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Acoustic intermodulation distortion products (DPs) are generated by the nonlinear motion of 
the basilar membrane (BM) in the cochlea, and propagate back to the ear canal where they may 
be measured. One common method of measuring these distortion products is to hold the 
higher-primary frequency f2 fixed while varying the lower-primary frequency fl. When doing 
this, it is well known that the ear canal distortion product is maximum for a particular value of 
f•/f•, usually between 1.1 and 1.4. In fact all odd order distortion products of the form 
f?)=f•--n(f2--fl), n= 1,2,3 .... are maximum at the same f(d n) , independent of the order n, 
but dependent onf• which determines the place of DP generation. In this paper, it is argued that 
this maximum must result from filtering by micromechanical resonances within the cochlea. In 
fact the frequency where the neural tuning curve "tip" meets the "tail" is the same as the 
frequency where the distortion products are maximum. This suggests that each section of the 
basilar membrane must consist of two resonant impedances. The first is the usual series basilar 
membrane resonant impedance that gives rise to the characteristic frequency (CF). The second 
resonant impedance must be tuned to a frequency that is lower than the CF and must act as a 
shunt across the inner hair-cells, since it acts to reduce the forward transmission to the neuron, 
while, at the same time, it maximally couples all the distortion products back into the cochlear 
fluids, giving them a frequency dependent increase at its resonant frequency. Thus the proposed 
second mechanical resonance concept explains a great deal of complicated and confusing data. 
For pure tone excitation, the second resonance modifies the traveling wave excitation pattern 
(EP) basal to its characteristic place (CP). A good candidate for this second mechanical 
resonance would be a resonance of the tectorial membrane (TM), tuned to the neural tip-tail 
frequency at each place. 

PACS numbers: 43.64.Bt, 43.64.Jb, 43.64.Kc, 43.64.Pg 

INTRODUCTION 

Nonlinear acoustic distortion products of odd-order 
are known to be generated on the basilar membrane (BM) 
in response to two primary tones, at frequencies • and f•, 
with f2 > fl, and at pressure levels Pl and P2. After being 
generated, these distortion products propagate back along 
the basilar membrane to the ear canal, where they may be 
measured with a microphone. The frequency of the distor- 
tion product fd may be independently varied, for a fixed 
f2, by varying fl and by choosing the DP order n. We 
shall look at the distortion products that arc just below 
f• in frequency, namely j?)=fl--n(f•--f•). For n= 1, 
fd=2fl--f•. It has been shown in guinea pig and human 
(Brown and Gaskill, 1990; Brown et al., 1992), cat (Fahey 
and Allen, 1986), and rabbit (Whitehead et al., 1992), 
that the first order (n= 1) distortion product 2fl -- f2 is 
maximum when f2/f• is approximately 1.1 to 1.4. It is not 
as well known that when f2 is held fixed, all the DPs are 
maximum at the same frequency, independent of the order 
n (Fahey and Allen, 1986, page 320, Fig. 5; Brown and 
Gaskill, 1990; Brown et aL, 1992). 

In this paper we study the question, Why do the ear 
canal distortion products rise to a maximum and then de- 
crease as f • approaches f 27 There arc two obvious possible 

explanations of this phenomenon, suppression and filtering. 
The suppression hypothesis argues that one primary sup- 
presses the other as the primary frequencies come together, 
decreasing the distortion product level. The filtering hy- 
pothesis argues that the distortion product is filtered by the 
micromechanics of the organ of Corti, by a filter tuned to 
the maximum DP frequency, which is determined by the 
DP generation site. 

We may choose between these two possibilities by 
looking at the frequency response of the distortion product 
as a function of the DP order n. Since the DPs are maxi- 

mum at the same frequency, independent of their order, 
and, thereby, necessarily independent of f•, we conclude 
that they have been filtered by the micromechanics rather 
than having been suppressed. This raises the interesting 
possibility that neural tuning might be correlated to distor- 
tion product tuning. 

In this paper we describe such a correlation. Namely 
we show a correlation between the frequency where the 
distortion products are maximum and the frequency where 
the tip and the tail join on the neural tuning curve recorded 
from the f2 place, for 2 kHz<• 20 kHz. We then show 
that this correlation can be explained by a mechanical res- 
onance tuned to a frequency below the resonant frequency 
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FIG. 1. The partial excitation patterns are shown for the conditions of the 
distortion product generation. Since f2 is higher in frequency than f•, its 
excitation pattern is basal to that of fi- The DP 2fl -- f•, being lower 
in frequency than both fl and fz, is apical to both. It is also lower in level 
on the basilar membrane by about 40 dB. 

(CF) of the basilar membrane. This second tuned imped- 
ance must appear as a velocity-shunt to the cilia motion to 
account for the correlation between the frequency re- 
sponses of the distortion products and the neural tuning 
curves. 

I. DISTORTION PRODUCT GENERATION 

First we describe distortion product generation and 
the data that leads us to the conclusion that the distortion 

products are tuned. 
Figure 1 is a cartoon depicting the tips of the excita- 

tion patterns for f2 and f], along with the excitation pat- 
tern for the f(an)=f•--n(f2--fO (n= 1,2,3 .... ) DP. The 
greater the distortion product order n, the lower the DP 
frequency and the further its excitation pattern shifts to the 
right. In the figure we label the various features seen in the 
excitation pattern. We define the characteristic place (CP) 
Xcv(f) as the location on the basilar membrane where the 
excitation pattern is maximum, for a given input tone hav- 
ing frequency f. The CP for f• is XcF(f•), while 
XcF(fa) is the CP for the distortion product. 

To generate a distortion product on the basilar mem- 
brane, two primary tones having pressure P• and P• are 
presented to the ear canal, giving rise to the two excitation 
patterns (EPs) shown in Fig. 1 that peak at Xcv(f•) and 
Xc•(f]). We shall look at intermodulation distortion prod- 
ucts generated by the nonlinear basilar membrane interac- 
tions of the primaries at frequencies f•- n (f2--f:), where 
n is any integer. With n > 1, the distortion products have 
frequencies lower than either of the primaries, while for 
n <-- 2, the distortion product frequencies are higher than 
either primary. The most interesting of these, and the ones 
that we will describe here, are the first three lower fre- 
quency distortion products (n= 1,2,3). 

The distortion product is generated in a region along 
the basilar membrane corresponding to the maximum 
overlap of the two primary excitation patterns. This place 
is believed to be near, or at, the f2 place (Matthews and 
Molnar, 1986). At low frequencies, say below 1 kHz, 
where the high frequency slope is not as sharp, the sontee 

8-OE-O•1O ' 

FIG. 2. Cat distortion products 2fi -- f2 (solid line) and 3f• -- 2f• 
(dashed line) for a fixed f2 of 4 kHz. The primary levels were Pi =84 and 
P• = 72, 69, 66 dB $PL. The maximum DP levd at f•a is just below 2.0 
kHz for this example. 

location could spread toward the f• place. We are not 
aware of any data that confirms this possibility however. 

The nonlinear component of the motion at the generator 
site is belieoed to be the source of the distortion products. 
Any source on the basilar membrane generates waves 
which propagate both to their corresponding characteristic 
place Xcv(fs), and back to the ear canal (Hall, 1974; Kim 
et al., 1979; Fahey and Allen, 1985). 

A. Relation between maximum DP and f• 

Frequency f•a(f2) is defined as the frequency corre- 
sponding to the maximum distortion product. Assuming 
f•>2 kHz, with fixed f2, fl varied, and n > 1, the distor- 
tion product pressure P(fa) is maximum at frequency 
f•a(f•), dependent on f• and independent of f• and n 
(Brown and Gaskill, 1990; Fahey and Allen, 1986; Fahey 
and Allen, 1988). In other words, each distortion product, 
2 f •-- f a, 3 f •-- 2 f •, and 4 f • -- 3 f •, has a maximum pres- 
sure at the same frequency. It follows that they must be 
maximum for different f•/f• ratios. 

In Fig. 2 we show DP data for n = 1 and n----2 for a 
fixed f• of 4 kHz for the cat. In this case the DP shows a 
maximum at a frequency slightly below 2 kHz. 

In Fig. 3 we show the n = 1 DP in a human ear for 
primary levels of 65 dB SPL, for six different fz values. In 
one ease, for f• near 2 kHz, the DP response has a 
"notch," leading to a non-monotonic response. These 
notches are strongly dependent on the primary signal lev- 
els. By taking data at slightly different levels of P2, the 
notches may be avoided. 

In Fig. 4 we see DP data for n=l,2 for the eat. Since 
this data was taken at very high sound pressure levels, the 
curves appear less regular than the data of Fig. 4. However 
we see that each response is tuned in a manner that de- 
pends on f•. 

Brown and Gaskell (1990) have presented similar 
data in several other species, and have observed similar 
relations between the higher-order distortion products. 

We, and Brown and Gaskill (1990), independently 
draw the following conclusions: (a) because f•a(f•) is in- 
dependent of n, the distortion products must be filtered by 
a band-pass filter tuned to f•a(fa), (b) because f•a(fz) is 
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FIG. 3. The upper panel shows the primary levels used to measure the 
distortion products 2fi -- f2 in the human ear as a function of f2 using 
the CUBDIS TM measurement system (Etymotic Research, Elk Grove 
Village, IL). In the upper panel the primary levels are shown. The trian- 
pie gives the frequency and level of P2, while the solid line shows the 
swept tYequencies and levels of Pi. In the lower panel the corresponding 
2f1--f2 level (solid line) is shown, plotted as a function of 
fa=2fl--f2. The dashed lines show the noise floor corresponding to the 
DP measurement. 

independent of f], this filter must be associated with the 
place of DP generation, namely x2. 

B. Relation of PJd to f2 

In Fig. 5 we show the f•a (f2) data points for the cat. 
We have taken data from earlier work (Fahey and Allen, 
1986) and from unpublished data. The x's represent the 
2f•--f2 data and the o's represent the 3f•--2f2 data. The 
dashed line is given by 

f•a (f2) = 0-08f• '22. (]) 
Similar data for human subjects, such as the data of 

Fig. 3, give a different relation for J•a(f2), namely 
J•a (f2) =0.5f2 Lø4. Thus f•a (f2) for eat and human are dif- 
ferent. 
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FIG. 5. The x's show the frequencies f•a(f•) corresponding to the max- 
imum DP for 2fl - f• while the o's show them for 3fl -- 2f•. The dashed 

•=0.0s/• , Eq. line is given by 122 

For f•>2 kHz, the distortion products that have 
higher frequencies than the primaries, such as 2f•--fl 
(n= --2) and 3f2--2fl (n= --3), do not show these max- 
ima (Fahey and Allen, 1988 and unpublished data). Gen- 
erally these higher frequency distortion products approach 
their maximum when frequencies f• and f• are almost 
equal (at maximum overlap of the f• and f• excitation). 

II. NEURAL FREQUENCY TUNING CURVES 

As mentioned in the Introduction, we will describe a 
correlation between cochlear tuning, as measured by neu- 
ral tuning curves, and DP tuning. In order to understand 
this relationship several definitions are necessary. 

A. Definition of terms 

The neural frequency tuning curve (FTC) is defined as 
the car canal pressure Po(f, xo) at a deftned threshold cri- 
teflon (usually one neural spike per 50 millisecond interval 
above spontaneous) for excitation of a neuron innervating 
location x0 on the basilar membrane, as a function of fre- 
quency f. Figure 6 shows a family of such FTC's as mea- 
sured in the cat. The most sensitive frequency fcF is called 
the characteristic frequency, or CF. The CF of the neuron 
tuned to 6 kHz in Fig. 6 is labeled Fcf. 

-3.0 

FREQUENCY 

FIG. 4. Distortion products 2fl -- f2 and 3fl -- 2f• for six different 
f: values for the cat (f:=2.6, 4.0, 5.9, 8.9, 13.3, and 20 kHz}. The 
3fl -- 2f: DP's have been shifted up by 5 dB. Each pair of curves has 
been displaced by 20 dB for clarity. The primary levels were approxi- 
mately 96 dB SPL for this figure. At these high levels many "notches" 
begin to appear. However the DP levels still decrease as fl approaches 
fz for both types of DP's. 

EPL CAT NEURAL TUNING DATA 

,, ,-,, /,', 
', 

Fz I Fdl 

1.0 3.0 6.0 10.0 

FREQUENCY [kHz] 

FIG. 6. Shown here are a family of cat frequency tuning curves, defined 
as the ear canal pressure that will just excite the neuron (note that the 
amplitude scale is inverted). Each curve corresponds to a single neuron. 
The location of the neuron may be determined from the coehlear map 
function. The 6-kHz CF is indicated by Fcf. The frequency where the tip 
and tail meet for the 6-kHz CF neuron is indicated by Fz and is 3 kHz. 
The data used to construct these curves were provided by M.C. Liberman 
and B. Delgutte of the Mass Eye and Ear Infirmary, Boston, MA. 
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FIG. 7. Left: The upper solid curve is a plot of fcv(X) for the cat as a 
function of position along the basilar membrane. The dashed curve shows 
f,(x). The o's are inflection points taken from the excitation patterns. 
The x's are points taken from the frequency tuning curves where the tip 
meets the tail (data from 12 animals). The *'s are taken from Kim et al. 
(1979). Right: In this panel we have plotted fz(x) as a function of 
fcv(X) for each x value. The data points fall on a straight line on a log-log 
frequency plot. The equation for the dashed lines is given by fz 
= O.08f'd• •, E.q. (2). 

FIG. 8. This family of neural excitation patterns has been derived from a 
large number of FTC's, including those of Fig. 6, using the cochlear map 
function shown in Fig. 5 (solid) left. Feature x, at 15 mm for the EP 
corresponding to 500 Hz (Xcv=19 mm) is labeled. It is determined by 
the place where the slope of the EP sharply changes. The EP for each 
frequency shows such a slope change. The points of these inflection points 
are plotted in Fig. 7 (LEA) as circles. The data used to construct these 
curves was provided by M.C. Liberman and B. Delgutte of the Mass Eye 
and Ear Infirmary, Boston, MA. 

1. The cochlear frequency map 

The cochlearfrequency map is defined as the functional 
relationship of the CF as a function of place x along the 
basilar membrane. The eochlear map function is shown in 
Fig. 7 (Left) as the solid curve, and is known from exper- 
iments. The eochlear map function fcv(X), which de- 
scribes the characteristic frequency as a function of place, 
was determined by Liberman (1982) for the eat using 
chemical markers following neural tuning curve measure- 
ments. Since the eoehlear map is a single valued function, 
its inverse xcp(f), which describes the characteristic place 
as a function of frequency, is also known. 

B. Neural excitation patterns 

The excitation pattern (EP) is defined as the response 
along the basilar membrane to a pure tone. However, it is 
very difficult, if not impossible, to obtain the EP direcfiy 
because it requires the simultaneous measurement of many 
points along the basilar membrane. A function closely re- 
lated to the EP may be derived from a family of neural 
tuning curves in a straight forward manner. Each neural 
tuning curve P0(f, x0) represents the threshold pressure as 
a function of frequency f corresponding to a hair-cell lo- 
cated at x 0 on the basilar membrane. At one frequency, 
fcF, the pressure is minimum, indicating the most sensi- 
tive frequency of the neuron. From the cochlear map (see 
Fig. 7), x 0 may be determined once fcF is known since 
x0 = Xcp(fcp). Given many such tuning curves, and given 
the cochlear map function, one may convert the neural 
tuning curves into functions of x for a fixed frequency. 
These derived functions Po(fo,x), plotted as a function of 
x for a given frequency fo, will be called neural excitation 
patterns. Instead of plotting the pressure, we plot the re- 
ciprocal pressure, giving a display that is similar to the cilia 
(hair cell shear) stimulus. Because of the basilar mem- 
brane nonlinearity, the derived neural excitation pattern is 
not the same as the cilia excitation pattern for a fixed input 
level. One may consider the neural excitation pattern as a 
plot of the reciprocal pressure required to excite each neu- 

ron at threshold. Further detail for constructing the neural 
excitation patterns is given in Allen (1990). 

In Fig. 8 a family of neural excitation patterns, derived 
from the FTC's of Fig. 6, are shown. The characteristic 
place Xcv(f) is the location on the basilar membrane 
where the excitation pattern is maximum, for a given input 
tone having frequency f. The CP for the 500-Hz tone is 
labeled as Xcf and is approximately 19 mm. 

1. A second cochlear map 

When looking at families of FTC's, a second cochlear 
map, which we call fz(x), may be defined. Function 
fz(x) describes the frequency of the tuning curve where 
the tip and tail join. In Fig. 6 the frequency fz at 3.0 kHz 
is labeled for the 6-kHz FTC. This feature, although 
present, is not clearly seen at the lower frequencies because 
it is obscured by the many other sub-systems that also 
depend on frequency, such as the middle ear and the hair- 
cells. When viewing excitation patterns however, each fre- 
quency response is constant, since tones having a single 
frequency are used as the input. In this ease the junction 
between tip and tail becomes well delineated at all frequen- 
cies, as may be seen from Fig. 8 where xz(f) labels the 
change in EP slope. The functions xz(f) and fz(X) are 
inverses of each other, as is the case for the cochlear fre- 
quency map xcF(f} and fcF{x). For example, in Fig. 8 we 
show x z at 16 mm for the 500-Hz EP having its Xcp at 19 
min. The x z for a 1-kHz tone is near 14.1 ram, and for a 2- 
kHz tone x• is approximately 11.3 min. 

The function f•(x) is shown in Fig. 7 (Left) as the 
dashed curve. The o's on that curve represent data taken 
from the neural excitation patterns, while the x's are data 
points taken from frequency tuning curves. At low fre- 
quencies the EP's define Xz(f) most clearly. At high fre- 
quencies f= may be directly estimated from the FTC. How- 
ever the effect of fz may be seen in the FTC's at low 
frequencies. For example, the slope inflection at 16 mm for 
the 500-Hz EP (Fig. 8) shows up at 200 Hz on the FTC 
tuned to 590 Hz. 
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FIG. 9. Figure from Kim et al. (1979) which shows the rate and phase of 
a 620 I-Lz tone at 15 and 45 dB SPL for hundreds of neurons, plotted as 
a function of each neuron's characteristic frequency. As before, we define 
xz(fo) as the place where the excitation pattern changes its slope. This 
place depends on the tone frequency f0 = 620. In their study they used 
two tone frequencies, fo of 620 and 1550 Hz. Note how the neural phase 
jumps by 180 degrees at x z. 

To determine the frequency of fz for a given fee from 
Fig. 7 (Left), one must use the same abscissa, since a 
tuning curve is measured for a neuron at one place. When 
determining x z corresponding to a given XCF from Fig. 7 
(Left), one must use the same ordinate, since in that case 
the frequency is fixed. The curve fz(x) was first described 
in Allen (1980). 

•. A third measure of •(fz) 

Kim et al. (1979) and Kim et aL (1980) measured the 
response of many neurons to small number of tones, and 
plotted the rate and the phase as a function of the neurons 
characteristic frequency. This gave a neural excitation pat- 
tern corresponding to a fixed tone. We reproduce some of 
their data in Fig. 9, which shows the neural rate and the 
phase for a 620 Hz tone at two levels, 15 and 45 dB SPL. 
In the neural excitation patterns of Figs. I and 8, the tones 
are not fixed in level, while in Fig. 9 only one tone level is 
used for each curve. We may estimate xz(fo) from the 
Kim data from fo=620 Hz and fcF(Xz) = 1800 Hz. They 

repeated the experiment with f0--1550 Hz where they 
found fCF(Xz) = 4000 Hz. These two data points are 
shown as the *'s in Fig. 7. 

The phase properties of the neural excitation pattern 
are of significant interest because at xz(fo) the phase 
jumps by 180 degrees (7r radians). This phase behavior is 
a clear indication of a two-component cancellation taking 
place at x:. The Kim et aL studies used two different fre- 
quencies. They found that the phase jump depended on the 
tone frequency which was at x: in both cases. We conclude 
that the phase jump they found for these two tones is a 
general property of xz(f) at all frequenciea 

C. The relation of fz to fcr 

When plotting log(f z) against log(fcF), we have 
found that the data points fall on a straight line, as shown 
in Fig. 7 (Right, dashed line). The dashed line in this 
figure is given by 

i.22 
f z=O.O8 f• F . (2) 

The formula for fcF(X) as given by Liberman (1982) is 

fcF(X) =456( 102'l(]-x/L) --0.8). (3) 
Substitution of Eq. (3) into Eq. (2) defines the relation 
f:(x) shown in Fig. 7 (Left). Liberman estimated a co- 
chlear length of L=2.5 cm for the cat cochlea rather than 
the 2.2 cm assumed in this paper (Greenwood, 1990). This 
difference in assumed basilar membrane length has no ef- 
fect on the conclusions of this paper. 

D. What is the meaning of fz(x)? 

We shall show that the frequency defined by this sec- 
ond cochlear map plays an important role in both cochlear 
tuning and in distortion product response. We will argue 
that the feature labeled by xz and f: is due to a second 
resonance within the organ of Corti (e.g., in the microme- 
chanics). 

III. COMPARISON OF •(f•) AND fz(f2) 

The two sets of relations, Eq. (l) (determined from 
DP data), and Eq. (2) (determined from F"rc data), de- 
scribe the same function. 

What is the meaning of Eqs. (1 } and (2) being the 
same function? It means that the distortion product is max- 
imum when its frequency is equal to the tip-tail frequency 
fz(f2) corresponding to the higher frequency primary's 
place x•. In terms of equations, this condition is 

f•d (f•) =f•(f•)' (4) 

Next we explain why this must be true. 
When we fix f•, we fix the generator site at x• 

= Xcv(f•). Referring to Fig. 7 (Right) and Eq. (2), we 
determine fz at x2 to be 

f,(f2) =0.08f• a•. (5) 
By substitution of Eq. (5) into Eq. (1) we find the condi- 
tion of the maximum distortion product Eq. (4). 
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FIG. 10. Block diagram showing the type of impedance relationships that 
must exist within the organ of Corti to account for the observed relation 
between the FTC's and the ear canal DPs. The distortion product source 
is shown as Pdp. 

We may alternatively think in terms of the excitation 
patterns shown in Fig. 1. When fa = f•a, where is xz(fa) 
relative to x2 = Xcv(f 2)? The distortion product is maxi- 
mum when the place of the slope-inflection in the neural 
excitation pattern for the distortion product xz(f a) is at the 
higher frequency place x2. In terms of equations, this con- 
dition is 

Xcv(f2) =xz(f•a). (6) 

To see this we must use Fig. 7 (Left) and a graphical 
construction. In the figure, pick an x2 and draw a vertical 
line. This line crosses the dashed curve at fz(f2) and the 
solid line at f2. From Eq. (4), this value offz(f2) is also 
the frequency of the maximum distortion product. Thus if 
we draw a horizontal line at frequency f•(f2) then it 
crosses the solid line at the maximum DP's characteristic 

place Xcp(f•a) (see Fig. 1). To find xz(f•a), move back 
along the horizontal line to the dashed line, which is the 
same as Xcv(f•), confirming Eq. (6). 

Next we discuss the correspondence between Eqs. ( 1 ) 
and (2) in terms of the physics of the organ of Corti. 

IV. THE MICROMECHANICS OF THE SECOND 
RESONANCE 

To describe our results physically we introduce the 
concept of a linear two-port model to relate the basilar 
membrane velocity V(f,x) and pressure P(f,x) to the 
outer hair cell (OHC) cilia velocity v(f,x) and force 
f(f,x) (Allen and Neely, 1992). We choose this formula- 
tion because it makes no assumptions about the relation 
between the basilar membrane and the hair cells other than 

linearity. In terms of the 2 X 2 matrix of frequency and 
place dependent components A(f,x), B(f,x), C(f,x), 
D(f ,x), 

[A(s,x) l F(f,x)]=•c(f,x) D(f,x)J[v(f,x)J' (7) 
As shown in Fig. 10 we assume that at each point x 

along the organ of Corti three impedances are defined: 
Zb, Zt, and Z c. The outer hair cell cilia impedance is the 
output load, and is defined as Z c = f/v. This impedance is 
assumed to be the cilia stiffness in series with a resistor that 

represents the damping of the fluid space between the tec- 

torial membrane and the reticular lamina (Allen, 1980). 
The impedance Zb'is in series with the input, while Zt 
shunts the output. These latter two impedances are as- 
sumed to have mass components, giving them a resonant 
frequency. We define the resonant frequency of Z t as fz- 

Since I Zt I is minimum at its resonant frequency f•, if 
I Z, I <l Zcl at f•, then the neural tuning curve will be 
less sensitive at f• because some velocity will be shunted 
through Z•. This impedance can also maximally couple the 
distortion products back into the basilar membrane and 
cochlear fluids at f•, as observed. 

In terms of Fig. 10, A, B, C, and D are (Allen and 
Neely, 1992; Allen, 1980) 

A= 1 -[-Zb/Z t (8) 

B=Zb (9) 

C= 1/Z t (10) 

O=l. (11) 

The transfer function H 0 = ¾/V is 

1 

Hø(x'f) -- CZc+ D (12) 
1 

--Z/Z,+ 1' (]3) 
while the partition (basilar membrane) impedance 
Z•,(x,f) =P/V is given by 

Zv(x,f) = C+ DZ• (14) 
( 1 +Zt,/Zt)Z•+Z•, 

-- (15) 
Zo/Zt+ 1 

=Ho[ ( 1 +Zt,/Zt)Z½+Zt, I. (16) 

The observation that fz (the frequency where the tip 
joins the tail of the neural tuning curve) and f•a (the fre- 
quency of maximum DP) are at the same frequency is 
explained by assuming that both Eqs. (13) and (16) are 
dominated by the impedance of Zt at its resonance fre- 
quency f•. This condition requires that Z t shunt the cilia 
velocity ¾ away from the output impedance Z c at f•, and 
back into the cochlear fluids, namely that IZtl < I Zcl. It 
is also necessary that I Zbl not be large relative to I Ztl . A 
proper study of these conditions requires an analysis of the 
poles and zeros of H0 and Zv. 
A. Location of the nonlinear element 

We now argue that the nonlinear element that gener- 
ates the distortion products must be in the basilar mem- 
brane stiffness. Many models have taken it to be in the 
resistance component in cochlear amplifier models. We 
shall show that this is unlikely, based on the impedance of 
the basilar membrane at the generator site. 

In Fig. 11 we show the neural excitation patterns for 
the two primary signals at frequencies f• and f•, along 
with the impedance of the basilar membrane at those fre- 
quencies. The basilar membrane impedance depends on 
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FIG. 11. We show here the relation between the basilar membrane im- 

pedance and neural excitation patterns for the two primary tones used to 
generate the DPs. At the place of generation, x•, the impedance at radian 
frequency •o• (•o• = 2trf• ) is stiffness dominated. For a nonlinear element 
to generate distortion products, it must have motion at both frequencies. 
Since almost all of the motion at the lower frequency f• is across the BM 
stiffness at the generator cite x2, the nonlinear element must be the BM 
stiffness. 

position along the cochlea, as well as frequency. In the 
figure we show how the impedance varies along the basilar 
membrane at the two primary frequencies. At the f2 place 
x 2, at frequency f], the impedance is dominated by the 
stiffness of the basilar membrane because the stiffness re- 

actance is inversely proportional to the frequency. In phys- 
ical terms, this means that most of the motion at f] is in 
the stiffness element, rather than in the resistive or mass 
elements. At frequency f2 and place x2, the impedance is 
still stiffness dominated, but to a lesser extent. From mod- 
els we know that the high frequency cut-off slope corre- 
sponds to the resonant frequency of the basilar membrane 
impedance. Thus we have aligned these two points in the 
figure. 

If a mechanical nonlinear element is to generate dis- 
tortion products, it must move at both input frequencies. 
Since the only element at the f2 place to move significantly 
at frequency fl is the stiffness, the stiffness must be the 
nonlinear element. We have shown this nonlinear motion 

as a Th6venin pressure source Pap in Fig. 10. 

B. The resonant TM model 

A possible physical realization of the generic model of 
Fig. 10 is the physical model shown in Fig. 12 obtained by 
the introduction of an elastic element K t in series with the 
tectorial membrane (TM) (Allen, 1980). 

At low frequencies, below the resonant frequency of 
the TM, downward motion of the basilar membrane pulls 
the TM in phase with the reticular lamina (RL) (e.g., to 
the right). The hair cell cilia stand between the RL and the 
TM, defining the subtectorial space. The resulting shear 
between these two surfaces depends on the relative stiffness 

FIG. 12. In this figure we show a cross section of the organ of Corti, 
represented as a model of springs, masses and dash-pots (mechanical 
resistors). This model is a physical realization of two impedance model 
shown in Fig. 10. 

of the cilia K c and the TM K t . If K c is 30 times stiffer than 
K t, then the TM-RL shear will be 30 times smaller than 
the basilar membrane motion. As the frequency increases 
above the resonant frequency of the TM, the relative mo- 
tion of the TM reverses. This means that it is moving to the 
left as the BM is pushed down. This change in phase means 
that the full motion of the BM must appear across the 
TM-RL surface. 

One effect of the resonant TM is to isolate the cilia 

from low-frequency motions. It also would have the effect 
of reducing the low frequency BrownJan motion of the cilia 
because it reduces the real part of the mechanical imped- 
ance seen by the cilia. This means that this structure is 
ideal from a noise analysis point of view. We show the 
stiffness of the BM as a nonlinear element by drawing an 
arrow through it. We assume that this stiffness decreases as 
the outer hair cells are depolarized. We leave the details of 
this discussion to a future paper (see also Allen, 1990; 
Allen and Neely, 1992). 

V. DISCUSSION 

We started by asking a question about the non- 
monotonic behavior of the ear canal distortion products. 
We showed that a cochlear micromechanical filter, tuned 
to j•a(x2) [Eq. (1)] must be invoked to account for the 
independence of the maximum with distortion product or- 
der. We then argued that if the distortion products are 
filtered, there may be a corresponding filtering of the neu- 
ral tuning curves. In fact such a relationship was found. 
We showed that the J•a (f2) was correlated to the tip-tail 
frequency of the frequency tuning curves and excitation 
patterns. We defined this frequency as f2(xcv), which de- 
fines a second cochlear map. We showed that one resonant 
impedance can filter both the ear canal distortion products 
and the cilia excitation in the observed way if it appears as 
a velocity shunt across the hair cells, leading to the generic 
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circuit shown in Fig. 10. Based on an impedance argument, 
we argued that the nonlinear element must be the basilar 
membrane stiffness, with the stiffness decreasing as the 
outer hair cells are depolarized. 

The identification of fz(x), and its relation to both the 
minimum in the tuning mechanism and the maximum in 
the DP generation, quantitatively establishes tuned micro- 
mechanical processes. We have accounted for this correla- 
tion with a second shunt resonance Zt(f,x) within the 
organ of Corti, and summarized our observations with the 
diagram of Fig. 10 and the transfer functions defined in the 
previous section. 

This model is further supported by other compelling 
evidence: 

ß Basilar membrane measurements do not show the 

tip-tail pattern commonly seen in high frequency 
neura tuning curve plots. No measured basilar 
membrane data has ever claimed to have tip-tail 
junctions that are as well defined as those of neural 
tuning curves at high frequencies. 

ß The. neural population studies of Kim et aL found a 
180-degree leading phase shift at %. Equation (13) 
in fact "predicts" this phase shift at the resonant 
frequency of Zt, namely at fz- For more discussion, 
see Fig. 4, of Allen, 1980, page 1663. 

ß Basilar membrane measurements do not show the 

180-degree phase shift at x z found by Kim et aL in 
neural population studies. No basilar membrane 
phase measurements have never shown this feature. 

ß Neural data shows that two-tone rate suppression 
occurs with sub-threshold suppressors (Fahey and 
Allen, 1985). Hall (1980) argued that this required 
a "second filter" to remove the response of the sup- 
pressor after it has suppressed the probe. 

ß The place where the motion of the cilia is shunted 
off by Zt is also the place where the maximum forces 
appear across the cilia. This might explain why the 
maximum damage due to high level tones occurs at 
a point that is approximately 1/2 octave basal to the 
characteristic frequency, namely at xz. 

ß The nonlinear component of the cochlear miero- 
phonic, the sammating potential or SP, is known to 
change sign as the frequency is increased (Dallos, 
1973). This might be explained by the 180 degree 
phase shift at fz(x). 

ß There are data that show that as f• approaches f2 
the psychophysical distortion products do not de- 
crease for those ffs where the ear canal distortion 
products are decreasing (Goldstein, 1967). This is 
consistent with the circuit of Fig. 10, as may be 
shown by calculating the transfer function 
As the frequency of fa is increased above the reso- 
nant frequency of Zt, less current is shunted by that 
impedance, and more is passed to the cilia. 

VI. CONCLUSION 

The data and the analysis in this study show that a 
second eochlear map can be constructed that correlates 

neural tuning response data with ear canal distortion prod- 
uct data. A way to understand this correlation is depicted 
in Fig. 10 and a possible physical realization of Fig. I0 is 
shown in Fig. 12. If the models schematized in Fig. 10 and 
Fig. 12 are correct, then a second cochlear map should also 
be measureable in other animals that have both nonlinear 

mechanical basilar membrane responses and tectorial 
membranes. 
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