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Thirty years of research has uncovered the broad principles that
characterize spoken word processing across listeners. However,
there have been few systematic investigations of individual differ-
ences. Such an investigation could help refine models of word rec-
ognition by indicating which processing parameters are likely to
vary, and could also have important implications for work on lan-
guage impairment. The present study begins to fill this gap by
relating individual differences in overall language ability to varia-
tion in online word recognition processes. Using the visual world
paradigm, we evaluated online spoken word recognition in adoles-
cents who varied in both basic language abilities and non-verbal
cognitive abilities. Eye movements to target, cohort and rhyme
objects were monitored during spoken word recognition, as an
index of lexical activation. Adolescents with poor language skills
showed fewer looks to the target and more fixations to the cohort
and rhyme competitors. These results were compared to a number
of variants of the TRACE model (McClelland & Elman, 1986) that
were constructed to test a range of theoretical approaches to lan-
guage impairment: impairments at sensory and phonological lev-
els; vocabulary size, and generalized slowing. None of the
existing approaches were strongly supported, and variation in lex-
ical decay offered the best fit. Thus, basic word recognition pro-
cesses like lexical decay may offer a new way to characterize
processing differences in language impairment.
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1. Introduction

The incoming speech signal is variable and noisy, arrives at a high rate of input, and maps onto a
potentially vast number of lexical candidates. The question of how listeners recognize words given
these challenges represents an important problem in the language sciences. Research over the last
30 years has led to a remarkable consensus for several principles that broadly characterize the pro-
cessing architecture underlying spoken word recognition. These include immediate incremental pro-
cessing, graded activation, parallelism, and competition.

These core principles provide descriptions of average performance in a variety of word recognition
tasks and represent fundamental commonalities across listeners. However, there has been little work
addressing differences between listeners. Such research has the promise for refining current models of
word recognition by revealing which aspects vary freely, which are more constant, and which may be
important for language processes beyond word recognition. It may also help diagnose and treat listen-
ers at the low end of the language ability scale, listeners commonly characterized as specific- or non-
specific-language-impaired (SLI or NLI).

The present paper begins to address this by using fine-grained measures of the temporal dynamics
of word recognition, and testing hypotheses for underlying causes of these differences using a current
model of word recognition, TRACE (McClelland & Elman, 1986). We start by reviewing the research
that established the current consensus on word recognition. We then motivate the individual differ-
ences that we chose to study here: gradations in overall language ability that are commonly associated
with language impairment. Next, we present an experiment that uses the visual world paradigm
(Allopenna, Magnuson, & Tanenhaus, 1998; Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995)
to assess online word recognition. Finally, we use variants of the TRACE model (McClelland & Elman,
1986) to test hypotheses about the underlying processing dimension(s) that may account for the indi-
vidual differences we observed.
1.1. Principles of spoken word recognition

There is considerable consensus for several core principles that characterize the processes of real-
time spoken word recognition: (1) words are activated immediately upon the receipt of the smallest
amount of perceptual input; (2) activation is updated incrementally as the input unfolds; (3) activation
is graded; (4) multiple words are activated in parallel; and (5) these words actively compete during
recognition.

Immediacy was initially revealed by gating paradigms (Grosjean, 1980; Tyler, 1984) and later by
priming and eye-movement measures (Allopenna et al., 1998; Marslen-Wilson & Zwitserlood, 1989;
McMurray, Clayards, Tanenhaus, & Aslin, 2008; Zwitserlood, 1989). Given a minimal amount of infor-
mation at word onset, listeners activate the set of all words compatible with this partial information.
These words are maintained in parallel, until they can be ruled out by additional acoustic material as it
accumulates incrementally (Dahan & Gaskell, 2007; Frauenfelder, Scholten, & Content, 2001; Marslen-
Wilson, 1987). Early work focused on the kinds of words that are considered during processing, show-
ing specifically that onset-competitors (or cohorts, such as beetle when hearing beaker) receive signif-
icant activation early, but that offset-competitors (rhymes, e.g. speaker) are also active (Allopenna
et al., 1998; Connine, Blasko, & Titone, 1993; Marslen-Wilson, Moss, & Van Halen, 1996).

Lexical activation is clearly a graded phenomenon: frequency affects activation (Dahan, Magnuson,
& Tanenhaus, 2001; Marslen-Wilson, 1987), as does phonetic match (Marslen-Wilson et al., 1996).
Words that match at onset (but mismatch later in the word) receive more activation than those that
mismatch at onset but match later (e.g. rhymes) (Allopenna et al., 1998). Moreover, activation is a
function of the lexicon as a whole (not just a word’s match to the input). The number of similar words
(to the target word) affects recognition (Luce & Pisoni, 1998) and specific competitor words can delay
activation to a target (Dahan, Magnuson, Tanenhaus, & Hogan, 2001; Marslen-Wilson & Warren,
1994). Thus, there is an active process by which lexical items compete with other items. This is under-
scored by the fact that well after a word’s uniqueness point (the point where there is sufficient
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information to unambiguously identify the word), there are still changes in lexical activation dynam-
ics (Dahan & Gaskell, 2007), and activation for competitors (Luce & Cluff, 1998).

Given these principles, the field has developed several computational models that characterize
word recognition as arising out of the properties of simple connectionist units. Interactive activation
accounts (e.g. TRACE: McClelland & Elman, 1986; PARSYN: Luce, Goldinger, Auer, & Vitevitch, 2000;
see also Shortlist: Norris, 1994) posit that words are recognized via a hierarchical dynamical system.
In the most detailed account, TRACE, the input is represented as a series of units corresponding to
acoustic features like voicing. These units pass activation from features to phonemes to words along
a set of variable-strength connections (weights). Units compete with each other within layers (e.g. ac-
tive phonemes inhibit less active ones) and (in the case of TRACE) can receive activation from higher
level units as well (e.g. lexical activation feeds back to phonemes). Activation cycles through the mod-
el until the model settles on an interpretation of the input, usually a single active word.

There are important differences between interactive architectures that should not be ignored.
These include issues like feedback (Magnuson, McMurray, Tanenhaus, & Aslin, 2003; McClelland, Mir-
man, & Holt, 2006; Norris, McQueen, & Cutler, 2000); whether competition effects derive from bot-
tom-up or lateral inhibition (Frauenfelder et al., 2001; McClelland & Elman, 1986; Norris, 1994);
and the nature of sublexical representations and processes (Gaskell, Quinlan, Tamminen, & Cleland,
2008; McMurray, Tanenhaus, & Aslin, 2009; McQueen, Cutler, & Norris, 2006). Finally, non-interactive
distributed models (e.g. Gaskell & Marslen-Wilson, 1997; Magnuson, Tanenhaus, et al., 2003) and
Bayesian approaches (e.g. Norris & McQueen, 2008) offer completely different formulations of the ba-
sic problem. However, despite these debates, all of the models implement the idea that candidate
words are identified immediately, considered in parallel, and compete in some way.

One particularly useful property of interactive models is the fact that these models include free
parameters which control the dynamics of the system (though this can create interpretation issues:
see Pitt, Kim, Navarro, & Myung, 2006). For example, in TRACE one can vary the strength of lateral
inhibitory connections between words (competition), the strength of excitatory connections between
phonemes and words (bottom-up activation flow), or the ability of feature units to maintain activa-
tion. Thus, this framing of spoken word recognition processes provides the opportunity to model indi-
vidual differences as differences in these parameters.

1.2. Individual differences

There is little evidence suggesting that individuals vary in their gross adherence to the principles of
word recognition (e.g. there is no evidence that some listeners process words in serial and others in
parallel). However, within this framework there is room for individual differences in the rate at which
words accumulate activation, the strength of competition effects, and other factors. But why should
we care about individual differences?

First, characterizing which dimensions of word recognition vary may constrain models or help in
model selection. For example, in distributed models like Gaskell and Marslen-Wilson (1997) compe-
tition emerges implicitly as the overlap between representations (in contrast to TRACE which includes
explicit inhibitory connections). If variation in inhibition is not attested between individuals, this
might favor the distributed architecture, which can better account for such constancy. On the other
hand, if inhibition does vary, this may force us to consider how this could be implemented in a distrib-
uted representation. Similarly, Bayesian models (Norris & McQueen, 2008) have fewer free parameters
(since optimality constrains the computation). Robust individual differences of a particular form, then,
could challenge the few degrees of freedom in such models, or support them (if they are sufficient to
capture it).

Second, identifying the components of word recognition that vary between individuals may alert us
to new questions. Work in word recognition has focused on theoretically important components like
feedback, inhibition and activation processes. However, if variation in such processes is not related to
individual differences in language ability, it may be important to examine other components of word
recognition.

Finally, an understanding the full range of individual differences could have applications in the
diagnosis and treatment of language disorders. The processing parameters that vary between
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individuals could be similar to those that underlie disorders (though at more extreme values). Simi-
larly, it may be useful to compare the parameters associated with language impairment to those that
differ over development. By understanding language impairment at the level of online processing, we
may be able to design more targeted diagnostics and interventions.

The present study approaches these questions from the context of functional individual differences.
That is, we seek to study individual differences in word recognition that are (1) measurable using
other instruments than our primary empirical measure (for example, measures of overall vocabulary
learning, or productive language ability), (2) stable across individuals, and (3) potentially applicable to
a wide range of theoretical and applied problems.

One approach that fits these criteria is to use general measures of non-verbal, and verbal ability to
establish differences among participants. Such measures are independent of laboratory assessments of
spoken word recognition, though there is some evidence that they are related to it (Dollaghan, 1998;
Montgomery, 1999, 2002; Stark & Montgomery, 1995). These measures of non-verbal and verbal skill
are reliable across time, both in terms of test–retest reliability and longitudinally over development
(Tomblin, Zhang, Buckwalter, & O’Brien, 2003), suggesting that they offer a stable way to identify
meaningful variation between participants. Finally, these measures are diagnostic of specific and
non-specific language impairment (SLI and NLI), and therefore are of clinical significance. By pin-
pointing the relationship of word recognition processes to these measures, we may be able to relate
variation in lexical processing to processing at other levels of language (e.g. syntax, speech).

General language and non-verbal abilities are clearly continuous and partially correlated. In this
regard they can be treated as dimensions along which individual differences exist. Often within indi-
vidual differences research, these dimensions are carved into groups and this practice is common in
research on language impairment. Despite this, there is a growing consensus that SLI and NLI are arbi-
trary categories on underlying continuous dimensions (Leonard, 1987, 1991; Tomblin & Zhang, 1999).
Fig. 1A, for example, shows the language and cognition scores from 527 children in the Iowa Longitu-
dinal study and clearly illustrates the continuous distributions of these measures. This sample rein-
forces the high correlation between language and non-verbal IQ. More importantly, there do not
appear to be any clusters that could be identified as qualitatively distinct groups.

Nonetheless, it is useful to discuss these dimensions in terms of four diagnostic categories (Fig. 1B).
Children with SLI, who comprise 6–7% of the population (Tomblin et al., 1997), are defined as having
language abilities at least one standard deviation below the mean for their age, despite non-verbal cog-
nitive abilities that are not more than one standard deviation below the mean and no other obvious
causal factors such as hearing impairment, articulatory disorders, developmental disorders, or neuro-
logical problems. Similarly, we define non-specific language impairment (NLI) as having language and
non-verbal scores that are both lower than one standard deviation below the mean (and no other gross
impairments). In the present study, we also define children with normal language skills (better than�1
SD for age) but impaired non-verbal intelligence as Specific Cognition Impaired or SCI. Our use of such
labels is primarily for ease of discussion and does not imply any categorical nature to their deficits.
Importantly, both of these continuous measures of ability and (to a lesser extent) the diagnostic cate-
gory (SLI, NLI, etc.) have been found to be very stable over a long period of time (Tomblin et al., 2003),
suggesting that these measures represent a robust dimension of individual differences with important
practical implications. However, it is not clear how such measures are related to word recognition.

1.3. Word recognition in SLI

Children with both SLI and NLI have deficits in a range of language domains including morpho-syn-
tactic skills (Leonard et al., 2003; Leonard, Deevy, Miller, Rauf, et al., 2003; Leonard, Eyer, Bedore, &
Grela, 1997), phonological processes (Bishop & Snowling, 2004; Joanisse & Seidenberg, 2003; Sussman,
1993), perceptual ability (Bishop, Adams, Nation, & Rosen, 2005; Tallal & Piercy, 1974) and word learn-
ing (Dollaghan, 1985; McGregor, Friedman, Reilly, & Newman, 2002; McGregor, Newman, Reilly, &
Capone, 2002). They also have generalized deficits in speed of processing (Kail, 1994).

SLI and NLI have been associated with deficits in spoken word recognition, although no qualitative
differences have been observed. Stark and Montgomery (1995) compared SLI and normal performance
in word-spotting tasks with time-compressed and low-pass filtered sentences. Participants with SLI
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were slower overall (compared to normal controls), but were not differentially affected by either
manipulation. This suggests a deficit in word recognition that was not specific to temporal perceptual
processes. Similarly Montgomery (2002) examined a word-spotting task where the embedded target
words contained mostly stop consonants or few stops (since stops are hypothesized to be difficult for
listeners with SLI). Again, no effect of sentence type was seen, but children with SLI responded slower
than controls.

Both studies were motivated by the idea that a perceptual impairment cascades to affect word recog-
nition. This was not supported, so it is possible that such effects arise from differences in word recogni-
tion processes such as inhibition. Before reaching such a conclusion, however, two alternatives must be
considered. First, Kail’s (1994) generalized slowing hypothesis suggests that children with SLI are simply
slower in a range of processes. Second, both studies used words embedded in sentences, raising the pos-
sibility that morpho-syntactic deficits may cause slowing (e.g. Montgomery & Leonard, 1998).

In order to reveal the unique contributions of word recognition, a number of studies have used iso-
lated words. Edwards and Lahey (1996), for example, examined children with SLI in an auditory lexical
decision task and found that language impairment was associated with a slower responses, but that
the magnitude of slowing did not predict the severity of the impairment (see also Lahey, Edwards,
& Munson, 2001).

While such results could be accounted for by generalized slowing, gated stimuli (e.g. Grosjean, 1980)
offer a glimpse into the time-course of processing that is less sensitive to speed of processing. Dollaghan
(1998) examined listeners with SLI and typically developing listeners as they heard progressively longer
portions of isolated familiar words and newly learned (unfamiliar) words. There was no group difference
for familiar words, but children with SLI required more acoustic material to recognize newly learned
words. This suggests a deficit in the process of winnowing the competitor set, although this may only
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be apparent for less active words. Additionally, in the shortest gates, children with language impairment
were less likely to guess a word containing the correct onset phoneme, again raising the possibility that
low-level perceptual deficits may be play a role in language impairment.

Later gating studies have been mixed. Montgomery (1999) used only highly familiar words in a
similar paradigm and found no differences between language-impaired and typically developing chil-
dren on either measure. Similarly, Mainela-Arnold, Evans, and Coady (2008) compared children with
SLI and typically developing children’s performance in a gating task in which both lexical frequency
and neighborhood density (the number of phonologically similar words in the lexicon) were manip-
ulated. Neither the recognition point nor the likelihood of recognizing the first sound varied as a func-
tion of language status, nor did language status interact with either frequency or density. However, at
late gates, the children with language impairment vacillated between correct and incorrect responses
(even though they had responded correctly at earlier gates). This would seem to implicate lexical, not
perceptual factors, and suggests that lexical targets receive less activation, competitor words are more
active, or some combination of both. Interestingly, neither frequency nor neighborhood density inter-
acted with language, weakening evidence for lexical involvement.

1.4. Overview

The foregoing work suggests quantitative differences in word recognition between language-im-
paired and normal listeners, and the potential for broader individual differences. Conflicting results
may be due to issues with the behavioral tasks. As discussed by Montgomery (1999) and Dollaghan
(1998), gating tasks require metalinguistic judgments and may reflect differences in participants’ con-
scious awareness of word recognition in addition to underlying recognition processes. It uses an untimed
response, and cannot measure temporal properties unrelated to the temporal uptake of the signal (e.g.
effects of late competition). Finally, the gated stimulus itself may not be treated as ‘‘part of a word”,
but rather, as a strange word in and of itself (see Allopenna et al., 1998; Warren & Marslen-Wilson, 1987).

The visual world paradigm or VWP (Tanenhaus et al., 1995) offers an alternative. In the VWP, par-
ticipants hear spoken instructions to manipulate one or more objects in a visual environment. The set
of objects represents competing interpretations of the auditory stimulus. As the subject completes the
task, eye movements to each object are monitored to provide a real-time estimate of how strongly
each interpretation is considered at any given time.

As applied to spoken word recognition (e.g. Allopenna et al., 1998; Dahan, Magnuson, Tanenhaus,
2001; Dahan, Magnuson, Tanenhaus, et al., 2001), objects in the display typically include phonological
competitors. Allopenna et al. (1998), for example, presented participants with screens containing a
target (e.g. sandal), a cohort (onset) competitor (sandwich), a rhyme competitor (candle), and an unre-
lated item (parrot). At around 200 ms after the onset of the word, participants began making more eye
movements to the target and cohort than to the other two items. Because it takes approximately
200 ms to plan and launch an eye-movement, these early eye movements are indicative of immediate
activation. About 200 ms after the point of disambiguation, looks to the cohort decreased, and some
looks to the rhyme competitor were seen. By about 1000 ms after the onset of the word virtually
all fixations were directed to the target.

This graded pattern of fixations could be fit to activation from the TRACE model (McClelland & El-
man, 1986) by transforming the activations across the lexicon into fixation probabilities for each of the
four objects with a simple linking function. This accounted for over 95% of the variance, suggesting
that the millisecond-by-millisecond pattern of eye movements can be used to understand the online
dynamics of lexical activations.

Subsequent research has demonstrated that this paradigm is sensitive to many of the factors that
affect word recognition. These include frequency (Dahan, Magnuson, Tanenhaus, 2001), subphonemic
mismatch (Dahan, Magnuson, Tanenhaus, et al., 2001), neighborhood density (Magnuson, Dixon,
Tanenhaus, & Aslin, 2007; Magnuson, McMurray, et al., 2003; Magnuson, Tanenhaus, et al., 2003), sen-
sitivity to continuous detail (McMurray, Tanenhaus, & Aslin, 2002), and semantic priming (Huettig &
Altmann, 2005; Yee & Sedivy, 2006).

Thus, the VWP is sensitive to real-time activation dynamics and can be readily mapped to available
computational models. Additionally, it is a useful tool for impaired populations as it offers a natural
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task that does not require metalinguistic judgments and has a low memory load. It has been used with
a variety of populations including children (Arnold, Novick, Brown-Schmidt, & Trueswell, 2001), dys-
lexics (Desroches, Joanisse, & Robertson, 2006), autistic children (Brock, Norbury, Einav, & Nation,
2008; Campana, Silverman, Tanenhaus, Bennetto, & Packard, 2005), and aphasics (Yee, Blumstein, &
Sedivy, 2004, 2008). It has also been applied to specific language impairment for sentence processing
(Nation, Marshall, & Altmann, 2003).

In the present study we used the VWP in a task similar to that of Allopenna and colleagues (1998)
to measure activation for the target word, a cohort competitor, and a rhyme as a function of time.
These temporal dynamics were examined as a function of general language and cognitive abilities
to determine how they differ between individuals. Finally, we used variants of the TRACE model to test
hypotheses about the underlying processing dimensions (e.g. strength of lexical inhibition, rate of
phoneme activation) that give rise to these differences.
1.4.1. Hypotheses
Work using the VWP to study lexical activation has shown that the proportion of fixations to the

target word as a function of time generally follows a sigmoidal curve. Initially few eye movements are
made to the target (or any other object), and this gradually ramps up to asymptote. Similarly, looks to
phonological competitors (e.g. cohorts and rhymes) rise to a peak, and then fall to a baseline level.
Both curves offer multiple dimensions of potential variability. For example, the function representing
looks to the target can vary in at least three different ways (Fig. 2). It could be delayed but proceed at
the same rate (Panel A), the upper asymptote could be reduced (Panel B) or its rise time could be slo-
wed (Panel C). Similarly the cohort and rhyme functions (Fig. 3) could vary in the location of peak acti-
vation (Panel A), the downward slope (Panel B), the asymptote (Panel C), or the peak height (Panel D).

Thus, across both targets and competitors there at least eight degrees of freedom that can vary and
may map onto specific hypotheses of language impairment. For example, both the generalized slowing
approach (Kail, 1994), and the speeded word-spotting tasks (e.g. Montgomery, 2002), predict that listen-
ers on the low end of the language scale (SLI and NLI) will be slower to recognize the target words, result-
ing in a change in the slope or the cross-over points. Moreover, work by Fernald and colleagues using a
similar (but simpler) task (e.g. Fernald, Perfors, & Marchman, 2006) has demonstrated that one of the pri-
mary developmental changes is the speed at which participants fixate (or activate) the target word. If
children with SLI or NLI are simply lagging their peers developmentally we may observe this pattern
of delayed initial looks to the target. Alternatively, the gating results (e.g. Dollaghan, 1998) suggest that
fixations to cohort competitors will be either higher overall (late), or will decay more slowly.

Computational modeling can test hypotheses about the nature of the underlying deficits in a dif-
ferent way. Some TRACE parameters map simply to known theoretical constructs. Phoneme inhibition,
for example, gives rise to categorical perception or the sharpness of the phonological representation
(McClelland & Elman, 1986; McMurray, Tanenhaus, et al., 2009). Similarly, parameters at the feature
level such as decay and input noise can test hypotheses that low-level perceptual deficits or auditory
memory processes are responsible for language impairment (Tallal & Piercy, 1974). While no single
task or model can completely rule out any of these hypotheses, the use of a multi-leveled process
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model like TRACE coupled with a behavioral task with this degree of specificity may offer some insight
into competing theoretical accounts of the deficits faced by children with SLI, or push the research in a
new direction. It can also test the validity and flexibility of TRACE to account for the kinds of differ-
ences we observe empirically.

2. Experiment

Participants were presented with screens containing a target, a cohort competitor, a rhyme com-
petitor and an unrelated object and were asked to click on the target with a computer mouse. Eye
movements were monitored throughout the process to examine activation dynamics.

We recruited a subject population with a range of variation in language and cognitive abilities, by
targeting groups of participants from each of the four diagnostic groups identified earlier (SLI, NLI, SCI
and TD) (Fig. 1B). These groups allowed us to determine the effect of general impairment (either IQ or
language) and to isolate language- or IQ-specific deficits.

2.1. Methods

2.1.1. Participants
Ninety-three adolescents participated in this study (a subset of the longitudinal study conducted

by the University of Iowa Child Language Research Center; Tomblin et al., 1997, 2003; Tomblin, Zhang,
Weiss, Catts, & Ellis-Weismer, 2004). Participants were excluded if they did not have English as their
primary language or if they had a history of sensory impairment, mental retardation, autism or neu-
rological disorder. Diagnostic classification was based on eighth grade scores, since the longitudinal



Table 1
Age, language scores and performance IQ of the participants.

Group N Age (SD) Performance IQ (SD) Lang comp z-score (SD)

N 40 17; 1.3 (6.9 mo) 101.95 (8.20) �.029 (.69)
SCI 16 17; 1.5 (8.2 mo) 82.25 (3.87) �.607 (.505)
SLI 20 17; 2.9 (7.4 mo) 97.85 (9.26) �1.686 (.481)
NLI 17 17; 1.7 (7.9 mo) 79.24 (6.71) �1.722 (.468)
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study clearly established the stability of these language scores with respect to age (Tomblin, 2005;
Tomblin et al., 2003). Participants averaged 17 years, 1.75 months of age at the time of testing.

To achieve a roughly balanced design (while maintaining substantial variability along both dimen-
sions) subject recruitment was targeted to the specific groups we have discussed. We collected data
from 20 SLI (Specific Language-Impaired), 17 NLI (Non-specific-Language-Impaired), 16 SCI (Specific
Cognition Impaired), and 40 typically developing teenagers (TD) (see Table 1). There was significant
variability within groups but no clear clusters (Fig. 1C).

These groups (though arbitrary) are diagnostic in clinical speech-language pathology. The diagnos-
tic criteria we employed are as follows. Participants in the SLI group passed the performance IQ crite-
rion and failed the language criterion. SCI was defined as passing the language criterion but failing the
performance IQ criterion. The NLI group failed both language and performance IQ criteria, and the typ-
ically developing (TD) group passed both criteria.
2.1.1.1. Language measures. Our language assessment was based on the epiSLI criteria for language
impairment (Tomblin, Records, & Zhang, 1996). Listening and speaking ability in lexical, sentence
and discourse contexts was measured using the language diagnostic battery described in Table 2.
Raw scores were converted to standard scores and combined into a single composite score for each
child by summing all subtest z-scores and then dividing this by the square root of the sum of the vari-
ances and the covariances across the subtests (Crocker & Algina, 1986). Language impairment was as-
signed when a child’s score was less than �1.14 on this composite z-score. This cut-off approximates
the probability of failing two of five subtests where failing is set at the 10th percentile.
2.1.1.2. Performance IQ measures. Participants were classified as cognitively impaired (SCI and NLI) if
their performance IQ fell below one standard deviation below the mean. This was assessed with the
Block Design and Picture Completion subtests of the Wechsler Preschool and Primary Scale of Intelli-
gence-Revised (Wechsler, 1989). If the sum of these scaled scores was greater than or equal to 16, par-
ticipants were classified as having normal non-verbal IQ, reflecting a performance intelligence score of
87.5 or more.
Table 2
Language measures used for determination of language status.

Test Language domain

PPVT-R Receptive vocabulary
CREVT – expressive Expressive vocabulary
CELF-III: concepts and directions Sentence comprehension
CELF-III: recalling sentences Sentence production: imitation
Q R inventory – II/3 Listening: discourse comprehension
Qualitative reading inventory – 3 Discourse recall: total words

Peabody Picture Vocabulary Test – R (PPVT-R) (Dunn, 1981).
Comprehensive receptive and expressive vocabulary test (CREVT) (Wallace & Hammill, 1994).
Clinical evaluation of language fundamentals – III (CELF-III) (Semel, Wiig, & Secord, 1995).
Qualitative reading inventory – II and 3 (QRI-II/3) (Leslie & Caldwell, 1995, 2001).
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2.1.2. Materials
2.1.2.1. Item selection. To ensure that the words used in this study would be familiar to the partici-
pants, a self-rated word familiarity survey was mailed to 249 10th-graders who were part of the ori-
ginal Tomblin and colleagues (1997) study. This survey was comprised of 175 items drawn from the
Peabody Picture Vocabulary Test (PPVT-R, Form L) (Dunn, 1981), as well as a number of items that
were potentially appropriate for the present study. Two sublists, Form A with 85 items and Form B
with 90 items, were constructed. The participants received one of the two sublists and were asked
to rate their familiarity with each of the words on a five-point scale, ranging from 1 (‘‘I do not know
what this word means”) to 5 (‘‘I know for sure what this word means”). A total of 135 adolescents (28
SLI, NLI and SCI, and 107 ND) completed and returned the survey, for a response rate of 54.21%. Sig-
nificant positive correlations between scores on the familiarity survey and PPVT raw scores for both
language-impaired (r(25) = .668, p < .01) and typically developing (r(105) = .473, p < .01) respondents
indicated that our survey could be used to assess vocabulary knowledge in adolescents (Lee, Samelson,
& Tomblin, 2006).

Any words for which 70% or less of the respondents gave a rating of 4 or 5 were excluded from
the possible stimulus set used in the eye-tracking study. From this final set, 41 groups of four nouns
were selected for use in the experiment (Appendix A). These 41 sets included the original eight ‘‘tar-
get–cohort–rhyme–unrelated” two-syllable sets used by Allopenna and colleagues (1998),1 as well as
33 new sets created specifically for this study: 12 sets of two-syllable words and 21 sets of one syllable
words.

2.1.2.2. Stimulus pictures. For each noun, 10 pictures were downloaded from a commercial clip art
database. A team of experimenters including graduate students and undergraduates examined each
set of pictures to select the most representative exemplar. These selected pictures were then edited
if necessary to yield a consistent level of coloring and brightness within each set, eliminate distracting
elements, and make minor modifications to the picture. The final pictures were then approved by the
first author, who has extensive experience with VWP tasks.

2.1.2.3. Auditory stimuli. The 163 auditory stimuli2 were recorded by a male speaker in an anechoic
chamber, using a Marantz PMD-670 solid-state digital recorder. The speaker produced three exemplars
of each word, and the clearest was selected. One hundred milliseconds of silence was added to the onset
of each word, and the entire set was amplitude normalized.

2.1.3. Procedure
Participants were seated at a computer and the eye-tracker was calibrated. Instructions were pre-

sented on the screen, followed by a verbal summary of the instructions and an opportunity to ask
questions. The adolescents then performed four practice trials while the experimenter watched and
corrected them if necessary. Participants were given a second opportunity to ask questions. At that
point testing began.

On each trial, the four pictures corresponding to the target, cohort, rhyme, and unrelated item ap-
peared on the screen, along with a blue circle at the center. After 750 ms, the circle turned red, and
participants were instructed to click on it. This served to force the mouse and the eyes to the center
of the screen before hearing the auditory stimulus. After clicking on the red circle, participants heard
the target word and clicked on the appropriate picture.

Periodically during the experiment a computer-generated drift correction was completed, at which
point the participant could take a break if desired. At each drift correction, participants were also re-
1 Note that several of the original Allopenna et al. (1998) unrelated items were replaced with new words. This was done to
eliminate the use of words in more than one set and to allow us to use some of these as targets or cohorts in new sets.

2 While our design calls for 164 words (41 sets � 4 words/set), there were only 163 target words. The Allopenna et al. (1998)
study, on which this one is based, used several items as both unrelated and competitor objects (dolphin, dollar, speaker, beaker and
parrot). We eliminated this in our present design. However, they also used candle was used as both a target (in the candle/candy/
handle set) and a cohort competitor (sandal/sandwich/candle). Since this was an experimental set we opted to maintain this for the
sake of continuity.
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minded to listen to each word and click on the matching picture. Experimental sessions were moni-
tored by the examiner via closed circuit video camera, to ensure that the headset was not bumped
and that participants remained focused on the task.

For each item-set, each word appeared as the auditory stimulus an equal number of times. This led
to four trial-types. Consider the item-set consisting of candle, candy, handle, and button. A full compet-
itor set (a Target–Cohort–Rhyme, or TCR, trial) occurred when the auditory stimulus was candle: candy
served as cohort, handle was a rhyme, and button served as a phonologically unrelated picture. How-
ever, when candy was the auditory stimulus, this trial had a cohort competitor (candle) and two unre-
lated objects (handle, and button), but no rhymes (a Target–Cohort, or TC trial). Likewise, if handle was
the auditory stimulus, there would be a rhyme competitor (candle) but no cohort (a Target–Rhyme, or
TR trial). Finally, if button was the stimulus, all of the items were unrelated (TU).

2.1.3.1. Eye-movement recording. Eye movements were recorded with an Eyelink II head-mounted eye
tracking system (SR Research, Ltd.) at 250 Hz. The standard 9 point calibration procedure was used
and participants had no trouble completing it. Calibration quality was estimated for each subject as
the error (in degrees of visual angle) after the final validation. In order to verify that there was no sys-
tematic difference in the quality of the eye-track between our subject groups, these error measure-
ments were subjected to a 2 (language status) � 2 (non-verbal cognitive status) ANOVA. We found
no effect of language status (F(1,89) = 2.67, p > .1), no effect of non-verbal cognitive ability (F < 1),
and these factors did not interact (F < 1). Thus, basic eye-movement control and measurement was
not a specific issue for any of our subject groups.

Fixations were recorded from onset of the central fixation point. Recording stopped when the sub-
ject clicked on the selected picture. The eye-track was automatically parsed into events (saccades, fix-
ations, blinks), using the eye-tracker’s default ‘‘psychophysical” parameter-set. Similar to prior work
(McMurray et al., 2002), adjacent saccades and fixations were combined into ‘‘looks” on which subse-
quent analyses were performed.

2.1.3.2. Design. There were 41 item-sets, and each of the four members of the set appeared as the
auditory stimulus once (four trial-types). This led to 164 trials. When repeating fixed sets of items a
small number of times, however, there is a danger that participants may employ a process of elimina-
tion strategy. For example, if participants have previously clicked the candy or the candle, on a subse-
quent trial when they see this item-set again, they may assume that button or handle is the correct
target before hearing it. In order to minimize this, an additional 3 blocks of 41 trials were included
in which the target was selected completely randomly. Thus, some words could be used up to four
times in the course of an experiment and others only once. This led to 287 trials, of which approxi-
mately one fourth fell into each trial-type.

2.2. Results

Our analysis began with an analysis of the mouse-click (identification) and reaction-time data to
demonstrate that our participants were able to complete the task successfully. We then analyzed
the eye-tracking data. Consistent with our emphasis on individual differences, we used linear regres-
sion to relate continuous language and non-verbal IQ scores to these data. However, the performance
of the diagnostic groups may be of interest to researchers in communication disorders. ANOVAs using
clinical groups can be found in Supplementary material (note 1).

2.2.1. Mouse click (Identification) results
Our first analyses examined the mouse click responses (1) to verify that this was a feasible task for

our impaired groups of participants and (2) to verify that the words and pictures were familiar. Par-
ticipants performed quite well in this experiment, averaging 98.8% correct (SD = 1.15%), an average of
3.4 missed trials out of 287 (see Table 3). Thus, this appears to be a reasonable task for use with this
population.

In order to determine if language or non-verbal IQ was related to performance, hierarchical regres-
sion was used. The first regression examined percentage correct. On the first step, language and IQ



Table 3
Mean performance and RT.

Subject group N % Correct (SD) RT in ms (SD)

Normal 40 99.2 (.83) 1429 (148)
SLI 20 98.3 (.87) 1450 (163)
SCI 16 99.0 (1.10) 1493 (167)
NLI 17 98.2 (1.64) 1635 (168)
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accounted for 18% of the variance (Fchange(2,90) = 10.14, p = .0001). However, only language was signif-
icant individually (T(1,90) = 3.9, p = .00018)—participants with lower language scores performed
slightly worse than those with high scores (the diagnostically language-impaired listeners scored
98.3% correct compared to 99.1% for unimpaired). Performance IQ was not significant (T < 1). On the
second step of the model, the interaction of language and non-verbal IQ was marginally significant,
accounting for an additional 3% of the variance (Fchange(1,89) = 3.13, p = .08). Listeners who were poor
in both language and cognitive abilities performed slightly worse than those who were only poor in
language.

The next regression examined reaction time. On the first step, language and IQ were added to the
model and accounted for 19% of the variance (Fchange(2,90) = 10.41, p = .0001). However, only language
was significant individually (T(1,90) = 2.9, p = .005)—participants with lower language scores were
slower than those with high scores (the diagnostically language-impaired listeners averaged
1542 ms compared to 1462 ms for unimpaired). This was not unexpected and extends the word spot-
ting results described earlier (Montgomery, 2002; Stark & Montgomery, 1995) to single word recog-
nition. Performance IQ was marginally significant (T(1,90) = 1.98, p = .051), also due to the fact that
adolescents with cognitive impairment (M = 1564 ms) performed worse than those without cognitive
impairment (M = 1439 ms). On the second step, the interaction of language and non-verbal IQ was
added and did not account for significant additional variance (R2

change ¼ :01, Fchange(1,89) = 1.4, p > .1).
The significant group differences in both analyses do not undermine our use of the VWP with this

population. The actual size of the effect on overall performance (in terms of percentage correct) was
small (less than 1% between language-impaired and non-language-impaired groups), and each indi-
vidual subject performed better than 95% correct. Thus, even adolescents with language and cognitive
impairments are fully capable of recognizing these words. The RT difference is larger, though not
unexpected. It is potentially more problematic, since averaging eye movements across trials of differ-
ent lengths can create apparent group differences even if there are none. Thus the analyses conducted
on the fixations were constructed with this in mind.

2.2.2. Fixation proportions
Fig. 4 shows the probability that the participants fixated each object every 4 ms. Trials in which the

adolescents failed to select the correct target were excluded from this analysis, since the participants
were not expected to make eye movements to the target if they failed to recognize it. Additionally, a
number of participants initiated saccades during the 100 ms period between the disappearance of the
red circle and the onset of the auditory stimulus. Such eye movements were not the result of any lin-
guistic processing, and were removed from the data set and replaced with a ‘‘no data” code.

Panel A shows the time course of fixations for TD participants. Shortly after word onset (the first
response to which occurs at 300 ms in these curves), the curves representing the target and cohort
deviate from the unrelated and rhyme, as at this point in time the auditory stimulus has unfolded
to the point where some disambiguating information is available. Three-hundred ms reflects the
200 ms it takes to plan and launch an eye-movement and the 100 ms of silence between trial onset
and the auditory stimulus. Somewhat later, fixations to the rhyme deviate from the phonologically
unrelated object, and by the end of the trial, participants are only fixating the target.

This overall pattern was not qualitatively disrupted in any of the three impaired groups (Fig. 4B–D).
However, there are quantitative differences. Fig. 5A shows the proportion of looks to the target for
each of the four groups. An effect of language impairment can be seen, with SLI and NLI listeners
showing a lower likelihood of fixating the target than TD and SCI children at the end of the time-
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course. Likewise Panels B (cohort fixations) and C (rhyme fixations) suggest that language-impaired
adolescents may have difficulty suppressing looks (activation) to competitor objects, though this ef-
fect seems greater for children with NLI than SLI. All three effects are primarily late in the time-course,
when fixations have stabilized. Given that these figures are based only on trials in which the subject
selected the correct word, they lead to the unexpected conclusion that on at least a small proportion of
trials, language-impaired adolescents are actually fixating on the cohort or rhyme while they are click-
ing on the target.

This pattern of results does not support the idea of a deficit that involves early processes in word
recognition. Variation in language ability also does not slow the time-course of processing. Rather, at
first glance, adolescents with lower than average language skills show decreased target activation and
increased competitor activation. However, this must be verified statistically, and we must rule out
other potential causes.

Our statistical analyses were designed to address three issues. First, we needed to validate this
description of our data, demonstrating that this late pattern of fixations is related to language ability
(and potentially to cognition). Second, it is possible that averaging across participants masks (or creates)
effects. For example, variability between participants in the timing of the function could average to yield
what looks like a difference in slope. Thus, in order to uncover any other differences that may relate to
language impairment, we needed to characterize each subject’s time-course of processing parametri-
cally. Finally, these late asymptotic effects were somewhat unexpected and have not been attested in
other VWP studies. Thus, the third goal of our analyses was to verify that this effect arises from language
status, and not something less interesting (e.g. differences in how eye movements are deployed).
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Typical analyses used with the VWP simply take the area-under-the-curve over specific time win-
dows (and online note 1.2 reports our preliminary analyses with this approach). This is insufficient for
our purposes since it does not characterize the time course of processing and would violate the inde-
pendence assumptions of ANOVA (see McMurray, Tanenhaus, Aslin, & Spivey, 2003; Mirman, Dixon, &
Magnuson, 2008). This makes it difficult to detect individual differences in functions that may be
masked by averaging across time and participants. Moreover, this analysis requires that all partici-
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pants have data in the time-window of interest. This creates problems when the time-window is late,
as not all participants will have data at late points in time and some may not have completed some of
the trials yet. Thus, we needed an analysis which implicitly takes time into account.

Mirman and colleagues (2008) demonstrated the ability of mixed effects models to accomplish this.
Their approach fits each participant’s time-course of fixations to a polynomial function of time. These
are then combined in a mixture model to evaluate differences across participants. This solves a num-
ber of the problems outlined above. Time is represented explicitly in the polynomial function, and the
parameters describe the change over time, not the quantity of fixations. Each participant has his or her
own parameters for this function, allowing differences to be characterized precisely. Finally, because
time is represented as part of the function, curves can be fit to each subject over only the time window
in which they have data, eliminating the problems created by variable reaction times.

This approach can solve most of the problems raised by the area-under-the-curve method. How-
ever, polynomial functions may not be ideal for fitting this sort of data. To fit the sigmoidal target func-
tions, for example, a 5th or 6th order polynomial is needed (without arbitrarily cutting off the
asymptotic portion that is of interest). The bell-shaped cohort function can be fit by a lower-order
polynomial, but only in a restricted range. In particular, we would have to exclude the asymptotic por-
tion of the curve, as it is not possible for a reasonably small polynomial function to approximate
asymptotic behavior. Finally, while the coefficients of polynomial functions mathematically describe
the function, they do not offer any simple interpretation because they do not describe immediately
observable properties of the function.

Thus, we adopted the spirit of Mirman and colleagues’ approach, but used non-linear functions to
fit each participant’s data. Starting with the time course data (e.g. Figs. 4 and 5), non-linear functions
were fit to each participant’s results (separately for target, cohort and rhyme fixations). The parame-
ters describing these functions were then examined with linear regression to determine precisely how
participants’ language and cognitive abilities influenced the specific aspects of the time course that
were described by each parameter (see online note 1.3 for analogous analyses in the ANOVA
framework).

We used a logistic function (Fig. 6A) to model fixations to the target, and a function based on the
Gaussian to model competitor fixations (Fig. 6B). Both functions offer parameterizations in which indi-
vidual parameters describe readily observable aspects of the function. This transparency allows a
straightforward description of our data.3 However, this approach has a few limitations. First, the
parameters of these functions cannot be independently estimated (like the coefficients of a polyno-
mial). For example, the slope of the logistic function cannot be estimated until the cross-over is iden-
tified. However, that does not mean that any given function can be multiply determined – there is only
one set of parameters that gives rise to any specific function. Thus, the lack of independence does not
create ambiguity in interpreting parameter values (though it may create difficulties in estimating
them), as long as the estimates are globally optimal. To ensure this was the case, we used a con-
strained gradient descent method to estimate the parameters of each function, and subsequently com-
pared these fits to the empirical data visually for each subject, to verify that they did not arise from a
local minimum.

Second, the relationship between the parameters of a non-linear function and the function’s behav-
ior can be non-linear. This can cause problems when trying to relate the parameters to factors like lan-
guage ability using linear regression. However, it is important to note that for these particular
functions, the parameters describe readily observable properties (e.g. the peak fixations), so in effect
we are simply relating measurable components of the data to language status – curve-fitting simply
gives us a way to extract such values objectively.

Since curves were fit to each participant’s data, it was important maximize the amount of data used
in each fit. Thus, we averaged across trial-types. Looks to the target consisted of looks to whichever
3 The use of these non-linear functions (particular the asymmetric Gaussian) makes it difficult to employ them in a complete
mixed model (as Mirman et al., 2008, did). Thus our approach does not take into account within-subject error in the between
subject effects. This is only a factor if the quality of the fits differed systematically as a function language or cognitive ability. In all
of the analyses presented here, this was not the case – the least-squared error of the fit was not significantly correlated to language,
intelligence or their interaction (Target: R2

model = .03; Cohort: R2
model = .02; Rhyme: R2

model = .04).
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object was targeted across all four trial-types. Looks to the cohort collapsed across TCR and TC trials;
and looks to the rhyme collapsed across TCR and TR trials. (Trial-type was assessed in separate anal-
yses using area-under-the-curve, and reported in online note 1.2).

A final concern was how to deal with variability in the amount of time it took participants to com-
plete the trial (both within- and across-participants). In most prior work (e.g. Allopenna et al., 1998;
Dahan, Magnuson, Tanenhaus, 2001; Dahan, Magnuson, Tanenhaus, et al., 2001; McMurray, Aslin,
Tanenhaus, Spivey, & Subik, 2008; McMurray, Tanenhaus, et al., 2009), this is dealt with by choosing
an arbitrary endpoint (e.g. 2000 ms) and either truncating trials that are longer, or extending the final
fixation for trials that are shorter. However, in this study the effects were largely late in the time
course. Adopting prior techniques could thus allow a few participants that responded relatively
quickly to dominate the dataset and create the appearance of a relatively flat function. This could also
mean that differences in the number of early and late responders in each group would give rise to
seeming differences in the asymptotic performance.

Thus, for each subject we computed that subject’s mean reaction time across trials. We then trun-
cated (or extended) each trial relative to that subject’s reaction time, prior to curve-fitting. In effect, we
used the usual procedure, only with a stop-time that was unique to each subject. Since this was in fact
their mean, for each subject approximately 50% of their trials would be truncated and 50% would be
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extended trials to the dataset. Thus, the differing response latencies across participants could not give
rise to between subject differences.

2.2.2.1. Analysis of fixations to target. To analyze the target fixations we used the four-parameter logis-
tic function (Eq. (1); Fig. 6A) as the basis of our fits.
P ðtargetÞ ¼ p� b

1þ exp 4 � s
p�b � ðc � tÞ

� �þ b ð1Þ
Time in milliseconds is represented by t. The upper asymptote is represented by p, and the lower by b.
The cross-over point (in ms) of the function (where the function’s rate of change is at maximum) is
denoted by c. The derivative of the function at that point is s, the slope.

A priori, we would expect to see little difference in b (onset asymptote), as this reflects the number
of eye movements to the target prior to the onset of the auditory stimulus. Changes in s (slope) would
reflect the growth of activation and changes in c reflect when activation starts growing. Finally,
changes in p would indicate a change in the peak amount of activation. Given Fig. 5A, we expect effect
of language ability primarily on p, and no effect of cognitive ability.

We computed, for each subject, the proportion of trials at which the subject was fixating the target
at each point in time (collapsing across all four trial-types) from 0 ms to the mean reaction time for
that subject. Trials in which the subject clicked on the incorrect object were excluded. Eq. (1) was then
fit to each subject’s data using a constrained gradient descent technique that minimizes the RMS (root
mean squared) difference between the function and the raw data (but constrains the possible fits to be
within reasonable bounds). Fits were good, with an average R2 of .998 (SD = .0027, Max = .999,
Min = .973) and an average RMS of .016 (SD = .005). Thus, the logistic function was a good choice
for this dataset.

We next used linear regression analyses to examine the effect of language and non-verbal cognitive
status on each parameter of this function. All regressions were conducted hierarchically, with both
main effects entered on the first step and the interaction on the second. The first analysis examined
the baseline (b). As expected, we found no effect of language or cognitive abilities (R2

change ¼ :02,
Fchange < 1), and no interaction (R2

change < :001, Fchange < 1). Likewise, there was no effect on the cross-
over point (c) of either language, cognitive ability (R2

change:001, Fchange < 1), or the interaction
(R2

change ¼ :01, Fchange < 1). Thus, language and non-verbal cognitive status did not affect baseline look-
ing to the target or the midpoint of the function describing the increase in looks to the target.

The third regression examined the upper asymptote (p). Here, the main effects entered on the first
step significantly accounted for 9% of the variance (Fchange(2,90) = 4.38, p = .02). This was driven by an
effect of language status (T(90)=3.0, p = 0.004) with language-impaired participants exhibiting lower
peaks (M = .737, SD = .22) than unimpaired participants (M = .848, SD = .135). Non-verbal cognitive
status was not significant (T < 1). Similarly, the interaction of language and cognition did not signifi-
cantly account for any variance (R2

change ¼ :02, Fchange(1,89) = 1.5, p > .2).
The final regression examined slope (s). Language and cognitive abilities together accounted for

15% of the variance (Fchange(2,90) = 8.0, p = .0006). This was driven by a significant effect of language
status (T(90) = 3.8, p = .002) and no effect of non-verbal IQ (T < 1). For language-impaired adolescents,
the curve grew at a slower rate (M = .0011, SD = .00023) than for unimpaired participants (M = .0014,
SD = .00034). On the second step the interaction was added and was not significant (R2

change ¼ :02,
Fchange(1,89) = 1.7, p > .1).

Thus, language ability specifically affected both the peak fixations and the slope of the function,
while cognitive ability had no effect on target fixations.

2.2.2.2. Analysis of fixations to cohorts and rhymes. The fixations to the cohort and rhymes (Fig. 5B and
C) require a more complex function. Rather than one transition, competitor fixations briefly rise and
then fall. The rise and fall could each have different slopes, and did not always baseline at 0. We were
not aware of any standard function with the necessary degrees of freedom, so we adopted a hybrid
function based on two partially independent Gaussians (we call it the Asymmetric Gaussian, see
Fig. 6B). These two Gaussian functions were not constrained in terms of either baseline or area (as



18 B. McMurray et al. / Cognitive Psychology 60 (2010) 1–39
is the classic Gaussian), but were constrained to ‘‘line-up”—they had to have the same peak location
and height.
P ðcompetitorÞ ¼
exp ðt�lÞ2

�2r2
1

� �
ðp� b1Þ þ b1 if t � l

exp ðt�lÞ2

�2r2
2

� �
ðp� b2Þ þ b2 if t > l

8><
>:

ð2Þ
The upper function describes the first half of the time course, and the lower one describes the second.
l and p (the location of the peak and its height, respectively) are the same across both Gaussians,
while r and b are specified independently for each. Thus, there are six parameters—the onset baseline
(b1), the onset slope (r1), the location of the peak in milliseconds (l), the height of the peak (p), the
offset slope (r2) and the offset baseline (b2). This function can model most types of variation in the
shape of cohort and rhyme functions, using meaningful parameters. It is also well-behaved—despite
the hybrid formalization, the derivative is continuous. As before, we used a similar constrained gradi-
ent descent method to achieve our fits.

Our first fits with the asymmetric Gaussian examined fixations to the cohort. Overall fits were
good, with a mean R2 of .985 (SD = .011, Min = .913, Max = .996) and a mean RMS error of .0086
(SD = .0022). Thus, this function described these data well. As before, each of the six parameters
was entered into hierarchical regressions to relate them to language and cognition.

Four parameters showed no effect of language, non-verbal cognitive status or an interaction: the on-
set baseline, b1 (Language and Cognition: R2

change ¼ :011, Fchange < 1; Interaction: R2
change < :001,

Fchange < 1); the peak location, l (Language and Cognition: R2
change ¼ :038, Fchange(2,90) = 1.8, p > .1; Inter-

action: Rchange ¼ :003, Fchange < 1); the peak height, h (Language and Cognition: Rchange ¼ :027,
Fchange(2,90) = 1.3, p > .2; Interaction: Rchange < :001, Fchange < 1); and the onset slope, r1 (Language and
Cognition: Rchange ¼ :044, Fchange(2,90) = 2.1, p = .13; Interaction: Rchange ¼ :018, Fchange(1,89) = 1.7,
p = .19).

Offset slope (r2) did show significant effects. On the first step, language and cognition accounted
for 8.3% of the variance (Fchange(2,90) = 4.1, p = .02). This was driven by the fact that language was sig-
nificant (T(90) = 2.86, p = .005), but not non-verbal IQ (T(90) = 1.1, p > .2). As language scores de-
creased, r2 increased suggesting that poor language users showed more late fixations to the cohort.
On the second step of the analysis, the interaction was added and did not significantly account for
any variance (Rchange <¼ :001, Fchange < 1).

Offset baseline (b2) showed a similar pattern. Language and cognitive abilities accounted for 7.4% of
the variance on the first step (Fchange(2,90) = 3.6, p = .031). Language was marginally significant
(T(90) = 1.88, p = .064) and intelligence was not (T < 1). As with offset slope, participants with poor lan-
guage abilities showed increased baseline values, suggesting that they were making more late eye
movements to the cohort. The interaction was marginally significant (Rchange ¼ :036, Fchange(1,89) = 3.6,
p = .06): listeners with both language and cognitive deficits had marginally higher values for b2 than
those without cognitive deficits.

The analysis of rhyme fixations revealed a similar pattern. Overall fits were good, with a mean R2 of
.965 (SD = .023, Min = .88, Max = .99) and a mean RMS error of .008 (SD = .002). As before, no effects
were seen on the onset baseline, b1 (Language and Cognition: Rchange ¼ :05, Fchange(2,90) = 2.4, p > .1;
Interaction: Rchange ¼ :01, F(1,89) = 1.3, p > .2); peak location, l (Language and Cognition:
Rchange ¼ :001, F < 1; Interaction: Rchange ¼ :029, F(1,89) = 2.7, p > .1); peak height, h (Language and Cog-
nition: Rchange ¼ :006, F < 1; Interaction: Rchange ¼ :005, F < 1); or onset slope, r1 (Language and Cogni-
tion: Rchange ¼ :002, F < 1; Interaction: Rchange ¼ :032, F(1,89) = 2.96, p = .088).

As with the cohort, the two late parameters described most of the individual differences. Offset
slope, r2 was not significant on the first step of the analysis (Language and Cognition: Rchange ¼ :01,
F < 1) but the interaction was marginally significant on the second (Rchange ¼ :035, F(1,89) = 3.3,
p = .07). Children with both language and cognitive deficits showed a higher offset slope than any
of the other three groups. The offset baseline (b2) was more sensitive to language alone. In this anal-
ysis, language and cognition accounted for 8.5% of the variance (Fchange(2,90) = 4.2, p = .017). Individ-
ually, non-verbal cognitive ability was not significant (T(90) = 1.1, p > .2), but language was
(T(90) = 2.0, p = .045), with higher baselines for language-impaired (M = .031, SD = .026) than unim-
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paired participants (M = .022, SD = .017). The interaction did not significantly account for any new var-
iance (Rchange ¼ :007, Fchange < 1).

Thus, the analysis of the rhyme fixations showed a similar pattern to the cohorts. Significant effects
emerged in the late components of the curve: the offset baseline and the offset slope. These were pri-
marily effects of language, suggesting that poorer language abilities increased activation for compet-
itors like cohorts and rhymes toward the end of processing.

In both analyses, language did not show strong interactions with non-verbal IQ. This was surprising
given the apparent difference between SLI and NLI adolescents observed in Fig. 5B and C. However,
this grouping is relatively arbitrary and it is possible that this apparent interaction was driven by
the slightly more severe language deficits faced by the children with NLI than those with SLI in this
sample (MSLI = �1.69; MNLI = �1.72).

2.2.2.3. Asymptotic effects?. The foregoing analyses suggest that the primary effects of language ability
were on the asymptotes of the curves. This was surprising since this component of the curve has not
been observed to vary systematically in other experiments, and has not been used as a primary depen-
dent measure in any study that we are aware of. More importantly, toward the end of the trial a num-
ber of factors (beyond language) could affect the fixation record. These factors range from averaging
artifacts introduced by variability in response latency, to the possibility of strategic looking after the
response has been planned. Thus, it is important to determine if this effect arose from sources unre-
lated to language ability.

The first factor we considered is whether the language-impaired listeners knew the words. If on
some proportion of the trials, the LI listeners did not know the correct target, their eye movements
would be expected to be scattered randomly across the four objects. Thus, differential rates of correct
responding could give rise to the differences we observed. However, the foregoing analyses excluded
any such trial, so this is not the likely source.

An additional factor that has not been addressed is the possibility that participants on the lower
end of the language scale may not have known the names of the competitor objects. To address this
we discarded any item-set for which the subject was unable to identify all four objects correctly
100% of the time. Results were unchanged.

Having ruled out accuracy as the source of the difference, we looked next at the possibility that dif-
ferences in response latency could give rise to the effects. We have discussed how averaging eye
movements across participants with different latencies could allow late effects to be driven by a
few participants. Our curve-fitting analysis deals with this potential confound by using each subject’s
mean reaction time as the endpoint of the trial. However, this averaging across trials may still mask
important effects. For example, participants may engage a strategy by which they fixate the target
prior to initiating the mouse movement, and then, while moving the mouse, return to the center to
prepare for the next trial. On any given trial, this would look like a ‘‘dip” in the time-course, but aver-
aged across trials, it would appear as lower fixations at the end of the trial. If language-impaired par-
ticipants were more likely to use this strategy, this could give rise to apparent asymptotic effects.

To cope with this, we normalized time for each subject by recoding the onset of each individual
eye-movement in terms of its percentage of the response latency. If the above strategy was present,
but masked by averaging, it should appear in this analysis. As Fig. 7A shows, this was not observed
in any of the four groups. In addition, inspection of individual participant’s data did not reveal any in-
stances of this (Fig. 7B shows the first 10 participants).

The final, and perhaps most important, factor to consider is whether the language-impaired listen-
ers are also impaired in their deployment of eye movements (though its not clear why this would be
related to language and not non-verbal IQ). We have already ruled out basic measurement issues: lan-
guage-impaired participants do not have poorer calibrations than typically developing participants.
However, they may still deploy eye movements differently—perhaps participants with lower language
skills were simply ‘‘looking around” more, distributing more eye movements to every object (and
hence fewer to the targets).

To assess this we examined eye movements before any language input was heard (otherwise, these
fixations could be motivated by language processes), during the time from the onset of the trial until
participants clicked the red circle to initiate the auditory stimulus. In this window we counted the
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number of fixations to the objects, to determine if language status was related to basic scanning pro-
cesses. Since this time was variable (it was dependent on the participants’ responses, though it did not
differ systematically as a function of language or IQ, F(2,90) = 2.1, p > .1), this factor was also included
in the regression analysis.

In the first step, the length of this scanning period accounted for 19% of the variance (F(1,91) = 22.0,
p < .0001) in number of fixations. In the second step, language and non-verbal IQ were added and did not
significantly account for any new variance (Rchange ¼ :018, Fchange(2,89) = 1.1, p > .1). On the third step, the
interaction of language and IQ accounted for no additional variance (Rchange ¼ :003, Fchange < 1).

While this rules out scene scanning differences, fixations to each object reflect both activation and
the processes that link activation to eye movements. Thus, it is possible that language-impaired listen-
ers have similar lexical activation processes to typically developing listeners, but do not link them to
the visual scene in the same way. To assess this, we conducted the same analysis, with the number of
fixations to the lexical candidates after the auditory stimulus as a DV. In this analysis, the duration of
the trial (reaction time) was entered on the first step and accounted for 23% of the variance
(Fchange(1,91) = 27.8, p < .0001). Language and non-verbal IQ were added on the second step and did
not account for new variance (Rchange ¼ :008, Fchange < 1). Finally, the interaction was not significant
(Rchange ¼ :003, Fchange < 1).

Thus, we did not see any effects of language on the number of eye movements participants make in
general (e.g. before the trial) or during language processing. However, such patterns could be driven
by other components of the eye-movement record (e.g. the duration of eye movements, the probabil-
ity of staying on an object or scanning within it), all of which are averaged to create curves like Fig. 4.
Thus, the strongest test would look at the fixations to the unrelated object, which should not be af-
fected by language ability.

We used the same curve-fitting techniques as were used for the cohort and rhyme to examine looks
to the unrelated object. Fits were good, with an average R2 of .968 (SD = .024, Min = .884, Max = .992).
As before, regression analyses examined the effects of language, cognition, and their interaction on
each of the six components. There were no effects on any of the six parameters: peak location (l) (Lan-
guage and Cognition: Rchange ¼ :038, Fchange(2,90) = 1.8, p>.1; Interaction: Rchange < :001, F < 1), peak
height, h (Language and Cognition: Rchange ¼ :016, Fchange < 1; Interaction: Rchange < :001, Fchange < 1),
onset slope, r1 (Language and Cognition: Rchange ¼ :037, Fchange(2,90) = 1.7, p > .1; Interaction:
Rchange ¼ :002, Fchange < 1), offset slope, r2 (Language and Cognition: Rchange ¼ :019, Fchange < 1; Interac-
tion: Rchange ¼ :002, Fchange < 1), or onset baseline, b1 (Language and Cognition: Rchange ¼ :005,
Fchange < 1; Interaction: Rchange ¼ :003, Fchange < 1). Offset baseline, b2, approached significance on the
first step (Rchange ¼ :052, Fchange(2,90) = 2.5, p = .088), but neither language (T(90) = 1.66, p = .1) nor
cognitive ability (T(90) = 1.17, p = .24) were significant. In addition, the interaction of language and
cognitive abilities was not significant (Rchange ¼ :001, Fchange < 1).
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Thus, across these analyses there is little evidence to support the hypothesis that the late effects on
targets and competitors can be attributed to eye-movement processes that are unrelated to the lexical
properties of the stimuli. It is still possible that language-impaired listeners differ in the way the dis-
tribution of activations across the lexicon maps onto the distribution of fixations (the ‘‘linking func-
tion” we describe later). There has been little work examining these linkages directly. While we
cannot completely rule out such a model, it seems unlikely that language-impaired listeners have
equivalent lexical activation processes to typically developing listeners, and differ only in the linking
process, given that basic oculomotor processes appear similar, and given the previously discussed evi-
dence for some sort of lexical deficit from studies using both open and closed-set responding (Dolla-
ghan, 1998; Mainela-Arnold et al., 2008; Montgomery, 1999, 2002; Stark & Montgomery, 1995).

These analyses rule out variation in accuracy, response latency, and eye-movement ability (as well
as associated averaging artifacts) as the cause of the effects we have observed. Thus this particular ef-
fect on fixations is most likely due to differences in language ability between participants. This is sup-
ported by modeling results we will present shortly which suggest that such differences can arise from
several plausible instantiations of TRACE.

2.2.2.4. Fixation patterns: summary. Language status affected the asymptotic fixations to the target, co-
hort and rhyme. There was a small difference in slope, but Fig. 5A suggests that this difference was by no
means the dominant component of the effect of language status. Adolescents with poor language skills
activated the target less and took slightly longer to get to peak activation than TD adolescents. Similarly,
effects on the cohort and rhyme competitors were also late—participants with poor language skills could
not fully suppress the competitor and had higher offset baseline activation than normal adolescents.
3. Simulations

We next set out to model these results using variants of the TRACE model (McClelland & Elman,
1986). Our goals were twofold. The first was to use TRACE to validate the pattern of data we observed.
Since the asymptotic differences we observed were unexpected, modeling could offer further support
that this pattern derives from underlying language differences.

Our second goal was more far-reaching. Activation flow in TRACE is regulated in part by a number
of free parameters which control the rate at which representations (words, phoneme and feature
units) decay, the strength of lateral inhibition in each layer, the amount of noise in the input, and
the strength of bottom-up activation flow. This provides an avenue for describing individual differ-
ences in terms of variants in processing dynamics.

Ideally, we could fit individual TRACE models to each subject’s data and examine the relationship
between specific parameter values and language and non-verbal IQ. However, TRACE has over 19 free
parameters, and there is no efficient way to search the space in a reasonable amount of time. More-
over, this would be of limited theoretical value—the empirical data do not offer sufficient constraint;
there may be multiple solutions for any subject; and we may end up fitting noise. It is also not clear if
theory would keep pace with such a model. The specific collection of parameters values that we find
may not be theoretically interpretable, so the modeling may not lead to any theoretical advance.

Nonetheless, the empirical domains we are relating (general language ability and word recogni-
tion) offer an alternative approach. General language ability is used to diagnose SLI, and there are a
number of theoretical accounts of this class of individual differences. By instantiating these accounts
in the TRACE model, we can at least rule out specific accounts of individual differences in language
use. Thus, we instantiated twelve different versions of the model corresponding to six theoretical ac-
counts of SLI. Our goal was to examine the variation in performance in each class of models to narrow
the space of possible hypotheses.

3.1. Methods

We used the jTRACE implementation of TRACE (Strauss, Harris, & Magnuson, 2007) for all of the
simulations. TRACE does not include all of the phonemes necessary for testing the entire set of items
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used here. Thus, 14 analogous sets were selected that had similar degrees of overlap and deviations
from rhymes and target (see Appendix B). A few liberties were taken in translating the limited set
of TRACE phonemes to real words.

On each simulation, the model was exposed to a target word, and activation for the target, cohort
competitor, rhyme, and an unrelated word was saved at each processing cycle. These activations are
not directly reflected in the fixation proportions to each object. Rather, fixation patterns reflect acti-
vation only after it has been filtered through a linking function which converts activation across the
lexicon to response probabilities. Allopenna and colleagues (1998) present one way of doing this by
using the Luce-choice rule to convert activation to probability, a technique that was adopted here
and in a number of prior studies (e.g. McMurray, Tanenhaus, et al., 2009; Dahan, Magnuson, Tanen-
haus, 2001). This normalizes the activation for each item by the sum of the activation for the visible
items (after transforming them using the exponential function) to yield the relative probability of fix-
ating each object at that time.

Allopenna and colleagues further scale these probabilities as a function of overall activation to allow
for the fact that participants initially make few fixations to any object. We discovered irregularities in
their scaling function that could give rise to apparent individual differences (or mask them) in TRACE.
Thus, we modified this component of the function to use a more straightforward scaling factor, and
tested several other ways of computing the scaling factors (see Appendix C, and online note 3 for details).

As a whole, the linking function we adopted has 9 parameters that control factors such as the map-
ping of TRACE frames onto time in milliseconds (a linear mapping), the scaling of probabilities over
time, and the scaling of the temperature of the Luce-choice function over time (temperature controls
how peaky the resulting distribution of probabilities is). We wanted to explore the role of differences
in activation processes in predicting fixations in this task, and our analysis of basic oculomotor prop-
erties did not suggest any obvious differences that co-varied with language abilities. While it is pos-
sible that participants differ in the way they link lexical activation to eye-movements, the evidence for
a lexical deficit in other tasks suggests there is something to explain at this level. More importantly a
deficit in this linking function has not been proposed in the literature, and our modeling attempted to
reduce the degrees of freedom by restricting our analysis intended to address existing hypotheses for
SLI. Thus, we held this function and its parameters constant across all participants. These parameters
were found by minimizing the difference between the default activations from TRACE and the average
of the non-language-impaired participants using a brute-force search of the parameter space.

This led to remarkably good fits for the average performance of the non-language-impaired partic-
ipants (Fig. 8). When the predicted fixations (to the target, cohort, rhyme and unrelated objects) were
compared to the empirical data we observed an R2 = .998, and an RMS error of .0123 (by comparison,
Allopenna and colleagues report an R2 of .95 and an RMS of .03).

To examine which variants of TRACE could best account for the variation we observed empirically,
we used the following procedure. We first identified a hypothetical cause of the variation and its
implementation in TRACE. Most hypotheses could be implemented by manipulating a single param-
eter (e.g. phoneme inhibition to manipulate categorical perception), but for others multiple were
manipulated simultaneously. We then selected a number of evenly spaced steps, both above and be-
low the default value.

The number of steps and the size were different for different parameters, reflecting their natural
scaling (see Table 4). For example, after lexical inhibition reached .05, further changes in this value
resulted in small changes in activation, so we stopped at .07. Input noise could scale safely up to .9,
but after that the model failed to settle on the correct word (and since all of the participants were well
above 95% correct, such values were not relevant). Thus, after examining the resulting pattern of acti-
vation for a model variant, more steps were added to either increase the range (if that was possible) or
to make finer-grained distinctions within the range.

After generating a reasonable range of variation in the parameter values, the output from each var-
iant of the model was transformed into fixation proportions for comparison to the empirical data. Fi-
nally, across the range of model outputs for a given dimension we identified the single parameter
value that best fit each subject, and computed the RMS difference between that model and the subject’s
data. The sum of these RMS errors, then, is the potential fit of the TRACE model if that parameter is the
underlying source of the variance.
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After using this procedure to narrow down the space of possible models, we further considered two
factors. First, we examined the qualitative pattern of the activation dynamics to verify that they
showed the right type of effects. Second, we examined the fit of the model to the average fixations
Table 4
Parameters manipulated in TRACE.

Hypothesis Parameter Default Range Steps Description Theoretical construct

Lexical Lexical-activation
rate

.05 .01–.07 13 Rate that activation
in lexicon
builds on basis of
phonemic input

Ability to activate spoken
words from phonemic
input; lexical access

Lexical inhibition .03 .005–.055 11 Strength of inhibition
between words

Competition between words;
neighborhood
dynamics

Lexical decay .05 .01–.16 16 Decay of lexical
activation over time

Ability to maintain words
in memory

Perceptual Input noise 0 0–.9 10 Noise in input Noisy or inaccurate auditory
processing

Feature spread 6 2–10 9 Spread of feature
representation
over time

Sparseness or overlap of
auditory information in
sensory memory

Feature decay .01 0–.055 12 Decay of feature
unit activation

Ability to retain
representation of acoustic
input after it has been heard

Phoneme Phoneme-activation
rate

.02 .0025–.035 12 Rate that phonemic
activation builds
in response to
feature input

Ability to activate
phonological representations
from input

Phoneme inhibition .04 .005–.1 12 Strength of inhibition
between features

The sharpness or gradiency
of phonetic categories,
categorical perception

Phoneme decay .03 .02–.1 9 Decay of phoneme
unit activation

Ability to maintain
phonological representation
in memory

Vocabulary Lexical size 100% 25–100% 4 Number of words
known

Size of lexicon

Generalized
slowing

Phoneme- and
lexical-activation
rate

.02 .005–.035 10 Rate of activation
accumulation at
all levels

Slowing
.05 .0125–.0875

Generalized
inhibition

Feature phoneme
and lexical
Inhibition

.04 .01–.07 12 Inhibition between
representations
at all levels

A general deficit in
inhibitory processes.04 .01–.07

.03 .0075–.0525
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pattern of the language-impaired participants. While this necessarily collapses across a lot of interest-
ing variation, it can help isolate only those differences that are related to functional language ability,
and since TRACE was originally intended to model group data, may be a better application. We largely
focus here on the individual results (but see online note 2.1 for a complete description of the qualita-
tive and group fits).

3.1.1. Hypotheses tested
Given the vast parameter space of TRACE, our goal was to determine limited number of parameters

to consider based on the existing literature. We thus examined 12 different variants of TRACE, corre-
sponding to six theoretical accounts of language impairment. They will each be described here before
we describe the results.

3.1.1.1. Lexical processes. Our first fits examined processes that control lexical activation. These were
intended to ask if TRACE could show asymptotic behavior at all, since lexical processes seemed most
proximal to the behavior in question. Three models were considered. The first modeled variation in
language ability as variation in the rate that words accumulate activation, under the assumption that
if words accumulated activation more slowly this could account for the slope effects on the target as
well as the reduction in activation overall. This was partially successful and motivated us to examine
two other lexical processes: the degree to which words inhibit each other; and the rate that lexical
activation decays.

3.1.1.2. Perceptual processes. Our second set of hypotheses examined perceptual processes. Work on
SLI suggests that low-level auditory deficits may be a source of the impairment (Tallal & Piercy,
1974) and numerous studies have assessed this (Bishop et al., 2005; Rosen, 2003; Stark & Heinz,
1996; Tallal & Piercy, 1974; Tallal et al., 1996). Sensory encoding in TRACE can be affected by a number
of parameters that control the behavior of the feature units.

The simplest manipulation is to add noise to the input, something which was implemented in a
later version of TRACE (McClelland, 1991). A second manipulation is the temporal spread of the input.
Normally in TRACE, the feature inputs gradually ramp up to their maximum value over some number
of cycles and then ramp down to zero. The feature-spread parameter controls the timing of this. If it is
shorter than the default, the model is forced to rely on its maintenance of activation at feature and
phoneme levels, since there will be many frames for which there is no input. If it is higher than the
default, features from different points in time will overlap, creating problems in maintaining the
sequential nature of the inputs. The final perceptual parameter we manipulated was feature-decay.
This controls the rate at which activation values for features decay and is analogous to sensory mem-
ory of some kind.

3.1.1.3. Phonological processes. A related hypothesis is that language impairment arises from a deficit
in perceiving and/or retaining phonological input. First, deficits in phonological perception have been
suggested by studies showing abnormal categorical perception in children with SLI (Joanisse & Seiden-
berg, 1998; Sussman, 1993; Thibodeau & Sussman, 1979), although later work has failed to find these
differences (Coady, Evans, Mainela-Arnold, & Kluender, 2007; Coady, Kluender, & Evans, 2005). Cate-
gorical perception in TRACE is produced by inhibition between phonemic representations (McClelland
& Elman, 1986; McMurray, Aslin, & Toscano, 2009). Thus, reducing the inhibition can directly test of
this hypothesis.

Second, a number of studies have shown that children with SLI have poor phonological working
memory (see for instance, Bishop, 2006; Conti-Ramsden & Hesketh, 2003; Gathercole & Baddeley,
1990). While TRACE has no explicit phonological working memory, we hypothesized that any such
store would be based on the activation at the phoneme layer. Thus, we can simulate a deficit in pho-
nological working memory by varying the decay parameter at the phoneme level, thus varying the
model’s ability to retain a phonemic code of the input.

Across this work, there has been discussion that phonological representations are simply ‘‘less
robust” or more fragile in language-impaired individuals. While it is unclear exactly what this means,
a simple way to model it would be to reduce the rate that activation at the phoneme level builds, by
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reducing the FP-ACT parameter. This would result in slower activation growth and less stable repre-
sentations (e.g. more susceptible to noise, feedback effects, or inhibition).

Decreasing this parameter also tests a second hypothesis. A number of studies model phonological
categories with a Gaussian distribution of cue-values (e.g. McMurray, Aslin, et al., 2009; Vallabha,
McClelland, Pons, Werker, & Amano, 2007). If SLI listeners had noisier representations, this would
be modeled as the phonemes having wider distributions (e.g. the variance). At the prototypical value
of the cue (the only relevant value, since the stimuli here are unambiguous) this would reduce the
likelihood of the category. Thus, decreasing the rate of phoneme activation (which decreases the func-
tional connection strength between the prototype feature value and the phoneme) allows a rough
approximation of the effects of noisy phonological categories (at least at prototype values).

3.1.1.4. Vocabulary size. Children with language impairment have difficulty learning words and will
thus have poorer vocabularies (McGregor, Friedman, et al., 2002; McGregor, Newman, et al., 2002;
Tomblin & Zhang, 1999). They may simply know fewer words than normal children, and this in turn
may account for differential phonological or lexical processing abilities (e.g. Beckman, Munson, &
Edwards, 2007). We asked if this could give rise to our empirical effects by creating new lexica for
TRACE. The default lexicon included 264 words (including the 56 words needed for testing). We con-
structed new lexica by randomly cutting 25%, 50% or 75% of these words prior to testing. Each run of
the model had its own unique lexicon, and none of the test words were eliminated.

3.1.1.5. Generalized slowing. Kail and colleagues (Kail, 1994; Miller, Kail, Leonard, & Tomblin, 2001)
have proposed that listeners with SLI are slower processors in a range of linguistic and non-linguistic do-
mains. While the generalized slowing hypothesis does not offer a particular mechanism, it can be imple-
mented in TRACE via activation rate. At all levels of TRACE, activation accumulates at a rate determined
by the phoneme- and lexical-activation rate parameters. While generalized slowing would clearly have
effects outside of word recognition, by simultaneously reducing these parameters we can slow the
growth of activation in the model. Since each has different default values, this was implemented by set-
ting each to a percentage of their defaults, ranging from 25% to 175% of their default values.

3.1.1.6. Generalized inhibition. Finally, there are suggestions in the literature that a deficit in inhibitory
processes may be relevant to individual differences in language use, though generally at higher levels
of processing (Gernsbacher & Faust, 1991; Mainela-Arnold et al., 2008; Norbury, 2005). Thus, we also
examined the possibility that broad-based deficits in inhibition of some kind were responsible. To do
this we started at the default values for feature, phoneme and lexical inhibition, and varied each as a
percentage of the default, ranging from 25% to 175% to simulate a model in which inhibition as a
whole was reduced or increased.

3.2. Results

Fig. 9A shows the average RMS for each of the models fit to individual participants. Table 5 shows
the same data numerically along with the group fits to the language impaired data.

Given the individual data, three models emerged as candidates for describing the individual differ-
ences observed here. Lexical decay was the best fit, with an average RMS of .0405. The actual decay
value that was optimal for each subject was significantly correlated with the language scores of these
children (R = �.273, p = .01), but not with non-verbal intelligence (R = �.193, p = .072). Participants at
the lower end of the language scale showed faster decay of lexical activation (M = .071) than typically
developing participants (M = .047; default = .05).

The rate that phonemes accumulated activation was a close second with an RMS of .0406. Partic-
ipants with lower language scores were best fit by this lower values of this parameter (R = .209,
p = .0504), though this was a significantly smaller effect than what was observed for lexical decay
(T(90) = 2.0, p = .048, by Cohen & Cohen’s (1983) method).

Generalized slowing was also a good fit, with an RMS of .0412. Participants with poor language
were best fit by models with slower rates of activation (R = .227, p = .033). This was smaller, but not
significantly different than the correlation with decay (T(90) = 1.35, p = .18). It was not surprising
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Fig. 9. A summary of the results of the simulations. Shown is RMS error (smaller error means better fits) for each simulation
when fit to individual participants (A) or the mean of the language-impaired group (B). See Table 5 for numerical values.
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the generalized slowing performed similarly to lexical-activation rate, since this parameter was in-
cluded in the slowing manipulation.

The next best fit was phoneme-activation rate, FP-ACT (RMS = .0448, the other half of generalized
slowing), followed by input noise (RMS = .0485), and feature decay (RMS = .0497). Beyond that, the
remaining parameters did not offer good fits.
Table 5
Summary of model fits.

Hypothesis RMS (individual) RMS (group) Correlation w/ language Li models were

Default (N) – .012 –
Default (Li) – .045 –

Lexical
Lexical activation .0405 .030 .21+ Decreased
Lexical inhibition .0563 .022 .24* Decreased
Lexical decay .0406 .015 �.27** Increased

Perceptual
Input noise .0485 .021 �.22* Increased
Feature spread .0640 .025 .28** Extremes
Feature decay .0497 .023 �.25* Increased

Phonological
Phoneme inhibition .0633 .032 �.13 No change
Phoneme decay .0561 .017 �.18+ Increased
Phoneme activation .0448 .030 .19+ Decreased

Global
Lexicon size .0695 .045 .01 No change
Generalized slowing .0412 .027 .23* Slower
Generalized inhibition .0605 .029 .29* Increased

+ p < .1.
* p < .05.

** p < .01.
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To distinguish these best fitting parameters, we started by examining each qualitatively. Fig. 10
shows results from the top three model variants: lexical decay, lexical-activation rate and generalized
slowing (for raw activations, see online note 2.2). Panels A through C show the effects of lexical decay
on the predicted fixations to the target, cohort, and rhyme. All three show a close match to the group
data depicted in Fig. 5. At higher levels of decay, the target shows a decreased asymptote, and the co-
hort and rhyme show increased fixations. Panels D–G show the target and cohort for the lexical acti-
vation and generalized slowing models (the results for the rhyme are similar to the cohort – see online
note 2.1). Both show decreased asymptotic fixations to the target, and an increased asymptote for the
cohort. Thus, they also capture our dominant effects. However, they also show a delay in the target
fixations and a reduction in peak fixations to the competitors, neither of which was observed in the
group data.

In fact, if we compare the fits of each of these three hypothesis to the group data, the lexical decay
performs extremely well with an RMS of .0153, while lexical-activation rate and slowing perform
much poorer (Lexical Activation: RMS = .024; Slowing: RMS = .026). In fact, in the group fits
(Fig. 9B), decay was still the top ranked parameter, while lexical-activation rate moved down to
6th, and generalized slowing to 8th.
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Fig. 10. Results from the top three fitting models. Note the default value of each parameter is shown in the heavy lines; dashed
lines show lower values; and thin solid lines show values higher than the default. The top row shows results from variation in
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28 B. McMurray et al. / Cognitive Psychology 60 (2010) 1–39
So what accounts for this disparity? The reason for the good fits individually was simply that most
of the parameters tested did not affect asymptotic behavior at all (see online note 2.1). Of those that
did, some could only model a restricted range: lexical inhibition, for example, could get the target
looks down to 0.5, but increasing it further had little effect. Thus, there was substantial range in the
asymptotes in the empirical data, which lexical-activation rate and generalized slowing could capture
(though at the cost of missing the timing).

Moreover, while for most participants, low rates of fixation to the target meant more looks to the
cohort and rhyme, a handful of participants showed low rates of target looking with fewer looks to the
cohort and rhyme. Lexical activation and generalized slowing both exhibited this effect at the ex-
tremes (decay did not), allowing them to model these participants well. In fact, when these six partic-
ipants were excluded, the RMS of lexical decay (for individuals) dropped substantially (.0386) while
the other two were unchanged (Lexical-Activation Rate: .0404; Slowing: .0406), suggesting that it
was the failure of decay to account for these participants that resulted in nearly equal performance
in the individual fits. This may have been due to strategic looking (these participants did not make
many eye movements).

Finally, some participants varied in the cross-over points of the target curves (SD = 69 ms;
Range = 477–910 ms), though this was not correlated with language status. General slowing and pho-
neme activation were picking up on this and modeling it successfully (which explains the weaker cor-
relations with language ability), suggesting that these may be important differences in this aspect of
word recognition (though differences that may not bear directly on functional language abilities).

Thus, there may be meaningful variation in activation rate, but variation in lexical decay is a much
better descriptor of the individual differences in word recognition that are related to functional lan-
guage ability as a whole. As Table 5 shows, no parameter other than decay fit the data well at both
the level of individuals and groups.

This makes a strong case for a deficit in lexical decay, but in the spirit of hypothesis testing, a hand-
ful of failures were notable. Lexical size was the worst fit in both individual (RMS = .0695) and group
(RMS = .0453) analyses. This was because variation in lexical size did not affect the time-course of lex-
ical activation (Fig. 11A). Similarly, phoneme inhibition performed poorly in both individual
(RMS = .0633, Rank = 10) and group (RMS = .0316; Rank = 11) analyses. While it did show asymptotic
differences (Fig. 11B), this was only at very extreme values, and the range was not big enough to ac-
count for either group or individual differences.

Lexical inhibition was promising in qualitative analyses as it showed the observed effects (Fig. 11C
and D), and good group level fits: RMS = .0221, Rank = 4). However, it reached ceiling near the default
value (and could not show higher than average fixations). Even when inhibition was almost elimi-
nated, target fixations could not get low enough to model all the subjects. As a result, it did not cover
much of the range of the empirical data and showed poor fits individually.

Finally, as a whole, perceptual level parameters did not do a good job. Feature spread had little
effect on activation, and mostly delayed it (Fig. 11E), and feature decay (Fig. 11F) caused a decrease
in the target fixations at the end. Thus, parameters relating to the temporal organization of the input
did not capture the empirical pattern of variance. Input noise, was perhaps the best of the perceptual
parameters. It did affect asymptotic looks to the target (Fig. 11G). However, similar to lexical
inhibition, it could not model individuals with greater than average target fixations – perhaps a
default of 0 is inappropriate for this parameter. More importantly, increasing noise reduced the early
activation for the cohort and made the peak later (Fig. 11F)—in some ways, the cohort was behaving
like a rhyme.

Thus, it appears that lexical parameters, in particular lexical decay, offer the best fit to the pattern
of individual differences observed here. However, there are two remaining issues that must be clari-
fied related to our linking function.

First, it is unclear if the asymptotic performance of the lexical decay model could arise from the
linking function, rather than the underlying activation. While our modifications of the linking hypoth-
esis (Appendix C; online note 3) were intended to preserve transparency between activation and fix-
ations, it is nonetheless possible that the linking function imposes this pattern of results (though as
discussed in online note 3.3, all variants of the linking function show the same support for lexical
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Fig. 11. Representative results from simulations that failed to fit the data. (A) Vocabulary size had almost no discernable effect
on lexical activation. (B) Phoneme inhibition could only create a small range of values. (C and D) Lexical inhibition created the
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decay). If so, this would suggest that the mapping between activation and fixations, not differences in
activation, are the fundamental individual difference here.

Fig. 12 suggests that this is not the case. It shows the raw activations as a function of time for the
lexical decay model. These preserve the qualitative pattern seen in the fixations (and the modeling)—
increasing decay leads to lower asymptotes for the target, higher asymptotes for the cohort and rel-
atively little effect early. Online note 2.2 discusses raw activations for all of the parameters exam-
ined—none show a similar pattern to decay.

Second, for the language-impaired participants there was a disparity between the excellent mouse-
clicking performance, and the significantly reduced lexical activation indicated by the eye movements.
This too can be handled by our modeling framework, with the simple assumption that the transformation
of activation to mouse-click probabilities uses a higher temperature coefficient (e.g. how ‘‘winner-take-
all” it is), than the same transformation from activation to fixation probabilities (see online note 3.2).

Thus, the modeling supports variation in lexical processes (as opposed to perceptual or phonolog-
ical) as the source of the deficits observed here, and most likely, variation in lexical decay. Four points
are worthy of further consideration. First, we have tested only twelve possibilities, most of them using
single parameters. Multiple parameter fits may better account for this behavior. However, we have
pushed the modeling as far as available theories will permit – without clearer theoretical direction,
further searches would easily turn into a fishing expedition.
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Second, we assume the specific dynamics of TRACE. However, it is important to point out that most
of the available models incorporating temporal dynamics at this scale rely on similar interactive acti-
vation dynamics (Merge: Norris et al., 2000; Shortlist: Norris, 1994; and Parsyn: Luce et al., 2000;
though see Magnuson, McMurray, et al., 2003), and TRACE has modeled a large range of phenomena
in word recognition and speech perception. It is not clear that there is an alternative more widely
applicable in its scope.

Third, our results are conditioned in part on our linking hypothesis. As we discuss in Appendix C, we
have made several improvements over the original Allopenna and colleagues (1998) framework, and
tried several variants with similar results (online note 3.3). We have also seen similar results in raw acti-
vation. Thus, it seems unlikely that our fits are an artifact of these assumptions. Nonetheless, a better
understanding of how lexical activation maps onto visual-motor behavior could improve this
undertaking.

Finally, we have only used a single behavioral paradigm as the criteria for model fitting. Given the ro-
bust findings here, and the clear results from the simulations, this is not a terribly limiting factor. However,
the VWP offers an array of tasks that have been mapped onto some of the same processing constructs, for
example categorical perception (McMurray, Aslin, et al., 2008; McMurray, Clayards, et al., 2008; McMur-
ray et al., 2002), frequency effects (Dahan, Magnuson, Tanenhaus, et al., 2001), competition effects (Dahan,
Magnuson, Tanenhaus, 2001), cohort and neighborhood density (Magnuson, McMurray, et al., 2003; Mag-
nuson, Tanenhaus, et al., 2003; Magnuson et al., 2007) and lexical ambiguity resolution (McMurray,
Tanenhaus, et al., 2009). Future work of this kind could provide additional constraint.

4. General discussion

The behavioral data presented here suggest that variation in overall language ability can be asso-
ciated with very specific changes in word recognition. These effects can be clearly dissociated from
non-verbal intelligence measures. The standardized language measures we used in this study to char-
acterize individual differences are broad and constructed from many language skills. Indeed, at the
outset of this study, it was possible that variation in such a broad measure of language may have re-
sulted in a variety of changes in the fixation patterns across participants. Among those that performed
poorly in overall language, some participants could have been slower, others could have shown less
peak activation, and others a delay in recognition. While there was undoubtedly variation of this type
embedded in our dataset, systematicities also emerged. Listeners with poor language do not fully acti-
vate the target word and show increased activation for cohort and rhyme competitors.

The largest effects of language ability were late in the time-course. While it is possible that these
effects reflect eye-movement or attention processes, this appears to not be the case for three reasons.
First, it is not clear why this should be related to language and not non-verbal IQ. Second, analyses of
the number of fixations and the looks to the unrelated object did not support any simple version of
this hypothesis. Finally, we were able to model this behavior using variants of TRACE, in which only
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the dynamics of lexical activation were manipulated (not attention or oculomotor control). Even the
simplest model of individual differences (the addition of noise) can yield late effects (though it was not
the best fit). Such late effects are also supported by a number of studies that converge on the idea that
significant processing occurs after sufficient acoustic material has arrived to unambiguously identify a
target (Dahan & Gaskell, 2007; Luce & Cluff, 1998; McLennan and Luce, 2005). Thus, it seems reason-
able that individual differences might appear late in word recognition.

This also fits with the emerging picture in work on language impairment. Gating studies have
shown that language-impaired children require additional gates after the uniqueness point to recog-
nize a word (Dollaghan, 1998) or exhibit increased vacillation after the uniqueness point (Mainela-Ar-
nold et al., 2008). Most importantly, Edwards and Lahey (1996; see also Lahey et al., 2001) found that
while children with SLI were slower to respond in lexical decision tasks, their speed was not correlated
with the severity of the impairment. This is easier to account for if language ability affects the overall
amount of activation, not the timing.

Simulations examined the underpinning of these behavioral effects by testing 12 variants of the
TRACE model corresponding to major theoretical approaches to language impairment. We found no
support for different vocabulary sizes, and scattered support for a perceptual or phonological deficit.
At the perceptual level, only input noise came close, showing similar qualitative changes as the behav-
ioral data, a moderate group-wise fit, but poor individual subject fits. Adding noise to the input, how-
ever, is a far cry from the very specific auditory deficits that have been posited by the perceptual
deficit hypothesis for language impairment. At the phonological level, we can safely rule out phoneme
inhibition or categorical perception deficits, as well as explanations based on less robust phonological
representations in general.

The fact that phoneme inhibition created very little variation in lexical processes raises an impor-
tant issue. Phoneme inhibition was implemented in TRACE to force sublexical representations to ar-
rive at a discrete representation of the input, categorical perception. However, it is now clear that
categorical perception may be an artifact of the task (Carney, Widin, & Viemeister, 1977; Gerrits &
Schouten, 2004; McMurray, Aslin, et al., 2008; Schouten, Gerrits, & Van Hessen, 2003) and recent work
suggests that it may prevent TRACE from modeling certain ambiguity resolution effects (McMurray,
Aslin, et al., 2009). The present work suggests that eliminating or reducing inhibition does not have
consequences in this simple task, and may not be necessary to account for individual differences re-
lated to overall language ability.

The rate that activation accumulated for words specifically, or in general, offered reasonable fits to
individual participants. However, such variation did not capture the group effects, and may have been
capitalizing on differences in word recognition (or oculomotor control) that do not ultimately affect
overall language ability.

Lexical decay offered the best fit to the data. Activation for the target decayed faster in adolescents
with language impairment. Decay plays an important role in the flexibility of the model (allowing it to
move onto a new word when appropriate, and making it more susceptible to inhibition or new bot-
tom-up input. By increasing the decay rate, the target becomes less stable, in effect decreasing its
inhibitory power over the competitors. As a result, cohorts and rhymes have the opportunity to be-
come more active (given bottom-up support). Thus, decay may be functionally intertwined with
inhibition.

So what does this tell us about individual differences? First, the fact that lexical decay seemed to be
the best fit to the data was surprising. A number of studies have examined other processes embed-
ded in TRACE and related models; processes like inhibition (Dahan, Magnuson, Tanenhaus, et al.,
2001; Frauenfelder et al., 2001), feedback (McClelland et al., 2006; Norris et al., 2000, for competing
reviews), and the process of building activation on the basis of bottom-up input (Marslen-Wilson,
1987 for a review). However, few studies have examined decay as a component of word recognition.
Given its potential importance in language processing as a whole, this seems fertile ground for new
research.

Moreover, computational models of developmental dyslexia (e.g. Harm, McCandliss, & Seiden-
berg, 2003; Harm & Seidenberg, 1999) have also implicated decay as a source of individual differ-
ences. In these models decay was manipulated at the phonological (not lexical) level, a subtle
difference from the present work. However, as distributed models, they did not have an explicit
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lexical level, so this seems more an architectural, rather than theoretical difference. Nonetheless
the parallels are striking, particularly given similarities between dyslexia and SLI (e.g. Bishop &
Snowling, 2004).

Second, while this initial foray into individual differences implicates decay as an important dimen-
sion of variability, it does not rule out variation in other processes. More specific paradigms, like those
mentioned above, may be needed to determine if other dimensions such as activation rate or inhibi-
tion vary as well. More importantly, however, variation in these dimensions did seem to be related to
overall language ability to the same degree as decay, suggesting that higher level processes may be
robust against these other forms of variation.

It was surprising that variability in overall language ability was not captured by perceptual or pho-
nological factors. There undoubtedly is variation in these processes, but this study suggests that it is
unrelated to overall language measures. This is reminiscent of the overall failure to find robust corre-
lations between basic auditory abilities and language measures (e.g. Surprenant & Watson, 2001; Van
Rooij & Plomp, 1990, 1992), and is clearly illustrated by children with Cochlear Implants, many of
whom attain normal or near-normal language skills despite severely degraded input (Spencer, Barker,
& Tomblin, 2003; Tomblin, Peng, Spencer, & Lu, 2008). Thus, the word recognition system must be
fairly robust and capable of dealing with wide variation in perceptual ability either in real-time or
developmental time.

Despite this robustness, however, there are important individual differences in lexical activation
processes that are correlated with overall language. Decay seems the most plausible locus of such dif-
ferences. Higher levels of lexical decay prevent the correct word from being fully active, and allow
competitors to become more active than they should be. The result is that if we consider the array
of activations output by word recognition as analogous to a vector of probabilities, individual differ-
ences in word recognition appear as variation in the entropy of the system. In skilled language the lex-
ical activation vector is a low-entropy representation in which only a single word or a small number of
words are highly active. Less-skilled users show greater entropy with more words active simulta-
neously, even at the end of processing.

In this analysis, the entropy of the lexical representation can easily be related to overall language
ability. Current theories suggest that parsing and sentence comprehension are based on lexical (not
syntactic) representations (Altmann & Kamide, 1999; MacDonald, Pearlmutter, & Seidenberg, 1994;
MacRae, Spivey, & Tanenhaus, 1998; Tanenhaus & Trueswell, 1995; Trueswell, 1996). Moreover, syn-
tactic and semantic processing do not wait for word recognition to finish before accessing potential
interpretations (Dahan & Tanenhaus, 2004; Yee & Sedivy, 2006). As a result variation in how well
the system settles on a single candidate will directly affect syntactic and semantic processes involved
in sentence comprehension.

This cascade could also have consequences at lower levels of representation. There is evidence that
continuous acoustic information survives perceptual processing to yield systematic effects on word
recognition (Andruski, Blumstein, & Burton, 1994; McMurray, Aslin, et al., 2008b; McMurray et al.,
2002); and evidence that lexical processes interact in real-time with perceptual processes (Magnuson,
McMurray, et al., 2003; for a review, see McClelland et al., 2006; for an alternative, Norris et al., 2000).
Lexical representations may even participate in the retention and organization of fine-grained detail
(McMurray, Aslin, et al., 2008, 2009). Thus, low-level perceptual processes are not solely responsible
for what we would consider speech perception, and a deficit in word recognition could easily create
deficits in speech perception tasks.

5. Conclusions

Individual differences in spoken word recognition appear late in processing in the form of reduced
activation for the target and increased activation for competitors. Such differences arise from differ-
ences in lexical processing and are robustly related to global language ability. These can be modeled
by differences in the specific parameters that control activation flow in dynamic connectionist models
like TRACE, and our work suggests lexical decay as a primary variable. Such differences seem to take
the form of lower- or higher-entropy lexical representations—the degree to which word recognition
can fully settle on a single interpretation.



B. McMurray et al. / Cognitive Psychology 60 (2010) 1–39 33
Spoken word recognition is unparalleled in the consensus that has been built for basic processing
mechanisms like immediacy, parallelism, competition and gradiency. These mechanisms only set the
framework for what appears to be a complex set of individual differences that have ramifications
throughout language processing.
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Appendix A. Items used in the experiment
Target
 Cohort
 Rhyme
 Unrelated
 Source
Dragon
 Dracula
 Wagon
 Checkers
 New

Turtle
 Turkey
 Hurdle
 Cannon
 New

Batter
 Banjo
 Platter
 Monkey
 New

Tower
 Towel
 Shower
 Penguin
 New

Funnel
 Fungus
 Tunnel
 Window
 New

Lizard
 Liver
 Wizard
 Bottle
 New

Hockey
 Hotdog
 Jockey
 Blanket
 New

Mustard
 Mustache
 Custard
 Pencil
 New

Mountain
 Mousetrap
 Fountain
 Shutter
 New

Beaver
 Beehive
 Cleaver
 Soccer
 New

Powder
 Power
 Chowder
 Camel
 New

Table
 Tailor
 Cable
 Muffin
 New

Beaker
 Beetle
 Speaker
 Hammer
 Allopenna et al.

Carrot
 Carriage
 Parrot
 Building
 Allopenna et al.

Candle
 Candy
 Handle
 Button
 Allopenna et al.

Pickle
 Picture
 Nickel
 Robin
 Allopenna et al.

Casket
 Castle
 Basket
 Rocket
 Allopenna et al.

Paddle
 Padlock
 Saddle
 Waiter
 Allopenna et al.

Dollar
 Dolphin
 Collar
 Hamster
 Allopenna et al.

Sandal
 Sandwich
 Candle
 Necklace
 Allopenna et al.

Road
 Roll
 Toad
 Cake
 New

Rose
 Rope
 Hose
 Band
 New

Coat
 Comb
 Goat
 Badge
 New

Bees
 Beach
 Peas
 Cap
 New

Rake
 Rain
 Lake
 Toe
 New

Plate
 Plane
 Gate
 Dress
 New

Lamb
 Lamp
 Ram
 Bike
 New

Snail
 Snake
 Tail
 Web
 New

Mouse
 Mouth
 House
 Chain
 New

Horn
 Horse
 Corn
 Box
 New

Ghost
 Goal
 Toast
 Bag
 New

Bell
 Bed
 Well
 Can
 New

Chips
 Chin
 Lips
 Boat
 New

Pier
 Peach
 Deer
 Ring
 New

Clown
 Cloud
 Gown
 Pipe
 New
(continued on next page)
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Appendix A (continued)
Target
 Cohort
 Rhyme
 Unrelated
 Source
Bowl
 Bone
 Pole
 Nest
 New

Pen
 Peg
 Hen
 Jam
 New

Fish
 Fin
 Dish
 Belt
 New

Cat
 Cab
 Bat
 Net
 New

Bug
 Bus
 Rug
 Cane
 New

Bale
 Bait
 Pail
 Nose
 New
Appendix B. Items used in the TRACE simulations

Target Cohort Rhyme Unrelated
Beaker (bik^r)
 Beatle (bit^l)
 Speaker (spik^r)
 Target (targ^t)

Rake (raik)
 race (rais)
 Lake (laik)
 Dust (d^st)

Pier (pir)
 Peach (pitS)
 Beer (bir)
 Shock (Sak)

Bees (bis)
 Beach (bitS)
 Peas (pis)
 Cap (kap)

Bug (b^g)
 Bus (b^s)
 Dug (d^g)
 Cash (kaS)

Turkey (t^rki)
 Turtle (t^rt^l)
 Perky (p^rki)
 Racket (rak^t)

Table (tab^l)
 Tailor (tal^r)
 Cable (kab^l)
 Police (p^lis)

Pickle (pik^l)
 Picture (piktur)
 Tickle (tik^l)
 Secret (sikr^t)

Chips (tSips)
 Chick (tSik)
 Ships (Sips)
 Lock (lak)

Subtle (s^t^l)
 Succeed (s^ksid)
 Shuttle (S^t^l)
 Product (prad^kt)

Guard (gard)
 Got (gat)
 Card (kard)
 Leap (lip)

Dart (dart)
 Dark (dark)
 Tart (tart)
 Greet (grit)

Legal (lig^l)
 Least (list)
 Regal (rig^l)
 Pocket (pak^t)

Crash (kraS)
 Creep (krip)
 Trash (traS)
 Plus (pl^s)
Appendix C. Implementation of the Luce-choice linking hypothesis

The output of TRACE is a set of lexical activations across the entire 256 word lexicon. However, our
eye-tracking measure yields a probability of fixating a small set of four objects at any given time. This
measure clearly taps underlying lexical activation, including the activation for non-displayed compet-
itors (Allopenna et al., 1998; Dahan, Magnuson, Tanenhaus, et al., 2001; McMurray, Aslin, et al., 2009).
However, it is not a direct measurement of activation as the pattern of fixations will be affected by
oculomotor dynamics, and most importantly by the particular set of objects (and their activations).

Allopenna and colleagues (1998) first described a simple linking function to map activations from
models like TRACE to the probability of fixating each of the four items on the screen on any given trial
(at any given time).

In this procedure, the probability of fixating any given object is given by
P ðfixating objectiÞ ¼
es�ai

P4
j¼1es�aj

ð3Þ
Here, ai refers to the activation of wordi, and s is a temperature parameter (which will be discussed
shortly). This equation divides the activation (transformed through the exponential function) by the
sum of the activations of the four objects on the screen to yield a probability.

The temperature parameter controls how veridical this normalization is. At high values, the word
with the maximal activation tends to assume all of the resulting probability (e.g. its probability is near
one and the others are very low). At low values, words are more equal. Allopenna and colleagues dis-
cuss the advantages of using a temperature that gradually increases over the course of the trial, and
suggest the logistic function for this purpose. This dynamic temperature parameter simulates a system
that undergoes gradual pressure to settle on a single candidate. Our fits of the linking function found
optimal performance if temperature had a baseline of 2, a peak of 4.5, a cross-over of 1000 ms and a
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slope of .004. However, the findings reported here are not dependent on this instantiation of temper-
ature. These simulations were replicated using a fixed s and resulted in the same qualitative behavior
of the model.

Finally, the Luce-choice rule given in (3) is a normalized probability. As a result, the total fixations at
any given time can never be 0 (which is commonly seen in the eye-movement record at the beginning of
the trial when participants are not fixating any of the objects). Allopenna and colleagues (1998) handle
this by scaling the probabilities as a function of the maximum activation of any word over the whole
time-course. This seemed an unsatisfactory way to achieve this scaling. This procedure assumes that
the oculomotor dynamics at early points in time are somehow sensitive to activation at later points in
time—that is, the scaling factor at time 1 will be a function of the activation at time 1 divided by the max-
imum activation (that likely occurred later). This seemed implausible. Moreover, an inadvertent result of
their function is that if a manipulation of the model affected the maximum activation, it could change the
pattern of predicted fixations at early time points. This created challenges in interpreting the resulting
functions, as a difference late in time could cancel out (or enhance) results earlier in processing.

Allopenna and colleagues, of course, were not concerned with individual differences, and so this
issue never arose. However, for our purposes it was crucial to have a linking function that mapped
activation onto fixation probabilities as transparently and monotonically as possible. Thus, we
adopted a simpler process to achieve this goal. We computed the maximum activation (across the four
visible objects) at each point in time and passed it through a simple threshold – if the activation is
high, then the scaling factor was high, if it was low, the scaling factor would be low. We tried several
logistic functions and ultimately settled on the generalized logistic function (or Richard’s curve) which
is similar to the logistic function previously defined, but adds a skew parameter so that the function
can be steeper at the bottom or top.
SCALING ¼ p� b

1þw � expð�s � ðc � actmaxÞÞ
1
w
þ b ð4Þ
Here, actmax is the maximum activation at the current time point; p and b are the peak and baseline
as before; c is the cross-over point; and w is the skew. We held the baseline and peak constant at 0 and
1 in order to minimize the degrees of freedom and to ensure that activation differences in TRACE could
use the full range of possible fixation probabilities. A brute-force search found optimal fits with a slope
of 4 and a skew of .0001 (steeper slopes before the cross-over than after). Importantly the cross-over
was at .25, meaning that if the maximum activation at that point in time was below .25, the model
generates few eye movements; once activation crosses .25 we see more. This is simple and does
not rely on anything outside of the current point in time. As Supplementary material 2.2 shows, it also
faithfully preserves the pattern of activation in the pattern of predicted fixations.

We also ran the simulations using the traditional scaling function; two logistics without the skew
parameter; and with a function derived from the overall number of fixations made by individual par-
ticipants. All showed similar results. However, the generalized logistic showed better model fits, more
clearly reflected underlying activation differences, and seemed more theoretically plausible than prior
approaches to this. While it does add an additional three free parameters, it is important to note that
these were not varied between individuals, and so could not give rise to the effects we observed in the
simulations.

Finally, in order to compute the RMS error we had to map processing cycles in TRACE onto time in
milliseconds. This was done with the following linear mapping:
Time ¼ 16 � f þ 75 ð5Þ
In which f represents the processing cycle number.
To sum up, first activations are computed into fixation probabilities using the equation given in (3),

where T is defined by a logistic function. Then these probabilities are then multiplied by the scaling
factor in (4) and time is rescaled according to (5). This yields a set of predicted fixation proportions
that are directly comparable to the eye-movement record.

This introduces nine parameters (the four parameters of the logistic describing T, two parameters
mapping processing cycles onto time, and three parameters for the scaling factor) which were esti-
mated from the group data and held constant across all of the simulations. Importantly, we have only
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added 3 to the Allopenna and colleagues procedure, and for good reasons. Nonetheless, it is important
to note that the overall patterns seen here (e.g. changes in peak activation or rise time of the target)
can all be seen in the patterns of raw activation – these free parameters only affect the quality of the fit
to the eye movements.

Appendix D. Supplementary material

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/
j.cogpsych.2009.06.003.
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