MODELS OF THE AUDITORY SYSTEM
AND RELATED SIGNAL
PROCESSING TECHNIQUES

Organized and edited by
M. HOKE and E. DE BOER

PROCEEDINGS FROM THE WORKSHOP HELD AT
MÜNSTER, FEDERAL REPUBLIC OF GERMANY
SEPTEMBER 1978
MODELS OF THE AUDITORY SYSTEM AND RELATED SIGNAL PROCESSING TECHNIQUES

Organized and edited by
M. HOKE and E. DE BOER

PROCEEDINGS FROM THE WORKSHOP HELD AT MÜNSTER, FEDERAL REPUBLIC OF GERMANY SEPTEMBER 1978

Distributed by
THE ALMQVIST & WIKSELL PERIODICAL COMPANY
STOCKHOLM, SWEDEN
The equivalent circuit for a 2-terminal resistor is a parallel combination of two resistors, each with resistance R.

\[
\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}
\]

Where R_1 and R_2 are the individual resistors.

The equivalent resistance of the circuit is:

\[
R_{\text{eq}} = \frac{R_1 R_2}{R_1 + R_2}
\]
Cohere models

Cohere models

Cohere models
Chapter 17.9: \textit{Spurious Grounds of the cooperator, see text.}

\textbf{q} \\
\textbf{x} \\
\textbf{z} \\
\textbf{A} \\
\textbf{A} \\
\textbf{q} \\
\textbf{x} \\
\textbf{z} \\
\textbf{A} \\
\textbf{A}

Introduction

1. \textit{Introduction}

1.1 \textit{Introduction to Traveling Waves and Coaxial Resonance}