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1. Repeat classic experiments on human speech CV sounds 2005
2. Identify acoustic cues in CV tokens 2007

■ Findings: a) Onset burst, b) Frequency edge, c) Duration,
d) F0 modulation, e) Voicing 2007-11

■ Consonant recognition is binary (Threshold @ SNR90) 2012
■ Full analysis of the Articulation Index (AI) 2012

3. Measure CV confusions in ≈50 hearing impaired ears 2009

■ Characterize hearing impaired (HI) CV confusions 2010
■ Explain HI re NH feature extraction deficiencies, based on

individual-differences in CV confusions 2012-13
■ Hypothesis: HI Consonant discrimination in noise is due to:

⇒ Poor acoustic time/freq edge detection?
⇒ Auditory plasticity?
⇒ Cochlear Dead regions?
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sounds above chance at -18 dB SNR-SWN (?)

(e) Phone-error patterns for normal ears
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(f) Phone-error patterns for HI subject 112R

■ Normal Hearing have zero error ≥ -2dB SNR
■ Hearing Impaired (HI) listeners have high error for a few tokens
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◆ Based on AG Bell’s speech studies 1860

■ Harvey Fletcher’s Articulation Index AI 1921

◆ AI first publish: French and Steinberg 1947

■ The AI accurately predicts average CV scores Pc(SNR)

■ Shannon The theory of Information 1948+

◆ G.A. Miller, Heise and Lichten Role of Entropy 1951
◆ G.A. Miller & Nicely CM Ph|s(SNR) 1955

■ Context effects:

◆ G.A. Miller 1951 Language and communication

◆ G.A. Miller 1962 5-word Grammar ≡ 4 dB of SNR
◆ Boothroyd JASA 1968; Boothroyd & Nittrouer 1988
◆ Bronkhorst et al. JASA 1993
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◆ Cooper, Liberman, et. al.

■ MIT 1970-1990

◆ Stevens+Blumstein; +Alwan, et. al.; +. . .

■ IU 1970-1990

◆ Pisoni et. al.; Kewley-Port & Luce 84

■ AT&T Labs 1998-2003

◆ Allen

■ UIUC 2004-2011

◆ Allen et. al.: Confusion matrices on NH, HI
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■ HSR

◆ MIT:Stevens+; Braida+Grant+Rankovic+Alwan+. . .
◆ UCLA: Alwan 2000-2013
◆ AT&T Bell Labs: Theory of HSR 1994-2003
◆ UIUC: AI theory 2006-2012
◆ UIUC: HI Confusion matrices 2007-2013

■ ASR

◆ CMU
◆ IBM
◆ BBN
◆ Bell Labs
◆ MIT
◆ Johns Hopkins
◆ . . .
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■ Three Recent Literature Reviews:

1. Wright 2004 “A review of perceptual cues and cue robustness”
2. Allen 2005 “Articulation & Intelligibility” Morgan-Claypool

3. McMurray-Jongman 2011 “information for speech categorization”

■ Ten Detailed Studies:

1. Jongman 2000 “Acoustic characteristics of fricatives”
2. Smits 2000 “Temporal distribution . . . in VCVs”
3. Hazan-Simpson 2000 ”cue-enhancement . . . of nonsense words”
4. Jiang 2006 “perception of voicing in plosives”
5. McMurray-Jongman 2011 “information for speech categorization”
6. Alwan 2011 “Perception of place of articulation . . . ”
7. Jørgensen-Dau 2011; 3 dB change; Modulation references
8. Das-Hansen 2012 “Speech Enhancement c̄ Phone Classes”
9. Singh-Allen 2012 “Stop consonant features & AI”
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1. Detailed summary of literature of perceptual cues

■ Bursts, Nasal, VOT, . . .
■ Excellent discusses of the Auditory Nerve response (Boosts)

2. Conclusions:

■ Disparity of results (Conclusions weak & unclear)
■ Theories based on very little data

most arguments seem dogmatic: neither empirical nor theoretical
■ Lack of theoretical constructs
■ Acoustic cues vary with context (co-articulation)
■ F2 Transitions dominate place perception
■ Burst is a weak cue (susceptible to a low SNR)

Fricative noise more robust to noise
■ Extended discussion on robustness and gestures (cue overlap)

Summary: Nice summary of the many misguided attempts at finding speech cues
Review makes it clear there is little agreement in the literature
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1. Goal 1: “What acoustic cues support human-like phone recognition?”
2. “Listeners are not at ceiling for naturally produced unambiguous tokens”
3. “Recognition depends on multi-dimensional continuous acoustic cues”
4. “The nature of the perceptual dimensions may matter”
5. “It’s widely ... accepted that perception compensates for variance.”
6. “The interpretation of a cue may depend on the category of others”
7. “Speech perception is a map from continuous acoustic cues to categories”
8. “Most speech cues are context-dependent and there are few invariants”

“there is little question that this is a fundamental issue”
9. “Fricatives are signaled by a large number of cues.”
10. “Normalization required to account for large talker variability”
11. Using only a few cues “oversimplifies issues & exaggerates problems”
12. “Speech categorization fundamentally requires massive cue-integration”

Summary: Main Goal of study: Resolve significant literature uncertainty
Strong conjectures based on uncertain speech perception literature
“Recognition & normalization deeply intertwined”
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■ Two Recent Literature Reviews:

◆ Wright 2004 “A review of perceptual cues and cue robustness”

◆ McMurray-Jongman 2011 “information for speech categorization”

■ Ten Detailed Studies:

1. Jongman 2000 “Acoustic characteristics of fricatives”
2. Smits 2000 “Temporal distribution . . . in VCVs”
3. Hazan-Simpson 2000 ”cue-enhancement . . . of nonsense words”
4. Jiang 2006 “perception of voicing in plosives”
5. McMurray-Jongman 2011 “information for speech categorization”
6. Alwan 2011 “Perception of place of articulation . . . ”
7. Das-Hansen 2012 “Speech Enhancement c̄ Phone Classes”
8. Jørgensen-Dau 2011; Modulation references; 3 dB change
9. Singh-Allen 2012 “Stop consonant features & AI”
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■ Q: How is place coded for /f,v, T,D, s,z, S,Z/?
■ Method: Combinations of 5 static and 2 dynamic measures
■ Pros:

◆ Large study: 20 talkers
◆ High specificity & sensitivity (not for /f,v/ & /T,D/)?

■ Cons:

◆ Not systematic (trial and error search with many possibilities)

■ No gold standard error control (i.e., human responses)
■ 4 spectral moments (unlikely auditory system to measure

these)
■ 4 measures ignore temporal variations

◆ Claims to solve the fricative phone recognition problem
◆ Few quantitative conclusions (mostly negative)
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■ Quest for acoustic cues near closure and release in CVC

◆ Temporal gating of closure & release
◆ Multi-dimensional scaling (MDS) analysis (4D)
◆ Transmitted information (with no added noise)

Stimuli 51 /ACu/ tokens; 2 talkers (1M, 1F); 17 C, 3 V
Analysis: Response set averaged: Initial+Final Fric, Nasal, Stop

MDS to describe “major confusion patterns”
Results: Distinctive Feature (DF) main variable

Variables: Speaker, vowel context, stress, DF all significant
Conclusions: Results highlight the problem of a rigorous CM analysis

Only a few conclusions
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■ The enhancement of the burst portion of the consonant increases the
consonant’s robustness

■ Magnitude of the effect is about 1-1.5 SD (1<d’<2)

◆ Similar to Kapoor-Allen 2012 which shifted Pc(SNR± 6dB)



4 Jiang “perception of voicing in plosives” 2006
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■ Alwan says “Jiang conducted voicing discrim exps of natural CV
syllables by 4 talkers, in variable amounts of white noise.

■ Onset of F1 is critical to perceiving voicing (not VOT).
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1. Analysis summary (a must-read):

■ “Information” ≡ acoustic features; “categorization” ≡ perception
■ The näıve invariance hypothesis: “Are a small number unnormalized

cues sufficient for classification?”
■ This has not yet been attempted with more powerful logistic regression

(appeal to the power of statistics)
■ “We did not find any cues that were even modestly invariant for place

of articulation in non-sibilants”
■ “this cue-set was made solely by statistical reliability (rather than via a

theory of production)”
■ “The cue-integration hypothesis suggests that if sufficient cues are

encoded in detail, their combination is sufficient to overcome single cue
variability.”

■ “normalization required to achieve listener-like performance (Cues are
talker-dependent).”

■ “Any scaled up system, without normalization, would still need to
identify vowels and talkers.

i.e., Listeners naturally compensate for tokens.”
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■ Define acoustic cues between labial vs alveolar for plosives and fricatives
Methods: 24 CVs (8 C, 3 V); 4 talkers; White noise (SNR=-15:5:20 dB)
Measures: 17 spectral measures (e.g., F1,2,3, Burst, . . . ); Manner-dependent Threshold SNR∗

79

Results: Linear Logit analysis;
■ Very strange: log(p/1-p) where p is 0 or 1. This seems a serious error.
■ Fig 2: ∆F2 correlated to burst for /a/, thus in agreement with Allen et al.
■ Fig 2: Not so for /i,u,/
■ Makes the case that each of the 24 CVs has one set of support features @80%
■ Correlations are quite low 0.2–0.68 with 25% mean error (not impressive)
■ “Formants more noise-robust than other spectral measures” (-15 dB = chance);

voiceless fricatives lower thresholds than plosives (agreeing with MN55?)
■ The present study showed that fricatives had lower threshold SNRs? than plosives

and that voiceless fricatives were slightly more robust than the voiced ones.
■ within- and across-talker variations were not examined. Within- and across-talker

variations is an interesting future topic.
Conclusion: Formants are highlighted as the main feature
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Phatak-Allen 2007:
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■ Based on the utility of the AI(SNR) they consider the modulation
domain SNR as an important speech metric

■ 1.5 dB enhancement

■ Would Forward masking interfere with their hypothesis?
■ The AI has a very large unaccounted variance Singh-Allen, 2012
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■ Speech perception is a difficult unsolved problem, >100 years old
The present methods are not working: McMurray&Jongman Why?

Bad assumptions? (e.g., Guessing wrong cues?)
Dysfunctional methods? (e.g., Use of synthetic speech)

■ How can we do this differently? Is there a better way? I think so.
1. Remove ‘irrelevant’ variables (e.g., context, visual)
2. Don’t try to ‘guess’ the answer
3. Use ‘real’ speech, with natural variability
4. Take advantage of this natural variability
5. Rigorous theoretical (i.e., Communication-theory) analysis
6. Use a large N to avoid complex significance arguments

Detailed Experimental results with Many talker & listeners

Summary: Rigorous experimental methods & simple analysis Ph|s(SNR),
based on communication and information theory
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Year Experiment Student &Allen Details Publication

2004 MN04(MN64) Phatak 16C+4V SWN JASA (2007)
2005 MN16R Phatak, Lovitt MN55R JASA (2008)

HIMCL05 Yoon, Phatak 10 HI ears JASA (2009)
2006 HINALR05 Yoon et al. 10 HI ears JSLR (2012)

Verification Regnier /ta/ feature JASA (2008)
CV06-s/w Phatak/Regnier 8C+9V SWN/WN

2007 CV06 Pan Vowels
HL07 Li Hi/Lo pass JASA (2009)

2008 TR08 Li Time-truncation ASSP (2009)
2009 3DDS Li Stops TASLP (2011)

3DDS Li Stops JASA (2010)
Verification Abhinauv burst mods JASA (2012)
Verification Cvengros burst mods (2012)
MN64 NZE Singh within-C Pe; AI JASA (2012)

2011 3DDS Li,Trevino Fricatives JASA (2012)
HINAL11-IV Han 17 HI ears+NALR Thesis Ch. 3

2010 HIMCL10-II Trevino 17 HI ears @MCL JASA (2013)
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23 / 54

■ Theory should be based on Shannon’s Theory of Information

1. SNR and Entropy (& token!) are key variables:
AI(SNR) and channel capacity C(SNR)

2. Token Phone error is binary wrt SNR
3. Tokens have a large threshold SD

◆ Never Averaging across tokens!

◆ Do not use DF (depends on averages)

4. Entropy is the ideal measure of confusions
5. Very few studies consider Entropy vs. SNR

◆ NO: Fletcher 1914-1950
◆ YES: Miller Nicely 1955

6. The AI(SNR) has a huge “across & within” consonant SD

Summary: Information Theory: “the systematic way to proceed”
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■ AI(SNR) characterizes the average consonant error (Pe = eAImin)
■ AI ignores the huge across-consonant Standard Deviation (SD)
■ as well as the huge within-consonant SD Singh-Allen 2012
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■ 56 /p/+/o,e,I/ CV tokens: SNR > -10 dB SNR
■ Bimodal error distribution:

◆ 41/56: Zero error (ZE); Ntrials = 38, Nsubj=25

◆ 15/56: Non-zero error (NZE); 11 ≈ ZE (error: 1/38)
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Within-consonant error Pe(SNR− SNR
∗
50) for /p/
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■ Error vs. SNR shifted to 50% threshold SNR∗
50 (LEFT)

■ Histogram of 50% error thresholds (RIGHT)

◆ Sharp transition ⇒ Binary Plosive identification!
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■ Most stops have zero error (ZE+LE) above -10 dB SNR
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■ Most stops have zero error (ZE+LE) above -10 dB SNR
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■ Bimodal error distribution for ≥ -2 dB SNR
■ While speech is highly variable, NH listeners are not
■ The AI is an average measure

◆ Huge ‘across– & ‘within–consonant’ SD (85% of the variance)

◆ SNR depends only on binary threshold distributions



3. Phone Recognition Models

28 / 54

1. Intro + Objectives 3 mins Σ3

■ Research objectives 5 mins Σ8

2. Historical overview 20 mins Σ28

■ AG Bell 1860, Rayleigh 1910, Fletcher 2021, Shannon 1948
■ Speech-feature studies (1950-1990; >1991)

3. Phone Recognition Models 8 mins Σ36

■ Channel capacity and the Articulation Index
■ Speech Psychophysics; AIgram/3DDS (cues); Primes and Morphs;
■ Classification models (e.g., DFs)

4. Cochlear Mechanics 15 mins Σ51

■ CBands, NL, Masking, Role re Speech perception; HI ears

5. Summary + Conclusions + Questions 3+3+4 mins Σ76
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■ We need rigorous procedures for analyzing speech elements
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■ We need rigorous procedures for analyzing speech elements

◆ Basic model of acoustic vs. perceptual cue identification

Φ ΨLISTENER

PHYSICAL PERCEPTUAL

ACOUSTIC FEATURES EVENTS

■ We define two basic measures:

◆ Physical Input: AI-Gram
◆ Perceptual Output: Confusion matrix



Model of Human Speech Recognition HSR
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■ Research Goal: Identify elemental HSR cues

◆ An event is defined as a perceptual feature

◆ Event errors are measured by band errors ek
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■ The Channel capacity theorem gives the zero error SNR bound:

C(SNR) ≡

∫

log2
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1 + snr2(f)
)

df ≈ AI(SNR) (1)
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■ The Channel capacity theorem gives the zero error SNR bound:

C(SNR) ≡

∫

log2
(

1 + snr2(f)
)

df ≈ AI(SNR) (1)

◆ For a Maximum Entropy (MaxEnt) speech source, the maximum
information rate is determined by the AI(SNR)
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■ The Channel capacity theorem gives the zero error SNR bound:
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■ The Channel capacity theorem gives the zero error SNR bound:

C(SNR) ≡

∫

log2
(

1 + snr2(f)
)

df ≈ AI(SNR) (1)

◆ For a Maximum Entropy (MaxEnt) speech source, the maximum
information rate is determined by the AI(SNR)

◆ The AI-gram is a closely related measure

■ Is the human operating below the channel capacity?

◆ Probably YES:
◆ Fletcher’s AI is similar to Shannon’s channel-capacity measure
◆ The Phone error is zero above −10 dB SNR (Eq. 1)

Singh & Allen 2012



3. Results for Normal Hearing (NH) ears

33 / 54

■ The AI predicts Pe(SNR), but with a huge SD (σAI(SNR))
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3. Results for Normal Hearing (NH) ears
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■ The AI predicts Pe(SNR), but with a huge SD (σAI(SNR))

■ Averaging obscures large across-consonant errors σAI(SNR)
■ The SINc of averaging: across-consonant error
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■ Miller-Nicely’s 1955 articulation matrix Ph|s(SNR), measured at
[-18, -12, -6 shown, 0, 6, 12] dB SNR
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■ Miller-Nicely’s 1955 articulation matrix Ph|s(SNR), measured at
[-18, -12, -6 shown, 0, 6, 12] dB SNR

UNVOICED VOICED
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S
T
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U
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S

NASAL

■ Confusion groups ≡ inhomogeneous confusions



Row of confusion matrix (CM) Ph|/t/
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■ This confusion pattern characterizes the /t/ row vs SNR
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■ The SINt of averaging within-consonants (i.e., tokens):

◆ Token confusions are strongly heterogeneous!
◆ Averaging obscures per-token confusions
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■ The SINt of averaging within-consonants (i.e., tokens):

◆ Token confusions are strongly heterogeneous!
◆ Averaging obscures per-token confusions

−20 −15 −10 −5 0 5 10 15
10

−2

10
−1

10
0 Confusion patterns for /t/ (Miller Nicely ‘55)

SNR [dB]

P
h

|/
t/

(S
N

R
)

No Morph

No Morph

Total error

/t/

/p/, /k//f/, /θ/, /s/, /∫/

(a) Average over all /t/s.

−20 −10 0 10

10
−1

10
0

/p/|/t/
P

/p/=Morph /t/

/k/=Morph
/m/

SNR [dB]

Confusion patterns for /te/ talker m117

P
ro

b
a

b
ili

ty
 o

f 
re

c
o

g
n

it
io

n

P
ri
m

e
−

−
>

/te/

(b) Talker m117 /te/ Ph|/ta/(SNR)



Row of confusion matrix (CM) Ph|/t/

36 / 54

■ The SINt of averaging within-consonants (i.e., tokens):

◆ Token confusions are strongly heterogeneous!
◆ Averaging obscures per-token confusions
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■ Never average across tokens!
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■ Identify the key features in individual CV tokens

◆ -Plosives (e.g., /p, t, k/ and /b, d, g/)
◆ -Fricatives (e.g., /T, S, Ù, s, h, f/ and /z, Z, v, D/)
◆ -With vowels /o, e, I/

■ ≈18 talkers and >20 listeners
■ Up to 20 trials per consonant per SNR

■ Method: 3d Deep-Search (3DDS) via truncations (no guessing):

◆ Time truncation Furui 1986
◆ Intensity truncation (i.e., masking)
◆ Frequency truncation (High/Low-pass filtering)

■ Methods: Cochlear models & signal processing

◆ AIgram Régnier & Allen 2008; Li & Allen 2009,10,11
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■ 3d Deep-Search (3d-DS) via truncation (triangulate):

◆ Time truncation Furui 1986
◆ Frequency truncation (High/Low-pass filtering)
◆ Intensity truncation (i.e., masking)
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■ Time-frequency structure of plosives and fricatives
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4. Cochlear Mechanics
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1. Intro + Objectives 3 mins Σ3

■ Research objectives 5 mins Σ8

2. Historical overview 20 mins Σ28

■ AG Bell 1860, Rayleigh 1910, Fletcher 2021, Shannon 1948
■ Speech-feature studies (1950-1990; >1991)

3. Phone Recognition Models 8 mins Σ36

■ Channel capacity and the Articulation Index
■ Speech Psychophysics; AIgram/3DDS (cues); Primes and Morphs;
■ Classification models (e.g., DFs)

4. Cochlear Mechanics 15 mins Σ51

■ CBands, NL, Masking, Role re Speech perception; HI ears

5. Summary + Conclusions + Questions 3+3+4 mins Σ76
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■ 1910-1980: Bell Labs (long history)

◆ Fletcher 1914; Wegel & Lane 1924; Flanagan; Hall; Allen

■ 1960-2010: MIT + Harvard HSBT

◆ Eaton Peabody (Kiang, Siebert, Liberman, Guinan, Shera, . . . )

■ Netherlands, England

◆ deBoer, Duifhuis, Evans, . . .

■ Australia (B. Johnstone, . . . )
■ 1980-2011: NIH funded University research

◆ MIT; Wash U; Boys Town; U. Wisc.; U. Mich.; Nortwestern U.

■ The role of cochlear modeling on speech perception is huge!

◆ And underappreciated, IMO
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Upward spread of masking
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■ This effect leads to forward masking
■ Forward Masking is a very large effect lasting for up to 200 ms
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■ Onset transients enhance the auditory nerve response, to 2 [cs]
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■ Forward Masking depresses the response up to 40 dB, to 20 [cs]
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■ Research objectives 5 mins Σ8

2. Historical overview 20 mins Σ28

■ AG Bell 1860, Rayleigh 1910, Fletcher 2021, Shannon 1948
■ Speech-feature studies (1950-1990; >1991)
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■ Channel capacity and the Articulation Index
■ Speech Psychophysics; AIgram/3DDS (cues); Primes and Morphs;
■ Classification models (e.g., DFs)

4. Cochlear Mechanics 15 mins Σ51

■ CBands, NL, Masking, Role re Speech perception; HI ears

5. Summary + Conclusions + Questions 3+3+4 mins Σ76
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■ New methods:

1. AI-gram based on centi-second & critical band scales
2. 3DDS (truncate: time, freq, intensity) to isolated cues: Plosives

/p, t, k/, /b, d, g/ + Fricatives /T, S, Ù, s, h, f/, /z, Z, v, D/) + vowels

/o, e, I/

3. Data on discriminating consonants in noise, NH listeners use

■ Plosives: Burst + timing to Voicing

■ Fricatives: Low-frequency edge + duration + F0 modulation

5. STFT to manipulate speech:

◆ Morph consonants (e.g., /k/ to /t/ to /p/)
◆ Intelligibility: Modify SNR90
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■ We have demonstrated:
1. Speech cue detection is binary (6 dB SNR range)
2. Explained the AI properties:
3. Established the basis of acoustic cues

◆ Burst, frequency-edge, timing & SNR50 distributions
◆ Pe(SNR) = eSNR

min due to SNR∗
50 distribution

3. Explored the natural existence of conflicting cues

◆ This could impact ASR systems
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■ Findings re HI ears:
1. HI ears have huge individual differences

◆ Individual differences dominate HI results
◆ No two ears are the same
◆ Low correlations between HL(f) and Pe(SNR)

2. Each ear has a different consonant recognition strategy
3. A better understanding of HI acoustic cue detection will lead to:

◆ Improved understanding of HSR for NH & HI ears
◆ Better signal processing methods
◆ Speech-aware hearing aids in 5 years >c2016

■ Individual fitting based on specific confusions
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Question your basic
assumptions

Thank you for your attention

http://hear.ai.uiuc.edu/

http://hear.ai.uiuc.edu/wiki/Main/Publications

http://hear.ai.uiuc.edu/
http://hear.ai.uiuc.edu/wiki/Main/Publications
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■ ‘Distinctive features,’ ‘Acoustic cues,’ & ‘Perceptual cues’
■ Synthetic speech

◆ Assumes cues [F2(t), Modulations, durations, . . . ]
◆ Low Entropy of experimental task?

■ One parameter (e.g., F2) typically varied
■ Human CV speech is an open-set 11 bit task!
■ Context reduces the entropy (Sentences; Key words; Known

material)

■ Noise (type, amount, analysis method?)

◆ “Babble” you can almost understand (e.g., 1-talker)
◆ Sine-wave speech

■ Magnitude of the result (e.g., <6 dB)
■ Suggestions from you . . . ?
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