbitrary, external H must be/zero. 

The line integral around path ABCF'A encloses no current so the integral along the 

arbitrarily positioned path CF must be equal in magnitude to, and of opposite sign from, 

that along AB. Thus, the internal field is everywhere z-directed and has the value 

H, = nl (7) 

  

  Note that these symmetry arguments cannot be made for a solenoid of finite length, but 

the results given here are reasonably accurate for a solenoid having a length much 

greater than its diameter, except near the ends. | 
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FIG. 2.5a Loop of wire. Cross-hatching shows surface used for calculation of external 
inductance. 

2.5 |INDUCTANCE FROM FLUX LINKAGES: EXTERNAL INDUCTANCE 

The important circuit element which describes the effect of magnetic energy storage 

for an electric circuit is the inductor. It is of primary concern for dynamic, that is, time- 

varying, problems, but the inductance calculated from static concepts is often useful up 

to very high frequencies. This is the quasistatic use discussed in the introduction to this 

chapter. In a manner similar to the capacitance definition of Sec. 1.9, inductance can 

be defined in terms of flux linkage by 

1 
p=+| B-as (1) 

I Js 

where the surface $ must be specified. Consider, for example, the loop of wire shown 

in Fig. 2.5a. The current J produces magnetic flux in the cross-hatched area S$ bounded 

by the loop. Also, some of the flux produced by the current is inside the wire itself. It 

is convenient to separate the inductances related to these two components of flux and 

call them, respectively, external inductance and internal inductance. Examples of cal- 

culations of external inductance for simple structures are given below and an example 

of an internal inductance calculation is presented in Sec. 2.17. 

Example 2.5a 
EXTERNAL INDUCTANCE OF A PARALLEL-PLANE TRANSMISSION LINE 

Here we find the external inductance for a unit length of a parallel-plane structure (Fig. 

2.5b) which is wide enough compared with the conductor spacing that the fields between 

the conductors are, to a reasonable degree of accuracy, those of infinite parallel planes, 

as suggested in Fig. 2.5c. Note that the flux tubes (bounded by the field lines) spread 

out greatly outside the edges of the conductors. Thus, there is a strong reduction of flux 

density B and, therefore, also H. The line integral of H around one of the conductors
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Fic. 2.55 Surface for calculation of external inductance of a parallel-plane transmission line. 

has its predominant contribution from the field Hy between the conductors, 

1 =H dl = Hy) (2) 

where / is the total current in one conductor and w is the conductor width. This result 

applies to any path in the cross-sectional plane (Fig. 2.5c) between and parallel to the 

conductors, so H,) can be considered approximately uniform. 

The external inductance for a unit length is found by applying (1) to the surface 

between the conductors which is shown shaded in Fig. 2.5b. Since J is independent of 

z and H, is nearly constant through the space between the conductors and is perpen- 

dicular to the shaded surface, (1) becomes 

1 I d 
L=- —|Jd= — H 

I no( 4) POW /m ©) 

This relation is based on the neglect of fringing fields and is most accurate for small 

d/w. 

    
      
      
  

  

Fic. 2.5¢e Cross-section of parallel-plane transmission line of finite width showing general 
character of magnetic field lines. | 
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FiG. 2.5d Surface for calculation of external inductance of a coaxial transmission line. 

Example 2.5b 
EXTERNAL INDUCTANCE OF A COAXIAL TRANSMISSION LINE 

For a coaxial line as pictured in Fig. 2.5d with axial current J flowing in the inner 

conductor and returning in the outer, the magnetic field is circumferential and, for a < 

r <b, is (Ex. 2.4b) 

I 
H, = — 4 

nr ) 

For a unit length the magnetic flux between radii a and 5 is, by integration over the 

shaded area in Fig. 2.5d, 

b I b 
fe-as=| u()a="m? (5) 

S a 27 27 a 

So, from (1), the inductance per unit length is 

b 
L=/in- H/m (6) 

27 a 

For high frequencies, there is not much penetration of fields into conductors as will 

be seen in Chapter 3, so this is then the main contribution to inductance. The internal 

inductance for low frequencies will be considered in Sec. 2.17. 
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2.6 THE CURL OF A VECTOR FIELD 

To write differential equation forms for laws having to do with line integrals, it will be 

necessary to make use of the vector operation called curl. This is defined in terms of a 

line integral taken around an infinitesimal path, divided by the area enclosed by that 

path. It is seen to have some similarities to the operation of divergence of Sec. 1.11, 

which was defined as the surface integral taken about an infinitesimal surface divided 

by the volume enclosed by that surface. Unlike the divergence, however, the curl op- 

eration results in a vector because the orientation of the surface element about which 

the integral is taken must be defined. This additional complication seems to be enough 

to make curl a more difficult concept for a beginning student. The student should attempt 

to obtain as much physical significance as possible from the definitions to be given, but 

at the same time should recognize that full appreciation of the operation will come only 

with practice in its use. | 
The curl of a vector field is defined as a vector function whose component at a point 

in a particular direction is found by orienting a small area normal to the desired direction 
at that point, and finding the limit of the line integral divided by the area: 

A... §F-dl 
1F)],= 1 —_—_—- [curl F', am AS, (1) 

where i denotes a particular direction, AS; is normal to that direction, and the line 

integral is taken in the right-hand sense with respect to the positive i direction. In 

rectangular coordinates, for example, to compute the z component of the curl, the small 

area AS = Ax Ay is selected in the x—y plane to be normal to the z direction (Fig. 

2.6a). The right-hand sense of integration about the path with respect to the positive z 

direction is as shown by the arrows of the figure. The line integral is then 

 F ‘dl = AyF, — AxF, — AyF,| + AxF, 
x 

      

  xtAx y+ Ay y 

  We find F, at x + Ax and F, at y + Ay by truncated Taylor series expansions 
[ 

    

  

  

  

  

oF. OF 
F, = Fil + Ay—|; F, = Fy) + Ax (2) 

yt Ay y oy y XtAx x ox x 

So 

  
Of, oF 

pr-as (2 - :) ary 
Ox oy
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FiG. 2.6q Path for line integral in definition of curl. 

Then using the definition (1), we get 

OF, AF, 
[curl FJ, = — - — (3) 

° ox oy 

because the expansions (2) become exact in the limit. Similarly, by taking the elements 

of area in the y—z plane and x—z plane, respectively, we find 

  

OF. OF, 
[curl F], = == — = = (4) 

y Zz 

OF. oF. 
[curl F], = —- - — (5) 

° Oz ox 

These components may be multiplied by the corresponding unit vectors and added to 

form the vector representing the curl: 

oF. oF, OF. OF. ee) oe 
curl F = x] — — —| + gf} = - S142) - - (6) 

dy OZ dz Ox Ox oy 

If this form is compared with the form of the cross product and the definition of the 

vector operator V, Eq. 1.10(7), the above can logically be written as 

x jy 2 

gd ad a 
culF=VxXF= |j- — — (7) 

x dy oz 

Py Fy FP, 

In deriving curl for other coordinate systems, the variation of line elements with co- 

ordinates must be considered, just as the variation of surface elements with coordinates
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in spherical coordinates was considered in Sec. 1.11. (See Appendix 2.) Results for 

circular cylindrical and spherical coordinates are given on the inside front cover.* 

The name cur! (or rotation as it is sometimes called) has some physical significance 

in the sense that a finite value for the line integral taken in the vicinity of a point is 

obtained if the curl is finite. The name should not be associated with the curvature of 

the field lines, however, for a field consisting of closed circles may have zero curl nearly 

everywhere, and a straight-line field varying in certain ways may have a finite curl. The 

following examples illustrate these points. 

  

  

  

“Example 2 2.6 éa 
CURL-FREE FIELD WITH CIRCULAR FIELD LINES 

The magnetic field in the region surrounding a current in a long straight round wire 

was seen in Eq. 2.4(2) to be Hy = I /2ar. If we write this in rectangular coordinates 

using sin @ = y/r, cos @ = x/r, and r* = x? + y*, we get 

, I sy 
A, — —-Hg sim @ = Oar x2 4 y? (8) 

I x, 
A, = Ay COs bd = Qn + (9) 

H, = 0 ! (10) 

as can be seen from Fig. 2.6b. Since there is no z component and no dependence on z, 

(6) shows immediately that the x and y components of the curl are zero. Substituting 

(8) and (9) into (6) with F = H we obtain 

aH,  dH,\ | 
1] 

Ox oy (11) 
curl H = (= 

This result is found more naturally and directly for this problem using the expression 

for the curl in cylindrical coordinates found inside the front cover: 

1 aH, oH . | oH : ‘| 10CH 
VxH= i+ ee Oia) (12)   

r ao dz Oz or r or r o@ 

Since there is only an Hy and no z dependence, the firstitwo components vanish. The 

r and @ components are the transverse ones corresponding to x and y components. Since 

there is no H, and rH, does not depend upon r, we see that V X H = 0 as shown 

above. 

  

3 As with the divergence (footnote 4 of Chapter 1), one cannot fake the cross product of 
V and the vecior fo obtain the curl in a curvilinear coordinate system, but must use the 
basic definition (1).



2.6 The Curl of a Vector Field 87 

m
H
 

  A 

oH, 

  

  
Fic. 2.6b Resolution of H, of a line current into rectangular components (Ex. 2.6a). 

Example 2.6b 
FIELD WITH NONVANISHING CURL 

The magnetic field inside a uniform current with circular symmetry was seen in Ex. 2.4c 

to be Hy(r) = Ir /27ra”. As in the preceding example, we see that the symmetries 

indicate the presence of only the z component of the curl in (12). Also, the second term 

in the z component is zero. Thus 

  

  Vx H=2z = 2 
or 7a 

(13) nN 

1 07H y) I 

, 

  

Example 2.6c 
NONVANISHING CURL IN FIELD OF STRAIGHT PARALLEL VECTORS 

A theoretically stable electron flow in a type of microwave electron tube called a planar 

magnetron has an electron velocity distribution described by v = Zy and is shown in 

Fig. 2.6c. We see there a vector function with all vectors straight and parallel. It is 

immediately evident by substitution of v in (6) that 

; 

  RRR 

Fic. 2.6c Electron flow in planar magnetron (Ex. 2.6c).
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curl v = {curl v], = % 40 (14) 

It is instructive to see, by using the line-integral definition of the curl (1) why this result 

obtains. All vectors and their spatial variations are in the y—z plane, and (6) shows 

there can be only an x component of the curl. Then we can write for a small area 

AS = Ay Az 

(y + Ay) — 
[curl v], = lim [Uy y) ws 

AS—0 Ay Az 
  (15) 

We see that the curl is nonzero because the velocity is larger on one side of the loop 

than on the other. | 

  

Example 2.6d | 
CURL OF THE GRADIENT OF A SCALAR 

Here we show the useful fact that the curl of the gradient of a scalar is zero. If we write 

a a 
B= ven py 9 4 7% 

Ox oy Oz 

and substitute it in (6), we get 

a? a2 a? a a? a 

VX F=% é é + ¥ g _ 8 + 4{2& — (16) 
oy dz az oy Oz 0X Ox daz ox dy dy ox 

Since the order of the partial derivative operations is arbitrary V X F = 0. A partic- 

ularly important example is the electrostatic field. The fact that V X E = 0 follows 

immediately from either E = —V® or 6 E: di = 0. We shall see in Chapter 3 that 

these properties of E do not apply for time-varying fields. 

  

  

      

  

  

2./ CURL OF MAGNETIC FIELD 

  
Now let us use the formulations of the last two sections to derive a new relation for 

magnetic field. The line integral of H around an area AS; is substituted in the definition 

of the curl, Eq. 2.6(1), to get 

  _ §H-dl 
[curl H]; = lim : 

aso | AS; 

But ¢ H - dl is the current through the area AS, . Eq. 2. 4(1) so 

Sas, aS) 
curl H], = lim ————— ; 

I AS;j->0 a 

(1)
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This relation holds for all three orthogonal components. If these are multiplied by the 

corresponding unit vectors and added, we get the vector relation 

colHAVxH=J (2) 

This can be thought of as the equivalent of Eq. 2.4(1) for a differential path taken 

around a point. Note that the curl H found in Eq. 2.6(13) is the current density, as 

required by (2). 

Example 2.7 
CURRENT DENSITY AT SUPERCONDUCTOR SURFACE 

If a sheet of superconductive material* is in a magnetic field H = 2H, parallel to its 

surface, there is a penetration of H only a very short distance into the superconductor 

as shown in Fig. 2.7. The decay of H. with distance is given by 

H. = Hye7*/* (3) 
where H is the value at the surface and A,, called the penetration depth, is a property 

of the material. We can find the corresponding current density using (2) and the 

    

Hy 

Ho 

0 — —_t_»x 
0 PN 2d   

FiG. 2.7 Penetration of magnetic field into a thick sheet of superconducting material. 

Superconductors include lead, tin, niobium, and numerous other elements, alloys, and 
compounds. They have zero dc resistance and other special properties below their crit- 

ical temperatures, See, for example, V. Z. Kresin and S, A. Wolf, Fundamentals of Super- 
conductivity, Plenum Press, New York, 1990.
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expansion in Eq. 2.6(6): . | 

J, = [curl Hi], = ay = n° 

s: 

~x/As 

Thus, the current also is found only near the surface. | 

  

2.8 RELATION BETWEEN DIFFERENTIAL AND INTEGRAL FORMS 
OF THE FIELD EQUATIONS 

The differential form relating magnetic field to current density was derived from the 

integral form through the definition of curl. One can proceed in reverse by using 

Stokes’s theorem, which states that for a vector function F, 

br-di=| (k)-as={ (vx Fas (1) 
S Ss 

This theorem is made plausible by looking at a general surface as in Fig. 2.8a, breaking 

it into elemental areas. For each differential area, the contribution (V X F)- dS gives 

the line integral about that area by the definition of curl. If contributions from infini- 

tesimal areas are summed over the surface, the line integral must disappear for all 

internal areas, since a boundary is first traversed in one direction and then later in the 

opposite direction in determining the contribution from an adjacent area. The only 

places where these contributions do not disappear are along the outer boundary, so that 

  
  

  

  
FiG. 2.8q@ Subdivision of arbitrary surface for proof of Stokes’s theorem. 
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the result of the summation is then the line integral of the vector around the boundary 

as stated in (1). It is recognized that the process is similar to the transformation from 

the differential to the integral form of Gauss’s law through the divergence theorem in 

Sec. 1.11. Then writing Stokes’s theorem for magnetic field, we have 

bH-al =| (vx B)-as (2) 
s 

But, by Eq. 2.7(2), the curl may be replaced by the current density: 

bu-a=| J-as (3) 
s 

The right side represents the current flow through the surface of which the path for the 

line integration on the left is a boundary. Hence (3) is exactly equivalent to Eq. 2.4(1). 

Example 2.8a 

DEMONSTRATION OF STOKES’S THEOREM 

Let us demonstrate Stokes’s theorem for a magnetic field that is part of an electromag- 

netic wave in a certain kind of transmission structure. The field at a particular instant 

of time is described by 

H = j¥A cos = (4) 
a 

We will apply (2) to the area shown in Fig. 2.8b where the field distribution (4) is 

illustrated. The line integral of (4) along the broken path is 

j VM) 

   

  

Yj 
Uy 

, Lo _ 

Fic. 2.8b Area for integration of field H to demonstrate the validity of Stokes’s theorem 

(Ex. 2.84).
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a 1 0 | 0 

| H, ax + | H, ay + | H, dx + | H, dy 
0 0 a. 1 

b H- dl 

=0+Acos m+ 0—-Acos0/= —2A 

where the facts that H, = 0 and H, ~ f(y) are used. 

The curl of H in rectangular coordinates is 

(3) 

oH. 
Vx H=¢— = -2A7sin= (6) 

Ox a a 

The integral of (6) over the surface bounded by the broken line in Fig. 2.8 is 

a 

T . WX TX 
[ - a2 sin™ ax = A cos ™ 

0 a a | a |q 
[ 

= —24A (7) 

| cw x m-as 

Since (5) and (7) give the same results, Stokes’s theorem (1) is illustrated. 
| 
t 

Example 2.8b | 
PROOF THAT V: V X F = 0 

That V- V X F = Ocan be proved by using the expressions in rectangular coordinates 

as was done for V X Vu in Ex. 2.6d. Here we take a different approach that uses 

Stokes’s theorem. Since Stokes’s theorem applies to any surface, we may treat the 

surface shown in Fig. 2.8c and let the bounding line shrink to zero so the surface 
becomes a closed one. Then the line integral on the left side of (2) vanishes and we 

have 
i 

pW x Bd = 0 (8) 

  Line bounding 
surface S 

  
FiG. 2.8c Surface used in Ex. 2.8b.
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We may then apply the divergence theorem (Sec. 1.11) to the vector V X F: 

® (Vx F)-dS = | VV x Fav (9) 
s V 

Since we saw in (8) that the left side is zero with an arbitrary choice of surface, the 

integrand on the right side must vanish, 

V-VxF=0 (10) 

which was to be shown. This is a useful relation in the study of electromagnetic fields. 

  

2.9 VECTOR MAGNETIC POTENTIAL 

We introduce here another potential, which is often used as a conveniently calculated 

quantity from which the magnetic field can be found. An integral expression for the 

flux density can be obtained from Eq. 2.3(2) by multiplying by uw for homogeneous 

media: 

— f wl’) dl’ x R 

It is shown in Appendix 3 that this can be broken into two steps by making use of 

certain vector equivalences. The result gives 

Br) = V X A(r) (2) 

where 

; f dl’ 

The current may be given as a vector density J in current per unit area spread over a 

volume V’. Then, since ] = J dS, where dS is the differential area element perpendicular 

to J, and dl is in the direction of J, dS d/ forms a volume element dV and the equivalent 

to (3) 1s 
_ uJ(r’) dv' 

A(r) = \, Aap (4) 

In both (3) and (4), R is the distance from a current element of the integration to the 

point at which A is to be computed. The function A, introduced as an intermediate step, 

is computed as an integral over the given currents from (3) or (4) and then differentiated 

in the manner defined by (2) to yield the magnetic field. Function A is called the 

magnetic vector potential. Note that each element of A has the direction of the current 

element producing it. It is analogous to the potential function of electrostatics, which 

is found in terms of an integral over charges and then differentiated in a certain way to 

yield the electric field. The magnetic potential A is different, however, because it is a
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vector, and does not have the simple physical significance of work done in moving 

through the field that electrostatic potential has. Some physical pictures can be formed 

but the student should not worry about these until more familiarity with the function 

has been developed through certain examples. 

    
    

VECTOR POTENTIAL AND MAGNETIC FIELD OF A CURRENT ELEMENT 

Here we show that the magnetic flux density of a current element found using (3) and 

(2), in that order, is the same as the integrand of (1), which expresses Ampére’s law. 

The magnetic vector potential A exists throughout the region surrounding the given 

current element, as shown in Fig. 2.9a. From (3) we find 

d 
A= 94, = 34@ 

° Aqr 
  (5) 

since the origin of coordinates is positioned at the current element. As noted earlier dA 

is parallel to the current element producing it. It is most convenient to use spherical 

    

coordinates in this example. From the figure we see that'A. = A, cos 9 and A g= —A, 

sin 6. The curl in spherical coordinates (from inside the front cover) reduces to 

db | a aA 
B=VxA=-—]|-—(rA) - — 6 

' | or VA) 00 (9) 

since A, = 0 and d/dad = O, by symmetry. Substituting A, and Ag using (5), we find 

* dz\ sin 0 B= vx a= o(Me) (7) 
497 r 

Note that dl’ < R is db dz r sin 6, so (7) is equivalent to the integrand in (1). 

z 

A A, 

  

  

Fic. 2.9a Vector potential in region surrounding a current element. 
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FIG. 2.96  Parallel-wire transmission line. 

Example 2.9b 
VECTOR POTENTIAL AND FIELD OF A PARALLEL-WIRE TRANSMISSION LINE 

Let us consider a parallel-wire transmission line of infinite length carrying current / in 

one conductor and its return in the other distance 2a away. The coordinate system is 

set up as in Fig. 2.95. Since the field quantities do not vary with z, it is convenient to 

calculate them in the plane z = 0. The conductors will first be taken as extending from 

z = —Ltoz = L to avoid indeterminacies in the integrals. Since current is only in the 

z direction, A by (3) will be in the z direction also. The contribution to A, from both 

WIres 1S 

A, 
~ 

    

[ pl dz' _ [ pl dz" 

—L Adv (x — a)” + y? + 7/2 —L Adv (x + a)” + y? 4 72 

ll     

    

2m J, Tdz' [ I dz" 
4m |Jo Vax — a + y? + 2” 0 Vix t+ a? + y? + 2” 

The integrals may be evaluated?: 

  _ [bh 
21 

— Infz” + Ve + a? + y? + 27 )}5 

A, {In[z’ + V(x —~ay+ y* + z'?] 

  

Now, as L is allowed to approach infinity, the upper limits of the two terms cancel. 

Hence 

  

A= Iu e + ay + | (8) 

“ Aor (x — a)* + y? 

© Most integrals of this text can be found in standard handbooks such as the CRC Hand- 
book of Chemistry and Physics (any recent edition); M. R. Spiegel, Mathematical Hand- 
book, Schaum's Oufline Series, McGraw-Hill, 1968; or M. Abramow/liiz and |. A. Sfegun 
(Eds.), Handbook of Mathematical Functions, National Bureau of Standards Applied 
Mathematics, Dover, New York, 1964, One of the most complete listings is |. S. Gradshteyn 
and I. M. Ryzhik, Table of Integrals, Series, and Products (A. Jeffrey, Trans.), Academic 

Press, San Diego, CA, 1980.
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If (2) is then applied, using the expression for curl in rectangular coordinates, we find 

    

    

1 dA, I 
A, = ~~ = > Ss 2 > 2 (9) ww oy 27|(« + ay +y (x -— a)’ +y 

1 0A, I — + 
A, —_— oe (x 4) > (x 0) - (10) 

[L Ox 27|(x—-— ay +y @ta)yty* 

    
2.10 DISTANT FIELD OF CURRENT LOOP: MAGNETIC DIPOLE 

The magnetic field on the axis of a loop of current was 

| 
derived in Ex. 2.3a. Here we 

will find the magnetic vector potential and field at locations not restricted to the axis 

but distant from the loop. The arrangement to be analyzed is shown in Fig. 2.10. For 

any point (r, 6, @) at which A is to be found, some current elements / dl’ are oriented 

such that they produce components of A in directions other than the @ direction. How- 

ever, by the symmetry of the loop, equal and opposite 
  
amounts of such components 

exist. As aresult A is @ directed and is independent of the value of ¢ at which it is to 

be found. For convenience, we choose to calculate A at the point (7, 6, 0). The dé-directed 

contribution of a differential element of current is 

_ pl dl' cos ¢' 

4aR 
dA, 

  

Fic. 2.10 Coordinates for calculation of magn 

  

(1) 

  

etic-dipole fields.
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where R is the distance from the element dl’ to (r, 6, 0). The total is found as the integral 

around the loop 

A. = ul { dl’ cos ¢' la i cos d' dd’ 
p Amt} Bp Are — HD Ad R Ad Jo R 2) 

where a is the radius of the loop. The distance R can be expressed in terms of the radius 

from the origin to (1, 0, 0) as 

R? = r? + a — 2racos (3) 

To get ra cos w we note that r cos wis the projection of 7 onto the extension of the 

radius line to d/'. Therefore 

ra cos W = ra sin @ cos @' (4) 

Substituting (4) into (3) and assuming r >> a, we find 

1/2 
a, 

R= (1 — 2- sin 6 cos 6’ r 

or 

Ro! =f + = sin 8 cos é' (5) r 

Utilizing this expression in (2), we find 

: ula 29F 

Ag = | (cos db’ + - sin 6 cos” 6’) dq’ 
4ar Jo r 

(6) 
_ pla am sin @ — p(Ima*) sin 6 
— eee = 2   

Aor r Aor 

As was noted at the outset the result applies to any value of @. The components of B, 

found by substituting (6) in Eq. 2.9(2), are 

  

  

pl tra? 
BL = 0 . — cos (7) 

ultra 
B,= Aa sin @ (8) 

By, = 0 (9) 

The group of terms /7ra” can be given a special significance by comparison of (7)—(9) 

with the fields of an electric dipole, Eq. 1.10(10). The identity of the functional form 

of the fields has led to defining the magnitude of the magnetic dipole moment as 

m = Ita’ (10) 

The dipole direction is along the 86 = O axis in Fig. 2.10 for the direction of / shown.
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The vector potential can be written in terms of the magnetic dipole moment m as 

_ 1 
A=— nm x v(] (11) 

At r 

where the partial derivatives in the gradient operation are with respect to the point of 

observation of A.   
2.11 DIVERGENCE OF MAGNETIC FLUX DENSITY 

| 
As given by Eq. 2.9(2) (derived in Appendix 3), the magnetic flux density B can be 

expressed as the curl of another vector A when the sources of B are currents. We have 

shown in Ex. 2.8b that the divergence of the curl of any vector is zero. Thus, 
| 

V-B=0 | (1) 

A major difference between electric and magnetic fields is now apparent. The mag- 

netic field must have zero divergence everywhere. That is, when the magnetic field is 

due to currents, there are no sources of magnetic flux which correspond to the electric 

charges as sources of electric flux. Fields with zero divergence such as these are con- 

sequently often called source-free fields. : 

Magnetic field concepts are often developed from an exact parallel with electric fields 

by considering the concept of isolated magnetic poles as sources of magnetic flux, 

corresponding to the charges of electrostatics. The result of zero divergence then follows 

because such poles have so far been found in nature only as equal and opposite pairs. 

Physicists continue to search for isolated magnetic poles; if they are found, a magnetic 

charge density p,, will simply be added to the equations giving a finite V - B. 
| 

2.12 DIFFERENTIAL EQUATION FOR VECTOR MAGNETIC POTENTIAL 

The differential equation for magnetic field in terms of current density was developed 

in Sec. 2.7: 

VxH=J 

If the relation for B as the curl of vector potential A is substituted, 

VxVxXA=Bn | (1) 

This may be considered a differential equation relating Ai to current density. It is more 

common to write it in a different form utilizing the Laplacian of a vector function 

defined in rectangular coordinates as the vector sum of the Laplacians of the three scalar 

components: 

VA = #V7A, + 9V7A, + 2V7A, (2) 

It may then be verified that, for rectangular coordinates 
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Vx VxA= -VWA + V(V-: A) (3) 

For other than rectangular coordinate systems, separation in the form (2) cannot be done 

so simply and (3) may be taken as the definition of V7 of a vector. 

With V- A = 0, as shown in Appendix 3 for statics, (3) and (1) give 

“A = — pd (4) 
This is a vector equivalent of the Poisson equation first met in Sec. 1.12. It includes 

three component scalar equations which are exactly of the Poisson form. 

cai iets Sd nh eee EER te Pane TSE ee See 

Example 2.12 

VECTOR POTENTIAL AND FIELD OF UNIFORM CURRENT DENSITY FLOWING AXIALLY 

Let us show that the appropriate form for the vector potential in a uniform flow of 

z-directed current in a circularly cylindrical system is 

A, = -He (x* + y’) (5) 

From (4) and (2), 

1 _. 1 [@A, aA, 
J, = am V°A, = h (= + A.) = Jp (6) 

From this we see that (5) is the appropriate form for vector potential in a cylindrical 

conductor carrying a current of constant density Jp. The magnetic field found from 

(5) is 

1 —Jp . 
H = —(V X A) = =? @® — fx) (7) 

iu 2 

In cylindrical coordinates, this is 

» Jor 
H = 6-~ (8) 

which is the value of Eq. 2.4(5). 

  

2.138 SCALAR MAGNETIC POTENTIAL FOR CURRENT-FREE REGIONS 

In many problems concerned with the finding of magnetic fields, at least a part of the 

region is current-free. The curl of the magnetic field vector H is then zero for such 

current-free regions [Eq. 2.7(2)]. Any vector with zero curl may be represented as the
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gradient of a scalar (see Ex. 2.6d). Thus the magnetic field can be expressed for such 
points as | 

H = -Vo,, ! (1) 

where the minus sign is conventionally taken only to complete the analogy with elec- 

trostatic fields. The vector potential applies to both current-carrying and current-free 

regions, but it is usually more convenient for the latter to use this scalar potential. 

Since the divergence of the magnetic flux density B is everywhere zero, 

  

V-pVO,=0 © (2) 
Thus, for a homogeneous medium, ®,, satisfies Laplace’s equation 

Vb, = 0 (3) 
It will be observed from (1) that 

2 

O12 a 0,1 = -| H " di (4) 
1 

Thus, if the path of integration encircles a current, ®,, does not have a unique value. 

For if 1 and 2 are the same point in space and the path of integration encloses a current 

I, two values of ®,,, differing by J, will be assigned to ithe point. To make the scalar 

magnetic potential unique, we must restrict attention to regions which do not entirely 

encircle currents. Suitable regions are called ‘‘simply connected’’ because any two 

paths connecting a pair of points in the region form a loop which does not enclose any 

exterior points. An example of a simply connected region between coaxial conductors 

is shown in Fig. 2.13. The restriction to a simply connected region is not a serious 

limitation once it is understood. 
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FiG. 2.13 Simply connected region between coaxial cylinders.
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The importance of the scalar potential for current-free regions is that it satisfies 

Laplace’s equation, for which exist numerous methods of solution. The graphical and 

numerical methods given in Chapter 1 for electrostatic fields are directly applicable, as 

are the more powerful numerical methods, conformal transformations, and method of 

separation of variables to be studied in Chapter 7. 

2.14 BOUNDARY CONDITIONS FOR STATIC MAGNETIC FIELDS 

The boundary conditions at an interface between two regions with different permea- 

bilities can be found in the same way as was done for static electric fields in Sec. 1.14. 

Consider a volume in the shape of a pillbox enclosing the boundary between the two 

media as shown in Fig. 2.14. The surfaces AS of the volume are considered to be 

arbitrarily small so that the normal flux density B, does not vary across the surface. 

Also, the thickness of the pillbox is vanishingly small so that there is negligible flux 

flowing through the side wall. The net outward flux from the box is 

B,, AS=B,,AS or B,, =B,,. (1) ni nz 

where the sense of B,, is as shown in the figure. 

The relation between transverse magnetic fields may be found by integrating the 

magnetic field H along a line enclosing the interface plane as shown in Fig. 2.14, 

} Hdl =H, Al—-H,Al=J,Al (2) 

where J, is a surface current in amperes per meter width flowing in the direction shown. 

  
Fic. 2.14 Magnetic fields at boundary between two different media.
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The lengths A/ of the sides are arbitrarily small so H, may be considered uniform. The 

other legs of the integration path are effectively reduced to zero length. From (2) 

| 
Ay - Ay = J, : (3) 

There is a discontinuity of the tangential field at the boundary between two regions 

equal to any surface current which may exist on the boundary. With direction 

information included, where fi is the unit vector normal to the surface, 

a x (H, — H) = J, (4) 

Although the concept of a surface current is an idealization, it is useful when the 

depth of current penetration into a conductor is small, as in the skin effect to be studied 

later. In problems involving the scalar magnetic potential, continuity of H, where J, 

0 is ensured by taking ®,, to be continuous across the boundary. Where surface currents 

exist, (4) leads to 

n x (V®,, — V@,,,) = J, (5) 

as may be seen by combining (3) with the definition of ®,,,, Eq. 2.13(1). 

( 
! 

2.15 MATERIALS WITH PERMANENT MAGNETIZATION 
| 

Permanent magnets have a remnant value of magnetization [defined in Eq. 2.3(3)] when 

all applied fields are removed. Magnetic materials are discussed in more detail in Chap- 

ter 13, but here we consider some examples with permanent magnetization M, and no 

true current flow. There are two ways of analyzing such problems: through the scalar 

magnetic potential and through the vector potential. 

Use of Scalar Magnetic Potential Since current density J is zero, we may derive 

H from a scalar potential as in Sec. 2.13: 

Now using the definition of magnetization from Eq. 2.3(3), 

| 
B 

H=—-M | (2) 
Ho 

If the divergence of (2) is taken, with V- B = 0 utilized, we can write 

Vo, = —Pm (3) 
Ko | 

where | 

Pm = —HoV*M © (4) 
In this formulation we see that we have a Poisson equation for potential ®,, with an 

equivalent magnetic charge density in the region proportional to the divergence of
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magnetization. For a uniform magnetization, the divergence is zero and ,,, satisfies 

Laplace’s equation. At the boundaries of the magnet, however, integration of (3) would 

show that there is an equivalent magnetic surface charge density p,,, given by 

Psm = oth ‘M (3) 

The arguments for this are similar to those for surface charge density p, when there is 

a discontinuity in D, as explained in Sec. 1.14. We will illustrate this through an example 

after giving a formulation using the vector potential. 

Ulse of Vector Magnetic Potential If we write B as curl of vector potential A as 

in Eq. 2.9(2) and use the definition of magnetization, 

B=py(H +M=VxXxA (6) 

we can take the curl of this equation, using V X H = O since J = 0, to write 

VX VX A = todos (7) 
where 

Jeg = VXM (8) 

So by comparison with Eq. 2.12(1), the problem is equivalent to one with internal 

currents in free space proportional to the curl of magnetization. Inside a region of 

uniform magnetization, the curl is zero and there are no internal currents. At the bound- 

ary of the magnetic material, a surface integral of (8) over the area enclosed by the path 

used to get Eq. 2.14(2) and application of Stokes’s theorem give 

bM- at =| J.,-ds 
S 

In the same way as for Eq. 2.14(4), this gives an equivalent surface current 

(Jeq)s = M x n (9) 

since M = 0 outside the magnetic material. So in this formulation the magnet ts re- 

placed by a system of volume and surface currents from which magnetic field may be 

found through use of the vector potential, or directly by using Ampére’s law. Example 

2.15b illustrates this procedure. 

Example 2.15a 
UNIFORMLY MAGNETIZED SPHERE 

Consider first a sphere of magnetic material with uniform magnetization M, in the z 

direction as in Fig. 2.15a@ using the method with scalar magnetic potential. Since M is 

uniform, there is no volume charge by (4), but if space surrounds the sphere, there is
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! 
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FiG. 2.15a Sphere of radius a with uniform magnetization iM Field lines (H or B) outside 
the sphere shown dashed. 

a surface magnetic charge density at r = a given by 

Psm = MoM cos 0 (10) 

Solutions of (3), in spherical coordinates with a variation corresponding to (10) and 

Pr = 0, are 

®D = cos 6 r<a 
a 

mi 

(11) 
7 cosG6 r>a 

  

oy m2 ~_   
as can be verified by substitution in the expression for V2® = Oin spherical coordinates 

on the inside front cover. The surface magnetic charge given by (10) gives a disconti- 

nuity in derivative, | 

0®,,.2 d®,,,1 _ Ho] ap oy |. = Molo cos 6 (12) 

from which | | 

M C= =. | (13) 

Thus for r < a, using (1) in spherical coordinates 

M, . 
H = —* [f cos 6 — 6 sin 6] = z—2 (14) 1 | N 
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which is a uniform field within the sphere. For r > a, 

3 M . H = 33 [2@ cos 6 + 6 sin 6] (15) .   

which are curves (shown dashed in Fig. 2.15a@) similar to those outside a magnetic 

dipole (Sec. 2.10). 

  

ExXampie 2.15b 
ROUND ROD WITH UNIFORM MAGNETIZATION 

A circular cylindrical bar magnet of length / having uniform magnetization in the axial 

direction is shown in Fig. 2.155. Using the second formulation given above, we see 

from (8) that there are no equivalent volume currents since V X M = 0, but there is 

a surface current at the discontinuous boundary r = a: 

J, = 6M, (16) 

We see that this problem is then identical to that of the solenoid of length / with current 

per unit length given by (16) insofar as the calculation of A (and hence B) is concerned. 

As noted in Ex. 2.3c, it is difficult to calculate field lines for an off-axis point, but B 

lines will appear somewhat as shown dashed in Fig. 2.155. Lines of magnetic field H 

will be of the same form outside the magnet, but will be of different form inside through 

the vector addition H = B/uy — M. 
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FiG. 2.155 Cylinder of radius a and length / with magnetization zM . Flux density lines B 

shown dashed. (H lines are of the same form outside the magnet.) 
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2.16 ENERGY OF A STATIC MAGNETIC FIELD 

In considering the energy of a magnetic field, it would appear by analogy with Sec. 

1.22 that we should consider the work done in bringing) a group of current elements 

together from infinity. This point of view is correct in principle, but not only is it more 

difficult to carry out than for charges because of the vector nature of currents, but it 

also requires consideration of time-varying effects as shown in references deriving the 

relation from this point of view.° We will consequently set down the result at this point, 

waiting for further discussion until we derive a most important general energy rela- 

tionship in Chapter 3. The general relation for nonlinear materials, corresponding to 

1.22(9) for electric fields, 1s | 

[aaa | (1) 

where dU,, is the energy added to the system when B) is changed by a differential 

amount (possibly different amounts for different positions|within the volume). For linear 

materials, H is proportional to B so (1) may be integrated over B to give 
| 

U, =| B-Hav=| 2a (2) 
2Jy v2: 

The analogy to Eq. 1.22(6) is apparent, and here also iwe interpret the energy of a 

system of sources as actually stored in the fields produced by those sources. The result 

is consistent with the inductive circuit energy term, aL’, r, when circuit concepts hold 

and will be utilized in the following section. i 

Example 2 2, 16a. | 
ENERGY STORAGE IN SUPERCONDUCTING SOLENOID 

            

It has been proposed that energy stored in large superconducting coils be used to meet 

peaks in electric power demand. Superconducting coils are chosen because their zero 

dc resistance allows very large currents to be carried with zero power loss (though, of 

course, refrigeration power must be supplied). To be useful such a storage system must 

be capable of providing about 50 MW for 6 hours, thatjis, storing an energy of about 

10° MJ. Let us assume the coil is a solenoid and that the field is uniform, and we wish 
to find the required coil properties and current. The field from Eq. 2.4(7) is H, = nJ so 

¢ J, A. Stratton, Electromagnetic Theory, pp. 118-124, McGraw-Hill, New York, 1941,
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B. = pnl. The energy from (2), for volume V, is 

Uy = gp(nlyV 

For a realistic current of 1000 A and flux density of 15 T, a coil of 27-m diameter and 

20-m length with 1.2 < 10* turns/m would give the required energy. The most prom- 

ising coil shape is actually a toroid but it would have dimensions and currents of the 

same magnitude as calculated in this example. 

  

Example 2.16b 

ENERGY DISSIPATION IN HYSTERETIC MATERIALS 

We will see here how energy loss in hysteretic materials can be explained in terms of 

their nonlinear B—H relations. A typical hysteretic relation is shown in Fig. 2.16. We 

will assume an isotropic material so that B: H = BH. The energy required for one 

traversal of the loop by varying H from a large negative value to a large positive value 

and back again can be found from (1). The differential energy is shown as a shaded 

bar on the hysteresis loop in Fig. 2.16. When the field is decreased, a portion of the 

energy indicated by the part of the bar outside the loop is returned to the field. The 

result of integrating around the loop is that total expended energy per unit volume is 

equal to the area of the loop. 

ae 
_
 

  dB 

  
Fic. 2.16 Hysteretic, nonlinear B—H relation. 
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2.17 INDUCTANCE FROM ENERGY ST ORAGE! INTERNAL INDUCTANCE 

It was shown in Sec. 2.16 that the magnetic energy may be found by integrating an 

energy density of $uH? throughout the volume of significant fields. From a circuit point 

of view, this is known to be $L/’, where J is the instantaneous current flow through the 

inductance. Equating these two forms gives | 

ALP = | nP av, (1) 
v2 | 

The form of (1) is useful as an alternate to the flux linkage method of calculating 

inductance given in Sec. 2.5. It is especially convenient for problems that would require 

consideration of partial linkages if done by the method of flux linkages. Problems of 

calculating internal inductance, defined in Sec. 2.5, aré of this nature. 
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INTERNAL INDUCTANCE OF CONDUCTORS WITH UNIFORM CURRENT 
DISTRIBUTION IN A COAXIAL TRANSMISSION LINE   

As an example of the use of the energy method of inductance calculation, we will find 

the internal inductances for the two conductors of a coaxial transmission line under the 

assumption that the current is distributed uniformly in the conductors. The result for 

the inner conductor applies more generally to any straight, round wire with a uni- 

form current distribution. The magnetic field in the inner conductor of Fig. 2.4b 

(Ex. 2.4c) is , 

    

Tr , 

For a unit length, utilizing (1), 

Ly 72 | “u(r \ uP at tye? = | = 2ar dr = > 2 0 2 (5) bn A ” 
or ! 

b= H/m | (4) 

The magnetic field in the outer conductor (Prob. 2.4a) is 

I ce 
HQ) = ———————_- | — —- ¢ 

) = Fae — B) (¢ "| ©) 

Substituting (5) in (1) we find 

_ c* In c/b 1 b2 — 3c? 

27 | (c? — b*y A(c? — b?) 
| H/m (6)
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For frequencies low enough to assume uniform current distribution in the conductors, 
the total inductance per unit length for the coaxial line is the sum of (4), (6), and 
Eq. 2.5(6). 

  

2.2a 

2.2b 

2.2€ 

2.2d* 

PROBLEMS 

Assuming that each electron constituting the current in a differential length of conduc- 
tor is acted on by a force —ev X B, show that the total force is equal to that given by 

Eq. 2.2(1). How is the force on the electrons transferred to the structure of the wire? 

The Hall effect uses motion of charges in crossed fields within a semiconductor as 
shown in Fig. P2.2b to measure important properties of a semiconductor. Consider a 

p-type material so that the charge carriers are holes of charge +e. Electric field E, ap- 
plied in the x direction causes a current /, = wdaE, to flow. The magnetic field causes 
a buildup of positive charge on the plate at y = O and an equal negative charge on the 

top plate because of the velocity 4,,£5 of the holes. The field produced by these charges 
on the bottom and top plates E,, is exactly of the magnitude to counteract the ev X By 

force on the holes so that, in steady state, the flow is only in the x direction. Show how 
the Hall mobility j,, can be determined from measurement of J, and V,. 

  

  

  
  

  

  

      

    

FiG. P2.2b 

Show the following: 

AX(B+C)=AXBtAXKC 

A X (B X C) = BA: C) — C(A: B) 

A:(B X C) = B-(C X A) = C: (A X B) 

Cycloidal motion can occur when a particle of charge g and mass m is placed in crossed 
electric and magnetic fields. To demonstrate this, take a uniform electric field Ey in the 
y direction and uniform magnetic flux density By in the x direction. The charge starts at 
the coordinate origin at time tf = O with zero velocity. Show that the trajectory can be 
written in the form (z — Rwot)* + (y — R)? = R*, where R = Ep/wpBo and a) = 
qB,/m. Explain the motion.
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2.34 
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Chapter 2 Stationary Magnetic Fields 

A loop of wire is formed by two semicircles, the inner of radius a and the outer of 
radius b, joined by radial line segments at @ = O and oi= a (Fig. P2.3a). Find the 
magnetic field at the origin. 

  
FiG. P2.3a 

Direct current J, flows in a square loop of wire having sides of length 2a. Find the 
magnetic field on the axis at a point z from the plane of the loop. 

Represent a solenoid of finite length 1 and radius a having n turns per meter by a con- 
tinuous sheet of circumferential current. Find the axial magnetic field at the center of 
the solenoid and determine the length for which the field i is one-half that of the infinite 
solenoid. | 

Show that the magnetic field on axis of a long solenoid at the ends is half the value for 
an infinite solenoid. 

An arrangement that can provide a region of relatively uniform fields consists of a pair 
of parallel, coaxial loops; the uniform-field region is on the axis midway between the 
loops. Show that the axial magnetic field, expressed as a Taylor series expansion along 
the axis about the point midway between the coils, will have zero first, second, and 
third derivatives if the loop radii a are equal to the spacing d of the loops. This is the 
so-called Helmholtz configuration. 

For the coaxial line of Fig. 2.45, find the magnetic field for b <r < c, assuming that 
current is distributed uniformly over the conductor cross section. 

A certain kind of electron beam of circular cross section contains a current density J, = 

Jo{1 — (r/a)*]. Find H,(r) inside the beam. 

Express the magnetic field about a long line current in rectangular coordinate compo- 
nents, taking the wire axis as the z axis, and evaluate § H - dl about a square path in the 

x—y plane from (— 1, —1) to (1, —1) to (1, 1) to (— 1) 1) back to (—1, —1). Also 
evaluate the integral about the path from (— 1, 1) to (1} L 1) to (1, 2) to (— 1, 2) back to 
(-1, 1). Comment on the two results. 

A long thin wire carries a current /, in the positive z section along the axis of a cylin- 
drical coordinate system as shown in Fig. P2.4d. A thin rectangular loop of wire lies in 
a plane containing the axis. The loop contains the region0 =z=b,R-~—a/2srs 
R + a/2 and carries a current J, which has the direction of J, on the side nearest the 

|
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FIG. P2.4d 

axis. Find the vector force on each side of the loop and the resulting force on the entire 
loop. 

Consider a round straight wire carrying a uniform current density J throughout, except 
for a round cylindrical void parallel with the wire axis so that the cross section is con- 

stant. Call the radius of the wire c, the radius of the hole b, and the distance of the 
center of the hole from the center of the wire a. Take b << a <candb<c — a, Use 

superposition to find the field H as a function of position along a radial line through the 
center of the hole for all values of radius from the center of the wire. 

2.4f A demonstration can be given that a thin metal tube can be crushed by magnetic forces 

2.4¢ 

2.5 

2.6a 

2.6b 

2.6¢ 

2.7 

by passing current through it. Take the radius of the tube to be 2 cm and the magnetic 
field at which failure of the metal occurs as 9 Wb/m7”. (i) What is the maximum current 
that could flow axially along the tube before it would be crushed by the magnetic forces 
arising from this current? (11) What is the force per unit area on the surface of the tub- 
ing under this condition? 

For an infinitely long cylindrical hollow pipe of any cross section carrying current along 
the pipe, magnetic field within the hollow portion is zero. Show why. 

A coaxial transmission line with inner conductor of radius a and outer conductor of 

radius b has a coaxial cylindrical ferrite of permeability 4, extending from r = a to 
r = d (with d < b), and air from radius d to b. Find the external inductance per unit 

length. 

Find the curl of a vector field F = &x727 + py7z? + Zx2y’. 

By using the rectangular coordinate forms show that 

V X (WF) = JV xX F-F X Vos 

where F is any vector function and w any scalar function. 

Derive the expression for curl in the spherical coordinate system. 

For the coaxial line of Fig. 2.4b, express the magnetic field found in Ex. 2.4b and Prob. 
2.4a in rectangular coordinates and find the curl in the four regions, r <a,a<r<b, 
b <r<ce,r>c. Comment on the results. 

Show that V X Vu = 0 by integrating over an arbitrary surface and applying Stokes’s 

theorem.
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2.9a Check the results Eqs. 2.9(9) and (10) by adding vectorily the magnetic field from the 

individual wires, using the result of Ex. 2.4a. 

2.9b* A square loop of thin wire lies in the x—y plane extending from (— a, — a) to (a, —a) 

to (a, a) to (—a, a) back to (— a, — a) and carries current I in that sense of circulation. 
Find A and H, for any point (x, y, z). 

2.9c* A circular loop of thin wire carries current J. Find A for a point distance z from the 

plane of the loop, and radius r from the axis, for r/z << 1. Use this to find the expres- 
sion for magnetic field on the axis. 

2.9d Show that the line integral of vector potential A about a closed path is equal to the 

magnetic flux enclosed, L 

$ A: di = | B-dS 
s 

Apply this to find the form of A inside the long solenoid of Ex. 2.4d. 

2.9e For an infinite single-wire line of current, show that A, as calculated in Ex. 2.9b is in- 
finite. Then show that if vector potential is calculated for a finite length -L <<z< ZL 

and B calculated from this before letting L approach infinity, the correct value of B is 
obtained. | 

2.9f As an exercise in using the vector potential, consider a Very long thin conducting sheet 
having a width b carrying a uniformly distributed direct current / in the direction of its 

length. Show that if the sheet is assumed to lie in the XZ plane with the z axis along its 
centerline, the magnetic field about the strip will be given by 

I blD+x  _, b/2=- x 
H, = ->—> (tan bio + x + tan~! 1B) 

y y 2ab 

1 [o/2+x2 + y?] | 
H, = ——In 5 5 | 

%  4anb (b/2 — x)* + y* 
  

2.10 Show that the torque on a small loop of current can be expressed as T = m X B. 

2.12a Show that V7A = 0 for the vector potential around a pair of currents, Eq. 2.9(8). 

2.12b Use the rectangular coordinate forms to prove Eq. 2.12(3). 

2.12¢ A certain current density is said to produce within itself a vector potential having the 

form A = 2Cr~? in circular cylindrical coordinates where C is a constant. Find the 
divergence of A, current density, and magnetic field, assuming the medium to be free 

| space. 

2.12d We saw in Ex. 2.7 that magnetic field in a superconductor decays from the surface as 

H, = Hye7*? 

where z is parallel to the plane of the surface and x is perpendicular to the surface. Find 

the corresponding vector potential A, and from it the current density comparing with 
the result of Ex. 2.7. 

2.13a Show whether either of the following vector fields can be obtained from a scalar poten- 
tial, and give the potential function if applicable: | 

F = %3y2z + f6xyz + 23y2x 

F= xX3y + yax +
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Find the form of scalar magnetic potential for the region between conductors as shown 
in Fig. 2.13, defined for the region 0 = @ < 277, similarly for the region outside the 
outer conductor. Current / flows in the inner conductor and the return current in the 
outer one. 

Consider the boundary between free space and a plane superconductor with nearby par- 
allel line current / atx = d. It is the nature of a superconductor that when placed in a 
weak magnetic field, currents flow in such a way as to eliminate flux inside the super- 

conductor so that B,, at the surface 1s zero, as is the tangential H inside the supercon- 
ductor. Show that fields in the free-space region x > O can be found by replacing the 
Superconductor with an image current at x = —d carrying current —/. Find the mag- 
netic field at. = 0+ and from this the surface current density J. 

For the problem of Fig. 2.15b, what magnetic charge distribution would be obtained for 
the formulation in terms of equivalent magnetic charges? How would this be modified 
if magnetization is inhomogeneous as defined below? 

M = 2M,(1 + &z) 

Show that Eq. 2.16(1) leads to (2) for linear, isotropic materials. 

Assume that the material having the B—H relation shown in Fig. 2.16 saturates at B = 
1000 G and estimate graphically the energy per unit volume for one complete traversal 

of the hysteresis loop. 

Find the external inductance per unit length for the arrangement of Prob. 2.5 from en- 

ergy considerations. 

Find the internal inductance per unit length for the parallel-plane transmission line of 

Fig. 2.5c if current is assumed of uniform density in each of the conductors.



  

  

  
3.1 INTRODUCTION | 

The laws of static electric and magnetic fields have been studied in Chapters 1 and 2. 
It has been noted that these are useful in predicting effects for many time-varying 

problems, but there are important dynamic effects not described by the static relations, 

so other time-varying problems require a more complete formulation. One important 

dynamic effect is the generation of electric fields by time-varying magnetic fields as 

expressed through Faraday’s law. A second 1s the complementary effect whereby time- 

varying electric fields produce magnetic fields. This latter effect is expressed through 

the concept of displacement current, introduced by Maxwell. 

Faraday’s law is well known to us through its importance in transformers, motors, 

generators, induction heaters, and similar devices. The effect can be simply demon- 

strated by moving a coil of wire through the field of a strong permanent magnet and 

noting the trace on an oscilloscope connected to the coil (Fig. 3.1a). With readily 

available magnets and practical numbers of turns in the coil, movement by hand will 

generate millivolts, and such voltages are readily observed on the oscilloscope. An 

alternative demonstration utilizes an electromagnet with its flux threading a fixed coil. 
A switch to turn on and off the current in the electromagnet causes buildup and decay 

of the magnetic field and generates the voltage to be observed. 

The above-described demonstrations and useful devices utilize induced effects in 

conductors. An interesting example showing that changing magnetic fields induce elec- 

tric fields in space is that of the betatron. This useful particle accelerator, illustrated in 

Fig. 3.1b, accelerates electrons or other charged particles by means of a circumferential 

electric field induced by a changing magnetic field between poles N and S of an elec- 

tromagnet. ‘The charges are in an evacuated chamber, clearly illustrating that Faraday’s 

law applies in space as well as along conductors. : 

The second dynamic effect, referred to above as a displacement current effect, is 

probably best known to us through the concept of a capacitance current. We may, 

however, think of this only as current in the conductors to capacitor terminals, supplying 

the time rate of change of charge on capacitor plates.'We shall see that the changing 

electric flux in the dielectric between plates contributes to magnetic fields, just as does 

conduction current, and acts to complete the current path. Displacement currents also 

114
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Ma OOO SS 
FiG.3.la Experimental arrangement to demonstrate the induced voltage predicted by Faraday’s 

law. Coil can be moved with sufficient speed by hand to display the induced voltage on a simple 
oscilloscope. 

  
    

exist in the vicinity of moving charges, and so are important in vacuum tubes or solid- 

state electron devices. For example, time-varying effects in the Schottky barrier of 

Ex. 1.4a or the pn junction of Sec. 1.16 produce displacement currents in the respective 

depletion regions. Effects of these displacement currents must be understood in the 

analysis of devices using such junctions. 

There is a far-reaching consequence of the fact that changing magnetic flux density 

produces a change in electric field and vice versa: it leads to propagation of electro- 

  
Fic. 3.1b Schematic illustration of a betatron, which is used to accelerate electrons by means 

of an electric field induced by a changing magnetic field.
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magnetic waves. In general, wave phenomena result when there are two forms of en- 

ergy, and the presence of a time rate of change of one leads to a change of the other. 

In a sound wave, for example, an initial pressure variation in air (potential energy) in 

one location causes a motion of the air molecules (kinetic energy) that varies both in 

time and in space. This builds up excess pressure at another position, and the effect 

continues. Similarly, changing the magnetic field (or fiux density) at one position gen- 

erates a change of electric field in both time and space, by Faraday’s law. The subse- 

quent change of electric field produces a change of magnetic field through the displace- 

ment current, and so on. In energy terms, the energy interchanges between electric and 

magnetic types as the wave progresses. 

Electromagnetic waves exist in nature in the radiation that takes place when atoms 

or molecules change from one energy state to a lower jone, with frequencies from the 

microwave through visible into x-ray regions of the spectrum. (Still lower frequencies 

are generated by lightning and other natural fluctuations.) These natural radiations are 

utilized in astronomy and radio astronomy. Telecommunications, navigational guid- 

ance, radar, and power transmission depend upon our ability to generate, guide, store, 

radiate, receive, and detect electromagnetic waves. This involves many kinds of struc- 

tures whose properties the designer must be able to predict. The complete set of laws 

for time-varying electromagnetic phenomena is known as Maxwell’s equations and is 

central to such predictions. , 

  

Large-Scale and Differential | Forms of Maxwell's 5 Equations 

3.2 VOLTAGES INDUCED BY CHANGING MAGNETIC FIELDS 

Faraday discovered experimentally that a voltage is induced in a conducting circuit 

when the magnetic field linking that circuit is altered! The voltage is proportional to 

the time rate of change of magnetic flux linking the circuit. For a circuit of ” turns, the 

induced voltage V can be written | 

V=n Hh | (1) 

where y,, is the magnetic flux linking each turn of the coil. This equation may be used 

directly to find the voltage induced in the secondary coil of a transformer, for example, 

or to find the voltage induced in a single circuit because of a time-varying current 

interacting with the self-inductance of that circuit. For an electric machine, such as a 
generator or a motor, the change in flux linkages to be used in (1) may be found from 

the movement of the coil of the machine through a spatially variable magnetic field.
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Faraday’s experiments included both stationary and moving systems. The question of 

moving systems may be approached in several ways and will be discussed more in the 

following section. 

One very important generalization of (1) is to a path in space or other nonconducting 

medium. Such an extension is plausible since the resistance of the path does not appear 

in the equation. Nevertheless the extension should have experimental verification and 

it does. Much of the experimental support comes from the wave behavior to be studied 

in the remainder of the book. As described in Sec. 3.1, the betatron' accelerates charged 

particles in a vacuum by means of an electric field induced by a changing magnetic 

field, as predicted by Faraday’s law. (See Prob. 3.2c.) 

Before defining Faraday’s law more precisely, we should be clear about several 

definitions. By voltage between two points along a specified path, we mean the negative 

line integral of electric field between the points along that path. For static fields, we 

saw that the line integral is independent of the path and equal to the potential difference 

between the two points, but this is not true when there are contributions from Faraday’s 

law. When there is a contribution from changing magnetic flux, the voltage about a 

closed path is frequently called the electromotive force (emf) of that path. 

emf = voltage about closed path = -> E- dl (2) 

It is equal, by Faraday’s law, to the time rate of change of magnetic flux through the 

path. For a circuit which is not moving, 

Ea = Mm — 2 B- dS (3) 
ot ot ss 

where the flux Ww, is found by evaluating the normal component of flux density B over 

any surface which has the desired path as its boundary, as indicated by the last term in 

(3). The negative sign is introduced in the law to agree with the sense relations revealed 

by experiment, using the usual right-hand convention in the integrals of (3). Thus, as 

in Fig. 3.2a, if the rate of change of flux is positive in the directions shown by the 

vertical arrow, the line integral will be positive in the direction shown—opposite to the 

conventional right-hand positive direction. If there are several turns, the line integral 

of (3) is taken about all of them, and if flux through each is the same, we have the form 

first stated in (1). 

' D. W. Kerst and R. Serber, Phys. Rev. 60, 53 (1941). 

Sense of positive ob 

Positive sense Sense 
__ for of positive 

right-hand E-dl 
convention § 

Fic. 3.2a Sense relations for Faraday’s law.
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To transform (3) to differential equation form, we can apply Stokes’s theorem ‘Sec. 

2.8) to the left side of (3) and move the time differentiation inside the integral: 

[wx ®-as = -| %-as (4) 
S s oF 

For this equation to be valid for an arbitrary surface, the integrands must be equal so 

that | 

oa 
VxE=-— | 5 at ©) 

Faraday’s law (4) of course reduces to the static case when time derivatives are zero 

and, as we saw in Sec. 1.7, the line integral of electric field about a closed path is then 

zero. For the time-varying field it is not in general zero, showing that work can be done 

in taking a charge about a closed path in such a field. This work comes from the 

changing stored energy of the magnetic field. 

  

  Example 3.2 
AIR BREAKDOWN FROM INDUCED ELECTROMOTIVE FORCE 

Consider the possibility of an ionizing breakdown in ait because of electric fields gen- 

erated by changing magnetic fields. An axially symmetric electromagnet (Fig. 3.2) has 

        

      
  

  

      
    

Fic. 3.26 Electromagnet with time-varying current producing a time-varying magnetic field.
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radius 0.20 m and has essentially uniform field up to this radius and negligible field 

beyond it. Suppose that it is desired to raise magnetic field from zero to 10 T (tesla) 

linearly with time in as short a time 7 as possible without such breakdown. Because of 

the axial symmetry we can write Faraday’s law for a loop of radius r as 

OB, B 
2ar|E,| = ar? — = or? SS 6 

| ‘l at ee (0) 

Electric field is thus maximum at the outer radius of 0.20 m. If we take breakdown 

strength of air as 3 < 10° V/m, then 

p= SBR SE Ws (7) 

  

3,3 FARADAY’S LAW FOR A MOVING SYSTEM 

For the use of Eq. 3.2(1) for a moving system, one must find the change of magnetic 

flux threading a circuit as it moves through the field. A simple and classical example 

is that of an elemental ac generator as pictured in Fig. 3.3a. This indicates a single 

rectangular loop rotating at constant angular frequency © in the uniform field By be- 

tween the two pole pieces. When the plane of the loop is at angle @ with respect to the 

horizontal axis, the magnetic flux passing through it is 

wu, = 2Bogal sin d (1) 

But angle @ changes with time and may be written Or. Thus 

Ww, = 2Boal sin Ot (2) 

And if voltage is the rate of change of this flux (neglecting signs), 

  
  

  

  

        
Fic. 3.3a Elemental generator with rotating loop between permanent magnets.
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bm = 20B,al cos oe (3) 
at 

Thus we see the sinusoidal ac voltage produced by this basic generator. Now let us 

introduce a slightly different point of view to get the same answer. A point of view 

used effectively by Faraday is that the electric field of the moving conductor is generated 

by its motion through, and hence ‘‘cutting’’ of, the lines of force. Faraday gave much 

physical sigificance to the flux tubes and lines of force. This point of view can be 

developed rigorously by writing the time derivative on the right side of Eq. 3.2(3) as a 

total derivative instead of a partial derivative: 

V= 

} E- a- 2 [oe ds (4) 

For a closed path moving 1n space with velocity V; this may be transformed by a vector 

transformation developed by Helmholtz,? which, with V- B = 0, is 

dB 
pe-a=-[|B-vxxm|-as (5) 

| 

The first term on the right is the one we have seen before. The second term gives an 

added contribution to emf and, by use of Stokes’s theorem, may be written as the line 

integral of v X B about the closed path. The result may be interpreted as a motional 

electric field given at each point of the circuit path by 

E. =v X B (6) m 

In the example of Fig. 3.3a, the motional field in the upper conductor, by (6), is 

Ee = (aQ)By cos b (7)   
That in the lower conductor is the negative of this. There is no motional field along the 

side elements since v X B gives a contribution normal to the wires for these sides. 

Thus the line integral about the loop yields 

? E - dl = laQBy cos Ot — (—laQBy cos -) = 21aQBy cos Ot (8) 

which is identical to (3). ! 

The differential form of Faraday’s law, Eq. 3. 2(5), t may be transformed to a set of 

moving coordinates with the same result. This may be done by a Galilean transformation 

for low velocities and by a Lorentz transformation for relativistic velocities.” Although 
relativity is beyond the scope of this text, it is important to know that Maxwell’s equa- 

tions are consistent with the theory of relativity, althou gh Einstein developed that theory 

later. Their invariance to Lorentz transformations, in fact, had much to do with the 

development of the theory of special relativity. | 
( 

2 See, for example, C. T. Tai, Proc. IEEE 60, 936 (1972).
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| LL 
B.= Cx 

  

_ 

  

      
FiG. 3.36 Rectangular loop of wire moving through magnetic field which varies with distance. 

yess 

Example 3.3 
RECTANGULAR LOOP MOVING THROUGH INHOMOGENEOUS FIELD 

If a loop of wire is moved through a region of static magnetic field which is a function 

of position, the flux threading the loop changes as the loop moves and an emf is gen- 

erated. Consider the rectangular loop of wire (Fig. 3.35) translated in the x direction 

with velocity v through a z-directed static magnetic field which varies linearly with x, 

B. = Cx. If the left-hand edge is atx = O att = O, itis at x = ut at time ¢, and the 

magnetic flux threading the loop is 
vit+a vita 2 

[ p-as =o | Cx dx = bC~ 
S ut 2 

  

= = (2ut + a) (9) 
ut 

The induced emf is then the time rate of change of this flux, 

d 
-bE-a=4/ B-as = bacv (10) 

dt js 

This result can be checked by finding the motional field in the four sides using (6). The 

field v X B is normal to the wires along the top and bottom. On the left it is —uCx 

and on the right side, —uC(x + a). Thus the integral is 

-> FE: dl = vCb@ + a) — vCbx = baCu (11) 

agreeing with the result (10). 

  

3.4. CONSERVATION OF CHARGE AND THE CONCEPT 
OF DISPLACEMENT CURRENT 

Faraday’s law is but one of the fundamental laws for changing fields. Let us assume 

for the moment that certain of the laws derived for static fields in Chapters 1 and 2 can
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be extended simply to time-varying fields. We will write the divergence of electric and 

magnetic fields in exactly the same form as in statics, with the understanding that all 

field and source quantities are functions of time as well as of space. For the curl of 

electric field we take the result of Faraday’s law, Eq. 3.2(5). For the curl of magnetic 

field, we take for the time being the form from statics, Eq. 2.7(2). 

V-D=p | (1) 
V-B=0 | (2) 

| 
B 

VxXE= —— | (3) 

VxH=J | (4) 

An elimination among these equations can be made to give an equation relating 

charge and current. We would expect this to show that however p varies with space or 

time, total charge is conserved. If current flows out of any volume, the amount of charge 

inside must decrease, and if current flows in, charge inside increases. Considering a 

smaller and smaller volume, in the limit the outward flow of current per unit time and 

per unit volume (which is recognized as the divergence of current density) must give 

the negative of the time rate of change of charge per unit volume at that point: 

ye Be V-J= ao (5) 

If, however, we take the divergence of J from (4), | 

V-J=V-(V x BD =0 

which does not agree with the continuity argument and (5). Maxwell, by reasoning 

similar to this, recognized that (4), borrowed from statics, is not complete for time- 

varying fields. He postulated an added term dD/ot: 

aD 
Vx H=J+— (6) 

ot 

Continuity is now satisfied, as may be shown by taking the divergence of (6) and 

substituting from (1):   0 op 

Vid= 30° D) = | at 

The term added to form (6) contributes to the curl of magnetic field in the same way 

as an actual conduction current density (motion of charges in conductors) or convection 

current density (motion of charges in space). Because it arises from the displacement 

vector D, it has been named the displacement current term. There is an actual time- 

varying displacement of bound charges in a material dielectric, but note that displace- 

ment current can be nonzero even in a vacuum. Thus (6) could be written
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where J, = conduction or convection current density in amperes per square meter and 

Jq = displacement current density = dD/dt amperes per square meter. 

The displacement current term is important within the dielectric of a capacitor when- 

ever the capacitive voltage changes with time. It also always plays a role when moving 

charges induce currents in nearby electrodes. Both of these phenomena will be explored 

in the following section. Displacement current is negligible for many other low- 

frequency problems. For example, it is negligible in comparison with conduction cur- 

rents in good conductors up to optical frequencies. (This point will be explored more 

in Sec. 3.16.) But displacement current becomes important in more and more situations 

as the frequency of time-varying phenomena is increased. It is essential, along with the 

Faraday law terms for electric field, to the understanding of all electromagnetic wave 

phenomena. 

3.5 PHYSICAL PICTURES OF DISPLACEMENT CURRENT 

The displacement current term enables one to explain certain things that would have 

proved inconsistent had only conduction or convection current been included in the 

magnetic field laws. Consider, for example, the circuit including the ac generator and 

the capacitor of Fig. 3.5a. Suppose that it is required to evaluate the line integral of 

magnetic field around the loop a—b—c—d-—a. The law from statics states that the result 

obtained should be the current enclosed, that is, the current through any surface of 

which the loop is a boundary. If we take as the arbitrary surface through which current 

is to be evaluated one which cuts the wire A, as does S,, a finite value is clearly obtained 

for the line integral. But suppose that the surface selected is one which does not cut the 

wire, but instead passes between the plates of the capacitor, as does S,. If conduction 

current alone were included, the computation would have indicated no current passing 

through this surface and the result would be zero. The path around which the integral 

is evaluated is the same in each case, and it would be quite annoying to possess two 

different results. It is the displacement current term which appears at this point to 

  

    
  

(a) (b) 

Fic. 3.5 Illustrations of how displacement current completes the circuit: (a) in a circuit with 

capacitor; (b) near a moving charge.
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preserve the continuity of current between the plates of the capacitor, giving the same 

answer in either case. | 

To show how this continuity is preserved, consider an ideal parallel-plate capacitor 

of capacitance C, spacing d, area of each plate A, and applied voltage V, sin wt. From 

circuit theory the charging current is | 

IL=C an wCVp cos at (1) 

The field inside the capacitor has a magnitude FE = Via d, so the displacement current 

density is | 

2 oe Vo | 
Jy = = — t 2 d e WE r COs ° (2) 

Total displacement current flowing between the plates is the area of the plate multiplied 

by the density of displacement current: 

A I, = Ady = o( 4)y, cos wt (3) 

The factor in parentheses is recognized as the electrostatic capacitance for the ideal 

parallel-plate capacitor, so (1) and (3) are equal. This) value for total displacement 

current flowing between the capacitor plates is then exactly the same as the value of 

charging current flowing in the leads, calculated by the usual circuit methods above, so 

the displacement current does act to complete the circuit, and the same result would be 

obtained by the use of either S, or Sz of Fig. 3.5a, as required. 

Inclusion of displacement current is necessary for a valid discussion of another ex- 

ample in which a charge region q (Fig. 3.5b) moves with velocity v. If the line integral 

of magnetic field is to be evaluated about some loop A at a given instant, it should be 

possible to set it equal to the current flow for that instant through any surface of which 

A is a boundary. If the displacement current term were ignored, we could use any one 

of the infinite number of possible surfaces, as S,, having no charge passing through, 

and obtain the result zero. If one of the surfaces is selected, as S,, through which charge 

is passing at that instant, however, there is a contribution from convection current and 

a nonzero result. The apparent inconsistency is resolved when one notes that the electric 

field arising from the moving charge must vary with time, and thus will actually give 

rise to a displacement current term through both of the surfaces S$, and S,. The sum of 

displacement and convection currents for the two surfaces is the same at the given 

instant. 

  

        

” Example 3. 3.5 5 

CURRENTS INDUCED BY A SLAB OF CHARGE MOVING IN A PLANAR DIODE 

ENTS       SE EES | Oe SR ES ES 

  
In a planar vacuum diode, as sketched in Fig. 3.5c, the cathode has been pulsed to 

produce a slab of charge moving from cathode to anode. The density of charge is taken
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Vo 

  

  
Fic. 3.5¢ Slab of charge moving between parallel plates. 

as a uniform py. Width is w and at time ¢ the left-hand edge is at x = x’ moving with 

velocity v. We note that the electric field Z,, is independent of x for x < x’, varies 
linearly for x’ <x<.x' + w, and is again independent of x for x > x’ + w. Its integral 
is 

_ pow? Pe , ~My = End + “Pwd ~ x) ~ 

Then the electric fields for the three regions 0 < x < x’, x’ <x <x’ + w, and 

x’ + w<x< dare, respectively (Prob. 3.5b), 

Vo . Po | 'w w 
= 0 4 Pope 4 

Eu dt eld “\ad @ 

By = -24+ %[r(*-1)4r(2-1) + (5) ae ae [a 2d 

Vo. Pow w 
=-— Te x + 6 

Es d+ ed \ 72 ©) 

But x’ is a function of time and differentiation with respect to time gives velocity v. 
Thus displacement current density for the three regions is 

  

OE wax’ powv oexi WON _ Pow) 7 
an Oa a ad ” 

OE. w 
=2 = pp(—-1 8 

Oat ww(% ) ®) 

OEY. w ax! wu 3 Pow Ox _ PowU 9) 
at d a d
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To the displacement current density of the region within the charge, given by (8), we 

add the convection current density pov so that the sum of convection and displacement 

currents is the same for each region, and this will also be the current per unit area 

induced in the plane electrodes. 

  

i 

3.6 MAXWELL’S EQUATIONS IN DIFFERENTIAL EQUATION FORM 
{ 

Rewriting the group of equations of Sec. 3.4 with the displacement current term added, 

we have 

V:-D=p : (1) 

V-B=0 ! (2) 

aB | 
x E= —— | VxE 7 | (3) 

oD | 
VxH=Ji— |. Ha J+ oS (4) 

This set of equations, together with certain auxiliary relations and definitions, is the 

basic set of equations of classical electricity and magnetism, governing all electromag- 

netic phenomena in the range of frequencies from zero through the highest-frequency 

radio waves (and many phenomena at light frequencies) and in the range of sizes above 

atomic size. The equations were first written (noi in the above notation) by Maxwell in 

1863 and are known as Maxwell’s equations. The material in the sections preceding 

this should not be considered a derivation of the laws, for they cannot in any real sense 

be derived from less fundamental laws. Their ultimate justification comes, as with all 
experimental laws, in that they have predicted correctly, and continue to predict, all 

electromagnetic phenomena over a wide range of physical experience. 

The foregoing set of equations is a set of differential equations, relating the time and 

space rates of change of the various field quantities at a point in space and time. The 

use of these will be demonstrated in the following chapters. Equivalent large-scale 

equations will be given in the following section. | 

The major definitions and auxiliary relations that must be added to complete the 

information are as follows: | 

1. Force Law This is, from one point of view, merely the definition of the electric 

and magnetic fields. For a charge g moving with velocity v through an electric 

field E and a magnetic field of flux density B, the force i iS 

f= q(E + v x Bl N (5) 

2. Definition of Conduction Current (Ohm's Law) For a conductor, 

J=ocE A/mm | (6) 
where o is conductivity in siemens/meter.
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3. Definition of Convection Current For a charge density p moving with velocity 

V,, the current density is 

J = pv, A/m? (7) 

4. Definition of Permittivity (Dielectric Constant) The electric flux density D is 

related to the electric field intensity E. by the relation 

D = cE = e.6,E (8) 

where & is the permittivity of space ~8.854 <x 107!? F/m and e. characterizes 
the effect of the atomic and molecular dipoles in the material. 

As with static fields (Sec. 1.3) ¢, or &,, is, in the most general case, anisotropic 

and a function of space, time, and the strength of the applied field. But for many 

materials it is a scalar constant, and unless specifically noted otherwise, the text 

will be concerned with homogeneous, isotropic, linear, and time-invariant mate- 

rials for which ¢€ is a scalar constant. 

5. Definition of Permeability The magnetic flux density B is related to the magnetic 

intensity H by 

where jt, is the permeability of space = 4a X 107’ H/m and pu, measures the 

effect of the magnetic dipole moments of the atoms constituting the medium (Sec. 

2.3). In general w and py, are anisotropic and functions of space, time, and mag- 

netic field strength, but unless otherwise noted they will be considered scalar 

constants, representing: homogeneous, isotropic, linear, and time-invariant 

materials. 

Example 3.6 
NONARBITRARINESS OF FORMS WHICH SATISFY MAXWELL’S EQUATIONS 

Much of the work for the remainder of the text will be 1n finding forms that are solutions 

of Maxwell’s equations. The interrelationship among electric and magnetic field com- 

ponents defined by Maxwell’s equations means that we cannot select arbitrary functions 

for any one component. To illustrate the point, let us consider a capacitor formed by 

concentric spherical conductors with an ideal dielectric between. As in Ex. 1.4c, Gauss’s 

law and symmetry give the electrostatic solution for the dielectric region as 

Q 
93 

Aan 
D= cK =f 

  

(10) 

where Q is the charge on the inner sphere. For a sinusoidally time-varying charge, one 

might expect the solution 

  

E = ¢—~S sin wt (11)
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A check of V-(eE) in spherical coordinates shows that it is zero, as expected for the 

charge-free dielectric. But consider the Maxwell equation! 

oH 
Vx E=-p— | 12 

Pat 2) 
The curl of an electric field of the form (11) is zero, so H can only be a function 

independent of time. But then the other curl equation 

oH 
Vx H=Jte— (13) 

or 

cannot be satisfied since J is zero for the ideal dielectric, JE/at by (11) is time-varying 

but V X H is independent of time. Thus (11), though it may be a useful quasistatic 

approximation, is not a true solution of Maxwell’s equations. Proper solutions in spher- 

ical form are discussed in Chapter 10. | 
| 

  

i 

3.7. MAXWELL’S EQUATIONS IN LARGE-SCALE FORM 

It is also convenient to have the information of Maxwell's equations in large-scale or 
integral form applicable to overall regions of space and paths of finite size. This is of 

course the type of relation that we started with in the discussion of Faraday’s law (Sec. 
3.2) when we derived the differential expression from it! The large-scale equivalents 

for Eqs. 3.6(1)—3.6(4) are | 

  

6p-ds =| pav | (1) 
S V | 

} B- dS =0 | (2) 
Ss 

p = | E-di = —— | B-dS | (3) 
ot Js 

du-d=|s-as+ 2] d-as (4) 
s OtJls | 

Equations (1) and (2) are obtained by integrating respectively Eqs. 3.6(1) and 3.6(2) 

over a volume and applying the divergence theorem. Equations (3) and (4) are obtained 

by integrating, respectively, Eqs. 3.6(3) and 3.6(4) over a surface and applying Stokes’s 

theorem. For example, integrating Eq. 3.6(1), : 

[ v-pav=| pa 
V Vv 

and applying the divergence theorem to the left-hand side, (1) follows. Equation (1) is



3.8 Maxwell's Equations for the Time-Periodic Case 129 

seen to be the familiar form of Gauss’s law utilized so much in Chapter 1. Now that 

we are concerned with fields that are a function of time, the interpretation is that the 

electric flux flowing out of any closed surface at a given instant is equal to the charge 

enclosed by the surface at that instant. 

Equation (2) states that the surface integral of magnetic field or total magnetic flux 

flowing out of a closed surface is zero for all values of time, expressing the fact that 

magnetic charges have not been found in nature. Of course, the law does not prove that 

such charges will never be found; if they are, a term on the right similar to the electric 

charge term in (1) will simply be added, and a corresponding magnetic current term 

will be added to (3). We will later find situations in which fictitious magnetic charges 

and currents will be helpful and may be added to the equations. 

Equation (3) is Faraday’s law of induction, stating that the line integral of electric 

field about a closed path (electromotive force) is the negative of the time rate of change 

of magnetic flux flowing through the path. The law was discussed in some detail in 

Sec. 3.2. 

Equation (4) is the generalized Ampére’s law including Maxwell’s displacement 

current term, and it states that the line integral of magnetic field about a closed path 

(magnetomotive force) is equal to the total current (conduction, convection, and dis- 

placement) flowing through the path. The physical significance of this complete law 

has been discussed in Secs. 3.4—3.5. 

3.8 MAXWELL’S EQUATIONS FOR THE TIME-PERIODIC CASE 

By far the most important time-varying case is that involving steady-state ac fields 

varying sinusoidally in time. Many engineering applications use sinusoidal fields. Other 

functions of time, such as the pulses utilized in a digitally coded system, may be con- 

sidered a superposition of steady-state sinusoids of different frequencies. Fourier 

analysis (Fourier series for periodic functions and the Fourier integral for aperiodic 

functions) provides the mathematical basis for this superposition. Rather than using real 

sinusoidal functions directly, it is found convenient to introduce the complex exponen- 

tial e/". Electrical engineers are familiar with the advantages of this approach in the 

analysis of ac circuits, and physicists use the complex exponential in a variety of phys- 

ical problems with sinusoidal behavior. The advantage, which comes from the fact that 

derivatives and integrals of e/“’ are proportional to e/“' so that the function can be 

canceled from all equations, is even more important for the vector field problems than 

for scalar problems such as the circuit example. It is assumed that the reader has used 

this technique before in circuit analysis or other physical problems, but if review is 

needed, the use in analysis of a simple electrical circuit may be found in Appendix 4. 

Formally, the set of equations 3.6(1)—3.6(4) is easily changed to the complex form by 

replacing 0/dt by jw: 

V-D (1) 

V-B=0 (2) 

l
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V xX E = —joB ! (3) 

VXH=J+ joD | (4) 
And the auxiliary relations, Eqs. 3.6(6)—3.6(9), remain : 

J = aE for conductors (5) 

D = cE = &,6)h | (6) 

B= pH = pu (7) 
i 

Equations 3.6(5) and 3.6(7) should be used with instantaneous values because of the 

nonlinear terms in the equations. The constitutive parameters, 2 and &, are in general 

functions of frequency. Materials for which frequency dependence is important are 

called dispersive. | 

It must be recognized that the symbols in the equations of this article have a different 

meaning from the same symbols used in Sec. 3.6. There they represented the instan- 

taneous values of the indicated vector and scalar quantities. Here they represent the 

complex multipliers of e/’, giving the in-phase and out‘of-phase parts with respect to 

the chosen reference. The complex scalar quantities are|\commonly referred to as pha- 

sors, and by analogy the complex vector multipliers of e/“" may be called vector phasors. 

It would seem less confusing to use a different notation for the two kinds of quantities, 

but one quickly runs out of symbols. The difference is normally clear from the context, 

and when there is danger of confusion, we will use functional notation to denote the 

time-varying quantities. 

If we wish to obtain the instantaneous values of a given quantity from the complex 

value, we insert the e/“" and take the real part. For example, for the scalar p suppose 

that the complex value of p is | 

  

p=p,+ ip (8) 
where p, and p; are real scalars. The instantaneous value of p is then 

p(t) = Rel(p, + jp;)/"] = p, cos wt — p; Sin wt (9) 

Or, alternatively, if p is given in magnitude and phase, | 

= |ple (10) 
where : 

l= Verte, 

— tan) Pi | 0, = tan d, ! 

The true time-varying form is 

p(t) = Re[|ple" +] = lp|cos(we + 6,) (11) 

For a vector quantity, such as E, the complex value may be written
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E = E, + jE, (12) 

where E, and E, are real vectors. Then 

E(t) = Re[(E, + jE,e/“"] = E, cos wt — E, sin wt (13) 

Note that E, and E; have the same directions in space only for certain special cases. 

When they are in the same direction, the vector phasor (12) can be expressed as a vector 

“magnitude” and a scalar phase angle, but in the general case, when they are in differ- 

ent directions, the six scalar quantities defining the two vectors must be specified 

(Prob. 3.84). 

  

Example 3.8 
A PHASOR SOLUTION OF MAXWELL’S EQUATIONS 

As an example of phasor solutions, let us consider the following fields, which we will 

later find to be important as standing waves: 

  

Do 4 / 
E = cos(w Lo EoX) (15) 

, Vv Bo&o 

Let us show that these do satisfy the phasor forms of Maxwell’s equations. The needed 

rectangular coordinate components of (3) and (4), with J = 0, are 

OE 
— = —joB. (16) 
Ox 

oH. 1 OB, 
— = — = —JWE gE, (17) 
ox pg Ox 

Substitution of (14) and (15) gives 

@® 

oe? 1D sin(wV wpegx) = (—j)@Do sin(wV pe) (18) 
V Ho£o 

_JPow J9® V Boo 
——————= cos(wV UpEgX) = — J@EoM%o cos(wV Lp Epox) (19) 

Mo V Mo&o 

The divergences of (14) and (15) are also found to be zero: 

OB. OE. 
—2 = 0 and — = 0 (20) 
dz ay 

So the forms (14) and (15) are solutions of the phasor Maxwell equations for this source-
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free region. If we wish the time-varying forms, we insert e/*’ and take the real part: 

  

  

B(x, t) = Re[B,e/] = Dg sin(@V Mo€pXx) sin wt (21) 

E.(x, t) = Re[E,e/“"] = Po cos(w Vip X) cos wt (22) 
* ” V Mo&o     

  

Examples of Use e of f Maxwell's Equations 

3.9 MAXWELL’S EQUATIONS AND PLANE WAVES 

To make the information of Maxwell’s equations still more concrete, let us show how 

the equations predict the propagation of uniform plane electromagnetic waves. Such 

waves illustrate the interplay of electric and magnetic effects and are also of great 

fundamental and practical importance. Let us begin from the time-varying forms of 

Sec. 3.6. We postulate a simple medium with constant, scalar permittivity and perme- 

ability and with no free charges and currents (p = 0, J = 0). Maxwell’s equations are 

then 

V-D=0 | (1) 

V-B=0 ! (2) 

aB aH 
VxXxBE= — = -yo 

at Me (3) 
| 

vxHi ve (4) 
ot ‘at | 

For uniform plane waves, we assume variation in only one direction. Take this as 
the z direction of a rectangular coordinate system. Then 'a/ ox = O and d/dy = O. Let 

us start with the two curl equations (3) and (4) in rectangular coordinates. With the 

specialization defined above, 

  

  

ar, dH 
—~_— = x 5 

az at ©) 
dH dE aH. 

V xX E = —uw— leadsto —z = —y—2 6 Be a He (6) 

aH, 
O= —p (7) 

( at    
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oH. OE. 
fy E— (8) 

Oz or 

ok dE. 
V X H = e — leads to é Oy Oy (9) 

ot Oz or 

dE 
0 = 2 10 | ef (10)   

Equations (7) and (10) show that the time-varying parts of H, and E, are zero. Thus the 

fields of the wave are entirely transverse to the direction of propagation. The remaining 

equations break into two independent sets, with (5) and (9) relating Ey and H,, and (6) 

and (8) relating £, and H,,. 

The propagation behavior is illustrated by either set. Choose the set with E, and H,, 

differentiating (6) partially with respect to z and (8) with respect to f: 

PE. 7H, PH, PR. 
~ == ; —_— = ¢ = 

az Paz at at az at 
  

      

Substitution of the second equation into the first yields 

PE, PE, 

dz7 pe ar? 

    

(11) 

The important partial differential equation (11) is a classical form known as the one- 

dimensional wave equation, having solutions that demonstrate propagation of a function 

(a “wave’’) in the z direction with velocity 

p
o
 

  

c I Bl (12) 

To show this, test a solution of the form 

  

    

z Z 
EZWoO=hf ( _ 2) + Ali + | (13) 

U Uv 

Differentiating, 

JE... JE. 1 1 
x ? 4 ’ —*t — Lf — t Sahth = ht ch 

ve, it Nt OE. 1 uw l il 

ae Si tt. aa = gal + il 

where the prime denotes differentiation of the function with respect to the entire ar- 

gument, and the double prime denotes the corresponding second derivative. Comparison 

of the two second derivatives shows that (11) is satisfied by such a solution with v 

given by (12). The first term of the solution in (13) represents a function /, moving in 

the z direction with velocity v. To show this consider the function /,(z) at various times 

as illustrated in Fig. 3.9. To keep on a constant reference of this wave, we must maintain
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EL 

Fic. 3.9 A general wave of electric field versus distance for three different times. 
| 

the argument ¢ — z/v equal to a constant. This implies a velocity dz/dt = v. Similarly, 

to keep on a constant reference of the second term in (12) we must keep t + z/va 

constant, implying a velocity dz/dt = —v. Thus the second term represents the function 

jf, traveling in the negative z direction with velocity v. These moving functions may be 

thought of as “waves,” so that the name “wave equation” is explained. 

The velocity v defined by (12) is found to be the velocity of light for the medium. 

In particular, for free space | 

1 | 
v=c= (47 X 1077 X 8.85419 x 107!7)71/4 

V Ho&o (14) 
2.9979 x 10° m/s — | 

(Note that to three significant figures, this is the conveniently remembered value 

3 X 10° m/s, corresponding to & taken as 1/36m7 X 107? F/m.) This equivalence 

between the velocity of light and the predicted velocity of electromagnetic waves helped 

Maxwell to establish light as an electromagnetic phenomenon. 

For a medium with relative permittivity e, and relative permeability y,, the velocity 

of the plane wave is then ! 

  l 

  v= | (15) 

  SPER TS ROE RTT INO IE nd are oa Bt oh ETT PSD ST x TOD OPM ST PEE DNDN ISA ey TEL SPATE TET mn ee ne meg, cree nie 

Example 3.9 
SINUSOIDAL WAVE | 

  

Possryeniry 
ER Ae ERS TEER aS fe A fs ESE SOT TE SEG SS Ey 

EES SEG OS A DS FES SE   
The most common and useful wave solution is one varying sinusoidally in space and 

time. Consider the function 
! 

Ez, t) = Asin of - (16) 

which is a special case of (13). To show that i satisfies (11), perform the 

differentiations: !
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0°E, Oo Z 
52 “524 sin wit — 5 (17) 

a°E.. a4 Z 
[LE 52 — pew A sin wl t — 5 (18) 

But since v? = (ye)~!, this is a solution. To show that it is a “wave,” we see that we 

can stay on a maximum or crest of the function if we set 

of _ 2) =(4n+1)—, n=0,1,2... 
U 2 

or 

(4n + l)arvu 
Z t — ———- U Xe (19) 

so that the crest does move in the z direction with velocity v as time progresses. 

  

3.10 UNIFORM PLANE WAVES WITH STEADY-STATE SINUSOIDS 

To show the usefulness of the complex phasor approach for steady-state sinusoids, let 

us continue with this important special case. Replacement of Eqs. 3.9(6) and 3.9(8) 

with the complex phasor equivalents, obtained by replacing time derivatives with ja, 

yields 

dE... 
a —jopey (1) 

dH, 
“a jwsk, (2) 

Here we have utilized the total derivative with respect to z since that is now the only 

variable. Differentiation of (1) with respect to z and substitution of (2) yield 

dE. 
aa = oP ek, (3) 

  

This is the equivalent of the wave equation, Eq. 3.9(11), but now written in phasor 

form. It is called a one-dimensional Helmholtz equation. It could also be obtained by 

replacing d7/dt? with — w* in Eq. 3.9(11). Solution is in terms of exponentials, as can 
be verified by substituting in (3) 

E. = ce + cel (4) 

where 

k = wpe (5)
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The constant & will be met frequently in wave problems: It is a constant of the medium 

for a particular angular frequency w and is frequently called the wave number. It may 

also be written in terms of the velocity v defined by Eq: 3.9(12): 

k= (6)   The first term of (4) is one that changes its phase linearly with z, becoming increas- 

ingly negative or lagging as one moves in the positive z z direction. This behavior is 

consistent with the interpretation that the sinusoid is traveling in the positive z direction 

with velocity v, resulting in a phase constant k rad/m. The second term of (4) is delayed 

(becomes more negative) in phase as one moves in the negative z direction and so 

represents a negatively traveling wave with the same phase constant. 

To show the exact correspondence of this approach with that of Sec. 3.9, let us 

convert the phasor form to a time-varying form by the rules given in Sec. 3.8. We 

multiply the phasor by the exponential e/“’ and take the real part of the product: 

Ez, t) = Re[E,e/"] = Re[cye el + coei® eft (7) 

For simplicity, take c, and c, to be real. Then | 

E,(z, t) = c, cos(wt — kz) + c, cos(wt + kz) (8a) 

C, COs of: — | + C5 cos of + 2) (8b) 
v | U 

Following the interpretation of Sec. 3.9, we see two real sinusoids, the first traveling 

in the positive z direction with velocity v and the second traveling in the negative z 

direction with the same velocity. The result is then exactly as in Sec. 3.9. 

Figure 3.10a shows the sinusoidal variation of EF, with z at a particular instant (say 

= Q). This pattern moves to the right with velocity v if it is a positively traveling 

wave and to the left if it is negatively traveling. The distance between two planes with 

the same magnitude and direction of E, is called wavelength A and is found by the 

distance for which phase changes by 27 
I 
! 

eo sin w(t —2z/v) att =O 

U 

  

  

Fic. 3.10a@ Sinusoidal function plotted versus distance for one instant of time. For a positively 
traveling wave, the function progresses in the positive z direction with velocity v.
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As === (9) 

where f is frequency. Figure 3.10b shows electric field vectors of a sinusoidal wave. 

Let us also look at the magnetic fields. Returning to the complex forms, we use the 

solution (4) in the differential equation (1): 

1 dE k. 4. te 
jon dz we Oe O20 (10) 

Using the definition of & from (5), 

Eg hs be 
H, = fe [ce * — Coet**] (11) 

The instantaneous equivalent of this is 

y 

  

AZ, th = Re[H,(z)e/“] = fe [c, cos(wt — kz) — cy cos(wt + kz)] (12) 
pL 

So E,,/ H, is V w/e for the positively traveling wave and is — V u./e for the negatively 

traveling wave. The consequences of these relationships for problems of wave trans- 

mission and reflection are discussed in Chapter 6. 
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Fic. 3.106 Vectors showing magnitude and direction of electric field in a sinusoidal, uniform 

plane wave filling the half-space 0 = z for one instant of time. For a positively traveling wave, 

pattern moves to right with velocity 1/V we.
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3.1] THE WAVE EQUATION IN THREE} DIMENSIONS 

The one-dimensional example studied in the preceding| two sections is important be- 

cause it illustrates wave behavior simply, and also because it is a useful model for many 

important practical problems. Nevertheless we have to belconcerned with wave behavior 

in two or three dimensions also. To derive the equation governing such phenomena, let 

us still specialize to simple media in which e« and yp are scalar constants and assume no 

free charges or convection currents within the region of concern. We may then return 

to the special form of Maxwell’s equations given as Eqs. 3.9(1) to 3.9(4). Take the curl 

of Eq. 3.9(3), interchanging time and space partial derivatives: 

VX VXE= nov x (1) 

The left side is expanded by a vector identity. (See inside back cover.) The curl of 

magnetic field on the right side utilizes Eq. 3.9(4). | 

  

JK aE 
— Y2 . —_— — —_- — VE + V(V : E) ay 2 (2 ay t)- bE =, (2) 

For a source-free dielectric, V- D = 0 and, if ¢ is not a function of space coordinates, 

V-E = Oalso. Then 

o°-E 
V-E = we —— 

ee Ot 
(3) 

This is the three-dimensional wave equation to be derived. It will be found useful in a 

variety of problems to be considered later, as in the analysis of propagating modes of 

a waveguide, resonant modes of a cavity resonator, or radiating waves from an antenna. 

Note that the vector equation breaks into three scalar equations, and for rectangular 

coordinates it separates into three scalar wave equations of the same form: 

rE, 
& 2 

and similarly for E, and E,. Note that if /ax = 0 and a/ay = 0, V? is just d7/dz* and 
we have the one- dimensional wave equation studied in Sec. 3.9: 

aE, OE. 
= LE | 

oz or , 

  VE, = (4) 

  

(5)       

The wave equation applies also to magnetic field for|the simple medium considered 

here, as can be shown by taking the curl of Eq. 3.9(4) and substituting Eq. 3.9(3) to 

obtain 

?H 
V-7H = pe a2 (6) 

In complex or phasor notation these reduce to three-dimensional Helmholtz equa-  
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tions, obtained by replacing 47/dt? with — w* in (3) and (6): 

VE = —FE (7) 

phasor forms < V*7H = —kK-H (8) 

er = wpe (9) 

Example 3.11 
RESONANT WAVE SOLUTION FOR A RECTANGULAR BOX 

We have seen that the wave equation has traveling-wave solutions. It also has standing- 

wave solutions under proper boundary conditions. Consider 

E, = C cos k,x sin ky sin k,z (10) 

We use the . component of (7), expressed in rectangular coordinates: 

OE. WE. PE,   att pet ag = 7 PE: (11) 

Carrying out the differentiations, 

~BE, — BE, ~ RE, = —RE, 
or 

kot kot kb =k (12) 

So the phase constants in the three directions must be related by the condition (12). We 

shall see in Chapter 10 that this relation, combined with boundary conditions at the 

conducting walls, gives the conditions for resonance of waves in a rectangular cavity 

resonator. 

  

3,12 POWER FLOW IN ELECTROMAGNETIC FIELDS: POYNTING’S THEOREM 

The preceding sections have shown how electromagnetic waves may propagate through 

space or a dielectric. We know from experience that such waves can carry energy. The 

sun’s rays, which are now known to be electromagnetic waves, warm us. The radio 

waves from a distant antenna bring power, admittedly small, to drive the first amplifier 

stage of a receiver. For lumped electrical circuits we express power through voltage 

and current. For electromagnetic fields, we can find a similar but more general rela- 

tionship giving power and energy relationships in terms of the fields. The resulting 

theorem, Poynting’s theorem, is one of the most fundamental and useful relationships 

of electromagnetic theory.
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We start with the time-varying forms (Sec. 3.6) and write the two curl equations of 

Maxwell: 

B 
XE=-— | V E HT : (1) 

VxH=J+ > (2) 

An equivalence of vector operations (inside back cover) shows that 

H-(V x E)-E-(VX H=V-@ xB) (3) 

If products involving (1) and (2) are taken as indicated, (3) becomes 

aB aD | 
-H:-— -—E-— -E- V-ExH H ot J=V-« ) (4) 

This may now be integrated over the volume of concern: 

aB aD | 

f(a Ben Pee. J)av = “|v exmey 
V ot 0 

From the divergence theorem (Sec. 1.11), the volume integral of div x H) equals 

the surface integral of E X H over the boundary. : 

[ (a Bp Pag. s)av = > x Has (5) 
V ot or iJs 

This is the important Poynting’s theorem and in this form is valid for general media 

since we have so far made no specializations with respect to the medium. For linear, 

time-invariant media (5) can be recast into the form 

0/B-H 0/D-E 

mel 2 +2 (2 )+ esa = -§ @ xmas (6) 

Problem 3.12f shows that (6) is consistent with (5) for isotropic media. Equation (6) is 

also valid for anisotropic media (Prob. 13.8c). The term e£?/2 was shown (Sec. 1.22) 

to represent the energy storage per unit volume for an electrostatic field. If this inter- 

pretation is extended by definition to any electric field,’ the second term of (6) represents 

the time rate of increase of the stored energy in the electric fields of the region. Similarly, 
if uH?/2 is defined as the density of energy storage for a magnetic field, the first term 

represents the time rate of increase of the stored energy in the magnetic fields of the 

region. The third term represents either the ohmic power loss if J is a conduction current 

density or the power required to accelerate charges if J is a convection current arising 

from moving charges. Both of these cases will be illustrated in the examples at the end 

of this section. Also, if there is an energy source, E - J is negative for that source and 

  

3 For an excellent discussion of the arbitrariness of these definitions, refer fo J. A. Stratton, 

Electromagnetic Theory, p. 133, McGraw-Hill, New York, 1941.
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represents energy flow out of the region. All the net energy change must be supplied 

externally. Thus the term on the right represents the energy flow into the volume per 

unit time. Changing sign, the rate of energy flow out through the enclosing surface is 

W } P- ds (7) 
5 

(| 

where 

P=ExXH (8) 

and is called the Poynting vector. 

Although it is known from the proof only that total energy flow out of a region per 

unit time is given by the total surface integral (6), it is often convenient to think of the 

vector P defined by (8) as the vector giving direction and magnitude of energy flow 

density at any point in space. Though this step does not follow strictly, it is a most 

useful interpretation and one which is justified for the majority of applications. (But 

see Prob. 3.124.) 

It should be noted that there are cases for which there will be no power flow through 

the electromagnetic field. Accepting the foregoing interpretation of the Poynting vector, 

we see that it will be zero when either E or H is zero or when the two vectors are 

mutually parallel. Thus, for example, there is no power flow in the vicinity of a system 

of static charges that has electric field but no magnetic field. Another very important 

case is that of a perfect conductor, which by definition must have a zero tangential 

component of electric field at its surface. Then P can have no component normal to the 

conductor and there can be no power flow into the perfect conductor. 

Example 3.12a 
OHMIC LOSS 

To demonstrate the interpretation of the theorem, let us take the simple example of a 

round wire carrying direct current /. (Fig. 3.12). If R is the resistance per unit length, 

the electric field in the wire is known from Ohm’s law to be 

E. = LR 

The magnetic field at the surface, or at any radius r outside the wire, is 

Ay => (9) 

The Poynting vector P = EX H is everywhere radial, directed toward the axis: 

RI? 
P.= -E.H, = - 

wee ar 
? (10) 

We then make an integration over a cylindrical surface of unit length and radius equal
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Fic. 3.12 Round wire with Poynting vector directed radially inward to supply power for ohmic 

losses. 
| 

to that of the wire (there is no flow through the ends of the cylinder since P has no 

component normal to the ends). All the flow is through the cylindrical surface, giving 

a power flow inward of amount 

W = 2ar(—P,) = PR (11) 

We know that this result does represent the correct power flow into the conductor, being 

dissipated in heat. If we accept the Poynting vector as giving the correct density of 

power flow at each point, we must then picture the battery or other source of energy as 

setting up the electric and magnetic fields, so that the energy flows through the field 

and into the wire through its surface. The Poynting theorem cannot be considered a 

proof of the correctness of this interpretation, for it says only that the total power balance 

for a given region will be computed correctly in this manner, but the interpretation is 

nevertheless a useful one. | 

  

Example 3.12b 
MOVING CHARGES 

Let us next consider the example in which J is a convection current. For simplicity take 

a region containing particles of charge value g, mass m, and velocity v,. The convection 

current density is 

J = pv, = nqv, (12) 

where n is the density of particles. From the force law the acceleration of charges is 

av, 
F = gk =m a (13) 

and the third term in the Poynting theorem (6) is 

| B-sav - [ 2o. (ngv,) dV = [sie (14)
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which we recognize to be the rate of change of the total kinetic energy of the charge 

group. In this example we will not try to work out the right side of (6), but the E in 

that term is related to the accelerating field, the H is that from the convection current, 

and the Poynting theorem will always be satisfied. 

  

Example 3.12c 
POYNTING FLOW IN A PLANE WAVE 

Finally we look at the Poynting theorem applied to the plane electromagnetic wave 

studied in preceding sections. The form of a sinusoidally varying wave with E,, and H, 

propagating in the positive z direction was shown to be 

EY. = Eg cos(wt — kz) (15) 

A, fe Ey cos(wt — kz) (16) 

The Poynting vector is then in the z direction, which is consistent with our interpretation 

that power is flowing in that direction: 

| 

P_ = ELH, = fe E% cos*(wt — kz) (17) 
" bb 

By the use of a trigonometric identity this is also 

E _,[ 1 I 
P_= /~—E >| = + = cos 2(wt — kz) (18) 

bh 2 2 

Note that there is a constant term showing that the wave carries an average power, as 

expected. There is also a time-varying portion representing the redistribution of stored 

energy in space as maxima and minima of fields pass through a given region. 

  

3.13 POYNTING’S THEOREM FOR PHASORS 

Because of the importance of phasors for sinusoidal electromagnetic fields, we need 

the Poynting theorem in phasor form also. It might seem that we could simply substitute 

in the time-varying theorem, Eq. 3.12(5), replacing d/dt by jw, but this does not work 

since the expression is nonlinear, involving products of the fields. We start with Max- 

well’s equations in complex form and derive the complex Poynting theorem by steps 

4 If the charges move through the surface surrounding the region, the net kinetic energy 

transport by the charge sfream through the surface is also included. This is actually con- 

tained in the third term on the left as shown by L. Tonks, Phys. Rev. 54 863 (1938).
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parallel to those used for the theorem in time-varying field quantities. The two curl 

equations in complex phasor form are (Sec. 3.8) | 

VXE=—-joB (1) 

VX H=J + joD, (2) 

Consider the vector identity ! 

V-(E X H*) = H*-(V x E) —E-(V x H®*) (3) 

where the asterisk denotes the complex conjugate. Equations (1) and (2) may now be 

substituted in this identity: 

V-(E x H*) = H*- (—joB) — E- J* — joD*) (4) 
| 

This expression is integrated through volume V and the divergence theorem utilized: 

| vax Hy av =$ & x BY as | 
Vv s ; 

: (5) 
= -| [E- J* + jo(H* - B —~ E- D*)] dv 

Vv ! 
| 

Equation (5) is the general Poynting theorem as it applies to complex phasors. To 

interpret, consider an isotropic medium in which all losses occur through conduction 

currents J = oE so that o, p, and & are real scalars. Then (5) becomes 

| 
} (E x HY): dS = -| cE B* av — ju | [WH -H* — cE-E*) av (6) 

S 4 v | 

The first volume integral on the right side represents power loss in the conduction 

currents and is just twice the average power loss. (See| Appendix 4.) Thus the real part 

of the complex Poynting flow on the left side can be related to this power loss. Or, 

interpreting the Poynting vector itself as a density of power flow as in Sec. 3.12, 

P,, = }Re(E x H*) W/m? (7) 
The second volume integral on the right of (6) is proportional to the difference 

between average stored magnetic energy in the volume and average stored electric 

energy. Taking into account a factor of 4 in the energy expressions and another 4 for 

averaging of squares of sinusoids, we can then interpret the imaginary part of (6) as 

Im ¢ (E xX H*)- dS = Ain(Urry — Unay) (8) 
s 

where U,,,,, 1s average stored energy in electric fields and U;,,, that in magnetic fields. 

So the imaginary part of the Poynting flow through the surface can be thought of as 

reactive power flowing back and forth to supply the instantaneous changes in net stored 

energy in the volume. |
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Example 3.13 
AVERAGE POWER IN UNIFORM PLANE WAVES 

To illustrate the average Poynting vector for the plane-wave case, let us take the field 

expressions for plane waves derived in complex form in Sec. 3.10: 

E,. = cyel™ + coe (9) 

_ {& — jkz jkz A, = [Eee — cyel™*] (10) 

The complex Poynting vector is then 

E x H* = ft [ce = + coe \[cfe™ — cye7*]z (11) 
a 

and the average power density, by (7), is in the z direction and equal to 

_i1 fe sk * 2 Pa = 5 "i [c\cy — ¢9¢5] W/m (12) 

This equation states that the average power is simply the average power of the positively 

traveling wave minus that of the negatively traveling wave. The cross-product terms of 

(11) contribute only to reactive power, that is, to the interchange of stored energy within 

the wave. 

  

3,14 CONTINUITY CONDITIONS FOR AC FIELDS AT A BOUNDARY: 
UNIQUENESS OF SOLUTIONS 

In the study of static fields, certain boundary and continuity conditions were stated for 

such fields and were found essential in the solution of the field problems by the use of 

the differential equations. Similarly, for the use of Maxwell’s equations in differential 

equation form, we need corresponding boundary and continuity conditions. 

Consider first Faraday’s law in large-scale form, Eq. 3.2(3), applied to a path formed 

by moving distance A/ along one side of the boundary between any two materials and 

returning on the other side, an infinitesimal distance into the second medium (Fig. 

3.14a). The line integral of electric field is 

 E -di = &, — Ey) Al (1) 

Since the path is an infinitesimal distance on either side of the boundary, it encloses 

zero area; therefore the contribution from changing magnetic flux is zero so long as 

rate of change of magnetic flux density is finite. Consequently, 

(Ey —_ Ea) Al = 0 Or En — Eo (2)
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Et, n | 

opbppaasnnnnn bans 
2 = 

Fic. 3.14a Continuity of tangential electric field components at a dielectric boundary. 

Similarly, the generalized Ampére law in large-scale form, Eq. 3.7(4), may be applied 

to a like path with its two sides on the two sides of the boundary. Again zero area is 

enclosed by the path, and, so long as current density and rate of change of electric flux 

density are finite, the integral is zero. Thus, as in (2), 

Ay = Ay (3) 

Or in vector form, by use of the unit vector i normal to the boundary as shown in Fig. 

3.14a, (2) and (3) can be written as 

a x (E, — E,) =0 (4) 

h x (H, — H,) =0 (5) 

Thus tangential components of electric and magnetic field must be equal on the two 

sides of any boundary between physically real media. The condition (3) may be modi- 

fied for an idealized case such as the perfect conductor where the current densities are 

allowed to become infinite. This case is discussed separately in Sec. 3.15. 

The integral form of Gauss’s law is Eq. 3.7(1). If two very small elements of area 

AS are considered (Fig. 3.14b), one on either side of the boundary between any two 

materials, with a surface charge density p, existing on the boundary, the application of 

Gauss’s law to this elemental volume gives 

AS(D,, — Dr) = ps AS 

Or 

Dry — Dia = Ps (6) 

For a charge-free boundary, | 

Dyn = Dr OF aE, = eB yp (7) 

That is, for a charge-free boundary, normal components of electric flux density are 

continuous; for a boundary with charges, they are discontinuous by the amount of the 

surface charge density. | 

Since there is no magnetic charge term on the right of Eq. 3.7(2), a development 

corresponding to the above shows that always the magnetic flux density is continuous: 

Bn = Bo Or byl = Holle (8) 

For the time-varying case, which is of greatest importance to our study, the conditions 

on normal components are not independent of those given for the tangential compo- 

nents. The reason is that the former are derived from the divergence equations (or their 

equivalent in large-scale form), and these may be obtained from the two curl equations
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Fic. 3.146 Diagram showing how discontinuity in normal components of electric flux density 
at a boundary is related to surface charge density. 

in the time-varying case (Prob. 3.6b). The conditions on tangential components were 

derived from the large-scale equivalents of the curl equations. Hence, for the ac solu- 

tions, it is necessary only to apply the continuity conditions on tangential components 

of electric and magnetic fields at a boundary between two media, and the conditions 

on normal components may be used as a check; if the normal components of D turn 

out to be discontinuous, (6) tells the amount of surface charge that is induced on the 

boundary. 

Umiquemess The procedure to prove the uniqueness of solutions of Maxwell’s equa- 

tions follows the philosophy in Sec. 1.17. One assumes two possible solutions with the 

same given tangential fields on the boundary of the region of interest. The difference 

field is formed, and found to satisfy Poynting’s theorem in the form of Eq. 3.12(5). 

Stratton? shows that for linear, isotropic (but possibly inhomogeneous) media, speci- 

fication of tangential KE. and H on the boundary and of initial values of all fields at time 

zero is sufficient to specify fields uniquely within the region at all later times. The 

argument can be extended to anisotropic materials and certain classes of nonlinear 

materials, but not to materials that have multivalued relations between D and E (or B 

and H) or to “active” materials that produce oscillations. In steady-state problems we 

are not generally concerned with the specifications of initial conditions. 

Although the discussion has been given for a region with closed boundaries, unique- 

ness arguments also apply to open regions extending to infinity, provided certain ra- 

diation conditions are satisfied by the fields. These require that the products rE and rH 

remain finite as ; approaches infinity® and are satisfied by fields arising from real charge 

and current sources contained within a finite region. The extension to open regions is 

important to the potential formulation of the last part of this chapter. 

SJ. A, Stratton, Electromagnetic Theory, pp. 486-488, McGraw-Hill, New York, 1941. 
© S. Silver, Microwave Antenna Theory and Design, p. 85, IEEE Press, New York, 1984.
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3.15 BOUNDARY CONDITIONS AT A PERFECT CONDUCTOR FOR AC FIELDS 

It is a good approximation in many practical problems to treat good conductors (such 

as copper and other metals) as though of infinite conductivity when finding the form 

of fields outside the conductor. We will study the effect of large but finite conductivity 

on fields within the conductor in Sec. 3.16. When we do, we will find that all fields and 

currents concentrate in a thin region or “skin” near the surface for time-varying fields, 

and this region approaches zero thickness as the conductivity approaches infinity. Thus, 

for the perfect conductor (infinite conductivity), we find that all fields are zero inside 

the conductor and any current flow must be only on the surface. The physical properties 

of perfect conductors are discussed in Sec. 13.4. Since the electric field is zero within 

the perfect conductor, continuity of tangential electric field at a boundary requires that 

the surface tangential electric field be zero just outside the boundary also, 

E, = 0 | (1) 

and Eq. 3.14(6) gives the normal electric flux density as 

D,, = Bs | (2) 
Furthermore, since magnetic fields also vanish inside the conductor, the statement of 

continuity of magnetic fiux lines, Eq. 3.14(8), indicates that 

B, = 0 ! (3) 
n 

at the conductor surface. As was pointed out in the last section, however, the continuity 

condition on normal B is not independent of the condition on tangential E in the time- 

varying case. Thus, in the ac solution, (3) follows from (1), but may sometimes be 

useful as a check or as an alternative boundary condition. 
The tangential component of magnetic field is likewise zero inside the perfect con- 

ductor but is not in general zero just outside. This discontinuity would appear to violate 

the condition of Eq. 3.14(3), but it will be recalled that a condition for that proof was 

that current density remain finite. For the perfect conductor, the finite current J per unit 

width is assumed to flow on the surface as a current sheet of zero thickness, so that 

current density is infinite. The discontinuity in tangential magnetic field is found by a 

construction similar to that of Fig. 3.14a. The current enclosed by the path is the current 

per unit width J flowing on the surface of the conductor perpendicular to the direction 

of the tangential magnetic field at the surface. Then 

OH dl =H, dl = J,dl 

Or 

J, = A, A/m (4) 

where J, is current per unit width, called a surface current density. The direction and 
sense relations for (4) are given most conveniently by the vector form of the law below. 

To write the relations of (1)—(4) in vector notation, a unit vector f, normal to the
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A 

Fig. 3.15 Conducting boundary with the normal unit vector. 

conductor at any given point and pointing from the conductor into the region where 

fields exist, is defined (Fig. 3.15). Then conditions (1)—(4) become: 

fix E=0 (5) 

i-B=0 (6) 

p, = n-D (7) 

J.=axH (8) 

For an ac problem, (5) represents the only required boundary condition at a perfect 

conductor. Equation (6) serves as a check or sometimes as an alternative to (5). Equa- 

tions (7) and (8) are used to give the charge and current induced on the conductor by 

the presence of the electromagnetic fields. 

3.16 PENETRATION OF ELECTROMAGNETIC FIELDS INTO A GOOD CONDUCTOR 

Maxwell’s equations have been illustrated by showing the wave behavior of electro- 

magnetic fields in good dielectrics. A second extremely important class of materials 

used in many electromagnetic problems is that of “good conductors.” Let us examine 

the basic behavior of electromagnetic fields in such conductors. The development in 

this and the following section will be for steady-state sinusoids using phasor notation, 

with the usual understanding that more general time variations may be broken up into 

a series or continuous distribution of such sinusoids. The conductors of concern are 

those satisfying Ohm’s law, 

J = oE (1) 

The constant o is the conductivity of the conductor. At optical frequencies metals are 

not well represented by a real constant a, but the approximation is valid for microwaves 

and millimeter waves (Sec. 13.3). Substitution of (1) into the Maxwell equation 3.8(4) 

gives 

VxXH = (o + jwe)E (2) 

It is easy to show that the assumption of Ohm’s law implies the absence of charge 

density. Since the divergence of the curl of any vector is zero, 

V:-V xX H= (c+ jwe)V-E = 0
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where we have assumed homogeneity of o and s. Thus 

V-D=p=0 (3) 

The simple picture of the situation im a conductor is that mobile electrons drift through 

a lattice of positive ions, encountering frequent collisions. On the average, over a vol- 

ume large compared with the atomic dimensions but small compared with dimensions 

of interest in the system under study, the net charge is zero even though some of the 

charges are moving through the element and causing current flow. The net movement 

or “drift” in such cases is found proportional to the electric field. 

For metals and other good conductors, it is found that displacement current is neg- 

ligible in comparison with conduction current for microwave and millimeter-wave fre- 

quencies, and in fact is not measurable until frequencies are well into the infrared. For 

the present we concentrate on the important cases for which we in (2) is negligible in 

comparison with o. 

Thus, to summarize, the following specializations are appropriate to Maxwell’s equa- 

tions applied to good conductors, and may in fact be taken as a definition of a good 

conductor. 

1. Conduction current is given by Ohm’s law, J = oE. 

2. Displacement current is negligible in comparison with current, we << o. 

3. As a consequence of (1), the net charge density is zero for homogeneous 

conductors. 

To derive the differential equation which determines the penetration of the fields into 

the conductor, we first take the curl of the Maxwell curl equation for electric field, Eq. 

3.8(3), and make use of a vector identity (see inside back cover) and the definition of 

permeability to obtain | 

VxVXE= VV -E) — VE = —jopV X H (4) 

Then using (3) and substituting (2) in (4) with displacement current neglected, we find 

V-E = jopoE | (5) 

Equations with forms identical to (5) can be found in a similar way for magnetic field 

and current density: 

V*7H = jwuoH (6) 

V7J = jouol (7) 

We first consider the differential equations (5)—(7) for the simple but useful example 

of a plane conductor of infinite depth, with no field variations along the width or length 

dimension. This case is frequently taken as that of a conductor filling the half-space 

x > 0 in a rectangular coordinate system with the y—z plane coinciding with the con- 

ductor surface, and is then spoken of as a “semi-infinite solid.” In spite of the infinite 

depth requirement, the analysis of this case is of importance to many conductors of 

finite extent, and with curved surfaces, because at high frequencies the depth over which
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significant fields are concentrated is very small. Radii of curvature and conductor depth 

may then be taken as infinite in comparison. Moreover, any field variations along the 

surface due to curvature, edge effects, or variations along a wavelength are ordinarily 

so small compared with the variations into the conductor that they may be neglected. 

For the uniform field situation shown in Fig. 3.16a@ with the electric field vector in 

the z direction, we assume no variations with y or z and (5) becomes 

? 
- 

  

He = jomoE, = TE, (8) 

where 

7? 2 jopo (9) 

Since Vi = (1+ /)/ V2 (taking the root with the positive sign), 

r= + j)Vajuo = —4 (10) 

where 

6 = a m (11) 
V af Lo 

A complete solution of (8) is in terms of exponentials: 

BE, = Cie ™ + Cye™ (12) 

The field will increase to the impossible value of infinity at x = © unless C, is zero. 

The coefficient C, may be written as the field at the surface if we let k. = EK, when 

x = 0. Then 

E. = Foe ™ (13) 

Or, in terms of the quantity 6 defined by (10) and (11), 

E. = Eye */*e#/8 (14) 

Since the magnetic field and the current density are governed by the same differential 

equation as the electric field, forms identical to (14) apply; that is, 

H, = Hye*/%e~ 8/2 (15) 
J, = Igoe * be“ #8 (16) 

where H, and J, are the magnitudes of the magnetic field and current density at the 

surface. 

It is evident from the forms of (14)—(16) that the magnitudes of the fields and current 

decrease exponentially with penetration into the conductor, and 6 has the significance 

of the depth at which they have decreased to 1/e (about 36.9%) of their values at the 

surface, as indicated in Fig. 3.16a. The quantity 6 is accordingly called the depth of
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Fic. 3.16a@ Plane solid illustrating decay of current into conductor. 
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Fic. 3.16b Skin depth and surface resistance for copper at two temperatures and for two su- 

perconductors. Note that the skin depth for superconductors is (1 + j) times a real number, so 
penetration of fields and current density in Eqs. 3.16(14—16) have only the real exponential decay.
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penetration, or skin depth. The phases of the current and fields lag behind their surface 

values by x/6 radians at depth x into the conductor. The penetration depths for copper 

at room temperature (300 K) and 77 K are shown in Fig. 3.16b. Except for ferromagnetic 

and ferrite materials, zp ~ pp. 

Example 3.16 
SKIN DEPTH IN AUDIO TRANSFORMER WITH IRON CORE 

An audio frequency transformer has a core made of iron with o = 0.5 X 10’ and 

Bh = 1000p . It is designed to work up to 15 kHz. Let us find the skin depth at this 

highest design frequency. From (11) 

5 = (7 X 15 X 10° X 10° X 4a X «1077 X 0.5 X 107)! 
17 

= (3077 x 10°)~!/4 = 0.058 X 1073 m = 0.058 mm (7) 

Note that this is more than 30 times smaller than for a material of the same conductivity 

but with a relative permeability of unity. 

  

Advantageous electromagnetic behavior can be obtained in circumstances where 

cooling to cryogenic temperatures is possible if superconductors are used.’ For reasons 

to be explained in Sec. 13.4, the conductivity is complex and frequency dependent, and 

6 is constant up to about 100 GHz at (1 + /) times the value of the dc penetration 

depth A,. Values of 6 found experimentally for niobium at 4 K and for the oxide 

superconductor YBa,Cu,O,_,, or simply Y-Ba—Cu-—O, are shown in Fig. 3.165 for 

comparison with the frequency-dependent values for copper. The oxide superconductor 

Y—Ba—Cu-—O has an anisotropic crystal structure; it is assumed here that the highly 

conducting Cu—O planes are parallel to the surface. The behavior is otherwise more 

complicated. 

3.17 INTERNAL IMPEDANCE OF A PLANE CONDUCTOR 

The decay of fields into a good conductor or superconductor may be looked at as the 

attenuation of a plane wave as it propagates into the conductor or from the point of 

view that induced fields from the time-varying currents tend to counter the applied 

fields. The latter point of view is especially applicable to circuits, in which case we 

think of the field at the surface as the applied field. Currents (resulting from oE) con- 

centrate near this surface and the ratio of surface electric field to current flow gives an 

internal impedance for use in circuit problems. By internal, we mean the contribution 

7 T, Van Duzer and C. W. Turner, Principles of Superconductive Devices and Circuits, Sec. 
3.14, Elsevier, New York, 1981. (lo be reissued by Prentice Hall.)
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to impedance from the fields penetrating the conductor. This gives, in general, a re- 

sistance term and an internal inductance, the latter to be added to any external induct- 

ance contribution arising from the fields outside the conductor. 

The total current flowing past a unit width on the surface of the plane conductor is 

found by integrating the current density, Eq. 3.16(16), from the surface to the infinite 

depth: | 

  J. = | J, dx = | Type At DG/A dy = —?— (1) 
0 0 | (1 + J) 

The electric field at the surface is related to the current idensity at the surface by 

J 
Eo = ~0 (2) 

o 

Internal impedance for a unit length and unit width is defined as 

A E.0 1 + J | 
Z, = = — 3 

With the further definition | 

ZR, + jol; (4) 

We then have | 

R= = [RE (5) 
ao oT 

1 | 

wl; —- 37 R, (6) 
oo | 

With o real, the resistance and internal reactance of such a plane conductor are equal 

at any frequency. The internal impedance Z, thus has|a phase angle of 45 degrees. 

Equation (5) gives another interpretation of depth of penetration 6, for this equation 

shows that the skin-effect resistance of the semi-infinite/plane conductor is the same as 

the dc resistance of a plane conductor of depth 6. That is, resistance of this conductor 

Table 3.17a 

Skin Effect Properties of Typical Metals 
  

  

Conductivity Depth of Penetration Surface Resistivity 
o (S/m) 5 (m) | R, (Q) 

Silver (300 K) 6.17 X 10? 0.0642 f- 1/2 2.52 x 1077f!/? 
Aluminum (300 K) 3.72 X 10’ 0.0826 f ~ 1/2 3.26 X 107 7f1/? 
Brass (300 K) 1.57 X 10’ 0.127f 71/2 5.01 x 107~7f!/2 
Copper (300 K) 5.80 X 10’ 0.066f~ !/? 2.61 X 1077f!/? 
Copper (77 K) 18 x 10’ 0.037f7 1/2 1.5 X 1077fl/? 
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Table 3.17b 
Skin Effect Properties of Typical Superconductors 

Surface 
Complex Conductivity Penetration Depth Resistivity 

a = 0, — jo, (S/m) A, = 6/1 + jf) (m) R, (QO) 

YBa,Cu,0,_, (77 K) 8.2 x 10° — j20 x 10!"f7! 250 x 107° 40 x 10°? f? 
Niobium (4 K) 5.2 x 10° — j175 x 10!’f7! 85 xX 107? 1.0 x 10~*f? 
  

with exponential decrease in current density is the same as though current were uni- 

formly distributed over a depth 6. 

The resistance R, of the plane conductor for a unit length and unit width is called 

the surface resistivity. For a finite area of conductor, the resistance is obtained by 

multiplying X, by length, and dividing by width since the width elements are essentially 

in parallel. Thus the dimension of R, is ohms or, as it is sometimes called, ohms per 

square. Like the depth of penetration 6, R, as defined by (5) is also a useful parameter 

in the analyses of conductors of other than plane shape, and may be thought of as a 

constant of the material at frequency f. 

Superconductors are somewhat different from the good conductor discussed above 

in having a complex conductivity with the result that the surface resistance and reactance 

terms are not equal. But the definitions in (3) and (4) still apply. Again, w ~ po. They 

differ also in that R, increases as f* rather than as f!/?, as in the case of a good 

conductor. Values of depth of penetration (skin depth) and surface resistivity are tabu- 

lated for several metals in Table 3.17a and are plotted in Fig. 3.16b as functions of 

frequency. Table 3.17b gives experimentally derived data for the complex conductivity, 

penetration depth, and surface resistance for two prominent superconductors; the 

penetration depth and surface resistance are also plotted in Fig. 3.165 as functions of 

frequency. 

Example 3.17 
APPROXIMATE INTERNAL IMPEDANCE OF A COAXIAL LINE 

The usefulness of this concept for practical problems may now be illustrated by con- 

sidering the coaxial transmission line of Fig. 3.17. We select as a circuit path one which 

follows the outer surface of the inner conductor, AB, traversing radially across to C and 

then following the inner surface of the outer conductor CD, returning back radially to 

A. The difference between voltages V,, and Vo, will arise in part because of the in- 

ductance calculated from flux within the path ABCDA, that is, the inductance external 

to the conductors. We consequently call this the external inductance and recognize it 

as that found for a coaxial line in Chapter 2. But there is also a voltage contribution 

along the path AB due to the internal impedance of the inner conductor and one along 

CD arising from internal impedance of the outer conductor.
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Fic. 3.17 Section of coaxial transmission line. Line integral of electric field about path ABCD 
relates to magnetic flux associated with external inductance. | 

If radii of curvatures a and b are large in comparison with skin depth 6, and if 

thickness of the outer tubular conductor is large compared! with 6, both conductors may 

be treated to a good degree of approximation by the planar analysis of this and the 

preceding section. Current concentrates on the outer surface of the inner conductor and 

the inner surface of the outer conductor, adjacent to the region of the fields. The inner 

conductor, if curvature is negligible, then appears as ajplane of width equal to its 

circumference, 27a. Internal impedance per unit length is then 

Z Si 
= QO ; 

27a /m 
Zit 

The outer conductor, with these approximations, appears|as a plane of width equal to 

its inner circumference, 27rb. Its thickness does not enter since it is presumed much 

larger than 6, so that fields have died to a negligible value at the outer surface. Internal 

impedance per unit length from this part is then 
| 

Z5 | 
Z,=72% 9 

2 = pap, ©/m 
  

The sum of these two gives the total contribution to impedance from fields within the 

conductors and can be used in the transmission-line analysis of Chapter 5. 

  

3,18 POWER LOSS IN A PLANE CONDUCTOR 

To find average power loss per unit area of the plane conductor, we may apply the 

Poynting theorem of Sec. 3.13. The field components E, and H, produce a power flow 

in the x direction, or into the conductor. Utilization of the field values at the surface 

gives the total power flowing from the field into the conductor. In complex phasor form, 

using Eq. 3.13(7), 

P, = }Re[Ey X Hé] = —%} Re(E.pH*,) (1)
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Fic.3.18 Surface of plane conductor illustrating how magnetic field at surface relates to current 

flow per unit width. 

The surface value of magnetic field can readily be related to the surface current, as 

can be seen by taking the line integral of magnetic field about some path ABCD of Fig. 

3.18 (C and D at infinity). Since magnetic field is in the —y direction for this simple 

case, there is no contribution to H - di along the sides BC and DA; there is no contri- 

bution along CD since field is zero at infinity. Hence, for a width w, 

B 

¢ Hdl = | He dl = —wiig (2) 
ABCD A 

This line integral of magnetic field must be equal to the conduction current enclosed, 

since displacement current has been shown to be negligible in a good conductor. The 

current is just the width w times the current per unit width J,. Then, utilizing (2), 

—WwHyy = wi, or J, = —Hyo (3) 

This may be written in a vector form which includes the magnitude and sense infor- 

mation of (3) and the fact that J and H are mutually perpendicular, 

J, = ax H (4) 

where fi is a unit vector perpendicular to the conductor surface, pointing into the ad- 

joining dielectric region and H is the magnetic field at the surface. Note that (4) is 

of the same form as for perfect conductors, Eq. 3.15(8). Then using (1), (3), and 

Eq. 3.17(3), we obtain for power loss W, = |P,| 

W, = Re(ZJJ*] = 4RJ2 W/m? (5) 

This is a form that might have been expected in that it gives loss in terms of resistance 

multiplied by square of current magnitude. An alternate derivation (Prob. 3.18a) is by
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the integration of power loss at each point of the solid from the known conductivity 

and current density function. | 

Equation (5) will be found of the greatest usefulness 5 throughout this text for the 

computation of power loss in the walls of waveguides, cavity resonators, and other 

electromagnetic structures. Although the walls of these structures are not plane solids 

of infinite depth, the results of this section may be applied for all practical purposes 

whenever the conductor thickness and radii of curvature are much greater than 6, depth 

of penetration. This includes most important cases at high frequencies. In these cases 

the quantities that are ordinarily known are the fields at the surface of the conductor. 

  

Potentials for Time-Varying Fields 

3,19 A POSSIBLE SET OF POTENTIALS FOR TIME-VARYING FIELDS 

As we have seen, time-varying electromagnetic fields are related to each other and to 

the charge and current sources through the set of differential equations known as Max- 

well’s equations. It is sometimes convenient to introduce some intermediate functions, 

known as potential functions, which are directly related to the sources, and from which 

the electric and magnetic fields may be derived. Such functions were found useful for 

static fields, and in the case of the electrostatic potential, the potential itself had useful 

physical significance. The physical interpretation was less clear in the case of the mag- 

netic vector potential, but it does provide a useful simplification in the analysis of some 

problems. In this and following sections we look for similar potential functions for the 

time-varying fields. It turns out that there are many possible sets. We select a commonly 

used set known as retarded potentials, which reduce to the potentials used for statics 

in the limit of no time variations. 

We might try at first to use the forms found for statics, E = —V® andB = V X A, 

with all quantities functions of time. We are faced with this problem: the electric field 
for time-varying conditions cannot be derived only as the gradient of scalar potential 

since this would require that it have zero curl, and it may actually have a nonzero curl 

of value — dB/dt; it cannot be derived alone as the curl of a vector potential since this 

would require that it have zero divergence, and it may have a finite divergence of value 

p/é. 
Since the divergence of magnetic field is zero in thei general case as it was in the 

static, it seems that B may still be set equal to the curl of some magnetic vector poten- 

tial, A. 

B=VXxXA (1)
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This relation may now be substituted in the Maxwell equation 3.6(3) and the result 

written 

dA 
V x t + “4 = (Q (2) 

This equation states that the curl of a certain vector quantity is zero. But this is the 

condition that permits a vector to be derived as the gradient of a scalar, say ®. That is, 

B+. _vo 
at 

Or 

b= —vo — 2 (3) at 
Equations (1) and (3) are then valid relationships between fields and potential functions 

A and ®, Note that no specializations on the medium have been made to this point. It 

is found that the potential functions are most useful, though, for linear, isotropic, 

homogeneous media, so in the remaining part of this discussion, we take mw and «€ as 

scalar constants appropriate to such media. With this specialization we substitute (3) in 

Gauss’s law, Eq. 3.6(1), to obtain 

  

  

0 
-Vb — = (v- A) =F (4) 

at Eg 

Then, substituting B = V xX A and (3) in Eq. 3.6(4), we find 

aD a7A 
VxVxA= + —-Vi—|-=s 

bd us| (22) | 

Using the vector identity 

VxVxA=WV-A)— VA 

this becomes 

a® a7A 
V(V: A) — WA = pJ — uev(2 7 HE = (5) 

Equations (4) and (5) can be simplified by further specification of A. That is, there are 

any number of vector functions whose curl is the same. One may specify also the 

divergence of A according to convenience.® If the divergence of A is chosen as” 

8 Specification of divergence and curl of a vector, with appropriate boundary conditions, 
determines the vector uniquely through the Helmholiz theorem. See, for example, R. E. 

Collin, Field Theory of Guided Waves, 2nd ed., Appendix Al, IEEE Press, Piscataway, NJ, 

1991, 
This choice is known as the Lorentz condition or Loreniz gauge and leads to the symmetry 

of (7) and (8), Other useful gauges are the Coulomb and London gauges. See, for ex- 
ample, A. M. Portis, Electromagnetic Fields: Sources and Media, Wiley, New York, 1978. 

See also Prob, 3.19c.
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aD 
V-A = —-pueE — 6 A He (6) 

(4) and (5) then simplify to 

ab 
Vo — HE Ta = -f (7) 

ore E | 

2A | a 
V7A — pe fe = —pJ (8) 

Thus the potentials A and ®, defined in terms of the sources J and p by the differential 

equations (7) and (8), may be used to derive the electric and magnetic fields by (1) and 

(3). It is easy to see that they do reduce to the corresponding expressions of statics, for 

if time derivatives are allowed to go to zero, the set of equations (1), (3), (7), and (8) 

becomes 

V2) = — E = -VO (9) 

VA=—-ynJ B=VXA (10) 

which are recognized as the appropriate expressions from Chapters | and 2. 

3.20 THE RETARDED POTENTIALS AS INTEGRALS OVER CHARGES AND CURRENTS 

The potential functions A and ® for time-varying fields are defined in terms of the 

currents and charges by the differential equations 3.19(7) and 3.19(8). General solutions 

of the equation give the potentials as integrals over the charges and currents, as in the 

static case. The following discussion applies to the very important case of a region 

extending to infinity with a linear, isotropic, and homogeneous medium. 

From Chapters 1 and 2 the integrals for the static potentials, which may be considered 

the solutions of Eqs. 3.19(9) and 3.19(10), are 

  

  

o=| 24 (1) 
v 47rer 

A= J (2) 
v 4ar 

A mathematical development to yield the corresponding integral solutions of the in- 

homogeneous wave equations 3.19(7) and 3.19(8) is given in Appendix 5. A plausibility 

argument is given here. The solutions are 

  

  

x’, 5 z', t— R v) dv’ BG, y,2,6) = | OY u 3) 
V 4qeR . 

Jc’, y', 2’, t — R/v) dV’ AQ y,20 = pu | y : / (4) 
V 4arR:
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where 

v = (us)! (5) 

(for free space, vu = c = 2.9987 x 10° m/s) and R is the distance between source 

point (x’, y’, z’) and field point (x, y, 2), 

R=[@-x7t+o-yPt+te@- zy” (6) 

In the above, t — R/v denotes that, for an evaluation of ® at time ¢, the value of 

charge density p at time t — R/v should be used. That is, for each element of charge 

p aV, the equation says that the contribution to potential is of the same form as in statics, 

(1), except that we must recognize a finite time of propagating the effect from the charge 

element to the point P at which potential is being computed, distance R away. The 

effect travels with velocity vu = 1/ Vue, which, as we have seen, is just the velocity 

of a simple plane wave through the medium as predicted from the homogeneous wave 

equation. Thus, in computing the total contribution to potential ® at a point P at a given 

instant t, we must use the values of charge density from points distance R away at an 

earlier time, t — R/v, since for a given element it is that effect which just reaches P at 

time ¢. A similar interpretation applies to the computation of A from currents in (4). 

Because of this “retardation” effect, the potentials ® and A are called the retarded 

potentials. Once the phenomenon of wave propagation predicted from Maxwell’s equa- 

tions is known, this is about the simplest revision of the static formulas (1) and (2) that 

could be expected. 

Example 3.20 
FIELD FROM AN AC CURRENT ELEMENT 

One of the simplest examples illustrating the meaning of this retardation, and one that 

will be met again in the study of radiating systems, is that of a very short wire carrying 

an ac current varying sinusoidally in time between two small spheres on which charges 

accumulate (Fig. 3.20). For a filamentary current in a small wire, the differences in 

Y 7 
A 
Hy 

Fic. 3.20 Retarded potential from small current element.
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distance from P to various points of a given cross section of the wire are unimportant, 

so that two parts of the volume integral in (4) may be done by integrating current 

density over the cross section to yield the total current in the wire. Thus, for any 

filamentary current, 

A » |e ~ r/v) dl 
Avr 

(7) 

For the particular case of Fig. 3.20, current is in the z direction only; so, by the above, 

A is also. Lf h is so small compared with r and wavelength, the remaining integration 

of (7) is performed by multiplying the current by h: 

" (-4) : 8 
Aor * v (8) 

A=] 

Finally, if the current in the small element has the form | 

  

, = I, cos wt 2) 

substitution in (8) gives A, as | 

ht. . 

A, = 2 cos of - 4 (10) 
° Aarr DvD}! 

From this value of A, the magnetic and electric fields may be derived. This will be 

done when we return to radiation in Chapter 12. 

  

3.21 THE RETARDED POTENTIALS FOR THE TIME-PERIODIC CASE 

If all electromagnetic quantities of interest are varying sinusoidally in time, in the 

complex notation with e/“’ understood, the set of equations 3.19(1), 3.19(3), 3.203), 

3.20(4), and 3.19(6) becomes 

  

  

B=VXA | (1) 

E = —V® — jwA (2) 

— f p@,y', Ze av' (x, y, 9 = | PA ze 3) 
_ J(x', y', ze dVv' A(x, y, Z) = be I, Aa (4) 

V:-A = —jwpe® (5) 

where k = w/v = wV pe, and F is the distance between source and field points. Note 

that the retardation in this case is taken care of by the factor e~“* and amounts to a 
shift in phase of each contribution to potential according to the distance R from the 

contributing element to the point P at which potential is to be computed. (From here
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on we will frequently leave out the functional notation of coordinates, with the under- 

standing that potentials are computed for the field point, and the integration is over all 

source points.) 

For these steady-state sinusoids the relation between A and ® in (5) fixes ® uniquely 

once A is determined. Thus, it is not necessary to compute the scalar potential ® 

separately. Both E and B may be written in terms of A alone: 

B=VXA (6) 

E = a VV: A) — joA (7) 

Je KR dv' 

A= eu 
V 4aR (8) 

It is then necessary only to specify the current distribution over the system, to compute 

the vector potential A from it by (8), and then find the electric and magnetic fields by 

(6) and (7). It may appear that the effects of the charges of the system are being left 

out, but of course the continuity equation 

V-J = —jop (9) 

relates the charges to the currents and, in fact, in this steady-state sinusoidal case, fixes 

p uniquely once the distribution of J is given. So an equivalent but lengthier procedure 

would be that of computing the charge distribution from the specified current distri- 

bution by means of the continuity equation (9), then using the complete set of equations 

(1) to (4). 

PROBLEMS 

3.2a A magnetic field of the approximate form B = ZCpx sin wf passes through a rectangu- 
lar loop in the x—y plane following the path (0, 0) to (a, 0) to (a, b) to (0, 5) to (0, 0). 

Show that if Faraday’s law in microscopic form is used to give E, the macroscopic 
form of Faraday’s law is satisfied. 

3.2b Find the emf around a circular loop in the z = O plane if the loop is threaded by an 
axial magnetic field varying with r, @, and t approximately as 

B, = Cor sin @ sin ot 

Now find the emf for a circuit consisting of a half-circle of radius a and a straight wire 

fomr=a,@= 0tor=a,¢= 7. 

3.2c* The betatron makes use of the electric field produced by a time-varying magnetic field 
in space to accelerate charged particles. Suppose that the magnetic field of a betatron 
has an axial component in circular cylindrical coordinates of the following form: 

Bir, t) = Ctr” (t = 0) 

= The asterisk on problems denotes ones longer or harder than the average; two asterisks 

denote unusually difficult or lengthy problems.
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3.2d 

3.3a 

3.3b 

3.3¢ 

3.3d 

3.3e 

Chapter3 Maxwell’s Equations 

Find the induced electric field in magnitude and direction at a particular radius a. 
From this find velocity v on a charge g after a time ¢, assuming that the charge stays in 
a path of constant radius a, and calculate the magnetic force on the charge. For what 

value(s) of n will this magnetic force just balance the centrifugal force (mv?/a), where 

nis mass of the particle, so that it can remain in the path of constant radius as 
assumed? 

Current J in a long, round wire varies sinusoidally with time. Assume no variation 
with z (coordinate along the wire) or @ (angular coordinate around the wire). Find 

magnetic field outside the wire, assuming it related to current flow at any instant as in 

the statics form. (This is called the “quasistatic” approximation.) From the. differential 
equation form of Faraday’s law find the electric field in the space outside the wire 
generated by the changing magnetic field of the form found. Use phasor forms and 
take the electric field at the surface of the wire (7 = a) as the product of current and 

internal impedance Z,; per unit length. Note behavior at infinity. What is unrealistic 
about this model? 

To demonstrate Faraday’s law in class, we often move a coil by hand through the 
poles of a permanent magnet and observe the generated voltage on an oscilloscope. 
One magnet used has a flux density of 0.1 T and pole pieces about 2 cm in diameter. 

Estimate the velocity you can conveniently obtain by hand motion and find how many 
turns you need to produce peak voltages around 10 mV. Sketch the waveform ex- 
pected as the coil is moved through the region between poles. 

In the generator of Fig. 3.3a, the poles are reshaped so that magnetic flux density is 
inhomogeneous. Take the magnetic field direction as the z direction and the vertical 

direction of the figure as the x direction. Assume the inhomogeneous field to have a 

quadratic variation with x, 

x?\ 
B, = B,| 1 - 7 

Find emf generated in the rotating loop by considering rate of change of flux, and also 
by use of the motional electric field in the wires. Plot the waveform of this wave in 
time. 

In Prob. 3.3b, it may seem surprising that motional field depends only on the value of 
B at the instantaneous position of the conductors, whereas flux enclosed depends upon 
integration of field throughout the region of inhomogeneous variation, yet both give 

identical answers. Explain why this is so for any arbitrary variation with x. 

In the generator of Fig. 3.3a, the rectangular loop is replaced by a circular loop of 
radius a, rotated about a line in the plane of the loop and passing through the center. 
This axis is normal to B as in Fig. 3.3a. Take By as uniform and find emf generated in 
this loop as it is rotated with angular velocity 0 about the defined axis. 

The rectangular loop of Ex. 3.3 is moved with constant velocity v in the x direction 
through an inhomogeneous magnetic field which varies sinusoidally with x, 

WX 
B. = C sin| — : sin( 2) 

Find the induced emf, both from rate of change of flux and by use of the motional 
electric field. Find values for the special cases a/L = 3, 1, 2. 

3.3f A wire in the form of a rectangular loop with one arm at x = 0 extending from y = 0 
to y = b and two parallel arms at y = 0 and y = b extending from x = O in the +x 
direction as in Fig. P3.3f has static flux density B, in the z direction. A sliding short at
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FIG. P3.3f 

x moves with velocity v. Find the emf induced in the loop by rate of change of flux 
and by the motional method. 

A long, straight wire carries a time-varying current /. A rectangular circuit of length € 
lies in the r, z plane, with one leg distance r, from the axis and the other at r, as in 
Fig. P3.3g¢. Find the emf induced in the loop. 

-— 1 —— 
  

| r 

oF 
[om 

      

  

S—>TI (t) 

FIG. P3.3g 

Conduction current density for copper with a field of 0.1 V/m (1 mV/cm) applied is 
5.8 X 10° A/m*. What number density of electrons is required to produce the same 
value of convection current density tf the electrons have been accelerated in vacuum 

through a potential of 1 kV? What electric field magnitude would be required to pro- 
duce the same magnitude of displacement current density in space for sinusoidally 
varying waves as follows: (1) a power wave of frequency 60 Hz; (2) a microwave 
beam of frequency 3 GHz; (3) a laser beam of wavelength 1.06 wm? 

Starting from Eq. 3.4(7), prove that for a closed surface 

s 

From this, show that the sum of convection and displacement currents is the same for 

both of the surfaces S, and S, in Fig. 3.5b. For a spherical capacitor with concentric 

conductors of radii a and b, with sinusoidal voltage applied between conductors, find 
displacement current for a < r < b and show that it is equal to the charging current in 
the leads to the capacitor. 

Obtain the expressions for electric field, Eqs. 3.5(4)—(6), from the divergence 

equation.
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FIG. P3.5c 

3.5c In a large class of electron devices, of which the klystron is a good example, current in 

3.6a 

3.6b 

3.6¢ 

the output circuit is induced because of the time-varying conduction current crossing 
the output gap. The ac current is superposed on the dc beam and moves across the gap 
approximately at the dc velocity uv, of the electrons so that convection current density 

in phasor form may be written 

JQ) = Ig + Je feo 

Suppose the output gap may be represented by parallel-plane electrodes as in Fig. 
P3.5c. The results of Ex. 3.5 may then be used for the induced current for each ele- 

mental slice of length dx, and total induced current for the gap may be obtained by 
integrating contributions over the total length d of the gap. Carry out the integration to 
find the induced current in the output gap and notice how it depends upon transit 
angle, wd/Up. | 

Check the dimensional consistency of Eqs. (1) through (9) of Sec. 3.6. 

Show that, if the equation for continuity of charge is: assumed, the two divergence 

equations, 3.6(1) and (2), may be derived from the curl equations, (3) and (4), so far 
as ac components of the field are concerned, for regions with finite p and J. This fact 
has made it quite common to refer to the two curl equations alone as Maxwell’s 
equations. 

Check to see which if any of following could be a field consistent with Maxwell’s 
equations. If a special condition for p and J is needed, discuss its physical 

reasonableness. 

G) B= at (rectangular coordinates) 

Gi) E = tC/r (circular cylindrical coordinates) 

(iii) E = #(C/r) cos(w@t — wV pez) (circular cylindrical coordinates)
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A conducting spherical balloon is charged with a constant charge Q, and its radius 
made to vary sinusoidally in time in some manner from a minimum value, r,,,,, to a 
maximum value, r,,,,- [t might be supposed that this would produce a spherically sym- 
metric, radially outward propagating electromagnetic wave. Show that this does not 
happen by finding the electric field at some radius r > r,,,,- 

A capacitor formed by two circular parallel plates has an essentially uniform axial 
electric field produced by a voltage V, sin wi across the plates. Utilize the symmetry to 

find the magnetic field at radius r between the plates. Show that the axial electric field 
could not be exactly uniform under this time-varying condition. 

Suppose that there were free magnetic charges of density p,,, and that a continuity re- 
lation similar to Eq. 3.4(5) applied to such charges. Find the magnetic current term 
that would have to be added to Maxwell’s equations in such a case. Give the units of 
P,, and of magnetic current density. 

Under what conditions can a complex vector quantity E be represented by a vector 
magnitude and phase angle, 

= Or E = E,e/e 

where E, is a real vector and 6; a real scalar? 

Consider a case in which the complex field vectors can be represented by single values 
of magnitude and phase: 

E = E,(x, y, elo" 

H = HQ, y, zel2") 

j= Jo(x, yy z)e ley) 

P = pola, y, zeta 

Substitute in Maxwell’s equations in the complex form, and separate real and imagi- 
nary parts to obtain the set of differential equations relating Ey, Ho, ..., 6. Check the 

result by using the corresponding instantaneous expressions, 

Eins, = Re[E,e/*e/] = E(x, y, z) cos[wt + 6,(x, y, z)], ete. 

substituting in Maxwell’s equations for general time variations, eliminating the time 
variations, and again getting the set of equations relating Ey, ..., 4. 

Check to see which, if any, of the following could be phasor representations of fields 

consistent with Maxwell’s equations, in a charge-free region: 

(i) E = &Ce Ve 4? (rectangular coordinates) 

Gi) H = d(C [rye ie Hee (circular cylindrical coordinates) 

(iii) E = 6(C/rye Je Here (spherical coordinates) 

Plot the sinusoidal solution 3.9(16) versus wz/v for various times, wt = 0, 7/4, 7/2, 

39/4, 7, and 277, and interpret as a traveling wave. 

A uniform plane wave is excited by a waveshape £, rectangular in time. That is, 
E. = C formT <t<(m+ TT, m = 0, 1, 2, 3, and zero otherwise. Plot E, versus 
distance z fort = T/4, 37/4, 5T/4, 77/4. 

A uniform plane wave has electric field at z = O given as E,(0, t) = cos wt + 
4 cos 3wt. Sketch E,. versus distance for a few periods in an ideal dielectric with no 
dispersion. Repeat for a dielectric in which wave velocity at frequency 3 is 3 that at 

frequency w.
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In Sec. 3.10 a wave with E, and H, is analyzed. The other set of fields (or the other 
polarization as it will be called in Chapter 6) relates FE, and H,. With the same as- 
sumptions as to uniformity in the x—y planes, find the wave solutions for this set in 

phasor form. 

A radio wave that may be considered a uniform plane wave propagates through the 
ionosphere and interacts with some charged particles which are moving with a velocity 

a tenth the velocity of light in the direction normal to the magnetic field of the wave. 
Find the ratio of the magnetic force of the wave on the charges to the electric force. 

Show that Faraday’s law is satisfied in the forward-traveling plane wave with sinu- 

soidal variations by taking a line integral of electric field from z = 0,x = Otoz = 0, 
x = atoz =d,x = atoz = d,x = 0 back to (0, 0) and relating it to the magnetic 
flux through that path. | 

Show that the generalized Ampére’s law is satisfied for the forward-traveling plane 
wave with sinusoidal variations by taking a line integral of magnetic field from z = 0, 
y= 0toz = 0,y = btoz = d,y = btoz = d, y = 0 back to (0, 0) and relating it 

to displacement current through that path. 

What are the relations among the constants required for each of the following to be a 

solution of the three-dimensional Helmholtz equation? 

(i) E, = C sin kx sin ky sin kz | 
(ii) E, = C sinh Kx sin dyy sin kz 

(iii) E, = C sinh K,x sinh K,y sinh K.z 

Show that the wave equation may be written directly in terms of any of the compo- 
nents of H or E in rectangular coordinates, or for the axial components of H or E in 

any coordinate system, but not for other components, ‘such as radial and tangential 
components in cylindrical coordinates, or any component in spherical coordinates. 
That 1s, | 

aE. 07H.   V7 E. = pe , WH, = ee etc x Lb at? = UL at? 

but 

PE _, OH 
V? E. + pe a? V°H, * pe ae etc. 

Check to see under what conditions the following is a solution of the Helmholtz equa- 
tion in circular cylindrical coordinates: 

(Note that the vector form of V* must be used; see Prob. 3.11b.) 

Describe the Poynting vector and discuss its interpretation for the case of a static point 
charge Q located at the center of a small loop of wire carrying direct current J. 

Assuming current density constant over the conductor cross section in the Ex. 3.12a, 

find the Poynting vector within the wire and interpret this in terms of the distribution 
of dissipation. 

Interpret the Poynting vector about a parallel-plate capacitor charged from zero to 

some final charge Q. Repeat for an inductor in which current builds up from zero to 
some final value. Repeat for each of these cases as charge and current is made to de-
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cay from a given value to zero. For the inductor, use a straight section of wire as 
example. 

Show that the power flow in the uniform plane wave of Ex. 3.12c equals the product 
of the average energy density and the velocity uv of the wave. 

In each of the following, use a plane-wave model to estimate the quantities for various 
laser systems: 

(i) A small helium—neon laser (A = 633 nm) typically produces 1 mW in a beam 
1 mm in diameter. Estimate strengths of electric and magnetic fields in the laser 
beam. 

(it) It 1s fairly easy to focus the power for a medium-power CO, laser (A = 10.6 um) 
so that there is breakdown in air. Taking breakdown strength as at lower frequen- 
cies, about 3 X 10° V/m, estimate the power density in such a laser beam. 

(i11) Very high power Nd—glass lasers (A = 1.06 11m) have been used in laser-fusion 
experiments. Estimate electric field strength at the target for one producing 
10.2 kJ in 0.9 ns, focused to a target about 0.5 mm in diameter. 

3.12f Show that Eq. 3.12(6) follows from Eq. 3.12(5) for linear, isotropic, time-invariant 

3.13a 

3.13b 

3.14 

3.16a 

3.16b 

3.17a 

3.17b 

3.18a 

3.18b 

media. 

Find the imaginary part of Eq. 3.13(11) and simplify by letting C, = A,e/®! and 
C, = A,e/* where A,, A>, @,, and @, are real. Show that the variation with z agrees 

with that on the nght side of Eq. 3.13(8) using time-dependent E and H. 

The field a large distance from a dipole radiator has the form, in spherical coordinates, 

A . 
Eg = [EH = (4) er sin 6 

Find the average power radiated through a large sphere of radius r. 

Space is filled by two dielectrics, ¢, filling the half-space x > 0 and «, filling the half- 

space x < 0. Determine whether or not there can exist a uniform plane wave with E,. 
and H,, only and no variations with x or y, propagating in the z direction in this com- 
posite dielectric. The propagation factor may be e~/“* with any value of k. Note that 
the wave, if it exists, must satisfy the wave equation in each region and the continuity 
conditions at the plane between the two regions. 

Find the variation of an average Poynting vector for a plane wave within a good con- 

ductor and interpret. 

Repeat Prob. 3.16a for an instantaneous Poynting vector. 

Iron and tin have the same order of conductivity o, around 10’ S/m. For slab conduc- 
tors of each of these used at 60 Hz, 1 kHz, and 1 MHz, find the surface resistance of 

the two materials if the relative permeability of the tron is 500. 

Find the magnetic field H for any point x in the plane conductor in terms of Jy by first 
finding the electric field, and then utilizing the appropriate one of Maxwell’s equations 

to give H. Show that J,. of Eq. 3.17(1) is equal to — H, at the surface. 

The average power loss per unit volume at any point in the conductor is |J,|*/20. 
Show that Eq. 3.18(5) may be obtained by integrating over the conductor depth to ob- 

tain the total power loss per unit area. 

A uniform plane wave of frequency 1 GHz has a power density of 1 MW/m” and falls 
upon an aluminum sheet. It can be shown that upon reflection from a good conductor,
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magnetic field at the surface of the conductor is essentially double that in the incident 
wave. Estimate the power absorbed in the aluminum per unit area and note it as a 
fraction of the incident power. 

Show that E and H satisfy the following differential equations in a homogeneous 

medium containing charges and currents: 

vE 1 aJ 
VE — — =-Vp+ p= 

Beare 

H | 
WH — pes = -VxJ 

A potential function commonly used in electromagnetic theory is the Hertz vector po- 
tential II, so defined that electric and magnetic fields are derived from it as follows, 
for a homogeneous medium: | 

H=c2Vxt 
ot 

ru 
E = V(V- ID — we — 

ore 

where | 

"TI Pp 
VIL — pe a = — 

ot~ E 

and P, the polarization vector associated with sources, is so defined that 

oP 
= —, = —Y- J oT p P 

Show that E and H derived in this manner are consistent with Maxwell’s equations. 

An alternative to the Lorentz gauge, which defines V - A by Eq. 3.19(6), is the Cou- 
lomb gauge which selects it to give V- A = 0. Give. the differential equations relating 
® and A to sources p and J in this case. Discuss problems in use of this apparently 
simpler gauge. Note that the equations for Lorentz and Coulomb gauges become iden- 
tical in the static limit and for charge-free time-varying systems. 

The retarded potentials are generally used only for homogeneous media. Show the 

complications in aitempting to extend the development to media with wp and e func- 
tions of position. 

By analogy with the integral solutions for A and ®, write the integral for the Hertz 
vector [I in terms of the polarization P. (See Prob. 3.19b.) Note the relation between 
II and A when time variations are as e/*”. 

From continuity of charge, find the values of the charges that must exist at the ends of 

the small current element of Ex. 3.20. Find scalar potential ® from these charges, us- 
ing Eq. 3.20(3). Show that ® and the A of Eq. 3.20(8) are related by the Lorentz con- 
dition 3.19(6). 

Using A from Sec 3.20 and ® from Prob 3.20b, find electric and magnetic fields in 
spherical coordinates for the small current element of Ex. 3.20, with sinusoidal current 
variation given by Eq. 3.20(9).
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4.) INTRODUCTION 

Much of the engineering design and analysis of electromagnetic interactions are done 

through the mechanism of lumped-element circuits. In these, the energy-storage ele- 

ments (inductors and capacitors) and the dissipative elements (resistors) are connected 

to each other and to sources or active elements within the circuit by conducting paths 

of negligible impedance. There may be mutual couplings, either electrical or magnetic, 

but in the ideal circuit these couplings are planned and optimized. The advantage of 

this approach is that functions are well separated and cause-and-effect relationships 

readily understandable. Powerful methods of synthesis, analysis, and computer 

optimization of such circuits have consequently been developed. 

Most of the individual elements in an electrical circuit are small compared with 

wavelength so that fields of the elements are quasistatic; that is, although varying with 

time, the electric or magnetic fields -have the spatial forms of static field distributions. 

There are important distributed effects in many real circuits, but often they can be 

represented by a few properly chosen lumped coupling elements. But in some circuits, 

of which the transmission lines are primary examples, the distributed effects are the 

major ones and must be considered from the beginning. In some cases in which the 

lumped idealizations described above do not strictly apply, lumped-element models can 

nevertheless be deduced and are useful for analysis because of the powerful circuit 

methods that have been developed. 

We have introduced the lumped-circuit concepts, inductance and capacitance, in our 

studies of static fields. We have also seen how the skin effect phenomenon in conductors 

changes both resistance and inductance at high frequencies. We now wish to examine 

circuits and circuit elements more carefully from the point of view of electromagnetics. 

It is easy to see the idealizations required to derive Kirchhoff ’s laws from Maxwell’s 

equations. It is also possible to make certain extensions of the concepts when the sim- 

plest idealizations do not apply. In particular, introduction of the retardation concepts 

shows that circuits may radiate energy when comparable in size with wavelength. The 

amount of radiated power may be estimated from these extended circuit ideas for some 

171
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configurations. But for certain classes of circuits it becomes impossible to make the 

extensions without a true field analysis. We shall look at both types of circuits in this 

chapter. 
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4,2 KIRCHHOFF ‘S VOLTAGE LAW 

Kirchhoff ’s two laws provide the basis for classical circuit theory. We begin with the 

voltage law as a way of reviewing the basic element values of lumped-circuit theory. 

The law states that for any closed loop of a circuit, the algebraic sum of the voltages 

for the individual branches of the loop is zero: | 

SY=0 (1) 

The basis for this law is Faraday’s law for a closed path, written as 

0 
-on-a= 2 Beas (2) 

ot Js | 

and the definition of voltages between two reference points of the loop, 

b 

-| Ea 3) 

To illustrate the relation between the circuit expression (1) and the field expressions 

(2) and (3), consider first a single loop with applied voltage V(t) and passive resistance, 

inductance, and capacitance elements in series (Fig 4.2a). A convention for positive 

voltage at the source is selected as shown by the plus and minus signs on the voltage 

generator, which means by (3) that field of the source is directed from b to a when Vy 

is positive. A convention for positive current is also chosen, as shown by the arrow on 

I(t). The interpretation of (1) by circuit theory for this basic circuit is then known to be 

at) _ 1 = I(t) dt = 0 (4) Volt) — RI) — LS — = 

To compare, we break the closed line integral of (2) into its contributions over the 

several elements: 

b c d a , a 
-[e-a-[e-a-|e-a-|e-a=2{8-as (5) 

a b c d ot Js
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(5) 

FiG. 4.2 (a) Series circuit with resistor, inductor, and capacitor. (b) Detail of inductor. 

Or 

a Volt) + Vey + Vae + Var = = | B- dS (6) 
S 

The right side of (6) is not zero as is the right side of (4), but we recognize it as the 

contribution to emf generated by any rate of change of magnetic flux within the path 

defined as the circuit. If not entirely negligible, it can be considered as arising from an 

inductance of the loop which can be added to the lumped element L, or a mutually 

induced coupling if the flux is from an external source. Thus we will from here on 

consider it as negligible or included in L so that the right side of (6) is zero. (Mutual 

effects are added later.) We now examine separately the three voltage terms related to 

the passive components R, L, and C. 

Resistance Elememt The field expression to be applied to the resistive material is 

the differential form of Ohm’s law, 

J = cE (7) 

so that the voltage V,, is 

c Cc J 

v= - | E-dl=- —- dl (8) 
b b Oo 

where the path is taken along some current flow path of the conductor. Conductivity 7 

may vary along this path. At dc or low frequencies, current / is uniformly distributed 

over the cross section A of the conductor, which can also vary with position. Thus 

“Jad 
Vip = — = —IR (9) 

b OA
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where 

“ dl 
R= , OA (10) 

This last is the usual dc or low-frequency resistance. The situation is more complicated 

at higher frequencies because of the effect of the changing magnetic fields on currents 

within the conductor. Current distribution over the cross section is then nonuniform, 

and the particular path along the conductor must be specified. In the plane skin effect 

analysis of Chapter 3, current was related to electric field at the surface to define a 

surface impedance. We shall return to this concept later in the chapter for conductors 

of circular cross section. 

Inductance Element The voltage across the terminals of the inductive element 

comes from the time rate of change of magnetic flux within the inductor, shown in the 

figure as a coil. Assuming first that resistance of the conductor of the coil is negligible, 

let us take a closed line integral of electric field along the conductor of the coil, returning 

by the path across the terminals (Fig. 4.25). Since the contribution along the part of the 

path which follows the conductor is zero, all the voltage appears across the terminals: 

d c c 

-oE-a=—-| E-al— | E-al =~ | E-dI (11) 
c(cond.) d(term.) d(term.) 

By Faraday’s law, this is the time rate of change of magnetic flux enclosed: 

° 0 
-| E- di = —V, =—- |] B-dS (12) 

d(term.) Ot Js 

Inductance Z is defined as the magnetic flux linkage per unit of current (Sec. 2.5) 

1 = [[v-as] / 08 
so the voltage contributed by this term, i L independent of time, is 

Va = < (ll J=L - (14) 

Note that in computing flux enclosed by the path, we add a contribution each time we 

follow another turn around the flux. Thus for N turns, the contribution to induced voltage 

is just N times that of one turn, provided the same flux links each turn. This enters into 

the calculation of L and will be seen specifically when we find inductance of a coil. 

If there is finite resistance in the turns of the coil, the second term of (11) is not zero 

but is the resistance of the coil, R,, multiplied by current; therefore (11) becomes 

-9E- dl = — RI - =-2{ 8. dS
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OT 

Vig = RI +L a (15) 
cd L dt 

Thus, as expected, we simply add another series resistance to take care of finite 

conductivity in the conductors of the coil. 

Capacitive Elememt The ideal capacitor is one in which we store only electric 

energy; magnetic fields are negligible so there is no contribution to voltage from chang- 

ing magnetic fields but only from the charges on plates of the capacitor. The problem 

is then quasistatic and voltage is synonymous with potential difference between capac- 

itor plates. So, in contrast to the inductor, we can take any path between the terminals 

of the capacitor for evaluation of voltage V,,, provided it does not stray into regions 

influenced by magnetic fields from other elements. We also take the definition of 

capacitance from electrostatics (Sec. 1.9) as the charge on one plate divided by the 

potential difference: 

Q 
CcC== 16 7 (16) 

Thus, from continuity, 

dQ d dV, 
[= —~ = —(CV,) =C— 1 ht a da) It (17) 

The last term in (17) implies a capacitance which is not changing with time. Integration 

of (17) with time leads to 

Lf 
VY, = — | / at 18 
da C ( ) 

If the dielectric of the capacitor is lossy, there are conduction currents to add to (17), 

which are represented in the circuit as a conductance Go = 1/R¢ in parallel with C; 

the value of R- may be calculated from (10) by using conductivity of the dielectric and 

area of the capacitor plates. 

Induced Voltages from Other Parts of the Circuit In addition to voltages 

induced by charges and currents of the circuit path being considered, there may be 

induced voltages from other portions of the circuit. In particular, if the magnetic field 

from one part of the circuit links another part, an induced voltage is produced through 

Faraday’s law when this magnetic field changes with time. This coupling is represented 

in the circuit by means of a mutual inductor M, as shown in Fig. 4.2c. The value of M 

is defined as the magnetic flux w,, linking path 1, divided by the current /,: 

Uy» 
M=M,=— 257 (19)
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Fic. 4.2 (c) Circuit with a mutual inductor. (d) Designation of mutual coupling with negative M. 

The voltage induced in the first path is then 

diy, dl, 
Vo = — = M— 20 12 ai at (20) 

and the circuit equation (4) is modified to be 

dl, dl, 1 | 

— ~L——-M—-—--—-]1,d=0 21 
Mo — Rh be dt cli! eC) 

The mutual inductance M may be either positive or negative depending upon the sense 

of flux with respect to the defined positive reference for /,. The sign of M is designated 

on a circuit diagram by the placing of dots and with sign conventions for currents and 

voltages as shown; those on Fig. 4.2c denote positive M; negative M would be 

designated as in Fig. 4.2d. 

Except for certain materials (to be considered in Chapter 13) there is a reciprocal 

relation showing that the same M gives the voltage induced in circuit 2 by time-varying 

current in circuit 1: 

apr, dl, 
Vz, = ho M at (22) 

Ail mutual effects to be considered in this chapter have this reciprocal relationship. 

In summary, we find that if losses in inductor and ‘capacitor are ignored, the field 

approach, with understandable approximations, leads:to the definitions for the three 

induced voltage terms for the passive elements used in the circuit approach, Eq. (4). 

Moreover, the definitions (10), (13), and (16) are the usual quasistatic definitions for 

these elements. If losses are present, a series resistance is added to L and a shunt 

conductance to C’*, again as is commonly done in the circuit approach. Coupling between 

circuit paths by magnetic flux adds mutual inductance:elements. We next examine the 

Kirchhoff current law and the extension through this to multimesh circuits. 
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4.3 KIRCHHOFF ’S CURRENT LAW AND MULTIMESH CIRCUITS 

The current law of Kirchhoff states that the algebraic sum of currents flowing out of a 

junction is zero. Thus, referring to Fig. 4.3a, 

N 

> 1,0) = 0 (1) 
n=] 

It 1s evident that the idea behind this law is that of continuity of current, so we refer to 

the continuity equation implicit in Maxwell’s equations, Eq. 3.4(5), or its large-scale 

equivalent: 

0 
py-as=- =| pav (2) 

S at Jy 

If we apply this to a surface S surrounding the junction, the only conduction current 

flowing out of the surface is that in the wires, so the left side of (2) becomes just the 

algebraic sum of the currents flowing out of the wires, as in (1). The right side is the 

negative time rate of change of charge Q, if any, accumulating at the junction. So (2) 

may be written 

_ dO(t) 
> I) = -~ (3) 

A comparison of (1) and (3) shows an apparent difference, but it is only one of 

interpretation. If Q is nonzero, we know that we take care of this in a circuit problem 

by adding one or more capacitive branches to yield the capacitive current dQ/dt at the 

junction. That is, in interpreting (3), the current terms on the left are taken only as 

convection or conduction currents, whereas in (1) displacement or capacitance currents 

are included. With this understanding, (1) and (3) are equivalent. 

With the two laws, the circuit analysis illustrated in the preceding section can be 

extended to circuits with several meshes. As a simple example, consider the low-pass 

filter of Fig. 4.35 or 4.3c. Although currents and voltages are taken as time-varying, 

| ts 

FiG. 4.3q Current flow from a junction. 
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Fic. 4.3 Low-pass filter: (6) loop current analysis; (c) node voltage analysis. 

we drop the functional notation for simplicity. Figure 4.3b illustrates the standard 

method utilizing mesh currents J, and /,. Note that the net:current through C is 7, — I,), 

which automatically satisfies the current law at node b. The voltage law is then written 

about each loop as follows: 

dl, Lf : 
~ ,L-Lo-- I, -—dI,) dt =0 4 

1 dl 
+l a ~— I) dt - on — RI, = 0 (5) 

The two equations are then solved by appropriate means to give /, and /, for a given V.. 

A second standard method of circuit analysis uses node voltages V,, V,, and V. as 

shown in Fig. 4.3c. These are defined with respect to some reference, here taken as the 

lower terminal of the voltage generator, denoted 0. Then Kirchhoff’s voltage law is 

automatically satisfied, for if we add voltages around the first loop we have 

V+ V, - Vo) + WV, — V,) + (0 —- V,) =0 (6) 

Kirchhoff ’s current law is then applied at each of the three nodes as follows: 

Veo OY. ] 
Node a) ——— + | wy, — V,) dt = 0 (7) 

R, L, 

LY LY dV, 
b —|WV,- dt+—|(V,—-VJd+C—=0 8 Node i, (V, — V,) L, (V, co) CF (8)
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Node c: + | (V. — V,) dt + we OQ (9) 
Ly Ry 

Solution of these by appropriate means yields the three node voltages in terms of the 

given voltage V,. Note that no equation for the reference node need be written as it is 
contained in the above. 

In the above we seem to be treating voltage as a potential difference when we take 

voltage of a node with respect to the chosen reference, but note that this is only after 

the circuit is defined and we are only breaking up { E - dl into its contributions over 

the various branches. As illustrated in the preceding section, we do have to define the 

path carefully whenever there are inductances or other elements with contributions to 

voltage from Faraday’s law. 

Finally, a word about sources. The voltage generator most often met in lumped- 

element circuit theory is a highly localized one. For example, the electrons and holes 

of a semiconductor diode or transistor may induce electric fields between the conducting 

electrodes fabricated on the device. The entire device is typically small compared with 

wavelength so that the electric field, although time-varying, may be written as the 

gradient of a time-varying scalar potential. The integral of electric field at any instant 

thus yields an instantaneous potential difference V, between the electrodes, which is the 
source voltage (or V, — /Z, if current flows). The induced effects from a modulated 

electron stream passing across a klystron gap are similar, as are those from many other 

practical devices. There are interesting field problems in the analysis of induced effects 

from such devices, but from the point of view of the circuit designer, they are simply 

point sources representable by the V, used in the circuits. 

A quite different limiting case is that in which the fields driving the circuit are not 

localized but are distributed. An important example is that of a receiving antenna with 

the fields set down by a distant transmitting antenna. If voltage is taken as the line 

integral of electric field along the antenna, applied voltage clearly depends upon the 

circuit configuration and orientation with respect to the applied field. Although quite 

different from the case with a localized source, it is found that circuit theory is useful 

here also. A formulation in terms of the retarded potentials will be applied to this case 

in Sec. 4.11. 

Current generators are natural to use as sources in place of voltage generators if 

emphasis is on the current induced between electrodes of the point source or small-gap 

device. Similarly for the distributed source, if applied magnetic field at the circuit 

conductor is given, induced current can be calculated and a current representation is 

natural. One, however, has a choice in any case since the Thévenin and Norton 

theorems! show that the two representations of Figs. 4.3d and 4.3e are equivalent with 

the relations 

Y, - Zy', I, = VY, (10) 

Thus an equivalent to Fig. 4.3c is that of Fig. 4.3f, utilizing a current generator. 

' Ss. E. Schwarz and W. G. Oldham, Electrical Engineering: An Introduction, 2nd ed., 
Saunders, Fort Worth, TX, 1993.



180 Chapter 4 The Electromagnetics of Circuits 

  

  

{d) 

  

(e) 

  

  

Fic. 4.3 (d) Thévenin circuit configuration. (e) Norton circuit form. (f) Equivalent of circuit 

in (c) using Norton source. 

         

Skin Effect in Practical Conductors 

Cee ee ee eee nena rere cece ceeacccen nooner oeee eee eee eee eee Tr eee 
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4.4 DISTRIBUTION OF TIME-VARYING CURRENTS IN CONDUCTORS 
OF CIRCULAR CROSS SECTION 

To study the resistive term at frequencies high enough so that current distribution is 

not uniform, we need to first find the current distribution. This was done in Sec. 3.16 

for plane conductors. We now wish to do this for the useful case of round conductors. 

Recall that a good conductor is defined as one for which displacement current is 

negligible in comparison with conduction current so that 

Vx H=J= cE (1) 

Faraday’s law equation is (in phasor form) 

VxXE= —-jouH | (2)



4.4 Distribution of Time-Varying Currents 181 

From these two we derived the differential equation for current density, Eq. 3.16(7): 

VJ = jwpod (3) 

We now take current in the z direction and no variations with z or angle @. Equation 

(3), expressed in circular cylindrical coordinates (inside front cover), is then 

d*J. 1d. 5 
get gp Ee = (4) 

where 

T? = —jopo 

or 

T= j-'? Vopo = j-'? 2 (5) 

where 6 is the useful parameter called “depth of penetration” or “skin depth.” The 

differential equation (4) is a Bessel equation. Equations of this type will be studied in 

detail] in Chapter 7, but for the present we write the two independent solutions as 

J. = AJ (Tr) + BHY (Tr) (6) 

For a solid wire, r = 0 is included in the solution, and then it is necessary that B = 0 

since a study of H§(Tr) shows that this is infinite at r = 0. Therefore, 

J. = AJ(Tr) (7) 

The arbitrary constant A may be evaluated in terms of current density at the surface, 

which is oE,, with Eg the surface electric field. 

J. = cE, at fr 

Then (7) becomes 

  

E 
jo = x0 — - 8 = Fer ot (8) 

A study of the series definitions of the Bessel functions with complex argument shows 

that J, is complex. It is convenient to break the complex Bessel function into real and 

imaginary parts, using the definitions 

Ber(v) & real part of Jo( j~/2v) 

. AN . ’ oe 1/2 
Bei(v) = imaginary part of J)(/ Uv) 

That is, 

Jo(j7'/?v) = Ber(v) + j Bei) (9)
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Ber(v) and Bei(v) are tabulated in many references.” Using these definitions and (5), 

(8) may be written 

  

1 - Ber(V2r/85) + j Bei(V2r/6) 
10 

2 OO Ber(V2r9/8) + j Bei(V2r9/6) ~ 
In Fig. 4.4a the magnitude of the ratio of current density to that at the outside of the 

wire is plotted as a function of the ratio of radius to outer radius of wire, for different 

values of the parameter (r)/6). Also, for purposes of the physical picture, these are 

interpreted in terms of current distribution for a 1-mm-diameter copper wire at different 

frequencies by the figures in parentheses. 

As an example of the applicability of the plane analysis for curved conductors at 

high frequencies where 6 is small compared with radii, we can take the present case of 

the round wire. If we are to neglect the curvature and apply the plane analysis, the 

coordinate x, distance below the surface, is (7) — 1) for around wire. Then Eq. 3.16(16) 

gives 

J, 
= 

——<_ ax p—~o-")/6 11 oe (11) 

    

In Fig. 4.4b are plotted curves of |J,/oE)| by using this formula, and comparisons are 

made with curves obtained from the exact formula (10). This is done for two cases, 

ro/6 = 2.39 and ro/6 = 7.55. In the latter, the approximate distribution agrees well 
with the exact; in the former it does not. Thus, if ratio of wire radius to 6 is large, it 

seems that there should be little error in analyzing the wire from the results developed 

for plane solids. This point will be pursued in impedance calculations to follow. 

4.5 IMPEDANCE OF ROUND WIRES 

The internal impedance (resistance and contribution to reactance from magnetic flux 

inside the wire) of the round wire is found from total current in the wire and the electric 

intensity at the surface, according to the ideas of Sec. 4.2. Total current may be obtained 

from an integration of current density, as for the plane conductor in Sec, 3.17; however, 

it may also be found from the magnetic field at the surface, since the line integral of 

magnetic field around the outside of the wire must be equal to the total current in the 

wire: 

2H. B, Dwight, Tables of Integrals, 3rd ed., MacMillan, New York, 1961. N. W. McLachlan, 
Bessel Functions for Engineers, 2nd ed., Oxford University Press (Clarendon), New York, 
1955. M. R. Spiegel, Mathematical Handbook of Formulas and Tables, Schaurm’s Outline 
Series, McGraw-Hill, New York, 1968.
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fo = 0.239 (f = 10° Hz for 

      

   
   

  

      

     

   

          

        
  

5 1-mm-—diam Cu wire) 

re 1Oy— Actual 
‘o = 0.755 (f = 10* Hz for —~—— Parallel plane 

1—-mm-diam Cu wire) formula 

Je Je 
Jo Jo 

05 ~ 0.5 

10 = 2.39 (f = 10° Hz for 
1-mm-diam Cu wire) 

2 = 7.55 (f = 10° Hz for 
1~mm-—diam Cu wire) 

Outer Wire Outer Wire Outer 
radius axis radius axis radius 

(6) (a) 

Fic. 4.4 (qa) Current distribution in cylindrical wire for several frequencies. (b) Actual and 
approximate (parallel-plane formula) distribution in cylindrical wire. Jp = oko. 

or 

2argH gla, = 1 (1) 

Magnetic field is obtained from the electric field by Maxwell’s equations: 

VxE= —jopH 

For the round wire with no variations in z or @, the fields E, and H, alone are present, 

and only r derivatives remain, so (2) is simply 

1 dE, 
- (3) qH,= > 

¢ Jw dr 

(2) 

An expression for current density has already been obtained in Eq. 4.4(8). Electric field 

is related to this through the conductivity o: 

  

J. J (Tr) 
E. = Tt = 0 c : (4) 

o Jo(T7o) 

= —JWLO, By substituting in (3) and recalling that T? 

_ Bgl S'f(Tr) By J'of TH) 
% jap Jo(Tro) T Jo(Tro) 

where J',(7Tr) denotes [d/d(Tr)]J,(Tr). From (1), 

l= _ 211 9IE, J ‘9(TT9) (5) 

T Jo(17ro)
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The internal impedance per unit length is defined as Z, a EXAro)/I. Then 

TJ) (Tr : 

271 OF o17ro) 

Note the similarity to internal impedance per square in Eq. 3.17(3). 

Low-Frequency Expressions For low frequencies, 77, is small and series expan- 

sions of the Bessel functions show that (6) may be expanded as 
2 

| 1 [To , OL 
LZ; = 1+—|= + j— 7 

| 48 (22) 1 Sar 7) 

The real or resistive part is 
2 

Re~—s-l1+—(2 (8) 
TI 5 48 \6 

The first term of this expression is the dc resistance, and the second is a correction 

useful for r)/6 as large as unity, that is, for radius equalito skin depth 6. The imaginary 

term of (7) corresponds to a low-frequency internal inductance: 

    

Qi ~ — H/m (9) 

The low-frequency internal inductance is the same as that found by energy methods in 

Sec. 2.17. 

High-Frequency Expressions For high frequencies, the complex argument T’9 is 

large. It may be shown that J,(T7r,)/J')(T79) approaches —j and the high-frequency 

approximation to (6) is 

— WAT _ + AR, Zp = HE a ( nt V 20106 2aro /m (10) 

Or 

  
R 

(Rne = (@L;)yp = = A/m (11) 
2719 

So resistance and internal reactance are equal at high frequencies, and both are equal 

to the values for a plane solid of width 27rg just as assumed on physical grounds in 

Sec. 3.17 where R, = (o8)7 1. 

Expression for Arbitrary Frequency To interpret (6) for arbitrary frequencies, 

it is useful to break into real and imaginary parts using the Ber and Bei functions, 

defined in Eq. 4.4(9), and their derivatives. That is, 

Berv + j Beiv = J,(j~'/v)
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Also let 

ll 

d 
Ber’ v + j Bei’ vu iD (Ber uv + 7 Bei v) 

PPL GT) l 

Then (6) may be written 

R, | Berg + j Bei Z,=R + jol, = Fer iia 
  

  

    

V2, | Ber’ g + j Bei’ q 

where 

R = lo /afp _ V2r9 

“66 o 4 6 

or 

R B Bei’ g — Bei g Ber’ R = : erg i q cig er a Q/m 

Va (Ber q)° + (Bei qy 
(12) 

    

R, Ber g Ber’ g + Bei g Bei’ q 
wl; = ! 2 “7 2 

V 209 (Ber q)° + (Bei q)° 

These are the expressions for resistance and internal reactance of a round wire at any 

frequency in terms of the parameter g, which is V2 times the ratio of wire radius to 

depth of penetration. Curves giving the ratios of these quantities to the dc and to the 

high-frequency values as functions of ,/6 are plotted in Figs. 4.5@ and 4.5. A careful 

study of these will reveal the ranges of r,/6 over which it is permissible to use the 

approximate formulas for resistance and reactance. 

| Q/m 
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Fic. 4.5a Solid-wire skin effect quantities compared with dc values.
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  0 5 4 6 810 12 414 
“2, Ratio of radius to depth of penetration 

Fic.4.55 Solid-wire skin effect quantities compared with values from high frequency formulas. 

  

Calculation of f Circuit | Elements 

4.6 SELF-INDUCTANCE CALCULATIONS 

Self-inductance, as defined in Chapter 2, was related to field concepts in the first part 

of this chapter. We have shown examples of inductance calculations for simple config- 

urations by the method of flux linkages (Sec. 2.5) and: from an energy point of view 

(Sec. 2.17). We now give additional examples of each method. 

      

  

Example 4.6a 
EXTERNAL INDUCTANCE OF PARALLEL-WIRE TRANSMISSION LINE (APPROXIMATE) 

Figure 4.6 shows two parallel conductors of radius R with their axes separated by 

distance 2d. Current J flows in the z direction in the right-hand conductor and returns 

in the other. Magnetic field at any point (x, y) is the superposition of that from the two 

conductors. If conductors are far enough apart, the current distribution in either con- 

ductor is not much affected by the presence of the other, so that magnetic field from 

each conductor may be taken as circumferential about its axis and equal to the current 

divided by 27r times radius from the axis. For the y = 0 plane passing through the axes
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Fic. 4.6 Parallel-wire transmission line. 

of the two wires, the contribution from both wires is vertical so that field, to the 

approximation described above, is 

I I 
H.(x, 0) ~ + 
5) ~ a+ Id wD 
  (1) 

The magnetic flux between the two conductors (used in finding external inductance) is 

then found by integrating over this central plane. For a unit length in the z direction, 

1 (@-® 1 1 
Vin fe + dx 

27 J—~@—-R)|d +x d-x 

  

(2) 
L 

~ = [Ind + x) — Ind — x))“G2 x 

Inductance per unit length is then 

we, pb 2d — R R pe. [2d 

I 27 " R " 2d — R T In R ©) 

Example 4.6b 
EXTERNAL INDUCTANCE OF PARALLEL-WIRE TRANSMISSION LINE (EXACT) 

  

  

When spacing between conductors is comparable with wire radii, current distribution 

in the wires is affected and the result obtained above is modified. It can be shown either 

by a method of images or by conformal transformations to be described in Chapter 7 

that the exact magnetic flux function w,, [analogous to electric flux function in 

Eq. 1.6(1)] and scalar magnetic potential ®,, for this problem are 
mt 

ul. |(x — ay + y? 
—7— In 2 2 

Aq (x + a)? + y* 

_f -1 J gg - 1 __ 
Pn 27 tan (x — a) tan (x + ;| ©) 

  Vn = (4) 
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where 

a= Vd? — R? 

Taking the flux difference atx = d — Randx = —d + R (both at y = 0), 

Ad = Wald — R, 0) — o,(—d + R, 0) (6) 
2 2 

pl d-R-—-a -d+R-—a 
—— 4 In} -————_}| - ln 

4qn d-R+a -d+Rta 

_ Wid oR = 4 wl jd — R ~ Vat — RP 7 
7 ld—-Rta T |ld—R+ Vd — R2 ) 

By multiplying numerator and denominator by [(d — R) — Vd? — R?], this reduces 

to | 

pl jd d\? pul _if(d 
Au, = -—In= - —| — le =— tf Wy, _ Ime R 7 cosh R (8) 

SO 

Aw bo d 
L = — = cosh !(— 7 7 oO (<) | (9) 

  

Example 4.6c | 
INTERNAL INDUCTANCE OF PLANE CONDUCTOR WITH SKIN EFFECT 

As a third example, we utilize the energy method and calculate internal inductance. 

This example differs from that of Ex. 2.17,for which uniform current distribution was 

assumed. Moreover, we utilize the phasor forms of the skin effect formulation. The 

basis, as in Sec. 2.17, is the equation of the circuit form:of energy storage to the field 

form: 

1 bh —~[]J? = | —H? dv 10 
2 v 2 me) 

The magnetic field distribution for a semi-infinite conductor with sinusoidally varying 

currents was found to be [Eq. 3.16(15)] 

= —-— e~A+prx/0 (11) 

where the coordinate system of Fig. 3.16a is used. The current per unit width, J,., is 

just the value of H,, at the surface: . 

obE, 

(1 + J) 
  

J ss = — H,(0) = (12)



4.7 Mutual Inductance 189 

We may now apply (10) to the calculation of L. But first we recognize (10), as written, 

is for instantaneous / and H. To use with phasors, we must either convert to instanta- 

neous forms or write the equivalent of (10) for time-average stored energies. The latter 

procedure is simpler and we find 

I Le tue = | * ie av 13 gh = | IA (13) 

where the factor of 7 rather than § on each side comes from the time average of squares 
of sinusoids. Taking a width w, so that current is w/,., and a length /, and substituting 

(11) and (12) in (13), we obtain 

    Lo SER, “OSES 5, — > = pl ’ —2x/8 dx AD M uM 74.2 e x 

or 

i f- 16 5 16 
L= ME ~2x/6 dy = Bel x/ 5% Mio 

Ww JO 2W 2w 

sO 

2 RJ wo ~~. 28. | *£ - 5 ts (14) 
w 20 Wo wad Ww 

where relations for skin depth and surface resistivity have been substituted from Secs. 

3.16 and 3.17. As found there, the internal reactance per square is equal to surface 

resistivity, R,. This is multiplied by length / and divided by width w to give the internal 

reactance of the overall unit. 

  

4.7 MUTUAL INDUCTANCE 

The mutual inductance was defined in Sec. 4.2 as that arising from the induced voltage 

in one circuit due to current flowing in another circuit. We now discuss several 

approaches to its calculation, some of which may also be applied to calculation of 

self-inductance. 

Flux Linkages The most direct approach is that from Faraday’s law, finding the 

magnetic flux linking one circuit related to current in the other circuit, as in Eq. 4.2(19). 

Thus for two circuits 1 and 2 we write 

M,, = Ss Ss . dS, 

~~ 

(1) 

where B, is the magnetic flux arising from current /, and integration is over the surface 

of circuit 1. By reciprocity M,, = M,, (for isotropic magnetic materials), so the cal-
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culation may be made with the inducing current in either circuit. Consider, for example, 

the two parallel, coaxial conducting loops pictured in Fig. 4.7a. The magnetic field from 

a current in one loop has been found for a point on the’ axis in Ex. 2.3a: 

2 

BO, d) = an — Q) 
If loop 2 is small enough compared with spacing d, this will be relatively constant over 

the second loop and the relation (1) gives . 

m7b°B(O,d)°_ ——yatra?b* 

h 2@ + dP ”) seat 

The exact formula is found by integrating the field over the cross section, but we will 

approach the exact calculation by another method. 

Use of Magnetic Vector Potential Since B = V xX A, application of Stokes’s 

theorem to (1) yields an equivalent expression in terms of the magnetic vector potential: 

Ssr (VX Ag)+ dS; _ f Ay: dh,   

      
  

  

                
  

M = 4 7 r (4) 

Hee Circuit 1 | \d@ dly 

(a) 

4, 
fi an 

fod vw’ Of 
/ I|- +p 

| ay a2 | C/ 4 

I dy c2 ae Yo “7 7D 
— — JZ Ok iB Ye 

by bo a |) 
| x ! ot b 

Cc 

—< d ———> 
a         

Fic. 4.7. (a) Two circular loops. (b) Two rectangular coupling loops. (c) Parallel current 
elements displaced from one another.
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This form is useful in any problem for which the vector potential is more easily found 

than the magnetic field directly. It is especially useful for problems in which the circuit 

has straight-line segments or can be approximated by such segments, as in the problem 

of the coupling of square loops pictured in Fig. 4.7b. Vector potential A is in the 

direction of the current element contributing to it by Eq. 2.9(5), so the contribution to 

A from horizontal sides a, and b, is only horizontal. These sides thus contribute to 

mutual inductance only through integration by (4) over the horizontal parts of circuit 

2, a, and b,. Similarly, vertical currents in c, and d, contribute to mutual inductance 

only by integration over the two parallel (vertical) sides c, and d,. The basic coupling 

element in such a configuration is then that of two parallel but displaced current ele- 

ments as pictured in Fig. 4.7c. The contribution to mutual inductance from such ele- 

ments (Prob. 4.7d) can be shown to be 

M i 1 at+A dl at+A 
= n nN 

da |\ |lco+C d+ D 

fe 
+ bin 

at 
2) +c+D-a+a| 

    

(5) 

  

This point of view is quite useful for qualitative thinking about couplings in a circuit 

as well as for quantitative analysis. 

Neumann’s Form Another standard form for calculation of mutual coupling of two 

filamentary circuits follows directly from the above. We write the vector potential A 

arising from current in circuit 2, assuming that current to be in line filaments and 

neglecting retardation. 

I, dl 
Ay = p LER (6) 

where R is the distance between current element dl, and the field point. Substitution in 

(4) yields 

] pl, dl, ° dl, L bo dl, ° dl, 

I, AR Aq R 7) 

This standard form is due to Neumann. Note in particular its illustration of the reci- 

procity relation M,, = M,,, since integrations about circuits 1 and 2 may be taken in 

either order. 

Example 4.7a 
MUTUAL INDUCTANCE OF COAXIAL LOOPS BY NEUMANN’S FORM 

For the coaxial loops of Fig. 4.7a, let dl, be any element of circuit 1 and dl, be any 

element of circuit 2. Then 

dl, - dl, = dl,a d@ cos @ (8)
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R = Vd? + (asin 6 + (acos @ — by (9) 

By substituting 96 = mw — 2@ and 

4ab 
Pe = 10 

d*> + (a+ by? © (10) 
  

the integral .(7) will then be found to become 

  

  

q/2 
= wVabk (2 sin? d — '1) db 1 

~ M I Vi-F sin? b an 

which can be written as 

= uVab (2 — t) ew — 2 2 (12) 

where 

af2 

E(k) = V1 — k sin? ddd (13) 
0 

K(k) = ™ a (14) 
V1 —k sin’ $ 

The definite integrals (13) and (14) are given in tables? as functions of k and are 
called complete elliptic integrals of the first and second kinds, respectively.   
  

Example 4.76 
SELF-INDUCTANCE OF CIRCULAR Loop THROUGH 

MUTUAL INDUCTANCE CONCEPTS 

Neumann’s form does not appear useful for the calculation of self-inductances of fila- 

mentary current paths, since radius R in (6) becomes zero at some point in the integration 

for such filaments. For a conductor of finite area, however, as in the round loop of wire 

pictured in Fig. 4.7d, one obtains the external contribution to self-inductance by cal- 

culating induced field at the surface of the conductor, say through the vector potential 

A as in (6). If wire radius a is small compared with loop radius r, this field is nearly 

the same as though current were concentrated along the center of the wire. Thus we 

conclude that the external inductance of the loop is well approximated by the mutual 

3 For example, H. B. Dwight, Tables of Integrals, 3rd ed., Macmillan, New York, 1961; or M. 

R. Spiegel, Mathematical Handbook of Formulas and Tables, Schaum’s Outline Series, 
McGraw-Hill, New York, 1968.
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2a 

(d} fe} 

Fic. 4.7  (d) Conducting loop for which external self-inductance is to be found. (¢) Filamentary 
loops, one through center of wire and other along inside edge, for which mutual inductance may 
be calculated. 

inductance between the two filaments of Fig. 4.7e. Utilizing (12) for the mutual in- 

ductance between two concentric circles of radii r and (* — a) we then have 

Lo = pr - of (1 — ac — Be | 

(15) 
> _ 4rr — a) 
— 

- Qr — ay 

where E(k) and K(k) are as defined by (13) and (14). If a/r is very small, & is nearly 

unity, and K and E may be approximated by 

4 
K(&) = n( 5] 

E(k) = 1 

sO 

Lo = ra n( 2) — 2 (16) 

To find total L, values of internal inductance, as found in Sec. 4.5, must be added. 

  

4.8 \|NDUCTANCE OF PRACTICAL COILS 

A study of the inductance of coils at low frequencies involves no new concepts but 

only new troubles because of the complications in geometry. Certain special cases are 

simple enough for calculation by a straightforward application of previously outlined 

methods. For example, for a circular coil of N turns formed into a circular cross section 

(Fig. 4.8a) we may modify the formula for a circular loop of one turn, Eq. 4.7(16),
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(6) 

(c) 

Fic. 4.8 (a) Coil of large radius-to-length ratio. (b) Solenoidal coil. (c) Solenoidal coil on high- 

permeability core. 

provided the cross section is small compared with the coil radius. Magnetic field must 

be computed on the basis of a current N/; in addition, to compute the total induced 

voltage about the coil, N integrations must be made about the loop. Equation 4.7(16) 

is thus modified by a factor N*. The external inductance for this coil is then 

5 8R | 
Ly = ven] n( &) ~ 2 (1) 

For the other extreme, the inductance of a very long solenoid (Fig. 4.8b) may be 

computed. If the solenoid is long enough, the magnetic field on the inside is essentially 

constant, as for the infinite solenoid, 

Ha (2)
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where WN is the total number of turns and / the length. The flux linkage for N turns is 

then NaR*H., and the inductance is 

a pLR?N7 
Ly = 3) 

For coils of intermediate length-to-radius ratio, empirical or semiempirical formulas 

frequently have to be used. The famous Nagaoka formula applies a correction factor F 

to the formula (3) for the long solenoid.* A simple approximate form? very close to 

this for R// up to 2 or 3 is 

m7 pR7N* 
=_ — 4 

0" 1+ 0.9R (4) 

If a coil is wound on a toroidal core of high permeability as shown in Fig. 4.8c, the 

flux essentially 1s restricted to the core region, independent of the length of the winding. 

The magnetic field intensity is again given by (2) and the inductance by (3) with ] = 

27719, where 7g is the mean radius of the toroid. 

At higher frequencies the problem becomes more complicated. When turns are rela- 

tively close together, the assumption made previously in calculating internal impedance 

(other portions of the circuit so far away that circular symmetry of current in the wire 

is not disturbed) certainly does not apply. Current elements in neighboring turns will 

be near enough to produce nearly as much effect upon current distribution in a given 

turn as the current in that turn itself. Values of skin effect resistance and internal in- 

ductance are then not as previously calculated. External inductance may also be different 

since changes in external fields result when current loses its symmetrical distribution 

with respect to the wire axis. In fact, the strict separation of internal and external 

inductance may not be possible for these coils, for a given field line may be sometimes 

inside and sometimes outside of the conductor. Finally, distributed capacitances may 

be important and further complicate matters (see following section). 

Coils utilizing superconductors, which are materials giving zero resistance below 

some critical temperature near absolute zero, have become important because one can 

obtain with proper design very high values of uniform magnetic fields with them, with- 

out the use of iron. They may also be very efficient devices for storage of large energies. 

The electromagnetic principles of design are the same as given for other coils, and in 

fact, the approximations may be better satisfied by the thin wires typically used in 

superconducting magnets. The mechanical forces of the large currents must be consid- 

ered in the design, and the transient behavior of a superconductor is very different from 

that of an ordinary conductor. Wilson® gives examples of various coil configurations, 

with reference to the background literature. 

4 E. C. Jordan (Ed.), Reference Data for Engineers: Radio, Electronics, Computer, and 

Communications, 7th ed., Howard W. Sams, Indianapolis, IN, 1985. 
> H. A. Wheeler, Proc. IRE 16, 1398 (1928), 
° M.N. Wilson, Superconducting Magnets, Clarendon Press, Oxford, 1983.
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49 SELF AND MUTUAL CAPACITANCE 

The concept of electrostatic capacitance between two conductors was introduced in 

Chapter 1 as the charge on one of the conductors divided by the potential difference 

between conductors. In the circuit analysis of Sec. 4.2 this definition was carried over 

as a quasistatic concept to give the usual capacitance term utilized in the analysis of 

circuits with time-varying excitation. Littlke more need be said about the simple two- 

conductor capacitor, but it is useful to collect expressions we have developed for some 

of the common capacitive elements. 

1. Parallel planes with negligible fringing, A = area, d = spacing: 

    

C= 2A (1) — d 

2. Concentric spheres of radii a and b (6 > a): 

C= Ameab (2) 

(b-— a) © 

3. Coaxial cylinders of radii a and b (b > a): 

c= ™_ Bim (3) 
~ In(b/a) 

4, Parallel cylinders with wires of radius a, with axes separated by d (to be derived 

in Chapter 7): | 

C = ——*—___ B/m (4) 
cosh~ !(d/2a) 

If there are several conductors, the electric flux from one conductor may end on 

several of the others and induce charge on each of those. Consider, for example, the 

multiconductor problem diagrammed in Fig. 4.9a. Suppose conductor | is raised to a 

positive potential with the other three bodies, 0, 2, and.3, grounded. The electric flux 

from 1 will divide among the other three bodies and induce negative charges on each 

of these. The amounts of the separate charges may be used to define capacitances C jo, 

Cj, and C3 in the circuit representation of Fig. 4.9b. Similarly, raising conductor 2 to 

a nonzero potential and finding induced charges on grounded conductors 0,-1, and 3 

determines C,, and C,, and provides a check on C5. Repetition of the process with 

conductor 3 at a nonzero potential gives the remaining element C3, and provides a 

check on C,, and C,,. However, it is usually not possible to measure the individual 

charges on the conductors which are tied together. Usually a capacitance current, dO /dt, 

is measured by applying a time-varying voltage, and Q is the sum of the charges on 

electrodes connected together. Thus the three measurements described would yield 

(Cig + Chg + Cy3), (Cap + Cig + Coy), and (Cyg + C3 + Co3). Three additional 
measurements with linearly independent combinations of V,, V, and V3 are required to 

determine the six elements of the circuit.
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Fic. 4.9 (a) Four conducting bodies, one of which is chosen to have zero potential. (b) The 
equivalent circuit for (a). (c) Electrostatic shielding by a grounded sphere. (d) Flux lines between 
a pair of conductors without shielding. (e) Partial shielding by a grounded conducting plane. 

(f) Ungrounded nearby conductor increases coupling. 

A common problem is that of decreasing the capacitive coupling between two bodies, 

that is, of electrostatically shielding them from one another. Consider, for example, the 

conductors | and 3 of Fig. 4.9c. If a grounded conductor 2 is introduced and made to 

surround either body 1 or 3 completely, as in Fig. 4.9c, it is evident that a change in 

potential of 3 can in no way influence the charge on 1 so that mutual capacitance 

C= 0. 
More often the added conductor may not completely enclose any body, so that the 

Capacitive coupling may not be made zero, but may only be reduced from its original 

value. Any finite conductor, as 2, introduced into the field acts to decrease the mutual
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capacitance C,, from its value prior to the introduction of 2, and hence provides some 

decrease in the capacitive coupling between 1 and 3. The reason is that fewer of the 

flux lines of the charge on | will terminate on 3 with a grounded conductor, as shown 

by comparing Figs. 4.9d and 4.9e. However, if 2 is not connected to the ground (the 

infinite supply of charge), the effect of the added electrode will be to shorten the flux 

lines as seen in Fig. 4.9f. In terms of the equivalent circuit, the effective capacitance 

between | and 3 is seen from the equivalent circuit of Fig. 4.95 to be given by C,, in 

parallel with C,, and C,, in series: 

Cy2Co3 
(Cis ere = Cig + Cio + Coy 

This value is generally greater than the value of C,; prior to the introduction of 2 (though 

it need not be if 2 lies along an equipotential surface of the original field); so, if insulated 

from ground, the additional conductor may act to increase the effective capacitive cou- 

pling between 1 and 3. It often happens that electrodes, although grounded for direct 

current, may be effectively insulated or floating at high frequencies because of imped- 

ance in the grounding leads. In such cases the new electrodes do not accomplish their 

shielding purposes but may in fact increase capacitive coupling. 

    FFs ey TSR gE SS ot NSS a Lee NS RG SY ERE ES DU SSE Cet ee ACER Oe UR DE 

Circuits Which are Not Small Compared 

With Wavelength 

  

4.10 DISTRIBUTED EFFECTS AND RETARDATION 

We now consider the generalizations to circuit theory when effects are distributed rather 

than lumped, and also when circuits become comparable in size with wavelength so 

that retardation from one part of the circuit to another must be considered. Considering 

first the distributed effects, we recognize that the fields contributing to circuit elements 

are always distributed in space and the representation by a lumped element is valid only 

when the region is small in comparison with wavelength and when only one type of 

energy storage (electric or magnetic) is important for that region. If the electric energy 

storage in parts of a primarily inductive element, or magnetic energy in a primarily 

capacitive element, becomes important, the approach through classic circuit theory is 

to divide into subelements that can be treated as one or the other. For example, suppose 

there is electric field (capacitive) coupling between the turns of the inductor of Fig. 

4.10a. A first approximation is that of adding a capacitive element across the terminals 

of L to represent all the electric energy storage of the element as shown in Fig. 4.10b. 

A still better approximation is that of adding a capacitive element between each pair
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(c) (d) 

Fic. 4.10 (a) Coil. (b) Circuit with single capacitance representing electric-field coupling 
among turns. (c) Circuit representation with capacitive coupling shown between each adjacent 

turn. (d) Representation with capacitances added between nonadjacent turns. 

of adjacent turns, as in Fig. 4.10c. But there may be coupling between nonadjacent 

turns and still other capacitances can be added as in Fig. 4.10d. The effect of these at 

high frequencies is to bypass some of the turns so that not all turns have the same 

current. This last effect would not be at all included in the simpler representation of 

Fig. 4.10b. Finally one might go to the limit and consider differential elements of the 

coil, attempting to find couplings to all other differential elements, to write and solve 

a differential equation for current distribution. This process could be carried out only 

for simple configurations, and even the approach through a finite number of lumped 

elements as in c or d becomes complicated if there are many turns. 

Consider next the retardation effect arising from the finite time of propagation of 

electromagnetic effects across the circuit. To simplify this discussion, we consider only 

sinusoidal excitation so that we can define a wavelength and discuss phase relationships. 

More general excitations can of course be broken into a series of sinusoids through 

Fourier analysis. Consider, for example, the simple single-loop antenna of Fig. 4.10e. 

At low frequencies, with diameter d small in comparison with wavelength, the time of 

propagation of effects from one part of the loop to another is negligible. ‘Thus, magnetic 

field produced by a current element at a point such as A travels to another point such 

as B in a negligible part of a cycle and so has negligible phase delay. The induced field 

from the time rate of change of the field is then 90 degrees out of phase with current 

in B and contributes to the inductive effect we expect for the loop at low frequencies.
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(e) 

Fic. 4.10 (e¢) Loop antenna showing phase retardation between sources at A and induced fields 

at B when d is comparable with wavelength. 

At higher frequencies, with d comparable with wavelength, the finite time of propa- 

gation about the circuit must be considered. Current at B may then not be in phase with 

current at A, and the magnetic field at B arising from the element at A may not be in 

phase with either. The time rate of change of magnetic field induces an electric field 

which may then be not exactly 90 degrees out of phase with /,. If there is an in-phase 

component, it represents energy transfer, which turns out to be a contribution to the 

energy radiated by this antenna. If current distribution is known, fields throughout the 

circuit can be calculated and the contribution to radiated power represented in the circuit 

by a so-called radiation resistance. But to find the actual current distribution, one really 

needs to solve the boundary-value problem represented by the conducting loop. For 

sOme antennas or other circuits comparable in size with wavelength, it is possible to 

make reasonable assumptions about current distribution and extend circuit theory in 

this way, but the extension must be done carefully. Additional discussion of this point 

will be given in the next section utilizing a retarded potential formulation for circuit 

theory. 

One important circuit having both distributed and propagation effects is the uniform 

transmission line. It turns out that circuit theory can be extended to this case. Agreement 

with field solutions is exact for perfectly conducting transmission lines and very good 

for lines with losses, as will be seen in Chapter 8. The circuit theory of transmission 

lines, to be developed in Chapter 5, is thus of very special importance. 

A.11) CIRCUIT FORMULATION THROUGH THE RETARDED POTENTIALS 

The cause-and-effect relationships embodied in the retarded potentials of Sec. 3.19 can 

provide additional insights into the circuit formulation’ for electromagnetic problems, 

especially for circuits large in comparison with wavelength. This approach was first
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used by Carson.’ A typical circuit follows a conductor for all or part of its path, so we 

start with Ohm’s law in field form for a point along this path, 

E= — (1) 

where go is the conductivity for the point under consideration and may vary as one 

moves about the circuit path. We next break up the field into an applied portion, Ep, 

and an induced portion, E’, the latter arising from the charges and the currents of the 

circuit itself. We also write E’ in terms of the retarded potentials of Sec. 3.19 

E+E =£, - vo -A-3 (2) 
ot Co 

where A and ©® are given as integrals over the charges and currents of the circuit, as 

defined in Eqs. 3.20(3) and 3.20(4). 

The term J/o in (2) is indeterminate over nonconducting portions of the path since 

both J and o are zero for insulating portions and o is generally undefined within any 

localized source. We consequently integrate (2) over conducting portions of the path, 

obtaining a cause-and-effect relationship which can be considered the general circuit 

equation: 

JA 
fea -[4-a- | *-a- | ve-a =o (3) 

o ot 

In a conventional circuit, the first term is applied voltage, the second a resistive term, 

the third an inductive term, and the fourth a capacitive term. The terms are discussed 

separately. 

Applied Voltage The first term of (3) can be identified as the applied voltage of 

circuit theory and is just the integral of applied electric field over the circuit path. In a 

circuit such as a receiving antenna (Fig. 4.11a), the applied field is clearly distributed 

over the circuit through the mechanism of the incoming electromagnetic wave and the 

integration of E, is about the complete path: 

Vo = 9 By dl (4) 
For the localized sources, discussed in Sec. 4.3, for which electric field can be con- 

sidered the gradient of a scalar potential, the integration of E, from 2 to 1 about the 

circuit of Fig. 4.115 is the negative of that from 1 to 2 of the source since the closed 

line integral of the gradient is zero. The gap in the capacitor can be ignored in this step 

since the localized source produces negligible field there. Thus the source voltage is 

2 

2(circuit) 1 (source) 

7 J. R. Carson, Bell System Tech. J. 6, 7 (1927).
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Incoming E-M radiation 

2 + 
Localized 
generator fit Mo C 

  

(6) 

  
Fic. 4.11 (a) Closed filamentary loop excited by incoming electromagnetic wave. (b) Filamen- 

tary circuit with capacitor excited by a localized generator (point source). (c) Circular loop of 
round wire with circuit path along inner boundary. 

In this class of problem, Vo is independent of the circuit path, whereas in the receiving 

antenna class of problem discussed above, Vg depends, very much upon the circuit 

configuration and orientation with respect to the fields. 

Internal Impedance Term The second term in (3) is of exactly the same form as 

the ohmic term for the resistor in the circuit example of Sec. 4.2. There we showed that 

in the limit of dc this corresponds to the expected resistance term. Here it is understood 

that o may vary over different parts of the circuit path and the integration brings in the 

total resistance of the circuit path. For ac circuits it turns out that this term may also 

include a contribution from the inductance internal to the conductor along which the 

circuit path is taken, as was seen for the round wire in Sec. 4.5. Thus for the important 

sinusoidal case with phasor representations for currents and voltages, this term gives a 

complex contribution resulting from internal reactance in addition to the resistance. 

That is, if internal impedance per unit length is defined as the ratio of surface electric
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field to the total current in the conductor, 

Zi == (6) 

the term under consideration becomes the total internal impedance Z,; multiplied by 

current I: 

ft-a-[e,-a=7] za =x, (7) 

where the integrals are taken over the conducting portions of the circuit from 2 to 3 

and 4 to 1 in Fig. 4.115. 

External Inductamce Term ‘The third term in (3) is the inductance term and, if 

the circuit path is properly selected, represents only the contribution from magnetic flux 

external to the conductor. Consider, for example, the loop of wire in Fig. 4.11c, and 

take the circuit path along the inner surface of the conductor. We will assume that the 

integral in the third term of (3) taken over the conducting portions of the circuit differs 

negligibly from an integral which would include the small gaps at the source and in 

any capacitors included in the circuit. This allows evaluation of that term with closed 

integrals. We take the path as stationary so that 

JA 6 
—:dJ =—-QQA-dl 8 

p Ot dt 8) 

From Stokes’s theorem, 

pA-di =| (Vx A)-ds (9) 
S 

But 

VxA=bB (10) 

so 

dA f | 
——-dl = —j; B-dS 11 
or dt Js my 

The surface integral of (11) is the magnetic flux linking the chosen circuit, exactly as 

in the approach through Faraday’s law in Sec. 3.2. Thus the term may be defined as an 

inductance term, as before, recognizing that it is the contribution from flux threading 

the chosen circuit path (Le., the external inductance): 

JA dl 
—-di=L— 12 

f ot dt (2) 

Thus this provides an alternate way of calculating inductance: 

1 
L=1oa-a (13)
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The above assumes the circuit small compared with wavelength so that retardation is 

neglected. The extensions when this assumption is not valid are discussed shortly. 

Capacitive Term As with the other terms in (3) we must integrate the V® over the 

conducting portions of the circuit, that is, from 2 to 3 and 4 to 1 in Fig. 4.115. Here 

we assume that the fields arising from charges on the capacitor are negligible at the 

source, SO we may use, as the range of integration, 4 to 3 through the source. Then, 

since the integral of the gradient of a scalar completely around a closed path (here 

including the capacitor gap) is zero, we may write 

3 4 

4(circuit) 3(gap) 

In a lumped capacitor this potential difference is related to charge Q through the 

capacitance C, 

Q 
®, —- ®, = = 15 3 4=o (15) 

so that this term is the capacitance term of circuit theory, 

3 
Q_1 | 

V®-dl===-—|/dt 16 
i C C 

Circuits Comparable in Size with Wavelength The formulation in terms of 

retarded potentials has been shown to reduce to the usual low-frequency circuit concepts 

as obtained in the earlier formulation using only fields, under the same assumptions. 

The present formulation is attractive in that it appears more readily extendible to large- 

dimension circuits, such as an antenna, when retardation effects are important. To il- 

lustrate, consider the circuit of Fig. 4.11a, for which current is assumed concentrated 

in a thin wire. Let us assume that ohmic resistance is negligible and that there is no 

capacitor so that there is only an applied voltage and a term from the potential A. We 

also take steady-state sinusoids and phasor notation for this discussion. Thus, (3) 

becomes 

  

P Ep: di — jw A-dl = 0 (17) 

and A, for the filamentary current, by Eq. 3.21(4), is 

ple IR 
A= $ dl’ 18 

4arR (18) 

Substituting (18) in (17) and breaking up the exponential into its sinusoidal components, 

we obtain 

kR — j sin kR 
By: dl — joo Gp MOS jsn ) at-dl = 0 (19) 

4arR 
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We see that even if current / were assumed entirely in phase about the circuit, finite 

values of KR would lead to both real and imaginary parts of the contribution from this 

term. The imaginary part is the inductive reactance, as found before for this term, except 

now modified by the integration of the retardation term. But there is a new term in 

phase with J which corresponds to the energy radiated from the circuit, and can be 

expressed as current times a radiation resistance. 

Although the general modifications for large-dimension circuits are shown by this 

approach, it is difficult to carry much further since we really do not know the distribution 

of J about the circuit, and cannot find it without a field solution of the problem. In some 

antennas it is possible to make reasonable guesses about the current and proceed, but 

it is clear that these guesses must eventually be checked through either experiment or 

a field analysis. Also, as we have seen, the integration is to be only over conducting 

surfaces to avoid the indeterminacy of the second term of (3). For many antennas, the 

“gaps” are larger than the conductors, and fields definitely not quasistatic in the open 

regions, so this further limits the applicability of this approach. A specific example will 

be carried further in the following section. 

4.12 CIRCUITS WITH RADIATION 

To conclude this discussion of the relationship between field theory and circuit theory, 

let us look at two specific circuits with radiation. As we saw in Sec. 4.11, a circuit that 

is not small in comparison with wavelength has retardation of induced fields from one 

part of the circuit to the other. The resulting phase changes produce components of 

induced field which are in phase with the currents, and an average power flow results. 

This power can be shown to be the radiation from the circuit. The phase shifts also 

produce some changes in the reactive impedance of the circuit, but this is usually a 

higher-order effect. The term we are concerned with is the integration of induced effects, 

the second term of Eq. 4.11(19): 

. pul(cos KR — j sin KR) Vouaa = jo fh aa , induced Jw 4arR ( ) 
  

We illustrate this with two examples. 

Example 4.12a 
SMALL CIRCULAR LOOP ANTENNA OR CIRCUIT 

The first example is that of a circular loop, as in Fig. 4.12a, small enough so that current 

may be considered constant about the loop. If / is independent of position, it may be 

taken outside the integral (1) so that the induced term may be written 

V induced — (R,. + J wl)! (2)
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fa} (b)} 

Fic. 4.12 (a) Circular loop with constant current J with coordinates for calculation of retardation 
effects. (b) Straight antenna of finite length with current distribution. 

where 

wp sin kR 
R, = bo —_——— dl - dl’ 

’ A4aR 
(3) 

pu cos kR 
L= b¢ ———— dl - dl’ 

4aR 

The value of dl is ha dd, and that of dl’ is b’a dd’. The angle between dl and dl’ is 
(@ — ¢') and the distance R is 2a sin[(@ — ¢')/2]. If the circuit is small in comparison 
with wavelength, KR << 1 and the sine term in (1) may be replaced by the first two 

terms of its Taylor series: 

om pom IPR? nn [Celie [lene ergeae 
The first term of (4) integrates to zero, so we see why it is necessary to retain at least 

two terms of the series. The second term gives 

2a pla 4 _. ! 

R, > [ | atone’ sn # ? cos(@ — ¢') db dd’ (5) 
0 40 2 

  

24 or 

The integrals are readily evaluated to give 
— wul3at 1/2 

R, = ———(- 7) = z(#) (ka)* (6) 

Thus radiation resistance increases as the fourth power of the ratio of radius to wave- 

. length (but with the understanding that this ratio is always small). For a = 0.054, the
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value is 

R,= Loe (2m X 0,05)* = 1.923 0 ” 

If cos &R in the expression for L is likewise expanded as a series, 

‘Qa pla 2p? 4 4 

ux" [1-2 + Je cond — oy aa 8)   

o 40R 2! 4! 

The first term is recognized as the Neumann form for inductance of this loop (Sec. 4.7), 

and the remaining terms represent corrections to the inductance because of retardation. 
It is seldom necessary to calculate these fast-mentioned corrections for circuits property 

considered as lumped-element circuits. 

  

Example 4.12b 

RADIATION RESISTANCE OF A STRAIGHT ANTENNA BY CIRCUIT METHODS 

As a second example, consider a straight dipole antenna as shown in Fig. 4.12b with 

current distribution 

IQ) = 1,$() (9) 

where f(z) is real, But here the conductor does not form a closed circuit, and as ex- 

plained earlier, the Carson formulation (Sec. 4.11) only applies unambiguously over 
the surface of conductors. Thus we first find retarded potential A, which has only a z 

component: 

  

  

7 —JkR 1 Yo ikle-='] we fe de7 ; A= | we” a = i a 10 
-1 40R Hn -1 4alz — z'| 2 (10) 

Electric field is given in terms of A by Eq. 3.21(7): 

1 1 oA, 
E= -io[ A +a: a| = ~jea| a + 24] ad) 

The portion of E in phase with current causes the radiated power in this picture, and 
that clearly comes from the imaginary part of A,. The integration of I(2)Ein phase OVET 
the antenna gives the total power transferred, or radiated, and this may be expressed in 

terms of a radiation resistance: 

, , W= {eB Dre de = (12) 
Thus, substituting (10) and (11), we obtain 

R= 2 a: $@ [, re 

—
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In evaluating these integrals, series expansions of the sin.k|z — z’| terms are often made. 

When carried out for the half-wave dipole [/ = A/4 and f(z) = cos kz], R, is found to 

be about 73.1 Q in agreement with the value found by a Poynting integration to be 

utilized in Sec. 12.7. This method of finding radiation resistances of antennas is called 

the induced emf method. It is seldom easier than the Poynting integration but does show 

the relationship to circuit theory. 

Note that for both examples, we had to assume a form for current distribution to 

proceed: This is a clear limitation as it can be done with reasonable confidence only in 

specific cases. When that is not possible, field theory must be invoked for the whole 

problem. | 
Note also that until this example, we have neglected any distributed charges along 

the interconnecting conductors of the circuit. Here, with current varying as f(z), the 

continuity equation requires distributed charges, but these are taken care of by the 

V(V - A) term in (11), as shown in Sec. 3.21. 

  

PROBLEMS 

4.2a Many circuits contain nonlinear elements, that is, ones for which pu, €, or o, or some 
combination is a function of the field for at least a part of the circuit. Review the for- 
mulation of Sec. 4.2 to show this behavior explicitly. Is the general form Eq. 4.2(1) 

changed in such cases? 

4.2b Some circuits contain time-varying elements, for which yw, &, or o, or a combination is 
a function of time for at least a part of the circuit. Discuss these cases as in Prob. 4.2a. 

4.2c The sign of mutual inductance coupling is designated on a circuit diagram by the plac- 
ing of black dots. With the sign convention for positive voltage and current shown in 
Figs. 4.2c and d, the dot location in the former denotes positive M and in the latter, 
negative M@. Show that either can be represented by a “T-network” as in Fig. P4.2c, 

where the upper signs denote Fig. 4.2c and the lower, Fig. 4.2d. 

    

12 4|M|     

    

+ + 
V} +|M| Vo 

o— —O   

Fic. P4.2¢c 

4.3a It has been pointed out that the mesh analysis utilizes Kirchhoff ’s voltage law explic- 
itly but the current law only implicitly. Show that the current law is satisfied for each 

node of the circuit with mesh currents defined by Fig. 4.3b. Similarly show that the 
voltage law is satisfied by each mesh of Fig. 4.3c, with node voltages as shown. 

4.3b The generator in the example of Figs. 4.3b and c is taken as a voltage generator in 

series with a source resistance. It can alternatively be taken as a current generator J, in 
parallel with a source conductance G,. Make this substitution and write the new loop 
and node equations for the filter. 

4.3c With a complex load impedance (admittance) connected to the source terminals as in
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4.4b 

4.4¢ 

4.5a 

4.5b 

4.5c* 

4.6a 

4.6b 

4.6¢c 

4.6d 

4.6e 
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Figs. 4.3d and e, show that the two source representations are equivalent in producing 
current in and voltage across this impedance, when the conditions of Eq. 4.3(10) are 
satisfied. 

Show that for fixed V, and Z,, the maximum possible power is delivered to the load 

when it is a “conjugate match” to Z,, that is, Z, = Zi (or Y, = Y*). 

Make a power series expansion of Eq. 4.4(8), retaining up to quadratic terms, to show 
the variation of magnitude and phase with r to this approximation. Up to about what 
1/6 will this be a reasonable approximation? (See Sec. 7.14.) 

Utilize the asymptotic expansions of Bessel functions to derive the approximate 
expression Eq. 4.4(11). What phase variation is found in this approximation? 
(See Sec. 7.15 or Ref. 2.) 

Obtain tables of the Ber and Bei functions and plot phase of current density versus 
r/rg for ro/6 = 2.39. 

Show that the ratio of very high frequency resistance to dc resistance of a round 
conductor of radius rg and material with depth of penetration 6 can be written 

Rar ro 

R, 26 

Using the approximate formula 4.5(8), find the value of r)/6 below which R differs 
from dc resistance Ry by less than 2%. To what size wire does this correspond for 
copper at 10 kHz? For copper at 1 MHz? For brass at | MHz? 

For two z-invariant systems having the same shape of cross section and of good con- 
ductors of the same material, show that current distributions will be similar, and cur- 
rent densities equal in magnitude at similar points, tf the applied voltage to the small 

system is 1/K in magnitude and K? in frequency that of the large system. Also show 
that the characteristic impedance of the small system will be K times that of the large 
system under these conditions. Check these conclusions for the case of two round 
wires of different radii. K is the ratio of linear dimensions (K > 1). 

For the symmetric parallel-wire line, plot normalized external inductance, 7L/ 1 versus 
R/d from both the approximate and exact expressions and note the range over which 
the approximate formula gives good results. 

Derive the formula for external inductance of the coaxial line in Fig. 2.45 by the en- 
ergy method assuming the usual situation of a material with permeability 5 between 

the electrodes. 

For a parallel-plane transmission line as in Fig. 2.5c, find the dielectric thickness, in 
terms of the conductor thickness, for which the low-frequency internal inductance 

equals the external inductance. Take both conductor thicknesses to be the same. 

A coaxial transmission line has a solid copper inner conductor of radius 0.20 cm and a 
tubular copper outer conductor of inner radius | cm, wall thickness 0.1 cm. Find the 

total impedance per unit length of line for a frequency of 3 GHz, including the internal 
impedance of both conductors. 

Equivalent circuit for a differential length of coaxial transmission line. Take the lines 
C-B and D-—A in Fig. 3.17 to be separated by a differential distance dz with z positive 
to the right. Write Faraday’s law for the loop ABCDA and use the capacitance expres- 
sion given in Eq. 1.9(4) to show that the equivalent circuit shown in Fig. P4.6e 1s cor- 

rect for high frequencies. (Z, is internal inductance per square and L, 1s external 
inductance per unit length.)
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4.6f A frequently encountered problem in microwave circuits is the wire bonding of one 
part of a circuit to another as suggested in Fig. P4.6f. The configuration is usually too 
complex to fit any simple models, but some useful approximate formulas exist. F. E. 
Terman, Radio Engineers Handbook, McGraw-Hill, New York, 1943, gives, for round 
wires at high frequencies, L = 0.20€(In(4€/d) — 1 + d/2€], where and d are 
length and diameter in millimeters, and L is in nanohenries. Estimate the inductance of 
the 0.5-mm-diameter wire bond in Fig. P4.6f and calculate its reactance at 1.0 GHz. 

Note its magnitude compared with a typical characteristic impedance of 50 2. 

le“ 3mm 

poy / | A A A A A A A A A | 

4.7a A coaxial line, shorted at z = 0, has a rectangular loop introduced for coupling, lying 
in a longitudinal plane with dimensions as shown in Fig. P4.7a. Find the mutual in- 
ductance between loop and transmission line assuming d <<A so that field is 
essentially independent of z. 
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4.7b From tables of the complete elliptic integrals given in the references, plot the form of 
mutual inductance in Eq. 4.7(12) against d/a for b/a = 1 and for b/a = 3 

4.7c Investigate the properties of the complete elliptic integrals for k << 1 and fork = 1, 

and obtain approximate expressions for mutual inductance for these two cases. Inter- 
pret physical meaning of these limits and compare with approximate Eq. 4.7(3). 

4.7d By integration of Eq. 4.7(4), show that the contribution to mutual inductance from two 

parallel line segments displaced as shown in Fig. 4.7c is as given by (5).
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4.7e Apply Eq. 4.7(5) to the calculation of mutual inductance between two square loops 
used for coupling between open-wire transmission lines as shown in Fig. 4.7b. The 

length of each side is 0.03 m; the separation x is 0.01 m. Assume that the gaps at 
which the lines enter are small enough to be ignored. 

4.7f Plot Lo/ap for the circular loop of round wire versus a/r from approximate and ‘“‘ex- 

4.7¢ 

4.7h* 

48a 

4.8b 

48c* 

act” expressions and note the range of usefulness of the former. Comment on the va- 
lidity of the selected mutual approach for a/r approaching unity. (Note that tables of 

elliptic functions are required for this comparison.) 

Suppose 1-mm-diameter copper wire is formed into a single circular loop having a ra- 

dius of 10 cm. A voltage generator of 1 V rms and 10 MHz is connected to an infini- 
tesimal gap in the loop. Find the current flowing in the loop, taking into account inter- 

nal impedance as well as external inductance. Justify all approximations used. 

Check Eq. 4.7(3) by taking the magnetic field of the small loop as that of a magnetic 
dipole and integrating flux from this over the area of the larger loop. 

Plot Lj/uwR versus R// from the expression for a long solenoid and the empirical 
expression 4.8(4) and compare. (If you have access to tables for the Nagaoka formula, 

add this curve also.) 

For an ideal infinite solenoid, magnetic flux is uniform everywhere inside the solenoid. 

For a finite coil, as pictured in Fig. 4.8b, there may be more flux through the central 
turns of the coil than those near the ends. Explain how you make a circuit model of the 

coil in view of these “partial flux linkages.” 

Por a circular coil of square cross section, Fig. P4.8c, it has been shown that the larg- 
est possible inductance results when R/s = 1.5 for a fixed length of wire of chosen 

size. The value of this inductance for N turns is L = 1.7 X 107° RN?. 
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(i) Given 1 m of wire with cross section 1 mm’, find the values of R, s, N, and 
inductance for its maximum according to this rule. 

(ii) Repeat for 2 m of the same wire. 

Compare the formula of Prob. 4.8c with that of Eq. 4.8(1), taking for the latter 
(area)'/? = R/1.5. 

Discuss qualitatively the case of Fig. 4.9e in which two bodies, 1 and 3, which are 
relatively far apart have a grounded conducting plane brought in their vicinity. Give an 
energy argument to show that C,, is decreased when the plane 1s added. 

Suppose that the bodies 1 and 3 of Figs. 4.9e and f are spheres of radii a separated by 

a distance d with a/d << 1. If the added plane is parallel to the line joining their 
centers and distance b from it (a/b << 1), find C,, before and after introduction of 

the plane when grounded, and the effective C,, with the plane present and insulated 
from ground. 

Two cylindrical conductors of radius 1 cm have their axes 4 cm apart and each axis is 
4 cm above a parallel ground plane. Make rough graphical field maps and estimate the 
capacitances (per unit length) for this three-conductor problem. (Think about how 

many plots you need and the best choice of potentials for each.) 

Make an order-of-magnitude estimate of the capacitance between adjacent turns of a 

coil as pictured in Fig. 4.10a if the diameter of the coil is 2 cm, the diameter of the 
wire 1 mm, and the spacing between turns 1 mm. Clearly state your model for the 
calculation. 

For a coil as in Fig. 4.10a, in the form of a fairly open helix, it is found that the phase 

delay of current along the coil is well estimated by assuming propagation along the 
wire at the velocity of light in the surrounding dielectric material. For a helix of 100 
turns in air, each turn 1 cm in diameter and spaced 1 mm apart on centers (wire 
diameter being appreciably smaller than this), 

(i) Find the phase difference between current at the end and that at the beginning of 
the helix for such a traveling wave at f = 150 MHz. 

(ii) Compare this with the phase difference in the retardation term, calculated along a 
direct path between the two ends. 

We will find waves on an infinite ideal transmission line that do not radiate even 
though there is clearly retardation to different points along the line. Explain how this is 
possible. 

What radius do you need to give a radiation resistance of 50 (2 from the expression 
derived from the small-loop circuit? Do you think the approximations reasonably 
satisfied for this size? 

Using the method of Sec. 4.12 derive radiation resistance for a small square loop with 
sides d and uniform current assumed about the loop. 

As indicated in Ex. 4.12b, make a series expansion for the sine terms within the inte- 

gral (retain three terms), assume f(z’) = cos kz’, and estimate R,. for the half-wave 
dipole, / = A/4.



  

5.1 INTRODUCTION 

In Chapter 3, we saw that the interchange of electric and magnetic energy gives rise to 

the propagation of electromagnetic waves in space. More specifically, the magnetic 

fields that change with time induce electric fields as explained by Faraday’s law, and 

the time-varying electric fields induce magnetic fields, as explained by the generalized 

Ampére’s law. This interrelationship also occurs along conducting or dielectric bounda- 

ries, and can give rise to waves that are guided by such boundaries. These waves are 

of paramount importance in guiding electromagnetic energy from a source to a device 

or system in which it is to be used. Dielectric guides, hollow-pipe waveguides, and 

surface guides are all important for such purposes, but one of the simplest systems to 

understand—and one very important in its own right—is the two-conductor transmis- 

sion line. This system may be considered a distributed circuit and so is useful in estab- 

lishing a relation between circuit theory and the more general electromagnetic theory 

expressed in Maxwell’s equations. The concepts of energy propagation, reflections at 

discontinuities, standing versus traveling waves and the resonance properties of standing 

waves, phase and group velocity, and the effects of losses upon wave properties are 

easily extended from these transmission-line results to the more general classes of 

guiding structures. 

A parallel two-wire system is a typical and important example of the transmission 

lines to be studied in this chapter. In any transverse plane, electric field lines pass from 

one conductor to the other, defining a voltage between conductors for that plane. Mag- 

netic field lines surround the conductors, corresponding to current flow in one conductor 

and an equal but oppositely directed current flow in the other. Both voltage and current 

(and, of course, the fields from which they are derived) are functions of distance along 

the line. In the two following sections we set down the transmission-line equations from 

distributed-circuit theory, but then discuss its relation to field theory. 

Transmission-line effects are not always desirable ones. A cable interconnecting two 

high-speed computers may be intended as a direct connection, but will at the very least 

introduce a time delay (around 5 ns/m in typical dielectric-filled cable). Moreover, if 

the interconnections are not impedance matched at the two ends there will be reflections 

of the waves (as we shall see later in the chapter). These “echoes” of pulses representing 

213
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the digits could introduce serious errors. A still further complication is dispersion. In a 

real transmission line the velocity of propagation varies to some degree with frequency, 

so the frequency components which represent the pulse (by Fourier analysis) travel at 

different velocities and the pulse distorts as it travels. If dispersion is excessive, the 

pulses may be blurred enough so that individual digits cannot be clearly distinguished. 

All of these effects occur also in the interconnections of elements in printed circuits 

and even in semiconductor integrated circuits, but the close spacings in the last case 

limit performance only for extremely short pulses. 

Transmission-line analysis is useful, by analogy, in studying a variety of wave phe- 

nomena, such as the propagation of acoustic waves and their reflection from materials 

with different acoustic properties. An especially interesting analog is that of the pro- 

pagation of signals along a nerve of the human body. 

  

Time and d Space Dependence of ; Signals 

on Ideal Tramsmission Lines 

5.2 VOLTAGE AND CURRENT VARIATIONS ALONG AN IDEAL TRANSMISSION LINE 

We begin by considering the transmission line as a distributed circuit. In Sec. 2.5 we 

identified an inductance per unit length associated with the flux produced by the op- 

positely directed currents in a pair of parallel conductors. When the currents vary with 

time, there is a voltage change along the line. Likewise, the distributed capacitance 

produces displacement current between the conductors when the voltage is time-varying 

and leads to change in the current flowing along the conductors. The interrelationship 

leads to the wave equation for voltage and current along an ideal lossless transmission 

line. 

Figure 5.2 shows a representative two-conductor line and the circuit model for a 

differential length. It should be kept in mind that the external inductance per unit length 

of a parallel-conductor line is not associated with one conductor or the other. Also, the 

circuit model is simply a representation of a differential length of line; there is not a 

one-for-one identification of the two sides of the circuit with the two conductors of the 

modeled line. 

Consider a differential length of line dz, having the distributed inductance, L per unit 

length, and the distributed capacitance, C per unit length.! The length dz then has 

' Note that, as in Chapter 4, the same symbols are used here for inductance and capac- 
itance per unit length as for total inductance and capacitance. Some texts use | and c 
for the distributed quantities, but there is then confusion with length and light velocity, 

respeciively.
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Fic.5.2 Section of a representative transmission line and the equivalent circuit for a differential 
length. 

inductance L dz and capacitance C dz. The change in voltage across this length is then 

equal to the product of this inductance and the time rate of change of current. For such 

a differential length, the voltage change along it at any instant may be written as the 

length multiplied by the rate of change of voltage with respect to length. Then 

aVv al 
voltage change = oe dz = —(L dz) a (1) 

Note that time and space derivatives are written as partial derivatives, since the reference 

point may be changed in space or time in independent fashion. 

Similarly, the change in current along the line at any instant is merely the current 

that is shunted across the distributed capacitance. The rate of decrease of current with 

distance is given by the capacitance multiplied by time rate of change of voltage. Partial 

derivatives are again called for: 

  

of dV 
current change = — dz = —(C dz) — (2) 

Oz ot 

The length dz may be canceled in (1) and (2): 

av al 
= —[— 3 

Oz ar 3) 

al av 
= —C~ (4) 

Oz ot 

Equations (3) and (4) are the fundamental differential equations for the analysis of the 

ideal transmission line. Note that they are identical in form with the pairs, Eqs. 3.9(5) 

and 3.9(9) or Eqs. 3.9(6) and 3.9(8), found from Maxwell’s equations for plane elec- 

tromagnetic waves. As was done there, (3) and (4) can be combined to form a wave
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equation for either of the variables. For example, one can differentiate (3) partially with 

respect to distance and (4) with respect to time: 

    

    

a-V a°] 
5 = -L (5) 

Oz az ot 

a7] a°V 
-= —C 6 

dt dz at? (9) 

Partial derivatives are the same taken in either order (assuming continuous functions) 

so (6) may be substituted directly in (5): 

    
a7V Vv 1 a°V 

> = LC— = “3 5 7 
Oz~ t U~ of (7) 

where 

vp = (LC)? (8) 

All real signals are continuous functions, as required for (7) to apply. The discontinuous 

step waves used later as examples are to be understood as approximations to real signals. 

Equations (3) and (4) are known as the telegraphist’s equations, and the differential 

equation (7) is the one-dimensional wave equation. A similar equation may be obtained 

in terms of current by differentiating (4) with respect to z and (3) with respect to ¢, and 

combining the results: 

avr 61 a 

ae vt ae ”) 
We saw in Sec. 3.9 that an equation of the form (7) has:a solution 

Vz, t) = ri ~ 2) + ri + | (10) 
Uv Uv 

where F, and F, are arbitrary functions. A constant value of F,(t — z/v) would be seen 

by an observer moving in the +z direction with a velocity v, so F,(t — z/v) represents 

a wave traveling in the +z direction with velocity v. Similarly, F,(t + z/v) represents 

a wave moving in the —z direction with velocity v. 

To find the current on the line in terms of the functions F, and F., substitute the 

expression for voltage given by (10) in the transmission-line equation (3): 

pee ipl, 7) pi ele 42 (11) 
ot yp } v yp ? U 

This expression may be integrated partially with respect to t-: 

r=—|rf(e—-2)— (24+ 2)) 4 12 ~ Tp ile 5 2\ t , Ff) (12) 

If this result were substituted in the other transmission-line equation (4), it would be
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found that the function of integration, f(z), could only be a constant. This is a possible 

superposed dc solution not of interest in studying the wave solution, so the constant 

will be ignored. Equation (12) may then be written 

1 z Zz 
=> |FPylt--] -— jet - 

Al ( : | ‘) Ce) 

where 

L 
Zi= Lv = |{/— QO 1 0 C (14) 

The constant Z, as defined by (14) is called the characteristic impedance of the line, 

and is seen from (10) and (12) to be the ratio of voltage to current for a single one of 

the traveling waves at any given point and given instant. The negative sign for the 

negatively traveling wave is expected since the wave propagates to the left, and by our 

convention current is positive if flowing to the right.” 

Sib a ak bot ted Hh cne 

Example 5.2 
CHARACTERISTIC IMPEDANCE AND WAVE VELOCITY FOR A COAXIAL LINE 

Let us find expressions for the characteristic impedance and wave velocity for an ideal 

coaxial line and examine some typical values. We will assume the conductor spacing 

is large enough to neglect internal inductance. Using C from Eq. 1.9(4) and L from 

Eq. 2.5(6) in (14) we find 

In b 
Zo = In b/a fE (15) 

27 E 

where a and b are the radii of the inner and outer conductors at the dielectric surfaces, 

respectively. A common commercial coaxial cable is designated RG58/U. It has a 

dielectric of relative permittivity 2.26 and the radii are a = 0.406 mm and b = 1.48 

mm. Substituting these values in (15) and taking 2 = py one finds that Z, = 51.6 1. 

This is slightly below the published normal value Z) = 53.5 2 in part because of the 

neglect of the frequency-dependent internal inductance of the conductors. There is not 

much variation of the relative permittivity among the various materials used as the 

dielectrics in coaxial lines and since the radius ratio comes in only in a logarithm, one 

finds that most commercial coaxial lines have characteristic impedance in a limited 

2 Since Z, as defined here is real, it is more logical to call it a “characteristic resistance,“ 
especially since the concept of impedance implies use with fhe phasor forms appropri- 
ate to steady-state sinusoidal excitation. That is an important special case to be consid- 
ered later, but even for transmission lines used with pulses or other general signals, if is 

common to refer to the defined Z, as characteristic impedance.
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range, usually 50 QO S Z) S 80 (1. The wave velocity (8) becomes 

1 
  v= (16) < 

which is the same as the velocity of plane waves in the same dielectric (Sec. 3.9). This 

result obtains for all two-conductor transmission lines when the internal inductance and 

losses can be neglected.? The wave velocity is usually between about 0.5 and 0.7 of 

the velocity of light in vacuo, 3 X 10° m/s, for lines with plastic dielectrics. 

  

5.3 RELATION OF FIELD AND CIRCUIT ANALYSIS FOR TRANSMISSION LINES 

Although we largely utilize the distributed-circuit model for transmission-line analysis 

in this chapter, let us relate the equations obtained in Sec. 5.2 to field concepts of 

Chapter 3. First, let us take the special case of a parallel-plane transmission line, as 

indicated in Fig. 5.2, with the conducting planes assumed wide enough in the y direction 

so that fringing at the edges is not important. If the planes are also assumed perfectly 

conducting, it is clear that a portion of a uniform plane wave with £, and H,, as studied 

in Chapter 3, can be placed in the dielectric region between the planes and will satisfy 

the boundary condition that electric field enter normally to the perfectly conducting 

planes. The Maxwell equations for such a wave [Eqs. 3.9(6) and 3.9(8)] are 

  

dF {z, t) dH, (Z, t) 

ae a a) Z t 

dH, (2, f) dE (z, t y = —p ‘AZ ) (2) 

Oz ot 

If we define voltage as the line integral of — E between planes at a given z, 

2, a 

Vz hn = - | E- dil = -| E,.dx = —aE,(z, t) (3) 
1 0 

Current for a width b, with positive sense defined for the upper plane, is related to the 

tangential magnetic field by 

Iz, t) = —bH,(, 2) (4) 

With these substituted in Eqs. 5.2(3) and 5.2(4), we find the result identical to (1) and 

(2) if 

b 
C= Fm L=™ H/m (5) 

a b 

These are, respectively, the capacitance per unit length and inductance per unit length 

3 It follows that knowledge of either L or C for such ideal lines determines the other.
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for such a system of parallel-plane conductors, calculated from static concepts. The 

field and circuit concepts are thus identical in this simple case. 

We would also find field and distributed-circuit approaches identical if we applied 

them to the coaxial transmission line with ideal conductors or to two-conductor systems 

of other shape so long as conductors are perfect. This is because such systems can be 

shown to propagate transverse electromagnetic (TEM) waves, for which both electric 

and magnetic fields have only transverse components. The absence of an axial magnetic 

field means that there are no induced transverse electric fields and no corresponding 

contributions to the line integral f E - dl taken between the two conductors, so long as 

the integration paths remain in the transverse plane; thus the voltage between conductors 

can be taken as uniquely defined for that plane. Similarly the absence of an axial electric 

field means that there is no displacement current contribution to ¢ H - dl for paths in a 

given transverse plane, and if such a closed path surrounds one conductor, the integral 

will be just the conduction current flow in that conductor for that plane at that instant 

of time. Moreover, the transverse E and H fields can be shown to satisfy Laplace’s 

equation in the transverse plane (Prob. 5.3), thus explaining the appropriateness of 

using Laplace solutions for the calculation of the ZL and C of the transmission line. 

When the finite resistances of conductors are taken into account, the identity of circuit 

and field analysis is no longer an exact one, but has been shown to be a good approx- 

imation, for practical transmission lines. This field basis for TEM waves will be de- 

veloped more in Chapter 8. 

5.4 [REFLECTION AND TRANSMISSION AT A RESISTIVE DISCONTINUITY 

Most transmission-line problems are concerned with junctions between a given line and 

another of different characteristic impedance, a load resistance, or some other element 

that introduces a discontinuity. By Kirchhoff ’s laws, total voltage and current must be 

continuous across the discontinuity. The total voltage in the line may be regarded as 

the sum of voltage in a positively traveling wave, equal to V,. at the point of discon- 

tinuity, and voltage in a reflected or negatively traveling wave, equal to V_ at the 

discontinuity. The sum of V, and V_ must be V,, the voltage appearing across the 

junction: 

V.+V=YV, (1) 

Similarly, the sum of current in the positively and negatively traveling waves of the 

line, at the point of discontinuity, must be equal to the current flowing into the junction 

or load: 

I, +/].=1, (2) 

The simplest form of discontinuity is one in which a load resistance R, is connected 

to the transmission line at the junction, as shown in Fig. 5.4a. Another case that is 

equivalent is that of Fig. 5.45 in which the first ideal line is connected to a second ideal 

line of infinite length and characteristic impedance Z,,; here R, = Zp,. Still other forms
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Fic. 5.4 (qa) Ideal transmission line with a resistive load. (b) Ideal transmission line of char- 
acteristic impedance Z, with a second ideal line of infinite length and characteristic impedance 
Zor, aS a load. 

of load circuits can produce an effective resistance R, at the junction. In all these cases 

V, = R,I,. By utilizing the relations between voltage and current for the two traveling 

waves as found in Sec. 5.2, Eq. (2) becomes 

TT t= — tb 3 

Lo Zo Ry ©) 

By eliminating between (1) and (3), the ratio of voltage in the reflected wave to that in 

the incident wave (reflection coefficient) and the ratio of the voltage on the load to that 

in the incident wave (transmission coefficient) may be found: 

AV _&-% = 4 

7a (5) V. Rp + Z% 
The most interesting, and perhaps the most obvious, conclusion from the foregoing 

relations is this: there is no reflected wave if the terminating resistance is exactly equal 

to the characteristic impedance of the line. All energy of the incident wave is then 

transferred to the load and t of (5) is unity. 

In Sec. 5.7 the definitions of reflection and transmission coefficients will be given 

for the case of sinusoidal signals and will include other than purely resistive loads. 

The instantaneous incident power at the loadisW7 = I, V, = V*_/Zp. The frac-
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tional power reflected is, therefore, the constant 

Wr 2 _f — p72 6 we p (6) 

The remainder of the power goes into the load resistor or the second line, so 

W. 
— a po” (7) 

T 

5.5 PULSE EXCITATION ON TRANSMISSION LINES 

Transmission lines are increasingly used for digital or pulse-coded information. We 

consider some simple examples utilizing the boundary and continuity conditions given 

above. 

Example 5.5a 
PULSE ON SHORT-CIRCUITED LINE 

Let us consider a signal in the form of a pulse having a constant value V, between ¢ = 

O and t = 1,/5 and zero otherwise. The pulse is fed into an ideal transmission line of 

length / such that / = vt,. We will analyze what happens when the pulse reaches the 

end of the line, which will be taken as short-circuited. 

Drawing (i) in Fig. 5.5a shows the pulse moving along the line at t ~ 0.37,. The 

arrows connecting the charges on the conductors are electric field vectors. The integral 

of the electric field is the voltage between conductors. The current flows in the con- 

ductors only where there is voltage, and current continuity is accounted for by displace- 

ment currents ¢ dE/dt at the leading and trailing edges of the pulse. 

At time ¢t, the leading edge of the pulse reaches the end of the line. Drawing (ii) in 

Fig. 5.5a shows the pulse shortly after t = ¢,. The short circuit requires that the voltage 

be zero. To maintain the voltage at zero during the time that the incident pulse is at the 

termination f, < t < f,, a negative-z-traveling (reflected) wave having opposite voltage 

polarity and equal amplitude is generated as shown in drawing (iii). Note that this result 

is predicted by (4) for R, = 0. Also, the zero voltage on the load agrees in (5) with 

R, = 0. Note that the polarity of the current in the reflected wave is the same as in 

the incident wave, as could be argued from Eqs. 5.2(10) and 5.2(12) with the fact that 

V_ = ~—V,. The total voltage on the line at the time used for drawings (ii) and (111) 

is their superposition; this is shown in drawing (iv), where it 1s seen that the voltages 

are almost completely canceled. At a still later time, the reflected pulse is seen on its 

way to the generator [drawing (v)]. Att = 2r,, the pulse will reach the pulse generator. 

What happens there depends on the impedance seen looking into the generator. Typi- 

cally, the characteristic impedance of the transmission line equals the output impedance
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Fic. 5.5a@ Reflection of a pulse at the end of a shorted line. The times ¢, and f, are those for 
which the leading edges and trailing edges, respectively, reach the end of the line. Drawings (ii), 
(iii), and (iv) are for various instants during the period in which the reflected wave is generated 

to maintain the voltage at zero across the short circuit. 

of the generator (it is matched). In that case, the reflected pulse is absorbed in the 

generator. Otherwise, another reflection takes place. 
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Computer interconnecting cable Computer 

No. 1 CC No. 2 
  

            

Fic. 5.5b Transmission line cable for transmitting digital signals between two computers. 

Example 5.5b 
PULSE REFLECTIONS ON A TRANSMISSION LINE 

INTERCONNECTING TWO COMPUTERS 

The aim of this example is to show the importance of transmission-line matching in 

controlling reflections for a transmission line used to interconnect two computers. Con- 

sider the two computers shown in Fig. 5.5b interconnected by a coaxial cable 100 m 

long and with a velocity of propagation 2 xX 10° m/s, so that there is a time delay of 

500 ns for a pulse to propagate from input of the cable to its output. Consider a portion 

of the digitally coded signal, made up of 10-ns pulses with basic spacing 20 ns as 

sketched in Fig. 5.5c. This is sketched versus distance in Fig. 5.5d at 5 ns before the 

0 10 
  

  

30 40 90 100 (ns) 

(c) 

| 
| 

| 
| 

| 

| 1 | + 
—21-19 -9-7 =3=-10  2z(m) 

Af {1 
—21-19 15-13 —3—1 z(m) 

(e) 

Fic. 5.5 (c) A portion of a pulse-coded signal versus time for the computer interconnection of 
Fig. 5.5b. (d) Voltage versus distance for a time 5 ns before leading edge of first pulse reaches 

input of computer No. 2 (defined as z = 0). (e) Voltage versus distance for reflected signal 110 

ns after instant of sketch (d).
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first pulse edge reaches computer No. 2. If input impedance of the second computer 

matches the characteristic impedance of the line, there is no reflection and the entire 
signal is accepted. But suppose its input impedance is 100 (Q and the characteristic 

impedance of the cable is 50 ©. By (4), the reflection coefficient is 

R,-Z 100-50 1 
R,+Z 100+ 50 3 

So the train of pulses is reflected, at } amplitude, toward computer No. 1 as sketched 

versus distance in Fig. 5.5e at 110 ns after time of Fig. 5.5d. If there is impedance 

mismatch at the terminals of computer No. 1 additional reflection will take place when 

the signal returns there and a spurious signal will be superposed on whatever desired 

code is being sent between the computers at that time. Since the reflected “echo” is of 

lower amplitude than the original signa, differentiation is possible on the basis of 

amplitude level, but there is an obvious advantage in matching impedances well enough 

that reflected signals are small. 

  

Example 5.5¢ 
SQUARE WAVE IN Z APPLIED TO INFINITE LINE 

As a third example, consider an infinite line suddenly charged at t = O with a square 

wave in distance from z = —1mtoz = +1m. Voltage distribution at ¢t = 0 is then 

as in Fig. 5.5f This may be considered a superposition of two such square waves, each 

of amplitude V,)/2. One of these moves to the right and the other to the left, each with 
velocity v. Thus at ¢ = 1.667 ns (taking v = 3 X 10% m/s) the two partial waves and 
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Fic. 5.5 Voltage and current distributions for Ex. 5.5c. (f) Voltage distribution at t = 0. 
(g) Traveling waves (dashed) and total voltage versus z (solid) at t = 1.667 ns.
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Fic. 5.5 (/:) Traveling waves of current (dashed) and total current (solid) versus z at f 
1.667 ns. (7) Voltage (solid) and current (dashed) versus z att = 5 ns. 

Il 

their sum are shown in Fig. 5.5g. Figure 5.54 shows the corresponding current distri- 

bution, taking into account the different sign relations between current and voltage for 

positively and negatively traveling waves. Figure 5.57 shows voltage and current dis- 

tributions at f = 5 ns. 

  

Example 5.5d 
PULSE REFLECTIONS WHEN PULSE IS LONGER THAN TRAVEL TIME DOWN THE LINE 

Example 5.5b considered reflections for pulses much shorter than the travel time down 

the transmission line. For many interconnections, especially those within integrated 

circuits, the delay time is shorter than pulse width. Reflections because of mismatch 

may still cause a problem, causing structure within the pulse. To illustrate the point, 

consider the first part of the pulse as a step function of voltage V, applied to an ideal 

transmission line at z = —/, with terminating impedances at end z = OQ so high that it 

may be considered an open circuit. The front of the wave travels along the line in the 

positive z direction and reaches the end at ¢ = f¢,. Since current must be zero at the 

open-circuited end z = 0, a reflected step wave must be generated with current opposite 

to that of the positively traveling wave, starting at the instant of arrival of the latter at 

z = 0. From Eq. 5.2(13), we know that current in the negatively traveling wave is 

—V/Zp, so it follows that V_ = V,,. 

As time goes on, the conditions to be met are that the total voltage at the input of 

the line ( = ~—/) must be the value V, of the pulse applied there and the current at the 

open end must be zero. These conditions can be satisfied by the sum of two square 

waves, one traveling in the positive z direction and one in the negative z direction. 

Figure 5.5] shows the voltages of the two individual waves and the superposed, or total,
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Fic. 5.5j Positively and negatively traveling wave components and their superposition to match 
boundary conditions on a transmission line with a pulse of voltage Vg applied to the line at z = 

~/ and the line open-circuited at z = 0. The applied pulse length is much longer than the travel 
time along the line. 

voltage. Note that the total voltage is always equal to Vy at z = —/, as required by the 

boundary condition. As discussed in the preceding paragraph, the condition where the 

negatively traveling wave has the same polarity of voltage as the positively traveling 

wave gives a zero total current. Thus, for either the situation with both waves having 

zero value or both with V,, the boundary condition at the open end is satisfied. It is 

seen in Fig. 5.5; that the sum of the two waves meets that requirement. Since the two 

waves satisfy the transmission-line equations and their sum satisfies the boundary con- 

ditions, they constitute the unique solution. 

Note that a square wave of voltage is produced at z = 0 with voltage zero for intervals 

of 2L/v, interspersed with intervals of the same value with V = 2Vp. 

  

Example 5.5e 
TRANSMISSION LINE WITH CAPACITIVE TERMINATION 

As a somewhat different example, consider the ideal transmission line of Fig. 5.5k 

terminated in an uncharged capacitor. We take the incident wave as the exponential 

buildup of Fig. 5.5], 

Vi @) = Voll — e747] (1) 

where, for convenience, time zero is taken as the instant the forward wave arrives at 

the capacitor. By continuity of voltage and current, 

Vi O+VO=VEO (2)
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FiG. 5.5 (x) Ideal transmission line terminated with a capacitor; (/) form of forward-traveling 
voltage wave incident on Cp. 

Ve Vw dV. (t) 
oo S(t) = Cy 3 

Zo Zo = Co 7 ©) 

By combining these equations and using (1) we obtain 

dVv_ (t) + Vv. © — Vo (i —_ e~ 1/70) —_ Vo 4-t/n9 (4) 

dt T Ty To 

where T; = Cy Zp is a time constant set by the capacitor and transmission-line imped- 

ance. A solution of this first-order differential equation is 

To + T 
V_() = vs +A, eo’ = (7) ir (5) 

The arriving wave has zero voltage at the instant of arrival and the capacitor is un- 

charted, so V_ (O) = O and 

27, 
A, = —— (6) 

Tg —~ Ty 

Using (2), the voltage is found to build up in the capacitor as 

2 2 V(t) = va 2 el ee vn (7) 

It can be checked that (3) is satisfied. The z variation of the reflected wave is obtained 

by substituting t + z/u for t in (5). 

5.6 PULSE FORMING LINE 

One way of forming pulses of a desired length is by charging a transmission line of 

length / to a de voltage V, and then connecting to a resistor as shown in Fig. 5.6a. (In
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Fic. 5.6 (a) Transmission line of length / (time delay one way = (¢,) charged to potential V, 

and connected to resistance R at tf = Q. (b) Lumped element approximation to (a). (c) Wave 
shapes of resistor voltage for different relations of R to Zp. 

practice, the line is often approximated by lumped elements, so the lumped-circuit 

approximation is shown in Fig. 5.6b.) If the resistance R is matched to the characteristic 

impedance, a pulse of height V,/2 is formed across R for a time 2t,, where t, is one- 

way propagation time down the line and the line completely discharged. It may then 

be recharged and the process repeated. It may at first seem puzzling that voltage across 

the resistor is not just V, when the switch is closed, but this is because a traveling wave 

to the right is excited by the connection. Voltage across the resistor just after closing 

the switch is then the sum of dc voltage and the voltage of the positive wave, V,: 

Vp = Vo + Va (1) 

The current flowing im the resistor is just the negative of current in the positively 

traveling wave. 

Vy 

RS le 0 

(2)
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Since V, = Rip, combination of (1) and (2) gives 

v= (-Bo)\y= —®y ‘) 
RAR +Z,/° Z * 

Thus if R = Z,, Vp = Vo/2 and V, = —V,/2. Current in the wave started to the right; 
I, = —V,/2Z, by (2). When this current reaches the open end, z = /, there must then 

be a reflected wave with current /_ = V,)/2Z, so that the net current is zero at the open 

end as required. This requires a voltage in the reflected wave V_ = —Z)/_ = —V,/2, 
which travels to the left, canceling the remaining voltage on the line and bringing zero 

voltage and current to the resistance at f = 2r,. From then on all is still. Thus in the 

case of R = Zp, the wave to the right discharges half the voltage initially on the line, 

and the wave to the left the other half, yielding a rectangular pulse as shown in Fig. 5.6c. 

If R # Zp, the wave started to the right upon closing of the switch is other than V,/2, 

so cancellation of the voltage on the charged line in one round trip does not occur, and 

there are further reflections when the wave returns to the input. Figure 5.6c sketches 

the form of resistor current for R > Z, and for R < Zp. (See also Prob. 5.6b.) 

  

Sinusoidal Waves c om Ideal Transmission Lines 

5./ REFLECTION AND TRANSMISSION COEFFICIENTS AND IMPEDANCE 

AND ADMITTANCE TRANSFORMATIONS FOR SINUSOIDAL VOLTAGES 

The preceding discussion has involved little restriction on the type of variation with 

time of the voltages applied to the transmission lines. Many practical problems are 

concemed with sinusoidal time variations. If a sinusoidal voltage is supplied to a line, 

it can be represented at z = Q by 

V(O, tf) = Vos wt (1) 

The corresponding wave traveling in the positive z direction is 

Vz, t) = |V,| cos of: _ :) 
Up 

and that traveling in the negative z direction is 

V_(z, t) = |V_| cos + =) + a 
Up 

The total voltage is the sum of the two traveling waves: 

Viz, t) = |V,,| cos of: ~ 2) + |V_| cos} - | + a (2) 
Vy Up 
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The corresponding current, from Eq. 5.2(13), is 

_ Vs _2)\_ W-l z Iz, th = Z, cos wi ft v, Z, cos| wl t + v, + @, (3) 

In Sec. 5.2 we saw that a constant point on a wave described by F(t — z/v) is seen 

by an observer moving with a velocity v in the positive z direction. The argument of a 

sinusoid is called its phase, so the velocity for which phase is constant is called the 

phase velocity v,. 

For sinusoidal time variations, it is useful to rewrite (2) and (3) in phasor form: 

V = Vi ie F + V_el® (4) 

1 ; . 
Tl=—([V,eU" — V_el] (5) 

Lo 

where 

B = — = wVIC (6) 
p 

We may take V., as the reference for zero phase so that it is real. Then V_ is in general 

complex and equal to |V_|e/%, with 6, being the phase angle between reflected and 
incident waves at z = O as in the instantaneous form (2). 

The quantity B is called the phase constant of the line since 8z measures the instan- 

taneous phase at a point z with respect to z = 0. Moreover, voltage (or current) is 

observed to be the same at any two points along the line that are separated in z such 

that 8z differs by multiples of 27. The shortest distance between points of like current 

or voltage is called a wavelength A. By the foregoing reasoning, 

BPA = 27 

or 

2 
B = = = wVLC (7) 

The expressions for reflection and transmission coefficients in Eqs. 5.4(4) and 5.4(5) 

can now be written in a special form for sinusoidal waves. It is convenient to choose 

the origin of the z coordinate at the discontinuity to be analyzed, as shown in Fig. 5.7 

for three representative discontinuities. It is assumed that a previous analysis gave the 

equivalent value of impedance looking in the +z direction at z = OQ in the two lower 

lines. We will see below how this is done. The ratio of total phasor voltage to total 

phasor current at any point is the definition of impedance. We set the impedance at 

z = O, the load impedance Z,, equal to the ratio (4) to (5). Solving for the ratio V_/V,,, 

the reflection coefficient for sinusoidal waves is obtained: 

XN
 

PV,” Z, + Zo (8)
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Fig. 5.7 Representative situations where a line of length / with a discontinuity at z = O is the 
subject of the analysis. 

Also, (4) and (5) can be combined to give the transmission coefficient: 

= = oa (9) 

+ L + Lo 

The load voltage V, is the total voltage at z = 0. 

The expressions for power reflected and transmitted at a discontinuity, given for real 

functions of time in Eqs. 5.4(6) and 5.4(7), can be adapted to sinusoidal signals of the 

complex exponential type. Since power in this case is V/*/2, and for a single wave in 

a loss-free line this is VV*/2Z, = |V|*/2Z,, the fractional reflected power is 

  

W > V_-? - 
ae = | F = |p/ (10) 
Wr WV, 

and the remainder goes into the load: 

W. 
we = 1 le (11) 
Wr
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Now let us find expressions for the input impedance and admittance at —/. We find 

impedance by dividing (4) by (5) forz = —I: 

4: = ta| Sa (12) 

Or, substituting (8), 

  (13) t 

7=7 Z, cos Bl + jZ, sin Bl 

0 Z, cos Bl + jZ, sin Bl 

By defining admittances Y, = 1/Z;, Y, = 1/Z,, and Yy = 1/Z), we can find an 
expression of the same form for Y;: 

| cos Bl + jY> sin | 
= Yo Y, 

Y, cos Bl + jY, sin Bl 
£ 

    

Example 5.7 
CASCADED THIN-FILM LINES 

Suppose the second diagram of Fig. 5.7 represents two thin-film transmission lines in 

a microwave integrated circuit. The load Z,. represents a device having a real imped- 

ance of 20 2 at the signal frequency, 18 GHz. Line 2, of characteristic impedance Z,, 

= 30 Q, has a length 2, = 2 mm. Line 1, of characteristic impedance Z), = 20 QO, 
has a length /, = 1.5 mm. The phase velocities for both lines are the same, 2 X 10° 

m/s. Let us find the impedance at the input to line 1. 
First we must solve for the way the load impedance Z,, transforms along the line 

attached to it. To do this we apply formula (13) to that section of line. For both lines 

(6) gives 

(27)(18 X 10°) rad/s 

2 X 10° m/s 
  B=—= = 566 rad/m 

Up 

For variety we will take angles in degrees here, as both degrees and radians are com- 

monly used in transmission-line calculations. Thus Bf, = 64.9 degrees and Bf, = 
48.6 degrees: 

  

_ 20 cos 64.9° + 730 sin 64,9° 

30 cos 64.9° + j20 sin 64.9° 

36.7 + jl1.8 0 

Now we can find Z,, at the input to line 1 using Z,, as the load Z,,: 

_ (36.7 + 711.8) cos 48.6° + j20 sin 48.6° 

20 cos 48.6° + j(36.7 + j11.8) sin 48.6° 

= 18.9 — ji460 

  

Zi
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Systems with several lines of different characteristic impedances in cascade can be 
analyzed as we have in this example. In each case the analysis starts with the point 
farthest from the signal source, transforming the impedance back successively to the 
next discontinuity until the input is reached. In general, Zo, B, and / will be different 
for each section. 

  

5.8 STANDING WAVE RATIO 

Let us examine the phases of the voltages in Eq. 5.7(4). One coefficient, say V,., can 

be chosen to be real by choice of origin of time. The reflection coefficient, Eq. 5.7(8), 

which is a complex number, can be written in the form |ple/% so V_ in Eq. 5.7(4) can 
be replaced with V, |ple/%, giving 

= Vie JP + V, [pleXtot (1) 
Let us write this as a real function of time with — z replaced by /, the distance from the 

end of the line: 

Vit, —1) = V, cos(wt + Bl) + V,|p| cos(wt — Bl + 4,) 

Considering any particular instant, say t = 0, we can readily see that the argument of 

the cosine in the incident wave (first term), which is its phase, increases with distance 

from z = O and that the phase of the reflected wave (second term) decreases. These 

phases are shown in the top drawings of Fig. 5.8 where it is clear that at some distance 

Zo, the phases are the same. At z, they differ by 7 rad, one having decreased by 7/2 

and the other having increased by 7/2. At z,, they differ by 27r rad, and so on. So 

there are a series of locations where the two sinusoids are in phase and another series 

of locations where they are a rad out of phase. Where they are in phase, they add 

directly at each instant, and where a rad out of phase, they subtract. At the former 

locations the total voltage has its maximum amplitude, and at the latter, its minimum. 

Analysis of the sum of the incident and reflected waves given in (1) (see Prob. 5.8f) 

shows that the total voltage can also be represented as the sum of a standing wave and 

a traveling wave. The total voltage is shown in the lower drawing of Fig. 5.8 for several 

particular times in a cycle selected to show the voltage when it has its maximum and 

minimum peak values. The broken line shows the voltage amplitude along the trans- 

mission line. 

The maximum voltage is 

Vinax = |Va.| + [V_| (2) 
and the minimum, found a quarter-wavelength from the maximum, is 

Vinin = IV. ~ \V_| (3) 

The standing wave ratio is then defined as the ratio of the maximum voltage amplitude
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Fic. 5.8 The upper graph shows the phases of the incident and reflected waves att = Qona 
line with a reflection coefficient p = |ple/%. The total voltage V(z) is shown for selected times 
in the lower graph, wt; = —0,/2, wt, = —6,/2 + 1/2, wtz = —8,/2 + 7, wl, = —6,/2 
+ 37/2. The broken line gives the voltage amplitude along the line. 

to the minimum voltage amplitude: 

V 
S =o (4) 

By substituting (2) and (3) and the definition of reflection coefficient, Eq. 5.7(8), we 

find 

_ Walt iv|_ itp 
Vil - [V_| 1- Io 

It is seen that standing wave ratio is directly related to the magnitude of reflection 

coefficient p, giving the same information as this quantity. The inverse relation is 

S- 1 

S +1 

  

S (5) 

  

lp| = (6) 

Figure 5.8 is plotted for § = 3, corresponding to |p| = 3. 
Because of the negative sign appearing in the current equation, Eq. 5.7(5), itis evident
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that at the position where the two traveling wave terms add in the voltage relations, 

they subtract in the current relation, and vice versa. The maximum voltage position is 

then a minimum current position. The value of the minimum current is 

_ Vv. | —|V_| 
Dinin ~ Zo (7) 

At this position impedance is purely resistive and has the maximum value it will have 

at any point along the line: 

_ [Welt Wel] — 
Zam = 2a ya] ” 

At the position of the voltage minimum, current is a maximum, and impedance is a 

minimum and real: 

I — Wal + [Ve (9) 

_ 7 | Val - W]} _ 2% 
Zin TH] * 3 “o 

  

Example 5.8 
SLOTTED-LINE IMPEDANCE MEASUREMENT 

A slotted line is an instrument that can be used to measure impedances. It is a trans- 

mission line containing a movable probe with which the standing wave ratio and the 

position of a voltage minimum or maximum can be found. The unknown impedance is 

connected to the end of the slotted line. 

Suppose a measurement on a slotted line of characteristic impedance Z, = 50 0 

reveals a standing wave ratio § = 3 and the closest voltage minimum is 0.33A from 

the unknown load impedance. Let us see how Z, is deduced. In Fig. 5.8, we see that 

at z, where the minimum is found, the phase of the incident wave, — 6z attains the 

value (6, + 7)/2, so 

  

and 

2 
G, = 28(0.33A) - 7 = 2 7 (0.33A) ~ aw = 1.0 rad 

where we have used Eq. 5.7(7). Using the given S and (6) we find |p| to be 0.5. Then 

p = 0.5e/!”
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From Eq. 5.7(8) we can get Z, in term of p and Zp. Thus 

1+ p 1 + 0.5e7° 
Z, = Z = 50| ———{, |] = 52.8 + j59.3 0 

3 ~ a 3 ~ ne J 

  

  

5.9 THE SMITH TRANSMISSION-LINE CHART 

Many graphical aids for transmission-line computations have been devised. Of these, 

the most generally useful has been one presented by Smith,* which consists of loci of 

constant resistance and reactance plotted on a polar diagram in which radius corresponds 

to magnitude of reflection coefficient. The chart enables one to find simply how imped- 

ances are transformed along the line or to relate impedance to reflection coefficient or 

to standing wave ratio and position of a voltage minimum. By combinations of oper- 

ations, it enables one to understand the behavior of complex impedance-matching tech- 

niques and to devise new ones. It is much used in displaying the locus of impedance 

of many useful devices as frequency is varied. Although computer programs are avail- 

able for transmission-line calculations, its role in displaying and understanding match- 

ing mechanisms remains useful. This chart utilizes the reflection coefficient plane. 

Impedance for any point along a transmission line with a passive load then lies within 

the unit circle. Loci of constant resistance are circles and loci of constant reactance are 

circles orthogonal to those of constant resistance. We will first show the basis for this, 

and in the following section give some examples of the chart’s use. 

The discussion of the chart will begin with Eq. 5.7(12), which gives impedance in 

terms of reflection coefficient. We define a normalized impedance 

Z.- 

M=r+ WEF (1) 
0, 

and a complex variable w equal to the reflection coefficient at the end of the line, shifted 

in phase to correspond to the input position /: 

w=u+ ju & pe2 (2) 

Equation 5.7(12) may then be written 

  

i+ 
AD = 7 ~ (3) 

— Ww 

OT 

_  L+ ut jv) 
rt = Te ip) (4) 

4 P.H. Smith, Electronics 12, 29-31 (1939); 17, 130 (1944).
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This equation may be separated into real and imaginary parts as follows: 

1 - (ur ++ yp) 
  

  

= 5 
"= wy? + v? ©) 

2U 

— (1 — u)* + v? ©) 

Or 

roy yp (7) “ - —— - = ———— 
l+r (1 + ry? 

5 1) 1 
we (v4) = (8) 

x x7 

If we then wish to plot the loci of constant resistance r on the w plane (wu and v 

serving as rectangular coordinates), (7) shows that they are circles with centers on the 

u axis at [r/(1 +r), 0] and with radii 1/(1 + 7). The curves for 7 = 0, 3, 1, 2, © are 

sketched in Fig. 5.9a. From (8), the curves of constant x plotted on the w plane are also 

circles, with centers at (1, 1/x) and with radii 1/|x|. Circles for x = 0, +3, £1, +2, 
coo are sketched in Fig. 5.9a. Any point on a given transmission line will have some 

impedance with positive resistance part, and so will correspond to a particular point on 

the inside of the unit circle of the w plane. Several uses of the chart will follow. Many 

90 

yh SO 

  

  
Fig. 5.9a_ Basic features of the Smith Chart.
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FIG. 5.96 Smith Chart. 

extensions and combinations of the ones to be cited will be obvious to the reader. A 

chart with more divisions is given in Fig. 5.9b. 

5.10 SOME USES OF THE SMITH CHART 

In this section we show the use of the Smith chart in displaying the relation between 

impedance and reflection coefficient, in transferring impedances or admittances along 

the line, and in impedance matching. Other uses are illustrated by the problems and 

still other extensions or combinations will be evident to the reader.
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To Find Reflection Coefficient Given Load Impedance, and Conversely 

The point within the unit circle of the Smith chart corresponding to a particular position 

on a transmission line may of course be located at once if the normalized impedance 

corresponding to that position is known. This is done with a reasonable degree of 

accuracy by utilizing the orthogonal families of circles giving resistance and reactance 

as described above. Thus, point A of Fig. 5.10a is the intersection of the circles r = 1 

and x = | and corresponds to a position with normalized impedance 1 + /1. Itis clear 

from Eq. 5.9(2) that }w| = |p| and from Eq. 5.9(7) that |w| = (wu? + v?)!/* = 1 on the 
r = OQ circle, which is the outer edge of the graph. A measure of the radius to some 

point on the graph as a fraction of the radius to the , = 0 circle thus gives |p| directly. 

If the point on the Smith chart is the normalized load impedance, / = 0, and Zw = 

Zp, 80 the phase angle of the reflection coefficient can be read directly. One can, of 

course, reverse the process to find Z, if p is given. 

Example 5.10a 
REFLECTION COEFFICIENT FROM LOAD IMPEDANCE 

Suppose a transmission line of characteristic impedance Z, = 70 Q) is terminated with 

a load Z, = 70 + j70 ©. The normalized load impedance is Z(0) = 1 + j1, shown 

as point A in Fig. 5.10a. The magnitude of p is 0.45 and 2p = Zw = 1.11 rad so 

po = 0.45e/''!. The angle may be found by reading the outside wavelength scales, 

recognizing that a quarter-wave is 7r radians on the chart. 

  

To Transform Impedance Along the Lime As position / along a loss-tfree line, 

measured relative to the load, is changed, only the phase angle of w changes, as can be 

seen from Eq. 5.9(2) wherein p is a complex number, the reflection coefficient at the 

load. Thus, change of position along an ideal line is represented on the chart by move- 

ment along circles centered at the origin of the w plane. The angle through which w 

changes is proportional to the length of the line and, by Eq. 5.9(2), is just twice the 

electrical length of line B/. (Most charts have a scale around the outside calibrated in 

fractions of a wavelength, so that the angle need not be computed explicitly. See Fig. 

5.10a.) Finally, the direction in which one moves is also defined by Eq. 5.9(2). If one 

moves toward the generator (increasing /), the angle of w becomes increasingly nega- 

tive, which corresponds to clockwise motion about the chart. Motion toward the load 

corresponds to decreasing / and thus corresponds to counterclockwise motion about the 

chart.
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Fic. 5.10q@ Smith chart for impedances. Points A, B, and C and associated broken lines relate 
to Exs. 5.10a, 5.10b,and 5.10c. 

  

Example 5.10 
IMPEDANCE TRANSFORMATION 

Consider the line and load of Ex. 5.10a for which the normalized load impedance is 

1 + 71 and is shown at point A in Fig. 5.10a. If the line is a quarter-wave long 

(90 electrical degrees), we move through an angle of 180 degrees at constant radius on 

the chart toward the generator (clockwise) to point B. The normalized input impedance 

is then read as 0.5 — j0.5 for point B. If input impedance is given and load impedance 

desired, the reverse of this procedure can obviously be used. 
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FiG.5.10b Polar transmission-line chart for admittances. The constructions involving points C,, 
C3, and D,-D, relate to Ex. 5.10d. 

To Find Standing Wave Ratio and Position of Voltage Maximum from a 

Given Impedance, and Conversely If we wish the standing wave ratio of an 

ideal transmission line terminated in a known load impedance, we make use of the 

information found in the preceding section. Equation 5.8(8) shows that the location of 

maximum impedance is also the location of maximum voltage and the impedance there 

is real. We see that 

S = = Cay (1) 

and can see from Fig. 5.10a that the point where impedance is real and maximum along 

any ideal transmission line (represented by a |p| = constant circle) lies on the right side 
along the horizontal axis (uw axis). Thus, in following about the circle on the chart 

determined by the given load impedance, we note its crossing of the right-hand u axis 

of the w plane. The value of the normalized resistance of this point is then the standing 

wave ratio; the angle moved through to this position from the load impedance fixes the 

position of the voltage maximum.
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The reversal of this procedure to determine the load impedance, if standing wave 

ratio and position of a voltage maximum are given, is straightforward, as is the extension 

to finding position of voltage minimum or finding input impedance in place of load 

impedance. 

BES SS 

Example 5.10¢ 
DETERMINATION OF STANDING WAVE RATIO AND LOCATION 

OF VOLTAGE MAXIMUM 

    

Let us continue our analysis of the ideal transmission line and load discussed in Exs. 

5.10a and 5.10b. The normalized load impedance is 1 + /1 plotted at point A in Fig. 

5.10a Moving along the line away from the load (clockwise), one arrives at the pure- 

resistance point C by going 0.088 wavelength. The value of maximum normalized 

resistance, which equals the standing wave ratio S, by (1) is read as 2.6. 

  

Use as am Admittamce Diagram Since admittance transforms along the ideal line 

in exactly the same manner as impedance, Eq. 5.7(14), it is evident that exactly the 

same chart may be used for transformation of admittances with the same procedure as 

for impedances described in the above. Admittance is read for impedance, conductance 

for resistance, and susceptance for reactance as seen in Fig. 5.10b. There are differences 

to remember: the right-hand u axis now represents an admittance maximum and, there- 

fore, a current maximum instead of a voltage maximum; the phase of the reflection 

coefficient read as described above and corresponding to a given normalized load ad- 

mittance is that for current in the reflected wave compared with current in the incident 

wave and is therefore different by a from that based on voltages. (See Prob. 5.7d.) 

  

  

Ia TaN Cel ie REF   

ADMITTANCE ANALYSIS OF VARIABLE SHORTED-STUB TUNER 

In this example we will use the Smith chart for admittances to analyze a mismatched 

line that employs a variable shorted-stub tuner to produce a unity standing wave ratio 

in the line leading up to the stub. Figure 5.10c shows the arrangement. Suppose Z, = 

50 © in the main line and Z),. = 70 Q in the stub. Assume Z, = 20 — j20 0. We 
will find the appropriate stub location z = —/,, and the stub length /.. The admittance 

chart rather than the impedance form is used because of the convenience in handling 

shunt circuits in the admittance formulation.
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0 

~l; ~lm | ° o— _ 

Sf 

. 

o= ~ 

Zs 

VS 
Fic. 5.10c Variable shorted-stub tuner connected in shunt to provide matching at —/,, and 
therefore S = 1 forz < —1,,. 

  

  

ZL 

__} 
      

  

The load admittance is Y, = 1/Z, = 0.025 + j0.025 S and the characteristic 
admittance is ¥y = 1/Z) = 0.020 S. The normalized load admittance is 1.25 + 71.25; 

this is at point D, in Fig. 5.105. 

The input admittance of the shorted stub is seen from Eq. 5.7(14) to be purely im- 

aginary since Y, = —jY, cot Bl. This suggests that it should be placed at a point along 

the main line —z = 1, where the admittance has a normalized real part g = 1 and an 

imaginary part b that can be canceled by Y,,. Following a path of constant |p| = (w| 
toward the generator, we come to the g = 1 curve where b = 1.13 (point D,) corre- 

sponding to an unnormalized susceptance of B = (0.020)(1.13) = 0.0226 S. That is 

seen to be 0.485A from the load. A stub with an input susceptance of — 0.0226 S is 

connected in shunt to cancel out the imaginary part of the admittance. This moves us 

on the admittance chart from D, to D, where g = 1 and the line is perfectly matched 

for waves approaching the stub location from the generator. 

Now let us find the length /., of the stub. Since Z), = 70 0, Yo, = 0.014 S. The 
normalized input susceptance of the stub must be b,, = ~0.0226/0.014 = —1.61. 

The shorted end of the stub has an infinite admittance. That is at C, on the Smith 

admittance chart in Fig. 5.10b at the right end of the real axis. To transform this ad- 

mittance to the normalized susceptance — 1.61 we move clockwise as shown to point 

C,. The length of the stub must be 0.088A. 

The line to the right of the stub appears as a conductance in parallel with a capaci- 

tance; addition of the shunt stub provides an inductance which makes the combination 

appear as a parallel tuned circuit. It should be clear that this matching technique leaves 

a standing wave in the line between the load and the stub as well as in the stub and 

provides exact matching only at the one frequency. 
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To Transform Impedance Along Cascaded Limes It is often useful to find the 

input impedance of cascaded lines of differing characteristics as in Ex. 5.7. The Smith 

chart involves impedances normalized to the characteristic impedance, so a study of 

impedance transformation in a cascade of lines requires renormalization for each line. 

One starts at the load and transforms, line by line, back toward the generator. 

    
AERIS: eS EAN Bay MI Rati N aE oe 

Example 5.10e 

IMPEDANCE TRANSFORMATION ALONG CASCADED LINES 

  

      

For the cascaded ideal lines in Fig. 5.10d, let us find the fraction of the power incident 

in line 1 in a 10-GHz signal that is absorbed in the load. This is given by a knowledge 

of |p| in line 1 using Eq. 5.7(11) and recognizing that the power passing the junction 
at the end of line 1 must be absorbed in the load since we are assuming ideal lossless 

lines. 

Using the parameters for line 3 given in Fig. 5.10d we find the normalized load 

impedance £,, = Z,/Zo, = 2. The wavelength A, = u3/f = 2 cm, sol, = 0.13. 

The load impedance Z,, is marked as point EF, on the Smith chart in Fig. 5.10e. We 

move along the constant |w| circle toward the generator by 0.1A. The point E, is at the 

normalized input impedance Z,, = 0.98 — j0.70. 

To transform the impedance along line 2, we must first denormalize Z,, and then 

normalize it to line 2 to get the load impedance Z,.,; thus, £,. = Zo30;3/Zp. = 0.70 
~j0.50. This. point is marked E,. The wavelength in line 2 is A, = v,/f = 1.5 cm, 
so 1, = 0.2A,. We move along a constant |w| circle clockwise from E, by 0.2A to the 

input of line 2 (marked E,) where {, = 0.65 + j0.46. 

To find the reflection coefficient at the load point for line 1, we renormalize ¢,,, so 

by = Loob2/Zo, = 0.91 + j0.64. This is the point E;. Measuring the distance from 
E to the origin and dividing by the radius of the r = O line, we obtain |p,| = 0.32. 
Then 

Wr = 1 — |p,/? = 0.90 Wi 
is the fraction of the incident power in line 1 that is dissipated in the load. 

  

  

eo 

  

Z01 Z02 Up2 Z03 Up3 | Zp 

_} 
Fi¢ 5.10d Cascaded transmission lines with parameters for Ex. 5.10e. Zo, = 50 0, Zg> 

70 QO, Zo3 _ 50 Q, Zr = 100 Q, l, = 3 mum, ls = 2 mm, Up = 1.5 x 10° m/s, V3 

2 X 10° m/s. 

      

  

  = = 

  

l
i
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Fic. 5.10e Determination of |p| for Ex. 5.10e. 

      ERITREA ERE RID I ORT STII UE SET EN MEN ARNI TR UIC NGA EG IRC ROCA NETSB OR PIE NIE IAS TSR ITS SANS IE ENTS SOT OTT 

Nonideal Transmission Lines 

5.11 TRANSMISSION LINES WITH GENERAL FORMS OF DISTRIBUTED IMPEDANCES: 
LOSSY LINES 

For lines with losses or for filter-type transmission circuits, we may generalize the 

distributed series element in the circuit model to an impedance Z per unit length, and 

the distributed shunt element to a general admittance Y per unit length, as shown in 

Fig. 5.11la. For steady-state sinusoids, using complex notation, the differential equations 

for voltage and current variations with distance are then 

  

dV 
— = -Z] 1 i (1) 

dl 
= —YV 2 Ts (2) 

Differentiation of (1) and substitution in (2) then yield 

d°V = yV 3 
dz Y ( ) 
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IT Z dz I+dI 
Ss — > 

v| Y dz Iv dV 

o-—— —> oO 

(a) 

L dz R dz 

———T-—-wv -—   

C “ G dz 

  

(a) 

Fic. 5.11 (a) Differential length of general transmission line. (b) Lossy line with series 
resistance and shunt conductance. 

where 

y= V2ZY (4) 

The solution to (3) may be written in terms of exponentials, as can be verified by 

substitution of the expression 

= V,e% + Ve” (5) 
From (1), the corresponding solution for current is 

1 
l=—([V,e ” — V_e™] (6) 

Lo 

Z ZL 
Z=2= [Ff are ig (7) 

The characteristic impedance Z, is in general complex, indicating that the voltage 

and current for a single traveling wave are not in phase. The quantity y is called the 

propagation constant and is also generally complex, 

y= at jp = VZY (8) 

where 

so that if (5) is written in terms of @ and B, 

V = Vie Ve JB + V_e“el” (9)
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Thus a@ tells the rate of exponential attenuation of each wave and is correspondingly 

called the attenuation constant. The constant B tells the amount of phase shift per unit 

length for each wave and is called the phase constant, as in the loss-free case. 

The formula for reflection coefficient derived in Eq. 5.7(8) applies to this case also, 

  

remembering that Z) is complex. To find the input impedance at z = —/ in terms of a 

given reflection coefficient p = V_/V, at z = 0, division of (5) by (6) yields 

Vie% + Ve” 1 + pe?” 

This may be put in terms of load impedance by substituting Eq. 5.7(8): 

7 = Z, cosh yl +Zp sinh yl 

'  ") Z, cosh yl + Z, sinh yl 
  (11) 

Transmission Line with Series and Shunt Losses A very important case in 

practice is one in which losses must be considered in the transmission line. In general 

there may be distributed series resistance in the conductors of the line, and distributed 

shunt conductance because of leakage through the dielectric of the line. Distributed 

impedance and admittance are then (Fig. 5.115) 

Z=R+jol, Y=G+t jo (12) 

where L includes both external and internal inductance. These may be used as the values 

of Z and Y in (4) and (7) to determine propagation constant and characteristic imped- 

ance. The formula (10) applies to impedance transformations, and the Smith transmis- 

sion-line chart may be utilized with a modification which recognizes that y is complex. 

The procedure is as in Sec. 5.10 except that, in moving along the line toward the 

generator, one moves not along a circle but along a spiral of radius decreasing according 

to the exponential e~ 7, 
For many important problems, losses are finite but relatively small. If R/wL << 1 

and G/wC << 1, the following approximations are obtained by retaining up to second- 

order terms in the binomial expansions of (4) and (7), with (12) substituted. 

  

  

  

R GV L/C _ - Se (13) 
2VL/C 2 

RG G? R? 
= wVLC|]1 — + ++ 14 

B ° 4w°LC 8ar-C? 8a L? (14) 

    

ne Flr + By 28, BE). (@_ ®)) ay 
0 VC Bue Bae | AwLC) | \2@C 2d, 

In using the foregoing approximate formulas, it is often sufficient to retain only first- 

order correction terms, in which case B reduces to its ideal value of 27r/A, a is computed
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Formulas for Specific Transmission Line Configurations 

Chapter5 Transmission Lines 

Table 5.11b 

  
  

    

  
  

  

  
      

  

  

        
  

  
  

  
  

          
    

    
    

    
  

  

    
      

op 
a 

Formulas for a <b 

. 2re ve 
Capacitance C, . FT __ eb 

farads/meter In ) cosh! (3) a 
ay da 

External inductance L, A (to Hench! (5) eee a 
heurya/meter 2e in(® ry r cosh d an 

2se 2rue’ xo xe’! 
Conductance G. ; 3 = ; __ cb we b 
siemens/meter In i) “(2 *) coah™?! () cosh! () a a 

2x 1 = ie m 

Resistance R, ohms/meter Ri (i + *) 2R,{_s/d bee as + Gp OO 2k, 
‘ 2e\rq ry wd (s/d)? — 1 ita, q? E +g2— b 

Internal inductance L,, R 
henrys/meter (for high < _ — 

frequency) a 
_ at 

{in [2 (59) Characteristic impedanceat| Lin (2) ® coah-! (2) r l+q wo 
high frequency Zp, ohms Zr \K r d 1 + 4p? : b 

- (1 — 4q*) 16p 

(I~ 9°) 
1 f2\ 23 20 {in Exess ——7 

Zo for air dielectric 60 In (2) 120 cosh + (2) e120 in(*) | Gt | 2 1202 = 

‘ if a/d >> 1 - Pa- 498)| b 
ié6p 

Attenuation due to conduc-| Fe > 
tor a, 2Zo 

Attenuation due to dielec- . GZy on =o (5 ) > 
tric ag Oe 2 2 2» \¢e 

Total attenuation dB/meter| <-—— 8.686 (2. + az) > 

Phase constant for low-loss ’ 7 2 ar > 

lines A p x 
  

All units shove are mks. 
« = e'—je’ = permittivity, farads/meter 

» = permeability, henrys/rmeter 

n= Vu /e ohms 

e’’ « loss factor of dielectric = o-/u 
R, = skin effect surface resistivity of conductor, chms 

% = wavelength in dielectric 

Formulas for shielded pair obtained from Green, Leibe, and Curtis, Bell System 
Tech. Journ., 15, pp. 248-284 (April 1938). 

for the dielectric 

from (13), and Z, includes a first-order reactive part, given by the last part of (15). Note 

that the first-order effects of the two loss factors tend to cancel in Z, whereas they add 

in @. 

Several of the important formulas for loss-free, low-loss, and general lines are sum- 

marized in Table 5.1la. Formulas for properties of lines of several different cross- 

sectional forms are listed in Table 5.11b. 

Pihysical Approximations for Low-Loss Lines The approximate form (13) for 

attenuation in transmission lines with small losses may be derived from physical ideas. 

This approach will be especially useful in estimating attenuation of more general guid- 

ing systems to be considered later in the text. Let us consider the positively traveling
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voltage wave of (9) and its corresponding current: 

V = Vie Ve J (16) 

l= 1,e°%e J (17) 

The average power transfer at any position is then given by W, = § Re(VI*): 

Wr = 3V,1,e77@ (18) 

It is assumed here that the imaginary part of Z, is negligible so that J, is in phase 

with V_,. 

The rate of decrease of the average power (18) with distance along the line must 

equal the average power loss w, in the line, per unit length: 

dW, 1 —2az aE = -wW, = —2a 5 Valse ~ — —2aW, 

Or 

Wr _ Wy 19 — (19) 

This is an important formula relating attenuation constant to power loss per unit length 

and average power transfer. By the nature of the development, it applies to the atten- 

uation of a traveling wave along any uniform system. 

To apply (19) to a transmission line with series resistance R and shunt conductance 

G, we first calculate the average power loss per unit length, part of which comes from 

the current flow through the resistance and another part from voltage appearing across 

the shunt conductance. For convenience we calculate w, and W; at z = 0: 

    
I27R V2G v2 R 

= + =—|Gti=z 20 me 9 2 2 | 20) 

The average power transferred by the wave at z = Q is 

1 1v2 
Wr =-Vil, === 21 a he i A (21) 

So (19) gives attenuation in agreement with (13): 

1 R 
=-|GZ,+2) N 22 OL 7 0 x p/m (22) 

The neper (Np) is a unit-free name for attenuation that measures the decay of voltage 

amplitude. One neper per meter indicates that the amplitude has decayed to 1/e of its 

incoming value in 1 m. The decibel (dB) is an alternative measure describing the rate 

of power decrease by the formula 10 log,,W;>/W;,.° Attenuation in decibels per meter 

is 8.686 times the attenuation in nepers per meter. 

* Decibels are often used for ratios of voltage amplitudes using the formula 20 logygV2/V,. 
This is only correct if the volfages are across identical impedances, as in fhe case of 

voltages at points along a transmission line.
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Example 5.11 
ATTENUATION IN A THIN-FILM TRANSMISSION LINE 

Let us find the attenuation in an aluminum thin-film parallel-plane transmission line for 

a signal of 18 GHz. The structure has the form in Fig. 2:5c and fringing fields will be 

neglected. The metal thickness h is 2.0 4m with a dielectric thickness d also of 2.0 um. 

The width of the conductors is typical of photolithographically defined lines, w = 10 

pum. The relative permittivity of the dielectric is 3.8 and it is assumed to be lossless. 

From Eq. 1.9(3) the capacitance per unit length is C = ew/d = 1.67 X 107!° F/m. 
From Eg. 2.5(3) the external inductance per unit length is L = pod/w = 2.51 x 107’ 
H/m.To see how to treat the internal inductance and resistance of the conductors, the 

depth of penetration must be compared with the film thickness. From Table 3.17 the 

depth of penetration for aluminum is 6 = 0.0826/ Vi, so for 18 GHz, 6 = 0.616 um. 

Thus the aluminum films are 3.2 times the depth of penetration so they are well 

approximated by arbitrarily thick layers. Then the internal inductance and resistance 

are given by the surface impedance. From Table 3.17 the surface resistivity is R, = 

3.26 X 10~7Vf, so from Eqs. 3.17(4) and 3.17(6) the surface impedance is 

Z, = 3.26 X 10-’VF(l + f) (23) 

and the internal impedance per unit length for both electrodes is 

2Z 
Z; = — = 8.75 xX 1071+ )/) oO (24) 

The characteristic impedance is found from Z, = VL/C, where L includes both ex- 

ternal and internal inductances. The latter is found from (24) by dividing by w so L; = 

7.74 x 107° H. Adding this to the external inductance and substituting the sum and 

the capacitance into Zp, we find Z, = 44.3 0. Note that if we had neglected internal 

inductance, Z, would have been calculated as 38.4 (.. The resistance per unit length R 

is the real part of (24). Substituting Z, and R in (22) we get the attenuation constant: 

= 0.988 Np/cm (25) ~~ 97, 

From this we see that the wave attenuates by about a factor of e in a distance of 1 cm. 

  

5.12 FILTER-TYPE DISTRIBUTED CIRCUITS: THE w—8 DIAGRAM 

Suppose the distributed series impedance of the general transmission line is formed by 

inductance and capacitance in series, as shown in Fig. 5.12a. The propagation constant 

y is then 

. 1 . we 
Y = ,/J@C,| joL, + joC, = ja /L,Cs, 1 — wo (1) 
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FIG. 5.12 (qa) Filter-type distributed circuit. (b) Its w—8 diagram, showing phase velocity. 

where 

oO. = (L,C,)7'? (2) 

The interesting characteristic of this system is that for the lower range of frequencies, 

@ < w,, y is purely real, representing an attenuation without losses in the system 

yea altic,(% 1) w < 0, (3) 7 

The attenuation in this circuit occurs below the cutoff frequency defined by (2), so that 

the system is a distributed high-pass filter. The reactive attenuation which occurs arises 

essentially because of continuous reflections in the.system, and is of the same nature 

as the attenuation in a loss-free, lumped-element filter in the attenuating band. 

For frequencies above w,, the propagation constant y is purely imaginary so y = jB 

and is given by (1). It is found useful to plot relations between 6 and w with 6 on the 

abscissa and w on the ordinate. These are called w—B diagrams. Figure 5.12b shows 

the w—B relation (1) for the line discussed here. Note that 6 goes to zero for w = ow, 

and does not exist for w < w,. We saw in (3) that, for this line, there is only attenuation 

for w < w,. An important reason for choosing the coordinates of the w—8 diagram as 

done is that the phase velocity at any frequency, which from Eq. 5.7(6) isu, = w/B, 

can be seen immediately as the slope of a line to the origin from the curve, as illustrated 

in Fig. 5.12b. We see that the phase velocity for the line under consideration is 

  

  ] aw oe 
= 1 — —£ 4 U, LG s (4) 

which is seen to vary strongly for frequencies just above cutoff. Signals with several 

frequency components propagating in this range will thus have large dispersion, as will 

be discussed more in Sec. 5.15.
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Resonant Transmission Limes 

5.13 PURELY STANDING WAVE ON AN: IDEAL LINE 

An important special case of standing waves on a transmission line, introduced in 

general in Sec. 5.8, is one in which all the incident energy is reflected. The reflected 

wave has the same amplitude as the incident wave so S = ©, It is clear from Eq. 5.7(8) 

that |p| = 1 so that |V_| = |V.,| if any of the following conditions exist: (1) short- 
circuit load, Z, = 0; (2) open-circuit load, Z, = ©; (3) purely reactive load. The last 

is less obvious than the others but is easily shown (Prob. 5.13b). In each case |V_| = 

\V..| because the load cannot dissipate power and it must, therefore, be fully reflected. 

Suppose that a transmission line, shorted at one end, is excited by a sinusoidal voltage 

at the other. Let us select the position of the short as the reference, z = 0. The short 

imposes the condition that, at z = O, voltage must always be zero. From Eq. 5.7(A), 

Vio) = V, + V_ =0 

If V_ = —V,, is substituted in Eqs. 5.7(4) and 5.7(5), 

V = Vile!” — e/] = —2jV, sin Bz (1) 

V ; . V 
T= —[e + e/F*] = 2 — cos Bz (2) 

Zo Zo 

These results, typical for standing waves, show the following. 

1. Voltage is always zero not only at the short, but also at multiples of A/2 to the 

left; that is, 

A 
V=0 at —fBz=n7v or z= “ns 

2. Voltage is a maximum at all points for which Bz is an odd multiple of 7r/2. These 

are at distances odd multiples of a quarter-wavelength from the short circuit. 

Figure 5.13 shows this and also the time evolution of the voltage found by mul- 

tiplying (1) and (2) by e/' and taking the real part. Time origin is chosen so that 

V., is real. 

3. Current is a maximum at the short circuit and at all points where voltage is zero; 

it is zero at all points where voltage is a maximum: Figure 5.13 shows the time 

variation of current along the line. 

4. Current and voltage are not only displaced in their space patterns, but also are 90 

degrees out of time phase, as indicated by the / appearing in (1) and as seen in 

Fig. 5.13. 

5. The ratio between the maximum current on the line: and the maximum voltage is 

Zo, the characteristic impedance of the line. 

6. The total energy in any length of line a multiple of a quarter-wavelength long is
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FiG. 5.13 Time evolution of voltage and current on a shorted transmission line. The zeros and 

extrema remain at the same locations. 

constant, merely interchanging between energy in the electric field of the voltages 

and energy in the magnetic field of the currents. 

To check the energy relation just stated, let us calculate the magnetic energy of the 

currents at a time when the current pattern is a maximum and voltage is zero everywhere 

along the line. Current is given by (2). The energy is calculated for a quarter-wavelength 

of the line, assuming V,, to be real.
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Lt Lf? 4v? 
U =£{ I? de = = | —= cos? Bz dz 
MO) yl 2J—aya ZG P 

0 
2V2L 1 

= ie: E + —— sin 26: | 
Zz 12° 4B av 

Since B = 27/A by Eq. 5.7(7), the foregoing is 

V2LA 
Uy=—— 3 

The maximum energy stored in the distributed capacitance effect of the line is cal- 

culated for the quarter-wavelength when the voltage pattern is a maximum and current 

is everywhere zero. Voltage is given by (1). 

0 0 
Cc 

Uz = cf VP dz = cI AV2 sin? Bz dz 
2 J~A/4 2 J~A/4 

0 

z 1 CV22 
= 2CV2 : — — sin 26: | = —— (4) 

"12 46 aya 4 

By the definition of Zp, (3) may also be written 

V2LA = =V2CA 
Uy = an = (5) 

Thus, the maximum energy stored in magnetic fields is exactly equal to that stored 

in electric fields 90 degrees later in phase. It can also be shown that the sum of electric 

and magnetic energy at any other part of the cycle is equal to this same value. 

Expressions (1) and (2) are also valid for a transmission line with short circuits both 

at z = QO and another point where z = n(— 77/8), for any integer n. With some way to 

couple energy into a section of line short-circuited at both ends, at a frequency such 

that the above criterion on z is satisfied (recall that 8B = w/v), there will be voltages 

and currents satisfying (1) and (2). At each such frequency, the line is said to have a 

resonance. This idea will be developed further in Sec. 5.14. 

5.14 INPUT IMPEDANCE AND QUALITY FACTOR 
FOR RESONANT TRANSMISSION LINES 

Resonant systems play a very significant role in communication systems for impedance 

matching and filtering and we have already seen some aspects of this in Ex. 5.10d, 

where resonant sections of lines were used for matching impedances. In Sec. 5.13 we 

analyzed standing waves on short-circuited ideal lines. In the present section we con- 

sider a low-loss line shorted at either one or both ends so that standing waves similar 

to those discussed in Sec. 5.13 occur. The line is supplied’ by a voltage source connected
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FiG. 5.14a Resonant transmission lines driven by voltage sources at positions of maximum 
voltage. 

at a voltage maximum in either of the ways shown in Fig. 5.14a. We will find approx- 

imate expressions for the resistance seen by the source and for the quality factor QO of 

the line, considered as a resonant circuit. 

For an ideal line, there are points of voltage maximum and zero current at odd 

multiples of a quarter-wavelength from the short-circuited ends so the impedance is 

infinite there. When losses are present, however, the impedance at these positions is 

high but finite, representing the energy dissipated in the losses of the line. Let us find 

these losses approximately for a line of m quarter-wavelengths using the expressions 

for voltage and current derived for an ideal line, Eqs. 5.13(1) and 5.13(2), assuming 

that they are not greatly changed by the small losses. The average power dissipated in 

the shunt conductance is then 

na/4 2 
,G 4V2:G A W, = | (2V, sin B22 — dz = (| —* )(= (1) 

0 2 4 )\4 

  

and the average power dissipated in the series resistance is 

"a/4 (OV. cos Bz\ R 4V2R\ (nd 
Wr = _ 7 3 dz = AZ2 4 (2) 

0 0 0 

The input resistance (at a voltage maximum) must be such that the voltage appearing 

across this resistance will produce losses equal to the sum of (1) and (2). The magnitude 

of voltage there is 2V, . Thus 

1 QV, _ nVir G+ x 

2 RK; 4 Zo 
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Or 

_ 8Z, 
Ky = nA[GZy + (R/Zp)] (3) 

A general expression for the quality factor Q of any resonant system is 

  

@, (energy stored @,U O A o ( BY ) — —0 (4) 

average power loss W,. 
  

For a resonant transmission line of 7 quarter-wavelengths, the stored energy for each 

quarter-wavelength is taken as that for the ideal line, Eq. 5.13(5), and the power loss 

is given by the sum of (1) and (2). The result is 

WU 4a,CV2 nd WyCZo 

o= WwW, ~ 4V2nd[G + (R/Z2)] ~ GZ, + (R/Zo) ©) 
    

We see that O is independent of n; this results from the fact that both the stored energy 

and the power dissipated are proportional to the length. Thus, Q is a property of the 

line, independent of the number of resonant quarter-wavelengths. 

The input resistance for a shorted quarter-wavelength section or at the maximum 

voltage point of a line nA/4 (7 even) long shorted at both ends can be rewritten using 

(3) and (5) with Eqs. 5.2(8) and 5.2(14) and 5.7(6) and 5.7(7): 

80. 4QZ 
NAW C nN 
  i= (6) 

The input resistance measures the power supplied to maintain a given voltage level; Q 

increases as the losses decrease, leading to a higher input resistance. 

If the frequency and, therefore, A are changed so the distance from the input point 

to the short circuit differs from 1/4, the input impedance acquires a reactive component 

of first-order importance. With the same amount of frequency change, the voltage and 

current patterns do not change much, so the resistive part (6) does not change much. 

It will be convenient to complete the analysis in terms of admittance. The susceptance 

that arises is in parallel with the conductance equivalent of (6). Let us calculate it for 

the lower circuit in Fig. 5.14a. It consists of two susceptances in parallel, that for the 

A/4 section on the left and that of the remaining (n — 1)A/4 portion on the right. For 
each section, the load admittance is infinite so Eq. 5.7(14) gives, in the lossless 

approximation, 

jB; = —jY,(cot Bl, + cot Blp) (7) 

where Y, = 1/Z, and /, and /, are the lengths of the left and right sides of the line. 

Letting B = w/v, = @(1 + 5)/v, = By + Bp and taking Bol, = m/2 and Bolp = 
(n — 1)2/2, the cotangents in (7) can be approximated for small 6 to give 

—- 1 (n )ar 5 nor 
7 = > OY (8) 

T 
B, = Y)|~6 +
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Then using (6) and (8), we have the admittance at the feed point in the nA/4 line in the 

lower circuit of Fig. 5.14a: 

no 1 
¥;,= > (5 + 8) (9) 

For the upper circuit in Fig. 5.14a@ the cot Bl, terms in (7) and (8) are missing so (9) 

describes that circuit with n = 1. From this we see that the fractional frequency shift 

for which the susceptance becomes equal to the conductance, a common measure of 

circuit sharpness, is 

  

1 
6) = 20 (10) 

Or 

_ % _ Fo 

OT Aw, 2 Af, (11) 

where 2 Af, is the frequency width between points where the admittance magnitude 

reaches V 2 times its value at resonance (w = a). Thus Q, as defined by (4), is useful 

as a measure of sharpness of frequency response, as it is for lumped-element circuits. 

Resonant low-loss transmission lines can have Q’s of thousands in the UHF range of 

frequencies. 

Example 5.14 
OPEN-ENDED PARALLEL-PLANE TRANSMISSION LINE 

Consider standing waves in an open-circuited section of transmission line and the con- 

tribution to O from radiation at the ends. Radiation loss may be expressed in terms of 

load conductances G, at each end, as pictured in Fig. 5.14b, and when radiation is 

  

G, G, 

  

Fic. 5.14b Model for open-ended transmission line.
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small, G, << 1/Zp, fields in the line are essentially those of a completely open-circuited 

line, 

  

V = 2V., cos Bz (12) 

2V 
[ = —j—sin Bz (13) 

Lo 

Power loss from the two end conductances is then 

2V./ 
W, = | a G, (14) 

Energy storage for a length some multiple of a half-wavelength is 

0 9 C. , CV2ma 
U = = 2V,)? cos?Bz dz = —* (15) 

—mAa/2 2 2 

Using (4), the Q from the radiation component is found to be 

M@CmA = mir 

8G, AZ)G, 
  Q= (16) 

There may also be contributions to QO from conductor and dielectric losses, as in (5). 

Losses, when small, add, so reciprocals of Q’s add also: 

  

1 1 1 
=—+—+:-: 17 

Qua OQ, Qs ay 
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Special Topics 

  

9.15 GROUP AND ENERGY VELOCITIES 

A function of time with arbitrary wave shape may be expressed as a sum of sinusoidal 

waves by Fourier analysis. If it happens that uv, is the same for each frequency com- 

ponent and there is no attenuation, the component waves will add in proper phase at 

each point along the line to reproduce the original wave shape exactly, but delayed by 

the time of propagation z/v,. The velocity uv, in this case describes the rate at which 

the wave moves down the line and could be said to be the velocity of propagation. This 

case occurs, for example, in the ideal loss-free transmission line already studied for 

which v, is a constant equal to (LC)~'/?. If u, changes with frequency, there is said
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to be dispersion and a signal may change shape as it travels. This causes distortion of 

analog signals and limits data rates because of the spreading of pulses in digital signals. 

In the nondispersive situation described above, a wave of a given shape propagates 

along a line without distortion. The velocity of the group of frequency components is 

the same as the phase velocity of any one. In many transmission systems the velocity 

of the envelope of the wave such as that in Fig. 5.15a can be different from the phase 

velocities of the frequency components, and it is useful to introduce a so-called group 

velocity to describe the motion of the group, or envelope of the wave. This is the typical 

case when a high-frequency carrier is modulated by a digital or analog signal. 

Let us consider the simplest possible group, a wave having two equal-amplitude 

sinusoidal components of slightly different frequency. The voltage at z = O with unity- 

amplitude components is 

Vit) = sin(@ — dw)t + sin(w + dw)t (1) 

Then for a lossless line, the voltage at any point is 

V(t, z) = sin[(@ — dw)t — (By — dB)z] + sin{(wy + dw)t — (By + dB)z] (2) 

in which £ is to be regarded as a function of w; dB corresponds to dw. Expression (2) 

can be put in the form 

Vit, z) = 2 cos[(dw)t — (dB)z] sm(wot — Boz) (3) 

From (3) we see that the voltage in this wave group has the form shown in Fig. 5.15b 

for one instant of time. The sinusoid of center frequency moves at the phase velocity 

Uv, = Wp / By whereas the envelope, described by cos[(dw)t — (dB)z], has the form of a 

wave but it moves at a different velocity. This is found by keeping the argument of the 

cosine term a constant: 

Vg = (4) 

Velocity uv, is called the group velocity and is shown in Fig. 5.155. Note that v, is the 

slope of w~— 8 curve at the center frequency of the group. Forming the derivative dv of dw 

using U, = w/B, another useful form for group velocity can be derived: 

UV 
‘Z _. 5 

Ye 1 —(w/u,)(du,,/do) ©) 
  

Group velocity 

  

  

  

Fic. 5.15a@ Envelope or group velocity.
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Fic. 5.15b Phase and group velocities for a group of two sinusoids of slightly different 
frequencies. 

For groups more complicated than the two-frequency one considered above, we will 

show later by Fourier analysis that the envelope of a modulated wave retains its shape 

so long as v, is constant (i.e., the w—G curve is linear) over the range of frequencies 

required to represent the wave. In that case, a pulse such as that illustrated in Fig. 5.15a 

would retain its envelope shape and propagate with delay time 7, over distance 7: 

dB 
Ty >= 

Us dw 
(6) 

If dB/dw is not constant over the frequency band of the signal, there is a broadening 

or distortion of the envelope. This is known as group dispersion and will be seen in 

several later examples. 

Group velocity is often referred to as the “velocity of energy travel.” This concept 

has validity for many important cases, but is not universally true.®’ To illustrate the 

basis for the concept, let us define here a separate velocity v,; based on energy flow so 

that power transfer is stored energy multiplied by this velocity. That is, 

= Wr Ue = (7)   

6 J, A. Stratton, Electromagnetic Theory, pp. 330-340, McGraw-Hill, New York, 1941. 
7 L. Brillouin, Wave Propagation and Group Velocity, Academic Press, New York, 1960.
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where W; is average power flow in a single wave and u,,, is average energy storage per 

unit length. If this definition is applied to the ideal transmission line of Sec. 5.7, we 

find that us = U, = U,. More interesting is the case of the filter-type circuit of Fig. 

5.12a, which is a case of normal dispersion (du,/dw < 0). Here 
5\ 71/2 

1 Ike | 3L Ww 
Wr = ~Z)l/* =—|S\|1-4 
rg 2 2 ( 2s) 

    
1 /C,VV* LAT C, Ir 

Ua = 5 + + 5 
2 2 2 2 wCi 

L, {C5Z2 2 LIT 
= (S20 4 yy Sele = A 

4 \ £, w 

50 

sq? 
3 W. 

Ue = yc)" — “| (8) 

This is equal to group velocity dw/dB, as can be found by differentiating Eq. 5.12(1), 

and is different from phase velocity. 

The identity of group velocity and energy velocity can also be shown to be true for 

simple waveguides, and it also applies to many other cases of normal dispersion. It 

does not usually apply to systems with anomalous dispersion (du,/dw > 0), including 

the simple transmission line with losses. In any event the concept of an energy velocity 

is useful only when there is limited dispersion so that the input signal can be recognized 

at the output. 

5.16 BACKWARD WAVES 

A wave in which phase velocity and group velocity have opposite signs is known as a 

backward wave. Conditions for these may seem unexpected or rare, but they are not. 

Consider for instance the distributed system of Fig. 5.16a in which there are series 

capacitances and shunt inductances—the dual of the simple transmission line of Sec. 

5.2. From Sec. 5.11, 

_ og —_ ff t\f lb). J 
= JB = V2 = (a) wVLC (1) 

This w—£ relation is shown in Fig. 5.16b. The phase and group velocities are 

  

Up = B= — «VLC (2) 

and 

dw 5 
UV, = — = w VLC (3)
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Fic. 5.16 (a) Equivalent circuit for a transmission line which propagates backward waves. 
(b) w—B relation for line of (a) showing phase and group velocity directions discussed in the 

text. 

So it is seen that this very simple transmission system satisfies the conditions for back- 

ward waves. If energy is made to flow in the positive z direction, group velocity will 

be in this direction, as this is a case where uv, does represent energy flow (see Prob. 

5.16c). However, the phase becomes increasingly negative or “lagging” in the direction 

of propagation because of the C—L configuration. Thus there is a negative phase 

velocity. 

There are many other filter-type circuits having other combinations of series and 

shunt inductances and capacitances on which can exist waves with increasingly lagging 

phase in the direction of energy propagation. Also, all periodic circuits (Sec. 9.10) have 

equal numbers of forward and backward “space harmonics.” 

5.17 NONUNIFORM TRANSMISSION LINES 

For a transmission line with varying spacing or size of conductors, as illustrated in Fig. 

5.17, a natural extension of the transmission-line analysis would lead one to consider 

impedance and admittance as varying with distance in the transmission-line equations. 

Actually, fields may be distorted so that the formulation is not this simple, but it is a 

good approximation in a number of important cases, and the methods discussed apply
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FiG. 5.17. Nonuniform transmission line. 

to some wave problems with spatial variations of the medium (1.e., inhomogeneous 

materials). The remainder of this section will consider cases where such nonuniform 

transmission-line theory yields a good approximation. 

If impedance and admittance per unit length vary with distance, the transmission- 

line equations corresponding to Eqs. 5.11(1) and 5.11(2) are 

dV(z 
2 = - Ze) (1) 

dl(z) _ _y _ 
a. (z)V(z) (2) 

Differentiate (1) with respect to z, denoting z differentiation by primes: 

V" = —[Zl' + 2'T) (3) 

To obtain a differential equation in voltage alone, J may be substituted from (1) and J’ 

from (2). The result is 

Z 

yr — (Z\v — (ZY) = 0 (4) 

A similar procedure, starting with differentiation of (2), yields a second-order 

differential equation in /: 

I" — (=r — (ZY) = 0 (5) 

If Z’ and Y’ are zero, (4) and (5) reduce, as they should, to the equations for a uniform 

line (Sec. 5.11). When these derivatives are nonzero, representing the nonuniform line 

discussed, the equations may be solved numerically for arbitrary variations of Z and Y 

with distance. A few forms of the variation permit analytic solutions, including the 

“radial transmission line,” where either Z or Y is proportional to z, and their product is 

constant. Another important case is the “exponential line,” which is taken as the ex- 

ample for this article.
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Example 5.17 

LINE WITH EXPONENTIALLY VARYING PROPERTIES 

Let us consider a loss-free exponential line with Z and Y varying as follows: 

Z = jal e”, Y = jwCye * (6) 

These variations yield constant values of ZY, Z'/Z, and Y'/Y so that (4) and (5) become 

equations with constant coefficients, 

Vv" — qV' + a LoCoV = 0 (7) 

I" + gI' + wL,Col = 0 (8) 

These have solutions of the exponential propagating form, 

V=Voe,~” I = le (9) 

where 

  

(10) 

| (2) — &L Cy (11) 

We see the interesting property of “cutoff” again, for y, and 2 are purely real for 

low frequencies w < w, where 
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wl Cy = (2) (12) 

The attenuation represented by these real values, like that for the loss-free filter-type 

lines, is reactive. This represents no power dissipation but only a continuous reflection 

of the wave. For w > w,, however, the values of yy have both real and imaginary parts, 

which is a behavior different from that of the loss-free filters. Again the real parts 

represent no power dissipation (see Prob. 5.17b). The values of y approach purely 

imaginary values representing phase change only for w >> w.. 

The greatest use of this type of line is in matching between lines of different char- 

acteristic impedance. Unlike the resonant matching sections (Prob. 5.7c), this type of 

matching is insensitive to frequency. Note the variation of characteristic impedance: 

z Vo ; ; 

7; a 7 — Ue LY "(YTD Z(O)ef 13 

= 7) Ine Ig oe (9) 

Thus Z, can be changed by an appreciable factor if gz is large enough. The transmission-
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line approximation will become poor, however, if there is too large a change of Z and 

Y in a wavelength or in a distance comparable to conductor spacing. 

The design of nonuniform matching sections is explored in detail by Elliot.® 

  

PROBLEMS 

§.2a Sketch the function 

iN
 Zz l 

V(z, t) = cos of: + 2 + 5 COS 2al + 
ye) ) 

versus w2/v for values of wt = 0, 7/2, a, 3727/2 and explain how this shows 
traveling-wave behavior. 

5.2b (i) Derive an expression for the characteristic impedance of the parallel-plate line in 

Fig. 5.2 having a width w and spacing a neglecting the internal inductance of the 
conductors. Thin-film transmission lines in some computer circuits can be mod- 
eled approximately by the parallel-plane line. The line width is usually about 
5 ym and the spacing is by means of dielectric of 1-um thickness and relative 

permittivity 2.5 (as is usually true for dielectrics, the relative permeability can be 
taken as ~1.0). 

(ii) Calculate the characteristic impedance Z, and wave velocity v. 

(il) Suppose the dielectric thickness is halved and find the new values of Z, and v. 

A better model for such lines is given in Chapter 8. 

5.2c The capacitance per unit length of a parallel-wire line having radii R with distance 2d 
between axes is C = are/cosh” '(d/R). Find characteristic impedance of a line with 
air dielectric and spacing between axes | cm if (1) wire radius is 2 mm and (1i) wire 
radius is 0.5 mm. 

5.2d Calculate propagation time along the following transmission lines interconnecting 
computer elements: 

(i) A thin-film line on GaAs (e, = 11) between circuit elements 100 um apart 

(ii) Transmission line interconnecting two devices on a silicon computer chip 1 mm 

apart, €, = 12 

(iii) Coaxial cable 100 m long with e, = 2.4, used to interconnect computer terminal 
and central processor 

5.2e A second type of solution to the wave equation, to be studied later in the chapter, is 
the standing wave solution. Find under what conditions the following such solution 
satisfies Eq. 5.2(7): 

Viz, t) = V,, cos wf sin Bz 

Find the current /(z, f) corresponding to this voltage distribution. 

R. S. Elliott, An introduction to Guided Waves and Microwave Circuits, Chap. 8, Prentice 
Hall, Englewood Cliffs, NU, 1993.
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5.2f Expand the cosine and sine in the expression of Prob. 5.2e in terms of complex expo- 

5.2¢ 

5.2h 

a
n
t
 

5.2 

5.3 

5.4da 

5.4b 

5.5a 

5.5b 

5.5¢ 

5.5d 

5.5e 

nentials, cos x = 3(e* + e ~~"), and so on, and after multiplying out, show that the 
products can be interpreted as traveling waves of the form of Eq. 5.2(10). 

Examine the expression for characteristic impedance of a coaxial transmission line, 
Eq. 5.2(15),and explain why it is difficult to obtain high characteristic impedances for 
such a line without having unreasonable dimensions or very high losses. Plot dc resist- 

ance per unit length for such a line versus Zy if the outer conductor is a tubular copper 
conductor of inner radius 1 cm and wail thickness 1 mm, and the inner conductor a 
solid copper cylinder. 

Repeat Prob. 5.2g but plot ac resistance at 100 MHz using the approximation of Ex. 
3.17. 

Use Eqs. 5.2(3) and (4) to show that the spatial rate of change of power flow on an 
ideal line is equal to the negative of the time rate of change of the stored energy per 

unit length. 

To show some simple properties of transverse electromagnetic (TEM) waves, utilize 
Maxwell’s equations in rectangular coordinates (though the boundaries need not be 
rectangular). Take the dielectric as source-free and without losses. Show that if 
H, = Oand £, = 0, 

(i) Propagation must be at the velocity of light in the dielectric. 

(ii) Both E and H (which are transverse) satisfy the Laplace equation in x and y. 

Derive Eq. 5.4(7) directly from voltage and current for the load. 

Plot p* and 1 — p” as functions of R, /Z, and note region of reasonable power transfer 
to the load. 

Analyze, as in Ex.5.5a and with drawings like those in Fig. 5.5a, the case of a pulse of 

length ¢,/5 reaching a termination at / = vf, with R, = 2Z). Find an expression for 
the energy dissipated in the load in terms of the voltage of the incident pulse. 

A transmission line of characteristic impedance Z), = 50 2 and length / = 200 m is 
connected to a second line of characteristic impedance Z), = 100 Q and infinite 

length. Velocity of propagation in both lines is 2 < 10° m/s. Voltage V, = 100 V is 
suddenly applied at the input to line 1 at ¢ = 0. Sketch current versus distance z at 
t = 1.3 ps. Calculate power in the incident wave, the reflected wave, and the wave 
transmitted into line 2, showing that there is a power balance. 

Plot the reflected wave from the terminal of computer No. 2, as in Fig. 5.4, if Z) = 
50 O and Rk, = 100. 

At t = 0a charge distribution is suddenly placed in the central portion of an infinite 

line as in Ex. 5.5c except that the voltage distribution in z is triangular, with maximum 
voltage V, at z = O, falling to zero at z = +1 m. Find voltage and current distribu- 
tions att = 1.667 ns and at t = 5 ns, as in Ex. 5.5c. 

Repeat Ex. 5.5e but with the transmission line terminated with inductor L. 

5.5f The problem is as in Ex. 5.5e except that the transmission line continues beyond the 

capacitor, where it is terminated by its characteristic impedance. Find V_(f), V(t), and 

V(t) in this case, where V,(f) is the voltage at the input to the continuation transmis- 
sion line. 

5.6a An ideal open ended line of length / is charged to de voltage V and shorted at its mput 
at time ¢ = 0. Sketch the current wave shape through the short as a function of time.



5.6b 

5.6¢ 

5.7a 

5.7d 

5.7e 

5.7f 
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A charged cable is connected suddenly to a load resistor equal to its 50-( characteris- 
tic impedance. If its length is 3 m and its phase velocity is one-half the velocity of 
light, how long is the pulse in the load? Sketch the waveform at the midpoint of the 

line assuming the cable is initially charged to 100 V and the load is 25 Q, instead of 
50. 

The circuit shown in Fig. P5.6c is a so-called Blumlein pulse generator (A. T. Starr, 
Radio and Radar Technique, Pitman & Sons, London, 1953) and has the property that 

it produces a voltage pulse equal to the voltage to which the lines are initially charged 

by the source V.. The resistor R, can be considered essentially infinite. At a time 7 
after the switch is closed, a voltage V, appears across the output line terminals 0—0’ 

and that voltage remains across the terminals 0-0’ for a time 27. The initially charged 
lines are of equal length. Analyze the behavior of the circuit to show the above-de- 
scribed behavior, treating the output line as a lumped resistor R, = 2Zp. 

fe Zo ZO 

L 0 0° 

220 

Ve 
  

Ry, = 2209 

FIG. P5.6c 

The alternative approach to derivation of the phasor forms for voltage and current 
along a transmission line is to replace a/dt by jw in Eqs. 5.2(3) and (4). Write such 

equations and show that Eqs. 5.7(4) and (5) satisfy them. 

Find the special cases of Eq. 5.7(13) for a shorted line, an open line, a half-wave line 
with load impedance Z, , and a quarter-wave line with load impedance Z, . 

When two transmission lines are to be connected in cascade, a reflection of the wave 

to be transmitted from one to the other will occur if they do not have the same charac- 
teristic impedances. Show that a quarter-wavelength line inserted between the cas- 

caded lines will cause the first line to see its characteristic impedance Z,, as a 
termination and thus eliminate reflection in transfer if B,/, = 77/2 and Zp. = VZo,Zo3, 
where Zp, and Zp3 are the characteristic impedances of the quarter-wave section and 

the final line, respectively. 

Derive an expression for a reflection coefficient for current p, = J_/I, and show that 
it differs in phase from the voltage reflection coefficient by 7 rad. 

A television receiving line of negligible loss is one-third of a wavelength long and has 
characteristic impedance of 100 (). The detuned receiver acts as a load of 100 + j100 

Q,. Find the input impedance. Sketch a phasor diagram showing the values of V,, V_, 
],,and/_ at both the load and input, and check the calculated results for impedance 

from this diagram. 

A strip transmission line of characteristic impedance 20 QO is used at a frequency of 
10 GHz with a load that is a microwave diode with conductance 0.05 S in parallel 
with a 1-pF capacitor. The line is one-eighth wavelength long at the design frequency. 

Find reflection coefficient at the load and the input admittance.
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If Z, << Zp and the line not near a multiple of quarter-wavelength in length, show 
that the first-order terms of a binomial expansion for Eq. 5.7(13) give the following 

approximate expression for input impedance: 

Z, ~ jZy tan Bi + Z, sec? Bl i J4o L 

5.7h If Z, >> Z, and the line not near a multiple of quarter-wavelength in length, show 

5.8a 

5.8b 

5.8c 

5.8d 

5.8e* 

that the first-order terms of a binomial expansion for Eq. 5.7(13) give the following 
approximate expression for input impedance: 

72 

Z, =~ —jZy cot Bl + =* csc? Bl 
Zi 

An impedance of 100 + 100 () is placed as a load on a transmission line of charac- 
teristic impedance 50 (). Find the reflection coefficient in magnitude and phase and the 
standing wave ratio of the line. 

Suppose that reflection coefficient is given in magnitude and phase as |ple/? at the load 
at z = Q. Find the value of (negative) z for which voltage is a maximum. Show that 
current is in phase with voltage at this position, so that impedance there is real, as 
stated. Calculate the position of maximum voltage for the numerical values of 

Prob. 5.8a. 

A slotted line measurement shows a standing wave ratio of 1.5 with voltage minimum 
0.1A in front of the load. Find magnitude and phase of reflection coefficient at the load 
and the input impedance for a length 0.2A of the line. 

An ideal transmission line is terminated by a resistance with value half the characteris- 
tic impedance, R, = Z,/2. What resistance can you put in parallel with the line A/4 
in front of the load to eliminate reflections on the generator side of that resistance? 

Can you find a value for such a parallel resistance if the load resistance 1s 2Z,? 

Give two designs for a power splitter consisting of one 50-Q input line T-connected to 
two 50-©, lines with matched terminations, using quarter-wave transformers (see Prob. 

5.7c) as necessary to ensure unity standing wave ratio at the input at the design fre- 
quency and an equal power split. Plot power reflected ‘in the input line as a function of 

frequency. 

5.8f Show that Eq. 5.8(1) can be written in phasor notation in the form of a standing wave 

3.9 

5.10a 

5.10b 

plus a traveling wave. Rewrite as a real function of time and, for the example in Fig. 
5.8, calculate V(z) at a value of wt shifted in phase by 7/4 rad from wt. 

The Smith chart uses loci of constant resistance and reactance on the reflection coeffi- 
cient plane. Other charts have used loci of reflection coefficient magnitude and phase 
plotted on the impedance plane. Show that curves of constant |p|? are circles on the 
impedance plane, and give radii and position of the centers as functions of |p|”. Simi- 
larly define the circles corresponding to constant phase of p. Explain the advantages of 
the Smith chart. 

A 50-2) line is terminated in a load impedance of 75 — j69 Q. The line is 3.5 m long 
and is excited by a source of energy at 50 MHz. Velocity of propagation along the line 

is 3 X 10° m/s. Find the input impedance, the reflection coefficient in magnitude and 
phase, the value of the standing wave ratio, and the position of a voltage minimum, 
using the Smith chart. 

The standing wave ratio on an ideal 70-() line is measured as 3.2, and a voltage mini- 

mum is observed 0.23 wavelength in front of the load. Find the load impedance using 
the Smith chart.
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Show that the Smith chart for admittance has the form in Fig. 5.105, developing equa- 
tions corresponding to Eqs. 5.9(1)—(8). 

Repeat Prob. 5.10b using the chart to determine load admittance. Check to see if the 
result is consistent with the impedance found in Prob. 5.10b. 

A 70-Q, line is terminated in an impedance of 50 + j10 ©.. Find the position and 
value of a reactance that might be added in series with the line at some point to elimi- 
nate reflections of waves incident from the source end. Use the Smith chart. 

Repeat Prob. 5.10e to determine the position and value of shunt susceptance to be 
placed on the line for matching. 

A 50-2, transmission line is terminated with a load of Z, = 20 + /30. A double-stub 
tuner consisting of a pair of shorted 50-() transmission lines connected in shunt to the 
main line at points spaced by 0.25A is located with one stub at 0.2A from the load. 
(See Fig. P5.10g.) Find the lengths of the stubs to give unity standing wave ratio for 
—-z7< 0,45 x4. 

ly /, 

20 | | 20 | | 

<———— 0,252 >t<—— 0.21, —> 
Fic. P5.10g 

  
  

      

  

Two antennas have impedances of 100 + /100 © for a particular frequency and are 
fed by transmission lines of characteristic impedance 300 (2. By inspection of the 

Smith chart, show that it is possible to choose different lengths for the two feed lines 
so that when combined in series at the input, the series combination perfectly matches 
the 300-2, line to which they are connected. Give the lengths of the two lines in frac- 
tions of a wavelength. By study of the procedure you have used, state whether or not 

this compensation approach will work if the two antennas have arbitrary but equal 

impedances. 

The problem is as in Prob. 5.10h except that the two transmission lines are connected 

In parallel. 

A certain coaxial line has an alternating dielectric of vacuum and a material with e = 

4e, and w& = py and is terminated at the end of a vacuum section by an impedance 

equal to the characteristic impedance of the vacuum regions. At frequency fy the die- 
lectric and vacuum regions are each A/2 long (A appropriate to each region). Show on 
a Smith chart the path of impedance variation along the line for operating frequencies 
f,. and f,/2. Also plot the standing wave ratio as a function of distance from the load. 

Show on the Smith chart regions of admittance which cannot be matched by the 
double-stub arrangement of Prob. 5.10g. Repeat for a spacing of 4/8 between stubs. 

Repeat for a three-stub arrangement with spacing A/8 between stubs. 

Use the formula for input impedance of a transmission line with losses to check Eq. 
5.11(22), making approximations consistent with R/wl << 1 and G/wC << 1.
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5.11c 
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Defining a, from conductor losses and a, from dielectric losses by identifying the ap- 

propriate parts of Eq. 5.11(13), write the approximate expressions, Eqs. 5.11(14) and 
(15) for B and Z, in terms of a, and a4. 

If the transmission line of Ex. 5.11 is made with thinner films, the currents in the 

metal films can be almost uniform. With that approximation for films 0.2 wm thick, 
calculate the characteristic impedance and attenuation. Comment on the effects of 

using thinner films. 

Show that the variation of complex power along a lossy transmission line carrying 
sinusoidal waves can be written as (d/dz)(sVI*) + 5(RI* + GVV*) + 
(j/2)(XIT* — BVV*) = 0, where X and B are the imaginary parts of Z and Y, respec- 
tively. Also, show that a direct term-by-term identification with the complex Poynting 
theorem can be made by multiplying the above expression by dz and considering the 
volume for Eq. 3.13(6) to be of dz thickness and infinite width. 

Calculate for frequencies 1 MHz and 1 GHz the attenuation in decibels per meter for 
an air-filled coaxial transmission line with copper conductors using the skin-effect ap- 
proximations for high-frequency resistance of Ex. 3.17. The inner conductor is a solid 

cylinder of radius 2 mm and the outer conductor is a thick tubular cylinder of inner 
radius 1 cm. 

5.11f Repeat Prob. 5.11le if the transmission line is now filled with a polystyrene dielectric. 

5.12a 

5.12b 

5.13a 

5.13b 

5.13c 

5.13d 

The equivalent conductances of polystyrene at 1 Mz and 1 GHz are, respectively, 
o, = 1078 S/m and 2.8 X 107° S/m. 

For the filter-type circuit studied in Sec. 5.12, find expressions for characteristic 

impedance Z,. Show that this is real in the propagating region and imaginary in the 
attenuating region. What does this signify with respect to power flow in a single 

traveling wave? 

A certain continuous transmission line has an equivalent circuit consisting of series 
inductance L, H/m and a shunt element consisting of capacitance C F/m and 
inductance L, H - m in parallel. Let w? = 1/L,C and 

(1) Obtain expressions for y, a,and § in terms of L,, L,, w,, and w. 

(ii) Plot y” versus w. 

(iii) Replot with w versus @, where a@ is real, and versus , where B 1s real. 

Write the instantaneous expressions for voltage and current represented by the com- 
plex values in Eqs. 5.13(1) and (2). Make an integration of total energy, electric plus 
magnetic, for a quarter-wavelength of the line and show that it is independent of time. 

Show that |p| = 1 for a purely reactive load on an ideal transmission line. Find and 
sketch as in Fig. 5.13 suitably normalized V(z, t) and /(z, t) for a line terminated in a 
pure inductive reactance equal in magnitude to the characteristic impedance. 

Calculate the instantaneous power flow for a short-circuited line W;(t, z) = 
V(t, z)l(t, z) and plot the results in a diagram like Fig. 5.13. Discuss this W;(¢, z) in 
connection with conclusion 6 reached from (1) and (2) in Sec. 5.13. 

One of the limitations of energy-storage systems for large energies is the breakdown 
of air, unless the system can be evacuated. For air with breakdown strength 3 x 10° 
V/m, estimate the maximum energy storage in a resonant air-filled half-wave parallel- 

plate line. Spacing between plates is 2 cm and characteristic impedance is 50 0. Is 
there any advantage with respect to breakdown over the use of a parallel-plate capaci- 
tor? Discuss an inductor as an energy-storage system from the same point of view.
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Plot Eq. 5.14(7) normalized to Y, as a function of frequency near where n = 1 and 
see over what range (8) is a reasonable approximation. 

A half-wavelength coaxial transmission line with air dielectric has copper conductors 
with the dimensions of Prob. 5.1le, and is designed for resonance at 6 GHz. Find the 
bandwidth 2Af,. 

Is phase or group velocity the larger for normal dispersion (du,/dw < 0)? For 

anomalous dispersion (du,/dw > 0)? 

Find the phase and group velocities for a transmission line with small losses. 

Consider a transmission line with very high leakage conductance G per unit length so 
that series resistance R and shunt capacitance C are negligible. Find phase and group 
velocities. 

For Probs. 5.15b and 5.15c, show that an energy velocity as defined by Eq. 5.15(7) is 
not equal to group velocity. 

Certain water waves of large amplitude have phase velocities given by v, = g/a, 
where g is acceleration due to gravity and w is angular frequency. Determine the ratio 
of group velocity to phase velocity for such a wave. 

5.15f For Prob. 5.12b, plot vu, and v, versus w and show that v,v, = 1 /L,C for all 

5.16a 

5.16b 

5.16c 

5.17a 

5.17b 

5.17¢ 

5.17d 

frequencies. 

Plot the w—8 diagram for a distributed transmission system with series inductance L, 

per unit length, and a shunt admittance made up of L, in parallel with C,, for a unit 
length of the system. Is this a backward or forward wave system? Show cutoff 

frequency and illustrate phase and group velocity on the plot. 

Repeat Prob. 5.16a for a system made up of a series impedance per unit length of L, 
and C, in parallel and the shunt admittance resulting from inductance L,. 

Calculate the velocity of energy propagation, as defined in Sec. 5.15 for the backward 
wave line of Fig. 5.16a. Show that it does correspond to group velocity for this line 
and discuss the concepts of normal and anomalous dispersion for backward waves. 

Show that Eqs. 5.17(9) with definitions (10) and (11) do give the solutions of (7) and 

(8) with the variations (6). Describe ways in which the exponential variation of L and 
C might be achieved, at least approximately, (i) for a parallel-plane transmission line 

and (ii) for a coaxial line. 

Show that average power transfer is independent of z in the loss-free exponential line 
considered here for frequncies above cutoff, w > w,. 

There are two values of Eqs. 5.17(10) and 5.17(11) representing positively and nega- 
tively traveling waves, as expected. Write the complete solutions for V(z) and /(z), 

showing both waves, using as constants the voltage amplitudes in positively and nega- 
tively traveling waves at z = 0. Note the interchange of behavior of positive and 

negative waves if the sign of q is changed, and explain physically. 

Modify the analysis for the exponential line to include losses, retaining constancy of 
ZY, Z'/Z, and Y'/Y, and interpret the effect of attenuation constant. Assume Ro/Xo and 
Go/Bo small.



  
6.1 INTRODUCTION 

The first example of the application of Maxwell’s equations in Chapter 3 was that of 

electromagnetic wave propagation in a simple dielectric medium. We now return to the 

plane wave example and extend it in this chapter, before considering the more general 

guided, resonant, and radiating waves. 

Plane waves are good approximations to real waves in many practical situations. 

Radio waves at large distances from the transmitter, or from diffracting objects, have 

negligible curvature and are well represented by plane waves. Much of optics utilizes 

the plane-wave approximation. More complicated electromagnetic wave patterns can 

be considered as a superposition of plane waves, so in this sense the plane waves are 

basic building blocks for all wave problems. Even when that approach is not followed, 

the basic ideas of propagation, reflection, and refraction, which are met simply here, 

help the understanding of other wave problems. The methods developed in the preced- 

ing chapter on transmission lines will be very valuable for such problems. A large part 

of this chapter is concerned with the reflection and refraction phenomena when waves 

pass from one medium to another, with examples for both radio waves and light. 

214
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Plane-Wave Propagation 

6.2 UNIFORM PLANE WAVES IN A PERFECT DIELECTRIC 

The uniform plane wave was given in Chapter 3 as the first example of the use of 

Maxwell’s equations. We now discuss its properties in more detail, restricting attention 

to media for which pu and ¢ are constants. For a uniform plane wave, variations in two 

directions, say x and y, are assumed to be zero, with the remaining (z) direction taken 

as the direction of propagation. As in Sec. 3.9, Maxwell’s equations in rectangular 

coordinates then reduce to 

    

  

oH dK 
VxE= -p— Vx H=e— 

ot ot 

In component form these are 

dE, aH, oH. aE. J x y x 

az at Om) dz * at ) 

JE. oF, dH. dk, 
+ —- — — 2 t= —— 5 az eat @) az sot ©) 

dH, dE, 
0O= ~p— 3 0=se— 6 L (3) és (6) 

As noted in Sec. 3.9, the above equations (3) and (6) show that both £, and H, are zero, 

except possibly for constant (static) parts which are not of interest in the wave solution. 

That is, electric and magnetic fields of this simple wave are transverse to the direction 

of propagation. 

In Sec. 3.9 we showed that combination of the above equations (2) and (4) leads to 

the one-dimensional wave equation in £,, 

  

  

07E, 07E, 
az Me a? ) 

which has a general solution 

  

= il: — 2) + AC + | (8) 

where 

y = (9) _ a 

which is the velocity of light for the medium. The first term of (8) can be interpreted 

aS a wave propagating with velocity v in the positive z direction, and the second as a
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wave propagating with the same velocity in the negative z direction. That is, 

z z 
= t--] KE. = t+ — 10 Fe + nl :) x Al : ( ) 

By use of either (2) or (4), magnetic field H, was found to be 

Fes E- 
Hi, = A, + A, _ = n — n (11) 

where 

n= fe (12) 
& 

The quantity 7 is thus seen to be the ratio of E, to H, in a single traveling wave of this 

simple type, and as defined by (12) it may also be considered a constant of the medium, 

and will be a useful parameter in the analysis of more complicated waves. It has di- 

mensions of ohms and is known as the intrinsic impedance of the medium. For free 

space 

h = = = 376.73 ~ 12070 (13) 
0 

Now looking at the remaining two components, £, and H,,, combination of (1) and (5) 

leads to the wave equation in E,, 

a2 

9 
Oz~ 

&
 2 iE, 

ar? 

    

= ME (14) 

which also has solutions in the form of positively and negatively traveling waves as in 

(8). We write this 

Z Z 
E, = AC — “| + ia + 2) = By, + Ey_ (15) 

Either (1) or (5) then shows that magnetic field is 

E BE 
H, = ——~ + —— (16) 

7 TY] 

To stress the relationship of electric and magnetic fields for the waves we write the 

results of (11) and (16) as 

  

  

    
E, By. E,_ Ey. 

H.-H HR a yr Xx+ y~ x= 

These results show a number of things. First, relations (17) are sufficient to require that 

E and H shall be perpendicular to one another in each of the traveling waves. They 
also require that the value of E at any instant must be 7 times the value of Hi at that 

instant, for each wave. Finally we note that, if EZ * H is formed, it points in the positive
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Fic. 6.2a Relations between E and H for a wave propagating in positive z direction (out of 
page). 

z direction for the positively traveling parts of (17) and in the negative z direction for 

the negatively traveling part, as expected. These relations are indicated for a positively 

traveling wave in Fig. 6.2a. 

‘The energy relations are also of interest. The stored energy in electric fields per unit 

volume is 

  

cE” _e (E2 + E2) (18 u =e UU Sl ; - 
E 9 2 x y ) 

and that in magnetic fields is 

pul 2 bh. 5 
= = —(H- + H- 

By (17), ue and u,, are equal for a single propagating wave, so the energy density at 

each point at each instant is equally divided between electric and magnetic energy. The 

Poynting vector for the positive traveling wave is 

1 
Po, = Ey My, — Ey ey = 7 (EX + ES +) (20) 

and is always in the positive z direction except at particular planes where it may be 

zero for a given instant. Similarly, the Poynting vector for the negatively traveling wave 

is always in the negative z direction except where it is zero. The time-average value of 

the Poynting vector must be the same for all planes along the wave since no energy 

can be dissipated in the perfect dielectric, but the instantaneous values may be different 

at two different planes, depending on whether there is a net instantaneous rate of in- 

crease or decrease of stored energy between those planes. 

In Sec. 3.10 we also studied the important phasor forms for a plane wave with E., 

and H,. Extending that analysis to include the remaining components, we have 

Ez) = E,e* + E,e (21) 

nH,(z) = E,e/* — Eye! (22)
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E,(z) = E;e7" + E,e™ (23) 

nH(z) = —E;e" + Ee (24) 

where 

k= - =oVpe m7! (25) 

This constant is the phase constant for the uniform plane wave, since it gives the change 

in phase per unit length for each wave component. It may also be considered a constant 

of the medium at a particular frequency defined by (25), known as the wave number, 

and will be found useful in the analysis of all waves, as will be seen. 

The wavelength is defined as the distance the wave propagates in one period. It is 

then the value of z which causes the phase factor to change by 27: 

  

2 
kA = 2m or k= = (26) 

or 

2 ,- ~E? (27) 
aVuse ff 

This is the common relation between wavelength, phase velocity, and frequency. The 

free-space wavelength is obtained by using the velocity of light in free space in (27) 

and is frequently used at the higher frequencies as an alternative to giving the frequency. 

It is also common in the optical range of frequencies to utilize a refractive index n 

given by 

n=-= [FS (28) 
U Mo &o 

For most materials in the optical range 4 = po, so that n is just the square root of the 

relative permittivity for that frequency. 

To summarize the properties for a single wave of this simple type, which may be 

described as a uniform plane wave: 

. Velocity of propagation isv = 1/ V pe. 

. There is no electric or magnetic field in direction of propagation. 

The electric field is normal to the magnetic field. 

. The value of the electric field is 7 times that of the magnetic field at each instant. 

The direction of propagation is given by the direction of E X H. 

Energy stored in the electric field per unit volume at any instant and any point is 

equal to energy stored in the magnetic field. 

7. The instantaneous value of the Poynting vector is given by E?/7 = nH, where 

E and H are the instantaneous values of total electric and magnetic field strengths. 
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Example 6.2 
PROPAGATION OF A MODULATED WAVE IN A NONDISPERSIVE MEDIUM 

If a radio wave of angular frequency w, is amplitude modulated by a sine wave of 

angular frequency w,,, the resulting function may be written 

E(t) = All + mcos o,,tlcos wot (29) 

Suppose this function at z = 0 excites a uniform plane wave propagating in the positive 

z direction. To obtain the form of the propagating wave it is straightforward to replace 

tby t — z/v to obtain 

E(z, t) = afi + 1 COS onl — 2) les on() _ 2) (30) 

The interpretation of this expression is that the entire function propagates in the z 

direction with velocity v as illustrated in Fig. 6.2b. All this is correct provided that the 

medium is nondispersive (i.e., that v is independent of frequency). If there is dispersion, 

an expansion of (29) shows that different frequency components are present and that 

each component then propagates at its appropriate v. The result then is that the envelope 

moves with a different velocity than the modulated wave as shown in the discussion of 

group velocity (Sec. 5.15). 

mene 

~ Modulated wave Zz 
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Fic. 6.26 Simple modulated wave having form of Eq. (30). The wave is plotted versus z at 

time tf = 0. In a nondispersive medium, envelope and modulated portion move with velocity uv 

in z direction. 
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6.3 POLARIZATION OF PLANE WAVES 

If several plane waves have the same direction of propagation, it is straightforward to 

superpose these for a linear medium. The orientations of the field vectors in the indi- 

vidual waves and the resultant are described by the polarization' of the waves. In this 

discussion we are concerned primarily with sinusoidal waves of the same frequency. 

Let us take a positively traveling wave only, use phasor representation, and assume 

there are both x and y components of electric field. ‘The general expression for such a 

wave is then 

E = (RE, + jE.e%e* (1) 

where £, and £. are taken as real and yy is the phase angle between x and y components. 

The corresponding magnetic field is 

1 | | 
H = —(—-%Ee + §E Je (2) 

n 

The several classes of polarization then depend upon the phase and relative amplitudes 

E, and E,. 

Linear or Plane Polarization If the two components are in phase, Ww = O, they 

add at every plane z to give an electric vector in some fixed direction defined by angle 

a@ with respect to the x axis, as pictured in Fig. 6.3a: 

1 Ey —] Ey = tan~! 2 = tan7! 2 3 a an" 5 an (3) 
x 

This angle is real and hence the same for all values of z and ¢. Since E maintains its 

direction in space, this polarization is called linear. It is also called plane polarization 

since the electric vector defines a plane as it propagates in the z direction. In commu- 

  

  

Fic. 6.3a Components of a linearly (plane) polarized wave. 

' The term polarization is used in electromagnetics both for this purpose and for fhe un- 

related concept of the contribution of atoms and molecules to dielectric properties as 

described in Secs. 1.3 and 13.2, Usually, the intended usage is clear from the context.
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nications engineering it is common to describe polarization by the plane of the electric 

vector, so that the term vertical polarization implies that E is vertical. In older optics 

texts the magnetic field defined the plane of polarization, but it is now also common in 

optics to use electric field. To avoid ambiguity in either case it is best to specify 

explicitly, ‘‘polarized with electric field in the vertical plane.’’ 

Circular Polarization A second important special case arises when amplitudes E, 

and E, are equal and phase angle is W = + 2/2. Equation (1) then becomes 

E = (& + jj)E,e* (4) 

The magnitude of E is seen to be V2E , from the above, and it may be inferred that it 

rotates in circular manner, but to see this clearly let us go to the instantaneous forms: 

E(z, t) = Ref(k + jy)E,e/“e*] 
= E,[X cos(wt — kz) + ¥ sin(wt — kz)] ” 

The sum of the squares of instantaneous F.,, and F,,, 

E2(z, t) + EX(z, t) = Et{cos*(wt — kz) + sin’*(wt — kz)] = Ej (6) 

does define the equation of a circle. The instantaneous angle @ with respect to the x 

axis 1S 

  

qa = tan 
Ey “(sane ~ 2) 

= = +(wt — kz 7 
Ep \* cow ke) Or 

In a given z plane, the vector thus rotates with constant angular velocity with a = +ot. 

For a fixed time, the vector traces out a spiral in z as pictured in Fig. 6.3b. The 

propagation may be pictured as the movement of this “corkscrew” in the z direction 

with velocity v. 

Note that wy = + 7/2 leads to a = —wt (for z = 0) and Ww = —7/2 leads to 
rotation in the opposite direction. The first case is called the left-hand or counterclock- 

wise sense of circular polarization (looking in the direction of propagation) and the 

latter, the right-hand or clockwise. The magnetic field for the circularly polarized wave, 

using E, = E, and wy = +7/2, is 

E 
H = — (= + poe ™ (8) 

1 

Elliptic Polarizatiom For the general case, with E, # E,, or FE, = E, but w other 

than 0 or +7/2, the terminus of the electric field traces out an ellipse in a given z 

plane so that the condition of polarization is called elliptical. To see this, again let us 

take instantaneous forms of (1), 

E(z, t) = Re[(RE, + FE,eMele | ©) 

= RE, cos(wt — kz) + JE, cos(wt — kz + W 

2M. Born and E. Wolf, Principles of Optics, 6th ed., p. 28, Macmillan, New York, 1980,



  

282 Chapter6 Plane-Wave Propagation and Reflection 
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Fic. 6.36 Circularly polarized wave. Terminus of the electric field vectors forms a spiral of 
period equal to the wavelength at any instant of time. This spiral moves in the z direction with 
velocity v, so that the vector in a given z plane traces out a circle as time progresses. 

   
  

  

or in a given z plane, say z = 0, 

Ez, 2) = E, cos wt 

E\@, t) = E, cos(@t + W) 

These are the parametric equations of an ellipse. If y = + 7/2 the major and minor 

axes of the ellipse are aligned with the x and y axes, but for general w the ellipse is 

tilted as illustrated in Fig. 6.3c. 

(10) 
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Fic. 6.3¢ Elliptically polarized wave. The locus of the terminus of electric and magnetic field 
vectors is in each case an ellipse for a given z plane as time progresses.
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Unpolarized Wave We sometimes also speak of an unpolarized wave in which 

there is a component in any arbitrary direction for each instant of time. Note that this 

concept applies only to the superposition of waves of different frequency, or of random 

phases, since superposition of any number of components of the same frequency and 

defined phase reduces to one of the three cases described above. We may meet unpo- 

larized waves when we have a frequency spectrum (as in sunlight) or a random variation 

of phase between components, as in the propagation of a radio wave through the 

ionosophere. 

  

Example 6.3 
LINEARLY POLARIZED WAVE AS SUPERPOSITION 

OF TWO CIRCULARLY POLARIZED WAVES 

Just as the circularly polarized wave may be looked at as the superposition of two 

linearly polarized waves, so may a linearly polarized wave be considered a superposition 

of two oppositely circulating circular polarized waves. To show this, let us add right- 

hand and left-hand circularly polarized waves of the same amplitude. Using (4), 

E= & + /MEe*" + & -— Ee ™ = Ee * 

and magnetic field, using (8), 1s 

E . _-E a 20), a. 
H = —(-j& + Pye*™ + 408 + Pew = — fe“ 

7) 7] 7) 

The results are the expressions for E and H in a wave polarized with electric field in 

the x direction. To obtain E in the y direction, we have only to subtract the two circularly 

polarized parts. 

  

6.4 WAVES IN IMPERFECT DIELECTRICS AND CONDUCTORS 

Materials properties and their effect on wave propagation will be dealt with extensively 

in Chapter 13. Here we consider only isotropic, linear materials and bring in the effect 

of losses on the response of applied fields. The effect of losses can enter through a 

response to either the electric or magnetic field, or both. An example of a material in 

which the response to the magnetic field leads to losses is the so-called ferrite (or 

ferrimagnetic materials), and in this case the permeability must be a complex quantity 

ju = p — jp’. For most materials of interest in wave studies, magnetic response is 
very weak and the permeability is a real constant that differs very little from the perme- 

ability of free space; this will be assumed throughout this text unless otherwise specified.
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A study of the response of bound electrons in atoms and ions in molecules (Sec. 13.2) 

shows that the total current density resulting from their motion is 

J = jwsE = jaw(e' — je,)E 

If, in addition, the material contains free electrons or holes, there is a conduction current 

density 

J = ck 

At sufficiently high frequencies, o can be complex (Sec. 13.3), but we will assume that 

frequency is low enough to consider it real (satisfactory through the microwave range). 

Then the total current density is 

J= jo( © — jet — 2) (1) 
@ 

In materials called dielectrics, there are usually few free electrons and any free-electron 

current component is included in «” and o is taken as zero. On the other hand, in 

materials considered conductors such as normal metals and semiconductors, the con- 

duction current dominates and the effect of the bound electrons ¢; is subsumed in the 

conductivity. Although different physically, the two loss terms enter into equations in 

the same way through the relation 0 = we". 
For dielectric materials with real permeability and complex permittivity, 

V X H = jweE = jw(e' — je’ )E (2) 

where conduction currents are included in the loss factor e”. 

The wave number, Eq. 6.2(25), is complex in this case and is 

k= wV we’ — je’) (3) 

The wave number & may be separated into real and imaginary parts: 

++ 16 = im) (2) ‘ 
  

I jk 

where 

  

  

and 

  

pool) Lyi) + 9
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According to Sec. 6.2, the exponential propagation factor for phasor waves is e~/* 
which becomes, when k is complex, 

ek — e te ipz 

Thus the wave attenuates as it propagates through the material and the attenuation 

depends upon the dielectric losses and the conduction losses, as would be expected. 

The intrinsic impedance, or ratio of electric to magnetic field for a uniform plane 

wave, becomes 

bh be 
= [= IF Toya (7) ” i bata 

An important parameter appearing in (4) through (7) is the ratio e"/e': For low-loss 

materials such as the examples given in Table 6.4a, this ratio is much less than unity. 

We may refer to such a material as an imperfect dielectric. Under these conditions, the 

attenuation constant (5) and the phase constant (6) may be approximated by expanding 

both as binomial series: 

  

  

ks" 

er ” 
2 realy 

where k = wV pe’. Dielectric losses are usually described by the “loss tangent” 

tan 6 = e"/e'. It is seen that there is a small increase of the phase constant and, 

  

  

  

Table 6.4a 
Properties of Common Dielectrics at 25°C 

&'/E 10* tan & 

Material? =10° f=108 f=i10° f=10° f=108 Ff = i0' 

Fused quartz (S103) 3.8 3.8 3.8 1 2 2 
Alumina (96%) 8.8 8.8 8.8 3.3 3.0 14 

Alsimag ceramic 5.7 5.6 5.2 30 16 20 

MgO 9.6 9.6 — <3 <3 — 

SrTiO; 230 230 — 2 I — 

Polyethylene 2.3 2.3 2.3 <2 2 5 

Polystyrene 2.6 2.6 2.5 0.7 <1 10 

Teflon 2.1 2.1 2.1 <2 <2 5 
  

“tan 6 = e”/e'. 
»A microwave-absorbing material, Eccosorb, is available with 1.5 < (e'/e,) < 50 and 0.08 < ("/e) < 1.
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therefore, decrease of the phase velocity when losses are present in a dielectric. The 

intrinsic impedance in this case is, from (7), 

2 
3 ge” ge” 

~yl1—-=(—) | +J 10 

where 7’ = V y/e’. 
In a material such as a semiconductor where the losses are predominantly conductive, 

  

V X H = (jwe’ + DE = joe! | _ iS (11) 

For radian frequencies much larger than a /e' the loss term is small and the approxi- 

mations (8) to (10) may be used with e"/e' replaced by a /we'. For frequencies much 
below o/e' the material may be considered a good conductor. If we make use of the 

fact that 

CT —>>1 
WE 

in (4), we find 

. [po \\/aFae 1+] 
jk = j@ jo LT? TH pL = (12) 

where 6 is the depth of penetration defined by Eq. 3.16(11) and used extensively in 

Chapter 3. The propagation factor for the wave shows that the wave decreases in mag- 

nitude exponentially, and has decreased to 1/e of its original value after propagating a 

distance equal to depth of penetration of the material. The phase factor corresponds to 

a very small phase velocity 

a) 2776 
ID B = wO = C hy (13) 

where c is the velocity of light in free space and Aj is free-space wavelength. Since 

6/ A, is usually very small, this phase velocity is usually much less than the velocity of 

light. 

Equation (7) gives, for a good conductor, 

n= Haas (= + pr, (14) 
Oo Oo 

where R, is the surface resistivity or high-frequency skin effect resistance per square 

of a plane conductor of great depth. Equation (14) shows that electric and magnetic 

fields are 45 degrees out of time phase for the wave propagating in a good conductor. 

Also, since R, is very small (0.014 © for copper at 3 GHz), the ratio of electric field 

to magnetic field in the wave is small.



6.5 Reflection of Normally Incident Plane Waves from Perfect Conductors 287 

  

  

Table 6.4b 
Material Parameters for Microwave Frequencies and Below 

Conductivity e Frequency at which 
Material (S/m) Eo ao = we’ (Hz) 

Copper 5.80 x 10’ ~~ (Optical) 
Platinum 0.94 x 10’ ~— (Optical) 
Germanium (lightly doped) 10? 16 1.1 x 10! 
Seawater 4 81 8.9 x 108 
Fresh water 107? 81 2.2 * 10° 
Silicon (lightly doped) 10 12 1.5 x 10!° 
Representative wet earth 107? 30 6.0 x 108 
Representative dry earth 107? 7 2.6 X 10° 
  

The above-mentioned results for the good conductor agree with those found in Chap- 

ter 3 by using what appeared to be a different analysis. In Sec. 3.16 the assumption that 

the conduction current greatly exceeds the displacement current is made at the outset, 

with the result that the differential equation is not the wave equation but the so-called 

diffusion equation. The assumptions in both approaches are identical, however, so it is 

to be expected that the results would be the same. 

Table 6.4b lists several materials for which the dominant losses are those resulting 

from finite conductivity. The values listed for conductivity and real part of permittivity 

are those applicable up through the microwave frequency range. The frequencies at 

which displacement currents equal conduction currents are listed and serve to indicate 

the range of frequencies in which the two above-mentioned approximations are valid. 

  

Plane Waves Normally Incident on Discontinuities 

6.5 REFLECTION OF NORMALLY INCIDENT PLANE WAVES 
FROM PERFECT CONDUCTORS 

If a uniform plane wave is normally incident on a plane perfect conductor located at 

z = 0, we know that there must be some reflected wave in addition to the incident 

wave. The boundary conditions cannot be satisfied by a single one of the traveling wave 

solutions, but will require just enough of the two so that the resultant electric field at 

the conductor surface is zero for all time. From another point of view, we know from 

the Poynting theorem that energy cannot pass the perfect conductor, so all energy 

brought by the incident wave must be returned in a reflected wave. In this simple case
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the incident and reflected waves are of equal amplitudes and together form a standing 

wave pattern whose properties will now be studied. 

Let us consider a single-frequency, uniform plane wave and select the orientation of 

axes so that total electric field lies in the x direction. The phasor electric field, including 

waves traveling in both the positive and negative z directions (Fig. 6.5), is 

E. = E,e™ + E_el® 

If FE, = 0 at z = 0 as required by the perfect conductor, K_ = —E,: 

E, = E,(e7™ — e/”) = —-2jE, sin kz (1) 

The relation of the magnetic field to the electric field for the incident and reflected 

waves is given by Eq. 6.2(11). Hence 

H= (E etkz _ E_ et) 

” 7 n 
(2) 

E . 1. 2E 
= (eT? + ei) = — cos kz 

7 

Equations (1) and (2) state that, although total electric and magnetic fields for the 

combination of incident and reflected waves are still mutually perpendicular in space 

and related in magnitude by 7, they are now in time quadrature. The pattern is a standing 

wave since a zero of electric field is always at the conductor surface, and also always 

atkz = —narorz = —ndA/2. Magnetic field has a maximum at the conductor surface, 

and there are other maxima each time there are zeros of electric field. Similarly, zeros 

of magnetic field and maxima of electric field are at kz = —(2n + 1)a/2, orz = 

—(2n + 1)A/4. This situation is sketched in Fig. 6.5, which shows a typical standing 

wave pattern such as was found for the shorted transmission line in Sec. 5.13. At an 

instant in time, occurring twice each cycle, all the energy of the line is in the magnetic 

field; 90 degrees later the energy is stored entirely in the electric field. The average 

Perfect conductor 

j 2E, ; 
Aimax = e Jit 

  

Incident wave —> E 4 ¢ (ut — 2z) 

Reflected wave<— ~—Ey ¢ Hut + ke) 

Fic. 6.5 Standing wave patterns of electric and magnetic fields when a plane wave is reflected 
from a perfect conductor, each shown at instants of time differing by one-quarter of a cycle.
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value of the Poynting vector is zero at every cross-sectional plane; this emphasizes the 

fact that on the average as much energy is carried away by the reflected wave as is 

brought by the incident wave. 

These points are also shown by the instantaneous forms for fields: 

Ez, t) = Re[-2jE, sin kze/“] = 2E, sin kz sin ot (3) 

  25 . 2E 
H(z, t) = Re| 7 COS al = — cos kz cos wt (4) 

: 1] 

6.6 TRANSMISSION-LINE ANALOGY OF WAVE PROPAGATION: 
THE IMPEDANCE CONCEPT 

In the problem of wave reflections from a perfect conductor, we found all the properties 

previously studied for standing waves on an ideal transmission line. The analogy be- 

tween the plane-wave solutions and the waves along an ideal line is in fact an exact 

and complete one. It is desirable to make use of this whether we start with a study of 

classical transmission-line theory and then undertake the solution of wave problems or 

proceed in the reverse order. In either case the algebraic steps worked out for the 

solution of one system need not be repeated in analyzing the other; any aids (such as 

the Smith chart or computer programs) developed for one may be used for the other; 

any experimental techniques applicable to one system will in general have their coun- 

terparts in the other system. We now show the basis for this analogy. 

Let us write side by side the equations for the field components in positively and 

negatively traveling uniform plane waves and the corresponding expressions found in 

Chapter 5 for an ideal transmission line. For simplicity we orient the axes so that the 

wave has £, and H, components only: 

Ez) = E,e7* + E_ei® (1) Vaz) = Vie +V_el® (5) 

1 . . | ‘Be Bs 
H(z) = —(E,e7" — BE_e™) (2) I(2) = 7. [V.e7* —- VE] (6) 

" 7) 0 

k= wV pe (3) B = wVLC (7) 

_ |e _ [& 7 = /- 4 B= fa (8) 

We see that if in the field equations we replace E, by voltage V, Al, by current /, 

permeability 4 by inductance per unit length L, and dielectric constant ¢ by capacitance 

per unit length C, we get exactly the transmission-line equations (5) to (8). To complete 

the analogy, we must consider the continuity conditions at a discontinuity between two 

regions. For the boundary between two dielectrics, we know that total tangential electric 

and magnetic field components must be continuous across this boundary. For the case 

of normal incidence (other cases will be considered separately later), E,. and H, are the



  

290 Chapter6 Plane-Wave Propagation and Reflection 

tangential components, so these continuity conditions are in direct correspondence to 

those of transmission lines which require that total voltage and current be continuous 

at the junction between two transmission lines. 

To exploit this analogy fully, it is desirable to consider the ratio of electric to magnetic 

fields in the wave analysis, analogous to the ratio of voltage to current which is called 

impedance and used so extensively in the transmission-line analysis. It is a good idea 

to use such ratios in the analysis, quite apart from the transmission-line analogy or the 

name given these ratios, but in this case it will be especially useful to make the iden- 

tification with impedance because of the large body of technique existing under the 

heading of “impedance matching” in transmission lines, most of which may be applied 

to problems in plane-wave reflections. Credit for properly evaluating the importance 

of the wave impedance concept to engineers and making its use clear belongs to 

Schelkunoff.? 
At any plane z, we shall define the field or wave impedance as the ratio of total 

electric field to total magnetic field at that plane: 

(9) 

For a single positively traveling wave this ratio is 7 at all planes, so that 7, which has 

been called the intrinsic impedance of the medium, might also be thought of as a 

characteristic wave impedance for uniform plane waves. For a single negatively trav- 

eling wave the ratio (9) is — 7 for all z. For combinations of positively and negatively 

traveling waves, it varies with z. The input value Z; distance / in front of a plane at 

which the ‘‘load”’ value of this ratio is given as Z, may be found from the corresponding 

transmission-line formula, Eq. 5.7(13), taking advantage of the exact analogy. The 

intervening dielectric has intrinsic impedance 7: 

2 cos kl + j7 sin tl Z. = 
po 7 cos kl + jZ, sin kl 

(10) 

It may be argued that in wave problems the primary concern is with reflections and 

not with impedances directly. This is true, but as in the transmission-line case there is 

a one-to-one correspondence between reflection coefficient and impedance mismatch 

ratio. The analogy may again be invoked to adapt Eqs. 5.7(8) and 5.7(9) to give the 

reflection and transmission coefficients for a dielectric medium of intrinsic impedance 

7 when it is terminated with some known load value of field impedance Z,: 

44-7 
+ Z, + Y 

| 
ca
 |
b 

p (11) 

    

(12) 

3. S.A. Schelkunoff, Bell Syst. Tech. J. 17, 17 (1938).
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We see from this that there is no reflection when Z, = 7 (i.e., when impedances are 

matched). There is complete reflection |p| = 1 when Z, is zero, infinity, or purely 

imaginary (reactive). Other important uses of formulas (10) to (12) will follow in suc- 

ceeding sections. 

  

Example 6.6a 
FIELD IMPEDANCE IN FRONT OF CONDUCTING PLANE 

If we calculate Z(z) for the plane wave normally incident on a plane conductor, as 

studied in Sec. 6.5, we recognize that the plane acts as a short circuit since it constrains 

E.. to be zero there, corresponding to zero voltage in the transmission-line analogy. If 

we take Z, = O in (10), we obtain 

Z; = jn tan kl (13) 

The same result is obtained by taking the ratio of phasor electric and magnetic fields 

at z = —I/ from Eqs. 6.5(1) and 6.5(2). Like the impedance of a shorted transmission 

line, this is always imaginary (reactive). It is zero at k/ = na and infinite at kl = 

(2n + 1)2r/2. 

  

Example 6.6b 
ELIMINATION OF WAVE [REFLECTIONS FROM CONDUCTING SURFACES 

To eliminate wave reflections from a plane perfectly conducting surface, it is clear that 

coating the conductor with a thin film having conductivity o does not help since the 

perfect conductor merely shorts this out. As in Fig. 6.6, one can place a sheet with 

resistivity 7 (./square a quarter-wavelength in front of the conductor surface. As seen 

from (13), this is at a point of infinite impedance because of wave reflections so that 

there is no shunting effect. The wave impinging on the front Gf the sheet is thin com- 

incident wave 

Perfect 

conductor 

Conducting 
sheet 

  

  O
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Q
O
 

Fic. 6.6 Elimination of reflection from perfect conductor by placing a conducting sheet 1/4 in 

front of it.
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pared with its depth of penetration) then sees wave impedance 7 and is perfectly 

matched. The needed conductivity of the sheet is then 

1 
—= %, d<<6 (14) 
od 

The arrangement just described is not very convenient to make, and is sensitive to 

frequency of operation and to angle of incidence. For this reason coatings of “‘anechoic 

chambers’? more often use a nonuniform-line approach to matching, with a porous, 

lossy material, with pyramidal taperings on the surface facing the incident wave. 

  

6.7 NORMAL INCIDENCE ON A DIELECTRIC 

If a uniform plane wave is normally incident on a single dielectric boundary from a 

medium with Vy,/e, = 7, to one with Vpo/e, = 7, the wave reflection and 
transmission may be found from the concepts and equations of Sec. 6.6. Select the 

direction of the electric field as the x direction, and the direction of propagation of the 

incident wave as the positive z direction, with the boundary at z = O (Fig. 6.7a). The 

medium to the right is assumed to be effectively infinite in extent, so that there is no 

reflected wave in that region. The field impedance there is then just the intrinsic imped- 

ance 7, for all planes, and in particular this becomes the known load impedance at the 

plane z = 0. Applying Eq. 6.6(11) to give the reflection coefficient for medium 1 

referred to z = 0, 

ty
 

1 _ 1 7 (1) 

i+ Mn 

The transmission coefficient giving the amplitude of electric field transmitted into the 

second dielectric, from Eq. 6.6(12), is 

E, 21> 
T= = 3 (2) 

Evy MN + | 

p >= 

ty
 

  

The fraction of incident power density reflected is 

P E2_\(/g2.\— 
>> = (Zi) (Fi) = |p)? (3) 
Pis 29, /\ 2m 

And the fraction of the incident power density transmitted into the second medium is 

2 

Pi4 

  

= 1 — |p? (4) 

From (1), we see that there is no reflection if there is a match of impedances, n, = 7. 

This would of course occur for the trivial case of identical dielectrics, but also for the
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Fic. 6.7 Reflection and transmission of a plane wave from a plane boundary between two 
dielectric media. 

case of different dielectrics if they could be made with the same ratio of yw to e. This 

latter case is not usually of importance since we do not commonly find high-frequency 

dielectric materials with permeability different from that of free space, but it is inter- 

esting since we might not intuitively expect a reflectionless transmission in going from 

free space to a dielectric with both permittivity and permeability increased by, say, 10 

times. 

In the general case there will be a finite value of reflection in the first region, and 

from (1) we can show that the magnitude of p is always less than unity. (It approaches 

unity as 4/7, approaches zero or infinity.) The reflected wave can then be combined 

with a part of the incident wave of equal amplitude to form a standing wave pattern as 

in the case of complete reflection studied in Sec. 6.5. The remaining part of the incident 

wave can be thought of as a traveling wave carrying the energy that passes on into the 

second medium. The combination of the traveling and standing wave parts then pro- 

duces a space pattern with maxima and minima, but with the minima not zero in general. 

As for corresponding transmission lines, it is convenient to express the ratio of ac
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amplitude at the electric field maximum to the minimum ac amplitude (occurring a 

quarter-wavelength away) as a standing wave ratio S: 

— |E<@Dlmax _ 1+ Ip! 

  

= = (5) 

By utilizing (1), it may be shown for real 7 that 

5 if w> s = {mm if ™> 6) 
m/n. if m > 

Since 7, and 7, are both real for perfect dielectrics, p is real and the plane z = 0 must 

be a position of a maximum or minimum. It is a maximum of electric field if p is 

positive, since reflected and incident waves then add, so it is a maximum of electric 

field and minimum of magnetic field if 7, > 7,. The plane z = O is a minimum of 

electric field and a maximum of magnetic field if 7, > 75. These two cases are sketched 

in Fig. 6.7b. 

  

Example 6.7a 
REFLECTION FROM QUARTZ AND GERMANIUM AT INFRARED WAVELENGTHS 

  

ne dare ALI ae BL a cyte mt Be eS i Re a ee et MS! A RES pene eed, ui 

  

Let us find reflection of plane waves normally incident from air onto quartz, and also 

onto germanium, at a wavelength of 2 um, neglecting losses. Equation (1) may 

be written in terms of refractive indices, Eq. 6.2(28). Since w, = wy and n, = 

&,/o, Ny = V &/E, (1) becomes 

ry —_™ Ny 

p= (7) 
Ny + Ny 

  

Using data in Fig. 13.2b, n, for quartz is about 1.5 at 2 wm and nm, may be taken as 

unity. Reflection coefficient p is then —0.2 and fraction of incident power reflected 

p” is 0.04 or 4%. For germanium, n, is 4 and p is found to be —0.6, so that p? is 0.36 

or 36%. 

  

Example 6.7b 
REFLECTION FROM A GOOD CONDUCTOR 

From Eq. 6.4(14) the characteristic wave impedance of a conductor is seen to be 

(1 + /)R,, with R, the surface resistivity defined in Sec. 3.17. Thus for a plane wave 

normally incident from a dielectric of intrinsic impedance 7 onto such a conductor, (1) 

yields 

  _G@+ PR, —- 1 1-0 + 2 R/n 
Q+)R,+n 1+0+ )R/n 
  (8)
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Examination of values for typical conductors from Table 3.17a shows that R,/7 is 

normally very small. Thus a binomial expansion of (8) with first-order terms only 

retained gives 

  

2(1 +7))R 
p~ —~] + 201 +s (9) 

1) 

Then to first order, 

5 AR, 
le? ~ 1 — (10) 

7) 

so the fraction of power transmitted into the conductor is approximately 4R sf 7. For air 

into copper at 100 MHz, this is 4 X (2.61 X 1077)/377 = 2.76 X 107°, or only 
0.0028%. 

  

6.8 REFLECTION PROBLEMS WITH SEVERAL DIELECTRICS 

We are next interested in considering the case of several parallel dielectric disconti- 

nuities with a uniform wave incident in some material to the left, as pictured in the case 

for three dielectric materials in Fig. 6.8a. We might at first be tempted to treat the 

problem by considering a series of wave reflections, the incident wave breaking into 

one part reflected and one part transmitted at the first plane; of the part transmitted into 

region 2 some is transmitted at the second plane and some is reflected back toward the 

first plane; of the latter part some is transmitted and some reflected; and so on through 

an infinite series of wave reflections. This lengthy procedure can be avoided by con- 

sidering total quantities at each stage of the discussion, and again the impedance for- 

mulation is useful in the solution. 

If the region to the right has only a single outwardly propagating wave, the wave or 

field impedance at any plane in this medium is 73, which then becomes the load imped- 

. | 
= Vill a ‘ Transmitted 

- 
Fic. 6.8a Wave reflections from a system with a dielectric medium interfaced between two 

other media. 

\N 
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ance to place at z = J. The input impedance for region 2 is then given at once by Eq. 

6.6(10), and since this is the impedance at z = 0, it may also be considered the load 

impedance for region I: 

  
N3 COS kyl + jn, sin kal 

Zr, = Lo = 1 
ht 2 n(2 cos kol + jn; sin kl ) 

The reflection coefficient in region 1, referred to z = O, is given by Eq. 6.6(11): 

£2 — | p= 2) 
Zn t+ 

The fraction of power reflected and transmitted is given by Eqs. 6.7(3) and 6.7(4), 

respectively. 

If there are more than the two parallel dielectric boundaries, the process is simply 

repeated, the input impedance for one region becoming the load value for the next, until 

one arrives at the region in which reflection is to be computed. It is of course desirable 

in many cases to utilize the Smith chart described in Sec. 5.9 in place of (1) to transform 

load to input impedances and to compute reflection coefficient or standing wave ratio 

once the impedance mismatch ratio is known, just as the chart is used in transmission- 
line calculations. 

We now wish to consider several special cases which are of importance. 

    MEMO BEF Nt LISMORE Re SEY aS CO SET 7a Te OT 

Example 6.8a 
HALF-WAVE DIELECTRIC WINDOW 

If the input and output dielectrics are the same in Fig. 6.8a (7, = 73), and the inter- 

vening dielectric window is some multiple of a half-wavelength referred to medium 2 

so that k,l = mz, then (1) gives 

4, = 73 = 1] (3) 

so that by (2) reflection at the input face is zero. 

A window such as the above will of course give reflections for frequencies other 

than that for which its thickness is a multiple of a half-wavelength. For example, a 

Corning 707 glass window with e, = 4 and thickness 0.025 m corresponds to k,/ = 

q at a frequency of 3 GHz. Let us calculate the reflection at 4 GHz using the Smith 

chart. Normalized load impedance for region 2 is 377/188.5 = 2, so we enter the chart 
at point A of Fig. 6.8b. We then move on a circle of constant radius 4/3 X A/2 or 

0.667A toward the generator. This is one complete circuit of the chart plus 0.1674, 

ending at point B where we read normalized input impedance Z,,/Z), = 0.62 — j0.38. 

Renormalizing to the characteristic impedance of the input region, we multiply by 

188.5/377 or § and find 0.31 — j0.19. This is entered at point C, for which“we read
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tip ero 

aco   
Fic. 6.8b Smith Chart constructions for Exs. 6.8a and 6.8d. 

from the radial scale a reflection coefficient |p| = 0.55, so that |p|* is 0.30 or 30%. This 
value can be checked by numerical calculation using (1) and (2). 

  

Example 6.8b 
ELECTRICALLY THIN WINDOW 

If 7, = 73 and k,/ is so small compared with unity that tan k,l ~ k,/, (1) becomes 

+ inkl ; 5 
Ly, n(™ Lb ) ~ ny) + jeg — a1) (4) 

Ny + IMKol Th TN)2
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Substituting in (2), we see that 

Kl 
p~ jt (B- 2) (5) 

h 12 

The magnitude of reflection coefficient is thus proportional to the electrical length of 

the dielectric window for small values of k,/; and the fraction of incident power reflected 

is proportional to the square of this length. 

For example, a polystyrene window (e, ~ 2.54) 3 mm thick, with a normally incident 

plane wave at 3 GHz from air, would give p = —/0.145 so that 2% of incident power 

is reflected. 

  

Example 6.8¢ 
QUARTER-WAVE COATING FOR ELIMINATING REFLECTIONS 

Another important case is that of a quarter-wave coating placed between two different 

dielectrics. If its intrinsic impedance is the geometric mean of those on the two sides, 

it will eliminate all wave reflections for energy passing from the first medium into the 

third. To show this, let 

T — 
kyl = 2 Iya = V N75 (6) 

From (1), 

% _ Ms 
Zy === = 7 

vt 73 13 

This is a perfect match to dielectric 1, so that p = 0. 

This technique is used, for example, in coating optical lenses to decrease the amount 

of reflected light, and is exactly analogous to the technique of matching transmission 

lines of different characteristic impedances by introducing a quarter-wave section hav- 

ing characteristic impedance the geometric mean of those on the two sides. In all cases 

the matching is perfect only at specific frequencies for which the length is an odd 

multiple of a quarter-wavelength, but is approximately correct for bands of frequencies 

about these values. Multiple coatings are used to increase the frequency band obtainable 

with a specified permissible reflection.* 
As a numerical example of this technique, consider the coating needed to eliminate 

reflections from a 488-nm-wavelength argon laser beam (taken as a plane wave) in 

going from air to fused silica with refractive index 1.46. It follows from (6) that re- 

fractive index of the coating should be the geometric mean of that of the air and window, 

or about 1.21. Note from Fig. 13.25 that there are few materials with this low index, 

but if one is found its thickness should be a quarter-wavelength measured in the coating, 

which 1s about 0.1 ym. 

  

4 C.A. Bolanis, Advanced Engineering Electromagnetics, Sec. 5.5, Wiley, New York, 1989,
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Example 6.8d 
REFLECTION FROM A TWO-PLY DIELECTRIC 

Now take the two-ply dielectric of Fig. 6.8c in which d, = 2 mm, &,/e, = 2.54 
(polystyrene) and d, = 3.0 mm, €3/e, = 4 (Coming 707 glass). The normally incident 

wave is at frequency 10 GHz (Ap = 3 cm). We will do this just on the Smith chart and 

enter points on Fig. 6.85. The steps are clear extensions of the above. 

Starting at the 3—4 interface, 

  

£13 377 
— = ——— = 2.00 tM 
Zo, 188.5 (point M) 

Moving toward generator, 

da; 0.30 
== = 0.2 wavelength (point VV) 
A3 3.0/V4 . P 

We read Z,,/Z), = 0.55 — j0.235 and renormalize to get load on region 2: 

Zr [2.54 = (0.55 — j0.235) |-— = 0.438 — j0.187 (point 0) 
02 

Moving toward generator, 

d, 0.20 —= = —————_ = 0,106 wavelength (point P) hy 3.0/V2.54 ° ° 
Finally we read Z,./Zp. = 0.49 + j0.38 and renormalize to air to get load on region I: 

Zu nae |! | , ft. _ (9.49 + 70.38) /—— = 0.31 + j0.24 t 
Zz, | J0.38), | <4 j (point @) 

Radius to O (as fraction of radius of chart) gives |p| = 0.55 so that over 30% of incident 

power is reflected. 

© @) @ @) 

<—— da 8 

Eg & fy EQ       
Fic. 6.8c A composite window with two slab dielectrics and free space on either side. 
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Plane Waves Obliquely Incident on Discontinuities 

6.9 INCIDENCE AT ANY ANGLE ON PERFECT CONDUCTORS 

We next remove the restriction to normal incidence which has been assumed in all the 

preceding examples. It is possible and desirable to extend the impedance concept to 

apply to this case also, but before doing this we shall consider the reflection of uniform 

plane waves incident at an arbitrary angle on a perfect conductor to develop certain 

ideas of the behavior at oblique incidence. It is also convenient to separate the discussion 

into two cases, polarization with electric field in the plane of incidence and normal to 

the plane of incidence. Other cases may be considered a superposition of these two. 
The plane of incidence is defined by a normal to the surface on which the wave impinges 

and a ray following the direction of propagation of the incident wave. That is, it is the 

plane of the paper as we have drawn sketches in this chapter. We consider here loss- 

free media.° Polarization with, E in the plane of incidence may also be referred to as 

transverse magnetic (TM) since magnetic field is then transverse. When E is normal to 

the plane of incidence it may be called transverse electric (TE).° 

Polarization with Electric Field in the Plame of Imcidence (TM) In Fig. 

6.9a the ray drawn normal to the incident wavefront makes an angle @ with the normal 

to the conductor. We know that since energy cannot pass into the perfect conductor, 

there must be a reflected wave, and we draw its direction of propagation at some 

unknown angle 6’. The electric and magnetic fields of both incident and reflected waves 

must lie perpendicular to their respective directions of propagation by the properties of 

uniform plane waves (Sec. 6.2), so the electric fields may be drawn as shown by E, 

and E_. The corresponding magnetic fields H,, and H_ are then both normally out of 

the paper, so that E X H gives the direction of propagation for each wave. Moreover, 

with the senses as shown, 

E, Fi _ 
H, HoH. n (1) 

If we draw a @ direction in the actual direction of propagation for the incident wave 

as shown, and a ¢’ direction so that the reflected wave is traveling in the negative 

¢’ direction, we know that the phase factors for the two waves may be written as 

e/* and e/**’, respectively. The sum of incident and reflected waves at any point 
x, Z (z < Q) can be written 

E(x, z) = E,e7** + E_eke (2) 

° Fora treatment of waves in free space obliquely incident on the plane surface of a lossy 
medium, see C. A. Balanis, Advanced Engineering Electromagnetics, Sec. 5.4, Wiley, 
New York, 1989, 
An alternate designation, common in the scientific literature, employs P (for German 

‘‘parallel’’) and S$ (for German ‘‘senkrecht,’’ ie., perpendiculan, respectively, for the 
orientations of E in the two cases. 

6
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FiG.6.9 Wave incident at an angle on a dielectric interface. (a) Polarization with electric field 
in plane of incidence. (b) Polarization with electric field perpendicular to plane of incidence. 

where E., and E\_ are reference values at the origin. We now express all coordinates 

in terms of the rectangular system aligned with the conductor surface. The conversion 

of g and Z’ from the diagram is 

g 

¢ = —xsin 9’ + z cos @ (4) 

H x sin 9 + zcos 9 (3) 

so that, if these are substituted in the phase factors of (2), and the two waves broken 

into their x and z components, we have 

BAX, Z) = E, cos Ge ~JkG@sind+zc0s®) _ FF egg 9! etk(~xsind" + zcos6') (5) 

E(x, z) — —E, sin Ge ~ik@sin8 + zcosé) _ E_ sin Q! eik(—xsing +zcos@’) (6) 

The magnetic field in the two waves Is 

H,(x, z) — He Hkasing + <cosé) + H _ ei ~xsind' + zcos6") (7) 

The next step is the application of the boundary condition of the perfect conductor, 

which is that, at z = O, E,. must be zero for all x. From (5), 

E(x, 0) = E, cos de~/*5i"9 — Ecos Oe Jes8in® = Q (8) 

This equation can be satisfied for all x only if the phase factors in the two terms are 

equal, and this in turn requires that 

G= 0 (9)
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That is, the angle of reflection is equal to the angle of incidence. With this result in (8), 

it follows that the two amplitudes must be equal: 

E, =E_ (10) 

If the results (9) and (10) are substituted in (5), (6), and (7), we have the final expressions 

for field components at any point z < 0: 

E(x, 2) = —2jE., cos 6 sin(kz cos @)e~ "9 (11) 

E(x, 2) = —2E., sin @ cos(kz cos desi" (12) 

nH, (x, Z) = 2E., cos(kz cos 6)e 5"? (13) 

The foregoing field has the character of a traveling wave with respect to the x direction, 

but that of a standing wave with respect to the z direction. That is, E,, is zero for all 

time at the conducting plane, and also in parallel planes distance nd in front of the 

conductor, where 

r 1 
d= = 

2cos@ 2fV we cos 6 

The ac amplitude of E, is a maximum in planes an odd multiple of d/2 in front of the 

conductor. H, and EF, are maximum where £., is zero, are zero where E,, is maximum, 

and are everywhere 90 degrees out of time phase with respect to E,. Perhaps the most 

interesting result from this analysis is that the distance between successive maxima and 

minima, measured normal to the plane, becomes greater as the incidence becomes more 

oblique. A superficial survey of the situation might lead one to believe that they would 

be at projections of the wavelength in this direction, which would become smaller with 

increasing 9. This point will be pursued more in the following section. 

  (14) 

Polarization with Electric Field Normal to the Plane of Incidence (TE) In 

this polarization (Fig. 6.95), E, and E_ are normal to the plane of the paper, and H, 

and H_ are then as shown. Proceeding exactly as before, we can write the components 

of the two waves in the x, z system of coordinates as 

E,(x, z) — Ee esing+ zcos@) + E_ ek(—-xsing’ + zcos6") (15) 

nH, (x, 2) = —E., cos de~*esing+zc0s@) 4. FF cos Oe ik —asind’ +2c0s6") (16) 
nH(x, z) = E, sin Qe ~ ikGsind + zcos6) + F_ sin Q' ei —xsin# + 2c0s6") (17) 

The boundary condition at the perfectly conducting plane is that E, is zero at z = 0 

for all x, which by the same reasoning as before leads to the conclusion that 6 = 6’ 

and #, = —£_. The field components, (15) to (17), then become 

Ey, = —2jE,, sin(kz cos #)e/8"? (18) 

nH, = —2E.. cos 6 cos(kz cos 6)e "3"? (19) 
x 

7H, = —2jE. sin 6 sin(kz cos jes"? (20) 
“
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This set again shows the behavior of a traveling wave in the x direction and a standing 

wave pattern in the z direction, with zeros of £, and H, and maxima of H, at the 

conducting plane and at parallel planes distance nd away, with d given by (14). 

6.10 PHASE VELOCITY AND IMPEDANCE FOR WAVES AT OBLIQUE INCIDENCE 

Phase Welocity Let us consider an incident wave, such as that of Sec. 6.9, traveling 

with velocity v = 1/ V pe in a positive direction, which makes angle 6 with a desired 

z direction aligned normally to some reflecting surface. We saw that it is possible to 

express the phase factor in terms of the x and z coordinates: 

E(x, z) — E,e is — EB, eR@sind + zcos6) (1) 

For many purposes it is desirable to concentrate on the change in phase as one moves 

in the x direction, or in the z direction. We may then define the two phase constants for 

these directions: 

8. = k sin 6 (2) 

B. = k cos 6 (3) 

Wave (1) in instantaneous form 1s then 

E(x, z, 1) = Re[E, ef! Be ~ 4:7) (4) 

If we wish to keep the instantaneous phase constant as we move in the x direction, we 

keep wt — §,x constant (the last term does not change if we move only in the x 

direction), and the velocity required for this is defined as the phase velocity referred to 

the x direction: 

ax w 
Uo. = = px 

ot (wt — Bx) =const p x 

Or 

Uy = = (5) 

w) v 
= T= 6 

vps B. cos @ ©) 

  

where v is the velocity normal to its wave front, 1/ V ue. 

We see that in both cases the phase velocity is greater than the velocity measured 

normal to the wavefront and will in fact be so for any oblique direction. There is no 

violation of relativistic principles by this result, since no material object moves at this 

velocity. It is the velocity of a fictitious point of intersection of the wavefront and a
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Fic. 6.10a@ Uniform plane wave moving at angle 6 toward a plane. 

line drawn in the selected direction. Thus in Fig. 6.10a, if a plane of constant phase aa 

moves to a’a’ in a given interval of time, the distance moved normal to the wavefront 

is XX’, but the distance moved by this constant phase reference along the z direction is 

the greater distance YY’. Since 

YY’ = XX’ sec 0 

this picture would again lead to the result (6) for phase velocity in the z direction. 

Thus it is the phase constant # in a particular direction that is reduced by cosine or 

sine of the angle between normal to the boundary and normal to the wavefront, whereas 

phase velocity is increased by the same factor. The concept of a phase velocity, and 

the understanding of why it may be greater than the velocity of light, is essential to the 

discussion of guided waves in later chapters, as well as to the remainder of this chapter. 

Wave Impedance In the problems of oblique incidence on a plane boundary be- 

tween different media, it is also useful to define the wave or field impedance as the 

ratio of electric to magnetic field components in planes parallel to the boundary. The 

reason for this is the continuity of the tangential components of electric and magnetic 

fields at a boundary and the consequent equality of the above-defined ratio on the two 

sides of the boundary. That is, if the value of this ratio is computed as an input imped- 

ance for a region to the right in some manner, it is also the value of load impedance at 

that plane for the region to the left, just as in the examples of normal incidence. 

Thus, for incident and reflected waves making angle @ with the normal as in Sec. 

6.9, we may define a characteristic wave impedance referred to the z direction in terms 

of the components in planes transverse to that direction. From Eqs. 6.9(5) and 6.9(7) 

for waves polarized with electric field in the plane of incidence, 

E, E._ 
(Zr = H,, = Fy = 7008 6 (7) 

yr 

  

+ and — refer, respectively, to incident and reflected wave; the sign of the ratio is
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chosen for each wave to yield a positive impedance. From Eqs. 6.9(15) and 6.9(16) for 

waves polarized with electric field normal to the plane of incidence, 

Ey, — By_ 

H., Hi x 

  

Zore = — = 7 sec 0 (8) 

we see that, for the first type of polarization, the characteristic wave impedance is always 

less than 7, as we would expect, since only a component of total electric field lies in 

the transverse x—y plane, whereas the total magnetic field lies in that plane. In the latter 

polarization, the reverse is true and Z. is always greater than 1. 

The interpretation of the example of the last section from the foregoing point of view 

is then that the perfect conductor amounts to a zero impedance or short to the transverse 

field component E,. We would then expect a standing wave pattern in the z direction 

with other zeros at multiples of a half-wavelength away, this wavelength being com- 

puted from phase velocity in the z direction. This is consistent with the interpretation 

of Eq. 6.9(14). 

Example 6.10 
DIFFRACTION ORDERS FROM A BRAGG GRATING 

It is known that a periodic grating of wires, slots, or similar perturbations reradiates, or 

diffracts, a plane wave incident upon it into various directions described as the diffrac- 

tion orders for the grating. The directions are defined as those for which phase constants 

along the grating match on the two sides, except that multiples of 27 difference may 

exist between grating elements and the contributions still add constructively. Consider 

a grating as in Fig. 6.10b, with a plane wave incident from the bottom at angle 6, from 

the normal. Phase constant in the x direction is k sin 0, so that the phase difference 

between induced effects in adjacent grating elements is kd sin 6,. For the reradiated 
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Fic. 6.106 Diffraction grating with plane wave incident at an angle.
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wave in the top, at angle 6, from the normal, there will then be constructive interference 

if 

kd sin 0, = kd sin 6, + 2mm, m= O, 1, 2, ... 

or 

; mXr 
sin 6, = sin 6, tT 

Angle 6, = 0, form = 0 (the principal order) but there can be other diffraction orders 

or lobes provided that |sin 0, + mA/d| = 1, which requires d > 4/2. 

  

6.11 INCIDENCE AT ANY ANGLE ON DIELECTRICS 

Law of Reflection For a uniform plane wave incident at angle 6, from the normal 

to the plane boundary between two dielectrics ¢, and &, (Fig. 6.11), there is a reflected 

wave at some angle 6; with the normal and a transmitted (refracted) wave into the 

second medium at some angle 0, with the normal. For either type of polarization, 

the continuity condition on tangential components of electric and magnetic field at the 

boundary z = O must be satisfied for all values of x. As in the argument applied to the 

problem of reflection from the perfect conductor, this is possible for all x only if inci- 
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Fic. 6.11 Oblique incidence on boundary between two isotropic dielectrics.
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dent, reflected, and refracted waves all have the same phase factor with respect to the 

x direction: 

k, sin 0, = k, sin 6; = & sin 6, (1) 

The first pair in (1) gives the result 

6, = 4, (2) 

or the angle of reflection is equal to the angle of incidence. 

Snell's Law of Refractiom From the last pair of (1) we find a relation between the 

angle of refraction 6, and the angle of incidence 6: 

ate at (3) 

This relation is a familiar one in optics and is known as Snell’s law. The refractive 

index n is defined to be unity for free space so its value for any other dielectric is a 

measure of the phase velocity of electromagnetic waves in the medium, relative to free 

space. It is common to use the refractive index to characterize properties of dielectrics 

in the infrared and optical frequency ranges as explained in Sec. 6.2. At microwave 

and lower frequencies it is more common to express the velocities in (3) in terms of 

permittivity and permeability. For most dielectrics n,/n, may be replaced by (e,/e,)'/ 
SINCE [Ly ~ My ~ Mp. 

Reflection and Transmission for Polarization with E in Plane of Inci- 
dence To compute the amount of the wave reflected and the amount transmitted, we 

may use the impedance concept as extended for oblique incidence in the last section. 

To show the validity of this procedure, we write the continuity conditions for total E.. 
and Hy, including both incident and reflected components in region 1: 

Ey + Ey = Eo (4) 

Hy, + Hy. = Ay (5) 

Following Sec. 6.10, if we define wave impedances in terms of the tangential compo- 

nents for this TM polarization, 

  

  

Z = Pst wa (6) 
Hy, A, _ 

Ew z, = =2 (7) 
Hy, 

Equation (5) may be written 

Ect _ Ey — Ez (8) 

£2) 2.) Lr
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An elimination between (4) and (8) results in equations for reflection and transmission 

coefficients defined in terms of tangential electric field: 

by
 

  

  

— Set = < 9 

PE, Z, + Za ) 

E. 2Z 
r= = (10) 

Ee, 2, + Zy 

For the present case, in which we assume there is no returning wave in medium 2, the 

load impedance Z, is just the characteristic wave impedance for the refracted wave 

referred to the z direction, obtainable from (3) and Eq. 6.10(7): 

  

2 2 

Z, = 12 COS O = nn — (22) sin* 6, (11) 
U1 

And the characteristic wave impedance for medium 1 referred to the z direction is 

Z,; = 1 COs O, (12) 

The second form of (11) is applicable even when the result for Z, is complex. Note 

that, for dielectrics with w, = bh, 

= jt=- (13) 
Ty E2 Ny 

The total fields in region 1 may then be written as the sum of incident and reflected 

waves, utilizing (9) and the basic properties of uniform plane waves. We shall use H,, 

(denoted H,.) of the incident wave as the reference component since it is parallel to 

the boundary: 

E, = mH, cos be /F"[e B= + pei) (14) 
HA, = He /Pe[e iP oe pe!®:"| (15) 

E, = 7,H, sin 0,e7/?"[—e 7/8? + pel®:"] (16) 

B, = k, sin 0, B. = k, cos 0, (17) 

This field again has the character of a traveling wave field in the x direction and a 

standing wave field in the z direction, but here the minima in the z direction do not in 

general reach zero. The ratio of maxima to minima could be expressed as a standing 

wave ratio and would be related to the magnitude of reflection coefficient by the usual 

expression, Eq. 6.7(5). 

Reflection and Transmission for Polarization with EF Normal to Plane of 
Incidence For this (TE) polarization, the basic relations (9) and (10) between imped- 

ances and reflection or transmission may also be shown to apply. Note that they were 

first introduced in connection with transmission-line waves in Chapter 5 but have now
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found usefulness for many wave problems through the impedance concept applied to 

wave phenomena. Again we define in terms of tangential electric field: 

  

p= 2 = aa (18) 
Evy Zr + Ze) 

po wt 2 (19) 
Eve Lr, + Ly 

For this polarization, the proper wave impedances are obtained from Eq. 6.10(8): 
2 2 —1/2 

Z, = my sec 0 = mf - (22) sin? | (20) 
I 

Z.; = 1, sec @; (21) 

The total fields in region | are (E, denotes the value of F,,, in the incident wave) 

E, = E,e7/P[eP= + pelP:*] (22) 

mH, = —E, cos de /"[e iP — pel?-] (23) 

1H. = E, sin 0,e /8"[eYF= + pel®] (24) 

B. = k, sin 6,, B. = k, cos 6, (25) 

Example 6.11 
REFLECTION AND TRANSMISSION OF A CIRCULARLY POLARIZED WAVE 

AT OBLIQUE INCIDENCE 

A circularly polarized wave, incident at an angle on a dielectric discontinuity as in Fig. 

6.11, can be resolved into the two linearly polarized parts (Sec. 6.3) and relations of 

this section used. To be specific, let us assume such a wave incident at angle 6, = 60 

degrees from air onto fused quartz with ¢, = 3.78. By Snell's law, 

6, = in| fe sin | = sin”! 0860 _ 
- E5 V 3.78 

For the TM component, wave impedances are 

Z., = 7, cos 8, = 377 cos 60° = 188.5 Q 

sin '(0.445) = 26.4° 

cos 26.4° = 1740 

  

Z = Nz COS 0, = 
377 

V 3.78
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from which we calculate p and + from (9) and (10) as 

174 — 188.5 
— 7 Ph _ _ 9.04 

Pp 174 + 188.5 0.0 

2x 174 
7= 7744 1885 °° 

For the TE component, 

Z4 = N, sec 0, = 7560 

Z.. = NM sec #, = 217 

p = —0.554 

tT = 0.446 

So the second component is highly reflected, the first part is weakly reflected, and both 

reflected and transmitted waves will be elliptically polarized. 

  

6.12 TOTAL REFLECTION 

A study of the general results from Sec. 6.11 shows that there are several particular 

conditions of incidence of special interest. The first is one that leads to a condition of 

total reflection. From the basic formula for reflection coefficient, Eq. 6.1109) or 

6.11(18), we know that there is complete reflection (|p| = 1) if the load impedance Z, 
is zero, infinity, or purely imaginary. To show the last condition, let Z, = jX, and note 

that Z,, is real: 

    

‘YY — ZF VX? + 2? 
pl = (Se “2| = S42 =] () 

JX, + Ly Ay + Z, 

The value of Z, for TM polarization, given by Eq. 6.11(11), is seen to become zero for 

some critical angle 6 = 6, such that 

(2) sin 0, = 

> 
|S
 

Pr
om

 
to
 

The value of Z, for TE polarization, given by Eq. 6.11(20), becomes infinite for this 

same condition. For both polarizations, Z, is imaginary for angles of incidence greater 

than 6,, so there is total reflection for such angles of incidence. 
For loss-free dielectrics having uw, = py, (2) reduces to 

E2 
sin 6, = |—- (3) 

&}



6.12 Total Reflection 311 

It is seen that there are real solutions for the critical angle in this case only when 

€, > E5, or when the wave passes from an optically dense to an optically rarer medium. 

From Snell’s law, Eq. 6.11(3), we find that the angle of refraction is 7/2 for 0 = 0, 

and is imaginary for greater angles of incidence. So from this point of view also we 

expect no transfer of energy into the second medium. Although there is no energy 

transfer, there are finite values of field in the second region as required by the continuity 

conditions at the boundary. Fields die off exponentially with distance from the boundary 

as the phase constant B. becomes imaginary. 

Although the reflected wave has the same amplitude as the incident wave for angles 

of incidence greater than the critical, it does not in general have the same phase. The 

phase relation between £,.. and E,,. for the first type of polarization is also different 

from that between £,,_ and E,,, for the second type of polarization incident at the same 

angle. Thus, if the incident wave has both types of polarization components, the re- 

flected wave under these conditions is elliptically polarized (Sec. 6.3). 

The phenomenon of total reflection is very important at optical frequencies, as it 

provides reflection with less loss than from conducting mirrors. The use in total reflect- 

ing prisms is a well-known example, and its importance to dielectric waveguides will 

be shown in later chapters. 

Example 6.12 
EVANESCENT DECAY IN SECOND MEDIUM 

It was noted above that fields are nonzero in the second medium under conditions of 

total reflection, but die off exponentially from the boundary (1.e., are evanescent). Let 

us show this more specifically using expressions already developed. We have so far 

considered the propagation factor in the z direction as 

e IB2 (4) 

where, for medium 2, 

B. = Ky COS ) (5) 

B, = kyl - (2) sin? 6, (6) 
1 

and using Snell’s law, 

  

This becomes imaginary, which by (4) represents an attenuation factor e~ %*, for 

(v/v,) sin 6, > 1, with 

7 

a = oy (2) sin? 6, - 1 Np/m (7) 
l 
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Since k, = 27V &5,/Ap, a will be of order of magnitude 27 Np (or 54.5 dB) per 
wavelength for angles well beyond the critical. 

  

6.13 POLARIZING OR BREWSTER ANGLE 

Let us next ask under what conditions there might be no reflected wave when the 
uniform plane wave is incident at angle @ on the dielectric boundary. We know that 

this occurs for a matching of impedances between the two media, Z, = Z,,. For the 

wave with TM polarization and for a medium with 4, = py, Eqs. 6.11(11) and 6.11(12) 

become 

Z, = |= i ~ =! sin? @, (1) 
7) 7) 

Zz, = | cos 4 (2) 
&} 

These two quantities may be made equal for a particular angle 6, = 4, such that 

cos 8, = fe fi —— sin? a, (3) 
&2 E2 

This equation has a solution 

. € _ E _,{n 6, = sin~? [—“2— = tan-?_ | = tan (2) (4) 
E; + & E} ny 

Note that (4) yields real values of 6, for either €, > &, or €, > &,, and so for TM 

polarization there is always some angle for which there is no reflection; all energy 

incident at this angle passes into the second medium. 

For TE polarization a study of Eqs. 6.11(20) and 6.11(21) shows that there is no 

angle yielding an equality of impedances for materials with different dielectric constants 

but like permeabilities. Hence, a wave incident at angle 6, with both polarization com- 

ponents present has some of the second polarization component but none of the first 

reflected. The reflected wave at this angle is thus plane polarized with electric field 

normal to the plane of incidence, and the angle 6, is correspondingly known as the 

polarizing angle. It is also alternatively known as the Brewster angle. Early gas lasers 

made use of end windows placed at the Brewster angle to provide for oscillation for 

only one of the two polarizations. For the TM polarization, there is no reflection from 
the ends of the tube, so an external optical resonator governs the oscillation behavior. 
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Fic. 6.13 Window set at the Brewster angle to eliminate reflection for a laser beam with TM 
polarization. 
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Example 6.13 
LASER LIGHT THROUGH A WINDOW SET AT THE BREWSTER ANGLE 

Let us calculate the angle needed to pass without reflection TM polarized light from a 

helium—neon laser (A = 0.633 zm) using fused quartz with refractive index n, = 1.46. 

From (4), 

1.46 
g, = tan~! —— = 55.6° 

1 

Note that this is the angle between the beam axis and the normal to the window 

(Fig. 6.13). We find the angle in the glass by Snell’s law, 

ue 1 « oO oO 

6, = sin ae sin ss = 34.4 

Note that this is the proper Brewster angle for going from glass to air: 

— —1 l = 34 ° On. = tan 146 ~ 34.4 

So the exit from the window is without reflection also. 

  

6.14 MULTIPLE DIELECTRIC BOUNDARIES WITH OBLIQUE INCIDENCE 

If there are several dielectric regions with parallel boundaries, the problem may be 

solved by successively transforming impedances through the several regions, using the 

standard transmission-line formula, Eq. 6.6(10), or a graphical aid such as the Smith
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chart. For each region the phase constant and characteristic wave impedance must 

include the function of angle from the normal as well as the properties of the dielectric 

material. Thus for the ith region, from the concepts of Sec. 6.11, the phase constant is 

B.; = k; cos 0; (1) 

and the characteristic wave impedance is 

Z,; = 1; COs 0; for TM polarization (2) 

Zi = TN; sec 8; for TE polarization (3) 

When the impedance is finally transformed to the surface at which it is desired to find 

reflection, the reflection coefficient is calculated from the basic reflection formula, 

Eq. 6.11(9), and the fraction of the incident power reflected is just the square of its 

magnitude. The angles in the several regions are found by successively applying 

Snell’s law, starting from the first given angle of incidence. 

  

  

Example 6.14 
OBLIQUE INCIDENCE ON A TWO-PLY DIELECTRIC WINDOW 

We return to the two-ply dielectric of Ex. 6.8d with mn, = 2.54, nz = 4.0 and consider 

incidence of a plane wave at angle 8, = 40° from the normal (Fig. 6.14). From Snell’s 

law, angles in the dielectric are 6, = 23.8°, 0, = 18.7°, and 6, = 40.0°. Note that the 
exit angle is equal to the entrance angle as expected (Prob. 6.14d). 

Wave impedance for the 7th region using TE polarization is given by 

Z,, = 7;/cos 6; 

  

np =l ng 

oD) 

aa |. pe <-> 

  

      

  

Fic. 6.14 Composite window with wave incident at an angle.
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yielding Z,, = Z., = 492 Q, Z,, = 258.5 QO, and Z,, = 199 Q. The length in wave- 
lengths for each region is given by 

£;/A; = €; cos 6;V €,;/Ag 

yielding £,/A, = 0.097 and €3/A, = 0.189. Use of the above values on a Smith chart 
leads to the normalized impedances 

Z13/Zox = 247, — Zj3/Zo3 = 0.48 — j0.325 

Z15/Zoo = 0.37 — j0.25,  Zo/Zo = 0.38 + 0.30 

Z,1/Zo, = 0.20 + j0.158 

This last value corresponds to |p| = 0.66 or |p|? = 0.435. This is somewhat greater 
than the value for normal incidence in Ex. 6.8d. 

  

6.2a 

6.2b 

6.2¢ 

6.2d 

6.3a 

6.3b 

PROBLEMS 

For an inhomogeneous dielectric, find the differential equation for £,, (replacing 
Eq. 6.2(7)) if € is a function of z only. Repeat for ¢ a function of x only (uw = po in 

both cases). 

A step-function uniform plane wave is generated by suddenly impressing a constant 

electric field E,. = C at z = O at time ¢ = O and maintaining it thereafter. A perfectly 

conducting plane is placed normal to the z direction at z = 600 m. Sketch total F,. and 

nH, versus z att = | ws and att = 3 ps. 

Write the instantaneous forms corresponding to phasor fields given by Eqs. 
6.02(21)—(24). Find the instantaneous Poynting vector and show that the average part 
is equal to the average Poynting vector of the positively traveling wave minus that for 
the negatively traveling wave. 

For the modulated wave of Ex. 6.2, suppose that the medium is dispersive with wave 

number & varying linearly with frequency over the frequency band of interest: 

Ak(w — @ , Aka ~ p) k = 

Uo Wp 

Describe propagation of the modulated wave in this case. 

Check to show that Eqs. 6.3(1) and (2) satisfy Maxwell’s equations under the speciali- 

zations appropriate to plane waves. 

Sketch the locus of E for the following special cases of Eq. 6.3(1), identifying the type 
of polarization for each: (i) E, = 1, £, = 2,” = 0; (1) 2, = 1,2, = 2, ~ = 7; 
Gii) EF, = 1,£, = 1, = /2; (iv) E, = 1, £, = 2, = /2; (Vv) E, = 1,2, = 1, 
w= 1/4.
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6.3c A circularly polarized wave of strength £, travels in the positive z direction with the 

6.3d 

6.4a 

6.4b 

6.4c 

6.4d 

6.4e 

6.4f 

6.4% 

6.5a 

6.5b 

6.6a 

6.6b 

6.6c 

reflected circularly polarized wave of strength F; returning: 

E= & + /Ee"" + (& + iVE\e™ 
Find the average Poynting vector. Repeat for reflected wave ( — j)Ej\e™ and dis- 

cuss types of terminations at z = O to give the two forms of reflected waves. 

Show that any arbitrary elliptically polarized wave may be broken up into two oppo- 
sitely rotating circularly polarized components instead of the two plane-polarized 
components. 

For a uniform plane wave of frequency 10 GHz propagating in polystyrene, calculate 

the attenuation constant, phase velocity, and intrinsic impedance. What are the most 
important differences over air dielectric? 

Plot a curve showing attenuation constant in sea water from 10* to 10° Hz, assuming 

that the constants given do not vary over this range. Comment on the implications of 
the results to the problem of communicating by radio waves through seawater. 

A hom antenna excited at 1 GHz is buried in dry earth. How thick could the earth 
covering be if half the power is to reach the surface? Neglect reflections at the surface 
in your first calculation and then estimate additional fraction lost by the reflection. 

Plot attenuation in nepers per micrometer versus wavelength for nickel and silver over 
the wavelength range of Fig. 13.35, using data of that figure. 

Derive the expression for group velocity of a uniform plane wave propagating in a 

good conductor and compare with phase velocity in the conductor. 

Determine the group velocity for uniform plane waves in a lossy dielectric, assuming 
(i) o and e’ independent of frequency and (ii) assuming e”/s’ independent of fre- 
quency. Use the approximate form for B assuming e"/e' small and compare in each 
case with phase velocity. 

For a plane wave in loss-free dielectric €,, impinging upon a second loss-free dielec- 

tric €, at normal incidence, the average Poynting vector in region 2 is just the differ- 
ence between the average Poynting vectors of incident and reflected waves in region 1. 
Show that this is not so if e, is lossy (even if €. is taken to be loss free). Explain. 

Find the instantaneous Poynting vector for plane z for the standing wave of Sec. 6.5. 
Note the planes for which it is zero for all values of ¢ and comment on the significance 
of these planes. Show that the average Poynting vector 1s zero as stated in Sec. 6.5. 

Evaluate instantaneous values of stored energy in electric field and in magnetic field 
between the conductor and plane z in the standing wave of Sec. 6.5. Note planes for 
which the two forms of energy have the same maximum values (occurring at different 
times) and verify the statements concerning stored energy made in Sec. 6.5. 

Write the formulas for a uniform plane wave with £, and H, only, and give the corre- 
spondence to voltage and current in the transmission-line equations. 

Consider a lossy ferrite with both and « complex, uw’ — jy” and e’ — je”, respec- 
tively. Show that the transmission-line analogy for a plane wave in this material 

has both series resistance and shunt conductance. Determine expressions for these 

elements. 

Reflection and transmission coefficients are given in Eqs. 6.6(11) and (12) in terms of 

electric field. Give corresponding expressions in terms of magnetic field and in terms 

of power ratios.



6.6d 

6.7a 

6.7b 

6.7¢ 

6.8a 

6.8b* 

6.8 

6.8d 

6.8e* 

6.8f** 

6.8g 

6.9a 

6.9b 

Problems 317 

A conducting film of impedance 377 1./square is placed a quarter-wave in air from a 
plane conductor to eliminate wave reflections at 9 GHz. Assume negligible displace- 
ment currents in the film. Plot a curve showing the fraction of incident power reflected 
versus frequency for frequencies from 6 to 18 GHz. 

A 10-GHz radar produces a substantially plane wave which is normally incident upon 
a still ocean. Find the magnitude and phase of reflection coefficient and percent of in- 
cident energy reflected and percent transmitted into the body of the sea. 

For a certain dielectric material of effectively infinite depth, reflections of an incident 
plane wave from free space are observed to produce a standing wave ratio of 2.7 in the 
free space. The face is an electric field minimum. Find the dielectric constant. 

Check the expression for power transmitted into a good conductor, given at the end of 
Ex. 6.7b, by assuming that magnetic field at the surface is the same as for reflection 
from a perfect conductor and computing the conductor losses due to the currents asso- 

ciated with this magnetic field. 

Calculate the reflection coefficient and percent of incident energy reflected when a uni- 
form plane wave is normally incident on a plexiglas radome (dielectric window) of 
thickness # in., relative permittivity e, = 2.8, with free space on both sides. Frequency 
corresponds to free-space wavelength of 20 cm. Repeat for Ay = 10 cm and 3 cm. 

For a sandwich-type radome consisting of two identical thin sheets (thickness 1.5 mm, 
relative permittivity ¢, .) on either side of a thicker foam-type dielectric (thickness 

1.81 cm, relative permittivity ¢, = 1.1), calculate the reflection coefficient for waves 
striking at normal incidence. Take frequency 3 X 10° Hz; repeat for 6 x 10° Hz. 

Suggestion: Use the Smith chart. 

  

What refractive index and what thickness do you need to make a quarter-wave anti- 
reflection coating between air and silicon at 10 GHz? At Ag = 10 wm? Assume un- 
doped silicon with losses negligible. 

For the 10-4m design of Prob. 6.8c, plot fraction of incident energy reflected versus 

wavelength from Ag = 15 wm to Ag = S wm. 

Imagine two quarter-wave layers of intrinsic impedance 7 and 7, between dielectrics 

of intrinsic impedances 4, and 7s. Show that perfect matching occurs if 72/73 = 
(n/na)'?. For ny = 4, 73 = 3,.m = 1.5, 7 = 1, calculate reflection coefficient at 
a frequency 10% below that for perfect matching. Compare with the result for a single 
quarter-wave matching coating with 7 = 2. 

A dielectric window of polystyrene (see Table 6.4a) is made a half-wavelength thick 
(referred to the dielectric) at 10® Hz, so that there would be no reflections for normally 

incident uniform plane waves from space, neglecting losses in the dielectric. Consider- 
ing the finite losses, compute the reflection coefficient and fraction of incident energy 
reflected from the front face. Also determine the fraction of the incident energy lost in 

the dielectric window. 

A slab of dielectric of length /, constants ’ and e”, is backed by a conducting plane at 
z = | which may be considered perfect. Determine the expression for field impedance 
at the front face, z = 0. Find value for e’/ey = 4, e"/e’ = 0.01, f = 3 X 10° Hz, 
/ = 1.25 cm. Compare with the value obtained with losses neglected. 

Write instantaneous forms for the field components of Eqs. 6.9(5)—(7) for TM polari- 

zation. Find the average and instantaneous components of the Poynting vector for both 
the x and = directions. 

Repeat Prob. 6.9a for the TE polarization, defined by Eqs. 6.9(18)—(20).
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6.9¢ 

6.10a 

6.10b 

6.10c 

6.11a 

6.11b 

6.1ic 

6.11d 

6.1le 
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For the TM polarization with E,, F,, and H,, find stored energy in electric fields and 
in magnetic fields, for unit area, between planes z = Qandz = m/(k cos @) and 
interpret. 

Show that a generalization of Eq. 6.10(1) for a wave oblique to all three axes can be 
written in the convenient form 

E(, y, z) = E,e7*" 

where 

k = KK, + Yk, + 2k, 

r= xx + py + Zz 

A diffraction grating as in Ex. 6.10 has grating spacing 2 zm. Find the number and 
angle of the diffracted orders for an argon laser beam with Ag = 0.488 ym at (i) nor- 

mal incidence, 6, = O, and (ii) incidence with 6, = 60 degrees. 

Find the modified relation for diffracted angle in Ex. 6.10 if there is dielectric €, on 
the incident side of the grating and a different e, on the exit side (4% = pp for both). 

Plot versus incident angle the phase and magnitude of p for a wave incident from air 

onto a ceramic with e. = 4.95 for both TM and TE polarizations. 

Repeat Prob. 6.11a with the wave passing from the ceramic into air. (Note that reflec- 
tion is total beyond some angle, as will be explained in Sec. 6.12.) 

Obtain the special forms of p and r for grazing incidence (9 = a/2 — 6 with 5<< 

1) for both polarizations and €, > ¢;. 

For both polarizations, give the conditions for which the standing wave pattern in z 

shows a minimum of tangential electric field at the boundary surface; repeat for a 
maximum of tangential F at the surface. 

Write expressions for £,, H,, and E. in region 2 as functions of x and z for polarization 
with E in the plane of incidence. Obtain the Poynting vector for each region and dem- 
onstrate the power balance. (Take s, > e&, to avoid the special case to be treated in 

Sec. 6.12.) 

6.11f A wave passes from air to a medium with e, = 10, yw, = 10. For normal incidence 

6.12a 

6.12b 

6.12¢ 

6.12d* 

there is no reflection since 7, = 2 = Mo. There is a nonzero reflection for incident 
angles other than zero. Plot reflection coefficient versus incident angle for both TM 
and TE polarizations. 

A microwave transmitter is placed below the surface of a freshwater lake. Neglecting 
absorption, find the cone over which you could expect radiation to pass into the air. 

Using data of Fig. 13.25, find the critical angle for a wave of wavelength 3 4m pass- 
ing from silica into air and also for silicon into air. For both cases plot phase of reflec- 
tion coefficient versus incident angle over the range 6. = 6 = 7/2 for a wave polar- 
ized with E in the plane of incidence. 

In a GaAs laser, the generated radiation (Ag = 0.85 ym) is “trapped” or guided along 
the thin junction region by total reflection from the adjacent layers. (The mechanism 
of dielectric guiding will be explored more in Chapters 8 and 14.) If the junction layer 
has refractive index n = 3.60, the upper layer n = 3.45, and the lower layern = 
3.50, find critical angle at upper and lower surfaces. 

Defining as the phase E,_/E,, and yw’ as the phase of E,_/E,,, find expressions
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for w# and yw’ under conditions of total reflection. Show that the phase difference be- 

tween these two polarization components, 6 = w — w’, is given by 

(2) _ (n2/7)L2/v,)> — 1] sin* 6 

[(m2/m)? — 1] cos 6V(v2/v,)? sin? @ — 1 
  an 

2 

Optical fibers, now of importance in optical communications, guide light by the phe- 
nomenon of total reflection (as will be discussed more in Chapter 14). The evanescent 
fields outside of the guiding core could cause coupling or “crosstalk” between adja- 

cent fibers. To estimate the size of this coupling, take a plane model with silica core 
having refractive index n = 1.535 and external cladding of a borosilicate glass having 
n = 1.525. The optical signal has free-space wavelength of 0.85 um. How far away 
can the next core be placed if field is to be 10~° the surface value at that plane, if 
(i) incident angle of waves within the core is 85 degrees, and (ii) if incident angle is 

89 degrees. 

6.12f For several applications of total reflection (note Probs. 6.12c and e), refractive indices 

6.13a 

6.13b 

6.13c 

6.13d 

6.14a 

6.14b* 

6.14c 

6.14d 

6.14e 

on the two sides of the boundary are not very different. If n, = n,(1 — 6) where 
6 << 1, show that @, ~ 7/2 — A where A = V 26. 

In Ex. 6.13, it was found that polarizing angle for entrance to the window is also cor- 
rect for exit from the window. Prove this for general ratios of n,/n. 

Examine Fig. 13.25 to determine materials which might be suitable as Brewster win- 
dows for a CO, laser operating at 10.6 wm. Calculate the appropriate window angle 
for each such material. 

A green ion laser beam, operating at Ag = 0.545 um, is generated in vacuum, and 
then passes through a glass window of refractive index 1.5 into water with n = 1.34. 

Design a window to give zero reflection at the two surfaces for a wave polarized with 
E in the plane of incidence. 

For €, = 6&5 but 4, # ps, show that the TE polarization will have an incident angle 
with zero reflection like the Brewster angle for TM polarization. Also, what conditions 
must be satisfied for such an angle for TE polarization if both ¢, # «, and p, # py? 

An incident wave in medium 1 of permittivity e¢, makes angle 6, with the normal. 
Find the proper length and permittivity of a medium 2 to form a “quarter-wave match- 
ing section” to a medium of permittivity e,. Consider both polarizations. 

A uniform plane wave of free-space wavelength 3 cm is incident from space on a win- 
dow of permittivity 3 and thickness equal to a half-wavelength referred to the dielec- 

tric material so that it gives no reflections for normal incidence. For general angles of 
incidence, plot the fraction of incident energy reflected versus @ for polarization with 
E in the plane of incidence and also for polarization normal to the plane of incidence. 

By use of the transmission-line analogies, determine the spacing between a thin film 
and a parallel perfect conductor, and the conductivity properties of that film if reflec- 

tions are to be perfectly eliminated for a wave incident at an angle 0 from the normal 
for the two types of polarization. (See Ex. 6.6b.) 

For a series of parallel boundaries between different dielectrics, as in Fig. 6.14, show 
that the relation between exit angle and angle of incidence upon the first boundary is 
given by Snell’s law utilizing indices of refraction of entrance and exit materials only, 

provided there is no intermediate surface at which total refiection occurs. 

An optical instrument called an e//ipsometer employs a beam of monochromatic light 
with elliptical polarization incident at an oblique angle on a surface whose properties
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are to be determined. Measurements on the incident and reflected beams yield a value 
of the complex ratio of reflection coefficients for components in the plane of incidence 

and normal to it. Find the expression for the ratio of reflection coefficients that will be 
measured by the ellipsometer in terms of incident angle, refractive index of the sub- 
strate supporting the film, and the unknown film thickness and refractive index. As- 

suming angle and substrate index known, and neglecting losses, explain how the two 
unknowns could be determined.
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7.1 INTRODUCTION 

In the preceding chapters, numerous special techniques have been presented for solving 

static and dynamic field problems. Before continuing with the important problems of 

wave guiding, resonance, and interaction of fields with materials and radiation, it is 

necessary to develop some more general and somewhat more powerful techniques of 

problem solution. The methods developed in this chapter will usually be illustrated first 

through static examples before extending to dynamic problems, and in some cases are 

most useful for static or quasistatic problems. Even then such solutions are of use in 

certain time-varying problems, as we have seen in the case of circuits and transmission 

lines in the preceding chapter. 

The approach in this chapter is mostly through the solution of differential equations 

subject to boundary conditions. In certain cases the field distributions themselves are 

desired, but in other cases (as we saw in the calculation of circuit elements) these 

distributions are only steps along the way to other useful parameters. 

The most general analytical method to be considered in this chapter is that of sepa- 

ration of variables, leading to orthogonal functions which may be superposed to rep- 

resent very general field distributions. In developing this method we will spend some 

time on the special functions needed for circular cylindrical coordinates (Bessel func- 

tions) and for spherical coordinates (Legendre functions). A second powerful analytical 

method is that of conformal transformation. Although restricted to two-dimensional 

problems and useful primarily (but not exclusively) for solutions of Laplace’s equation, 

it is the most convenient way of solving many problems of importance in circuits and 

transmission lines. 

321
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Numerical solution of field problems becomes increasingly important with the con- 

tinuing advances in computing power. This is a special field in itself and a rapidly 

changing one, but we will give some idea of its basis and some elementary approaches 

to its use. 

  

The Basic . Differential sl Equations and Numer ‘ical I Methods 

7.2 ROLES OF HELMHOLTZ, LAPLACE, AND POISSON EQUATIONS 

We have seen how specific differential equations—the wave equation, the Helmholtz 

equation, and the diffusion equation—result from Maxwell’s equations with certain 

specializations. We shall generally be concerned with such special cases, but let us look 

first at somewhat more general forms. We use the phasor forms, and limit ourselves to 

homogeneous, isotropic, and linear media. Starting with the Maxwell equation for curl 

E [Eq. 3.8(3)], 

Vx E = —jopH (1) 

The curl of this is taken and expanded (inside front cover) 

VxXVXE= -WE+ VWV-E) = —jouvV X (2) 

The divergence of E and curl of H are substituted from the Maxwell equations 

Eqs. 3.8(1) and 3.8(4): 

—VE + v(2) = —jopls + jwsk] 
E 

or 

1 
VE + KE = jopy + 5 YP (3) 

where k? = we. By similar operations on the curl H equation, we obtain 

WH + RPH= -VxJ (4) 

Equations (3) and (4) may be considered inhomogeneous Helmholtz equations. Gen- 

eral solutions of these are difficult, but usually start from solutions of the corresponding 

homogeneous equations! 

WE + KE = 0 (5) 

V-H + kR-H = 0 (6) 

' J, D. Jackson, Classical Electrodynamics, 2nd ed., Wiley, New York, 1975.
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Many of the problems we are concerned with have no sources except on the boundaries, 

so the Helmholtz equations considered in this chapter are the homogeneous ones, (5) 

and (6). 

Note that the vector equations separate simply in rectangular coordinates, 

VE, + PE, = 0 (7) 

and similarly for £,, E., H,, H,, and H,. They do not separate so simply for curvilinear 

coordinates, as one can see by examining the expansion for V* of a vector in cylindrical 

and spherical coordinates (inside front cover). But for any cylindrical coordinate system, 

the axial component of (5) or (6) satisfies a simple Helmholtz equation, 

VE. + k-E, = 0 (8) 

and similarly for H.. 

For quasistatic problems, the term in k* is negligible so that (5) and (6) reduce to 

Laplace equations: 

VE = 0 (9) 

V-7H = 0 (10) 

These separate into coordinate components as discussed above. However, for quasistatic 

or purely static problems it is often more convenient to use the scalar potential functions 

defined by 

E=-V®, H= -V®, (11) 

with ® and @,,, satisfying Laplace equations, 

Vb = 0, Vb, = 0 (12) 

In certain cases we are concerned with static or quasistatic solutions for regions con- 

taining charges, in which case the Poisson equation applies to ® (Sec. 1.12): 

Vo = —f (13) 
E 

Thus the Laplace, Helmholtz, and Poisson equations govern a large number of important 

problems and will be the ones used for illustration of solution methods in this chapter. 

Boundary Conditions As noted in Sec. 1.17, unique solutions of the Laplace or 

Poisson equation resulted if the function is specified on a boundary surrounding the 

region of interest. Specification of the normal derivative on such a boundary determines 

the solution within a constant. Section 3.14 pointed out that unique solutions of the 

Helmholtz equation (5) or (6) are obtained by specifying the tangential component of 

E or H on the closed boundary, or tangential E on a part of the boundary and tangential 

H on the remainder. 

Superposition Since V’ is a linear operator (as are the other operators in Maxwell’s 

equations), any two solutions are superposable and the sum is a solution provided that 

the medium itself is linear. We have made use of this fact previously, as in the super-
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V=0 V=0 V=0 

Vo 
1 2 n 

Fic. 7.2 Series of circular cylinders with sectors of angle @ at the potential V, oriented at 

multiples of a with respect to each other. 

position of linearly polarized waves to form a circularly polarized one. We will use the 

principle in many future examples. Here we give an example of its use in reasoning to 

a simple result. 

  BER at ade EES ALERT ER OE AR 

Example 7.2 
SOLUTION BY INVERSE APPLICATION OF SUPERPOSITION 

An interesting example of the use of superposition is the solution for the potential at 

the center of a symmetrical structure. For example, consider a homogeneous dielectric 

surrounded by the circular cylinder shown in Fig. 7.2, with a potential V) applied over 

a portion of the boundary subtending the angle a and zero potential on the remainder. 

Suppose that a = 277/n. If the potential at the center were found for n different sets 

of boundary conditions as shown in Fig. 7.2, where the only difference between these 

is that the section of the boundary to be at potential Vp is rotated by the angle ka, with 

k an integer, the sum of the n solutions would be the potential at the center of a cylinder 

with V, over the entire boundary; this is just Vo. Since every problem is identical except 

for a rotation by a, which would not affect the potential at the center, the potential at 

the center for the original problem must be V,/n. This same technique could be applied 

to find the potential at the center point of a square, cube, equilateral polygon, sphere, 

and so on, with one portion at a given potential. 

  

7.3 NUMERICAL METHODS: METHOD OF MOMENTS 

Easy accessibility to powerful computers has greatly expanded our ability to obtain 

accurate solutions for electromagnetic field problems. The range of use extends from 

convenient evaluation of analytic expressions, including ones for which no closed-form
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solutions exist, to wholly numerical solutions. Whenever it is possible to find even an 

approximate analytic solution, it is useful for seeing parametric dependences to gain 

physical insight, but more precise solutions can be obtained numerically. 

We consider here only some basic methods. There are other, more specialized tech- 

niques, several of which find use in analyzing transmission structures of the kind to be 

studied in the following chapters.” The choice of method should be based on a trade- 

off among accuracy, speed, versatility, and computer memory requirements. 

The finite-difference method was introduced in Sec. 1.20; though simple, it has con- 

siderable range of application. A method with similar use, called the finite-element 

method, is somewhat more difficult to understand and the programming is more com- 

plex, but it has the advantage of adapting well to complex boundary shapes and also 

to spatially varying properties of the medium (i.e., permittivity or permeability). In both 

of these methods the typical calculation involves a large banded matrix (nonzero ele- 

ments only along and near the diagonal). There are well-developed methods for in- 

verting such a sparse matrix, and we saw in Sec. 1.20 an iterative method. 

One may use a more computationally efficient approach, called the method of mo- 

ments, for some problems, especially when integral quantities such as capacitance are 

required.* It is based on an integral equation rather than the differential equation on 

which the finite-difference and finite-element methods are based. 

If charge is transferred between two conducting bodies in otherwise free space, a 

potential difference will exist between them and the charges will become distributed 

over the surfaces in such a way that the tangential electric field at the conductor surfaces 

is zero. This is analogous to the situation seen in the study of images in Sec. 1.18, 

where a point or line charge placed near a conducting surface induces surface charge 

on the conducting body and this cancels the tangential electric field of thc source charge. 

Likewise, if charge is placed on an isolated conducting body, the charges will distribute 

themselves on the surface to eliminate the tangential electric field. The method of 

moments results in knowledge of the charge distribution on the surfaces and the total 

charge for a given potential, and hence the capacitance. 

We introduce here a simple way of applying the method of moments to find static 

charge distributions and capacitances for two- and three-dimensional electrode systems. 

Some structural forms that can be treated are shown in Figs. 7.3a—c. They are shown 

with their surfaces subdivided into small elements to prepare for discrete numerical 

calculations. The surface charge density p,; is assumed to be uniform over each element. 

The total charge ascribed to the ith element on a 3D structure is p,;AS;, where AS, is 

the area. We will treat it as a point charge at the center of the element in making the 

potential calculations. The 2D structures have no variations in the axial direction and 

the surfaces are divided into strips of width A/,. The charge density p,; in this case is 

2 _R.C. Boonton, Jr., Computational Methods for Electromagnetics and Microwaves, Wiley, 
New York, 1992. 
R. Sorrentino (Ed.), Numerical Methods for Passive Microwave and Millimeter Wave Struc- 

tures, /EEE Press, New York, 1989. 

4 R. F. Harrington, Field Computation by Moment Methods, R. E. Krieger, Malabar, FL, 1987; 

orig. ed., 1968. 
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Fic. 7.3. Examples of structures suited for evaluation by methods of moments. (a) Three- 

dimensional parallel-plate capacitor. (b) Round two-dimensional cylinder over a ground plane. 
(c) Isolated rod of finite length. 

multiplied by Al, to give the charge per unit length along the axial direction, which is 

represented by a line charge q, in the center of the element for the purposes of calculating 

potential. These point and line charges are used to calculate the potentials also at the 

centers of the elements. 

Three-Dimensional Structures Potentials are calculated using the formulas for 

charges in free space since the conductors are accounted for by including all charges
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on their surfaces. The potential at the center of the ith element in the 3D case is written 

using Eq. 1.8(3) as 

N 
pyAS; 

©, = ®, + —_———— 1 
" 2s Atrelr; ~— r| ( ) 

The term ®,, is the potential at the center of the ith element resulting from the charge 
on the 7th element itself; it must be handled separately since the terms in the remainder 

of (1) are clearly singular when i = j. We find ®,; by integrating over the element. For 

convenience, we neglect the exact shape of the element, often a square, and replace it 

with a disk having the area of the element. Thus, with rp = (AS,/m)'/2 

27 To rd 

®, = | dd | Pst = 0.282 Pi VAS, (2) 
0 0 47er € 

One equation of the form (1) is written for each element, thus giving a set of N equations 

in the NV unknown charges in terms of the given potentials on the electrodes. 

Example 7.3a 
THREE-DIMENSIONAL CAPACITOR 

Let us calculate the charge distribution and capacitance of the structure in Fig. 7.3d. 

To achieve high accuracy, it is necessary to have many subdivisions of the surfaces, 

but here we take a very coarse grid to illustrate the procedures. It is assumed that there 

is negligible charge on the outer surfaces of the conductors. The potentials on the top 

and bottom electrodes are taken as +V and —V, respectively. Multiplying (1), with 

(2) substituted, by 47re/a, the equation for element 1 can be written as 

a Ate a 
4q(0.282)p.. + ———— po t-°+ + TT pg = —V (3) 

Ir, — ry Ir) — gl a 

LIE 
“L 

po | 

  

     

(d) 

Fic. 7.3d Coarse subdivisions of parallel-plate capacitor for Ex. 7.3a.
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Writing similar equations for the other seven subdivisions and casting in matrix form, 

we have 

  

  

os 5 “ 

[3.54 - S- ... 4 _]/?s " 
Ir - r,| Ir — r;| Py — rs| Ps2 V 

—2 354 2, V 
ry — r,| Ir, — r;| [ry — rs| Ate V a (4) 

a —V 

—V 

—V - SH .. 5,54 
Le Irg — r,| I'g — r,| Irg — ¥5| JL Pss.l L—-Vi             

The coefficients include |r; — r,| and must be evaluated geometrically from Fig. 7.3d. 
The matrix could be entered into an inversion program in a computer and the charge 

densities found directly in terms of the potentials on the electrodes. The total charge O 

on one electrode is found and the capacitance is just C = Q/2V. 

For the purpose of illustration, we will solve the problem by hand, making use of its 

symmetry to reduce the computational work. Symmetry dictates that the assumed uni- 

form charge densities satisfy: p., = Pg = —Pss = — Pog and pyr = Pox = —Pyg = 

— P,7. Since there are just two unknown variables, it is necessary to use only the first 

two rows of (4). Substituting values of |r, — r,| and |r, — r;| and using dimensions in 
Fig. 7.3d, we obtain 

fs 7 | 
, (d/a) V9 + (d/ay 

  
1 ] 

1.50 - —_—_—_—_—_—_—_ -_ ———=:_—_ 

| V1i+(d/ayr V4+ a 

I 

a 
[3 a 

I 1 
150 — ——_ —$« ——_—————. 

Vi+(d/ary V4+ Td Pe 

Ps2 3 

  

[ 54 ~—L =| 
(d/a) V1 + (d/ay   

  

. 

or taking d/a = 0.5, for example, 

a te lle _ 4meV | 6) 
0.121 1.65 Ps2 a ] 

Inverting (6), we find 

AqeV 
Psy = 1.07p. = 0.605 

  

(7)
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The total charge on the top electrode is OQ = 2a*(p,. + p.) = 29.3eaV and the 
capacitance is therefore C = Q/2V = 14.7ea. Application of the method of moments 

with a fine grid would lead to a more accurate value for capacitance, which would be 

larger than the fringing-free idealization C = eA/d = 4ea*/(a/2) = 8ea. 

  

Two-Dimensional Structures For the 2D case, we write, using Eq. 1.8(8), 

  

N 

®, = 0; — + C I il 2 dare T (8) 

The distribution of charge is unaffected by the constant C; and it can be neglected (see 

Prob. 7.3c). 

As in the 3D case, it is necessary to handle ®,; separately. The approach is to integrate 

the effect of the surface charge density over an assumed flat strip of width A/;. Thus, 

2p., Al;/2 

®, = — 2a | Inxdx = —f% [x In x — x]64/2 (9) 
27re Jo WE 

so that 

Psi Al; Al, 

u 277E i 2 (10) 

Example 7.3b 
STRIPLINE CAPACITANCE 

Let us calculate the charge distribution and capacitance per umit length of a two- 

dimensional system of conductors, the so-called stripline configuration, which will be 

discussed in Sec. 8.6 and is shown in Fig. 7.3e. Here there are three conductors, with 

the outer ones extending to y = +, The two outer ones are at the same (zero) potential 

and the center conductor carries a voltage V. Although the outer conductors extend to 

infinity, the surface charge decreases rapidly with y beyond the edge of the center 

conductor. Therefore, we will cut off the outer conductor at some appropriate point 

  

  

d kx Ww >|   

Ld Vy et a dg dl EO 

(e) 

Fic. 7.3e Stripline structure with discretization for method of moments calculation in Ex. 7.3b.
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Ymax» the suitability of which could be tested by doing the problem twice with different 

values of y,,,,. We will simplify the notation by taking the widths A/ of all segments 

to be the same. 

The chosen segmenting is shown in Fig. 7.3e, where it is seen that there are 36 equal 

subdivisions. This is sufficiently fine for illustration, but in practice more divisions 

might be chosen. For this example we have 36 equations of the form (8); 8 have ® = 

V and 28 have ® = OQ. The equation for element 1 (on center conductor) is obtained 

by multiplying (8), with (10) substituted for ®,,, by —27e/AI: 

Al 27 (in = oy nly — talag + oo Init) = r3dooe = ZV cD 

Or, subtracting p,; In Al from each term and summing the subtracted terms separately, 

Ir; — r,| ry 7 r36| —(In2 + 1p, + Nn—+——=* py +--+. + n+_—* (in )Psi Al Ps2 Al P5336 

(12) 
21 

+ In Al[p + poo + -++* + Py36] = TT V 

But the total charge on the plates is zero so the term in brackets vanishes. We can write 

the set of equations in the form of (12) for the N elements as a matrix: 

            

lr, — rol Ir, — Fel | re 16 Mi Foy a Te! - V 
9 TD Al Pei 

Ir. — r,| Ir, ~ r36| In —2—_#' —1.693 «+. Jn 
Al Al Pso _ one |V 

AT 

ry — r,| Irs; - r,| " 
i Al In Al 1.693 : i Ps36 _ aa 

(13) 

To obtain a numerical result, we take w = 4d and e, = 4. Inversion of this matrix 

equation gives the charge on each element. The capacitance for the complete structure 

in Fig. 7.3e is the sum of the charges on the center conductor, found from (13), divided 

by V. Its value is 344 F/m. The value calculated analytically for an infinitely thin 

center conductor is found (Sec. 8.6) to be 3462 F/m. 
In the method of moments, the order of the matrix to be inverted is much smaller 

than in the finite-difference or finite-element method, but the matrix is full so that sparse 

matrix techniques cannot be used. An application to a time-varying radiation problem 

will be shown in Chapter 12. 
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Method ‘of £ Conformal Transformation 

7.4 METHOD OF CONFORMAL TRANSFORMATION AND INTRODUCTION 
TO COMPLEX-FUNCTION THEORY 

A very general mathematical attack for the two-dimensional field distribution problem 

utilizes the theory of functions of a complex variable. The method is in principle the 

most general for two-dimensional problems, and the work can be carried out to yield 

actual solutions for a wide variety of practical problems. For these reasons, the general 

method with some examples will be presented in this and the following sections. 

In the theory of complex variables, we use the complex variable Z = x + jy, where 

both x and y are real variables. It is convenient to associate any given value of Z with 

a point in the x—y plane (Fig. 7.4a), and to call this plane the complex Z plane. Of 

course the coordinates may also be expressed in polar form in terms of r and 6: 

r= Vit + yy, O= a™(?) X 
Then 

Z=x+ jy = r(cos 6 + jsin 6) = re’? (1) 

Suppose that there is now a different complex variable W, where 

W =u +t ju = pel” 

such that W is some function of Z. This means that, for each assigned value of Z, there 

is a rule specifying a corresponding value of W. The functional relationship is written 

    

  

= f(Z) (2) 

Ww 

ZO AW 
C 

    (a) (b) 

Fic. 7.4 (a) Z plane. (5) W plane.
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If Z is made to vary continuously, the corresponding point in the complex Z plane 

moves about, tracing out some curve C. The values of W vary correspondingly, tracing 

out a curve C’. To avoid confusion, the values of W are usually shown on a separate 

graph, called the complex W plane (Fig. 7.45). 

Next consider a small change AZ in Z and the corresponding change AW in W. The 

derivative of the function will be defined as the usual limit of the ratio AW/AZ as the 

element AZ becomes infinitesimal: 

dws. AW _ F(Z + AZ) — fZ) 

dZ ~ am AZ AZ ~ on AZ @) 
  

A complex function is said to be analytic or regular whenever the derivative defined 

above exists and is unique. The derivative may fail to exist at certain isolated (singular) 

points where it may be infinite or undetermined, somewhat as in real function theory. 

But it would appear that there is another ambiguity with respect to complex variables, 

since AZ may be taken in any arbitrary direction in the Z plane from the original point. 

For the derivative to be unique, the ratio AW/AZ should turn out to be independent of 

this direction. 

If this independence of direction is to result, a necessary condition is that we obtain 

the same result if Z is changed in the x direction alone or in the y direction alone. For 

AZ = Ax, 

dw awa au au 
a Hy + py = — + jf 4 
Zo ox me TMK ETI (4) 

For a change in the y direction, AZ = j Ay, 

dw ow 1 15) ou = = f+ p= 2-55 5) 
aZ aC Jy) j oy dy dy 

Two complex quantities are equal if and only if their real and imaginary parts are 

separately equal. Hence, (4) and (5) yield the same result if 

du ou 
= 6 

Ox oy (9) 

7 = = (7) 
ax oy 

These conditions, known as the Cauchy—Riemann equations, are then necessary con- 

ditions for dW/dZ to be unique at a point and the function f(Z) analytic there. It can 

be shown that, if they are satisfied, the same result for dW/dZ is obtained for any 

arbitrary direction of the change AZ, so they are also sufficient conditions.
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Example 7.4 
ANALYTICITY OF POWER FUNCTIONS 

W =2 

ut ju= w+ jy = @ — y*) + j2xy 
5 5 (8) 

uo=x —- yr 

v = 2xy 

A check of the Cauchy—Riemann equations yields 

Ou OU 
— = — = 2x 
ox oy 

uw _ _, 
oy Ox » 

So they are satisfied everywhere in the finite Z plane, and the function is analytic 

everywhere there. 

Actually, it is not necessary to apply the check when the functional relation is ex- 

pressed explicitly between Z and W in terms of functions which possess a power-series 

expansion about the origin, as e*, sin Z, and so on. The reason is that each term in the 

series C’,Z” can be shown to satisfy the Cauchy—Riemann conditions, and consequently 

a series of such terms also satisfies them. 

  

7.5 PROPERTIES OF ANALYTIC FUNCTIONS OF COMPLEX VARIABLES 

If Eq. 7.4(6) is differentiated with respect to x, Eq. 7.4(7) differentiated with respect to 

y, and the resulting equations added, there results 

  

7u aru 
—s+ + 7 = 0 I 
ax? ay? (1) 

Similarly, if the order of differentiation is reversed, there results 

av av 
— + = 0 2 
ax? dy? (2) 

These are recognized as Laplace equations in two dimensions. Thus, both the real and 

the imaginary parts of an analytic function of a complex variable satisfy Laplace’s 

equation, and would be suitable for use as the potential functions for two-dimensional 

electrostatic problems. The manner in which these are used in specific problems and 

the limitations on this usefulness are demonstrated by examples in this and the next 

section.
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For a problem in which one of the two parts, u or v, is chosen as the potential function, 

the other becomes proportional to the flux function (Sec. 1.6). To show this, let us 

suppose that u is the potential function in volts for a particular problem. The electric 

field, obtained as the negative gradient of u, yields 

Ou Ou 
EL = =o .iG BHF (3) 

By the equation for the total differential, the change in v corresponding to changes in 

the x and y coordinates of dx and dy is 

OU dU 
dv = —dx + — dy 

Ox oy 

But, from Cauchy—Riemann conditions, Eqs. 7.4(6) and 7.4(7), 

0 0 
—dv = ax — dy = —E, dx + E, dy 

dy ax y 

or 

—edv = —D, dx + D, dy (4) 

By inspection of Fig. 7.5a, this is recognized to be just the electric flux dy between the 

curves v andu + dv, with the positive direction as shown by the arrow. Then 

—dib = & dv (5) 

And, except for a constant that can be set equal to zero by choosing the reference for 

flux atv = 0, 

—% = sev C/m (6) 

  

u+ du 

  

    —>- X 

Fic. 7.5a Coordinates for the flux function.
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Similarly, if v is chosen as the potential function in volts for some problem, eu is the 

flux function in coulombs per meter, with proper choice of the direction for positive 

flux. 

We have seen that either u or v may be used as a potential function, and then the 

other may be used as the flux function, since both satisfy Laplace’s equation. The utility 

of the concept, however, hinges on being able to find the analytic function W = f(Z) 

such that wu and v also satisfy the boundary conditions for the problem being considered. 

Example 7.5 

ELECTRODES IN PARALLEL-PLANE DIODE 

As an example, suppose we desire the distribution of potentials in the Z plane where 

the given boundary condition is 

V=x43, y=0 (7) 

If we let 

W = 74 (8) 

it is clear that for y = 0, the real part of W is u = x*/3. Furthermore, we see that 

dW /dZ exists and is unique except at Z = 0 (Prob. 7.4e). Thus u is a suitable potential 

function for this problem; the real part of (8) gives the potential distribution. It is most 

convenient for this particular function to express Z in polar coordinates 

Wut ju = Belt (9) 

Thus 

u = r*/3 cos $6 
(10) 

v = r4/? sin 26 

Equipotentials, found by setting u equal to a constant, are shown in Fig. 7.55 for u = 

O and 1. It is of interest that the boundary function (7) has the same form as the potential 

in a plane diode with the cathode at x = O and the anode potential unity at x = 1.0: 

@ = x4 

Using these ideas, a plane diode can be truncated and the correct potentials produced 

on the free edge by placing electrodes along the equipotential lines as shown in Fig. 

7.5b. This procedure is most important in designing electron guns with regular flow 

and the result is known as the Pierce gun.° 

  

5 J. R. Pierce, J. Appl. Phys. 11, 548 (1940).
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0 volts 1.0 volts 

V=x % 

Anode 
1.0 volt 

Cathode 

0 volts 

  

(+B 

Fic. 7.56 Focusing for electron flow in a plane diode. The upper portion of the figure shows 
the electrodes outside the electron flow region. 

7.6 CONFORMAL MAPPING FOR LAPLACE’S EQUATION 

A somewhat different point of view toward the method in Sec. 7.5 follows if we refer 

to the Z and W planes introduced in Sec. 7.4. Since the functional relationship fixes a 

value of W corresponding to a given value of Z for a given function 

W = f@ 

any point (x, y) in the Z plane yields some point (u, v) in the W plane. As this point 

moves along some curve x = F(y) in the Z plane, the corresponding point in the W 

plane traces out a curve u = F,(v). If it should move throughout a region in the Z 

plane, the corresponding point would move throughout some region in the W plane. 

Thus, in general, a point in the Z plane transforms to a point in the W plane, a curve 

transforms to a curve, and a region to a region, and the function that accomplishes this 

is frequently spoken of as a particular fansformation between the Z and W planes. 

When the function f(Z) is analytic, as we have seen, the derivative dW /dZ at a point 

is independent of the direction of the change dZ from the point. The derivative may be 

written in terms of magnitude and phase: 

dw . 
—— = Mel | 
aZ ° () 

Or 

dW = Me’* dZ (2) 

By the rule for the product of complex quantities, the magnitude of dW is M times the 

magnitude of dZ, and the angle of dW is @ plus the angle of dZ. So the entire infini-
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tesimal region in the vicinity of the point W is similar to the infinitesimal region in the 

vicinity of the point Z. It is magnified by a scale factor MW and rotated by an angle a. 

It is then evident that, if two curves intersect at a given angle in the Z plane, their 

transformed curves in the W plane intersect at the same angle, since both are rotated 

through the angle a. A transformation with these properties is called a conformal trans- 

formation. 

In particular, the lines « = constant and the lines v = constant in the W plane 

intersect at right angles, so their transformed curves in the Z plane must also be or- 

thogonal (Fig. 7.6a). We already know that this should be so, since the constant v lines 

have been shown to represent flux lines when the constant u lines are equipotentials, 

and vice versa. From this point of view, the conformal transformation may be thought 

of as one that takes a uniform field in the W plane (represented by the equispaced 

constant u and constant v lines) and transforms it so that it fits the given boundary 

conditions in the Z plane, always keeping the required properties of an electrostatic 

field. 

Frequently the transformation is done in steps. That is, the uniform field is trans- 

formed first into some intermediate complex plane by Z, = f(W), then perhaps into 

a second intermediate complex plane Z, = g(Z,), and then finally into a plane 

Z, == h(Z,) in which the boundary conditions are satisfied. In general, there can be any 

number of steps. Of course, these functions can be combined into a single transfor- 

mation, the inverse of which can then be understood on the basis of finding a function 

with real or imaginary part satisfying the given boundary conditions as discussed in 

Sec. 7.5. 

There are few circumstances in which knowledge of the required boundary conditions 

will lead directly to the transformation that gives the solution. For help in finding the 

required form there are tables of conformal transformations® which show how one field 

maps into another. The mapping functions given in the tables may be used individually 

“| uy} uo U3 ya un 

  

  U2 

vy U3             _ 
W plane Z plane 

    

    - am _ 

Fic. 7.6q@ <A mapping of coordinate lines of the W plane in the Z plane. 

¢ For example, see H. Kober, Dictionary of Conformal Representations, Dover, New York, 
1952, Also see R. Shinzinger and P. A. A. Laura, Conformal Mapping: Methods and 
Applications, Elsevier, Amsterdam, 1991.
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or combined in a series of steps to transform the uniform field into a field that fits the 

given problem. Some examples of the simpler transformations will be given to illustrate 

the method. 

      y, SE Ee ee eae ee Ce ee ca SE 

THE POWER FUNCTION: FIELD NEAR A CONDUCTING CORNER 

  

As a basic example, consider W expressed as Z raised to some power: 

W = # (3) 

It is convenient to use the polar form for Z (Eq. 7.4(1)]: 

W = (re/®)? = rPelP9 

or 

u = r? cos pé (4) 

v = r? sin pé (5) 

From the conformal-mapping point of view, the field in the W plane is uniform. The 

parallel lines of equal potential (say, v equals constant) in the W plane can be mapped 

into the Z plane by setting v equal to constant in (5). From the viewpoint of Sec. 7.5 

one does not take explicit consideration of the existence of the W plane but simply 

recognizes that v is a solution of Laplace’s equation and tries to adjust constants such 

that constant v lines fit the equipotentials of the given problem. When only one step of 

transformation is required, the viewpoints are wholly equivalent. 

If v is chosen as the potential function, the form of one curve of constant v (equi- 

potential) is evident by inspection, for v is zero at 6 = O and also at 0 = 7/p. Thus, 

if two semi-infinite conducting planes at zero potential intersect at angle a, where 

aT 

p= (6) 
a 

they coincide with this equipotential, and boundary conditions are satisfied. The form 

of the curves of constant u and of constant v within the angle then give the field 

configuration near a conducting corner. The field is assumed to result from the presence 

of an electrode with nonzero potential that either fits one of the constant vu lines or is 

far enough away that its shape causes no significant deviation of the u and v lines in 

the region of interest. 

The equipotentials in the vicinity of the corner can be plotted by choosing given 

values of v, and plotting the polar equation of r versus 6 from (5) with p given by (6). 

Similarly, the flux or field lines can be plotted by selecting several values of u and 

plotting the curves from (4). The forms of the field, plotted in this manner, for corners 

with a = 2/4, 7/2, and 37/2 are shown in Figs. 7.6b, 7.6c, and 7.6d, respectively.
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Hi 

(d) 

  

Fic. 7.6b-d Field near conducting comers of 45, 90, and 270 degrees. 

These plots are of considerable help in judging the correct form of the field in a graphical 

field map having one or more conducting boundaries. 

  

Example 7.6b 
THE LOGARITHMIC TRANSFORMATION: CIRCULAR CONDUCTING BOUNDARIES 

Consider next the logarithmic function 

W=C,nZ+C, (7) 

The logarithm of a complex number is readily found if the number is in the polar form: 

In Z = In(re/’) = Inr + j0 (8) 

SO 

W= C,(Inr + j@) +C, 

Take the constants C, and C, as real. ‘Then 

u=C,Inr+ C, (9) 

v= C,é (10) 

If u is to be chosen as the potential function, we recognize the logarithmic potential 

forms found previously for potential about a line charge or a charged cylinder or be-
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tween coaxial cylinders. The flux function, yy = — ev, is then proportional to angle 8, 

as it should be for a problem with radial electric field lines. 

To evaluate the constants for a particular problem, take a coaxial line with an inner 

conductor of radius a at potential zero and an outer conductor of radius 5 at potential 

Vy. Substituting in (9), we have 

I 0=C,na+C, 

Y= C,nb +C, 

Solving, we have 

    

  

  

  

_ Vo _ _Vo In a 

“= t/a) ~~ inb/a) 
so (7) can be written 

_ In(Z/a) W = yy nel (11) 

or 

a In@/a) 
® = y= vp] rele | V (12) 

So —EéVo0 
uy = —ev = in(b/a) C/m (13) 

In the foregoing, the reference for the flux function came out automatically at 

6 = 0. If it is desired to use some other reference, the constant C, is taken as complex, 

and its imaginary part serves to fix the reference ww = 0. 

  

Example 7.6¢ 
THE INVERSE-COSINE TRANSFORMATION: 

HYPERBOLIC AND ELLIPTIC CONDUCTING BOUNDARIES 

Consider the function 

W= cos !Z (14) 

or 

x + Jy = cos(u + jv) = cos ucoshu — j sin u sinhu 

cos u cosh v ba I 

y = —sin u sinh v



7.6 Conformal Mapping for Laplace’s Equation 341 

It then follows that 

  

  

x? y? 

cosh? v r sinh? v (19) 

wo yy (16) 
cos? us sin” u 

Equation (15) for constant v represents a set of confocal ellipses with foci at +1, and 

(16) for constant u represents a set of confocal hyperbolas orthogonal to the ellipses. 

These are plotted in Fig. 7.6e. With a proper choice of the region and the function 

(either u or Vv) to serve as the potential function, the foregoing transformation could be 

made to give the solution to the following problems: 

1. Field around a charged elliptic cylinder, including the limiting case of a flat strip 

2. Field between two confocal elliptic cylinders or between an elliptic cylinder and 

a flat strip conductor extending between the foci 

3. Field between two confocal hyperbolic cylinders or between a hyperbolic cylinder 

and a plane conductor extending from the focus to infinity 

  

    
fe) 

Fic. 7.6e Plot of the transformation uw + ju = cos '(x + jy).
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4. Field between two semi-infinite conducting plates, coplanar and with a gap sepa- 

rating them (This is a limiting case of 3.) 

5. Field between an infinite conducting plane and a perpendicular semi-infinite plane 

separated from it by a gap 

To demonstrate how the result is obtained for a particular problem, consider problem 

5, illustrated by Fig. 7.6f. The infinite plane is taken at potential zero, and the perpen- 

dicular semi-infinite plane is taken at potential Vo. In using the results of the foregoing 

general transformation, we must now put in scale factors. To avoid confusion with the 

preceding, let us denote the variables for this specific problem by primes: 

W’ = C, cos! kZ’ + C, (17) 

The constant C, is inserted to fix the proper scale of potential, the constant k to fix the 

scale of size, and the additive constant C, to fix the reference for the potential. By 

comparing with (14), 

Z = kz’ 

W=CW+C, 

Che constants C, and C, may be taken as real for this problem. Then 

  

  

ue=Cut+c, (18) 

u’=0 

/ 

Jj 
/ a 

/ “N\ 
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Fic. 7.6f Field between perpendicular planes with a finite gap.
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By comparing Figs. 7.6e and 7.6f, we want Z’ to be a when Z is unity, sok = 1/a. 
Also, when u = 0, we want u’ = V,; and when u = 77/2, u’ = O. Substitution of 

these values in (18) yields 

So the transformation with proper scale factors for this problem is 

2 Z' 
W=u + ij = vl _ 2 cos-*(2) (19) 

WT a 

where uw’ is the proportional function in volts, and sv’ is the flux function in coulombs 

per meter. A few of the equipotential and flux lines with these scale factors applied are 

shown on Fig. 7.6f. 

  

Example 7.6d 
PARALLEL CONDUCTING CYLINDERS 

Consider next the function 

  

Z-—a 
W = K, 1 20 

(2) (20) 

This may be written in the form 

W = K,{InZ — a) —InZ + a)] 

By comparing with the logarithmic transformation of Ex. 7.6b which, among other 

things, could represent the field about a single line charge, it follows that this expression 

can represent the field about two line charges, one at Z = a and the other of equal 

strength but opposite sign at Z = — a. However, it is more interesting to show that this 

form can also yield the field about parallel cylinders of any radius. 

Taking K, as real, 

  

    

K x —_— 2 + 2 

y = At) SOO Fy (21) 
2 (x + a) + y 

_ y _ y 
= K t{ 1 — f i 22 

? | (x — a) an oy (22) 

Thus, lines of constant u can be obtained from (21) by setting the argument of the 

logarithm equal to a constant: 

(x - a’ t+ y? 

(x + a? +y? 
  = K,
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XY 

L / Ls 

Fi tn   
(g} 

Fic. 7.6g Two parallel conducting cylinders. 

As this may be put in the form 
2 

, + | ee 4a Ky 
1 — K, 29) 

the curves of constant u are circles with centers at 

all + K,) 

and radii (2aV K,)/(1 — K,). If u is taken as the potential function, any one of the 

circles of constant u may be replaced by an equipotential conducting cylinder. Thus, if 

R is the radius of such a conductor with center at x = d (Fig. 7.6g), the values of a 

and the particular value of K, (denoted K,) may be obtained by setting 

1 — Ko 1 ~— Ko 

  

Solving, 

a= +Vd? —R? (24) 

VE. d d* 
Ko = pt Rp ! (25) 

The constant K, in the transformation depends on the potential of the conducting cyl- 

inder. Let this be V,/2. Then, by the definition of K, (= K, on conducting cylinder) 
and (25), 

Vv, => d d* 

Or 

Vo K, = o = = (26) 
2 In[(d/R) + V(d2/R2) — 1] 2 cosh~*(d/R) 

   



7.7. The Schwarz Transformation for General Polygons 345 

Substituting in (21), the potential at any point (x, y) is 

V, (x — a)? + y? 
®=y= 0 

4 cosh~ !(d/R) nf + a) + | (27) 
    

For ® > 0 with x > 0, a < O if K, is positive so the negative sign must be chosen in 

(24). The flux function yw = — su is 

EV, 
yy = —ev c on   

    

= -1__J 
2 cosh~ '(d/R) an (28) 

2 — ft 
(x + a) (x — a) 

Although we have not put in the left-hand conducting cylinder explicitly, the odd sym- 

metry of the potential from (27) will cause this boundary condition to be satisfied also 

if the left-hand cylinder of radius R with center atx = —d is at potential —V,/2. 

If we wish to use the result to obtain the capacitance per unit length of a parallel- 

wire line, we obtain the charge on the right-hand conductor from Gauss’s law by finding 

the total flux ending on it. In passing once around the conductor, the first term of (28) 

changes by 277, and the second by zero. So 

EV, 
7 

2 cosh~ !(d/R) 
  g=2 C/m 

Or 

gq TE C=t=— >, 
V, cosh” '(d/R) 

F/m (29) 

A similar procedure can be used to find the external inductance of the parallel-wire 

line. In that case the roles of u and v are opposite from the above electric field problem, 

with v being proportional to the magnetic scalar potential. The result given in Eq. 4.6(9) 

for inductance is 

d 
L=f cosn~*( H/m (30) 

T R 

From (29) and (30) we see that LC = je as was shown to be the case for other two- 

conductor lines in Chapter 5. That this is a general result is shown in Sec. 8.12. 

  

7./ THE SCHWARZ TRANSFORMATION FOR GENERAL POLYGONS 

In the examples in Sec. 7.6 specific functions have been set down, and the electrostatic 

problems solvable by these deduced from a study of their properties. In a practical 

problem, the reverse procedure is usually required, for the specific equipotential con- 

ducting boundaries will be given and it will be desired to find the complex function 

useful in solving the problem. The greatest limitation on the method of conformal 

transformations is that, for general shaped boundaries, there is no straightforward
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Z plane Z’ plane 

P, P, 
  

a3 
Gs 

  

Py     
fa) (b) 

Fic. 7.7. (a) General polygon in Z plane. (b) Polygon of figure transformed into straight line in 

Z' plane. Vertex x5 is at infinity. 

procedure by which one can always arrive at the desired transformation if the two- 

dimensional physical problem is given. There is such a procedure, however, when the 

boundaries consist of straight-line sides with angle intersections. 

The Schwarz transformation takes an arbitrary polygon in the Z plane into a series 

of segments along the real axis in a Z’ plane as shown in Figs. 7.7a and 7.7b. The 

segments correspond to the sides of the polygon.’ The transformation may be found by 

integrating the derivative: 

dZ _ _ _ 
— = K(Z’ — x eal) (z' — x4, )6o2/™) Li. (Z' — x! eu! 7 I (1) 
dZ’ 

Each factor in (1) may be thought of as straightening out the boundary at one of the 

vertices as the transform of Ex. 7.6a did for the single corner. The setting down of (1) 

for a specific problem is usually easy, but the difficulties come in its integration. 

Although we have spoken of the figure to be transformed as a polygon, in the practical 

application of the method, one or more of the vertices may be at infinity, and part of 

the boundary may be at a different potential from the remaining part. Then the real axis 

in the Z’ plane consists of two parts at different potentials. This latter electrostatic 

problem may be solved by a transformation from the Z’ to the W plane, and thus the 

transformation from the Z to the W plane is given with the Z’ plane only as an inter- 

mediate step. Another sort of problem in which the method is useful is that in which a 

thin charged wire lies on the interior of a conducting polygon, parallel to the elements 

of the polygon. By the Schwarz transformation, the polygon boundary is transformed 

to the real axis and the wire corresponds to some point in the upper half of the Z’ plane. 

This electrostatic problem can be solved by the method of images, and so the original 

problem can be solved in this case also. 

? Formore details see R. V. Churchill and J. W. Brown, Complex Variables and Applications, 
4th ed., McGraw-Hill, New York, 1984.
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Table 7.7 
Z=x+ jy; W = u + ju, where u = Flux Function, v = Potential 

b 2+ 1 - 2a7e8¥ 2e~W — + 
Yo Z=- cosn1( — < — a cosh™( Gs ») 

if 7 1 -a@ 1- & 
a y b 

my * a-2 pat 

b 1+S 
=—|] — 2a tan~'{ — 

KW s. 

=5, S= “a - b ~— | 
  

Results for some important problems that have been solved by the Schwarz technique 

are given in Table 7.7. 

  

Example 7.7 
FRINGING FIELD IN PARALLEL-PLATE CAPACITOR 

To illustrate how the concept of a polygon can be applied, consider the parallel-plate 

capacitor structure in Fig. 7.7c with ® = V, on the infinite bottom plane and ® = 0 
on the plane D—C. For the purposes of the Schwarz transformation, the structure may 

be considered a polygon with interior angles a,, a, and a, and sides of infinite length. 

Application of the transformation puts all the boundaries along the real axis as in Fig. 

7.7d where ® = V, for x5 < 0 and ® = 0 for x, > 0. As was shown in Ex. 7.6b, a 
subsequent logarithmic transformation converts such a set of boundary potentials into 

a parallel-plane uniform field in the W plane. Combining the two transformations, one 

  

  

2 aw 
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/ ay = 7 \ 
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Fic. 7.7. (c) Edge of parallel-plate capacitor with one plane of infinite extent (equivalent to one- 

half of a symmetric parallel-plate capacitor). (d@) Transformation of the capacitor of (c) into a 

single plane.
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finds that the flux lines and potential lines, u and v, respectively, are implicitly defined 

in terms of position x, y in the Z plane by the relation 

h W 
Z=-— (en -1- 7 + in] (2) 

T 0 

One can select values of u and v and calculate the corresponding points x and y, thus 

plotting out the field sketched in Fig. 1.9a. 

  

7.8 CONFORMAL MAPPING FOR WAVE PROBLEMS 

We have seen that in conformal transformations for statics complicated boundaries are 

transformed to simple ones. Conformal transformations of wave problems can similarly 

simplify complicated boundaries.® The transformations can be made only in two di- 

mensions so the fields must be independent of the third dimension. The simplification 

of the boundaries is also normally accompanied by increased complexity of the dielec- 

tric so this trade-off only occasionally helps. 

Let us assume that there exists an analytic function W = u + ju = f(Z) = 

f(x+ Jy) which transforms the given boundary shapes in the Z plane to lines of constant 

u and v in the W plane. We will first determine the relation between V2, and Vz, in 
order to transform the scalar Helmholtz equation, Eq. 7.2(8), 

ry op 
5x2 + ay? + kw = 0 (1) 

from the Z plane to the W plane. To transform the derivatives, we apply the chain rule. 

First, 

ay _ ay au, ay av 

        

~ (2) 
ax Ou Ox dU Ox 

Applying the chain rule a second time leads to 

2 2 2 2 2 2 ow ew lau ay [av aw au dv 
ws = Ila + al + 2——-—-— (3) 
Ox ou~ \Ox dv~ \ dx Ou OU Ox Ox 

and similarly for d7y/dy?: 
2 2 

a? ew fau\ ep fav\ a°ur du du wow fdu\ owl) | eh dua (4) 
ay agu- \dy du~ \dy gu dU dy dy 

8 F. E. Borgnis and C. H. Papas, in Handbuch der Physik (S. Fitigge, Ed.), Vol. 16, p. 358, 
Springer Verlag, Berlin, 1958.
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Making use of the Cauchy—Riemann conditions in Eqs. 7.4(6) and 7.4(7) in the second 

terms of the right sides of (3) and (4) and in the last term of (4), and adding (3) and (4), 

a a? a a au ° a ° 
ow ow (oe ew) feu) (ou (5) 
Ox oy~ oun du~ Ox dy 

Note from Eq. 7.4(4) and 7.4(7) that 

  

    

2 2 2 2 2 
dWw ou dU Ou Ou 
—| =(5-} +l) =(e)} +l (6) 
dZ Ox Ox Ox oy 

‘Thus 

dw| 
V2 = |—| V2 7 xy dZ nw (7) 

    
The quantity |dZ/dW] is a scale factor which relates a differential length |dW| in the W 
plane to the corresponding length |@Z| in the Z plane, as we discussed in Sec. 7.6. The 
Helmholtz equation (1) is thus transformed to the W plane giving 

~ 

Py = 0 (8) Viw + 

    

  Note that, in general, |\dZ/dW| is a function of the coordinates so that (8) is equivalent 

to the Helmholtz equation in an inhomogeneous medium. 

Boundary conditions in the Z plane consisting of zero values of wW or its normal 

derivatives carry over unchanged to the corresponding boundaries in the W plane since 

the orthogonality of coordinates is conserved. If a nonzero normal derivative is specified 

on a boundary, the scale factor |dW/dZ| enters the conversion of the boundary condition 

through the relation between gradients in the two planes: 

Vow] = Vt (9) 

  

  
az. 
dw 

Example 7.8 
CURVED DIELECTRIC WAVEGUIDE 

A layer of a dielectric material embedded in materials of lower permittivity can serve 

to guide electromagnetic waves, as will be studied in more detail in Chapter 14. The 

phenomenon of total internal reflection analyzed in Sec. 6.12 supplies a qualitative 

understanding of dielectric waveguides. Here we see how wave propagation in a curved 

layer, as in Fig. 7.8a, can be treated using conformal mapping. 

The wave is assumed to be polarized with its electric field in the z direction and EF, 

is independent of z. Then identifying EF. with Ww, we can write from Eq. 7.2(8), with 

0 / dz = > 

ViyE(x, y) + PE Ax, y) = 0 (10)
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€3   

Ry ~ 

  

u = Rain 

  
(h)   

Fic. 7.8 (a) Curved dielectric waveguide in Z plane. (b) Curved dielectric guide transformed 

into W plane. 

Using the transformation of Ex. 7.6b in slightly different form, 

    

W =k) In z (11) 

for which 

= = eM/Ro (12) 

(8) becomes 

V2,E(u, Vv) + ke?"/Rok (u,v) = 0 (13) 

From (11) it is easily seen that 

u = Ry In R (14) 

and 

v = Roo (15) 

Therefore, the edge of the guiding layer at r = Ry is the u = 0 line in the W plane and 

the other edge of the guide atr = Ry — ais at u = Ry In(Ry — a)/Rp. The result is 
that the curved layer in the Z plane becomes the planar region shown in Fig. 7.8b. Note 

that this layer in the W plane is inhomogeneous. Equation (13) has the usual form of 
the Helmholtz equation only if we identify a new wave number k’ by 

2 
k' = @ |e exp - (16) 

0
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Since k’ is a function of u, one cannot substitute it directly for & in the usual wave 

solution. However, the problem is solvable and has been used to study the leakage of 

energy from bends in dielectric waveguides.” 

  

  

Separation of Variables Method 

7.9 LAPLACE’S EQUATION IN RECTANGULAR COORDINATES 

One of the most powerful techniques for solution of linear partial differential equations 

is that of separation of variables. This leads to solutions which are products of three 

functions (for three-dimensional problems), each function depending upon one coor- 

dinate variable only. Such solutions might not seem very general, but they may be 

added to form a series which can represent very general functions. Moreover, single- 

product solutions of the wave equation represent modes which can propagate individ- 

ually. These are of great practical importance in waveguides and resonant systems and 

are studied extensively in following chapters. 

As the simplest example of the method of separation of variables, let us first consider 

two-dimensional problems in the rectangular coordinates x and y, as we have in the 

transformation method of the past section. Laplace’s equation in these coordinates is 

ro rh 
7 + 2 

Ox- dy~ 
    = 0 (1) 

We wish to study product solutions of the form 

Dw, y) = X@)Y(y) (2) 

where we see that we have a function of x alone times a function of y alone. From this 

point on X(x) will be replaced by X and Y(y) by Y. Substituting in (1), we have 

X"Y + XY" = 0 (3) 
The double prime denotes the second derivative with respect to the independent variable 

in the function. Now to separate into the sum of functions of one variable only, divide 

(3) by (2): 
x” y" 

—+—=0 4 y'¥ (4) 

9 M. Heiblum and J. H. Harris, IEEE J. Quantum Electronics QE-11, 75 (1975).
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Next follows the key argument for this method. Equation (4) is to hold for all values 

of the variables x and y. Since the second term does not contain x, and so cannot vary 

with x, the first term cannot vary with x either. A function of x alone which does not 

vary with x is a constant. Similarly, the second term must be a constant. Let us denote 

the first as K2 and the second as K*. Then 

K2 + K2=0 (5) 

and 

X" — K2X = 0 
f 2 (6) Y" — K2Y = 0 

We recognize that these are in the standard form having real exponentials or hyperbolic 

functions as solutions. Let us write them in hyperbolic form and substitute in (2): 

D(x, y) = (A cosh K,x + B sinh K,x)(C cosh Kyy + D sinh Kyy) (7) 

It is clear from (5) that either K2 or K ; must be negative and therefore either K,, or 

K, must be imaginary while the other is real. Furthermore, their magnitudes must be 

the same. Thus (7) can have either of two forms, 

@®(, y) = (A cosh Kx + B sinh Kx)(C cos Ky + D’ sin Ky) (8) 

or 

@®@, y) = (A cos Kx + B’ sin Kx)(C cosh Ky + D sinh Ky) (9) 

where, since |K,| = |K,|, we have used the single symbol K. The primes are used to   

indicate that the constants have changed. The choice between (8) and (9) is dictated by 

the nature of the boundary conditions. If the potential is required to have repeated zeros 

as a function of y, then (8) is used; if repeated zeros are specified for the x variation, 

(9) is chosen. If the boundaries extend to infinity in one direction, real exponentials are 

used in place of hyperbolic functions. It may be noted from (6) that for K, = jK, = 0, 

the general solution has the form 

OG, y) = yx + By)(Ciy + D,) (10) 

It is typical for product solutions that when the separation constants go to zero the 

functional forms of the solutions change. We will see in subsequent sections how the 

constants are evaluated using the boundary conditions. 

For the three-dimensional case in rectangular coordinates, the procedure is simply 

extended. Laplace’s equation is 

rb Fb Fh 
mete t eo 0 (11) 

Consider solutions of the form 

OG, y, z) = X@)¥(y)Z@) (12)
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where each term on the right side is a function of just one of the independent space 

variables. Substituting (12) in (11), we have 

X"YZ + XY"Z + XYZ" = 0 

and dividing by ®, we see that 

x” + y" 1 Zz’ _ 0 13 

X Y Z- (19) 

We use the same argument as was used in the two-dimensional case. If the second two 

terms do not vary with x, neither can the first. Since it is a function of x alone and does 

not vary with x, it must be a constant. Similar arguments apply for the second and third 

terms. If we let the first term be K%, the second K?, and the third K?, (13) becomes 

Ki + Ki + KZ =0 (14) 

and differential equations of the form (6) apply for X, Y, and Z. So the general solution, 

written as the product of X, Y, and Z, and sometimes called a rectangular harmonic, is 

D(x, y, z) = [A cosh K,x + B sinh K,x][C cosh Kyy + D sinh K,y] | (15) 
x [FE cosh K,z + F sinh K,z] 

It is clear that at least one of Ky, K;, and K2 must be negative for (14) to hold, so at 
least one of K,, K,, and K, must be imaginary. If repeated potential zeros are required 

in the x and y directions, the functions of x and y must be trigonometric functions so 

K,. and K,, are imaginary. There are various other combinations which may be useful. 

In some cases it is advantageous to replace the hyperbolic functions by real exponentials 

as mentioned earlier for the two-dimensional solutions. 

In (15) there appear to be nine constants, to be evaluated using the six possible 

boundary conditions, two for each of the three coordinate directions. If, however, one 

divides the first bracket by B, the second by D, and the third by F and multiplies the 

entire by BDF, it becomes clear that there are just four independent multiplicative 

constants. From (14) we see that there are only two independent separation constants 

so the total number of unknowns equals the number of boundary conditions. 

7.10 STATIC FIELD DESCRIBED BY A SINGLE RECTANGULAR HARMONIC 

Let us see what boundaries would be required to have one of the forms of Sec. 7.9 as 

a solution. Take the special case of Eq. 7.919) with A = 0, C = O. The product of 

remaining constants, B'D, may be denoted as a single constant C,: 

® = C, sin Kx sinh Ky (1)
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It is evident from (1) that potential is zero at y = O for all x. Hence one boundary can 

be a zero-potential conducting plane at y= O. Similarly, potential is zero along the 

plane x = O and also at other parallel planes defined by Kx = nm. Let us confine 

attention to the region 0 < Kx < mand 0O < y < ©, The intersecting zero-potential 

planes of interest then form a rectangular conducting trough. Let its depth in the x 

direction be a. Then Ka = ror 

WT 
K = (2) 

a 

If there is to be a finite field in the region, there must be some electrode at a potential 

other than zero. Without knowing its shape for the moment, let us take the value of y 

at which it crosses the midplane x = a/2 as y = b, and the potential of the electrode 

as V). Then, from (1), 

7 1b 1b 
Vy = C, sin > sinh — = C, sinh — 0 , sin 5 S 7 1 7 

or, substituting in (1), we have 

_ Vo sinh(wry/a) . mm 
P= sinh(ab/a) a (9) 

The potential at any point x, y may be computed from (3). In particular, the form 

that the electrode at potential V, must take can be found from (3) by setting ® = V,, 

yielding 

sinh my sinh(b/a) 

a sin(77x/a) 
(4) 

Equation (4) can be plotted to show the form of the electrode. This is done for a value 

b/a = % in Fig. 7.10a. Actually, the electrodes should extend to infinity, but if they 
are extended a large but finite distance, the solution studied here will represent the 

potential very well everywhere except near edges. 

Alternatively, a straight boundary at y = b could be supplied with a sinusoidal 

_ 

  Ir 
FiG. 7.10q Electrodes and potentials for which a single harmonic is the complete solution. 

 



7.11. Fourier Series and Integral 355 

  

y b 

Fic. 7.10b Potential in a two-dimensional box with a sinusoidal distribution of potential on 
one side. 

distribution of potential and a single harmonic would describe the potential at all points 

in the box. Thus, for example, if Ka = 3a and the boundary potential were 

3 @(x, b) = Vy sin — x (5) 

then the harmonic 

V, sinh(37r/a)y . 37 
@=—- — x 6 

sinh(3 7rb/a) a (6) 
  

shown in Fig. 7.105 satisfies the boundary conditions and describes the potential at all 

points. 

7.11 FOURIER SERIES AND INTEGRAL 

In the preceding section, we saw that a single-product solution could satisfy only very 

special forms of boundary conditions. For more general boundaries a sum of such 

solutions must be used. This is one example of situations where Fourier series or in- 

tegrals are useful in forming solutions for field problems. We provide here a review of 

the Fourier tools with the assumption that the reader has already a measure of familiarity 

with them. 

Fourier Series Fourier series are used to represent periodic functions. For the in- 

dependent variable x, the required periodicity is expressed by 

f@) = f@ + L) (1)
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where L is the period of the function. We assume that the function can be represented 

by a constant plus the sum of infinite series of sine and cosine functions of harmonics 

of a fundamental spatial frequency k: 

f(x) = ay + a, cos kx + ay cos 2kx + a, cos 3kx + --- 
2 

+ b, sin kx + by sin 2kx + bs sin 3kx + -: 2) 

where the phase factor & is related to the period L in the usual way: 

kL = 277 (3) 

To evaluate the unknown constants in (2) for a given function f(x), we make use of 

so-called orthogonality properties of sinusoids. These are 

L/2 

| cos nkx cos mkx dx = 0 meEnN (4) 
—L/2 

L/2 

| sin nkx sin mkx dx = 0 men (5) 
—L/2 

and 

L/2 men 
sin mkx cos nkx dx = 0 (6) 

—L/2 m=n 

However, 

L/2 L/2 L 

[ cos* mix dx= | sin? mkx dx = — (7) 
—L/2 —L/2 2 

To make use of these properties, we multiply each term in (2) by cos nkx and integrate 

over one period. Every term on the right vanishes because of the properties in (4)—(6) 

except the one containing cos nkx; that term gives a,L/2 according to (7). Thus, 

4 el? 

a, = 7 | f(x) cos nkx dx (8) 
LJ—py2 

Similarly, multiplication of (2) by sin nkx with integration from —L/2 to L/2 leaves 

only the term involving sin kx on the right-hand side, and its coefficient, by (7), is 

9 (h/2 

b, = 7 f(x) sin nkx dx (9) 
LE J—zy2 

Finally, to obtain the constant term dp, every term is integrated directly over a period 

and all the terms on the right side disappear except that containing ay so that 

ag - 7 

L/2 

L | 2 F(x) dx (10) 
—L 

This merely states that aj is the average of the function f(@).
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For a general function, an infinite number of terms is required in the Fourier series 

representation. But often a sufficient degree of approximation to the desired wave shape 

is obtained when only a finite number of terms is used. For functions with sharp dis- 

continuities, however, many terms may be required near the sharp corners, and the 

theory of Fourier series shows that the series does not converge to the function in the 

neighborhood of the discontinuity (Gibbs phenomenon). The derivative of the series 

also does not converge to the derivative of the function, but the integral of the series 

always converges to that of the function. 

Example 7.i1a 
FOURIER SERIES REPRESENTATION OF A FUNCTION OVER A FINITE INTERVAL 

In static field problems, one commonly has the boundary potential specified over a finite 

interval, such as along a straight boundary at a constant value of one coordinate. For 

the purposes of matching the given boundary potential, it is desirable to express it ina 

Fourier series. This can be done even though the function is not periodic, having been 

specified only over a finite interval. The point of view is that the interval of length a 

may be considered a period or an integral fraction of a period, and a periodic function 

defined to agree with the given function over the given interval, repeating itself outside 

that interval. A Fourier series may then be written for this periodic function which will 

give desired values in the interval, and although it also gives values outside the interval, 

that is of no consequence since the original function is not defined there. 

The interval is commonly selected as a half-period since the function extended out- 

side the interval may then be made either even or odd, and the corresponding Fourier 

series will then have respectively either cosine terms alone or sine terms alone. Figure 

7.1la shows by solid lines some possible examples of functions specified over the 

interval 0 < x < a. Their extensions outside that interval as either odd or even functions 

are shown by the broken lines. Note that in one case the interval is L/4. The choice of 

whether to consider the function continued as an odd or an even function depends upon 

the form used to represent the potential in the problem. Thus, for example, in Eq. 7.10(3) 

the potential is expressed in terms of sin ax/a and the appropriate series for the rep- 

resentation of the boundary potential will be in sines, 

f@) = Ss b, sin NOX 

n= | a 

(11) 

where we have made use of the fact that a = L/2, one half-period. The coefficients 

are found from (9) noting that the contributions to the integral from the negative and 

positive intervals are equal. Thus, with a = L/2, 

2 a ry 

b, = = | f(x) sin — dx (12) 
a /Q a
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fix) f(x) 

4 \ 

1 1 | | | | i 
po }—__}-_»> x | | i |  ,-, 

a 

| |     
(t) (tit) 

f(x) fa] 

  

  

(ti) (tv) 

Fic. 7.11a@ Examples of functions specified over a finite interval (solid line) and odd and even 
continuations (broken lines). 

Suppose, for example, that the specified function is f(x) =C over the interval 0 < x 

< a and it is desired to expand it in a sine series. Then, (12) yields 

2 [7 2C ° 
b,=-| Csin——dx = = | 20 na (13) 

a Jo a ni a |p 

and the series is 

2C 2 3 2 5 
fa) =— 2sin—— + = sin + 2 sin +... (14) 

T a 3 a 5 a 

The series (14) has the required value f(x) = C over the interval 0 < x < a but also 

represents the dashed portion of waveform (i) in Fig. 7.11a outside that interval. 

  

Fourier Imtegral In some problems the function of interest is defined over the entire 

range and is aperiodic. An example is a square function that is constant in some range 

—a =x Sa and zero elsewhere, as shown in Fig. 7.115. This could be considered the 

limiting case of a periodic series of square pulses where the period L goes to infinity. 

The spacing of the components (n + 1)k — nk = 27/L from (3) becomes vanishingly 

small as the period L approaches infinity, and in the limit the spectrum of component 

sinusoidal waves becomes a continuum.'® 

10 R, Bracewell, The Fourier Transform and its Applications, 2nd rev. ed., McGraw-Hill, New 
York, 1986.
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f(x) 

\ 

C   

      
  

Lath) 

2Ca 
  

  
/— 37 a 0 YS Qn 3aN > 

(¢") 

Fic. 7.11 (5) Inverse Fourier transform of function in (c). (c) Fourier transform of rectangular 
function in (b). Value of g(0)/2Ca is unity. 

In the limiting, aperiodic case the series (2) is replaced by an integral 

1 {- , 
f@) = 57 | g(kje™ dk (15) 

277 J x 

and the function g(k) which takes the place of a, and b, of (8)—(10) is given by?! 

g(k) = | f(xjel™ dx (16) 

The theory of Fourier integrals shows that for (15) to give the same f(x) that appears 

in (16) the function must be continuous or have only a finite number of finite discon- 

tinuities in any finite interval and must be absolutely integrable, that is, 

| __ FQ) dx < % (17) 

Nt The placement of 2:1 in the pair (15) and (16) is arbitrary and is done in various ways in 
the liferature.
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These conditions do not place strong limitations on the utility of the transform pair (15) 
and (16). 

   ea Sie ae 
  

Example 7.11b 
FOURIER TRANSFORM OF A RECTANGULAR PULSE 

Using (16) we find the spectrum of spatial frequency components for the rectangular 

function in Fig. 7.11: 

a — Jkx @ in & 

o(k) = | Con dx = |= = 2ca( ") (18) 

  

  

This very important function occurs frequently in practice and is shown in Fig. 7.1 1c. 

The function f(x) in Fig. 7.11b is called the inverse Fourier transform of that in Fig. 

7.11c. The two are called a transform pair. 

  

7.12 SERIES OF RECTANGULAR HARMONICS FOR TWO- 
AND THREE-DIMENSIONAL STATIC FIELDS 

We saw in Sec. 7.10 that product solutions (harmonics) satisfying zero boundary con- 

ditions on three of the four boundaries in a two-dimensional rectangular structure can 

be found. However, the use of a single harmonic as the expression for the potential 

requires either a fourth boundary of complicated shape or a simple flat one with a 

sinusoidal variation of potential along it. To solve problems with an arbitrary variation 

of potential along a flat boundary on a coordinate line, one may use a sum of harmonics, 

each of which satisfies the zero conditions on three boundaries and has a weighting in 

the sum such that it equals the given potential at the fourth boundary. Then the given 

potential is expanded in a Fourier series of either sines or cosines, chosen to match the 

functions in the sum of harmonics. The harmonic series is evaluated at the fourth 

boundary and compared, term by term, with the Fourier series to evaluate the weighting 

coefficients in the former. These procedures are sometimes slightly modified by use of 

symmetries and superposition, as seen in the following examples and problems. 

    oe 78 

Example 7.12a 

TWO-DIMENSIONAL PROBLEM WITH SPECIFIED BOUNDARY POTENTIALS 

  

aoa 

As an example of a problem which cannot be solved by using a single one of the 

solutions of Sec. 7.9, but can be by means of a series of these solutions, consider the 

two-dimensional region of Fig. 7.12a@ bounded by a zero-potential plane at y = 0, a
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Fic. 7.12qa Two-dimensional box for Ex. 7.12a. 

zero-potential plane at x = OQ, a parallel zero-potential plane at x = a, and a plane 

conducting lid of potential V, at y = b. In the ideal problem, the lid is separated from 

the remainder of the rectangular box by infinitesimal gaps. In a practical problem, it 

would only be expected that these gaps should be small compared with the rest of the 

box. 

In selecting the proper forms from Sec. 7.9, we will choose the form having sinusoidal 

solutions in x since potential is zero at x = O and also at x = a, and sinusoids have 

repeated zeros. So the form of Eq. 7.9(9) is suitable. Moreover, ® = 0 at y = O for 

all x of interest, so the function of y must go to zero at y = O, showing that C = 0. 

Similarly, since ® = O at x = O for all y of interest, A = 0. Then ® is again zero at 

x = a,so Ka = m7, or 

mor 
K = 

a 

Denoting the product of the remaining constants B’D as C,,,, we have 
ny 

mary 

    

® = C,, sin “a sinh 
a 

This forms satisfies the Laplace equation and the boundary conditions at y = 0, at 

x = O, and atx = a, buta single term of this form cannot satisfy the boundary condition 

along the plane lid at y = 5, as the study in Sec. 7.10 has shown. A series of such 

solutions also satisfies Laplace’s equation and the boundary conditions at y = 0, at 

x = 0, and atx = a: 

  

> C,,, sin a sinh —> (1) 
m=) a a 

For the sum (1) to give the required constant potential V, along the plane y = b over 

the interval 0 < x < a, we require 

b 
-> Ch, sin — — ~ sinh a ; O<x<a (2) 

a nr= 1 
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But this is recognized as a Fourier expansion in sines of the constant function Vg over 

the interval 0 < x < a. This expansion was carried out in Ex. 7.11a to yield 

fi) =V = > 4, sin, 0<x<a (3) 
==] 

with 

AV, 
—2, modd 

Am = NT (4) 
0, m even 

Comparison of (3) with (2) shows that 

b 
C,, sinh —— = a, (5) 

Substitution of the results of (5) and (4) in (1) gives 

@ = 5 No sinhtnay/e) i, mm (6) 
modd mr sinh(mab/a) a 

This series is rapidly convergent except at comers of x — 0, a, and y > J, so it can 

be used for reasonably convenient calculation of potential elsewhere. 

We note that the evaluation of the constants in the general solution depended upon 

the fact that the boundary potentials were specified on surfaces in the coordinate system. 

Furthermore, nonzero conditions, potential or normal derivative of potential, must exist 

on some part of the boundary to yield a nonzero solution. As will be clarified in the 

next example, superposition may be used to solve problems where the boundary con- 

ditions involve several sides. 

  

Example 7.12b 
TWO-DIMENSIONAL PROBLEM REQUIRING SUPERPOSITION 

In this example, we see a boundary potential having a Fourier series expansion which 

includes both trigonometric functions and a constant. Matching such a boundary con- 

dition requires the superposition of two solutions, one to match the constant and one 

for the trigonometric functions. Consider the problem of finding the potentials in the 

conducting rectangular solid of infinite extent in the z direction shown in Fig. 7.12b. 

The surrounding region contains free space, the potential at y = 0 is zero, and that 

along the edge y = bis given by ® = Vox/a. 
This problem requires a solution with repetition in the x direction since the boundary 

conditions at the sides x = O, a are the same; the appropriate general form is that in 

Eq. 7.9(9). Atx = 0, a the x component of current density must be zero since no current
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= 0 

  

ag =0 b 

Fic. 7.12b Two-dimensional conductive solid embedded in a nonconductive medium. 

can flow in the free space outside the conductor. Since J = cE, then E, must also be 

zero atx = O, a. Therefore, dP/dx, given by 

d® 
on = K(—A sin Kx + B' cos Kx)(C cosh Ky + D sinh Ky) (7) 

must be zero at x = O, a for all y. Since cos Kx = 1 atx = O, B’ = O. Also, 

sin Ka = 0 if Ka = maso K = ma/a. To match the boundary condition ® = 0 at 
y = O requires C = O. Thus the potential in the mth harmonic is 

D,, = C,, COS ai x sinh — y (8) 
a a 

The potential on the boundary at y = b should be expanded in a series of cosines 

so that term-by-term matching with a series of terms like (8) can be done. The appro- 

priate periodic continuation of the given boundary potential is shown in Fig. 7.1 1la(iv). 

It is seen to have an average value of V,/2 which will be present in the series expansion. 

Applying Eqs. 7.11(8)—(10), 

V AV, O(x, b) = 2 — SY —% cos x (9) 
a 

9? 

2 m odd (n 7 TT)” 

  

Matching the boundary potential (9) requires both a series of harmonics of the form 

in (8) and a separate solution having a constant value at y = b. A solution of the latter 

form is found from Eq. 7.9(10). The function 

®, = Avy (10) 

satisfies the boundary conditions at x = 0, a and at y = 0. Evaluation of the constant 

as V,/2b gives 
V 

o, = ah (11) 

The solution involving harmonic terms is found by equating a series of terms like that 

in (8), evaluated at the boundary y = 5b, with the series in (9): 

MUITX nuirb AY, NTTX 
sinh =-> 2 cos —— (12) 

a a moda (™71)~ a 

  

  

  

>, Cm COS 
m
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The result for the second potential is 

AV, sinh(mary/a) MIX   
Oo, = — 

m odd (mar) sinh(m7b/a) a (13) 

The complete solution is the superposition of (11) and (13), ® = ®, + ®,. 

  

Example 7.12¢ 
THREE-DIMENSIONAL RECTANGULAR BOX WITH POTENTIAL SPECIFIED ON ONE FACE 

The method discussed above can be extended to three dimensions. As an example, we 

consider a box with zero potential on all faces except on the side z = c, where it is Vp. 
The box extends from the origin of coordinates to x = a, y = b, and z = c. The 

appropriate general form of the space harmonic is Eq. 7.9(15) with K, and K, imaginary 

and K, real. To meet the zero-potential boundary conditions at x = 0, y = Q, and 

z = Q, the constants A, C, and F must be zero. Also, to satisfy the zero-potential 

condition atx = a andy = b, the corresponding separation constants must be mar/a 

and nzr/b, respectively. Then from Eq. 7.9(14) we get K. = [(mar/a)* + (nar/b)7]!/7. 
The general form of the potential must be a doubly infinite sum of the resulting 

functions: 

  

® = >> C,,, sin a" x sin — J ion, (2) + (2) z (14) 
a a nm oem 

If (14) is evaluated at the boundary z = c, the series becomes 

_ mr, nw 
V@, y) = S> Dm SIM — x sin —— 

nom a b 

2 2 

nn = Com sin | ("= + (= c (16) 
a b 

The coefficients D,,,, can be evaluated by multiplying (15) by sin(pzrx/a) sin(qzry/b) 

and integrating over x from 0 to a and over y from 0 to b. Application of the orthog- 

onality conditions Eqs. 7.11(5) and 7.11(7) yields 

y (15) 

where 

  

D 

4 b ra 

Dian = | [ Vi, y) sin aK sin ary dx dy (17) 
ab Joo a b 

For the special case of V(x, y) = Vo, (14), (16), and (17) give 

6 = yy 10 sin(mm/a)x sin(n/b)y sinhV (na/ay? + (n7/by z 

me nina sinh'V (mar/a)* + (na/b)* c 

  

  
  (18) 

where m and n are odd in the summation. 
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7.13 CYLINDRICAL HARMONICS FOR STATIC FIELDS 

In a large class of problems of major interest, the field distribution is desired for regions 

with boundaries lying along the surfaces of a cylindrical coordinate system. Examples 

are the familiar electrostatic electron lenses found in many cathode-ray tubes or certain 

coaxial transmission line problems for which static solutions are useful. As has been 

pointed out in Sec. 7.12, the ability to evaluate the constants in product solutions de- 

pends upon having boundaries on coordinate surfaces. Therefore, the fields for this type 

of problem are found by separating variables in cylindrical coordinates. 

A variety of types of solution are found, depending upon symmetries assumed. In 

general, Laplace’s equation in cylindrical coordinates has the form 

2 (22) Leb Fd, ; 
ror or Tp ag? 7 92 7 a) 

  

4 
ont 

Axial Symmetry with Longitudinal Invariance In Ex. 1.8a we saw that for 

zero variations with @ and z, 

@(r) = C, nr + Cy (2) 

Longitudinal Imvariance It was shown in Prob. 7.9a that the solutions for zero z 

variation, called circular harmonics, are given by 

Dir, d) = (Cyr" + Cor ~"\(Cz cos n@ + Cy, sin n@) (3) 

Note that, for 7 = 0, axial symmetry exists but (3) breaks down and the solution is 

given by (2). 

Axial Symmetry Since it is assumed that there are no variations with @, Laplace’s 

equation (1) becomes 

rd l1ddb 
7 -—— + 7 

or r or Oz* 
    = 0 (4) 

To solve this equation, let us try to find solutions of the product form 

Dr, z) = R)Z(Z) (5) 

Substituting in the differential equation (4), we have 

1 
R"Z + —R’Z + RZ" = 0 ; 

where R” denotes d?R/dr?, Z" denotes d*Z/dz*, and so on. The variables are separated 
by dividing by RZ: 

Zz" R" 1 R' 

—$ = —|f— + -— 

Z R rR 

By the standard argument for the method of separation of variables, the left side, which
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is a function of z alone, and the right side, which is a function of r alone, must be equal 

to each other for all values of the variables r and z. Both sides must then be equal to a 

constant. Let this constant be T*. Two ordinary differential equations then result as 

follows: 

  

1 d? 1 dR 
—-— +s = —T? 6 
R dr? rR dr (©) 

1 d’Z 
= T? 7 7 de (7) 

Equation (6) can be written as 

d*R  14dR 
— +a t+TR= = 0 8 
dr? r dr ®) 

Equation (8) is the simplest form of the so-called Bessel equation. A sketch of the 

solution will be given. One method of finding a solution is to substitute a series and 

find the conditions on the terms of the series for it to be a valid solution of the differential 

equation. Thus to solve (8), the function R must be assumed to be a power series in r: 

R =a) + ay + ar? + agr? + -- 

Or 

= 2, apy? (9) 
Pp = 

Substitution of this function in (8) shows that it is a solution if the constants are as 

follows: 

(T/2)°" 

(m!)? 
ay = a5, = C,(-— 1)” 

(C, is any arbitrary constant). That is, 
2 

= (—1)"(Tr /2)” Tr (Tr /2)* 

r= 0, 3 Oe = alt - (7) +S] ao   

is a solution to the differential equation (8). It is easy to show that (10) is convergent 

so that values may be calculated for any value of the argument (77). Such calculations 

have been made over a wide range of the values of the argument and the results are 

tabulated. 

If T? is positive, the function defined by the series is denoted by Jo(7r) and called a 

Bessel function of the first kind and of zero order. This function is defined by 

a, _ (ve) , w/2 (=1)"@/2)2" Jv) 21 - (2) + one -> Gab? (11)   

The particular solution (10) may then be written simply as 

R = C,J,T?)
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The differential equation (8) is of second order and so must have a second solution 

with a second arbitrary constant. (The sine and cosine constitute the two solutions for 

the simple harmonic motion equation.) This solution cannot be obtained by the power- 

series method outlined above, since a general study of differential equations would 

show that at least one of the two independent solutions of (8) must have a singularity 

at r = Q. Once one solution is found there is a technique for obtaining a linearly 

independent solution for this class of equations* and several different forms are pos- 
sible. One form for the second solution (any of which may be called Bessel functions 

of second kind, order zero) easily found in tables is 

. 2 (22) 

T 

2 - (= 1)"w/2)*" 1 1 1 “ 
2 y ere” (i tiede ed) 

The constant In y = 0.5772 ...1is Euler’s constant. In general, then, 

R = C,J)(I7r) + CN (Tr) (13) 

is the solution to (8), and the corresponding solution to (7) is 

Z(z) = C; sinh Tz + C, cosh Tz (14) 

It should be noted from (12) that N)(T7r), the second solution to R, becomes infinite at 

r = Q, so it cannot be present in any problem for which r = 0 is included in the region 

over which the solution applies. 

If T? is negative, we let T? = —7* or T = jr, where ris real. The series (10) is still 
a solution and T in (10) may be replaced by jr. Since all powers of the series are even, 

imaginaries disappear, and a new series is obtained which is also real and convergent. 

That is, 

    

2 4 6 2) , ePy , w/2y (15) Jolsu) = 1b + (: 2 " Bly 

Values of J>( ju) may be calculated for various values of v from such a series; these are 

also tabulated in the references and are usually denoted /,(v). Thus, one solution to (8) 

with T = jTis 

R = CiJo(jm) & Clg) (16) 
There must also be a second solution which is commonly denoted K,(7r), so that the 

general solution to (8) with T? = — 7? may be written 

R = Cih(tr) + C3Ko(7) (17) 

The second solution K, becomes infinite at y = 0 just as does No, and so is not required 

12 See, for example, E. T. Whittaker and G. N. Watson, A Course in Modern Analysis, p. 369, 
4th ed., University Press, Cambridge, 1927.
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in problems which include the axis r = 0 in the range over which the solution is to 

apply. The solution to the z equation (7) when T* = —717 is 

Z = Cy sin tz + C4 cos 72 (18) 

Summarizing, either of the following forms satisfies Laplace’s equation in the two 

cylindrical coordinates r and z: 

@O(r, z) = [C.J (Tr) + CoNoUNIIC3 sinh Tz + C4 cosh Tz] (19) 

@(r, z) = (Cilp(tr) + CoK_(rr) [C3 sin tz + Cy cos 72] (20) 

As was the case with the rectangular harmonics, the two forms are not really different 

since (19) includes (20) if T is allowed to become imaginary, but the two separate ways 

of writing the solution are useful, as will be demonstrated in later examples. The case 

with no assumed symmetries is discussed in the following section. 

7.14  BESSEL FUNCTIONS 

In Sec. 7.13 an example of a Bessel function was shown as a solution of the differential 

equation 7.13(8) which describes the radial variations in Laplace’s equation for axially 

symmetric fields where a product solution is assumed. This is just one of a whole family 

of functions which are solutions of the general Bessel differential equation. 

Bessel Functions with Real Arguments For certain problems, as, for example, 

the solution for field between the two halves of a longitudinally split cylinder, it may 

be necessary to retain the @ variations in the equation. The solution may be assumed 

in product form again, RF,Z, where R is a function of r alone, F, of @ alone, and Z of 

z alone, Z has solutions in hyperbolic functions as before, and F, may also be satisfied 

by sinusoids: 

Z = C cosh Tz + D sinh Tz (1) 

Fy = Ecos v@ + F sin vd (2) 

The differential equation for R is then slightly different from the zero-order Bessel 

equation obtained previously: 

d?R 1 dR - 2 
~ 4-4 (72?-~)rR=0 (3) 

dr* r dr re 

  

It is apparent at once that Eq. 7.13(8) is a special case of this more general equation, 

that is, vy = 0. A series solution to the general equation carried through as in Sec. 7.13 

shows that the function defined by the series 

~ (— 1y"(Tr /2)?* 2" 

WO) = 2 no +m ¥D o 
  

is a solution to the equation. 

[(~ + m+ 1)is the gamma function of (v + m + 1) and, for v integral, is equivalent 

to the factorial of (v + m). Also for v nonintegral, values of this gamma function are
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\ 

1 

Jo(v) 

Jy(v) 

0.5 J9(v) 

iwi IV 1 \ | 1X) IN y 
2 4 6 8 LEN 

-05- 
(a) 

| 

1.0 -— 

No(v) 
0.5 

  ~10   (b) 

Fic. 7.14 (a) Bessel functions of the first kind. (b) Bessel functions of the second kind. 

tabulated. If v is an integer 7, 

I(T) _ Ss (— 1y"(Tr /2)" 2m 6) 

m=0  mi(n + my)! 

  

It can be shown that/_, = (—1)’V,. A few of these functions are plotted in Fig. 7.14a. 

Similarly, a second independent solution'? to the equation is 

cos va/,(7Ir) — J_,dr) 

sin va 
  N,(Tr) = (6) 

13 If v is nonintegral, J_, is not linearly related to J,, and it is then proper to use either J_, 
or N, as the second solution; forv integral, N, must be used. Equation (6) is indeterminate 
for v integral but is subject to evaluation by usual methoas.
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and N_, = (-—1)’N,. As may be noted in Fig. 7.145 these are infinite at the origin. A 

complete solution to (3) may be written 

R = AJ,(Tr) + BN,(Tr) (7) 

The constant v is known as the order of the equation. J, is then called a Bessel function 

of first kind, order v; N,, is a Bessel function of second kind, order v. Of most interest 

for this chapter are cases in which v = n, an integer. 

It is useful to keep in mind that, in the physical problem considered here, v is the 

number of radians of the sinusoidal variation of the potential per radian of angle about 

the axis. 

The functions J,(v) and N,(v) are tabulated in the references.'*!° Some care should 
be observed in using these references, for there is a wide variation in notation for the 

second solution, and not all the functions used are equivalent, since they differ in the 

values of arbitrary constants selected for the series. The N,,(v) is chosen here because 

it is the form most common in current mathematical physics and also the form most 

commonly tabulated. Of course, it is quite proper to use any one of the second solutions 

throughout a given problem, since all the differences will be absorbed in the arbitrary 

constants of the problem, and the same final numerical result will be obtained; but it is 

necessary to be consistent in the use of only one of these throughout any given analysis. 

It is of interest to observe the similarity between (3) and the simple harmonic equa- 

tion, the solutions of which are sinusoids. The difference between these two differential 

equations lies in the term (1/1r)(dR/dr) which produces its major effect as r — 0. Note 

that for regions far removed from the axis as, for example, near the outer edge of Fig. 

1.19a, the region bounded by surfaces of a cylindrical coordinate system approximates 

a cube. For these reasons, it may be expected that, away from the origin, the Bessel 

functions are similar to sinusoids. That this is true may be seen in Figs. 7.14a and DB. 

For large values of the arguments, the Bessel functions approach sinusoids with mag- 

nitude decreasing as the square root of radius, as will be seen in the asymptotic forms, 

Eqs. 7.15(1) and 7.15(2). 

Hankel Fumetions It is sometimes convenient to take solutions to the simple har- 

monic equation in the form of complex exponentials rather than sinusoids. That is, the 

solution of 

  
d*Z 5 

> + K*Z=0 (8) 
dz 

can be written as 

Z = Aetik +. Bes (9) 

14 £. Jahnke, F. Emde, and F. L6sch, Tables of Higher Functions, 6th ed. revised by F. Lésch, 
McGraw-Hill, New York, 1960. 

SM. Abramowitz and |. A. Stegun (Eds.), Handbook of Mathematical Functions, Dover, 
New York, 1964.
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where 

e*/5? = cos Kz + j sin Kz (10) 

Since the complex exponentials are linear combinations of cosine and sine functions, 

we may also write the general solution of (8) as 

Z = Ale + B' sin Kz 

or other combinations. 

Similarly, it is convenient to define new Bessel functions which are linear combi- 

nations of the J,(77r) and N,(7r) functions. By direct analogy with the definition (10) 

of the complex exponential, we write 

HO(Tr) = Jr) + jN,(Tr) (11) 

HD (Ir) = J,(Tr) — jN,(Tr) (12) 

These are called Hankel functions of the first and second kinds, respectively. Since they 

both contain the function N,(77r), they are both singular at , = 0. Negative and positive 

orders are related by 

HO Tr) = ef HO (Tr) 

HO (Tr) = ef7*H(Tr) 

For large values of the argument, these can be approximated by complex exponentials, 

with magnitude decreasing as square root of radius. For example, 

H (Tr) — 2 eiTr— /4—va7/2) 

Tre alr 

This asymptotic form suggests that Hankel functions may be useful in wave propagation 

problems as the complex exponential is in plane-wave propagation. It is also sometimes 

convenient to use Hankel functions as alternate independent solutions in static problems. 

Complete solutions of (3) may be written in a variety of ways using combinations of 

Bessel and Hankel functions. 

Bessel and Hankel Functions of Imaginary Arguments If 7 is imaginary, 

T = jr, and (3) becomes 

d*R  14dR 2 a 4-2 [(P+tlr=o0 (13) 
dr* r dr re 

The solution to (3) is valid here if T is replaced by jr in the definitions of J,(77r) and 

N,(Tr). In this case N,(j7r) is complex and so requires two numbers for each value of 

the argument, whereas j~ ’/,(j77) is always a purely real number. It is convenient to 

replace N,(j7r) by a Hankel function. The quantity j’~ 'H$?(j7r) is also purely real and 
so requires tabulation of only one value for each value of the argument. If v is not an 

integer, j/°J _,(j7r) 1s independent of j~ “/,,(j7) and may be used as a second solution.
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Thus, for nonintegral v two possible complete solutions are 

R = Agl,(jrr) + Bol_,(jt”) (14) 
and 

R = AjJ,(jrr) + B3H9( jr) (15) 
where powers of j are included in the constants. For v = n, an integer, the two solutions 
in (14) are not independent but (15) is still a valid solution. 

It is common practice to denote these solutions as 

Tv) = 7S .,(jv) (16) 

Kv) = 5 PAD CU) (17) 

where v = Tr. 

As is noted in Sec. 7.15 some of the formulas relating Bessel functions and Hankel 

functions must be changed for these modified Bessel functions. Special cases of these 

functions were seen as /)(77) and K,(7r) in Sec. 7.13 for the axially symmetric field. 

The forms of [,(7r) and K,(7r) for v = 0, 1 are shown in Fig. 7.14c. As is suggested 

by these curves, the asymptotic forms of the modified Bessel functions are related to 

growing and decaying real exponentials, as will be seen in Eqs. 7.15(5) and 7.15(6). It 

is also clear from the figure that K,(7r) is singular at the origin. 

    

A 

5 _— 

4i- Io(v) 

Iy(v) 

3 = 

Ky(u) 

2 

1 

Ko(v) 

0 | v 
0 1 2 3 4 

Fic. 7.14c¢ Modified Bessel functions.
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7.15 BESSEL FUNCTION ZEROS AND FORMULAS!® 

The first several zeros of the low-order Bessel functions and of the derivatives of Bessel 

functions are given in Tables 7.15a and 7.15b, respectively. 

  

  

  

  

  

  

  

Table 7.15a 

zeros of Bessel Functions 

J J, Jo No N, Ng 

2.405 3.832 5.136 0.894 2.197 3.384 

5.520 7.016 8.417 3.958 5.430 6.794 

8.654 10.173 11.620 7.086 8.596 10.023 

Table 7.15b 

Zeros of Derivatives of Bessel Functions 

Jy J Jb No N; No 

0.000 1.841 3.054 2.197 3.683 5.003 

3.832 5.331 6.706 5.430 6.942 8.351 

10.173 8.536 9.969 8.596 10.123 11.574 

Asymptotic Forms 

2 qT VIT 
Jv) > j|— cosjv —- -— - (1) 
y—>o6 TU 4 2 

2 7 Vir 
N(v) =~ j/—sinjv - - - — 2 
vv) TU ( 4 2 ( ) 

2 oy ¢/4)— (ver? Hy) > = |— elle (7/4) —(v7/2)] (3) 
pee TU 

9 2 — tnp— — 9 H2\v) > | et (27/4) — (v77/2)] (4) 

p—>ce aU 

ope: I , 
J °S,(Qu) = 1) > —e (5) 

U—> 0G Uae 

PAY Ce) = = K,(v) > j= (6) 
va v0 

16 More extensive tabulations are found in the sources given in footnotes 14 and 15.
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Derivatives The following formulas which may be found by differentiating the 

appropriate series, term by term, are valid for any of the functions /,(v), N,(v), 

HY), and Hv). Let R,(v) denote any one of these, and R,, denote (d/dv)[R,(v)]. 

Ri = —R,W) (7) 

1 
Riv) = Rov) — = Riv) (8) 

vR,(v) = vR,(v) — vR,+,() (9) 

vR,(v) = —vR,V) + UR,_ 1) (10) 

d 
ib [v~’R,@)] = —v7°R,.,@) (11) 

U 

d 
ib [v’R,@)] = v’R,_1(v) (12) 

U 

Note that 

R(Tr) = —— (R(T) = += RT) (13 vf r) = d(Tr) pill ~ T dr vf } ) 

For the J and K functions, different forms for the foregoing derivatives must be used. 

They may be obtained from these formulas by substituting Eqs. 7.14(16) and 7.14(17) 

in the preceding expressions. Some of these are 

ul(v) = vI,(v) + vI,,,(v) 

viv) = —vi,v) + vl,_,(v) 

vK(v) = vK,(v) — vK,..,(v) 

uK(v) = —vK,(v) — vK,_,(v) 

(14) 

(15) 

Recurrence Formulas By recurrence formulas, it is possible to obtain the values 

for Bessel functions of any order, when the values of functions for any two other orders, 

differing from the first by integers, are known. For example, subtract (10) from (9). 

The result may be written 

2 
— Ry) = R,,,(v) + Ry_,) (16) 

As before, R,, may denote J,, N,, HS?, or H™, but not J, or K,,. For these, the recurrence 
formulas are 

2 
— 1) = ly) — Iyss) (17) 

2v 
> he) = K,.,(v) — K,_,(@) (18)
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Integrals Integrals that will be useful in solving later problems are given below. 

R,, denotes J,, N,, HS, or H: 

| v-"R,4.,(@) du = —v Rv) (19) 

| U’R,_,(v) du = v’R,(v) (20) 

| VR, (av)R,(Bv) du = ~— 

a (21) 
x [BR,(av)R,_ (Bu) — aR,_ ,(av)R,(Bv)], a ~ B 

| vR2(av) dv = a [R2(av) — R,_,(av)R,. ,(av)] 

“ 3 (22) 

=+ R420) + ( ~ 3) Rico) 
2 arU~ 

7.16 EXPANSION OF A FUNCTION AS A SERIES OF BESSEL FUNCTIONS 

In Sec. 7.11 a study was made of the method of Fourier series by which a function may 

be expressed over a given region as a Series of sines or cosines. It is possible to evaluate 

the coefficients in such a case because of the orthogonality property of sinusoids. A 

study of the integrals, Eqs. 7.15(21) and 7.15(22), shows that there are similar orthog- 

onality expressions for Bessel functions. For example, these integrals may be written 

for zero-order Bessel functions, and if @ and P are taken as p,,/a and Pl a, where p,, 

and p, are the mth and qth roots of Jo(v) = 0, that is, Jo(p,,) = 0 and Jo(p,) = 9, 

Pm * Pq: then Eq. 7.15(21) gives 

a . r 

| ea( 2" )io( 2) dr = 0 (1) 
0 a a 

So, a function f() may be expressed as an infinite sum of zero-order Bessel functions 

r r r 
i“) = bua(p 4 + boll p " + bol Ps “| roses 

FO) = Dd Bylo ? a) (2) 
m=] 

Or 

  

The coefficients b,, may be evaluated in a manner similar to that used for Fourier 

coefficients by multiplying each term of (2) by 7J/o(p,,7'/a) and integrating from 0 to
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a. Then by (1) all terms on the right disappear except the mth term: 

a a 2 

. Pr" \ yy = Pm! j rowel 7 dr = I bar Jol 7 )| di 

From Eq. 7.15(22), 

  

[byt (2a dr =F ByFUPm) (3) 
0 a 2 

or 

2 “ Prat oy = aa | rp) a 4 m a’J?(Dn) 6 rf(r) 2( a ) } ( ) 

In the above, as in the Fourier series, the orthogonality relations enabled us to obtain 

coefficients of the series under the assumption that the series is a proper representation 

of the function to be expanded, but two additional points are required to show that the 

representation is valid. The series must of course converge, and the set of orthogonal 

functions must be complete, that is, sufficient to represent an arbitrary function over 

the interval of concern. These points have been shown for the Bessel series of (2) and 

for other orthogonal sets of functions to be used in this text.!” 

Expansions similar to (2) can be made with Bessel functions of other orders and 

types (Prob. 7.16a). 

  STE Te a ea Pe Ee ET re Sore LED BUEN ee ME ee eee NODA ESTE TOMES EOI YY TEE 3 ETT IETS EE EN ee LS EE ETE TT SRO ae EE NEC SHAS ESSE OY 

Example 7.16 
BESSEL FUNCTION EXPANSION FOR CONSTANT IN RANGE O <r<A 

If the function f(7) in (4) is a constant V, in the range 0 < r < a, we have 

2Vo [ Prt 
b= == J, dr 5 m aI?) 0 ] ( a } ( ) 

Using Eq. 7.15(20) with R = J, v = 1, andv = p,,r/a, the integral in (5) becomes 

(2) (eats Pat) (lat) = [(2) (eta (B22) 
a 

~ Ji (Pm) 
Dp m1 

  

(6) 

7 See, for example, E. T. Whittaker and G. N. Watson, A Course in Modern Analysis, 4th 
ed., Dp. 374-378, University Press, Cambridge, 1927.
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and the series expansion (2) for the constant V, is 

oO 

2Vo Pm? 

ry) 2 t Po \(Pm) ( a ce 
  

or, using the values of the zeros of Jy in Table 7.15a, 

  

  

0.832V) _ (2.405r 0.362V, _ /5.520r 
fr) = Jol ——] + a J (2.405) a J,(5.520) a 

8 
0.231Vy  (8.654r\ | ©) 

J (8.654) “°\ a 

Further evaluation of (8) requires reference to tables in the sources given in footnotes 

14 and 15 or numerical evaluation of Eq. 7.13(11). 

  

7.17  HELDS DESCRIBED BY CYLINDRICAL HARMONICS 

We will consider here the two basic types of boundary value problems which exist in 

axially symmetric cylindrical systems. These can be understood by reference to Fig. 

7.17a. In one type both ®, and ®.,, the potentials on the ends, are zero and a nonzero 
potential ®, is applied to the cylindrical surface. In the second type ®,; = 0 and either 

(or both) ®, or ®, are nonzero. The gaps between ends and side are considered neg- 

ligibly small. For simplicity, the nonzero potentials will be taken to be independent of 

the coordinate along the surface. In the first type, a Fourier series of sinusoids is used 

to expand the boundary potentials as was done in the rectangular problems. In the 

second situation, a series of Bessel functions is used to expand the boundary potential 

along the radial coordinate. 

Nonzero Potential on Cylimdrical Surface Since the boundary potentials are 

axially symmetric, zero-order Bessel functions should be used. The repeated zeros along 

the z coordinate dictate the use of sinusoidal functions of z. The potential in Eq. 7.13(20) 

is the appropriate form. Certain of the constants can be evaluated immediately. Since 

K,(tr) is singular on the axis, C, must be identically zero to give a finite potential there. 

The cos tz equals unity at z = O but the potential must be zero there so C, = 0. As 

in the problem discussed in Sec. 7.10 the repeated zeros at z = / require that r = mar/I. 

Therefore the general harmonic which fits all boundary conditions except P = V) at 

"= qis 

®, = Anlo( 7 Jsin( 7) (1) 

Figure 7.17b shows a sketch of this harmonic for m = 1 and with the nonzero boundary 

potential on the cylinder. It is clear that we have here the problem of expanding the 
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Fic. 7.17 (a) Cylinder with conducting boundaries. (b) One harmonic component for matching 

boundary conditions when nonzero potential is applied to cylindrical surface in (a). (c) One 
harmonic component for matching boundary conditions when nonzero potential is applied to end 

surface in (a). 

boundary potential in sinusoids just as in the rectangular problem of Sec. 7.12. Follow- 

ing the procedure used there we obtain 

we Wo Io(mar/l) maz 
P(r, 2) = », mi 1,(m7a/1) sm | 2) 

Nonzero Potential om End In this situation if we refer to Fig. 7.17a, we see that 

®, = ®, = 0 and ®, = Y,. In selecting the proper form for the solution from Sec. 
7.13, the boundary condition that ® = 0 at r = a for all values of z indicates that the 

R function must become zero at r = a. Thus, we select the Jo functions since the J,)’s 
do not ever become zero. (The corresponding second solution, No, does not appear since
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potential must remain finite on the axis.) The value of T in Eq. 7.13(19) is determined 

from the condition that ® = 0 atr = a for all values of z. Thus, if p,, is the mth root 
of Jo(v) = 0, T must be p,,/a. The corresponding solution for Z is in hyperbolic 

functions. The coefficient of the hyperbolic cosine term must be zero since ® is zero 

at z = OQ for all values of r. Thus, a sum of all cylindrical harmonics with arbitrary 

amplitudes which satisfy the symmetry of the problem and the boundary conditions so 

far imposed may be written 

o7r,2= > Bao 2) sinn( 222) (3) 
m=] a a 

One of the harmonics and the required boundary potentials are shown in Fig. 7.17c. 

The remaining condition is that, atz = 1,® = Oatr = aand ® = Vj atr <a. 
Here we can use the general technique of expanding the boundary potential in a series 

of the same form as that used for the potentials inside the region, as regards the de- 

pendence on the coordinate along the boundary. In Ex. 7.16 we expanded a constant 

over the range 0 < + < ain J, functions so that result can be used here to evaluate the 
constants in (3). Evaluating (3) at the boundary z = /, we have 

Or, 1) = >, B,, sinh (22!) (2 (4) 
m=] a 

Equations (4) and 7.16(7) must be equivalent for all values of r. Consequently, coef- 

ficients of corresponding terms of J)(p,,7/a) must be equal. The constant B,, is now 

completely determined, and the potential at any point inside the region is 

br,27= > Vo sinh a (Pa (5) 
m=] Pad (Pm) sinh(p,,!/a) a 

    

7.18 SPHERICAL HARMONICS 

Consider next Laplace’s equation in spherical coordinates for regions with symmetry 

about the axis so that variations with azimuthal angle @ may be neglected. Laplace’s 

equation in the two remaining spherical coordinates r and @ then becomes (obtainable 

from form of inside front cover) 

arm) 1 8 (sin 022) = 0 (1)   

    

ar? r sin @ ag 0d 

or 

aD ab = 1A°® 1 o® 
rp— +2—-+-—a+-~T = (2) 

or= or r 06° r tan @ 00 

Assume a product solution 

® = RO



380 Chapter 7 Two- and Three-Dimensional Boundary Value Problems 

where R is a function of r alone, and 9 of @ alone: 

  

  

1 
rkR"O + 2R'8 + —RO" + RO’ =0 

r r tan @ 

and 

r?R" = 2rR' 6" Q' 
— + —_ = --— 3 
R R 0 0 tan @ (3) 

From the previous logic, if the two sides of the equations are to be equal to each other 

for all values of r and 6, both sides can be equal only to a constant. Since the constant 

may be expressed in any nonrestrictive way, let it be m(m + 1). The two resulting 

ordinary differential equations are then 

  

  

d?R dR 
r?—> + 2r— — mm + IR = 0 (4) 

dr- dr 

d*0 1 dO 
+ ——_— + + 10 =0 5 ae *tamoag ) ™"* )) ©) 

Equation (4) has a solution which is easily verified to be 

R= Cyr™ + Cor th (6) 

A solution to (5) in terms of simple functions is not obvious, so, as with the Bessel 

equation, a series solution may be assumed. The coefficients of this series must be 

determined so that the differential equation (5) is satisfied and the resulting series made 

to define a new function. There is one departure here from an exact analog with the 

Bessel functions, for it turns out that a proper selection of the arbitrary constants will 

make the series for the new function terminate in a finite number of terms if m is an 

integer. Thus, for any integer m, the polynomial defined by 

  P_(cos 6) = (cos @ — 1)” (7) 

d m 

2”'m! | d(cos 6) 

is a solution to the differential equation (5). The equation is known as Legendre’s 

equation; the solutions are called Legendre polynomials of order m. Their forms for the 

first few values of m are tabulated below and are shown in Fig. 7.18a. Since they are 

polynomials and not infinite series, their values can be calculated easily if desired, but 

values of the polynomials are also tabulated in many references. 

P,(cos 6) = 1 

P,(cos 6) = cos 6 

P,(cos 6) = $(3 cos* 6 — 1) 

P3(cos 6) = $(5 cos’ 6 — 3 cos 6) 

P,(cos 6) = 3(35 cos* @ — 30 cos” @ + 3) 

P.(cos 6) = 4(63 cos? @ — 70 cos? 8 + 15 cos 6) 

(8)
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—
 

1.0 

Oo
 

  

—1.0+—-   
FiG. 7.18a@ Legendre polynomials. 

It is recognized that 9 = C,P,,(cos 9) is only one solution to the second-order 

differential equation (5). There must be a second independent solution, which may be 

obtained from the first in the same manner as for Bessel functions, but it turns out that 

this solution becomes infinite for 6 = 0. Consequently it 1s not needed when the axis 

of spherical coordinates is included in the region over which the solution applies. When 

the axis 1s excluded, the second solution must be included. It is typically denoted 

Q,(cos @) and tabulated in the references.'® 

An orthogonality relation for Legendre polynomials is quite similar to those for 

sinusoids and Bessel functions which led to the Fourier series and expansion in Bessel 

functions, respectively. 

0, men (9) I | P (cos @)P,(cos @) sin 6 dé 
0 

2 

2m + 1 
| [P,,(cos )]° sin 6 dé (10) 

0 

It follows that, if a function f(@) defined between the limits of 0 to 7 is written as a 

series of Legendre polynomials, 

on 

f(@) = > a,P,(cos #), O<0<a7 (11) 
m=O 

18 W. R. Smythe, Static and Dynamic Electricity, 3rd ed., Hemisphere Publishing Co., Wash- 

ington, DC, 1989.



382 Chapter7 Two- and Three-Dimensional Boundary Value Problems 

the coefficients must be given by the formula 

2m +1 {” ow, = — | F(OP,,(cos 6) sin 6 dO (12) 
0 
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Example 7.18a 
HIGH-PERMEABILITY SPHERE IN UNIFORM FIELD 

  

We will examine the field distribution in and around a sphere of permeability w # Up 

when it is placed in an otherwise uniform magnetic field in free space. The uniform 

field is disturbed by the sphere as indicated in Fig. 7.18b. The reason for choosing this 

example is threefold. It shows, first, an application of spherical harmonics. Second, it 

is an example of a situation in which the constants in series solutions for two regions 

are evaluated by matching across a boundary. Finally, it is an example of a magnetic 

boundary-value problem. 

Since there are no currents in the region to be studied, we may use the scalar magnetic 

potential introduced in Sec. 2.13. The magnetic intensity is given by 

H = -Vo,, (13) 

As the problem is axially symmetric and the axis is included in the region of interest, 

the solutions P,,(cos 6) are applicable. The series solutions with these restrictions are 

® (r, 0) = >, P(cos 0[C,,,17" + Copr Mt] (14) 

The procedure is to write general forms for the potential inside and outside the sphere 

and match these across the boundary. Since the potential must remain finite at r = 0, 

  
  

  
    

    

    

  
  

Fic. 7.18b Sphere of magnetic material in an otherwise uniform magnetic field.
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the coefficients of the negative powers of r must vanish for the interior. The series 

becomes, for the inside region, 

®, = > A,r™P,(cos 8) (15) 

Outside, the potential must be such that it gives a uniform magnetic field H at infinity. 

The potential form which satisfies this condition is 

®,, = —Hpor cos 6 (16) 

That this gives a uniform field may be seen by noting that dz = dr cos @so 

0®,, 1 o®,, 
H= - = — = Ho (17) 

° OZ cos @ or 
  

    

Terms of the series (14) having negative powers of r may be added to (16), since they 

all vanish at infinity. Then the form of the solution outside the sphere is 

®, = —Hor cos 0+ > B,,P,(cos Ar "th (18) 
m 

It was pointed out in Sec. 2.14 that ®,, is continuous across boundaries without 

surface currents. Therefore, the terms in (15) and (18) having the same form of 6 

dependence are equated, giving 

  

Ag = Boa™' m = 0 

A,a = B,a~? — Hoa m= 1 1 | 1 0 (19) 

Aa" = Bath m> 1 

Furthermore, the normal flux density is continuous at the boundary so 

a® d®,,, 
m n 20 

Mo or r=a+ or r=q~— 

    

Substituting (15) and (18) in (20) and equating terms with the same 6 dependence, we 

find 

By = 0 m= 0 

= —2u Bia? — m= LA, } UoP| Loo (21) 

mA, a"—) = —po(m + 1)B,a7" Ft? am > 1 

From (19) and (21) we see that Ag = By = O, and that for m > 1, all coefficients must 

be zero to satisfy the two sets of conditions. The only remaining terms are those with
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m = 1. These two equations may be solved to give A, and B, in terms of Hp. Substi- 

tuting the results in (18) gives, for r > a, 

3 LL — My \ a 6, = |( "|= — 1 JAY cos 6 22 
m (ete) 8 |e COs (22) 

from which H can be found by using (13) for r > a. Substitution of A, into (15) gives, 

for r <a, 

3 
QO, = - (<8 ti cos @ (23) 

Zig + BW 

Applying (13), we find the field inside to be 

n 3 Ko 
H = z| ———|/H (24) 

GF. + wp} © 

It is of interest to observe that the field inside the homogeneous sphere is uniform. 

Finally, multiplication of (24) by pw gives the flux density 

ns 3 Lo 
B = 2| —————_]7 (25) 

Co wy +1) °° 

From (25) we see that for 4 >> po the maximum possible value of the flux density is 

B = 3H, (26) 
  

Example 7.18b 
EXPANSION IN SPHERICAL HARMONICS WHEN FIELD iS GIVEN ALONG AN AXIS 

It is often relatively simple to obtain the field or potential along an axis of symmetry 

by direct application of fundamental laws, yet difficult to obtain it at any point off this 

axis by the same technique. Once the field is found along an axis of symmetry, expan- 

sions in spherical harmonics give its value at any other point. Suppose potential, or any 

component of field which satisfies Laplace’s equation, is given for every point along 

an axis in such a form that it may be expanded in a power series in z, the distance along 

this axis: 

®| = > bz", O<z<a (27) 
axis m=Q 

If this axis is taken as the axis of spherical coordinates, 6 = 0, the potential off the 

axis may be written for r < a 

G(r, —) = >) b,r™P,(cos 6) (28) 
m=0
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This is true since it is a solution of Laplace’s equation and does reduce to the given 

potential (27) for 0 = O where all P_(cos @) are unity. 

If potential is desired outside of this region, the potential along the axis must be 

expanded in a power series good fora < z < ©: 

® = > cz"), z>a (29) 
g=0 m=] 

Then ® at any point outside is given by comparison with the second series of (14): 

®= > c,P,,(cos Or"), +r >a (30) 
m=0 

For example, the magnetic field H, was found along the axis of a circular loop of 

wire carrying current J in Sec. 2.3 as 

© 2a + PP? Qall + (2?/a*)P? 
  

The binomial expansion 

3 15 105 
1 + —3/2 1-7 4+ — 2. 2 ,3 . ( u) = 5 3 gu + 

is good for 0 < |u| < 1. Applied to (31), this gives for z < a 

I 3/2\  15/2\ 105 /2\ 
axis 2a 2\a~ 8 \a 48 \a 

Since H., axial component of magnetic field, satisfies Laplace’s equation (Sec. 7.2), 

H, at any point r, 0 with r < ais given by 

I 3 [r? 15 /r* 
Hir, 8) = ~~ | 1 — >| ]P2(cos 6) + — |= ]P,(cos 6) + --- (32) 

2 2 \a~ 8 \a a 

A, 

  

tw 

  

7.19 PRODUCT SOLUTIONS FOR THE HELMHOLTZ EQUATION 
IN RECTANGULAR COORDINATES 

The technique used in the preceding sections for finding product solutions to Laplace’s 

equation will be applied here to the scalar Helmholtz equation. Whereas the single- 

product solution for static problems was seen in Sec. 7.10 to be of little value, such 

solutions will be seen in the next chapter to be of great importance as waveguide 

propagation modes and will be analyzed extensively there. 

Let us consider the scalar Helmholtz equation. Here we make the assumption that 

the dependent variable depends on z in the manner of a wave, ase ”. The variable w
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remaining in the equation is, therefore, the coefficient of eV“'— ”. Written with the 
Laplacian explicitly in rectangular coordinates, we have 

a2 a2 Pu, Py 
Ox* oy 

  — key (1) 

where k2 = y* + wus. Let us assume that the solution can be written as the product 
solution yw = X(x)Y(y). Substituting this form in (1), 

X"Y + XY" = —-XY 

or 

x" y" 

A, _p 2 ¥ y c (2) 

The primes indicate derivatives. If this equation is to hold for all values of x and y, 

since x and y may be changed independently of each other, each of the ratios X”/X and 

Y"/Y can be only a constant. There are then several forms for the solutions, depending 

upon whether these ratios are taken as negative constants, positive constants, or one 

negative constant and one positive constant. If both are taken as negative, 

xX" 

a ke 
x - 

y" 5 

yy 
The solutions to these ordinary differential equations are sinusoids, and by (2) the sum 

of k and ke is kg. Thus 

w= XY (3) 

where 

xX = Acoskx + Bsn kx 

Y = Ccosky + D sin ky (4) 

B+B=2 
Either or both of &, and k, may be imaginary in which case the corresponding sinusoid 

becomes a hyperbolic function. Values of the constants k, and &, are determined by 

conditions on wat the boundaries in the x—y plane. Examples of the application of these 

general forms will be seen extensively in the following chapter where the dependent 

variable wis identified as E, or H,. 

7.20 PRODUCT SOLUTIONS FOR THE HELMHOLTZ EQUATION 
IN CYLINDRICAL COORDINATES 

In cylindrical structures, such as coaxial lines or waveguides of circular cross section, 

the wave components are most conveniently expressed in terms of cylindrical coordi-
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nates. Assuming that the z dependence is in the waveform e~ “, the scalar Helmholtz 

equation becomes 

  

+= 4+ = — 
ar? r or r? ad? oW 

  

ry lap 1 ay (1) 

where KZ = y* + w*ye. For this partial differential equation, we shall again substitute 
an assumed product solution and separate variables to obtain two ordinary differential 

equations. 

Assume 

where R is a function of r alone and F’, is a function of ¢ alone: 

  

R'F F'.R 
nt ob db 

  

— _ 72 
. + 2 KRF , 

Separating variables, we have 

2 Rt + rR’ + ky 2 fe 

R . Fy 

The left side of the equation is a function of r alone; the right of @ alone. If both sides 

are to be equal for all values of 7 and @, both sides must equal a constant. Let this 

constant be v*. There are then the two ordinary differential equations: 

V 2. 
( ) 

ay
 

I <=
 t 

or 

(3) 

The solution to (2) is in sinusoids. By comparing with Eq. 7.14(3) we see that solutions 

to (3) may be written in terms of Bessel functions of order v: 

uw = RP b 

where 

(4) 

R AI (ker) + BN (ker) (5) 
F, = Ccosvg@ + D sin vp 

Either or both of the Bessel functions may be replaced by Hankel functions [Eqs. 

7.14(11) and (12)] when one desires to look at waves as though propagation were in
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the radial direction. Thus, for example, 

R = AAD) + BAK 

F, = Ccos vd + D sin vd 

I 

(6) 

If k, is imaginary, the ordinary Bessel functions can be replaced by the modified Bessel 

functions, Eqs. 7.14(16) and (17). In the examples in the following chapter, the variable 

us will be identified with E. or H,. 

PROBLEMS 

7.2a Find the form of differential equation satisfied by E, in cylindrical coordinates for a 

charge-free, homogeneous dielectric region. Repeat for E,. Note that these are not 
Laplace equations. 

7.2b Show that none of the spherical components of electric field satisfy Laplace’s equation 

for quasistatic problems in which V7E = 0. 

7.2c* Show that the rectangular component EF, of electrostatic field satisfies Laplace’s equa- 
tion expressed in spherical coordinates. 

7.20 Derive Laplace’s equation for H, A, and ©®,, in a current-free region with static fields 
and for J and E in a homogeneous conductor with dc currents. 

7.2e Use superposition to find the potential on the axis of an infinite cylinder with a poten- 
tial specified as ®(d) = V, sin ¢/2, for 0 = @ S 277 on the boundary. 

7.2f A spherical surface is at zero potential except for a sector in the region 0 < @ < 7/3, 
0 < @< 7/2. Find the potential at the center of the sphere. 

7.3a Calculate the capacitance of a parallel-plate capacitor with square plates having edge 
length a and spacing d = a/2 situated in free space using the method of moments. If 
you do the calculations by hand, divide each plate into four equal squares. If a com- 
puter program is written, run it for several subdivisions of the plates and plot the effect 
on Capacitance. 

7.3b Find a better approximation to the capacitance of the structure in Ex. 7.3a by subdivid- 
ing each of the squares shown in Fig. 7.3d into four equal parts and repeating the 
method of moments calculation. 

7.3¢ In applying the method of moments calculation to two-dimensional problems, the In 7 

term in Eq. 1.8(7) is neglected. As an illustration of the validity of this procedure, find 
the potential of two parallel line charges located as follows: +g, at @ = 0,r = 6 and 
—q, at @ = 0, r = 26; take the zero potential point to be r = R on the @ = 0 axis. 
Apply Eq. 1.8(7) and show that the In rp terms cancel to arbitrary accuracy as R — ™, 

How does this explain that the In rp terms can be neglected in the two-electrode two- 
dimensional method of moment problems in which the line charges have a variety of 
values? 

7.3d* Write a computer program to find the stripline capacitance as in Ex. 7.3b. Extend the 
range included on the larger electrodes by one unit of the division in Fig. 7.3e and 
evaluate the effect on capacitance. Then use a subdivision of the electrodes one-half as 
fine as in the example. Compare the results to evaluate the importance of the grid size.
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Check by the Cauchy—Riemann equations the analyticity of the general power term 
W = C,Z" and a series of such terms, 

W= > C,2" 
n=] 

Check the following functions by the Cauchy—Riemann equations to determine if they 
are analytic: 

W=sinZ 

W = e 

W= Z%* =x -— Jy 

W = ZZ* 

Check the analyticity of the following, noting isolated points where the derivatives 
may not remain finite: 

W=InZ 

W l tan Z 

Take the change AZ in any general direction Ax + j Ay. Show that, if the Cauchy— 
Riemann conditions are satisfied, Eq. 7.4(3) yields the same result for the derivative as 
when the change is in the x direction or the y direction alone. 

If by following a path around some point in the Z plane, the variable W takes on dif- 

ferent values when the same Z 1s reached, the point around which the path ts taken is 

called a branch point. Evaluate W = Z'/? and W = Z*/ along a path of constant 
radius around the origin to show that Z = Q 1s a branch point for these functions. 
Discuss the analyticity of these functions at the branch point. 

Plot the shape of the w = +0.5 equipotentials for the V = x*/*, y = 0 boundary 
condition used in Ex. 7.5. 

A thin cylindrical shell of radius a has a potential described by D(a, 6) = V, cos 280. 
Use a method similar to that in Ex. 7.5 to find P(r, 4). 

Show that if u is the potential function, the field intensity EF, is equal to the imaginary 
part of dW/dZ and E,, equals the negative of the real part. 

Use the results of Prob. 7.5c to find an expression for the slope of equipotential lines 

in terms of dW/dZ. Show that all equipotential lines except wu = O are normal to the 
beam edge in the electron flow in Fig. 7.5b. (W = Z*/> is not analytic at Z = 0, as 
was shown in Prob. 7.4e, and the W = 0 line at y = O is a special case.) Hint: Write 

an expression for du in terms of partial derivatives and set du = 0 to get relations 
existing along an equipotential. 

Plot a few equipotentials and flux lines in the vicinity of conducting corners of angles 

a@ = 7/3 and 37/4. 

Evaluate the constant C, and C, in the logarithmic transformation so that u represents 
the potential function in volts about a line charge of strength g, C/m. Let potential be 

zero atr = a. 

Show that if v is taken as the potential function in the logarithmic transformation, it is 

applicable to the region between two semi-infinite conducting planes intersecting at an 
angle a, but separated by an infinitesimal gap at the origin so that the plane at 06 = 0 

may be placed at potential zero and the plane at 6 = a@ at potential V). Evaluate the
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constants C, and C,, taking the reference for zero flux at r = a. Write the flux func- 
tion in coulombs per meter. 

Find the form of the curves of constant u and constant v for the functions sin~! Z, 

cosh~! Z, and sinh~! Z. Do these permit one to solve problems in addition to those 
from the function cos~! Z? 

Apply the results of the cos~' transformation to item 4 in Ex. 7.6c. Take the right- 

hand semi-infinite plane extending from x = a tox = ™ at potential V,. Take the left- 
hand semi-infinite plane extending from x = —atox = — © at potential zero. Evalu- 
ate the scale factors and additive constant. 

Apply the results of the transformation to item 2 of Ex. 7.6c. Take the elliptic cylindri- 
cal conductor of semimajor axis @ and semiminor axis b at potential Vo. The inner 

conductor is a strip conductor extending between the foci, x = +c, where 

c= Va’ — b 

Evaluate all required scale factors and constants. Find the total charge per unit length 
induced upon the outer cylinder and the electrostatic capacitance of this two-conductor 
system. 

Modify the derivation in Ex. 7.6d to apply to the problem of parallel cylinders of un- 
equal radius. Take the left-hand cylinder of radius R, with center atx = —d,, the 
right-hand cylinder of radius R, with center at x = d,, and a total difference of poten- 

tial V, between cylinders. Find the electrostatic capacitance per unit length in terms of 
R,, Ro, and (d, + d,). 

The important bilinear transformation is of the form 

_ aZ' + b 

cZ' + d 

Take a, b, c, and d as real constants, and show that any circle in the Z’ plane is trans- 

formed to a circle in the Z plane by this transformation. (Straight lines are considered 
circles of infinite radius.) 

Consider the special case of Prob. 7.6h with a = R, b = —R,c = 1, andd = 1. 
Show that the imaginary axis of the Z’ plane transforms to a circle of radius R, center 
at the origin, in the Z plane. Show that a line charge at x’ = d and its image at x’ = 
—d in the Z’ plane transform to points in the Z plane at radii, and r, with rr, = R?. 
Compare with the result for imaging line charges in a cylinder (Sec. 1.18). 

Explain why a factor in the Schwarz transformation may be left out when it corre- 
sponds to a point transformed to infinity in the Z’ plane. 

In Eq. 7.7(2), separate Z into real and imaginary parts. Show that the boundary condi- 
tion for potential is satisfied along the two conductors. Obtain the asymptotic equa- 
tions for large positive u and for large negative u, and interpret the results in terms of 

the type of field approached in these limits. 

Work the example of Prob. 7.6e by the Schwarz technique and show that the same 
result is obtained. This is the problem of two coplanar semi-infinite plane conductors 

separated by a gap 2a, with the left-hand conductor at potential zero and the nght- 

hand conductor at potential Vo. 

For the first example of Table 7.7, find the electrostatic capacitance in excess of what 

would be obtained if a uniform field existed in both of the parallel-plane regions. 

Plot the V,/2 equipotential for Ex. 7.7.
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Suppose that the wave-guiding structure in Fig. 7.8a is bounded on the outside by a 
dielectric €3(7) which has the value &, at Ry and then decreases to an appreciably 

lower value as r is increased. As was seen in Sec. 6.12, waves incident on a plane 
boundary between two dielectrics from the higher e side can be totally reflected. Find 

the limiting rate of decrease of €, at Ry which can permit total reflection of rays ap- 
proaching the boundary, by studying the variation of the equivalent dielectric constant 
in the W plane. 

The so-called circular harmonics are the product solutions to Laplace’s equation in the 

two circular cylindrical coordinates r and @. Apply the basic separation of variables 
technique to Laplace’s equation in these coordinates to yield two ordinary differential 
equations. Show that the r and @ equations are satisfied respectively by the functions 
R and F, where 

R 

Fs 

Cyr"? + Cor" 

C, cos nd + C, sin nd 

An infinite rod of a magnetic material of relative permeability uu, lies with its axis per- 
pendicular to the direction of a uniform magnetic field in which it is immersed. Take 
the rod to be of circular cross section with radius a and use the expressions in Prob. 

7.9a to find the fields inside and outside the rod. Note the uniformity of the field m- 

side. 

Plot the form of equipotentials for ® = V,/4,V,/2, and 3V,/4 for Fig. 7.10a. 

Describe the electrode structure for which the single rectangular harmonic C, cosh kx 
sin ky is a solution for potential. Take electrodes at potential V, passing through |x| = 

awhen y = a/2. 

Describe the electrode structure and exciting potentials for which the single circular 
harmonic (Prob. 7.9a) Cr? cos 2¢ is a solution. 

Obtain Fourier series in sines and cosines for the following periodic functions: 

(i) A triangular wave defined by f(x) = V,(1 — 2x/L) from 0 to L/2 and f(x) = 

V,[(2x/L) — 1] from L/2 to L 

(ii) A sawtooth wave defined by f(x) = Vox/L forO <x<L 

(iii) A sinusoidal pulse given by f(x) =(V,, cos kx — Vp) for -a<kx< a, f(x) = 

0, for — 7 < kx < —qa@and also for a < kx < 7. 

Suppose that a function is given over the interval 0 to a as f(x) = sin mx/a. What do 

the cosine and sine representations yield? Explain how this single sine term can be 

represented in terms of cosines. 

Find sine and cosine representations for the function e“* defined over the interval 

O<x<a, 

Plot f(x) given by Eq. 7.11(14) in the neighborhood of the discontinuities using 

(i) five sine terms and (ii) ten sine terms and discuss differences from the rectangular 

function being represented. 

A complex form of the Fourier series for a function f(x) defined over the interval 

0<x<ais 

wo 

F(x) — > c,ef2mmx/a 

n= oo
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Show that if this is valid, c,, must be given by 

1 {* . 
C, = - | f(xje~/27x/4 dx 

a Jo 

Find representations for the constant C over the interval 0 < x < a in the complex 
form of Prob. 7.11e, and compare the result with Eq. 7.11(14). 

Find the Fourier integral representation for a decaying exponential, f(x) = 0, for 

x < QO and f@) = ce~™ forx > 0. 

Obtain a series solution for the two-dimensional box problem in which sides at y = 0 

and y = b are at potential zero, and end planes atx = aandx = —a are at 

potential Vo. 

Find the potential distribution for the box of Prob. 7.12a with the same boundary con- 
ditions except that the potential on the side at y = Q should be V, and that at y = b 
should be — Vj. 

In a two-dimensional problem, parallel planes at y = 0 and y = b extend from x = 0 

to x = © and are at zero potential. The one end plane at x = 0 is at potential Vp. 
Obtain a series solution. 

The fringing that occurs at the open ends of a pair of parallel plates as seen in Fig. 

1.9a leads to a modification of the fields between the plates from the ideal uniform 
distribution. Consider x = 0 to be the ends of the plates, which are at y = 0, b. The 
analysis of Ex. 7.7 can show that the potential between the ends of the plates may be 

expressed approximately as ®(0, y) = Vo[(y/b) + 0.06 sin 27ry/b). Find the distance 
x at which the potential distribution between the plates is lmear to within 1%, using 
the analysis of Prob. 7.12c. 

A two-dimensional conducting rectangular solid is bounded on three sides by perfect 

conductors: at y = 0, ® = 0; atx = 0, ® = 0; aty = b, ® = V,. It is bounded at 
x = a by a dielectric with zero conductivity. Find an expression for the potential dis- 
tribution inside the conducting solid. 

7.12f Two concentric cylinders are located at = a andr = b. The inner (7 = a) cylinder 

712g 

7.12h* 

is split along its length into two halves which are at different potentials. Potential is 
—V, for —7< @< 0 and V, for0 < @< 7. The cylinder at r = b is at zero 
potential. Find the potential between the two cylinders. 

The potential along the plane boundary of a half-space is in strips of width a and alter- 
nates between — V, and V,. Take the boundary to be at y = O and the strips to be 
invariant in the z direction. The origin of the x coordinate lies in the gap between 

strips so that the potential is —V, for -a <x < 0 and V, for 0 < x < a. Find the 
potential distribution for y = O and determine the surface charge density along the y 
= (0 plane. Put the result in closed form (see Collin, footnote 3 of Chap. 8, p. 813) 
and plot for -a<x< a. 

Infinite parallel conducting plates are located at y = 0 and y = a. A conducting strip 
atx = 0,a/2 Sy Sa, —~ <z < %™, is connected to the plate at y = a, thus 

@=Vo 
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introducing additional capacitance between the plates. (See Fig. P7.12h.) Assume a 
linear potential variation for 0 = y = a/2 at x = 0, and use superposition of boundary 
conditions to find an expression for the capacitance per meter in the z direction added 
by the strip atx = 0. 

  
7.121 Consider a rectangular prism of width a in the x direction and b in the y direction with 

all four sides at zero potential extending from z = 0 toz = ~, Atz = OQ the prism 
has a cap with the following potential distribution: 

  

0 for 0 < x < a/2, all y 
. Vix, y, 0) = 

(4 ¥ 9) ty. for a/2 <x <a,ally   Find the potentials within the prism. 

7.12j* For a box as in Ex. 7,.12c, find the potential distribution if the box is filled with a 

homogeneous, isotropic dielectric with permittivity €, in the bottom half of the box 
0 =z = c/2 and free space in the remainder. 

7.13 Demonstrate that the series Eq. 7.13(10) does satisfy the differential equation 7.13(8). 

7.16a Write a function f(r) in terms of nth-order Bessel functions over the range 0 to a and 
determine the coefficients. 

7.16b Determine coefficients for a function f(r) expressed over the range 0 to a as a series of 
zero-order Bessel functions as follows: 

fr) = culo 2) 
m=z} 

where p,,, denotes the mth root of Jg(v) = 0 [i.e., J,(@v) = 0]. 

7.17a A cylinder divided into a set of rings with appropriately applied voltages may be used 

to set up a nearly uniform electric field along the axis with advantageous focusing 
properties for electron beams. Suppose the field at the radius a@ of the cylinder is given 
approximately by E.(a,z) = E,(1 + cos az), where a = 27r/p and p is the period of 
the rings. Find the potential variation along the rings (7 = a) and for r < a. Deter- 
mine the field on the axis and the period required to have the periodic part of the field 
1% of Ep. 

7.17b Show that the function 

Or, z) = Alj(tr) cos rz 

satisfies the requirement of solutions of Laplace’s equation that there should be no 
relative maxima or minima. 

7.17c Find the series for potential inside the cylindrical region with end plates z = 0 and 

z= / at potential zero and the cylinder of radius a in two parts. From z = QO toz = 
os 1/2, it is at potential V,; from z = //2 toz = J, it is at potential — V4. 

- 717d The problem is as in Prob. 7.17c except that the cylinder is divided in three parts with 

potential zero from z = 0 toz = band also from z = / — btoz = 7. Potential is Vy 
from z = btoz = 1 — b. 

7.17e Write the general formula for obtaining potential inside a cylindrical region of radius 

a, with zero-potential end plates at z = 0 and z = J, provided potential is given as ® 
= f(z)atr = a.   

7.17f Write the general formula for obtaining potential inside a cylinder of radius a which, 
with its plane base at z = 0, is at potential zero, provided that the potential is given
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1.178 

718a 

7.18b 

7.18¢ 

7.18d 

7.18e 

7.19 

Chapter 7 Two- and Three-Dimensional Boundary Value Problems 

across the plane surface at z = /, as 

Or, 1) = Fr) 
Find the potential distribution inside a cylinder with zero potential on the cylindrical 
surface at r = a, on the end plate at z = 0 and where a/2 < r <a on the end plate at 
z = 1, It also has ®(r, /) = V, forO =r < a/2. 

Apply the separation of variables technique to Laplace’s equation in the three spherical 

coordinates, 7, 9, and , obtaining the three resulting ordinary differential equations. 
Write solutions to the r equation and the @ equation. 

Assume a spherical surface split into two thin hemispherical shells with a small gap 
between them. Assume a potential V, on one hemisphere and zero on the other and 
find the potential distribution in the surrounding space. 

Write the general formulas for obtaining potential for r < a and for r > a, when po- 
tential is given as a general function f(@) over a thin spherical shell at r = a. 

For Ex. 7.18b, write the series for 7, at any point r, 8 with r > a. 

A Helmholtz coil is used to obtain very nearly uniform magnetic field over a region 
through the use of coils of large radius compared with coil cross sections. Consider 
two such coaxial coils, each of radius a, one lying in the plane z = d and the other in 
the plane z = —d. Take the current for each coil (considered as a single turn) as J. 

Obtain the series for H, applicable to a region containing the origin, writing specific 
forms for the first three coefficients. Show that if a = 2d, the first nonzero coefficient 
(other than the constant term) is the coefficient of 7*. 

In Eqs. 7.19(3) and (4), let w be the axial electric field component F., and simplify by 
taking A and C zero in (4). Discuss the forms of solutions and the question of finding 
physical boundary conditions for (i) both &, and k, real, (ii) &, real but &, imaginary, 

and (ili) both &, and 4, imaginary. For (ii) and (iii) would physical applicability of 
solutions be changed if either or both of A and C were nonzero?



  
8,1 INTRODUCTION 

A waveguide is a structure, or part of a structure, that causes a wave to propagate in a 

chosen direction with some measure of confinement in the planes transverse to the 

direction of propagation. If the waveguide boundaries change direction, within reason- 

able limits, the wave is constrained to follow it. For example, in a transmission line 

used to transfer energy from a transmitter to an antenna, the energy follows the path of 

the line, at least for paths with only small discontinuities. The guiding of the waves in 

all such systems is accomplished by an intimate connection between the fields of the 

wave and the currents and charges on the boundaries or by some condition of reflection 

at the boundary. 

In this chapter we concentrate on cylindrical structures with conducting boundaries. 

Multiconductor lines can be used for frequencies from dc up to the millimeter-wave 

range. At the highest frequencies, they are often in the form of metallic films on insu- 

lating substrates. Hollow conducting cylinders of various cross-sectional shapes 

are used in the microwave and millimeter-wave frequency ranges (approximately 

1—100 GHz). 

Generally, in waveguide analyses we are interested in the distribution of the electro- 

magnetic fields; but of greatest importance is the dependence of the propagation con- 

stant upon frequency. From the propagation constant one finds wave velocities, phase 

variation, and attenuation along the guide and the pulse dispersion properties of the 

guide. 

Several different types of guides are analyzed in this chapter, including the simple 

parallel-plate structure (and some more practical, related forms) and hollow-tube guides 

of rectangular and circular cross section. An introduction to means for exciting waves 

in waveguides is presented. The chapter concludes with a study of the general properties 

of waves in cylindrical waveguides with conducting boundaries. 

395
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General Formulation for Guided Waves 

8.2 BASIC EQUATIONS AND WAVE TYPES FOR UNIFORM SYSTEMS 

We consider here cylindrical systems with axes taken along the z axis. We also consider 
time-harmonic waves with time and distance variations described by e/“‘~ ”, as in the 

study of transmission-line waves. The character of the propagation constant y tells much 

about the properties of the wave, such as the degree of attenuation and the phase and 

group velocities. The fields in the wave must satisfy the wave equation and the boundary 

conditions. We will assume that there is no net charge density in the dielectric and that 

any conduction currents are included by allowing permittivity and therefore 2 = w* we 

to be complex. The wave equations, which reduce to the Helmholtz equations for phasor 

fields (Sec. 3.11), are 

The three-dimensional V* may be broken into two parts: 

rE 
WE = VE + —; 

Oz 

  

The last term is the contribution to V7 from derivatives in the axial direction. The first 

term is the two-dimensional Laplacian in the transverse plane, representing contribu- 

tions to V” from derivatives in this plane. With the assumed propagation function 

e * in the axial direction, 

ci
 gz 

OZ 
  

y= YE 

The foregoing wave equations may then be written 

VE 
V?2H 

ll —(7 + RYE (1) 

—(7 + ke )H (2) i 

Equations (1) and (2) are the differential equations that must be satisfied in the dielectric 

regions of the transmission lines or guides. The boundary conditions imposed on fields 

follow from the configuration and the electrical properties of the boundaries. 

The usual procedure is to find two components of the fields, usually the z components 

of E and H, that satisfy the wave equations (1) and (2) and the boundary conditions; 

then the other field components can be found from these by using Maxwell’s equations. 

To facilitate finding the other components, it usually is most convenient to have them 

explicitly in terms of the z components of E and H. 

The curl equations with the assumed functions eJ“'— ¥) are written below for fields
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in the dielectric system, assumed here to be linear, homogeneous, and isotropic: 

Vx E= —/jopuH 

  

ak, 
+ yE, = —jopH, (3) 

ay 

OE. . 
— YE, — 7 = ~jopy — 4) 

ax 

dE, =o gE. 
-——* = —jwpH, (5) 

Ox oy 

V XH = jweE 

0H, 
= + yH, = jwekE, (6) 
oy " 

dH. 
—yH, — <= = josE, (7) 

Ox 

att — oF, = jwek (8) 

ax ay) 

It must be remembered in all analysis to follow that these coefficients, £,, H,, &,, and 

so on, are functions of x and y only, by our agreement to take care of the z and time 

functions in the assumed e/@’~ 7), 
From the foregoing equations, it is possible to solve for E,,, Ey Hf, OF A, in terms of 

FE. and H_. For example, H,. is found by eliminating Ey from (3) and (7), and a similar 

procedure gives the other components. 

E 1 ) i oH, 0) 
FES?) —_ Ow a 

* y +k Vax | IOP dy 

1 OE. oH, 
EY = aos ty top 10 ) el Y yy jou) (10) 

1 db. 0H. 
H, = 5 | jos = - y= (11) 

" y + ke oy Ox 

1 OE. 0H. 
H, = -—s—5 [ jwe — 12 

» y tk (ioe + ax 7 Y = (12) 

For propagating waves, it is convenient to use the substitution y = j8 where f is 

real if there is no attenuation. Rewriting the above with this substitution, 

E 
x 

VE. = 
- 

V2H. = 

aH. 
“Ble G + ow) 03) 

; aH. 
£(-6%+ on He) (14) 

; aH. 
= (we pw) (15) 

J] dE. 0H. = 1 [ye “2 4 pg 16 
ke C Ox P mt) (16) 

= —E. (17) 

= —k2H. (18)
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where 

eapy+te=kR — B? (19) 

In studying guided waves along uniform systems, it is common to classify the wave 

solutions into the following types: 

1. Waves that contain neither electric nor magnetic field in the direction of propa- 

gation. Since electric and magnetic field lines both lie entirely in the transverse 

plane, these may be called transverse electromagnetic (TEM) waves. They are the 

usual transmission-line waves along a multiconductor guide. 

2. Waves that contain electric field but no magnetic field in the direction of propa- 

gation. Since the magnetic field lies entirely in transverse planes, they are known 

as transverse magnetic (TM) waves. They have also been referred to in the liter- 

ature as E waves, or waves of electric type. 

3. Waves that contain magnetic field but no electric field in the direction of propa- 

gation. These are known as transverse electric (TE) waves, and have also been 

referred to as H waves, or waves of magnetic type. 

4, Hybrid waves for which boundary conditions require all field components. These 

may often be considered as a coupling of TE and TM modes by the boundary. 

The preceding is not the only way in which the possible wave solutions may be 

divided, but is a useful way in that any general field distribution excited in an ideal 

guide may be divided into a number (possibly an infinite number) of the above types 

with suitable amplitudes and phases. The propagation constants of these tell how the 

individual waves change phase and amplitude as they travel down the guide, so that 

they may be superposed at any later position and time to give the total resultant field 

there. Since it is disadvantageous to have a signal carried by several waves traveling at 

different velocities because of the resultant distortion, waveguides are normally de- 

signed so that only one wave can propagate even if many are excited at the entrance to 

the guide. As we shall see in Chapter 14, multimode guides are sometimes used in 

optical communications; they have also been used in “overmoded” millimeter-wave 

systems, but the single-mode guide is the norm. 
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Cylindrical Waveguides of Various Cross Sections 

PASS UAE ISEE     

8.3 WAVES GUIDED BY PERFECTLY CONDUCTING PARALLEL PLATES 

One of the simplest wave-guiding systems for analysis is that formed by a slab of 

dielectric with parallel-plane conductors on top and bottom. The fields are assumed to 

be the same as if the plates were of infinite width, which means that any edge effects
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or other variations along one transverse coordinate are neglected for a first-order anal- 

ysis of this model. We saw in Chapter 5 that such a system may be considered a two- 

conductor transmission line, with upper and lower plates acting as the two conductors 

of the line. But we shall see that the system also guides waves of other types. Analysis 

of this system helps in the understanding of all the wave types before going on to more 

complicated boundaries for the guiding system. We consider the three classes of waves 

defined in the preceding section. 

TEM Waves The transverse electromagnetic waves have neither FE. nor H,. From 

Eqs. 8.2(9)-(12) we see that all transverse components must be zero also unless 

y + & = 0. The propagation constant for a TEM wave must then be 

Yrem = Jk (1) 

That is, propagation is with the velocity of light in the dielectric medium. Since this 

argument does not make use of the specific configuration of parallel planes, it applies 

to TEM waves in any shape of guide, as will be discussed more later. Moreover, if 

y + F is zero, we see from Eas. 8.2(1) and 8.2(2) that both electric and magnetic 

fields satisfy Laplace’s equation so that both have the spatial distribution of two-di- 

mensional static fields. It is known that the static electric field between parallel-plane 

conductors is uniform and normal to the planes so that we may write 

  

EF. = Eo (2) 

and magnetic field, from Eq. 8.2(4) with E. = 0, is 

wo V [LE 
H=--£=-+- “5 = «ft E, (3) 

JOEL JOE be 

where the upper sign is for positively traveling waves and the lower sign for negatively 

traveling waves. When interpreted in terms of voltage and current, we find the same 

results as those obtained from the transmission-line analysis. 

TM Waves Transverse magnetic waves have finite E. but no H, so we may use 

Eq. 8.2(17). The transverse Laplacian is taken as d*/dx* because of the neglect of 

the y derivatives: 

dE. 

  

72 = Oke: (4) 

may te (5) 
Solution of (4) 1s in sinusoids: 

B. = Asin kx + B cos kx (6) 

Boundary conditions are next applied at the conducting planes at x = O and a. Since 

these are taken as perfectly conducting, EF. = O there. Placing E, = O at x = 0 in (6) 

requires B = Q. The condition EF, = O at x = a then requires either A = 0, in which
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case we have nothing left, or sin k,a = O, which is satisfied by 

ka = mq, m = 1, 2,3,... (7) 

So a solution for £, which satisfies boundary conditions is 

_ MTX 
EL=A sin (8) 

a 

The transverse field components are now obtained from EF, by means of Eqs. 8.2(9) 

to 8.2(12), letting H, = 0 and a/dy = 0: 

  

y dk, ya mNTX 
EO = -3—= -—-A — 9 

* k2 dx mr a ) 

jwse dk, JWEQ MTX 
H=--- oo" SC A S 10 y ke dx mr a (10) 

H, = 0, E, = 0 (11) 
x y 

It is seen that there is an infinite number of solutions for the various integral values of 

m, each with a different field distribution. These solutions are called the modes of the 

guide (in this case, TM modes). 

Let us now examine the properties of the propagation constant. Solving (5) for y we 

have 
  

3 
y= VR- R= (2) —~ wwe (12) 

At sufficiently high frequencies, the second term in the radicand is larger than the first 

and we can rewrite (12) as 

(mi/ay* 
7 (13) 

W” [LE 
y = JB = joVue /1 — 

We see that the phase constant approaches that for a plane wave as frequency ap- 

proaches infinity. Lowering the frequency reduces B and it goes to zero at the frequency 

    

maT MIU (14) 
@ — — 

° av [LE a 

1/2 where v is the velocity of light (ue)~ *’“ in the given material. We call w, the cutoff 

frequency since propagation takes place only where § is real. The variation of B with 

w is often plotted as in Fig. 8.3a for the reasons discussed in Sec. 5.12. It is conveniently 

expressed in terms of the cutoff frequency 

@ 

2
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” | 

    —~ 3,0 

Fic. 8.3q Phase constant and attenuation as functions of frequency for a TM or TE waveguide 
mode. 

The cutoff point may usefully be expressed in terms of the wavelength at the cutoff 

frequency 

27TU 2a 
A, = = (16) 

W, m 

That is, cutoff occurs when the spacing between plates is m half-wavelengths, measured 

at the velocity of light for the dielectric material. We see the important feature that TM 

waves can propagate above a cutoff frequency (or, equivalently, at wavelengths shorter 

than the cutoff wavelength); at lower frequencies y is real and is given by 

WATT w \? 
yr a= 1- (2), w= Ww, (17) 

a @), 

As seen in Fig. 8.3a@ there is attenuation without phase shift for frequencies below the 

cutoff frequency of a given mode, phase shift without attenuation for frequencies above 

cutoff, and neither attenuation nor phase shift exactly at cutoff. Each of these modes 

then acts as a high-pass filter; the attenuation below cutoff, like that for a loss-free filter, 

is a reactive attenuation representing reflection but no dissipation for this nondissipative 

system. 

For the propagating regime, w > w,, we can define a phase velocity in the usual 

way: 

  

U 
Up = <= ——— (18) 

B 1 - (w,/@)” 

Group velocity can be derived from this as in Sec. 5.15: 

dw w.\? 
=— = 1-{(— 19 

sap () m 
U
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Phase velocity is always greater than the velocity of light in the medium and group 

velocity is always less, both approaching each other and vu at frequencies far above 

cutoff. A wavelength along the guide, A,, may also be defined as the distance for which 

phase shift increases by 277, 

  = = : (20) 
° B V1 — (@,/w) 

where A is wavelength of a plane wave in the dielectric medium, 

2 ee (21) 
@ 

The ratio of transverse electric field to transverse magnetic field of a single propa- 

gating wave may be defined as a characteristic wave impedance and is useful for certain 

types of reflection problems, much as the field impedance for plane waves was found 

to be in Chapter 6. For the TM wave, this impedance, from (9) and (10) with y = 

(u/e)'””, is 

2 
@ 

™ ~~ oe (2) (22) 

Note that this ratio is not a function of x and y. It is imaginary for frequencies below 

cutoff, so that a Poynting calculation will show no average power flow in that regime. 

It is real for frequencies above cutoff so that a Poynting calculation in that regime 

shows finite average power carried by the wave. 

A plot of electric field lines in a TM, mode from the equations for FE, and FE, is shown 

in Fig. 8.3b (Prob. 8.3c). Note that induced charges on top and bottom plates are of the 

same sign in a given z plane for this wave, in contrast to the sign relations found for 

the TEM wave. Electric field lines starting on these charges turn and go axially down 

the guide, ending on charges of opposite sign a distance a half guide wavelength down 

the guide. The entire pattern translates along the guide at the phase velocity for a 

traveling wave in one direction. 
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FiG. 8.3b Electric field lines of TM, wave between plane conductors.
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TE Waves The transverse electric class of waves has nonzero H, but no £.. Equation 

8.2(18) is then utilized: 

  

d7*H. 
V7H, = —2 = —k2H. 2 

mKa=yptke=k— (24) 
The solution will again be written in terms of sinusoids, but this time only the cosine 

term is retained since £,, proportional to the derivative of H, with x, must become zero 

at the perfectly conducting plane x = 0: 

H, = B cos kx (25) 

From Eqs. 8.2(13) to 8.2(16), remembering that E. is zero, 

_JP dH, _ JP 

  

  

H, = 2 dx = k B sin k,x (26) 

oudH 
E, =! ez == 7 B sin k,x (27) 

E,=0, H,=0 (28) 
Also, EY must be zero at the conducting plane x = a, so k, is determined from (27) as 

some multiple of z/a. As with the TM wave, this is identified from (24) as the value 

of & at cutoff: 

MIT 
k, = 2af.V pe = —, m= 1, 2,3,... (29) 

a 

The propagation constant from (24) may then be written 

e = (2) 1- (2), wo < w, (30) 
a i), 

JB = jk jl - (2) , o> w, (31) 
@ 

~<
 l 

l y 

The forms for attenuation constant in the cutoff range and phase constant in the prop- 

agation range are thus exactly the same as for the TM waves (Fig. 8.3a), and by (14) 

and (29) the conditions for cutoff are the same for TE modes as for TM modes of the 

same order. The expressions for phase velocity, group velocity, and guide wavelength 

in the propagation range follow from (31) and are exactly the same as (18) to (20). 

Wave or field impedance for the TE wave is 

  

E y J@pE 7] 

TE H, y Vi ( -/ wy 

For frequencies below cutoff this wave impedance is imaginary, but for frequencies
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Fic. 8.3¢ Magnetic field lines of TE, wave between plane conductors. 

above cutoff it is real and always greater than 7, as contrasted with the wave impedance 

for TM waves, which is always less than 7. 

The form of the field lines for the first-order TE mode is indicated in Fig. 8.3c. Here 

the magnetic field lines form closed curves surrounding the y-direction displacement 

current. There is no charge induced on the conducting plates and only a y component 

of current corresponding to the finite H, tangential to the plates. 

          BEE ES   

Example 8.3 
INTERPRETATION OF GROUP VELOCITY AS AN ENERGY VELOCITY 

Let us define a velocity of energy flow in terms of energy stored per unit length and 

average power flow: 

Wr 
Ve = 33 ETT (33) 

Take the TM wave as example. Average power flow is found from the complex Poynt- 

ing theorem for a width w: 

  

    

7] 
W-=w | ~ Re(E,.H})dx 

o 2 ° 

2 pa A2 9 (34) 
) MIAWTX 1aA- av 

= ~ A2Bwe = | cos? —— dx = — - = Bwe 
2 mor 0 a 4 ma 

Time-average energy storage per unit length, including both electric and magnetic 

parts, is 

— w "fe 2 2 Boy al a “=v j | 7 WE! + JES] + 7 14, | dx (35) 

Using the fields from (8)—(10) this is 

A2 a . 2 a2 

y= {sic at pa Cos 
4 Jo a a a 

A’wae Ba’? ka? | 
, 1 

  

    

7a COS” 

7.7.9 
INLTTX LLwWe a~” WATT X 2 2 
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But from (13), m?a/a? + 7 is just k*, so this reduces to 

” )? 49 

A-wask-a~ 
i= oo (36) 

Ani 7 

and energy velocity from (33) is 

y, = PH iy - (%) 37) 
ke pe @ 

which is exactly the same as expression (19) for group velocity. The same equivalence 

is found for TE waves. We will say more about the use of these velocities for signal 

propagation at the end of the chapter. 

  

  

8.4 GUIDED WAVES BETWEEN PARALLEL PLANES AS SUPERPOSITION 
OF PLANE WAVES 

The modes of the parallel-plane guide, studied in the preceding section from the wave 

equation, can also be found to be superpositions of plane waves propagating at various 

angles. This picture is very helpful in developing a physical feeling for the different 

types of modes. The TEM wave is clearly just a portion of a uniform plane wave 

polarized with electric field in the x direction and propagating in the z direction: 

E(x, 2) = Eye ™ (1) 

The magnetic field for such a wave, from Sec. 6.2, is 

Ey _. 
Hx, 2) = — e7* (2) 

7 

where k = wV pe. These are of the same form as Eqs. 8.3(2) and 8.3(3). 

For TM and TE waves, we superpose uniform plane waves propagating at an angle 

@ from the normal, as pictured in Fig. 8.4a. It was found in Sec. 6.9 that when plane 

waves Strike a conducting plane at an angle, tangential electric field must be zero not 

only at that plane, but also at other planes which are multiples of a half-wavelength 
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Fic. 8.4qg Diagram showing ray directions and wavefront direction of a uniform plane-wave 

component of TM or TE waves between parallel planes.
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measured at phase velocity in the direction normal to the plane. That is, boundary 

conditions are satisfied if spacing a between plates is 

mx 
  = 3 

a 2 cos @ (3) 

or 

mr Xr w 

ce a @) 

where 

277U   A = 2a/m (5) c 

c 

The phase constant in the z direction is 

B =ksin 0 = kV 1 — cos’ 6 (6) 

2 

p= hi -(*] (7) 
@ 

This is exactly the same as found from the detailed analysis in Sec. 8.3. Since B is the 

same, phase and group velocity will be also. We see from Fig. 8.4a that phase velocity 

is the velocity of the imaginary point P of intersection of the plane-wave fronts with 

the z axis, and is greater than velocity uv of the plane wave in the medium, as found in 

Sec. 8.3. Group velocity is the component of v in the z direction and is always less than 

v. At cutoff (Fig. 8.45), the waves simply bounce laterally back and forth between 

planes without any forward progression so that group velocity is zero and phase velocity 

infinite. For frequencies much above cutoff, the angle is very flat (Fig. 8.4c) and the 

wavefronts are nearly normal to z, so that both v, and v, approach v. 

Both TM and TE wave types show the behavior described above. TM waves corre- 

spond to the plane waves polarized with electric field in the plane of incidence, and TE 

waves, to those polarized with magnetic field in the plane of incidence. 

or, using (4), 
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Fic. 8.4 (5) Special case of (a) when wave is at cutoff. (c) Special case for frequency far above 

cutoff so that @ > 7/2 and wavefront is nearly normal to guide axis.
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Example 8.4 

DETAILED FIELD EXPRESSIONS FOR TM,,, WAVE FROM PLANE-WAVE COMPONENTS 

To show that this point of view is exactly equivalent to that of Sec. 8.3, consider the 

field expressions given by Eqs. 6.9(11)—(13) for a wave polarized with electric field in 

the plane of incidence striking a conductor at an angle. We rewrite these with the 

coordinates x and z primed, since we take different coordinate systems from those in 

Sec. 6.9: 

  

E.(x', 2') = —2jE,, cos @ sin(kz' cos de * 59 (8) 

E.A(x', z') = ~—2E. sin @ cos(kz’ cos @)e~** sin? (9) 

nHy(x', z') = 2E, cos(kz' cos dje "sng (10) 

To change to our present coordinate system, let x’ = z and z’ = —vx. Also let k sin 

8 = B by (6), and k cos 6 = ma/a from (3). Equations (8)—(10) then become 

2jE xX . E@x»y=+2s" sin( "os (11) 
- ka a 

2E ; . 
Ez, x) = At cos (7 (12) 

k a 

H(z, x) = 2E, cos{ "2 e- (13) 
a 

If we next set the multiplier (2jE , m7r/ka) equal to a constant A and remember that the 

propagation factor e~/** has been suppressed in Eqs. 8.3(8)—(10), we find that 
(11)—(13) are identical to Eqs. 8.3(8)—(10). 

  

8.5 PARALLEL-PLANE GUIDING SYSTEM WITH LOSSES 

When the dielectric filling the region between conductors of the parallel-plane guide is 

imperfect, we may replace permittivity by its complex forms s’ — je” (Sec. 6.4) in the 
expressions of Sec. 8.3. Here we are concerned primarily with the effect on the prop- 

agation constant. For the , TEM wave we have 

Yrem = J@V pie’ — je") (1) 

If e"/e' is small in comparison with unity, a binomial expansion shows that the real 

part of this, which is the attenuation constant, is to first order 

@ * / pe’ ge! 

(Qg)tem = 7g (2)



408 Chapters Waveguides with Cylindrical Conducting Boundaries 

For TM and TE waves from Eq. 8.3(12) 

mar 2 1/2 

YmMTE = (™2) — wpe’ — je’) 

2 1/2 
it - 2,.-f 2 —] 

2 a 

The second expression is obtained by making a binomial expansion of the first. The 

attenuation constant (real part) for w > mw, is then 

(a) _ @ V pe'(e”/s’) (4) 

comure = VT Coula? 
Retention of second-order terms gives a correction to phase constant, which may be 

important in considering the dispersive properties of the guided wave. 

An exact solution is considerably more difficult to obtain when the finite conductivity 

of the conducting boundaries must be considered. The approach is to obtain field so- 

lutions in both dielectric and conductor regions, with proper continuity conditions ap- 

plied at the boundary between them. This approach cannot even be carried out for some 

geometrical configurations, although it can for this simple system and shows that the 

approximations to be used in the following analysis are justified so long as the plane 

boundaries are made of much better conducting material than the intervening dielectric 

region.! The expression to be used is that giving attenuation in terms of power loss per 

unit length and average power transferred by the mode, Eq. 5.11(19). This is an exact 

expression, but the approximation comes in by calculating power transfer as that of the 

ideal guide, and loss per unit length as that from currents of the ideal guide flowing in 

the real conductors. For the TEM wave, the power transfer for a width w is 

  

  

awE? 

21 
  

(Wrtem = (3) 

The average power loss per unit area in the plates, if plates are thick compared with 

skin depth, is $R,|J,,|*, so for a unit length and width w, counting both plates, 

  

  
wR, E,\* 

Yn 

Attenuation constant is then calculated as 

Wy R, - —4 — 2S 7 

This is the same as that which would be obtained from the transmission-line formula, 

Eq. 5.11(22). 

' More precisely, it is required that displacement current in the conductor be negligible 
in comparison with displacement current in the dielectric, and conduction current in the 
dielectric be small in comparison with conduction current in the conductor.
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For the TM wave of order m, average power transfer from the Poynting theorem and 

the results of Sec. 8.3 for w > w, is 

a 1 

(Wren = Ww | 5 EH) dex 
0 

a . . 

Ww aA MNITX po. Wea MIX. 
= | ( ~iBaa cos —— ci) ( A COs os) dx 

2 Jo mI a YLIT 
    

a 

w weBa’A* [°  .m w 2A? = "weber | gy = (Mush 3 3) 
cos” ————_—— 

2 meq 0 a 2m? 1 

The current flow in both upper and lower plates is 

weaA 
sel = Ay leo — Ay le=a = mor 

  (9) 

So average power loss per unit length for a width w is 

2wR A\? 5 Med? = wr( 22 (10) 
WUT 

    
(Wom = 

The attenuation constant from conductor losses is then approximately 

(a) Wr 2R.WE 2k, (11) 
a — ee l= = 

mW Ba naV1 —(w,/ 0)? 
By a similar calculation we find attenuation for a TE mode to be 

    

(a )en = 2R,(w,/w)* (12) 

“ 7a \ 1 — (w/w)? 

Curves of normalized attenuation versus frequency are shown in Fig. 8.5. There are 

several interesting features of these curves. Note first that expressions (11) and (12) 
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Fic. 8.5 Attenuation curves of waves between imperfectly conducting planes.
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approach infinity as w — w,, but the approximations break down at cutoff so that 

attenuation is actually finite although high there. The curve for the TM wave starts to 

decrease with increasing frequency above cutoff, but reaches a minimum (at w = 

3w,) and thereafter increases with increasing frequency because of the increase of R, 

with frequency. The curve for the TE wave is always lower than that for the TM and, 

gnoreover, continues to decrease with increasing frequency. This behavior arises be- 
cause the currents in the conductors are the y-directed currents related to H,, and this 

component of field approaches zero at high frequencies as the wavefront becomes sub- 

stantially nonpal to the axis, as explained in Sec. 8.4. 

8.6 PLANAR TRANSMISSION LINES 

Several different forms of wave-guiding structures made from parallel metal strips on 

a dielectric substrate have found use in microwave and millimeter-wave circuits as well 

as in high-speed digital circuits.” In this section we will examine in some detail three 

types, called stripline, microstrip, and coplanar waveguide. Emphasis will be on the 

lowest-order mode, which is a TEM wave in the stripline and a quasi-TEM wave in 

microstrip and coplanar waveguide. 

Striplime The stripline consists of a conducting strip lying between, and parallel to, 

two wide conducting planes, as shown in Fig. 8.6a. The region between the strip and 

the planes is filled with a uniform dielectric. Such a structure, with a uniform dielectric 

and more than one conductor, can support a TEM wave. If the strip width w is much 

greater than the spacing d and the two planes are at a common potential, the structure 

is roughly approximated by two parallel-plane lines connected in parallel. More precise 

results are found from the capacitance per unit length. For a TEM wave, the phase 

velocity is u, = (we) 1/2 and from the transmission-line formalism it is also given by 
v, = (LC)~'/?. Then the characteristic impedance is 

L VLC V [LE 

“~~ Ve" e€ ~¢ a 
  

Thus, for systems with uniform « and yz the characteristic impedance can be found from 

the capacitance, which can be determined in a number of ways, as we saw in Chapters 

1 and 7. An approximate expression for the characteristic impedance of the stripline, 

assuming a zero-thickness strip, has been found by conformal transformation’ to be 

7, ~ nm KK) (2) 

° 4 KV — BR) 

2 _T. Itoh (Ed.), Planar Transmission Line Structures, /EEE Press, Piscataway, NJ, 1987. 

3 R. E. Collin, Field Theory of Guided Waves, 2nd ed., Sec. 4.3, IEEE Press, Piscataway, NJ, 
1997,
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FiG. 8.6 (a) Stripline. (b) Microstrip. 

2 LENDS COR       
  

  

where 7 = V u/e, k is given by 

k = (2 - = | cos ag (3) 

and K(k) is the complete elliptic integral of the first kind (see Ex. 4.7a). A convenient 

approximate expression for Zp, accurate over the range w/2d > 0.56, is* 

Zp um 
° 8 In[2 exp(aw/4d)] 
  (4) 

Approximate techniques used to obtain corrections to Z) for tf > O are discussed by 

Hoffmann.’ The velocity of propagation does not depend on thickness and is (uwe)~ !/* 

as for all TEM waves. Both velocity of propagation and characteristic impedance, 

neglecting loss, are independent of frequency and may be used up to the cutoff fre- 

quency of modes between the ground plates, Eq. 8.3(14). 

An approximate expression for attenuation resulting from conductor surface resistiv- 

ity R, is? 

  

_ OR | rela + In(8d/ at) 
= 5 “ce Ond|  In2 + mw/4d nepers/m ©) 

which is valid if w > 4d and t < d/5. Approximations for other dimensions are given 

in footnote 4. Attenuation from lossy dielectrics is exactly as in Eq. 8.5(2). 

Microstrip Probably the most widely used thin-strip line is one formed with the strip 

lying on top of an insulator with a conductive backing. A different dielectric (usually 

air) is above the insulator and strip (Fig. 8.65). In such an arrangement, there cannot 

be a true TEM wave. The reason is that such a wave, as shown in connection with Eq. 

8.3(1), requires that y° + k* = 0. The propagation constant y is a single quantity for 
the wave, so y’ + and y + 4 cannot both be zero if k, # k,. Exact solution of 
this problem is complicated by the finite width of the strip and the two different die- 

lectrics. As mentioned above for the stripline, the lowest-order approximation for the 

microstrip is a section of parallel-plane guide neglecting fringing. A much better, though 

4 R. K. Hoffmann, Handbook of Microwave Integrated Circuits, Attech House, Norwood, 
MA, 1987.
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still approximate, approach is to consider that the lowest-order wave is approximately 

a TEM wave so the distribution of fields in the transverse plane is nearly the same as 

that for static fields. This so-called quasistatic approach employs calculations made 

with static fields to determine the transmission-line parameters for propagation of the 

lowest-order mode, even though it is not a pure TEM wave. The approximation is very 

useful in practical applications but has some limitations that we will mention below. 

A common approach to obtaining simple, accurate expressions is to first find the 

characteristic impedance Z,,) of an electrode structure identical to the one of interest 

but with the strip electrode having zero thickness and the dielectric being free space 

everywhere. This problem can be solved exactly by the method of conformal mapping, 

but the expressions are very complex and more useful results are the various approxi- 

mations to the exact expressions. A particularly useful expression is* 
0.1724 _, 

w w 
Zoo = 377) — + 1.98] — 6 oo = 3 E oa( | (6) 

which is accurate to <0.3% for all (w/d) > 0.06. Then to get the characteristic imped- 

ance of the actual line, it is corrected by the so-called effective dielectric constant Ere, 

which, if filling the entire space, would give the same capacitance as that of the actual 

structure. Since the inductance is unaffected by the presence of a dielectric, correction 

for the capacitance gives the correction for the characteristic impedance. 

The static approximation to the effective relative dielectric constant is also found by 

conformal mapping methods; one of several useful approximations is” 

p+ 222s | (7) Ee = —__—— ——— 

e 2 Vi + 10d/w 

which is always between unity and e,. Applying (6) and (7) in 

Zo = Loo/V Ecse (8) 

we obtain the static approximation for the actual characteristic impedance. The results 

for a variety of insulator dielectric constants are shown in Fig. 8.6c. Corrections for 

nonzero strip thickness have been published.* 

Since the phase velocity in a TEM wave is vu, = (me)~ 1/2 the ratio c/ UV, = V eee 

in the quasistatic case. As frequency increases, the longitudinal field components be- 

come increasingly important; this can be represented by a frequency-dependent ef- 

fective dielectric constant &.,-(f) to express the variation of phase velocity or phase 

constant. Approximate expressions for E,¢¢(f) and for attenuation from conductor and 

dielectric losses have been obtained from numerical calculations or empirically.* Some 

results follow: 

Ve, — V Ee¢¢(0) 
V Eere(f) = C Typ ar 7 V Ee¢e(0) (9)   

5H. A. Wheeler, IEEE Trans. Microwave Theory Tech. MTT-25, 631 (1977).
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Fic. 8.6¢ Approximate characteristic impedance of stripline. The dashed line is the parallel- 
plane approximation for air dielectric. Adapted from H. A. Wheeler, /EEE Trans. Microwave 
Theory Tech. MTT-25, 631 (1977). © 1977 IEEE. 

where €g¢-(0) 1s given by (7) and 

AfdVe, — 1 wr |? 
Fo= ——_ 40.5 + ee (10) 

Cc 

The frequency above which the frequency-dependent effective dielectric constant in (9) 

and (10) is needed is given empirically by* 

21 x 10° 
fmax = (11) 

(w+ 2d)Ve, + 1 

The quasi-TEM mode can be used up to near the frequency where a higher-order mode 

can propagate, which is (fue, = CZ /2Nod. The relationship of the higher-order 

modes to the quasi-TEM mode is analogous to the relationship of the TM and TE 

modes to the TEM mode in the parallel-plate guide (Sec. 8.3), but here the higher-order 

modes are hybrids of TE and TM components. 

Attenuation from losses in conductors with surface resistance R, is 

a. = RN &,<(0)A/d (12) 

  

where the parameter A is given for various strip widths and thicknesses in Fig. 8.6d. 

Attenuation from a dielectric having a loss tangent tan 6, 1s 

mf tan 6, fel + F)) 1-F, |! 
a, = . 5 h + al + F) + FO nepers/m (13) 
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FiG. 8.6d Factor for calculation of conductor losses in microstrip using the loss formula, Eq. 
8.6(12). Both conductors are assumed to have the same R, and thicknesses satisfying t > 36. 
Broken parts of the curves may require adjustment of w to account for nonzero electrode thickness 
t. See footnote 4 from which these data are taken. 

where F, = [1 + (10d/w)]7 \/2 The total attenuation can be taken to be the sum of 

(12) and (13), although there are also radiation and scattering losses. 

Coplanar Waveguide Of the several different forms of stripline wave-guiding 

systems in which all conductors are on one surface of a dielectric substrate, the most 

widely used is the coplanar waveguide shown in Fig. 8.6e, in which the signal voltage 

is applied between the center strip and the grounded outer strips. 

As with the microstrip, the fundamental mode of propagation in the coplanar wave- 

guide is a quasi- TEM mode. Because the dielectric is not homogeneous in the transverse 

plane, the wave cannot be a pure TEM mode. The distribution of electric fields in the 

space above the line is the same as in the substrate (assuming negligible thickness of 

the strips and infinite substrate thickness). We assume here that air is above the strips 

so €, = 1. If the capacitance per unit length for a line with the same conductors but 

€, = 1 everywhere is Co, in the actual line the capacitance contributions above and 

below the substrate surface will be C,/2 and Cye,/2. Then an effective dielectric con- 
stant can be defined for the quasistatic limit as 

C &, + 1 
& =o = 

Co 2 
  (14) 

and the phase velocity is u, = (wép&eqq)~ 1/7.
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Fic. 8.6e Coplanar waveguide. 

‘The characteristic impedance for zero-thickness conductors, infinitely wide ground 

conductors, and infinite-thickness substrate can be expressed in terms of complete el- 

liptic integrals of first-order K(k) and K(k’): 

  7. = Zoo = _ KR) (15) 

° V Coe ° 4\ Eee (K) 

where k = w/a (see Fig. 8.6e) and k’ = (1 — k*)!/*. Very good approximations to 
(15) (<0.24% error) that are much more convenient in practice are 

Zy) = —%& n(2 ig for 0 < w/a < 0.173 (16) 
TV Ease 

and 

1+ Vw/a 
Z = —2 in(2 = nee 

AN eae 1 — Vw/a 

These expressions for effective dielectric constant and characteristic impedance are also 

accurate to within several percent if the substrate thickness d is finite but greater than 

the total gap width a. More complex relations are required for thinner substrates.* 

One reason for interest in the coplanar waveguide is that dispersion is typically less 

than in the microstrip for microwave and lower frequencies. A form nearly identical to 

(9) has been shown to give a good fit to numerical calculations of the dispersion in the 

coplanar waveguide over a very wide range of parameters.° Thus, 

Ve, — V Eqpe(0) 

~} 
)| for 0.173 < w/a < 1 (17) 

  

B Ven(f) = nT Ve-<-(0) (18) 

where F, = 2fdVe, — 1/c and &,,-(0) is the value in (14). Also, 

b = exp(u In(@w/s) + 7] (19) 

° G. Hasnian, A. Dienes, and J. R. Whinnery, IEEE Trans. Microwave Theory Tech. MTT-34, 
738 (1986).
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Fic. 8.6f Factor for calculation of conductor losses in coplanar waveguide using the general 

loss formula, Eq. 8.6(12). Conductors all have the same R, and have thicknesses satisfying 
t > 36. Data taken from footmote 4. 

where parameters u and 7 depend on substrate thickness according to 

u = 0.54 — 0.64g + 0.015q? 

and 

r = 0.43 — 0.86¢ + 0.54q 

in which g= In(w/d). 

Attenuation from conductor losses in the coplanar waveguide can be found using the 

general form (12) with parameter A given by the data in Fig. 8.6f. 

Attenuation resulting from losses in the dielectric is found using* 

_ WEY Esee(O) | 1 — 1/eee¢(0) 

oe” 1 — I/e, 
  - Jin 6, nepers/m (20) 

with €,,(0) given by (14), which is accurate only if d/a > 1. More accurate expressions 

exist for thinner substrates.* The quasi-TEM solution used here applies up to F, = 1. 

There are several other varieties of strip-type lines. Two prominent types are the slot- 

line waveguide and coplanar strips shown, respectively, in Figs. 8.6g and h. These are 

both versions of two-conductor transmission lines. As with the microstrip and coplanar 

waveguide, the lowest mode is not TEM but rather quasi-TEM, because of the different 

dielectrics above and below the conductors.
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FIG. 8.6 (g) Slot-line waveguide. (1) Coplanar-strip waveguide. 

8.7 RECTANGULAR WAVEGUIDES 

The most important of the hollow-pipe guides is that of rectangular cross section. As 

in Fig. 8.7a, a dielectric region of width a and height b extends indefinitely in the axial 

(z) direction and is closed by conducting boundaries on the four sides. In the ideal 

guide, both conductor and dielectric are loss-free. There can be no transverse electro- 

magnetic (TEM) wave inside the hollow pipe since, as was shown in Sec. 8.3, TEM 

waves have transverse variations like static fields, and no static fields can exist inside 

a region bounded by a single conductor. Transverse magnetic (ITM) and transverse 

electric (TE) waves can exist and will be analyzed below. 
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TM Waves Transverse magnetic waves have zero H, but nonzero E.. The differential 
equation governing E. is Eq. 8.2(17), here expressed in rectangular coordinates: 

VE, aE, 

a” ay? hE m0 
    ViE. = 

This equation was solved in Sec. 7.19 by separation of variables procedures and found 

to have solutions of the form 

E, = (A’ sin k.x+ B' cos k,x)(C’ sin ky + D' cos ky) (2) 

where . 

ke + ky = ke (3) 

The perfectly conducting boundary at x = 0 requires B' = 0 to produce FE, = 0 there. 

Similarly the ideal boundary at y = 0 requires D’ = 0. We let A'C’ be a new constant 

A and have 

E, = Asin k,x sin k,y (4) 

Axial electric field E, must also be zero at x = a and y = b. This can only be so 

(except for the trivial solution A = 0) if &, a is an integral multiple of 7: 

ka = mn, m= 1,2,3,... (5) 

Similarly, to make FE. zero at y = b, Kb must also be a multiple of ar: 

kb = nq, n= 1,2,3,... (6) 

So the cutoff condition of the transverse magnetic wave with m variations in x and n 

in y (designated TM,,,,,) is found from (3): 

k. 1 ) ("| 7 
@ _ mn oo + “Ss 

Con “ (PE 4 (LE a b ( ) 

Since k2 is k? — B* as in Eq. 8.2(19), attenuation for frequencies below the. cutoff 
frequency of a given mode and phase constant for frequencies above the cutoff fre- 

quency have the same forms as for the parallel-plane guiding system: 

  

  
7) 

a=k, {1 - ( - O< @, (8) 

aw, \? 
p=rfi-(“). ore ) Ww tft 

Phase and group velocities then also have the same forms as before [Eqs. 8.3(18) and 

8.3(19)].
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The remaining field components of the TM,,,, wave are found from Eas. 8.2(13)—(16) 

with H, = 0 and E. from (4): 

  

  

  

r= 5 cos K,X SiN Kyy (10) 

JPky 
E, = 2B ~ A sin kx cos kyy (11) 

jwek, 
A, = 2 - A sin kx cos kyy (12) 

jJwek, 
Hy, = “2 A cos k,x sin kyy (13) 

Orin 

where k,,, Ky Ke, and f are defined by (5), (6), (7), and (9), respectively, and all fields 

are multiplied by the propagation terms, e ~/4", Plots of electric and magnetic field lines 

in the TM,, and TM,, modes are shown in Table 8.7. Note that electric field lines 

(shown solid) begin on charges on the guide walls at some fixed z plane, turn and go 

axially down the guide, and end on charges of opposite sign a half-guide wavelength 

down the guide. Magnetic field lines (shown dashed) surround the displacement currents 

represented by the changing electric fields as the pattern moves down the guide with 

velocity v,. The pattern for the TM,, mode is that of two TM,, modes side by side and 

of opposite sense. 

The attenuation resulting from losses in the conducting walls can be calculated for 

the TM,,,, wave following the procedure used to find Eq. 8.5(11): 

_ 2R, [m?(b/a)> + n°) 4) 

™ — byV 1 — (f/f (m'(b/ay’ + n° 
We make two points before leaving this class of waves. Note from (4) and the 

definitions of k, and k, given by (5) and (6) that neither m nor 1 can be zero for the 

TM wave without its disappearing entirely. The second point is that we have required 

as boundary condition that E. be zero along the perfectly conducting boundary, but 

should also be sure that other tangential components of electric field are zero there. 

From (10) and the definitions (5) and (6) we can see that F, is zero as required at 

y = 0 and y = 5; from (11) we see that E, is zero atx = 0 and x = a. Thus all 

tangential components do satisfy the boundary conditions at the conductors. It can be 

shown (Prob. 8.7h) that imposition of the boundary condition on E, necessarily causes 

the other tangential components of E. to be zero on the boundaries because of the form 

of the relations 8.2(13)—(16). 

  

( a.) TM 

TE Waves Transverse electric waves have zero F, and nonzero H, so that the start 

is from Eq. 8.2(18), again expressed in rectangular coordinates: 

PH PH. 
24 —2= —FH, (15) V7H, = = 

° ox* dy* 
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Solution by the separation of variables techniques of Sec. 7.19 gives 

H. = (A" sin kx + B" cos k.x)(C" sin kyy + D" cos kyy) (16) 

where 

k 

a
l
o
 

=k + ks (17) 

Imposition of boundary conditions in this case is a little less direct, but from Eqs. 8.2(13) 

and 8.2(14) we find electric field components as 

  gE, = —1h oT 
kK, ay 

_ Jopky 
ke 
  | (A" sin kx + BY cos k.x)(C" cos kyy — D" sin ky) — (18) 

c 

j 0H. 
gE, = Ceo: 

- k= ax 
c 

  

(19) 

_ JOBE J LK. 

ke 
Cc 

(A" cos kx — B" sin k,x)(C" sin kyy + D" cos k,y) 

For E, to be zero at y = O for all x, C" = 0, and for E, = O at x = OQ for all y, 

A” = 0. Defining B’D" = B, we have then 

H. = B cos k,x cos kyy (20) 

We also require £,. to be zero at y = b so that k,b must be a multiple of 7. E, is zero 

at x = aso that 4,a is also a multiple of zr: 

k,a = mq, kb = nw (21) 
+ 

In contrast to the TM waves, one but not both of m and m may be zero without the 

wave’s vanishing. Although we found the boundary conditions by first calculating elec- 

tric field, we can see from the way in which E is related to H. that the derivative of H_ 

normal to the conducting boundary must be zero for the tangential electric field to be 

zero there, so boundary conditions can be imposed directly on the form (16) without 

requiring the explicit forms for £,. and £,.. 

The forms of transverse electric field with the derived simplifications to (18) and 

(19) are 

OLLK 
EY. = = B cos k,x sin ky (22) 

Cy, n 

  

k 
E, = PEs ~ B sin k,x cos k,y (23) 

Cn, ay
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Corresponding transverse magnetic field components from Eqs. 8.2(15) and 8.2(16) are 

BK. 
H, = IPs sin kx cos k,y (24) 

x 

  

JBky . 
A, = B cos k,x sin kyy (25) 

Cry af 

Since comparison of (21) with (5) and (6) shows that k, and k, have the same forms 

for TM and TE waves, cutoff frequency and propagation characteristics for a TE,,,, 
mode found from (17) are exactly the same as for the same order TM,,,,, mode. That is, 

the expressions (7), (8), and (9) apply here without change. Modes that have different 

field distributions but the same cutoff frequencies are said to be degenerate modes. 

Table 8.7 gives the field distribution for several different TE modes. Since electric 

field is confined to the transverse plane, we find that for each one of the TE modes 

shown, electric fields begin on charges for a portion of the boundary and end on charges 

of opposite sign on another portion, in the same x—y plane. Magnetic field lines surround 

the displacement currents represented by the changing transverse electric fields. For the 

TE, 9 mode having no variations in the vertical direction, electric fields go between top 
and bottom of the guide in straight lines, and magnetic fields lie entirely in planes 

parallel to top and bottom. The TE,, mode is so important that it will be discussed 

separately in the following section. 

Figure 8.7b shows a line diagram indicating the cutoff frequencies of several of the 

lowest-order modes referred to that of the so-called dominant TE,, mode for a guide 

with a side ratio b/a = 3, which is close to the value used in most practical guides. 

Normally, such a guide is designed so that its cutoff frequency for the TE,, mode is 

somewhat (say, 30%) below the operating frequency. In this way only one mode can 

propagate so signal distortion caused by multimode propagation is avoided. Also, by 

not being too close to the cutoff frequency, dispersion caused by having different group 

velocities for different frequency components of the signal is minimized for the one 

propagating mode. Higher-order modes may be excited at the entrance to the guide but 

they are below their cutoff frequencies and die away in a short distance from the source. 

  

TEj9 re TE 
) y TMy 

L | L L 
0 1 2 3 

ff) te, 

FiG. 8.7b Relative cutoff frequencies of waves in a rectangular guide (b/a = $).
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Fic. 8.7¢ Attenuation due to copper losses in rectangular waveguides of fixed width. 

The attenuation constant for TE,,,, (1 # 0) modes is found using power transfer and 

power loss per unit length as in Eq. 8.5(11). 

  (Q)re,, = as {(1 + 2\(&) 
“ba = (F/FP a}\f 

  

  

5 (26) 
po fs) (b/a)((b/a)m? + n?) 

f (b?m?/a?) + n°? 

And for TE,,,. modes 

(a) = Xs : + 2b () (27) 
c/ TE,,.0 b n 1 — ( f. / fy ga f 

Figure 8.7c shows attenuation versus frequency for TM,, and TE;, modes in rectangular 

copper waveguides with various side ratios b/a found using (14) and (27), respectively. 

It is seen that small b/a ratios give large attenuations because of the high ratio of surface 

to cross-sectional area. 

8.8 THE TEyg WAVE IN A RECTANGULAR GUIDE 

One of the simplest of all the waves which may exist inside hollow-pipe waveguides 

is the dominant TE,, wave in the rectangular guide, which is one of the TE modes
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studied in the preceding section. This mode is of great engineering importance, partly 

for the following reasons: 

1. Cutoff frequency is independent of one of the dimensions of the cross section. 

Consequently, for a given frequency this dimension may be made small enough 

so that the TE,,) wave is the only wave which will propagate, and there is no 

difficulty with higher-order waves that end effects or discontinuities may cause 

to be excited. 

2. The polarization of the field is definitely fixed, electric field passing from top 

to bottom of the guide. This fixed polarization may be required for certain 

applications. 

3. For a given frequency the attenuation due to copper losses is not excessive com- 

pared with other wave types in guides of comparable size. 

Let us now rewrite the expressions from the previous section for general TE waves 

in rectangular guides, Eqs. 8.7(20)—(24), setting m = 1, n = 0, in which case k, = 0 

and k, = k, = a/a. 

      

AH, = B cos kx (1) 

_ jops , 
by = — k, sin k,.x (2) 

‘BB A, =" sin kx 3) 
All other components are zero. This set may be rewritten in a useful alternate form, 

TX 
BE, = —Z7cH, = Ep, sin| —— y TE**x 0 sin a (4) 

Ei { A 
H, = 2 (+) cos (=) (5) 

y \2a a 

where 

JopB J27aB Ey = ——— = 6 0 k, X (6) 

- ; w, 2] —-1/2 - ; .\2 1712 , 

Le = 1 7 = 7 a (7) 

pb d UV 27T 3) 
Y= [7 =- = 

é f wV LE 

Cutoff frequency, wavelength, and wavenumber are 

1 T 
fo = » AQ = 2a, k= (9 

2aV Be a
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Phase and group velocities and wavelength measured along the guide are 

  

  

1 1 A \? yo = v. = 1 — (10) 
P VeVi = (A/2a)? Ve (:) 

U 2 A ,= tet = (11) 
f Bo V1 -(A/2ay 

The attenuation arising from an imperfect dielectric is obtained by replacing € with 

€' — je’ in the equation for y. Since k, in the TE,,.9 modes is of the same form as in 

the parallel-plane modes, Eq. 8.5(3) applies here and leads to a result equivalent to Eq. 

8.5(4): 

k n } 

ag = —_ (12) 
2V1 —(A/2a) 

To find attenuation if the conductor is imperfect, we first calculate the power transferred 

by the wave from the Poynting theorem: 

  

  

1 7? . 
W,; = —Re | | (—E,H%) dx dy (13) 

2 0/0 

Utilizing the forms (4), we have 

Eth (* |, 1m Eéb 
W, = —2 | sin? — dx = —2* (14) 

2L75 0 a AZ ve 

Next we find approximate losses in the walls by using currents of the ideal mode in 

material of surface resistivity R,. Current in a conductor is related to the tangential 

magnetic field H, at the side walls x = O and x = a so there is current per unit width 

\Jy| = |H,| there. Both components H, and H, are tangential at top and bottom surfaces 

  

giving rise to surface current densities J,.| = |H,| and |/,.| = |H,|. Thus, power loss 
per unit length is 

bR bRE2) 
= 2) —|#.2_,} = 15 (W, )stpEs ( 5 | Loo Ana? (15) 

R, ° 9 

(W,)top AND BOTTOM = 2 > I (\H,|? + |H,?) dx 

“| EX 9 ax ERM? Xx 
R, | ° sin? — + —& cos? | dx   

  

  

  

0 | 225 a = 41a? a 

FE? E)? 
= <R{( =o + = (16) 

2 Ztz 4n°a 

Adding the two contributions (15) and (16) and substituting Z,, from (7), 

REA |b’ oa i? dM? RE? br? 
We= az loa tah l~ pat a) za lets 

y |4ae 2 4a“ 4a 27 2a 
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The attenuation from conductor losses, Eq.5.9(4), is then 

RZ bd? 
a, = Wr SIE a+— (17) 

2W, nba 2a* 

  

Or 

+ oral 2(' © byV1 — (A/2ay* a \2a 

A study of the field distributions (1) to (3) or (4) and (5) shows the field patterns for 

this wave sketched in Table 8.7. First it is noted that no field components vary in the 

vertical or y direction. The only electric field component is the vertical one E,, passing 

between top and bottom of the guide. This is a maximum at the center and zero at the 

conducting walls, varying as a half-sine curve. The corresponding charges induced by 

the electric field lines ending on conductors are (1) charges zero on side walls and (2) 

a charge distribution on top and bottom with p, = s&, on the bottom and — e£, on the 

top. The magnetic field forms closed paths surrounding the vertical electric displace- 

ment currents arising from E,, so that there are components H, and H,. Component H, 

is zero at the two side walls and a maximum in the center, following the distribution 

of E,. Component H, is a maximum at the side walls and zero at the center. Component 

H,. corresponds to a longitudinal current flow down the guide in the top, and opposite 

in the bottom; H, corresponds to transverse currents in the top and bottom and vertical 

currents on the side walls. These current distributions are sketched in Fig. 8.8a. 

This simple wave type is a convenient one to study to strengthen some of our physical 

pictures of wave propagation. Electric field is confined to the transverse plane and so 

passes between opposite charges of equal density on the top and bottom. The electric 

field E,, and the transverse magnetic field H,, are maximum at planes a half guide wave- 

length apart. Halfway between those planes is the maximum rate of change of E, for 

the traveling wave and therefore the location of maximum displacement current. The 

conduction currents in the metal walls, related to the tangential magnetic field, vary 

with position. Displacement currents provide the continuity of total current. The mag- 

netic fields surround the electric displacement currents inside the guide and so must 

have an axial as well as a transverse component. 

As a fairly crude way of looking at the problem, one might also think of this mode 

being formed by starting with a parallel-plate transmission line A of width w to carry 

the longitudinal current in the center of the guide, and then adding shorted troughs B 

of depth / on the two sides to close the region, as pictured in Fig. 8.8b. Since one would 

expect the lengths / to be around a quarter-wavelength to provide a high impedance at 

the center, the overall width should be something over a half-wavelength, which we 

know to be true for propagation. The picture is only a rough one because the fields in 

the two regions are not separated, and propagation is not purely longitudinal in the 

center portion or transverse in the side portions. 

A third viewpoint follows from that used in studying the higher-order waves between 

parallel planes. There it was pointed out that one could visualize the TM and TE waves 

  (18)
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WEN. 
=k: nme TES 

  

  

                          

      

(a) 
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<= / eZ S/LITL 
>| whe 

(b) 

YEE EE EEE LLL EEE EEL 

7 7 N\ 
\ 

/ \ 9 A ‘\ / 
/ N / v Nv if Up = u/sin 6 

—_———_—_—__> 
Ug =using 

  

(Top view) 

(c) 

Fic. 8.8 (a) Current flow in walls of rectangular guide with TE,, mode. (b) Guide roughly 
divided into axial- and transverse-current regions. (c) Path of uniform plane-wave component of 
‘TE,g wave in rectangular guide. 

in terms of plane waves bouncing between the two planes at such an angle that the 

interference pattern maintains a zero of electric field tangential to the two planes. Sim- 

ilarly, the TE,, wave in the rectangular guide may be thought of as arising from the 

interference between incident and reflected plane waves, polarized so that the electric 

vector is vertical, and bouncing between the two sides of the guide at such an angle 

with the sides that the zero electric field 1s maintained at the two sides. One such 

component uniform plane wave is indicated in Fig. 8.8c. As in the result of Sec. 8.4, 

when the width a is exactly 4/2, the waves travel exactly back and forth across the 

guide with no component of propagation in the axial direction. At slightly higher fre- 

quencies there is a small angle @ such that a = A/2 cos 6, and there is a small propa- 

gation in the axial direction, a very small group velocity in the axial direction vu sin 6,



428 Chapters Waveguides with Cylindrical Conducting Boundaries 

and a very large phase velocity v/sin 6. At frequencies approaching infinity, 6 ap- 

proaches 90 degrees, so that the wave travels down the guide practically as a plane 

wave in space propagating in the axial direction. 

All the foregoing points of view explain why the dimension 5 should not enter into 

the determination of cutoff frequency. Since the electric field is always normal to top 

and bottom, the placing of these planes plays no part in the boundary condition. How- 

ever, the dimension b does affect other characteristics of the guide. Small b gives a 

larger separation between cutoff frequencies of the TE,, and TE,, modes. But it in- 

creases attenuation as shown in Fig. 8.7c and limits power-handling capabilities because 

of breakdown-field limits. 

8.9 CIRCULAR WAVEGUIDES 

Hollow-pipe waveguides of circular cross section are used in a number of instances, 

for example, when circular polarization is to be transmitted to certain classes of anten- 

nas. Also, as will be shown, the class of TEy,, modes (called circular electric) is inter- 

esting because of the low attenuation in this class at high frequencies. As before, we 

start with ideal dielectric and conducting boundary and make approximate modifications 

to these solutions when the materials have small losses. Before treating separately the 

TM and TE classes of waves, it is desirable to have the set of equations 8.2(13)—(16) 

transformed to circular cylindrical coordinates. A straightforward transformation gives 

] OE, wp oH, 

j | Bae, oH. 

é 5 rag) | ” 
] | we dF, 0H. 

H => /|— —* — —~< 

"ke r ao B zh @) 

] JE. B OH, 
H = we enon eer + —_ —«- 

eR c ar or ap “ 
where 

=p +h = -p (5) 

TM Waves The transverse part of the Laplacian in Eq. 8.2(17) for E, is expressed in 
circular cylindrical coordinates for this configuration, with the coordinate system as 

shown in Fig. 8.9a. 

lof o£. 1 OE. 
VE, = - = ( aE) + 2 = —RE. (6) ap 
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Fic. 8.9q Hollow-pipe circular cylindrical guide showing coordinate system. 

Separation of variables techniques in Sec. 7.20 led to the solution 

Er, @) = (AU, (Kr) + BN AKC’ cos nd + D' sin nd] (7) 

where J,, and N,, are nth-order Bessel functions of first and second kind, respectively. 

The second kind, N,,(k,r), is infinite at r = O for any 7 and so cannot be included in 

the interior solution which includes the axis. Also, for simplicity, we choose the origin 

of @ so that we have just the cos n@ variation. Letting A’'C’ = A, 

EL = AJ, (kr) cos n@ (8) 

From (1) to (4) with H, = 0, the remaining field components are 

_ _ JB ang, E, = Zo, = ~- : AJ} (kr) cos ng (9) 

_ _ jpn \ 
Ey = —2ryH, = ep nlker) sin 1 (10) 

where the prime denotes the derivative with respect to the argument and 

Zim = 11 ™ = 7 (11) 

The boundary condition imposed by the perfect conductor at r = a requires EF, and 

E 4 to be zero there. We see from (8) that E. is zero at the boundary if k,a is one of the 

zeros of the Bessel function, 

2 

ka = w.V yea =~ = py (12) 
ec 

where J,,(p,,.) = 0. We see from (10) that this makes E,, zero there also. 

Equation (12) allows one to calculate cutoff frequency or wavelength for any mode 

order. For any 7 there is an infinite number of zeros of J,(k,r) so there is a doubly 

infinite set of modes, denoted TM,,,. Note that the first subscript denotes angular vari- 

ations and the second radial variations, differing from the usual cyclic order of coor- 

dinates. Field distributions of the TM,,, [My,, and TM,, modes are given in Table 8.9
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together with expressions for cutoff frequency and wavelength, and approximate atten- 

uation from conductor losses if the cylindrical wall has surface resistivity R,. Phase 

velocity, group velocity, guide wavelength, and attenuation for frequencies below cutoff 

are of the same forms in terms of cutoff frequency as we have seen for the parallel- 

plane and rectangular guides. Wave impedance, when B in terms of cutoff frequency 

is substituted in (11), also has the form found for TM modes in the guides studied 

earlier. 

TE Waves The differential equation for the nonzero H, of TE waves, Eq. 8.2(18), 

expressed in cylindrical coordinates, is 

1a / OH. 1 o7H. 

vin, = 25 (0Sh) + age = RH ” 
  

The solution for this from Sec. 7.20 is 

Hir, ¢) = BI Ak.r) cos ng (14) 

Here we have left out the second solution and chosen the cosine variation with @ with 

the same justification as for the TM waves. The remaining field components, from (1) 

to (4) with E. = QO, are 

  E, = ZypH, =? Zz BI,(k.r) sin nd (15) 
cl 

E, = —ZrpH, = -— BI'(k.r) cos nd (16) 

where 

GOL 

In this case the boundary condition imposed by the perfect conductor at r = a 

requires that E,, = O there, or 

— 2 
Kd = 0,.V Mea = Se Put (18) 

A 
Cc 

where J,.(p,,;) = 0. Again, expressions for phase and group velocity and wavelength 

along the guide are as before. 

The field distributions of the TE), and TE,, modes and some data for these are given 

in Table 8.9. Note that the field distribution of the TE,, mode is quite a bit like that of 

the TE,, mode in the rectangular guide, with electric field going from top to bottom of 

the guide, so this is the one that would be primarily excited if a TE,,)-mode rectangular 

guide were properly tapered and connected to the circular guide. It also has the lowest 

cutoff frequency of any mode in a given size circular pipe, as shown by Fig. 8.95. In 

the TE,, mode, the electric field lines do not end on the guide walls, but form closed
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TEy4 TE; TEo,|TEs1 TE41 TEx: 

OP 
0 1 - 2 f h 4 3 CON OTE 

TMo1 TMi, TMa; TMoz 

FIG. 8.9b Relative cutoff frequencies of waves in a circular guide. 

circles surrounding the axial time-varying magnetic field. This latter wave is especially 

interesting as a potential low-loss transmission system at high frequencies and will be 

considered more in the example. 

  

Example 8.9 
CIRCULAR ELECTRIC TE; MODE IN OVERSIZE GUIDE 

The field expressions for the TE,, mode from the general forms (14)—(16) are 

  

H, = BJ(Kr) (19) 

and 

E, = —ZypH, = — a BU (ker) (20) 

ka = Poy = Py = 3.83... (21) 

The average power transfer by the mode, from the Poynting theorem is 

° Qar wo” Br | 0 
Wr = | —— (—E,H*) dr = ——— | rJ2k,r) dr 22 r= | EHD ez J, Time (22) 

The Bessel integral is evaluated by Eq. 7.15(22): 

aw wB? a | a? 
Wr = Zn is J 0 | (23) 

Conduction current in the guide walls is purely circumferential, related to the tangential 

H,, So that wall losses per unit length are 

R 
Ww, = 2a |Hairna = TAR.BI O11) (24) 

Attenuation per unit length, in terms of power transfer and loss, is then 

_ wy, _ keZypR, = = 25 
Me 2W, s w* pa 29)
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Fic. 8.9c Attenuation due to copper losses in circular waveguides; diameter = 2 in. 

When Z-+, is substituted from (17), this may be put in the form 

y= R,(@,/w)* (26) 

© anV1 — (@,/o)" 

R, is proportional to the square root of frequency, but the overall expression decreases 

with frequency. Thus we have the unusual result that attenuation in this mode, for a 

given size guide, decreases with increasing frequency, as shown in Fig. 8.9c which 

gives a comparison with TE,, and TM,, modes for a 2-in.-diameter guide. The low 

attenuation is because the mode fields are very little coupled to the guide walls at high 

frequencies. However, other modes may propagate, as shown by Fig. 8.9b, so that there 

are problems with mode conversion when such guides bend to go around corners. 

Practical ways of solving such problems were developed,’ and this system was dem- 

onstrated as a low-loss guiding system for millimeter waves, but has been replaced by 

optical fiber. 

  

  

8.10 HIGHER ORDER MODES ON COAXIAL LINES 

The lowest-order mode on a coaxial line is a TEM wave; this was assumed implicitly 

in the transmission-line treatment of Ex. 5.2 where we used the capacitance and in- 

? See, for example, S. E. Miller, Bell System Tech. J. 33, 1209 (1954).
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rolTi 

(b) 

Fic. 8.10 (a) Cross section of a coaxial line. (b) Cutoff wavelength for some higher-order 
TM waves in coaxial lines. 

ductance found from static fields. As in the parallel-plane guide, higher-order (TM and 

TE) modes can also exist. Normally, the line is designed in such a way that the cutoff 

frequencies of the higher-order moues are well above the operating frequency. Even in 

that case, these modes can be of importance near discontinuities. 

The general forms useful for the TM and TE modes in circular cylindrical coordinates 

are listed in Sec. 7.20. The boundary conditions require that £, for TM waves be zero 

at rg and r, (Fig. 8.10a). 

For TM waves, 

A,J hkl ) + B nN (ker) = 0 

A,J nlKel'o) + BN, AK Fo) = 0 

or 

N AK Fi ) _ NAR To) 

J (Rr) 7 JK 1o)
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For TE waves, the derivative of H. normal to the two conductors must be zero at the 

inner and outer radii. [See discussion following Eq. 8.7(21).] "Then, in place of (1), 

N Kel ‘i ) — N nKeol ‘o) (2) 

TiKel a) J niKel ‘o) 

  

Solutions to the transcendental equations (1) and (2) determine the values of k, and 

hence cutoff frequency for any wave type and any particular values of r; and rp. By 

analogy with the parallel-plane guide, we would expect to find certain modes with a 

cutoff such that the spacing between conductors is of the order of p half-wavelengths. 

2 
A. * (To — T;)s p = 1, 2, 3,... (3) 

This is verified by Fig. 8.10b for values of ro/r; near unity. 
Probably more important is the lowest-order TE wave with circumferential variations. 

This is analogous to the TE, wave of a rectangular waveguide, and physical reasoning 

from the analogy leads one to expect cutoff for this wave type when the average cir- 

cumference is about equal to wavelength. The field picture of the TE,, mode given in 

Sec. 8.8 should make this reasonable. Solution of (2) reveals this simple rule to be 

within about 4% accuracy for r)/r; up to 5. In general, for the nth-order TE wave with 

circumferential variations, 

2m (1) +1; j= 22 (BA), n = 1,2,3,... (4) 
n 2 

There are, of course, other TE waves with further radial variations, and the lowest order 

of these has a cutoff about the same as the lowest-order TM wave. 

8.11 EXCITATION AND RECEPTION OF WAVES IN GUIDES 

The problems of exciting or receiving waves in a waveguide are not simple field prob- 

lems. In this section we give only a qualitative introduction to the manners of excitation 

of fields in various kinds of guides. Approaches to analysis and measurement of these 

junctions are given in Chapter 11. Reception of the energy of a wave uses the same 

kind of structure as excitation and is just the reverse process. To excite any particular 

desired wave, one should study the field pattern and use one of the following concepts. 

1. Introduce the excitation in a probe or antenna oriented in the direction of electric 

field. The probe is most often placed near a maximum of the electric field of the 

mode pattern, but exact placing is a matter of impedance matching. Examples are 

shown in Figs. 8.11la and Db. 

2. Introduce the excitation through a loop oriented in a plane normal to the magnetic 

field of the mode pattern (Fig. 8.11c). 

3. Couple to the desired mode from another guiding system, by means of a hole or 

iris, the two guiding systems having some common field component over the
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Fic. 8.11 (a) Antenna in end of circular guide for excitation of TMgy, wave. (b) Antenna in 
bottom of rectangular guide for excitation of the TE,, wave. (c) Loop in end of rectangular guide 

for excitation of TE,, wave. (d) Junction between circular guide (TM), wave) and rectangular 
guide (TE,, wave); large-aperture coupling. (¢) Coaxial line coupling to microstrip. (f) Excitation 
of the TE,) wave in rectangular guide by two oppositely phased antennas. 

extent of the hole. An example of coupling between waveguides using a large iris 

is shown in Fig. 8.11d. The coupling is sometimes done with a small hole as for 

coupling to resonant cavities (Sec. 10.10). 

4, Introduce currents from one kind of transmission line into another, as in coupling 

from a coaxial line to microstrip shown in Fig. 8.11e. 

5. For higher-order waves combine as many of the exciting sources as are required, 

with proper phasings (Fig. 8.11f).
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6. Gradually taper a transition between two types of guides, as for a TE,9 wave in 

a rectangular guide to a TE,, in a circular guide. 

Since most of these exciting methods are in the nature of concentrated sources, they 

will not in general excite purely one wave, but all waves that have field components in 

a favorable direction for the particular exciting source. That is, we see that one wave 

alone will not suffice to satisfy the boundary conditions of the guide complicated by 

the exciting source, so that many higher-order waves must be added for this purpose. 

If the guide is large enough, several of these waves will then proceed to propagate. 

Most often, however, only one of the excited waves is above cutoff. This will propagate 

down the guide and (if absorbed somewhere) will represent a resistive load on the 

source, comparable to the radiation resistance of antennas which we shall encounter 

further in Chapter 12. The higher-order waves that are excited, if all below cutoff, will 

be localized in the neighborhood of the source and will represent purely reactive loads 

on the source. For practical application, it is then necessary to add, in the line that feeds 

the probe or loop or other exciting means, an arrangement for matching to the load that 

has a real part representing the propagating wave and an imaginary part representing 

the localized reactive waves. In a practical design, it is important to be concerned that 

the match is good over the frequency band of interest. 

Example 8.11 

EXCITATION OF A WAVEGUIDE BY A COAXIAL LINE 

Let us look in more depth at the structure in Fig. 8.115 where a coaxial line is inserted 

in the center of the broad side of a waveguide of rectangular cross section to excite a 

TE,9 mode. The waveguide is short-circuited at a distance / from the probe to aid in 

matching the coaxial line to the waveguide. The fields associated with the probe excite 

both the desired TE,, mode and other higher-order modes. The latter are cutoff and do 

not propagate, but they store reactive energy and therefore constitute a reactive com- 

ponent of the load on the coaxial line. Proper choice of the size and location of the 

probe for a given frequency and guide dimensions makes the standing wave between 

the probe and the shorted end contain reactive energy of opposite sign and equal mag- 

nitude so that the net reactive component of the input impedance is zero. These ad- 

justments are used to make the real part of the load impedance on the coaxial line equal 

to its characteristic impedance so that perfect matching is achieved and all the power 

is coupled into the guide. Figure 8.11g shows the calculated results for probes of various 

radii in a guide of dimensions appropriate for use at about 10 GHz (X band).® Similar 

graphs can be calculated using the methods in the reference of footnote 8 for other 

guide sizes and probe radii. 

  

8 PR. E. Collin, Field Theory of Guided Waves, 2nd ed., Sec. 7.1, IEEE Press, Piscataway, NJ, 

1991,
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FiG. 8.11g Probe input resistance and reactance as a function of frequency for d = 0.62 cm, 
I = 0.495 cm, guide width a = 2.286 cm, guide height b = 1.016 cm. For the thin probe of 
radius r = 0.5 mm, / = 0.505 cm. Reproduced by permission from R. E. Collin, Field Theory 

of Guided Waves, 2nd ed., Sec. 7.1, IEEE Press, Piscataway, NJ, 1991. 

  

General Properties of Guided Waves 

8.12 GENERAL PROPERTIES OF TEM WAVES ON MULTICONDUCTOR LINES 

The classical two-conductor transmission system was studied extensively in Chapter 5, 

starting from a distributed circuits point of view. We used wave solutions to verify the 

results for the special case of TEM waves between parallel planes in Sec. 8.3. At this 

point we can show that TEM waves in any two-conductor cylindrical system with
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isotropic, homogeneous dielectric, and loss-free conductors are exactly those predicted 

by the transmission-line equations. 

The general relations between wave components as expressed by Eqs. 8.2(9)—(12) 

show that, with E. and H. zero, all other components must of necessity also be zero, 

unless y* + k? is at the same time zero. Thus, a transverse electromagnetic wave must 

satisfy the condition 

y= tyk = : = +t]aV pe (1) 

For a perfect dielectric, the propagation constant y is thus a purely imaginary quantity, 

Signifying that any completely transverse electromagnetic wave must propagate unat- 

tenuated and with velocity v, the velocity of light in the dielectric bounded by the guide. 

With (1) satisfied, the wave equations, as written in the form of Eqs. 8.2(1) and 

8.2(2), reduce to 

VuE=0, V2H=0 (2) 
‘These are exactly the form of the two-dimensional Laplace equation written for E and 

H in the transverse plane. Since EF. and H. are zero, E and H lie entirely in the transverse 

plane. Since electric and magnetic fields both satisfy Laplace’s equation under static 

conditions, the field distribution in the transverse plane is exactly a static distribution 

if boundary conditions to be applied to the fields in (2) are the same as those for a static 

field distribution. The boundary condition for the TEM wave on a perfect conducting 

guide is that electric field at the surface of the conductor can have a normal component 

only, which is the same as the condition at a conducting boundary in statics. The line 

integral of the electric field between conductors is the same for all paths lying in a 

given transverse plane, and may be thought of as corresponding to a potential difference 

between the conductors for that value of z. 

To study the character of the magnetic field, note Eqs. 8.2(3) and 8.2(6) with zero 

E&. and H.: 

. E. 

H, =" E, == (3) 
" Y 7) 

and 

E., 
Hy = > Ey = -= (4) 

JOP 7) 

[The signs of (3) and (4) are for a positively traveling wave; for a negatively traveling 

wave they are opposite.] Study shows that (3) and (4) are conditions that require that 

electric and magnetic fields be everywhere normal to each other. In particular, magnetic 

field must be tangential to the conducting surfaces since electric field is normal to them. 

The magnetic field pattern in the transverse plane then corresponds exactly to that 

arising from dc currents flowing entirely on the surfaces of the perfect conductors. 

These characteristics show that a transverse electromagnetic wave may be guided by 

two or more conductors, or outside a single conductor, but not inside a closed con-
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Fic. 8.12 Two-conductor transmission line with integration paths. 

ducting region, since it can have only the distribution of the corresponding two-dimen- 

sional static problem, and no electrostatic field can exist inside a source-free region 

completely closed by a conductor (see Prob. 8.12d). 

We next may show an exact identity with the ordinary transmission-line equations 

for TEM waves on the systems that support them. Consider a transmission line con- 

sisting of two conductors A and B of any general shape (Fig. 8.12). The voltage between 

the two conductors may be found by integrating electric field over any path between 

conductors, such as 1—-O—2 of the figure. It will have the same value no matter which 

path is chosen, since E satisfies Laplace’s equation in the transverse plane and so may 

be considered the gradient of a scalar potential insofar as variations in the transverse 

plane are concerned. 

  

2 2 

v=-| e-a=-] (E, dx + E, dy) (5) 
1 1 

Differentiating this equation with respect to z 

ov [ OBs dy + oy d (6 —— = —* dy + — 
OZ 1 \ dz OZ y ) 

But the curl relation, 

oB 
VxE= -— 

ot 

shows that, if £, is zero, 

dE,  aB dE 0B 
— = — ad —= -— (7)
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By substituting (7) in (6), we have 

av af 
— = —— —B. dx +B.d a Tad (By ae + Be) (8) 

A study of Fig. 8.12 reveals that the quantity inside the integral is the magnetic flux 

flowing across the path 1-0-2 per unit length in the z direction. According to the usual 

definition of inductance, this may be written as the product of inductance L per unit 

length and current J, so (8) becomes 

aV 0 al 
—= --dIl) = -L- 9 
gz or oe) dt ”) 

Equation (9) is one of the differential equations used as a starting point for conven- 

tional transmission-line analysis [Eq. 5.2(3)]. The other may be developed by starting 

with current in line A as the integral of magnetic field about a path a~b—c—d—a. (There 

is no contribution from displacement current since there is no E..) 

    

1=H- dl = 9 (H, dx + Hd) (10) 

Differentiating with respect to z, 

al f aH, dH, 
—_— = “dx + —d 11 
dz ( dz . dz » GD 

From the curl equation, 

dD 
Vx H=— 

ot 

it follows that, if H. = 0, 

oH, aD. dH. oD 
— sy . _ x and x. (12) 
Oz ot OZ ot 

    

Substituting (12) in (11), we have 

al 
2 £0 (D. dy — Did 13 

az at) OY ~ Py (lS) 

Inspection of Fig. 8.12 shows that this must be the electric displacement flux per unit 

length of line crossing from one conductor to the other. Since it corresponds to the 

charge per unit length on the conductors, it may be written as the product of capacitance 

per unit length and the voltage between lines and (13) becomes 

ol aV 
—= -C— (14) 
Oz ot 

Equations (9) and (14) are exactly the equations used as a beginning for transmission- 

line analysis, if losses are neglected (Sec. 5.2). It is seen that these equations may be
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derived exactly from Maxwell’s equations provided the conductors are perfect, and 

since fields in the transverse plane satisfy Laplace’s equation, the inductance and ca- 

pacitance appearing in the equations are the same as those calculated in statics. This is 

of course not the case for the TM and TE waves met in the preceding sections. Waves 

on the ideal transmission line have been shown to be TEM waves with phase velocity 

(we)~'/?, Transmission-line phase velocity is (LC)~!/? so it follows that inductance 
and capacitance per unit length of an ideal transmission line are related by LC = we. 

Tramsmission Limes with Losses If the conductor of the transmission line has 
finite losses, the above argument does not apply exactly. There must be finite Z, at the 

conductor to force the axial currents through the imperfect conductors. In that case 

y? + k? of Eas. 8.2(9)—(12) cannot be zero, and Eqs. 8.2(1) and 8.2(2) do not reduce 

to Laplace’s equation. But so long as the conductors are reasonably good, the axial 

component of electric field is small compared with the transverse component and cor- 

rections are small. The usual way of handling the losses through a series resistance in 

the transmission-line equations can then be shown by perturbation arguments to be an 

excellent approximation.” Losses in the dielectric, however, do not in themselves disturb 

the TEM nature of the wave since these cause conduction currents to flow only in 

transverse directions. In this case treatment by inclusion of shunt conductance computed 

from static concepts and by the wave method with ¢ replaced by e' — je” can be shown 
to be the same (Prob. 8.12c). 

In addition to the principal TEM or transmission-line mode on the two-conductor 

system, there may propagate higher-order modes as well. The higher-order modes may 

be excited at discontinuities in the transmission line and may cause dispersion effects 

or radiation. It is difficult to work out the forms of the higher-order modes in open 

structures such as the two-wire line, but is straightforward to derive them for the coaxial 

line as was done in Sec. 8.10. 

8.13 GENERAL PROPERTIES OF TM WAVES IN CYLINDRICAL CONDUCTING 
GUIDES OF ARBITRARY CROSS SECTION 

In the earlier sections we have seen several specific examples of TM waves; it is the 

purpose of the present section to generalize the formulation for any cylindrical structure. 

The analysis can be done in a generalized coordinate system!? and might appear more 

general, but for simplicity we will use rectangular coordinates with the understanding 

that boundaries may be of arbitrary shape. 

The Differential Equation With the assumed propagation constant e/“'~ ”, the 
finite axial component of electric field for the TM waves must satisfy the wave equation 

° R. E. Collin, Field Theory of Guided Waves, 2nd ed., Sec. 4.1, IEEE Press, Piscataway, NU, 
1991, 

10 R. E. Collin, Field Theory of Guided Waves, 2nd ed., Sec. 5.1, IEEE Press, Piscataway, NJ, 
1997,
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in the form of Eq. 8.2(17): 

V2. E. = —KE. (1) xyz cs 

d
l
 

‘ 

=(y +h)=y + wpe (2) 

The value of k,, which is a constant for a particular mode, is determined by the boundary 

condition to be applied to (1). 

Boundary Condition for a Perfectly Conducting Guide As in the examples, 

the first step in the solution of a practical waveguide problem is to assume that the 

waveguide boundaries are perfectly conducting. The appropriate boundary condition is 

ff, = 0. It is easily shown from the general relations for the transverse field components 

in Sec. 8.2 that 

    

_ _Y dE. _ _Y dE. 
| "2 ax Ey = “2 ay (3) 

iwe OF. we Ok. 
SS w= GS (4) 
Ke Oy Ke Ox 

Relations (3) may be written in the vector form 

— VY 
E, = +73 VE, (5) 

Cc 

where E, is the transverse part of the electric field vector, and V, represents the trans- 

verse part of the gradient. By the nature of the gradient, the transverse electric vector 

H,, is normal to any line of constant £.. It is then normal to the conducting boundary, 

as required, once the boundary is made a curve of constant F, = Q. Thus £, = 0 is 

the only required boundary condition for solutions of (1). 

Cutoff Properties of TM Waves Solution of the homogeneous differential equa- 

tion (1) subject to the given boundary condition is possible only for discrete values of 

the constant k.. These are the characteristic values, allowed values, or eigenvalues of 

the problem, any one of which determines a particular TM mode for the given guide. 

It can be shown (Prob. 8.13e) that, for any lossless dielectric region which is completely 

closed by perfect conductors, the allowed values of &, must be real. Hence the propa- 

gation constant from (2), 

y= ViE- (6) 

always exhibits cutoff properties. That is, for a particular mode in a perfect dielectric, 

y is real for the range of frequencies such that k < k,, y is zero fork = k,, and y is 

imaginary for k > k,. The cutoff frequency of a given mode is then given by 

2 
Inf.Vpe = = =k. (7) 

c
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3 

fc = cutoff frequency 
2r Re= ¥. 

- —l. 
2 0 ne 

  
flfe 

Fic. 8.13 Frequency characteristics of all TE and TM wave types. 

and (6) may be written in terms of ie i and cutoff frequency f,: 

y=a=k, [1 — (2) f<f, (8) 

y = JB = jk fl -(£), f> fe (9) 

The phase velocity for all ITM modes in an ideal ) then has the form 

_ @ _ fe 27]-—1/2 

Up = 3 vj 1 — j (10) 

d 2771/2 

v, = iB = of ~ (4) | (11) 

Universal curves for attenuation constant, phase velocity, and group velocity as func- 

tions of f/f, are shown in Fig. 8.13. Phase velocity is infinite at cutoff frequency and 

is always greater than the velocity of light in the dielectric; group velocity is zero at 

cutoff and is always less than the velocity of light in the dielectric. As the frequency 

increases far beyond cutoff, phase and group velocities both approach the velocity of 

light in the dielectric. 

The group velocity is
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Magnetic Fields of the Waves Once the distribution of E. is found by solution 

of the differential equation (1) subject to the boundary condition E, = 0, the transverse 

electric field of a given mode may be found from relation (3) or (5). The transverse 

magnetic field may be found from relations (4). By comparing (3) and (4), we see that 

E. EY 
x. J 4 (12) 

H, Hy, joe 
These relations show that transverse electric and magnetic fields are at right angles and 

that their magnitudes are related by the quantity y/jwe, which may be thought of as 

the wave impedance or field impedance of the mode: 

Y f.\" 
7, = oO | — — 

™ © joe" () 
1- 

& 

The wave impedance is imaginary (reactive) for frequencies less than the cutoff 

frequency and purely real for frequencies above cutoff, approaching the intrinsic imped- 

ance of the dielectric at infinite frequency. This type of behavior is also found in the 

study of lumped-element filters, and it emphasizes that the wave can produce no average 

power transfer for frequencies below cutoff, where the impedance is imaginary. 

The relations between electric and magnetic fields may also be given in the following 

vector form, which expresses the properties described above: 

zx E, 
Zou 

(13) 

H = +   (14) 

where Z is the unit vector in the z direction. The upper sign is for positively traveling 

waves, the lower sign for negatively traveling waves. 

Power Transfer in the Waves The power transfer down the guide is zero below 

cutoff if the conductor of the guide is perfect. Above cutoff it may be obtained in terms 

of the field components by integrating the axial component of the Poynting vector over 

the cross-sectional area. Since it has been shown that transverse components of electric 

and magnetic fields are in phase and normal to each other, the axial component of the 

average Poynting vector is one-half the product of the transverse field magnitudes. For 

a positively traveling wave, 

! ! Z 
W; = | 5Rete x H*].- dS = =| E||H,| dS = sd. IH? dS (15) 

By use of (4), this may be written 

2.2 ZImw e 
WwW. = 

r 2k4 
| IV.E? dS (16)
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Making use of the relation 

| \V,£.|? dS = z| E2 dS (17) 

(Prob. 8.13e), we obtain 

ZrM ore | 5 Zou | f\" | 5 
= : =— >|> - a 1 W- 22 . Ez dS am NF.) Jee Ez dS (18) 

Attenuation Due to Imperfectly Conducting Boundaries When the con- 

ducting boundaries are imperfect, an exact solution would require solution of Maxwell’s 

equations in both the dielectric and conducting regions. Because this procedure is im- 

practical for most geometrical configurations, we take advantage of the fact that most 

practical conductors are good enough to cause only a slight modification of the ideal 

solution, and the expression w, /2W; in formula 5.11(19) may be used. To compute the 

average power loss per unit length, we require the current flow in the guide walls, which 

is taken to be the same as that in the ideal guide. By the h X Hi rule, the current per 

unit width in the boundary is equal to.the transverse magnetic field at the boundary and 

flows in the axial direction since magnetic field is entirely transverse: 

Wr — L 
bound 2 

The attenuation constant is then approximately 

a, = ML = RPpounalftl” dl 

" 2Wr 2ZrmJ es\4,|? ds 

  J,   - 
& 

R 
2 qd] = Re HJ? al (19) 

2 bound 

  nepers/m (20) 

If desired, the power loss and hence the attenuation constant may be written in terms 

of the distribution of E, only. By use of (4) 

R, w’e* ¢ =< VE, 
‘ 2 ke bound | ” 

Since &, is zero at all points along the boundary, there is no tangential derivative of E, 

there; E. has only the derivative normal to the conductor: 

Rare f aE. |? R f f aE. |? 
Ww, =- —z| qj = —s~|=— —2 2 

* 2ké bound EI 277k f. on at ( ) 

An alternative form for the attenuation constant is then 

oF 

on 
a= gf [f (a /[, a2 2 

Attenuation Due to imperfect Dielectric It is noted that the general form for 

propagation constant (9) is exactly the same as that for the special case of the parallel- 

  2 dl (21)   
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plane guide, Eq. 8.3(15). Hence, the modification caused by an imperfect dielectric, 

taken into account by replacing jwe by jw(e’ — je") or a + jwe, yields the same form 

for attenuation as Eq. 8.5(4): 

    a, = _kei[e == Oy __ = nepers/m (24) 

It is especially interesting to note that the form of the attenuation produced by an 

imperfect dielectric is the same for all modes and all shapes of guides, though of course 

the amount of attenuation is a function of the cutoff frequency, which does depend on 

the guide and the mode. 

8.14 GENERAL PROPERTIES OF TE WAVES IN CYLINDRICAL CONDUCTING 
GUIDES OF ARBITRARY CROSS SECTION 

Finally, we consider waves that have magnetic field but no electric field in the axial 

direction. Because of the treatment is similar to that of TM waves in the preceding 

section, it will be given more briefly. 

The Differential Equation The finite H, of the waves must satisfy the wave equa- 
tion in the form of Eq. 8.2(18): 

V2H. = —2H, (1) 
m= y +k (2) 

Boundary Conditions for a Perfectly Conducting Guide Allowable solutions 

to (1) are determined by the single boundary condition that at perfect conductors the 

normal derivative of H, must be.zero: 

aH, 0 at boundary (3) 
on 

To show that (3) is the required boundary condition, the transverse fields of the wave 

from Eqs. 8.2(9)—(12) are written: 

    Jo@p 0H, jop oH, 
EL = - — Ey, = — 4 

* ke ay , ke ax ) 

_ y OH, _ _y OH, 

OO Tae TE ay » 
Relation (5) may be written in the vector form 

_ iY 
H, = + VA. (6) 

ke 

c
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If H, has no normal derivative at the boundary, its transverse gradient has only a com- 

ponent tangential to the boundary, so by (6), H, does also. Comparison of (4) and (5) 

shows that transverse electric and magnetic field components are normal to one aother, 

so electric field is normal to the conducting boundary as required. 

Cutoff Properties of TE Waves It was mentioned in the preceding section on TM 

waves that k, is always real for dielectric regions completely closed by perfect con- 

ductors; the same can be shown for TE waves. By (2), y then shows cutoff properties 

exactly the same as for TM waves: 

y= VIE- (7) 

Formulas for attenuation constant below cutoff, phase constant, and phase and group 

velocities above cutoff then follow exactly as in Eqs. 8.13(8)—(11) and the universal 

curves of Fig. 8.13 apply. 

Electric Field of the Wave The electric field is everywhere transverse and every- 

where normal to the transverse magnetic field components. Transverse components of 

electric and magnetic field may again be related through a field or wave impedance 

By — er = Zug (8) 

where, from (4) and (5), 

jou f.\?]7'? Zep = eH a li - (2 9 TE y “| (2) | (9) 

This impedance is imaginary for frequencies below cutoff, infinite at cutoff, and purely 

real for frequencies above cutoff, approaching the intrinsic impedance 7 as f/f, be- 

comes large. 

Electric field may also be written in the vector form 

E = ¥Zr(% X H,) (10) 

where Z is the unit vector in the z direction, and the upper and lower signs apply 

respectively to positively and negatively traveling waves. 

Power Transfer im TE Waves Average power transfer in the propagating range 

is, as usual, obtained from the Poynting vector: 

1 1 
Wr = 5 j _RefE x H*]- dS = 5 if E\|H,| ds 

Z 
= 8 | |p as (11)
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Or, using (6) and 

| V,H|2 as = ke | H? dS (12) 

(see Prob. 8.13e), we obtain 

_ W(F/f.)" [ 
WwW, H? dS 

Wire Jes 
Attenuation Due to imperfectly Conducting Boundaries As with the TEM 

mode, there cannot be a true transverse electric wave in most guides with imperfect 

conductors, since most (but not all) of the TE modes have axial currents that require a 

certain finite axial electric field when conductivity is finite. This axial field is very small 

compared with the transverse field, however, so the waves are not renamed. 

The axial component of current arises from the transverse component of magnetic 

field at the boundary: 

J. 
Sz     = |H| = 5 IVH. = 5S (14) 

The last form follows since it has been shown that the transverse gradient of H, has 

only a tangential component d/d/ at the boundary. There is in addition a transverse 

current arising from the axial magnetic field: 

Val = |H,| (15) 
The power loss per unit length is then 

R. - 9 2 

w= > (Wa? + ||] dl (16) 

The attenuation caused by the conductor losses is 

_ RSH? + HPL al 
© Ware lH? aS 
  nepers/m (17) 

Attenuation Due to Imperfect Dielectric Since the propagation constant of the 

TE waves has the same form as for the TM waves, it follows that the form for atten- 

uation due to an imperfect dielectric does also. For a reasonably good dielectric, the 

approximate form, Eq. 8.13(24), may be used. 

8.15 WAVES BELOW AND NEAR CUTOFF 

The higher-order waves that may exist in transmission lines and all waves that may 

exist in hollow-pipe waveguides are characterized by cutoff frequencies. If the waves 

are to be used for propagating energy, we are of course interested only in the behavior
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above cutoff. However, the behavior of these reactive or evanescent waves below cutoff 

is important in at least two practical cases: 

1. Application to waveguide attenuators 

2. Effects of discontinuities in transmission systems 

The attenuation properties of these waves below cutoff have been developed in the 

previous analyses. It has been found that below the cutoff frequency there is an atten- 

uation only and no phase shift in an ideal guide. The characteristic wave impedance is 

a purely imaginary quantity, reemphasizing the fact that no energy can propagate down 

the guide. This is not a dissipative attenuation, as is that due to resistance and con- 

ductance in transmission systems with propagating waves. It is a purely reactive atten- 

uation, analogous to that in a filter section made of reactive elements, when this is in 

the cutoff region. The energy is not lost but is reflected back to the source so that the 

guide acts as a pure reactance to the source. 

The expression for attenuation below cutoff in an ideal guide, Eq. 8.13(8), may be 

written as 

y=a=aji-(L =— /1-|> (1) 
fe A, fe 

As f is decreased below f,, a increases from zero toward the constant value 

20 (2) 
a= — 

A 
c 

when (f/f.)* « 1. This is an important point in the use of waveguide attenuators, since 

it shows that the amount of this attenuation is substantially independent of frequency 

if the operating frequency is far below the cutoff frequency. 

Now let us look for a moment at the relations among the fields of both transverse 

magnetic and transverse electric waves below cutoff. If y = q@ as given by (1) is 

substituted in the expressions for field components of transverse magnetic waves, Eqs. 

8.13(3) and 8.13(4), 

1 OE, 2 10E 
H,=2 f — —_= E. — {/{ — f i ob, 

“ WAFS ke Oy FeJ ke, ox 

; 1 dE, 2 10E 
H = i f i ok, E=- /1- f 1 ok, 

» N\fc/ ke Ax > fo} Kk. ay 

For a given distribution of &, across the guide section, which is determined once the 

guide shape and size and the wave type are specified, it is evident from relations (3) 

that, as frequency decreases, f/f, —> 0, the components of magnetic field approach 

zero whereas the transverse components of electric field approach a constant value. We 

draw the conclusion that electric fields are dominant in transverse magnetic or E waves 

far below cutoff. Similarly, magnetic fields are dominant in transverse electric or H 

waves far below cutoff. If the waves are far below cutoff, the dimensions of the guide
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are small compared with wavelength. For any such region small compared with wave- 

length, the wave equation will reduce to Laplace’s equation so that low-frequency 

analyses neglecting any tendency toward wave propagation are applicable. 

The presence of losses in the guide below cutoff causes the phase constant to change 

from the zero value for an ideal guide to a small but finite value, and modifies slightly 

the formula for attenuation. These modifications are most important in the immediate 

vicinity of cutoff, for with losses there is no longer a sharp transition but a more gradual 

change from one region to another. It should be emphasized again that the approximate 

formulas developed in previous sections may become extremely inaccurate in this re- 

gion. For example, the approximate formulas for attenuation caused by conductor or 

dielectric losses would yield an infinite value at f = f,. The actual value is large 

compared with the minimum attenuation in the pass range since it is approaching the 

relatively larger magnitude of attenuation in the cutoff regime, but it is nevertheless 

finite. Previous formulas have also shown an infinite value of phase velocity at cutoff, 

and with losses it too will be finite. 

8.16 DISPERSION OF SIGNALS ALONG TRANSMISSION LINES AND WAVEGUIDES 

We have in several instances noted the dispersive properties of transmission systems 

when phase velocity, group velocity, or both vary with frequency. In Chapter 5 we 

considered a simple two-frequency group in a dispersive system, but we now wish to 

be more general, using the Fourier integral of Sec. 7.11. There are two classes of 

problems of concer. One is that of a base-band signal, in which the detailed signal is 

of concern. Examples are audio or video signals, or electrical pulses from a computer, 

before being placed on other carrier frequencies. The other is that of modulated signals 

in which the base-band signal is placed on a high-frequency carrier. For the latter case 

we shall consider amplitude modulation and examine the distortion of the envelope. 

Base-Band Signals Given an audio signal, series of pulses, or similar electrical 

waveform, we can express it as a Fourier integral as in Eq. 7.11(15). For a time function 

f(t), the transform pair may be written 

f() = | __ ewe de (1) 

g(w) = | . fe dt (2) 

If each frequency component is delayed in phase by 6z in propagating distance z along 

the transmission system, (1) gives the delayed function at z as 

ft, 2) = 5 J g(wyeter# de 3)
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Fic. 8.16qa Propagation of a 5-ps gaussian pulse along a microstrip line. Strip width = 0.32 
mm, dielectric thickness = 0.4 mm, and ¢, = 6.9. Reproduced by permission from K. K. Li, 

G. Arjavalingam, A. Dienes, and J. R. Whinnery, /EEE Trans. MTT-30, 1270 (1982). © 1982 
IEEE. 

  

  

Now if 

(4). RD 1 

= 
(|e

 

with uv, independent of w, (3) is 

fe) = | g(w)ele—*"") dey = it - 2) (5) 
277 J co Uy 

Thus the original function maintains its shape and propagates at the phase velocity, as 

we have assumed in many wave problems. But any dispersion in v, modifies the func- 

tion, at least to some degree. 

Transmission lines are often used for base-band signals and have some dispersion 

through loss terms and internal inductance as affected by skin effect. Some lines, as 

the microstrip line of Sec. 8.6, have additional dispersion from the presence of multiple 

dielectrics. Figure 8.16a shows the result of a numerical calculation from (3), using the 

dispersion relation of Eq. 8.6(18), for the change in shape of a 5-ps gaussian pulse in 

propagating along a typical microstrip used with short electrical pulses.”! 

NK. K. Li, G. Afavalingam, A. Dienes, and J. R. Whinnery, IEEE Trans. MTT-30, 1270 (1982).
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Modulated Sigmals If the signal (1) is used to amplitude modulate a carrier of 

amplitude V. and angular frequency w,, the resulting modulated wave may be written 

v,(t) = Re{V,e/“'[1 + mf(t)]} (6) 

where mm is a modulation coefficient. In substituting (1) in (6), we use w,, for the 

frequency of the modulating (base-band) signal, and assume that its significant fre- 

quency components extend only over a band —w, = w S wz: 

MB 

u(t, 0) = Rel Ye + ” | 2(w, elem" ‘on || (7) 
7 

Or letting w = w, + w,, 

  
mV, (%* 8 . 

v(t, 0) = Rey Vie7“eo + 2(w — wei dw (8) 
27 Wo WR 

Frequencies above w, in the integral in (8) correspond to upper sideband terms and 

those below w, to lower sideband terms. Each frequency component propagates 

according to its appropriate phase constant 8. Let us expand £6 as a Taylor series 

about @,: 

(w — w? dB _ + (o - wo) 28) 4 
Plo) = Plo.) + lo = ed) a, 2 dw 

owe. (9) 

We 

    

We 

So the modulated signal, after propagating a distance z, is 

Umit, z) = Rel Yee 

(10) 
MR 

x lpr | (ew, )elmlt = 2/0 ,) ~ (ein/ 2d" B/der) +1 dey 
Dar ~ wp m m 

where 

1 d 
—_— = ap (11) 
Ua dw w, 

  

Now if d?8/dw” and higher terms are negligible, (10) is interpreted as 

U»(t, z) = Rel Yet + mi — 2)]| (12) 
g 

so the envelope propagates without distortion at group velocity uv, (though the carrier 

inside moves at a generally different phase velocity). But if the higher-order terms are 

not negligible, the envelope is distorted and there is said to be group dispersion. For a 

gaussian envelope, 

f(t) = Ce7 ly (13)
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Fic. 8.166 [Illustration of the spread of the modulated envelope of a pulse as it travels down a 
system with group dispersion. 

It can be shown (Prob. 8.16c) that the term d*8/dw* causes the envelope to spread to 
a width r’ after propagating distance z, with rT’ given by 

2n\211/2 

! = 7) + (® 6) | (14) 

The spread of a gaussian envelope, illustrated in Fig. 8.165, clearly limits data rates as 

pulses begin to overlap their neighbors. Although a factor in some waveguide problems 

(Prob. 8.16a) the limitation is most important for optical fibers and will be met again 

in Chapter 14. 

  

PROBLEMS 

8.2a As we will see later, one mode of a rectangular waveguide is a TM wave with H, = 0 
and E. = A sin(ax/a) sin(ay/b) with z and t dependence assumed to be e/@!~ ©), 
Find expressions for the transverse field components. At a given plane what are the 

phase relations among the transverse components and between them and E.,. 

8.2b The division into TM and TE classes is not the only way of classifying guided waves, 
as noted in Sec. 8.2. Another frequently useful division employs longitudinal-section 

electric (LSE) with F, = 0 but all other components present and longitudinal-section 
magnetic (LSM) with H, = 0 but all other components present. Find the relations be- 
tween EF, and H, for each of these classes. 

8.3a Add induced charges and current flows, with attention to sign, to the pictures of Figs. 
8.35 and c for the positively traveling TM, and TE, waves. Repeat for negatively 

traveling waves.
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Calculate cutoff frequency for TE,, TE,, TE,, TM,, TM,, TM, waves between planes 

1.5 cm apart with air dielectric. Repeat for a glass dielectric with e'/e, = 4. Suppose 
excitation at 8 GHz is provided at a cross section of the air-filled line and all waves 
are excited. Which wave(s) will propagate without attenuation? At what distance from 
the excitation plane will each of the nonpropagating waves be attenuated to 1/e of its 
value at the excitation plane? 

The slope of an electric field line in the xz plane is dx/dz = E,/E.. Show that the 
curve for an electric field line of a TM, wave, obtained from the expressions for E, 
and E. of the wave, is defined by 

cos Bz = [cos mx,/a)[cos(max/a)] 7! 

where Xx, is the value of x for a given curve at z = Q. Plot one or two lines to verify 

the form shown in Fig. 8.3. [Hint: First express fields as real functions of 2.) 

Similarly to Prob. 8.3c, derive the expression defining magnetic field lines for a TE, 
wave and plot one or two lines to verify the form shown in Fig. 8.3c. 

Find the expression for electric field lines for a TM, wave, plot one or two lines, and 

sketch the remainder to give a plot similar to Fig. 8.3b. Similarly, plot and sketch 
magnetic field lines for a TE, wave. 

8.3f Show that the expression for energy velocity as derived for TM,, waves [Eq. 8.3(37)] 

8.4a 

8.4b 

8.4c* 

8.5a 

8.5b 

8.5c 

8.5d 

8.5e 

8.5f* 

also applies to TE,, waves. 
wt 

Calculate the angle 6 as defined in Fig. 8.4a for ray directions of a TM, mode between 
planes 1.5 cm apart with glass dielectric, e'/e, = 4, for frequencies of 5, 6, 10, and 
30 GHz. 

Obtain the expressions for wave impedance of TM and TE waves, using the picture of 
uniform plane waves reflecting at an angle. 

By suitably changing coordinates as tin Ex. 8.4, show that the expressions 
6.09(18)—(20) for a wave polarized with electric field normal to the plane of incidence 
striking a conductor at an angle correspond exactly to the field expressions for a TE,,, 
wave. 

Find average power transfer and conductor loss for a TE mode between parallel planes 

to verify the expression for attenuation, Eq. 8.5(12). 

Calculate attenuation in decibels per meter for a’ TM, wave between copper planes 
1.5 cm apart with air dielectric. Frequency is 12 GHz. For the same frequency and 
spacing, a glass dielectric with e’/ey = 4, ©”/e’ = 2 X 1073 is introduced. Calculate 
attenuation from both dielectric and conductor losses. 

Prove that the frequency of minimum attenuation for a TM,, mode, from conductor 

losses, is V3f., where f. is cutoff frequency. Give the expression for the minimum 
attenuation and calculate for silver conductors 2 cm apart and air dielectric for the 

m = 1, 2, and 3 modes. 

Show that the transmission-line formula for attenuation constant, Eq. 5.9(7), gives pre- 
cisely the same result as the approximate wave analysis of Sec. 8.5 for the TEM wave. 

Derive the approximate formula for attenuation constant due to dielectric losses by us- 

ing @ = w,/2W,. 

Since E. is equal and opposite at top and bottom conductors for TEM wave in the
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parallel-plane line, it is reasonable to assume a linear variation between the two 
values: 

R 2 E, = (1 +) Re (1 - 22) 
7) a 

Find the modification in the distribution for E, to satisfy the divergence equation for 

E. Find the corresponding modification in H, from Maxwell’s equations. Describe 

qualitatively the average Poynting vector as a function of position in the guide. 

For a symmetric stripline as in Fig. 8.6a with w = 1 mm, d = 2 mm, &, = 2.7, and 
thickness f negligible (but larger than several penetration depths), calculate Z, and 

phase velocity of the TEM mode and the cutoff frequency of the next higher mode. 
[Note that tables of elliptic integrals are required.] 

For e, = 1, the lossless microstrip of Fig. 8.6b can propagate a true TEM wave at the 
velocity of light. Find inductance and capacitance per unit length for a 50-2. line with 

such a dielectric and the required w/d for this from Fig. 8.6c. Calculate the difference 
due to fringing fields between the capacitance per unit length found above and that 
given by the parallel-plane approximation, and express this as an equivalent extra 

width, Aw/d. Now maintaining w/d constant, assuming inductance is independent of 

€,, and transmission-line equations applicable, repeat for other values of e, and plot the 
extra equivalent Aw/d due to fringing as a function of ,. 

Calculate the characteristic impedance for a copper microstrip line with an alumina 
(Al,O, ceramic) dielectric and air above the line. The dimensions should be w/d = 8 
and d = 0.2 mm. Compare the results obtained using the formulas with the graphical 
data in Sec. 8.6. Find the fractional change of Z, between f = 0 and f = 3 GHz. 
Calculate the maximum frequency at which the static approximation should be used. 

Design a stripline with the same materials and substrate thickness d and having the 
characteristic impedance found in Prob. 8.6c for the microstrip line. Calculate and 
compare the attenuations in the microstrip and stripline at 3 GHz assuming conductor 
thicknesses of 0.01 mm. Neglect dielectric losses. 

It is desired to make a 15-( stripline with the maximum possible delay achievable 
with no more than 3 dB attenuation at 10 GHz. Consider two possible lines. One is to 

be made with copper conductors with w = 100 um and alumina (AI,O, ceramic) die- 
lectric and is to be used at room temperature. The other is made with superconducting 

niobium conductors with w = 100 um and undoped silicon dielectric, having s, = 
11.7 and loss tangent tan 6, = 10~° at 4.2 K, at which temperature the line is to be 
used. Take R, = 107° © for niobium at 4.2 K and the strip thickness to be 5 wm for 
copper and 1 ym for niobium. Find the maximum delay achievable with each of the 
lines. 

8.6f Consider the coplanar waveguide strip transmission line shown in Fig. 8.6f. Assuming 
the line is on an infinitely thick dielectric substrate, the electric fields are distributed 
symmetrically above and below the line. 

(i) Argue that this leads to an effective dielectric constant ¢,,. = (e€, + 1)/2. 

(ii) Find the dimensions to give a line with Z, = 50 0 using e, = 3.78 and the fol- 
lowing design formula* 

w . ,{7N £x%in2 ~ = tanh? (2 — =* 
a (= 2 

where Zo, is the characteristic impedance when the dielectric constant is e«, = 1



8.6g 

8.6h 

8.Ja 

8.7b 

8.7¢ 

8.7d 

8.7e 

8.7f 

8.7g* 

8.7h* 

8.71 

Problems 457 

everywhere, and w is the width of the strip located in the center of a gap of 
width a. 

The various frequency components in a signal (e.g., a pulse) propagate at phase veloci- 
ties determined by the effective dielectric constants at those frequencies. As will be 
discussed in Sec. 8.16, this variation of velocity leads to dispersion of signals. The 
fractional variation of phase velocity with frequency in a coplanar waveguide is lower 
at low frequencies than it is in microstrip. Consider the following 50-2. lines with cop- 
per conductors and 0.635-mm-thick alumina (Al,O, ceramic) substrates. The coplanar 

line has a strip width w of 0.266 mm and gaps s of 0.117 mm each. The strip width in 
the microstrip line is 0.598 mm. 

(i) Plot the fractional change of phase velocity of the quasi-TEM mode as a function 
of frequency in the range 0 < f < 50 GHz for the coplanar guide and 0 < f < 35 
GHz for the microstrip. For the microstrip, mark fia. the limit of applicability of 
the static formulation, and also the cutoff frequency of the next higher mode, 
(fewer = CZo/279d. Also mark the cutoff frequency fr, = c/4dVe, — 1 of the 
next higher mode for the coplanar waveguide. 

(ii) Find the fractional change of the phase velocity at the cutoff frequency of the next 
higher mode for the coplanar waveguide. 

Compare the total attenuation at 3 GHz in nepers/meter for the two lines described in 
Prob, 8.6g and explain the physical reason why the higher one is higher. 

For a rectangular waveguide with inner dimensions 3 X 1.5 cm and air dielectric, cal- 
culate the cutoff frequencies of the TE), TEy9, TE,,, TE), TEs, TE22, TMy1, TM22 
modes. Repeat for a glass dielectric with e'/e) = 4. Find lengths to the 1/e distances 
for the nonpropagating modes excited at 10 GHz. 

Derive the expression for magnetic lines in the transverse plane of a TM,, wave and 
plot one or two such lines, comparing with Table 8.7. (See approach in Prob. 8.3c.) 

Derive the expression for electric field lines in the transverse plane of a TE,, wave and 
plot one or two such lines, comparing with Table 8.7, (See approach in Prob. 8.3c.) 

Show that the expression for attenuation because of conductor loss for a TM,,, mode 
in the rectangular guide is as given by Eq. 8.7(14). 

Show that the expression for attenuation because of conductor loss for a TE,,,, mode 
(neither m nor n zero) in the rectangular guide ts as given by Eq. 8.7(26). Explain why 
this does not apply to m = 0 orn = OQ case. 

Recalling that surface resistivity R, is a function of frequency, find the frequency of 
minimum attenuation for a TM,,,, mode. Show that the expression for attenuation of a 
TE,,,, mode must also have a minimum. 

Of the wave types studied so far, those transverse magnetic to the axial direction were 
obtained by setting H. = 0; those transverse electric to the axial direction were ob- 
tained by setting E. = 0. For the rectangular waveguide, obtain the lowest-order mode 
with H, = 0 but all other components present. This may be called a wave transverse 
magnetic to the x direction. Show that it may also be obtained by superposing the TM 
and TE waves given previously of just sufficient amounts so that H, from the two 
waves exactly cancel. This is a longitudinal-section wave as discussed in Prob. 8.2. 

Repeat Prob. 8.7g for a wave transverse electric to the x direction. 

From the form of Eqs. 8.2(9)—(12), show that for a TM wave, imposition of the condi- 

tion £, = 0 on a perfectly conducting boundary of a cylindrical guide causes the other 
tangential component of E also to be zero along that boundary.
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For f = 3 GHz, design a rectangular waveguide with copper conductor and air dielec- 
tric so that the TE,g wave will propagate with a 30% safety factor (f = 1.30f,) but 
also so that the wave type with next higher cutoff will be 20% below its cutoff fre- 

quency. Calculate the attenuation due to copper losses in decibels per meter. 

For Prob. 8.8a, calculate the attenuation in decibels per meter of the three modes with 
cutoff frequencies closest to that of the TE,, mode, neglecting losses. 

Design a guide for use at 3 GHz with the same requirements as in Prob. 8.8a except 
that the guide is to be filled with a dielectric having a permittivity four times that of 
air. Calculate the increase in attenuation due to copper losses alone, assuming that 
the dielectric is perfect. Calculate the additional attenuation due to the dielectric, if 
e"/e' = 0.01. 

Find the maximum power that can be carried by a 6-GHz TE,, wave in an air-filled 
guide 4 cm wide and 2 cm high, taking the breakdown field in air at that frequency as 
2 x 10° V/m. 

The transmission-line analogy can be applied to the transverse field components, the 
ratios of which are constants over guide cross sections and are given by wave imped- 
ances, just as in the case of plane waves in Chapter 6. A rectangular waveguide of 

inside dimensions 4 X 2 cm is to propagate a TE,, mode of frequency 5 GHz. A 
dielectric of constant ¢, = 3 fills the guide for z > O, with an air dielectric for z < 0. 
Assuming the dielectric-filled part to be matched, find the reflection coefficient at 
z = OQ and the standing wave ratio in the air-filled part. 

8.8f Find the length and dielectric constant of a quarter-wave matching section to be placed 

8.9a 

8.9b 

8.9c 

8.9d* 

8.9e 

8.10 

between the air and given dielectric of Prob. 8.8e. 

Derive the set of Eqs. 8.9(1)—(4) by utilizing Maxwell’s equations in circular cylindri- 
cal coordinates and assuming propagation as e~/*. 

What inner radius do you need for an air-filled round pipe to propagate the TE,, wave 

at 6 GHz with operating frequency 20% above the cutoff frequency? What is the guide 
wavelength for this mode? Find the attenuation in decibels per meter of the TMo, 
mode at this frequency, neglecting losses for that calculation. 

Show that the expression for attenuation from conductor losses of a TM,,, mode is 

Rg a, = Vt Gat 
at} 1 — (w,/ w) 

At what value of w/a, is this a minimum? 

Show that the expression for attenuation from conductor losses of a TE,,, mode is 

© anV1 — (@,/0) |\@ Pai — 

For a circular air-filled guide with copper conductor, select a radius so that the TE), 
mode has attenuation of 0.3 dB/km for a frequency of 4 GHz. Estimate the number of 

modes (counting only the symmetric ones with n = 0) that have cutoff frequencies 
below the operating frequency. 

Use the asymptotic forms of Bessel functions in Eqs. 8.10(1) and (2) for TM and TE 
waves, respectively, to show that for large kr; and r,/7; near unity, the cutoff wave- 

length of the n = 0, p = 1 modes is approximately twice the spacing between 
conductors. 
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Sketch examples of mode couplings by each of the six methods described in Sec. 8.11 
using for each a system different from the one utilized in Fig. 8.11 to illustrate it. 

Plot fraction of power coupled from a coaxial line into a waveguide (Fig. 8.11g) as a 
function of frequency from 10 to 11 GHz if probe radius is 1.5 mm and other dimen- 
sions are as stated in the figure caption. 

Demonstrate that, although in a TEM wave E does satisfy Laplace’s equation in the 

transverse plane and so may be considered a gradient of a scalar insofar as variations 
in the transverse plane are concerned, E is not the gradient of a scalar when variations 
in all directions (x, y, and z) are included. 

Two perfectly conducting cylinders of arbitrary cross-sectional shapes are parallel and 
separated by a dielectric of conductivity o and permittivity e. Show that the ratio of 

electrostatic capacitance per unit length to de conductance per unit length is e/a. 

If the conductors are perfect but the dielectric has conductivity o as well as permittiv- 

ity e, show that y must have the following value for a TEM wave to exist (E. = 0, 
H. = Q): 

y= t[jou(o + je)]'/? 
Explain why the distribution of fields may be a static distribution as in the loss-~free 

line, unlike the case for a lossy conducting boundary. 

How many linearly independent TEM waves may exist on a three-conductor transmis- 

sion line? Describe current relations for a basic set. Complete the proof that there 
can be no static field, and hence no TEM wave, inside a single infinite cylindrical 

conductor. 

Show that the circuit of Fig. P8.13a may be used to represent the propagation charac- 
teristics of the transverse magnetic wave, if the characteristic wave impedance and 
propagation constant are written by analogy with transmission-line results in terms of 

an impedance Z, and an admittance Y, per unit length, and the medium is 4, &. 

IZ ss 
Zim = y” y= V4, 

! 

Note the similarity between this and the circuits of conventional filter sections, remem- 

bering of course that all constants in this circuit are in reality distributed constants. 

(4e )de (A=) as 

o—~FI L+YIH—o 

Jopydz jupydz 

oO ~- =O 

FIG. P8.13a 

  

  

Show that all field components for a TM wave may be derived from the axial compo- 
nent of the vector potential A. Obtain the expressions relating £,, H,, and so on to A.,, 
the differential equation for A., and the boundary conditions to be applied at a perfect 

conductor. Repeat using the axial component of the Hertz potential defined in 

Prob. 3.19b.
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Show for a TM wave that the magnetic field distribution in the transverse plane can be 
derived from a scalar flux function, and relate this to #,. With transverse electric field 
derivable from a scalar potential function and transverse magnetic field derivable from 
a scalar flux function, does it follow that both are static-type distributions as in the 

TEM wave? Explain. 

Show that energy velocity equals group velocity for the TM modes in a lossless wave- 

guide of general cross section. 

Show that E.(x, y) for a general TM wave in a perfectly conducting guide satisfies the 
equation 

—1 
ke = | (V,E.)* is | E? as | 

s s 

where V, represents the transverse gradient and the integral is over the cross section of 
the guide. From this argue that k2 is real and positive for waves in which phase is 
constant over the transverse plane. 

Numerical methods can be used to find the propagation constants for waveguides 
of arbitrary cross section. Following the procedures used in solving the Laplace 
or Poisson equations in Sec. 1.21 to get a difference equation solution for the scalar 
Helmholtz equation V7ys + k2y = 0, one finds the residual at the &th step to be 
ROG, y) = WG, y + h) + WG, y — hb) + POW + hy) + POR — h, y) 
—(4 — K2h?)/“~ °c, y). The change of variable from one iteration step to 
the next in the successive overrelaxation method is governed by f™ = y&~Y 
+ OR/(4 — kh*). Apply the equations with 2, set to 1.0 for convenience to make 
anumerical evaluation of k; fora TM,, mode in a rectangular waveguide. Assume a 
rectangular guide with side ratio 1:2. The Helmholtz equation to be solved is Eq. 8.13(1). 

Divide the waveguide into a grid of 18 squares and number the interior points 1-10 
left to right, top to bottom. A reasonable initial guess for the product 42h? = uh? can 
be formed assuming a one-dimensional variation in the smallest dimension; here take 
kh? = 1.1. Start with E, having the following values at the grid points as a first guess: 

for points 1, 5, 6, and 10, EF, = 30; for points 2, 4, 7, and 9, E. = 50; for points 3 
and 8, E. = 70. Use simple relaxation twice to improve the values of E. for the given 
kh”. Then calculate an improved value of k2h* using the relation 

> Ex, Yew + Eg + Ess + Ezy — 4ECz y)I 212 = _ 
> E(x, y) 
  

where N, £, S, W indicate the points surrounding the grid point at (x, y) and the sum- 

mations are over all grid points. Next make two more steps of relaxation to adjust the 

fields to the new k2h*. Then use the above formula to get a second correction to k2h?. 
Compare the result with the value of 2h? found using differential equations in 
Sec. 8.7. 

Derive the equivalent circuit for a TE wave analogous to that of a TM wave given in 
Prob. 8.13a. - 

Show that fields satisfying Maxwell’s equations in a homogeneous charge-free, cur-
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rent-free dielectric may be derived from a vector potential F: 

  

E = _ty x F 
& 

H = —— VV -F) — joF 
[OLE 

(V? + e)F = 0 

Obtain expressions for all field components of a TE wave from the axial component F-_ 
of the above potential function, and give the differential equation and boundary condi- 
tions for F. 

Show that tf one utilizes the potential function A instead of the F of Prob. 8.14b for 
derivation of a TE wave, more than one component is required. 

Show for a TE mode that transverse distribution of electric field can be derived from a 

scalar flux function. How is this related to H.? 

Show that the energy velocity equals the group velocity for the TE modes in a lossless 
waveguide of general cross section. 

8.14f Show for a TM wave in any shape of guide passing from one dielectric material to 

8.15 

8.16a 

8.16b 

8.16c* 

8.16d* 

another, that at one frequency the change in cutoff factor may cancel the change in 7, 
and the wave may pass between the two media without reflection. Identify this condi- 
tion with the case of incidence at polarizing angle in Sec. 6.13. Determine the require- 

ment for a similar situation with TE waves, and show why it is not practical to obtain 

this. 

A particular waveguide attenuator is circular in cross section with radius 1 cm. Plot 
attenuation in decibels per meter for the TE,, mode over the frequency range 1—4 

GHz. Also plot attenuation of the mode with next nearest cutoff frequency. 

For a hollow-pipe waveguide, with B given by Eq. 8.13(9), find the group dispersion 
term d*8/dw". Find the length of waveguide for which the width of a gaussian pulse 
with 7 = 1 ns is doubled if frequency is 10 GHz and w,./w = 0.85. 

Find d?8/dw* for a transmission line with series resistance R and shunt conductance G 
independent of frequency, where R/wL and G/wC are small compared with unity. Re- 
peat for a coaxial line with G = 0 and R govermed by skin effect. Is the resulting 

group dispersion likely to be significant in usual applications? 

Start with a gaussian function f(t) given by Eq. 8.16(13) and find its e(w). Using this 

in Eq. 8.16(10), show that the envelope broadens with z as given by Eq. 8.16(14). 

From the solution of Prob. 8.16c find phase @ at z for the high-frequency pulse with 

gaussian envelope and find the frequency “chirp,” defined as dd/dt.



  

  

9.1 INTRODUCTION 

The preceding chapter dealt with the important special case of waveguides with cylin- 

drical conducting boundaries. In this chapter, we examine several examples of wave- 

guiding systems of different shapes and properties. 

We start with dielectric guides which demonstrate that boundaries other than metal— 

dielectric boundaries can guide waves in cylindrical systems. Dielectric guides are now 

important for optical communication uses and are explored more in Chapter 14. There 

follows an examination of radial guiding, both in cylindrical coordinates and in spher- 

ical coordinates. The former is important in certain classes of resonant systems and the 

latter in antenna theory. Waveguides of special cross section, used either for impedance 

matching or to lower the cutoff frequency for a given transverse dimension, are ana- 

lyzed. Finally, classes of waves with phase velocity much slower than the velocity of 

light are studied both in uniform systems and in periodic systems. These are important 

for such purposes as the interaction with electron beams in traveling-wave tubes and 

for confining electromagnetic energy near a surface. 

The examples selected are not only important in themselves but illustrate a number 

of important principles. The principle of duality shows how the solution of one problem 

may sometimes be used for another by interchange of electric and magnetic fields. 

Cutoff in a waveguide is shown to correspond to a condition of transverse resonance, 

which leads to a variety of approximate and exact techniques for analyzing guides of 

irregular shape. Periodic systems show the importance of spatial harmonics for inter- 

preting the behavior of such systems. 

9.2 DIELECTRIC WAVEGUIDES 

Dielectric rods, slabs, or films can guide electromagnetic energy if surrounded by a 

dielectric of lower permittivity. Guides of this type were analyzed by Hondros and 
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(d) 

Fic. 9.2 (a) Rays totally reflected from dielectric boundaries when €, > e, and 0, > 86,. 

(b) Form of electric field distribution versus x in lowest-order mode. (c) Form of field versus x 
in next higher-order mode. (d) Leaky wave when 6, < @,. 

Debye! in 1910 and demonstrated by Zahn? in 1916. They have become very important 

as guides for light in optical communication systems, and so will be treated in detail in 

Chapter 14. Because of the importance of the principle and some use in other frequency 

ranges, we introduce the subject here with some physical pictures and comparisons with 

metal-clad guiding systems. 

To illustrate dielectric guiding, consider the slab guide of Fig. 9.2a with dielectric 

€, surrounded by s, < «e,. In this picture we consider the mode as made up of plane 

waves reflecting at an angle from the boundaries between dielectrics, interfering within 

the slab to produce a particular mode pattern when conditions are correct.? From the 

concept of total reflection (Sec. 6.12), we know that all energy is reflected from 

the interface if angle 6, of the rays (normals to the wavefronts) is greater than critical 

angle 6., 

6. = sin~!(e,/e,)'/ (1) 

where we assume ft, = [4,. The interference within the slab to produce a mode pattern 

is analogous to that described for the TE,, mode of rectangular guide (Sec. 8.8). The 

differences are in the phases of reflections at the boundaries and in the evanescent fields 

extending into the dielectric regions above and below the dielectric guide. 

The exponential decay of fields in the dielectric of region 2, when 6, > 6,, is given 

D, Hondros and P. Debye, Ann. Phys. 32, 466 (1910). 
2H. Zahn, Ann. Phys. 49, 907 (1916). 

3H. Kogelnik, in Guided Wave Optoelectronics, (1. Tamir, Ed.), 2nd ed., Springer-Verlag, 
New York, 1990.
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by Eq. 6.12(7), which for “4, = [My, gives the decay coefficient in the x direction as 

w g 1/2 

a, = — elf2 s sin* 6, — 1 (2) 
2 

The transverse field distribution in the lowest-order mode is sketched in Fig. 9.25, and 

that for the next higher mode in Fig. 9.2c. The phase constant along the guide is 

B= k,, = k, sin 0, )) 

Cutoff for the dielectric guide is considered the condition for which 6, = 0, at which 

point 8 = k,. For steeper angles, 6, < 0,, there is some energy transmission into the 

outer medium on each reflection, leading to leaky waves, as indicated in Fig. 9.2d. 

For the interfering zigzag plane waves to form a mode, the phase lag after reflection 

from top and bottom and return to the top must be a multiple of 27: 

—2k,d cos 6, + 26 = m27 (4) 

where m is an integer and @ is the phase at reflection from medium 2. Using Sec. 6.11 

we can find phase at reflection from p for TE and TM* waves, respectively, taking 

My = Ho: 

  

I orp = 2 tan! vai — &,/e,/cos | (5) 

2 

2 tan~! (2 sin , — 51 / co | (6) 
2 2 

The mode with m = 0 in (4) exists for arbitrarily small £,d for both TE and TM modes, 

but for other values of m there is a minimum k,d for cutoff (Prob 9.2d). For the m = 

O mode with k,d small, a, is also small so that fields extend well into the external 

region: i.e., the mode is only weakly guided (Prob. 9.2e). 

The same physical principle of wave reflection at the interface applies to fibers and 

other dielectric guides of circular cross section, but the detailed development is more 

complicated. These will consequently be treated in Chapter 14 by a field analysis, 

together with a more detailed treatment of the planar guides. 

  

Pm 

9.3 PARALLEL-PLANE RADIAL TRANSMISSION LINES 

Linearly propagating waves between parallel planes were studied in Secs. 8.38.5 and 

a connection was made between the TEM wave and a transmission-line wave, where 

the two plates are the conductors of the line. Here we analyze radially propagating TEM 

waves between parallel conducting planes and introduce a transmission-line type of 

4 For TM reflection coefficient defined in terms of an electric field component parallel to 

the interface, as in Sec. 6.11, there is an extra a in the phase at reflection. But this is a 
result of a reversal in spatial direction, compensated for on the next reflection.
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Input voltage and load 
impedance assumed 
uniformly distributed 
about circumference 

      

   

    
  a 

(a) (8) 

  
Fic. 9.3 (a) Radial transmission line with input at outer radius. (b) Radial transmission line 
with input at inner radius. 

formalism to facilitate impedance-matching calculations (Figs. 9.3a and b). Higher- 

order modes are introduced in the following section. The wave under consideration has 

no field variations either circumferentially or axially. There are then field components 

£, and H, only. The component £_, having no variations in the z direction, corresponds 

to a total voltage E.d between plates. ‘The component H, corresponds to a total radial 

current 27rH,, outward in one plate and inward in the other. This wave is then anal- 

ogous to an ordinary transmission-line wave and thus derives its name, radial trans- 

mission line. 

For the simple wave described there are no radial field components, and analysis 

may be made by the nonuniform transmission-line theory of Sec. 5.17, allowing L and 

C to vary with radius. However, the wave solution for fields may also be obtained 

directly from the results of Sec. 7.20. Since there are no @ or z variations, v and yy may 

be set equal to zero. Special linear combinations of Bessel functions have been defined 

particularly for this problem,” but for occasional solution of radial line problems, known 

forms of the Bessel functions are satisfactory. The form of Eq. 7.20(6) in the Hankel 

functions is particularly suitable since these can be shown to have the character of 

waves traveling radially inward or outward. Since k, = (y? + k*)!/* by Eq. 8.2(19) 
and y = O has been assumed, then k, = wV pe. 

E, = AHWD (kr) + BH® (kr) (1) 

With v and y zero, the only remaining field component in Eqs. 8.9(1)—(4) is Hy: 

1 oF, Hy, = —— —? = 4 [AH Pe) + BH@U5)] (2) 
J@p or 7) 

The H‘” terms are identified as the negatively traveling wave and the H™ terms as 
the positively traveling wave because of the asymptotic forms that approach complex 

© N. Marcuviiz, in Principles of Microwave Circuits (C. G. Monigomery, R. H. Dicke, and 
E, M. Purcell, Eds.), Chap. 8, McGraw-Hill, New York, 1947.
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exponentials (Sec. 7.15). It is convenient to utilize the magnitudes and phases of these 

functions, 

Hw) = Jv) + jNov) = Gp(vjer™ (3) 

Hv) = Jgv) — jNov) = Gove I™ (4) 

jHPWV) = —N,v) + jv) = Gwe (5) 

jJHPW) = Nyv) + jJ\v) = —GyvjeT™ (6) 

where 

Gov) = [J a(v) ++ Na(v)]!/ 2 Ov) = an] (7) 
Jo) 

J 
Gv) = VJ7@) + Ni@y?, Wo) = an] 2X] (8) 

Expressions (1) and (2) then become 

£, = Go(kr)[Ae/o™ + Be 14k) (9) 

G (kr) fui kr — Justkr $= Z(ia) [Aet¥G) — Be ive] (10) 

where 

, _ ., Golkr) 
Zo(kr) = 1G kr) (11) 

is a radially dependent characteristic wave impedance. 

Evaluation of the constants A and B follows from specification of two field values at 

given radii. For example, given E, at r, and H, at r,, the fields at any radius r are 

    

    

Gy cos(@ — uw) . Gp sin(@ ~ 6.) 
E, = E,— + jZ, ¢ 12 

: Go, cos(@, — ,) Josh Go, cos(@, — wW,) (2) 

G — @ E —~ Hy = H, 1; cos( 7) ij qa, sin(y 9) (13) 

G,, cos(@, — yW,) LoaF ia COS(8, — Wy) 

These are similar in form to the ordinary transmission-line equations except for the use 

of the special magnitudes and phases. A plot of these special radial line quantities versus 

kr is given in Fig. 9.3c. This is not very accurate for small values of kr, so the following 

approximations are then preferred: 

Gov) ~ 2 mn(22) Oe an 2 n( 2) (14) 

2 1 
Gv) ~ — Wo) ~ wn-*(4) (15)  
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FiG. 9.3c Radial transmission-line quantities. 

where y = 0.5772. ... More accurate values can be calculated from the definitions (7) 

and (8) utilizing tables of J and N, although some tables give magnitude and phase of 

H‘ and H@ directly. 
Forms similar to (12) and (13) can be derived for two values of F, specified at 

different radii or two values of H Ps The most useful form, however, is that defining an 

input wave impedance Z, = E_,/H,, when load impedance Z, = E,, /H 4, is given. 

This is 

' 01 Zor, cos(y, — 8.) + jZ, sin(w, — yy) 
  (16) 

Special forms of this for output shorted (Z, = Q) and open (Z, = ©) are especially 

simple and are analogous to the corresponding forms for uniform transmission lines. 

All of the foregoing relationships are given in terms of fields or wave impedances.
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Usually current, voltage, and total impedance are desired. The relations are 

V 

_ da (E, Zo = * 5— (=) (18) 

The sign convention defines higher voltage in the upper plate and outward current in 

the upper plate as positive. The upper sign in (18) is for input radius less than that of 

the load, r, < ,, and the lower sign for the reverse, r, > 7, since in this case the 

convention for positive current would be the opposite of (17). 

—E.d, I= 27H, (17) 

  

9.4 CIRCUMFERENTIAL MODES IN RADIAL LINES: SECTORAL HORNS 

Many higher-order modes can exist in the radial transmission lines studied in the last 

section. All those with z variations require a spacing between plates greater than a half- 

wavelength for radial propagation of energy. For smaller spacing, modes are possible 

with circumferential variations but no z variations. ‘The field components may be written 

E, = A,Z,(kr) sin vo (1) 

Hy = -< A,Zi(kr) sin vd (2) 

vA H, = Z.(kr) cos vb (3) 
kyr 

In the foregoing equations, Z,, denotes any solution of the ordinary vth order Bessel 

equation. For example, to stress the concept of radially propagating waves it may again 

be convenient to utilize Hankel functions: 

Z,(kr) = HiP(kr) + cA Per) (4) 

These circumferential modes may be important as disturbing effects excited by asym- 

metries in radial lines intended for use with the symmetrical modes studied in the 

preceding section. In this case v must be an integer since the wave must have the same 

value at @ = 0 and @ = 27. Waves of the form (1) to (3) may also be supported in a 

wedge-shaped guide with conducting planes at 6 = 0 and @ = ¢ as well as atz =
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FIG.9.4q Wedge-shaped guide or sectoral hom. 

0, d (Fig. 9.4a). The latter case is important as a sectoral electromagnetic horn® used 

for radiation. In this case, since EF. must be zero at @ = 0, @p, 

ya (5) 
Po 

The waves discussed here are interesting in one respect especially. If we think of the 

lowest-order mode (m = 1) propagating radially inward in the pie-shaped guide for 

Fig. 9.4a, it would be quite similar to the TE,, mode of the rectangular guide, although 

modified by the convergence of the sides. We would consequently expect a cutoff 

phenomenon at such a radius r, that the width r.@g becomes a half-wavelength. Simi- 

larly, for the lowest-order circumferential mode in the radial line of Figs. 9.3a and b, 

we would expect a cutoff at such a radius that circumference is one wavelength: 

A 
21, = A for radial line, Por. = 5 for sectoral horn (6) 

A casual inspection of (1) to (3) would not reveal this cutoff since there is no sudden 

change of mathematical form as there was in the rectangular guide at cutoff. However, 

a more detailed study would reveal that there is a very effective cutoff phenomenon at 

about the radius predicted by (6) in that the reactive energy for given power transfer 

becomes very great for radii less than this. The radial field impedance for an inward 

traveling wave is 

E. HY (kr) 
_— = jn ——— = R, — ]X 7 

This impedance becomes predominantly reactive at a value kr ~ v, which is compatible 

with (6). Figure 9.4b shows real and imaginary parts of the wave impedances versus 

kr for v = 9. 

& W. L. Barrow and L. J. Chu, Proc. IRE 27, 57 (1939),
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Fic. 9.46 Wave resistance and reactance for circumferential mode in radial line for vy = 9. 

9.5 DUALITY: PROPAGATION BETWEEN INCLINED PLANES 

Given certain solutions of Maxwell’s equations, we may obtain other useful ones by 

making use of the simple but important principle of duality. This principle follows from 

the symmetry of the field equations for charge-free regions: 

Vx E= —jopH (1) 

V X H = jweE (2) 

It is evident that if E is replaced by H, H by —E, yp by ge, and é by y, the original 

equations are again obtained. It follows that if we are given any solution for such a 

dielectric, another may be obtained by interchanging components as stated. It may be 

difficult to supply appropriate boundary conditions for the new solution since the mag- 

netic equivalent of the perfect conductor is not known at high frequencies, so the new 

solution is not always of practical importance. 

One example in which the principle of duality may be utilized to save work in a 
practical problem is that of the principal mode in the wedge-shaped dielectric region 

between inclined plane conductors (Fig. 9.5). This mode has electric field E,, and mag- 

netic field H,. If there are no variations with ¢ or z, it is evident that the field distri-
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butions can be obtained from those of the radial transmission-line mode (Sec. 9.3) 

through the foregoing principle of duality. Replacing E by H, H by —E, yp by «, and 

é by w in Eas. 9.3(1) and 9.3(2), 

H. = AHW(kr) + BH2@(kr) (3) 

Eg = —J i [AH {?(kr) + BHO (kr)] (4) 

The real advantage is that all the derived expressions 9.3(9)—(16) may be used without 

rederivation, as may the curves of Fig. 9.3c, with the interchange of quantities as above. 

Admittance should be read in place of impedance, and the numerical scale of ZyVe, 

in ohms (Fig. 9.3c) should be divided by (377) to give the characteristic admittance 

Y,/Ve, in siemens. Total admittance is obtained from the field admittance by 

: _ 17H, 6) 
= fF — |— 

total rho Es 

where the upper sign is for r, < r,, and the lower for r, > 7. 

Example 9.5 
USE OF INCLINED PLANES FOR IMPEDANCE MATCHING 

One application of the inclined-plane transmission line might be in impedance matching 

between parallel-plate transmission lines of different spacings, d, and d, (Fig. 9.5). It 

is known from practical experience that such transitions, if gradual enough, supply a 

good impedance match over a wide band of frequencies (unlike schemes studied in 

Prob. 5.7c, which depend upon quarter-wavelengths of line). It is seen from Fig. 9.3c 

that for both Ar, and kr, large (say, greater than 5) the characteristic admittance Yo is 

nearly 1/7 and 6 and ware nearly equal (i.e., 6, ~ Ws, 0, ~ w,). If the parallel-plane 

  
Fic. 9.5 Inclined-plane guide.
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line to the right is matched, its characteristic wave admittance is that of a plane wave, 

1/7. Equation 9.3(16) then shows that with the above approximations the input wave 

admittance is also approximately 1/7, so that the parallel-plane line to the left is also 

nearly matched. This gives some quantitative support to the matching phenomenon 

mentioned. 

  

9.6 WAVES GUIDED BY CONICAL SYSTEMS 

The problem of waves guided by conical systems (Fig. 9.6) is important to a basic 

understanding of waves along dipole antennas and in certain classes of cavity resona- 

tors. In particular, one very important wave propagates along the cones with the velocity 

of light, has no field components in the radial direction, and so is analogous to the 

transmission-line wave on cylindrical systems. This basic wave is symmetric about the 

axis of the guiding cones, so that if the two curl relations of Maxwell’s equations are 

written in spherical coordinates with all @ variation eliminated, it is seen that there is 

one independent set containing Fy, H,, and £, only: 

1a@E,) 18, 

  

———m +t TatH, = 0 1 
r or r 0@ JOR (1) 

I 0 (sin 0H ,) ‘WEE 0 (2) — (sin — Jwek, = 
r sin 6 | a0 i rs 

l 00H 
_+ Ws) — jweE, = 0 (3) 
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FIG. 9.6 Biconical guide.
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It can be checked by substitution that the following solution does satisfy the three 

equations: 

  

  

E.=0 (4) 

rE, = - [Ae /*" + Bel] (5) 
sin 0 

rH, = [Ae /*r — Betty (6) 
? sin @ 

These equations show the now-familiar propagation behavior, the first term repre- 

senting a wave traveling radially outward with the velocity of light in the dielectric 

material surrounding the cones, the second term representing a radially inward traveling 

wave of the same velocity. The ratio of electric to magnetic field E,/H, is given by 7 

for the positively traveling wave and by — 7 for the negatively traveling wave. There 

is no field component in the radial direction, which is the direction of propagation. 

The above wave looks much like the ordinary transmission-line waves of uniform 

cylindrical systems. This resemblance is stressed if we note that the E, corresponds to 

a voltage difference between the two cones, 

V   
Tt — 8 Tw 8g 8 

-| Eg d@ = -n| — [Ae + Be/*] 
8 I sin @ (7) 

g . Le 
27 |n cot 5 [Ae /* + Bel] I 

where the case treated is that of equal-angle cones (Fig. 9.6). This is a voltage which 

is independent of r, except through the propagation term, e*/*”. Similarly the azimuthal 

magnetic field corresponds to a current flow in the cones at 6 = 6): 

I = 2arH, sin (8) 

= 2n[Ae~*" — Bel*] 

This current is also independent of radius, except through the propagation term. A study 

of the sign relations shows that it is in opposite radial directions in the two cones at 

any given radius. 

The ratio of voltage to current in a single outward-traveling wave, a quantity which 

we call characteristic impedance in an ordinary transmission line, is obtained from (7) 

and (8) with B = 0: 

_ nin cot 6/2 

T 
Lo (9) 

For a negatively traveling wave, the ratio of voltage to current is the negative of this 

quantity. This value of impedance is a constant, independent of radius, unlike those 

ratios defined for a parallel-plane radial transmission line in Sec. 9.3. We can also see 

this starting from the familiar concept of Z, as VL/C, since inductance and capacitance
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between cones per unit radial length are independent of radius. This comes about since 

surface area increases proportionally to radius, and distance separating the cones along 

the path of the electric field also increases proportionally to radius. 

So far as this wave is concerned, the system arising from two ideal coaxial conical 

conductors can be considered a uniform transmission line. All the familiar formulas for 

input impedances and voltage and current along the line hold directly, with Z, given 

by (9) and phase constant corresponding to velocity of light in the dielectric: 

B= = = woV ue (10) 

If the conducting cones have resistance, there is a departure from uniformity due to this 

resistance term, but this is usually not serious 1n any practical cases where such conical 

systems are used. 

Of course, a large number of higher-order waves may exist in this conical system 

and in similar systems. These will in general have field components in the radial direc- 

tion and will not propagate at the velocity of light. We shall consider such general wave 

types for spherical coordinates in Sec. 10.7. 

9.7 RIDGE WAVEGUIDE 

Of the miscellaneous shapes of cylindrical guides that have been utilized, one rather 

important one is the ridge waveguide, which has a central ridge added to either the top 

or bottom, or both, of a rectangular section as in Fig. 9.7a. It is interesting from an 

electromagnetic point of view since the cutoff frequency is lowered because of the 

capacitive effect at the center, and could in principle be made as low as desired by 

decreasing the gap width g¢ sufficiently. Of course, the effective impedance of the guide 

also decreases as g is made smaller. One of the important applications is as a nonuniform 

transmission system for matching purposes obtained by varying the depth of ridge along 

the guide, similar to the approach described in Sec. 9.5. 

The calculation of cutoff frequency, which is a very important parameter for any 

shape of guide, also illustrates an interesting approach that may be applied to many 

guide shapes which cannot be solved exactly. At cutoff, there is no variation in the z 

direction (y = 0), so one may think of this as a resonant condition for waves propa- 

gating only transversely in the given cross section, according to the desired mode. For 

example, the TE,) wave in a rectangular guide has a cutoff frequency equal to the 

resonant frequency for a plane wave propagating only in the x direction across the 

guide, thus corresponding to a half-wavelength in the x direction. A very approximate 

calculation of cutoff frequency for the ridge guide might then be made as in Fig. 9.7a 

by considering the gap a capacitance and the side sections one-turn solenoidal induct- 

ances, and writing the condition for resonance: 

pat (c ay 21 (ray (min 1 fis VO 
clr \ 7 2  lar\ g 2 Qa \ welhd 
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(b) 

FiG. 9.7. (a) Cross section of ridge waveguide and approximate equivalent circuit for cutoff 

calculation. (b) Curves giving cutoff wavelength for a ridge waveguide as in (a). Solid curves: 
data from Cohn.’ Dashed curves from Ea. (1). 

  
A better equivalent circuit for calculation of the transverse resonance is one in which 

the two sections A and B are considered parallel-plane transmission lines with a dis- 

continuity capacitance C, placed at the junction between them. (This junction effect 

will be discussed in Chapter 11.) Curves of cutoff frequency and a total impedance for 

the guide have been calculated in this manner by Cohn.’ Some results are shown in 

Fig. 9.7b with comparisons of results from the lumped element approximation (1). As 

might be expected, agreement is better for the smaller gaps. The technique of finding 

cutoff by calculating transverse resonance frequencies—often by numerical means®°— 

is valuable for a variety of irregularly shaped guides. 

The ridge guide illustrates that guides other than two-conductor transmission lines 

can be appreciably smaller than the half-wavelength measure found for the rectangular 

and circular guides if the boundaries concentrate energy appropriately. However, the 

boundary irregularities generally decrease power-handling capacity. 

7 §. B. Cohn, Proc. IRE 35, 783-788 (1947). 

8 See, for example, R. Bulley, IEEE Trans. Microwave Theory Techniques MTT-18, 1022 (1970).
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9.8 THE IDEALIZED HELIX AND OTHER SLOW-WAVE STRUCTURES 

A wire wound in the form of a helix (Fig. 9.8a@) makes a type of guide that has been 

found useful for antennas? and as slow-wave structures in traveling-wave tubes.'° It is 

interesting as an example of a general class of structures that possess waves with a 

phase velocity along the axis much less than the velocity of light, as contrasted with 

most of the waves so far studied, which have phase velocities greater than the velocity 

of light. A rough picture suggests that the wave might follow the wire with about the 

velocity of light, so that its rate of progress along the axis would correspond to a phase 

velocity 

UV, ~c sin w (1) 

where wu is the pitch angle. It is rather surprising that this represents a good approxi- 

mation over a wide range of parameters. It is also interesting to find that a useful analysis 

can be made by considering an idealization of the actual helix. 

The idealization commonly analyzed,'° referred to as the helical sheet, is a cylindrical 

surface in which the component of electric field along the direction of is assumed to 

be zero at all points of the sheet (Fig. 9.8b). Moreover, the component of electric field 

lying in the cylindrical surface normal to the direction of wis assumed to be continuous 

through the surface, as is the component of magnetic field along uw (the latter because 

there is to be no current flow normal to the direction of w). Since the idealization takes 

HO000 
L TTT 

z 

$ 6 

a 

oS |i HHILUIIIL 
(5) 

FiG.9.8 (a) Wire helix. (b) Idealized conducting sheet and curve giving propagation constant. !° 
(c) Section of disk-loaded waveguide. 

  

   
9 J. D. Kraus, Antennas, 2nd ed., Chap. 7, McGraw-Hill, New York, 1988. 

10 J. R. Pierce, Traveling-Wave Tubes, Chap. Ill and Appendix Il, Van Nostrand, Princeton, 
NJ, 1950,
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these conditions to be the same over all the sheet, it would be expected to give best 

results for fine-wire helices of small pitch angle or for multifilar helices with fine wires 

close together. 

To find the propagation constant, we set up the general solutions inside and outside 

the helical sheet and match them at the boundary according to continuity conditions 

stated above. The wave that satisfies the boundary conditions 1s a hybrid mode con- 

taining both TE and TM components. We assume an unattenuated wave so that y = 

jB. Then the separation constant in the general solutions [Eqs. 7.20(5)] is k2 = k? 
+ y? = k° — B*. Since k = w/c and B = w/v,, B > k for waves with phase velocities 
below the speed of light. Therefore, k2 < 0 and k, = j7, where 7 is a real quantity. 

Assuming axial symmetry and that the fields must be finite on the axis and zero at 

infinite radius, the general solutions can be expressed in terms of modified Bessel 

functions [Eqs. 7.14(16) and (17)]. The z variation e~/ is understood in all of the 

following: 

r<a r>a 

EL, = Aypo(tr) EB, = A,K)(7r) (2) 

T T 

'WE WE 
Ag, — — Af, (tr) gp = — AjK (tr) (4) 

A., = Bylp(tr) H,, = B,K(tr) (5) 

T 

i i) 
Ey = — B,I,(tr) Ego = — BK (cr) (7) 

The idealized boundary conditions first described are 

E., sin w + Ey, cos f = 0 (8) 

E., sin f + Eg, cos f = 0 (9) 

E., cos w — Ey, sin f = E,, cos f — Eg sin (10) 

H., sin + Hg, cos # = Hy, sin Ww + Hy, cos w (11) 

The fields (2)—(7) are substituted in (8)—(11). A nonvanishing solution for the field 

amplitude requires that the determinant of the coefficients be zero, which leads to 

7 /o(Ta)Ko (7a) 

(1) 5 (a)K (70) 
= (ka cot (12) 

A solution of this taken from Pierce'® is shown in Fig. 9.8). It is seen that for 

ka cot & > 4, the approximation (1) gives good results.
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Some general comments about slow-wave structures are in order. If it is desired to 

produce a wave with an electric field along the axis, propagating with a phase velocity 

less than that of light (as in a traveling-wave tube where the phase velocity should be 

approximately equal to the beam velocity for efficient interaction with the electrons), 

then, as discussed above, k2 < 0: 

P= -P= Bp? - (13) 
p2\ 1/2 

T= al _ “) (14) 

It is consequently necessary in a cylindrically symmetric system that the Bessel function 

solutions (Sec. 7.20) have imaginary arguments, and they may therefore be written as 

modified Bessel functions. For a TM wave, 

    

E, = Al,(tr) (15) 

WE J WE 
Hy, = Bo = ~ Ah (tr) (16) 

Example 9.8 
CYLINDRICAL REACTANCE WALL TO PRODUCE SLOW WAVES 

If we ask about the boundary conditions that might be supplied at a cylindrical surface 

r = ato support slow waves, we see that, if uniform, it should be of the nature of a 

reactive sheet with 

T [g(7a) ye Wz) 5 
J Ha|,, 7k 1,(za) (17) 

The helical sheet studied earlier may be considered as supplying this required reactance 

through the interaction with the TE waves and external fields caused by the helical cuts. 

The short-circuited sections of radial lines of a disk-loaded waveguide (Fig. 9.8c) may 

also be considered as supplying an approximation to the above required uniform re- 

actance at 7 = a, and will therefore support a slow wave also. The approximate react- 

ance supplied by this structure is 

X= Jo(ka)No(kb) — Jo(kb)No(ka) 

~ "Nl F,(ka)No(kb) — Jo(kbYN (ka) 
  (18) 

Note that if (v,/c)” < 1, ris substantially equal to 8. By the nature of the Jy functions 
(Fig. 7.14c), the field on the axis of such slow-wave structures is much less than that 

on the boundary when fa is large. This is of course undesirable when it is the field on 

the axis that is to act on electrons, as in a traveling-wave tube. Of course, the presence 

of electron space charge will modify the forms of solution somewhat. 
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9.9 SURFACE GUIDING 

The result of Sec. 9.8 suggests a localization of fields near a surface that possesses a 

reactive surface impedance. This concept appeared there in an interior region, but may 

be useful when the fields are in the external region also. Because of the surface-guiding 

principle, the energy 1s maintained near the surface so that it is not radiated or coupled 

seriously to nearby objects. Thus the external region corresponding to Fig. 9.8c would 

be as shown in Fig. 9.9a. The proper solutions for the external cylindrical region for 

a TM wave are the same as Eqs. 9.8(2)—(4) for r > a. For E, and Hy, with e~/” 
understood, 

E. = AK,(tr) (1) 

WE 
Hy = — AK (11) (2) 
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Fic.9.9 (a) Rod with periodic radius variations capable of propagating a slow wave. (b) Planar 

equivalent of (a). (c) Dielectric-coated conducting surface.
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The field reactance at r = a necessary to support such a wave is then 

wy _ ,. TK(tr) 
jx = = INT ear 

ob (Tr) 
    (3) 

r=a 

Equation (3) again represents a positive, or inductive, reactance as did Eq. 9.8(17), and 

the solutions (1) and (2) die off for large r. Phase velocity is less than the velocity of 

light in the external dielectric in order to maintain 7 real, as in Eq. 9.8(13): 

P= — &P (4) 

BSD Ea EN CEE ae TAS A Sa SS Ge 2 SEE baa oad 

SURFACE GUIDING BY A REACTANCE SHEET 

The above concept is perhaps more easily visualized for a plane sheet, as pictured in 

Fig. 9.9b. Substitution in Eqs. 8.2(13)—(16) easily verifies that the following are solu- 

tions of Maxwell’s equations, using the definition (4), again with e/82 wnderstood: 

  

E, = Ce-™ (5) 

iwEeC 
Hy = eo (6) T 

BC 
E. = IS e” (7) 

A surface wave impedance defined for this example is then 

IT == (8) 
WE 

ix E, 

jJA = 7 
Hy x=0 

Again we see that the impedance sheet should be inductive for surface guiding of this 

TM wave (but see Prob. 9.9a), and that the value of 6 must be greater than k if the 

wave is to die away with increasing x. Therefore, phase velocity is less than the velocity 

of light in the dielectric. The spaces between the conducting fins may be considered to 

be shorted parallel-plane transmission lines and the field impedance at the ends of the 

fins can be found from Sec. 8.3 as 

E. 
— = jn tan kd , jn tan 

where d is the height of the fins. It is clear that if kd < 7/2, the surface appears as an 

inductive reactance.
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ON ERAS te daeAba HF 

Example 9.9b 
SURFACE GUIDING BY A DIELECTRIC COATING 

Another important way of obtaining a surface impedance sheet is by coating a conductor 

with a thin layer of dielectric, as illustrated in Fig. 9.9c. The following TM solutions 

for region 1 can be verified by substitution in Eqs. 8.2(13)—(16). The conductor is 

assumed perfect and the argument of the sine is selected to make F, zero at the conductor 

surface,x = ~—d: 

  

E, = Dsnk.x + d) (9) 

iwe,D 
H, = — cos k(x + d) (10) 

i BD 
E, = E cos k,(x + d) (11) 

ke = kt — B? (12) 
From (9) and (10) a field impedance at x = O can be found as follows: 

E, K. jX=—=| =/2£tankd (13) 
Ay x=0 WE} 

This is inductive as required for guiding TM waves and, if equated to (8), will define 

the 6 of the desired surface wave. For small thickness, k,d < 1, (13) becomes 

jkxd 
WE, iX ~   (14) 

Using (4), (8), (12), and (14), we can show that the phase velocity is less than the 

velocity of light in the external dielectric and greater than that in the coating. 

The principle is also applicable to lossy dielectrics and/or conductors, for which a 

finite but relatively small attenuation in the z direction is obtained. Zenneck!! and 
Sommerfeld!” provided the early classical analyses of this phenomenon; Goubau!? il- 
lustrated its usefulness as a practical wave-guiding means by using either thin dielectric 

coatings or corrugations on round wires; a thorough treatment is given by Collin.'¢ 

Surface guiding and dielectric wave guiding are closely related phenomena since one 

boundary is a dielectric interface as treated in Sec. 9.2. The relationship will become 

clearer with the field analysis of dielectric guides in Chapter 14. 

  

NJ. Zenneck, Ann. Phys. 23, 846 (1907). 
A. Sommerfeld, Ann. Phys. Chem. 67, 233 (1899). Described in J. A. Stratton, Electro- 
magnetic Theory, p. 527, McGraw-Hill, New York, 1946. 
G. Goubau, Proc. IRE 39, 619 (1957); J. Appl. Phys. 27, 7779 (7950). 

R. E. Collin, Field Theory of Guided Waves, 2nd ed., Chap. 11, IEEE Press, Piscataway, 
NJ, 1991. 
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9.10 PERIODIC STRUCTURES AND SPATIAL HARMONICS 

The corrugated surfaces used as illustrations of reactance walls in the two preceding 

sections are special examples of periodic systems if the spacing between corrugations 

is uniform. Periodic systems have interesting properties and important applications and 

so will be examined more carefully in this section. We recognize that the treatment as 

a smooth reactance wall, used in Secs. 9.8 and 9.9, is only an approximation since the 

grooves will cause field disturbances not accounted for by this “smoothed out” 

approximation. 

Let us begin by consideration of a specific example, the parallel-plane transmission 

line with periodic troughs in one plate, as illustrated in Fig. 9.10a. If the troughs are 

relatively narrow, they act to waves with z-directed currents in the bottom plate as 

shorted transmission lines in series with the conductor. These lines produce values of 

E, and H, at x = 0, which are essentially constant over the gap width w. Thus the 

boundary condition for £, at x = 0 is as shown in Fig. 9.105, a phase shift of Bod 

being allowed over each period since we will stress propagating waves. The square 

waves shown neglect higher-order fringing fields at the corners, but are better approx- 

imations than the complete smoothing out of the effect (as in Sec. 9.9) and are sufficient 

to illustrate the basic properties of periodic structures. 

To fulfill the boundary condition at x = 0, we might expect to add solutions of 

Maxwell’s equations just as we added solutions of Laplace’s equation in Chapter 7 to 

satisfy boundary conditions not satisfied by a single solution. 

For the present problem let us take d/dy = O and consider waves with E,, E,, and 

H, only. Thus a sum of solutions satisfying Maxwell’s equations and the boundary 

condition of E, = O at x = a may be written by adding waves of the TM form, the 

TEM component being included if the sum includes n = 0: 

E(x,z)= >, A,sinK,(a — xje~JPn? (1) 

_ sy JBn ~ jz E(j,2= », An C08 K,(a — x)e~/® (2) 

H,(x, z) = ira A, cos K,(a — x)e~/Pn? (3) 

where 

Ki, = wpe — B, =  — B; (4) 
The boundary condition illustrated by Fig. 9.10b is a periodic function of z if the phase 

factor is taken out separately. If we expand the resulting periodic function in the com- 

plex form of the Fourier series (Prob. 7.11e), we may write for the boundary condition 

E(0, z) = e~/80? > C e7 2am /d) (5) 
n= —@w
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FiG.9.10 (qa) Parallel-plane transmission line with periodic short-circuited troughs. (5) Idealized 
variations of F. along the lower plate in the structure of (a). (c) w—f relation for spatial harmonics 
of wave with fundamental traveling in +2 direction. (d) w—f relation for spatial harmonics of 
wave with fundamental traveling in —z direction. (e) Low-frequency equivalent circuit for fun- 
damental spatial harmonic of structure in (a). (f) Composite w—8 diagram including passband 

at higher frequency.
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where 

d/2 1 w/2 

C,=- { E(0, zjetforeti@m/4) gy = — | Ee tiem!) dz 
dJ—aj2 ~ d J—w/2 

E, . {naw 
= —o sin( (6) 

Tn d 

By comparing (5) with (1) evaluated at x = O, we can now identify A,, and £B,: 

A — C,, 

"sin K,a mn sin K,a 

_ -o sin(naw/d) 
(7) 

27N 

By Bo + ad (8) 

A wave solution is thus determined for this problem with the approximations described. 

We wish first to stress the different role of the TM solutions in this problem compared 

with that considered previously. In earlier sections TM solutions have been considered 

as “modes” with the inference that each may be excited independently. Here they are 

coupled by the periodic boundary condition and must exist in the proper relationship 

to each other to satisfy this boundary condition. In this capacity they are known as 

“spatial harmonics,” a natural extension of the harmonic character of the Fourier series 

to the periodic system in space. We note especially from (8) that determination of 8 

for any spatial harmonic automatically determines the value of all others. Thus the w—8 

diagram (Sec. 5.12) is periodic in 8 with repetition at intervals of 27/d as illustrated 

in Figs. 9.10c and d. 

Determination of the shape of one period of this plot (say 8,)) requires study of the 

boundary conditions on two field components. We have already considered #. and now 

choose H, as the second component for this example. If the solution for the troughs is 

well approximated by the shorted-transmission-line behavior, the value of H, at x = 

QO, z = O for the shorted lines is given by 

A, — —/0 cot kl 
n 

Thus one might equate this to (3) evaluated at x = O, and A, substituted from (7): 

J jwe . nw 
cot kl = > mk, 8G cot K,a (9) 

This with (4) and (8) determines £6, in principle, although the general solution may be 

difficult. 

For the special case of Byd < 1, lumped-element approximations may be used. The 

fundamental harmonic solution of the corresponding low-pass filter then gives the char- 

acteristics of the fundamental, and from that, the values of B for other spatial harmonics. 

The filter corresponding to the line used in the above example is shown in Fig. 9.10e. 

The shunt capacitance and a part of the series inductance represent the fields in the 

parallel-plate section between grooves, and the shorted-transmission-line grooves con-
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tribute an additional series inductance. The capacitors in Fig. 9.10e each have the value 

C = e(d — w)/a for a unit length in the y direction. The inductance from the section 

between grooves is L, = p.a(d — w) and that from the shorted grooves is L, = (nw/w) 

tan kl (assuming kJ < 7/2). Each inductor in Fig. 9.10e has the value L = 

(L, + L,)/2. 
Although illustrated for a particular example to provide concreteness, the periodic 

character of the w—£ diagram and the relation (8) for phase constant of a spatial har- 

monic apply to any structure of period d. Other important properties are as follows: 

1. The group velocities of all spatial harmonics of a given wave are equal. This 

would be expected so that the wave would stay together, but may be noted either 

from the w— diagrams or by differentiating (8): 

2. Of the infinite number of spatial harmonics, half are backward waves (Sec. 5.16) 

with phase and group velocities in the opposite directions. Thus the 7 = 0, 1, 2, 

and so on of Fig. 9.10c are forward waves, whereas n = —1,—2, and so on are 

backward waves, as is seen by comparing the signs of w/B and dw/dB for the 

various portions of the figure. If the phase velocity of the fundamental spatial 

harmonic is negative, the harmonics are as shown in Fig. 9.10d. Here the n = 0, 

—1, —2, and so on have both phase and group velocities in the negative direction 

and are not backward waves, whereas the n = 1, 2, and so on are backward waves 

with positive phase velocities and negative group velocities. The structure of Fig. 

9.10a has a fundamental forward wave, but other periodic structures may have 

fundamental backward waves. 

3. The field distribution at any plane z = md (m an integer) is the same as atz = 

0 except for multiplication by the phase e~/£0"“, This important property is related 

to Floquet’s theorem,'° and is often taken as the fundamental starting point for 
the study of periodic systems. For the particular example used in this section, 

(1) and (8) yield 

ll 

x 

> A, sin K,fa — xe —iBontd, —j2a7nmn 

y= oe 

(10) E(x, md) 

az 

= e iBoml SA, sin K,(a — x) = e /F0"™E (x, 0) 
n=—%K 

and similarly for the other field components. 

4, The wave is cut off where group velocity becomes zero, shown as w, in Figs. 

9.10c and d. Above this frequency there is a region of reactive attenuation, typical 

of filters in the attenuating region. As frequency is increased, however, other pass 

bands will be found with propagating waves, as illustrated in Fig. 9.10f. Each of 

‘SR. E. Collin, Field Theory of Guided Waves, 2nd ed., Sec. 9.1, IEEE Press, Piscataway, NJ, 
1997},
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these waves has spatial harmonics, just as the low-pass wave studied. The Pierce 

coupled-mode theory!® is especially powerful in giving a picture of the entire 

w— § diagram in a structure with relatively small periodic perturbations if the phase 

constants of the unperturbed system are known. 

9.2a 

9.2b 

9.2¢ 

9.2d 

9,2e 

PROBLEMS 

For a dielectric slab guide with 4, = p>, plot the complement of the critical angle of 

Fig. 9.2a, Ww = w/2 — 86,, as a function of e,/e,. Many dielectric guides have small 
differences between the two permittivities, e, and ¢,(1 — A), where A < 1. For these, 
show that py ~ VA. 

Demonstrate that when 6 = @, (defined as cutoff for the dielectric slab guides), there 
is no decay in medium 2 (outside of slab) and propagation is at the velocity of light in 

medium 2. Show that when 6 approaches 7/2 (grazing incidence at the boundary), 
phase velocity approaches the velocity of light in medium 1. 

Using the definition of cutoff given in Prob. 9.2b, show that the x component of &, at 
cutoff is k,, = (k? — k3)'/2. Calculate the lowest cutoff frequencies (other than zero) 
for TM modes with even and odd symmetry of E, across the slab and similarly for TE 
modes with even and odd symmetries of H, with d = 1 mm, e&, = 4.08&), &, = 4&, 

and py = [M. 

Demonstrate that Eq. 9.2(4) has a solution for arbitrarily small k,d for either TE or 

TM modes in a dielectric slab guide. Show that there is a minimum of k,d which 
increases with m for m > 0. 

(i) For the dielectric slab mode with m = 0, find the external decay constant a, for 

k,d> 1. 

(ii) Also find a, for TE modes with k,d < 1 and compare with the result of part (i). 

9.2f If c, > &,, very little energy is contained in medium 2, and the boundaries appear like 

93a 

“magnetic shorts”; that is, tangential magnetic field approaches zero at the interface. 
Show this from the equations for wave reflections and solve for the lowest-order TE 
mode with such conditions. 

For a TM), wave in a circular waveguide it is desired to insert a blocking impedance 
for a given frequency. To do this, a section of shorted radial line (Fig. P9.3a) is in- 

    

  

      
  

  

(a) (b} 

FIG. P9.3a, b 

16 A. Yariv and P. Yeh, Optical Waves in Crystals, Sec. 6.4, Wiley, New York, 1984.
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9.3e 

Problems 487 

serted in the guide, its outer radius a chosen so that with the guide radius b given, the 
impedance looking into the radial line is infinite at the given frequency. Suppose that 

the radius b is 1.25 times greater than cutoff radius at this frequency for the TMo, 
wave and find the radius a. 

It is sometimes required to break the outer conductor of a coaxial line for insulation 
purposes, without interrupting the rf current flow. This may be accomplished by the 
radial line as shown (Fig. P9.35) in which a is chosen so that with b and the operating 
wavelength specified, the radial line has zero input impedance seen from the line. Find 
the value of a, assuming that end effects are negligible and that 27b/A = 1. 

Find the voltage at the radius a in terms of the coaxial line’s current flowing into the 
radial line at radius b (Fig. P9.35). 

Taking the classical transmission-line equations with distributed inductance and capac- 
itance varying with radius as appropriate to the radial line, 

2 er   p= ma c= 
271 

Show that the equation for voltage as a function of radius is a Bessel equation, and 
that the solutions for voltage and current obtained in this manner are consistent with 

Eas. 9.3(1) and (2). 

Derive forms similar to Eqs. 9.3(12) and (13) if &, is specified at r,, and &, at r,. 
Repeat for 7, specified at r,, and H,, at ry. 

9.3f For a lossy radial transmission line, find series resistance per unit radial distance (as- 

9.4a 

9.4b 

9.5a 

9.5b 

9.5¢ 

suming skin-effect condition) for a conductor of surface resistance R,. Also find shunt 
conductance per unit radial distance for a dielectric with complex permittivity e’ — 
je". Add these to the transmission-line equations (Prob. 9.3d) and obtain the differen- 

tial equation for voltage. 

Sketch lines of current flow for a circumferential mode with y = I in a radial line of 
Sec. 9.4. (Take Z, = J,, for this purpose.) Suggest methods of suppressing this mode 
by judicious cuts without disturbing the symmetric mode. 

A section of the wedge-shaped guide as in Fig. 9.4a may be used to join two wave- 
guides of the same height but different width, both propagating the TE,, mode, and a 

good degree of match is obtained by the process so long as the transition is gradual. 
Suppose the smaller rectangular guide has b/a = § (Fig. 8.7a) and the width a, of the 
smaller guide is such that (f.)te,, = f /1.2. The larger guide has the same height and 

(fore, = £/0.8. Evaluate the wave impedances of the TE,9 modes in both guides 

and compare with those in the sectoral horn at the junctions to the rectangular guides, 

using data of Fig. 9.4b for a wedge angle of 20°. Frequency is 10 GHz. 

In the use of the inclined plane line for matching as discussed in Sec. 9.5, suppose that 

f = 3 GHz, d, = 1 cm, d, = 2cm, kr, = 2.5, and the dielectric ts air. If the line to 
the right is perfectly matched, obtain the approximate standing wave ratio in the line 

to the left. Compare with that which would exist with a sudden transition, considering 
only the discontinuity of characteristic impedance. 

Apply the principle of duality to the TE,,, TEg,, and TMy, modes in circular cylindri- 
cal waveguides to obtain qualitatively the fields of the “dual” modes. For which of 

these might boundary conditions be supplied, allowing changes in the conductor posi- 
tion or shape from those of the original mode? 

A wedge-shaped dielectric region is bounded by conducting planes at @ = 0 and @p,
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9.5d 

9.5e 

9.6a 

9.6b 

9.6¢ 

9.6d 

9.6e 

9.7a 

9.7b 

9.8a 

Chapter9 Special Waveguide Types 

z = 0 and d. Find the field components of the lowest-order mode with E,, H,, and H,. 
Is this the dual of the mode discussed for sectoral horns in Sec. 9.4? 

Discuss the application of the mode of Prob. 9.5c to the matching between rectangular 
waveguides of different height, both propagating the TE,) mode, describing how to 
use the solution of Prob. 9.5c to estimate reflections and the approximations involved. 

Show that if &7, and kr, in the inclined planes of Fig. 9.5 are both large, a matched 
parallel-plane transmission line with wave impedance ‘n at 1, gives the same 7 at rs, 
so that a parallel-plane line at that position would also be matched. 

Find expressions for the voltage, current, and characteristic impedance for the princi- 
pal waves on a transmission line consisting of two coaxial, common-apex cones of 
unequal angles. 

Write the dual of the mode studied in Sec. 9.6. Can it be supported by physical 

boundaries using perfect conductors? 

One point of view toward a cylindrical conductor excited by a source across a gap at 
z = O (Fig. P9.6c) is that it is a nonuniform transmission line propagating effects 
away from the gap. (This point of view is used in one theory of cylindrical antennas to 

be presented in Sec. 12.25.) That is, an elemental section at z may be considered as a 
biconical line passing through radius a at z. Write the expression for characteristic 

impedance as a function of z and plot versus z/a for air dielectric. 

Exciting 
field 

  

FIG. P9.6c 0 

For the biconical line of Fig. 9.6, find a capacitance per unit length at radius r based 
upon charge per unit length along the cones and voltage as defined in Sec. 9.6. Simi- 

larly, find an inductance per unit length based upon current at r and the magnetic flux 

between concentric spheres at r andr + dr. Then check velocity (LC)~ '/? and char- 
acteristic impedance (L/C)!/2. 

For a lossy biconical guide, find series resistance per unit length (assuming skin-effect 

conditions) for a conductor of surface resistance R,. Also, find shunt conductance per 
unit length for a dielectric with complex permittivity 6’ — je". 

As a demonstration of the technique of finding cutoff frequencies by calculating trans- 
verse resonant frequency, find the cutoff of a TM), mode in circular guide as the reso- 
nance of a radial line mode. 

For a TE mode in the small-gap ridge waveguide, the energy stored in electric fields is 
predominantly in the gap region. If electric field is assumed uniform at E, over this 

region, estimate the stored electric energy uv, per unit length for a single propagating 
wave in such a guide. If power transfer is v,(: + U4), and magnetic energy is equal 

to electric energy, calculate power transfer for a guide with g = 1 mm, 2d = I cm, 
E, = 10° V/m, air dielectric, and operating frequency 1.3 times cutoff frequency. 

Assuming (U, /cy <1, plot kaX/1 versus Ba for a slow-wave structure. State the re- 
quirements on the reactance in order that there may be any slow-wave solution of this 
type. What should X/1 be for Ba large?
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Problems 489 

Show that a reactance sheet might be used as the boundary condition on fast waves of 
the TMo, type studied in Sec. 8.9. Plot the required value of kaX/1 as a function of 
k.a. Under what conditions might there be a slow wave and a series of fast waves in a 
given guide of this type? 

Imagine a parallel-plane transmission line of spacing 2a in the x direction, for which 
both upper and lower planes are cut with many fine straight parallel slits that lie at an 
angle w from the y direction as in Fig. P9.8c. Assume no variations with y, and apply 
approximations as utilized in the helical sheet analysis, obtaining the field components 

for propagation in the z direction, the complete equation determining f, and the ap- 
proximate solution of this for ka cot & > 1. 

  

    

  

Qa 
FIG. P9.8c 

Analyze a TE surface wave over a plane with no variations in y and show that a capa- 
citive reactance is necessary to produce an exponential decay with x. 

For the TM surface wave established by the thin dielectric coating on a perfect con- 
ductor, find the average power transfer in the z direction. Find the approximate atten- 
uation if the conductor at x = —d has a surface resistance R,. 

Repeat Prob. 9.9b with a perfect conductor and a dielectric with a small lossy part, 
&; = €, — je; with e} <6). 

It is desired to pass an electron beam 1 mm above the structure in Fig. 9.95. To match 

the velocity of the electrons, a wave at 18 GHz should travel at 0.1 the speed of light. 

Design the fins to produce the appropriate impedance at x = 0. How much weaker is 
the field at the beam than at x = 0? 

Making the assumptions that &/ < 1 and Bod < 1, plot the lowest-frequency passband 
for the structure of Fig. 9.10a@. Plot the curve for all 8 and state your reasoning. 

Take the same approximations as in Prob. 9.10a, but assume the “troughs” are open 
circuited. Find the equivalent lumped-element circuit, the propagation constant of the 

fundamental, and sketch the w— diagram of this wave. Note the fact that the cutoff 

region includes w = 0 and frequencies up to some lower cutoff frequency. 

Find the low-frequency portion of the w—f§ diagram for a periodic transmission system 

composed of parallel L—C circuits in both the series and shunt legs. Note that the fun- 
damental spatial harmonic is a backward wave if the resonant frequency of circuit in 
the series leg is lower than that for the shunt leg. 

The example used in Sec. 9.10 was a closed line. Consider an open region, such as 

those studied in Sec. 9.9 for surface wave propagation. What regions of the w—f plot 

will represent nonradiating or guided surface waves? 

Illustrate Prob. 9.10d by solving a problem with the structure at x = O as in Fig. 9.10a 

but with the top plate removed so that the region extends to infinity.



  

  

10.1 INTRODUCTION 

Resonant circuits can be either the lumped-element type, made by combining separate 

capacitors and inductors, which are small compared with a wavelength, or distributed, 

as was seen for sections of transmission line in Chapter 5. In a lumped-element circuit, 

a capacitor is used for storage of electric energy and an inductor stores magnetic energy; 

at the resonant frequency, there is an exchange of energy between the inductor and the 

capacitor every quarter-cycle. There is also an exchange between electric and magnetic 

energies every quarter-cycle in the distributed resonant circuit. In this case, however, 

the same region is used for both energies, rather than having separate components for 

each type. 

Distributed resonant circuits utilize the resonant properties of standing waves set up 

by interference between forward and reverse traveling waves on transmission structures 

and, hence, are generally of a size comparable with a wavelength. This idea was intro- 

duced in Sec. 5.13 for a shorted transmission line with length equal to a multiple of a 

quarter-wavelength. Some closed metal cavities can be understood as sections of trans- 

mission structures with short-circuited ends and therefore containing standing waves. 

Strip-type structures such as microstrip, used in microwave and millimeter-wave cir- 

cuits, make light, compact resonant transmission-type structures. A solid dielectric- 

cylinder resonator can be made using a section of a dielectric rod transmission structure 

(Sec. 9.2). 

Not all resonators are simple enough in shape to be considered as sections of a wave- 

guiding system, and for these, other methods of solving the boundary value problem 

are required. We shall see some small-gap cavities that are particularly useful for elec- 

tron devices. Some of these may be considered as capacitively loaded transmission 

lines. In others, the electric and magnetic energies are effectively separated so they may 

be considered as lumped L—C circuits, with the one-turn inductor providing the self- 

shielding. 

The oscillating energy is introduced by a probe or other means of coupling to the 

resonant structure. If the energy is provided by the probe at one of the many resonant 

frequencies, the impedance seen by the input probe is real. If the energy coupled in is 

greater than the losses in each cycle, the oscillating waves will increase in amplitude 

until the losses just equal the energy supplied. Losses take place in the surfaces of the 

metals, in any dielectrics present, and, in open structures, through radiation. If the source 

490
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excites the structure at a frequency somewhat off resonance, the energies in electric 

and magnetic fields do not balance. Some extra energy must be supplied over one part 

of the cycle and it is given back to the source during another part of the cycle; thus, 

the line acts as a reactive load on the exciting source, in addition to a resistive com- 

ponent representing the smail losses. The similarity to ordinary tuned-circuit operation 

is evident, and as with such circuits, the concept of Q is useful in describing the effect 

of losses on bandwidth. 
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Resonators of Simple Shape 

10.2 FIELDS OF SIMPLE RECTANGULAR RESONATOR 

For the first mode to be studied in some detail, we shall choose that mode in a rectan- 

gular conducting box which may be considered the standing wave pattern corresponding 

to the TE,, mode in a rectangular guide. As was done in the study of waveguides, the 

conducting walls will be taken as perfect, and losses in an actual resonator will be 

computed approximately by taking the current flow of the ideal mode as flowing in the 

walls of known conductivity. 

In the rectangular conducting box of Fig. 10.2a, imagine a TE,, waveguide mode 
oriented with its electric field in the y direction and propagating in the z direction. The 

condition that Ey shall be zero at z = OQ and d, as required by the perfect conductors, 

is satisfied if the dimension d is a half-guide wavelength. Using Eq. 8.8(11), 

A A 

2  2V1 = (A/2ayr 
  

Then the resonant frequency is 

j, = v Va + d? (1) 

od 2adV we 

To obtain the field distribution in the dielectric interior, we add positive and negative 

propagating waves of the form of Eqs. 8.8(4) and 8.8(5) 

E, = (E,e + E_ei®) sin — (2) 
a 

1 | | 
H, = —-—— (Ee! — E_e!®) sin — (3) 

Zee a 

rp { Xr , 
H=t (2 )ie ev + E_e!P?) cos — (4) 

7 \2a a
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        (a) 

Fic. 10.2 (a) Rectangular cavity. (b) Electric and magnetic fields in rectangular resonator with 
TE, 9, mode. Solid lines represent electric field, and dashed lines, magnetic field. 

Since Ey must be zero atz = 0,k_ = —E_.,, as we would expect, since the reflected 

wave from the perfectly conducting wall should be equal to the incident wave. £,, must 

also be zero at z = d, so that 8B = 7/d. Then (2)—(4) may be simplified, letting 

Eo = —2jE,.: 

  

1X WZ 
E,, = E> sin — sin — 5 y o Sin — sin (5) 

Af — Fo Mig cos “ (6) 
xX Joy 2d d 

Eg A C Z 
H, = j—2°—cos— sin — (7) 

In studying the foregoing expressions, we find that electric field passes vertically 

from top to bottom, entering top and bottom normally and becoming zero at the side 

walls as required by the perfect conductors. The magnetic field lines lie in horizontal 

x~z planes and surround the vertical displacement current resulting from the time rate 

of change of E,. Fields are sketched roughly in Fig. 10.2b. There are equal and opposite 

charges on top and bottom because of the normal electric field ending there. A current 

flows between top and bottom, becoming vertical in the side walls. Here we are re-
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minded of a conventional resonant circuit, with the top and bottom acting as capacitor 

plates and the side walls as the current path between them. In the lumped-element 

circuit, electric and magnetic fields are separated, whereas here they are intermingled. 

Because the mode studied here has one half-sine variation in the x direction, none in 

the y direction, and one in the z direction, it is sometimes known as a TE,), mode. The 

coordinate system is of course arbitrary, but some choice must be made before the mode 

can be described in this manner. 

10.38 ENERGY STORAGE, LOSSES, AND Q OF A RECTANGULAR RESONATOR 

The energy storage and energy loss in the rectangular resonator of the preceding section 

are quantities of fundamental interest. Since the total energy passes between electric 

and magnetic fields, we may calculate it by finding the energy storage in electric fields 

at the instant when these are a maximum, for magnetic fields are then zero in the 

standing wave pattern of the resonator: 

d rb fra 
E 2 

U = (Ue) mnax = 5 j I J |E,P dx dy dz 

Utilizing Eq. 10.2(5), we see that 

d rb ra E 4 TX | 4 WZ 
U = © | | E2 sin? — sin® — dx dy dz 

2/0 Jo Jo a d oot 

bd a) 4.4 _ sabd 
2 2 8 

To obtain an approximation for power loss in the walls, we utilize the current flow 

in the ideal conductors as obtained from the tangential magnetic field at the surface. 

Referring to Fig. 10.2a, 

eE5 a d rp 
5 0 

Front: J, = —Ayl.= Back: Jy = Hy s<0 

Left side: J,, = —AH.|,<0 Right side: J,, = H,|,-4 

Top: J. = TH. J. = Ay Bottom: J, = H.,J,, = —H, 

If the conducting walls have surface resistivity R,, the foregoing currents will produce 

losses as follows: 

R b fa d rb 

w= fof P aneeodcay +2] | paltao da 
2 0 /0 0 40 

+ 2 f i, [|W]? + |A.P] dx | 

In this equation, the first term comes from the front and back, the second from the left 

and right sides, and the third from top and bottom. Substituting from Eqs. 10.2(6) and
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10.2(7) and evaluating the integrals, 

  

Rd ab bd ifa_d 
= —— F2)—- +> +-(-4+- 2 

M1 87° | a 2 (: ‘) @) 

The Q of the resonator may be defined from the basic definition of Eq. 5.14(4): 

WU 
= —— 3 W, © 

Substituting (1) and (2) with A from Eq. 10.2(1), we have 

2b(a? + d?)7/? 
  

AR. | ad(a* + d*) + 2b(a? + d?) 

Note that for a cube, a = b = d, this reduces to the expression 

Tn n = — = 0.742 — 5 Qoube 6 R, R, ( ) 

For an air dielectric, y ~ 377 ©, and for a copper conductor at 10 GHz, 

R, ~ 0.0261 Q, the Q is about 10,730. Thus we see the very large values of Q for such 

resonators as compared with those for lumped circuits (order of a few hundred) or even 

with resonant lines (order of a few thousand). In practice, some care must be used if 

Q’s of the order of that calculated are to be obtained, since disturbances caused by the 

coupling system, surface irregularities, and other perturbations will act to increase the 

losses. Dielectric losses and radiation from small holes, when present, may be especially 

serious in lowering the Q. 

It will be shown in Chapter 11 that a lumped circuit model applies to a cavity mode 

in the vicinity of resonance. From it we can deduce that the Q, defined in terms 

of stored energy and power loss, is also useful in estimating bandwidth of the cavity 

just as for the lumped resonant circuit. If Af is the distance between points on the 

response curve for which amplitude response is down to 1/ \/2 of its maximum value 

(Sec. 5.14), 

= =a 6) 

Thus, for the foregoing, a Q of 10,000 in a cavity resonant at 10 GHz will yield a 

bandwidth between “half-power” points of 1 MHz. 

10.4 OTHER MODES IN THE RECTANGULAR RESONATOR 

As has been noted, the particular mode studied for the rectangular box is only one of 

an infinite number of possible modes. If we adopt the point of view that a resonant 

mode is the standing wave pattern for incident and reflected waveguide modes, any one 

of the infinite number of possible waveguide waves might be used, with any integral
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number of half-waves between shorting ends. We recognize that this description of a 

particular field pattern is not unique, for it depends on the axis chosen to be the “di- 

rection of propagation” for the waveguide modes. Thus (see Prob. 10.2b) the simple 

mode studied in past sections would be a TE,,, mode if the z axis or x axis were 

considered the direction of propagation, but it would be a TM,,, mode if the vertical 

(y) axis were taken as the propagation direction. In the following, a coordinate system 

will be chosen as in Fig. 10.2a, and field patterns will be obtained by superposing 

incident and reflected waves for various waveguide modes propagating in the z 

direction. 

The TE,np Mode _ If we select the TE,,,, mode of a rectangular waveguide (see 

Sec. 8.7), addition of positively and negatively traveling waves for H, gives 

mmx Nn 
= (Ae /* + Be/P) cos —— cos — 

a 

Since the normal component of magnetic field, H., must be zero at z = 0 andz = d, 

then B = —A and Bd = pz with p an integer. Let C = —2jA. 

ae ae INTX n 
A A(e~/#* — e/F*) cos —— cos = 

a 

| 

(1) 
MUITX AWyY | pz 

= C cos ——— cos —— sin 
a b d 

  

Then, substituting (1) in Eqs. 8.2(13)—(16), remembering that for the negatively trav- 

eling waves all terms multiplied by B change sign, 

mo mmx nN 
H, = IE (Ae /® — B ven( 2) sin cos —> 

a a 

    

  

  

ke 5 

= “p (P= ("| sin —= cos = cos — (2) 

A, = -5 (22) (2 cos —= sin = cos — (3) 

Ey. = or (2) cos = sin = sin — (4) 

Ey a ("= sin — COs — sin — (5) 

where B = on and, from Eq. 8.2(18), 

ee a b
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From (6) and Eq. 8.2(19) we find the resonant frequency: 

2 2 2711/2 

fo =——=|(™") +(") + (4 (7) 
277 V [LE a b d 

The TM,,.» Mode In a similar manner, positively and negatively traveling TM,,,, 

modes in a rectangular waveguide may be combined to yield 

  

  

  

EL = D sin ~~ sin —~ cos ~~ (8) 
° a b d 

B, = ~2 (22) (™) cos ™ sin 2 sin ° 

Ey = “2 (22\(= , na sin —— cos — sin (10) 

H, = (= b PE sn I cop "2 cog PME (11) 

A, = a ("= 7 cae —= sin = cos — (12) 

The quantity k2 and resonant frequency f, are as in (6) and (7). 

General Comments We note first that TM and TE modes of the same order m, n, 

p have identical resonant frequencies. Such modes with different field patterns but the 

same resonant frequency are known as degenerate modes. Other cases of degeneracy 

may exist as in a cube, a = b = d, where orders 112, 121, and 211 of both TM and 

TE types have the same resonant frequency. 

It is also apparent from (7) that, as the order of a mode becomes higher for a given 

box size, the resonant frequency increases. Put differently, it means that to be resonant 

at a given frequency, the box must be made bigger as the order increases. This is to be 

expected, since more half-sine waves are to fit in each dimension. It can be shown 

(Probs 10.4b and 10.4c) that Q increases at a given frequency as one goes to higher 

mode orders. This too is logical, since the larger box has a greater volume-to-surface 

ratio, and energy is stored in the volume, whereas it is lost on the imperfectly conducting 

surface. The high-order modes are consequently useful in “echo boxes” where a high 

Q is desired so that the energy will decay at a very slow rate after being excited by a 

pulse. 

10.5 CIRCULAR CYLINDRICAL RESONATOR 

For a circular cylindrical resonator (Fig. 10.5) there is a simple mode analogous to that 

first studied for the rectangular box (Sec. 10.2). The vertical electric field has a maxi-
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Fic. 10.5 Sections through a cylindrical cavity with fields of TMy,) mode. Convention is as in 
Table 8.9. 

mum at the center and dies off to zero at the conducting side walls. A circumferential 

magnetic field surrounds the displacement current represented by the time-varying elec- 

tric field. Neither component varies in the axial or circumferential direction. Equal and 

opposite charges exist on the two end plates, and a vertical current flows in the side 

walls. The mode may be considered a TM), mode in a circular waveguide operating at 

cutoff (to give the constancy with respect to z), or it may be thought of as the standing 

wave pattern produced by inward and outward radially propagating waves of the radial 

transmission line type (Sec. 9.3). From either point of view we obtain the field 

components 

  

  

EB, = EpJo(kr) (1) 

iE 
Hg = —2J,() (2) 

7) 

2.4 
g = Por — 2-405 (3) 

a a 

Then the resonant frequency is 

k 2.405 
fo = = (4) 

° lav pe 27aV pe 

The energy stored in the cavity at resonance may be found from the energy in the 

electric fields at the instant these have their maximum value. Take a and d, respectively,
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as radius and length of the cavity: 

* slE,P 2 f° 
U=d | ——2ar dr = te dEg | rJo(kr) dr 

0 2 0 

This may be integrated by Eq. 7.15(22): 

2 

U = me dE2 > J?(ka) (5) 

If the walls are of imperfect conductors, the power loss may be calculated 

approximately: 

  

2 
Is,   

R “R 
W, = 2aad = + 2 | — lJ. |? 2 ar dr 

2. o 2 

The first term represents losses on the side wall, the second on top and bottom. The 

current per unit width J,. on top and bottom is +H,, and J,, on the side wall is the 

value of H, at r = a. Substituting from (2), we see that 

Eo “ES 
W, = @R,| ad — Ji(ka) + 2 | — ri(kr) dr 

7) 0 7) 

This may also be integrated by Eq. 7.15(22), recalling that J)(ka) = O is the condition 

for resonance: 

maR,E3 
1 = 22 Nkaid + al (6) 

The Q of the mode may then be obtained as usual from power losses (6) and energy 

stored (5), using (4) for resonant frequency: 

WU 7) Pou 

© Ww, ~ R,2@/d +0) ° 
where 

Poi ~= 2.405 

An infinite number of additional modes may be obtained for the cylindrical resonator 

by considering others of the possible waveguide modes for circular cylindrical guides 

as propagating in the axial direction with an integral number of half guide wavelengths 

between end plates. In this manner the standing wave pattern formed by the superpo- 

sition of incident and reflected waves fulfills the boundary conditions of the conducting 

ends. Table 10.5 shows a TE,, mode, a TM), mode, and a TE,, mode, each with one 

half guide wavelength between ends. The resonant wavelengths shown are obtained by 

solving the equation 

Av r Xr 27 -1/2 

d= b= Ph}, _ (5 (8) 
2 2 A.
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Table 10.5 
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The corresponding resonant frequencies are shown in the table. For these modes the 

integer p is unity in (8), and cutoff wavelength A, is obtained from Sec. 8.9. Note that 

in the designations TE,,,;, [Mo);, TE), the order of subscripts is not in the cyclic 

order of coordinates, 1, @, Zz, since it is common in circular waveguides to designate the 

@ variation by the first subscript. 

Of the foregoing modes, the TE,,, 1s perhaps the most interesting since it has only 

circumferential currents in both the cylindrical wall and the end plates. Thus, if a re- 

sonator for such a wave is tuned by moving the end plate, one does not need a good 

contact between the ends and the cylindrical wall since no current flows between them.
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For both of the other modes shown (and in fact all except those of type TE,,,) a finite 

current does flow between the cylinder and its ends so that any sliding contact must be 

good to prevent serious loss. 

As with the rectangular resonator, it would be found that higher wave orders (those 

having more variations with any or all coordinates r, d, z) would require larger reson- 

ators to be resonant at a given frequency. The Q would become higher because of the 

increased volume-to-surface ratio, but the modes would become close together in 

frequency relative to the resonant frequency so that it might be difficult to excite one 

mode only. 

10.6 STRIP RESONATORS 

Strip-type resonant structures are used in microwave and millimeter-wave circuits as 

single resonant elements and as components in filters. Such structures are light and 

compact, though more limited in power-handling capability than the box resonators 

discussed in the preceding sections. The quality factor Q of this kind of resonator is 

limited by losses in the conductors and dielectric, and is also decreased by radiation, 

since they are open structures. The examples shown here are of the common microstrip 

configuration (Sec. 8.6), with the strips on a dielectric substrate coated on the opposite 

side with a metallic ground plane, but similar arrangements can be used with the co- 

planar configurations. 

Figure 10.6a shows a microstrip resonator equivalent to the resonant transmission 

line with short-circuited ends described in Sec. 5.13. To satisfy the boundary conditions 

at the ends, the strip length / must be 

| = na,/2 (1) 
where A, = u,/f = Ao/V Eqs; and n is an integer. We assume negligible variation of 
the fields across the strip. 

Short circuits in microstrip require connections (“vias”) through the dielectric, so a 

more common and convenient arrangement is to leave the ends of the strip open, rather 

than shorted. Again, / = nA, /2 in the simple model that assumes ideal open circuits at 

the ends. However, there are fringing fields at the ends and these can be represented 

by an added length A/ so that the resonance condition is 

1 + 2Al = na,/2 (2) 
The value of Al in the usual situation where the dielectric and ground plane extend 

beyond the end of the strip has been found by numerical methods. Practical calculations 

can be made from empirical formulas that have been fit to the results of the calculations. 

The following formula is accurate to about 5% for 0.3 < w/d < 2 and 1 < e, < 50:! 

Al (Ese + 0.3)(w/d) + 0.262] 

q | ale  — 0.258)[Ww/d) + 0.813] 
TR, K. Hoffmann, Handbook of Microwave Integrated Circuits, Arfech House, Norwood, 

MA, 1987. 

  (3)
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Lense 

  

Ground plane 

(a) (b) 

Fic. 10.6 (a) Microstrip resonator with short-circuited ends. (b) Open-circuited microstrip 

resonator showing capacitively coupled input and output. 

where w is the strip width, d is the dielectric thickness, and &.,, is defined as in Sec. 

8.6. Figure 10.6b shows an open-circuit resonator with capacitively coupled input and 

output connections. 

Another important form of strip-type structure is the microstrip ring resonator shown 

in Fig. 10.6c. There are no end effects and, if the curvature is not too great, the mean 

circumference is an integral number of wavelengths at resonance. Thus, 

1 = 20 yyep = Ng (4) 

Because of the curvature of the line, radiation is a more important source of loss than 

in straight-line resonators. Excitation in this example is by distributed coupling to an 

adjacent straight section of microstrip, though capacitive coupling as in Fig. 10.65 can 

be used. 

Strip-type resonators can also be made in the form of rectangular or circular patches, 

normally with open sides as shown in Figs. 10.6d and e. Note that the rectangular patch 

differs from the strip in Fig. 10.6b by having width comparable with wavelength. If the 

edges are open Circuits, resonance in the rectangular patch is as in the rectangular box 

cavity in Secs. 10.2—10.4, except with open-circuit (zero tangential H) boundary con- 

ditions. Only modes with nonzero E, and no variations in the z direction can be accom- 

modated in the strip-type structure. Thus, the modes are the TM,,,,, types in Eqs. 

10.4(8)—(12) with p = 0: 

E, = E, cos kx cos kyy (5) 

ky . 

H,. = —— E, cos k,x sin k,y (6) 
JOM 

k. 
H, = —— Eg sin kx cos ky (7) 

" JOM 

with k&, = ma/(a + Aa) and k, = na/(b + Ab). Here, Aa and Ab account for fringing, 
and may be estimated from (3). In this case the empirical formula, adapted from the 

limiting case of the end of a very wide strip, w/d — ©, is! 

Aa/d (or Ab/d) = 2(1.35/e, + 0.44) (8)
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: 
= Ground plane 

I 
Fic. 10.6c Microstrip ring resonator with distributed coupling. 

  

  

  

  

The resonance condition can be adapted from Eq. 10.4(7) with p = 0: 

f, = 1 ma \* 1 ni \* (9) 

0 Aa pe | \a + Aa b + Ab 

As in the case of the rectangular patch resonator, a variety of resonant modes exist 

in the circular patch resonator. The simplest of these is the lowest-order azimuthally 

symmetric radial-transmission-line mode, assuming an open circuit atr = a + Aa. 

Since a is the radius, the Aa/d here is one-half the value in (8). The fields are described 

by Bessel functions as in the pillbox resonator of Fig. 10.5: 

BE, = Eqdolkr) (10) 

E Hy = 7 Jy(kr) (11) 

4, 

—/ f 

i 
Ground plane 

LOF- iA¢ \ 
Ground plane 

  

  

  

  

  

(e) 

Fic. 10.6 (d) Rectangular patch resonator in microstrip technology. (e) Circular microstrip 
patch resonator.
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With an open circuit at a + Aa, the tangential field H, must vanish there, so the 

resonance condition is 

  

l 1 Pu 

° 27V pe 27V we a + Aa 

where p,, = 3.832 is the first root of the Bessel function J,. 

More generally, the modes in the circular patch may be considered analytically the 

same as TM,,, waveguide modes (Sec. 8.9) at cutoff where there is no z variation (B = 

QO), except that here the open-circuit boundary condition at the edge radius must be 

applied. From Eqs. 8.9(8)-—(10), 

EL = EoJ,(k.r) cos nb (13) 

We 
Hy, = -J iL EJ (kr) cos nd (14) 

H. = 7 E,J,(kr) cos nd (15) , 
c 

Resonance is at that frequency fy where k = k,, or fy = k,/ 2a7V pe. The cutoff 

wavenumber &, is given by Eq. 8.9(12) except that instead of p,,,, which are the roots 

of the Bessel function in (13), we must use the roots of its derivative, p,, (see Table 

7.15b). Thus, the resonant frequency is 

_ Pri 

2m(a + Aa)V pe 

  Fo (16) 

The mode with the lowest resonant frequency is TM,,,9, where the third subscript in- 

dicates no variation in the z direction. This mode does not have azimuthal symmetry. 

Its resonant frequency is 

1.841 

7 2m7(a + Aa)V pe 

  fo (17) 

which is lower than that of the lowest-order symmetric mode (12). 

All of the common methods of exciting the patch resonators indicated in Figs. 10.6d 

and e are asymmetric, so one should expect the asymmetric modes to be preferentially 

excited. 

The factors that contribute to the Q’s of these resonators are conductor losses, which 

are proportional to the surface resistance R,, dielectric losses, which are proportional 

to the loss factor tan 6, of the dielectric, radiation losses, and excitation of spurious 

resonances. Radiation losses can be minimized by enclosing the structure in a metal 

box, and dielectric losses are usually less than those in the conductors. For high values 

of QO associated with the various loss mechanisms, they are nearly independent and can 

be combined as 

OQ= (A+i+4) (18) 
QO. QO, Q.
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where the subscripts refer to conductor, dielectric, and radiation, respectively. Each Q 

in (18) is given by Q = w)U//W,. Energy loss W, in the conductors can be calculated 

as for the box cavities, i.e., integration of Eq. 3.18(5) over the metal surfaces. The 

dielectric energy loss is found by integrating the density, W,, = wp e"E7/2, where E is 

electric field, over the volume of the resonator. 

Procedures for calculating radiation loss are found in the literature.' Energy storage 

U is calculated as for the box cavities. With normal metals, the O’s are much lower 

than for box cavities, typically 100 to 1000 for copper or gold on any of several different 

dielectrics at room temperature. Strip-type resonators of the same configurations but 

made with superconductors have Q’s 10 to 100 times higher at 10 GHz. The advantage 

of using superconductors is greatest at microwave (< 20 GHz) frequencies, and de- 

creases at higher frequencies because of the difference of frequency dependencies of 

R, shown in Fig. 3.16b. 

10.7 WAVE SOLUTIONS IN SPHERICAL COORDINATES 

Spherical resonators are of more intellectual than practical interest, but will serve to 

introduce wave solutions in spherical coordinates. In this section we develop such 

solutions. We shall sketch here only those solutions with axial symmetry, 0/dd@ = 0. 

The solutions with general @ variations are more involved, but have been given com- 

pletely by Stratton.” It is found that with axial symmetry the solutions separate into 

waves with components E,, Eg, Hy and those with components H,, Hy, Ey These are 

called TM and TE types, respectively, the spherical surface 7 constant serving here as 

the transverse surface. 

Consider then TM spherical modes with axial symmetry by setting 0/d¢@ = 0 in 

Maxwell’s equations in spherical coordinates. The three curl equations containing E,, 

Ey, H g are 

  

  

a OE. . 
3, Ea) — 36 = ~Jwp(rH g) (1) 

9 ar sin 6) = jweE 2 
rsin 990. S02 JOR 2) 

d , —— (Hg) = jwe(rE,) (3) 

Equations (2) and (3) may be differentiated and substituted in (1), leading to an equation 

in Hy alone: 

9 ba |: 
—_ ‘H + wenn —_————~ we 

ar? te) sin 6 36 
3 a5 (rH, sin 0 + P(rH,) = 0 (4) 

2 J. A. Stratton, Electromagnetic Theory, Chap. Vil, McGraw-Hill, New York, 1941.
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To solve this partial differential equation, we follow the product solution technique. 

Assume 

(rH) = RO (5) 

where RF is a function of r alone, and O is a function of 6 alone. If this is substituted 

in (4), the functions of 7 may be separated from the functions of 0, and these must then 

be separately equal to a constant if they are to equal each other for all values of 7 and 

9. For a definitely ulterior motive, we label this constant n(n + 1): 

     B+? = 24/4 4 @ sin w| = nt (6 
R ' ~~ @ dé | sin 6 dd sin um 

Thus there are two ordinary differential equations, one in r only and one in 6 only. 

Let us consider that in @ first, making the substitutions 

1 d d 
u = cos 6, 1 — u- = sin @, — = —sin d— 

d@ du 

Then 

2 d-9 dO 1 
_. 4 +. —~ ——~|9 = 0 7 

du? au du ne ) 1 — 5 | 1) 
  (1 — uw) 

The differential equation (7) is reminiscent of Legendre’s equation (Sec. 7.18) and is 

in fact a standard form. This form is 

dy m? 
2x7 + “ +1) - i. a) = 0 (8)         

  

One of the solutions is written? 

= P™x) 
and the function defined by this solution is called an associated Legendre function of 

the first kind, order n, degree m. These are related to the ordinary Legendre functions 

by the equation 

dP, (x) 
pm —({— x2 m/2 

(x) = ( ) 7a (9) 

As a matter of fact, (8) could be derived from the ordinary Legendre equation by this 

substitution. A solution to (7) may then be written 

= P! (ul) = P'(cos 8) (10) 

And, from (9), 

P\(cos #) = -<, P.(cos @) (11) 

3. A second solution, Q™x), is needed when the axis is not included in the region of solution 
(Ref. 2).
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Thus for integral values of n these associated Legendre functions are also polynomials 

consisting of a finite number of terms. By differentiations according to (9) in 

Eq. 7.18(8), the polynomials of the first few orders are found to be 

Pi(cos 6) = 0 

Pi(cos 6) = sin 0 

Ph(cos 6) = 3 sin @ cos 6 (12) 

Pl(cos 0) = 3 sin 6 (5 cos” 6 — 1) 

Pi(cos 6) = 3 sin @ (7 cos’ 6 — 3 cos 8) 

Other properties of these functions that will be useful to us, and which may be found 

from a study of the above, are as follows: 

1. All Pl(cos 6) are zero at 9 = O and 6 = mr. 

2. P\(cos 6) are zero at 6 = 77/2 if n is even. 

3. P'(cos 6) are a maximum at 6 = 7/2 if nis odd, and the value of this maximum 

is given by 

' (—1)7@ "DP n! 
P1(0) = n odd (13) 

“l}] 
4. The associated Legendre functions have orthogonality properties similar to those 

of the Legendre polynomials studied previously: 

  

  

[ P\(cos 6)P\(cos 6) sin 6 dé = 0, l#n (14) 
0 

7 2n(n + 1 
| Pl(cos 6) sin 9 do = et YD (15) 

0 2n + 1 

5. The differentiation formula is 

  
‘6 [P}(cos @)] = [nP;,41(cos 6) — (mn + 1) cos @P,(cos 8)] (16) sin 0 

Note that only one solution for this second-order differential equation (7) has been 

considered. The other solution becomes infinite on the axis, and so will not be required 

in solutions valid on the axis, but will be needed in problems such as the biconical 

antenna analysis of Sec. 12.25. 

To go back to the 7 differential equation obtainable from (6), substitute the variable 

R, = R/Vr: | 

d*R, 1 aR, , amt 4y 
+-—14+ /2 -~— JR, = 0 

dr? r dr r? i 
  

By comparing with Eq. 7.14(3) it is seen that this is Bessel’s differential equation of
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order n + 3. A complete solution may then be written 

R, = Ay Jn 412k) + BAN n+ 12k") (17) 

and 

R= ViR, 

If 7 is an integer, these half-integral-order Bessel functions reduce simply to algebraic 

combinations of sinusoids.* For example, the first few orders are 

}2 } 2 
Ji 2) = oT: sin x Nip) = — moot 

2 | sina 2]. cos x 

L 

  

= 

2 [/3 | 2/3. 
J 579%) = oo ; 2 1} sin x Ns) = — _ y sin x 

3 
_ 2 cos X + (2 _ 7 cos « (18) 

x x* 

The linear combinations of the J and N functions into Hankel functions (Sec. 7.14) 

represent waves traveling radially inward or outward, and boundary conditions will be 

as found previously for other Bessel functions: 

    

1. If the region of interest includes the origin, N,,, ;/2 cannot be present since it is 

infinite at r = 0. 

2. If the region of interest extends to infinity, the linear combination of J and N into 

the second Hankel function, H@} 1). = Jn41y2 — JNy+1/2. Must be used to rep- 
resent a radially outward traveling wave. 

The particular combination of J,, 4. ;/2(kr) and N,, ,/2(kr) required for any problem 

may be denoted as Z,,..,/2(kr), and now by combining correctly (17), (10), and (5), 

H, is determined. E,. and E, follow from (2) and (3), respectively. 

  An Hy = —* Pl(cos @)Zy41/2(kr) 
Vr 

A,P (cos 6) 
Eg = Sa ([nZ kr) — krZ,,_ 1 jo(kr 1 6 joer!? [1 n+1/20 r) VLiy, 1/24 I (19) 

A,nZ (kr) _ ni—n+1/2 E, = ree a <n 8 [cos 6P!(cos 6) — P! . ,(cos 4)] 

4 Special notations for the spherical or half-integral-order Bessel functions have been intro- 
duced and are useful if one has much fo do with these functions. Thus Stratton, following 
Morse (Vibrations and Sound, p. 246, McGraw-Hill, New York, 1936) uses J,(x) to denote 

(ar/ 2x)'/? 5... 12(X), and similar small letters denote other spherical Bessel and Hankel func- 
tions. Still other specialized notations have been used. Because of our limited need for 
spherical coordinates, we shall retain the original Bessel function forms so that standard 

recurrence formulas may be used.
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The spherically symmetric TE modes may be obtained by the above and the principle 

of duality (Sec. 9.5). We then replace EF, and E, by H, and H,, respectively, Hy by 

— Eg, and € by p: 

B,, Ey = V; Pi(cos OZ, 4 1/2(kr) 

B,,P\(cos 6) 
H, = jour??? [nZ,+1/2€kr) — krZ,,_ 1 72(kr)] (20) 

nl IL, 2 kr ? _ “our? sin 8 2 [cos ePi(cos 6) — Pi4,(cos @)] r 

10.8 SPHERICAL RESONATORS 

The general discussion of spherical waves from the preceding section will now be 

applied to the study of some simple modes in a hollow conducting spherical resonator. 

Since the origin is included within the region of the solution, the Bessel functions can 

only be those of first kind, J, , 2. For the lowest-order TM mode, let n = 1 in Eq. 

10.7(19) and utilize the definitions of Eqs. 10.7(12) and 10.7(18). Letting C = 

A,(2k/7)'/2, we then have 

  

  

  

C sin 6 / sin kr 
Ay = i ( > cos | (1) 

2jnC cos 6 / sin kr Eo= — _ ‘ By? ( 7 cos i] (2) 

nC sin 6 | (kr)? — 1 Eg =a | sin kr + cos | (3) 

The mode may be designated TM, ,, the subscripts here giving variations in the order 

r, @, and @. Electric and magnetic field lines are sketched in Fig. 10.8a. 

To obtain the resonance condition, we know that E’, must be zero at the radius of the 

perfectly conducting shell, r = a. From (3), this requires 

tan k Ka (4) a= 
1 — (ka) 

Roots of this transcendental equation may be determined numerically and the first is 

found at ka ~ 2.74, giving a resonant frequency of 

I 2 (5) 
Jo 2.29V Ea
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Electric field   

——-—— Magnetic field 

  

  

Section through axis Section through equator 

(a) 

     
Section through axis Section through equator 

(b) 

Fic. 10.8 (a) Field patterns for TM,,, mode in spherical resonator. (5) Field patterns for TE,9, 

mode in spherical resonator. 

The energy stored at resonance may be found from the peak energy in magnetic 

fields: 

U = | | © \H.,?2ar? sin 6 d@ dr 
o/o 2 

The value of H, is given by (1), and the result of the integration may be simplified by 

the resonance requirement (4): 

2a puC? 1 + (kay _, U = vere ke - ee sin? ka (6) 

The approximate dissipation in conductors of finite conductivity is 

” RJH 4 5 AnR, , 
W, = | lhl 27a’ sin 6 d0 = = a*C? sin* ka (7) 

0
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So the Q of this mode is 

  (8) o-—! | - 1+ Fl 2 
2R,(kay? | sin® ka ka R 

8 

The “dual” of the above mode is the TE,,, mode, and its field components may be 

obtained by substituting in (1) to (3) Ey, for Hz, — H, for E,, and —H, for Ey. The 

fields are sketched in Fig. 10.8b. Note that the resonance condition for this mode, 

obtained by setting E, = 0 atr = a, requires 

tan ka = ka 

Numerical solution of this yields ka ~ 4.50, or 

1 
= ———_—_ 9 

Jo 1.395V pea “) 

  

Small. [-Gap ¢ Cavities and { Coupling 

10.9 SMALL-GAP CAVITIES 

Because of their shielded nature and high Q possibilities, resonant cavities are ideal for 

use in many high-frequency tubes such as klystrons, magnetrons, and microwave 

triodes. When they are used with an electron stream, it is essential for efficient energy 

transfer that the electron transit time across the active field region be as small as pos- 

sible. If resonators such as those studied in preceding sections were used, very short 

cylinders or prisms would be required, and Q would be low and interaction weak. 

Certain special shapes are consequently employed which have a small gap in the region 

that is to interact with the electron stream. Several examples of useful small-gap cavities 

will follow. 

      

Example 10.9a 
FORESHORTENED COAXIAL LINES 

The structure in Fig. 10.9a may be considered a coaxial line A terminated in the gap 

capacitance B (leading to the equivalent circuit of Fig. 10.95) provided that the region 

B is small compared with wavelength. The method is particularly useful when the region 

B is not uniform, but contains dielectrics or discontinuities, so long as a reasonable 

estimate of capacitance can be made.
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(e) 

Fic. 10.9 (a) Foreshortened coaxial-line resonator. (b) Approximate equivalent circuit for (a). 

(c) Foreshortened radial-line resonator. (d) Resonator intermediate between foreshortened coaxial 
line and foreshortened radial line. (e) Conical-line resonator. 

For resonance, the reactance at any plane should be equal and opposite, looking in 

opposite directions. Selecting the plane of the capacitance for this purpose, 

1 

JOC 

  

Or 

1 
! = tan~'| ——— 1 Bl = tan~'| 5 (1) 

The resonant frequency must be found numerically from (1). 

If C is small (Zyp@ pC <K 1), the line is practically a quarter-wave length. For larger 

values of C, the line is foreshortened from the quarter-wave value and would approach 

zero length if Z,w@,C approached infinity. 
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Example 10.9b 
FORESHORTENED RADIAL LINES 

If the proportions of the resonator are more as shown in Fig. 10.9c, it is preferable to 

look at the problem as one of a resonant radial transmission line (Sec. 9.3) loaded or 

foreshortened by the capacitance of the post or gap. Then, for resonance, the inductive 

reactance of the shorted radial line looking outward from radius 7, should be equal in 

magnitude to the capacitive reactance of the central post. Using the results and notation 

of Sec. 9.3 we see that 

1 oh sin (0, — 05) 
wC Qmr, °' cos (i, — 6) 

Or 

  

in 6, + (Qar,/@CZp,h 6, = an 2 , + (2ar,/@CZp,h) cos a (2) 

cos 6, — (271r,/@CZ,,h) sin w, 

Once @, is found, kr, is read from Fig. 9.3c, and resonant frequency is found from k. 

  

Example 10.9¢ 
RESONATORS OF INTERMEDIATE SHAPE 

In the coaxial-line resonator of Fig. 10.9a the electric field lines would be substantially 

radial in the region far from the gap. In the radial line resonator of Fig. 10.9c the electric 

field lines would be substantially axial in the region far from the gap. For a resonator 

of the same general type, but with intermediate proportions, the field lines may be 

transitional between these extremes as indicated in Fig. 10.9d, and neither of these 

approximations may yield good results. Some useful design curves for a range of pro- 

portions have been given in the literature.” Of course, if the capacitive loading at the 

center is great enough, the entire resonator will be relatively small compared with 

wavelength, and the outer portion may be considered a lumped inductance of value 

twit n( 2 (3) 
27 \r, 

Resonance is computed from this inductance and the known capacitance. 

  

Example 10.9d 
CONICAL-LINE RESONATOR 

A somewhat different form of small-gap resonator, formed by placing a spherical short 

at radius a on a conical line as studied in Sec. 9.6, is shown in Fig. 10.9e. Since this is 

ST. Moreno, Microwave Transmission Design Data, Artech House, Norwood, MA, 1989.
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a uniform line, formula (1) applies to this case as well. For the conical line, B = k and 

6, 
Zo = 4 In cot — (4) 

T 2 

In the limit of zero capacitance (the two conical tips separated by an infinitesimal 

gap), the radius a becomes exactly a quarter-wavelength. The field components in this 

case, obtained by forming a standing wave from Eqs. 9.6(5) and 9.6(6), are 

  

  

  

_ C_ cos kr (5) 

° sin @ or 

C sin kr 
H og 2... (6) 

nsnd +r 

The Q of the resonator in this limiting case may be shown to be 

nT In cot (6,/2) 
O~-, - (7)   

AR, |n cot (4/2) + 0.825 csc A 

  

10.10 COUPLING TO CAVITIES 

The types of electromagnetic waves that may exist inside closed conducting cavities 

have been discussed without specifically analyzing ways of exciting these oscillations. 

Obviously they cannot be excited if the resonator is completely enclosed by conductors. 

Some means of coupling electromagnetic energy into and out of the resonator must be 

introduced from the outside. The most straightforward methods, similar to those dis- 

cussed in Sec. 8.11 for exciting waves in waveguides, are: 

1. Introduction of a conducting probe or antenna in the direction of the electric field 

lines, driven by an external transmission line 

2. Introduction of a conducting loop with plane normal to the magnetic field lines 

3. Introduction of a pulsating electron beam passing through a small gap in the 

resonator, in the direction of electric field lines, and similarly for carriers in solid- 

state devices 

4. Introduction of a hole or iris between the cavity and a driving waveguide, the hole 

being located so that some field component in the cavity mode has a direction 

common to one in the wave mode 

5. In microstrip or coplanar strip versions, coupling by adjacent strip lines as illus- 

trated in the examples of Fig. 10.6 

For example, in a velocity modulation device of the klystron type, as in Fig. 10.10a, 

the input cavity may be excited by a probe, the oscillations in this cavity producing a 

voltage across gap g, and causing a velocity modulation of the electron beam. The 

velocity modulation is converted to convection current modulation by a drifting action
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Fic. 10.10 (a) Couplings to the cavities of a velocity modulation tube amplifier. (b) Section 

showing approximate form of magnetic field lines in iris coupling between a guide and cavity. 
(c) Magnetic coupling to a cylindrical cavity. 

so that the electron beam may then excite electromagnetic oscillations in the second 

resonator by passing through the gap g,. Power may be coupled out of this resonator 

by a coupling loop and a coaxial transmission line. [ris coupling between a TM5,,. mode 

in a cylindrical cavity and the TE,,) mode in a rectangular waveguide is illustrated in 

Fig. 10.10b. Here the H, of the cavity and the H, of the guide are in the same direction 

over the hole. 

The rigorous approach to a quantitative analysis of cavity coupling is given in the 

following chapter. Some comments and an approximate approach are, however, in order 

here. 

  
    Sin gid 

  

Example 10.10 
LOOP COUPLING IN A CYLINDRICAL CAVITY 

Let us concentrate on the loop coupling to a TM, cylindrical mode as sketched in 

Fig. 10.10c. If a current is made to flow in the loop, all wave types will be excited
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which have a magnetic field threading the loop. The simple TM), mode is one of these, 

and, if it is near resonance, certainly it will be excited most. However, this wave is 

known to fit the boundary conditions imposed by the perfectly conducting box alone. 

Other waves will have to be superposed to make the electric field zero along the per- 

fectly conducting loop, but these will in general be far from resonance and so will 

contribute only a reactive effect. In fact, they may be thought of as producing the self- 

inductance reactance of the loop, taking into account the presence of the cavity as a 

shield. 

The voltage magnitude induced in the loop by the cavity mode is 

V| = wpS|H| (1) 

where |H]| is magnetic field from the TMy,, mode, averaged over the loop, and S is loop 

area. Consider power loss as only that from the walls, Eq. 10.5(6). This can be written 

in terms of magnetic field at » = a through Eq. 10.5(2): 

ma(d + a)EZJ*(ka)R, 
  W, = 7 = ma(d + a)R.|H/? (2) 

This loss requires an input resistance 

vy? 2 2 . WP _ (us) 3) 
2W,  2na(d + a)R, 

The reactive impedance from self-inductance of the loop, jw, is added to this, but may 

be tuned out by a frequency shift in the cavity or by a portion of the input line as will 

be discussed in the following section. 

  

10.11 MEASUREMENT OF RESONATOR @ 

The Q of a cavity has been defined in terms of power loss and energy storage and has 

been calculated for a number of ideal configurations. It has also been noted that the Q 

is useful in describing bandwidth of a cavity mode, just as for a lumped-element reso- 

nant system. The reason for this is that in the vicinity of resonance for a single mode, 

a lumped-element equivalent circuit such as that of Fig. 10.11a is a good representation. 

The excitation means may excite a number of modes, but in general only one is near 

resonance. The elements G, L, and C represent the mode near resonance, and jX the 

reactive effect of modes far from resonance. Such an equivalent circuit might be sus- 

pected to give correct qualitative results, but as will be shown in the next chapter, it 

actually gives useful quantitative results also. The equivalent circuit also permits one 

to devise ways of measuring Q when it is difficult or impossible to calculate. 

Many methods of Q measurement are possible,° and commercial instruments are 

° T. 8. Lavergheita, Handbook of Microwave Testing, Sec. 9.2, Arfech House, Norwood, 
MA, 1981.
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FiG. 10.11 (a) Cavity equivalent circuit. (b) Equivalent circuit for cavity with coupling to a 
waveguide. (c) Locus of impedance on Smith chart for Q measurement. 

available which do this directly. We shall describe a method using elemental transmis- 

sion-line measurements which illustrates the use of the equivalent circuit of Fig. 10.1la 

and brings in the importance of the correct coupling. The coupling of the waveguide 

to the cavity is illustrated here by the ideal transformer of turns ratio m:1 (Fig. 10.115). 

The guide is assumed to have unity characteristic impedance for simplicity, so that 

terminating impedances are automatically normalized. The input impedance at reference 

a is then 

  

2| ; 1 
fq =m x "64 ft — | (1) 

By defining Q) = a C/G, w5 = 1/LC, and R, = 1/G, this is 

  

R 
Z, = m? i + o | (2) 

1 + j(@/@) — W)/)Qo 

In the vicinity of resonance, @ = w)(1 + 6’) where 6’ is small, 

9 

=R Z, ~ jm2X ao (3) + ——_2_ 
1 + 2j7Q,8'
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The series reactance may be removed either by defining a new resonant frequency or 

by referring input to a shifted point on the waveguide. The latter is common, and the 

new reference may be taken as the position where the impedance seen looking toward 

the cavity is zero when the cavity is tuned off resonance; this is called the “detuned 

short” position. The detuning ts sufficient to make Q,6' > 1 either by detuning the 

cavity (by changing w)) or by changing frequency w. Then, by (3), Z, ~ jm?X and, 

from the impedance transformation formula, Eq. 5.7(13), which for Z) = 1 Is 

Z, + j tan Bl 
Z1 7 

° 1+ ~=jZ, tan Bl 4) 
  

we find that Z, is zero when 

tan BI = —m°X (5) 

The impedance Z, at arbitrary frequencies in the neighborhood of resonance is then 

mRoy 
Ly = as (6) 

1 + 2jQ,6 

where 

Ro, = Rol + m?X?)7! (7) 

and 

m°XRo § = § -   
20.1 + m*X?) 8) 

The locus of impedance is measured as 6’ is varied either by changing frequency or 

by detuning the cavity. As impedance (6) is of the linear fraction form, it will produce 

a circular locus for each value of mR), when plotted on the Smith chart as illustrated 

by circles A, B, and C in Fig. 10.11c. Circle A, for which m*Rp, = 1, passes through 

the origin and is called the condition of critical coupling since it provides a perfect 

match to the guide at resonance; circle C with Ry, < 1 is said to be undercoupled; 

and circle B with 11°R,, > 1 is overcoupled. To match the last two, the coupling ratio 

m* would have to be changed. As with the lumped resonant system, the value of Q, 

can now be found from the specific value of 6 which reduces impedance magnitude at 

reference b by 1/ V2 of its resonant value. On the Smith chart, this is the point R = 

X and the corresponding 6 may be denoted 6,. At this point the known quantities are 

5{ corresponding to 6,, 7X found from (5), 777Ro,, which is the value of Z,, at reso- 
nance, and 20,6, = 1 in the denominator of (6). Then 

] 
Qo = (9) 28, 

and (8) may be solved to find Qp) in terms of the known quantities.
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The value of Q, thus determined is the “unloaded Q” since it does not account for 
loading by the guide. A loaded Q which accounts for this is also used and may be found 

from Fig. 10.118 as 

  Ss 410) 
QO, GgC Qo Qext 

where “external Q,” Q.,,, results from 

@yC 

Qext = Te (11) 

It is assumed here that the generator is matched so that the impedance looking toward 

the guide is its characteristic impedance, taken here as unity. 

10.12 RESONATOR PERTURBATIONS 

In the condition of resonance, average stored magnetic and electric energies are equal. 

If a small perturbation is made in one of the cavity walls, this will in general change 

one type of energy more than the other, and resonant frequency would then shift by an 

amount necessary to again equalize the energies. Perturbation theory’ shows the amount 

of frequency shift when a small volume AV is removed from the resonator by pushing 

in the boundaries. This may be written 

Aw _ Jay (uH? — sE*) dV _ AU, — AU; 

Wo Jy (uH? + sE*) dV U 

where AU,, is the magnetic energy removed, AU, the electric energy removed, and U 
the total stored energy, all time averages. We illustrate with two examples. 

  (1) 

      
La iscsi 

Example 10.12a 
PERTURBATION OF RESONANT PARALLEL-PLANE LINE 

  

We first take a simple case for which we can check the answer. Consider the parallel- 

plane transmission line of Fig. 10.12a, shorted at the two ends. The unperturbed reso- 

nance with the lowest frequency is at / = A/2 [Eq. 10.6(1)]: 

  

  

27TU aU _ p_ “"p 
Wp 1 ] (2) 

If we perturb by moving one end plate in by Al, the new resonance is 

TU Al 
+ Aw) = —+*-~@(1+— 

? R. F. Harrington, Time-Harmonic Electromagnetic Fields, Chap. 7, McGraw-Hill, New York, 
1961.
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Fic. 10.12 Parallel-plane transmission line with perturbations: (a) by decreasing length by A/; 

(b) by introducing a rectangular indentation at the center of the line. 

In using the perturbation formula (1), only magnetic energy is removed. If unperturbed 

magnetic field is of the form 

H(z) = Ho sin = (4) 

Total stored energy (twice the average energy in magnetic fields) is 

        

1/2 2 
po Lo 

= 2wd md = wld U v yp 4 ~ z= Ww 4 (5) 

where w is width of the line and d the spacing. The energy removed is 

AU, = wil eo wy dAl (6) 

so by (1) 

Aw Al 
— = — (7) 
Wy l 

which agrees with (3). 

Now suppose the perturbation is at the center of the line where only electric field 

is removed, as shown by the dashed outline in Fig. 10.126. If unperturbed electric 

field is 

    

  

TZ 

the total energy stored is 

{/2 R2 2 2 z Ee 

U = 2U; = 2nd | == gs? z = wld —® (9) 
1/2 l 4 

And the electric energy removed is 

eA 

AU, = w Ad Az —° (10)
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so by (1) 

Aw _ Ad Az 

Wo ld 

  

(11) 

To check this, we may use the equivalent circuit of the capacitively loaded quarter- 

wave line shown in Fig. 10.12b. Resonance is given by 

AC al 
—— — y, t} — 

of 2 ov (2) 

1 1 ew Az Ad = sw Af] ——_ ~- -)n2 Sao AC = ew (3 +) 72 

where 

If w = wy) + Aw and w)//v, = 7, to first order (12) gives 

A@ _ _ACu, _ few Az Ad\f 1 M2 Be M2 

Wo Vy ld? [Le E w 

This reduces to (11), including the check of sign. 

  

(12) 

(13) 

(14) 

  

Example 10.12b 
PERTURBATION ON BOTTOM OF CYLINDRICAL CAVITY 

For a more practical example, imagine a small volume AV taken out of the pillbox 

resonator of volume V, in Fig. 10.12c, along the axis where electric field is maximum 

and magnetic field negligible. The change in energy stored is then 

Fe2 

AU, ~ = AV 

          

   
ib LEELA ALAA LALLA OLA LLL LLL LLL 
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Fic. 10.12¢ Small perturbation in bottom of circular cylindrical cavity. 

(15)
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The total energy of the resonator is given by Eq. 10.5(5). Frequency shift from (1) for 

the lowest mode with ka = 2.405 is then 

Aw sE2 AV AV 
— a = —1.85 — l 

Wo 2ae dEja7J?(ka) Vo (16) 
eer 

—   

The shift in resonant frequency determines the ratio £4/U needed for determination of 

R,/Q. Frequency shifts can be measured accurately, and the perturbation can be made 

in the form of a small conducting bead moved by an insulating thread along the axis. 

Field can be measured at all points on the axis, and thus its integral found even when 

field cannot be assumed to be uniform across the gap. 

  

10.18 DIELECTRIC RESONATORS 

We Saw in the earlier sections of this chapter that a section of a hollow metal waveguide 

shorted at the ends constitutes a resonant structure with properties similar to resonant 

L—-C circuits. Similarly, a section of dielectric waveguide (Sec. 9.2) exhibits resonances 

and can be used for the same purposes. Some materials have very high permittivities 

and wave energy is therefore strongly confined within the material. Wavelength is small 

so the dielectric resonator can be much smaller than an empty hollow metal structure. 

Early work® employed high-purity TiO, ceramic material with e, ~ 100 and e”/e’ ~ 

10~*. Values of QO (not accounting for losses in supporting structures) then are high 

(about 10*) as shown in Prob. 10.3d. The difficulty with TiO, is that its «, has an 

intolerably strong temperature dependence of 10° parts per million (ppm) per degree 

Celsius, which leads to a resonant frequency dependence of 500 ppm/°C. More recently, 

ceramics have been developed? that can be made with temperature coefficients selected 

to offset those of the supporting structures, giving a net zero temperature dependence. 

These have e, ~ 37.5 and e"/s' ~ 2 X 107* at about 10 GHz. Disks of these materials 
can conveniently be introduced as resonators into microwave-integrated circuits and 

use beyond 100 GHz 1s expected. 

Exact analysis is possible for a sphere and a toroid, but shapes of greater technical 

interest such as rectangular prisms, disks, and rods must be treated approximately. It is 

seen that fields at the surface of a region of very high permittivity satisfy approximately 

the so-called open-circuit boundary condition for which the normal component of elec- 

tric field and the tangential component of magnetic field are zero. This is made plausible 

by considering reflections of a plane wave in going from a dielectric of high permittivity 

(low intrinsic impedance) to one of low permittivity (high intrinsic impedance). One 

could calculate the resonant frequency of a dielectric resonator by surrounding it with 

a contiguous perfect magnetic conductor to impose the above stated conditions. How- 

8S. B. Cohn, IEEE Trans. Microwave Theory Tech. MITT-16, 218 (1968). 

9 WM. R. Stiglitz, Microwave J, 24, 19 (1981).
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FiG. 10.13 (a) Dielectric cylinder in magnetic-wall waveguide boundary. (b) Lowest-order 
mode where L < 2a in dielectric resonator. Fields H outside r = a are extensions of those given 
by model in (a).
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Fic. 10.13c Experimental data on the lowest resonant frequencies versus length of a dielectric 

cylinder of circular cross section. Radius a = 0.162 in. After S. B. Cohn, JEEE Trans. Microwave 
Theory Tech. MTT-16, 218 (1968). © 1968 TEEE. 

ever, since the open-circuit boundary conditions are only approximately satisfied for 

finite-permittivity resonators, modifications in the use of the perfect magnetic boundary 

have been found to give better results. The two lowest-order modes for circular cylin- 

drical disks and rods are one with zero electric field along the axis and one with zero 

magnetic field along the axis. The model for the former places the solid dielectric 

cylinder inside a contiguous infinitely long, magnetic cylindrical waveguide so that the 

open-circuit conditions are imposed only on the cylindrical surface as in Fig. 10.134. 

The model for the mode with zero magnetic field along the axis imposes the open- 

circuit condition only on the end faces of the dielectric cylinder by means of infinite 

parallel magnetic conducting plates. In either case the resonant fields and frequency are 

found by setting up propagating-type solutions of the wave equation inside and atten- 

uating fields outside the dielectric and matching boundary conditions. The result is that 

the mode with zero axial electric field has the lowest resonant frequency for dielectric 

cylinders with length less than the diameter. The field distribution for this mode is 

shown in Fig. 10.13b. Some experimental results are shown in Fig. 10.13c. The curve 

labeled f, is the mode with zero axial electric field and f, has zero axial magnetic field. 

A general treatment of arbitrary shapes of dielectric resonators is given by Van Bladel.!° 

10 4, Van Bladel, IEEE Trans. Microwave Theory Tech. MTT-23, 199 (1978).
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Example 10.13 
TE MODE IN DIELECTRIC RESONATOR 

As an example we do the analysis for the case with the circular cylinder of dielectric 

enclosed in a perfectly conducting magnetic waveguide shown in Fig. 10.13a. Use is 

made of the concept of duality (Sec. 9.5) in which E is replaced by H, H by —E, 

pt by &, and e€ by pw in known field distributions to find another solution of Maxwell’s 

equations that fits boundary conditions dual to those of the given field. The circular 

waveguide modes in Sec. 8.9 can be adapted. In particular, the TM mode with an electric 

boundary becomes a TE mode with the magnetic boundary. The H, component in Eq. 

8.9(9) becomes the F., component and can be written as 

T(r) _; L 
e” IP az lz] == (1) 

° J i(Po1) 

where the propagation factor is included for a wave in the + z direction and the subscript 

d signifies the dielectric region. Taking account of waves in both directions in the 

dielectric, one has 

Fir) L 
cos BZ, z) = (2) Tp) 0° Fe zl = 5 

The frequency is assumed low enough that the waves outside the dielectric (|z| > L/2) 

are cut off. Choosing the coefficient to ensure continuity of E, across the end of the 

dielectric, we may write 

Ey = 2E9 

Ji(Ker) Boe _ ae L 
Ey = 2E cos —2— e~ Malle] -£/2) 2) =— (3) 

oJ i(Po1) 2 | | 2 

The magnetic field components tangential to the end faces of the dielectric are 

Ba Jer) (kr), L 
A, = j — 2E sin 6,2, z) == 4) au F(p,) PS 

41% ne r) L ane -] 9 L H. = SIE cos B —e @,(\2| L/2) gl > (5 

where we have used the relation dual to Eq. 8.9(9). The upper sign in (5) applies at 

z=L/2 and the lower at z = —L/2. Then, equating H, across the dielectric boundary 

atz = +L/2 we find the determinantal relation for the resonant frequency: 

B, tan ce =a, (6) 

we, Poi \” 
Ba = i 2 (22 (7) 

where 
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- Po\? o\? 

= (4) - (2 ® 
  

These calculations give resonant frequencies about 10% lower than the experimental 
data in the range 0.24 < L/2a < 0.62. 

  

10.2a 

10.2b 

10.2¢ 

10.2d 

10.2e 

10.3a 

10.3b 

10.3¢c 

10.3d 

PROBLEMS 

An analogy can be made between acoustic resonances in a closed box with fixed 
walls and electromagnetic resonances in a box with walls of high conductivity. De- 
velop the comparison further, stressing similarities and differences. 

Show that the mode described in Sec. 10.2 (resonant condition and field expressions) 
would be obtained if one started with the point of view that it was a TE,, mode 

propagating in the x direction; similarly consider it a TM,, mode propagating in the 
y direction exactly at cutoff. 

Find the total charge on the top plate and bottom plate for the resonator of Sec. 10.2. 
Determine an equivalent capacitance that would give this charge with a voltage equal 

to that between top and bottom at the center of the box. Compare this equivalent 

capacitance with the parallel-plate capacitance of the top and bottom plates with 
fringing neglected. 

Find the total current in the side walls of the resonator of Sec. 10.2. Determine an 
equivalent inductance in terms of this current and the magnetic flux linking a vertical 

path at the center of the box. What resonant frequency would be given by this 
inductance and the equivalent capacitance of Prob. 10.2c? Compare with result of 

Eq. 10.2(1). 

Suppose that in place of a perfect conductor at z = d, a “reactive wall” giving a 
wave reactance E,/H, = jX is placed there. Obtain the condition for resonance. 

Discuss physical ways in which the reactance wall might be produced, at least as an 
approximation. 

Calculate the maximum energy stored in magnetic fields for the simple mode of the 
rectangular resonator and show that it is the same as Eq. 10.3(1). 

Convert the phasor forms of electric and magnetic fields of Sec. 10.2 to instantaneous 
forms and find stored electric and magnetic energy as functions of time. Show that 
the sum is a constant equal to the value of Eq. 10.3(1). 

From the definition of Q in terms of energy storage and power loss, Eq. 10.3(3), 

show that the decay of energy in a natural oscillation after excitation is removed is of 
the form exp(—t/T) where 7 = Q/w,. How many periods of oscillation are there in 
the 1/e time of the decay? 

For an imperfect dielectric, show that the Q for any resonant mode is just e’/e”, ne- 
glecting losses of the conducting walls. Give the value for the dielectrics of Table 
6.4a at 10 GHz and compare with the value of Q for a copper cube-shaped cavity 

given in the text.
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10.3e 

10.3f 

10.3g 

10.4a 

10.4b* 

10.4c 

10.5a 

10.5b 

10.5¢ 

10.5d* 

10.5e* 

10.6a 

10.6b* 

Chapter 10 Resonators 

Modify the expression 10.3(2) for wall losses if front and back are of one material 
with surface resistivity R,,, the two sides of another with R,,, and top and bottom of 
a third material with R,,. Give the special case of this for a cube. 

Suppose that a perfect dielectric were available with e’ = 5e,. How would the Q of 
a dielectric-filled cube compare with that of an air-filled one for the simple mode 
studied? Why are they different? (Compare for the same resonant frequency in both 

cases.) 

A square cavity resonator utilizing the simple TE,,, mode is to be designed for a 
millimeter-wave electron device for operation at f = 0.3 THz. Height of the cavity 

must be kept small (0.1 mm) to minimize electron transit time. The dielectric in the 
copper cavity is vacuum and the cross section is square. Calculate cavity size, the Q, 
and bandwidth. Also calculate the shunt resistance Rj = (E)b)?/2W,, which is a 
measure of the interaction of the electron beam with the cavity. Note that more 
advantageously shaped cavities, such as that in Fig. 10.9a, have much higher 

impedances; for example, see Prob. 10.9c. 

For TE,,,, and TM,,,,,. modes in a cubic resonator, consider combinations of the inte- 
gers with no integer higher than 2. How many different resonant frequencies do these 
represent? What is the degree of degeneracy (number of modes at a given frequency) 
for each frequency? (Note carefully which, if any, integers may be zero.) 

By combining incident and reflected waves as was done for the TE,,, mode of Sec. 
10.2, find electric and magnetic field expressions of the TE,,,; mode of the rectangu- 
lar box. Sketch field distributions in the three coordinate planes. Find the expression 
for Q if conductors are imperfect. 

Derive the expression for Q of a TE,,,,,,, mode in a cube a@ = b = d and show that it 
increases as m increases for a given dielectric and resonant frequency. Explain the 
result. 

Find expressions for resonant frequency in terms of length and radius for the TMg,, 
and TM,,,; modes of a circular cylindrical cavity. 

A circular resonator has height h and radius a. Give the lowest resonant frequency 
for which a degeneracy between two modes occurs and the designations of these 
modes. Make rough sketches of the field patterns. How might a small perturbation be 
added to change the resonant frequency of one mode but not of the other? 

Plot curves of d/A versus a/d for all the significant modes in a circular cylindrical 
cavity over the range 0 < d/A < 2,0 < a/d < 5. Note especially ranges of 

operation where there is only one mode over a considerable region of operation. 

Give the field components and obtain expressions for energy storage, power loss, and 
Q for the TMo,;, mode of a circular cylindrical resonator. 

Repeat Prob. 10.5d for the TE,,, mode. 

Show that the resonant frequency of an open-circuited microstrip resonator as in 
Fig. 10.65 with w = 0.2 mm, d = 0.5 mm, / = 5 mm, and «, = 9.8, taking account 

of end corrections but using the static value of &,,-, is 11.43 GHz. What fractional 
error is incurred if the end correction is neglected? Estimate the error in the lowest 
resonant frequency resulting from neglecting dependence of €,,, on frequency? 

Assume that the conductors in the resonator in Prob. 10.6a are copper and are 
2.5 pm thick.



10.6c 

10.6d 

10.6e 
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(i) Calculate the Q for the lowest mode, accounting for metal and dielectric losses 
using Eq. 5.14(5) and Sec. 8.6. Use a static value of &,¢,. 

(ii) Calculate the Q.., associated with radiation losses using Eq. (11.14) of 
Hoffmann’, which is 

3ZoE ert 

~ 16no(dfo/c)? 

Also calculate the total Q, including Q,,,, and that associated with the dielectric 

and conductor losses in part (i). By what percentage is the Q of part (i) lowered 

by radiation for this particular resonator. 

Orad 

Design a coplanar waveguide ring resonator with fundamental resonance at 4.0 GHz 
on an alumina substrate (e, = 9.8) having thickness d = 1 mm. Choose the strip 
width w = 0.1 mm and the total gap a = 0.2 mm. See Fig. 8.6e. Calculate the mean 

diameter of the ring and sketch the structure in a manner similar to Fig. 10.6c, but 
with capacitive input and output coupling. Make the calculation using &,,-(0) and 
then calculate the percentage change of resonant frequency if the frequency depend- 

ence Of &,,;, 1s included. 

Find the four lowest resonant frequencies in a rectangular patch antenna having pa- 
rameters a = 5mm, b = 6mm,d = 0.635 mm, and ¢, = 2.5. (See Fig. 10.6.) 

Find the dependence of Q (neglecting radiation) on order numbers m and n for a 

given resonant frequency in a rectangular patch resonator of fixed materials. Review 

the discussion General Comments in Sec. 10.4 for the rectangular box cavity and dis- 
cuss your result for the patch resonator in comparison with the box cavity. What is 

the approximate dependence of radiation Q on the mode numbers? 

10.6f Find the lowest three resonant frequencies in a circular patch resonator with radius 

10.6¢ 

10.6h 

10.7 

10.8a 

10.8b* 

10.9a 

10.9b 

10.9c 

a = 1 cm, dielectric thickness d = 0.6 mm, and permittivity «, = 11. 

Calculate the quality factor Q, (accounting for only the conductor losses) for the 

mode with the lowest resonant frequency in the resonator in Prob. 10.6d, assuming 
niobium superconductor metallization with operation at 4.2 K. If the niobium were 
replaced by copper, what would be the Q, at 4.2 K, assuming for copper that 
a(4.2 K)/o(300 K) = 5. 

Show where slits may be cut in the circular patch resonator to suppress TM,,,, modes 

with n # 0. Explain your reasoning. Is it possible to suppress ‘TM,;9 modes without 
suppressing the TM,,, modes? Why? 

Develop the TE set of spherical waves, Eq. 10.7(20), starting from Maxwell’s 
equations with no ¢@ variations, in parallel to the development for the TM set. 

By utilizing solutions and definitions of Sec. 10.7 write expressions for the 
components in a spherical TE mode with n = 2 in terms of sines and cosines. 

Determine the Q of the TE,9, mode in the spherical resonator. 

A coaxial line of radii 0.5 and 1.5 cm is loaded by a gap capacitance as in Fig. 10.9a 
of 1 pF. Find the length / for resonance at 3 GHz. 

A radial line of spacing h = 1 cm has a central post as in Fig. 10.9c of radius 0.5 cm 
and capacitance | pF. Find the radius r, for resonance at 3 GHz. 

Obtain expressions for the Q and the impedance referred to the gap (V?/2W, where V 
is gap voltage) for the resonator of Fig. 10.9a, neglecting losses in region B. Calcu-
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late values for a copper conductor and the data of Prob. 10.9a. Compare with the 
value Ry = 3.1 * 10* CO found for the square cavity resonator in Prob. 10.3¢ and 
comment on difference if used for interaction with an electron beam. 

10.9d Find Q and impedance if in addition to copper losses there are losses in region B 
representable by a shunt resistance R,,. Repeat the numerical calculation of Prob. 
10.9c, taking Ry, = 10,000 2. 

10.9e For a cone angle 4, of 15 degrees in Fig. 10.9e, find radius a for resonance at 3 GHz 
if center capacitance is 1 pF. 

10.9f For the conical resonator with no loading capacitance, show that there is a value of 
6 which gives maximum Q. Calculate the value of QO for a copper resonator designed 
for Ag = 15 cm with this optimum angle. 

10.10a For the simple mode in a rectangular resonator perform an approximate analysis as in 
Ex. 10.10 leading to an expression for input impedance of a loop introduced at the 
center of a side wall. 

10.10b For the TM,,, mode in the circular cylindrical resonator, suppose that the coupling to 
the line is by means of a small probe of length d’ extending axially from the bottom 
center. Taking voltage induced in the probe as the probe length multiplied by electric 
field of the mode, find an expression for input admittance at resonance of the unper- 
turbed mode, utilizing a procedure similar to that of Ex 10.10. The probe capacitance 

is C. 

10.10c For a circular cylindrical cavity of radius 10 cm, height 10 cm, resonant in the TMo,9 
mode, find the approximate resistance coupled into a transmission line by a loop of 
area 1 cm? introduced at the position of maximum magnetic field. Repeat for a probe 
of length 1 cm introduced at the position of maximum electric field. 

10.11a For a cavity with m?Ry, = 2 and Q, = 5000, plot the locus of impedance on the 
Smith chart as 6 is varied, showing selected values of 6 on the locus. Modify m to 
yield critical coupling and repeat. 

10.11b Plot standing wave ratio in the guide versus 6 for both parts of Prob. 10.11a. De- 
scribe how one might use the plot of SWR versus 6 to determine Q as an alternate to 
the impedance function. 

10.11¢ Find Q, and Q.,, for Prob. 10.11a with BJ = 0.3 radian. 

10.11d When coupling to an electron stream, as in a klystron cavity such as described in 
Sec. 10.10, gain is proportional to Ry and bandwidth to 1/Q, so the parameter R,/O 
is useful in describing the effect of the cavity on gain—bandwidth product. Assuming 
electric field E, is uniform across the coupling gap of width d, show that R/O = 
(E,d)*/2@)U. Discuss ways in which E3/U might be measured. 

10.1le Find R,/Q for a pillbox resonator of the type studied in Sec. 10.5 operating in its 
lowest mode. Frequency is 10 GHz and d = 0.5 cm. The conductor is copper. 

10.11f Derive the expression for R,/O for the small-gap coaxial line resonator pictured in 
Fig. 10.9a. 

10.12a Obtain the approximate expression for frequency shift in a circular cylindrical cavity 
if small volume AY is taken from the side wall for the TMy,) mode where magnetic 
field is large and electric field small. 

10.12b* Discuss qualitatively the effects of a thin dielectric rod along the axis of a pillbox 
cavity, a thin dielectric sheet along the bottom of the cavity, and a dielectric bead
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introduced along the axis of the cavity. (Note that the first two problems can be 
solved exactly.) 

10.12c* Consider a periodic circuit as in Fig. 9.10@ with parallel perfectly conducting planes 

extending fromx = Otox = aatz = d/2 andz = (n + $)d where nis an integer. 
Discuss resonance for such a system. Will there be a resonance corresponding to each 

of the space harmonics defined in Sec. 9.10? Show how measurement of the number 
of nodes (voltage minima) between planes as frequency is changed permits plotting 
of the w—§ diagram. 

10.13 A dielectric resonator with zero axial electric field has radius a = 0.162 in., e&, = 
100, and is to be resonant at 3.5 GHz. Use Eqs. 10.13(6) and (7) to estimate length 
and compare with the experimental curve of Fig. 10.13c. What would be the esti- 

mated length if a magnetic short were used on the ends as well as on the side walls?



  

11.1. INTRODUCTION 

We have so far considered individual components of a wave-type system, including 

transmission lines, waveguides, and cavity resonators. These are used in combination 

in practical systems, and it is found that many of the ideas from classical network theory, 

or an extension of these, are useful in handling such interconnections. In this chapter 

we consider some of these formulations and techniques. For convenience we refer to 

the subject as that of microwave networks since the techniques are most useful in the 

microwave frequency range, although they apply to any wave-type system from low- 

frequency transmission-line circuits to dielectric wave-guiding systems in the optical 

range. 

One approach to the analysis of an interconnection of waveguides with other elements 

might be that of attempting to solve Maxwell’s equations subject to boundary conditions 

for the entire system at once. This would be hopelessly complicated for most practical 

systems, and it would also give fields everywhere within the system, which is more 

information than is needed. One usually needs only the characteristics of each part of 

the system as a transducer or power-transfer element between units or as a coupling 

element to adjacent units. A finite number of parameters (frequency-dependent, in gen- 

eral) may be defined to give that desired information. These parameters can be obtained 

by analysis in some cases, found in handbooks? for certain standard configurations, or 

determined from measurement if neither of the first two approaches work. 

Specifically, we shall mean by a microwave network a dielectric region of arbitrary 

shape having certain waveguide or transmission-line inlets and outlets. The waveguides 

are assumed to support a finite number of noncutoff modes. Examples are the cavity 

resonator coupled to a single transmission line (Fig. 11.1a), the rectangular waveguide 

with change of height (Fig. 11.1), the microstrip T (Fig. 11.1c), and the magic T or 

bridge (Fig. 11.1d). These may be said to be microwave networks with, respectively, 
one, two, three, and four waveguide terminal ports. (This assumes only one noncutoff 

mode per guide.) In considering the defined arrangements as microwave networks, it 

' ON. Marcuviiz, Waveguide Handbook, JEEE Press, Piscataway, NJ, 1986, 

§30



11.1 Introduction 531 

  

  

  

  

      

  

        
(c) (d) 

Fic. 11.1. Examples of microwave networks. (a) Coupling from a line to a cavity (one port). 

(b) Discontinuity in rectangular guide (two port). (c) Microstrip T (three port). (d) Magic T or 
microwave bridge (four port). 

will also be assumed that we are interested only in the behavior of the dominant modes 

in certain of the guides when various load conditions are placed on the remaining guides, 

and not in the detailed solution of the electromagnetic field in the vicinity of the dis- 

continuities. Dielectric waveguides may also serve as the terminals for the guided modes 

with fields decaying properly away from the guide. 

Although we may wish to excite only the dominant mode in any of the waveguide 

terminals, it is true that higher-order modes are excited in the vicinity of the junctions, 

and although these modes may be cut off, they have reactive energy which affects the 

transmission between the propagating dominant modes of the various guides. But if we 

are interested only in the manner in which such transmission is affected, it can be 

expressed in terms of certain coefficients or equivalent circuits, and the details of the 

higher-mode fields need not be described. Thus the microwave two port of Fig. 11.15 

may be represented by a T or 7 network in the same way as a lumped-element two 

port. It is interesting to note that Carson” recognized the validity of this representation 

as early as 1924, although the thorough development for distributed systems occurred 

2 J. R. Carson, Proc. AIEE 43, 908 (1924).
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much later.7~> Many formulations are possible, and since these are wave-type systems, 
some of the most useful relate incident and reflected waves in the various guides. Details 

of both types of formulations will be given in following sections. 

Finally, a combination of elements such as those in the foregoing examples is also 

a microwave network, fitting the definition of the first paragraph. An important part of 

the study will be concerned with the finding of network parameters for an overall system 

when they are known for the individual components. The propagating media of this 

chapter will be considered to be linear and isotropic unless otherwise stated but not 
necessarily homogeneous. 

11,2 THE NETWORK FORMULATION 

As noted in the introduction, microwave networks may be described either in terms of 

parameters relating incident and reflected waves at the terminals or in terms of lumped- 

element equivalent circuits. Although the former approach may seem more natural, the 

latter is convenient in many cases and gives a tie to classical network theory, so will 

be considered first. The equivalent circuit approach does require definition of voltage 

and current for the microwave networks. 

Voltage and current have been defined in the usual ways for transmission lines prop- 

agating the TEM wave (Chapter 5 and Sec. 8.12). For the TE,,) mode of rectangular 

guide (used in two of the examples of Fig. 11.1), one might think of a voltage as the 

line integral of electric field between top and bottom of the guide, but it is not clear if 

one should take the maximum value at the center or some sort of average. Axial current 

flows in the top and returns to the bottom much as in a transmission line, but it is not 

clear if one should worry about the transverse current flow in the sides (Sec. 8.8). For 

other modes it will become even more confusing if classical ideas of voltage and current 

are attempted. It is found, however, that a network formulation results if one follows 

these simple rules: 

1. Voltage is defined as proportional to the transverse electric field of the mode and 

current is defined as proportional to the transverse magnetic field. 

2. One condition on the proportionality factors is that average power is given by 

Re[V/*/2] as in a circuit. 

3. The second condition on the proportionality factors is that V// of an incident wave 

should be a characteristic impedance of the mode of concern, often taken as unity 

to normalize automatically all impedances. 

Concerning the last point, a characteristic impedance is clearly defined for TEM 

modes, but even there we found normalized values of impedance and admittance useful 

3 C. G. Montgomery, R. H. Dicke, and E. M. Purcell, Principles of Microwave Circuits, MIT 
Radiation Laboratory Series, Vol. 8, McGraw-Hill, New York, 1948. 

4D. M. Pozar, Microwave Engineering, Addison-Wesley, Reading, MA, 1990. 

© RS, Elliott, An Introduction to Guided Waves and Microwave Circuits, Prentice Halll, 
Englewood Cliffs, NJ, 1993.
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in applying the Smith chart (Chapter 5). For other waves the concept of a characteristic 

impedance is not so clear. The characteristic wave impedances (Secs. 8.13 and 8.14) 

are sometimes used, but it is usually better to normalize as suggested. In the following, 

however, Z, will first be retained in the expressions both for generality and for dimen- 

sional checks. 

For a single traveling wave, using the first rule, 

EQ, y, Zz) = Voe” “fa, y) (1) 

HG, y, 2) = Ipe7 “g(x, y) (2) 

Applying the second and third rules, 

Re(Vol 5) = 2W- (3a) 7 = Zo (3b) 

As an example, take the TE,, mode in loss-free rectangular guide: 

_ 1x 

Eo. 1x 
A. = -> sn — = Ipg) (5) 

" ZL. a 

Utilizing (3a) we have 

‘ “ER 4, Wx bES Volt = 2b | —2 sin? ax = 2 
0 22. a 2Z 

This result, combined with (3b), gives current and voltage, 

  

  

  

  

abZ,\'"? E,\ ( baz.\'” 
V= Ee , I= |= : 6 

° ( QZ. ° (3 2Z, ©) 
and, by comparison with (4) and (5), the remaining functions are 

2z. \\? TX 2Lo 1/2 1X 
A) = = 1 —, x)= - in — 7 FQ) (2. sin — g(x) ( 220 sin — (7) 

As noted in point 3, Z) can be made unity to normalize automatically all subsequent 

impedances. 

The network formulation may now be obtained by making use of the specified line- 

arity and a uniqueness argument. To be specific, consider the region with three wave- 

cuide terminals pictured in Fig. 11.2. Each waveguide is assumed to support one 

propagating mode only, and reference planes are at first chosen far enough from junc- 

tions so that all higher-order (cutoff) modes have died out.® The forms of the propa- 

6 The reference planes can actually be chosen for convenience at any place, but trans- 
mission-line measurements to determine the network should not be made in the region 
where local waves are of importance, nor will the calculations from the network give 

total fields in that region.
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gating or dominant modes are assumed to be known, so that field is completely specified 

at each reference plane by giving two amplitudes, such as the voltage and current 

defined above. It is clear that it is not possible to specify independently all voltages and 

currents of the network and a uniqueness argument tells us how many of these may be 

specified to determine the problem. As was pointed out in Sec. 3.14 there is one and 

only one steady-state solution of Maxwell’s equations within a region (except for pos- 

sible undamped, uncoupled modes of no interest to us) if tangential electric field is 

specified over the closed boundary surrounding that region, or if tangential magnetic 

field is specified over the closed boundary, or if tangential electric field is specified over 

some of the boundary and tangential magnetic field over the remainder. 

In Fig. 11.2 consider the closed region bounded by the conducting surface S and 

reference planes 1, 2, and 3. If the conductor 1s first taken as perfectly conducting, the 

tangential electric field is known to be zero over the surface S. Then, if voltages are 

given for each of the reference terminals, tangential electric fields are known there, and, 

by the statement of uniqueness, one and only one solution of Maxwell’s equations is 

possible. Then E and H are determinable for any point inside the region, including the 

reference planes, so that the currents (amplitudes of the tangential magnetic field dis- 

tributions) may be found there. For linear media, the relations are linear ones and may 

therefore be written 

I, = YiuYi + YyV2 + YisV3 

I, = YoY, + YooV2 + Yo3V3 (8) 

I, = YsiV, + Yo.V. + Ya3V3 

Similarly, if currents are given for all reference planes, tangential magnetic fields are 

known there, and, with the known zero tangential electric field over S, the uniqueness 

argument again applies so that tangential electric fields and hence voltages could be 

found at the reference planes. For linear media, 

Vi = 2k, + Zyl, + Lizls 

Vy = Zaly + Laogls + Logs (9) 

V3 = Z33l, + Zaql, + Za! 

  

FiG. 11.2 General microwave network with three waveguide terminals.
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Forms (8) and (9) are identical with the forms that would be found relating voltages 

and currents at the terminals of a three-port lumped-element network. Here also the 

coefficients Y;; and Z,; are functions of frequency and are known as the admittance 

parameters and impedance parameters, respectively. For an N port, in matrix form, 

VJ = (YY), WI) = [214 (10) 

where [J] and [V] are column matrices of order N and [Y] and |Z] are N X N square 

matrices. 

Although the argument has been given for a perfectly conducting surface S, the 

foregoing forms also apply to an imperfectly conducting boundary. A reasonably con- 

vincing way of seeing this comes from moving the bounding surface several depths of 

penetration within the conductor to S’ (Fig. 11.2). The electric field there is substantially 

zero, so that an imagined perfect conductor could be introduced along $’ without chang- 

ing the behavior of the system, and the argument would proceed as above. The con- 

ducting portion between S and S’ will contribute to the parameters Y;; or Z;; since it is 

now part of the interior, and those coefficients will be complex because of the losses. 

11.8 CONDITIONS FOR RECIPROCITY 

For most systems, the admittance and impedance matrices defined in the preceding 

article are symmetric. That is, 

Yi = Yi, Zi = Lii (1) 

This condition follows from a reciprocity theorem due to Lorentz, which states that 

fields E,, H, and E,, H, from two different sources at the same frequency satisfy the 
condition 

V-(, x H, -— E, X H,) = 0 (2) 

This theorem is easily verified for isotropic (but not necessarily homogeneous) media 

by substituting Maxwell’s equations in complex form and can also be shown to hold 

for an anisotropic media provided the permittivity and permeability matrices are sym- 

metric. However, it does not hold if the matrices are asymmetric, thus explaining non- 

reciprocal properties of the gyrotropic media to be met in Chapter 13. If (2) is satisfied, 

a volume integral of (2), with application of the divergence theorem, gives 

 (E, x H, — E, x H,)- dS = 0 (3) 
Ss 

Consider Fig. 11.2 with all reference planes but 1 and 2 closed by perfect conductors 

(shorted). Fields at 1 and 2 may be written [Eqs. 11.2(1) and 11.2(2)] 

Ey = Vifi@y, yy) Hy = 18104, yy) (4) 

En = Vofo2, ya) Hi. = 158.0%, ya) (5)
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By rule 2, voltage and current are defined to have the same relation to power fiow in 

both guides, which requires that 

| (f; x g,)-as = | (f, X go): dS (6) 
S So 

The surface integral (3) is zero along the conducting surfaces S of Fig. 11.2 (or S’, 

if imperfectly conducting) and along the shorted planes. For planes 1 and 2, substitution 

of (4) and (5) gives 

Vials — Vielia) j (ff, X gi): dS + Voglo, — Vasloa) j (f2 X g,): dS = 0 
1 2 

With (6), this reduces to 

Vialip — Vielia + Vaalap — Voolaa = 9 

Relations between current and voltage are introduced from Eq. 11.2(8): 

ViaiVi, + Yi2V 5) - Visi ia + Y. 12V2a) 

+ VyqV%oVis + Yo2Ven) — VooVoVia + Yo2Voa) = 0 (7) 

(Vian ~~ VipVoa)Ni2 ~~ Y51) = 0 

In this argument the sources a and b are arbitrary so that the first factor need not be 

zero. Hence the second is zero. Then 

Yo, = Yip (8) 

The argument for the impedance coefficients may be supplied by placing “open cir- 

cuits” at all but two of the terminals. This is done in the waveguides by placing a 

perfect short a quarter-wave in front of the reference planes. Moreover, since the num- 

bering system is arbitrary, 1 and 2 may represent any two of the guides and the general 

relation (1) is valid. 

ae 
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RE REISS TRF STEEL PSHE TSE 
Fett ees           

11.4 EQUIVALENT CIRCUITS FOR A TWO PORT 

The microwave network with two waveguide terminals, as pictured in Fig. 11.10, is of 

greatest importance since it includes the cases of discontinuities in a single guide or 

the coupling between two guides. Most filters, matching sections, phase-correction 

units, and many other components are of this type. There is a large body of literature
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on the lumped-element equivalents. The name “‘two port”’ is used for these, with a port 

denoting a single waveguide mode at a specific reference plane for a microwave network 

and a terminal pair for a lumped-element network. 

From Sec. 11.2 the equations for a two port may be written in terms of either imped- 

ance or admittance coefficients: 

||": (1) 
ly 

iM | Zu, £12 

Ve) LZ Zan 
i] = [fe eM] » 

I, | | ¥o1 Yoo JLV2 

Another convenient form expresses input quantities in terms of output quantities: 

(ea . | le DiL-4L ©) 

Algebraic elimination shows that relations among the above parameters are 

  

    

  

  

£09 D 
Yi, = —<=_ > —-_ 

A(Z) B 

—Lio ~(AD ~ BC) 

Me = Kay = B 
(4) 

—ZL>, ~~ 1 
y. =_ SS 

at A) B 

Yo. = 4 = A 
A(Z) B 

where 

A(Z) = 2,29. — Zy2Zry 

For a network satisfying reciprocity, 

Zo, = Ly Yo, = Yio AD — BC = 1 (5) 

We shall assume such reciprocal networks in the remainder of this section. 

An infinite number of equivalent circuits may be derived which yield the forms (1) 

to (5). Two important ones are the well-known T and 7a forms shown in Figs. 11.4a 

and b. They may be shown to be equivalent to (1) and (2), respectively, by setting down 

the circuit equations. Other interesting ones utilize ideal transformers and sections of 

transmission lines, two of which are pictured in Figs. 11.4c and d. These are of greatest 

importance for lossless microwave networks since the arbitrary reference planes in the 

input or output guides can be shifted in such a way that only an ideal transformer is 

left in the representation of Fig. 11.4c or an ideal transformer and shunt element in Fig. 

11.4d. This will be explained in more detail when the measurement problem is discussed
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FiG 11.4 (a) T equivalent circuit with (b) 7 equivalent circuit for a two port satisfying reci- 

procity. (c) Equivalent circuit for a two port which satisfies reciprocity using sections of trans- 
mission line and an ideal transformer. (d) Equivalent circuit using section of transmission line, 
transformer, and shunt element.
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in Sec. 11.6. The quantities of Fig. 11.4c are related to the impedance parameters as 
follows: 

tan Bil, = Lteo-a@— bl | Lt+ce-a@-PyP 

Vl 2(bc — a) 7 Y 2(be — a) 

1 + atan B,/, 

b tan Bl; — c (6) 

mZo, 1+ atan Bl, 

Zo2 b + c tan Bl, 

  

  
  

  tan Bol, = 

  

where 

a= J414 

Zo 

Z,,Z55 ~— Z? b = oiie22 12 (7) 

Zo\Z02 

~— iL 

c= —J622 
Zo2 

11.5 SCATTERING AND TRANSMISSION COEFFICIENTS 

The preceding discussions have been given in terms of the voltages, currents, and 

impedances defined for microwave networks. Definitions of these quantities are some- 

what arbitrary. Moreover, the impedances are usually obtained by interpreting measured 

values of standing wave ratios or reflection coefficients. It is then evident that for some 

problems it will be more convenient and direct to formulate the transformation prop- 

erties of the two port in terms of waves. The two independent quantities required for 

each waveguide terminal are an incident and a reflected wave replacing the voltage and 

current. This section introduces two of the most useful forms based on wave quantities. 

Suppose that incident and reflected voltage waves on the input guide are given in 

magnitude and phase at the chosen reference plane by V,,. and V,_ (Fig. 11.5). Sim- 

ilarly, incident and reflected waves looking toward the junction from reference plane 2 

are V,, and V,_. It is common to normalize incident and reflected waves as follows: 

a= Vit b _ Vig (1) 

n WZo, n VZon 

Thus, voltage and current at reference plane n are related to these wave quantities as 

follows: 

Vi = Vue + Va = VZonl@n + On) (2) 
1 I 

I. =— (Vv -Vij=—= a, —~ b, n Zon ( n+ n ) VZo, ( )
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Fic. 11.5 Incident and reflected waves at ports of microwave network. 

The average power flowing into terminal 7 is 

(Wav = ¥Re(V,I,) = 3 Rel(a,a, — b,b7) + (b,a; — bn 4,)I 

The first set of parentheses encloses a purely real quantity, and the second, a purely 

imaginary quantity. Thus, 

2(W av — a, ~ bb, (3) 

That is, (W,,),, is the power carried into terminal n by the incident wave, less that 

reflected away. 

In the first form to be used, we shall relate the two reflected waves to the two incident 

waves. For a linear medium, 

kK | _ fs Sia |} a (4) 

by So; Sao || a 

[5] = [S]la] (3) 

with the [S] array known as the scattering matrix, and the coefficients S,, and so on 

known as scattering coefficients. For a physical interpretation, note that with the source 

applied to port 1 and the output guide matched so that a, = 0, 

by = 31141, by = Soa, (6) 

Or 

Thus, S,; is just the input reflection coefficient (in magnitude and phase) when the 

output is matched, and S,, is the ratio of waves to the right at output and input under 

this condition. The energy equation (3) for this matched condition becomes, for the two 

terminals, 

2Wiaw = U - S187 )a\a7 (7) 

2Wo)ay = — $5,834 ,a} 

The negative sign in W, arises because power is defined as positive toward each port. 

For a passive network with source at 1 as in this example, output power cannot be 

greater than that supplied at the input. Thus, (— W,),,, = (W;),, or 

S583 =1- SST (8) 

The equality holds only when the network is loss free.
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By substituting the definitions (2) into Eq. 11.4(1), and utilizing (4), we can relate 

the scattering coefficients to the impedance coefficients.’ The results are 

FSi, = @iy — Zo, (Zax + Zon) — Zy2Zay 

PSjo = 2VZLo)Zo2Z)9 

FSo, = 2VZo2Zo1Z24 (9) 

FSo0 = (f22 — Zo2)Ziy + Zoi) — 4ajZi2 

where 

Fe= (Zi, + LoS. + Lo.) — LZy2Z9) (10) 

From this we see that S,, = S,> for a network satisfying reciprocity.since then Z,, = 

Z)2. Uhrough the relations of Eq. 11.4(4) the scattering coefficients may also be related 

to admittance coefficients or the transfer coefficients if necessary. They can be obtained 

directly from reflection measurements, however, as is shown in a following section. 

A second important linear transformation of (4) gives output wave quantities in terms 

of input quantities: 

by = Ta, + Ti2d 
(11) 

ay = Tra, + Tyyd, 

The coefficients T;, are known as the transmission coefficients and are related to the 

scattering coefficients as follows: 

5; 529 > 
Ty = Sap — 5 =, Ly = 5 

12 12 (12) 

" Si2 “Si 

This form is especially useful for cascaded networks, as will be illustrated in Sec. 11.7. 

11.6 MEASUREMENT OF NETWORK PARAMETERS 

Measurement of the network parameters of a two-port is straightforward if one can 

measure relative magnitudes and phases of any two quantities and can apply excitation 

at either port. Thus, in the impedance form, Eqs. 11.4(1), an open circuit (7 = 0) may 

be placed on the output of the two port and Z,, is then input impedance. Z,, is the ratio 

of output voltage to input current: 

v1 V, 
, Zz nd 

if a 
Z = 

Il 2 L, (1) 

    

1,=0 I,=0 

7 C. G. Montgomery, R. H. Dicke, and E. M. Purcell, Principles of Microwave Circuits, MIT 

Radiation Laboratory Series, pp. 146-148, McGraw-Hill, New York, 1948.
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Reversal of the network gives Z,, and Z,. by similar measurements. In a like fashion, 

the admittance parameters may be found by applying a short circuit (V = 0) at port 2 

with excitation at port 1: 

’ Y= > (2) 
    

Reversal of the procedure gives Y,, and Y,.. Direct measurement of the scattering 

parameters is accomplished by successively matching ports 2 and 1 and measuring 

incident and reflected waves at the two ports: 

by bs 
So) = > 

a, a, 

by 
a4 

(3) 
a,=0 

Si = 
        

3 

a,=0 a,=0 

Magnitude and phase of input impedance or reflection coefficient can be measured 

by slotted line techniques as explained in Sec. 5.8, but measurement of phase between 

input and output quantities, as required for S;,, presents a greater difficulty. The meas- 
urement is accomplished in modern network analyzers® by measuring incident and 

reflected waves at each port by directional couplers, to be described in Sec. 11.10. After 

selection of the pair of signals required for a particular S;; and matching according to 

(3), the microwave signals for the two quantities to be compared are mixed with local 

oscillator signals of slightly different frequency to produce lower-frequency signals 

which retain the information concerning phase and relative magnitudes. Ratios of the 

complex phasors are calculated digitally to give the desired S;,. Excitation frequency 

and local oscillator frequency can be swept so that values of the desired parameters 

may be obtained over a range of frequencies. Display may be in a variety of forms, 

often in Smith chart format. 

Network analyzers which provide both phase and magnitude are called vector ana- 

lyzers. Those which provide magnitudes only are called scalar analyzers’ and are of 

course simpler since ratios may then be measured by using simple power meters. 

If a network analyzer is not available, more laborious methods are possible. Often a 

two port is used to transform impedances from one side to the other. From Eq. 11.4(1), 

load impedance Z, = —V-/I, produces input impedance Z, = V,/T, as follows: 

Z?, 
Z, = Z,, - —e— 4 
PST Zo + Zy an 

Measurement of three different (Z,, Z;) pairs can then determine the three parameters 

Z11, 29, and Z?,. A particularly simple way is to place a good short at three independent 

positions along the guide to produce the three known load impedances. Algebraic 

elimination from three equations of the form of (4) shows that, if Z, , produces Z,,, Z,5 

produces Z;., and Z, , produces Z;3, the impedance parameters are 

8 PR. G, Dildine and J. D. Grace, Hewlett-Packard J. 39, 12 (1988). 

9 J, H. Egbert et al., Hewlett-Packard J. 37, 24 (1986).
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(Ziy — Zig ZyZLy — ZeZp.) — Zy — ZeMZyZp, — Zj3Z,3) 
  

  

Zi, >= (5) 
(Zi -_ Zi3)\(Zyy i £12) ~ (2; ~ Zi2 (Zr — Z3) 

Zon = (ZZ ~ Zi2Z12) _ Zi (Zi) 212) (6) 

_ (Zi — Zi) 

Zin = Zu - Lip (Z22 + LZyp)s p = 1,2, 3 (7) 

If the network is lossless and if purely reactive terminations are used, input impedances 

will also be pure reactances, and Z’s may be replaced by X’s everywhere in these 

equations. The form of (5) to (7) may also be shown to be valid for determination of 

admittance parameters Y,,, Y,., and Y,. when pairs of input—output admittances Y, ,Y;,, 

Yi oYi0, ¥p3Y;3 are measured. The Z’s are then replaced by Y’s in (5) to (7). Note that 

the sign of Z,. cannot be determined from impedance transformation measurements 

alone, since it does not enter into (4). For the same reason, it is of no interest if results 

are to be used only for impedance transformations by the network. 

The above forms apply also to scattering parameters since input reflection coefficient 

is related to that at the output by 

S75 
= ee (8) 

° "Soo + 1/py 

b, a5 

_=— ~~ y) 4 = 9 

Thus, measurement of p, with three independent values of p, may be used to obtain 

$11,599, and S,, by replacing Z, with p;, Z, with 1/p,, and Z,,,, with S,,,, in (5) to (7). 
For regions that may be considered lossless, the representation of Fig. 11.4c is espe- 

cially useful. This follows because a shift of the input reference plane from 1 to 1’ 

(Fig. 11.6a) by a distance B,y) = B,/, — mand a shift of output reference plane from 

2 to 2' by B.x%) = aw — Bl, gives as the equivalent circuit an ideal transformer with 

half-wave lines at input and output. But the half-wave lines give unity impedance 

transformation and so may be ignored, leaving only the ideal transformer representing 

the region between 2’ and 1’. A load impedance referred to 2" is multiplied simply by 

(1/m)? to give the input impedance referred to 1’. 
The parameters of the above representation may be determined as follows. The output 

guide is perfectly terminated (Z, = Zp); the position of the minimum impedance point 

on the input guide corresponds to 1’, and the value of this minimum impedance 

gives m: 

Z 2 02 -_— SS 10 
Mn ( ) 

min 

Similarly, if the network is reversed, the input guide terminated, and like measurements 

made on the output guide, the location of reference plane 2’ is obtained as well as a 

check on 7”.
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FiG. 11.6 (a) General two port. (b) Typical S curve obtained by measurement on (a). 

An alternative procedure has advantages in some cases. Weissfloch!® has shown that 

for a lossless junction, a plot of position of voltage minimum on the input guide as a 

function of position of a short on the output guide has the “S curve” form shown in 

Fig. 11.6b, where 8,y is the electrical distance of the minimum from the originally 

selected reference 1, and £,~x is the electrical distance of the short from 2. The form of 

the equation is easily found to be 

  

Z 
tan B,(y — Yo) = eZ. tan B(x — xX) (11) 

The new reference planes 1’ and 2’ are given by the positions x), yo of the maximum 

slope of the S curve, point P of Fig. 11.6b. The value of this maximum slope is 

Zo2/m?Zp,. The turns ratio may also be determined in terms of the distance C between 

the envelope tangents. 

2 V2 
m eon an'( =) (12) 
Zoo 4. ° 447 

10 N. Marcuvitz, Waveguide Handbook, p. 122, IEEE Press, Piscataway, NJ, 1986,
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For the measurement, many points of input minimum are then measured as a short is 

moved along the output, and the curve determined. There is the advantage that the 

consistency of measurement and discrepancies caused by neglected losses may be told 

more easily than in the methods first described where only a few points are measured. 

Alternatively, one can use the crossover point P’. Turns ratio is the reciprocal of the 

above and reference planes are shifted by a quarter-wavelength on each side. 

11.7. CASCADED TWO PORTS 

The ABCD transfer forms of Sec. 11.4 and the transmission coefficients of Sec. 11.5 

are especially useful when two ports are connected in tandem or cascade, because the 

output quantities of one network become the input quantities of the following one. 

Thus, referring to Fig. 11.7a, we may successively apply the form of Eq. 11.4(3) to 

networks a and b: 

Vio] _ [Aa Ba || Va a _ [As ah 
lia 7 C, D, ~The ly C, Dy — Toy 

but V,, = V,, and —J,, = /,,, so we may combine the two to give 

Vie) _ [4a Ba b Pe | a) 
Lig Cy D, C, D, lop 

    
Tia Toa lio Inp 

—o- ales 

+ + + + 
Two port Two port 

Via o Von Vie iP Von 

            

  

  

(6) 

Fic. 11.7 (a) Cascade connection of two ports. (b) Uniform transmission line with shunt ele- 

ment in center.
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Table 11.7 

j<_——— -y ———» oe 

o—| z f 
Zo 

—_———eee 2 

Transmission Ideal Series Shunt 
Line Transformer Impedance Admittance 

A cosh yl m 1 1 

B Zo sinh yl 0 Z 0 
Cc Y, sinh yl 0 0 Y 
D cosh yl 1/m 1 1 
  

Thus, the transfer matrix for the two networks cascaded is 

A BY] {A, 8B, |{4, 8, (2) 

C D C, Di\ILC, dD, 

with obvious extension to more than two cascaded two ports. Similarly for the T mat- 

rices of Sec. 11.5, but here we start with the matrix for the last unit since these were 

defined to give output in terms of input quantities: 

P | _ rs || oe 3) 
Tor Too) Lorde Tarde IL Tara (Tor) 

Table 11.7 gives the ABCD coefficients for some simple units. 

  

FEO On SI oie cae DS TAS SARE LIER SON ee ee ee Ee Se eee ree Ne 
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Example 11.7a 
TRANSMISSION LINE WITH SHUNT ELEMENT 

  

To illustrate the use of Table 11.7, consider the circuit of Fig. 11.7b with a shunt 

admittance at the midpoint of a uniform transmission line. The matrix for the combi- 

nation is 

4 | - cosh 2 “0 snn( cosn( 7) “0 snn( 7) os (4) 
C D fy yl Y 1 fy yl 

Yo sin f) cosn( 2 Yo sinn(2) cosn(2
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Multiplication of the matrices and use of identities for hyperbolic functions gives 

Y 
A = D = cosh yl + | =] sinh yl (5) 

2Yo 

Alea —1 + cosh yl) + sinh | (6) 

C= fol (Ja + cosh y/) + sinh 7 (7) 

  

Example 11.76 
PERIODIC SYSTEM AS CASCADE OF N TWO PORTS 

Periodic circuits, considered in Sec. 9.10 from a field point of view, may also be con- 

sidered as a cascade of like networks. The overall transfer matrix for N like networks 

is just the Nth power of that for a single network: 

b * | _ | nl 8) 
C D Cy Do 

For a network with reciprocity, this results in!! 

A = [Ag sinh NT — sinh(V — 1)P)/sinh T (9) 

B = By sinh NI’/sinh T (10) 

C = Cy sinh NI’/sinh [ (11) 

D = [D, sinh NT’ — sinh(V — 1)0)/sinh T (12) 

cosh! = (Ay + Do)/2 (13) 
In matrix terminology, e*! are the characteristic roots of the matrix. Physically, [ may 

be considered the propagation constant when the network is properly terminated. 

To interpret the above, let us consider that each cell is symmetric (Ag = Dog) in 
addition to being reciprocal (AjgDy — BoCg = 1) as already assumed. Let us also 

terminate the chain in a characteristic impedance Z, defined so that each cell terminated 

in Z, also gives impedance Z, at its input.’* That is, 

Vi _ Avs — Bolg _ ApZ + Bo 
© I Coo — Agla  CoZe + Ao 

See, for example, G. Strang, Linear Algebra and its Applications, Academic Press, New 
York, 1976. 
If the network is asymmetric, image impedances—one for each direction—are used. 

See, for example, R. S. Elliott, An Introduction to Guided Waves and Microwave Circuits, 
Appendix E, Prentice Hall, Englewood Cliffs, NJ, 1993.
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from which 

B.\}/2 fy " 
Equations (9)—(12) then reduce to 

A = D = cosh NT (15) 

B = Z, sinh NV (16) 

C = (Z.)7! sinh NT (17) 

By comparison with Table 11.7, we recognize that each cell now acts as a transmis- 

sion line of characteristic impedance Z, and overall propagation constant I’. The cas- 

caded N sections then just have overall propagation constant NI’. 

Note that from (13) if |Aj + Do| = 2,T is imaginary so that there is phase shift but 
no attenuation through the network. If |A, + Do| > 2,T is real and there is attenuation. 

This filter-type behavior is most important in communication networks and will be 

illustrated more in the following section. 

  

11.8 EXAMPLES OF MICROWAVE AND OPTICAL FILTERS 

The filtering action described in the preceding section is extremely important for com- 

munication systems; filters pass desired frequencies with small attenuation while pro- 

viding much more attenuation for noise or undesired signals outside the frequency range 

of interest. We shall give some examples in this section for different types of trans- 

mission systems. Many other configurations are useful, and a variety of techniques for 

design of the different types are discussed in treatises on this subject.'? 

Jee see ews petted 

Xample 11.8a 
FILTERS WITH PERIODIC SHUNT ELEMENTS IN TRANSMISSION LINES 

The first four forms to be considered, Figs. 11.8a—d, are specific cases of the sym- 

metrical transmission system with periodic shunt elements analyzed in the preceding 

section. Figure 11.8a@ shows a coaxial line with capacitive diaphragms at intervals / 

along the line, and Fig. 11.85 is a similar arrangement in microstrip with the loading 

capacitors made as side taps. If the loading capacitors have value C, and losses are 

'S G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching 
Networks and Coupling Structures, Artech House, Norwood, MA, 1980. Also, R. E. Collin, 
Foundations of Microwave Engineering, 2nd ed., McGraw-Hill, New York, 1991. See also 
footnotes 4 and 5.
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FiG 11.8 (a) Coaxial line with capacitive disks at intervals /. (b) Microstrip with capacitive 

tabs at intervals /. (c) Rectangular waveguide with symmetric inductive diaphragms introduced 
from sides at intervals /. (d) Microstrip with shorted microstrip stub lines in parallel at inter- 

vals /.
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neglected in the transmission line so that y = jB, Eq. 11.7(5) and Eq. 11.7(13) give 

C 
cosh I = cos BI — —~! sin Bl (1) 2Y, 

These circuits would be expected to pass low frequencies since the periodic capacitors 

provide small shunting effects in that range. If BJ = wiV LC < 1, (1) becomes 

wIC3VLC 0) 

2VC/L 

where L and C are inductance and capacitance of the microstrip per unit length. The 

region of imaginary I, which we call the passband of the filter, is from 

—~ 1 =coshT <= 1, which is from zero to w,, in angular frequency, where cutoff is 

1 1/2 

= 2 oe () 3) 

In this approximation the transmission-line sections, short compared with wavelength, 

act as series inductors and, with the shunt capacitors, produce a classical lumped- 

element, low-pass filter. However, there are other passbands at higher frequencies. 

These occur in the vicinity of B] = nz since sin Bl becomes small there. Since wC,/2Y, 

increases with frequency, the passbands become narrower as the order n increases (as- 

suming of course that the capacitive representation for the discontinuities holds at these 

higher frequencies). In any event it is characteristic of the transmission-line circuits that 

they have multiple passbands, as was found from a different point of view in Sec. 9.10. 

cosh [+ 1 — 

  

  

Example 11.8b 
FILTER WITH PERIODIC INDUCTIVE DIAPHRAGMS IN WAVEGUIDE 

Figure 11.8c pictures a rectangular waveguide with diaphragms at intervals / introduced 

symmetrically from the sides. Such diaphragms are found to act as inductive shunt 

susceptances to the TE,, mode, with admittance given approximately by!* 

nN ae: coe( za) (4) 
Yo a 2a 

where a is guide width, d aperture width, and A, guide wavelength, - 

 \2 7171/2 

A, =Al1l- | — 

14 See footnote | or 3.
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Equations 11.7(5) and 11.7(13) give for this case 

cosh T = cos om! + e cot? md sin om (5) = ~—_—_— —— +f — i _ 

A, 2a 2a A, 

The waveguide is in itself a high-pass filter, but with typical values of A,/a and d/a, 

the added diaphragms cause it to remain attenuating to higher frequencies than the 

waveguide cutoff. But at least in the vicinity of ] = d,/ 2 the last term in (5) is small 

and |cosh I'| < 1 so that there is a passband. Depending upon values of A,/a and d/a 
there may be additional attenuation bands and passbands at still higher frequencies, as 

in the first example. 

  

Example 11.8¢ 

BANDPASS FILTER IN MICROSTRIP 

In Fig. 11.8d the shunt elements consist of shorted sections of microstrip of length /, 

and characteristic admittance Y,. connected in parallel with the main microstrip at 

intervals /,. The shorted stub lines also short the main line at low frequencies (and at 

frequencies for which 8.,/, = nr), but present high impedances in parallel for frequency 

ranges near those for which the stub lengths are odd multiples of a quarter-wavelength. 

The shunt admittances of the shorted stubs are 

Y = —JYo2 Cot Bols (6) 

so that Eqs. 11.7(5) and 11.7(13) yield 

Y, y * cosh T = cos B,/, + —* cot Ppl, sin B,l, (7) 
2Y, 

This clearly has passbands, in the sense defined, for 8./, near (2m + 1)2r/2, as expected. 

  

Example 11.8d 
FILTERING BY COUPLED MICROSTRIP TRANSMISSION LINES 

A somewhat different approach to construction of a bandpass filter is illustrated by 

Fig. 11.8e. In this, one microstrip line is coupled to another through an intervening 

microstrip of finite length. For frequencies near those for which the coupling section is 

resonant, there is large coupling and nearly perfect transfer. For other frequencies, there 

is a small transfer of energy. Analysis of this, which requires consideration of the 

distributed couplings, is not given here, but measured and calculated curves of insertion 

loss from a six-section filter of this type are shown in Fig. 11.8f 
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FiG. 11.8 (e) Top view of microstrip with coupling section between input and output trans- 
mission lines. (f ) Insertion loss of parallel-coupled-resonator filter of six sections [From S. B. 
Cohn, JRE Trans. Microwave Theory Tech. MTT-6, 223 (1958). © 1958 IRE (now IEEE).} 
(g) Optical filter with periodic alternations of refractive index. 

§52
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Example 11.8e 

OPTICAL FILTER 

As a final example we consider the optical filter made of alternating layers of dielectric 

with different refractive indices, as illustrated in Fig. 11.89. (The equivalent of this in 

transmission-line form is made by alternating sections of transmission line of different 

characteristic impedance.) As explained in Sec. 11.1, microwave network concepts also 

apply at optical frequencies. The ABCD matrix for the symmetric section between 

reference planes 1 and 2 is 

! , l _ 
4 A - cos eu jm, sin a COS Pol, JM sin Bol, 

cD) |j l I ; 
~ sin Pi COS Pi L sin Bol, cos Bl, 
" 2 2 No 

l l 
cos eu J, sin a 

. (8) 
JZ gin Pr Bil sin COs 
nh 2 2 

from which we obtain 

— _ _ L fm 12 \_. , 
A = D = coshlT = cos B,/, cos Bl, — 5 th + 1, sin Bl, sin Bol, (9) 

2 i 

This is propagating (imaginary I”) for low frequencies, but eventually reaches an atten- 

uating region with |cosh [] > 1. There are then a series of attenuation bands and 
passbands as frequency is increased. 

  

In this section we have considered only the propagation through one unit, and have 

looked for frequency ranges for which I is real (attenuation bands) or imaginary (pass- 

bands). As shown in the preceding section, if there are N such symmetric units in 

cascade, and the last is terminated in Z, defined by Eq. 11.7(14), the overall attenuation 

is NI’ for the attenuation bands and N times the phase shift per unit in the passbands. 

For a practical filter, the units need be neither symmetric nor all the same. Moreover, 

Z. is in general a function of frequency so that it is not usually possible to match its 

frequency characteristics exactly to that of the terminating impedance. Reflection losses 

thus also occur and the overall insertion loss—in both the passbands and the attenuation 

bands——must be considered in the design of the filter. The techniques used for designing 

a filter which approximates a desired characteristic of insertion loss versus frequency 

are described elsewhere.!?



  

554 Chapter tt Microwave Networks 

  

Se re NT a ES ea SO TEN OSES SOE NGS EN a TSS Se NE 

N-Port Waveguide J unctions 

11.9 CIRCUIT AND S-PARAMETER REPRESENTATION OF N PORTS 

It was shown in Eq. 11.2(10) that the currents and voltages (as defined in Sec. 11.2) 

are related through impedance parameters, 

[V] = [Z]] (1) 

or through admittance parameters, 

7] = [YIV) (2) 

where the admittance and impedance matrices are of order N X N. The scattering 

coefficients, defined in Sec. 11.5 for a two port, may also be extended to the N port: 

[6] = [S][a] (3) 

The column matrix [b] represents the N waves leaving the junction, and [a] the N waves 

incident upon the junction, as defined in Eq. 11.5(1). The representation is pictured in 

Fig. 11.9a for a four port. Other linear transformations are of course possible, and an 

indefinite number of equivalent circuits may be drawn, similar to those of Sec. 11.4, 

but the three formulations given above have proven the most generally useful. We now 

consider some specializations of the general N port. 

Reciprocal Networks For networks satisfying reciprocity, each of the matrices [Z], 

[Y], and [S] is symmetric. That is, 

Ze = Zip Ye =Yp Se = Sy (4) yp 

The proof is easily accomplished by extending from that of the two port. For example, 

if all ports except for 7 and j are shorted at the reference planes, there remains a two 

port between i and j, for which the proof of Sec. 11.3 shows Y,; = Y;; under the 

conditions of reciprocity, and similarly for the other relations of (4). 

Loss-Free Networks Internal losses may be neglected in many useful microwave 

junctions, so it is important to know the consequence of negligible loss. The complex 

Poynting theorem, Eq. 3.13(6), applied to power flow into the N ports gives 

N 

— PE x H*)- dS = S a i = 2W, + 4j0(U, — Uz) (5) 
m=1 

but 

N 

Vn = DD Zand (6)
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Fic. 11.9 (a) General four port showing incident and reflected waves. (b) A Y junction (three 

port) for combining power from sources q) and @). 

SO 

N ON 

De De Zandt = 2Wz + 4jo(Uy — Up) (7) 
n=] m=] 

Now let all ports be open circuited except the ith: 

So for a loss-free network with W, = 0, Z,; is imaginary since /,] is real. To study an 
off-diagonal term, let all ports but i and j be open-circuited: 

Z, 107 + Zl"; + Z,107 + Zilli = 2W, + 4jo(U, — Uz) (9) 

The first two terms are imaginary, by the above, so if W, = 0, 

Re[Z,1 07 + ZL 1) = 0 (10) 

For a reciprocal network with Z,;, = Z;, Z;, is then also imaginary. Similarly the ad- 

mittance matrix is imaginary for a loss-free network satisfying reciprocity. 

To show the properties of the scattering matrix for loss-free networks, 

N N 

> Vile = Dd Gu + nan — bE) = 2W, + 4jo(Uy - Ug) (1D 
nis] m=z] 

so for a loss-free network, 

N N 

D bnbe = Dy Ine (12) 
m=] ni 1} 

This equation can be written in matrix form, 

[5],{6*] = [a],{a*] (13)
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where [b], denotes the transpose of [b], obtained by interchanging rows and columns. 

In particular the transpose of a column matrix is a row matrix, and it can be checked 

that the rule for matrix multiplication applied to (13) does give (12). Now, substitut- 

ing (3), 

([S]{@]}),([S]la)* = [a],la*] (14) 

The transpose of a product is the product of transposes with order reversed, so 

(a],[S],[S*]fa*] = ta].[U]la*] (15) 

where [U] is the unit matrix. Thus, 

[S],[S*] = [U] (16) 

From this we see that [S], = [S*]~! so (16) may also be written 

[S*][S], = [U] (17) 

Matrices for which the transpose is the conjugate of the inverse matrix are called unitary 

matrices. Use of the product rule for matrices shows that they have the following 

properties: 

N 

> SinSin = 1 (18) 
n=] 

N 

> SinS in = 0, L J (19) 
n=l 

The above relations may be derived directly from conservation of energy, (18) by 

applying an incident wave to terminal i with all terminals matched and (19) by applying 

incident waves to terminals i and j with all terminals matched. Note that reciprocity 

was not required in the derivation. The relations have important consequences as to 

what can or cannot be done with loss-free junctions, as will be illustrated with two 

examples. 

adi tay we os te . LOS Aint ee 

Example 11.9a 
LIMITATIONS ON LOSS-FREE THREE PORTS 

The three-port Y junction pictured in Fig. 11.95 is useful as a power divider or power 

combiner. It is assumed that it satisfies reciprocity. If sources are introduced at terminals 

1 and 2 with the combined power obtained at 3, one might wish to have S,, = 0 to 

eliminate direct interaction between the two sources. But condition (19), with i = 1, 

j = 2, gives 

$1183, + SpSoq + 513533 = 0 (20)
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Thus if S;, = 0, either S,3 or S53 is zero also, eliminating one of the two desired 

couplings. The junction will act as a power combiner, but there is interaction between 

the two sources, and if the two sources are not identical in magnitude and phase, one 

source will tend to feed power to the other. 

  

Example 11.9b 
LIMITATIONS ON IDEAL ISOLATING NETWORKS 

The ideal isolator would be a loss-free, one-way transmission line with S,, = O but 

55, * 0. It was noted that the unitary property (17) applies to nonreciprocal as well as 

reciprocal networks. Equation (18) with = 1 and (19) with; = 1,7 = 2 give 

Sy 11 + $1579 = 1 (21) 

$1153, + S12539 = 0 (22) 

In (22) if S;. = 0, either S,, = Oor S,, = 0, but S,, # 0 from (21), so this ideal also 

is impossible. We shall see useful isolators employing nonreciprocal elements in Chap- 

ter 13, but because of the limitation shown here, they will have dissipative elements to 

absorb the reflected wave. 

Some consequences of the unitary property of directional couplers and four-port 

hybrid networks are discussed in the following section. 

  

Shift of Referemce Plames If the reference in each port is shifted away from the 

network by distance /,, there is additional phase delay in scattering matrix parameters 

S,; by B,/; for the ith port and 8,/; for the jth port. Thus, the S’ matrix coefficient referred 

to the new references is related to the original S matrix coefficient by 

_ —~ j(Bl; + Bil; Si — Se Bile + Bp (23) 

11.10 DIRECTIONAL COUPLERS AND HYBRID NETWORKS 

One of the most important four ports is the directional coupler, designed to couple in 

a separable fashion to the positively and negatively traveling waves in a guide. Figure 

11.10a gives the simplest conception of this device. Imagine a main waveguide with 

two small holes placed a quarter-wave apart coupling to an auxiliary guide terminated 

at each end by a matching resistance and meter as shown. If wave A progresses toward 

the right, coupled waves from the two holes at terminal 4 follow paths B and C of equal 

lengths, and the contributions add in that load, its meter indicating the strength of A. 

The couplings through the two holes cancel at terminal 3, however, since the paths E 

and D differ in length by a half-wavelength, and the couplings through the two holes 

are substantially the same in amount if the holes are small. By symmetry, a wave flowing
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to the left will register at terminal 3 but yield coupled waves which cancel at 4. Thus, 

meter 4 reads the strength of the wave to the right, and meter 3, that to the left. 

This simple coupler is frequency sensitive since it depends on the quarter-wave spac- 

ing of holes. A like effect with greater bandwidth may be obtained by supplying several 

holes with properly graded couplings, as illustrated in Fig. 11.10b. Still other embod- 

iments are used.* All these couplers may be considered as four ports with the four 

reference planes as shown in Fig. 11.10a or b. Losses may normally be neglected. 

Several important general properties follow. 

To study the properties of the coupler, it is most convenient to use the scattering 

matrix form of Eq. 11.9(3). It is desired not to couple between 1 and 3 with 2 and 4 

matched, so S,;, = S3, = O. It is also desired to have no coupling between 2 and 4 

with 1 and 3 matched, so S,, = S4, = 0. Moreover, the ideal directional coupler should 
be matched so that all the power entering at one terminal divides between the other two 

for which there is coupling, leaving no reflections at the input. Thus S,,, Sj, and so 

on are zero. The network is also assumed to satisfy reciprocity so that S,, = Sy, 

Si4 = S4,, and so on. Thus the scattering matrix for an ideal directional coupler has
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been specialized to 

0 Sy 0 Sy 
So, 0 

0 So, 0 Sq 
Si, 0 Syy 0 

(1) 

For negligible loss within the network, power conservation leads to the unitary prop- 

erty of the scattering matrix as shown in the preceding section. Equation 11.9(18), for 

different values of the index /, gives 

p= 1: SyoSTo + SygST4 = 1 (2) 

i= 2: SiaS72 + So3533 = 1 (3) 

i= 3:  $y3853 + S383, = 1 (4) 

i= 4: SygSt4 + S3qS34 = 1 (5) 

Comparison of (2) and (3) shows that |S,,| = |S23| and comparison of (2) and (5) shows 
that |S,2| = |S3,|. Moreover, reference plane 2 may be selected with respect to 1 so that 
S)9 is real and positive, and similarly 4 with respect to 3 so that S;, is real and positive. 

Then 

Sig = S3q Da (6) 

There remains the Eqs. 11.9(19), also following from the unitary nature of [S]. The 

specializations already made in (1) satisfy these identically except for 

1 = l,j] = 3: S125354 + Sia 34 = 0 (7) 

[= 2, J — 4: SiS i4 + S935 34 — 0 (8) 

Use. of (6) in either of the above requires S,, = —5S5 3. Reference plane 4 may then be 

selected with respect to 1 so that S,, is real and 

So3 = —Si4 =I b (9) 

Thus we have reduced the scattering matrix to the very simple form 

0 a 0 —b 

y=] 2 OP 8 (10) | 0 b 0 a 
—b 0 a 0 

Note that b gives the coupling from the main guide to the auxiliary guide and is known 

as the coupling factor (often expressed in decibels). The coefficient a may be called the 

transmission factor and the two are related by any of the energy relations (2) to (5) 

P+P=) (11)
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Although a and b are the only two parameters of an ideal directional coupler, real 

units give some coupling to the terminal for which zero coupling is desired. That is, 

S,3 and §,, will not be exactly zero for a real coupler. The coupling to the desired 

terminal in the auxiliary guide, as compared with the undesired terminal, is defined as 

the front-to-back ratio or the directivity, usually expressed in decibels. 

Several important theorems may be proved for loss-free reciprocal four ports. 

1. A four port with two pairs of noncoupling elements is completely matched. That 

is, the setting of S,,, S55, and so on equal to zero was not a separate condition but 

followed from S,, = 0, S,, = O because of power relations resulting from the 

complete Eqs. 11.9(18) and 11.9(19). 

2. Any completely matched junction of four waveguides is a directional coupler. 

(Note that this does not mean that an arbitrary four port may be made into a 

directional coupler by externally introducing matching transformers, since the 

adjustment of one of these in such a case disturbs matching for the other ports; it 

must be an internal property giving S,; = Soo = S33 = S44 = 0.) 

3. A four port with two noncoupling terminals matched is a directional coupler. That 

is, if S;, = 0, S,, = 0, and S,, = 0, the other properties defined earlier follow. 

The Magic T and Other Hybrid Networks The special case of a directional 

coupler with a* = b* = dis of particular interest in that it may be used as a bridge or 
“hybrid” network. (The latter name is taken from the properties of the classical hybrid 

coil.!°) One of the configurations used for this purpose in rectangular guides for the 
TE,) mode is the magic T pictured in Fig. 11.10c. A wave introduced into the “E” 

arm, 2, will, from considerations of symmetry, divide equally between arms | and 3 

but not couple to the “H” arm, 4. Conversely a wave introduced into 4 divides between 

arms 1 and 3 with no coupling to 2. Thus, the scattering coefficient S,, is zero. By 

SC. G. Montgomery, R. H. Dicke, and E. M. Purcell, Principles of Microwave Circuits, MIT 
Radiation Laboratory Series, p, 307, McGraw-Hill, New York, 1948. 
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FIG. 11.10d Two-branch hybrid for microstrip. 

theorem III, above, this becomes a directional coupler if the unit is internally matched 

so that S,, and S,, are zero. This matching is normally accomplished by introducing 

pins or diaphragms or both within the guides near the junction. It then follows from 

the theorem that S,,, S33, and S,3 are also zero. By symmetry, the transmission and 

coupling coefficients are equal so that, as stated, 

a=b=} (12) 

A typical use of one of these units is as a bridge. With the generator at 2 and detector 

at 4 in Fig. 11.10c, no output is observed if the loads on 1 and 3 are equal. Thus a 

standard load may be placed on 1 and test loads on 3 which are nominally the same. 

Any deviation from the standard will produce a reading in the detector at 4. 

Other configurations accomplishing the same goal are known. One general type uti- 

lizes cancellation of waves around a ‘“‘rat race’’ structure, as pictured for microstrip in 

Fig. 11.10d. The division of power and phase changes by the two paths to each outlet 

produce the cancellations or additions desired. Variations of this with greater bandwidth 

are possible.'© Structures based on the same principles can also be made with coaxial 

lines. 

  

Frequency C Characteristics of Waveguide N Networks 

11.11 PROPERTIES OF A ONE-PORT IMPEDANCE 

Let us consider a closed region with one waveguide terminal or one port, as in the 

cavity sketched in Fig. 11.1a. Reference plane 1 is selected far enough from the junction 

16 See, for example, J. Frey (Ed.), Microwave Integrated Circuits, Sec. IIB, Artech House, 
Norwood, MA, 1975.
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so that only the dominant mode in the guide is important. Application of the complex 

Poynting theorem leads to Eq. 11.9(8), which for? = 1 is 

i* 
  =R+jX = (1) 

where W, is the average power loss in the region, and U, and U,, are average stored 

energies in electric and magnetic fields, respectively. Similarly for input admittance Y, 

VV* 
  Y=GreHt jB= (2) 

Certain properties of these impedance and admittance functions will be discussed. Note 

that the comments apply to the function Z;,(@) of a general microwave network, since 

this would be the input impedance of a two port formed by shorting all but the ith 

terminal. Similarly, the theorems apply to Y;; and to some other combinations of the 

impedance or admittance functions. 

A study of (1) shows several simple results expected from physical reasoning. Imped- 

ance is purely imaginary (reactive) if power loss is zero. When power loss is finite, the 

real (resistance) part of Z is positive for a passive network. If stored electric and mag- 

netic average energies are equal, reactance is zero and the network is said to be resonant. 

If average magnetic energy is greater than electric, the reactance is positive (inductive), 

and if electric energy is the greater, reactance is negative (capacitive). Since power and 

energy would be the same for positive and negative frequencies, (1) shows that R(w) 

is an even function of frequency and X(w) an odd function, if the range is extended to 

negative frequencies. Similar results can be deduced for the admittance function. 

Loss-Free Ome Ports When losses are negligible, (1) and (2) become 

— 40WUy ~ Up _ AOU — Un) 
IT* VV* 

Moreover, the variation of X and B with frequency may be related to stored energy 

through a variational form of the Poynting theorem (Prob. 11.11c). The results are 

aX _ Ug + Un) GB MU eg + Uy) 
dw IT dw VV* 

xX (3) 

(4) 

It is evident that the average stored energy (U; + U,,) is positive, and /J* is positive, 

so the rate of change of reactance with frequency for the lossless one port will be 

positive. The reactance must then go through a succession of zeros and poles as sketched 

in Fig. 11.11. Similarly, the susceptance of the lossless one port has a positive slope 

for the same reason. It follows that the zeros and poles are all simple (first order) and 

that a zero must lie between two adjacent poles, and vice versa. 

These results were first derived by Foster!’ for lumped-element networks, and so are 

known as Foster’s reactance theorem. 

'7 RR. M. Foster, Bell Syst. Tech. J. 3, 259 (1924).
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Fis. 11.11 Typical form of reactance versus frequency for a lossless one port. 

Relations Between Real and Imaginary Parts of Impedance or Admit- 

tamce Functions If losses are finite, there remain some constraints between the 

frequency variation of resistance and of reactance, or of conductance and susceptance. 

These are of the same form as the Kronig—Kramers relations between real and imagi- 

nary parts of permittivity to be discussed in Sec. 13.2. This is because of the location 

of zeros and poles in the complex frequency plane and the analytic character of the 

functions in a half-plane. 

The complex “frequency” variable commonly utilized is a + jw. Zeros or poles of 

Z (or Y) would mean that natural frequencies exist for such values, giving finite solu- 

tions without a driving source. For passive networks (those without internal sources of 

energy), such solutions can only decay from any transient initial state. Thus a@ must be 

negative for such natural frequencies of passive networks. In other words the impedance 

(or admittance) function can have no zeros or poles in the night half (@ + jw)-plane. 

This analytic property permits the relation of real and imaginary parts. 

Insight into the properties of circuits as functions of complex frequency can be ob- 

tained by considering an analogy with static electric potential and flux functions as 

complex variables (Sec. 7.5). In potential function terms, specification of potential 

everywhere along the jw axis determines potential everywhere in the right half-plane, 

if there are no sources there and potential dies off properly at infinity. Determination 

of potential at all points permits the finding of electric field, and this in turn permits 

the construction of a flux function. Conversely, a statement of flux along the jw axis 

defines charge distribution there, and from it the potential is determined everywhere in 

the source-free region. 

If the real part of a function u + ju is defined along the imaginary axis, the imaginary 

part in a source-free right half-plane!® (see also Prob. 11.11g) is 

1 { (w' — w)u(w') do’ 

Ua, w) = 2 a + (w’ — w) 
  (5) 

'8 H. Jeffreys and B. S. Jeffreys, Methods of Mathernatical Physics, 3rd ed., Cambridge 
University Press, London, 1972.
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Thus if R(w) is given, this may be used directly to find X(w). Several specializations 

may be used in applying to the network function. Since we wish X for real frequency, 

a is set equal to zero in (5). R(w') is an even function of w’. Finally we may add the 

reactance function of any lossless two port in series if we allow idealized elements 

in the circuit, since such a function is known to have no R. Use of these three points 

leads to 

oa 

X(w) = i} Ros + - i) dw’ + Xo(w) 
ar Jo wo — w —w' -—@w 

20 f Ria’ © 
X(w) = 20 | OO ae + X(a) 

aT Jo w'* — @ 

where X,(w) denotes the reactance function for the lossless part. 
Since jZ is also analytic in the complex plane, (5) may also be used with u denoting 

—X and v denoting R. In this application we again set a = O, and utilize the fact that 

X is an odd function of w. We can also add in series a constant resistance without 

changing X, so the result is 

1 f- 1 1 
R(w) = — | — x(t _- Ss! da’ + Ro 

IT JO @ —- Ww —-@M —- W 

6 (7) 
2 | w'X(w') 

R(@) = 12 
T4090 WD” —- ww 

Similar relations apply to admittance functions and to relations between magnitude and 

phase. The analogy to potential and flux functions has allowed the interesting use of 

electrolytic tanks and resistance paper for the study of network functions.’® 

11.12 EQUIVALENT CIRCUITS SHOWING FREQUENCY CHARACTERISTICS 
OF ONE PORTS 

The functional properties of the impedance (admittance) function developed in the 

preceding section allow one to develop several equivalent circuits showing the fre- 

quency characteristics. We first consider the impedance function, without losses, then 

the effect of small losses, and finally other forms. 

First Foster Form for Loss-Free Case It was shown that the reactance function 
of a loss-free one port is an odd function of frequency and must have an infinite number 

of simple poles. It is known from the theory of functions that such a function can be 

expanded in a series of “partial fractions” about the poles, provided that the following 

summation is convergent”’: 
we 

Xo) = > (en + a) +24 fl) (1) 
n=l @—~- W_, 

19 W. W. Hansen and O. C. Lundstrom, Proc. IRE 33, 528 (1945). 
20 See, for example, K. Knopp, Theory of Functions, Part il, Chap. 2, Dover, New York, 1952.
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where a,/w represents the pole at zero frequency, if any is present, and f(q) is an 

arbitrary entire function (one with no singularities in the finite plane). Since the function 

is odd, w_, = —@, anda, = a_,. Moreover, f(w) can have only odd powers of w, 

and, since it must behave at most like a simple pole at infinity, it is known to be 

proportional to the first power of w. With these specializations, (1) becomes 

oS 2 
X(w) = yo tt be (2) 

n=} @O — @), 

In (2), a, is known as the residue of the pole w,. It may be obtained in terms of the 

slope of the susceptance curve, which can in turn be related to energy storage. For, in 

the vicinity of w,, the mth term of (2) predominates and 

  

I wo — w 
Bio) = -=— FO - 

X(w) 2a, 

Differentiation shows that 

dB ee 
do! .-. - a, 

Then, utilizing Eq. 11.11(4) 

1 VV* 
a (3) 

(dB/dw)..— w, 4A(U,, + Un) w= w, 

The form of (2) suggests an equivalent circuit consisting of antiresonant LC circuits 

added in series as shown in Fig. 11.12a, since the nth component of this circuit yields 

a reactance 

  

y = 1 _ w/C,, 

" wC, — 1/oL,, w* — 1/L,C,, 

Comparison with the foregoing equation yields 

l 1 I (4) 
a, = - 2, oO, = ’ ag = 

" 2C,, L,C,, Co 

or 

] 2a ] 
C,, = Th L, = -——, Co = (5) 

2a, w, do 

This representation, known as the first canonical form of Foster,'' is then applicable to 

any lossless one port for which the series in (2) is convergent. To find the circuit, we 

need to know the antiresonances, with energy storage quantities at those frequencies; 

both of these quantities were studied for cavity resonators in Chapter 10. The difficult 

part comes from the fact that the energy must be referred to the voltage in the input 

guide [see (3)], and this requires some specific knowledge of the coupling network.
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FiG. 11.12qa-g Various equivalent circuits for one ports.
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The general representation may be useful for interpreting measurements and for forming 

general conclusions even when this coupling problem cannot be solved. 

Effect of Losses ‘The study of losses for practical cavity resonators in the last chapter 

was concemed with the calculation of a quality factor Q which expressed for a given 

mode the ratio of energy stored to energy lost per radian. For low-loss cavities, it might 

be expected that the equivalent circuit of Fig. 11.12a@ would be modified by adding a 

shunt conductance to each antiresonant element, as shown in Fig. 11.12b. The value 

of a given conductance G,, would be adjusted so that the Q calculated from the nth 

antiresonant circuit would agree with the known Q,, of the mode which it represents. 

That 1s, 

  _ nn 

Cr QO, (©) 

Justification for this procedure can be supplied by the theory of functions by making 

approximations appropriate to poles which are at a complex frequency near, but not 

exactly on, the real frequency axis. 

If one accepts this modification of the lumped circuit equivalent to account for losses, 

it is clear that the Q of a cavity, determined from energy calculations, is also useful for 

interpreting the frequency characteristics in the same manner as for a lumped circuit. 

This fact was stated without justification in Sec. 10.3. 

Second Foster Form An expansion of the susceptance function about its poles 

yields a form similar to (2): 

= wh b 
Bw) = > ag tt Ce (7) 

— 

n=] 2 

where the residues 5,, are given by 

1 lT* 
b, a nee Ta ss OO eee 

(8) [dX/do].,— .,, AUe + Un) \ nw, 

When the series is convergent, this equation has the equivalent circuit of Fig. 11.12c 

(known as the second Foster canonical form) with 

  

1 2b 1 
| nn C, = -—= lb = -> 9 1 2b,, m w- 0 bo ( ) 

Figure 11.12c also shows series resistance added to each resonant circuit to account for 

small losses, and as in the foregoing discussion, these are selected to give the known 

O for each mode: 

  

R,, — mo~ rn (10)
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Other Equivalent Circuits Schelkunoff*! has shown that other equivalent circuits 

may be derived by adding convergence factors to the series (2) or (7). These factors 

are necessary if the original series do not converge, the Mittag—Leffler theorem”? from 

the theory of functions telling how they may be formed to ensure convergence. They 

may also be desirable in other cases where the original series converge, but do so slowly. 

For example, Schelkunoff has shown that the form with one term of the convergence 

factor is 

= 1 1 a 
X(@) = 2 20a, (sts + 4) + ~ + oly (11) 

Note that, in addition to the convergence factor added in the series, the series inductance 

term has been modified, and inspection of (11) shows the Lp is the entire series in- 

ductance of the circuit in the limit of zero frequency. The physical explanation of this 

procedure is then that this low-frequency inductance has been taken out as a separate 

term rather than being summed from its contributions from the various modes. It is 

reasonable to expect that this would often help convergence. A specific example for 

loop coupling to a cavity will be given in the following section. 

The equivalent circuit of Fig. 11.12d gives the form of reactance function (11) (loss 

elements G,, being neglected at first), provided that - 

M? 2a,, 1 5 
—_— = =o ,*" = @ 
L w LC, " 

n nt 

  (12) 

Here one imagines the input guide coupled to the various natural modes of the resonator 

through transformers, which gives a very natural way of looking at a problem of loop 

coupling to a cavity. Note, however, that one cannot determine the elements of the 

circuit uniquely since there are three elements, L,, C,,, M,, to be determined from the 

two basic quantities a,, and w, for each mode. One of the three may be chosen arbitrarily, 

perhaps by reference to physical intuition, but any choice will give a circuit which 

properly duplicates the behavior with respect to impedance at input terminals. Small 

losses are again accounted for by adding conductances G,,, calculated from form (6), 

to the circuits as shown in Fig. 11.12d. 

Approximations in the Vicinity of a Single Mode Finally, we note that when 

we are interested in operation in the vicinity of the natural frequency for one mode, 

other resonances being well separated, the dominant factor will be the one representing 

that mode. Other terms will vary only slowly with frequency over this range and may 

be lumped together as a constant impedance or admittance (predominantly reactive). 

The equivalent circuits of Figs. 11.12b—d then reduce to the simplified representations 

of Figs. 11.12e—g, respectively. This is an important practical case, enabling one to use 

simplified lumped-element circuit analysis for the study of cavity resonator coupling 

problems. 

21S. A. Schelkunoff, Proc. IRE 32, 83 (1944),
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11.138 EXAMPLES OF CAVITY EQUIVALENT CIRCUITS 

Two examples will be given to clarify the calculation of element values in the equivalent 

circuits of Sec. 11.12. It should be stressed again that the difficult part comes in solving 

enough of the coupling problem to refer the energy quantities within the resonator to 

defined voltage or current in the guide. In the first example, a uniform line is considered 

so that energy can be expressed directly in terms of the input current. In the second 

example, a reasonable approximation to the coupling problem can be made. 

Example 11.13a 

OPEN-CIRCUITED TRANSMISSION LINE 

Let us consider a lossless open-circuited line of length /, inductance L per unit length, 

and capacitance C per unit length (Fig. 11.13a). We shall derive the second Foster form, 

Fig. 11.12c, starting from Eq. 11.12(7). For this calculation we need the natural modes 

having infinite susceptance at the input. Current is then a maximum at the input, zero 

at z = /, and length must be an odd multiple of a quarter-wavelength: 

  

  

TAZ) = Igy, COS ,,2 VEC (1) 

277 27m 
On = = (m1 odd) (2) 

A,VLC AIVLC 
mn 

The sum of average U, and U,, is equal to the total energy stored at resonance, which 

may be computed as maximum energy in magnetic fields: 

  

  

  

  
  

{ 2 2 LI ILI 
Ue + Uy = Un)max = | _ cos? w,,zVLC dz = —@ (3) 

0 

Substitution in Eq. 11.12(8) gives the residue for the mth mode: 

» = ———tim 
” 4(U, + U,) Ll 

Oo-— an’) 

t Ly Ig b3 | 7 —_——— 

ne C C C 1 2 3 
5 5 o> _L Ty 4 

(a) (6) 

FiG. 11.13 (a) Open-circuited ideal line. (b) Equivalent circuit.
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Inductance and capacitance for the mth circuit are found from Eq. 11.12(9): 

  

m 2b, 

2b,  8Cl 
Cy = 7 = (5) 

w@ T M71 
m 

This leads to the equivalent circuit of Fig. 11.13b, which is valid for all frequencies, 

provided the equation for B(w) obtained from Eq. 11.12(7) is convergent. The series is 

convergent in this case, and in fact can be shown to be equivalent to the closed form 

2 C 
B = = —ft VV 

() m odd Li[w? — mn /4P°LC] ig an wl LC (6) 

  

The last expression can be recognized as the input susceptance for an open-circuited 

ideal line obtained from simple transmission-line theory, as it should be. 

  

Example 11.13b 
LOOP-COUPLED CAVITY 

For a second example, we shall return to the loop-coupled cylindrical cavity discussed 

in Sec. 10.10 from an energy point of view. In particular, we shall concern ourselves 

with behavior in the vicinity of resonance for the simple TM,,, mode, all other reso- 

nances being well separated, so that one of the approximate forms of Fig. 11.12e, f, or 

g is appropriate. The form of Fig. 11.12g, arising from Eq. 11.12(11), is particularly 

useful because the self-inductance of the loop is separated out, and the remaining series 

may be thought of as representing more nearly the behavior of the unperturbed cavity. 

From the physical point of view, it is a natural equivalent circuit, since we picture the 

input line as being coupled to the cavity mode through a mutual inductance which 

represents the loop. 

The voltage at the loop terminals (computed with no self-inductance drop, as is 

appropriate for the zero current of antiresonance) is found approximately by taking 

magnetic field of the unperturbed mode flowing through the small loop of area S, as in 

Sec. 10.10: 

  

V = jopHs (7) 

Energy stored in the mode from Sec. 10.5 may be written 

(Uz + Un) = Unmax = 3p dH7a* (8) 

Substitution in Eq. 11.12(3) gives the residue for the mode: 

VV 2,,202 

a = = (9) 
AU, + Dua=w, 7 27a*d



11.14 Circuits Giving Frequency Characteristics of N Ports 571 

Resonant frequency and Q are known from the analysis of Sec. 10.5: 

Po. 
Qo = ——= (10) 

av Le 

- NPoid 

2; 2R(d + a) (11) 

Here we meet the indeterminancy of the form selected, for we have three quantities, 

a,, W,, OQ), to determine four quantities, M,, L,, C,, and G,. As pointed out before, one 

of the four may be selected arbitrarily and the same input impedance will result. One 

choice is to calculate the conductance G, from power loss and voltage across the center. 

This makes sense, for example, when an electron beam is to be shot across the center, 

in which case a beam admittance, calculated on the same basis, can simply be placed 

in parallel with G, in the equivalent circuit. This can be shown to be 

_ R, 27a(d + a) 
G, 7 7 Ji(Po1) (12) 

Application of Eqs. 11.12(6) and 11.12(12) then yields 

O0,G ; mWa*e 
C, = == = Ji(Po1)| —— (13) @) d 

1 

w7Cy To 1(Por) 

2a,L,\\” S 
M, = ( ~224) = (15) 

Wy TAD oJ (Por) 

Input impedance, as a function of frequency, is then 

w*M? 

jJoL, + 1/(G, + joC,) 
  Z = jwly + (16) 

When evaluated at resonance, w = w,, and taking G, << w0(,, this yields the same 

result as was found in Eq. 10.10(3) by energy considerations. 

  

11.14 CIRCUITS GIVING FREQUENCY CHARACTERISTICS OF N PORTS 

In considering frequency characteristics of the type discussed in Sec. 11.11 for a one 

port, one notes that any coefficient Z,, of an N port must satisfy the conditions for a one 

port, since this represents the input impedance for a one port formed by shorting all 

but the ith terminal. Similarly, any Y,, must satisfy conditions for the admittance function 

for a one port. The transfer coefficients, however, need not satisfy such conditions.
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Fi¢ 11.14 (a) Equivalent circuit for a cavity coupled to two waveguide terminals. (b) Approx- 
imation in the vicinity of one resonant mode. 

When the N port is a cavity resonator with more than one waveguide coupled to it, 

representation of frequency characteristics by an equivalent circuit may be desirable, 

generalizing Sec. 11.12. Thus an extension of the form Fig. 11.13d would naturally 

lead to each waveguide terminal coupled to each of the normal modes by a mutual 

inductance as illustrated in Fig. 11.14a for a cavity with two ports. Justification for this 

procedure has been supplied by Schelkunoff?' from complex function theory and by 
Harrington”? from normal mode theory. In the vicinity of a resonance, the circuit sim- 
plifies to that of Fig. 11.140. 

If we wish to determine the characteristics of an N port by measurement, the simplest 

procedure is usually that of terminating all but two of the ports in known impedances, 

leaving a two port for which four of the parameters may be obtained by the methods 

of Sec. 11.6. Repetition of this procedure for different pairs of ports will eventually 

give all the coefficients. 

22 RF. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.
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11.15 QUASISTATIC AND OTHER METHODS OF JUNCTION ANALYSIS 

It has been noted that we do not require the complete field solution for a network 

formulation. Nevertheless, solution of the boundary value problem for fields has been 

useful in obtaining the network representations for certain junctions. The results are 

largely tabulated in handbooks.'* A brief discussion of the approach to such problems 

may be helpful for the proper use of the tabulated results. 

For junctions small in comparison with wavelength, it may be possible to set down 

a reasonably good equivalent circuit from quasistatic reasoning. The basis for this fol- 

lows from the Helmholtz equation: 

PE FE PE (22) 
> +—53+2+Ile!] CE 

Ox" dy~ a A 
  = 0 (1) 

Thus if variations arise from changes in dimension x, y, or z that are small in comparison 

with wavelength, the first terms dominate over the last and the equation reduces to 

Laplace’s equation, giving static forms for the field solutions. As an example, consider 

the step in the parallel-plane line of Fig. 11.15a. The electrostatic solution of this 

problem is known (Sec. 7.7), and a “fringing” or “excess” capacitance may be found 

as the excess of total capacitance between electrodes over that which would exist if 

field lines were straight across. Letting a = a/b, one has 

7 + 1 1 + 4 C,== (=f 4 2 (25) firm width (2) 
7 a l—aea l- a@ 

The curve for this is plotted in Fig. 11.155. This capacitance is placed in shunt with 

the two transmission lines at the junction. As we shall see later, the shunt representation 

is exact. The use of 

  

Y, ~ JwC, (3) 

is a good approximation if the transverse dimension D is less than about 0.2A. 

A second example in which quasistatic approximations are useful is the right-angle 

bend in a parallel-plane line illustrated in Fig. 11.15c. Physical reasoning leads us to 

include an inductance to account for the Faraday law difference in voltage between 

planes | and 2, and this may be estimated by assuming magnetic field uniform in the 

comer. There is also an excess capacitance as in the preceding example, and this may 

be divided equally because of the symmetry. There results the a equivalent circuit as 

shown in Fig. 11.15d with the element values there indicated and w, width into the 

page. 

Let us return to Fig. 11.15a@ and argue more carefully the case for the shunt admittance 

as an exact representation of the junction effect. In an approximate transmission-line 

23 T. Moreno, Microwave Transmission Design Data, Artech House, Norwood, MA, 1989.
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FiG.11.15 (a) Step discontinuity in parallel-plane transmission line and exact equivalent circuit. 
(b) Curve of discontinuity capacitance per unit width for (a). 

  

treatment, it is common to consider this as two lines of different characteristic imped- 

ance joined at z = O. Such a treatment, however, considers only the TEM or principal 

transmission-line waves which have E, and H, with no variations in y. The perfect 

conductor portion between points 2 and 3 requires that E, = 0 here. If there were only 

principal waves, E,, would then have to be zero everywhere at z = 0 because of the 

lack of variations with y in the principal wave. There could then be no energy passing 

into the second line A regardless of its termination since the Poynting vector would 

then also be zero across the entire plane, z = 0. The difficulty is met by the higher- 

order waves which are excited at the discontinuity, so that E, in the principal waves is
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Fig. 11.15 (c), (d) Right-angle bend in parallel-plane transmission line and equivalent circuit. 

(e) Typical discontinuity in coaxial line. (f) Capacitive diaphragm in rectangular guide. 

(g) Inductive diaphragm in rectangular guide. 

not generally zero at z = 0, but total £,, (sum of principal and higher-order components) 

is zero from 2 to 3 but not from 1 to 2. For the example of Fig. 11.15a, the higher- 

order waves excited are TM waves, since E,,, £., and H, alone are required in the fringing 

fields. For spacings between planes small compared with wavelength, these waves are 

far below cutoff, so that their fields are localized in the region of the discontinuity. 

To show that the effect of these local waves on the transmission of the principal 

waves may be expressed as a lumped admittance placed at z = 0 in the transmission- 

line equivalent circuit, as in Fig. 11.15a, consider that current at any value of z may be
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expressed as one part /,(z) from the principal wave and a contribution /'(z) from all 

local waves: 

I(z) = I,(z) + I'(z) (4) 

Now total current must be continuous at the discontinuity z = 0, but current in the 

principal wave need not be, since the difference in principal-wave currents may be 

made up by the local-wave currents. 

Igq(0) + LO) = Ipg(0) + 1500) 
Or 

Inp(0) — Iga(0) = 14(0) — 15(0) (5) 
Total voltage in the line as defined by — J E.- dl between planes, however, is only that 

in the principal wave, since a study of the local waves shows that their contribution is 

Zero: 

Vz) = Vo(z) 

Continuity of total voltage across the discontinuity z = O then requires continuity of 

voltage in the principal wave: 

Voa(0) = Vog (0) = V,(0) 

Now, if an equivalent circuit is drawn for the principal wave only, its continuity of 

voltage but discontinuity of current may be accounted for by a lumped discontinuity 

admittance at z = O, the current through this admittance being 

[og(0) — Io 4(0) = ly = Y4V,(0) 

Or, from (5), 

[,(0) — I3(0) 

*8 = V0) (6) 

The complete analysis”* reveals that, when local-wave values are substituted in (6), 

numerical values of Y, may be calculated which are independent of terminations so 

long as these are far enough removed from the discontinuity not to couple to the local- 

wave fields. For Fig. 11.15a the shunt admittance acts as a pure capacitance if transverse 

dimensions are negligible compared with wavelength, and the value is accurately given 

by Fig. 11.155. Corrections are needed when transverse dimension is comparable with 

wavelength.” 
Results are available” for several forms of coaxial discontinuity, carried out by an 

important series method as formulated by Hahn.”° To a fair approximation, disconti- 
nuity capacitance for Fig. 11.15e may be found by multiplying values from Fig. 11.155 

24 J. R. Whinnery and H. W. Jamieson, Proc. IRE 32, 98 (1944), 
25 J. R. Whinnery, H. W. Jamieson, and T. E. Robbins, Proc. IRE 32, 695 (1944). 
26 W. C. Hahn, J. Appl. Phys. 712, 62 (1941).
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by outer circumference. If the step is in the outer conductor, values from Fig. 11.15b 

are multiplied by inner circumference. 

Marcuvitz and Schwinger*’ applied many of the powerful methods for boundary 

value problems to waveguide discontinuities including integral equation formulations 

and variational methods—probably the most powerful approximate methods for at- 

tacking wave problems of many types. The variational methods are described in several 

texts.2*?8 Approximate solution of the integral equations leads to approximate but use- 
ful forms for the two waveguide discontinuities shown in Figs. 11.15f and 11.15g. For 

the diaphragm extending from top and bottom of a rectangular guide propagating the 

TE, mode (Fig. 11.15), the energy of the higher-order modes is predominantly ca- 

pacitive. The susceptance for a symmetrical diaphragm of gap d in a guide of width a 

and height b, is approximately 

4 
— ~*~ — In csc — (7) 

For the diaphragm extending from the side walls as 1n Fig. 11.15¢, higher-order modes 

give a net stored magnetic energy, and the corresponding inductive susceptance, with 

d the gap width in this case also, is 

B A d = x — Boo? = (8) 
Yo a 2a 

The small iris in a conducting thin diaphragm across the rectangular waveguide (Fig. 

11.15) is especially useful in coupling between waveguide and a resonant cavity. This 

also may be represented by a shunt element, and for d/b << 1, the susceptance is 

B 3abA, 

Y, 2d? 

  

(9) 

A variety of numerical methods have also been used to obtain the scattering param- 

eters or network representations of waveguide and transmission-line discontinuities. As 

an example, consider the symmetric cross junction in microstrip of Fig. 11.157. Its 

scattering parameters have been obtained for a particular junction by a finite-difference 

time-domain method.”? Results are shown as a function of frequency in Fig. 11.15). 

Note that for low frequencies, 

IS,,| + Sal? + ISysl? + Sy4l? = 4(4) = 1 (10) 

as expected from energy conservation. At the higher frequencies the sum is appreciably 

less than unity, indicating important radiation loss. 

Results from a wide variety of microstrip and other planar transmission-line discon- 

tinuities are summarized in a handbook*° and a reprint volume.?! 

27 _—N. Marcuvitz and J. Schwinger, J. Appl. Phys. 22, 806 (1951), and in unpublished work. 

28 R. E. Collin, Field Theory of Guided Waves, 2nd ed., IEEE Press, Piscataway, NJ, 1991, 
29 X. Zhang and K. K. Mei, IEEE Trans. Microwave Theory Techniques 36, 1775 (1988). 

30 R. K. Hoffmann, Handbook of Microwave Integrated Circuits, Artech House, Norwood, 
MA, 1987. 

31 T. Itoh (Ed.), Planar Transmission Line Structures, [EEE Press, Piscataway, NJ, 1987.
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PROBLEMS 

Show that the functions f and g defined by Eqs. 11.2(1) and (2) are in general related 
as follows: 

g(x, y) = (22) x fa, y) 

Show that the values obtained for the rectangular guide satisfy this relation. 

Use the principles of Sec. 11.2 to obtain definitions of voltage and current for the 
TE ),; mode in a circular cylindrical guide. 

Repeat Prob. 11.2b for the TE,, mode in a circular guide and for the TM,, mode in a 
rectangular guide. 

With voltage defined as the integral of maximum electric field between top and bot- 
tom of the TE,g mode in a rectangular guide, and current as the total axial flow in the 
top surface, compare with the derived quantities of Sec. 11.2. How is the product V/ 
related to power flow in this case? 

Supply the proof of the uniqueness theorem cited in Sec. 3.14 and utilized in Sec. 
11.2. To do this, assume that there are two possible solutions, (E,, H,) and (E,, H,), 

and apply the Poynting theorem to the difference field (E, — E,, H, — H,). Note 
Sec. 1.17 for a typical uniqueness argument. 

11.2f Suppose that an N port has a load impedance Z, connected to the terminals 1, and 

11.3a 

11.3b* 

11.3c 

11.4a 

11.4b 

11.4c 

11.4d* 

11.5a 

voltage generators connected to the other N — 1 terminals. Show that the following 

Thévenin equivalent circuits are valid so far as calculations of effects in the load are 
concerned: 

(i) A voltage generator V, connected to Z, through a series impedance Z,. Vo is the 
voltage produced at terminals 1 with these terminals open-circuited, and Z, is the 

impedance seen looking into 1 with all voltage generators short-circuited (and 
any current generators open-circuited). 

(ii) A current generator J) connected across Z, with internal admittance Y, in parallel. 

7, is the current that would flow at terminals 1 if these terminals were shorted, 
and Y, = 1/Z,. 

Verify Eq. 11.3(2) for isotropic but not necessarily homogeneous media. 

Show that Eq. 11.3(2) does not apply for anisotropic media with the matrix represent- 

ing permittivity or permeability asymmetric. 

Complete a proof similar to that of Sec. 11.3 to show that Z,, = Zj5. 

For Z,, ~ Zi. = J2,Z0. — Zi. = J5,Z,. = J, find the admittance coefficients, the 

ar circuit, and the ABCD constants. 

For the numerical values of Prob. 11.4a, obtain the values in the equivalent circuit of 

Fig. 11.4c. 

For a terminating impedance of 1 ©), find input impedance using all the forms of 

Probs. 11.4a and b. 

Set up the relation between currents and voltages for Fig. 11.4d, and from these de- 
termine the impedance parameters in terms of Zp,, 8,/,, m, and B. 

Relate the scattering coefficients to the admittance coefficients to obtain equations 

similar to Eqs. 11.5(9).
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11.5b Imagine that the source of energy is introduced at reference 2 in Fig. 11.5, with guide 

11.5c¢ 

11.5d* 

11.5e 

11.6a 

11.6b 

11.6c* 

11.7a 

11.7b 

11.7c 

11.7d* 

11.7e 

11.8a 

11.8b 

1 perfectly terminated so that a, = 0. Derive the condition corresponding to Eq. 

11.5(8). (Note that although these conditions are derived for special terminations of 
the network, they relate the basic parameters and must hold, quite apart from the ter- 
mination and driving conditions.) 

Show that the condition for reciprocity in terms of the transmission coefficients is 

Ty Tog — TyoT, = I. 

The matrix equivalents of Eqs. 11.5(9) and Prob. 11.5a are 

[S] = ((Z] — [UZ] + [U)~' = (U) - Yd) + yp"! 
where Z is normalized Z, that is, Z,,, = Zyn/Zons Zam = Znm/“ZonZoms and simi- 

larly for Y. [U] is the unit matrix. Derive these from the matrix statements of the 

several formulations. 

Find scattering and transmission coefficients for the network with numerical values 
given in Prob. 11.4a. Utilize the results to find input reflection coefficient if the out- 

put is matched. 

As noted in the text, network analyzers typically heterddyne the microwave signal 

E, cos(@,t + @,) with a local oscillator signal FE, cos @,f by forming a product in a 
nonlinear device. Show that phase is preserved in the lower-frequency signal of fre- 
quency @, — Ws. 

If one selects the point of minimum slope P’ of Fig. 11.65 to determine xg, yg and 
equates this slope to Zp, /m7?Zp,, a second correct representation results. Show that 
transformations calculated by the latter are equivalent to those from the representa- 

tion described. 

For the numerical values of Prob. 11.4a, plot an “S” curve as in Fig. 11.6b. Show 
that the values of m?, xy, and y, agree with those calculated in Prob. 11.4b. 

Derive the transmission parameters, T,, and so on, for each of the elements of Table 
11.7. 

In a transmission line with shunt element, as in Ex. 11.7a, let the line be lossless so 
that y = jf and the admittance be a pure reactance, Y = jB. Write the ABCD 

parameters for one section and for N sections of such a line. 

Repeat Prob. 11.7b for a lossless transmission line with series reactances replacing 
the shunt susceptances. 

A dielectric window is formed by two contacting dielectric slabs, ¢, of length /, and 
€, of length /,, placed with air (€,) on each side. Set up the matrix product for the 
overall ABCD matrix and also for the [J] matrix and compare. For only an outward 
propagating wave on the right, find reflections on the left for k,/, = kl, = mand 
k,l, = kol, = 7/2. Explain results physically. 

Equation 11.7(13) for propagation constant may also be derived by a difference equa- 
tion approach. Assuming that voltage and current at the nth output are exp(—7I) 
times the values at the beginning, relate quantities at the nth, (n + 1)st, and 

(1 — 1)st and derive the desired relation. 

For the filter of Ex. 11.8a, take Cy = 1 pF, Yyp = 0.02 S, 7 = 1 cm, and find the 

upper cutoff frequency of the first passband and upper and lower cutoff frequencies 
of the next higher passband. 

A coaxial transmission line has periodic gaps, distance / apart, in the inner conductor.
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11.10a 

11.10b 

11.10c 

11.10d 
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11.11b 

11.11¢ 

11.11d 

11.1le 

Problems 531 

These act as series capacitors C. Find the expression for [ and comment on the na- 

ture of the passbands and stop bands. 

Derive Eq. 11.8(9) from 11.8(8). Note that for 8,/, and §,/, each a multiple of 77, 
one has real solutions for °. Explain in terms of the wave impedance transformation 
for such electrical lengths. For yn, = 7,(1 + 6) show that to first order in 6, = 
J(B,f, + B./,). Explain. 

Show that Eqs. 11.9(18) and (19) follow from 11.9(16) or (17). Verify the statement 
that reciprocity is not required for these relations. 

Derive Eqs. 11.9(18) and (19) from conservation of energy as suggested in the para- 
graph following 11.9(19). 

For the Y junction of Fig. 11.9b, show that for symmetric sources (a, = a.) and port 

3 matched so that a, = 0, the junction does act as a power combiner with all power 

incident on | and 2 exiting at 3. Assume symmetry (S,,; = S55, S;3 = S53) and that 
S343 = 0. 

Prove theorem | [following Eq. 11.10(11)] for directional couplers. 

Prove theorem 2 [following Eq. 11.10(11)] for directional couplers. 

Prove theorem 3 (following Eq. 11.10(11)] for directional couplers. 

For the “rat race” hybrid of Fig. 11.10d, give physical arguments to explain why a 

signal introduced at port 2 gives no response at 4 when ports | and 3 are equally 
loaded. 

It was noted in Sec 11.11 that diagonal terms of the impedance matrix for an N port 
have the properties of one-port impedance. To show that off-diagonal terms do not 

have all these properties, demonstrate that Z,, for length / of a loss-free transmission 

line does not satisfy Foster’s reactance theorem. 

Illustrate by example that dX/dw is not always positive for lossy networks. 

Suppose that a small variation 6w in frequency produces variations 6E and 6H in 
fields. Starting from Maxwell’s equations, show that 

b (E x SH — 3E x H)-dS = jbu | (wH? — sE2) dV 
S V 

Apply the result of Prob. [1.11c to derive Eq. 11.11(4) for a lossless network with 

one waveguide input. 

For a simple circuit with resistance R and capacitance C in parallel, show that R(w) 
and X(w) satisfy Eqs. 11.11(6) and (7). 

11.11f If Z is analytic in the right half-plane, In Z is also. Utilize this fact and the form of 

LL.1ig* 

Eq. 11.11(5) to relate magnitude and phase of a passive network, obtaining equations 

analogous to Eqs. 11.11(6) and (7). 

Although Eq. 11.11(5) may be derived in a variety of ways, one interesting point of 
view is through potential theory. Let «(w) correspond to a flux function given along 

the jw axis. By the Cauchy—Riemann equations, du/dw determines du/da for 
a = Q, which Is the normal electric field entering that plane. This may be interpreted 
to arise from a surface charge distribution p, = —2 du/da along the plane a = 0. 

(Question: Why the factor of 2 when it 1s absent if the plane is a conductor?) An 
element of charge p.dw' at w’ may be thought of as a line charge perpendicular to the 

plane, for which the potential at point a, w can be found. Write an expression for the



582 

11.1ih 

11.12* 

11.13a 

11.13b 

11.13c 

11.13d 

11.14a 

11.14b 

11.15a 

11.15b 

11.15c 

Chapter 11 Microwave Networks 

potential and integrate by parts to obtain Eq. 11.11(5). What conditions did you have 

to assume at infinity for the result to be valid? 

To what does scattering matrix reduce for a one port? Give the properties of this sim- 
ilar to those discussed in Sec. 11.11 for impedance or admittance. 

Modify the form of B(w), Eq. 11.12(7), to correspond to the form 11.12(11) with a 
convergence factor added, and find an equivalent circuit representation. Hint: Change 

the form of Fig. 11.12d by using T networks to replace the transformers, and look for 
the dual of this circuit. 

Derive the equivalent circuit of Fig. 11.12a for a shorted length / of ideal line. Show 
that the series form for X(@) converges to the usual expression for reactance of a 
shorted ideal line. 

Derive the first Foster form for the open line and the second Foster form for the 
shorted line. Show that the series forms converge to proper expressions for reactance 

and susceptance, given that 

1 = 2x 
cotx = — + > 3 

x nal Xo + nd 

Show that the capacitance C, derived for the loop-coupled cavity of Ex. 11.13b is 
that which would be obtained by referring energy stored in electric fields to voltage 
at the center of the cavity. Compare the mutual /, to that which would be derived by 
referring induced voltage in the loop to total vertical current in the cavity wall. 

Consider the coupling from coaxial transmission line to the TMpy,, mode of the cylin- 
drical resonator by a small probe of length s extending along the axis from the top. 
What assumptions concerning the coupling need be made to derive the equivalent cir- 
cuit of form Fig. 11.12e? Similarly for Fig. 11.12? 

Suppose that two well-separated loops, each of area 0.5 cm?, are coupled to the 
TMoyg cylindrical mode as for one loop in Sec. 11.13. Draw the equivalent circuit, 
and calculate element values (except L,) for an air-filled cavity resonant at 4 GHz 
with d = 1 cm, R, = 0.02 ohm. 

The Q of a cavity mode is sometimes measured by finding the curves of transmission 
versus frequency between two guides coupled to the cavity as in Prob. 11.14a. Under 
what condition will the Q be well approximated by f,/Af, where f, is resonant fre- 
quency and Af the frequency difference between points of amplitude response 1/1/2 

the maximum? Is this condition satisfied by the values of Prob. 11.14a, assuming a 
50-0, output load? 

Determine the form of the proper local waves in the example of Fig. 11.15a. Show 
that voltage between planes, — { E - dl, is zero for each of these. 

Imagine a parallel-plane transmission line with two steps such as the one in Fig. 

11.15a. The first is from spacing 5 to spacing a; the second is removed from the first 
by a half-wavelength and is from spacing a back to b. The line to the right of b is 
perfectly terminated by its characteristic impedance, Zp,. If it were not for the dis- 
continuity capacitances, the line to the left of the first discontinuity would also be 
perfectly terminated. Calculate reflection coefficient in this line, taking into account 
the discontinuity capacitances from Fig. 11.155. Take a= 1 cm, b = 2cm,A = 

12 cm. Assume air dielectric. 

Using Fig. 11.155, calculate an approximate discontinuity capacitance for the co- 
axial line of Fig. 11.15e. Taker, = 0.5 cm,r. = lem,r3; = 1.2 cm. Assume air 
dielectric.
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A rectangular waveguide of dimensions 0.900 x 0.400 in. propagating the TE,, 

mode at 9 GHz feeds a horn. Standing wave ratio in the guide is measured as 2.5 
with a voltage minimum 0.55 cm in front of the horn entrance. Find the dimensions 
and placing of a capacitive diaphragm to produce a match for waves approaching 
from the left. 

Repeat Prob. 11.15d, using an inductive diaphragm. 

Reason physically as to the field components required in higher-order modes for the 
two waveguide discontinuities of Figs. 11.15f and 11.152, and the type of energy 

storage predominant in each. 

For a > 4/2, the capacitive waveguide discontinuity reduces to the corresponding 
capacitive diaphragm problem in a parallel-plane transmission line. Express Eq. 

11.15(7) as a capacitance per unit width in this limit, and plot as a function of d/b. 
Compare with the step capacitance of Fig. 11.15b. 

A resonant cavity is made by closing one end of a rectangular waveguide with a con- 
ductor, and placing another conductor, with diaphragm, distance / in front of it. 

Wavelength A = 4cm,a = 3cm, b = 1.5 cm, d = Q.2 cm, and the resonant mode 

of concern is the TE,,, mode. Estimate the Q resulting from loading by the wave- 

guide in front of the diaphragm. (See Fig. 11.15/.) 

For the microstrip cross junction of Fig. 11.15, use results of Fig. 11.15) to estimate 

the fraction of incident power radiated if a 30 GHz wave is incident at terminal 1 
with all other terminals matched.



  

12.1 INTRODUCTION 

Radiation of electromagnetic energy from a circuit, cavity resonator, or wave-guiding 

system may be important either as an undesired leakage phenomenon or as a desired 

process for exciting waves in space. In the former case one wishes to minimize the 

power lost by radiation, and this may be done by changing circuit configuration or by 

adding shielding. When radiation is desired, the goal is to excite waves from the given 

source in the required direction or directions, as efficiently as possible. The system that 

acts as the transition or matching unit between the source and waves in space is known 

as the radiator or antenna. The primary stress in this chapter will be on antenna prin- 

ciples, with radiation as the desired result. 

In the design of antenna systems, some or all of the following information may be 

required: 

1. The relative field strength for various directions (called the antenna pattern) 

2. The total power radiated when the radiator is excited by a known voltage or current 

3. The input impedance of the radiator for matching purposes 

4. The bandwidth of the antenna with respect to any of the above properties 

5 . The radiation efficiency, or ratio of power radiated to the total of radiated and 

dissipated power 

6. For high-power antennas, the maximum field strengths at key positions in air or 

dielectrics that may cause corona or dielectric breakdown 

The straightforward approach to any of the above questions might seem to be that 

of solving Maxwell’s equations subject to the boundary conditions of the radiator and 

at infinity. This is possible in a few cases (to be discussed in a later section), but most 

antenna configurations are too complicated for this direct approach, and approximations 

must be made. To make such approximations, it is important to have good physical 

pictures of radiation phenomena. 

One physical picture of radiation is that found in Chapter 4 when we considered 

circuits that are comparable in size with wavelength. It was found that retardation effects 

from one part of the circuit to another cause a phase shift, so that induced effects that 

are only reactive in a small circuit now have a real part also. This real part represents 

584
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power radiated from the circuit. From this point of view, an antenna is a Circuit com- 

parable with wavelength in size, purposely designed to maximize this retardation effect. 

A picture closely related to the preceding but perhaps more direct follows from an 

examination of fields at a distance from the radiating system. If the system is small in 

size in comparison with wavelength, fields from positive and negative charges of the 

system (or oppositely directed current contributions) nearly cancel at large distances. 

For example, we found fields from a quasistatic electric dipole or small current loop 

falling off at least as fast as the inverse square of distance from the dipole or loop. But 

for larger circuits (in comparison with wavelength), there are phase differences from 

the distant point to various parts of the circuit so that cancellation is not so complete 

and we find terms inversely proportional to radius from the radiator. 

For quantitative use of either of these two pictures, one needs the current distribution 

on the antenna. Exact determination of this would require solution of the difficult bound- 

ary value problem, but for many antennas, reasonable assumptions of current distri- 

butions may be made, or they may be found by measurement. 

We will examine a variety of radiators in the next section and find that several of 

these (horns, parabolic reflectors, etc.) utilize large apertures with stress on the field 

pattern excited in the aperture. For these, it is appropriate to use the concept of the 

Huygens principle, in which each elemental portion of the wave in the aperture can be 

considered a source of waves in space. This qualitative picture will be shown to lead 

to useful quantitative procedures in later sections. There, fields in the aperture are 

required, and they may often be approximated when not known exactly. 

Finally, we may think of the antenna as a matching section between the waves on 

whatever guiding system we use to excite the antenna and the waves in space. The goal 

from this point of view is to design the unit for optimum matching over the desired 

frequency range, just as in matching units between different transmission lines or wave- 

guiding systems. An antenna which illustrates this and also shows the relation between 

the several points of view is the biconical antenna pictured in Fig. 12.1. This is the 

biconical transmission line of Sec. 9.6, open to space over the region shown dashed 
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Fic. 12.1 Axial section through a biconical antenna.
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between regions I and II. A source is introduced at the origin, between apexes A and 

B, and this excites primarily the TEM or principal mode studied in Sec. 9.6. To a first 

approximation the surface at 7 = / might be considered an open circuit and the principal 

wave reflection would then produce a sinusoidal standing wave on the cones. High- 

order waves are then excited in both regions I and II to provide the required field 

continuity over the dashed portion of the sphere; then the waves in space become the 

desired radiation fields. This example is interesting in that if cone angle yw is small, the 

cones may be thought of as wires, with the current to first order being the sinusoidal 

principal wave current. Alternatively, we can look at the principal wave fields on the 

dashed part of the spherical surface between I and II as the source of radiation, with 

the system considered a biconical horn. So we see that the several pictures are related 

and the best for quantitative use may depend upon the specific configuration. 

Most of the discussion in this chapter will relate directly to radiating or transmitting 

antennas but the results developed also can be applied to the same antenna when used 

for receiving applications. The radiating case is easier both for analysis and ‘intuitive 

understanding and the relation to the receiving situation can be made rigorously using 

the principle of reciprocity that was introduced in Sec. 11.3. 

]2.2 SOME TYPES OF PRACTICAL RADIATING SYSTEMS 

To give point to comments and analyses that follow, let us look at some of the typical 

systems that have been used as radiators. No attempt will be made to provide complete 

discussions of operation here, since the remainder of the chapter will be devoted to 

more thorough analyses of some of these systems. Nor does the list cover all types of 

radiators. The ones given are chosen as examples to make clearer the discussions of 

principles in sections to follow. 

“Dipole” Amtemmas Among the most common radiators is the dipole, which consists 

of a straight conductor (often a thin wire or circular cylinder of larger diameter) broken 

at some point where it is excited by a voltage derived from a transmission line, wave- 

guide, or directly from a generator (Fig. 12.2a). In most cases, the exciting source is at 

the center, yielding a symmetric dipole, although asymmetric dipoles are also used. 

Resonant dipoles, and especially the half-wave dipole with 2/ approximately equal to 

a half-wavelength, are common. 

Loop Amtemmas Radiation from a loop of wire excited by a generator has been 

discussed in Chapter 4. Such loop antennas are useful radiators, although often they 

have many turns, as in Fig. 12.25. The field from a small loop is much like that from 

the small dipole, with electric and magnetic fields interchanged, and thus is known as 

a magnetic dipole. 

Traveling-Wave Antemmas If the radiator is made to have a traveling wave in one 

direction with a phase velocity about equal to the velocity of light, waves in space may
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Fic. 12.2 Typical antennas: (a) Dipole. (6) Loop. (c) Rhombic. (d) Dielectric rod. (e) Slot 

array. (f) Pyramidal hor. (g) Parabolic reflector. (4) Artificial dielectric lens. (i) Microstrip 
“patch” antenna. (j/) Coplanar strip “horn.” 

be excited strongly in this direction as compared with other directions, thus yielding 

desired directivity. Figure 12.2c shows the important rhombic antenna, which utilizes 

waves along wires and is analyzed in more detail later. If only one-half of the rhombic
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is present, the result is the V antenna. These have been made in thin-film form for use 

at millimeter-wave frequencies. Figure 12.2d shows a version in which the traveling 

wave is guided by a dielectric as in Sec. 9.2. Near cutoff, phase velocity is approxi- 

mately the velocity of light and the fields that extend outside a dielectric guide may 

excite appreciable radiation in space. 

Slot and Aperture Amtemmas As noted in Sec. 12.1, fields across an aperture may 

excite radiation in space. If the apertures are small, they must generally be resonant to 

excite appreciable amounts of power (although nonresonant holes in cavities may pro- 

duce enough leakage to damage the Q of low-loss cavities). A narrow resonant half- 

wave slot has many similarities to the half-wave wire dipole, although electric and 

magnetic fields are interchanged, as will be seen. Figure 12.2e illustrates a series of 

slots in a rectangular guide to form a “leaky waveguide” array. When apertures are 

large, they need not be resonant to produce significant radiation. Electromagnetic horns 

are examples of radiators designed to match waves from a guiding system to a large 

radiating aperture by properly shaping the transition, much as in the acoustic horns used 

for sound waves. Figure 12.2f gives one example. Since the hors are not resonant, 

they, like the traveling-wave antennas, are especially useful for broadband signals. 

Reflectors amd Lemses A parabolic reflector, as illustrated in Fig. 12.2¢, is a most 

important device for microwave radiation. This may be considered as a mirror, serving 

to reflect the rays from the primary radiator at the focus. Geometrical optics would then 

predict an exactly parallel beam emerging from such a reflector if the primary radiator 

is infinitesimal. Alternatively, it may be considered that the primary source serves to 

illuminate the aperture, and radiation from this aperture produces the far field. From 

this point of view (which is also called “physical optics” or “diffraction theory”), there 

is always spreading of the beam. The spreading decreases as aperture size increases, an 

aperture 70 wavelengths in diameter producing a beam width of about 1 degree. Lenses 

serve a similar purpose in directing the rays from a primary radiator. These may be of 

solid dielectric, artificial dielectrics as illustrated in Fig. 12.2h, or metal waveguide 

paths to supply proper phase shifts to direct the beam. Lenses can also be considered 

as aperture radiators. 

Imtegrated-Circuit-Type Amtemmas Antennas for use with microwave integrated 
circuits may be placed on dielectric substrates and are sometimes called patch antennas. 

Figure 12.27 illustrates one in microstrip form and Fig. 12.27 a horn type for use with 

coplanar strip. 

Arrays Any of these radiators may be combined with like or different elements to 

form arrays that have particular directions in which phases add and radiation is con- 

centrated. A most important use of arrays is in “electrical scanning” of the direction 

of concentration by control of phase shift from element to element. An example of the 

two-dimensional array of slot radiators is shown in Fig. 12.2e.
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Field and Power Calculations with Currents 

Assumed on the Antenna 

12.3 ELECTRIC AND MAGNETIC DIPOLE RADIATORS 

In computing radiated power and the field distributions around an antenna when current 

distribution is assumed over the surface of the antenna’s conductors, the simplest ex- 

ample is that of an ideal short linear element with current considered uniform over its 

length. Certain more complex antennas can be considered to be made up of a large 

number of such differential antennas with the proper magnitudes and phases of their 

currents. We shall consider only the case in which the current varies sinusoidally with 

time so we express it by its phasor /, that multiplies the factor e/“”. 

The current element is in the z direction with its location the origin of a set of spherical 

coordinates (Fig. 12.3a). Its length is h, with h very small compared with wavelength. 

By continuity, equal and opposite time-varying charges must exist on the two ends 

+h/2, so the element is frequently called a Hertzian dipole. 

One way of finding fields once current is given requires only the retarded potential 

A as seen in Sec. 3.21. For any point Q at radius r, A of Eq. 3.21(8) is in the z direction 

and becomes simply 

hl . 
A. = pL Lon e—ier/v) (1) 

Or, in the system of spherical coordinates, 

hl . 
A, = A. cos 6 = wp —* e~*" cos 6 

“ 4orr 
hI (2) 

—A.sin@ = —p ro e~*" sin @ 
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FIG. 12.3q Hertzian dipole.
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where k = w/v = wV we = 2a/X. There is no ¢ component of A, and there are no 
variations with @ in any expressions because of the symmetry of the structure about 

the axis. The electric and magnetic field components may be found directly from the 

components of A by use of Eqs. 3.21(6) and (7). Thus, 

Ih _. [jk ] 
Hy, = oe mi + 5) sin 0 a) 

  

4a ? 

Ih _.f2n 2 
E, = —e | + cos 6 3 

An (25 a) °° ©) 

Ijnh _ afl 1 
E, = 2 em (PP 4, —_ 4 4 sin 0 

Aq r jwer r 

An interesting illustration of the fields produced by the dipole can be obtained by 

using £, and E, components in (3) to show the patterns of field lines as functions of 

time, as was done in Sec. 8.3 for waveguide field patterns.'! The expressions in (3) are 

converted into real functions of time in the usual way and plots are made of the electric 

field lines at various instants in time. At t = 0 the dipole current is maximum [Eq. 

3.20(9)] so the charges on the ends of the dipole (Prob. 3.20b) are zero and the electric 

fields near the origin are zero. Previously generated patterns of fields have radiated 

away as shown in Fig. 12.3b. A quarter of a period later, the charge has built up on the 

ends of the dipole and electric field lines are produced in the neighborhood of the dipole 

as seen in Fig. 12.3c. The loops of the field lines close and “snap off” from the source 

as the charges return to zero. 

For the region very near the element (7 small) the most important term in H, is that 

varying as 1/r*. The important terms in E, and E, are those varying as 1 Ir Thus, 

near the element, magnetic field is very nearly in phase with current, and H, may be 

identified as the usual induction field obtained from Ampére’s law. Electric field in this 

region may be identified with that calculated for an electrostatic dipole. (By continuity, 

[,/j@ represents the charge on one end of the dipole.) As the important components of 

electric and magnetic field in this region are 90 degrees out of phase, these components 

represent no time-average energy flow, according to the Poynting theorem. 

At very great distances from the source, the only terms important in the expressions 

for E and H are those varying as 1/r: 

JkIgh : — jk 
H — 8 JAY 

? Agr sm 

. h | 

Eg = een sin 9e7/" = nH (4) 

7 = Vp/e ~ 1207 ohms for space 

' S.A. Schelkunoff and H. T. Friis, Antennas: Theory and Practice, Wiley, New York, 1952,



  
  

  
    

FiG. 12.3 (b) Fields near an oscillating electric dipole when the charges at its ends are zero. 
(c) Fields near an oscillating dipole when the charges at its ends have their maximum values. 
From S. A. Schelkunoff and H. T. Frits, Antennas: Theory and Practice. © 1952, John Wiley 

and Sons, New York. 
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Equations (4) show the characteristics typical of uniform plane waves, as might be 

expected. E, and H, are in time phase, related by 7, and at right angles to each other 

and the direction of propagation. The Poynting vector is then completely in the radial 

direction. The time-average P,, is 

272 7,2 
1 Helahe 

P, = 5 Re(EpHy) = 3. 33 sin? @ 0 W/m? (5)   

The total power must be the integral of the Poynting vector over any surrounding 

surface. For simplicity this surface may be taken as a sphere of radius r: 

w= P-as =| P2dr? sin 6 dé 
S 0 

ke 12h? wv 

= | sin? 6 d6 
0 

I, (n\* h\* W = > (*) = som *) Ww (6) 

It is interesting and important to note that the field of the Hertzian dipole has the 

same form as the first-order TM spherical wave studied in Sec. 10.7. From Eqs. 10.7(19) 

with 1 = 1 and the Bessel function taken as the second Hankel form which is appro- 

priate to a region extending to infinity, 

Hy = A,r7'/?Pi(cos 6)HY),(kr) 

  
A 

E, = Terk 73 (H9)(kr) — krH@,(kr)|P}(cos 4) (7) 

A, HQ, (kr 
E.= _ Aviso) [cos @ Pi(cos 6) — P3(cos 4)] 

Jwer-’* sin @ 

But, from the relations of Sec. 10.7 it may be shown that 

[2 el di 
HY),(kr) = JT e ik t — 7 

Pi(cos 6) = sin 0 

With these substitutions and appropriate definition of constant A,, (7) and (3) are iden- 

tical. The electric field lines for this mode are the same as Fig. 12.35 or c. 

Magnetic Dipole The concept of duality was introduced in Sec. 9.5, where it was 

pointed out that exchanges H for E, —E for H, yw for e, and ¢ for uw leave Maxwell’s 
curl equations for source-free regions unchanged. Thus solutions for a problem with an 

electric source can be adapted to one with a magnetic source. For example, Sec. 2.10 

showed that a small current loop of radius a and current / can be represented as a



12.4 Radiating Fields and Power from Currents on an Antenna 593 

magnetic dipole m = Ira’, and this gave the same form of magnetic field as the electric 

field given by the electric dipole p = qh. The charges q on the ends of the ac dipole 

are found from the ac current by the continuity equation which gives jwq= I, so that 

p = I,h/jw. Then replacing /)h/jw in (3) by pu times the magnetic dipole and making 

the other above-stated duality interchanges, we find the fields of a magnetic ac dipole. 

The field components are 

‘aula LIK 1 . 
Ey = a mi + *) sin 0 

  
‘wula* ,.. 2 2 

H. = TR entre — +- cos 0 (8) 
r 4 2 .3 "I joi 

jopla* _ pp { JWE ] 1 
Hy = —— ee" | — + 75 i+ sin 0   

4 r jopr? nr? 

In comparing the fields of the electric and magnetic dipole radiators, note that neither 

has azimuthal (@) variations, there is a null along the z axis in the far zone, and they 

have orthogonal polarizations. 

]2.4 SYSTEMIZATION OF CALCULATION OF RADIATING FIELDS 
AND POWER FROM CURRENTS ON AN ANTENNA 

For antennas with known current distributions, or with current distributions that can 

reasonably be assumed or measured, fields may be calculated from the retarded poten- 

tials as in Sec. 12.3, with integration over the current distributions. Or, equivalently, 

one can assume each infinitesimal element as a dipole and superpose the results of Sec. 

12.3 by integration. We shall be able to simplify the procedures, however, whenever 

we are concerned only with the radiation or far-zone fields. The particular forms used 

here are useful ones introduced by Schelkunoff.” 

The following assumptions are justified when field is calculated at a great distance 

from the radiator: 

1. Differences in radius vector to different points of the radiator are unimportant in 

their effect on magnitudes. 

2. All field components decreasing with distance faster than 1/r are negligible com- 

pared with those decreasing as 1/r. 

3. Differences in radius vector to different points on the radiator must be taken into 

account for phase considerations but may be approximated. 

2S. A. Schelkunoff, Proc. IRE 27, 660 (1939); Electromagnetic Waves, Chap. IX, Van Nos- 
trand, New York, 1943.
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The vector potential at a point Q a distance r from the origin of the coordinate system 

can be calculated using Eq. 3.21(4), where the integral is taken over the source region 

V’ (Fig. 12.4): 

Jew 
vi Aare” 

  

A= py dV' (1) 

If the origin of coordinates is chosen close to the sources so that r’ <r, the law of 

cosines may be used to find 

r= Vr? + vr? — Ir’ cosw=r — r’ cos (2) 
  

as suggested by Fig. 12.4. Using the first term of (2) for magnitudes (point 1 above) 

and both terms for phase (point 3), the vector potential (1) can be written 

e Jkr 

  

A = we J eke’ cos w fy! (3) 

4or Jy 

The function of r is now outside the integral; the integral itself is only a function of the 

assumed current distribution and the direction Ws between r and r'. Define the integral 

as the radiation vector N: 

  

N = J gikr’ cos & V7! (4) 

y' 

Then 

A=u lap (5) 
1 

  
Fic. 12.4 Coordinates of a general current element in the volume V’ and a distant point Q, 

where fields are to be evaluated, with respect to an origin of coordinates near the sources.



12.4 Radiating Fields and Power from Currents on an Antenna 595 

In the most general case, A, and hence N, may have components in any direction. 

In spherical coordinates, employing the unit vectors, 

~~ jkr 

A = «7 — (N, + ONy + Ny) 

  

A study of the equation B = V xX A in spherical coordinates (see inside front cover) 

shows that the only components that do not decrease faster than 1/r are 

1 @ jk “hey 
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a pr or VAg) 4dr “ ? 
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An examination of Eq. 3.21(7) 

E = a WW: A) — joA 

shows that the only components of E which do not decrease faster than 1/r are 
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The Poynting vector has a time-average value: 

1 
P, = 5 RelEgHy — EgHel = sa (Nel + INgl (8) 

Total time average power radiated is 

W | | P.r? sin 9 d@ do 
0 “0 

7 p27 (9) 

(IN? + |N{IJ sin 6d dd      _ 7 

BA* Jo Jo 

The expression is independent of r, as it should be. 

The Poynting vector P gives the actual power density at any point. To obtain a 

quantity that does not depend on distance from the radiator, we define K, radiation 

intensity, as the power radiated in a given direction per unit solid angle. This is the 

time-average Poynting vector on a sphere of unit radius: 

  7) 2 K = 2a [Nel + INol’] (10) 

and 

w=| | K sin 0 d@ do (11) 
0 40
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Currents All in One Direction If current in a radiating system flows all in one 
direction, this may be taken as the direction of the axis of a set of spherical coordinates. 

Vector A (hence N) can have a z component only. Then 

Ng = 9, Ng = —N, sin 6 

n (12) 
K= 

8)? 

  

IN,|2 sin? 6 

Aximuthally Directed Currents [If all current in some radiating system is azi- 

muthally directed about an axis, this axis may be taken as the axis of a set of spherical 

coordinates. Vector A (hence N) can have a @ component only. Then, if symmetric 

in ¢, 

TN 

= aya Not 
and 

Ww = 20 | K sin 6 d0 (13) 
0 

Useful Relations for Spherical Coordimates It sometimes may be desirable to 

calculate N, and Ny, from the Cartesian components N,, N,, N-: 

Ng = (N, cos @ + N, sin @) cos 6 — N, sin @ 

Ng = —N, sin @ + N, cos @ 
(14) 

The angle uw appearing in the equation for radiation vector (4) may be found as 

follows, if 6, @ are the angular coordinates of the distant point Q, and 6’, ¢@' are angular 

coordinates of the source point (see Fig. 12.4): 

cos Ww = cos @cos 6’ + sin @sin 6 cos(d — ¢’) (15) 

12.5 LONG STRAIGHT WIRE ANTENNA: HALF-WAVE DIPOLE 

We argued in Sec. 12.1 that a very thin biconical antenna could serve as a model for a 

thin-wire antenna. It can be considered as a biconical transmission line with a very 

strong discontinuity at the end. The current along it should be essentially the same as 

that on an open-circuited transmission line and therefore nearly zero at the ends. Also, 

the propagation constant along the line is the same as for plane waves, k = wV pe. 

The long dipole of Fig. 12.5a with voltage applied at its midpoint is shown with an 

assumed sinusoidal distribution of current. The standing wave has zero current at the
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Fic. 12.5a Long straight wire antenna with assumed sinusoidal current distribution. 

ends, and is selected with distance between zero and a maximum equal to a quarter 

free-space wavelength. 

>0 
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The fields and power radiated at a great distance from the antenna can be calculated 

using the general method of the preceding section. Since all current is z-directed, N and 

A have only z components also. In Eq. 12.4(4), the integral is converted to a line integral 

along the antenna wire with current density replaced by total current / and r’ replaced 

by z’. Then since ww = @ for all points along the wire, 

N 
/ 

7 | Tei cos @ dz' 

—/ 

| 

0 
x | I, sin{k(l + z')Je= 6°89 dz! (2) 
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Using the integral formula 

[ = sin(bx + c) dx = sa [a sin(bx + c) — bcos(bx + c)| 

equation (2) becomes 

  21 N =z k sin? 5 [cos(ki cos 8) — cos kl] (3) 

Since N, = —N, sin 6, Eq. 12.4(7) gives 
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and H, = E,/7. 
The radiation intensity is found from (3) and Eq. 12.4(12) to be 

_ nl, | cos(kl cos 6) — cos kl 2 (5) 

Bar? sin 0 

and the total power radiated is, from Eq. 12.4(11), 

W = nlz, (” [cos(kl cos 8) — cos kl]? 46 6) 

4ar Jo sin 0 

  

Example 12.5 
THE HALF-WAVE DIPOLE 

The most important special case of the long center-fed antenna is that of the half-wave 

dipole in which 1 = 4/4. Field intensity and radiation intensity, from (4) and (5), with 

7 for free space are, respectively, 

  

  

  

z,| = 60Fmn cos|(7/2) COs 4 V/n (7) 

? sin 6 

2 2 
K = 1ohn { osten/ we A} W/steradian (8) 

aT sin @ 

The half-wave antenna is a nearly resonant structure with its maximum of current near 

the drive point. It is not exactly resonant for any finite wire radius because treatment 

of the wire antennas as an open-circuited uniform transmission line is only an approx- 

imation. The half-length for resonance and the terminal resistance at resonance for 

different antenna radii a are given in Fig. 12.5b.° 
  

3 R. S. Elliott, Antenna Theory and Design, p. 304, Prentice Hall, Englewood Cliffs, NJ, 1981.
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FiG. 12.55 Resonant length 2/, and resistance at resonance for ~ A/2 dipole as a function of 
radius of wire, normalized to wavelength. From R. S. Elliott, Antenna Theory and Design, 
© 1981, p. 304. Reprinted by permission of Prentice Hall, Englewoood Cliffs, NJ. 

12.6 RADIATION PATTERNS AND ANTENNA GAIN 

We pointed out earlier that the purposes of an antenna are to make an impedance match 

between a waveguide or transmission line and free space and to send the energy in the 

desired direction. The methods of characterizing the directivity of antennas will be 

elaborated in this section. 

Figure 12.6a shows a surface for which the distance from the origin to a given point 

on the surface is proportional to the radiation intensity in that direction from the antenna. 

The surface shown in Fig. 12.6a represents the half-wave dipole described by Eq. 

12.5(8). The somewhat more complex pattern in Fig. 12.6b is for a dipole of length 

3A/2 (Prob. 12.6c). Note that both of these patterns have symmetry about the z axis 

  

FIG. 12.6a Pattern of radiation intensity for a half-wave dipole.
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Fic. 12.66 Pattern of radiation intensity for a dipole of length 34/2. 

since current is all z directed. Patterns of this type become quite complicated for asym- 

metric distributions. 

Plots that are more easily made and read quantitatively are the intersections of sur- 

faces like those in Figs. 12.6a and b with selected principal planes. Clearly, the inter- 

sections of planes perpendicular to the z axis with those surfaces are circles, refiecting 

the symmetry about the z axis. More interesting are the polar plots resulting from the 

intersection of the surface with a plane containing the z axis. This is shown for the 

surface of radiation intensity for the half-wave dipole (Fig. 12.6a) in Fig. 12.6c. Similar 

plots are shown for the magnitudes of electric field F, for the half-wave dipole and the 

Hertzian electric dipole, Eq. 12.3(4). 

From the patterns in Figs. 12.6a—c, it is evident that radiated fields are stronger in 

some directions than in others. We say then that this antenna has a certain directivity 

as compared with an imagined isotropic radiator which radiates equally in all directions. 

This is, of course, an advantage if we desire to have the signal radiated in the direction 

of the maximum, since there is less power required to produce a given field in the 

desired direction than there would be for the isotropic radiator. 

The ratio of the radiation intensity K(0, @) from an antenna in a given direction, to 

the uniform radiation intensity for an isotropic radiator with the same total radiation 

power W is called the directive gain 

K(@, ?) 
(W/47) 

where the factor 47 is the number of steradians in a full sphere. The value of directive 

gain in the direction for which it has its maximum value is called the directivity (£4) max: 

£4(9, 6) = (1)
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FiG. 12.6c Polar plots of field and radiation intensity for a half-wave dipole and of field for a 
Hertzian dipole in plane of dipole. 

For example, the directive gain for the half-wave dipole in free space can be found 

from Eqs. 12.5(5) and 12.5(6): 

  (2) 
sin @ 

2,(8, ¢) = 1 ca) Son cos ay 
d\“s ~~ ’ : 

which has its maximum at 6 = 77/2, as is clear from Fig. 12.6a or c, so the directivity 

is 1.64. 

It is interesting to note that a similar calculation for the Hertzian dipole using Eqs. 

12.3(5) and 12.3(6) with @ = 7/2 yields a directivity of 1.5, a value not much different 

from that of the half-wave dipole. In later parts of this chapter, we will see other 

antennas, especially antenna arrays, that have much higher directivities. 

Another characterizing property of an antenna is the power gain g,(0, $). For this 

quantity, the radiation intensity is divided by the uniform radiation intensity that would 

exist if the total power supplied to the antenna by the connected waveguide or trans- 

mission line were radiated isotropically: 

_ KG, @) 
Sp W../4ar 

  

(3) 

Since the total supplied power W,, is the sum of that radiated W and the resistive losses 

W,, then 

£,(8, ¢) = Sal9, @) (4) _ Ww 
W + W,
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where the factor W/(W + W,) is called the radiation efficiency of the antenna. Although 
the directivity of a Hertzian dipole is almost equal to that of a half-wave dipole, as 

mentioned above, their radiation efficiencies are greatly different, even if they are of 

the same material. This is because the power radiated by the dipole varies as /” whereas 

the losses vary as /. (The Hertzian dipole, having uniform current, models end-loaded 

short dipoles.) A similar result obtains for unloaded short antennas with J = 0 at the 

end. For other antennas, radiation efficiency is near unity and there is little difference 

between directive gain and power gain. 

For a given length in comparison with wavelength, antenna diameter also affects 

radiation pattern and directivity.* 

12.7 RADIATION IRESISTANCE 

The input impedance of an antenna can be represented by a series frequency-dependent 

impedance Z = R + jxX and is of great importance for optimum matching into the 

antenna. Methods for calculating R and X for certain lossless antennas are discussed in 

Secs. 12.25 and 12.26. The resistive component, in general, is a measure of the sum of 

radiated power W and ohmic losses W,, as discussed in connection with power gain in 

the preceding section. It could be represented by two resistors in series, one for each 

component, 

2W 
R, = 72 (1) 

where J is the magnitude of the terminal current, and 

2W, 
R, = 72 (2) 

The quantity R, is called radiation resistance; for a small dipole current element, it 

can be found from (1) and Eq. 12.3(6) to be 

] 2 

R, = son(2) OD, (3) 

where we use / in place of h for the length. The power loss in the same element is 

W, = +R J.(?A where J, = J/27a, A is the surface area of the wire, a is its radius, 
and R, is surface resistance. 

  

W, =P (4) 
‘ Ata 

and 

_ IR, (5) 

1 Qa 

4 J. D. Kraus, Antennas, 2nd ed., Sec. 9-10, McGraw-Hill, New York, 1988.
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Then the efficiency is 

Ww RL 80(1/A) ‘ 
W+W, R.+R,  80(0/A) + (AR,/27°2) (9) 

Thus, it can be seen that the efficiency decreases as the length / decreases, becoming 

proportional to //A in the limit. 
For an antenna with / < A and no end loading, the current decreases linearly from 

the source to the end (linear portion of the sinusoidal distribution in Fig. 12.5a). In 

this case the average /* along the antenna is one-quarter the terminal value J? so the 

radiated power is also one-quarter the value in the uniform-current case and radiation 

resistance is 

    

2W 1\? 
R. = 7 = 20m(+) (7) 

m 

The average losses are also one-quarter those of the uniform-current case so the con- 

clusion about efficiency is again that it is proportional to the length of the element. 

The radiation resistance of a lossless filamentary half-wave dipole can be found using 

Eq. 12.5(6) 

  

2W q | ” cos*((77/2) cos 6) 
R= =z = — dé 8 

. I? 277 Jo sin 0 ( ) 

which can be shown (Prob. 12.7b) to have the value 

R, = 73.09 0 (9) 

It is seen in Fig. 12.5b that this equals the terminal resistance of the half-wave dipole 

as wire radius goes to zero. 

Radiation resistance of the small loop antenna was derived in Eq. 4.12(6) by the 

induced emf method and may be checked by using a Poynting integration from the 

fields of Eqs. 12.3(8). It may be written 

, { circumference ‘ 
R. = 200-7 | —— r (10) 

12.8 ANTENNAS ABOVE EARTH OR CONDUCTING PLANE 

Many antennas are placed near plane conductors. If the latter are large enough to be 

considered effectively infinite, and of high enough conductivity to be considered perfect 

conductors, it is possible to account for the conductor by imaging the antenna in it. For 

example, given a single cone with axis vertical above a perfectly conducting plane (Fig. 

12.8a), the boundary condition of zero electric field tangential to the plane may be 

satisfied by removing the plane and utilizing a second cone as an image of the first.
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FiG. 12.8 (a) Cone above plane conducting earth and image cone. (b) Horizontal wire above 
plane conducting earth and image wire. (c) Inclined wire above plane conducting earth and image 

wire. 

The problem then reduces to that of the biconical antenna discussed in Sec. 12.1. Note 

that current is in the same vertical direction at any instant in the two cones. Given a 

single wire above a plane conductor and parallel to it, as in Fig. 12.85, our knowledge 

of symmetry in the transmission-line problem tells us that the condition of electric field 

lines normal to the earth is met by removing the plane and placing the image with 

current in the opposite horizontal direction. Generalizing from these two cases, we see 

that current direction in the image will be selected so that vertical components are in 

the same direction and horizontal components in opposite directions at any instant. An 

example is shown in Fig. 12.8c. 

The technique of replacing the conducting plane by the antenna image, of course, 

gives the proper value of field only above the plane. The proper value below the per- 

fectly conducting plane should be zero. For example, given a long straight vertical 

antenna above a plane conductor, excited at the base, the image reduces the problem 

to that solved in Sec. 12.5. Field strength for maximum current /,, in the antenna is 
given exactly by Eq. 12.5(4) for all points above the earth (0 < @ < 7/2), but is zero 
for all points below (ar/2 < 6 < a). Thus, for power integration, the integral of Eq. 

12.5(5) extends only from 0 to 7/2, and the power radiated is just half that for the
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FiG. 12.8d Radiation pattern for field £, for infinitesimal vertical electric dipole over planes 

of finite conductivity and infinite conductivity. From E. C. Jordan and K. G. Balmain, Electro- 
magnetic Waves and Radiating Systems, 2nd ed., Fig. 16.7. Prentice Hall, Englewood Cliffs, NJ, 
1968. 

corresponding complete dipole: 

nl2, (7? [cos(kl cos 6) — cos kl}? 
w= d 

Aq 
  6 W 

9) sin 0 

Calculations of radiation from antennas above an imperfectly conducting earth are 

much more complicated. The radiation from an electric dipole over a plane; finite- 

conductivity earth has been calculated. The fields are conveniently divided into a space 

wave and a surface wave. The space wave fields decay as 1/1 and the surface wave 

fields as 1/1* so the important one at large distances is the space wave. As an example, 

consider the fields of an Hertzian dipole vertically oriented and at the level of a finite- 

conductivity earth. The electric field for the case of infinitely conducting earth is shown 

by the solid line for reference in Fig. 12.8d. The space-wave field magnitude 

(1/r dependence) for a frequency at which the conduction current and displacement 

current in the earth are equal (typically, 5 MHz) is indicated by the dashed line. The 

surface wave component of the electric field is shown by the dotted line; it decays as 

1/r*. Each component is separately normalized; their relative magnitudes depend on 

the distance from the antenna because of the different dependences on 7. An important 

conclusion is that the space wave fields are greatly reduced for angles near the surface 

of the earth of finite conductivity.” Other properties of the real earth, such as curvature 

and the presence of the troposphere or ionosphere, are important in some frequency 

ranges and add still more complication.® 

© E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems, 2nd ed., 
Fig. 16.7, Prentice Hall, Englewood Cliffs, NJ, 1968. 

¢ RE. Collin, Antennas and Radiowave Propagation, McGraw-Hill, New York, 1985.
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12.9 TRAVELING WAVE ON A STRAIGHT WIRE 

Some important types of antennas involve traveling waves of current rather than the 

standing waves seen in Sec. 12.5. As preparation, we consider the radiation from a 

traveling wave of current on an isolated wire. Let us consider a straight wire extending 

from z = 0 to z = JI, excited by a single traveling wave of current, assumed to 

be unattenuated and with phase velocity equal to 1/ V we (Fig. 12.9a). Since all current 

is in the z direction, the radiation vector of Eq. 12.4(4) has only a z component. The 

special forms of Eqs. 12.4(12) then apply: 

I 
N, = | eH" eikz’ cos 8 jy! 

0 
I,{1 _ e SKC —cos | 

  

  

    

         
  

JkQ — cos 6) 

NJ = 21 sin[(kl/2)(1 — cos 6)] (1) 

k(1 — cos @) 

2 I? sin?[(kl/2)(1 — cos 6)] 
K = ——~ sir’ 9 = 20" “2 

gaz on 2 ed-cso ? 2) 

In addition, since there is symmetry about the axis, 

I3n sin?[(kl/2)(1 — cos 6)] 
  

  

W=2 | K sin 0d0 = 2 J sin? “Joo "Jo 2 kK — cos 6 oa 
™ sin? @ sin?[(kl/2)(1 — cos 6)] 

W= 3073 | d@ 
an (1 — cos 6)” 
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FiG. 12.9a Thin wire of length / supporting a progressive wave.
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20° 

Fic. 12.9b Radiation pattern (£,) of a traveling wave antenna six wavelengths long. After 

E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems, 2nd ed., 
p. 357. Prentice-Hall, Englewood Cliffs, NJ, 1968. 

If the foregoing integral is evaluated,’ 

  (3) 
5 kl sin 2k/ 

W = 30/5) 1.415 + In— — CGi@akl) + 
7 2k 

where 

  Ci(x) = -| cO8 * dx 
Xx x 

This single traveling wave might be expected to produce a maximum of radiation in 

the direction of propagation. Actually the radiation is zero at 6 = O, as seen from (2), 

but only because the radiation from each element of current is zero in that direction. A 

complete radiation pattern of a traveling wave wire radiator six wavelengths long is 

shown in Fig. 12.9b, where it is clear that the lobes near 6 = O are largest and those 

near 6 = 7 are smallest. 

It should be pointed out that a single traveling wave wire does not make a very 

desirable antenna because of the large amount of energy in the side lobes. The V-type 

and rhombic antennas discussed in the following section combine traveling wave wire 

lines in advantageous ways. 

12.10 V AND RHOMBIC ANTENNAS 

In this section we will study two kinds of antenna, V and rhombic, based on the radiation 

from a traveling wave given in the preceding section. If the wires of the V are terminated 

7 J. A. Stratton, Electromagnetic Theory, p. 445, McGraw-Hill, New York, 1941.
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in an appropriate resistance (e.g., by connection of the ends of the V through resistors 

to ground), there will be a negligible reflected wave. The results of the preceding section 

can then be used. For example, if two wires carrying traveling wave currents are oriented 

in a V with an angle between them equal to twice the angular displacement of the main 

lobe from the wire, the result is a unidirectional pattern, with a maximum in the plane 

normal to that of the V and containing its bisector. The maximum would also be in the 

plane of the V if the effect of the ground were not significant; the effect of the image 

in a perfectly conducting ground is discussed at the end of this section. 

We can make a direct calculation of the radiation from the two arms of the V being 

driven from point O in Fig. 12.10a, assuming the ends at C and D are matched so there 

are only waves traveling away from 0. We also neglect, for now, the effect of the earth. 

The analysis is based on the radiation of a single wire given in the preceding section. 

The currents in the two arms are in different directions so addition of the effects is by 

orthogonal components. 

The radiation vector for a single wire, with energy traveling at the velocity of light 

in only one direction, has only the direction of the wire. From 12.9(1), 

11 _ e dk — cos Wy) _ I, 

‘ jk. — cos ) ik 
  FY) (1) 

The subscript s denotes the direction of the wire, and yw is the angle between the wire 

and the radius vector to the distant point (r, 6, @) at which the radiation field quantities 

are desired. The angles for the elements, in terms of the coordinates in Fig. 12.10qa, are 

COs Woc = Sin 8 cos(@ + a) (2) 

cos Wop = sin 8 cos(@ — a) 

    Ses 
SS 

= sre fate SE 

Ne 

FiG. 12.10a Coordinates for calculation of radiation from a traveling wave V-type antenna.
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The currents at O for OC and OD are 180 degrees out of phase; they may be taken 

as [y and —/, respectively. Components of the radiation vectors of the two wires may 

be added: 

I 
N, = 008 affoc) — F(too)! (3) 

I 
Ny = iE sin alf(Yoc) + Fon)! (4) 

To simplify expressions, we define 

A = f(Woc): B = f(Wop) (5) 

The components of the radiation vector in spherical coordinates may be written in 

terms of the Cartesian components N, and N, from Eq. 12.4(14): 

Ng = 4 [A cos(a + @) —B cos(a — @)] cos 0 (6) 

I 
Ng = P [—-A sin(d + a) + B sin(d —a)] (7) 

Then the radiation intensity [Eq. 12.4(10)] is 

K = <5 (Ne? + Igl?I Q 2 d 

_ nl} 
32a? 

+ |-A sin(d + a) + Bsin(d — a)|?} 

  (|A cos(a + ¢) — Bcos(a — ¢)|? cos* 6 (8) 

Figure 12.105 shows the radiation intensity pattern in the plane of the V for a structure 

with arm lengths of 6A and an angle of 32 degrees between arms.® 

If the V antenna described here is located above earth, as would be required for 

installing terminating resistors, the effect of the earth must be taken into account. As- 

suming the earth to be plane and perfectly conducting, the image effect can be accounted 

for by using the results to be worked out in Prob. 12.10a. The total radiation intensity 

Ky is 

K, = 4K sin*(kh cos @) (9) 

where K is the radiation intensity of a single V given by (8) and h is the height of the 

antenna above the earth. Although derived for a special case, (9) is a general relation 

for horizontal antennas above a perfectly conducting earth. 

A similar analysis is used for the rhombic antenna, which consists of two oppositely 

directed V antennas with the ends of their arms joined as in Fig. 12.10c. It can be 

8 W. _L. Stutzman and G. A. Thiele, Antenna Theory and Design, p. 242, Wiley, New York, 
1981.
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Fic. 12.10b Radiation intensity pattern for an isolated V antenna with arm lengths of 6A and 

32 degrees between arms. From W. L. Stuzman and G. A Thiele, Antenna Theory and Design, 
p. 242. Reprinted by permission. © John Wiley and Sons, 1981, New York. 

demonstrated that the V-type antenna has the same pattern (in the directica of the 

traveling waves) for either direction of use (Prob. 12.10b) so the radiations from the 

two V’s reinforce each other. Alternatively, the analysis given above can be extended 

to treat the rhombic antenna. The termination impedance is attached to the apex of the 

rhombus opposite from the drive point. Operation can be over about a 2:1 frequency 

range without large changes in the performance. Typical lengths of the arms are 2—7 

wavelengths and the rhombus is usually located 1-2 wavelengths above the earth. The 

acute angles 2aq@ are typically 35—60 degrees. 

The form of the radiation pattern can be altered significantly by changing the angle 

a and the lengths of the arms. Moreover, for antennas used with long-distance com- 

munication, it is desired to have the beam make a certain angle with the earth for 

optimum reflection from the ionosphere. This is adjusted by the distance of antenna 

above earth and calculated for ideal earth as for the V antenna, using (9). Figures 12.10d 

and e show, respectively, the calculated pattern in a vertical plane containing the x axis 

Terminating 
impedance 

  

FIG. 12.10c¢ Rhombic antenna.
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(a) 

  

  

  

  

(e) 

Fig. 12.10 (d) Radiation intensity pattern in the vertical plane containing the x axis for a typical 

rhombic antenna (c) over a perfectly conducting earth. (e) Radiation intensity pattern in the 
azimuthal plane containing the maximum intensity for the antenna of (c). From J. D. Kraus, 

Antennas, 2nd ed., p. 504. © McGraw-Hill, 1988, New York. 

and the pattern in an azimuthal plane tilted 10 degrees above the x axis. The arms of 

the rhombus are 6A long, a = 20 degrees, and the rhombus is 1.1A above the earth,” 

which is assumed perfectly conducting. 

12.11 METHODS OF FEEDING WIRE ANTENNAS 

In this section we consider three aspects of the problem of driving wire antennas. The 

simplest excitation problem is that of the wire perpendicular to a conducting plane. 

Another common situation is the feeding of an isolated dipole by a balanced two-wire 

transmission line, where special techniques must be used to achieve a satisfactory 

impedance match. Finally, we discuss circuit arrangements to permit the feeding of an 

antenna, which is balanced with respect to ground, by a transmission line having one 

side at ground potential (usually the outer conductor of a coaxial line). 

9 E. A. Laport, in Antenna Engineering Handbook, (R. C. Johnson and H. Jasik, Eds.), 2nd 

ed., McGraw-Hill, New York, 1984.
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Monopole Perpendicular to a Conducting Plame Consider first a wire mono- 

pole that is effectively an extension of the inner conductor of a coaxial drive line, whose 

outer conductor is connected to an infinite ground plane, as shown in Fig. 12.11a. The 

load on the coaxial line is resistive when the antenna is resonant. With / = A/4 the 

resonant resistance is about 37.5 Q, with only weak deviations caused by changes of 

the gap between inner and outer coaxial conductors at the connection to the ground 

plane.!° To make the line impedance also 37.5 11, the radius ratio should be b/a = 

1.868 for air dielectric. With available experimental data on the admittance of such 

structures, it can be deduced that the antenna will have an impedance that is purely 

resistive and of value ~ 36.8 () at resonance if the radius and length of the antenna are 

given by a/A = 0.00159 and //A = 0.236. Thus, for an antenna operating at 100 MHz, 
the diameter and length should be 0.95 cm and 0.71 m, respectively. The power reflected 

at the feed point with this design is less than 0.01%. 

Folded Dipole Antennas for television and FM broadcast applications are com- 

monly coupled to a two-wire balanced transmission line. Such lines typically have 

characteristic impedances of 300—600 (). If such a line were to drive a half-wave dipole, 

which has a characteristic impedance on the order of 75 ©, a serious mismatch would 

exist. A folded dipole one-half wavelength long with parallel conductors of the same 

diameter, shorted at the ends as shown in Fig.12.115, has a characteristic impedance 

four times that of the single half-wave dipole for a mode with currents in the parallel 

wires in the same direction. The currents are of equal magnitude and in the same 

direction in the two closely spaced equal-diameter wires. If a terminal current /, is 

supplied, the effective radiating current is 2/,, so the power is four times that of the 

single half-wave dipole with current /,. At resonance, the power is related to the input 

resistance R as P = $/°R so the four-fold increase of power for a given I, implies that 

R is four times that of the half-wave dipole, or about 300 ©. If another equal-diameter 

shorted wire is added in parallel to the folded dipole in Fig. 12.11b, the resonant input 

impedance for the mode with parallel currents in the same direction becomes nine times 

that of the single half-wave dipole. Another advantage of the folded dipole is that its 

P 

{7° f
\
 OT) 

        
Fic. 12.11a Coaxial line feeding a monopole through a ground plane. 

10 R. S. Elliott, Antenna Theory and Design, pp. 352-355, Prentice Hall, Englewood Cliffs, 
NJ, 1981,



12.11 Methods of Feeding Wire Antennas 613 

Input terminals 

    
FiG. 12.11b Folded-dipole antenna. 

input impedance is acceptably constant over a larger frequency range than is that of the 

single dipole. There are many derived forms of the folded dipole giving a wide range 

of impedances.!! 

Baluns An isolated dipole or one oriented parallel to a ground plane is balanced with 

respect to ground. To avoid unbalancing the antenna, it should be fed by a balanced 

line, such as a two-wire line. For some situations (for frequencies higher than about 

200 MHz or for a dipole mounted parallel to a ground plane), it is preferred to drive 

the antenna by a coaxial line rather than a two-wire line. Since the outer conductor of 

the coaxial line is grounded, tts direct connection to a balanced dipole would lead to a 

distortion of the radiation pattern. The connection arrangement that avoids unbalancing 

a dipole is called a balun, a contraction for balanced/unbalanced. Baluns take a variety 

of forms; one is shown in Fig. 12.11c for a dipole parallel to a ground plane. At the 

feed point (marked F’) the coaxial line drives the dipole and, in parallel electrically, a 
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hl/4 
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FiG. 12.11¢ One type of balun used for feeding a balanced antenna from an unbalanced trans- 
mission line (coaxial line in this case). From Edward C. Jordan, Keith G. Balmain, Electromag- 
netic Waves and Radiating Systems, 2nd ed. © 1968, p. 406. Reprinted by permission of Prentice 

Hall, Englewood Cliffs, NJ. 

NJ. D. Kraus, Antennas, 2nd ed., Sec. 11-19, McGraw-Hill, New York, 1988.
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two-wire transmission line consisting of its own outer conductor and the parallel support 

for the dipole. By making the distance to the shorting termination A/4, the impedance 

of the two-wire line, as seen at the drive point, is infinite, so the dipole has equal currents 

in its two arms and is thus balanced with respect to ground. More complicated matching 

circuits! may be necessary to maintain matching over the bandwidth of broadband 

systems. 

  

Radiation from Fields Over an n Aperture 

12.12 FIELDS AS SOURCES OF RADIATION 

For wire antennas, it is fairly natural to assume a current distribution over the antenna 

and to consider the current elements as the sources of radiation. For other antennas, 

such as the electromagnetic horn, slot antennas, parabolic reflectors, lens directors, and 

all optical systems, it is more natural to think in terms of the fields as sources. The 

Huygens principle states that any wavefront can be considered the source of secondary 

waves that add to produce distant wavefronts. Thus the knowledge (or assumption) of 

field distribution over an aperture should yield the distant field. We wish now to make 

a quantitative statement of this general principle. There are several possible approaches, 

but we shall start with one that considers the fields as arising from equivalent current 

sheets in the aperture. This approach provides good physical pictures and builds directly 

on the formulations already developed in this chapter. 

Consider the aperture in a plane (Fig. 12.12) with sources to the left and the field 

desired in the region to the right. For present purposes the plane may be considered 

absorbing, so that it has no fields or currents except in the aperture. The exact boundary 

value problem can be solved in only a few cases, but it is often possible to make a 

reasonable estimate of the aperture fields, just as was done for antenna currents in the 

radiators considered previously. We thus assume that tangential components of fields 

E,@', y’) and H,’', y’) are known in the aperture. Although these fields arise from 

sources to the left, they may be considered to be produced by equivalent sources located 

in the aperture plane. In particular, we have seen on many occasions that the relation 

between tangential magnetic field and a surface current is 

J,=axH (1) 

12 D. F. Bowman, in Antenna Engineering Handbook (R, C. Johnson and H. Jasik, Eds.), 2nd 
ed, McGraw-Hill, New York, 1984.



12.12 Fields as Sources of Radiation 615 

P 
8 

(fields E and H desired) 

Actual t 

sources Aperture 

UO   \ 
ev \

 
  

Fic. 12.12 Radiation through an aperture. 

Similarly the tangential electric field can be related to a term which we can interpret as 

a surface magnetic current M.: 

M,= -ixE (2) 

Note that (1) and (2) individually assume that the tangential fields H, and E, on the left 

side of the aperture plane are zero. Jointly, J, and M, produce fields that satisfy that 

assumption while producing the required fields on the right side. Whether or not true 

magnetic charges and currents are found in nature, the concept of such equivalent 

sources is a useful one in a variety of circumstances including this one. Maxwell’s 

equations, augmented by magnetic charge density p,, and magnetic current density M, 

become 

V:-D=p, 

V-B= py 

vxeE=—-mM-2 (3) 
or 

D 
VxH=js+e 

ot 

A second retarded potential F can be defined in terms of the magnetic sources as A 

was related to electric sources. For a homogeneous isotropic medium, the relations in 

terms of surface currents are 

M,e7*" Je" F —<___ gs 4 Ss ds’, — t 

sg 4dr ° ys 4r 4) 
  A= pu
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and the fields in terms of these potentials are 

E ~jwd BY: A)- <0 XP (5) 

| H —joF — 33 V0-F) + Vx A (6) 

To calculate fields at any point in the region to the right, the actual sources in the 

left-hand region are replaced by equivalent sources in the aperture defined by (1) and 

(2) and the calculation made through the set (4) to (6). If the plane is conducting and 

not absorbing, any actual currents flowing on the right side of the plane must be added 

in the calculation of A in addition to the equivalent sources in the aperture, although 

this correction is often negligible. 

If we are concemed only with the radiation field, the usual approximations appro- 

priate to great distances can be employed, and the general formulation of Sec. 12.4 

extended. A magnetic radiation vector L may be related to vector potential F as N was 

to A. Thus, consistent with the assumptions listed previously 

  

  

e dkr e 7 dkr 

A= N, F = L 7 
pe 4arr ° Agr ) 

where 

N = | Je" cos Wg! L= | M.e*” cos & js! (8) 
Ss! s' 

Here r’ and ware as defined in Sec. 12.4. 

If electric and magnetic field components are now written in the usual way in terms 

of these two vector potentials, the only components not decreasing faster than (1/r) are 

  et 
Eg = nH, = —] Ap (nN, + Lg) (9) 

et 
Ey, = —1H, = j AP (— Ny + Leg) (10) 

So the radiation intensity, or power per unit solid angle, is 

2 2 
7) Lg 

K=-—,> -—— il P| | an N 

In optics, this far-zone field is called the region of Fraunhofer diffraction. For the near 

zone, or region of Fresnel diffraction, better approximations to r are necessary.'? 

One does not need to use the concept of magnetic currents explicitly since the expres- 

sions (1) and (2) may be substituted in (4) and then one works with the aperture fields 

Le 
n 

        

13M. Born and E. Wolf, Principles of Optics, 6th ed., p. 660, Pergamon Press, Oxford, 1980.
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directly. In fact Stratton and Chu derived such expressions by direct integration of the 

field equations.'* For many purposes, however, the physical pictures inherent in the 

formulation with magnetic currents is helpful, because of the duality with fields from 

electric currents. 

12.13 PLANE WAVE SOURCES 

The radiation vector and radiation intensity may be calculated for a differential surface 

element on a uniform plane wave. Such an element might be considered the elemental 

radiating source in radiation calculations from field distributions, as was the differential 

current element for radiation calculations from current distributions. 

The plane wave source, that is, one that produces EK and H of constant direction, 

normal to each other, and in the ratio of magnitudes 7 over the area of interest may be 

replaced by equivalent electric and magnetic current sheets over that area (Fig. 12.13a). 

If 

  

EK = KE, H = yyy = 7. (1) 

the equivalent current sheets are 

Jy = — Hyg = — Exo/ 0, M, = — Exo (2) 

If this is a source of infinitesimal area dS (actually it need only be small compared with 

wavelength for the following results to hold true), the radiation vectors N and L given 

by Eq. 12.12(8) are 

N. =o, L, = — Exo dS 

    

  

7 

  

FiG. 12.13a@ Small plane-wave source and equivalent current sheets. 

4 J. A. Stratton, Electromagnetic Theory, Sec. 8.14, McGraw-Hill, New York, 1941.
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since the source element is at the origin of coordinates. The components in spherical 

coordinates are from Eq. 12.4(14), 

    

Eo aS Eo ds 
Ny = ——2— cos dcos 8, Ng = x0 — sin 

7 1 (3) 

Lg = —E,o dS sin ¢ cos 8, Lg = —Exo dS cos } 

from which far-zone fields, by Eqs. 12.12(9) and (10), are 

JEyo dS e~™ 
Ey, = yp (1 + cos 6) cos @ (4) 

E.o dS ee ™ 
E,=- js + cos @) sin @ (5) 

and radiation intensity, by Eq. 12.12(11), is 

E2,(dS)* 5 
K= Ax) [((—cos @ cos 6 — cos d)* + (sin d + sin d cos 6)7] 

Snr (6) 

E,(dSy 0 
= =~ cos” = 

2nr 2 

Paraxial Approximation for Large Apertures In most cases of radiation from 

large apertures and horns, we are interested in small values of 0 (paraxial approxi- 

mation) so that cos @ may be replaced by unity. Let us also convert to rectangular 

components in the radiation field: 

E,, = E,cos 8cos @ — E, sin @ ~ E,cos @ — Ey sin } (7) 

E, = E,cos 6sind + E,cos 6 ~ E,sin @ + Eycos } (8) 

Substituting (4) and (5) with cos 6 = 1, 

Ey dS e~ 
E mw j xO 

, E, ~ 0 x Ar (9) 

Thus in the paraxial approximation, the radiation field is in the direction of the source 

field and we may drop the subscript on £. To integrate over the aperture shown in Fig. 

12.13b, we must first adapt the above results to an element at an arbitrary location x’, 

y’ in the aperture. This can be done using Eqs. 12.12(8) but a direct approach is more 

convenient here. Within the paraxial approximation, (9) gives the field produced by the 

element at x’, y’ if EF. is replaced by E(x’, y’) and r by r”. Now integrating over the 
given aperture distribution, 

Ll EQ’, ye 
E(, y, Zz) = dx' dy’ (10)
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FIG. 12.13b Plane-wave element as part of a plane aperture located at z= 

where 7" is distance between the element and the field point and may be approximated 

for the far zone by the binomial expansion 

r= [@- xP t+ (y— yP + 22 = 4 — (x! + yy')/r (11) 
Also, as in other radiation problems, the difference between r and r” is important only 
to phase and not to amplitude. Thus, (10) becomes 

jew 
Ar 
  E(x, y, 2) = | E(x', y')eKOr +y9/"ax' dy’ (12) 

s 

This is a standard form of diffraction for the Fraunhofer region. Moreover, (12) can be 

recognized as a two-dimensional version of the Fourier integral (Sec. 7.11), so in the 

paraxial approximation, the far-zone field is the Fourier transform of the aperture field. 

12.14 EXAMPLES OF RADIATING APERTURES EXCITED BY PLANE WAVES 

The expressions developed in the preceding section will now be applied to several 

important examples. It should be remembered that E and Hi at any point in the aperture 

are assumed to be related as in a plane wave (though strength may vary over the 

aperture), that we are ignoring contributions from any induced currents outside of the 

aperture, and that we are restricting ourselves to angles near the polar axis so the paraxial 

approximation can be used. These assumptions are best satisfied for apertures large 

compared with wavelength.
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Rectangular Aperture with Uniform Wlumination Consider first a rectangular 

aperture as in Fig. 12.14a@ with uniform illumination &, over the aperture. Equation 

12.13(12) becomes 

  
je a/2 b/2 . . 

Eq, y, z) = | | Eo elke /t oJkyy /Tdx! dy’ (1) 

Ar J—a/2 4-6/2 

The integrations are readily performed to give 

  

  

je” sin (kax/2r) sin(kby/2r) 
E@, y, z) = Eyab 2 
Oy 2) 08 kax/2r _ kby/2r 2) 

The pattern in the plane y = 0 has nulls of the field at 

: A 
(eu = =) = m= 1,2,3,... (3) 

null a 

The pattern in the x = 0 plane is of the same form with y replacing x and b replacing 

a. Thus as expected, the primary radiating lobe becomes narrower as the aperture di- 

mensions become larger in comparison with wavelength. 

Directivity of this aperture is readily calculated since the maximum field is that at 

x = 0, y = 0 so that power radiated by an isotropic radiator of this field strength is 

lEvnaxl- _ 2nE 4a°b? 
4 

27 M1 (4) 
(W ) isotropic = Aar* 

Actual power radiated may be calculated from the fields in the aperture neglecting 

currents in the surrounding aperture plane: 
. Py 

= —ab 5 27 a (9) 

  ho
ja
 

  VILE . 
LA EES hf 
Lo 3) 

x 

FIG. 12.14a Uniformly illuminated aperture. 
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Thus directivity is 

Wisotropic  47ab  4r(area) 

W A? is 

which is most accurate for large apertures. The relation between directivity and area is 

very important and will be found for other aperture radiators. 

Long Sfit A long slit is often used to demonstrate diffraction effects with visible 

light and, if uniformly illuminated, is just a special case of the above. With D very long 

in comparison with wavelength, one would expect an extremely thin pattern in the plane 

x = Q, and this is the case if the light used is coherent (in phase) over the length of the 

slit. In many demonstrations this is not the case, so that there are no appreciable inter- 

ferences and, therefore, no variations in the long y direction, but only over the shorter 

x direction. The degree of coherence of a source is described by a coherence length. 

We are then assuming width of the slit less than this coherence length but length large 

compared with that measure. The resulting radiation intensity can be found as propor- 

tional to |E|* using only the variable x in (2). Since this problem has only two-dimen- 
sional symmetry, it is advantageous to express it in cylindrical coordinates with @ 

measured about the y axis and @ = O along the x axis. Then in the approximation 

x/r ~ cos @, radiation intensity is 

K = af SalalPieos ay 

(ka/2) cos @ 7) 

where A is a constant related to the illumination of the aperture. The resulting pattern 

is shown in Fig. 12.14b. We will return to this point, showing patterns using visible 

light, when we consider multiple slits in Sec. 12.20. 

sin (42 cos a) 

ka 
=~ cos od 

2 

  
  

—27 —1 0 ie OT 

> ka COS @ 

(b) 

Fic. 12.14b Radiation intensity variation in one coordinate for a rectangular aperture.
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Circular Aperture with Uniform Wlumimation In considering the circular ap- 
erture, let us first transform to polar coordinates. Let 

x = r sin @cos 9, y = rsin 6 sin @, x' =r’ cos @’, y' =r’ sin ¢’ 

Then Eq. 12.13(12) becomes 

  jew™ (P77 f° er! si ; Er, @, d) — I | Eq", d’ ei sin Acos(h— G'),.! dr' dd (8) 

r 0 0 A 

If E(r’, d') is independent of ¢', E(r, 6, 6) is independent of @, so we may take @ = 

O and for the @’ integration we may use the integral! 

29 

{ el4 8 # diy = 27J,(q) (9) 
0 

where J,(q) is a zeroth-order Bessel function. Then 

Qnje I" (% 
E(r, 0) = a | E(r')Jo(kr" sin @)r' dr’ (10) 

° 0 

If E(r’) is a constant Ey, Eq. 7.15(20) may be utilized to give 

2aje 5 Jy(ka sin 6) 
BU ) = Bot ea sin 8 (11) 

The magnitude of the last term in E(r, @) is plotted as a function of ka sin 6 in Fig. 

12.14c. The first null is reached at an angle 

. _,/3.83A 0.614 
4 = sin ( J a (12) 
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FiG.12.14¢ Normalized electric field magnitude for circular aperture with uniform illumination 

(solid) and gaussian illumination (dashed). X = ka sin 6 for uniform case and X = kw sin 6 for 
gaussian illumination, with a and w defined in text. 

8 1, S. Gradshteyn and |. M. Ryzhik, Table of Integrals, Series and Products, corrected and 
enlarged edition prepared by A. Jeffrey, 8.411(1), Academic Press, San Diego, CA, 1980.
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Directivity of the circular aperture may be calculated in the same fashion as for the 

rectangular aperture, taking the ratio of power from an isotropic radiator having inten- 

sity the same as that at 6 = 0 to that of the plane-wave power through the actual 

aperture: 

  
_ Gar? /2nQmEga /2ary _ (2a (13) SSalmex Cnaj2m) (AP 

Directivity is thus related to aperture area exactly as for the rectangular aperture in (6). 

Circular Aperture with Gaussian Wlumimation To compare the effects of 

tapered illumination with uniform illumination, we next consider a gaussian distribution 

of field over the circular aperture, 

Er’, 6!) = Ee 0? = Ege 824910" (14) 
but assume that E and H are related as in a plane wave. The quantity w is beam radius 

to the 1/e point in field. We assume that w is small compared with aperture radius a 

so that the latter may be assumed effectively infinite. Since field is a function of r’ only, 

we could use (10) directly, but it is simpler to return to the rectangular form, Eq. 

12.13(12): 

E(x, y, z) = 

  

, ~ jkr - * 4 7 9 4 
JE | | Eye 1 IED OND fay 1) dx' dy’ (15) 

Ar —o J —o 

The imaginary parts of the complex exponentials are odd functions and integrate to 

Zero, SO 

Aje~ kr (@ f™ 1272 kxx' 127.2 ’ 
E(x, y, 2) = | | Bf et /*") cos te le /*) cos a dx' dy' 

r o 0 - r } 

    

  

(16) 

This integral is tabulated'® and gives 

ig — jkr 4 95,95 fo —dkr 99.9 
E (x, y, z) = J Eo aTwe eh Pat + y7 we /4r7) JE Eo arwe en (k“w" sin” 6)/4 (17) 

. 

The angle 6, in the direction where the radiation field is e~' of its value at 6 = 0 is 

2 2 A 
6 = sin~'|—] ~— = — 18 

07 (>) kw tw (18) 

The pattern as a function of kw sin 8 is compared with that for the case of uniform 

illumination in Fig. 12.14c. It is seen that the tapered illumination eliminates the side 

lobes present in the uniformly illuminated example. 

6 |. S. Gradshteyn and |. M. Ryzhik, Table of Integrals, Series and Products, corrected and 
enlarged edition prepared by A. Jeffrey, 3.896(4), Academic Press, San Diego, CA, 1980.
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Practical Parabolic Reflectors The preceding examples give some information 

about the important parabolic reflector with circular aperture. If illumination were uni- 

form, (11) would apply. In general it is not uniform, both because of the practical 

difficulties in making it so and also because decreased illumination near the edge has 

the desirable effect of decreasing side lobes, as illustrated by the gaussian example 

above. For most primary sources at the focus, such as a small horn or dipole radiator, 

there is a difference in illumination of the reflector in two orthogonal planes, resulting 

in a difference of radiation patterns between those planes. Taking into account the above 

practical problems, a typical design value for beam angle between half-power directions, 

for a paraboloid of radius a, is‘’ 

(26y)natt-power ~ (70°)(A/2a) 

12.15 ELECTROMAGNETIC HORNS 

The electromagnetic horns discussed qualitatively in Sec. 12.2 are of interest both as 

directive radiators in themselves and also as feed systems for reflectors or directive lens 

systems. In the horn, there is a gradual flare from the waveguide or transmission line 

to a larger aperture. This large aperture is desired to obtain directivity, and also to 

produce more efficient radiation by providing a better match to space. Usually, a fair 

approximation to aperture field may be made by studying the fields in the feeding system 

and the possible modes in the horn structure. This then makes possible approximate 

radiation calculations starting from these fields, by the methods discussed in preceding 

sections. The idealized examples of Sec. 12.14 give some ideas of the patterns and 

directivity for certain practical cases. In general, however, there is not only a variation 

of fields across the aperture, but also a relation between electric and magnetic fields in 

the aperture somewhat different from that of a plane wave and some effect of currents 

induced on the exterior surfaces or supporting members. 

We consider first the effect of variations across the aperture assuming E and H related 

as in a plane wave and neglecting currents on exterior surfaces and supports. For a 

rectangular horn excited by the TE,, mode of rectangular guide (Fig. 12.15), a reason- 

able approximation to aperture field is 

  

Wx! 
E(x', y') = Ey sin( =) (1) 

Use of Eq. 12.13(12) for the radiation field gives the integral 

— jkr b/2 a/2 arx! 

E(x, y, z) = [ Ey sin( =) elke’ + yy Vr gy! dy! (2) 
—b/2 a/2 

7 R. C. Johnson and H. Jasik (Eds.), Antenna Engineering Handbook, 2nd ed., pp. 1-15, 
McGraw-Hill, New York, 1984.
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  ft 7 
  

Fic. 12.15 Waveguide hom. 

These integrals are standard and yield 

2E,ab e~™" | cos(kax/2r) | sin (kby/2r) 

Ar | 1 — (kax/ary kby/2r 

The dependence on y is of the same form as with the uniform distribution (since E is 

not a function of y), but that for x will be found to be somewhat broader than that of 

Eq. 12.14(2). Directivity for this case is 

_ (4a? /2n)(2Eyab/ mary 4a (3) 

E(x, y, Z) = (3) 

  = 4 
(Ba) mas (E2ab/4n) ’ \ wr 

The quantity 8ab/7* can be considered an equivalent area [by comparing with Eqs. 

12.14(6) or (13)] and is slightly less than the actual area. 

Extension to TE,,,, mode excitation, including allowance for reflection at the aperture, 

is given in the literature.!® 

12.16 RESONANT SLOT ANTENNA 

Another important class of radiators in which the emphasis is on the field in the aperture 

is that of the slot antenna mentioned qualitatively in Sec. 12.2. Let us consider the 

resonant slot antenna (approximately a half-wave long) in an infinite plane conductor,’” 

as shown in Fig. 12.16a. For apertures in perfectly conducting planes, it is only nec- 

8S. Silver, Microwave Antenna Theory and Design, Chap. 10, IEEE Press, Piscataway, NJ, 

1984, 

19 R. E. Collin, Antennas and Radiowave Propagation, Sec. 4.12, McGraw-Hill, New York, 
1985.
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FIG. 12.16a@ Resonant half-wave slot. 

essary to consider the electric field in the aperture to specify completely the boundary 

conditions since tangential E is zero along the conductor and dies off at infinity (see 

uniqueness argument, Sec. 3.14). We will take the electric field in the aperture to be 

uniform in x and to have a half-sine distribution in z with its maximum at the center. 

By reference to Eq. 12.12(2), the magnetic current sheet equivalent to this would be 

found to lie in the z direction and to be equal to E,: 

M, = E, = E,, cos kz (1) 

Since #, is assumed to be zero behind M,, the gap can be considered closed with an 

electric conductor. It is convenient to account for the infinite conductor by replacing it 

with the image of M,. As shown in Prob. 12.16a, M, and its image are in the same 

direction so the value in (1) must be doubled in using free-space field expressions. 

If gap width g is taken as small, the equation for magnetic radiation vector, Eq. 

12.12(8), becomes 

A/4 

L, = | 2gE,, cos kz’ eff?’ cos 9 dy! (2) 
—A/4 

The integral is evaluated to give 

Ask, cos[(7/2) cos 6] L, = 
k sin? @ (3) 

Then, utilizing Eq. 12.12(10), we see that the fields are 

E, = —1Hy = je * gE, {steal cos a 
wr sin 0 

  

(4) 

We should note here that this is of the same form as the expression for fields about a 

half-wave dipole antenna (Sec. 12.5) except for the interchange in electric and magnetic 

fields.
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The power radiated corresponding to (4), assuming radiation only into one side, is 

W = a(gE,,)* | 7 cos’{(m/2) cos 4] 46 

0 sin @ 217 

This may be interpreted in terms of a radiation conductance defined in terms of the 

maximum gap voltage: 

  (5) 

  

(G.) stot = 

2wW I | cos*[(77/2) cos 6] 46 6) 

(gE,,)° 
By comparing with the expression for radiation resistance of the half-wave dipole, Eqs. 

12.7(8) and (9), we find 

TH Jo sin 6 

2(R,) ipole (Geo = a ~ 0.00103 S (7) 

If radiation is to both sides, conductance is double the above value. The reciprocity 

between results for the slot and dipole can also be shown to follow from Babinet’s 

principle,*° which is an extension of the principle of duality discussed in Sec. 9.5. 

For a strip dipole of general shape, and its complementary slot, Booker has shown 

from Babinet’s principle that radiation fields are of the same form but of orthogonal 

polarization. Impedances, if the slot radiates to both sides of the conducting plane, are 

related by 

Zstrip“slot = n’/4 (8) 

A possible means of exciting the slot is shown in Fig. 12.16b. 

  

      
FIG. 12.16b Coaxial-line feed for resonant-slot antenna. 

20 PR. E. Collin, Field Theory of Guided Waves, Sec. 1.8, IEEE Press, Piscataway, NJ, 1990.
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12.17. LENSES FOR DIRECTING RADIATION 

The lenses used in radiating systems, like the parabolic reflector, act to focus the ra- 

diation from primary sources into desired directions. Most lenses are conceived from 

the point of view of geometrical optics, and in this approximation would produce a 

plane-parallel beam of radiation from an ideal point radiator at the focus. The actual 

lens behavior is disturbed from this ideal by the finite character of the primary radiator 

and by diffraction arising from the finite aperture of the lens. The latter effect causes 

the beam to spread in a manner predicted by the aperture analysis of Sec. 12.14. Thus, 

we will leave this aspect of the matter and consider the various first-order designs 

suggested by geometrical optics. 

The most direct conception is that of a primary source placed at the focus of a 

converging lens so that the beam emerges parallel. The technique is well developed at 

optical frequencies, including the coating of the surfaces to eliminate reflections (Ex. 

6.8c). The solid lenses most often used are small enough for convenient handling. The 

use of solid dielectric lenses can be extended to submillimeter and millimeter wave- 

lengths. However, for microwaves the lenses are large and heavy if the aperture is made 

large enough to produce a reasonably narrow beam. Thus one of the two variants to be 

described is commonly used. 

A fairly direct extension of the solid lens concept to microwaves is possible with 

reasonable weights through the use of ‘‘artificial dielectrics.’’ These lenses are made 

of metal spheres, disks, strips, or rods embedded in a light material such as polyfoam.”! 

If the metal particles are small in comparison with wavelength, they act very much as 

individual molecules in a solid dielectric. That is, the metal particles are ‘‘polarized’’ 

by the applied field (Fig. 12.17a), with the positive and negative charges displaced from 

each other. Each particle then acts as a small dipole, contributing to total displacement 

and thus to an effective dielectric constant. In general both electric and magnetic field 

components contribute to the polarization of the metallic particles. In spherical particles, 

for example, the electric and magnetic effects tend to cancel. Particles having the form 

of thin sheets (disks or strips) parallel to the electric and magnetic fields, as in Fig. 

12.2h, have negligible magnetically induced polarization and therefore give a larger n. 

They are also lighter than the other shapes. Kock?! gave a simple formula for disks, 

é& =1t+ 5.3Na°, where a is the disk radius and N is the number per unit volume. 

Values depend, however, upon orientation of the disks with respect to field polarization 

and direction of propagation. Very high values of e, have been obtained but practical 

values are generally only a few times unity.*” Inhomogeneous properties are also pos- 

sible by varying spacing or size of particles; this technique may be used instead of 

shaping to produce focusing action. 

One of the most important lenses that utilizes an inhomogeneous effective dielectric 

21 W. E. Kock, Bell Syst. Tech. J. 27, 58 (1948). 
22 R. E. Collin, Field Theory of Guided Waves, Chap. 12, IEEE Press, Piscataway, NJ, 1990.
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FiG. 12.17 (a) Artificial dielectric lens. (b) Luneberg lens. (c) Practical form of Luneberg lens. 
(d) Metal lens antenna. 

constant is the Luneberg lens.*? This is made in the form of a sphere with effective 
dielectric constant varying with radius as 

e(r) = 2 — (r/a)’, r<a (1) 

Techniques for analyzing rays in inhomogeneous media will be given in Chapter 14. 

Use of these can show that all rays originating from a point on the surface will emerge 

from the other side as a parallel beam in the direction of the diameter through the source 

point (Fig. 12. 17b). This lens is important because small-distance movements of the 

source along the surface can provide substantial angular scanning of the beam. It is 

more practical to have the source point a small distance away from the surface of the 

lens, to use a reflection plane to eliminate half the sphere, and to use steps in effective 

dielectric constant, as illustrated in Fig. 12.17c. A number of variations have been 

utilized.” 

23 R. F, Rinehart, J. Appl. Phys. 19, 860 (1948), 
24 RR. C. Johnson and H, Jasik (Eds.), Antenna Engineering Handbook, 2nd ed., Secs. 16-10 

and 18-2, McGraw-Hill, New York, 1984.
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An interesting and different means of realizing lens-type focusing action is with the 

metal lens antenna** which utilizes sections of parallel-plane waveguides, as illustrated 
in Fig. 12.17d. Polarization is such that the mode between the plates is a TE mode, 

normally with one half-sine variation in field distribution. The ratio of spacing to wave- 

length is such that phase velocity uv, is appreciably greater than that in free space. The 

concept used is one in which all paths from focus to the lens plane yield the same 

phase, 

D 40) _ D@) 4 d(r) 
— + == = —— (2) 

Cc Uy, C Vy 

where vu, is given by Eq. 8.3(18) and r is distance from the axis in cylindrical coordi- 
Pp 

nates. Since the waveguide sections advance rather than delay phase, the outer parts of 

the lens are longer than the center parts for a converging lens, as illustrated in Fig. 

12.17d. Whole wavelengths contribute nothing from the point of view of phase, so 

these may be cut out to save weight, resulting in the final stepped configuration shown 

by the solid lines of the figure. 
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12.18 RADIATION INTENSITY WITH SUPERPOSITION OF EFFECTS 

If there are several complete radiators operating together, currents or fields might be 

assumed over the entire group, and a complete calculation made for potentials or fields 

at any point in the radiation field. If the radiation pattern of the individual elements is 

known, however, some labor may be saved by superposing these with proper attention 

to phase, direction, and magnitude of the fields. This is actually only an extension of 

the procedure we have already used to add up the effects of infinitesimal elements. As 

a practical matter, the synthesis of desired antenna patterns by the addition of individual 

radiators is a most important tool, so that efficient methods for the analysis of arrays 

are essential. A few of these, with examples, are set down in this and several following 

sections. 

The usual problem in array theory is that of identical radiators with similar current 

or field distributioris (although magnitudes and phases of currents or fields in individual 

radiators may differ). The radiation vectors for one of these alone may be calculated as 

No and Lo. (No alone is sufficient if we consider contributions only from electric current 

25 W.E. Kock, Proc, IRE 34, 828 (1946). Also see J. D. Kraus, Antennas, 2nd ed., Sec. 14—4, 

McGraw-Hill, New York, 1988.
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elements.) In adding contributions from the individual radiators for the far-zone field, 

the usual approximation is made in that differences in distances to the individual ra- 

diators need be taken into account only with respect to phase; also, the approximate 

form for distance differences may be calculated by assuming the field point far removed. 

The form of the radiation vectors can be found by evaluating the distance r" from an 
element of radiating current to the field point in terms of the parameters of the array. 

We can see from Fig. 12.18a that for an element on the mth radiator, r” can be expressed 

in terms of the distance r from the arbitrary reference point in the array to the field 

point as 

r' =r — 1 cos w&, — 1 COS WH (1) 

where r,, and yw, locate the nth radiator relative to the reference point and ry and wh 

determine the location of the differential radiating element relative to the reference 

point on the radiator. Since all radiators have the same orientation, rg and Wp apply 

equally to all radiators. Substituting (1) in Eq. 12.4(1), we get the far-field vector 

potential at P for the mth radiator: 

  

| 

nN 

pe ~ Jar they oy! 
A e jkr), cos Wy . J, e Jkrg cos WY dv! 

(2) 
pre Jk 

  

[C,, e jkr;, cos YiNo] 

Aor 

  
Fig. 12.18a@ Array of identical radiators, all with the same orientation.
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where C,, is a complex constant and Nj is the normalized radiation vector for one of 

the identical radiators. Thus, the radiation vector for a system of radiators with electric 

current is 

N = No(Cye¥7i cos + Creltr2c0s #2 +...) (3) 

Likewise, for radiators with magnetic currents, 

L = L,(C,e*7 cos yy Cret*2 cos dz 4...) (4) 

It follows that the total radiation intensity may be written in terms of the radiation 

intensity Kg for one radiator alone: 

K = K,|Cyeics + Cyeltracost + ...f? (5) 

Examples will follow to make the use of these forms more specific. We should note 

one important point, however, that will not be touched on specifically in the examples. 

Mutual couplings between the elements, including effects from the near-zone fields, 

may affect the amount and phase of current that a given array element receives from 

the driving source, so that the excitation problem may become quite difficult. A dis- 

cussion of the coupling problems is given for one type of array in Sec. 12.22. 
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Example 12.18 
ARRAY OF TWO HALF-WAVE DIPOLES 

Consider two half-wave dipoles separated by a quarter-wavelength and fed by currents 

equal in magnitude and 90 degrees out of time phase, as in Fig. 12.18). For a single 

dipole, we have Eq. 12.5(8): 

  

15 _., cos*[(a/2) cos 6] Ky =—P 
og ™ sin? @ 

  -j= | Aas. 
Ie~J2 ~N 

  

FIG. 12.186 Combination of two half-wave dipoles.
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Fig. 12.18¢ Polar plot of relative power intensity radiation for array in Fig. 12.185 in the plane 

6= /2. 

For the two dipoles with the origin as shown in Fig. 12.180, 

T 
ry = 0, ry =, 6, = >” pb, = O 

Using the general formula, Eq. 12.4(15), 

cos yw = sin Ocos @ 

If 

I, = Tew!) 

then (5) gives 

K = K,\1 “+ e (77/2) 9 iC7/2\(sin 8 cos ?)|2 

2 T . 

= 4K, cos" 2 (sin 8 cos @ — » 

A horizontal radiation intensity pattern is plotted in Fig. 12.18c. 
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12.19 LINEAR ARRAYS 

An especially important class of arrays is that in which the elements are arranged along 

a straight line, usually with equal spacing between them, as indicated in Fig. 12.19a. 

Let the line be the z axis, with the basic spacing d and coefficients dp, a,,..., Gy— 

representing the relative currents in elements at z = 0, d,..., (V — 1)d. (Note that 

any of the elements can be missing, in which case the coefficient is zero, so the elements 

need only be of commensurate spacing instead of equal spacing.) If the elements have 

a radiation vector No, Eq. 12.18(3) becomes for this case 

N = Nola +. a, etka cos 6 fone e Ht Ay — eh Dkd cos 8) —_ N,5(4) (1) 

where S(@) may be called the space factor of the array: 

N=1 
S( @) — S a, jnkd cos 8 (2) 

n=Q 

The radiation intensity from Eq. 12.18(5) is then 

Broadside Array If all currents in the linear array are equal in magnitude and phase, 

it is evident from physical reasoning that the contributions to radiation will add in phase 

in the plane perpendicular to the axis of the array (9 = 7/2). For this reason, the array 

is called a broadside array. Moreover, it is evident that, if the total length / = 

(N — 1)d is long compared with wavelength, the phase of contributions from various 

elements will change rapidly as angle is changed slightly from the maximum, so that 

maximum in this case would be expected to be sharp. To see this from (2), let all 

Ay, = Ag: 

N~1 l- eg JNkd cos 8 

— inkd o _ S(0) = dy X eltiters? = ay aes (4) 
n= 

Summation (4) is effected by the rule for a geometric progression. Then 

sin § (Nkd cos @) 

sin 4 (kd cos 6) 

Relation (5) is plotted as a function of kd cos 6 in Fig. 12.19b for N = 10. Note that 

the peak of the main lobe occurs at kd cos @ = 0 (or 0 = 7/2) as expected. The width 

of the main lobe may be described by giving the angles at which radiation goes to zero. 

aaa, 
pd 

FIG. 12.19a@ Coordinate system for a linear array. 

  (5) S| = ao 
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FiG. 12.196 Plot of magnitude of space factor and approximation with 10 elements. @ is kd 
cos @ for a broadside array and kd(1 — cos 6) for an end-fire array. 

If we set these angles as 9 = m/2 + A/2, 

Nkd cos z ch A 
2 2 

A 2A 
A = 2sin7'|—] = — 

Nad l 

The last approximation is for large N. So we see that the beam becomes narrow as //A 

becomes large, as predicted. 

If N is large the denominator of (5) remains small over several of the lobes near the 

main lobe. Over this region it is then a good approximation to set the sine equal to the 

angle in the denominator: 

+297 

(6) 

sin $(Nkd cos @) 

5 Nkd cos 0 
  S| ~ Nag (7) 

    

This approximation is compared as a dotted curve with the accurate curve for N = 10 

in Fig. 12.19b, and is found to agree well over several maxima. Thus, for large N, this 

universal form applies near 6 = 7/2 and the first secondary maximum is observed to 

be about 0.045 of the absolute maximum, or 13.5 dB below. 

The directivity of an array is usually expressed as though the elements were isotropic 

radiators. It is of course modified if actual elements having some directivity are em- 

ployed, but for high-gain arrays, the modification is small. (Note that it is not correct 

to multiply directivity of the array by directivity of a single element.) For the array, 

Aa|S |? 

— max 8 

(Salmax = 57 fz |S sin 0 do (8) 
 



636 Chapter 12 Radiation 

The high-gain broadside array gives most of its contribution to the integal in the de- 

nominator near 6 = 7/2, where the approximate expression (7) applies, 

| 7 2N7a5, | Nia sin? a/2 _ 4N 2a 7 
S|? in@d@ = 7.9 

» ‘SF sin Nkd Jo (a/22 “" Nkd 2 
    

where Nkd is effectively infinite. From (8), 

21 l 
(Sa)max ~ y (arg ‘| (9) 

End-Fire Arrays If the elements of the array are progressively delayed in phase just 

enough to make up for the retardation of the waves, it would be expected that the 

radiation from all elements of the array could be made to add in the direction of the 

array axis. Such an array is called an end-fire array. To accomplish this, let 

a, — aye” ink (10) 

Then in (2), 

N-1 1— e —~iNkd(i — cos 8) 

— ~jnkd(i—cos 6) — 
5 = Ag » € a 1 — e —skd( —cos 9) (11) 

n=0 

  

s| = sin 3[Nkd(1 — cos @)] 2 

sin 4[kd(1 — cos 6)] ° 
  (12) 

By comparison with (5), it is recognized that the plot of Fig. 12.195 made for a broad- 

side array may be utilized for the end-fire array also if the abscissa is interpreted as 

kd(1 — cos 6). The pattern as a function of 6 of course looks different, but the ratio of 

secondary to primary maxima is the same. It may also be shown to follow that the 

formula for directivity (9) applies also to an end-fire array with large //A. To obtain 

the angular width of the main lobe, let A/2 be the angle at which S goes to zero: 

A 
nea 1 — cos *) = 27 

D1 (13) 

A = 2 TL 

Phase Scanning of Arrays By interpretation of the broadside and end-fire ex- 

amples, it is clear that a phase delay between elements somewhere between the extremes 

for the two cases should give a maximum lobe between these extremes. Moreover, if 

this phase delay is controllable by any means (usually with ferrite or semiconductor 

devices), the direction of the lobe can be scanned without physical motion of the an- 

tenna. This may be most important in large installations that must continually scan a 

large range of directions in short times, as in airport surveillance radar.
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Quantitatively, for the linear array, we see the scanning if we allow the phase delay 

to be Ag between elements. Then, replacing (10) for the end fire, 

ay, = Ape dhe (14) 

Following procedures as for (5) or (12), the space factor here is 

sin[(N/2)(kd cos @ — Ag) 
  S| = 15 

Ss sin (kd cos 6 — Ag) “0 (19) 

The direction of the principal maximum is then given by 

kd cos 6,, = Ag (16) 

and so can be varied if Ag is varied. 

This principle can of course be extended to two-dimensional as well as linear arrays, 

although the number of phases to control then increases. 

Unequally Spaced Arrays Although the formulation above has been given only 

for arrays of equal element spacing, unequal spacing of elements provides an additional 

degree of freedom which may sometimes be used to advantage. Unequally spaced arrays 

have been used to give greater gain and lower side lobes than an equally spaced array 

with the same number of elements.7° The amplitude of excitation of the elements may 

be retained more nearly constant in the array of unequal spacing. Analysis can be carried 

out by digital computation once element spacings and excitations are specified. 

12.20 RADIATION FROM DIFFRACTION GRATINGS 

In Sec. 6.10 we saw the basic idea of the diffraction grating, which has become of 

increased importance since coherent light has become available from lasers. Here we 

make use of the array factors developed in Sec. 12.19 to explain the patterns observed 

for diffraction gratings. The grating could take the form of a parallel array of slits of 

the type discussed in Sec. 12.14, with each slit forming a radiation source. For practical 

reasons, these are often engraved lines (“rulings”) on a solid reflector rather than open 

slits, but they act very similarly with regard to radiation pattern. 

Consider first the radiation pattern of two parallel slits, each of width a, illuminated 

in phase, and separated by distance d between central axes. Here we find the pattern in 

the plane normal to the slit axes, so angle 0 is replaced by @ in Eq. 12.19(5) for the 

broadside array and we take N = 2: 

, sin? 3(2kd cos $) |g sy 2 
= 4a? cos?{ — 1 

° sin? 4(kd cos ¢) #0 £08 ees 6] m) 
2 = ISP =a 5   

26D. D. King, R. F. Packard, and R. K. Thomas, IRE Trans. Antennas and Propagation AP-&, 

380 (1960).
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FiG. 12.20q Fraunhofer intensity pattern for two slits compared with that of one of the slits 
alone. Slit width is a and spacing d. 

The radiation intensity is given by Eq. 12.19(3), with Kg representing the radiation 

intensity for a single slit, Eq. 12.14(7). We let 4a3A = B and find 

__,| sin(ka/2 cos @) 2 o{ kd 
K =| ka/2 cos | cos cos #) (2) 

which is shown in Fig. 12.20a for d= 2a. 

Array factors for larger number of radiators have shapes like that in Fig. 12.19b. 

Shown there is a principal maximum with subsidiary maxima (side lobes). If the spacing 

d between slits exceeds one wavelength, there will be repeated principal maxima. Pho- 

tographs of diffraction patterns for different sets of slits are shown in Fig. 12.20b. The 

broad maximum of the single slit is seen with its subsidiary maxima for N = 1. With 

three slits the pattern becomes sharper and the subsidiary maxima may be seen only 

vaguely. In the case of N = 20, the larger number of slits leads to very distinct principal 

maxima and the intensity of the subsidiary maxima is low enough that they do not 

register in the photograph. The clear separation of the lines is of utmost importance in 

the use of diffraction gratings for spectroscopy or other applications where it is desired 

to separate patterns of different frequency. In practical gratings there are hundreds, or 

even thousands, of slits (or rulings) so that the principal maxima are very sharp and the 

subsidiary maxima are very near the principal maxima. 

  

12.21 POLYNOMIAL FORMULATION OF ARRAYS AND LIMITATIONS ON DIRECTIVITY 

Schelkunoff*’ has shown that linear arrays with equal element spacings may be for- 
mulated as polynomials, with useful results obtained by interpretations of the zeros of 

the polynomials in the complex plane. If we define 

C= el¥ = elkd cos @ (1) 

27S. A. Schelkunoff, Bell Syst. Tech. J. 22, 80 (1943).
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Ne=l N=3 N= 20 

FiG. 12.20b Diffraction patterns showing the increased sharpness resulting from increasing the 

number of slits. 

then Eq. 12.19(2) may be written as a polynomial in Z: 

N-I1 

S= > a,g" (2) 
n=0 

Concentration is now on the properties of S in the complex ¢ plane. 

Note first that real 6 corresponds to values of Z on the unit circle with phase angles 

between —kd and kd. All, a part, or none of the N — 1 zeros of S may occur in this 

part of the unit circle. When they do so occur, they correspond to true zeros of the 

pattern, or “cones of silence.” The broadside array, Eq. 12.19(5), has its zeros spread 

out uniformly over the entire unit circle except for the missing one at & = O (Fig. 

12.21a), where the very large main lobe builds up. One approach to the synthesis of 

arrays is then that of positioning zeros on this picture so that they are close together 

where the pattern is to be of small amplitude and farther apart where it is to build up 

to a relatively large value. 

W 
“Visible” 

  

range 

  

(a) (b) 

FiG. 12.21. (a) Location of zeros of polynomial representing a uniform broadside array. 

(b) Positioning of zeros of polynomial to produce a supergain array.
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If we limit ourselves to linear arrays with currents in phase, it can be shown that the 

uniform array (one with all currents of equal amplitude) gives more directivity than 

arrays with nonuniform excitations. Still greater directivities are possible in principle, 

however, if one goes to excitations of other phases. Arrays having more directivity than 

the uniform array are known as supergain arrays. 

In terms of the picture in the ¢ plane, we see that for an element spacing less than a 

half-wavelength (kd = 7) the range of real 0 covers only a part of the unit circle. The 

uniform array, however, has its zeros spread over all the unit circle, so some are “in- 

visible.” Schelkunoff has shown that arbitrarily high directivity for a given antenna 

size is possible in principle by moving the zeros into the range of real 6, properly 

distributed to give the desired directivity (Fig. 12.21). The trouble here is that a mon- 

strous lobe builds up in the “invisible” range from which the zeros have been elimi- 

nated, which might seem to be of no concern but turns out to represent reactive energy 

and so is of importance. It is surprising to find the rapidity with which this limitation 

takes over. For high-gain broadside arrays, no significant increase in gain is possible 

over that of the uniform array before the reactive energy becomes impossibly large.”° 
For end-fire arrays, a modest increase is possible and has been utilized in practice.?? 
Another way of stating this limitation is that currents of the elements become huge for 

a given power radiated and fluctuate in phase from one element to the next so that it 

would be impossible to feed such an array. 

A physical picture is provided by looking at the problem from a wave point of view. 

Imagine that we are attempting to produce a high-gain broadside array with a thin 

pancake pattern near the equator. We may imagine the distant fields (7, and E,) of 

this pattern expanded in a series of the spherically symmetric TM modes of the type 

studied in Sec. 10.7. If the pattern is to be sharp, it is clear that waves of very high 

order are needed to represent this pattern (order of 27r/A for a narrow beam of angle 

A). A study of the Hankel functions shows that these functions change character at a 

radius such that n is of the order kr, becoming rapidly reactive for radii less than this 

value. Hence, the antenna boundary must extend approximately to this radius if exces- 

sive reactive power is to be avoided. That is, 

— ae 3) 

which gives a relation between angle and length equivalent to that for a uniform broad- 

side array, Eq. 12.19(6). The phenomenon is a cutoff of the type found in sectoral horns 

(Sec. 9.4), where it was found that reactive effects caused an effective cutoff when the 

cross section became too small to support the required number of half-wave variations 

in the pattern. The rapidity with which the limitation takes over must again be stressed. 

For an array 50 wavelengths long, a halving in size from that of the uniform array 

would require reactive power 10°° times the radiated power. 

28 LL. J. Chu, J. Appl. Phys. 19 7163 (1948). 
29 W. W. Hansen and J. R. Woodyard, Proc. IRE 26, 333 (1938),
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It should not be inferred from the foregoing discussion that uniform arrays are always 

best. Often the side-lobe level (13.5 dB) is higher than can be tolerated. Side lobes can 

be reduced with a sacrifice in directivity. Dolph*? has given the procedure for finding 

the array of a given number of elements which gives the lowest side lobes for a pre- 

scribed antenna directivity or highest directivity for a prescribed side-lobe level. The 

polynomial S(Z) in (2) has in this case the form of a Chebyshev polynomial. 

]2.22 YAGI-UDA ARRAYS 

One difficulty in using multielement arrays to achieve directivity is the need to provide 

controlled feeds to the various elements. The so-called Yagi—Uda array avoids this 

problem by feeding only one element and having other elements with currents induced 

by the first; correct phasing is achieved by adjusting the size and positions of the other 

elements. 

Consider the situation shown in Fig. 12.22a where there is one driven element and 

one parallel “parasitic” element. The linearity of Maxwell’s equations makes it possible 

to write a set of equations relating the voltages at the center of the antennas to the 

currents at the feed points: 

Vi = 2h + Zyl, 

Vo = Zot, + Lolo 
(1) 

The Z;; are constants that depend upon the lengths /, and /, and the separation d of the 

elements. Using the fact that the voltage at the drive point of element 2 is zero, one 

  
    bey 

|| J 
Fic. 12.22a Driven antenna element with nearby, parallel, parasitic element. 

          

30 C. L. Dolph, Proc. IRE 34, 335 (1946). See also R. E. Collin, Antennas and Radiowave 

Propagation, p. 128, McGraw-Hill, New York, 1985.
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finds from (1) that J, is determined (by induction) by the current /, and the coefficients 

in (1): 

Z 
lh = “Zz I, (2) 

The array factor in Eq. 12.19(2) can be written for this array as 

| lL, 
S(O) = ag + ayettos? = A(1 + 2 eidens ‘ (3) 

1 

Therefore, we see that the pattern depends upon the spacing d and upon the coefficients 

Zy2 and Zo. 

The methods to be studied in Sec. 12.27 can be used to show that the mutual imped- 

ance Z.,, is rather insensitive to the lengths 2/, and 2/, when they are nearly A/2. 

Therefore, the phase of the current /, depends, according to (2), mainly upon the self- 

impedance Z.,, of element 2. The direction of maximum radiation of course depends 

upon relative phases of currents J, and J,. 

If the arrangement is such as to maximize radiation in the —z direction, element 2 

is called a reflector. The maximum directivity is achieved if the spacing d is about 

0.16A. If the driven element has length 2/7, = A/2, the length of the reflector should 

be slightly greater: 0.51 < 21,/A < 0.52. 
If the radiation is maximized in the +z direction, element 2 is called a director. In 

this case, the maximum directivity is achieved with a spacing of about 0.11A. With 

21, = A/2, the director length should be in the range 0.38 < 2/,/A < 0.48, that is, 

somewhat smaller than the driven element. 

The simplest array that is called a Yagi~Uda type has both a reflector and a director. 

The situation is then considerably more complicated because of the interaction of the 

three elements, but the same conclusions as above are roughly applicable. The reflector 

is still larger, and the director smaller, than the driven element. The directivity turns 

out to not depend critically upon the spacings of the director and reflector from the 

driven element. The input impedance is given by 

I I 
Zin = Zo + (2: Lo, + (2) £73 (4) 

- I, l, 

Because of the phasing of the currents, Z,, tends to be low. It can be raised if the driven 

element is made a folded dipole (Sec. 12.11) for which Z,. is four times that of the 

single dipole. 

The addition of other, parallel reflectors has little effect since the field behind the 

first is small, but additional directors can be added advantageously. Typical antennas 

for television reception have several directors and have a radiation pattern as shown in 

Fig. 12.22b. Directivities between 10 and 100 are obtainable depending on the number 

of director dipoles. —
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FiG. 12.226 Intensity pattern of a typical Yagi—Uda-type television receiving antenua, having 

four directors and one reflector. After W. L. Stutzman and G. A. Thiele, Antenna Theory and 
Design. Wiley, New York, 1981. 

12.23 FREQUENCY-INDEPENDENT ANTENNAS: 
LOGARITHMICALLY PERIODIC ARRAYS 

The determining factor for the radiation pattern and the impedance of a lossless antenna 

is the ratio of the dimensions to wavelength. Thus, if an antenna is to be scaled for use 

at another frequency, all dimensions must be multiplied by the ratio of the wavelengths. 

If the structural form of an antenna could be defined such that the multiplication of all 

dimensions by the wavelength ratio for two frequencies would leave the antenna un- 

changed, that antenna would behave identically at the two frequencies. The earliest 

work?! on structures having this property considered an equiangular spiral on either a 

plane or conical surface with arms having the form r = rye??. It is easy to see that a 

magnification of a structure having this form is identical to the original except for a 

rotation (which can be an undesirable feature). Frequency independence assumes the 

unrealizable condition that the spirals start at 7 = O (where the feed must be connected) 

and extend to infinity. Therefore, the properties of such structures are, in practice, only 

approximately frequency independent. A number of derived forms that eliminate some 

of the disadvantages of the equiangular spiral have been studied. 

In this section we concentrate on a more convenient type of (nearly) frequency- 

independent antenna.°” The idealized form is shown in Fig. 12.23a, in which the lo- 

SIV. H. Rumsey, IRE National Convention Record, Part I, 114 (1957). 
32 R. H. DuHamel and G. C. Chadwick, in Antenna Engineering Handbook, (RR. C. Johnson 

and H. Jasik, Eds.), 2nd ed., Chap. 14, McGraw-Hill, New York, 1984.
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FiG. 12.23a Logarithmically periodic antenna array. 

cations of the parallel-wire elements and their lengths increase from one to the next in 

the fixed ratio T: 

Z, = TZy-] 
oi 

L, = Tl 
(1) 

n- | 

If the wavelength is multiplied by 7, then all arm lengths and positions should be 

multiplied by + so that everywhere the ratio of length to wavelength is the same. The 

result is a structure that is identical to the original. Therefore, the single structure appears 

the same at A,, TA,, T7A,, and so on. Expressed in terms of logarithms, 

log A, = log A, + @ — 1) log r (2) 

and correspondingly for frequency, 

log f, = log fy — ( — 1) logt (3) 
The structure is called logarithmically periodic. 

An understanding of the radiation properties can be dided by noting the qualitative 

relationships between three adjacent elements in this antenna and the three-element 

Yagi—Oda array discussed in the preceding section. It is found from detailed calcula- 

tions that maximum radiation along the array occurs when the element has a length of 

about A/2. This could be expected from the fact that the element at.resonance will have 
the maximum current for a given drive voltage. Let us consider the resonant element 

and its two neighbors. We saw in the Yagi—Uda array that the larger acts as a reflector 

and the smaller as a director, with radiation, therefore, toward the small end of the array. 

The input to the transmission line feeding the array is at the small end for a reason 
to be discussed below. By using alternating connections to the line as shown in Fig. 

12.23b, and spacing the elements by one-half the element length at that point in the 

array, the phasing of adjacent elements in the region of maximum radiation is such that 

the current in the n + 1th element leads that in the nth by 7/2 rad. Since the nth
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FIG. 12.236 Manner of connecting antenna elements to the driving transmission line for a 
logarithmically periodic antenna. 

element is resonant (/, = 4/4), the spacing to the n + Ith element is A/4, and its 

radiation in the direction toward the small end of the array is in phase with that from 

the nth element. 

Detailed calculations show that the phase of the transmission-line voltage provided 

to the dipoles advances uniformly away from the feedpoint up to the region of the 

strongly radiating dipoles. The amplitude decays slowly because the short elements are 

radiating inefficiently up to the region of strong radiation. Over a range of a few ele- 

ments, the voltage level drops by a factor of 10 and then slowly decays over the re- 

mainder of the array. The point of maximum radiation moves toward the small end as 

frequency is increased and vice versa. The pattern and input impedance were earlier 

said to repeat at wavelengths 7”A,, and detailed calculations show that there is little 

variation between those wavelengths. Because any real antenna is of limited length and 

there 1s a minimum practical size at the small end, the frequency (or wavelength) range 

of constant pattern and input impedances is limited. Roughly speaking, the range of 

operation is bounded by wavelengths equal to twice the lengths of the dipoles at the 

ends of the array. In fact, since several dipoles are involved in the region of large 

radiation, the bandwidth is somewhat smaller. 

As pointed out above, the need for alternating the dipole connections to the feeding 

transmission line arises because of feeding from the small end of the array. The reason 

for not feeding from the large end is that if the 4/2 resonance for some given frequency 

were near the small end, the power flowing from the large end would have encountered 

dipoles of lengths nA/2, which would radiate and excite the other resonant dipoles 

toward the small end with the result of multiple radiation points. ‘Their locations would 

depend upon frequency so neither the pattern nor the input impedance would remain 

constant.
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12.24 INTEGRATED ANTENNAS 

Antennas made of metal “‘patches’’ which may be placed on dielectrics and fed by 

microstrip or one of the coplanar transmission lines are small, light, and easy to fabri- 

cate. They are especially suitable for use with microwave integrated circuits and so 

may be called integrated antennas. They are also known as patch antennas, and those 

in microstrip form, microstrip antennas. There are many variations described in texts 

and review articles on this subject.2*-°° We will consider here a few simple examples 
which illustrate some of the special features of this class of antennas. 

Simple Microstrip or Patch Anmtenma Figure 12.24a shows a rectangular patch 

placed upon a dielectric with conducting ground plane, excited by an auxiliary micro- 

strip transmission line of much higher characteristic impedance. It is recognized that 

this is the same configuration analyzed in Sec. 10.6 as a resonator. The resonant modes 

were found there, approximately, by considering open-circuit boundary conditions at 

each edge of the patch. Since electric fields are then a maximum at these edges, they 

provide a source of radiation. For use as a resonator, it is generally important to keep 

this radiation small, but it is the desired effect when used as an antenna. To calculate 

the radiation, the electric field at the edges may be represented by magnetic current 

sheets as explained in Sec. 12.12. 

  

  

  

      

  Dielectric 
    
  

  

Ground plane 

(a) (d) 

FiG. 12.24 (a) Rectangular patch antenna in microstrip form. (b) Enlarged view of patch. Dark 
arrows show direction of magnetic currents. 

33D. M. Pozar, Proc. IEEE 80, 79 (1992), 
34K. R. Carver and J. W. Mink, IEEE Trans. Antennas Propagation AP«29, 2 (1981), 
35D. B. Rutledge et al., in Infrared and Millimeter Waves (K. J. Button, Ed.), Vol. 10, Aca- 

demic Press, San Diego, CA, 1983. 

s¢ CC. Balanis, Antenna Theory Analysis and Design, Sec. 11.7, Wiley, New York, 1982,
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Let us consider the simplest mode with no variations in z or y and one half-sine 

variation in x. This is in effect the resonant standing wave of the microstrip transmission 

line formed by the patch, with reflections at the open circuit atx = —a/2 and also at 

the junction with the high impedance line at x = a/2. With neglect of the fringing 

effects at the edges, fields within the dielectric of the patch region may be written 

TTX 
BE, = Eo sin — (1) 

a 

—jEow x H, _ —JFoT cos TX (2) 
WiLa a 

From Eq. 12.12(2), the electric field along the edges may be replaced by magnetic 

current sheets of surface density M, = ~n X E, where n is the outward normal to 

the surface. Thus,n = —X atx = —a/2,X atx = a/2, —jaty = —b/2, and ¥ at 

y = b/2. Surface magnetic currents are then 

My = — Eo at X = +a/2 

| WX 
M,. = —-E jsin— at y = —b/2 (3) 

a 

Tx 
M,, = E, sin — aty = b/2 

a 

Because of the ground plane, there is radiation only in the upper half space, 0 = 4 

<= a/2. The ground plane may be taken care of by imaging, which for the parallel 

magnetic currents doubles their values. The x-directed magnetic currents produce little 

radiation since there are equal and opposite components along the sides as shown in 

Fig. 12.24b. M,, is the same along both sides where it applies, however, so it produces 

the dominant radiation. From Eq. 12.12(8), the magnetic radiation vector L for either 

of the sides, with respect to its center, using r’ = y’, 6’ = 7/2, and ¢’ = 7/2, is 

; —b 

kb 
sin (2 sin 9 sin 6] 

= 4hE, 2 
k sin 8 sin & 

b/2 
L o= h | (—2E el” sin @ sin %) dy! 

/2 (4) 

  

Now, placing the two sides at x = -ta/2 and adding contributions by the array for- 

mulation (Sec. 12.18) with 6’ = 7/2, ¢' = 0, 

Ly — Lyole 484”? sin #6 cos @ 4 eika/2 sin 8 cos $) 

ka , (5) 
= 21,9 Cos > sin 6 cos d
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Fields in the radiation zone may be obtained by using Eqs. 12.12(9) and (10) and 

  

  

  

  

je i + jkr 

Bo = op be = oye fy 008 
, 0= 65 7/2 (6) 

je je i 

E, = ayy e9 Dap L, sin @ cos @ 

From a study of the above expressions, it is found that field is a maximum at 6 = 0 

(normal to the plane) as expected since contributions add in phase in that direction. 

These patches are not very efficient radiators, meaning that Q of the resonant mode 

is relatively high and bandwidth is narrow. Since field strength (6) is proportional to h, 

radiation can be increased by increasing thickness of the dielectric up to the point where 

guided surface modes in the dielectric can be supported, propagating energy away. 

integrated Antennas Without Ground Planes Integrated antennas for use with 

coplanar strip transmission lines or coplanar waveguides are placed upon a dielectric 

which generally does not have a ground plane. The major problem then is that the 

antenna tends to radiate primarily into the dielectric. Radiation may then be taken out 

the back or in other ways extracted from the dielectric but not always conveniently. 

The radiation into the dielectric may be explained in a number of ways. One follows 

from the point of view (Sec. 12.1) that radiation comes about because of phase differ- 

ences at the observation point from different parts of the radiator. These phase differ- 

ences obviously increase with increasing dielectric constant. We shall see this effect 

specifically in the following example. 

Consider the dipole and slot antennas on a dielectric filling the half-space (Figs. 

12.24c and d). The fields from the slot antenna are the simplest to calculate since the 

conducting plane essentially isolates the two half-spaces. Consider an elemental field 

component E.. of a slot of width g radiating into the dielectric. Equivalent magnetic 

current surface density is then 

M = y x XE, = —2E, (7) 

The radiation vector L is then —jE,.g (dz) from which we calculate electric field in the 

radiation zone as 

—je —jkr 

4qr 

  

dE, = keE,dz sin 0 (8) 

Since the field is proportional to k, it increases with dielectric constant as e!/?. This is 

the point made earlier concerning the importance of phase differences over the element. 

Moreover, the Poynting vector is 

py, — EP _ lee (2) 
2 Lu (9)
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E-plane H-plane H-plane E-plane     

  

(c) (d) 

FIG. 12.24 (c) Elementary slot on a dielectric. (d) Elementary dipole on a dielectric. Dots 

indicate metallization. 

So the Poynting vector increases as e*/*. For e, = 4, this produces eight times the 

intensity in the dielectric as compared with that in air. 

For the elemental dipole antenna, the patterns in air and the dielectric are quite 

different in shape. In particular there is a maximum in the H-plane pattern at the critical 

angle and a null in the E-plane pattern at that angle for the dielectric region.** The 

explanation for the sharp maximum and null is most readily given from reciprocity, 

viewing it as a receiving antenna (Prob. 12.30e). Patterns are shown for elemental 

dipoles and slots in Figs. 12.24e and f. 

For both slot and dipole, phase velocity is between that of air and the dielectric, 

approximately the mean of these values, so this must be used in setting resonant lengths. 

Also, the fields of dipole and slot are no longer duals of one another as they would be 

if air or space were on both sides. Booker’s formula Eq. 12.16(8), relating impedances 

holds approximately, however, if mean dielectric constant e,, is used.*> (This applies 
to more generally shaped strips and complementary slots.) 

1p 
Z stripZslot ~ 4 Sc. (10) 

Of the many variations of these integrated-circuit-type antennas, the flared coplanar 

strip version pictured in Fig. 12.27 is analogous to a horn antenna and has broadband 

characteristics. Logarithmically periodic antennas (Sec. 12.23) have also been made on 

dielectrics. Arrays of the elements are important, easily made, and analyzable by stand- 

ard array theory.
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FiG. 12.24 (e) Intensity pattern for elementary slot on dielectric with e, = 4. (f) Corresponding 
pattern for elementary dipole on dielectric. From D. B. Rutledge et al. in /mfrared and Millimeter 
Waves (K. J. Button, Ed.), Vol. 10, Academic Press, San Diego, CA, 1983.
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Field Analysis of Antennas 

12.25 THE ANTENNA AS A BOUNDARY VALUE PROBLEM 

In our discussion of antennas, we have thus far made assumptions about currents along 

conductors or fields in the apertures of the system. This approach has proved useful, 

especially for calculating radiation patterns, directivity, and other aspects of the far- 

zone solution. One would like, however, to check the assumed current or field distri- 

bution and to have better knowledge of the near-zone fields. These last are especially 

important in calculating antenna impedances, or the couplings between nearby radiating 

elements. In principle, one has only to solve Maxwell’s equations subject to boundary 

conditions, much as we did for waveguides and cavity resonators. There are only a few 

shapes for which this has been found possible in analytic form. Powerful numerical 

methods are rapidly extending the classes of antennas for which field and current dis- 

tributions can be found.?’ The analytic solutions for the idealized shapes still provide 

important physical pictures so the boundary value approach to three of these will be 

presented in this and the following section. 

Spherical and Spheroidal Antemmas One straightforward approach is that of 

adding wave solutions to fit the boundary conditions, much as we did in static problems 

and in waveguides. The simplest configuration to illustrate the procedure is the spherical 

one, illustrated in Fig. 12.25a. Although not terribly important in itself, a straightfor- 

ward extension to spheroidal shapes does lead to more practical results. Field solutions 

in spherical coordinates have been given in Sec. 10.7. The antenna shown is excited 

with an azimuthally symmetric FE, at the equator, so the symmetric TM set with Ey, E,, 

and H, is appropriate. We have seen in Sec. 12.3 that the lowest order of these represents 

radiation from an infinitesimal dipole, but now we form a series. From Eqs. 10.7(19), 

using the second Hankel function for the Bessel function in the region extending to 

infinity, 

Hy(r, 0) = > Ayr7!?P\cos AH; (kr) (1) 
n=l 

Eg(r, 8) 

Ge (A 

SH --3Plcos ArH. 9(kr) — nH®@. p(k] (2) 
n=] WE 

If the exact excitation field in the gap were known, the coefficients A,, could be 

determined from the orthogonality relations for associated Legendre polynomials [Eas. 

10.7(14) and (15)]. Then the boundary values at r = a are 

E,(a, 8) = >, b,P}(cos 6) (3) 
n=] 

37 W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, Chap. 7, Wiley, New York, 
198],
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Fig. 12.25a Spherical antenna and possible driving system. 

where 

= yD j E,(a, 6)P\(cos 6) sin 6 dO (4) 

If the conductor is good; E, may be made zero everywhere except in the gap, but field 

is usually not known exactly there. One might assume a form (say a uniform field over 

a finite gap), but for our purposes we take the gap as infinitesimal, given only that the 

integral of field is equal to applied voltage. This is equivalent to assuming an impulse 

or delta function V,d(cos 9) in the gap. Then b,, from (4) is readily obtained, 

_ Qn + IPO), 
7 On(n + 1a 
  (5) 

and by comparison with (2), with r = a, 

A = wea?!*b, 
7 j{kaH@ | j2{ka) — nH 1/2(ka)] 

  (6) 

Substitution of (6) in (1) and (2) gives the complete solution for the fields around 

the sphere. To find input admittance, we first calculate current at the gap from the 

@-directed surface current J,,: 

I = —2naJ6(m/2) = 27aH,(a, 7/2) (7) 

Input admittance is 

= I/Vo = >» Y,, (8) 
n=] 

and with (1), (5), and (6), 

  
. 1 2 2 ~1 y, = 2m@n + WIPOP | ne _ Hn phka) 0) 

n(n + 1)y ka HY 1 jo(ka)
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(PasGS 
FiG. 12.25b Transition from sphere to thin spheroidal wire dipole. 

  

(b) 

It is found that the conductive or real part converges and gives a useful value for this 

antenna shape. The imaginary or susceptive part does not converge however, since 

there is infinite capacitance for the infinitesimal gap. One can make an estimate of the 

finite number of terms to retain for a finite gap size, but in a practical case the connection 

to the feed line has much to do with the actual input capacitance. In any event the 

principles and difficulties of finding exact field solutions are well illustrated by this 

example. 

Stratton and Chu*® used a similar approach but with prolate spheroidal wave func- 
tions for the more practical, spheroidal antennas illustrated in Fig. 12.25b. Several 

features associated with past antenna knowledge are shown by their analysis. Resonance 

(zero reactance) 1s near the half-wave condition, but not exactly there. Resistance at the 

resonant condition is near the 72-Q, value known for filamentary half-wave dipoles (see 

Sec. 12.5). Fatter antennas give broader bandwidth (1.e., less variation of input imped- 

ance about the resonant point). For thin antennas (L/D > 1) the analysis shows current 

distribution well approximated by a sinusoid, as assumed in our earlier calculations for 

wire antennas. 

The Biconical Antenna and Its Extemsioms Another shape for which the bound- 

ary value problem may be formulated in terms of a series of spherical wave solutions 

is that of the biconical antenna used as an example for qualitative discussion in Sec. 

12.1. This has been especially important in giving the picture of the antenna as a 

transducer between waves on the input transmission system and waves in space. Re- 

ferring to Fig. 12.1, the solutions for the exterior region, 1 > /, are of the same form 

as (1) and (2). For the interior region, r < /, the Bessel function selected is J, ,. ; (Ar), 

and a second solution®” for the associated Legendre function is required to satisfy the 

two boundary conditions of EF, = 0 at @ = wand a — w. The continuity condition at 

r = / requires that E, and H, be continuous for # = 6 = mw — Wand E, be zero over 

the conducting caps 0 < 6 < wand 7 — w& < @< a. Tai*? and Smith*! carried out 
the matching exactly for certain angles, but probably most useful are some approximate 

38, A. Stratton and L. J. Chu, J. Appl. Phys. 12, 236, 241 (1941), 
39 The second solution is offen designated Q)(cos 4) but for general angles ws, n is not an 

integer so that P!(— cos @) may then be shown to be a linearly independent second 

solution. See, for example, S. A. Schelkunoff, Proc. IRE 29 493 (1941); S. A. Schelkunoff 

and C. B. Feldman, Proc. IRE 30, 512 (1942). 

40 C.T. Tai, J. Appl. Phys. 20, 1076 (1949), 
41 P. D. Smith, J. Appl. Phys. 19, 77 (1948).
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matchings carried out by Schelkunoff for relatively small-angle cones. One of his meth- 

ods expands the far-zone fields calculated from a sinusoidal distribution of currents 

along the cones in spherical TM modes for the exterior region, then shows that they 

are nearly equal term by term to the modes of the interior region. All these higher-order 

modes, inside and outside, are shown to act exactly as a terminating impedance for the 

TEM mode on the biconical transmission-line system, and this termination may be 

transformed to the source at the origin by transmission-line theory. 

The characteristic impedance and load admittance of the transmission-line repre- 

sentation are, respectively, 

Z, = (2) in co( (10) 

1 co 

Y, = Zz x DinJom+3/KDAS, +3/2(kL) (11) 

where 

_ _30arkl(4m + 3) 

™ (m+ 1I)Qm + 1) 
  (12) 

The input impedance plotted from these expressions as functions of //A show the same 

general features as those given above for the spheroidal antenna (with some differences 

for shape) for lengths 2] ~ A/2, but were also extended to larger values of //A. In the 
vicinity of the antiresonance, 2/ ~ A, input resistance is high (order of thousands of 

ohms) and very sensitive to antenna diameter. 

Schelkunoff extended his point of view to dipole antennas of other shapes by con- 

sidering them to have essentially the same load impedance as the biconical antenna, 

with this impedance transformed to the input by a nonuniform transmission-line theory 

depending upon the configuration of the antenna. In the cylindrical dipole of Fig. 

12.25c, for example, an element at radius r from the origin may be considered a section 

of biconical transmission line with yw ~ a/r. As r varies, Z, varies, but nonuniform 
transmission-line theory may be used to transform Y, of (11) to the input. Curves of 

input resistance and reactance calculated by Schelkunoff in this way are shown in Figs. 

12.25d and e. The values of Z,) shown are the average values over the length of the 

dipole. Note that bandwidth is greater for the fatter antennas (lower Z,). 

  

at of ore 
          

Fic. 12.25¢ Cylindrical dipole interpreted as a nonuniform transmission line.
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FiG. 12.25d Input resistance for cylindrical dipole antenna. From S. A. Schelkunoff, Proc. [RE 

29, 493 (1941). 

The biconical model is also useful in telling something about the current distribution 

along dipole antennas. The current in the dominant TEM wave of the loss-free biconical 

line is exactly sinusoidal, so departures from a sinusoidal distribution are due either to 

losses, the higher-order modes near the end of the antenna, or the perturbations arising 

from nonuniform line effects if the shape is other than biconical. For low-loss, long, 

thin antennas, these effects are small so that the sinusoidal assumptions made earlier 

are reasonable. 

12.26 DIRECT CALCULATION OF INPUT IMPEDANCE FOR WIRE ANTENNAS 

The spheroidal and biconical antennas considered in the preceding section were shown 

to approximate wire antennas in the limit, but it may seem more natural to work with 

a cylindrical structure from the start. Much work has been done on the cylindrical
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FIG. 12.25e Input reactance for cylindrical dipole antenna. From S. A. Schelkunoff, Proc. IRE 
29, 493 (1941). 

configuration,” generally based upon an integral equation approach. We will see how 

this equation is set up and used with approximations to obtain antenna impedance. 

Consider a circular cylindrical radiator of length 2/ and radius a with an infinitesimal 

gap in the center (Fig. 12.26). The cylinder is a perfectly conducting tube with negligibly 

thin walls so end currents can be neglected. The electric field F(z) is zero on the 

surface at 7 = a except in the gap at the center where we assume it can be represented 

by a delta function so that 

l 

— | E_(z)dz =V and E,,(z)=0 for z#0 (1) 
—l 

where V is the applied voltage. Let us construct a surface S just outside the radiator 

and have the current J,.(z) that flows on the surface of the radiator flow, instead, on 

42 For examples: R. S. Elliott, Antenna Theory and Design, Chap. 7, Prentice Hall, Englewood 
Cliffs, NJ, 1981; R. E. Collin, Antennas and Radiowave Propagation, Sec. 2.9, McGraw- 

Hill, New York, 1985; J. D. Kraus, Antennas, 2nd ed., Chap. 10, McGraw-Hill, New York, 
1988; C. Balanis, Antenna Theory Analysis and Design, Chap. 7, Wiley, New York, 1982.
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FiG. 12.26 Circular cylindrical dipole radiator used in calculation of terminal impedance by 
emf method. The spacing between S$ and the cylinder is infinitesimal. 

the surface §. Then the conducting cylinder can be removed and the fields outside S 

are the same as in the original situation. Additionally, we place an arbitrary (but later 

to be specified) current /,(z) along the axis. Since both currents are inside S, we can 

apply the reciprocity theorem quoted in Eq. 11.3(3), 

P(E, x H, — B, x H,)- dS = 0 (2) 
S 

where E., and H, are fields of current J, and fields E, and H, are those of current /,. 

Assuming very small radius a, the fields on the end surfaces of S can be neglected. 

Also making use of symmetry in @, (2) becomes 

l 

| 2T7ra[F (a, 2) 1p g(a, z) ~ E,-(a, 2)H gla, z)] dz = 0 (3) 
—l 

The field H,,(a, z) can be put in terms of current since 

27aH g(a, 2) = 27aJ,.(z) = TAZ) (4) 

Then from (3) with (1) and (4), we get 

! 

271aH, g(a, O)V = — | Ey, Aa, Zl (z) dz (5) 
—! 

Assuming radius a small, we can make the approximation 

277aH, 4(a, 0) ~ 1,(0) (6)
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Since /,(z) is arbitrary, we can take it to be identical with /,(z). Using these arguments 

and dropping the now-superfluous subscripts a, we have 

! 

LO)V = —- | Ea, z)l(z)dz (7) 
—1 

and the induced emf formula for input impedance becomes 

V 1 f' 
z=-Y J | Ea, z)I(z)dz 8 1(0) 70) J, Aa, z)l(z) (8) 

To make use of (8), we first assume a current distribution /(z) and calculate the field 

Ez) that [(z) would produce along the surface of S at r = a and then perform the 

integration. Using the sinusoidal current distribution in Eqs. 12.5(1) that has been shown 

to be reasonably accurate for thin antennas and the retarded potential (Sec. 3.21), the 

electric field FE, along the surface S can be found to be 

; — jkr) ~ jkr — jkr 

k= -] (: +5 —~ 2cos k= (9) 
Zz m . . 

Aq r; rp 
      

a 

where /_, is the peak value of the standing current wave and the other quantities are 

r= (Cd — 2 + ay? 

ro = [I + 2 + ay!” (10) 

r= (@ + 2)? 

Substituting (9) in (8) gives the impedance 
2) 1. _; ep 

I —jkry jkrs wm jkr 

Z = j30( { sin kL — |z)( —— + —— — 2 cos kl — Jaz (11) 
[(0) ~! ry Io r 

      

Equation (11) can be evaluated numerically and/or can be put in terms of tabulated 

functions, sine integrals, Si(x) and modified cosine integrals, Cin(x).*3 The results in- 

dicate that in this approximation the resistive part of Z is independent of radius a but 

the reactance is not. 

The impedance formula (8) can be recast into a form that is stationary with respect 

to the choice of /(z); that is, no first-order error is made in calculation of Z when the 

guess for /(z) contains first-order errors.** 

Study of (8) shows that this analysis is related to the circuit approach of Sec. 4.12, 

and the self-impedance determination is a generalization of the method of calculating 

inductance by considering induced fields from an equivalent current on the axis of the 

wire (Sec. 4.7). 

43 E£. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems, 2nd 
ed., pp. 540-547, Prentice Hall, Englewood Cliffs, NJ, 1968. 

44 R. S. Eliott, Antenna Theory and Design, p. 305, Prentice Hall, Englewood Cliffs, NJ, 1981.



12.27 Mutual Impedance Between Thin Dipoles 659 

12.27 MUTUAL IMPEDANCE BETWEEN THIN DIPOLES 

When arrays of dipoles are used, interactions between them affect the impedances seen 

by the feed system at their drive points. Also, a dipole with a reflector is equivalent to 

a pair of dipoles so the terminal impedance is similarly affected. Circuit equations 

relating terminal voltages and currents can be written for an array of n dipoles: 

Vi = Zyl, + Zilog +--+ + Z), 1, 

V5 = Zy 11; + Loyal bores + Lor! 

(1) 

V, = Lnity + Zyols bor Lan! n 

The input impedance for dipole 1 is 

V. I 
Ze t=Z,+Z.2+°::+Z,7 (2) 

h if if 

In the absence of terminal currents on the other dipoles Z = Z,,, which is usually 

assumed to be the terminal impedance of the isolated dipole calculated in the preceding 

section. (The currents induced on the open-circuited neighboring dipoles produce an 

important reaction on the one excited only if they are extremely close or the length is 

near nA/2.) The off-diagonal terms represent the mutual effects and are called mutual 

impedances. It is further assumed that mutual impedances can be calculated between 

any two of the dipoles with the others open-circuited and not producing significant 

effect on the pair being considered. 

Let us consider two dipoles as shown in Fig. 12.27a where we have made them 

  

  
    
    

l ok 

41h 

Jf 
= 0 

"t h 

LU 
0 7 , | 

LI ~ to 

Ll     
Fic. 12.27a@ Model for mutual impedance calculation for a pair of thin dipoles.



660 Chapter 12 Radiation 

parallel but not necessarily of the same length or having their centers in the same plane. 

The mutual impedance is defined as the ratio of the open-circuit voltage in dipole 1 

produced by a current in dipole 2 to the terminal current of dipole 2: 

_ Vidoc 
12 2 = 50) (3) 

This is recognized as an extension of mutual inductance ideas with retardation included. 

It can be argued from the general reciprocity theorem (see Prob. 12.27) that 

1 a 
Zo = 7, (O10) l, E29 Iy(Z ) dz (A) 

Here /,(z, )is the assumed current distribution in dipole 2 with terminal value /,(0), and 

E'(z,) is the electric field along the surface of dipole 2 that would exist in its absence 
if a current were impressed on dipole 1 with terminal value /,(0). The electric field 

E\(z,) can be expressed by Eq. 12.26(9) with / being /, in the present problem, if we 

make the usual assumption of sinusoidal current distribution for /,. In this case, 

[d? + (h + 2)7]'? 

r= (a2 +a ty - Py? (5) 

r= (a? + (hta + hy? 

r 

where the displacements d and h are shown in Fig. 12.27a. Then making J,(z,) also 

sinusoidal [/,(z,) = I,. sin k(l, — |z>|)] one finds 
. L — jkr — fkr. om Sky j30 [ ear edkr2 es 

Z = +. — 2 kl kl ~— Z9 dz 

12 ~ (Gin Kl, (sin Ky) ( r, ry cos kl, —— } sin K(l, — |z|)azq 
(6) 

A typical result is shown in Fig. 12.276 for two half-wave dipoles with no vertical 

displacement ( = 0) as a function of spacing d. 

It should be noted that the result (6) is not dependent on the radu of the dipoles as 

long as they are small compared with wavelength and, by the same reasoning, the 

dipoles need not be of circular cross section for this result to apply. 

      
—ty 

12.28 NUMERICAL METHODS: THE METHOD:OF MOMENTS 

Numerical methods have become most important for the analysis and design of radiating 

systems, as with other aspects of electromagnetics. Field solutions have been obtained 

by a variety of methods?’ but often only a global quantity, such as antenna impedance, 
is needed. In that case, as explained in Sec. 7.3, the method of moments is the desirable 

approach. We will set down the basis for this method as applied to a long straight
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FiG. 12.27b Real and imaginary parts of mutual impedance between half-wave dipoles with 
zero vertical separation [(1 = O in Fig. 12.27a)] as a function of spacing. From R. S. Elliott, 
Antenna Theory and Design, © 1981, p. 333. Reprinted by permission of Prentice Hall, Engle- 
wood Cliffs, NJ. 

antenna of small radius. Much of this is closely related to the integral equation devel- 

opment of Sec. 12.26. 

We start with the assumption that impressed field E, is known. The scattered field 

E, resulting from the currents on the antenna must then just cancel E, over the surface 

of the conductor, assumed perfectly conducting: 

E,+E,=0  onS (1) 

For the straight antenna, currents and fields are along the wire, so may be treated as 

scalars. If the antenna is thin, current may be taken as on the axis, as in Sec. 12.26. 

The scattered field at z may then be found by integrating contributions from current 

along the antenna: 

L 

E(z) = j I(z')G(z,z')dz' (2) 

G(z,z') is a weighting function, called a Green’s function (Appendix 5), giving the 

contribution to E. at z from current element at z’. Using (1), 

L 

E{z) = — | N(z')G(z,z')dz' (3) 
0
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E, is known but current is unknown, so this is an integral equation for determination 

of I(z). There are several approaches to solving this, but here we expand / in a set of 

basis functions, 

N 

I(z) = LF AZ) (4) 

We next substitute this in (3), multiply by F,,(z), and integrate. 

L N Ll 

| E.(2)F ,(z)dz = — Ss) I, | | F(z')G (z,2')F,,(z)dzdz' (5) 
0 n=] 0-0 

or 

N 

Vin - >» Lam! m (6) 

n=1 

where 

L 

Vn. = | E(z)F,,(z)dz (7) 
0 

Lk 

Zim = 7 | | F (z')G(z,z')F,,(2Z)dz dz’ (8) 
0/0 

Equation (6) may be written as a matrix equation with V,, known, Z,,,, determinable, 

and the set of /,, to be solved for by inverting the matrix. Current is then known and 

may be used for antenna impedance or loss from finite conductivity. The hard part is 

the determination of Z,,,,,. If sinusoidal basis functions are used, Z,,,, becomes the mutual 

impedance between two sinusoidal elements, as in Sec. 12.27. Richmond® made use 
of overlapping sinusoids, dividing the length L into N + 1 segments of length d and 

defining 

sin k (d—|z—z,,,.,)) 

sin kd 
  F(z) = (9) 

These are illustrated in Fig. 12.28 for N = 3, although many more segments would be 

chosen for an accurate solution unless the antenna is very short. Expressions for the 

mutual impedances (8) between the mth and nth sinusoidal element are available in the 

literature, but are complicated enough that computer solution is needed. For relatively 

short antennas, approximations to Z,,,, make the problem tractable by scientific calcu- 

lator.*© Other basis functions have been used, including rectangular and triangular 

pulses.*’ 

45 J. H. Richmond, IEEE Trans. Antennas Propagation AP-78, 694 (1970). 
40 £. H. Newman, IEEE Trans. Educ. 37, 193 (1988). 
47 R. E. Collin, Antennas and Radiowave Propagation, Sec. 2.10, McGraw-Hill, New York, 

1985.
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Fig. 12.28 Straight antenna with overlapping sinusoids as basis functions for numerical 

analysis. 
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Receiving Antennas and Reciprocity 

12.29 A TRANSMITTIING—RECEIVING SYSTEM 

The discussion in previous sections has generally implied that the radiating system was 

to be used as a transmitting antenna, exciting waves in space from some source of high- 

frequency energy. The same devices useful for transmission are also useful for recep- 

tion, and it will be seen that the quantities already calculated (such as the pattern, 

directivity, and input impedance for transmission) are the useful parameters in the 

design of a receiving system also. This might at first seem surprising, since the two 

problems have some noticeable differences. In the transmitting antenna, a generator is 

generally applied at localized terminals, and waves that are set up go out in space 

approximately as spherical wavefronts. In the receiving antenna, a wave coming in from 

a distant transmitter approximates a portion of a uniform plane wave, and so sets up an 

applied electric field on the antenna system quite different from that associated with 

the localized sources in the transmitting case. As a consequence, the induced fields must
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be different so that total field meets the boundary conditions of the antenna, and the 

current distribution in general is different for the same antenna on transmission or 

reception. The currents set up on the receiving antenna system by the plane wave will 

convey useful power to the load (probably through a transmission line or guide), but 

will also produce reradiation or scattering of some of the energy back into space. The 

mechanism of this scattering is exactly the same as that discussed for radiation from a 

transmitting antenna, but the form may be different for a given antenna because of the 

different current distribution. 

Thus, we seem to have somewhat different pictures of the mechanism of transmitting 

and receiving electromagnetic radiation. Reciprocity theorems related to those already 

discussed (Sec. 11.3) provide ties between the two phenomena such as the following: 

1. The antenna pattern for reception is identical to that for transmission. 

2. The input impedance of the antenna on transmission is the internal impedance of 

the equivalent generator representing a receiving system. 

3. An effective area for the receiving antenna can be defined and, by reciprocity, is 

related to the directivity (Sec. 12.6). 

These points will be discussed in this and following sections. An excellent treatment 

in more detail has been given by Silver.*® 

We wish to begin the discussion by considering the transmitting and receiving an- 

tennas with intermediate space (Fig. 12.29a) as a system in which energy is to be 

transferred from the first to the second. We select terminals in the feeding guide where 

voltage and current may be defined in the manner explained in Sec. 11.2, and similarly 

select a reference in the guide from the receiving antenna. The region between, includ- 

ing both antennas, the space, and any intermediate conductors and dielectric (assumed 

linear), may be represented as a two port or transducer as indicated in Fig. 12.29b. 

That is, 

Vi = Zyl, + Zils (1) 

Vo = Lol) + Loar (2) 

The systems discussed in Chapter 11, for which proofs of (1) and (2) were given, 

were assumed to be closed by conducting boundaries, whereas the present system 

extends to infinity. The theorems given there, however, can be extended to regions 

extending to infinity*? because of the manner in which fields die off there. 

2 
ME \ 

[| \ 

FT 

FiG. 12.29a A system of transmitting and receiving antennas. 

  

48S. Silver, Microwave Antenna Theory and Design, Chap. 2, IEEE Press, Piscataway, NJ, 
1984, 

49 W. K. Saunders, Proc. Natl. Acad. Sci. USA 38, 342 (1952).
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FIG. 12.296 Equivalent representation for Fig. 12.29a. 

The present system is specialized in another respect in that the coupling impedance 

Z)> in (1) is very small for a large separation between transmitter and receiver. It may 

then be neglected in (1), and the impedance coefficient Z,, is just the input impedance 

of the transmitting antenna calculated by itself: 

Vi = 2 = Lali (3) 

The coupling term in (2) cannot be neglected, since this coupling is the effect being 

studied. Equation (2), however, can be represented by the usual equivalent circuit of 

Thévenin’s theorem (Prob. 11.2f) in which an equivalent voltage generator /,Z,, is 

connected to the load impedance Z, through an antenna impedance Z,. (which is es- 

sentially the input impedance of antenna 2 if driven as a transmitter). Thus, because of 

the small coupling, the reaction of the receiving antenna on the transmitting antenna 

can be neglected and the equivalent circuit separated as in Fig. 12.29c. 

The equivalent circuit will be discussed again later. For the moment, we shall discuss 

transmission over the system from another point of view. For this purpose, an effective 

area of the receiving antenna is defined so that the useful power removed by the re- 

ceiving antenna is given by this area multiplied by the average Poynting vector (power 

density) in the oncoming wave: 

Ww, = AgP av (4) 

Like directive gain defined previously, A,, is in general a function of direction about 

the antenna and of the condition of match in the guide. When not otherwise specified, 

it will be assumed to be the value for a matched load. The power density at the receiver 

is the power density of an isotropic radiator (W,/47r7) multiplied by directive gain of 

the transmitting antenna in the given direction. Therefore, from (4), 

Ae 
WwW, = W, ta? Sat (3) 

  

    
  

FiG.12.29¢ Approximate equivalent circuit neglecting reaction of receiver back on transmitting 

system.



  

666 Chapter 12 Radiation 

where W, is the power transmitted, r is the distance between transmitter and receiver, 

24 1s the directive gain of the transmitting antenna, and A,, is the effective area of the 

receiving antenna. We will see in Sec. 12.30 that effective area always is related to 

directive gain by the same constant; the constant may be found for any specific antenna 

and any direction and then applied to all other cases. It was seen in Sec. 12.14, for an 

aperture with an area A large enough to ignore source currents on the surfaces sur- 

rounding it, that 

4 
(a)max = — A (6) AZ 

The last term in (6) follows from recognition that the power W, received through a large 

aperture oriented perpendicular to P is P,,, A. Making use of the above-mentioned gen- 

eral applicability of the constant 47r/A, (5) may be written in either of the following 

forms given by Friis.°° Subscripts 7 and ¢ refer to receiving and transmitting antennas, 
respectively: 

ns OT ne 
W.  AX°BaBa _ Aerder 

-_ 2 2.2 (7) W. (477) ‘I 

12.380 RECIPROCITY RELATIONS 

From the equivalent circuit of Fig. 12.29c, we can obtain a different form for the power 

delivered to the receiving antenna. For this purpose, let us assume that there is a con- 

jugate match 

4, = A = Ry — JXp (1) 

which is known to be the condition for maximum power transfer from the equivalent 

generator to the load. The power delivered to the load under this condition is 

Zoi) 
Ww. = 

r 8R5 (2) 

If the transmitting antenna has radiation resistance R,,, transmitted power is 

W, = al Ru (3) 
so 

W, Zo Wipe (4) 
W, 4RaRi 

By comparing (4) with Eq. 12.29(5), we see that 

, RAR A IZ,,/2 = rl 2841 e2 (5) 

Tr 

80H. T. Frils, Proc, IRE 34, 254 (1946).
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If we now reverse the roles of transmitting and receiving antennas, we find for the 

transfer impedance in the reverse direction 

Roky 8a2 Ae 
IZ,.;? = —4 2 = (6) 

71 

By the reciprocity argument of Sec. 11.3 (modified so that it applies to a region ex- 

tending to infinity), Z,. and Z,, are equal, so we conclude 

we oe (7) 
Sd §d2 

The antennas in the foregoing argument were arbitrary, so it follows from (7) that 

the ratio of effective area to directive gain for all antennas is the same. As discussed in 

Sec. 12.29, the constant of proportionality is known from large-aperture theory to be 

\?/4 7. It could also be shown for other specific antennas, such as the Hertzian dipole,>! 

or for the small loop antenna. 

Although, for large apertures effective area equals actual area, this is not true for 

small antennas. In fact, for the Hertzian dipole, we found the directivity to be 1.5, so 

the maximum effective area is 

2 

(Acdmax = == Cédmox = = (for dipole) (8) 
An S17 

which is finite and sizable even though antenna size is infinitesimal. 

Another relation following from reciprocity is that the pattern of a given antenna is 

the same for transmission and reception. This is useful because the pattern may then 

be calculated or measured in the easiest way and then be used for both transmission 

and reception designs. To show this, imagine, as in Fig. 12.30a, that antenna 2 is moved 

about the arc of a circle to measure the pattern of antenna 1. Let 6 = O be the angle 

of maximum response (position a) and angle @ (position b) be a general position. Then, 

if 1 is transmitting and 2 receiving, the power received in position b, as compared with 

position a, by (4) is 

Woy _ lZoile 
— 4 (9) 

Waa IZ F 

If 2 is transmitting and 1 receiving, the powers received for the two positions are related 

by 

ae = eins (10) 

  Because of reciprocity |Z,2|, = |Z,|,. and similarly for b, so the ratios (9) and (10) are 
the same. Thus, the same relative power pattern will be measured with antenna | trans- 

mitting or receiving. The same result can be argued from the arrangement in Fig. 12.30b. 

5! DP. O. North, RCA Rev. 6, 332 (1942),
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FIG. 12.30 Possible system for pattern measurement. 

It is, of course, important to remember that the reciprocity relation may be violated 

if the transmission path contains a medium such as the ionosphere, which may not have 

strictly bilateral properties. It is obvious that frequency must be kept constant when 

receiver and transmitter are interchanged. Also, if there are obstacles or other secondary 

radiators in the field, they must keep their same position relative to the system when 

the interchange is made. (See Prob. 12.30b.) 

12.3] EQUIVALENT CIRCUIT OF THE RECEIVING ANTENNA 

For a study of the circuit problem in matching the antenna to a receiver, the second 

part of the equivalent circuit of Fig. 12.29c is useful and is repeated in Fig. 12.31a. In 

this the internal impedance of the generator Z,. is essentially the input impedance of 

the same antenna if driven at the same terminals: 

Ly © Lig (1) 

This follows by the same argument given for antenna 1 in Sec. 12.29, meaning that 

reaction back through Z,, is negligible when the antenna is driven. 

The voltage generator in Fig. 12.31a is given from Eq. 12.29(2) as /,Z,,, but trans- 

mitter current and transfer impedance are not convenient parameters for most calcula- 

tions, so other forms in terms of the power density of the oncoming wave are preferable. 

By substitution from Eq. 12.29(4) and Eq. 12.30(2), we can find this voltage in terms 

of the average Poynting vector or power density of the oncoming wave P,,, the radiation 

resistance of the receiving antenna R,,, and the effective area A,,. (The effective area
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Va Transducer Zy 

  

      

(a) (b) 

Fig. 12.31 (a) Equivalent circuit of receiving antenna for power transfer calculations. (b) Circuit 
for receiving antenna coupled to the load through a transducer. 

is calculated on the assumption of a matched load, but may be a function of the orien- 

tation of the antenna with respect to the oncoming wave.) 

Va] = [Zo] = (8RAgP,y)'? (2) 

The equivalent circuit is useful, for example, in computing the transfer of power from 

the antenna to the useful load through a transmission line which may have discontin- 
uities, matching sections, or filter elements. All these may be lumped together as a 

transducer, as explained in the preceding chapter (Fig. 12.315), and the problem from 

here on 1s a standard circuit calculation. It must be emphasized, as in any Thévenin 

equivalent circuit, that the equivalent circuit was derived to tell what happens in the 

load under different load conditions, and significance cannot be automatically attached 

to a calculation of power loss in the internal impedance of the equivalent circuit. In the 

present case, it is tempting to interpret this as the power reradiated or scattered by 

currents on the receiving antenna, and one would conclude that as much power is 

scattered under a condition of perfect match as is absorbed in the load. This conclusion 

is not true, except in special cases where the current distribution may be the same for 

reception as for transmission. 

PROBLEMS 

12.3a An inspection of Eqs. 12.3(3) shows that there are in-phase parts other than those 
considered in forming the power flow. Taking into account all terms, show that the 

result (6) is correct for average power radiated. 

12.3b Study the 7 = 2 TM wave and show that it corresponds to a quadrupole field, that is, 
a field from two small current elements at right angles. 

12.3c Show that the fields of Eqs. 12.3(8) are those of a first-order spherical TE wave of 

Sec. 10.7. 

12.3d Plot |H’,| of the Hertzian dipole (appropriately normalized) versus kr for @ = a/2 
and note (approximately) near-zone, far-zone, and transition regions. Do similarly 
for |E,|. 

  

12.3e Compare the near-zone fields of the magnetic dipole with the static fields of Sec. 

2.10, explaining why the factor uz had to be added in applying duality. Check dimen- 

sions of the three equations in Eq. 12.3(8).
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12.3f Compare currents required to radiate 100 W from a Hertzian dipole of length 0.1 

12.3g 

12.4a 

12.4b 

12.4c 

12.4d* 

12.4e 

12.5a* 

12.5b 

12.5¢ 

12.5d 

12.5e* 

12.6a 

12.6b 

wavelength and a current loop of circumference 0.1 wavelength. 

Show that a circularly polarized wave may be formed in the far zone if a Hertzian 

dipole is placed at the center of a small current-carrying loop, the dipole being di- 
rected along the axis of the loop. Give the relation of currents in the dipole and the 

loop. 

Verify the relations of Eq. 12.4(6) as the only field components of H remaining if 

components with higher power of r~! are neglected. 

As in Prob. 12.4a, verify Eqs. 12.4(7). 

Verify Eqs. 12.4(14) and (15). 

For the small loop antenna of radius a < A, assume current distribution uniform 

around the loop, J = o/,. Take the z axis perpendicular to the plane of the loop and 
find A, in the far zone. From this, obtain fields and compare with those of the mag- 
netic dipole of Sec. 12.3. Also calculate radiation intensity and total power radiated. 

A square loop of wire lying in the x—y plane carries uniform current Je/“’. Sides of 
length a are small enough compared with wavelength that each side may be consid- 

ered a current element as in Sec. 12.3. Find fields in the far zones and compare with 

those from a circular loop of the same area, Eq. 12.3(8). 

Although Eq. 12.5(6) may be readily integrated numerically, it can also be evaluated 

in terms of tabulated functions. Let u = cos 6, separate denominator by partial 
fractions, and show that for 7 = 1207, 

W = 30/2 (C + In 2kl — CiQkl) + Hsin 2k/)[Si(4kl) — 2 Si(2K)] 

+ $cos 2k/)[C + In(kl) + Ci(4kl) — 2Ci(2k1)]} 

where 

Xs a ca af 

Six) = | — dx’, Ci) = — | — dx’, C=05772.... 
0 x 

    

Following the procedure in Sec. 12.5, find the far-zone fields and radiated power if 
the antenna is loaded in such a way that current / is substantially constant along the 

antenna, even though &/ is not negligibly small. 

For antennas that are short in comparison with wavelength, and not end-loaded, cur- 
rent distribution is nearly linear from a maximum at the center to zero at the ends. 

For such a short, symmetric dipole, give the mathematical form for current and 
obtain far-zone fields. 

Obtain far-zone fields for a straight antenna with current assumed to have a quadratic 
distribution with z, /(z) = 1,,[1 — (z/1)7]. 

Obtain Eq. 12.5(4) by integrating far-zone contributions to E, from small current ele- 
ments (Hertzian dipoles) along the antenna, assuming current distribution as in (1). 

Make appropriate far-zone approximations. 

Plot polar patterns of field and intensity for a full-wave antenna with 2/ = A. 

How many lobes are there in the pattern for a straight antenna with kl = na, where n 
is an integer? For kl = m7r/2 where m is an odd integer? 

12.6c Find the direction of maximum directive gain and directivity of a dipole of length 
34/2, for which the pattern is pictured in Fig. 12.6b. Use W from Prob. 12.5a.



12.6d 

12.7a 

12.7b 

12.7¢ 

12.7d 

12.9a 

12.9b 

12.9¢ 

12.9d 

12.10a 

12.10b 

12.10c 

Problems 671 

Find the directivity for the antenna with assumed current distribution as in Prob. 
12.5b. 

Compare the currents that would be required in a half-wave dipole and a small dipole 
of height 0.05A to produce 100 W of radiated power from each. For both antennas to 
have the same radiation efficiency, assuming materials with the same surface 
resistivity, what should be the ratio of radii? 

Simpson’s rule is useful for evaluation of radiation integrals. If the area to be evalu- 
ated is divided into 2m even-numbered portions by 2m + 1 lines spaced an equal 
distance A apart, and values of the function at these lines are fg, f;,..., fam41. the 
area under the curve is approximately 

A 

Ps 3 Lo + fam) + ACT + t3 bo + Fam—1) 

+ 2(f2 + fa tote ob Fam—2)] 

Use this to find the radiation resistance of a half-wave dipole, taking m = 3. 
Compare with the value 73.09 Q found by more precise methods. 

Find the expression for radiation resistance of the antenna with assumed current as in 
Prob. 12.5b. Plot versus //A for 0 < //A < 0.2. 

The current in the definition for radiation resistance, Eq. 12.7(1), is sometimes taken 
as maximum current along the antenna rather than input current. This is especially 
useful in estimating current level on the antenna needed for a given power when the 

assumed current distribution has a zero at the input. Calculate and plot R, on both 
bases for 0 = k/ = qr. (This requires numerical integration of Eq. 12.5(6) or tables 
for evaluation of the result of Prob. 12.5a.) 

Prove by a study of the resulting vector potential the same vertical direction, 
opposite horizontal direction rule for image currents given in Sec. 12.8. 

Plot the form of radiation intensity as a function of @ of a wire with traveling wave 
for kl = a, 27, 47. 

For large kl, obtain the value 6,, for maximum radiation from the wire with traveling 
wave and plot versus 47. 

Suppose the traveling wave on the wire has a different phase constant f§ than the free 
space k. Find radiation intensity for this case. For a slow wave on the wire (6 > &) 

describe qualitatively the main effects on the pattern. 

As in Prob, 12.9c, but assume attenuation so that current along the wire is 

Ip exp[—(a@ + jP)z’). 

Show that Eq. 12.10(9) applies to any antenna with horizontal currents distance h 
above perfectly conducting earth. 

Analysis has been given for a V antenna with traveling wave from the vertex of the 
V to the wide end. Show that the same pattern results (for a given k/) if the V is 
reversed in direction, with the traveling waves propagating from the wide end to the 

vertex. 

V antennas may also be made with standing waves in the two arms in place of the 

traveling waves considered in Sec. 12.10. For example, the radiation pattern of the 
dipole of length 3A/2 sketched in Fig. 12.6b has maximum radiation at an angle 42.5 
degrees from the wire axis. If two such wires form a V with angle 85 degrees be- 

tween them, one would then expect maxima in the forward and reverse directions. 

Sketch the expected pattern.
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12.10d For the V antenna with standing waves, it is found that interaction between arms 
modifies the simple superposition assumed in Prob. 12.10c. For 0.5 < //A < 3, an 

empirical formula gives optimum angle 2a = 60(A//) + 38 degrees with resulting 
directivity (24)max = 1-2 + 2.3¢//A) [W. L. Weeks, Antenna Engineering, McGraw- 

Hill, New York, 1968, p. 141]. Plot 2a and (g4)ma, versus //A over the range of 
validity. 

12.11 For the folded dipole pictured in Fig. 12.11b, one obvious mode that might seem to 
be excited is the parallel-wire transmission line mode with equal and opposite cur- 

rents in the parallel conductors. With the length from input terminals to shorted ends 
approximately a quarter-wavelength, estimate the input impedance for such a mode 

and explain why it is not much excited by an input line of a few hundred ohms 

characteristic impedance. 

12.12 Demonstrate that Eqs. 12.12(5) and (6) do satisfy 12.12(3), with A and F satisfying 

inhomogeneous Helmholtz equations. 

12.13a* From Eq. 12.13(2) we see that the elemental plane-wave source is equivalent to 
crossed electric and magnetic infinitesimal dipoles. Superpose directly the far-zone 

fields of these from Sec. 12.3 to obtain Eqs. 12.13(4) and (5). (Note the required 
transformation of coordinates axes for this demonstration.) 

12.13b Suppose E and H in an aperture are not related as in a plane wave, but by a general 
wave impedance Z,,, so that E,/H, = —£,/H, = Z,. Give the modified form of Eq. 
12.13(6). How is the paraxial approximation for apertures, Eq. 12.13(10), modified in 

this case? 

12.14a Analyze the rectangular aperture with uniform illumination without making the par- 
axial approximation (i.e., for @ not necessarily small) and compare with Eq. 12.14(2). 

12.14b Analyze, using the paraxial approximation, the far-zone field from a rectangular 

aperture with no variation in y but a quadratic variation in x: 

Ix\? 

p= 1 - (2) | ~f<x< 
a 2 

12.14¢c In calculating radiated power for the rectangular aperture, we have utilized power 
conservation and found the flow through the aperture. Check this, using approxima- 
tions appropriate to small 6, from the far-zone field, Eq. 12.14(2). 

N
y
a
 

12.14d For the circular aperture with uniform illumination, suppose that all radiation was 
confined to a cone of angle 6 given by Eq. 12.14(12) and was of constant amplitude 

over this cone. Give the directivity and compare with Eq. 12.14(13), explaining the 
difference. 

12.14e For ka = 5 and ka = 10, plot K versus @ for the circular aperture with uniform 
Ulumination. Find beam width and directivity. Comment on the effect of larger ka. 

12.14f* As in Prob. 12.14c, use the far-zone field and paraxial approximations to check 
radiated power from the circular aperture. 

12.14g Find far-zone fields from an “elliptic” gaussian distribution, 

E(t", y!) = Ege 09-0! Pa? 
As in the text, aperture size is large compared with either w, or w5. 

12.14h An annular aperture with uniform plane-wave illumination extends from r’ = b to 
r' = aq. Find angle of the first zero if b/a = 3.
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12.18b 
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12.18d 

12.19a 
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Modify Eq. 12.15(3) to account for a possible reflection coefficient p in the aperture. 
Hint: Refer to Prob. 12.13b. 

Prove that the image of a magnetic current in a perfectly conducting plane requires 
horizontal currents in the same direction for source and image. In what sense is the 
field for the resonant slot the dual of the field for the half-wave dipole? 

For the open end of a coaxial line of radii a and b, set up the problem of determining 
power radiated, assuming the electric field of the TEM mode as the only important 

field in the aperture. Make approximations appropriate to a line small in radius com- 
pared with wavelength, and show that the equivalent radiation resistance referred to 
the open end is 

R = 3m A* In(b/a) | 

2a | a(b? — a’) 

Calculate the value fora = 0.3 cm, b = 1 cm, A = 30 cm. What standing wave 

ratio would this produce in the line? 

In Prob. 12.16b assume the magnetic field of the TEM mode at the open end of suffi- 
cient magnitude to account for the power calculated there. Show that a recalculation 
of power radiated including effects from this magnetic field leads to only a small 

correction to the first calculation. Take radii small compared with wavelength. 

Read one of the references on the Babinet principle and supply the derivation of the 

relation between slot conductance and dipole resistance found in Eq. 12.16(7). 

Utilizing the relation for effective permittivity of disks given in Sec. 12.17, estimate 
the radius of disks and the spacing (assumed uniform) if e, = 1.5 is desired for use 
at a frequency of 10 GHz. 

Utilize Eq. 12.17(2) to solve for d(r) in terms of d(0), D, r, and U,/ c. Plot d(r) versus 

rif d(0) = 0.1 m, D = 1 m, and the waves between plates act as TE, modes with 

A = Q.1 m and plate spacing 0.075 m. Show modified shape if full wavelengths are 
subtracted once d(r) > A. 

Find K and sketch the radiation pattern versus @ at 9 = a/2 if phase is as in the 
Fig. 12.185 but J, = /,/2. 

As in Prob. 12.18a but /, = /, in magnitude and phase. Then repeat for /, = —J,. 

An infinitely long parallel-wire transmission line propagates the TEM mode and 
would not be considered radiating, although one of finite length may. Consider such 

a finite-length line as an array of two wires carrying traveling waves as in Sec. 12.9 
with currents of opposite sign. Take length as / and spacing d and find the expression 
for radiation intensity. Examine the behavior as k/ — ~, 

Consider a radiator with only vertical currents and a radiation intensity K. It is placed 
a distance fh above a plane, perfectly conducting earth. Find an expression for total 
radiation intensity K.- corresponding to Eq. 12.10(9). 

Explain the statement of the text that directivity of an array of elements is not the 

product of array directivity and element directivity. Illustrate with a high-directivity 

array made up of low-directivity elements. 

Considering only the array factor, plot the direction of maximum radiation 6,, for a 
linear array versus the normalized phase delay Ag/kd between elements. What can 

you say about the relative sensitivities of 9,, to changes in Ag for nearly end-fire 
versus nearly broadside arrays?



  

674 Chapter 12 Radiation 

12.20a Sketch patterns similar to Fig. 12.20a ford = 4a, d = 6a. 

12.20b Obtain the expression for K of a diffraction grating with N = 4. Sketch K versus 

12.21a 

12.21b 

12.21c 

12.22a 

12.22b 

12.23a 

12.23b 

12.24 

(ka/2) cos @ with d = 2a and compare with Fig. 12.20a. 

The factored form of the polynomial of Eq. 12.21(2) is 

S= CY — 2)-°- — on-1) 

Find the locations of the zeros of a broadside array with N = 4. 

Consider making a five-element linear array to be “supergain” by choosing 
kd = a/2 and placing the zeros at £ = e*/7/6, e*/7/3, Find the coefficients of the 
resulting polynomial and interpret in terms of required current excitation. 

A potential analog of the linear array problem can be set up and has been utilized in 
array synthesis [T. T. Taylor and J. R. Whinnery, J. Appl. Phys. 22, 19 (1951)] al- 

though numerical methods are now preferable. Show that if the logarithm of the fac- 
tored form of Prob. 12.21a is taken, the result may be interpreted in terms of 

potential and flux about line charges. 

For a three-element Yagi—Uda array with element 1 a passive reflector, element 2 
driven by voltage V,, and element 3 a passive director, write the equivalent of 
Eq. 12.22(1) and solve for /,, /5, /, in terms of V5. 

Estimate the directivity for the array with pattern sketched in Fig. 12.22b, assuming 

for simplicity that the given pattern also applies in planes normal to that shown. 

Sketch a log-periodic array with seven elements, starting with /, = 0.1 m, 
Z) = 0.05 m, and t = 1.1. Using the physical arguments of Sec. 12.23, estimate the 
frequency range over which this might be expected to radiate effectively. 

Design a five-element log-periodic array to operate between frequencies 500 and 800 
MHz. 

A microstrip patch antenna is in the form of a circular disk on dielectric with a 
ground plane. When fed by a coaxial line at the center as shown in Fig. P12.24, an 
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12.27 
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axially symmetric mode, as analyzed in Sec. 9.3, is excited. (Antisymmetric modes 
radiate more strongly but the symmetric mode is simpler to analyze.) For a dielectric 
with e, = 9 and f = 30 GHz, find the radius of the disk for the first symmetric 
resonant mode, neglecting fringing effects. Find the radiation vector L for the air re- 
gion above the disk in terms of the edge field E>, taking the spherical coordinate axis 
as a continuation of the coaxial line axis. Evaluate the integral approximately by 
expanding the exponential in the integral in a power Series. 

The Z, for cylindrical antennas in Figs. 12.25d and e is the average of Z, from 
Eg. 12.25(10), with & = a/r. Show for a cylindrical antenna of length / and radius a 

that this yields 

Z, = 120[In (2!/a) — 1] 

What values of //a correspond with Z) = 1200? Z) = 800? Z) = 500? 

Defining bandwidth as the frequency range for which |Z| < V2Z ins estimate from 
Figs. 12.25d and e the ratio of bandwidths for //A near 0.25, for antennas of 
Zp = 1200 0 and Z, = 500 2. 

Verify Eq. 12.26(9). 

Find the input impedance formula corresponding to Eq. 12.26(11) for a short antenna 
so loaded that the current is uniform along its length. 

An approximate solution of Eq. 12.26(11), valid where 1.3 = kl = 1.7 and 0.0016 = 
a/X = 0.0095, is given by (see Elliott?) 

Z = [122.65 — 204.1k/ + 110(k1)?] 
21 _ i) 20 — 7 cos kl — 162.5 + 140k! — ane? 
a 

Calculate the input impedance for a dipole with kJ = a/2 and a/A = 0.005. 
Compare with the result for the A/2 filamentary dipole. 

  

It can be shown that Eq. 12.26(11) can be integrated with the assumption that a < A 

and a </ to give 

J60 9 
Z>= sin? EI {(4 cos” AN[SCKD)] — [cos 2k/][S(2kD)] 

in“ k 

— [sin 2A/][2C(AI) — CQKI)]} 

where 

7 4 
C(kl) = In — = Cin(2Kl) — 2 Si(2kI) 

a 2 2 

and 

| 
S(kl) = 5 Si(2ki) * Cin(2k!) ~ ka 

Use tables of Si(x) and Cin(x) integrals to calculate the input impedance for a dipole 
with kl = 7/2 and a/A = 0.005 and confirm the result found by the simpler 
formula in Prob. 12.26c. 

Give the proof of Eq. 12.27(4). Use reciprocity as in Sec. 12.26.



  

676 

12.29a 

12.29b 

12.30a 

12.30b 

12.30c 

12.30d 

12.30e 

12.31a 

12.31b 

Chapter 12 Radiation 

Calculate power received corresponding to a transmitted power of 100 W and a 

distance between transmitter and receiver of 10° m under the following conditions: 

(i) Directivity of transmitting antennas = 1.5; effective area of receiver = 0.40 m?. 

(ii) Directivity of both antennas = 2; wavelength = 0.10 m. 

(iii) Effective area of both antennas = 1 m7; wavelength = 0.03 m. 

Synchronous satellites orbit at about 4 X 10* km from the earth. About what diame- 
ter would you need for a uniformly illuminated-circular aperture antenna on such 

a satellite to give full earth coverage if frequency is 7.5 GHz? (Earth radius ~ 
6370 km.) What power would have to be transmitted from the satellite if the earth 
stations have antennas 4 m in diameter and the receivers are capable of responding 
with acceptable error to signals of 10~'° W? Repeat for a satellite with earth cover- 
age reduced to a region of diameter 100 km. 

Calculate the effective area for a half-wave dipole antenna. Compare with that for the 
infinitesimal dipole. 

If the antennas are in free space, the pattern of 1 may be measured, as was described 

in Fig. 12.30a, by moving antenna 2 about the arc of a circle or as in Fig. 12.305 by 
rotating 1 about an axis to give the same relative position. Explain why the same 
results might not be obtained by the two methods if there are fixed obstacles in the 

transmission path. 

For the data of Prob. 12.29a(ii) and the radiation resistance of both antennas equal to 
50 ©, calculate |Z,,|. Now, allowing separation r to vary, find the separation for 
which magnitude of Z,, becomes comparable to real part of Z,,. 

An integrated antenna placed on a dielectric as in Fig. 12.24d is used as a receiving 

antenna. Explain why more signal will be induced in the antenna when irradiated 
from the dielectric region than from air. By reciprocity, this explains why, as a 
transmitting antenna, it radiates more strongly into the dielectric region. 

As in Prob. 12.30d, use the integrated antenna of Fig. 12.24d as a receiving antenna, 

and reciprocity, to explain the special features of Fig. 12.24f at the critical angle. 

To demonstrate that a power calculation in the internal impedance of a Thévenin 
equivalent circuit does not necessarily represent the power lost internally, consider 
the source of constant voltage 100 V coupled to a resistance load of 2 2 through the 

series-parallel resistances shown in Fig. P12.31a. Calculate the actual power lost in 
the generator, and compare with that calculated by taking load current flowing 
through the internal impedance of a Thévenin equivalent circuit. 

12 

AW —   

100V 2 Load = 22 

  

Fic. P12.31a 

An antenna having an input impedance on transmission of 70 + j30 2, is used on 
reception by connecting directly to a 50-O, transmission line which is perfectly 

matched to a pure resistance load. The effective area is 0.40 m*. Find the power 
transfer to the load if the antenna is in a plane wave field of 100 wV/m. Compare 
this with the power that could be obtained with a conjugate match to the antenna 
impedance.



  

13.1. INTRODUCTION 

Materials react to applied electromagnetic fields in a variety of ways including displace- 

ments of both free and bound electrons by electric fields and the orientation of atomic 

moments by magnetic fields. In most cases, these responses can be treated as /inear 

(proportional to the applied fields) over useful ranges of field magnitudes. Often the 

response is independent of the direction of the applied field; the material is called 

isotropic. The responses of these linear, isotropic materials to time-varying fields may 

depend to a significant extent upon the frequency of the fields. The materials considered 

heretofore in this text have been isotropic and linear and we have been able to represent 

them by scalar values of ¢ and yp for analysis at a given frequency. Common dielectrics 

such as glass, fused quartz, and polystyrene and common conductors such as copper, 

aluminum, and brass behave this way in a vast majority of applications. 

Some comment should be made here about terminology. We use the terms dielectric, 

conductor, and magnetic material to indicate the character of the dominant response. 

A study would show that in all solids and liquids the permittivity differs appreciably 

from that of free space as a result of the behavior of the bound electrons in the con- 

stituent atoms. In a conductor, however, the movement of the free electrons in response 

to the electric field produces an electromagnetic response which overwhelms that of the 

bound electrons. Similarly, ferromagnetic materials are mostly rather highly conductive 

but we refer to them as magnetic materials, as that property is the most significant in 

their application. All materials have some response to magnetic fields but, except for 

ferromagnetic and ferrimagnetic types, this is usually small, and differs from py by a 

negligible fraction. 

The first part of the chapter deals with isotropic linear media, giving physical expla- 

nations for the electric and magnetic responses. These are necessarily qualitative or 

semiquantitative and in many cases incomplete, since detailed analysis requires quan- 

tum mechanics. Conductive materials are reasonably well represented by a free-electron 

model; we introduce it as a simple vehicle to show how the complex permittivity comes 

677
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out of first principles. A section is devoted to clarifying the meaning we have given to 

a perfect-conductor and to distinguishing it from a superconductor. 

Important device applications depend upon the nonlinear behavior of certain mate- 

rials. These include conversion of energy from one frequency to another, for example, 

frequency multipliers for the mixing of two signals of different frequencies to give a 

third. The nonlinear, hysteretic behavior and extremely high permeability of ferro- 

magnetic materials significantly determine their use. 

The final portion of the chapter treats anisotropic materials, both from the view of 

the physical sources of the anisotropy and with regard to calculating wave propagation 

in such media. Dielectric crystals with permittivity that depends upon the orientation 

of the electric field can be described succinctly by a so-called dielectric ellipsoid. ‘This 

is introduced, and wave propagation in such crystals is discussed. Ferrites (ferrimagnetic 

solids) and plasmas (ionized gases with equal positive and negative charge densities) 

situated in a steady magnetic field exhibit a type of anisotropy in which characteristic 

propagating waves are circularly polarized. That the behavior depends on the propa- 

gation direction relative to the magnetic field leads to the possibility of nonreciprocal 

microwave and optical devices. 

  

13.2 CHARACTERISTICS OF DIELECTRICS 

In this section we consider linear, isotropic dielectrics to explain the connection between 

microscopic effects and their representation by a permittivity. It is of special importance 

to discuss the frequency dependence of permittivity. We consider here usual dielectrics 

with u = Lo. 

We saw in connection with the Poynting theorem in Sec. 3.12 that currents in phase 

with the electric field (there considered to be conduction currents) lead to an energy- 

loss term. In the general characterization of lossy dielectrics we introduce a complex 

permittivity 

& = e' — je" (1) 

which enters Maxwell’s equations as the current jw(e’ — je”)E, the second term of 

which is in phase with electric field. Both e’ and «” are, in general, functions of fre- 

quency. The various physical phenomena contributing to e’ and e” differ for solids, 

liquids, and gases and are too complicated to summarize here in any detail. Several
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excellent books and survey articles give thorough treatments.'~° Nevertheless, discus- 

sion of some of the properties and the simple models for these help to give insight into 

the most important characteristics. 

It can be shown that, if the atoms or molecules are polarized (or their natural dipole 

moments have a nonzero average alignment), a dipole moment density can be defined 

by 

and that this, neglecting higher-order multipoles, is identical to the so-called 

polarization’ that enters the relation between D and E: 

D = 6 E+ P= ae,(1 + yJE (2) 

The term y, is the dielectric susceptibility and we have assumed that the polarization 

is linearly dependent on the field E. A few dielectrics, such as electrets,® have a per- 

manent polarization, but we are chiefly concerned with dielectrics in which P is induced 

by the applied electric field E and shall consider only these in the following. If there 

are N like molecules per unit volume, the induced polarization may be written 

P = EoX.H = Na-+E,,. = NaygE (3) 

where a, is the molecular polarizability, and g, the ratio between local field E,,.. acting 

on the molecule and the applied field EK. The local field differs from applied field because 

of the effect of surrounding molecules. We also write electric flux density as 

D = cE = e,6,E (4) 

so by comparing with (2) and (3) we may write relative permittivity 

é-= 1l+—~=1+»,X (3) 

C. Kittel, Introduction To Solid State Physics, éth ed., Wiley, New York, 1986. 
N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, New 

York, 1976. 
3B. K. P. Scaife, Principles of Dielectrics, Oxford University Press, Oxford, UK, 1989. 

4 E. D. Palik (Ed.), Handbook of Optical Constants of Solids, Academic Press, Orlando, FL, 

1985, 

5 E. D. Palik (Ed.), Handbook of Optical Constants of Solids ||, Academic Press, Boston, MA, 
1991, 

D, E. Gray (Ed.), American Institute of Physics Handbook, 3rd ed., McGraw-Hill, New York, 
1972, 
Not to be confused with polarization of a wave in the sense of Sec. 6.3, See footnote to 

Sec. 6.3. 
Electrets are readily formed in the laboratory by applying a dc electric field across cer- 
tain types of molfen wax and allowing the resulting dipoles to ‘freeze in’’ as the wax 

solidifies. For a bibliography on electrets see B. Gross, Charge Storage in Solid Dielectrics, 
Elsevier, Amsterdam, 1964. 

Nn
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If the surrounding molecules act in a spherically symmetric fashion on the molecule 

for which E,,,. is being calculated, g can be shown to be (2 + ¢,)/3 and (5) may then 

be written as 

é.-- 1 Nay 

E, + 2 3& 
  (6) 

This expression is known as the Claustus—Mossotti relation or, when frequency effects 

in a+ are included, the Debye equation. It is most accurate for gases but does give 

qualitative behavior for liquids and solids. 

The molecular polarizability a, defined above, has contributions from several dif- 

ferent atomic or molecular effects. One part, called electronic, arises from the shift of 

the electron cloud in each atom relative to its positive nucleus, much as was pictured 

in Sec. 1.3. Another part, called ionic, comes from the displacement of positive and 

negative ions from their neutral positions. Still another part may arise if the individual 

molecules have permanent dipole moments. Application of the electric field tends to 

align these permanent dipoles against the randomizing forces of molecular collision, 

and since random motion is a function of temperature, this last effect is clearly 

temperature dependent. The three effects together constitute the total molecular 

polarizability, 

Ap = a, + a + ay (7) 

where @,, @,, and a, are electronic, ionic, and permanent dipole contributions, 

respectively. 

Frequency Effects In the classical model of the electronic polarization, any dis- 

placement of the charge cloud from its central ion produces a restoring force and its 

interaction with the inertia of the moving charge cloud produces a resonance as in a 

mechanical spring-mass system. Similarly, the displacement of one ion from another 

produces resonances in the ionic polarizability but at lower frequencies than for the 

electronic contribution because of the larger masses in motion. There are also losses or 

damping in each of the resonances, pictured as arising from radiation or interaction 

with other charges. The Lorentz model of an atom in which damping is proportional to 

the velocity of the oscillating charge cloud is expressed by the equation of motion for 

displacement: 

d*r r dr 7. @ 
dr2 + dt + Mor = mM Enoc (8) 

where I’ is a damping constant and ap is related to the restoring force. Assuming the 

field and displacement in phasor form, one finds 

r= —(e/M)E ioc 

(w, — w*) + jol 

  

  (9)
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The electronic polarizability is the ratio of the dipole moment p = —er to the local 

field: 

_ (e*/m) 
— (we — w*) + jol 
  OL 

€ (10) 

We can generalize this to represent all electronic and ionic resonant responses: 

Fj 
“i (ww; — w*) + jol; (11) 

where F, measures the strength of the jth resonance. This has the form of the impedance 

of a paralle! resonant circuit. Real and imaginary parts of the expression contribute to 

e’ and e”, respectively, in a manner shown by the electronic and ionic resonances 

pictured for a hypothetical dielectric in Fig. 13.2a. Near a resonance the lossy part goes 

through a peak. The contribution to e’ from a given resonance, like the reactance of 

the tuned circuit, has peaks of opposite sign on either side of the resonance. 

The dynamic response of the permanent dipole contribution to permittivity is differ- 

ent in that the force opposing complete alignment of the dipoles in the direction of the 

applied field is that from thermal effects. It acts as a viscous force and the dynamic 

response is “overdamped.” The frequency response of such an overdamped system is 

of the form 

2 
Pp 

“1 3k.7T + jor (12) 

g’ Dipolar and related relaxation phenomena 
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FiG. 13.2a@ Frequency response of permittivity and loss factor for a hypothetical dielectric 
showing various contributing phenomena.
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where T is temperature, k, is Boltzmann’s constant, p is the permanent dipole moment, 

and 7 is a relaxation time for the effect (i.e., the time for polarization to fall to 1/e of 

the original value if orienting fields are removed). Dipole contributions are also illus- 

trated for the hypothetical dielectric of Fig. 13.2a and produce smoother decreases in 

€ as one goes through the range wr ~ 1, along with a peak of absorption. The picture 

of dipole orientation and relaxation as given applies best to gases and liquids possessing 

such dipoles, but there are a variety of similar relaxation effects in solids. 

Relation Between Real and Imaginary Parts of Permittivity The analytic 

properties of the complex permittivity defined by (1) provide certain relationships be- 

tween &’(w) and e"(w) so that the frequency behavior of one part is not independent of 

the frequency behavior of the other. These interesting and important relationships, 

known as the Kramers—Kronig relations,’ may be written 

  

2 oo on d 1 

s'(w) = &) + —P | we (ow jaa (13) 
T Jo (w@~ — @*) 

2 ~” t \y d , 

ew) = 22 p | ete) = el do (14) 
T 8) Oo- —- wD 

where P denotes that the principal value of the integral should be taken. They are similar 

to relations between resistance and reactance functions of frequency in circuit theory 

(see Sec. 11.11). 

At optical frequencies it is common to use the index of refraction defined by 

Eq. 6.2(28) rather than permittivity. This also is complex for a material with losses 

(absorption). With w = po, 

n{@) = n(w) — jn,(w) = {[e'(w) — je"(@))/e}'" (15) 

(n, and n; are often listed as n and k, respectively in optical tables but, to avoid confusion 

with wavenumber, we use the self-defining n, for the extinction coefficient k.) 

Values of e'/&, and e"/e' for some representative materials at radio and microwave 
frequencies were given in Table 6.4a. Values of refractive index n, are plotted versus 

wavelength for several optical materials in Fig. 13.256. The imaginary part n, is generally 

small except in or near absorption bands, where it is a strong function of wavelength. 

The references*~ © give curves for numerous niaterials in their absorption regimes. 

13.3 IMPERFECT CONDUCTORS AND SEMICONDUCTORS 

A good conductor was defined in Chapter 3 as one that follows Ohm’s law and for 

which displacement current is negligible compared with conduction current. In that case 

the current and electric field are in phase. There are a number of important materials 

and situations in which the currents can have significant components at phase quadrature 

% J. D, Jackson, Classical Electrodynamics, 2nd ed., p. 311, Wiley, New York, 1975.
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Fic. 13.2b Refractive index versus wavelength for several materials with useful values of 
optical and infrared transparency. Data from American Institute of Physics Handbook.° 

to the electric field. At higher frequencies the displacement current becomes increas- 

ingly important; for example, at microwave frequencies semiconductors can have com- 

parable conduction and displacement currents. Also, at optical frequencies the charge 

motion in metals can give current components both in phase with the electric field and 

at phase quadrature. The latter has the same effect as a displacement current and is 

included in the real part of the permittivity. 

Let us consider a medium consisting of a density n, of free electrons with a back- 

ground of fixed positive ions of the same density. This can be considered to be a model 

of a conductor, semiconductor, or an ionized gas (plasma); only the values of the 

parameters are different. For most cases of interest, the derived complex permittivity 

will be used to study the behavior of TEM or quasi-TEM waves; we will use that fact 

to justify certain simplifications of the analysis. 

The force on charges arising from interactions with the magnetic field in a wave is 

typically several orders of magnitude smaller than the electric forces (Prob. 13.3a), so 

we will neglect the former. In this analysis we bring in the effect of collisions by 

introducing a term representing the resulting average rate of loss of momentum. The 

equation of motion for an average electron is then 

dv 
m— = —eE — mrv (1 

dt ) 

If it is assumed that each collision causes a total loss of momentum of the electron, 

then v is the collision frequency.
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The total time derivative is taken as we move with the particle and must in general 

be written as 

dv _ av | ivdx | avdy , ade = + + 2 
dt dt dxdt dydt dz dt 2) 

To simplify, consider a uniform plane wave propagating in the z direction so that the 

field is transverse and all velocity components are also in transverse directions. Thus 

the last term of (2), which contains the z-directed velocity dz/dt, vanishes. By virtue 

of the assumed uniformity of the fields in the transverse plane, the variations of velocity 

with respect to x and y are zero. Hence the total and partial derivatives with respect to 

time are equal here. Since we are considering the steady-state behavior of the system 

we may let E = Ee/“ and v = ve/®’. Equation (1) may then be arranged to give the 

velocity in terms of the electric field as 

~— eH 
v= — (3) 

nv + Jw) 

The electron density n, is undisturbed by the motions of the electrons since all paths 

lie in the transverse planes and are parallel with each other. Then the convection current 

density is 

j y ne E (4) 
= —nev = ————— 

° mv + ja) 

This can be inserted in Maxwell’s curl equation, V X H = jwe,E + J: 

2 “E 
V XH = jwe,E + ee 

mv + J@) (5) 

2 9d . ne? Nev = jo| (es, - —~—_) - ; —“* _|k 
/ ( ' mv? + =) / amv + = 

where €, is used in the displacement current term to represent the effect of the bound 

electrons of the positive ion background. It is assumed for conductive materials to have 

an insignificant imaginary part of ¢, compared with the effect of J. Separating the real 

and imaginary parts of the right-hand side, we can identify the components of the 

complex permittivity e = «’ — je”. Thus, 

Nee? 
eo 8 (6) 

and 

_ nev 7) 

wmv? + w*) 

Note that n,e”/mv is the low-frequency conductivity o. 

One important application of the above results is to materials with moderate to low 

conductivity (say, o = 1 S/m) such as semiconductors with moderate doping. Then
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for microwave and millimeter-wave frequencies where w* < v?, the second term in (6) 

is negligible and « becomes 

ese J ®) 

which is the form used in Eq. 6.4(11). 

At the other extreme is the ionized gas with very low density and negligible collision 

frequency. In that case we can take €, = ep and ©” = 0 so that 

e= ca - “1) (9) 

where w, is the so-called plasma frequency: 

Op * V eqn (10) 

The physical meaning of the plasma frequency is as follows: if alternate plane layers 

of compression and rarefaction of the electrons in a uniform positive ion background 
were set as initial conditions, the charge would subsequently oscillate at the plasma 
frequency because of the interaction of forces between charges and the inertial effects. 

An immediate observation about the form (9) for permittivity is that it is negative 

for all frequencies below the plasma frequency. Therefore, the intrinsic wave impedance 

7 = V/s is imaginary, so that a wave with w < w, incident from free space on a 

region of ionized gas is reflected. This is also seen from the propagation constant, 

Eq. 6.2(25), which becomes, for the plasma described by (9), 

w 

P= oFuca(1 - =) ql) 

If w < @,, &? is negative so jk = a and B = 0. Then 

  

E, = E,e® + E_e® (42) 

That is, purely attenuated waves exist for w < w,. For frequencies higher than w,, ke 

is positive and unattenuated waves propagate in the gas. The @—6 diagram for TEM 

waves in an ionized gas is shown in Fig. 13.3a. 

The effect described above for a plasma can also be observed in some metals (e.g., 

aluminum and the alkali metals) at optical frequencies. Very high fractional reflection 

is observed for frequencies below the plasma frequency, which is typically between the 

visible and ultraviolet ranges. The effects in metals are actually more complex than the 

simple model above would suggest and a complete treatment requires quantum me- 

chanics. As noted in Eq. 13.2(15), the properties at optical frequencies are usually 

expressed by a complex index of refraction n,. Both parts of n, may vary appreciably 

with frequency, the variation being a characteristic of the particular metal. Curves for 

silver and nickel for a part of the visible and infrared ranges are shown in Fig. 13.3b.
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Fic. 13.3a@ The w—£ diagram for a plane wave propagating through an ionized gas. 
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FiG. 13.36 Real and imaginary parts of refractive index for silver and nickel over a part of the 

optical range. (Data from Handbook of Optical Constants of Solids.*)(Measured values depend 
strongly on surface conditions.) 
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13.4 PERFECT CONDUCTORS AND SUPERCONDUCTORS 

At numerous points in this text—-and very commonly in electromagnetic theory —we 

refer to perfect conductors. Here we wish to comment on what is and what is not meant 

by that term and to see how it relates to superconductors. 

A perfect conductor is usually understood to be a material in which there is no electric 

field at any frequency. Maxwell’s equations ensure that there is then also no time- 

varying magnetic field in the perfect conductor. On the other hand, a truly static mag- 

netic field should be unaffected by conductivity of any value, including infinity. In all 

time-invariant electric problems, the use of the perfect conductor approximation for an 

electrode ensures uniform potential over its surface. This is often an excellent approx- 

imation to a metal electrode even in problems with direct current flowing (e.g., a metal 

electrode on a semiconductor). In rf problems the fields are essentially zero a few skin 

depths inside the surface of a metal electrode. If the spacing between electrodes in the 

system being analyzed is much greater than the skin depth, the perfect conductor as- 

sumption that E = 0 at the surface is a good one for finding field distributions, though 

the penetration of the fields cannot be neglected if losses are to be found. 

The real approximation to the perfect conductor would be a conductor in which the 

collision frequency approaches zero. This was believed to be the correct model for a 

superconductor in the period between its discovery in 1911 by H. Kamerlingh Onnes 

and the experiment by W. Meissner and R. Ochsenfeld in 1933.'° A collisionless con- 
ductor can be modeled as a dense plasma and the results of the preceding section may 

be applied with v = O. For frequencies below the plasma frequency, Eq. 13.3(12) 

indicates that the fields inside the conductor (Fig. 13.4) can exist only near the surface 

where they are excited. This phenomenon is like the skin effect (Sec. 3.16) except that 

here the behavior of the shielding currents is determined by inertia of the electrons 

rather than collisions. For frequencies a factor of about 10 or more below the plasma 

frequency, the attenuation factor a = (un,e*/m) is independent of frequency and has 

values typically on the order of (0.1 um)~! so the interior of bulk samples can be 

considered essentially free of time-varying fields. The results of the plasma wave anal- 

ysis appear to be valid to zero frequency; however, in static fields in the absence of 

collisions, the electrons would be accelerated to infinite velocities and the analysis is 

not applicable. 

Extremely pure crystals of metal can have very low collision frequencies at temper- 

atures near the absolute zero, but such materials are not of much interest in practice 

since it is difficult to construct useful systems of single metal crystals. On the other 

hand, the superconductor is a realizable candidate. The ideal collisionless conductor 

excludes time-varying fields but the experiment of Meissner and Ochsenfeld on a su- 

perconductor showed that constant magnetic fields are also excluded from the interior. 

The London theory (1935) showed that this result would be obtained if 

Vx J = — AB (1) 

10 fT. Van Duzer and C. W. Turner, Principles of Superconductive Devices and Circuits, 
Elsevier, New York, 1981. (To be reissued by Prentice Hall.)
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conductor 

   

  

  
FiG. 13.4 Coordinates for analysis of fields at surface of a half-space of collisionless conductor 
or superconductor. 

where A = n,e?/m at T = 0. Substituting (1) in Maxwell’s curl H equation and 

neglecting displacement current, one finds 

VxVxX B= —pAB (2) 

Using a vector identity and V- B = 0 in (2) yields 

V*B — vAB = 0 (3) 

This can be applied to the fields inside the surface of a superconductor by considering 

a half-space of superconductor filling z = 0 as in Fig. 13.4. We assume that only an x 

component of B exists and it varies only in the z direction. Then (3) becomes 

d*B. B 
> | > = 0 4 

dz~ d? (4) 

where A, = (m/pn,e*)'/? at T = 0 and is called the London penetration depth." The 
solution that remains bounded is 

B, = Byge7*/*t (5) 

which is the same as the form in Eq. 13.3(12). Typical experimentally determined 

penetration depths lie in the range 50—200 nm. An important difference between the 

superconductor and the ideal collisionless conductor is that (5) applies even for static 

magnetic field. 

Since = Lo for almost all superconductive materials the definition of A, is usually given 

in Terms Of po.



13.5 Diamagnetic and Paramagnetic Responses 689 

The phenomena of superconductivity require the materials to be held at temperatures 

approaching the absolute zero.'!° Most superconductors are metallic elements, com- 

pounds, or alloys and make transitions into the superconducting state at critical tem- 

peratures below about 23 K. Niobium has the highest critical temperature (9.2 K) of 

any element, and alloys and compounds of niobium with higher critical temperatures 

are used widely in applications. In 1986, a new family of superconductors based on 

oxides was discovered to have much higher transition temperatures.'* A series of dis- 

coveries in the following 2 years revealed other oxide materials with critical tempera- 

tures as high as 125 K. In contrast to metallic superconductors, the higher-temperature 

oxide superconductors are very anisotropic, with the strongest superconductive behavior 

in planes. When these materials are used in microwave structures, for example, thin- 

film transmission lines (Sec 8.6) or resonators (Sec. 10.6), the planes are formed parallel 

to the surface to facilitate current flow in the required direction. 

The penetration depth in (5) applies for dc magnetic fields, but is also the skin depth 

for electromagnetic waves for frequencies well into the millimeter-wave range. This 

invariance of penetration is responsible for superconductive transmission lines being 

nearly nondispersive. Unlike the ideal collisionless conductor, losses occur in super- 

conductors at nonzero frequencies and nonzero temperatures. These losses occur be- 

cause some of the conduction electrons are not in the superconducting state and the 

penetrating fields can cause them to have dissipative collisions. The losses, however, 

are far smaller than in normal metals such as copper or gold for frequencies throughout 

the microwave range. 

In summary, the commonly used concept of a perfect conductor (KE = 0 inside) is a 

convenient artifice for calculation of the field distributions outside when the actual 

conductor has a field penetration that is small compared with the space between con- 

ductors. This is true for either a highly conductive electrode with a small skin depth or 

a superconductor; however, neither a conductor nor a superconductor has exactly zero 

E inside, near the surface. To find field distributions where the spacing between elec- 

trodes is comparable with or smaller than the depth of field penetration, the latter must 

be taken into account. For example, some parallel-film structures in superconductive 

integrated circuits have insulating spacings that are much smaller than the skin depth, 

sO wave propagation is dominated by the properties of the superconductors. 

13.5 DIAMAGNETIC AND PARAMAGNETIC IRESPONSES 

As noted in Sec. 13.1, all materials have some response to magnetic fields. Except for 

certain categories which we will consider separately (ferromagnetic and ferrimagnetic), 

the magnetic response is very weak. Magnetic response can either decrease or increase 

the flux density for a given H. If B is decreased, the material is said to be diamagnetic; 

if increased, it is called paramagnetic. 

Atoms have a diamagnetic response that arises from changes of the electron orbits 

12 V.Z Kresin and S. A. Wolf, Fundamentals of Superconductivity, Plenum, New York, 1990.
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when the magnetic field is applied. As we saw in our study of Faraday’s law, an electric 

field is produced by a changing magnetic field. That field induces currents which, in 

turn, produce a magnetic field that opposes the change. The response of the electron 

orbits in an atom is of this kind. The effect produces fractional changes of uw from py 

by only 107° to 107°. 
The diamagnetic response is usually obscured in materials having natural net mag- 

netic dipole moment. Such materials give a paramagnetic response which can arise 

from dipole moments in atoms, molecules, crystal defects, and conduction electrons. 

The dipole moments tend to align with the magnetic field but are deflected from com- 

plete alignment by their thermal activity. The fields resulting from the partially aligned 

dipoles add to the applied field. 

If there are induced magnetic dipoles in the atoms or there is a nonzero average 

alignment of natural dipoles, a dipole density can be defined by 

MO tim oi 
Aveo AV (1) 

and this is identical to the so-called magnetization that enters the relation between B 

and H: 

B= uw o(H + M) (2) 

It can be shown! that the magnitude of the magnetization can be expressed in terms 
of the magnetic field H,; acting on the atomic dipoles and the absolute temperature T by 

Mobo; kp 
3 

kel Mo boll; ”) 
M = Nm (cst 

where N is the number of dipoles per unit volume, mp is the natural dipole moment, 

and k, is Boltzmann’s constant. Equation (3) is derived from considerations of the 
statistical distribution of the dipole orientations. The direction of M is parallel with H, 

in materials of this type, and the molecular field H, is negligibly different from the 

macroscopic field. For magnetic fields that are not too strong and temperatures not too 

low, the parentheses in (3) may be approximated by the first term in its series expansion. 

In this case the magnetization is linearly dependent on the applied field: 

  

M = Xn (4) 

and 

_ Neo 

In a variety of materials at room temperature y,, has values on the order of 107°. 

Some of the most important of magnetic properties are those that involve coupling 

effects between atomic magnetic moments; these are discussed in the following section. 

13 Y. R. Reitz and F. J. Milford, Foundations of Electromagnetic Theory, Chap. 11, Addison- 
Wesley, Reading, MA, 1960.
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Nonlinear Isotropic Media 

13.6 MATERIALS WITH RESIDUAL MAGNETIZATION 

If the temperature of a paramagnetic substance is reduced below a certain value, which 

depends on the material, the magnetization M may be sufficient to produce the field 

necessary to hold the dipoles aligned even when the external field is not present. The 

molecular field produced by the magnetization is!° 

H, = «M (1) 

But from Eq. 13.5(3) it is seen that a second relation between H, and M exists. Equating 

M of the two expressions, the conditions for spontaneous magnetization are obtained. 

The temperature below which a material exhibits spontaneous magnetization is called 

its Curie temperature. From experimental knowledge of the Curie temperatures for 

various materials, it has been found that x, the factor measuring the interaction of 

neighboring dipoles, must be on the order of 1000. On the basis of purely magnetic 

interactions, it would be expected to be about one-third, as in the corresponding factor 

for electric dipoles. ‘The values are explained using quantum-mechanical considerations 

on the basis of electric interaction between molecules resulting from distortions of the 

charge distributions in the molecules. In some materials it is energetically favorable for 

dipoles to align parallel to their neighbors; these are called ferromagnetic substances. 

In some other materials it is energetically favorable for neighboring dipoles to assume 

an antiparallel orientation, as indicated in Fig. 13.6a; these are called antiferromagnetic 

substances. In ferrimagnetic materials, also called ferrites, the neighboring dipoles are 

aligned in an antiparallel arrangement but different types of atoms are present and the 

dipoles do not cancel. This is illustrated schematically in Fig. 13.60. 

From the foregoing discussion, one would expect that a single crystal of ferromag- 

netic or ferrite material would act as a permanent magnet with a common alignment of 

molecular dipoles. However, except in the case of very small crystals, it is energetically 

favorable to subdivide into regions, called domains, within which the dipoles are all 

parallel.'* The subdivision is the one that minimizes the total energy of the crystal, 
which includes energy in the walls between domains and stored magnetic energy both 

within and outside the crystal. Figure 13.6c shows a photograph made by a special 

technique that reveals the domains in a single crystal of nickel. Note that the arrows 

indicating the magnetization vectors of the domains tend to cancel each other when 

averaged over the crystal. There are factors such as crystal shape, energetically preferred 

crystal directions, and the magnetic history of the sample that lead to nonzero net 

magnetization. (The existence of domains in thin films in the presence of an applied 

field is exploited for the so-called bubble memory devices for computer memories.'° 

14 C. Kittel, Introduction to Solid State Physics, 6th ed., pp. 448-456, Wiley, New York, 1986. 
1S H. Jouve, Magnetic Bubbles, Academic Press, San Diego, CA, 1987.
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(a) (b) 

FiG. 13.6 (a) Arrangement of dipoles in antiferromagnetic matenal. (6) Unbalanced antiparallel 

dipoles in ferrites. 

Practical materials ordinarily contain large numbers of crystallites with random 

orientations so that the macroscopic effects are isotropic. Within each crystallite 1s a 

domain structure of the type shown in Fig. 13.6c. When a magnetic field is applied, the 

walls of the domains move in such a way as to enlarge those having components of 

their dipole vectors in the direction of the magnetic field. If the magnetic field intensity 

is further increased, the dipole direction for each domain as a whole rotates toward the 

direction of the applied magnetic field. This process is nonlinear in that the magneti- 

zation and hence the flux density B are not simply proportional to the applied field. 

The magnetization tends to lag the field intensity, with the result that the relation be- 

tween B and H has the pattern shown in Fig. 13.6d, which is called a hysteresis loop. 

The linear parts of the loop at high values of magnetic field correspond to the condition 

in which essentially all of the dipole moments are aligned, and AB and AH are therefore 

related by Wy (neglecting diamagnetic effects). 

The processes of wall movement and rotation of the domains require the expenditure 

of energy. The energy required for the traversal of the loop by varying H from a large 

negative value to a large positive value and back again can be found from the expression 

  
FiG. 13.6c Ferromagnetic domains - ‘in’ a single-crystal platelet of nickel. [From C. Kittel.! 

© John Wiley and Sons, 1986, New York: Original photograph from R. W. de Blois, J. Appl. 

Phys. 36, 1647 (1965).] ae 
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Fic. 13.6d Typical hysteretic B~H curve for a ferromagnetic material. 

for the stored magnetic energy, Eq. 2.16(1), repeated here for convenience. The change 

of energy for a differential change dB is 

du, = | H- dB dV (2) 
Vv 

where the integration is over the volume of the material. This differential energy is 

shown as a shaded bar on the hysteresis loop in Fig. 13.6d. When the field is decreased, 

a portion of the energy indicated by the part of the bar outside the loop is returned to 

the field. The result of integrating around the loop is that the total expended energy per 

unit volume is equal to the area of the loop. 

Some important applications of ferromagnetic materials include permanent magnets, 

signal recording tapes and disks, magnetic shielding, and cores for electromagnets, 

transformers, electric motors, and generators. These materials can be roughly divided 

into categories called hard and soft. The designations refer to permanence of magneti- 

zation when the applied field is removed, with hard materials retaining a strong 

magnetization. 

Hard materials generally have a wide, rectangular hysteresis loop. Two important 

points on the hysteresis loop for hard materials are the remanence B, and the coercive 

force H, (see Fig. 13.6d). The remanence is the flux density that remains in the material 

when H is reduced to zero and is the value existing in a permanent magnet. The coercive 

force is the magnetic field that must be applied in the opposite direction to reduce the 

flux density to zero. Its importance lies in the fact that the retention of magnetization 

in the presence of disturbances (thermal, mechanical, etc.) improves with increasing 

coercive force. The properties of some technically important materials for permanent 

magnets are listed in Table 13.6a.'° 

16 A. H. Morrish, The Physical Principles of Magnetism, Robert E. Krieger, Malabar, FL, 1982.
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Table 13.6a 
Hard Magnetic Materials 
  

  

Comment or Remanence B. Coercive Force H. 

Material Percent Composition (T) (A m7!) 

Iron Bonded powder 0.6 0.0765 
Iron—cobalt Bonded powder 1.08 0.0980 

Alnico V 14 Ni, 8 Al, 24 Co, 3 Cu, 51 Fe 1.27 0.0650 
Ticonol II 15 Ni, 7 Al, 34 Co, 4 Cu, 5 Ti, 35 Fe 1.18 0.1315 
  

Soft materials should usually have large saturation induction (B,,, im Fig. 13.6d), 

small coercive force, large initial permeability (dB/dH at B = H = 0), large maximum 

permeability (maximum B/H), and small hysteresis losses. The specific application may 

make some characteristics more important than others; for example, a material to be 

used to shield something from a weak magnetic field would have high initial permea- 

bility as its most important criterion. Properties of some important soft materials are 

listed in Table 13.6b.!©!” When ferromagnetic metals are used in situations where the 
magnetic field is time varying, as in a generator or a transformer, so-called eddy currents 

are induced by electric fields prescribed by Faraday’s law (Sec. 3.2). The currents are 

large because the metals have rather high conductivity; the resulting Joule (J7R) losses 

can be unacceptable. The currents and resulting losses are minimized by making the 

cores laminated with the induced current directions perpendicular to the laminations. 

The losses in metallic ferromagnetic materials become intolerable for radio and micro- 

wave frequencies. Ferrites are important because they typically have very low conduc- 

tivities (<< 10~* S/m). They are used extensively for purposes such as cores in trans- 

formers and filters and antenna rods for frequencies throughout the radio frequency 

ranges.!8 Several microwave applications utilize an anisotropic property of ferrites; 

these are discussed in Sec. 13.15. 

For the materials discussed here, the permeability as defined by u = B/H is nota 

constant. In solving field problems, however, one is often concerned with small vari- 

ations of the field about some large average value. If the variations are small enough, 

any part of the hysteresis loop can be considered a straight line, the slope of which 

depends upon the point on the loop. The slope is called the incremental permeability 

and is the ratio AB/AH. 
An effect similar to that discussed for magnetization is found for electric polarization 

in some materials (e.g., barium titanate). These materials, called ferroelectric because 

their behavior is analogous to that of ferromagnetic materials, exhibit a hysteresis loop 

in the relationship between the flux density D and the electric field E. As in ferro- 

magnetic materials, a domain structure is found in ferroelectric materials. The details 

of the interactions between neighboring dipoles are discussed in texts on solid-state 

physics.!? 

7 R. Boll (Ed.), Soft Magnetic Materials, Heyden, London/Philadelphia/Rheine, 1979. 

18 A. Goldman, Modem Ferrite Technology, Van Nostrand Reinhold, New York, 1990. 
‘9 For example, see C. Kittel.’
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Table 13.65 

  

  

Soft Magnetic Materials 

Comment and Initial Maximum Coercive Saturation 
Percent Permeability Permeability Force x 10* Induction 

Material Composition (Lo (Lr) max (A m7!) (T) 

Iron Commercial (99 Fe) 2 x 10° 6 x 10° 0.9 2.16 
Iron Pure (99.9 Fe) 2.5 x 10¢ 3.5 x 10° 0.01 2.16 

Hypersil 97 Fe, 3 Si 9 x 103 4 x 10° 0.15 2.01 
78 permalloy 78 Ni, 22 Fe 4 x 10° 1 x 10° 0.05 1.05 
Mumetal 18 Fe, 75 Ni, 5 Cu, 2x 104 1x 10° 0.05 0.75 

2 Cr 

Supermalloy 15 Fe, 79 Ni, 5 Mo, 9 x 104 1 x 10° 0.004 0.8 
0.5 Mn 

Cryoperm’ Usable at cryogenic 6.5 X 10° 
temperatures 
  

“Permeability given for T = 4.2 K. See footnote 17. 

13.7. NONLINEAR DIELECTRICS: APPLICATION IN OPTICS 

Most of this text 1s concerned with linear materials. We have, however, seen in the 

preceding section that the nonlinear characteristics of ferromagnetic materials must 

usually be considered. For these, magnetization M is a nonlinear function of magnetic 

field H. The polarization P of dielectrics may similarly become a nonlinear function of 

electric field E for sufficiently high fields. It is less common to have to consider this 

nonlinearity than that of ferromagnetic materials, but there is one area in which it is 

central and has led to a number of useful effects. Because of the high fields of laser 

beams, nonlinearities in the interaction of materials with optical waves have led to both 

useful and undesirable effects. We will use this subject of nonlinear optics to give the 

basis for nonlinear polarization, illustrating with applications to heterodyning and har- 

monic generation. Other important applications such as parametric amplification and 

oscillation and four-wave mixing to produce conjugate waves (which can be used, for 

example, to correct wavefront distortion arising from material inhomogeneities”°) are 

included in some of the special texts on this subject.?!~*? 
A complete theoretical treatment of this subject is complicated by the use, in practice, 

of anisotropic crystals, in which case the material response is in a direction different 

from that of the applied field, and directions of propagation of various components can 

differ. The analysis here avoids those complications while giving the essentials for 

20 A. Yariv, EEE J. Quantum Electronics QE-14, 650 (1978). 
N. Bloembergen, Nonlinear Optics, W. A. Benjamin, New York, 1954. 

22 A. Yariv and P. Yeh, Optical Waves in Crystals, Chap. 12, Wiley, New York, 1984. 
H. A. Haus, Waves and Fields in Optoelectronics, Chap. 13, Prentice Hall, Englewood 

Cliffs, NJ, 1984.
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understanding the most important phenomena. With proper interpretation the analysis 

given below can be adapted to anisotropic crystals. 

In Sec. 13.2, we discussed the Lorentz model for the dynamics of the charge cloud 

in an atom when an oscillating field is applied. For the calculation of the nonlinear 

polarizability or susceptibility, a modified form of the Lorentz equation is used: 

ar 

dt 
  

dr e€ 
+7. Hh + war - &* = a Fioc (1) 

The nonlinearity becomes significant when the field is large enough to make the dis- 

placement r a significant fraction of the radius of the equilibrium electron orbit. Such 

atomic fields are on the order of 3 x 10!° V/m.7* One can begin to observe nonlin- 
earities with fields typically 10~° to 10~* of this value so that the perturbation theo- 
retical approach discussed below can be used to calculate r. 

We will examine a typical case of interest for applications in which the electric field 

is the sum of the fields in several waves of different frequencies EF = E(w,) + E(@,) 

+ ---+, It is possible to work through the algebra for this case to find expressions for 

the frequency dependences of the nonlinear polarizations of various orders. The total 

polarization can be written as 

P=P,+P,+-::: (2) 

where 

P. = —Ner; (3) 
I 

in which N is the volume density of atoms, e is the electronic charge, and the displace- 

ments 7; are related to the total electric field by 

r, = a(gEy (4) 
where g is the factor relating the macroscopic field to that acting on the atom. Then the 

total polarization is 

P (—Nea,g)E + (—Neang*)E> + --- 
oes (5) 

= 8X + ex PE? + 
The coefficients a; and, therefore, the susceptibilities y“? are frequency dependent. For 

example, the form of the frequency dependence of a, was given in Eq. 13.2(9). The 

frequency dependences in the higher-order terms are quite complicated when E is the 

sum of the fields of several frequencies. 

When all frequencies of applied fields are in the optical transmission region of a 

crystal, it is a good approximation to neglect the frequency dependence of the suscep- 

tibility y. The examples treated here need only y®, so that P3, P,, and so on, may 
be neglected. Others of the useful processes depend upon y°, for example, soliton 

transmission in fibers, which will be discussed in Chapter 14. For materials having 

24 N. Bloembergen, Nonlinear Optics, p. 7. W. A. Benjamin, New York, 1954,
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inversion symmetry, including isotropic materials, the lowest nonlinear susceptibility 

is ¥. 
For materials in which P, is the dominant nonlinear polarization, 

Py = PE? = 2e dk? (6) 

where d = y©/2 is a common notation for such materials. Let us find the nonlinear 
polarization when two plane waves with parallel propagation and different frequencies 

coexist in such a crystal. We write the two waves as”> 

(7) 
EA(z, t) — Ee COS( Wf — kz) 

The electric field in (6) is the sum of the fields of the two waves in (7); making the 

substitution gives 

Py = 2egd[E? cos*(w,t — kz) + E% cos*(wot — k5z) 

+ 2E,E, cos(w,t — k,z) cos(w,t — k2z)] (8) 

Use of trigonometric identities on (8) reveals that it contains components at several 

different frequencies. There are components at the second harmonic of the two applied 

frequencies: 

Py, = d&égE{ cos[2(a@t —k,z)] (9) 

Py,, = d&gE3 cos[2(wat — kz)] (10) 

Also, there are components at the sum and difference frequencies, 

Putas = 2 GEgE,E, cos|(@, + w)t — (k, + y)z] (11) 

Py —o, = 2 G€gE,E, cos[(w, — @,)f — (ky — ky)z] (12) 

and a time-independent term. 

To further complicate matters, F,, E,, and P may not be in the same direction, in 

which case the constant d depends upon the relative directions. Moreover, the direction 

of propagation (z direction) is not necessarily along a crystal axis. All of these com- 

plications must be taken into account when choosing a crystal for harmonic generation 

or frequency shifting. 

It is of use to visualize the polarization for a simple case. Consider the situation 

where EF, = 0; only the constant polarization and that at 2w, remain from the nonlinear 

terms. Figure 13.7 shows the spatial variation of the applied field and the polarization 

at 2w,. The polarization has a phase constant of 2k,. For all parts of this pattern of 

dipoles to produce fields that add constructively, the phase constant of these fields, 

k(2m,) = 2k(w,) = 2n(w,)@,/c. Since k(2w,) = n(2w,)2w,/c, 

n(2w,) = n(@,) (13) 

25 Note that if complex phasors are used, full equivalence to (7) must be included, E,e/“" 

+ E;e7/*t since real and imaginary parts do not remain separated in nonlinear prob- 

lems, See Appendix 4.
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Fic. 13.7. Nonlinear polarization resulting from a single applied electric field of wave num- 
ber k). 

The same phase synchronism condition is true for the other components when both 

sources are present. For example, for P,,,_ ,,,, the phase constant of the polarization is 

k, — k,. Then for there to be constructive interference so that a net output is created, 

the index of refraction at w, — mw, must equal that at @,: 

n(@, — @) = n(@,) (14) 

The technique for getting contributions to add constructively is called phase matching; 

it requires control of the index of refraction at the frequencies of the fields involved in 

generating a particular polarization component and at the frequency of the polarization 

source term. It is generally possible to do this with only one nonlinear interaction 

process at a time. Techniques for accomplishing this include temperature control and 

crystal orientation. 

Two important applications are illustrated by the components discussed above. Ef- 

ficient generation of the second harmonic makes possible signal sources in frequency 

ranges not otherwise accessible. For example, useful amounts of light at Ag = 0.53 wm 

can be generated by focusing an intense laser beam from a Nd°?*:YAG laser at Ay = 
1.06 4m on a crystal of BaNaNb.O,,, which has a relatively large value of the constant 

d. Also, nonlinear polarization can be used to frequency-shift a signal say, at w; to a 

frequency for which more convenient detectors may be available. Suitable choice of w, 

can give the desired difference frequency component at w, = w3; — @). 

Power in nonlinear effects of this kind (lossless) is governed by the important 

Manley—Rowe relations.”° The changes in power AW,, in the various components are 
related by 

AWr _ AWr. AWrs 45) 
@) W @3 

where @3 = @, + W,. For example, these show that in the sum-frequency generation, 

the two source waves at @, and w, lose power to the sum in amounts related to their 

relative frequencies. 

26 A. Yariv, Quantum Electronics, 3rd ed., Sec. 17.0, Wiley, New York, 1989.
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Anisotropic Media 

13.8 REPRESENTATION OF ANISOTROPIC DIELECTRIC CRYSTALS 

The materials studied up to this point have been representable by scalar permittivities 

and permeabilities, which may be frequency dependent and nonlinear. In a number of 

technically important materials, responses to fields with different orientations can differ; 

that is, they are anisotropic. This anisotropy may be in the response either to the electric 

field or to the magnetic field. In the former case, the permittivity must be represented 

by a matrix, an array of nine scalar quantities that may be frequency-dependent and/or 

nonlinear. The anisotropy in the magnetic field response is represented by a matrix 

permeability.?’ It is rare that both the permeability and the permittivity are significantly 
anisotropic and we will not consider that possibility here.?® We first treat anisotropic 

dielectric crystals, then ferrites and plasmas having anisotropy caused by the application 

of a constant magnetic field. In addition to analyzing the representation of these ani- 

sotropic materials, we investigate the types of waves that can exist in the various media 

and comment on applications. 

The relation between D and E for an anisotropic dielectric is given by” 

D.. = & 7 + € l of) +e 1 3, 

D = E5,E,. + Eqoky, + E53. (1) 

dD, = E3,F,. + Esk, + E33. 

or, in matrix form, 

dD, Er, &y2 -€43 || Fy 

Dy | = | 2; &22  &93 || Fy (2) 

D, £3, &32 &33 || &, 

or, still more compactly, 

[D] = [eJ[E] (3) 

27 It is sometimes convenient to use either tensor or dyadic representation for the aniso- 
tropic permittivity and permeability, for example, in equations involving curl operators. 

For an introduction to dyadic notation, see R. E. Collin, Field Theory of Gulded Waves, 

2nd ed., pp. 801-803, IEEE Press, Piscataway, NJ, 1991, and for tensors see J. A. Siration, 
Electromagnetic Theory, Sec. 1.20, McGraw-Hill, New York, 1941. For our purposes, the 

more common matrix representation suffices. 
A treatment of the case where both permittivity and permeability are significantly ani- 
sotropic, as occurs in yttrium—iron—garnet (YIG) at infrared frequencies, is given by E. E. 

Bergmann, Bell System Tech. J. 617, 935 (1983). 

29 More details may be found in M. Born and E. Wolf, Principles of Optics, 6th ed., Chap. 
XIV, Pergamon Press, New York, 1980. See also A. Yariv and P. Yeh, Optical Waves in 

Crystals, Chaps. 4 and 5, Wiley, New York, 1984; and H. A. Haus, Waves and Fields in 

Optoelectronics, Chap. 11, Prentice Hall, Englewood Cliffs, NJ, 1984, 

28
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It can be shown that for physically real materials, the permittivity operator (repre- 

sented here by a matrix) is Hermitian, a property defined by 

6, = ej (4) 

We will first consider loss-free crystals so (4) implies real and symmetric matrices.*° 
It is a property of symmetric matrices that they can be diagonalized by a rotation of 

coordinates so that (1) reduces to 

D. = €, 5 Dy = En by, D, = &33E, _ @) x y 

where €,,, &55, and &3, are called the principal permittivities. The properties of the 

matrix can be studied with no loss of generality and with considerable algebraic sim- 

plification by using the principal coordinates, in which the matrix is diagonalized. 

Now we will introduce a geometrical formalism for describing crystal permittivity 

that aids in the understanding of wave propagation. The electric energy density can be 

found in the same form, Eq. 1.21(7), as for the isotropic case*!: 

  

U=3D:-E (6) 

Therefore, from (5) and (6): 

1/D2 Dy OD: 
(2.42) (7) 
2\ E11 E29 £33 

If we define quantities X, Y, and Z measured along the three principal spatial axes by 

      Dd, Dy D, 
X= ——* Y = ; Z>= = (8) 

V 2E\U V 2E )U V2e QU 

then (7) becomes 

xX? y2 7? 

(€1;/€p) r (Eo2/€p) * (€33/€) ”) 

This is the equation of an ellipsoid; it is known as the index ellipsoid (also called the 

index of wave normals, optical indicatrix, or reciprocal ellipsoid) and has as its semi- 

axes the square roots of the relative permittivities in the three principal directions, as 

shown in Fig. 13.8. The name index ellipsoid derives from the fact that the index of 

refraction equals the square root of relative permittivity when wu = [p. 

The shape of the ellipsoid depends on the crystalline properties of the materials. 

Crystals can be divided into three optical classifications. Type I materials have cubic 

symmetry, for which there are three equivalent directions. In this case &,, = &. = 

80 For magnetically anisotropic real materials, the permeability is Hermitian so that yy = 

[hip For loss-free ferrites and plasmas with applied magnetic field and, to a lesser extent 

in dielectrics, the () matrices are antisymmetric, so the off-diagonal terms must be 

imaginary. 
31D. J. Griffiths, Introduction to Electrodynamics, 2nd ed., p. 185, Prentice Hall, Englewood 

Cliffs, NJ, 1989.
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FIG. 13.8 The index ellipsoid. 

E33, the ellipsoid reduces to a sphere, and the properties are isotropic. Silicon, gallium 

arsenide, and cadmium telluride are examples of cubic crystals. Type Il materials in- 

clude trigonal, tetragonal, and hexagonal crystals, which all have one axis of symmetry. 

This axis is one of the principal axes of the permittivity ellipsoid. The symmetry of the 

crystal about this axis requires corresponding symmetry of the ellipsoid. It is, therefore, 

an ellipsoid of revolution, or spheroid. Crystals of this type are called uniaxial and 

include such important materials as calcium carbonate, quartz, lithium niobate, and 

cadmium sulfide. Type III or biaxial materials are crystals having no axes of symmetry; 

these are the orthorhombic, monoclinic, and triclinic systems. All three. principal axes 

of the ellipsoid are different, as shown for the general ellipsoid in Fig. 13.8. 

13.9 PLANE-WAVE PROPAGATION IN ANISOTROPIC CRYSTALS 

The general properties of plane-wave propagation in anisotropic crystals are developed 

in this section. We will see that E, D, the wave normal B, and the Poynting vector P 

all lie in a common plane perpendicular to_H. It is then shown that there are always 
two linearly polarized waves (except in certain degenerate situations) with orthogonal 

orientations of the D vectors for each direction of propagation. 

It is convenient to introduce here the expression for a wave with a plane phase front 

oriented in an arbitrary direction. The physical quantities of the wave may be assumed 

to vary as e /P where 

B = xB. + YB, + 2B.
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is a vector phase factor and 

r=%X%+ py t+ iz (1) 

is the vector distance from an arbitrary origin. Thus we may write 

E = Ee7/#r. D = De JP. H = He-/Br (2) 

where the coefficients E, D, and H are constant complex vectors for the electric field 

intensity, electric flux density, and magnetic field intensity with all spatial dependence 

removed. Constant phase surfaces are those for which B-: r = Gr cos 6 = constant, 

where @ is the angle between B and r. It is evident from Fig. 13.9a that the constant 

phase surfaces are planes. 

Let us substitute D and H in the form (2) into Maxwell’s equation 

V xX H = joD 

and apply the vector identity 

V x (MA) = V@ XA+OVXA 

where ® is a scalar and A is an arbitrary vector. The result is 

(-j/—B X Me JP + e PTV x H = jwDe~/P* 

Noting that V x H = 0 since H is spatially invariant, we obtain 

—-Bp xX H = aD (3) 

Application of the same operations to the other of Maxwell’s curl equations, 

V X E = —jaouH, yields 

B xX E = wyH (4) 

=a 
> 

a 

“Fr c0s 0 
-     

\ 

y 

Fic. 13.9a@ Coordinates for a plane wave propagating in an arbitrary direction f.
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Since the vector product is normal to both terms in the product, (3) shows that B is 

perpendicular to D. Similarly, (4) shows that B is also normal to H. Therefore B is 

normal to the direction defined by D and H, which means that constant phase surfaces 

contain D and H. 

Another important direction of wave propagation is the direction of power flow. This 

is defined by the Poynting vector 

P=EXH (5) 

In optics the unit vector in the direction of P is called the ray vector. 

We see from (3)—(5) that D, E, B, and P all lie in the plane perpendicular to H. It 

is also seen that the ray, or power flow, direction is different from that of the wave 

normal; the angle separating them is that between E and D, as seen in Fig. 13.95 where 

H is normal to the page. 

Let us now derive the Fresnel equation of wave normals with which it is possible to 

make some important conclusions about the nature of the allowed waves. Combining 

(3) and (4) gives 

D=-            (6) 

where b is the unit vector in the direction of 8, c is the velocity of light in vacuum, 

and n is the unknown index of refraction c/ U, in the direction of propagation defined 

by b. Using a vector identity, (6) can be converted to the form 

2 
nN 

= ——[{E — b(- B)] (7) 
Cou 
  D 

Considering the field components lying along the principal axes of the index ellipsoid 

to simplify the analysis (without any loss of generality) and using Eqs. 13.8(5), (7) 

becomes 

Cpe, E, = lE, — bb: BE] 

CuenE, = WE, — b(b- E)] (8) 

C833E. = WE, — b{b- E)] 

FIG. 13.9b Relative directions of the field vectors D and E, the wave vector B, and the Poynting 
vector P in an anisotropic crystal. Magnetic field is normal to the plane of the other vectors.
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Solving any one of the equations (8) gives 

__ r’b,(b + E) 
k 2 n? — c*pe;; 

(9) 

where k = x, y, or z and i is the corresponding value 1, 2, or 3. Multiplying E, by b,, 

summing the three expressions b,F,, and dividing by b - E give 

b? by b? 1 
2 5 a) 2 aw) 2 = "9 (10) 

nN — C ME1) n —- C HEn2 n — €C MEx3 M1 

  

If we define the principal velocities of propagation by 

VU. = v, = Vv. = I (11) 
: V Be) | ° v [Ero V E33 

Then, substituting (11) and x = c/v, in (10) and subtracting by + by + bz = 1 from 
both sides, we get 

      

b? by b? 
ao t+ ss tt a = (12) 
Us — Uy Uy, — vy, UZ Uz 

Also (9) can be converted using n = c/v, and (11) to 

Uy - 
Ek, = pe bb - E) (13) 

k P 

Equation (12) is Fresnel’s equation of wave normals. It is easily seen to be quadratic 

in Us. Therefore, for each set (b,, b,, b,) that defines the direction of propagation there 

are two values of phase velocity. 

Using (13) for each value of phase velocity, we can find E,, E,, and £, and, therefore, 

their ratios, which define the direction of E corresponding to that of v,. Likewise, the 

direction of D for each value of uv, can be found from E using the relations in Eqs. 

13.8(5). If this procedure is carried through, one finds that the ratios of the components 

of both D and E are real, which signals that the two waves are linearly polarized. 

There is a helpful construction that can be used to give the phase velocities for an 

arbitrary direction of propagation.** It can also be used to prove that the D vectors of 
the two waves are mutually perpendicular and to determine their directions. A plane 

passed through the center of the index ellipsoid is oriented so its normal lies in the 

direction of the wave vector. The ellipse formed by the intersection of the plane and 

the ellipsoid is shown shaded in Fig. 13.9c. It can be shown (Prob. 13.9d) that the 

lengths of the two semiaxes give the indices of refraction (or, equivalently, the phase 

velocities) of the two waves. The same analysis shows that the flux density vectors D 

for the two waves lie along the minor and major axes of the shaded ellipse as shown. 

32M. Born and E. Wolf, Principles of Optics, 67h ed., Sec. 14.2.3. Pergamon Press, New York, 

1980.
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{ B 

  
Fic. 13.9¢ Index ellipsoid with intersecting plane passing through its center. The lengths of 
the semiaxes of the resulting ellipse give the indices of refraction for the two waves, and the flux 
density vectors lie along the semiaxes. 

13.10 PLANE-WAVE PROPAGATION IN UNIAXIAL CRYSTALS 

It was pointed out in Sec. 13.8 that the index ellipsoid for a uniaxial crystal is 

an ellipsoid of revolution; its axis of symmetry is called the optic axis. The Fresnel 

equation, Eq. 13.9(12), can be specialized to this case by writing v, = v, and v, = 

Uy = U4: 

(uy — vat + by)UR — ve) + bHYZ — UQ)] = 0 (1) 
If 6 is the angle between f and the z axis, we can write 

b. + bf = sin’ 6; bt = cos’ @ (2) 

With (2), the Fresnel equation (1) can be expressed as 

(v5 — vs)[(VZ — ve) sin? 6 + (U5 — uz) cos* 4] = 0 (3) 

The two roots of (3) are 

2 
pl 

2 
p2 

~ Yo (4) 
= u> cos’ 9 + v2 sin? 0 

Note that one wave propagates like a wave in an isotropic medium in that its phase 

velocity is independent of the direction of propagation. This is called the ordinary wave, 

which is the reason for the subscript o. The other wave has a phase velocity that depends 

upon the direction of propagation and is called the extraordinary wave (subscript e). 

The two phase velocities are equal only when B is along the optic axis (z), as can be 

seen from (4) with 6 = 0.
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The polarizations of the flux density vectors of the two waves are along the principal 

axes of the intersection ellipse in Fig. 13.10a. Since the ellipsoid is axially symmetric 

for the uniaxial case being considered now, the minor axis of the intersection ellipse is 

unchanged as the direction of propagation is changed. Therefore, the polarization with 

D along the minor axis is that of the ordinary wave and the index measured along that 

axis corresponds to the velocity v,. Power flow P, is parallel to B for the ordinary wave 

as predicted by Eqs. 13.9(3) and 13.9(5) since D and E are in the same direction (D = 

yD, = Yéo2E,). The extraordinary wave has D, along the major axis of the intersection 

ellipse. Since the angle between 6 and P is the same as that between D and E, we can 

find the angle between the ray and wave-vector directions by using the permittivities. 

It is seen in Fig. 13.10a that the angle 9 between B and the z axis is the same as that 

between D, and the x axis so that 9 = tan~'(D,/D,). The E vector lies in the plane of 

D., B, and the z axis (called the principal section) and its angle 0’ from the x axis is 

the same as that between P and the z axis. Therefore, 

  EF, eD;, 6& 
tan @ = = = os _ Stan 9 (3) 

E, ED, be 

where & = €,; = & and & = &33. 

Although the details of reflection and refraction of waves at surfaces of anisotropic 

materials can become quite complicated, the principles are straightforward. Tangential 

components of E and H remain continuous across the boundary. Consider, for example, 

a crystal cut at an angle oblique to the optic axis, as shown in Fig. 13.10b. The y axis 

is the outward normal to the page. It is assumed that the incident plane wave has electric 

field vectors both in the plane of the page and normal to it. The situation inside the 

crystal is described by the index ellipsoid in Fig. 13.10a. As we saw from Eq. 13.9(3), 

the D vectors lie in the planes of the phase fronts and therefore must lie in the plane of 

fb 
pd

> 

Ee 

  
  Yy N>

     Intersection 

ellipse 

Fic. 13.10q@ Index ellipsoid for a uniaxial crystal with propagation oblique to the optic axis. 
The intersection ellipse contains the broken line along D, and also the D, vector normal to the 

page.
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Incident 
ray 

    Extraordinary ray 

Ordinary ray 

Fic. 13.106 Excitation of ordinary and extraordinary waves in a uniaxial crystal with parallel 
surfaces cut at an angle oblique to the optic axis. 

the surface of the crystal since the incoming wave has constant phase on that surface. 

The dashed line across the ellipsoid in Fig. 13.10a is the edge of the intersection ellipse. 

The flux density D, of the ordinary wave is in the y direction out of the page, and D, 

of the extraordinary wave lies in the plane of the page on the major axis of the inter- 

section ellipse. We see from (5) that 6° < @ for the ellipsoid illustrated since e, > &,. 

The path of the ray in real space, corresponding to the P, direction in the ellipsoid, is 

shown in Fig. 13.105. Note that B is the same for the two waves, so the phase fronts 

are parallel even though the extraordinary ray follows a different path from the ordinary 

ray. The splitting of the refracted wave is called double refraction or birefringence. The 

two rays are again parallel after emergence from the planar slab. This is because the 

continuity conditions depend upon the phase variations along the surface and these are 

zero for both waves. A common experiment shows this effect. A calcium carbonate 

crystal is placed on a spot on a piece of paper and two spots are observed, one from 

the ordinary wave and one from the extraordinary wave, provided the incident wave is 

unpolarized. If a polarizer is introduced into the incident beam, it can be rotated to 

eliminate one or the other of the spots. 

13.11 ELECTRO-OPTIC EFFECTS 

For certain materials the permittivity can be changed through application of an electric 

field. For liquids such as carbon disfulfide and nitrobenzene, and for centrosymmetric 

solids, the effect is proportional to the square of electric field and is known as the Kerr 

effect. For certain noncentrosymmetric solids,*? such as lithium niobate and gallium 
arsenide, the change may be directly proportional to applied electric field and is known 

33 A, Yariv, Quantum Electronics, 3rd ed., Sec. 14.1, Wiley, New York, 1989. Also see A. Yariv 
and P. Yeh, Optical Waves in Crystals, Chap. 7, Wiley, New York, 1984; and H. A. Haus, 
Waves and Fields in Optoelectronics, Chap. 12, Prentice Hall, Englewood Cliffs, NJ, 1984,
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as the Pockels effect. Both effects are relatively small for practical values of electric 

field, but the latter especially is important in a number of modulators, switches, and 

deflectors, so that the remainder of this section is devoted to this linear effect in crystals. 

Its description becomes annoyingly complicated because each component of the per- 

mittivity matrix is affected differently depending upon the orientation of the applied 

field with respect to the crystal axes. 

Although one could describe the electro-optic effect by giving the change in per- 

mittivity element ¢,; when field component £, is applied, it is customary to define the 

effect in terms of the reciprocal matrix. Define the matrix 

1] _ Ts - 
ne 7 Eo (1) 

Then if electric field is applied, the change in an element of this matrix is 

1 < 
(4) = 2 Viele (2) 

ij = 

5 
i 

where /, 7, k each range over the three spatial coordinates (1, 2, 3 denote x, y, z, re- 

spectively). It is alsc usual to take advantage of the symmetry of the matrices [e] and 

hence [1/n] to utilize a contracted notation, 11 — 1, 22 — 2, 33 > 3, 23 = 32 > 4, 

13 = 31-5, 12 = 21 — 6, so that (2) may be written 

1 3 

(5) 7 & "phe ) 

with k ranging from | to 3 and p from 1 to 6. In matrix form, 

    

pa & 

ALS 
n/, 

1 

M/s [71 Mia "13 

(4) Tor Too 13 || E 
2 I 

n r r r 3] _ | 731 "32 133 E, (4) 

A ( 1 Yar Yan "a3 E 
> 3 
ne 4 Yor "52 153 

1 61 62 632 
A\> 

N'/s     
Values of r,, for a few crystals are given in Table 13.11.
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Table 13.11 

Electro-optic Properties 

Fpp in units 

  

Material N(Ag = 550 nm) nA, = 550 nm) of 107'* m/V 

KDP 1.51 1.47 Ig, = 8.6 
(KH,PO,) "3; = 10.6 
GaAs(10.6 xm) 3.34 rg, = 1.6 

LiNbO, 2.29 2.20 rs, = 30.8 

"3 = 8.6 
ron = 3.4 

rao = 28 

BaTiO, 2.437 2.365 Vy, = 23 

M3 = 8.0 
lg = 820 

  

From A. Yariv, Quantum Electronics, 3rd ed., Table 14.2, Wiley, New York, 1989. 

Example 13.i1a 

ELECTRO-OPTIC PHASE MODULATION 

Consider a crystal of lithium niobate as shown in Fig. 13.1la, with a wave propagating 

in the y direction, polarized with electric field in the z direction, and with electrodes 

placed so that the modulating field is also in the z direction (the optical axis of this 

crystal). From Table 13.11 we see that applied field EF. = EF, through r33, changes 

(1/n7), and (1/n?)3 and no other elements so that the matrix remains diagonalized even 
after application of the modulating field. (This is not true in general.) The change of 

(1/n7), cannot affect a wave with E. = E, only but the change of (1/n”), is important. 
From (3), 

l ] 
(+) = (4) + 1'33k3 (5) 

iw /, Ne 

where 72, is the index of refraction for extraordinary waves defined in the preceding 

section. Because of the small value of 133, 

] ~1PR yg!le 
m3 = |\75 ~ Ne ~ ~y Ey (6) 

3 

So if the modulating field is 

  

EF, = E,, cos wf (7) 

the phase shift after propagating distance / is 

l l 
dl, t) = = Nz = = n, + Ad,, COS w,,f (8) 

C c
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E 

Optical wave V.. cos 
polarized B m GOS am é 
with E, a? LiNbO3 ~ 

    

FiG. 13.11a@ Electro-optic phase modulation in LiNbO, crystal. 

where the modulation index Ad,, is 

wlrs,n2E,,, 
Ad, = 90 (9) 

To make this equal to 7 (a useful value for the applications to be discussed next) for a 

signal with free-space wavelength Ay = 550 nm with / = 1 cm, E,, would need to be 

1.68 X 10° V/m. Although a high field, the required applied voltages are reasonable 

in thin crystals or thin-film modulators using the optical guiding described in Sec.14.7. 

  

Example 13.11b 
CONVERSION OF PHASE MODULATION TO AMPLITUDE 

MODULATION BY INTERFEROMETRY 

Although phase modulation may be used directly for some purposes, it is often desirable 

to convert this to amplitude modulation. One of the simplest methods is by means of a 

Mach-Zehnder interferometer sketched in Fig. 13.11b.** An optical wave is divided 

Electrode for electro-optic 
phase shift 

  

N Output 
wav 

SA 

Input 

wave 

//
\\
 

  

  

Fic. 13.115 Top view of optical waveguide Mach—Zehnder interferometer for converting 
electro-optic phase modulation to amplitude modulation. 

34 B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, p. 704, Wiley, New York, 1991.
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into two equal parts by the first Y junction, electro-optic phase shift is introduced into 

one arm, and then the two waves are combined in the second Y junction. With zero 

phase shift the two add, with 7 phase shift they cancel, and with intermediate phases 

there is a value in between so that 100% modulation is possible. The device is thus 

also useful as a switch. 

  

Example 13.11¢ 
CONVERSION OF PHASE MODULATION TO AMPLITUDE 

MODULATION BY POLARIZATION SHIFTS 

A somewhat more complicated case is that in which phase shifts are converted to a 

change in direction of polarization, and this in turn is converted to amplitude modulation 

through use of an analyzer. It is the classic electro-optic modulator, and also illustrates 

that new principal axes are in general required after application of the electric field. A 

sketch of the arrangement is shown in Fig. 13.11c. The crystal used for the example is 

KDP and the modulating field is applied in the z (i.e., 3) direction, which is also the 

optic axis and the direction of wave propagation. From Table 13.11 the pertinent electro- 

optic coefficient is then r,3, telling us that application of electric field FE, adds an off- 

diagonal element (1/n?), = (1/n7), to the matrix. New principal axes x’ and y’ after 

application of FE. are rotated by 45 degrees relative to the crystal axes x and y (Prob. 

13.11a). For these 

   

  

  
  

L I + resk l E (10) —_—- == a r - — So eo r - 

nm me 03" nm me oa" 

Since r.,£. 1s small, these lead to 

3 3 Ng Ne 
Ne =H — Peak, Ny = MN + = reak. (11) x o 2 63° ¥ o 2 632 

Modulating 

field 

E 
Zz (Modulated 

signal 
field x E, ) 

Polarizing 
filter 
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FIG. 13.11¢ Electro-optic modulator that employs conversion of phase modulation to amplitude 

modulation.
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Fic. 13.11d Output signal field intensity as a function of modulating field E, for Fig. 13.11c. 

The polarizer of Fig. 13.11c polarizes with field E., which gives equal components in 

the x’ and y’ directions: 

EB. 
E(Q) = Va [x + y'] (12)   

After propagating distance /, 

EQ’) = Fy e — j(alng/c) (x elon e3E./ 2c) y’ en Kelngre3E./2c)) (13) 

The analyzer selects the y component, which is 

1 
Ey) = Va [-E.(@) + By@] 

(14) 

— E. en Helng/c)p e J(@lnarg3E./2c) + en Holngre3E./2c)) 

The square of magnitude of this is 

OP reaE. 
EQ)? =|E,!? sin? —2°= (15) 

2C 

so that it is seen to vary with modulating field E, according to the curve of Fig. 13.11d. 

A “quarter-wave plate” can be added to shift the operating point with zero modulation 

to the linear, center part of the curve (Prob. 13.11c). Such a plate produces a phase 

difference of 7/2 between the two polarizations. 
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13.12 PERMEABILITY MATRIX FOR FERRITES 

A group of materials, called ferrites, have the important characteristics of low loss and 

strong magnetic effects at microwave frequencies. These are solids with a particular 

type of crystal structure made up of oxygen, iron, and another element which might be 

lithium, magnesium, zinc, or any of a number of others.°- The important factors in the 
study of wave propagation in ferrites are that the losses at microwave frequencies are 

small, the dielectric constants are relatively high (within a factor of about 2 of e, = 

15), and anisotropic behavior of permeability results when the ferrite is subjected to a 

steady magnetic field. 

A complete description of the energy state of an atom requires specification of both 

the orbits and spins of the electrons. In the language of quantum mechanics, there are 

orbital and spin quantum numbers, both of which must be given to define the energy 

state of an atom. A strong magnetic moment is associated with the electron spin. In 

paramagnetic substances these magnetic moments are randomly oriented with respect 

to those in neighboring atoms, but in ferromagnetic, antiferromagnetic,and ferrimag- 

netic (ferrite) materials, there exists a strong coupling between spin magnetic moments 

of neighboring atoms, causing parallel or antiparallel alignment as discussed in Sec. 

13.6. We will study the situation in which all the domains are aligned in one direction 

by a strong applied steady field; the material is saturated. An equation of motion for 

the spin magnetic moments will be found. By assuming small perturbations of the 

magnetic field quantities about the large steady values, a permeability matrix for the 

perturbations will be derived. 

The model of the spinning electron used in the derivation is shown diagrammatically 

in Fig. 13.12a. The analogy between the spinning electron and a gyroscope is evident. 

For any rotating body the rate of change of the angular momentum J equals the applied 

torque T: 

dJ 

dt r a 

Note as an example the gyroscope shown in Fig. 13.12b. The earth’s gravitational 

attraction applies a force or torque to the gyroscope and the angular momentum vector 

along the axis of the gyroscope rotates slowly about a vertical line through the pivot. 

This rotation, called precession, is at a rate sufficient to conserve the initial angular 

momentum. For the electron, we relate the magnetic moment m to the applied torque 

since 

m= yJ (2) 

where y is called the gyromagnetic ratio.*© If the electron is considered to be a uniform 

35 See Goldman’ and R. S. Elliott, An Introduction to Guided Waves and Microwave Cir- 
cuits, Chap. 14, Prentice Hall, Englewood Cliffs, NJ, 1993. 

The y of this section is not to be confused with propagation constant, which has the 

same symbol in other parts of fhe book. 

36
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J 

  
(a) 

    
(5) 

FiG. 13.12 (a) Spherical model of spinning electron in magnetic field. (b) Precession of a 
gyroscope. 

charge distribution in a spherical volume and y is found by classical calculations of m 

and J, the result is in error by a factor of almost exactly 2. The correct value of jy, 

which is approximately —1.759 x 10'! m?/Wb-s, must be found from quantum 
mechanics. 

The torque resulting from subjecting a magnetic moment m to a magnetic field B, is 

T =m xB, (3) 

There are also torques resulting from loss mechanisms but these will be neglected here.
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We may combine (1) to (3) to get 

dm 
an yom X B;) (4) 

where B, is the total field to which the spinning charges are subjected. The total magnetic 

field acting on a molecule in a magnetic material can be adequately represented by 

B,; = woH + (constant)(M) (5) 

The magnetization vector (or magnetic dipole density) M is Nom where Np is the 

effective number density since all spins in a saturated material act in concert. The 

magnetic intensity H is the value averaged over the space of many molecules within 

the material. The relation between H and the external applied field depends upon the 

shape of the ferrite body. 

Then combining (4) and (5), 

dM 
= YHo(M x HD (6) 

Now consider the applied magnetic field in the form of a sum of dc and ac terms: 

H = 2H, + Hye’ (7) 

The material is saturated, so the magnetization vector must have the form 

M = 2M, + M,e/“ (8) 

where M, is the saturation magnetization and M, has only x and y components. The 

expressions (7) and (8) are substituted, in phasor component form, in (6), and all prod- 

ucts of ac terms are considered to be negligible compared with products involving one 

steady term and one alternating term. The result is 

JoM,, = Yeo(M,Ho — Moly) 

jwM, = Ybo(M oA, ~ Mf) (9) 

joM, = 0 

where the subscript 1 is deleted from the ac term for simplicity. Equations (9) may be 

solved to give M in terms of H and the result substituted in 

B = yo(H + M) (10) 
to obtain 

[B) = [ell] (11) 

or 

By Mi, My2 =O | A, 

By} = | Mo Ma 9 1), (12)
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where 

WW 
By, — Ho = Hof + — Sl (13) 

Wy —~ W@W 

_ Py @w 
My = War =f (14) 

Wo —~ @ 

in which 

Oy = — Mo YMo, @ = — MoV (15) 

A resonance occurs at the frequency @) = — yupHy = (e/m)oHo. Note that the 

magnetic field Hy within the ferrite differs from the applied field, as mentioned after 

(5). The singularity at resonance is suppressed if the mechanisms responsible for damp- 

ing the precession are considered in the analysis. 

13.13 TEM WAVE PROPAGATION IN FERRITES 

Although a complete treatment of practical ferrite devices would require more compli- 

cated wave analysis, useful insight into device behavior is given by understanding TEM 

wave propagation parallel to an applied dc magnetic field. Propagation will be assumed 

to be in the z direction with variations as e*/®*, Taking the curl of Maxwell’s curl H 

equation in phasor form, and making use of a vector identity, we have 

V-H — V(V- H) + ow cB = 0 (1) 

Since there is no field in the direction of variations (z) and no variation in the direction 

of the fields (x and y), V - H = O. The Laplacian reduces to d*H/dz* and we use 
Eq. 13.12(12) to transform (1) to 

72 i, My, Myg O |) A, 

ae | + we | Uo, Mo O || H,| = 0 (2) 

0 0 O- pol] 0 

For isotropic media wave solutions were taken to be linearly polarized; by suitable 

orientation of the coordinate system, they might have only one component (e.g., H = 

XH). If we substitute such an assumed form of solution in (2), we find a vector with 

only an x component in the first term, whereas the vector in the second term has both 

x and y components. For the sum of two vectors to be zero, their components must 

individually add to zero. Therefore, the magnitude of the y component must be zero. 

This is possible only if either 4, or H,, is zero. We know from Sec. 13.12 that y,, is 

not zero, and if H, is zero, there is no wave. Thus we must conclude that a linearly 

polarized wave is not a possible solution; that is, it is not a normal mode of propagation
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for the medium. We will see that circularly polarized waves are normal modes; media 

with this property are called gyrotropic. 

For a clockwise polarized wave (field vectors rotate clockwise as a function of time 

at a fixed plane in space, looking in the direction of propagation) traveling in the +z 

direction, the field has the form 

He = AY — 79) (3) 

Substituting (3) in (2) and using Eqs. 13.12(13) and (14), we get the propagation 

constant 
l wV e( pL) ~ jin)? 

on, " (a 
(J E fLo | + — 

Wy —~ W 

py 

I 

The quantity (u,, — jp.) that appears in BS” is shown schematically in Fig. 13.13a. 

The shaded region is a stop band since (u,, — j)2) is negative, and 6%” is therefore 

imaginary. Pumping of the electron spins by the rf magnetic field at the natural preces- 

sion frequency produces the resonance at wp. 

For the counterclockwise wave traveling in the +2 direction, the magnetic field is 

HEY = HE" + iY) (5) 
Then substituting (5) into (2) and using Eqs. 13.12(13) and (14), we find the corre- 

sponding propagation constant 

BEY = wV eu, + joy)? 
wy 1/2 (6) 

WV Epo 1 + ko 
0 

The quantity (4,, + jj.) is shown schematically in Fig. 13.130. 

To complete the set of possible waves, we must consider the two circularly polarized 

waves propagating in the —z direction. The magnetic fields for the clockwise and 

counterclockwise waves, respectively, are 

HS = HX + jy) (7) 

He’ = AS*(& — JY) (8) 

Substitution of these forms into the wave equation (2) as was done for the +z traveling 

waves above yields 

1/2 
W 

pw = Be’ = @ cn + —1— (9) 
Wy + Ww 

1/2 

Bo = pe = wVen(1 +) (10) 
Wi —- WwW
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bu ~ Je124 

uo(1+ a) 
Lo L--~——-——-~—-~ 

    

    
pe + Jeizh 

(+a Ho \l+ ay ee es 
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wo w 

(5) 

Fic. 13.13 (a) Equivalent permeability for clockwise circularly polarized wave propagating 

in +z direction. (b) Equivalent permeability for counterclockwise circularly polarized wave 
propagating in +z direction (Hp = 2Hp). 

Transmission-Line Analogy We can make use of the transmission-line analogy 

to solve problems of reflection and transmission with considerable advantage of sim- 

plification. To ensure continuity of electric and magnetic fields at a boundary for cir- 

cularly polarized waves, forward- and reverse-traveling waves having the same absolute 

direction of rotation must be combined. Thus we sum the fields of the positive-traveling 

clockwise wave and the negative-traveling counterclockwise wave. The other pair of 

waves (positive-traveling counterclockwise and negative-traveling clockwise) are han- 

dled as a separate problem in the same manner. The two pairs of waves are illustrated 

in Figs. 13.13c and d. 

Let us consider the pair of waves in Fig. 13.13c. The magnetic fields for both of
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Case 1 Case 2 

KE hE 

  
  

ae pew 7 

, Ho Ho 

    at <— 
    

  
(c) (d) 

Fi¢. 13.13  (c) Pair of waves having rotation of fields clockwise relative to the +z axis. (d) Pair 
of waves having rotation counterclockwise relative to the +z axis. 

these waves have the form in (3). The corresponding electric fields are found by sub- 

stitution of (3) into Maxwell’s curl H equation to be 

Ew = -E™(jX + 9) (11) 
and 

ESY = ESM KX + ¥) (12) 

in which the field amplitudes are related by the characteristic wave impedance 

EY Ec Cw 

ee (13) 
HSS HS” WE E Wy - Ww 

where subscript 1 refers to case 1 shown in Fig. 13.13c. 
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The amplitudes of the total fields in case 1 (Fig. 13.13c) can then be written as 

H(z) = He J8F + Hew elBe (14) 

and 

E,(2) = (Ayre? — Hewvel®*) (15) 

where 8, = BOY = BS in (10). 
These equations are in the form of the transmission-line equations and the analogy 

is completed by defining a wave impedance at any plane z as 

E,(2) 16 
H,(2) (10) Z,(z) = 

Then all the apparatus of Sec. 6.6 can be adapted to solve problems of reflection and 

transmission at discontinuities for a circularly polarized wave. 

The other pair of waves, those with rotation counterclockwise with respect to the dc 

magnetic field, as shown in Fig. 13.13d, are handled in the same way. The magnetic 

fields are given by (5) and (7). The electric fields for the two waves and the characteristic 

wave impedance are found by substituting the magnetic fields into Maxwell’s curl H 

equation: 

  

ES” = EP"(R-§), EY = EM(-jR+ 9) (17) 
and 

EY EY 

pn =o = 22 = BK Ho (1 + (18) 

HE” HS we E Wy + Ww 

The propagation constant 8, was given in (9). To use the transmission-line analogy we 

write expressions for the amplitudes of the total electric field and total magnetic field, 

Hy(z) = He? + HMelPx (19) 

E,(z) = 9,(Hfre 1h? — HWe/F) (20) 

with B, and 7, given by (9) and (18), respectively. The wave impedance for this case 

is 

E,(2) 
Z,(z) A) (21) 

An example of the use of these tools in a calculation of the propagation of waves 

through a layer of ferrite between two isotropic regions with the propagation direction 

parallel to the dc magnetic field is shown in Fig. 13.13e. If the incident wave is linearly 

polarized, it can be decomposed into two oppositely rotating circularly polarized waves. 

Each of these can be handled separately since we are considering the media to be linear. 

The load impedance Z, at plane 2 for each of type 1 and 2 waves in Figs. 13.13c and 

d is the characteristic wave impedance 7 = V p,/e>. The impedance transformation 

Eq. 6.6(10) with & replaced by either 6, or 8, gives the wave impedance at plane 1.



13.14 Faraday Rotation 721 

  

    
  

£1, hy . a £2, Ua 
. Ferrite. 

Incident . Ao | 
wave Ses 

1 2 

(e) 

FiG. 13.13e Example of a problem utilizing transmission-line methods for circularly polarized 
waves. 

Then the reflection coefficient Eq. 6.6(11) gives the relative amplitude of the reflected 

wave in region 1 for each direction of polarization. Knowing the amplitudes of the 

incident waves of each circular polarization, the total reflected wave is constructed as 

the sum of those in the two polarizations. 

138.14 FARADAY ROTATION 

In this section we shall see how the difference of propagation constants between clock- 

wise and counterclockwise polarized waves can be used to show that a linearly polarized 

wave is rotated when it passes through a gyrotropic medium. Let us first consider a 

linearly polarized wave propagating in the +z direction with H vector in the x direction 

at the plane z = O in the ferrite of Sec. 13.13. This field may be decomposed into 

circularly polarized modes of propagation 

H ew 
He’ = (% — j¥) 5 e IB: (1) 

and 

Ho’ 
H _ cow, 

&+ Ter (2) 

since the sum of (1) and (2) atz = Qis 

H = xH 

This can be thought of as finding magnitudes of the natural modes of the system nec- 

essary to match the given boundary condition at z = 0. 

The field at any other plane, z = constant, is found by adding (1) and (2): 

H -qccw.. + (QCW.. A — {QCCw. _ J Aew. 

H = > [k(e VP + e lB) + ie — ei] (3) 

which can be cast into the form 

H = Here oe cos 2” — F™), — ¥% sin( =F), (4)
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The sum wave (4) is seen to have field vectors in a fixed direction at each value of z 

since there is no phase difference between the x and y components. The direction of 

the field vector relative to that at z = 0 is, as seen in Fig. 13.14, given by 

_ Hy _ pow _ pow 

tan gd = A. = in( P= ): (5) 

or 

9 = (= = e 6) 

The sign of the angle @ is positive for clockwise rotation about the positive z axis. Thus 

we see that the linearly polarized wave rotates upon passing along the gyrotropic axis 

(z axis) and has a propagation constant which is the average of those of the clockwise 

and counterclockwise modes. 

It is of special interest to note that the direction of rotation about the positive z axis 

is the same for waves traveling in the positive and negative z directions. In Sec. 13.15 

we see applications of this phenomenon. 

The rotation of plane of polarization of an optical wave in passing through a dielectric 

with an applied magnetic field was first observed by Michael Faraday around 1845; 

hence, the name Faraday rotation. The angle of rotation (6) can be written as 

@ = VHDl (7) 

where Hp is the dc magnetic field strength, / the interaction length, and V a constant 

known as the Verdet constant. This effect is strong in ferrites but is also seen in mag- 

netized plasmas to be discussed in following sections. It is even seen in ordinary 

dielectrics but 6 is small. V is about 0.014 min/Oe-cm in silica at AJ = 600 nm, 

decreasing at longer wavelengths approximately as A~?. With the long propagation 

lengths obtainable with optical fiber guides, useful nonreciprocal devices can neverthe- 

less be made using this effect, but ingenious design is necessary to maintain magnetic 

field axial in the multiple passes through the magnet. 

  
    >y 

Fic. 13.14 Rotation of a linearly polarized wave in a gyrotropic medium.
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13.15 FERRITE DEVICES 

Ferrite devices have found use in microwave applications for both waveguides and 

striplines. One family operates on the basis of the Faraday effect described in Sec. 13.14 

and the others on different principles, to be discussed below, that also depend upon the 

asymmetry caused by an applied steady magnetic field. 

Waveguide Devices The group of devices that employ Faraday rotation take ad- 

vantage of the fact that the rotation of a linearly polarized wave is in the same direction 

relative to the direction of the dc magnetic field for both the positive and negative 

traveling waves. (See Fig. 13.15a.) The first and simplest of the microwave devices 

using the Faraday rotation effect was the gyrator,*’ shown in Fig. 13.15. By virtue of 

a twist of the waveguide, a wave coming from the left is rotated counterclockwise by 

90 degrees before reaching the ferrite. The magnetic field and the dimensions of the 

ferrite are chosen so an additional 90 degrees counterclockwise rotation of the wave 

takes place in the ferrite region. Thus, the wave progressing toward the right is inverted 

or, equivalently, shifted in phase by 180 degrees. A wave passing from right to left is 

rotated by 90 degrees counterclockwise with respect to the direction of the magnetic 

field, and this is canceled by the rotation in the twisted portion of the guide to the left 

of the ferrite. The gyrator, therefore, serves to produce a phase shift of 180 degrees in 

one direction and no shift in the opposite direction. 

Another important Faraday rotation device is the absorption isolator shown in Fig. 

13.15c. Here the 45-degree twist to the left of the ferrite rotates the wave coming from 

the left so that its electric field vectors are perpendicular to the thin resistance card just 

after the twist. With this orientation, the field suffers a minimum of conduction losses 

in the card. The field is then rotated back to its original orientation when it passes 

through the ferrite and leaves the isolator essentially unmodified. A wave traveling to 

the left is rotated in the ferrite in the same direction relative to the magnetic field as 

the wave moving to the right and is therefore oriented with its electric field vectors 

along the resistance card. In this way the wave traveling to the left is appreciably 

attenuated (typically 30 dB) and the wave moving to the right suffers little loss (usually 

less than 0.5 dB). 

Another application of Faraday rotation is the circulator shown in Fig. 13.15d. The 

function of a circulator is to transmit a wave from guide | to guide 2, a wave from 

guide 2 to 3, 3 to 4, and 4 to 1, with all other couplings prohibited. The ferrite rod and 

magnetic field are chosen to give 45 degree rotation. The TE,, mode in guide 1 excites 

the TE,, mode in the circular guide. The symmetry of the TE,, circular mode (see 

Table 8.9) is such that it does not excite propagating waves in guide 3. The night half 

of the structure is rotated by 45 degrees relative to guides 1 and 3 as seen in Fig. 13.154. 

A 45-degree rotation of the wave coming from guide 1 places it in the same orientation 

with respect to 2 and 4 as it had with respect to 1 and 3 so it passes out through guide 

2. A TE,g wave entering guide 3 excites a TE,, mode in the circular guide, but it is 

57 C. L. Hogan, Bell System Tech. J. 37, 7 (7952).
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Fic. 13.15 (a) Wave rotation of waves in two directions in magnetized ferrite rod. (b) Micro- 

wave gyrator. (c) Microwave isolator.
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Fic. 13.15 (d) Microwave circulator. (e) Ferrite location in resonance isolator. (f ) Field pat- 

terns in field-displacement isolator. 

oriented at 90 degrees from the mode excited by a wave from guide 1. It cannot excite 

propagating modes in 1. When rotated by 45 degrees in the ferrite, the wave is oriented 

to excite waves in guide 4 but not 2. The analyses of waves entering guides 2 and 4 

follow similar reasoning. The metal septums shown in the figure aid in preventing 

unwanted couplings. The circulator can also be used as a switch or for modulation by 

controlling the field that magnetizes the ferrite.



726 Chapter 13 Electromagnetic Properties of Materials 

The choice of diameter and shape of the ferrite rods used in Faraday rotation devices 

is made to minimize reflections and maximize power-handling capability while achiev- 

ing the required rotation with reasonable magnetic fields. Because power is dissipated 

in the small rod isolated from the walls, a Faraday rotation device is useful only for 

low power. Some of the following devices have the ferrite connected to the metal wall 

and can carry higher-power fields. 

The functions just described can also be achieved in resonance and field displacement 

devices which employ magnetic fields transverse to the guide. Let us consider, for a 

rectangular waveguide with TE,, mode, the rf magnetic fields in the planes perpendic- 

ular to the dc magnetization. The vector sum of H,, and H, of Eqs. 8.8(4) and 8.8(5) is 

A\Z c 
H. = [ _ r() —E cot me \H| sin = (1) 

“ 2a} 7 a a 

where Z 7, is positive for a wave in the +z direction and negative for the reverse wave. 

It is clear from (1) that at the value of x in the guide such that 

(+) ZTE op TE 
2a} 7 a 

the field H,. is circularly polarized. The direction of polarization depends upon the sign 

of Zrp. 

If a piece of ferrite is placed on the top or bottom of the guide at the value of x given 

by (2) as shown in Fig. 13.15e the precessing electron spin moments will be subjected 

to a circularly polarized field which either enhances the precession or is very little 

coupled to it, depending upon the direction of the circular polarization. By appropriate 

choice of polarity of the dc magnetic field, the direction of spin precession can be made 

opposite to the direction of rotation of the field vectors of the forward wave. In this 

case the forward wave is little affected. The backward wave, having an opposite po- 

larization of H,,., pumps the precessing spins and loses energy in the process. This 

energy is transferred from the electrons to the lattice of the ferrite by microscopic 

damping mechanisms. If the magnetic field is adjusted to set the resonance frequency 

equal to the field frequency (w = — yyof ), the reverse loss is maximum. This device, 

used as an isolator, requires more dc field than the Faraday rotation isolator described 

previously, since it must operate at resonance. It has the advantage, however, of allow- 

ing convenient cooling of the ferrite. The same mechanism can be used to modulate a 

wave. 

There is a third class of nonreciprocal devices utilizing magnetized ferrites. These 

also use transverse magnetization but make use of the fact that forward and reverse 

waves with the ferrite present may have different transverse field distributions. They 
are called field displacement devices. If a slab of ferrite is approximately located and 

magnetized, an approximate null of electric field can be made to exist at its edge for 

the forward wave but not for the reverse wave. This is shown schematically in Fig. 

= 1 (2) 
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13.15f. A resistive strip attached to the side of the ferrite then attenuates the reverse 

wave but does not affect the forward wave. As with Faraday rotation devices, the field 

displacement scheme is limited to low-power application. 

Stripline Devices A device called the stripline Y-junction circulator shown in Fig. 

13.15g can also be used as a switch or isolator. A dc magnetic field is applied normal 

to the ferrite disks. Operation can be described in terms of standing mode patterns in 

the disks, similarly to the modes in dielectric resonators (Sec. 10.13).78°? The lowest 
resonant mode is shown in Fig. 13.15 for the case with no applied magnetic field; the 

rf electric field is perpendicular to the plane disk surfaces and magnetic field is trans- 

verse. The fields shown are excited by the input in line 1, and lines 2 and 3 receive 

excitation of magnitude one-half that of the input. In the presence of a magnetic field, 

the standing pattern comprises two counterrotating field patterns. This new pattern is 

rotated about the disk axis by an amount that depends upon the magnetic field strength. 

Figure 13.15: shows the pattern rotated to a position in which line 2 receives an exci- 

tation equal to the input and line 3 is isolated. The complete symmetry of the device 

implies that the roles of the lines can be rotated so that excitation in line 2 produces an 

output in line 3 and nothing in line 1 and similarly for excitation in line 3. See Schloe- 

mann’s article*® for practical realization of circulators in microwave and millimeter- 
wave integrated circuits. 

  

Ferrite _- 
cylinders   

Fic. 13.15 (¢) Stripline Y-junction circulator. (After Fay and Comstock.** © 1965, IEEE.) 

38 C. £ Fay and R. L. Comstock, IEEE Trans. Microwave Theory Tech MTT-13, 15 (1965). 

39 For an analytic treatment, see Ellioff®° or D. M. Pozar, Microwave Engineering, Sec. 10.6, 
Addison-Wesley, Reading, MA, 1990. 

49 £. F. Schloemann, Proc. IEEE 76, 188 (7988).
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Fic. 13.15 (h) Standing-wave pattern in ferrite disk in absence of Hy. (1) With selected value 

of H,, standing-wave pattern is rotated to isolate line 3. (After Fay and Comstock.*® © 1965, 
IEEE.) 

13.16 PERMITTIVITY OF A STATIONARY PLASMA IN A MAGNETIC FIELD 

In this section we develop explicit, frequency-dependent expressions for the elements 

of the permittivity matrix of a plasma with an applied steady magnetic field. The results 

are important in understanding electromagnetic wave propagation through the ionos- 

phere in the presence of the earth’s magnetic_field, the magnetically confined plasma 

used in fusion research, and certain laser discharges. Later extensions, with an average 

electron velocity added, apply to traveling-wave tubes and other electron-beam 

amplifiers. 

Because of the low density of the plasma in comparison with liquids and solids, the 

primary dielectric behavior is produced by the electron motion. The applied magnetic 
field causes the permittivity matrix to have off-diagonal elements, since if magnetic 

field is axial, electron motion in one transverse direction produces forces in the orthog- 

onal transverse direction. The characteristic waves in this case are circularly polarized, 

as for a ferrite with applied magnetic field seen in the preceding sections. 

To bring out the main physical effects, several idealizations are made in the model. 

The plasma is considered uniform and stationary in this analysis, although later a drift 

velocity for electrons will be added (Sec. 13.17). Magnetic field is stationary, uniform, 
and in the z direction. Because of the heavy mass of the ions, their motion is neglected; 

they serve only to neutralize the dc space-charge fields of the electrons. The effects of 

thermal velocities and collisions are neglected, as are the forces arising from the mag- 
netic fields of the electromagnetic waves (see Prob. 13.3a). 

The first step is to find the convection current in the plasma. The dc plus ac current 

density is 

  

Jo + Jy = Wo + py) + Vy) (1)
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Here, Vj and J, are equal to zero since the plasma is assumed stationary. Thus, neglect- 

ing products of ac terms since they are of second-order smallness, we see that 

Ji = Pov, (2) 

The velocity v, is found from the Lorentz equation [Eq. 3.6(5)] 

dv, e 
— = -—-(E + xX B 
at m ( ‘I 0) ©) 

where By = ZBo, is the applied steady magnetic field. 
To find the conditions required for linearization of the equations, let us consider a 

uniform plane wave having arbitrary direction of propagation, such that the ac spatial 

variations may be expressed by 

e —j@r = e — (Bx + Byy + B.2) (4) 

The left side of (3), expanded in partial derivatives and evaluated using (4), becomes 

dv ; , 
“dt = I(@ a BV. - By, ~ B.0,,)v,e7" (5) 

If the ac velocity is assumed to be small compared with any possible phase velocities, 

then Bv,; = wv,;/U,; < w and (5) reduces to 

dv, . 
—— = jwv,el™ 6 dt JV; (6) 

Writing (3) in component phasor form using (6), we have 

é e 
iWU,, = —— Ey, — — BoV1, 7a JOU), m Lx m Oz” 1; ( ) 

. € e 
jJ@U ly = om Ey, + m BoVix (7b) 

. é€ 

Jou;, = ——&,, (7c) 

Equations (7) may be solved for velocity components in terms of the fields with the 

result 
—_ 7 E b= ja(e/m) x + (e/m)oek (Ba) 

Ww. - wo 

_ oj E 
v= (e/ mecF jw(e/m) Ly (8b) 

2 Ww. —- @ 

  

  

_ j(e/m) 
a 

Ui: Ey. (8c) 

where w, = (e/m)Bo, is called the angular cyclotron frequency.
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It is convenient to define an equivalent flux density D that includes the effect of 

convection currents. In matrix notation, the equivalent displacement current is 

jo[D] = jwe {Ee} + Ly] 
. (9) 

= jolel[E] 

where [e] is the equivalent-permittivity matrix. Using (2) and (8), 

Ey, 2 O 

[e] = | &4, E2 OO (10) 

0 O | &33 

where 

Wp 
e11 = E59 = Eo 1 + w? _ a2 (11a) 

“a2 
jo,(@,/w)E 

&12 = £3, = we — o (11b) 

I 5 11 &33 — & 2 (11c) 

Here, w, is the plasma frequency, Eq. 13.3(10). 

For plane waves in a plasma without a magnetic field (Sec. 13.3), @, Was observed 

to be a characteristic frequency in that no propagation occurs for w < a,. It is clear 

from the form of (11a) and (11b) that the cyclotron frequency w, is also a characteristic 

frequency in this case. The singularity at w, is seen from (8a) and (8b) to result from 

the singularity in the velocities produced by the wave. A moving electron in a magnetic 

field without an electric field rotates at an angular frequency w,. If an applied alternating 

electric field oscillates at w,, it is so phased on each cycle that it continually pumps the 

electron to higher and higher velocities. That leads to the infinite response for the 

continuous-wave case in this model, although collisions would limit excursions in 

practice. 

13.17 SPACE-CHARGE WAVES ON A MOVING PLASMA 
WITH INFINITE MAGNETIC FIELD 

We consider now waves propagating in a plasma parallel to an infinite magnetic field 

and having a component of electric field in the direction of propagation, as shown in 

Fig. 13.17. An important application of the results is as a model for waves on electron 

beams that have an average velocity parallel to the magnetic field. For the purpose of 

analyzing the space-charge waves, we will first show the effect of ug, on the permittivity 

matrix developed in Sec. 13.16.
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Proceeding as in Eqs. 13.16(9)—(11) yields 

_.{,-—% 3 E33 = & (w — Bu, (8) 

Note that the difference in €3,, between (8) and that of the stationary plasma, Eq. 
13.16(11c), can be considered a Doppler shift in the frequency seen by the electrons. 

In like manner, the other components of the permittivity matrix can be found by using 

a Doppler-shifted frequency w — Bup. wherever w appears in Eqs. 13.16(11a) and 

(11b). 

Taking the curl of Maxwell’s curl E. equation and substituting the curl H equation 

with a scalar permeability (taking 2 = [1,) we get *! 

VxXVXE= w*pD (9) 

Using a common vector identity, this becomes 

V7E — WV-E) + w7p,D = 0 (10) 

By use of Gauss’s law and the assumed e~ /B2 form of variations, the z component 

of (10) may be written as 

ViE, ~ BE, + jB — + W*Hoé338, = 0 (11) 
0 

where V2E. contains partial derivatives transverse to the z direction. Combining (3) and 

(7) we find 

E,w.8 
— | TJ E., 12 J (o — Bu,” (12) 

Then combining (11) and (12) and using the value of €3, form (8), we obtain the desired 

wave equation 

Pi = 

2 2 — R2 _ ee = Vr E. + (@7*Uo& — B 1 (o — be. 0 (13) 

We now restrict our attention to uniform plane longitudinal waves, that is, waves 

with electric fields along the direction of propagation and no transverse variation. 

Therefore the first term of (13) vanishes. Equation (13) may then be satisfied if either 

W* 9  — B° or the term in brackets is zero. The first alternative gives the usual TEM 

field waves, with zero E.. More interesting is the second alternative: 

of 
— ——— = 0 (14) 

(w | Bug.) 

41 To get the right side of vector equations like (9) in terms of E would require tensor or 
dyadic notation (see footnote 27). We choose to avoid that less familiar notation by 

using D.
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Propagation 

Drift   
Fig. 13.17 Space-charge waves in a plasma. 

The ac current density, Eq. 13.16(1), when linearized, is 

Jy = Pov; + Voi (1) 

To find ac charge density p, which arises from the bunching of electrons, we make use 

of the continuity equation for the ac current density: 

av oJ aJ,. a =— 1 4 ly + wv iz _ Pi (2) 

Ox dy Oz ot 

With an infinite magnetic field, J,,. = J, 
form, e“! ~ ®), (2) gives 

Vd; 

y — 0. Then with all ac quantities having wave 

_ Bhi 
@ 

Pi (3) 

To get the value of u,, needed in (1), we return to the force equation Eq. 13.16(3) 

and write the z component of the left side, taking account of the average velocity Uo,: 

  a, _ Viz v OV 1; (4) 
dt ot az 

Noting that v,; X B = 0, the force equation becomes, in phasor form, 

, e j(@ — Buoy, = —— Er, Gy 
or 

j(e/m) 
U1. = Ei: (6) 

wo Bvo, 

Substituting (3) and (6) into (1) and using the definition of the plasma frequency w, in 

Eq. 13.3(10), we get 

— jf WE yw 
lz ~ lz 

(w ~ Buo,) 
(7)
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This leads to two waves with phase constants 

WX Wp 
Bi2 = (15) 

Voz 

These waves involve interaction with the electrons and are called space-charge waves.” 
Typically, w, < w, and we may use the binomial expansion to obtain the phase veloc- 

ities in the form 

w _ ow 
Usi2 = Bis ~ v(t + es) (16) 

the values of which are seen to be somewhat greater and somewhat less than the drift 

velocity Uo.. The group velocity is 

dW 

Ug = ap = Uo: (17) 

for both space-charge waves. With the plasma drift vp. reduced to zero, a perturbation 

of the electron charge density leads to a local oscillation at a frequency w = w,, but 

the effect does not propagate. 

13.18 TEM WAVES ON A STATIONARY PLASMA IN A FINITE MAGNETIC FIELD 

Many types of waves can propagate in a plasma with an applied magnetic field, in- 

cluding hybrid TE and TM modes. 

Here we restrict our attention to simple TEM waves propagating parallel to the ap- 

plied dc magnetic field. The magnetized plasma is a gyrotropic medium so the normal 

modes of propagation are circularly polarized waves. 

The ‘TEM wave has no £. component and no variations of fields with respect to 

transverse coordinates, so V- E = 0 and Eq. 13.17(10) may be written in matrix form: 

  
7 EY Ey, €2 O || E, 0 

= E, | + w*Mo| €2, E22 O {| £,| = 10 (1) 

0 O O- &3; |! 0 0 

In the analysis of ferrites in Sec. 13.13, we saw that circularly polarized waves having 

the same direction of rotation with respect to the dc magnetic field have the same 

characteristic wave impedance and the same propagation constant; that result also 

applies here. 

42 §. Ramo, Phys. Rev. 56, 276 (1939), the concept was first usefully applied to electron 
devices by W, C. Hahn, Gen. Elect. Rev. 42, 258, 497 (1939).
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Consider first the waves having clockwise rotation relative to the dc magnetic field: 

EY’ = EM — j§),  EXY = EM — J) (2) 
If the electric fields in (2) are substituted into Maxwell’s curl E. equation, we obtain 

the corresponding magnetic fields 

Hy’ = ACR + y) HEY = —ASYGx + Y¥) (3) 

If either of Eqs. (2) is substituted into (1), we find the propagation constant 

ws/w )" 

  

By = OV bo (E11 — fn)? = OV Uo &p (1 + (4) 
Cc 

and the characteristic wave impedance is given by 

  

hed 
Ew Ew Ig w/e 

- hos = {———_ = p 5 
HY HE Vey — jen | cl 1 +o | °) 

These relations can be used in the transmission-line analogy as was done for ferrites 

in Sec. 13.13 by writing expressions analogous to the voltage and current in transmis- 

sion lines and introducing the impedance concept. The total electric and magnetic fields 

are 

  

  
  

E,(@) = Ewe 8? + Ewe Ih (6) 

1 | | 
H,(2) = — (EW e JA — Bere Ibi) (7) 

1 1 

wherein 8, is given by (4) and 7, by (5). To complete the analogy we need to define 

the total impedance 

E, (2) 

A, (2) 

  Z2,(Z) = (8) 

Then all the methods of transmission-line analysis can be applied to problems involving 

discontinuities of medium perpendicular to the direction of propagation. 

There is also a pair of wave solutions in which the fields rotate counterclockwise 

with respect to the direction of the dc magnetic field. The quantities corresponding to 

equations (2)—(8) are 

EE = EL + J¥): EY = EM + JY) (9) 

He’ = AS (jk + ¥), HY = HS(jX — Y) (10) 

we /w )" 

Ww. + w 
Cc 

  Bo = wV uoley, + je) = 0Vnet0( 1 — (11)
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1 = EN ES 

2 oe Ho E11 — jé co — 
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_ pl (12) 
oO. t+ W 

F(z) = ES%e IBF 4. BOW a IB (13) 

] ; 
H(z) = — (E%%e I8% — Ee /B2) (14) 

E,(2) 
Z(z) = 15 (2) H(z) (15) 

If a linearly polarized wave is incident on a gyrotropic medium, it can be decomposed 

into two counterrotating circularly polarized waves and each can be analyzed by the 

transmission-line methods. This applies for the plasma as well as for ferrite media. The 

procedures were discussed at the end of Sec. 13.13. 

13.2a 

13.2b 

13.2c 

13.2d* 

13.2e* 

13.3a 

PROBLEMS 

The susceptibility v, of nitrogen at 20°C and atmospheric pressure is about 

5.5 X 107*. What molecular polarizability a does this correspond to? Assuming 
the ideal gas law, and a+ independent of temperature, give susceptibility as a func- 
tion of temperature. 

Find the resonant frequency for an electronic resonance (charge cloud in an atom) in 
the Lorentz model, assuming the atom to have 10 electrons distributed uniformly in 

the cloud and acting as a group. The maximum displacement r of the charge cloud 
from the equilibrium position is less than its radius @ = 0.1 nm. 

Consider a liquid with ¢, = 4.0 at room temperature for dc fields. Take the polari- 
zation P to be proportional to E. Assume, for simplicity, that the polarizability re- 
sults only from orientation of permanent dipoles and that there is spherical symme- 

try about each molecule. The density of molecules is 1078 m~? and the relaxation 
time 10~'! s. Find the dc polarizability and the field frequency at which 
&' = 2.08. 

Find from Eq. 13.2(11) the corresponding permittivity with g and I taken as real 

and frequency independent. Show that e’ and «” satisfy the Kramers—Kronig rela- 
tions, Eqs. 13.2(13) and (14). Assume small damping; use limits — © to © as in 

Eq. 11.11(5). 

Repeat Prob. 13.2d for a permittivity based solely on Eq. 13.2(12). 

Show that the ratio of magnetic to electric forces on the electrons in an ionized gas 

resulting from the fields of a uniform plane wave is u/u,, where v is electron veloc- 
ity and v, is the phase velocity of the wave. Assume a 10- MHz wave carrying a 

power of 1 W/m? and estimate the maximum electron velocity, assuming negligible 
collision frequency. Give an upper limit for v/v, in this case. Assume w > a,.
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13.3c 

13.3d 
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Assume a neutral plasma in which all electrons in the region x to x + Ax are given a 

displacement Ax. Considering the forces acting to restore neutrality, show that the 
displaced sheet will oscillate at the “plasma frequency” w, given by Eq. 13.3(10). 

A sample of silicon (¢, = 11.7&9) uniformly doped n-type with a dopant concentra- 
tion of 5 X 10!7 cm~? is found to have a de conductivity of 2.5 X 10°S atT = 
300 K. The electron effective mass is 0.26, where mi is the electron rest mass. 

Determine the collision frequency, assuming that the electron density equals the do- 
pant density. Find the frequency at which s” differs from the value in Eq. 13.3(8) by 
10%. Evaluate the ratio of second to first terms on the right side of Eq. 13.3(6) 
where w — 0 and w = v. Comment on the restrictions on the use of Eq. 13.3(8). 

A simple model of the ionosphere may be formulated by assuming that the number 

density of free electrons increases linearly from zero at height z, to 10! per cubic 
meter at height z, and then decreases linearly to zero at height 2z, — zp. The colli- 

sions may be neglected. A uniform plane wave traveling directly upward encounters 
the ionosphere. What is the highest frequency for which this wave will be totally 
reflected? Plot the maximum altitude versus frequency. 

Find the real and imaginary components of the dielectric constant, e’ and e”, respec- 
tively, of silver and nickel for waves from a CO, laser (10.6-u4m wavelength) using 
Fig. 13.3b, assuming the complex behavior can be cast in that form. Determine the 
ratio of the magnitudes of the real and imaginary components of total current. 

13.3f Plot attenuation in nepers/micrometer versus wavelength for nickel and silver over 

13.3g 

13.4a 

13.4b* 

13.4¢ 

the wavelength range of Fig. 13.3b, using data of that figure. 

Plot curves of 7, and n, versus wavelength for silver assuming it a good conductor 
with the conductivity given in Table 3.17, and compare with Fig. 13.3b over the 
wavelength range shown. Comment on reasons for differences. 

As discussed in Sec. 13.4, time-dependent fields decay into the surface of a colli- 

sionless conductor if w < w,. Show this from Maxwell’s equations in time- 
dependent form using Eg. 13.3(1) with v = 0 and du/dt ~ du/dt. Specifically, 
show that 

OB. oB.. 
—|={(— exp(— az) 
dt /, dt J, 

where a? = yn,e”/m and B, is tangential to the plane surface of a half-space as in 
Fig. 13.4. 

The two-fluid model of a superconductor assumes that a portion 1, of the total elec- 
tron concentration is in the normal state described by Eq. 13.3(1) and the remainder 

n, is in the superconducting state for which m dv,/dt = —eE. Calculate current 
density for each component and add to get J,o.4) = OE. Show that for (w/v)* <1, 
n, Sn,andn =n, + n,, o = o,(n,/n) — j(1/wpaz) where o,, = ne?/vm. Use 
the usual expression for skin depth to show that 

v= veal (508) 
and that in the low-frequency limit exp[—(1 + j)z/6] becomes exp(—z/A,). 

Bulk superconductors (dimensions very large compared with penetration depth) are 

often considered to be perfectly diamagnetic (u% = 0). Use the analysis in Sec. 7.18 
to show that a sphere of superconducting material in an otherwise uniform magnetic 
field will have B = 0 inside and H = 3H, at the equator atr = a.
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13.4e 

13.5a* 

13.5b 

13.6a 

13.6b 

13.6c 

13.6d 

13.6e 
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Using the energy method, calculate the inductance per unit length of a parallel-plate 

superconducting transmission line. Assume the plates are identical, are much thicker 
than the penetration depth A, , and are wide enough to neglect fringing. You should 
find L = (uo/w)(A, + d), where w is the width and d the dielectric thickness. 
[Note: The kinetic energy of the collisionless superconducting electron fluid contrib- 
utes to the inductance an amount equal to the magnetic energy inside the supercon- 
ductors. Thus, the correct inductance is L = ()/w)(2A, + d).] 

Suppose a quasi-TEM wave propagates in a parallel-plate structure in which thick 

superconducting electrodes are spaced by (3 nm) niobium oxide having a relative 
permittivity of 30. 

(i) Use the correct expression for L given in Prob. 13.4d to find an expression for 
the phase velocity of this transmission line. 

(11) Find uv, for the given structure assuming A, = 0.039 wm for niobium and com- 
pare with the velocity of a plane wave in the same dielectric. 

(ii) How would the result differ if niobium were a collisionless conductor? 

The potential energy of a dipole in a magnetic field H; is —mgU9H; cos 0, where 6 
is the angle between mm, and H;. Boltzmann theory states that the relative probability 
of finding a dipole with an energy U is given by exp(— U/kT). Write an expression 
for the average value of the component of dipole moment in the direction of H,, 

(Mg cos 8), and do the integrations to show the validity of Eq. 13.5(3). 

Magnetic dipole moment of a small current loop of radius a is my = Ta7l 
(Sec. 2.10). Verify that the argument of the hyperbolic contangent in Eq. 13.5(3) 

and y,, are dimensionless. 

Spontaneous magnetization can only occur if there is some value of H; for which 
Eqs. 13.5(3) and 13.6(1) are simultaneously satisfied. Sketch roughly the forms of 

these two expressions as functions of H;, indicating a point of intersection. As tem- 

perature is raised, the point of intersection moves to lower H,. The highest tempera- 
ture at which there is a simultaneous solution is the Curie temperature T,. At this 
temperature the initial slopes of the two curves are equal. Use this fact to find a 

relation between x and T,. 

Find « for iron using the result of Prob. 13.6a and Curie temperature of 1043 K. 
There are 8.6 X 107? atoms/cm°. Assume that the magnetic moment of the iron 
atom is 2.22 Bohr magnetons, where a Bohr magneton is eh /4 7m. Here e is the 

electronic charge, A is Planck’s constant (6.63 X 10~%* J-s), and m is the mass of 

an electron. 

For the material depicted by Fig. 13.6d assume B,,, = 0.1 T. Deduce the scale on 
the H axis and estimate the energy loss per cycle if H is swept through the range 
shown. Find values for coercive force, remanence, initial permeability, and maxi- 
mum permeability. (Note that since Fig. 13.6d is only diagrammatric, numbers ob- 

tained will not be representative of real materials.) 

Assume that a rod of circular cross section of radius a and length / has been uni- 
formly magnetized parallel to its axis. Find the current per meter in a solenoid of the 
same length to get the same flux density at the ends on the axis. Write an expression 

for the magnetic flux density on the axis at the end of the rod. 

When an ellipsoidal sample of isotropic magnetic material is placed in an otherwise 

uniform magnetic field H,,,, a complex field distribution results outside the sample 

but it is untform inside. If the field is along a principal axis of the ellipsoid the field
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inside is parallel with H,,,, and its magnitude is given by a demagnetization factor 
% and the constitutive relation between B and H: 

Hyp — DB/ bo — “app ~ 2P/ Ho 
T= ~"C — 8) 

(i) A rod of circular cross section is modeled by a long prolate ellipsoid of revolu- 
tion with H perpendicular to the long axis, = 3. Suppose a rod of w = 100 
material in this arrangement and find the ratio of internal B to applied B = 

Molt, app° 

(ii) Show that the result for a sphere in Eq. 7.18(25) can be found from the above 

relation with @ = §. 

(iii) Verify the result for a superconducting sphere given in Prob. 13.4c. 

(iv) Argue from boundary conditions why % = 0 for field parallel with major axis 
of a long prolate ellipsoid of revolution. 

13.7 Suppose two coparallel waves with the same electric field polarization pass through 
a 1-cm-long crystal. The fields are intense and produce nonlinear effects. The wave- 
lengths (in free space) of the waves are 632.8 and 592.1 nm. 

(i) What is the maximum difference in index n between w, ~— w, and w, [assume 
n(@,) = n(w,)] if negligible cancellation is to occur because of the difference of 

phase constants between the polarization and the wave propagating at w, — a>. 
Use as a criterion that the difference integrated over the length of the crystal is 
not greater than 7/2. 

(ii) An output difference-frequency wave of 1.0 mW is observed. What is the power 
lost or gained by each of the two driving waves? 

13.8a As a simple example of the idea of diagonalizing matrices by coordinate transforma- 
tions, consider a two-dimensional system where 

Pe i ee | i 
Dy, 0.433 1.25 |LE, 

Write expressions for D and E in a primed coordinate system rotated by 6 from the 
unprimed system. By combining these with the given relation between D and E, 
find the amount of rotation necessary to put [€] in the diagonal form 

1 0 
[e] = co | 

13.8b Barium titanate (BaTiO;) has ¢,, = &. = 5.94e, and €3, = 5.59&. Sketch (show- 
ing dimensions) and describe the index ellipsoid. What are the values of X, Y, and Z 
that pertain to a plane wave propagating in the y direction with its D vector in the z 

direction? 

13.8c Show that Eq. 3.12(6) is consistent with Eq. 3.15(5) for linear, anisotropic, time- 
invariant media, as was done in Prob. 3.12f for isotropic media. 

13.9a Derive Eq. 13.9(4). 

13.9b Verify the conversion of Eq. 13.9(10) to Eq. 13.9(12), the “Fresnel equation of 
wave normals.” 

13.9c* Assume waves propagating with direction such that b, = 0.900, b, = 0.100, and 
b, = 0.424 in a crystal with w = py and €,, = 12, Eo. = 14, and 63, = 168.
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13.10a 

13.10b 
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13.1la 

13.11b 

13.11c 

13.12a 

13.12b 

13.13a** 

Problems 739 

Determine the values of phase velocity for the two allowed waves. Find for each the 
vector expressions for D and show that D, 1 D,. 

For the index ellipsoid shown in Fig. 13.9c with an arbitrary propagation direction 
B, show that if an ellipse is defined by the intersection of the ellipsoid and a plane 
normal to 8, major and minor axes of the ellipse define two basic solutions for the 

direction of D, and corresponding indices of refraction. (Hint: Find the extrema of 
R? = X* + Y° + Z? subject to the two constraints on X, Y, Z, on the boundary of 
the intersection ellipse using Lagrange multipliers. This will lead to three equations 

of the form X(1 — R°/nz) + b.R°[Xb,/nZ) + (Yb,/n2) + (Zb_/n2)], where n2 = 
&,,/€p, etc., which can be recast into the form of Eqs. 13.9(8).] 

A beam of light is normally incident on a surface of a calcite (CaCO ) crystal as 

shown in Fig. 13.10b. The optical axis is at an angle 29 degrees from the inward 
surface normal. Take €,; = &). = 2.7& and €3, = 2.2€,. Treat the incident light 
as unpolarized plane waves. Find the spatial separation of ordinary and extraordi- 
nary rays at the opposite (parallel) crystal surface 1 cm away. 

For a beam of light incident at an oblique angle on a planar slab of double- 
refracting (birefringent) material, show that the two emergent rays are parallel. 

A linearly polarized wave at Ag = 550 nm is incident with its electric field at 45 
degrees to the y axis on the surface of a 1.0-4m slab of LINbO, cut so that y—z 

plane lies in the surface (“‘x-cut”). Indices aren, = 2.29 andn, = 2.20. Find the 
wave propagated beyond the slab. 

Show that the new principal axes x’ and y’ are rotated by 45 degrees from the crys- 
tal axes x and y when a crystal of KDP is subjected to an electric field E,. Prove that 
the 11 and 22 elements of the [1/n*] matrix in the primed coordinate system are 

given by Eqs. 13.11(10). 

A BaTiO, crystal is to be used as a modulator as shown for LiNbO, in Ex. 13.1 1a. 
Assume the light is polarized with E = x£, and find the magnitude of field required 

for 7 rad of phase shift. Note the large value of r,, for BaTiO,. Take A = 550 nm 
and / = 1 cm. How would you orient wave propagation direction, polarization, 
and direction of modulating field with respect to crystal axes to make use of this 

coefficient? 

As noted in the discussion of the modulator of Fig. 13.11c, a “quarter-wave” plate 

may be used to bring the ratio of |E.(/)/E,(0)| to the linear portion of the variation 
(Fig. 13.11d). Calculate for A = 550 nm the basic thickness for KDP with n, = 
1.47 and n, = 1.51 and for quartz with n, = 1.55, , = 1.54. (Since these are 
small values, full wavelengths are added or the thin sheets placed between thicker, 

transparent isotropic materials). 

Assume a model of an electron as a spinning sphere of uniform mass and charge 

and calculate its magnetic moment and angular momentum. Show that y in Eq. 
13.12(2) differs by a factor of 2 from the value given in the text. 

Verify the matrix coefficients in Eq. 13.12(13) and (14) starting with 13.12(9). 

Consider a 10-cm-thick plane slab of ferrite of infinite cross section normal to the 

z axis. Assume a dc z-directed magnetic field H, of 10° A/m inside the ferrite. The 
saturation magnetization M, of the ferrite is 1.5 X 10° A/m and the relative permit- 
tivity is 13. A linearly polarized plane wave of frequency 10? Hz moving in the +z 

direction is incident on the slab. Find the wave on the other side of the slab in terms 

of the incident wave using transmission-line methods.
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Chapter 13 Electromagnetic Properties of Materials 

The literature on ferrite properties often gives saturation magnetization as 477M, and 
magnetic field Hp in gaussian units. Calculate the gaussian values of 477M, and Ho 

from the MKS values of M, and H, given in Prob. 13.13a. Also equate values of a 
for the two systems of units to show that y in the expression wy) = — yoy using 
gaussian units has the value —1.76 X 10’ rad/O-s. 

Show that Faraday rotation for a wave traveling in the —z direction is in the same 
direction relative to the magnetic field as for a wave in +2 direction: Sketch the 

orientation of H for various z at t = O in the wave in —z direction. 

Show that Eq. 13.11(13) represents an elliptically polarized wave and contrast with 

the Faraday effect. 

Some materials possess a property called natural optical rotation whereby the plane 

of polarization of a wave passing through them is rotated without the application of 
electric or magnetic fields. This is explained by the “screw-like” nature of individ- 
ual molecules. For example, a 10-cm column of a cane sugar solution (0.1 g/cm?) 
produces about 6.7 degrees of rotation. Assuming the individual molecules to be 
represented crudely by right-hand screws, explain why there remains a net effect in 

a solution where these molecules are randomly oriented. Explain also why the re- 
flected wave returns to its original polarization, in contradistinction to the Faraday 

effect where the reflected wave rotates through an additional angle. What should be 
the rotation per meter of a 0.05 g/cm? solution of sugar? 

Consider a resonance isolator in a rectangular waveguide. Operating frequency is 
18 GHz in TE,, mode at 1.3 times its cutoff frequency. Absorbing strip is square 
cross section; approximate as a circular rod and use information in Prob. 13.6e. 
Assume B saturated at 0.2 T. Determine location of strip and magnitude and sign of 

the applied field H,,,,.. 

Assume plane waves propagating in the z direction in a plasma so that &. = 0, in 

the case where there is an average drift velocity v, of the electrons in the z direction 
parallel to the steady magnetic field. Find e€,,, €,5, &2, and &,,. Note in the result 
that the electrons see a field with Doppler shifted frequency. 

Repeat the derivation of Sec. 13.16 to find the permittivity matrix taking account of 
the motion of singly charged ions of mass m; as well as the electrons. 

Evaluate the propagation constants in Eq. 13.17(15) for a beam of electrons which 
has been accelerated to an energy of 2000 eV. The current density is 10° A/m7?. Plot 
an w — £8 diagram for the space-charge waves. For convenience use wV/ pig&p as the 

ordinate. 

Consider a plasma with electrons drifting along an infinite magnetic field as in Sec. 
13.17 but located inside a circular cylindrical waveguide with perfect-conductor 

walls. Use the differential equation 13.17(13) in the appropriate form to find an 
expression for the cutoff frequencies of the allowed electromagnetic modes. 

A linearly polarized plane wave with equal y and z components of electric field is 
launched in the x direction in a neutral plasma with infinite magnetic field in the z 
direction. The frequency is 4 GHz and the number density of electrons is 10’” per 

cubic meter. Find the distance in which the linearly polarized wave becomes circu~ 
larly polarized. 

A beam of millimeter waves (100 GHz) is normally incident on a 0.06-mm-thick 
planar metal membrane in air. The temperature of the membrane is low enough to 

neglect collisions of the electrons. An extremely strong (assume infinite) steady
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magnetic field By is applied to the membrane with B, parallel to the surface. Take 
electron density to be 107? cm~?, permittivity of the ions as 30g), and E in the inci- 
dent wave to be 45 degrees from By. Find the magnitude of the wave that exists 
beyond the membrane. 

Suppose a stationary plasma filling the half-space z > O in a magnetic field in the 
+z direction. The other half-space z < 0 has only vacuum. Take the number den- 
sity of electrons to be 10'’ m~° and the magnetic field to be 0.1 T. A clockwise 
polarized plane wave of frequency 2 GHz propagating in the +2 direction 1s inci- 
dent on the plasma. What is the value of the field of the wave propagating in the 
plasma as a fraction of the field in the incident wave? 

Sketch the variations of BS” and BS versus w in the frequency ranges where pro- 
pagation occurs. Identify the values of w at the edges of the propagation ranges. 

For a plasma with electron density of 10'® m~3, plot the angle of Faraday rotation 
in radians per meter of a linearly polarized wave at 3 GHz propagating parallel to 
constant B for B = 0 to B = 0.09 T. What happens when B = 0.1 T? 

A linearly polarized plane wave in free space is incident normal to a planar layer of 
plasma 10 cm thick. The region beyond the plasma layer is also free space. Assume 
electron density, magnetic field, and frequency as in Prob. 13.18c. Find the electric 

field of the wave reflected from the plasma.



  

  

14.1 INTRODUCTION 

Maxwell’s theory demonstrated that light is an electromagnetic phenomenon, as was 

explained in Chapter 3. We have consequently used optical examples extensively to 

this point. But there are enough special considerations in the generation of coherent 

light by means of lasers, and in the use of this radiation, that a chapter for specific 

discussion of these is justified. We consequently concentrate on optical waveguides, 

optical resonators, and some related optical components in this chapter. In referring to 

“optical frequencies,” we generally mean the visible range, the near infrared, and the 

near ultraviolet (wavelengths, say from around 10 4m to 100 nm), but the key point is 

the relation of size and curvature of wavefronts to wavelength. Thus most of the con- 

cepts also apply to the far infrared (wavelengths ~ 100 um) and many of the analyses 

to millimeter waves and microwave radio frequencies when relation of size to wave- 

length is appropriate. The term qguasi-optical is often applied to such situations. 

For a number of practical applications, the propagation of light may be described by 

the behavior of the rays, which are the normals to the wavefronts. These are straight 

lines in a homogeneous medium, change direction according to Snell’s law at the bound- 

ary between dielectric media, and are in general curved for inhomogeneous media. The 

basis for these rules and some important applications will be presented in the first part 

of this chapter. 

The guiding of optical waves is generally accomplished by dielectric waveguides of 

the type introduced in Sec. 9.2. Hollow-pipe guides with metal boundaries are not only 

difficult to fabricate in the small sizes one would find at these wavelengths, but the 

metal boundaries would produce much greater losses at the optical frequencies than can 

be obtained with good dielectric guides. The principles of dielectric guiding have been 

presented in Chapter 9, but there are a number of special considerations worth devel- 

oping in more detail than was done in that introduction. In particular, dispersion of 

signals in such guides is of importance in telecommunication uses. Also, a class of 

inhomogeneous dielectric guides, known as graded index guides, has unique and useful 

properties and leads to waves with gaussian form in the transverse plane. Similar but 

diverging gaussian beams are found in space (or other homogeneous media) and their 

transformation by lenses and other optical components is especially important. The 

spreading of such beams 1s a special case of diffraction, studied in Chapter 12. 
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Optical resonators are likewise not different in principle from other resonators we 

have studied in Chapter 10. But as with the guides, the questions of size in relation to 

wavelength and the properties of materials at optical frequencies produce some practical 

differences. In particular, there is much use of resonant systems which are open to space 

in the transverse direction, with the waves reflected longitudinally between plane or 

spherical mirrors placed normally to an axis. Gaussian beams again play a role in such 

resonators. 

Several materials properties important to optics, especially anisotropic and nonlinear 

properties of materials, have been covered in Chapter 13. In this chapter we consider 

an important aspect of nonlinearity—that leading to solitons in which dispersive and 

nonlinear effects tend to cancel. In soliton propagation short pulses may propagate large 

distances without much change in shape. Finally, we give an introduction to the infor- 

mation processing applications that arise from diffraction theory and the Fourier trans- 

forming properties of lenses. Additional details on these subjects are covered in many 

excellent texts.'~* Quantum effects, such as the laser principle and interactions between 

light and semiconductors, are covered in books on quantum electronics. 
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Ray or Geometrical Optics 

14.2 GEOMETRICAL OPTICS THROUGH APPLICATIONS OF LAWS 
OF REFLECTION AND REFRACTION 

We have already applied the results of the plane-wave analysis to many optical prob- 

lems. The results of that analysis (Chapter 6) are strictly applicable only to plane waves 

which are uniform over an infinite wavefront and which fall upon infinite plane bounda- 

ries between media. Nevertheless, one would expect the results to be useful whenever 

the wavefront extends and is uniform over many wavelengths, and when the boundaries 

are large in comparison with wavelength. Both boundaries and wavefront may be non- 

planar so long as radii of curvature are also large in comparison with wavelength. In 

such cases one obtains a great deal of information about the waves by tracing the rays 

that represent the normals to the wavefronts, using locally the law of reflection and 

Snell’s law of refraction. These were developed in Chapter 6 for uniform plane waves 

A. Yariv, Optical Electronics, 4th ed., Saunders, Philadelphia, 1991. 
H. A. Haus, Waves and Fields in Optoelectronics, Prentice Hall, Englewood Cliffs, NJ, 1984. 

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley, New York, 1991. 
A. E. Siegrnan, Lasers, University Science Books, Mill Valley, CA, 1986. 
For example, A. Yariv, Quantum Electronics, 3rd ed., Wiley, New York, 1989. wm 
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by considering phase requirements on continuity conditions at a boundary. ‘These laws 

were actually first developed by observing the behavior of rays of light falling upon 

various materials before the wave nature of light was clearly established, and formed 

the basis for an extensive art and science of optics well before Maxwell. It is called 

geometrical optics or ray optics. We shall show the formal development in the next 

section; here we use only the physical justification discussed above and give some useful 

examples. In this section we consider only homogeneous media, except for discontin- 

uities at boundaries. 
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Example 14.2a 
SPHERICAL MIRROR 

Consider first a reflecting surface of spherical form with rays (normals to the wavefronts 

of the plane waves) parallel to the axis and falling on the mirror. As shown in Fig. 

14.2a, a ray at radius r from the axis makes angle @ with the radius vector from P to 

the center of the sphere C. Then if the law of reflection applies locally to the region 

around P, the reflected ray PF also makes angle 6 with radius PC and crosses the axis 

at F. We tentatively call this the focus F and its distance from the sphere, focal length 

f. The reflected ray makes angle 26 with respect to the axis. Then, from trigonometric 

relationships, 

    

= tan 6 Ro) mm (1) 

r 2 tan 0 
= tan 20 = ————_ 

f-z 1 — tan? 6 2) 

The equation for the sphere is 

r2 + (R — z)? = R? (3) 

By substituting (1) in (2) and utilizing (3) we can solve for f: 

mab (i) ] ° 
We see that f is a function of radius 7 at which rays enter, so not all rays are focused 

to the same point. There is spherical aberration as shown in Fig. 14.2b. However, for 

Tays very near the axis, with 7 negligible in comparison with R, the expression 

(4) reduces to 

R 
f~5 (5) 

so that in this approximation the focal length is independent of r and is just half the 

radius of curvature of the mirror.
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fa) (b) 

  

  

FiG. 14.2 (qa) Ray entering spherical mirror parallel to axis. (b) Rays entering spherical mirror 
at various radii. (c) Parabolic mirror and ray reflected to focus F. 

Spherical mirrors are used in forming the resonant systems for various lasers. They 

often have radii of curvature of a few meters, with rays entering a few millimeters from 

the axis so that the spherical aberration is small and the approximation (5) for focal 

length well justified. 

  

Example 14.2b 
PARABOLIC MIRROR 

To eliminate the spherical aberration just shown, the reflecting surface should be a 

paraboloid. The paraboloid (Fig. 14.2c) may be defined by 

2 r 

z= — 6 4g (6) 

where g is a constant shown below to be focal length. Slope of the mirror at radius r 

is then 

dr [dz\"' 2 —=(—} == 1) 
dz ar r
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The slope of the normal to the mirror, PQ, is just the negative reciprocal of (7): 

(2) = —— = —tan 6 (8) 
dz }p09 22 

From the trigonometry of the figure, 

r 

f-2z 

Using the identity in (2), with (8) it can be shown that f 1s independent of the incident 

radius r and equals the constant ¢g in (6). 

We have here used only the law of reflection but it is interesting to use this example 

to show the relation to wave optics. In the latter, one can show that all rays entering 

parallel to the axis and reflecting to the focus have the same phase delay from some 

reference plane z = Zp, to the focus F. Since the medium is homogeneous, this means 

that all such paths are of equal length, as is known to be the case for a paraboloid. 

  tan 20 = (9) 

  

Example 14.2c¢ 
THIN LENS 

We next consider the thin lens, the requirement of thinness implying that lens thickness 

is small in comparison with focal length. For simplicity we make one surface a plane 

as illustrated in Fig. 14.2d. The lens material is considered transparent, with index of 

refraction n, the surrounding medium being air or space with refractive index unity. 

Consider first the derivation of the law for the curved surface from Snell’s law of 

refraction. A ray entering parallel to the axis at radius r from the axis experiences no 

refraction at the plane surface, but does refract at the right-hand curved surface, as 

shown in Fig. 14.2d. If 6, and 6, are the angles on the two sides from the normal to 

the curved surface, Snell’s law gives 

sn 6, ny 
= = ] 

sin 6; = My ” (19) 

Pea 
~a 89 - 6) 

<— | — > G 

i 
i 

Fig. 14.2 (d) Thin lens showing focusing of entering parallel rays to a point. 
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If rays are paraxial (i.e., are nearly parallel to the axis) angles will be small so that sines 

may be approximated by angles themselves: 

6, ~ né, (11) 

Also assume that /f is small so that 

; = tan(@, — 0,)~6 —-%~(n—- 16, (12) 

The angle 6, can be related to the slope of the curved surface: 

oe _ —tan 6, ~ —-6, = -_—_— (13) dr (n — lf 

Upon integrating we find 

2 

~ “on - pp? ? a4) 

where the constant d is the value of z at r = O, the maximum thickness of the lens. 

This result is a parabolic surface, but since it was derived with several approximations, 

it is usual to approximate this by a spherical surface. If R is the radius of curvature of 

the sphere, 

2 

z= VR —P-(R-d)~d- > (15) 

where we assume r < R. In comparing with (14), 

I _ (nv — 1) 

f R 
  (16) 

From another point of view, the lens may be considered a phase transformer with 

rays at different radii from the axis arriving at the focus with the same phase. Let us 

illustrate this with a doubly convex lens (Fig. 14.2e). With approximations as in (15), 

z, and Zz, are 

2 2 
— ; zg, = dn — 

2R, 2 "OR, 
    2 = dy (17) 

where all quantities are positive in the convention of Fig. 14.2e. The extra phase intro- 

duced by the lens at radius r, over that of the path in air, n = 1, is 

2 4 1 
dtr) = k(n — IZ, + %) = k(n —- D| + dy) — “(2 + 2) (18) 

This may be written in terms of the maximum radius of the lens a where z, and 2, are 

ZeTO: 

br) = ko(n — 1)(d, + dy)[1 —1r?/a*] (19)
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Radius of curvature Ry,   

  

  

(f) 

Fig. 14.2 (e) Thin lens; focal length found from phase condition. (f) Imaging of point P to P’ 
by thin lens. 

Now if we add the phase in going from radius 7 of the lens to the focus, total phase is 

2 rr 

“| ; r<f (20) 6 = $0) + yVP? + Px $0) + ho (s + 

Using (18), the condition for @ to be independent of r is 

k(n — 1)r? (2 1 1 kor? 5 —j} _- 

R, R,/  2f 

or 

=(9- (+> 21 =@-DNp +R (21) 
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Example 14.2d 
RELATION OF OBJECT AND IMAGE DISTANCES IN THIN LENS 

Either Snell’s law or the requirement on constancy of phase for different paths may be 

used to derive the relationship for object and image distances in a thin lens. Let us use 

the latter method for the simple lens analyzed above. This is redrawn in Fig. 14.2f to 

show a ray path going from object point P, distance d, from the lens, to image point 

P', distance d, on the other side. The phase delay between the two points for a ray 

passing through the lens at radius 7 is 

by, = 0) + hl VP +P 4+ VB + 77] (22) 

Using (18), (21), and approximations based onr <1,, 1, 

+2 2 2 
n=kla- Dd, +a) -—+tht+e4+h4+25 23 Pr, so Md, 2) of 1 21, 2 = (23) 

For this to be independent of r, 
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(24) 
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which is the well-known relationship between object and image distances for a thin 

lens. 

  

]4.3. GEOMETRICAL OPTICS AS LIMITING CASE OF WAVE OPTICS 

In the preceding section we argued the case for geometrical optics on physical grounds. 

Now we show formally the terms that are neglected in this approximation. Let us assume 

fields of the form 

E = e(x, y, ze Mey (1) 

H = h@, y, z)e #089) (2) 

where ky) = WV ofp. We next substitute (1) and (2) in Maxwell’s equations for a 

linear, source-free, isotropic medium, making use of the expansion of the curl of a 

vector multiplied by a scalar: 

VxE=[V Xe — jk, VS x ele~*S = —jwphe oS (3) 

VxH=([V Xh — jk, VS X hle~*S = jweee~Ho5 (4)
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Rearranging, we have 

1 
vsxe-FH~h=a—Vxe (5) 

Ko JRo 

i 
VSxhtonme=—Vxh (6) 

Ko JKo 

At this point we make the approximation that leads to the geometrical optics formula- 

tion, assuming that the multipliers e and h vary little in wavelength. The curl of e 

represents a derivative with distance, and ky = 277/Ag, so the right side of (5) is small 

if e varies only a small amount in distance Ay. Similarly, the right side of (6) can be 

neglected if h likewise varies a small amount in a wavelength. Equations (5) and (6) 

then lead to 

  h ~ VS Xe (7) 
L,To 

ex —vs xh (8) 
Ee, 

Let us now interpret the expressions. If S is real, the function k,S may be considered a 

phase function with surfaces S = constant being surfaces of constant phase and the 

gradient of S giving the local “direction of propagation.” We see from (7) and (8) that 

e and h are then in phase and are normal to each other and to the local direction of 

propagation, as would be expected if the local behavior is that of a plane wave. If S is 

complex, (1) and (2) show that there is attenuation of the wave, and then (7) and (8) 

yield a phase shift between e and h, as is expected for attenuating media. 

We next obtain a rather important equation relating the gradient of S to the local 

refractive index. To do this, we substitute (7) in (8) and expand the triple vector product 

to obtain 

e= tt [VS(e: VS) — e(VS- VS)] (9) 
rT 

Since e and VS are at right angles, the first term on the right is zero and 

VS|? = n(x, y, z) (10) 

where n is refractive index = (u,¢,)'/*. This equation is known as the eikonal equation 

of geometrical optics.° In rectangular coordinates, 

(e+ (S) (8) =» Ox dy az =n (x, ys Z) ( ) 

Note that for a homogeneous medium with 1 a constant this is satisfied by 

S = n(x cos a + ycos B + zcos y) (12) 

© M. Born and E. Wolf, Principles of Optics, 6th ed., p. 112, Pergamon Press, New York, 1980.
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with 

2 2 9 

cos* a + cos B + cos* y = 1 (13) 

which is the phase variation one would expect for a uniform plane wave propagating 

in an oblique direction defined by direction cosines cos a, cos B, and cos y. Substitution 

in (7) and (8) would lead to the expected relative orientation of e and h for such a wave 

(Prob. 14.3c). 

Let us next look at power and energy relations for the rays in this formulation. The 

average Poynting vector is 

  

P, = 4Rel[E x H*| = 4Rele x h*] (14) 

Substitution of (7) and expansion of the triple vector product gives 

1 
P, = | VS(e - e*) — e*(e- VS)| (15) 

2 LM, To 

The last term is zero since e is normal to VS. The first term may be written in terms of 

average energy density in electric fields, u, = e(e- e*)/4: 

4 Cc = ——*£_ Ws = = 2u,)8 (16) 
2 [dL NoE Eo n 

where § = VS/n is the unit vector in the local direction of the ray. Note that the average 

stored energy densities in electric and magnetic fields are equal, as can be shown from 

(7) and (8), using the vector identity A- B X C: 

av 

€ ] 
—(e-e*) = —— [e- (VS X h*)] = 4 ee) a, le WS )] 

P
I
E
 

(h - h*) (17) 

Thus the term 2u, is total energy density and we see from (16) that the Poynting vector 

is equal in magnitude to energy density multiplied by c/n, as would be expected if local 

behavior is as in plane waves. It also has the ray direction given by VS so that a tube 

defined by ray directions (Fig. 14.3) has, for a lossless medium, the same power trav- 

ersing each cross section. This is analogous to the continuity of flux in a flux tube as 

met in static fields. 

  

Fic. 14.3. Tube of constant power flow.
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Corrections to the geometrical optics formulation have been made’ by expanding e 

and h in asymptotic series in terms of wavelength and including contributions of various 

orders from the right-hand sides of (5) and (6). 

14.4 RAYS IN INHOMOGENEOUS MEDIA 

The general formulation for ray propagation given in the preceding section gave the 

expected but almost trivial result for homogeneous media, but is of much more use 

with materials for which the refractive index varies with position. In such media the 

rays are curved and the geometrical optics approach can often give a great deal of 

information about the nature of the waves. Important practical examples of inhomo- 

geneous media include the graded index fibers used for guiding of optical waves, the 

surface guides of integrated optics made by diffusion or ion implantation, and the lower- 

frequency example of radio waves in the ionosphere. 

Before applying the general formulation, we can obtain an expression for curvature 

of the ray and a physical understanding of the bending process, by assuming that the 

change of index occurs in a series of steps of differential size. If Snell’s law is applied 

to the surface separating a differential region with index n from one with n + dn as in 

Fig. 14.4a, there results 

n _ sin(@ + d@) _ sin @ + d@écos @ 

n + dn sin 0 sin 6 

from which we find 

    (1) 

d 
cot 646 = -— (2) 

The radius of curvature is found from the intersection of the lines erected perpendicular 

to the ray, and can be related to the length ds of the ray segment in the layer with index 

n + dn and the angle dé or, alternatively, in terms of the ray segment dR along the 

radius of curvature: 

  R= as _ _dk 3) 
do décot 6 ( 

Using (2), this may be written as 

1 1 dn A 
R nap Vaan) (4) 

In graphical ray tracing, the radius of curvature can be calculated from point to point 

as the index changes, and the ray traced by joining the corresponding arcs at suitably 

small intervals. 

” M. Kline and |, W. Kay, Electromagnetic Theory and Geometric Optics, Wiley Infer- 
science, New York, 1965.
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tT 

(6) 

FiG. 14.4 (a) Construction showing radius of curvature of ray in inhomogeneous medium. 

(b) Element of ray and definitions used in general formulation. 

With this physical understanding of the basis for ray curvature, let us apply the formal 

development of Sec. 14.3. As shown in Fig. 14.45, let r’ be the vector position of a 

point on the ray from an arbitrary reference. Its differential change is 

dr’ = &ds (5) 

where s is distance along the ray and § is a unit vector in the ray direction. But from 

Eq. 14.3(10) and discussion after Eq. 14.3(8), the gradient of S has a magnitude equal 

to refractive index and the direction of §: 

VS = ns (6)
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Thus 

ar’ 
—_=V n 1s 5 (7) 

‘Taking an additional derivative 

d dr’ d 
as (: *) =. (VS) (8) 

But because of (6) 

d 
— (VS) = Va (9) 
ds 

so that (8) becomes 

d ar 
— = V ds (; *) - " (10) 

Still other useful forms, including the relation (4), may be derived from this (Prob. 

14.4c). We now illustrate the use of the above through two practical examples. 

              EAE SMITE SE ED REE EPO ES 

Example 14.4a 
THIN CELL WITH QUADRATIC INDEX VARIATION 

As a simple but useful example, consider a thin cell (Fig. 14.4c) with refractive index 

varying quadratically with radius r from the axis: 

\2 

nr) = ro ~ a(2) | (11) 
a 

be 
nr) Ray with rg = 0 Ray with rg = 

4 tcf ny 

yf aay : DQ EN 

  

  
  

  

  
. f 

ny [cl 

_ (d) 

aS 

(c) 

Fic. 14.4 (c) A cell filled with an inhomogeneous material, acting as a lens. (d) Ray paths 
through a long quadratic index medium.
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Such a variation is approximated when a laser beam passes through certain materials, 

either because of heating or other nonlinear effects. Self-focusing or self-defocusing of 

the laser beam may result. A ray entering from the left, parallel to the axis and at radius 

r from it, is curved, with radius of curvature given by (4): 

1 1 dn(r) — 2ngrA 

R nr) dr a’n(r) (12) 
  

If cell thickness d is small, this curvature applies throughout the cell and the angle at 

exit, measured inside the cell, is approximately 

Ay ~ = (13) 

There is a further deflection by Snell’s law at exit from the cell, and if angles are small 

and the external medium has index n,, 

a. = AT) _ 2nor Ad (14) 
n, a’n, 

The focal length of this lens is then 

  

i] 

r avr, 
f Se 15 

a, 2wMAd (>) 

We thus see that the cell with quadratic index variation acts as a thin lens, converging 

if A is positive (index decreasing with increasing radius) and diverging for the opposite 

variation. 

  

Example 14.4b 
RAYS IN GRADED INDEX FIBER WITH QUADRATIC VARIATION 

Suppose the dielectric with quadratic index variation with radius is not a thin slice, as 

in the first example, but a long cylinder, as in graded index fibers used for optical 

guiding. Assume that all rays have small slopes so that ds ~ dz. Then (10) becomes 

¢ m0) «| = - 20 (16) 
dz 

  

dz dr 

The radius vector r’ from origin O to a general point on the ray is 

ro = fr + 2z (17) 

Substitution in (16) leads to the simpler relation 

d dr _ dn(r) 

dz 10) “| dr (18) 
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If n(v) varies quadratically with r, as in (11), 

  

  

d*r —2ngrA 2A 
T= 7 2 + > r (19) 
dz = a*no[l — A(r/a)*] a 

The last approximation assumes A small. The solution to (19) is 

r(z) = ro cos xz + “sin xz (20) 
K 

where 

V2A 
K=— (21) 

and rp and ro are, respectively, radius and slope of the ray at z = 0. Two special ray 

paths are shown in Fig. 14.4d. 

  

14.5 RAY MATRICES FOR PARAXIAL RAY OPTICS 

The rays in many optical instruments and laser resonators or guiding systems have only 

small slopes with respect to an axis of symmetry, as in the example of the quadratic 

index rod or fiber analyzed in the preceding section. In such cases the rays are called 

paraxial rays and the optics deriving from this condition is called gaussian optics.® It 

is convenient for this class of problems to describe the effect of various optical com- 

ponents by ray matrices that relate output radius and slope of a ray to the input radius 

and slope. The advantage of the matrix formulation is mainly in its ease of handling 

combinations of elements. 

Tout _ A Bilry (1) 

rout C DALTin 

We illustrate with some simple examples. 

  Sb EDS RETE TEER LEST aE BE Pe POTS PEED TB a A ee Ys 

  

Example 14.5a 
HOMOGENEOUS MEDIUM 

      

This is the simplest case, and although almost trivial, nevertheless an important one. 

As shown in Fig. 14.5a, the ray in a homogeneous medium is a straight line so that for 

§ See Born and Wolf® for use with lenses; see Yariv' for use with laser resonators.
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Fic. 14.5 (a) Ray in homogeneous medium. (b) Ray passing between media of different re- 
fractive index at small angle. 

a distance d, 

| ‘our = Vin + Win A B 1 d 
' ' or = (2) 

rou = Tin C D 0 J 

  

Example 14.5b 
THIN LENS 

Interpretation of Eq. 14.2(24) shows that a lens acts to change the slope of an incoming 

ray, but if it is thin enough, the change in radius is negligible. Thus 

‘out ~ /in be | 1 O 

or =| , (3) 
Cc D i, 

t 

] 

we
et
 Nin 

out ~— ‘in f 

  

Example 14.5¢ 
PARABOLIC OR SPHERICAL MIRROR 

A curved mirror is similar to the lens except that the reflected ray returns rather than 

passing through to the other side. For a fixed coordinate system, this would result in 

Opposite signs for the slopes of the two cases, and thus reverse the sign of the 1/f term 

in (3). However, because of the use of these in cascaded systems to be described below, 

it is more convenient to take the direction of the ray as determining the positive coor- 

dinate. That is, for the mirror, positive z is toward the mirror for the incident wave and 

away from the mirror for the reflected wave. Thus for a parabolic mirror of focal length 

f, the matrix is the same as in (3). For a spherical mirror, spherical aberration is neg- 

ligible for paraxial rays so that f = R/2. 
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Example 14.5d 
PLANE DISCONTINUITY BETWEEN DIELECTRICS 

If a plane perpendicular to the axis separates a medium with refractive index n, from 

a second medium with n, (Fig. 14.55) the ray is not changed in radius at the boundary, 

but slope is changed by Snell’s law. For paraxial rays, sines of the angles may be 

replaced by slopes. 

Pout — Tin A B 1 O 

my, or = n, (4) 
— 
ou 5 Ny 

  

Example 14.5e 
SPHERICAL SURFACE SEPARATING DIELECTRICS 

For a spherical boundary between dielectrics with refractive indices n, and n, (Fig. 

14.5c), use of Snell’s law and the approximation of sines and tangents by their angles 

gives the ray matrix 

] 0 

My —m\l nm (9) 

Ny R, ™% 

where R is positive in the sense shown in Fig. 14.5c. 

nha 

~N 

FiG. 14.5¢ Spherical boundary between dielectrics. 
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Example 14.5f 

ROD WITH QUADRATIC INDEX VARIATION 

For a rod or fiber of length d with refractive index varying quadratically with radius, 

Eqs. 14.4(20) and (21) give the ray matrix 

  

1 
r cos Kd — sin kd |, VIA 

‘| = ‘ lal K = (6) 
} 
out —k sin Kd cos Kd 

Example 14.59 
ELEMENTS IN TANDEM 

We will see in this example the advantage of the matrix formulation in handling com- 

binations of elements. Thus if one element is followed by another, as sketched in 

Fig. 14.54, rou. = Vin,2 ANd rou 1 = Min, 2 SO that 

y: 

i 1 (7) 
Yin, 1 

Tout, 2 | _ | 42 Bo |] ina | _ 5 By |[A, By 

rout, 2 Cy Dy |LTin, 2 Co Dr ILC; Dy.   

    

  

        
    

  

  

    

Tins 2= Foul: 1 

Tine 2 = Foute 

Fins 1 Tout, 2 
Tins 1 Fout, 2 

ao A, B, > A2 By po 

(d) 

| | | 
1, l + 
| | slope rin _/| |\ p= Slore rs, 

Tin | \ | Tout 
t — -~4{+4+- . _ en 

| | 
| | 
| 
| | 

A fo 

(e) 

FIG. 14.5 (d) Cascade arrangement of two general optical elements. (e) Cascade arrangement 

of two thin lenses with homogeneous regions between and on each side.
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The ray matrix of the combination is thus the product of the individual ray matrices 

starting from the one nearest the output. The procedure is extended in a straightforward 

manner to any number of elements in cascade, with the final element first in the product 

chain. As an example, consider the combination of two lenses and two homogeneous 

regions sketched in Fig. 14.5e. The ray matrix for the combination is 

A B 1 Olf, ay] Ff O8lfi 3g, 
= 1 (8) C D 1 ,}Lo 14/4 JLo 1 1 

Fa Fi 

from which 

ani-8 
ti 

Ly 

fi (9) 

1 L, 4) D= -—/1,+1(1-2 — 
Elie ( +) | + ( fi 

We shall interpret these expressions in the following section to show that this combi- 

nation is useful in forming optical guiding systems or optical resonators. 

  

14.6 GUIDING OF RAYS BY A PERIODIC LENS SYSTEM 
OR IN SPHERICAL MIRROR RESONATORS 

If the lens pair of Fig. 14.5d is repeated, as in Fig. 14.6a, a periodic system results. It 

will be seen that for such systems, rays may be guided or confined for certain combi- 

nations of parameters, but may diverge for other combinations. Let us apply the ray 

matrix between reference planes m and m + 1 with A, B, C, D defined for one unit of 

the periodic system: 

Tmt = Alm + Br}, (1) 
Vine] = Cr, + Dr, (2) 

Equation (1) may be solved for r,,.. 

] 
Vin = B Om+1 ~ Arn) (3)
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FiG. 14.6 (a) A periodic lens system. (b) Spherical mirror resonator showing two coaxial muir- 
rors separated by distance d. (c) Diagram showing stable (confined) conditions for spherical 

mirror resonator of (b). 
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For this periodic system, a similar equation applies between references m + 1 and 

m + 2: 

wt 
Mn+ Om+2 _ Arn +1) (4) 

— 

D
i
r
e
 

If (3) and (4) are substituted in (2) there results 

Mme. 7 (A + Dyna) + (AD — BC)r,, = 0 (5) 

For optical systems of concern to us, it can be shown that AD — BC = 1. (This can 

be checked from Eq. 14.5(9) for the system of Fig. 14.6a.) Equation (5) then simplifies 

to 

Pm+2 (A + Dy + lm = 0 (6) 

This linear difference equation may be solved by assuming solutions of exponential 

form, much as with linear differential equations with constant coefficients. Let 

r= re tind (7) 
Substitution of (7) in (6) yields 

e779 _ (A + Dye*? +1=0 (8) 

This is a quadratic in e*/® so that the solution is 
2 1/2 ena (AD) 2 (ALD) | 9 

But since e/? = cos 9 + j sin 6, this is consistent with 

A+D 
cos 0 = ( 5 (10) 

    

  

Thus there are real solutions for @ with r,, bounded if 

-<(4%* = 1 il <=(——}= (11) 

But if (11) is not satisfied, 6 is imaginary and one of the solutions (7) is a growing 

exponential as m increases so that the ray is not bounded. The two cases are frequently 

called stable and unstable, respectively. 

For the system of Fig. 14.6a, Eqs. 14.5(9) apply and the condition for a stable or 

confined solution is 

  

_~y=1_ tot Sh — 
a + (ae + op "OR “2) 

If all spacings are the same, /, = /, = d, (12) may be rearranged so that the stability 

condition is 

d d 
O={1-—-—H1 - = 1 13 

( <)( 2, o) 
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The above discussion for the periodic lens system may be applied directly to the 

spherical mirror resonator by the relations between mirrors and lenses discussed in Sec. 

14.5. A typical optical resonator used in laser systems consists of two spherical mirrors 

with radii of curvature R, and R,, aligned with a common axis (Fig. 14.6b). Rays bounce 

back and forth between the two mirrors (in the geometrical optics picture), and if the 

system is stable, they are confined within some maximum radius. From Sec. 14.5, this 

system is equivalent to the periodic lens systems of Fig. 14.6a with /, = 1, = dso that 

(13) applies directly, with f, = R,/2 and f, = R,/2. The stability condition for Fig. 
14.65 is thus 

O={1—- a 1 -— a =] (14) < R, Ry < 

It will be shown later that this condition is confirmed by a wave analysis, so it is a very 

important relation for such resonators. Figure 14.6c shows the stable (unshaded) and 

unstable (shaded) regions in a plane with d/R, as ordinate and d/R, as abscissa. The 
special cases shown are the parallel plane (R, = R, = ©), the concentric (R; = R, = 

d/2), and the confocal (R,/2 + R,/2 = d). These will be discussed more in Sec. 14.15 

using the wave analysis. 

  

Dielectric Optical Wavesuides 

14,7. DIELECTRIC GUIDES OF PLANAR FORM 

The principle of guiding electromagnetic waves by dielectric guides was shown in Sec. 

9.2. Such guides have become very useful for optical communication devices. We will 

consider the optical fibers used for transmission of optical communication signals in 

later sections. Here we want to consider the simpler planar forms, which have been 

utilized in the thin-film devices of integrated optics. Figure 14.7a shows such a guide 

with three dielectrics separated by parallel-plane interfaces. The central medium 2 is 

often called the film, the lower region 3 the substrate, and the upper region 1 the 

superstrate or cover. If the refractive index of the film is higher than that of the materials 

above and below, there is the possibility of having guided waves through the phenom- 

enon of total reflection as explained in Sec. 9.2. Here, however, we wish to analyze by 

returning to the basic field equations. 

We assume propagation as e /** in the z direction of Fig. 14.7a and neglect variations 

with y. In this case the wave solutions divide into TM and TE types. We first consider 

the latter, with the components Ey, H,, and H,. The Helmholtz eq- tion for Ey in each
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FiG. 14.7a Section of parallel-plane dielectric guide. Propagation is in the z direction. 

region is then 

y= (BRE 
dx? ye 
  i= 1,2,3 (1) 

Solutions of this are either exponentials or sinusoids. We choose exponentials in regions 

1-and 3 so that fields may decay with increasing distance from the film. From continuity 

conditions, it can be shown (Prob. 14.7a) that the solution in the film must then be of 

sinusoidal form in x. Components H,. and H, are found, respectively, from the x and z 

components of the Maxwell equation 

Vx E = —jopH (2) 

The field components of the TE waves in the three regions are then 

1 fy _ 4 : = ~—— Aev®™ 
J@mL ox Joy 

x>0 (3) 

H,, —_— 
& 

By = Boos he + Csini = ~( in, 
B 

, —~d<x<0 (4) 
HH, = —— [B sin hx — C cos hx] 

jop 

. Oe 
Ey; = DeP* = (2 te 

x<-d (5) 

i, = -- De™ 
jop
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where 

g=B-k, W=bi-B, p=P-K (6) 
Continuity of tangential field components requires that £,, and H, be continuous at x = 

0, and again at x = —d. The four resulting equations allow reduction from the four 

arbitrary constants A, B, C, and D to a single one and development of the determinantal 

equation 

tan hd = ——— (7) 

Although this can be solved graphically’ for the symmetric case and for the useful case 

in which n, —- n, > mn, — ng (Prob. 14.7e), it has been solved numerically’? and the 

important results are shown in Fig. 14.7b with these definitions: 

27d 
v= —— Ving — 13 (8) 

0 

More — Ne 

Ns — N3 

ny — Mm 
a (10) 

Ny — Ns 

where 

B 
F ko 

It is seen that the parameter v is proportional to the ratio of thickness to wavelength, 

but also depends upon the differences in refractive index between guiding region and 

substrate. Parameter b determines the value of B in terms of an effective refractive index 

Neg Note that when b = 0, the wave travels with the velocity of light in the substrate 

material, and when b is unity, it travels with the velocity in the film material. The 

parameter a describes the degree of asymmetry. Fora = 0,1, = nz, and fora = %™, 

Ny — n, > Ny — ny. As an exaniple of use of the figure, take a glass film on silica 

substrate with air above, n, = 1, = 1.55, n, = 1.50. Thickness d = 1.46 wm and 
Ag = 0.6 um. Thenv = 6.0 from (8) and a = 8.2 from (10). From Fig. 14.7b we find 

that two modes, the 7:7 = O and m = 1 modes, are guided. Their b values are read as 

0.82 and 0.31, respectively. Using (9), this gives n.~- = 1.541 and 1.516, respectively. 

Both have velocities between light velocities of film and substrate, but the higher-order 

wave is nearer cutoff and so has more energy in the substrate and travels with a velocity 

near c/n. The lower-order mode is further from cutoff, has more of its energy in the 

film, and so has velocity nearer c/19. 

° R. E. Collin, Field Theory of Guided Waves, 2nd ed., IEEE Press, Piscataway, NJ, 1991. 
10H. Kogelinik and V. Ramaswamy, Appl. Opt. 13, 1857 (1974),



  
  

766 Chapter 14 Optics 

  
0 2 4 6 8 10 12 14 16 

u = kd(nd m 2 1/2 

(6) 

FIG. 14.76 Diagram showing normalized phase constant for first few modes of planar slab 
dielectric waveguides versus normalized frequency, with a range of parameters. (Taken from 

Kogelnik and Ramaswamy.!°) 

For TM waves the analysis is essentially the dual of the above except that we must 

take into account the different e’s (4 was assumed the same for all regions). The 

resulting determinantal equation is 

h{pra/ny + _qn3/ni]   tan hd = 12 
h — pqny/njng uo 

Figure 14.7b may also be used for this case when n, ~ n, if a is taken as 

4,2 _ 2 
Ory = Nz (m3 — Ny) (13) 

4 ni (ng — n3) 

Note from the figure that for all modes except the m = 0 mode for the symmetric 

case (n, = n), there is a cutoff condition. For lower frequencies or lesser thicknesses, 

the modes change from guided modes to radiating modes as the condition for total 

reflection from the interfaces can no longer be satisfied. The ranges are (assuming 

Ny > Nz > Ny) 

Guided waves kgn3 < B< kono 

Substrate radiation modes kot, < B< kon 
Modes with radiation above and below 0<B<kpn, 
Physically unrealizable (growing in both regions) $8 > kon,
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Although there is only a discrete set of guided modes, there is a continuous spectrum 

of radiation modes. It can be shown that the modes (including the radiation modes) are 

orthogonal over the interval —°% < x < ™ and that the totality of guided and radiation 

modes form a complete set. However, the set is awkward to use for expansion of 

arbitrary functions because of the infinite extent of the radiation modes, and their con- 

tinuous spectrum.!!—!9 
Finally we note that although we have developed the determinantal equation from a 

direct solution of Maxwell’s equations, it can also be developed rigorously from the 

picture of wave reflections at an angle, introduced in Sec. 9.2. 

14.8 DIELECTRIC GUIDES OF RECTANGULAR FORM 

‘The study of planar guides in the preceding section established the basic principles of 

dielectric guiding but for most practical purposes it is desirable to confine the wave 

laterally as well as in depth. One useful configuration is that of a dielectric of rectangular 

cross section embedded in a substrate of lower index, as indicated in Fig. 14.8a. Often 

the higher dielectric region is formed by diffusion or ion implantation to make an 

inhomogeneous guiding region, as illustrated in Fig. 14.8b. The latter case can be 

analyzed only numerically once the distribution of index is known (although analytic 

solutions for certain index variations have been given!*), but analysis of the rectangular 

approximation to Fig. 14.85 may still be useful. Even the rectangular configuration is 

hard to analyze, but approximate solutions are available which give a good idea of the 

behavior. 

A numerical analysis of a dielectric guide of rectangular cross section surrounded by 

a dielectric of lower index was given by Goell.'* This utilized expansions of the wave 
in circular harmonics. Most often, one is concerned with operation well above cutoff 

so that most of the energy is concentrated in the guiding region, and Marcatili has 

supplied a very useful approximate method for this range.'° Consider the rectangular 
dielectric 1 of Fig. 14.8c. In the general case, different dielectrics 2, 3, 4, and 5 surround 

the guiding region. Except near cutoff, the evanescent fields in the external regions die 

off rapidly so that one need not worry about the difficult problem of matching fields in 

the shaded corner regions. Moreover, if index differences are not too great, the waves 

are nearly transverse electromagnetic and are found to break into two classes: EF, with 

1D. Marcuse, Light Transmission Optics, 2nd ed., Krieger, Melbourne, FL, 1982. 

12 D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed., Academic Press, San 

Diego, CA, 19917. 
13H, Kogelnik, in Guided Wave Optoelectronics (T. Tamir, Ed.), 2nd ed., Springer-Verlag, 

New York, 1990. 

14 J. E. Goell, Bell. Syst. Tech. J. 48, 2733 (1969), 
1S EA. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).
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FiG. 14.8 (a) Dielectric guide with guiding confined in the y direction. (b) Similar inhomoge- 
neous guide made by diffusion or ion implantation techniques. (c) Model for Marcatili analysis. 

negligible £, and EF, with negligible E,. For the latter class, with propagation as 
e IF 

Ey, = C, cos(k,x + $;) cosy + $2) 

Ey. = Cz cos(k,x + ,)e* 

Ey; = Cse” * cos(kyy + 2) 

where 

ay = (P+ Be ~ M? 
as = (BP + - WI”? 

(1) 

(2) 

(3) 

(4) 

(5)



The solution for region 4 is similar to that for 2, and the solution for region 5 is similar 

to that for 3, but with exponentials of opposite sign. Remaining field components are 
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obtained from Maxwell’s equations. Components £.. and H, are negligible for this class; 

continuity of other tangential components at the four boundariesx = +a/2,y = +b/2 

relate all constants to C, and give the determinantal equation for B. Figure 14.8d gives 

results when all surrounding dielectrics are the same, ns = Ng = nz = Mb, with 1,/1.05 
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FiG.14.8 (d) Curves giving normalized phase constant versus normalized frequency of several 

modes in rectangular dielectric guide surrounded by a common dielectric. Solid curves are by 

Marcatili’s approximate method,'> and dot—dash curves by Goell’s computer solutions.'* 
(e) Intensity picture of EY, mode for a/b = 2 from Goell.'* (f) Similar picture for £3, mode." 
Figs. d, e, and f reprinted with permission of the Bell System Technical Journal, Copyright 1969, 

AT&T.
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Fig. 14.8g Two-step method for obtaining effective index for a rectangular dielectric guide. 

< ity <n, and b/a = 3. Also plotted for comparison are results from Goell’s computer 

calculations for these parameters showing that there is good agreement except near 

cutoff. Figures 14.8e and f show a picture of two E*,, modes in a dielectric with 

b/a = 3, n, = 1.02, ny = 1, and (2b/Ay)(n?_ — 73)! = 2. 

Effective Imdex Method Many important guiding systems used with semiconductor 

lasers or integrated optics have lateral dimensions of the guiding regions appreciably 

larger than the depths. That is, a > b in Fig. 14.8c. In such cases a simple method 

called the effective index method has been used to give useful approximate results.'® 

The basis for this approach is in the recognition that for such cases the variations in 

the vertical direction are dominant, assuming comparable mode orders in x and y. Thus, 

in the Helmholtz equation with the e~/** propagation factor, 

CE OE 5 
atta = (BP - RE (6) ax? yy? 

the second derivative in x can be neglected in the first approximation. The solution is 

then that of the planar guide of Sec. 14.7, with y as the variable instead of x. The curves 

of Fig. 14.7b may then be used to give a first approximation to effective index, (e¢,)1. 

Confinement in the x direction is then accounted for by using this effective index 

between the side dielectrics, nz and ns, and again using the planar analysis of Fig. 14.7b 

with only x variations, leading to an improved n,,; = B/ko. The two steps are indicated 

in Fig. 14.89. 

As with the Marcatili method, the effect of the corner materials is omitted, and as 

with that method, results are best when operation is well above cutoff. 

16 J. Bous, IEEE J. Quant. Electronics QE-18, 1083 (1982), 

13
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14.9 DIELECTRIC GUIDES OF CIRCULAR CROSS SECTION 

Many practical dielectric guides, including the fibers used for optical communications, 

are of circular cross section. We consider in this section a dielectric with uniform 

permittivity ¢, extending to r = a, with a second dielectric of lower permittivity ¢, 

surrounding it, and permeability of both materials taken as py (Fig. 14.9a). (This is 

called a step index fiber in optical communications; the useful graded index fiber is 

discussed in the next section.) 

Any rectangular component of field, such as E., satisfies the scalar Helmholtz equa- 

tion, which for a wave propagating as e*/*, in circular cylindrical coordinates, is 

PE, 10E. , 1 PE, 
ar ror r ad” 
    + (CP — B)E, = 0 

For guided modes, kj — 8? > 0 in the core, so ordinary Bessel functions result there. 
Only the first kind is used, to maintain fields finite on the axis. For the outer material 

or cladding, 8B? — k > 0 for guided modes so that modified Bessel functions are 

utilized. Only the second solution is retained, so that fields die off properly at infinity. 

Axial field H_ satisfies a similar equation and we may write 

    

r<a r> a 

-\ {cos 1 -\ | cos / 
ge, = an(Z\{os'? og, = cx (Z\oe'® 

- a} \sin ld a} \sin ld 

sin 1d sin 1d O) -\| si wr 
H., = BI, — H., = DK, — 

. a/\cos ld a /\cos lh 

ue _ (ky _ B*)a? w- — (pB? _ k3)a* 

E2 

0 —_ —» >   
  

Fig. 14.9a@ Step index optical fiber.
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The transverse field components may be obtained from these through Eqs. 8.9(1)—(4), 

    

  

    
  

where k2, = u*/a? for region 1 and kz, = —w*/a’ for region 2. The results for Ey 
and H, (needed in applying continuity) are 

__ ipa" l , Jona sin 1h 
E., = — AJ Bw 2 

el Prue ‘\ a u cos ld 2) 

l ) sin | 
Ego = =, Ba “a “) _ AE’ DK! al ? (3) 

~ | rw? a w cos ld 

; ‘Bal cos | 
Hy = _ 108 fast ay (2 ) = Bat ‘BI — ? (4) 

} u a uer sin 1d 

'WE> r ‘Ba? l cos | 
Hyp = oe CK! (“") + 1Pa ox(")] os 1p (5) 

° Ww a wer a sin lo 

For the symmetric case with / = 0, the solutions break into separate TM and TE 

sets, the former with E., H,, and E,. (expression for the last component not shown) and 

the TE set with H,, EF, and H,. The continuity condition of F., = E,, and Hy, = 

Hy. at r = a gives for the TM set 

Fi) _ _ Sat Ky(w) = (6) 
J(u) é\w Ko(w) 

The continuity condition of H,, = Ain, Ey, = Eg, at r = a for the TE set gives the 

same equation with the factor ,/e, missing. Cutoff for the dielectric guide may be 

considered to be the condition for which fields in the outer guide extend to infinity, 

which happens if w = 0. For w = 0, K,/Kp = ©, so that J,(u,) = 0. So at cutoff, 

u, = alk? — k3)'/? = 2.405, 5.52,... (7) 

If / # O, the fields do not separate into TM and TE types, but all fields become 

coupled through the continuity conditions. Applying continuity of E., Hy, H,, and Ey 

at + = a, the four arbitrary constants of (1)—(5) reduce to a single constant and there 

results the determinantal equation 

      KS) |, | aK) |" et + #8) | SOK) | _ Bot 
uJ (u) wK,(w) uw J (w)K iw) u*w* 

where 

p= Vie+ yw? = = Vint — 13 (9) 

Solutions of this transcendental equation leads to hybrid modes. Although not purely 

TM or TE, H, is dominant in one set of solutions, designated HE,, modes, whereas E, 

is dominant in a set designated EH,, modes. Curves of B/kp as a function of v are 

shown for several of the modes in Fig. 14.9b.'’ The HE, , mode is special in that it has 

7D. B. Keck, inFundamentals of Optical Fiber Communications (M. L. Barnoski, Ed. ), ACa- 
demic Press, San Diego, CA, 1976.
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Fic. 14.95 Normalized propagation constant as a function of uv parameter for a few of the 
lowest-order modes of a step waveguide.'’ 

no cutoff frequency and so is often called the dominant mode. Although it has no strict 

cutoff, energy is primarily in the guiding core only when the core size is appreciable 

in comparison with wavelength. This mode has been used in dielectric radiators!® and 

is also important in optical fibers.!? Some photographs of the light distribution in various 

modes or combinations of modes are shown in Fig. 14.9c. For high-data-rate fiber 

communications it is desirable to have only one propagating mode to avoid intermode 

distortion, as will be further discussed in Sec. 14.11. 

  
FiG. 14.9¢ Photographs of modes in the step-index optical fiber. (From’Ref. 19.) 

18 G. E. Mueller and W. A. Tyrrell, Bell Syst. Tech. J. 26, 837 (1947). 
19 N.S. Kapany, J. Opt. Soc. Am. 51, 1067 (1961).
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where 

k°(0) = (w* [ge(0) = z n*(0) = (22) 120 (10) 
0 

Let us first consider circular cylindrical coordinates with no @ variations. Equation (9) 

then becomes 

PE 10EF PE, -\? = +o y So 4 PO ~ 2a(©) le = 0 (11) 
or~ r or Oz a 
    

It can be shown by substitution that this is solved by 

  

E(r, 2) = Ae 7 @/¥Y 9 ~ ib: (12) 

where 

2 \1/4 1/2 1/4 -()"-ale" 
and 

2 2 (A\'? 
B = KO) — wk(O) k(Q) — — 2 (2) (14) 

so that the variation of FE with radius is of gaussian form with a radius w to the 1/e 

value of field dependent upon a, Ap, n(0), and A. This radius is usually called beam 

radius although fields do extend beyond. As a numerical example, if A = 0.01, a = 

50 wm, Ay = 1 wm, n(0) = 1.5, w is found to be 8.67 ym. 

When w is large compared with wavelength, transverse variation of E is small in a 

wavelength, and the mode is nearly transverse electromagnetic with axial components 

of E. and H negligible and the transverse components normal to each other and related 

by [Uo/ (0)]'/2. This fundamental mode is consequently designated TEM po. 

Higher-order modes may be found by returning to (9). First by expansion of V? in 

rectangular coordinates, 

f’E FE FE 2 
52 + ay? + a2 + PO — 2a(” ) le = 0) (15) 

the solution may be shown to be 

Vax\ (V2 bn 
E=A_H, (A), eerie (16) 

Ww Ww 

  

where H,,({) are Hermite polynomials of order m satisfying the differential equation” 

22M. R. Spiegel, Mathematical Handbook, Schaum’s Outline Series, McGraw-Hill, New 
York, 1968.
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4*H,,(£) dH,,.($) nt __ 9 m — “ae 7 ar + OMG) = 0 (17) 

and defined by 

ad” 2 
H,(Q) = (- ve — e7F (18) 

ag 

In these higher-order modes, w is the same as in (13) but 8,,,, is given by 

V2A 
p = (0) — 2 — kO)m + p + 1) (19) 

Or with A small, 

V2A 

Similarly if V7 is expanded in circular cylindrical coordinates, (9) is P 

2 ? oe ; 
GE ie lo “ol 1 — 2a( E=0 (21) 
or= r or r- ad= az? 

         

The solution may be shown to be 

Vay\m [942 
E= Bap " (25 arene + jmdbs —JBmp2 (22) 

Ww Ww 

where L”(E) are associated Laguerre polynomials~ of order p and degree m, satisfying 
the differential equation 

    

d2h L™(é) aL (é) , 

€ IE + (m+ 1 — €) —— dé + (p — mLp(g) = (23) 

and defined by 

dg” 
m _ ga —€§ Lp) = Fen ers wen (ee | (24) 

Here also w is as in (13) but phase constant f is 

V2A 
B ~ kK) - — (2m + p + 1) (25) 

Since the fiber is cylindrical, it might seem that we would only be interested in the 

latter set, but the Hermite forms are not only simpler, but are often generated by asym- 

metric excitations. Each of the sets is complete, so an arbitrary distribution can be 

expanded in either of the two sets.
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14.11 INTERMODE DELAY AND GROUP VELOCITY DISPERSION 

In an information transmission system, the optical wave is modulated (often digitally) 

and by Fourier analysis there must be a band of frequencies transmitted to represent 

the modulated wave. If group velocity varies over this frequency band, the envelope is 

distorted as the signal propagates down the fiber, as shown in Sec. 8.16. Such group 

dispersion limits the useful transmission distance for a given information rate. We shall 

see below that group dispersion may arise either from material properties or from the 

characteristics of waveguide modes themselves. In addition, signal distortion may arise 

in multimode guides because of the different velocities of the various modes, even at 

the same frequency; this effect will be considered first. 

Intermode Delay In a fiber with many propagating modes, Figs. 14.9b and d show 

that some modes will be near cutoff with most of the energy in the cladding, some will 

be far from cutoff with most of the energy in the core, and others will be in between. 

Thus a single pulse at the input, if it excites multiple modes, may end as a multiple 

pulse at the output and an estimate of intermode group delay for length L of the multi- 

mode fiber is 

_- AT, = - (n, — Ny) (1) 

For a 1% difference in 1, and 5, with n about 1.5, the initial pulse would yield multiple 

pulses spread over about 50 ns for each kilometer of propagation, severely limiting for 

high-data-rate, long-distance systems. 

An advantage of the graded index fiber is that intermode delay is less limiting than 

in the above. If we calculate group velocity from the approximate expression for § of 

a quadratic index fiber, Eq. 14.10(20), group delay for mode (m, p) is 

d 7 a 1 ome _ tb oan) 
5 do Cc dw 

  m0 + (2) 

Thus, to this degree of approximation, group delay is the same for all modes and we 

do not receive multiple pulses at the output corresponding to a single pulse at the input. 

The more accurate expression 14.10(19) would show some intermode delay and prac- 

tical differences between the real graded fiber and the ideal model also add some delay, 

but graded index fibers are capable of appreciably higher data rates for a given distance 

than the step index fibers for which (1) was an estimate. 

Group Velocity Dispersiom For a single mode, group delay over length L is 

L d 
T, =— = 7 (3) 

Va dw
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So for a band of frequencies Aw carrying the desired information, the variation of delay 

over this band is approximately 

d2 

AT, ~ L Wet Aw (4) 

Thus a pulse will spread at a rate proportional to the second derivative of 6 with 

frequency. One source of such group velocity dispersion is waveguide dispersion, aris- 

ing from the frequency dependence of B for a given guided mode, with refractive index 

considered independent of frequency. For step index fibers, values may be estimated 

from the curves plotted in Fig. 14.96 or calculated numerically from the implicit forms 

of Sec. 14.9. This contribution to dispersion is generally less important than the con- 

tributions arising from material dispersion. 

Material dispersion arises from the variation of refractive index with frequency. From 

(4) with B ~ wn/c, this is 

_ L d*(nw) 
AT 5 

c aw & 
  Aw (3) 

In fiber technology it is common to express dispersion in terms of wavelength spread 

rather than frequency spread, with (4) written 

    

AT, = LDAA (6) 
where D is related to d*B/dw” by 

Inc d2B 
D= - 7 

dM? dw? 7) 

This is commonly expressed in picoseconds per kilometer of fiber length and nanometer 

of wavelength spread. Some representative curves of D versus wavelength®? are shown 
in Fig. 14.11. Material dispersion is seen to be larger than waveguide dispersion except 

near the wavelength of zero dispersion, which for silica is around 1.3 ym. The zero- 

dispersion wavelength can be shifted by doping the material or by using multiple di- 

electrics in the cladding, or both. Operation near a zero-dispersion wavelength may be 

important in minimizing envelope distortion. 

Normal dispersion (d78/dw? > 0 or D < 0) occurs for wavelengths shorter than that 

for zero dispersion, and anomalous dispersion (d*B/dw* < 0 or D > 0) for the longer 

wavelengths. 

For a highly coherent source such as a good laser, Aw of (4) or AA of (6) comes 

from the frequency spectrum of the modulated signal. For example a gaussian pulse of 

width + would spread to 7’ in distance L, as in Eq. 8.16(14): 

2 2 11/2 

7 = 7) + (2 “é) | (8) 

23 B, J. Ainslie and C. R. Day, J. Lignt Wave Tech. LT-4, 967 (1986), 
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Material dispersion 
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Fic. 14.11 Dispersion of single-mode fibers as function of material composition and core radius 
a. (After Ainslie et al.7°) 

For an incoherent source such as a light-emitting diode (LED) or imperfect laser, Aw 

or AA may arise from the frequency variations of the source, exceeding the spectral 

width of the signal. In that case, the spectral width of the source is used in (4) or (6). 

14.12 NONLINEAR EFFECTS IN FIBERS: SOLITONS 

Silica and the related materials used in optical fibers have such a high degree of linearity 

that nonlinear effects might not be expected. Nevertheless, the small fiber cross sections 

lead to intensities high enough to produce small nonlinear interactions even with modest 

powers, and the low loss allows these interactions to occur over long lengths of the 

fiber. We shall concentrate here on the self-phase modulation effect in which refractive 

index changes with the intensity of the wave, which in turn changes the phase of the 

wave. Other important effects, some useful and some undesirable, include intermodu- 

lation products among several signals propagating in the same fiber, harmonic gener- 

ation, and several parametric processes.** Stimulated Raman scattering arises from in- 
teraction of the optical wave with vibrational modes of the silica molecules and 

stimulated Brillouin scattering from interaction with acoustic waves in the fiber. Both 

may cause undesirable frequency shifts, but have also proven useful as optical amplifiers 

or tunable optical oscillators. All of these are well treated in several texts.?° 

24 G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, San Diego, CA, 1989. 

28 See, for example, B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Chap. 19, 

Wiley, New York, 1991; or A. Yariv, Quantum Electronics, 3rd ed., Chap. 18, Wiley, New 
York, 1989.
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The important nonlinear effect in fibers, in the language of Sec. 13.7, is a vy effect. 
It is more common to express it in terms of a change in the refractive index: 

n(E) = ng + An = ng + WIE? (1) 

This An produces phase change in length L: 

Ad = LAB = ae An (2) 
c 

For silica, n, ~ 2.3 * 107~*? m*/V? so 10 W ina fiber of 10-wm core diameter would 
result in a field of about 8 x 10° V/m, producing an index change by (1) of only 

1.5 X 1078. From (2), however, this would produce phase change of 7 in about 43 m 

for A = 1.3 um. 

To illustrate the importance of dispersion and nonlinear index working together, we 

will neglect transverse variations and losses, assume small nonlinear effects, neglect 

dispersion terms higher than d*B/dw’, and consider only one polarization so that elec- 

tric field may be treated as a scalar. Expressing the field E(z, t) as a Fourier integral, 

1 f° 
E(z,t) = 5 | E(z, we! dw (3) 

Each Fourier component propagates with its phase constant B(w), 

E(z, w) = E(0, w)e (4) 

so that 

dF (z, 
a = —jBE(z, w) (5) 

z 

For the dispersive effect, we expand f in a Taylor series up to second-order terms, as 

in Sec. 8.16, and add the nonlinear perturbation. Since it is not rapidly varying with 

frequency, it is evaluated at wp: 

dp 1 ap > , W 
= + —(w - + -——>3 (w — ay)” + — An 6 P(w) P( ao) Iw ( Wp) > aw ( o) C (6) 

Now if we consider a pulse with envelope A(z, t) modulating the optical carrier of 

angular frequency wo, 

E(z, t) = A(z, theo! 0) (7) 

The pulse envelope A(z, t) may be expressed in a Fourier integral in its base frequency, 

w,, = wv, Wp: 

1 f{- | 
A(z, t) = ~ | A(z, w,,)e/?"da,, (8) 

From (7) and (8) we may show 

E(z, w) = A(z, w,, )e 1Po (9)
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So substitution in (5) gives 

dA(Z, ,,) 
a — JBoAGZ, ®,) = —JBAG, @,,) (10) 

Now using Eq. (6) and using d8/dw = 1/v,, B” = d?B/dw*, and An from (1), 

A i" 

mee -|% + Fog + Om ef lace Oy) (11) 
az Ve 2 Cc 

We next make an inverse Fourier transform of (11), noting that the inverse Fourier 

transform of (jw,,)"A(z, w,,) is d"A(z, t)/at”. The résult is 

dA(z, t 1 dA(z, t dA, t) | 1 AG t) _ J 
Oz Us or 2 

Equation (12) is a nonlinear equation giving the effect of both dispersion and nonline- 

arity on wave propagation. (It is often normalized and transformed to moving coordi- 

nates, leading to a standard form known as the nonlinear Schroedinger equation, but 

the present form is adequate for our purposes.) If terms on the right were zero, the pulse 

amplitude A(z, t) would travel without change at group velocity v, as expected. The 

first term on the right represents group velocity dispersion and leads to pulse broadening 

as explained in Secs. 8.16 and 14.11. The second term on the right gives the effect of 

the nonlinearity, and the self phase modulation described qualitatively above. 

A(z, 1) jay 
ar Co Ng|AlA(z, t) (12) 

B 

Solitoms An important solution of (12) is the fundamental soliton, or solitary wave, 

expressed by 

{— z/U . 

A(z, t) = Ao se 2) 42 (13) 
TQ 

where z) = 7/28” and 7) is a measure of the width of a propagating pulse. Equation 

(13) is a solution for a particular amplitude satisfying the condition 

1 [—Brc\'2 

Ay = — (=F) (14) 
To @N> 

We see first that B” must be negative for there to be a real solution of (12). That is, 

operation must be in the region of anomalous dispersion, which for silica occurs for 

wavelengths longer than about 1.3 wm. Then, for a particular amplitude related to pulse 

width and the characteristics of the fiber, the envelope (13) propagates at group velocity 

v, Without change of shape. The group velocity dispersion, which tends to make the 

pulse broaden, is compensated by the nonlinear effect, which tends to compress the 

pulse. 

Although the preceding analysis has involved several idealizations, it has proven 

useful in predicting the observed solitons in actual fibers. Note that the true solitons 

exist only for specific power levels. Thus when propagating with attenuation there is
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some pulse broadening as power is lost. But it is a graceful degradation, and experience 

has shown that additional power to restore the balance need not be added for many 

kilometers. 

There are other solutions to (12), called higher-order solitons. These alternately 

broaden and contract, returning to the original shape in distance Zp. 

Pulse Compression Another important application of (12) is in the compression 

of short optical pulses. In this technique, a fiber with normal dispersion (8” > 0) may 

propagate a pulse, the nonlinear effect producing a frequency shift or “chirp” and the 

group velocity dispersion causing the pulse to broaden. With the right parameters, the 

frequency variation may be an almost linear function of time and the pulse may then 

be compressed by introducing separate anomalous dispersion, for example, by a com- 

bination of prisms and/or gratings. This is related to soliton propagation, except that 

there the anomalous dispersion is in the fiber, continuously compensating for the dis- 

persion, and in the fiber pulse compressor the two functions are separate. 

Extensive study of (12) requires numerical solution. Curves for optimum design of 

the pulse compressors have been so obtained.*° 

  

Gaussian Beams In Space and in Optical Resonators 

14,13 PROPAGATION OF GAUSSIAN BEAMS IN A HOMOGENEOUS MEDIUM 

The modes of a graded index fiber, studied in Sec. 14.10, propagate with a constant 

pattern in the fiber if the modes are properly started. Any tendency to diffract is just 

countered by the distributed focusing effect of the lens-like medium. Let us imagine 

that the modes come to the end of the fiber, as in Fig. 14.13, and excite similar modes 

in space or other homogeneous material. It seems clear that they will spread by dif- 

fraction in the external region. Gaussian modes and their higher-order extensions thus 

become fundamental forms in homogeneous regions and may be excited in a variety 

of ways by lasers or other coherent sources. It is thus important to understand their 

properties. 

The main propagation variation in the homogeneous region is still expected as 

e~/** but there are other variations with z so that we may write 

E(r, $, 2) = Wr, & de (1) 

26 W. J. Tomlinson, R. H. Stolen, and C. V. Shank, J. Opt. Soc. Am. B 7, 139 (1984). Also see 
G. P. Agrawal, Nonlinear Fiber Optics, Chap. 6, Academic Press, San Diego, CA, 1989.
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FIG. 14.1:. sii beam, after leaving the graded index-fiber in which it is guided, will 

spread by diss _. effects. 

We make use of Eq. 14.10(9) with A = 0 and k(0) = & and assume that wis slowly 

varying in a wavelength so that ys’ may be neglected in comparison with w’, where 

primes denote derivatives with z. There results 

Vie — 2jkp' = 0 (2) 

Considering again the fundamental mode with 0/d@ = 0, it has been found that a useful 

form?’ for ¢ is 

  wir, 2) = A ex {- | Pe = || (3) 

where P(z) and g(z) are complex. In particular, 

JIit__4 
gz) R@) kw*@) 

  (4) 

where R(z) is a radius of curvature of the approximately spherical wavefronts (Fig. 

4.13), and w(z) is a measure of the gaussian beam radius at position z. Thus the ima- 

ginary part of 1/q gives the gaussian variation with radius and the real part gives the 

phase related to the curvature of wavefronts. The latter may be seen for paraxial rays 

with r < z since, by Fig. 14.13, 

  

  

2 2 
ke = KVR? — 2 ~ kR( 1 ~-—) = eR - (5) 

2R- 2R 

If (3) is substituted in (2) with V? in cylindrical coordinates with a/d@ = 0, 

k 2 k 2 .2_,/ 

-(2) p> — ai) + —f — 2p’ = 0 (6) 
q q q 

27H. Kogeinik, Appl|.Opt. 4, 1562 (1965).
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Since the equation is to hold for all r, coefficients of like powers of r must separately 

( q 

\2 

q 

p= (8) 
q 

Equation (7) has a solution of the form 

gz) = Go + 2 (9) 

which, substituted in (8), leads to 

Pz) = -j n( + 2) (10) 
qo 

At z = 0, curvature of the wavefronts is zero (Fig. 14.13), so from (4) 

ey 

do = ’ 9 ° (11) 

with wy being the minimum beam radius. Substitution of (9) and (10) in (3), and the 

result in (1), after some manipulation with the complex quantities g and P, leads to the 

following expression for E: 

  

EI. 2 =A M0 4-17 /w 2) 9 —slke + kr?/2R@) — 1) (12) 
w(z) 

where 

2 1/2 

w(z) = wef + ;| (13) 
29 

we) 

R@=z+-2 (14) 

H(z) = an-*(2) (15) 
20 

kwe 
40 ~ 9 (16) 

As expected, the gaussian beam spreads out while maintaining its gaussian form for 

each cross section. For large z, the angle of divergence is
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This is consistent with a diffraction analysis for the distribution at the waist, z = O, as 

seen in Eq. 12.14(18). 

Higher-order modes exist, as with the graded index fiber. In rectangular coordinates, 

these are 

Bmp Ye 2) = Amp soca Mo satay | Fe oes 
x en (7 + y*)/w(2) o ithe + A(x? + y°)/2R(2) — (m+ p + I y)] 

(18) 

where the Hermite polynomials H,, and H,, are as defined in Sec. 14.10, and w(z), R(2), 

and 7(z) are as in (13), (14), and (15), respectively. For circular cylindrical coordinates, 

it can be shown that 

  
- a2 

E (7 @ Z) = A v2 LP art eT WR) tidy — le + ki*/2R(z) + (Qm +p + 1)7(2)] 

“me 1 way YP Aw?) 
(19) 

where Li(€) is the associated Laguerre polynomial defined in Sec. 14.10 and other 

quantities are as defined above. 

Other uses and properties of the gaussian beams will be studied in the next two 

sections. 

14,14 TRANSFORMATION OF GAUSSIAN BEAMS BY RAY MATRIX 

The transformation of gaussian beams passing through a combination of optical ele- 

ments, including lenses, homogeneous regions, and dielectric discontinuities, has been 

shown?’ to follow from the g parameter of Eq. 14.13(4) and the A, B, C, D parameters 
of the ray matrix defined in Sec. 14.5. The gaussian beams are assumed to be coaxial 

with the optical elements, and the paraxial (small slope) approximations satisfied. Thus, 

within these approximations, the value of q, at the output of a region with defined 

parameters A, B, C, D in terms of input q, is 

  

Aq, + B 
2 =o ap (1) 

q, + D 

where 

! l 4) | 1,2 2 —~ = 3 7 ’ [= ’ 

qi R; kw ( ) 

R; is the radius of curvature of the wavefront and w, is the beam radius to e~! value of 

field, as in Sec. 14.10. We will first show this for special elements and then argue the 

more general case.
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Homogeneous Region For a homogeneous region of length z, from Eq. 14.5(2), 

A= 1,B = 2z,C = 0,andD = 1 so (1) gives 

qa = qt 2 (3) 

which is consistent with the solution found in Eq. 14.13(9). In particular, if z is measured 

from the waist so that g, = dg = jkw6/2, values of R and w at plane z are 

  

1 2) 1 1 
a5 SS (4) 
R(z) kw(z) gaz + jew /2 

Rationalization of this gives 

kw 

R@) =z+—— (5) 

we) = wal + 22 (6 “(z) = wo > G 0 kewé ) 

which are the forms found in Eqs. 14.13(14) and 14.13(13). 

Thin Lens A thin lens would be expected to leave beam radius w unchanged, but 

modify radius of curvature R by — 1/f (Fig. 14.14a). Thus, the transformation expected 

iS 

=—-= (7) 

Since A = 1,B = 0,C = —1/f, and D = 1 from Eq. 14.5(3), (7) is also consistent 

with (1). 

Combination of Elements If one element follows another, as a lens following a 

homogeneous region (Fig. 14.145), then one can extend the form (1) to following 

elements, so that 

_ Argg + Bo 
= 8 

Coq. + Dy °) 
q3 

But this bilinear form is consistent with matrix multiplication so that we can define 

total A,, B,, C,, D, parameters as in Eq. 14.5(7/): 

A, B 1 | (9) 

Cc; D, 

A. B,| [Ag Bo 

C, DJ} LC, Da 

q, = Ag + B, 

° Cd) +r D, 

  
Then 

(10)
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FIG. 14.14 (a) Thin lens of focal length f leaves gaussian beam radius unchanged but modifies 
radius of curvature by Eq. 14.14(7). (b) Combination of regions transforms gaussian beam ac- 

cording to overall ray matrix for the regions. (c) Gaussian beam in a graded-index medium has 
variable radius w(z) if not started with zero slope at the equilibrium radius. 

In addition to the lens and homogeneous region, the transformation can be shown to 

apply to a plane dielectric discontinuity with the gaussian beam at normal incidence 

(Prob. 14.14a) and, of course, to a spherical mirror since the relationship of this to a 

lens has already been shown. Since most useful optical systems are composed of com- 

binations of these basic elements, the ABCD law for gaussian beams is very general 

and most useful. 
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Example 14.14 
ROD WITH QUADRATIC INDEX VARIATION 

For the rod with quadratic index variation, which has been shown to act as a continuous 

lens to rays and which can support gaussian modes of constant radius if excited properly, 

we may now utilize the transformations of this section to see what happens if the 

gaussian beam is not properly started. We use (1) with ABCD values from-Eg. 14.5(5). 

Let q; = qo and gy = q(2). 

1 C+ D/qg —Kksin Kz + (cos Kz)/qo 

q(z) ~ A+ B/ac ~ cos Kz + (sin Kz)/Kqo ay) 
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This equation tells how R(z) and w(z) vary with distance for a general incident Ry and 

Wo. To interpret, let us assume plane wavefronts, Rp = © at the input. Then (11) gives 

    
  

  

  

  

Lo oe Ke SIN KZ — (2j/kw6) cos Kz a2 

Riz) kw(z) cos Kz — (2j/kw6x«) sin Kz ) 

from which beam radius is 

9 \2 
9 2 9 + 3 

w-(z) = wo| cos” Kz + Sin” KZ 13 0 = 0 (iz) | “ 
or, using trigonometric identities, 

2 

5 Wo 4 4 
w(z) = —|{{1 + +1|1-=s7z5 (z) 5 ( aaa) ( aaa) cos 2K (14) 

so that beam radius is constant at wo if 

; ; (15) K- = 

k?w6 

which is consistent with the condition Eq. 14.10(13); but if this condition is not satisfied, 

the beam varies periodically with z, as sketched in Fig. 14.14c. A similar variation will 

occur if the beam is introduced with nonzero slope. 

  

14.15 GAUSSIAN MODES IN OPTICAL RESONATORS 

It was noted in Sec. 14.6 that a typical laser resonator consists of the region between 

two coaxial spherical mirrors, as pictured in Fig. 14.15a. The active laser material may 

fill all or part of the internal region. Such arrangements (including the limiting case of 

plane mirrors) have long been used as interferometers. Schawlow and Townes”® sug- 

gested that these would also be useful as the resonant structures for laser action. In 

contrast to the closed-cavity resonators studied in Chapter 10, radiation from the open 

sides will damp out all but the modes with primarily axial propagation. It is not entirely 

obvious that any low-loss modes will remain, but it seems that if the diffraction pattern 

from mirror M, is largely contained within the diameter of mirror M, and vice versa, 

diffraction losses should be small. From diffraction theory (Sec. 12.13) the condition 

requires that the Fresnel number WN be larger than unity, 

a\a 
N= \d > 1 (1) 

where a, and a, are radii of the mirrors and d is the spacing. 

The above general conclusions were verified through an important computer analysis 

28 A. L. Schawlow and C. H. Townes, Phys. Rev. 12, 1940 (1958).
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Fic. 14.15a@ Typical spherical mirror resonator with mirrors matching the curved wavefronts 
of the gaussian beam. 

of Fox and Li.*? They assumed an initial field distribution over one of the mirrors and, 
from diffraction theory, calculated the resulting pattern at the second mirror. Using this, 

diffraction theory was used to give the new distribution over mirror 1 and so on through 

many iterations. There was eventual convergence to stable field patterns showing dif- 

ferent modal forms, and diffraction loss was low when condition (1) was satisfied. 

Once it is known that stable, low-loss modes exist in the open structure, it is reason- 

able to look for approximate solutions of Maxwell’s equation to represent these. 

Through the work of Pierce,°? Boyd and Gordon,?! Goubau and Schwering,** and 
Kogelnik,*? there developed the understanding of the gaussian, Hermite—gaussian and 
Laguerre—gaussian modes discussed in the preceding sections. The remainder of this 

discussion will consequently apply these to the resonator of Fig. 14.15a. See Fig. 14.155 

for photographs of some modal patterns. 

In considering the gaussian modes within spherical mirror resonators, let us consider 

first the fundamental gaussian mode. It has been shown in Sec. 14.13 that these modes 

have nearly spherical wavefronts, so the approach is to match the curvature of these to 

the mirrors. Using the forms for radius of curvature given by Eq. 14.13(14), we may 

then write** 

R, = d, + 2 (2) 1 1 d, 

Z0 
Ry = a+ (3) 

d, 

29 A. G. Fox and T. Li, Bell Syst. Tech. J. 40, 453 (1961). 
30 ¥. R. Pierce, Proc. Natl. Acad. Sci. USA 47, 1808 (1961). 
31 G. D. Boyd and J. P. Gordon, Bell Syst. Tech. J. 40, 489 (1961). 
32 G. Goubau and F. Schwering, IRE Trans. Antennas Propagation AP-9, 248 (1961). 

33H, Kogelnik, Appl. Opt. 5, 1550 (1966). 
34 It is more logical from a geometric point of view to consider radii of curvature negative 

when center of curvature is to the right of the mirror, but from a practical point of view, 
the sign for a given mirror should not depend upon its orientation, so we make the 
practical choice and consider radii of curvature positive when the reflecting surface is 

concave.



14.15 Gaussian Modes in Optical Resonators 791 

   

  

       
   

        

   

    

     Reais ERE) 
ie          tee       

  

SS yer perce ST: 
ue FNC oe SS Ee : . hese! $53 a ues NESBA ORI Eat bet I 

br aesnars ats Penta TSHR EROS. Ba one REET Or A PONS ox SURI ws 

RN ee: AS ns San gS RAS ea ae ee 
er Hy @ a SS ae 

, ee Gece. RUAN 
Ps: 

    

    

  

we
 

i
   

Se
 ie 

s 
e
r
i
 

Ke 

    

SPURS a: Bye ah Peas oo 

Oe 
  

a 

= UR PA aire es 2 Pe Eek 
Pei Bee Bee md a sen 

a cre i : 
e ae 

Na
pa
 

es 
R
N
Y
 

b
a
n
a
n
a
 

S
S
e
S
 

p
e
 ke
s 

es
 

gs 

      
         a 

sy 

  

        

       

    

      

Oe PEON CHR AS 

BOnGgss or 
    

   
     

I ES      
       

    

  

TER 
5      
   

RG 

Maer     

              

     

ae 

  

   

  

R
I
C
E
 

Fak
 

E
N
e
u
r
 

Drie
r 

    

ae ence 
Aue Ceres 

RRR 
Rte PEON TES 

ey 
USA RS 

nok BSS 
Cpe oe 

      

     
ER 

PFN Pera 

PEN ENG oak     

  

P
e
 

ee 
coe        

xi 
$e 

. eh 
Dua AE Sine 

cant 
a   

    

rut ee 
es 

we FF 
Sees 
RANE 
Bi 

io
us
 ay
 

"7 

pis aud Beaty 
Rane 

Bay 

ba
en
 

ut
ar
a 

Li
eo
he
s 

rm
 

ans Sy ne   x 
PES RESET 

RRR ae aS a eevee 
y Peary eens 

BENS 
SOA U BAUD Arh bra Mr eR REE, 

Seo 

Se 

ee 
yee       

Fic. 14.15b Photographs of modal patterns in optical resonators. [From H. Kogelnik and 

W. W. Rigrod, Proc. IRE 50, 220 (1962).]
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where 

_ kw6 _ awen 

2 Xo 
  (4) 29 

and n is the refractive index. One kind of design problem is that in which wavelength 

and position of the beam waist (position of minimum radius) are specified, and 

Wp selected to fill as much of the active region as possible. Then mirror curvatures 
are immediately calculable from (2)—(4). As an example, for a CO, laser with 

Ag = 10.6 pm, n = 1, d, = d, = 0.2 m, suppose wy is selected as 3 mm. Then 
R, = R, = 35.8 m. 

A second type of design problem for laser resonators is one in which RF, and R, are 

given together with wavelength and spacing d and it is desired to find position of the 

waist, its radius, and the beam radii at the two mirrors. Equations (2) and (3) are first 

solved for d, and d,: 

R R,\? , 
d= + (*) ~ 2 6) 

R, Ry ° 9 = —= + —<|/} -—-Zz 

and 

d,+d,=d (7) 

Substitution of (5) and (6) in (7), after some algebra, gives 

° (Rj + R, — 2d)? 
  (8) 

With z) known, minimum spot size is determined from (4) and spot size at the mirrors, 

by using Eq. 14.13(13), to give 

d\2]2 
w; = vol + (2) | » ~=1,2 (9) 

£9 

As an example, if d = 1m,R, = 2, R, = 4, 26 = 0.938 from (8). Then d, = 1.5 
and d, = 0.5 from (2) and (3). If Ay = 1 wm, minimum spot size wo is 0.554 mm 

from (4) and w, = 0.70 mm, w, = 0.57 mm from (9). Several special cases are worth 

considering individually. 

Plane Mirrors IfR, = R, = ™, (8) shows that zp is infinite, and from (4) and (9), 

Wo = W, = ©. From a practical point of view, the mode spreads out until limited by 

the edges of the mirrors. Although there are then appreciable diffraction effects, the 

numerical analysis of Fox and Li demonstrated that under certain conditions such sys- 

tems are still useful. Plane reflectors are most often met in solid-state lasers such as
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ruby or neodymium—YAG for which the dielectric discontinuity at r = a provides 

additional confinement. 

The Concentric Resonator Consider a symmetric resonator with R, = R, = d/2 

so that centers of curvature coincide in the midplane. From (8), z) = 0, which would 

make minimum spot size zero from (4) and spot size at the mirrors infinite from (9). 

This unrealistic situation is also limited by diffraction of the finite mirrors, yielding a 

finite minimum spot size at the center in a practical case. Like the plane example, 

diffraction losses are high, but usable in some cases. 

The Symmetric Confocal Resonator If R, = R, = dso that the foci of the two 

mirrors coincide at the midpoint of the resonator, expression (8) becomes indeterminant. 

We consequently look at the gaussian beam transformation of the preceding section. 

The ray matrix elements can be obtained from the equivalent periodic lens system and 

Eq. 14.5(9) with d, = d, = d = 2f, = 2f,. ThenA = —1,B = 0,C = QO, and 

D = —1 for around trip. Thus a beam introduced with any beam radius and radius of 

curvature reproduces itself after a round trip by the transformation of Eq. 14.14(1): 

_ Ag +B _ = Qs 10 
Cq, + D 42 (10) 

q\ 

This interesting case is highly degenerate. However, if we select the symmetric mode 

with waist at the midplane, then the proper solution of (8) gives z, = d/2 and 

Wo = (20) (11) 

Since Zp is half the cavity length in this case, it is often interpreted as the confocal 

parameter. Spot sizes at the mirrors are then VW for this symmetric mode. 

Note that the above three special cases are on the edge of the stability diagram derived 

from ray concepts in Sec. 14.6. The applicability of the diagram for gaussian modes 

and the consequences of operation outside the “stable” range will be discussed in the 

following section. 

14.16 STABILITY AND RESONANT FREQUENCIES OF OPTICAL-RESONATOR MODES 

From the ray optics point of view, it was found in Sec. 14.6 that rays are confined 

within some maximum radius in a periodic system if 

A+D 

2 
an 

  < | (1) 
  

  

where A and D are ray matrix elements for the system. For the resonator with spacing 

d and coaxial mirrors having curvature RX, and Ro, this led to 

d d 

o=(1-Z\(1-¢)s1 2)
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Resonators satisfying this condition are said to be stable, and the diagram of Fig. 14.6c 

showing regions for which the condition is satisfied is called a stability diagram. To 

show that the condition applies to gaussian modes of the type studied in the preceding 

section, let A, B, C, D be the ray matrix parameters for a round trip in the resonator, 

and g the gaussian beam parameter defined by Eq. 14.14(2). Then q, at the end of a 

round trip is related to q, at the beginning by Eq. 14.14(1). But if the mode remains of 

the same form, g,; = g, and 

i Cq, + D 
= —+t__ 3 

q, Aq, + B ©) 

This leads to a quadratic equation in 1/q and has the solution 

1 (D-A D-A\*> cl]? 
—= + += (4) 
qi 2B 2B B 

As noted in Sec. 14.5, the ray parameters are real for the elements we have considered, 

and also AD — BC = 1, so (4) reduces to 

1 1 2 D-A D+ A\? 1/2 
—=5 75> + -1 (5) 

dQ 1 2B 2 

Thus for a real value of beam radius w,, (A + D)/2 must not have magnitude greater 

than unity, so that (1) applies in general and (2) for the specific system of two mirrors 

separated by a homogeneous region of length d. 

As has been noted, stability of an optical resonator means, in a ray optics point of 

view, that rays are confined within some maximum radius; from the wave point of view, 

it means that the field energy is essentially all within this maximum radius. Unstable 

resonators have the opposite property, but Siegman has shown that they may neverthe- 

less be useful.*° The rays, or diffraction field, escaping outside the mirror may be 
utilized as the output, and this has proved to be the preferred means of output coupling 

for many high-power lasers. 

The resonant frequencies are determined by the requirement that the phase shift after 

a round trip is a multiple of 27, or of 7 for one way. Thus from Eq 14.13(18), 

    

  

  

k2g — kz, + (m+ p + I[n@) — n@)] = la (6) 

where m, p, and / are integers. Using Eq. 14.13(15) and the sign conventions of the 

preceding section, z, = d, andz, = —d,, 

kd, + d,) + (m+pt pf tn-"(2) + an-*(4) = lt (7) 
£9 0 

Longitudinal modes are defined by the integer /. Thus, the frequency spacing between 

longitudinal modes is determined by maintaining m and p constant and changing / by 

85 A. E. Siegman, Proc. IEEE 53, 277(1965): also see A. E. Siegman, Lasers, Chap. 22, Uni- 
versity Science Books, Mill Valley, CA, 1986.
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unity: 

(w — w,)n 2a Af,nd 
tet ON" dy +) = I (8) 

Or 

c 

ond (9) 

As example, if d = 0.10 m andn = 1.5, Af, ~ 1 GHz. 

‘Transverse modes are defined by the integers m and p. Frequency spacing between 

these is determined by maintaining / constant and changing either m or p by unity: 

_ d, d (O41 On, Uy + 4) + tan! (2) + tan7! (4) = 0 (10) 
C Zo 29 

(41 — Wm) C _,fd _,{ a, 
Af, = "= tan~'| =] + tan~!| — 
I 277 27nd a Zo a Zo C4) 

Note that as the mirrors approach planes, z) -> © as shown in the preceding section, 

and transverse modes become very close together. For a concentric resonator, z, — 0 

and Af, — c/2nd. That is, transverse mode spacing is the same as longitudinal mode 

spacing for concentric resonators. For a symmetric confocal resonator, d, = d, = Zo, 

Af, = c/4nd showing that transverse mode spacing is half the longitudinal mode 

spacing in this case. 

Af, = 

  

Or 

  

  

Basis for Optical | Information Processing 

14.17 FOURIER TRANSFORMING PROPERTIES OF LENSES 

Combinations of lenses have been found useful for information processing by optical 

means because of the Fourier transforming properties of these systems”° which follow 
from diffraction theory (Sec. 12.13). Here we will use the Fresnel form in the paraxial 

approximation, Eq. 12.13(10), 

  

         ik 2 , , ' exp| -# la -— xy + (y-y | dx’ dy 

(1) 
36 J, W. Goodman, |ntroduction to Fourier Optics, McGraw-Hill, New York, 1968; also see 

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Chap. 4, Wiley, New York, 
1997], 

je 
U(x, y, Z) = v7



  
  

796 Chapter 14 Optics 

where W(x’, y’, z') is the given distribution of some scalar field component (such as E,.) 
in the plane z’, and yx, y, z) is the resulting distribution of that component in a plane 

distance L away, where L = |z — z’| (Fig. 14.17). 
First note that for L large enough, terms kx'*/L and ky'*/L in (1) are negligible, 

+ (x7 +y")/2L] 

AL 
  

je ~~ jk 

W(x, y, z) = | - [ w(x’, y', z')exp L (xx’ + yy’) | dx’ dy’ 

(2) 

which is the Fraunhofer diffraction studied earlier. The integral in (2) is a two- 

dimensional Fourier transform (Sec. 7.11). The phase factor in front is often unimpor- 

tant in optical problems, but note that it can be maintained constant if wis observed on 
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FIG. 14.17 (qa) Diffraction of a scalar field component between planes z’ and z. (b) Diffraction 

with a lens introduced to correct spherical wavefronts. (c) Diffraction from input focal plane of 
lens to output focal plane, yielding Fourier transforming properties.
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a spherical surface, L + (x? + y*)/L = constant. Thus with these understandings of 
the phase term, the diffracted distribution in the Fraunhofer approximation can be con- 

sidered the Fourier transform of the given distribution. 

The next point to be made is that the restriction-to large distances can be eliminated 

if a lens is placed just beyond the input plane to correct for the phase factors involving 

x'? and y’*. An ideal thin lens does not change amplitude, but modifies phase quadrat- 

ically with distance from the axis, as in Eq. 14.2(19). Thus referring to Fig. 14.175, 

Poe's y's OF) = Wa’, y', Oe“ V2 Mla ey" (3) 
where a 1s the outer radius of the lens and f is focal distance. We assume that a is large 

enough to intercept all of the important optical field so that we can continue to integrate 

over infinite limits. If (3) is then substituted in (1), the phase terms in x’? and y’? are 

canceled, provided L = f. Thus at the focal plane of the lens, within the Fresnel 

approximation, 

je HE + ty +a°)/2f) 

Af 
  Ax, Y, f) = 

pe 1 (4) 
x \ { Uni’, y’, 0—)exp|4 (xx' + | dx’ dy' 

So Fourier transforming properties are again seen, with the multiplying phase factor 

again a function of x and y. As above, this phase factor can be made constant by 

observing yw on a nearly spherical surface passing through the focus. 

Finally, the variable phase term of (4) can be eliminated if one expresses the field 

us, (x', y’, 0) just before the lens as a transform of its value at the focal plane before the 

lens atz = —f (see Fig. 14.17c). Transformation from the input at z = —f to the 

plane just in front of the lens is by the Fresnel diffraction integral (1): 

  

je#E (” 
Wi’, y, O-) = | [ W(X Vis —Ff) 

Af 
(5) 

x jk to . \2 ro 2 . d 

exp ~3F [ae — xy + Cy — yi] ¢ a; dy; 

When (5) is substituted in (4) there results 

je~#OF ta /2f) (@ 
Wo, ys f) — ——— | \ W(X, Viv — f) 

(6) 
IK 

x oxe|4 (xx; + | dx, dy; 

Equation (6) made use of the integral 

oo 3 . iar sy 

| elaxr+ BX) dy = Y e HB /4a) (7)
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Here the phase factor before the integral represents a constant phase delay so that the 

distribution in the output focal plane is directly proportional to the Fourier transform 

of field distribution in the input focal plane. This may be seen more clearly by defining 

caf ron orale of Pp i f q yi f’ f y f 8) 

f(t, v) = jlo y, PeMFt2/P, gp, g) = Wily Yn —S) 

in which case (6) is in the exact form of the two-dimensional Fourier integral: 

1 f° 
flu, v) = on | | g(p, gel? *"? dp dq (9) 

This important property has made possible Fourier transforming, convolution, corre- 

lation and filtering of spatial functions by lenses and combinations of lenses.7°?’ 
The Fourier transforming properties noted above also give us some physical insight 

as to why gaussian modal forms are found for spherical mirror resonators or periodic 

lens systems in preceding sections. A gaussian function is known to Fourier transform 

to a gaussian, so this form would be expected to persist as a mode in the periodic lens 

system. The resonator with two spherical mirrors has already been shown to be equiv- 

alent to the periodic lens system. Hermite—gaussian and Laguerre—gaussian forms like- 

wise transform into themselves, so these would be expected to be the higher-order mode 

forms. In fact an alternate way of deriving such modes is by setting up the Fresnel 

diffraction integrals and requiring that the function repeat in a period. Solution of the 

resulting integral equation leads to modal solutions of the form already found.* 

14.18 SPATIAL FILTERING 

A two-dimensional information function may be impressed upon an optical wave by 

passing the wave through a screen of the desired transmission property, T(x, y). The 

arrangement might be as in Fig. 14.18a: laser light is passed through a pinhole at the 

Pinhole 

  

  Kk ~h
 

¥ 

Fic. 14.18a Point source at focal point of lens produces a plane wave; information is put on 
this wave by screen with transmission 7T,(4, y). 

$7 J. L. Homer (Ed.), Optical Signal Processing, Academic Press, San Diego, CA, 1987.
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Fic. 14.18b Lens L, Fourier transforms w, to w. T, performs spatial filtering. The result is 

inverse transformed to new function 3. 

focus of a lens, transforming it into a plane wave exiting the lens, followed by the 

transmission screen. T may be complex so that phase as well as amplitude modulation 

may be impressed upon the wave. If desired, this two-dimensional information function, 

could be modified by directly passing it through other transmission screens. This would 

be analogous to operating on a signal which is a function of time directly in the time 

domain. But as with such signals in time, it may be preferable to filter in the frequency 

domain. So with our spatial information function, filtering in the Fourier plane to modify 

the spatial frequencies provides an alternate, and sometimes preferable, way of trans- 

forming the information. 

A simple configuration which illustrates spatial filtering is the two-lens arrangement 

of Fig. 14.185. A uniform plane wave, obtained as in Fig. 14.18a, has the desired input 

function w,(x,, y;) impressed upon it at the input focal plane of lens L,. Its Fourier 

transform then appears at the output focal plane, as explained in the preceding section. 

A screen with transmission properties 7,(x,, y,) may be placed at this plane to modify 

the desired spatial frequencies. Lens L, then produces the inverse Fourier transform at 

the exit focal plane of L5, resulting in a modified two-dimensional function. 

The spatial filters may modify amplitude only, phase only, or a combination. The 

simplest to make are binary filters for which holes are cut in an opaque screen so that 

there is either full or zero transmission for any given portion of the screen. For many 

purposes it is desirable to have the spatial filter change with time. Spatial light modu- 

lators are used for such purposes. 

Note that the arrangement of Fig. 14.185, with no spatial filter in the Fourier plane, 

reproduces the input image, inverted. It is also changed in size by the ratio f,/f,. 

Example 14.18 
SIMPLE BINARY FILTER 

As a specific example, let us consider the input optical function as the rectangular 

function of Fig. 14.18c, resulting from a grating placed in the path of the plane wave. 

For simplicity, consider only variations in x. (Cylindrical lenses are required.) Since
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——>| %9 .__ 
        

                      
  le d >| 
| Xx ! 

Fic. 14.18¢ Function w, taken as a periodic pattern of dark and light. 

this is a periodic function, it may be written as the Fourier series: 

  

Wie) = Dd C,e?mr/a (1) 

A 
C, = —~sin 2 (2) 

™m d 

Use of Eq. 14.17(6) to give yw, in the Fourier plane yields 

Wol%) = Ky} Dd Creole balh dx, 3) 

where K, is the complex constant before the integrand in Eq. 14.17(6). 

Since the impulse or delta function 6(2) is given by the integral, 

if, 
(Oj = — ei dx (4) 

277 J a 

eq. (3) yields 

= kx 270 
(Xp) = 27K, >» c,o( + 2a) (5) 

n=-~-0 f 1 d 

ele 

  

FiG. 14.18d Lens focuses rays from lines P, and P, to plane waves at an angle. Interference 

then produces sinusoidal variation with x.
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The pattern in the Fourier plane thus consists of a series of lines, spaced along the 

axis with spacing 2af ,/kd or (A/d)f ,. Amplitude in each line decreases with increasing 
distance from the axis. It is then straightforward in principle to design a spatial filter to 

modify each line (spatial harmonic) to produce a desired output. 

Suppose first that a binary filter is used, blocking all lines except that of zero order 

on the axis. This clearly transforms to a plane wave at the output of L,, eliminating all 

information about the grating. But if the filter blocks all but the upper and lower pairs 

of nth order (7 = +|n|), a cosine wave output of period f,d/nf, is produced. A 

y-directed line off the lens axis in the focal plane produces a plane wave propagating 

at an angle to the axis, and the two on opposite sides produce one wave upward and 

one downward so that the interference pattern makes the cosine wave referred to (Fig. 

14.18d). As more and more lines are selected to pass, the output pattern approaches 

the original grating function, modified in period by f,/f,. 

  

  

14.19 THE PRINCIPLE OF HOLOGRAPHY 

In recording optical information, film and most other light-sensitive media react to 

intensity of the wave and not to phase. Dennis Gabor, in 1948, recognized that phase 

information could be captured by interfering the scattered wave from an object with a 

reference wave of the same frequency.** The concept became practical and important 

with the development of the laser. Leith and Upatnieks especially developed many 

variations of this concept.*” Gabor first called the technique “wavefront construction,” 

then later holography for “total recording.” 

Many variations are possible,*© but to illustrate the concept, consider the arrangement 

of Fig. 14.19a. A coherent uniform plane wave, obtained for example as in Fig. 14.18a, 

is divided into two parts. One part impinges upon a desired object and the scattered 

wave contains amplitude and phase information about the object. This information 

arrives at the two-dimensional recording plane as the complex quantity A(x, y). The 

second reference portion falls upon the recording plane as R(x, y). Object and reference 

waves at the recording plane may be written in terms of amplitudes and phases: 

A(x, y) = Ao(x, ye 7°"? (1) 

RQ, y) = Rola, ye I »” (2) 

38 DP. Gabor, Nature 161, 777 (1948). 
39 E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 52, 1123 (1963); 53, 1377 (1963); 54, 579 

(1964); §4, 1295 (1964). 

40 J. E. Kasper, Complete Book of Holograms: How They Work and How to Make Them, 
Wiley, New York, 1987.
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Fic. 14.19 (a) Plane wave splits into two parts, one part falling on the object and the other part 
serving as a reference wave R(x, y, z). Scattered wave from object AQ, y, z), interferes with 
reference on recording plane to make hologram T(, y). (b) Irradiation of hologram T(x, y) by 
reference wave produces wavefronts appearing to come from original object, wavefronts pro- 
ducing a real image, and portions of reference beam (not shown). 

The recording medium, when developed, is assumed to give a transmissivity propor- 

tional to total intensity. This property is well approximated by useful recording media 

over certain ranges. Transmissivity is then 

TQ, y) = K(A + R)A* + R*) 3) 

where K is a constant of proportionality. It 1s clear from the above that phase information 

(hd — ws) is recorded. We call this recording the hologram. 

To illustrate the reconstruction of the wavefront A(x, y) we imagine the object 

removed and the hologram illuminated by a replica of the original reference wave 

R(x, y). The wave transmitted through the film is then 

B(x, y) = T(x, y)Ro(x, ye JY » 

K{(A2 + R2)Rye7¥ + AgR3[e 1% + eXb-2vq} 

I 

(4) 

The term (Aj + R2)R,e~- has the phase of the reference wave across the plane and 
produces a continuation of that wave to the right. The next term is proportional to the 

object wave and produces a wave continuing to the right as though it were coming from 

the original object, even though that object is no longer there. Thus it yields a virtual 

image of the object (Fig. 14.195). The last term is proportional to the conjugate of 

A(x, y) and continues to the right in such a way as to form a real image of the object. 

In order that the three transmitted waves not overlap at the viewing position and lead 

to confusion, relative angles between object and reference waves must be properly 

chosen in making the original hologram.
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Example 14.19a 
INTERFERENCE OF PLANE WAVES 

The holographic principle will first be discussed through the simple example of plane 

wave interferences. Let the object wave be a uniform plane wave traveling at angle 6 

from the normal to the recording plane, and the reference wave a plane wave propa- 

gating in the direction of the normal (Fig. 14.19c). We neglect variations with y. Object 

and reference waves as functions of x and z are then 

A(x, 2) = Age sie sin 6+2 cos 6) (5) 

R(z) = Roe *%t®) (6) 

At the recording plane z = O with assumptions as above, transmissivity from (3) is 

T(x) = K{(Ap + RS) + ApRole 2A 88 9 Ho) + ese sin O— Yo)7) (7) 

The original object wave is now removed and the film irradiated with a replica of the 

reference wave (6), resulting in a transmitted wave 

B(x) — K{(A3 4 R2)Rye 7% - AoRéle 7 si 4 + elk sin 8— 24) } (8) 

The first term is uniform in phase over the plane and continues to the right as a part of 

the reference wave Rp. The second term has a phase variation in x proper to excite a 

wave to the right proportional to the continuation of (5). The last term has the conjugate 

phase and excites a plane wave traveling with angle 6 from the normal. All these are 

illustrated in Fig. 14.19d. 

In this example we may consider that the interference of the reference and object 

plane waves has produced a grating in the film. When irradiated, the waves at angles 

+ @ correspond to the first Bragg orders of this diffraction grating (Sec. 6.10). 

T (x,y) T (x,y) image | 
| 

: / ft 
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Pi Se +e 
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| 
| 
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| 
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Se et R(x,¥,zZ) > 

| 
| 
|     

FiG. 14.19 (c) Interference pattern between two plane waves R and A recorded as hologram 

T(x,y). (d) Irradiation of T by reference wave R results in three plane waves, one of which appears 
to be a continuation of A, though that is now removed. 
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Example 14.19b 
HOLOGRAM OF A POINT SOURCE 

As a second example consider the hologram of a point source. This is especially inter- 

esting since the scattered wave from a general object may be considered as made up of 

a superposition of waves from such point sources. Consider Fig. 14.19e with point 
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FiG. 14.19 (e) Interference between spherical waves from P and reference plane wave R re- 
corded as hologram H. (f) Irradiation of H by reference R produces plane wave B,; diverging 

spherical wave B,, which appears to come from P (now removed); and converging spherical 
wave B,, converging to real image P’ of P.
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source P located at (X9, Yo, 29). The idealized spherical wave (Prob. 14.19c) emanating 

from the source may be written as 

A , 
A(x, y, 2) = ——O—~ e irs) (9) 

r(x, y, 2) 

where 

r(&, Ys 2) = [&% ~ Xp)” + (Cy — Yo)? + (= 29)7]!7 (10) 
After interfering with a plane reference wave of the form (6), and recording with line- 

arity assumed as in the previous examples, transmissivity at z = 0 is 

T(x, y) = K | “ 4 | + Agko [el Yo kr(XYZ9) 4 pI fms (11) 
rm Pr 

The original point source is removed and the hologram irradiated with reference wave 

(6), yielding a transmitted wave 

  

Bax, y) = B, + B, + B, (12) 

where 

Ad, pp . 
Bix, y) = KRo 2 + Ro jexpl—j(kzg + )] (13) 

B(x _ KRoAg pte — ye 2 _ 2 21/2 
1X, y) = . exp{ —jk[X — Xo)” + CY — Yo)” + Zo]'’*] (14) 

. _ RoAo _94: Ef — ve \2 _ y \2 21/2 B3Q, y) = ; exp{ —2jW + JkI(X — Xo) + CY — Yo) + 2g) %"}) CAS) 

Following previous arguments, B, continues to the right as a diverging spherical wave 

as though emanating from the original source P (now missing), and B, as a converging 

spherical wave resulting in a real image of P at P’. B, is uniform in phase over the 

plane but varying in amplitude through the dependence on r. This can be made small 

and the continuation of B, to the right is approximately a plane wave, with B. the 

desired reconstruction. 

  

PROBLEMS 

14.2a Obtain from Eq. 14.2(4) the approximate spread of focal length Af from r = 0 to 
Voax When lya,/R <1. For a spherical mirror of radius of curvature | m, used with 
a laser of wavelength Ay = 1 um, give the maximum radius of rays from the axis if 

spread in focal length is not to be more than a wavelength. 

14.2b The f-number of a lens is defined as the ratio of focal length to diameter. (Here we 
will denote by F to avoid confusion with focal length.) Give the spread of focal
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length in terms of F when r,,,, < for the spherical mirror. Explain why “stopping 
down” a lens to higher values of F should increase sharpness of an image. 

Carry out the derivation corresponding to that of Ex. 14.2c for a diverging thin lens 
with plane surface at z = 0 and a parabolic surface z = d + r?/4g,0<r<a, (i) 

by ray analysis and (ii) by phase considerations. 

For the doubly convex lens of Fig. 14.2e, derive the equation for focal length, 
Eq. 14.2 (21), by considering refraction at the surface. 

Consider the imaging for a spherical mirror by ray reflection. That is, for an object 
point on the axis distance d, from a mirror with radius of curvature R, find the im- 
age distance d, from the mirror at which a ray reflected at radius r crosses the axis. 
Under what approximations does Eq. 14.2(24) apply? 

For a uniform plane wave, polarized with e, only, propagating at angle a from the x 
axis with cos y = 0, give all quantities e, h, S$, u,, and uw, used in the general for- 

mulation. Material has refractive index n. 

We will find later that many useful beams have gaussian forms. Assume one with 
form in the transverse plane, e = X exp[—(x” + y”)/w] propagating substantially 
in the z direction, § ~ nz. Compare the neglected term on the right side of Ea. 

14.3(5) with the term VS X e in magnitude and direction and state under what con- 

dition it is negligible. 

Utilizing Eq. 14.3(12) for the eikonal of a plane wave, show that E and H are re- 

lated as in an arbitrarily propagating plane wave in a homogeneous medium. 

Find the required form of refractive index variation to maintain a ray in a circular 

path of constant radius R. 

Very low absorptions can be measured by using the thermal lens effect resulting 

from passing a beam through a cell containing the sample, as in Ex. 14.4a. It has 
been shown [J. R. Whinnery, Acc. Chem. Res. 7, 225 (1974)] that the heating effect 
results, in steady state, in a quadratic index variation near the axis as in Eq. 
14.4(11), with 

_ aP(dn/aT) A= 
Aarkno 

where @ is absorption coefficient, P power in the laser beam, dn/dT the variation of 
refractive index with temperature, k the thermal conductivity, and ny the refractive 
index on the axis. Find the expected focal length of a cell 1 cm long filled with 

carbon disulfide (ny = 1.63, dn/dT = 7.9 X 107*K7',k = 6.82 X 107*J/cm- 
s-K, a = 6 X 107~*cm~') for a laser beam with 0.5 W power and a beam radius 

= 0.5 mm. 

Derive Eq. 14.4(4) from Eq. 14.4(10). 

A typical graded index fiber used in an optical communications system with moder- 
ate data rates has ng = 1.5, A = 0.005, and a = 25 um. For a ray crossing the 
axis at an angle rg find the distance at which it returns to the axis. What is the maxi- 

mum angle of crossing to maintain 7,,,,, less than a? 

A ray passes from a medium of index n, into a slab of thickness d and index n,, 
then exits into n,. Compare radius and slope at the output from the ray matrix and 
an exact Snell’s law calculation if nm, = 1, 7, = 2,d = 1 cm, and angle of input 
ray is (i) 20 degrees and (ii) 40 degrees from the perpendicular to the slab.
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Slabs of dielectric with index n, and thickness d, alternate with slabs having index 

ny and thickness d,. Using the paraxial (small-angle) approximation, find the ray 
matrix for one period of this combination, then two periods, and induce the result 
for N periods. Interpret the result. 

Derive Eq. 14.5(5) with the approximations stated. 

For the doubly convex lens of Fig. 14.2e, derive the expression for focal length, Eq. 

14.2(21), by considering the tandem combination of two spherical dielectric inter- 
faces, with proper attention to sign. 

An alternate form of the solution in Eq. 14.6(7) to the difference equation for the 
periodic lens system is 

rm = C, cos mé + C, sin mé 

Relate C, and C, to the values of initial radius and slope of the rays. The ray matrix 

for one period is assumed known. 

A periodic lens system has d, = d, and f, = f, = d,/5. Check stability and 
sketch the ray paths through a few lenses starting with zero slope andr = 0.1f, at 

the first lens. 

Repeat Prob. 14.6b ford, = d,, f; = f. = da). 

Repeat Prob. 14.6b for the case of alternate converging and diverging lenses, 

d, = do, f, = ~f. = dq). 

Explain why sinusoidal rather than hyperbolic solutions are required in the film of 

Fig. 14.7a for guided modes with exponential decay away from the film in cover 

and substrate regions. 

In the example of the glass film guide given in Sec. 14.7, thickness d is increased to 

2 wm. Use Fig. 14.76 to find ny, for all of the guided TE and TM modes. 

In a certain semiconductor laser, the active region consists of a layer of GaAs 0.3 
pom thick, with n, = 3.35. This is surrounded above and below with GaAlAs with 
HN, = nz, = 3.23. Use Fig. 14.75 to find the modes that can be guided by this active 

layer, and their values of 1,,,, Wavelength Ag is 0.85 yum. 

To illustrate the graphical method of solution for Eq. 14.7(7), consider the symme- 

tric case with n, = 3 so that g = p. Show that (5) is then satisfied either by pd = 
hd tan(hd/2) or pd = —hd cot(hd/2). Sketch some curves of pd versus hd from 
these equations. Then show from (4) that the loci for constant v [defined by (6)] in 
the pd versus Hid plane are circles and sketch these for v = 2, 5, 8. Solutions 

(modes) are given by points of intersection between the circles and the first sets of 
curves plotted. (Note that p must be positive for guided modes.) Check the modes 
predicted for the three values of uv from Fig. 14.7b. 

Find the approximation to Eq. 14.7(7) when n; — n, > ny — 3, as is the case for 
many guides with dielectric substrates but air above. Show that a graphical solution 

similar to that of Prob. 14.7d may be utilized for this case also. 

A guide is fabricated as in Fig. 14.8a@ with the guiding material GaAs with n, = 

3.59, width 1.8 4m, and depth 0.3 wm. The surrounding material is AlGaAs with 
Nz = 3.385 except for the top surface, which is protected by silica with n. = 1.5. 

Free-space wavelength is 0.85 um. Find approximate values of n,,, for this guide by 
the effective index method, for the lowest-order mode.
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We are to design a dielectric guide by in-diffusing titanium into lithium niobate, 

much as in Fig. 14.85. Assume index change An and diffusion depth d as in H. 
Naitoh et al., Appl. Opt. 16, 2546 (1977): An = 0.078r~°®° and d = 0.43¢, where t 
is diffusion time in hours and d is in wm. 

(i) As a first approximation, use the model of a step index guide as in Fig. 14.7a 
with air above and estimate the maximum diffusion time for single-mode oper- 
ation. Take A = 0.633 jm and the refractive index of lithium niobate as 2.05. 

(1) For operation with av value 0.75 of that above, give diffusion time and effec- 
tive index as based on this model. 

(iii) Now, taking into account lateral confinement with a width 1.5 um, use effec- 
tive index method to give the next Correction to Mer. 

For a step index fiber of silica (n = 1.500) cladding on a glass (2 = 1.505) core of 

6.0-u4m diameter, find the cutoff wavelengths of the two lowest axially symmetric 
TE modes. 

A fiber with a = 10 wm has n, = 1.51 andn, = 1.50. Use Fig. 14.9d to estimate 
the number of modes that may propagate at Ap = 1.3 ym. Give the values of 11, ¢¢ 
for the highest and lowest order of these modes. What radius would be required for 
only one propagating mode? 

For a fiber with quadratic index variation having n(0) = 1.5, a = 10 wm, and 
Ag = 1 pm, what A is required for a beam radius w = 3 ym? Find the percentage 
difference of phase velocity from that of a plane wave in material with index n(0) 

for a fundamental mode and Hermite—gaussian modes of order m, p. 

For the numerical values given in Prob. 14.10a, estimate the term on the right of 
Eq. 14.10(6) in comparison with the second term on the left. 

Using Eq. 14.10(17) show that (16) does satisfy (15) with the conditions on w and 
Bmp aS given. 

Using Eq. 14.10(23) show that (22) satisfies (21) with the conditions on w and 8,,, 
as given. 

A multimode fiber has n, = 1.51 and, = 1.50. About what maximum data rate 
could be used with this fiber over a distance of 7 km? 

If one uses the expression 14.10(19) rather than the approximation (20), group ve- 
locity does depend upon mode order. Find group velocity from (19) and the inter- 

mode dispersion based upon this result. (In a practical case, the boundary effect at 
r = a and the departure from the ideal profile may be more important, but this is at 
least one component of dispersion.) 

For a GaAlAs laser source at Ag = 0.85 xm with a single-mode fiber, material dis- 
persion is likely to be dominant. If d*n/dA* ~ 3.2 x 10!° m~? at this wavelength, 
what approximate data rate is usable over a length of 20 km if the laser is (i) an 
ideal coherent source? (ii) Has a spectral width AA, = 0.2 nm? 

The wavelength of minimum attenuation for silica is about 1.55 um. Use Fig. 14.11 

to estimate the usable distance for a data rate of 1 Gb/s, using an unshifted fiber at 
this wavelength assuming perfectly coherent sources. 

Under what conditions does Eq. 14.11(8) reduce to the simpler Eq. 14.11(4)? For 

Tt = 10 ps and A = 1.5 um, how small must the AA of the laser be for the signal 
spectrum to be dominant over the source spectrum?
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Show that Eq. 14.12(13) is a solution of (12) for the conditions stated. 

For a silica fiber of core diameter 10 um and refractive index 1.5, estimate the 
power required to maintain a fundamental soliton if wavelength is 1.4 um with dis- 
persion estimated as 5 ps/nm-km. 

Verify the form in Eq. 14.13(12). 

A typical helium—neon laser with Ag = 633 nm has a beam radius of about 
0.5 mm. Taking this as wo, find beam radius at the other side of a bay 10 km away. 

Similarly find beam radius on the moon of a Nd~YAG laser (A, = 1.06 wm) 3.84 
< 10° km from the earth where it starts with w) = 5 mm. 

For the examples of Prob. 14.13b, there is an optimum w, to produce minimum 
beam radius at the receiver a given distance away. Find the optimum w, and the 
corresponding w(z) at the targets, for the two examples of that problem. 

Show that Eq. 14.13(18) is a solution of (2) in rectangular coordinates. 

Show that Eq. 14.13(19) is a solution of (2) in circular cylindrical coordinates. 

Note that in contrast to the gaussian beam, a beam with Bessel function variation in 
radius, 

E = E,larjeior~ 

does not vary as it propagates in z and has been proposed for some applications 
(J. Durnin, J. Opt. Soc. Am. A4, 651, (1987)]. Show under what conditions it is a 

solution of the wave equation. Find the power propagating in an annular ring be- 

tween the zeros m1 and m + 1 of the Bessel function and show that this is inde- 
pendent of m for large m. Discuss the advantages and disadvantages of the profile as 

compared with the gaussian. 

A gaussian beam of beam radius w, and radius of curvature R, passes from dielec- 
tric with index n, to one with index ,, the plane interface being normal to the beam 

axis. Find gaussian beam properties in medium 2. 

One practical problem is that of focusing the output of a laser, assumed to be of 

fundamental gaussian beam form, onto a fiber distance L away. If beam radius of 
the laser (assumed a waist) is w, and that at the fiber (also a waist) is w,, find posi- 

tion d from the laser and focal length f of a thin lens for the desired focusing. 
(Hint: Work forward from the laser and backward from the fiber until gaussian 

beams intersect.) 

This is a variation of Prob. 14.14b in which there is a specific lens with given focal 

length f, but its placing and the laser-fiber spacing L are variable. Find d and L for 

the given w,, wW., and f in this case. 

In the rod with quadratic index variation described in Sec. 14.10 [n(0) = 1.5, A = 

0.01, Ay = 1 wm, a = 50 pm], a gaussian beam is introduced with zero slope but 

w(Q) = 12 pum. Describe the beam propagation for z > 0. 

This is similar to Prob. 14.14d except that the gaussian beam is introduced into the 

graded index fiber at the equilibrium radius but with slope dw/dz = 0.2. 

Derive Eq. 14.15(8) from Eqs. (5), (6), and (7). 

For a helium—neon laser, the discharge tube has a diameter of 5 mm and length of 

40 cm. A plane mirror is placed at one end and it is desired to keep gaussian beam 
diameter not more than 3 mm at the other end to minimize wall losses. Find the
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radius of curvature of a mirror to be placed close to the second end. Wavelength is 

633 nm. Comment on the two solutions. 

For a typical solid-state laser such as ruby, Nd—YAG, or alexandrite, a; = a, ~ 
5 mm, d ~ 10cm, and A, ~ 1 um with refractive index ~ 1.7. Check the condition 

on Fresnel number N for stability of such resonators. (Note that dielectric disconti- 
nuity at the crystal side boundary further confines the beam.) 

The resonator for a CO, laser with Ag = 10.6 wm has radi of curvature R,; = 
10 m, R, = 20 m (sign convention as in Fig. 14.14a) and spacing d = 1.5 m. 
Show location on the stability diagram in Fig. 14.6c and find radius and position of 

the beam waist and the beam radii at the two mirrors. 

A half-confocal resonator is made by inserting a plane mirror at the midplane of a 
symmetric confocal resonator. The resulting resonator has R, = 2d, R, = ©, and 

by an image argument, would seem to be equivalent to the original symmetric re- 

sonator. Check the ABCD matrix for a round trip of this resonator and comment on 
the differences from the symmetric confocal resonator. 

Show location on a stability diagram of the resonators of Probs. 14.15b and d and 
of the half-confocal resonator of Prob. 14.15e. 

A ruby rod 10 cm long has refractive index n = 1.77 at free-space wavelength 
Ay = 0.6943 ym. If the plane ends form the resonant reflectors, find the longitudi- 
nal mode number / nearest to the given wavelength and the frequency separation 

between longitudinal modes. 

The ruby rod of Prob. 14.16b now has its ends ground to form a confocal resonator. 
Give the radius of curvature needed and calculate minimum spot size and spot size 
at the ends. For a given mode number /, how much is frequency shifted from the 
value for the plane mirrors? 

Find longitudinal mode separation and transverse mode separation for the resonators 
of Probs. 14.15b and d. 

Show that there are stable configurations in which the mirror curvatures are in the 
same direction. That is, the mode exists between a concave and convex surface. 

Supply the details of the derivation of Eq. 14.17(9) with the definitions noted in the 
text. 

Show specifically by use of Eq. 14.17(9) that a gaussian beam at the input focal 

plane does transform to a gaussian at the output focal plane, as stated in the text. 

Convert the integral of Eg. 14.17(6) to polar coordinates (7, @) and find the form of 
yy at the output focal plane if that at the input focal plane corresponds to a uniformly 
illuminated circle of radius a, centered on the axis. 

By using two successive Fourier transforms of form Eq. 14.17(6), show that when 
T,(x,) = 1, the %,(@;) of Fig. 14.180 is like the input function but inverted and 
changed in scale. 

In Ex. 14.18 suppose that the spatial filter passes only lines +» but with a 77-phase 

shift for —n and zero-phase shift for +. Describe the output function (x3). 

Extend Ex. 14.18 to a two-dimensional screen with both horizontal and vertical 
gratings. Describe the pattern for the Fourier plane. Design a spatial filter so that 
only a horizontal grating appears at plane 3.
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In holography the reference wave need not be a plane wave. Consider Ex. 14.19a 

with the object wave a plane wave incident at an angle on the recording plane and 
the reference a spherical wave: 

RQ, y, z) = Roexp{ —jklx? + y? + (@ — 2,77)" 

Find T(x, y) in the plane z = O and the transmitted wave when the resulting holo- 
gram is irradiated with this R. 

As in Prob. 14.19a but with the object wave a spherical wave as in Ex. 14.19b. 

It was shown in Chapter 12 that a spherically symmetric wave of the form 14.19(9) 
is not a solution of Maxwell’s equations. Discuss the concept of a point source in 
optics and the conditions under which (9) may be a useful approximation. 

A hologram may be made of the Fourier transform of a two-dimensional function 
by combining concepts of this section and the preceding two. Sketch an arrange- 
ment for making such a Fourier transform hologram.





  

The system of units in this text, and in much of applied electromagnetics, is the SI 

system,' which is a rationalized meter-kilogram-second (MKS) system. Since the ad- 

ditional basic electric unit is selected as the ampere, it is also designated the MKSA 

system. The classical or gaussian CGS system is still used in much of the scientific 

literature. In this, electrical quantities are based upon the electrostatic system of units 

(ESU) and designated statcoulombs, statvolts, and so on. Current may be in this system 

(statampere) or in the electromagnetic system of units (EMU) system (abamperes), as 

may be some of the circuit quantities, resistance, inductance, and so on. Conversions 

are consequently given in the following table to both systems for certain selected 

quantities. 

The factor given is the number of gaussian units required to equal one SI unit. A 

result in SI units would thus be multiplied by this number to obtain the equivalent 

answer in gaussian units. For example, if length is /,, meters, it will be 100/,, centi- 

meters. For simplicity, velocity of light is taken as 3 x 10° m/s; for more accurate 

work, all multipliers of 3 should be replaced by 2.997925. Additional details and con- 

versions are given in the references.' 

1 EB. A. Mechtly, “The International System of Units—Physical Constants and Conversion 
Factors,’’ Publication SP-7012, National Aeronautics and Space Administration, 1978. 
Available from Superintendent of Documents, U.S. Government Printing Office, Washing- 

ton, DC 20402, 

“ASTM Standard Metric Practice Guide,’’ Designation E 380-70, American Society for 
Testing and Materials, 1916 Race Si., Philadelphia, PA 19103, 1970. 
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Physical Quantity Symbol SI Unit Factor Gaussian 

Length l meter (m) 10 centimeter (cm) 
Mass m kilogram (kg) 10° gram 
Time t second (s) 1 second 

Frequency f hertz (Hz) 1 hertz 
Force F newton (N) 10° dyne 
Energy U joule (J) 107 erg 
Power W watt (W) 10’ erg/s 
Charge O coulomb (C) 3 x 10? statcoulomb 
Charge density p C/m> 3 x 10° statcoul/cm? 
Current I ampere (A) 3 x 10° statampere 
Current I ampere (A) 1/10 abamipere 
Potential, voltage ®,V volt (V) (1/3) X 107? © statvolt 
Potential, voltage ®, V volt (V) 108 abvolt 
Electric field E V/m (1/3) X 1074 © statvolt/cm 
Electric flux density D C/m? 4m(3 X 10°) __ statcoul/cm? 
Electric polarization  P C/m? 3 x 10° dipole 

moment/cm? 
Magnetic field H A/m 4a X 1073 oersted 
Magnetization M A/m 1073 magnetic 

moment/cm? 
Magnetic flux Ur weber (Wb) 108 maxwell 
Magnetic flux density B tesla (T) 10* gauss 
Capacitance C farad (F) (3)? x 10° statfarad 
Inductance L henry (H) (3)~? X 107!! — stathenry 
Inductance L henry (H) 10° abhenry 
Resistance R ohm (22) (3)~? x 107!! — statohm 
Resistance R ohm (Q) 10° abohm 
Conductivity o siemens/meter (S/m)  (3)* x 10? (statohm cm)! 
Conductivity o siemens/meter (S/m) 107?! (abohm cm)~! 
 



    

The Rectangular, Cylindrical, 
and Spherical Coordinate Systems 

The three systems utilized in this book are rectangular coordinates, circular cylindrical 

coordinates, and spherical coordinates. These are defined briefly before generalizing. 

The intersection of two surfaces is a line; the intersection of three surfaces is a point; 

thus the coordinates of a point may be given by stating three parameters, each of which 

defines a coordinate surface. In rectangular coordinates, the three planes x = 4%, 

y = y,,Z = 2, intersect at a point designated by the coordinates x,, y,, z;. The elements 

of length in the three coordinate directions are dx, dy, and dz, the elements of area are 

dx dy, dy dz, and dz dx, and the element of volume is dx dy dz. 

In the circular cylindrical coordinate system, the coordinate surfaces are (1) a set of 

circular cylinders (r = constant), (2) a set of planes all passing through the axis (@ = 

constant), and (3) a set of planes normal to the axis (z = constant). Coordinates of a 

particular point may then be given as r,, @,, Z, (Fig. 2a). The 7, @, and z coordinates 

are known respectively as the radius, the azimuthal angle, and the distance along the 

axis. Elements of length are dr, r dd, and dz, and the element of volume is r dr d@ dz. 

The system shown is a right-hand system in the order of writing r, @, z. 

In spherical coordinates the surfaces are (1) a set of spheres (radius + from the 

origin = constant), (2) a set of cones about the axis (@ = constant), and (3) a set of 

planes passing through the polar axis (@ = constant). The intersection of sphere r = 

r,, cone 6 = 6,, and plane @ = @, gives a point whose coordinates are said to be r,, 

6,, @, (Fig. 2b). r is the radius, @ the polar angle or colatitude, and @ the azimuthal 

angle or longitude. Elements of distance are dr, rd@, and r sin 0 dd, elements of area 

are r dr d@, r* sin 6 d@ dd, and r sin 6 dd dr; and the element of volume is r? sin 6 
dr d@ dd. 
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Fic. 2 (a) System of circular cylindrical coordinates. (b) System of spherical coordinates. 

  

Each of the preceding three systems and many others utilized in mathematical physics 

are orthogonal coordinate systems in that the lines of intersection of the coordinate 

surfaces are at right angles to one another at any given point. It is possible to develop 

general expressions for divergence, curl, and other vector operations for such systems 

which make it unnecessary to begin at the beginning each time a new system is met. 

Suppose that a point in space is thus defined in any orthogonal system by the coor- 

dinate surfaces g,, go, g3. These then intersect at right angles and a set of three unit 

vectors, 1, 2, 3 may be placed at this point. These should point in the direction of 

increasing coordinates (Fig. 2c). The three coordinates need not necessarily express 

directly a distance (consider, for example, the angles of spherical coordinates) so that 

the differential elements of distance must be expressed: 

dl, = h, dq,, dly = hy dqp, diz = h; dq; (1) 

where h,, hz, hz in the most general case may each be functions of all three coordinates 

Fir Was 43- 

Scalar and Wector Products A reference to the fundamental definitions of the 

two vector multiplications will show that these do not change in form in orthogonal 

curvilinear coordinates. Thus, for scalar or dot product, 

A ° B = A,B, + A,B, + A3B3, (2)
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{c) 

FiG. 2c Element in arbitrary orthogonal curvilinear coordinates. 

and, for the vector or cross product, 

i 3 3 
AXB=J|A, A A; (3) 

B, By B, 

When one of these vectors is replaced by the operator V, the foregoing expressions do 

not hold, as will be shown below. 

Gradient According to previous definitions, the gradient of any scalar ® will be a 

vector whose component in any direction is given by the change of ® for a change in 

distance along that direction. Thus, 

ab gw Osis WD 
437 43 Vd = 1 

dq hy0qo h30q3 

  

    (4) 

Divergemce In forming the divergence, it is necessary to account for the variations 

in surface elements as well as the vector components when one changes a coordinate. 

If the product of surface element by the appropriate component is first formed and then 

differentiated, both of these changes are taken into account: 

1 a 
V-D= da, -~ (Dihoh, day d 

hyhohy dq, qn dq3 mn aq, | Vials M42 243) 
  

O 0 

+ dgy —— (Doh,hz dq, dq3) + dq3 —— (D3hzh, dq, ia) | 
0q2 0q3 

  

1 0 d 0 
V:-D= — (hohyD,) + —— (A,h3D2) + — (yh,D 5 ra [ig ODD * gy baad + 5 Oak | 

Note that for the spherical coordinate system d/l, = dr, dl, = r d6, and dl, = r sin 0 

dd, so thath, = 1, hy = r, and h, = r sin @. A substitution of these in (5) leads 

directly to Eq. 1.11(9).
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Curl In forming the curl, it is necessary to account for the variations in length elements 

with changes in coordinates as one integrates about an elemental path. This may again 

be done by forming the product of length element and proper vector component and 

then differentiating. The result may be written 

i222 3 
hyh, hgh, hyhy 

VxH=|29 q OF (6) 
dq, 0q2 0q3 

    
Laplaciam The Laplacian of a scalar, which is defined as the divergence of the 

gradient of that scalar, may be found by combining (4) and (5): 

V7b = V- V® 

L_-[ 2 (te @) «2 (td), 2 (te a@) | 
hyhyhs dq, \ hy 0q, 0g \ hy OQ, 0q3 \ hz 993 

Laplacian of Vectors For the Laplacian of a vector in a system of coordinates other 

than rectangular, it is convenient to use the vector identity 

VF=VV-F)-VXVXxF (8) 

  

Each of the operations on the right has been defined earlier. 

Differentiation of Vectors The derivative of a vector is sometimes required as in 

Newton’s law for the motion of particles. 

dv d 
F = m— = m= (lv, + 2v, + 303) (9) 

If this is expanded, we have 

F .dv, ,dv,_ » dv; di d2 d3 
—~—=1—4+2—-~4+3——-+97,—+0-—- 4+ U— 
m dt dt dt Va ae 8 

The last three terms involve changes in the unit vectors, which by definition cannot 

change magnitude, but may change in direction as one moves along the coordinate 

system. Consider for example the fourth term: 

di al d ai d ai d 

nF no(S Os 2m, 2 a) q, at dq at dq, dt 

Partials of the form ai /dq, and so on may be nonzero. As an example, consider the 

term 00/06 in spherical coordinates. From Fig. 2d the vector d6 00/06 is seen to have



magnitude dé and has direction given by —f. Thus, 00/40 = 

unit vectors in this and the cylindrical coordinate system are listed below. 
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dé      (Region of dotted circle, o a0 a6 
expanded) do   

(d) 

Fic. 2d 

Rectangular Coordinates 

WN
 

q, = X, da = ys 43 = 

hy = 1, hy — 1, hg = | 

All partials of unit vectors (0X/ax, d&/dy, etc.) are zero. 

Cylindrical Coordinates 

qi = !, Go = 4g, q3 ~— 2 

h, = 1, h = 7, hs = 1 

All partials of unit vectors are zero except 

at _ 4 ob 

819 

—Ff. Other partials of 

  

Coordinates and Derivatives of I Unit Vectors 

for Various Coordinate Systems
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Spherical Coordinates 

M=% %d=% G3 = 9 

h, = 1, h, = 7, h, = r sin 6 

All partials of unit vectors are zero except 

ek a6 
—=(§ —=-f 
00 0 0OCO 

a 6 ad . . 5p 7 Sin 6 3p 0008 4 op =~ sin 8 + 6 cos 6



  
In presenting various forms for the laws of static magnetic fields, many of the less 

obvious steps were left out, and the order was chosen as that most convenient for 

presentation of the laws rather than that of the logical development. This appendix 

sketches the omitted steps. 

We will start from Ampére’s law, Eq. 2.3(2), which we may write 

I'v’) dl’ xX R 

AqR? 
  H(r) = | (1) 

by assuming the origin of the coordinate system to be at the current element at each 

point through the integration. /'(r’) is the current in a contributing element dl’ at point 

(x', y’, z'), and R is the vector running from dl’ to point (x, y, z) at which H(r) is to 

be computed: 

R=r-—r’ = xXx — x') + Wy —-y) + HZ — 2’) 

We wish to find B = pH in terms of the derivatives at the point of observation 

(x, y, z) of the vector potential A. It may be shown that 

dl’ x R 1 
—,— = Vi -]| X dl’ 2 RB R (2) 

where V denotes derivatives with respect to x, y, and z. Also, using the vector identity 

of Prob. 2.6b, 

1 dl’ 1 
Vi-i x di = Vx |—]|] --—V X di’ 3 

R R R (3) 

Since V represents derivatives with respect to x, y, and z, which are not involved with 

dl’, the last term is zero. Therefore 

I'(r’) dl’ 
pe) =n | Mv x (f)-vx aw (4) 
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where 

[' f dl’ 

ag) =p {| OE (5) 

The curl operation in (4) could be taken outside of the integral since it is with respect 

to r, and the integration is with respect to r’. Thus, the vector potential forms of Sec. 

2.9 have been derived from Ampére’s law for which the arbitrary coordinate origin was 

chosen at the current element for simplicity. 

For the next step, let us note the x component of (5): 

P(r’) dx’ | Ji(r’) dv' 

~ # v 4aR 4arR (9) 
A,r) = p | 

This may be compared with Poisson’s equation and the integral expression for electro- 

static potential: 

o(r’) dv’ 

4aeR 7) 
Vo=—-- 3 wr) =| 

E y' 

Although these equations were obtained from a consideration of the properties of elec- 

trostatic fields, the second of the two equations, (7), may be considered a solution in 

integral form for the first, for any continuous scalar functions ® and p/e. Consequently, 

by direct analogy between (6) and (7), we write 

V4, = —p, (8) 

VA = —pJ (9) 
This was the differential equation relating A to current density discussed in Sec. 2.12.. 

By reversing the steps of that section, the differential equation for magnetic field may 

be derived from it: 

VxH=J (10) 

And as was shown in Sec. 2.8, the integral form may be derived from this by use of 

Stokes’s theorem: 

é H-dl =I] (11) 

There remains the argument for V- A = 0 used in Sec. 2.12. In this it is necessary 

to make use of the del operator with respect to both r and r’. The former will be denoted 

V, and the latter V’. Recall that the integration is with respect to the primed variables. 
Then, 

1 J'(r’) dv' | J'(r’) dv' 

— . — V . ee V .- |$ —— |] —— 

bh via vi 4aR Vv ( R 4% (12)
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Using a vector equivalence of Prob. 1.1 1a, 

lo. A = -| Pe 4 see ¥(2) dv" 
pb Vv R R Agr 

The first term is zero since J’ is not a function of r. In the latter term, from the definition 

of R, we can write 

1 1 
Vi-|= -Vi- 

  

  

Then, 

1\ av’ 
— . — _ VMhel\ Vv’ = 

pL Vv A Vv J (r ) () Acar 

1 J’(r’) | dv’ — —V'- Jr’) — V'- __ 

I 7 ve) R | Aq 

In the last step we have again used a vector equivalence of Prob. 1.11a. The first term 

is zero because we are concerned with direct currents, which, by continuity, give 

V’- J’ = 0. The second term is transformable to a surface integral by the divergence 
theorem. Thus, 

ly yg FO), dS’ 13 
LL s' 47R (1S) 

But, if the surface encloses all the current, as it must, there can be no current flow 

through the surface and the result in (13) is seen to be zero. Thus all the major laws 

given have been shown to follow from the original experimental law of Ampére. It 

should be noted that the argument given is for a homogeneous medium (permeability 

not a function of position). For an inhomogeneous or anisotropic medium, the equations 

forming the fundamental starting point are 

VxH = J, V-B=0 (14) 

and for an anisotropic medium, B and H are not related by a simple constant.



    

arn 

Appendix 4    

If a voltage V cos wt is applied to a linear, time-invariant circuit containing R, L, and 

C in series, the equation to be solved is 

dl 1 
os r+ 5 | 1dt = Vp cos a 

But 

esa + e — jut 

2 

l COS wf 

If we assume that the current has the steady-state solution 

I = Ael™ + Beso 

the result of substituting in (1) in 

, , 1 , 
joL (Ae/™ — Be!) + R(AeJ@ + Bel?) + oC (Aci — Bes) 

jo 

Vay; , = 2 ele + ena 

(1) 

(2) 

(3) 

(4) 

This equation can be true for all values of time only if coefficients of e/“’ are the same 

on both sides of the equation, and similarly for e~/@". 

ale + (oe -1.)] = ¥% 
VO” OC 2 

1 V B|R -j{oL - —)| == 
Ve wc 2 

824 
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The complex quantity in the brackets of (5a) may be called Z and written in its 

equivalent form 

1 z= + (a - 4) = [lew 

  

  

where 

2 = ie + (or - 4) (6) 
wC 

and 

LE — 1/ac W = tan~! = 100) (7) 
R 

Similarly, 

1 
R- i( we -4) = \Zlje—/¥ 

Then 

V. . 
A —_- —™ ,-Jv 

2iz| 
V. . 

B a —1 pj 

2\z| © 
(A and B are conjugates: they have the same real parts and equal and opposite imaginary 

parts.) Substituting in (3), 

  

V. | chor) + e~Ket- 

3 ® 
By comparing with (2), 

I Mm cos(wt — w) (9) 
— [Z| 

This final result gives the desired magnitude and phase angle of the current with 

respect to the applied voltage. That information is contained in either constant A or 

constant B, and no information is given in one which is not in the other. Constant B is 

of necessity the conjugate of A, since this is the only way in which the two may add 

up to a real current, and the final exact answer for current must be real. It follows that 

half of the work was unnecessary. We could have started only with V,,e/“' in place of 

the two-term expression which is exactly equivalent to V,, cos wt. For current, there 

would then be only 

Vs. 
[= — eilat— #) (10) 

Z|
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Although this cannot actually be the expression for current, since it is a complex and 

not a real quantity, it contains all the information we wish to know: magnitude of 

current, V/|Z|, and its phase with respect to applied voltage, ys. This procedure may be 

made exact by writing 

Vit) = Re[V,e/“] (11) 

I(t) = Re| 2 cho | (12) 

where Re denotes, “the real part of.” Because of the inconvenience of this notation, it 

is usually not written explicitly but it is understood. That is, if any single frequency 

sinusoid f(t) is expressed by its magnitude and phase, Me’®, or by its real (in-phase) 

and imaginary (out-of-phase) parts A + jB, the instantaneous expression may be found 

by multiplying by e/“ and taking the real part: 

f(t) = Re[Me'*+] = Re[(A + jB)e/@") (13) 

So to summarize, voltage and current can be written’ 

Vit) = Re[V.e/“] (14) 

I(t) = Re{I,e/“"] (15) 

where V, and J, are the complex of phasor representations of voltage and current 

respectively, 

Ve = (Viel, 1, = Ele” (16) 
The differential equation (1) becomes an algebraic equation relating V, and J,: 

I 
joLl, + RI, + —= = V, jo c (17) 

from which 

I, = =: = (enw (18) 

so that 

| = a 0, = O, ~ (19) 

where magnitude and phase of impedance Z are given by (6) and (7), respectively. 

Although the subscript c is used to denote complex phasors in this development to 

stress their nature, the complex nature is understood from the context in most circuit 

analyses, without the special designation, and similarly it is understood in the phasor 

representation of fields used in much of this text. 

' An alternative form much used in the physics literature is V(t) = 4(V.e"? + c.c.J, where 
c.c. stands for complex conjugate of the first terrn in brackets.
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For nonlinear or time-varying circuit elements, the complete equivalence (2) must 
be used if excitation is by a sinusoidal voltage, since frequency components other than 
@ are generated. 

Power Caiculatioms Given a sinusoidal voltage V(t) = V,, cos(wt + @,) anda 

corresponding sinusoidal current /(¢f) = J,, cos(wt + @,), the expression for instan- 

taneous power is 

Wt) = VIG) = V,/,, cos(wt + d,)cos(wt + dy) 

By trigonometric identities, this may be written 

  

V_I 
Wit) = 7 [cos(@, — G2) + coswt + od, + o,)] (20) 

The equivalent in terms of phasor current and voltage is 

W(t) = 3 Re[VJ2 + V,I,e7] (21) 

where /* denotes the complex conjugate of J,. Often we are interested only in average 

power, which is given by the first terms of (20) and (21). 

In another useful power calculation with complex voltage and current, V.J* is found 

to give average power and the difference between stored energy in magnetic and electric 

fields. As an example, consider a simple series RLC circuit 

1 
ZI[* = R os i{ ot — J) et 

we 

_ 9 RII" ar LIT: IteC 

~ “V9 JO. A haeC? 

Vie 
(22) 

  

The real term is recognized as twice the average power dissipated in the resistor. The 

first term in brackets is average power stored in the inductor. (One factor of 2 comes 

from the form $L/°, the other from the average of squared sinusoids.) The second term 

in brackets is the average energy stored in the capacitor since |J,/wC| is magnitude of 

capacitor voltage. Thus, (22) may be written 

Vt = 2W,, + 4ja(Uy — Uz) (23) 

where W, is average power loss, U,, average energy in the magnetic fields of the 

inductor, and U, average energy in electric fields of the capacitor. This is a special case 

of the complex Poynting theorem discussed in Sec. 3.13 that is applicable to any passive 

circuit.



  
The inhomogeneous wave equation for potential function ®, Eq. 3.19(7), is 

. ar@(r, t) _ _ ptr, t) 
V*0(r, 1) — ps 5 

Let us take the Fourier transform to obtain 

_ p(t, ) 
V(r, w) + wpeB(r, w) = - 

where 

P(r, w) = | Mr, the /“dt 

pir, w) = { p(r, the “dt 

A solution to (2) may be written 

Or, w) = I, mee G(r, r’)dV’ 

(1) 

(2) 

(3) 

(4) 

(5) 

where G(r, r’), called a Green’s function, is the contribution from a unit source at r’ 

to potential ® at r. (This is analogous to the impulse response function in circuit theory.) 

Thus G satisfies the equation 

V-G(r, r’) + PG@, r’) = —ér — r’) (6) 

where 6(r — r’) is the Dirac delta function and = w*ye. Let us next shift the origin 
tor’ and define R = |r — r'|. The response is now symmetric about the point source, 
so (6) in spherical coordinates may be written 

1 d dG 
R? —|+ PRG = (ae) + __ A(R) 

AqkR? 

  

R? dR 

828 

(7)
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(The factor 1/47R? is introduced so that integration over a volume in spherical coor- 

dinates gives a unit source.) Multiplication of (7) by R? and integration yield 

  

dG x 1 
eee! R*G dR = —-— 

dR 0 Aor (8) 

It can be checked that a solution is 

+ JKR + jkr —r'| 

G=* ____ (9) ~ AgR 4q\r — r'| 

A theorem due to Green states that for two functions of space, f and g, 

2 2 d 0 | iever — prev = ¢ E rf 28 las (10) 
V Ss on on 

where 0/dn represents the outward normal derivative. In (10), let g = Gand f = ®, 

- =< gb AG 
[GV*® — OV’G]dV = ¢ jo — ® 6 (11) 

Vv Ss on on 

Surface S now goes to infinity to include all sources. From (9), G decreases as 1/R and 

we anticipate the result that ® does also. Derivatives a /dn and dG/dn then die off as 

1/R* and dS increases only as R*. Thus, the surface integral approaches zero as S > 
oo, Use of (2) and (6) in the left side of (11) then gives 

    

| {¢| -2 — eB | _ ®[(—-RG — Or — eoihav = 0 (12) 
Vv E 

but 

| Soc — r)dV' = @(r) (13) 

SO 

= P(r’, ) |, pr’, we 
@O(r, w) = | G(r, r’) —— dV = | ——— ad (14) 

V E V 4areR 

We next take the inverse Fourier transform, 

1 (= 
O(r, 4) = — | @O(r, w)e/"dw (15) 

217 — oo 

dv' oo pr’, w)eor = kR) 

on = | oe] ir, #) v4q7éR J x 277 dw (16) 

But the integral in w is recognized as p(r’, t + kR/w). So 

por’, t + R/v)dV' 

4areR 
  O(r, f) = \,
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where v = w/k = 1 /V pe. Only the minus sign is retained under the argument of 

causality. The plus sign would give a response anticipating the change in the source, 

which is allowed only in science fiction. This is the result in Eq. 3.20(3). 

An exactly parallel development applies to the rectangular components of vector 

potential A, thus leading to the result in Eq. 3.20(4). 

The Green’s function introduced in (5) measured the response at r arising from an 

elemental source at r’. It was a free-space Green’s function for the wave equation, 

applicable to a region extending to infinity. The concept applies also to closed regions 

such as waveguides or cavity resonators. For such applications one would solve the 

inhomogeneous wave equation (6) subject to the appropriate boundary conditions of 

the problem. The resulting functions have extensive use in the solution of advanced 

boundary-value problems.!~* 
The concept of the Green’s function applies to differential equations other than the 

wave equation, in each case giving an effect at one point arising from an elemental 

source at another point (or, as in the impulse response of circuit theory, an effect at an 

instant of time arising from an impulse at an earlier time). The Green’s functions for 

Laplace’s equation have had especially extensive study.* 

R. F, Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961. 

R. E. Collin, Field Theory of Guided Waves, 2nd ed., IEEE Press, Piscataway, NJ, 1991, 

C. A. Balanis, Advanced Engineering Electromagnetics, Chap. 14, Wiley, New York, 1989. 

J, D. Jackson, Classical Electrodynamics, 2nd ed., Chaps. 1-3, Wiley, New York, 1975. a
 

Ww
 

HO 
—



  

ABCD network coefficients, 546 

ABCD optics parameters, 756-760 

Aberration, spherical, 744 

Abramowitz, M, 95, 370 

Admittance diagram, 242 

Admittance parameters, 535-537 

Ampere’s circuital law, 78 

Ampere’s law, 73-77 

Ampere’s law generalized, 129 
Analytic functions, 332-335 

Anisotropic crystals, plane-wave propagation, 

701-712 

Anisotropic dielectric crystals, 699-712 

Anisotropic media, 699-735 

Anomalous dispersion, 263 

Antenna: 

above conducting plane, 603-605 

aperture, 588, 618-627 

biconical, 585, 653-655 

as boundary value problem, 651-655 

cylindrical dipole, 654 

dipole, 586 

directive gain, 600 

directivity of array, 635 

field analysis, 651-663 

frequency-independent, 643—645 

gain, 599-602 

image, 604 

integrated-circuit-type, 588 

loop, 205, 586 

power gain, 601 

slot, 588 

spherical and spheroidal, 651-653 

traveling wave, 586, 606-611 

Antenna arrays, 630—650 

broadside, 634—636 

end-fire, 636 

directivity of, 635 

logarithmically periodic, 643-645 

phase scanning, 636 

unequally spaced, 637 
Yagi-Uda, 641-643 

Antennas, mutual coupling of, 659-661 

Antiferromagnetic substances, 691 

Antireflective coating for lens, 298 

Aperture radiation, 614-630 
Arjavalingam, G., 452 

Ashcroft, N.W., 679 

Attenuation, 413, 416, 423, 426, 446, 449 

Attenuation constant, 247, 407—409 

of plane waves, 284 

reactive (filter-type), 253, 401 

in transmission lines, 247—251 

in waveguides, 401, 403, 407-408, 

444-45] 

Attenuation bands, 551 

Babinet’s principle, 627 

Backward wave, 263, 485, 489 

Balanis, C., 298, 300, 646, 656, 830 

Balmain, K. G., 605, 607, 613, 658 

Balun, 613 

Bandwidth: 

of antenna, 654 

relation to Q, 494, 567 

of resonator, 494 

Barrow, W. L., 469 

Bergmann, E. E., 699 

Bessel equation, 366 

Bessel functions, 181, 368—375 

asymptotic forms, 373 

complex, 181 

derivatives, 374 

expansion in terms of, 376 

of imaginary arguments, 367 

integrals, 375 

modified, 372 

recurrence formulas, 374 

spherical, 507 
zeros of, 373 
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Betatron, 115, 163 

Biaxial materials, 701 

Biconical antenna, 585, 653-655 

Biconical resonator, 512 

Biconical transmission line, 472—474 

Bilinear transformation, 391 

Biot, Jean-Baptiste, 70 

Biot and Savart law, 73 

Birefringence, 707 

Bloembergen, N., 695, 696 
Blumlein pulse generator, 269 

Boll, R., 694 

Boltzmann’s constant, 45 

Booker’s formula, 649 

Boonton, R. C., Jr., 325 

Borgnis, F. E., 348 

Born, M., 281, 616, 699, 704, 756 

Boundary conditions, 56, 145~—149, 323 

at conductors, 38—39 

in electrostatics, 36-39 

in magnetostatics, 101 

at perfect conductor, 148 
Boundary value problems, 321-394 
Bowman, D. F., 614 

Bracewell, R., 358 

Bragg grating, 305 

Branch point, 389 

Breakdown, 118 

Brewster angle, 313 

Brillouin, L., 262 

Broadside array, 634 

Brown, J. W., 346 

Bulley, R., 475 

Button, K. J., 646, 650 

Capacitance, 25, 175, 196, 197, 204 

Capacitive waveguide diaphragm, 575 

Carson, J. R., 201, 531 

Carver, K. R., 646 

Cascaded transmission lines, 232, 244 

Cascaded two-ports, 545-548 

Cauchy~Riemann equations, 332, 389, 581 

Cavity resonator, see Resonators 

Chadwick, G. C., 643 

Characteristic impedance, 217, 532 

Characteristic wave impedance, 290 
Chebyshev method, 55 

Chu, L. J., 469, 640, 653 

Index 

Churchill, R. V., 346 

Circuits: 

formulation through retarded potentials, 

200-208 
microwave, 530-583 

with radiation, 205-208 

skin effect in, 180-185 

theory, 172-180 

Circular electric TE), mode, 432 
Circular waveguides, 428-433 

Circular harmonics, 391 

Circularly polarized wave, 309, 717, 733 

Circular polarization, 281 
Circulator, 723 

stripline Y-junction, 727 

Circumferential modes in radial lines, 

468-470 

Clausius—Mossotti relation, 680 

Coaxial cylinders, 10, 22, 40 

capacitance, 26 

with different dielectrics, 40-42 

electrostatic field, 10 

inductance, 83 

magnetic field, 99 

Coaxial loops, 190-192 

Coaxial transmission line, 156, 217 

attenuation, 250 

characteristic impedance, 217, 250 
external inductance of, 83 

higher order modes, 433-435 

internal impedance, 156 

resonator, 510—S11 

Coercive force, 693 

Coherence length, 621 

Cohn, S. B., 475, 521, 552 

Collatz, L., 52 

Collin, R. E., 159, 410, 437, 438, 442, 481, 

548, 577, 641, 605, 625, 627, 656, 662, 

699, 830 

Complex power, 272, 827 

Complex variables, 331 

Comstock, R. L., 727 

Conduction current, 35, 126 

Conductivity, 35 

Conductor: 

circular cross section, 180-185 

collisionless, 689 

good, 682



imperfect, 682-686 

perfect, 687 

Conformal mapping, 346-348, 412 

Conformal transformation, 331—351 

for Helmholtz equation, 348—350 

for Laplace equation, 336-347 

Conservation of charge, 121-126 

Conservative property in electrostatics, 

16-19 

Continuity equation, 163 
Convection current, 124 

Conversion between systems of units, 

813-814 

Coordinate systems, 815—820 

Coplanar waveguide, 414—416 
Coplanar-strip waveguide, 417 

Coulomb, Charles A., 2—4, 62 

Coulomb (unit), 3, 814 

Coulomb gauge, 159 

Coulomb’s law, 2-3 

Coupled resonator filter, 551-552 

Coupling: 

to cavity resonators, 513-515 

to microstrip resonators, 501-502 

to waveguides, 435-438 

Critical angle, 311 

Critical coupling, 517 
Cross junction in microstrip, 578 

Cross product of vectors, 72 

Curie temperature, 691 

Curl, 84-88 

of magnetic field, 88 

Current: 

conduction, 123, 126 

convection, 123, 127 

defined for waveguide mode, 532 

displacement, 114, 121-126 
Curtis, H. E., 250 

Curvilinear coordinates, 818-820 

Cutoff: 

dielectric guide, 464 

of nonuniform transmission lines, 266 

of periodic systems, 485 

of waveguides, 401, 403, 418, 422, 429, 

431, 443, 448 

Cyclic Chebyshev method, 55 

Cycloidal motion, 109 

Cyclotron frequency, 729 

Index 833 

Cylindrical coordinates, 815-816 

Cylindrical harmonics, 365-379, 377 

Debye, P., 463 

Decibel, 251 

Degenerate modes, 422 

Del, 28 

Demagnetization factor, 738 

Depletion region, 9, 65, 42 

Depth of penetration, 151-154 
Diamagnetic responses, 689 

Diaphragms in waveguides, 550 

Dicke, R. H., 465, 532, 541, 560 

Dielectric, 7 

anisotropic, 699—707 
artificial, 587, 628 

constant, 3, 127 

effective constant, 412 

guide, curved, 349—351 

nonlinear, 695, 780-783 

properties, 678-682 

radiators, 587 

resonators, 521—525 

susceptibility, 679 
waveguides, 462—464, 763-783 

wave reflections from, 287—288 

window, 296-298, 314 

Dienes, A., 415, 452 

Difference equation, 52 

Diffraction, 305 

effects, 614-627 

of gaussian beams, 623, 783-786 

gratings, 637 

of lens systems, 795-797 

Diffusion of charges in semiconductors, 42 

Dildine, R. G., 542 

Dipole: 

antennas, 586 

layer, 64 

moment: 

electric, 25 

magnetic, 97 

Directional coupler, 557-561 
Directivity: 

antenna, 600, 635 

aperture, 621 

of directional coupler, 560 

Director, 642
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Discontinuity: 

capacitance, 573-574 

in coaxial line, 575 

in rectangular guide, 531, 577 

Disk-loaded waveguide, 476 

Dispersion, 130, 415 

anomalous, 263, 779 

group, 262, 778-780 

of signals, 451-454 

Displacement current, 122, 123 

Displacement vector, 6 

Divergence, 29-33, 817 

of electrostatic field, 29—31 

of magnetic flux density, 98 

theorem, 31 

Dolph, C. L., 641 

Domain structure, 692 

Dominant mode, 422 

Doppler shift, 732 

Dot product, 12 
Double refraction, 707 

Double-stub tuner, 271 

Duality, 470-472, 487, 592 

DuHamel, R. H., 643 

Dwight, H. B., 182, 192 

Dyadic, 699, 732 

Earnshaw’s theorem, 65 

Eastwood, J. W., 52 

Eddy currents, 694 

Effective area: 

Hertzian dipole, 667 

for receiving antenna, 664—669 

Egbert, J. H., 542 

Erkonal, 750 

Electric: 

dipole, 23, 28 

dipole moment, 679 

energy, 144 

field, 4 

field line, 5 

flux, 6—12 

polarization, 8 

susceptibility, 8 
Electromagnetic horns, 624 

Electromagnets, 71 

Electromotive force (emf), 117 

Electron gun, 336 

Index 

Electronic polarizability, 681 

Electro-optic: 

effects, 707-712 

phase modulation, 709—712 

Electrostatic equations, 1-61 

Electrostatic potential, 19-25 

Electrostatic shielding, 197 

Electrostatic system of units (ESU), 813-814 

Elimination of wave reflections: 

from conducting surface, 291 

from dielectric interface, 298 

Elliott, R. S, 2, 62, 267, 532, 547, 598, 599, 

612, 656, 658, 661, 727 

Ellipsometer, 319 

Elliptic cylindrical conductor, 341 
Elliptic integrals, 192, 411 

Elliptic polarization, 281, 316 

Emde, F., 370 

Emf method for antennas, 208, 658 

End-fire arrays, 636 

Energy, 16—19 

in a capacitor, 61 

in electric fields, 59-61, 140, 277 

in magnetic fields, 106, 140, 277 

storage systems, 272 

velocity, 263, 404, 461 

Equipotentials, 21 

Equivalent circuit: 
of N port, 571-572 

of one port, 564-571 
of receiving antenna, 668 

for transverse electric wave, 460 

for transverse magnetic wave, 459 

Evanescent decay, 311 

Evanescent fields, 463 

E waves, see Transverse magnetic (TM) 

waves: 

Excitation, see Coupling 

Exponential line, 266 

External inductance, 81, 155, 203 

of circular loop, 193 

of coaxial transmission line, 83 

of parallel-wire transmission line, 187 

Extinction coefficient, 682 

Extraordinary wave, 705-707, 709 

Far-zone fields, 592 

of aperture, 616



Faraday, Michael, 70 

Faraday rotation, 721—725 

Faraday’s law, 114, 117~121, 129, 164, 172 

for moving system, 119 

Fay, C. E., 727 

Feldman, C. B., 653 

Ferrimagnetic materials, 75 

Ferrites, 316, 691 

devices, 723—727 

permeability matrix, 713—716 

TEM wave propagation, 716-722 

Ferroelectric materials, 694 

Ferromagnetic materials, 75, 691-695 

Field analysis for transmission lines, 218, 

438-442 

Field analysis of antennas, 651—663 

Field-displacement devices, 726 

Field impedance, 403 

Field maps, 57-59 

Filter-type distributed circuits, 252 
Filters, 548-553 

in microstrip, 551 

Finite-difference method, 325 

Flux: 

electric, 6—12 

linkages, magnetic, 189 

magnetic, 72 

tube, 14—16, 50 

Folded dipole, 612 

Focal length, 744, 747, 748 

Force: 

between electric charges, 2—4 

on current in magnetic field, 73 

law, 126 

Foster, R. M., 562 

Foster form: 

first, 564 

second, 567 

Foster’s reactance theorem, 562 

Fourier integral, 355-360 

Fourier series over a finite interval, 357 

Fourier transforming properties of lens, 
795-798 

Fraunhofer diffraction, 616, 619, 796 

Frequency characteristics: 

of N ports, 571-572 

of one ports, 564—569 

of resonant transmission lines, 259 

Index 835 

Frequency-independent antennas, 643-645 

Fresnel diffraction, 616, 797 

Fresnel equation of wave normals, 703—704 

Fresnel number, 789 

Frey, J., 561 

Friis, H. T., 590, 591, 666 

Fringing capacitance, 573-575 

Gauge: 

Coulomb, 159, 170 

London, 159 

Lorentz, 159, 170 

Gaussian beam: 

in graded-index medium, 775—777 

in homogeneous medium, 783-786 

in optical resonator, 789-795 
transformation by ray matrix, 786—789 

Gaussian CGS system of units, 813-814 

Gauss’s law, 6—16, 129 

Generator, 119 

Geometrical optics, 743-763 

as limiting case of wave optics, 

749—752 

Gilbert, William, 70 

Gloge, D., 774 

Goell, J. E., 767 

Goldman, A., 694, 713 

Goubau, G., 481 

Graded-index fibers, 775-777 

Gradient, 27—28 

Gradshteyn, I. S., 95, 622 

Graphical field mapping, 50-52 

Grace, J. D., 542 

Gray, D. E., 679 

Green, E. I., 250 

Green’s function, 661, 828—830 

Griffiths, D. J., 700 

Gross, B., 679 

Group dispersion, 262, 453, 461 

Group velocity, 260-263, 316, 401, 404, 

406, 485 

Guided waves, see Waveguide 
Gyrator, 723 

Gyromagnetic ratio, 713 

Gyrotropic media, 717, 733 

Hahn, W. C., 576, 733 

Hall effect, 71, 109
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Hankel functions, 370—372 

Hansen, W. W., 564, 640 

Harrington, R. F., 325, 518, 572, 830 

Harris, J. H., 351 

Hasnian, G., 415 

Haus, H. A., 695, 699, 707 

Heiblum, M., 351 

Helix, 212 

idealized, 476—478, 489 

Helmholtz: 

coil configuration, 110 

equation, 135, 168, 322, 396, 385-388 

theorem, 159 

transformation, 120 

Henry, Joseph, 70 

Hermite polynomials, 776 

Hermitian, 700 

Hertzian dipole, 589 

Hertz vector potential, 170 

Hockney, R. W., 52 

Hoffman, R. K., 411, 500, 577 

Hogan, C. L., 723 

Homogeneous medium, 8 

Hondros, D., 463 

Huygens principle, 614 

H Waves, see Transverse electric (TE) waves 

Hybrid modes, 413 

Hybrid networks, 560-561 
for microstrip, 561 

Hysteretic materials, 107, 692 

Image, 46-50 

antenna, 603—604 

in conducting plane, 47 

of line charge in conducting cylinder, 48 

multiple, 49 

in plane insulator, 67 

of point charge in conducting sphere, 49 

Impedance: 

antenna, 655—660 

concept for waves, 289 

matching, 220 

matching with inclined planes, 471 

measurement, 235 

of round wires, 182 

transformation along transmission lines, 

240 

Impedance coefficients, 537, 563 

Index 

Inclined-plane transmission line, 470—472 

Index ellipsoid, 700, 704 

Index of refraction, 682 

Index of wave normals, 700 

Induced currents, 124 

Inductance: 

circuit element, 81, 174 

of coaxial line, 83 
from energy storage, 108 

external, 81 

from flux linkages, 81 

internal, 81, 108 

mutual, 176 

of parallel-plane transmission line, 81 
of practical coils, 193 

Inductive diaphragm in rectangular guide, 

575 

Inhomogeneous dielectric, 8 

Integrated-circuit-type antennas, 588, 

646-650 

Internal impedance, 153-156, 188, 202 

International system (SJ) of units, 3, 813-814 

Intrinsic impedance, 276 

Ionic polarizability, 681 
Ionosphere, 736 

Iris in conducting thin diaphragm, 577 
Isolator, 557, 723-726 

Isotropic media, 8 

Itoh, T., 410, 577 

Jackson, J. D., 322, 682 

Jahnke, E., 370 

Jamieson, H. W., 576 

Jasik, H., 611, 614, 624, 629, 643 

Jeffrey, A., 95, 623 

Jeffreys, B. S., 563 

Jeffreys, H., 563 

Johnson, R. C., 611, 614, 624, 629, 643 

Jones, E. M. T., 548 

Jordan, E. C., 195, 605, 607, 613, 658 

Jouve, H., 691 

Junction parameters: . 

by analysis, 373-578 

by measurement, 541~—545 

Keck, D. B., 772 

Kerr effect, 707 

Kerst, D. W., 117



King, D. D., 637 

Kirchhoff’s laws: 

current law, 177 

voltage law, 172 

Kittel, C., 679, 691, 694 

Klystron, 166, 528 

Kober, H., 337 

Kock, W. E., 628, 630 

Kogelnik, H., 463 

Kramers—Kronig relations, 563, 682 

Kraus, J. D., 476, 630, 602, 613, 656 

Kresin, V. Z., 89, 689 

Laguerre polynomials, 777 

Laplace equation, 33, 40, 323-385 

in circular cylindrical coordinates, 

365-379 

conformal transformation, 341-347 
numerical solutions, 52-56, 324-330 
product solutions, 351-385 

in rectangular coordinates, 351-364 

in spherical coordinates, 379-385 

Laplacian, 34 

Laport, E. A., 611 

Laser, 169 

resonator, /91~795 

Laura, P. A. A., 337 

Laverghetta, T. S., 515 

Legendre polynomials, 380-382 

associated, 506 

Legendre’s equation, 380 

Lenses, 588, 746—749 

for directing radiation, 628—630 

for Fourier transforming, 795-798 

periodic systems of, 760-762 

Li, G., 452 

Liebe, F. A., 250 

Light, velocity of, 134 

Linear arrays, 634 

Linear isotropic media, 678-690 

Linear media, 8 

Linearity in microwave networks, 533 

Linear or plane polarization, 280 

Line charge, 10, 22 

Line integral: 

of electric field, 117 

of magnetic field, 77—80, 128 

Logarithmically periodic arrays, 643—645 

Index 837 

London: 

Logarithmic transformation, 339 

gauge, 159 

penetration depth, 688 
Longitudinal invariance, 365 

Longitudinal-section electric, 454 

Longitudinal-section magnetic, 454, 457 

Longitudinal waves, 732 

Loop antenna, 586, 603 

coupling in cylindrical cavity, 514, 570 

Lorentz gauge, 159 

Lorentz model of atom, 680, 696 

Losch, F., 370 

Loss factor, 284 

Loss-free networks, 554 

Loss-free one-ports, 562 

Loss-free three-ports, 556 

Loss tangent, 285 

Low-pass filter, 178 

Lundstrom, O. C., 564 

Luneberg lens, 629 

Mach—Zehnder interferometer, 710 

Magic T, 560-561, 530 

Magnetic: 

charge, 167, 113, 615 

current density, 615 

dipole, 96, 97, 690 

dipole radiators, 589-592 

domains, 691 

energy, 144 

field, 72 

field of a current element, 94 

flux density, 72 

forces, 72, 111 

material: 

hard, 693 

soft, 693 

moment, 716 

susceptibility, 75 

vector potential, 93, 190 

Magnetic-wall waveguide boundary, 522 

Magnetization, 74, 690, 715 

residual, 691-695 

Magnetized sphere, 103 

Magnetron, 87 

Manley—Rowe relations, 698 

Marcuvitz, N., 465, 530, 544, 577
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Material: 

dispersion, 779 
parameters (tables and graphs) 154, 155, 

285, 287, 683, 686, 694, 695, 709 

Matrix 

permeability, 713-716 
permittivity, 699 

Matthaei, G. L., 548 

Maxwell, J. C., 73, 114 

Maxwell’s equations, 114163 

complex form, 129-132 

differential form, 126 

large-scale form, 128 

and plane waves, 132—137 

potential formulation, 158-163 
and skin effect, 149--155 

time-periodic case, 129-132 

McLachlan, N. W., 182 

Measurement of network parameters, 

541-545 

Measurement of resonator Q, 515-518 

Mechtly, E. A., 813 

Mei, K. K., 577 

Meissner—Ochsenfeld experiment, 687 
Mermin, N. D., 679 

Mesh relaxation, 54 

Metal lens antenna, 630 

Metal-semiconductor contact, 9 

Meter-kilogram-second (MKS) system, 

813-814 

Method of moments, 324—330, 388, 660—663 

Microstrip: 

antennas, 646-650 
filters, 551 

resonator, 500-504 

T, 531 

transmission lines, 407—414 

Microwave bridge, 560 

Microwave networks, 530—583 

Milford, F. J., 690 

Miller, S. E., 433 

Mink, J. W., 46 

Mittag—Leffler theorem, 568 

Modal dispersion, 778 
Modes: 

in circular cylindrical resonator, 

496-500 

in gyrotropic media, 716-722 

Index 

in optical resonator, 789-795 

in rectangular resonator, 494—496 
in spherical resonator, 508-510 

in step-index optical fiber, 773 

waveguides, 417-435 

Modulated wave, 279, 453 
Modulation index, 710 

Molecular polarizability, 679 
Monopole antenna, 612 

Montgomery, C. G., 532, 541, 560 

Moreno, T., 512, 573 

Morrish, A. H., 693 

Motional electric field, 120 

Mottlelay, P. F., 2 

Moving charges, 142 

Moving system, 119-121 

Multiconductor lines, 438 

Multimesh circuits, 177 

Multimode propagation, 422 
Mutual capacitance, 196-198 
Mutual impedance between thin dipoles, 659 
Mutual inductance, 176, 189-192, 208 

Natural optical rotation, 740 

Neper, 251 

Network: 

analyzers, 542, 580 

formulation, 532--535 

loss-free, 554 

parameters measurement, 541-545 

reciprocal, 554 

Neumann’s form of mutual inductance, 191 

Newman, E. H., 662 

Newton’s law, 62 

Nonideal transmission lines, 245--253 

Nonlinear dielectrics, 695 

Nonlinear isotropic media, 692-698 

Nonlinear optics, 695 

Nonlinear polarizations, 696-698 

Nonreciprocal networks, 557, 713~—727 
Nonuniform transmission lines, 264—267 

Normal dispersion, 263 
North, D. O., 667 

Norton circuit form, 180 

N ports, 554-561 

frequency characteristics, 571-572 

Numerical methods, 52—56, 324—330



Numerical solution: 

for antenna properties, 660-663 
of Laplace equation, 53-56 

of scalar Helmholtz equation, 460 

Ochsenfeld, R., 687 

Oersted, Hans Christian, 70 

Ohm’s law, 126, 141 

Ohmic loss, 141 

Oldham, W. G., 179 

Omega beta diagram, 252 

One-ports, 564—569 

impedance, 561-571 

loss-free, 562 

Onnes, H. K., 687 

Optic axis, 705 

Optical: 

fibers, 319, 771-783 

filter, 553 

indicatrix, 700 

information processing, 795—805 

resonators, 789—795 

waveguides, 763—783 

Optics, nonlinear, 695, 781 

Ordinary wave, 705-707 

Orthogonality properties: 

of Bessel functions, 375 

of Legendre functions, 381 

of sinusoids, 356 

Overcoupled resonator, 517 

Oversize guide, 432 

Packard, R. F., 637 

Palik, E. D., 679 

Papas, C. H., 348 

Parabolic reflector, 624, 745 

Parallel conducting cylinders, 343 

Parallel plane: 

capacitor, 26, 327, 347 

diode, 335 

system with losses, 407 

transmission line, 166—168, 187 

transmission line inductance, 81 

Paramagnetic substances, 689 

Parasitic element, 641 

Paraxial approximation: 

for large apertures, 618 

for lens systems, 756 

Index 839 

Partial fraction expansion, 564 

Patch antenna, 646 

Patch resonator, 502 

Penetration depth, 153 

Penetration of fields into conductor, 149-158 

Perfect conductor, 687, 689 

Periodic: circuit, 529 

lens system, 760-763 

structures, 482—486, 547 

Permanent dipoles, 679 

Permanent magnetization, 102—105 

Permeability, 73, 127 

incremental, 694 

initial, 694 

matrix for ferrites, 713-716 

maximum, 694 

Permittivity, 127 

matrix, 699 

of plasma in a magnetic field, 728-730 

principal, 700 
relative, 3 

Perturbation of resonant cavities, 518-521 

Phase constant, 136, 230, 247, 401, 403, 406 

Phase matching, 698 

Phase scanning of arrays, 636 

Phase velocity, 230, 303, 401, 406 

for waves at oblique incidence, 303 

Phasors, 130 

Pi equivalent circuit, 538 

Pierce, J. R., 335, 476 

Pierce gun, 335 

Planar diode, 124 

Planar transmission lines, 410—417 

discontinuities in, 577 

Plane conductor internal inductance, 188 

Plane wave radiation sources, 617-624 

Plane waves, 132—137, 143, 280, 274~—278, 

287-299 

in anisotropic crystals, 701—712 

obliquely incident, 300-315 
Plasma, 685 

frequency, 685 
moving, 730-733 
permittivity in magnetic field, 728—730 

TEM waves on, 733-735 

pn semiconductor junction, 42-45, 66 

Pockels effect, 708 

Poisson equation, 33-34, 42-45, 323
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Polarization of dielectrics, 7, 695 

nonlinear, 696-698 

Polarization, wave, 280, 679 

circular, 281 

designation for waves at angle, 300 

elliptic, 281 
linear, 280 

TE, 302 

TM, 300 

Polarizing (Brewster) angle, 312 

Polynomial formulation of arrays, 638—641 
Portis, A. M., 159 

Potential: 

analog, 674 

difference, 117 

electrostatic, 19 

magnetic scalar, 99 
magnetic vector, 93 

retarded, 158-163 

for time-varying fields, 158—163 

Potter, D., 52 

Power: 

flow (Poynting’s theorem), 139-145, 

408, 445, 448 

loss in plane conductor, 156-158 

reactive, 144 

splitter, 270 

Poynting’s theorem, 139-145 

for phasors, 143-145 

Poynting vector, 141, 168, 277, 592 

P-polarization, 300 

Pozar, D. M., 532, 646, 727 

Precession, 713 

Principal: 

coordinates, 700 

permittivities, 700 
section, 707 

Product solutions, see Separation of variables 

method 

Propagating waves, 397 
Propagation: 

constant, 246, 400, 403 

time, 223 

Pulse excitation on transmission lines, 

221-229 

Pulse-forming line, 227 

Pulse reflections, 223, 225 

Purcell, E. M., 465, 532, 541, 560 

Index 

QO (quality factor), 256—259, 493, 567 

measurement, 515 

of resonant transmission lines, 256—259 

of resonator modes, 494, 498, 510 

Quadrupole, 64 
Quarter-wave 

coating to eliminate reflections, 298 

plate, 712 

transmission line for impedance match- 

ing, 269 

Quasi-TEM mode, 413 

Quasistatic, 1, 71, 171 

approximation, 412 

methods of junction analysis, 573—575 

Radian lines, 464—469 

circumferential modes in, 468—470 

foreshortened, 512 

lossy, 487 

Radiation, 259, 584—676 

from aperture, 614—630 
efficiency, 602 

field, 592 

intensity, 595 

losses from resonators, 503, 527 

modes in dielectric guides, 767 

patterns, 599-602 

resistance, 200, 206, 207, 212, 602 

vector, 594 

Radome, 317 

Ramo, S., 733 

Rat race hybrid, 561, 581 

Ray matrix, 756-759 

used with gaussian beam, 786—789 

Ray vector, 703 

Reactive power, 144 
Reactance wall for slow waves, 478 

Receiving antenna: 

equivalent circuit, 668 
reciprocity, 663-669 

Reciprocal networks, 554 

Reciprocity, 535, 537 

for antennas, 666—668 

for networks, 536, 537 

Rectangular aperture radiation, 620 

Rectangular harmonic, 353 

Rectangular resonator, 491-496 

Rectangular waveguides, 417-428
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from good conductor, 294 

law of, 302, 307 

of plane waves, 287~299 

with several dielectrics, 295 

total, 310, 463 

Reflection coefficient, 220, 230 

Reflectors for radiation, 588, 642 

Refractive index, 278 

for silver and nickel, 686 

Reitz, J. R., 690 

Relative permittivity, 3 

Relaxation factor in numerical solution, 55 

Remanence, 693 

Residual magnetization, 691-695 

Residue, 565 

Resistance element, 173 

Resonant slot antenna, 625-629 

Resonant transmission lines, 254—260 

Resonant wave solution, 139 

Resonators, 490--529 

circular cylindrical, 496-500 

conical line, 512 

coupling to, 513-515 

critical coupling, 517 

dielectric, 521—524, 529 

equivalent circuits, 569—571 

loop coupled, 570 

microstrip, 500 

overcoupled, 517 

patch, 501~504 

perturbations, 518-521 

O of, 494, 515~518 

Q measurement, 515-518 

rectangular, 491~—496 
ring, 502 

small-gap, 510-513 

spherical, 508-510 

strip, 500—504 

undercoupled, 517 

Retardation, 198 

Retarded potential, 158-161 

for time-periodic case, 162 

Rhombic antennas, 607—611 

Richmond, J. H., 662 

Ridge waveguide, 474—475 

Rinehart, R. F., 629 

Rumsey, V. H., 643 
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Rutledge, D. B., 650 

Ryzhik, I. M., 95, 622 

Saleh, B. E. A., 710 

Saturation: 

induction, 694 

magnetization, 715 

Saunders, W. K., 664 

Savart, Felix, 70 

Scaife, B. K. P., 679 

Scalar product, 12 

Scattering matrix, 540 

measurement of coefficients, 543 

Schelkunoff, S. A., 290, 568, 638, 653, 590, 

593 

Schinzinger, R., 337 

Schloemann, E. F., 727 

Schwarz, S. E., 179 

Schwarz transformation, 345, 346 

Schwinger, J., 577 

S curve, 544 

Sectoral horns, 468—470 

Segerlind, L. J., 52 

Self-inductance, 186 

Semiconductors, 682—686 

Semi-infinite solid, 150 

depletion layer, 8 

Separation of variables method, 351-388 

Serber, R., 117 

Shielding, electrostatic, 197 

Shorted-stub tuner, 242 

Silver, S., 147, 625, 664 

Sinusoidal waves on transmission lines, 

229—260 

SI units, 73, 813 

Skin depth, 153 

Skin effect: 

in circuit element, 180—185 

metals, 154 

superconductors, 155 

Slot antenna, 588 

Slot-line waveguide, 417 

Slotted line, 235 

Slow-wave structures, 476—478 

Small-gap cavities, 510-513 

Smith, P. D., 563 

Smith, P. H., 236
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Smith transmission-line chart, 236—245, 297 

for admittances, 242 

for cavity coupling, 516 
for plane waves, 297 

Smythe, W. R., 46, 381 

Snell’s law, 307 

Solenoid, 80, 194 

superconducting, 106 

Sommerfeld, A., 481 

Sorrentino, R., 52, 325 

Space-charge waves, 730-733 

Space factor for array, 634 
Space wave, 605 

Spatial harmonics, 482—486 

Sphere in uniform field, 382 

Spherical: 

aberration, 744 

antennas, 651-653 

Bessel functions, 507 

capacitor, 26 

coordinates, wave solutions, 504 
harmonics, 379—385 

mirror, 744 

resonators, 508—510 

wave, 592 
Spiegel, M. R., 95, 182, 192 

Spin magnetic moments, 713 

5-polarization, 300 

Spontaneous magnetization, 737 

Stability: 

diagram for laser resonators, 761 

for periodic lens system, 761 

Standing wave, 267 

in cavity resonators, 490 

plane waves, incident at angle, 300—305 
plane waves, normal incidence, 288 

ratio, 233~—235, 241 

on transmission lines, 254—259 

Starr, A. T., 269 

Statcoulomb, 62, 814 

Steady currents, 35 

Steady-state sinusoids, 135-137 

Stegun, I. A., 95, 370 

Step discontinuity in parallel-plane line, 574 
Step-index fiber, 771-774 
Stiglitz, M. R., 521 

Stokes’s theorem, 91, 118 

Strang, G., 547 

Index 

Stratton, J. A., 106, 140, 147, 262, 504, 607, 

617, 653, 699 

Stripline, 410 

capacitance, 329 

Y-junction circulator, 726 

Strip resonators, 500-504 

Stub tuner, 243, 271 

Stutzman, W. L., 609, 610, 651 

Superconductor, 71, 153, 155, 195, 687-689 

penetration depth, 89, 155 

solenoid, 195 

surface resistivity, 155 

transmission line, 737 

two-fluid model, 736 

Supergain arrays, 640 
Superposition, 323, 362, 405 
Surface: 

guiding, 479~481 

integrals, 12 

resistivity, 152, 155 

wave, 605 

Susceptibility: 

electric, 9 

magnetic, 75 

nonlinear, 696 

Tai, C. T., 120, 653 

Taylor, T. T., 674 

T equivalent circuit, 538 

TE waves, see Transverse electric (TE) waves 

TE,9 wave, 423 
Teich, M. C., 710 

Telegraphist’s equations, 216 
TEM waves, see Transverse electromagnetic 

(TEM) waves 

Tensor, 699, 732 

Terman, F. E., 210 

Thévenin: 

circuit configuration, 180 

equivalent circuits, 579, 669 

Thiele, G. A., 609, 610, 651 

Thin-film: 

modulators, 710 

transmission line, 252 

Thomas, R. K., 637 

Three-ports, loss-free, 556 
Time variable medium, 8



TM waves, see Transverse magnetic (TM) 

waves 

Tonks, L., 143 

Torque, 112 

Total reflection, 310, 463 

Transformer: 

audio, 153 

ideal, 538 

Transmission coefficient, 219, 220, 231 

of network, 541 

Transmission line, 213~—273, 223, 252 

analogy for ferrites, 718 

analogy for plane waves, 289 

with capacitive termination, 226 

configurations, 250 

field analysis, 218 

general formulas, summary of, 248—250 

with losses, 247—252, 442 

nonuniform, 264—266 

parallel-plane, 218, 399 

parallel-wire, 166-168 
pulse excitation, 221~229 

radial, 464—469 

Smith chart for, 236—238 

TEM waves on, 438-442 

Transmitting—receiving system, 663-666 
Transverse electric (TE) waves, 403, 419, 

399, 418, 428, 431, 442-447 

general properties, 447—449 
Transverse electromagnetic (TEM) waves, 

219, 268, 398, 399, 438 

in ferrites, 716—722 

in Stationary plasma, 733 

Transverse magnetic (TM) waves, 398, 399, 

418, 438, 442 

Traveling wave, 217, 229, 276 

antenna, 586, 607 

Tubes of flux, 15 

Turner, C. W., 153, 687 

Two-fiuid model, superconductor, 736 

Two-port, 536-553 

Unequally spaced arrays, 637 
Uniaxial crystal, 701 

Uniform plane waves, 167, 274-278 

Uniqueness of solutions, 45, 46, 145-149, 

534 

Unitary matrices, 556 

index 843 

Units, 814. See also International system (SI) 

of units 

Unpolarized wave, 283 

Unstable optical resonator, 794 

Van Bladel, J., 523 

Van Duzer, T., 153, 687 

V antenna, 607-611 

Variational methods, 577 

Vector: 

differentiation, 818 

dot product, 12 

magnetic potential, see Magnetic, vector 

potential 

potential F, 461 

product, 72; See also Cross product of 

‘yi vectors’: . || mo . 
aS - ae 

a m, - ©F 

relations, back cover °° *"."' 
Velocity:.. 

of energy propagation, 278 | 
‘' group, see Group velocity 

+--of light, 134 
phase, see Phase velocity 

Verdet constant, 722 

Vias, 500 

Voltage: 

in circuits, 172 

generated by changing magnetic field, 

116 

for microwave networks, 532 

Volume integral, 12 

Watson, G. N., 367, 376 

Wave: 

below and near cutoff, 449 

equation, 133, 138, 275 

guided by parallel plates, 398-410 
impedance, 290, 304, 402, 720 

in imperfect dielectrics, 283-287 
number, 136 

reflections, elimination of, 291 

velocity, 217. See also Velocity 

Waveguide: 

attenuators, 450 

dielectric, 462—464, 763-783 

discontinuities, 577 

horn, 625 

modes, see TE, TM waves
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rectangular, 417-428 

circular, 428-433 

Wavelength, 136, 230, 278 
guide, 425 

Weakly guiding fibers, 774 

‘Wheeler, H. A., 195, 412, 413 

Whinnery, J. R., 415, 452, 576, 674 
Whittaker, E. T., 2, 73, 367, 376 
Wilson, M. N., 195 
Wire bonding, 210 

Wolf, E., 281, 616, 699, 704, 756 
Wolf, S. A., 89, 689 
Woodyard, J. R., 640 
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Yagi-Uda arrays, 641-643 
Yariv, A., 695, 698, 699, 707, 709, 756 
Yeh, P., 695, 699, 707 
¥-junction, 556 

Young, L., 548 

Zahn, H., 463 

Zenneck, J., 481 

Zeros of Bessel functions, 373 
Zhang, X., 577 
Zig-zag rays, 464
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