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 Neuroscience abounds with stories of intellectual and technical daring. 
Every peak has its Norgay and Hillary, and we had imagined telling some 
favorite stories of heroic feats, possibly set off in little boxes. Yet, this has 
been well done by others in various compendia and reminiscences (Straus-
field, 2012; Glickstein, 2014; Kandel, 2006; Koch, 2012). Our main goal is 
to evince some principles of design and note some insights that follow. 
Stories deviating from this intention would have lengthened the book and 
distracted from our message, so we have resisted the natural temptation to 
memoir-ize. 

 Existing compendia tend to credit various discoveries to particular 
individuals. This belongs to the storytelling. What interest would there 
be to the Trojan Wars without Odysseus and Agamemnon? On the other 
hand, dropping a name here and there distorts the history of the 
discovery process — where one name may stand for a generation of thought-
ful and imaginative investigators. Consequently, in addition to forgoing 
stories, we forgo dropping names — except for a very few who early enunci-
ated the core principles. Nor do the citations document who did what first; 
rather they indicate where supporting evidence will be found — often 
a review. 

 Existing compendia often pause to explain the ancient origins of various 
terms, such as cerebellum or hippocampus. This might have been useful 
when most neuroscientists spoke a language based in Latin and Greek, but 
now with so many native speakers of Mandarin or Hindi the practice seems 
anachronistic, and we have dropped it. Certain terms may be unfamiliar to 
readers outside neuroscience, such as physicists and engineers. These are 
italicized at their first appearance to indicate that they are technical ( cation 
channel ). A reader unfamiliar with this term can learn by Googling in 210 
ms that  “ cation channels  are pore-forming proteins that help establish and con-
trol the small voltage gradient across the plasma membrane of all living cells  . . .   ”  
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(Wikipedia). So rather than impede the story, we sometimes rely on you to 
Google. 

 Many friends and colleagues long aware of this project have wondered 
why it has taken so long to complete. Some have tried to encourage us to 
let it go, saying,  “ After all, it needn ’ t be perfect  . . .  ”  To which we reply, 
 “ Don ’ t worry, it isn ’ t! ”  It ’ s just that more time is needed to write a short 
book than a long one. 
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 A laptop computer resembles the human brain in volume and power use —
 but it is stupid. Deep Blue, the IBM supercomputer that crushed Grandmas-
ter Garry Kasparov at chess, is 100,000 times larger and draws 100,000 times 
more power (figure I.1). Yet, despite Deep Blue ’ s excellence at chess, it too is 
stupid, the electronic equivalent of an idiot savant. The computer operates 
at the speed of light whereas the brain is slow. So, wherein lies the brain ’ s 
advantage? A short answer is that the brain employs a hybrid architecture 
of superior design. A longer answer is this book — whose purpose is to iden-
tify the sources of such computational efficiency.    

 The brain ’ s inner workings have been studied scientifically for more 
than a century — initially by a few investigators with simple methods. In the 
last 20 years the field has exploded, with roughly 50,000 neuroscientists 
applying increasingly advanced methods. This outburst amounts to 1 mil-
lion person-years of research — and facts have accumulated like a mountain. 
At the base are detailed descriptions :  of neural connections and electrical 
responses, of functional images that correlate with mental states, and of 
molecules such as ion channels, receptors, G proteins, and so on. Higher up 
are key discoveries about mechanism: the action potential, transmitter 
release, synaptic excitation and inhibition. Summarizing this Everest of 
facts and mechanisms, there exist superb compendia (Kandel et al., 2012; 
Purves et al., 2012; Squire et al., 2008). 

 But what if one seeks a book to set out principles that explain how our 
brain, while being far smarter than a supercomputer, can also be far smaller 
and cheaper? Then the shelf is bare. One reason is that modern neurosci-
ence has been  “ technique driven. ”  Whereas in the 1960s most experiments 
that one might conceive were technically impossible, now with methods 
such as patch clamping, two-photon microscopy, and functional magnetic 
resonance imaging (fMRI), aided by molecular biology, the situation has 
reversed, and it is harder to conceive of an experiment that can not  be done. 

 Introduction 
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Consequently, the idea of pausing to distill principles from facts has lacked 
appeal. Moreover, to many who ferret out great new facts for a living, it has 
seemed like a waste of time. 

 Yet, we draw inspiration from Charles Darwin, who remarked,  “ My mind 
seems to have become a kind of machine for grinding general laws out of 
large collections of facts ”  (Darwin, 1881). Darwin, of course, is incompara-
ble, but this is sort of how our minds work too. So we have written a small 
book — relative to the great compendia — intending to beat a rough path up 
 “ Data Mountain ”  in search of organizing principles.   

 Figure I.1 
  How do neural circuits use space and power so efficiently?  Computer: Image  http://

upload.wikimedia.org/wikipedia/commons/d/d3/IBM_Blue_Gene_P_supercomputer

.jpg . Brain: Photo by UW-Madison, University Communications  ©  Board of Regents 

of the University of Wisconsin System. 
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 Principles of engineering 

 The brain is a physical device that performs specific functions; therefore, its 
design must obey general principles of engineering. Chapter 1 identifies 
several that we have gleaned (not being engineers) from essays 
and books on mechanical and electrical design. These principles do not 
address specific questions about the brain, but they do set a context for 
ordering one ’ s thoughts — especially helpful for a topic so potentially intim-
idating. For example, it helps to realize that neuroscience is really an 
exercise in  “ reverse engineering ”  — disassembling a device in order to 
understand it. 

 This insight points immediately to a standard set of questions that we 
suppose are a mantra for all  “ reverse engineers ” :  What does it do? What are 
its specifications? What is the environmental context?  Then there are com-
mandments, such as  Study the interfaces  and  Complicate the design.  The latter 
may puzzle scientists who, in explaining phenomena, customarily strive for 
simplicity. But engineers focus on designing effective devices, so they have 
good reasons to complicate.  1   This commandment, we shall see, certainly 
applies to the brain. 

 Why a brain? 

 To address the engineer ’ s first question, we consider why an animal should 
need a brain — what fundamental purpose does it serve and at what cost to 
the organism? Chapter 2 begins with a tiny bacterium,  Escherichia coli  
which succeeds  without  a brain, in order to evaluate what the bacterium can 
do and what it cannot. Then on to a protozoan,  Paramecium caudatum , still 
a single cell and brainless, but so vastly larger than  E. coli  (300,000-fold) 
that it requires a faster type of signaling. This prefigures long-distance sig-
naling by neurons in multicellular organisms. 

 The chapter closes with the tiny nematode worm,  Caenorhabditis elegans , 
which does have a brain — with exactly 302 neurons. This number is small 
in absolute terms, but it represents nearly one third of the creature ’ s total 
cells, so it is a major investment that better turn a profit, and it does. For 
example, it controls a multicellular system that finds, ingests, and digests 
bacteria and that allows the worm to recall for several hours the locations 
of favorable temperatures and bacterial concentrations. 

 Humans naturally tend to discount the computational abilities of small 
organisms — which seem, well  . . . , mentally deficient — nearly devoid of 
learning or memory. But small organisms  do  learn and remember. It ’ s just 
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that their memories match their life contexts: they remember only what 
they need to and for just long enough. Furthermore, the mechanisms that 
they evolved for these computations are retained in our own neurons — so 
we shall see them again. 

 The progression bacterium  →  protozoan  →  worm is accompanied by 
increasing computational complexity. It is rewarded by increasing capacity 
to inhabit richer environments and thus to move up the food chain: proto-
zoa eat bacteria, and worms eat protozoa. As engineering, this makes per-
fect sense: little beasts compute only what they must; thus they pay only 
for what they use. This is equally true for beasts with much larger brains 
discussed in chapter 3. 

 Why a bigger brain? 

 The brain of a fruit fly ( Drosophila melanogaster ) is 350-fold larger than 
 C. elegans  ’ , and the brain of a human ( Homo sapiens ) is a million-fold larger 
than the fly ’ s. These larger brains emerge from the same process of natural 
selection as the smaller ones, so we should continue to expect from them 
nothing superfluous — only mechanisms that are essential and pay for 
themselves. We should also expect that when a feature works really well, it 
will be retained — like the wheel, the paper clip, the aluminum beer can, 
and the transistor (Petroski, 1996; Arthur, 2009). We note design features 
that brains have conserved (with suitable elaborations) across at least 400 
million years of natural selection. These features in the human brain are 
often described as  “ primitive ”  — reptilian — reflecting what are considered 
negative aspects of our nature. But, of course, any feature that has been 
retained for so long must be pretty effective. 

 This chapter identifies the core task of all brains: it is to regulate the 
organism ’ s internal milieu — by responding to needs and, better still, by 
anticipating needs and preparing to satisfy them before they arise. The 
advantages of omniscience encourage omnipresence. Brains tend to become 
universal devices that tune all internal parameters to improve overall stabil-
ity and economy.  “ Anticipatory regulation ”  replaces the more familiar 
 “ homeostatic regulation ”  — which is supposed to operate by waiting for 
each parameter to deviate from a  “ set point, ”  then detecting the error and 
correcting it by feedback. Most physiological investigations during the 20th 
century were based on the homeostatic model — how kidney, gut, liver, pan-
creas, and so on work independently, despite Pavlov ’ s early demonstration 
of the brain ’ s role in anticipatory regulation (Pavlov, 1904). But gradually 
anticipatory control has been recognized. 
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 Anticipatory regulation offers huge advantages.  2   First, it matches overall 
response capacity to fluctuations in demand — there should always be 
enough but not too much. Second, it matches capacity at each stage in the 
system to anticipated needs downstream, thus threading an efficient path 
between excess capacity (costly storage) and failure from lack of supplies. 
Third, it resolves potential conflict between organs by setting and shifting 
priorities. For example, during digestion it can route more blood to the gut 
and less to muscle and skin, and during exercise it can reverse this priority. 
This allows the organism to operate with a smaller blood volume than 
would otherwise be needed. Finally, it minimizes errors — which are poten-
tially lethal and also cause cumulative damage. 

 Anticipatory regulation includes behavior 

 An organ that anticipates need and regulates the internal milieu by over-
arching control of physiology would be especially effective if it also regu-
lated behavior. For example, it could reduce a body ’ s need for physiological 
cooling (e.g., sweating — which costs energy and resources — sodium and 
water) by directing an animal to find shade. Moreover, it could evoke the 
memory of an unpleasant heatstroke to remind the animal to take anticipa-
tory measures (travel at night, carry water). Such anticipatory mechanisms 
are driven ceaselessly by  memories  of hunger, cold, drought, or predation: 
 Pick the beans! Chop wood! Build a reservoir! Lock the door!  

 The memories of danger and bad times that shape our behavior can be 
our own, but often they are stored in the brains of our parents and grand-
parents. We are reared with  their  nightmares — the flood, the drought, the 
famine, the pogrom. Before written history, which spans only 6,000 years, 
all lessons that would help one anticipate and thus avoid a lethal situation 
could be transmitted only by oral tradition — the memory of a human life 
span. Given that the retention of memories in small brains corresponds to 
their useful span, and that retention has a cost, human memory for great 
events should remain vivid with age whereas recent memories of lesser 
events should fade (chapter 14). 

 The most persistent dangers and opportunities, those extending far 
beyond a few generations, eventually become part of the neural wiring. 
Monkeys universally fear snakes, and so do most humans — suggesting that 
the response was encoded into brain structure before the lines split — on the 
order of 35 million years. But beyond alertness for predators, primate soci-
eties reserve their most acute observations and recall for relationships 
within the family and the troop. The benefit is that an individual ’ s chances 
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for survival and reproduction are enhanced by the  group ’ s  ability to antici-
pate and regulate. The cost is that the individual must continuously sense 
the social structure — in its historical context — to receive aid when needed 
and to avoid being killed or cast out (Cheney & Seyfarth, 2007). 

 Consequently, primate brains have expanded significantly in parts con-
cerned with social recognition and planning — such as prefrontal cortex and 
amygdala. Humans greatly expand these areas and also those for social 
communication, such as for language, facial expression, and music. These 
regions serve both the cooperative and the competitive aspects of anticipa-
tory regulation to an awesome degree. They account for much of our brain 
structure and many of our difficulties. 

 Flies too show anticipatory behavior — to a level consonant with their 
life span and environmental reach. A fly need not wait for its blood sugar 
to fall dangerously low, nor for its temperature to soar dangerously high, 
before taking action. Instead its brain expresses prewired commands:  Find 
fruit! In a cool spot!  Anticipatory commands are often tuned to environmen-
tal regularities that predict when and where a resource is most likely to 
appear — or disappear. Thus, circadian rhythms govern foraging and sleep. 
Seasonal rhythms, which broadly affect resource availability, govern mat-
ing and reproduction. Consequently, specific brain hormones tuned to day 
length send orders to prewired circuits:  Court a mate! Intimidate a 
competitor!  

 What drives behavior? 

 To ensure that an organism will execute these orders, there are neural 
mechanisms to make it  “ feel bad ”  when a job is undone and  “ feel good ”  
when it has succeeded. These are circuits whose activity humans experi-
ence, respectively, as  “ anxiety ”  and  “ pleasure. ”  Of course, we cannot know 
what worms or flies experience — but the same neurochemicals drive similar 
behaviors. This is one wheel that has certainly been decorated over hun-
dreds of millions of years, but not reinvented. 

 To actually accomplish a task is vastly complicated. Reconsider Deep 
Blue ’ s task. Each side in chess has 16 pieces — that move one at a time, 
slowly (minutes), and only in two dimensions. Each piece is constrained to 
move only in certain ways, and some pieces repeat so that each side has 
only six different types of motion. This relatively simple setup generates so 
many possible moves that to evaluate them requires a Deep Blue. 

 But the organ responsible for anticipatory regulation takes continuous 
data from every sensory neuron in the organism — both internal and 
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external — plus myriad hormones and other chemicals. While doing so, it is 
calculating in real time — milliseconds — how to adjust every body compo-
nent inside and out. It is flying the fly, finding its food, shade, and mate; it 
is avoiding predators and intimidating competitors — all the while tweaking 
every  internal  parameter to match what is about to be needed. Thus, it 
seems fair to say that Deep Blue is stupid even compared to a fruit fly. This 
defines sharply the next engineering question: what constrains the design 
of an effective and efficient brain? 

 What constrains neural design? 

 When Hillel was asked in the first century  B.C.E.  to explain the whole Torah 
while standing on one leg, he was ready:  “ That which is hateful to you, do 
not unto another. The rest is commentary — and now go study. ”  

 There is a one-leg answer for neural design:  “ As information rate rises, 
costs rise disproportionately. ”  For example, to transmit more information 
by spikes requires a higher spike rate. Axon diameter rises linearly with 
spike rate, but axon volume and energy consumption rise as the diameter 
squared. Thus, the essence of neural design:  “ Send only information that is 
needed, and send it as slowly as possible ”  (chapter 3). This key injunction 
profoundly shapes the brain ’ s macroscopic layout, as explained in chapter 
4. We hope that readers will  . . .  go study. 

 If spikes were energetically cheap, their rates would matter less. How-
ever, a 100-mV spike requires far more current than a 1-mV response evoked 
by one packet of chemical transmitter. Obviously then, it is cheaper to com-
pute with the smaller currents. This exemplifies another design principle: 
minimize energy per  bit  of information by computing at the finest possible 
level. Chapter 5 identifies this level as a change in protein folding on the 
scale of nanometers. Such a change can capture, store, and transmit one bit 
at an energetic cost that approaches the thermodynamic limit. Chapter 6 
explains how proteins couple to form intracellular circuits on the scale of 
micrometers, and chapter 7 explains how a neuron assembles such circuits 
into devices on a scale of micrometers to millimeters. 

 It emerges that to compute most efficiently in space and energy, neural 
circuits should  nanofy : 

 1. Make each component irreducibly small: a functional unit should be a 
single protein molecule (a channel), or a linear polymer of protein sub-
units (a microtubule), or a sandwich of monomolecular layers (a 
membrane). 



xx Introduction

 2. Combine irreducible components: a membrane to separate charge and 
thus permit a voltage, a protein transporter to pump ions selectively 
across the membrane and actually separate the charges (charge the bat-
tery), a pore for ions to flow singly across the membrane and thus create 
a current, a  “ gate ”  to start and stop a current, an amplifier to enlarge the 
current, and an adaptive mechanism to match a current to circumstance. 

 3. Compute with  chemistry  wherever possible: regulate gates, amplifiers, 
and adaptive mechanisms by binding/unbinding small molecules that 
are present in sufficient numbers to obey the laws of mass action. 
Achieve speed with chemistry by keeping the volumes small. 

 4. For speed over distance compute  electrically : convert a signal computed 
by chemistry to a current that charges membrane capacitance to spread 
passively up to a millimeter. For longer distance, regenerate the current 
by appropriately clustered voltage-gated channels. 

 Design in the visual system 

 Having discussed protein computing and miniaturization as general routes 
to efficiency, we exemplify these points in an integrated system —
 phototransduction (chapter 8). The engineering challenge is to capture 
light reflected from objects in the environment in order to extract informa-
tive patterns to guide behavior. Transduction employs a biochemical cas-
cade with about half a dozen stages to amplify the energy of individual 
photons by up to a million-fold while preserving the information embod-
ied as signal-to-noise ratio (S/N) and bandwidth. We explain why so many 
stages are required. 

 The photoreceptor signal, once encoded as a graded membrane voltage, 
spreads passively down the axon to the synaptic terminal. There the ana-
logue signal is digitized as a stream of synaptic vesicles. The insect brain can 
directly read out this message with very high efficiency because the dis-
tance is short enough for passive signaling (chapter 9). The mammal brain 
can not  directly read out this vesicle stream because the distance is too great 
for passive signaling. The mammal eye must transmit by action potentials, 
but the photoreceptor ’ s analogue signal contains more information than 
action potentials can encode. Therefore, on-site retinal processing is 
required (chapters 10, 11). 

 Principles at higher levels 

 The principles of neural design at finer scales and lower levels also apply at 
larger scales and higher levels. For example, they can explain why the first 
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visual area (V1) in cerebral cortex enormously expands the number and 
diversity of neurons. And why diverse types project in parallel from V1 to 
other cortical areas. And why cortex uses many specific areas and arranges 
them in a particular way. The answers, as explained in chapter 12, are 
always the same: diverse circuits allow the brain to send only information 
that is needed and to send it at lower information rates. This holds compu-
tation to the steep part of the benefit/cost curve. 

 Wiring efficiency 

 Silicon circuits with very large-scale integration strive for optimal layout —
 to achieve best performance for least space, time, and energy. Neural cir-
cuits do the same and thereby produce tremendous diversity of neuronal 
structure at all spatial scales. For example, cerebellar output neurons ( Pur-
kinje cells ) use a two-dimensional dendritic arbor whereas cerebral output 
neurons ( pyramidal cells ) use a three-dimensional arbor. Both circuits 
employ a layered architecture, but the large Purkinje neurons lie  above  a 
layer of tiny neurons whereas the large pyramidal neurons lie  below  the 
smaller neurons. Cerebellar cortex folds intensely on a millimeter scale 
whereas cerebral cortex on this scale is smooth. 

 Such differences originate from a ubiquitous biophysical constraint: the 
irreducible electrical resistance of neuronal cytoplasm. Passive signals 
spread spatially and temporally only as the square root of dendritic diame-
ter ( √ d). This causes a second law of diminishing returns: a dendrite, to 
double its conduction distance or halve its conduction delay, must qua-
druple its volume. This prevents neural wires from being any finer and pre-
vents local circuits from being any more voluminous. In both cases 
conduction delays would grow too large. The constraint on volume drives 
efficient layout: equal lengths of dendrite and axon and an optimum pro-
portion of wire and synapses. Chapter 13 will explain. 

 Designs for learning 

 All organisms use new information to better anticipate the future. Thus, 
learning is a deep principle of biological design, and therefore of neural 
design. Accordingly, the brain continually updates its knowledge of every 
internal and external parameter — which means that learning is also a brain 
function. As such, neural learning is subject to the same constraints as all 
other neural functions. It is a design principle that must obey all the others. 

 To conserve space, time, and energy, new information should be stored 
at the site where it is processed and from whence it can be recalled without 
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further expense. This is the synapse. Low-level synapses relay short-term 
changes in input, so their memories should be short, like that of a bacte-
rium or worm. These synapses should encode at the cheapest levels, by 
modifying the structure and distribution of proteins. High-level synapses 
encode conclusions after many stages of processing, so their memories 
deserve to be longer and encoded more stably, by enlarging the synapse and 
adding new ones. 

 A new synapse of diameter (d) occupies area on the postsynaptic mem-
brane as d 2  and volume as d 3 . Because adding synapses increases costs dis-
proportionately, learning in an adult brain of fixed volume is subject to 
powerful space constraints. For every synapse enlarged or added, another 
must be shrunk or removed. Design of learning must include the principle 
 “ save only what is needed. ”  Chapter 14 explains how this plays out in the 
overall design. 

 Design and designer 

 This book proposes that many aspects of the brain ’ s design can be under-
stood as adaptations to improve efficiency under resource constraints. 
Improvements to brain efficiency must certainly improve fitness. Darwin 
himself noted that  “ natural selection is continually trying to economize 
every part of the organization ”  and proposed that instincts, equivalent in 
modern terms to  “ genetically programmed neural circuits, ”  arise by natural 
selection (Darwin, 1859). So our hypothesis breaks no new conceptual 
ground. 

 A famous critique of this hypothesis argues that useless features might 
survive pruning if they were simply unavoidable accompaniments to 
important features (Gould & Lewontin, 1979). This possibility is undeni-
able, but if examples are found for neural designs, we expect them to be rare 
because each failure to prune what is useless would render the brain less 
efficient — more like Deep Blue — whereas the brain ’ s efficiency exceeds 
Deep Blue ’ s by at least 10 5 . 

 So what do we claim  is  new? The energy and space constraints have been 
known for a while, as have various principles, such as  “ minimize wire. ”  The 
present contribution seems to lie in our gathering various rules as a concise 
list and in systematically exemplifying them across spatial and functional 
scales. When a given rule was found to apply broadly with constant explan-
atory power, we called it a  “ principle. ”  Ten are listed as a round number. As 
with the Biblical Commandments and the U.S. Bill of Rights, some readers 
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will find too many (redundancy) and others too few. We are satisfied to 
simply set them out for consideration. 

 Some readers may object to the expression  “ design ”  because it might 
imply a design er , which might suggest creationism. But  “ design ”  can mean 
 “  the arrangement of elements or details , ”  also  “  a scheme that governs function-
ing . ”  These are the meanings we intend. And, of course, there  is  a designer —
 as noted, it is the process that biologists understand as natural selection.  3   

 Limits to this effort 

 Our account rests on facts that are presently agreed upon. Where some 
point is controversial, we will so note, but we will not resort to imagined 
mechanisms. Our goal is not to explain how the brain  might  work, but 
rather to make sense of what is already known. Naturally what is  “ agreed 
upon ”  will shift with new data, so the story will evolve. We gladly acknowl-
edge that this account is neither complete nor timeless. 

 We omit  so  much — many senses, many brain regions, many processes —
 and this will disappoint readers who study them. We concentrate on vision 
partly because it has dominated neuroscience during its log growth phase, 
so that is where knowledge goes deepest at all scales. Also we have person-
ally concentrated on vision, so that is where our own knowledge is deepest. 
Finally, to apply principles across the full range of scales, but keep the book 
small, has required rigorous selection. We certainly hope that workers in 
other fields will find the principles useful. If some prove less than universal 
and need revision, well, that ’ s science. The best we can do with Data Moun-
tain really is just to set a few pitons up the south face. 
 





 During the Cold War, the Soviets would occasionally capture a U.S. military 
aircraft invading their airspace, and with comparable frequency a defecting 
Soviet pilot would set down a MiG aircraft in Japan or Western Europe. 
These planes would be instantly swarmed by engineers — like ants to a drop 
of honey — with one clear goal: to  “ reverse engineer ”  the craft. This is the 
process of discovering how a device works by disassembling and analyzing 
in detail its structure and function. Reverse engineering allowed Soviet 
engineers to rather quickly reproduce a near perfect copy of the U.S. B-29 
bomber, which they renamed the Tu-4. Reverse engineering still flourishes 
in military settings and increasingly in civilian industries — for example, in 
chip and software development where rival companies compete on the 
basis of innovation and design. 

 The task in reverse engineering is accelerated immensely by prior knowl-
edge. Soviet engineers knew the B-29 ’ s purpose — to fly. Moreover, they 
knew its performance specifications: carry 10 tons of explosive at 357 mph 
at an altitude of 36,000 feet with a range at half-load of 3,250 miles. They 
also knew how various parts function: wings, rudder, engines, control 
devices, and so forth. So to grasp how the bomber must work was straight-
forward. Once the  “ how ”  of a design is captured, a deeper goal can be 
approached: what a reverse engineer really seeks is to understand the  why  
of a design —  why  has each feature been given its particular form? And  why  
are their relationships just so? This is the step that reveals principles; it is 
the moment of  “ aha! ”  — the thrilling reward for the long, dull period of 
gathering facts. 

 Neuroscience has fundamentally the same goal: to reverse engineer the 
brain (O ’ Connor, Huber,  &  Svoboda, 2009). What other reason could there 
be to invest 1 million person-years (so far) in describing so finely the brain ’ s 
structure, chemistry, and function? But neuroscience has been somewhat 
handicapped by the lack of a framework for all this data. To some degree we 
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resemble the isolated tribe in New Guinea that in the 1940s encountered a 
crashed airplane and studied it without comprehending its primary func-
tion. Nevertheless, we can learn from the engineers: we should try to state 
the brain ’ s primary goal and basic performance specifications. We should 
try to intuit a role for each part. By placing the data in some framework, we 
can begin to evaluate how well our device works and begin to consider the 
why of its design. We will make this attempt, even though it will be incom-
plete, and sometimes wrong. 

 Designing de novo 

 Engineers knows that they cannot create a general design for a general 
device — because there is no general material to embody it.  1,2   Engineers 
must proceed  from  the particular  to  the particular. So they start with a list of 
questions: Precisely what is this machine supposed to accomplish? How fast 
must it operate and over what dynamic range? How large can it be and how 
heavy? How much power can it use? What error rates can be tolerated, and 
which type of error is most worrisome — a false alarm or a failure to respond? 
The answers to these questions are design specifications. 

 Danger lurks in every vague expression:  “ very fast, ”   “ pretty small, ”  
 “ power-efficient, ”   “ error free. ”  Generalities raise instant concern because 
one person ’ s  “ very ”  is another ’ s  “ barely. ”  To a biologist,  “ brief ”  is a millisec-
ond (10  – 3  s), but to an electronic engineer,  “ brief ”  is a nanosecond (10  – 9  s), 
and the difference is a millionfold. Engineers knows that no device can be 
truly instantaneous or error free — so they know to ask how high should we 
set the clock rate, how low should we hold the error rate, and at 
what costs? 

 The engineer realizes that every device operates in an environment and 
that this profoundly affects the design. A car for urban roads can be low 
slung with slender springs, two-wheel drive, and a transmission geared for 
highway speeds. But a pickup for rough rural roads needs a higher under-
carriage, stouter springs, four-wheel drive, and a transmission geared for 
power at low speeds. The decision regarding which use is more likely (urban 
or rural) suffuses the whole design. Moreover an engineer always wants to 
quantify the particular environment to estimate the frequencies of key fea-
tures and hazards. 

 One assumes, for example, that before building a million pickups, some-
one at Nissan bothered to measure the size distribution of rocks and 
potholes on rural roads. Then they could calculate what height of undercar-
riage would clear 99.99% of these obstructions and build to that standard. 
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Knowing the frequencies of various parameters allows rational consider-
ation of safety factor and robustness: how much extra clearance should be 
allowed for the rare giant boulder; how much thicker should the springs be 
for the rare overload? Such considerations immediately raise the issue of 
expense — for a sturdier machine can always be built, but it will cost more 
and could be less competitive. So design and cost are inseparable. 

 Of course, environments change. Roads improve — and then deteriorate —
 so vehicle designs must take this into account. One strategy is to design a 
vehicle that is cheap and disposable and then bring out new models fre-
quently. This allows adaptations to environmental changes to appear in the 
next model. Another strategy is to design a more expensive vehicle and 
invest it with intrinsically greater adaptive capacity — for example, adjust-
able suspension. Both designs would operate under the same basic princi-
ples; the main difference would lie in their strategies for adaptation to 
changes in demand. In biology the first strategy favors small animals with 
short lives; the second strategy, by conserving time and effort already 
invested, favors larger animals with longer lives. As we will see, these com-
plementary strategies account for many differences between the brains of 
tiny worms, flies, and humans. 

 Design evolves in the context of  competition . Most designs are not de 
novo but rather are based upon an already existing device. The new version 
tries to surpass the competition: lighter, faster, cheaper, more reliable — but 
each advance is generally modest. To totally scrap an older model and start 
fresh would cost too much, take too long, and so on. However, suppose a 
small part could be modified slightly to improve one factor — or simply 
make the model prettier? The advance might pay for itself because the 
device would compete better with others of the same class. A backpacker 
need not outrun the bear — just a companion — and the same is true for 
improvements in design. The revolutionary Model T Ford was not the best 
car ever built, but it was terrific for its time: cheaper and more reliable than 
its competitors. 

 How engineers design 

 An engineer takes account of the laws of physics, such as mechanics and 
thermodynamics. For example, a turbine works most efficiently when the 
pressure drop is greatest, so this is where to place the dam or hydro-tunnel. 
Similarly, power generation from steam is most efficient at high tempera-
tures, which requires high pressures. But using pressure to do work is most 
efficient when the pressure change is infinitesimally small — which takes 



4 Chapter 1

infinitely long. There is no  “ right ”  answer here, but the laws of physics 
govern the practicality of power generation and power consumption — and 
thus affect many industrial designs. 

 Similarly, a designer is aware of unalterable physical properties. Certain 
particles move rapidly: photons in a vacuum (3  ×  10 8  m in a second). In 
contrast, other particles move slowly: an amino acid diffusing in water (~1 
 μ m in a millisecond) — a difference of 10 14 . So for a communications engi-
neer to choose photons to send a message would seem like a  “ no brainer ”  —
 except that actual brains rely extensively on diffusion! This point will be 
developed in chapters 5 and 6. 

 Designers pay particular attention to the interfaces where energy is 
transferred from one medium to another. For example, an automobile 
designed for a V-8 engine needs wide tires to powerfully grip the road. 
This is the final interface, tire-to-road, through which the engine ’ s power is 
delivered; so to use narrow, lightly treaded tires would be worse than 
pointless — it would be lethal. More generally it is efficient to match 
components — for their operating capacities, robustness, reliability, and so 
on. Efficient designs will match the capacities of all parts so that none are 
too large or too small. 

 Matching may be achieved straightforwardly where the properties of the 
input are predictable, such as a power transformer driven by the line volt-
age, or a transistor switch in a digital circuit. But the engineer knows that 
the real world is more variable and allows for this in the design — by provid-
ing greater tolerances, or adjusting the matches with feedback. And to esti-
mate what tolerances or what sorts of feedback are needed, the 
engineer — once again — must analyze the statistics of the environment. 
Chapters 8 – 12 will do this for vision. 

 What components? 

 Having identified a specific task, its context and constraints, a designer 
starts to sketch a device. The process draws on deep knowledge of the 
available components — their intrinsic properties (both advantageous and 
problematic), their functional relationships, robustness, modifiability, and 
cost. A mechanical engineer draws from a vast inventory of standard 
bolts, gears, and bearings and exploits the malleability and versatility of 
plastics and metal alloys to tailor new parts to particular functions. For 
example, Henry Ford, in designing his 1908 Model T, solved the mechani-
cal problem of axles cracking on roads built for horses by choosing a 
tougher, lighter steel alloyed with vanadium.  3   An electrical engineer solves 
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an electronic problem by drawing on a parts catalog or else drawing on 
known properties and costs to design a new chip. Consequently, as models 
advance, the number of parts grows explosively: the Boeing 747 comprises 
6 million parts. 

 In these respects the genome is a parts catalog — a list of DNA sequences 
that can be transcribed into RNA sequences ( “ messengers ” ) that in turn can 
be translated into amino acid sequences — to create proteins that serve sig-
naling in innumerable ways. This extensive genetic parts list is not the end, 
but rather a start — for there are vast opportunities for further innovation 
and tailoring (see chapter 5). An existing gene can be duplicated and then 
modified slightly, just as an engineer would hope, to produce an alternative 
function. For example, the protein ( opsin ) that is tuned to capture light at 
middle wavelengths (550 nm) has been duplicated and retuned in evolu-
tion by changing only a few amino acids out of several hundred to capture 
longer wavelengths (570 nm). This seemingly minor difference supports 
our ability to distinguish red from green. 

 At the next level, a single DNA sequence can be transcribed to produce 
shorter sequences of messenger RNA that can be spliced in alternative pat-
terns to produce subtle but critical variants. For example, alternative splic-
ing produces large families of receptor proteins with subtly different binding 
affinities — which give different time constants. Other variants desensitize 
at different rates. How these variations are exploited in neural design will be 
discussed, as will the capacity to further innovate and tailor the actual pro-
teins by binding small ions and covalently adding small chemical groups 
(posttranslational modification). In short, with 20% of our genome devoted 
to coding neural signaling molecules, plus the additional variation allowed 
by duplication, alternative splicing, and posttranslational modification, the 
brain draws from a large inventory of adaptable parts. The versatility of 
these components, as explained further in chapter 5, is a major key to the 
brain ’ s success. 

 At a still higher level biological design builds on preexisting structures 
and processes. Where a need arises from an animal ’ s opportunity to exploit 
an abundant resource, natural selection can fashion a new organ from an 
old one that served a different purpose. Famously, for example, the panda ’ s 
 “ thumb ”  evolved not from the first digit that humans inherited from earlier 
primates but from a small bone in the hand of its ancestors that served a 
different purpose (Gould, 1992). Thus, efficient designs can be reached via 
natural selection from various directions and various developmental 
sequences. This was recognized a century ago by a key founder of neurosci-
ence, Santiago Ram ó n y Cajal (1909): 
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 We certainly acknowledge that developmental conditions contribute to morpho-

logical features. Nevertheless, although cellular development may reveal how a par-

ticular feature assumes its mature form, it cannot clarify the utilitarian or teleologi-

cal forces that led developmental mechanisms to incorporate this new anatomical 

feature. (edited for brevity) 

 Neatening up 

 A designer ’ s list of needed functions might also reveal several that could be 
accomplished with a single, well-placed component. This has been termed 
 “ neatening up, ”  which Ford certainly did for the Model T. For example, 
rather than manufacture separate cylinders and bolt them together (the 
standard method), he cast the engine as a solid block with holes for the 
cylinders. Moreover, rather than use a separate belt to drive the magneto 
(which provides spark to initiate combustion), he built magnets into the 
engine ’ s flywheel — thereby reducing parts and weight. The sum of his 
efforts to improve components (vanadium steel) and design (flexible sus-
pension) and neaten up (engine block, magneto) produced a model that 
was 25% lighter and delivered 25% more horsepower per pound than the 
competition, such as the Buick Tourabout. 

 Brain design reflects this process of neatening up. For example, one syn-
apse can simultaneously serve two different pathways: fast and slow; ON 
and OFF. One neuron can alternately serve two different circuits: one dur-
ing daylight and another during starlight (chapter 11). But this strategy 
must not compromise functionality. 

 Complicate but do not duplicate 

 Scientists are constantly lashed with the strop from Occam ’ s razor. That is, 
we are forcefully encouraged to keep our explanatory models and theories 
 simple . So the following design principle seems, not merely surprising, but 
actually counterintuitive:  if one design is simple and another complicated, 
choose the complicated  (Glegg, 1969; Pahl et al., 2007). Here is the reasoning: 
when one part is forced to do two jobs, it can do neither well. An example 
is the two-stroke engine. 

 The operating cycle of a four-stroke automobile engine involves four 
sweeps of the piston through the cylinder. One draws in the fuel, the next 
compresses it, the third delivers power as combustion drives the piston out-
ward, and the fourth sweeps out the exhaust. The two-stroke engine dis-
charges the exhaust with the same stroke that draws in fuel at the bottom 
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of the combustion stroke and the beginning of the compression stroke. This 
serves well for a lawn mower or a power saw because the simpler design 
avoids the need for a valve gear to separately port fuel and exhaust, giving 
a better ratio of power to weight. However, the four-stroke engine ’ s more 
complicated design delivers much more power per liter of fuel and runs 
smoother and quieter. Moreover, its more efficient combustion discharges 
fewer pollutants (French, 1994). 

 There are general advantages to providing a separate part for each task. 
First, each part can be independently tuned for speed, sensitivity, and so 
forth — without compromise. Second, each part can be regulated indepen-
dently. Third, more parts provide more opportunities for further refine-
ment, innovation, and improvement — simply because there are more 
starting points. 

  Complicate!  is such an important principle for neural design that it 
seems justified to give one example. The vertebrate retina might have 
used only one type of photoreceptor but instead it uses two: rod and 
cone. The rod photopigment is more stable but slower to regenerate, so it 
serves best in dim light. The cone photopigment is less stable but 
faster to regenerate, so it serves best in bright light. Having complicated the 
retina ’ s cellular architecture with two cell types, each type has developed its 
own molecular refinements — specialized versions of the transduction mol-
ecules and of  their  regulatory molecules — all tuned for different 
light intensities. To take full advantage of these refinements, the two cell 
types have developed different circuits within the retina. However, just 
before the retinal output, there is a neatening up: rod and cone circuits 
merge to share a set of excitatory synapses onto a set of common output 
cells (ganglion cells). Further explanation is to be found in chapters 8 
and 11. 

 There is another way to complicate a design: include several parts that 
appear to serve the same function. For example, a neuron may express sev-
eral enzymes that produce the same product. And neighboring cells may 
express different versions of a similar protein; for example, axons and astro-
cytes (glial cells) in optic nerve both express a sodium/potassium pump but 
with subtly different properties. Also one region may connect to another 
via multiple pathways: dorsal spinocerebellar tract, ventral spinocerebellar 
tract, spino – reticulo – cerebellar tract, spino – olivo – cerebellar tract, and so 
on. These parallel features might once have been regarded as  “ redundant ”  —
 to increase reliability and protect against failure. But now most biologists 
appreciate that multiple pathways generally serve different roles and thus 
are not truly redundant. 
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 Indeed, engineers try avoid redundancy, and for good reason. A part 
waiting for a function occupies space, adds weight, and costs extra. So, this 
consideration raises suspicion that the multiplicity of intracellular phos-
phatases, sodium/potassium pumps, spinocerebellar tracts, and so on repre-
sent complexity of the good kind. 

 Choosing materials 

 Engineers can choose from diverse materials. However, they must try to 
select the least costly material that is appropriate for the task. For a sailboat 
mast, wood was traditional, but it is heavy. Graphite can be equally stiff for 
less weight, but it is brittle; titanium gives the best physical performance, 
but it is costly. So the choice depends on whether the boat is a dinghy for 
weekend sailing or a 12 meter yacht for the America ’ s Cup. 

 Brain design is forced to select from a far narrower set of materials. For 
example, biological membranes are composed of lipids and proteins. 
Although mechanisms for regulating the passage of substances and ions 
 across  the membrane in either direction are myriad (ion channels, pumps, 
cotransporters, antiporters, flippases, etc.), the intrinsic properties of the 
membrane itself are relatively constant. In particular, the membrane ’ s spe-
cific capacitance is fixed at around 1  μ F cm  − 2 . Neurons generate electrical 
signals by opening and closing channels in the membrane that allow ions 
to move down their electrochemical gradient and carry charge in and out 
of the cell. 

 The time constant of this electrical response is the product of the mem-
brane resistance and capacitance, but capacitance is fixed. Therefore, to 
speed up an electrical process, a neuron of given surface area must reduce 
its membrane resistance by opening more channels, thus allowing more 
ions to cross the membrane. The cost of restoring these ions so as to main-
tain the electrochemical gradient is high — in fact, it is the human brain ’ s 
major energy cost: more than 60% goes for pumping ions, making this a 
key constraint upon design. Thus, for the brain, as for 12 meter yachts and 
automobiles, speed comes at a premium — and the brain is forced to use it 
sparingly. This theme will recur. 

 Integrating across systems 

 Engineers look for trade-offs among individual components to improve 
overall performance. For example, because a truck ’ s suspension reduces 
shock, investment in better springs and shock absorbers can be traded for 
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weight and strength in the axles. So designers evaluate the whole system to 
discover where investment in one component is more than compensated 
by savings in others. This integrated approach to design extends the prin-
ciple of matching components to include cost. 

 An example relevant to neural design is the mobile telephone (Macken-
zie, 2005). Like many animals, it is small and roams on limited power. Mod-
els compete fiercely, and success depends upon performance, beauty, and 
energy efficiency. One notable innovation provides the phone ’ s  “ brain, ”  its 
tiny internal computer, with a  turbo code  that extracts wireless signals from 
environmental noise. This code employs an algorithm for  belief propagation  
that is computationally expensive. But the investment pays because the 
code eliminates noise so effectively that the efficiency of wireless commu-
nication approaches the theoretical limit defined by Shannon ’ s equation 
(chapter 5). 

 Optimizing efficiency allows the phone to reduce the amplitude of its 
output signals. These consume the highest proportion of the phone ’ s power 
because more energy is needed to transmit radio signals long distances in 
all directions than to send electrical pulses along short connections in a 
tiny computer. Consequently, the energy invested in the phone ’ s brain for 
turbo coding produces much larger savings in the heavy work of signal 
transmission. By analogy, an animal ’ s small brain saves energy by efficiently 
directing the activities of large, power-hungry muscles. 

 To understand the design of an integrated system requires teamwork. 
When no single person can grasp the details of every component and pro-
cess, designers team up. Specialists integrate their detailed knowledge of 
each particular into an efficient whole. It was a team of specialists that 
reverse engineered the B-29. They needed to combine expertise in aerody-
namics, structural engineering, materials science, fluid mechanics, control 
systems, and so on. Neuroscientists are reaching the same conclusion and 
forming teams that integrate specialized knowledge to reverse engineer 
their systems. Brains are integrated systems because they evolved to inte-
grate, so how else can we understand them? 

 How to proceed and a caution 

 To consider brain design as a problem of reverse engineering, we must begin 
with an overview of its main tasks, establish some basic measures of perfor-
mance, and then see how these relate to the investment of resources in 
particular mechanisms (chapters 2 and 3). Having established some basic 
principles, we select one important system — vision — and treat each stage of 
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processing in the framework of design. We present the environmental con-
text, then the circuit structure and some  “ hows ”  of its functioning. Then 
for each stage we will point out some  “ whys ”  of the design and note where 
other neural systems use similar principles. 

 The design principles evinced here do not explain everything. In fact, 
principles cannot explain how anything works — not the B-29, not the 
Model T, and certainly not the brain. What, then, is their use? Design prin-
ciples deepen our understanding of why things work the way they do, and 
armed with this deeper understanding, we can reverse engineer more effi-
ciently. Of course, applying inappropriate or misguided principles would 
slow us down. Thus, principles derived theoretically, without real objects 
and mechanisms to illustrate them, are not yet of much use. So we attempt 
to balance the insights that come from principled explanations against the 
doubts that come from overdoing them. 



 Essentially only one thing in life interests us: our psychical constitution. The consid-

erations which I have placed before you employ a scientific method in the study of 

these highest manifestations in the dog, man ’ s best friend.  

  — Ivan Pavlov, Nobel lecture, 1904 (edited for brevity) 

 Brain books generally begin at the lowest levels — neurons, axons, synapses, 
and ion channels. But that approach ill suits our goal of reverse engineer-
ing. One cannot explain a B-29 by starting with the nuts and bolts. So we 
postpone the parts lists and detailed schematics to consider first a larger 
question: why do we  need  a brain? 

 One ’ s first thought, of course, is that we need it for the magical activities 
and feelings it confers: art, music, love  . . .  consciousness. But although 
these features arouse intense curiosity — as Pavlov emphasized — we shall see 
that they are merely baroque decorations on the brain ’ s fundamental pur-
pose and should not be mistaken for the purpose itself. What we identify 
here as the brain ’ s purpose, especially because we are seeking principles, 
should apply not only to humans but as well to the nematode worm, 
 C. elegans , and to flies. The deep purpose of the nematode ’ s brain of 302 
neurons, the fruit fly ’ s brain of 10 5  neurons, and our own brain of 10 11  neu-
rons (Azevedo et al., 2009) must be the same. By identifying the basic pur-
pose, we set a context for later considering the  “ decorations. ”  We expect 
that research on the mammalian cerebral cortex will not reveal many new 
principles — rather it will elaborate the core ones. In general, it should be 
easier to discover them in simpler brains. 

 The brain ’ s purposes reduce to regulating the internal milieu and help-
ing the organism to survive and reproduce. All complex behavior and men-
tal experience — work and play, music and art, politics and prayer — are 
but strategies to accomplish these functions. Sharing these fundamental 
tasks, the brains of worms, flies, and vertebrates show significant 

 2   Why an Animal Needs a Brain 
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similarities — which will be discussed. But first, consider that a tiny bacte-
rium,  E. coli , and a much larger single-celled protozoan,  Paramecium,  man-
age these two tasks quite well without a brain. How? 

 Lives of the Brainless 

 A bacterium foraging 
  E. coli  is miniscule (1  ×  3  μ m) and thrives in a nutritive soup — adrift in the 
intestinal digests of a large animal (figure 2.1; Alberts et al., 2008). The 
microbe is equipped with  “ taste ”  receptors, a battery of proteins each of 
which specifically binds an attractant (such as an amino acid or sugar) or a 
repellant. These receptor proteins cluster on the surface membrane and 
form signaling complexes within which they cooperate to increase sensitiv-
ity and response speed. The largest cluster is at the forward end ready to 
taste what comes as the bacterium ploughs through the soup. Although 
each cluster comprises thousands of molecules — to increase the chance of 
catching a taste — there are only five types of receptor molecule, each 
responding to a range of related compounds.    

 The first function of these receptors is to evaluate the  soup du jour . Each 
potential nutrient (amino acid, sugar, etc.) requires its own specific trans-
porter ( permease ) for uptake into the bacterium, plus a particular enzyme or 
even a whole set of enzymes to process it for energy and materials for 
growth. It would be uneconomical to maintain high levels of all possible 
transporters and processing enzymes when only a subset is needed at a 
given moment. Therefore, a cell refrains from synthesizing proteins for 
uptake and digestion until a taste receptor binds the target molecule. A 
receptor ’ s binding affinity determines the concentration at which protein 
synthesis becomes economical. 

 For its default fuel  E. coli  uses glucose. But when glucose is off the menu, 
it can use lactose. This requires lactose detectors to call for two proteins: a 
permease to admit lactose and an enzyme, galactosidase, to split it. The 
genes coding these proteins are adjacent in  E. coli  ’ s DNA, comprising an 
 operon  (genes that work together). Their expression is blocked by a repressor 
protein that binds to this stretch of DNA and blocks the entry of RNA poly-
merase, the molecular machine that transcribes DNA to RNA ( RNA poly-
merase ) to initiate protein synthesis (  figure 2.2 ). The repressor  is  the lactose 
detector which, upon binding allolactose (an isomer that always accompa-
nies lactose) changes shape and releases from the DNA. This allows 
RNA polymerase to move off and transcribe the operon (  figure 2.2 ; Phillips 
et al., 2009).    
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 In effect, the lactose receptor  predicts  for the organism what it will need 
to exploit this new resource. By encoding the permease and the digestive 
enzyme together, one sensory signal can evoke all necessary components in 
the correct ratios. Thus, a given level of lactose in the soup calls for the 
proper amount of permease which is matched by the proper amount of 
galactosidase. This design principle — matching capacities within a coupled 
system — is a key to the organization of multicellular animals where it is 
called  “ symmorphosis ”  (Weibel, 2000). We see here that symmorphosis 
begins in the single cell. 

E. coli

Paramecium

C. elegans

E. coli
Paramecium

C. elegans
2 mm

sensory
dendrites head ganglia

nerve ring
ventral nerve cord

tail ganglia

dorsal nerve cord

motor neuron 
commissures

 Figure 2.1 
  Three organisms of increasing size: bacterium, protozoan, and a nematode worm . 

Note the different scales: micrometers to millimeters. Body lengths are drawn to the 

same scale at the bottom of the diagram.  Paramecium   caudatum  and  C. elegans  photos 

are light micrographs of live specimens. Diagram of worm indicates the positions 

of neurons that form the brain. Light micrographs from Wiki commons.  C. elegans  

from Wikimedia Commons, CC BY-SA 3.0 / Bob Goldstein, UNC Chapel Hill,  http://

bio.unc.edu/people/faculty/goldstein/ .  Paramecium  by Alfred Kahl, public domain, 

from Wikimedia Commons. 
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 On occasions, such as when its host has eaten an ice cream,  E. coli  is 
presented with both lactose  and  glucose. Now the bacterium need not 
metabolize lactose and so need not build machinery to process it. To block 
this futile activity, there is a second molecular switch. RNA polymerase, to 
step along the DNA transcribing the lac operon, must be activated by the 
protein CAP, and CAP must be binding a small signaling molecule, cAMP. 
Biochemical pathways couple the production of cAMP to the concentration 
of glucose. As glucose rises, cAMP falls; this turns off the RNA polymerase 
(  figure 2.2 ), and  E. coli  stops producing unneeded machinery. 

 Thus, a molecular control system combines information from two inputs 
to compute the correct conditions for processing lactose: IF lactose AND 
NO glucose, then GO; IF lactose AND glucose, then NO GO. The chemical 

The lac operon

cAMP

A-lac

off

– glucose
– lactose

R

R

CAP 

R

cAMP

on

– glucose
+ lactose

CAP RNA-p

A-lac

off

+ glucose
+ lactose

R

off

+ glucose
– lactose

 Figure 2.2 
  The lac operon: a molecular mechanism that discriminates between patterns of in-
put and determines action . To transcribe the lac operon ’ s genes, RNA polymerase 

( RNA-P ) must bind to its site and move into the operon ’ s DNA. Its movement is 

blocked by the repressor R, but R cannot bind and block when holding a molecule 

of allolactose (A-lac). To start moving,  RNA-p  must be activated by the protein CAP. 

This activator protein only binds to its site on the DNA when it is binding cAMP, and 

cAMP is eliminated in the presence of glucose. Thus,  RNA-p  only transcribes the lac 

operon when glucose is absent and lactose is present. 
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network controlling the lac operon enables a single cell to detect specific 
patterns of events and to mount concerted patterns of response that pro-
mote survival and reproduction. Of course, this is what a brain does on a 
larger scale, and in doing so it builds upon the capacities for executing logic 
that reside in the molecular control systems of single cells (Bray, 2009). 

  E. coli  does more than just taste the soup and reprogram its digestive 
enzymes. The taste receptors also direct the cell to forage, that is, to dis-
cover and migrate to regions of higher nutrient concentration. To execute 
this process,  chemotaxis , the bacterium propels itself with flagella, which are 
helical screws that rotate at 6,000 rpm. Their beating sends it tumbling off 
in random directions for brief periods, each followed by a short, straightish 
run. A surface receptor, sensing the instantaneous concentration of a nutri-
ent, compares it to the past concentration —  “ past ”  lasting 1 s. If the new 
concentration is higher, the motor apparatus holds the forward course for a 
bit longer.    

 This search strategy ( biased random walk , figure 2.3) resembles the party 
game where an object is hidden and a searcher is simply told  “ warmer  . . .  
cooler  . . .  warmer, warmer . . .  ”  The mechanism can sum signals from sev-
eral attractants — maintaining the direction of motion for a longer time. Or, 
it can sum antagonistic signals (attractant + repellent) and change direction 
sooner. Thus, with a sensor, plus a  “ working memory ”  that controls a pro-
peller, a microbe ’ s wandering eventually delivers it to a greener pasture 
(Berg, 1993). 

 A microbe ’ s memory 
  E. coli  ’ s working memory is simple: it is imprinted on the receptor protein 
by means of a negative feedback loop. The activated taste receptor causes an 
enzyme to attach methyl groups to the receptor complex, decreasing its 
sensitivity. The number of methyl groups on a receptor indicates how 
strongly it has been activated, and because the feedback loop is sluggish, 
the record stretches back into the bacterium ’ s frantic past — 1 s. The mecha-
nism, by using the past to set receptor sensitivity, determines the bacteri-
um ’ s response in the present — a reasonable definition of memory. Thus, a 
single cell can store information cheaply through chemistry — by covalently 
modifying a signaling molecule. 

 In accomplishing the basics (preserve internal milieu and reproduce), 
this single cell uses mechanisms that are either optimal or highly economi-
cal: just the right number and distribution of taste receptors, just the right 
ratios of transporters and digestive enzymes, just the right levels of protein 
expression to match costs versus resources, plus the smallest signaling 
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network for chemotaxis that could provide sufficiently robust performance. 
Moreover, its working memory suffices to steer the motor toward food and 
mates. Although a memory lasting only 1 s may not seem impressive, real-
ize that to store a long history of lactose concentrations would be pointless —
 because they are themselves evanescent. Given its lifestyle, the bacterium ’ s 
memory is just about as long as it  should  be. 

 This microbe easily lives like a Zen master — in the moment. Feed the 
cell, and in an hour it is gone, divided among its progeny. But once an 
organism becomes large enough for a brain, the Zen injunction —  “ Live in 
the moment ”  — itself becomes a Zen koan. A brain provides the organism 
with a more significant individual past and a more extended future with 
which to exploit it. But so equipped, staying in the moment becomes as 
unimaginable as the sound of one hand clapping. 

50 μm

 Figure 2.3 
   E. coli  ’ s biased random walk . By moving forward more and turning less, as the con-

centration of attractant increases,  E. coli  approaches the attractant ’ s source. Tracing 

shows 26 runs over about 30 s with a mean speed of 21.2  μ m/s. Reprinted with 

permission from Berg and Brown (1972). For videos of  E. coli  swimming see  http://

www.rowland.harvard.edu/labs/bacteria/index_movies.html/.  
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 Limitations to life as a microbe 
 Given that bacteria accomplish the basics so well, one must consider the 
limitations. First, their ability to respond to environmental challenge 
resides largely in genetic memory. A  population  thrives by reproducing rap-
idly and exchanging genetic material — so that when the environment 
changes, at least one individual in the population will contain a gene to 
deal with it. Thus, a population can  “ learn ”  to exploit new resources — such 
as potentially delicious industrial waste. However, an individual microbe, 
suddenly losing glucose in a lactose-rich medium, can respond only if its 
genome already contains the lac operon. 

 Second, an individual microbe cannot actively move very far. It can nei-
ther return to the site of its last meal nor deliberately transfer to a new host. 
This confines each species of microbe to the restricted environment for 
which it has specialized: a termite ’ s gut or the skin of a human inner elbow 
(Grice et al., 2009) — where the bacterial genome is prepared for what it will 
likely encounter, and where surprises are relatively few. But this leaves a 
wider world unexplored and thus unexploited. 

 To explore would certainly increase the chances of encountering a more 
favorable medium — but there is a limiting challenge: size. For such a minis-
cule object, water is tremendously viscous. Top speed for  E. coli  is 30  μ m per 
second, and when its effort ceases, there is insufficient inertia to carry it 
forward, so it abruptly stops within 0.01 nm (chapter 5; Purcell, 1977; Nel-
son, 2008). For a human it would be like swimming in thick molasses —
 agonizingly slow and energetically expensive. Consequently, to move over 
long distances, bacteria have evolved other methods, for example, by being 
sticky and hitching rides on animals. 

 In short, a bacterium inhabits a tiny universe — barely a few centimeters —
 where the critical factors are beyond its control. When transportation relies 
on random, energetically expensive self-propulsion or the kindness of 
strangers, life is precarious. A cell that could propel itself more rapidly and 
cheaply could forage more widely, but to overcome the effects of Brownian 
buffeting and high viscosity it must enlarge. And it need not get very large 
before motor coordination becomes an issue — as we now explain. 

 Protozoa: bigger and faster but still brainless 

  Paramecium , the familiar single-celled protozoan, measures up to 350  μ m  ×  
50  μ m. Being 300,000-fold larger than  E. coli , it is less subject to viscous 
forces.  Paramecium  propels itself with cilia that cover its surface and coordi-
nate their beating to send synchronous waves from head to tail. Cruising 
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speed can reach roughly 1,400  μ m per second, 50-fold faster than  E. coli  and 
with lower relative energy cost. In human terms this is the difference 
between exploring on foot at 4 mph and racing a car at 200 mph. Conse-
quently,  Paramecium  can explore relatively enormous volumes of pond 
water and harvest bacteria by sweeping them into its  “ mouth. ”  This 
microshark is guided by a variety of taste receptors to approach sites where 
bacteria proliferate, for example, clumps of rotting vegetation. It also has 
nociceptors to detect toxic sites, such as overripe sludge contaminated with 
hydrogen sulfide. 

 In its cluttered environment  Paramecium  inevitably encounters immov-
able obstacles, and to avoid the futility of continual ramming,  Paramecium  
has evolved a useful response (  figure 2.4 ; Jennings, 1904; Eckert, 1972). At 
the first bump it throws its cilia into reverse and backs off by a few millime-
ters. Then it does a quick twiddle, switches to forward, and sets off in a new 
direction. This avoidance response is fast — completed within a fraction of a 
second — and it has to be. Futile activity wastes time and energy; moreover, 
the immovable object might be a predator!    

  E. coli  ’ s chemical signaling systems could not trigger and coordinate this 
rapid response. Diffusion suffices for  E. coli  because the distance is short — a 
small intracellular messenger molecule diffuses throughout the bacterium 
in about 4 ms. But diffusion time increases as the distance squared (Nelson, 
2008), so for a  Paramecium  that is 100-fold longer than  E. coli , diffusion 
from  “ head ”  to  “ tail ”  would be 10,000-fold slower, about 40 s. Obviously, 
this is far too slow for receptors at the head to call  “  Reverse!  ”  to the tail cilia. 
Electrical signals spread much faster: a change in membrane voltage initi-
ated at the head reaches the tail in milliseconds. 

 Electrical signaling for this avoidance response requires several new 
components. First, a mechanoreceptor is needed to detect the bump. This 
involves a specialized cation channel inserted into the cell membrane. 
Stretch on the membrane deforms the channel, opening it to sodium ions 
that rapidly depolarize the membrane ( < 100  μ s). Depolarization opens 
voltage-sensitive calcium channels that admit a rush of calcium ions —
 further depolarizing the membrane, opening still more calcium channels, 
and so on. This positive feedback produces a robust response that recruits 
calcium channels across the entire membrane (  figure 2.4 ). They open 
briefly, then close and inactivate. Thus, the two components — stretch-gated 
sodium channel plus voltage-gated calcium channel — cooperate to deliver 
a synchronous pulse of calcium over the cell ’ s entire surface. 

 The reason to spread the electrical signal via a calcium channel, rather 
than a voltage-gated sodium channel (such as used by nerve and muscle), is 
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   Paramecium  ’ s avoidance response: behavior and electrical mechanism .  Left : The four 

stages of behavior. (1) Bumps up against immovable object, (2) backs off by reversing 

cilia, (3) gyrates while cilia switch from reverse to forward, and (4) sets off in a new 

direction.  Upper right : Measuring electrical response to mechanical stimuli. Intracel-

lular microelectrode records membrane potential and probes prod the membrane. 

 Middle right : Membrane potential recorded following stimulation with anterior 

probe. A weak prod depolarizes membrane for 300 ms (lower trace). A strong prod 

generates a short calcium action potential followed by longer depolarization (upper 

trace).  Lower right : Posterior prod hyperpolarizes. The response to the weaker prod 

is smaller and has a longer latency. Adapted from Eckert (1972), with permission.  
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that a calcium ion can also serve intracellularly as a chemical messenger. In 
this case the chemical message arrives synchronously at the base of all cilia, 
saying  “  Reverse beat , ”  and their simultaneity adds power to the reversal. As 
 Paramecium  backs up, calcium pumps in the membrane vigorously reduce 
the calcium level, allowing patches of cilia to slip back into  “ forward ”  —
 explaining the indecisive twiddle. Once most of the calcium has been 
extruded and all cilia again beat forward,  Paramecium  heads off in a new 
direction (  figure 2.4 ). 

 The system is polarized. The stretch channels are at the head, ensuring 
that the calcium pulse that reverses the cilia will also reverse the animal. 
The decision to reverse is structured as a simple threshold: when a bump is 
sharp enough, stretch channels open sufficiently to depolarize the mem-
brane smartly enough to kick the calcium channels into their regenerative 
cycle. The numbers and sensitivities of stretch channels are adjusted to dis-
criminate a truly immoveable obstacle from a yielding one. Conceivably, 
they are even tuned by experience via the attachment of some chemical 
group as with  E. coli ’  s working memory. 

 Finally, the twiddle that sets  Paramecium  off in a new direction occurs 
because some patches of cilia enter forward gear before others, perhaps by 
the molecular noise in calcium pumps (chapter 6). Whatever the exact 
mechanism, the twiddle generates a random direction — which is good. 
Lacking distance receptors,  Paramecium  cannot predict which search direc-
tion is most likely to be best, so random behavior is optimal (Reynolds  &  
Rhodes, 2009). Also, random motion prevents a predator from predicting 
 Paramecium  ’ s next move, thus making it harder to catch. 

 Where brains emerge 
 Despite the advantage of its fast control system for locomotion,  Parame-
cium  ’ s behavioral repertoire is limited. One impediment to richer behavior 
is that there is only one cell membrane and thus only one line for fast (elec-
trical) communication. But more deeply, the cell is still so small that loco-
motion must be slow, and the environment remains so evanescent that 
richer behavior and longer memory offer no advantage.  Paramecium  ’ s 
exploitable world remains sufficiently restricted that one communication 
channel is plenty. Multicellularity can pay — but only when an animal 
becomes slightly larger and lives slightly longer in an environment where 
clues to food and danger persist. 

 The crossover — where multicellular animals arise and dominate (eat the 
unicellular) — occurs at a size of around 1 mm and a lifetime of days.  1   Then 
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cells specialize and associate to form tissues, tissues form systems, and sys-
tems cooperate to form a more versatile organism. Thus, multicellularity 
follows the engineering principle  complicate  (Glegg, 1969/2009a). The many 
tasks performed by a single cell are now divided among many specialized 
components. Naturally, coordination is required at each level (cell, tissue, 
organ, system, and organism) and across levels. 

 Coordination demands some mechanism with an overview that enables 
it to weigh alternatives, set priorities, and then exert ultimate authority to 
execute. Fortunately, the multicellular design that demands such integra-
tion also provides a special class of cells to accomplish it. These cells —
 neurons — now do what  Paramecium  could not: provide multiple fast lines 
for communication. In short, for a multicellular organism a brain becomes 
necessary, possible, and profitable. 

 Worm with tiny brain 

 The nematode worm,  C. elegans , measures about 1  ×  0.1 mm (  figure 2.1 ) and 
in its predominant hermaphroditic form comprises exactly 959 somatic 
cells (Herman, 2006). It lives close to the soil surface and feeds on bacteria 
in rotting vegetable matter. Unlike  Paramecium  ’ s pond water chemicals in 
soil and humus are not swept away by convective currents — they move by 
diffusion and capillarity through a matrix, so traces persist (F é lix  &  Braendle, 
2010). The matrix and surface film provide firmer substrates for locomo-
tion, and these allow the worm ’ s sinuous crawl to open up whole new con-
tinents for exploitation. 

 The worm ’ s enlarged territory and its locomotion through a labyrinthine 
matrix with persistent chemical traces warrant an upgrade. The worm 
improves the chemotaxis system and adds diverse sensors (of current state, 
opportunity, and danger), plus a larger repertoire of behavioral responses 
and a longer memory (de Bono  &  Maricq, 2005). Because bacteria-rich 
patches are oases where many species compete, the worm ’ s success requires 
that it move smartly across a patch to efficiently find and exploit the pro-
ductive regions, meet, mate, and lay eggs. 

 Improved foraging must be matched by more efficient systems for diges-
tion, absorption, metabolic storage, and elimination. And as the behavioral 
repertoire expands, there is more need to evaluate and prioritize. For exam-
ple, upon encountering a good hunting ground, how much heat or acidity 
should it tolerate? Upon encountering two chemical traces, which should it 
follow? When to search and when to graze? When to mate and when to be 
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stilled by  “ satisfaction ” ? In short many of the choices posed for humans by 
Ecclesiastes arise even for this apparently simple worm — which decides 
with its tiny brain. 

 The worm ’ s brain may be small, but its 302 neurons plus 56 glial and 
support cells comprise nearly 40% of its body ’ s entire complement. The 
figure in humans is close to 1%. So we first consider some behavioral advan-
tages that justify its immense investment. Then we consider the brain ’ s 
design, noting the features shared with larger brains that suggest they are 
governed by principles of neural design. 

 Locomotion 
 Grazers must keep on the move. The worm moves forward by bending 
just behind the head and then propagating the bend toward the tail. 
Driven by this sinusoidal wave, it threads its way through soil and rotting 
vegetable matter, swims through pools of fluid, and crawls across moist 
surfaces (e.g., decaying fruits, agar plates in laboratories). A worm travels 
fastest when rigid objects are regularly spaced at 0.5 mm (  figure 2.5 ), 
and if this spacing is changed by just 10%, their forward speed halves. 
A worm seems designed to cope best with the average particle size in 
its preferred habitat, like a pickup truck designed for rough roads (Park 
et al., 2008). 

 But  C. elegans  is both truck and driver, continually adapting its propul-
sion to cope with changing conditions. When the worm goes from swim-
ming in a pool to crawling across a wet surface, the surface tension increases 
viscous forces 10,000-fold, and the worm adjusts its undulations accord-
ingly (  figure 2.5 ). Frequency falls tenfold, wavelength shortens threefold, 
and more muscular power is transferred to the viscous medium. The worm 
continuously adjusts its drive train over a wide range of conditions, main-
taining the wave ’ s angle of attack at an efficient value, close to 45 o  (  figure 
2.5 ). To understand how, we must examine the integrated locomotor sys-
tem: brain, muscles, body, and substrate.    

 A sequence of muscular contractions produces the moving wave (Sen-
gupta  &  Samuel, 2009). Muscle cells on the upper side of the body contract 
to bow out the lower side, and when the upper cells relax, the body springs 
back, driven by an internal hydrostatic pressure of 0.5 atmospheres. The 
wave is propagated by sending two opposite bends along the body, one 
after the other (  figure 2.6 ), and this sequence repeats at the frequency of 
undulation. When the head leads the tail, the wave moves down the worm, 
pushing it forward, and when the tail leads, the worm moves backward. 
The head also wags from side to side, and when the worm decides to 
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   C. elegans  locomotion matches the terrain and adapts to viscosity . Spacing of soil 

particles affects forward speed, as shown when worm crawls through a regular array 

of agar posts of given spacing.  Upper left : Superposition of 10 photos taken at 200-

ms intervals as a worm traversed the array in which it moved forwards at maximum 

speed.  Lower left : Tracings of five of the above photos, taken at 400-ms intervals, 

show why speed is maximum: body wavelength matches post spacing to distribute 

thrust efficiently.  Upper right : The wavelength of undulation is longer in a low-

viscosity medium and shorter in high viscosity.  Middle right : Body posture is de-

scribed by  y ( s , t ), the lateral displacement,  y , changing with position along body,  s , 

and time,  t.  The angle of attack at a given position and time,   θ  a  ( s , t ), is critical for 

determining thrust against the substrate.  Lower right : The factors determining body 

posture and its dependence on viscosity. These vary with position along the body, 

 s , and change with time  t . In a simple biomechanical model the muscle force  M ( s, t ) 

interacts with body elasticity and viscous damping by the medium, to determine lat-

eral displacement  y ( s, t ) and the angle of attack   θ  a  ( s, t ). Left reprinted with permission 

from Park et al. (2008). Right reprinted with permission from Fang-Yen et al. (2010). 



24 Chapter 2

suddenly change direction, it bends the whole body and then springs 
back — a good tactic for evasion and escape. 

 These four distinct patterns (forward, reverse, wag, and turn) are pro-
duced by 75 motoneurons that control 95 muscle cells. Each muscle cell 
receives input from one excitatory and one inhibitory neuron which are 
activated in strict alternation (Bullock, Orkand,  &  Grinnell, 1977). To bend 
the head, an excitatory motor neuron on one side of the body activates a 
muscle, and an inhibitory motor neuron suppresses the corresponding 
muscle on the other side. To propagate the bend as a wave, motor neurons 
activate sequentially along the body. Their output frequency determines 
the frequency of the undulation, and their phase determines its waveform. 
Excitatory motoneurons on one side activate with inhibitory motoneurons 
on the opposite side and alternate with excitatory motor neurons on that 
side (  figure 2.6 ). Where should one look for the oscillators that produce 
these cycles of motor neuron activity?    

 Search for the oscillators 
 Early studies of animal locomotion were fraught with bitter argument about 
the origins of cyclical activity — such as stepping. Oscillations might be pro-
duced within the nervous system by local circuits ( central pattern generators ). 
Or they might be produced outside the nervous system by cycling sensory 
feedback (Marder  &  Bucher, 2001; Goulding, 2009). The feedback mecha-
nism was proposed early for vertebrate stepping. One set of motor neurons 
excites muscles that extend the limb. This activates sensors that inhibit the 
extensor motor neurons and excite the flexor motor neurons, thus retract-
ing the limb. Flexion activates sensors that inhibit the flexor motor neu-
rons and excite the extensor neurons, and so on. 

 Many animals combine the two mechanisms. A central pattern genera-
tor sends cyclical commands to the motor neurons, and sensory feedback 
adjusts their phase, frequency, and amplitude to match changes in external 
load (Burrows, 1996). But the worm ’ s circuitry seems not to use a central 
pattern generator. No intrinsically oscillating neurons have been found, 
nor does the brain ’ s wiring diagram (see below) show the typical oscillatory 
circuit — a small group of neurons that send signals around a closed loop. 
Worms are capable of making central pattern generators — some of their 
cells use internal biochemical oscillators to control the rhythmical move-
ments of ingestion, defecation, and copulation. That the worm can make 
central pattern generators but does not do so for locomotion suggests that 
it might have found a better way. Rather than relying on a pattern genera-
tor in its brain, the worm exploits its body. 
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 Cycling with the body 
 The worm builds its oscillator by combining feedback with body mechan-
ics. A burst of activity in motor neurons drives the muscles on one side. 
Their contraction bends the body and tensions the body ’ s intrinsic spring —
 internal hydrostatic pressure. Sensors excited by these forces feed back to 
inhibit motor neurons, whereupon the muscles relax and the body springs 
back. This terminates the negative feedback, allowing the motor neurons to 
reactivate and start a new cycle (  figure 2.6 ). Because the spring is damped 
by viscous forces (figure 2.5), the oscillation is well behaved. Also, it auto-
matically adjusts to changes in viscous load, smoothly shifting the worm ’ s 
gait to match operating conditions. 

dorsal muscle cell dorsal muscle cell

head
tail

DB DD

VB VD

DB DD

VB VD

ventral muscle cell ventral muscle cell

dorsal contraction
dorsal relaxation

dorsal contraction

ventral relaxation
ventral contraction ventral relaxation

 Figure 2.6 
  Neural circuit that bends the worm . Excitatory motor neurons (DB, VB) alternately 

cause dorsal and ventral muscles to contract, whereas inhibitory motor neurons (DD, 

VD) alternately cause them to relax. The excitatory motor neuron on one side drives 

the inhibitory neuron on the other side so that the body bows downward (DB and 

VD active), or upward (VB and DD active). This cross-inhibitory circuit repeats along 

the worm to promote a traveling wave. Modified from Sengupta  &  Samuel (2009), 

with permission. 
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 So by using its biomechanics the worm can dispense with a central pat-
tern generator, thus freeing up brain space. Here, then, is a useful design 
principle for motor systems: lighten the brain ’ s load by using the body. 
Engineers call this  embodied computation  (also embodied intelligence or cog-
nition; Pfeifer  &  Bongard, 2006). 

 In the early days of robots, crawling and stepping movements were gen-
erated by an all-powerful central computer — an omniscient central pattern 
generator. This artificial intelligence collected sensory information and fed 
it into a complicated program that, by modeling the robot ’ s mechanics, 
worked out the necessary commands and sent them to slavish limbs. To 
implement this top-down design required the robot to drag around a heavy 
computer, which, in turn, meant thicker limbs and stronger actuators — the 
result, a power-hungry behemoth. It was eventually realized that the robot 
and its limbs  are  a computer, an analogue computer that runs its mechanics 
in real time (Brooks, 1990). This analogue computer comes for free and can 
be set up to process information for control by, for example, being part of 
an oscillator. This insight inspired a new generation of small, efficient, and 
adroit stepping machines that blew away the behemoths. Thus, the worm 
exemplifies embodied computation with a neuromechanical system that 
matches and integrates a few basic components to meet specifications 
efficiently. 

 Neural circuits coordinate patterns of movement 
 Despite the contribution of body mechanics to the oscillator, neural circuits 
are still essential — they close the loop inside the worm. The neural circuits 
must be correctly configured and tuned to work with the biomechanics. 
Sensors must give the right feedback to motor neurons, and motor neurons 
must send the right signals to the right muscles with the right timing. Cir-
cuits are constructed to make this happen by ensuring that as muscles on 
one side of the body contract, the antagonistic muscles on the other side 
relax: motor neurons on one side inhibit the excitatory motor neurons for 
the antagonists and also excite their inhibitory motor neurons (  figure 2.6 ). 
Here, then, is a circuit motif,  reciprocal inhibition  (Sherrington, 1906), that is 
widely employed in brains because it simply and effectively solves a com-
mon problem. 

 Changing direction 
 The brain produces motor rhythms for  “ forward ”  and  “ backward ”  using 
two separate sets of motor neurons. Each set has its own circuit: one works 
with the biomechanics to send the undulatory wave head-to-tail and the 
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other works to send the wave tail-to-head. This is not a popular design. 
Most animals use a single set of motor neurons as the final common path-
way for all commands to muscle. Using two independent sets, each with a 
full complement of connections and synapses to muscles, seems wasteful, 
so why does the worm do this? We speculate that for a small brain with 
neuromechanical oscillation, two sets of motor neurons are cheaper than a 
complicated central pattern generator. 

 Directing action 
 Like  E. coli  and  Paramecium , the worm acts to improve its chances of com-
pleting its production on the ecological stage. Equipped to move further 
and faster, its costs are higher and the risks greater, but so are the opportu-
nities and rewards. So the acts must be directed appropriately (de Bono  &  
Maricq, 2005; Lockery, 2011). 

 The simplest acts are aversive responses, similar in purpose and effect to 
 Paramecium  ’ s avoidance response. Tap the worm ’ s head, and it immediately 
wriggles backward; tap its tail, and it wriggles forward. Two simple circuits 
generate this behavior (  figure 2.7 ). Mechanosensory neurons at the front 
drive interneurons that activate the  “ backward ”  set of motor neurons, and 
mechanosensory neurons at the rear drive interneurons that activate the 
 “ forward ”  set. The two sets have cross connections to prevent their working 
in opposition.    

 Just as the purpose of  E. coli  ’ s actions is laid out in chemical circuits in a 
single cell, so the purpose of the worm ’ s behavior is laid out in the connec-
tions between neurons. Naturally a brain with many neurons can generate 
richer behavior because, by forming connections between cells, it makes 
more circuits. How has the worm ’ s brain harnessed this potential and 
moved its behavior beyond the simple reactions of  E. coli  and  Paramecium ? 

 Brain and behavior 
 Like the single-celled organisms the worm retreats from noxious chemicals, 
but its decision is more finely judged. A single sensor, the neuron labeled 
ASH in the brain ’ s wiring diagram, controls this behavior by driving a 
 “ retreat ”  command interneuron, AVA, which shuts down the  “ forward ”  
motor neurons and activates the  “ backward ”  motor neurons (  figure 2.8 ). 
The sensor ASH expresses molecular receptors and detectors for a variety of 
potential threats, such as heavy metals, detergents, acids, or high tempera-
ture. Each input contributes to ASH activity, and when their sum suffices to 
trigger the command neuron, the worm backs off. Thus, a single neuron 
ASH serves as lawyer, jury, judge, and enforcer. It defines what constitutes 
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evidence by selecting which receptors to express on its surface, collects the 
evidence, weighs it, judges if it warrants escape, and mandates the decision. 
The worm has several such sensory neurons, collecting other lines evidence 
for other actions. 

 Finding warmth, food, and mates 
 The worm seeks congenial places to feed, grow, and mate.  C. elegans  thrives 
and reproduces in a fairly narrow range of conditions: dim light, 
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  The circuit for aversive behavior . Mechanosensory neurons in the nose and in other 

anterior parts of the body drive command neurons for  “ backward ”  motor neurons. 

Mechanosensory neurons at the posterior end drive command neurons for  “ forward ”  

motor neurons. These two pathways cross inhibit at the levels of command neurons 

and motor neurons. Adapted from de Bono  &  Maricq (2005), with permission. 
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temperature 13 °  – 25 °  C, oxygen concentration 7% – 14%, moderate pH, 
ample bacteria, and so on. To find these conditions, the worm needs a sig-
nal to warn it of imminent departure from the range —  “ bacteria depleted, ”  
 “ temperature dropping, ”  and so forth. This search signal activates forward 
crawl. Foraging now for bacteria by taste and smell, the first whiff activates 
gradient ascent. Upon reaching favorable conditions, the worm needs a 
stop signal to announce  “ satisfaction ”  — what was sought is found. This sig-
nal activates a sequence of turns that places the worm in graze mode. But 
the worm remains vigilant. If at any moment sensors for noxious condi-
tions are activated, they suppress the forward movement and turning, and 
they activate reverse. 

 The worm retains  E. coli  ’ s basic strategy for moving up or down a gradi-
ent, the biased random walk. As conditions improve, the worm turns less 
and runs ahead more; as conditions worsen, it turns more and runs ahead 
less. The mechanism is also similar: molecular receptors that drive the for-
ward run adapt, and the decay of their output signals allows a turn. Stron-
ger signals decay more slowly, prolonging the run. 

 However, with multicellularity comes an advance: ascending the gradi-
ent with paired sensors. For salt, a sensor on the right side of the head is 
excited by  increasing  salt, and a sensor on the left side is excited by  decreas-
ing  salt. The right sensor excites the  “ forward ”  circuit and inhibits turning. 
Once the worm finds the peak concentration, this cell falls silent. If the 
worm moves off the peak, the left cell, excited by decreasing salt, reduces 
forward motion and excites turning. This search pattern, brief forward 
motion followed by turning, continues until the concentration starts to rise 
again. 

 The worm uses head wagging to expose both sensors to new territory 
and combines this action with forward thrust. This exemplifies a motor 
output modulated by sensing. This system also provides a case where two 
communication channels collect  identical  information, by sensing the same 
gradient, but extract different patterns and use them to drive opposite 
motor responses. Here is something else that a brain offers — new forms of 
pattern recognition that improve foraging. 

 Improved sensing and control are needed because  C. elegans  is to  E. coli  
as a supertanker is to a rowboat. To steer a whole organism in random direc-
tions with gradual correction works on a small scale, but on a larger scale it 
becomes wasteful. Better for the worm to be more discriminating, to search 
with its  head  and inform the body once a course can be plotted. In still 
larger animals the sensors themselves are motorized — an insect antenna, a 
cat external ear, a human eye (chapter 4). 
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 Because most worms use the same foraging circuits, they accumulate at 
the same sites — like undergraduates at a good caf é . And the subtext is simi-
lar: a place to feed is also a place to find mates. Moreover, the worms, unlike 
most undergraduates, are commonly hermaphroditic, so doubling their 
chances of a satisfying encounter. Even so, many worms enhance their 
attractiveness by releasing a pheromone to which intrinsically social worms 
are attracted. Movement toward the pheromone is controlled by a single 
neuron, RMG, a network hub that collects and integrates inputs from a 
suite of sensors and pheromones and drives the appropriate command 
interneurons (  figure 2.8 ). A worm ’ s degree of sociality is adjusted by a par-
ticular peptide released within the brain in response to changing condi-
tions. The peptide, one member of a class of  neuromodulators , binds to 
receptor proteins on specific neurons to change their activity — and hence 
behavior (Bargmann, 2012).    

 Stick and carrot 
 When local conditions begin to deteriorate, some definite signal is needed 
for the worm to move on. One such signal is the neuromodulator, octopa-
mine. When food reserves fall, certain neurons release octopamine, which 
binds to receptors on particular target neurons, modifying their excitability 
and changing their synapses. This inhibits turning and activates the for-
ward motor pattern. Thus, a single agent, released in response to a change 
in conditions, acts on specific neurons to alter circuits and switch the 
worm ’ s program from  “ graze ”  to  “ roam. ”  

 When food is found, roaming stops and grazing resumes. This involves 
a second neuromodulator, dopamine. In mammalian brain, dopamine 
signifies (among other things) that a reward has exceeded its expected 
value. In worm, dopamine is released by the presence of food when, for 
example, mechanosensors touch particles the size of bacteria. Dopamine 
binds to receptors on target neurons, turning off the octopamine recep-
tors and restoring the circuit to its previous configuration. This switches 
the worm from roaming to collecting its food reward. Thus, two neuro-
modulators, octopamine and dopamine, provide this tiny brain with a 
primordial stick and a primordial carrot to mediate, as they do in larger 
brains,  “ anxious ”  searching and  “ pleasurable ”  repetition (de Bono  &  
Maricq, 2005). 

 Imminent starvation is not the only stress. Others include low oxygen, 
high CO 2 , acidity and overcrowding. All suggest an exhausted patch — time 
to move on. As with humans, stress increases urgency. A comfortable worm 
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moves leisurely up a promising chemical gradient, but a worm subjected to 
low oxygen for several hours ascends quickly. To change from stroll to rush, 
neuromodulators reconfigure the circuit for gradient ascent (Bargmann, 
2012). For example, the sensors ADF and ASG respond to low oxygen by 
releasing another neuromodulator, serotonin. 

 Just as  “ carrot and stick ”  oversimplify human motivation, so it is for the 
worm. Competing for limited resources requires many factors to be weighed 
in deciding whether to roam or graze. A rich suite of neuromodulators 
allows the worm ’ s brain of 302 neurons to evaluate contextual factors, such 
as nutritional status, food availability, crowding, and social signals, and 
then reconfigure accordingly. 
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 Associative learning and memory 
 When life is good, the worm completes its life cycle (egg to egg) in 3.5 days 
and lives for several weeks. With a life span extending beyond the next 
mitotic cycle, allowing a past and a future, it now pays to recall what was 
good and what was bad. Far from living in the moment like  E. coli , the 
worm uses its brain to associate events over time and thus draw on its expe-
rience (Ardiel  &  Rankin, 2010). 

 A worm remembers the temperature at which it was well fed and later 
seeks this temperature by moving up or down a thermal gradient. Finding 
the preferred temperature, it hangs there, searching along the isotherm. But 
dopamine decays promptly, so if the cupboard is bare, preference turns to 
aversion and the worm crawls off. Upon finding food and thus earning 
another shot of dopamine, the worm resets its temperature preference. 

 The mechanism for this learning resides within the thermal sensor that 
drives oriented crawling. This neuron senses changes of 0.003 o  C. Its 
response is minimal at the preferred temperature and rises on either side. 
The temperature for this minimum is reset by adjustments to the neuron ’ s 
internal signaling; this requires protein synthesis and takes several hours. 
This learning process — chemical reprogramming within a single neuron —
 changes protein molecules but not synaptic connections. 

 Chemical preferences can also become associated with particular signals. 
For example, NaCl (salt) normally attracts worms, but when a worm has 
been starved in the presence of salt for only 10 minutes, it later avoids salt. 
A particular neuron downstream from the salt sensor releases another neu-
romodulator (insulin) that feeds back to an insulin receptor on the salt sen-
sor to activate an internal signaling pathway (involving PIP3-kinase) to 
suppress attraction. Again, reprogramming a signaling pathway  within  a 
neuron allows experience to change the balance between attraction and 
repulsion. This mechanism also serves odorants.  C. elegans  even learns to 
avoid odorants from a particular pathogenic strain of bacteria that has 
made it sick. 

 These memory traces promote survival by extending the time over 
which an animal can identify and use patterns. The number of trials needed 
to establish an association is modest, five to ten repeats over 20 minutes. 
This makes sense in an environment where conditions are sufficiently 
shifty that to be useful, an association must establish rapidly and decay 
rapidly. In short, the worm ’ s behavior demonstrates its reliance on informa-
tion from three distinct sources: outside, inside, and the past. Its brain inte-
grates these streams to select behaviors that, reflecting a wider context, 
improve the worm ’ s vitality and reproductive success. 
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 Some design aspects of this tiny brain 

  C. elegans  ’  brain may be small, but it is not simple. To achieve its panoply 
of behaviors, the worm draws on a large catalog of molecular parts. This 
includes diverse proteins for intracellular chemical and electrical signaling, 
plus numerous parts for processing information at synapses. For example, 
signaling proteins occupy 20% of the worm ’ s genome, and its 300+ synap-
tic parts amount to one third the number for mammals (Emes et al., 2008). 
In fact the worm brain uses many of the same components present in larger 
brains. Since parts are shared, one might expect some design rules to be 
shared as well. If some rules were not shared, that would also be instructive, 
for it might suggest costs and benefits of scaling up. 

 Here then are some design features gleaned from considering the worm ’ s 
brain and what they might imply for bigger brains. 

 Computes as much as possible within a single cell 
 This feature is exemplified by the worm ’ s  receptors  and their  sensors . We 
distinguish these terms:  “ receptor ”  refers to an individual  protein molecule  
that responds to a specific event — like stretch, temperature, protons, or 
chemical binding;  “ sensor ”  refers to an individual  neuron  that expresses one 
or more types of receptor. Although neuroscientists understand this differ-
ence perfectly well, for historical reasons they often use  “ receptor ”  for both 
the molecule and the neuron. We use different terms to reduce confusion 
for readers unfamiliar with the jargon, and also because they raise two 
design problems. 

 First, a single receptor molecule is subject to stochastic fluctuations, such 
as thermal noise. Therefore a neuron might need to improve the signal-to-
noise ratio of signals conveyed by one receptor by averaging over a popula-
tion of the same type. This raises the following design question: How many 
receptors of the same type should be expressed by each sensor? The answer 
will be given in chapter 6. 

 Second, receptors are more diverse than the sensor neurons that express 
them. Therefore, how should diverse receptor types be apportioned among 
sensors? For this problem  C. elegans  has a rule. If a set of receptors all lead 
to the same final action, they share a common sensor. For example, the sen-
sor ASH collects signals from various types of receptor for noxious stimuli 
that require an aversive response; ASH couples its output to a single neuron 
that executes a command:  Scram!  

 This rule explains receptor grouping generally. The worm uses more 
than 1,700 different types of receptor molecule for chemoreception (taste 
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and olfaction). This considerably exceeds the 800 or so used in mammals, 
but unlike mammals where each receptor type is typically assigned its own 
sensor, the worm provides only about 30 separate sensor neurons. Like sen-
sors of noxious stimuli, each chemosensor sends its signal to a specific com-
mand neuron. So the signals from 1,700 different input channels (receptors 
for taste and olfaction) are assembled for action, not by circuits higher in 
the brain, but by a few dozen sensory neurons. 

 Computing  within  a cell economizes on neuron numbers. The worm 
meets all basic requirements for behavior (sensory pattern recognition, sen-
sorimotor integration, and motor control) with small numbers of neurons. 
Thirty-eight sensors connect to 82 interneurons (whose processes are con-
fined within the brain) that contact 119 motor neurons (cells whose pro-
cesses leave the brain to contact the worm ’ s 100 muscle cells). This reserves 
about 70 neurons for internal regulation and mating. 

 Yet there is a downside to performing several operations in a single cell. 
A cell ’ s capacity to handle information is limited by factors such as internal 
noise, dynamic range, and energy supply. So a sensor that processes inputs 
from several types of receptor compromises its ability to handle the infor-
mation from any one receptor type. A dedicated sensor can devote more 
receptors to its particular modality and thus improve sensitivity and signal-
to-noise. This is the engineer ’ s principle from chapter 1: to prevent one 
component from doing two tasks suboptimally, complicate. 

 Complication goes up the line. Better sensors warrant better sense 
organs: eyes for vision, ears for hearing, and so on. To benefit from these 
more accurate and discriminating sense organs, specialized sensory systems 
evolve in larger brains, each devoted to processing a single modality. The 
conclusion is obvious: as brains scale up to improve behavior, neurons spe-
cialize. Chapter 3 will suggest how and why, but now we consider a related 
question, how does a worm ’ s tiny neuron manage to compute efficiently? 

 Uses chemistry wherever possible 
 Many worm neurons use internal molecular circuits to perform functions 
that in larger brains use a circuit of several neurons. For example, a single 
sensory neuron, AFD, determines the worm ’ s temperature preference by 
adding new proteins to its intracellular signaling network. Another neuron, 
AWC ON , changes a behavioral response to suit the situation. When an odor-
ant is present  without  food, AWC ON  ’ s molecular receptors adapt and chemo-
taxis declines. However, when the same odorant is present  with  food, its 
receptors are sensitized, and chemotaxis increases (de Bono  &  Maricq, 
2005). These competing responses are controlled by an intracellular 
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mechanism that switches the connection between sensor and behavioral 
output to reverse the control of chemotactic turning behavior (Pereira  &  
van der Kooy, 2012). 

 These examples show that chemical computing by circuits  within  a neu-
ron can manage behavior. Moreover, this can be very efficient because 
chemical signals are orders of magnitude cheaper than electrical signals 
(chapters 5 and 6). Chemical diffusion is slow for long distances, but the 
worm  is  small and slow. Thus, the worm ’ s size and speed well suit its reli-
ance on cheap chemical signaling. In addition, chemical signals can be 
broadcast to specific targets, which brings us to another design feature. 

 Uses neuromodulators to switch behaviors 
 Three neuromodulators were mentioned (octopamine, serotonin, and 
dopamine) that switch the worm ’ s behavior in response to stress or the 
prospect of reward. But this is just page one from the parts catalog since the 
worm expresses 250 small peptides with known neuromodulatory func-
tions. Their diversity and ubiquity is understandable because neuromodula-
tion is so ingenious (Harris-Warrick  &  Marder, 1991). A neuromodulator 
can be broadcast widely yet still act locally and specifically, affecting only 
neurons that express an appropriate receptor. The receptors often couple to 
a protein that modulates intracellular signaling, so in effect a neuromodula-
tor uses  trans cellular chemistry to modulate  intra cellular chemistry. 

 A neuromodulator ’ s reach is further enhanced because its receptor diver-
sifies into multiple subtypes that couple to different intracellular signaling 
networks. Consequently, one small molecule can retune and reconfigure a 
whole neural circuit without altering the anatomical connections. This 
allows every circuit to always be doing something and then to be recruited 
for something else as required. Thus, neuromodulators allow the brain to 
use components to their fullest. 

 Conserves synapses 
 The worm brain makes only about 6,400 chemical synapses. This is roughly 
the number that in a mammal contact a single retinal ganglion cell or a 
single cortical pyramidal cell. How can a worm operate with so few syn-
apses? The neurons are far smaller and therefore can be driven by fewer 
synapses. But since a single synapse is unreliable, how can so few synapses 
signal reliably? 

 One answer is:  slowly  — a neuron can improve reliability by averaging 
over time. This can be tolerated because, compared to many animals, the 
worm lives in the slow lane. For example, its olfactory sensor uses a 
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chemical amplifier, a G protein signaling cascade that integrates for more 
than 20 s (chapter 5, figure 5.6). This sensor drives a synapse that integrates 
over several minutes. By comparison, a fly ’ s olfactory system acts in less 
than 1 s. Locomotor waves descend the worm ’ s body at 1 Hz, but an insect 
moves its legs faster than 10 Hz. So the worm can prosper with few synapses 
because it is slow. This suggests another feature:  send information as slowly as 
possible  because this uses fewer synapses, smaller cells, and less energy. Later 
chapters explain more. 

 Uses stereotyped components 
 Efficient design gives every component a definite task. Once all compo-
nents are optimized for their tasks and optimally fitted together, it is effi-
cient to repeat them across individuals. Similarly, every neuron in  C. elegans  
has a definite role optimized by natural selection to meet a specified level 
of performance. Correspondingly every neuron is  “ identified, ”  meaning 
that it exhibits a stereotyped morphology, chemistry, and location in every 
animal (White et al., 1986). The circuits are also identified, meaning that 
the synaptic connections are essentially identical across animals. This was 
established by reconstructing the entire nervous system from thousands of 
electron micrographs of serial sections — to produce the worm ’ s  connectome  
(  figure 2.9 ). Identified neurons and circuits are consistently found in small 
brains: worm and water flea, leech and lobster, and so on.    

 Minimizes wiring costs 
 The layout of  C. elegans  ’  neural wiring suggests that all 302 neurons are 
located as near as possible to the sites where they are needed (Varshney et 
al., 2011). Chemical and thermal sensors concentrate at the head; tactile 
sensors that guide locomotion distribute along the body axis; motor neu-
rons that propel the worm forward distribute along the rear half of the 
body, and motor neurons for reverse locomotion distribute along the front 
half (  figure 2.6 ). But does the layout approach the optimum sought by chip 
designers — the unique set of placements that minimizes the total length of 
connections in the brain? 

 Designers of silicon chips have developed algorithms to optimize com-
ponent placement. Their rule: place the most densely interconnected com-
ponents close together and the more sparsely connected components 
further apart (  figure 2.9 ). This algorithm applied to the worm ’ s brain shows 
that 90% of neurons are optimally positioned (Cherniak, 1995; Chen et al., 
2006; P é rez-Escudero  &  de Polavieja, 2007). The 10% of neurons not in 
their optimal position suggests competing needs. For example, neurons 
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that communicate most frequently with each other may be placed closer 
together to save energy and reduce conduction delays between them. 
Although layouts in larger brains certainly reflect this, conduction delay 
may be less relevant for  C. elegans  because the distances are so short, and 
the worm is so slow.  “ Short and slow ”  suggests another design feature. 

 Favors analogue over pulsatile 
 Because electrical signals in the worm travel less than a millimeter, neurons 
can conduct passively, as graded (analogue) changes in electrical potential. 
The brief, sharp, energy-intensive action potentials that dominate long-
distance signaling in larger brains are unneeded, so the worm can rely 
solely on analogue computations, which are direct and energy efficient 
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   C. elegans  connectome reconstructed from serial sections photographed in the elec-
tron microscope.  Each neuron is identified, and its synaptic connections are shown 

in gray. At the time of writing this is one of the most complete wiring diagrams estab-

lished for any part of any brain (the other is the fly lamina cartridge, figures 9.2 and 

9.3). Careful estimates suggest that this worm connectome is 93% accurate. Such are 

the technical difficulties of tracing neurons ’  thin connections that, after two decades 

of work on 302 neurons, 7% of connections are  “ missing. ”  Reprinted with permis-

sion from Varshney et al. (2011). 
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(Sarpeshkar, 1998). Even its motor neurons operate in analogue mode. Over 
these short distances, analogue signaling transmits more information per 
neuron and at lower cost (chapter 7). So firmly does  C. elegans  hold to this 
feature that it has abandoned the gene that encodes the voltage-gated 
sodium channel used by larger, faster species to produce spikes. 

 Conclusions 

 Three organisms of ascending size,  E. coli ,  Paramecium , and  C. elegans , show 
why an animal needs a brain to process information on a larger scale. It is 
to increase opportunities for survival and reproduction in a competitive 
and variable environment. 

 The small single cell,  E. coli , survives with surface receptors that relay 
information to the internal chemical signaling networks that determine 
metabolism, growth, reproduction, and movement. However,  E. coli  is a 
mere speck in space and time with most opportunities beyond its reach. A 
larger cell,  Paramecium , moving more briskly travels farther, expanding 
opportunities, but is ultimately limited by its chemical signaling networks —
 diffusion and internal communication by intracellular motors are both too 
slow. Voltage-gated ion channels added to the cell membrane allow fast 
electrical signaling, but trapped in a viscous world, a single cell can only do 
so much. 

 The multicellular worm,  C. elegans , overcomes viscosity by enlarging, 
and it moves faster and farther by specializing cells. This leads it to 
more opportunities and dangers — richer sources of information to be 
gathered and processed that finally need a brain. The key innovation is 
the neuron, a cell type specialized to collect, process, and communicate. 
Each neuron links its rich web of internal chemical communication to 
the electrical network at the surface membrane and thence to other 
neurons via synapses. Neuromodulators retune selected neurons to recon-
figure whole circuits. Thus, a brain of only 302 neurons extends the worm ’ s 
horizon by providing a behavioral repertoire that adapts to changing 
contexts. 

 The worm accomplishes the same tasks as a bacterium or protozoan —
 finds growth conditions and mates while avoiding unproductive or toxic 
sites. And it does so with similar behaviors, such as gradient ascent by 
biased random walk and avoidance. But with its brain  C. elegans  can cover 
more territory, and with its longer lifespan (weeks instead of minutes), it 
can adapt to nasty surprises as an  individual  rather than as a miniscule part 
of an adapting  population . 
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 Here emerges another design principle. Life span and lifestyle are related 
to the appearance of particular types of memory and particular decay times. 
Nothing should be remembered that is unlikely to enhance survival and 
reproduction. Nor should memories exceed the typical time constants of 
useful correlations — because when correlations decay, memory ceases to 
predict anything useful. But it  is  useful to establish the memory trace rap-
idly before it is outdated — and that seems to occur — few trials, closely 
spaced. This suggests that the longest and deepest human memories are not 
mere decoration but serve to shape character over a lifetime, promoting 
survival in our complex social fabric (chapter 14). 

 Finally, given that  C. elegans  does so well with only 302 neurons, one 
might look critically at an assumed truth — that it is better to have a bigger 
brain. So why  have  animals evolved still bigger brains? 
 
 
 
 
 
 
 
 
 





 This chapter will explain why, despite the worm ’ s success with 302 neu-
rons, brains expand. The mouse cerebral cortex contains about 10 7  neu-
rons. This seems like a lot until you consider that the cortex of the macaque 
monkey, a key experimental model, is larger by 100-fold, and that human 
cortex is 10-fold larger still (Herculano-Houzel, 2011). Despite this huge 
range of scales, one feels comfortable generalizing about the  “ mammalian 
brain ”  — because every part identified in mouse can also be identified in 
macaque and human (  figure 3.1;  Kaas, 2005). 

 Consider also the fly brain. It has 500-fold fewer neurons than the mouse 
brain, but 500-fold more neurons than the worm brain, plus a rich 
structure — so warranting a slot in the  “ large brain ”  category. Insect and 
mammal brains share many similarities. For example, both gather their 
neurons into clusters and their axons into cables ( tracts ). Both employ spe-
cial structures to accomplish the same broad tasks: store high-level input 
patterns, generate low-level output patterns, and retrieve patterns using 
reduced instructions. Of course, there are differences, given the differences 
in body design and behavior. Yet, despite half a billion years of evolutionary 
opportunity to diverge, brain designs in insect and mammal seem to have 
followed the same rules.    

 For designs to have persisted across this immensity of time and spatial 
scale implies that they are neither arbitrary nor accidental. Rather, they 
must have emerged as responses to some broad constraint. That is what 
elevates the shared responses to the status of  principles . This chapter will 
identify the key constraint and indicate how it leads to three principles that 
govern the organization of larger brains. 

 3   Why a Bigger Brain? 
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 A brain ’ s core tasks 

 As animals emerge from the soil to a wider, less viscous world, the possibili-
ties for foraging expand immensely. A worm explores mainly in two dimen-
sions over an area of 0.01 m 2  whereas a honeybee typically covers an area 
of nearly 10 7  m 2 , and a fly somewhat less. So foraging area expands by 10 9  
(1 billionfold). Add the third dimension, and the volume to be explored 
becomes astronomical. Larger animals, such as fish, birds, and mammals, 
may migrate and thus forage over thousands of kilometers — thus millions 
of square kilometers. 

 Such gigantic territories contain immense resources and, of course, har-
bor innumerable dangers. For an animal to find the one and avoid the 
other requires it to rapidly gather vast amounts of information from the 
environment. To calibrate  “ vast ”  with one example, the eye sends the brain 
about 10 megabits per second, roughly the rate of an Ethernet connection 
(Koch et al., 2006). All sense data reach the brain in the form of tiny 
patterns — evanescent pieces of a dynamic jigsaw puzzle — and to be of any 
use, they require assembly to reveal a larger pattern. So if gathering infor-
mation is to be at all rewarding, the brain must commit resources to assem-
bling larger patterns on spatial and temporal scales that are relevant to 
behavior. 

 Yet, even a larger pattern might be useless until it is compared to a library 
of stored patterns where it can be identified:  edible/toxic ,  friend/foe , or  search 
item not found . Either outcome provides a basis for behavioral choice. A 

 Figure 3.1 
  Mammalian and insect brains share many broad aspects of design .  Upper : Cross 

section through mouse brain; inset indicates plane of section.  Left : Fine dots are 

neurons; dark regions are neuron clusters; bright regions are myelinated tracts 

(chapter 4).  Right : Numbered regions dedicated to core tasks: (1)  hypothalamus ; 

(2)  thalamus ; (3)  cerebral cortex ; (4)  amygdaloid complex ; (5)  hippocampus ; (6)  striatum . 

Reprinted with modifications and permission from Franklin and Paxinos (1996). 

 Lower : Cross section through fly brain; inset indicates plane of section. Brain is built 

of more than fifty clusters, each specialized for particular tasks. Depicted here are 

ME, medulla — detect and map local visual patterns; LO, lobula — assemble local vi-

sual patterns into larger patterns;   AL, antennal lobe — preprocess olfactory signals for 

pattern recognition; VLP, ventrolateral protocerebrum; SLP, superior lateral protoce-

rebrum; SMP, superior medial protocerebrum — all involved in high-level integration; 

MB, mushroom body — store and recall; SEG, subesophageal ganglion — integrate in-

formation for wired and wireless output to body. 
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match allows confident choice: eat or decline, approach or flee. A non-
match suggests caution and need to gather more data. Thus, the brain 
requires  “ pattern comparators, ”  and these must couple to mechanisms that 
select behaviors:  feed ,  fight ,  copulate ,  investigate . These, in turn, couple to 
mechanisms for detailed motor patterns to drive muscles for moving limbs 
or wings. 

 Any given motor behavior  might  match exactly the action that was 
ordered: the arrow might strike the exact point at which it was aimed. But 
often there are errors due to environmental or neural perturbations, and 
these need to be identified, so that performance can progressively improve. 
Thus, a brain needs mechanisms to evaluate the mismatch between the 
orders it gave and the actual motor performance. So, in addition to sensing 
and processing patterns to discover  “ what ’ s important out there, ”  the brain 
also devotes considerable resources to sensing and processing its own motor 
errors, and other errors of internal  “ intentional ”  signaling in order to 
improve the accuracy and efficiency of the next round. This is  “ motor 
learning. ”  

 Behaviors are subject to another important class of errors. Every action 
has both costs and consequences. The costs are partly energetic: how much 
energy was spent? But also there are  “ opportunity costs ” : could the return 
have been greater and the risk less for some different action? Every behav-
ior, even when perfectly executed, needs to be evaluated from this perspec-
tive: wise or foolish? repeat or not? These evaluations of  reward prediction , 
like those for motor errors, are used to update stored knowledge in order to 
improve the next round of predictions. The nematode worm already shows 
this type of evaluation to some degree, but animals in the wider world allot 
it major neural resources. 

 In sum, to succeed in the wider world, an animal must exchange larger 
amounts of information with its external environment and also evaluate 
the costs and consequences of its actions. The seven core tasks that every 
brain must accomplish are summarized in   figure 3.2 . What the brain does 
for the external environment it also does for the internal environment 
which has also expanded and complexified. Moreover, the mechanisms for 
managing the internal and external environments need to couple closely in 
order to serve each other (  figure 3.2 ).    

 Why the internal milieu needs a brain 

 To support richer external behaviors, an animal requires specialized inter-
nal tissues and organs. Some digest the bounty foraged from the outer 
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world; others store metabolites and energy-rich compounds for release 
upon demand. Still others regulate ionic balance and cleanse the internal 
milieu, or distribute oxygen and metabolites to hungry tissues. Specialized 
organs of immunity protect against infectious agents and parasites. Organs 
couple to form systems, and systems cross-couple to optimize overall 
function. 

 The standard idea is that the internal systems more or less take care of 
themselves. Each parameter is supposed to have a set point, like a thermo-
stat, from which deviations trigger feedback to correct the mismatch 
( homeostasis ). Internal regulation also employs  autonomic nerves  — so termed 
because they are in some sense independent of voluntary control — thus, 
autonomous. We cannot  “ will ”  our heart to beat faster or our blood pres-
sure to decrease. However, we can accomplish these shifts by recalling or 
imagining the appropriate scene. This implies the existence of neural 
pathways from pattern stores to pattern generators for autonomic circuits. 
Thus, although the autonomic nerves are generally supposed to serve 
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 Figure 3.2 
  Large brains accomplish the same broad tasks . Note that inner and outer tasks cou-

ple to serve  each other  ( ↔ ). 
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emergencies ( “ fight or flight ” ), they actually serve continuous regulation —
 not just for panic, but for efficiency. 

 Efficient regulation anticipates 
 In fact, all internal regulation, even the mildest sort, is far from autono-
mous. As the external environment presents opportunity or cause for con-
cern, internal processes must predict what the external environment is 
about to deliver and must prepare particular responses that will probably be 
needed in support. For internal processes the goal is not to correct mis-
matches but to prevent them. 

 Such predictive regulation was demonstrated for feeding and digestion 
by Ivan Pavlov more than a century ago: the brain processes small patterns 
from the outside (sight or smell of some substance) and matches them to a 
stored pattern that identifies a particular food. Then the brain triggers secre-
tions all along the digestive system to prepare for what ’ s coming, starting in 
the mouth (if bread, then amylase; if fat, then lipase), then on to the stom-
ach (if meat, then acid plus protease), the intestine (if fat, then bile), and 
finally the circulation (if glucose, then insulin). All of these secretions occur 
 before  and  during  the meal, triggered  predictively  — anticipating what will be 
coming down the gastrointestinal tract — thus preparing systems for absorp-
tion and uptake in order to prevent deviations that would need correction 
by negative feedback (Fu et al., 2011). 

 Modern work extends this point: as the stomach releases its contents to 
the next stage, it also signals the brain to prepare for the next bout of forag-
ing. The brain responds by tuning up sensitivity of the olfactory receptors 
and by increasing the rate of sniffing (Julliard et al., 2007; Tong et al., 2011). 
Thus, the stomach warns the brain  “ Prepare to forage again ”  — well before 
the body has begun to deplete its reserves. Moreover, as fat reaches the 
small intestine, the gut can predict confidently the approach of satiety. 
Therefore, the gut warns the brain  “ cease feeding and proceed to the next 
activity ”   1   (Fry et al., 2007). 

 Each  “ next activity ”  requires the brain to predict continuously, and in 
timely fashion, the need for a particular blood pressure. Consider the record 
of mean arterial pressure over 24 hours (  figure 3.3 ). In early afternoon, as the 
subject attends a lecture, his brain anticipates reduced demand and allows 
him to doze: pressure falls. Startled awake by the jab of a pin, the brain pre-
dicts danger: pressure spikes; then, identifying a prank, the brain directs the 
nap to resume: pressure falls. At midnight the subject has sexual intercourse: 
pressure spikes, but then falls profoundly and stays low during sleep. Come 
morning, the brain predicting a busy day, restores the pressure.    
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 Such anticipatory tuning requires coordinated action of multiple organs 
and organ systems. To raise pressure, the heart accelerates and vessels con-
strict. Also the kidney expands blood volume by pumping more salt water 
into the circulation. The kidney also signals the brain that the body will 
soon need more supplies of salt and water. Thus, like the gastrointestinal 
tract, the kidney alerts the brain well in advance of an upcoming need to 
resupply. Each contribution operates on a different timescale: faster for 
heart and vessels, slower for kidney ’ s pumping, and still slower for the 
brain ’ s rise of salt appetite and thirst. These contributions to internal regu-
lation are all initiated simultaneously — and largely by the same signals. 

 In short, every move we make is matched by a corresponding cardiovas-
cular and renal pattern. Of this we are generally unaware. Yet if the motor 
command ( “ Arise! ” ) slightly precedes the internal command ( “ Tighten ves-
sels! ” ), blood flow to the head drops, and we faint. That this experience, 
 postural hypotension , occurs rarely attests to the rigorous coupling between 
the cardiovascular pattern and muscular patterns on a 100-ms timescale. 
On a slower timescale  “ Arise! ”  increases by eightfold a signal to the kidney 
to save water.  2   

 Note that matching blood pressure to environmental context requires all 
of the brain ’ s broad tasks as diagramed in   figure 3.2  — the collecting and 
assembling of patterns, the comparison to stores, and so forth. How else to 
decide if the jab is from a friend or enemy? Moreover, every high-level call 

160

120

80

40

12 10 1214 12

pin sex

doze

hour

ar
te

ri
al

 p
re

ss
u

re
 (

m
m

 H
g

)

sleep

coping

16 20 22 24 02 04 06 08

 Figure 3.3 
  Internal systems match behavior . Arterial pressure fluctuates with demand. Each 

shift in pressure is accompanied by parallel shifts in hormonal and neural signaling 

that follow the broad catabolic and anabolic patterns. Redrawn from Bevan et al. 

(1969) and reprinted from Sterling (2004b). 



48 Chapter 3

to external action is delivered simultaneously to multiple internal organs. 
Thus, collecting patterns and distributing patterns are both thoroughly 
coupled between inner and outer worlds. Where and how the brain effects 
this coupling will be treated in chapter 4. 

 Adapt, match, trade 
 Although this book concerns efficient neural design, we must keep in mind 
that the brain comprises only 2% of the body ’ s mass and 20% of its energy. 
So the body also needs to operate efficiently. Each organ should match its 
capacity to the anticipated need of the organ downstream. Too little and 
the system will fail; too much and capacity is wasted. So each organ needs 
constant tuning to anticipate the next demand (  figure 3.4 ). But what hap-
pens when a need exceeds the capacity to supply? This problem is solved 
by arranging various short-term  “ trade-offs. ”  Such cooperation enhances 
the range of performance while greatly reducing average excess capacity 
(  figure 3.4 ).    

 For example, the  “ resting ”  heart pumps 6 L of blood per minute through 
the respiratory system and then out to the general circulation. Resting skel-
etal muscle uses about 20% of the oxygenated blood — matched to its mod-
est need for maintaining posture. During peak exercise, muscle must 
increase its supply by nearly 20-fold, but the pulmonary and systemic cir-
culation can increase their outputs only fourfold. Therefore, the body must 
either reduce its peak capacity for exercise or increase its peak pulmonary 
and cardiovascular capacity by fivefold — imagine the chest! Or it can 
borrow. 

 Indeed, during peak exercise the splanchnic circulation (gut and liver) 
and the renal circulation (kidney) both reduce their shares by four- to five-
fold, enough to pay part of muscle ’ s bill for exercise. During digestion, 
when the splanchnic circulation needs more blood, it borrows from muscle 
and skin — unless skin needs blood for cooling. The brain neither makes 
loans nor allows overdrafts that might cause it to overheat. Anyone who 
has eaten and then exercised in the sun will recall how these conflicting 
demands from muscle, gut, and skin are resolved: by corrective motor com-
mands to internal systems ( “ Vomit! ” ) and to external systems ( “ Lie down! ” ). 
Moreover, the experience receives a strongly negative evaluation that 
updates the knowledge store ( “ Do not repeat! ” ). 

 This example illustrates three key rules for efficient regulation: (1) adapt 
response capacity to changes in input level, (2) match response capacities 
across the system, and (3) trade between systems. Regulatory responses 
begin promptly — as soon as there is sufficient statistical evidence to predict 
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a new target level. By comparison, self-regulation by feedback to a set 
point would be hopelessly inefficient. But to execute these principles of 
predictive regulation requires an organ with knowledge of the outside, 
knowledge of the inside, and knowledge of the past to anticipate what 
the whole animal will need over various timescales — the whole brain 
(Sterling, 2012). 

 Bigger brains 
 We seem to have answered  “ Why a bigger brain? ”  In a wider world, a more 
effective brain expands the possibilities for behavior. Control of append-
ages such as fins, wings, and legs lends speed and scope to exploration, so 
that vastly more small patterns are encountered which then require selec-
tion and assembly. More large patterns require more comparisons, requir-
ing a larger library; more comparisons also require more decisions, and 
these require more evaluation. Naturally, more neurons are needed, and 
since neuronal components are irreducibly small (chapter 7), a brain must 
enlarge.  3   

 The larger brain, to be effective, must operate in real time. One need not 
watch a sloth for very long to realize the limits to life in slow motion. The 
larger, faster brain must still remain portable and also metabolically afford-
able. So a brain needs to be both functionally effective and cost-effective. 
These demands for speed, portability, and affordability all interact; there-
fore, individually and together they raise questions of brain design. We turn 
now to the fundamental constraint on any brain design that leads to the 
first three design principles. Then, in the context of these few principles, we 
discuss some actual designs (mammal and insect). 

 Design constraints 

 The fundamental constraint on brain design emerges from a law of physics. 
This law governs the costs of capturing, sending, and storing  information.  
This law, embodied in a family of equations developed by Claude Shannon, 
applies equally to a telephone line and a neural cable, equally to a silicon 
circuit and a neural circuit. This law constrains neural design at all scales 
and cannot be avoided any more than a B-29 bomber can avoid the law of 
gravity. But, though the brain is fundamentally an organ that manipulates 
information, few neuroscientists are familiar with this law or aware of its 
value for understanding brain organization. We explain it briefly here and 
give more detail in chapters 5 and 6. 
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 What  is   “ information ” ? 
 Information is  the reduction of uncertainty about some situation X associated 
with observing any variable Y that is causally correlated with X.  Uncertainty 
defines the standard measure: one  bit  is the information needed to decide 
between two equally likely alternatives. Information depends on causality 
because, to reduce uncertainty, a message must be reliably relatable to 
its source, the event that caused it. Any factor that reduces the reliability of 
this connection, such as noise, increases uncertainty and destroys 
information. 

 Reduction of uncertainty succinctly describes the brain ’ s purpose. A 
spike in an ON ganglion cell reduces the brain ’ s uncertainty that a brighter 
than average object is located in a particular region of the visual field (chap-
ter 11). And when the brain matches the sensory pattern coded by a patch 
of ganglion cells to a stored pattern, it reduces a key uncertainty:  “ Friend or 
foe? ”  The answer helps to select the next behavior and implement it. To 
this end, a motor neuron spike decreases the uncertainty that its target 
muscle fibers will contract and help the animal move in the appropriate 
direction. In short, to achieve its core purpose, the brain uses physical 
devices (neurons and circuits) that represent and manipulate information. 
So now we must ask: how much information can a neuron represent, and 
what constrains its capacity? 

 A neuron ’ s information capacity 
 To convey information, a neuron must represent the state of its input as a 
distinct output (input and output must be causally related). It follows that 
a neuron ’ s capacity to convey information is limited by the number of dis-
tinctly different outputs that it can generate. The number of different out-
puts a spiking neuron can generate in a given time is the number of 
distinctly different spike trains that it can produce in that time. This 
depends on two factors, mean firing rate ( R  spikes per second) and the pre-
cision of spike timing (  Δ t  seconds). The upper bound on firing rate is set by 
spike duration plus the period following a spike when a neuron is refractory 
(cannot spike). Certain neurons reach this limit during brief bursts, but 
most neurons operate far below this limit. Precision is limited by channel 
noise and membrane time constant. Here biophysics limits information 
capacity. 

 What is the relation between spike rate, timing precision, and the num-
ber of different spike trains a neuron can produce? When a neuron trans-
mits for 1 s, it produces  R  spikes with a timing precision of   Δ t  (Rieke et al., 
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1997). The number of different spike trains,  M , is the number of ways the 
neuron can place its  R  spikes in  T  = 1/  Δ t  intervals (  figure 3.5 ). Deriving  M  is 
a standard exercise in calculating combinations that is often set to students 
in quaint terms, such as placing peas in pots. The solution is 

  M  =  T !/( R !( T   –   R )!), (3.1) 

 where ! denotes factorial and ( T   –   R ) is the number of empty (spikeless) 
intervals. 

 The number of different messages,  M , that a neuron can generate in 1 s 
converts to information rate. According to Shannon, the information,  H , is 
given by 

  H  = log 2 ( M ). (3.2) 

 Substituting for  M  using (3.1) gives 

  H  = log 2 ( T !/( R !( T   –   R (!)) = log 2 ( T !) — log 2 ( R !) — log 2 (( T   –   R )!). (3.3) 

 Because Shannon used a logarithmic scale, a message lasting twice as long 
conveys twice as much information. And, because he used log base 2, infor-
mation is in bits. Thus,  H , the information that a neuron can transmit with 
messages 1 s long, is its information capacity in bits per second (figure 3.5). 

 With this expression we can  “ follow the money. ”  That is, using a stan-
dard currency (bits) we can ask like good engineers: how fast does a neuron 
send information (bits per second) and how efficiently (bits per spike)? And 
at what cost in space (bits per cubic millimeter) and energy (bits per mole-
cule of adenosine tri-phosphate)? This molecule, abbreviated  ATP , is the 
standard intracellular molecule for transferring energy.    

 Information costs energy and space 
 Information rate increases with spike rate and with spike timing precision, 
that is, reduction in   Δ t . However, for any given precision, information rate 
increases sublinearly with spike rate (  figure 3.5) . Consequently, as spike rate 
rises, bits per spike should fall, and this theoretical decline in bits per spike 
is observed experimentally (  figure 3.5 ). 

 There is another way to explain why more frequent spikes carry less 
information. A symbol that occurs less frequently is more surprising and so 
more informative (chapter 4, equation 4.2). This effect, which Shannon 
called  surprisal , makes a code with fewer spikes more efficient. For example, 
a code that distributes spikes sparsely among a population of neurons con-
veys more bits per spike (chapter 12; Levy  &  Baxter, 1996). 

 This simple law — infrequent spikes carry more bits — profoundly influ-
ences neural design because, following the money, one finds that spikes are 
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  Mathematics and biophysics govern the representational capacity of signal trains.  
 Upper : Distinct sequences of spikes in time intervals   Δ t  represent different inputs. 

 Middle left : Theory predicts information rate to increase sublinearly with spike rate, 

with the consequence shown at  middle right : Increasing spike rate reduces the in-

formation transmitted per spike. These theoretical curves were calculated using the 

standard approximation for signal entropy at low spike rates (Rieke et al., 1997, equa-

tion 3.22). In general neurons do not achieve their theoretical capacity because of 

noise and redundancy; consequently, measured values of bits/spike are lower (figure 

11.25).  Lower : Measured bits per spike falls as mean spike rate increases. Data pooled 

from several classes of guinea pig retinal ganglion cell. Reprinted with permission 

from Balasubramanian  &  Sterling (2009). 
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expensive. They use about 20% of the brain ’ s energy (Attwell  &  Laughlin, 
2001; Sengupta et al., 2010). A spike charges a neuron ’ s membrane capaci-
tance by about 100 mV, and the membrane area is substantial due to a 
neuron ’ s local branching. Higher mean spike rates require a larger cell body 
with greater membrane area; this increases energy cost per spike and adds 
to the cost of transmitting bits at high rates. Consequently, where spikes are 
sent sporadically and at low mean rates, more information can be sent for 
the same energy — more bits per ATP. This saving in energy by low rates is 
compounded by a saving in space. 

 Higher spike rates also require thicker axons.  4   Because axon diameter,  d , 
increases directly with firing rate, axon volume rises as  d  2 ; therefore, dou-
bling the firing rate quadruples axon volume. The concentration of mito-
chondria, an indicator of energy cost, tends to be constant with axon 
diameter; therefore, as volume quadruples, so does the energy supply (Perge 
et al., 2009, 2012). In summary, there is a  law of diminishing returns : cost per 
bit, both in energy and space, rises steeply with bit rate (  figure 3.6 ).    

 Three principles of neural design 
 The inescapable cost of sending any information and the disproportionate 
cost of sending at higher rates lead to three design principles:  send only what 
is needed ;  send at the lowest acceptable rate ;  minimize wire, that is, length and 
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diameter of all   neural processes . This last principle seems obvious, but it actu-
ally reflects a subtle point that arises from the constraint on rate. 

 Designs should reduce wire, of course, because wire uses space and 
energy. But wires also use  time  for transmission, and that is time lost to 
processing and action (Howarth et al., 2012). The constraint is particularly 
onerous for neural wires because they transmit more slowly than copper 
wire. Neural conduction velocity is 100 millionfold lower and, for biophysi-
cal reasons, faster conduction requires thicker wires (chapter 7). Thus sav-
ing time by sending at higher information rates (bits per second) and higher 
conduction velocities (meters per second) requires thicker axons, which, as 
noted, involves disproportionate costs in energy and space (Wen  &  Chk-
lovskii, 2005). Thus, the only economical way to save time is to rigorously 
shorten wires. This principle shapes brain design across all scales, from an 
axon ’ s branching and the microscopic design of local circuits, to the overall 
layout (chapter 13). 

 With these few principles we can now consider how the mammalian and 
fly brains are organized on a scale of about 1 mm and why. This macro-
organization cannot explain the actual computations because those occur 
mostly on a finer scale. Nor do we claim that every feature represents the 
best of all possible designs. Others might work just as well — but they have 
not been tested. All we can say is that these three principles illuminate the 
layout of real brains — across a millionfold range of scale and half a billion 
years of evolution. 
 
 
 
 
 
 





 I sensed the earth ’ s slow turning into the dark. The shadow of night is drawn like a 

black veil across the earth, and since almost all creatures, from one meridian to the 

next, lie down after the sun has set, one might in following the setting sun, see on 

our globe nothing but prone bodies, row upon row, as if leveled by the scythe 

of Saturn.  

  — W. G. Sebald, paraphrasing Sir Thomas Browne (edited for brevity) 

 The preceding chapter established that for the brain to send information 
requires energy and space. Moreover, higher rates (more bits per second) 
require disproportionately more energy and space because they need thicker 
axons — for which both space and energy rise as the diameter  squared . Con-
sequently, the most efficient designs will send only information that is 
essential and will send it at the lowest rate allowable to serve a given 
purpose. If information can be sent without any wire at all, that is best. 
If wires are absolutely needed, they should be as short and as thin as 
possible. These principles allow substantial insight into how bigger brains 
are organized. 

 One design decision is so ubiquitous as to require immediate mention. 
Brains segregate the wires that interconnect local circuits with each other 
and with distant circuits. The reason is simple and fundamental: to mingle 
the wires with the circuits increases total wire length and thickness —
 violating the principle minimize wire (chapter 13). In mammals axons seg-
regate if they travel beyond a few millimeters. The reason is that increasing 
distance requires increasing conduction speed to avoid computing delays, 
and this requires thicker axons. When axon diameter exceeds about 0.5  μ m, 
the axon becomes wrapped in  myelin , which increases conduction speed by 
about 6 mm ms  – 1  for every 1- μ m increase in diameter (chapter 7). Because 
myelin in the living brain glistens white, extended sheets of myelinated 
axons are termed  white matter . 

 4   How Bigger Brains Are Organized 
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 Saturn ’ s scythe sets brain design 

 The most profound condition for all life on Earth, the one that uniquely 
shapes every cell in every organism, is the daily rotation of our planet about 
its axis. This motion shifts the intensity of arriving solar radiation over the 
course of 24 hours by a factor of 10 10 . The impact of this motion is so pro-
found that for many cultures it opens the story of Creation. One familiar 
example waits only until line 4:  “  . . .   and God divided the light from the dark-
ness  . . .  and there was evening and there was morning, one day  ”  (Genesis   1:4 – 5). 

 Animals can certainly survive without light (e.g., in caves), but those 
with access to light generally choose a particular time of day to forage and 
thus a particular range of light intensities. The basic choices are diurnal, 
nocturnal, and crepuscular (dawn and dusk).  1   This decides their investment 
in sensors: fine spatial vision with color versus acute hearing, possibly with 
echolocation, versus olfaction plus whiskers. Foraging period also decides 
their strategies to deal with predators occupying the same slot: camouflage, 
evasive flight, or skulking behavior. 

 During its active period the body expends chemical energy to support 
external behaviors, such as foraging, and internal activities, such as diges-
tion and absorption. Some needs rely on both internal and external actions, 
for example, thermoregulation. Thus, the active phase involves a broad 
metabolic pattern,  catabolism : (1) disassemble large polymeric molecules 
(proteins, fats, carbohydrates, nucleic acids) into their monomeric building 
blocks (amino acids, fatty acids, sugars, nucleotides); (2) distribute mono-
mers to metabolically active tissues; (3) convert monomers into energy-
bearing molecules, such as ATP, that drive cellular processes; and (4) use an 
aerobic (oxygen requiring) pathway to produce ATP because it is sixteenfold 
more efficient (ATP per glucose monomer) than the anaerobic pathway. 

 During its  in active period, the body shifts to a broad pattern of renewal, 
 anabolism : (1) assemble new polymers for growth, repair, remodeling, and 
immunity, and (2) replenish reserves by storing residual monomers as 
resynthesized polymers. Thus, liver converts spare glucose to the storage 
polymer glycogen; fat cells convert excess glucose to monomeric fatty acids 
which are then used to build the storage polymer, fat. Because catabolism 
and anabolism involve opposing sets of biochemical reactions, it would be 
inefficient to run them simultaneously. Thus, natural selection has sepa-
rated internal processes into complementary patterns for different seg-
ments of the daily cycle. 

 The brain itself participates in the catabolic/anabolic cycle. During 
wakefulness it collects, processes, and distributes immense amounts of 
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information. During sleep, the brain switches over to anabolism via a spe-
cific regulatory enzyme and uses this phase to store recently acquired infor-
mation (Dworak et al., 2010). This involves remodeling local circuits by 
retracting certain synapses and adding new ones and, in some cases, gener-
ating new neurons (chapter 14). 

 The obligatory alternation between catabolism and anabolism involves 
throttling down one set of biochemical pathways and revving up another —
 both of which take time. Consequently, each pattern needs to anticipate 
the environmental shift — in order to optimally match the key time win-
dows for sleep and foraging. Thus, the pattern seen in figure 3.3, where 
blood pressure falls with sleep and rises with waking, is completely general: 
all processes in body and brain move through this cycle. So it is efficient for 
them to share the same broad signals, and although some processes cease 
during darkness and others during light, all must follow Saturn ’ s scythe. 

 Brain clock 
 Many somatic cells contain an intrinsic clock, established by oscillations of 
interacting proteins, with a period of approximately 24 hours ( circadian ). 
But without a mechanism to trim them up, these clocks would soon drift 
out of phase. So a master clock is needed to track the day, including its con-
tinual shift, due to Earth ’ s axial tilt, during its annual revolution about the 
sun. The master clock comprises a discrete cluster of neurons (about 8,600 
in human), the suprachiasmatic nucleus ( SCN ).  2   One subgroup of SCN neu-
rons contains a circadian clock that resets daily based on signals from the 
retina that track the slow shifts of light intensity across the day and season 
(  figure 4.1 ). 

 The master clock requires neither color, nor spatial, nor fine temporal 
information — only slow intensity changes. Therefore, following two design 
principles, the retina sends as little as needed and sends as slowly as possi-
ble. It uses just a small fraction of retinal output neurons (0.2%), types that 
cover the retina sparsely and fire at very low rates, a few Hertz averaged over 
the day (Crook et al., 2013; Wong, 2012). SCN neurons themselves fire 
between about 8 Hz (day) and about 1 Hz (night; H ä usser et al., 2004). To 
follow another principle, minimize wire, the SCN locates exactly where the 
optic tracts join the brain (see   figure 4.1 ). But how does the master clock 
govern patterns across the entire body and the brain as well?    

 The SCN ’ s relatively few neurons, about 10 4  in rat, could not conceivably 
contact all other cells directly (G ü ldner, 1983). Nor should they because 
their job is not to micromanage every cell but mainly to keep the time. 
Except for time, the SCN is fairly ignorant — largely unaware of internal 



60 Chapter 4

pituitary

opt. tr.

cortex

corticospinal tract

muscle

low-level
patt gens

vessels
heart

kidney
skin

cerebellum

I E

I E
I E

thalamus 

striatum

suprachiasmatic
nucleus

ventral tegmental areaamygdala

hippocampus

superior colliculus

spinal cord

internal motor neurons
E

I

external
motor neurons

hypothal
patt gen

neurosecr
cluster

wireless
cross-section

(level indicated on left)wired

wireless: slow, broad

current state

clock => behavioral sequence generators 

low-level pattern generators

peripheral hormones

tissues

neurosecretory cells
(brain hormones)

wired: faster, spatially localized

executive pathways

low-level pattern generators

motor neurons

skeletal muscle

heart
vessels
kidney
liver
skin

 Figure 4.1 
  Brain ’ s master clock (suprachiasmatic nucleus) informs a network of high-level pat-
tern generators in hypothalamus . These coordinate internal physiology and external 

behavior. Their network selects a behavior, plus the endocrine and autonomic pat-

terns needed to support it, and communicates the orders to low-level pattern genera-

tors, both wireless and wired.  Upper left : Longitudinal section (diagrammatic) shows 

the spatial layout of this hierarchy. Opt. tr., optic tract; hypothal patt gen, hypotha-

lamic pattern generator.  Upper right : Cross section through spinal cord indicates 

that corticospinal tract tells local pattern generators to match internal physiology to 

external behavior.  Lower:  Schemes for wireless and wired control. 



How Bigger Brains Are Organized 61

physiology and external behavior. Therefore, it could not responsibly tell 
either the body or the brain when to shift the broad pattern. For example, 
a rat normally forages at night, but what if food becomes sparse at night 
and plentiful at noon? Were the SCN to directly instruct a command center 
for foraging, it might send the rat to sleep without its supper. 

 Coupling clock to behavior: A hypothalamic network 
 Instead, the SCN couples to an adjacent region, the hypothalamus, that for 
its comparatively small extent is extremely well informed (  figure 4.1 ; Saper 
et al., 2005; Thompson and Swanson, 2003). This region monitors myriad 
internal parameters, including temperature, blood levels of salt, and metab-
olites, hormonal signals for satiety, hunger, thirst, pain, fear, and sexual 
state. Some of its neuron clusters express their own endogenous oscillators, 
and at least one of these responds to changes in food availability (Guilding 
et al., 2009). This territory also monitors stored patterns — such as best 
places and times to forage and past dangers. And it monitors the external 
environment using every sense. Integrating all these data, plus SCN clock 
time, this region calculates which needs are urgent. Then, balancing 
urgency against opportunity and danger, it tells the rat whether to forage, 
mate, fight, or sleep. To execute, it does not micromanage but instead 
calls the appropriate pattern of behavior (Saper et al., 2005; Thompson  &  
Swanson, 2003). 

 Hypothalamic circuits, designed to anticipate impending needs, gener-
ate signals that elicit various  “ motivated behaviors, ”  that is, foraging for 
food, or drink, or sex in response to these integrated signals. As these moti-
vating signals are broadcast to other brain regions, there arises a subjective 
component that we (among other animals) experience as desire. If one area 
can be considered as the wellspring of unconscious desires, this is it. It 
seems amazing that such a small region could access and integrate so much 
information and evoke such a variety of core behaviors. How could there be 
sufficient space for hypothalamic neurons to do so much? 

 Part of the answer is that this well-informed region dictates  sequences  of 
low-level patterns. For example, feeding behavior requires the sequence: 
sniffing  →  biting  →  chewing  →  swallowing. These components are pro-
grammed in detail by dedicated pattern generators located down in the 
brain stem near their effector muscles. The local pattern generators manage 
the exact timings of muscle contraction required for coordinated behavior. 
The broad sequence that smoothly calls each component into play can be 
dictated to local pattern generators with a reduced instruction set —
 something like a music conductor following a score to call forth a Beethoven 
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symphony from 80 low-level players with nothing but a slender baton. The 
analogy does not explain the magic in either case, but it does emphasize the 
design principle: send simple instructions and compute the complex details 
locally (B ü schges et al., 2011). 

 This economical design allows the hypothalamic region to accommo-
date a dedicated circuit for each behavioral pattern. These are sufficiently 
compact that a fine electrode can stimulate them separately, revealing that 
each circuit evokes a full behavioral pattern, plus the appropriately matched 
visceral pattern (Hess, 1949; Bard  &  Mountcastle, 1947). For example, a cat 
with an electrode placed to evoke  “ angry attack ”  arches its back, hisses, and 
strikes with bared claws and teeth (somatic pattern). Simultaneously it 
dilates pupils, raises hackles, and increases cardiovascular activity (visceral 
pattern; B ü schges et al., 2011; Hess, 1949). 3  Moving the electrode by a few 
millimeters can activate circuits for other behaviors: feeding or drinking or 
copulating or curling up to sleep. In short, many circuits fit in a small space 
because their output messages are simple. 

 Each behavior circuit is demonstrably guided by a rich set of input sig-
nals. For example, a cat electrically stimulated to feed will attack a ball of 
cotton that mimics a mouse, but only briefly, whereas it persistently attacks 
a real mouse until the current stops. If the mouse is replaced by a substan-
tial rat, the cat retreats to its home corner. Evidently the feeding circuit is 
modulated by inputs that identify prey, distinguish true prey from false, 
and recognize dangerous prey — all based on comparison to stored patterns. 
Moreover, each behavior is imbued with a motivational component —
 apparent when an animal stimulated to feed will seek hidden food and 
work to obtain it (press a lever). 

 How does this small region, the hypothalamus, access the brain ’ s core 
systems for perception, spatial memory, danger, economic value, and 
urgency? Again, it relies on details computed elsewhere and delivered only 
as conclusions: time from the SCN; integrated physiological data from myr-
iad sources that define internal state; selected memories of location and 
danger from hippocampus and amygdala; recent history of reward value 
from the striatal system; high-level analysis of choices from prefrontal cor-
tex. Because these inputs to the hypothalamic region all send summaries, 
they can use low information rates and thus fine fibers, thereby greatly 
conserving space (  figure 4.1 ). Energy is also conserved, allowing this crucial 
region to have among the lowest metabolic rates (Sokoloff, 1977). 

 This strategy allows a major organ for memory, the hippocampus, to 
access key aspects of an animal ’ s life history but send only modest clips to 
guide a particular behavior. This might explain why its output tract ( fornix ) 
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can manage with mostly fine fibers, resembling the optic nerve, which 
itself sends strongly edited summaries from the retina (chapter 11). An 
apparently similar strategy allows sensorimotor areas of the cerebral cortex 
to lend speed and agility to motor behaviors via an output tract ( corticospi-
nal tract ) of similar fine structure (  figure 4.2 ; Quallo et al., 2012). In short, 
the hypothalamic network is designed to receive executive summaries as 
input and deliver broad memoranda as output (Perge et al., 2012).    

 Resurrection 
 To be awakened from a deep sleep feels horrible. And no wonder: every cell 
in the body and brain struggles to function according to its catabolic 
phase — against all central instructions to remain in anabolic phase. But 
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  Fiber tracts that transmit summaries share an economical design . Their axon diame-
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64 Chapter 4

when anabolism has gone to completion — when the body has replenished 
stores, healed wounds, rebuilt muscles and immune systems, and when the 
brain ’ s sorting mechanisms have punched  “ delete ”  or  “ save ”  — then all the 
cells and tissues finally wake up more or less simultaneously. 

 The SCN signals  “ dawn ”  to the hypothalamic network — which then 
decides, based on many factors, whether it is auspicious to awaken.  4   If so, 
the network signals a nearby cluster of neurons (comparable in size to SCN) 
to secrete the peptide transmitter  orexin . The orexin neurons project widely 
over the brain to activate a cascade of systems that regulate arousal (Sakurai, 
2007). Because orexin neurons couple the clock to the brain ’ s arousal sys-
tem, an animal lacking orexin tends to collapse unpredictably into sleep. 

 The orexin cluster specifically awakens olfactory sensors, enhancing 
their sensitivity, and it awakens motor mechanisms for foraging (Julliard et 
al., 2007). Informed by the master clock, the orexin cluster uses the hypo-
thalamic pattern generator network to coordinate alertness, olfactory sensi-
tivity, and the sense of hunger — all to initiate foraging at the proper time. 
Now it is time for brain signals to reinstate the broad catabolic pattern: 
mobilize energy stores from liver and oxygen carriers (red blood cells) from 
spleen and bone marrow; re-expand the vascular reservoir with salt water 
from the kidney. And it is time to  de mobilize anabolic processes for growth, 
repair, and immunity. 

 In summary, the hypothalamic network manages the whole brain and 
all of its functions — without micromanaging. But now, what about micro-
managing? A conductor is all well and good, but someone must play the 
bassoon. So how are the processes that do involve micromanaging gov-
erned by the design principles considered here? 

 Distributing output patterns 

 Wireless signaling 
 Design principles dictate that the slowest processes should be governed by 
the slowest effectors and the least wire. Where signals can be sent with zero 
wire, that is best. Consequently, the effectors for micromanaging the broad 
catabolic and anabolic patterns are endocrine glands. For example, the 
adrenal gland secretes a steroid hormone that enhances the kidney ’ s uptake 
of sodium and a different one that enhances catabolism, mobilizing energy 
and suppressing growth and repair. Testis secretes anabolic steroids that 
enhance muscle, and liver secretes a hormone that stimulates red blood cell 
production. What coordinates these low-level effectors? Higher-level endo-
crine signals from the pituitary gland, which is in turn governed by 
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hormones from the brain. Wireless regulation of two particular functions, 
blood pressure and muscle contraction, is summarized in   figure 4.3 .    

 Brain hormones are secreted directly into the circulation by neurosecre-
tory neurons whose clusters lie adjacent to the hypothalamic network of 
pattern generators. The pattern generators deliver their well-informed but 
simple orders via very fine, very short wires (  figure 4.1 ). Each node in the 
hypothalamic network can call a particular pattern of brain hormones for 
release into the blood just upstream of the pituitary, thus stimulating it to 
release its own hormones into the general circulation. The whole endocrine 
network reaches every cell in the body within seconds. Not blazingly fast, 
but on the other hand, the messages are broadcast without any wire at all 
and with zero energy cost above what the heart is already doing. 

 The genius of this wireless system lies partly with the receivers. Although 
all somatic cells are exposed to all hormones, only certain cell types down-
load a given message. To do so, they produce a specific molecular receptor 
that binds a particular hormone and triggers a particular intracellular 
response. Thus, information broadcast diffusely to the whole body can be 
read out by a restricted number of cell types — whose responses to the signal 
are thereby coordinated. The molecular mechanism and reasons why it is so 
economical are described in chapter 5. 

 Another clever feature is that receiver cells can express different subtypes 
of the molecular receptor. Each subtype can couple within the cell to a par-
ticular  second messenger  with its own stereotyped action. For example, one 
messenger can greatly amplify the hormonal signal and use it to either acti-
vate or suppress some intracellular process. Thus, a single message broad-
cast wirelessly can evoke complex response patterns among different tissues 
that include negative as well as positive correlations. 

 For example, skeletal muscle acts rapidly on the outer world via fast sig-
nals over thick wires. Yet, it is also a tissue within the body and is thus regu-
lated wirelessly by various hormones, including anabolic steroids, insulin, 
growth hormone, and thyroxin (  figure 4.3, lower panel ). Thus, wireless sig-
naling helps the brain to efficiently couple inner and outer worlds. 

 Wireless collecting 
 The brain also uses wireless receivers, a small set of  circumventricular organs  
that locate at specialized interfaces between brain and blood vessels. There 
the normal barrier between blood and brain parts, thus exposing neurons 
to circulating chemicals. These neurons select just what they need by 
expressing the appropriate molecular receptors. For example, the  subforni-
cal organ  locates near the hypothalamic pattern generators that regulate 
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appetite for salt and water (  figure 4.4 ). The neurons sense the blood ’ s 
sodium level, plus levels of hormones ( angiotensin II  and  aldosterone ) that 
tell the kidney to conserve sodium (  figure 4.3, upper panel ). Thus, this wire-
less receiver closes the loop for anticipatory regulation: the brain sends 
instructions to kidney regarding salt and water, and the brain ’ s subfornical 
organ wirelessly receives information about the current state  5   of sodium 
balance. 

 Need for wires: Faster, spatially directed signaling 
 Neurosecretions spread slowly (over seconds) and modulate target cells 
slowly because the packets of hormone molecules released into the volumi-
nous vascular system become greatly diluted (to concentrations ~10  – 9  M). 
Therefore, molecular receptors need high affinity to capture the hormone, 
and thus their  un binding is slow (chapter 6). However, this delay is incon-
sequential because the intracellular processes that they are regulating typi-
cally span minutes or hours. Thus, the slow rhythms of wireless signaling 
match their targets, physiological processes that rise and fall slowly. 

 Where faster responses are needed, the hormone is released into a  portal 
vessel  leading directly to a target downstream. Because the hormone is less 
diluted, it can be captured by lower affinity receptors, which unbind faster, 
and operate on the steep limb of the binding/response curve. For example, 
the brain hormone corticotropin-releasing hormone is secreted into portal 
vessels leading to the pituitary; the adrenal cortex secretes steroid hor-
mones into portal vessels leading to the adrenal medulla. Yet certain inter-
nal process must proceed still more smartly, and that needs wire. 

 For example, for the brain to initiate a change in body posture, it must 
alter the pattern of muscle contraction. This will require a change in the 
distribution of oxygen and thus an altered vasomotor pattern to redistrib-
ute blood. Furthermore, active muscle will need to take up glucose, and that 

 Figure 4.3 
  Wireless regulation broadcasts slow signals to efficiently couple inner and outer 
worlds .  Upper : To adjust blood pressure rapidly and locally, the brain uses wires 

(autonomic nerves). But to shift pressure slowly and broadly, it uses wireless signals 

(hormones) ( italicized ). Dashed lines indicate wireless feedbacks to brain. Feedbacks 

by wire are used by certain sensors, such as for oxygen and pressure, but are not 

shown.  CRH, corticotropin releasing hormone .  Lower : Catabolism in muscle activates 

rapidly to support contraction; so to rapidly activate catabolism, the brain uses wires. 

But anabolism in muscle is slower, so the brain activates those processes with wireless 

signals ( italicized ). 



68 Chapter 4

will require triggering insulin secretion from pancreatic cells. These vascu-
lar and endocrine adjustments need to be initiated along with the muscle 
activity, and these faster, spatially localized signals demand wires. 

 This need is served by autonomic neurons whose axons contact every 
internal organ and blood vessel. Their mean firing rates are less than 1 Hz, 
and thus in Shannon ’ s sense they transmit at low information rates. This 
seems intuitive, since a message —  “ Secrete some insulin ”  or  “ Constrict this 
vessel ”  — goes somewhat beyond  “ yes ”  or  “ no ”  (one bit), but not by much, 
and thus it can be accomplished with few spikes. Signals that transfer at 
rates below 1 Hz use the finest, cheapest axons. 

 What manages these autonomic effectors?  Answer : low-level pattern gen-
erators located in the brain stem and spinal cord near the output clusters 
(  figure 4.1, right ). The latter form two subsystems ( sympathetic  and  parasym-
pathetic ), which employ different transmitters. Each transmitter couples to 
several receptor types, which in turn couple to different second messengers. 
Consequently, the autonomic effectors can generate rich internal patterns. 
They are the orchestral players — ready and waiting for the conductor to 
select the next pattern and tempo. 

 What manages the muscles that change the body ’ s posture? Again the 
answer is low-level pattern generators located near the motor neuron clus-
ters. These pattern generators must increase force from certain muscles and 
decrease it from others — in just the right amounts and at just the right 
instants. Sharp timing requires large currents, rapid integration (short time 
constants), and high mean firing rates (chapter 7). Therefore, these pattern 
generators need large neurons with thick dendrites and thick axons.  6   To 
reduce costs, they locate near their effectors. This lengthens the descending 
pathways that supervise them, but as noted, those are cheaper (  figure 4.2 ).  7   

 Motor control requires rapid feedback. The fastest signals from skin and 
joint receptors travel at about 50 m s  – 1 , and those from muscle receptors 
travel at about 100 m s  – 1 . These velocities require very thick, myelinated 
axons, 8 – 17  μ m in diameter.  8   These fibers are 10-fold thicker than for the 
descending tracts and thus 100-fold greater in volume. Were pattern gen-
erators located higher in the brain, for example, nearer to the hypothalamic 
pattern generators, feedback would be delayed, even though these axons 
are huge. Thus, the combined needs for fast output and fast feedback con-
strain the low-level generators of motor patterns to locate near their effec-
tors, the motor neurons (  figure 4.5 ).    

 Arrangement of effector clusters 
 The neurosecretory clusters locate adjacent to the hypothalamic network, 
which can thus modulate them with very little wire (  figure 4.1 ). But the 
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  Longitudinal section through rat brain.  This section shows relative size and loca-

tion of various structures discussed in this chapter. From  http://brainmaps.org/ajax-
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autonomic and somatic motor neuron clusters lie far from the hypotha-
lamic network, distributing from the midbrain down through the spinal 
cord. This extended distribution allows space for their low-level pattern 
generators. The total volume of the autonomic effectors and their pattern 
generators, summed over the length of the spinal cord, is about 100-fold 
greater than that of the hypothalamic network.  9   This need for space easily 
justifies extending the brain tailward and helps explain why this design has 
been conserved. Moreover, the extension allows additional efficiencies. 

 Neurons that share input from the local-pattern-generator should cluster 
close together. Thus, the autonomic effector neurons that regulate internal 
organs and endocrine cells align in a column, allowing them to share input 
from the columnar low-level generator of autonomic patterns. Somatic 
motor neurons also align in columns — parallel to the autonomic column 
and near it; therefore, circuits for internal physiology and external behavior 
can be coordinated locally via short wires (  figure 4.1 ). 

 Because low-level pattern generators for internal physiology and behav-
ior locate together, descending tracts can regulate them together with no 
extra wire. For example, the corticospinal tract sends a reduced instruction 
set from motor cortex to low-level pattern generators for muscle (Yak-
ovenko et al., 2011) and also to adjacent autonomic pattern generators for 
kidney (see   figure 4.1 ). Thus, the descending message,  “ Arise! ”  can be sent 
efficiently to both effectors (Levinthal  &  Strick, 2012). 

 Somatic motor neurons extend this design for efficient component 
placement to a still finer level (  figure 4.5 ). Motor neurons for a given mus-
cle often fire together, implying shared inputs, so they cluster. Motor neu-
rons for muscles that act synergistically across a joint also often fire together, 
also implying shared inputs, so their clusters stay close. Motor neurons for 
muscles that cooperate across multiple joints also fire together, but less 
often, so their clusters are further apart, distributing longitudinally with 
separations roughly corresponding to their frequencies of coactivation. 
Finally, motor neurons for antagonistic muscles tend to fire reciprocally, 
flexors excited/extensors inhibited. This reciprocity depends on a shared 
circuit (cross-inhibition, like the worm), so the clusters of antagonistic 
motor neurons also stay close — in parallel columns that run down the spi-
nal cord (Sterling  &  Kuypers, 1967;   figure 4.5 ). 

 In short, somatic motor neurons distribute according to a broad design 
rule:  neurons that fire together should locate together .  10   This rule also governs 
sensory maps and all the brain ’ s orderly topographic connections (chapters 
12 and 13). 
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 Design for an integrated movement 
 The placement of motor neurons in longitudinal columns allows a pattern 
generator to economically evoke an integrated limb movement (Bizzi  &  
Cheung, 2013). The task is to excite contractile units in dozens of muscles 
across several joints and suppress their antagonists (Sherrington, 1910; 
Creed  &  Sherrington, 1926). The key is for motor neurons to send their 
dendrites longitudinally within a column for long distances (about 1 mm) 
so that dendrites of synergists overlap. Then, an input axon can coactivate 
synergists simply by branching as a T within the column and distributing 
synapses at regular intervals. Strong synergists will greatly overlap 
their dendrites and thus share more input than weaker synergists that over-
lap less (  figure 4.5, lower ). All inputs to the motor neuron columns follow 
this rule, including axons from sensory receptors, axons from local pattern 
generators, and axons from cortex (  figure 4.5, lower ). This design uses 
less wire than any other conceivable geometry, and thus it is optimal 
(chapter 13).    

 Pattern-generator neurons use thick, myelinated axons to synchronously 
activate motor neurons at different levels of the motor neuron column. To 
do this while least disturbing the synaptic circuitry, the axons are routed 
into the white matter where upon reaching the appropriate levels, they 
reenter the motor column and connect (figure 4.5). 

 One benefit of this architecture is that different sensory receptors from 
the same location can efficiently evoke opposite responses. Here, pressure 
receptors from the foot connect to the extensor pattern generator, so as 
weight shifts to that foot, all the extensors are excited to support the limb. 
Pain receptors connect to the flexor pattern generator, so as weight shifts to 
that foot, all the flexors are excited (and extensors inhibited) to withdraw 
the limb. These alternative decisions are accomplished at the lowest level, 
thereby avoiding the costs in time, space, and energy of consulting higher 
levels. The corticospinal tract delivers  “ executive summaries ”  from motor 
cortex to the pattern generators. So a corticospinal axon can simply say 
 “ Flex! ”  and local circuits do the rest (Bizzi  &  Cheung, 2013). 

 Collecting input patterns 

 Different senses, different costs 
 The wider world that makes a larger brain such a good investment contains 
a seeming infinity of patterns carried by diverse forms of energy: electro-
magnetic (light), heat, mechanical vibration of air (sound), direct 
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mechanical contact, volatile molecules (odorants), molecules in solution, 
electrical patterns, magnetic fields, and gravity. Animals evolve mecha-
nisms to collect information carried by all these forms — and use them to 
find food and mates, to avoid predators, and to orient in space and time. 
The challenge is to decide which forms to invest in and how much. Some 
are intrinsically cheap whereas others are intrinsically costly. Yet for certain 
lifestyles, cheap won ’ t work and expensive is well rewarded. So an animal 
selects from the universe of patterns according to how it makes a living and 
during what phase of the planet ’ s daily rotation. 

 Animals that forage by day invest heavily in photoreceptors sensitive to 
wavelengths between 300 – 700 nm. Animals that forage by night invest 
heavily in other receptors. Snakes that hunt mice use temperature receptors 
to extend their range to the infrared  11   (about 800 nm). Moths and frugivo-
rous bats invest heavily in olfactory receptors, but certain bats prefer moths 
over fruit and so invest heavily in sonar systems that produce, detect, and 
process ultrasound (frequencies up to 180 kHz). 

 Figure 4.5 
  Efficient wiring for integrated movement. Upper:  Cross section through the spinal 

cord. Flexor and extensor motor neurons for the leg form separate clusters, which 

locate near each other and also near to the pattern-generator neurons that recipro-

cally excite and inhibit them. The flexor and extensor clusters form parallel columns 

extending over several segments of spinal cord. Each column is structured as a motor 

map: motor neurons for thigh muscles locate at higher spinal levels, then in descend-

ing order: knee, ankle, and toes. Within a column, the motor neuron dendrites ex-

tend longitudinally for about 1 mm in both directions; consequently motor neuron 

dendrites for synergistic muscles overlap. Their overlap allows a pattern-generator 

axon to excite motor neurons for synergistic muscles simply by spreading its axon 

arbor longitudinally within the dendritic plexus. This uses the least possible wire to 

excite motor neurons for several muscles. The longitudinal dendrites appear in this 

plane as dots scattered within the motor neuron clusters. Motorneuron clusters for 

hip muscles locate separately, near the midline. Patt gen, pattern generator.  Lower:  
Longitudinal section through spinal cord in the plane indicated by arrows in upper 

diagram. This plane reveals the motor neurons ’  longitudinal dendritic plexus that 

spans the motor map from hip to toe. This plane shows the pattern generator axons 

leaving the white matter to enter a flexor or extensor dendritic plexus where they 

encounter overlapping dendrites of synergistic motor neurons. The pattern genera-

tor neurons do not orient longitudinally and thus do not overlap. Consequently, a 

sensory axon or a corticospinal axon, coursing longitudinally within the pattern-

generator columns, can efficiently access a discrete subset of pattern-generator neu-

rons and thus a subset of motor neurons for a particular integrated limb movement. 
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 Fish that inhabit clear water invest in photoreceptors and, because the 
spectral content shifts with depth toward blue, those that inhabit deeper 
waters shift their peak photosensitivity correspondingly. Fish residing in 
caves  dis invest in photoreceptors and are essentially blind. Certain fish 
inhabiting rich, but turbid tropical rivers invest in electrosensory systems 
that interrogate their surroundings by emitting brief electrical pulses or 
sinusoidal waves up to 2 kHz, and measuring the electrical field with 
electroreceptors. 

 Sensors differ greatly in cost. Olfactory sensors are slow and relay infor-
mation at low mean rates, so their axons are extremely fine, approaching 
the limit set by channel noise (chapter 7). Vision is faster, so retinal gan-
glion cell axons (optic nerve) fire at higher mean rates and are somewhat 
thicker; and hearing is still faster, so auditory axons are far thicker (  figure 
4.6 ). This progression of axon calibers corresponds to a linear progression of 
firing rates (  figure 4.6 ). However, since space and energy costs rise steeply 
with diameter and firing rate, the thickest auditory axon costs 100-fold 
more than an olfactory axon (Perge et al., 2012).    

 Systems for sensing at the skin follow similar design rules. Mechanosen-
sors employ various mechanisms to transduce and filter pressure and touch. 
Some sense high frequencies (vibration) and transmit via thick axons (fig-
ure 10.3); other mechanosensors sense lower frequencies and transmit 
via finer axons. Sensors for pain and temperature send at the lowest spike 
rates and use the finest axons. Centrally, the fast and slow systems are pro-
cessed in parallel and to a large degree arrive at their thalamic relay over 
separate tracts (Willis  &  Coggeshall, 1991; Maksimovic et al., 2013; Boyd  &  
Davey, 1968). 

 Of course, these costs of collecting primary patterns are merely down 
payments. Auditory patterns arriving at high rates must be  processed  at high 
rates — so their initial central circuits use thick wires and fast (expensive) 
synapses (Carr  &  Soares, 2002). The most expensive parts in a mammalian 
brain are those devoted to early auditory processing, for example, the  supe-
rior olivary nucleus and inferior colliculus  (see   figure 4.4 ; Mogensen et al., 
1983; Borowsky  &  Collins, 1989). Thus, the ultrasonic imaging system of an 
insectivorous bat is intrinsically more expensive than the olfactory system 
of a frugivorous bat. 

 For fish that use electrical signaling, the cost is tremendous. One set of 
neurons needs to produce high-frequency pulses; another needs to detect 
them and signal the brain. Then, as for the insectivorous bat, processing is 
expensive. The computations required by this system are executed by cere-
bellar circuits, so the cerebellum greatly expands (  figure 4.7 ). Consequently, 
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  Unit cost of sending information differs greatly across senses .  Upper row : Electron 

micrographs of cross sections through the olfactory, optic, and cochlear nerves 

shown at the same magnification.  Lower left : Distributions of axon diameters. The 

auditory axons are nearly sevenfold thicker than the olfactory axons, so their unit 

volume and energy cost are nearly 50-fold greater. In parentheses are the number of 

axons serving that sense. The relation is reciprocal: low unit cost allows a many-unit 

design (olfactory) whereas high unit cost restricts the design to fewer units (audi-

tory).  Lower right : Higher mean firing rates require thicker axons. Vestibular axon 

unit cost is 100-fold greater than that unit cost of an olfactory axon. Reprinted with 

modifications and permission from Perge et al., 2012. 
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the brain of a mormyrid fish that uses electrical signaling is huge compared 
to a trout of comparable body size (  figure 4.7 ) and requires 60% of the rest-
ing animal ’ s energy budget! This emphasizes that the purpose of 
brain design is not necessarily to operate on the cheap — for that would 
limit functionality. Rather, it is to ensure that the brain ’ s investment 
pays off.    

 Design and usage of sensor arrays 
 In the mammalian ear each auditory hair cell is tuned to a particular range 
of frequencies — with the cells mapped along the cochlea ’ s basilar mem-
brane from lowest frequency (20 Hz in human) at the apex to highest 
(20,000 Hz) at the base.  12   The axons serving the highest frequencies fire at 
higher mean rates and are roughly threefold thicker than those for the low-
est frequencies. Consequently, they use nearly 10-fold more volume and 
energy (  figure 4.8 ). For humans the most critical frequencies are those for 
speech — which peak below 500 Hz and decline gradually out to 3500 Hz 
(  figure 4.8) ; From the perspective of brain economy it is fortunate that nat-
ural selection has placed human speech at the lower end of the auditory 
nerve ’ s frequency range, which is the most economical (  figure 4.8 ). This 
design decision also saves costs downstream for central processing. 

 It turns out that music uses the same frequencies as human speech. The 
most frequent intervals in music correspond to the greatest concentrations 
of power in the normalized spectrum of human speech. Moreover, the 
structure of musical scales, the preferred subsets of chromatic scale inter-
vals, and the ordering of consonance versus dissonance can all be predicted 
from the distribution of amplitude – frequency pairings in speech (Schwartz 
et al., 2003). Thus, music ’ s tonal characteristics match those of human 
vocalization, which are the predominant natural source of tonal stimuli. 
This match seems understandable given that music serves to express and 
communicate emotions. It seems that the blues evoke sadness because 
those are the sounds that ancient humans uttered in communicating  their  
sadness (Bowling et al., 2012; Han et al., 2010). 

 Music is processed by auditory areas in the right hemisphere, the side 
specialized for perceiving and expressing emotion; language is processed by 
corresponding areas on the left. It might seem redundant to analyze sounds 
with the same frequencies and structure in both hemispheres, but the com-
putations are quite different, so it is economical to separate the circuits. 
What is the payoff for investing such substantial neural resources? Human 
survival and reproduction requires social cooperation — which depends 
upon communicating emotionally as well as cognitively. In short, music 
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 Figure 4.7 
  Mormyrid brain greatly expands cerebellar structures .  Upper : Electrosignaling Mor-

myrid from turbid waters resembles trout in body size but requires a far larger brain, 

most of which is a highly elaborated cerebellum.  Lower:  Longitudinal section shows 

that the cerebellum (outlined) occupies most of the brain, completely obscuring the 

cerebrum. Central processors of high temporal frequencies often use a cerebellar-like 

design, including, in mammals, the dorsal cochlear nucleus (Oertel  &  Young, 2004; 

Bell et al., 2008). Reprinted from Nieuwenhuys  &  Nicholson (1969). 
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  Speech uses lower frequencies and thus finer axons. Upper : Axons from the high-

frequency end of cochlea (basal) are thicker and cost more space and energy than 

axons from the low-frequency end.  Lower : Human speech occupies mostly frequen-

cies below 500 Hz — the cheaper end. Upper, reprinted with permission from Perge et 

al., 2012); lower, after Freeman (1999). 
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helps communal life, made difficult by large brains, to be at least tolerable 
and occasionally joyous (Chanda  &  Levitin, 2013).    

 A sensor array must be fine enough to resolve the details that are critical 
to its task. For example, human vision resolves a spatial pattern of 60 cycles 
per degree, and this requires 120 cones per degree (Nyquist ’ s rule). In two 
dimensions this amounts to 200,000 cones mm  – 2  (Packer et al., 1989). 
Again, this is just the down payment — for to  preserve  this spatial resolution, 
the communication line from each cone must remain separate all the way 
up to the visual cortex. All design must foresee the subsequent costs. 

 The general solution is to sample densely with a small part of the array 
and more sparsely with the rest. Therefore, our retina packs half of all its 
cones densely in a tiny patch ( fovea ), which occupies only 1% of the retinal 
surface. In this design the visual cortex devotes half of its volume to pro-
cessing what the fovea delivers — thus allowing a fine analysis without 
unacceptably expanding the cortex. 

 For this strategy to work, it is often necessary to make the sampling array 
mobile — so that it can be trained on any feature of potential importance. 
Therefore, a fovea requires a system of muscles to move the eye, plus a con-
trol system to direct its constant exploration, and a higher-level system to 
select an object to be tracked. The effect is to stabilize the object on the 
fovea, allowing it to be sampled at high spatial resolution.  13   Stabilization 
confers an additional economy: it reduces the range of temporal frequen-
cies on the fovea, allowing foveal neurons (and their subsequent proces-
sors) to operate at lower information rates, that is, on the steep segment of 
the rate-versus-cost curve for space and energy (figure 3.6). 

 This strategy also works for the tactile sense — dense distributions of sen-
sors to fingertips, lips, and tongue — and explains the distorted  homunculus  
in maps of human cortex, also the  barrel fields  in mouse cortex that repre-
sent the whiskers (Pammer et al., 2013) and the bizarre countenance of the 
star-nosed mole (  figure 4.9 ).    

 Motorizing the sensors 
 The strategic choice of a fine, mobile sampler raises two other design issues: 
first, how to point the sensor where it is needed and, second, how to tell the 
brain that the sensor is  being  pointed. Both design issues require a dedicated 
part, the  superior colliculus  (  figure 4.4 ). 

 The mechanism that chooses where to point the sensor needs visual 
input. When a retinal region outside the fovea senses a moving object, reti-
nal signals drive a motor mechanism to smartly move the fovea onto that 
object and track it. The superior colliculus does this efficiently by placing a 
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retinal map in register with a motor map so that each retinal point, using 
extremely short axons (~0.1 mm) can excite the corresponding point in the 
motor map and drive the eyes toward that location. Other senses also cou-
ple to the same motor map so that any of them — a flash, a bang, a slap — can 
announce which region of space needs the brain ’ s immediate attention.  14   

 Of course, we also attend to milder stimuli that match some stored pat-
tern, especially when aroused by an internal signal of desire (food, sex). So 
the collicular mechanism for orienting the sensors needs to be informed by 
many issues. Decisions regarding where to look are made at the cortical 
level, which requires the cerebral cortex to communicate with the superior 
colliculus. 

 The upper collicular layers receive visual patterns and relay upward for 
further processing by cortical areas concerned with motion, and they 
receive signals from the same areas (Berman  &  Wurtz, 2010). The deeper 
collicular layers collect signals from the highest executive levels — frontal 
and parietal cortex — which convey a highly informed decision regarding 
where to look. The computations needed to reach that decision are exten-
sive, involving much of the brain. But the decision can be relayed to the 
superior colliculus via a rather modest tract that requires only 6% of the 
corticocollicular pathway (Collins et al., 2005). 

 In short, the deeper layers of the colliculus know  where  to direct the 
eyes — that circuit is hardwired between the motor map and the low-level 
pattern generators that coordinate eye muscles. The deeper layers learn 
 whether  to move the eyes and  when , by integrating raw-ish sensory inputs  15   
with processed signals descending from cortex. The integrated output deliv-
ers instructions regarding vector and timing to pattern generators in brain-
stem that micromanage eye movements, and to those in the upper spinal 
cord that micromanage head movements. Thus, the descending collicular 
tract resembles various other tracts, such as fornix, hypothalamic, optic, 
and corticospinal, in being organized to send minimal instructions. 

 Figure 4.9 
  Design of sampling arrays . Fine sampling required for spatial acuity requires large 

areas of cortex. Shown here is the mechanosensory system of the star-nosed mole. 

 Upper:  Frontal view shows tip of nose surrounded by 22 fleshy appendages.  Middle 
left : Each nostril surrounded by 11 appendages, all covered by mechanoreceptors. 

No. 11 bears the densest distribution of receptors and thus serves as a mechanosen-

sory fovea.  Middle right : Each appendage is represented separately in somatosensory 

cortex (S1), with no. 11 occupying the greatest area.  Lower:  When a lateral append-

age contacts an object of interest, the nose shifts to touch it with no. 11, the foveal 

appendage. Reprinted with permission from Sachdev and Catania (2002). 
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 The motor stratum of the superior colliculus represents an intermediate-
level pattern generator. It is tweaked by succinct executive decisions from 
above and delivers succinct instructions to low-level pattern generators. But 
it must also fulfill one more responsibility — to inform higher levels that its 
order:  “ Look! ”  has been sent.  16   This signal, termed  corollary discharge , 
informs frontal cortex that the sensor is being repositioned. Why is this 
signal needed? 

 Corollary Discharge   ,    
 When the retina is swept passively across a scene, the scene appears to 
move. The reader can confirm this by closing one eye and jiggling the other 
with a forefinger (gently!). However, when the superior colliculus  orders  the 
eye to sweep actively, the scene appears stable. The trick to stabilizing the 
scene when the brain moves the eye is to relay the order:   “  move! ”  to brain 
regions where the smaller patterns have finally been assembled into large, 
coherent patterns — corresponding to integrated perceptions. These areas, 
lying anteriorly in the parietal and prefrontal cortex ( frontal eye field ), know 
where the eye is looking — but they also need to know where the eye is  about 
to look , so that they can compensate in advance before the motion occurs. 
This prediction, by allowing compensation, stablilizes perception — when 
we move our eyes, the world appears to remain stationary, as it should 
(Sommer  &  Wurtz, 2008; Wurtz et al., 2011). 

 The anterior frontal cortex is as far away from the superior colliculus as 
it is possible to be, so one might wonder why spend so much wire? One 
reason is that large patterns are assembled step-wise by cortical areas that 
press ever forward (chapter 12). By the stage where behaviorally relevant 
patterns have been assembled, compared to stores, and readied for use in 
selecting an action, the anterior frontal lobe is pretty much the last bit of 
available real estate. Moreover, because this cortical region decides where to 
look, it is precisely the site that needs corollary discharge to compensate for 
self-motion. 

 Another reason to control eye movements from the anterior frontal lobe 
is that, beyond their aid to sensing, eye movements also serve social com-
munication. When someone looks us in the eye (or fails to), we notice. 
Even a dog notices and becomes aggressive when stared down by an unfa-
miliar human. Thus, as the cortical areas for social communication expand 
in the frontal and temporal lobes (chapter 12), they require a mechanism 
for sending executive summaries down to the superior colliculus. So design 
again economizes by using long pathways to send modest messages:  “ Look 
here! ”  or  “  Don ’ t  look here! ”  — skipping long, expensive explanations. 
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 In summary, to build efficient sensors, the brain makes them mobile. It 
also compensates for self-induced motion, targeting the highest levels 
where choices and actions are being selected. These high-level mechanisms 
can then efficiently direct the low-level circuits that generate stereotyped 
patterns of movement. This  motif  drives orienting movements: the pri-
mate ’ s eyes, the cat ’ s external ear, and the rodent ’ s whiskers and sniffing. 
These circuits use modest tracts to govern low-level pattern generators 
located near the relevant motor neuron clusters. This is the same motif that 
regulates internal systems and behavior. 

 Processing and storage of input patterns 

 Patterned inputs encounter the same constraints as patterned outputs, and 
to economize, they follow the same principles. First, the inputs deliver 
what can be computed locally; second, they relay upward only what is 
needed to assemble larger patterns. Each successive stage of processing 
sheds unneeded information. These principles also apply to storage: 
save only what is needed, for as long as it is needed, and in the most 
compact form. 

 Compute locally 
 Economy begins with sensory transduction. Because sending information 
at high rates costs more (figure 3.6), sensors use separate lines for different 
rates. For example, certain mechanosensors in the skin are wrapped in an 
onion-like capsule that filters out slow changes and delivers the fast ones to 
a mechanosensitive cation channel in the nerve terminal at the onion ’ s 
core (figure 10.3). Other types with different capsules locate at different 
depths within the skin to help filter out the fast changes and capture slower 
ones. Skin sensors of temperature, noxious pressure, and noxious chemicals 
operate still more slowly — which allows still lower spike rates and finer 
axons. Consequently, the distribution of fiber diameters from sensory 
nerves resembles that of central tracts: many fine fibers and fewer 
thick ones. 

 Exemplifying the rule,  compute locally,  are two types of pressure receptor 
located on the foot. Each demands a prompt behavioral response without 
waiting 200 ms and expending more wire to consult higher processors. The 
responses are opposite: one extends the limb to support the body; the other 
flexes the limb to remove it from contact with the ground. 

 For example, pressing your bare foot on a smooth surface activates an 
array of low-frequency pressure receptors that excites the pattern generator 
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for limb extension to support your weight. But pressing your foot on a 
sharp point activates higher frequency pressure receptors that excite the 
pattern generator for limb flexion to withdraw your weight and for limb 
extension on the opposite side to support your weight. This occurs faster 
than you can  feel   “ Ouch! ”  because the higher frequency pressure responses 
travel over thick, fast-conducting wires that couple directly to the local pat-
tern generator (  figure 4.1 ). 

 Such direct functional connections between specific sensory inputs and 
specific motor outputs were historically termed  reflexes  (Sherrington, 1906). 
By now the design is seen as coupling each receptor type to the appropriate 
pattern generator. This design saves time, wire  . . .  and grief. 

 Relay to cortex 
 The small pattern carried by a single sensory axon resembles a piece of jig-
saw puzzle to be assembled with other pieces into a larger pattern of suffi-
cient quality for comparison to stored patterns. Assembly is a task for the 
cerebral cortex, but to reach that level, input arrays require serial  “ prepro-
cessing ”  to reduce firing rates by stripping away redundancy and unneeded 
information. This requires that slow and fast signal components that were 
transduced separately maintain their separation via  parallel pathways  all the 
way to cortex. Thus, skin sensors signaling pain and temperature with low 
mean rates are processed by one set of circuits near their entry points (spi-
nal cord and lower brainstem) whereas sensors signaling joint angle, mus-
cle length, and whisker deflection with high mean rates are processed by 
different circuits  17   in lower brainstem. 

 For most sensors the spike rates are still too high for direct relay to cor-
tex, so a central integrator ( thalamus ) is interposed to concentrate the mes-
sage, that is, more bits per spike (figure 3.5C). This allows a two- to fourfold 
reduction in mean spike rate on the path to cortex. The thalamus is also 
used by other brain regions, such as cerebellum,  striatum , and superior col-
liculus, for the same function (Bartlett  &  Wang, 2011; Sommer  &  Wurtz, 
2004).  18   The computational strategy and synaptic mechanisms to achieve 
this function are described in chapter 12. The exceptions to this design are 
the olfactory sensors which signal at such low rates that, following a single 
stage of preprocessing in the  olfactory bulb , they are allowed to skip the tha-
lamic relay and ascend directly to cortex (Friedrich  &  Laurent, 2001). 

 Cortex finds larger patterns 
 The task of sensory cortex is to rapidly capture correlations of higher order 
from the array of local correlations relayed from thalamus. This proceeds by 
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stages, first across layers of each primary area ( V1, S1, A1 ) and then across 
successive areas, until single neurons eventually report patterns of clear 
behavioral relevance that identify an object by sight, touch, or sound (fig-
ure 12.11). Such patterns emerge in specialized patches where most neu-
rons respond only to that pattern and not to the fragments that comprise 
it, thus an area for faces, objects, scenes, and so on (chapter 12). 

 A reader might worry that the world ’ s infinity of categories would require 
a corresponding infinity of cortical areas, but actually, the number only 
needs to match categories that matter most deeply to the animal. Smaller 
brains operate with fewer categories, so the whole mouse cortex divides 
into about 20 areas, whereas human cortex has about 200 (Kaas, 2008). As 
areas attain higher levels of abstraction, each contains less information and 
thus requires less space. So the early cortical areas, which first process tha-
lamic input, are large, whereas later areas for high-order patterns are small 
(figure 12.11) 

 This design — many small areas operating in parallel — continues the 
principles of economy. Resources can be assigned according to what mat-
ters most to the animal. Processing can proceed at lowest acceptable rates 
and at lowest acceptable spatial resolution. For example, an  object-grasp area  
that needs only coarse patterns can download them at an earlier stage than 
an  object identification area  that needs more detail (Srivastava et al., 2009; 
Fattori et al., 2012). Wire is saved by locating areas that assemble the pat-
terns near to the areas that use them (chapters 12 and 13). For example, face 
areas locate anteriorly in the temporal lobe on the path toward areas that 
evaluate facial expression. An object-grasp area locates posteriorly in the 
parietal lobe — on the path toward motor cortex that guides grasping. Thus, 
the overall processing scheme for cortex reflects the three design principles 
seen at lower levels: send only what ’ s needed; send slowly as possible; mini-
mize wire. 

 Storing Patterns 
 To store small, evanescent patterns encoded by an array of thalamic neu-
rons, would be costly. If patterns were all stored at this level, high-level 
images could in principle be reconstructed. However, with the optic nerve 
delivering 10 Mbit s  – 1  to the thalamus, storage needs would soon exceed 
any conceivable capacity. Moreover, if data were stored raw, it could only be 
filed by order of arrival — so to retrieve images from stored fragments would 
be a computational nightmare and impractically slow. So an animal should 
store high-level patterns and only  particular  ones that can improve future 
behaviors. 
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 Each species stores patterns critical for its economic strategies. For exam-
ple, a nutcracker jay living at high altitude caches nuts at numerous sites in 
autumn and descends to a valley for winter. Returning in spring, it recalls 
myriad cache locations to sustain itself until the summer brings fresh gro-
ceries. For humans, what matters most is our ability to rapidly recall a face, 
along with any historical significance that we can attach to the face we are 
facing. This allows the best chances for selecting an appropriate behavior. 

 Yet we must not store every face encountered on a stroll through the 
park — only ones likely to prove significant. So a potentially important face 
needs to be tagged — cognitively and affectively — and then filed. Upon 
reencounter, the original image is retrieved and held in  “ working memory ”  
for comparison to the current image. These various processes require coop-
eration between several neural structures. The main cortical face 
area connects with the amygdala, which  “ stamps ”  the image from its 
catalog of innate emotional expressions. To further annotate the image, 
the striatal system for reward prediction connects to the face area via a 
long loop and to the amygdala (Middleton  &  Strick, 1996). Then, they 
all connect to sites for working memory and behavioral choice in 
prefrontal cortex. 

 These organs for pattern recognition, storage, evaluation, and behavioral 
choice interconnect strongly; therefore, by locating near each other, wire is 
reduced. Their location anteriorly in temporal and frontal lobes is no mys-
tery: the posterior regions are already occupied by areas concerned with 
pattern assembly. Thus, in mammals where higher degrees of sociality 
require the brain to enlarge, the expansion occurs disproportionately in 
anterior regions for cognition and emotional expression (Dunbar  &  Shultz, 
2007). Thus, although human and macaque collect similar amounts of sen-
sory information (e.g., their retinas are nearly identical),  19   humans greatly 
expand the number and size of cortical areas for assembling the higher 
order patterns. This occurs especially in forward regions that include amyg-
dala, prefrontal cortex, and hippocampus. 

 Correcting errors 

 Evaluating behavior: Two kinds of prediction error 
 The parts of the motor system that directly generate and distribute final 
output patterns (behavior) require only a small fraction of total brain vol-
ume. However, the adjective  “ final ”  is slightly misleading. Each motor act 
is also a beginning: it is a provisional answer to some predicted need. Since 
needs recur, output patterns might be improved if their effectiveness could 
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be evaluated. Therefore, the brain invests heavily in several systems for 
evaluation and error correction. 

 One system asks,  “ How precisely did the actual output pattern match the 
intended pattern? ”  This system computes the difference between the 
intended pattern and the actual pattern; then it feeds the error back to com-
mand structures that gradually improve performance. This serves  motor 
learning  — what is gained from practicing the piano or the golf swing. Mind-
ful repetition improves speed and accuracy — and also efficiency — since a 
motion that begins awkwardly eventually gains grace and saves energy 
(Huang et al., 2012). This system also serves cognitive and affective pro-
cesses: it compares intended cognitive and emotional patterns to what 
actually occur and then feeds back to improve subsequent performance. 
Thus, motor learning is subset of  intention learning . 

 Another system asks,  “ Was the act, however well performed, worth the 
energy and the risk? ”  This system compares the expected payoff from a 
particular act to what was actually gained. The neural mechanism rewards 
a better outcome by releasing a pulse of dopamine at key brain sites and 
punishes a poorer outcome by reducing dopamine and enhancing other 
chemical signals. This is  reward-prediction learning , and one can easily imag-
ine its myriad ramifications. Reward-prediction learning evaluates every 
choice and thus charts the course of our lives: cereal or toast; law or medi-
cine; choice of mate, friends, and retirement fund (chapter 14). 

 Intention learning and reward-prediction learning employ different 
brain structures, and both are large (Doya, 2000). The organ for intention 
learning is the cerebellum, and the organ for reward-prediction learning is 
the striatum (  figure 4.10 ). Neither structure directly modulates the final 
output: they do not send wires to the low-level pattern generators. Rather, 
they return error signals to particular high-level organizers of behavior. For 
example, the cerebellar region that serves motor learning ( anterior lobe ) 
returns its updating signal to motor cortex. Cerebellar regions that serve 
perceptual, cognitive, and affective learning return their updates to cortical 
areas for pattern recognition in temporal and parietal cortex and to areas 
for behavioral choice, such as prefrontal cortex (Strick et al., 2009; Schmah-
mann  &  Pandya, 2008). 

 Cerebellar and striatal output tracts both use high spike rates that require 
thick axons. In fact, the striatum is named for striations due to bundles of 
thick, myelinated axons (  figure 4.10 ). High spike rates should be reduced 
before the messages are broadcast. Both circuits do this, as noted, via a tha-
lamic relay. Cerebellar and striatal design will be considered further in 
chapter 13.    
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 Conclusions regarding organization of mammal brain 

 This chapter has sketched how three principles ( send only what is needed ; 
 send at the lowest acceptable rate ;  minimize wire ) shape brain design to 
accomplish its seven broad tasks (see figure 3.2). The layout explained here 
extends upward from a scale of millimeters. It does not explain design of 
local circuits that analyze and integrate input patterns or generate output 
patterns. Those compute on a scale of nanometers to micrometers and 
are topics for chapters 7 – 11. This chapter also does not explain the brain ’ s 
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 Figure 4.10 
  Rat brain in horizontal section . Note that striatum lies nearest to the anterior cerebral 

cortex. Striatum contains dense bundles of myelinated axons (pale) whose large cali-

ber reflects their high spike rates. Note also the deep cerebellar clusters which reduce 

the number of high-rate axons before projecting to thalamus where rates are reduced 

before relay to cerebral cortex. Left optic tract is dark because a protein tracer injected 

into the eye was taken up by ganglion cells and transported inside their axons to the 

brain. Tracer is visualized here by a specific chemical reaction. Image courtesy of H. J. 

Karten and reprinted with permission;  ©  The Regents of the University of California, 

Davis campus, 2014. 
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striking structural diversity on the scale of micrometers to millimeters, 
such as the different structures for cerebellar versus cerebral cortex and 
the specialized substructures of cerebral cortex. These are treated in 
chapter 13. 

 Insect Brain 
 We consider now the insect brain, emphasizing  Drosophila , because of its 
importance for genetic analysis — like mouse. But we also include other 
insects, such as locust, wasp, cricket, and bee that share various broad fea-
tures of somatic and neural design and are profoundly specialized for par-
ticular lifestyles and habitats (Burrows, 1996; Strausfeld, 2012). Just as we 
referred to  “ mammalian ”  brain in preceding sections, we will refer to 
 “ insect ”  brain in this section.  20   

 The first point is that the insect brain needs to accomplish the same 
basic tasks as the mammalian brain (figure 3.2). Second, it is governed by 
the identical constraints: the law of diminishing returns (figure 3.6), plus 
the need to minimize wire (  figure 4.1 ). Third, the insect brain also predic-
tively regulates the internal environment and efficiently couples the inter-
nal organs (see figure 3.4). Finally, the insect brain couples the inner and 
outer worlds (  figures 3.2 and 4.3 ) and, following the scythe of Saturn, 
encounters the same types of information, which it must analyze and 
integrate to satisfy similar behavioral demands. So we should expect simi-
larities of macro-organization. Indeed, they are numerous and striking 
(  figure 4.11 ).    

 The insect brain, like the mammalian, is organized into defined neural 
clusters with locally dense connections plus distinct tracts for more distant 
connections (Chiang et al., 2011). Brain outputs include a rich system for 
wireless signaling, starting with two neurosecretory bodies at the back of 
the brain ( corpora cardiaca  and  corpora allata ) whose neurons secrete neuro-
modulators and hormones into the circulation (analogous to the hypotha-
lamic neurosecretory clusters). These neuromodulators and hormones, 
which include over 50 neuropeptides, govern the insect ’ s internal milieu by 
acting on energy metabolism, salt and water balance, growth/molting, and 
reproduction. Autonomic neurons cooperate with these hormones to coor-
dinate visceral function with behavior (Cognigni et al., 2011). For example, 
gut neurons interact with hormones to increase intestinal throughput to 
fuel egg production and also to control appetite. These concerted actions of 
wireless and slow wire processes in insects resemble those of the vertebrate 
hypothalamo-pituitary and autonomic systems, and there appears to be a 
common evolutionary origin (Arendt, 2008). 
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  Frontal view of fly brain shows prominent areas devoted to specific functions .  Vision:  

Compound eye, hexagonal array of optical sampling units passes information se-

quentially to lamina — collect and sort inputs, medulla — detect local patterns, lobula 

(and lobula plate not seen in this view) — assemble small patterns into larger patterns, 

anterior optic tubercule — associate larger patterns.  Olfaction:  Glomeruli in antennal 

lobe — collect and sort inputs and project to mushroom bodies, which identify pat-

terns.  Learning : mushroom bodies — integrate diverse information, learn patterns 

and associate with punishment and reward.  Integration:  Pars intercerebralis connects 

two sides of brain.  Distribution:  Suboesophageal ganglion — integrate information for 

wired and wireless output to body. View of a three-dimensional reconstruction of a 

 Drosophila  brain stained with antibody for synapses to show areas where processing 

takes place. Image courtesy of Ian Meinertzhagen. Reconstruction can be rotated and 

viewed from different angles at h ttp://flybrain.neurobio.arizona.edu/Flybrain/html/

contrib/1997/sun97a/.  
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 Insect brain uses these systems to coordinate visceral, behavioral, and 
immune responses to stress, but instead of the vertebrate ’ s adrenalin ( epi-
nephrine ), insects use octopamine (Verlinden et al., 2010). Thus, during 
emergencies,  “ fight or flight, ”  octopaminergic neurons raise octopamine 
concentration in hemolymph (like adrenalin in vertebrate blood), which 
acts broadly on endocrine cells and fat body (similarities with vertebrate 
liver) to mobilize energy reserves, on muscle to increase power, and on sen-
sory receptors and circuits to increase sensitivity and response speed. Octo-
pamine neurons also directly contact endocrine glands, heart, muscle, and 
certain brain regions for specific purposes. For example, in locust 40 identi-
fied neurons ( DUM ) innervate flight muscles to regulate fuel supply   (Bur-
rows, 1996). At rest the neuron fires steadily, maintaining the supply of 
 “ fast burning ”  sugars needed for takeoff. During steady flight the DUM is 
silenced, and energy supply switches to the larger reserves of slower burn-
ing fats. The DUM ’ s low mean firing rate, 0.5 – 1 Hz, resembles mammalian 
autonomic nerves. 

 Insect brains also have clocks set by light — indeed the molecular mecha-
nism of animal clocks was first determined in  Drosophila  (Weiner, 1999). 
 Drosophila  ’ s roughly 150 clock neurons form a distributed system that gov-
erns catabolic/anabolic phases, including a sleep phase for the consolida-
tion of neural processing (Allada  &  Chung, 2010; Crocker  &  Sehgal, 2010). 
Some clock neurons form small clusters, mini-SCNs, that collect specific 
entraining inputs from the compound eye, the simple eyes ( ocelli ), and a 
pair of photoreceptor cells within the brain. Other clock neurons express 
their own photopigment and so can collect photons through translucent 
cuticle. Thus, the fly ’ s clocks locate anywhere they are needed. We specu-
late that this distributed design saves wire in a small brain. 

 Collecting patterns 
 Investment in sensors to collect patterns is strongly tuned to social and 
economic strategies.  Drosophila  ’ s compound eye is relatively small, and the 
photoreceptors gather information at a low rate — good enough for hover-
ing over decaying fruit. However,  Coenosia , a close relative with similar 
body size, is an aerial predator and, to resolve and track its prey, requires a 
threefold larger eye and photoreceptors with fourfold higher bit rates 
(Gonzalez-Bellido et al., 2011). In accordance with the law of diminishing 
returns for photoreceptors,  Coenosia  ’ s high-rate eye costs more space and 
energy per bit (chapter 8). 

 To identify rotting fruit and detect  pheromones  (secreted chemical factors 
that trigger social responses),  Drosophila  invests in about 50 types of 
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olfactory receptor. These are more than are used by the louse that parasit-
izes humans (10) but fewer than are used by the honeybee (160) and fire ant 
(400) for their extensive foraging and chemical communication. Certain 
insects also invest in mechanical apparatus to improve their efficiency at 
pheromone detection. For example, male moths commonly use broad 
antennae as molecular sieves, which they push through the air to trap mol-
ecules of female attractant. 

 Meanwhile,  Drosophila  ’ s antennae specialize to register not the aroma of 
courtship but its music. Both sexes sing to each other. The vibrations, reach-
ing 500 Hz, are received via the antenna and transmitted to its base to 
activate about 500 mechanosensors ( Johnston ’ s organ ). These are equipped 
with mechanical feedback to boost the gain, like hair cells in the mamma-
lian cochlea, to operate near the sensitivity limit set by Brownian noise 
(Immonen  &  Ritchie, 2011). 

 Moths are hunted by bats using echolocation. So the moth invests in a 
pair of simple ears, each with only one or two sensors, and couples their 
outputs to a simple pattern generator for evasive flight. When the sensors 
detect a bat ’ s ultrasonic chirp, evasive flight is engaged, and the moth dives 
to the ground (Roeder, 1967). This system provides a cheap answer to the 
bat ’ s high-tech, super-expensive sonar. 

 Insect sensor arrays, like mammalian sensor arrays, are subject to the 
sampling theorem (Nyquist ’ s rule). To achieve high resolution at acceptable 
cost, they too combine broad, coarse sampling with local, fine sampling —
 both in space and time. For example, a male housefly pursuing an evasive 
female at high angular velocities is aided by his visual  lovespot . The forward-
facing photoreceptors pack especially densely to improve spatial resolution, 
and they produce especially fast electrical responses to improve temporal 
resolution — both needed to track the speedy female (Burton  &  Laughlin, 
2003). But the lovespot, like a mammalian fovea, must not be too broad, 
because it is expensive, so the fly uses the same solution: motorize the sen-
sor. During pursuit, a dedicated tracking system controls head and body 
movements to keep the lovespot centered on the target. 

 In short, insects invest in sensors according to need and locate the sen-
sors where they will be most useful: olfactory and auditory sensors on the 
antennae that project into the air stream; auditory sensors on crickets ’  fore-
legs to space them widely (thereby improving sound localization), taste 
sensors on the landing gear (feet), mechanosensors on the wing. Each sen-
sory system is used to inform the others; for example, an odor that attracts 
 Drosophila  increases the accuracy with which its visual system guides its 
flight (Chow et al., 2011) — cross-modal interactions that are also used by 
mammals (Burge et al., 2010). 
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 Processing and storage 
 Insect sensory processing resembles mammalian processing in that small 
patterns collected by sensors are filtered and then assembled into larger pat-
terns. To assemble visual patterns, the fly identifies spatial and temporal 
correlations via successive neural layers (  figure 4.12 ). First, the lamina sums 
correlated inputs and removes redundancy associated with the level of illu-
mination. Then the medulla identifies local features which the next layers 
( lobula  and  lobula plate ) use to detect larger and more complicated patterns. 
Then their outputs distribute to various smaller regions ( optic glomeruli ) 
where they are processed before projecting forward to integrative centers in 
the  protocerebrum . Each optic glomerulus collects inputs from a particular 
ensemble of neurons in the lobula, suggesting that higher order patterns 
are being segregated. 

 The architecture of the fly visual system resembles in several respects 
that of mammal. The fly preserves spatial continuity of the retinal image by 
mapping the output from one layer, point by point, onto the next layer —
 across the many stages of processing. However, at the final stage, the optic 
glomeruli abandon retinotopic organization, thus shedding  “ where ”  infor-
mation while sorting out  “ what, ”  reminiscent of the  ventral stream  of the 
mammalian cortical pathway (chapter 12). 

 The layers and maps of vision ’ s earlier stages are computationally effi-
cient because all parts of an object represented in the retinal image are 
spatially and temporally continuous. These properties of the input allow 
local features (local motion, local edges) to be extracted and mapped at the 
lower levels and then assembled at higher levels to define objects and 
scenes. Extracting all local features first, as with insect medulla and mam-
malian visual cortex, provides a communal data set to be shared by various 
higher order mechanisms, and this conserves space and energy. Local pro-
cessing, mapping, and the orderly projections from each layer to the next 
also save wire, as do the orderly maps of different modalities within a tract 
(Niu et al., 2013; chapter 13). 

 Despite an efficient architecture, visual processing for form, motion, and 
color is computationally demanding. The visual system uses 70% of the 
fly ’ s neurons, of which most are in the medulla, which extracts local fea-
tures using about 150 different types of identified neuron. Thirty-five types, 
replicated in each of the medulla ’ s 800 retinotopic columns, interrogate the 
image for local features. In this respect the fly ’ s medulla is analogous to the 
mammal ’ s primary visual cortex, also the largest visual area (chapter 12).    

 The olfactory system is structured differently (  figure 4.12 ). Whereas 
vision assembles patterns stepwise across four layers, olfaction uses just two 
(Masse et al., 2009). The first layer ( antennal lobe ) collects input from 45 
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  The visual system is deep and maps spatial position. The olfactory system is shallow 
and processes globally, without reference to spatial position. Left:  Fly visual system 

processes retinal image in four successive layers. Lamina assembles and sums cor-

related inputs and reduces redundancy (chapter 9); medulla extracts local features; 

lobula and lobula plate assemble larger patterns (lobula — color, form and motion; 

lobula plate — motion). The first three layers map retinal image (arrow) across col-

umns of neurons. The last layer, optic glomeruli, does not map, it generalizes. Each 

glomerulus collects from all neurons coding the same pattern, irrespective of spatial 

position.  Right:  Fly olfactory system processes information in just two layers. First 

the antennal lobe assembles and sums correlated inputs from receptor neurons. A 

glomerulus collects from neurons with same olfactory receptor and filters to reduce 

redundancy. Then 2500 Kenyon cells in mushroom body extract from all 45 glom-

eruli the patterns that define odors. Each Kenyon cell associates synaptic input (tri-

angles) from small subset of 10 glomeruli to form an efficient sparse code (2 associ-

ated synapses shown on starred Kenyon cell). Diagrams simplified and not to scale. 

Visual based on Strausfeld (2012); olfactory based on Masse et al. (2009). 
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types of olfactory receptor on the antenna, collects each type in a separate 
synaptic glomerulus, sums these correlated inputs to reduce noise and fil-
ters to reduce redundancy. The results are relayed to the second processing 
layer, residing in the mushroom body, which is the insect ’ s seat of learning 
(see below). The second-stage neurons compare all 45 olfactory inputs and 
learn by association the unique patterns of glomerular input that define 
particular odors. The mammalian olfactory system employs a remarkably 
similar structure (Wilson  &  Mainen, 2006). It uses an olfactory bulb with 
glomeruli, one for each receptor type, and after filtering, it projects straight 
to cortex for association and learning. 

 Two-stage processing works for olfaction because, unlike vision, there 
are no local features. The molecule or mixture that characterizes an odor 
arrives in a volume of air for a certain time, but there are no higher order 
spatial correlations to help identify it. The correlations that identify an 
odor are distributed across receptors: each type binds a spectrum of molecu-
lar species, each with different affinity. Thus, an odorant, whether from a 
single molecular species or a mixture, activates several receptor types to dif-
ferent degrees, to produce a correlated pattern of receptor activations — and 
that defines an odor. 

 The pattern from the array of glomeruli transfers to the mushroom body 
(Laurent, 2002;   figure 4.12 ). Because each odorant stimulates several recep-
tors, and each receptor contributes to the coding of many odorants, the 
mushroom body ’ s task is to find correlations across receptor inputs — the 
pattern that defines a particular odor. When a new and significant odor is 
encountered, the new pattern is learned. To optimize the number of differ-
ent patterns that can be represented by the mushroom body ’ s 2500 Kenyon 
cells, the information is coded sparsely with few spikes (Jortner et al., 2007). 

 In short, there are profound differences across sensing systems within an 
animal, and profound similarities for a given sensing system across animals 
(insect vs. mammal). Olfactory and visual designs differ because the small 
patterns that they collect present different statistics and thus require differ-
ent processing. Olfactory designs are similar because the input statistics for 
insect and mammal are the same and thus require similar processing. The 
same goes for visual designs. 

 Nonetheless, insect and mammalian designs are not identical, probably 
because they are differently constrained. For example, the fly visual system 
lacks a thalamus, which the mammal needs to reduce spike rates. Many 
fly visual neurons connect centrally over distances less than 0.5 mm, 
which means that signals can travel passively in graded (analogue) form. 
This saves space and energy in two ways: analogue can transmit high 
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information rates cheaply (chapter 5), and can avoid costly analogue  →  
pulsatile and pulsatile  →  analogue conversions. Thus the insect brain uses 
a more efficient design that cannot be implemented in a larger brain. 

 Assembling patterns and choosing an action 
 A fly assesses its current state from sensory patterns, compares this state to 
stored patterns to learn how its state is changing, and adjusts behavior 
accordingly. For example, it may steer flight to maintain a constant bearing 
with respect to the sun or change course to approach a rewarding object or 
avoid an aversive one. The  central complex , a compact modular structure 
strategically placed deep in the brain, plays a pivotal role in these processes 
of assessment, decision, and direction (Strausfeld, 2012; Strauss et al., 2011).    

 The central complex links sensory patterns to motor commands within 
a framework of body orientation (  figure 4.13 ). Its three largest structures, 
the  protocerebral bridge , the  fan-shaped body , and the  ellipsoid body  are linear 
arrays of neural modules that map the angle of azimuth (compass bearings 
on a horizontal plane) around the fly. The 16 modules of the protocerebral 
bridge map 16 sectors, eight on the fly ’ s left and eight on its right (  figure 
4.13 ), and project to eight modules in the fan-shaped body. Each fan-shaped 
body module accepts input from a protocerebral bridge module on the left 
side, and from its opposite number on the right side. This convergence 
establishes eight horizontal axes that pass through the center of the fly. 

 The eight fan-shaped body modules then connect straight to the eight 
modules of the ellipsoid body which, in turn, connect to the lateral acces-
sory lobes. Here the outputs from the central complex contact the descend-
ing neurons that drive motor pattern generators in the segmental ganglia. 
In short, by explicitly linking signals to azimuthal bearings (horizontal 
lines of sight from the fly ’ s cockpit), the central body relates the position of 
a sensory pattern to the body ’ s orientation and direction of movement. 

 Information on sensory patterns and stored patterns project across the 
directional modules via  horizontal neurons . Some horizontal neurons estab-
lish memory traces, and this allows generalization. Information gathered 
from a pattern observed in one direction is distributed so that an object 
learned in one location can be recalled in another. The horizontal projec-
tions stratify the fan-shaped body, and two of its layers have been linked to 
specific components of visual patterns: one layer to the orientation of visual 
contours and the other to the elevation of an object above the horizon. 

 Some patterns processed by the central complex are used for navigation. 
The central complex serves as a sky compass that enables locusts and mon-
arch butterflies to fly on a constant bearing by maintaining the body at a 
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  Central complex maps horizontal lines of sight.  Protocerebral bridge ’ s 16 modules 

map 16 sectors viewed from head, 8 on insect ’ s left and 8 on its right. Projection to 

fan-shaped body ’ s 8 modules connects opposite sectors (e.g. Left 1 and Right 8) to 

establish and map axes that pass through centre of head. This map is projected to 

ellipsoid body ’ s 8 modules, for output to neurons that select and control motor pat-

terns. The central complex then sends information about position of stimuli with 

respect to the head to neurons that control body orientation and the direction of 

locomotion. Figure based on Strausfeld (2012) and Strauss et al. (2011). Fly image 

from http://openclipart.org/image/800px/svg_to_png/120457/HouseFly2_.png. 
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given angle to the solar azimuth. When the sun is obscured, the pattern of 
polarized light in blue sky is used instead. For bees returning to the hive, 
and especially for monarch butterflies migrating 3,000 miles from Canada 
to Mexico, it is important to maintain the same true bearing (e.g., 185 
degrees South Southwest) throughout the day. For this, the sky compass 
mechanism uses clock information to correct for the sun ’ s movement, and 
neurons in the central complex are involved (Heinze  &  Reppert, 2011). 

 In short, the central complex is aptly named because it is both centrally 
located and central to the brain ’ s broad tasks that were indicated in figure 
3.2 (assemble larger patterns, compare to stored patterns, predict a promis-
ing output pattern, and call an integrated output). Thus in many ways the 
central complex is homologous to the mammal ’ s basal ganglia (Strausfeld  &  
Hirth, 2013). It seems remarkable that the central complex achieves all this 
with less than 600 neurons (592 at the last count). But how are output pat-
terns implemented? 

 Distributing motor patterns 
 The insect brain places its motor neurons in the body segments where they 
are needed and drives their detailed firing sequences with pattern genera-
tors located at the same site (like the mammalian spinal cord). These final 
pattern generators are coordinated across segments (e.g., three pairs of legs) 
via fibers that connect to pattern generators in other segments. These are 
organized into complex behaviors which the brain can call or restrain via 
descending neurons. Most famously, for a male mantis to copulate, he 
needs only to shed a descending restraint — which occurs when an obliging 
female  . . .  bites off his head. 

 Significantly, though perhaps anticlimactically, the distribution of fiber 
diameters in the connecting tracts resembles the mammal: many fine axons 
and fewer thick ones (  figure 4.14 ).    

 The activation or disinhibition of some rhythmic and stereotyped 
behaviors — for singing, mating, fighting, and so on — is controlled by small 
numbers of command neurons that activate dedicated networks (Hedwig, 
2000). To an observer, these behaviors appear quite complex and plastic —
 for example, Google  “ drosophila aggression ”  and watch a YouTube film 
that resembles a professional boxing match. Complex behaviors can be 
evoked from larger insect brains by electrical stimulation of single com-
mand neurons — recalling the complex behaviors evoked with fine elec-
trodes from the mammalian hypothalamus. 

 The insect brain, like the mammal, needs to distinguish activity created 
by its own motor commands from activity originating in the environment, 



How Bigger Brains Are Organized 99

0

%
 a

xo
n

s

4 62

10

30

20

0

locust ventral nerve cord

axon diameter (μm)

5μm5μm

 Figure 4.14 
  Distribution of fiber diameters in insect nerve cord . This distribution resembles 
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that is, it needs mechanisms for corollary discharge. For example, a cricket 
producing loud chirps risks desensitizing its own auditory system, which 
would prevent it from detecting softer external sounds (Poulet  &  Hedwig, 
2007). To avoid desensitization, the small motor circuit that generates the 
chirp drives a single neuron that directly blocks inputs from the two ears 
(  figure 4.15 ). This simple circuit shuts down auditory inputs for precisely 
the duration of a chirp, leaving the cricket free to listen for responses 
between chirps. This precise blanking-out of disruptive input resembles the 
suppression of visual inputs during a saccadic eye movement. The point 
here is that for most tasks that a mammalian brain needs to accomplish, so 
too must an insect brain. Moreover, the insect brain often uses similar 
strategies — but benefits from the smaller scale: fewer neurons and shorter 
distances (Chittka  &  Niven, 2009).    

 Correcting errors: Motor learning 
 The prominence of the cerebellum in mammalian brain might predict an 
obvious insect analogue, but there is no structure totally dedicated to motor 
learning. The suggestions are that motor learning is one of many tasks 
assigned to the mushroom bodies and to the central complex (Farris, 2011; 
Strauss et al., 2011). Indeed, with fewer body segments to coordinate, stiffer 
mechanics, and a body that is not continually growing, an insect arguably 
has less need for motor learning. 

 Nonetheless, some motor learning is essential. For example, flies improve 
their motor performance with practice (Wolf et al., 1992). Normally when 
a fly (or any animal) turns in one direction, the visual scene moves in the 
opposite direction. If this relationship between action and consequence is 
reversed by placing the fly in a flight simulator, the fly adjusts within 24 
hours. Now when it wants to approach a promising target, it turns  away  
from the target, and  voil á ,  the target enters its field of view. This resembles 
Kohler ’ s famous experiment: after students wore inverting spectacles for a 
day or two, the world appeared to be right-way up, but when they removed 
the spectacles, it appeared upside down. Why do flies need this motor 
learning? Motor learning is built into their flight control system to cope 
with changes of body mass (feeding, defecating, growth, and laying eggs) 
and damage to the wings. 

 Reward-prediction error 
 Insect brains are wired for associative learning and employ a system for 
computing reward-prediction error that follows the same basic learning 
rules as in mammals. The internal reward system uses dopamine and 
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  CD1, the neuron that prevents a cricket being deafened by its own chirp.   Right: 
 CD1 ’ s circuit. Central pattern generator (CPG) drives motononeurons (MN) rhyth-

mically to produce wing movements that generate chirps. Each chirp excites sensory 

neurons (SN) in cricket ’ s ear. SN output synapses excite omega neuron (ON), which 

conveys auditory information to brain. CPG also drives CD1, which inhibits ON1 

and output synapses of SN, thereby blocking signal to brain while chirp is being 

produced.  Middle : Recordings of signals within circuit. Bottom trace: Extracellular 

recording of spikes in MN, driven rhythmically by CPG. Middle trace: Intracellu-

lar recording from CD1. Excitatory synapses from CPG depolarize CD1 to produce 

bursts of spikes that follow CPG rhythm. Top trace: Intracellular recording from ON. 

Inhibitory synapses made by CD1 produce rhythmical bursts of IPSPs that block ON1 

output during chirps.  Left:  Morphology of CD1 revealed by intracellular dye injec-

tion. Axon connects dendritic arbors in the three thoracic ganglia, meta-, meso-, and 

pro-. Mesothoracic dendrites receive excitatory synapses from CPG. Prothoracic den-

drites make inhibitory synapses onto omega neuron, ON1, and all sensory neurons, 

SN. Vertical scale bar: 20 mV for CD1; 5 mV for ON1. Reproduced from Poulet and 

Hedwig (2006) with permission. 
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octopamine. The systems for computing reward-prediction error and for 
storing the lessons both reside in the mushroom body (figure 14.11). 

 The mushroom body, like mammalian cerebral cortex, participates in 
olfactory learning, associative learning, spatial learning, visual pattern rec-
ognition, attention, and sensory integration. The mushroom body, like cor-
tex, shapes its circuit architecture to view multiple inputs, looking for 
coincidences to associate with reward or punishment. This suggests a mul-
tipurpose cross-correlator that can be wired to evaluate a variety of associa-
tions and store the lessons. 

 As with other computing devices, new models allow new opportunities. 
Primitive parasitic wasps (early model) use elaborate mushroom bodies to 
find and store the locations of grubs hidden at particular sites within a 
plant (Farris  &  Schulmeister, 2011). Social wasps (later model) use this 
capacity to recognize each colony member by its distinctive face and body 
markings and to store this information along with knowledge of its posi-
tion in the dominance hierarchy (Sheehan  &  Tibbetts, 2011). Thus, the 
later model supports a complex social behavior that confers the benefits of 
communal foraging and the division of labor. Social insects, like social pri-
mates, build upon the low-level sensors, adding brain parts that enable 
social behavior. The parts that expand are those that recognize patterns, 
store them, and evaluate them via the system of reward prediction. 

 What a honeybee can do with a brain of 10 6  neurons seems prodigious. 
A bee learns to break camouflage, to navigate a maze via symbolic cues 
(blue, turn left; yellow, turn right), and to associate a flower with the time 
of day during which that particular species produces nectar. Bees can also 
perform delayed match-to-sample and symbolic match-to-sample tasks  21   
that were thought, until recently, to be confined to monkeys, human, dol-
phin, and pigeon (Srinivasan, 2010; Menzel, 2012). In short, absolute num-
bers of neurons seem not to be everything. What seems most important is 
that design takes full advantage of small size. 

 Efficiencies of small size 
 Because an insect is small, it can use an external skeleton. Small body and 
exoskeleton both allow a smaller brain, which is intrinsically more effi-
cient. A small brain uses disproportionately less wire than a larger brain, so 
it can locate cell bodies at the brain ’ s margins, out of the way of wires and 
tracts (chapter 13). As well as saving space, this also saves energy because a 
distant cell body reduces load on a neuron ’ s electrical circuit (chapter 7). 
Shorter wires allow more analogue signaling (e.g., worm; chapter 2), and 
what spikes are needed can travel at lower velocities on thinner axons. 
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Furthermore, a small brain allows a compact neuron to coordinate the 
activities of an entire system (figure 4.15) or to spread its dendrites broadly 
enough to extract a pattern from an entire sensory field. 

 An insect brain economizes by relaxing the specifications for workaday 
behavior. A low-mass insect, clad in tough exoskeleton, sustains less dam-
age in a collision or a stumble, so it can tolerate accident rates that would 
for humans be criminally negligent. The exoskeleton also lessens the bur-
den of motor control. Shorter limbs with stiffer joints and viscous damping 
are easier to manage, and the ability to place sensors in the exoskeleton to 
measure the most informative forces reduces the need to compute at higher 
levels. Mammals use the same strategy (see above), but an exoskeleton pro-
vides insects with more opportunities for sensor construction and place-
ment. Insects do require some high-performance control systems; it would 
be impossible for a fly to fly without one, but in many respects the insect 
body is less demanding and more adaptable. 

 The exoskeleton provides opportunities to reduce demands on the brain 
through embodied computation. For example, to beat its wings at 200 Hz, 
 Drosophila  builds an oscillator from its flexible exoskeleton and muscles 
that, when excited, contract in response to stretch (Dickinson  &  Tu, 1997). 
To kick start, a dedicated neural circuit excites an auxiliary muscle to con-
tract sharply and stretch the muscles that elevate the wings. As the eleva-
tors contract, they stretch the muscles that lower the wings. Coupled by the 
resonant exoskeleton, the antagonists pull back and forth, beating the 
wings. To keep the muscles excited, the brain need only deliver spikes at 
less than 10 Hz. Thus, an intermittent, low-rate input from the brain pro-
duces a high-rate, patterned output from the body, significantly reducing 
computational load. The kick-start muscle also yanks the legs straight, 
thrusting the fly upward as the wings start to beat, a case of  “ neatening up ”  
(chapter 1). 

 The brain can further reduce its computational load by taking shortcuts. 
Challenging problems are solved with simpler solutions that, while inexact, 
work well enough, and many animals, including humans, use these effi-
cient  heuristics  (Gigerenzer, 2008). Insects often use them to judge the sizes 
of much larger objects (Wehner, 1987) — an egg to be parasitized by a tiny 
wasp, a chamber in which to build a whole ants ’  nest, a target of given 
angular diameter — is it small and close by or big and far off? 

 A big problem for any animal is how to find its way in the world and 
return. The honeybee uses the sun as a compass to set its bearings from the 
hive to a productive clump of flowers. When the sun is obscured, the bee 
infers the sun ’ s position from the pattern of polarized light in patches of 
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blue sky. To relate a fragment of this polarization pattern to its stored map 
seems difficult, but the bee employs a shortcut: it reduces the two-
dimensional sky map to a one-dimensional map of  e-vector  versus bearing 
to the sun, ignoring the sun ’ s arc as it travels across the sky (Rossel  &  Weh-
ner, 1982). As expected, this extreme simplification produces serious errors 
(up to 30 degrees depending on the time of day), but these are of little con-
sequence because the bees all use the same map. Thus, when a scout returns 
to the hive on a bearing that, according to her faulty map is 50 degrees from 
the sun, she communicates this bearing to food gatherers. When these for-
aging bees set off, they head in the right direction because they use the 
same faulty map to set a bearing of 50 degrees. 

 In short, what insect designs demonstrate to an astonishing degree is the 
advantage of specialization. If a task is specified for a modest range of con-
ditions, then it can be done with a highly specialized design. This is the 
significance of J.B.S. Haldane ’ s famous remark that God seems to have had 
an  “ inordinate fondness for beetles. ”  Their primordial design apparently 
allowed them to specialize enormously — so each could do with great effi-
ciency what its niche required. A brain comprising small, specialized areas 
will, like an ecosystem of interacting specialists, be complicated. 

 Conclusions 

 Mammalian and insect brains accomplish the same core tasks and are sub-
ject to the same physical constraints, so both are designed to  send at the 
lowest acceptable rate  and  minimize wire . Both brains regulate the body ’ s 
internal milieu via slow, wireless (endocrine) signals, plus thin wires with 
extremely low firing rates (autonomic). Both send long-distance signals via 
tracts with mostly thin axons. Both arrange their sensors and brain regions 
in similar positions and use similar structures to perform similar computa-
tions. These designs operate at or above the level of the single neuron. But 
lower levels — molecules and intracellular networks — are subject to similar 
constraints and therefore follow similar principles, as described next in 
chapter 5. 
     
  
  
 
 
 

 

 
 



 Chapter 3 explained that information is transmitted when a signal reduces 
uncertainty about the state of a source. It further explained that in trans-
mitting information by pulses, the information rate (bits/s) depends on the 
pulse rate and timing precision. That chapter noted a law of diminishing 
returns: as pulse rate rises, there is less information per pulse (figure 3.6). 
Moreover, higher information rates (i.e., higher pulse rates and greater tim-
ing precision) use disproportionately more space and energy, both of which 
are limiting resources. These resource constraints directly suggested three 
principles for efficiency in transmitting information:  send only what is 
needed ;  send at the lowest acceptable rate ;  minimize wire . Chapter 4 showed 
that these principles shape many aspects of brain design on a spatial scale 
of centimeters down to micrometers. 

 Yet, as pulses transfer information over distance, they are mainly report-
ing results. The actual processing of information occurs mostly on a 1,000-
fold finer spatial scale, the scale of molecules. There information is processed 
by chemical reactions: molecules diffuse, bind, exchange energy, change 
conformation, and so on. The key actors at this level are single protein mol-
ecules (~6 nm). They are targets for diverse inputs, such as small  “ messen-
ger ”  molecules that, upon binding to a receiver protein, reduce its 
uncertainty about a source. Protein molecules also provide diverse outputs 
that, for example, alter the energy or concentration of other molecules, 
thereby reducing their uncertainty. 

 These processes not only operate at different scale, they often use a dif-
ferent format. Rather than being pulsatile, molecular signals are often 
graded, that is, analogue. Despite the change in format, the task remains 
the same: to reduce uncertainty. Therefore, the same principles for com-
municating information still apply. Chapter 5 explains how information is 
processed by single molecules. It identifies constraints on the information 
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capacity of a single protein molecule, and the irreducible cost of registering 
one bit. A logical place to begin is where information from an electrical 
pulse is forced to change format to a chemical concentration. 

 When one neuron sends a pulse to another neuron, there is a problem. 
The source wire that delivers it is separated physically from the receiver 
neuron by a gap of 20 nm. When a signal manages to cross that gap, there 
is another formidable barrier, a double layer of hydrophobic membrane 
about 5 nm thick. How to cross both barriers and finally deliver informa-
tion to the receiver? The membrane is equally a problem for wireless signals 
(chapter 4): how can a hormone outside the cell deliver its information to 
the inside? The solution in both cases is for the message to change format. 
This presents boundless opportunities to process information and also 
opportunities to lose it. 

 Information from a pulse crosses the gap as a puff of small molecules —
 appropriately termed  transmitter . Information finally enters a receiver neu-
ron when one or more transmitter molecules bind to a protein molecule 
that spans the cell membrane. Binding triggers the protein to change con-
formation, and that carries information into the cell. A wireless messenger 
(hormone) works the same way — binds to a transmembrane protein to 
change its conformation.  1    Thus, most transfer of information from a source 
neuron to a receiver neuron occurs via chemistry (concentrations, binding reac-
tions) and physics (changes in molecular structure).  

 Information can enter a cell in myriad ways. The change in protein con-
formation may open a channel through the membrane to admit ions that 
carry electrical current. Or it may cause a protein ’ s cytoplasmic tail to 
release a small molecule that binds and alters other proteins. An altered 
protein may search out targets by random walk (diffusion). To save time its 
search may be reduced from three dimensions to two by allowing the 
altered protein to skate with little feet along the membrane ’ s inner 
surface. 

 Such mechanisms accomplish much of the brain ’ s information process-
ing. They amplify, perform logical operations, store and recall, and so on. 
Although these mechanisms may be triggered by an all-or-none pulse, they 
themselves are generally graded: small molecules vary in concentration, 
activated proteins vary in number, ionic currents vary in amplitude, and so 
on. The information content of these analogue signals, as for the pulse 
code, can be usefully analyzed by Shannon ’ s formulas. A very few equa-
tions, all intuitive, can explain fundamentally: (1) what constrains infor-
mation processing by signals; (2) what reduces their information; and (3) 
why higher information rates are more expensive. 
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 The reward is the same as for pulses (equation 3.3): with these formulas 
one can  “ follow the money ”  and thereby discover how constrained neural 
resources are spent. Moreover, following the money at this nanoscale leads 
to all the remaining principles of neural design. So now we explain how 
Shannon calculated the amount of information needed to specify a source 
and how much information a signal can carry (figure 5.1; Shannon  &  
Weaver, 1949).    

 How much information is needed to specify a source? 

 The information needed to specify a source increases with the number of 
states that the source might occupy. Where there is only one state, there is 
no uncertainty, so no information is required and signals indicating this 
known state are  redundant.  Efficient designs will reduce redundancy to sat-
isfy the principle  send only what is needed . 

 If there are two equally likely states,  A  and  B , then by definition 1 bit of 
information eliminates uncertainty by identifying  A  or  B  (e.g.,  A  = 0;  B  = 1). 

Shannon
communication

 
channel

SA, SB, SC

PA

source receiver

Protein
communication

 

enzyme receptor

substrate, A Products, a and PA
a

 Figure 5.1 
  Shannon ’ s general communication system maps onto communication between two 
protein molecules . When Shannon ’ s source is in states  A ,  B , or  C , it transmits signals 

 S A  ,  S B  , or  S C   ,  so eliminating the receiver ’ s uncertainty about the state of the source. 

The protein source is an enzyme that, upon encountering substrate  A , produces two 

products  P A   and  a . The protein receiver is a receptor that specifically binds  P A  .  P A   ’ s 

presence or absence at the receptor ’ s binding site establishes the state at the source, 

namely, that  A  is present or absent. 
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Increase the source ’ s degrees of freedom from two to four states,  A ,  B ,  C ,  D , 
and the probabilities are lower, for example, 

  p ( A )  = p ( B )  = p ( C )  = p ( D ) = 0.25. 

 Now the situation is more uncertain, and to decide requires two bits. The 
first bit decides between two equally likely pairs, for example, ( A, B ) versus 
( C, D ), and the second bit decides between members of the pair. These two 
bits constitute a 2-bit code for states, such as 

  A  = 00;  B  = 01;  C  = 10;  D  = 11. 

 The fact that 1 bit specifies two states and 2 bits specifies four states illus-
trates a general relationship. When a source can be in any one of  U  equally 
likely states, to identify the state of the source a receiver must obtain 
at least 

  I  = log 2 ( U ) bits. (5.1) 

 Note that, as expected, the quantity of information needed to define the 
state of a source increases with the complexity of the situation — here the 
number of possibilities,  U.  

 Most sources in nature have states whose likelihoods differ, and this 
affects the quantity of information needed to specify a state. For example, 
when we change the probability distribution of the four states,  A ,  B ,  C ,  D  to 

  p ( A ) = 0.125;  p ( B ) = 0.5;  p ( C ) = 0.25;  p ( D ) = 0.125, 

 all four states can be identified by a 2-bit code: ( A  = 00;  B  = 01;  C  = 10;  D  = 
11), but a 3-bit code is more efficient (  figure 5.2 ). The first bit decides if the 
state is  B,  the second if it is  C,  and the third if it is  D  or  A . Note that each 
choice is binary and equiprobable — 1 bit. When used repeatedly, this 3-bit 
code is, on average, more efficient than the 2-bit code. On 50% of occasions 
the 3-bit code needs just 1 bit to identify the correct state,  p ( B ) = 0.5. On 
25% of the occasions, it needs 2 bits to identify the correct state,  p ( C )  = 
 0.25), and on 25% it needs three bits to identify the correct state,  p ( A )  + 
p ( D ) = 0.25. With usage so distributed, the average number of bits per deter-
mination of state is 

 0.5  ×  1 bit + 0.25  ×  2 bits + 0.25  ×  3 bits = 1.75 bits. 

 Thus, the 3-bit code is 12.5% more efficient than a 2-bit code. This illus-
trates one of Shannon ’ s discoveries: it is efficient to match a coding scheme 
to the statistical distribution of the states being coded. The brain got there 
first (chapter 9).    
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 The 3-bit code also reminds us that the number of bits needed to 
specify a state increases with the state ’ s uncertainty. One bit specifies 
the most likely state,  p ( B )  =  0.5; two bits the next most likely,  p ( C ) = 0.25; 
and three bits the least likely,  p ( A )  = p ( D )  =  0.125. In general, when the 
probability of encountering state  x  is  p ( x ), the information required to 
specify  x  is 

  I x   = log 2 (1/ p ( x )) =  – log 2 ( p ( x )) bits. (5.2) 

 This relationship is consistent with   equation 5.1 : when there are  U  equally 
likely states,  p ( x ) = 1 /U . 

 The four-state source explains the basics, but how does information the-
ory apply to the riotous possibilities of the real world? For practical applica-
tions, such as the design of his employer ’ s telephone network, Shannon 
derived a general equation. The number of bits needed to specify the state 
of  any  source is 

  H x p x p x
x

( ) ( )log ( ( ))= −∑ 2
1

 . (5.3) 
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  Two ways to improve efficiency with which signal states represent information. Left : 
This decision tree implements a 3-bit code to represent four states that have different 

probabilities. An alternative would be to assign 2 bits to every state, but 3-bit code 

is more efficient because half the signals transmitted (those for state  C ) use only 1 

bit, and this more than compensates for giving the least frequent states ( A ,  D ) 3 bits. 

 Right : A limited number of signal states is used most efficiently when all states are 

used equally often. In this two-state system the condition  p ( A ) =  p ( B ) = 0.5 maximizes 

information capacity at 1 bit per state. Left reprinted from Laughlin (2011). 
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 This quantity,  H ( x ), takes the information per state, as defined by its prob-
ability  p ( x ) in   equation 5.2 , multiplies it by the proportion of time the state 
is used,  p ( x ), and sums this quantity across all states. 

 Shannon named this quantity,  H ( x ),  entropy  because its equation (5.3) 
has the same form as Boltzmann ’ s equation for the entropy of a thermody-
namic system. Indeed, the two entropies derive similar quantities. 
Boltzmann ’ s entropy quantifies a system ’ s total disorder. Shannon ’ s entropy 
quantifies a system ’ s total uncertainty, and it enabled him to answer our 
next question. 

 How much information can a signal carry? 

 The number of bits carried by a signal is given by the entropy equation, 
here the entropy of signal states. We start with a signal ’ s ability to specify a 
source. When every source state is allotted its own signal state 
(a 1:1 mapping of source onto signal), the signal can carry all of the infor-
mation needed to specify the source because it can always represent each 
and every state of the source, and from equation 5.3 this information is the 
 source entropy . This equality suggests a general method to calculate 
the information carried by a signal. Identify the signal ’ s states and use them 
to calculate the signal ’ s entropy in bits. The calculation obviously holds 
when source states map 1:1 onto signal states, but is it valid when 
the source and signal states greatly differ? For example, is it valid when 
analogue signals from a microphone are transferred to the digital format 
of a CD or when analogue synaptic potentials trigger trains of action 
potentials? 

 Shannon proved mathematically that entropies equate across formats. 
Thus, it is always possible to devise a mapping whereby a signal with 
entropy  H  bits specifies the states of a source with an entropy  H  bits. Thus 
the information from a meandering source with many rare states, such as 
sounds in a telephone conversation, can be compressed into snappier codes 
that use fewer states more often, such as high frequency radio signals or bits 
in a digital network.  2   In short, to quantify how much information a signal 
can carry, just calculate its Shannon entropy using equation 5.3. Having 
done so, one can consider design issues for the signals that couple a neural 
source to a neural receiver. 

 Entropy sets the upper bound to a system ’ s information capacity, but 
communication systems generally and neural systems in particular are 
unable to fill that capacity. The first constraint is noise because, when noise 
enters a system, information is lost. Thus, we must consider how noise 
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affects the design of neural circuits. The second constraint is redundancy 
because, repeating a signal reduces a system ’ s capacity to send  new  informa-
tion. However, when noise is present, repetition can enhance the system ’ s 
ability to specify the source. Consequently, noise and redundancy in every 
real communication system are complementary. 

 How noise destroys information 
 Noise (random fluctuation that does not correlate with changes in signal 
state) destroys information by introducing uncertainty. In a noise-free sys-
tem, the receiver can associate a given signal state with a source state with 
total confidence; however, when noise is present, is a change sensed by the 
receiver signal, or is it noise? The quantity of information destroyed by 
noise depends on the uncertainty introduced by noise and, because bits 
resolve uncertainty, this is also the number of bits required to describe the 
noise — its Shannon entropy (equation 5.3). It follows that the information 
carried by a signal in the presence of noise is the signal entropy minus the 
noise entropy. Because entropy tends to increase logarithmically with the 
number of states (equation 5.1), and subtracting logarithms is equivalent to 
division, information increases as the logarithm of the ratio between signal 
and noise; log 2 ( S / N ). 

 Redundancy 
 Redundancy (signal state that represents something already known) carries 
no information. Redundancy comes in two forms. The first is a less extreme 
form of repetition — states are no longer completely correlated; they are par-
tially correlated. When state  A  correlates with state  B , receiving  A  increases 
the probability of receiving  B , thus reducing the uncertainty associated 
with  B , and hence  B  ’ s information content. Circuits commonly use lateral 
and self-inhibition to remove this form of redundancy in order to  send only 
what is needed , information (chapters 9 and 11). 

 In the second form of redundancy, the signal states are carrying less 
information than they might because they are used too frequently or too 
rarely. Consider a binary signal with two states,  A  and  B . The information 
carried by these two states depends upon the signal entropy, 

  H p A p A p B p B= − −( )log ( ( )) ( )log ( ( ))2 2  , (5.4) 

 and  H  peaks at 1 bit per state when  p ( A ) is equal to  p ( B ) (  figure 5.2 ). This 
optimum coding strategy, use states equally often, generalizes to systems 
with many states, and is widely employed in systems where the number of 
available signal states is severely limited by power restrictions and noise 
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(e.g., satellites, mobile phones). Retinal neurons face similar limitations 
and use this same strategy as do many other cell signaling systems (chapters 
9, 11; Bialek, 2012). 

 Now we know: (1) how much information is needed to describe a set of 
events (equation 5.3); (2) how much information a signal conveys about 
these events (also equation 5.3); and (3) how these quantities depend on 
redundancy and noise. This leads to another question: when events change 
rapidly, how can the brain keep up? To answer this, we derive an expression 
for information rates in bits per second. 

 Calculating the information rates of continuously changing signals 

 The rate of information transfer depends upon the amount of information 
conveyed by each signal state and the rate at which these states evolve over 
time. Chapter 3 gave the information rate for action potentials by calculat-
ing their entropy. This quantity depends on a physical property of the sig-
nal: discrete pulses timed with a given precision, a property that makes low 
rates cheaper. Other formats have different properties, and these impose 
different constraints on relationships between signal quality, bit rate, and 
efficiency. 

 Much of the brain ’ s information is represented by analogue signals that, 
by definition, change continuously. These include changes in concentra-
tion of messenger molecules, changes in the number of receptor proteins 
activated by a ligand, and changes in the electrical potentials generated 
across neural membrane by ion channels. As an analogue signal varies, it 
runs through a series of signal states (  figure 5.3 ). These states deliver infor-
mation at a rate that is the number of bits conveyed per state multiplied 
by the rate at which states change. The number of discriminable states 
is the range of response covered by signal and noise, ( S  +  N ), divided 
by the noise (  figure 5.3 ). Thus, from   equation 5.2 , each state delivers 
log 2 (1 +  S / N ) bits. The analogue signal can change level in time   Δ t  (  figure 
5.3 ). Thus, states are delivered at a rate  R  = 1/  Δ t , and when successive signal 
states are uncorrelated (i.e., no redundancy in the input), the information 
rate is 

  I  =  R .log 2 (1 +  S / N ) bits s  – 1 . (5.5)    

 In many practical systems, calculating rate is more complicated.   Equa-
tion 5.5  assumes that redundancy is zero, that is, there is no correlation 
between signal states. To achieve this, signal states must change randomly. 
To be truly random, the signal must be able to jump from any one state to 
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any other, but this ability is constrained by the time needed to make the 
jump. For example, an enzyme generates a product at a finite rate, so it 
requires time to change the product ’ s concentration in a compartment of 
given volume; similarly an electrical current supplied through a resistor 
requires time to charge a capacitor. Thus, the number of different states to 
which a signal can jump in one time interval,   Δ t , is limited by the rate 
at which the signal can change, but given sufficient time, it can move 
to any state. This time dependency complicates the calculation of 
information rates. 

 Shannon solved this problem by using the Fourier transform to convert 
the continuous analogue signal and noise into their frequency compo-
nents. Each frequency component is independent, in the sense that chang-
ing the amplitude or phase of one frequency component has no effect on 
any other frequency; consequently, every frequency carries its own infor-
mation. It follows that the total information carried by the signal is the sum 
of the information carried by each of its component frequencies. 

  I S f N f df
co

= + ⋅∫ log [ ( ) / ( )]2

0

1  , (5.6) 

 where  I  is bits per second,  S ( f ) and  N ( f ) are the power spectra  3   of signal and 
noise, and  co , the signal ’ s cutoff frequency, defines its bandwidth. 
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  Signal range, noise, and response dynamics determine the information rates of 
analogue signals . Noise divides a waveform ’ s signal range into discriminable states, 

and states can change at time intervals   Δ t . The faster, more reliable waveform obvi-

ously conveys more details of the signal. From equation 5.5, it also has a higher 

information rate because it has a higher  S/N  and, with shorter   Δ t , changes level at a 

higher rate. 
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 There are two provisos to this derivation of information rate (  equation 
5.6 ). The system must be linear, and both the signal and the noise must 
vary randomly with Gaussian distributions so that the frequencies being 
transmitted are uncorrelated. These conditions are reasonably well met 
when systems are driven with low-amplitude Gaussian inputs (e.g., Rieke et 
al., 1997). Note that when the spectrum of  S ( f )/ N ( f ) is flat, the sum across 
frequencies reduces to   equation 5.5 , with a bandwidth of 1/2 Δ  t  replacing 
the rate  R , 

  I  = ( bandwidth )log 2 (1 +  S / N ). (5.7) 

 This relationship between  bandwidth ,  S / N , and information rate,  I , affects 
neural design because to transmit information at higher rates, a neuron 
needs a wider bandwidth (faster responses) plus higher S/N, and these 
require extra materials and energy. Thus, we have a trade-off between 
resources and performance that, as we will see, profoundly influences neu-
ral design. 

 Information in any real system must be embodied physically or chemi-
cally. The brain uses  signaling proteins  to process information, so we now 
examine their physics and chemistry. 

 How protein molecules transmit and process information 

 A protein acquires its specific function by folding to reduce its free energy 
 A protein molecule is formed from a linear chain of amino acids linked in a 
genetically specified sequence (Alberts et al., 2008). The linear sequence 
becomes a useful molecule as follows. The chain is flexible, so it bends and 
folds to reduce its free energy by minimizing potential energy and maxi-
mizing entropy (Williamson, 2011; Dror et al., 2012). The charged amino 
side groups attempt to form pairs of attractive opposites (+ with  – ) and to 
avoid repellant likes (+ with +) or ( –  with  – ). To increase entropy, the hydro-
phobic side chains avoid polar groups and coalesce into oily cliques. All of 
this jostling for position must be achieved within packing constraints. 

 Buffeted by thermal energy, yanked up and down potential gradients, 
exchanging order for disorder, the protein molecule constantly changes its 
three-dimensional structure ( conformation ) until it falls into a local mini-
mum free energy that is deep enough to resist thermal motion. The protein 
molecule has reached a stable conformation (  figure 5.4 ). 

 This stable conformation determines the protein molecule ’ s physical 
and chemical properties (Williamson, 2011). A typical protein, with several 
hundred amino acids, folds into a 5- to 10-nm structure to adopt a form 
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that supports its function: long fiber to make a hair, globular block with 
attachment knobs to build the cytoskeleton, part of a stepping leg to move 
materials, and so on. A protein may locate a subset of amino acids where 
they can bind and interact with a specific molecule. Such a binding site 
enables the protein to collect and send information. 

 Binding specificity allows information transfer 
 Recall that information transfers when a change at the receiver can be asso-
ciated with the state of the source. Chemical binding satisfies this require-
ment. For example, when an enzyme molecule reacts with its substrate to 
produce its product, the enzyme only binds the substrate, and the receiver, 
a receptor protein, only binds the product (  figure 5.1 ). Thus, the source tells 
the receiver  “ substrate present ”  by using a diffusible messenger, the prod-
uct. If the enzyme and/or the receptor were to relax their binding specifici-
ties, other molecules in the cytoplasm would also bind. Such cross talk 
would reduce the probability that the receiver is responding to the presence 
of one particular substrate at the source. Thus, binding specificity enables 
information transfer. 

 Once a protein ’ s binding site receives information, how can it be further 
processed? By  allostery . This is a protein ’ s ability to respond to a specific 
input, such as binding a messenger, by switching to a new stable 
conformation.  4   

 How allostery works 
 Consider the protein molecule continuously changing conformation as it 
descends to its lowest available free energy level. This progression is, in 
effect, a voyage across an energy landscape (  figure 5.4 ) in which the map 
coordinates represent the protein ’ s conformation and the altitude repre-
sents its free energy.    

 The descent follows gradients in the energy landscape, and thermal jig-
gles push it over bumps. Thus, the protein explores a locale and finds a path 
to lower regions. When the protein enters a valley too deep for thermal 
forces to boost it out, it is trapped, and the conformation becomes confined 
to a small region (  figure 5.4 ). Here the protein may shuttle between a small 
set of functionally distinct conformations, or it may remain centered on 
one stable conformation (  figure 5.4 ). Thus confined, the molecule assumes 
a role dictated by its conformation. 

 Consider now what happens when an external factor alters the energy 
landscape. An external input could be a change in pH or electrical poten-
tial, it could be binding or releasing a specific molecule, or it could be an 
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  Protein structure, conformational state, energy landscape, and allostery. Upper : 
The  β 2 adrenergic receptor protein spans the cell membrane ’ s lipid bilayer. Here 

it is shown in the conformation where binding an adrenaline molecule at a site 

on the outside has opened a cleft for binding a G protein molecule on the inside. 
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put changes the energy landscape and the protein moves to conformation B. This 

is allostery. Upper adapted from  http://en.wikipedia.org/wiki/Beta-2_adrenergic_

receptor#mediaviewer/File:2RH1.png . 
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injection of energy via the attachment of a high-energy phosphate group to 
an amino side group. Such inputs alter the protein ’ s energy landscape, 
depressing some regions and elevating others (  figure 5.4 ). The protein 
responds by moving, within microseconds to milliseconds (Williamson, 
2011; Dror et al., 2012), to a new stable conformation. The new conforma-
tion differs physically and chemically from the previous one, so the mole-
cule reacts differently to chemical and physical inputs. This change enables 
it process information. 

 How a protein uses allostery to process information 
 A finite-state machine  5   processes information by running through a well-
defined sequence of state changes (transitions), each triggered by a particu-
lar condition, such as the presence or absence of an input, or a conjunction 
of inputs. This is allostery. As a protein molecule runs through a sequence 
of state changes, each conditional upon a particular input, it produces an 
output conditional upon those inputs (Huber  &  Sakmar, 2011). Thus, allo-
stery enables a single protein molecule to compute (Bray, 1995). For exam-
ple, a single molecule is easily programmed to perform the Boolean 
operation, AND (  figure 5.5 ).    

 The rest of this chapter treats one particular finite-state machine that 
comprises a pair of interacting proteins. The receptor protein accepts the 
wireless signal, adrenalin, a hormone that prepares an organism to fight or 
flee, then relays the information ( “ Adrenalin present! ” ) across the cell 
membrane. There it transmits to receiver proteins on the membrane ’ s inner 
face that amplify and broadcast the information within the cell. Both pro-
teins then reset for the next signal. The receptor protein is the  β 2 adrenergic 
receptor, and the receiver protein is a G protein. 

 We choose this example for several reasons. First, the  β 2 adrenergic 
receptor and its G protein represent a broad, ubiquitous class of finite-state 
machines (chapters 2, 7, and 8). The human genome specifies more than 
800 different receptor proteins that couple to a G protein and more than 
100 different G proteins. Second, this example indicates the spatial scale 
used by most neural computations. Third, it exemplifies computation by 
amplifying, and in doing so illustrates molecular solutions to a broad design 
problem, overcoming noise. Fourth, it clarifies the reason to compute at 
this spatial scale: high efficiency in space and energy. The energy cost of 1 
bit in this system, as will be explained, approaches the theoretical lower 
limit to within a factor of about 30. 

 The final reason to choose this example over other possibilities is 
that the sequence of conformational changes, triggered by adrenalin ’ s 
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binding to the receptor and completed by the release of activated G pro-
teins, has been documented at the atomic scale, by x-ray diffraction 
(Rasmussen et al., 2011; Chung et al., 2011; summarized in Schwartz  &  
Sakmar, 2011). 

 Allostery in action 

 The system is ready to receive when the receptor ’ s conformation exposes its 
adrenaline binding site on the cell membrane ’ s outer face and masks the G 
protein ’ s binding site on the inner face (figure 5.6). G proteins diffuse on 
the inner face, colliding with receptors, but encounter no signal. When 
adrenalin binds to the receptor, the protein changes conformational state 
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  The allosteric protein as a finite-state machine . How a sequence of stimulus-evoked 

changes in allosteric state could enable a single protein molecule to perform a simple 

computation, here a logical AND on the two inputs A and B .  Ligand A binds to the 

protein, exposing two sites to be phosphorylated by kinase B. The pair of attached 

phosphates alters the protein ’ s conformation, exposing a catalytic site that digests 

the substrate s to produce products j and C. Bottom row gives the corresponding 
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(  figures 5.4 and 5.6 ). One of the seven helical coils that span the membrane 
(coil number 6) moves 1.4 nm and others move shorter distances. Together 
they open a cleft in the receptor molecule at the inner face to expose the G 
protein ’ s binding site. At the next collision, a G protein engages this site 
with a special knob and docks securely (  figure 5.6 ).    

 This coupling changes the energy landscape of both molecules. The G 
protein embarks on a sequence of conformational changes (  figure 5.6 ). Two 
of its three subunits,  β  and  γ , detach and diffuse into the cytoplasm. The  α  
subunit responds to the loss of its partners by swinging apart two large sec-
tions at their hinge. This motion, spanning more than 110 o  and requiring 
several hundreds of microseconds, reveals, like an oyster showing its pearl, 
a small molecule, guanosine diphosphate ( GDP ), bound deep within the 
protein. The exposed GDP promptly exchanges with a molecule from the 
cytoplasm, guanosine triphosphate ( GTP ), whose additional phosphate 
gives it higher energy. 

 GTP ’ s binding transfers energy to the  α -subunit, again changing the 
landscape. The hinged gates swing closed, retaining the high-energy GTP 
that is fueling the sequence of state changes. The knob retracts, thereby 
uncoupling the  α  subunit from the receptor and freeing it to diffuse on the 
membrane ’ s inner face. Now another binding site on the  α  subunit is 
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   β 2 adrenergic receptor and its G protein use allostery to operate as a finite-state 
machine . Receptor receives a wireless signal outside the cell and, by changing con-

formation, relays it across the membrane to G protein. G protein dissociates and  α  

subunit broadcasts signal to effector proteins by diffusing on inner surface of the 

membrane.  α  subunit hydrolyses bound GTP and reverts to conformation that the 

binds the other subunits. G protein is reconstituted, ready to signal again. Further 

details in text. Figure adapted from summary diagram from the definitive study of 

structural changes that pass information through these two molecules (Rasmussen et 

al., 2011), with permission. 
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exposed for other proteins to bind and change  their  conformation in 
response to the signal  “ Adrenaline! ”  (  figure 5.6 ). In short, an orderly 
sequence of conformational state changes has carried information,  “ Adren-
aline!, ”  across the cell membrane, and by releasing an activated GTP- α  sub-
unit, it has started the process of broadcasting this information wirelessly 
within the cell. 

 How allostery amplifies 
 This form of allostery easily amplifies. When one GTP- α  uncouples from 
the activated receptor protein, another docks in its place, is activated, then 
is released, and so on. The rates vary from 10 – 500 per second, depending 
mainly on the density of G proteins on the membrane — for this sets their 
frequency of encountering a receptor protein. The number of G proteins 
activated and released by a receptor increases with time as the cleft 
stays open. The amplification ( gain ) varies across systems, ranging from 4 in 
a system with short time constant, such as a fast fly photoreceptor (chapter 
8) to 100 in systems with long time constant, such as a slow-acting 
hormone. 

 Amplification is a form of redundancy since each copy simply repeats a 
message without adding new information. Thus, multiple G proteins acti-
vated by the  β 2 receptor simply repeat,  “ Adrenalin!, ”   “ Adrenalin! ”   . . .  Yet 
this redundancy is essential for two reasons. To produce a concerted 
response to adrenalin, the signal must reach many parts of the cell in good 
time, hence the activation of several G proteins. Second, the system must 
guard against noise. Because a thermal bump occasionally activates a single 
G protein molecule, the receptor must activate several molecules to gener-
ate a reliable message. Thus, when amplification protects information from 
noise, it also introduces inefficiency in the form of redundancy. An efficient 
design will strike an appropriate balance by matching the gain of amplifica-
tion to the level of noise (chapter 6). 

 Although the  β 2 receptor and its G protein have worked together to 
amplify and broadcast the signal  “ Adrenaline!, ”  the process is incomplete. 
This finite-state machine, which turned on in order to signal danger, must 
turn off when the warning has been sent. Then the machine must reset to 
be ready once again to deliver the message. 

 How allostery terminates the message and resets the system 
 Turnoff and reset are accomplished by continuing to move the receptor and 
the G proteins it activated through their sequences of conformational 
states. As for the all preceding steps of activation, each transition for 
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deactivation serves a specific purpose. To inactivate the  β 2 receptor, an 
enzyme ( kinase ) accepts a high-energy phosphate group from an ATP mol-
ecule and attaches it covalently to a particular site on the  β 2 receptor. The 
phosphorylation of several such sites raises the receptor ’ s energy level suf-
ficiently to change its conformation, now exposing a binding site for a dif-
ferent protein molecule,  arrestin . When arrestin binds, it blocks access to 
the G protein ’ s docking cleft, thus preventing transmission. 

 Something is needed to protect unoccupied  β 2 receptors from being 
inactivated while they are in the receptive conformation, waiting for adren-
alin. The receptor is engineered so that the receptive conformation hides 
the phosphorylation sites, and they become exposed only in the conforma-
tion triggered by binding adrenalin. Something is also needed to give time 
for an activated receptor to amplify, that is, to activate and release several G 
proteins. To achieve this, the kinases that attach high-energy phosphates 
are designed to work slowly. Moreover, by modulating this rate of phos-
phorylation, both the gain and time constant of amplification are adjusted 
for no extra space and little extra energy. 

 Once arrestin blocks transmission to the G protein, the  β 2 molecule 
resets — by continuing its journey through conformational states. The 
adrenalin molecule, whose initial binding to the receptor opened a 
cleft for docking the G protein, eventually  un binds adrenalin, and this 
closes the docking cleft. This allows a  phosphatase  enzyme to remove 
the added phosphates, releasing arrestin, and restoring the receptor to 
its initial state. Its  signaling cycle  is complete: it has received, transmitted, 
and reset. 

 But what prevents the activated  α  subunit from continuing its diffusive 
search for partners? This subunit is also an enzyme that removes the high-
energy phosphate from its own bound GTP (  figure 5.6 ), and this provides 
an automatic cutout. Withdrawing the high-energy phosphate from the  α  
subunit triggers its final sequence of conformational state changes. It 
rebinds the  β  γ  units and once more protrudes its docking knob. Now the G 
protein has reset to the inactive  α  β  γ -GDP form and is again ready to dock 
with an adrenalin-bound receptor. 

 In summary, this molecular finite-state machine uses two parts, receptor 
and G protein. It exploits three properties of a protein molecule — binding 
specificity, allostery, and diffusion — to execute a program of state changes. 
The program receives a signal at the cell surface and transmits it  mechanically  
across the cell membrane. The program then amplifies the signal, 
broadcasts it within the cell, and resets. This computational device, the 
G-protein-coupled receptor ( GPCR ), being ubiquitous, will be discussed 
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further (chapters 6 – 8). But here we explain another invaluable property of 
signaling proteins — how their energy efficiency approaches the thermody-
namic limit. 

 Energy efficiency of protein devices 

 Why must molecular devices consume energy to process information? 
 A protein ’ s signaling cycle starts and finishes at the same point in the 
energy landscape. If every conformational state within the cycle had the 
same free energy, the cycle could be completed without consuming energy. 
However, the protein would then depend on random thermal fluctuations 
to change states. Moreover, if free energy were constant, each transition 
would be reversible — with equal probabilities of moving forward or back-
ward. To complete the cycle would be theoretically possible: a signal could 
be delivered without expending energy. However, such a lossless system 
would be impractical because, relying on a chain of improbable and revers-
ible events, the receiver would wait for long and indeterminate times (Ben-
nett, 1982, 2000). 

 Energy eliminates this intolerable wait by driving the protein through 
the conformational state transitions in the intended direction. Moreover, 
the effect is progressive: adding more energy speeds the cycle. But what 
about the lower bound: what is the least energy that can deliver informa-
tion usefully? 

 Lower bound to energy cost in signaling 
 Thermodynamics suggests a minimum, the energy required to register one 
bit of information (Landauer, 1996; Schneider, 2010), 

   Δ E  =  k B T  ln(2)  ≈  0.7  k B T  joules  ≈  3  ×  10  – 21  joules per bit, (5.8) 

 where  k B   is Boltzmann ’ s constant and  T  is temperature in degrees Kelvin.   Δ E  
is tiny,  6   but single protein molecules are also tiny and so approach this 
thermodynamic limit to energy efficiency. 

 The signaling cycles of the  β 2 adrenergic receptor and its G protein can 
each register a bit by switching from OFF to ON and then resetting to OFF. 
Each protein draws energy from the cell ’ s standard currency, the high-
energy molecule, ATP. Hydrolysis of one ATP delivers 25  k B T  joules, and the 
receptor uses at least three ATP molecules when it is phosphorylated (  figure 
5.5 ). This gives an efficiency of 75  k B T  joules per bit, which is two orders of 
magnitude above the thermodynamic limit (equation 5.8). The G protein 
consumes the equivalent of 1 ATP when it hydrolyzes its GTP to GDP 



Information Processing 123

(  figure 5.6 ), giving an efficiency of  25   k B T  joules per bit, between one and 
two orders of magnitude above the thermodynamic limit. 

 Thus, both proteins process a bit of information for less than the cost of 
a covalent bond (~100  k B T ). This seems plausible because a protein is a soft 
device, more like a machine made from jelly than a rigid clockwork (Wil-
liamson, 2011). Indeed, the free energy to stabilize a protein (folded vs. 
unfolded) is less than a quarter of the free energy to form a covalent bond 
and is about equal to the energy delivered by ATP. 

 What prevents these two protein molecules from operating closer to the 
thermodynamic limit? Realize that the 0.7  k B T  limit is the cost of simply 
registering a bit as a change of state. It does not include transmitting the 
bit. To send a bit across the membrane, the  β 2 receptor moves its helix 
number 6 by 1.4 nm, and to relay the bit into the cytoplasm, the G protein 
opens its large hinged section by 110 o . Both movements require work 
(Howard, 2001), and work consumes energy. Energy is also used to drive the 
cycle at a rate appropriate for the function — recall that the  β 2 receptor sig-
nals  “ Emergency! ”  Considering that the energy cost of transmission by 
the GPCR includes these extra tasks, protein signaling appears astonish-
ingly close to the thermodynamic limit. An order of magnitude is a reason-
able guess. 

 Energy and the design of efficient signaling molecules 
 The receptor and G protein turn on and off abruptly and reliably — like a 
mechanical switch. The latter avoids accidental tripping by using an energy 
barrier. Some of the energy needed to trip it is recycled so that once trig-
gered, the change goes quickly. Where safety is critical, the energy barrier is 
high, but where it is less critical, the barrier can be lowered to save energy. 
Likewise, a protein ’ s energy landscape seems engineered to require just the 
right energy input for each state transition. The design also involves trade-
offs between speed, reliability, and energy. For example, were viscous forces 
within a protein to increase with switching rate, the energy cost per transi-
tion would increase disproportionately, making lower rates more efficient. 
Thus, a design principle observed at the microscopic level for axons,  send at 
the lowest acceptable rate  (chapter 3), may also hold at the nanoscopic level 
for protein molecules, albeit for different reasons. 

 Summary 

 The signaling systems established by protein molecules receive and trans-
mit information, as defined by Shannon, using different physical and 
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chemical processes from the ones that Shannon originally treated. Three 
physical and chemical properties of proteins support the transmission and 
processing of information. Binding makes specific connections between 
molecules, enzymatic activity provides a potent means of generating and 
amplifying signals, and allostery enables information to pass through sin-
gle molecules. Allostery also equips a single protein molecule to compute 
by operating as a finite-state machine. By running through a well-defined 
program of state changes, triggered by specific inputs, the molecule 
completes a program only when it encounters a specific combination of 
inputs. These properties equip proteins to form circuits of molecules that 
compute. 

 Circuits built from proteins satisfy two design principles. First, if we rule 
out quantum computation, these circuits are irreducibly small, and this 
saves space and materials. Protein circuits also save energy because protein 
molecules operate near the thermodynamic limit of energy efficiency. 
Moreover, protein chemistry allows energy to be delivered efficiently in just 
the amounts needed to meet the circuit ’ s need for speed and accuracy. Thus, 
the performance of components in protein circuits can be matched to their 
tasks to gain economies that come with sending at the lowest rate. 

 These advantages — compactness, energy efficiency, and ability to adapt 
and match — all suggest the principle  compute with chemistry . It is cheaper. 
But to realize the savings, protein circuits must support the brain ’ s core 
tasks. Chapter 6 now explains how proteins equip molecular circuits to 
meet a brain ’ s requirements for information processing. 
 
 
 
 
 
 



 Chapter 5 explained that information is encoded whenever a source ’ s 
change in state registers as a change in state at a receiver. The primary 
mechanism at the nanometer scale is a protein ’ s ability to connect specific 
inputs to specific outputs by, for example, binding molecules, catalyzing 
reactions, and changing conformation. These reactions are employed uni-
versally in biology and have two advantages for brains — energy efficiency 
and compactness. As noted in the previous chapter, the energy used by a 
protein molecule to register 1 bit approaches the thermodynamic mini-
mum. Also, for changing conformation, its unique task, a protein is irreduc-
ibly small. Smaller would be better since a moderate-sized protein molecule 
(100 kDa) spans about 6 nm and occupies about 100 nm 3 . But although a 
smaller peptide can serve as a ligand, it lacks a protein ’ s rich possibilities for 
stable folds, pockets, and allostery that are essential to its receiving and 
processing information. 

 Chapter 5 noted that a protein molecule can compute. For example, it 
can amplify (one adrenalin bound to one  β 2 receptor protein activates sev-
eral G proteins), and it can do logic (e.g., compute the Boolean AND; figure 
5.5). However, one logical operation doesn ’ t make a brain. A brain needs to 
do a lot more math than that. For starters, it needs mechanisms on the 
nanometer scale to calculate the four linear arithmetical operations (+, -,  × , 
 ÷ ) and various nonlinear operations such as log( x ) and  x  n . It also needs 
switches (where an input causes a step change in output), filters (to remove 
certain frequencies and attend to particular timescales), correlators (to asso-
ciate events), and so on. 

 For such nanometer-scale computations, the genome serves as a parts 
catalog — listing the codes for thousands of protein structures, each speci-
fied for some particular input/output (I/O) function. But executing an 
orderly sequence of operations that computes something requires some-
thing more: a specific subset of I/O components that link correctly. A cell ’ s 

 6   Information Processing in Protein Circuits 
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internal mechanism ensures that this occurs — that the right proteins are 
delivered to the right places at the right times (Alberts et al., 2008). In both 
respects — using components with specific I/O functions and linking them 
correctly — protein circuits resemble electronic circuits (  figure 6.1 ).    

 To understand neural computing at the nanometer scale, one must con-
sider what shapes a protein ’ s I/O function. What determines, for example, 
whether it will take a sum or a logarithm, whether it will switch or filter? 
These functions emerge from a protein ’ s three-dimensional structure, 
through its ability to react chemically, mechanically, and electrically, and to 
change state in response to these inputs — allosterically. 

 One must also consider how a sequence of I/O functions should couple 
to make a useful circuit. For example, should a protein couple directly to its 
target, should it diffuse, should it anchor and send a small messenger, or 
should it communicate electrically via the cell membrane? Here the broad 
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  Circuit for cascade amplifier: silicon versus protein . In silicon, an input voltage,  v 1  , 

drives the first transistor  Q 1  , which amplifies the signal.  Q 1   ’  s output drives transistor 

 Q 2  , which amplifies the signal again and generates the output  v o  . In protein, a photon 

( hv ) activates one molecule of a receptor protein (R), changing its conformation to (R*). 

Like the  β -adrenergic receptor (figure 5.6), R* amplifies by catalyzing 20 G proteins to 

change from G α  β  γ -GDP to G α -GTP. Each G α -GTP activates a molecule of the enzyme 

phosphodiesterase (PDE), which again amplifies by catalyzing the hydrolysis of 100s 

of messenger molecules of cGMP to GMP. Both silicon and protein amplifiers multi-

ply the input by the product of the gains of the two amplification stages. Electronic 
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totransduction in rods is described in chapter 8. GDP, guanosine diphosphate; GTP, 

guanosine triphosphate; R*, the photosensitive molecule rhodopsin, activated by 

a photon. 
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answers are simple: diffusion slows as the square of molecular weight, and 
proteins are heavy, so the best choice for coupling depends on the required 
distance and allowable time. Diffusion time increases as distance squared 
and concentration decays exponentially. Thus, molecular size and concen-
tration, plus the laws of diffusion, shape protein circuit design. Conse-
quently, when distances are large and time is short, circuits use electrical 
signals. This chapter will explain further with some simple examples, start-
ing with ligand binding. The concepts and principles introduced here will 
be exemplified more thoroughly in all subsequent chapters. 

 I/O functions emerge from the kinetics of chemical binding 

 I/O functions from a single binding site 
 A ligand diffuses under thermal bombardment to a specific site on a 
protein and binds. That is, it sticks for a time, and then comes off. 
While the ligand is bound, the protein adopts an active conformation in 
which it produces its  output , for example, it is able to bind a downstream 
protein or catalyze a chemical reaction. Thus, the protein ’ s  output  is propor-
tional to the fraction of time it binds the ligand, and this is determined 
(Phillips et al. 2009, chapter 6,  “ Entropy Rules! ” ; Bialek, 2012) by the 
ligand concentration [ligand] and rate constants for unbinding ( k OFF  ) and 
binding ( k ON  ): 

  output/output max   = [ligand]/( k OFF  / k ON    +  [ligand]). (6.1) 

 This I/O function is  hyperbolic ; it rises steeply at first, and then tapers off as 
the binding site approaches saturation,  output max   (  figure 6.2 ). The ratio 
 k OFF  / k ON   is the dissociation constant  k D  , and equals the ligand concentration 
required to produce a half maximal  output . The same binding kinetics apply 
to protein – protein binding, so what is here explained for ligand – protein 
binding applies also to protein – protein binding.    

 The hyperbolic I/O function computes. It can perform, depending on 
input, three analogue operations: 

 1. At lower inputs levels (those causing  <  0.25 maximum output), the func-
tion is linear (  figure 6.2 ), so small inputs add. 
 2. At medium input levels (those causing 0.25 to 0.75 maximum output), 
the function is approximately logarithmic (  figure 6.2 ). This reduces the 
sensitivity of the output to the absolute level of the input and scales the 
inputs proportionally such that a constant fractional change in input, 
 Δ [ligand]/[ligand,] causes a constant change in output,   Δ output . This type of 
scaling exists at the behavioral level for many categories of sensory 
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discrimination ( Weber  –  Fechner law ). Thus, a computation that serves behav-
ior starts with chemical kinetics at the nanometer scale. 
 3. When large, sudden increases in input drive the response from zero to 
maximum, the function is a step and thus can serve as an ON/OFF switch 
for Boolean operations. 

 Sensitivity depends on the protein ’ s affinity for the ligand. Higher affinity 
(tighter binding) decreases the OFF rate, thus reducing the  k D .  The effect is 
to reduce the concentration of ligand needed to cause a half-maximum 
output. By adjusting  k D  , a given I/O function can execute the same set of 
computations across a wide range of mean ligand concentrations (  figure 
6.2 ). All that is needed is to tweak the protein ’ s binding site to match its 
affinity to the level of ligand by changing the protein ’ s conformation 
slightly. This can be executed stably in the genome, by changing the codons 
that specify influential amino acids, to produce a different  isoform  of the 
protein, or it can be done dynamically as the protein operates — for exam-
ple, by using a kinase to add an energetic phosphate. 

 This capacity of a protein to implement its I/O function with altered 
binding affinity serves in innumerable ways. For example, at low affinity 
(high  k D  ) a protein can receive information from its ligand across a 
short distance at high concentration, in a brief time, for example, 
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  Input/output (I/O) function generated by binding kinetics performs the same com-
putations across widely different input ranges   by altering dissociation constant, and 
hence binding affinity .  Left:  Output (normalized to its maximum) is plotted against 
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rated regime (0.75 max  –  max) function ’ s slope approaches zero. 
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neurotransmitter diffusing across a 20-nm synaptic cleft. At high affinity 
(low  k D  ) the protein can receive information from the same ligand at 1,000-
fold lower concentration over a much longer time, for example, a circulat-
ing hormone. These capacities are implemented for adrenalin by adrenergic 
receptors, probably by different isoforms. Dynamic adjustments to affinity 
can be used for physiological adaptation — to match the I/O function to 
changes in mean concentration of ligand (figure 3.4). 

 Protein molecules with different binding affinities transmit different 
temporal frequencies. High-affinity receptors cannot transmit high fre-
quencies because they do not release their ligand quickly. Consequently, 
they maintain the same level of output for some time after the input ligand 
concentration falls. Thus, a high-affinity receptor acts as a low-pass filter —
 for example, at retinal synapses (chapter 11). By comparison, low-affinity 
receptors release their ligands promptly, so they transmit high frequencies 
as well as low, and this gives them a wider bandwidth. 

 Temporal filtering by a single protein molecule can be modified by  desen-
sitization . This property curtails the output even while the input ligand 
remains bound, so allowing a protein with sufficient binding affinity for a 
low mean concentration of ligand to cut off its response faster than the 
ligand can unbind. Now, the protein is a high-pass filter. For example, upon 
binding synaptic transmitter, a protein receptor changes conformation to 
open an ion channel, but conformational change continues and closes the 
channel long before the ligand comes off. Speed of desensitization is 
designed into a protein as part of its energy landscape (Sun et al., 2002), and 
its use in temporal filtering will be exemplified in chapter 11. 

 Steeper I/O functions from cooperative binding 
 A protein ’ s hyperbolic I/O function is steepened by adding more binding 
sites for the ligand and requiring that several bind to generate the output 
(Koshland et al., 1982). When  n  sites have to cooperate, the I/O function 
follows the  n th power of the ligand concentration: 

  output/output max   = [ligand]  n / ( k D      +  [ligand]  n  ).  (6.2) 

 Now the I/O function ’ s lower region (  figure 6.3 ) approximates a power 
function:  output/output max   = [ligand]  n  , and its logarithmic midregion (  figure 
6.3 ) is  n  times steeper:  output/output max   = log([ligand]  n  ) =  n  log([ligand]). By 
adjusting both binding affinity and  cooperativity , an I/O function ’ s position 
and slope can be matched to the distribution of its input levels (figure 
3.4) — which in the fly visual system optimizes coding efficiency (figure 
9.10; Laughlin, 1981; Nemenman, 2012).    
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 A high cooperativity provides a steeper I/O function for digital switching 
(  figure 6.3 ,  n  = 8) which, by thresholding, can prevent input noise from 
passing further along a protein circuit. For example, in the protein circuit 
that releases a synaptic vesicle (chapter 7), a critical step is triggered by the 
protein synaptotagmin binding calcium ions at several sites. This coopera-
tivity shifts the I/O function to higher concentrations (  figure 6.3 ), so that 
noisy fluctuations in a cell ’ s baseline calcium concentration rarely release a 
vesicle. Cooperativity also narrows the range of calcium concentrations 
that trigger release by increasing the I/O function ’ s slope. Thus, when a 
voltage-gated calcium channel releases a puff of calcium, synaptotagmin 
responds promptly, and this increases the temporal precision of release. 

 Chemical circuitry supports analogue processing 
 In addition to the functions implemented by binding, proteins ’  chemical 
reactions support analogue processing with a rich repertoire of primitives. 
In brief, simple chemical circuits have equivalent electronic circuits 
(Sarpeshkar, 2010;   figure 6.1 ) and are capable of implementing procedures 
used in analogue electronics, namely, amplify, oscillate (Tyson et al., 2003), 
differentiate, and integrate (Oishi  &  Klavins, 2011). As well as taking logs 
(  figure 6.2 ) and raising to powers (  figure 6.3 ), chemical circuits support the 
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  Cooperativity changes the input/output (I/O) function generated by binding kinet-
ics to provide different computations . I/O functions are plotted with cooperativities 

 n  = 2 and  n  = 8 and, for comparison, without cooperativity ( n  = 1).  k D   is constant. 
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ity creates a switch.  Right : Cooperativity implements the function  n log( input ) in the 

medium output range (0.25 – 0.75 max). 
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arithmetic operations add, subtract, multiply, and divide (  figure 6.4 ). Small 
chemical circuits also have the ability to perform more complicated 
functions — for example, take  n th roots (Buisman et al., 2008), compute 
polynomials, and solve quadratic equations. Whether the brain explicitly 
implements this more advanced algebra in small chemical circuits  1   is an 
open question, but the point is made. Chemical circuits support Turing ’ s 
Universal Computation (Hjelmfelt et al., 1991), which means that they can 
in principle be configured to compute any function.    

 Chemical circuits cover the time domain 
 Not only does chemistry compute, it equips the brain to compute over the 
range of timescales observed in animal behavior — from the microseconds 
of the electric sense and hearing to a century of memory. Binding and con-
formational change take microseconds to seconds. Sequences of reactions 
executed by protein circuits take from milliseconds (phototransduction, 
chapter 8) to days (the circadian clock, chapter 4). In chapter 14 we describe 
how memories that are first laid down by the modification of synaptic 
receptor proteins are then consolidated for years by the chemical synthesis 
of new proteins and the assembly of new structures. 

 What makes a protein circuit efficient? 

 Computation by circuits built from protein molecules is efficient for several 
reasons. It is efficient in energy because binding and conformational change 
approach the thermodynamic limit (chapter 5). It is efficient in space 
because a single molecule computes. Moreover, computation at this level 
proceeds directly — that is, by implementing  “ analogue primitives ”  (Sarpesh-
kar, 1998; 2014). Analogue computation typically needs fewer steps than 
digital to complete a basic operation. For example, analogue multiplies 
directly, but digital takes PR 1.585  steps, where PR is the numerical precision 
in bits (Moore  &  Mertens, 2011), so even with a low precision of 4 bits, 
eight steps are saved. 

 Transmission within a chemical circuit is wireless, so space for wires also 
reaches an absolute minimum and circuits share space seamlessly. Wireless 
transmission distributes signals with a minimum of equipment. Once a 
messenger molecule is broadcast, it can be received by any protein with the 
appropriate binding site. Thus, wireless transmission makes it easier to 
reconfigure circuits to change behavior — in the short term by sculpting cir-
cuits with neuromodulators (chapter 2) and in the long term by evolving 
new connections (Katz, 2011). Nor is additional energy needed for wireless 
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  Computation by chemical circuits .  Left : Circuits that divide, calculate square root, 

and multiply. The steady-state concentrations of enzymes [X] and [Z] determine the 

steady-state concentration [Y]. The substrate S is replenished to maintain its high 

concentration, and the waste product, W, is eliminated so that neither limit reaction 

rates.  k 1   and  k 2   are rate constants. In the square-root circuit, two molecules of Y react 

to form W. In the multiplication circuit, the enzyme X produces an intermediate 

I. Adapted from Buisman et al. (2008).  Upper middle : Oscillates when enzyme G is 

activated. J builds up rapidly and also activates two delayed negative feedback loops 

(dashed line) by promoting the slower buildup of K P  and R P . R p  depresses J by catalyz-

ing its removal of J and blocking its production. As J falls, K P  and R P  convert back to 

K and R, negative feedback ceases, and the next cycle starts with the production of J. 

Adapted from Nov á k and Tyson (2008).  Upper right : Autocatalytic switch implicated 

in synaptic memory storage (chapter 14). The switch protein, CAM Kinase II (CAM-

KII) has 12 phosphorylation sites. If two sites are phosphorylated by the input, the 

calcium binding protein CaCM, then CAM Kinase II becomes autocatalytic and at-

taches more phosphates to itself. Rate of phosphate attachment,  P +, increases steeply 

with  nP,  the number of attached phosphates, but then declines at high  nP  as more 

phosphorylation sites are occupied. The rate of phosphate removal,  P  – , by the phos-

phatase PPI increases with  np  and saturates at a medium  nP . Consequently, when 

CaCM is strong enough to drive CAM Kinase II phosphorylation to the trip point, 

 T , where  P+   >   P  – , autocatalysis drives  nP  to the ON position. Here  P +  = P  –  and the 

switch can remain ON indefinitely. When CaCM fails to drive the system to  T , PPI 

wins out and removes all phosphates — the switch remains OFF. Adapted from Miller 

et al. (2005).  Lower middle/right : Level-detector circuit responds by generating M p  

when concentration of [L] lies between [L 1 ] and [L 2 ]. Two receptor types bind L, high-

affinity R H  and low-affinity R L . LR H  phosphorylates M to active M P , but LR L  just binds 

M reversibly At low [L] only the high-affinity LR H  binds, and M p  production increases 

with L. At high [L] the low-affinity R L  also binds; it outcompetes LR H  for M, so M p  

production falls. Adapted from Bray (1995). 
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transmission. Once the messenger is synthesized and concentrated, it dif-
fuses down its gradient, agitated by thermal bombardment (Brownian 
motion). 

 The thermal bombardment that aids diffusion also randomizes move-
ment, and this limits efficiency by introducing noise. Each messenger mol-
ecule that reaches a binding site has done so independently of all other 
messenger molecules; moreover, it has arrived  accidentally  by random walk 
(figure 2.3). It is the same for a protein designed to deliver information 
by skating on the membrane (chapters 5 and 8): it finds a receiver by ran-
dom walk in two dimensions. Moreover, the processes that pass informa-
tion  through  a protein — binding, allosteric state-transition, catalysis, and 
release — are also randomized by thermodynamic fluctuations. Therefore, 
chemical computation in molecular circuits has an associated degree of 
noise that, as noted in chapter 5, destroys information. Such thermody-
namic noise cannot be eliminated, so it must be managed, as we now 
explain. 

 Managing noise in a protein circuit 
 Following the principle  send only what is needed , a circuit should generally 
avoid sending noise.  2   Where noise is inevitable, it should be minimized 
before transmission, so most neural designs try to prevent noise or reduce 
it at early stages. 

 Where proteins remain tightly bound in small complexes, signals go 
directly, thereby avoiding Brownian noise. For more extensive circuits, mol-
ecules must move more freely. Now Brownian motion introduces uncer-
tainty. This is reduced by placing proteins close to each other, on the 
membrane or attached to the cytoskeleton, and by confining diffusible 
messengers to small compartments. Small compartments also reduce 
costs — less messenger need be made to produce a signal of given 
concentration. 

 By reducing diffusion distances, complexes and compartments shorten 
delays and lower noise. This occurs where proteins are held together by a 
protein scaffold — for example, on both sides of a chemical synapse (chapter 
7). A presynaptic complex of at least five different proteins (Eggermann et 
al., 2012) binds a synaptic vesicle and attaches it to the membrane, ready 
for release. When activated by a surge of calcium, the proteins run through 
their finite-state routines within 100  μ s, to release the vesicle with a mini-
mum of Brownian noise. Postsynaptically, a larger complex of protein spe-
cies couple to each other and to the membrane. When the vesicle ’ s 
transmitter molecules cross the 20-nm synaptic cleft and bind a receptor 
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protein, the change in state triggers a host of postsynaptic protein path-
ways. This complex occupies a 25- to 50-nm layer beneath the postsynaptic 
membrane (figure 7.3). Compartments and complexes are used in all chem-
ical synapses, in dendrites (chapter 7), in photoreceptors (chapter 8), and 
indeed in all cells, to promote economy, to speed responses, and to 
reduce noise. 

 Some of the noise associated with changes in a protein ’ s conformational 
state can be prevented by elevating the barriers on the molecule ’ s energy 
landscape (chapter 5). Although this reduces reaction rates and hence band-
width, these can be restored by injecting more energy to drive the process. 
Thus, there are trade-offs between energy consumption, response speed 
(bandwidth), and reliability (S/N). This sort of intramolecular noise can also 
be removed by thresholding with a molecular switch (  figure 6.3 ), but there 
are three penalties: (1) the high energy cost of having a system full ON 
when only partial ON would do; (2) the low information capacity of a 
binary system; and (3) the loss of analogue ’ s ability to process directly. But 
despite complexes, small compartments, and binary switches, some noise 
remains. What then? 

 Noise reducer of last resort 
 There is another way to reduce noise, or more precisely, to improve S/N. 
The trick is to replicate a noisy signal, then send the replicates in parallel 
through multiple components, and sum their outputs. The amplitude of 
the transmitted signal increases linearly with the number of components, 
but because their noise is uncorrelated, noise increases as the square root. 
Thus, with an array of  M  identical components generating noise indepen-
dently, the output S/N increases as  √ M . Such a parallel array can increase its 
S/N to arbitrarily high levels by adding more components. However, the 
solution must be used as a last resort, and then judiciously, because it is 
expensive. 

 The dependence of S/N on   √ M  imposes a law of diminishing returns. 
Cost rises in proportion to  M,  but benefit rises as   √ M , so efficiency falls as 
1/  √ M . Here then is the downside of molecular processing. A single molecule 
can process near the thermodynamic limit to energy efficiency, but that 
molecule suffers thermodynamic fluctuations. This noise can be countered 
with a parallel array of the self-same molecules, but the additional resources 
consume some of what was saved by operating near thermodynamic limit. 
Therefore, the best a circuit can do is maximize the efficiency of its parallel 
array, and this it does by matching the size of the array ( M ) to the costs 
associated with the array, and to the S/N of the input. 
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 Maximizing efficiency in a parallel array 
 To evaluate costs and benefits in the design of a parallel array, we use a gen-
eral measure of performance, information capacity (Schreiber et al., 2002). 
An array ’ s information capacity depends on  S/N  (chapter 5) and increases as 
log 2  (1 +  S/N ) = log 2  (1 +   √ M ). However, the energy cost of passing the signal 
through the array increases as  M . Thus, as  M  increases, the array ’ s efficiency 
falls — unavoidably — because the array is redundant: all components try to 
transmit the same signal. Therefore, efficiency is maximum when  M  = 1. 
Unfortunately the signal generated by one protein molecule is usually too 
weak and noisy to be useful.    

 A more practical optimum emerges upon including the  fixed cost  of 
building and maintaining the circuit that contains the array. Then, as  M 
 increases, information per unit cost of signaling falls through redundancy, 
but information per unit fixed cost rises. An optimum occurs where these 
two competing tendencies balance. Consequently, a higher ratio of fixed 
cost to signaling cost gives a larger optimum array (  figure 6.5 , inset). The 
optimum array size also depends on the costs in other parts of the circuit. 
Where expensive components generate a high S/N and then couple to 
cheaper components, the cheaper array should enlarge beyond its opti-
mum to retain the hard-won benefit. In general, good design distributes 
investment among components to maximize performance across the entire 
system (Alexander, 1996; Weibel, 2000). 

 A good design does not necessarily optimize an array ’ s efficiency. Ini-
tially information capacity and efficiency both rise steeply with  M  (  figure 
6.5 ). But then the capacity curve starts to flatten, and an optimum is 
reached for given fixed cost where efficiency peaks (  figure 6.5 ). As  M  rises 
above the optimum, capacity continues to increase, but efficiency declines, 
albeit more gradually than it rose. Consequently, an array should set  M  
somewhat above the optimum to reduce the possibility of losing both effi-
ciency and information when unexpected perturbations force it to operate 
below the optimum. Thus operating at the exact optimum may not be best. 
Robustness is important, too (Schreiber et al., 2002; Sterling  &  Freed, 2007). 

 But what  is  a protein circuit ’ s fixed cost? Given that a circuit ’ s viability 
requires the whole animal, must one count all vital functions? Although 
the far end to fixed costs looks hazy, the beginning is certainly clear: it is 
the cost of making a circuit ’ s protein molecules. The average cost to synthe-
size an amino acid and insert it into a protein is approximately 5.2 mole-
cules of ATP (chapter 5; Phillips et al., 2009), so to build a typical protein of 
300 amino acids costs about 1,700 ATP molecules. Protein delivery and 
installation are extra. By comparison, the cost per signaling cycle is one to 
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five ATP molecules (chapter 5), and this suggests a rule of thumb: the cost 
of operating a protein molecule (signaling cost) will exceed its construction 
cost when the molecule has completed 500 – 1,000 signaling cycles. 

 Returning to efficiency, the S/N of an input profoundly affects the array ’ s 
optimum size. The array cannot reduce input noise but can only let noise 
cancel by averaging. Consequently, input noise imposes a ceiling to be 
approached by the array ’ s S/N. This reduces the efficacy of a large array at 
low input S/N (  figure 6.5 ) and the size of the most efficient array (  figure 
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  Optimizing the noise reducer of last resort — an array of  M  identical components . 
 Upper left : Increasing an array ’ s size increases its information capacity with dimin-

ishing returns.  Upper right : Energy efficiency (information capacity/energy cost) is 

optimized at an array size,  M , that depends on the fixed cost,  b . Efficiency is in 

arbitrary units,  b  is in units of signaling cost. Inset shows how optimal array size in-

creases with fixed cost.  Lower left : With a noisy input the output S/N cannot exceed 

the input S/N (dashed lines). Lowering this ceiling reduces the advantage of larger 

arrays.  Lower right : Reducing input  S/N  reduces the size of the optimum array. Upper 

and lower right redrawn from Schreiber et al. (2002). Upper and lower left calculated 

using their formulae. 
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6.5 ). In other words, because an input with low S/N contains less informa-
tion, and a smaller array has a lower information capacity, the optimum 
array matches its capacity to its input. 

 The matching of array size to input S/N follows the principle of symmor-
phosis (Weibel, 2000), whereby capacities match within a system to avoid 
waste. What was illustrated for flow of oxygen through lungs, heart, vessels, 
and muscle (figure 3.4) applies equally to the flow of information through 
an array of protein molecules. We will see that symmorphosis also holds for 
parallel arrays of ion channels in a membrane (below), for photoreceptors 
in a retina (chapter 8), for synapses in a neural circuit (chapter 9), and for 
neurons in a pathway (chapter 11). 

 Summary: Pros and cons of computing with chemical circuits 
 A chemical circuit processes information efficiently on several counts. 
Operating near the thermodynamic limit it is energy efficient, and its mol-
ecules makes efficient use of space and materials. Chemical computation is 
direct (analogue), which uses fewer steps than digital. Chemistry is wireless, 
which reduces space and energy for transmission and, by making it easier 
to form new connections, facilitates behavioral plasticity and evolutionary 
innovation. A downside is noise, which is handled in four ways. Some 
Brownian noise is avoided by coupling proteins in complexes and small 
compartments; some thermodynamic noise is avoided by raising intramo-
lecular energy barriers; and some noise is removed by molecular switches. 
Unavoidable noise can be mitigated by signaling with parallel, redundant 
components that add n signals linearly and noise as the square root. 

 The cost of signaling increases with the concentration of the messenger. 
Therefore, efficiency might seem to favor high-affinity receptors that bind 
at low concentration. Yet, there is a penalty and, hence, a trade-off. High-
affinity receptors decrease signal bandwidth by slowing the rate at which a 
signal decays. Low-affinity receptors need higher concentrations, which 
cost more but, releasing the ligand faster, provide higher bandwidths 
(Attwell  &  Gibb, 2005). Thus, speed and bandwidth consume materials and 
energy, making it advisable to send at the lowest rate. 

 Despite the advantages of chemical computing, there remains the impor-
tant proviso  compute with chemistry   wherever possible . Chemistry is fast at the 
nanometer scale, but because diffusion slows and dilutes signals, chemistry 
beyond a few microns is too slow to coordinate immediate behavior. Thus, 
as for  Paramecium  (chapter 2), the need for speed over distance forces 
a more expensive option — protein circuits that process information 
electrically. 
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 Information processing by electrical circuits 

 How electrical circuits meet the need for speed over distance 
 Electrical current in a silicon device is carried by electrons, but in a biologi-
cal device it is carried by ions. The cell membrane, comprising a bilayer of 
nonpolar lipid, is impermeant to ions, so it separates charge, sustains a volt-
age difference across it, and has a capacitance of about 1  μ F cm -2 . Charging 
the membrane ’ s capacitance constrains the speed of electrical signaling. 
The membrane ’ s time constant,   τ  , is its resistance times its capacitance,  RC , 
so   τ   can be shortened to speed up the signal by shrinking the membrane 
area and by reducing its resistance to the passage of ions. 

 An ion passes through the membrane via a channel (Hille, 2001); a large 
protein molecule assembled as a ring of subunits to form an aqueous pore 
in the membrane (  figure 6.6 ). The pore is constructed to selectively pass 
particular ion species in single file by adjusting its width and strategically 
positioning charged amino acid side groups. A typical sodium ion channel 
is 10 times more permeable to sodium than to either calcium or potassium, 
and a potassium channel is more selective still — 100-fold more permeable 
to potassium than to sodium, and almost totally impermeable to calcium. 

 The channel ’ s energetically stable conformation sets it either closed or 
open. And thus it remains until a specific input, such as a ligand binding 
or a change in membrane potential, and/or thermal fluctuations cause 
the channel to open or close, allosterically. Any net transfer of charge 
through a channel changes the voltage across the membrane. This voltage 
signal transmits further and faster along the membrane than chemical dif-
fusion allows, millimeters in milliseconds. But although allostery allows a 
cheap input, a channel ’ s ionic current is an expensive output, as we now 
explain.    

 To charge the membrane quickly, ions must be driven through channels 
at high rates. The primary driving force is a concentration gradient main-
tained across the membrane by ion pumps (  figure 6.7 ). Most important is 
the sodium – potassium pump, which maintains low sodium concentrations 
and high potassium concentrations inside the neuron. This pump is a 
molecular machine, a protein complex spanning the membrane which 
hydrolyzes one ATP molecule to export three sodium ions and import two 
potassium ions. This asymmetrical exchange generates an outward current 
of one positive charge per pump cycle and sets up the two concentration 
differences, [K] in   >  [K] out  and [Na] in   <  [Na] out . These two gradients power most 
of the brain ’ s electrical circuits. Consequently, the sodium – potassium pump 
consumes 60% of the brain ’ s energy (Attwell  &  Laughlin, 2001).    
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  An ion channel is a large protein with a pore that conducts ions across the mem-
brane.  Ligand gated channel from the electric organ of a torpedo ray opens to admit 

sodium ions and potassium ions when it binds two molecules of the neurotransmit-

ter acetylcholine, Ach.  Left:  Channel imaged side-on. The channel is formed by a 

ring of five protein subunits, two  α s,  β ,  γ , and  δ . All contribute to the extracellular 

vestibule, the narrower pore that crosses the membrane ’ s lipid bilayer, and the intra-

cellular domain. Asterisks show binding sites for neurotransmitter acetylcholine on 

the two  α  subunits. When both bind the channel opens and passes sodium ions and 

potassium ions. Large intracellular domain has phosphorylation sites for modulating 

channel ’ s sensitivity.  Right:  Cross section through channel at level indicated on left 

by dashed line. Three-dimensional structure of channel reconstructed from electron 

micrographs of crystalline channel arrays, with a resolution of 0.4 nm. Image cour-

tesy of Nigel Unwin. Further details in Unwin (2013). 
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 The concentration gradient is equivalent to a battery whose voltage 
drives ions through the channel at the same rate (  figure 6.8 ). The battery ’ s 
voltage is given by the Nernst equation, which converts the chemical 
potential of the concentration difference into an equivalent electrical 
potential. Thus, for ionic species,  x , its battery ’ s voltage is 

   E x   =  RT /( zF ) ln([X] o /[X] i ) = 2.303  RT /( zF ) log([X] o /[X] i ),  (6.3) 

 where [X] o  and [X] i  are the concentrations of ion  x  outside and inside the 
cell,  z  is its charge,  R  is the universal gas constant,  T  is the temperature in 
Kelvin, and  F  is Faraday ’ s constant. 
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  Concentration gradients drive ions through channels that open and close rapidly 
in response to a specific input .  Left : Sodium and potassium ions cross the mem-

brane through ions channels, driven by concentration gradients.  Right : A chloride 

ion channel opens to pass ~4 pA of current when it binds the neurotransmitter 

histamine. Currents recorded from a single channel, by patch clamp, at three his-

tamine concentrations: 30, 70, and 100  μ M. The open probability increases with 

histamine concentration according to the binding equation, 6.2, with cooperativity 

 n  = 3. Channel recorded in membrane of a large monopolar cell from the fly lamina 

(chapter 9). Left, after Hille (2001). Right modified and reprinted with permission 

from Hardie (1989). 
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 The two ionic batteries that dominate electrical signaling, potassium 
with  E K   ~  – 85 mV and sodium with  E Na   ~ +50 mV, provide a dynamic range 
of about135 mV. A neuron exploits this to the fullest when it generates its 
fastest signal, an action potential. Before the action potential the neuron is 
at rest. Mainly potassium channels are open, and the membrane potential 
sits close to  E K  . Here a sodium ion experiences its maximum force, pulled 
inward by a membrane potential of  – 85 mV, and pushed inward by a con-
centration difference equivalent to +50 mV. So when a sodium channel 
opens to initiate an action potential, sodium ions surge in, driven by 135 
mV, and their powerful current helps meet the need for speed. 

 Less than a millisecond later, when the action potential peaks close to 
 E Na  , a potassium ion experiences its maximum force, so when a potassium 
channel opens to return the membrane to rest, potassium ions surge in, 
driven by 135 mV. Again, this helps meet the need for speed by increasing 
the power of the potassium current. 

 To improve power delivery, a channel ’ s bore is designed to transmit rap-
idly: ions pass at rates up to 10 8  s  – 1  (Williamson, 2011). These are the high-
est output rates known for protein molecules (Hille, 2001). By comparison, 
the fastest chemical output by an enzyme (carbonic anhydrase) is 20-fold 
slower, and most enzymes are 100-fold slower (Williamson, 2011). 
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 Figure 6.8 
  The simple resistor – capacitor (RC) circuit formed by ion channels in the neuronal 
membrane . The input opens sodium channels, and the output is the membrane po-

tential,  E M  . A bank of potassium channels, each with conductance  g K ,  passes outward 

current  i K  , driven by the potassium ion battery  E K  . Without input, the potassium 

channels maintain a  resting potential  of  E K  . Input opens sodium channels,  g Na  , which, 

driven by the sodium battery,  E Na ,  pass inward current,  i Na  . To change the output,  E M  , 

the membrane capacitance,  C M  , is charged and discharged by the capacitative cur-

rent,  i C .  Sodium-potassium pump, P, keeps batteries charged using energy obtained 

from hydrolysis of one molecule of ATP to ADP to export 3 sodium ions and import 

2 potassium ions, thereby generating an outward pump current. 



142 Chapter 6

Chemical signaling by molecules, such as ligand-binding receptors and G 
proteins, operate slower than an ion channel by 4 to 7 orders of magnitude. 
With its exceptional output rate, a voltage-gated sodium channel opening 
for 1 ms admits 6,000 Na +  ions. This 1 pA ionic current delivers 2.4  ×  10 4   k B T  
joules, giving a power rating of 200 fW. 

 Fast processing also requires molecules that switch quickly. Channels are 
structured to open or close in tens of microseconds (  figure 6.7 ) — near the 
limits of allosteric state change (Chakrapani  &  Auerbach, 2005). The energy 
used to open a channel,  ∼ 25  k B T  joules (Chowdhury  &  Chanda, 2012), is 35 
times the thermodynamic minimum for a bit (chapter 5), high enough 
above to be reliable, but low enough not to put too much of a brake on 
processing speed. With an input energy of 25  k B T  joules and an output of 
2.4  ×  10 4   k B T  joules, a sodium channel opening for 1 ms has a power gain 
 × 1,000. Thus, a channel ’ s combination of sensitivity, fast switching, and 
gain satisfies the need for speed. But as noted, it comes at a price. 

 The price is paid to keep ionic batteries fully charged. An ion passing 
through a channel drops its battery ’ s voltage by reducing the concentration 
gradient (equation 6.3). The gradient is restored by pumping the ion back 
across the membrane, so when a sodium channel opens for 1 ms and admits 
6,000 Na +  ions, sodium-potassium pumps hydrolyze 2,000 ATP molecules 
to ADP to pump these ions back. The efficiency of the conversion of the 
chemical energy supplied by ATP to the electrical energy delivered by the 
channel is reasonably high, 50%.  3   Nevertheless, a channel ’ s signaling cycle 
(open, admit ions for a millisecond, close, restore ions) uses 2,000 times 
more ATP than a G protein ’ s cycle. This is the price paid for speed over 
distance. 

 In summary, an ion channel changes a neuron ’ s membrane potential 
rapidly by operating as a power transistor that is irreducibly small and oper-
ates close to thermodynamic limits. Engineers seek similar efficiency sav-
ings by developing their version of a single molecule power transistor. 
Biology evolved this device over a billion years ago and solved the not 
inconsiderable problem of connecting its molecular  “ transistors ”  to form 
circuits. 

 How circuits built from ion channels operate electrically 
 Ion channels naturally form electrical circuits because they connect two 
lower resistances (extracellular space, cytoplasm) across an insulating mem-
brane. Consider the simplest circuit, two types of ion channel working 
against each other to code an analogue input as an analogue output, 
namely, a change in membrane potential,  E M   (  figure 6.8 ).   
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 The circuit ’ s behavior is captured by an electrical model in which each 
channel is a switched resistor, connected to its battery (  figure 6.8 ; Koch, 
1999). The resistor represents the channel ’ s conductance,  g , (conductance = 
1/resistance) and the switch opens the channel. For a channel that passes 
ions of species  x , the current,  i x  , is given by Ohm ’ s law: 

  i x   =  g x   ( E x      –   E m  ), (6.4) 

 where  E m   is membrane potential,  E x   is the electromotive force (EMF) of the 
ionic battery (equation 6.3), and  g x   is the single-channel conductance for 
ion  x . Note that when  E M  = E x  , there is a tipping point where the direction 
of current reverses. This point is used to determine  E x   experimentally, so it 
is often called the  reversal potential . 

 For ion channels to change the membrane potential, they must charge 
and discharge the membrane ’ s capacitance ( ∼ 1  μ F cm  – 2 ), represented in the 
model by the capacitor,  C M  . The fourth component, the sodium – potassium 
pump, P, hydrolyzes ATP to keeps the ionic batteries charged. Because the 
rate at which the pump exchanges three sodium ions for two potassium 
ions is effectively independent of membrane potential, it is treated as a 
constant current source. 

 This RC circuit model describes how the membrane potential changes 
when channels open and close. Applying Kirchoff ’ s law, 

  i Na  + i K  + i C  + i P   = 0,  (6.5) 

 where  i C   is the capacitative current and  i P   is the pump current. Substituting 
for the currents flowing through the channels and the capacitor, 

 ( E Na   –  E M  ) N Na g Na   +   ( E K   –  E M  ) N K g K   +  C M  dE M  / dt  +  i P   = 0,  (6.6) 

 where  N Na   and  N K   are the numbers of open sodium channels and open 
potassium channels. Because the pump maintains the concentration gradi-
ents for sodium and potassium,  i P   = 0.5  i K  , giving 

 ( E Na   –  E M  )  N Na g Na   +  3 / 2(E K   –  E M ) N K g K   +  C M  dE M  / dt  = 0.  (6.7) 

 This current-balance equation captures the biophysics of electrical signal-
ing across a neural membrane and easily extends to include other channels 
(including ones that depend on time and voltage), other pump currents, 
and currents generated by ion exchangers. Consequently, an equation of 
this form is the core of the many more complicated models of electrical 
interactions in neurons (Hodgkin  &  Huxley, 1952; Koch, 1999). One insight 
is that this irreducibly simple circuit is inherently  self-shunting . That is, cur-
rent driven through a channel pushes the membrane voltage toward the 
channel ’ s reversal potential, thereby progressively diminishing the current 
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passed per channel as more channels of this type open. This nonlinear 
behavior shapes the circuit ’ s I/O function and supports information 
processing. 

 I/O function of the basic circuit 
 To explain the circuit ’ s I/O function we drive it with an input that opens 
sodium channels. Sodium ions enter, pushing  E M   toward the positive poten-
tial of the sodium battery. This shift in voltage encodes the input intensity, 
 I , as an output. To derive the relationship between input and output, 
assume that the input acts linearly, so the number of open sodium 
channels is 

  N Na   =  aI ,    (6.8) 

 where  a  is channel gain, in open channels per unit input. Thus, the sodium 
conductance is 

  G Na  = g Na N Na  = g Na aI .  (6.9) 

 The opposing potassium conductance is held constant,  G K   =  g K. N K  , where  g K   
is the conductance of a single potassium channel and  N K   is the number of 
open potassium channels. 

 The circuit ’ s I/O function now follows. Without input,  G Na   = 0, and the 
circuit rests with  E M   =  E K  . A step rise in  I  opens  aI  sodium channels whose 
inward current charges the membrane capacitance to a new steady voltage 
with a time constant 

   τ  M   =  C M. R M  ,  (6.10) 

 where  R M ,  the membrane resistance, is 1/( G Na   +  G K  ). This steady state is 
reached long before pump currents change because they are slow (see 
below) whereas   τ  M   is typically milliseconds; consequently  i C   =  i P   = 0. Solving 
the circuit ’ s current balance equation gives the new steady-state membrane 
potential 

  E M  =  ( G Na E Na   +  G K E K  )/( G Na   +  G K  ).  (6.11) 

 Dividing through by  G K  , we see that  E M   depends on the conductance ratio, 
 G Na /G K  , 

  E M   = ( E Na G Na   / G K   +  E K  )/( G Na /G K   + 1).  (6.12) 

 This relationship is simplified by expressing the voltage output relative to a 
baseline of zero input so that  output = E M   –  E K  , then normalizing output to 
its maximum,  output max   =  E Na   –  E K  . Note that the setting of  E K   to zero simply 
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  Input/output (I/O) function generated by the basic electrical circuit allows the same 
computations across different input ranges   by changing the shunting conductance 
 G K   . Normalized output,  O / O max  , is plotted against input,  I , for three different shunt-

ing conductances.  Left : When output is small ( < 0.25 max), the I/O function adds. 

 Right:  When the output is medium (0.25 – 0.75 max), the function is logarithmic. In 

saturated regime (0.75 max  –  max) function ’ s slope approaches zero. Note similarity 

with I/O function produced by chemical binding (  figure 6.2 ).  

shifts the voltage scale without altering the EMFs experienced by ions, so 
response amplitudes are unaffected. Now 

  output/output max   = ( G Na  /G K  )/ (G Na  / G K   + 1).  (6.13) 

 Substituting  aIg Na   for  G Na  , we obtain a simple form of the circuit ’ s I/O 
function 

  output/output max   =  kI /( kI  + 1),  (6.14) 

 where the gain factor  k  =  ag Na /G K  . The electrical circuit ’ s I/O function is 
hyperbolic (equation 6.14;   figure 6.9 ), like the I/O function for chemical 
binding, because it too saturates. And like the chemical circuit, the electri-
cal circuit ’ s hyperbolic I/O provides operators for processing information 
(Koch, 1999; Silver, 2010).    

 An electrical circuit ’ s hyperbolic I/O supports six operators 
 1.    Addition  (A + B) occurs when the circuit operates in the bottom quartile 
of the I/O function where it is approximately linear (  figures 6.2 and 6.9 ), 
When inputs A and B open the same species of ion channel, they add. 
 2.    Subtraction  (A  –  B) also occurs in this linear region when input A opens 
an ion channel that carries current inward and B opens a channel that 
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carries a current outward. The changes in conductance and voltage must be 
small enough for the channels to approximate constant current sources 
driving a constant load. 
 3.   The  log  transform occurs in the middle region of the I/O function, where 
 output   ∼   k log  I  (  figure 6.9B ). As with chemical circuitry, this log transform is 
widely used in sensory circuits to scale responses to changes in input level, 
so that a constant   Δ I/I  produces equal changes in output throughout this 
logarithmic range. 
 4 & 5.    Multiplication  ( × )  and division  (  ÷  ) are performed by changing the gain 
factor,  k , in the I/O function (equation 6.14). This can be accomplished by 
altering the channel gain ( a ) and/or the potassium conductance ( G K  ). For 
example, increasing  G K   shunts the input from  G Na  . This mechanism is 
widely used for multiplicative gain control and divisive normalization 
(chapters 8 and 12), procedures that optimize coding and facilitate the 
extraction of patterns (Koch, 1999; Carandini  &  Heeger, 2012). Changing 
channel gain,  a , does not, strictly speaking, multiply and divide within the 
circuit, but it has this effect on the I/O function. The important distinction 
for design is that increasing  G K   increases both signal quality (S/N, band-
width) and energy consumption by increasing the number of open chan-
nels, whereas reducing  a  reduces signal quality and energy consumption by 
reducing the number of open channels. 
 6.    Exp  (inverse of log) is implemented by installing cooperativity in ion 
channels — for example, by requiring that  n  binding sites be occupied to 
open a ligand-gated channel. As in chemical circuits, cooperativity raises 
the output to the  n  ’ th power of the input, so steepening the I/O curve and 
shifting it to higher input levels. Cooperativity is used at blowfly photore-
ceptor output synapses to match a neuron ’ s coding function to the range of 
input levels (figure 3.4). The neurotransmitter, histamine, must occupy 3 
binding sites to open a postsynaptic chloride channel. This steepens the I/O 
function (  figure 6.7 ) to help achieve a match with the probability distribu-
tion of input signals (figure 9.10). 

 How electrical circuits support analogue processing 
 Ion channels implement the four elements of analogue electrical circuits, 
resistance, R; capacitance,  C ; inductance,  L ; and memristance,  M  (Chua, 
1971). Resistance and capacitance are obvious (  figures 6.7 and 6.8 ), but 
the uses of inductance and memristance need explanation. With an induc-
tance the voltage is proportional to the rate of change of current. Thus, 
when the current is increasing more rapidly, the voltage is larger, and this 
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advances the phase of the response to a sinusoidal input. Voltage-gated 
potassium channels advance phase by means of delayed negative feedback 
(Koch, 1999). 

 A memristor changes its resistance in proportion to the quantity of 
charge it has conveyed and then holds this resistance when charge stops 
flowing (Strukov et al., 2008). This resistance with memory is provided by a 
channel that couples electrical signaling to chemical signaling. For exam-
ple, take an ion channel that passes mostly sodium with a little calcium. 
This calcium provides a measure of the total charge flowing through the 
channel. Arrange that calcium binds to the mechanism that opens the 
channel, and alters its open probability. Now one has a memristor in which 
charge entry couples to the channel ’ s effective conductance. Photorecep-
tors use this mechanism to control their gain (chapter 8). 

 How voltage-gated channels meet a need for speed over distance 
 A voltage-gated channel opens or closes allosterically, in response to mem-
brane potential. Thus, a voltage-gated channel can be activated within mil-
liseconds by channels opening millimeters away. In addition, a voltage-gated 
channel amplifies an electrical input. By virtue of these properties, voltage-
gated channels can produce a larger signal that transmits more quickly and 
reliably than the signals generated by ligand-gated channels — most notably 
an action potential (  figure 6.10 ).    

 A typical action potential, an approximately 100-mV pulse lasting 
about 1 ms (  figure 6.10 ), is produced by a large and sudden influx of 
sodium ions followed by a similar efflux of potassium ions. These currents 
are produced by sodium channels and potassium channels (  figure 6.10 ) 
that, gated by depolarization, generate the action potential and propagate 
it along the membrane at speeds of 0.3 – 80 mm ms  – 1  without loss of 
amplitude. 

 The voltage-gated channels generate the action potential as follows (  fig-
ure 6.10 ). At resting potential, typically  – 70 mV to  – 60 mV, the voltage-
gated channels for sodium and for potassium open with a low probability. 
When an analogue input depolarizes the membrane, the open probability 
increases and a small proportion of sodium channels opens immediately. 
Driven by their maximum force, sodium ions surge in and depolarize the 
membrane further, creating a positive feedback loop (  figure 6.10 ). Almost 
all of the voltage-gated potassium channels remain closed because they 
respond to depolarization more slowly. A longer activation time constant is 
programmed into their finite state transitions to keep them closed while 
the sodium channels are starting to open. This delayed opening increases 
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 Figure 6.10 
  Voltage-gated sodium channels and voltage-gated potassium channels meet the 
need for speed by producing an action potential .  Upper left : Action potential wave-

form. Spike initiated when suprathreshold current depolarizes membrane potential 

from resting potential, V rest  to threshold, V thresh . Fast upstroke overshooting to peak 

height and repolarizing phase complete rapidly to produce spike with narrow width 

(measured at 50% spike height). Slower negative after-potential follows.  Upper right : 
Positive feedback loop that accelerates spike upstroke and drives overshoot to maxi-

mum amplitude. Increase in voltage-gated sodium conductance, g Na , increases in-

flow, depolarizes membrane and increases voltage-gated sodium conductance.  Lower 
left : Time course of spike (E M , left axis) and voltage-gated sodium and potassium 

conductance, plotted as density of open channels (right axis). The rapid increase in 

the number of open sodium channels that drives the upstroke is short-lived because 

sodium channels quickly inactivate. The voltage-gated potassium channels open 

more slowly to repolarize, and generate the negative after-potential.  Lower right : Re-

cordings of the activity of two voltage-gated sodium channels show that, following 

a step depolarization, each opens with a randomly varying latency for a randomly 

varying time. Averaging 352 individual responses demonstrates that a large array of 

channels averages out noise to produce a reliable sodium current. Upper left redrawn 

from Bean (2007). Upper right and lower left from Shepherd (1994) with permission. 

Lower left, data from J. B. Patlek, plotted after Hille (2001), with permission.  
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the efficiency with which sodium channels charge the membrane capaci-
tance by preventing the charge being carried in by sodium from being 
negated by charge carried out by potassium. Blocking this futile cycle allows 
the action potential to develop and, by reducing the number of ions cross-
ing the membrane, saves pump energy. 

 At a critical level of depolarization, the  threshold  potential (  figure 6.10 ), 
sodium ’ s positive feedback takes off. All available sodium channels open 
(  figure 6.10 ), more sodium ions surge in, and, unopposed by the more slug-
gish potassium channels, their current depolarizes the membrane toward 
equilibrium potential ( E Na   = 50 mV) in less than 1 ms. As the membrane 
potential approaches this peak, large numbers of voltage-gated potassium 
channels are starting to open (see   figure 6.10 ). Potassium ions experience 
their maximum force and surge out, driving the membrane potential back 
down, toward rest. At the same time, the open sodium channels change 
conformation and lock shut. This  inactivation , programmed into a sodium 
channel ’ s state changes, stops incoming sodium ions from negating the 
charge being carried by outgoing potassium, thereby increasing efficiency. 
The voltage-gated potassium channels drive the membrane potential to 
resting potential within 0.5 ms and, being no longer depolarized, start to 
close. But because potassium channels change their state more slowly, 
many remain open; the membrane potential dips below rest and approaches 
 E K  , creating a negative afterpotential (  figure 6.10 ). 

 While potassium channels are repolarizing the membrane, the voltage-
gated sodium channels remain inactive. To reset to its initial state (closed 
but responsive to depolarization), a sodium channel must experience the 
strong negativity of potentials close to rest. This state change is programmed 
to have a time constant of  ∼ 3 ms. The resulting delay, plus the residue of 
open potassium channels, makes it impossible to trigger another action 
potential during a  refractory period  of 2 ms.  4   Although being refractory places 
a ceiling on action potential frequency, it ensures that an action potential 
cannot trigger a resurgent sodium current during its repolarizing phase. 
This prevents a single action potential from starting a continuous train of 
spikes. 

 In summary, an action potential is the product of three electrical feed-
back loops, all formed by voltage-gated channels. Sodium ’ s positive feed-
back loop depolarizes the membrane to the action potential ’ s peak (  figure 
6.10 ), and potassium ’ s delayed negative feedback repolarizes to rest. Speed 
and efficiency are enhanced by a third negative feedback loop, mediated 
allosterically by sodium channel inactivation. Because channels gate each 
other electrically, the action potential is brief. This increases timing 
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precision and hence the number of bits carried by an action potential 
(chapter 3). Being electrical, an action potential travels rapidly along a neu-
ron ’ s membrane at speeds up to 100 mm in a millisecond (chapter 7) yet 
retains its information because it is faithfully regenerated by feedback. But 
how can the information carried by such an electrical signal drive a chemi-
cal circuit? The answer is a voltage-gated channel with a chemical output. 

 How a voltage-gated calcium channel links electrical to chemical 
 A voltage-gated calcium channel admits an ion that readily binds a protein 
and changes its conformation. As noted in a chemical synapse, calcium 
entering via channels opened by presynaptic depolarization binds the pro-
tein synaptotagmin, which then changes conformation and triggers vesicle 
release. A calcium ion is especially effective at changing a protein ’ s confor-
mation because, being divalent, it pulls negatively charged parts of a pro-
tein closer together. 

 Calcium is especially effective as a chemical messenger because cells 
pump it out to keep the internal concentration low, 30 – 200 nM. This cre-
ates a steep concentration gradient, equivalent to a battery of 130 mV that, 
aided by the  – 70 mV resting potential, drives calcium in through a channel 
at a rate of  ∼ 10 7  ions per second. With so little internal calcium, the pro-
teins within nanometers of the channel experience a 100-fold increase in 
calcium concentration within 100  μ s. This nanodomain calcium signal has 
a wide bandwidth because it decays as rapidly as it rises. The puff of calcium 
injected by a channel vanishes within 500  μ s by diffusing rapidly into a 
large sink, the well-buffered bulk of the cell ’ s cytoplasm. Viewed from the 
channel ’ s nanodomain, this rapid removal mechanism comes for free. The 
calcium puff is mopped up by buffering proteins, distant pumps, and 
exchangers. 

 In summary, the simplest electrical circuits demonstrate how the brain 
satisfies the need for speed over distance. Whereas chemical signaling can 
send information in a millisecond, but only over 1  μ m, passive electrical 
signaling can send it a millimeter in the same time — 1,000-fold faster. Active 
electrical signaling (action potentials) can send it still faster, by another 
100-fold, over much longer distances. Electrical circuits can be constructed 
to use the same operators as chemical circuits (  figure 6.2 ; cf. figure 6.9). But 
operating more rapidly over longer distances requires more power. An elec-
trical circuit consumes orders of magnitude more energy than a chemical 
circuit and, because electrical signaling uses wires, costs more space. 

 Given the costs, one expects efficient design. Since ion channels are allo-
steric proteins and operate stochastically, they present the same issues of 
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S/N, bandwidth, and redundancy that were identified for chemical circuits. 
We should also expect the same need to match output to input —
 symmorphosis. Moreover, when short-range chemical circuits have 
filtered signals into parallel streams with different S/N and bandwidth 
and information content, the electrical circuits that relay this information 
rapidly over distance need to match these inputs with appropriate 
outputs. This requires a diversity of ion channels with subtly different sen-
sitivities and speeds — that is, access to the large  “ part list ”  contained in the 
genome.  5   

 Constraints on information processing by circuits of ion channels 

 Biophysical constraints 
 Three biophysical factors limit the performance of electrical circuits formed 
by ion channels: (1) the high electrical resistance of single channels, (2) 
membrane capacitance, and (3) channel noise from thermal fluctuations in 
single proteins. 

 First, channel resistance. Despite having a high transport number for a 
protein molecule, a single channel nevertheless has a high resistance,  R Ch    ∼  
10 11   Ω . The reason is that selectivity requires the ions to pass in single file. 
Driven by a typical range of voltages, 10 mV – 100 mV, a channel passes 
0.1 – 1 pA. In a neuron with typical input resistance, 10 8   Ω , such currents are 
sufficient to change membrane voltage by 10  μ V to 100  μ V. That ’ s not 
much. For example, the voltage change needed to reliably trigger an action 
potential is about 1 mV – 10 mV, that is, 10 to 1,000-fold larger. Moreover, 
voltage decays exponentially with distance, so a single channel ’ s signal 
soon disappears in the membrane voltage noise. A larger voltage signal will 
travel further and support a workable S/N at its destination, and this is eas-
ily achieved (equations 6.9 and 6.11;   figure 6.9 ) — by opening more 
channels. 

 Second, membrane capacitance. As noted, capacitance limits a signal ’ s 
rate of change. One channel, passing 0.5 pA, charges the membrane slowly, 
and this limits temporal frequency and bandwidth. For example, one chan-
nel charges the 314  μ m 2  membrane of a spherical neuron, 10  μ m in diam-
eter, with a time constant of 88 ms, giving a bandwidth of 12 Hz. This limit 
too can be raised — by opening more channels. 

 Third, channel noise. Channels, like other proteins, change conforma-
tional state stochastically because they are subject to thermodynamic fluc-
tuations. Therefore, a channel opens and closes stochastically with 
probabilities that depend upon its input (figure 6.7). This stochastic 
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opening adds noise. The ratio of signal to noise can be improved — by open-
ing more channels. 

 Channels operating in an electrical parallel array, as in figure 6.8, obey 
the same rule as molecules in a chemical array (  figure 6.5 ). The S/N of an 
array of  M  parallel channels increases as  √  M , and as  M  increases, efficiency 
falls. Consequently, an efficient electrical circuit will match its number of 
channels to three factors: fixed cost, costs of other signals in the circuit, and 
input S/N (  figure 6.5 ). In summary, one adjustment, opening more chan-
nels, improves four measures of performance: signal amplitude, signal 
bandwidth, S/N, and information capacity (equation 5.6). So, what con-
strains the numbers of channels that a circuit can employ to improve its 
performance? 

 What limits the number of channels in a circuit? 
 A circuit could maximize its performance by maximizing the number of 
channels it uses. Some parts of protein circuits (e.g., ligand-gated channels 
on a postsynaptic membrane) achieve this locally by packing channels in 
the cell membrane as a crystalline array ( ∼ 2.5  ×  10 3  channels per  μ m 2 ). This 
produces tremendous local currents which charge the membrane with 
extreme rapidity, a design used by the electric eel to discharge its electric 
organ. However, such a power drain could not be sustained globally across 
an entire neuron. 

 The number of channels is limited by membrane space for pumps. A 
pump molecule has approximately the same footprint as a channel, but, 
operating at 200 cycles s  – 1 , it extrudes only 600 sodium ions s  – 1 . To match 
the throughput of one open sodium channel (6  ×  10 6  sodium ions s  – 1 ) 
requires 10,000 pump molecules, which occupy 4  μ m 2  of membrane. Thus 
the density of  open  channels that a neuron can sustain is reduced to one 
channel per 4  μ m 2 , 10,000-fold less than their maximum packing density. 
This translates into a 10,000-fold lower bandwidth and a 100-fold reduc-
tion in S/N. Being proportional to bandwidth and log 2  (S/N), the sustain-
able information rate is cut by almost five orders of magnitude. Placing the 
circuit ’ s battery chargers (pumps) alongside the circuit ’ s transistors (ion 
channels) limits a neuron ’ s ability to process information, but cell biology 
offers few alternatives.  6   

 Were a neuron to fully pack its membrane with channels and their oblig-
atory pumps, could it power them? The essential ATP is generated within 
the neuron by mitochondria. These occupy space, so the maximum sus-
tainable ATP production is proportional to cytoplasmic volume and mito-
chondrial density. Typically 4  ×  10 5  ATP s  – 1  can be generated per  μ m 3  (based 
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on a specific metabolic rate for cortical neurons of 40  μ moles ATP/g/min; 
Attwell  &  Laughlin, 2001), which means that generating the power for one 
open sodium channel requires about 5  μ m 3  of cytoplasm. Thus, when oper-
ating at the pump limit of one open channel per 4  μ m 2  of membrane, 5  μ m 3  
of cytoplasm is required to provide the pumps ’  ATP, giving a surface area to 
volume ratio of 1:1.25. Therefore, a spherical neuron must be greater than 
7.5  μ m in diameter to operate at the pump limit, but a smaller sphere has a 
larger surface area:volume ratio, so it is limited by the ability of mitochon-
dria to generate ATP. Many neuronal cell bodies have diameters greater 
than 7.5  μ m, but to connect efficiently they branch (chapter 13), and this 
increases surface area:volume. Thus, a pyramidal neuron, with a surface 
area:volume ratio of about 3:1, cannot reach the pump limit to open chan-
nel density. Forced to operate with fewer open channels, it must reduce the 
rate, temporal precision, and accuracy of its electrical signals. Housing the 
system that burns fuel to supply energy also limits a neuron ’ s processing 
power, but again, that ’ s cell biology. 

 In short, the molecular power transistor (ion channel), its molecular bat-
tery charger (ion pump), and its intracellular power station (mitochon-
drion) prevent the brain from reaping a major benefit of irreducibly small 
molecular components, high-density computing. Thus, unlike conven-
tional engineering design, neural design must maximize performance at 
low-power density. Given that opening more channels inevitably costs 
space — membrane area for pumps and cytoplasmic volume for 
mitochondria — it is all the more critical to open the minimum number of 
channels required to meet functional specifications. To paraphrase a now 
familiar principle, a low-energy-density brain should send information 
with the lowest rate of channel opening. 

 Providing speed and accuracy with low energy density circuits 
 Given that low energy density limits the minimum time constant and max-
imum S/N by limiting the number of open channels, how can a brain 
respond quickly and accurately? A solution adopted by most brains is to 
open many channels infrequently in concentrated groups — that is, use 
powerful signals that are sparsely distributed in space and time, as happens 
with action potentials and synapses.  7   This design leads to an apparent para-
dox. These concentrated electrical signals are costly and consume most of 
the brain ’ s energy, so they are part of the problem, but, given the need to 
send accurate signals far and fast, they are also part of the solution. 

 Although concentrated bursts promote temporal precision by increasing 
S/N and reducing the membrane time constant, their spatial and temporal 
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sparsity enforces low mean rates. For example, the power density of cortical 
gray matter limits the mean firing rate, averaged across all classes of cortical 
neuron, to less than 10 Hz (Attwell  &  Laughlin, 2001; Lennie, 2003; Sen-
gupta et al., 2010; Howarth et al., 2012). How the brain manages to process 
information effectively within this limit is a major theme in neural design. 

 Can arguments based on energy density be extended to establish an 
upper limit to a brain ’ s processing power — as bits per volume per second? 
Possibly, but this would only consider the expensive electrical signals. Over 
short distances and longer times, chemical processing is orders of magni-
tude cheaper, thus the principle  compute with chemistry . Chemical and elec-
trical circuits can process information with similar operators, but at scales 
and costs that differ by orders of magnitude. Therefore the design task for a 
neuron is to integrate across these scales to achieve the best result in space, 
time, and energy. This is the subject of chapter 7. 
 
 
 
 
 
 
 
 
 
 



 Chapter 6 explained that much of the brain ’ s computing occurs by chemis-
try at the scale of single protein molecules and protein circuits. Computing 
by chemistry offers good S/N at irreducibly low cost in space and energy. 
Moreover, where the reaction vessel shrinks, the principle of mass action 
can operate on high concentrations with small numbers of molecules. High 
concentrations allow low binding affinities to achieve useful signaling 
rates. Small volumes also shorten distances — over which diffusion is rapid. 
Also, because concentrations of diffusing molecules decay steeply in space 
and time, many computations can be accomplished wirelessly — simply by 
placing detectors at different distances from a source and letting Brownian 
motion do the math. 

 Computing with proteins allows a nearly infinite parts catalog — because 
a protein can be customized by changing a single amino acid — and that is 
effected simply by swapping a single base pair in the DNA. Thus, natural 
selection can shape every component precisely for a specific task — for 
example, to match a particular binding affinity and a particular cooperativ-
ity to a particular signal (figures 6.2 and 6.3). The ease of adjusting protein 
structure has generated immense diversity: overall, the mammalian brain 
transcribes 5,000 to 8,000 genes and uses alternative splicing to produce 
50,000 to 80,000 distinct proteins.  1    

 Chemical computing works brilliantly across a spatial scale of nanome-
ters to micrometers and a temporal scale of 100  μ s to seconds (e.g., rod 
phototransduction; chapter 8). Yet to serve behavior, computations must 
retain the same timescale but travel up to 1 millionfold farther. To achieve 
speed over distance requires recoding the chemical signals to electrical sig-
nals. Recoding begins with an allosteric trigger, such as ligand-binding or G 
protein activation, but allostery must eventually open an ion channel in 
the membrane to establish an electrical signal. This is one key task for a 
neuron: use allostery to send an electric signal somewhere fast. 

 7   Design of Neurons 
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  “ Somewhere fast ”  has two parts. First, a chemical signal released by a 
 presynaptic  neuron targets a  postsynaptic  neuron on a short branch ( dendrite ). 
The chemical transmitter binding to a protein receptor allosterically opens 
its ion channel. This initiates an electrical signal that spreads passively 
along the dendrite toward a central locus (cell body or specialized cable seg-
ment) for integration with signals from other dendrites. Second, the inte-
grated electrical signal recodes to an all-or-none pulse that spreads actively 
down a single cable ( axon ) toward presynaptic terminals that contact other 
neurons (figure 7.1).     

 Figure 7.1 
  Neurons and glial cells of cerebellar cortex.  Neuron types shown here (a, b, e, f, g) all 

express the standard polarized design: inputs to multiple dendrites converge to cell 

body and output to a single axon. Neuron types: a, Purkinje; b, basket; e, stellate; f, 

Golgi; g, granule. Input axons: h, mossy fiber; n, climbing fiber. Two types of glia (j, 

m) are shown at lower left. Each Bergman glial cell (j) wraps the dendritic arbor of a 

single Purkinje neuron (a). Drawing by S. Ram ó n y Cajal. Reprinted with permission 

from Sotelo (2003). 
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 Dendrites are 10 – 1,000 micrometers long, depending on neuron type, 
and over such distances  “ fast ”  means up to 50 micrometers per millisecond. 
Axons are 1 – 1,000 millimeters long, and over such distances,  “ fast ”  means 
at least 1 millimeter per millisecond. Thus, dendrites conduct passive elec-
trical signals about 50-fold faster than chemical diffusion, and axons con-
duct active electrical signals at least 20-fold faster than dendrites.  

 A neuron steps up from the nanometer scale of protein circuits to the 
micrometer scale of a synapse (1,000-fold), then to the millimeter scale of a 
dendritic tree (1,000-fold), and then to the meter scale of the longest mam-
malian axons (1,000-fold), ultimately integrating processes that span a 10 9  
range of spatial scale. This greatly increases the cost of space, materials, and 
energy. A protein molecule allosterically encoding 1 bit occupies about 50 
nm 3 ; whereas the smallest neuron cell body encoding 1 bit occupies 10 9  
greater volume; and the largest neuron cell body encoding 1 bit occupies 
10 12  greater volume and correspondingly more materials. The energy cost of 
encoding 1 bit rises from about 25  k B T  to about 10 9   k B T.   2   

 Such numbers explain why neurons need to be efficient. The microves-
sels that deliver oxygen and metabolic supplies distribute densely, forcing 
neurons to occupy their interstices (figure 7.2). Were neurons to be ener-
getically less efficient, they would need more mitochondria to produce 
more ATP — and that would require a denser capillary network at the 
expense of efficient neuron layout (chapter 13). The same constraint applies 
to space and materials. For example, the diameter of a cerebellar Purkinje 
cell body is 10-fold greater than that of a cerebellar granule neuron, but its 
volume is greater by 1,000-fold (figure 7.1). Therefore, we must explain 
how the design of each neural component: synapse, dendrite, cell body, 
and axon match each other and conserve space and energy.     

 Synapse  

 Synapses enable neurons to process information in neural circuits by trans-
ferring and transforming signals at specific connections. The simplest syn-
apses are electrical, made from proteins that form an array of channels that 
connect two neurons. Where it serves as a simple resistor, an electrical syn-
apse is as inexpensive and noiseless as a connection can be.  3   This is why 
electrical synapses are widely used to weakly couple neurons, for example, 
to compute the mean signal over a patch of retina to reduce redundancy 
(chapter 11), to synchronize rhythmical activity among the cortical inter-
neurons, and to synchronize motoneurons that drive the same muscle. But 
coupling with a resistor does not equip a circuit to compute much. More 
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transformations are required, and signals must be amplified to produce fast 
responses that are resistant to noise. These requirements are met by chemi-
cal synapses, so called because a presynaptic neuron transmits chemically 
by sending a pulse of neurotransmitter to receptors on a postsynaptic 
neuron.  

 Origin of graded chemical signal 
 A chemical pulse originates when a vesicle docked to a presynaptic  active 
zone  fuses with the plasma membrane and releases transmitter molecules 
through a  fusion pore  into the  synaptic cleft  (figure 7.3). The vesicle contains 
about 4,000 molecules of transmitter concentrated by a transporter protein 
in the vesicle membrane to roughly 100 mM. Discharge through the pore 
requires about 100  μ s, during which molecules are diffusing away; yet their 
concentration at the postsynaptic receptor proteins clustered 20 nm across 
the cleft rises briefly to about 10 mM (figure 7.3). This suffices for 

whitewhite
mattermatter
white
matter500500 μm500 μm

 Figure 7.2 
  Blood vessels distribute densely in gray matter with even mesh .   The 500- μ m scale 

bar corresponds roughly to the dimension of largest local circuits. Therefore, neu-

rons and glia must fit into the interstices of the capillary network. Were energy cost 

to rise, due either to lower neuronal efficiency or enhanced neuronal performance, 

vessel density would rise at the expense of efficient neuron layout. Cerebral cortex 

from superior temporal gyrus of monkey. Reprinted with permission from Weber et 

al. (2008). 
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 Figure 7.3 
  Fusion of one synaptic vesicle briefly raises the concentration of transmitter within 
the synaptic cleft to 10 mM .  Upper left : Synaptic vesicles, about 40 nm, from mouse 

cerebellar cortex docked to presynaptic membrane across the synaptic cleft from the 

postsynaptic density. This density houses a complex of proteins that support, among 

other functions, long-term potentiation (see chapter 14). Courtesy of K. H. Harris. 

 Upper right : Synaptic vesicles, about 30 nm, from  Drosophila  medulla. Note that cleft 

width and vesicle size are similar for mammal and fly. Fly vesicle contains similar 

number of transmitter molecules as mammal (Borycz et al., 2005). Courtesy of Zhi-

yuan Lu, Patricia Rivlin  &  Fly EM Team, Janelia, HHMI.  Lower left : Concentration 

decays steeply in space and time.  Lower right : Concentration at 20 nm from fusion 

site suffices to bind and open roughly half of the postsynaptic ion channels. Half-

saturation by one vesicle allows multivesicular release to enhance the response. De-

cay to lower concentration with time and distance can be exploited by other types of 

receptor molecules with higher binding affinities (figure 11.10).  P o ,  open probability 

of postsynaptic ion channels. Graphs are modified and reprinted with permission 

from Xu-Friedman  &  Regehr (2004). 
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transmitter to bind cooperatively to low affinity receptors, thereby opening 
their channels and initiating the electrical signal, a miniature postsynaptic 
current ( MPSC ).     

 This design requires matching closely the number of molecules and their 
concentration within a vesicle to its emptying time, diffusion distance, and 
receptor binding constant. Were the vesicle to contain fewer molecules or a 
lower initial concentration, the final concentration at the postsynaptic 
receptor would be too low for its binding affinity. The same would occur if 
the vesicle emptied more slowly or if the diffusion distance across the cleft 
were greater. Any of these factors could be compensated for by a higher 
affinity at the receptor, but that would sacrifice bandwidth (chapter 6). 
These factors could also be compensated by a narrower cleft, but that would 
increase cleft electrical resistance and reduce postsynaptic current. Thus, 
cleft width appears to optimally balance transmitter concentration at the 
postsynaptic receptors and electrical resistance (Savtchenko and Rusakov, 
2007; Graydon et al., 2014). So here is symmorphosis at the nanometer 
scale.  

 Molecular mechanism of vesicle fusion 
 For vesicle fusion ( exocytosis ) to work at all requires multiple allosteric pro-
cesses. And for it to transfer the information encoded chemically to an 
electrical signal, while preserving temporal precision and S/N, these alloste-
ric processes must couple efficiently as now explained.  

 To preserve temporal precision, vesicle fusion must occur promptly as a 
triggered event. This requires  docking  it in advance to a specialized  active 
 zone and then  priming  the vesicle with multiple  SNARE s, each a complex of 
four protein molecules. A SNARE, upon binding the vesicle tightly to the 
presynaptic membrane, adopts a high free energy conformation that is 
metastable (figure 5.4). Consequently, a small signal can push a SNARE over 
the hump on its energy landscape and trigger fusion.  

 The trigger is a surge of calcium ions reaching the docked vesicle through 
voltage-gated channels clustered at the active zone. When channels open 
in response to a presynaptic depolarizing electrical signal, several hundred 
calcium ions enter to raise the local concentration by 50-fold in less than 
500  μ s. Several calcium ions are bound by the protein  synaptotagmin  
attached to the vesicle, which then binds to the SNARE and pushes it over 
the energy hump (S ü dhof, 2013). As the SNARE plummets to a lower energy 
conformation, the freed energy causes violent tugs on the vesicle. The com-
bined force from three SNAREs suffices to fuse the vesicle to the presynaptic 
membrane and wrench open a pore with consequence already noted. The 
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entire process, from presynaptic electrical signal to postsynaptic receptor 
activation, occurs fast enough to preserve temporal precision and to be 
completed within 600  μ s.  

 Speed and temporal precision emerge from several design principles. The 
molecular components are irreducibly small and locate close together —
 within nanometers. This allows fast chemistry with irreducibly few mole-
cules to achieve the high concentrations needed to transmit fast signals 
(high bandwidth). Chemistry achieves speed and gain by storing energy 
and then releasing it with concatenated switches: (1) voltage switch opens 
a calcium channel, releasing energy stored in calcium ’ s electrochemical gra-
dient (figure 7.4); (2) synaptotagmin binds calcium at low affinity, releasing 
energy stored within the SNAREs; (3) SNAREs fuse a vesicle, releasing energy 
stored by concentrating transmitter.     

 Timing is sharpened by cooperativity that steepens the response curves 
(figure 6.3): several voltage-gated calcium channels cooperate to establish a 
sufficient calcium concentration, several calcium ions cooperate to cause 
synaptotagmin to bind a SNARE, and several SNAREs cooperate to fuse a 
vesicle. Thus, via switches directing stored energy, the chemical signal 
recodes to electrical with good S/N and temporal precision.  

 In order to transmit high frequencies, a steeply rising chemical signal 
must also fall steeply. Thus, each stage must terminate quickly: (1) calcium 
channels close instantaneously as the membrane repolarizes; (2) calcium 
concentration collapses locally within tens of microseconds as calcium is 
bound rapidly by low-affinity buffering proteins; (3) synaptotagmin 
switches off sharply because of its steep dependence on calcium; (4) trans-
mitter concentration decays within less than 1 ms by fast binding to trans-
porter proteins on synaptic and glial membranes and by diffusing from the 
cleft.  

 In short, rapid release and rapid termination produce a chemical signal 
in the cleft that peaks within about 0.6 ms and lasts less than 1.5 ms, 
thereby transmitting information with irreducible delay and a bandwidth 
of about 1 kHz. This suffices to transmit most frequencies coded by the 
neuron ’ s electrical signals because the membrane time constant is con-
strained by energy cost (chapter 6; Attwell  &  Gibb, 2005). Thus, the mecha-
nism of chemical signaling at the synapse matches the bandwidth of the 
presynaptic neuron. 

 Vesicle release is stochastic 
 An action potential reaching a presynaptic terminal may cause a single ves-
icle to be released, or it may fail. Release is stochastic with a probability that 
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can vary between 0.1 and 0.9. The uncertainty of release introduces noise, 
thereby reducing information, but it can have advantages (Harris et al., 
2012). For example, it reduces the likelihood that two vesicles will redun-
dantly carry the same signal. It also offers a mechanism to adjust the effec-
tiveness of a synapse — its  weight —  by tuning release probability. This 
provides mechanisms for homeostasis and plasticity (chapter 14). The costs 
and benefits of stochastic release are discussed further in later chapters. 

 Recovery and cost of presynaptic chemical signal 
 Vesicles fusing by exocytosis expand the presynaptic membrane, thus 
increasing its capacitance and time constant. To prevent this, the terminal 
retrieves each fused vesicle by  endocytosis , folding inward the added patch 
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of membrane and pinching it off. This sounds simple, but, of course, it 
requires allosteric action by several types of proteins — to reverse what was 
accomplished by the SNAREs. Obviously, a synaptic terminal must main-
tain a strict balance between exo- and endocytosis.  

 Although a synaptic vesicle appears morphologically simple, it is really a 
complex molecular machine comprising about 800 protein molecules of 
about 40 protein species (Fern á ndez-Chac ó n  &  S ü dhof, 1999). Beyond the 
structural membrane proteins and transporter proteins to fill it with trans-
mitter, there are specific proteins for other tasks: to link the vesicle to 
neighbors near the presynaptic membrane for rapid recruitment to docking 
sites (Hallermann  &  Silver, 2013; Hallermann et al., 2010), to provide two 
of the proteins in each SNARE plus the synaptotagmins to trigger them, and 
to mark the vesicle for endocytotic retrieval. By specifically retrieving vesi-
cle membrane, rather than nonvesicle membrane, the specific vesicle pro-
teins are retrieved together, allowing the vesicle to be refilled and readied 
for rerelease within a minute. 

 Using allostery of chemically coupled proteins, the vesicle release mech-
anism is efficient in space, materials, and energy: to extrude the modest 
numbers of calcium ions, ~12,000 ATP; to energize the SNAREs,  < 100 ATP; 
to retrieve the vesicle,  < 500 ATP; and to fill the vesicle, ~11,000 ATP (Attwell 
 &  Laughlin, 2001).  4   Therefore, the total cost of a presynaptic chemical 
quantum is ~23,000 ATP. The postsynaptic electrical response to this signal 
costs roughly 10-fold more, as we now explain.  

 Postsynaptic electrical response 
 The transmitter molecules reaching receptor proteins across the cleft bind 
stochastically, and when two or more molecules bind cooperatively to the 
same protein, it changes conformation to open a channel (figures 6.6 and 
6.7). The contents of one vesicle, a  quantum , open about half of the avail-
able channels (figure 7.3). Therefore, enlarging the quantum by increasing 
transmitter concentration within a vesicle, or releasing several quanta ( mul-
tivesicular release ) can produce a graded increase in the fraction of open 
channels (see below, figure 7.17). Thus, the information packet presented 
to a postsynaptic receptor cluster is graded, as is the opening of channels 
that capture the amplitude and timing of the upstream event. Still in chem-
ical mode, it is cheap.  5   

 But now ions flow through the open channel with a direction and ampli-
tude that depend on their electrochemical driving force (figure 7.4). When 
the transmitter is glutamate and the postsynaptic receptor is a ligand-gated 
cation channel (chapter 6), sodium ions, and in certain cases calcium ions,  6   
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are strongly driven inward to depolarize the membrane. The channel is also 
permeable to potassium, but its weaker driving force moves fewer ions out-
ward. The net ionic current converts the graded chemical signal to a graded 
electrical signal. The cost is 10-fold more energy, but this is essential to send 
over distance at acceptable time delays. Recall that, whereas a graded chem-
ical signal diffuses cheaply, about 1  μ m in a millisecond, a graded electrical 
signal needs batteries but travels 50-fold farther in the same time. 

 The greater energy cost demands measures to reduce noise. This follows 
the principle  send only what is needed , and that means sending the least pos-
sible noise. The noise sources include: stochastic release of vesicles, timing 
of vesicle fusion, size of a transmitter quantum,  7   times of receptor binding/
unbinding, and channels opening/closing (Ribrault et al., 2011). So the 
neuron takes various measures to mitigate them. 

 The number of molecules released in the quantal pulse from a vesicle 
varies across neuron types. The number depends strongly on vesicle diam-
eter, d, since volume goes as d 3 , and on the final intravesicle concentration, 
roughly 100 mM. Each neuron type selects a vesicle between 30 and 50 nm 
in diameter (figure 7.3). This allows a roughly fivefold range in number of 
molecules. Functional vesicles as small as 20 nm in diameter have been 
produced experimentally by genetic manipulation, but they contain fewer 
transmitter molecules than a 30-nm vesicle — insufficient to establish an 
effective postsynaptic concentration. Small vesicles with more transporter 
molecules might conceivably establish higher internal concentrations, but 
actually, overexpression of transporter proteins gives larger vesicles with 
similar mean concentration. Thus, the 30-nm vesicle seems to be a lower 
bound from fly to mammal (figure 7.3).  

 Increasing the number,  M , of postsynaptic receptors improves postsyn-
aptic S/N by  √  M  and reduces the time constant by charging the capacitance 
more briskly (chapter 6). A small synapse clusters about 20 receptors, 
improving S/N compared to one receptor by about 4.5-fold. A large synapse 
may expand the receptor cluster up to about 10-fold and thereby improve 
S/N by about 14-fold (figure 7.5).  8   But this threefold benefit comes with a 
10-fold greater cost, so it is reserved for special purposes, such as auditory 
synapses that transmit with high temporal precision (chapter 10). In any 
case, the graded electrical signal now serves the neuron ’ s next task: inte-
grate and send an output.     

 Different protein receptors process on different timescales 
 A neuron must register events on different timescales and does so using 
postsynaptic receptors with different kinetics. Consider as an example one 
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broad family of ligand-gated cation channels, the glutamate receptors 
(Attwell  &  Gibb, 2005). Two types, the NMDA receptor and the AMPA 
receptor,  9   bind glutamate with similar ON rates, but the NMDA receptor ’ s 
OFF rate is 400 times slower. This slower OFF gives the NMDA receptor a 
more sustained response that covers a longer timescale (figure 7.6); it also 
causes a 400-fold higher sensitivity to glutamate: whereas an AMPA recep-
tor requires glutamate concentrations of nearly 1 mM to cooperatively 
bind two glutamate molecules, an NMDA receptor is doubly bound at 
about 1  μ M.    
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  Postsynaptic receptor clusters from different synapse types span a 10-fold range of 
size . This reflects customized S/N for each type, according to needed benefit and cost. 

Area of postsynaptic density corresponds to size of the receptor cluster. CA3  →  CA1= 

hippocampus; MF  →  GC = cerebellar mossy fiber to granule cell; AVCN  →  MNTB = 

anteroventral cochlear nucleus to medial nucleus of trapezoid body; AN  →  AVCN = 

auditory nerve to anteroventral cochlear nucleus; 1a, 1b  →  Pyr = pyriform cortex; CF 

 →  PC = climbing fiber to Purkinje cell; PF  →  PC = parallel fiber to Purkinje cell; MF 

 →  CA3 = hippocampal mossy fiber to hippocampal pyramidal cell. Reprinted with 

modification and permission from Xu-Friedman and Regehr (2004). 
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 The AMPA receptor covers a neuron ’ s shortest timescale (figure 7.6). Its 
high rates for glutamate ON and OFF match fast rate constants for channel 
opening and closing, so an AMPA receptor completes its electrical response 
with a time constant of about 0.8 ms. This speed preserves the temporal 
information transmitted by fast vesicle release. It also matches the lower 
limit to a neuron ’ s membrane time constant imposed by the energy cost of 
a low membrane resistance (time constant = capacitance  ×  resistance) .  In 
other words, an AMPA receptor equips an excitatory synapse to transmit 
the full bandwidth of neuronal response.  

 For AMPA receptors to cover this fast timescale and wide bandwidth, 
glutamate at the postsynaptic receptor site must decline promptly. Gluta-
mate diffuses about 1  μ m per millisecond, so by restricting AMPA receptors 
to a small postsynaptic patch, less than 1  μ m in diameter, its concentration 
falls by e-fold within a millisecond (figure 7.3). Glutamate accumulation 
during successive releases is prevented by active uptake. Transporter pro-
teins on the surrounding neuron and glial membranes bind glutamate rap-
idly and move it into the cell, powered by the influx of three sodium ions. 
The transporter works slowly, requiring a full minute to retrieve the 4,000 
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  Neurons use different types of receptor to encode a range of temporal frequencies . 
Graph shows time course of activation for AMPA and NMDA receptors by a 0.3-ms 

pulse of 1 mM glutamate. To more finely optimize binding for a range of high fre-
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ecules. Reprinted with permission from Attwell  &  Gibb (2005). 
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glutamate molecules released by one vesicle. Therefore, to mop them up on 
the required millisecond timescale requires transporters to be concentrated 
around the synapse: to bind 4,000 glutamate molecules within a millisec-
ond requires 10,000 transporters that bind with high affinity (Attwell  &  
Gibb, 2005). 

 To efficiently match components, AMPA receptors locate near the vesicle 
release site, within about 20 nm, where they see a fast, high peak and steep 
decay of glutamate concentration (figure 7.3). Thus, the receptor ’ s molecu-
lar structure is matched by vesicle content and distance from the release site 
(figure 7.3). NMDA receptors in certain cases locate farther from the release 
site where they see slower rise and fall of glutamate concentration, allowing 
them to integrate contributions from successive release events. Their sus-
tained responses can also be integrated with fast AMPA receptors (Clark  &  
Cull-Candy, 2002).  

 The NMDA receptor ’ s sustained response allows it a role in detecting 
 coincidence detection . This exploits the NMDA receptor ’ s voltage sensitivity. 
A receptor, binding glutamate when the membrane is at resting potential 
( – 65 mV), reacts weakly because its channel is partly blocked by a positively 
charged magnesium ion. When the membrane depolarizes — for example, 
due to AMPA-mediated currents from synapses on the same dendrite —
 magnesium is forced out, allowing sodium and calcium   to enter. Thus, an 
NMDA receptor detects the coincidence of a presynaptic input (glutamate) 
AND a postsynaptic response (depolarization) within a time window of 
about 100 ms set by the slow unbinding of glutamate. 

 The NMDA receptor ’ s ability to detect and signal coincidence equips a 
neuron for pattern recognition and learning (chapter 14). An active recep-
tor emphasizes the coincidence by amplifying and extending a synapse ’ s 
excitatory input; moreover, it marks the synapses whose signals coincide. 
Only synapses that recently delivered glutamate have NMDA receptors 
primed for action. When these receptors are unblocked by depolarization, 
they admit chemical messengers (calcium ions) that initiate structural 
change. Because an action potential also depolarizes synapses, the NMDA 
receptor enables a neuron to take a first step in learning; it can identify and 
modify those synapses whose inputs coincide with a definitive output.  

 The duration of an NMDA receptor ’ s time window is critical for learning. 
Shorter would increase false negatives — the receptor would miss correla-
tions between events that take longer to unfold. Longer would increase 
false positives — more unrelated events would occur in the same time win-
dow. The NMDA receptor ’ s OFF rate creates the 100-ms time window that 
seems about right for many of life ’ s more immediate events.  
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 However, this mechanism creates a problem (Attwell  &  Gibb, 2005). The 
slow OFF rate retains some glutamate bound until nearly every last mole-
cule has been removed from the synaptic cleft. This requires a transporter 
to harness the energy of  three  sodium ions: two sodiums can pull extracel-
lular glutamate down to 180 nM, but this leaves 13% of NMDA receptors 
still bound. Thus, for NMDA ’ s time window to close within 100 ms requires 
a transporter with appropriate stoichiometry — at a cost of 50% more energy. 

 Intervals still longer than the NMDA receptor ’ s time window are covered 
by a  metabotropic  glutamate receptor,  mGluR . This receptor belongs to the 
same molecular family as the  β -adrenergic receptor (chapter 5), and like 
that receptor, it activates a G protein to deliver an amplified signal. 
Responses driven by mGluR can be tuned to cover a range of time intervals, 
from about 0.1 s to tens of seconds. Moreover, mGluR ’ s second messengers 
can, like calcium from the NMDA receptor, institute longer lasting struc-
tural changes. 

 Processing multivesicular release 
 We have explained how receptors process on different timescales by vary-
ing their output to a singular input, a puff of glutamate. Receptors can also 
detect variations in input timescale, produced by different temporal pat-
terns of vesicle release, by varying the kinetics of receptor activation, deac-
tivation, and desensitization. For example an AMPA receptor desensitizes in 
response to prolonged glutamate, causing the response to a sustained burst 
of action potentials to decline over time. This fast desensitization favors 
signals that change on a short timescale, thereby tuning AMPA ’ s bandwidth 
to higher frequencies and eliminating redundancy. Conversely, an mGluR 
activates slowly and does not desensitize, thereby favoring inputs that 
change on longer timescales.  

 In summary, the glutamate receptor families enable a neuron to process 
on different timescales by producing synaptic responses of different dura-
tions. Receptors are constructed from different parts, that is, from different 
combinations of a receptor ’ s protein subunits, to provide the key differ-
ences in kinetics, sensitivity, and output: an AMPA receptor that unbinds 
glutamate at a high rate to create a narrow window and desensitizes to favor 
high frequencies; an NMDA receptor that is voltage sensitive and delivers 
calcium ions; and an mGluR that acts more slowly via second messengers. 
But simply engineering receptors is insufficient. A receptor ’ s kinetics and 
sensitivity must be matched by the stoichiometry and affinity of trans-
porter molecules, by their density around a synapse, and by the dimensions 
of the synapse itself (Attwell  &  Gibb, 2005). This conclusion, that to be 
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effective requires design in depth, is more amply illustrated by photorecep-
tors (chapter 8). 

 Efficiency from synaptic inhibition  
 Neurons employ various forms of synaptic inhibition. All increase effi-
ciency by improving timing precision (Sengupta et al., 2013) and reducing 
redundancy. These effects all help concentrate information, so that the 
space and energy used to send expensive electrical signals are well spent. 
Inhibition also serves to delete information unneeded by a downstream 
user. These effects are discussed with specific examples in chapters 9 through 
12. Here we explain the mechanisms and why they are cheap. 

 One type of synaptic inhibition is achieved when transmitter binding 
opens a membrane channel for chloride ions. The open chloride channel 
reduces the depolarization produced by an inward cationic current and 
hence reduces the probability of triggering an output — a vesicle release or 
spike. The inhibition is achieved in two ways. First, when E Cl  is negative to 
the membrane potential (figure 7.4), chloride enters and neutralizes the 
charge carried by entering cations. Second, irrespective of whether chloride 
flows in or out, the open chloride channel lowers membrane resistance, 
thus shunting the depolarization. This effect dominates when chloride   cur-
rents are small, which is generally so because E Cl  is generally near E M  (figure 
7.4). Small currents require less restorative ion pumping, which makes 
chloride ’ s  shunting inhibition  energy efficient. 

 Shunting inhibition is also achieved by opening a potassium channel. As 
for chloride, the potassium current is small because E K  is near E M  (figure 7.4). 
The inhibitory potassium channels are not gated by chemical transmitter 
but rather by G proteins, membrane voltage, or calcium. Thus, they add 
substantially to the parts list for energy efficient inhibition.  

 The transmitters for ligand-gated chloride channels are GABA, glycine, 
and histamine (figure 6.7). The GABA receptors ( GABA A  ) comprise a diverse 
family of molecules. The receptor assembles as a pentamer from several 
classes of subunit (alpha, beta, gamma, etc.), each of which has subtypes. 
This permits customized properties, such as different binding constants, 
different speeds of opening, and different rates of desensitization. The 
GABA A  receptor ’ s ligand binding is modulated allosterically at several sites 
on the molecule by brain chemicals, such as steroids and by various exog-
enous chemicals, such as alcohol, barbiturates, and benzodiazepine  “ tran-
quilizers. ”  This suggests, by analogy with endogenous modulators of other 
types of receptor (endogenous opiates and endocannabinoids), that there 
should be endobenzodiazepines. One such molecule has been reported, a 
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secreted protein,  diazepam binding inhibitor , that potentiates the GABA A  
receptor (Christian et al., 2013).  

 Dendrites expand a neuron ’ s information capacity  
 To gather more information, a neuron must supply more membrane for 
synaptic contacts while minimizing the length of wire devoted to connect-
ing (chapter 13). The design solution is to grow dendrites, which also offer 
compact compartments for electrical and chemical computing and for inte-
grating signals. A dendrite is structured like an electrical cable — with a con-
ducting core (cytoplasm) and outer insulation (the membrane ’ s lipid 
bilayer). Voltages decay exponentially on a cable (figure 7.7) with a length 
constant  10   that depends upon resistance per unit length of insulating mem-
brane,  r M  , and conducting core,  r cyt  : 

  length constant  =  √  ( r M /r cyt  ). (7.1) 

 A dendrite does not transmit far:  r M   is too low because potassium chan-
nels stay open to maintain resting potential, and  r cyt   is too high because 
hydrated ions in cytoplasm conduct poorly. Therefore, a dendrite ’ s length 
constant is generally less than 1 mm, and dendrites preserve signal ampli-
tude by staying shorter than their length constant.    

 A dendrite may increase its length constant by growing thicker, thus 
reducing  r cyt  , but the improvement goes only as the square root of diameter 
(Koch, 1999). With length constant increasing as  √  d  and volume increasing 
as  d 2    ×   length , the total cost of space and materials increases as ( length ) 5 . 
Such a steeply diminishing return requires designs that keep dendrites 
short (chapter 13). Temporal resolution (bandwidth) also requires short 
dendrites because longer ones increase capacitance. This delays signals and 
spreads them out, thus attenuating high frequencies (figure 9.9). In short, 
signals traveling passively on a dendrite longer than 1 mm would be too 
weak and too slow to carry much information. Yet these cable properties 
that limit dendritic length can be exploited to process information as it is 
gathered.  

 Dendrites process directly 
 Dendritic biophysics provides cheap and robust analogue processing (Koch, 
1999). For example, by placing input synapses that carry less information 
distally on the dendrite, they can be given less weight in the final output, 
whereas signals that carry more information can be given more weight by 
placing them nearer the cell body (figures 11.15 and 11.16). More generally, 
inward currents from excitatory synapses can be combined with outward 
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currents from inhibitory synapses and potassium channels. Thus, a den-
drite serves as an analogue electrical circuit that adds, subtracts, divides, 
multiplies, and takes logarithms (figure 6.2). 

 Such operations implemented directly by an RC circuit combine many 
synaptic inputs to produce an output within milliseconds. This rapid many-
to-one integration, which serves behavioral requirements for prompt deci-
sion, would be difficult to implement with a chemical circuit. The 
many-to-one ability is further exploited by joining several dendrites to 
the cell body or an integrating segment to form a final common output 
(figure 7.1). 

 To increase their processing abilities, dendrites  complicate their design  
(Branco  &  H ä usser, 2010). For one example, a dendritic twig at the distal tip 
of an elaborate dendritic tree makes a coincidence detector by strategically 
expressing voltage-sensitive sodium channels (Harnett et al., 2013). Gluta-
mate released at excitatory synapses binds AMPA and NMDA receptors, but 
only when AMPA currents from several synapses coincide does the den-
dritic twig depolarize sufficiently to unblock the NMDA receptors. Through 
them, calcium and sodium ions enter to amplify the coincidence, and 
voltage-gated sodium channels register it by producing a robust pulse, an 
action potential. 

 This pulse does not propagate far because the sodium channels are con-
fined to the twig. However, it generates sufficient current to drive a detect-
able signal into the larger dendritic tree. Here, strategically positioned 
potassium channels shunt responses from particular twigs and branches, 
thereby selectively blocking some inputs or controlling their gain. Thus, 
more complicated dendrites provide two layers of processing, local within 
a single dendrite and global within the larger dendritic tree. 

 A dendrite can add another layer of processing by receiving a synapse on 
the globular head of a dendritic spine, 0.5 – 1.5  μ m in diameter (figure 7.8; 
Yuste, 2013; Sala  &  Segal, 2014). Evoked current and chemical messengers 
pass from spine head to dendrite through a thin neck, 0.05 – 0.25  μ m in 
diameter and 0.5 – 2  μ m long. The neck resists the flow of intracellular cur-
rent and chemicals, thereby creating a computing compartment in the 
head that can be regulated by varying neck diameter and length. This 
design neatly resolves two conflicting demands.    

 A synapse must merge its current with many other currents in an 
extended RC network (dendrite and tree). In doing so, it loses individuality 
because the amplitude of its  EPSP   (excitatory postsynaptic potential)  depends 
largely on the state of the network, as determined by the multitude of syn-
aptic and voltage-gated conductances (Yuste, 2013). Yet, a synapse must 
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 Figure 7.8 
  Purkinje cell dendrites studded with spines of varied morphology . Reprinted from 

Ram ó n y Cajal (1909). 

also  adapt ,  match ,  learn ,  and forget . For this, it must retain individuality to 
monitor and adjust its own EPSP (chapter 14). A specific example is 
explained for the retina ’ s horizontal cell (chapter 11, figure 11.5). 

 The spine neck ’ s variable resistance allows it to adjust the amplitude of 
the EPSP in the spine head.  11   This robust private measure of output can 
then drive electrical and chemical circuits in the head that modify the out-
put to adapt, match, learn and forget (chapter 14). The head ’ s small volume 
allows chemical processing to be fast, reliable and efficient. A spine also 
increases wiring efficiency by extending a dendrite ’ s reach at minimum 
cost in space and materials (chapter 13, figure 13.3). 

 In short, dendrites collect and process analogue signals before final 
recoding to faster, regenerative pulses for transmission down the axon. But 
dendrites can also process in reverse. A dendritic tree may express voltage-
gated sodium and calcium channels that allow spikes triggered in the 
axon to propagate back into the tree. This sends information about the 
neuron ’ s output back to the dendrites where it serves various purposes, 
for example, to strengthen the synapses that generated the neuron ’ s 
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output — for learning (chapter 14). Now we consider the design to minimize 
information loss in converting dendritic analogue to a pulse code at the 
axon, for faster transmission over distance. 

 The axon converts to a pulse code  
 Having gathered and processed analogue signals from multiple dendrites, 
the neuron needs to send the information over long distance to its 
synaptic terminals via a single specialized cable (figure 7.1). Passive conduc-
tion of a graded signal is too slow, and its exponential decay would 
lose information to noise (figure 7.7). Consequently, for distances greater 
than one length constant (~1 mm), an axon recodes to all-or-none 
pulses — action potentials (figure 6.10). These travel faster and avoid decay 
by regenerating as they go. Information encoded as spikes travels far with 
little loss. 

 However, the step of recoding from analogue to pulses loses a lot of 
information — as much as 90% (Sengupta et al., 2014). Whereas an analogue 
signal tracks changes continuously by allowing several response levels (fig-
ure 5.3), pulses allow the membrane potential to change intermittently 
between just two levels (figure 3.5). Thus, a neuron using analogue can 
transmit more than 2,000 bits s  – 1 , whereas using spikes, it can manage fewer 
than 500 bits s  – 1 . Furthermore, a 100-mV spike costs far more energy (chap-
ter 6), so recoding to pulses massively reduces energy efficiency (bits 
per ATP).  

 A neuron tries to minimize these losses by converting to spikes at a spe-
cialized initiation site.  12   This  initial segment  locates at some distance from 
the cell body ’ s large capacitance to shorten the membrane time constant 
(see below, figure 7.11). The initial segment also packs membrane channels 
extra densely to further reduce the time constant and increase S/N. With 
higher S/N and shorter time constant, the site triggers spikes faster and 
more reliably, both of which increase bits per spike, thereby reducing loss 
of information and improving efficiency.  

 To increase bits per spike right at the initial segment is critical because 
transmission down the axon is expensive. A transmitted spike charges the 
entire axon ’ s membrane capacitance by about 100 mV by admitting sodium 
ions, and to pump them out costs 6.3  ×  10 3  ATP per square micrometer of 
membrane (chapter 6). A pyramidal neuron in cerebral cortex uses an irre-
ducibly thin axon (~0.3  μ m in diameter) to send spikes through its intracor-
tical circuit. Even so, the cost per spike is 6  ×  10 6  ATP per millimeter, and 
over its length of 4 cm, the cost is 2.4  ×  10 8  ATP (Attwell  &  Laughlin, 2001). 
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Considering the full population of pyramidal neurons, their spikes account 
for more than 20% of the energy used to process information in cortical 
circuits (Sengupta et al., 2010; Howarth et al., 2012). 

 In short, the conversion of synaptic and dendritic analogue signals to 
axonal spikes creates an expensive bottleneck. Bits are limited and costs 
increased, which makes it imperative to use each spike efficiently according 
to principles of neural design. In particular, an axon should  send only what 
is needed  by reducing redundancy and noise and by limiting transmission to 
what downstream neurons need to know (chapter 11). Thus, the carving 
out of essential features for transmission is a critical process in which the 
final step, the conversion of analogue to spikes by voltage-gated channels, 
plays a decisive role (Aguera y Arcas et al., 2003). 

 Supply and recycling 

 The neuron cell body must continually deliver fresh organelles, such as 
mitochondria, vesicles, and rafts of receptor proteins, outward to distant 
dendritic and axonal arbors. These nether regions must return recyclable 
materials and inform the cell nucleus of their needs.  13   Traffic in both direc-
tions needs to be faster than diffusion — at rates up to about 10 mm per 
hour. For efficiency ’ s sake, bidirectional traffic goes along the same track, a 
protein monorail.  

 The  microtubule , constructed from subunits as a cylindrical polymer, is 
irreducibly fine, about 30 nm in cross section. Two molecular motors,  kine-
sin  and  dynein , step along the tubule, ferrying cargo, in opposite directions. 
The motors operate with lever arms that, jutting orthogonally from the 
tubule, require clearance; therefore, microtubule spacing can be no closer 
than about 50 nm. Attach some cargo, and the circumferential zone about 
the tubule needs to be about 30 nm. These molecular structures set a lower 
bound to the caliber of a neuronal process. The finest axons at about 100 
nm are just thick enough to accommodate a single microtubule plus its 
molecular motors and cargo. Axons are encouraged to shrink because space 
and energy costs rise as d 2 , but eventually they hit this lower bound because 
of their irreducible need for fast transport.  

 Transport along the microtubule monorail is relatively cheap. Each 8-nm 
step of kinesin down the tubule costs 1 ATP, so to move a cargo 1 mm costs 
about 10 5  ATP. Although this might seem expensive, the molecular step-
ping motor is slow, so the cost per second is only about 100 ATP, far lower 
than the cost of electrical signaling by an ion channel (chapter 6).  
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 Variations on the standard design  

 The standard polarized design requires every synaptic input voltage to 
travel a fair distance along a dendrite (up to a millimeter) over a significant 
time (2 – 20 ms) and then still longer distances along an axon, costing addi-
tional time and energy. Computations that avoid this long, slow loop 
would save considerable resources. Thus, neural designs include various fea-
tures for computing locally, both at the synaptic and neuron levels. 

 Synapses designed for local computing  
 Certain designs allow direct computing between dendrites. A dendrite may 
form a chemical synapse onto a neighboring dendrite. The presynaptic 
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 Figure 7.9 
  Local computing by chemical axodendrodendritic synapses . Axon terminal contacts 

dendrite 1 that contacts adjacent dendrite 2 that feeds back to dendrite 1 .  Note the 

array of evenly spaced microtubules (mt) in cross section and glial wrappings (shad-

ed). Tiny dots are ribosomes (r) that support dendritic protein synthesis. Reprinted 

with permission from Famiglietti (1970). 
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dendrite releases transmitter onto the postsynaptic dendrite, which may 
reciprocate with a return chemical synapse to its neighbor (figure 7.9). Such 
 dendrodendritic  chemical synapses are employed by circuits in many brain 
regions, including spinal cord, thalamus, olfactory bulb, superior colliculus, 
retina, and cerebellar cortex (Shepherd, 2004). They are efficient because (1) 
computations remain in analogue mode, which is direct and cheap; (2) 
expensive long-distance electrical signaling is avoided; and (3) different 
branches of the same neuron can compute independently, thereby expand-
ing by up to 100-fold the computational possibilities of a single neuron 
(Grimes et al., 2010)    

 Dendrodendritic synapses can also be electrical, via a  gap junction .   This 
connection passes current directly between dendrites through a transcellu-
lar channel ( connexon ). It is fast — essentially instantaneous — because it dis-
penses with all the steps needed by a chemical synapse that take a 
millisecond or longer. Moreover, it does not amplify, so it is energetically 
cheap, and, as evident in figure 7.10, it requires no space at all. This type of 
synapse, illustrated here for cerebellar cortex, is ubiquitous. Specific compu-
tational functions will be treated in chapter 11.    
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 Figure 7.10 
  Local computing via electrical synapse between two basket cell dendrites . When 

chemical synapse from parallel fiber (pf) depolarizes b 1,  current flows across the elec-

trical synapse (arrow) to instantaneously and inexpensively depolarize b 2 . Rat. Re-

printed with permission from Sotelo  &  Llin á s (1972). ©  1972 Rockefeller University 

Press. 
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 Local computing is also accomplished by axoaxonic synapses. One 
design delivers a chemical synapse to an axon ’ s initial segment (figure 
7.11). This site, as noted, critically regulates spike frequency and timing, so 
a chemical synapse can act powerfully without consulting the neuron ’ s 
slower and costlier integrative apparatus. Another design uses a special 
form of electrical inhibition — fast and cheap. The cerebellar basket cell 
axon uses both designs, as now explained.     

 The basket cell axon, having richly enveloped the Purkinje cell body 
(figure 7.1), sends fine tendrils to surround the initial segment (see below, 
figure 7.15). The tendrils penetrate the glial wrapping and deliver a chemi-
cal synaptic contact that releases GABA (figure 7.11). Additionally, the ten-
drils join together using high resistance cross-bridges to form a capsule 
surrounding the glial fingers (figure 7.11). The capsule apparently elevates 
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 Figure 7.11 
  Two types of inhibitory synapse at the Purkinje cell axon initial segment. Left : Basket 

cell axon terminal (Bax) forms a chemical synapse (GABA) onto Purkinje cell initial 

segment. Glial fingers form a sheath around the axon. These fingers contain dense 

arrays of potassium transporters that rapidly bind potassium released during the ac-

tion potential. Rat. Reprinted with permission from Palay and Chan-Palay (1974). 

 Right : Basket cell axon tendrils form  septate-like junctions  with high resistance cross-

bridges. Their capsule surrounds the glial fingers and apparently elevates the extra-

cellular resistance. Basket cell spikes that synchronously invade the tendrils depolar-

ize the extracellular space, thus reducing the intracellular depolarization to modulate 

spike timing. Reprinted with permission from Sotelo  &  Llin á s (1972). 
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extracellular resistance so that basket cell spikes, locally synchronized by 
the dendrodendritic electrical synapses (figure 7.10), invade the fine ten-
drils and depolarize the extracellular space. This instantaneously reduces 
the initial segment ’ s intracellular depolarization and modulates spike tim-
ing (Korn  &  Axelrad, 1980). Polarizing the extracellular space to control a 
neuron ’ s output is direct, economical, and relatively noise free — so it is used 
elsewhere (chapters 9 and 11).  

 Other types of local computing use an axoaxonic synapse, directed not 
to the initial segment, but rather to another synaptic terminal. Matched to 
function, these can be either electrical or chemical, and sometimes both are 
combined at the same junction. Electrical junctions between synaptic ter-
minals of the same type improve S/N (chapter 11, figure 11.4). They also 
increase temporal precision because, as one synapse depolarizes, its coupled 
neighbor draws off some current, advancing its own depolarization and 
retarding the first (Pereda, 2014). This also increases synchrony between 
coupled terminals, a valuable property in many circuits achieved directly at 
negligible cost in space and energy.  

 A chemical axoaxonic synapse, depending on transmitter and receptor 
type, can be excitatory or inhibitory. For example, a retinal axon terminal 
releases glutamate onto AMPA receptors at an axon terminal of a 
thalamic interneuron (figure 12.4). Another synapse may release GABA 
onto a GABA A  receptor, which gates a chloride channel. This connection is 
usually inhibitory because a particular protein pump (KCC2) sets E Cl  near 
the resting membrane potential (figure 7.4). However, certain terminals 
express a different pump (NKCC1) that sets E Cl  positive to the resting 
potential. In this case a synapse matching GABA to  GABA A   will 
 depolarize  the postsynaptic terminal and be excitatory.   This allows a 
circuit to diametrically reverse its function, not by altering the anatomical 
structure, nor the transmitter, nor its receptor. Instead it simply swaps 
chloride pumps.  

 Neurons designed for local computation 
 Neurons differing from the standard polarized design are numerous, so here 
we note from retina two radical alternatives. One type radiates dendrites 
symmetrically from its cell body to collect chemical synaptic inputs. This 
 starburst  neuron lacks an axon but forms chemical outputs at the distal 
dendritic tips (figure 11.24). The design is such that a visual stimulus mov-
ing centripetally, from cell body toward the dendritic tips, releases GABA 
onto a ganglion cell and thereby blocks its spiking to that direction of 
motion (figure 11.24).  
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 This neuron breaks another rule: whereas most neurons release only one 
chemical transmitter, the starburst neuron releases  acetylcholine  in addition 
to GABA. These transmitters are packaged by different transporters into dif-
ferent vesicles that cluster at different presynaptic sites and contact differ-
ent dendrites. Thus, a starburst process, which computes locally and 
connects locally, can, by releasing different transmitters onto different neu-
rons, evoke opposite responses to the same stimulus. One computation pro-
duces two outcomes for the same price.  

 Another radical design radiates dendrites symmetrically about the cell 
body to collect local information; then, each dendrite radiates an axon 
from its distal tip to broadcast the information over millimeters (figure 
7.12). This  polyaxonal amacrine  neuron is polarized, but in reverse. The cell 
body, rather than converging information for a single axon, diverges via 
multiple axons in all directions (figure 7.12).    

 We conclude that the core rule for designing a neuron is to build it for a 
particular task. This achieves the needed performance for least cost (chap-
ters 9, 12, and 13).  
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 Figure 7.12 
  Polyaxonal amacrine neuron reverses the standard polarized design .  Left:  Instead 

of collecting input on dendrites and funneling to a single axon, it radiates multiple 

axons from distal dendritic tips. Gray boxes indicate regions shown at higher mag-

nification.  Upper right : Dendrites express spines for receiving inputs.  Lower right : 
Axons express varicosities for sending outputs. Reprinted with permission from Dav-

enport et al. (2007). 
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 Glial cells in design of neurons 

 Glial cells comprise a substantial fraction of the brain ’ s volume (Halassa  &  
Haydon, 2010). In white matter (tracts)  astrocyte  cell bodies and processes 
use more than 30% of the space. Myelin sheaths occupy an additional 25%, 
and  oligodendrocyte  cell bodies that provide the myelin wrapping use an 
additional 13%. Thus, in tracts the space allotted to glia comes to about 
65% (figure 13.21; Perge et al., 2009). In gray matter (circuits) the fraction 
for astrocyte processes varies locally by design, but overall is about 10%, 
plus some added allowance for cell bodies (Mischenko et al., 2010; Sch ü z 
 &  Palm, 1989). So on average, the total space for glia in gray matter is 
roughly 15%.  

 Glia expend considerable energy. For example, the mitochondrial vol-
ume fraction of astrocyte processes in white matter is more than 3%, more 
than twice that of the myelinated axons. In the optic nerve astrocytes con-
tain more than 70% of the mitochondria (see below, figure 7.21; Perge et 
al., 2009). In gray matter less than 5% of the mitochondria are in glia, but 
gray matter processes information in dense neural circuits, so its overall 
metabolic rate per volume is threefold higher (Attwell  &  Laughlin, 2001; 
Harris  &  Attwell, 2012). Given glia ’ s substantial costs in space and energy, 
what are the benefits to neural design? 

 White matter: Benefits of myelin and astrocytes 
 A naked axon conducts action potentials efficiently, but conduction veloc-
ity rises only as  √ d. Therefore, where speed is required, the naked axon must 
become inordinately thick. This cost is accepted for a command neuron 
that triggers the escape response of an invertebrate; most famously, the 
squid giant axon is about 1 mm in diameter. This works if there are only a 
few giant axons, but they could not be used routinely because they would 
take far too much brain space. Yet vertebrates move fast and need many fast 
axons.  

 When speed requires an axon thicker than about 0.5  μ m, the design 
solution is for an oligodendrocyte process to wrap a segment of the axon in 
a multilayered, jelly roll of plasma membranes. This is myelin. Its multiple 
layers effectively reduce the axon ’ s membrane capacitance and increase its 
resistance. This increases space constant and reduces time constant. These 
improvements allow the advancing foot of the action potential to spread 
further and faster. Thanks to myelin wrapping, action potential velocity 
increases in direct proportion to axon diameter at about 6,000 mm/s per 
micron diameter.  
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 The myelin-wrapped segment extends for about 0.5 – 1 mm, so as the 
voltage pulse flashes passively across this distance, it soon encounters a 
naked spot of neural membrane ( node of Ranvier ) which concentrates 
sodium channels. These are of a specific type, Nav1.6, that open rapidly 
and synchronously to regenerate the action potential — which then contin-
ues its passive course to the next node. The sodium channels pack so 
densely at the node (up to 2,000/ μ m 2 ) that the potassium channels needed 
to repolarize are displaced laterally.  

 Nodal spacing increases directly with axon diameter. This works because 
thicker axons produce larger nodal currents and increase the number of 
myelin wraps, further increasing the space constant. In systems where spike 
arrival time is critical, nodal spacing can be tweaked to compensate for dif-
ferent conduction distances (Cheng  &  Carr, 2007; Carr  &  Boudreau, 1993). 
One might imagine that concentrating sodium channels at a few sites rather 
than distributing them over the whole axon would save energy, and this 
proves to be so (figure 7.13). This saving, though substantial, does not begin 
to explain the threefold difference in energy cost of white matter compared 
to gray matter and, thus, its far sparser supply of blood vessels. That is 
explained by the absence of synaptic currents (Harris  &  Attwell, 2012).    
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  Myelination saves energy as well as conduction time. Left : In myelinated axons 

thicker than about 0.7  μ m mitochondria occupy a constant proportion of cytoplas-

mic volume, about 1.5%. In unmyelinated segments of the same axons mitochon-

dria occupy about 4% of cytoplasmic volume.  Right : Mitochondrial volume per unit 

axon length rises linearly with diameter for fine axons (d  <  0.7  μ m) and quadratically 

for thicker ones. This figure compares ganglion cell axons within the retina, where 

they are unmyelinated, to their continuations in the optic nerve where they are my-

elinated. Thus, both plots represent the same neuron types. Reprinted with permis-

sion from Perge et al. (2009). 
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 Astrocytes in white matter are critical to the design that generates an 
efficient action potential. Following a spike, the axon repolarizes by releas-
ing a pulse of potassium into the nodal extracellular space. Because neigh-
boring axons are all firing, the concentration gradient needed for the pulse 
to diffuse from the node is diminished. Therefore, potassium must be 
removed rapidly by sodium-potassium pumps (chapter 6). But where to 
place them?  

 Space at the nodal axon membrane is so fully occupied by sodium chan-
nels that the potassium channels are displaced laterally. Thus, the nodal 
membrane cannot accommodate large numbers of pump molecules. So the 
design places many fast-binding pumps on the astrocyte membranes and 
some slower ones along the axon (Ransom et al., 2000). Thus, astrocytes in 
white matter are key to rapid removal of extracellular potassium, and this 
may explain their large proportion of space and energy capacity. 

 Gray matter: astrocyte compartments for transmitter diffusion 
 Certain computations benefit when neighboring synapses operate indepen-
dently of each other. Other computations benefit when neighboring syn-
apses share their transmitter. The degree of independence versus sharing is 
set partly by the degree of astrocyte wrapping. Certain types of synapse are 
individually wrapped, allowing each pulse of transmitter to bind the post-
synaptic receptors and then to be removed by transporter proteins on the 
astrocyte membranes (see below, figure 7.17). Other types are poorly 
wrapped, allowing longer persistence and spread of transmitter to neigh-
boring synapses (see below, figure 7.16.  

 Still other types of synapse provide multiple synaptic contacts from 
closely spaced release sites that are all wrapped together by a glial capsule 
(figure 12.4). The glial membranes densely express transporter proteins for 
the particular transmitter released within the capsule (Josephson and Mor-
est, 2003). This allows pulses from one release site to spill over to neighbor-
ing receptor patches with consequences to be discussed below. Such 
 glomerular synapses  are used in various locations, including spinal cord, 
cochlear nucleus, thalamus (figure 12.4), and cerebellum (see below, 
figure 7.16).  

 Other tasks for glia  
 Astrocytes display myriad other properties. For example, they respond to 
neuronal activity and neurotransmitters via G-protein-coupled receptors. 
Moreover, they release gliotransmitters, such as glutamate, D-serine and 
ATP, which act on neurons. Astrocyte-derived ATP can modulate synaptic 
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transmission, either directly or through its metabolic product, adenosine 
(Schmitt et al., 2012). Astrocytes are also interposed between blood vessels 
and neurons and thus play important roles in regulating metabolic 
responses (Howarth, 2014). This does not exhaust the list of properties and 
contributions of glial cells to neural function. However, understanding 
remains too incomplete to fully grasp how the various features contribute 
to efficient design. 

 Each neuron ’ s design serves a larger circuit  

 Cerebellum illustrates the extent to which neurons and glia are adapted for 
specific functions within a larger circuit. A schematic diagram of cerebellar 
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  Wiring diagram of cerebellar cortex . Granule cell (GC) integrates excitatory contacts 

(from distant mossy fibers and local unipolar brush cells (UBC)) with inhibitory con-

tacts (from Golgi neurons (GO) with excitatory contacts from parallel fibers). Pur-

kinje cell (PC) integrates excitatory contacts from a single climbing fiber and 175,000 

parallel fibers (pf) with inhibitory contacts from stellate (S) and basket (B) cells that 

receive inhibitory input from the Lugaro cell (LC). Purkinje cell sends recurrent GA-

BAergic contacts to axon initial segment of neighbors. The basket cell extends fine 

processes to encapsulate the Purkinje axon initial segment, an arrangement associ-

ated with electrical inhibition. GLU, glutamate; Ach, acetylcholine; GLY, glycine; 

NA, noradrenaline; 5-HT, serotonin. Redrawn from Sotelo (2008). 
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cortex identifies the circuit ’ s four types of excitatory neuron, and four types 
of inhibitory neuron (figure 7.14). Although a complete account of their 
cooperative effort remains a goal, enough is already known to see how 
some features of their functional architecture serve efficient processing.     

 The cerebellar circuit performs two operations. First, it remaps informa-
tion coded at high mean rates by a modest number of mossy fibers to much 
lower mean rates carried by a much larger number of granule cells. This 
occurs in the inner synaptic layer. Second, it formulates an output by a 
quite small number of Purkinje cells in the outer layer. The granule cells 
project their individually sparse representation into the outer layer via a 
massive array of axons, running parallel to save wire (chapter 13). Each 
Purkinje neuron integrates single synaptic inputs from 175,000 parallel 
fibers to send an output pattern via its axon. To efficiently implement these 
two operations — remap and send an output — requires different functional 
architectures. 

 Functional architecture of inner synaptic layer 
 The inner synaptic layer densely packs astronomical numbers of granule 
cells in small clusters (figure 7.15). The cell bodies are irreducibly small, 6 – 7 
 μ m in diameter. The cell body is filled almost completely by the nucleus, 
leaving a mere crescent of cytoplasm essential for protein synthesis. The 
dendrites are limited to four short processes, about 12  μ m long, terminating 
in specialized claws that collect all the synaptic input (figures 7.1 and 7.14).     

 The granule cell transmits to Purkinje cells with an irreducibly thin 
axon. Its diameter can be less than 0.2  μ m, which allows just enough space 
for 1 – 2 microtubules plus their motors and cargo, and an internal resistance 
just low enough to prevent noise. Any narrower and the current entering 
through one sodium channel would see an internal resistance so high as to 
bring the membrane to threshold. This would allow a lone channel opened 
solely by thermal buffeting to generate a spontaneous spike, thereby intro-
ducing noise (Faisal et al., 2005). This design — thin axon — supports only a 
very low mean spike rate because, with a high surface area/volume ratio, it 
can contain relatively few mitochondria. 

 Granule cell design allows no input synapses, except at the four special-
ized claws. This provides high membrane resistance, which reduces the cost 
of maintaining resting potential. Even so, the bill for resting potential is 
considerable (see below, figure 7.21). As a neuron shrinks, the ratio of sur-
face area to volume increases as 1/diameter, so the ratio for a granule cell is 
nearly 10-fold greater than for a Purkinje cell. Such a relatively large mem-
brane area presents an expanse for leakage, and since the granule cell is the 
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brain ’ s most numerous neuron, this small cost grows large (see also 
chapter 13).  

 Much of the inner synaptic layer is occupied by the large axon terminals 
of mossy fibers (figures 7.1 and 7.16). A terminal interlaces with multiple 
(~15) dendritic claws, each from a different but neighboring granule cell, 
and forms a complex knot ( glomerulus ), nearly as large as a granule 
cell body (figures 7.1 and 7.16). The mossy fiber axon fires at an unusually 
high mean rate (up to 200 Hz) and is therefore among the brain ’ s thickest 
(figure 4.6).  

 To match the axon ’ s high rate, a terminal expresses 150 active zones, 10 
per postsynaptic granule cell (figure 7.16). These sites are capable of driving 
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  Largest cerebellar neuron occupies more than a 1,000-fold greater volume than 
smallest neuron.  Thin section (~1  μ m) through monkey cerebellar cortex. Purkinje 
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claws and space for Golgi cells (Go). Note rich network of capillaries (cap). Fine, scat-

tered dots are mitochondria. Courtesy of E. Mugnaini. 
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  A large terminal may contact many small dendrites without intervening glia . This 

design pools transmitter from many synapses. It densensitizes postsynaptic receptors 

to reduce spike rate while improving temporal precision.  Upper left : Central mossy 

fiber terminal contacts onto granule cell dendritic claws at release sites marked by 

*. Postsynaptic processes pack closely with no intervening glia. The whole structure 

(mft + grc claws) is partially encapsulated by glial membranes (above, shaded).  Up-
per right : Serial sections through one release site, showing docked vesicles.  Lower 
left : Three-dimensional reconstruction of mossy fiber terminal. Terminal provides 

hundreds of active zones. Each active zone has approximately seven neighbors closer 

than 1  μ m. Glia cover about 20% of outer surface.  Lower right : Granule cell strongly 

excited by first spike in mossy fiber but less strongly by next spike 10 ms later. Re-

printed with permission from Xu-Friedman  &  Reghr (2003). 
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a granule cell synchronously, with one vesicle per presynaptic spike, up to 
frequencies of 700 Hz (Saviane  &  Silver, 2006). This direct mapping of spike 
input to vesicle output preserves the bandwidth and dynamic range of the 
mossy fiber axon. However, to sustain signaling, the terminal must replen-
ish, dock, and prime vesicles at the axon ’ s mean rate. The enlarged terminal 
provides the volume to accommodate a releasable pool of about 5  ×  10 4  
vesicles, about 300 per active zone. Given that synchronous release main-
tains bandwidth and signal range, how is the terminal designed to main-
tain the other determinant of information rate, S/N?     

 To maintain S/N, the enlarged terminal contacts many small dendrites 
without intervening glia (figure 7.16). This design allows transmitter released 
at one site to diffuse to neighboring sites. Thus, a postsynaptic receptor clus-
ter on one granule cell dendrite receives a pulse of transmitter from its own 
release site, plus pulses from at least seven other sites less than 1  μ m distant. 
This  spillover  of transmitter from several sites reduces noise produced by 
probabilistic release, and being adjacent, diffusion affects only slightly 
response duration. To allow spillover, the synaptic complex is largely devoid 
of glia expressing transporters. Consequently, transmitter released across the 
terminal at high rates tends to persist, and this too is put to good use. 

 The persistent spillover densensitizes postsynaptic receptor clusters, 
which acts as a negative feedback to reduce the amplitude of the granule 
cell ’ s excitatory postsynaptic currents (EPSCs; figure 7.16). Thus, a granule 
cell can integrate numerous temporally correlated inputs to improve tem-
poral precision, yet since each input delivers a small postsynaptic current, 
the mean spike rate is drastically reduced. In other words, a glomerulus 
with large terminal, multiple postsynaptic clusters, and scant glia, is well 
designed to remap information from densely coding mossy fiber axons to 
sparsely coding granule cells.  

 The roughly 50-fold step down of mean spike rate from mossy fiber to 
granule cell is efficient partly because bits/spike increases for lower rates 
(figure 3.5). Efficiency is further increased by improving a spike ’ s temporal 
precision (chapters 5 and 6) to generate a  sparse code ,   in which each granule 
cell is mostly silent and only fires brief, well-timed bursts at frequencies 
greater than 100 Hz (Ruigrok et al., 2011). Timing precision and brevity of 
the burst are enhanced by another contributor to the glomerulus: the Golgi 
neuron, whose cell bodies distribute sparsely within the inner synaptic 
layer and contribute GABAergic inhibitory contacts to the glomerulus (fig-
ure 7.14). This contribution to sparsifying the signal is relatively cheap 
because the individual cell is of modest size, low rate, and modest numbers. 
Moreover, inhibition is far cheaper than excitation (see below, figure 7.20). 
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 Now consider the circuit ’ s second operation — integrate granule cell mes-
sages to form a Purkinje cell output. The granule cell axon ascends to the 
outer synaptic layer and branches as a T to run parallel with its neighbors 
and perpendicular to the fan-like Purkinje cell dendritic arbors (figures 7.1 
and 7.14). Extending for 2 mm, it contacts one dendritic spine on many 
neurons, including Purkinje cell, stellate, and basket cells. The presynaptic 
active zone docks substantial numbers of vesicles (figure 7.17) so that the 
release of one vesicle does not deplete the ready pool. This design allows a 
second spike to admit sufficient calcium to release several vesicles simulta-
neously and produce a larger postsynaptic response (figure 7.17). The gluta-
mate from single and multiple releases spills over to NMDA receptors just 
beyond the postsynaptic density, thereby extending the Purkinje neuron ’ s 
time window for coincidence detection (figure 7.5).  

 The parallel fiber contacts upon spines tend to be well wrapped by glia, 
which reduces spillover between neighboring synapses (figure 7.17). Thus, 

excitatory postsynaptic current

PurkinjePurkinje
spinespine

pfpf
synapsesynapse

Purkinje
spine

pf
synapseparallelparallel

fiberfiber
parallel

fiber

20 ms

glia

glia

0.0.2 μm0.2 μm

 Figure 7.17 
  Parallel fiber synapse to Purkinje cell spine is ensheathed by glia and is facilitated at 
high frequencies.   Upper:  Glial wrapping is nearly 70%, which greatly reduces spill-

over between neighboring active zones.  Lower : Excitatory postsynaptic response to 

brief burst of spikes at parallel fiber synapse (two spikes at 50 Hz). The second re-

sponse is larger, probably because two vesicles were released simultaneously. The 

enhanced pulse of transmitter diffuses further from the release site to reach extra-

synaptic NMDA receptors (Nahir  &  Jahr, 2013). Reprinted with permission from Xu-

Friedman  &  Reghr (2001). 



190 Chapter 7

a granule cell ’ s output synapse is structured to reliably deliver a precisely 
timed message — privately (Nahir  &  Jahr, 2013). All 150,000 parallel fiber 
synapses onto an individual Purkinje cell tend to be wrapped by the same 
glial cell ( Bergman glia ), whose form mimics that of the Purkinje cell ’ s exten-
sive dendritic tree (figure 7.1).    

 The different tasks of inner and outer cerebellar layers and their conse-
quent different designs illustrate why there can be no generic neuron. In 
the inner layer, high-rate synapses improve S/N by pooling excitatory 
responses and sharpen timing precision with feedback inhibition — to allow 
a burst of information-rich spikes (figure 7.16). In the second case, spikes 
deliver this information by a synaptic design that facilitates to a burst (fig-
ure 7.17). The first design reduces glial wrapping to enhance synaptic spill-
over; the second design does the opposite. Now we can ask: what are the 
costs of these two designs? 

 Costs of different neuron designs 

 Energy costs by cell type 
 When the various energy costs are totaled, the individual Purkinje cell 
proves to be the most expensive neuron, and granule cell proves to be the 
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  Energy costs by cell type. Left : Purkinje cell is the most expensive neuron, and gran-

ule cell is cheapest.  Right : Granule cell array is the most expensive, and Purkinje cell 

array is far cheaper. Glial cells are cheap individually and as arrays. Reprinted with 

permission from Howarth et al. (2012). 
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cheapest (figure 7.18). This should be no surprise since the Purkinje neuron 
is far larger, receives many more synapses, and fires at a greater than 10-fold 
higher mean rate. On the other hand, it seems mildly surprising that, the 
granule cell array is approximately fourfold more expensive than the Pur-
kinje cell array. This reflects the granule cells ’  outnumbering the Purkinje 
cells by 274 to 1.The local inhibitory neurons are cheap individually and as 
arrays, except for the Golgi neuron. The latter is costly as a single cell 
because it receives a high rate of excitation from mossy fibers and is consid-
erably larger than the granule cell (figure 7.14). Its major cost (75%) goes for 
postsynaptic receptor currents (Howarth et al., 2012). However, it is cheap 
overall because the array is sparse. Cerebellar glial cells are cheap individu-
ally and as arrays.    

 Energy costs by cellular function and computational stage 
 Each part of a neuron has its own cost, and the proportions vary according 
to the cell ’ s design (figure 7.19). Thus, the granule cell ’ s thin axon (which, 
ascending to the outer synaptic layer, branches as a T to become the irre-
ducibly fine parallel fiber) sends each action potential cheaply. And, because 
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  Energy costs by cell function : Granule cell versus Purkinje cell. rp, resting poten-

tial; ap, action potential; postsyn, postsynaptic receptor currents; recyc, transmitter 
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permission from Howarth et al. (2012). 
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of sparse coding, its mean spike rate is low. Therefore, less than 10% of a 
granule cell ’ s energy goes for spikes (Howarth et al., 2012). On the other 
hand, because the fine axon has a high surface area/volume, much energy 
is needed to maintain the resting potential against leaks. Postsynaptic cur-
rents at the input are costly, but synaptic release along the parallel fiber is 
cheap.    

 The Purkinje cell reverses the pattern. Its thick axon sends each spike at 
greater expense; moreover, the cell fires at high mean rates (figure 4.6). 
Therefore, the cell uses most energy for action potentials. The Purkinje cell ’ s 
second greatest cost is for postsynaptic excitatory currents due to its vast 
number ( > 10 5 ) of glutamatergic contacts from parallel fibers and the climb-
ing fiber. Its costs for recycling vesicles and transmitter are negligible 
because, except for a very few recurrent contacts, a Purkinje cell ’ s outputs 
are all outside the cerebellar cortex.  14    

 Note that for both neuron types there are presynaptic costs. These 
include extruding accumulated calcium from synaptic terminals via a 
sodium/calcium exchanger, retrieving vesicles by endocytosis, refilling ves-
icles via a transporter, and retrieving and resynthesizing transmitter. For 
both granule and Purkinje neurons these presynaptic costs are negligible 
(figure 7.19), and the same is true for all the inhibitory interneurons 
(Howarth et al., 2012). Some of these processes are cheap because they use 
chemistry (neural exo- and endocytosis, metabolic processing of transmit-
ters). Calcium extrusion is cheap because, although it uses energy for 
active transport, the calcium current to release a vesicle is miniscule 
compared to the current needed to open the calcium channel and 
compared to the postsynaptic current that the vesicle evokes. This reem-
phasizes the economy of chemical processes and the high cost of electrical 
amplification.  

 Cerebellar cortex contains more types of inhibitory neurons than excit-
atory ones (figure 7.14). However, the inhibitory neurons distribute sparsely 
and their synaptic currents are far cheaper. Therefore, excitation costs 
nearly four-fold more than inhibition (figure 7.20). Moreover, since the 
inhibitory processes serve to reduce redundancy and restrain expensive 
excitation, they seem a particularly good investment.     

 Cerebellar neurons parcel out their computations so neatly that the 
computational costs can be evaluated (figure 7.21). The inner synaptic layer 
is tasked to step down mossy fiber firing rates and concentrate information 
with a sparse code in granule cells. This costs slightly more than half of the 
total energy. The sparse code must then propagate to all the neurons in 
the outer synaptic layer, and this costs nearly one third of the total. Finally, 
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  Excitatory neurons in cerebellar cortex cost nearly fourfold more than inhibitory 
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 Figure 7.21 
  Input layer to cerebellar cortex consumes most energy . Intermediate layer consumes 

less, and output is cheapest. Mf, mossy fiber; Grc, granule cell; Pcell, Purkinje cell. 

Relabeled from Howarth et al. (2012). 
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the result of the outer-layer computation must be sent as Purkinje cell out-
put which, due to the step down in neuron numbers, costs least (15%). 
These calculations correspond rather neatly to the distribution of  cyto-
chrome oxidase , which serves the final step of mitochondrial energy produc-
tion: dense patches within the inner synaptic layer, corresponding to the 
synaptic glomeruli versus broad but weak distribution in the outer synaptic 
layer and strong in the Purkinje neurons (figure 13.20).     

 Conclusion 

 This chapter has focused on a few of the many ways that a neuron inte-
grates information encoded at the input as chemical signals to transmit an 
output electrically at speed over distance. A core point is that  “ the neuron ”  
is a shape-shifter. It can assume any form within limits ultimately set by 
physics, chemistry, and cell biology in order to function according to the 
basic principles of economy in neural design. The chapter did not explain 
how a neuron matches its internal chemical signals to achieve high effi-
ciency, or how it couples them with equally high efficiency to its electrical 
outputs. That is the topic of chapter 8. 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 


