
Any wide piece of ground is the potential site of a palace,

but there’s no palace till it’s built.

Fernando Pessoa (1888-1935), The Book of Disquiet

1

Fundamentals

Before turning to the actual subject of this book it is useful to recall some basic
theoretical background underlying the theory to be developed.

1.1 Classical Mechanics

The orbits of a classical-mechanical system are described by a set of time-dependent
generalized coordinates q1(t), . . . , qN (t). A Lagrangian

L(qi, q̇i, t) (1.1)

depending on q1, . . . , qN and the associated velocities q̇1, . . . , q̇N governs the dynam-
ics of the system. The dots denote the time derivative d/dt. The Lagrangian is at
most a quadratic function of q̇i. The time integral

A[qi] =
 tb

ta
dt L(qi(t), q̇i(t), t) (1.2)

of the Lagrangian along an arbitrary path qi(t) is called the action of this path. The
path being actually chosen by the system as a function of time is called the classical
path or the classical orbit qcli (t). It has the property of extremizing the action in
comparison with all neighboring paths

qi(t) = qcli (t) + δqi(t) (1.3)

having the same endpoints q(tb), q(ta), i.e.

δqi(ta) = δqi(tb) = 0. (1.4)

To express this property formally, one introduces the variation of the action as the
linear term in the Taylor expansion of A[qi] in powers of δqi(t):

δA[qi] ≡ {A[qi + δqi]−A[qi]}lin term in δqi . (1.5)
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2 1 Fundamentals

The extremal principle for the classical path is then

δA[qi]






qi(t)=qcl
i
(t)

= 0, (1.6)

for all variations with the property (1.4).
Since the action is a temporal integral of a Lagrangian, the extremality property

can be phrased in terms of dierential equations. Let us calculate δA[qi] explicitly:

δA[qi] = {A[qi + δqi]−A[qi]}lin

=
 tb

ta
dt {L (qi(t) + δqi(t), q̇i(t) + δq̇i(t), t)− L (qi(t), q̇i(t), t)}lin

=
 tb

ta
dt



∂L

∂qi
δqi(t) +

∂L

∂q̇i
δq̇i(t)



=
 tb

ta
dt



∂L

∂qi
− d

dt

∂L

∂q̇i



δqi(t) +
∂L

∂q̇i
δqi(t)











tb

ta

. (1.7)

The last expression arises from the previous one by a partial integration of the δq̇i-
term. Here, as in the entire book, repeated indices are understood to be summed
(Einstein’s summation convention). The endpoint terms (also referred to as surface
or boundary terms), where the time t is equal to ta or tb may be dropped due to (1.4).
Thus we nd that the classical orbit qcli (t) satises the Euler-Lagrange equations:

d

dt

∂L

∂q̇i
=

∂L

∂qi
. (1.8)

There exists an alternative formulation of classical dynamics. It is based on a
Legendre-transformed function of the Lagrangian called the Hamiltonian:

H ≡ ∂L

∂q̇i
q̇i − L(qi, q̇i, t). (1.9)

Its value at any time is equal to the energy of the system. According to the general
theory of Legendre transformations [2], the natural variables on which H depends
are no longer qi and q̇i, but qi and the generalized momenta pi. The latter are dened
by the equations

pi ≡
∂

∂q̇i
L(qi, q̇i, t), (i = 1, . . . , N). (1.10)

In order to express the Hamiltonian H (pi, qi, t) in terms of its proper variables pi, qi,
the equations (1.10) have to be solved for q̇i by a velocity function

q̇i = vi(pi, qi, t). (1.11)

This is possible provided the Hessian metric

hij(qi, q̇i, t) ≡
∂2

∂q̇i∂q̇j
L(qi, q̇i, t) (1.12)
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is nonsingular. The result is inserted into (1.9), leading to the Hamiltonian as a
function of pi and qi:

H (pi, qi, t) = pivi(pi, qi, t)− L (qi, vi (pi, qi, t) , t) . (1.13)

In terms of this Hamiltonian, the action is the following functional of pi(t) and qi(t):

A[pi, qi] =
 tb

ta
dt


pi(t)q̇i(t)−H(pi(t), qi(t), t)


. (1.14)

This is the so-called canonical form of the action. The classical orbits are now spec-
ied by pcli (t), q

cl
i (t). They extremize the action in comparison with all neighboring

orbits in which the coordinates qi(t) are varied at xed endpoints [see (29.5), (1.4)],
whereas the momenta pi(t) are varied without restriction:

qi(t) = qcli (t) + δqi(t), δqi(ta) = δqi(tb) = 0,

pi(t) = pcli (t) + δpi(t).
(1.15)

In general, the variation is

δA[pi, qi] =
 tb

ta
dt



δpi(t)q̇i(t) + pi(t)δq̇i(t)−
∂H

∂pi
δpi −

∂H

∂qi
δqi



=
 tb

ta
dt



q̇i(t)−
∂H

∂pi



δpi −


ṗi(t) +
∂H

∂qi



δqi



+ pi(t)δqi(t)











tb

ta

. (1.16)

Since this variation has to vanish for classical orbits, we nd that pcli (t), q
cl
i (t) must

be solutions of the Hamilton equations of motion

ṗi = −∂H

∂qi
,

q̇i =
∂H

∂pi
.

(1.17)

These agree with the Euler-Lagrange equations (1.8) via (1.9) and (1.10), as can
easily be veried. The 2N -dimensional space of all pi and qi is called the phase
space.

An arbitrary function O(pi(t), qi(t), t) changes along an arbitrary path as follows:

d

dt
O (pi(t), qi(t), t) =

∂O

∂pi
ṗi +

∂O

∂qi
q̇i +

∂O

∂t
. (1.18)

If the path coincides with a classical orbit, we may insert (1.17) and nd

dO

dt
=

∂H

∂pi

∂O

∂qi
− ∂O

∂pi

∂H

∂qi
+

∂O

∂t

≡ {H,O}+
∂O

∂t
.

(1.19)
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Here we have introduced the symbol {A,B} called Poisson brackets :

{A,B} ≡ ∂A

∂pi

∂B

∂qi
− ∂B

∂pi

∂A

∂qi
, (1.20)

again with the Einstein summation convention for the repeated index i. The Poisson
brackets have the obvious properties

{A,B} = − {B,A} antisymmetry, (1.21)

{A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0 Jacobi identity. (1.22)

If two quantities have vanishing Poisson brackets, they are said to commute.
The original Hamilton equations are a special case of (1.19):

d

dt
pi = {H, pi} =

∂H

∂pj

∂pi
∂qj

− ∂pi
∂pj

∂H

∂qj
= −∂H

∂qi
,

d

dt
qi = {H, qi} =

∂H

∂pj

∂qi
∂qj

− ∂qi
∂pj

∂H

∂qj
=

∂H

∂pi
.

(1.23)

By denition, the phase space variables pi, qi satisfy the Poisson brackets

{pi, qj} = δij ,

{pi, pj} = 0,

{qi, qj} = 0,

(1.24)

and because of (1.23) this remains true for all times:

{pi(t), qj(t)} = δij ,

{pi(t), pj(t)} = 0,

{qi(t), qj(t)} = 0.

(1.25)

A function O(pi, qi) which has no explicit dependence on time and which, more-
over, commutes with H (i.e., {O,H} = 0), is a constant of motion along the classical
path, due to (1.19). In particular, H itself is often time-independent, i.e., of the form

H = H(pi, qi). (1.26)

Then, since H commutes with itself, the energy is a constant of motion.
The Lagrangian formalism has the virtue of being independent of the particular

choice of the coordinates qi. Let Qi be any other set of coordinates describing the
system. If it is connected with qi by what is called a local1 or point transformation

qi = fi(Qj , t). (1.27)

1Here the property local refers to a specic time. This terminology is of common use in eld
theory where local refers, more generally, to a specic spacetime point .
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Certainly, to be useful, this relation must be invertible, at least in some neighborhood
of the classical path

Qi = f−1
i(qj , t). (1.28)

Otherwise Qi and qi could not both parametrize the same system. Therefore, fi
must have a nonvanishing Jacobi determinant:

det



∂fi
∂Qj



= 0. (1.29)

In terms of Qi, the initial Lagrangian takes the form

L


Qj, Q̇j , t


≡ L


fi (Qj, t) , ḟi (Qj , t) , t


(1.30)

and the action reads

A =
 tb

ta
dt L



Qj(t), Q̇j(t), t


=
 tb

ta
dt L



fi (Qj(t), t) , ḟi (Qj(t), t) , t


.

(1.31)

By performing variations δQj(t), δQ̇j(t) in the rst expression while keeping
δQj(ta) = δQj(tb) = 0, we nd the equations of motion

d

dt

∂L

∂Q̇j

− ∂L

∂Qj

= 0. (1.32)

The variation of the lower expression, on the other hand, gives

δA =
 tb

ta
dt



∂L

∂qi
δfi +

∂L

∂q̇i
δḟi



=
 tb

ta
dt



∂L

∂qi
− d

dt

∂L

∂q̇i



δfi +
∂L

∂q̇i
δfi











tb

ta

.

(1.33)

If δqi is arbitrary, then so is δfi. Moreover, with δqi(ta) = δqi(tb) = 0, also δfi
vanishes at the endpoints. Hence the extremum of the action is determined equally
well by the Euler-Lagrange equations for Qj(t) [as it was by those for qi(t)].

Note that the locality property is quite restrictive for the transformation of the
generalized velocities q̇i(t). They will necessarily be linear in Q̇j :

q̇i = ḟi(Qj, t) =
∂fi
∂Qj

Q̇j +
∂fi
∂t

. (1.34)

In phase space, there exists also the possibility of performing local changes of
the canonical coordinates pi, qi to new ones Pj, Qj . Let them be related by

pi = pi(Pj, Qj , t),

qi = qi(Pj , Qj, t),
(1.35)
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whose inverse relations are

Pj = Pj(pi, qi, t),

Qj = Qj(pi, qi, t).
(1.36)

Now, while the Euler-Lagrange equations maintain their form under any local change
of coordinates, the Hamilton equations do not hold, in general, for any transformed
coordinates Pj(t), Qj(t). The local transformations pi(t), qi(t) → Pj(t), Qj(t) for
which they hold, are referred to as canonical . They are characterized by the form
invariance of the action, up to an arbitrary surface term,

 tb

ta
dt [piq̇i −H(pi, qi, t)] =

 tb

ta
dt


PjQ̇j −H (Pj, Qj , t)


+ F (Pj, Qj, t)






tb

ta
, (1.37)

where H (Pj, Qj , t) is some new Hamiltonian. Its relation with H(pi, qi, t) must be
chosen in such a way that the equality of the action holds for any path pi(t), qi(t)
connecting the same endpoints (at least any in some neighborhood of the classical
orbits). If such an invariance exists then a variation of this action yields for Pj(t)
and Qj(t) the Hamilton equations of motion governed by H :

Ṗi = −∂H 

∂Qi

,

Q̇i =
∂H 

∂Pi

.

(1.38)

The invariance (1.37) can be expressed dierently by rewriting the integral on the
left-hand side in terms of the new variables Pj(t), Qj(t),

 tb

ta
dt



pi



∂qi
∂Pj

Ṗj +
∂qi
∂Qj

Q̇j +
∂qi
∂t



−H(pi(Pj , Qj, t), qi(Pj , Qj, t), t)



, (1.39)

and subtracting it from the right-hand side, leading to

 tb

ta



Pj − pi
∂qi
∂Qj



dQj − pi
∂qi
∂Pj

dPj −


H  + pi
∂qi
∂t

−H



dt



= −F (Pj, Qj , t)











tb

ta

.

(1.40)

The integral is now a line integral along a curve in the (2N + 1)-dimensional space,
consisting of the 2N -dimensional phase space variables pi, qi and of the time t.
The right-hand side depends only on the endpoints. Thus we conclude that the
integrand on the left-hand side must be a total dierential. As such it has to satisfy
the standard Schwarz integrability conditions [3], according to which all second
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derivatives have to be independent of the sequence of dierentiation. Explicitly,
these conditions are

∂pi
∂Pk

∂qi
∂Ql

− ∂qi
∂Pk

∂pi
∂Ql

= δkl,

∂pi
∂Pk

∂qi
∂Pl

− ∂qi
∂Pk

∂pi
∂Pl

= 0, (1.41)

∂pi
∂Qk

∂qi
∂Ql

− ∂qi
∂Qk

∂pi
∂Ql

= 0,

and
∂pi
∂t

∂qi
∂Pl

− ∂qi
∂t

∂pi
∂Pl

=
∂(H  −H)

∂Pl

,

∂pi
∂t

∂qi
∂Ql

− ∂qi
∂t

∂pi
∂Ql

=
∂(H  −H)

∂Ql

.

(1.42)

The rst three equations dene the so-called Lagrange brackets in terms of which
they are written as

(Pk, Ql) = δkl,

(Pk, Pl) = 0, (1.43)

(Qk, Ql) = 0.

Time-dependent coordinate transformations satisfying these equations are called
symplectic. After a little algebra involving the matrix of derivatives

J =

⎛

⎝

∂Pi/∂pj ∂Pi/∂qj

∂Qi/∂pj ∂Qi/∂qj

⎞

⎠ , (1.44)

its inverse

J−1 =

⎛

⎝

∂pi/∂Pj ∂pi/∂Qj

∂qi/∂Pj ∂qi/∂Qj

⎞

⎠ , (1.45)

and the symplectic unit matrix

E =



0 δij
−δij 0



, (1.46)

we nd that the Lagrange brackets (1.43) are equivalent to the Poisson brackets

{Pk, Ql} = δkl,

{Pk, Pl} = 0, (1.47)

{Qk, Ql} = 0.

This follows from the fact that the 2N × 2N matrix formed from the Lagrange
brackets

L ≡
⎛

⎝

−(Qi, Pj) −(Qi, Qj)

(Pi, Pj) (Pi, Qj)

⎞

⎠ (1.48)
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can be written as (E−1J−1E)TJ−1, while an analogous matrix formed from the
Poisson brackets

P ≡
⎛

⎝

{Pi, Qj} − {Pi, Pj}

{Qi, Qj} − {Qi, Pj}

⎞

⎠ (1.49)

is equal to J(E−1JE)T . Hence L = P−1, so that (1.43) and (1.47) are equivalent to
each other. Note that the Lagrange brackets (1.43) [and thus the Poisson brackets
(1.47)] ensure piq̇i −PjQ̇j to be a total dierential of some function of Pj and Qj in
the 2N -dimensional phase space:

piq̇i − PjQ̇j =
d

dt
G(Pj, Qj , t). (1.50)

The Poisson brackets (1.47) for Pi, Qi have the same form as those in Eqs. (1.24)
for the original phase space variables pi, qi.

The other two equations (1.42) relate the new Hamiltonian to the old one. They
can always be used to construct H (Pj, Qj , t) from H(pi, qi, t). The Lagrange brack-
ets (1.43) or Poisson brackets (1.47) are therefore both necessary and sucient for
the transformation pi, qi → Pj, Qj to be canonical.

A canonical transformation preserves the volume in phase space. This follows
from the fact that the matrix product J(E−1JE)T is equal to the 2N × 2N unit
matrix (1.49). Hence det (J) = ±1 and



i



[dpi dqi] =


j



[dPj dQj ] . (1.51)

It is obvious that the process of canonical transformations is reexive. It may be
viewed just as well from the opposite side, with the roles of pi, qi and Pj , Qj ex-
changed [we could just as well have considered the integrand in (1.40) as a complete
dierential in Pj, Qj, t space].

Once a system is described in terms of new canonical coordinates Pj , Qj, we
introduce the new Poisson brackets

{A,B} ≡ ∂A

∂Pj

∂B

∂Qj

− ∂B

∂Pj

∂A

∂Qj

, (1.52)

and the equation of motion for an arbitrary observable quantity O (Pj(t), Qj(t), t)
becomes with (20.180)

dO

dt
= {H , O}


+

∂O

∂t
, (1.53)

by complete analogy with (20.176). The new Poisson brackets automatically guar-
antee the canonical commutation rules

{Pi, Qj}
 = δij ,

{Pi, Pj}
 = 0,

{Qi, Qj}
 = 0.

(1.54)
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A standard class of canonical transformations can be constructed by introducing
a generating function F satisfying a relation of the type (1.37), while depending
explicitly on half an old and half a new set of canonical coordinates, for instance

F = F (qi, Qj, t). (1.55)

One now considers the equation

 tb

ta
dt [piq̇i −H(pi, qi, t)] =

 tb

ta
dt



PjQ̇j −H (Pj, Qj , t) +
d

dt
F (qi, Qj, t)



, (1.56)

replaces PjQ̇j by −ṖjQj +
d
dt
PjQj , denes

F (qi, Pj, t) ≡ F (qi, Qj , t) + PjQj ,

and works out the derivatives. This yields
 tb

ta
dt


piq̇i + ṖjQj − [H(pi, qi, t)−H (Pj, Qj , t)]


=
 tb

ta
dt



∂F

∂qi
(qi, Pj, t)q̇i +

∂F

∂Pj

(qi, Pj, t)Ṗj +
∂F

∂t
(qi, Pj, t)



.

(1.57)

A comparison of the two sides yields the equations for the canonical transformation

pi =
∂

∂qi
F (qi, Pj, t),

Qj =
∂

∂Pj

F (qi, Pj, t).

(1.58)

The second equation shows that the above relation between F (qi, Pj, t) and
F (qi, Qj, t) amounts to a Legendre transformation.

The new Hamiltonian is

H (Pj , Qj, t) = H(pi, qi, t) +
∂

∂t
F (qi, Pj, t). (1.59)

Instead of (1.55) we could also have chosen functions with other mixtures of argu-
ments such as F (qi, Pj , t), F (pi, Qj, t), F (pi, Pj, t) to generate simple canonical trans-
formations.

A particularly important canonical transformation arises by choosing a gener-
ating function F (qi, Pj) in such a way that it leads to time-independent momenta
Pj ≡ αj . Coordinates Qj with this property are called cyclic. To nd cyclic co-
ordinates we must search for a generating function F (qj , Pj, t) which makes the
transformed H  in (1.59) vanish identically. Then all derivatives with respect to the
coordinates vanish and the new momenta Pj are trivially constant. Thus we seek a
solution for the equation

∂

∂t
F (qi, Pj, t) = −H(pi, qi, t), (1.60)
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where the momentum variables in the Hamiltonian obey the rst equation of (1.58).
This leads to the following partial dierential equation for F (qi, Pj, t):

∂tF (qi, Pj, t) = −H(∂qiF (qi, Pj, t), qi, t), (1.61)

called the Hamilton-Jacobi equation. Here and in the sequel we shall often use the
short notations for partial derivatives ∂t ≡ ∂/∂t, ∂qi ≡ ∂/∂qi .

A generating function which achieves this goal is supplied by the action functional
(1.14). When following the classical solutions starting from a xed initial point and
running to all possible nal points qi at a time t, the associated actions of these
solutions form a function A(qi, t). Expression (1.14) shows that, if a particle moves
along a classical trajectory and the path is varied without keeping the endpoints
xed, the action changes as a function of the end positions (1.16) by

δA[pi, qi] = pi(tb)δqi(tb)− pi(ta)δqi(ta). (1.62)

From this we deduce immediately the rst of the equations (1.58), now for the
generating function A(qi, t):

pi =
∂

∂qi
A(qi, t). (1.63)

Moreover, the function A(qi, t) has the time derivative

d

dt
A(qi(t), t) = pi(t)q̇i(t)−H(pi(t), qi(t), t). (1.64)

Together with (1.63), this implies

∂tA(qi, t) = −H(pi, qi, t). (1.65)

If the momenta pi on the right-hand side are replaced according to (1.63), A(qi, t)
is indeed seen to be a solution of the Hamilton-Jacobi dierential equation:

∂tA(qi, t) = −H(∂qiA(qi, t), qi, t). (1.66)

1.2 Relativistic Mechanics in Curved Spacetime

The classical action of a relativistic spinless point particle in a curved four-
dimensional spacetime is usually written as an integral

A = −Mc2


dτL(q, q̇) = −Mc2


dτ


gμν q̇μ(τ)q̇ν(τ), (1.67)

where τ is an arbitrary parameter of the trajectory. It can be chosen in the nal
trajectory to make L(q, q̇) ≡ 1, in which case it coincides with the proper time of
the particle. For an arbitrary time t, the Euler-Lagrange equation (1.8) reads

d

dt



1

L(q, q̇)
gμν q̇

ν



=
1

2L(q, q̇)
(∂μgκλ) q̇

κq̇λ. (1.68)
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If τ is the proper time where L(q, q̇) ≡ 1, this simplies to

d

dt
(gμν q̇

ν) =
1

2
(∂μgκλ) q̇

κq̇λ, (1.69)

or

gμν q̈
ν =



1

2
∂μgκλ − ∂λgμκ



q̇κq̇λ. (1.70)

For brevity, we have denoted partial derivatives ∂/∂qμ by ∂μ. This partial derivative
is supposed to apply only to the quantity right behind it. At this point one introduces
the Christoel symbol

Γ̄λνμ ≡ 1

2
(∂λgνμ + ∂νgλμ − ∂μgλν), (1.71)

and the Christoel symbol of the second kind [6]:

Γ̄
μ

κν ≡ gμσΓ̄κνσ. (1.72)

Then (1.70) can be written as

q̈μ + Γ̄κλ
μq̇κq̇λ = 0. (1.73)

Since the solutions of this equation minimize the length of a curve in spacetime,
they are called geodesics .

1.3 Quantum Mechanics

Historically, the extension of classical mechanics to quantum mechanics became
necessary in order to understand the stability of atomic orbits and the discrete
nature of atomic spectra. It soon became clear that these phenomena reect the
fact that, at a suciently short length scale, small material particles such as electrons
behave like waves, called material waves . The fact that waves cannot be squeezed
into an arbitrarily small volume without increasing indenitely their frequency and
thus their energy, prevents the collapse of the electrons into the nucleus, which
would take place in classical mechanics. The discreteness of the atomic states of an
electron are a manifestation of standing material waves in the atomic potential well,
by analogy with the standing waves of electromagnetism in a cavity.

1.3.1 Bragg Reections and Interference

The most direct manifestation of the wave nature of small particles is seen in dirac-
tion experiments on periodic structures, for example of electrons diracted by a crys-
tal. If an electron beam of xed momentum p passes through a crystal, it emerges
along sharply peaked angles. These are the well-known Bragg reections. They
look very similar to the interference patterns of electromagnetic waves. In fact, it
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is possible to use the same mathematical framework to explain these patterns as in
electromagnetism. A free particle moving with momentum

p = (p1, p2, . . . , pD) (1.74)

through a D-dimensional euclidean space spanned by the Cartesian coordinate vec-
tors

x = (x1, x2, . . . , xD) (1.75)

is associated with a plane wave, whose eld strength or wave function has the form

Ψp(x, t) = eikx−iωt, (1.76)

where k is the wave vector pointing into the direction of p and ω is the wave fre-
quency . Each scattering center, say at x, becomes a source of a spherical wave
with the spatial behavior eikR/R (with R ≡ |x − x| and k ≡ |k|) and the wave-
length λ = 2π/k. At the detector, all eld strengths have to be added to the total
eld strength Ψ(x, t). The absolute square of the total eld strength, |Ψ(x, t)|2, is
proportional to the number of electrons arriving at the detector.

The standard experiment where these rules can most simply be applied consists
of an electron beam impinging vertically upon a at screen with two parallel slits
with spacing d. At a large distance R behind these, one observes the number of
particles arriving per unit time (see Fig. 1.1)

dN

dt
∝ |Ψ1 +Ψ2|

2 ≈




eik(R+ 1

2
d sinϕ) + eik(R− 1

2
d sinϕ)







2 1

R2
, (1.77)

where ϕ is the angle of deection from the normal.

eikx

dN
dt

∝




eik(R+ 1

2
d sinϕ) + eik(R−

1

2
d sinϕ)







2

Figure 1.1 Probability distribution of a particle wave behind a double-slit. It is propor-

tional to the absolute square of the sum of the two complex eld strengths.

Conventionally, the wave function Ψ(x, t) is normalized to describe a single par-
ticle. Its absolute square gives directly the probability density of the particle at
the space point x, i.e., d3x |Ψ(x, t)|2 is the probability of nding the particle in the
volume element d3x around x.
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1.3.2 Matter Waves

From the experimentally observed relation between the momentum and the size of
the angular deection ϕ of the diracted beam of the particles, one deduces the
relation between momentum and wave vector

p = h̄k, (1.78)

where h̄ is the universal Planck constant whose dimension is equal to that of an
action,

h̄ ≡ h

2π
= 1.0545919(80)× 10−27erg sec (1.79)

(the number in parentheses indicating the experimental uncertainty of the last two
digits before it). A similar relation holds between the energy and the frequency of
the wave Ψ(x, t). It may be determined by an absorption process in which a light
wave hits an electron and kicks it out of the surface of a metal, the well-known
photoelectric eect . From the threshold property of this eect one learns that an
electromagnetic wave oscillating in time as e−iωt can transfer to the electron the
energy

E = h̄ω, (1.80)

where the proportionality constant h̄ is the same as in (1.78). The reason for this lies
in the properties of electromagnetic waves. On the one hand, their frequency ω and
the wave vector k satisfy the relation ω/c = |k|, where c is the light velocity dened
to be c ≡ 299 792.458 km/s. The energy and momentum are related by E/c = |p|.
Thus, the quanta of electromagnetic waves, the photons , certainly satisfy (1.78) and
the constant h̄ must be the same as in Eq. (1.80).

With matter waves and photons sharing the same relations (1.78), it is suggestive
to postulate also the relation (1.80) between energy and frequency to be universal for
the waves of all particles, massive and massless ones. All free particles of momentum
p are described by a plane wave of wavelength λ = 2π/|k| = 2πh̄/|p|, with the
explicit form

Ψp(x, t) = N ei(px−Ept)/h̄, (1.81)

where N is some normalization constant. In a nite volume, the wave function
is normalized to unity. In an innite volume, this normalization makes the wave
function vanish. To avoid this, the current density of the particle probability

j(x, t) ≡ −i
h̄

2m
ψ∗(x, t)

↔
∇ ψ(x, t) (1.82)

is normalized in some convenient way, where
↔
∇ is a short notation for the dierence

between forward- and backward-derivatives

ψ∗(x, t)
↔
∇ ψ(x, t) ≡ ψ∗(x, t)

→
∇ ψ(x, t)− ψ∗(x, t)

←
∇ ψ(x, t)

≡ ψ∗(x, t)∇ψ(x, t)− [∇ψ∗(x, t)]ψ(x, t). (1.83)
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The energy Ep depends on the momentum of the particle aling its classical way,
i.e., for nonrelativistic material particles of massM it is Ep = p2/2M , for relativistic
ones Ep = c

√
p2 +M2c2, and Ep = c|p| for massless particles such as photons. The

common relation Ep = h̄ω for photons and matter waves is necessary to ensure the
conservation of energy in quantum mechanics.

In general, both momentum and energy of a particle are not sharply dened as
in the plane-wave function (1.81). Usually, a particle wave is some superposition of
plane waves (1.81):

Ψ(x, t) =


d3p

(2πh̄)3
f(p)ei(px−Ept)/h̄. (1.84)

By the Fourier inversion theorem, f(p) can be calculated via the integral

f(p) =


d3x e−ipx/h̄
Ψ(x, 0). (1.85)

With an appropriate choice of f(p) it is possible to prepare Ψ(x, t) in any desired
form at some initial time, say at t = 0. For example, Ψ(x, 0) may be a function
sharply centered around a space point x̄. Then f(p) is approximately a pure phase
f(p) ∼ e−ipx̄/h̄, and the wave contains all momenta with equal probability. Con-
versely, if the particle amplitude is spread out in space, its momentum distribution
is conned to a small region. The limiting f(p) is concentrated at a specic mo-
mentum p̄. The particle is found at each point in space with equal probability, with
the amplitude oscillating like Ψ(x, t) ∼ ei(p̄x−Ep̄t)/h̄.

In general, the width of Ψ(x, 0) in space and of f(p) in momentum space are
inversely proportional to each other:

ΔxΔp ∼ h̄. (1.86)

This is the content of Heisenberg’s principle of uncertainty . If the wave is localized
in a nite region of space while having at the same time a fairly well-dened average
momentum p̄, it is called a wave packet . The maximum in the associated probability
density can be shown from (1.84) to move with a velocity

v̄ = ∂Ep̄/∂p̄. (1.87)

This coincides with the velocity of a classical particle of momentum p̄.

1.3.3 Schrödinger Equation

Suppose now that the particle is nonrelativistic and has a mass M . The classical
Hamiltonian, and thus the energy Ep, are given by

H(p) = Ep =
p2

2M
. (1.88)

We may therefore derive the following identity for a general wave function (1.84):



d3p

(2πh̄)3
f(p) [H(p)− Ep] e

i(px−Ept)/h̄ = 0. (1.89)
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The arguments inside the brackets can be moved in front of the integral (1.89)
by observing that p and Ep inside the brackets are equivalent to the dierential
operators

p̂ = −ih̄∂x,

Ê = ih̄∂t
(1.90)

outside the integral. Then, Eq. (1.89) may be written as the dierential equation

[H(−ih̄∂x)− ih̄∂t)]Ψ(x, t) = 0. (1.91)

This is the Schrödinger equation for the wave function of a free particle. The equa-
tion suggests that the motion of a particle with an arbitrary Hamiltonian H(p,x, t)
follows the straightforward generalization of (1.91)

(Ĥ − ih̄∂t)Ψ(x, t) = 0, (1.92)

where Ĥ is the dierential operator

Ĥ ≡ H(−ih̄∂x,x, t). (1.93)

The rule of obtaining Ĥ from the classical Hamiltonian H(p,x, t) by the substitu-
tions x → x̂ and p → p̂ = −ih̄∂x will be referred to as the correspondence principle.2

The substitution rule for p runs also under the name Jordan rule.
This simple correspondence principle holds only in Cartesian coordinates. A

slight generalization is possible to coordinates qi(t) which are of the quasi-Cartesian
type. For these, the so-called dynamical metric, or Hessian, dened in the La-
grangian formalism by

gij(q) ≡ ∂2

∂q̇i∂q̇i
L(q, q̇), (1.94)

and in the Hamiltonian formalism by

gij(q) ≡ ∂2

∂pi∂pj
H(p, q). (1.95)

Then the momentum operators are, as in (1.90),

p̂i ≡ −i
∂

∂qi
. (1.96)

For such quasi-Cartesian generalized coordinates, the system may be quantized al-
ternatively à la Heisenberg by assuming pi(t) and qi(t) to be Heisenberg operators
p̂iH(t) and q̂iH(t) satisfying the canonical commutation rules (1.25):

[p̂iH(t), q̂jH(t)] = −ih̄δij ,

[p̂iH(t), p̂jH(t)] = 0,

[q̂iH(t), q̂jH(t)] = 0.

(1.97)

2Our formulation of this principle is slightly stronger than the historical one used at the ini-
tial stage of quantum mechanics, which gave certain correspondence rules between classical and
quantum-mechanical relations.
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This peculiarity of the canonical quantization rules will be discussed further in Sec-
tions 1.13–1.15.

The Schrödinger operators (1.90) of momentum and energy satisfy with x and t
the so-called canonical commutation relations

[p̂i, xj] = −ih̄, [Ê, t] = 0 = ih̄. (1.98)

The linear combinations of the solutions of the Schrödinger equation (1.92)
form a Hilbert space at each time t. If the Hamiltonian does not depend ex-
plicitly on time, the Hilbert space can be spanned by the energy eigenstates
ΨEn

(x, t) = e−iEnt/h̄ΨEn
(x), where ΨEn

(x) are time-independent stationary states
that solve the time-independent Schrödinger equation

Ĥ(p̂,x)ΨEn
(x) = EnΨEn

(x). (1.99)

The validity of the Schrödinger theory (1.92) is conrmed by experiment, most
notably for the Coulomb Hamiltonian

H(p,x) =
p2

2M
− e2

r
. (1.100)

It governs the quantum mechanics of the hydrogen atom in the center-of-mass co-
ordinate system of the electron and the proton, where M is the reduced mass of the
two particles.

Since the square of the wave function |Ψ(x, t)|2 species the probability density
of a single particle in a nite volume, the integral over the entire volume must be
normalized to unity:



d3x |Ψ(x, t)|2 = 1. (1.101)

For a stable particle, this normalization must remain the same at all times. If
Ψ(x, t) follows the Schrödinger equation (1.92), this is assured if, and only if, the
Hamiltonian operator is Hermitian,3 i.e., if any two wave functions Ψ1,Ψ2 satisfy
the equality



d3x [ĤΨ2(x, t)]
∗
Ψ1(x, t) =



d3xΨ∗
2(x, t)ĤΨ1(x, t). (1.102)

The left-hand side contains the Hermitian-adjoint of the operator Ĥ , denoted by
Ĥ†, and dened by the identity



d3xΨ∗
2(x, t)Ĥ

†
Ψ1(x, t) ≡



d3x [ĤΨ2(x, t)]
∗
Ψ1(x, t) (1.103)

3Problems arising from a possible unboundedness or from discontinuities of the Hamiltonian
and other quantum-mechanical operators, also restrictions of the domains of denition, are ignored
here since they are well understood. Correspondingly we do not distinguish between Hermitian
and self-adjoint operators (see J. von Neumann, Mathematische Grundlagen der Quantenmechanik ,
Springer, Berlin, 1932).
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for all square-integrable wave functions Ψ1(x, t),Ψ2(x, t). An operator Ĥ is Hermi-
tian if it coincides with its Hermitian-adjoint Ĥ†:

Ĥ = Ĥ†. (1.104)

Let us calculate the time change of the integral over two arbitrary wave functions,


d3xΨ∗
2(x, t)Ψ1(x, t). With the Schrödinger equation (1.92), this time change van-

ishes indeed as long as Ĥ is Hermitian:

ih̄
d

dt



d3xΨ∗
2(x, t)Ψ1(x, t)=



d3xΨ∗
2(x, t)ĤΨ1(x, t)−



d3x [ĤΨ2(x, t)]
∗
Ψ1(x, t)=0.

(1.105)

This also implies the time independence of the normalization integral


d3x |Ψ(x, t)|2 = 1.
Conversely, if Ĥ is not Hermitian, one can always nd an eigenstate of Ĥ whose

norm changes with time: any eigenstate of (H −H†)/i has this property.
Since p̂ = −ih̄∂x and x are themselves Hermitian operators, Ĥ will automatically

be a Hermitian operator if it is a sum of a kinetic and a potential energy:

H(p,x, t) = T (p, t) + V (x, t). (1.106)

This is always the case for nonrelativistic particles in Cartesian coordinates x. If p
and x appear in one and the same term of H , for instance as p2x2, the correspon-
dence principle does not lead to a unique quantum-mechanical operator Ĥ . Then
there seem to be, in principle, several Hermitian operators which, in the above exam-
ple, can be constructed from the product of two p̂ and two x̂ operators [for instance
αp̂2x̂2+βx̂2p̂2+γp̂x̂2p̂ with α+β+γ = 1]. They all correspond to the same classical
p2x2. At rst sight it appears as though only a comparison with experiment could
select the correct operator ordering. This is referred to as the operator-ordering
problem of quantum mechanics which has plagued many researchers in the past. If
the ordering problem is caused by the geometry of the space in which the parti-
cle moves, there exists a surprisingly simple geometric principle which species the
ordering in the physically correct way. These are explained in Chapter 10 of the
textbook [1]. Here we avoid such ambiguities by assuming H(p,x, t) to have the
standard form (1.106), unless otherwise stated.

1.3.4 Particle Current Conservation

The conservation of the total probability (1.101) is a consequence of a more general
local conservation law linking the current density of the particle probability

j(x, t) ≡ −i
h̄

2m
ψ(x, t)

↔
∇ ψ(x, t) (1.107)

with the probability density

ρ(x, t) = ψ∗(x, t)ψ(x, t) (1.108)
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via the relation
∂tρ(x, t) = −∇ · j(x, t). (1.109)

By integrating this current conservation law over a volume V enclosed by a surface
S, and using Green’s theorem, one nds



V
d3x ∂tρ(x, t) = −



V
d3x∇ · j(x, t) = −



S
dS · j(x, t), (1.110)

where dS are the directed innitesimal surface elements. This equation states that
the probability in a volume decreases by the same amount by which probability
leaves the surface via the current j(x, t).

By extending the integral (1.110) over the entire space and assuming the currents
to vanish at spatial innity, we recover the conservation of the total probability
(1.101).

More general dynamical systems with N particles in euclidean space are
parametrized in terms of 3N Cartesian coordinates xν (ν = 1, . . . , N). The Hamil-
tonian has the form

H(pν ,xν , t) =
N


ν=1

p2
ν

2Mν

+ V (xν , t), (1.111)

where the arguments pν ,xν in H and V stand for all pν ’s, xν with ν = 1, 2, 3, . . . , N .
The wave function Ψ(xν , t) satises the N -particle Schrödinger equation



−
N


ν=1



h̄2

2Mν

∂xν

2 + V (xν , t)



Ψ(xν , t) = ih̄∂tΨ(xν , t). (1.112)

1.4 Dirac’s Bra-Ket Formalism

Mathematically speaking, the wave function Ψ(x, t) may be considered as a vector in
an innite-dimensional complex vector space called Hilbert space. The conguration
space variable x plays the role of a continuous “index” of these vectors. An obvious
contact with the usual vector notation may be established. In vector analysis, a D-
dimensional vector v is specied by D components vi with a subscript i = 1, . . .D.
In eld theory we may consider the wave functions Ψ(x, t) as functional vectors and
consider their argument x as analogs of a subscript:

Ψ(x, t) ≡ Ψx(t). (1.113)

The usual norm of a complex vector is dened by

|v|2 =


i

v∗i vi. (1.114)

The continuous version of this is

|Ψ|2 =


d3xΨ∗
x(t)Ψx(t) =



d3xΨ∗(x, t)Ψ(x, t). (1.115)

The normalization condition (1.101) requires that the wave functions have the norm
|Ψ| = 1, i.e., that they are unit vectors in Hilbert space.
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1.4.1 Basis Transformations

In a vector space, there are many possible choices of orthonormal basis vectors bi
a

labeled by a = 1, . . . , D, in terms of which4

vi =


a

bi
ava, (1.116)

with the components va given by the scalar products

va ≡


i

bi
a∗vi. (1.117)

The latter equation is a consequence of the orthogonality relation5



i

bi
a∗bi

a = δaa


, (1.118)

which in a nite-dimensional vector space implies the completeness relation



a

bi
a∗bj

a = δij . (1.119)

In the space of wave functions (1.113) there exists a special set of basis functions
called local basis functions of particular importance. It may be constructed in the
following fashion: Imagine the continuum of space points to be coarse-grained into
a cubic lattice of mesh size , at positions

xn = (n1, n2, n3), n1,2,3 = 0,±1,±2, . . . . (1.120)

Let hn(x) be a function that vanishes everywhere in space, except in a cube of size
3 centered around xn, i.e., for each component xi of x,

hn(x) =



1/
√
3 |xi − xn i| ≤ /2, i = 1, 2, 3.

0 otherwise.
(1.121)

These functions are certainly orthonormal:



d3x hn(x)∗hn

(x) = δnn


. (1.122)

Consider now the expansion

Ψ(x, t) =


n

hn(x)Ψn(t) (1.123)

4Mathematicians would expand more precisely vi =


a bi
av

(b)
a , but physicists prefer to shorten

the notation by distinguishing the dierent components via dierent types of subscripts, using for
the initial components i, j, k, . . . and for the b-transformed components a, b, c, . . . .

5An orthogonality relation implies usually a unit norm and is thus really an orthonormality

relation, but this name is rarely used.
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with the coecients

Ψn(t) =


d3x hn(x)∗Ψ(x, t) ≈
√
3Ψ(xn, t). (1.124)

It provides an excellent approximation to the true wave function Ψ(x, t), as long as
the mesh size  is much smaller than the scale over which Ψ(x, t) varies. In fact, if
Ψ(x, t) is integrable, the integral over the sum (1.123) will always converge toΨ(x, t).
The same convergence of discrete approximations is found in any scalar product,
and thus in any observable probability amplitude. They can all be calculated with
arbitrary accuracy knowing the discrete components of the type (1.124) in the limit
 → 0. The functions hn(x) may therefore be used as an approximate basis in the
same way as the previous basis functions fa(x), gb(x), with any desired accuracy
depending on the choice of .

In general, there are many possible orthonormal basis functions fa(x) in Hilbert
space which satisfy the orthonormality relation



d3x fa(x)∗fa(x) = δaa


, (1.125)

in terms of which we can expand

Ψ(x, t) =


a

fa(x)Ψa(t), (1.126)

with the coecients
Ψa(t) =



d3x fa(x)∗ Ψ(x, t). (1.127)

Suppose we use another orthonormal basis f̃ b(x) with the orthonormality relation


d3x f̃ b(x)∗f̃ b(x) = δbb


,


b

f̃ b(x)f̃ b(x)∗ = δ(3)(x− x), (1.128)

to re-expand
Ψ(x, t) =



b

f̃ b(x)Ψ̃b(t), (1.129)

with the components

Ψ̃b(t) =


d3x f̃ b(x)∗ Ψ(x, t). (1.130)

Inserting (1.126) shows that the components are related to each other by

Ψ̃b(t) =


a



d3x f̃ b(x)∗fa(x)


Ψa(t). (1.131)

1.4.2 Bracket Notation

It is useful to write the scalar products between two wave functions occurring in the
above basis transformations in the so-called Dirac bracket notation as

b̃|a ≡


d3x f̃ b(x)∗fa(x). (1.132)
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In this notation, the components (1.127) and (1.130) of a state vector Ψ(x, t) are

Ψa(t) = a|Ψ(t),
Ψ̃b(t) = b̃|Ψ(t).

(1.133)

The transformation formula (1.131) takes the form

b̃|Ψ(t) =


a

b̃|aa|Ψ(t). (1.134)

The right-hand side of this equation may be formally viewed as a result of inserting
the abstract relation



a

|aa| = 1 (1.135)

between b̃| and |Ψ(t) on the left-hand side:

b̃|Ψ(t) = b̃|1|Ψ(t) =


a

b̃|aa|Ψ(t). (1.136)

Since this expansion is possible only if the functions f b(x) form a complete basis,
the relation (1.135) is an alternative abstract way of stating the completeness of the
basis functions. It may be referred to as a completeness relation à la Dirac.

Since the scalar products are written in the form of brackets a|a, Dirac called
the formal objects a| and |a, from which the brackets are composed, bra and ket ,
respectively. In the Dirac bracket notation, the orthonormality of the basis fa(x)
and gb(x) may be expressed as follows:

a|a =


d3x fa(x)∗fa(x) = δaa


,

b̃|b̃ =


d3x f̃ b(x)∗f̃ b(x) = δbb


.
(1.137)

In the same spirit we introduce abstract bra and ket vectors associated with the
basis functions hn(x) of Eq. (1.121), denoting them by xn| and |xn, respectively,
and writing the orthogonality relation (1.122) in bracket notation as

xn|xn ≡


d3x hn(x)∗hn

(x) = δnn . (1.138)

The components Ψn(t) may be considered as the scalar products

Ψn(t) ≡ xn|Ψ(t) ≈
√
3Ψ(xn, t). (1.139)

Changes of basis vectors, for instance from |xn to the states |a, can be performed
according to the rules developed above by inserting a completeness relation à la
Dirac of the type (1.135). Thus we may expand

Ψn(t) = xn|Ψ(t) =


a

xn|aa|Ψ(t). (1.140)
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Also the inverse relation is true:

a|Ψ(t) =


n

a|xnxn|Ψ(t). (1.141)

This is, of course, just an approximation to the integral



d3x hn(x)∗x|Ψ(t). (1.142)

The completeness of the basis hn(x) may therefore be expressed via the abstract
relation



n

|xnxn| ≈ 1. (1.143)

The approximate sign turns into an equality sign in the limit of zero mesh size,
 → 0.

1.4.3 Continuum Limit

In ordinary calculus, ner and ner sums are eventually replaced by integrals. The
same thing is done here. We dene new continuous scalar products

x|Ψ(t) ≈ 1√
3
xn|Ψ(t), (1.144)

where xn are the lattice points closest to x. With (1.139), the right-hand side is
equal to Ψ(xn, t). In the limit  → 0, x and xn coincide and we have

x|Ψ(t) ≡ Ψ(x, t). (1.145)

The completeness relation can be used to write

a|Ψ(t) ≈


n

a|xnxn|Ψ(t)

≈


n

3a|xx|Ψ(t)






x=xn
, (1.146)

which becomes in the limit  → 0:

a|Ψ(t) =


d3x a|xx|Ψ(t). (1.147)

This may be viewed as the result of inserting the formal completeness relation of
the limiting local bra and ket basis vectors x| and |x,



d3x |xx| = 1, (1.148)

evaluated between the vectors a| and |Ψ(t).
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With the limiting local basis, the wave functions can be treated as components
of the state vectors |Ψ(t) with respect to the local basis |x in the same way as any
other set of components in an arbitrary basis |a. In fact, the expansion

a|Ψ(t) =


d3x a|xx|Ψ(t) (1.149)

may be viewed as a re-expansion of a component of |Ψ(t) in one basis, namely |a,
into those of another basis, |x, just as in (1.134).

In order to express all these transformation properties in a most compact nota-
tion, it has become customary to deal with an arbitrary physical state vector in a
basis-independent way and denote it by a ket vector |Ψ(t). This vector may be spec-
ied in any convenient basis by multiplying it with the corresponding completeness
relation



a

|aa| = 1, (1.150)

resulting in the expansion

|Ψ(t) =


a

|aa|Ψ(t). (1.151)

This can be multiplied with any bra vector, say b|, from the left to obtain the
expansion formula (1.136):

b|Ψ(t) =


a

b|aa|Ψ(t). (1.152)

The continuum version of the completeness relation (1.143) reads


d3x |xx| = 1. (1.153)

It leads to the expansion

|Ψ(t) =


d3x |xx|Ψ(t), (1.154)

in which the wave function Ψ(x, t) = x|Ψ(t) plays the role of an xth component
of the state vector |Ψ(t) in the local basis |x. This, in turn, is the limit of the
discrete basis vectors |xn,

|x ≈ 1√
3

|xn , (1.155)

with xn being the lattice points closest to x.
A vector can be described equally well in bra or in ket form. To apply the above

formalism consistently, we observe that the scalar products

a|b̃ =


d3x fa(x)∗f̃ b(x),

b̃|a =


d3x f̃ b(x)∗fa(x)
(1.156)
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satisfy the identity
b̃|a ≡ a|b̃∗. (1.157)

Therefore, when expanding a ket vector as

|Ψ(t) =


a

|aa|Ψ(t), (1.158)

or a bra vector as
Ψ(t)| =



a

Ψ(t)|aa|, (1.159)

a multiplication of the rst equation with the bra x| and of the second with the ket
|x produces equations which are complex-conjugate to each other.

1.4.4 Generalized Functions

Dirac’s bra-ket formalism is elegant and easy to handle. As far as the vectors |x are
concerned there is, however, one inconsistency with some fundamental postulates of
quantum mechanics: When introducing state vectors, a unit norm was required to
permit a consistent probability interpretation of single-particle states. The limiting
states |x introduced above do not satisfy this requirement. In fact, the scalar
product between two dierent states x| and |x is

x|x ≈ 1

3
xn|xn = 1

3
δnn , (1.160)

where xn and xn are the lattice points closest to x and x. For x = x, the states are
orthogonal. For x = x, on the other hand, the limit  → 0 is innite, approached
in such a way that

3


n

1

3
δnn = 1. (1.161)

Therefore, the limiting state |x is not a properly normalizable vector in Hilbert
space. For the sake of elegance, it is useful to weaken the requirement of normal-
izability (1.101) by admitting the limiting states |x to the physical Hilbert space.
In fact, one admits all states which can be obtained by a limiting sequence from
properly normalized state vectors.

The scalar product between states x|x is not a proper function. It is denoted
by the symbol δ(3)(x− x) and called Dirac δ-function:

x|x ≡ δ(3)(x− x). (1.162)

The right-hand side vanishes everywhere, except in the innitely small box of width
 around x ≈ x. Thus the δ-function satises

δ(3)(x− x) = 0 for x = x. (1.163)

At x = x, it is so large that its volume integral is unity:


d3x δ(3)(x− x) = 1. (1.164)
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Obviously, there exists no proper function that can satisfy both requirements, (1.163)
and (1.164). Only the nite- approximations in (1.160) to the δ-function are proper
functions. In this respect, the scalar product x|x behaves just like the states |x
themselves: Both are  → 0 -limits of properly dened mathematical objects.

Note that the integral Eq. (1.164) implies the following property of the δ-function:

δ(3)(a(x − x)) =
1

|a|
δ(3)(x− x). (1.165)

In one dimension, this leads to the more general relation

δ(f(x)) =


i

1

|f (xi)|
δ(x− xi), (1.166)

where xi are the simple zeros of f(x).
In mathematics, one calls the δ-function a generalized function or a distribution.

It is a linear functional dened for arbitrary smooth complex-valued test functions
f(x) for which it produces a complex number. This number is the numerical value
of the function at some desired point x:

δx[f ] ≡


d3x δ(3)(x− x)f(x) = f(x). (1.167)

Test functions are arbitrarily often dierentiable functions with a suciently fast
fallo at spatial innity.

There exists a rich body of mathematical literature on distributions [4]. These
form a linear space. By comparison with ordinary functions, the linear space of
distributions is restricted in an essential way by the fact that products of δ-functions
or any other distributions remain undened. However, in Chapter 10 of the textbook
[1] it was found that the consistency of dierent formulations of quantum mechanics
forces us to go beyond these restricted rules. An important property of quantum
mechanics is coordinate invariance. If we require this property also for the equivalent
path-integral formulation of quantum mechanics, we can derive an extension of the
existing theory of distributions. This procedure uniquely species integrals over
products of distributions.

In quantum mechanics, the role of test functions is played by the wave packets
Ψ(x, t). By admitting the generalized states |x to the Hilbert space, we also admit
the scalar products x|x to the space of wave functions, and thus all distributions,
although they are not normalizable.

1.4.5 Schrödinger Equation in Dirac Notation

In terms of the Dirac bra-ket notation, the Schrödinger equation can be expressed
in a basis-independent way as an operator equation

Ĥ|Ψ(t) ≡ H(p̂, x̂, t)|Ψ(t) = ih̄∂t|Ψ(t), (1.168)
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to be supplemented by the following specications of the canonical operators:

x|p̂ ≡ −ih̄∂xx|, (1.169)

x|x̂ ≡ xx|. (1.170)

Any matrix element can be obtained from these equations by multiplication from
the right with an arbitrary ket vector; for instance with the local basis vector |x:

x|p̂|x = −ih̄∂xx|x = −ih̄∂xδ
(3)(x− x), (1.171)

x|x̂|x = xx|x = xδ(3)(x− x). (1.172)

The original dierential form of the Schrödinger equation (1.92) follows by multi-
plying the basis-independent Schrödinger equation (1.168) with the bra vector x|
from the left:

x|H(p̂, x̂, t)|Ψ(t) = H(−ih̄∂x,x, t)x|Ψ(t)

= ih̄∂tx|Ψ(t). (1.173)

Obviously, p̂ and x̂ are Hermitian matrices in any basis,

a|p̂|a = a|p̂|a∗, (1.174)

a|x̂|a = a|x̂|a∗, (1.175)

and so is the Hamiltonian
a|Ĥ|a = a|Ĥ|a∗, (1.176)

as long as it has the form (1.106).
The most general basis-independent operator that can be constructed in the

generalized Hilbert space spanned by the states |x is some function of p̂, x̂, t,

Ô(t) ≡ O(p̂, x̂, t). (1.177)

In general, such an operator is called Hermitian if all its matrix elements have
this property. In the basis-independent Dirac notation, the denition (1.102) of a
Hermitian-adjoint operator Ô†(t) implies the equality of the matrix elements

a|Ô†(t)|a ≡ a|Ô(t)|a∗. (1.178)

Thus we can rephrase Eqs. (1.174)–(1.176) in the basis-independent form

p̂ = p̂†,

x̂ = x̂†,

Ĥ = Ĥ†.

(1.179)

The stationary states in Eq. (1.99) have a Dirac ket representation |En, and satisfy
the time-independent operator equation

Ĥ |En = En|En. (1.180)
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1.4.6 Momentum States

Let us now look at the momentum p̂. Its eigenstates are given by the eigenvalue
equation

p̂|p = p|p. (1.181)

By multiplying this with x| from the left and using (1.169), we nd the dierential
equation

x|p̂|p = −ih̄∂xx|p = px|p. (1.182)

The solution is
x|p ∝ eipx/h̄. (1.183)

Up to a normalization factor, this is just a plane wave introduced before in Eq. (1.76)
to describe free particles of momentum p.

In order for the states |p to have a nite norm, the system must be conned
to a nite volume, say a cubic box of length L and volume L3. Assuming periodic
boundary conditions, the momenta are discrete with values

pm =
2πh̄

L
(m1, m2, m3), mi = 0,±1,±2, . . . . (1.184)

Then we adjust the factor in front of exp (ipmx/h̄) to achieve unit normalization

x|pm = 1√
L3

exp (ipmx/h̄) , (1.185)

and the discrete states |pm satisfy


d3x |x|pm|2 = 1. (1.186)

The states |pm are complete:


m

|pmpm| = 1. (1.187)

We may use this relation and the matrix elements x|pm to expand any wave
function within the box as

Ψ(x, t) = x|Ψ(t) =


m

x|pmpm|Ψ(t). (1.188)

If the box is very large, the sum over the discrete momenta pm can be approximated
by an integral over momentum space [7]:



m

≈


d3pL3

(2πh̄)3
. (1.189)

In this limit, the states |pm may be used to dene a continuum of basis vectors
with an improper normalization

|p ≈
√
L3|pm, (1.190)
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in the same way as |xn was used in (1.155) to dene |x ∼ (1/
√
3)|xn. The

momentum states |p satisfy the orthogonality relation

p|p = (2πh̄)3δ(3)(p− p), (1.191)

with δ(3)(p−p) being again the Dirac δ-function. Their completeness relation reads



d3p

(2πh̄)3
|pp| = 1, (1.192)

such that the expansion (1.188) becomes

Ψ(x, t) =


d3p

(2πh̄)3
x|pp|Ψ(t), (1.193)

with the momentum eigenfunctions

x|p = eipx/h̄. (1.194)

This coincides precisely with the Fourier decomposition introduced above in the
description of a general particle wave Ψ(x, t) in (1.84) and (1.85), if we identify

p|Ψ(t) = f(p)e−iEpt/h̄. (1.195)

The frequent appearance of factors 2πh̄ with δ-functions and integration mea-
sures in momentum space makes it convenient to dene the modied δ-functions
and integration measures

-δ
(D)

(p) ≡ (2πh̄)Dδ(D)(p), -dDp ≡ dDp

(2πh̄)D
, (1.196)

the latter in analogy with h̄ ≡ h/2π. Then we may write orthogonality and com-
pleteness relations as

p|p = -δ
(3)
(p− p), (1.197)

and 

-d3p|pp| = 1. (1.198)

The bra-ket formalism accommodates naturally the technique of Fourier trans-
forms. The Fourier inversion formula is found by simply inserting into p|Ψ(t) a
completeness relation



d3x|xx| = 1 which yields

p|Ψ(t) =


d3x p|xx|Ψ(t)

=


d3x e−ipx/h̄
Ψ(x, t). (1.199)

The amplitudes p|Ψ(t) are referred to as momentum space wave functions .
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By inserting the completeness relation


d3x|xx| = 1 (1.200)

between the momentum states on the left-hand side of the orthogonality relation
(1.191), we obtain the Fourier representation of the δ-function (1.191):

p|p =


d3x p|xx|p

=


d3x e−i(p−p)x/h̄ = (2πh̄)3δ(3)(p− p). (1.201)

1.4.7 Incompleteness and Poisson’s Summation Formula

For many physical applications it is important to nd out what happens to the
completeness relation (1.153) if one restricts the integral to a subset of positions.
Most relevant will be the one-dimensional integral,



dx |xx| = 1, (1.202)

restricted to a sum over equally spaced points at xn = n · a:

N


n=−N

|xnxn| = 1. (1.203)

Taking this sum between momentum eigenstates |p, we obtain

N


n=−N

p|xnxn|p
 =

N


n=−N

ei(p−p)na/h̄. (1.204)

ForN → ∞ we can perform the sum with the help of Poisson’s summation formula:6

∞


n=−∞

e2πiμn =
∞


m=−∞

δ(μ−m). (1.205)

Identifying μ with (p− p)a/2πh̄, we nd using Eq. (1.165):

∞


n=−∞

p|xnxn|p
 =

∞


m=−∞

δ



a(p−p)

2πh̄
−m



=
∞


m=−∞

2πh̄

a
δ



p−p− 2πh̄m

a



. (1.206)

In order to prove the Poisson formula (1.205), we observe that the sum s(μ) ≡


m δ(μ − m) on the right-hand side is periodic in μ with a unit period and has
the Fourier series s(μ) =

∞
n=−∞ sne

2πiμn. The Fourier coecients are given by

6For a proof of this formula see p. 28 of the textbook [1].
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Figure 1.2 Relevant function
N

n=−N e2πiμn in Poisson’s summation formula. In the

limit N → ∞, μ is squeezed to integer values.

sn =
 1/2
−1/2 dμ s(μ)e−2πiμn ≡ 1. These are precisely the Fourier coecients on the

left-hand side.
For a nite N , the sum over n on the left-hand side of (1.205) yields

N


n=−N

e2πiμn = 1 +


e2πiμ + e2·2πiμ + . . .+ eN ·2πiμ + c.c.


= −1 +



1− e2πiμ(N+1)

1− e2πiμ
+ c.c.



= 1 +
e2πiμ − e2πiμ(N+1)

1− e2πiμ
+ c.c. =

sin πμ(2N + 1)

sin πμ
. (1.207)

This function is well known in wave optics (see Fig. 1.2). It determines the dirac-
tion pattern of light behind a grating with 2N + 1 slits. It has large peaks at
μ = 0,±1,±2,±3, . . . and N − 1 small maxima between each pair of neighbor-
ing peaks, at ν = (1 + 4k)/2(2N + 1) for k = 1, . . . , N − 1. There are zeros at
ν = (1 + 2k)/(2N + 1) for k = 1, . . . , N − 1.

Inserting μ = (p− p)a/2πh̄ into (1.207), we obtain

N


n=−N

p|xnxn|p
 = sin (p− p)a(2N + 1)/2h̄

sin (p− p)a/2h̄
. (1.208)

Let us see how the right-hand side of (1.207) turns into the right-hand side of
(1.205) in the limit N → ∞. In this limit, the area under each large peak can
be calculated by an integral over the central large peak plus a number n of small
maxima next to it:
 n/2N

−n/2N
dμ

sinπμ(2N + 1)

sin πμ
=
 n/2N

−n/2N
dμ

sin 2πμN cos πμ+cos 2πμN sin πμ

sin πμ
. (1.209)
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Keeping a xed ratio n/N  1, we may replace in the integrand sin πμ by πμ and
cos πμ by 1. Then the integral becomes, for N → ∞ at xed n/N ,

 n/2N

−n/2N
dμ

sinπμ(2N + 1)

sin πμ

N→∞
−−−→

 n/2N

−n/2N
dμ

sin 2πμN

πμ
+
 n/2N

−n/2N
dμ cos 2πμN

N→∞
−−−→ 1

π

 πn

−πn
dx

sin x

x
+

1

2πN

 πn

−πn
dx cos x

N→∞
−−−→ 1, (1.210)

where we have used the integral formula

 ∞

−∞
dx

sin x

x
= π. (1.211)

In the limit N → ∞, we nd indeed (1.205) and thus (1.213).
There exists another useful way of expressing Poisson’s formula. Consider an

arbitrary smooth function f(μ) which possesses a convergent sum

∞


m=−∞

f(m). (1.212)

Then Poisson’s formula (1.205) implies that the sum can be rewritten as an integral
and an auxiliary sum:

∞


m=−∞

f(m) =
 ∞

−∞
dμ

∞


n=−∞

e2πiμnf(μ). (1.213)

The auxiliary sum over n squeezes μ to the integer numbers.

1.5 Observables

Changes of basis vectors are an important tool in analyzing the physically observable
content of a wave vector. Let A = A(p,x) be an arbitrary time-independent real
function of the phase space variables p and x. Important examples for such an
A are p and x themselves, the Hamiltonian H(p,x), and the angular momentum
L = x×p. Quantum-mechanically, there will be an observable operator associated
with each such quantity. It is obtained by simply replacing the variables p and x in
A by the corresponding operators p̂ and x̂:

Â ≡ A(p̂, x̂). (1.214)

This replacement rule is the extension of the correspondence principle for the Hamil-
tonian operator (1.93) to more general functions in phase space, converting them
into observable operators. It must be assumed that the replacement leads to a
unique Hermitian operator, i.e., that there is no ordering problem of the type dis-
cussed in context with the Hamiltonian (1.106).7 If there are ambiguities, the naive

7Note that this is true for the angular momentum L = x× p.
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correspondence principle is insucient to determine the observable operator. Then
the correct ordering must be decided by comparison with experiment, unless it can
be specied by means of simple geometric principles. The problem is solved in the
textbook [1].

Once an observable operator Â is Hermitian, it has the useful property that the
set of all eigenvectors |a, obtained by solving the equation

Â|a = a|a, (1.215)

can be used as a basis to span the Hilbert space. Among the eigenvectors, there is
always a choice of orthonormal vectors |a fullling the completeness relation



a

|aa| = 1. (1.216)

The vectors |a can be used to extract physical information on the observable A
from an arbitrary state vector |Ψ(t). For this we expand this vector in the basis
|a:

|Ψ(t) =


a

|aa|Ψ(t). (1.217)

The components

a|Ψ(t) (1.218)

yield the probability amplitude for measuring the eigenvalue a for the observable
quantity A.

The wave function Ψ(x, t) itself is an example of this interpretation. If we write
it as

Ψ(x, t) = x|Ψ(t), (1.219)

it gives the probability amplitude for measuring the eigenvalues x of the position
operator x̂, i.e., |Ψ(x, t)|2 is the probability density in x-space.

The expectation value of the observable operator (1.214) in the state |Ψ(t) is
dened as the matrix element

Ψ(t)|Â|Ψ(t) ≡


d3xΨ(t)|xA(−ih̄∇,x)x|Ψ(t). (1.220)

1.5.1 Uncertainty Relation

We have observed before [see the discussion after (1.84) and (1.85)] that the ampli-
tudes in real space and those in momentum space have widths inversely proportional
to each other, due to the properties of Fourier analysis. If a wave packet is localized
in real space with a width Δx, its momentum space wave function has a width Δp

given by

ΔxΔp ∼ h̄. (1.221)
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From the Hilbert space point of view this uncertainty relation can be shown to be
a consequence of the fact that the operators x̂ and p̂ do not commute with each
other, but its components satisfy the canonical commutation rules

[p̂i, x̂j] = −ih̄δij ,

[x̂i, x̂j] = 0, (1.222)

[p̂i, p̂j] = 0.

In general, if an observable operator Â is measured to have a sharp value a in one
state, this state must be an eigenstate of Â with an eigenvalue a:

Â|a = a|a. (1.223)

This follows from the expansion

|Ψ(t) =


a

|aa|Ψ(t), (1.224)

in which |a|Ψ(t)|2 is the probability to measure an arbitrary eigenvalue a. If this
probability is sharply focused at a specic value of a, the state necessarily coincides
with |a.

Given the set of all eigenstates |a of Â, we may ask under what circumstances
another observable, say B̂, can be measured sharply in each of these states. The
requirement implies that the states |a are also eigenstates of B̂,

B̂|a = ba|a, (1.225)

with some a-dependent eigenvalue ba. If this is true for all |a,

B̂Â|a = baa|a = aba|a = ÂB̂|a, (1.226)

the operators Â and B̂ necessarily commute:

[Â, B̂] = 0. (1.227)

Conversely, it can be shown that a vanishing commutator is also sucient for
two observable operators to be simultaneously diagonalizable, and thus to allow for
simultaneous sharp measurements.

1.5.2 Density Matrix and Wigner Function

An important object for calculating observable properties of a quantum-mechanical
system is the quantum mechanical density operator associated with a pure state

ρ̂(t) ≡ |Ψ(t)Ψ(t)|, (1.228)
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and the associated density matrix associated with a pure state

ρ(x1,x2; t) = x1|Ψ(t)Ψ(t)|x2. (1.229)

The expectation value of any function f(x, p̂) can be calculated from the trace

Ψ(t)|f(x, p̂)|Ψ(t) = tr[f(x, p̂)ρ̂(t)] =


d3xΨ(t)|xf(x,−ih̄∇)x|Ψ(t). (1.230)

If we decompose the states |Ψ(t) into stationary eigenstates |En of the Hamiltonian
operator Ĥ [recall (1.180)], |Ψ(t) = n |EnEn|Ψ(t), then the density matrix has
the expansion

ρ̂(t) ≡


n,m

|Enρnm(t)Em| =


n,m

|EnEn|Ψ(t)Ψ(t)|EmEm|. (1.231)

Wigner showed that the Fourier transform of the density matrix, theWigner function

W (X,p; t) ≡


d3Δx

(2πh̄)3
eipΔx/h̄ρ(X +Δx/2,X−Δx/2; t) (1.232)

satises, for a single particle of mass M in a potential V (x), the Wigner-Liouville
equation



∂t + v ·∇
X



W (X,p; t) = Wt(X,p; t), v ≡ p

M
, (1.233)

where

Wt(X,p; t) ≡ 2

h̄



d3q

(2πh̄)3
W (X,p− q; t)



d3Δx V (X−Δx/2)eiqΔx/h̄. (1.234)

In the limit h̄ → 0, we may expand W (X,p−q; t) in powers of q, and V (X−Δx/2)
in powers of Δx, which we rewrite in front of the exponential eiqΔx/h̄ as powers of
−ih̄∇q. Then we perform the integral over Δx to obtain (2πh̄)3δ(3)(q), and perform
the integral over q to obtain the classical Liouville equation for the probability
density of the particle in phase space



∂t + v ·∇
X



W (X,p; t) = −F (X)∇pW (X,p; t), v ≡ p

M
. (1.235)

Here F (X) ≡ −∇XV (X) is the force associated with the potential V (X).

1.5.3 Generalization to Many Particles

All this development can be extended to systems of N distinguishable mass points
with Cartesian coordinates x1, . . . ,xN . If H(pν ,xν , t) is the Hamiltonian, the
Schrödinger equation becomes

H(p̂ν , x̂ν , t)|Ψ(t) = ih̄∂t|Ψ(t). (1.236)
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We may introduce a complete local basis |x1, . . . ,xN with the properties

x1, . . . ,xN |x

1, . . . ,x


N = δ(3)(x1 − x

1) · · · δ
(3)(xN − x

N),


d3x1 · · · d
3xN |x1, . . . ,xNx1, . . . ,xN | = 1, (1.237)

and dene

x1, . . . ,xN |p̂ν = −ih̄∂xν
x1, . . . ,xN |,

x1, . . . ,xN |x̂ν = xνx1, . . . ,xN |. (1.238)

The Schrödinger equation for N particles (1.112) follows from (1.236) by multiplying
it from the left with the bra vectors x1, . . . ,xN |. In the same way, all other formulas
given above can be generalized to N -body state vectors.

1.6 Time Evolution Operator. Denition

If the Hamiltonian operator possesses no explicit time dependence, the basis-
independent Schrödinger equation (1.168) can be integrated to nd the wave function
|Ψ(t) at any time tb from the state at any other time ta:

|Ψ(tb) = e−i(tb−ta)Ĥ/h̄|Ψ(ta). (1.239)

The operator

Û(tb, ta) = e−i(tb−ta)Ĥ/h̄ (1.240)

is called the time evolution operator . It satises the dierential equation

ih̄∂tbÛ(tb, ta) = Ĥ Û(tb, ta). (1.241)

Its inverse is obtained by interchanging the order of tb and ta:

Û−1(tb, ta) ≡ ei(tb−ta)Ĥ/h̄ = Û(ta, tb). (1.242)

As an exponential of i times a Hermitian operator, Û is a unitary operator satisfying

Û † = Û−1. (1.243)

Indeed:

Û †(tb, ta) = ei(tb−ta)Ĥ†/h̄ = ei(tb−ta)Ĥ/h̄ = Û−1(tb, ta). (1.244)

If H(p̂, x̂, t) depends explicitly on time, the integration of the Schrödinger equation
(1.168) is somewhat more involved. The solution may be found iteratively: For
tb > ta, the time interval is sliced into a large number N + 1 of small pieces of
thickness  with  ≡ (tb − ta)/(N + 1), slicing once at each time tn = ta + n for
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n = 0, . . . , N + 1. We then use the Schrödinger equation (1.168) to relate the wave
function in each slice approximately to the previous one:

|Ψ(ta + ) ≈


1− i

h̄

 ta+

ta
dt Ĥ(t)







Ψ(ta)


,

|Ψ(ta + 2) ≈


1− i

h̄

 ta+2

ta+
dt Ĥ(t)



|Ψ(ta + ),
...

|Ψ(ta + (N + 1)) ≈


1− i

h̄

 ta+(N+1)

ta+N
dt Ĥ(t)



|Ψ(ta +N). (1.245)

From the combination of these equations we extract the evolution operator as a
product

Û(tb, ta) ≈


1− i

h̄

 tb

tN
dtN+1 Ĥ(tN+1)



× · · · ×


1− i

h̄

 t1

ta
dt1 Ĥ(t1)



. (1.246)

By multiplying out the product and going to the limit N → ∞ we nd the series

Û(tb, ta) = 1− i

h̄

 tb

ta
dt1 Ĥ(t1) +

−i

h̄

2  tb

ta
dt2

 t2

ta
dt1 Ĥ(t2)Ĥ(t1)

+
−i

h̄

3  tb

ta
dt3

 t3

ta
dt2

 t2

ta
dt1 Ĥ(t3)Ĥ(t2)Ĥ(t1) + . . . ,(1.247)

known as the Neumann-Liouville expansion or Dyson series.
Note that each integral has the time arguments in the Hamilton operators ordered

causally : Operators with later times stand to the left of those with earlier times. It
is useful to introduce a time-ordering operator which, when applied to an arbitrary
product of operators,

Ôn(tn) · · · Ô1(t1), (1.248)

reorders the times chronologically. More explicitly, we dene

T̂ (Ôn(tn) · · · Ô1(t1)) ≡ Ôin(tin) · · · Ôi1(ti1), (1.249)

where tin , . . . , ti1 are the times tn, . . . , t1 relabeled in the causal order, so that

tin > tin−1
> . . . > ti1 . (1.250)

Any c-number factors in (1.249) can be pulled out in front of the T̂ -operator. With
this formal operator, the Neumann-Liouville expansion can be rewritten in a more
compact way. Take, for instance, the third term in (1.247)

 tb

ta
dt2

 t2

ta
dt1 Ĥ(t2)Ĥ(t1). (1.251)
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ta

tb

tbta t1

t2

Figure 1.3 Illustration of time-ordering procedure in Eq. (1.251).

The integration covers the triangle above the diagonal in the square t1, t2 ∈ [ta, tb]
in the (t1, t2) plane (see Fig. 29.5). By comparing this with the missing integral over
the lower triangle

 tb

ta
dt2

 tb

t2
dt1 Ĥ(t2)Ĥ(t1), (1.252)

we see that the two expressions coincide except for the order of the operators. This
can be corrected with the use of a time-ordering operator T̂ . The expression

T̂
 tb

ta
dt2

 tb

t2
dt1 Ĥ(t2)Ĥ(t1) (1.253)

is equal to (1.251), since it may be rewritten as

 tb

ta
dt2

 tb

t2
dt1 Ĥ(t1)Ĥ(t2), (1.254)

or, after interchanging the order of integration, as

 tb

ta
dt1

 t1

ta
dt2 Ĥ(t1)Ĥ(t2). (1.255)

Apart from the dummy integration variables t2 ↔ t1, this double integral coincides
with (1.251). Since the time arguments are properly ordered, (1.251) can trivially
be multiplied with the time-ordering operator. The conclusion of this discussion is
that (1.251) can alternatively be written as

1

2
T̂
 tb

ta
dt2

 tb

ta
dt1 Ĥ(t2)Ĥ(t1). (1.256)

On the right-hand side, the integrations now run over the full square in the t1, t2-
plane so that the two integrals can be factorized into

1

2
T̂
 tb

ta
dt Ĥ(t)

2

. (1.257)
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Similarly, we may rewrite the nth-order term of (1.247) as

1

n!
T̂
 tb

ta
dtn

 tb

ta
dtn−1 · · ·

 tb

ta
dt1 Ĥ(tn)Ĥ(tn−1) · · · Ĥ(t1) =

1

n!
T̂



 tb

ta
dt Ĥ(t)

n

.

(1.258)
The time evolution operator Û(tb, ta) has therefore the series expansion

Û(tb, ta) = 1− i

h̄
T̂
 tb

ta
dt Ĥ(t) +

1

2!

−i

h̄

2

T̂


 tb

ta
dt Ĥ(t)

2
+ . . .

+
1

n!

−i

h̄

n

T̂


 tb

ta
dt Ĥ(t)

n
+ . . . . (1.259)

The right-hand side of T̂ contains simply the power series expansion of the expo-
nential so that we can write

Û(tb, ta) = T̂ exp


− i

h̄

 tb

ta
dt Ĥ(t)



. (1.260)

If Ĥ does not depend on time, the time-ordering operation is superuous, the integral
can be done trivially, and we recover the previous result (1.240).

Note that a small variation δĤ(t) of Ĥ(t) changes Û(tb, ta) by

δÛ(tb, ta)=− i

h̄

 tb

ta
dt T̂ exp



− i

h̄

 tb

t
dt Ĥ(t)



δĤ(t) T̂ exp



− i

h̄

 t

ta
dt Ĥ(t)



=− i

h̄

 tb

ta
dt Û(tb, t

) δĤ(t) Û(t, ta). (1.261)

A simple application for this relation is given in Appendix 1A.

1.7 Time Evolution Operator. Properties

By construction, Û(tb, ta) has some important properties:

a) Fundamental composition law
If two time translations are performed successively, the corresponding operators Û
are related by

Û(tb, ta) = Û(tb, t
)Û(t, ta), t ∈ (ta, tb). (1.262)

This composition law makes the operators Û a representation of the abelian group
of time translations. For time-independent Hamiltonians with Û(tb, ta) given by
(1.240), the proof of (1.262) is trivial. In the general case (1.260), it follows from
the simple manipulation valid for tb > ta:

T̂ exp


− i

h̄

 tb

t
Ĥ(t) dt



T̂ exp



− i

h̄

 t

ta
Ĥ(t) dt


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= T̂



exp


− i

h̄

 tb

t
Ĥ(t) dt



exp



− i

h̄

 t

ta
Ĥ(t) dt



= T̂ exp


− i

h̄

 tb

ta
Ĥ(t) dt



. (1.263)

b) Unitarity
The expression (1.260) for the time evolution operator Û(tb, ta) was derived only for
the causal (or retarded) time arguments, i.e., for tb later than ta. We may, however,
dene Û(tb, ta) also for the anticausal(or advanced) case where tb lies before ta. To
be consistent with the above composition law (1.262), we must have

Û(tb, ta) ≡ Û(ta, tb)
−1
. (1.264)

Indeed, when considering two states at successive times

|Ψ(ta) = Û(ta, tb)|Ψ(tb), (1.265)

the order of succession is inverted by multiplying both sides by Û−1(ta, tb):

|Ψ(tb) = Û(ta, tb)
−1|Ψ(ta), tb < ta. (1.266)

The operator on the right-hand side is dened to be the time evolution operator
Û(tb, ta) from the later time ta to the earlier time tb.

If the Hamiltonian is independent of time, with the time evolution operator being

Û(ta, tb) = e−i(ta−tb)Ĥ/h̄, ta > tb, (1.267)

the unitarity of the operator Û(tb, ta) is obvious:

Û †(tb, ta) = Û(tb, ta)
−1
, tb < ta. (1.268)

Let us verify this property for a general time-dependent Hamiltonian. There, a
direct solution of the Schrödinger equation (1.168) for the state vector shows that
the operator Û(tb, ta) for tb < ta has a representation just like (1.260), except for a
reversed time order of its arguments. One writes this in the form [compare (1.260)]

Û(tb, ta) = T̂ exp


i

h̄

 tb

ta
Ĥ(t) dt



, (1.269)

where T̂ denotes the time-antiordering operator, with an obvious denition analog
to (1.249), apart from the opposite order (1.250). This operator satises the relation



T̂


Ô1(t1)Ô2(t2)
†

= T̂


Ô†
2(t2)Ô

†
1(t1)



, (1.270)

with an obvious generalization to the product of n operators. We can therefore
conclude right away that

Û †(tb, ta) = Û(ta, tb), tb > ta. (1.271)
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With Û(ta, tb) ≡ Û(tb, ta)
−1, this proves the unitarity relation (1.268), in general.

c) Schrödinger equation for Û(tb, ta)
Since the operator Û(tb, ta) rules the relation between arbitrary wave functions at
dierent times,

|Ψ(tb) = Û(tb, ta)|Ψ(ta), (1.272)

the Schrödinger equation (1.236) implies that the operator Û(tb, ta) satises the
corresponding equations

ih̄∂tÛ(t, ta) = ĤÛ(t, ta), (1.273)

ih̄∂tÛ(t, ta)
−1

= −Û(t, ta)
−1
Ĥ, (1.274)

with the initial condition
Û(ta, ta) = 1. (1.275)

1.8 Heisenberg Picture of Quantum Mechanics

The unitary time evolution operator Û(t, ta) may be used to give a dierent formu-
lation of quantum mechanics bearing the closest resemblance to classical mechanics.
This formulation, called the Heisenberg picture of quantum mechanics, is in a way
more closely related to classical mechanics than the Schrödinger formulation. Many
classical equations remain valid by simply replacing the canonical variables pi(t)
and qi(t) in phase space by Heisenberg operators , to be denoted by pHi(t), qHi(t).
Originally, Heisenberg postulated that they are matrices, but later it became clear
that these matrices are functional matrix elements of operators, whose indices can
be partly continuous. The classical equations of motion hold for the Heisenberg op-
erators, as a consequence of the canonical commutation rules (1.97). It is important
that qi(t) are Cartesian coordinates. In this case we shall always use the notation xi

for the position variable, as in Section 1.4, rather than qi. And the corresponding
Heisenberg operators are really x̂Hi(t). Suppressing the subscripts i, the canonical
equal-time commutation rules are

[p̂H(t), x̂H(t)] = −ih̄,

[p̂H(t), p̂H(t)] = 0,

[x̂H(t), x̂H(t)] = 0.

(1.276)

According to Heisenberg, classical equations involving Poisson brackets remain
valid if the Poisson brackets are replaced by i/h̄ times the matrix commutators at
equal times. The canonical commutation relations (1.276) are a special case of this
rule, recalling the fundamental Poisson brackets (1.24). The Hamilton equations of
motion (1.23) turn into the Heisenberg equations

d

dt
p̂H(t) =

i

h̄



ĤH , p̂H(t)


,

d

dt
x̂H(t) =

i

h̄



ĤH , x̂H(t)


,

(1.277)
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where

ĤH ≡ H(p̂H(t), x̂H(t), t) (1.278)

is the Hamiltonian in the Heisenberg picture. Similarly, the equation of motion for
an arbitrary observable function O(pi(t), xi(t), t) derived in (1.19) goes over into the
matrix commutator equation for the Heisenberg operator

ÔH(t) ≡ O(p̂H(t), x̂H(t), t), (1.279)

namely,
d

dt
ÔH =

i

h̄
[ĤH , ÔH ] +

∂

∂t
ÔH . (1.280)

These rules are referred to as Heisenberg’s correspondence principle.
The relation between Schrödinger’s and Heisenberg’s picture is supplied by the

time evolution operator. Let Ô be an arbitrary observable in the Schrödinger de-
scription

Ô(t) ≡ O(p̂, x̂, t). (1.281)

If the states |Ψa(t) are an arbitrary complete set of solutions of the Schrödinger
equation, where a runs through discrete and continuous indices, the operator Ô(t)
can be specied in terms of its functional matrix elements

Oab(t) ≡ Ψa(t)|Ô(t)|Ψb(t). (1.282)

We can now use the unitary operator Û(t, 0) to go to a new time-independent basis
|ΨHa, dened by

|Ψa(t) ≡ Û(t, 0)|ΨHa. (1.283)

Simultaneously, we transform the Schrödinger operators of the canonical coordinates
p̂ and x̂ into the time-dependent canonical Heisenberg operators p̂H(t) and x̂H(t) via

p̂H(t) ≡ Û(t, 0)−1 p̂ Û(t, 0), (1.284)

x̂H(t) ≡ Û(t, 0)−1 x̂ Û(t, 0). (1.285)

At the time t = 0, the Heisenberg operators p̂H(t) and x̂H(t) coincide with the time-
independent Schrödinger operators p̂ and x̂, respectively. An arbitrary observable
Ô(t) is transformed into the associated Heisenberg operator as

ÔH(t) ≡ Û(t, ta)
−1O(p̂, x̂, t)Û(t, ta)

≡ O (p̂H(t), x̂H(t), t) . (1.286)

The Heisenberg matrices OH(t)ab are then obtained from the Heisenberg operators
ÔH(t) by sandwiching ÔH(t) between the time-independent basis vectors |ΨHa:

OH(t)ab ≡ ΨHa|ÔH(t)|ΨH b. (1.287)
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Note that the time dependence of these matrix elements is now completely due to
the time dependence of the operators,

d

dt
OH(t)ab ≡ ΨHa|

d

dt
ÔH(t)|ΨH b. (1.288)

This is in contrast to the Schrödinger representation (1.282), where the right-hand
side would have contained two more terms from the time dependence of the wave
functions. Due to the absence of such terms in (1.288) it is possible to study the
equation of motion of the Heisenberg matrices independently of the basis by consid-
ering directly the Heisenberg operators. It is straightforward to verify that they do
indeed satisfy the rules of Heisenberg’s correspondence principle. Consider the time
derivative of an arbitrary observable ÔH(t),

d

dt
ÔH(t) =



d

dt
Û−1(t, ta)



Ô(t)Û(t, ta)

+ Û−1(t, ta)



∂

∂t
Ô(t)



Û(t, ta) + Û−1(t, ta)Ô(t)



d

dt
Û(t, ta)



, (1.289)

which can be rearranged to



d

dt
Û−1(t, ta)



Û(t, ta)



Û−1(t, ta)Ô(t)Û(t, ta)

+


Û−1(t, ta)Ô(t)Û(t, ta)


Û−1(t, ta)
d

dt
Û(t, ta) + Û−1(t, ta)



∂

∂t
Ô(t)



Û(t, ta).

Using (1.273), we obtain

d

dt
ÔH(t) =

i

h̄



Û−1ĤÛ , ÔH



+ Û−1



∂

∂t
Ô(t)



Û . (1.290)

After inserting (1.286), we nd the equation of motion for the Heisenberg operator:

d

dt
ÔH(t) =

i

h̄



ĤH , ÔH(t)


+



∂

∂t
Ô



H

(t). (1.291)

By sandwiching this equation between the complete time-independent basis states
|Ψa in Hilbert space, it holds for the matrices and turns into the Heisenberg equation
of motion. For the phase space variables pH(t), xH(t) themselves, these equations
reduce, of course, to the Hamilton equations of motion (1.277).

Thus we have shown that Heisenberg’s matrix quantum mechanics is completely
equivalent to Schrödinger’s quantum mechanics, and that the Heisenberg matrices
obey the same Hamilton equations as the classical observables.
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1.9 Interaction Picture and Perturbation Expansion

For some physical systems, the Hamiltonian operator can be split into two contri-
butions

Ĥ = Ĥ0 + V̂ , (1.292)

where Ĥ0 is a so-called free Hamiltonian operator for which the Schrödinger equation
Ĥ0|ψ(t) = ih̄∂t|ψ(t) can be solved, while V̂ is an interaction potential which
slightly perturbs these solutions. In this case it is useful to describe the system in
Dirac’s interaction picture. We remove the temporal evolution of the unperturbed
Schrödinger solutions and dene the states

|ψI(t) ≡ eiĤ0t/h̄|ψ(t). (1.293)

Their time evolution comes entirely from the interaction potential V̂ . It is governed
by the time evolution operator

ÛI(tb, ta) ≡ eiH0tb/h̄e−iHtb/h̄eiHta/h̄e−iH0ta/h̄, (1.294)

and reads
|ψI(tb) = ÛI(tb, ta)|ψI(ta). (1.295)

If V̂ = 0, the states |ψI(tb) are time-independent and coincide with the Heisenberg
states (1.283) of the operator Ĥ0.

The operator ÛI(tb, ta) satises the equation of motion

ih̄∂tbÛI(tb, ta) = VI(tb)ÛI(tb, ta), (1.296)

where
V̂I(t) ≡ eiH0t/h̄V̂ e−iH0t/h̄ (1.297)

is the potential in the interaction picture. This equation of motion can be turned
into an integral equation

ÛI(tb, ta) = 1− i

h̄

 tb

ta
dtVI(t)ÛI(t, ta). (1.298)

Inserting Eq. (1.297), this reads

ÛI(tb, ta) = 1− i

h̄

 tb

ta
dt eiĤ0t/h̄V e−iĤ0t/h̄ÛI(t, ta). (1.299)

This equation can be iterated to nd a perturbation expansion for the operator
ÛI(tb, ta) in powers of the interaction potential:

ÛI(tb, ta) = 1− i

h̄

 tb

ta
dt eiĤ0t/h̄V e−iĤ0t/h̄

+


− i

h̄

2  tb

ta
dt
 t

ta
dt eiĤ0t/h̄V e−iĤ0(t−t)/h̄V e−iĤ0t/h̄ + . . . . (1.300)
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Inserting on the left-hand side the operator (1.294), this can also be rewritten as

e−iH(tb−ta)/h̄ = e−iH0(tb−ta)/h̄ − i

h̄

 tb

ta
dt e−iĤ0(tb−t)/h̄V e−iĤ0(t−ta)/h̄

+


− i

h̄

2  tb

ta
dt
 t

ta
dt e−iĤ0(tb−t)/h̄V e−iĤ0(t−t)/h̄V e−iĤ0(t−ta)/h̄ + . . . . (1.301)

This expansion is seen to be the recursive solution of the integral equation

e−iH(tb−ta)/h̄ = e−iH0(tb−ta)/h̄ − i

h̄

 tb

ta
dt e−iĤ0(tb−t)/h̄V e−iĤ(t−ta)/h̄. (1.302)

Note that the lowest-order correction agrees with the previous formula (1.261).
A compact way of writing the expansion (1.301) is

e−iH(tb−ta)/h̄ = e−iH0(tb−ta)/h̄ T̂ exp


− i

h̄

 tb

ta
dt e−iĤ0(tb−t)/h̄V e−iĤ0(t−ta)/h̄



. (1.303)

The right-hand exponential can be expanded with the help of Lie’s expansion for-
mula

e−iABeiA = 1− i[A,B] +
i2

2!
[A, [A,B]] + . . . . (1.304)

It forms the basis of the Campbell-Baker-Hausdor expansion to be derived later in
Appendix 4A.

Equation (1.303) can be used as a basis for deriving a perturbative formula that
yields the energy of an interacting system. Let |ψE0

 be an eigenstate of the free
Schrödinger equation Ĥ0|ψE0

 = E0|ψE0
. If this state is subjected for an innite

amount of time to the time-independent interaction V , it will turn into an eigenstate
|ψE of the full Hamiltonian Ĥ of Eq. (1.292). This has an energy E = E0 + ΔE,
where ΔE is determined by the exponential8

e−iΔE(tb−ta)/h̄ = ψE0
|T̂ exp



− i

h̄

 tb

ta
dt e−iĤ0(tb−t)/h̄V e−iĤ0(t−ta)/h̄



|ψE0
. (1.305)

1.10 Time Evolution Amplitude

In the subsequent development, an important role will be played by the matrix
elements of the time evolution operator in the localized basis states,

(xbtb|xata) ≡ xb|Û(tb, ta)|xa. (1.306)

They are referred to as time evolution amplitudes. The functional matrix (xbtb|xata)
is also called the propagator of the system. For a system with a time-independent
Hamiltonian operator where Û(tb, ta) is given by (1.267), the propagator is simply

(xbtb|xata) = xb| exp[−iĤ(tb − ta)/h̄]|xa. (1.307)

8See Eqs. (3.506) and (3.515) of the textbook [2].
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Due to the operator equations (1.273), the propagator satises the Schrödinger
equation

[H(−ih̄∂xb
,xb, tb)− ih̄∂tb ] (xbtb|xata) = 0. (1.308)

In the quantum theory of nonrelativistic particles, only the propagators from earlier
to later times are relevant. It is therefore customary to introduce the so-called causal
or retarded time evolution operator:

ÛR(tb, ta) ≡


Û(tb, ta), tb ≥ ta,
0, tb < ta,

(1.309)

and, associated with it, the causal or retarded time evolution amplitude:

(xbtb|xata)
R ≡ xb|Û

R(tb, ta)|xa. (1.310)

This diers from (1.306) only for tb earlier than ta. Since all formulas in the subse-
quent text will be used only for tb later than ta, we shall often omit the superscript
R. To abbreviate the case distinction in (1.309), it is convenient to use the Heaviside
function dened by

Θ(t) ≡


1 for t > 0,
0 for t ≤ 0,

(1.311)

and write

UR(tb, ta) ≡ Θ(tb − ta)Û(tb, ta), (xbtb|xata)
R ≡ Θ(tb − ta)(xbtb|xata). (1.312)

There exists also another Heaviside function which diers from (1.311) only by the
value at tb = ta:

Θ
R(t) ≡



1 for t ≥ 0,
0 for t < 0.

(1.313)

Both Heaviside functions have the property that their derivative yields Dirac’s δ-
function

∂tΘ(t) = δ(t). (1.314)

In those cases where it is not important which Θ-function is used, we shall ignore
the superscript R.

The retarded propagator satises the Schrödinger equation



H(−ih̄∂xb
,xb, tb)

R − ih̄∂tb


(xbtb|xata)
R = −ih̄δ(tb − ta)δ

(3)(xb − xa). (1.315)

The nonzero right-hand side arises from the time derivative of the Heaviside function
in (1.312):

−ih̄ [∂tbΘ(tb − ta)] xbtb|xata=−ih̄δ(tb − ta)xbtb|xata=−ih̄δ(tb − ta)xbta|xata,
(1.316)

together with the initial condition xbta|xata = xb|xa = δ(3)(xb−xa), that follows
from (1.275).
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If the Hamiltonian does not depend on time, the propagator depends only on the
time dierence t = tb − ta. The retarded propagator vanishes for t < 0. Functions
f(t) with this property have a characteristic Fourier transform. The integral

f̃(E) ≡
 ∞

0
dt f(t)eiEt/h̄ (1.317)

is an analytic function in the upper half of the complex energy plane. This analyticity
property is necessary and sucient to produce a factor Θ(t) when inverting the
Fourier transform via the energy integral

f(t) ≡
 ∞

−∞

dE

2πh̄
f̃(E)e−iEt/h̄. (1.318)

For t < 0, the contour of integration may be closed by an innite semicircle in the
upper half-plane at no extra cost. Since the contour encloses no singularities, it can
be contracted to a point, yielding f(t) = 0.

The Heaviside function Θ(t) itself is the simplest retarded function, with a
Fourier representation containing only a single pole just below the origin of the
complex energy plane:

Θ(t) =
 ∞

−∞

dE

2π

i

E + iη
e−iEt, (1.319)

where η is an innitesimally small positive number. The integral representation is
undened for t = 0 and there are, in fact, innitely many possible denitions for the
Heaviside function depending on the value assigned to the function at the origin. A
special role is played by the average of the Heaviside functions (1.313) and (1.311),
which is equal to 1/2 at the origin:

Θ̄(t) ≡
⎧

⎨

⎩

1 for t > 0,
1

2
for t = 0,

0 for t < 0.

(1.320)

Usually, the dierence in the value at the origin does not matter since the Heaviside
function appears only in integrals accompanied by some smooth function f(t). This
makes the Heaviside function a distribution with respect to smooth test functions
f(t) as dened in Eq. (1.167). All three distributions Θr(t), Θ

l(t), and Θ̄(t) dene
the same linear functional of the test functions by the integral

Θ[f ] =


dtΘ(t− t)f(t). (1.321)

They are one and the same element in the linear space of all distributions.

As indicated after Eq. (1.167), a consistent theory of path integrals species, in
addition, integrals over products of distribution and thus gives rise to an important
extension of the theory of distributions. In this, the Heaviside function Θ̄(t − t)
plays the main role.
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While discussing the concept of distributions let us introduce, for later use, the
closely related distribution

(t− t) ≡ Θ(t− t)− Θ(t − t) = Θ̄(t− t)− Θ̄(t − t), (1.322)

which is a step function jumping at the origin from −1 to 1 as follows:

(t− t) =

⎧

⎪

⎨

⎪

⎩

1 for t > t,
0 for t = t,

−1 for t < t.
(1.323)

1.11 Fixed-Energy Amplitude

The Fourier-transform of the retarded time evolution amplitude (1.310)

(xb|xa)E =
 ∞

−∞
dtbe

iE(tb−ta)/h̄(xbtb|xbta)
R =

 ∞

ta
dtbe

iE(tb−ta)/h̄(xbtb|xbta) (1.324)

is called the xed-energy amplitude.
If the Hamiltonian does not depend on time, we insert here Eq. (1.307) and nd

that the xed-energy amplitudes are matrix elements

(xb|xa)E = xb|R̂(E)|xa (1.325)

of the so-called resolvent operator

R̂(E) =
ih̄

E − Ĥ + iη
, (1.326)

which is the Fourier transform of the retarded time evolution operator (1.309):

R̂(E) =
 ∞

−∞
dtb e

iE(tb−ta)/h̄ÛR(tb, ta) =
 ∞

ta
dtb e

iE(tb−ta)/h̄Û(tb, ta). (1.327)

Let us suppose that the time-independent Schrödinger equation is completely
solved, i.e., that one knows all solutions |ψn of the equation

Ĥ |ψn = En|ψn. (1.328)

These satisfy the completeness relation



n

|ψnψn| = 1, (1.329)

which can be inserted on the right-hand side of (1.307) between the Dirac brackets
leading to the spectral representation

(xbtb|xata) =


n

ψn(xb)ψ
∗
n(xa) exp [−iEn(tb − ta)/h̄] , (1.330)
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with
ψn(x) = x|ψn (1.331)

being the wave functions associated with the eigenstates |ψn. Applying the Fourier
transform (1.324), we obtain

(xb|xa)E =


n

ψn(xb)ψ
∗
n(xa)Rn(E) =



n

ψn(xb)ψ
∗
n(xa)

ih̄

E − En + iη
. (1.332)

The matrix elements of the resolvent operator

(xb|xa)E = xb|
1

E − Ĥ + iη
|xa (1.333)

are the Green functions of the Schrödinger equation, since they satisfy

(Ĥ − E)(x|x)E = −ih̄δ(3)(x− x). (1.334)

For this reason we may also denote the resolvent operator ih̄/(E − Ĥ) as Ĝ(E).
The xed-energy amplitude (1.324) contains as much information on the system

as the time evolution amplitude, which is recovered from it by the inverse Fourier
transformation

(xbta|xata) =
 ∞

−∞

dE

2πh̄
e−iE(tb−ta)/h̄(xb|xa)E . (1.335)

The small iη-shift in the energy E in (1.332) may be thought of as being attached
to each of the energies En, which are thus placed by an innitesimal piece below the
real energy axis. Then the exponential behavior of the wave functions is slightly
damped, going to zero at innite time:

e−i(En−iη)t/h̄ → 0. (1.336)

This so-called iη-prescription ensures the causality of the Fourier representation
(11.6). When doing the Fourier integral (11.6), the exponential eiE(tb−ta)/h̄ makes it
always possible to close the integration contour along the energy axis by an innite
semicircle in the complex energy plane. The semicircle lies in the upper half-plane
for tb < ta and in the lower half-plane for tb > ta. The iη-prescription guarantees
that for tb < ta there is no pole inside the closed contour so that the propagator
vanishes. For tb > ta, on the other hand, the poles in the lower half-plane give, via
Cauchy’s residue theorem, the spectral representation (1.330) of the propagator. An
iη-prescription will appear in another context in Section 7.1.3.

If the eigenstates are nondegenerate, the residues at the poles of (1.332) render
directly the products of eigenfunctions (barring degeneracies which must be dis-
cussed separately). For a system with a continuum of energy eigenvalues, there is
a cut in the complex energy plane which may be thought of as a closely spaced se-
quence of poles. In general, the wave functions are recovered from the discontinuity
of the amplitudes (xb|xa)E across the cut, using the formula

disc



ih̄

E − En



≡ ih̄

E − En + iη
− ih̄

E − En − iη
= 2πh̄δ(E − En). (1.337)
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Here we have employed the relation valid inside integrals over E:9

1

E − En ± iη
=

P

E − En

∓ iπδ(E − En), (1.338)

where the symbol P indicates that the principal value of the integral over E must
be taken.

The energy integral over the discontinuity of the xed-energy amplitude (1.332)
(xb|xa)E reproduces the completeness relation (1.329) evaluated between the local
states xb| and |xa:

 ∞

−∞

dE

2πh̄
disc (xb|xa)E =



n

ψn(xb)ψ
∗
n(xa) = xb|xa = δ(D)(xb − xa). (1.339)

The completeness relation may be viewed as a consequence of the following property
of the resolvent operator:

 ∞

−∞

dE

2πh̄
disc R̂(E) = 1̂. (1.340)

In general, a system possesses also a continuous spectrum, in which case the
completeness relation contains a spectral integral and (1.329) has the form



n

|ψnψn|+


dν |ψνψν | = 1. (1.341)

The continuum causes a branch cut along the E-axis in the complex energy plane,
and (1.339) includes an integral over the discontinuity along the cut. The cut will
often be omitted in the formulas, for brevity.

1.12 Free-Particle Amplitudes

For a free particle with a Hamiltonian operator Ĥ = p̂2/2M , the spectrum is con-
tinuous. The eigenfunctions are (1.194) with energies E(p) = p2/2M . Inserting the
completeness relation (1.192) into Eq. (1.307), we obtain the Fourier representation
of the time evolution amplitude of a free particle

(xbtb|xata) =


dDp

(2πh̄)D
exp



i

h̄



p(xb − xa)−
p2

2M
(tb − ta)



. (1.342)

The momentum integrals can easily be done. First we perform a quadratic comple-
tion in the exponent and rewrite it as

p(xb−xa)−
1

2M
p2(tb−ta)=

1

2M



p− 1

M

xb − xa

tb − ta

2

(tb−ta)−
M

2

(xb − xa)
2

tb − ta
. (1.343)

9This is often referred to as Sochocki’s formula. It is the beginning of an expansion in powers
of η > 0: 1/(x± iη) = P/x∓ iπδ(x) + η [πδ(x)± idxP/x] +O(η2).
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Then we replace the integration variables p by the shifted momenta p = p −
(xb − xa)/(tb − ta)M , which can be integrated out to arrive at the amplitude

(xbtb|xata) = F (tb − ta) exp



i

h̄

M

2

(xb − xa)
2

tb − ta



, (1.344)

where F (tb − ta) is the integral over the shifted momenta

F (tb − ta) ≡


dDp

(2πh̄)D
exp



− i

h̄

p 2

2M
(tb − ta)



. (1.345)

This can be performed using the Fresnel integral formula

 ∞

−∞

dp√
2π

exp


i
a

2
p2


=
1


|a|

 √
i, a > 0,

1/
√
i, a < 0.

(1.346)

Here the square-root
√
i denotes the phase factor eiπ/4: This follows from the Gauss

formula
 ∞

−∞

dp√
2π

exp


−α

2
p2


=
1√
α
, Reα > 0, (1.347)

by continuing α analytically from positive values into the right complex half-plane.
As long as Reα > 0, this is straightforward. On the boundaries, i.e., on the positive
and negative imaginary axes, one has to be careful. At α = ±ia + η with a>

<
0 and

innitesimal η > 0, the integral is certainly convergent yielding (1.346). But the
integral also converges for η = 0, as can easily be seen by substituting x2 = z (see
Appendix 1B).

Note that dierentiation of Eq. (1.347) with respect to α yields the more general
Gaussian integral formula

 ∞

−∞

dp√
2π

p2n exp


−α

2
p2


=
1√
α

(2n− 1)!!

αn
Reα > 0, (1.348)

where (2n − 1)!! is dened as the product (2n − 1) · (2n− 3) · · ·1. For odd powers
p2n+1, the integral vanishes. In the Fresnel formula (1.346), an extra integrand p2n

produces a factor (i/a)n.
Since the Fresnel formula is a special analytically continued case of the Gauss for-

mula, we shall in the sequel always speak of Gaussian integrations and use Fresnel’s
name only if the imaginary nature of the quadratic exponent is emphasized.

Applying this formula to (1.345), we obtain

F (tb − ta) =
1



2πih̄(tb − ta)/M
D , (1.349)

so that the full time evolution amplitude of a free massive point particle is

(xbtb|xata) =
1



2πih̄(tb − ta)/M
D exp



i

h̄

M

2

(xb − xa)
2

tb − ta



. (1.350)
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In the limit tb → ta, the left-hand side becomes the scalar product xb|xa =
δ(D)(xb − xa), implying the following limiting formula for the δ-function:

δ(D)(xb − xa) = lim
tb−ta→0

1


2πih̄(tb − ta)/M
D exp



i

h̄

M

2

(xb − xa)
2

tb − ta



. (1.351)

Inserting Eq. (1.344) into (1.324), we have for the xed-energy amplitude the
integral representation

(xb|xa)E =
 ∞

0
d(tb − ta)



dDp

(2πh̄)D
exp



i

h̄



p(xb − xa) + (tb − ta)



E − p2

2M



.

(1.352)
Performing the time integration yields

(xb|xa)E =
 dDp

(2πh̄)D
exp [ip(xb − xa)]

ih̄

E − p2/2M + iη
, (1.353)

where we have inserted a damping factor e−η(tb−ta) into the integral to ensure con-
vergence at large tb− ta. For a more explicit result it is more convenient to calculate
the Fourier transform (1.350):

(xb|xa)E =
 ∞

0
d(tb − ta)

1


2πih̄(tb − ta)/M
D exp



i

h̄



E(tb − ta) +
M

2

(xb−xa)
2

tb − ta



.

(1.354)

For E < 0, we set

κ ≡


−2ME/h̄2, (1.355)

and perform the integral with the help of the formula10

 ∞

0
dt tν−1e−iγt+iβ/t = 2



β

γ

ν/2

e−iνπ/2K−ν(2


βγ), (1.356)

where Kν(z) is the modied Bessel function which satises Kν(z) = K−ν(z).
11 The

result is

(xb|xa)E = −i
2M

h̄

κD−2

(2π)D/2

KD/2−1(κR)

(κR)D/2−1
, (1.357)

where R ≡ |xb − xa|. The simplest modied Bessel function is12

K1/2(z) = K−1/2(z) =



π

2z
e−z, (1.358)

10I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products , Academic Press,
New York, 1980. Use any of Formulas 3.471.10, 3.471.11, or 8.432.6.

11Ibid., Formula 8.486.16.
12M. Abramowitz and I. Stegun, Handbook of Mathematical Functions , Dover, New York, 1965,

Formula 10.2.17.



52 1 Fundamentals

so that we nd the amplitudes for D = 1, 2, 3:

−i
M

h̄

1

κ
e−κR, − i

M

h̄

1

π
K0(κR), − i

M

h̄

1

2πR
e−κR. (1.359)

At R = 0, the amplitude (1.357) is nite for all D ≤ 2, and we can use the
small-argument behavior of the associated Bessel function13

Kν(z) = K−ν(z) ≈
1

2
Γ(ν)



z

2

−ν

for Re ν > 0, (1.360)

to obtain

(x|x)E = −i
2M

h̄

κD−2

(4π)D/2
Γ(1−D/2). (1.361)

This result can be continued analytically to D > 2, which is often of interest.
For E > 0 we set

k ≡


2ME/h̄2, (1.362)

and use the formula14

 ∞

0
dttν−1eiγt+iβ/t = iπ



β

γ

ν/2

e−iνπ/2H
(1)
−ν (2



βγ), (1.363)

where H (1)
ν (z) is the Hankel function, to nd

(xb|xa)E =
Mπ

h̄

kD−2

(2π)D/2

HD/2−1(kR)

(kR)D/2−1
. (1.364)

The relation15

Kν(−iz) =
π

2
ieiνπ/2H (1)

ν (z) (1.365)

connects the two results (1.357) and (1.364) with each other when continuing the
energy from negative to positive values, which replaces κ by e−iπ/2k = −ik.

For large distances, the asymptotic behavior16

Kν(z) ≈


π

2z
e−z, H (1)

ν (z) ≈


2

πz
ei(z−νπ/2−π/4) (1.366)

shows that the xed-energy amplitude behaves for E < 0 like

(xb|xa)E ≈ −i
M

h̄
κD−2 1

(2π)(D−1)/2

1

(κR)(D−1)/2
e−κR/h̄, (1.367)

and for E > 0 like

(xb|xa)E ≈ M

h̄
kD−2 1

(2πi)(D−1)/2

1

(kR)(D−1)/2
eikR/h̄. (1.368)

For D = 1 and 3, these asymptotic expressions hold for all R.

13Ibid., Formula 9.6.9.
14Ibid., Formulas 3.471.11 or 8.421.7.
15Ibid., Formula 8.407.1.
16Ibid., Formulas 8.451.6 or 8.451.3.
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1.13 Quantum Mechanics of General Lagrangian Systems

An extension of the quantum-mechanical formalism to systems described by a set of
completely general Lagrange coordinates q1, . . . , qN is not straightforward. Only in
the special case that qi (i = 1, . . . , N) represent merely a curvilinear reparametriza-
tion of a D-dimensional euclidean space parametrized by xi, the above correspon-
dence rules are sucient to quantize the system. Then the number N of coordinates
is equal to the dimension D, and a variable change from xi to qj in the Schrödinger
equation leads to the correct quantum mechanics. It will be useful to label the curvi-
linear coordinates by Greek superscripts, and write qμ instead of latin subscripts in
qj . This will help us to write all ensuing equations in a form that is manifestly
covariant under coordinate transformations. In the original denition of generalized
coordinates in Eq. (1.1), this was unnecessary since transformation properties were
ignored. For the Cartesian coordinates we shall use Latin indices alternatively as
sub- or superscripts. The coordinate transformation xi = xi(qμ) implies the relation
between the derivatives ∂μ ≡ ∂/∂qμ and ∂i ≡ ∂/∂xi:

∂μ = eiμ(q)∂i, (1.369)

with the transformation matrix

eiμ(q) ≡ ∂μx
i(q) (1.370)

called basis D-ad (in 3 dimensions basis triad, in 4 dimensions basis tetrad, etc.).
Let ei

μ(q) = ∂qμ/∂xi be the inverse matrix (assuming it exists) called the reciprocal
D-ad , satisfying with eiμ the orthogonality and completeness relations

eiμ ei
ν = δμ

ν , eiμ ej
μ = δij. (1.371)

Then (1.369) is inverted to
∂i = ei

μ(q)∂μ (1.372)

and yields the curvilinear transform of the Cartesian quantum-mechanical momen-
tum operators

p̂i = −ih̄∂i = −ih̄ei
μ(q)∂μ. (1.373)

The free-particle Hamiltonian operator

Ĥ0 = T̂ =
1

2M
p̂2 = − h̄2

2M
∂x

2 (1.374)

goes over into

Ĥ0 = − h̄2

2M
Δ, (1.375)

where Δ is the Laplacian expressed in curvilinear coordinates:

Δ = ∂2
i = eiμ∂μei

ν∂ν

= eiμei
ν∂μ∂ν + (eiμ∂μei

ν)∂ν . (1.376)
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At this point one introduces the metric tensor

gμν(q) ≡ eiμ(q)e
i
ν(q), (1.377)

its inverse

gμν(q) = eiμ(q)ei
ν(q) (1.378)

dened by gμνgνλ = δμλ, and the so-called ane connection

Γμν
λ(q) = −eiν(q)∂μei

λ(q) = ei
λ(q)∂μe

i
ν(q). (1.379)

Then the Laplacian takes the form

Δ = gμν(q)∂μ∂ν − Γμ
μν(q)∂ν , (1.380)

with Γμ
λν being dened as the contraction

Γμ
λν ≡ gλκΓμκ

ν . (1.381)

The reason why (1.377) is called a metric tensor is obvious: An innitesimal square
distance between two points in the original Cartesian coordinates

ds2 ≡ dx2 (1.382)

becomes, in curvilinear coordinates,

ds2 =
∂x

∂qμ
∂x

∂qν
dqμdqν = gμν(q)dq

μdqν. (1.383)

The innitesimal volume element dDx is given by

dDx =
√
g dDq, (1.384)

where

g(q) ≡ det (gμν(q)) (1.385)

is the determinant of the metric tensor. Using this determinant, we form the quantity

Γμ ≡ g−1/2(∂μg
1/2) =

1

2
gλκ(∂μgλκ) (1.386)

and see that it is equal to the once-contracted connection

Γμ = Γμλ
λ. (1.387)

With the inverse metric (1.378) we have furthermore

Γμ
μν = −∂μg

μν − Γμ
νμ. (1.388)
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We now take advantage of the fact that the derivatives ∂μ, ∂ν applied to the coordi-
nate transformation xi(q) commute, causing Γμν

λ to be symmetric in μν, i.e., Γμν
λ

= Γνμ
λ and hence Γμ

νμ = Γ
ν . Together with (1.386) we nd the rotation

Γμ
μν = − 1√

g
(∂μg

μν√g), (1.389)

which allows the Laplace operator Δ to be rewritten in the more compact form

Δ =
1
√
g
∂μg

μν√g∂ν . (1.390)

This expression is called the Laplace-Beltrami operator .
Thus we have shown that, for a Hamiltonian in a euclidean space,

H(p̂,x) =
1

2M
p̂2 + V (x), (1.391)

the Schrödinger equation in curvilinear coordinates becomes

Ĥψ(q, t) ≡


− h̄2

2M
Δ+ V (q)



ψ(q, t) = ih̄∂tψ(q, t), (1.392)

where V (q) is short for V (x(q)). The scalar product of two wave functions


dDxψ∗
2(x, t)ψ1(x, t), which determines the transition amplitudes of the system,

transforms into


dDq
√
g ψ∗

2(q, t)ψ1(q, t). (1.393)

It is important to realize that this Schrödinger equation would not be obtained
by a straightforward application of the canonical formalism to the coordinate-
transformed version of the Cartesian Lagrangian

L(x, ẋ) =
M

2
ẋ2 − V (x). (1.394)

With the velocities transforming like

ẋi = eiμ(q)q̇
μ, (1.395)

the Lagrangian becomes

L(q, q̇) =
M

2
gμν(q)q̇

μq̇ν − V (q). (1.396)

Up to a factor M , the metric is equal to the Hessian metric of the system, which
depends here only on qμ [recall (1.12)]:

Hμν(q) = Mgμν(q). (1.397)
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The canonical momenta are

pμ ≡ ∂L

∂q̇μ
= Mgμν q̇

ν . (1.398)

The associated quantum-mechanical momentum operators p̂μ have to be Hermitian
in the scalar product (1.393). They must satisfy the canonical commutation rules
(1.276):

[p̂μ, q̂
ν ] = −ih̄δμ

ν ,

[q̂μ, q̂ν ] = 0, (1.399)

[p̂μ, p̂ν ] = 0.

An obvious solution is

p̂μ = −ih̄g−1/4∂μg
1/4, q̂μ = qμ. (1.400)

The commutation rules are true for −ih̄g−z∂μg
z with any power z, but only z = 1/4

produces a Hermitian momentum operator:


d3q
√
gΨ∗

2(q, t)[−ih̄g−1/4∂μg
1/4

Ψ1(q, t)] =


d3q g1/4Ψ∗
2(q, t)[−ih̄∂μg

1/4
Ψ1(q, t)]

=


d3q
√
g [−ih̄g−1/4∂μg

1/4
Ψ2(q, t)]

∗
Ψ1(q, t), (1.401)

as is easily veried by partial integration.
In terms of the quantity (1.386), this can also be rewritten as

p̂μ = −ih̄(∂μ + 1

2
Γμ). (1.402)

Consider now the classical Hamiltonian associated with the Lagrangian (1.396),
which by (1.398) is simply

H = pμq̇
μ − L =

1

2M
gμν(q)p

μpν + V (q). (1.403)

When trying to turn this expression into a Hamiltonian operator, we encounter the
operator-ordering problem discussed in connection with Eq. (1.106). The correspon-
dence principle requires replacing the momenta pμ by the momentum operators p̂μ,
but it does not specify the position of these operators with respect to the coordi-
nates qμ contained in the inverse metric gμν(q). An important constraint is provided
by the required hermiticity of the Hamiltonian operator, but this is not sucient
for a unique specication. We may, for instance, dene the canonical Hamiltonian
operator as

Ĥcan ≡ 1

2M
p̂μgμν(q)p̂

ν + V (q), (1.404)

in which the momentum operators have been arranged symmetrically around the
inverse metric to achieve hermiticity. This operator, however, is not equal to the
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correct Schrödinger operator in (1.392). The kinetic term contains what we may
call the canonical Laplacian

Δcan = (∂μ + 1

2
Γμ) g

μν(q) (∂ν + 1

2
Γν). (1.405)

It diers from the Laplace-Beltrami operator (1.390) in (1.392) by

Δ−Δcan = − 1

2
∂μ(g

μν
Γν)− 1

4
gμνΓνΓμ. (1.406)

The correct Hamiltonian operator could be obtained by suitably distributing pairs
of dummy factors of g1/4 and g−1/4 symmetrically between the canonical operators,
for example by taking [8]:

Ĥ =
1

2M
g−1/4p̂μg

1/4gμν(q)g1/4p̂νg
−1/4 + V (q). (1.407)

This operator has the same classical limit (1.403) as (1.404). The correspondence
principle does not specify how the classical factors have to be ordered before being
replaced by operators.

The simplest system exhibiting the breakdown of the canonical quantization rules
is a free particle in a plane described by radial coordinates q1 = r, q2 = ϕ:

x1 = r cosϕ, x2 = r sinϕ. (1.408)

Since the innitesimal square distance is ds2 = dr2 + r2dϕ2, the metric reads

gμν =



1 0
0 r2



μν

. (1.409)

It has a determinant
g = r2 (1.410)

and an inverse

gμν =



1 0
0 r−2

μν

. (1.411)

The Laplace-Beltrami operator becomes

Δ =
1

r
∂rr∂r +

1

r2
∂ϕ

2. (1.412)

The canonical Laplacian, on the other hand, reads

Δcan = (∂r + 1/2r)2 +
1

r2
∂ϕ

2

= ∂r
2 +

1

r
∂r −

1

4r2
+

1

r2
∂ϕ

2. (1.413)

The discrepancy (1.406) is therefore

Δcan −Δ = − 1

4r2
. (1.414)
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Note that this discrepancy arises even though there is no apparent ordering problem
in the naively quantized canonical expression p̂μgμν(q) p̂

ν in (1.413). Only the need to
introduce dummy g1/4- and g−1/4-factors creates such problems, and a specication
of the order is required to obtain the correct result.

If the Lagrangian coordinates qi do not merely reparametrize a euclidean space
but specify the points of a general geometry, we cannot proceed as above and de-
rive the Laplace-Beltrami operator by a coordinate transformation of a Cartesian
Laplacian. With the canonical quantization rules being unreliable in curvilinear
coordinates there are, at rst sight, severe diculties in quantizing such a system.
This is why the literature contains many proposals for handling this problem [9].
Fortunately, a large class of non-Cartesian systems allows for a unique quantum-
mechanical description on completely dierent grounds. These systems have the
common property that their Hamiltonian can be expressed in terms of the genera-
tors of a group of motion in the general coordinate frame. For symmetry reasons, the
correspondence principle must then be imposed on the commutators of the group
generators rather than upon the Poisson brackets of the canonical variables p and
q. The brackets containing two group generators specify the structure of the group,
while those containing a generator and a coordinate specify the dening represen-
tation of the group in conguration space. The replacement of these brackets by
commutation rules constitutes the proper generalization of the canonical quantiza-
tion from Cartesian to non-Cartesian coordinates. It is called group quantization.
The replacement rule will be referred to as the group correspondence principle. The
canonical commutation rules in euclidean space may be viewed as a special case
of the commutation rules between group generators, i.e., of the Lie algebra of the
group. In a Cartesian coordinate frame, the group of motion is the euclidean group
containing translations and rotations. The generators of translations and rotations
are the momenta and the angular momenta, respectively. According to the group
correspondence principle, the Poisson brackets between the generators and the co-
ordinates have to be replaced by commutation rules. Thus, in a euclidean space,
the commutation rules between group generators and coordinates lead to the canon-
ical quantization rules, and this appears to be the deeper reason why the canonical
rules are correct. This is true in particular for systems whose energy depends on
generators of the group of motion other than those of translations, for instance on
the angular momenta. Then the commutators between the group generators must
be used for quantization, rather than the canonical commutators between positions
and momenta.

The prime examples for such systems are provided by a particle on the surface
of a sphere or by a spinning top. The quantization of both will now be discussed.

1.14 Particle on the Surface of a Sphere

For a particle moving on the surface of a sphere of radius r with coordinates

x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ, (1.415)
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the Lagrangian reads

L =
Mr2

2
(θ̇2 + sin2 θ ϕ̇2). (1.416)

The canonical momenta are

pθ = Mr2θ̇, pϕ = Mr2 sin2 θ ϕ̇, (1.417)

and the classical Hamiltonian is given by

H =
1

2Mr2



p2θ +
1

sin2 θ
p2ϕ



. (1.418)

According to the canonical quantization rules, the momenta should become opera-
tors

p̂θ = −ih̄
1

sin1/2 θ
∂θ sin

1/2 θ, p̂ϕ = −ih̄∂ϕ. (1.419)

But as explained in the previous section, these momentum operators are not ex-
pected to give the correct Hamiltonian operator when inserted into the Hamiltonian
(1.418). Moreover, there exists no proper coordinate transformation from the sur-
face of the sphere to Cartesian coordinates17 such that a particle on a sphere cannot
be treated via the safe Cartesian quantization rules (1.276):

[p̂i, x̂
j] = −ih̄δi

j,

[x̂i, x̂j] = 0, (1.420)

[p̂i, p̂j] = 0.

The only help comes from the group properties of the motion on the surface of the
sphere. The angular momentum

L = x× p (1.421)

can be quantized uniquely in Cartesian coordinates. It becomes an operator

L̂ = x̂× p̂, (1.422)

whose components satisfy the commutation rules of the Lie algebra of the rotation
group

[L̂i, L̂j ] = ih̄L̂k (i, j, k cyclic). (1.423)

Note that there is no factor-ordering problem since the x̂i’s and the p̂i’s appear
with dierent indices in each L̂k. An important property of the angular momentum

17There exist, however, certain innitesimal nonholonomic coordinate transformations which are
multivalued and can be used to transform innitesimal distances in a at space into those in a
curved one. They are introduced and applied in the textbook entitled Multivalued Fields cited in
Ref. [5] leading once more to the same quantum mechanics as the one described here.
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operator is its homogeneity in x. It has the consequence that, when going from
Cartesian to spherical coordinates

x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ, (1.424)

the radial coordinate cancels, making the angular momentum a dierential operator
involving only the angles θ,ϕ:

L̂1 = ih̄ (sinϕ ∂θ + cot θ cosϕ ∂ϕ) ,

L̂2 = −ih̄ (cosϕ ∂θ − cot θ sinϕ ∂ϕ) , (1.425)

L̂3 = −ih̄∂ϕ.

There is then a natural way of quantizing the system which makes use of these
operators L̂i. We re-express the classical Hamiltonian (1.418) in terms of the classical
angular momenta

L1 = Mr2


− sinϕ θ̇ − sin θ cos θ cosϕ ϕ̇


,

L2 = Mr2


cosϕ θ̇ − sin θ cos θ sinϕ ϕ̇


, (1.426)

L3 = Mr2 sin2 θ ϕ̇

as

H =
1

2Mr2
L2, (1.427)

and replace the angular momenta by the operators (1.425). The result is the Hamil-
tonian operator:

Ĥ =
1

2Mr2
L̂2 = − h̄2

2Mr2



1

sin θ
∂θ (sin θ ∂θ) +

1

sin2 θ
∂2
ϕ



. (1.428)

The eigenfunctions diagonalizing the rotation-invariant operator L̂2 are well known.
They can be chosen to diagonalize simultaneously one component of L̂i, for instance
the third one, L̂3, in which case they are equal to the spherical harmonics

Ylm(θ,ϕ) = (−1)m


2l + 1

4π

(l −m)!

(l +m)!

1/2

Pm
l (cos θ)eimϕ, (1.429)

with Pm
l (z) being the associated Legendre polynomials

Pm
l (z) =

1

2ll!
(1− z2)m/2 dl+m

dxl+m
(z2 − 1)l. (1.430)

The spherical harmonics are orthonormal with respect to the rotation-invariant
scalar product

 π

0
dθ sin θ

 2π

0
dϕ Y ∗

lm(θ,ϕ)Ylm(θ,ϕ) = δllδmm . (1.431)
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Two important lessons can be learned from this group quantization. First, the
correct Hamiltonian operator (1.428) does not agree with the canonically quantized
one which would be obtained by inserting Eqs. (1.419) into (1.418). The correct
result would, however, arise by distributing dummy factors

g−1/4 = r−1 sin−1/2θ, g1/4 = r sin1/2θ (1.432)

between the canonical momentum operators as observed earlier in Eq. (1.407). Sec-
ond, just as in the case of polar coordinates, the correct Hamiltonian operator is
equal to

Ĥ = − h̄2

2M
Δ, (1.433)

where Δ is the Laplace-Beltrami operator associated with the metric

gμν = r2


1 0
0 sin2 θ



, (1.434)

i.e.,

Δ =
1

r2



1

sin θ
∂θ (sin θ∂θ) +

1

sin2 θ
∂2
ϕ



. (1.435)

1.15 Spinning Top

For a spinning top, the optimal starting point is again not the classical Lagrangian
but the Hamiltonian expressed in terms of the classical angular momenta. In the
symmetric case in which two moments of inertia coincide, it is written as

H =
1

2Iξ
(Lξ

2 + Lη
2) +

1

2Iζ
Lζ

2, (1.436)

where Lξ, Lη, Lζ are the components of the orbital angular momentum in the di-
rections of the principal body axes, and Iξ, Iη ≡ Iξ, Iζ denotes the corresponding
moments of inertia. The classical angular momentum of an aggregate of mass points
is given by

L =


ν

xν × pν , (1.437)

where the sum over ν runs over all mass points. The angular momentum possesses
a unique operator

L̂ =


ν

x̂ν × p̂ν , (1.438)

with the commutation rules (1.423) between the components L̂i. Since rotations
do not change the distances between the mass points, they commute with the con-
straints of the rigid body. If the center of mass of the rigid body is placed at the
origin, the only dynamical degrees of freedom are the orientations in space. They
can uniquely be specied by the rotation matrix which brings the body from some
standard orientation to the actual one. We may choose the standard orientation
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to have the principal body axes aligned with the x, y, z-directions, respectively. An
arbitrary orientation is obtained by applying all nite rotations to each point of the
body. They are specied by the 3× 3 orthonormal matrices Rij . The space of these
matrices has three degrees of freedom. It can be decomposed, omitting the matrix
indices as

R(α, β, γ) = R3(α)R2(β)R3(γ), (1.439)

where R3(α), R3(γ) are rotations around the z-axis by angles α, γ, respectively,
and R2(β) is a rotation around the y-axis by β. These rotation matrices can be
expressed as exponentials

Ri(δ) ≡ e−iδLi/h̄, (1.440)

where δ is the rotation angle and Li are the 3× 3 matrix generators of the rotations
with the elements

(Li)jk = −ih̄ijk. (1.441)

It is easy to check that these generators satisfy the commutation rules (1.423) of
angular momentum operators. The angles α, β, γ are referred to as Euler angles .

The 3×3 rotation matrices make it possible to express the innitesimal rotations
around the three coordinate axes as dierential operators of the three Euler angles.
Let ψ(R) be the wave function of the spinning top describing the probability am-
plitude of the dierent orientations which arise from a standard orientation by the
rotation matrix R = R(α, β, γ). Then a further rotation by R(α, β , γ) transforms
the wave function into ψ(R) = ψ(R−1(α, β , γ)R). The transformation may be
described by a unitary dierential operator

Û(α, β , γ) ≡ e−iαL̂3e−iβL̂2e−iγL̂3, (1.442)

where L̂i is the representation of the generators in terms of dierential operators.
To calculate these we note that the 3 × 3 -matrix R−1(α, β, γ) has the following
derivatives

−ih̄∂αR
−1 = R−1L3,

−ih̄∂βR
−1 = R−1(cosαL2 − sinαL1), (1.443)

−ih̄∂γR
−1 = R−1 [cos β L3 + sin β(cosαL1 + sinαL2)] .

The rst relation is trivial, the second follows from the rotation of the generator

e−iαL3/h̄L2e
iαL3/h̄ = cosαL2 − sinαL1, (1.444)

which is a consequence of Lie’s expansion formula (4.105), together with the com-
mutation rules (1.441) of the 3× 3 matrices Li. The third requires, in addition, the
rotation

e−iβL2/h̄L3e
iβL2/h̄ = cos βL3 + sin βL1. (1.445)
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Inverting the relations (1.443), we nd the dierential operators generating the
rotations [10]:

L̂1 = ih̄



cosα cot β ∂α + sinα ∂β −
cosα

sin β
∂γ



,

L̂2 = ih̄



sinα cot β ∂α − cosα ∂β −
sinα

sin β
∂γ



, (1.446)

L̂3 = −ih̄∂α.

After exponentiating these dierential operators we derive

Û(α, β , γ)R(α, β, γ)Û−1(α, β , γ) = R−1(α, β , γ)R(α, β, γ), (1.447)

implying that ψ(R) = Û(α, β , γ)ψ(R), as desired.
In the Hamiltonian (1.436), we need the components of L̂ along the body axes.

They are obtained by rotating the 3 × 3 matrices Li by R(α, β, γ) into

Lξ = RL1R
−1 = cos γ cos β(cosαL1 + sinαL2)

+ sin γ(cosαL2 − sinαL1)− cos γ sin β L3,

Lη = RL2R
−1 = − sin γ cos β(cosαL1 + sinαL2) (1.448)

+ cos γ(cosαL2 − sinαL1) + sin γ sin β L3,

Lζ = RL3R
−1 = cos β L3 + sin β(cosαL1 + sinαL2),

and by replacing Li → L̂i in the nal expressions. Inserting (1.446), we nd the
operators

L̂ξ = ih̄



− cos γ cot β ∂γ − sin γ ∂β +
cos γ

sin β
∂α



,

L̂η = ih̄



sin γ cot β ∂γ − cos γ ∂β −
sin γ

sin β
∂α



, (1.449)

L̂ζ = −ih̄∂γ .

Note that these commutation rules have an opposite sign with respect to those in
Eqs. (1.423) of the operators L̂i:

18

[L̂ξ, L̂η] = −ih̄L̂ζ , ξ, η, ζ = cyclic. (1.450)

The sign is most simply understood by writing

L̂ξ = aiξL̂i, L̂η = aiηL̂i, L̂ζ = aiζL̂i, (1.451)

18When applied to functions which do not depend on α, then, after replacing β → θ and γ → ϕ,
the operators agree with those in (1.425), up to the sign of L̂1.
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where aiξ, a
i
η, a

i
ζ , are the components of the body axes. Under rotations these behave

like [L̂i, a
j
ξ] = ih̄ijka

k
ξ , i.e., they are vector operators. It is easy to check that this

property produces the sign reversal in (1.450) with respect to (1.423).
The correspondence principle is now applied to the Hamiltonian in Eq. (1.436)

by placing operator hats on the La’s. The energy spectrum and the wave functions
can then be obtained by using only the group commutators between L̂ξ , L̂η, L̂ζ . The
spectrum is

ELΛ = h̄2



1

2Iξ
L(L+ 1) +



1

2Iζ
− 1

2Iξ



Λ
2



, (1.452)

where L(L + 1) with L = 0, 1, 2, . . . are the eigenvalues of L̂2, and Λ = −L, . . . , L
are the eigenvalues of L̂ζ . The wave functions are the representation functions of
the rotation group. If the Euler angles α, β, γ are used to specify the orientation of
the body axes, the wave functions are

ψLΛm(α, β, γ) = DL
mΛ

(−α,−β,−γ). (1.453)

Here m are the eigenvalues of L̂3, i.e., the magnetic quantum numbers, and
DL

mΛ
(α, β, γ) are the representation matrices of angular momentum L. In accor-

dance with (1.442), we may decompose

DL
mm(α, β, γ) = e−i(mα+mγ)dLmm(β), (1.454)

with the matrices

dLmm(β) =



(L+m)!(L−m)!

(L +m)!(L−m)!

1/2

×



cos
β

2

m+m 

− sin
β

2

m−m

P
(m−m,m+m)
L−m (cos β). (1.455)

For j = 1/2, these form the spinor representation of the rotations around the y-axis

d
1/2
mm(β) =



cos β/2 − sin β/2
sin β/2 cos β/2



. (1.456)

The indices have the order +1/2,−1/2. The full spinor representation function
D1/2(α, β, γ) in (1.454) is most easily obtained by inserting, into the general expres-
sion (1.442), the representation matrices of spin 1/2 for the generators L̂i with the
commutation rules (1.423), which are, of course, the famous Pauli spin matrices :

σ1 =



0 1
1 0



, σ2 =



0 −i
i 0



, σ3 =



1 0
0 −1



. (1.457)

Thus we can write

D1/2(α, β, γ) = e−iασ3/2e−iβσ2/2e−iγσ3/2. (1.458)
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The rst and the third factor yield the pure phase factors in (1.454). The function

d
1/2
mm(β) is obtained by a simple power series expansion of e−iβσ2/2, using the fact

that (σ2)2n = 1 and (σ2)2n+1 = σ2:

e−iβσ2/2 = cos β/2 − i sin β/2 σ2, (1.459)

which is equal to (1.456).
For j = 1, the representation functions (1.455) form the vector representation

d1mm(β) =

⎛

⎜

⎜

⎝

1
2
(1 + cos β) − 1√

2
sin β 1

2
(1− cos β)

1√
2
sin β cos β − 1√

2
sin β

1
2
(1− cos β) 1√

2
sin β 1

2
(1 + cos β)

⎞

⎟

⎟

⎠

, (1.460)

where the indices have the order +1/2,−1/2. The vector representation goes over
into the ordinary rotation matrices Rij(β) by mapping the states |1m onto the
spherical unit vectors (0) = ẑ, (±1) = ∓(x̂ ± iŷ)/2 using the matrix elements
i|1m = i(m). Hence R(β) (m) =

1
m=−1 (m)d1mm(β).

The representation functions D1(α, β, γ) can also be obtained by inserting into
the general exponential (1.442) the representation matrices of spin 1 for the gener-
ators L̂i with the commutation rules (1.423).In Cartesian coordinates, these are
simply (L̂i)jk = −iijk, where ijk is the completely antisymmetric tensor with

123 = 1. In the spherical basis, these become (L̂i)mm = m|i(L̂i)ijj|m =

∗i (m)(L̂i)ij j(m
). The exponential (e−iβL̂2)mm is equal to (1.460).

The functions P
(α,β)
l (z) are the Jacobi polynomials [11], which can be expressed

in terms of hypergeometric functions as

P
(α,β)
l ≡ (−1)l

l!

Γ(l + β + 1)

Γ(β + 1)
F (−l, l + 1 + α+ β; 1 + β; (1 + z)/2), (1.461)

where

F (a, b; c; z) ≡ 1 +
ab

c
z +

a(a+ 1) b(b+ 1)

c(c+ 1)

z2

2!
+ . . . . (1.462)

The rotation functions dLmm(β) satisfy the dierential equation


− d2

dβ2
− cot β

d

dβ
+

m2 +m2 − 2mm cos β

sin2 β



dLmm(β) = L(L + 1)dLmm(β). (1.463)

The scalar products of two wave functions have to be calculated with a measure of
integration that is invariant under rotations:

ψ2|ψ1 ≡
 2π

0

 π

0

 2π

0
dαdβ sin βdγ ψ∗

2(α, β, γ)ψ1(α, β, γ). (1.464)

The above eigenstates (1.454) satisfy the orthogonality relation
 2π

0

 π

0

 2π

0
dαdβ sin βdγ DL1 ∗

m

1
m1

(α, β, γ)DL2

m

2
m2

(α, β, γ)

= δm

1
m

2
δm1m2

δL1L2

8π2

2L1 + 1
. (1.465)
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Let us also contrast in this example the correct quantization via the commutation
rules between group generators with the canonical approach. That would start out
with the classical Lagrangian (1.416), or its non-symmetric version corresponding
to the Hamiltonian (1.436). The non-symmetric Lagrangian would be the following
function of the angular velocities ωξ,ωη,ωζ, measured along the principal axes of the
spinning top,

L =
1

2
[Iξ(ωξ

2 + ωη
2) + Iζωζ

2]. (1.466)

To express ωξ,ωη,ωζ in terms of Euler angles of the top α, β, γ, we note that the
components of angular momentum in the rest frame ω1,ω2,ω3 are obtained from the
relation

ωkLk = iṘR−1 (1.467)

as

ω1 = −β̇ sinα + γ̇ sin β cosα,

ω2 = β̇ cosα + γ̇ sin β sinα,

ω3 = γ̇ cos β + α̇. (1.468)

After the rotation (1.448) into the body-xed system, these become

ωξ = β̇ sin γ − α̇ sin β cos γ,

ωη = β̇ cos γ + α̇ sin β sin γ,

ωζ = α̇ cos β + γ̇. (1.469)

Explicitly, the Lagrangian is

L =
1

2
[Iξ(β̇

2 + α̇2 sin2 β) + Iζ(α̇ cos β + γ̇)2]. (1.470)

Considering α, β, γ as Lagrange coordinates qμ with μ = 1, 2, 3, this can be written
in the form (1.396) with the Hessian metric [recall (1.12) and (1.397)]:

gμν =

⎛

⎜

⎝

Iξ sin
2 β + Iζ cos

2 β 0 Iζ cos β
0 Iξ 0

Iζ cos β 0 Iζ

⎞

⎟

⎠ , (1.471)

whose determinant is

g = I2ξ Iζ sin
2 β. (1.472)

Hence the measure


d3q
√
g in the scalar product (1.393) agrees, up to a trivial

constant factor, with the rotation-invariant measure (1.464). Incidentally, this is
also true for the asymmetric top with Iξ = Iη = Iζ , where g = I2ξ Iζ sin

2 β, although
the metric gμν is then much more complicated (see Appendix 1C).
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The canonical momenta associated with the Lagrangian (1.466) are, according
to (1.396),

pα = ∂L/∂α̇ = Iξ α̇ sin2 β + Iζ cos β(α̇ cos β + γ̇),

pβ = ∂L/∂β̇ = Iξ β̇,

pγ = ∂L/∂γ̇ = Iζ (α̇ cos β + γ̇). (1.473)

After inverting the metric to

gμν =
1

Iξ sin
2 β

⎛

⎜

⎝

1 0 − cos β
0 sin2 β 0

− cos β 0 cos2 β + Iξ sin
2 β/Iζ

⎞

⎟

⎠

μν

, (1.474)

we nd the classical Hamiltonian

H =
1

2



1

Iξ
pβ

2 +



cos2 β

Iξ sin
2 β

+
1

Iζ



pγ
2 +

1

Iξ sin
2 β

pα
2 − 2 cos β

Iξ sin
2 β

pαpγ



. (1.475)

This Hamiltonian has no apparent ordering problem. One is therefore tempted to
replace the momenta simply by the corresponding Hermitian operators which are,
according to (1.400),

p̂α = −ih̄∂α,

p̂β = −ih̄(sin β)−1/2∂β(sin β)
1/2 = −ih̄(∂β +

1

2
cot β),

p̂γ = −ih̄∂γ . (1.476)

Inserting these into (1.475) gives the canonical Hamiltonian operator

Ĥcan = Ĥ + Ĥdiscr, (1.477)

with

Ĥ ≡ − h̄2

2Iξ



∂β
2 + cot β∂β +



Iξ
Iζ

+ cot2 β



∂γ
2

+
1

sin2 β
∂α

2 − 2 cos β

sin2 β
∂α∂γ



(1.478)

and

Ĥdiscr ≡
1

2
(∂β cot β) +

1

4
cot2 β =

1

4 sin2 β
− 3

4
. (1.479)

The rst term Ĥ agrees with the correct quantum-mechanical operator derived
above. Indeed, inserting the dierential operators for the body-xed angular mo-
menta (1.449) into the Hamiltonian (1.436), we nd Ĥ. The term Ĥdiscr is the
discrepancy between the canonical and the correct Hamiltonian operator. It exists
even though there is no apparent ordering problem, just as in the radial coordinate
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expression (1.413). The correct Hamiltonian could be obtained by replacing the
classical pβ

2 term in H by the operator g−1/4p̂βg
1/2p̂βg

−1/4, as in the treatment of

the radial coordinates in Ĥ of Eq. (1.407).

We also observe another similarity with the treatment of two-dimensional sys-
tems in radial coordinates. ,While canonical quantization fails, the Hamiltonian op-
erator of the symmetric spinning top is correctly given by the Laplace-Beltrami
operator (1.390), after inserting the metric (1.471) and the inverse (1.474). It
is straightforward, although tedious, to verify that this is also true for the com-
pletely asymmetric top [which has quite a complicated dynamical metric given in
Appendix 1C, see Eqs. (1C.2) and (1C.4)]. This is an important nontrivial result
since, for a spinning top, the Lagrangian cannot be obtained by reparametrizing a
particle in a euclidean space with curvilinear coordinates. The result suggests that
a replacement

gμν(q)p
μpν → −h̄2

Δ (1.480)

produces the correct Hamiltonian operator in any non-euclidean space.

What is the characteristic non-euclidean property of the α, β, γ space? It is the
curvature scalar R. For the asymmetric spinning top we nd (see Appendix 1C)

R =
(Iξ + Iη + Iζ)

2 − 2(I2ξ + I2η + I2ζ )

2IξIηIζ
. (1.481)

Thus, just like a particle on the surface of a sphere, the spinning top corresponds to a
particle moving in a space with constant curvature. In this space, the correct corre-
spondence principle can also be deduced from symmetry arguments. The geometry
is most easily understood by observing that the α, β, γ space may be considered as
the surface of a sphere in four dimensions, as was shown in detail in Chapter 8 of
Ref. [1].

An important non-euclidean space of physical interest is encountered in the con-
text of general relativity. Originally, gravitating matter was assumed to move in a
spacetime with an arbitrary local curvature. In newer developments of the theory
one also allows for the presence of a nonvanishing torsion. In such a general situa-
tion, where the group quantization rule is inapplicable, the correspondence principle
has always been a matter of controversy [see the references after (1.414)]. It was
solved in Ref. [1], where a natural and unique passage from classical to quantum
mechanics in any coordinate frame was given.19 The conguration space may carry
curvature and a certain class of torsions (gradient torsion). Several arguments sug-
gest that our principle is correct. For the above systems with a Hamiltonian which
can be expressed entirely in terms of generators of a group of motion in the under-
lying space, the new quantum equivalence principle will give the same results as the
group quantization rule.

19H. Kleinert, Mod. Phys. Lett. A 4 , 2329 (1989) (http://klnrt.de/199); Phys. Lett. B 236 ,
315 (1990) (http://klnrt.de/202).
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1.16 Classical and Quantum Statistics

Consider a physical system with a constant number of particles N whose Hamilto-
nian has no explicit time dependence. If it is brought into contact with a thermal
reservoir at a temperature T then, after having reached equilibrium, its thermo-
dynamic properties can be obtained through the following rules: At the level of
classical mechanics, each volume element in phase space

dp dq

h
=

dp dq

2πh̄
(1.482)

is occupied with a probability proportional to the Boltzmann factor

e−H(p,q)/kBT , (1.483)

where kB is the Boltzmann constant ,

kB = 1.3806221(59)× 10−16 erg/Kelvin. (1.484)

The number in parentheses indicates the experimental uncertainty of the two digits
in front of it. The quantity 1/kBT has the dimension of an inverse energy and is
commonly denoted by β. It will be called the inverse temperature, forgetting about
the factor kB. In fact, we shall sometimes take T to be measured in energy units kB
times Kelvin rather than in Kelvin. Then we may drop kB in all formulas.

The integral over the Boltzmann factors of all phase space elements,20

Zcl(T ) ≡


dp dq

2πh̄
e−H(p,q)/kBT , (1.485)

is called the classical partition function. It contains all classical thermodynamic
information of the system. Of course, for a general Hamiltonian system with many

degrees of freedom, the phase space integral is


n



dpn dqn/2πh̄. The normalized

Boltzmann factor
w(p, q) = Z−1

cl (T )e
−H(p,q)/kBT (1.486)

is called the classical Gibbs distribution function. The reader may wonder why an
expression containing Planck’s quantum h̄ is called classical . The reason is that
h̄ can really be omitted in calculating any thermodynamic average. In classical
statistics it merely supplies us with an irrelevant normalization factor which makes
Z dimensionless.

1.16.1 Canonical Ensemble

In quantum statistics, the Hamiltonian is replaced by the operator Ĥ and the integral
over phase space by the trace in Hilbert space. This leads to the quantum-statistical
partition function

Z(T ) ≡ Tr


e−Ĥ/kBT


≡ Tr


e−H(p̂,x̂)/kBT


, (1.487)

20In the sequel we shall always work at a xed volume V and therefore suppress the argument
V everywhere.
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where TrÔ denotes the trace of the operator Ô. If |n are eigenstates of the Hamil-
tonian with energy En, the partition function becomes a sum

Z(T ) =


n

e−En/kBT . (1.488)

The normalized Boltzmann factor

wn = Z−1
cl (T )e

−En/kBT (1.489)

denes the quantum-statistical Gibbs distribution.
If Ĥ is an N -particle Schrödinger Hamiltonian, the quantum-statistical system

is referred to as a canonical ensemble.
The right-hand side of (1.487) contains the position operator x̂ in Cartesian

coordinates rather than q̂ to ensure that the system can be quantized canonically.
In cases such as the spinning top, the trace formula is also valid but the Hilbert space
is spanned by the representation states of the angular momentum operators. In more
general Lagrangian systems, the quantization has to be performed dierently in the
way described in Chapters 8 and 10 of the textbook [1].

At this point we make an important observation: The quantum partition func-
tion is related in a very simple way to the quantum-mechanical time evolution op-
erator. To emphasize this relation we shall dene the trace of this operator for
time-independent Hamiltonians as the quantum-mechanical partition function:

ZQM(tb − ta) ≡ Tr


Û(tb, ta)


= Tr


e−i(tb−ta)Ĥ/h̄


. (1.490)

This may be considered as the partition function associated with a “quantum-
mechanical Gibbs distribution”

wn = Z−1
QM(tb − ta)e

iEn(tb−ta)/h̄. (1.491)

Obviously the quantum-statistical partition function Z(T ) may be obtained from
the quantum-mechanical one by continuing the time interval tb − ta to the negative
imaginary value

tb − ta = − ih̄

kBT
≡ −ih̄β. (1.492)

This simple formal relation shows that the trace of the time evolution operator
contains all information on the thermodynamic equilibrium properties of a quantum
system.

1.16.2 Grand-Canonical Ensemble

For systems containing many bodies it is often convenient to study their equilibrium
properties in contact with a particle reservoir characterized by a chemical potential
μ. For this one denes what is called the grand-canonical quantum-statistical parti-
tion function

ZG(T,μ) = Tr


e−(Ĥ−μN̂ )/kBT


. (1.493)
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Here N̂ is the operator counting the number of particles in each state of the ensemble.
The combination of operators in the exponent,

ĤG = Ĥ − μN̂ , (1.494)

is called the grand-canonical Hamiltonian.
Given a partition function Z(T ) at a xed particle number N , the free energy is

dened by

F (T ) = −kBT logZ(T ). (1.495)

Its grand-canonical version at a xed chemical potential is21

FG(T,μ) = −kBT logZG(T,μ). (1.496)

The average energy or internal energy is dened by

E = Tr


Ĥe−Ĥ/kBT


Tr


e−Ĥ/kBT


. (1.497)

It may be obtained from the partition function Z(T ) by forming the temperature
derivative

E = Z−1kBT
2 ∂

∂T
Z(T ) = kBT

2 ∂

∂T
logZ(T ). (1.498)

In terms of the free energy (1.495), this becomes

E = T 2 ∂

∂T
(−F (T )/T ) =



1− T
∂

∂T



F (T ). (1.499)

For a grand-canonical ensemble we may introduce an average particle number
dened by

N = Tr


N̂e−(Ĥ−μN̂)/kBT


Tr


e−(Ĥ−μN̂)/kBT


. (1.500)

This can be derived from the grand-canonical partition function as

N = ZG
−1(T,μ)kBT

∂

∂μ
ZG(T,μ) = kBT

∂

∂μ
logZG(T,μ), (1.501)

or, using the grand-canonical free energy, as

N = − ∂

∂μ
FG(T,μ). (1.502)

The average energy in a grand-canonical system,

E = Tr


Ĥe−(Ĥ−μN̂ )/kBT


Tr


e−(Ĥ−μN̂)/kBT


, (1.503)

21The grand-canonical free energy FG(T,μ) is also known as the thermodynamic Gibbs potential,
denoted by Ω(T,μ). In Eq. (1.527) we shall see that it is also equal to −pV , where p is the pressure.
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can be obtained by forming, similar to (1.498) and (1.499), the derivative

E − μN = ZG
−1(T,μ)kBT

2 ∂

∂T
ZG(T,μ)

=



1− T
∂

∂T



FG(T,μ).

(1.504)

For a large number of particles, the density is a rapidly growing function of
energy. For a system of N free particles, for example, the number of states up to
the energy E is given by

N(E) =


pi

Θ(E −
N


i=1

p2
i /2M). (1.505)

Here each of the particle momenta pi is summed over all discrete momenta pm in
(1.184) available to a single particle in a nite box of volume V = L3. For a large
V , the sum can be converted into an integral22

N(E) = V N
N


i=1





d3pi
(2πh̄)3



Θ(E −
N


i=1

p2
i /2M), (1.506)

which is simply [V/(2πh̄)3]
N

times the volume Ω3N of a 3N -dimensional sphere of
radius

√
2ME:

N(E) =



V

(2πh̄)3

N

Ω3N

≡


V

(2πh̄)3

N
(2πME)3N/2

Γ



3
2
N + 1

 .

(1.507)

Recall the well-known formula for the volume of a unit sphere in D dimensions:

ΩD = πD/2/Γ(D/2 + 1). (1.508)

The surface is [see Subsection 8.5.2 in [1] for a derivation]

SD = 2πD/2/Γ(D/2). (1.509)

This follows directly from the integral23

SD =


dDp δ(p− 1) =


dDp 2δ(p2 − 1) =


dDp
 ∞

−∞

dλ

π
eiλ(p

2−1) (1.510)

=
 ∞

−∞

dλ

π



π

−iλ

D/2

e−iλ =
2πD/2

Γ(D/2)
. (1.511)

22Remember, however, the exception noted in the footnote to Eq. (1.189) for systems possessing
a condensate.

23I. S. Gradshteyn and I. M. Ryzhik, op. cit., Formula 3.382.7.
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Therefore, the density per energy ρ = ∂N/∂E is given by

ρ(E) =



V

(2πh̄)3

N

2πM
(2πME)3N/2−1

Γ(3
2
N)

. (1.512)

It grows with the very large power of the energy E3N/2. Nevertheless, the integral for
the partition function (1.533) is convergent, due to the overwhelming exponential
fallo of the Boltzmann factor e−E/kBT . As the two functions ρ(E) and e−e/kBT

are multiplied with each other, the product is a function that peaks very sharply
at the average energy E of the system. The position of the peak depends on the
temperature T . For the free N -particle system, for example, the product behaves
like

ρ(E)e−E/kBT ∼ e(3N/2−1) logE−E/kBT , (1.513)

and has a sharp peak at

E(T ) = kBT


3N

2
− 1



≈ kBT
3N

2
. (1.514)

The width of the peak is found by expanding the exponent of (1.513) around (1.514)
in powers of δE = E − E(T ):

exp



3N

2
logE(T )− E(T )

kBT
− 1

2E2(T )

3N

2
(δE)2 + . . .



. (1.515)

Thus, as soon as E deviates form R(T ) by the tiny amount E(T )/
√
N , the exponen-

tial is reduced by a factor of two with respect to the peak E(T ) ≈ kBT 3N/2. For
large N , the width is extremely sharp, and the product (1.513) can be approximated
by a δ-function, writing

ρ(E)e−E/kBT ≈ δ(E − E(T ))N(T )e−E(T )/kBT . (1.516)

The quantity N(T ) measures the total number of states over which the system is
distributed at the temperature T .

The entropy S(T ) is now dened in terms of N(T ) by setting

N(T ) ≡ eS(T )/kB . (1.517)

Inserting this with (1.516) into (1.533), we see that in the limit of a large number
N of particles:

Z(T ) = e−[E(T )−TS(T )]/kBT . (1.518)

Using (1.495), the free energy can thus be expressed in the form

F (T ) = E(T )− TS(T ). (1.519)

Comparison with (1.499) shows that the entropy may be calculated directly as the
negative temperature derivative of the free energy:

S(T ) = − ∂

∂T
F (T ). (1.520)
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For grand-canonical ensembles, we may similarly consider

ZG(T,μ) =


dE dn ρ(E, n)e−(E−μn)/kBT , (1.521)

where
ρ(E, n)e−(E−μn)/kBT (1.522)

is now strongly peaked at E = E(T,μ), n = N(T,μ) and can be written approxi-
mately as

ρ(E, n)e−(E−μn)/kBT≈ δ (E−E(T,μ)) δ (n−N(T,μ)) eS(T,μ)/kBe−[E(T,μ)−μN(T,μ)]/kBT .

(1.523)

Inserting this back into (1.521) we nd for large N

ZG(T,μ) = e−[E(T,μ)−μN(T,μ)−TS(T,μ)]/kBT . (1.524)

For the grand-canonical free energy (1.496), this implies the relation

FG(T,μ) = E(T,μ)− μN(T,μ)− TS(T,μ). (1.525)

By comparison with (1.504) we see that the entropy can be calculated directly from
the derivative of the grand-canonical free energy

S(T,μ) = − ∂

∂T
FG(T,μ). (1.526)

The particle number is, of course, found from the derivative (1.502) with respect to
the chemical potential, as follows directly from the denition (1.521).

The canonical free energy and the entropy appearing in the above equations
depend on the particle number N and the volume V of the system, i.e., they are
more explicitly written as F (T,N, V ) and S(T,N, V ), respectively.

In the arguments of the grand-canonical quantities, the particle number N is
replaced by the chemical potential μ.

Among the arguments of the grand-canonical free energy FG(T,μ, V ), the volume
V is the only one which grows with the system. Thus FG(T,μ, V ) must be directly
proportional to V . The proportionality constant denes the pressure p of the system:

FG(T,μ, V ) ≡ −p(T,μ, V )V. (1.527)

Under innitesimal changes of the three variables, FG(T,μ, V ) changes as follows:

dFG(T,μ, V ) = −SdT + μdN − pdV. (1.528)

The rst two terms on the right-hand side follow from varying Eq. (1.525) at a xed
volume. When varying the volume, the denition (1.527) renders the last term.

Inserting (1.527) into (1.525), we nd Euler’s relation:

E = TS + μN − pV. (1.529)

The energy has S,N, V as natural variables. Equivalently, we may write

F = −μN − pV, (1.530)

where T,N, V are the natural variables.
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1.17 Density of States and Tracelog

In many thermodynamic calculations, a quantity of fundamental interest is the den-
sity of states. To dene it, we express the canonical partition function

Z(T ) = Tr


e−Ĥ/kBT


(1.531)

as a sum over the Boltzmann factors of all eigenstates |n of the Hamiltonian:

Z(T ) =


n

e−En/kBT . (1.532)

This can be rewritten as an integral:

Z(T ) =


dE ρ(E)e−E/kBT . (1.533)

The quantity
ρ(E) =



n

δ(E − En) (1.534)

species the density of states of the system in the energy interval (E,E + dE). It
may also be written formally as a trace Tr ρ̂(E) of an operator for the density of
states:

ρ̂(E) ≡ δ(E − Ĥ). (1.535)

The density of states is obviously the Fourier transform of the canonical partition
function (1.531):

ρ(E) =
 ∞

−i∞

dβ

2πi
eβE Tr



e−βĤ


=
 ∞

−i∞

dβ

2πi
eβE Z(1/kBβ). (1.536)

The integral

N(E) =
 E

dE  ρ(E ) (1.537)

is the number of states up to the energy E. The integration may start anywhere
below the ground state energy. The function N(E) is a sum of Heaviside step
functions (1.320):

N(E) =


n

Θ(E − En). (1.538)

This equation is correct only with the Heaviside function, which is equal to 1/2 at
the origin, not with the one-sided version (1.313), as we shall see later. Indeed, if
integrated to the energy of a certain level En, the result is

N(En) = (n+ 1/2). (1.539)

This formula may be used to determine the energies of bound states from approx-
imations to ω(E), the classical approximation leading to the well-known Bohr-
Sommerfeld condition. In order to apply this relation one must be sure that all
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levels have dierent energies. Otherwise N(E) jumps at En by half the degeneracy
of this level.

An important quantity related to ρ(E) is frequently used in this text: the trace
of the logarithm, short tracelog , of the operator Ĥ − E.

Trlog(Ĥ − E) =


n

log(En − E). (1.540)

It may be expressed in terms of the density of states (1.535) as

Trlog(Ĥ − E) = Tr
 ∞

−∞
dE  δ(E  − Ĥ) log(E  − E) =

 ∞

−∞
dE  ρ(E ) log(E  − E).

(1.541)
The tracelog of the Hamiltonian operator itself can be viewed as a limit of an operator
zeta function associated with Ĥ :

ζ̂Ĥ(ν) = TrĤ−ν, (1.542)

whose trace is the generalized zeta function

ζĤ(ν) ≡ Tr


ζ̂Ĥ(ν)


= Tr(Ĥ−ν) =


n

E−ν
n . (1.543)

For a linearly spaced spectrum En = n with n = 1, 2, 3 . . . , this reduces to Riemann’s
zeta function (2.277).

From the generalized zeta function we can obtain the tracelog by forming the
derivative

Trlog Ĥ = −∂ν ζĤ(ν)|ν=0. (1.544)

By dierentiating (1.540) with respect to E, we nd the trace of the resolvent
(11.8):

∂ETrlog(Ĥ − E) = Tr
1

E − Ĥ
=


n

1

E − En

=
1

ih̄



n

Rn(E) =
1

ih̄
TrR̂(E). (1.545)

Recalling Eq. (1.338) we see that the imaginary part of this quantity slightly above
the real E-axis yields the density of states

− 1

π
Im ∂E Trlog(Ĥ − E − iη) =



n

δ(E − En) = ρ(E). (1.546)

An integrating over the energy yields the function N(E) of Eq. (1.537):

− 1

π
ImTrlog(E − Ĥ) =



n

Θ(E − En) = N(E). (1.547)
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Appendix 1A Simple Time Evolution Operator

Consider the simplest nontrivial time evolution operator of a spin-1/2 particle in a magnetic eld
B. The reduced Hamiltonian operator is Ĥ0 = −B · /2, so that the time evolution operator reads,
in natural units with h̄ = 1,

e−iĤ0(tb−ta) = ei(tb−ta)B· /2. (1A.1)

Expanding this as in (1.301) and using the fact that (B · )2n = B2n and (B · )2n+1 = B2n(B · ),
we obtain

e−iĤ0(tb−ta) = cosB(tb − ta)/2 + iB̂ · sinB(tb − ta)/2 , (1A.2)

where B̂ ≡ B/|B|. Suppose now that the magnetic eld is not constant but has a small time-
dependent variation δB(t). Then we obtain from (1.261) [or from the lowest expansion term in
(1.301)]

δe−iĤ0(tb−ta) =

 tb

ta

dt e−iĤ0(tb−t)δB(t) · e−iĤ0(t−ta). (1A.3)

Using (1A.2), the integrand on the right-hand side becomes



cosB(tb−t)/2+iB̂ · sinB(tb−t)/2


δB(t) ·


cosB(t−ta)/2+iB̂ · sinB(t−ta)/2


. (1A.4)

We simplify this with the help of the formula [recall (23.56)]

σiσj = δij + iijkσ
k, (1A.5)

so that

B̂· δB(t)· = B̂·δB(t) + i[B̂× δB(t)]· , δB(t)· B̂· = B̂·δB(t)− i[B̂× δB(t)]· , (1A.6)

and

B̂ · δB(t) · B̂ · =


B̂ · δB(t)


B̂ · + i[B̂× δB(t)] · B̂ ·

= i[B̂× δB(t)] · B̂+


[B̂ · δB(t)]B̂− [B̂× δB(t)]× B̂


· . (1A.7)

The rst term on the right-hand side vanishes, the second term is equal to δB, since B̂2 = 1. Thus
we nd for the integrand in (1A.4):

cosB(tb−t)/2 cosB(t−ta)/2 δB(t) · +i sinB(tb−t)/2 cosB(t−ta)/2{B̂ ·δB(t)+i[B̂× δB(t)] · }

+i cosB(tb−t)/2 sinB(t−ta)/2{B̂ ·δB(t)−i[B̂× δB(t)] · }+sinB(tb−t)/2 sinB(t−ta)/2 δB ·

which can be combined to give


cosB[(tb+ta)/2−t] δB(t)−sinB[(tb+ta)/2−t][B̂× δB(t)]


· +i sinB(tb−ta)/2 B̂·δB(t).(1A.8)

Integrating this from ta to tb we obtain the variation (1A.3).

Appendix 1B Convergence of the Fresnel Integral

Here we prove the convergence of the Fresnel integral (1.346) by relating it to the Gauss integral.
According to Cauchy’s integral theorem, the sum of the three pieces of integrals that run along the
closed contour in Fig. 1.4 vanishes, since the integrand e−z2

is analytic in the triangular domain:



dze−z2

=

 A

0

dze−z2

+

 B

A

dze−z2

+

 O

B

dze−z2

= 0. (1B.1)
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Figure 1.4 Triangular closed contour for a Cauchy integral (1B.1).

Let R be the radius of the arc. Then we substitute in the three integrals the variable z as follows:

0A: z = p, dz = dp, z2 = p2 ,
B 0: z = peiπ/4, dz = dp eiπ/4, z2 = ip2 ,
AB: z = R eiϕ, dz = i Rdp, z2 = p2,

and obtain the equation

 R

0

dp e−p2

+ eiπ/4
 0

R

dp e−ip2

+

 π/4

0

dϕ iR e−R2(cos 2ϕ+i sin 2ϕ)+iϕ = 0. (1B.2)

The rst integral converges rapidly to
√
π/2 for R → ∞. The last term goes to zero in this limit.

To see this we estimate its absolute value as follows:










 π/4

0

dϕ iR e−R2(cos 2ϕ+i sin 2ϕ)+iϕ











< R

 π/4

0

dϕ e−R2 cos 2ϕ. (1B.3)

The right-hand side goes to zero exponentially fast, except for angles ϕ close to π/4 where the
cosine in the exponent vanishes. In the dangerous regime α ∈ (π/4− ,π/4) with small  > 0, one
certainly has sin 2ϕ > sin 2α, so that

R

 π/4

α

dϕ e−R2 cos 2ϕ < R

 π/4

α

dϕ
sin 2ϕ

sin 2α
e−R2 cos 2ϕ. (1B.4)

The right-hand integral can be performed by parts and yields

αR e−R2 cos 2α +
1

R sin 2α



e−R2 cos 2ϕ
ϕ=π/4

ϕ=α
, (1B.5)

which goes to zero like 1/R for largeR. Thus we nd from (1B.2) the limiting formula
 0

∞
dp e−ip2

=

−e−iπ/4
√
π/2, or



∞

∞

dp e−ip2

= e−iπ/4
√
π, (1B.6)

which goes into Fresnel’s integral formula (1.346) by substituting p → p


a/2.

Appendix 1C The Asymmetric Top

The Lagrangian of the asymmetric top with three dierent moments of inertia reads

L =
1

2
[Iξωξ

2 + Iηωη
2 + Iζωζ

2]. (1C.1)

It has the Hessian metric [recall (1.12) and (1.397)]

g11 = Iξ sin
2 β + Iζ cos

2 β − (Iξ − Iη) sin
2 β sin2 γ,
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g21 = −(Iξ − Iη) sin β sin γ cos γ,

g31 = Iζ cosβ,

g22 = Iη + (Iξ − Iη) sin
2 γ,

g32 = 0,

g33 = Iζ , (1C.2)

rather than (1.471). The determinant is

g = IξIηIζ sin
2 β, (1C.3)

and the inverse metric has the components

g11 =
1

g
{Iη + (Iξ − Iη) sin

2 γ}Iζ ,

g21 =
1

g
sin β sin γ cos γ(Iξ − Iη)Iζ ,

g31 =
1

g
{cosβ[− sin2 γ(Iξ − Iη)− Iη ]}Iζ ,

g22 =
1

g
{sin2 β[Iξ − sin2 γ(Iξ − Iη)]}Iζ ,

g32 =
1

g
{sinβ cosβ sin γ cos γ(Iη − Iξ)}Iζ ,

g33 =
1

g
{sin2 βIξIη + cos2 βIηIζ + cos2 β sin2 γ (Iξ − Iη)Iζ}. (1C.4)

From this we nd the components of the Riemann connection, the Christoel symbol dened in
Eq. (1.71):

Γ̄11
1 = [cosβ cos γ sin γ(I2η − IηIζ − I2ξ + IξIζ)]/IξIη ,

Γ̄21
1 = {cosβ[sin2 γ(I2ξ − I2η − (Iξ − Iη)Iζ)

+ Iη(Iξ + Iη − Iζ)]}/2 sinβIξIη ,

Γ̄31
1 = {cos γ sin γ[I2η − I2ξ + (Iξ − Iη)Iζ ]}/2IξIη ,

Γ̄22
1 = 0,

Γ̄32
1 = [sin2 γ(I2ξ − I2η − (Iξ − Iη)Iζ)− Iη(Iξ − Iη + Iζ)]/2 sinβIξIη ,

Γ̄33
1 = 0,

Γ̄11
2 = {cosβ sin β[sin2 γ(I2ξ − I2η − Iζ(Iξ − Iη))− Iξ(Iξ − Iζ)]}/IξIη ,

Γ̄21
2 = {cosβ cos γ sin γ[I2ξ − I2η − Iζ(Iξ − Iη)]}/2IξIη ,

Γ̄31
2 = {sin β[sin2 γ(I2ξ − I2η − Iζ(Iξ − Iη)) − Iξ(Iξ − Iη − Iζ)]}/2IξIη ,

Γ̄22
2 = 0,

Γ̄32
2 = [cos γ sin γ(I2ξ − I2η − Iζ(Iξ − Iη))]/2IξIη,

Γ̄33
2 = 0,

Γ̄11
3 = {cos γ sin γ[sin2 β(IξIη(Iξ − Iη)− Iζ(I

2
ξ − I2η ) + I2ζ (Iξ − Iη))

+ (I2ξ − I2η )Iζ − I2ζ (Iξ − Iη)]}/IξIηIζ ,

Γ̄21
3 = {sin2 β[sin2 γ(2IξIη(Iη − Iξ) + Iζ(I

2
ξ − I2η )− I2ζ (Iξ − Iη))

+IξIη(Iξ − Iη) + IηIζ(Iη − Iζ)]− sin2 γ((I2ξ − I2η )Iζ− I2ζ (Iξ − Iη))

− IηIζ(Iξ + Iη − Iζ)}/2 sinβIξIηIζ ,

Γ̄31
3 = [cosβ cos γ sin γ(I2ξ − I2η − Iζ(Iξ − Iη))]/2IξIη ,
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Γ̄22
3 = cos γ sin γ(Iη − Iξ)/Iζ ,

Γ̄32
3 = {cosβ[sin2 γ(I2η − I2ξ + (Iξ − Iη)Iζ) + Iη(Iξ − Iη + Iζ)]}/2 sinβIηIξ ,

Γ̄33
3 = 0. (1C.5)

The other components follow from the symmetry in the rst two indices Γ̄μν
λ = Γ̄

λ
νμ. From this

Christoel symbol we calculate the Ricci tensor (see Eq. (10.8) in [1]):

R̄11 = {sin2 β[sin2 γ(I3η − I3ξ − (IξIη − I2ζ )(Iξ − Iη))

+ ((Iξ + Iζ)
2 − I2η )(Iξ − Iζ)] + I3ζ − Iζ(Iξ − Iη)

2}/2IξIηIζ ,

R̄21 = {sinβ sin γ cos γ[I3η − I3ξ + (IξIη − I2ζ )(Iη − Iξ)]}/2IξIηIζ ,

R̄31 = −{cosβ[(Iξ − Iη)
2 − I2ζ ]}/2IξIη ,

R̄22 = {sin2 γ[I3ξ − I3η + (IξIη − I2ζ )(Iξ − Iη)] + I3η − (Iξ − Iζ)
2Iη}/2IξIηIζ ,

R̄32 = 0,

R̄33 = −[(Iξ − Iη)
2 − I2ζ ]/2IξIη . (1C.6)

Contraction with gμν gives the curvature scalar

R̄ = [2(IξIη + IηIζ + IζIξ)− I2ξ − I2η − I2ζ ]/2IξIηIζ . (1C.7)

Since the space under consideration is free of torsion, the Christoel symbol Γ̄μν
λ is equal to the

full ane connection Γμν
λ. The same thing is true for the curvature scalars R̄ and R calculated

from Γ̄μν
λ and Γμν

λ, respectively.
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