ACOUSTICAL FACTORS AFFECTING HEARING AID PERFORMANCE
SECOND EDITION

Edited by

GERALD A. STUDEBAKER, Ph.D.
Distinguished Professor
Department of Audiology and Speech Pathology
Memphis State University

IRVING HOCHBERG, Ph.D.
Professor and Executive Officer
Doctoral Program in Speech and Hearing Sciences
Graduate School, City University of New York

ALLYN AND BACON
Boston London Sydney Toronto
BRIEF CONTENTS

Detailed Contents ix
Preface xix
Contributing Authors xxi

PART ONE
THE ENVIRONMENT 1

CHAPTER 1 Normal Listening in Typical Rooms: The Physical and
Psychophysical Correlates of Reverberation 3
David A. Berkley and Jont B. Allen

CHAPTER 2 Communication in Noisy and Reverberant
Environments 15
Anna K. Nábelek

PART TWO
THE HEARING AID 29

CHAPTER 3 Transducers and Acoustic Couplings: The Hearing Aid
Problem That Is (Mostly) Solved 31
Mead C. Killion

CHAPTER 4 Measuring the Performance of Modern Hearing Aids 51
Edward Cudahy and James Kates

CHAPTER 5 CORFIG and GIFROC: Real Ear to Coupler and Back 65
Mead C. Killion and Lawrence Revit

PART THREE
HEARING AID SELECTION 87

CHAPTER 6 Acoustical Methods for Selecting Hearing Aids 89
David B. Hatokins

CHAPTER 7 The Application of Adaptive Test Strategies to Hearing Aid
Selection 103
Arlene C. Neuman and Harry Levitt
PART FIVE
SIGNAL PROPERTIES
CHAPTER 8
Implications of the National Acoustic Laboratories' (NAL) Research for Hearing Aid Gain and Frequency Response Selection Strategies
Denis Byrne

CHAPTER 9
Effects of Frequency Response, Bandwidth, and Overall Gain of Linear Amplification Systems on Performance of Adults with Sensorineural Hearing Loss
Margaret W. Skinner

CHAPTER 10
Amplification for the Profoundly Hearing Impaired
Mark Ross

PART FOUR
THEORETICAL ISSUES
CHAPTER 11
Frequency-Importance Functions for Speech Recognition
Gerald A. Studebaker and Robert L. Sherbecoe

CHAPTER 12
Some Temporal Factors Affecting Speech Recognition
Larry E. Humes

CHAPTER 13
Problems in the Prediction of Speech Recognition Performance of Normal-Hearing and Hearing-Impaired Individuals
Chaslav V. Pavlovic

CHAPTER 14
Factors Affecting Performance on Psychoacoustic and Speech-Recognition Tasks in the Presence of Hearing Loss
Judy R. Dubno and Donald D. Dirks

CHAPTER 15
Binaural Advantages and Directional Effects in Speech Intelligibility
P.M. Zurek

CHAPTER 16
Speech Perception, Sensorineural Hearing Loss, and Hearing Aids
Arthur Boothroyd

CHAPTER 17
Subjective Correlates of the Acoustical Characteristics of Sound-Reproducing Systems
Alf Gabrielsson and Björn Hagerman
PART FIVE
SIGNAL PROCESSING 315

CHAPTER 18 Digital Hearing Aids 317
Harry Levitt

CHAPTER 19 Noise Reduction in Hearing Aids 337
Mark Weiss and Arlene C. Neuman

Harvey Dillon and Roger Lovegrove

CHAPTER 21 Some Acoustic Enhancements of Speech and Their Effect on Consonant Identification by the Hearing Impaired 373
Sally G. Revoile and Lisa D. Holden-Pitt

Author Index 387

Subject Index 389
Detailed Contents

Preface xix
Contributing Authors xxii

PART ONE
THE ENVIRONMENT 1

CHAPTER 1 Normal Listening in Typical Rooms: The Physical and Psychophysical Correlates of Reverberation 3
David A. Berkley and Jont B. Allen

Physical Basis of Reverberation 3
Definitions 3
Intelligibility Versus Preference 3
Ideal Rooms 4
Transfer Function 4
Perception of Reverberation 5
Perception for One Reflection 5
Perception in Real Rooms 6
The Allen-McDermott Experiment 7
Experimental Results 8
Summary 12
Appendix to Chapter 1 12
Room Simulation 12
Basic Physical Principles 12
Computer Implementation 12
The Spectral Deviation 13
References 14

CHAPTER 2 Communication in Noisy and Reverberant Environments 15
Anna K. Nábělek

Effect of Noise on Speech Perception 15
Speech Tests 15
Speech Intelligibility for Various Talkers 15
SPL for Optimal Speech Perception 16
Speech Perception for Various S/N 16
Acoustic Cues Masked by Noise 16
Effect of Reverberation on Speech Perception 17
Room Reflections 17
PART TWO
THE HEARING AID 29

CHAPTER 3 Transducers and Acoustic Couplings: The Hearing Aid Problem That Is (Mostly) Solved 31
Mead C. Killion
Transducers and Couplings 31
 Transducer Miniaturization 31
 Transducer Types 32
 Performance Versus Size 33
The Traditional Problem Areas 38
 Bandwidth 38
 Frequency Response Shaping 39
 Receiver-Plus-Earmold Response 41
 Amplifier Source Impedance 41
 Noise 45
 Distortion 46
Summary 48
References 49

CHAPTER 4 Measuring the Performance of Modern Hearing Aids 51
Edward Cudahy and James Kates
Electroacoustic Measurement Issues 51
 Linear Processing 51
 Automatic Gain Control 52
 Noise Suppression (Automatic Signal Processing) 52
 Multi-Channel Processing 53
 Digital Signal Processing 53
Hearing Aid Measurement Procedures 54
 Frequency Response 54
 Input/Output Characteristic 55
 Distortion Measurement 55
 Compression Characteristics 55
 Type of Processing 55
Computerized Measurement System 56
Preliminary Results 56
The Measurement of Distortion 58
 A Distortion Index 59
Summary 62
References 63

CHAPTER 5 CORFIG and GIFROC: Real Ear to Coupler and Back 65
Mead C. Killion and Lawrence J. Revit
Definitions and Relationships 65
 2-cc Coupler Gain and Zwislocki Coupler Gain 65
 Real-Ear-to-Coupler Level Difference (RECD) 65
 Functional Gain and Insertion Gain 66
 The REAR, REUR, REIR, REIG, REOR Acronyms 68
 CORFIG: The Insertion Response to Coupler Response Transformation 69
Ordering the 2-cc Coupler Response 70
 Transforming Target Insertion Response to Target 2-cc Coupler Response 70
Individual Differences 7
 Modifying the Target 2-cc Coupler Response 74
GIFROC: The Coupler Response to Insertion Response Transformation 77
Average-Ear CORFIG and GIFROC Data 78
 Diffuse-Sound-Field Data 78
 0-, 45-, and 90-Degree Sound-Field Data 79
Minimizing Measurement Variability 81
The Unanswered Questions 84
References 84

PART THREE HEARING AID SELECTION 87
CHAPTER 6 Acoustical Methods for Selecting Hearing Aids 89
David B. Hawkins
Functional Gain 89
 Definition and Uses of Functional Gain 89
 Procedural Issues in Functional Gain 90
 Research Needs in Functional Gain 91
Ear Canal Probe Tube Microphone Measurements

(P TM) 91
 History of PTM 91
 Definitions of Types of PTM 92
 Uses of PTM 92
 Procedural Issues in PTM 94
 Research Needs in PTM 99

Conclusion 100
References 100

CHAPTER 7 The Application of Adaptive Test Strategies to Hearing Aid Selection 103

Arlene C. Neuman and Harry Levitt

Adaptive Strategies 104
 Convergence Strategies 105
 Convergence Strategies in Hearing Aid Research 106
 Tournament Strategies 113

Clinical Application of Adaptive Testing 115
References 116

CHAPTER 8 Implications of the National Acoustic Laboratories’ (NAL) Research for Hearing Aid Gain and Frequency Response Selection Strategies 119

Denis Byrne

NAL Hearing Aid Selection Research and Procedures 119

Fundamental Issues 120
 Justification for Frequency Response Selection 120
 Significance of Differences in Frequency Response 121
 Amounts of Signal Received 123
 Relationship of Audiometric Measures to Gain and Frequency Response Requirements 124

Prescription Rules and Principles 125
 Gain Prescription Rules 125
 Frequency Response Prescription Rules 128
 Need to Vary Gain and Frequency Response at Different Times 129

Conclusions 130
References 130

CHAPTER 9 Effects of Frequency Response, Bandwidth, and Overall Gain of Linear Amplification Systems on Performance of Adults with Sensorineural Hearing Loss 133

Margaret W. Skinner

Analysis of Research Results 135
 Relation of Amplified Speech to Residual Hearing 135
Choice of Most Intelligible Level for Long-Term Listening 141
Comfort (MIL) as a Function of Frequency Response: Uniform versus High-Frequency Emphasis Responses 141
How Much High-Frequency Emphasis is Appropriate? 143
Frequency Responses for Binaural Amplification 149
Effective Bandwidth 149
Overall Gain 152
Evaluation of Clinical Prescriptive Procedures 153
Validation of the Revised NAL Procedure 153
High-Frequency Emphasis Prescribed by the POGO and Berger Procedures 154
Real-Ear Gain Prescribed by Procedures Based on Judgments of Supra-Threshold Loudness 156
Implications for Clinical Fitting of Hearing Aids and Future Research 160
Optimize Coupling of Hearing Aid to the Ear 160
Focus on the Individual 160
Study Groups with the Same Audiometric Configuration 161
Select Speech and Noise Stimuli to Differentiate Between Amplification Parameters 161
Select Relevant Sets of Frequency-Gain Characteristics for Evaluation 161
Evaluate Nonlinear Hearing Aids 163
References 163

CHAPTER 10 Amplification for the Profoundly Hearing Impaired 167
Mark Ross
Residual Auditory Capacities 167
Prescription Formulas 169
Rationale 169
Evaluating Current Prescription Procedures 169
Aided Audibility 173
A Clinical Investigation of Speech Perception in Profoundly Hearing-Impaired Children 178
Summary 179
References 180

PART FOUR THEORETICAL ISSUES 183

CHAPTER 11 Frequency-Importance Functions for Speech Recognition 185
Gerald A. Studebaker and Robert L. Sherbecoe
Articulation Theory 185
Past and Present Importance Functions 186
One Importance Function or Many? 187
Factors Affecting Frequency-Importance Functions 189
 Stimulus Variables 189
 Measurement Variables 192
How Important Are Importance Functions 194
 Unaided Hearing Loss 195
 Aided Hearing Loss 195
Conclusion 200
Appendix to Chapter 11 201
References 201

CHAPTER 12 Some Temporal Factors Affecting Speech Recognition 205
Larry E. Humes
Speech Transmission Index (STI) 205
 The Modulation Transfer Function (MTF) 205
 Frequency Weighting 210
 The modified Speech Transmission Index (mSTI) 212
Applications to Hearing-Impaired Listeners 213
 The Audibility Factor 213
 Factors Other Than Audibility 217
References 218

CHAPTER 13 Problems in the Prediction of Speech Recognition
Performance of Normal-Hearing and Hearing-Impaired Individuals 221
Chaslab V. Pavlovic
A Historical Note 221
Basic Formulae 222
Importance Function 223
Weighting Factor 225
 Speech Dynamic Range 225
 Effective Level of External Noise 228
 Hearing Threshold 229
 Nonlinear Systems and Distortions in the Time Domain 229
 High-Level Speech 229
Proficiency Factor 229
Transfer Function 230
Issues Related to Hearing Loss 230
 Issues Relevant to Hearing Aid Selection 232
 Issues Relevant to Studying Suprathreshold Speech Processing 232
Conclusions 232
References 233
CHAPTER 14 Factors Affecting Performance on Psychoacoustic and Speech-Recognition Tasks in the Presence of Hearing Loss
Judy R. Dubno and Donald D. Dirks
Comparing Performance of Normal-Hearing and Hearing-Impaired Listeners
 Frequency and Temporal Resolution
 Speech Recognition
 Summary
Experiment I: Associations Among Frequency Resolution and Stop-Consonant Recognition for Hearing-Impaired Listeners
 Implications of the Results
Experiment II: Frequency Resolution for Masked Normal-Hearing Listeners
 Auditory-Filter Characteristics
 Critical Ratios
 Forward-Masked Psychophysical Tuning Curves
 Narrowband-Noise Masking Patterns
 Implications of the Results
General Discussion
Conclusions
References

CHAPTER 15 Binaural Advantages and Directional Effects in Speech Intelligibility
P.M. Zurek
The Model
 Monaural Listening
 Binaural Listening
Comparisons to Data
 Directional Effects
 Binaural Advantages
 Analytic Studies
Further Predictions
 Filtering
 Head Movements
The Binaural Advantage
Discussion
References

CHAPTER 16 Speech Perception, Sensorineural Hearing Loss, and Hearing Aids
Arthur Boothroyd
 Speech Perception
 Communication by Spoken Language
Acoustic Speech Patterns 280
 Speech Intensity 280
 Average Spectrum 280
 Intensity and Frequency Ranges 280
 Spectral and Temporal Detail 281

Movement Patterns of Speech 283
 Sound Generation 284
 Resonance 284
 Phoneme System 284
 Vowels 285
 Consonants 286
 Segmentation and Invariance 286

The Normal Listener 286
 Phoneme Recognition Probability versus Intensity 286
 Recognition Probability versus Frequency 288
 Subphonemic Features versus Frequency 288
 Spectral Patterns and Phoneme Identification 289
 Visible Speech Patterns 289
 Quantitative Methods 290
 Effects of Context 291

Effects of Sensorineural Hearing Loss 292
 Threshold 292
 Reduced Dynamic Range 292
 Time and Frequency Resolution 292
 Perception of Speech Pattern Contrasts 292
 Prelingual Deafness 294
 Children 294

Implications for Hearing Aids 294
 The Threshold Problem 294
 The Dynamic Range Problem 294
 The Spectral and Temporal Resolution Problem 295
 Noise 296
 Need for Predictability 296
 Evaluation of Aided Speech Perception Performance 296

Summary 297
References 298

CHAPTER 17 Subjective Correlates of the Acoustical Characteristics of Sound-Reproducing Systems 301
 Alf Gabrielson and Björn Hagerman

Methods and Results 302
 Identification of Perceptual Dimensions 302
 Measurement Scales for Perceptual Dimensions 306
 Perceptual Dimensions and Overall Quality 309
PART FIVE
SIGNAL PROCESSING 315

CHAPTER 18 Digital Hearing Aids 317

Harry Levitt

Early Experiments with Off-Line Simulation 317
Digital Simulation of Hearing Aids Operating in Real Time 318
Noise Reduction Using Digital Hearing Aids 321
Signal Processing for Speech Enhancement 324
A Generalized Approach to Amplitude Compression 324
LDL Compression 326
Reduction of Reverberation 328
Other Applications of Digital Signal Processing 329
Feedback Reduction 329
Hearing Instruments Combining Multiple Functions 330
Summary 332
References 333

CHAPTER 19 Noise Reduction in Hearing Aids 337

Mark Weiss and Arlene C. Neuman

Degradation of Speech Perception in Noisy Environments 338
Fundamental Considerations in Noise Reduction 338
Evaluation of Noise Reduction Methods 339
Noise Reduction Methods 340
Directional Microphones 340
Broadband Amplitude Compressors 341
High-Pass Filters 341
Multiple Bandpass Filters 342
Digital Noise Reduction 342
Results of Evaluations on Commercial Devices 342
Digital Methods of Noise Reduction 343
Single-Microphone Methods 343
Multiple-Microphone Methods 346
Applicability of Advanced Signal Processing Techniques to Hearing Aids 349
References 350

Harvey Dillon and Roger Lovegrove

Reasons for Poor Speech Discrimination in Noise 353
- Binaural Effects and Localization 353
- Temporal Resolution 354
- Reduced Dynamic Range 354
- Frequency Resolution 354

Methods for Reducing Background Noise 354
- Remote Signal Pick-Up 354
- Directional Microphones 355
- Signal Processing 355

Review of Results with Wearable Aids 358
Evaluation of Noise Reduction Aids at the National Acoustic Laboratories (NAL) 361
- Procedure 361
- Field Trial Results 364
- Laboratory Intelligibility Results 365
- Conclusions of NAL Evaluation 368

Concluding Discussion 369
References 370

CHAPTER 21 Some Acoustic Enhancements of Speech and Their Effect on Consonant Identification by the Hearing Impaired 373

Sally G. Revoile and Lisa D. Holden-Pitt

Consonant Amplification 375
Duration Alterations 376
Spectral Alterations 377
Summary 378
An Experiment on Enhanced Cue Audibility 379
- Method 379
- Results 380
References 385

Author Index 387
Subject Index 389

More than 40 years ago, in 1978, M. J. Killion, a widely known audiological scientist, wrote in the then-nascent field of digital signal processing that "(mostly) it is the acoustical primary task of the research area that are more interesting..."

With the advent of the digital revolution in hearing-aids research, perhaps the primary task is not so different. The needs of individuals with hearing aids is ever changing and potential solutions to hearing loss are being sought. The new techniques and technologies are exciting, but a deeper understanding of the problem is required. Tinn retain the need for fundamental research and improved hearing aid devices will provide the basis for new solutions.

Digital hearing aids are in common use today, and increased certainty that the "designer hearing aid" is here. Increased certainty suggests that the technology provides a minimum of only a very small part of the overall performance. Therefore, increased certainty.
More than ten years have passed since the convocation of the original "Acoustical Factors Affecting Hearing Aid Performance" conference in New York City in 1978. Much of the information presented at that conference was new and not widely known. In order to help distribute this important information more widely, the first edition of this book was published in 1980. Since then, much of the then-new information has become common coin. It has been incorporated into many laboratory procedures and clinical and sales office fitting practices. In fact, the extent of that knowledge in some areas has been sufficient to prompt Killion to state in Chapter 3 of this edition that transducer and coupling issues are "(mostly) solved." Thus, it would seem that, at least in the case of purely acoustical matters, a very great deal of progress has been made and that two primary tasks remain: the refinement of quantitative values and the generation of research and clinical procedures that incorporate these findings into methods that are more reliable, valid, efficient, and easier to use. Many of the chapters in this volume reflect these developments.

With the fundamental acoustical issues under good control, researchers during the past ten years have been better able to investigate other issues. One of the most important was the inherently more difficult problem of determining what characteristics the acoustical signal at the ear should have in order to best meet the needs of the hearing-impaired person. As these pages will reveal, digital hearing aids, and the signal processing they make possible, have opened up new and potentially fruitful avenues of research and development in this area. Noise reduction, multi-channel aids, phonemic feature enhancement, adaptive filtering, and more precisely fitted gain curves have all been put forward as techniques with great promise. But, early investigations suggest that none of these techniques is going to provide the dramatic breakthrough that will quickly solve the problems of the hearing impaired. Nevertheless, it seems likely that digital hearing aids will, one day, be the dominant type of hearing aid for the reason that they do offer significant advantages. However, it now appears that the gains they will provide will be incremental rather than dramatic.

Digital hearing aids increase the need for theoretical structure and basic research, precisely because these hearing aids open up so many new possibilities that the "cut-and-try" procedures of the past are less defensible than ever. Increased complexity calls for the guidance of unifying theory. Theoretical structure suggests what information is needed in order to use or test the theory and provides a framework within which to interpret the results. At present there are only a very small number of theoretical constructs that are broad enough to encompass most of the matters relevant to hearing aid selection and performance. Those that do exist are similar in that they all have fundamental features in common with classical Articulation Theory. Interest in theories of this type has increased over the past ten years, spurred on by the landmark paper by Dugal,
Braida, and Durlach (1980), which appeared in the first edition of this book. As a reflection of that fact, five of the chapters included in this edition are either about articulation theory-like concepts or use those concepts to assist in the interpretation of their results. It seems probable to us that such theories will receive substantially increased attention in the immediate future.

As a final note, we want to thank those who helped us in the preparation of this book. Especially, we want to thank the authors who so unselfishly devoted their time and effort to this project. In addition, we want to thank April V. Powel for her dedicated service in helping to prepare the manuscripts for publication. Her exceptional efforts are greatly appreciated.

Gerald A. Studebaker
Irving Hochberg

REFERENCES

Jont B. Allen
Acoustics Research
AT & T Bell Lab
600 Mountain Av
Murray Hill, New Jersey

David A. Berkley
Acoustics Research
AT & T Bell Lab
600 Mountain Av
Murray Hill, New Jersey

Arthur Boothroyd
Ph.D. Program in Sciences
City University of New York
Graduate School and University Center
33 West 42nd St
New York, New York

Denis Byrne
National Acoustic Laboratory
126 Greville Street
Chatswood, NSW

Edward Cudahy
The Lexington Co.
30th Avenue and 95th Street
Jackson Heights, NY

Harvey Dillon
National Acoustic Laboratory
126 Greville Street
Chatswood, NSW

Donald D. Dirks
Division of Head and Neck Surgery
School of Medicine
University of California, Los Angeles
Los Angeles, Calif
CONTRIBUTING AUTHORS

Jont B. Allen
Acoustics Research Department
AT & T Bell Laboratories
600 Mountain Avenue
Murray Hill, New Jersey 07974

David A. Berkley
Acoustics Research Department
AT & T Bell Laboratories
600 Mountain Avenue
Murray Hill, New Jersey 07974

Arthur Boothroyd
Ph.D. Program in Speech and Hearing Sciences
City University of New York
Graduate School and University Center
33 West 42nd Street
New York, New York 10036

Denis Byrne
National Acoustic Laboratories
126 Greville Street
Chatswood, NSW 2067, Australia

Edward Cudahy
The Lexington Center
30th Avenue and 70th Street
Jackson Heights, New York 11370

Harvey Dillon
National Acoustic Laboratories
126 Greville Street
Chatswood, NSW 2067, Australia

Donald D. Dirks
Division of Head and Neck Surgery
School of Medicine
University of California, Los Angeles
Los Angeles, California 90034

Judy R. Dubno
Department of Otolaryngology and Communicative Sciences
Medical University of South Carolina
171 Ashley Avenue
Charleston, South Carolina 29425

Alf Gabrielsson
Department of Technical Audiology
Karolinska Institute
S-100 44 Stockholm, Sweden

Björn Hagerman
Department of Technical Audiology
Karolinska Institute
S-100 44 Stockholm, Sweden

David B. Hawkins
Department of Communication Disorders
University of South Carolina
Columbia, South Carolina 29208

Lisa D. Holden-Pitt
Center of Auditory and Speech Sciences
Gallaudet University
800 Florida Avenue, N.E.
Washington, DC 20002

Larry E. Humes
Department of Speech and Hearing Sciences
Indiana University
Bloomington, Indiana 47405

James Kates
Ph.D. Program in Speech and Hearing Sciences
City University of New York
Graduate School and University Center
33 West 42nd Street
New York, New York 10036
Mead C. Killion
Etymotic Research
61 Martin Lane
Elk Grove Village, Illinois 60007

Harry Levitt
Ph.D. Program in Speech and Hearing Sciences
City University of New York
Graduate School and University Center
33 West 42nd Street
New York, New York 10036

Roger Lovegrove
National Acoustic Laboratories
126 Greville Street
Chatswood, NSW 2067, Australia

Anna K. Nábelek
Department of Audiology and Speech Pathology
University of Tennessee
580 Stadium Annex
Knoxville, Tennessee 37923

Arlene C. Neuman
Ph.D. Program in Speech and Hearing Sciences
City University of New York
Graduate School and University Center
33 West 42nd Street
New York, New York 10036

Chaslav V. Pavlovic
Department of Speech Pathology and Audiology
University of Iowa
Iowa City, Iowa 52242

Lawrence Revit
Frye Electronics, Inc.
P.O. Box 23391
Tigard, Oregon 97223

Sally G. Revoie
Center of Auditory and Speech Sciences
Gallaudet University
800 Florida Avenue, N.E.
Washington, DC 20002

Mark Ross
Ph.D. Program in Speech and Hearing Sciences
City University of New York
Graduate School and University Center
33 West 42nd Street
New York, New York 10036

Robert L. Sherbecoe
Department of Audiology and Speech Pathology
Memphis State University
807 Jefferson Avenue
Memphis, Tennessee 38105

Margaret W. Skinner
Department of Otolaryngology
Washington University School of Medicine
517 South Euclid Avenue
St. Louis, Missouri 63110

Gerald A. Studebaker
Department of Audiology and Speech Pathology
Memphis State University
807 Jefferson Avenue
Memphis, Tennessee 38105

Mark Weiss
Ph.D. Program in Speech and Hearing Sciences
City University of New York
Graduate School and University Center
33 West 42nd Street
New York, New York 10036

P.M. Zurek
Research Laboratory of Electronics
Room 36-736
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
PART ONE

THE ENVIRONMENT