Loudness and the JND

An introduction to loudness Psychophysics

Jont Allen

ECE-437
The intensity JND is internal uncertainty

- Perception is stochastic: Each time you hear (see) the same short tone (light) pulse, you hear (see) it with a different loudness (brightness)

- The intensity $\text{JND}_I (\Delta I)$ is a measure of this internal perceptual fluctuation (noise) given by σ_L

\[\Phi \xrightarrow{\text{"Codec Model"}} \text{OBSERVER} \xrightarrow{} \Psi \]

\((e.g.: I, \sigma_I) \)

\((e.g.: L, \sigma_L) \)

- The Loudness JND $\Delta L \propto \sigma_L(L)$
- The loudness JND is proportional to the internal "loudness noise"
Weber’s Law (1846)

- In 1846 Weber showed experimentally that $\Delta I \propto I$
- I is the physical intensity, and ΔI is called the JND
- Weber used weights of varying relative mass
- Def: $\Delta I/I$ is called the Weber Fraction
- Def: Weber’s Law says the Weber fraction is constant
- Weber’s law sometimes holds:
 - Wide band noise Intensity discrimination (Miller, 1947)
 - The Weber fraction is not constant for pure tones (Riesz, 1928).
- A floating point converter obeys Weber’s Law.
Pure-tone intensity discrimination

- Weber’s “law” says that $\Delta I \propto I$
- Weber’s Law holds for floating point conversion
- For fixed point, $\sigma_I = \Delta I$ is a constant
- Is the ear a fix or floating point converter?

1928 Riesz establishes the near-miss to Weber’s law for tones
Weber’s Law (1846)

PROBLEM: Weber formulated his problem in the physical domain, but the noise is internal
Near-miss to Weber’s Law (1846)

Riesz used two beating tones 3 Hz apart for this measurement (i.e., 1000 Hz masker and a low-level 1003 Hz probe)

The near-miss to Weber’s Law results from the fact that the internal noise $\sigma_L \propto \Delta L(L)$ is not independent of L.

In fact noise is Poisson-like: [Allen and Neely 1997]

$$\Delta L(L) \approx \sqrt{L}$$
Fechner’s Hypothesis (1860)

- Fechner 1860 is called the father of psychophysics.
- *Fechner’s hypothesis* (or postulate) was that the loudness JND $\Delta L(I)$ is constant:

$$ \Delta L(I, \ell) $$

- Fechner assumed “that the total change in loudness between two intensities I_1 and I_2 may be found by counting the number of JNDs.”
- From *Fechner’s hypothesis* and the “counting formula:”

$$ N_{JND} \equiv \int_{L_1}^{L_2} \frac{dL}{\Delta L} = (L_2 - L_1) / \Delta L $$
Fechner’s JND theory

Fechner’s idea was that the loudness $\mathcal{L}(I)$ is proportional to the number of JND steps N_{JND}, which is given by:

$$N_{\text{JND}} \equiv \int \frac{d\mathcal{L}}{\Delta \mathcal{L}(\mathcal{L})} = \int \frac{dI}{\Delta I(I)}$$

He assumed that $\Delta I \propto I$, i.e. Weber’s Law.

He assumed that the internal noise $\Delta \mathcal{L} = \sigma_{\mathcal{L}}$ is constant.

These two assumptions give Fechner’s “Law”:

$$\mathcal{L}(I) \propto \log(I)$$
Fechner’s JND theory

- Counting JNDs is a great conceptual start :o)
- Both assumptions
 - Weber’s Law
 - Fechner’s Hypothesis
- are wrong :o(
- Fechner’s “Law” is wrong
L. L. Thurstone 1927 and later David Green 1965:
Formally define the intensity JND as “the relative signal level for detection 75% of the time”

\[\Delta I \propto \sigma_I \]
CHRONOLOGICAL DEVELOPMENT

<table>
<thead>
<tr>
<th>YEAR</th>
<th>CONCEPT</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1846</td>
<td>JND</td>
<td>Weber</td>
</tr>
<tr>
<td>1860</td>
<td>Counting JNDs</td>
<td>Fechner</td>
</tr>
<tr>
<td>1927</td>
<td>Decision theory model</td>
<td>Thurstone</td>
</tr>
<tr>
<td>1928</td>
<td>Near-miss to Weber’s law</td>
<td>Riesz</td>
</tr>
<tr>
<td>1933</td>
<td>Masking and loudness</td>
<td>Fletcher and Munson</td>
</tr>
<tr>
<td>1947</td>
<td>Wide–band JND ($J = 0.1$)</td>
<td>G. A. Miller</td>
</tr>
<tr>
<td>1966</td>
<td>Signal detection theory</td>
<td>Green and Swets</td>
</tr>
<tr>
<td>1997</td>
<td>Loudness and the JND</td>
<td>Allen and Neely</td>
</tr>
</tbody>
</table>
Loudness Additivity

- Fletcher and Munson 1933 showed that loudness adds
- Adjust I_2 so that: $\mathcal{L}(I_1, f_1) = \mathcal{L}(I_2, f_2)$
- Two equally loud tones, played together are twice as loud: $\mathcal{L}(I_1, I_2, f_1, f_2) = 2\mathcal{L}(I_1, f_1)$
- Find gain $\alpha(I)$ such that
 \[\mathcal{L}(\alpha I_1, f_1) = 2\mathcal{L}(I_1, f_1) \]
- **Results:** α is about 9 dB (actually it depends on intensity)
Loudness additivity

- Fletcher and Munson’s 1933 loudness growth data based on loudness additivity is now called:
 \[L(I) = I^\nu, \text{ with } \nu \approx 1/3 \]

- Loudness vs. intensity for 1, 2, and 10 equally loud components:
BASIC MODEL OF OBSERVER

Transformation from $\Delta I(I)$ to $\Delta L(L)$

Fechner’s Hypothesis: $\Delta L = \text{const.}$

PIN model: $\Delta L = \sqrt{L}$

WEBER’S LAW: $\Delta I / I = \text{const.}$