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Abstract
A method for investigating human speech perception that com-
bines information about human perception of speech, auditory
modeling, signal detection theory, and information theory is de-
scribed. For that purpose, a model for detection of signals in the
auditory nerve is developed and used to analyze speech sounds.
Examples are given that combine detectability information with
P (heard = h|spoken = s) to access information about “cues”
to some some speech sounds. These example agree qualitatively
with previous results about perception of these sounds. Refine-
ments and prospects for this approach are discussed in light of the
examples.
Index Terms: speech perception, information theory, signal de-
tection theory, auditory modeling, auditory nerve.

1. Introduction
Despite impressive improvements in machine speech recognition
performance and ingenuity in the design of machine speech recog-
nizers, machine speech recognition does not have humanlike ro-
bustness to noise [1], and other types of degraded listening condi-
tions. Human speech recognition can tolerate spectral degradation
[2], temporal distortion [3], noise and filtering [4], and even more
invasive modification such as conversion to sine wave speech [5]
with marginal to moderate loss of performance, whereas machine
speech recognition performance suffers greatly under virtually any
adverse conditions. The remarkable robustness of human speech
perception inspires us to investigate human speech perception, par-
ticularly feature extraction [6], with the hope that more appropri-
ate feature extraction could improve the performance of machine
speech recognition.

The purpose of this paper is to describe a tool that can be
used for investigating human speech perception. It has been a
theme of speech perception research to search for “cues” to “units”
in speech perception [7], but those discoveries have had limited
application in machine speech recognition research. It is hoped
that the tool described here can help us determine the structure
of the brain’s speech recognition hardware using speech percep-
tion experiments. However in this paper, the tool will be used to
(re)discover “cues” to some consonant sounds as a way of testing
the usefulness of this tool. If the tool appears to be a reasonable
model, it could be further developed to give information not just
about “cues” to “units” in speech perception but also about per-
ceptually relevant neural representations of speech. Perhaps that
would provide a more appropriate parameterization of speech for
machine speech recognition than the linear prediction coefficients
or the Mel frequency cepstra often used in machine speech recog-
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The articulation index, which was developed to predict the
ligibility of speech sounds [8], connects information theory
speech perception performance via a formula that provides
robability of correctly identifying nonsense speech sounds Pc

rms of the filtered speech spectrum and the interfering noise
trum [9]. The formula for Pc resembles the Shannon chan-
apacity in that it involves a term log(1 + c2σs/σn), which is

logarithm of the scaled number of just-noticeable-differences
s), which itself has the interpretation of information.

In an experiment by Miller and Nicely [10] test subjects were
d to identify (from a closed set of responses) consonant-vowel
ds that had been filtered and mixed with noise. The listener
onses revealed perceptual categories, which presumably have
mon (statistically variable) acoustic correlates that can be in-
igated with the help of detectability information. Allen [11]
also shown that there is a relationship between the articulation
x and the confusion patterns of Miller and Nicely.
These insights encourage us to leverage closed set speech per-
ion experiments involving distorted speech, along with audi-
modeling, and a detection model to investigate speech percep-

, as shown in Fig. 1. The auditory and detectability model is
easure of input, and a confusion matrix formed from human
ner responses is a measure of the output.
A closed and resonably small set of nonsense (maximum en-
y) speech sounds is necessary for this type of informaton the-
ic analysis. A speech perception experiment involving real
ds or natural speech does not allow the analysis of particular
etic distinctions, and it involves syntactic, lexical, and syman-
onstraints that would confound our efforts to find the source
e phonetic distinctions. This type of experiment can provide

rmation about the perception of continuous speech if it can be
to discover relevant neural representations of signals in the

tory system that are always used for speech perception.
Section 2 describes a model for determining detectability at
auditory nerve level of acoustic signals in noise. Section 3
ribes an attempt to find “cues” to perceptual categories using
uditory model and detection model described in Section 2.

2. Auditory Model and Detection Model
section describes a method for simulating signals in the audi-
system and determining the detectability in distortion of those
als for a particular definition of detectability. The distortion of
est in this case is stationary noise as was used in [10], which
the purpose of masking “cues.”
The detection model will tell us where, in time and frequency,

September 17-21, Pittsburgh, Pennsylvania



Auditory
Model

Detection
Analysis

Human
Listener(speech + noise)

Distorted Speech
Closed Set

statistics and
information theory

confusion matrix

of Perceptual Categories
Neural Correlates

"information density"
in neural domain

Pheard=h|spoken=s(SNR)

Figure 1: The proposed method for investigating human speech
perception. The blocks enclosed in the dotted line are described in
section 2.

Estimate
Threshold

Estimate

s(t)
acoustic
speech
signal

Display Image

Nerve Firing Rate
Simulate Auditory Scale by JNDs

αj

σj

b(ti, fj)

λ(ti, fj)

Discard Noise
Samples

max(λ(ti, fj) − αj ,0)

a(ti, fj)

log2(1 + a(ti, fj)/σj)

b(ti, fj)

Figure 2: Block diagram of the system used to determine when the
auditory nerve firing rate is detectable to the auditory system.

an acoustic signal will cause the auditory nerve firing rate to be
detectable to the auditory system, and thus available for speech
recognition. The result will be an image with one index corre-
sponding to the best frequency of the auditory nerve, and the other
to time.

The system is shown in Fig. 2. The first stage is to simulate the
auditory nerve firing rate for for the acoustic signal. This can be
done using virtually any auditory model (for example, [12], [13]).
Initially we used a set of linear filters that provide correct tone de-
tection thresholds. A set of frequencies fj are chosen, which are
the “best frequency” for the collection of auditory nerves we wish
to simulate. The frequencies were chosen using the Greenwood
map so that they would be spaced evenly along the basilar mem-
brane.

Next, the probability distribution of the auditory nerve firing
rate resulting from the noise is determined. The threshold α is de-
termined based on that probability distribution for every frequency
fj simulated. The threshold αj is chosen so that the maximum
likelihood detector will detect a tone with the roughly the same
probability as a human listener at a variety of signal-to-noise ratios
(SNRs) near the detection threshold for humans. Figure 3 shows
an example auditory nerve rate due to a speech sound (/ /) mixed
with noise, along with a cartoon of the noise and noise plus speech
distributions.

The articulation index is the weighted sum across frequency of
log(1+c2σs/σn) [11]. The quantity c2σs/σn is interpreted as the
number of JNDs due to noise, and log

2
(1+c2σs/σn) is interpreted

as the number of bits per cycle that can be conveyed with that
number of JNDs. This relationship between the JND, the amount
of information available, and the probability correct provided by
the articulation index inspires us to scale the auditory and detection
model accordingly. The standard deviation of the noise in each
auditory nerve channel σj is computed from the noise distribution.
The samples from the auditory nerve firing rate λ(ti, fj) below the
corresponding threshold are set to zero, and the samples above the
threshold are scaled according to log

2
(1+a(ti, fj)/σj), as shown

in Fig. 2.
The signal b(ti, fj), which is the scaled version of the signal

a(ti, fj) is then displayed as an image. It bears a resemblance
to the spectrogram, except that the time-frequency resolution is
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re 3: The right pane shows an example of the firing rate for
uditory nerve with best a best frequency of 1 kHz induced by
eech sound at a wideband SNR of zero decibels. The horizon-
ine at zero on the ordinate is the threshold α. The left pane
s the noise distribution and noise plus speech distribution of
uditory nerve firing rate in that channel.

lar to that of the auditory nerve, the spacing of the frequency
nels is uniformly spaced on the human basilar membrane, and

regions (in time and frequency) below the “noise floor” are
k. The next section presents some of these images, referred
s the CCGRAM (channel capacity-gram), at several SNR, the
esponding spectrogram, and the human confusion associated
those images.

3. Usage and Comparison with a
Spectrogram

re 4 shows human confusions of a particular recording of
consonant-vowel pair / / (from /v/acuum and f/a/ther). The
issa is the SNR for the sound presented. Each line shows
probability of this recording of / / being perceived as other
d as a function of SNR. The data shown in Figs. 4, 5, and 7
collected in an experiment which duplicates the Miller and

ly experiment as closely as possible [14]. There were 16 con-
nt sounds paired with / /, and white interfering noise, and 16
onse alternatives corresponding to the 16 consonants used.
Like most recordings of / /, this one has energy that precedes
transition into the vowel (the so-called voice bar) / /, which
rs between 0.1 and 0.2 s and between 0.5 and 2 kHz, shown

st clearly) in the left pane of Fig. 6. Perception of / / is gener-
attributed to the presence of this voice bar, the place of articu-
n identified by the spectral shape of the region above the voice
and the formant trajectory [15]. This particular recording of
is always perceived as / / down to 12 dB SNR, recognition as
ecreases slowly between 12 dB SNR and -6 dB SNR. Below
B SNR, recognition of / / diminishes rapidly.
Figure 6 shows the CCGRAM in the upper panes and a
ow-band spectrogram in the lower panes, corresponding to
s of 12, -3, and -9 from left to right. The CCGRAM shows
the voice bar is clearly visible at 12 dB SNR, barely visible at
B SNR, and invisible at -9 dB SNR after recognition of / / has
eased rapidly. More comparison between the CCGRAM and
onfusion pattern pattern for / / and other sounds that are sim-
such as / / and / /, provide better than circumstantial evidence
he perceptual importance of the voice bar for recognition of

Next, the CCGRAM is used to describe properties of a speech
d that are responsible for a certain distinction. Some utter-
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Figure 6: The CCGRAM (top) and narrow-band spectrogram (bottom) of a
The wideband RMS-based SNR is 12 dB for the left pane, -3 dB for the mid
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Figure 4: Confusion pattern for a particular utterance of the
consonant-vowel pair / /. The abscissa is the SNR (in white
noise) for the sound as presented to a human listener. The ordi-
nate is the probability of recognition for each of 16 choices, each
choice having a different line.
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Figure 5: Confusion pattern for a particular utterance of the
consonant-vowel pair / /. The abscissa is the SNR (in white
noise) for the sound as presented to a human listener. The ordi-
nate is the probability of recognition for each of 16 choices, each
choice having a different line.

ances of / / are confused with / / when mixed with white noise,
and others are confused with / /. Figures 5 and 7 show the human
confusions for two utterances of the sound / / that exhibit this be-
havior. At high signal-to-noise ratios both sounds are perceived as
/ /, but at low SNRs they are perceived as / / and / /, respectively.
The left pane of Fig. 8 shows the CCGRAM of the recordings of
/ / at a high SNR, which exhibit the familiar rising first and sec-
ond formants, which are thought to cue / / when followed by / /.
The middle pane of Fig. 8 shows the same sounds at 0 dB SNR, at
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particular utterance of the speech sound / / mixed with noise.
dle pane, and -9 dB for the right pane.
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re 7: Confusion pattern for a particular utterance of the
onant-vowel pair / /. The abscissa is the SNR (in white
e) for the sound as presented to a human listener. The ordi-
is the probability of recognition for each of 16 choices, each
ce having a different line.

h point there is little information outside the darkened region.
right pane of Fig. 8 show the same sounds a -6 dB SNR, at
h point there is no information available outside the darkened

on. The conclusion is that information within that region is
ing one sound to be perceived as / / and the other as / /. This
es qualitatively the with result of [16], which asserts that the
ing frequency of the first formant and other fine details about
ormants cue “voicing” for stop consonants. In fact, inspection
e CCGRAMs of more utterances of / /, / /, and / / agree qual-

vely in that a lower starting frequency of the second formant
es the sound more likely to be perceived as / / or / /, rather
/ /.

4. Discussion and Conclusions

first example involving Figs. 4 and 6 shows an example where
robability of recognition as / / is related to the “information”
particular region of the CCGRAM. This example is represen-
e of the utterances of / / available to us, and also in agreement
long standing observations about speech perception.

The second example, involving Figs. 5 and 8, shows how the
RAM can be used to specify the location (in time and fre-
cy) of the “cue” that leads to a certain distinction.

These arguments, while not supported here by statistically suf-
nt evidence (which would be more confusion patterns and as-
ated CCGRAMs), illustrate the type of approach that can be
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Figure 8: The CCGRAM of two recordings of the sound / / spoken by two
The top pane shows the sound from Fig. 7, the bottom pane shows the sound
as / / with a probability of 100%. In the middle pane, both sounds are somew
the sound corresponding to the top CCGRAM is perceived as / / with a pro
CCGRAM is perceived as / / with a probability of 60%.

used to connect a measure of the output of human speech percep-
tion, the confusion matrix, with a measure of the input information,
the CCGRAM. The spectrogram does not provide detectability in-
formation because it is not based on a physiologically plausible
model of signals in the auditory system and because it does not
explicitly deal with noise and its effect on detectability.

The usefulness of this approach for investigating speech per-
ception could be extended by devising a way to automatically
connect the detectability information with the human confusion
information. Joint and conditional probability density functions
between the listener responses and the detectability information
from the CCGRAM could be estimated and used to compute the
mutual information (or some other information theoretic measure)
between perceptual categories and the acoustic information for cat-
egories of speech sounds.

We hope that methods can be devised that would provide in-
formation about fine phonetic detail, as well as provide statistics
on the relevance of those details. It is also hoped that these meth-
ods can be used to access information about which signals in the
auditory system are relevant to speech perception.
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