The Role of Cue Enhancement and Frequency Fine-tuning in Hearing Impaired Phone Recognition

Ali Abavisani May 14, 2019

Outline

- Problem statement and motivation
- Background studies related to current research
- Proposed experiments to investigate the problem
- Preliminary results

Problem Statement and Motivation

- Hearing impairment profile in the US [Worlds Health Org.]
 - ➤ 38 million (12.2%) Americans have significant hearing loss
 - ➤ 3 out of 1000 (0.3%) of new born babies in the US are born with hearing loss
 - ➤ 1 out of 3 people over the age 65 are living with hearing loss in the US
- Hearing Aids (HA)
 - ➤ Compensate for hearing loss based on pure-tone thresholds (PTT)
 - ✓ Makes speech signal audible
- Persistency of problem for HI listeners
 - ➤ Users of hearing aids have difficulty in speech recognition specially at noisy environments where the background noise is similar to speech
 - ➤ This can be related to the focus on audibility of speech through applying frequency dependent amplification, as opposed to a speech-based test

Problem Statement and Motivation

- NH speech perception
 - > Speech cues can be determined by LP/HP filtering, time truncation
 - > We can assign a perceptual measure as noise threshold level to each token by testing them at various SNRs
 - ➤ NH listeners respond to cue enhancement in the presence of noise
- HI speech perception
 - > HI confusion patterns are similar to NH
 - > PTT-based audibility amplification is not always helpful
 - ✓ more complex approach is needed
 - ➤ Noise threshold plays an important role in HI phone recognition

Noise Source Signal Processing (Hearing Aid)

Motivation

- ➤ Assist HA amplification strategy
 - ✓ Identify problematic consonants
 - ✓ Investigate correct strategy for speech enhancement
- ➤ Identify the appropriate amplification amount for target phones

HI Speech Perception background

- Hearing impairment
 - ➤ Hearing Loss (HL) above 20 [dB] in 0.25-8 [kHz]
 - ➤ Ears can have mild (< 40 dB), moderate (< 70 dB), severe (< 90 dB), and profound HL (above 90 dB)
- Speech tests for HI
 - ➤ Around 58% of words in spoken English consists of consonants [Mines et. al. 1978]
 - > Accuracy of consonant recognition is highly correlated with SNR for HI ears [Plomp 1986, Kreul et. al. 1969]
 - Non-sense speech syllables such as Consonant-Vowel (CV) is one way to examine consonant recognition in speech based tests [Kreul et. al. 1969, Boothroyd 1995]
- HI phone recognition
 - ➤ A lot of complexity
 - ✓ Same CV sound has different confusion patterns [Trevion & Allen, 2013]
 - ✓ Same HA gain can help recognize some CVs, but reduce recognition for other CVs [Abavisani & Allen 2017]
 - ✓ Phone recognition is idiosyncratic for HI ears [Abavisani & Allen, 2017]

HI Speech Perception background

Prior experiments showed that a few sounds were erroful for
 each HI ear with or without frequency dependent insertion gain

HA insertion gain improved phone recognition accuracy for HI ears in most cases not all

Reference:

Evaluating hearing aid amplification using idiosyncratic consonant errors

[Abavisani and Allen, 2017]

NH Speech Perception Background

- AI-gram
 - ➤ Time frequency speech feature that includes SNR in human critical bands
 - ➤ It is an image corresponding to audible speech features in the masking noise
 - ➤ Used to identify primary cue region in speech tokens
- 3D Deep Search to identify perceptual cues in tokens
 - ➤ Low/High pass filtering, Time truncation, SNR adjustment

Perceptual cues

Examples of perceptual cues

- Primary cue region (green)
- Conflicting cue region (red)

Experiments to determine SNR₉₀

- SNR₉₀
 - ➤ SNR in which NH listeners on average can recognize the sound at least 90% correct
 - ➤ Is a useful summary of the perceptual response of NH ears to a particular token
 - \triangleright SNR₉₀, SNR₅₀, and SNR₁₀ predict one another with low error for almost all tokens
 - ▶ If we shift P_e [%] curves to align their SNR_{50} , we observe that within a range of a few dB (i.e., +/-6 [dB]), the score drops around 50%
 - \triangleright Enforce consistency by removing outliers (tokens whose SNR₅₀ and SNR₉₀ are not consist)
- Present the CV tokens to +30 NH listeners in a random fashion
 - ➤ Start at high SNR (SNR > 20 dB)
 - > Two down, one up procedure
 - ✓ If subject recognizes the CV correctly, play the CV at two SNR levels down
 - ✓ If subject have error in the CV, play the CV at one SNR level up
 - ➤ Continue until reaching three cycles within a same loop
 - \blacktriangleright Plot the average score versus SNR, the SNR in which the plot passes 90% from the right for first time, is the SNR₉₀
- The SNR_{90} of CV is the average SNR_{90} thresholds across all NH subjects

[Singh & Allen, 2012]

SNR₉₀:

A Perceptual Measure for Understanding Speech in Noise

- Experiment I: Try to improve intelligibility for HI listeners by improving SNR₉₀
 - \triangleright Experiment: improve SNR₉₀ by choosing a different talker
 - \triangleright Changing the talker may change the score, depending to the SNR₉₀ of CV [Toscano & Allen, 2014]
 - \triangleright NH listener should recognize the CV correctly at any SNR at least 6 [dB] above the SNR₉₀ [Singh & Allen, 2012]

- Experiment 2: Change to a token with different vowel, but with the same SNR₉₀
 - ➤ Changes the formant transitions [Ohman 1966, Delattre et. al., 1966, Sussman et. al., 1991]
 - ➤ Changes the center frequency of burst spectrum [Winitz et. al., 1972]
 - ➤ Changes the acoustic specrotemporal context of relevant cues [Lisker 1975]
 - ➤ Changes the lexical context related to the CV [Ganong, 1980]
- We would like to control these effects by controlling over the SNR₉₀

SNR₉₀:

A Perceptual Measure for Understanding Speech in Noise

- Changing the token changes a lot of details of the waveform
- All tokens are pre-evaluated by SNR₉₀
- For NH listener, if CV₁ and CV₂ have similar SNR₉₀
 - > primary consonant cue is about the same level in both CVs
- If HI have different P_e for these two CVs
 - > must be caused by something other than the level of primary cue
 - ✓ Co-articulatory cues [Lisker 1975, Ohman 1966]
 - ✓ Spectrotemporal context [Stevens 1987]
 - ✓ Lexical neighborhood density [Ganong 1980]
- By controlling over SNR_{90} , we rule out the primary cue level as cause of perceptual deficiency

Usage of SNR₉₀ in Experiment I: Talker Change

- For NH listeners, if we amplify the primary cue of the erroful CV to the levels ~ 6 [dB] above CV's SNR₉₀, the error should drop to ~ 0 [Kapoor & Allen, 2012]
 - \triangleright Also, if we replace the CV by the same CV but with different talker with more clear voice (more salient CV), that has SNR₉₀ well above previous CV, the error will drop to \sim 0 [Toscano & Allen, 2014]

- We would like to investigate this fact on HI listeners (experiment I)
 - ➤ Hypothesis: In HI phone recognition, if we replace the CV by the same CV but with different talker with more clear voice (more salient CV), that has SNR₉₀ well above previous CV, the error should drop
 - ✓ Replace CV_1 by CV_2 (same consonant and vowel) where $SNR90_2 \ge SNR90_1 + 6$ [dB]
 - ✓ This will constitute a change in the intensity of the primary cue region

■ Check the impact of this change on error, entropy, confusion pattern of the HI CV recognition

Example of cue change in Experiment I

Replace /pa/ with more salient /pa/

Usage of SNR₉₀ in Experiment II: Vowel Change

- NH CV recognition is affected by changing the vowel as a result of:
 - Formant transitions [Ohman 1966, Delattre et. al., 1966, Sussman et. al., 1991]
 - ➤ Displace of center frequency of burst spectrum [Winitz et. al., 1972]
 - ➤ Acoustic specrotemporal context variations of relevant cues [Lisker 1975]
 - ➤ Changes the lexical context related to the CV [Ganong, 1980]

- We would like to investigate whether these effect play role in HI phone recognition??
 - ➤ For this matter, we replace CV₁ by CV₂ with same consonant but with different vowel
 - $ightharpoonup CV_1$ and CV_2 should have similar SNR_{90} ($|\Delta SNR_{90}| \le 3$ dB)
 - ➤ This will constitute a change in the spectrotemporal features of the consonant
- Check the impact of this change on error, entropy, confusion pattern of the HI CV recognition

Example of cue change in Experiment II

Replace /pa/ with /p/+vowel with similar SNR₉₀

Designed Software for Adaptive Testing

- Subjects: HI subjects, age < 64, with mild to moderate hearing loss</p>
- SNR = 0, 6, 12 dB and Quiet
- Speech material: Male+Female /p, t, k, f, s, S, b, d, g, v, z, Z, m, n/+/a, æ, Ι, ε/, presented at the Most Comfortable Level (MCL)
- Experiment I: Change Talker (Change intensity of primary cue)
 - ➤ Screening in List 1: Start with less salient CV at SNR = 0 dB
 - ✓ If CV had error, copy to List 2
 - > Evaluation in List 2: present CV two times at SNR = 0 dB and one time at SNR = 6 dB
 - ✓ If two errors occurred out of three presentations, copy CV to List 3
 - ✓ Copy same CV with new more salient talker to List 2 ($|\Delta SNR90| > 6 \text{ dB}$)
 - ✓ Copy confusing sounds associated with this CV to List 2
 - ➤ Test in List 3: Present same CV 8 times at each SNR (total 32 presentations), record the response
- Experiment II: Change Vowel (shift frequency of primary cue)
 - > Screening in List 1: Start with less salient C+/a/ at SNR = 0 dB (screening)
 - ✓ If CV had error, copy to List 2
 - > Evaluation in List 2: present CV two times at SNR = 0 dB and one time at SNR = 6 dB
 - ✓ If two errors occurred out of three presentations, copy CV to List 3
 - ✓ Copy same consonant with 3 new vowels $/\infty$, I, ϵ / to List 2 ($|\Delta SNR90| < 3 dB$)
 - ✓ Copy confusing sounds associated with these CVs to List 2
 - > Test in List 3: Present same CV 8 times at each SNR (total 32 presentations), record the response

Designed Software for Adaptive Testing

- Confusing sounds pattern to induce more error
 - > Derived from previous phone recognition experiments
 - ➤ Each consonant has up to 3 confusing consonants
 - ➤ Uniform transition probability for outgoing paths

Table III. Confusion matrix for S/N = -6 db and frequency response of 200-6500 cps.

Designed Software for Adaptive Testing

18

(h)

(g)

- Transition probabilities between lists
 - ➤ To increase randomness, we use consonants from different confusion groups as seeds
 - ➤ When there is enough diversity of consonants (9+ different consonants), we use CVs within lists as seeds

Confusion Matrix data Analysis

- Form confusion matrix out of recorded response from List 3
- Convert confusion matrix to probability matrix
 - ➤ Divide each element by the row sum
- Probability of error for each token

$$P_e(CV_i, SNR) = 1 - P_{ii} = \sum_{j \neq i} P\{heard \, CV_j \mid spoken \, CV_i\}$$

Entropy of each token

$$\mathcal{H}(CV_i, \text{SNR}) = -\sum_{j=1}^{14} P_{ij} log(P_{ij})$$

- *Improvement*: error (entropy) in 2nd condition (after change) is smaller than 1st condition
- *Degradation*: error (entropy) in 2nd condition (after change) is larger than 1st condition

Preliminary Results

■ Pure tone thresholds of 4 HI listeners

- Experiment I: change the talker (intensity of primary cue)
 - ➤ Improving SNR₉₀ caused HI listeners to have fewer errors

■ Improvement vs degradation in error for talker change

- Experiment II: change the vowel (manipulate frequency of primary cue)
 - ➤ Average error for various vowels:

Changed vowel	Improvement [%]	Degradation [%]
/a/	75	14
/ae/	71	16
/I/	63	24
/ε/	72	18

■ Improvement vs degradation in error for vowel change

Improvement vs degradation in error for vowel change

➤ Vowel /ae/ changes

■ Improvement vs degradation in error for vowel change

■ Improvement vs degradation in error for vowel change

Examples of entropy vs P_e curves

HI Consonant Recognition Predication by SNR₉₀

HI confusion pattern are similar to NH [Trevino & Allen, 2013]

■ SNR₉₀: a perceptual measure of hearing speech on noise, derived from NH data

- SNR₉₀ can predict error for HI speech perception
 - \triangleright Tokens presented in noise levels well above SNR₉₀, should be recognized by NH and HI
 - ➤ This is not always the case for HI
 - ✓ Higher noise can mask conflicting cues
 - ✓ Reducing noise in these cases may increase the error
 - ✓ Some HI ears do not respond to talker change as expected
 - ✓ Should investigate the conflicting cues
 - ✓ If vowel change (with similar SNR_{90}) increases the error for HI ear
 - ✓ Should investigate the particular changes on formant transitions, spectrotemporal context of CV, etc

Examples of complicated confusion patterns

Conclusions

- Results of this speech based test helps better understand
 - > HI phone recognition strategy comparing to NH
 - ✓ The role of replacing talker with more salient talker (variation of intensity of primary cue)
 - ✓ The role of changing the vowel (variation of frequency of primary cue)
 - > Categorize HI listeners based on their response (improvement vs degradation) in terms of error and entropy
 - ➤ Categorize consonants in terms of positive/negative responding to their acoustic spectrotemporal shift
- Average probability of error is not the best metric to understand HI phone recognition
 - ➤ Should look into individual sounds associate the error with confusion pattern
- Experiment on NH listeners verified SNR₉₀ labels for test tokens
- lacktriangle Training a model to automatically estimate SNR $_{90}$ perceptual measure for CV sounds helps to estimate the appropriate amplification amount needed for speech perception enhancement
 - ➤ Needs data augmentation since current SNR₉₀ labeled data is limited
 - ✓ Extreme cases of augmented data should be evaluated by NH experiments to verify their SNR₉₀
 - > Explore various models to compare the accuracy in estimation