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PREFACE

Some readers may be surprised or even disturbed at the mix-
ture of problems assembled in this book. These problems
actually extend from electrical engineering to electromagnetism
and wave mechanics of the spinning electron, but the link con-
necting this variety of problems will soon be discovered in their
common mathematical background.

Wayves always behave in a similar way, whether they are longi-
tudinal or transverse, elastic or electric. Scientists of the last
century always kept this idea in mind. When Lord Kelvin
built up his model for a dispersive medium or when Lord Ray-
leigh discovered radiation pressure, they never failed to try the
same methods again and again on all conceivable types of waves.
This general philosophy of wave propagation, forgotten for a
time, has been strongly revived in the last decade and represents
the backbone of this book. '

All problems discussed deal with periodic structures of various
kinds, and they all lead to similar results: these structures, be
they electric lines or crystal lattices, behave like band-pass filters.
If energy dissipation is omitted, there is a sharp distinction
between frequency bands exhibiting wave propagation without
attenuation (passing bands) and those showing attenuation and
no propagation (stopping bands). These general properties are
defined for an infinite unbounded medium, but they bear a very
close relation to selective reflections shown by a bounded medium.
A wave striking from outside may be partly reflected from the
surface, if the second medium is able to transmit the correspond-
ing frequency. - The amount of reflection depends upon how well
the media are matched at their common boundary. But when
the frequency falls inside a stopping band of the reflecting
medium, there is no longer any matching problem; the wave can-
not be transmitted, and hence it must be totally reflected. This
same explanation applies to electric filters, rest rays, anomalous
optical reflections, and selective reflection of X rays or electrons
from a crystal. In the case of rest rays, the theory was developed

vii _
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by M. Born and his school; for X rays, it corresponds to Bragg’s
reflections and P. P. Ewald’s now classical investigations summa-
rized in his book ‘ Kristalle und Roentgen Strahlen’” (Springer,
1923), and a paper in the Annales de I'Institut Poincaré (vol. 7, p.
79, 1938). Many practical examples of electric filters may be
found in the treatises of K. S. Johnson and T. E. Shea, in the
collection of books from the Bell Telephone Laboratories (van
Nostrand). The general connection between stopping bands and
selectivereflection is exemplified in the definition of the zones for a
crystal lattice, a theory first developed by the authorin his original
papers and in a book “Quantenstatistik’” (Springer, 1931). A
general discussion of the zone theory is found in the present book
and will serve as an introduction to Mott and Jones, ‘“Theory of
Metals and Alloys” (Oxford, 1936), and to F. Seitz’s ‘“The
Modern Theory of Solids” (McGraw-Hill, 1940), where the
theory is applied to many practical discussions.

‘Apart from physical and engineering problems, the general
theory developed in this book bears a close connection with many
problems of applied mathematics, such as the Mathieu functions
and Mathieu’s and Hill’s equations.

The author discussed these general problems in his lectures at
the Collége de France (1937-1938) and at the University of Wis-
consin (1942), when Mary Hewlett Payne very kindly proposed
to write down her notes and to prepare them for publication.
Circumstances resulted in great delays before this could be com-
pleted, and the author’s present duties would never have per-
mitted him to undertake such a work if Mrs. Payne had not
made a really excellent record of his lectures, so that very few
corrections and additions were necessary on her manuscript.
Let her find here the author’s very best thanks for her valuable
collaboration.

LtoN BRILLOUIN.

New Yorxg, N. Y,,
January, 1946.
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CHAPTER 1

ELASTIC WAVES IN A ONE-DIMENSIONAL LATTICE OF
POINT MASSES: EARLY WORK AND INTRODUCTION

1. Historical Background; Eighteenth Century

The first work done on a one-dimensional lattice was that of
Newton! in his attempt to derive a formula for the velocity of
sound. Newton assumed that sound was propagated in air in
the same manner in which an elastic wave would be propagated
along a lattice of point masses. He assumed the simplest possi-
ble such lattice, viz., one consisting of equal masses spaced

ELASTIC CONSTANT =e
Fra. L1,
equally along the direction of propagation (Fig. 1.1). Neigh-
boring masses were assumed to attract one another with an
elastic force with constant e. Taking m to be the mass of each
of the particles and d to be the distance between neighboring
particles in the state of equilibrium, Newton obtained for the
velocity V of propagation of an elastic wave

‘ e ed .
v V= d\/% = \/; p = density  (1.1)

To compare this result with the experimental value of the velocity
of sound in air, Newton took p to be the density of air and ed to
be the isothermal bulk modulus of air. The theoretical value
thus computed was smaller than the experimental value. In
1822 Laplace [pointed out that the expansions and condensations
"1 NgwTon, “Principia,” Book II, 1686. 1992

<
1 legh
36 %«'Za,w:) ’ 536 %‘U“N‘
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2 WAVE PROPAGATION [Crar. I

associated with sound waves take place adiabatically and that,
therefore, the adiabatic elastic constant should be used instead
of the isothermal. A computation using the adiabatic constant
in Newton’s formula gave excellent agreement with experiment.
It should be mentioned that Newton’s formula holds only for
wave lengths large compared with d.

The reason why Newton considered the one-dimensional lattice
of Fig. 1.1 was that at that time a continuous structure repre-
sented an insoluble problem, and nothing was known about
partial differential equations. Hence, a model had to be chosen
that would lead to a number of simultaneous equations of motion
of the usual type.

The work on one-dimensional lattices was continued in a series
of letters, starting in 1727, between John Bernoulli in Basel and
his son Daniel in St. Petersburg at that time. They showed that
a system with n point masses has n independent modes of vibra-
tion, .e., n proper frequencies. Later (1753), Daniel Bernoulli
formulated the principle of superposition, which states that the
general motion of a vibrating system is given by a superposition
of its proper vibrations. This investigation may be said to form
the beginning of theoretical physics as distinet from mechanics,
in the sense that it is the first attempt to formulate laws for the
motion of a system of particles rather than for that of a single
particle. The principle of superposition is important, as it is a
special case of a Fourier series, and in time it was extended to
become a statement of Fourier’s theorem.

The laws of vibrating strings were first discovered empirically,
and in 1713 Taylor started a theoretical investigation. Euler’s
ol . .
treatment of the continuous string by means of partial differential
equations (1748) was much more complete. He took the string
to be along the x axis and to be vibrating in some plane perpen-
dicular to this axis. The result he obtained was that the dis-
placement of the string was given by an arbitrary function of
(z + vt), where v is the velocity of propagation of the wave and ¢
is the time, provided that the function satisfied certain continuity
conditions. Euler’s result started a controversy lasting until
1807. If one takes Euler’s result and the principle of superposi-
tion together, one must conclude that any arbitrary function of
(z + vf) may be described by a superposition of sine and cosine
functions, since it is well known that the proper vibrations of a
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string are given by sine and cosine functions. This is, of course,
merely a statement of Fourier’s theorem, but Fourier’s theorem
was not proved until 1807, and to Euler’s mind the theorem was
almost an absurdity. Since he could not doubt the validity of
his solution to the problem of the vibrating continuous string,
Euler refused to.accept the principle of superposition.

The Bernoullis had given the problem of the one-dimensional
lattice of point masses a fairly complete treatment. FEuler had
solved the problem of the vibrating continuous string. The task
of treating the continuous string as a limiting case of the one-
dimensional lattice of point masses still remained. This problem
was solved by Lagrange in 1759.

Lagrange followed Euler in refusing to accept the principle of
superposition. This is very strange, since Lagrange § paper

“practically contains the principle of the Fourier series. A num-

ber of examples of trigonometric series were already known
at the time, but it was not believed that such expansions could
be used to represent any arbitrary function. In a paper on
celestial mechanics, Clairaut (1754) actually had the proof,
but it remained unnoticed; and it was left for Fourier to give
the general statement and to emphasize its great practical and:
theoretical importance.

All this work at the end of the eighteenth century is most
interesting since it cleared the way for a number of modern
problems in theoretical physics as well as for pure ma@&matlcs

Proper functions, proper values; first discovered in n connection
with proper vibrations of strings, plates ete.

Fourier expansion; expansion in series of proper functions.

Partial differential equations.

Wave propagation.

Atomic theory of solids and crystal structure.

Lagrange’s paper was often quoted by the famous electrical
engineer Pupin, who discovered in Lagrange’s theory the solu-
tion of an important problem of electrical engineering, the |
loaded cable.

2. Historical Background; Nineteenth Centur_\f;. Cauchy,
Baden-Powell, and Kelvin

In 1830, Cauchy used Newton’s model in an attempt to
account for dispersion of optical waves. (zja_,%h_y_assumed that
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light waves were just elastic waves of very high frequency. He
obtained the result that for waves with wave length large com-
pared with the distances between the point masses in the one-
dimensional lattice, the velocity was independent of wave length.
For shorter wave lengths and hence for higher frequencies, how-
ever, he showed that the velocity of propagation was a function

(of wave length. The result is correct for elastic waves; however,
it did not agree quantitatively with values obtained experi-
mentally for light waves.

m m m m m m
O d—>0— 8 —>O=—d —+O— d —O=—d—O
INTERACTION BETWEEN NEIGHBORING PARTICLES
Fie. 2.1.

b ———

S —

1
¥ + t a= -3
.3 .2 1L 1 2 3 A
d d d ~2d ) d d d
Fra. 2.2.—Wave velocity V as a function of a along the row of particles shown
on Fig. 2.1.

In 1841, Ml computed the velocity of a wave propa-
gating along one axis of a cubic lattice structure as a function of
wave length. This is equivalent to considering a wave propa-
gating along a one-dimensional lattice of point masses. Baden-
Powell’s lattice consisted of point masses of mass m spaced along
a straight line at distance d from one another (see Fig. 2.1).
Then he assumed each mass to be elastically bound to each of
its neighbors with the restoring force the same for all masses.
His equation for the propagation velocity V of the wave as a
function of wave length is

in wd/\ :
V=Vwi—s'%[/{"‘l :8\\/\(,(1;—‘/!) 2.1)

where \ is the wave length and V, is the velocity for infinite wave
length. The curve of V plotted against reciprocal wave length
is shown in Fig. 2.2, It is evident that if velocity is a function



Smc. 2] EARLY WORK AND INTRODUCTION 5

of wave length, the frequency must also be a function of the
wave length. However, Baden-Powell - neglected to cons1der

B .- A

Géaq

a very,1mportant pomt The curve of velocity as a function of HVa £

reciprocal wave length appears to be perfectly normal at the

3

point A = 2d; not so, however, for the frequency vs. reciprocal- &

wave-length curve. This point was noted by Kelvin, who gave
a detailed discussion in 1881.!

Kelvin assumed the same lattice that Baden-Powell treated
(see Fig. 2.3). Let us number the particles in such’a way that

: -1 n+l
/L)m ém Vrznm @3 m @4 m nem g)m @m oy
TO d 2d 3d 4d (n—1)d nd (n+1)d

Fia. 2.3.

the z coordinate of the nth particle in its equilibrium position is
given by
Zn = nd (2.2)

In a sine wave, we obtain for y,, the displacement of the nth
particle, A= B wevd
yn = A cos 2r(vt — ax) = A cos 2r(vt — and) (2.3)

where » is the frequency, a the wave number or reciprocal wave
length, A an arbitrary constant, and ¢ the time. Now in Eq.
(2.3) we may replace a by

’ m

o =a+ 7 m an integer (2.4)

without changing the value of the displacement. This means

that » must be a periodic function of a with period 1/d. W( d))

Now the phase velocity V, with which the waves propagate,
is given by

§ V(E): <

V = = VA RN (25}
Therefore, if we draw a curve of » = »(a) as a function of a, the
phase velocity for a given wave length will be given by the slope
of the line drawn from the origin to the point on the »(a) curve
corresponding to the given wave length. The function y(a) may

1 “Popular Lectures,” vol. I, p. 185."

X(5)
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be caleulated and turns out to( be

v(a) = B l|sin wrad]| (2.6)
where B is a constant that is a function of the constants of the
lattice. From Eq. (2.6) we see that

v(a) sm wad* |sin wad|
Vi 2.7
T lwad]

in agreement with Baden-Powell’s equation (2.1), if we take
Ve =mndB ‘ (2.8)

From Eq. (2.6) we see thatkv(d) 18 a straight line for small values
of a, i.e., for large values of wave length. This means that the

v

Tz -3 1.1 o 1 1 3 =z 2
d 2d d 2d 2d d 2d d
(@)
1} [l
| ]
1 [
E .'
1 |
i |
1 1
! : (h
1 0 Ak
24 2d :
B ®) |
Fia. 2.4.—Frequency » as a function of a = 1/\ for the row of particles shown
on Fig. 2.1. { 7
/\—/\g/@—(ﬁ}j ‘ﬂ’«éj

velocity of propagation should be constant for large wave
lengths, in agreement with the earlier caleculations.

The curve of » vs. @ is shown in Fig. 2.4a. The periodicity of
v as a function of @ means that for a given frequency the wave
length is not completely determined. In fact, any o, where o’
is defined by Eq. (2.4), will give the same ». The ambiguity in
wave length results in an ambiguity in the direction of propaga-

. o
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tion—an uncertainty both in magnitude and in direction. This
is easily seen by referring to Eq. (2.7).

The physical meaning of the ambiguity in wave length may be
seen from Fig. 2.5. The solid circles give the equilibrium posi-
tions of the point masses and the open circles the displaced posi-
tions at some instant. Through the displaced positions are
drawn three possible sine waves. All three waves give equally
good descriptions of the motion, as far as observation of the

Fia. 2.5.—Different sine curves passing through the position of the particles.

points is concerned. The solid line gives the wave form for the
only value of @ such that feracs e Uaee

1 1 (2.9)

g =%%73
Changing a by 1/d will take a out of this interval, as is immedi-
ately obvious. The dashed curve corresponds to a + (1/d), and
the dotted curve to a — (1/d). A glance at the diagram shows
that the solid and the dashed eurves must propagate in the same
direction for a given motion of the particles, and the dotted curve
propagates in the opposite direction.

From now on, we shall adopt the convention expressed by
Eq. (2.9). All ambiguity in wave length and direction of motion
is removed if we restrict ¢ to this interval, except in the two
special cases where

H

a= (2.10)

1
2d
We shall discuss these special cases shortly. The convention is
not so arbitrary as might appear at first sight. It allows any
wave length such that

w =\ 2d (2.11)

to have either direction of propagation, and excludes only wave /
lengths that lie in the interval

0=<\s2d (2.12)
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If we had a continuous structure so that the motion of all points
lying on a straight line could be observed, the wave lengths
included in the interval (2.11) would be the only ones observed,
since in this case d = 0. Thus there will be no inconsistency in
what we mean by wave length when we go from a continuous to a

ANWANANWANYA
\./\../\/\/

Fia. 2.6.—The limit A = 2d.

157 tee

ol
OQL
A

-—
S
—
—_—
)
~

Fia, 2.7,

discontinuous structure, and vice versa. Furthermore, the
‘allowed interval contains a complete period of »(a), so that none
of the frequencies that can be propagated are omitted.

The special case noted in Eq. (2.10) is shown in Fig. 2.6.
Here there is no way of distinguishing between the two possible
wave numbers allowed by our convention, or between the two
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possible directions of propagation. In fact, the wave might even
be considered as a/gtanding wave) i.e., a superposition of the two
allowed wave numbers. The wave length is, of course, in both
cases 2d.

Engineers frequently find it
convenient to use other curves
giving essentially the same infor-
mation as our » vs. @ curve. The
one of greatest interest is the at~

. tenuation curve (Fig. 2.7a). The

‘\ solid part of the curve is our » vs. Fra. 2:8.—An example given by
1 Lord Kelvin.

The dotted or ﬁ, part gives the attenuation 8 for frequencies
higher than those that may be propagated. The attenuation
will be discussed in defail in a later chapter. A lattice such as
this, which allows propagation of all frequencies up to a maxi-

viq°

2.
b Gort” [> \ ’

VoSV,
Fig. 2.9.—Other examples. given Fia. 2.10.—Attenuation of the
by Lord Kelvin. The lower vibra- wave for a frequency above cutoff

tion corresponds to the limit A = 2d. (Lord Kelvin).

mum, or critical, frequency », and damps all others, is called a
C( low-pass_filler; i.e., it will pass low frequencies and stop higher
frequencies. Figures 2.7b and 2.7¢ give V, the phase velocity,
and g, the index of refraction or reciprocal of phase velocity, as
functions of frequency. Both curves terminate at the critical
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frequency, ag phase velocity is not deﬁ_\d)for attenuated - waves:s
The curves shown in Figs. 2.7a, b, and ¢ are very useful for some
practical purposes. However, in general, we shall find the » vs.
a curve (Fig. 2.4b) most useful for our analytical discussions.
e Lord Kelvin’s discussion is of great significance, since it con-
tains the discovery of the cutoff frequency. Figures 2.8 to 2.11
are reproductions of Kelvin’s original drawings and show the vari-
ation of wave velocity as a function of N = \/d, the number of

\[‘0 g oe=t N and for N = 2 (cutoﬂ), together with the attenuated wave
o correspondmg to a frequency above cutoff. All this shows how

£ye i c_l_eﬂa,}'ly” Kelvin understood the problem.

Fie. 2.11.

The paper was often overlooked, since its title, “The Size of
Atoms,” did not imply any discussion of wave propagation. The
connection is found in Cauchy’s theory of dispersion. The curve
in Fig. 2.2 shows that' a material change in the wave velocity can
be expected only if the wave length is just larger than 2d. Hence,
Cauchy’s theory leads to the conclusion that interatomic dis-
tances should be just smaller than \/2, giving a distance d of
about 2,000 angstroms. This, however, sounded impossible
since there was, at Kelvin’s time, plenty of experimental evidence
that interatomic distances could not amount to more than a few
angstrom units. The thickness of oil films on water, for instance,
had been measured and was quite well known.

Kelvin’s conception of the molecular structure of matter may
be illustrated by the following quotation:

I believe that by imagining each molecule to be loaded in a certain
definite way by elastic connection with heavier matter . . . we shall
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have a rude mechanical explanation for refractive dispersion. . . .
It is not seventeen hours since I saw the possibility of this explanation.!

This was a remarkable guess, which led Kelvin to the discovery
of the modern refraction formula, usually known as the Lorentz
formula.

3. Later Work on Models Similar to That Treated in Sec. 2

After analyzing Baden-Powell’s work and discussing the critical
wave length and frequency, Kelvin proceeded to devise a theory

M M M m . M M

oD oD oD o) - £ P

AV 7 ha oS A A4 o
em .m . em *m em em

Fia. 3. 1 —Kelvin’s model for optical dlspersxon

of dispersion based on a more complicated lattice than Baden-
Powell’s. He used the lattice shown in Fig. 3.1. Each of the
masses in this model is supposed to-have a small mass associated
with it. The large masses are taken to have mass M and are the
large circles in Fig. 3.1, while the small masses have mass m and
are represented by dots. Each of the large masses interacts with
the nearest large masses and with the small mass associated with
it, so that there are two elastic con- -

stants in the system.’ Introducing
two masses effectively doubles the
number of degrees of freedom of the
system, and hence one would expect
to find twice as many proper vibra-
tions as if there were only one mass.
The curve of » vs. a is shown in Fig.
3.2. The curve is restricted to val-
ues of a between +1/2d. Itisseen
that for each a there are two modes
of vibration of the system, so that
we do indeed have twice the number of modes obtained by Baden-
Powell for his model with one mass. Frequencies below »; and
between v; and »; are propagated by the lattice, and all others are
stopped. This lattice is an example of a band-pass filter. The
interval between »; and », is known as a stopping band, while that
between v, and vs is known as a passing band. The frequencies v,
and v, are very near the proper frequency of oscillation of one iso-

10p. cit., p. 194,

. :
P Y e ,-——+————

e s

0
Fia. 3.2.
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lated M-m molecule. This resonance frequency has nothing to do
with the distance between molecules, and a material change in
wave velocity is obtained when the resonance frequency lies in the
near ultraviolet, just above the optical spectrum. Thus Kelvin
explains refraction and escapes Cauchy’s paradox.

m m m m m m m m
Fia. 8.3.—Vincent's model of the first mechanieal filter.

Vincent! built a mechanical model to which Kelvin’s theory
was assumed to apply. The model is shown in Fig. 3.3. The
large masses M are suspended from a beam on strings of equal
length and connected to one another by springs. The small
P masses m are each suspended

from one of the large masses.

This model is evidently equival-

ent to Kelvin’s more abstract

~ scheme and was the first mechan-
ical filter to be built. The motion
of the system was observed for
y different frequencies. Vincent
i, 54— Tndox of refraction uas plotted curves of index of refrac-
functi;m of frequency v for Vinc’fant’: tion u againSt the frequencY for
model. comparison with standard disper-
sion curves. These curves areshown in Fig. 3.4. Thesolid curve
is for negligible damping and the dotted curve for large damping.
It is to be noted that the dotted curve is a typical anomalous
dispersion curve. Vincent’s curve of » vs. a agreed with Kelvin’s
curve. Theratio V = »/a can be measured on Fig. 3.2 and curve
3.4 obtained for u = 1/V as a function of frequency ».

Kelvin’s paper received little notice, and the analogy between
the propagation of electromagnetic radiation and the propagation
of elastic waves along a loaded string was forgotten.

1 Phil. Mag., 46, 537 (1898).

0 n v Yy
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In 1887, Heaviside noted that increasing the inductance per
unit length of a cable should reduce the attenuation of waves
propagating along the cable. However, he discussed no experi-
mental details. Two years later, in 1889, Vaschy tried loading a
very long cable with four inductances, an experiment much too
crude to give any observable result. In 1900, Pupin developed
the analogy between mechanical and electric lines and, referring
to Lagrange’s work on the discontinuous string, succeeded in
building loaded lines and low-pass electric filters. The line is
shown in Fig. 3.5a. The inductances L’ were spaced so that

e T
I L"Oz%lid_, 5 ’Wlﬁb" AN
@
L L L’
- 000 0T 700 0
J_c' .I_c' J_c' _Lc’

]t L e T e T
(b)

F1a. 3.5.—Low-pass electric filter and loaded line.

there were about ten inductances per wave length. Calling the
capacitance per section d between the two halves of the line (',
Pupin obtained a critical frequency of

1
SRV

Figure 3.5b shows an equivalent line with the capacitance of the
line lumped and placed along the line as indicated.

The first high-pass electric filter (i.e., a line passing all fre-
quencies higher than a certain critical frequency and stopping
all others) was built by Campbell in 1906. The line is shown in
Fig. 3.6. Campbell followed up his high-pass filter by designing
various band-pass filters. Figure 3.7 is the band-pass filter
analogous to Vincent’s mechanical band-pass filter.

It is somewhat easier than in the analogous mechanical lines

(3.1)
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to see why the electric lines mentioned above should pass some
frequencies and stop others. The impedance offered by an
electrie circuit to a current passing through it is proportional to
v»L and inversely proportional to »C where » is the frequency, L is
the inductance, and C is the capacitance. Thus in the low-pass
filter shown in Fig. 3.5b the impedance offered by the coils L’
increases with the frequency, while the impedance of the capacities
1< (¢
11 4 1

L (1 [ 1c
] F—

|
11 L

" Fia. 8.7.—Band filter. -

, connected across the line decreases. The occurrence of a critical
frequency is a result of the spacing and lumping of the inductances
and capacities. In the high-pass filter the low frequencies will be
shunted to the returning line through the inductances while the
high frequencies will be passed.- Again, the occurrence of a
critical frequency is due to the discontinuous nature of the struec-
ture. These problems will be discussed in detail in a later section.

‘43 . 4 . © © ‘ - . &t X
0 d 2d 3d 4d 5d 6d 7d 8d 9d 10d 1id

F1a. 3.8.—Born's model for sodium chloride.

In 1912, Born investigated the propagation of waves in erystals
and rediscovered Kelvin’s analysis. Using the model shown in
Fig. 3.8, with large masses M and small masses m alternating at
the points along the z axis defined by nd, where d is the distance
between nearest neighbors, he obtained the curves shown in
Figs. 3.9a and b. Figure 3.9a shows » as a function of a. There
are two branches to the curve because we have effectively
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doubled the number of degrees of freedom of the system by add-
ing another constant. The additional constant is, of course,
the second value for mass. We shall find that in general the
number of branches will equal the number of different masses
oceurring in the model; .e., the number of frequencies correspond-
ing to a given wave number is equal to the number of degrees of
. freedom associated with each element or cell of the lattice. In
this case the cell consists of a large mass and either of its neigh~
boring small masses. If there were two different masses between

' xé\‘ b) G"
BN o R
)(L Vi } : . Vs -
ap ! P |
1 o VV\:
| 4 i i
- 22
g | /’ A ! :
, / a /..\ : "I : ™
/ { A 1y |
/ ke |
| Y L .
L5} Y2 V3 y ~L 0 a,
2d 2d
® (c)
Fie. 3.9.

a given mass and the next one like it, and if this structure were
repeated all along the lattice, each cell would have three degrees
of freedom, and the v vs. a curve would have one lower branch and
two upper branches as in Fig. 3.9¢. This property of discon-
tinuous media will be discussed in greater detail later.

In general, the lower branch is called the acoustical branch.
It corresponds to motion of the particles such that in each short
section of the line all particles move in the same direction at a
given instant. The upper branches are called optical branches
and correspond to one or more types of particles moving in the
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direction opposite to that of the others at any giveninstant. In
Born’s model, where we have only two types of particle, the
optical branch corresponds to the motion of the large masses in
one direction while the small masses move in the other.

Figure 3.9b is the attenuation curve for Born’s model and
represents the generalization of Fig. 2.7a. There are one stopping
band and two passing bands associated with this model. The

—000000 —— Q000000 ——— 00— Q00000 000 —

Fia. 3.10.—Electric filter corresponding to Born’s sodium-chloride model.

z

oCl—
Fia. 3.11.—NaCl crystal lattice.

electrical analogue to Born’s lattice is a line with small and large
inductances alternating (Fig. 3.10). A

Born’s problem is usually referred to as the NaCl crystal lattice
problem, since a very similar situation is found in the NaCl
crystal structure: it is a cubic lattice with Nat+ and Cl— ions
alternately located at the lattice points, as shown in Fig. 3.11.
Along one axis, the = axis, for instance, the structure is exactly
the same as that in Fig. 3.8.



CHAPTER II

PROPAGATION OF WAVES ALONG
ONE-DIMENSIONAL LATTICES.
GENERAL RESULTS AND QUALITATIVE DISCUSSION

4. General Remarks

Before proceeding to the mathematical treatment of waves
propagating along a one-dimensional lattice, we shall make some
general remarks about the problem and discuss some particular
cases qualitatively. The simplest example of a one-dimensional
lattice is Baden-Powell’s model with equal masses spaced uni-
formly in a line. If we.take the masses along the z axis, the z

_coordinate of the nth mass will be given by

z =nd + ¥n - 4.1)

where ¥, is the displacement of the nth particle from its equilib-
rium position. ¥, may be taken to represent transverse or
longitudinal displacement, or any other quantity whose value
may be defined at the points occupied by the masses but not
elsewhere (electric polarization, for instance); i.e., we may
regard ¥, as a property associated with point mass n. This
property is propagated as a wave if the physical problem admits
a solution of_the type

an —_ Ae21n'(vt—-amd) — Aei(wt—kn)

1
a ==z

(4.2)
N :

k = 2rad, w = 2w

where » is the frequency, ¢ the time, a the wave number, \ the
wave length, d the period of the lattice, w the angular frequency,
k the product of the wave number and the period of the lattice
multiplied by 2r, and A a constant amplitude. The quantity
is the change in phase in passing from a point 7 to its right-hand
neighbor n + 1:

Yni1 = Yo~ (4-3)
17 .
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Thus % is essentially defined as an angle and can be known only
as modulus 2r. 'The same solution of the problem is obtained for

k or k¥ =k-+2mnx (4.4)

when m is a positive or negative integer. Kquations of the
physical problem must yield the same value of w or » for every
equivalent & or &', which means that the frequency » is a periodic
function of k or a:

w = f(k) period 2r in k = 2wad
} "

vy = F(a)  period % ina

This is a general and direct consequence of the periodic and dis-
continuous structure of the one-dimensional line. It was
explained in Chap. I in Eq. (2.4) by saying that if ¢ could be
measured between particles, the uncertainty in & or a would be
eliminated, but since y is measured only at the discrete points nd,
the condition (4.5) is unavoidable.

On account of the periodic properties of the line, it is sufficient
to discuss the properties of the functions f or F inside one period
of k or a. The most convenient choice is

'—wgkévr}

1 1 (4.6)

T2=%%y
since a wave always propagates in the same way to the right and
to the left. This means that the functions f and F have the addi-
tional property of being even functions. Positive & means a
wave propagating to the right; negative k a wave propagating
to the left. If k¢ is a positive number in the fundamental inter-
val (4.6), it represents a wave going to the right, and so does
ko + 2r; but k¢ — 27 is negative and represents a wave going to
the left (Fig. 2.5). Hence, the uncertainty is not only in the
magnitude of a or k but also in the direction of propagation.

The limitation (4.6) means

1

Ml

v

2d 4.7)

The shortest wave length is thus equal to twice the distance
between. particles and corresponds to a certain critical frequency
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or cutoff frequency vn that is charaecteristic of the structure. In
many important cases vn is the maximum frequency, and the
system works as a low-pass filter for all frequencies

VS Vm (4.8)

Frequencies above », are strongly attenuated. Condition (4.8)
is, however, not the only possible one, and other situations may
arise when », would be a minimum. The system as a whole is
always a filter, but it can be of the low-pass, hlgh—pa.ss, or band-
pass type.

These general results, plus a direct discussion of the waves
corresponding to the limiting cases, A = «, a = 0,.and A = 24,
o maximum, may in a number of instances give enough 1nforma-=
tion to enable one to describe, at least qualitatively, the general
properties of the structure. In the next few seetions we shall
apply this discussion to specific examples of one-dimensional
lattices.

b. A Lattice of Free Particles

By a lattice of free particles we mean particles in a one-
dimensional lattice with no forces present except those due to
interactions of the particles among themselves For purposes of
this discussion we shall limit the interactions to nearest neigh-
bors. An example of this is a loaded elastic cord with the masses
distributed uniformly, where the elasticity of the cord remains
constant along its length and plays the part of the interaction
forces.

Let us first consider longitudinal displacements. The case
a = 0 corresponds to infinite wave length. In this case the lat-
tice as a whole is displaced, and no change in the distanee between
masses occurs. Thus no foree is: brought into play. The fre-
quency is zero. For a # 0, but still very small, the wave length
is large compared with the distance between masses, and hence
the waves are propagated as if the lattice were a continuous string.
The velocity of propagation of waves along a continuous string is
constant for all wave lengths; i.e., for long wave lengths, the
frequency is proportional to |a|. A rigorous treatment shows
that the velocity decreases for wave lengths comparable with the
distance between masses. Now if a wave is to be propagated at
all, the frequency must be a periodie function of a. Further-
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more, the curve of » vs. @ must be symmetrical about the origin.
If it were not, the frequencies for a given wave length propa-
gating in opposite directions would be different, a fact that would
be in contradiction with the symmetry of the structure. If v is
to be both periodic and symmetrical about the origin, there must
be a maximum in the value of » at 1/2d, since the period of » is
1/d. Thus we obtain a curve of the general shape of that in
Fig. 2.4a. We shall, of course, justify the exact shape mathe-
matically in a later section.

The remarks made on the longitudinal vibrations also apply
to transverse vibrations. Qualitatively, they may be treated in
just the same way. Quantitatively, however, there is a differ-
ence. The velocities of propagation for large wave length are

//
Vd

: \
W g =
), T
/

2d

Fie. 5.1.—Longitudinal and transverse vibration along the row of particles
shown on Fig. 2.1.

different in the longitudinal and transverse cases, and the maxi-
mum frequencies are also different. A typical curve for a one-
dimensional lattice with particles with two degrees of freedom is
shown in Fig. 5.1. The subscripts ¢ and ! on the maximum
frequencies refer to transverse and longitudinal vibrations,
respectively. The lower curve, representing transverse vibra-
tions, should properly be considered a superposition of two
branches of the same frequency, since there are two independent
- directions perpendicular to the lattice in which the masses might
move. If there were an asymmetry in the elastic cord (e.g., if it
were of elliptical cross section), the lower branch would split into
two distinct branches to give the extra frequencies demanded by
the added degree of freedom. The solid curve corresponds to the
interval (4.6), and its periodic continuation,is shown as a dashed
curve. '
The transverse branches will usually be below the longitudinal
branch in a loaded string, since the force required for a given dis-
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placement is smaller in the transverse than in the longitudinal
direction. The frequency of displacement is proportional to the
square root of the elastic constant, which will be smaller in the
case of transverse displacements.

6. Longitudinal Vibration in a Row of Equidistant Coupled
Oscillators '

A particle attracted to some equilibrium position by an elastic
restoring force acts as a harmonic oscillator. It has one proper
frequency »o that depends on the elastic restoring force and the
mass of the particle. If its elastic restoring force is different in the
z, y, and z directions, we have what is called an anisotropic
oscillator. An anisotropic oscillator has three proper frequencies,

F1a. 6.1.—A row of harmonic oscillators coupled together.

Vo, Vg, and e, corresponding to vibrations in the z, 'y, and z
directions, respectively.

Let us consider a row of similar harmonic oscillators (isotropic)
spaced at distance d from one another along the z axis and allow
interactions between nearest neighbors (Fig. 6.1). We wish to
study the longitudinal modes of vibration of this system. For
infinite wave length, « = 0. Infinite wave length means that
all the particles are displaced simultaneously by the same amount.
Since the distances between the particles do not change, the forces
of interaction do not enter into the problem. Each particle is
attracted to its equilibrium position with the.same elastic force,
and the system will oscillate with frequency ».. For a slightly
_smaller wave length the particles will be displaced relatively to
one anothet, and the forces of interaction will play a part in the
motion of the system. The frequency associated with this wave
length will be slightly different from »,. Whether the frequency
increases or decreases will depend on whether the resulting forces
(elastic plus interaction) are larger or smaller than the restoring
force tending to return each particle to its equilibrium position.
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It may be shown that for large wave lengths » is given by
v = vy + ba? (6.1)

_The sign of b depends on the constants of the system and deter-
mines whether » shall increase or decrease as |a| increases. As
the wave length becomes comparable with 2d, the considerations
of the previous sections on one-dimensional lattices apply, and »
approaches an extremum. Thus we will have two limiting fre-
quencies, »o and v, (where m stands for maximum or minimum
as the case may be). Frequencies between v, and v, will propa-
gate along the system, and other frequencies will be damped out.
‘The system therefore forms a band-pass filter. The solid curve

v
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F1a. -6.2.—Frequency » as a function of @ = 1/N for the row of harmonic

oscillators.

in Fig. 6.2 shows the curve » vs. ¢ in the fundamental interval
(4.6) for the case b > 0. If each particle represented an aniso-
tropic oscillator instead of an isotropic oscillator, there would be
three curves, one for longitudinal and two for transverse vibra-
tions. These curves might overlap and would not necessarily all
rise as |a| increases from zero.

7. Longitudinal Vibrations in a Row of Diatomic Molecules

The scheme described in the last section is somewhat artificial.
It is rather difficult to imagine a particle in nature being tied to
an equilibrium position by a little spring. A more realistic pic-
ture is obtained by considering diatomie molecules. This is a
more complicated problem, since we must introduce a second
type of particle that may interact with the first type as well as’
with its own type.

A lattice of diatomic molecules is shown in Fig. 7.1. The open
circles are to have mass M, and the dots are to have mass m. An
isolated molecule will have a certain proper frequency of vibra-~
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tion that we call ».. This frequency corresponds to an oscilla~
tion of the two masses along the z axis in opposite directions in
such a way that their center of mass remains at rest.

Let us consider the motion of a row of diatomic molecules
spaced at distance d from one another along the z axis. We
assume, of course, that the molecules interact, but we limit the
interaction to nearest neighbors. There will now be {wo wave
functions, both imaginary exponential, one describing the motion
of the masses M and the other describing the motion of the masses
m. These two functions may be written

\l’M — AMezﬂ(vt-—az) and ‘/’m —_ Amemri(ut—az) (7.1)
The frequencies and wave numbers will be the same, but the
amplitudes may be different. The frequency » may be found as

M m M m M m M m M m M m

'y o o Ny o>

SRS SRR SR AP AREPUR SR (

Fia. 7.1.—A row of diatomic molecules.

a function of the constants of the system and of a. It turns out
to be double valued in », as will be shown in the rigorous theory,
corresponding to the doubly infinite set of degrees of freedom of
the system.
For infinite wave length, the atoms all oscillate in phase, and
we may take
Ay =An (7.2)

This corresponds to a translation of the lattice as a whole without
alteration of the distance between particles, and hence the fre-
quency is zero. Another frequency for infinite wave length is -
obtained if we take the small and large masses moving in opposite
directions in such a way that the centers of gravity of the mole-
cules remain at rest. This frequency would be » if there were
no interaction between molecules. The presence of interactions
would change this frequency. If the wave length is decreased,
the lower branch of the » vs. a curve will rise. This branch is
just what would be obtained if we took each molecule to be a
single particle. The upper branch will increase or decrease from
its frequency at a = 0, depending on the relative values of the
constants involved. Figure 7.2 shows the frequency curves.
The limit to the frequency of the upper branch is »', for @ = 0.
Either, but not both, of the two upper branches shown may
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~occur. Figure 3.2 (Vincent) and Fig. 3.9 (Born) represent two
typical examples with different upper curves. The size of »o
relative to the maximum frequency of the lower branch depends
on the constants of the system, as does also the width of the
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F1a. 7.2.—Fréquency v as a function of a = 1/ for a row of diatomic molecules.

“upper branch. Frequencies located in the stopping bands may
be shown to decay exponentially, as in the other models we have
discussed. The a corresponding to these frequencies are com-
plex with imaginary part 8. B is therefore the attenuation con-
stant for a given frequency. The attenuation curves are shown

'
1
!
1
I/

~.

0 Vm, Y,
Fic. 7.3.—Attenuation as a function of frequency for a row of diatomic molecules.

in Fig. 7.3. The solid curve is for the solid upper branch and
the dashed curve for the dashed upper branch of Fig. 7.2.

In these examples, the following features can be recognized
that will be proved in the detailed analysis of later chapters:

1. Periodicity of » as a function of % or a (4.5).



Src. 7] ONE-DIMENSIONAL LATTICES 25

2. The possibility of a reduction of & or a inside the funda-
mental interval (4.6).

3. If the elementary cell of the one-dimensional lattice con-
tains a system with N degrees of freedom, there will be N different
waves corresponding to each & value, with N different frequencies.
Examples with N = 1, 2, 3 were given in Secs. 5, 6, and 7.

4. Hence, the number of degrees of freedom inside an ele-
mentary cell equals the number of branches in the curve » = F(a)
and the number of passing bands of the structure (with possible
overlapping of the passing bands).

5. Frequencies outside the passing bands are not propagated
but decay exponentially along the line.

These are the general properties of one—dlmensmna.l periodic
structures that will be investigated mathematically in the follow-
ing sections.

A careful discussion of Vincent’s model (p. 12, Fig. 3.3) is
recommended as a typical problem, and leads to curves of the type
represented on Figs. 7.2 and 7.3 as dashed lines.



CHAPTER III

MATHEMATICAL TREATMENT OF A
ONE-DIMENSIONAL LATTICE OF IDENTICAL PARTICLES

8. Equation of Motion of a One-dimensional Lattice of Identical
Particles

In this and the following sections we shall derive rigorously
the results discussed qualitatively in the first two chapters. We
shall assume an infinite lattice of identical particles of mass M.
_ The particles in equilibrium are separated by a distance d along
the z axis, and we shall take the oscillations of the particles to
be longitudinal. We number the particles by calling the particle
at the origin 0, the next particle to the right 1, ete. The dis-
placement of the nth particle is denoted by yn, so that x,, the
coordinate of particle n, will be given by

We shall assume interactions between all particles, and for this
we require the expression for the distance between two particles
n and n + m. This distance is

Tantm = Tnpm — Tpn = md + Ynsm — Yn (82)

This expression may be either positive or negative, depending on
whether m is positive or negative. The energy of interaction
between two particles will be expressed as a potential function
that will be assumed to depend only on the distance between the
two particles:

U(r) = U(|@nsm — @al) (8.3)
The total potential energy of the lattice will then be given by
U= 2 z U(1Zntm — 2a]) ’(-8-4)
n m>0

m must be restricted to positive values so that the interaction
between a given pair of particles will be counted only once. We
26
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might take the sum over all values of m and divide by two to
compensate for counting each pair of particles twice. However,
we prefer to restrict m to positive values, since this enables us to
drop the absolute-value sign in the argument of U. If we assume
that the displacements y, are small compared with d, we may
expand U in a Taylor series. Thus

U@nim — 2) = U(md) 4+ Ynim — ¥n) U’ (md)
+ %(yn+m - yn)zU”(md) + .. )

where U’(md) and U"'(md) are the derivatives U /dr and 92U /or?
evaluated at md. Substituting the Taylor expansion in Eq. (8.4),
and neglecting powers of (Yn4m — ¥») higher than the second, we
obtain for the potential energy of the lattice

U=3 3 [ U0 + Gain = 07

n m>0 )
1 4
+ 5 Gnim = 40" (md) |,
or

U = const. + 2 2 [(y,,+,,. — ) U (md)

n m>0
+ 3 Gnim = T md) |, ©5)

where the constant is given by

Const, = E E U(md) = n 2 U(md)

n m>0 m>0

The force F, acting on the pth particle is obtained by taking
the negative derivative of the potential energy with respect to the
displacement of this particle. Before performing the differenti-
ation it should be noted that only two terms from the sum over
all values of n will remain, the others dropping out because they
do not contain the variable y,. The two remaining terms will be
those for which n = p and n 4+ m = p. m is to be positive, so
the terms for which » = p will give the force on particle p due to
particles to the right, while terms for which n + m = p give the
force on particle p due to particles on the left. Therefore,
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P = = "

n m>0

[(y,.+,,, — ¥a)U'(md) + % Ynim — yn)zU"(md)]

= =2 3 [ = )V )+ G = 970"

m>0

+ Yp — Ypm) U’ (md) + 3 (yp Yp—m)2U"' (md) ]

- 2 [~ U (md) — pem — ) U" (md)

m >0
+ U'(md) + (Yo — Yp-m)U"(md)] (8.6a)

or, writing U"',, instead of U’ (md),

F,= E U" aYptm + Yom — 2y5) (8-61’)

m >0
These formulas require some discussion and explanation. In
Eq. (8.6a), for instance, we find in the first row a term — U’ (md)
representing the force of atom (p + m) on atom p. In an

; Us’ 5
U, |
i
o—6—6—6—6—0—0—0—— ’ :
-7 6 -5 -4 -3 -2 -1 0|1 2 3 4 5 6 7
505 =
FINITE ROW OF ATOMS END OF MISSING ATOMS
THE ROW
Fia. 8.1.

infinite lattice this term is compensated by an opposite force
4+ U’(md) found in the second row of Eq. (8.6a) and representing
the force of atom (p — m) on atom p.

The situation is different in a finite lattice (Fig. 8.1). Let us
assume the row of atoms to extend from n = —« to n =0,
with all atoms n = 1, 2, 3, . . . missing, and let us discuss the
forces to be added in order to keep the structure undisturbed
near the end of the row. External forces that would make up
exactly for the forces that the missing atoms would produce on
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the end of the row must be provided for. For instance, we must
add the forces :

Uy, Uy Uy, . . .

on atom n = —2. This means a very complicated set of forces
acting on the last atoms of the row, if the row is to be kept unper-
turbed with the constant distance d up to the last atom. The
total force required on all the last atoms of the row is

©

Fo=U1+2U0:+38U% -+ = 3 mUs (87

m=1

since there are m . pairs of atoms interacting at distances md
across the border. The sketch in Fig. 8.1 visualizes the situation
for m = 5. In order to obtain a one-dimensional lattice with
distance d between neighboring particles, it is necessary that the
total force acting upon the end of the lattice be F;, but the condi-
tion is not sufficient.

If this total force F, is differently distributed. between the
particles at the end of the row, two things may happen:

1. Itis possible that a local perturbation of the row is produced
near the end, but that at large distances from the end the equi-
distance d is obtained. This is usually the case, with forces
decreasing rapidly when the distance is increased, such as the
ones encountered in most physical problems of crystal lattices.
If the forces extend only to a distance Ld, the sum in Eq. (8.7)
must be taken from m = 1 to m = L, and the distance upon
which the perturbation of the lattice occurs is of the order of Ld.

2. The perturbation may extend throughout the lattice and
offer a periodic character as a function of the distance, thus
resulting in a sort of superlattice or periodic structure with a
distance D > d. There may also be different values dy, dg, . . .
corresponding to the same total end force F,.

For instance, a free row of particles is one terminating freely
with no external forces added. This means that no perturbation
will occur only if all terms U’y = Uy = ... = U’y =0, and
in this case the lattice will keep the interval d up to its end. If
all U’,, are not zero, a perturbation appears near the end of the
lattice (case 1) or even along the whole lattice (case 2).

This one-dimensional example corresponds to the problem of
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surface structure and surface tension for solids or liquids. In the
three-dimensional problems of physies, the interaction between
particles decreases very rapidly for increasing distances, and
case 1 above is practically always obtained. *The last L atoms of
each row build a surface layer Ld deep, which surrounds the solid
or liquid structure. The perturbation of the lattice inside this
surface layer results in additional forces, the resultant of which
is known as surface tension.

The type of perturbation in the lattice and the extent of this
perturbation will be discussed later on (see Sec. 10), but we
should immediately emphasize the great complexity of the bound-
ary conditions for structures including particles interacting at large
distances. The situation at the boundary cannot be defined by a
set of forces acting on the last particles, but the whole distribu-
tion of these forces on the different particles at the end of the row
must be specified. The usual mathematical statements about
forces on the boundary are completely inadequate. A similar
situation- will be found in connection with problems of wave
propagation across the junction of two lattices, or reflection of
waves at the boundary of a lattice (see Sec. 24), where a minute
description of the type of junction extending all through a
boundary layer of order of thickness Ld would be required.

As for Eq. (8.6b) and vibrations inside an infinite lattice, the
force F, will be balanced by the inertial foree so that the equation
of motion for the system will be

d? ,
Fom MY = N U apin + om = 20)  (89)
m >0

Let us assume a wave solution for Eq. (8.8).

(8.9)

Yp = Ae2rilvt—azp) — [ p2xi(vt—apd) a =

> =

v is, of course, the frequency and o the wave number. This gives

Ypim + Ypm — 2:1/,, = Aezrif»t—apd)(e—zwimda + g2rimda 2)
= —2y,(1 — cos 2ramd) = —4y, sin? ramd

“Therefore, Eq. (8.9) will be a solution of Eq. (8.8) if the following

relation between » and a is satisfied:

b
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2
M—% = Mzn?y? = 2 U",. sin? ramd

m >0
- % E U (1 — cos 2namd) (8.10)
m>0

with U, = U"(md). From Eq. (8.10) we may verify at once
that » is a periodic function of o and has period 1/d, since

e (a, + %) = (a)

and v must be positive.

9. Rigorous Discussion for the Case of Interactions between
Nearest Neighbors Only

If we assume that the interactions among the particles are
negligible except for nearest neighbors, Eq. (8.10) reduces to

Mr%? = U" sin?wad U" = U"y (9.1)

This is the equation on which the qualitative discussions in the
first two chapters were based. We may compute the velocity of
propagation of the wave.

_ vl _ |U" lsin wad] _ U"” |sin 7 ad|
vl i - B oo

The velocity for infinite wave length V, is therefore

(i
V»=d\/—M‘ A— oo, a—0 (9.2a)

and Eq. (9.2) checks with Baden-Powell’s equation (2.1).

In order to set up the connection between these results and
Newton’s calculation for the velocity of sound in air, we must
define a modulus for our discontinuous system; and this must be
done in such a way that in the limit of dense spacing of our par-
ticles (z.e., a continuous structure) the modulus will go over into
the ordmary extension modulus, defined as tension divided by
strain. In our discontinuous structure, we can define the ten-
sion between two particles as simply the force between them, and
this will be equal, for the pth and (p + 1)st particles, to

U"(d)(Ypi1 — Yp)
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since the resultant force on the pth particle, due to both particles
(p+1)and (p — 1), is
U"(d)(Yp+1 + Y1 — 2y)

Furthermore, we can define the strain between particles p and
(p +1) as (Ypt1 — Yp)/d. The modulus will, accordingly, be

¢ = dU"(d) (9.3)

and it is evident that in the limiting case of dense spacing all
our definitions will go over into the usual definitions.

If we call our modulus € and the average linear density of our
system p (i.e., p = M/d), Eq. (9.2a) becomes

€
Ve, 5 (9.3a)
"which is Newton’s formula [Eq. (1.1)] with e in place of Newton’s
bulk modulus ed. We ean identify our U with Newton’s elastic
" econstant e. :

For the wave length large compared with d, z.e., if the lattice
may be regarded as a continuous medium, the velocity is V,
and is independent of the wave length. As the wave length
decreases, the velocity decreases and approaches 2V, /=, or
0.635 times V, the value for infinite wave length (see Fig. 2.2).
This velocity is reached at the wave length A = 2d.. For A = 2d,
there is an ambiguity in the velocity of propagation, as pointed
out in an earlier section, since the wave may be propagating in
either direction with velocity 0.635V,, or may be a standing
wave.. The cutoff frequency v. is obtained from Eq. (9.1) by
setting ad = 14.

1 [o7
m = — Al (9.4)

For frequencies lower than the limiting frequency »» we obtain

real solutions for a. For higher frequencies a is complex, since

722 = U’ sin? rad (9.1)
If we set .
a=i%iiﬂ, k = 2rad = +7 + i2xBd
- (9.5)

* sin mad = + sin 5 €08 irBd = =+ cosh n3d
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then
22M = U"" cosh? »Bd (9.6)
or
77
ol = 2[5 lcosh xdl ©.7)

B is called the attenuation coefficient, and in the attenuation curves
the magnitude of B is plotted as a function of ». Curves repre-
senting the real and imaginary parts of @ = « + 48 as functions
of the frequency » have been drawn in Fig. 2.7 (Sec. 2). Between
0 and v, @ is real, and above »,, the real part of a keeps a constant
value +1/2d while the imaginary part 8 increases very rapidly.
This means that for frequencies above the cutoff v, the vibration
decays exponentially along the string (8 term) while successive
atoms oscillate in opposite directions (real part 1/2d). This is
easily seen in Fig. 2.10, which is a reproduction of one of Kelvin’s
original drawings. It shows that Kelvin had actually grasped
all the details of this problem. ‘

10. Discussion of the Distance of Interaction

In the case of interactions between nearest neighbors only, we
find that there is a single frequency corresponding to a given
wave length and that there is only one wave length larger than
2d for each frequency. Now if the interactions extend to the
Lth neighbor, i.e., to a distance of Ld, we obtain the following
expression relating frequency and wave number [Eq. (8.10)]:

722 M = 2 U, sin? ramd
0<m<L

DY =

E U" (1 — cos 2ramd) (10.1)

0<m<L
For very large wave lengths
2
Ve=te 2 g, S0’ ramd Tome_ & 2 U"am? (10.2)
0<m<L 0<m<L

Thus V, is still a constant whose value depends on the constants
of the system. As the wave length decreases, the velocity of
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propagation varies. The frequency corresponding to the limit-
ing wave length A = 2d, @ = 1/2d, may be computed.

— 1 1" n2 m — _1__‘ 2 "
v = =i U 8in 5 = f U"”(md) (10.3)
0<m<L 0<m<L
m odd
since
. T™m 0 m even
N l +1 m odd } (10.4)

so that the even terms in the sum drop out.

Returning to the general equation for » [Eq. (10.1)], we note
that to each value of a there will correspond a single frequency
regardless of the extent of the interactions. Now cos 2ramd
may be expanded as a polynomial of degree m in cos 2rad. Thus

the frequency will be expressed as a
polynomisal of degree L in cos 2wad.
This means that for a given frequency
there will be L solutions for cos 2rad
.and hence L solutions for @ in the
interval —1/2d to +1/2d. The re-
sult of these remarks is that » is a
single-valued function of @, but a is
not a single-valued function of », as
shown in Fig. 10.1. It is not neces-
sary in this case that the maximum value of the frequency appear
at the ends of the interval —1/2d < a £ +1/2d, but the curve
must end with a horizontal tangent in any case.

The L solutions for a for a given frequency need not all be
real; some may be imaginary or complex. Such solutions are to
be interpreted as meaning that the wave decays exponentially
along the lattice. This is of special importance in the case of a
finite lattice such as the one already discussed in Sec. 8 with Fig.
8.1. If we assume a sinusoidal motion of frequency » imposed on
the last particle of the lattice, the different waves corresponding to
this frequency will be excited in various proportions. Those. for
which o is real will propagate along the lattice, and those for
which a is imaginary or complex will decay exponentially from
the point of excitation. If we wish to excite only one of the
waves on a semiinfinite row of particles, we must impose on the

14

0

P e (e
o

Fia. 10.1.
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first L particles the motion characteristic of this special wave.
In the case of interactions between nearest neighbors only, the
boundary conditions were simple: we had only to specify the
motion of the first particle. However, added interactions com-
plicate the procedure, and the boundary conditions must be
specified over a length Ld of the lattice.

The problem of the lattice at rest corresponds to the case » = 0.
In drawing the curve in Fig. 10.1, it was assumed that the forces
between the particles were .such as to give only one real solution
a for low v values. The remaining (L — 1) solutions must then
be complex and result in a perturbation of the lattice that would
decay exponentially from the border. The whole distance over
which these exponential perturbations extend (at the limit
v = 0) represents the thickness of the border in the one-dimen-
sional case or of the surface layer in the three-dimensional
problem. This assumption corresponds to case 1 discussed in
Sec. 8 after Eq. (8.7). Another pos-
sibility would correspond to a curve |
going down to » = 0 for some +a; !
value of a, such as the curve of Fig. |
10.2. Under such circumstances a _;_
steady periodic perturbation of wave 2
length A\, = 1/a, may obtain through-
out the lattice and realize a superlattice structure of period

)\1/d == 1/a1d1

v

-a; 0 a

[ SRR A

Fi1a. 10.2.

as anticipated in Sec. 8, case 2.

Equation (10.1) gives »? as a finite Fourier expansion ina. We
may use Fourier’s theorem to obtain the interactions among the
various particles if we assume » = F(a) is a known function.

1/2d

e (@) (cos 2ramd)da (10.5)

U’ (md) = —4xtMd
As an example, let us seek the interactions that would give a
constant velocity of propagation W throughout the passing band.
Then

v = Wla|, v = F2(a) = W?a?

a is, of course, to be taken in the usual interval. Curves corre-
sponding to this problem are shown in Fig. (10.3). Then
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1/2d
Ul = —4x*MdW? / a2(cos 2ramd)da
; —1/2d .

_ we

Now U",, is the second derivative of the interaction energy of the
two particles separated by md and appears as a function defined
at discrete points at intervals of d along the z axis. We may take
the continuous function

2
U'(a) = —2 M7 (o T2 (10.7)
z d
to represent the discontinuous function. The function (10.7)

has the same values as U''(md) at the points where U’ (md) is

14
N
Vm 5\,0??‘
|
1 -1 o il 1 a
d 2d Zdl d
\l
|
|
|
W |
1 o 1 2
2d 2d
Fia. 10.3.

defined, but it is continuous, and hence we may integrate twice
to find the interaction energy. The integration must be done
by tables in this case. Once the function U’ (z) is known, how-
ever, one may construct a discontinuous line with the proper
elastic forces between the elements to obtain a low-pass mechan-
ical filter having a constant velocity of propagation for all fre-
quencies in the passing band. The same method may be
applied to a high-pass filter or to more complicated filters having
one or more passing bands. For this simple example we may
easily obtain w?, where w is the angular frequency, 2= times the
frequency », as a Fourier series.
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UII

w? = 4rh? =4 (1 — cos 2ramd)
m
m—1T} 2
2 4= I)Zdz L (1 — cos 2ramd)
or
= % (1 — cos 2rad) — i (1 — ¢os 4rad)

+%(1 — cos 6rad) —Tlé(l — cos 8rad) +' ,

=4W2"<1 1,1 1

-+ +'-->—cos21rad

ar T179 16
—{-l 4ad——1—0086ad+—£0088m'ad—"'_
7 008 4 5 T 16 |
AW?[ x2

1
= |12 —vcos 2rad + 7 008 4rad

1 1
— geos 6rad + 16 ¢0s 8mad ] (10.8)

since
w2 1.1 1
Let us replace 2rad by k and recall that ¢ = »/W to obtain
2 202 . Amivid?
k? = 4n%%d? = W

w? 1 1
=4 (1—2 —cosk + 7 008 2k — g cos 3k + > (10.10)
Thus we have k? as a well-known Fourier expansion in % in the
interval —w, 4.

11. The Low-pass Electric Filter

The electric filter shown in Fig. 11.1 is a low-pass electric filter.
The equal self-inductances L alternate with equal capacities C.
The capacities shunt out the high frequencies, and the low fre-
quencies are allowed to pass. To obtain the equations of this
line, we call @, and V, the charge and potential, respectively, on
condenser n, while 7, will be the current flowing between con-
densers (n — 1) and n. Then

dz,,

— Qn—-l _ Qn
dt Vn—l Vn -

c 7T
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and

L do
b i = T (11.1)

since

_
V.=% (11.2)

Differentiating Eq. (11.1), we obtain
A%, _ 1(d@Q.—1 d@.Y _ 1., Py
L W - ZY( dt 'a't—') = 6 (’Lw—l + Tnt1 2’&,,) (11.3)

The solution of Eq. (11.3) gives the flow of current in the line,
and from this the potential differences and charges on the con-
denser plates may be found. Equation (11.3) is identical with

Vn-1 'n n |n+1 n+1 |n+2 Vn+2
SOOI Qn- IW Qn+2
L J_ i I L
WTUEYe e s e N = =
n . n+1 n+2

Fre. 11.1.

the equation of motion of a one-dimensional mechanical lattice
[Eq. (8.8)] with interaction between nearest neighbors only
(Chap. I, Sec. 2, or Chap. III, Sec. 9).

d*yn
M dtyz = U"s(yn1 + Ynt1 — 2yn) (11.4)

U"”/M is replaced by 1/LC, and y, is replaced by 7,. Thus all
the results obtained for the low-pass mechanical filter apply
automatically. The velocity of propagation for very long waves
is d/+/LC where d is the distance between condensers; there is a
cutoff frequency »., and all frequencies higher than », decay
exponentially; » is a periodic function of the wave number.
From Eq. (9.4) we may compute the cutoff frequency.

(11.5)

1 .

T VIC
The low-pass electric filter shown in Fig. 11.1, to which Eq.
(11.3) applies, contains no resistance. Introduction of resistance
changes the properties of the line slightly. There will be a slight
attenuation of frequencies in the passing band due to energy
losses in the resistance, and the cutoff frequency will be less
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abrupt; i.e., there will be a region of rapidly increasing attenu-
ation for increasing frequency near v, This problem will be
discussed in detail in Chap IX. The curves in Fig. 2.7 will be
changed into those in Fig. 11.2.

a=a+if -
4

L
LINE | | I
I ___ GROUND
- - TUNE
'MAGWM
Fra. 11.3.
in~2— in—l_> in_’ inH'* in~0-2"""'

L L
Vn-?-l— —1 Vn+l-|— vn+2-J—
Qn-2 Ch-2 Qn-1 Cn-1 Qn Qn+1 Cn+1 Qn+2 Cn+2

0000 s \ 0000 0000/ \.QQ.QQJ 0000 2
L L L L L L
€ ip-2 —in- <ip —insl <in+2
Fie. 11.4.

The single-line structure of Fig. 11.1 is equivalent to a double
line (Fig. 11.3) constructed from the original line of Fig. 11.1
and its image. This can be simplified in the scheme of Fig. 11.4
with the same L values as in the single line but with capacities
0.

I'=L = g (11.6)
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Hence, the double line of Fig. 11.4 has exactly the same proper-
" ties as the single line, with the values
| v -4 __4d
®  WIC 2LC
1 1
T A VIO xALC

ag announced in Eq. (3.1).

(11.7)

12. Analogies between Electrical and Mechanical Systems

In the last section we saw that the equation for the propaga-
tion of electric waves along a low-pass electric line was of exactly
the same form as that for the propagation of elastic waves along
a low-pass mechanical lattice. This suggests the possibility of
making an analogy between electrical and mechanical lines that
will hold generally. The detailed discussion of electrical lines
will be reserved for Chap. IX. However, we shall examine the
problem in sufficient detail here to form a basis for an analogy
with mechanical lattices.

In the last section we found that the quantity +/1/LC played
the part for electrical lines that A/ U""/M plays for mechanical
lattices. The classical method for drawing an analogy between
electromagnetic and mechanical effects is to associate electro-
magnetic energy with kinetic energy and electrostatic energy
with potential energy. This leads to associating

%, with U  and L with M (12.1)

However, this method is not the only one that can be used, and
we shall find another method more convenient for some purposes.
The design of the system under consideration will, in general,
determine the analogy to be used.

Another way in which we could make the analogy would be to
take

Uyl and M ~C (12.2)

4
For instance, this is the proper analogy to use if we wish to con-
struct an electrical line with the same propagation properties as a
lattice with equally spaced particles of equal mass and inter-
actions between all particles. This can best be shown by con-
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structing such a line according to Eq. (12.2) and verifying that
the line equations of the two systems are exactly the same.
The line is shown in Fig. 12.1. Each condenser has capacity C
and is connected to its nearest neighbors through an inductance
Li. The condensers are connected to next nearest neighbors by
inductances L, and to the pth neighbors by inductances L,.
Only L; and L; are shown in the diagram in order not to compli-
cate it too much. The condensers are numbered as before. The
current flowing through L; will be 2,—1,n, %n,nt1y tnt1,nts, a0d, in
general, that ﬂowmg through L,, W111 be z,,_p ny Tneptlntly -

Fra. 12.1.

Ta—lintp—1, tnmnip - Lhe second subscript on the current indicates
the condenser into which the current flows, and the first sub-
seript indicates the condenser from which the current started.
The charge @, on condenser n will be given by

dQn

d_t = in—p,n + ;in-—p-}-l,n + M + in—l.’n

- (in.n-i-l + 'in,n+2 + -+ ’l:,;,ﬂ+p)
= E (iﬁ—p.n - in,n+p) (123)
P

We have the following equations for the current in the various
branches of the circuit denoted by L,, if we take the potentlal
of condenser n tobe V,:

le% 'in——l,n = n—1 T V'n Qn——lC Qn
d n—2 n
L.~ dt tnetin = Vaea — Vn =9 ZC ¢ (12.4)

Lp d—t In—pn = Vn—p —Va= Q‘"—”O— b
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Differentiating Eq. (12.3) and combining with Eq. (12.4), we

obtain
0% _ o Z dz,,,,,,. -
dt2 dt
5 w /&&M — EQn_p‘{“Qn_'.p "'"2Qn
bk , = (12.5)

Equation (12.5) is indeed identical with that for a row of par-
ticles, each having mass M, with interactions allowed among all

neighbors [Eq. (8.8)], if we make the correlation.
M~C and U"p~-- (12.2)

Ly,
The line shown in Fig. 12.1 will thus have the same propagation
properties as the lattice of like particles with unlimited inter-
MASS PR actions (Chap. III, Sec. 8).

é . ING % A. geometrical argument lead-
: ing to Eq. (12.2) may be given.
MECHANICAL The mechanical low-pass filter

M consists of point masses joined by

C T c I elastic elements that we might

ﬁ;_FFSV—WY = visualize as springs. The elastic
ELECTRICAL elements (Fig. 12.2) each have
Fia. 12.2.

two ends, one connected to one
mass and one to another mass, while the masses are represented
by single points. An electric line having all its condensers
shunting the high frequencies may be regarded as a single line
with the condensers connected between the line and ground at
regular intervals. Then the inductances appear as having two
ends connected to different condensers, and the condensers are
essentially points in the structure. Another way of looking at
the problem is to regard the elastic forces as coupling forces in
the lattice and the inductances as coupling forces in the electric
line, while the masses and condensers are thought of as supplying
inertial forces to their respective systems.

In the case of a high-pass filter, the electric circuit would have
inductances leading to ground with condensers incorporated in
the line and separating the inductances. In this case the induct-
ances would have to be regarded as the points of the system and
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the condensers as the parts having two ends, so that the classical
analogy [Eq. (12.1)] would again hold. For a band-pass filter
with a low-pass band and higher bands in addition, the induct-
ances would have to be shunted by condensers that would be
regarded as masses, since one plate of each condenser could still
be taken as grounded. However, a closer analysis of the system
would be necessary to decide which analogy to use, since there
might be condensers elsewhere in the circuit.

There is a limit to which these analogies may be carried. It is
not possible, for instance, to construct an electrical line by Eq.
(12.5), giving an arbitrary relation between a and v, as it is for a
mechanical lattice (discussed in Sec. 10). The reason is that
it is sometimes necessary to allow U’’, to take on negative values.
This is easy to realize mechanically, but it would not be possible
to obtain a negative self-inductance for the analogous electrical
line.

The electrical problem offers different possibilities, if mutual in-
ductances between the coils are used. This was first discussed by
G. W. Pierce and carefully investigated by L. Brillouin (Proc. of
a Symposium on Large-Scale Digital Calculating Machinery,
Harvard Univ. Press, 1948, p. 110) with a discussion of the possi-
bility of obtaining a constant velocity of propagation, as plotted
on Fig. 10.3.



CHAPTER IV

MATHEMATICAL TREATMENT OF
MORE COMPLICATED ONE-DIMENSIONAL LATTICES

13. Equations of Motion for the One-dimensional NaCl Lattice

The one-dimensional NaCl lattice is a special case of the one-
dimensional diatomic lattice that was discussed qualitatively in
Secs. 3 and 7. 'The general lattice is shown in Fig. 13.1. There
are two masses M; and M, alternating. A given mass M, will
have its right-hand neighbor a distance d; away and its left-hand

o) dl e d, O dy e dy O dy e d, O d, e d, O d, e
M M M M2 M M M M2 M M
n—-2 n=-1 n-1 n n n+l n+l n+2 n+2

Fie. 13.1.—A row of diatomic molecules.

neighbor a distance d; on the other side. The period of the lat-
tice is then ’ ‘
d=dy+ de (13.1)

In Sec. 7 we assumed one mass, say M2, much smaller than the
other. Then M; was supposed to interact with the small mass
nearest to it and with each of the two large masses nearest to it.
The small masses were supposed to interact only with the nearest
large mass. In other words, we allowed molecules as a whole to
interact and then included the internal degree of freedom in our
discussion.

In this section we shall discuss a slightly different lattice.
The two will have the same type of curve, however, since we shall
change only the rules of interaction. The snteractions shall take
place between nearest neighbors only, without reference to the size
of the masses. This implies, of course, that we are dealing with
particles that are comparable. If we limit the problem to
one in which the distances are equal and the interactions of a par-
ticle with its two nearest neighbors are equal, we obtain the one-

dimensional analogue of the NaCl lattice used by Born in his
44
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theory of specific heats. The lattice is shown in Fig. 13.2. The
solid dots represent particles of mass M, and the open circles
those of mass M;. The particles can be numbered in two differ-
ent ways as shown in Figs. 13.1 and 13.2. We use the second
one, where we have assigned even numbers to solid dots and
odd numbers to the open circles. This means that the equilib-
rium coordinates of the particles with mass M, are (2n + 1)d/2,
while the equilibrium coordinates of particles with mass M, are
2nd/2 = nd. '

T

O d/2 e d/2 O d/2 e d/2 O d/2 e ‘d/«2 O d/2 d/2 O

M, M, M, M, M, M, M, M, M,

n—-3 n—2 n-1 n n+1 n+2 n+3 nt+4 n+5
Fie. 13.2.—M. Born’s medel for sodium chloride.

The equations of motion of the two types of particles are differ-
ent because of their different masses. If we denote the force on
the mth particle by F,, which is computed exactly as in Sec. 8,
Eq. (8.6) or Eq. (11.4), we obtain for the equations of motion

d*y2n
U 1(Y2n—1 + Yant1 — 2y2n) = M2 dzj

F2n

, (13.2)
d*Yan
Fonir = U"1(Y2n + Yons2 — 2Want1) = My Z;H

where y is the displacement of the kth particle from its equilib-
rium position. Let us assume a wave solution to these equations
of the following form:

Yo = Azei(m—mvkl)
Yong1 = Alei(wt—(2n+1)k1) (133)
where
k = 2rad.
‘ d 1
]01 = 21!'(1-2- —1rad ——-2-’6
w = 2wy
a=1
DY

It should be noted that the first of Eqs. (13.3) represents a wave
propagating only through the particles of mass M, while the
second represents a wave propagating only through those of
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mass M;. The wave lengths and frequencies for a given dis-
turbance must be equal. The amplitudes of the two waves, on
the other hand, are not necessarily equal. They may differ in
magnitude as well as in phase.

In order that Eq. (13.3) may satisfy Eq. (13.2), certain rela-
tions must be imposed on the constants in the solution. These
relations are obtained by substituting the assumed solution (13.3)
in Eq. (13.2). The substitution yields

Mz(—A2w2) = U";(Ale"’" + A — 2Az)
M(—Aw?) = U"1(Aze™ + A= — 24,)
The exponential term ei~2#) divides out of the first equation,
while eflvt—(2n+Dk] divides out of the second. Making use of the
relation ,
e + ¢~ = 2 cos ky
and rearranging terms, we obtain two linear equations in A; and
Ao,
Ay(Mp? — 2U"y) + 24,U" 1 cos by = 0| (13.4)
A(Mw? — 2U"y) + 24,U" 1 cos ks = 0 '

The condition that these equations give nontrivial solutions for
A;and A4, is that the determinant of the coefficients of 4; and A4,
shall vanish. This condition gives us a relation between » and
ki in terms of the constants of the lattice: My, M., and U",.
Thus

(sz - 2U"1)(M2w2 - 2U"1) . 4:17”12 cos? kl
or, expanding,

1, 1 v’y
4 _ n b 2 4t ),.2 2%, —
wt — 2U 1(M1 + Mz)w + 4M1M2 sin? ky = 0 (13.5)

This equation possesses two solutions for w? and hence two solu-
tions for w, since the frequency is always taken to be positive;z.e.,
for each value of k; there will be two values of the frequency, so
that the w vs. &k, curve will have two branches.

1 1 \/ 1 1Y\ sin? k,
s {2 o L S ) -
@ U, [(Ml + Mz) + (M1 + M2> 4 LT, (13.6)
Substitution of Eq. (13.6) into Eq. (13.4) yields two equations
for A; and A,. These two equations are, however, not linearly
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independent and hence may be used only to determine the ratio
Ay/As, which is real. The magnitudes and actual phases of the
amplitudes for the two waves will depend on the initial conditions.

14. Electrical Analogue of the One-dimensional Diatomic Lattice

To construct the electrical line analogous to the one-dimen-
sional diatomic lattice, we must use the classical method of associ-
ation [Eq. (12.1)]. This means that since we have two masses
in the mechanical model, we must have two inductances in the

“electrical model. We could generalize the problem treated in the
preceding section and allow different coupling between the two
masses or, what amounts to the same thing, allow the distance
between M and M, to be different on the two sides of the particle.

—> -1 > 12 > I+ = lon+2

Van-2 Van-1 Van Vont1 Vontz Vants
Fie. 14.1.—Electric line corresponding to the sodium-chloride model.

This would give an electric line with condensers C, and C, alter-
. nating. The condenser C; to the right of a given condenser C,
would be joined to it by an inductance L, while the condenser
C1 to the left would be joined by an inductance L. This arrange-
ment would, in general, be analogous to the mechanical model
described in Sec. 7.

The electric line is shown in Fig. 14.1. As before; i» represents
current flowing from condenser (m — 1) to condenser m as in the
case of Fig. 11.3. The fundamental equations are

. . " . . d
Ton — Longl = ‘_Z%_; R o e —Q;;-;Ltl (14.1)
Ll d"«2n+1 = V2n - V2n+1 = 9'2—"‘ — 'Q—2”+1
dt C: C, (14.2)
d’l:zn Q2n—1 QZn ’

Lzﬂ = Vzn—l“V2n= 02 ——0—1

Differentiating Eq. (14.2) and combining with Eq. (14.1) will
yield
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A%oni1 _ tan — Toni1 __ Tongl — lon4a

Ly

aez C, C,
L d%s, - Gan—1 = fan _ Tan — Tony41 (14.3)
2 de C, C,

These two equations would be identical with Eq. (13.2) for the
diatomic lattice treated in the last section if C; = C, and we
replaced capacitance by the elastic constant and inductance by
0.4ass.

The solution of Eq. (14.3) is carried out in exactly the same
way as that of Eq. (13.2). We assume wave solutions for 7, and
1an+1 With the same frequency and wave number but with differ-
ent amplitudes, as in Eq. (13.3).

izn = A 2ei(wt—2nk1), 'i2'n+l = A 1ei[wt—(2n+l)kl] (144)

Substitution in Eq. (14.3) gives two equations linear in the
amplitudes

1 1 1 t7. 3% 1 —ik1 _
(‘Llwzfaﬁo—)*‘h— (‘é;” toe ’°>A2— 0
l 1 . i
<_L2w2 C];], 6%2) A2 - <02 o 6:51 e—ﬁ’“) A1 =0 1

(14.5)

These simultaneous linear equations in A; and A, have a non-
trivial solution if their determinant vanishes.

1, 1\/( 1,1
(—Llw2+a—l+a)<—L2wz+a—l+a) )
- (—L et + Clz e‘""’“) (C-1—2 e + C'll e""") =0 (14.6)

which reduces to

1 1 1 1 sin? k.
4 2 —_— —_ —_— —_— = =
ot —w (L1 + L2) (6'1 + 02> + 4L1L20102 0 (14.7)

thé solutibn of which is

11 1 1 1
“’2“§<E+Z'; (‘6+a‘)

1(1 1\*/1 1\ 4sin?k
t \/71 <E+I?;) (C*]J“U‘z) T LiL.oc, %8
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This reduces to the expression (13.6) obtained for the mechanical
case if L; = My, Ly = My, and 1/U"; = Cy = Cs. There will
be two branches to the w vs. k; curve whether Ly % L, or not, but
taking Cy # C; would distort the shape of the curves.

This problem was discussed by electrical engineers! who did not
notice the similarity with the one-dimensional NaCl lattice
discussed by Born. The problem originated from an attempt to
join an aerial telephonic line with a city cable, as shown in

12 L2 Ly Lo Ly
-
> 7, INFINITY —>
10000000 0000 —— 0000 9900~
1 —
A
Fia. 14.3.

Fig. 14.2. In order to obtain a correct junction at 4, where the
line is connected with the cable, it would be necessary to load
the cable with equal coils at a distance y, %, . . . . This results
from two conditions that must be satisfied in order to match the
line and the cable at their junction: (1) to have the same passing
bands, and (2) to have the same characteristic impedances (see
Chap. V). The difficulty was that the underground city cable
was already built to receive its loading coils at given distances z,
z, . ... The solution proposed consists in using alternately
two types of coils L, and L, (Fig. 14.3), resulting in a structure

1 FrexcH, N, R., U.S. patent 1,741,926, Dec. 31, 1929; 8. P. Mzap and
N. R. FrencH, U.S. patent 1,769,959, July 8, 1930.
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